UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Copepod distributional ecology in a glacial run-off fjord Stone, David Philip 1977

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Notice for Google Chrome users:
If you are having trouble viewing or searching the PDF with Google Chrome, please download it here instead.

Item Metadata

Download

Media
831-UBC_1978_A1 S86.pdf [ 25.54MB ]
Metadata
JSON: 831-1.0053208.json
JSON-LD: 831-1.0053208-ld.json
RDF/XML (Pretty): 831-1.0053208-rdf.xml
RDF/JSON: 831-1.0053208-rdf.json
Turtle: 831-1.0053208-turtle.txt
N-Triples: 831-1.0053208-rdf-ntriples.txt
Original Record: 831-1.0053208-source.json
Full Text
831-1.0053208-fulltext.txt
Citation
831-1.0053208.ris

Full Text

GOPEPOD DISTRIBUTIONAL ECOLOGY IN A GLACIAL RUN-OFF FJORD DAVID PHILIP STONE B . S c , U n i v e r s i t y of Aberdeen, 1973 A THESIS SUBMITTED IN THE REQUIREMENTS DOCTOR OF PARTIAL FULFILLMENT OF FOR THE DEGREE OF PHILOSOPHY i n THE FACULTY OF GRADUATE STUDIES Department of Zoology and I n s t i t u t e of Oceanography We accept t h i s t h e s i s as conforming to the r e q u i r e d standard THE UNIVERSITY OF 'BRITISH COLUMBIA October, 1977 (c) David P h i l i p Stone, 1977 In p r e s e n t i n g t h i s t h e s i s in p a r t i a l f u l f i l m e n t o f the r e q u i r e m e n t s f o r an advanced degree at the U n i v e r s i t y o f B r i t i s h Co lumb ia , I ag ree that the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s tudy . I f u r t h e r agree t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y purposes may be g r a n t e d by the Head o f my Department o r by h i s r e p r e s e n t a t i v e s . It i s u n d e r s t o o d that c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be a l l o w e d w i thout my w r i t t e n p e r m i s s i o n . Department o f The U n i v e r s i t y o f B r i t i s h Co lumbia 2075 Wesbrook P l a c e Vancouver, Canada V6T 1W5 Date \ i i ABSTRACT The Pacific coast of Canada is indented by numerous fjords. How-ever, there has been no synoptic zooplankton study of a fjord in British Columbia, and l i t t l e information is available to suggest how spatial and temporal distributions may change along a fjord's length in response to variation in hydrographic circulation, "water quality", and distrib-ution of phytoplankton. The investigation reported here was designed to help f i l l this gap. The study area was Knight Inlet, a local glacial run-off fjord, partitioned by a s i l l into a shallow outer (200 m) and deep inner (500 m) basin. Ten cruises were made to the area between October 197^ and September 1975» Vertically discrete zooplankton hauls were taken over a standard depth range of approximately 16 km intervals along a transect from Queen Charlotte Strait to the fjord head. All observed calanoid copepods (the group which dominated the zooplankton) were counted at the species sexed copepodite level. Salinity, temperature, oxygen, nitrate, chlorophyll a, and suspended sediment data were collected con-currently and plotted as isopleth profiles, from which hydrographic circulation was deduced. The profiles, in combination with Temperature-Salinity diagrams, were also used to "partition" the fjord into geog-raphically and vertically discrete "water regimes", each identifiable by a unique suite of conservative and non-conservative properties. All regimes were grouped into either a "Surface", "Transition" or "Deep" category. Dominant features of hydrographic circulation were the summer surface outflow of low salinity glacial run-off, and the replacement i i i of deep waters "by a high salinity intrusion associated, with upwelling. New intrusions resulted in ap-inlet movement of previously resident waters, which were then uplifted and flushed down-inlet. This counter-current system of flows appeared to act as a nutrient trap, retaining within the inlet any biologically utilisable material, and leading to the accumulation of high nitrate concentrations in the inner basin. Monthly Temperature-Salinity-Plankton (T-S-P) diagrams showed that five copepod species groups could be recognised according to an apparent association with either one or two water regimes. They were named accordingly, "Summer Surface", "Surface and Surface Transitional", "Transitional/Deep", "Deep", and "Off-shore". A final group was desig-nated "Migrant", and contained a l l diel and seasonal vertical migrants. Monthly profiles of species presence/absence, and profiles of conservative and non-conservative properties provided a spatial aspect to water regime-plankton associations revealed on the T-S-P diagrams. For example, most Transitional/Deep and a l l Deep species were clearly associated with the inner basin, whilst most Surface and Surface/ Transitional species appeared to be associated with the outer basin and Queen Charlotte Strait. This procedure also revealed the advect-ion of groups into "unusual" locations or depth ranges. For example, when deep inner basin water regimes were uplifted, similar upward displacement of Deep species were observed. Similarly, copepods char-acteristic of an off-shore fauna were carried into Queen Charlotte Strait by the July intrusion, and small numbers were advected into the fjord outer basin. The breeding cycles of herbivorous copepods varied within species iv at different geographical localities. This appeared to reflect the almost complete disappearance of phytoplankton from the inner basin after the arrival of turbid glacial run-off into the fjord head from June until September. Deep species showed l i t t l e seasonality in breed-ing cycle and a trend towards this situation was observed in the Trans-itional/Deep group. In conclusion, this thesis describes temporal and spatial patterns of distribution for a l l ealanoid copepod species found in Knight Inlet, and attempts to relate these to fjord hydrography and the distributions of certain environmental properties. V TABLE OF CONTENTS ABSTRACT i i LIST OF TABLES ...... v i i i ' LIST OF FIGURES •. ix ACKNOWLEDGEMENTS x i i INTRODUCTION 1 INLET HYDROGRAPHY AND DISTRIBUTION OF OTHER ENVIRONMENTAL PROPERTIES MATERIALS AND METHODS (a) Data collection and preliminary analysis 10 (i) Hydrographic properties ...... 10 (ii) Nutrients 11 ( i i i ) Suspended sediments 12 (iv) Chlorophyll a 12 (b) Data descriptive analysis 13 (i) Objectives and terminology ...... 13 (ii) Procedures of hydrographic analysis 14-( i i i ) Example of regime identification by Temperature-Salinity analysis ....... 15 RESULTS AND DISCUSSION (i) Presentation of results ...... 21 (ii) Inlet hydrography and the distribution of water regimes 22 (iiidistribution of chlorophyll a, suspended sediments, and nitrate 38 vi COPEPOD DISTRIBUTIONAL ECOLOGY MATERIALS AND METHODS (a) Data collection and preliminary analysis 43 (i) Field procedure 43 (ii) Laboratory procedure • 44 ( i i i ) Discussion and evaluation of procedures 44 Sampling gear 44 Statistical estimates of sample variability 47 Sub-sampling error 49 Copepod identification 50 (b) Data descriptive analysis 52 (i) Objectives 52 (ii) Procedures 53 Monthly profiles of species presence/absence 53 Monthly l i f e history composition 53 Monthly Temperature-Salinity-Plankton diagrams 55 k x r contingency tables 56 Spearman rank order correlation coefficients 58 RESULTS AND DISCUSSION (i) The data 60 (ii) Monthly profiles of species presence/absence 60 ( i i i ) Monthly Temperature-Salinity-Plankton diagrams 70 (iv) E x r contingency tables 92 (v) Spearman rank order correlation coefficients 101 (vi) Monthly l i f e history composition 103 vii SUMMARY AND CONCLUSIONS I l l TABLES 116 FIGURES . . 131 REFERENCES 168 APPENDIX A 180 v i i i LIST OF TABLES Table I: Monthly values of suspended sediment and reactive nitrate in the Kliniklini and Franklin rivers. 116 Table II: Statistics on replicate samples taken by Clarke-Bumpus nets at station Kn 9> September 1975 117 2 Table III: X analysis on sub-sample counts of Pseudocalanus elongatus obtained with the Folsom Splitter 118 Table IV(a-d): The estimated mean abundance of copepod species within water regimes in (a; December 1974, (h) February 1975, (c) April 1975, (d) July 1975- Data are arranged in a k x f contingency table 119-122 Table V(a-c): Intra-station matrices of Spearman rank order correlation coefficients (r ) between s zooplankton samples from the inner basin of Knight Inlet, September 1975 123 Table Vl(a-b): Inter-station matrices of Spearman rank order correlation coefficients (r ) between s zooplankton samples from the inner basin of Knight Inlet, September 1975 124 Table VII: The estimated mean abundance of copepod species at individual sample depths, September 1975* Data are arranged in a k x r contingency table 125 Table VIII: The Off-shore species group. A l i s t of a l l Calanoid copepods thought to be characteristic of an off-shore fauna, collected in Queen Charlotte Strait and the outer basin of Knight Inlet 126-128 Table IX(a):Monthly coastal upwelling indices at a station located at 51°N 131°W, for the years 1972 to 1975 1129 Table IX(b):Mean monthly values of coastal upwelling indices at a station located at 51 N 131 W for the 20 year period 1948 to 1967 129 Table X: Summary of copepod species distributions with respect to season, location, and water regime in Queen Charlotte Strait and Knight Inlet ...... 130 ix LIST OF FIGURES Figure 1: Northern Vancouver Island and the study region in the vicinity of Knight Inlet 131 Figure 2: The study area, Knight Inlet ' 132 Figure 3( a~j)'' Diagramatic longitudinal profiles of Knight Inlet, showing, isopleths of salinity, temperature, oxygen, and nitrate, : 1 3 3 a -j Figure 4: Temperature-Salinity (T-S) diagram and water regime limits for June 1975 134 Figure 5(& _j): Diagramatic longitudinal profiles of Knight Inlet, showing the monthly distribution of water regimes during the study period ...... 135a-b Figure 6: Diagramatic longitudinal profiles of Knight Inlet, showing a simplified account of water circulation 13& Figure 7: Apparent oxygen utilisation (A .O .u) of deep water after intrusion into the inner basin of Knight Inlet 137 Figure 8: Longitudinal sections of Knight Inlet, showing the monthly distribution of suspended sediments during the study year 138 Figure 9(a-b): Variation in chlorophyll and suspended sediment in the upper 50 meters of water in Knight Inlet 139a-b Figure '10: Isopleths of chlorophyll a in the upper 50 meters of water in Knight Inlet • I40a-c Figure 11: The monthly distribution of species group, Summer Surface, in the study area 141 Figure 12: The monthly distribution of copepod species group, Surface and Surface Transitional, in the study area I42a-b Figure 13: The monthly distribution of copepod species group, Transitional/Deep, in the study area l43a-b Figure 14: The monthly distribution of copepod species group, Deep, in the study area ...... l44a-b Figure 15: The occurrence of Off-shore copepod species i n the study area ,. 145 Figure 16: Temperature-Salinity-Plankton diagrams and water regime l i m i t s f o r October 1974 146 Figure 17: Temperature-Salinity-Plankton diagrams and water regime l i m i t s f o r December 1974 147 Figure 18: Temperature-Salinity-Plankton diagrams and water regime l i m i t s f o r February 1975 148 Figure 19: Temperature-Salinity-Plankton diagrams and water regime l i m i t s f o r March 1975 149 Figure 20: Temperature-Salinity-Plankton diagrams and water regime l i m i t s f o r A p r i l 1975 150 Figure 21: Temperature-Salinity-Plankton diagrams and wate water regime l i m i t s f o r May 1975 15^ Figure 22: Temperature-Salinity-Plankton diagrams and water regime l i m i t s f o r June 1975 152 Figure 23: Temperature-Salinity-Plankton diagrams and water regime l i m i t s f o r J u l y 1975 153 Figure 24: Temperature-Salinity-Plankton diagrams' and water regime l i m i t s f o r August 1975 154 Figure 25: Temperature-Salinity-Plankton diagrams and'wa ....water regime l i m i t s f o r September 1975 155 < Figure 26: Monthly l i f e h i s t o r y composition of Tortanus discaudatus 156 Figure 27: Monthly l i f e h i s t o r y composition of A c a r t i a l o n g i r e m i s and A c a r t i a c l a u s i 157 a~b Fig u r e 28: Monthly l i f e h i s t o r y composition of Centropages mcmurrichi f Paracalanus parvus, and E p i l a b i d o c e r a a m p h i t r i t e s 158 Figure 29: Monthly l i f e h i s t o r y composition of Galanus marshallae 1 5 9 a - D Figure 30: Monthly l i f e h i s t o r y composition of • Pseudocalanus elongatus ' 160 a-b Figure 31: Monthly l i f e h i s t o r y composition of , Bucalanus bungi bungi l 6 l xi • Figure JZi Monthly l i f e history composition of Metridia pacifica 162 Figure 33s Monthly l i f e history composition of Scolecithricella minor and Aetidius diver gens 163 Figure Jk: Monthly l i f e history composition of Chiridius gracilis 164 Figure 35: Monthly l i f e history composition of Metridia okhotensis 165 Figure 36: Monthly l i f e history composition of HeterorhaMus tanneri . and Gaidius columbiae 166 Figure. 37: Monthly l i f e history composition of Gandacia columbiae. Spinocalanus brevi-caudatus and Scaphocalanus brevicornis 167 x i i ACKNOWLEDGEMENTS I wish to express'my gratitude to a l l those who helped in the completion of this thesis. In particular, I wish to thank my.super-visor, Dr. A.G. Lewis, for his advice and continued encouragement, Valuable criticism of the manuscript was provided by Drs. R.E. Foreman, P.H. LeBlond, J.W. Murray, and T.R. Parsons. Many people gave freely of their time at sea, but special thanks go to C. Lafond and C. Thorp, and also to A. Fuller, who maintained the hydrographic equipment in perfect order. Dr. G.A. Gardner and A. Ramnarine were invaluable on many cruises, instructed me in field and laboratory procedures, and were a constant source of helpful advice. The officers and crew of the Canadian Hydrographic Service ships Vector and Parizeau, and of the Canadian' Navy ships Endeavour and Laymore were always most cooperative and made every cruise a pleasure. Captain Marsden of the Vector was outstanding in this'respect. I am grateful to D. Laurier, who ran a computer program to produce the Temperature-Salinity plots and, also to M. Douglas, who drew the final Temperature-Salinity-Plankton diagrams. My greatest debt is to mjff wife, Therese, who in addition to raising a family, helped in the calculation of plankton abundance estimates, in the preparation of many figures, and was responsible for typing the manuscript at every stage of its development. I am grateful for the financial assistance provided by a three year U.B.C. Graduate Student Fellowship, and by three Teaching Assistantships in the Department of Zoology. My research was also partly funded by two grants awarded to Dr. A.G. Lewis. They were N.R.C. Grant No. A-2067 and International Copper Research Association (INCRA) Grant No. 246. 1 INTRODUCTION A prime objective in plankton ecology is to quantitatively describe species patterns of distribution and abundance, and ultimately to under-stand how these patterns are developed and maintained. The problem has two aspects. Firstly, faunal boundaries, representing the distributions of many species, have often been found to l i e between major oceanic water masses. The latter, therefore, appear to approximately delineate marine zoogeographic realms (Brinton 1962; Fager and McGowan 1963; McGowan 1971, 1974; McGowan and Williams 1973). Secondly, Bary (1959, 1963a,b,c, 1964) had found faunal species distributions within water masses to be often sensitive to geographically more localised "water bodies". These were identified according to temperature-salinity characteristics, and found to be associated with individual species, and with assemblages of species. In this thesis, I have applied and modified Bary's approach to investigate temporal and spatial patterns of zooplankton distribution in a coastal fjord. The study of plankton distributions in space and time is beset with problems, many of which are associated with the third spatial dimension of the marine environment. Plankton are suspended in a medium capable of movement, in different directions at different depths. In the open ocean, there is no restriction to lateral water movement, and two assemblages of species situated one above the other in the water column at a given moment in time, may occupy different geog-raphical localities at a later time. The coast of British Columbia was subjected to extensive Pleistocene glacial erosion which has left a coastline indented with many fjords. 2 To the geologist, a fjord is a glaciated valley flooded bytithe sea. Typically, i t is deep and narrow, shallowing to a s i l l towards the mouth. Therefore, its physiography imposes restrictions on lateral water move-ment, leaving only one limited connection to adjoining marine waters. Through this, a l l marine immigrants to or emigrants from the fjord planktonic community, must pass. For the purposes of the present study, a fjord can therefore be regarded as a biological oceanographic unit, constrained by natural boundaries. As such, an interesting opportunity is provided to investigate zooplankton distribution in a discrete marine environment, which lacks many problems of "random" advective plankton transport normally associated with the open sea. The fjord selected for study was Knight Inlet, located on the main-land coast of British Columbia, 350 km northwest of Vancouver. It is a narrow fjord, penetrating for some 110 km into the Coast Range Mountains. Communication with adjoining marine waters is through Queen Charlotte Strait, which itself meets the Pacific Ocean 60 km to the northwest (Fig. l ) . Two shallow s i l l s of approximately 65 m depth partition the fjord into two basins. The outer is shallow, with a mean depth of 150 to 200 m, while the inner extends to over 500 m (Fig. 2). In cross-sectional profile, the fjord has the characteristic U-shape of a glac-ially eroded valley. Plankton are by definition greatly influenced by water movements. A broad understanding of inlet hydrographic circulation was therefore an essential pre-requisite to the understanding of zooplankton distrib-utions in the present study. A monthly hydrographic time series study has not been published for Knight Inlet, although isolated cruises 3 have been analysed by Pickard (1959t 19&1, 1975)- However, similar studies have been undertaken in a number of other local fjords. The most useful intterms of extrapolating to the Knight Inlet situation were found to be those concerning Alberni Inlet, because of its relat-ively direct access to the Pacific (e.g.- Bell 1976), and those concern-ing Bute Inlet, because of its glacial run-off (Lafond and Pickard 1975)• The above sources revealed three features of hydrographic circulation which could be of importance in terms of Knight Inlet plankton dis-tributions. They are outlined below. (a) There is a shallow outflow of freshwater run-off down-inlet. A strong halocline and pycnocline at a depth of 7 to 10 m separates this layer from more saline underlying water, In Knight, the majority of freshwater run-off is contributed by the Kliniklini and Franklin rivers at the fjord head (Fig. Z). Since these are glacially fed, freshwater discharge into Knight Inlet is characterised by a winter minimum and an intense summer maximum. Considerable quantities of glacial suspended sediment are carried by the rivers, and local tur-bidity maxima occur near the inlet head. In the latter locality, phyto-plankton production is therefore only likely to occur before the advent of glacial run-off, and the region may therefore be nutritionally poor for herbivorous zooplankton. Species able to tolerate the low salinity surface layer run the possibility of being advected from the inlet, as observed in a Norwegian fjord for Calanus finmarchicus Gunnerus by Stromgren (1976). (b) As the surface outflow moves seaward, its salinity increases. However, a corresponding increase below the halocline does not occur. This unidirectional transport of salt into the freshwater outflow is termed entrainment (Tully 1958)- The process is thought to result from internal waves generated at the halocline interface. Velocity shear acting between the water layers causes wave crests to break, and packages of underlying water are injected into surface water layers (Dyer 1973)* The total fjord volume and salt content remain constant, however, indicating a compensatory sub-surface inflow of saline water. This is an example of estuarine circulation. It provides both a system of countercurrent flows able to transport surface plankton in opposite directions along the inlet length, and also a mechanism (entrainment) for injecting nutrients into a possibly impoverished euphotic zone. (c) Finally, deep water in the two fjordsbasins issperiodically exchanged. This is caused by the spring and summer upwelling of high salinity water along the outer Pacific coast. In winter, winds along the northern coast of North America blow predominantly from the south-west. This results in an on-shore movement of relatively low salinity surface water (convergence). However, in summer, atmospheric condit-ions change, and winds blow largely from the northwest. Ekman trans-port now results inaan off-shore movement of surface water (divergence) and replacement waters of higher salinity rise from deeper depths by upwelling (Dodimead and Pickard 1967). By early summer, this water has occupied Queen Charlotte Strait (Barber 1956, 1957)• In local coastal regions, the magnitude of salinity differences compared with temperature structure are such that the former is usually dominant in determining water density (Pickard 1963). Therefore, at a given depth, 5 summer Queen Charlotte Strait water may have a higher density than Knight Inlet water. When such a discontinuity in isopycnals exists on either side of the s i l l s and at s i l l depth, i t will be exposed by tidal action. The high salinity water will then flow over the s i l l into the fjord, and a corresponding volume of lower salinity fjord water will be displaced. The process of deep water renewal therefore, provides a mechanism for the periodic introduction of new immigrants to the zooplanktonic community of Knight Inlet. Since the intrusion is from an off-shore source, i t would be expected to contain species representative of such water. With the exception of the results presented here, no information is available on the species content of such intrusions, or of changes which may occur in their species content with time. In the <past there have been few attempts to study zooplankton species distributionsi-intithe fjords of British Columbia. Previous work largely dealt with aspects concerning only a gew species (e.g. Pandyan 1971; Woodhouse 1971; Whitfield and Lewis 1976). The two major exceptions were the studies of Shan (1962) and Koeller (1974), who considered the ecology of copepods in Indian Arm and Bute Inlet, respectively. Shan's data were collected monthly, but his work was partly taxonomic and, although temperature - salinity relationships were considered with the plankton, only four species were studied (Gaetanus armiger Giesbrecht, Euchaeta japonica Marukawa, Calanus spp., and Metridia spp.). Koeller collected zooplankton from nine mainland inlets, including Knight Inlet, but only material from Bute Inlet was analysed. He identified and considered almost a l l 6 copepod species occurring in Bute Inlet, but was primarily concerned with aspects of their ecology.in deep water. His sampling program was designed for this purpose and was unfortunately not suitable for the study of species distributions in space and time. For example, the inlet was visited on only four occasionss in the year (February, May, June, and July). Furthermore, hydrographic data were collected on only two of the above cruises, and i t was therefore impossible to consider the effects of water circulation on copepod distribution. In the present study, ten cruises were made to Knight Inlet during the period October 1974 to September 1975- There was an approx-imate one month separation between cruises, extended to two months in mid-winter by the absence of November and February cruises. (Ten cruises were also made during the previous twelve month period. How-ever, the 1973 to 1974 data are not reported here, and are referred to only when they assist in the understanding of events occurring between October 1974 and September 1975)• This thesis attempts to identify and then to relate patterns of zooplankton species distribution with inlet hydrographic circulation and the distribution of environmental variables. The zooplankton samples were collected at approximately 16 km intervals along a trans-ect running from Queen Charlotte Strait to the inlet head, and were taken by discrete horizontal tows over a depth range extending from 5 m depth to within JO m of the bottom. A l l calanoid copepods found wereridentified and included in later analysis. Temperature, salinity, oxygen, nutrient, chlorophyll a, and suspended sediment data were con-currently collected. The former three parameters were used to obtain 7 an understanding of inlet hydrographic circulation "by accepted des-criptive techniques (e.g. Lafond and Pickard 1975)- These parameters were used also to indicate whether inlet water could be partitioned into hydrographically identifiable "types" (akin to Bary's "water bodies"), the distribution and movements of which would explain in some way the observed distributions of plankton. The other environ-mental parameters listed above were also used for this purpose. I approached the problem by setting out five research objectives (repeated in abbreviated form in the section dealing with data analysis). Firstly, could patterns of distribution be identified, and species grouped according to similarities and differences in spatial and temp-oral occurrence? Secondly, which species appeared able to maintain their populations by reproduction and, which relied on recruitment by immigration from elsewhere? Thirdly, was the reproduction of some species apparently restricted to certain parts of the inlet? Fourthly, could any features identified by the above, be related to variation in the fjord's hydrographic circulation, water property distribution, or other environmental variables? Finally, were copepods characteristic of an off-shore fauna carried into Queen Charlotte Strait and Knight Inlet by the summer intrusion and, i f so, what was their fate? The above objectives show that considerable emphasis was placed on the grouping of species which shared similar patterns of distrib-ution. Recent research on similar problems has explored the use of a number of mathematical and multivariate statistical techniques to reduce the number of subjective decisions involved in the grouping processes. The procedures are many, and some can also be used to 8 indicate the degree to which a given environmental variable appears to be associated with variance in the plankton data (e.g. Williamson 1961; Golebrook 1965; Williams 1971; Angel and Fasham 1973, 1974, 1975; Hummon 1974; Gardner 1977). However, Bary's (1959, 19&3> 1964) procedure of Temperature -Salinity - Plankton analysis was used in the present study to group species, since in the Knight Inlet situation i t appeared the most appropriate technique. The method provides a correlation diagram which relates the occurrence of species with the hydrographic char-acteristics of their environment. Furthermore, spatial aspects of distribution can easily be extracted from the T-S-P diagram by plotting the distributions of plankton, and of T-S defined "water bodies" on an inlet section. In this way the fjord can be partitioned both in terms of plankton, and of hydrographic characteristics. It is unlikely that the hydrographic variables are themselves responsible for the distribution of plankton data on a T-S-P diagram. For example, Bary (1963) defined six groups of zooplankton in the North East Atlantic, and found that species within the groups remained associated with a given "water body" throughout the year, despite the fact that temperature and salinity changed considerably during the period. Bary postulated that each water mass possessed a unique unknown property which influenced species content. Recently, Bary and Regan (1976) has proposed that the unique property may be concerned with the availability of dissolved trace metals, as suggested by the work of Lewis et al. (1971, 1972, 1976). However, i t is emphasised that the present objective was not to identify "water quality" factors respon-9 sible for T-S-P relationships, "but was concerned only with recognising such relationships. Two simple statistical techniques were used in the present study. Peterson and Miller (1976) have used 2X2 contingency tables to investigate proportionality of species content in samples from waters shown by hydrographic analysis to be distinct from one another. The procedure provided a semi-independent method of checking on the inter-pretation of T-S-P diagrams, and was here applied to data from four representative cruises. Secondly, McGowan has argued that due to competitive dominance and functional specialisation, stable rank orders of abundance should be characteristic of zooplankton samples taken from the same pelagic community. He used Spearman rank order correlation coefficients (r ) s to demenstrate this proposal (1977)• Matrices of r values were 3 calculated from upper basin data for one cruise only, in order to detect samples with similar rank orders of abundance, and so to map the spatial distribution of such communities. To assist in clarity, the thesis has been divided into two major parts. The fi r s t deals with the hydrographic and environmental survey of Knight Inlet, whilst the second presents the zooplankton data which are then interpreted in terms of the hydrographic phenomena. 10 INLET HYDROGRAPHY AND DISTRIBUTION OF OTHER ENVIRONMENTAL PROPERTIES MATERIALS AND METHODS (a) Data collection and preliminary analysis (i) Hydrographic properties Sampling for a l l parameters (including zooplankton) followed the pattern of the hydrographic program. For example, every zooplankton sample had a concurrent set of hydrographic data. The following stations were occupied for temperature, salinity, and oxygen determination during each cruise: QC (situated in Queen Charlotte Strait; Fig. l ) , and Kn 1, 3 i 4 , 5» 6, 7 i 9 i and 11 , representing a series from the inlet mouth to theeinlet head (Fig. 2 ) . Coordinates for each station are given in the Institute of Oceanography Data Reports, 1974 and 1975• Stations Kn 4 and 6 were not occupied in October and December 1974. In the latter month, station Kn 1 and 5 were also omitted due to ship operation prob-lems. Stations K-l to K-3 were three localities in the Kliniklini river extending from the mouth (K-l) through a salt marsh (K-2) to forest (K-3). The latter station was approximately 3mkm from the inlet. Station F-l was located at the rocky mouth of the Franklin river. River samples were taken for salinity and non-conservative property analysis, and were collected by directly immersing the sample bottle. Water for hydrographic analysis was collected using Atlas bottles. The following standard depths were sampled: 0, 5» 10> 20, 30, 50 , 75 . 100, 150, 200, 300, 400, and 500 m. Where the inlet was shallower than 500 m, the deepest sample was taken approximately 20 m above the bottom. Temperatures were measured by Richter & Wiese and Yashino Keike reversing 11 thermometers attached to the Atlas bottles. Values were read at sea with an approximate accuracy of - 0.02°G. Salinity was determined ashore using an Auto-lab inductively coupled Salinometer. The latter has a reported accuracy of approximately 0.003°/oo in the salinity range above 28°/oo. Surface temperature and salinity values were obtained from bucket samples, the bucket thermometer being graduated in tenths of a degree centigrade. Density (expressed as cr ) was cal-culated using Knudson's formula from corrected temperature,and salinity values. Dissolved oxygen content was determined at sea by the Winkler method, with the reagent modifications recommended by Garritt and Carpenter (1966). An approximate measure of surface light penetration was obtained at daytime stations using a Secchi disc. Final calculation of each hydrographic parameter was made using a local program on the Institute of Oceanography's PDP 12 computer. (ii) Nutrients Water was collected ty 5 or 8 litre Niskin bottles at stations QC, Kn 1, 3, 5, 7, 9, and 11. The standard depth series was: 0, 10, 30, 50, 100, 200, 300, and 500 m. Where the inlet was shallower than 500 m, the deepest sample depth coincided with that of the deepest hydrographic sample. A river sample was also taken at each of the four river stations. Immediately after collection, each sample was passed through a separate 0.45 pi f i l t e r and frozen in polyethylene bottles. Analysis for reactive nitrate and reactive phosphate was carried out ashore by standard methods recommended by Strickland and Parsons (1972). 12 ( i l l ) Suspended sediments Samples for suspended sediments were taken at inlet stations Kn 3, 5, 7 i 9. and 11, and at a l l river stations. The standard depth series was: 0,,5, 10, 30, 50, 100, 200, 300, and 500 m. Where the inlet was shallower than 500 m, the deepest sample depth coincided with that of the deepest hydrographic sample. Collection was by 5 or 8 litre Niskin bottles. Sediment was determined from a 3-5 litre aliquot passed under pressure through two pre-weighed 0.45 pi filters. The filters were stored in a small petri dish and frozen until weighed. Weighing was carried out after each f i l t e r had been dried at 60°C. Weight of sediment was expressed in terms of mg suspended sediment per litre of water filtered. (iv) Chlorophyll a Samples for chlorophyll determination were collected by 5 or 8 litre Niskin bottles at stations QC, Kn 1, 3» 5» 7, 9, and 11. Standard depths of 0, 5» 10, 301 and 50 m were sampled. Immediately after collection, magnesium carbonate suspension was added to the sample and a one litre aliquot passed through a 0.45 urn f i l t e r . Filters were folded and frozen at -20°C. Analysis was carried out a few days after collection by the trichromatic method recommended by Strickland and Parsons (1972). The equation of Strickland and Parsons was used to calculate chlorophyll a concentration in terms of rng/m^ water filtered. 13 (b) Data d e s c r i p t i v e a n a l y s i s ( i ) Objectives and terminology The research o b j e c t i v e was t o i n v e s t i g a t e zooplankton d i s t r i b -u t i o n i n Knight I n l e t i n r e l a t i o n t o c i r c u l a t i o n and d i f f e r e n c e s i n water " q u a l i t y " . The i n t e n t i o n was to i d e n t i f y bodies of water, accord-i n g to hydrographic and other environmental p r o p e r t i e s by the methods described i n t h i s s e c t i o n , and then t o search f o r f a u n a l d i f f e r e n c e s between such bodies of water. No attempt was made to i d e n t i f y i n d i v i d -u a l environmental f a c t o r s which may have been r e s p o n s i b l e f o r the observed f a u n a l d i f f e r e n c e s . When i d e n t i f y i n g water by conservative p r o p e r t i e s , the p h y s i c a l oceanographer u s u a l l y r e f e r s t o Ithe terms "water type" and "water mass". The former i s a p o i n t on a T-S p l o t (or a group of po i n t s s c a t t e r e d around an i d e a l p o i n t ) w h i l s t a water mass i s c h a r a c t e r i s e d by a l i n e on such a p l o t (or a s c a t t e r of p o i n t s about an i d e a l l i n e ) ( P i c k a r d 1963). N e i t h e r term could be employed i n the present study, s i n c e i n a d d i t i o n t o T-S r e l a t i o n s h i p s , water was c h a r a c t e r i s e d according t o geographical d i s t r i b u t i o n of both conservative and non-conservative p r o p e r t i e s . The term "regime" was t h e r e f o r e chosen t o a v o i d confusion w i t h the more s t r i c t l y d e f i n e d p h y s i c a l terms, and was used here t o i n d i c a t e a body of water approximately c h a r a c t e r i s e d according t o a s u i t e of conservative and non-conservative p r o p e r t i e s . The term has p r e v i o u s l y been used by e c o l o g i s t s as a broad c l a s s i f i c a t i o n of h a b i t a t s (see Nelson 1970 f o r a marine example) and has had some precedence i n marine zooplankton s t u d i e s . For example, Peterson (1972) d i v i d e d a t r a n s e c t p e r p e n d i c u l a r t o the Oregon coast i n t o Slope, Oceanic, Surface, 14 Transitional, and Deep regimes, on the "basis of combined hydrographic and nutrient data. The regimes would obviously have been unsuitable for an analytical physical oceanographic study. However, in the context of the outlined research objectives, the above approach seemed appropriate. It allowed maximum utilisation of a l l environmental information available, such as the distributions of chlorophyll a, suspended sediment, nitrate, and oxygen, in addition to those of salinity, temperature, and density.. Although the non-conservative properties were treated with caution, their characteristic behaviour was a product of biological processes, and itself highly relevant. For example, oxygen and nitrate were found particularly useful as indicators of regime "age" or residence time within the deeper parts of the inlet. (ii) Procedures of hydrographic analysis Two complementary me'thods were used to identify regimes. (a) Isopleths of salinity, temperature, dissolved oxygen, and nitrate were plotted for a l l cruises on longitudinal profiles of the study area (Fig. 3a-j)» The isopleth pattern for each parameter was then examined for evidence of regimes. Water circulation was deduced from the form of the isopleths for each cruise, and by comparing differences between successive cruises. This was essentially the method used by Lafond and Pickard (1975) when studying property distributions and deep water renewal in Bute Inlet. (b) For each station occupied on a cruise, a Temperature against Salinity (T-S) plot was constructed, using a local program on the 15 Institute of Animal Resource Ecology's PDP 11 computer. The plots were examined individually and then grouped into their respective months (cruises). Water was divided into "Surface", •'/Transition", and "Deep" regimes by drawing envelopes around lines of similar slope and pattern (Fig. 4 ) . Each was given a coded designation. If temporal continuity was suspected, the same code was used for successive months. However, i t is emphasised that such continuity could not be proved. The longitudinal profile isopleths of hydrographic and nutrient data were frequently consulted at this stage, which therefore constituted a departure from normal procedures. However, as described below, this additional information was found particularly useful in identifying Transition regimes. When possible, larger envelopes were drawn to embrace a l l similar regimes in a particular area. For example, a l l Transition regimes in the inner basin were enclosed in one envelope, and a l l Deep regimes in another. The original regimes were not discarded, since they provided useful information, such as distinguishing between "newly intruded" and "old" inner basin water. Finally, a l l regimes so identified were plotted on monthly longitudinal profiles to illustrate temporal and spatial distribution (Fig. 5a-j)» ( i i i ) Example of regime identification by Temperature-Salinity analysis Reproduction of the original seventy T-S plots was obviously impractical and they are not included here. However, these plots were used to construct the Temperature-Salinity-Plankton (T-S-P) diagrams shown in Figures 16-25» a n | i o n which the T-S limits of individual regimes 16 are Indicated. The actual hydrographic data were not plotted on the latter, since when this was attempted, the plankton data were obscured. In order that the procedure of water regime identification is fully understood, I have described the analysis of one cruise (June 1975) in detail. The original T-S diagram for June 1975 is given in Figure 4 (but with extreme T-S values omitted), and isopleth profiles of temperature, salinity, oxygen, and nitrate appear in Figure Jg. The spatial dis-tribution of derived regimes is given in Figure 5g- The T-S plot showed that at station QC in Queen Charlotte Strait, temperature decreased and salinity increased with increasing depth. However, the T-S line was inflected at depths between 10 and 20 m, and between 50 and 75 m« Water from depths above the upper inflection were found to be of low nitrate and high oxygen and chlorophyll a content (see Fig. 10 for the latter). This suggested a regime considerably influenced by surface phenomena and i t was coded E'SFC. In contrast, water below the lower inflection was found to be of low oxygen but high nutrient content, therefore suggesting a regime apparently isolated from the surface for some time. It was coded E"DEEP. A comparison with data from precedihg^monthss taken at the same station, showed a spring and early summer increase to have occurred in deep water salinity and nitrate content, with a corresponding decrease in oxygen (Fig. 3e-g)« This indicated the intrus-ion of water from an off-shore origin. Water from depths between the two inflections on the T-S plot was thought to be transitional between the Surface and Deep regimes. It was therefore coded E"TRANS. In Knight Inlet, the T-S diagram showed that salinity increased 1? and temperature decreased w i t h i n c r e a s i n g depth from the surface to approximately JO m. This again corresponded to a zone of low n i t r a t e and h i g h oxygen and c h l o r o p h y l l a content, and i n d i c a t e d a regime considerably i n f l u e n c e d by surface phenomena. The regime was coded A SFG. The very low surface s a l i n i t i e s shown on the l o n g i t u d i n a l p r o f i l e s near the i n l e t head were r e l a t e d t o the onset of g l a c i a l run-o f f from the K l i n i k l i n i and F r a n k l i n r i v e r s (Table i ) . Water a t JO m depth a t s t a t i o n Kn I didnnot f i t onto a T-S l i n e . The data appeared genuine according t o crj_ values and since the f e a t u r e was a l s o observed i n J u l y , t h i s "depth" was coded as a separate Surface regime, A'SFC. Approximately the same l o c a t i o n was occupied on the T-S diagrams by water from 50 m depth a t s t a t i o n Kn J i n the outer b a s i n , as was occupied by water from the same depth a t a l l inner b a s i n s t a t i o n s . The i s o p l e t h p r o f i l e s were found u s e f u l i n e x p l a i n i n g t h i s f e a t u r e . In the inner b a s i n , i s o p l e t h s of temperature, oxygen, and n i t r a t e showed a tre n d t o slope towards the surface i n the d i r e c t i o n of the i n l e t head, and then t o extend down-inlet a t approximately 50 m depth as tongues of maximum (temperature and n i t r a t e ) or minimum (oxygen) values. The l a t t e r could be t r a c e d t o s t a t i o n Kn J i n the outer b a s i n , but were not detected at s t a t i o n Kn 1. Deep s a l i n i t y i s o p l e t h s a l s o sloped upwards towards the i n l e t head, but were not i n f l e c t e d down-inlet as a sub-surface maximum. This was i n t e r p r e t e d as i n d i c a t i n g t h a t deep inner b a s i n water had moved u p - i n l e t and towards the surface near the i n l e t head. Some m o d i f i c a t i o n by mixing and d i f f u s i v e processes must have occurred to account f o r the observed s a l i n i t y c h a r a c t e r i s t i c s . The "upwelled" water then moved down-inlet a t approximately 50 m depth. 18 A comparison with T-S diagrams and inlet profiles for preceeding months indicated that the above circulatory feature had been present since at least March (Fig. Jd-g). The outflow regime at 50 m depth was coded G TRANS. Water from approximately 100 m depth at stations Kn 5» 7> and 9 also showed the same location on the T-S diagram. The isopleth profiles showed temperature and nitrate values to be lower, and oxygen values higher, than found in the 50 m depth outflow regime immediately above. This suggested a shallower origin. A comparison with T-S diagrams and isopleth profiles for the preceeding months indicated that this water was formed as a result of winter cooling in the comparatively shallow outer basin, after which i t gradually intruded into the inner basin where intermediate depths were occupied between February and April (Fig. 3c-g). The intrusion could be seen by the following up-inlet movement of the 7°C isotherm or the 4.0 ml/l isopleth for oxygen, which also indicated a gradual disappearance of this water from the inner basin after April. This probably resulted from both an advective volume loss, as some of the regime probably moved down-inlet with the 50 m depth sub-surface outflow, and a loss of identity through mixing and diffusion. The regime was coded F'TRANS. With increasing depth below approximately 150 m in the inner basin, there was aniincrease in both temperature and salinity. Throughout the study, this relationship was found to be generally characteristic of deep up-inlet water. However, there was an inflection on the T-S lines for stations Kn 7 and 9 at depMis of between 300 and 400 m and between 300 and 350 ni, respectively. The inlet profiles showed these to be the 19 approximate depths a t which markedly upward displacement occurred of i s o p l e t h s of s a l i n i t y , temperature, oxygen, and n i t r a t e . Water below these depths was c h a r a c t e r i s e d by higher temperature, s a l i n i t y , and n i t r a t e s , and lower oxygen content. I t was coded G DEEP. A compar-i s o n w i t h T-S diagrams f o r preceeding months showed t h a t t h i s regime had occupied approximately the same p o s i t i o n on the p l o t s since i t s i n t r u s i o n i n t o the i n n e r b a s i n between October and December 1974. The l a t t e r process was shown on the i s o p l e t h p r o f i l e s ( F i g . 3 a~b). The remaining deep water i n the inner b a s i n was coded H DEEP. The T-S diagram d i d not i n d i c a t e t h a t t h i s regime could be subdivided. However, water between 200 and 300 m depth at s t a t i o n s Kn 4, 5> and 6 was seen t o inc r e a s e i n temperature between May and June ( F i g . 3f~g)» despite the presence of colder water above. This i n d i c a t e d t h a t the regime had r e c e n t l y i n t r u d e d from the shallower outer b a s i n , where warming of the water column had occurred i n immediately preceeding months. However, a t the same depths a t s t a t i o n Kn 9 and 11, the prev-i o u s l y d e scribed upward displacement of s a l i n i t y , temperature, n i t r a t e , and oxygen i s o p l e t h s was observed. Whereas the lower n i t r a t e and higher oxygen content a t the s t a t i o n s near the s i l l suggested a near surface o r i g i n , the high and low values, r e s p e c t i v e l y , a t the i n l e t head s t a t i o n s , suggested a deep o r i g i n . Furthermore, the c o n t i n u i t y of upwardly d i s p l a c e d i s o p l e t h s of temperature, oxygen, and n i t r a t e , w i t h the 50 m sub-surface maximum and minimum regime (G TRANS) i n d i c a t e d the fl o w r e l a t i o n s h i p a l r e a d y discussed between the i n l e t head deep water and the l a t t e r . Therefore, although not j u s t i f i e d by the T-S,analysis alone, the inner b a s i n H DEEP regime was d i v i d e d i n t o an i n l e t head 20 portion, coded H"DEEP, and a near s i l l portion, coded H'DEEP, each characterised largely by non-conservative properties. With increasing depth below the Surface regime at station Kn 1 in the outer basin, the T-S diagram showed an increase in salinity and a decrease in temperature. However, there were two distinct T-S lines. One coded B"TRANS included water from depths of 50 to 100 m, whilst the other, coded B'"DEEP, included water from 150 to 200 m depth. Both lines were of the same slope, but the latter occurred further to the right, reflecting higher salinities. The isopleth profiles for preceeding months showed that salinity in the deep outer basin had risen steadily since between March and April (Fig. JeQg), They also indicated this rise to reflect an intrusion of high salinity water from Queen Charlotte Strait, where deep water salinity had also risen. On the T-S diagram, water from 100 m depth at station Kn 3 lay close to the B"TRANS regime and was therefore included with i t . Similarly, 150 m water from the same station was included with the B""DEEP regime. In summary, the descriptive analysis of June hydrographic data indicated that at the Queen Charlotte Strait station, a high salinity regime occupied deep water, some of which intruded into the outer inlet basin. At the same time, the inner inlet basin was invaded by warmer and slightly more saline water from the outer basin. The latter event appeared to result in an up-inlet displacement of previously resident water, some of which was "flushed" down-inlet as a sub-surface outflow at approximately 50 m depth. This interpretation is illustrated diagramatically in the "April to June" and "July to September" portions of Figure 6. 21 RESULTS AND DISCUSSION (i) Presentation of results Complete hydrographic data are available in the Institute of Oceanography Data Reports for 1974 and 1975- Monthly longitudinal isoplethsproflies of temperature, salinity, oxygen, and nitrate appear in Figure 3 a _j« Profiles of phosphate concentration were omitted, since their distribution always resembled those of nitrates. Profiles of cr^  were also omitted, since the isopycnals were nearly always horizontal and so provided l i t t l e information concerning water circulation. The latter problem was also encountered by Laf-ond (1975) during a physical oceanographic study of Bute Inlet. As previously explained, i t was impractical to include the seventy original T-S plots. However, the way in which these were interpreted was fully explained using the June 1975 example in the previous section (Fig. 4 ) . A simplified summary of assumed hydrographic circulation in the inlet during the study period is given in Figure 6. The monthly distribution of suspended sediment and of chlorophyll a are given in longitudinal sections in Figures 8 and 10, respectively. Both parameters were also plotted as monthly accumulative values for the upper 50 meters (Fig. 9a-b). Monthly nitrate concentration and s suspended sediment load in the Kliniklini ahd Franklin rivers are given in Table I. Since neither parameter varied greatly between the three Kliniklini sampling stations, data from only one are included (station Kl 3, situated at the boundary between salt marsh and deciduous forest). 22 ( i i ) Inlet hydrography and the distribution of water regimes Below i s a four season summary of the hydrographic data. The code used to identify each regime i s given in bracketed capitals following i t s f i r s t mention. Autumn - October to December 1974 Queen Charlotte Strait Surface (E'SFC), Transition (E"TRANS), and Deep (E,MDEEP) regimes were identified for each month. They corresponded to segments of the T-S lines observed to have different slopes and to occupy d i f f -erent positions on the T-S diagrams. These differences were indicated by the regime limits given in Figures 16 and 17, which also showed that no Queen Charlotte regime retained i t s suite of October charact-eristics through to December. The Deep regime in October was char-acterised by high salinity and nitrates, but with a low oxygen content (Fig. 3 a)- This suggested an off-shore origin through upwelling. According to indices calculated from surface atmospheric data (Bakum, pers. comm.) upwelling between the north of Vancouver Island and the southern t i p of the Queen Charlotte Islands, ceased between September and October (Table IXa). There was no evidence of upwelled water in December, when the Deep regime was of lower salinity and nitrate, and higher oxygen content, than seen in October (Fig. 3h). As with a l l Surface regimes observed in this study, the Surface regime in Queen Charlotte Strait was characterised by obvious influence from surface phenomena. For example, in October, lower nitrate and higher oxygen contents probably reflected the presence of phytoplankton production, 23 as suggested by the small chlorophyll a maximum recorded in the regime (Fig. 10 ) . In December, l i t t l e chlorophyll was recorded at any depth and the above features could not be seen. Inlet - general Between October and December the large decline which occurred in the suspended sediment load carried by the K l i n i k l i n i river showed that glacial run-off ceased to enter the inlet between these two months (Table i ) . This was reflected on the salinity profiles (Fig. 3 a -h), which indicated that low salinity water found at the surface in the inner basin in October, was almost absent from the same location in December. Surface regimes in both inlet basins were characterised on the T-S diagrams by rapidly increasing salinity with small increases in depth. This feature was responsible for the large area of the T-S-P diagrams occupied by the two Surface regimes (A'SFC and A"SFC) (Figs. 16 -17) . These represented surface water in the outer and inner basins, respect-ively. The two were separated in the T-S-P diagrams for biological rather than hydrographic reasons, since although outer basin surface water was warmer than inner basin surface water, this only reflected a steady sub-surface decrease in temperature in the up-inlet direction (Fig. 3a-b). The presence of high salinity water in Queen Charlotte Strait was responsible for a density gradient which extended from the latter location, across both inlet s i l l s , and into both inlet basins. Con-sequently, a high salinity inflow occurred at depth unt i l December, 2k when the salinity of Queen Charlotte Strait had fallen. Density data were not presented, but since density in local fjord waters is prim-arily related to salinity (Pickard 196l), good evidence of the inflow was provided by the downward slope of msohalines in the up-inlet direction shown in longitudinal profile (Fig. 3a). The isohalines also indicated that deep water in each basin at the time of the intrus-ion was of a salinity which corresponded to approximately that found at s i l l depth on the down-inlet side of each respective s i l l . Further-more, water from 75 m depth at station Kn J was responsible for the low temperature part of the outer basin Transition regime B"TRANS, shown on the T-S-P diagram to have shared almost the same position on the plot as occupied by the inner basin Deep regime C DEEP (Fig. 16). Similar flow relationships were frequently observed in the present study, as indicated by similarities in water properties recorded at s i l l depth in the outer basin, and those found characteristic of recently intruded water in the deep inner basin. Inlet - outer basin The T-S lines for October showed a steady increase in salinity with depth. However, the lines were broken into two segments by the occurrence below the surface of warmer water at between 50 and 75 m depth and by another small but distinct temperature change at between 75 and 100 m. The details were almost obscured on the regime T-S limits (Fig. 16), but were represented on the isopleth profiles by a down-inlet tongue of warm water at station Kn 3> and also by a nitrate maximum which extended from the inlet head region (Fig. 3a). The two latter 25 regimes were designated, respectively, outer "basin Transition (B"TRANS) and outer "basin Deep (B'"DEEP). In December, data were not collected at station Kn 1. At station Kn 3» the same regimes were recognised as in October, due to the continued presence of nitrate and temperature maxima. The nitrate maximum was obscure and could only be detected further up-inlet (Fig. Jb)- The latter could be clearly seen on the original T-S plot, but was not indicated on the T-S-P diagrams, since i t occurred at 75 m depth where no plankton sample was collected. Inlet - inner basin In October, four regimes could be recognised beneath the sur-face, according to differences in the T-S line slope and positions occupied by such lines on the T-S diagrams (regime T-S limits were given in Figure 16). The new intrusion, G DEEP, was characterised by relatively high temperature and salinity (Fig. 3a) and increasing temperature with salinity and depth. Comparison with data collected in Knight Inlet immediately before the present study period (i.O.U.B.C. Data Report for 1974) indicated that the up-inlet boundary of the new intrusion corres-ponded to approximately the 31.26°/oo isohaline. The above comparison also indicated that water resident in the inner basin during the summer of 1974 was slightly cooler and less saline than the new intrusion. In October, such water was found in the D'"DEEP regime T-S envelope (Fig. 16). Deep maxima of salinity and temperature shown on the isopleth profiles indicated that when the new intrusion (C DEEP) invaded the inner basin, the previously resident regime (D"'DEEP) was pushed up-inlet, and displaced towards the surface near the inlet head. The latter 26 process was indicated "by isopleths of temperature, oxygen, and nitrate which were inclined towards the surface near station Kn 11 (Fig. 3a,). This interpretation was reinforced when the T-S coordinates of water included in the D"'DEEP T-S envelope were plotted on a longitudinal section (Fig. 5 a)- A shallower regime, coded D1TRANS, was detected at depths of between 50 and 150 m. In comparison with the deep regimes, i t was characterised by relatively lower temperature and salinity on the isoplethsprofiles (Fig. 3a)> whilst the T-S plots also showed smaller increases in temperature to occur with a given increase in salinity. Finally, a small sub-surface regime characterised by a temp-erature maximum and a nitrate minimum was present at stations Kn 9 and 11 (Fig. 3a» 16). The isopleths for both parameters were continuous with those of deep water (Fig. 3 a) which suggested that some previously resident deep inner basin water was leaving the inlet as a sub-surface flow. In December, the situation was basically similar to that observed in October. The previously resident Deep regime (D'"DEEP) had a temperature sufficiently lower than that of the new intrusion (C'DEEP), that despite the possession of a lower salinity, a higher density was maintained and i t was cut off by the overlying new intrusion (Fig. Jb} 5b). The T-S lines for water in the inlet head region lay close togeither and possessed the same slope. Therefore, only one Transition regime was recognised (D'TRANS). Temperature and salinity isopleths indicated that a down-inlet tongue of the latter cut off a surface portion of the new intrusion (Fig. Jb)* "the T-S limits of which were shown on the relevant T-S-P diagram (Fig. 17). 