UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Copepod distributional ecology in a glacial run-off fjord Stone, David Philip 1977

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1978_A1 S86.pdf [ 25.54MB ]
Metadata
JSON: 831-1.0053208.json
JSON-LD: 831-1.0053208-ld.json
RDF/XML (Pretty): 831-1.0053208-rdf.xml
RDF/JSON: 831-1.0053208-rdf.json
Turtle: 831-1.0053208-turtle.txt
N-Triples: 831-1.0053208-rdf-ntriples.txt
Original Record: 831-1.0053208-source.json
Full Text
831-1.0053208-fulltext.txt
Citation
831-1.0053208.ris

Full Text

GOPEPOD DISTRIBUTIONAL ECOLOGY IN A GLACIAL RUN-OFF FJORD  B.Sc,  DAVID PHILIP STONE U n i v e r s i t y o f Aberdeen,  1973  A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY  in  THE FACULTY OF GRADUATE STUDIES Department o f Zoology and I n s t i t u t e o f Oceanography  We a c c e p t t h i s t h e s i s a s c o n f o r m i n g to the required standard  THE UNIVERSITY OF 'BRITISH COLUMBIA October, (c)  1977  D a v i d P h i l i p Stone,  1977  In  presenting  an  advanced  the I  Library  this  degree shall  f u r t h e r agree  for  scholarly  by  his  of  this  written  at make  that  thesis  \  freely  may It  is  British  of  Columbia,  British  by  for  gain  Columbia  shall  the  that  not  requirements I  agree  r e f e r e n c e and copying  t h e Head o f  understood  of  of  of  for extensive  permission.  University  fulfilment  available  be g r a n t e d  financial  2075 W e s b r o o k P l a c e V a n c o u v e r , Canada V6T 1W5  Date  it  permission  purposes  for  in p a r t i a l  the U n i v e r s i t y  representatives.  Department  The  thesis  of  this  be a l l o w e d  or  that  study. thesis  my D e p a r t m e n t  copying  for  or  publication  without  my  ii  ABSTRACT The Pacific coast of Canada i s indented by numerous fjords. However, there has been no synoptic zooplankton study of a fjord in British Columbia, and l i t t l e information i s available to suggest how spatial and temporal distributions may change along a fjord's length in response to variation in hydrographic circulation, "water quality", and distribution of phytoplankton.  The investigation reported here was designed  to help f i l l this gap. The study area was Knight Inlet, a local glacial run-off fjord, partitioned by a s i l l into a shallow outer (200 m) and deep inner (500 m) basin.  Ten cruises were made to the area between October 197^ and  September 1975»  Vertically discrete zooplankton hauls were taken over  a standard depth range of approximately 16 km intervals along a transect from Queen Charlotte Strait to the fjord head.  A l l observed calanoid  copepods (the group which dominated the zooplankton) were counted at the species sexed copepodite level.  Salinity, temperature, oxygen,  nitrate, chlorophyll a, and suspended sediment data were collected concurrently and plotted as isopleth profiles, from which hydrographic circulation was deduced.  The profiles, in combination with Temperature-  Salinity diagrams, were also used to "partition" the fjord into geographically and vertically discrete "water regimes", each identifiable by a unique suite of conservative and non-conservative properties. A l l regimes were grouped into either a "Surface", "Transition" or "Deep" category. Dominant features of hydrographic circulation were the summer surface outflow of low salinity glacial run-off, and the replacement  iii  of deep waters "by a high salinity intrusion associated, with upwelling. New intrusions resulted in ap-inlet movement of previously resident waters, which were then uplifted and flushed down-inlet.  This counter-  current system of flows appeared to act as a nutrient trap, retaining within the inlet any biologically utilisable material, and leading to the accumulation  of high nitrate concentrations in the inner basin.  Monthly Temperature-Salinity-Plankton  (T-S-P) diagrams showed  that five copepod species groups could be recognised according to an apparent association with either one or two water regimes.  They were  named accordingly, "Summer Surface", "Surface and Surface Transitional", "Transitional/Deep", "Deep", and "Off-shore".  A f i n a l group was desig-  nated "Migrant", and contained a l l diel and seasonal vertical migrants. Monthly profiles of species presence/absence, and profiles of conservative and non-conservative properties provided a spatial aspect to water regime-plankton associations revealed on the T-S-P diagrams. For example, most Transitional/Deep and a l l Deep species were clearly associated with the inner basin, whilst most Surface and Surface/ Transitional species appeared to be associated with the outer basin and Queen Charlotte Strait.  This procedure also revealed the advect-  ion of groups into "unusual" locations or depth ranges.  For example,  when deep inner basin water regimes were uplifted, similar upward displacement of Deep species were observed.  Similarly, copepods char-  acteristic of an off-shore fauna were carried into Queen Charlotte Strait by the July intrusion, and small numbers were advected into the fjord outer basin. The breeding cycles of herbivorous copepods varied within species  iv  at different geographical localities.  This appeared to reflect the  almost complete disappearance of phytoplankton from the inner basin after the arrival of turbid glacial run-off into the fjord head from June until September.  Deep species showed l i t t l e seasonality in breed-  ing cycle and a trend towards this situation was observed in the Transitional/Deep group. In conclusion, this thesis describes temporal and spatial patterns of distribution for a l l ealanoid copepod species found in Knight Inlet, and attempts to relate these to fjord hydrography and the distributions of certain environmental properties.  V  TABLE OF CONTENTS ABSTRACT  i i  LIST OF TABLES  ...... v i i i '  LIST OF FIGURES  •. i x  ACKNOWLEDGEMENTS  xii  INTRODUCTION  1  INLET HYDROGRAPHY AND DISTRIBUTION OF OTHER ENVIRONMENTAL PROPERTIES MATERIALS AND METHODS (a)  (b)  Data collection and preliminary analysis (i)  Hydrographic properties  (ii)  Nutrients  10 ......  10 11  ( i i i ) Suspended sediments  12  (iv)  Chlorophyll a  12  Data descriptive analysis  13  (i)  Objectives and terminology  (ii)  Procedures of hydrographic analysis  ......  13 14-  ( i i i ) Example of regime identification by TemperatureSalinity analysis  .......  15  ......  21  RESULTS AND DISCUSSION (i)  Presentation of results  ( i i ) Inlet hydrography and the distribution of water regimes  22  ( i i i d i s t r i b u t i o n of chlorophyll a, suspended sediments, and nitrate  38  vi  COPEPOD DISTRIBUTIONAL ECOLOGY MATERIALS AND METHODS (a)  Data collection and preliminary analysis  43  (i)  Field procedure  43  (ii)  Laboratory procedure  ( i i i ) Discussion and evaluation of procedures  •  44 44  Sampling gear  44  Statistical estimates of sample variability  47  Sub-sampling error  49  Copepod identification  50  (b) Data descriptive analysis  52  (i)  Objectives  52  (ii)  Procedures  53  Monthly profiles of species presence/absence  53  Monthly l i f e history composition  53  Monthly Temperature-Salinity-Plankton diagrams  55  k x r contingency tables  56  Spearman rank order correlation coefficients  58  RESULTS AND DISCUSSION (i)  The data  60  (ii)  Monthly profiles of species presence/absence  60  ( i i i ) Monthly Temperature-Salinity-Plankton diagrams  70  (iv)  E x r contingency tables  92  (v)  Spearman rank order correlation coefficients  101  (vi)  Monthly l i f e history composition  103  vii  SUMMARY AND CONCLUSIONS TABLES FIGURES  Ill 116 . . 131  REFERENCES  168  APPENDIX A  180  v iii  LIST OF TABLES Table I:  Table II:  Monthly values of suspended sediment and reactive nitrate in the K l i n i k l i n i and Franklin rivers.  116  Statistics on replicate samples taken by Clarke-Bumpus nets at station Kn 9> September 1975  117  2  Table III: X analysis on sub-sample counts of Pseudocalanus elongatus obtained with the Folsom Splitter Table IV(a-d):  Table V(a-c):  119-122  Intra-station matrices of Spearman rank order correlation coefficients (r ) between s zooplankton samples from the inner basin of Knight Inlet, September 1975  123  Inter-station matrices of Spearman rank order correlation coefficients (r ) between s zooplankton samples from the inner basin of Knight Inlet, September 1975  124  The estimated mean abundance of copepod species at individual sample depths, September 1975* Data are arranged in a k x r contingency table  125  Table Vl(a-b):  Table VII:  The estimated mean abundance of copepod species within water regimes in (a; December 1974, (h) February 1975, (c) April 1975, (d) July 1975- Data are arranged in a k x f contingency table  118  Table VIII: The Off-shore species group. A l i s t of a l l Calanoid copepods thought to be characteristic of an off-shore fauna, collected in Queen Charlotte Strait and the outer basin of Knight Inlet  126-128  Table IX(a):Monthly coastal upwelling indices at a station located at 51°N 131°W, for the years 1972 to 1975  Table IX(b):Mean monthly values of coastal upwelling indices at a station located at 51 N 131 W for the 20 year period 1948 to 1967 Table X:  Summary of copepod species distributions with respect to season, location, and water regime in Queen Charlotte Strait and Knight Inlet  1129  129  ...... 