27 Winter - February t o March 1975 Queen Gharlotte S t r a i t In February, the s a l i n i t y of water a t 150 m depth a t s t a t i o n QG reached an annual minimum. This probably r e f l e c t e d a combination of d i r e c t l o c a l r u n - o f f and the presence of wind d r i v e n convergence off - s h o r e (Table I X ) . The T-S diagram showed temperature to increase f a i r l y r a p i d l y w i t h i n c r e a s i n g s a l i n i t y from the surface to a depth of 75 m, below which there was a smaller temperature increase. Water above and below t h i s depth was designated Surface (E'SFC) and Lower (E"TRANS), r e s p e c t i v e l y . The T-S c h a r a c t e r i s t i c s mentioned could a l s o be d i s t i n g u i s h e d from regime T-S l i m i t s ( F i g . 18). In March, three regimes were recognised from the T-S diagrams. From the surface to 20 m depth, a temperature increase occurred w i t h -out a corresponding s a l i n i t y change. Water from 10 t o 75 m depth increased i n s a l i n i t y w i t h a small temperature decrease, w h i l s t between 100 and 150 m, temperature rose with i n c r e a s i n g s a l i n i t y . The three segments of theTT-S l i n e were designated Surface (E'SFC), T r a n s i t i o n (E"TRANS), and Deep :(]E"*DEEP) regimes, r e s p e c t i v e l y . The T-S charact-e r i s t i c s of each was i n d i c a t e d on the r e l e v a n t T-S-P diagram ( F i g . 19)« I t i s i n t e r e s t i n g t h a t the s a l i n i t y of water from 100 t o 150 m depth increased between February and March, and t h a t Bakum's upwelling i n d i c e s suggested a switch to have occurred between the two months from c o n d i t -ions inducive of considerable convergence t o s l i g h t divergence (Table l"X-). I n l e t - general Minimal freshwater r u n - o f f occurred d u r i n g t h i s p e r i o d and a 28 February surface s a l i n i t y of JO.k to 30 .6°/oo was recorded at a l l i n l e t s t a t i o n s . In February, a cold water regime extended from the surface to depths of over 50 m (Fig. 5 c ) . T-S l i n e s f o r the regime character-i s t i c a l l y showed that with increasing depth, there was a considerable temperature increase but only a s l i g h t r i s e i n s a l i n i t y . This trend was r e f l e c t e d by regime T-S l i m i t s given i n Figure 18. However, i n March, the Surface regime was of lower s a l i n i t y and therefore, more t y p i c a l of the i n l e t . The T-S diagram (indicated i n Figure 19) showed that with increasing depth to approximately 20 or 30 m, only a small temperature r i s e accompanied a considerable increase i n s a l i n i t y . The difference between the two months may have been caused by a possible t o t a l freeze-up of the K l i n i k l i n i and F r a n k l i n r i v e r s , which could not be v i s i t e d at that time due to a b l i z z a r d . I n l e t - outer basin As already described, the slope of the Surface regime T-S pl o t s changed between February and March. However, i n both months, the l i n e was i n f l e x e d near 150 m, due to the presence of r e l a t i v e l y warmer and more sa l i n e water at a depth of 200 m. The l a t t e r regime was designated B"TRANS. At s t a t i o n Kn 3 , the T-S coordinates of 150 m water i n February, and of 100 and 150 m water i n March, lay adjacent and p a r a l l e l to those of B"TRANS regime of the same month and they were included with i t . At the same time, the T-S l i n e at s t a t i o n Kn 3 was i n f l e x e d between 75 and 150 m by the occurrence of a temperature minimum at 100 m depth. The l a t t e r regime was designated F TRANS. The feature was too small to be observable with the standard i n t e r v a l of isotherms 29 u s e d h e r e ( F i g . 3c ), "but t h e r e g i m e was i n c l u d e d s i n c e i t was a l s o d e t e c t e d on t h e u p - i n l e t s i d e o f t h e s i l l ( F i g . 5 c ) . The a p p r o x i m a t e T-S l i m i t s o f t h e above r e g i m e s were g i v e n w i t h t h e T-S-P d i a g r a m s ( F i g . 1 8 ) . A t s t a t i o n Kn 3 i n March, a t e m p e r a t u r e maximum was o b s e r v e d on t h e T-S p l o t a t 50 m d e p t h . T h i s was f o u n d t o c o r r e s p o n d w i t h a n i t r a t e maximum and oxygen minimum on t h e i s o p l e t h p r o f i l e s ( F i g . 3d). The r e g i m e was d e s i g n a t e d G' and G"TRANS, and i s d i s c u s s e d i n t h e i n n e r b a s i n s e c t i o n below. I n l e t - i n n e r b a s i n I n F e b r u a r y , an i n f l e c t i o n o f T-S l i n e s a t a p p r o x i m a t e l y 200 m d e p t h s e p a r a t e d t h e deep warm h i g h s a l i n i t y autumn i n t r u s i o n r e g i m e G DEEP f r o m a c o o l e r and l e s s s a l i n e r e g i m e above, D TRANS. The a p p r o x i m a t e s p a t i a l d i s t r i b u t i o n o f t h e two r e g i m e s was d e t e r m i n e d by p l o t t i n g t h e T-S c o o r d i n a t e s on a l o n g i t u d i n a l s e c t i o n ( F i g . 3 C ) « T h i s showed t h a t i n a d d i t i o n t o s e p a r a t i n g t h e S u r f a c e and Deep r e g i m e s , t h e D TRANS regime was t h e o n l y w a t e r p r e s e n t b e n e a t h t h e s u r f a c e a t t h e i n l e t head i n F e b r u a r y and March. The r e g i m e ' s d i s t r i b u t i o n a p p r o x -i m a t e l y p a r a l l e l e d t h a t shown by i s o p l e t h s o f h i g h n i t r a t e c o n c e n t r a t i o n ( F i g . 3 c-d), w h i c h t h e r e f o r e s u g g e s t e d w a t e r w h i c h had been a t d e p t h f o r some t i m e . T h i s i n d i c a t e d t h a t t h e D TRANS re g i m e was p r o b a b l y composed l a r g e l y o f o l d i n n e r b a s i n summer r e s i d e n t w a t e r . I t a p p e a r e d t o be l e a v i n g t h e i n l e t as a s u b - s u r f a c e f l o w w h i c h c o u l d be d e t e c t e d i n March a t a p p r o x i m a t e l y 50 m d e p t h by t h e o c c u r r e n c e of an oxygen minimum, and n i t r a t e and t e m p e r a t u r e maxima ( F i g . 3d). The o u t f l o w 30 regime was subdivided into upper (*G'TRANS ) and lower (G"TRANS) portions on the basis of lower and higher salinity, respectively. The division probably had l i t t l e hydrographic significance, but was retained in case the observed salinity change was of value in understanding plankton distribution. In March, depths between the sub-surface outflow, G TRANS, and G DEEP regimes were occupied by a regime characterised by low salinity, temperature, and nutrients, and by a high oxygen content (Fig. 3d). The regime was coded F TRANS when f i r s t detected in February, close to the inner s i l l in both basins. From February until April, isopleths for the above four parameters in the s i l l region of the inner basin suggested the regime to have been largely a mid-depth intrusion from the outer basin (Fig. 3c-e). The T-S coordinates in March showed a shallower portion (coded F'TRANS) to be cooler and less saline than a deeper portion which had presumably been affected by the warmer and higher salinity C DEEP regime below. T-S limits are given with the T-S-P diagram (Fig. 19). Spring - April to June 1975 Queen Charlotte Strait Surface, Transition, and Deep regimes were identified and coded E'SFC, E"TRANS, E"'DEEP, respectively. They were distinguished according to differences in slope and position of T-S plots. The actual differences were not considered here, since they closely resembled those discussed earlier for the June data (see Procedures in Methods section and Fig. 4). T-S limits for the regimes were given on the relevant T-S-P plots (Figs. 20-31 22). Nitrate concentration in the Surface regime f e l l during this period, presumably as a result of phytoplankton activity (Figs. 3e_gi 10). Throughout the spring, salinity.of the Deep regime steadily in-creased whilst the oxygen content f e l l . The latter two characteristics indicated, respectively, the intrusion of water from an off-shore origin and from depths below those affected by surface phenomena. The occurr-ence of upwelling off the northern tip of Vancouver Island in April and June was indicated by Bakum's indices (Table IXa). Inlet - general The suspended sediment load carried by the two major rivers began to increase between April and May, indicating the advent of glacial run-off. However, only the Franklin river was carrying large quantities of sediment by June (Table i ) . Up-inlet surface salinity began to f a l l as a result of the discharge, and low surface salinities were recorded at increasing distances from the inlet head between successive months (Fig. 3e-g)» The T-S and non-conservative property characteristics of the low salinity Surface regimes (A SFC and A'SFC) were as described earlier for June 1975- T-S limits were given for regimes on the T-S-P diagrams (Figs. 20-22). The presence of high salinity water in Queen Charlotte Strait createdda density gradient across the outer s i l l . Consequently, a high salinity inflow occurred, illustrated, for example, by the appearance of a 31«2°/oo isohaline in the outer basin in April. The disappear-ance of the latter in May and June perhaps reflected off-shore conditions, since Bakum's indices indicated convergence to have occurred in May 32 ( P i g . 3 e _g! Table I ) . In June, a d i p i n i s o h a l i n e s i n s i d e of the inner s i l l , and the appearance below the l a t t e r of a 31«2°/oo i s o h a l i n e , suggested t h a t by t h i s month some of the Queen C h a r l o t t e S t r a i t i n t r u s i o n had entered the i n n e r b a s i n . I n l e t - outer and i n n e r b a s i n In the outer basin throughout the s p r i n g , T r a n s i t i o n (B"TRANS) and Deep (B"'DEEP) regimes could be detected beneath the surface. They were i d e n t i f i e d by approximately the same T-S c h a r a c t e r i s t i c s as d e s c r i b e d £.ulJbydfor the same regimes i n June (see Methods s e c t i o n ) . However, the s i t u a t i o n was complicated i n A p r i l by the occurrence of a temperature minimum a t approximately iOOm depth, which extended from u p - i n l e t , where i t occupied a considerable volume of the inner b a s i n ( F i g s . 3e> 5e). I t was coded F' TRANS and a comparison w i t h i s o p l e t h p r o f i l e s f o r February and March i n d i c a t e d i t t o represent the c o l d t r a n s i t i o n water which invaded intermediate depths i n the inner b a s i n between the l a t t e r two months. The presence of t h i s regime i n the outer b a s i n i n d i c a t e d i t t o have been forming a sub-surface outflow. As d e s c r i b e d e a r l i e r w i t h the June data, t h i s i n t e r p r e t a t i o n was r e i n f o r c e d by the gradual disappearance of t h i s c o l d and high oxygen content regime from the inner b a s i n between A p r i l and June. However, l o s s of i d e n t i t y through mixing and d i f f u s i o n may a l s o have been p a r t l y r e s p o n s i b l e f o r the regime's disappearance. A l l other i n n e r b a s i n water regimes were d i s t i n g u i s h e d by approx-imately the same T-S and non-conservative property c h a r a c t e r i s t i c s as described e a r l i e r f o r the June data. In summary, a warm water regime 33 (H'TRANS i n May, and H* and H"DEEP i n June) appeared at intermediate depths i n May near the inner s i l l and moved up-inlet i n June (Figs. 3f-g, 5f-g). Low n i t r a t e and high oxygen content i n the v i c i n i t y of the s i l l suggested a near surface o r i g i n of the above regime, which was thought to have intruded from intermediate depths i n the outer basin. This i n t e r p r e t a t i o n was r e i n f o r c e d by the f a c t that T-S c h a r a c t e r i s t i c s f o r the B"TRANS outer basin regime d i f f e r e d considerably between A p r i l and May. However, T-S coordinates of the l a t t e r regime i n A p r i l (approx-imately 7.0°G temperature and 31'l°/ 0° s a l i n i t y ) was almost exactly the same as those of the H'TRANS regime i n the inner basin i n May (Figs. 20-21). The d i v i s i o n of t h i s i n t r u s i o n into two regimes (H' and H"DEEP) was f u l l y discussed with the June example above. Two sub-surface down-inlet flows were thought to have occurred, probably as a r e s u l t of displacement caused by the a r r i v a l of the H'DEEP regime i n t r u s i o n . F i r s t l y , and as described above, mid-depth ( t r a n s i t i o n ) parts of the winter cold low s a l i n i t y inflow (F'TRANS) appeared to flow down-inlet above the i n t r u s i o n , where i t could be recognised as a temp-erature minimum on the i s o p l e t h p r o f i l e s and T-S-P diagrams (Figs. 3g> 22). Deeper parts of the same regime moved up-i n l e t , where the i s o p l e t h p r o f i l e s indicated the a r r i v a l of cold water i n March and A p r i l (Figs.3§dee, 5<l-e). However, i n successive months the l a t t e r regime became progressively more d i f f i c u l t to recognise i n the u p - i n l e t l o c a t i o n ( F i g . 3f -g)» Some 1974 inner basin water (D DEEP) could only be tenuously iden-t i f i e d near the i n l e t head i n A p r i l by T-S l i n e slope c r i t e r i a . I t then became indi s t i n g u i s h a b l e from the winter formed regime designated as G"TRANS i n A p r i l and May, and G TRANS i n June. This regime was taken 34 to incorporate a mixture of a l l regimes drawn or displaced towards the inlet head. It was itself displaced down-inlet at a depth of approx-imately 50 m depth, as indicated by continuity of upwardly inclined isopleths near the inlet head, with isopleths of strong sub-surface oxygen minima and nutrient and temperature maxima (Figs. 3 e -gi 5e~g)« The above characteristics reflected the probable isolation of the regime from surface processes (such as phytoplankton production and winter cooling) for some time. In April, the above outflow could also be recognised by an up-inlet sub-surface salinity maximum (Fig. 3e). A small volume of the autumn high salinity intrusion regime (C DEEP) remained below 300 m in the inner basin (Fig. 5e~g). It could be recog-nised on the T-S-Plplets by an envelope of relatively high temperature and salinity, the values of which (7«5°C temperature and 31«2°/oo salinity) were constant from month to month (Figs. 20 -22) . Spatial distribution of this regime could similarly be determined from isopleths of the above temperature and salinity values (Fig. 3e-g). Summer - July to September 1975 Queen Charlotte Strait Throughout the summer three regimes were identified according to approximately the same differences in T-S line slope as described for the June data. They were Surface (E'SFC), Transition (E"TRANS), and Deep (EmDEEP). As in June, the latter was characterised by high salinity and nutrient values, and low temperature and oxygen content. This suggested the continued presence of an intrusion from off-shore, where Bakum's indices indicated conditions were suitable for the 35 occurrence of upwelling.,(Table IXa). I n l e t - general As d e s c r i b e d f o r the June example above, the i n l e t Surface regime (A SFC) was c h a r a c t e r i s e d on the T-S p l o t s by very low s a l i n i t i e s , which increased r a p i d l y w i t h s m a l l corresponding increases i n temperature with depth. Surface s a l i n i t y decreased i n the u p - i n l e t d i r e c t i o n t o l e s s than l°/oo a t s t a t i o n Kn 9 and 11 ( F i g . 3h), i n d i c a t i n g the combined importance of the K l i n i k l i n i and F r a n k l i n r i v e r discharges. Table I i n d i c a t e d t h a t both r i v e r s c a r r i e d t h e i r maximum g l a c i a l suspended sediment l o a d i n J u l y , which was th e r e f o r e probably a l s o the month of greate s t water discharge. The above t a b l e a l s o suggested t h a t c o n s i d -erable g l a c i a l r u n - o f f p e r s i s t e d i n t o September. The monthly estimates of cumulative suspended sediment i n the upper 50 m of the i n l e t a l s o suggested J u l y to have been the month of peak discharge ( F i g . 9h). The continued presence of high s a l i n i t y water i n Queen C h a r l o t t e S t r a i t created a d e n s i t y g r a d i e n t which extended across both s i l l s . The gradient was r e f l e c t e d by i s o h a l i n e d i s t r i b u t i o n s which, i n p r o f i l e s , sloped g e n t l y downwards i n the u p - i n l e t d i r e c t i o n . The e f f e c t of the i n t r u s i o n was w e l l i l l u s t r a t e d by the pro g r e s s i v e occupation of the deep inner b a s i n by water of s a l i n i t i e s g r e a t e r than Jl.l°/oo ( F i g . 3h-j). The close s i m i l a r i t y i n ThS p r o p e r t i e s of newly i n t r u d e d deep i n n e r b a s i n water and water i n the outer b a s i n a t s i l l depth, was i n d i c a t e d i n August by the separate coding of a small regime a t the l a t t e r l o c -a t i o n (B"/H TRANS) ( F i g s . 51, 24). 36 Inlet - outer and inner basins Beneath the surface in the outer basin, Transition (B"TRANS) and Deep (B"'DEEP) regimes were recognised according to approximately the same differences in T-S line slope as observed and explained for the June data. These differences were partly illustrated by the slope of regime limits plotted on the T-S-P diagrams (Figs. 23-25). In addition to high salinity, the Deep regime was characterised by a high nitrate and low temperature and oxygen content (Fig. 3h-j")« The spatial limits of the new intrusion in the inner basin could be determined by following the up-inlet movement and surface climb of the 31*2 and Jl.J°/oo isohalines in successive months (Fig. 3 h - j ) . The division of this regime into two parts (H' and H"'DEEP) according to a temperature difference was explained earlier with the June data. In September, there was no obvious separation between the T-S lines and only one Deep regime was recognised (H"'DEEP). The lack of temperature separation was illustrated by the close proximity of plankton sample depth T-S coordinates on the T-S-P diagram (Fig. 25). It was interesting that on the T-S diagrams, line slopes and coordinates of the H'"DEEP regime closely resembled those of the C and D'"DEEP regimes which occupied the same inner basin locality in October 1974 (Figs. 5 a » j i 16, 25). This illustrated the apparent cyclic nature of deep water renewal in Knight Inlet over the study period, and the role of high salinity, high density intrusions in determining the timing of the cycle. Summer 1974 G DEEP regime water could no longer be detected in the inner basin after June 1975 (Fig. 5g-h). In the latter month, low oxygen content isopleths climbed from the deepest .part of the basin 37 ( s t i l l occupied "by the G D E E P regime) t o a sub-surface depth near the i n l e t head ( F i g . 3g)« However, i n J u l y , the oxygen concentration a t a l l deep depths had r i s e n c onsiderably, r e f l e c t i n g the a r r i v a l of the new i n t r u s i o n (H' and H , , , D E E P ) , but an oxygen minimum had appeared a t intermediate depths ( F i g . 3h). T h i s i n d i c a t e d t h a t i n J u l y the new i n t r u s i o n had u p l i f t e d (and probably a l s o p a r t l y mixed with) the p r e v i o u s l y r e s i d e n t u p - i n l e t regimes c h a r a c t e r i s e d by low oxygen and high n i t r a t e content. The f a t e of such " o l d " r e s i d e n t water appeared to be upward displacement towards the i n l e t head r e g i o n , f o l l o w e d by a down-inlet sub-surface f l o w (again c h a r a c t e r i s e d by temperature and oxygen minima and a n i t r a t e maximum)((Fig. 3 h - j ) . This water c o r r e s -ponded t o the T r a n s i t i o n regime G TRANS p r e v i o u s l y discussed with the June data. In September, the s a l i n i t y of the above regime rose s l i g h t l y , p o s s i b l y due to the i n c l u s i o n of more deep water u p l i f t e d from below by the i n t r u s i o n . To i n d i c a t e t h i s p o s s i b i l i t y the regime was coded G/H*TRANS ( F i g s . 5 j , 25). In summary, the hydrographic c i r c u l a t i o n of Knight I n l e t d u r i n g the study year was dominated a t the surface by the summer outflow of the low s a l i n i t y g l a c i a l r u n - o f f , and at depth by the summer i n t r u s i o n of h i g h s a l i n i t y water from Queen C h a r l o t t e S t r a i t . When the i n t r u s i o n s p i l l e d over the i n n e r s i l l , p r e v i o u s l y r e s i d e n t inner b a s i n water was apparently u p l i f t e d , and l e f t the i n l e t as a sub-surface outflow, The c h i e f cause of deep water renewal was t h e r e f o r e the summer appearance of h i g h s a l i n i t y water i n Queen C h a r l o t t e S t r a i t . The only l i k e l y source of such water was from u p w e l l i n g and, s i n c e the l a t t e r i s t o a greater or l e s s e r degree an annual event (Bakum 1973)» i t i s probable 38 t h a t a t l e a s t some exchange of deep water occurs every year i n Knight I n l e t . A s u b - h a l o c l i n e i n f l o w , compensating f o r entrainment, was not observed although sampling methods employed were probably i n a p p r o p r i a t e f o r i t s d e t e c t i o n . Such a f l o w was detected i n the i n l e t by P i c k a r d and Rodgers (1959). T h e i r measurements were taken i n J u l y near s t a t i o n s Kn 3 and 5 u s i n g Ekman current meters and Chesapeake drags. In October, 1974 and i n A p r i l and September 1975, a sub-surface c h l o r o p h y l l a maximum extended u p - i n l e t a t between 5 and 10 m depth i n the inner b a s i n ( F i g . 10). This corresponded t o the depth of P i c k a r d and Rodger's estuarine Inflow. In October and i n September, the c h l o r o p h y l l a max-imum was u n l i k e l y t o have been produced a t theoobserved l o c a l i t y , s i n c e the o v e r l y i n g surface outflow l a y e r was very t u r b i d w i t h g l a c i a l suspended sediment, and the Secchi depth was l e s s than 0.25 m. The most probable explanation f o r the maximum was, t h e r e f o r e , the u p - i n l e t advection of phytoplankton from a down-inlet l o c a t i o n by a s u b - h a l o c l i n e e s t u a r i n e flow. ( i i i ) D i s t r i b u t i o n of c h l o r o p h y l l a, suspended sediments, and n i t r a t e An approximate index of phytoplankton standing stock d i s t r i b u t i o n was provided by the c h l o r o p h y l l a p r o f i l e s ( F i g . 10). However, t h i s parameter does not i n d i c a t e primary p r o d u c t i o n (e.g. Stockner and C l i f f 1976). The cumulative p l o t s ( F i g . 9a) i n d i c a t e d t h a t the s p r i n g increase i n c h l o r o p h y l l a began a t u p - i n l e t s t a t i o n s i n February (e.g. s t a t i o n s Kn 7> 9> and 11) but was delayed u n t i l March a t l o c a t i o n s near the i n l e t mouth (and i n Queen C h a r l o t t e S t r a i t , F i g . 10). This 39 trend was also observed i n terms of primary production i n Howe Sound and was attributed to e a r l i e r water column s t a b i l i t y being attained i n more sheltered conditions, and under the influence of a small amount of r i v e r run-off (Stockner et a l . 1977). The l a t t e r authors also found highest production at stations near the mouth of Howe Sound, which they explained as being due to a combination of optimal thermal s t r a t i f i c a t i o n , entrainment of nutrients through estuarine c i r c u l a t i o n , and freedom from the t u r b i d i t y of the Sq.uamish r i v e r . These c r i t e r i a were probably also responsible f o r the occurrence i n the present study of higher chlorophyll a concentrations at stations Kn 1 and 3 than observed either i n Queen Charlotte S t r a i t , or i n the inner basin (Figs. 9a, 10). L i t t l e chlorophyll a was present at up-inlet stations Kn 9 and 11 af t e r July when water carrying a high suspended sediment load was recorded i n both the Franklin and K l i n i k l i n i r i v e r s (Table I(). The absence of an autumn peak i n chlorophyll a concentration at station Kn 11 seemed to be almost d i r e c t l y related to the presence of suspended sediment, since as the l a t t e r decresed down-inlet, the former increased. At the time of g l a c i a l run-off, r i v e r suspended sediments were i n i t i a l l y retained i n the up-inlet low s a l i n i t y surface outflow (Fig. 8 ) . Transmissometer studies i n Bute I n l e t by Pickard and Giovando (i960) and i n Hardangerfjord by Aarthun (l96l) s i m i l a r l y found highest t u r b i d i t y i n surface waters at the ftjord head. In add-i t i o n to reducing the t o t a l amount of radiation available f o r photo-synthesis, Aarthun also noted a s i g n i f i c a n t spectral s h i f t i n trans-mitted l i g h t towards the red, away from that u t i l i s a b l e by phytoplankton. P r i o r to the present study, l i t t l e time series information was 40 a v a i l a b l e on the d i s t r i b u t i o n of n i t r a t e and phosphate i n the f j o r d s of B r i t i s h Columbia. In the f o l l o w i n g d i s c u s s i o n , only n i t r a t e s w i l l be considered, s i n c e the d i s t r i b u t i o n s of n i t r a t e s and phosphates were almost i d e n t i c a l i n the Knight I n l e t study. N i t r a t e c oncentration i n the euphotic zone probably never l i m i t e d phytoplankton production i n the i n l e t (Falkowski and Stone 1975). When low l e v e l s were observed, i t was i n the h i g h l y t u r b i d low s a l i n i t y water a t the i n l e t head, when l i g h t l i m i t a t i o n would have .been the most important f a c t o r . N u t r i e n t d e p l e t i o n i n the euphotic zone was probably prevented by the entrainment of n i t r a t e from below. The most s t r i k i n g f e a t u r e on the i s o p l e t h p r o f i l e s of n i t r a t e ( F i g . 3 a ^ j ) was the occurrence of high values i n deep i n n e r b a s i n water and near the i n l e t head. This could have r e s u l t e d from e i t h e r a marine source or from r i v e r r u n - o f f . The K l i n i k l i n i and F r a n k l i n r i v e r s both c a r r i e d water of g l a c i a l o r i g i n , and were not c h a r a c t e r i s e d by a h i g h organic l o a d (Lewis 1976). However, Chalk and Keenay (1971) found t h a t normal weathering processes r e l e a s e d s o l u b l e n i t r a t e and ammonium from limestones. T h i s mechanism was concluded by A p p o l l o n i s (1973) t o have been r e s p o n s i b l e f o r the high n i t r a t e c o n t r i b u t i o n of g l a c i a l melt water i n an a r c t i c f j o r d . However, although there was no absolute information a v a i l a b l e on the un d e r l y i n g geology of the K l i n i k l i n i and F r a n k l i n i c e f i e l d s , the two r i v e r s d i d not appear t o have c o n t r i b u t e d l a r g e amounts of n i t r a t e i n the present study (Table I ) . A l t e r n a t i v e l y , a more probable explanation i s t h a t the in n e r b a s i n n i t r a t e s were of a marine o r i g i n , and th a t the observed high values were a product of i n l e t counter current c i r c u l a t i o n . According t o t h i s 4 1 scheme, nitrate would have entered the fjord either by estuarine cir-culation or with the deep basin exchange. Entrainment into the euphotic zone would have occurred, followed by phytoplankton uptake. Little production was expected in the inner basin, due to the high turbidity of glacial run-off. In the outer basin, chlorophyll levels indicated possible production near the surface from late spring until early autumn. Assimilation and excretion by vertically migrating herbivores, together with phytoplankton sinking, could have transported much of this material to deeper depths. Remineralisation would then have taken place in the deep intruding water mass, giving an accumulation of dissolved material in the deep inner basin. Nitrate and phosphate concentrations were seen to rise at this location during autumn and winter. Regeneration of both nitrate and phosphate is an oxidative process. Therefore, assuming a constant elemental atomic ratio for phytoplankton (Grill and Richards 1964), the regeneration of nutrient in a water mass can be predicted from the amount of oxygen consumed or apparent oxygen utilisation (A.O.U.). This technique, developed by Redfield et al. (1963), was applied to the data. Temperature and salinity were used to characterise constituent water types of the intruding water mass during occupancy of the outer basin. Changes in nutrient and 0-xygen concentration were then noted as the water types intruded the inner basin. Nitrate regeneration (NO^ ox) expected from the observed A.O.U. was then calculated from Redfield's equation, NO^ ox = 0 . 0 5 8 A.O.U. with a l l units expressed as ug at/l. The relationship'between the 42 observed n i t r a t e regeneration and A.O.U. c l o s e l y approximated R e d f i e l d * s equation ( F i g . 7). This supported the explanation given here, t h a t high n u t r i e n t concentrations i n the inner b a s i n r e s u l t e d from the o x i d a t i o n of organic m a t e r i a l c a r r i e d by the i n t r u d i n g water mass. 43 COPEPOD DISTRIBUTIONAL ECOLOGY MATERIALS AND METHODS (a) Data c o l l e c t i o n and p r e l i m i n a r y a n a l y s i s ( i ) F i e l d procedure This t h e s i s d e s c ribes an attempt t o compare a f j o r d community w i t h s p a t i a l d i s t r i b u t i o n of environmental v a r i a b l e s . This r e q u i r e d c o l l e c t i o n of d i s c r e t e zooplankton samples over a v e r t i c a l l y s t r a t i f i e d depth range. H o r i z o n t a l tows were taken us i n g modified Clarke-Bumpus openin'g/closing samplers (Clarke and Bumpus 1950; Paquette and Frolander 1957)« Each net had a mouth aperture of 12 can and was f i l l e d w i t h a net of number 2 mesh (mesh s i z e : 350 urn). S t a t i o n s QC, and Kn 1, J, 5» 7, 9, and 11 were sampled. Standard depths were 5» 10, 30, 50, 100, 200, 300, and 500 m. Where the i n l e t was shallower than 500 m, the deepest sample c o i n c i d e d w i t h the deepest hydrographic sample depth. A l l depths were approximate, and were c a l c u l a t e d from wire angle readings (see Woodhouse 197l)« In wi n t e r , sea co n d i t i o n s f r e q u e n t l y put the 5 m sampler i n danger of being broken a g a i n s t the ship's h u l l , and i t was often omitted from the s e r i e s . At each s t a t i o n , a l l depths were sampled simultaneously. Open nets were towed a t a surface speed of approximately two knots f o r a p e r i o d of f i f t e e n minutes. A c a l i b r a t e d flowmeter f i t t e d i n the aperture of each net allowed samples to be semi-quantitive (see Mc Hardy 196l). Immediately a f t e r c o l l e c t i o n , each sample was t r a n s -f e r r e d t o an eight-ounce g l a s s b o t t l e , and preserved In a borax b u f f e r e d formalin-seawater s o l u t i o n (approximately 5% f o r m a l i n : seawater). 44 (ii) Laboratory procedure Each sample was transferred to a number of plastic petri dishes with 5 m m square grids etched on the lower surface. Each dish was examined under a Wild M5 dissecting microscope. All large organisms (including Gopepoda of length in excess of 3 mm) were identified, removed and counted, by systematically working through the grid. All dishes were examined. The same procedure was followed for successively smaller size ranges of organisms Numerically dominant species were the last to be counted. When the number of a species in a whole sample appeared in excess of 400, the sample was recombined and sub-sampled using a Folsom splitter (McEwen, Johnson and Folsom 1954). The model used theoretically divided a sample into four equal aliquots, only one of which was examined. The only taxon which ever required sub-sampling mor than once per sample was the Gladocera. No material was discarded. The calibrated net flowmeter readings were used to convert the counts for each species to number per cubic meter of water filtered. As far as possible, a l l holoplanktonic forms of the Mollusca, Polychaeta, Crustacea, Chaetoghatha, Thaliacea and Appendicularia were counted and identified at the species level. Calanoid copepods were indisputably dominant both numerically and in terms of species diver-sity. As far as possible, they were counted at the sexed copepodite (instar) level. ( i i i ) Discussion and evaluation of procedures Sampling gear One of the most difficult and largely unresolved problems encountered in biological oceanography is that of estimating how accur-45 ately a series of net derived samples reflects the real distribution of plankton (see Sameoto 1975)• Difficulties arise both from the con-tagious nature of plankton distributions, and from active avoidance of the net. Unfortunately, the literature is often contradictory concerning the latter. For example, Gilfillan (in Clutter and Anraku 1968) analysed samples of Euphausiacea, Calanus, and Euchaeta collected with different nets and over a variety of towing speeds. He concluded that larger animals were more successful at net avoidance than small animals, and supported the belief that nets with a larger aperture are more efficient than nets with a small aperture. However, Barnes and Tranter (1965) found no difference in avoidance between the Indian Ocean standard net (diameter 113 em) and the Clarke-Bumpus sampler (diameter 12 cm). Avoidance presumably involves a zooplanktor sensing the approach of a net in some way or of being displaced from the net's path (Clutter and Anraku 1968). Hence a net with a free opening should be the most efficient. Gardner (1976) pointed out that this is not a feature of the Clarke-Bumpus sampler, which carries a good deal of metalwork. A mathematical model of net avoidance by Laval (1974) indicated an exponential decrease in avoidance with increasing net speed, and l i t t l e reduction in copepod avoidance at speeds above 150 cm sec \ He concluded that a majority of Acartia clausi Giesbrecht and Para-calanus parvus Claus could avoid a 45 cm diameter net towed at 30 cm sec Assuming complete acceptance of water by the Clarke-Bumpus samplers used in the present study, estimates derived from flowmeter readings indicated that net velocities normally f e l l between 73•5 and 147.0 cm sec \ An An additional source of error results from selectivity by net mesh 46 s i z e . Small organisms are obviously l o s t through a l a r g e mesh, but small meshes are vulnerable to clogging. Smith et a l . (1968) found 333 p i to be the sm a l l e s t mesh s i z e capable of maintaining a high f i l t r a t i o n e f f i c i e n c y throughout a f i f t e e n minute tow. In the present study, tows were of f i f t e e n minutes d u r a t i o n , and a 350 urn mesh s i z e was used. However, the e f f e c t of clogging would o b v i o u s l y have v a r i e d w i t h ambient plankton concentration ( p a r t i c u l a r l y phytoplankton). A l i t e r a t u r e survey i n d i c a t e d t h a t a 350 urn mesh should have r e t a i n e d most a d u l t c a l a n o i d copepods considered here, with the exception of Microcalanus pygmaeus. F i n a l l y , v a r i a t i o n between r e p l i c a t e samples could have r e s u l t e d from the plankton i t s e l f , t h a t i s , i t s type of s t a t i s t i c a l d i s t r i b u t i o n (Cassie 1962, 1963i and 1968). The problem of plankton patchiness and i t s r e l a t i o n t o sampling e r r o r has been s t u d i e d by Wiebe and Holland (1968). They surveyed the l i t e r a t u r e r e p o r t i n g on r e p l i c a t e tows, and c a l c u l a t e d a s e r i e s of 95% confidence l i m i t s a p p l i c a b l e f o r an i s o l a t e d r e p l i c a t e . The confidence l i m i t s v a r i e d g r e a t l y and were independent of the net type employed. In another i n v e s t i g a t i o n of r e p l i c a t e tows, Wiebe (>1972) found t h a t increased tow l e n g t h r e s u l t e d i n a l a r g e r r e d u c t i o n i n sampling e r r o r (increased p r e c i s i o n of r e p l i c a t e s ) than d i d a corresponding increase i n net diameter ( i n terms of water volume f i l t e r e d ) . Long tow lengths are u s u a l l y only f e a s i b l e as h o r i z o n t a l or oblique hauls. Parker et a l . - (19?6) used v e r t i c a l hauls to i n v e s t -i g a t e plankton biomass v a r i a t i o n i n a B r i t i s h Columbia f j o r d . Consider-able v a r i a t i o n between hauls was encountered and the authors recommend a s e r i e s of d i s c r e t e hauls a t d i f f e r e n t depths t o solve the problem. 47 T h i s emphasises the a t t r a c t i v e n e s s of the Clarke-Bumpus sampler. Despite the l i m i t a t i o n s r e f e r r e d t o e a r l i e r , i t i s e a s i l y handled, s e v e r a l can be used simultaneously t o give a s e r i e s of v e r t i c a l l y d i s -crete samples, and the sample i t s e l f i s an i n t e g r a t e d sample of a l l plankton patches which l a y immediately i n the net's path. As concluded hy Gardner (1976), the Clarke-Bumpus sampler towed h o r i z o n t a l l y seems to remain one of the "best nets a v a i l a b l e f o r the study of v e r t i c a l d i s t r i b u t i o n . S t a t i s t i c a l estimate of sample v a r i a b i l i t y Although the e r r o r of an estimate provided by a s i n g l e plankton sample can t h e o r e t i c a l l y be estimated by r e p l i c a t i n g the sample, t h i s i s d i f f i c u l t t o achieve i n p r a c t i c e (Cassie 1968). The l o g i s t i c s of sampling a patchy environment i n a moving medium, from a moving pl a t f o r m , and with nets of v a r y i n g e f f i c i e n c y , makes i t almost impossible t o obtain t r u e r e p l i c a t e s . However, I have t r i e d t o obtain an approx-imate estimate of sample e r r o r i n v o l v e d i n the Knight I n l e t study. The s t a t i s t i c a l procedure f o l l o w e d was tha t of Cassie (1962). In September, 19751 two s e r i e s of r e p l i c a t e tows were taken a t s t a t i o n Kn 9» one a t a depth of 10 m and the other a t 350 m. The same net was used a t each depth. To the l i m i t s of n a v i g a t i o n , a l l tows were i n the same d i r e c t i o n and f o l l o w e d the same tow path. The sampling p e r i o d was of three hours d u r a t i o n and d i d not i n c l u d e a change of t i d e (see Sameoto 1975). A l l samples were c o l l e c t e d i n d a y l i g h t hours. Other procedures were standard t o the methods used throughput t h i s study. In the l a b o r a t o r y , only the copepod content was i d e n t i f i e d and counted. Procedure was as 4 8 o u t l i n e d e a r l i e r , except t h a t a l l i n d i v i d u a l s were counted (no sub-sampling) and no attempt was made t o d i s t i n g u i s h between copepodites of the same species. R e s u l t s are given i n Table I I . A l l n o t a t i o n i s from Gassie (1962) and E l l i o t t (l9?l). The c o e f f i c i e n t of v a r i a t i o n (Gy)ccanbhe - i.usedtto compare the r e l a t i v e v a r i a b i l i t y of r e p l i c a t e s . I t i s a term a p p l i e d to the sample standard d e v i a t i o n (s) when expressed as a percentage of the sample mean (m). According t o Gassie (1963) the c o e f f i c i e n t f o r plankton often has a value between 22 and 44%, although higher values are not r a r e . The estimates of V shown i n Table I I g e n e r a l l y f e l l w i t h i n the range quoted by Gassie. Exceptions tended to be those species f o r which the t o t a l number of i n d i v i d u a l s counted ( E x i ' ) was s m a l l . An i n t e r e s t i n g f e a t u r e was a tendency f o r the c o e f f i c i e n t to have a low value f o r species found i n l a t e r a n a l y s i s t o be i n h a b i t -ants of deep .water. For example, Heterorhabdus t a n n e r i Giesbrecht, M e t r i d i a okhotensis B r o d s k i i , Scaphocalanus b r e v i c o r n i s Sars and Spinocalanus brevicaudatus B r o d s k i i . The l o g a r i t h m i c c o e f f i c i e n t of v a r i a t i o n ( V ) can be s i m i l a r l y used t o compare v a r i a b i l i t y of r e p l i c a t e s (Winsor and Clarke 1940). I t was c a l c u l a t e d here from data transformed t o l o g - ^ ( x + l ) , where x - a r e p l i c a t e species count. This transformation has been widely used f o r the l o g n o r m a l i s i n g of plankton d i s t r i b u t i o n s (Gassie 1968). I t a l s o appeared appropriate a f t e r c o n s i d e r a t i o n of the variance t o mean r a t i o ( E l l i o t t 1971) and allowed the i n c o r p o r a t i o n of zero counts. Gassie (1968) has argued t h a t use of V* makes sense i n t u i t i v e l y , s i n c e the b i o l o g i c a l v a r i a b i l i t y r e s u l t i n g from v a r i a t i o n s i n b i o l o g i c a l and 49 p h y s i c a l process r a t e s i s more l i k e l y t o be r e f l e c t e d by a m u l t i p l i c a t i v e f a c t o r than an a d d i t i v e one. Transformed data were used t o estimate 95% confidence l i m i t s t o the d i s t r i b u t i o n of sample counts ( a f t e r Winsor and Clarke 1940; Cassie 1962). These i n d i c a t e d , f o r example, t h a t 95% of a l l observations of Calanus marshallae F r o s t a t 10 m depth would have been expected to f a l l w i t h i n the range I.69 t o 4.58. None of the l i m i t s were separated by more than one order of magnitude, only values greater than which were considered to represent e f f e c t s other than sampling v a r i a b i l i t y by Marlowe and M i l l e r (1975). T h e i r r e p l i c a t e s were, however, separated by a grea t e r time i n t e r v a l than used i n the present case. The s t a t i s t i c s r e p o r t e d here r e f e r only t o one s t a t i o n , a t one time, and are r e s t r i c t e d t o two depths. However, although not s u i t a b l e f o r d i r e c t use i n l a t e r a n a l y s i s , they do provide a measure of sample v a r i a b i l i t y . L a t e r data a n a l y s i s was concerned p r i m a r i l y w i t h presence/ absence i n hydrographic regimes r a t h e r than samples, and only w i t h gross r e l a t i v e changes i n absolute numbers. For t h i s , the sampling technique described appeared adequate. •Sub-sampling e r r o r This procedure adds another source of variance t o the population s t a t i s t i c . However, Venrick (1971) concluded t h a t i f an estimate of popul a t i o n abundance i s r e q u i r e d , i t i s advantageous t o take a l a r g e sample, thereby reducing the f i e l d v a r i a n c e , and then to sub-sample. In the present study, I sub-sampled only when the t o t a l count f o r a species appeared i n excess of 400 i n d i v i d u a l s . This 50 was a more conservative l i m i t than u s u a l l y found i n the l i t e r a t u r e . For example, Marlowe and M i l l e r (1974) considered t h i r t y i n d i v i d u a l s t o be a reasonable sub-sample count. The e r r o r i n sub-sample volume produced by the Folsom S p l i t t e r used here was i n v e s t i g a t e d by Gardner (1972). He found only one d i v i s i o n and t r a y produced a sub-sample volume which c o n s i s t e n t l y f a i l e d t o deviate s i g n i f i c a n t l y from 25% of the o r i g i n a l . This t r a y was used throughout the present study. In order to check performance of the s p l i t t e r i n terms of plankton concentrations a c t u a l l y presented to i t , I counted i n d i v i d u a l l y a l l Fseudocalanus elongatus Boeck o c c u r r i n g i n f i v e samples. Each was then sub-sampled according t o the procedure o u t l i n e d i n Table I I I . R e s u lts were subjected to a Chi squared a n a l y s i s , ' and are given i n Table I I I . Copepod i d e n t i f i c a t i o n S e v e r a l d i f f i c u l t i e s were encountered. Published d e s c r i p t i o n s commonly concern only the a d u l t stage and, i n some cases, are confined only t o one sex. W h i l s t t h i s may be taxonomically sound, i t i s u n f o r t -unate f o r the e c o l o g i s t , s i n c e the a d u l t i s oft e n s h o r t - l i v e d . Indeed, f o r many species i t i s the f i f t h copepodite which i s most f r e q u e n t l y encountered. Furthermore, a r e l i a b l e reference f o r the i d e n t i f i c a t i o n of Noritheast P a c i f i c Copepoda i s not a v a i l a b l e . The present study r e l i e d h e a v i l y on B r o d s k i i (1950) and on o r i g i n a l d e s c r i p t i o n s . U n f o r t -unately, the l o c a l marine fauna were l a r g e l y overlooked by the l a t e nineteenth and e a r l y t w e n t i e t h century taxonomists. Consequently, l o c a l forms have tended to be named a f t e r A t l a n t i c congeners, but when examined by a competent taxonomist, many have been r a i s e d t o a new species 51 s t a t u s . This has teen i l l u s t r a t e d by the work of Park on Gaidius (1965). Gaetanus (1975) and E u c h i r e l l a (1976); and of Bradford on A e t i d i u s (1971) and A c a r t i a (1976). Short reviews of the problem concerning Euchaeta have been given by Evans (1973) and concerning Galanus by F r o s t (1974) and Gardner (1976). F i n a l l y , complete d e s c r i p t i o n s of a l l copepodite stages are a v a i l a b l e i n the l i t e r a t u r e f o r only a few species. This n e c e s s i t a t e d the compilation of a copepodite reference c o l l e c t i o n f o r s e v e r a l species considered i n t h i s study. 52 ("b) Data descriptive analysis (i) Objectives The zooplankton data analysis was designed to help answer the following questions concerning copepod distribution over an annual cycle in Knight Inlet. (1) Could patterns of distribution be identified? In other words, could species be grouped according to similarities and differences in spatial and temporal occurrence? (2) Did inter-specific differences in l i f e history composition indicate that some species could maintain their inlet population by reproduction, whilst others relied on recruitment by immigration from elsewhere. (3) Did important intra-specific differences in li f e history composition occur with depth or along inlet length? For example, was the reprod-uction of some species apparently restricted to the outer basin, and vice versa? (4) Could any features of distribution and l i f e history composition, identified by the three previous questions, be related to variation in the inlet's physical and biotic environment? Hydrographic circulation, water property distribution, phytoplankton- abundance?;.; and the glacial run-off nature of the inlet were probably the most important environ-mental variables. (5) Did copepods characteristics of an off-shore fauna ever appear in high salinity intrusions entering via Queen Charlotte Strait? If so, what was their fate? 53 (ii) Procedures Monthly profiles of species presence/absence The monthly distribution of each copepod species was plotted under a presence/absence criteria on diagramatic longitudinal profiles of the study area. The method was simple and requires l i t t l e explanation. Plots were combined to group those species showing similarities of distribution. Estimates pf abundance were initially incorporated. However, these were difficult to handle when species were grouped. The presence/absence criteria was then adopted and found by comparison with abundance plots to adequately indicate patterns of distribution. Abundance data were retained, and used in the study of population structure described below. The plots were intended to provide information for'objectives 1 and 5 concerning both recognition and behaviour of distribution patterns. They could also contribute to objective 4 concerning envir-onmental association, i f compared with longitudinal profiles of indiv-idual hydrographic and environmental variables, or with the presumed circulation and regime distribution, derived from hydrographic analysis. Monthly l i f e history composition Plots were made of the monthly l i f e history composition of a l l common copepods found in Queen Charlotte Strait and Knight Inlet samples. The water column was divided into "Surface", "Transition", and "Deep" categories, according to the nature of regimes identified in the hydrographic analysis. The mean abundance of each copepodite stage (instar) occurring in a given regime category was plotted as 54 numbers per cubic meter of water f i l t e r e d . S t a t i o n s were s e l e c t e d f o r a n a l y s i s according to the d i s t r i b u t i o n of each species. I f common at-a l l l o c a t i o n s ( f o r example, Pseudocalanus elongatus and Galanus  marshallae), a separate s e r i e s of p l o t s was made f o r up t o f o u r r e p r e s -e n t a t i v e s t a t i o n s . These were u s u a l l y s t a t i o n s QC, Kn 3» 7> a n d 11. Data from s t a t i o n Kn 9 were s u b s t i t u t e d f o r m i s s i n g s t a t i o n Kn 11 data f o r February 1975- Gentropages mcmurrichi W i l l e r y , Paracalanus  parvus and Eucalahus bungi bungi Johnson were only recorded i n low numbers. In t h i s case, the mean abundance of each copepodite was estimated i n a given water category from a w e l l d e f i n e d geographic or hydrographic r e g i o n (e.g. the i n l e t o u t e r ) b a s i n ) . This p a u c i t y of records a l s o meant t h a t only per cent composition of copepodites could be used f o r Eucalanus bungi bungi. Such procedure makes any conclusions concerning the l a t t e r three species vulnerable t o c r i t i c i s m . However, the a n a l y s i s was considered worthwhile, since l i t t l e i n f o r m a t i o n on t h e i r l i f e c y c l e s i s a v a i l a b l e . i n the l i t e r a t u r e . I f a species was r e s t r i c t e d t o the i n l e t i n n er b a s i n , data were only p l o t t e d f o r s t a t i o n Kn 7« This s t a t i o n was s e l e c t e d because of i t s depth, and t o avoid the surface displacement of deep species found i n t h i s study t o occur near the i n l e t head. I m p l i c a t i o n s of t h i s phenomena are discussed i n a l a t e r s e c t i o n . M e t r i d i a p a c i f i c a B r o d s k i i i s known t o undertake extensive d i e l v e r t i c a l migration. This was r e f l e c t e d i n p l o t s of abundance a t d i f f e r e n t s t a t i o n s . Consequently, only l i f e h i s t o r y data from s t a t i o n Kn 9 were used here, since i t was always sampled a t between 1300 and 1500 hours. For a l l s p e c i e s , data from "ignored" s t a t i o n s were examined t o ins u r e t h a t no major d i s c r e p a n c i e s escaped a t t e n t i o n . 55 Inter-comparison of li f e history plots could indicate which species reproduced in the study area, and also suggest the season, depth and, in some cases, geographical location of major reproductive effort. These were the issues raised "by questions 2 and 3 above. It is possible that some l i f e cycle observations could also be explained by comparison with the results of hydrographic analysis (objective 4 above). For example, inlet circulation or patterns of chlorophyll, glacial sediment and water regime distribution. Copepods characteristic of an off-shore fauna occurred in only a few samples. These were therefore not subjected to the above analysis. Monthly Temperature-Salinity-Plankton (T-S-P) diagrams T-S-P diagrams were prepared for each cruise and for a l l calanoid copepodsspecies found in the study area. Arguments for the use of this technique were presented in the introduction. The method was fundamentally that of Bary (1959)» tiut with three major modifications. Firstly, although basic T-S diagrams were constructed by standard methods (Pickard I963), envelopes were drawn around T-S lines of similar slope ordshape. Since isopleth profiles of conservative and non-conservative properties were consulted, and influenced the drawing of envelopes, they were not consistent with established physical oceanographic termin-ology. Envelopes were therefore referred to as water regimes, and the hydrographic methods section should be consulted for a f u l l explanation. Th The presence and initially the relative abundance of each species collected was entered on the T-S diagram at the T-S point pertaining 56 t o a sample. Diagrams were then combined to see i f organisms w i t h s i m i l a r i t i e s of occurrence on each p l o t could be grouped. The procedure r e s u l t e d i n abundance being d i f f i c u l t to handle. Hence Bary's method was f u r t h e r modified and the f i n a l diagrams presented here show copepod data entered by a presence/absence c r i t e r i a . F i n a l l y , Bary (1959) was concerned w i t h plankton taken from a s i n g l e depth. In the present study, t h i s approach was a p p l i e d t o plankton c o l l e c t i o n s from the standard depth s e r i e s r e p o r t e d , extending from 5 to 500 m . Bary (1964, 1976) has h i m s e l f modified the technique to i n v e s t i g a t e T-S-P r e l a t i o n s h i p s with depth. The problem w i t h plankton d i s t r i b u t i o n p a t t e r n and environmental a s s o c i a t i o n ( o b j e c t i v e 4 above) was p a r t l y approached u s i n g the T-S-P technique. Water regimes drawn on the diagrams i d e n t i f i e d water w i t h s i m i l a r i t i e s i n conservative and non-conservative p r o p e r t i e s . The method, t h e r e f o r e , provided c o r r e l a t i o n diagrams between species occurrence and c e r t a i n environmental v a r i a b l e s . However, cause/effect r e l a t i o n s h i p s were not suggested. .Temporal changes were i n v e s t i g a t e d by examining diagrams f o r successive months, w h i l s t a s p a t i a l aspect was provided by the i n l e t hydrographic p r o f i l e s , and p r o f i l e s of copepod presence/absence. The l a t t e r was s i m i l a r t o Bary's (1963) use of maps showing water body and plankton d i s t r i b u t i o n . •R x r. Contingency t a b l e s The estimated mean abundance of copepod species o c c u r r i n g w i t h i n water regimes was arranged i n separate k x r contingency t a b l e s f o r December 1974 and February, A p r i l , and J u l y 1975• The procedure 57 was undertaken t o f i n d i f the r e l a t i v e abundance of a given species v a r i e d s i g n i f i c a n t l y between regimes. The method described below f o l l o w e d that of E l l i o t t (1971), who explained how a l a r g e 2X2 c o n t i n -gency t a b l e could be used to study a s s o c i a t i o n between abundance and geographical l o c a t i o n . Expected abundances were c a l c u l a t e d according to a n u l l hypothesis (H ) which assumed the pr o p o r t i o n of a sample composed of a given species t o be constant between regimes (columns i n the contingency t a b l e s ) . The presence of p r o p o r t i o n a l i t y or heterogeneity was then t e s t e d by c a l c u l a t i n g c h i squared values f o r each combination of observed and expected estimates. S i g n i f i c a n c e values of p<0.05 were used to accept or r e j e c t H . Abundance estimates of l e s s than 5/^? were g e n e r a l l y e l i m i n a t e d from the a n a l y s i s . I f more than 5% of such values had been i n c l u d e d , c a l c u l a t e d estimates would no longer have approximated the t h e o r e t i c a l c h i squared d i s t r i b u t i o n ( S i e g e l 1956). Non-transformed data were used, s i n c e themmethod i s non-parametric ( S i e g e l 1956; E l l i o t t 1971). The contingency t a b l e s were not intended to provide a r i g o r o u s way of d e t e c t i n g s i m i l a r i t i e s of copepod d i s t r i b u t i o n or hydrographic a s s o c i a t i o n . This would be beyond the scope of the procedure, which was concerned only w i t h p r o p o r t i o n a l i t y of species content. Furthermore, p r e v i o u s l y i n t e r p r e t e d data were included (the regimes). However, the t a b l e s d i d provide a simple opportunity f o r h a n d l i n g species abundance data i n a non-graphical way. They were used only t o detect p r o p o r t i o n -a l i t y and heterogeneity of species content between regimes and, with t h i s l i m i t a t i o n , provided a p a r t i a l l y independent check on the i n t e r -p r e t a t i o n of T-S-P diagrams and zooplankton i n l e t p r o f i l e s . 58 Spearman rank order c o r r e l a t i o n c o e f f i c i e n t s The Spearman rank order c o r r e l a t i o n c o e f f i c i e n t ( i 1 ) i s a non-parametric a l t e r n a t i v e to the c o r r e l a t i o n c o e f f i c i e n t ( r ) . I t was used here t o i n v e s t i g a t e a p a r t i c u l a r problem a s s o c i a t e d w i t h the f i r s t o b j e c t i v e above. S p e c i f i c a l l y , t h a t of p l a c i n g s p a t i a l l i m i t s , by a non-graphical approach, t o the d i s t r i b u t i o n of the deep copepod fauna i n the i n l e t i n n e r b a s i n . A surface displacement of the l a t t e r towards the i n l e t head was i n d i c a t e d from a n a l y s i s of species presence/ absence p r o f i l e s . In the i n t r o d u c t i o n , i t was argued t h a t i f the copepod igauna of Knight I n l e t was s t r u c t u r e d i n t o s p a t i a l l y segregated communities, the l a t t e r should each be r e c o g n i s a b l e by a unique p a t t e r n of rank order of species abundance. The term community has been placed between quotation marks i n the f o l l o w i n g , s i n c e only a presumed property of a community ( t h a t of s t a b l e rank order) i s a c t u a l l y being examined. The c o e f f i c i e n t r g was here used f i r s t l y t o see i f a deep "community" could be recognised according t o a rank order c r i t e r i a , and then t o place v e r t i c a l l i m i t s on the "communities" d i s t r i b u t i o n . Data from s t a t i o n s Kn 5» 7» and 11 taken i n September 1975 were analysed. Three s e t s of S values were c a l c u l a t e d t o compare a l l p o s s i b l e combin-a t i o n s of samples taken a t the same s t a t i o n . A separate m a t r i x of i n t r a - s t a t i o n c o e f f i c i e n t s was constructed f o r each s t a t i o n . Secondly, l a t e r a l c o n t i n u i t y and v e r t i c a l displacement of the deep "community" was i n v e s t i g a t e d by c a l c u l a t i n g r values f o r a l l sample combinations 3 p o s s i b l e between adjacent s t a t i o n s . I n t e r - s t a t i o n c o e f f i c i e n t s were thenvplaced i n the two m a t r i c e s , one comparing s t a t i o n s Kn 5 and 7, and the other, s t a t i o n s Kn 7 and 11. 