130  ix  LIST OF FIGURES Figure 1:  Northern Vancouver Island and the study region in the vicinity of Knight Inlet  131  Figure 2:  The study area, Knight Inlet  132  Figure 3( ~j)'' a  Figure 4:  '  Diagramatic longitudinal profiles of Knight Inlet, showing, isopleths of salinity, temperature, oxygen, and nitrate,  : 133a-j  Temperature-Salinity (T-S) diagram and water regime limits for June 1975  Figure 5(& j): _  Figure 6:  Figure 7:  Figure 8:  Diagramatic longitudinal profiles of Knight Inlet, showing the monthly distribution of water regimes during the study period  134  ...... 135a-b  Diagramatic longitudinal profiles of Knight Inlet, showing a simplified account of water circulation  13&  Apparent oxygen utilisation ( A . O . u ) of deep water after intrusion into the inner basin of Knight Inlet  137  Longitudinal sections of Knight Inlet, showing the monthly distribution of suspended sediments during the study year  138  Figure 9(a-b):  Variation in chlorophyll and suspended sediment in the upper 50 meters of water in Knight Inlet  139a-b  Isopleths of chlorophyll a in the upper 50 meters of water in Knight Inlet •  I40a-c  The monthly distribution of species group, Summer Surface, in the study area  141  The monthly distribution of copepod species group, Surface and Surface Transitional, in the study area  I42a-b  Figure 13:  The monthly distribution of copepod species group, Transitional/Deep, in the study area  l43a-b  Figure 14:  The monthly distribution of copepod species group, Deep, in the study area ...... l44a-b  Figure '10: Figure 11: Figure 12:  F i g u r e 15: F i g u r e 16: F i g u r e 17: F i g u r e 18: F i g u r e 19: F i g u r e 20: F i g u r e 21: F i g u r e 22: F i g u r e 23: F i g u r e 24: F i g u r e 25: F i g u r e 26:  The o c c u r r e n c e o f O f f - s h o r e copepod i n the study area  species ,.  T e m p e r a t u r e - S a l i n i t y - P l a n k t o n diagrams and water regime l i m i t s f o r October 1974 T e m p e r a t u r e - S a l i n i t y - P l a n k t o n diagrams and water regime l i m i t s f o r December 1974  145  146 147  T e m p e r a t u r e - S a l i n i t y - P l a n k t o n diagrams and water regime l i m i t s f o r F e b r u a r y 1975  148  T e m p e r a t u r e - S a l i n i t y - P l a n k t o n diagrams and water regime l i m i t s f o r March 1975  149  T e m p e r a t u r e - S a l i n i t y - P l a n k t o n diagrams and water regime l i m i t s f o r A p r i l 1975  150  T e m p e r a t u r e - S a l i n i t y - P l a n k t o n diagrams and wate water regime l i m i t s f o r May 1975  15^  T e m p e r a t u r e - S a l i n i t y - P l a n k t o n diagrams and water regime l i m i t s f o r June 1975  152  T e m p e r a t u r e - S a l i n i t y - P l a n k t o n diagrams and water regime l i m i t s f o r J u l y 1975  153  T e m p e r a t u r e - S a l i n i t y - P l a n k t o n diagrams' and w a t e r regime l i m i t s f o r August 1975 T e m p e r a t u r e - S a l i n i t y - P l a n k t o n diagrams and'wa ....water regime l i m i t s f o r September 1975  154 155  <  Monthly l i f e h i s t o r y composition of Tortanus discaudatus  156  Monthly l i f e h i s t o r y c o m p o s i t i o n o f A c a r t i a l o n g i r e m i s and A c a r t i a c l a u s i  157 ~ b  Monthly l i f e h i s t o r y composition of Centropages m c m u r r i c h i P a r a c a l a n u s p a r v u s , and E p i l a b i d o c e r a a m p h i t r i t e s  158  Monthly l i f e h i s t o r y c o m p o s i t i o n o f Galanus m a r s h a l l a e  159  F i g u r e 30:  Monthly l i f e h i s t o r y c o m p o s i t i o n o f • Pseudocalanus e l o n g a t u s '  160 a-b  F i g u r e 31:  Monthly l i f e h i s t o r y c o m p o s i t i o n o f , Bucalanus b u n g i b u n g i  F i g u r e 27: F i g u r e 28:  a  f  F i g u r e 29:  l6l  a - D  xi •  Figure JZi  Monthly l i f e history composition of Metridia pacifica  162  Figure 33s  Monthly l i f e history composition of Scolecithricella minor and Aetidius diver gens  163  Figure Jk:  Monthly l i f e history composition of Chiridius gracilis  164  Figure 35:  Monthly l i f e history composition of Metridia okhotensis  165  Figure 36:  Monthly l i f e history composition of HeterorhaMus tanneri . and Gaidius columbiae  Figure. 