59 A l l values f o r r g were c a l c u l a t e d u s i n g the sum of squares c o r r e c t i o n recommended by S i e g e l (1956) "to a d j u s t f o r t i e d ranks. The c o e f f i c i e n t has a t h e o r e t i c a l range extending from +1, i n d i c a t i n g complete concord-ance i n rank order between samples, to -1, i n d i c a t i n g complete d i s c o r d -ance. The s i g n i f i c a n c e of c a l c u l a t e d p o s i t i v e r g values was evaluated by c o n s u l t i n g c r i t i c a l values of the s t a t i s t i c a t p = 0.05 i n Table P of S i e g e l (1956). The f i n a l matrices of r g i n d i c a t e d the presence of s e v e r a l copepod "communities". An i d e a of the species c h a r a c t e r i s t i c of each "community" was obtained by studying the presence/absence p r o f i l e s . However, a fc x r contingency t a b l e was constructed, t o enable the i n c l u s i o n of abundance estimates. This t a b l e u t i l i s e d the s t a t i o n Kn 7 data p r e v i o u s l y used t o c a l c u l a t e r values. Procedure was as d e s c r i b e d above f o r the s R x f regime t a b l e s , except t h a t here speciessdata were entered as i n d i v i d u a l sample depth abundance, and not as mean abundance w i t h i n regimes. The c h i squared t e s t was t h e r e f o r e concerned w i t h sample depth species p r o p o r t i o n a l i t y , which could then be compared with "community" depth d i s t r i b u t i o n , as i n d i c a t e d by the r matrices. 60 RESULTS AND DISCUSSION (i) The Data Calanoid copepods were the most abundant zooplanktors in the study-area and,,with two exceptions, only data concerning this group are considered below. The exceptions are Podon and Evadne species (Cladocera) which were included due to their dominance of the summer low salinity surface layer. The only freshwater plankton to occur in samples were also considered. These were unidentified larvae of Chaoborus species. A complete listing of copepod and Cladocera occurrence in a l l zooplankton samples is given in Appendix A. For each cruise, observed species are listed within the species groups suggested by results described below. For each species, estimated mean abundance and per cent copepodite composition are tabulated by station and sample depth. The water regime from which a sample was collected is also shown. The results of each method used to investigate copepod distribution are given and discussed below, and the interpretation is summarised in Table X. (ii ) Monthly profiles of species presence/absence Similarities of spatial and temporal distribution on the inlet profiles indicated six zooplankton species groups could be recognised. Four were given names based on the group of water regimes (referred to as the water categories Surface, Transition, and Deep) in which they were usually found. The fi f t h group was composed of off-shore species apparently advected into the area by a high salinity intrusion. Finally, a group of seasonal and diel migrants was distinguished. 61 Each species group, i t s member spe c i e s , and c h a r a c t e r i s t i c d i s t r i b u t i o n p a t t e r n i s described below. The presence/absence p r o f i l e s were intended t o i n d i c a t e s p a t i a l d i s t r i b u t i o n . Only t h i s aspect i s considered here. However, d i s t r i b u t i o n and hydrographic a s s o c i a t i o n were found t o be-almost inse p a r a b l e . Therefore, b r i e f mention i s o c c a s s i o n a l l y made t o i n l e t hydrography, water regimes, and the d i s t r i b u t i o n of other environmental v a r i a b l e s . However, the t o p i c of a s s o c i a t i o n between species groups and t h e i r environment i s d e a l t w i t h f u l l y i n a l a t e r s e c t i o n (see T-S-P a n a l y s i s and d i s c u s s i o n ) . Summer surface species group This comprised those zooplanktors w i t h c h i e f occurrence r e s t r i c t e d t o the surface f i f t y meters, but which were absent i n a l l samples c o l l e c t e d a f t e r October 1974 u n t i l June 1975 ( P i g . l l ) . In the lattermmonth, Podon and Evadne simultaneously appeared a t a l l i n l e t i n n e r b a s i n s t a t i o n s . Both species of Cladoceran were a l s o present i n the outer b a s i n i n J u l y , August and September 1975» hut were absent from the extreme i n n e r p a r t of the i n l e t d u r i ng the p e r i o d of peak g l a c i a l r u n - o f f ( J u l y and August). At t h i s time ( J u l y ) Ghaoborus l a r v a e were recorded a t s t a t i o n Kn 11. Cladocera were never found i n Queen C h a r l o t t e S t r a i t . Centropages mcmurrichi W i l l e y was present i n the outer b a s i n i n October 1974, and was again recorded there and i n Queen C h a r l o t t e S t r a i t from June u n t i l the end of the study p e r i o d , , September 1975• C. mcmurrichi was seen a t only one in n e r b a s i n s t a t i o n (Kn 5). Paracalanus parvus Claus was found only i n June, J u l y , and August 1975* A l l occurrences were from the outer b a s i n . 62 Surface and Surface T r a n s i t i o n a l species group This group comprised a l l species d i s t r i b u t e d i n Surface or i n Surface and T r a n s i t i o n water regimes, or i n terms of depth, t o approximately the upper 100 m of water ( F i g . 12). Reference to p o p u l a t i o n s t r u c t u r e graphs, k x r contingency t a b l e s , and Appendix A showed th a t records i n deep' water regimes were a l l a t very low l e v e l s of abundance. The above sources a l s o revealed considerable s e a s o n a l i t y of abundance, with populations a t low l e v e l s or undetectable i n winter. However, s e a s o n a l i t y was l e s s than t h a t of the Summer Surface group, which were a l s o g e n e r a l l y Absent from intermediate depths occupied by t r a n s i t i o n water regimes. A c a r t i a l o n g i r e m i s L i l l j e b o r g was recorded throughout the year In Queen C h a r l o t t e S t r a i t and i n both i n l e t b a s i n s . However, i t s d i s t r i b u t i o n was s p a t i a l l y and temporally more continuous outside of the inner b a s i n . Tortanus discaudatus Thompson and Scott was more confined t o Queen C h a r l o t t e S t r a i t and the outer i n l e t b a s i n than A. l o n g i r e m i s , and apparently populated inner b a s i n surface waters only at a time of mimimum surface outflow (February and March). T. d i s -caudatus was r e s t r i c t e d t o deep samples i n Queen C h a r l o t t e S t r a i t from February u n t i l A p r i l 1975• The outer b a s i n population appeared to undertake a much l e s s pronounced seasonal migration one month l a t e r . In c o n t r a s t t o A. l o n g i r e m i s and T. discaudatus, the d i s t r i b u t i o n of A c a r t i a c l a u s i Giesbrecht showed signs of a s s o c i a t i o n w i t h the i n l e t i n n e r b a s i n . I t was absent i n a l l February 1975 samples, but was found one month l a t e r near the i n l e t head a t s t a t i o n Kn 11. In May, occurrences were s t i l l confined to the inner b a s i n . Thereafter, both 63 b a s i n s were occupied from June u n t i l the study c l o s e d (September 1975)• The species was never seen i n samples c o l l e c t e d i n Queen C h a r l o t t e S t r a i t . A. l o n g i r e m i s , A. c l a u s i , and T. discaudatus were absent from samples taken near the i n l e t head d u r i n g the month of peak g l a c i a l r u n - o f f . I t was a l s o i n the i n n e r b a s i n t h a t t h e i r v e r t i c a l d i s t r i b u t i o n was most s t r i c t l y confined t o the surface. However, i n October 1974 and i n August 1975. samples c o l l e c t e d i n deep water u p - i n l e t of the i n n e r s i l l contained a l l three species. Inspection of the r e l e v a n t hydrographic p r o f i l e s ( F i g . 3a» i ) . r e v e a l e d t h a t d u r i n g both months a high s a l i n i t y i n t r u s i o n was i n v a d i n g deeper p a r t s of the i n n e r b a s i n . In the f o l l o w i n g months (December 1974 and September 1975> r e s p e c t i v e l y ) only A. c l a u s i could s t i l l be detected i n deep water. E p i l a b i d o c e r a a m p h i t r i t e s McMurrich could not be s a t i s f a c t o r i l y grouped w i t h other species. Occurrence was h i g h l y seasonal, and no specimens were found between December 1974 and June 1975* Highest abundance was recorded i n Queen C h a r l o t t e S t r a i t (see Appendix A; F i g . 28; Table IVd). Smaller numbers occurred a t the seaward end of the outer basin ( s t a t i o n Kn l ) but the species was never seen upstream of the inner s i l l . The data a l s o showed t h a t although present i n deep water regimes, the bulk of the population r e s i d e d i n surface and t r a n s -i t i o n water. E. a m p h i t r i t e s was t h e r e f o r e p l a c e d i n the Surface and Surface T r a n s i t i o n a l species group. 64 Transitional/Deep species group This group was not always easy to recognise from i n l e t p r o f i l e s alone, and was t e t t e r d e f i n e d when considered w i t h the k x f. contingency t a b l e s , T-S-P diagrams, and po p u l a t i o n s t r u c t u r e graphs. However, c h i e f c h a r a c t e r i s t i c s were a general absence from a l l surface water regimes (shown i n T-S-P a n a l y s i s ) and an apparent a f f i n i t y f o r the i n l e t i n n er b a s i n ( F i g . 13)• Presence of these species i n the i n n e r b a s i n showed no s i g n of being i n f l u e n c e d by the seasonal advent of g l a c i a l r u n - o f f . The group was most p o o r l y represented i n Queen C h a r l o t t e S t r a i t , w i t h a higher p r o p o r t i o n of species o c c u r r i n g i n the outer b a s i n . In both areas, d i s t r i b u t i o n was u s u a l l y r e s t r i c t e d to depths between JO or 50 m, and the bottom. A l l component species could always be found i n the i n n e r b a s i n . Here v e r t i c a l d i s t r i b u t i o n l i m i t s were confused by a tendency f o r the upper l i m i t of a l l species t o be d i s p l a c e d towards the surface i n the v i c i n i t y of the i n l e t head. This phenomena was l e a s t obvious i n the months from February t o May, i n c l u s i v e . In terms of presence/absence, a good example would be October 1974, where the upper . l i m i t of d i s t r i b u t i o n f o r Heterorhabdus t a n n e r i Giesbrecht decreased i n depth from 100 m near the s i l l ( s t a t i o n Kn 5) "to 10 m near the i n l e t head ( s t a t i o n Kn l l ) . Over the same h o r i z o n t a l d i s t a n c e , the upper l i m i t f o r M e t r i d i a okhotensis B r o d s k i i decreased from 200 m t o 10 m. Spearman rank c o r r e l a t i o n c o e f f i c i e n t s were a p p l i e d t o abundance estimates i n order t o i n v e s t i g a t e t h i s f e a t u r e more f u l l y (see l a t e r s e c t i o n ) . A e t i d i u s divergens Bradford, S c o l e c i t h r i c e l l a minor Brady and Euchaeta .japonica Marukawa were the group members most commonly seen 65 i n Queen C h a r l o t t e S t r a i t and the i n l e t outer b a s i n . However, they were f r e q u e n t l y absent i n both areas from March u n t i l June 1975» or were present at very low l e v e l s of abundance (see F i g . 33 i Table IVc; Appendix A). Regardless of l o c a t i o n , A. divergens and S. minor were c h a r a c t e r i s t i c of samples taken from depths between 30 and 100 m. This i s w e l l i l l u s t r a t e d i n the October 1974 and May and June 1975 p r o f i l e s . The v e r t i c a l d i s t r i b u t i o n of E. .japonica c o n s i s t e n t l y extended over a gre a t e r range than observed f o r the other species. For example, i t was f r e q u e n t l y observed a t depths of both 30 and 500 m. M e t r i d i a okhotensis B r o d s k i i , Gaidius columbiae Park, Heterorhabdus t a n n e r i Giesbrecht, and Candacia columbiae Campbell were i r r e g u l a r l y seen i n outer b a s i n samples from depths g r e a t e r than 50 m. However, t h i s occurred most commonly over two p e r i o d s , one from February t o March and the other from J u l y u n t i l the study close d (September 1975)-M. okhotensis was a l s o found i n Queen C h a r l o t t e S t r a i t i n June and J u l y . I n s p e c t i o n of hydrographic p r o f i l e s ( F i g . 3g -h) r e v e a l e d t h a t a h i g h s a l i n i t y i n t r u s i o n was t a k i n g place a t t h a t time. C. columbiae ( i n August 1975) was the only other group member seen i n Queen C h a r l o t t e S t r a i t . A e t i d i u s divergens and C h i r i d i u s g r a c i l i s Farran were the only group species t o show temporal c o n t i n u i t y i n the outer b a s i n . C. grac-i l i s was f u r t h e r d i s t i n g u i s h e d by having a higher abundance there than i n the i n n e r i n l e t b a s i n ( F i g . 34). 66 Deep species group The Deep species group was c l e a r l y d e f i n e d . V e r t i c a l d i s t r i b -u t i o n resembled t h a t of the Transitional/Deep species except t h a t a greater a s s o c i a t i o n w i t h deep water could be seen. However, the three component sp e c i e s , Spinocalanus brevicaudatus B r o d s k i i , Scaphocalanus  b r e v i c o r n i s Sars, and Racovitzanus a n t a r c t i c u s Giesbrecht, were almost e x c l u s i v e t o the i n l e t i n n e r b a s i n ( F i g . 14). The only unusual records concerned the presence of R. a n t a r c t i c u s i n the 100 m sample from Queen Ch a r l o t t e S t r a i t i n A p r i l and June, and the occurrence of Scaphocalanus  b r e v i c o r n i s and Spinocalanus brevicaudatus i n the June and J u l y 150 m samples from s t a t i o n Kn 3» l n terms of water regimes, the group was c h a r a c t e r i s t i c of i n n e r b a s i n Deep regimes (see Tables IVa-d, V I I ; and T-S-P a n a l y s i s ) . In the i n l e t i n n e r b a s i n , v e r t i c a l d i s t r i b u t i o n u s u a l l y ranged from 100 m t o the bottom (200-500 m). However, as noted f o r the T r a n s i t i o n a l / Deep species group, t h i s was confused by a tendency f o r the upper l i m i t of a l l species t o be d i s p l a c e d towards the surface i n the v i c i n i t y of the i n l e t head. This surface t r e n d could be seen i n a l l presence/ absence p r o f i l e s except f o r those of February, March, and A p r i l data. The s i t u a t i o n , t h e r e f o r e , p a r a l l e l e d t h a t of the Transitional/Deep s p e c i e s , which showed l i t t l e upward displacement between February and May 1975« The phenomenon was f r e q u e n t l y p r o g r e s s i v e , from the s i l l t o the i n l e t head. One of the c l e a r e s t examples was given by the October 1974 p r o f i l e . Here the minimum depth a t which Spinocalanus  brevicaudatus and Scaphocalanus b r e v i c o r n i s were seen was 100 m, 50 m, 30 m, and 10 m a t s t a t i o n s Kn 5> 7> 9» and 11, r e s p e c t i v e l y . 67 The p r o f i l e s i n d i c a t e d t h a t Racovitzanus a n t a r c t i c u s was the species most confined t o deep water, although i t was recorded much l e s s f r e q u e n t l y than the other two species. Spinocalanus "brevi-caudatus was often found a t a s l i g h t l y shallower depth than Scapho-calanus b r e v i c o r n i s . From A p r i l u n t i l J u l y , the group was not recorded a t s t a t i o n Kn 5> l o c a t e d j u s t i n s i d e of the i n n e r s i l l . I n s p ection of the hydrographic p r o f i l e s ( F i g . 3 e~g) showed t h a t a low s a l i n i t y i n t r u s i o n took place a t t h a t time. The i n t r u s i o n began t o introduce h i g h s a l i n i t y water i n J u l y ( F i g . 3h). This f e a t u r e i s considered l a t e r (see T-S-P s e c t i o n ) . Off-shore species group This was composed of t h i r t y - s e v e n s p e c i e s , a l i s t of which i s given i n Table V I I I . The m a j o r i t y were seen f i r s t i n the Queen Ch a r l o t t e S t r a i t 100 m sample taken i n J u l y . However, Rhinealanus nas-utus Giesbrecht, Gaetanus intermedins Campbell, and Calanus c r i s t a t u s Kroyer were a l s o found a t the same l o c a t i o n i n June. Both the t o t a l abundance of i n d i v i d u a l s , and the number of c h a r a c t e r i s t i c species d e c l i n e d r a p i d l y u n t i l the study terminated (September 1975) ( F i g . 15). A small percentage of species d i d enter the outer i n l e t b a s i n as f a r as s t a t i o n Kn 3» a n (i i n September, a higher number of species from the group was seen a t s t a t i o n Kn I than i n Queen C h a r l o t t e S t r a i t . Species could t h e r e f o r e be sub-grouped according to whether seen f o r one month only or f o r s e v e r a l months (see caption f o r F i g . 16). I n s p e c t i o n of the hydrographic p r o f i l e s and T-S p l o t s f o r the p e r i o d June to September 1975 ( F i g . 3g~jl»f 22-25) i n d i c a t e d the group was a s s o c i a t e d w i t h a high 68 s a l i n i t y i n t r u s i o n , which reached maximum i n t e n s i t y i n J u l y . This water moved i n t o the outer i n l e t "basin from J u l y u n t i l September, and apparently c a r r i e d along some members of the Off-shore species group. However, at the time of the l a s t c r u i s e , no member had been seen i n the in n e r b a s i n d e s p i t e the i n v a s i o n of the l a t t e r by the i n t r u s i o n . I t i s probably u n l i k e l y t h a t the inner s i l l was ever crossed. The upper l i m i t of the group's v e r t i c a l d i s t r i b u t i o n was 100 m; w e l l below the inner s i l l depth (approximately 65 m). Furthermore, only one member, _G. c r i s t a t u s , was found near the s i l l a t s t a t i o n Kn 3- I t i s i n t e r e s t i n g t h a t the l a t t e r species occurred i n small numbers w i t h G. intermedius at 50 m depth i n J u l y and August i n Queen C h a r l o t t e S t r a i t . The Queen C h a r l o t t e S t r a i t s t a t i o n was always sampled a t n i g h t . However, no members of t h i s group were found a t sample depths shallower than 100 m (wi t h the two exceptions noted above). Several of the group's species have been found by previous workers t o undertake s i g n i f i c a n t d i e l m i g r a t i o n . Although extensive movement would be impossible i n the 150 m of water a v a i l a b l e a t s t a t i o n QC, i t i s i n t e r -e s t i n g t h a t the M e t r i d i i d a e , which have been reporte d t o often v i s i t the upper JO m (Vinogradov 1968) apparently d i d not do so here. Many species of the Off-shore group were p r e v i o u s l y unrecorded i n the c o a s t a l waters of B r i t i s h Columbia (see F u l t o n 1968; Shih 1971)• The s i g n i f i c a n c e of t h i s group i s f u r t h e r considered i n the T-S-P s e c t i o n . 69 Migrant species group Presence/absence p r o f i l e s f o r the Migrant species group f a i l e d t o c l a r i f y d i s t r i b u t i o n patterns and they are not i n c l u d e d here. Two kind s of v e r t i c a l m i g r ation were encountered i n the study area. M e t r i d i a p a c i f i c a B r o d s k i i i s a w e l l documented d i e l migrant (Vinogradov 1968). Here i t generaelilylopcurred i n near surface samples a t nigh t t i m e s t a t i o n s (e.g. s t a t i o n QC) i n cont r a s t t o deeper depths a t daytime s t a t i o n s (e.g. s t a t i o n Kn 3)« 1 <iid n o " t conduct a 24-hour time s e r i e s of h o r i z o n t a l tows i n Knight I n l e t , but such a s e r i e s i n Howe Sound (approximately 290 km t o the south), i n d i c a t e d M. p a c i f i c a t o be the only copepod present which undertook a marked d i e l v e r t i c a l m i g r ation (Stone, unpublished d a t a ) . K o e l l e r (1974) ran a 24-hour time s e r i e s i n Bute I n l e t and a l s o concluded t h a t M. p a c i f i c a was the only copepod present t o show obvious d i e l m i g ration. The extent t o which d i e l movements may have l e d t o b i a s i n the i n t e r p r e t a t i o n of the Knight I n l e t data i s considered i n contingency t a b l e s e c t i o n . E a r l y attempts t o construct p r o f i l e s of presence/absence f o r M. p a c i f i c a were abandoned due t o d i e l v a r i a b i l i t y . Galanus marshallae F r o s t , Galanus plumchrus Campbell, and Eucalanus  bungi bungi Johnson are known t o undertake extensive seasonal v e r t i c a l migrations r e l a t e d t o t h e i r l i f e h i s t o r i e s (Vinogradov 1968). Vinogradov a l s o r e p o r t e d a l e s s c l e a r l y d e f i n e d movement f o r Pseudocalanus elongatus Boeck, which together w i t h C. marshallae tended to be ubiquitous through-out the study area. Some s t r u c t u r e i n d i s t r i b u t i o n s c o uld, however, be seen from abundance estimates, but t h i s was l o s t when presence/absence p r o f i l e s were attempted. S i m i l a r l y , p r o f i l e s of E. bungi bungi and 70 C. plumchrus c l a r i f i e d l i t t l e concerning d i s t r i b u t i o n , s i n c e they occurred i n very low numbers i n both i n l e t basins and- i n Queen C h a r l o t t e S t r a i t . S p a t i a l d i s t r i b u t i o n of the group was, however, examined us i n g the R x r contingency t a b l e s and pop u l a t i o n s t r u c t u r e graphs described below. ( i i i ) Monthly T-S-P diagrams As described i n the Methods s e c t i o n , monthly T-S-P diagrams ( F i g s . 16-25) were de r i v e d from s i n g l e species p l o t s l a t e r combined t o group species w i t h s i m i l a r i t i e s of occurrence on the diagrams. The s i x groups so i d e n t i f i e d , and the s i x groups i s o l a t e d from the presence/ absence p r o f i l e s were of i d e n t i c a l species content. This was expected since both methods examined the d i s t r i b u t i o n of the same species data w i t h i n the same water regimes, the c h a r a c t e r i s t i c s of which were recog-n i s e d by the same methods. Surface T r a n s i t i o n a l , T r ansitional/Deep, Migrant, and Deep species were each p l o t t e d on a separate monthly diagram. However, Summer Surface and Off-shore species were p l o t t e d with Surface T r a n s i t i o n a l and Deep spe c i e s , r e s p e c t i v e l y . A l i s t of species i n c l u d e d i n each group over the e n t i r e study year i s given w i t h the F igure explanations. On each diagram, water regime T-S l i m i t s are e n c i r c l e d by coded envelopes. They are themselves embraced by l a r g e r envelopes t o i n c l u d e a l l regimes of a s i m i l a r category ( i . e . Surface, T r a n s i t i o n , and Deep). The s p a t i a l d i s t r i b u t i o n of any regime quoted i n the f o l l o w i n g t e x t (or shown on a T-S-P diagram) can be found by c o n s u l t i n g Figure 5-71 Summer Surface species group The temporal and s p a t i a l occurrence of each Summer Surface species was described e a r l i e r w i t h the r e l e v a n t presence/absence p r o f i l e s . T-S-P diagrams f o r October 1974 ( F i g . 16) and f o r the p e r i o d June t o September 1975 ( F i g s . 22-25) showed th a t w i t h minor exceptions a l l occurrences of group members were r e s t r i c t e d t o surface water regimes (coded A f o r the i n l e t , and E' f o r Queen C h a r l o t t e S t r a i t ) . The group as a whole was not c h a r a c t e r i s e d by s a l i n i t y , s i n c e occupied regimes v a r i e d from l e s s than 10°/oo t o approximately 31«5°/oo. This range exceeded those of a l l i n l e t T r a n s i t i o n and Deep regimes, w i t h the exception of outer b a s i n deep water (coded B m ) . Therefore, although the s a l i n i t y range f o r each species was l e s s than quoted above, the group i t s e l f was represented i n water of most s a l i n i t i e s a v a i l a b l e t o i t . However, when diagrams were compared w i t h respect t o temperature, i t was found t h a t member species g e n e r a l l y appeared only i n water warmer than 7«8 to 8.0°C, i r r e s p e c t i v e of s a l i n i t y . This f e a t u r e was w e l l i l l u s t r a t e d by comparing any T-S-P diagram f o r months e a r l i e r than June 1975i w i t h any l a t e r diagrams of the same year or wi t h October 1974. The above showed t h a t water warmer than 8.0°C was l a r g e l y r e s t r i c t e d t o the Surface regime (coded A). Temperature a t 5 m depth f i r s t exceeded t h i s value i n A p r i l , May, and June i n the inner b a s i n , outer b a s i n and Queen C h a r l o t t e S t r a i t , r e s p e c t i v e l y . This sequence was thought t o r e f l e c t d i f f e r e n c e s i n water s t a b i l i t y r e s u l t i n g from the exposed nature of Queen Ch a r l o t t e S t r a i t , and the p r o g r e s s i v e l y more s h e l t e r e d s i t u a t i o n encountered towards the i n l e t head. The temperature range of Queen C h a r l o t t e T r a n s i t i o n (coded E") and outer T r a n s i t i o n 72 (coded B") regimes o c c a s i o n a l l y exceeded 8.0 G i n the summer, but were r a r e l y found t o contain Summer Surface species. A sub-surface water regime c h a r a c t e r i s e d by high temperature was recognised a t s t a t i o n Kn 1 i n May (coded A* i n F i g s . 5f-gi 21, 22). However, i t s species content was found to vary l i t t l e from t h a t of surrounding surface water except f o r the presence of Paracalanus, as noted below. The two Gladocera species (Podon and Evadne) were c o n s i s t e n t l y present i n the warmest (8-l4°C) and l e a s t s a l i n e (2-30°/oo) water. However, the presence/absence p r o f i l e s r e v e a l e d t h a t a t the time of peak g l a c i a l r u n - o f f , both were absent from surface water near the i n l e t head. This may not have r e s u l t e d from a d i r e c t s a l i n i t y e f f e c t , s ince the s a l i n i t i e s of "vacant" samples f e l l w i t h i n the range which at other times was found t o contain the two species. However, the Surface regime a t tha t time and l o c a t i o n was a zone of considerable downstream t r a n s p o r t , d r i v e n by the a d d i t i o n of freshwater a t the i n l e t head. In neighbouring Bute I n l e t a t the time of peak g l a c i a l r u n - o f f , Tabata and P i c k a r d (1957) c a l c u l a t e d t h a t a freshwater p a r t i c l e had a maximum residence time of one week i n the i n l e t . I t i s t h e r e f o r e p o s s i b l e t h a t the observed r e g i o n a l absence of Cladocera was due to l o s s of the p r e - e x i s t i n g p o p u l a t i o n (June) by surface advection, the v e l o c i t y of which prevented any r e c o l o n i s a t i o n . The l a t t e r would be delayed u n t i l e i t h e r a f a l l i n the r a t e of r i v e r discharge occurred, r e s u l t i n g i n a lower surface t r a n s p o r t v e l o c i t y , or u n t i l a given surface water " p a r c e l " had moved downstream, thus p r o v i d i n g time f o r a population to be entrained and then b u i l t up. This theory was supported by the general movement of the Cladocera 73 p o p u l a t i o n from the i n l e t head r e g i o n of the inner b a s i n (June), t o the lower inner and the outer basins i n J u l y and. August and the apparent r e c o l o n i s a t i o n of the i n l e t head r e g i o n i n September ( F i g . l l ) . The inn e r i n l e t p o pulation of Galanus finmarchicus Gunnerus i n a Norwegian f j o r d has been report e d by Stromgren (1976) t o be "washed out" i n a s i m i l a r f a s h i o n by seasonal surface r u n - o f f . The complete absence of Cladocera from Queen C h a r l o t t e S t r a i t could not be expl a i n e d , nor the sudden appearance of the population i n the inner b a s i n . Paracalanus parvus s i m i l a r l y appeared i n the i n l e t without evidence of being r e l a t e d t o a population i n Queen C h a r l o t t e S t r a i t ( F i g . l l ) . T-S-P diagrams f o r June, J u l y , and August ( F i g s . 22-24) show a l l occurrences were recorded w i t h i n the r e l a t i v e l y narrow T-S range of temperature 9»5-10.0°C and s a l i n i t y 29-30 0/ 0 0- Only the surface water regime i n the outer basin possessed t h i s combination of p r o p e r t i e s . According t o the l i t e r a t u r e , P. parvus i s c h a r a c t e r i s t i c of warm c o a s t a l n e r i t i c waters w i t h a zon a l range extending from temperate t o s u b - t r o p i c a l ( B r o d s k i i 1950; FuruhashiJl'9'6'r6; Fleminger 1967). L o c a l surveys have g e n e r a l l y found the species to be r a r e (legare 1957. Gardner 1976; and the present study). However, F u l t o n (1970) reported P. parvus as being common i n the S t r a i t of Georgia, w h i l s t i t emerged as one of the p r i n c i p a l zooplanktors i n a CEPEX Bag experiment conducted i n Saanich I n l e t ( K o e l l e r and Parsons 1977)-Temperature and s a l i n i t y i n the l a t t e r case v a r i e d from 10.0 to 13.5°G and 29.6 t o 30.2°/oo» r e s p e c t i v e l y . This c l o s e l y p a r a l l e l e d the T-S range given above f o r Knight I n l e t occurrences, although the CEPEX bags 74 were s l i g h t l y warmer. I t t h e r e f o r e seems probable t h a t P. parvus i s c l o s e t o the northern l i m i t s of i t s zo n a l range when found o f f B r i t i s h Columbia, but t h a t l a r g e populations can be r a p i d l y b u i l t up under s u i t a b l y warm and s t a b l e c o n d i t i o n s . From June u n t i l September 1975> Centropages mcmurrichi was g e n e r a l l y d i s t r i b u t e d i n samples from surface water regimes i n Queen C h a r l o t t e S t r a i t (coded E') and the i n l e t outer b a s i n (coded A and A')» The presence/absence p r o f i l e s showed t h a t only one i n n e r b a s i n sample (taken from j u s t i n s i d e the s i l l a t s t a t i o n Kn 5) contained the species ( F i g . l l ) . An absence from the extreme surface i n Queen C h a r l o t t e S t r a i t and the outer b a s i n was a l s o i n d i c a t e d by the J u l y p r o f i l e . Both f e a t u r e s were r e f l e c t e d on the T-S-P diagrams by the apparent assoc-i a t i o n between occurrence and water temperatures c o o l e r than 10°C and s a l i n i t i e s higher than 25°/oo. The l i t e r a t u r e suggests t h a t low s a l i n i t y was u n l i k e l y t o have been a s i g n i f i c a n t f a c t o r . For example, Legare (1957) reporte d presence i n water of 2°/oo and a c t i v e breeding i n 10°/oo s a l i n i t y . I f the observed T-S-P a s s o c i a t i o n was meaningful, a temperature r e l a t e d f a c t o r i s more l i k e l y t o have been s i g n i f i c a n t i n determining Knight I n l e t d i s t r i b u t i o n s . C. mcmurrichi i s g e n e r a l l y regarded as a n e r i t i c b o r e a l s u b - a r c t i c species (Fleminger 1967; Vino-gradov 1970). Furthermore, the study area i s probably not f a r north of the southern l i m i t of the species range. This was i n d i c a t e d by Cross and Small (1967) who a s s o c i a t e d seasonal d i s t r i b u t i o n w i t h seasonal r e v e r s a l s i n water movements i n the c o a s t a l N.E. P a c i f i c . They found th a t when the surface northward f l o w i n g Davidson current c o l l a p s e d i n summer, the southern l i m i t t o C. mcmurrichi's d i s t r i b u t i o n moved south 75 from 46 N t o approximately 42 N. Surface and Surface T r a n s i t i o n a l species group The T-S-P diagrams showed t h i s group t o g e n e r a l l y occur i n surfacewwater regimes (coded E' f o r Queen C h a r l o t t e S t r a i t , and A f o r the i n l e t ) . However, r e g u l a r occurrence was a l s o seen i n both T r a n s i t i o n and Deep regimes i n Queen C h a r l o t t e S t r a i t (coded E" and E"'), and i n T r a n s i t i o n regimes i n the outer b a s i n (coded B"). Occurrence i n the inner b a s i n Deep and T r a n s i t i o n regimes was seen only f o r two periods (regimes D' and D"' i n October 1974; and H', H , M , and G / H * i n J u l y , August, and September 1975). In the previous s e c t i o n I compared the presence/absence p r o f i l e s with p r o f i l e s of water regime l i m i t s ( F i g . 5) and the r e l e v a n t hydro-graphic p r o f i l e s ( F i g . 3)» I t was suggested t h a t u p - i n l e t occurrence of the group i n deep water was a s s o c i a t e d w i t h an i n t r u s i o n from the outer b a s i n . This was supported by the T-S-P diagrams f o r June and J u l y ( F i g s . 22,23) which i n d i c a t e d the temperature and s a l i n i t y of Deep regimes H' and H'" c l o s e l y approximate those recorded f o r the outer b a s i n T r a n s i t i o n regime a t s i l l depth i n the previous month. For example, i n June, T r a n s i t i o n regime water (coded B") i n the outer ba s i n was c h a r a c t e r i s e d by an envelope of 7-2 t o 7•8°C temperature, and 31.2 to 31•5°/°° s a l i n i t y . In J u l y , an envelope with s i m i l a r p r o p e r t i e s (7-1 t o 7«5°C temperature and 31.2 t o 31.3°/°° s a l i n i t y ) c h a r a c t e r i s e d the two inner b a s i n Deep regimes (H' and H"'). In August, a s i m i l a r a s s o c i a t i o n w i t h the previous month could not be detected. However, water a t s i l l depth i n the outer b a s i n (75 and 100 m) so c l o s e l y 76 resembled the inner b a s i n Deep regimes t h a t i t was coded B " / H . This suggests not only t h a t an i n t r u s i o n invaded the deep inner b a s i n , but a l s o t h a t the r a t e of i n v a s i o n was more r a p i d i n August than i n J u l y . This was a l s o i n d i c a t e d by the appearance of the 31•3°/°° i s o h a l i n e i n the inner b a s i n i n August, and the r a p i d e l e v a t i o n observed i n i t s depth between t h a t month and September ( F i g . 3i -j)« I t t h e r e f o r e seems l i k e l y t h a t the observed seasonal presence of the group i n the inner basin deep water regimes was indeed caused by advective t r a n s p o r t , and r e f l e c t e d the outer b a s i n t r a n s i t i o n a l o r i g i n of the above regimes. Summer and autumn i n n e r b a s i n water replacement i s probably a r e g u l a r event (although v a r y i n g i n i n t e n s i t y ) since i t i s a s s o c i a t e d w i t h the seasonal occurrence of off-shore u p w e l l i n g . The observed i n n e r b a s i n presence of the Surface and Surface T r a n s i t i o n a l species group i n October 1974 could t h e r e f o r e r e f l e c t the same events as o u t l i n e d above. I t i s i n t e r e s t i n g t h a t the hydrographic data were i n t e r p r e t e d as i n d i c a t i n g the .presence of some advection across the inner s i l l a t a l l times of the year. This may e x p l a i n the f r e q u e n t l y observed pres-ence of the group a t s t a t i o n Kn 5» j u s t i n s i d e the s i l l . However, a massive occurrence i n the inner b a s i n was not seen t o accompany such advection. This may have r e s u l t e d from the low abundance l e v e l s of a l l member species a t a l l l o c a l i t i e s i n winter. A l t e r n a t i v e l y , the d i f f e r e n c e between the J u l y and August observations i n d i c a t e d t h a t a " r a p i d " move-ment of water took place across the s i l l before an appreciable deep inner b a s i n population could be detected, and i t i s p o s s i b l e that w i n t e r advective t r a n s p o r t was not " r a p i d " enough t o achieve a population b u i l d -up. 77 Although always a s s o c i a t e d w i t h Surface regimes, the group could not he c l e a r l y a s s o c i a t e d w i t h a set of T-S p r o p e r t i e s . The observed range extended from 5*8 to 13.5°C temperature, and 12.0 t o 32.5°/ 0 0 s a l i n i t y . Lack of occurrence i n water of lower s a l i n i t y or higher temperature could have been caused by the wash-out process suggested e a r l i e r w i t h respect t o the Summer Surface species. This would e x p l a i n the observed disappearance of A c a r t i a S l a u s i and A c a r t i a l o n g i r e m i s from the i n l e t head surface waters a t the time of peak g l a c i a l run-o f f (Jjuly). W i thin a given month, A. l o n g i r e m i s , Tortanus discaudatus, and E p i l a b i d o c e r a a m p h i t r i t e s were u s u a l l y found i n warmer and more s a l i n e water than A. c l a u s i , r e f l e c t i n g t h e i r s p a t i a l a s s o c i a t i o n s w i t h the outer and inner i n l e t b a s i n s , r e s p e c t i v e l y . However, t h i s d i s t i n c t i o n was l o s t when diagrams f o r s e v e r a l months were examined together, and the T-S-P technique f a i l e d t o suggest reasons f o r the observed d i s t r i b -u t i o n s , The l i t e r a t u r e d i d not c l a r i f y the problem and d i d not i n d i c a t e t h a t any member species was here cl o s e t o the l i m i t s of i t s range. J e f f e r i e s (1967) noted t h a t both A . c l a u s i and T. discaudatus are able to breed i n water s a l i n i t i e s r anging from 10 t o over 30 °/oo i n the north western c o a s t a l A t l a n t i c . Furthermore, a l l f o u r species are g e n e r a l l y regarded as n e r i t i c , and have been recorded i n north eastern P a c i f i c c o a s t a l waters from C a l i f o r n i a t o the B e r i n g Sea (Davis 1949! Legare 1957 5 Cameron 1957? Fleminger 1967; Pearcy 1972; Motoda and Minoda 1974). I t should be noted t h a t there i s some confusion i n the l i t e r a t u r e concerning the taxonomy of A. c l a u s i , and t h a t geographical range as 78 recorded in the literature may be inaccurate. According to Bradford (1976) A. clausi occurs only in the Northeast Atlantic and Mediterranean. Her description of material collected from San Francisco to the Queen Charlotte Islands conformed well with my specimens from Knight Inlet. Bradford concluded that the North Facific form was a variable species)?, and distinct from any other. However, she did not give i t a name and, I have consequently continued to use A. clausi to describe the species here. Transitional/Deep species group The T-S-P diagrams show this group to have been rarely present in surface water regimes and to have occurred most frequently in Trans-ition and Deep regimes of the inner basin. Occurrence was therefore largely restricted to water of T-S properties characteristic of the above regimes (i.e. 30*8 to 31'3°/oo salinity, and 6.5 to 8.0°C temper-ature ). Certain temporal and spatial distributional features observed in the presence/absence profiles were reflected in the T-S-P diagrams. One of the most important concerned the apparent surface displacement of Transitional/Deep and Deep species in the inlet head region. This mirrored a feature often observed in hydrographic and nutrient profiles; that of the upward displacement of isopleths in the inner basin. These sloped towards the surface near the inlet head, and sometimes extended down-inlet as a sub-surface tongue of minimum (e.g. oxygen) or maximum (e.g. nitrate) values. This sub-surface water was often found on the T-S plots to be characteristic of inner basin Deep or Transition regimes 79 ( a l s o suggested by the oxygen minimum and n u t r i e n t maximum mentioned above). In the hydrographic s e c t i o n , I i n t e r p r e t e d t h i s as i n d i c a t i n g t h a t new i n t r u s i o n s i n t o the inner b a s i n r e s u l t e d i n p r e v i o u s l y r e s i d e n t water being f l u s h e d u p - i n l e t and towards the surface. The observed sub-surface regime of t r a n s i t i o n or deep water o r i g i n t h e r e f o r e r e s u l t e d , and presumably flowed, down-inlet. This theory was compatible w i t h the observed surface displacement of Transitional/Deep and Deep species r e f e r r e d t o above, and was supported by the occurrence of r e p r e s e n t a t i v e species of both groups i n the u p - i n l e t sub-surface regimes. This was w e l l i l l u s t r a t e d by the species content of samples c o l l e c t e d i n regimes coded A"/D' i n October 1974 ( F i g s . 5a, 16) and coded G and G / H ' i n J u l y , August and September 1975 ( F i g s . 5h-j, 23-25). This i n c l u d e d Heterorhab- dus t a n n e r i , M e t r i d i a okhotensis, and Gaidius columbiae. At the above time's, some member species were even observed i n the Surface regime a t s t a t i o n s Kn 9 and 11. These are the Transitional/Deep and Deep species recorded on the low s a l i n i t y , h i g h temperature i n s e t of each group (e.g. S. minor, Euchaeta j a p o n i c a , M. okhotensis, and H. t a n n e r i i n J u l y ) . At p r o g r e s s i v e l y f u r t h e r s t a t i o n s from the i n l e t head, the sub-surface water regimes become more d i f f i c u l t t o a s s o c i a t e w i t h a t r a n s -i t i o n or deep water o r i g i n , probably as a r e s u l t of mixing and d i f f u s i o n . In the outer b a s i n the only i n d i c a t i o n of i t s presence was the frequent occurrence of a n i t r a t e maximum, which was confluent w i t h t h a t of the sub-surface regime i n the inner basin (e.g. the n i t r a t e p r o f i l e s i n F i g . 3a)« I t i s i n t e r e s t i n g t h a t the m a j o r i t y of Transitional/Deep and Deep species disappeared from the sub-surface regimes between s t a t i o n s Kn 9 and Kn 7( which a l s o approximated the l o c a t i o n a t which the regime 80 became d i f f i c u l t t o a s s o c i a t e w i t h t r a n s i t i o n or deep water us i n g T-S p r o p e r t i e s alone ( F i g s . 13, 14). When the i n l e t p r o f i l e s were considered above, i t was noted t h a t A e t i d i u s divergens, Euchaeta .japonica, and Scolecithricellamminorwwere the most f r e q u e n t l y observed member species t o occur i n Queen C h a r l o t t e S t r a i t and the outer b a s i n . They a l s o tended t o occur i n water of s l i g h t l y lower s a l i n i t y and higher temperature than quoted f o r the whole group. The o c c a s i o n a l presence of other species i n the outer b a s i n probably r e s u l t e d from advective t r a n s p o r t , e i t h e r from the i n n e r b a s i n or from Queen C h a r l o t t e S t r a i t . The l a t t e r seems u n l i k e l y , s i n c e the only group members to be recorded a t s t a t i o n QC (other than the three species noted above) were M e t r i d i a okhotensis i n June and J u l y ( F i g s . 22, 23) and Candacia columbiae i n September ( F i g . 25). The sub-surface outflow regime from the inner b a s i n discussed above was the most probable source. I t was d i f f i c u l t t o understand why o c c a s i o n a l immigrants of; the species group i n the outer b a s i n apparently f a i l e d to e s t a b l i s h a population there. S i m i l a r l y , why were only a few species observed i n Queen C h a r l o t t e S t r a i t ? The T-S p r o p e r t i e s of the deeper p a r t s of both areas were s i m i l a r to those which a t some time of the year support-ed member species i n the inner basin. A p o s s i b l e explanation i s waterr c i r c u l a t i o n . The hydrographic a n a l y s i s r e p o r t e d i n an e a r l i e r s e c t i o n suggested a deep u p - i n l e t f l o w t o be u s u a l l y present t o a greater or l e s s e r degree a t most times of the year. I f immigrants entered the " l a y e r " from the sub-surface outflow above, they could have been advected back i n t o the inner b a s i n . However, t h i s i s u n s a t i s f a c t o r y , 81 s i n c e i t does not e x p l a i n the Queen C h a r l o t t e S t r a i t s i t u a t i o n , the more p e r s i s t e n t presence of A. divergens, E. japonica, and S. minor i n the outer b a s i n , or the observed continuous presence of C h i r i d i u s  g r a c i l i s i n the same l o c a l i t y . An a l t e r n a t i v e suggestion d e r i v e d from the T-S-P diagrams was t h a t the r e l a t i v e l y l a r g e annual range of p r o p e r t i e s i n outer b a s i n or Queen C h a r l o t t e S t r a i t deep water as compared t o the much smaller range i n the inner b a s i n , could have been s i g n i f i c a n t . For example, the deep water annual temperature range i n the inner b a s i n was approximately 0.5°C, i n co n t r a s t to 1.5 t o 2.0°C i n the outer b a s i n . S i m i l a r l y , the former had a s a l i n i t y range of 0.4°/oo» as aga i n s t 1.3°/oo i n the l a t t e r . G i l f i l l a n (1972) found evidence of p h y s i o l o g i c a l adaptation i n l o c a l populations of the euphausid Euphausia p a c i f i c a Hansen to l o c a l environmental parameters. I t i s p o s s i b l e t h a t the u p - i n l e t species of the Transitional/Deep group were i n some way adjusted to the inner b a s i n and were unable t o adapt to the more v a r i a b l e environment of the outer b a s i n . I t i s i n t e r e s t i n g t h a t the l i t e r a t u r e suggests A. divergens and S. minor t o be t y p i c a l of more surface and, t h e r e f o r e , more v a r i a b l e water than species w i t h a repo r t e d deeper depth range, such as Heterorhabdus t a n n e r i , Gaidius  columbiae, and Candacia columbiae ( B r o d s k i i 1950; Legare 1957? Furuhashi 1966; Vinogradov 1968). Deep species group As discussed above w i t h the presence/absence p r o f i l e s , t h i s group c l o s e l y resembled the Tr a n s i t i o n a l / D e e p group. However, i t was d i s t i n g u i s h e d by being almost e x c l u s i v e t o the inner b a s i n , and showed 82 a gr e a t e r a f f i n i t y f o r Deep regimes. Both f e a t u r e s could be seen i n every T-S-P diagram, where the m a j o r i t y of samples from inner b a s i n Deep regimes contained Spinocalanus brevicaudatus and Scaphocalanus  b r e v i c o r n i s , w h i l s t a much lower proportion of T r a n s i t i o n regime samples contained the same species. The T-S range u s u a l l y observed f o r the group was approximately J1.0 t o Jl.J°/oo s a l i n i t y , and 7.0 t o 7.5°G temperature. However, occurrence was a l s o o c c a s i o n a l l y recorded i n c o o l e r and l e s s s a l i n e water, u s u a l l y a s s o c i a t e d w i t h the sub-surface u p - i n l e t water regimes discussed a t l e n g t h i n the previous s e c t i o n . The presence of Deep species i n t h i s water could be explained by the same water displacement and advective t r a n s p o r t of plankton as des-c r i b e d f o r the Transitional/Deep species. The phenomenon was detected i n October 1974 and i n J u l y , August, and September 1975• I t t h e r e f o r e c o i n c i d e d w i t h the times a t which i n t r u s i o n s o y e r the s i l l was thought to be most intense (see hydrographic s e c t i o n and the d i s c u s s i o n of Surface and S u r f a c e / T r a n s i t i o n a l group appearances i n the inner b a s i n given above). I f r e l a t e d i n the way explained here, the upward d i s -placement of t r a n s i t i o n and deep water would a l s o be expected t o be more int e n s e , and the p r o b a b i l i t y of "deep" plankton being advected towards the surface would be greater. An example of the f e a t u r e was provided by the T-S-P diagram from October 1974 ( F i g . 16) which showed t h a t Spinocalanus brevicaudatus and Scaphocalanus b r e v i c o r n i s were both present i n the sub-surface regime coded A"/D* a t s t a t i o n s Kn 9 and 11. In the same month, both species were a l s o found a t the same s t a t i o n s i n Surface regime water of s a l i n i t y 29 t o 2>0°/oo. Another i n t e r e s t i n g T-S f e a t u r e concerned water i n t r u s i o n from the 83 outer "basin, and the behaviour of t h i s group a t s t a t i o n Kn 5 ( j u s t i n s i d e of the s i l l ) . When the i n t r u s i o n was of c o o l and r e l a t i v e l y low s a l i n i t y water (as i n March, A p r i l , May, and June 1975» F i g . 5d-g), the group could not be detected a t t h i s s t a t i o n ( F i g . 14). I t i s tempting t o suggest t h a t t h i s r e f l e c t e d t h e i r being pushed u p - i n l e t by the i n t r u s i o n . However, when the l a t t e r was of water more t y p i c a l i n T-S p r o p e r t i e s t o the r e s i d e n t i n n e r b a s i n regimes (as i n October and December 1974 and from J u l y t o September 1975i F i g . 5h-j), the group reappeared ( F i g . 14). Furthermore, I considered the summer and autumn i n t r u s i o n s t o be the more int e n s e , which suggests a displacement e f f e c t , i f o p e r a t i v e , would have been more obvious i n the autumn than i n the s p r i n g . Since the opposite was observed, i t i s u n l i k e l y t h a t displacement caused the group's s p r i n g disappearance from the i n n e r s i l l r e g i o n . An a l t e r n a t i v e explanation i s the s m a l l annual v a r i a t i o n of hydro-graphic p r o p e r t i e s i n the inner basin which can a l s o provide a p o s s i b l e explanation f o r the Deep species group being r e s t r i c t e d t o t h a t l o c a l i t y . As pointed out above, the most d i s t i n c t i v e f e a t u r e of deep inner b a s i n water regimes was t h e i r r e l a t i v e l y low annual range i n temperature and s a l i n i t y . S t a t i o n Kn 5 was, however, unusual, since greater extremes were recorded t h e r e , due t o the passage of i n t r u s i o n s from the outer b a s i n (e.g. F i g . 3h-d). Such water was "new" a t t h a t l o c a t i o n ( i . e . hadd been l i t t l e modified by mixing and advection s i n c e i t s a r r i v a l i n the i n n e r b a s i n ) . As proposed t o e x p l a i n d i s t r i b u t i o n a l behaviour of the Transitional/Deep group, Deep species may have s i m i l a r l y been unable t o maintain populations i n any l o c a t i t y c h a r a c t e r i s e d by considerable environmental v a r i a t i o n . This was c e r t a i n l y suggested by the T-S-P diagrams f o r the Deep species group. When these were examined f o r the e n t i r e study year, i t was found t h a t a l l regimes appeared t o s e a s o n a l l y migrate about the diagram, with the exception of inner b a s i n Deep regimes, which remained more or l e s s f i x e d i n an envelope of approxim-a t e l y 31.0 t o 31-3°/oo s a l i n i t y , and 7 t o 7.5°C temperature. Deep species were, however, a l s o found i n T r a n s i t i o n regimes of JO t o 31°/oo s a l i n i t y , u n t i l the l a t t e r ' s temperature f e l l below approximately 6.5°C i n February ( F i g . 18). At t h a t time, the group became almost e x c l u s i v e to the more s t a b l e (with r espect t o temperature and s a l i n i t y ) Deep regime envelopes. T h i s s i t u a t i o n p e r s i s t e d u n t i l A p r i l when the temperature of T r a n s i t i o n regimes rose above 6.5°C,aaridSSpinocalanus  brevicaudatus and Scaphocalanus b r e v i c o r n i s reappeared ( F i g . 20). Both species are regarded i n the l i t e r a t u r e as being c h a r a c t e r i s t i c of deep open ocean water (Grice 1971; Roe 1972; Damkaer 1975) a n d are apparently r e s t r i c t e d i n the c o a s t a l B r i t i s h Columbia r e g i o n t o f j o r d s w i t h deep basins ( K o e l l e r 1974). The s a l i n i t i e s found i n the l a t t e r , however, ( P i c k a r d 196l; t h i s study) are c h a r a c t e r i s t i c of surface or sub-surface waters i n the open ocean, a depth not v i s i t e d by Spinocalanus  brevicaudatus or Scaphocalanus b r e v i c o r n i s (see above f o r aut h o r s ) . I t ther e f o r e seems reasonable t o propose t h a t observed absence of these species from c o a s t a l b a s i n s (e.g. Queen C h a r l o t t e S t r a i t , the outer b a s i n of Knight I n l e t , and s t a t i o n Kn 5 of the in n e r basin) does not r e s u l t from a d i r e c t T-S e f f e c t but could r e f l e c t the i n a b i l i t y of the two species t o maintain populations i n a v a r i a b l e environment, e s p e c i a l l y w i t h respect to temperature or a temperature a s s o c i a t e d property. Racovitzanus a n t a r c t i c u s i s g e n e r a l l y r e p o r t e d as occupying mid-85 depths (200-500 m) i n the North P a c i f i c (Furuhashi 1966; Peterson 1972), w h i l s t i t i s apparently r a r e i n the S t r a i t of Georgia and c h a r a c t e r i s t i c of deep water ( F u l t o n 1970). In the present study, although found i n T-S diagrams t o be the species most e x c l u s i v e t o inner b a s i n Deep regimes, i t was a l s o the only member of the Deep group to be recorded i n Queen C h a r l o t t e S t r a i t ( A p r i l and June 1975)* I f advective t r a n s p o r t from offSshore was r e s p o n s i b l e , the A p r i l r e c o r d i s p a r t i c u l a r l y d i f f -i c u l t to e x p l a i n , s i n c e the major i n t r u s i o n of hig h s a l i n i t y water d i d not occur u n t i l June and J u l y . I t i s i n t e r e s t i n g t h a t Fleminger (1964) a l s o found R. a n t a r c t i c u s i n near-shore s t a t i o n s along the C a l i f o r n i a coast only i n A p r i l and June. Spinocalanus brevicaudatus and Scaphocalanus b r e v i c o r n i s occurred i n the outer b a s i n Deep regime (B"') a t s t a t i o n Kn 3 i n June and J u l y , r e s p e c t i v e l y ( F i g s . 22, 23)• This probably r e s u l t e d from advective t r a n s f e r by the upper i n l e t sub-surface regime (G) thought t o have a l s o been r e s p o n s i b l e f o r the appearance of Transitional/Deep species i n the outer b a s i n . N e i t h e r species was found i n samples c o l l e c t e d i n Queen Cha r l o t t e S t r a i t . Off-shore species group The i n l e t p r o f i l e s showed these species t o be e x c l u s i v e t o deep samples c o l l e c t e d i n Queen C h a r l o t t e S t r a i t and the outer i n l e t b a s i n from June u n t i l September 1975* Temporal and s p a t i a l aspects of t h e i r d i s t r i b u t i o n were described i n t h a t s e c t i o n . The T-S diagrams ( F i g s . 22-25) confirmed t h a t almost a l l occurrences were i n samples from Deep regimes (coded E'" f o r Queen C h a r l o t t e S t r a i t and B"' f o r the outer 86 basin). Therefore, a l l observations were from a T-S envelope of 7.2 to 7.8°G temperature, and 31*8 to 32.8°/oo salinity. However, the majority of member species were found ©nlyhin the July 100 m sample from station QG, and were therefore restricted in the present study to the water type found at that location, depth, and time (7.2°G temperature and 32.8 / oo salinity). Hydrographic data without a plankton sample were collected at 150 m and,iinJJ.uly, gave values of 6.8°C temperature and 33«l°/°° salinity. T-S analysis indicated that both the 100 m and 150 m samples were from the same water regime, and i t is likely that the group was also present at the 150 m depth. The temporal and spatial decline in abundance of species and individuals belonging to the group, discussed in the previous section, was reflected on the T-S-P diagrams by each relevant coordinate having a much shorter Off-shore species l i s t than the July 100 m stationnQCC coordinate. Although the latter sample was characterised by a higher salinity and temperature than the other coordinates at which an Off-shore species occurred, the magnitude of decline at station QC between July and September or between station QG and Kn 1 in the outer basin, did not seem to be related to the degree of temperature and/or salinity change involved. For example, the observed changes in hydrographic properties at station QG between July and September were small, and in the order of 0.3°/°° salinity and 0.3°G temperature. For an "immig-rant" passing over the outer s i l l into the outer basin, a greater change in the order of 1.0°/oo salinity, and 0.6°G temperature would have been experienced (Figs. 3h-j, 23-25)• However, in August and September, approximately the same number of Off-shore species were present in 87 both s t a t i o n QC and s t a t i o n Kn 1 samples ( F i g . 15). In c o n t r a s t , although the d i f f e r e n c e s i n temperature and s a l i n i t y between 200 m water a t s t a t i o n Kn 1, and 150 m water a t s t a t i o n Kn 3» were s m a l l and both were placed i n the same regime, only one Off-shore species (Galanus c r i s t a t u s ) was recorded a t the l a t t e r s t a t i o n . I t i s u n l i k e l y t h a t the disappearance of the Queen C h a r l o t t e S t r a i t p o p u l a t i o n was due to descent i n t o deeper water which the net f a i l e d t o sample, since s t a t i o n QC i s s i t u a t e d a t one of the deepest p a r t s of the s t r a i t . Furthermore, v e r t i c a l hauls w i t h a 75 cm diameter net from 150 m t o the surface i n August and September, caught only a few of the Off-shore species taken t h i r t y minutes p r e v i o u s l y w i t h a Clarke-Bumpus sampler. The d i f f e r e n c e presumably r e f l e c t e d the s u s c e p t a b i l i t y of v e r t i c a l hauls t o plankton patchiness. A p a r t i a l e x p l a n a t i o n , based only on c i r c u m s t a n t i a l evidence, could be a combination of the f o l l o w i n g . In June, the Off-shore group entered Queen C h a r l o t t e S t r a i t as a l a r g e "patch", presumably formed as a r e s u l t of u p w e lling along the outer P a c i f i c coast. The patch was then advected through the study area. At s t a t i o n QC i n June only the perimeter of the patch was sampled, accounting f o r the presence of a few Off-shore species i n t h a t sample. In J u l y , the patch was more completely sampled, r e s u l t i n g i n the recorded presence of t h i r t y - s e v e n Off-shore species; but i n August and September, i t had dis p e r s e d or moved elsewhere, and only a smaller number of Off-shore species were seen. Although a p o r t i o n of the patch was advected i n t o the outer b a s i n , i t d i d not reach s t a t i o n Kn 3, accounting f o r the almost complete absence of Off-shore species a t the l a t t e r s t a t i o n . At the same time, i n d i v i d u a l abundance and species 88 number in the patch may have been declining in response to hydrographic and environmental changes which occurred between the time of upwelling and the time when the group was detected at station QC in July. If this was the case, and environmental changes observed after July were not significant, approximately the same species should have been present in later samples from both station QC and station Kn 1. This was indeed the case (Figs. 15,24,25)- For example, at station QC in August, Metridia princeps Giesbrecht was the only group member present which was not present at the same time at station Kn 1. Species included in this group,havehbegh observed in local waters before. However, the majority havennot. This may partly reflect some avoidance in the past of the tedious task of taxonomically working through plankton samples, but i t also indicates that the event observed was unusual. Monthly samples from station QC were available for 1974, and I found them to contain no zooplanktors•of any taxon which could be considered characteristic of off-shore water. The species content of the group i t s e l f was d i f f i c u l t to interpret, since i t contained both species considered to be sub-arctic, suchaas Calanus cristatus Kroyer, and species considered to be transitional or even sub-tropical, such as Heterorhabdus spinifrons Claus. The publications of Fager and McGowan (1963); Fleminger (1967); Vinogradov (1968); McGowan(!97J., 1974); Morioka (1972); Peterson (1972); Pearcy (1972); and Motoda and Minoda (1974) were found the most useful refer-ences in determining known geographical distribution (Table VIIl). It is perhaps significant that the species which were observed for the longest period in the present study and reached the outer inlet basin, 89 were g e n e r a l l y those which have been p r e v i o u s l y recorded from B r i t i s h Columbian waters (Table V I I l ) . Furthermore, they were regarded by the above authors as being c h a r a c t e r i s t i c of the s u b - a r c t i c domain, which extends westwards from the Canadian coast. When recorded i n Queen C h a r l o t t e S t r a i t , they may t h e r e f o r e not have been i n such " f o r e i g n " c o n d i t i o n s as were the species p r e v i o u s l y only recorded f u r t h e r to the south o f f Oregon and C a l i f o r n i a . These were almost e x c l u s i v e to the J u l y sample i n Queen Ch a r l o t t e S t r a i t and p o s s i b l y d i d not s u r v i v e f o r l o n g afterwards. The species r i c h n e s s of the J u l y Queen C h a r l o t t e S t r a i t sample was a l s o d i f f i c u l t to i n t e r p r e t . I t contained twice as many copepod species as I found i n any other sample d u r i n g the study. In a d d i t i o n , t h i s " d i v e r s i t y " , and the t o t a l number of off-shore copepods c o l l e c t e d , seems to have been conside r a b l y higher than observed o f f Oregon by Peterson (1972) and Pearcy (1972). In order to attempt an explanation of how the observed species were brought i n t o the study area, the o f f - s h o r e oceanography of the r e g i o n must be considered. This i s dominated by a zonal current, the West Wind D r i f t (or s u b - a r c t i c c u r r e n t ) , which flows i n an e a s t e r l y d i r e c t i o n and diverges as the North American coast i s approached a t a l a t i t u d e approximate t o t h a t of the S t r a i t of Juan de Fuca (Dodimead et a l . 1963. 1976). ©ne branch flows south as the C a l i f o r n i a Current and the other north i n t o the Gulf of Alaska as the Alaska Current. The fauna of the system are t y p i c a l l y s u b - a r c t i c (McGowan 1971» 1974), and i n more so u t h e r l y l o c a t i o n s , the C a l i f o r n i a Current i s a w e l l known source of s u b - a r c t i c immigrants ( B r i n t o n 1976). At the surface, a 90 c u r r e n t moves northwards along the coast i n winter (the Davidson cu r r e n t ) but Ithis disappears f o r the d u r a t i o n of the u p w e l l i n g season from A p r i l or May u n t i l September (Bakum 1973; Dodimead et a l . 1976). The northern extent of t h i s current i s not known, but the l a t t e r authors r e p o r t i t as present o f f Vancouver I s l a n d . A non-seasonal northward fl o w a t approximately 200 m depth and known as the C a l i f o r n i a Undercurrent has a l s o been observed t o f l o w along the coast (Cannon and L a i r d 1974; Dodimead et a l . 1976). This current i s apparently strongest o f f C a l i -f o r n i a , but has been recorded as f a r n o r t h as Vancouver I s l a n d where i t s f l o w i s weak and v a r i a b l e (Reed and Halpern^1976).' Off the S t r a i t of Juan de Fuca, c y c l o n i c e d d y - l i k e f e a t u r e s have been observed In the undercurrent (Ingram 1967) and m o d i f i c a t i o n s a l s o appear t o occur there due t o mixing w i t h adjacent s u b - a r c t i c water (Reed and Halpern 1976). I t i s i n t e r e s t i n g t h a t the species content of the J u l y i n t r u s i o n reported here, i n d i c a t e d a s i m i l a r mixture of s u b - a r c t i c water with water from a more s o u t h e r l y o r i g i n . There i s some i n d i c a t i o n t h a t 1975 may have been an unusual u p w e l l i n g year. Bakum $1973) has d e s c r i b e d a method t o estimate i n d i c e s of i n t e n s i t y of wind-induced upwelling. The i n d i c e s are based on c a l c u l a t i o n of o f f -shore Ekman surface t r a n s p o r t from monthly mean surface atmospheric data. Table IXa (Bakum, unpublished data) l i s t s these monthly i n d i c e s f o r the p e r i o d 1972 t o 1975 f o r a s t a t i o n l o c a t e d a t 51°N 131°W (midway between Vancouver I s l a n d and the Queen Ch a r l o t t e I s l a n d s ) . I t can be seen t h a t i n 1975 the most i n t e n s i v e u p w e l l i n g would have been expected t o have occurred i n June. In c o n t r a s t , Bakum's i n d i c e s f o r immediately preceeding years (1972 t o 1974) i n d i c a t e August (and September i n 1972) as the month 91 o f most i n t e n s i v e expected upwelling. However, t h i s probably only r e f l e c t s a very v a r i a b l e phenomenon since mean monthly values f o r the i n d i c e s f o r a twenty year period i n d i c a t e maximum values t o occur i n June and J u l y (Table IXb from Bakum 1973)- I t i s i n t e r e s t i n g t h a t i n 1975» Bakum's i n d i c e s i n d i c a t e most i n t e n s i v e u p w e l l i n g t o have occurred i n June, the month immediately preceeding the appearance of most Off-shore species i n Queen C h a r l o t t e S t r a i t . Furthermore, the June index was more than twice the mean index f o r t h a t month. Unfor t u n a t e l y , the u l t i m a t e f a t e i s not known of the few Off-shore species which could s t i l l be found i n the outer basin and Queen C h a r l o t t e S t r a i t i n September 1975« I t would be i n t e r e s t i n g to know, f o r example, i f any species crossed the i n n e r s i l l , where the presence of Spinocalanus  brevicaudatus, Scaphocalanus b r e v i c o r n i s , and Racovitzanus a n t a r c t i c u s i n d i c a t e s an environment i n some way favourable f o r the s u r v i v a l of of f - s h o r e organisms. Presumably, the inner b a s i n populations of the above three species were brought i n t o the area by a s i m i l a r i n t r u s i o n of oceanic water. However, i t i s strange t h a t n e i t h e r Spinocalanus  brevicaudatus of Scaphocalanus b r e v i c o r n i s were observed i n the i n t r u s i o n r e p o r t e d here, and t h a t Racovitzanus a n t a r c t i c u s was seen i n only the J u l y 100 m sample a t s t a t i o n QC. Migrant species group As mentioned e a r l i e r , the d i u r n a l and seasonal movements under-taken by t h i s group r a r e l y i n v o l v e d a l l members of a species p o p u l a t i o n , thereby making migrations almost undetectable by the presence/absence techniques used f o r the i n l e t p r o f i l e s and T-S-P diagrams. For only 92 one species, Galanus marshallae, could a seasonal migration be clearly-seen from the diagrams. These show the species to be present at most T-S coordinates i n Surface regimes (coded E' and A) from March' u n t i l August 1975 (Figs. 19 -24 ) , but generally absent from those regimes i n p r i o r or l a t e r months (Figs. 16-18, 25) > Eucalanus bungi bungi and Galanus plumchrus showed a s i m i l a r seasonal behaviour, but t h i s i s d i f f i c u l t to detect from the diagrams because of the r a r i t y of both species i n the study area. The situation concerning Pseudocalanus  elongatus was p a r t i c u l a r l y confused by incomplete movements of the population, and i t was more profitable to discuss the d i s t r i b u t i o n of a l l Migrant species with the r e s u l t s of contingency tables and l i f e h istory analysis. ( i v ) E x f. Contingency tables The analysis of these tables by the Chi squared test was under-taken to see i f the r e l a t i v e abundance of a given species varied s i g n i f i c a n t l y between water regimes. I t i s again emphasised that the test could only be used to indicate proportionality or heterogeneity of species content, and i t was not a test to detect differences i n absolute abundance. However, interpretation of the i n l e t p r o f i l e s and T-S-P diagrams was l i m i t e d by t h e i r use of presence/absence data and, as employedhhere, the contingency tables provided a simple and p a r t i a l l y independent check on conclusions drawn from the former two graphical methods. Furthermore, since the technique incorporated abundance data, d i s t r i b u t i o n of the Migrant group could be studied. The method was described e a r l i e r and the r e s u l t s f o r the whole study 93 area i n December 1974 and, February, A p r i l , and J u l y 1975 are given i n Table IVa-d. Table VII d i f f e r s i n c o n t a i n i n g mean abundance data a t i n d i v i d u a l sample depths f o r only one s t a t i o n (Kn 7) i n September. I t was intended to supplement the Spearman rank c o r r e l a t i o n a n a l y s i s , but the r e s u l t s are a l s o r e l e v a n t here. U n f o r t u n a t e l y , many abundance estimates were of l e s s than f i v e organisms/m^, and the Chi squared a n a l y s i s could not be a p p l i e d . I t should a l s o be noted t h a t although the Chi squared t e s t i s a good i n d i c a t o r of p r o p o r t i o n a l i t y , i t i s not a good measure. Therefore, s i g n i f i c a n c e a t the p = 0.001 l e v e l does not i n d i c a t e a greater degree of d i s p r o p o r t i o n a l i t y than does s i g n i f i c a n c e a t a l e v e l of p = 0.05 ( G i l b e r t 1973). Summer Surface and Surface and S u r f a c e / T r a n s i t i o n a l species groups The grouping of these species a c c o r d i n g t o t h e i r a s s o c i a t i o n wit h surface water regimes i n T-S-P and presence/absence p r o f i l e a n a l y s i s was supported by the Chi squared t e s t s r e p o r t e d here. Table IVd f o r J u l y i n d i c a t e d t h a t the two Cladocera species Podon and Evadne avoided water of s a l i n i t i e s higher than 25°/oo or lower than 5°/oo, and t h a t no other zooplanktor appeared t o be a s s o c i a t e d w i t h t h a t s a l i n i t y range. The t a b l e showed t h i s "freshwater" outflow l a y e r a t the time of peak g l a c i a l r u n - o f f to be' almost devoid of c a l a n o i d copepods. In the same month, Centropages mcmurrichi was c h i e f l y r e s t r i c t e d t o a sub-surface regime found a t s t a t i o n Kn 1 i n the outer b a s i n (coded A')> and A c a r t i a  c l a u s i was a l s o a s s o c i a t e d w i t h inner and outer b a s i n Surface regimes. A. l o n g i r e m i s was apparently more a s s o c i a t e d w i t h Surface regimes i n Knight I n l e t than i n Queen C h a r l o t t e S t r a i t , where the population 94 appeared to "be generally dispersed in December and February (Table IVa-b), and then to be associated with Surface (coded E') and Transition (coded E") regimes in July. It i s interesting that an abrupt vertical separation appeared to exist between A. clausi and A. longiremis in September 1975 at station Kn ?. Table VII showed that A. clausi was significantly concentrated only at the 5 m depth, whilst A. longiremis was significantly concentrated at only the 10 m depth. The observed A. clausi population was therefore present in lower salinity water than the slightly deeper A. longiremis population. If this was not a local or short-lived feature, i t may explain some of the distributional observations made from the presence/ absence profiles (Figs.112, 16 -25) . For example, the restriction of A. clausi to the inlet, and i t s particular a f f i n i t y to the inner basin, where surface s a l i n i t i e s were always lower than in Queen Charlotte Strait; and the tendency for A. longiremis to be poorly represented in the inner basin. There was a suggestion that Tortanus discaudatus was concentrated in deep water in winter (TageelVb), a feature also indicated on the presence/absence profiles. However, in July, this species was clearly associated with the Transition regime (coded E") in Queen Charlotte Strait and with Surface regimes (coded A and A') intthe inlet outer basin. Transitional/Deep and Deep species group The Chi squared tests were again in general agreement with the grouping derived from T-S-P diagrams and presence/absence profiles. No member species was significantly concentrated in a Surface regime, 95 w i t h the exception i n J u l y of Euchaeta .japonica and M e t r i d i a okhotensis. In the former case, the population was composed almost e n t i r e l y of second and t h i r d copepodite stages (Appendix A) which are c h a r a c t e r i s t -i c a l l y surface d w e l l e r s (Evans 1973)• M e t r i d i a okhotensis was found i n l a r g e r numbers i n surface waters near the i n l e t head i n J u l y and August (Appendix A), and the f e a t u r e w i l l be discussed below w i t h the Migrant species group. Only one member of the Deep species group, Spinocalanus b r e v i -caudatus , was c o n s i s t e n t l y present a t l e v e l s of abundance s u i t a b l e f o r the Chi squared t e s t . Table IVa-d showed t h a t although t h i s species was o c c a s i o n a l l y concentrated i n T r a n s i t i o n regimes, i t could be d i s t i n -guished from the Transitional/Deep species by always being s i g n i f i c a n t l y concentrated i n Deep regimes. Scaphocalanus abundance data entered i n Table V I I d i d not permit Chi squared a n a l y s i s , but ab.Glear^a££iMtyjXor-r D e e p e i n f i e ^ M s i n n i ^ g i m e s n f e Table VII a l s o supported the observation made from the presence/ absence p r o f i l e s t h a t A e t i d i u s divergens and S c o l e c i t h r i c e l l a minor were u s u a l l y found a t between 30 and 100 m depth. Chi squared t e s t s on the September Kn 7 data showed both species (together w i t h Euchaeta  .japonica) t o be s i g n i f i c a n t l y concentrated only a t a depth of 30 m. Migrant species group Table IVa showed Calanus marshallae t o be absent from surface water i n both i n l e t basins i n December 1974. At t h a t time, only a very small p o p u l a t i o n was detected i n Queen Ch a r l o t t e S t r a i t . This s i t u a t i o n was a l s o seen i n February, although abundance i n the in n e r 96 b a s i n had f a l l e n , and no s i g n i f i c a n t concentrations were detected ther e . In A p r i l , populations i n the two i n l e t basins were s i g n i f i c -a n t l y concentrated i n the Surface regimes but, by J u l y , the outer p o p u l a t i o n had again descended t o deeper water. In the inner b a s i n , a s s o c i a t i o n w i t h the surface continued although i t was i n d i c a t e d i n Table VII t h a t by September, a descent had occurred to a Deep regime. The above seasonal m i g r a t i o n , t h e r e f o r e , g e n e r a l l y f o l l o w e d t h a t r e p o r t e d f o r most northern Galanus species ( M a c l e l l a n 1967; Vinogradov 1968; F u l t o n 1973). The l a t e summer p e r s i s t e n c e of Galanus marshallae i n surface water near the i n l e t head was d i f f i c u l t to i n t e r p r e t , and as p r e v i o u s l y mentioned, M e t r i d i a okhotensis appeared t o be concentrated i n the same water. One p o s s i b i l i t y i s t h a t as a r e s u l t of poor primary production i n the h i g h l y t u r b i d up-inl set surface water ( i n d i c a t e d by c h l o r o p h y l l a concentrations and i s o p l e t h s of suspended sediments i n F i g s . 9&-b, 10), Galanus a t s t a t i o n s Kn 9 and 11 were under n u t r i t i o n a l s t r e s s and i n some way delayed t h e i r descent t o deeper water. I d e a l l y , the l a t t e r would have been i n d i c a t e d from the r e l e v a n t l i f e h i s t o r y composition graphs ( F i g . 29). However, these were a l s o d i f f i c u l t to i n t e r p r e t , s i n c e a t s t a t i o n QG there were two separate peaks i n abundance of a d u l t s w i t h f o l l o w i n g peaks of copepodites 1 t o 3, 4, and 5 i n sequence. I t i s , t h e r e f o r e , p o s s i b l e t h a t two generations were produced, or t h a t two populations w i t h temporally separated breeding c y c l e s were observed. I f t h i s i s ignored, Figure 29 i n d i c a t e s t h a t at s t a t i o n Kn 11 a cohort apparently took from March and A p r i l u n t i l August t o develop from copepodite stages 1 and 3 t o stage 5« In c o n t r a s t , the m a j o r i t y of the corresponding p o p u l a t i o n a t s t a t i o n Kn 3 i n J u l y was 97 composed of stage 5 and a d u l t copepodites. The presence of the l a t t e r was i t s e l f d i f f i c u l t t o understand, and may ait so "be i n d i c a t i v e of autumn breeding. In summary, the higher p r o p o r t i o n of stage 4 copepodites at s t a t i o n Kn 11 than at s t a t i o n Kn 3 does suggest t h a t more prolonged development a t u p - i n l e t l o c a t i o n s may have been r e s p o n s i b l e f o r the l a t e descent of Galanus there. However, the s i t u a t i o n i s not c l e a r , and a l l stage 5 copepodites of G. marshallae c o l l e c t e d near the i n l e t head appeared t o be as h e a v i l y laden w i t h o i l i n June, J u l y , and August as specimens c o l l e c t e d i n the outer b a s i n . Furthermore, the p o s s i b i l i t y of i n l e t c i r c u l a t i o n c o n c e n t r a t i n g Galanus a t the i n l e t head i n summer could not be r u l e d out. The inner b a s i n h e l d only a small population i n w i n t e r , but by August the highest abundances were recorded there ( F i g . 29. Appendix A). This could have r e s u l t e d from an advective con-c e n t r a t i n g mechanism but might a l s o be a product of d i f f e r e n t m o r t a l i t y r a t e s i n the two b a s i n s . F i n a l l y , i t i s i n t e r e s t i n g t h a t M e t r i d i a okhotensis was a l s o present a t h i g h l e v e l s of abundance i n the inner b a s i n Surface regime, w h i l s t the outer b a s i n p o p u l a t i o n was a s s o c i a t e d w i t h deep water (Table IVd). In t h i s case, there d i d not appear t o be any r e l a t i o n s h i p w i t h d i f f e r e n c e s i n copepodite composition of populations a t the two l o c a t i o n s . I t i s p o s s i b l e t h a t t h i s species i s a d i e l migrant, s i n c e i n February and March when s t a t i o n Kn 7 was sampled a t n i g h t , unusually l a r g e numbers were c o l l e c t e d i n the Surface regime ( F i g . 35» Appendix A). S t a t i o n QG data (which were always c o l l e c t e d a t n i g h t ) d i d not c l a r i f y the s i t u a t i o n since the species was r a r e l y present t h e r e . I d i d not 98 f i n d evidence of d i e l migration f o r M. okhotensis i n Howe Sound (Stone, unpublished data) but d i s t i n c t migration has been reported i n oceanic waters (Vinogradov 1968). An i n t e r e s t i n g t o p i c f o r f u t u r e research would be to i n v e s t i g a t e the r o l e of l i g h t e x t i n c t i o n i n determining the v e r t i c a l d i s t r i b u t i o n of plankton under c o n d i t i o n s of g l a c i a l r u n - o f f i n a f j o r d . Considerable evidence has been accumulated to suggest t h a t d i e l v e r t i c a l migrations of f i s h and zooplankton are r e l a t e d to n a t u r a l v a r i a t i o n s i n l i g h t i n t e n s i t y (e.g. Boden and Kampa 1967). One theory developed by Ru s s e l (1927) proposed t h a t m i g r a t i n g organisms aggregate around optimal isolumes, the d i e l movements of which they f o l l o w . V a r i a t i o n s i n the e x t i n c t i o n c o e f f i c i e n t r e f l e c t i n g v a r i a t i o n s i n water t u r b i d i t y would a l s o a f f e c t the depth of a p a r t i c u l a r isolume and hence the d i s t r i b u t i o n of animals. This was i n d i c a t e d e x perimentally w i t h Daphnia by L i n c o l n (1970). The i n t r o -duction of t u r b i d g l a c i a l r u n - o f f a t the head of Knight I n l e t i n summer may th e r e f o r e have caused an upward displacement of any zooplanktor which dfetermin'edti depth a c c o r d i n g to an optimal isolume. An a l t e r n a t i v e mechanism proposed by Ringelberg (1964) suggests t h a t the stimulus f o r v e r t i c a l movement i s not r e l a t e d to attempts to remain i n an optimal i n t e n s i t y , but r e s u l t s from the r a t e of r e l a t i v e change of i n t e n s i t y . The behaviour of the s c a t t e r i n g l a y e r i n Saanich I n l e t was found by Bary((l967) to be c o n s i s t e n t w i t h Ringelberg's concept. However, t h i s proposal may a l s o suggest a surface d i s t r i b u t i o n of organ-isms under t u r b i d c o n d i t i o n s . According to Ringelberg (1964), the magnitude of i n t e n s i t y change determines the magnitude of migratory response. Therefore, s i n c e d i e l changes i n l i g h t i n t e n s i t y are grea t e r 99 i n c l e a r than i n t u r b i d water, migration may occur t o a grea t e r depth under the former c o n d i t i o n s than the l a t t e r (Bary 1967). This was supported by Bary's (1967) observation t h a t the daytime s c a t t e r i n g l a y e r occurred a t a deeper depth i n the " c l e a r oceanic" waters of the North P a c i f i c ( s t a t i o n P) than i t d i d i n the " t u r b i d c o a s t a l " waters of Saanich I n l e t . Eucalanus bungi bungi and Galanus plumchrus were never present a t abundance l e v e l s s u i t a b l e f o r the Chi squared t e s t . However, they have both been report e d to undertake a s i m i l a r seasonal migration to t h a t shown by G. marshallae (Vinogradov 1968; F u l t o n 1973)> a n (l both were r e s t r i c t e d i n occurrence to Deep regimes i n February 1975* The l i f e h i s t o r y composition diagram given here f o r Eucalanus bungi bungi ( F i g . 31) conformed with t h a t i n d i c a t e d by Vinogradov (1968). The recent d e c l i n e i n abundance of G. plumchrus i n the S t r a i t of Georgia and adjacent waters has been analysed by Gardner (1976). Pseudocalanus elongatus could normally be found a t a l l depths and was u s u a l l y the most common copepod i n any sample. The low s a l i n i t y surface l a y e r was avoided i n mid-summer (Table IVd) and the deepest depths i n the inner b a s i n u s u a l l y h e l d lower numbers of the species (Appendix A). A r a t h e r i l l - d e f i n e d seasonal migration occurred, w i t h the p o p u l a t i o n apparently moving from Surface t o T r a n s i t i o n To Deep r regimes between December and A p r i l (Table IVa-c). In J u l y , concentration appeared t o occur i n the Surface and Deep regimes a t s t a t i o n QG; i n Sub-sur f a c e , T r a n s i t i o n , and Deep regimes i n the outer b a s i n ; and only i n Deep regimes i n the inner b a s i n . The l a t t e r was a l s o observed a t s t a t i o n Kn 7 i n September (Table V I I ) , and may have been a s s o c i a t e d w i t h the 100 m a j o r i t y of the p o p u l a t i o n "being present as the o v e r w i n t e r i n g stage (copepodite 5) a t t h a t time. In c o n t r a s t , l a r g e numbers of stage 4 and a d u l t copepodites of both sex were present i n the outer b a s i n and a t s t a t i o n QC ( F i g . 30). This f i g u r e a l s o showed t h a t a t u p - i n l e t s t a t i o n s (Kn 7 and Kn 11) there was a trend f o r an e a r l y summer ( A p r i l - J u n e ) appearance of stage 4 copepodites, f o l l o w e d by a descent i n t o deeper water as stage 5 copepodites. In c o n t r a s t , stage 4 copepodites were present a t s t a t i o n s Kn 3 and QC i n Surface and T r a n s i t i o n regimes i n l a r g e numbers i n October and December 1974, and from A p r i l u n t i l Sept-ember 1975• There was l i t t l e i n d i c a t i o n of stage 5 copepodites w i n t e r i n g •in deep water as observed u p - i n l e t . Figures 9a and 10 show t h a t from mid-summer u n t i l w i n t e r , the standing crop of phytoplankton was much lower i n the i n l e t i n n e r b a s i n than i n Queen C h a r l o t t e S t r a i t and the outer b a s i n . This was presumably a r e s u l t of the h i g h l y t u r b i d g l a c i a l r u n - o f f which r e s t r i c t s primary production near the area of discharge i n t h i s type of f j o r d (Stockner et a l . 1977). Pseudocalanus i s a f i l t e r f e e d i n g herbivore (Poulet 1973» 1974, 1975) and r e g i o n a l d i f f e r e n c e s i n d i s t r i b u t i o n observed i n the contingency t a b l e s may p o s s i b l y have r e s u l t e d from s i m i l a r r e g i o n a l d i f f e r e n c e s i n phytoplankton standing crop and Pseudocalanus l i f e h i s t o r y composition. The inner b a s i n population may have been able t o achieve reproduction and growth only i n the p e r i o d between the onset of the s p r i n g bloom, and the onset of g l a c i a l discharge. They may then have descended as overwintering stage 5 copepodites to deep water regimes. In the outer b a s i n and i n Queen Ch a r l o t t e S t r a i t , growth could have occurred f o r a much longer p e r i o d . Some stage 5 copepodites would have moved to Deep regimes, but others 101 would have molted into adults and a second generation teen spawned to occupy Surface and T r a n s i t i o n regimes. Unfortunately, i t cannot be determined from the data i f t h i s d i d occur or even how many gener-ations of Pseudocalanus were produced, since the j60 jm mesh net could not provide quantitativevsanvples of the smaller copepodites. (v) Spearman rank order c o r r e l a t i o n c o e f f i c i e n t s Spearman rank order c o r r e l a t i o n c o e f f i c i e n t s were calculated f i r s t l y to see i f the copepod fauna of the inner basin were v e r t i c a l l y organised i n t o "communities" which could be recognised and distinguished by concordance and discordance i n the compared rank orders of v e r t i c a l l y adjacent samples. I t therefore provided a simple s t a t i s t i c a l method of determining whether the r e l a t i v e abundance of species, with respect to one another, changed s i g n i f i c a n t l y with depth and, by reference to the hydrographic data, whether changes occurred at boundaries between hydrographic regimes. An i n d i c a t i o n of the species involved i n such changes or included i n "communities", was given by a contingency table (Table VII) drawn up from the same data as used f o r one of the rank order matrices ( s t a t i o n Kn 7). The above procedure was also undertaken so that the l a t e r a l continuity of i d e n t i f i e d "communities" could be investigated. In part-i c u l a r , I wished toosee i f the upward displacement near the i n l e t - head of Transitional/Deep and Deep species discussed e a r l i e r , could be s t a t i s t i c a l l y detected through an upward displacement of a deep "comm-unity" . The i n t r a - s t a t i o n matrices are given i n Table Va-c. I t can be seen 102 t h a t a t s t a t i o n Kn 5t three "communities" could he recognised according t o s i g n i f i c a n t s i m i l a r i t i e s i n rank order between the 5 m and 10 m sample, the 30 m, 50 m, and 100 m samples, and the 100 m, 200 m, and 300 m samples. At s t a t i o n Kn 7, the 50 m sample was "unique" and showed no s i m i l a r i t y i n rank order with samples from a shallower or deeper depth. The deep "community" appeared t o extend from 100 m to 500 m, and the shallower "community" from 5 ra t o 30m. Species abundance f o r each sample depth a t t h i s s t a t i o n i s given i n Table V I I , where i t can be seennthat grouping according t o T-S-P a n a l y s i s and water regime d i s t r i b u t i o n corresponded f a i r l y w e l l t o grouping i n d i c a t e d by Chi squared t e s t s and water regimes. However, the Spearman rank order c o e f f i c i e n t s i n d i c a t e d a surface "comm-u n i t y " extending from 5 m t o 30 m, which would have i n c l u d e d most of the populations of A e t i d i u s divergens, Euchaeta .japonica, and S c o l e c i t h -r i c e l l a minor. The deep "community", however, would have remained c h a r a c t e r i s e d by the remaining Transitional/Deep and a l l Deep species suggested by the T-S-P a n a l y s i s . The boundaries of the above three "communities" at s t a t i o n s Kn 5 and 7 approximated the boundaries of the three ambient hydrographic regimes, Surface (A), T r a n s i t i o n ( G / H'), and Deep (H"'). At s t a t i o n Kn 11 below, the hydrographic a s s o c i a t i o n was not so c l e a r . Here the 5 m sample was unique, r e f l e c t i n g the absence of almost a l l zooplankton except the Cladocera. The 10 m, 30 m» and 50 m samples were s i g n i f i c a n t l y s i m i l a r i n rank order, as were the 50 m, 100 m, and 200 m samples. This suggested t h a t i f the deep "community" was confluent w i t h t h a t a t s t a t i o n s Kn 5 and 7, then a s i g n i f i c a n t upward displacement had occurred near the i n l e t head. The i n t e r s s t a t i o n matrices (Table Vla-b) i n d i c a t e d s i g n i f i c a n t 103 l a t e r a l c o n t i n u i t y of both the surface and deep "communities". F u r t h e r -more, i n the u p - i n l e t d i r e c t i o n , the deep "community" was p r o g r e s s i v e l y d i s p l a c e d towards the surface. For example, the 200 m and 300 m samples from s t a t i o n Kn 5 near the inner s i l l , had s i g n i f i c a n t l y s i m i l a r rank orders t o the 200 m and 300 m samples a t s t a t i o n Kn 7 i w h i l s t the l a t t e r were s i g n i f i c a n t l y s i m i l a r to a l l samples below and i n c l u d i n g the 50 m sample a t s t a t i o n Kn 11 near the inihet head. In summary, the rank order c o r r e l a t i o n c o e f f i c i e n t s i n d i c a t e d the existence of two major depth zones i n the i n n e r b a s i n , w i t h i n which the r e l a t i v e abundance of copepod species w i t h respect to one another, d i d not vary s i g n i f i c a n t l y . Such zones probably correspond t o "comm-u n i t i e s " i n the sense used by McGowan (1977). Furthermore, the zones or "communities" were confluent between the in n e r s i l l ( s t a t i o n Kn 5) and the i n l e t head ( s t a t i o n Kn l l ) . The p r e v i o u s l y suspected surface displacement of a deep "community" i n the u p - i n l e t d i r e c t i o n was detected, even though the data were taken from a month (September 1975) when the f e a t u r e was no p a r t i c u l a r l y apparent from the presence/absence p r o f i l e s . ( v i ) Monthly l i f e h i s t o r y composition The copepodite ( i n s t a r ) composition of every sample c o l l e c t e d i s given i n Appendix A, and summarised as desc r i b e d i n the Methods s e c t i o n i n Figures 26-37• I t i s emphasised t h a t l i t t l e could be concluded from these data i n terms of popu l a t i o n s t r u c t u r e or cohort a n a l y s i s , s i n c e the 360um mesh would have f a i l e d t o r e t a i n the n a u p l i i and smal l e r copepodites of most species. However, i n the absence of 104 immigration, the appearance of a new generation must have r e s u l t e d from breeding. Therefore, i t was p o s s i b l e t o use the data to suggest which species bred i n Knight I n l e t and to i n d i c a t e the l o c a t i o n and season of breeding. In most cases I considered a new generation t o be suggested by the occurrence of any copepodites between the f i r s t and f o u r t h stages. Another i n d i c a t o r of breeding was based on the common observation t h a t most s u b - a r c t i c herbivorous copepods overwinter as stage 5 copepodites (e.g. Vinogradov 1968). Therefore, the presence of a d u l t (stage 6 copepodites) could be i n t e r p r e t e d as evidence t h a t breeding was about to be attempted. This was p a r t i c u l a r l y the case when a d u l t males were seen, since i n many species these have reduced mouth-parts and are apparently s h o r t - l i v e d . The e a r l y copepodites (stages 1 t o 4) of very small species were p o o r l y represented or absent from samples. I n these cases (e.g. A c a r t i a c l a u s i and A c a r t i a l o n g i r e m i s ) the only evidence a v a i l a b l e concerning the t i m i n g of l i f e cyclesevents was the presence of a d u l t s and of spermatophores attached to females. Any conclusions drawn must th e r e f o r e be t r e a t e d w i t h caution. In the f o l l o w i n g d i s c u s s i o n , I f r e q u e n t l y r e f e r t o species as being herbivorous, omnivorous, or carnivorous. I t i s st r e s s e d t h a t the purpose i s only t o i n d i c a t e the degree of immediate dependence each species would be expected t o have (according t o f e e d i n g behaviours r e p o r t e d i n the l i t e r a t u r e ) on the s p a t i a l and temporal d i s t r i b u t i o n of phytoplankton. This i s a major o v e r s i m p l i f i c a t i o n , as i t has often been found d i f f i c u l t t o c l a s s i f y f e e d i n g behaviour, e s p e c i a l l y s i n c e i n the same species the l a t t e r may change under d i f f e r e n t environmental c o n d i t i o n s or a t d i f f -erent stages i n the l i f e c y c l e (e.g. Anraku and Omori 1963; Gauld 1966; Ithoh 1970; M a r s h a l l 1973; Sekiguchi 1974). 105 Four copepod species appeared t o "breed i n "both i n l e t "basins and a t s t a t i o n QC i n Queen C h a r l o t t e S t r a i t . They were: A c a r t i a l o n g i r e m i s ( F i g . 27), Calanus marshallae ( F i g . 29), Pseudocalanus elongatus ( F i g . 30), and M e t r i d i a p a c i f i c a ( F i g . 32). As already noted from the T-S-P diagrams and presence/absence p r o f i l e s , the p o p u l a t i o n of A. l o n g i r e m i s appeared t o be centred i n the i n l e t outer b a s i n and i n Queen C h a r l o t t e S t r a i t . In the l a t t e r l o c a t i o n , a d u l t males were seen i n a l l months except Feb-rua r y , March, and A p r i l , but appeared i n the u p - i n l e t d i r e c t i o n t o be p r o g r e s s i v e l y more r e s t r i c t e d i n season to e a r l y summer; w h i l s t only females were seen near the i n l e t head (at s t a t i o n Kn l l ) . This s p a t i a l d i f f e r e n c e probably r e f l e c t s the poor n u t r i t i o n a l s t a t u s f o r a herbivore of the i n n e r basin a f t e r the a r r i v a l of g l a c i a l r u n - o f f i n June and J u l y (shown i n terms of c h l o r o p h y l l a i n Figure 9a, and of suspended sediment i n F i g u r e s 8 and 9h). The l i f e c y c l e s of C. marshallae and P. elongatus were discussed e a r l i e r w i t h the contingency t a b l e s . I t i s i n t e r e s t i n g t h a t i n both species l a r g e r numbers of young copepodites were recorded a t an e a r l i e r month i n the two i n l e t basins than i n Queen C h a r l o t t e S t r a i t . For example, the f i r s t three copepodite stages of C. marshallae were a t peak occurrence i n A p r i l a t a l l i n l e t s t a t i o n s , i n c o n t r a s t t o J u l y f o r the Queen C h a r l o t t e p o p u l a t i o n ( F i g . 29). The s i t u a t i o n i s confused, however, s i n c e a small peak occurred i n Queen C h a r l o t t e S t r a i t i n A p r i l . A s i m i l a r p a t t e r n was shown by the occurrence and abundance of stage 4 copepodites of P. elongatus ( F i g . 30). Both species are p r i m a r i l y h e r b i v o r e s , and the above temporal t r e n d may have been r e l a t e d to the s p r i n g d i s t r i b u t i o n of phytoplankton. As noted e a r l i e r , both i n l e t 106 p r o f i l e s and cumulative p l o t s f o r c h l o r o p h y l l a ( F i g s . 9a,, 10) i n d i c a t e d t h a t the s p r i n g bloom i n Knight I n l e t occurred f i r s t near the f j o r d head and then moved p r o g r e s s i v e l y down-inlet towards Queen- C h a r l o t t e S t r a i t . This could be explained by e a r l i e r water column s t a b i l i t y i n the inner b a s i n , r e s u l t i n g from lower surface s a l i n i t y and greater degrees of s h e l t e r . A s i m i l a r explanation was used by M a c l e l l a n (1967) to e x p l a i n temporal d i f f e r e n c e s i n the appearance of new generations of Calanus g l a c i a l i s , Y a s h n o v , observed between inner and outer i n l e t populations i n Godthab f j o r d , Greenland. L i t t l e attempt was made t o analyse data f o r M e t r i d i a p a c i f i c a , due to complications a r i s i n g from the spec i e s ' marked d i e l v e r t i c a l m i g r ation. However, monthly l i f e h i s t o r y composition i s given i n Figure JZ f o r a l o c a t i o n always sampled i n d a y l i g h t ( s t a t i o n Kn 9). As reported by previouslworkers (e.g. Vinogradov 1968), a d u l t males were l a r g e l y r e s t r i c t e d t o deep water, and comparison with nighttime s t a t i o n data (Appendix A) showed t h a t they d i d not migrate. I t i s i n t e r e s t i n g t h a t , i n daytime, the youngest copepodites r e g u l a r l y caught were g e n e r a l l y d i s t r i b u t e d i n Surface, T r a n s i t i o n , and Deep water regimes. The popul-a t i o n appeared t o overwinter l a r g e l y as stage 5 copepodites i n Surface and T r a n s i t i o n regimes, w h i l s t breeding apparently occurred c h i e f l y i n s p r i n g but wi t h a small e f f o r t a l s o i n autumn. The young copepodite stages of S c o l e c i t h r i c e l l a minor, A e t i d i u s  divergens, and Euchaeta japonica were c h i e f l y found i n samples from the inner i n l e t b a s i n and o c c a s i o n a l l y from the outer b a s i n . In c o n t r a s t , very few were seen i n Queen C h a r l o t t e S t r a i t (at s t a t i o n QC). The l i f e h i s t o r y and d i s t r i b u t i o n a l ecology of E. japonica has been s t u d i e d more 107 completely elsewhere (Pandyan 1971. Evans 1973) and was not considered here. However, the apparent r e s t r i c t i o n of most breeding e f f o r t t o the i n n e r b a s i n probably r e f l e c t s the deep water d i s t r i b u t i o n of n a u p l i a r and f i r s t stage copepodites r e p o r t e d by the above authors. The monthly l i f e h i s t o r y composition of S. minor and A. divergens ( F i g . 33) suggested t h a t based on the appearance of f o u r t h stage copepodites, breeding occurred i n e a r l y s p r i n g and i n l a t e summer. However, i n the case of A. divergens, small numbers of f o u r t h stage copepodites were present a t other times of the year except i n December. This p o s s i b l y r e f l e c t s f e e d i n g behaviour. The c l o s e l y r e l a t e d species A e t i d i u s  armatus Boeck i s considered a carnivore or scavenger and was observed by Matthews (1964), i n a Norwegian f j o r d , t o breed at times which d i d not c o i n c i d e w i t h periods of maximum phytoplankton abundance. The tendency of the above three Transitional/Deep group species t o breed c h i e f l y i n the i n n e r b a s i n was shown more a b s o l u t e l y by the f o l l o w i n g : M e t r i d i a okhotensis, Heterorhabdus t a n n e r i , Gaidius columbiae, Candacia columbiae, Spinocalanus brevicaudatus, and Scaphocalanus b r e v i -c o r n i s . W ithin Knight I n l e t , a l l records of Racovitzanus a n t a r c t i c u s were of a d u l t females taken from the i n n e r b a s i n . Since these were present throughout the year, and no specimens were seen i n samples from deep i n t r u s i o n s passing through the outer b a s i n , t h i s species probably a l s o bred only a t u p - i n l e t l o c a t i o n s . Of the above, M. okhotensis was the most f r e q u e n t l y observed i n Queen C h a r l o t t e S t r a i t and the outer b a s i n . However, i t i s u n l i k e l y t h a t breeding occurred i n the l a t t e r l o c a t i o n , since no t h i r d or f o u r t h stage copepodites were recorded there ( F i g . 35)• Stage 4 copepodites were most abundant i n A p r i l f o r 108 t h i s species and f o r H. t a n n e r i ( F i g . 30) and G. columbiae ( F i g . 37). G. columbiae ( F i g . 36) showed a s i m i l a r A p r i l peak, but l a r g e numbers of f i r s t t o d t h i r d stage copepodites were a l s o recorded i n J u l y . How-ever, f o r a l l s p e c i e s , the presence of young copepodites a t a l l months from A p r i l to October probably r e f l e c t s t h e i r suspected c a r n i v o r o u s / omnivorous f e e d i n g behaviour. The above tre n d towards non-seasonality of breeding c y c l e was more completely shown by the two "Deep" group s p e c i e s , Scaphocalanus  b r e v i c o r n i s and Spinocalanus brevicaudatus ( F i g . 37)» whose f o u r t h stage copepodites comprised approximately the same p r o p o r t i o n of the p o p u l a t i o n throughout the year. The same observation was a l s o made i n B u t e e l n l e t by K o e l l e r (1974) who pointed out the apparent agreement with Mauchline's (1972) hypothesis of i l l - d e f i n e d breeding seasons being c h a r a c t e r i s t i c of bathypelagic organisms. The l a t t e r are not herbivores and t h e r e f o r e are only i n d i r e c t l y dependent on surface p r o d u c t i v i t y (Harding 1974). Matthews (1964) was able t o detect some s e a s o n a l i t y i n the deep community of a Norwegian f j o r d , and found i t t o be g e n e r a l l y out of phase with periods of surface p r o d u c t i v i t y . The present data were not c l e a r i n t h i s r e spect. The T-S-P diagrams and presence/absence p r o f i l e s both i n d i c a t e d t h a t G h i r i d i u s g r a c i l i s was a member of the Transitional/Deep species group. However, w h i l s t the d i s t r i b u t i o n of a l l members of the group was centred i n the i n n e r i n l e t b a s i n , G. g r a c i l i s was most f r e q u e n t l y seen i n the outer b a s i n . Furthermore, only samples from the l a t t e r l o c a t i o n contained young copepodites of stages 1 t o 3 and stage 4 ( F i g . 34). The species was not recorded a t s t a t i o n QG, and the data 109 therefore suggested that recruitment through reproduction occurred only in the outer basin, and that immigrants advected into the inner basin failed to give rise to a new generation. There is some indication in the literature that in many species of the Aetideidae, a close association with the sea bed occurs to a varying degree at some time during the animal's l i f e history (Matthews 1964; Grice 1972; Koeller and Littlepage 1976). Isopleths of suspended sediment (Fig. 8 ) indicated that a large proportion of the glacial sediment load settled out in the inner basin, where Lewis (1976) suspected occasional resuspension to occur through the action of slump-ing or turbidity currents. Ovigerous females of C. gracilis apparently retain their eggs (iMaclellan and Shih 1974), but i f the nauplii have an epibenthic stage in their development, the observed l i f e history and distributional features of the species in Knight Inlet may reflect the unsuitability of sedimentary conditions in theiinnerbbasin. However, i t is stressed that the above is only speculation. Eucalanus bungi bungi was the only regularly seen copepod which apparently did not breed in the study area (Fig. Jl). It was present throughout the year only in the inner basin, where i t occupied Deep water regimes during the winter as fifthe stage copepodites. However, younger copepodites, which appeared between May and July, were only seen in Queen Charlotte Strait and the outer basin. Presumably, they were the offspring of a population located elsewhere, and were advected into the area by the summer intrusion. E. bungi bungi is regarded as a sub-arctic species (Vinogradov I968) with a similar seasonal vertical migration to that of Calanus marshallae. It is difficult to understand 110 why a breeding p o p u l a t i o n was apparently missing i n Knight I n l e t . Although Tortanus discaudatus i s a carnivore (Wickstead 1962), the seasonal abundance of copepodite stages 1 t o 3 a n d stage 4, i n the study area, suggested t h a t breeding occurred c h i e f l y i n e a r l y summer and l a t e autumn ( F i g . 26). However, abundance was very low i n mid-winter, when the populations of f o u r other s p e c i e s , Gentropages mcmurrichi ( F i g . 28), Paracalanus parvus ( F i g . 28), E p i l a b i d o c e r a a m p h i t r i t e s ( F i g . 28), and A c a r t i a c l a u s i ( F i g . 27) disappeared from the plankton. The presence/ absence p r o f i l e s d i d not suggest t h a t reappearance r e s u l t e d from advection v i a the Queen Ch a r l o t t e S t r a i t ( F i g . 12). A p o s s i b l e explan-a t i o n i s t h a t summer populations of a t l e a s t three of the above species were d e r i v e d from r e s t i n g eggs. These have been reporte d f o r A. c l a u s i and C. mcmurrichi by Kasahara et a l . (1974), and f o r members of the P o n t e l l i d a e (the f a m i l y which i n c l u d e s E. a m p h i t r i t e s ) by G r i c e and Lawson (1976) and Gr i c e and Gibson (1977)- I f t h i s i s the case, f a c t o r s r e l a t e d t o the greater depth and more a c t i v e sedimentation of the in n e r b a s i n may have been r e s p o n s i b l e f o r the Queen C h a r l o t t e S t r a i t and outer b a s i n d i s t r i b u t i o n of E, a m p h i t r i t e s and C. mcmurrichi. In co n t r a s t , the popu l a t i o n of A. c l a u s i appeared t o move down-inlet from s t a t i o n Kn 11 ( F i g . 12), and i t i s i n t e r e s t i n g t o speculate on whether the K l i n i k l i n i s a l t marsh was the overwintering s i t e f o r i n d i v i d u a l s or r e s t i n g eggs of t h i s euryhaline species. I l l SUMMARY AND CONCLUSIONS A synoptic account of water c i r c u l a t i o n i n Knight I n l e t was prepared f o r the year October 1974 - September 1975- The summer surface outflow of g l a c i a l r u n - o f f and the replacement of deep waters by a summer high s a l i n i t y i n t r u s i o n were the dominant f e a t u r e s . The a r r i v a l of a new i n t r u s i o n i n the i n l e t appeared t o r e s u l t i n an u p - i n l e t movement of p r e v i o u s l y r e s i d e n t waters, which were then u p l i f t e d and d i s p l a c e d down-inlet as sub-surface f l o w s . The hydrographic survey a l s o r e s u l t e d i n the "compartmentalisation" of i n l e t water i n t o a number of regimes, each i d e n t i f i e d by a p a r t i c u l a r set of temperature, s a l i n i t y , oxygen, and n i t r a t e c h a r a c t e r i s t i c s . C h l o r o p h y l l a concentrations i n s p r i n g were seen t o increase f i r s t a t the i n l e t head and l a t e r a t down-inlet s t a t i o n s . This was p a r t l y a t t r i b u t a b l e to e a r l i e r water s t r a t i f i c a t i o n . C h l o r o p h y l l v i r t u a l l y disappeared from the inner b a s i n surface waters a f t e r the l a t t e r became t u r b i d w i t h g l a c i a l f l o u r i n the summer. Therefore, except i n s p r i n g , t h i s r e g i o n was probably impoverished f o r f i l t e r f e e d i n g herbivores. Higher c h l o r o p h y l l a concentrations were observed i n the outer b a s i n than found i n Queen C h a r l o t t e S t r a i t or elsewhere i n the i n l e t . b a f h e hydrographic data suggested t h i s t o r e s u l t from higher l e v e l s of thermal s t r a t i f i c a t i o n . Except i n the very low s a l i n i t y surface outflow l a y e r , the euphotic zone appeared t o be neveriimpoverished of n u t r i e n t s , which probably r e f l e c t e d t h e i r entrainment from below. F i n a l l y , although c h l o r o p h y l l a i s not a measure of primary production, i t s s p a t i a l and temporal d i s t r i b u t i o n i n the i n l e t r e f l e c t e d those expected of primary production according t o Stockner's (1977) s t u d i e s i n another g l a c i a l 112 r u n - o f f i n l e t . -High n u t r i e n t concentrations i n the i n l e t i n n er b a s i n were described-. No evidence was found t o suggest t h a t they were not of marine o r i g i n . .AA c o n s i d e r a t i o n of the countercurrent nature of i n l e t c i r c u l a t i o n , the d i s t r i b u t i o n of c h l o r o p h y l l a, and the apparent oxygen u t i l i z a t i o n of water i n t r u d i n g i n t o the inner b a s i n , suggested the h i g h observed inner-b a s i n values t o have l a r g e l y r e s u l t e d from the r e m i n e r a l i s a t i o n of " o l d " outer b a s i n phytoplankton production. I t was suggested t h a t t h i s mech-anism can a c t as a " n u t r i e n t t r a p " which would tend t o r e t a i n any m a t e r i a l incorporated i n t o primary production i n the i n l e t . Concerning the zooplankton survey, s i x groups of copepods were recognised according t o s i m i l a r i t i e s i n occurrence w i t h i n water regime envelopes on the T-S-P diagrams. F i v e of the groups were named a f t e r the regime with which they appeared to be a s s o c i a t e d . The species groups were: "Summer Surface", "Surface and Surface T r a n s i t i o n a l " , " T r a n s i t i o n a l / Deep", "Deep", and "Off-shore". The f i n a l group was c a l l e d "Migrant", and contained d i e l and seasonal v e r t i c a l migrants'. The above grouping was l a r g e l y r e i t e r a t e d by k x r contingency t a b l e s constructed t o determine whether species p r o p o r t i o n a l i t y d i f f e r e d s i g n i f i c a n t l y between regimes (according t o a s e r i e s of Chi squared t e s t s ) . I n d i v i d u a l species were a l s o p l o t t e d by a presence/absence c r i t e r i a on monMily i n l e t p r o f i l e s . In combination w i t h s i m i l a r p r o f i l e s of water regime l i m i t s , these provided a v a l u a b l e s p a t i a l aspect to the T-S-P diagrams. ' For example, an u p - i n l e t displacement of Deep species group copepods was f r e q u e n t l y observed near the i n l e t head. - A s i m i l a r 113 phenomena had been observed i n Bute I n l e t by K o e l l e r (1974) which he a t t r i b u t e d t o t h e i r being a s s o c i a t e d w i t h a l o c a l low temperature minimum. However, asspointed out by K o e l l e r , a s i m i l a r down-inlet temperature minimum was not accompanied by a c h a r a c t e r i s t i c a l l y "deep" fauna. In Knight I n l e t , I confirmed the presence of the phenomena by us i n g a set of Spearman rank order c o r r e l a t i o n c o e f f i c i e n t s . Here the u p - i n l e t displacement occurred both w i t h temperature maxima and minima, depending on whether c o l d or warm water was being u p l i f t e d there a t the time. I t t h e r e f o r e seems more probable t h a t the u p - i n l e t and near surface occurrence of the "Deep" species group r e s u l t s from the up-l i f t i n g of t h e i r r e s i d e n t deep water regime, a f t e r the a r r i v a l of a new i n t r u s i o n . -Only one r e g u l a r l y o c c u r r i n g copepod species i n the i n l e t d i d not show evidence of breeding there (Eucalanus bungi bungi). The Summer Surface species group disappeared i n winter months but d i d not seem to r e c o l o n i s e by immigration from Queen C h a r l o t t e S t r a i t . This phenomenon was a l s o observed f o r some Surface and Surface T r a n s i t i o n a l species and r e p o r t s of r e s t i n g eggs were quoted from the l i t e r a t u r e as p o s s i b l y p r o v i d i n g an explanation. With the exception of A c a r t i a  c l a u s i , members of both species groups above showed evidence of breeding only i n the outer b a s i n or i n the outer b a s i n and Queen C h a r l o t t e S t r a i t . This was p o s s i b l y due p a r t l y t o the low l e v e l s of phytoplankton product-i o n which could have occurred i n the i n n e r b a s i n , but a f l u s h i n g out e f f e c t of plankton i n the extreme surface l a y e r was probably a l s o s i g n i f i c a n t . Calanus marshallae and Pseudocalanus elongatus are both i n t e r z o n a l 114 species according to Vinogradov's (1968) d e f i n i t i o n . Young copepodites c h a r a c t e r i s t i c a l l y feed a t the surface, w h i l s t f i f t h stage copepodites winter a t depth. C. marshallae conformed t o t h i s p a t t e r n of seasonal migration. However, although populations of both species appeared to breed throughout the summer i n the outer b a s i n and i n Queen C h a r l o t t e S t r a i t , only one generation was observed near the i n l e t head. P. e l o n -gatus was observed t o undergo a marked seasonal v e r t i c a l m i g r a t i o n only at t h i s l o c a t i o n . The data were d i f f i c u l t to i n t e r p r e t but seemed to i n d i c a t e d i f f e r e n c e s i n population s t r u c t u r e along the i n l e t l e n g t h , probably r e f l e c t i n g the poor " t r o p h i c p o t e n t i a l " of the inner basin f o r a h erbivore a f t e r the a r r i v a l of g l a c i a l r u n - o f f . With one exception, a l l T r ansitional/Deep and Deep species appeared to breed only i n the i n n e r b a s i n . I t was suggested t h a t t h i s r e f l e c t e d the r e l a t i v e s t a b i l i t y of the l a t t e r l o c a l i t y i n terms of temperature and s a l i n i t y changes. There was a trend w i t h i n the former group towards a non-seasonal breeding c y c l e , which appeared t o be c h a r a c t e r -i s t i c of the two common Deep species, Spinocalanus brevicaudatus and Scaphocalanus b r e v i c o r n i s . C h i r i d i u s g r a c i l i s appeared t o breed only ' i n the outer b a s i n . I t was suggested t h a t t h i s may r e f l e c t the presence of an e p i b e n t h i c stage i n the l i f e c y c l e , which f o r an unknown reason i s unable to s u r v i v e on the i n n e r b a s i n sediments. F i n a l l y , l a r g e numbers of copepods c h a r a c t e r i s t i c of an of f - s h o r e fauna were c a r r i e d i n t o Queen C h a r l o t t e S t r a i t w i t h the mid-summer i n t r u s i o n . The species content contained both s u b - a r c t i c and warm t r a n s i t i o n zone components. This suggested t h a t the i n t r u s i o n con-t a i n e d a mixture of waters of d i f f e r i n g o r i g i n s . The most l i k e l y source of " s o u t h e r l y " water i s the C a l i f o r n i a Undercurrent. Almost a l l of the warm t r a n s i t i o n zone species were recorded i n one month only. However, s m a l l numbers of the s u b - a r c t i c species p e r s i s t e d u n t i l September, when the study p e r i o d ended. The f a t e of these species was t h e r e f o r e not known. Although Spinocalanus brevicaudatus and Scaphocalanus b r e v i c o r n i s were not observed i n these samples, t h e i r deep i n l e t i n n er b a s i n populations must have been i n i t i a l l y seeded by such an i n t r u s i o n . 116 Table 1: Monthly values of suspended sediment and r e a c t i v e n i t r a t e i n the K l i n i k l i n i and F r a n k l i n r i v e r s . K> 3 = K l i n i k l i n i r i v e r s t a t i o n number 3» s i t u a t e d a t the s a l t marsh/forest boundary; F = F r a n k l i n r i v e r s t a t i o n . SUSPENDED SEDIMENT mg/l NITRATE L i g a t NO^ N / l MONTH K -3 F KJ-3 F OCTOBER 210.8 3.3 #• DECEMBER 6.5 10.2 4.3 6.9 FEBRUARY •* * #•* MARCH 5-1 2.9 6.4 5.7 APRIL 4.4 8.0 3-8 8.8 MAY 20.1 21.4 9-9 9.0 JUNE 43.0 174.8 5.6 4.3 JULY 108.0 271.5 3.0 2.5 AUGUST 40.0 96.9 1.0 1.5 SEPTEMBER 48.5 155.8 0.7 0.6 I Statistics on replicate samples taken by Clarke-Bumpus nets at station Kn 9, September 1975. SAMPLE 95% CONFIDENCE LIMITS DEPTH (m) SPECIES Exi* m CV r V LOWER UPPER CALANUS MARSHALLAE 103 " 3.02 42 2.8? 34 I.69 4.58 PSEUDOCALANUS ELONGATUS 8822 22?.06 27 220.51 30 159-62 307.39 EUCHAETA JAPONICA 116 3.86 37 3-68 35 2.21 5.83 1 0 METRIDIA PACIFICA 562 15.73 12 15-45 12 14.38 17.82 ACARTIA CLAUSI 10546 283.34 19 279.28 2 1 . 220.84 353.13 ACARTIA LONGIREMIS 900 23.01 2 9 22.32 31 16.64 n.Afl CALANUS MARSHALLAE 208 6.11 42 5-73 ^3 3-30 9.50 CALANUS PLUMCHRUS 6 0.16 73 0.15 12 0.00 O.32 EUCALANUS BUNGI BUNGI 4 0.09 _ _ PSEUDOCALANUS ELONGATUS 3178 90.71 24 89.38 28 65.50 121.99 SPINOCALANUS BREVICAUDATUS 388 10.49 24 10.22 27 • 8.28 15.21 GAIDIUS COLUMBIAE 2 0.06 - _ _ • CHIRIDIUS GRACILIS 1 0.02 _ 350 EUCHAETA JAPONICA 10 0.28 90 0.25 23 0.00 62.22 SCAPHOCALANUS BREVICORNIS 64 1.75 14 1.73 1 1 1.42 2-15 RACOVITZANUS ANTARCTICUS 2 0.06 - _ _ METRIDIA PACIFICA 35 1.05 62 0.94 44 0.24 2.05 METRIDIA OKHOTENSIS 798 22.00 10 21.89 12 18.85 25.38 HETERORHABDUS TANNERI 81 2.21 13 2.19 l i - 1.80 2.64 CANDACIA COLUMBIAE 7 0.18 68 0.17 ra 0.01 O.36 ACARTIA CLAUSI 22 O.63 69 0.57 35 0.08 1.29 vherei n is the total number of replicate tows (n = 5)-Exi' i s the total number of Individuals counted in n = 5 replicates, m 13 tho sample mean (moan counts per cub.lc mo tro of water filtered). CV is tho coefficient of variation (V = a i$^), whero s is the standard deviation, r is the derived mean. V i s the logarithmic coefficient of variation. Data transformed to lo g 1 0 ( x + l ) was used to calculate r, and V*. 95# confidence limits derived from logarithmic standard deviations. Confidence limits indicate the range within which 95$ of observations for a species would have fall e n . Statistics omitted for species with less than 5 occurrences. 1 1 8 Table III: X analysis on sub-sample counts of Pseudocalanus elongatus obtained with the Folsom Splitter. 1 2 SAMPLE 3 4 5 EXPECTED COUNT 4 3 4 0 916 1250 1306 1010 OBSERVED COUNT 4257 963 1203 1289 1061 X 2 WITH ONE DEGREE OF FREEDOM 1.59 2.41 1.77 0.22 2.58 X 2 WITH FOUR DEGREES OF FREEDOM 1 + 2 +3+4+5=8 • 57 where: Expected count was obtained by counting a l l individuals. Observed count was obtained from:4(25% volume sub-sample count). A l l values for Chi squared indicate no difference between observed and expected counts at the 95% significance level. Table IT I Tho estimated moan abundance of copepod species within water regimes in (a) December 1974, (b) February 1975» (c) Apri l 1975. and (d) July 1975. Data are arranged l n a k x i contingency table. A measure^ of the association of an ubiquitous species with particular regimes can be obtained by chi squared tests. The null hypothesis (HQ) is that the proportion (P) of a sample composed of a species (s) is constant between regimes or columns. Thus H 0 1 P S E ' S F C " ^sE"TRANS rejection of Ho by the occurrence of concentrations greater than expected la indicated at the following significance values for X 2. * significant at p * 0.05, * * significant at p - 0.01, * * * significant at p - 0.001. Bracketed figures indicate observed concentrations too low to Justify stat ist ica l treatment. Concentrations are expressed as numbers per cubic metre. (a) 1 December 1974. QUEEN CHARLOTTE S T R A I T K N I G H T I N L E T OUTER B A S I N INNER B A S I N S P E C I E S GROUP S P E C I E S S U R F A C E LOWER E ' E" S U R F A C E T R A N S I T I O N A ' B" S U R F A C E T R A N S I T I O N DEEP A" D ' C" C " ' D m S U R F A C E AND A C A R T I A C L A U S I Ssmor A C A R T I A L O N G I R E M I S TORTANUS D I S C A U D A T U S 20.0 17.5 (1.6) (3.9) (2.5) 41 .0* * * 6.0 (4.9) (1.5) (0. 