37:  Monthly l i f e history composition of Gandacia columbiae. Spinocalanus brevicaudatus and Scaphocalanus brevicornis  166  167  xii  ACKNOWLEDGEMENTS I wish to express'my gratitude to a l l those who helped in the completion of this thesis.  In particular, I wish to thank my.super-  visor, Dr. A.G. Lewis, for his advice and continued encouragement, Valuable criticism of the manuscript was provided by Drs. R.E. Foreman, P.H. LeBlond, J.W. Murray, and T.R. Parsons. Many people gave freely of their time at sea, but special thanks go to C. Lafond and C. Thorp, and also to A. Fuller, who maintained the hydrographic equipment in perfect order.  Dr. G.A. Gardner and  A. Ramnarine were invaluable on many cruises, instructed me in f i e l d and laboratory procedures, and were a constant source of helpful advice. The officers and crew of the Canadian Hydrographic Service ships Vector and Parizeau, and of the Canadian' Navy ships Endeavour and Laymore were always most cooperative and made every cruise a pleasure.  Captain  Marsden of the Vector was outstanding in this'respect. I am grateful to D. Laurier, who ran a computer program to produce the Temperature-Salinity plots and, also to M. Douglas, who drew the f i n a l Temperature-Salinity-Plankton diagrams.  My greatest debt i s to  mjff wife, Therese, who in addition to raising a family, helped in the calculation of plankton abundance estimates, in the preparation of many figures, and was responsible for typing the manuscript at every stage of i t s development. I am grateful for the financial assistance provided by a three year U.B.C. Graduate Student Fellowship, and by three Teaching Assistantships in the Department of Zoology.  My research was also partly funded by  two grants awarded to Dr. A.G. Lewis.  They were N.R.C. Grant No. A-2067  and International Copper Research Association (INCRA) Grant No. 246.  1  INTRODUCTION A prime objective in plankton ecology i s to quantitatively describe species patterns of distribution and abundance, and ultimately to understand how these patterns are developed and maintained. two aspects.  The problem has  Firstly, faunal boundaries, representing the distributions  of many species, have often been found to l i e between major oceanic water masses.  The latter, therefore, appear to approximately delineate  marine zoogeographic realms (Brinton 1962; Fager and McGowan 1963; McGowan 1971, 1974; McGowan and Williams 1973).  Secondly, Bary (1959,  1963a,b,c, 1964) had found faunal species distributions within water masses to be often sensitive to geographically more localised "water bodies".  These were identified according to temperature-salinity  characteristics, and found to be associated with individual species, and with assemblages of species.  In this thesis, I have applied and  modified Bary's approach to investigate temporal and spatial patterns of zooplankton distribution in a coastal fjord. The study of plankton distributions in space and time is beset with problems, many of which are associated with the third spatial dimension of the marine environment.  Plankton are suspended in a  medium capable of movement, in different directions at different depths. In the open ocean, there is no restriction to lateral water movement, and two assemblages of species situated one above the other in the water column at a given moment in time, may occupy different geographical localities at a later time. The coast of British Columbia was subjected to extensive Pleistocene glacial erosion which has l e f t a coastline indented with many fjords.  2  To the geologist, a fjord i s a glaciated valley flooded bytithe sea. Typically, i t i s deep and narrow, shallowing to a s i l l towards the mouth. Therefore, i t s physiography imposes restrictions on lateral water movement, leaving only one limited connection to adjoining marine waters. Through this, a l l marine immigrants to or emigrants from the fjord planktonic community, must pass.  For the purposes of the present study,  a fjord can therefore be regarded as a biological oceanographic unit, constrained by natural boundaries.  As such, an interesting opportunity  is provided to investigate zooplankton distribution in a discrete marine environment, which lacks many problems of "random" advective plankton transport normally associated with the open sea. The fjord selected for study was Knight Inlet, located on the mainland coast of British Columbia, 350 km northwest of Vancouver.  It i s a  narrow fjord, penetrating for some 110 km into the Coast Range Mountains. Communication with adjoining marine waters i s through Queen Charlotte Strait, which i t s e l f meets the Pacific Ocean 60 km to the northwest (Fig. l ) .  Two shallow s i l l s of approximately 65 m depth partition the  fjord into two basins. The outer i s shallow, with a mean depth of 150 to 200 m, while the inner extends to over 500 m (Fig. 2). In crosssectional profile, the fjord has the characteristic U-shape of a glaci a l l y eroded valley. Plankton are by definition greatly influenced by water movements. A broad understanding of inlet hydrographic circulation was therefore an essential pre-requisite to the understanding of zooplankton distributions in the present study.  A monthly hydrographic time series study  has not been published for Knight Inlet, although isolated cruises  3  have been analysed by Pickard (1959t 19&1,  1975)-  However, similar  studies have been undertaken in a number of other local fjords.  The  most useful intterms of extrapolating to the Knight Inlet situation were found to be those concerning Alberni Inlet, because of i t s relatively direct access to the Pacific (e.g.- Bell 1976), and those concerning Bute Inlet, because of i t s glacial run-off (Lafond and Pickard 1975)• The above sources revealed three features of hydrographic circulation which could be of importance in terms of Knight Inlet plankton distributions.  They are outlined below.  (a) There is a shallow outflow of freshwater run-off down-inlet. A strong halocline and pycnocline at a depth of 7 to 10 m separates this layer from more saline underlying water,  In Knight, the majority  of freshwater run-off i s contributed by the K l i n i k l i n i and Franklin rivers at the fjord head (Fig. Z).  Since these are glacially fed,  freshwater discharge into Knight Inlet is characterised by a winter minimum and an intense summer maximum. Considerable quantities of glacial suspended sediment are carried by the rivers, and local turbidity maxima occur near the inlet head.  In the latter locality, phyto-  plankton production is therefore only likely to occur before the advent of glacial run-off, and the region may therefore be nutritionally poor for herbivorous zooplankton.  Species able to tolerate the low salinity  surface layer run the possibility of being advected from the inlet, as observed in a Norwegian fjord for Calanus finmarchicus Gunnerus by Stromgren (1976). (b) As the surface outflow moves seaward, i t s salinity increases. However, a corresponding increase below the halocline does not occur.  This unidirectional transport of salt into the freshwater outflow i s termed entrainment (Tully 1958)-  The process i s thought to result  from internal waves generated at the halocline interface.  Velocity  shear acting between the water layers causes wave crests to break, and packages of underlying water are injected into surface water layers (Dyer 1973)*  The total fjord volume and salt content remain constant,  however, indicating a compensatory sub-surface inflow of saline water. This i s an example of estuarine circulation.  It provides both a  system of countercurrent flows able to transport surface plankton in opposite directions along the inlet length, and also a mechanism (entrainment) for injecting nutrients into a possibly impoverished euphotic zone. (c) Finally, deep water in the two fjordsbasins issperiodically exchanged.  This i s caused by the spring and summer upwelling of high  salinity water along the outer Pacific coast.  In winter, winds along  the northern coast of North America blow predominantly from the southwest.  This results in an on-shore movement of relatively low salinity  surface water (convergence).  However, in summer, atmospheric condit-  ions change, and winds blow largely from the northwest.  Ekman trans-  port now results inaan off-shore movement of surface water (divergence) and replacement waters of higher salinity rise from deeper depths by upwelling (Dodimead and Pickard 1967).  