1 ) (2.0) (0 . 9 ) (2.5) (0.3) (0. 1 ) - • ( 0 . 3 ) E U C A L A N U S B U N G I B U N G I C A L A M U S PLUMCHRUS MIGRANTS C A L A N U S M A R S H A L L A E P S E U D O C A L A N U S ELONGATUS M E T R I D I A P A C I F I C A (1.2) (2.1) (1.6) 414.0** 411.1 (0.1) 27.8 88.2*** 489.3 686.2 (4.3) 81.2*** ( 0 . 1 ) ( 0 . 1 ) (0.1) (0.9) 24.5*** 12.5*** ( 3 . 5 ) 22.5 32 .4 104.0 53.3 13.5*** 10 .7 * * * (3.8) (3 . 1 ) (1.9) A E T I D I U S D I V E R G E N S . EUCHAETA J A P O N I C A S C O L E C I T H R I C E L L A MINOR TRANSITION/ M E T R I D I A O K H O T E N S I S DEEP - gHiMDi 'ds G R A C I L I S HETERORHABDUS T A N N E R I G A I D I U S C O L U M B I A E C A N D A C I A C O L U M B I A E . (0.3) (2.3) (1.9) (3.4) ( 0 . 1 ) (1.4) (2.0) (0.1) (0.1) (0.6) ,(0.4) (0.8) (3 . 0 ) (0.5) 27 .0 * * * 14 .7 * * * ( 0 . 5 ) (0.1) (0.1) (0.5) (0.2) (0.1) (1.5) (0.7) ( 0 . 1 ) S P I N O C A L A N U S B R E V I C A U D A T U S DEEP SCAPHOCALANUS BREVICORNIS"v RACOVITZANUS ANTARCTICUS 5 . 6 * * * ( 3 . 7 ) 7 . 4 * * * (1.3) (0.8) (2.0) (0.1) (0.1) Table IV (b): February 1975-QUEEN CHARLOTTE STRAIT OUTER KNIGHT BASIN INLET INNER BASIN SPECIES GROUP SPECIES SURFACE E' LOWER E" SURFACE A LOWER B" SURFACE A . TRANSITION F D DEEP C SURFACE AND ACARTIA LONGIREMIS 5.9 6.2 8.6* 5.8 (3-9) (2.0) SURFACE TRANSITION TORTANUS DISCAUDATUS (2.4) 4.7* (1.1) (2.5) EUCALANUS BUNGI BUNGI (0.2) CALANUS PLUMCHRUS (0.1) MIGRANTS CALANUS MARSHALLAE 4.7 18.3 6.9 37.6*** (0.9) . 8.1 (1.9) 12.5 PSEUDOCALANUS ELONGATUS 98.3 131.4 155.53 110.3*** 37-2 14-5.7* 189.4 45.4 METRIDIA PACIFICA 8.2* (2.4) (2.5) 9-3 (1.2) (0.3) 17.2* (1.4) MICROCALANUS PYGMAEUS (o.l) AETIDIUS DIVERGENS (0.6) 6.9 (0.7) 9.3** (0.6) (1.3) (4.9) (2.6) EUCHAETA JAPONICA (0.1) (0.1) (0.6) (0.4) (1.1) (0.8) (1.8) SCOLECITHRICELLA MINOR (0.5) (0.2) (0.2) (0.6) TRANSITION/ METRIDIA OKHOTENSIS (1.7) (3-2) 5.9 I6 .3** * DEEP CHIRIDIUS GRACILIS HETERORHABDUS TANNERI GAIDIUS COLUMBIAE CANDACIA COLUMBIAE • (0.1) (0.1) (1.2) (1.7) (0.1) (1.0) (0.6) (0.1) (0.3)' (0.7) (1.3) DEEP SPINOCALANUS BREVICAUDATUS SCAPHOCALANUS BREVICORNIS 10.1** (2.4) 9.6*** (1.0) Table IV (c)s A p r i l 1975-QUEEN CHARLOTTE STRAIT KNIGHT INLET OUT EE BASIN INNER BASIN SPECIES GROUP SPECIES SURFACE TRANSITION DEEP E' E" E m PURFACE A TRANSITION DEEP B" B"' PURFACE A TRANSITION G F' DEEP C SURFACE AND SURFACE TRANSITION ACARTIA LONGIREMIS TORTANUS DISCAUDATUS 4-3 (1.9) 12.9*** (1.6) 10.5 (z.o) 30.3** (1.1) EUCALANUS BUNGI BUNGI CALANUS PLUMCHRUS MIGRANTS CALANUS MARSHALLAE PSEUDOCALANUS ELONGATUS METRIDIA PACIFICA 26.2 25.1 (1.6) 23.0 476.0*** 147.0***| 6.0 125.3*** 14.3 112.5*** 96.9 5-8 54.8 229.O*** 180.9***| (3.7) 6.2 (0.7) 209.2 (0.1) (2.0) (0.5) (0.2) 17.9 27.9 20.9 (0.4) (0.7) 110.2*** 43.lt 7.4 57.4 5.2 6.7 8.7 7.4* (0.4) 3.5*** (0.1) (0.4) 4.5*** (1.9) (1.4) (2.5) 2*** 4.1*** 8.8*** 24.8*** 3,8*** 28.5** (0.4) (2.0) (0.6) (3.7) 12.4*** (2.2) (0.8) TRANSITION/ DEEP AETIDIUS DIVERGEIIS EUCHAETA JAPONICA SCOLECinmiCELLA MINOR METRIDIA OKHOTENSIS CHIRIDIUS GRACILIS HETERORHABDUS TANNERI GAIDIUS COLUMBIAE CANDACIA COLUMBIAE (2.7) (1.65) 7.9** (0.8) (0.4) 4.8*** (1.3) (3.4) (2.2) 4.3*** DEEP SPINOCALANUS BREVICAUDATUS SCAPHOCALANUS BREVICORNIS RACOVITZANUS ANTARCTICUS (1.4) (0.3) (0.2) 9,0*** (2.2) (0.2) 10.8*** 13.8*** (2.8) (0.3) (0.2) Table IV (d): July 1975. QUEEN CHARLOTTE STRAIT OUTER BASIN KNIGHT INLET INNER BASIN A SURFACE >25 7oo ?»„WO SPECIES GROUP SPECIES SURFACE TRANSITION DEEP E' E" E"' (SURFACE A SUMMER SURFACE PARACALANU3 PARVUS CENTROPAGES MCMURRICHI PODCN AND EVADNE SURFACE TRANSITION DEEP A' B" B'" (1.2) (3-t) (0.3) 172.0*** 21. 4*** TRANSITION ^oo G DEEP H' DEEP H" (0.7) (1.7) 7518.0*** 166, 0*** SURFACE AND SURFACE TRANSITION EPILABIDOCERA AMPHITRITES ACARTIA CLAUSI ACARTIA LONGIREMIS TORTANUS DISCAUDATUS (0.3) (2.6) 138.8*** 116.0*** (0.3) 19.4*** (0.3) (0.1) 27.2*** 3.8 6.2 22.5** 243.6*** 27.9 9-2* 153.2*** (0.4) (0.3) 7.2 45.0*** (1.3) 1-5 (0.9) (0.6) (0.1) EUCALANUS BUNGI BUNGI CALANUS PLUMCHRUS MIGRANTS CALANUS MARSHALLAE PSEUDOCALANUS ELONGATUS .. METRIDIA PACIFICA (0.1) (0.4) (1.6) (0.2) 141.4*** 36.7*** 6.7 816.9*** 36.6 390.4***j 6.2 27.5*** 1.6 (0.1) (0.4) (0.1) (1.9) 6.9 15.2 21.4*** 76.3 1104.9***1106.4*** 243.7*** 1.5 0.3 217.2*** 36.7*** (0.1) 84.8*** 36.9 8.91 17.5*** 94.1 16.9*** (0.1) (0.1) 6.6 81.9*** 6.06 (0.2) 4.5 91.5" 3.72 TRANSITION/ DEEP AEHDIU3 DIVERGES EUCHAETA JAPONICA SCOLECITHRICELLA MINOR METRIDIA OKHOTENSIS CHIRIDIUS GRACILIS HETESORHABDUS TANNERI GAIDIUS COLUMBIAE CANDACIA COLUMBIAE (1.0) (0.2) (0.8) (0.5) 7.1*** (0.4) (0.3) 35.6 (0.1) (3.2) (2.5) (0.8) 99.4*** 6.3*** (0.5) (1.3) (0.1) (1.3) 14.0*** (2.5) 85,4*** (0.5) (2.2) (0.5) (3.6) (3.9) (2.9) (1.3) (0.1) 94.5*** 43.4*** 21.5*** (0.2) (1.5) (3-0) (1.4) (2-9) (1.0) (1.3) (3-D (1.1) (1.2) (1.8) (2.6) 5-7*** 8.7*** 0.7 1.1 3.0 0.1 DEEP SPINOCALANUS BREVICAUDATUS SCAFHOCALANUS BREVICORNIS RACOVITZANUS ANTARCTICUS (1.1) (0.3) Note 1 No organisms were found In water of salinity less than 5i</oo. 123 Table V (a-c); Intra-station matrices of Spearman rank order c o r r e l a t i o n c o e f f i c i e n t s ( r s ) between zooplankton samples from the Inner basin of Knight I n l e t , September 1975- The c o e f f i c i e n t r s has a t h e o r e t i c a l range from +1, i n d i c a t i n g complete concordance between samples, to -1, i n d i c a t i n g complete discordance. P o s i t i v e c o e f f i c i e n t s s i g n i f i c a n t at p = 0.05 are indicated by an ast e r i s k . P r o b a b i l i t y values are from Table P i n Siegal (1956). Analysis confined to Calanoid copepoda. Compared sample depth i s given i n metres at the top and on the r i g h t of each matrix. N i s the t o t a l species number. (a) STATION Kn 5- N = 18. 10 30 50 100 200 300 0.83* 0.02 -0.11 -0.27 -0.46 -0.23 5 0.28 0.16- 0.08 -0.19 -0.05 10 0.86* 0.57* 0.05 0.19 30 0.72* 0.23 0.24 50 O.37 0.50* 100 0.64* 200 (b) STATION Kn 7. N = 18. 10 30 50 100 . 200 300 500 0.59* 0.40* -0.06 -0.03 -0.26 -0.08 -0.70 5 O.56* -0.02 -0.07 -0.02 -0.50 -0.90 10 -0.03 0.12 -0.43 -0.84 -1.00 30 -0.11 -0.31 -O.53 -0.86 50 0.45* 0.06 -0.18 100 O.58* 0.44* 200 0.74* 300 HON Kn 11. N = 12. 10_ 30 50 100 200 0.37 0.34 0.23 0.11 -0.10 5 0.61* 0.51* 0.29 0.04 10 O.56* O.38 0.07 30 0.83* O.56* 50 0.78* 100 124 Table TI (a-b): I n t e r - s t a t i o n matrices of Spearman rank order c o r r e l a t i o n c o e f f i c i e n t s ( r s ) between zooplankton samples from the Inner basin of Knight I n l e t , September 1 9 7 5 ' The c o e f f i c i e n t r s has a t h e o r e t i c a l range from +1, i n d i c a t i n g complete concordance between samples, to -1, i n d i c a t i n g complete discordance. P o s i t i v e c o e f f i c i e n t s s i g n i f i c a n t a t p = 0 . 0 5 are i n d i c a t e d by an a s t e r i s k . P r o b a b i l i t y values are from Table P i n S i e g e l ( 1 9 5 6 ) . Analysis confined to Calanoid copepoda. Compared sample depth ( i n metres) and s t a t i o n l o c a t i o n i s given at the top and on the r i g h t of each matrix. N = 18 i s the t o t a l species number. (a) STATIONS Kn 5 and Kn 7. Kn 5 5 10 30 50 100 200 300 O.96* 0.85* 0.15 -0.08 -O.38 -0.50 -0.30 5 O.34 0.73* 0.28 0.31 0.27 -0.27 0.14 10 0.35 0.49* 0.82* 0.61* 0.30 -O.38 -0.16 30 O.09 0.26 -0.10 -0.19 -0.30 -O.38 -0.50 50 -0.20 0.05 0.14 -O.56 -0.02 0.28 0.25 100 -0.37 -0.11 -0.18 -0.09 0.05 O.63* 0.69* 200 -O.58 -0.42 -0.45 -O.35 -0.16 0.47* 0.25 300 -0.69 -0.76 -0.90 -0.87 -0.67 0.24 0.01 500 STATIONS Kn 11 and Kn 7. Kn 11 5 10 30 50 100 200 0.44* 0.66* O.36 0.16 -0.04 -0.20 5 -0.09 0.82* O.54* 0.03 0.11 -0.32 10 0.22 0.40* 0.51* -0.07 ' -0.09 -0.60 30 0.35 0.24 O.36 0.29 0.01 -0.53 50 Kn 7 -O.23 -0.60 0.28 O.56* 0.59* 0.32 100 -0.53 0.18 0.29 0.47* 0.85* 0.67* 200 -1.00 -O.56 -0.09 0.43* 0.55* O.58* 300 -1.00 -0.62 -0.52 0.13 0.30 0.67* 500 Kn 7 Table Vl l i The estimated mean abundance of copepod species at Individual sample depths, station Kn 7. SeDtembnr 1975. Data axe arranged ln a k x r contingency table. A measure of the association of an ubiquitous species with a particular depth can be obtained by chi squared tests. The null hypothesis (H0) IS that the proportion of a sample composed of a species is constant between samples or columns. The rejection of H 0 by the 'occurrence of concentrations greater than expected is indicated at the following significance valuos for X2. * significant at p - 0.05, ** significant at p - 0 . 0 1 , * * * significant at p = 0.001. Bracketed figures indicate observed concentrations too low to justify s t a t i s t i c a l treatment. Concentrations are expressed as numbers per cubic metre. SAMPLE DEPTH (m) AND WATER REGIME LIMITS SPECIES GROUP SPECIES SURFACE 5 10 TRANSITION 30 50 100 DEEP 200 100 ' ^nn oUKrACK AND SURFACE ACARTIA CLAUSI TRANSITION ACARTIA LONGIREMIS 266.0*** 33,6 0.9 I9.3*** 31.4 12.3 4.6 (3 .4) 2.3 EUCALANUS BUNCI BUNGI CALANUS PLUMCHRUS MIGRANTS CALANUS MARSHALLAE PSEUDOCALANUS ELONGATUS METRIDIA PACIFICA (1.1) 6.4 48.2 (3-9) 6.8 15.7 4 . 2 * * * (2.7) (1.0) ' (0.7) (0.1) (1.1) 8.8 * * * 4.7 (2.6) 62. Q*** 81.9*** 6I.5*** (2.3) (1.5) AETIDIUS DIVERCENS EUCHAETA JAPONICA SCOLECITHRICELLA MINOR TRANSITION/ METRIDIA OKHOTENSIS DEEP CHIRIDIUS GRACILIS HETERORHABDUS TANNER I CAIDIUS COLUMBIAE CANDACIA COLUMBIAE (2.7) 5-1*** (l'.O) 8.5*** (1.3) 5.9*** I2.9*** (0.3) 6.1*** (1.0) (2.3) (0.5) 10.4* 19.5*** 10.6 (1-4) (1.7) 5 .1* (2.3) (1.8) (0.2) (0 .8) (1.8) SPINOCALANUS BREVICAUDATUS DEEP SCAPHOCALANUS BREVICORNIS * RACOVITZANUS ANTARCTICUS , (3.6) (4.4) 5.8 16.5*** (1.6) (2 .4 ) 9.5*** (0.3) (0.7) Table V l l l : The Off-shore species group A l i s t of a l l Calanoid copepods thought to be c h a r a c t e r i s t i c of an off-shore fauna, c o l l e c t e d i n Queen C h a r l o t t e S t r a i t ( s t a t i o n QC) and the Outer Basin of Knight I n l e t , from June u n t i l J u l y 1975' The complete l i s t gives occurrence i n Queen Cha r l o t t e S t r a i t only. A d d i t i o n a l presence i n the I n l e t Outer Basin i s i n d i c a t e d by an a s t e r i s k i n the r e l e v a n t column. A b r i e f resume of records i n the N.E. P a c i f i c i s given i n remaining columns. Shih et a l . (1971) reviewed a l l records i n B r i t i s h Columbian c o a s t a l waters. Other authors were concerned w i t h o f f - s h o r e water adjacent to : Washington (Davis 1949), Oregon (Peterson 1972; Pearcy 1972), and C a l i f o r n i a ( E s t e r l y 1905, 1906, 1911, 1913, 1924; Fleminger 1964, 1967). Miscellaneous r e p o r t s are given i n the right-hand column. A bracketed a s t e r i s k i n d i c a t e s p o s s i b l e taxonomic d i f f i c u l t y . FAMILY SPECIES W H IH CO P < O pq CO CO H > O B CO _e±. JL 1-3 E H C O OTHERS Calanidae Eucalanidae Aetideidae Euchaetidae Galanus c r i s t a t u s Kroyer Rhincalanus nasutus Giesbrecht Gaetanus intermedius Campbell Gaetanus p i l e a t u s Farran Gaetanus mile s Giesbrecht E u c h i r e l l a r o s t r a t a Claus E u c h i r e l l a pseudopulchra Park E u c h i r e l l a c u r t i c a u d a Giesbrecht Ghirundina s t r e e t s ! Giesbrecht Undeuchaeta b i s p i n o s a E s t e r l y Euchaeta media Giesbrecht Euchaeta spinosa Giesbrecht Paraeuchaeta c a l i f o r n i c a E s t e r l y * * * * *• * * * (*) (*) 0-35°N ( B r o d s k i i 1950) #• * * * * * * * (*) (*) (*)' (*) ('*) (*) Always n o r t h of 26°N * * * (Fleminger 1967) * * * * * Ce n t r a l N. P a c i f i c (Park 1968) ro ON CONTINUED ON FOLLOWING PAGE Table V l l l (cont'd)'! FAMILY SPECIES E-i CO O pq H CO CO M > O PS < P H s CO P H Is > H r-H EH CO OTHERS S c o l e c i t h r i c i d a e Scottocalanus persecans Giesbrecht •x- •X-— { « — •X-L o p h o t h r i x f r o n t a l i s Giesbrecht •x •X ,Scaphocalanus magnus T. Scott •x- •X-S c o l e c i t h r i c e l l a ovata Farran * * •x -X-M e t r i d i l d a e M e t r i d i a boecki Giesbrecht -X •X M e t r i d i a princeps Giesbrecht * •X Oyoshio (Morioka 1972) Pleuromamma abdominalis Lubbock * * * -x- •X •X- -X Pleuromamma x i p h i a s Giesbrecht * •x •x- •X- •X- •X Pleuromamma b o r e a l i s Dahl -x -X -X PlelSomaiimia quadrungulata Dahl Pleuromamma s c u t u l l a t a B r o d s k i i # Oyoshio (Morioka 1972) Gaussia princeps T. Sc o t t •x -x * •X L u c i c u t i i d a e L u c i c u t i a b i c o r n u t a Wolfenden - -x C e n t r a l N. P a c i f i c Heterorhabdldae D i s s e t a maxima E s t e r l y •X (Park 1968) Heterorhabdus p a p i l l i g e r Claus •x- •X -X •X Heterorhabdus c l a u s i Giesbrecht # Heterorhabdus s p i n i f r o n s Glaus •X Kuroshio (Morioka 1972) H e t e r o s t y l i t e s l o n g i c o r n i s Giesbrecht * A u g a p t i l i d a e H a l o p t i l u s oxycephalis Giesbrecht (*) * Centraugaptilus p o r c e l l u s Johnson -X Off C a l i f o r n i a (Johnson 1936) CONTINUED ON FOLLOWING PAGE Table V l l l (cont'd): FAMILY SPECIES •EH CO M 5 < w O pq co CO H > PI > H o g CO - f i d . o H s rH1 EH CO OTHERS Au g a p t i l i d a e A r i e t e l l i i d a e Candacildae P a c h y p t i l u s p a c i f l e u s Johnson A r i e t e l l u s p l u m i f e r Sars Phyllopus i n t e g e r E s t e r l y Candacia b i p i n n a t a Giesbrecht Off C a l i f o r n i a (Johnson 1936) Table l X $ a ) : Monthly c o a s t a l u p w e l l i n g i n d i c e s a t a s t a t i o n l o c a t e d a t 51 N 131 W, f o r the years 1972 t o 1975" U n i t s are cubic meters of water per second per 100 m length of coast. Negative values i n d i c a t e onshore t r a n s p o r t of surface waters and r e s u l t a n t downwelling. Abridged from Bakum's unpublished data. YEAR MONTH JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEG 1972 2 -59 -25 3 2 6 17 4 38 9 -91 -7 1973 -75 -50 . - 3 5 -20 -15 5 4 0 -6 -19 2 - 8 1 1974 5 -37 -6 -9 -3 7 8 44 3 -35 - 4 2 -62 1975 -9 -72 2 17 - l 38 6 7 7 - 2 4 -35 -30 Table l X ( b ) : Mean monthly values o f ' c o a s t a l upwelling i n d i c e s a t a s t a t i o n l o c a t e d at;51°N 131°W f o r the 20 year p e r i o d 1948 t o 1967. Units as i n Table i x(a). Abridged from Table 3 i n Bakum, 1973-JAN FEB MAR * APR MAY JUN JUL AUG SEP OCT NOV DEG - 6 4 -36 -12 -5 4 15 16 12 -3 - 4 0 -58 -57 H to MD Table Xi Surcnary of copepod species distributions with respect .to season, location, and water regime ln Queen Charlotte S t r a i t and Knight Inlot. An asterisk Indicates that most occurrences for a spocloo wore recorded in tho category noted for that column. Species groups are as follows! l i Summer Surface 2: Surface and Surface Transitional Ji Tran3ltlonal/Dcop 4, Deep 5, Migrant. The Off-shore species are omitted. This table la a major generalisation, and the text should bo consulted for details. SPECIES AND SPECIES CROUP WATER REGIME CATEGORY WHEN OBSERVED LOCALITY OBSERVED RANCE COMMENTS SPECIES e CEITSOFAGES MCMURRICHI 1 FARACALANUS PARVUS 1 PODOH AJID EVADHE (CLADOCERAN) 1 ACARTIA LONCIREMIS 2 • ACARTIA CLAUSI 2 TORT ANUS DISCAUDATUS 2 E7ILARTD0CERA AMTHITRITES 2 ASTIDIUS DIVERGR1S 3 SCOLECITHRICELLA MINOR 3 EUCHAETA JAPONICA 3 METRIDIA OKHCTBISIS 3 CAIDIUS COLUMBIAE 3 HETERORHABDUS TAJfNERI 3 CANDACIA COLUMBIAE 3 CKIRIDIUS CRACILIS 3 SPKOCALA1IUS BREVICAUDATUS b SCAH10CALANUS EREYICORNIS k RACOVTTZAMUS ANTARCTICUS' <* CALAMUS MARSHALLAE 5 CALANUS PLUMCHRUS 5 EUCALANUS BUNCI BUNCI 5 PSEUDOCALANUS ELONCATUS 5 METRIDIA PACIFICA 5 25.0-31.0. 29.0-30.0 2.0-30.0 22.0-32.5 12.0-32.5 22.0-32.5 22.0-32.5 30.0-32.5 30.0-32.5 30.0-32.5 30.0- 32.0 30.5-31.3 30.5-31.3 30.5-31.3 30.9-32.5 31.1- 31.3 31.2- 31.3 31.2-31.3 26.0-31.3 30.0-31.3 30.5-31.3 20.0-31.3 26.0-31.3 SFC-50 SFC-30 SFC-30 5-100 5-100 5-100 5-200 30-200 30-100 30-500 50-500 50-500 50-500 50-500 50-500 100-500 100-500 200-500 5-500 5-500 5-500 5-500 5-500 Occurred only where temp.>8.0 C. Absent ln February and April. Appeared to breed only ln outer basin. Seasonal v e r t i c a l migrants. Young c o p e o o d i t e 3 occupy surface revises in spring and early suj.mcr, but population overwinters as 5th stage copopodltes. C. plu-ichrun and E. btJifl bin-.p:! both raro. Soasonal vorti c a l migration seen noar inlot hoad but not elsowhere, Diel v e r t i c a l algrant. 131 Figure 1: Northern Vancouver I s l a n d and the study r e g i o n i n the v i c i n i t y of Knight I n l e t . The l o c a t i o n of s t a t i o n QC i s i n d i c a t e d . Adapted from P i c k a r d (1956). 132 Figure 2: The study area, Knight I n l e t . The upper f i g u r e shows the i n l e t and l o c a t i o n of sampling s t a t i o n s . The lower f i g u r e i s a l o n g i t u d i n a l p r o f i l e along the i n l e t showing bottom topography. Adapted from P i c k a r d (1956). A : K l i n i k l i n i r i v e r . B : F r a n k l i n r i v e r . 132a 133 Figure 3 ( a - j ) : Diagramatic l o n g i t u d i n a l p r o f i l e s of Knight I n l e t , showing i s o p l e t h s of s a l i n i t y , temp-erature , oxygen, and n i t r a t e , from October 1974 u n t i l September 1975. Values above the dashed surface l i n e f o r oxygen are 5 meter samples. For the other parameters, t h i s i s a surface value. Dashed l i n e s i n d i c a t e i s o p l e t h s whose p o s i t i o n was known w i t h l e s s c e r t a i n t y than was the case f o r i s o p l e t h s given continuous l i n e s . a 134 Figure 4: Temperature-Salinity (T-S) diagram and water regime l i m i t s f o r June 1975- Extreme T-S values of surface water are omitted. Three l i n e types embrace a l l Surface, T r a n s i t i o n and Deep regimes. I d e n t i c a l l i n e s i n d i c a t e T-S l i m i t s of i n d i v i d u a l regimes, i d e n t i f i e d by codes discussed i n the t e x t . 90-D E P T H m. 0.10,20.30,50,75.100,150 200 3O0 350 400 500 8-5-J P 80-UJ CC ZD < CC Lu CL LU 7-5-1 70-REGIMES SURFACE T R A N S I T I O N DEEP STATIONS o r . KN 1 3 7 E" — ^ ^ - ^ g 6-5 290 30 0 3 1 . 0 S A L I N I T Y % 0 3 8 0 — 1 33 0 135 Figure 5 ( a - j ) : Diagramatic l o n g i t u d i n a l p r o f i l e s of Knight I n l e t , showing the monthly d i s t r i b u t i o n of water regimes d u r i n g the study p e r i o d . Each c a p i t a l l e t t e r i s the code f o r a regime, i d e n t i f i e d and explained i n the t e x t . Black dots i n d i c a t e depths of Clarke-Bumpus zoo-plankton samples. 135a 135t 136 F i g u r e 6: Diagramatic l o n g i t u d i n a l p r o f i l e s of Knight I n l e t , showing a s i m p l i f i e d account of water c i r c u l a t i o n observed from October 1974 t o September 1975./ 136a Run-off Outflow 100 2 0 0 300-i 4 0 0 5 0 0 Displaced Inrer (Upper Win too V B a s i n T ^ W a t e r .High S % 0 20km Sept -Dec 1974 _ I 0 0 i E w 2 0 0 x I- 3 00 Q. g 4 0 0 i 5 0 0 Winter . LowT°/S7< VWate r Q , 2,0 km J a n - M a r c h 1975 Upwelling . Inner | Bas i n W a t e r 137 Figure ?: Apparent oxygen u t i l i s a t i o n (A.O.U.) of deep water a f t e r i n t r u s i o n i n t o the inner "basin of Knight I n l e t (open c i r c l e s ) . The l i n e i n d i c a t e s A.O.U. f o r n i t r a t e as p r e d i c t e d "by the r e l a t i o n -s h i p N0o n Y = 0.O58(A.O.U.). 137a 138 F i g u r e 8: L o n g i t u d i n a l s e c t i o n s of Knight I n l e t , showing the monthly d i s t r i b u t i o n of suspended sediments (mg/l) during the study year. S t a t i o n Kn 1 i s excluded. From Lewis (1975)-138a STATIONS 139 Figure 9(a-b): V a r i a t i o n i n c h l o r o p h y l l and suspended sediment i n the upper 50 meters of water i n Knight I n l e t d u r i n g the study pe r i o d . S t a t i o n Kn 1 i s excluded. a C h l o r o p h y l l a b Suspended sediment Each parameter i s p l o t t e d as an accumulated value f o r a water column one square meter i n area a t the surface, and extending to a depth of 50 meters. RZ i s the r a t i o of the maximum minus the minimum c h l o r o p h y l l value to the maximum minus the minimum value i n the X d i r e c t i o n . I t was s e l e c t e d to produce the best overview of the surface and the two f i g u r e s are intended only t o i l l u s t r a t e r e l a t i v e values. From Lewis (1976). 139a I—I i 1 1 ! 1—-j J i O D F M A M J J A S 140 Figure 10: Isopleths of chlorophyll a in the upper 50 meters of water in Knight Inlet, from October 1974 to September 1975• Chlorophyll a expressed as mg chlorophyll a/m^ . Standard sampling depths are indicated by small dots on one graph only. Broken lines indicate isopleths drawn at a lower level of confidence. 14 Ob H I d 3 Q o o 141 Figure 11: The monthly d i s t r i b u t i o n of species group, Summer Surface, i n the study area (October 1974 to September 1975)- This figure provides a s p a t i a l aspect to the T-S-P plots. The presence of a species at a sample' depth i s indicated as follows: D : Gentropages mcmurrichi E : Podon and Evadne species (Cladocera) G : Paracalanus parvus H : Chaoborus species larvae The absence of a sample at a sample depth i s indicated by an asterisk (*). This group could not be found from October 1974 u n t i l June 1975• 141a SAMPLE : S T A T I O N — DEPTH (m) QC KN 1 J 5 n Q ,, Ici rg ^ <• 2 i i _ 30 50 100 OCTOBER 150 200 300 350 500 SAMPLE DEPTH Cm) 5 _9C_ KN 1 STATION J L 11 JUNE 10 30 50 100 150 200 300 350 500 DG D E E E E E SAMPLE DEPTH (m) 5 QC KN 1 STATION -2 5_ 1 JULY 10 30 50 100 150 200 300 350 . 500 G D D E E DE E. DE SAMPLE STATION DEPTH (m) QC KN 1 3 5 5 D DEG DE E -g 10 D DEG D E E 50 100 AUGUST 150 200 300 350 500 30 - D D E E E * E E * 11 100 SEPTEMBER 150 200 300 350 500 SAMPLE STATION DEPTH (m) QC KN 1 2 5 5 D DE E E 10 * DE E E 30 D 50 D 11 E E E E . E E Figure 12: The monthly d i s t r i b u t i o n of copepod species group, Surface and Surface T r a n s i t i o n a l , i n the study area (October 197^  t o September 1975). This f i g u r e provides a s p a t i a l aspect t o the T-S-P p l o t s . The presence of a species a t a sample depth i s i n d i c a t e d as f o l l o w s : A : A c a r t i a l o n g i r e m i s B : A c a r t i a c l a u s i C : Tortanus discaudatus F : E p i l a b i d o c e r a a m p h i t r i t e s The absence of a sample a t a sample depth i s i n d i c a t e d by an a s t e r i s k (*)• 142a SAMPLE STATION DEPTH fm) QC KN 1 3 5 7 9 11 10 ACF AC AC ABC AB AB B 30 ACF AC AC A AB AB B 50 ACF AC AC AB AB AB B 100 ACF ACF AC ABC B OCTOBER 150 * * • * * 200 A AB B B 300 * 350 • B 500 SAMPLE STATION DEPTH (m) QC KN 1 3 5 Z 2 11 10 AC * ABC * A A 30 AC * AC * ABC A 50 AC * AC * AB 100 AC * AC * A DECEMBER 150 * * * * * 200 * * * 300 * A * 350 * 500 • SAMPLE STATION DEPTH (m) QC KN 1 2 5. 7 9 ' 11 10 A AC AC AC AC AC * 30 A AC AC AC A A * 50 A AC AC AC A A * 1 0 0 AC AC AC AC A A * FEBRUARY 150 * AC * * * * 200 AC * 300 * 350 * 500 SAMPLE STATION DEPTH (m) QC KN 1 3_ 5 2 2 1L_ 5 A A AC * A * ABC 10 A AC AC AC A A AC 30 A AC AC AC A 50 AC AC C 100 AC C C C MARCH 150 * * * * * 200 300 * 350 * 500 SAMPLE STATION DEPTH fm) QC KN 1 3 5 2 9_ 11 5 A A A C * A * . A 10 A A AC A A A 30 A A 50 AC 1°° C AC APRIL 150 * C * * * * 200 300 * 350 * 500 142b SAMPLE STATION DEPTH (m) QC KN 1 3 5 Z 2 11 10 AC • AB AB AB 30 A A A ' AB 50 AC 100 AC AC MAY 150 * • * * * 200 300 » 350 500 SAMPLE STATION DEPTH (m) QC KN 1 3 5 Z 2 11 5 A AB * BC 10 A ABC A AB AB A A 30 A ABC AB A 50 A A ABC 100 A AC JUNE 150 * * * * * 200 _ _ 300 * 350 500. ' SAMPLE STATION DEPTH (m) QC KN 1 2 5 Z 9 " 11 5 AC B 10 ACF ABC BC AB AB 30 ACF ABCF ABC AB 50 ACF ABCF ABC AB 100 ABC ACF JULY 150 * A * * * * 200 AB  300 C • * 350 500 SAMPLE STATION DEPTH (m) QC KN 1 3_ 5_ 7 9_ 11 5 A AC ABC ABC AB • B B 10 CF ABCF ABC ABF AB B 30 ACF ABCF ABC AB AB B 50 ACF ACF ABC ABC ABC B 100 ACF ACF AC AB AB AUGUST 150 * A * * * * 200 AF B BC B 300 BC BC * 350 * B 500 AB SAMPLE STATION DEPTH (m) QC KN 1 3 5 7 2 11_ 5 ACF AC ABC ABC AB B B 10 * ACF ABC ABC AB AB AB 30 ACF ACF ABC BC AB B B 50 CF AC AC B B B B 100 ACF AC A B B B SEPTEMBER 1 5 0 » * * ' » * 200 AC B B 300 • ' 350 * B 500 14-3 Figure 13: The monthly distribution of copepod species group, Transitional/Deep, in the study area (October 197^ to September 1975). This figure provides a spatial aspect to the T-S-P plots. The presence of a species at a sample depth is indicated as follows: A : Aetidius divergens B : Scolecithricella minor C : Euchaeta .japonica D : Metridia okhotensis E : Gaidius columbiae F : Heterorhabdus tanneri G : Gandacia columbiae H : Ghiridius gr a c i l i s The absence of a sample at a sample depth i s indicated by an asterisk 143a SAMPLE STATION DEPTH (m) QC • KN 1 3 7 9 11 10 A B BCDF 30 AC ABG ' AB ABC BEF BCDEF 50 AB AB ABC ABCF ABCDF CUEFG 100 AB A AD ABCF BCDEF BCDEF CDEF OCTOBER 150 • * * * » 200 AH ACDEH BCDEF CDEF DEFH 300 CDEGH CDF * 350 * DEF 500 . CDEF SAMPLE STATION DEPTH (m) QC KN 1 3 7 9 11 10 * * BCEF CF 30 * A * F BCF ACF 50 * A BCE BCF CF 100 * A * CDH DF CDEFG DECEMBER 150 * AH * » * • 200 * * BCDE CDF DEFGH 300 * CDEF * 350 * DE 500 CDEF SAMPLE DEPTH' (m) QC KN 1 3 STATION 7 9 11 10 C • 30 A A AG AD A * 50 AC A AC AC ABCD ABC * 100 AB ABCGH AC AC ABCDE BC * FEBRUARY 150 * ABCDGH * * * • 200 ABCDGH ACDEG ACDEG ACDEF 300 ACDEFGH ACDEG * 350 * ACDEG 500 ACDEFG SAMPLE " STATION DEPTH (m) QC KN 1 3 5 2 2 11 5 * CD * 10 CD CD 30 BC AB ACDE ' ABC B 50 BC BC ABCDE BC ABC 100 C C C C ABCDG A CD ABC MARCH 150 * ACDGH * * * • 200 ACDH ACDGH ACDEFGH ACDEFG ACDEFGH 300 ACDEFH ACDEFH * 350 * CDEFG 500 ACDEFG SAMPLE STATION DEPTH (m) QC KN 1 3_ _ J 2 2 1L_ 5 10 30 B 50 B B AB 100 A ACDGH ABCDE ABCDF ACDF APRIL 150 • ACH * * * * 200 CH AB CDEGH BCDEF ABCDEF CDEF 300 ABCDEFGH CDEFG * 350 * DEF 500 CDEFGH _ SAMPLE STATION DEPTH (m) QC KN 1 3 5 2 2 1L_ 10 , D 30 BC CD D 50 ABC ABCDF ABCDF ACDF 100 H ABCF AD CDF CDEF MAY 150 * H * • * * 200 AH ACDEFG * CDEFG DEF 300 ABCDEGH ABCDEFG * 350 * CDEF 500 CDEFG SAMPLE STATION DEPTH (m) QC KN 1 2 5 2 2 11 5 * 10 C D 30 D ABC ABC ACDF ABCDF 50 D A ABC ABCF BCDF ACDEF 100 D C D ACF ACDF ABCDEFG ACDF JUNE 150 * DH * * * * 200 H ACDEG ACDEFGH ACDEFG ACDEFG 300 ' ABCDEFH ABCDEF * 350 • CDF 500 ACDEF SAMPLE ~ STATION DEPTH (m) QC KN_1 3 5 2 2 11 5 10 A BCDF BCD 30 A ABC ACF B CDEFG BCEFG 50 AD AF ABCDF ABCDEF CDEFG BCFS 100 CD ACD ABCDF ABCDEFG ACDEFG CDF CDF JULY 150 * ABCDEFGH * * * * 200 ACDH B CDEFG ACDEFG CDEFG CDFG 300 BCDEFGH CDFG * 350 * DFG 500 CDEFGH SAMPLE STATION DEPTH (m) QC KN 1 3 5 2 2 1L_ 5 10 CD C 30 A B ABCF CEF CDEF 50 A A ABE ABE ABCDEF CDF 100 AC ADH A BCE BCF ABCDEFGH CDFG AUGUST 150 * ADEFH * * * * 200 DH ACDEFG ACDEFG CDF CDEF 300 CDEFGH ACDEFG * 350 * ACDEFG 500 CDEFG SAMPLE STATION DEPTH fm) QC KN 1 3 5 2 2 11 5 10 50p C c 3 ° AD AB ABC ABC BCE BCF 5° A A AB ABC EF CDEF DEF 100 ACG ACDGH ABC AC ACDEF CDEF CDEF SEPTEMBER 150 * CDFGH 200 3 ° ° CPE DFG 350 DEFG * EFGH ABCDEFGH CDEFG CDFG CDEF CDF 144 Figure 14: The monthly distribution of copepod species group, Deep, in the study area (October 1974 to September 1975)' This figure provides a spatial aspect to the T-S-P plots. The presence of a species at a sample depth is indicated as follows: A : Spinocalanus brevicaudatus B : Scaphocalanus brevicornis G : Racovitzanus antarcticus The absence of a sample at a sample depth is indicated by an asterisk (*). 144a SAMPLE STATION ~ ~ DEPTH (m) QC KN_1 3_ 5 j 9 11 10 30 50 AB 100 OCTOBER 150 * • 200 AB AB AB AB AB AB AB . AB AB • , n n AB AB AB AB_ 3 ° ° AB AB * £ n * AB 500 • AB  SAMPLE DEPTH (B1 KN 1 STATION J 5_ 11 10 30 50 100 DECEMBER- 150 200 300 350 500 AB ABC AB AB AB » . AB * AB A AB * ABC SAMPLE DEPTH (m) KN 1 STATION J L 11 10 30 50 100 FEBRUARY 150 200 300 350 500 * AB AB AB AB • ABC AB * AB * * SAMPLE DEPTH (m) QC KN 1 STATION J 5_ 11 MARCH 5 10 30 50 100 150 200 300 350 500 AB A * A A * ABC A * ABC A AB * AB SAMPLE DEPTH (m) KN 1 STATION 11 APRIL 5 10 30 50 100 150 200 300 350 500 • AB ABC * ABC AB * AB * AB 144b \ SAMPLE STATION DEPTH (m) QC KN 1 2 5 11 10 30 50 100 MAY 150 200 300 350 500 AB AB * * * ABC AB AB * * ABC AB 5 10 30 50 100 J U N E 150 200 300 350 500 SAMPLE ' STATION ~~~ " "— DEPTH (m) QC KN 1 3 g 7 o ^ A AB AB AB AB * * * AB AB AB AB * * AB ABC 5 10 30 50 100 J U L Y 150 200 300 350 500 SAMPLE STATION ~~ DEPTH (m) QC KN_1 2 5 7 9 ^ A A AB A AB A A AB AB AB AB * * * * A ABC A AB AB AB * * ABC AB 5 10 30 50 100 AUGUST 150 200 300 350 500 SAMPLE STATION DEPTH (m) QC KN 1 2 5_ 11 A AB AB AB AB * * * * A A AB ABC AB ABC * " * AB ABC 5 10 30 50 100 SEPTEMBER 150 200 300 350 500 SAMPLE " STATION " DEPTH (m) QC KN_1 2 5 2 N A A A A AB AB * * * • AB AB ABC ABC ABC * * ABC ABC 145 \ Figure 15: The occurrence of Off-shore copepod species i n the study area. These species were encountered only from June t o September 1975> and were never recorded i n the i n l e t i n n er basin. Occurrence i n a sample i s expressed as a percentage of the maximum number of Off-shore species found i n a s i n g l e sample. (This was the 100 m sample a t s t a t i o n Q,G i n J u l y 1975» which contained 37 Off-shore s p e c i e s ) . The absence of a sample a t a sample depth i s i n d i c a t e d by an a s t e r i s k (*). See F i g . 16 f o r a species l i s t . SAMPLE STATION DEPTH (m) QC KN 1 5 10 30 JUNE 50 100 150 200 SAMPLE STATION DEPTH (m) QC KN 1 5 10 30 JULY 50 5 100 100 150 * 200 3 AUGUST SAMPLE DEPTH fm) 5 10 30 50 100 150 200 STATION QC KN 1 3 26 8 * 21 SAMPLE DEPTH (m) 5 10 30 SEPTEMBER 50 100 150 200 STATION QC KN 1 18 146 Figure 16: Temperature - Salinity-October 1974. Plankton (T-S-P) diagrams and water regime limi t s for Three heavy line types embrace a l l Surface, -Transition, and Deep regir.es. Identical faint lines indicate T-S limits of individual regimes, identified by codes discussed in the text. A small inset accomodates extreme T-S values. Line types are, Surface , Transition , and Deep . The temperature salinity intercept for each plankton sample is indicated by a small dot, beside which is an alphabetically coded l i s t of species present. Species are grouped according to similarities in occurrence on T-S-P diagrams. The four major groups, Surface and Surface Transitional, Transitional/Deep, Migrants, and Deep species are plotted separately. Summer Surface species appear with the Surface and Surface Transitional, and Off-shore speci&s with the Deep species groups, respectively. Species and codes are given below for the entire study period. SPECTES GROUP: SUMVSR SURFACE CENTROPAGES MCMURRICHI D PODON spp. and EVADME spp. E PARACALANUS PARVUS G CHAEBORUS LARVAE H SPECIES GROUP: SURFACE AND SURFACE  TRANSITIONAL ACARTIA LONGIREMIS A ACARTIA CLAUSI B TORTANUS DISCAUDATUS C EPILABIDOCERA AMPHITRITES F SPECIES GROUP: MIGRANTS CALANUS 'MARSHALLAE A PSEUDOCALANUS ELONGATUS B METRIDIA PACIFICA C EUCALANUS BUNGI BUNGI D CALANUS PLUKCHRUS E S P E C T E S GROUP: T R A N S I T I O N A L / D S E P A E T I D I U S D I V E R G E N S A S C O L E C I T H R I C E L L A MINOR B EUCHAETA J A P C U I C A C M E T R I D I A C K K O T E N S I S D G A I D I U S COLUJ-SiAS E HETERORHABDUS T A N N E R I F C A N D A C I A C 0 L U > 3 I A E G C H I R I D I U S G R A C I L I S H MICROCALANUS PYGMAEUS ' I SPECIES GROUP: DEEP SPTNOCALAHUS BREVICAUDATUS A SCAPHOCALANUS BREVTCCRNIS B RACOVITZANUS ANTARCTICUS C SPECIES GROUP: OFF-SHORE GAETANUS INTERMEDIUS D RHINCALANUS NASUTUS E CALANUS CRISTATUS F EUCHIRELLA ROS7RATA G EUCHIRELLA PSEUDOPULCHRA H FLEUROKAt-™ QUADRUNGULATA I PLEUROMAMMA XIPHIAS J PLEUROMAMMA AEDOMINALIS K METRIDIA PRINCEPS L CANDACIA BIPINHATA M The following off-shore species occurred only in one sample. A l l are coded N: GAETANUS PILEATUS N GAETANUS MILES N CHIRUNDINA STREETSI N UNDEUCHAETA BISPINCSA N EUCHIRELLA CURTICAUDA N PARAEUCKAETA CALIFCRNICA N EUCHAETA MEDIA N EUCHAETA SPIN OS A N SCOTTOCALANUS PESECANS N LOPHOTKRIX FRONTALIS N SCAPHOCALANUS MAGNUS N SCOLECITHRICELLA OVATA N METRIDIA BOECKI N PLEUROMAMMA SCUTULLATA N PLEUROMAMMA BOREALIS N GAUSSIA PRINCEPS N LUCICUTIA BICORNUTA N DISSETA MAXIMA N HETER0RHA3DUS PAPILLIGER N HETERORHABDUS CLAUSI H HETERORHABDUS SFINIFRONS N HETEROSTYLTTES LCNCICCRNIS N CENTRAUGAPTILUS PORCELLUS N PACHYPTILUS FACIFICUS H PHYLLOPUS INTEGER N ARIETELLUS FLUMFER N HALOPTILUS OXYCEFriALUS N 147 Figure 1 7 : Temperature-Salinity-Plankton (T-S-P) diagrams'and water regime limits for December 1 9 7 ^ . Three heavy line types embrace a l l Surface, Transition, and Deep regimes. Identical faint lines indicate T-S limits of individual regimes, identified by codes discussed in the text. A small inset accomodates extreme T-S values. Line types are, Surface , Transition , and Deep . The temperature salinity intercept for each plankton sample i s indicated by a small dot, beside which is an alphabetically coded l i s t of species present. Species are grouped according to similarities in occurrence on T-S-P diagrams. The four major groups, Surface and Surface Transitional, Transitior.al/Deep, Migrants, and Deep species are plotted separately. Suraier Surface species appear with the Surface and Surface Transitional, and Off-shore species with the Deep speci.es groups, respectively. Species and codes are given below for the entire study period. SPECIES CROUP: SUMMER SURFACE CENTROPAGES. MCMURRICHI D PODON spp. and EVADNE spp. E PARACALANUS PARVUS . G CHAEBORUS LARVAE H SPECIES GROUP: 0FF-SHOR5 SPECIES GROUP: SURFACE AND SURFACE TRANSITIONAL ACARTIA LONGIREMIS A ACARTIA CLAUSI B TORTANUS DISCAUDATUS C EPILABIDOCERA AMPHITRITES F GAETANUS INTER MEDIUS D ' RHINCALANUS NASUTUS E CALANUS CRISTATUS P EUCHIRELLA ROSTRATA G EUCHIRELLA PSEUDOPULCKRA H PLEUROMAMMA QUADRUNGULATA I PLEUROMAMMA XIFHIAS J PLEUROMAMMA ABDOMINALIS K METRIDIA PRINCSPS L CANDACIA BIPINNATA M The following off-shore species occurred only in one sample. A l l are coded N: SPECIES GROUP: MIGRANTS CALANUS MARSHALLAE A PSEUDOCALANUS ELONGATUS B METRIDIA PACIFICA C EUCALANUS BUNGI BUNGI D CALANUS PLUMCHRUS E S P E C I E S GROUP: T R A N S I T I O N A L / D E E P A E T I D I U S D I V E R G E N S A S C O L E C I T H R I C E L L A MINOR B EUCHAETA J A P O N I C A C M E T R I D I A OKHOTENSIS • D G A I D I U S COLUMBIAE E HErERORHABDUS T A N N E R I P CANDACIA C 0 L U M 3 I A E G C H I R I D I U 3 G R A C I L I S H MICROCALANUS FYGMAEUS I SPECIES GROUP: DEEP SPINOCALANUS BREVICAUDATUS A SCAPHOCALANUS BREVICORNIS B RACOVITZANUS ANTARCTICUS C GAETANUS PILEATU3 " N GAETANUS MILES N CHIRUNDINA STREETS I N UNDEUCHAETA BISPINOSA N EUCHIRELLA CURTICAUDA N PABAEUCHAETA CALIFORNICA N EUCHAETA MEDIA N EUCHAETA SPINOSA N SCOTTOCALANUS PES3CANS N LOFHOTHRIX FRONTALIS N SCAPHOCALANUS MAGNUS N SCOLECITHRICELLA OVATA N METRIDIA BOECKI N PLEUROMAMMA SCUTULLATA N PL EUROMAMMA BOREALIS N GAUSSIA PRINCSFS N LUC1CUTIA BICORNUTA N DISSErA MAXIMA N HETERORHABDUS PAPILLIGER N HETERORHABDUS CLAUSI K HETERORHABDUS SPINIFRCNS N HETEROSTYLITES LCNGICCRNIS N CENTRAUCAPTILUS PGRCELXUS N PACHYPTILUS PACIFICUS H PHYLLOPUS INTEGER N ARIETELLUS PLUMIFER K HALOPflLUS OXYCEFHALUS N 8-F 7-f C A" T N I • 8 7f 6 •* 6 s K 8 BCEF~"V< V TRANSITIONAL DEEP 8 f 7 + 2 9 3 0 31 6 32 33 "29 SALINITY (%o) i—• 148 Figure 18: Temperature-Salinity-Plankton (T-S-P) diagrams and water regime limi t s for February 1 9 7 5 . Three heavy line types embrace a l l Surface, Transition, and Deep regines. Identical faint lines indicate T-S limits of individual regimes, identified by codes discussed in the text. A small inset accomodates extreme T-5 values. Line types are, Surface --- , Transition , and Deep . The temperature salinity intercept for each plankton sample i s indicated by a small dot, beside which is an alphabetically coded l i s t of species present. Species are grouped according to similarities in occurrence on T -3 - ? diagrams. The four major groups, Surface and Surface Transitional, Transitional/Deep, Migrants, and Deep species are plotted separately. Summer Surface species appear with the Surface and Surface Transitional, and Off-shore speci&s with the Deep species groups, respectively. Species and codes are given below for the entire study period. SPECIES GROUP: SUMMER SURFACE CENTROPAGES MCMURRICHI D PODON spp. and EVADNE spp. E PARACALANUS PARVUS G CHAEBORUS LARVAE H SPECIES GROUP: SURFACE AND SURFACE  TRANSITIONAL ACARTIA LONGIREMIS A ACARTIA CLAUSI B TORTANUS DISCAUDATUS C EPILABIDOCERA AMPHITRITES F SPECIES GROUP: MIGRANTS CALANUS MARSHALLAE A PSEUDOCALANUS ELONGATUS B METRIDIA PACIFICA C EUCALANUS BUNGI BUNGI ' D CALANUS PLUMCKRUS E SPECIES GROUP: TRANSITIONAL/DEEP ABTIDIUS DIVERGENS . A SCOLECITHRICELLA MINOR B EUCHAETA JAPONICA C METRIDIA OKHOTENSIS -B GAIDIUS.COLUMBIAE E HETERORHABDUS TANNERI F CANDACIA COLUMBIAE G CHIRIDIUS GRACILIS H HICROCALANUS PYGMAEUS I SPECIES GROUP: DEEP SPINOCALANUS BREVICAUDATUS A SCAPHOCALANUS BRE'/ICCRNIS B RACOVITZANUS ANTARCTICUS C SPECIES GROUP: OFF-SHORE GAETANUS INTERMEDIUS D RHINCALANUS NA3UTUS E CALANUS CRISTATUS F EUCHIRELLA ROSTRATA G EUCHIRELLA PSEUDOPULCHRA H PLEUROMAMMA QUADRUNGULATA - I PLEUROMAMMA XIFRTAS J PLEUROMAMMA ABDOMINAL IS K METRIDIA PRINCEPS L CANDACIA BIPINNATA M Tho following off-shore species occurred only in one sanple. A l l are coded N: GAETANUS PILEATUS * N GAETANUS MILES N CHIRUNDINA STREETSI N ' UNDEUCHAETA BISPINCSA N EUCHIRELLA CURTICAUDA N PARA EUCHAETA CALIFCRNICA N EUCHAETA MEDIA N EUCHAETA SPINCSA N SCOTTOCALANUS PESECANS N LOPHOTKRIX FRONTALIS N SCAPHOCALANUS MAGNUS N SCOLECITHRICELLA OVA?A N METRIDIA BOECKI N PLEUROMAMMA SCUTULLATA N PLEUROMAMMA BCREALIS N GAUSSIA PRINCEPS N LUCICUTIA BICORNUTA K DISSETA MAXIMA N HETERORHABDUS PAPILLIGER N HETERORHABDUS CLAUSI N HETERORHABDUS SPINIFRCNS N METEROSTYLITSS LCNGICCRNIS N CRNTRAUGAPTILUS PCRCELLUS N PACHYPTILUS PACIFICUS N PHYLLOPUS INTEGER N ARIETELLUS PLUMIFER H HALOPTILUS OXYCEFHALUS N 8-r 7 + 6-F SURFACE AND SURFACE TRANSITIONAL 8 T 7-f 6f TRANS IT IONAL/ DEEP A.C-H 29 30 31 32 8 T 7+ 6-f MIGRANT A B C J'»»YA-E A B C A B O V B / 8 T 7+ 6-F 33 29 D E E P 30 31 32 33 SALINITY(%o) FEBRUARY 1975 1 4 9 Figure 19: Temperature-Salinity-Plankton (T-S-P) diagrams and water regime limits f o r March 1975. Three heavy line types embrace a l l Surface, Transition, and Deep regimes. Identical faint lines indicate T-S limits of individual regimes, Identified by codes discussed in the text. A small inset accomodates extreme T-S values. Line types are, Surface ; , Transition , and Deep . The temperature salinity intercept for each plankton sample is indicated by a small dot, beside which is an alphabetically coded l i s t of species present. Species are grouped according to similarities in occurrence cn T-S-P diagrams. The four major groups, Surface and Surface Transitional, Transiticnal/Deep, Migrants, and Deep species are plotted separately. Sunner Surface species appear with the Surface and Surface Transitional, and Off-shore species with the Deep species groups, respectively. Species and codes are given below for the entire study period. SPECIES GROUP: SUMMER SURFACE CENTROPAGES MCURRICHI D PODON spp. and EVADNE spp. E PARACALANUS PARVUS G CHAEBORUS LARVAE H SPECIES GROUP: SURFACE AMD SURFACE  TRANSITIONAL 'ACARTIA LONGIREMIS A ACARTIA CLAUSI B TORTANUS DISCAUDATUS C EPILABIDOCERA AMPHITRITES F SPECIES GROUP: OFF-SHORE GAETANUS INTERMEDIUS D RHINCALANUS NASUTUS E CALANUS CRISTATUS F EUCHIRELLA ROSTRATA . G EUCHIRELLA PSEUDOPULCHRA H PLEUROMAMMA QUADRUNGULATA I PLEUROMAMMA XIPHIAS J PLEUROMAKMA ABDOMINAL IS K METRIDIA PRINCEPS L CANDACIA BIPINNATA M The following off-shore species occurred only in one sample. A l l are coded. N: SPECIES GROUP: MIGRANTS CALANUS MARSHALLAE A PSEUDOCALANUS ELONGATUS . B METRIDIA PACIFICA C EUCALANUS BUNGI BUNGI D CALANUS PLUMCHRUS E S P E C I E S GROUP: T R A N S I T I O N A L / P S S P AETIDIUS DIVERGENS A SCOLECITHRICELLA MINOR B EUCHAETA JAPONICA C METRIDIA OKHOTENSIS . D GAIDIUS COLUMBIAE E HETERORHABDUS TANNERI F CANDACIA COLUMBIAE G CHTRIDIUS GRACILIS H MICROCALANUS PYGMAEUS I SPECIES GROUP: DEEP SPINOCALANUS BREVICAUDATUS A SCAPHOCALANUS BREVICCRNIS B RACOVITZANUS ANTARCTICUS C G A E T A N U S P I L E A T U S N G A E T A N U S M I L E S N C H I R U N D I N A S T R E S T S I N UNDEUCHAETA B I S F I N O S A N E U C H I R E L L A C U R T I C A U D A K P A R A E U C H A E T A C A L I F C R N I C A N E U C H A E T A MEDIA N EUCHAETA S P I N O S A N S C O T T O C A L A N U S P2SSCANS N L O P H O T K R I X F R O N T A L I S N S C A P H O C A L A N U S MAGNUS N S C O L E C I T H R I C E L L A OVATA N M E T R I D I A B O E C K I N ELEUROMAMMA S C U T U L L A T A N PLEUROMAKMA B C R E A L I S N G A U S S I A P R I N C E P S K L U C I C U T I A B I C C R N U T A N D I S S E T A MAXIMA N H E T E R O R H A B D U S P A P I L L I G E R N HETERORHABDUS C L A U S I K HETERORHABDUS S F T N I F R C X S K " H E T E R O S T Y L I T E S L C N G I C C R N I S N C E N T R A U G A P T I L U S F O R C H L U S N P A C H Y P T I L U S P A C I F I C U S N P H Y L L O P U S I N T E G E R N A R I E T E L L U S P L U M I F E R N H A L O P T I L U S O X Y C E P H A L U S N 8 T SURFACE AND SURFACE TRANSITIONAL 7-F u o UJ or z> \-< LU 8-Q_ UJ ~ ABC A C / #5> 5 > ' J U M W B " E' AC A AC C TRANSITIONAL/ DEEP A.C-Hfj ;T»tA,C-G 7+ 6-: ABC ACDE ,^ AC-F.H */V'A.C-G »-iA.D-G ACDGH AC£> (CACD -GH » a A B CD 29 30 31 32 8 T -7-F MIGRANT All stations ._ within indicatedj"^ KT ABC ABC»__, 6-F _ ' 8 T 7-f DEEP 33 29 SAL IN ITY(%o) 30 31 32 M A R C H 1975 3 3 S 150 Figure 20: Temperature-Salinlty-Plankton (T-S-P) diagrams and water regime limits for April ly/j. Three heavy line types embrace a l l Surface, Transition, and Deep regimes. Identical faint lines indicate T-S limits of individual regimes, identified by codes discussed in the text. A small inset accomodates extreme T-S values. Line types are, Surfa Transition , and Deep •-. The temperature salinity intercept for each plankton sample i s indicated by a small dot, beside which is an alphabetically coded l i s t of species present. Species are grouped according to similarities in occurrence on T-S-P diagrams. The four major groups, Surface and Surface Transitional, Transitional/Deep, Migrants, and Deep species are plotted separately. Summer Surface species appear with the Surface and Surface Transitional, and Off-shore speci&s with the Deep species groups, respectively. Species and codes are given below-for the entire study period. S P E C I E S CROUP: - SUMMER S U R F A C E CENTROPAGES MCMURRICHI D PODON spp. and E V A D N E spp. E P A R A C A L A N U S P A R V U S G CHAEBORUS L A R V A E H S P E C I E S GROUP: S U R F A C E AND S U R F A C E  T R A N S I T I O N A L A C A R T I A L O N G I R E M I S A A C A R T I A C L A U S I B TORTANUS D I S C A U D A T U S C E P I L A B I D O C E R A A M P H I T R I T E S F S P E C I E S GROUP: MIGRANTS C A L A N U S MARSHALLAE A PSEUDOCALANUS ELONGATUS B K E T R I D I A P A C I F I C A C EUCALANUS B U N G I B U N G I D CALANUS PLUMCHRUS E S P E C I E S GROUP: T R A N S I T I O N A L / D S S P A E T I D I U S D I V E R G E N S A S C O L E C I T H R I C E L L A MINOR B ' EUCHAETA J A P O N I C A C M E T R I D I A OKHOTENSIS D G A I D I U S C 0 L U M 3 I A S E HETERORHABDUS T A N N E R I F C A N D A C I A C O L U M B I A E G C H T R I D I U S G R A C I L I S H MTCROCALANUS PYGMAEUS I S P E C I E S GROUP: D E E P S P I N O C A L A N U S B R E V I C A U D A T U S A SCAPHOCALANUS B R E ' / I C C R N I S B R A C O V I T Z A N U S A N T A R C T I C U S C SPECIES GROUP: OFF-SHORE GAETANUS INTERMEDIUS D RHINCALANUS NASUTUS E CALANUS CRISTATUS F EUCHIRELLA ROSTRATA C EUCHIRELLA FSEUDOFULCHRA H PLEUROMAMMA QUADRUNGULATA I PLEUROMAMMA XIFrilAS J PLEUROMAMMA. ABDOMINALIS K METRIDIA FRINCEPS . L CANDACIA BIPINNATA M The following off-shore species occurred only in one sample. A l l are coded N : G A E T A N U S P I L E A T U S . G A E T A N U S M I L E S C H I R U N D I N A S T R E E T S I UNDEUCHAETA B I S P I N O S A E U C H I R E L L A C U R T I C A U D A P A R A E U C H A E T A C A L I F C R N I C A EUCHAETA M E D I A EUCHAETA S P I N OS A S C O T T O C A L A N U S P E S E C A N S L O P H O T H R I X F R O N T A L I S S C A P H O C A L A N U S MAGNUS S C O L E C I T H R I C E L L A OVATA M E T R I D I A 3 0 E C K I PLEUROMAMMA S C ' J T U L L A T A PLEUROMAMMA B O R E A L I S G A U S S I A P R I N C E F S L U C I C U T I A B I C O R N U T A D I S S E T A MAXIMA HETERORHABDUS P A P I L L I G E R H E T E R O R H A B D U S C L A U S I HETERORHABDUS S P I N I F R C N S H E T E R 0 S T Y L I T E 3 L C N G I C C R N I S C E N T R A U G A F T I L U S F C R C E L L U S P A C H Y P T I L U S P A C I F I C U S P H Y L L O P U S I N T E G E R A R I E T E L L U S P L U M I F E R H A L O P T I L U S O X Y C E F H A L U S N N N N N N N N N H N N N K N N N N N N N N N N N N N u o LU CC z> < or UJ o_ UJ 8 r ~10 (J G." T / ^ F " 7f A. ACV«/ 11 A 20 25 29 Sal . (%o) 6-f SURFACE AND SURFACE TRANSITIONAL 8 T -10 o 7f A C D F 4 > s ; rtfA-F.H A-ACH 20 25 29 Sal . (•/ . . ) (• A i 6+ TRANSITIONAL DEEP 8 T 7 + 6 f MIGRANT 8 T 7f 6 r 29 30 DEEP 31 32 33 29 S A L I N I T Y (°/oo) 30 31 32 33 APRIL 1975 H O 151 Figure 21i Temperature-Salinity-Plankton (T-S-P) diagrams and. water regime limits for May 1975. Three heavy line types embrace a l l Surface, Transition, and Deep regimes. Identical faint lines indicate T-S limits of individual regimes, identified by codes discussed in the text. A snail Inset accomodates extreme T-S values. Line types are, .Surface , Transition , and Deep -• . The temperature salinity intercept for each plankton sample i s indicated by a small dot, beside which is an alphabetically coded l i s t of species present. Species are grouped according to similarities in occurrence on T-S-P diagrams. The four major groups, Surface and Surface Transitional, Transitional/Deep, Migrants, and Deep species are plotted separately. Summer Surface species appear with the Surface and Surface Transitional, and Off-shore species with the Deep species groups, respectively. Species and codes are given below for the entire study period. SPECIES GROUP: SUMMER SURFACE CENTROPAGES MCMURRICHI D PODON spp. and EVADNE si)p. E PARACALANUS PARVUS * G CHAEBORUS LARVAE H SPECIES GROUP: SURFACE AND SURFACE  TRANSITIONAL 'ACARTIA LONGIREMIS A ACARTIA CLAUSI B TORTANUS DISCAUDATUS C EPILABIDOCERA AMFHITRITES F SPECIES GROUP: MIGRANTS CALANUS MARSHALLAE A PSEUDOCALANUS ELONGATUS . B METRIDIA PACIFICA C EUCALANUS BUNGI BUNGI D CALANUS PLUMCHRUS E SPECIES GROUP: TRANSITIONAL/DEEP AETIDIUS DIVERCENS A SCOLECITHRICELLA MEN OR B EUCHAEPA JAPONICA C METRIDIA OKHOTENSIS . D GAIDIUS COLUMBIAE E HETERORHABDUS TANNERI F CANDACIA COLUMBIAE G CHIRIDIUS GRACILIS • H KECROCALANUS FYGMAEUS I SPECIES GROUP: DEEP SPINOCALANUS BREVICAUDATUS A SCAPHOCALANUS BREVICORNIS B RACOVITZANUS ANTARCTICUS C SPECIES GROUP: OFF-SHORE GAETANUS INTERMEDIUS D RHINCALANUS NASUTUS E CALANUS CRISTATUS F EUCHIRELLA ROSTRATA G EUCHIRELLA PSEUDOPULCHRA H PLEUROMAMMA QUADRUNGULATA I PLEUROMAMMA XIPKIA3 J PLEUROMAMMA ABDCMTNALIS K METRIDIA FRIN CEPS L CANDACIA BIPINNATA ,M The following off-shore species occurred only in one sample. A l l are coded N: GAETANUS PILEATUS N GAETANUS MILES N CHIRUNDINA STREETS I N UNDEUCHAETA BISFINGSA N EUCHIRELLA CURTICAUBA N PARAEUCHAETA CALIFCRNICA N EUCHAETA MEDIA N EUCHAETA SPINOSA N SCCTTOCALANUS PESECANS N LOPHOTKRIX FRONTALIS N SCAPHOCALANUS MAGNUS N SCOLECITHRICELLA OVATA N METRIDIA BOSCXI N PLEUROMAMMA SCUTULATA N PLEUROMAMMA BOREALIS N GAUSSIA PR IN CEPS N LUCICUTIA 3IC0RNUTA N DISSETA MAXIMA N H£rER0RHA3DUS PAPILLIGER N HErffiORHA3DUS CLAUSI N HETERORHABDUS SPINIFRCNS N HETEROSTYLITSS LCNGICCRNIS N CENTHAUGAPTILUS PGRCELLUS N PACHYPTILUS PACIFICUS N PirYLLOPUS INTEGER N ARIETELLUS PLUMIFER N HALOPTILUS OXYCEFHALUS N u o LU or Z> h -< Q: UJ o_ LU 9 T 8 7f SURFACE AND SURFACE TRANSITIONAL G10 AB 8 !AC • • • • | i i i i | -15 20 25 Sal. (<>/..) > * 3 0 *mr ^ A C R y\E"' \ \ AC?* S 2 9 T 8 f 7 TRANSITIONAL/ DEEP u 1 0 v. x I I I I I I I I I l I > i la ft| *30 N N ABCDNr-CF-,/ J.CDEF SCH° F 15 20 25 A Sal.(°/oo) t \ i i l 9 *-fA-H \ \ ACDF AH ABCF _ l I 1 : 2.9 3 0 31 9 T 8K 74-I I I I I I I T | I > Ja *\ ABC 15 20 25 *30 r\ Sal.(°/oo) \ /^-ABCD A B C D\ \ i%^ABC V . / •<ABCD ABCE"~AB ABE _J I 1 A 111111111111. & 15 20 25 *30 rs Sal.C/oo) 32 33 2.9 A S A L I N I T Y ( ° / o o ) M A Y 1975 152 Figure 22i Temperature-Salinity-Plankton (T-S-P) diagrams and water regime l i m i t s for June 1975. Three heavy line types embrace a l l Surface, Transition, and Deep regimes. Identical faint lines indicate T-S limits of individual regir.es, identified b y codes discussed in the text. A small inset accomodates extreme T-S values. Line types are, Surface , Transition , and Deep . The temperature salinity intercept for each plankton sample is indicated by a small dot, beside which'is an alphabetically coded l i s t of species present. Species are grouped according to similarities in occurrence on T-S-P diagrams. The four major groups, Surface and Surface Transitional, Transiticr.al/Deep, Migrants, and Deep species are plotted separately. Summer Surface species appear with the Surface and Surface Transitional, and Off-shore species with the Deep species groups, respectively. Species and codes are given below for the entire study period. SPECIES GROUP: SUMMER SURFACE SPECIES GROUP: OFF-SKORE CENTROPAGES MCMURRICHI D PODON spp. and EVADNE spp. E PARACALANUS. PARVUS G CHAEBORUS LARVAE H SPECIES GROUP: SURFACE AND SURFACE  TRANSITIONAL ACARTIA LONGIREMIS A ACARTIA CLAUSI . B TORTANUS DISCAUDATUS C EPILABIDOCERA AMPHITRITES F GAETANUS INTERMEDIUS D RHTNCALANUS NASUTUS E CALANUS CRISTATUS F-EUCHIRELLA ROSTRATA G EUCHIRELLA PSEUDOPULCKRA H PLEUROMAMMA QUADRUNGULATA I PLEUROMAMNA XIFHIAS J PLEUROMAMMA ABDOMINALIS K METRIDIA PRIM CEPS L CANDACIA BIPINNATA M The following off-shore species occurred only in one sample.- A l l are coded N: SPECIES GROUP: MIGRANTS CALANUS MARSHALLAE A PSEUDOCALANUS ELONGATUS B METRIDIA PACIFICA C EUCALANUS BUNGI BUNGI D CALANUS PLUMCHRUS E SPECIES GROUP: TRANSITIONAL/DEEP AETIDIUS DIVERGENS A SCOLECITHRICELLA MINOR B EUCHABrA JAPONICA C MErRIDIA OKHOTENSIS • D GAIDIUS COLUMBIAE ' E HETERORHABDUS TANNERI F CANDACIA COLUMBIAE G CHIRIDIUS GRACILIS H MICROCALANUS PYGMAEUS I SPECIES GROUP: DEEP SPINOCALANUS BREVICAUDATUS A SCAPHOCALANUS ERSVICCRNIS B RACOVITZANUS ANTARCTICUS C GAETANUS PILEATUS ' N GAETANUS MILES' N CHIRUNDINA STREETSI N UNDEUCHAETA BISPIN03A N EUCHIRELLA CURTICAUDA N PARAEUCHAETA CALIFORNICA N EUCHAETA MEDIA N EUCHAETA SPINOSA N SCCTTOCALANUS PESECANS N LOPKOTHRIX FRONTALIS N SCAPHOCALANUS MAGNUS N SCOLECITHRICELLA OVATA N METRIDIA BOECKI N PLEUROMAMMA SCUTULLATA N PLEUROMAMMA BOREALIS N GAUSSIA PRINCEPS N LUCI'CUTIA BICORNUTA N DISSETA MAXIMA N HETERORHABDUS PAPILLIGER N HETERORHABDUS CLAUSI N HETERORHABDUS SPINIFRCNS N HETEROSTYLITSS LONGICORNIS N CENTRAUGAPTILUS PORCELLUS N PACHYPriLUS PACIFICUS N PHYLLOPUS INTEGER N ARIETELLUS PLUMIFER N HALOPTILUS OXYCEFHALUS N SURFACE AND SURFACE TRANSITIONAL 1 4 r « " ! - ^ 32 33 SALINITY (%0) 9 T 7 ^ 9 T 8-K • 7-f |DEEP| s I ABCP 10 15 20 Sal. (•/..) 25 *30 29 A 30 31 32 33 JUNE 1975 I V ) 153 Figure 23: Temperature-Salinity-Plankton (T-S-P)'diagrams and water regime limits for July 1975. Three heavy line types embrace a l l Surface, Transition, and Deep regimes. Identical faint lines indicate T-S limits of individual regimes, identified by codes discussed in the text. A small inset accomodates extrer.e T-S values. Line types are, Surface , Transition , and Deep . The temperature salinity intercept for each plankton sample is indicated by a small dot, beside which is an alphabetically coded l i s t of species present. Species are grouped according to similarities in occurrence cn T-5-? diagrams. The four major groups, Surface and Surface Transitional, Transitional/Deep, Migrants, and Deep species are plotted separately. Summer Surface species appear with the Surface and Surface Transitional, and Off-shore species with the Deep speci.es groups, respectively. Species and codes are given below for the entire study period. SPECIES GROUP: SUMMER SURFACE CENTROPAGES MCMURRICHI ' D PODON spp. and EVADNE spp. E PARACALANUS PARVUS G CHAEBORUS LARVAE H SPECIES GROUP: SURFACE AND SURFACE  TRANSITIONAL ACARTIA LONGIREMIS A ACARTIA CLAUSI B TORTANUS DISCAUDATUS C EPILABIDOCEHA AMPHITRITES F SPECIES GROUP: MIGRANTS CALANUS MARSHALLAE A PSEUDOCALANUS ELONGATUS B METRIDIA PACIFICA C EUCALANUS BUNGI BUNGI ' D CALANUS PLUMCHRUS ' E S P E C I E S GROUP: T R A N S I T I O N A L / D E S P A E T I D I U S D I V E R G E N S A S C O L E C I T H R I C E L L A MINOR B EUCHAETA J A P O N I C A C M E T R I D I A OKHOTENSIS r D G A I D I U S COLUMBIAE ' E HETERORHABDUS T A N N E R I F CANDACIA COLUMBIAE G CHTRID IUS G R A C I L I S H MICROCALANUS PYGMAEUS I SPECIES GROUP: DEEP SPINOCALANUS BREVICAUDATUS A SCAFKOCALANUS BREVICORNIS B RACOVITZANUS ANTARCTICUS C SPECIES GROUP: OFF-SHORE GAETANUS INTERMEDIUS D RHINCALANUS NASUTUS E CALANUS CRISTATUS F EUCHIRELLA ROSTRATA G EUCHIRELLA PSEUDOPULCKRA H PLEUROMAMMA QUADRUNGULATA I PLEUROMAMMA XIFHIA3 J PLEUROMAMMA ABDOMINALIS K METRIDIA PRINCEPS L CANDACIA BIPINNATA M / The following off-shore species occurred only in cne sample. A l l are coded N: GAETANUS PILEATUS ' N GAETANUS MILES N CHIRUNDINA STREBTSI N ' UNDEUCHAETA BISFINCSA N EUCHIRELLA CURTICAUDA N PARAEUCHAETA CALIFCRNICA N EUCHAETA MEDIA N EUCHAETA SPINOSA N SCOTTOCALANUS PESECANS K LOPHOTHRIX FRONTALIS N SCAPHOCALANUS MAGNUS N SCOLECITHRICELLA OVATA N METRIDIA BOECKI H PLEUROMAMMA SCUTULLATA N PLEUROMAMMA BOREALIS N GAUSSIA PRINCEPS N LUCICUTIA EICORNUTA N DISSETA MAXIMA N HETERORHABDUS PAPILLIGER N HETERORHABDUS CLAUSI N •HETERORHABDUS SFINIFRCNS N HETEROSTYLITES LCNCICCRNIS N CEHTRAUGAPTILUS PCRCELLUS N PACHYPTILUS PACIFICUS N PHYLLOPUS INTEGER N ARIETELLUS PLUMIFER N HALOPTILUS OXYCEFHALUS N JULY 1975 154 Figure 2k: Temperature-Salinity-Plankton (T-S-P) diagrams and water regime limits for August 1975« Three heavy line types embrace a l l Surface, Transition, and Deep regimes. Identical faint lines indicate T-S limits of individual regimes, identified by codes discussed in the text. A small inset accomodates extreme T-S values. Line types are, Surface , Transition , and Deep - • . The temperature salinity intercept for each plankton sample is indicated by a small dot, beside which is an alphabetically coded l i s t of species present. Species are grouped according to similarities in occurrence on T-S-P diagrams. The four major groups, Surface and Surface Transitional, Transitional/Deep, Migrants, and Deep species are plotted separately. Summer Surface species appear with the Surface and Surface Transitional, and Off-shore specie-s with the Deep species groups, respectively. Species and codes are given below for the entire study period. SPECIES GROUP: SUMMER SURFACE CENTROPAGES MCMURRICHI D' PODON spp. and EVADNE spp. E PARACALANUS PARVUS G CHAEBORUS LARVAE H SPECIES GROUP: SURFACE AND SURFACE  TRANSITIONAL 'ACARTIA LONGIREMIS A ACARTIA CLAUSI B TORTANUS DISCAUDATUS C EPILABIDOCERA AMPHITRITES F SPECIES GROUP: MIGRANTS CALANUS MARSHALLAE A •PSEUDOCALANUS ELONGATUS .B METRIDIA PACIFICA C EUCALANUS BUNGI BUNGI D CALANUS PLUMCHRUS E SPECIES GROUP: TRANSITIONAL/DEEP AETIDIUS DIVERGENS . A SCOLECITHRICELLA MET OR B EUCHAETA JAPONICA C METRIDIA OKHOTENSIS D GAIDIUS COLUMBIAE E HETERORHABDUS TANNERI ' T CANDACIA COLUMBIAE G CHIRIDIUS GRACILIS H MICROCALAiNUS PYGMAEUS I SPECIES CROUP; DEEP SPINOCALANUS BREVICAUDATUS A SCAPHOCALANUS 3RSVICGRNIS B RACOVITZANUS ANTARCTICUS C SPECIES GROUP: OFF-SHORE GAETANUS INTERMEDIUS D RHTNCALANUS NASUTU3 E CALANUS CRISTATUS " F EUCHIRELLA ROSTRATA G EUCHIRELLA PSEUDOPULCKRA H PLEUROMAMMA QUADRUNGULATA I PLEUROMAMMA XIFHIAS J PLEUROMAMMA ABDOMINALIS K METRIDIA PRINCEPS L CANDACIA BIPINNATA M The following off-shore species occurred only in one sample. A l l are coded N: GAETANUS PILEATUS N GAETANUS MILES N CHTRUNDINA STRESTSI N UNDEUCHAETA 3ISPINCSA N EUCHIRELLA CURTICAUDA N PARAEUCHAETA CALIFGRNICA N EUCHAETA MEDIA N EUCHAETA SPINCSA N SCOTTOCALANUS PESSCANS N LOPHOTHRIX FRONTALIS N SCAPHOCALANUS MAGNUS N SCOLECITHRICELLA OVATA N METRIDIA BOECKI N PLEUROMAMMA SCUTULLATA N PLEUROMAMMA BOREALIS N GAUSSIA PRINCEPS N LUCICUTIA BICORNUTA N DISSETA MAXIMA N HETERORHABDUS PAPILLIGES N HETERORHABDUS CLAUSI N HETERORHABDUS SPINIFRCNS N HETEROSTYLITHS LCNGICCRNIS N CENTRAUGAPTILUS FOR CELL US N PACHYPTILU3 PACIFICUS N PHYLLOPUS INTEGER N ARIETELLUS PLUMIFER N HALOPTILUS OXYCEFHALUS N 155 Figure 25: Temperature-Salinity-Plankton (T-S-P) diagrams and water regime limits for September 1975' Three heavy line types embrace a l l Surface, Transition, and Deep regimes. Identical faint lines indicate T-S limits of individual regimes, identified by codes discussed in the text. A small inset accomodates extreme T-S values. Line types are, Surface , Transition , and Deep . The temperature salinity intercept for each plankton sample is indicated by a small dot, beside which is an alphabetically coded l i s t of species present. Species are grouped according to similarities in occurrer.ee on T-S-P diagrams The four major groups, Surface and Surface Transitional, Transitional/Deep, Migrants, and Deep species are plotted separately. Summer Surface species appear with the Surface and Surface Transitional, and Cff-shore species with the Deep species groups, respectively. Species and codes are given below for the entire study period. SPECIES GROUP: SUMMER SURFACE CENTROPAGES MCMURRICHI D .PODON spp. and EVADNE spp. E PARACALANUS PARVUS G CHAEBORUS LARVAE H SPECIES GROUP: SURFACE AND SURFACE TRANSITIONAL ACARTIA LONGIREMIS A ACARTIA CLAUSI B TORTANUS DISCAUDATUS C EPILABIDOCERA AMPHITRITES F SPECIES GROUP: MIGRANTS CALANUS MARSHALLAE A PSEUDOCALANUS ELONGATUS B METRIDIA PACIFICA C EUCALANUS BUNGI BUNGI D CALANUS PLUKCHRUS E SPECIES GROUP: TRANSITIONAL/DEEP AETIDIUS DIVERGENS A SCOLECITHRICELLA KETCR B EUCHAETA JAPONICA C METRIDIA OKHOTENSIS D CAIDIUS COLUMBIAE E HETERORHABDUS TANNERI F CANDACIA C0LUK3IAS G CHIRIDIU3 GRACILIS H KICROCALANUS PYGMAEUS I SPECIES CROUP: DEEP SPINOCALANUS BREVICAUDATUS • A S CATHOC AL AN US BREVICORNIS B RACOVITZANUS ANTARCTICUS C SPECIES GROUP: OFF-SHORE GAETANUS INTERMEDIUS D RHINCALANUS NASUTUS E CALANUS CRISTATUS F EUCHIRELLA ROSTRATA G EUCHIRELLA PSEUDOPULCKRA H PLEUROMAMMA QUADRUNGULATA I PLEUROMAMMA XIFKIAS J PLEUROMAMMA ABDOMINALIS K METRIDIA PRINCEPS L CANDACIA BIFINNATA M The following off-shore species occurred only in one sample. A l l are coded N: GAETANUS PILEATUS N GAETANUS MILES N CRTRUNDINA STREETSI N UNDEUCHAETA BI3PIN0SA N EUCHIRELLA CURTI CAUDA N PARA EUCHAETA CALIFCRNICA N EUCHAETA MEDIA H EUCHAETA SPIN OS A N SCOTTOCALANUS PESECANS N LOPKOTHRIX FRONTALIS N SCAPHOCALANUS MAGNUS N SCOLECITHRICELLA OVATA N METRIDIA BCECKI N ' PLEUROMAMMA SCUTULLATA N PLEUROMAMMA BOREALIS N GAUSSIA PRINCEPS N LUCICUTIA BICORNUTA H DISSETA MAXIMA N HETERORHABDUS PAPILLIGER N HETERORHABDUS CLAUSI N HETERORHABDUS SFINIFRCNS N HETEROSTYLITES LCNCICCRNIS N CENTRAUGAPTTLUS PCRCSLLUS N PAQIYPTILUS PACIFICUS N PHYIXOFUS INTEGER N ARIETELLUS PLUMIFER N HALOPTILUS OXYCEFHALUS N 4 156 Figure 26: The monthly l i f e h i s t o r y composition of Tortanus  discaudatus from October 19?4 to September 1975 i n Queen C h a r l o t t e S t r a i t and Knight I n l e t ( s t a t i o n s QG, Kn 3 and 7). The data i s subdivided according to (a) s u r f a c e , (b) t r a n s i t i o n , and (c) deep water ( c a t e g o r i e s as i d e n t i f i e d i n the hydrographic p o r t i o n of the t e x t ) . Graphs f o r c a t e g o r i e s are omitted only when the species f a i l e d t o occur i n t h a t category a t any time d u r i n g the year. I f a water category could not be i d e n t i f i e d i n a p a r t i c u l a r month, the c a p i t a l l e t t e r of t h a t month i s omitted from the graph. Night samples are i n d i c a t e d by a bar beneath the month. Abundance i s expressed as the estimated mean concentration per cubic meter of a p a r t i c u l a r water category f i l t e r e d . 156a T O R T A N U S D I S C A U D A T U S Q C • 13 KEY 0 — *C6 ? A — - *C 4 01 (DI | _F |_M I A | M ] J I Tl A IS, I • 14 P1 b V A A \ i ° . . . ... W -"751 Ip"! | M M I A I M|_J i_J_ I _A 1_S I •12 »11 /•II »8 I M | A J M I J | J | A | S I K N 3 .8< It l l I «. oT • > ' o t \ F I M l A | M I I l / \ f . ^1 b M y V. rrpvTFA|Mi J j JTAITI I A I M I J I J I A | S I A i , 3 K N 7 0 o| 1D| | " | M I A I M | J I J ! A l s l E ' ] ^ , c 0 O ] p D j | F | M l A | M | J |J | A l S I MONTH 157 Figure 27: The monthly l i f e h i s t o r y composition of A c a r t i a  l o n g i r e m i s and A c a r t i a c l a u s i from October 1974 t o September 1975 i n Queen C h a r l o t t e S t r a i t and Knight I n l e t ( s t a t i o n s QC, Kn 3, 7, and l l ) . a Surface water b T r a n s i t i o n water c_ Deep water S t a t i o n Kn 9 data i s s u b s t i t u t e d f o r missing Kn 11 data i n February. Format as described f o r Figure 26. 157a 200 io<H *>• 10 10' to 50 40' »• 20' »• 1' 0 ACARTIA LONGIREMIS ACARTIA CLAUSI OC A pi I p|" |_F I M | A I M I J | J | A | S | KN 3 100' 90-80' 10' 60' SO' 40' 30' 20' 10 • 1' e 10' «0' SO' 40' SO* I 20. 10' E \ c o P-6 \ 50 \ » J?l | D | ' ' | F , | M | A | M | j | j | A | S | 0 h 50 20 A.LONGIREMIS A.CLAUSI : C 9 » -Co* " • C ° °' Ccfo-"Fl | F | M | A " | ~ M I jTj I A i S I I A | M | J | J ' TA ' I ' T I MONTH 30fr| 900 100 10 10 70 «<H so 40 JO JO' 10' KN 7 e > /\ / \ / V / \ / \ I \ ACARTIA LONGIREMIS ACARTIA CLAUSI J / N O i T B I | F I Ml A i Ml' A T S I a KN 11 '•I OI I D| | F | M | A | M | J j J | A |sl 200 iooi to 10 70 CO' SO' 40' 30' JO-10-01 I Ul * 4 t 4 t 4 I 4 * / / v ^ ^ 8 I F I Ml A I M I J | J | A | S A. L ONGIREMIS: A.C LAUSI : C6$ C6 d •—• C 6 ? C 6 d* ° — 0 1. |D| | F | M| A | M| J | J | A i s l E . A . J 01 10 1 I F I Ml A I Ml JI J | A | S | 0 0 [ MONTH I F | M | A | M | J | J | A I S"l 158 Figure 28: The monthly l i f e h i s t o r y composition of Gentropages mcmurrichi and Paracalanus parvus i n the outer b a s i n of Knight I n l e t , and of E p i l a b i d o c e r a a m p h i t r i t e s i n Queen C h a r l o t t e S t r a i t ( s t a t i o n QG) and i n Knight I n l e t ( s t a t i o n Kn 3). October 1974 to September 1975-a Surface water b T r a n s i t i o n water c Deep water Format as described f o r Figure 26. 158a C E N T R O P A G E S M C M U R R I C H I P A R A C A L A N U S P A R V U S O U T E R B A S I N a 1 K E Y e 0C6 ? A - AC4 O l T51 I F I M I A I M I J I J I A l S l O l [7J"1 I F | M | A | M | J | J | A 1 S I E PI L A B I D O C E R A A M P H I T R I T E S Q C • »\ I \ f \ ; • • K N 0| | D | IT | M | A | M | J I J | A | S | O l I D I I F I M I A I M 1 J I J I A I S I /AS. "ol mi IF I M I A I M I J I J I A Is | | D | | F I M | A | M | J | J | A | S | u. I M I A I M \1TJ\ A | S | •oT I A | M | J | J | A | S l MONTH 159 Figure 29: The monthly l i f e h i s t o r y composition of Galanus  marshallae from October 1974 t o September 1975 i n Queen C h a r l o t t e S t r a i t and Knight I n l e t ( s t a t i o n s QG, Kn 3, 7, and l l ) . a Surface water b T r a n s i t i o n water c Deep water S t a t i o n Kn 9 data i s s u b s t i t u t e d f o r missing Kn 11 data i n February. Format as described f o r Figure 26. 159a C A L A N U S M A R S H A L L A E 100' 50 <0' 10' 20' 10' E N TMT A r M i J I J | A i JI 0 I [ I l\ l\ r.h. V \ f I A I M I ' J I J I ' A I s [ M O N T H 159b CALANUS MARSHALLAE £ e 1 U ><H 10-10-1. 0 OT JO' 10 ' / A / \ / \ I \ I \ 100 50 I / ' ° \ ' * V DI I F. I M l A I M l J I 3 I A i S I 10 0 . » KEY e oC6 ? — — - B C G O * * — - AC4 Oj | 0 | | 'F |M|I A I M ( j j J I A j S I MONTH A TM I A I M|"J I J | A I S I I F I M I A I M I J I J I A I S I 160 Figure JO: The monthly l i f e h i s t o r y 'composition of Pseudocalanus  elongatus from October 1974 t o September 1975 i n Queen C h a r l o t t e S t r a i t and Knight I n l e t ( s t a t i o n s QC, Kn 3, 7, and l l ) . a Surface water b T r a n s i t i o n water c Deep water S t a t i o n Kn 9 data i s s u b s t i t u t e d f o r missing Kn 11 data i n February. Format as des c r i b e d f o r Figure 26. 160a P S E U D O C A L A N U S E L O N G A T U S QC 900 100 50' « • 30' 20' «H v o 3 o 9 J / 5 / r— c 3001 # 0 \ o 0 V / 1 V \ ol TD P T T I M I A I M I J I J I A I S 1 0 46* ' I. KN 3 / ; VP. ' / \ / iooi to-30' 20' 10' 1' 0 . C376 I •359 I \ I \ I \ 10338 JOS17. G530 0591 r S T T T T M i A I M I j I j ITTsl 300 I -If •o \ V, I o 100 100' 200-100-SO-« • 30' 20-10-I-Pi rpn R T M T A T M I J I J I A I _S I 617,0 * • • I \ 1 \ i i ol I D i ir \ MI E s c "b402 300 100 c A I M I J I J~l A I S I B351 V / A . / t "I M l A l M I J I J T A T T I 0 o l V V T A ~ I M I J I J I A I S I MONTH PSEUDOCALANUS KN 7 ELONGATUS I a p i n » A / \ - i d V, JOOn OvxO \ soH IF I M I A I M | J I J I A I S I KN 11 o ft /y 6 VC >8 75"l TD~1 i F l M l A l M l j I j l A l S l 300 b A - !t\i. //; v! / /A'* . # Vs. K E Y o eC6 0 i i ^ ^ t C 6 o* 100-A - AC4 • ~—aC1 ~ 3 W' o T D I I F l M | A | M | J I J I A I s I 10' A' • o • o-r'e oT I M I A j ivl 1 J I J r A I S 0333 w 161 Figure Jl: The monthly l i f e h i s t o r y composition of Eucalanus  bungi bungi from October 197^ t o September 1975 In a Queen C h a r l o t t e S t r a i t ( s t a t i o n QC) b Knight I n l e t outer b a s i n c Knight I n l e t inner b a s i n No depth d i s t r i b u t i o n i s i n d i c a t e d and p o p u l a t i o n s t r u c t u r e i s expressed as per cent composition of copepodites. w •4-* T> O CL <D CL O o c o o CL E o V 1 0 0 e o BO. to-6 0 ' CO -4 0 ' s o -s o -1 o -0 1 0 0 BO ' 8 0 7 0 . 0 0 . 5 0 ' 4 0 -S O -2 0 -104 O^ 1 0 0 BO 80 7 0 6 0 ' 6 0 ' 4 0 -30-i eO' 1 0 ' o o EUCALANUS BUNGI BUNGI oc \ \ T D H l j I Ml A | M|j | j j A|S 1. OUTER KEY 0 e c 6 ? «C4 ••""-oCI-3 I \ * / f t , . \ \ O l TTJl I F I M I A I M | J | j | A I S l INNER ol TUT I • I 1 I 1 TTI M | A I Ml J | J | A I S M O N T H 162 Figure 32: The monthly l i f e h i s t o r y composition of M e t r i d i a  p a c i f i c a from October 197^ - to September 1975 i n Knight I n l e t ( s t a t i o n Kn 9)« a Surface water b T r a n s i t i o n water c Deep water Format as described f o r Figure 26. M E T R I D I A P A C I F I C A K N 9 '4 % tt tt ! >t tf f ' A O, >/ ft ' ~ \ t' tt ' % / . \ m -\ * 0 /A -I ' - V " ' / V <\' ' / 01 TDT [V\ M | A 1  M ' | " J | J I A i s I KEY c oCG ? A A C 4 10-8-6-<• E-0 / t / i t t t t t A Ol O l | D I i «i . t • v.. I M 1 A I M 1 J | J I A I S * 121 E ol TDT H T M I A 1 M T J I J I A I s I MONTH 16 3 Figure 33" The monthly l i f e h i s t o r y composition of S c o l e c i t h r i c e l l a minor and A e t i d i u s divergens from October 19?4 t o September 1975 i n Knight I n l e t ( s t a t i o n Kn 7)« a Surface water b T r a n s i t i o n water c Deep water Format as described f o r Figure 26. 163a SCOLECITHRICELLA MINOR KN 7 a \ J D | ' I f | M'| A I M | J \ J | A I S | AETIDIUS DIVERGENS KN 7 a or 1 D | f T f M | A | M | J | J | A | S •A b K E Y o c C 6 ? 5' o^^"r'''^oC5 & - ^C4 <• D <DC1 - 3 o o/ , ' / i M M ( A i M i J i j i A nn o I/ X I 'o \ \ I' oT ih l" if ftfi A1M'| J I J [ A I s I \ O P ~ _ -\ / E N | F | M I A f M l J | J | A | S I MONTH '7 * /\ oi ID i TnMTAi^ jnY f ^ rV -164 Figure Jk: The monthly l i f e h i s t o r y composition of G h i r i d i u s  g r a c i l i s from October 197^  t o September 1975 i n Knight I n l e t ( s t a t i o n s Kn 3 a n d 7). a Surface water b T r a n s i t i o n water c Deep water Format as described f o r Figure 26. 164a C H I R I D I U S G R A C I L I S K N 3 K N 7 b 1 D | | F | M | A | M | J | J | A | S | O l | D | I F | M I A I M | J | J | A I S I 410-3 V \ oT MONTH \ I AIMI'J'I j T x f s l °'o| | D | I F T M I A I M I j ] J ' | ' A | S KEY o o C C $ B c c 6 o" * : *C4 165 Figure 35' The monthly l i f e h i s t o r y composition of M e t r i d i a  okhotensis from October 197^ t o September 1975 i n Knight I n l e t ( s t a t i o n s Kn 3 a n d 7) . a Surface water b T r a n s i t i o n water c Deep water Format as described f o r Figure 26. 165a KN 3 METRIDIA OKHOTENSIS KN 7 12 10 • to / ' l / 5 2 I \ ot •A i A ' M ' ' i '<\'.\ ol T D I I F I M l A I M | J I J I A I S 251 20 b I D I 1 F I M I A | M | J | J |' A | S | 6 A A190 IT \\\ r ' i s ; / : o r 1 D 1 IF lid |TA1 M I J I J |'A | S I: 25 20, O180 E N c | A j M | J | J | A l S | H\ my / / A \ / \ =• OI n i l I F | M I A | M I J I J I A I S MONTH 166 Figure 36: The monthly l i f e h i s t o r y composition of Heterorhabdus t a n n e r i and Gaidius columbiae from October 1974 t o September 1975 i n Knight I n l e t ( s t a t i o n Kn ? ) . a Surface water b T r a n s i t i o n water c Deep water Format as described f o r Figure 26. 166a H E T E R O R H A B D U S T A N N E R I K N 7 GAIDIUS COLUMBIAE K N 7 Ol TDT 1 f IM | A i M I J I j I A1 S I " o l To l I F I M I A I M I J j J i A j S I «1 KEY » oC6 ? QrS''''S O C 5 A - — AC4 _a ol TDT | F I M I A | M | J |"J1 A T S I o f I T I M I A | M I J I J I A f s ~ 5 A 4 4 4 4 4 4 4 \ \ S\ \ of 1 D~1 jT]ti | ' A I M I J I J I A ls"l k A .• >V\ ' o l TrTl I F I M I A I M 1 J 1 J 1 A ] s l MONTH 16? Figure 37: The monthly l i f e h i s t o r y composition i n Knight I n l e t of Candacia columbiae ( s t a t i o n s Kn 3 and 7), and of Spinocalanus brevicaudatus and Scapho-calanus b r e v i c o r n i s ( s t a t i o n Kn 7). October 197^ t o September 1975-a Surface water b T r a n s i t i o n water c Deep water Format as described f o r Figure 26. l6?a K N 3 C A N D A C I A C O L U M B I A E K N 7 0 6 0-2' eo ^ 3 . f D ~ | | F | M | A I M I J | J I A | S | 06 0 4. 0-2' 0 0 ~ o "ol T D I | F 1 M I A IM I J | J | A | s | 02-00 | A | M | J ] J I A fs I 1-2 10 0 8' OC 0<. 0 2' 0 0 // e A ' A 1 / L t _ \ J "0~1 | D | | F | M | A | M f"j f J i A i S | S P I N O C A L A N U S B R E V I C A U D A T U S K N 7 b $ ON ' ' I'/ 0| I D l T F | M |~A | M | J"1 J I A | S ~ | S C A P H O C A L A N U S B R E V I C O R N I S KN 7 o l T51 I F | M I A | M I J I J I A I s j A • \ / V " 1 V ' ~~ f I V 1 /' o ] | D I |F I M I A I M I J I J 1 A m K E Y 0 oC6 ? B T, Q 6 o* 0's''''so C 5 1 *C4 o — ~ = « - » 0 c i - 3 >0-i — •. A A J _ TBI | i I MI i A | M I J | J |: A | S ] M O N T H 168 REFERENCES Aarthun, K.E. 196I. The n a t u r a l h i s t o r y of the Hardangerfjord. 2. Sub-marine d a y l i g h t i n a g l a c i e r - f e d Norwegian f j o r d . S a r s i a 1:7-20 Angel, M.V. and M.J.E. Fasham. 1973- SOND C r u i s e , 1965: f a c t o r and c l u s t e r a n a l y s i s of the plankton r e s u l t s , a general summary. J. Mar. B i o l . Assoc. U.K. 53:185-231 . 1974. SOND Cru i s e , 1965: f u r t h e r f a c t o r a n a l y s i s of the plankton data. J . Mar. B i o l . Assoc. U.K. 54:879-894 . 1975» A n a l y s i s of the v e r t i c a l and geographic d i s t r i b u t i o n s of the abundant species of p l a n k t o n i c ostracods i n the north-east A t l a n t i c . J. Mar. B i o l . Assoc. U.K. 55:709-737 Anraku, M. and M. Omori. 1963- P r e l i m i n a r y survey of the r e l a t i o n s h i p between the f e e d i n g h a b i t and the s t r u c t u r e of the mouth p a r t s of marine copepods. Limnol. Oceanogr. 8:116-126 A p o l l o n i o , S. 1973* G l a c i e r s and n u t r i e n t s i n A r c t i c seas. Science 180 (4085): 491-493 Bakum, A. 1973* Coastal upwelling i n d i c e s , west coast of North America. 19^ 6-1971. N0AA Tech. Report No. NMFS-SSRF-67I Barber, F.G. 1956a. Seasonal temperature and s a l i n i t y v a r i a t i o n s i n Queen C h a r l o t t e S t r a i t , B.C. F i s h . Res. Bd. Can., P a c i f i c Prog. Report 105:14-15 . 1956b. Observations of currents n o r t h of T r i a n g l e I s l a n d , B.C. F i s h . Res. Bd. Can., P a c i f i c Prog. Report 108:15-18 . 1957- The e f f e c t of the p r e v a i l i n g winds on the inshore water masses of the Hecate S t r a i t r e g i o n , B.C. J . F i s h . Res. Bd. Can. 14:945-952 Barnes, H. and D.J. Tranter. 1965« A s t a t i s t i c a l examination of the catches, numbers, and biomass taken by three commonly used plankton nets. Aust. J. Mar. Freshwater Res. 16:293-306 Bary, B.M. 1959. Species of zooplankton as a means of i d e n t i f y i n g d i f f -erent surface waters and demonstrating t h e i r movements and mixing. Pac. S c i . 13:14-34 . 1963a. Temperature, s a l i n i t y and plankton i n the eastern North A t l a n t i c and c o a s t a l waters of B r i t a i n , 1957- 1- The c h a r a c t e r i s a t i o n and d i s t r i b u t i o n of surface waters. J. F i s h . Res. Bd. Can. 20:789-826 169 Bary, B.M. 1963b. Temperature, s a l i n i t y and plankton i n the eastern North A t l a n t i c and c o a s t a l waters of B r i t a i n , 1957. 11. The r e l a t i o n s h i p between species and water bodies. J. F i s h . Res. Bd. Can. 20:1031-1065 . 1963c. Temperature, s a l i n i t y and plankton i n the eastern North A t l a n t i c and c o a s t a l waters of B r i t a i n , 1957- 111. The d i s t r i b u t i o n of zooplankton i n r e l a t i o n t o water bodies. J. F i s h . Res. Bd. Can. 20:1519-1548 . 1963d. D i s t r i b u t i o n s of A t l a n t i c p e l a g i c organisms i n r e l a t i o n to surface water bodies. Roy. Soc. Can. Spec. Publ. 5"51-67 . 1964. Temperature, s a l i n i t y and plankton i n the eastern North A t l a n t i c and c o a s t a l waters of B r i t a i n , 1957- IV. The spe c i e s ' r e l a t i o n s h i p t o the water body; i t s r o l e i n d i s t r i b u t i o n and i n s e l e c t i n g and usin g i n d i c a t o r species. J. F i s h . Res. Bd. Can. 21: 183-201 . 1967. D i e l v e r t i c a l migrations of underwater s c a t t e r i n g , mostly i n Saanich I n l e t , B r i t i s h Columbia. Deep-Sea Res. 14:35~50 Bary, B.M. and L. Regan. 1976. Influence of water p r o p e r t i e s on an Euphausiid and a Copepod i n c o a s t a l areas of B r i t i s h Columbia. Pages 179-191 i n S k r e s l e t , S. et a l . (eds . ) , Freshwater on the sea. A s s o c i a t i o n of Norwegian Oceanographers, Oslo. B e l l , W.H. 1976. The exchange of deep water i n A l b e r n i I n l e t . Unpublished M manuscript. Pac. Mar. S c i . Rept. No. 76-22. Environment Canada, Marine Sciences D i r e c t o r a t e , V i c t o r i a , B.C. 19PP» Boden, B.P. and E.M. Kampa. 1967. The i n f l u e n c e of n a t u r a l l i g h t on the v e r t i c a l migrations of an animal community i n the sea. Symp. Zool. Soc. Lond. 19:15-26 Bradford, J.M. 1971. Aetideus and Euaetideus (Copepoda: Calanoida) from The A t l a n t i c and P a c i f i c Oceans. N.Z. J . Mar. Freshwater Res. 5"12-40 . 1976. P a r t i a l r e v i s i o n of the A c a r t i a subgenus A c a r t i u r a (Copepoda: Calanoida: A c a r t i i d a e ) . N.Z. J . Mar. Freshwater Res. 10: 159-202 B r i n t o n , E. 1962. The d i s t r i b u t i o n of the P a c i f i c euphausiids. B u l l . S c r i p p s I n s t . Oceanogr. 8(2):51-270 . 1976. P o p u l a t i o n b i o l o g y of Euphausia p a c i f i c a o f f southern C a l i f o r n i a . F i s h . B u l l . U.S. 74:733-762 170 B r o d s k i i , K.A. 1950- Calanoida of the f a r eastern seas and p o l a r b a s i n  of the U.S.S.R. Tra n s l a t e d from the Russian by the I s r a e l Program f o r S c i e n t i f i c T r a n s l a t i o n , Jerusalem, No. TT-67-51200. 1967. 440pp. Cameron, F.E. 1957- Some f a c t o r s i n f l u e n c i n g the d i s t r i b u t i o n of p e l a g i c copepods i n the Queen C h a r l o t t e I s l a n d area. J. F i s h . Res. Bd. Can. 14:165-202 Campbell, M.H. 1929a. A p r e l i m i n a r y q u a n t i t a t i v e study of the zooplankton i n the S t r a i t of Georgia. Trans. Roy. Soc. Can. 23:1-28 . 1929t>. Some free-swimming copepods of the Vancouver I s l a n d r e g i o n . 1. Trans. Roy. Soc. Can. 23:303-332 . 1930« Some free-swimming copepods of the Vancouver I s l a n d r e g i o n . 11. Trans. Roy. Soc. Can. 24:177-182 . 1934. The l i f e h i s t o r y and post embryonic development of the copepods, Calanus tonsus Brady and Euchaeta japonica Marukawa. J. B i o l . Bd. Can. 1:1-65 Cannon, G.A. and N.P. L a i r d . 1974. Flow along the c o n t i n e n t a l slope o f f Washington. Trans. Am. Geophys. Union 56:1135 C a r r i t t , D.E. and J.H. Carpenter. 1966. Comparison and e v a l u a t i o n of c u r r e n t l y employed m o d i f i c a t i o n s of the Winkler method f o r d e t e r -mining d i s s o l v e d oxygen i n seawater; A NASCO r e p o r t . J. Mar. Res. 24:286-318 Cassie, R.M. 1962. Frequency d i s t r i b u t i o n i n the ecology of plankton and other organisms. J. Anim. E c o l . 31:65-92 . 1963- M i c r o d i s t r i b u t i o n of plankton. Oceanography and Marine B i o l o g y : an Annual Review 1:223-252 . 1968. Sample design. In Zooplankton sampling. Monogr. Oceanog. Methodol. UNESCO 2:105-121 Chalk, P.M. and D.R. Ke'eney. 1971. N i t r a t e and ammonium contents of Wisconsin limestones. Nature 229:42 Clarke, G.L. and D.F. Bumpus. 1950- The plankton sampler - an instrument f o r q u a n t i t a t i v e plankton i n v e s t i g a t i o n s . S p e c i a l Publ. No. 5» Am. Soc. Limnol. Oceanogr. CMtterokR.I. and M. Anraku. 1968. Avoidance of samplers. In Zooplankton  sampling. Monogr. Oceanog. Methodol. UNESCO 2:57-76 171 Colebrook, J.M. 1964. Continuous plankton records: a p r i n c i p a l component a n a l y s i s of the geographical d i s t r i b u t i o n of zooplankton. B u l l . Mar. E c o l . 6:78-100 Cross, F.A. and L.F. Small. 1967. Copepod i n d i c a t o r s of surface water movements o f f the Oregon coast. Limnol. Oceanogr. 12 :60-72 Damkaer, D. 1975- Calanoid copepods of the genera Spinocalanus and Mimocalanus from the c e n t r a l A r c t i c Ocean, with a review of the Spinocalanidae. NOAA Tech. Report No. NMFS-CIRC-391 Davis, C C . 1949. The p e l a g i c copepoda of the N.E. P a c i f i c Ocean. Univ. Washington Publ. B i o l . 14:1-118 Dodimead, A.J., F. Fa v o r i t e , and T. Hirono. 1963- Review of oceanography of the S u b - a r c t i c P a c i f i c r e g i o n . B u l l . No. 13 . I n t . N. Pac. F i s h . Comm. 195PP Dodimead, A.J. and G.L. P i c k a r d . 1967 . Annual changes i n the oceanic c o a s t a l waters of the eastern S u b a r c t i c P a c i f i c . J . F i s h . Res. Bd. Can. 24 :2207-2227 Dodimead, A.J., F. F a v o r i t e and K. Nasu. 1976. Review of oceanography of the S u b - a r c t i c P a c i f i c r e g i o n , 1960-71. B u l l . No. 33 . I n t . N. Pac. F i s h . Comm. I87pp Dyer, K.R. 1973• E s t u a r i e s : a p h y s i c a l i n t r o d u c t i o n . Wiley I n t e r s c i e n c e , London. I40pp E l l i o t , J.M. 1971 . Some methods f o r the s t a t i s t i c a l a n a l y s i s of samples of .benthic i n v e r t e b r a t e s . Freshwater B i o l o g i c a l A s s o c i a t i o n U.K. Spec. Publ. No. 25:121-124 Evans, M.S. 1973- The d i s t r i b u t i o n a l ecology of the c a l a n o i d copepod Paraeuchaeta elongata E s t e r l y . Ph.D. T h e s i s , I n s t i t u t e of Ocean-ography and Department of Zoology, U n i v e r s i t y of B r i t i s h Columbia. 112pp Fager, E.'W. and J.A. McGowan. 1963 . Zooplankton species groups i n the North P a c i f i c . Science 140:453-460 Falkowski, P.G. and D.P. Stone. 1 9 7 5 « N i t r a t e uptake i n marine phyto-plankton: energy sources and the i n t e r a c t i o n w i t h carbon f i x a t i o n . Mar. B i o l . 32:77-84 Fleminger, A. 1964. D i s t r i b u t i o n a l a t l a s of ca l a n o i d copepods i n the C a l i f o r n i a Current r e g i o n . CalCOFI A t l a s No. 2, State of C a l i f o r n i a Marine Research Committee. 172 Fleminger, A. 1967- D i s t r i b u t i o n a l a t l a s of c a l a n o i d copepods i n the C a l i f o r n i a Current r e g i o n . CalCOFI A t l a s No. 7, State of C a l i f o r n i a Marine Research Committee. F r o s t , B.W. 1974. Calanus marshallae, a new species of ca l a n o i d copepod c l o s e l y a l l i e d t o the s i b l i n g species C. finmarchicus and C. g l a c -i a l i s . Mar. B i o l . 26:77-99 F u l t o n , J . 1968. A l a b o r a t o r y manual f o r the i d e n t i f i c a t i o n of B r i t i s h Columbia marine zooplankton. F i s h . Res. Bd. Can., Tech. Rept. No. 55- l ^ l p p . 1973- Some aspects of the l i f e h i s t o r y of Calanus plumchrus i n the S t r a i t of Georgia. J . F i s h . Res. Bd. Can. 30:811-815 Furuhashi, K. 1966. Studies on the v e r t i c a l d i s t r i b u t i o n of copepods i n the Oyashio r e g i o n east of Japan and i n the Kuroship r e g i o n south of Japan. Publ. Seto Mar. B i o l . Lab. X1V$4):295-322 Gardner, G.A. 1972. The d i s t r i b u t i o n of the l i f e h i s t o r y stages of Calanus plumchrus Marukawa (Copepoda: Calanoida) i n the S t r a i t of Georgia. M.Sc. Thesis, I n s t i t u t e of Oceanography and Department of Zoology, U n i v e r s i t y of B r i t i s h Columbia. 55PP . 1976. The a n a l y s i s of zooplankton p o p u l a t i o n f l u c t u a t i o n s i n the S t r a i t of Georgia, w i t h emphasis on the r e l a t i o n s h i p s between Galanus plumchrus Marukawa and Galanus marshallae F r o s t . Ph.D. Thesis, I n s t i t u t e of Oceanography and Department of Zoology, U n i v e r s i t y of B r i t i s h Columbia. l44pp . 1977• A n a l y s i s of zooplankton population f l u c t u a t i o n s i n the S t r a i t of Georgia, B r i t i s h Columbia. J. F i s h . Res. Bd. Can. 34:1196-1206 Gauld, D.T. 1966. The swimming and f e e d i n g of p e l a g i c copepods. Pages, 313-334 i n Barnes, H. (ed.), Some contemporary s t u d i e s i n marine  science. A l l e n and Unwin, London. G i l b e r t , N. 1973- B i o m e t r i c a l i n t e r p r e t a t i o n . Clarendon Press, Oxford. 125PP G i l f i l l a n , E. 1972. Seasonal and l a t i t u d i n a l e f f e c t s on the responses of Euphausia p a c i f i c a Hansen (Crustacea) t o experimental changes of temperature and s a l i n i t y . Pages 443-463 i n Takenouti et a l . (eds.) B i o l o g i c a l oceanography of the northern North P a c i f i c Ocean. Idemitsu shoten, Tokyo. 626pp G r i c e , G.D. 1971• Deep water c a l a n o i d copepods from the Mediterranean sea. Family Spinocalanidae. Gahiers de B i o l o g i e Marine. Tome XLI: 273-281 173 G r i c e , G.D. 1972. The existence of a "bottom-living c a l a n o i d copepod fauna i n deep water with d e s c r i p t i o n s of f i v e new species. Grustaceana 23:219-242 G r i c e , G.D. and T.J. Lawson. 1976. R e s t i n g eggs i n the marine c a l a n o i d copepod Labidocera a e s t i v a (Wheeler). Crustaceana 30:9-12 G r i c e , G.D. and V.R. Gibson. 1977. R e s t i n g eggs i n Ponte11a meadi (Copepoda: Galanoida). J . F i s h . Res. Bd. Can. 34:410-412 G r i l l , E.V. and F.A. Richards. 1964. N u t r i e n t regeneration from phyto9 plankton decomposing i n seawater. J . Mar. Res. 22:51-69 Harding, G.G.H. 1974. The food of deep sea copepods. J . Mar. B i o . Assoc. U.K. 54:141-155 Hummon, W.D. 1974. : a s i m i l a r i t y index based on shared species d i v e r s i t y , used t o assess temporal and s p a t i a l r e l a t i o n s among i n t e r t i d a l marine G a s t r o t r i c h a . Oecologia 17:203-220 Ingram, W.J.,Jr. 1967• The geostrophic c i r c u l a t i o n and d i s t r i b u t i o n of p r o p e r t i e s o f f the coast of Vancouver I s l a n d and Washington, s p r i n g and f a l l 1963. F i s h . B u l l . U.S. 66:223-250 I t o h , K. 1970. A c o n s i d e r a t i o n on fe e d i n g h a b i t s of p l a n k t o n i c copepods i n r e l a t i o n t o "the s t r u c t u r e of t h e i r o r a l p a r t s . B u l l . Plankton Soc. Japan 17:1-10 ( o r i g i n a l not seen, c i t e d by Parsons and Taka-ha s h i 1973) J e f f r i e s , H.P. 1967. S a t u r a t i o n of est u a r i n e zooplankton by congeneric a s s o c i a t e s . Pages 500-508 i n L a u f f , G.H. (ed.), E s t u a r i e s : ecology  and populations. Amer. Assoc. Adv. S c i . , Publ. No. 83, Washington, D.C. Kasahara, S., S. Uye and T. Obe. 1974. Calanoid copepod eggs i n sea bottom muds. Mar. B i o l . 26:167-172 K o e l l e r , P.A. 1974. Taxonomy, d i s t r i b u t i o n and aspects of the b i o l o g y of some d e e p - l i v i n g copepods i n B.C. i n l e t s and adjacent water. M.Sc. Thesis, Department of B i o l o g y , U n i v e r s i t y of V i c t o r i a , B.C. 128pp K o e l l e r , P.A. and J.L. L i t t l e p a g e . 1976. Azygokeras columbiae, a new genus and species of marine e p i b e n t h i c copepod.(Calanoida: A e t i d -eidae) from B r i t i s h Columbia. J. F i s h . Res. Bd. Can. 33:1547-1552 K o e l l e r , P.A. and T.R. Parsons. 1977. The growth of young salmonids (Onchorhynchus k e t a ) : c o n t r o l l e d ecosystem p o l l u t i o n experiment. B u l l . Mar. S c i . 27:114-118 174 Lafond, G.A. 1975* Deep water exchange in Bute Inlet. M.Sc. Thesis, Institute of Oceanography,and Department of Physics, University of Br i t i s h Columbia. 109pp Lafond, CA. and G.L. Pickard. 1975- Deep water exchanges in Bute Inlet, B r i t i s h Columbia. J. Fish. Res. Bd. Can. 22:2075-2089 Laval, P.H. 1974. A mathematical model of net avoidance by plankton, i t s practical application and i t s r e l i a b i l i t y as checked indirectly by using the parasitism of the pelagic amphipod V i b i l l a armata Bovallius. J. Exp. Mar. B i o l . Ecol. 14:57-87. (Trans, from French by Fish. Mar. Serv. Transl. Ser. No. 3116) Legare, J.E.H. 1957- The qualitative and quantitative distribution of plankton in the Strait of Georgia in relation to certain ocean-ographic factors. J. Fish. Res. Bd. Can. 14:521-552 Lewis, A.G. and M.S. Evans. 1971• Natural chelators - an indication of activity with the calanoid copepod Euchaeta japonica. Mar. Bi o l . 11:1-4 Lewis, A.G., P.H. Whitfield and A. Ramnarine. 1972. Some particulate and soluble agents affecting the relationship between metal tox-i c i t y and organism survival in the calanoid copepod Euchaeta jap-o onica. Mar. Bi o l . 17:215-221 Lewis, A.G. 1976. The biological availability of copper in estuarine and marine environments. Final Report. INCRA Project No. 2 4 6 . H 5 P P Maclellan, D.C. 1967« The annual cycle of certain calanoid species in West Greenland. Can. J. Zool. 45:101-115 Maclellan, D.C. and CT. Shih. 1974. Descriptions of copepodite stages of Ghiridius g r a c i l i s Farran 1908 (Crustacea: Copepoda). J. Fish. Res. Bd. Can. 31:1337-1349 Marlowe, C.J. and C.B. Miller, 1974. The vertical distribution of zoo-plankton at Ocean "P" in June - July 1971• Data Rep. Oregon State University. School of Oceanography. Ref. 74-13 . 1975- Patterns of vertical distribution and migration of zooplankton at Ocean Station "P". Limnol. Oceanogr. 20:824-844 Marshall, S.M. 1973* Respiration and feeding in copepods. Advances in Marine Biology 11:57-120 Matthews, J.B.L. 1 9 6 4 . On the biology of some bottom-living copepods (Aetideidae and Phaennidae) from Western Norway. Sarsia 16:1-46 175 Mauchline, J . 1972. The b i o l o g y of bathypelagic organisms, e s p e c i a l l y Crustacea. Deep-Sea Res. 19:753-780 McEwen, G.G., M.W. Johnson and H.R. Folsom. 1954. A s t a t i s t i c a l a n a l y s i s of the performance of the Folsom plankton sample s p l i t t e r , based upon t e s t observations. Scripps I n s t . Oceanogr. C o n t r i b u t i o n No. 689 McGowan, J.AA. 1971. Oceanic biogeography of the P a c i f i c . Pages 3-74 i n Funnel, B.M. and W.R. R i e d e l (eds.), The micropaleontology of the  oceans. Cambridge U n i v e r s i t y Press. • . 1974. The nature of oceanic ecosystems. Pages 309-321 i n M i l l e r , C B . (ed.), The b i o l o g y of the oceanic P a c i f i c . Oregon State U n i v e r s i t y P ress, C o r v a l l i s . . 1977- What r e g u l a t e s p e l a g i c ' community s t r u c t u r e i n the P a c i f i c ? Pages 423-443 i n Anderson, N.R. and B.J. Zahuranec (eds.), Oceanic sound s c a t t e r i n g . p r e d i c t i o n . Plenum Press, New York. 857PP McGowan, J.A. and P.M. WIlMaiiis. 1973* Oceanic h a b i t a t d i f f e r e n c e s i n the North P a c i f i c . J . Exp. Mar. B i o l . E c o l . 12:187-217 McHardy, R.A. 1961. C a l i b r a t i o n of Clarke-Bumpus plankton samplers i n the f i e l d . Manuscript Report No. 8. I n s t i t u t e of Oceanography, U n i v e r s i t y of B r i t i s h Columbia. lOpp Morioka, Y. 1972. The v e r t i c a l d i s t r i b u t i o n of c a l a n o i d copepods o f f the southeast coast of Hokkaido. Pages 3U9_321 i n Takenouti, A. (ed.), B i o l o g i c a l oceanography of the northern North P a c i f i c  Ocean. Idemistu shoten, Tokyo. 626pp Motoda, S. and T. Minoda. 1974. Plankton of the B e r i n g Sea. Pages 207-242 i n Hood, D.W. and E.J. K e l l e g (eds.), Oceanography of the B e r i n g  Sea. I n s t i t u t e of Marine Science, U n i v e r s i t y of Alaska. 623pp Nelson, J.B. 1970. The r e l a t i o n s h i p between behaviour and ecology i n the Sulidae w i t h reference to other sea b i r d s . Oceanography and Marine Bio l o g y : an Annual Review 8:501-574 Pandyan, A.S. 19,71* Food and t r o p h i c r e l a t i o n s h i p s of the developmental stages of Euchaeta japonica Marukawa and Calanus plumchrus Marukawa. PMD. Thesis, I n s t i t u t e of Oceanography and Department of Zoology, U n i v e r s i t y of B r i t i s h Columbia. Paquette, R.G. and H.F. Frolander. 1957. Improvements i n the Cl a r k e -Bumpus plankton sampler. J. Cons. Perm. I n t . Exp. Mer 22:284-288 Park, T.S. 19^ 5. Two species of copepods from the S t r a i t of Georgia, B r i t i s h Columbia, Canada. J. F i s h . Res. Bd. Can. 24:231-241 176 Park, T.S. 1975- Calanoid copepods of the genera Gaetanus and Gaidius from the Gulf of Mexico. Bull. Mar. Sci. 25:9~34 . 1976. A new species of Euchirella (Copepoda: Calanoida) from the Pacific coast of North America, with notes on Euchirella  pulchra (Lubbock). Crustaceana 31:208-212 Parker, E.E., B.A. Kask and B. Windecker. 1976. Vertical distribution of macrozooplankton in respect to the halocline, Alberni Inlet, during April, June, and August 1971• An atlas. Fish. Mar. Serv. Ees. Dev. Tech. Eep. 494; 275pp Parsons, T.R. and M. Takahashi. 1973* Biological oceanographic processes. Pergamon Press, Oxford. I86pp Pearcy, W.G. 1972. Distributions and ecology of oceanic animals off Oregon. Pages 351_377 in Pruter, A.T. and D.L. Alverson (eds.), The Columbia river estuary and adjacent ocean waters. University of Washington Press. 868pp Peterson, W.T. 1972. Distribution of pelagic Copepoda off the coasts of Washington and Oregon during I96I and 1962. Pages 313"343 in Pruter, A.T. and D.L. Alverson (eds.), The Columbia river estuary  and adjacent ocean waters. University of Washington Press. 868pp Peterson, W.T. and C. Miller. 1976. Zooplankton along the continental shelf off Newport, Oregon. 1969-1972. Oregon State University. Sea Grant College Program. Publication No. OEESU-T-76-OO2. Pickard, G.L. and G.K. Rodgers. 1959- Current measurements in Knight Inlet, British Columbia. J. Fish. Ees. Bd. Can. 16:635-678 Pickard, G.L. and L.F. Giovando. i960. Some observations of turbidity in British Columbia inlets. Limnol. Oceanogr. 5:162-170 Pickard, G.L. I96I. Oceanographic features of inlets in the British Columbia mainland coast. J. Fish. Ees. Bd. Can. 18:907-999 . 1963« Descriptive physical oceanography. Pergamon Press, Oxford. 199PP . 1975• Annual and longer term variations of deepwater prop-erties in the coastal waters of southern British Columbia. J. Fish. Ees. Bd. Can. 32:1561-1587 Poulet, S.A, 1973- Grazing of Pseudocalanus minutus on naturally occurr-ing particulate matter. Limnol. Oceanogr. 18:564-573 . 1974. Seasonal grazing of Pseudocalanus minutus on particles. Mar. Biol. 25:109-123 177 P o u l e t , S»A. and J.P. Chanut. 1975- Non-selective f e e d i n g "by Pseudo-calanus minutus. J. F i s h . Res. Bd. Can. 32:706-713 R e d f i e l d , A.C, B.H. Ketchum,.and F.A. Richards. 1963. The i n f l u e n c e of organisms on the composition of seawater. Pages 26-77 i n H i l l , M.N. (ed.), The sea. 2. Wiley I n t e r s c i e n c e , New York. 554pp Reed, R.K. and D. Halpern. 1976. Observations of the C a l i f o r n i a under-current o f f Washington and Vancouver I s l a n d . Limnol. Oceanogr. 21:389-398 Ringelberg, J. 1964. The p o s i t i v e l y p h o t o t a c t i c r e a c t i o n of Daphnia  magna. A c o n t r i b u t i o n t o the understanding of d i u r n a l v e r t i c a l m i g r a tion. Neth. J . Sea Res. 2:319-406 Roe, H.S.J. 1972a. The v e r t i c a l d i s t r i b u t i o n and d i u r n a l migrations of ca l a n o i d sopepods c o l l e c t e d on the SOND C r u i s e , 1965- 2. Systematic Account: F a m i l i e s , Calanidae up to and i n c l u d i n g the Aetideidae. J . Mar. B i o l . Assoc. U.K. 52:315-3^3 . 1972b. The v e r t i c a l d i s t r i b u t i o n and d i u r n a l migrations of ca l a n o i d copepods c o l l e c t e d on the SOND Cr u i s e , 1965« 2. Systematic Account: F a m i l i e s Euchaetidae up to and i n c l u d i n g the M e t r i d i i d a e . J . Mar. B i o l . Assoc. U.K. 52:525-552 R u s s e l l , F.S. 1927. The v e r t i c a l d i s t r i b u t i o n of plankton i n the sea. B i o l . Rev. 2:213-262 Sameoto, D.D. 1975* T i d a l and d i u r n a l e f f e c t s on zooplankton sample v a r i a b i l i t y i n a nearshore marine environment. J . F i s h . Res. Bd. Can. 32:347-366 Sekiguchi, H. 1974. R e l a t i o n between the ontogenetic v e r t i c a l m igration and the mandibular gnathobase i n p e l a g i c copepods. B u l l . F a c u l t y of F i s h e r i e s . Mie U n i v e r s i t y 1:1-10 Shan, K.C 1962. Systematic and e c o l o g i c a l s t u d i e s on copepoda i n Indian Arm, B r i t i s h Columbia. M.Sc. Thesis, I n s t i t u t e of Ocean-ography and Department of Zoology, U n i v e r s i t y of B r i t i s h Columbia. Shih, CT., A.J.G. F i g u e i r a and E.H. Grainger. 1971. A synopsis of Canadian marine zooplankton. F i s h . Res. Bd. Can. B u l l . 176. Ottawa. 264pp S i e g e l , S. 1956. Non-parametric s t a t i s t i c s f o r the b e h a v i o r a l sciences. McGraw-Hill, New York. 312pp Smith, P.E., R.C. Counts and R.I. C l u t t e r . 1968. Changes i n f i l t e r i n g e f f i c i e n c y of plankton nets under tow due to clogging. J. Cons. Perm. I n t . Exp. Mer 32:1-13 178 Stockner, J.G. and D.D. Cliff. 1976. Effects of pulpmill effluent on phytoplankton production in coastal marine waters of British Columbia. J. Fish. Res. Bd. Can. 33:2433-2442 Stockner, J.G., D.D. Cliff and D.B. Buchanan. 1977- Phytoplankton production and distribution in Howe Sound, British Columbia: a coastal marine embayment - fjord under stress. J. Fish. Res. Bd. Can. 7:907-917 Strickland, J.D.H. and T.R. Parsons. 1972. A practical handbook of sea-water analysis. Fish. Res. Bd. Can. Bull. 167. (Second edition). 311pp Stromgren, T. 1976. Relationship between freshwater supply and standing crop of Calanus finmarchicus in a Norwegian fjord. Pages 173-177 in Skreslet, S., et al.(eds.), Freshwater on the sea. Association of Norwegian Oceanographers, Oslo. Tabata, S. and G.L. Pickard. 1957• The physical oceanography of Bute Inlet, British Columbia. J. Fish. Res. Bd. Can. 14:487-520 Tully, J.P. 1958. On structure, entrainment, and transport in estuarine embayments. J. Mar. Res. 17:523 _535 Venrick, E.L. 1971. The statistics of sub-sampling. Limnol. Oceanogr. 16:811-818 Vinogradov, M.E. 1968. Vertical distribution of the oceanic zooplankton. Moscow 'Nauka'. (Translation: Israel Program for Scientific Trans-lation, Jerusalem, 1970. No. TT 69-59015). 3 3 9 P P Whitfield, P.H. and A.G. Lewis. 1976. Control of the biological avail-ability of trace metals to a calanoid copepod in a coastal fjord. Estuarine and Coastal Marine Science 4:255-266 Wicket, W.P. and J.A. Thomson. 1976. Transport computations for the North Pacific Ocean, 1975- Fisheries and Marine Service Data Record No. 16. Pacific Biological Station, Nanaimo, B.C., Canada. Wickstead, J.H. 1962. Food and feeding in pelagic copepods. Proc. Zool. Soc. London 139:5^5-555 Wiebe, P.H. and W.R. Holland. 1968. Plankton patchiness: effects on repeated net tows. Limnol. Oceanogr. 13:315"321 Wiebe, P.H. 1971. A field investigation of the relationship between length of tow, size of net and sampling error. J. Cons. Perm. Int. Exp. Mer 34:110-117 179 W i l l i a m s , W.T. 1971. P r i n c i p l e s of c l u s t e r i n g . Ann. Rev. Ecology and Systematics 2:303-326 Williamson, M.H. I96I. A method of studying the r e l a t i o n of plankton v a r i a t i o n s to hydrography. B u l l . Mar. E c o l . 5:224-229 Winsor, G.P. and G.G. Clarke. 1940. A s t a t i s t i c a l study of v a r i a t i o n i n the catch of plankton nets. J. Mar. Res. 3:1 _ 3^ Woodhouse, D.C. 1971. A study of the e c o l o g i c a l r e l a t i o n s h i p s and taxonomic s t a t u s of two species of the genus Calanus (Crustacea: Copepoda). Ph.D. Thesis, I n s t i t u t e of Oceanography and Department of Zoology, U n i v e r s i t y of B r i t i s h Columbia. 180 APPENDIX A The copepod and cladoceran abundance data This t a b l e contains, i n t a b l e form, the estimated abundance of every species i n every sample. The data are arranged according to month, sp e c i e s , s t a t i o n , and depth. The t a b l e i s explained as f o l l o w s : Species are i d e n t i f i e d i n the l e f t - h a n d column by acronyms, explained below. The s t a t i o n and depth i n meters from which a sample was taken i s given i n the "STN" and "z" columns, r e s p e c t i v e l y . "Water regimes" are as explained i n the hydrographic s e c t i o n of the t e x t . Abundance estimates, "n/m ", are expressed as estimated numbers of a species i n a cubic meter of water. A double or s i n g l e a s t e r i s k beside an estimate i n d i c a t e s t h a t l e s s than f i v e , or l e s s than ten i n d i v i d u a l s , r e s p e c t i v e l y , were found i n the sample. A l l other estimates were determined from counts exceeding ten specimens per sample. " I " i s an index of annual r e l a t i v e abundance. I t was obtained by d i v i d i n g the estimated abundance of a species i n a given sample, by the maximum estimated sample abundance found a t any time d u r i n g the study, and then m u l t i p l i e d by 100. The per cent copepodite composition of each species i s a l s o given f o r every sample. L i s t of acronyms begins on f o l l o w i n g page. 181 Acronyms used to identify species in Appendix A. SPECIES GROUP SPECIES ACRONYM SUMMER Paracalanus parvus Claus P. PAR SURFACE Centropages mcmurrichi Willey C. MCM Podon and Evadne species P O D / E V A SURFACE Epilabidocera amphitrites McMurrich E. AMPH AND Acartia clausi Giesbrecht A. CLAU SURFACE Acartia longiremis Lilljeborg A. LONG TRANSITIONAL Tortanus discaudatus Thompson and Scott T. DISC Aetidius divergens Bradford A. DIV Microcalanus pygmaeus Sars M. PYG Euchaeta japonica Marukawa E . JAP TRANSITIONAL/ Scolecithricella minor Brady SCOL. M DEEP Metridia okhotensis Brodskii M. OKH CKIridius gracilis Farran C. GRAG Heterorhabdus tanneri Giesbrecht H. TAN Gaidius columbiae Park GAD. C Gandacia columbiae Campbell CAN. C Spinocalanus brevicaudatus Brodskii SPINO DEEP Scaphocalanus brevicornis Sars SCAPH Racovitzanus antarcticus Giesbrecht RACO Eucalanus bungi bungi Johnson E. BUN Calanus plumchrus Marukawa CAL. P MIGRANT Calanus marshallae Frost CAL. M Pseudocalanus elongatus Boeck P. ELO Metridia pacifica Brodskii M. PAC Galanus cristatus Kroyer CAL. C Rhincalanus nasutus Giesbrecht R. NAS OFF-SHORE Gaetanus intermedius Campbell G. INT Gaetanus pileatus Farran G. PIL CONTINUED ON FOLLOWING PAGE 182 SPECIES GROUP SPECIES .. ACRONYM Gaetanus miles Giesbrecht G. MIL ' E u c h i r e l l a r o s t r a t a Claus EUC. R E u c h i r e l l a pseudopulchra Park EUC. P Euc h r r e l l a curticauda Giesbrecht EUC. C Chlxundlna s t r e e t s ! Giesbrecht CHIRUN Undeuchaeta bispinosa E s t e r l y UNDEU OEFhSHORE Euchaeta media Giesbrecht E. MED (Cont'd) Euchaeta smnosa Giesbrecht E. SPIN Paraeuchae'ta' c a l i f o r h i c a E s t e r l y P. CAL Scottocalanus persecans Giesbrecht SCOT - Lophothrix f r o n t a l i s Giesbrecht LOPH Scaphocalanus magnus T. Scott. S. MAG S c o l e c i t h r i c e l l a ovata Farran SCOL. 0 Metridia boecki Giesbrecht M. BOE Metridia princeps Giesbrecht .' M. PRM Pleuromamma abdominalis Lubbock !P. ABD Pleuromamma xiphias Giesbrecht P. XIPH Pleuromamma b o r e a l i s Dahl P. BOR Pleuromamma q uadrungulata Dahl P. QUAD Pleuromamma s c u t u l l a t a B r o d s k i i P. SCT Gaussia princens T. Scott GAUS L u c i c u t i a bicornuta Wolfenden LUCIC Disseta maxima E s t e r l y DIS. M Heterorhabdus p a p i l l i g e r Claus - H. PAP Heterorhabdus c l a u s i Giesbrecht H. GLA Heterorhabdus s p i n i f r o n s Claus H. SPIN He t e r o s t y l i t e s l o n g i c o r n i s Giesbrecht HETER Hal o p t i l u s oxycephalis Giesbrecht H. OXY Pachyptilus p a c i f i c u s Johnson PAGHY A r i e t e l l u s plumifer Sars ARIET Phyllopus integer E s t e r l y PHYLL Gandacia bipinnata Giesbrecht C. BIP 183 M O N T H : O C T O B E R 1974 S P E C I E S G R O U P : SUMMER S U R F A C E S P E C I E S S T N z WATER n/m-> I % C O M P O S I T I O N O F C O P E P O D I T E S R E G I M E 1 2 3 40* 4o 5d* 5$ 6o* 60^  C . MCM 1 10 A ' S F C 0.23** 0.62 100 S P E C I E S G R O U P : S U R F A C E / T R A N S I T I O N S P E C I E S STN z WATER I £ C O M P O S I T I O N O F CO?E?CDI7E3 R E G I M E l 2 3 k<3 4o 56* 50. 60* 60. E . A M P H QC 10 E ' S F C 0.62** 16.27 40 60 E. A M P H QC 30 E ' S F C 0.40** I O . 5 0 100 E . A M P H QC 50 E ' S F C 0.18** 4.72 100 E . A M P H QC 100 E " T R A N S 0.11** 2.89 100 E . A M P H 1 100 B " ' D E E P O.31** 8.14 100 A . C L A U 5 10 A " S F C 32.57 9-55 9 91 A . C L A U 5 50 A " S F C 4.32 1.27 41 59 A . C L A U 5 100 D * T R A N S 5.88 1.72 17 83 A . C L A U 5. 200 C D E E P 1-75 0.51 100 A . C L A U 7 10 A " S F C 21.08 5.89 12 88 A . C L A U 7 30 A " S F C 3.82 . 1.12 - 15 - 30 55 A . C L A U 7 50 D ' T R A N S 2.91 0.85 11 89 A . C L A U 9 10 A " S F C .10.92 3.20 15 85 A . C L A U 9 30 A / D T R A N S 10.89 3.19 5 95 A . C L A U 9 50 D ' T R A N S 4.86 1.43 6 94 A . C L A U 9 100 D ' T R A N S 0.68** 0.20 100 A . C L A U 9 200 . D " ' D E E P 1-39* 0.41 100 A . C L A U 9 350 D ' " D E E P 1.40* 0.41 100 A . C L A U 11 10 A " S F C 5.17 1.52 2 98 A . C L A U 11 30 A / D T R A N S 0.41** 0.12 100 A . C L A U 11 50 D ' T R A N S 5.02 1.47 3 97 A . C L A U 11 200 D " ' D E E P 0.26** 0.08 100 A . L O N G QC 10 E ' S F C 10.81 1.96 100 A . L O N G QC 30 E ' S F C 19.63 3.56 3 97 A . L O N G QC 50 E ' S F C 9.06 1.64 18 82 A . L O N G QC 100 E " T R A N S 42.82 7.77 1 99 A . L O N G 1 10 A ' S F C 5-91 1.07 100 A . L O N G 1 30 A ' S F C 31-^7 5-71 5 95 A . L O N G 1 50 B " T R A N S 20.33 3.69' 100 A . L O N G 1 100 B " ' D E E P 5-25 0.95 100 A . L O N G 1 200 B ' " D E E P 0.41 ** 0.07 100 A . L O N G 3 10 A ' S F C 5.19* 0.94 100 A . L O N G 3 30 A ' S F C 15.28 2.77 100 A . L O N G 3 50 A ' S F C 12.04 2.19 100 A . L O N G 3 100 B ' " D E E P 3.70* O.67 100 A . L O N G 5 10 A " S F C 10.51 1.91 17 83 A . L O N G 5 30 A " S F C 2-33 0.42 100 A . L O N G 5 50 A " S F C 2.80 0.51 100 184 MONTH i OCTOBER 1974  SPECIES GROUP: SURFACE/TRANSITION (Cont'd) SPECIES STN z WATER n/m3 I % COMPOSITION OF COPEPCDITES REGIME 1 2 3 4o* 4o_ 5c? 6c? A. LONG 5 100 D 'TRANS 12.42 2.25 100 A. LONG 5 200 C DEEP 2.23 0.40 100 A. LONG 7 10 A"SFC 8.71 1.58 6 94 A. LONG 7 30 A"SFC O.57** 0.10 100 A. LONG 7 50 D'TRANS O.76** 0.14 100 A. LONG 9 10 A"SFC 2.38* 0.43 100 A. LONG 9 30 A/D TRANS 1.09** 0.20 100 A. LONG 9 50 D'TRANS 0.27** 0.05 100 T. DISC QC 10 E'SFC 38.95 13.10 11 6 7 4 4 28 40 T. DISC QC 30 E'SFC 32.85 11.05 9 - 30 - 46 15 T. DISC 00 50 E'SFC 27.99 9.41 2 - 1 - 1 40 57 T. DISC QC 100 E" TRANS 55-59 18.70 33 67 T. DISC 1 10 A'SFC 2.78 0.94 - 13 - 8 17 29 33 T. DISC 1 30 A'SFC 6.93 2.33 8 - 8 - 19 23 27 15 T. DISC 1 50 B"TRANS 15-42 5-29 11 11 15 11 30 22 T. DISC 1 100 B'"DEEP 19.76 6.65 3 3 5S 36 T. DISC 3 10 A'SFC I . 9 5 * * 0.66 33 33 33 T. DISC 3 30 A'SFC 0.28** 0.09 100 T. DISC 3 50 A'SFC 0.92* O.31 16 34 16 34 T. DISC 3 100 B"'DEEP 7.94 2.67 67 33 T. DISC 5 10 A"SFC 0.13** 0.04 100 T. DISC 5 100 D'TRANS 2.62* 0.88 13 24 50 13 SPECIES GROUP: TRANSITIOT/DEEP SPECIES STN z WATER n/m3 I % COMPOSITION OF COPEPODITES REGIME 1 2 3 4d* 4$ 5<? 52 63 60 M. PYG QO 10 E'SFC 2.33 100.00 100 M. PYG 1 30 A'SFC 0.27** 11-59 100 M. PYG 7 10 A"SFC O.35** 15.02 100 M. PYG 7 30 A"SFC O.38** 16.31 100 M. PYG 7 50 D'TRANS 0 .15** • 6.44 100 M. PYG 7 200 D"'DEEP 0.12** 5.15 100 M. PYG 7 500 D"'DEEP 0.46** 19.74 100 M. PYG 9 30 A/D TRANS 0.27** 11.59 100 M. PYG 9 100 D'TRANS O.34** 14.59 100 M. PYG 11 30 A/D TRANS 0.28** 12.02 100 M. PYG 11 50 D'TRANS O.33** 14.16 100 M. PYG 11 200 D"'DEEP O.65** 27.90 100 A. DIV QC 10 E'SFC 1-35 9.09 100 A. DIV QC 30 E'SFC 1.20* 8.08 33 44 23 A. DIV QC 50 E'SFC 1-75 11.78 40 45 15 185 MONTH: OCTOBER 1974  SPECIES GROUP: TRANSITION/DEEP (Cont'd') S P E C I E S STN z WATER n/m3 I % C O M P O S I T I O N OF C 0 P E P C D I T 3 S R E G I M E 1 2 3 4c/ 4o 5 ° * 5? 6rf* 60 A. D I V QC 100 E " T R A N S 4.29 28.89 39 37 24 A. D I V 1 100 B " ' D E E P 5-56 37.44 38 56 6 A. D I V 1 200 B " ' D E E P 1.83 12.32 100 A. D I V 3 30 A ' S F C 2.'69 18.11 42 58 A. D I V 3 50 A ' S F C 1.54* I O . 3 7 40 30 10. . 20 A. D I V 3 100 B ' " D E E P 6.35 42.76 33 50 17 A. D I V 3 150 B ' " D E E P 3.78* 25.45 50 17 33 A. D I V 5 30 A " S F C 1.16* 7.81 15 28 57 A. D I V 5 50 A " S F C 2.03* 13.67 37 63 A. D I V 5 100 D ' T R A N S 4.91 33-06 7 7 20 46 20 A. D I V 5 200 C D E E P 1.44* 9.70 22 33 12 33 A. D I V 7 30 A " S F C O.38** 2.56 100 A. D I V 7 50 D ' T R A N S 0.45** 3.03 33 33 33 E. J A P QC 30 E ' S F C 0.27** 0.62 100 E. J A P • 5 50 A " S F C 0.51** 1.18 100 E. J A P 5 100 D ' T R A N S 0.98** 2.26 100 E. J A P 5 200 C D E E P 0.64** 1.48 25 75 E. J A P 5 300 C D E E P 0.81** 1.87 67 33 E. J A P 7 30 A*'SFC O.57** 1.32 100 E. J A P 7 50 D ' T R A N S 1.84 4.25 83 17 E. J A P 7 100 D ' T R A N S 9-89 22.82 11 6 36 32 4 11 E. J A P 7 200 D ' " D E E P 1.10* 2.54 45 55 E. J A P 7 . 300 C D E E P O.53** 1.22 25 75 E. J A P 7 500 D " ' D E E P 0.46** 1.06 33 67 E. J A P 9 50 D ' T R A N S 1.08** 2.49 25 50 25 E. J A P 9 100 D'TRANS 3-42* 7.89 20 10 30 40 E. J A P 9 200 D " ' D E E P O.31** 0.72 100 E. J A P 11 10 A " S F C 2.61 6.02 49 37 8 4 E. J A P 11 30 A/D T R A N S 3-72 8.58 4 11 4 4 26 30 4 19 E. J A P 11 50 D ' T R A N S I . 6 7 * 3.85 10 10 20 30 10 20 E. J A P 11 100 D ' T R A N S 0.24** 0.55 100 S C O L . M QC 50 E'SFC 0.79* 4.03 33 67 S C O L . M QC 100 E" T R A N S 1.46 7.45 62 38 S C O L . M 3 30 A ' S F C 0.28** 1.43 100 S C O L . M 3 50 A ' S F C 0.92* M9. 50 16 34 S C O L . M 3 150 B " ' D E E P 5.67* 28.91 • 45 22 33 S C O L . M 5 30 A " S F C 1.00* 5.10 50 17 33 S C O L . M 5 50 A " S F C 4.06 20.70 13 6 31 19 6 25 S C O L . M 5 100 D'TRANS 1.97* 10.05 17 66 17 S C O L . M 7 30 A " S F C 3.81 19.43 10 15 75 S C O L . M 7 50 D ' T R A N S 6.12 31.21 2 5 27 24 2 40 S C O L . M 7 100 D'TRANS 2.52 12.85 25 75 186 MONTH: OCTOBER 1974  SPECIES GROUP: TRANSITION/DEEP (Cont'd) S P E C I E S S T N z WATER R E G I M E n/ni3 I •1 % C O M P O S I T I O N O F 2 3 40* 4$ C O r ; E ? O : 5? : ; T E S 60* 60 S C O L . M 7 200 D " ' D E E P O.49** 2.50 24 76 S C O L . M 9 10 A" S F C 5-70 29.07 21 29 50 S C O L . M 9 30 A/D T R A N S 4.09 20.86 27 20 53 S C O L . M 9 50 D ' T R A N S 1.62* 8.26 33 17 50 S C O L . M 9 100 D ' T R A N S 2.05* 10.45 17 33 50 S C O L . M 11 10 A" S F C 6.04 30.80 39 52 9 S C O L . M l l 30 A/D T R A N S 2.62 13.36 16 5 5 74 M. OKH 1 100 B " ' D E E P 1.24** 0.12 75 25 M. OKH 3 100 B " ' D E E P 1.59** 0.16 100 M. OKH 3 150 B " ' D E E P 10.69 1.05 41 59 M. OKH 5 200 C D E E P 4.30 0.42 41 52 7 M. OKH 5 300 C D E E P 3-75 0.37 57 36 7 M.. OKH 7 100 D ' T R A N S 2.73 0.27 38 62 M. OKH 7 200 D * " D E E P 12.42 1.22 17 23 60 M. OKH 7 ' 300 C D E E P 16.05 1.58 44 38 18 M. OKH 7 500 D " ' D E E P 13.02 1.28 45 39 2 14 M. OKH 9 50 D ' T R A N S 3-51 0.35 38 54 8 M. OKH 9 100 D ' T R A N S 11.64 1.14 21 26 53 M. OKH 9 200 D " ' D E E P IO.83 1.06 20 24 2 5^  M. OKH 9 350 D " ' D E E P 15.97 1-57 39 32 29 M. OKH 11 10 A" S F C 1.08* 0.11 10 30 60 M. OKH 11 30 A/D T R A N S 5-92 0.58 49 40 11 M. OKH 11 50 D ' T R A N S 5.02 0.49 • 53 43 4 M. OKH 11 100 D ' T R A N S 7.47 0.73 5 10 85 M. OKH 11 200 D M D E E P t.55 0.45 34 32 34 C. G R A C 1 200 B " ' D E E P ' 11.06 47.51 4 15 30 37 14 C. G R A C 3 150 B ' " D E E P 23.28 100.00 5 5 39 51 C. G R A C 5 200 C D E E P 2.07 8.89 46 31 23 C. G R A C 5 300 C D E E P 0.27** 1.16 100 C. G R A C 9 350 D " ' D E E P 0.60** 2.58 33 67 C. GRAC 11 200 D * " D E E P 0.26** 1.12 50 50 H. T A N 5 100 D ' T R A N S 1.64** 5.86 20 80 H. T A N 7 50 D ' T R A N S 0.46** 1.64 33 67 H. T A N 7 100 D ' T R A N S 2.52 9.00 - 8 - 34 58 H. T A N 7 200 D " ' D E E P 0.49** 1.75 24 76 H. T A N 7 300 C D E E P 0.40** 1.43 33 67 H. T A N 7 500 D " ' D E E P 0.91* 3.25 -16 - 68 16 H. TAN 9 30 A/D T R A N S 0.81** 2.89 33 67 H. TAN 9 50 D ' T R A N S 1.08** 3.86 75 25 H. TAN 9 100 D ' T R A N S 2.05* 7.32 -17 - 33 50 H. T A N 9 200 D ' " D E E P 0.61** 2.18 75 25 H. T A N 9 350 D " ' D E E P 1.00** 3-57 40 60 187 MONTH: OCTOBER 1974  SPECIES GROUP: TRANSITION/DEEP (Cont'd) S P E C I E S S T N z WATER n/m3 I % C O M P O S I T I O N ' 0? C O P E P C D I T S S R E G I M E 1 2 3 4o* H 50* 5?. 60* H. T A N 11 10 A" S F C 0 .76* 2.71 14 86 H. T A N 11 30 A/D T R A N S 0.55** 1.96 25 75 H. T A N 11 50 D ' T R A N S 0 .50** 1.79 67 33 H. T A N 11 100 D ' T R A N S 0.24** 0.86 50 50 H. T A N 11 200 D " ' D E E P 0 .91* 3.25 86 14 GAD. C 5 200 C D E E P 3.82 28.81 8 13 29 37 13 GAD. C 5 300 C D E E P 1.61* 12.14 17 50 17 17 GAD. C 7 100 D ' T R A N S 1 .05** 1.92 60 40 GAD. C 7 200 D " ' D E E P 0 .97* 1.32 25 12 51 12 GAD. C 7 500 D'" D E E P 0.46** 3-^ 7 67 33 GAD. C 9 30 A/D T R A N S 0.27** 2.04 100 GAD. C 9 100 D ' T R A N S 1 .71** 12.90 20 20 60 GAD. C 9 . 200 D " ' D E E P O.30** 2.26 50 50 GAD. C 9 350 D " ' D E E P 0.60** 4.52 67 33 GAD. C 11 30 A/D T R A N S 0.84* 6.33 17 33 17 33 GAD. C 11 50 D ' T R A N S 1.66* 12.52 30 20 20 20 10 GAD. C 11 100 D ' T R A N S O.96* 7.24 12 12 25 33 12 GAD. C 11 200 D " ' D E E P O.52** 3-92 25 50 25 C A N . C 3 30 A ' S F C O.56** 10.98 50 50 C A N . C . 5 300 C D E E P 0.54** 10.59 50 50 C A N . C l l 50 D ' T R A N S 0.17** 3-33 100 S P E C I E S GROUP: I N L E T D E E P S P E C I E S STN z WATER n/mJ I • % C O M P O S I T I O N OF COP : E ? C D I - E S R E G I M E 1 2 3 4d" 4 ? 5* 35 6c? 6 2 S P I N O 5 100 D' T R A N S 15.36 34.80 21 28 51 S P I N O 5 200 C D E E P 9.86 22.34 • 16 23 61 S P I N O 5 300 C D E E P 2.42* 5.48 11 22 22 45 S P I N O 7 50 D ' T R A N S 1.22* 2.76 38 62 S P I N O 7 100 D ' T R A N S 8.83 20.00 5 7 12 16 60 S P I N O 7 200 D " ' D E E P 16.46 37.29 7 10 13 36 27 7 S P I N O 7 300 C D E E P 4.27 9.67 12 19 25 16 28 S P I N O 7 500 D ' " D E E P 10.44 23.65 10 4 22 24 1 39 S P I N O 9 30 A/D T R A N S 7.90 17.90 3 10 24 28 34 S P I N O 9 50 D ' T R A N S 2.70* 6.12 10 30 40 20 S P I N O 9 100 D ' T R A N S , 8.56 19.39 4 4 12 20 60 S P I N O 9 200 D " ' D E E P 4.95 11.21 47 31 22 S P I N O 9 350 D " ' D E E P 4.59 10.40 13 4 83 S P I N O 11 10 A" S F C 0.64* 1.45 17 17 17 50 S P I N O 11 30 A/D T R A N S 14.05 31.83 15 17 22 18 3 26 S P I N O 11 50 D ' T R A N S 5-85 13-25 9 3 9 29 37 14 S P I N O 11 100 D ' T R A N S 4.23 9.58 31 43 26 S P I N O 11 200 D " ' D E E P 8.19 18.55 2 5 35 29 30 S C A P H 5 100 D ' T R A N S 2.29* 18.24 14 . 15 43 28 188 MONTH; OCTOBER 1974  SPECIES GROUP: INLET DEEP (Cont'd) S P E C I E S STN z WATER n/m3 I <% C O M P O S I T I O N 0? C O P E P O D I T E S R E G I M E 1 2 3 4o* 4<j> 50* 5o_ 6d* 6 ? S C A P H 5 200 C D E E P O.32** 2.01 50 50 S C A P H 5 300 C D E E P 1.35** 8.49 40 20 40 S C A P H 7 50 D ' T R A N S 0.31** 1.95 100 S C A P H 7 100 D'TRANS 3.15 19.81 40 60 SCAPH. 7 200 D " ' D E E P O.85* 5-35 44 28 28 S C A P H 7 300 C D E E P O.53** 3-33 25 25 50 S C A P H 7 500 D " ' D E E P 5.52 34.72 6 - 11 - 33 39 8 3 S C A P H 9 30 A/D T R A N S 1.09** 6.86 25 75 S C A P H 9 50 D ' T R A N S 1.62* IO.19 33 67 S C A P H 9 100 D ' T R A N S 2.05* 12.89 17 67 17 S C A P H 9 200 D " ' D E E P 0.61** 3.84 25 50 25 S C A P H 9 350 D " ' D E E P 5-39 33.90 41 55 4 S C A P H 11 10 A " S F C 0.54** 3.40 41 59 S C A P H 11 30 A/D T R A N S O.83* 5.22 17 66 17 S C A P H ' 11 50 D ' T R A N S 0.34** 2.14 50 50 S C A P H 11 100 D ' T R A N S 0 .96* 6.04 38 50 12 S C A P H 11 200 D " ' D E E P 3-51 22.08 41 48 11 S P E C I E S GROUP: M I G R A N T S S P E C I E S S T N z WATER n/m3 .1 % C O M P O S I T I O N O F C O P E P O D I T E S R E G I M E 1 2 3 4o* 4o_ 50* 55 60* E. B U N 1 200 B ' " D E E P 0.81* 35.53 37 63 E . B U N 7 300 C D E E P 0.53** 23.25 75 25 E . B U N 7 500 D " ' D E E P 0.15** 6.58 100 E . B U N 9 350 D " ' D E E P 0.60** 26.32 33 67 C A L . P 9 350 D " ' D E E P 0.40** 7.07 - 100 -C A L . M QC 10 E ' S F C 0.74* 0.02 - 100 -C A L . M QC 30 E ' S F C 2.41 0.05 - 5 - - 56 - 16 C A L . M QC 50 E ' S F C 2.55 0.06 - 96 - 4 C A L . M QC 100 E " T R A N S 7.23 0.16 - 98 - 2 C A L . M 1 10 A ' S F C 0.12** <0.01 - 100 -C A L . M 1 100 B " ' D E E P 5.86 0.13 - 100 -C A L . M 1 200 B " ' D E E P 88.84 1 .93 - 100 -C A L . M 3 30 A ' S F C 0.28** 0.01 - 100 -C A L . M 3 100 B "' D E E P 6.82 0.13 - 100 -C A L . M 3 150 B ' " D E E P 294.34 6.40 - 100 -C A L . M 5 100 D ' T R A N S O.65** 0.01 • - 100 -C A L . M 5 200 C D E E P 4.45 0.11 - 100 -C A L . M 5 300 C D E E P 26.01 0.57 - 100 -C A L . M 7 50 D ' T R A N S 0.15** •=0.01 - 100 -C A L . M 7 200 D " ' D E E P 1.34 0.03 - 100 -C A L . M 7 300 C D E E P 17.51 0.38 - 100 -C A L . M 7 500 D ' " D E E P 0.31** «=0.01 - 100 -189 MONTH: OCTOBER 1974 SPECIES GROUP: MIGRANTS (Cont'd) SPECIES STN z WATER n/m3 I •5? COMPOSITION OF CO? ErCDITES REGIME 1 2 3 4o* 4 ? 5$ 60* 6$ CAL. M 9 10 A"SFC 0.48** 0.01 - 100 -CAL. M 9 200 D'" DEEP 2.17 0.05 - 100 -CAL. M 9 350 D."'DEEP 1.40* 0.03 - 100 -CAL. M 11 10 A"SFC 2.80 0.06 - 100 -CAL. M 11 200 D"'DEEP 9.61 0.21 - 100 -P. ELO QC 10 E'SFC 258.32 12.13 17 18 29 28 2 6 P. ELO QO 30 E'SFC 333.52 15.66 45 46 1 8 P. ELO QC 50 E'SFC 17.87 0.84 42 47 1 10 P. ELO QC 100 E" TRANS 288.58 13.55 51 49 P. ELO 1 10 A'SFC 18.78 0.88 14 15 22 26 23 P. ELO 1 30 A'SFC 181.87 8.54 3 2 34 32 1 28 P. ELO 1 50 B"TRANS 70.16 3.30 3 4 24 29 1 39. P. ELO 1 100 ' B '"DEEP 120.68 5-67 51 45 4 P. ELO 1 200 B"'DEEP 335.09 15.74 51 49 P. ELO 3 10 A'SFC 17.54 0.82 15 11 22 33 19 P. ELO 3 30 A'SFC 34.80 I .63 4 6 39 43 2 6 P. ELO 3 50 A'SFC 157.72 7.41 2 3 41 43 11 P. ELO 3 100 B "' DEEP 129.09 6.06 43 52 <1 4 P. ELO 3 150 B'"DEEP 548.43 25.76 53 47 P. ELO 5 10 A"SFC 46.03 2.16 1 <1 36 33 30 P. ELO 5 30 A"SFC 7.80 0.37 4 6 36 33 4 17 P. ELO 5 50 A"SFC 12.46 0.59 • 2 37 43 2 16 P. ELO 5 100 D'TRANS 34.97 1.64 54 45 1 P. ELO 5 200 C DEEP 56.68 2.66 47 53 P. ELO 5 300 C DEEP 114.75 5-39 53 47 P. ELO 7 10 A"SFC 3.83 0.18 59 41 P. ELO 7 30 A"SFC O.95** 0.05 40 60 P. ELO. 7 50 D'TRANS 1.22* 0.06 62 38 P. ELO 7 100 D'TRANS 9.26 0.44 57 43 P. ELO 7 200 D"'DEEP 27.77 1.30 53 47 P. ELO 7 300 C DEEP 65.24 3.06 51 49 P. ELO 7 500 D"'DEEP 9.37 0.44 46 54 P. ELO 9 10 A"SFC 2.38* 0.11 60 30 10 P. ELO 9 30 A/D TRANS 1.09** 0.05 25 75 P. ELO 9 50 D'TRANS 6.21 0.29 39 61 P. ELO 9 100 D'TRANS 14.39 0.68 45 55 P. ELO 9 200 D"'DEEP 41.17 1.93 53 47 P. ELO 9 350 D"'DEEP 87.22 4.10 51 49 P. ELO 11 30 A/D TRANS 1.25* 0.06 66 22 11 P. ELO 11 50 D'TRANS 10.54 49.50 41 51 8 P. ELO 11 100 D'TRANS 17.25 0.81 48 52 P. ELO 11 200 D"'DEEP 56.75 2.67 52 48 190 MONTH: OCTOBER 1974 SPECIES GROUP: MIGRANTS (Cont'd) S P E C I E S STN z WATER R E G I M E n/m3 I % C O M P O S I T I O N O F 1 2 3 4a*- 49 C O ? 5* E P C D I T E S 5 ? 60* 65, M. P A C QG 10 E ' S F C 31.32 10.47 7 8 9 14 13 27 22 M. P A C QC 30 E ' S F C 13.75 4.60 23 24 16 15 5 17 M. P A C QC 50 E ' S F C 11.35 3-79 5 6 22 19 18 30 M. P A C QC 100 E " T R A N S 15.25 5.10 2 1 11 8 64 14 M. P A C 1 10 A ' S F C 1.86 0.62 19 12 25 38 6 M. P A C 1 30 A ' S F C 10.12 3.38 45 21 29 5 M. P A C 1 50 B " T R A N S 11.15 3-73 32 38 29 M. P A C 1 100 B ' " D E E P 128.72 43.02 8 9 23 20 16 24 M. P A C 1 200 B ' " D E E P 8.62 2.88 28 32 27 13 M. P A C 3 10 A ' S F C 3.90* 1.30 • 17 33 17 33 M. P A C 3 30 A ' S F C 1.98 0.66 43 21 36 M. P A C 3 50 A ' S F C 9.26 3.09 55 18 22 2 3 M. P A C 3- 100 B " ' D E E P 124.86 41.73 10 8 24 20 12 26 M. P A C 3 150 B " ' D E E P 16.98 5 . 68 78 22 M. P A C 5 10 A " S F C 7.69 2.57 47 25 28 M. P A C 5 30 A " S F C 0.67** 0.22 75 25 M. P A C 5 50 A " S F C 2.03* 0.68 63 37 M. P A C 5 100 D ' T R A N S 14.39 4.81 32 36 32 M. P A C 5 200 C D E E P 12.24 4.09 9 12 61 18 M. P A C 5 300 C D E E P 4.02 1.34 100 M. P A C 7 10 A " S F C 1.91 0.64 73 9 18 M. P A C 7 30 A " S F C 1.71* 0.57 33 56 11 M. P A C 7 50 D ' T R A N S 0.31** 0.10 100 M. P A C 7 100 D ' T R A N S 42.95 14.35 100 M. P A C 7 200 D " ' D E E P 4.02 1.34 88 12 M. P A C 7 300 C D E E P 1.46 0.49 9 9 82 M. P A C 7 500 D " ' D E E P 1.70 0.57 18 18 18 46 M. P A C 9 10 A " S F C 3.09 I.03 54 30 16 M. P A C 9 30 A/D T R A N S 8.17 2.73 17 30 53 M. P A C 9 50 D ' T R A N S 1.08** O .36 50 50 M. P A C 9 100 D ' T R A N S 8.22 2.75 13 87 M. P A C 9 200 D " ' D E E P 3.70 1.24 29 21 29 21 M. P A C 9 350 D " ' D E E P 2.20 0.74 27 27 46 M. P A C 11 10 A " S F C 6.O3 2.02 12 20 68 M. P A C l l 30 A/D T R A N S 13.91 4.65 6 8 86 M. P A C 11 50 D ' T R A N S 5.68 1.90 3 6 9 18 65 M. P A C 11 100 D ' T R A N S O . 96* O .32 38 62 M. P A C 11 200 D " ' D E E P O . 6 5 * * 0.22 40 60 191 MONTH: DECEMBER 1974  SPECIES GROUP: SUMMER SURFACE: ABSENT FROM SAMPLES SPECIES GROUP: SURFACE/TRANSITION SPECIES STN z WATER n/V I % COMPOSITION CF. COPEPODITES REGIME 1 2 3 4o* 4 ? 5^ 5? 60* 6c. A. CLAU 3 10 A'SFC 5.10 1.50 100 A. CLAU 7 30 D'TRANS O.20*» 0.06 100 A. CLAU 7 50 D'TRANS 0.42** 0.12 100 A. LONG QC 10 E'SFC 15-97 2.90 18 82 A. LONG QC 30 E'SFC 23-75 4.31 26 74 A. LONG QC 50 E" TRANS 32 .79 5-95 57 43 A. LONG QC 100 E" TRANS 3.20** O.58 100 A. LONG 3 10 A'SFC 76.50 13.88 100 A. LONG 3 30 A'SFC 6.05* 1.10 100 A. LONG 3 50 B"TRANS 9-72 1.76 100 A. LONG 3' 100 B"TRANS 8 .94 1.62 100 A. LONG 7 10 A"SFC 5.66 1.03 100 A. LONG . 