By early summer, this water  has occupied Queen Charlotte Strait (Barber 1956, 1957)•  In local  coastal regions, the magnitude of salinity differences compared with temperature structure are such that the former i s usually dominant in determining water density (Pickard 1963).  Therefore, at a given depth,  5  summer Queen Charlotte Strait water may have a higher density than Knight Inlet water.  When such a discontinuity in isopycnals exists  on either side of the s i l l s and at s i l l depth, i t will be exposed by tidal action.  The high salinity water will then flow over the s i l l  into the fjord, and a corresponding volume of lower salinity fjord water will be displaced. The process of deep water renewal therefore, provides a mechanism for the periodic introduction of new immigrants to the zooplanktonic community of Knight Inlet.  Since the intrusion  is from an off-shore source, i t would be expected to contain species representative of such water.  With the exception of the results  presented here, no information i s available on the species content of such intrusions, or of changes which may occur in their species content with time. In the <past there have been few attempts to study zooplankton species distributionsi-intithe fjords of British Columbia.  Previous  work largely dealt with aspects concerning only a gew species (e.g. Pandyan 1971; Woodhouse 1971; Whitfield and Lewis 1976). The two major exceptions were the studies of Shan (1962) and Koeller (1974), who considered the ecology of copepods in Indian Arm and Bute Inlet, respectively.  Shan's data were collected monthly, but his work was  partly taxonomic and, although temperature - salinity relationships were considered with the plankton, only four species were studied (Gaetanus armiger Giesbrecht, Euchaeta japonica Marukawa, Calanus spp., and Metridia spp.).  Koeller collected zooplankton from nine  mainland inlets, including Knight Inlet, but only material from Bute Inlet was analysed.  He identified and considered almost a l l  6  copepod species occurring in Bute Inlet, but was primarily concerned with aspects of their ecology.in deep water.  His sampling program  was designed for this purpose and was unfortunately not suitable for the study of species distributions in space and time.  For example,  the inlet was visited on only four occasionss in the year (February, May, June, and July).  Furthermore, hydrographic data were collected  on only two of the above cruises, and i t was therefore impossible to consider the effects of water circulation on copepod distribution. In the present study, ten cruises were made to Knight Inlet during the period October 1974 to September 1975-  There was an approx-  imate one month separation between cruises, extended to two months in mid-winter by the absence of November and February cruises. (Ten cruises were also made during the previous twelve month period. However, the 1973 to 1974 data are not reported here, and are referred to only when they assist in the understanding of events occurring between October 1974 and September 1975)• This thesis attempts to identify and then to relate patterns of zooplankton species distribution with inlet hydrographic circulation and the distribution of environmental variables.  The zooplankton  samples were collected at approximately 16 km intervals along a transect running from Queen Charlotte Strait to the inlet head, and were taken by discrete horizontal tows over a depth range extending from 5 m depth to within JO m of the bottom. A l l calanoid copepods found wereridentified and included in later analysis.  Temperature,  salinity,  oxygen, nutrient, chlorophyll a, and suspended sediment data were concurrently collected.  The former three parameters were used to obtain  7  an understanding of inlet hydrographic circulation "by accepted descriptive techniques (e.g. Lafond and Pickard 1975)-  These parameters  were used also to indicate whether inlet water could be partitioned into hydrographically identifiable "types" (akin to Bary's "water bodies"), the distribution and movements of which would explain in some way the observed distributions of plankton.  The other environ-  mental parameters listed above were also used for this purpose. I approached the problem by setting out five research objectives (repeated in abbreviated form in the section dealing with data analysis). Firstly, could patterns of distribution be identified, and species grouped according to similarities and differences in spatial and temporal occurrence?  