7 30 D'TRANS 3-56 O.65 100 A. LONG 7 50 D'TRANS 2 .99 0.54 100 A. LONG 7 100 C'TRANS 2 .53* 0.46 100 A. LONG 7 300 C"'DEEP 0.27** 0.05 100 A. LONG 9 10 A"SFC 0.3O** 0.05 100 A. LONG 9 30 D'TRANS 2.56* 0.46 100 T. DISC QC 10 E'SFC 1.85 0.62 8 54 38 T. DISC QC 30 E'SFC 1.25** 0.42 100 T. DISC QC 50 E" TRANS 4.68** 1-57 100 T. DISC QC 100 E" TRANS 3.20** 1.0.8 100 T. DISC 3 10 A'SFC 4 .74 1-59 69 31 T. DISC 3 30 A'SFC 4.70* 1.58 86 14 T. DISC 3 50 B"TRANS 1.82** 0.61 100 T. DISC 3 100 B"TRANS 2 .55* 0.86 33 67 T. DISC 7 30 D'TRANS 0.40** O.13 50 - 50 -SPECIES GROUP: TRANSITI ON/DEEP SPECIES STN z WATER n/m3 I % COMPOSITION OF CO? 'EPODITSS REGIME 1 2 3 4c? 4o 5? 60* 6$ A. DIV 3 '30 A'SFC O.67** 4.51 100 A. DIV 3 50 B"TRANS 2.43** 16.36 100 A. DIV 3 100 B'TRANS 2.13** 14.34 100 A. DIV 3 150 B"TRANS 2.42** 16.30 100 A. DIV 11 30 D'TRANS O.38** 2.56 66 34 E. JAP 7 50 D'TRANS 0.84** 1.94 50 25 25 E. JAP 7 100 D"TRANS 2.02* 4.66 12 25 12 12 39 E. JAP 7 300 C'DEEP 0.13** 0.30 100 E. JAP 7 500 D'" DEEP 0.13** O.30 100 E. JAP 9 10 A"SFC 3-85 8.88 8 56 12 4 8 4 8 E. JAP 9 30 D'TRANS 1.80* 4.15 57 28 15 192 MONTH: DECEMBER 1974  SPECIES GROUP: TRANSITION/DEEP(Cont'd') SPECIES STN z WATER REGIME n/m3 I < 1 % COMPOSITION 2 3 4o* : OF 4o. CC? EPCDITES 5? 60* 60 E. JAP 9 50 D'TRANS 1.10** 2.54 20 40 20 20 E. JAP 9 200 D'TRANS ' 0.78* 1.80 50 50 E. JAP 11 10 A "SFC 0.24** 0.55 50 50 E. JAP 11 30 D'TRANS 5-65 13.04 11 40 49 E. JAP 11 50 D'TRANS 2.66 6.14 16 41 16 11 5 11 E. JAP l l 100 D'TRANS 0.81* 1.87 28 44 28 SCOL. M 7 50 D'TRANS 1.70* 8.67 12 35 50 SCOL. M 7 300 C'DEEP 0.79* 4.03 16 84 SCOL. M 9 10 A" SFC 1.80 9.18 33 67 SCOL. M 9 30 D'TRANS I . 03** 5.25 25 75 SCOL. M 9 50 D'TRANS 1.10** 5.61 20 40 40 M. OKH 3 150 B"TRANS 5.80 0.57 100 M. OKH 7 100 ' C'TRANS O.51** 0.05 100 M. OKH 7 ' 300 C'DEEP 26.70 2.62 36 34 30 M. OKH 7 500 D"'DEEP 17.00 1.67 40 36 24 M. OKH 9 100 D'TRANS 2.06* 0.20 50 37 13 M. OKH 9 200 D'TRANS 10.35 1.02 9 10 1 80 M. OKH 9 350 DmDEEP 12.30 1.21 52 45 3 M. OKH 11 100 D'TRANS 0.23** 0.02 100 M. OKH 11 200 D'TRANS 16.79 1.65 22 16 8 55 C. GRAC 3 150 B"TRANS 10.16 43.64 24 14 38 24 C. GRAC 7 100 C'TRANS 0.51** 2.19 100 C. GRAC 11 200 D'TRANS 0.24** 1.03 100 H. TAN 7 30 D'TRANS 0.59** 2.11 100 H. TAN 7 500 D"'DEEP O.38** 1.36 34 66 H. TAN 9 10 A" SFC 0.90* 3.21 17 83 H. TAN 9 30 D'TRANS 0.51** 1.82 100 H. TAN 9 50 D'TRANS 0.44** 1.57 100 H. TAN 9" 100 D'TRANS 1.03** 3.68 75 25 H. TAN 9 200 D'TRANS 0.52** 1.86 75 25 H. TAN 11 10 A "SFC 0.12** 0.43 100 H. TAN 11 30 D'TRANS O.38** I .36 34 66 H. TAN l l 50 D'TRANS O.56** 2.00 25 75 H. TAN 11 100 D'TRANS 0.24** 0.86 50 50 H. TAN l l 200 D'TRANS O.36** 1.29 33 67 GAD. C 7 50 D'TRANS 0.21** 1.58 100 GAD. C 7 300 C"'DEEP 1.56 11.76 27 73 GAD. C 7 500 D"'DEEP 0.88* 6.64 28 15 57 GAD. C 9 10 A" SFC 0.60** 4.52 100 GAD. C 9 350 D"'DEEP 0.57** 4.30 40 60 GAD. C 11 100 D'TRANS 0.47** 3.54 26 48 26 GAD. C 11 200 D'TRANS O.36** 2.71 100 193 MONTH: DECEMBER 1 9 7 4  SPECIES GROUP: TRANSITION/DEEP (Cont'd) SPECIES STN z WATER n/m3 I % COMPOSITION OF COPEPODITES REGIME 1 2 3 40" ho 50* 50. 60* 6$ CAN. C 1 1 1 0 0 D'TRANS 0 . 4 7 * * 9 . 2 2 2 6 7 4 CAN. C 1 1 2 0 0 D'TRANS 0 . 1 2 * * 2 . 3 5 1 0 0 SPECIES GROUP: INLET DEEP SPECIES STN z WATER n/m3 I % COMPOSITION OF CC? EPCDITES REGIME 1 2 3 4cf 4g 5# 5 $ 6d* 65. SPINO 7 3 0 0 C"'DEEP 3-71 8 .41 18 29 53 SPINO 7 5 0 0 D*"DEEP 8 . 3 1 I8.83 18 18 27 36 SPINO 9 3 0 D'TRANS 1 . 2 9 * * 2 .92 20 60 20 SPINO 9 5 0 D'TRANS 14.89 3 3 - 7 3 1 1 5 93 SPINO 9 100 D'TRANS 7.43 I6.83 7 3 10 7 73 SPINO 9 200 D'TRANS 0 . 9 1 * 2.06 29 29 42 SPINO 9 350 D"'DEEP 6 . 5 0 14.73 30 38 32 SPINO 11- 5 0 D'TRANS 0 . 7 0 * * 1.59 20 20 20 40 SPINO 11 100 D'TRANS 2 5 . 4 3 57.61 3 - 4 - 12 16 65 SPINO 11 200 D'TRANS 5 . 8 4 13.23 4 8 6 31 39 12 SCAPH 7 3 0 0 C*"DEEP 0 .80* 5 . 03 34 16 50 SCAPH 7 5 0 0 D DEEP 3 . 1 5 19 .81 8 16 20 20 4 32 SCAPH 9 3 0 D'TRANS 1.28**. 8.05 40 40 20 SCAPH 9 5 0 D'TRANS 1 . 5 5 * 9 .75 28 28 44 SCAPH 9 100 D'TRANS 2.83* 17 .80 27 9 27 37 SCAPH 9 200 D'TRANS 0 . 9 1 * 5 .72 29 14 14 14 29 SCAPH 9 350 D"'DEEP 1.02* 6.42 11 23 67 SCAPH 11 100 D'TRANS 1.74 IO.94 - 7 - 20 13 3 3 27 SCAPH 11 200 D'TRANS 4.41 27.74 3 14 30 8 46 RACO 7 5 0 0 D "' DEEP O . 1 3 * * 17 .81 100 RACO 11 200 D'TRANS O.36** 49.32 100 SPECIES GROUP: MIGRANTS SPECIES STN z WATER n/m3 I % COMPOSITION OF COPEPODITES REGIME 1 2 3 4<f 49 5c/ 5 ? 60* 6c. E. BUN 7 3 0 0 C"'DEEP 0.27** 11 .84 100 E. BUN 9 350 D"'DEEP 0.22** 9 .65 5 0 5 0 E. BUN 11 200 D'TRANS 0 . 6 0 * * 26.32 40 60 CAL. P QC 5 0 E" TRANS 2.34** 41.34 - 100 -CAL. P 9 200 D'TRANS O.I3** 2.30 - 100 -CAL. M QC 10 E'SFC 1.71 0 .04 - 100 -CAL. M QC 3 0 E'SFC 2 . 5 0 * * 0.05 - 100 -CAL. M QC 100 E" TRANS 3 . 20* * 0.07 - 100 -CAL. M 3 5 0 B"TRANS 0 . 6 1 * * 0.02 100 CAL. M 3 100 B"TRANS 8.94 0.20 - 100 -CAL. M 3 150 B"TRANS 2 5 5 . 3 2 5 . 56 - 100 -CAL. M 7 3 0 D'TRANS 0.20 * * <0.01 - 100 -CAL. M 7 5 0 D'TRANS 0 . 2 1 * * <0 .01 - 100 -194 MONTH; DECEMBER 1974 SPECIES GROUP: MIGRANTS (Cont'd) SPECIES STN z WATER REGIME n/m3 I % COMPOSITION OF 1 2 3 4o* 4$ COPEPODITES 50* 5$ 60" 6$ CAL. M 7 300 C "' DEEP 24.54 0.53 - 100 -CAL. M 7 500 D"'DEEP 1.76 0.04 - 100 -CAL. M 9 10 A" SFC 0.15** <0.01 - 100 -CAL. M 9 200 D'TRANS 1.57 0.03 - 100 -CAL. M 9 350 D"*DEEP 21.0? 0.46 - 100 -CAL. M l l 100 D'TRANS 0.23** <0.01 - 100 -CAL. M 11 200 D'TRANS 7.86 0.17 - 100 -P. ELO QC 10 E'SFC 468.84 22.02 1 l 49 46 < 1 3 P. ELO QC 30 E'SFC 360.00 16.91 <1 1 4 63 29 2 P. ELO QC 50 E" TRANS 568.96 26.72 2 2 69 26 <1 P. ELO QC 100 E" TRANS 235.33 11.05 5 3 62 27 1 2 P. ELO 3 10 A'SFC 43.72 2.05 12 5 48 23 12 P. ELO 3 30 A'SFC 935.50 43.94 5 2 56 37 < 1 P. ELO 3 50 . B"TRANS 1381.90 64.91 1 2 65 32 <1 P. ELO 3 100 B"TRANS 520.60 24.45 < 1 2 58 40 <1 P. ELO 3 150 B"TRANS 156.20 7.30 1 2 2 32 63 P. ELO 7 10 A" SFC 6.29 O.3O 5 3 55 35 3 P. ELO 7 30 D'TRANS 2.98 0.14 - 7 - 60 20 13 P. ELO 7 50 D'TRANS 9.19 0.43 79 19 2 P. ELO 7 100 C'TRANS 32.40 1.52 2 2 70 25 1 P. ELO 7 300 C'DEEP 103.98 4.88 <1 l 47 52 <1 P. ELO 7 500 D"'DEEP 32.61 1.53 32 66 2 P. ELO 9 10 A" SFC 0.60** O.03 75 25 P. ELO 9 30 D'TRANS 4.10 0.19 19 12 38 31 P. ELO 9 50 D'TRANS 26.67 1.25 45 5 5 P. ELO 9 100 D'TRANS 5.64 0.27 55 45 P. ELO 9 200 D'TRANS 40.32 I .89 5 4 46 P. ELO 9 350 D"'DEEP 74.07 3.48 52 48 P. ELO 11 10 A" SFC 3.61 0.17 55 45 P. ELO 11 30 D'TRANS 6.16 0.29 39 47 14 P. ELO 11 50 D'TRANS IO.76 O.51 5 2 48 P. ELO 11 100 D'TRANS 7.85 0.37 54 46 P. ELO 11 200 D'TRANS 112.86 5.30 49 51 M. PAC QC 10 E'SFC 0.14** O.05 100 M. PAC QC 50 E" TRANS 23.36* 7.77 30 60 10 M. PAC QC 100 E" TRANS 32.20 IO.76 . 10 30 60 M. PAC 3 30 A'SFC 8.74 2.92 38 62 M. PAC 3 50 B"TRANS 9.72 3-25 50 50 M. PAC 3 100 B"TRANS 102.18 34.15 3 10 80 5 2 M. PAC 3 150 B"TRANS 131.81 44.05 3 3 26 24 10 34 M. PAC 7 10 A" SFC 1.10* 0.37 57 43 M. PAC 7 30 D'TRANS 2.99 1.00 34 46 13 7 195 MONTH; DECEMBER 1974 SPECIES GROUP: MIGR All TS (Cont'd) SPECIES STN z WATER n/m3 I % COMPOSITION OF co?: EPODITES REGIME 1 2 3 4cf 4o. rf 5? 60* 60. M. PAC 7 50 D'TRANS 4.00 1.34 36 64 M. PAC 7 100 C'TRANS 0.51** 0.05 100 M. PAC 7 300 C"'DEEP 3.06 1.02 9 26 65 M. PAC 7 500 D"'DEEP 3.15 1.05 8 92 M. PAC 9 10 A" SFC 14.56 4.8? 2 70 3 25 M. PAC 9 30 D'TRANS 29.74 9.94 5 23 28 24 18 2 M. PAC 9 50 D'TRANS 16.89 5.65 18 27 24 12 16 3 M. PAC 9 100 D'TRANS 0.26** 0.09 100 M. PAC 9 200 D'TRANS 1.18* 0.39 100 M. PAC 9 350 D"'DEEP 0.68* 0.23 50 16 34 M. PAC 11 10 A"SFC 24.93 8.33 . 9 18 10 29 34 M. PAC 11 30 D'TRANS 32.91 11.00 8 14 17 34 27 M. PAC 11 50 • D'TRANS 14.40 4.81 3 1 45 51 M. PAC 11- 100 D'TRANS 3.12 1.04 45 55 M. PAC 11 200 D'TRANS 1.43 0.48 100 MONTH: FEBRUARY 1975 S P E C I E S GROUP: SUMMER S U R F A C E : ABSEN'T FROM S A M P L E S S P E C I E S GROUP: S U R F A C E / T R A N S I T I O N S P E C I E S S T N z WATER n/m3 I % C O M P O S I T I O N OF COFj I P O D I T E S ' R E G I M E 1 2 3 4o" 4o. 50" 5$ 60* 6§_ A. L O N G QC 10 E ' S F C 12.22 2.22 100 A. L O N G QC 30 E ' S F C 3.30 0.60 100 A. L O N G QC 50 E ' S F C 1.77 0.32 100 A. L O N G QC 100 E"L0WER 6.24 1.13 100 A. L O N G 1 10 A S F C 4.04 0.73 100 A. L O N G 1 30 A S F C 13.01 2.36 4 96 A. L O N G 1 50 A S F C 9.73 1.77 100 A. L O N G 1 100 A S F C 5.71 1.04 100 A. L O N G 1 200 B"TRAN~S 6.93 1.26 100 A. L O N G 3 10 A S F C 8.19 1.49 100 A. L O N G 3 30 A S F C 11.58 2.10 100 A. L O N G 3 50 A S F C 8.18 1.48 100 A. L O N G 3 100 F T R A N S 4.23 0.77 100 A. L O N G 3 150 B " T R A N S 4.69 0.85 100 A. L O N G 5 10 A S F C 3.66 0.66 100 A. L O N G 5 30 A S F C 3.30 0.60 100 A. L O N G 5 50 A S F C 3-47 O .63 100 A. L O N G 5 100 F T R A N S 3-97 0.72 100 A. L O N G 7 10 A S F C I .63 O .30 100 A. L O N G 7 30 A S F C 3-95 0.72 100 A. L O N G 7 50 A S F C 4.07 0.74 . 100 196 MONTH: FEBRUARY 1975  SPECIES GROUT: SURFACE/TRANSITION (Cont'd) S P E C I E S STN z WATER n/m3 I % C O M P O S I T I O N O F C O P E P O D I T E S R E G I M E 1 2 3 4o* 4o 5 o ^ 5v 60* 69. A. LONG 7 100 A S F C 2.68* 0.49 100 A. LONG 9 10 A S F C 3.28 0.60 100 A. LONG 9 30 A S F C 5.88 1.07 100 A. LONG 9 50 A S F C 6.14 1.11 100 A. LONG 9 100 A S F C 5.80 1.05 100 T. D I S C QC 100 E"LOWER 0.20** 0.07 100 T. D I S C 1 10 A S F C 1.98 0.67 5 13 39 43 T. D I S C 1 30 A S F C 2 .53 0.85 14 5 57 24 T. D I S C 1 50 A S F C 0.4-3** 0.14 100 T. D I S C 1 100 A S F C 5-71 1.92 20 80 T. D I S C 1 200 B " T R A N S 3-70 1.24 33 67 T. D I S C 3 10 A S F C O.38** 0 .13 61 39 T. D I S C 3. 30 A S F C 1.96 0.66 45 55 T. D I S C 3 50 A S F C 4 .09 1.38 47 53 T. D I S C 3 100 F T R A N S 5.43 I . 8 3 42 53 T. D I S C 3 150 " B " T R A N S 5-67 1.91 41 59 T. D I S C 5 10 A S F C 2.97 0.94 55 45 T. D I S C 5 30 A S F C 1 .60 0.54 40 60 T. D I S C 5 50 A S F C 3.22 1.08 58 42 T. D I S C 5 100 F T R A N S 4 .67 1.57 58 42 T. D I S C 7 10 A S F C 1.96 0.66 61 39 T. D I S C 9 10 A S F C 2.02* 0.68 62 33 S P E C I E S GROUP: T R A N S I T I O N / D E E P S P E C I E S STN z WATER n/mJ I % C O M P O S I T I O N O F C O P E P O D I T E S R E G I M E 1 2 3 4o* 4o 5c? 5? 60* 6$ M. PYG 7 300 C D E E P 0 . 9 5 * * 40.77 100 M. PYG 7 500 C D E E P O.35** 15.02 100 M. PYG 9 200 C D E E P 0 .91** 39 .06 100 M. PYG 9 350 C D E E P 0 .19** 8.15 100 A. D I V QC 30 E ' S F C 0.58* 3-91 100 A. D I V QC 50 E ' S F C .1.17 7.88 42 25 33 A. D I V QC 100 E"LOWER 6.94 46.73 6 4 9 13 7 61 A. D I V 1 30 A S F C 1.08* 7.27 33 33 33 A. D I V 1 50 A S F C 1.00* 6.73 57 29 14 A. D I V 1 100 A S F C 1.85 12.46 6 6 88 A. D I V 1 200 B " T R A N S 5.21 35.O8 5 11 20 15 7 42 A. D I V 3 30 A S F C 0 . 3 0 * * 2.02 33 67 A. D I V 3 50 A S F C 0 .57** 3.84 40 20 40 A. D I V 3 100 F T R A N S 3.14 21.14 21 17 17 14 4 23 A. D I V 3 150 B " T R A N S 12.96 87.27 10 16 13 9 6 45 A. D I V 5 50 A S F C 0 .25** 1.68 100 A. D I V 5 100 F T R A N S 1.84 12.39 39 54 8 A. D I V 5 200 C D E E P 4.87 32.79 4 18 15 11 4 43 197 MONTH: FEBRUARY 1975  SPECIES GROUP: TRANSITION /DEEP (Cont'd) SPECIES STN z WATER REGIME n/m3 I 1 % COMPOSITION 2 3 4c? ! OF 4o_ COPEPODITES 5c? 55 6<f A. DIV 5 300 C DEEP 2.39 16.09 21 21 14 7 36 A. DIV 7 30 A SFC 1.05** 7.07 40 20 40 A. DIV 7 50 A SFC 1-35** 9.09 20 20 40 20 A. DIV 7 100 A SFC 1.67** 11.25 60 40 A. DIV 7 200 D TRANS 4.92 33.13 12 8 44 36 A. DIV 7 300 C DEEP 3.22 21.68 18 30 12 35 6 A. DIV 7 500 C DEEP 1.04* 7.00 50 16 34 A. DIV 9 30 A SFC 1.47** 9.90 75 25 A. DIV 9 50 A SFC 1.02** 6.87 67 33 A. DIV 9 200 C DEEP O.91** 6.13 80 20 A. DIV 9 350 C DEEP 3.54 23.84 47 26 16 10 E. JAP QC 50 E'SFC 0.10** 0.23 100 E. JAP 1 100 A SFC 0.12** 0.28 100 E. JAP 1 200 B"TRANS 0.18** 0.42 50 50 E. JAP 3 10 A SFC 0.08** 0.18 100 E. JAP 3 50 A SFC 0.34** 0.78 100 E. JAP 3 100 F TRANS 3.47 8.01 59 41 E. JAP 3 150 B"TRANS 1.11* 2.56 44 56 E. JAP 5 50 A SFC 0.24** 0.55 50 50 E. JAP 5 100 F TRANS 0.71** 1.64 100 E. JAP 5 200 C DEEP 1.62* 3.72 56 22 11 11 E. JAP 5 300 C DEEP 2.91 6.71 100 E. JAP 7 50 A SFC 0.54** 1.25 100 E. JAP 7 100 A SFC 0.6?** 1.55 100 E. JAP 7 200 D TRANS 0.79** 1.82 25 25 50 E. JAP 7 300 C DEEP 0.95** 2.19 100 E. JAP 7 500 C DEEP 3.47 8.01 55 35 10 E. JAP 9 50 A SFC I . 36** 3.14 75 25 E. JAP 9 100 A SFC 2.05* 4.73 33 67 E. JAP 9 200 C DEEP 0.18** 0.42 100 E. JAP 9 350 C DEEP 1.87* 4.31 100 SCOL. M QC •100 E"L0WER O.50** 2.55 100 SCOL. M 1 100 A SFC 0.74* 3-77 100 SCOL. M 1 200 B"TRANS 0.28** 1.43 100 SCOL. M 3 150 B"TRANS 0.49** 2.50 24 76 SCOL. M 7 50 A SFC 1.62* 8.26 33 17 50 SCOL. M 7 100 A SFC 1-33** 6.78 25 75 SCOL. M 9 50 A SFC 1.70** 8.67 20 20 60 SCOL. M 9 100 A SFC 2.38* 12.14 29 29 43 M. OKH 1 200 B"TRANS 2.74 0.27 10 38 52 M. OKH- 3 150 B"TRANS 0.62** 0.06 60 40 M. OKH 5 200 C DEEP 6.14 0.60 9 6 35 50 198 MONTH: FEBRUARY 1975  SPECIES GROUP: TRANSITION/DEEP (Cont'd) SPECIES STN z WATER n/m3 I % COMPOSITION OF COPEPODITES REGIME 1 2 3 4o* 4$ 5<? 6c? 6g M. OKH 5 300 C DEEP 22.78 2.24 2 41 46 11 M. OKH 7 30 A SFC 2.08* 0.20 100 M. OKH 7 50 A SFC 20.33 2.00 100 M. OKH 7 100 A SFC 12.71 1.25 100 M. OKH 7 200 D TRANS 5-90 O.58 17 83 M. OKH 7 300 C DEEP 5.10 0.50 59 41 M. OKH 7 500 C DEEP 36.74 3.61 3 33 48 17 M. OKH 9 200 C DEEP 4.18 0.41 100 M. OKH 9 350 C DEEP 22.95 2.25 79 21 C. GRAC 1 100 A SFC 0.25** 1.07 100 C. GRAC 1 200 B"TRANS 0.66* 2.84 42 58 C. GRAC 3 150 B"TRANS 1.73 7.43 57 43 C. GRAC 5 300 C DEEP 0.68** 2.92 75 25 • H. TAN 5- 300 C DEEP O.51** 1.82 33 67 H. TAN 7 500 C DEEP O.35** 1.25 100 H. TAN 9 200 C DEEP 0.73** 2.61 25 75 GAD. C 5 200 C DEEP O.36** 2.71 100 GAD. C 5 300 C DEEP O.85** 6.41 20 20 60 GAD. C 7 100 A SFC 1.33** 10.03 50 25 25 GAD. C 7 200 D TRANS 0.98** 7.39 40 •20 40 GAD. C 7 300 C DEEP O.76** 5.73 25 25 50 GAD. C 7 500 C DEEP 1.21* 9.13 14 14 72 GAD. C 9 200 C DEEP O.36** 2.71 100 GAD. C 9 350 C DEEP 0.75** •5.66 25 75 CAN. C 1 100 A SFC 0.12** 2.35 100 CAN. C 1 200 B"TBANS 1.32 25.88 14 7 29 50 CAN. C 3 30 A SFC 0.69* 13.53 71 29 CAN. C 3 150 B"TRANS 2.09 40.98 23 - • 18 - 6 18 12 23 CAN. C 5 200 C DEEP 1.08* 21.18 33 67 CAN. C 5 300 C DEEP 1.19* 23.33 43 14 43 CAN. C 7 200 D TRANS 0.59** 11.57 66 34 CAN. C 7 300 C DEEP 1.90* 37.25 . 30 20 20 30 CAN. C 7 500 C DEEP 1.39* 27.25 384 12 25 25 CAN. C 9 350 C DEEP 2.06 40.39 27 - 36 - 9 9 18 SPECIES GROUP: INLET DEEP SPECIES STN z WATER n/m3 I % COMPOSITION OF COPEPODITES REGIME 1 2 3 4o" 4o. 5°* 5? 6cf 6 ? SPINO 5 200 C DEEP 4.51 10.22 12 4 8 20 56 SPINO 5 300 C DEEP 9.07 20.55 2 4 6 2 40 47 SPINO 7 200 D TRANS 10.23 23.18 23 29 2 46 SPINO 7 300 C DEEP 9.08 20.57 10 6 15 8 4 56 SPINO 7 500 C DEEP 14.21 32.19 12 7 18 12 6 44 SPINO 9 200 C DEEP 7.82 17.72 7 26 14 2 51 SPINO 9 350 C DEEP 13.06 29.59 10 4 16 20 4 46 199 MONTH: FEBRUARY 1975 SPECIES GROUP: INLET DEEP (Cont'd) SPECIES STN WATER REGIME n/ra3 % COMPOSITION OF COPEPODITES "T 2~^~3 40* 4c. 50" 5% 6o" 6c. SCAPH 5 200 C DEEP 0.72** 4.53 25 25 50 SCAPH 5 300 C DEEP 0.85** 5-35 60 40 SCAPH 7 200 D TRANS 2.37 14.91 8 17 33 8 33 SCAPH 7 300 C DEEP 0.57** 3-58 100 SCAPH 7 500 C DEEP 2.60 16.35 13 27 33 7 20 SCAPH 9 200 C DEEP O.36** 2.26 100 SCAPH 9 350 C DEEP 0.93** 5-85 100 RACO 7 500 C DEEP O.35** 47.95 100 SPECIES GROUP: MIGRANTS SPECIES STN z WATER n/m3 I % COMPOSITION OF COPEPODITES REGIME 1 2 3 46* 4c. 50* 5§ 6c? 69 E. BUN 7 300 C DEEP 0.19** 8.33 100 E. BUN 9 200 C DEEP O.36** 15-79 - 100 -E. BUN 9' 350 C DEEP O.37** 16.23 - 100 -CAL. P 9 350 C DEEP 0.37** 6.54 - 100 -CAL. M QC 10 E'SFC 0.59* 0.01 - 100 -CAL. M QC 30 E'SFC 5.15 0.11 - 77 - 21 2 CAL. M QC 50 E'SFC 8.43 0.18 - 56 - 41 3 CAL. M QC 100 E"LOWER 18.33 0.40 - 63 - 29 8 CAL. M 1 10 A SFC 0.09** <0.01 - 100 -CAL. M 1 30 A SFC 5.06 0.11 - 59 - 36 5 CAL. M 1 50 A SFC 17.74 0.39 - 55 - 38 7 CAL. M 1 100 A SFC 25.06 0.55 - 7 0 - 2 7 2 CAL. M 1 200 B"TRANS 31.59 O.69 - 77 - 21 2 CAL. M 3 10 A SFC 0.46* 0.01 1 - 5 0 - 5 0 CAL. M 3 30 A SFC 0.20** <0.01 - 5 0 - 5 0 CAL. M 3 50 A SFC 0.22** <0.01 - 5 0 - 5 0 CAL. M 3 100 F TRANS 32.65 0.71 - 76 - 20 4 CAL. M 3 150 B"TRANS • 43.65 0.95 - 70 - 26 4 CAL. M 5 10 A SFC 0.39** 0.01 - 74 - 26 CAL. M 5 30 A SFC 0.11** <0.01 - 100 -CAL. M 5 50 A SFC 0.12** <0.01 - 100 -CAL. M 5 200 C DEEP 12.29 0.27 - 54 - 43 3 CAL. M 5 300 C DEEP 17.46 0.38 - 3 5 - 6 5 CAL. M 7 10 A SFC 0.11** <0.01 - 100 -CAL. M 7 30 A SFC 1.04** 0.02 - 6 0 - 2 0 20 CAL. M 7 50 A SFC 1.35** 0.03 - 6 0 - 4 0 CAL. M 7 100 A SFC 3.34* 0.07 - 5 0 - 3 0 20 CAL. M 7 200 D TRANS 29-72 0.65 - 54 - 37 9 CAL. M 7 300 C DEEP 6.81 0.15 - 6 9 - 3 1 CAL. M 7 500 C DEEP 11.79 0.26 - 7 8 - 2 2 CAL. M 9 30 A SFC 1.11** 0.02 - 6 7 - 3 3 CAL. M 9 50 A SFC 0.68** 0.01 - 100 -200 MONTH: FEBRUARY 1975 SPECIES GROUP: MIGRANTS (Cont'd) SPECIES STN z WATER I % COMPOSITION OF COPEPOE UTES REGIME 1 2 3 4o* 4$ 5a* 5?- 6c/ 6 ? CAL. M 9 50 A SFC 0.68** 0.01 - 100 -CAL. M 9 100 A SFC 2.04* 0.04 - 50 - 33 17 CAL. M 9 200 C DEEP 14.73 0.32 - 53 - 33 14 CAL. M 9 350 C DEEP 12.12 0.26 - 71 - 29 P. ELO QC 10 E'SFC 33.80 1-59 47 51 2 P. ELO QC 30 E'SFC 145.58 6.84 51 49 P. ELO QC 50 E'SFC 115.61 5.44 51 48 2 P. ELO QC 100 E"LOWER 131.42 6.17 46 48 1 4 P. ELO 1 10 A SFC 16.67 0.78 43 37 7 12 P. ELO 1 30 A SFC 173-02 8.I3 40 46 12 3 P. ELO 1 50 A SFC 81.83 3.84 20 29 30 21 P. ELO 1 100 A SFC 302.74 14.22 45 47 5 2 P. ELO 1 200 B"TRANS 91.46 4.30 34 41 20 5 P. ELO 3 10 A SFC 78.09 3-67 41 42 8 9 P. ELO 3 30 A SFC 168.79 7.93 40 46 10 4 P. ELO 3 50 A SFC 267.61 12.57 46 35 17 2 P. ELO 3 100 F TRANS 119.73 5.62 37 41 15 7 P. ELO 3 150 B"TRANS 129.10 6.06 41 47 10 2 P. ELO 5 10 A SFC 22.86 1.07 40 50 6 4 P. ELO 5 30 A SFC 27.91 1-31 37 43 11 9 P. ELO 5 50 A SFC 159.36 7.48 44 46 7 4 P. ELO 5 100 F TRANS 355.25 16.69 38 44 14 4 P. ELO 5 200 C DEEP 18.62 0.87 35 48 16 1 P. ELO 5 300 C DEEP 37-16 1..75 6 49 45 P. ELO 7 10 A SFC 6.10 0.29 34 48 14 4 P. ELO 7 30 A SFC 9.77 0.46 40 53 7 P. ELO 7 50 A SFC 51.23 2.41 37 41 20 3 P. ELO 7 100 A SFC 133.11 6.25 31 47 20 2 P. ELO 7 200 D TRANS 189-37 8.89 28 20 19 34 P. ELO 7 300 C DEEP 59.92 2.81 23 47 25 6 P. ELO 7 500 C DEEP 51.64 2.43 16 41 33 10 P. ELO 9 10 A SFC 8.33 . 0.39 33 52 15 P. ELO 9 • 30 A SFC 13.60 0.64 32 54 14 P. ELO 9 50 A SFC 29.01 1.36 25 45 19 12 P. ELO 9 100 A SFC 57.67 2.71 25 23 9 43 P. ELO 9 200 C DEEP 56.72 2.66 16 26 36 21 P. ELO 9 350 C DEEP 48.32 2.27 22 47 24 8 M. PAC QC 10 E'SFC 10.71 3-58 1 2 4 6 87 M. PAC QC 30 E'SFC" 5-73 1.92 3 9 88 M. PAC QC 50 E'SFC 8.35 2.79 15 85 M. PAG QC 100 E"LOWER 2.42 0.81 62 38 M. PAC 1 50 A SFC 4.87 1.63 15 9 32 44 201 MONTH: FEBRUARY 1975 SPECIES GROUP: MIGRANTS ''Cont'd) SPECIES STN Z WATER n/m-5 I % COMPOSITION OF COPEPODITES REGIME 1 2 3 4o* 4 j 5c/ 59 6ci* 60 M. PAC 1 100 A SFC 12.53 4.19 10 9 46 35 M. PAC 1 200 B"TRANS 8.91 2.74 1 2 66 31 M. PAC 3 10 A SFC 0.08** 0.03 100 M. PAC 3 100 F TRANS O.65* 0.22 • 100 M. PAC 3 150 B"TRANS 10.48 3.50 4 1 58 38 M. PAC 5 10 A SFC 0.19** 0.02 100 M. PAC 5 100 F TRANS O.56** 0.19 25 75 M. PAC 5 200 C DEEP 2.17 0.73 41 59 M. PAC 5 300 C DEEP 1.03* 0.34 100 M. PAC 7 100 A SFC 6.35 2.12 16 11 74 M. PAC 7 200 D TRANS 17.12 5-72 3 2 1 93 M. PAC 7 300 C DEEP 1.71* 0.57 11 33 56 M. PAC 7 500 C DEEP 1.04* 0.35 16 54 M. PAC 9 30 A SFC 1.47** 0.49 25 75 M. PAC 9 100 A SFC 5.12 1.71 33 13 7 20 27 M. PAC 9 200 C DEEP 1.27* 0.42 100 M. PAC 9 350 C DEEP 1.68* O.56 22 78 MONTH: MARCH 1975 SPECIES GROUP: SUMMER SURFACE: ABSENT FROM SAMPLES SPECIES GROUP: SURFACE/TRANSITION SPECIES STN z WATER n/m3 I % COMPOSITION CF COPEPODITES REGIME 1 2 3 4c?1 49 50" 5? 6<f 60 A. CLAU 11 5 A SFC 2.85 0.84 100 A. CLAU 11 10 A SFC O.56** 0.16 100 A. LONG QC 5 E'.SFC 0.64* 0.12 100 A. LONG QC 10 E'SFC 3-19 O.58 100 A. LONG QC 30 E" TRANS 7.08 1.28 100 A. LONG QC 100 E"'DEEP 1.71 0.31 100 A. LONG 1 5 A SFC 12.59 2.29 100 A. LONG 1 10 A SFC 6.41 1.16 100 A. LONG 1 30 A SFC 4.84 0.88 100 A. LONG 1 50 A SFC 1.66 0.30 100 A. LONG 3 5 A SFC 6.10 1.11 100 A. LONG 3 10 A SFC 1.68 0.30 100 A. LONG 3 30 G'TRANS 3-03 0.55 100 A. LONG 3 50 C'TRANS 3.08 O.56 100 A. LONG 5 10 A SFC 1.51 0.27 100 A. LONG 5 30 G* TRANS 7.19 1.30 100 A. LONG 7 5 A SFC 0.61* 0.11 100 A. LONG 7 10 A SFC 0.28** 0.05 100 A. LONG 9 10 A SFC 2.28* 0.41 100 202 MONTH: MARCH 1975 SPECIES GROUP: SURFACE/TRANSITION S P E C I E S STN z WATER n/m-5 I % C O M P O S I T I O N OF C O P E P O D I T E S R E G I M E 1 2 3 4cf 4$ 5<? 52 6cf 60 A. L O N G 9 30 G ' T R A N S 2.05* 0.37 100 A. L O N G 11 5 A S F C 3.24 0.59 100 A. L O N G 11 10 A S F C 1.00* 0.18 100 T. D I S C QC 100 E " ' D E E P 2.19 0.74 48 52 T. D I S C 1 10 A S F C 0.66* 0.22 29 71 T. D I S C l 30 . A S F C 1.32 0.44 75 25 T. D I S C 1 50 A S F C 1.10* 0.37 50 50 T. D I S C 1 100 A S F C 0 .51** 0.17 33 67 T. D I S C 3 5 A S F C 2.35 0.79 34 66 T. D I S C 3 10 A S F C 0.32** 0.11 20 80 T. D I S C 3 30 G ' T R A N S 1 .31* 0.44 70 30 T. D I S C 3 50 C ' T R A N S 1.95 0.66 42 58 T. D I S C 3. 100 B " T R A N S 0.95* 0.32 34 66 T. D I S C 5 10 A S F C 0.25** 0.08 100 T. D I S C 5 30 G ' T R A N S 5.22* 1.76 50 50 T. D I S C 5 50 G ' T R A N S 1.99 0.67 31 69 T. D I S C 5 100 C ' T R A N S 0 .85** 0.29 20 80 T.' D I S C 11 5 A S F C 0.26** 0.09 100 S P E C I E S GROUP: T R A N S I T I O N / D E E P S P E C I E S S T N z WATER n/W I % C O M P O S I T I O N OF C O P E P O D I T E S R E G I M E 1 2 3 4c?1 4$ 5°* 5? 60* 69. M . P Y G 9 200 F " D E E P 0 .43** 18.45 100 A. D I V 1 200 B " T R A N S 8.14 54.81 6 14 2 73 A. D I V 3 150 B " T R A N S 6.98 47.00 23 21 4 52 A. D I V 5 30 G ' T R A N S 9.14 61.55 21 29 7 43 A. D I V 5 200 F ' T R A N S 7.62 51.31 17 30 7" 46 A . D I V 5 300 F " D E E P 4.07 27.41 14 21 25 11 7 21 A. D I V 7 30 G ' T R A N S 4.49 30.24 33 27 41 A. D I V 7 50 C ' T R A N S 2.94 19.80 14 24 38 24 A. D I V 7 100 F ' T R A N S 1.64 11.04 34 9 25 16 16 A . D I V 7 200 F " D E E P 8.12 54.68 6 22 28 3 5 36 A. D I V 7 300 F " D E E P 3-75 25.25 6 11 22 28 6 28 A. D I V 7 500 C D E E P 2.88 19-39 '6 22 17 39 6 11 A. D I V 9 30 G ' T R A N S 0.68** 4.58 50 50 A. D I V 9 100 F ' T R A N S 1.15** 7-74 25 75. A . D I V 9 200 F " D E E P 2.86 19.26 20 30 5 45 A. D I V 11 50 D D E E P 0.82* 5.52 57 43 A. D I V 11 100 D D E E P 0.78* 5.25 50 13 37 A. D I V 11 200 D D E E P 2.34 ' 15.76 44 56 E . J A P QC 100 E " ' D E E P 0 .10** 0.23 100 E . J A P 1 100 A S F C 0.86** 1.98 80 20 E. J A P 1 200 B " T R A N S 1.33* 3.07 62 25 13 203 MONTH: MARCH 1975  SPECIES GROUP: TRANSITION/DEEP (Cont'd) SPECIES STN z WATER REGIME n/m3 I 1 % COMPOSITION OF CO? 2 3 40* 4$ 50* EPCDITES 5$ 60* 6 ? E. JAP 3 30 G'TRANS 0.13** 0.30 100 E. JAP 3 50 G" TRANS 0.81** 1.87 100 E. JAP 3 100 B"TRANS 0.80** 1.85 60 40 E. JAP 3 150 B"TRANS 0.80* 1.85 68 16 16 E. JAP 5 50 G'TRANS 1.68 3.88 27 73 E. JAP 5 100 G"TRANS 2.22 5.12 85 15 E. JAP 5 200 F'TRANS 4.47 IO.31 41 59 E. JAP 5 300 F"DEEP 5-67 13.08 33 56 10 E. JAP 7 5 A SFC 1.40 3-23 25 13 19 44 E. JAP 7 10 A SFC 1.51 3.48 44 13 25 19 E. JAP 7 30 G'TRANS 7.27 16.77 53 40 2 5 E. JAP 7 50 G"TRANS 8.51 19.64 44 56 E. JAP 7 100 F'TRANS 2.19 5.05 75 19 6 E. JAP 7 200 F"DEEP 5-59 12.90 84 16 E. JAP 7 300 F"DEEP 3-55 8.19 53 47 E. JAP 7 500 C DEEP 10.43 24.07 51 38 11 E. JAP 9 30 G'TRANS 1.70** 3.92 40 60 ) E. JAP 9 50 G TRANS O.92** 2.12 50 25 25 E. JAP 9 100 F'TRANS 2.30* 5.31 63 37 E. JAP 9 200 F"DEEP O.85* 1.96 16 84 E. JAP 9 350 C DEEP I . 65* * 3.81 56 11 33 E. JAP 11 10 A SFC 0.22** 0.51 100 E. JAP 11 50 D DEEP O.58** I.34 60 40 E. JAP 11 100 D DEEP 1.26 2.91 100 E. JAP 11 200 D DEEP 1.68 3.88 50 28 11 5 5 SCOL. M 3 30 G'TRANS 1.18* 6.02 11 22 67 SCOL. M 3 50 G"TRANS 1.79 9.13 27 27 46 SCOL. M 5 30 G'TRANS 4.57* 23.30 43 57 SCOL. M 5 50 G'TRANS 3.35 17.08 23 23 55 SCOL. M 7 50 G"TRANS 5.99 30.55 5 7 30 26 33 SCOL. M 7 100 F'TRANS 0.82* . 4.18 33 17 50 SCOL. M 9 •30 G'TRANS 2.72* 13-87 25 38 25 13 SCOL. M 9 50 G TRANS 1.15** 5.86 40 20 40 SCOL. M 11 30 G'TRANS 1.97 IO.05 20 35 45 SCOL. M 11 50 D DEEP 3.02 15.40 19 27 54 SCOL. M 11 100 D DEEP 1-55 7-90 25 19 56 M. OKH 1 200 B"TRANS O.83** 0.08 20 80 M. OKH 3 150 B"TRANS 2.15 0.21 44 19 38 M. OKH 5 200 F'TRANS 4.14 0.41 56 44 M. OKH 5 300 F"DEEP 3.50 0.34 79 21 M. OKH 7 5 A SFC 100.97 9.91 10 8 6 76 M. OKH 7 10 A SFC 96.77 9.50 4 5 2 89 204 MONTH: MARCH 1975  SPECIES GROUP: TRANSITION/DEEP (Cont'd) SPECIES STN z WATER REGIME n/m-* I % COMPOSITION OF 1 2 3 4(7* 49 COPEPODITES 50" 5$ 60* 69 M. OKH 7 30 G'TRANS 55.82 5.48 5 2 93 M. OKH 7 50 G"TRANS 19.38 1.90 10 90 M. OKH 7 100 F'TRANS 3-83 O.38 11 59 M. OKH 7 200 F"DEEP 4.44 0.44 89 11 M. OKH 7 300 F"DEEP 2.09* 0.21 90 10 M. OKH 7 500 C DEEP 4.01 0.39 64 36 M. OKH 9 100 F'TRANS 0.86** 0.08 100 M. OKH 9 200 F"DEEP 17.57 1.72 10 90 M. OKH 9 350 C DEEP O.55** 0.05 67 33 M. OKH 11 10 A SFC 0.22** 0.02 100 M. OKH 11 50 D DEEP 7.21 0.71 100 M. OKH 11 200 D DEEP 8.21 0.81 8 92 C. GRAC 1 200 B"TRANS 5.65 24.27 38 62 C. GRAC 3 ' 150 B"TRANS 3.62 15.55 44 56 C. GRAC 5 200 F'TRANS 3.65 15.68 45 55 C. GRAC 5 300 F"DEEP 1.61 6.92 27 63 0 C. GRAC 7 200 F"DEEP 0.25** 1.07 100 C. GRAC 7 300 F"DEEP 0.21** 0.90 100 C. GRAC 11 200 D DEEP 0.37** 1-59 .25 75 H. TAN 5 300 F"DEEP 2.33 8.32 12 56 - 19 - 12 H. TAN 7 200 F"DEEP 2.67 9.54 81 - "19 -H. TAN 7 300 F"DEEP 1.46* 5.21 71 - 29 -H. TAN 7 500 C DEEP 0.48** 1.71 33 67 H. TAN 9 200 F"DEEP 2.00 7.14 7 65 - 29 -H. TAN 9 350 C DEEP 2.57 9.18 36 43 21 H. TAN 11 200 D DEEP 3.54 12.64 77 - 18 - 3 3 GAD. C 5 300 F"DEEP 0.87* 6.56 33 67 GAD. C 7 30 G'TRANS 0.73* 5.51 100 GAD. C 7 50 C'TRANS 2.09 15.76 100 GAD. C 7 200 F"DEEP 2.15 16.21 71 29 GAD. C 7 300 F"DEEP 0.42** 3-17 100 GAD. C 7 500 C DEEP 0.80** 6.03 20 80 GAD. C 9 200 F"DEEP 0.86* 6.49 100 GAD. C 9 350 C DEEP 0.37** 2.79 100 GAD. C 11 200 D DEEP 1.31 9.88 7 15 79 CAN. C 3 150 B"TRANS 0.26** 5.10 50 50 CAN. C 5 200 F'TRANS O.50** 9.80 34 66 CAN. C 7 100 F'TRANS O.83* 16.27 49 17 17 17 CAN. C 7 200 F"DEEP 2.29 44.90 17 45 6 17 6 10 CAN. C 7 500 C DEEP 0.96* 18.82 50 17 33 CAN. C 9 200 F"DEEP 1.71 33-53 25 17 8 42 8 CAN. C 9 350 C DEEP O.73** 14.31 25 - 75 -CAN. C 11 200 D DEEP . O.56* IO.98 84 16 205 MONTH: MARCH 1975 SPECIES GROUP: INLET D^ EP SPECIES STN z WATER n/mJ I % COMPOSITION OF COPEPODITES ' REGIME 1 2 3 4c/ 4 ? 5o* 5? 6c? 60 SPINO 5 300 F"DEEP 10.34 23.43 15 17 8 13 7 39 SPINO 7 100 F'TRANS 0.82* 1.86 50 17 33 SPINO 7 200 F"DEEP 13-97 31.65 24 13 25 12 1 26 ' SPINO 7 300 F"DEEP 17.72 40.14 6 16 13 18 14 8 25 SPINO 7 500 C DEEP 13.81 31.29 3 15 13 27 22 3 16 SPINO 9 200 F"DEEP 8.99 20.37 19 19 17 14 30 SPINO 9 350 C DEEP 15.96 36.16 1 6 3 31 38 7 14 SPINO 11 50 D DEEP 0.70* 1.59 50 17 33 SPINO 11 100 D DEEP 1.56 3.53 25 44 31 SPINO 11 200 D DEEP 26.43 59-88 5 14 17 20 23 2 13 SCAPH 5 300 F"DEEP 1 .03* 6.48 15 28 43 15 SCAPH 7 500 C DEEP 1.44* 9.06 11 33 44 11 SCAPH 9 200 F"DEEP 2.00 12.58 15 7 79 SCAPH 9 350 C DEEP 2.20 13.84 25 17 8 50 SCAPH 11 100 D DEEP 0.20** 1.26 50 50 SCAPH 11 200 D DEEP 4.20 26.42 2 2 5 91 RACO 7 500 C DEEP 0 .32** 43.84 100 RACO 9 350 C DEEP O .37** 50.68 100 SPECIES GROUP: MIGRANTS SPECIES STN z WATER n/m3 I % COMPOSITION ' OF COPEPODITES REGIME 1 2 3 4cT 4o 5o" 5? 6& =•? E. BUN 9 350 C DEEP 0.18** 7.89 100 E. BUN 11 200 D DEEP 0 .09** 3-95 100 CAL. P 11 200 D DEEP 0 .09** 1.59 -100 -CAL. M QC 5 E'SFC 20.56 0.45 - 1 - 1 93 CAL. M QC 10 E'SFC 18.11 0.39 - 8 - 12 80 CAL. M QC 30 E" TRANS 27.71 0.60 - 8 - 12 81 CAL. M QC 50 E"TRANS 11.02 0.24 - 1 - 4 95 CAL. M QC 100 E"'DEEP 15.34 0-33 _ k _ 14 82 CAL. M 1 5 A SFC 0.87 0.02 - 28 - 9 63 CAL. M 1 10 A SFC 1.50 0.03 - 6 - 94 CAL. M 1 30 A .SFC I . 6 5 0.04 - 13 - 7 80 CAL. M 1 50 A SFC 2.76 0.06 - 25 - 5 70 CAL. M 1 100 A SFC 10.50 0.23 - 18 - 20 62 CAL. M 1 200 B"TRANS 36.37 0.79 - 7 - 49 44 CAL. M 3 5 A SFC 1.62 0.04 - 23 - 9 68 CAL. M 3 10 A SFC 1.52 0.03 - 16 - 84 CAL. M 3 30 G'TRANS O.39** 0.01 - 67 - 33 CAL. M 3 50 C'TRANS 1 .62* 0.04 - 30 - 10 60 CAL. M 3 100 B"TRANS 7.77 0.17 - 24 - 4 71 CAL. M 3 150 B"TRANS 24.03 0.52 - 5 - 50 45 CAL. M 5 10 A SFC 3.03 0.07 _ 4 _ 13 83 206 MONTH: MARCH 1975 SPECIES GROUP: MIGRANTS (Cont'd) SPECIES STN z WATER n/m3 I % COMPOSITION OF COPEPCDITES REGIME ~1 2 3 W~k~^ 5o" 5$ 6d* 6$ CAL. M 5 30 G'TRANS 1.96*-* 0.04 33 67 CAL. M 5 50 G'TRANS 2.29 0.05 - 27 - 20 53 CAL. M 5 100 G"TRANS 8,02 0.17 - 50 - 2 63 CAL. M 5 200 F'TRANS 25.33 0.55 - 12 - 41 47 CAL. M 5 300 F"DEEP 5-97 0.13 - 27 - 22 51 CAL. M 7 5 A SFC 110.00 2.39 - 6 - 1 93 CAL. M 7 10 A SFC 94.51 2.06 - 4 - 96 CAL. M .7 30 G'TRANS 190.29 4.14 - 5 - 2 93 CAL. M 7 50 G"TRANS 4.88 0.11 - 23 - 28 49 CAL. M 7 100 F'TRANS 2.05 0.04 - 13 - 27 60 CAL. M 7 200 F"DEEP 5.33 0.12 •- 26 - 59 14 CAL. M 7 300 F"DEEP 0.21** <0.01 100 CAL. M 7 500 C DEEP 4.65 0.10 - 17 - 24 59 CAL. M 9 10 A SFC 2.61* 0.06 100 CAL. M 9 30 G'TRANS 1.71** 0.04 ICO CAL. M 9 100 F'TRANS 3-75 0.08 ICO CAL. M 9 200 F"DEEP 11.29 0.25 - 20 - 19 61 CAL. M 9 350 C DEEP 0.18** <0.01 100 CAL. M 11 5 A SFC O.13** <0.01 100 CAL. M 11 10 A SFC 4.12 0.09 - 8 - 5 87 CAL. M 11 30 G'TRANS O.30** 0.01 100 CAL. M 11 50 D DEEP O.59** 0.01 - 20 - 80 CAL. M 11 100 D DEEP 14.17 0.31 100 CAL. M 11 200 D DEEP 4.67 0.10 - 40 - 58 19 P. ELO QC 5 E'SFC 7.75 O.36 22 28 8 42 P. ELO QC 10 E'SFC 38.23 1.80 9 8 30 53 P. ELO QC 30 E"TRANS 106.68 5.01 25 -24 27 23 P. ELO QC 50 E" TRANS 42.17 1.98 18 21 20 42 P. ELO QC 100 E"'DEEP 20.58 0.97 15 31 48 6 P. ELO 1 5 A SFC 112.81 5.30 11 12 1 76 P. ELO 1 10 A SFC 121.21 5.69 16 18 5 62 P. ELO 1 • 30 A SFC 74.29 3-49 20 28 40 12 P. ELO 1 50 A SFC 119.45 5.61 17 34 35 13 P. ELO 1 100 A SFC 115.65 5.43 13 22 43 22 P. ELO 1 200 B "TRANS 70.11 3-29 6 9 44 41 P. ELO 3 5 A SFC 81.26 3.82 15 14 2 69 P. ELO 3 10 A SFC 117-98 5.54 16 18 5 61 P. ELO 3 30 G'TRANS 74.61 3.50 18 28 43 12 P. ELO 3 50 G"TRANS 153.89 7.23 19 33 34 15 P. ELO 3 100 B"TRANS IO3.65 4.87 10 19 46 24 P. ELO 3 150 B"TRANS 64.83 3.04 8 9 42 40 P. ELO 5 10 A SFC 97.85 4.60 18 22 5 55 207 MONTH: MARCH 1975 SPECIES GROUP: MIGRANTS (Cont'd) SPECIES STN z WATER n/m3 I % COMPOSITION OF CO? 'EPCDITES REGIME 1 2 3 4o* 4$ 50" 5? 60* 60 P. ELO 5 30 G'TRANS 37.26 1.75 16 25 47 12 P. ELO 5 50 G'TRANS 139.91 6.57 16 41 29 14 P. ELO 5 100 C'TRANS 107 .34 5 .04 12 18 46 24 P. ELO 5 200 F'TRANS 51.00 2 .40 9 12 37 41 P. ELO 5 300 F"DEEP 14.99 0.70 46 38 2 15 P. ELO 7 5 A SFC 397.38 18.66 3 2 2 93 P. ELO 7 10 A SFC 347.16 16.31 2 1 1 96 P. ELO 7 30 G'TRANS 15.65 0.74 22 17 2 59 P. ELO 7 50 C'TRANS 15 .35 0.72 17 25 6 51 P. ELO 7 100 F'TRANS 20.00 0.94 8 10 10 72 P.- ELO 7 200 F"DEEP I6.5O 0.77 32 28 2 "5 P. ELO 7 300 F"DEEP 6.04 0 .28 24 38 3 P. ELO 7_ 500 C DEEP 20.22 0.95 29 35 7 25 P. ELO 9 10 A SFC 12.70 0.60 23 18 59 P. ELO 9 30 G'TRANS 23 .55 1.11 14 10 75 P. ELO 9 50 G TRANS 11.34 0.53 6 10 5ii P. ELO 9 100 F'TRANS 84.44 3-97 8 6 1 85 P. ELO 9 .200 F"DEEP 59.71 2 .80 9 6 85 P. ELO 9 350 C DEEP 3.67 0.17 30 15 . . 55 P. ELO 11 5 A SFC 9-33 0.44 19 24 13 44 P. ELO 11 10 A SFC 26.45 1 .24 5 95 P. ELO 11 30 G'TRANS 13.03 0.61 * 16 14 70 P. ELO 11 50 D DEEP 11 .28 O.53 7 3 90 P. ELO 11 100 D DEEP 34.47 1.62 3 2 95 P. ELO 11 200 D DEEP . 22 .41 1.05 3 1 96 M. PAC QC 100 E"'DEEP 7.05 2.36 1 23 49 27 M. PAC 1 30 A SFC 1.10* 0.37 30 70 M. PAC 1 50 A SFC 0.69** 0.23 59 41 M. PAC 1 100 A SFC 3-79 1.27 100 M. PAC 1 200 B "TRANS 24.75 8.27 • 9 23 47 21 M. PAC 3 10 A SFC 0 .08** 0.03 100 M. PAC 3 100 B"TRANS 0 .48** 0.16 33 67 M. PAC 3 150 B"TRANS 17.73 5-93 5 19 44 32 M. PAC 5 10 A SFC 0.13** 0 .04 100 M. PAC 5 30 G'TRANS 7 .19 2 .40 100 M. PAC 5 100 C'TRANS 0.34** 0.11 100 M. PAC 5 200 F'TRANS 9.44 3.16 37 63 M. PAC 5 300 F"DEEP 1.61 0.54 9 91 M. PAC 7 5 A SFC 84.91 28.38 100 M. PAC 7 10 A SFC 106. 06 35-45 100 M. PAC 7 30 G'TRANS 16.26 5.43 100 M. PAC 7 50 C'TRANS 30.40 10.16 100 208 MONTH: MARCH 1975 SPECIES GROUP: MIGRANTS (Cont'd) S P E C I E S S T N z WATER n/m3 I % C O M P O S I T I O N O F CC? S P O D I T E S R E G I M E 1 2 3 4c? 4o 5c? 5? 60* 60 M. P A C 7 100 F ' T R A N S 0.27** 0.09 100 M. P A C 7 200 F " D E E P 2.79 0.93 68 32 M. P A C 7 300 F " D E E P 0.42** 0.14 100 M. P A C 7 500 C D E E P 1.44* 0.48 22 78 M. P A C 9 10 A S F C O.98** 0.33 66 34 M. P A C 9 30 G ' T R A N S 1.02** O.34 100 M. P A C 9 200 F " D E E P 1.43* 0.48 10 90 M. P A C 11 10 A S F C 1.00* 0.33 100 M. P A C 11 30 G ' T R A N S 0.20** 0.07 100 M. P A C 11 50 D D E E P 1.05* 0.35 45 55 M. P A C 11 100 D D E E P O.98* O.33 40 10 50 M. P A C 11 200 D D E E P 4.58 1.53 14 10 59 16 MONTH: A P R I L 1975 S P E C I E S GROUP: SUMMER S U R F A C E : A B S E N T F R O M S A M P L E S S P E C I E S GROUP: S U R F A C E / T R A N S I T I O N S P E C I E S S T N z WATER n/m3 I % C O M P O S I T I O N O F C O P E P O D I T E S R E G I M E 1 2 3 46* ko 5c? 6c? 69 A. L O N G 1 5 A ' S F C 32.48 5-89 6 94 A. L O N G 1 10 A ' S F C 17.15 3.11 6 94 A. L O N G 1 30 A ' S F C 9.41 "1.71 31 69 A. L O N G 1 50 F ' T R A N S 38.85 7.05 13 87 A. L O N G 1 100 F ' T R A N S 4.36 0.79 100 A. L O N G 3, 5 A ' S F C 3.26* 0.59 100 A. L O N G 3 10 A ' S F C 2.49** 0.45 100 A. L O N G 5 10 A ' S F C 9.60 1.74 100 A. L O N G 7 5 A ' S F C 230.82 41.89 12 88 A. L O N G 7 10 A ' S F C 7.46 1.35 5 95 A. L O N G 7 30 A ' S F C 5-39 0.98 7 93 A. L O N G 9 10 A ' S F C 49.58 9.00 100 A. L O N G 11 5 A ' S F C 550.98 100.00 10 90 T. D I S C QC 100 E " ' D E E P 1.94 0.65 25 14 7 54 T. D I S C 1 50 F ' T R A N S 3-97 1.34 27 35 24 14 T. D I S C 1 100 F ' T R A N S 4.09 1.38 37 30 13 20 T. D I S C 3 5 A ' S F C 3.72* 1.25 50 50 T. D I S C 3 10 A ' S F C 4.50* 1.51 22 11 22 11 11 22 T. D I S C 3 150 B " ' D E E P 2.19*-* 0.74 67 33 S P E C I E S GROUP: T R A N S I T I O N / D E E P S P E C I E S STN z WATER n/m3 R I % C O M P O S I T I O N O F C O P E P O D I T E S  R E G I M E 1 2 3 4c? 4o 56* 59 6d" 69 A. D I V QC A. D I V 3 100 E " ' D E E P 150 B ' " D E E P 2.76 18.59 3.65** 24.58 35 42 22 100 2 0 9 MONTH: APRIL 1975  SPECIES GROUP: TRANSITION/DEEP (Cont'd) SPECIES STN z WATER I % COMPOSITION OF COPEPOD ITES REGIME 1 2 3 4cf 4o rf 5? 6c? 60 A. DIV 5 100 F'TRANS 8.81 59.33 18 11 5 66 A. DIV 5 200 F'TRANS 3-77 25.39 30 20 13. 17 3 17 A. DIV 5 30 F"DEEP 0.39** 2.63 100 A. DIV 7 100 F'TRANS 10.92 73 54 1 3 19 14 3 59 A. DIV 9 1 0 F'TRANS 1.57* 10.57 100 A. DIV 9 200 F'TRANS 0.4 ** 2.83 100 A. DIV 11 50 C'TRANS .10* 7.41 100 A. DIV 11 100 D DEEP 0.88* 5.93 43 57 E. JAP 1 200 B"'DEEP 0.3?** O.85 68 32 E. JAP 3 150 B'" DEEP 2.92** 6.74 25 50 25 E. JAP 5 100 F'TRANS 1.20* 2.77 33 17 50 E. JAP 5 200 F'TRANS 3-76 8.68 7 13 57 10 13 E. JAP 5 30 F"DEEP 6.17 14.24 43 32 19 4 2 E. JAP 7 100 F'TRANS 5.57 12.85 66 18 10 2 4 E. JAP " ' 7 200 F'TRANS 6.93 15.99 16 28 31 10 15 E. JAP 7 30 F"DEEP 7.15 I6.5O 8 15 8 31 23 8 8 E. JAP 7 50 C DEEP 1.92 4.43 48 19 6 3 10 3 10 E. JAP 9 1 0 F'TRANS 1.77* 4.08 55 45 E. JAP 9 2 0 F'TRANS 4.92 11.35 6 9 32 26 17 E. JAP 11 100 D DEEP O.38** 0.88 100 E. JAP 11 200 D DEEP 2.41 5.56 42 21 21 10 5 SCOL. M 5 200 F'TRANS 7.14 36.41 25 19 56 SCOL. M 5 30 F"DEEP 5.25 26.77 7 5 10 2 5 70 SCOL. M 7 30 A'SFC 2.16 11.01 6 17 78 SCOL. M 7 50 C'TRANS 2.94 14.99 10 15 75 SCOL. M 7 100 F'TRANS 4.23 21.57 8 5 13 74 SCOL. M 7 200 F'TRANS 1.59 8.11 100 SCOL. M 7 30 F"DEEP 8.79 44.82 19 13 69 SCOL. M 9 50 C'TRANS O.54** 2.75 100 SCOL. M 9 100 F'TRANS 4.72 24.07 13 25 63 SCOL. M 9 200 F'TRANS 0.84* 4.28 100 SCOL. M 11 .50 C'TRANS 3.93 20.04 16 12 72 M. OKH 5 100 F'TRANS 3.81 0.37 100 M. OKH 5 200 F'TRANS 9.64 0.95 83 4 3 10 M. OKH 5 30 F"DEEP 3.68 O.36 96 4 M. OKH 7 100 F'TRANS 1.56 0.15 36 43 7 14 M. OKH 7 200 F'TRANS 15.43 1.51 46 7 5 3 1 38 M. OKH 7 30 F"DEEP 69.24 6.80 21 33 29 2 6 9 M. OKH 7 50 C DEEP 3 84 O.38 45 3 52 M. OKH 9 100 F'TRANS 1.77* 0.17 45 33 22 M. OKH 9 200 F'TRANS 29.61 2.91 23 29 24 4 4 1 16 M. OKH 9 350 F"DEEP 1.58 0.16 100 210 MONTH: APRIL 1975  SPECIES GROUP: TRANSITION/DEEP (Cont 'd) SPECIES STN z WATER n/ n 3 I % COMPOSITION OF COFEPODI REGIME 1 2 3 40* 4 $ 5o* . 6c? 6? M. OKH 11 100 D DEEP 7 . 1 7 0.70 79 2 5 7 7 M. OKH 11 200 D DEEP 4 9 . 8 8 4.90 50 10 12 22 C. GRAC 1 200 B"'DEEP 4.10 17.61 42 : 36 6 15 C. GRAC 3 150 B '"DEEP 11.69 50.21 31 . 50 12 c C. GRAC 5 100 F'TRANS 1 . 4 0 * 6.01 43 : 29 29 C. GRAC 5 200 F'TRANS 1 . 2 7 * 5 . 4 6 30 30 ; 20 10 10 C. GRAC 5 300 F"DEEP 5 . 7 9 2 4 . 8 7 70 1 4 4 2 9 C. GRAC 7 500 C DEEP 0.62* 2.66 31 50 19 H. TAN 5 300 F"DEEP 5-39 19.25 - 34 - 1 7 4 9 H. TAN 7 200 F'TRANS 5-34 19.07 - 47 - - 53 -H. TAN 7 300 F"DEEP 28.00 100.00 - 2 7 - - 73 -H. TAN 7 500 C DEEP 2.23 7.96 - 30 - - 70 -H. TAN 9 . 100 ' F'TRANS 15.72 5 6 . 1 4 - 35 - - 65 -H. TAN 9 200 F'TRANS 4.61 1 6 . 4 6 - 27 - - 73 -H. TAN 9 350 F"DEEP 3.83 13.68 - 32 - - 53 - 3 12 H. TAN 11 100 D DEEP 2.39 8.54 -100 -H. TAN 11 200 D DEEP 2.52 9 . 0 0 - 75 - - 25 GAD. C 5 200 F'TRANS O . 3 8 * * 2.87 100 GAD. C 5 300 F"DEEP 6.70 50.53 6 8 35 35 2 1 4 GAD. C 7 100 F'TRANS 1.54 11.61 36 1 4 7 1 4 29 GAD. C 7 200 F'TRANS O . 9 0 * 6 . 7 9 50 38 12 GAD. C 7 300 F"DEEP 6.60 4 9 . 7 7 " 17 4 2 25 1 7 GAD. C 7 500 C DEEP 3 . 4 8 2 6 . 2 4 2 7 1 4 20 30 • 3 23 GAD. C 9 200 F'TRANS 2.51 1 8 . 9 3 12 8 17 63 GAD. C 9 350 F"DEEP 1.02* 7.69 33 11 23 33 GAD. C 11 200 D DEEP 4 . 4 2 33-33 4 0 37 6 17 CAN. C 5 100 F'TRANS 2 . 0 0 * 3 9 . 2 2 - 30 - 30 4 0 CAN. C 5 200 F'TRANS O . 6 3 * * 12.35 21 79 CAN. C 5 300 F"DEEP 1.31* 25.69 10 30 10 50 CAN. C 7 300 F"DEEP 2.75** 53-92 4 0 - 60 -CAN. C 7 500 C DEEP 1 . 4 8 29.02 50 - 4 2 - - 1 3 -SPECIES GROUP: INLET DEEP SPECIES STN z WATER n/mJ I % COMPOSITION OF 1 COPEPODITES REGIME 1 2 3 4<? 4 $ 5c? 5? 6c? 60 SPINO 7 200 F'TRANS 2 . 2 8 5.17 20 5 15 60 SPINO 7 300 F"DEEP 1 0 . 9 9 2 4 . 9 0 5 15 25 55 SPINO 7 500 C DEEP 1 0 . 4 2 23.61 7 6 11 9 2 65 SPINO 9 200 F'TRANS 7 . 4 2 1 6 . 8 1 11 4 20 2 4 3 33 SPINO 9 350 F"DEEP 1 5 . 7 9 35-77 2 11 16 20 51 SPINO 11 200 D DEEP 27.65 6 2 . 6 4 1 3 10 15 19 52 SCAPH 7 200 F'TRANS 1.58 9-94 7 22 2 8 43 SCAPH 7 300 F"DEEP 3.30* 20.75 50 17 33 211 MONTH: APRIL 1975 SPECIS3 GROUP: INLET DEEP (Cont'd) SPECIES STN z WATER n/m3 I % COMPOSITION OF COPEPODITES REGIME 1 2 3 4a1 4o. 5a 1 5J. 60* 60. SCAPH 7 500 C DEEP 2.85 17.92 2 9 11 24 4 50 SCAPH 9 200 F'TRANS 0.83* 5.22 12 25 63 SCAPH 9 350 F"DEEP 3.38 21.26 10 17 17 10 10 37 SCAPH 11 200 D DEEP 0.51** 3.21 50 25 25 RACO QC 100 E"'DEEP 0.21** 28.77 100 RACO 7 300 F"DEEP 0.55 75.34 100 RACO T 500 C DEEP 0.19** 26.03 100 SPECIES GROUP: MIGRANTS SPECIES STN z WATER n/m3 I % COMPOSITION OF COPEPOD ITES REGIME 1 2 3 46" 4j 5S 5? 60" 69 E. BUN 7 100 F'TRANS 0.11** 4.82 100 E. BUN 7 200 F'TRANS 0.11** 4.82 100 E. BUN 9 100 F'TRANS 0.20** 8.77 100 CAL. P 5 10 A'SFC 0.91* 16.08 -100 -CAL. P 5 30 A'SFC 1.64* 28.98 25 - 50 - - 25 -CAL. P 5 50 F'TRANS 1.24* 21.91 - 75 - - 25 -CAL. P 5 100 F'TRANS 1.00** 17.67 -100 -CAL. P 7 5 A'SFC 1.65 29.15 -100 -CAL. P 7 30 A'SFC 1.68 29.68 - 36 - - 64 -CAL. P 7 50 G" TRANS 0,44** 7.77 -100 -CAL. P 9 100 F'TRANS 1.18* 20.85 -100 -CAL. P 11 10 A'SFC 1.39 24.56 -100 -CAL. P 11 50 G"TRANS 5.66 100.00 - 33 - - 67 -CAL. P 11 100 D DEEP O.38** 6.71 -100 -CAL. M QC 5 E'SFC 7.22 0.16 10 90 CAL. M QC 10 E'SFC 45.10 0.98 2 6 12 80 CAL. M QC 30 E" TRANS 46.32 1.01 52 21 10 17 CAL. M QC 50 E" TRANS 3-89 0.08 65 - 2 - 8 24 CAL. M QC 100 E"'DEEP 1.59 0.03 4 96 CAL. M 1 5 A'SFC 64.58 1.40 84 16 CAL. M 1 10 A'SFC 48.36 1.05 72 25 3 CAL. M 1 30 A'SFC 99.46 2.16 71 29 CAL. M 1 50 F'TRANS 149.38 3.25 65 35 <1 CAL. M 1 100 F'TRANS 29.02 O.63 65 35 CAL. M 1 200 B '"DEEP 0.49** 0.01 24 76 CAL. M 3 5 A'SFC 194.42 4.23 63 29 7 - < l -CAL. M 3 10 A'SFC 155.73 3.39 53 33 12 - 2 -CAL. M 3 30 F'TRANS 148.30 ' 3.23 58 28 10 - 4 -CAL. M 3 50 F'TRANS 61.48 1.34 54 34 8 - 4 -CAL. M 3 100 B"'DEEP 11.18 0.24 60 40 CAL. M 3 150 B "' DEEP 9.49 0.21 62 38 212 MONTH: APRIL 1975 SPECIES GROUP: MIGRANTS (Cont'd) SPECIES STN z WATER n7m3 I % COMPOSITION OF COPEPODITES REGIME 1 2 3 46* 4o. 5o* 59 60" 69 CAL. M 5 10 A'SFC 278. 05 6.05 4 3 47 10 < 1 CAL. M 5 30 A'SFC 85-71 1.86 27 5 1 19 - <1 - -<1 - 3 CAL. M 5 50 F'TRANS 64,97 1.41 16' 26 12 - <1 - 46 CAL. M 5 10  F'TRANS 6.41 0.14 9 1 9 6 - 3 - - 9 - 53 CAL. M 5 2 0 0 F'TRANS 0.25** 0.01 ICO CAL. M 5 30 F"DEEP 0.39** 0.01 -100 -CAL. M 7 5 A'SFC 219.77 4.78 19 40 40 - 1 -CAL. M 7 10 A'SFC 690.29 15.02 3 2 5 0 17 - < l -CAL. M 7 30 A'SFC 66.83 1.45 19 37 1 5 - 8 - 2 2 CAL. M 7 50 C'TRANS 5.59 0.12 8 3 - 8 - 82 CAL. M 7 10  F'TRANS 1.45 0.03 - 61 -39 CAL. M 7 20 F'TRANS 5.11 0.11 38 47 5 1 1 CAL. M 7 30 F"DEEP 2.20** 0.05 ' - 2 5 - 75 CAL. M . 7 50 C DEEP 0 37* 0.01 - 3 2 - - 1 6 - 5 1 CAL. M • 9 10 A'SFC 1112.25 24.20 20 4 3 31 - 5 - <1 CAL. M 9 30 A'SFC 38.10 O.83 3 1 3 - 83 -CAL. M 9 50 C'TRANS 19.13 0.42 11 41 7 - 2 3 - 19 CAL. M 9 10  F'TRANS 46.17 1.00 1 3 9 6 CAL. M 9 20  F'TRANS 0.10** <0.01 100 CAL. M 9 3 5 0 F"DEEP O.34** 0.01 6 8 - 32 -CAL. M 1 1 5 A'SFC 4596.82 100.00 51 41 8 - <1 -CAL. M 11 10 A'SFC 757.28 16.47 4 49 42 _ 4 _ <1 1 CAL. M 1 1 30 A'SFC 42.44 0.92 72 - 2 5 - 3 CAL. M 11 50 C'TRANS 28.93 O.63 1 1 1 5 17 - 39 - - 5 - 1 3 CAL. M 11 100 D DEEP 1.38 0.03 -100 -P . ELO QC 5 E'SFC 7.10 0-33 1 5 1 9 6 5 P. ELO QC 10 E'SFC 38.94 I .83 4 3 1 5 17 62 P. ELO QC 30 E" TRANS 365.30 17.16 4 4 7 8 7 71 P. ELO QC 50 E"TRANS 587.44 27.59 10 10 1 78 P. ELO QC 10  E"'DEEP 147.24 6.92 4 4 10 82 P. ELO 1 5 A'SFC 18.52 . 0.87 19 1 5 35 3 1 P. ELO 1 1 0 A'SFC 26.37 1.24 3 8 4 4 6 5 6 P. ELO 1 30 A'SFC 80.64 3-79 3 6 33 12 1 1 <1 8 P. ELO 1 50 F'TRANS 283.59 13.32 6 27 2 5 1 5 1 7 <1 10 P. ELO 1 1 0 0 F'TRANS 397.55 I8.67 9 8 3 2 3 1 10 1 1 P. ELO 1 2 0 0 B"'DEEP 240.92 11.32 7 8 2 8 3 P. ELO 3 5 A'SFC ' 99.07 4.65 7 5 1 3 16 59 P. ELO 3 1 0 A'SFC 49.76 2.34 6 7 14 17 5 6 P. ELO 3 30 F'TRANS 80.26 3-77 12 14 3 5 4 61 P. ELO 3 50 F'TRANS 152.59 7.17 7 8 1 6 1 3 7 5 0 P. ELO 3 1 0 0 B '"DEEP 120.90 5.68 6 6 17 18 6 47 P. ELO 3 1 5 0 B "'DEEP 233-58 10.97 9 7 1 82 213 MONTH: APRIL 1 9 7 5 SPECIES GROUP: MIGRANTS (Cont'd) SPECIES STN z WATER REGIME n/m3 I % COMPOSITION OF 1 2 3 46" 4§ COPEPODITES 5o* 5% 66" 6 ? P. ELO 5 10 A'SFC 613.11 28.80 17 34 35 6 6 < l 1 P. ELO 5 30 A'SFC 99-59 4.68 41 45 6 6 3 P. ELO 5 50 F'TRANS 108.98 5-12 12 17 15 11 13 7 26 P. ELO 5 100 F'TRANS 46.48 2.18 3 4 9 13 13 58 P. ELO 5 200 F'TRANS 89.11 4.19 - 10 10 9 72 P. ELO 7 5 A'SFC 2.71 O.13 100 P. ELO 7 10 A'SFC 63.08 2.96 16 27 23 16 13 6 P. ELO 7 30 A'SFC 196.66 9.24 3 14 15 18 20 6 24 P. ELO 7 50 C'TRANS 31.19 1.46 r 1 26 33 2 36 P. ELO 7 100 F'TRANS 22.08 1.04 19 14 9 59 P. ELO 7 200 F'TRANS 50.52 2.37 14 18 4 65 P. ELO 7 300 F"DEEP 59.89 2.81 26 17 57-P. ELO 9 10 A'SFC 86.76 4.07 28 25 13 18 16 P. ELO 9 30 A'SFC 374.07 ' 17.57 14 13 31 29 1 12 P. ELO 9 50 C'TRANS 227.26 10.67 9 7 27 34 24 P. ELO 9 100 F'TRANS 28.88 1.36 24 28 1 46 P. ELO 9 200 F'TRANS 31.48 1.48 24 26 51 P. ELO 9 350 F"DEEP 22.33 I . 0 5 45 55 P. ELO 11 10 A'SFC 107.62 5.05 35 32 15 17 P. ELO 11 30 A'SFC 548.49 25.76 13 14 33 31 9 P. ELO 11 50 C'TRANS 72.17 3-39 4 5 27 32 32 P. ELO 11 100 D DEEP 56.72 2.66 17 20 63 P. ELO 11 200 D DEEP 58.08 2.73 53 47 M. PAC QC 10 E'SFC 11.99 4.01 14 11 31 25 19 M. PAC QC 30 E" TRANS 96.87 32.38 29 27 24 9 11 M. PAC QC 50 E" TRANS 153.65 51.35 9 46 43 1 1 1 M. PAC QC 100 E"'DEEP 14.30 4.78 28 . 32 9 13 19 M. PAC 1 50 F'TRANS 4.24 1.42 84 16 M. PAC 1 100 F'TRANS 4.50 1.50 73 6 9 3 9 M. PAC 1 200 B '"DEEP 1.99 O.67 44 25 13 6 13 M. PAC ^ 3 50 F'TRANS 3.70** 1.24 100 M. PAC 3 100 B"'DEEP 2.24** 0.75 100 M. PAC 3 150 B "'DEEP 10.22 3.42 7 7 21 14 7 43 M. PAC 5 100 F'TRANS 10.41 3.48 19 21 17 6 10 27 M. PAC 5 200 F'TRANS 14.03 4.69 17 21 22 2 2 29 8 M. PAC 5 300 F"DEEP 3.42 1.14 11 8 4 62 15 M. PAC 7 100 F'TRANS 5.91 1.98 9 6 8 77 M. PAC 7 200 F'TRANS 2.95 0-99 - 46 - 54 M. PAC 7 300 F"DEEP 22.53 7.53 2 10 29 37 7 15 M. PAC 9 50 C'TRANS 15.52 5.19 100 M. PAC 9 100 F'TRANS 8.84 2.95 56 24 13 4 2 M. PAC 9 200 F'TRANS 5.02 1.68 13 10 27 35 4 10 214 MONTH! APRIL 1 9 7 5 SPECIES GROUP: MIGRANTS (Cont'd) SPECIES STN z WATER n/m3 I % COMPOSITION OF COPEPODITES REGIME 1 2 3 4c? 4§ 50" 59 6c? 6 ? M. PAC 9 350 F"DEEP 0.34** 0.11 100 M. PAC 11 100 D DEEP 7.17 0.70 87 4 3 1 1 3 M. PAC 11 200 D DEEP 6.44 2.15 24 18 6 4 14 35 MONTH: MAY 1975 SPECIES GROUP: SUMMER SURFACE: ABSENT FROM SAMPLES SPECIES GROUP: SURFACE/TRANSITION SPECIES STN z WATER n/m3 I % COMPOSITION OF COPEPODITES REGIME 1 2 3 4c? 49 56* 5? 60* 69 A. CLAU 5 io A SFC 82.87 24.30 5 95 A. CLAU 5 30 A SFC 1.07 0.31 100 A. CLAU 7 10 A SFC 1.18** 0.35 100 A. CLAU 9" 10 A SFC 1.57 0.46 100 A. LONG QC 10 E'SFC 155.25 28.18 15 85 A. LONG QC 30 E" TRANS 16.82 3.05 10 90 A. LONG QC 50 E" TRANS 15.18 2.76 7 93 A. LONG QC 100 E'"DEEP 5-95 1.08 8 92 A. LONG 1 30 A'SFC 63.8O 11.58 12 88 A. LONG 1 100 B"TRANS 5.94 1.08 100 A. LONG 3 30 A SFC 12.85 2.33 5 95 A. LONG 5 10 A SFC 53-71 9.75 6 94 A. LONG 5 30 A SFC 3-71 O.67 42 58 A. LONG 7 10 A SFC- 43.78 7.95 3 97 A. LONG 9 10 A SFC 96.85 17.58 2 98 T. DISC QC 10 E'SFC 0.47** 0.16 40 60 T. DISC QC 50 E" TRANS 0.82* 0.28 11 11 22 56 T. DISC QC 100 E"'DEEP 1.73 O.58 100 T. DISC 1 100 B"TRANS 2.40 0.81 100 SPECIES GROUP: TRANSITION/DEEP SPECIES STN z WATER REGIME n/m3 I % COMPOSITION OF 1 2 3 4c? 49 COPEPODITES 56* 59 6c? 69 A. DIV 1 200 B"DEEP 6.28 42.49 47 53 A. DIV 5 50 G'TRANS 3-95 26.60 47 53 A. DIV 5 100 F'TRANS 3.48 23.43 3 10 41 45 A. DIV 5 200 H'TRANS 11.39 76.70 42 37 4 3 15 A. DIV 5 300 H'TRANS 0 . 0 6 * * 0.40 100 A. DIV 7 50 G"TRANS 4 . 5 8 * 30.84 40 40 20 A. DIV 7 100 F'TRANS 8.89 . 59-87 50 40 10 A. DIV 7 300 F"DEEP 5.84 39.33 33 27 40 A. DIV 9 50 G"TRANS 3.38 22.76 41 59 A. DIV 11 50 G"DEEP 2.10 14.14 100 E. JAP 1 100 B"TRANS 0.14** O.32 100 215 MONTH: HAY 1 9 7 5  SPECIES GROUP: TRANSITION/DEEP (Cont'd) SPECIES STN z WATER n/m-^  I % COMPOSITION OF COPEPODITES REGIME 1 2 3 40* 4o 5°* 5? 6c? 60 E. JAP 5 50 G" TRANS 0.53** 1.22 100 E. JAP 5 100 F'TRANS 0.36** O.83 100 E. JAP 5 200 H'TRANS a. 15 18.80 18 15 14 10 18 23 E. JAP 5 300 H'TRANS 5.32 12.28 25 20 21 12 10 4 6 1 1 E. JAP 7 30 A SFC 20.50 47.30 100 E. JAP 7 50 C'TRANS 8.72 20.12 16 16 63 5 E. JAP 7 300 F"DEEP 3-87 8.93 25 5 5 20 10 15 15 5 E. JAP 7 500 C DEEP 3.66 8.44 80 20 E. JAP 9 30 A SFC 6.87 15.85 4 41 25 28 2 E. JAP 9 50 C'TRANS 2.00* 4.61 30 20 40 10 E. JAP 9 100 C'TRANS 0.74** 1.71 100 E. JAP 9 200 F"DEEP 2.82 6.51 18 9 18 9 27 18 E. JAP 9 350 F"DEEP 5-38 12.41 95 5 E. JAP 11 50 C'DEEP 6.30 14.54 50 24 26 E. JAP 11 100 F"DEEP 0.89 2.05 25 34 8 34 SCOL. M 5 50 C'TRANS 8.55 43.60 11 15 22 52 SCOL. M 5 100 F'TRANS 19.61 100.00 2 98 SCOL. M 5 300 H "TRANS 3.69 18.82 38 62 SCOL. M 7 30 A SFC 1.37* 6.99 17 83 SCOL. M 7 50 C'TRANS 3.21* 16.37 100 SCOL. M 7 300 F"DEEP O.39** 1.99 100 SCOL. M 9 50 C'TRANS 13-92 70.98 11 13 10 66 M. OKH 5 200 H'TRANS 8.15 0.80 5 8 5 40 35 1 6 M. OKH 5 300 H'TRANS 18.54 1.82 5 37 42 9 7 M. OKH 7 50 C'TRANS 2.29** 0.22 100 M. OKH 7 100 F'TRANS 638.23 62.65 27 29 23 21 M. OKH 7 300 F"DEEP 47.48 4.66 11 31 26 18 14 M. OKH 7 500 C DEEP 26.58 2.61 13 22 18 20 24 3 M. OKH 9 30 A SFC 33-68 3.31 15 33 28 13 11 M. OKH 9 50 C'TRANS 306.56 30.09 42 22 25 6 6 M. OKH 9 100 C'TRANS 69.76 . 6.85 16 43 38 2 1 M. OKH 9 200 F"DEEP 138.51 13.60 10 24 26 19 17 5 M. OKH 9 350 F"DEEP 52.68 5-17 16 20 29 35 M. OKH 11 10 A SFC 155-98 15.31 48 27 25 < 1 M. OKH 11 30 A SFC 501.94 49.27 62 20 19 M. OKH 11 50 C'DEEP 89.05 8.74 ' 58 19 21 1 2 M. OKH 11 100 F"DEEP 100.60 9.87 19 27 29 13 12 M. OKH 11 200 F"DEEP 75-20 7.38 16 26 23 8 9 1 17 C. GRAC 1 100 B"TRANS 5-79* 24.87 76 2 2 20 C. GRAC 1 200 B"DEEP 18.84 80.93 47 41 4 3 4 C. GRAC 3 150 B"'DEEP 6.23 26.76 35 31 8 15 12 C. GRAC 5 300 H'TRANS 5.84 25.09 16 28 20 15 21 216 MONTH; MAY 1975  SPECIES GROUP: TRANSITION/DEEP (Cont'd) SPECIES STN z WATER n/m-* I % COMPOSITION OF COPEPODITES REGIME 1 2 3 46* 4$ rf 5? 6c? 6$ H. TAN 5 100 F'TRANS 0.72* 2.57 -100 -H. TAN 5 200 H'TRANS 1.99 7.11 -100 -H. TAN 7 50 C'TRANS 1.83** 6.54 -100 -H. TAN 7 300 F"DEEP 3.10 11.07 6 6 88 H. TAN 7 500 C DEEP 3-91 13.96 - 75 - 25 H. TAN 9 50 C'TRANS 3-38 12.07 - 71 - 29 H. TAN 9 100 C'TRANS 9.09 32.46 - 29 - 22 49 H. TAN 9 200 F"DEEP 4.08 14.57 -100 -H. TAN 9 350 F"DEEP 1.08** 3.86 100 H. TAN 11 50 C'DEEP 1.05* 3-75 -100 -H. TAN 11 100 F"DEEP 1.70 6.07 - 56 - 26 18 H. TAN 11 200 F"DEEP 3.44 12.29 - 14 - - 67 - 14 6 GAD. C 5 ' 200 H'TRANS 8.05 60.71 51 40 1 5 3 GAD. C 5 300 H'TRANS 1.91 14.40 53 47 GAD. C 7 300 F"DEEP 2.14 16.14 36 27 36 GAD. C 7 500 C DEEP 3.41 25.72 29 21 7 43 GAD. C 9 200 F"DEEP 2.30* 17.35 100 GAD. C 9 350 F"DEEP 0.54** 4.07 50 50 GAD. C 11 100 F"DEEP 0.07** 0.53 100 GAD. C 11 200 F"DEEP 0.19** 1.43 100 CAN. C 5 200 H'TRANS 1.99 39.02 89 11 CAN. C 5 300 H'TRANS 0.26** 5.10 50 50 CAN. C 7 300 F"DEEP 0.19** 3-73 -100 -CAN. C 7 500 C DEEP ' 2.20* 43.14 -100 -CAN. C 9 200 F"DEEP 1.79* 35.10 43 - 57 -SPECIES GROUP: INLET DEEP SPECIES STN z WATER I % COMPOSITION OF COPEPODITES REGIME 1 2 3 46* 4o. rf 59 6cf 65 SPINO 7 300 F"DEEP 4.87 11.03 16 24 60 SPINO 7 500 C DEEP 27.80 62.98 5 1 16 19 4 54 SPINO 9 100 C'TRANS 20.97 47.51 20 28 51 SPINO 9 200 F"DEEP 44.14 100.00 4 6 13 10 3 64 SPINO 9 350 F"DEEP 22.85 51.77 4 8 16 72 SPINO 11 100 F"DEEP 8.27 18.74 23 18 59 SPINO 11 200 F"DEEP 13.92 31.54 19 22 3 56 SCAPH 7 300 F"DEEP 1.55* 9.75 12 50 38 SCAPH 7 500 C DEEP 10.48 65.91 7 7 28 33 2 23 SCAPH 9 100 C'TRANS 1.86* 11.70 30 60 10 SCAPH 9 200 F"DEEP 3.0? 19.31 8 17 25 50 SCAPH 9 350 F"DEEP 7.53 47.36 25 7 4 64 SCAPH 11 100 F"DEEP 1.48 9.31 60 40 217 MONTH: MAY 1975 SPECIES GROUP: INLET DEEP (Cont'd) SPECIES STN z WATER n/m3 I % COMPOSITION OF COPEPODITES REGIME 1 2 3 4c? 49 5c?1 50 6c? 69 SCAPH 11 200 F"DEEP 10.12 63.65 23 16 3 58 RACO 9 200 F"DEEP 0.51** 69.86 100 RACO 9 350 F"DEEP 0.27** 36.99 100 SPECIES GROUP: MIGRANTS SPECIES STN z WATER n/m3 I % COMPOSITION OF COPEPODITES REGIME 1 2 3 46" 49 56" 59 6c? 6$ E. BUN QC 30 E" TRANS 1.89 82.89 53 33 7 7 E. BUN QC 50 E" TRANS 0.82* 35.96 67 33 E. BUN QC 100 En'DEEP 0.12** 5.26 100 E. BUN 1 200 B"DEEP O.63** 27.63 33 67 E. BUN 5 200 H'TRANS 0.52** 22.81 60 40 CAL. P 7 100 F'TRANS 0.89** 15.72 -100 -CAL. P 9- 100 C'TRANS 4.27 75-44 -100 -CAL. P 9 350 F"DEEP 0.81** 14.31 -100 -CAL. P 11 10 A SFC 1.66 29.33 -100 -CAL. P 11 30 A SFC 4.79 84.63 -100 -CAL. P 11 50 C'DEEP 1.20* 21.20 -100 -CAL. M QC 10 E'SFC 24.91 0.54 27 - 47 - - 1 9 - 3 4 CAL. M QC 30 E" TRANS 13.68 O.30 34 - 43 - - 10 - 1 12 CAL. M QC 50 E" TRANS 26.96 0.59 10 16 - 40 - - 1 3 - 4 17 CAL. M QC 100 E mDEEP 44.80 0.97 5 6 - 12 - - 11 - 9 58 CAL. M 1 10 A SFC 12.06 0.26 56 - 44 -CAL. M 1 30 A'SFC. • 174.54 3.80 22 31 - 39 - - 5 - 3 CAL. M 1 50 A'SFC • 62.58 1.36 10 28 - 47 - - 6 - « 1 9 CAL. M 1 100 B "TRANS 69.45 1.51 - 59 - - 25 - 6 10 CAL. M 1 200 B"DEEP 19.04 0.41 - 59 - - 1 - 37 2 CAL. M 3 10 A'SFC 12.70 0.28 20 - 39 - - 29 - 12 CAL. M 3 30 A SFC 67.57 1.47 21 31 - 39 - - 6 - 1 3 CAL. M 3 50 H'TRANS 14.33 O.31 3 6 16 - 35 - - 30 - 1 10 CAL. M 3 100 B"TRANS 28.61 O.62 - 4 - - 95 - 1 CAL. M 3 150 B"'DEEP 8.61 0.19 - 14 - - 71 - 14 CAL. M 5 10 A SFC O.85* 0.02 -100 -CAL. M 5 30 A SFC 54.84 1.19 18 -52- - 30 -CAL. M 5 50 C'TRANS 8.81 0.19 39 - 48 - - 13 -CAL. M 5 100 F'TRANS 12.63 0.27 13 - 21 - - 57 - 9 CAL. M 5 200 H'TRANS 4.50 0.10 -100 -CAL. M 5 300 H'TRANS 7.62 0.17 - 72 - 10 19 CAL. M 7 10 A SFC 43.?8 0.95 5 - 19 - - 73 - 3 CAL. M 7 30 A SFC IOI.36 2.21 - 13 - - 86 - 1 CAL. M 7 50 C'TRANS 43.ll 0.94 - 15 - - 72 - 13 CAL. M 7 100 F'TRANS II.56 0.25 - 85 - 15 CAL. M 7 300 F"DEEP 19.25 0.42 9 - 33 - - 57 - 1 218 MONTH; HAY 1975 SPECIES GROUP: MIGRANTS (Cont'd) SPECIES STN z WATER REGIME n/m3 I 1 % COMPOSITION OF 2 3 40* 40 COPEPODITES 5c? 5$ 6c? 69 CAL. M 7 500 C DEEP 2.20* O.05 -100 -CAL. M 9 10 A SFC 79.73 1.73 7 - 69 - - 24 - <1 CAL. M 9 30 A SFC 86.12 1.87 3 - 76 - - 20 - 1 CAL. M 9 50 C'TRANS 18.48 0.40 15 - 52 - - 33 -CAL. M 9 100 C'TRANS 34.51 0.75 - 57 - - 33 - 10 CAL. M 9 200 F"DEEP 9.70 0.21 -55- 45 -CAL. M 9 350 F"DEEP 2.15* 0.05 -100 -CAL. M 11 10 A SFC 444.39 9.67 - 61 - - 39 - < 1 CAL. M 11 30 A SFC 71.15 1.55 9 - 56 - 29 - 6 CAL. M 11 50 C'DEEP 23.24 0.51 15 - 46 - 39 -CAL. M 11 100 F"DEEP 1.26 0.03 -100 -CAL. M 11 200 F"DEEP O.76* 0.02 -100 -P. ELO QC 10 E'SFC 466.47 21.91 8 8 35 36 2 11 P. ELO . Qc 30 E" TRANS 118.44 5.56 23 25 7 45 P. ELO QC 5° E" TRANS 58.59 2.75 15 13 19 52 P. ELO QC 100 E"'DEEP 116.35 5.46 30 27 4 40 P. ELO 1 10 A SFC 1270.94 59.69 1 1 15 16 .4 64 P. ELO 1 30 A'SFC 391.42 18.38 30 32 8 29 P. ELO 1 50 A'SFC • 1482.03 69.61 1 2 27 27 5 37 P. ELO 1 100 B"TRANS I6O.56 7.54 9 11 5 74 P. ELO 1 200 B"DEEP 282.00 13.24 6 5 7 Sl P. ELO 3 10 A SFC 612.89 28.79 <1 <1 17 16 2 65 P. ELO 3 30 A SFC 167.56 7.87 3 2 34 37 2 23 P. ELO 3 50 H'TRANS 33.23 I .56 23 24 4 50 P. ELO 3 100 B" TRANS 3^-35 1.61 30 25 2 43 P. ELO 3 150 B"'DEEP 331.84 15.59 6 6 14 74 P. ELO 5 10 A SFC 28O.56 13.18 2 1 23 22 5 46 P. ELO ' 5 30 A SFC 77.46 3.64 21 24 7 48 P. ELO 5 50 C'TRANS 60.92 2.86 21 23 3 53 P. ELO 5 100 F'TRANS 55.71 2.62 8 10 3 79 P. ELO 5 200 H'TRANS 74.16 3.48 17 21 4 58 P. ELO 5 300 H'TRANS 256.63 12.05 19 20 4 57 P. ELO 7 10 A SFC 4.74* 2.10 38 62 P. ELO 7 30 A SFC 124.14 5.83 30 25 4 41 P. ELO 7 50 C'TRANS 44.96 2.11 27 22 51 P. ELO 7 100 F'TRANS 8.00 O.38 100 P. ELO 7 300 F"DEEP 64.98 3.05 45 41 1 13 P. ELO 7 500 C DEEP 52.93 2.49 52 44 4 P. ELO 9 10 A SFC 59.06 2.77 • 43 39 17 P. ELO 9 30 A SFC 115.91 5.44 37 40 22 P. ELO 9 50 C'TRANS 60.64 2.85 45 39 16 219 MONTH: MAY 1975 SPECIES GROUP: MIGRANTS (Cont'd) SPECIES STN z WATER REGIME n/m-5 I % COMPOSITION OF C0PEPCDITE3 1 2 3 4c?1 4^ 5c? 5o 6c? 6 ? P. ELO 9 100 C'TRANS 2 1 . 8 9 I . 0 3 36 31 32 P. ELO 9 200 F"DEEP 423.4? 19.89 52 48 P. ELO 9 350 F"DEEP 1339.24 6 2 . 9 0 50 50 P. ELO 11 10 A SFC 1 3 8 8 . 27 65.20 3 3 47 4? P. ELO 11 3 0 A SFC 1 6 3 . 5 2 7 .68 36 38 25 P. ELO 11 5 0 C'DEEP 9 6 . 2 6 4.52 51 46 3 P. ELO 11 100 F"DEEP 5.76 0.27 28 23 49 P. ELO 11 200 F"DEEP 201.33 9.46 48 52 M. PAC QC 100_ E"'DEEP 6.93 O . 9 0 100 M. PAC 1 3 0 A'SFC 12 .58 4 .20 . 34 15 7 2 2 39 M. PAC 1 5 0 A'SFC 42.77 1 4 . 2 9 47 53 M. PAC 1 100 B"TRANS 7 9 . 9 1 26 .71 21 31 27 3 19-M. PAC 1 200 B"DEEP I 6 . 9 6 5.6? 38 36 5 4 17 M. PAC 3 3 0 A SFC 10.74 3-59 52 20 22 6 M. PAC 3 5 0 H'TRANS 7 .74 2.59 80 11 9 M. PAC 3 100 B"TRANS 20.85 6.97 21 41 38 M. PAC 3 150 B "' DEEP 140.76 47.05 14 23 21 12 13 10 7 M. PAC . 5 3 0 A SFC 13.96 4 .6? 33 27 34 3 4 M. PAC 5 5 0 C'TRANS 25-52 8.53 82 7 10 M. PAC 5 100 F'TRANS 1.68 O.56 43 21 36 M. PAC 5 200 H'TRANS 6.48 2.17 23 11 15 34 18 M. PAC 5 3 0 0 H'TRANS 4.12 I . 3 8 15 18" 22 26 18 M. PAC 7 10 A SFC 3.55* 1.19 100 M. PAC 7 3 0 A SFC 84.97 28.40 8 11 10 34 38 M. PAC 7 5 0 C'TRANS 9 .63 3 .22 2 9 19 14 14 24 M. PAC 7 100 F'TRANS 0 .88** 0 . 2 9 50 50 M. PAC 7 3 0 0 F"DEEP 4 .86 1.62 12 40 . 36 8 4 M. PAC 7 5 0 0 C DEEP 5.12 1 .71 24 76 M. PAC 9 3 0 A SFC 85.18 28.47 7 22 25 22 24 M. PAC 9 5 0 C'TRANS 11.33 3-79 30 39 32 M. PAC 9 100 C'TRANS 7 .05 2.36 39 34 2 6 M. PAC 9 200 F"DEEP 11.99 4.01 68 17 15 M. PAC 9 350 F"DEEP 299.20 100.00 11 41 39 <1 9 M. PAC 11 3 0 A SFC 46.31 15.48 15 12 39 34 M. PAC 11 5 0 C'DEEP 149.63 50.01 8 33 32 13 14 M. PAC 11 100 F"DEEP 37.44 12.51 26 16 19 19 21 M. PAC 11 200 F"DEEP 5-63 1.88 93 7 220 MONTH: J U N E 1975 S P E C I E S GROUP: SUMMER S U R F A C E S P E C I E S STN z WATER n/m3 I % C O M P O S I T I O N OF C O P E P O D I T E S R E G I M E 1 2 3 46* 4$ 50* 50 6 c? 65 P. P A P 1 5 A S F C 3.13 32.17 39 61 C. MCM QC 10 E ' S F C 1.07* 2.88 57 43 C. MCM 1 5 A S F C 14.16 38.16 39 61 C. MCM 1 10 A S F C 4.06 10.94 - 6 - 2 30 38 23 P O D / E V A 5 10 A S F O 310.28 4.19 P O D / E V A 7 5 A S F C 342.68 4.62 • P O D / E V A 7 10 A S F C 90.04 1.21 P O D / E V A 7 30 A S F C 6.48 0.09 P O D / E V A 9 5 A S F C 32.11 0.43 P O D / E V A 9 10 A S F C 1.88 0.03 P O D / E V A 11 5 A S F C 29.11 0.39 S P E C I E S GROUP: S U R F A C E / T R A N S I T I O N S P E C I E S S T N WATER R E G I M E n/mJ 1 % C U M P U S 1 T 1 0 N U E C U P E P U I U Y K S z 1 2 3 4o* 4c> 5c? 5 ? 6c? 6 ? A. C L A U 1 5 A S F C 1.82 0.53 100 A. C L A U 1 10 A S F C 0.95 0.28 100 A. C L A U 1 30 A 'SFC. 3.20** 0.94 100 A. C L A U 3 30 A S F C 5.77** 1.69 100 A. C L A U 3 50 G T R A N S 4.88** 1.43 50 50 A. C L A U 5 10 A S F C 169.86 49.82 7 93 A. C L A U 7 5 A S F C 3.43 1.01 100 A. C L A U 7 10 A S F C 7.68 2.25 6 94 A . L O N G QC 5 E ' S F C 13.58 2.46 - 21 - 14 64 A. L O N G Q C 10 E ' S F C 253-82 46.07 25 75 A. L O N G QC 30 E " T R A N S 1.23 0.22 100 A. L O N G QC 50 E " T R A N S 23.32 4 .23 100 A. L O N G Q C 100 E " ' D E E P 22.97 4.17 100 A. L O N G 1 5 A S F C 110.82 20.11 11 89 A. L O N G 1 10 A S F C 26.95 4.89 - 15 - 23 62 A. L O N G 1 3P A ' S F O 69.60 12.63 - 13 - 24 63 A . L O N G 1 50 B " T R A N S 101.10 18.35 100 A. L O N G 1 100 B " T R A N S 31.13 5.65 11 89 A. L O N G 3 10 A S F C 16.28 2.95 100 A. L O N G 3 30 A S F C 7.69** 1.40 100 A. L O N G 3 50 G T R A N S 9.76** 1.77 100 A. L O N G 5 10 A S F C 197.52 35-85 12 88 A. L O N G 7 10 A S F C 39.61 7.19 ' - 8 - 16 76 A. L O N G 9 10 A S F C 480.73. 87-25 - 3 - 1 96 A. L O N G 9 30 A S F C 18.60 3.38 100 A. L O N G 11 10 A S F C 4.65 0.84 100 T. D I S C 1 10 A S F C 1.03 0-35 42 58 221 MONTH: JUNE 1975  SPECIES GROUP: SURFACE/TRANSITION (Cont'd) S P E C I E S S T N z WATER n/W I % C O M P O S I T I O N [ O F C O P E P O D I T E S R E G I M E 1 2 3 4d* 4$ rf 59 6cT 60 T. D I S C 1 30 A ' S F C 10.40 3.50 8 31 38 23 T. D I S C 1 100 B " T R A N S 0.70** 0.24 20 20 20 4 0 T. D I S C 3 50 G T R A N S 7.32** 2.46 67 33 T. D I S C 7 5 A S F C 0.62** 0.21 100 S P E C I E S GROUP: T R A N S I T I O N / D E E P S P E C I E S S T N z WATER n/m-^  I % C O M P O S I T I O N O F C O P E P O D I T E S R E G I M E 1 2 3 46" 4o 5°* 5§ 66" 6 2 M. P Y G 5 100 F ' T R A N S 0.62** 26.61 100 M. P Y G 7 500 C D E E P 1.01* 43.35 100 M. P Y G • 11 100 H " D E E P 1.85 7 9 . 4 0 100 M. P Y G l l 200 H " D E E P 1.27 54.51 100 A. D I V 3 50 G T R A N S 2,44** 16.43 100 A. D I V 5 30 A S F C 10.22 6 8.82 37 29 15 19 A. D I V . 5 50 G T R A N S 3.24 21.82 22 17 33 17 11 A. D I V 5 100 F ' T R A N S 7.83 52.73 13 1 8 21 21 26 A. D I V 5 200 F ' T R A N S 2.81 1 8 . 9 2 33 2 4 43 A. D I V 5 300 H ' D E E P 3-27 22.02 30 23 47 A. D I V 7 30 A S F C 1.42* 9 . 5 6 57 43 A. D I V 7 50 G T R A N S 2.48 16.70 8 23 39 31 A . D I V 7 100 F ' T R A N S 8.45 56.90 4 1 2 8 31 A. D I V 7 200 H ' D E E P O . 3 9 * * 2.63 100 A. D I V 7 300 H ' D E E P 0.19** 1.28 100 A. D I V 7 4 0 0 C D E E P I . 3 8 * 9.29 22 33 11 33 A. D I V 7 500 C D E E P 1.01* 6.08 100 A. D I V 9 30 A S F C 1 4 . 8 5 100.00 31 23 25 20 A. D I V 9 100 F ' T R A N S 4.59 30.91 4 2 58 A. D I V 9 200 H " D E E P 2.49 16.77 100 A. D I V 11 30 A S F C 2.98 20.0? 45 55 A. D I V 11 50 G T R A N S 2.02 13.60 100 A. D I V 11 100 H " D E E P 2.59 17.44 33 1 4 53 A. D I V 11 200 H " D E E P 1.06* . 7 . 1 4 20 30 50 E. J A P 1 100 B " T R A N S O . 5 6 * * 1.29 75 25 E. J A P 5 30 A S F C 0 . 2 8 * * O .65 100 E. J A P 5 50 G T R A N S 1.08* 2.49 100 E. J A P 5 100 F ' T R A N S 2.47 5.70 100 E. J A P 5 200 F ' T R A N S 1.74 4.01 7 31 23 23 16 E. J A P 5 300 H ' D E E P 2.40 5.54 1 8 27 32 23 E. J A P 7 30 A S F C 9.71 22.40 35 4 6 8 10 E. J A P 7 ' 50 G T R A N S 6 . 1 1 1 4 . 1 0 2 8 56 3 6 6 E. J A P 7 100 F ' T R A N S 4.38 10.11 4 0 27 23 10 E. J A P 7 200 H ' D E E P 1.82 4.20 1 4 43 7 36 E. J A P ? 300 H ' D E E P 0.95** 2.19 20 4 0 4 0 222 MONTH; JUNE 1975  SPECIES GROUP: TRANSITION/DEEP (Cont'd) SPECIES STN z WATER REGIME n/ra-^  I . 1 % COMPOSITION OF 2 3 4c? 4o. COPEPODITES 5c? 5? 60" 69 E. JAP 7 400 C DEEP 4.92 11.35 56 26 3 6 3 6 E. JAP 7 500 C DEEP 2.58 5-95 48 17 4 13 13 4 E. JAP . 9 10 A SFC 1.19 2.75 54 46 E. JAP 9 30 A SFC 38.10 87.91 14 54 15 13 2 3 E. JAP 9 50 G TRANS 2.86 6.60 39 44 6 6 6 E. JAP 9 100 F'TRANS 2.41 5.56 16 32 21 16 5 10 E. JAP 9 200 H"DEEP 2.62 6.05 75 15 5 5 E. JAP 9 350 C DEEP 6.06 13.98 59 34 2 5 E. JAP 11 30 A SFC 17.12 39.50 17 43 37 4 1 E. JAP 11 50 G TRANS 7.36 16.98 90 2 4 4 E. JAP 11 100 H"DEEP 0.37** 0.85 32 68 E. JAP 11 200 H"DEEP 2.86 6.60 52 26 4 7 4 7 SCOL. M 5 30 A SFC O.56** 2.86 100 SCOL. M 5 50 G TRANS 3.05 15.55 35 65 SCOL. M " 5 300 H'DEEP 2.18 11.12 10 90 SCOL. M 7 30 A SFC 2.83 14.43 36 64 SCOL. M 7 50 G TRANS 2.10 10.71 100 SCOL. M 7 300 H'DEEP 2.09 10.66 100 SCOL. M 9 50 G TRANS 11.59 59.10 100 SCOL. M 9 100 F'TRANS 7.38 37.63 24 19 57 SCOL. M 11 30 A SFC 2.53 12.90 100 M. OKH QC 30 E" TRANS 2.99 O.29 6 53 41 M. OKH QC 50 E" TRANS 0.47** O.05 26 74 M. OKH QC 100 E'"DEEP 0.71* 0.0? 72 28 M. OKH 3 100 B"TRANS 6.95** 0.68 40 60 M. OKH 3 150 B"'DEEP 9 .62** 0.94 60 40 M. OKH 5 200 F'TRANS 31.45 3.09 14 17 31 36 1 M. OKH 5 300 H'DEEP 10.90 1.0? 22 17 33 28 M. OKH 7 100 F'TRANS 29.16 2.86 15 14 33 39 M. OKH 7 200 H'DEEP 17.94 1.76 30 38 31 M. OKH 7 300 H'DEEP 10.45 I . 0 3 7 5 25 20 42 M. OKH 7 400 C DEEP 12.76 1.25 33 29 39 M. OKH 7 500 C DEEP 17.31 1.70 5 4 37 30 1 23 M. OKH 9 30 A SFC 219.32 21.53 16 41 43 M. OKH 9 50 G TRANS 1018.74 100.00 42 41 9 8 M. OKH 9 100 F'TRANS 356.44 34.99 2 34 33 14 16 M. OKH 9 200 H"DEEP 16.64 1.63 17 18 28 35 2 M. OKH 9 350 C DEEP 22.28 2.19 27 22 51 M. OKH 11 10 A SFC 769.41 75.53 50 12 13 12 13 M. OKH 11 30 A SFC 326.20 32.02 12 45 43 M. OKH 11 50 G TRANS 590.19 57.93 3 45 44 4 4 < 1 M. OKH 11 100 H"DEEP 70.16 6.89 28 26 20 21 4 223 MONTH: JUNE 1975  SPECIES GROUP: TRANSITION/DEEP (Cont'd) SPECIES STN z WATER n/m3 I % COMPOSITION OF COPEPODITES REGIME ~1 2 3 4cf 4$ 5c? 5 ? 6c? 6o_ M. OKH 11 200 H"DEEP 47.67 4 .68 27 22 25 21 1 4 C. GRAC 1 200 B"'DEEP 4.34 18.64 32 40 28 C. GRAC 3 150 B"'DEEP 7.68** 32.99 25 25 25 25 C. GRAC. 5 300 H'DEEP 1.86 7.99 • 18 47 6 30 C. GRAC 7 200 H'DEEP 1.04* 4.47 25 13 63 C. GRAC 7 300 H'DEEP O.95** 4 .08 40 20 40 C. GRAC 7 400 C DEEP 0.46** 1.98 67 33 H. TAN 5 100 F'TRANS O.83** 2.96 75 25 H. TAN 5 300 H'DEEP O.77* 2.75 - 43 - 29 29 H. TAN 7 50 G TRANS 1.91* 6.82 - 40 - - 60 -H. TAN 7 100 F'TRANS 18.51 66.11 - 1 7 - 39 44 H. TAN 7 200 H'DEEP 3.64 13.00 - 7 - 57 H. TAN 7 300 ' H'DEEP 4.75 16.96 - 28 - 60 12 H. TAN 7' 400 C DEEP 7.38 26.36 - 29 - 52 19 H. TAN 7 500 C DEEP 2.02 7.21 - 17 - 78 5 H. TAN 9 30 A SFC 5.91 18.54 - 33 - - 54 - 12 H. TAN 9 50 G TRANS 6.35 22.68 35 65 H. TAN 9 100 F'TRANS 7.00 25.00 - 7 - 33 60 H. TAN 9 200 H"DEEP 3.67 i 3 . l l - 14 - 61 25 H. TAN 9 350 C DEEP 10.04 35-86 - 49 - ' 3 0 21 H. TAN 11 30 A SFC 1.94 6.93 15 H. TAN 11 50 G TRANS 5.49 19.61 - 13 - 16 71 H. TAN 11 100 H"DEEP 2.84 10.14 78 22 H. TAN 11 200 H"DEEP 2.33 8.32 • - 14 - 64 22 GAD. C 5 200 F'TRANS O.53** 4.00 25 50 25 GAD. C 5 300 H'DEEP 0.66* 4 .98 50 33 17 GAD. C 7 200 H'DEEP 0.78* 5.88 17 33 50 GAD. C 7 300 H'DEEP O.95** 7.16 20 40 40 GAD. C 7 400 C DEEP O.77** 5.81 40 19 40 GAD. C 7 500 C DEEP 1.90 14.33 24 17 12 12 6 12 17 GAD. C 9 100 F'TRANS 11.34 85.52 96 2 1 1 GAD. C 9 200 H"DEEP 3.14 23.68 46 54 GAD. C 11 50 G TRANS 3.38 25.49 50 45 5 GAD. C 11 200 H"DEEP 2.02 15.23 5 10 16 37 5 26 CAN. C 5 200 F'TRANS 1.34* 26.27 - 50 - 30 20 CAN. C 7 200 H'DEEP 0.52** 10.20 50 50 CAN. C 9 100 F'TRANS 3.31 64.90 92 - 8 -CAN. C 9 200 H"DEEP 0.52** 10.20 100 CAN. C 11 200 H"DEEP 0.42** 8.24 50 50 224 MONTH: JUNE 1975 SPECIES GROUP: INLET DEEP SPECIES STN z WATER n/ra3 I % COMPOSITION OF COT 'EPODITES REGIME 1 2 3 4cf 4o 5c? 5? 60" 69 SPINO 7 100 F'TRANS 2.77 6.28 26 31 42 SPINO 7 200 H'DEEP 1.43 3.24 36 64 SPINO 7 300 H'DEEP 13.30 30.13 ? 6 11 16 60 SPINO 7 400 C DEEP 7.69 17.42 2 34 22 42 SPINO 7 500 C DEEP 1.57 3.56 22 22 14 42 SPINO 9 50 G TRANS 6.20 14.05 26 28 46 SPINO 9 100 F'TRANS 25.98 58.86 5 7 30 7 50 SPINO 9 200 H"DEEP 13.62 30.86 3 6 12 13 3 64 SPINO 9 350 C DEEP 8.81 19.96 3 8 22 67 SPINO 11 50 G TRANS 17.31 39.22 12 18 2 68 SPINO 11 100 H"DEEP 22.33 50.59 4 8 18 14 56 SPINO 11 200 H"DEEP 14.80 33.53 13 17 1 69-SCAPH 3 . 150 B"'DEEP 1.92** 12.08 100 SCAPH 7 100 F'TRANS 0.15** 0.94 100 SCAPH 7 200 H'DEEP 3-38 21.26 _ 4 _ 42 54 SCAPH 7 300 H'DEEP 3.23 20.31 6 24 24 41 6 SCAPH 7 400 C DEEP 3.24 20.38 10 19 19 14 38 SCAPH 7 500 C DEEP 4.25 26.73 11 3 5 82 SCAPH 9 100 F'TRANS O .63** 3-96 20 40 40 SCAPH 9 200 H"DEEP 3-27 20.57 12 44 28 16 SCAPH 9 350 C DEEP 4.82 30.31 3 23 11 63 SCAPH 11 50 G TRANS 5.04 31.70 49 42 9 SCAPH 11 100 H"DEEP 2.47 15.53 15 30 55 SCAPH 11 200 H"DEEP 4.34 27.30 3 7 17 27 3 44 RACO QC 100 E"'DEEP 0.41** 56.16 100 RACO 7 500 C DEEP 0.22** 30.14 100 SPECIES GROUP: OFF-SHORE SPECIES STN z WATER n/m.3 I % COMPOSITION OF COPEPODITES REGIME 1 2 3 46* 49 5* 52 60* 69 CAL. C QC 100 E"'DEEP 1.83 100.00 -100 -R. NAS QC 100 E"'DEEP 2.63 100.00 8 11 8 16 31 8 19 G. TNT QC 100 E mDEEP 2.84 100.00 18 21 11 14 11 25 SPECIES GROUP: MIGRANTS SPECIES STN z WATER n/m3 I % COMPOSITION OF COPEPODITES REGIME 1 2 3 4c? 49 5°- 5? 60" 69 E. BUN QC 30 E" TRANS 1.05 46.05 33 67 E. BUN QC 50 E" TRANS 1.41 61.84 25 42 8 25 E. BUN QC 100 E"'DEEP 1.93 84.65 26 42 10 21 E. BUN 1 10 A SFC 0.09** 3-95 100 E. BUN 1 100 B"TRANS 0.42** 18.42 100 E. BUN 3 100 B"TRANS 1.39** 60.96 100 E. BUN 3 150 B"'DEEP 1.92** 84.21 100 225 MONTH: JUNE 1975 SPECIES GROUT: MIGRANTS (Cont'd) SPECIES STN z WATER n/mi I % COMPOSITION OF COPEPODITES REGIME 1 2 3 4o* 49 rf 59. 6c? 69 CAL. P QC 50 E" TRANS 0.47** 8.30 -100 -CAL. P QC 100 E"'DEEP 1.22 21.55 -100 -CAL. P 1 100 B"TRANS 0.28** 4.95 -100 -CAL. P 1 200 B'"DEEP 0.41** 7.24 -100 -CAL. P 5 100 F'TRANS . 0.41** 7.24 -100 -CAL. P 9 50 G TRANS O.63** 11.13 -100 -CAL. P 9 100 F'TRANS O.38** 6.71 -100 -CAL. P 9 200 H"DEEP 0.26** 4.59 -100 -CAL. P 9 350 C DEEP O.69** 12.19 -100 -CAL. P 11 10 A SFC 1.86 32.86 -100 -CAL. P 11 30 A SFC 0.45** 7.95 -100 -CAL. P 11 50 G TRANS 1.01** 17.84 -100 -CAL. P 11 . 200 H"DEEP 0.74** 13.07 -100 -CAL. M QC 5 E'SFC 23.11 0.50 - 2 - 10 88 CAL. M QC 10 E'SFC 22.17 0.48 12 14 74 CAL. M QC 30 E" TRANS 66.62 1.45 - 7 - 10 83 CAL. M QC 50 E" TRANS 20.37 0.44 - 14 - 26 60 CAL. M QC 100 E'"DEEP 7.32 0.16 -15 - 68 17 CAL. M 1 5 A SFC 50.96 1.11 1 _ h, -- 7 - 10 79 CAL. M 1 10 A SFC 22.19 0.48 - 3 - - 20 - 9 68 CAL. M 1 30 A'SFC 85.60 1.85 4 - 6 - - 40 - 50 CAL. M 1 50 B"TRANS 54.40 1.18 - 9 - - 78 - 13 CAL. M 1 100 B"TRANS 12.40 0.27 - 75 - 25 CAL. M 1 200 B"'DEEP 6.57 0.14 - 60 - 40 CAL. M 3 10 A'SFC 10.08 0.22 - 23 - - 77 -CAL. M 3 30 A SFC 51-92 1.13 - 78 - 22 CAL. M 3 50 G TRANS 129.27 2.81 - 79 - 21 CAL. M 3 100 B"TRANS 18.06 0.39 - 85 - 15 CAL. M 3 150 B"'DEEP 28.85 O.63 - 87 - 13 CAL. M 5 30 A SFC 1.96 0.04 - 7 - - 93 -CAL. M 5 50 G TRANS 36.73 0.80 - 10 - - 85 - 4 CAL. M 5 100 F'TRANS 5.55 0.12 - 78 - 7 15 CAL. M 5 200 F'TRANS 2.28 0.05 - 71 - 6 24 CAL. M 5 300 H'DEEP 0.87* 0.02 -100 -CAL. M 7 10 A SFC 0.48** 0.01 25 75 CAL. M 7 30 A SFC 13.97 0.30 -100 -CAL. M 7 50 G TRANS 37.48 0.82 -100 -CAL. M 7 100 F'TRANS 16.33 O.36 -100 -CAL. M 7 200 H'DEEP 16.64 O.36 -100 -CAL. M 7 300 H'DEEP 1.33* 0.03 -100 -CAL. M 7 400 C DEEP 1.08* 0.02 -100 -CAL. M 7 500 C DEEP 4.13 0.09 - 95 - 5 226 MONTH: JUNE 1975 SPECIES GROUP: MIGRANTS (Cont'd) SPECIES STN z WATER REGIME n/m-* I 1 % COMPOSITION OF 2 3 4c? 4$ COPEPODITES 56* 59 6c? 6? CAL. M 9 10 A SFC 14.36 O.31 - 44 - - 42 - 13 CAL. M 9 30 A SFC 57.96 1.26 -100 -CAL. M 9 50 G TRANS 5.08 0.11 - 97 - 3 CAL. M 9 100 F'TRANS 4.08 0.09 • - 97 - 3 CAL. M 9 200 H"DEEP 4.19 0.09 -100 -CAL. M 9 350 C DEEP 1.52 0.03 - 91 - 9 CAL. M 11 10 A SFC 760.90 16.55 - 27 - - 72 - 1 CAL. M 11 30 A SFC 48.21 1.05 - 54 - - 46 -CAL. M 11 50 G TRANS 4.62 0.10 - 44 - - 56 -CAL. M 11 100 H"DEEP 3-95 0.09 -100 -CAL. M 11 200 H"DEEP 2.75 0.06 -100 -P. ELO QC 5 E'SFC 34.73 1.63 18 23 12 47. P. ELO QC _ 10 ' E'SFC 166.52 7 .82 1 4 3 26 23 5 3£ P. ELO QC 30 E" TRANS 702.63 33 . 0 0 30 31 2 37 P. ELO QC 50 E" TRANS IO63.37 49.94 2 1 28 29 1 39 P. ELO QC 100 En'DEEP 109.55 5 .15 9 8 43 41 P. ELO 1 5 A SFC 205.25 9.64 6 7 29 26 6 26 P. ELO 1 10 A SFC 444.73 20.89 3 2 29 28 2 36 P. ELO 1 30 A'SFC 1312.80 61.66 10 9 23 24 10 23 P. ELO 1 50 B"TRANS 1573.62 73.91 11 12 21 23 9 25 P. ELO 1 100 B"TRANS 1178.02 55-33 1 1 12 13 18 56 P. ELO 1 200 Bn,DEEP 294.01 13.81 2 3 16 79 P. ELO 3 10 A SFC ' 169.77 7.97 20 26 6 48 P. ELO 3 30 A SFC 319.23 14.99 12 10 25 28 5 20 P. ELO 3 50 G TRANS 295.13 13.86 4 12 9 21 24 7 23 P. ELO 3 100 B"TRANS 348.61 16.37 4 4 7 11 25 49 P. ELO 3 150 B"'DEEP 1146.16 53-83 3 5 32 60 P. ELO 5 10 A SFC 5.14 0.24 14 38 48 P. ELO 5 30 A SFC 46.49 2.18 3 2 17 15 4 58 P. ELO 5 50 G TRANS 13.62 0.64 1 1 10 12 3 72 P. ELO 5 100 F'TRANS 6 .58 0.31 22 19 59 P. ELO 5 200 F'TRANS 20.48 O.96 18 24 8 51 P. ELO 5 300 H'DEEP 32.17 1.51 16 20 6 58 P. ELO 7 10 A SFC 2.64 0.12 100 P. ELO 7 30 A SFC 5-27 0.25 19 27 12 42 P. ELO 7 50 G TRANS 2.29 0.11 17 25 59 P. ELO 7 100 F'TRANS 21.86 1.03 28 37 35 P. ELO 7 200 H'DEEP . 99.21 4.66 46 42 <1 11 P. ELO 7 300 H'DEEP 52.86 2.48 53 47 P. ELO 7 400 C DEEP 63.23 2.97 51 47 2 P. ELO 7 500 C DEEP 44.41 2.09 51 45 3 2 P. ELO 9 10 A SFC 32.18 1.51 53 47 22? MONTH; JUNE 1975 SPECIES GROUP: MIGRANTS (Cont'd) SPECIES STN z WATER n/ra^ 1 I % COMPOSITION OF COPEPODITES REGIME 1 2 3 4o" 4o_ 5cf 5j 6cf 6o P. ELO 9 30 A SFC 476.21 22.37 46 44 <1 9 p. ELO 9 50 G TRANS 50.48 2.37 48 52 p. ELO 9 100 F'TRANS 78.72 3-70 52 48 p. ELO 9 200 H"DEEP 13.09 5.31 ' 50 45 <1 5 p. ELO 9 350 C DEEP 344.98 16.20 49 51 p. ELO 11 10 A SFC 69.47 32.85 5 6 45 44 p. ELO 11 30 A SFC 31.5 14.61 50 48 2 p. ELO 11 50 G TRANS 73.59 3.46 48 52 p. ELO 11 10  H"DEEP 64.61 3.03 52 48 p. ELO 11 20  H"DEEP 143.02 6.72 52 48 M. PAC QC 5 E'SFC 4.57 1.53 32 20 49 M. PAC QC 10 E'SFC 9.79 3-27 22 30 11 14 23 M. PAC QC. 30 E" TRANS 38.93 13.01 24 19 6 8 5 37 M. PAC QC 50 E" TRANS 38.17 12.76 17 14 11 57 M. PAC QC 10  E"'DEEP 19.61 6.55 30 19 51 M. PAC 1 5 A SFC 24.87 8.31 40 31 29 M. PAC 1 50 B"TRANS 57 70 19.28 1 4 8 17 70 M. PAC 1 100 B"TRANS 199.99 66.84 5 4 16 18 24 33 M. PAC 1 20  B"'DEEP IO5.67 35.32 2 4 .41 53 M. PAC 3 30 A SFC 13.46 4.50 43 57 M. PAC 3 50 G TRANS . 14. 4 4.89 33 17 50 M. PAC 3 10  B"TRANS 122.22 40.85 13 17 22 14 19 10 6 M. PAC 3 150 B "' DEEP 251.92 84.20 5 5 62 28 M. PAC 5 30 A SFC 9.24 3.09 21 23 26 30 M. PAC 5 50 G TRANS 12.90 4.31 19 15 31 35 M. PAC 5 100 F'TRANS 8.44 2.82 7 2 34 39 17 M. PAC 5 20  F'TRANS 10.16 3.40 1- 1 14 17 54 12 M. PAC 5 30 H'DEEP 9.49 3.17 86 14 M. PAC 7 30 A SFC 14.37 4.80 16 20 37 28 M. PAC 7 50 G TRANS 13.7  4.60 3 8 29 39 21 M. PAC 7 10  F'TRANS 9-33 3.12 27 2  52 M. PAC 7 20  H'DEEP 0 40 3.48 21 26 53 M. PAC 7 30 H'DEEP 1.52* O.51 100 M. PAC 7 400 C DEEP 1.38* 0.46 100 M. PAC 7 50 C DEEP 2.47 O.83 14 18 68 M. PAC 9 30 A SFC 96.07 32.1  1 2 44 41 11 M. PAC 9 50 G TRANS 106.19 35-49 4 5 42 38 12 M. PAC 9 100 F'TRANS 27.33 9.15 14 19 32 35 M. PAC 9 200 H"DEEP 10.74 3-59 1 17 13 45 23 M. PAC 9 350 C DEEP 4.95 I.65 31 19 50 M. PAC 11 10 A SFC 281.92 94.22 12 11 39 38 M. PAC 11 10  H"DEEP 22.81 7.62 22 18 28 31 M. PAC 11 200 H"DEEP • 7.51 2.51 25 31 44 228 MONTH: JULY 1975 SPECIES GROUP: SUMMER SURFACE SPECIES STN z WATER n/m-> I % COMPOSITION OF COPEPODITES REGIME 1 2 3 4o* 4g 5cf 59 66" 69 P. PAR 1 10 A SFC 9.73 100.00 36 64 C. MCM QG 10 E'SFC 2.42 6.52 72 28 C. MCM 1 30 A'SFC 37.11 100.00 84 16 C. MCM 1 50 A'SFC 5-73 15.44 96 4 C. MCM 3 30 A SFC 0.96* 2.59 43 57 C. MCM 5 10 A SFC 3-87 10.43 57 43 POD/EVA l 5 A SFC 102.4 1.38 POD/EVA 3 5 A SFC 7413.00 100.00 POD/EVA 3 10 A SFC 307.00 4.14 POD/EVA 3 30 A SFC 44.00 0.59 POD/EVA 5 5 A SFC 166.70 2.25 POD/EVA 5 10 A SFC 6.64 0.09 POD/EVA 7 . 5 A SFC 1.92 0.03 SPECIES GROUP: SURFACE/TRANSITION SPECIES STN z WATER n/m.3 I % COMPOSITION OF COPEPODITES REGIME 1 2 3 46* 49 56" 59 66* 69 E. AMPH QC 10 E'SFC 0.68* 17.85 100 E. AMPH QC 30 E" TRANS 1.45 38.06 54 46 E. AMPH QC 50 E" TRANS 3.81 100.00 11 31 6 11 42 E. AMPH 1 30 A'SFC 0.25** 6.56 100 E. AMPH 1 50 A'SFC 0.33** 8.66 33 33 33 E. AMPH 3 100 B"TRANS 0.10** 2.62 100 A. CLAU l 5 A SFC 2.53** 0.74 100 A. CLAU 1 10 A SFC 1.17* O.34 100 A. CLAU 1 30 A'SFC 5.92 1.74 100 A. CLAU l 50 A'SFC 1.70 0.50 100 A. CLAU 1 100 B"TRANS 12.40 3.64 56 44 A. CLAU l 200 B"'DEEP 0.51** O.15 100 A. CLAU 3 10 A SFC 32.00 9-38 6 94 A. CLAU 3 30 A SFC 48.45 14.21 17 83 A. CLAU 3 50 G TRANS 1.43 0.42 100 A. CLAU 5 10 A SFC 261.84 76.79 <1 100 A. CLAU 5 30 A SFC 2.17 0.64 100 A. CLAU 5 50 G TRANS 5-71 1.67 100 A. CLAU 5 300 H"'DEEP 0 . 2 0 * * 0.06 50 50 A. CLAU 7 10 A SFC 6.24 I . 8 3 100 A. LONG QC 5 E'SFC 211.80 38.44 100 A. LONG QC 10 E'SFC 65.76 11.94 13 87 A. LONG QC 30 E" TRANS 122.51 22.23 8 92 A. LONG QC 50 E"TRANS 109.51 19.88 5 95 A. LONG 1 10 A SFC 19.54 3.55 15 85 229 MONTH: JULY 1975  SPECIES GROUP: SURFACE/TRANSITION (Cont'd) SPECIES STN z WATER n/m-' I % COMPOSITION OF COPEPODITES REGIME 1 2 3 4c? 4 ? n 6d* 60 A. LONG 1 30 A'SFC 445.40 80.84 11 89 A. LONG 1 50 A'SFC 41.82 7.59 4 96 A. LONG 1 100 B"TRANS 38.80 7.04 4 96 A. LONG 1 20  B"'DEEP 11.67 2.12 7 93 A. LONG 3 30 A SFC 47.86 8.69 100 A. LONG 3 50 G TRANS 4.30 0.78 100 A. LONG 3 10  B"TRANS 17.01 3.09 100 A. LONG 3 150 B'"DEEP 2.70 0.49 100 A. LONG 5 10 A SFC 5-53 1.00 100 A. LONG 5 30 A SFC 2.07 O.38 100 A. LONG 5 50 G TRANS 0.84* 0.15 100 A. LONG 7 1  A SFC 1.7 0.21 100 T. DISC QC 5 E'SFC 0.25** 0.08 100 T. DISC QC 10 E'SFC 0.39** 0.13 100 T. DISC QC 30 E" TRANS 22.16 7.45 28 24 28 19 T. DISC QC 50 E" TRANS 16.56 5.57 6 7 1 3 23 61 T. DISC 1 1  A SFC O.58** 0.20 100 T. DISC 1 30 A'SFC 297.30 100.00 - 11 -- 58 -13 18 T. DISC 1 50 A'SFC 9.02 3.03 40 20 40 T. DISC 1 10  B"TRANS O.69* 0.23 100 T. DISC 3 1  A SFC 26.80 9.01 4 96 T. DISC 3 30 A SFC 0.14 * 0.5 100 T. DISC 3 50 G TRANS 1.0?* O.36 11 89 T. DISC 3 10  B"TRANS 0.10** 0.3 100 SPECIES GROUP: TRANSITION/DEEP SPECIES STN z WATER n/m-^  I % COMPOSITION OF COPEPODITES REGIME 1 2 3 4c? 4cj 5c? 5? 6* 6 ? A. DIV QC 30 E" TRANS 0.52** 3.50 100 A. DIV QC 50 E" TRANS 1.38 9.29 100 A. DIV 1 100 B"TRANS 5.38 36.23 3 7 7 84 A. DIV 1 20  B"'DEEP 0.68** 4.58 50 25 25 A. DIV 3 50 G TRANS O.96* 6.46. 24 13 24 13 13 13 A. DIV 3 100 B"TRANS 8.5 59.60 1 9 6 26 58 A. DIV 3 150 B"'DEEP 5-75 38.72 3 17 19 61 A. DIV 5 30 A SFC 4.62 31.11 24 47 29 A. DIV 5 50 G TRANS IO.30 69.36 33 30 16 21 A. DIV 5 10  G TRANS 2.16 14.55 40 30 30 A. DIV . 7 1  A SFC 2.00 . 13-47 38 25 13 21 4 A. DIV 7 30 A SFC 1.0 * 7.14 42 58 A. DIV 7 50 G TRANS 4.04 27.21 18 72 3 7 A. DIV 7 10  H'DEEP 1.83 12.32 47 23 30 230 MONTH: JULY 1975  SPECIES GROUP: TRANSITION/DEEP (cont'd') SPECIES STN z WATER REGIME n/m3 I 1 % COMPOSITION OF COPEPODITES 2 3 4cf 4? 50* 50 60" 69 A. DIV 7 200 H'DEEP 1.02* 6.87 56 44 E. JAP QC 100 E"'DEEP 0.18** 0.42 100 E. JAP 1 100 B"TRANS 0.18** 0.42 50 50 E. JAP 1 200 B"'DEEP 0.17** 0.39 100 E. JAP 3 100 B"TRANS 0.52** 1.20 20 40 40 E. JAP 3 150 B "' DEEP 4.82 11.12 2 10 17 17 47 7 E. JAP 5 30 A SFC 0.09** 0.21 100 E. JAP 5 50 G TRANS 0.84* 1.94 33 67 • E. JAP 5 100 G TRANS 1.19 2.75 18 9 27 27 9 9 E. JAP 5 200 H'DEEP 0.60* 1.38 33 67 E. JAP 5 300 H "' DEEP 1.73 3-99 34 11 17 11 11 17 E. JAP 7 30 A SFC 1.06* 2.45 86 14 E. JAP 7 50 G TRANS 8.83 20.37 16 10 16 13 11 15 13 5 E. JAP . 7 100 H'DEEP 2.92 6.74 22 15 8 4 4 11 37 E. JAP 7 200 H'DEEP 3-63 8.38 19 16 22 37 6 E. JAP 7 300 H*"DEEP 0.44** 1.02 50 50 E. JAP 7 500 HmDEEP 12.24 28.24 17 25 17 17 25 E. JAP 9 10 A SFC 39.64 91.46 54 20 21 2 2 <1 2 E. JAP 9 30 G TRANS 7.73 17.84 78 5 8 3 3 3 E. JAP 9 50 G TRANS 1.94 4.48 6 6 50 32 6 E. JAP 9 100 H'DEEP O.56** 1.29 25 25 25 25 E. JAP 9 200 H'DEEP 0.41** 0.95 24 76 E. JAP 11 10 A SFC 43.34 100.00 46 19 22 6 6 <1 1 E. JAP 11 30 G TRANS 3-38 7.80 27 15 23 35 E. JAP 11 50 G TRANS 4.67 10.78 6 23 34 17 20 E. JAP 11 100 H'DEEP 5.31 12.25 46 35 6 4 6 4 E. JAP 11 200 H"'DEEP 0.10** 0.23 100 SCOL. M 3 100 B"TRANS 0.52** 2.65 100 SCOL. M 3 150 B"'DEEP 1.50 7.65 5 95 SCOL. M 5 30 A SFC 4.25 21.67 7 13 9 71 SCOL. M 5 50 G TRANS 1.21 • 6.17 31 16 54 SCOL. M 5 100 G TRANS 0.11** O.56 100 SCOL. M 5 200 H'DEEP 1.50 7.65 40 20 7 33 SCOL. M 5 300 H"'DEEP 0.67* 3.42 28 72 SCOL. M 7 50 G TRANS 1.30* 6.63 45 55 SCOL. M 9 10 A SFC 9.46 48.24 32 40 11 17 SCOL. M 9 30 G TRANS 2.70 13.77 4 9 86 SCOL. M 11 10 A SFC 1.00* 5.10 20 20 60 SCOL. M l l 30 G TRANS 2.61 13.31 45 55 SCOL. M l l 50 G TRANS 1.60 8.16 25 75 M. OKH QC 50 E" TRANS 1.68 0.16 50 25 25 231 MONTH: JULY 1975  SPECIES GROUP: TRANSITION/DEEP (Cont'd') SPECIES STN z WATER REGIME n/m3 I % COMPOSITION OF 1 2 3 4d* 4 j COPEPODITES 5cf 5$ 66" 60 M. OKH QC 100 E"'DEEP 0.46** O.05 80 20 M. OKH 1 100 B"TRANS 67.80 6.66 45 55 M. OKH 1 200 B"'DEEP O.34** 0.02 100 M. OKH 3 100 B"TRANS 3.42 O.34 15 85 M. OKH 3 150 Bn'DEEP 198.38 19.4? 41 59 < 1 M. OKH 5 50 G TRANS 0.28** O.03 100 M. OKH 5 200 H'DEEP 6.93 0.68 4 10 38 30 17 M. OKH 5 300 H"'DEEP 11.21 1.10 43 47 5 5 M. OKH 7 50 G TRANS 11.15 1.09 29 35 16 18 3 M. OKH 7 100 H'DEEP 41.58 4.08 2 25 26 28 19 M. OKH 7 200 H'DEEP 9.17 O.90 4 5 16 19 57 M. OKH 7 300 H"'DEEP 12.29 1.21 9 5 29 29 29. M. OKH 7 500 ' H"'DEEP 5.10** O.50 60 40 M. OKH 9 ' 10 A SFC 224.04 21.99 3 25 26 22 24 M. OKH 9 30 G TRANS 1.23* 0.12 30 40 10 20 M. OKH 9 50 G TRANS 244.04 23.96 22 21 28 29 M. OKH 9 100 H'DEEP 21.75 2.13 21 17 14 1? 30 M. OKH 9 200 H'DEEP 6.12 0.60 7 8 7 15 63 M. OKH 9 350 H"'DEEP 3.44 0.34 14 5 32 50 M. OKH 11 10 A SFC 287.88 28.26 3 26 27 23 21 M. OKH 11 30 G TRANS 257.97 25.32 4 31 33 16 15 M. OKH 11 50 G TRANS 241.55 23.71 40 39 9 9 3 M. OKH 11 100 H'DEEP 174.55 17.13 5 31. 29 1? 17 1 M. OKH 11 200 H"'DEEP 75.38 7.40 24 22 26 24 5 C. GRAC 1 200 B"'DEEP 6.28 26.98 5 16 2? 30 8 13 c. GRAC 3 150 B"'DEEP 6.25 26.85 8 8 27 37 20 c . GRAC 5 300 H"*DEEP 4.16 17.87 7 14 35 . 44 c . GRAC 7 500 H"'DEEP 3.06** 13.14 67 33 c. GRAC 9 200 H'DEEP 0.10** 0.43 100 H. TAN 3 50 G TRANS 0.12** 0.43 100 H. TAN 3 100 B"TRANS 0.10** O.36 100 H. TAN 3 150 B"'DEEP O.83* 2.96 60 40 H. TAN 5 50 G TRANS 0 . 0 9 * * O.32 100 H. TAN 5 100 G TRANS 0.11** 0.39 100 H. TAN 5 200 H'DEEP 0 . 6 0 * 2.14 67 33 H. TAN 5 300 H'"DEEP 1.25 4.46 85 15 H. TAN 7 30 A SFC 2.43 8.68 13 87 H. TAN 7 50 G TRANS 1.88 6.71 77 23 H. TAN 7 100 H'DEEP 1.08* 3.86 70 30 H. TAN 7 200 H'DEEP 1.47 5.25 i 46 54 H. TAN 7 300 H"'DEEP 2.63 9.39 83 17 232 MONTH: JULY 1975  SPECIES GROUP: TRANSITION/DEEP (Cont'd) SPECIES STN z WATER REGIME n/m3 I % COMPOSITION OF 1 2 3 46* 4$ COPEPODITES 50* 5$ 66* 63 H. TAN 7 500 HmDEEP 4.08** 14.57 75 25 H. TAN 9 10 A SFC 0.34** 1.21 100 H. TAN 9 30 G TRANS 4.54 16.21 - 8 - 32 59 H. TAN 9 50 G TRANS 15.09 53-89 5 95 H. TAN 9 100 H'DEEP 1.12* 4.00 62 38 H. TAN 9 200 H'DEEP I . 8 3 6.54 72 28 H. TAN 9 350 H"'DEEP 2.66 9.50 24 76 H. TAN 11 30 G TRANS 2.48 8.86 90 10 H. TAN 11 50 G TRANS 1.59 5.68 92 8 H. TAN 11 100 H'DEEP 2.25 8.04 96 4 H. TAN 11 200 H"'DEEP 3-97 14.18 90 10 GAD. C 3 150 B*"DEEP 2.67 20.14 44 56 GAD. C 5- 100 G TRANS 5.94 44.80 2 7 32 14 11 33 GAD. C 5 200 H'DEEP 2.10 15.84 5 19 43 24 5 5 GAD. C 5 300 HmDEEP 2.04 15.38 9 10 5 76 GAD. C 7 50 G TRANS 6.08 45.85 29 64 7 GAD. C 7 100 H'DEEP 5.19 39.14 4 15 8 8 39 12 13 GAD. C 7 200 H'DEEP O.56** 4.22 20 40 20 20 GAD. C 7 500 H*"DEEP 13.26 100.00 8 31 31 15 15 GAD. C 9 30 G TRANS 0.99* 7.47 12 12 25 51 GAD. C 9 50 G TRANS 0.12** 0.90 100 GAD. C 9 200 H'DEEP 0.10** 0.70 100 GAD. C 11 30 G TRANS 0.78* 5.88 33 50 17 CAN. C 3 150 B"'DEE3> 0.17** 3-33 100 CAN. C 5 100 G TRANS 0.11** 2.16 100 CAN. C 5 200 H'DEEP 2.11 41.37 44 9 14 9 5 9 9 CAN. C 5 300 H"'DEEP 0 . 2 9 * * 5.69 66 34 CAN. C 7 100 H'DEEP 1.30 25.49 75 8 8 8 CAN. C 7 200 H'DEEP 2.95 57-84 65 23 8 4 CAN. C 7 300 HmDEEP 0.22** 4.31 100 CAN. C 7 500 H"'DEEP 5.10** 100.00 - 20 - - 20 - 20 40 CAN. C 9 30 G TRANS 0.25** 4 .90 100 CAN. C 9 50 G TRANS 0.97* 19.02 100 CAN. C 9 200 H'DEEP 0.71* 13.92 72 28 CAN. C 9 350 HmDEEP 1.41* 27.65 33 67 CAN. C 11 30 G TRANS 0.39** 7.65 100 CAN. C 11 50 G TRANS 0.80* 15.69 34 66 CAN. C 11 200 H"'DEEP 2.14 41.96 14 52 33 233 MONTH: JULY 1975 SPECIES GROUP: INLET DEEP SPECIES STN z WATER I % COMPOSITION OF COPEPODITES REGIME 1 2 3 4c? 4$ 5c?" 5° 6c? 69 SPINO 3 150 Bn'DEEP 2.83 6.41 3 9 88 SPINO 5 100 G TRANS 0.43** 0.97 25 75 SPINO 5 200 H'DEEP 1.10 2.49 27 73 SPINO 5 300 HmDEEP 1.64 3-72 35 29 6 29 SPINO- 7 50 G TRANS 0.58** 1.31 100 SPINO 7 100 H'DEEP 4.43 10.04 5 2 39 22 32 SPINO 7 200 H'DEEP 5-56 12.60 10 26 35 29 SPINO 7 300 H"'DEEP 4.61 10.44 14 10 10 5 62 SPINO 7 500 H"'DEEP 25.51 57.79 8 12 4 76 SPINO . 9 10 A SFC 1.97 4.46 9 5 87 SPINO 9 30 G TRANS 2.57 5.82 5 5 90 SPINO 9 50 G TRANS 11.31 25.62 2? 35 38 SPINO 9 100 H'DEEP IO.50 23.79 15 16 23 21 25 SPINO 9 200 H'DEEP 4.58 IO.38 100 SPINO 9 350 H"'DEEP 6.10 13.82 - 20 - 15 8 56 SPINO 11 10 A SFC I . 6 9 3-83 18 6 76 SPINO 11 30 G TRANS 3.91 8.86 30 2? 43 SPINO 11 50 G TRANS 2.26 5.12 100 SPINO 11 100 H'DEEP 12.27 2?.80 18 14 68 SPINO 11 200 H"'DEEP 5-29 11.98 15 19 2 64 SCAPH 5 100 G TRANS 2.58 16.23 21 12 25 25 17 SCAPH 5 300 H"'DEEP 1.35 8.49 43 57 SCAPH 7 50 G TRANS 1.74 10.94 25 8 50 17 SCAPH 7 100 H'DEEP 1.19 7.48 36 45 9 9 SCAPH 7 200 H'DEEP 0.45** 2.83 - 25 - 75 SCAPH 7 300 H"'DEEP 0.44** 2.77 50 50 SCAPH 7 500 H*"DEEP 8.16* 51-32 - 38 - 63 SCAPH 9 30 G TRANS 1.35 8.49 73 19 9 SCAPH 9 100 H'DEEP 1.96 12.33 - 43 - 36 21 SCAPH 9 350 H"*DEEP 2.50 15.72 - 31 - 31 38 SCAPH 11 100 H'DEEP 3.17 19.94 52 42 6 SCAPH 11 200 Hn'DEEP 2.23 14.03 9 4 32 55 RACO 7 200 H'DEEP 0 . 2 3 * * 31.51 100 RACO 9 350 H*"DEEP O.32** 46.58 100 SPECIES GROUP: OFF-SHORE SPECIES STN z WATER n / V I % COMPOSITION OF COPEPODITES REGIME 1 2 3 4c? 49 5c? 5? 6cT 69 CAL. C QC 50 E" TRANS 0.42** 22.95 -100 -CAL. C QC 100 E"'DEEP 0.18** 9.84 -100 -R. NAS QC 100 E"'DEEP 1.29 49.05 57 43 G. MIL QC 100 E"'DEEP 0.28** 100.00 100 234 MONTH: JULY 1975 SPECIES GROUT: OFF-SHORE (Cont'd) SPECIES STN WATER REGIME n/m3 % COMPOSITION OF COPEPODITES 2 3 46* 4o 50* 5o_ 66" 65 G. PIL QC 100 E"'DEEP 0.69* 100.00 28 14 53 G. INT QC 50 E" TRANS 1-59 55.99 26 7 33 20 13 G. INT QC 100 E"'DEEP 1.00 35.21 18 9 18 55 G. INT 1 200 B"'DEEP O.85** 29.93 • 60 20 20 EUC. P QC 100 E"'DEEP 3.41 100.00 3 27 16 8 46 EUC. R QC 100 E"'DEEP 4.24 100.00 9 13 17 11 4 46 CHIRUN QC 100 E"'DEEP 0.18** 100.00 100 UNDEU QC 100 E*"DEEP 0.46** 100.00 100 P. TON QC 100 E"'DEEP 0.37** 100.00 100 P. CAL QC 100 E"'DEEP 0.18** 100.00 100 E. MED QC 100 E"'DEEP 0.46** 100.00 100 E. SPN QC 100 En'DEEP 0.09** 100.00 icq LOPH QC 100 E"'DEEP 0.46** 100.00 39 61 S. MAG QC' 100 E'"DEEP 0.28** 100.00 100 SCOT QC 100 E"'DEEP 2.03 100.00 4 50 45 SCOL. 0 QC 100 E"'DEEP 0.18** 100.00 100 M. BOE QC 100 E"'DEEP 1.11 100.00 100 M. PRM QC 100 E"'DEEP 0.83* 100.00 34 66 P. QUAD QC 100 E"'DEEP 2.49 100.00 . 4 4 11 18 .15 45 P. SCT QC 100 E*"DEEP 0.83* 100.00 100 P. XIPH QC 100 E"'DEEP 2.13 100.00 13 39 45 P. ABD QC 100 E*"DEEP 3.04 100.00 6 9 15 42 27 P. BOR QC 100 E"'DEEP 1.94 100.00 100 GAUS QC 100 E"'DEEP 1.38 100.00 7 7 27 27 20 13 DIS. M QC 100 E"'DEEP 0.18** 100.00 50 50 H. PAP QC 100 E"'DEEP 1.85 100.00 35 65 H . CLA QC 100 E*"DEEP 0.09** 100.00 100 H. SPN QC 100 E"'DEEP 0.18** 100.00 50 50 HETER QC 100 E'"DEEP 0.36** 100.00 - 25 50 25 CENTR QC 100 E"*DEEP 0.09** 100.00 100 PACHY QC 100 E"'DEEP 0.09** 100.00 100 PHYLL QC 100 E"'DEEP 0.09** 100.00 100 ARIET QC 100 E"'DEEP 0.18** 100.00 100 H. OXY QC 100 E"'DEEP 0.09** 100.00 100 C. BIP QC 100 E"'DEEP 1.76 100.00 37 63 LUCIC QC 100 E"'DEEP 0.18** 100.00 50 50 AEGIS QC 100 E"'DEEP .0.28** 100.00 100 SAPPH QC 100 E"'DEEP 0.09** 100.00 100 235 MONTH; JULY 1975 SPECIES GROUT: MIGRANTS SPECIES STN z WATER n/m-5 I % COMPOSITION OF COPEPODITES REGIME 1 2 3 4c? 4$ 56" 52 6c? 69 E. BUN QC 10 E'SFC 0.10** 4.39 100 E. BUN QC 30 E"TRANS O.65** 28.51 20 80 E. BUN QC 50 E" TRANS 0.22** 9.65 100 E. BUN QC 100 E*"DEEP 1.57 68.86 29 47 6 18 E. BUN 1 50 A'SFC 0.22** 9.65 50 50 E. BUN 1 200 B"'DEEP O.34** 14.91 100 E. BUN 3 150 B DEEP 0.41** 17.98 60 20 20 E. BUN 5 200 H'DEEP 0.10** 4.39 100 E. BUN 5 300 H"'DEEP 0.29** 12.72 34 66 CAL. P QC 50 E" TRANS O.33** 5.83 . 33 - 33 - 33 CAL. P 3 100 B"TRANS 0.10** 1.77 -100 -CAL. P 7 200 H'DEEP O.34** 6.01 -100 - . CAL. P 7. 300 H mDEEP 0.44** 7.77 -100 -CAL. P . 9 10 A SFC 0.34** 6.01 -100 -CAL. P 11 10 A SFC 0.10** 1.77 -100 -CAL. P 11 200 H"'DEEP 0.41** 7.24 -100 -CAL. M QC 5 E'SFC 154.00 3.35 16 27 16 - 11 - _ 4 _ 4 22 CAL. M QC 10 E'SFC 128.83 2.80 24 38 17 - 1 - - 5 - 9 6 CAL. M QC 30 E" TRANS 41.95 0.91 50 5 - 15 - - 5 - 6 . W CAL. M QC 50 E" TRANS 31.34 0.68 26 28 5 - 3 - - 18 - 10 9 CAL. M QC 100 En,DEEP 6.74 0.15 - 29 - 47 25 CAL. M 1 10 A SFC 4.09 0.09 71 29 CAL. M 1 30 A'SFC 7.63 .0.17 32 19 34 - 6 - - 5 - 3 CAL. M 1 5 0 ' A'SFC 6.13 0.13 - 11 - - 43 - 15 31 CAL. M 1 100 B"TRANS 27.63 0.60 - 60 - 20 20 CAL. M 1 200 B"'DEEP 4.40 0.10 - 88 - 12 CAL. M 3 10 A SFC 0.54* 0.01 44 56 CAL. M 3 30 A SFC 0.97* 0.02 14 - 14 - - 42 - 29 CAL. M 3 50 G TRANS 2.98 0.06 8 - 12 - - 64 - 16 CAL. M 3 100 B"TRANS 2.81 0.06 - 78 - 22 CAL. M 3 150 B "' DEEP 38.30 0.83 100 CAL. M 5 10 A SFC 2.21 0.05 -75- - 25 -CAL. M 5 30 A SFC 2.73 0.06 - 10 - - 73 - 17 CAL. M 5 50 G TRANS 3.00 0.07 - 6 - - 94 -CAL. M 5 100 G TRANS 0.76* 0.02 - 57 - 43 CAL. M 5 200 H'DEEP 5.03 0.11 - 98 - 2 CAL. M 5 300 H"'DEEP 3.86 0.08 -95- 5 CAL. M 7 10 A SFC 11.82 0.26 - 85 - - 15 -CAL. M 7 30 A SFC 7.27 0.16 -100 -CAL. M 7 50 G TRANS 2.90 0.06 10 - 20 - - 70 -CAL. M 7 100 H'DEEP 3.02 0.07 - 11 - - 89 -CAL. M 7 200 H'DEEP 14.73 0.32 - 2 - - 98 -236 MONTH; JULY 1975 SPECIES GROUP; MIGRANTS (Cont'd) SPECIES STN z WATER REGIME n/m-5 I % COMPOSITION OF 1 2 3 4o" 4o COPEPODITES 5c? 59 6c? 69 CAL. M 7 300 H"'DEEP 7.24 0.16 -100 CAL. M 7 500 H"'DEEP 2.04** 0.04 -100 I — CAL. M 9 10 A SFC 161*85 3-52 - 21 - - 78 1 CAL. M 9 30 G TRANS 8.94 0.19 - 7 - - 93 CAL. M 9 50 G TRANS 9.97 0.22 - 2 - - 98 CAL. M 9 100 H'DEEP 0.84* 0.02 - 83 17 CAL. M 9 200 H'DEEP 6.71 0.15 -100 1 -CAL. M 9 350 H*"DEEP 5.63 0.12 -100 1 — CAL. M 11 10 A SFC 322.86 7.02 - 36 - - 62 <l 2 CAL. M 11 30 G TRANS 26.11 0.57 - 11 - - 89 1 -CAL. M 11 50 G TRANS 85.22 1.85 -100 1 — CAL. M 11 100 H'DEEP 9.00 0.20 -100 1 — CAL. M 11 200 H*"DEEP 3.56 0.08 -100 1 — P. ELO - QC 5 E'SFC 895-37 42.05 - 3 - 12 12 34 32 l 7 P. ELO QC 10 E'SFC 738.52 34.69 - <1 - 4 4. 12 11 63 6 P. ELO QC 30 E" TRANS 571.36 26.84 - < 1 - 1 1 3 4 15 75 P. ELO QC 50 E" TRANS 1480.74 69.55 1 - 1 1 14 15 18 49 P. ELO QC 100 E*"DEEP 390.40 18.34 12 10 65 14 P. ELO 1 10 A SFC 17.89 0.84 35 8 8 24 24 P. ELO 1 30 A'SFC 1538.97 72.28 2 - 5 5 17 17 4 50 P. ELO 1 50 A'SFC 670.93 31.51 - 1 - 3 2 28 28 4 33 P. ELO 1 100 B"TRANS 2129.11 100.00 4 4 10 81 P. ELO 1 200 B"'DEEP 286.23 13.44 24 23 5 48 P. ELO 3 10 A SFC 112.36 5.28 < 1 <1 2 2 5 91 P. ELO 3 30 A SFC 98.73 4.64 <1 1 2 9 7 2 78 P. ELO 3 50 G TRANS 412.86 19.39 <1 3 3 24 25 15 30 P. ELO 3 100 B"TRANS 83.83 3.94 16 13 6 65 P. ELO 3 150 B"'DEEP 201.23 9.45 28 29 1 42 P. ELO 5 10 A SFC 11.49 0.54 17 31 34 18 P. ELO 5 30 A SFC 35.54 1.67 - 11 - 5 4 33 29 18 P. ELO 5 50 G TRANS 33.51 • 1.57 1 3 8 16 31 1 40 P. ELO 5 loo G TRANS 18.76 0.88 21 9 18 52 P. ELO 5 200 H'DEEP 111.26 5.23 - 1 - 48 46 2 4 P. ELO 5 300 H"'DEEP 50.92 2.39 44 47 4 5 P. ELC 7 10 A SFC 35-81 1.68 5 5 31 43 17 P. ELO 7 30 A SFC 13.19 0.62 36 53 12 P. ELO 7 50 G TRANS 4.77 0.22 55 45 P. ELO 7 100 H'DEEP 26.68 1.25 51 47 <1 2 P. ELO 7 200 H'DEEP 203.85 9-57 51 49 P. ELO 7 300 Hn'DEEP 4?.37 2.22 48 52 P. ELO 7 500 H"'DEEP 15.30 0.72 47 53 237 MONTH! JULY 1975 SPECIES GROUP! MIGRANTS (Cont'd) SPECIES STN z WATER REGIME n/m3 I % COMPOSITION 1 2 3 46* OF 49 COPEPODITES 56* 59 6$ 69 P. ELO 9 10 A SFC 52.52 2.47 31 29 40 P. ELO 9 30 G TRANS 13.72 0.64 37 43 2 19 P. ELO 9 50 G TRANS 42.34 1.99 47 53 P. ELO 9 100 H'DEEP 106.59 5.01 49 51 P. ELO 9 200 H'DEEP 43.33 2.04 48 52 P. ELO 9 350 H"'DEEP 9.06 0.43 55 45 P. ELO 11 10 A SFC 73.26 3.44 30 28 41 P. ELO 11 30 G TRANS 51.69 2.43 48 52 P. ELO 11 50 G TRANS 175.50 8.24 47 52 1 P. ELO 11 100 H'DEEP 131.89 6.19 48 51 1 P. ELO 11 200 H*"DEEP 203.05 9.54 51 49 M. PAC QC 5 E'SFC 1.50 0.50 ioe M. PAC QC 10 E'SFC 10.83 3.62 100 M. PAC QC 30 E" TRANS 24.15 8.07 9 7 85 M. PAC QC 50 E" TRANS 30.93 10.34 22 11 8 4 14 41 M. PAC QC 100 E*"DEEP 1.57 0.52 71 29 M. PAC 1 50 A'SFC 0.57** 0.19 100 M. PAC 1 100 B"TRANS 214.54 71.70 1 3 3 3 11 11 69 M. PAC 1 200 B"'DEEP 8.13 2.72 4 4 2 13 4 . 56 . 17 M. PAC 3 30 A SFC 43.19 14.44 74 11 10 2 2 1 M. PAC 3 50 G TRANS 1.08* O.36 44 11 33 11 M. PAC 3 100 B"TRANS 219.86 73-48 1 1 2 2 3 92 M. PAC 3 150 B*"DEEP 65.33 21.83 3 3 8 9 24 54 M. PAC 5 10 A SFC 4.15 1.39 100 M. PAC 5 30 A SFC 42.12 14.08 <1 47 19 21 11 2 M. PAC 5 50 G TRANS 14.70 4.91 15 23 23 27 12 M. PAC 5 100 G TRANS 26.62 8.90 6 24 31 7 33 M. PAC 5 200 H'DEEP 8.83 2.95 6 8 5 8 71 3 M. PAC 5 300 H"'DEEP 1.84 0.61 100 , M. PAC 7 10 A SFC 1.42 0.47 88 12 M. PAC 7 30 A SFC 5-76 1.93 . 37 11 16. 21 16 M. PAC 7 50 G TRANS 1.01* 0.34 14 86 M. PAC 7 100 H'DEEP 1.29 0.43 33 33 33 M. PAC 7 200 H'DEEP 4.08 I .36 25 36 39 M. PAC 7 300 H"'DEEP 5.05 I . 6 9 13 13 22 9 35 9 M. PAC 7 500 H'"DEEP 5.10** 1.70 40 60 M. PAC 9 30 G TRANS 87.74 29.32 3 25 23 20 21 7 M. PAC 9 50 G TRANS 4.37 1.46 39 36 8 17 M. PAC 9 100 H'DEEP 2.66 0.89 53 47 M. PAC 9 200 H'DEEP 1.93 O.65 5 5 16 74 M. PAC 11 100 H'DEEP 17.59 5.88 28 23 18 21 1 9 M. PAC 11 200 H"'DEEP 6.62 2.21 58 42 238 MONTH: AUGUST 1975 SPECIES GROUP: SUMMER SURFACE SPECIES STN z WATER n/ra-3 I % COMPOSITION OF COPEPODITES REGIME 1 2 3 4cT 49 56* 59 60" 69 P. PAR 1 5 A'SFC 0.31*-* 3.19 100 P. PAR 1 10 A'SFC O .34** 3.49 100 C. MCM QC 5 E'SFC 12.00 32.34 35 65 C. MCM QC 10 E SFC 2.77 7.46 19 81 C. MCM 1 5 A'SFC 0.77** 2.07' 60 40 C. MCM l 10 A'SFC 0.84** 2.26 60 40 , C. MCM 1 30 A'SFC 6.40* 17.25 -25- 13 25 38 C. MCM 3 5 A SFC 1.44 3.88 16 26 37 21 C. MCM 3 10 A SFC 13.56 36.54 6 6 37 50 C. MCM 3 30 G TRANS O .97** 2.61 100 POD/EVA l 5 A'SFC 6.89 0.09 POD/EVA 1 10 A'SFC 8.91 0.12 POD/EVA 3 . 5 A SFC 8.52 0.11 POD/EVA 5 5 A SFC 49.70 0.67 POD/EVA 5 10 A SFC 400.59 5.40 POD/EVA 5 30 G TRANS 34.43 0.46 POD/EVA 5 50 G TRANS 35.66 0.48 POD/EVA 7 • 5 A SFC 22.24 0.30 POD/EVA 7 10 A SFC 16.71 0.23 POD/EVA 7 100 H'DEEP 2.23** 0.03 POD/EVA 7 200 H'DEEP 1.01** 0.01 POD/EVA 7 300 H"'DEEP 2-33 0.03 SPECIES GROUP: SURFACE/TRANSITION SPECIES STN z WATER n/m3 I % COMPOSITION OF COPEPODITES REGIME 1 2 3 46" 49 5c? 59 6cf 69 E. AMPH QC 10 E SFC 2.25 59.06 16 84 E. AMPH QC 30 F'TRANS 2.59 67-98 3 18 50 29 E. AMPH QC 50 E" TRANS 2.00 52.49 44 57 E. AMPH QC 100 E"'DEEP 1.14 29.92 47 53 E. AMPH 1 10 A'SFC 0.34** 8.92 100 E. AMPH 1 30 A'SFC 0.80** 21.00 100 • E. AMPH 1 50 B"TRANS 1.99** 52.23 100 E. AMPH 1 100 B"TRANS 1.08** 28.35 50 50 E. AMPH 1 200 B"*DEEP 1.01 26.51 58 42 E. AMPH 5 10 A SFC 0.30** 7.87 67 33 A. CLAU l 10 A'SFC 1.01* O.30 100 A. CLAU 1 30 A'SFC 0.80** O .23 100 A. CLAU 3 5 A SFC 61.60 18.07 9 91 A. CLAU 3 10 A SFC 15.25 4.47 100 A. CLAU 3 30 G TRANS 3.88** 1.14 • 100 A. CLAU 3 50 G TRANS 2.08** 0.61 100 239 MONTH: AUGUST 1975  SPECIES GROUP: SURFACE/TRANSITION (Cont ' d ) SPECIES STN z WATER REGIME n/ mi I % COMPOSITION OF COPEPODITES 1 2 3 46" 49 5c? 5$ 6c? 69. A. CLAU 3 150 B"'DEEP O.56** 0.16 100 A. CLAU 5 5 A SFC 13.77 4.04 9 91 A. CLAU 5 10 A SFC 181.19 53-14 4 96 A. CLAU 5 30 G TRANS 24.59 7.21 4 96 A. CLAU 5 50 G TRANS 126.3  37.06 100 A. CLAU 5 10 H'DEEP 2.45* 0.72 10  A. CLAU 5 20  H'DEEP 5.66 1.6  26 74 A. CLAU 5 30 H"'DEEP 6.8? 2.01 26 74 A. CLAU 7 5 A SFC 32.14 97.41 1 99 A. CLAU 7 10 A SFC 242.01 70.98 1 99 A. CLAU 7 30 G TRANS 196.82 57.72 3 97 A. CLAU 7 50 G TRANS 127.11 37.28 2 98 A. CLAU 7 100 ' H'DEEP 1.34** 0.39 10 A. CLAU 7 ' 20  H'DEEP 2.36* 0.69 43 57 A. CLAU 7 30 H*"DEEP 3-77 1.11 100 A. CLAU 7 • 50 H "' DEEP 3-87 1.13 10 A. CLAU 9 5 A SFC 21.48 6.30 100 A. CLAU 9 10 A SFC 29.43 8.63 3 97 A. CLAU 9 30 G TRANS 38.20 11.20 2 98 A. CLAU 9 200 H'DEEP 0.28** 0.08 100 A. CLAU 9 350 H"'DEEP 0.51** 0.15 100 A. CLAU 11 5 A SFC O.69** 0.20 100 A. CLAU 11 50 G TRANS 1.44** 0.42 100 A. LONG QC 5 E'SFC 38.45 6.98 12 88 A. LONG QC 30 E"TRANS 24.21 4.39 7 93 A. LONG QC 50 E" TRANS 18.91 3.43 100 A. LONG QC 100 E"'DEEP 75.07 13.62 100 A. LONG 1 5 A'SFC 47.78 8.67 100 A. LONG 1 10 A'SFC 17.82 3.23 100 A. LONG 1 30 A'SFC 7.20* 1.31 100 A. LONG 1 50 B"TRANS 13-91 2.52 100 A. LONG 1 100 B"TRANS 14.59 2.65 100 A. LONG 1 200 B"'DEEP 64.30 11.67 100 A. LONG 3 5 A SFC 227.37 41.27 - 1 - 2 97 A. LONG 3 10 A SFC 13.56 2.46 100 A. LONG 3 30 G TRANS 4.85*  0.88 100 A. LONG 3 50 G TRANS 2.78** 0.50 100 A. LONG 3 100 B/H TRANS 6.30* 1.14 100 A. LONG 3 150 B"'DEEP 4.44* 0.81 100 A. LONG 5 5 A SFC 11.98 2.17 10 90 A. LONG 5 10 A SFC 57.03 IO.35 100 A. LONG 5 30 G TRANS 1.64** O.30 100 240 MONTH: AUGUST 1975  SPECIES GROUP: SURFACE/TRANSITION (Cont'd) S P E C I E S STN z WATER n/ra3 I % C O M P O S I T I O N O F C O P E P O D I T E S R E G I M E 1 2 3 4d* 4 ? 56* 66" 69 A. L O N G 5 50 G T R A N S 8.53 1.55 100 A. L O N G 5 100 H ' D E E P 0.35** 0.06 100 A. L O N G 7 5 A S F C 1.04 0.19 100 A. L O N G 7 10 A S F C 38.08 6.91 100 A. L O N G 7 30 G T R A N S 5-29* O.96 100 A. L O N G 7 50 G T R A N S 7.56 1.37 100 A. L O N G 7 100 H ' D E E P 0.45** 0.08 100 T. D I S C Q C 10 E S F C 5.01 I.69 48 17 10 24 T. D I S C QC 30 E " T R A N S 15.22 5.12 - I C 1 - 20 24 16 30 T. D I S C QC 50 E" T R A N S 47.93 16.12 12 24 53 l l T. D I S C QC 100 E " ' D E E P 22.79 7.67 48 52 T. D I S C 1 5 A ' S F C 1.84 0.62 25 8 25 42 T. D I S C 1 10 A ' S F C 2.18 0.73 23 8 8 23 8 31 T. D I S C 1 30 A ' S F C 5.60* 1.88 14 29 14 29 14 T. D I S C 1 50 B " T R A N S 15.88 5.34 8 8 4 42 38 T. D I S C 1 100 B " T R A N S 6.48 2.18 75 25 T. D I S C 3 5 A S F C 2.97 1.00 3 8 28 23 21 18 T. D I S C 3 10 A S F C 3-39** 1.14 50 25 ' 25 T. D I S C 3 30 G T R A N S 5.82* 1.96 50 33 17 T. D I S C 3 50 G T R A N S 11.10 3-76 19 6 6 13 50 6 T. D I S C 3 100 B/H T R A N S 8.65* 2.91 18 64 18 T. D I S C 5 5 A S F C 1.80** 0.61 33 33 33 T. D I S C 5 50 G T R A N S 1.94** 0.65 100 T. D I S C 5 300 H M D E E P 3.07 I . 0 3 100 T. D I S C 7 50 G T R A N S 0.44** 0.15 100 T. D I S C 7 200 H ' D E E P 0.68** O .23 100 T. D I S C 7 300 H " ' D E E P 3.44 1.16 100 S P E C I E S GROUP: T R A N S I T I O N / D E E P S P E C I E S STN z WATER n/m3 I % C O M P O S I T I O N OF C O P E P O D I T E S R E G I M E 1 2 3 46"' 4o 5<? 5? 66" 60 M. P Y G 5 200 H ' D E E P 1.49** 63.95 40 60 M. P Y G 7 200 H ' D E E P 0.34** 14.59 100 A. D I V QC 50 E " T R A N S 1.79 12.05 7 7 86 A. D I V Q C 100 E " ' D E E P 2.14 14.41 ( 100 A. D I V 1 30 A ' S F C 0.80** 5-39 \ 100 A. D I V 1 50 B " T R A N S 1.32** 8.89 50 50 A. D I V 1 100 B ' T R A N S 4.32* 29.09 100 A. D I V 3 • 100 B/H T R A N S 2.36** 15.89 100 A. D I V 3 150 B * " D E E P O.56** 3-77 100 A. D I V 5 50 G T R A N S 5.04 33.94 38 62 A. D I V 5 200 H ' D E E P O .3O** 2.02 100 241 MONTH: AUGUST 1975  SPECIES GROUP: TRANSITION/DEEP (Cont'd) SPECIES STN z WATER n/m3 I % COMPOSITION OF COPEPODITES* REGIME 1 2 3 4c? ho 5c? 5° 6c? A. DIV 7 30 G TRANS 5.30* 35.69 50 40 10 A. DIV 7 50 G TRANS 4.44* 29.90 50 40 10 A. DIV 7 200 'H'DEEP O .34** 2 .29 100 A. DIV 7 300 H"'DEEP 0.88* 5-93 12 3.8 50 A. DIV 9 50 G TRANS 1.31* 8.82 22 34 44 A. DIV 9 100 H'DEEP 0.47** 3.16 100 A. DIV 9 350 H"'DEEP O .34** 2.29 100 E . JAP QC 100 E m D E E P 0 . 2 0 * * 0.46 65 35 E . JAP 5 100 H'DEEP 0.70** 1.62 50 50 E . JAP 5 200 H'DEEP 1.20** 2.77 25 50 25 E . JAP 5 300 H*"DEEP 1.98 4.57 9 27 18 18 27 E . JAP 7 30 G TRANS 12.17 28 .08 13 87 E . JAP 7 100 H'DEEP 0 . 9 0 * * 2 .08 50 50 E . JAP 7 200 H'DEEP 1.02** 2.35 33 33 33 E . JAP 7 300 H "' DEEP 0.88* 2.03 12 12 12 38 25 E . JAP 7 500 H "' DEEP 1.32 3.05 54 15 31 E . JAP 9 10 A SFC 6.63 15.30 100 E . JAP 9 30 G TRANS 7.19 16.59 6 94 E . JAP 9 50 G TRANS 7.72 17.81 9 26 17 22 11 13 2 E . JAP 9 100 H'DEEP 1-53 3.53 31 23 39 8 E . JAP 9 200 H'DEEP 0 . 0 9 * * 0.21 100 E . JAP 9 350 H"'DEEP 0.17** 0.39 100 Eo JAP 11 10 A SFC 13-69 31.59 100 E . JAP 11 30 G TRANS 5.88* 13.57 100 E . JAP 11 50 G TRANS 10.08 23.26 36 57 7 E . JAP 11 100 H'DEEP 3.50* 8 .08 57 <*3 E . JAP 11 200 H'DEEP 3 .42* 7.89 36 13 25 13 13 SCOL. M 5 30 G TRANS O .55** 2 .80 100 SCOL. M 5 50 G TRANS 3.88* 19-79 40 10 50 SCOL. M 5 100 H'DEEP 0.35** 1.78 100 SCOL. M 7 30 G TRANS 5.30* 27.03 40 40 20 SCOL. M 7 50 G TRANS 0,44** 2 .24 100 SCOL. M 7 100 H'DEEP " 0.45** 2.29 100 SCOL. M 9 50 G TRANS 1.90 9.69 15 23 62 SCOL. M 9 100 H'DEEP 0.47** 2.40 75 25 M. OKH 1 100 B"TRANS 25.40 2 .49 55 45 M. OKH 1 200 B "' DEEP 9.62 0 .94 54 46 M. OKH 3 150 B"'DEEP 17.22 I .69 55 45 M. OKH 5 200 H'DEEP 5.07 0.50 12 18 35 29 6 M. OKH 5 300 H"'DEEP 19.17 1.88 53 45 2 M. OKH 7 200 H'DEEP 4.74 0.47 14 7 36 36 7 242 MONTH: AUGUST 1975  SPECIES GROUP: TRANSITION/DEEP (Cont'd) SPECIES STN z WATER n/mJ I % COMPOSITION OF COPEPODITES REGIME 1 2 3 4c? 49 5c? 5? 60" 65 M. OKH 7 300 H"'DEEP 18.40 1.81 51 43 6 M. OKH 7 500 HmDEEP 16.59 I .63 2 3 45 39 11 M. OKH 9 10 A SFC 2.93 0.29 4? 53 M. OKH 9 50 G TRANS 34.99 3.43 . 35 30 19 16 M. OKH 9 100 H'DEEP 26.70 2.62 13 11 2? 30 18 M. OKH 9 200 H'DEEP 17.79 1.75 36 31 33 M. OKH 9 350 HmDEEP 14.69 1.44 2 3 43 35 16 M. OKH 11 30 G TRANS 60.79 5.97 53 47 M. OKH 11 50 G TRANS 101.43 9.96 1 44 37 8 10 M. OKH 11 100 H'DEEP 45.00 4.42 8 12 30 28 23 M. OKH 11 200 H'DEEP 24.68 2.42 20 16 64 C. GRAC 1 100 B"TRANS 2.16** 9.28 25 50 25 C. GRAC 1 200 • B"'DEEP 1.52 6.53 28 39 34 C. GRAC 3 ' 150 B"'DEEP 4.46* . 19.16 13 13 37 25 13 C. GRAC 5 300 H "' DEEP 2.52 10.82 14 14 29 43 C. GRAC 9 100 H'DEEP 0.12** 0.52 100 H. TAN 3 150 B"'DEEP O.56** 2.00 100 H. TAN 5 100 H'DEEP 0.35** 1.25 -100 -H. TAN 5 200 H'DEEP 0 . 9 0 * * 3.21 - 33 - 33 33 H. TAN 5 300 H*"DEEP 1.26* 4.50 - 29 - 71 H. TAN 7 30 G TRANS 1.59** 5.68 - 33 - 67 H. TAN 7 100 H'DEEP 0.45** 1.61 -100 -H. TAN 7 200 H'DEEP 1.02** 3.64 - 33 - 67 H. TAN 7 300 H"'DEEP 0.44** 1.57 • - 25 - 75 H. TAN 7 500 H"'DEEP 4.38 15.64 74 26 H. TAN 9 30 G TRANS ' 0 . 8 9 * * 3.18 - 25 - 25 50 H. TAN 9 50 G TRANS 1.60 5.71 - 28 - 36 36 H. TAN 9 100 H'DEEP 1.8? 6.68 56 44 H. TAN 9 200 H'DEEP 3.88 13.86 85 15 H. TAN 9 350 H"'DEEP 1.71* 6.11 70 30 H. TAN 11 30 G TRANS 3-92* 14.00 33 67 H. TAN 11 50 G TRANS 1.44** 5.44 100 H. TAN 11 100 H'DEEP 2 . 0 0 * * 7.14 25 75 H. TAN 11 200 H'DEEP 5-96 21.29 50 50 GAD. C 3 150 B"'DEEP 0.56** 4.22 100 GAD. C 5 50 G TRANS 3.10* 23.OO 38 62 GAD. C 5 200 H'DEEP 2.10* 15.84 14 14 14 29 14 14 GAD. C 5 300 Hn'DEEP 4.51 34.OI 8 12 16 16 20 28 GAD. C 7 50 G TRANS 2.22** 14.15 40 60 GAD. C 7 200 H'DEEP 3.05* 23.00 22 22 34 22 GAD. C 7 300 H*"DEEP 1.98 14.93 11 6 11 28 16 28 GAD. C 7 500 H"'DEEP 0.51** 3.85 20 60 20 2 4 3 MONTH; AUGUST 1975  SPECIES GROUT: TRANSITION/DEEP (Cont'd) SPECIES SIN z WATER n/m3 I % COMPOSITION OF COPEPODITES REGIME 1 2 3 46" 50* 5? 66" 60 GAD. C 9 50 G TRANS 1.89 14.25 69 31 GAD. C 9 100 H'DEEP 1.76 13.27 13 34 53 GAD. C 9 350 H"'DEEP 0.17** 1.28 100 GAD. C 11 30 G TRANS 1.96** 14.78 67 33 GAD. C 11 200 H'DEEP 0.86** 6.49 50 50 CAN. C 5 200 H'DEEP 2.09* 40.98 72 14 14 CAN. C 5 300 H "' DEEP 1.62* 31.76 67 22 11 CAN. C 7 200 H'DEEP I.36** 26.67 25 50 25 CAN. C 7 300 H"'DEEP 1.43 28.04 38 31 8 15 8 CAN. C 7 500 H"'DEEP 0.51** 10.00 - 20 - 20 60 CAN. C 9 50 G TRANS 1.02* 20.00 57 43 CAN. C 9 100 H'DEEP O.35** 6.86 66 34 CAN. C 9 350 - H"'DEEP 0.51** 10.00 67 33 CAN. C 11- 100 H'DEEP 2.50** 49.02 40 20 40 SPECIES GROUP: INLET DEEP SPECIES STN z WATER n/m^  I % COMPOSITION OF COPEPODITES REGIME 1 2 3 46* 49 So- 5? 66" 6 ? SPINO 5 200 H'DEEP 2.69* 6.09 22 11 22 44 SPINO 5 300 H"'.DEEP 1.62* 3.67 11 i l 44 34 SPINO 7 200 H'DEEP 3.05* 6.91 11 11 22 55 SPINO 7 300 H"'DEEP 2.78 6.30 8 16 24 28 24 SPINO 7 500 H"'DEEP 15.67 35.50 10 -9 11 17 14 2 37 SPINO 9 50 G TRANS 9.92 22.47 10 7 22 19 41 SPINO 9 100 H'DEEP 12.40 28.09 16 8 22 25 35 SPINO 9 200 H'DEEP 6.15 13.93 12 9 22 15 42 SPINO 9 350 H"'DEEP 11.11 25.17 38 32 11 17 2 SPINO 11 30 G TRANS 9.15 20.73 43 36 21 SPINO 11 50 G TRANS 43.18 97.83 12' 8 8 10 62 SPINO 11 100 H'DEEP 28.50 64.57 9 5 11 16 60 SPINO 11 200 H'DEEP 18.73 42.43 7 16 77 SCAPH 5 300 H"'DEEP 1.80* 11.32 10 30 20 30 10 SCAPH 7 300 H"'DEEP 0.66* 4.15 67 33 SCAPH 7 500 H"'DEEP 2.44 15.35 50 38 4 8 SCAPH 9 50 G TRANS 2.92 I8.36 15 20 25 40 SCAPH 9 100 H'DEEP 5-97 37.55 - 45 - 31 24 SCAPH 9 200 H'DEEP 3.60 22.64 18 26 24 32 SCAPH 9 350 H"'DEEP I.36* 8.55 62 25 13 SCAPH 11 50 G TRANS 10.08 63.40 57 43 SCAPH 11 100 H'DEEP 6.00 37.74 42 25 17 17 SCAPH 11 200 H'DEEP 14.04 88.30 33 18 18 27 3 RACO 7 300 H'"DEEP 0.22** 30.14 100 RACO 7 500 H"'DEEP 0.10** 13.70 100 RACO 9 350 H"*DEEP O.34** 46.58 100 RACO 11 200 H'DEEP 0.43** 58.90 100 244 MONTH: AUGUST 1975 SPECIES GROUP: OFF-SHORE SPECIES STN z WATER n/m3 I % COMPOSITION OF COPEPODITES > REGIME 1 2 3 46" 4$ 56" 5c. 60 CAL. C QC • 100 E"'DEEP 0.87 47.54 -100 -CAL. C 1 100 B"TRANS O.5I+** 29.51 -100 -CAL. C 1 200 B mDEEP 1.52 83". 06 -100 -CAL. C 3 150 B"'DEEP 1.67** 91.26 -100 -R. NAS QC 100 E"'DEEP 1.55 58.94 48 35 17 R. NAS l 100 B"TRANS 1.62** 63.50 100 R. NAS 1 200 B"'DEEP 1.94 73.76 35 52 13 G. INT QC 50 E" TRANS 0.20** 7.04 35 65 G. INT QC 100 E"'DEEP 0.61* 21.48 11 21 11 56 G. INT l 100 B"TRANS 1.62** 57.04 33 33 33 G. TNT 1 200 B"'DEEP 0.93 32.75 63 37 EUC. P QC 100 E"*DEEP 0.40* 11.73 18 33 50 EUC. P 1. 200 B"'DEEP 1.01 29.62 34 42 25 EUC. R QC 100 E"'DEEP 0.27** 6.37 26 26 48 EUC. R 1 200 B"'DEEP 0.67* 15.80 12 25 63 P. ABD QC 100 E"'DEEIP O.54* 17.76 87 13 P. ABD 1 200 B"'DEEP 1.01 33.22 100 M. PRM QC 100 E"'DEEP 0.07** 8.43 100 P. QUAD QC 100 E"'DEEP 0.61* 24.50 56 44 P. QUAD 1 200 B"'DEEP 0.50* .20.08 16 34 50 P. XIPH QC 100 E"'DEEP 0.54* 25.35 100 P. XIPH 1 200 B mDEEP 0.92 43.19 9 91 C. BIP QC 100 E mDEEP 0.13** 7.39 100 SPECIES GROUP: MIGRANTS SPECIES STN z WATER n/m3 I % COMPOSITION OF COPEPODITES REGIME 1 2 3 4<? 4c. 5c? 59 66" 60 E. BUN QC 100 E mDEEP 1.21 53.07 39 33 28 E. BUN 1' 100 B"TRANS 1.08** 47.37 100 E. BUN 1 200 B DEEP 2.28 100.00 26 41 4 30 E. BUN 3 150 B"'DEEP 1.68** 73.68 33 33 33 E. BUN 7 500 H"'DEEP O.51** 22.37 -100 -E. BUN 9 200 H'DEEP 0.19** 8.33 100 E. BUN 9 350 H"'DEEP 0.51** 25.00 -100 -CAL. P QC 30 E" TRANS 0.28** 4.95 -100 -CAL. P QC 50 F'TRANS 0.20** 3.53 .-100 -CAL. P 7 500 H"'DEEP O.51** 9.01 -100 -CAL. P 9 200 H'DEEP 0.28** 4.95 -100 -CAL. P 9 350 H"'DEEP 0.34** 6.01 -100 -CAL. P 11 200 H'DEEP 0.85** 15.02 -100 -CAL. M QC 5 E'SFC 132.01 2.87 3 5 _ 7 _ _ 4 o - 16 35 CAL. M QC 10 E SFC 86.18 1.87 8 - 20 - - 16 - 16 40 CAL. M QC 30 E" TRANS 26.44 O.58 2 - 15 - - 58 - 7 18 245 MONTH: AUGUST 1975 SPECIES GROUP: MIGRANTS (Cont'd) SPECIES STN z WATER REGIME n/m3 I % COMPOSITION OF 1 2 3 4c? ko COPEPODITES 5c? 50 6c? 60 CAL. M QC 50 E" TRANS 14.38 O.31 6 - 18 - - 71 - 1 4 CAL. M QC 100 E"'DEEP 16.49 O.36 - 13 " - 62 - 7 19 CAL. M 1 5 A'SFC 0.46** 0.01 - 67 - - 33 -CAL. M 1 50 B"TRANS 3.31** 0.0? -100 -CAL. M 1 100 B"TRANS 14.05 0.31 - 8 - - 88 - 4 CAL. M 1 200 B*"DEEP 31.22 0.68 - 97 - 3 CAL. M 3 150 B"'DEEP 6.6? 0.15 -100 -CAL. M 5 10 A SFC 1.29 0.03 - 8 - - 84 - 8 CAL. M 5 50 G TRANS 4.2? 0.09 - 9 - - 91 -CAL. M 5 100 H'DEEP 1.75** 0.04 - 60 - 40 CAL. M 5 200 H'DEEP 4.?6 0.10 -100 -CAL. M 5 300 H"'DEEP 2.35 0.05 -100 -CAL. M 7 10 A SFC 1.23* 0.03 - 20 - - 80 -CAL. M 7 30 G TRANS 10.06 0.22 - 11 - - ?8 - 11 CAL. M • 7 50 G TRANS 4.00* 0.09 -100 -CAL. M 7 100 H'DEEP 0.89** 0.02 100 CAL. M 7 200 H'DEEP 4.39 0.10 -100 -CAL. M 7 300 H*"DEEP 1.33 0.03 -100 -CAL. M 7 500 H*"DEEP 11.49 0.25 - 94 - 6 CAL. M 9 10 A SFC 17.26 O.38 -100 -CAL. M 9 30 G TRANS 15-50 O.34 - 16 - - 84 -CAL. M . 9 50 G TRANS 7.58 0.16 -100 -CAL. M 9 . 100 H'DEEP O.59** 0.01 -100 -CAL. M 9 200 H'DEEP 18.73 0.41 -100 -CAL. M 9 350 H"'DEEP 2.05 0.04 -100 -CAL. M 11 10 A SFC 172.20 3.75 - 99 - 1 CAL. M 11 30 G TRANS 19.60 0.43 - 13 - - 87 -CAL. M 11 50 G TRANS 20.86 0.45 -100 -CAL. M 11 200 H'DEEP I8.30 0.40 - 98 - 2 P. ELO QC 5 E'SFC IO85.39 60.00 3 3 5 6 4 79 P. ELO QC 10 E SFC 709.16 33.31 3 3 4 5 3 81 P. ELO QC 30 E" TRANS 767.15 ' 36.03 1 1 7 8 12 70 P. ELO QC 50 E"TRANS 840.20 39.46 4 5 6 6 2 77 P. ELO QC 100 E"'DEEP 1987.80 93.36 <1 <1 19 20 30 31 P. ELO 1 5 A'SFC 17.16 0.81 4 ? 25 29 34 P. ELO 1 10 A'SFC 15.29 0.?2 4 2 16 14 8 55 P. ELO 1 30 A'SFC 375-20 17.62 8 7 23 26 7 29 P. ELO 1 50 B" TRANS 532.44 25.01 1 1 27 29 6 36 P. ELO 1 100 B"TRANS 1160.00 54.48 5 5 11 79 P. ELO 1 200 B mDEEP 6l?.04 28.98 21 21 2 55 P. ELO 3 5 A SFC 286.54 13-46 4 4 9 9 3 72 P. ELO 3 10 A SFC 160.18 7.52 7 9 25 22 7 30 2 4 6 MONTH; AUGUST 1975 SPECIES GROUP: MIGRANTS (Cont'd) SPECIES STN z WATER REGIME n/m3 I % COMPOSITION OF 1 2 3 4o* 49 COPEPOD] 5<? 59 :TES 6c? 69 P. ELO 3 30 G TRANS 121.35 5.70 10 11 10 27 21 2 19 P. ELO 3 50 G TRANS 67.36 3.16 12 16 12 19 19 4 18 P. ELO 3 100 B/H TRANS 25.20 1.18 25 31 16 28 P. ELO 3 . 150 B"'DEEP 223.90 10.52 34 30 11 25 P. ELO 5 5 A SFC 47.90 2.25 4 6 10 26 21 33 P. ELO 5 10 A SFC 1006.35 47.27 2 1 13 13 5 66 P. ELO 5 30 G TRANS 12.02 O.56 14 9 18 23 36 P. ELO 5 50 G TRANS 82.17 3.86 7 8 21 17 7 41 P. ELO 5 100 H'DEEP 5.60 0.26 25 19 6 50 P. ELO 5 200 H'DEEP 102.68 4.82 50 46 1 3 P. ELO 5 300 H"'DEEP 56.96 2.77 44 48 1 7 P. ELO 7 5 A SFC 3.01 0.14 25 28 47 P. ELO 7 10 ' A SFC 94.10 4.42 6 5 12 14 63 P. ELO • 7' 30 G TRANS 46.04 • 2.16 5 5 39 34 17 P. ELO 7 50 G TRANS 75.55 3-55 2 3 27 24 45 P. ELO 7 100 H'DEEP 6.69 O.31 13 13 7 67 P. ELO 7 200 H'DEEP 109.12 5-13 45 50 2 3 P. ELO 7 300 H"'DEEP 51.89 2.44 44 47 9 P. ELO 7 500 H"'DEEP 92.78 4.36 51 49 P. ELO 9 5 A SFC 0.59* 0.03 37 63 P. ELO 9 10 A SFC 19.72 0.93 48 44 8 P. ELO 9 30 G TRANS 26.29 1.23 10 8 38 33 11 P. ELO 9 50 G TRANS 35.13 1.65 50 47 . 3 P. ELO 9 100 H'DEEP 36.42 1.71 51 4? 2 P. ELO 9 200 H'DEEP 288.36 13.54 49 51 P. ELO 9 350 H*"DEEP 56.07 2.63 48 52 P. ELO 11 5 A SFC 2.90 0.14 43 57 P. ELO 11 10 A SFC 172.90 8.12 43 41 16 P. ELO 11 30 G TRANS 179.74 8.44 5 4 46 41 5 P. ELO 11 50 G TRANS 145-33 6.83 1 52 47 P. ELO 11 100 H'DEEP 103.00 4.84 53 47 P. ELO 11 200 H'DEEP 564.25 26.50 51 49 M. PAC QC 5 E'SFC 13.33 4.46 17 23 60 M. PAC QC 10 E SFC 25.79 8.62 15 19 29 25 13 M. PAC QC 30 E" TRANS 19.11 6.39 18 23 59 M. PAC QC 50 E" TRANS 16.70 5-58 12 14 1 74 M. PAC QC 100 E"'DEEP 12.48 4.17 6 8 66 20 M. PAC 1 5 A'SFC 0.92* O.31 66 34 M. PAC 1 30 A'SFC 7.20* 2.41 67 11 22 M. PAC 1 50 B"TRANS 25.82 8.63 36 15. 15 18 15 M. PAC 1 100 B"TRANS 279.46 93.40 2 5 6 12 13 26 36 24? MONTH: AUGUST 1975 SPECIES GROUP: MIGRANTS (Cont'd) SPECIES STN z WATER n/m3 I fo COMPOSITION ' OF COPEPODITES 65 REGIME 1 ; 2 3 46" 4 ? 5c? 66* M. PAC 1 200 B'"DEEP 45-58 15.23 13 13 43 31 M. PAC 3 30 G TRANS 12.62 4.22 62 15 23 M. PAC 3 50 G TRANS 14.58 4.87 21 M. PAC 3 100 B/H TRANS 10.23 3.42 23 23 31 15 8 M; PAC 3 150 B"'DEEP 18.34 6.13 3 6 3 9 45 33 M. PAC 5 10 A SFC 36.63 12.24 12 31 37 10 9 M. PAC 5 30 G TRANS 12.03 4.02 36 27 32 5 M. PAC 5 50 G TRANS 17.06 5.70 77 2 5 7 9 M. PAC 5 100 H'DEEP 5.25 1.75 20 20 33 27 M. PAC 5 200 H'DEEP 4.17 1.39 7 14 21 36 21 M. PAC 5 300 H"'DEEP 3.0? 1.03 6 12 82 M. PAC 7 10 A SFC 5.90 1.97 39 19 15 15 13 M. PAC 7 30 G TRANS 22.22 7.43 40 19 17 10 10 5 M. PAC 7 50 G TRANS 22.22 7.43 2 30 22 22 14 10 M. PAC 7 100 H'DEEP 6.26 2.09 7 7 14 43 29 M. PAC 7 200 H'DEEP 4.40 1.47 8 8 23 8 38 15 M. PAC 7 300 H"'DEEP 2.99 1.00 7 7 86 M. PAC 7 500 H"'DEEP 2.65 0.89 15 15 70 M. PAC 9 30 G TRANS 4.72 1.58 43 57 M. PAC 9 50 G TRANS 3.65 1.22 8 12 20 20 40 M. PAC 9 100 H'DEEP 0.70* 0.23 50 50 M. PAC 9 200 H'DEEP 5-67 1.90 5 13 77 5 M. PAC 9 350 H"'DEEP 1.20* 0.40 100 M. PAC 11 10 A SFC 56.70 18.95 5 30 27 21 18 M. PAC 11 30 G TRANS 10.46 3.50 6 19 44 31 M. PAC 11 50 G TRANS 9.36 3.13 48 52 M. PAC 11 100 H'DEEP 3.00* 1.00 17 33 50 M. PAC 11 200 H'DEEP 5.11 1.71 33 25 42 MONTH: SEPTEMBER 1975 SPECIES GROUP: SUMMER SURFACE SPECIES STN z WATER n/m-> I ! to COMPOSITION OF COPEPODITES REGIME 1 2 3 46" 4 f rf 5? 6c? 60 C. MCM QC 5 E'SFC 0.21** 0.57 100 C. MCM 1 5 A SFC 0.43* 1.16 16 16 68 C. MCM 1 10 A SFC 1.10 2.96 14 20 14 52 C. MCM 1 30 A SFC 1.96* 5.28 57 43 C. MCM 1 50 A SFC 1.05** 2.83 33 67 POD/EVA 1 5 A SFC 0.80 0.01 POD/EVA 1 10 A SFC 1-53 0.02 POD/EVA 3 5 A SFC 2.03 0.03 2 4 8 MONTH: SEPTEMBER 1975  SPECIES GROUP: SUMMER SURFACE (Cont'd) SPECIES STN z WATER n/m3 I % COMPOSITION OF COPEPODI :TES REGIME 1 2 3 4cT 49 5o* 59. 661 60 POD/EVA 3 10 A SFC 2.74 0.04 POD/EVA 5 5 A SFC 3.70** 0.05 POD/EVA 5 10 A SFC 3-78 O.05 POD/EVA 7 5 A SFC 35-66 0;48 POD/EVA 7 10 A SFC 1.54** 0.02 POD/EVA 9 5 A SFC 1.51 0.02 POD/EVA 9 10 A SFC 6.07 0.08 POD/EVA 11 5 A SFC 7.09 0.10 POD/EVA 11 10 A SFC 6.55 0.09 SPECIES GROUP: SURFACE/TRANSITION SPECIES STN z WATER n/m3 I % COMPOSITION CF COPEPODITES REGIME 1 2 3 46* 4$ 56* 5$ 60* 60 E. AMPH QG 5 E'SFC 0.71* 18.64 100 •E. AMPH QC 30 E" TRANS 0.72** 18.90 100 E. AMPH * QC 50 E" TRANS 1.16** 30.45 100 E. AMPH QC 100 E"'DEEP 1.08 28.35 12 12 53 23 E. AMPH 1 10 A SFC O.C?** 1.84 100 E. AMPH 1 30 A SFC 1.40** 36.75 20 60 20 A. CLAU 3 5 A SFC 4.05 1.19 21 79 A. CLAU 3 10 A SFC 1.98 O.58 100 A. CLAU 3 30 A SFC 0.76* 0.22 100 A. CLAU 5 5 A SFC 24.44 7.17 15 85 A. CLAU 5 10 A SFC 48.58 14.25 100 A. CLAU 5 30 A SFC 1.10* O.32 84 16 A. CLAU 5 50 G/H'TRANS O.76** 0.22 50 50 A. CLAU 7 5 A SFC 266.27 78.09 - 2 - 5 93 A. CLAU 7 10 A SFC 33-59 9-85 6 94 A. CLAU 7 30 G/H'TRANS 31.35 9.19 16 84 A. CLAU 7 50 G/H'TRANS 12.24 3-59 22 78 A. CLAU 7 100 G/H*TRANS 4.63 1.36 17 83 A. CLAU 7 200 H"'DEEP 2.33* 0.68 20 80 A. CLAU 9 • 5 A SFC 208.70 61.21 - 5 - 6 89 A. CLAU 9 10 A SFC 340.97 100.00 3 97 A. CLAU 9 30 G/H' TRANS 7.75 2.27 27 73 A. CLAU 9 50 G/H* TRANS 17.86 5.24 - 21 - 13 66 A. CLAU 9 100 G/H* TRANS 11.03 3-23 10 90 A. CLAU 9 350 H M D E E P 1.16* O.34 - 20 - 20 60 A. CLAU 11 5 A SFC 156.57 45.92 5 95 A. CLAU 11 10 A SFC 240.00 70.39 6 94 A. CLAU 11 30 G/H'TRANS 19.68 5.77 36 8 56 A. CLAU 11 50 G/H'TRANS 13.10 3.84 - 40 - 13 47 249 MONTH; SEPTEMBER 1975  SPECIES CROUP; SURFACE/TRANSITION (Cont'd) SPECIES STN z WATER REGIME n/m-' I % COMPOSITION OF 1 2 3 4cT 4$ COPEPODITES 56" 59 6cT 60 A. CLAU 11 100 G/H'TRANS 6.41 1.88 23 77 A. CLAU 11 200 H-DEEP 3.61* 1.06 20 80 A. LONG QC 5 E'SFC I83.OO 33.21 1 99 A. LONG QC 30 E"TRANS 4.32* 0.78 100 A. LONG QC 100 E"'DEEP 30.89 5.61 1 99 A. LONG 1 5 A SFC 12.86 2.33 - 1 - 99 A. LONG 1 10 A SFC 71.16 12.92 2 98 A. LONG 1 30 A SFC 37.54 6.81 100 A. LONG 1 50 A SFC 28.87 5.24 100 A. LONG 1 100 B"TRANS 22.46 4.08 100 A. LONG 1 200 B"'DEEP 55.12 10.00 <1 100 A. LONG 3 5 A SFC 30.95 5.62 ICC' A. LONG 3 10 A SFC 60.06 10.90 9 91 A. LONG 3 30 A SFC 10.37 1.88 2 98 A. LONG 3 50 G/H'TRANS 6.10 1.11 100 A. LONG 3 100 G/H'TRANS 4.04 0.73 100 A. LONG 5 5 A SFC 34.07 6.18 100 A. LONG 5 10 A SFC 17.03 3.09 100 A. LONG 7 5 A SFC 0.89* 0.16 100 A. LONG 7 10 A SFC 19.31 3.50 100 A. LONG 7 30 G/H 'TRANS 3-39** O.62 100 A. LONG 9 10 A SFC 33-28 6.04 4 96 A. LONG 11 10 A SFC O.73** • O.13 100 T. DISC QC 5 E'SFC 10.07 3.39 10 12 6 8 35 29 T. DISC QC 30 E" TRANS 3.60** 1.21 20 40 20 20 T. DISC QC 50 E" TRANS 2.90** 0.98 20 40 20 20 T. DISC QC 100 E"'DEEP 20.38 6.86 57 43 T. DISC 1 5 A SFC 1.11 0.37 14 33 6 14 6 14 14 T. DISC 1 10 A SFC 4.81 1.62 20 23 17 7 9 11 14 T. DISC 1 30 A SFC 22.40 7-53 10 13 11 5 4 35 23 T. DISC 1 50 A SFC 25-01 8.41 4- 18 27 31 15 4 T. DISC 1 100 B"TRANS 10.14 3.41 8 11 21 17 25 18 T. DISC 1 200 B'"DEEP 3-73 1.25 10 7 66 17 T. DISC 3 5 A SFC 10.67 3-59 9 27 22 4 6 15 17 T. DISC 3 10 A SFC 8.99 3.02 24 29 12 12 10 14 T. DISC 3 30 A SFC 1-73 O.58 18 13 13 25 31 T. DISC 3 50 G/H'TRANS 0.82* 0.28 28 15 43 15 T. DISC 5 5 A SFC 0.74** 0.27 100 T. DISC 5 10 A SFC 1.58** 0.53 60 40 T. DISC 5 30 A SFC 0.18** 0.06 100 250 MONTH: SEPTEMBER 1975 SPECIES GROUP: TRANSITION/DEEP SPECIES STN z WATER I % COMPOSITION OF COFEPCDITES REGIME 1 2 3 4c? 5c? 5? 6c? 60 M. PYG 9 100 G/H'TRANS O.36** 15.45 100 M. PYG 11 50 G/H'TRANS 1.31** 56.22 100 M. PYG 11 100 G/H'TRANS 0.49** 21.03 100 A. DIV QC 50 E" TRANS 1.16** 7.81 50 50 A. DIV QC 100 E"'DEEP 0.64* 4.31 30 70 A. DIV l 30 A SFC 1.40** 9.43 80 20 A. DIV 1 50 A SFC 1.05** 7.07 33 67 A. DIV 1 100 B"TRANS 2.35 15.82 20 53 7 20 A. DIV 3 30 A SFC 0.54** 3.64 59 41 A. DIV 3 50 G/H'TRANS 1.16* 7.81 20 30 10 20 20 A. DIV 3 100 G/H* TRANS 0.50** 3-37 20 60 20 A. DIV 5 30 A SFC 3-32 22.36 33 5 33 28 A. DIV 5 50 G/H'TRANS 3.83* 25.79 20 10 40 30 A. DIV 5 100 G/H* TRANS 1.36 9.16 25 33 17 25 A. DIV 5 200 H"'DEEP O.52** 3.50 50 25 25 A. DIV 7 30 G/H'TRANS 5.09* 34.28 1? 1? 17 32 1? A. DIV 7 100 G/H'TRANS I .03** 6.94 25 50 25 E. JAP QC 5 E'SFC 0.14** 0.32 50 50 E. JAP QC 100 E"'DEEP O.38* 0.88 100 E. JAP 1 100 B"TRAN3 0.16** 0.37 100 E. JAP 3 100 G/H'TRANS 1.01* 2.33 80 20 E. JAP 3 150 B M D E E P 1.44 3-32 8 25 42 8 17 E. JAP 5 30 A SFC O.37** O.85 100 E. JAP 5 50 G/H'TRANS O.38** 0.88 100 E. JAP 5 100 G/H* TRANS 0.45** 1.04 75 25 E. JAP 5 300 H"'DEEP 0.64* 1.48 50 33 1? E. JAP 7 10 A SFC 2.71* 6.25 86 14 E. JAP 7 30 G/H'TRANS 8.47* 19.54 30 60 10 E. JAP 7 100 G/H'TRANS 1.29** 2.98 20 60 20 E. JAP 7 200 H*"DEEP 0.46** 1.06 50 50 E. JAP 9 10 A SFC 2.08 4.80 25 32 43 E. JAP 9 30 G/H'TRANS 5.10 11.7? 76 6 12 2 4 E. JAP 9 50 G/H'TRANS 2.66 6.14 20 56 8 8 4 4 E. JAP 9 100 G/H'TRANS 0.90* 2.08 10 30 30 30 E. JAP 9 200 H"'DEEP O.77* 1.78 50 25 25 E. JAP 9 350 H"'DEEP O.71* 1.64 83 17 E. JAP l l 30 G/H' TRANS 2.75* 6.35 29 14 43 14 E. JAP 11 100 G/H'TRANS 1.48** 3.41 6? 33 E. JAP 11 200 H"'DEEP 1.80** 4.15 40 40 20 SCOL. M 3 30 A SFC O.65* 3.31 100 SCOL. M 3 50 G/H*TRANS 0.82* 4.18 100 SCOL. M 3 100 C/H'TRANS 0.50** 2-55 100 251 MONTH: SEPTEMBER 1975  SPECIES GROUT: TRANSITION/DEEP (Cont 'd) S P E C I E S STN z WATER n/ra3 I % COMPOSIT ION OF C O P E P O D I T E S R E G I M E 1 2 3 4d" 4o 501 5? 60* 60 S C O L . M 5 30 A SFC 8 . 4 8 43 . 2 4 9 6 4 2 2 8 50 S C O L . M 5 50 G / H ' T R A N S 4.60 23 .46 17 17 8 8 50 S C O L . M 5 200 H " ' D E E P 0.13** 0.66 100 S C O L . M 7 30 G / H ' T R A N S 5.94* 30.29 1 4 1 4 1 4 57 S C O L . M 9 30 G / H ' T R A N S 1.96 9.99 35 30 15 5 15 S C O L . M l l 30 G / H ' T R A N S 3.94* 20.09 20 20 60 M. OKH 1 30 A SFC 3-92 O.38 57 43 M. OKH 1 100 B " T R A N S 0.16** 0.02 100 M. OKH 3 150 B " ' D E E P 103.61 10.17 51 47 2 M. OKH 5 200 H ' " D E E P 6.69 0.66 54 44 2 M. OKH 5 300 H " ' D E E P 6.02 0.59 56 44 M. OKH 7 100 G / H ' T R A N S 12.85 1.26 54 4 6 M. OKH 7. 200 H " ' D E E P 7.22 O.71 35 26 39 M. OKH 7 300 H " ' D E E P 19.54 1.92 49 4 1 10 M. OKH 7 500 H " ' D E E P 10.62 1 . 0 4 34 4 8 17 M. OKH 9 50 G / H ' T R A N S 2 8 . 2 7 2.77 29 26 23 21 M. OKH 9 100 G/H ' T R A N S 43.85 4.30 2 1 50 47 M. OKH 9 200 H " ' D E E P 27.36 2.69 6 4 23 19 4 8 M. OKH 9 350 H " ' D E E P 23 .24 2.28 38 43 19 M. OKH '11 50 G / H ' T R A N S 42.79 4.20 ' 2 4 1 8 31 2 7 M. OKH 11 100 G / H ' T R A N S 61 .08 6.00 4 0 50 10 M. OKH 11 200 H " ' D E E P 44.76 4.39 34 44 23 C . GRAC 1 100 B " T R A N S 2.96 12.71 47 26 5 21 C . GRAC 1 200 B " ' D E E P 5.22 22 .42 9 2 8 9 12 1 4 1 C . GRAC 3 150 B ' " D E E P 6.39 27.45 4 25 23 13 4 32 C . GRAC 5 200 H " ' D E E P 1.29* 5.54 10 20 30 4 0 C . GRAC 7 100 G / H ' T R A N S 0.26** 1.12 100 H . TAN 1 200 B " ' D E E P 0.05** 0 . 1 8 100 H . TAN 3 150 B " ' D E E P 2.05 7.32 71 29 H . TAN 5 200 H " ' D E E P 0.26** 0.93 100 H . TAN 7 50 G / H ' T R A N S 6.12* 21.86 33 67 H . TAN 7 100 G / H ' T R A N S 1.02** 3 . 6 4 50 50 H. TAN 7 200 H " ' D E E P 1 . 4 0 * 5.00 34 66 H . TAN 7 300 H " ' D E E P 1.74 6.21 5 4 4 6 H . TAN 7 500 H " ' D E E P 5.13 18.32 71 2 9 H . TAN 9 50 G/H ' T R A N S 1.70 6.07 38 62 H . TAN 9 100 G / H ' T R A N S 3.20 11.43 58 4 2 H . TAN 9 200 H " ' D E E P 6.65 23.75 61 39 H . TAN 9 350 H " ' D E E P 2.59 9.25 77 23 H . TAN 11 50 G / H ' T R A N S 2.62* 9.36 50 50 H . TAN 11 100 G / H ' T R A N S 1 .48** 5 . 2 9 67 33 H . TAN 11 200 H " ' D E E P 7.22 25.79 85 15 252 MONTH: SEPTEMBER 1975 SPECIES GROUP: TRANSITION/DEEP (Cont'd) SPECIES STN z WATER n/rn3 I % COMPOSITION OF COPEPODITES REGIME 1 2 3 4c? 4 ? 50 5? 6c4 60 GAD. C 1 200 B"'DEEP 1.81 13.65 56 44 GAD. C 5 200 H"'DEEP 1.67 12.59 16 16 38 31 GAD. C 5 300 H"'DEEP 1.80 13.57 29 12 23 18 6 12 GAD. C 7 50 G/H'TRANS I.36** 10.26 100 GAD. C 7 100 G/H'TRANS 2.32* 17.50 11 11 33 11 33 GAD. C 7 200 H"*DEEP 2.33* 17.57 10 30 30 30 GAD. C 7 500 H"'DEEP I .83** 13.8O 40 60 GAD. C 9 30 G/H'TRANS 0.49** 3-70 100 GAD. C 9 50 G/H'TRANS 1.17 8.82 55 27 18 GAD. C 9 100 G/H" TRANS 2.05 15.46 13 18 30 39 GAD. C 11 50 G/H'TRANS 2.19** 16.52 20 40 20 20 GAD. C 11 100 G/H 'TRANS 1.48** 11.16 67 33 GAD. C 11 . 200 H"'DEEP O.36** 2.71 100 CAN. C QC 100 E"'DEEP 0.13** 2.55 100 CAN. C 1 100 B"TRANS 0.16** 3.14 100 CAN. C 1 200 B"'DEEP 0.05** 0.98 100 CAN. C 3 150 B"'DEEP O.36** 7.06 33 67 CAN. C 5 200 H"'DEEP 0.78* 15.29 33 17 17 33 CAN. C 7 200 H"'DEEP 0.23** 4.51 100 CAN. C 7 300 H"'DEEP 0.80* 15.69 - 34 - 16 34 16 CAN. C 7 500 H"'DEEP 1.84** 36.O8 - 60 - 20 20 CAN. C 9 200 H N TDEEP 1.26 24.71 -v.69 - 23 8 SPECIES GROUP: INLET DEEP SPECIES STN z WATER n/m3 I % COMPOSITION OF COPEPODITES REGIME 1 2 3 4c? 4rj 5°* bo 6c? 60 SPINO 5 200 H"'DEEP 1.15* 2.61 44 11 44 SPINO 7 100 G/H'TRANS 3.60 8.16 21 29 50 SPINO 7 200 H"'DEEP 4.43 10.04 5 11 11 21 53 SPINO 7 300 H'"DEEP 5.76 13.05 5 9 16 26 2 42 SPINO 7 500 H"'DEEP 16.49 37.36 6 6 18 28 6 36 SPINO 9 50 G/H'TRANS 2.66 6.03 20 12 28 16 24 SPINO 9 100 G/H'TRANS 9.69 21.95 14 16 24 18 28 SPINO 9 200 H"'DEEP 5.88 13.32 10 7 13 8 62 SPINO 9 350 H"'DEEP 14.09 31.92 8 12 20 16 1 43 SPINO 11 30 G/H'TRANS 7.49 1.28 16 10 10 10 53 SPINO 11 50 G/H* TRANS • 4.37* 9.67 10 20 40 30 SPINO 11 100 G/H'TRANS 8.38 7.66 29 12 6 18 35 SPINO 11 200 H"'DEEP 24.91 56.43 9 14 14 20 3 39 SCAPH 5 200 H"*DEEP 0.13** 0.82 100 SCAPH 7 200 H"'DEEP I.63* 10.25 14 14 29 43 SCAPH 7 300 H"'DEEP 2.41 15.16 56 44 SCAPH 7 500 H"'DEEP 9-53 59.94 12 19 23 35 4 8 253 MONTH: SEPTEMBER 1975 SPECIES GROUP: INLET DEEP (Cont'd) SPECIES STN z WATER n/m3 I % COMPOSITION OF COPEPODITES REGIME 1 2 3 46" 49 5o" 59 6c? 69 SCAPH 9 100 G/H'TRANS 2.05 12.89 18 13 30 39 SCAPH 9 200 H"'DEEP 4.04 25-41 17 12 26 33 12 SCAPH 9 350 H"'DEEP 1.88 11.82 50 50 SCAPH 11 100 G/H'TRANS 1.9?** 12.39 50 25 25 SCAPH 11 200 H"'DEEP 15.90 100.00 16 11 34 27 11 RACO 7 300 H*"DEEP 0.27** 36.99 100 RACO 7 500 H*"DEEP O.73** 100.00 100 RACO 9 200 H"'DEEP 0.29** 39.73 100 RACO 9 350 H"'DEEP 0.12** 16.44 100 RACO 11 200 H"'DEEP 0.72** 98.63 100 SPECIES GROUP: OFF-SHORE SPECIES STN z WATER n/m^  I % COMPOSITION OF COPEPODITES REGIME 1 2 3 46" 49 56 5Q 66" 69 CAL. C QC 100 E"'DEEP 0.96 52.46 -100 -CAL. C 1 200 B "' DEEP 0.80 43.72 -100 -CAL. C 3 150 B"'DEEP 0.48** 26.23 -100 -R. NAS QC 100 E*"DEEP 0.32** 12.17 41 59 R. NAS 1 200 B"*DEEP 0.05** 0.19 -100 -G. INT QC 100 E"'DEEP 1.34 47.18 24 38 4 34 G. INT 1 200 B"'DEEP O.63 22.18 59 33 8 EUC. P 1 200 B"'DEEP 0.16** 4.69 31 69 EUC. R 1 200 B"'DEEP O.32* 7-55 34 16 50 P. QUAD QC 100 E"'DEEP 0.19** 7.63 32 68 P. QUAD 1 200 B"'DEEP 0.11** 4.42 100 P. XIPH QC 100 E"'DEEP 0.12** 5.63 50 50 P. XIPH 1 200 ' B"'DEEP 0.10** 4.69 50 50 P. ABD QC 100 E"'DEEP 0.13** 4.28 100 P. ABD 1 200 B"'DEEP 0.21** 6.91 25 75 C. BIP QC 100 E"'DEEP 0.13** 7.39 1 100 SPECIES GROUP: MIGRANTS SPECIES STN z WATER n/m-5 I % COMPOSITION OF COPEPODITES REGIME 1 2 3 46* Uo 56* 52 6c? 69 E. BUN QC 100 E"'DEEP 0.70 30.70 36 64 E. BUN 1 200 B"'DEEP O.58 25.44 - 91 _ 9 E. BUN 3 150 B *" DEEP 1.20* 52.63 50 50 E. BUN 5 200 H "' DEEP 0.77* 33-77 34 66 E. BUN 7 500 H"*DEEP 0.73** 32.02 -100 -E. BUN 9 200 H*"DEEP 0.10** 4.39 -100 -E. BUN 9 350 H"'DEEP 0.23** 10.09 -100 -E. BUN 11 200 H"'DEEP 0.72** 31.58 -100 -CAL. P 3 150 B"'DEEP 2.77 48.94 -100 -CAL. P 7 300 H"'DEEP 0'. 13** 2.30 -100 -254 MONTH: SEPTEMBER 1975 SPECIES GROUP: MIGRANTS (Cont'd) SPECIES STN z WATER n/m3 I j£ COMPOSITION OF COPEFODI TSS REGIME 1 2 3 4c? 4^ 5<? 5? 60* 60 CAL. P 7 500 H " ' D E E P 1.10** 19.43 -100 -C A L . P. 9 350 H "' DEEP O.35** 6 .18 -100 -CAL. P 11 200 H " ' D E E P 0.72** 12.72 -100 -CAL. M QC 5 E ' S F C 7.43 0.16 3 - 12 - - 65 - 20 CAL. M QC 30 . E"TRANS 7.19* 0.16 - 90 - 10 CAL. M QC 50 E"TRANS 4.65* 0.10 -100 -CAL. M QC 100 E ' " D E E P 47.96 1 .04 -100 -