Secondly, which species appeared able to maintain  their populations by reproduction and, which relied on recruitment by immigration from elsewhere?  Thirdly, was the reproduction of some  species apparently restricted to certain parts of the inlet?  Fourthly,  could any features identified by the above, be related to variation in the fjord's hydrographic circulation, water property distribution, or other environmental variables? Finally, were copepods characteristic of an off-shore fauna carried into Queen Charlotte Strait and Knight Inlet by the summer intrusion and, i f so, what was their fate? The above objectives show that considerable emphasis was placed on the grouping of species which shared similar patterns of distribution.  Recent research on similar problems has explored the use of  a number of mathematical and multivariate statistical techniques to reduce the number of subjective decisions involved in the grouping processes.  The procedures are many, and some can also be used to  8  indicate the degree to which a given environmental variable appears to be associated with variance in the plankton data (e.g. Williamson 1961; Golebrook 1965; Williams 1971; Angel and Fasham 1973, 1974, 1975; Hummon 1974; Gardner 1977). However, Bary's (1959, 19&3> 1964) procedure of Temperature Salinity - Plankton analysis was used in the present study to group species, since in the Knight Inlet situation i t appeared the most appropriate technique.  The method provides a correlation diagram  which relates the occurrence of species with the hydrographic characteristics of their environment.  Furthermore, spatial aspects of  distribution can easily be extracted from the T-S-P diagram by plotting the distributions of plankton, and of T-S defined "water bodies" on an inlet section.  In this way the fjord can be partitioned both in terms  of plankton, and of hydrographic characteristics. It i s unlikely that the hydrographic variables are themselves responsible for the distribution of plankton data on a T-S-P diagram. For example, Bary (1963) defined six groups of zooplankton in the North East Atlantic, and found that species within the groups remained associated with a given "water body" throughout the year, despite the fact that temperature and salinity changed considerably during the period.  Bary postulated that each water mass possessed a unique  unknown property which influenced species content.  Recently, Bary and Regan  (1976) has proposed that the unique property may be concerned with the availability of dissolved trace metals, as suggested by the work of Lewis et a l . (1971, 1972, 1976). However, i t i s emphasised that the present objective was not to identify "water quality" factors respon-  9  sible for T-S-P relationships, "but was concerned only with recognising such relationships. Two simple statistical techniques were used in the present study. Peterson and Miller (1976) have used 2 X 2  contingency tables to  investigate proportionality of species content in samples from waters shown by hydrographic analysis to be distinct from one another.  The  procedure provided a semi-independent method of checking on the interpretation of T-S-P diagrams, and was here applied to data from four representative cruises. Secondly, McGowan has argued that due to competitive dominance and functional specialisation, stable rank orders of abundance should be characteristic of zooplankton samples taken from the same pelagic community.  He used Spearman rank order correlation coefficients (r ) s to demenstrate this proposal (1977)• Matrices of r values were 3  calculated from upper basin data for one cruise only, in order to detect samples with similar rank orders of abundance, and so to map the spatial distribution of such communities. To assist in clarity, the thesis has been divided into two major parts.  The f i r s t deals with the hydrographic and environmental survey  of Knight Inlet, whilst the second presents the zooplankton data which are then interpreted in terms of the hydrographic phenomena.  10  INLET HYDROGRAPHY AND DISTRIBUTION OF OTHER ENVIRONMENTAL PROPERTIES  MATERIALS AND METHODS (a) Data collection and preliminary analysis (i) Hydrographic properties Sampling for a l l parameters (including zooplankton) followed the pattern of the hydrographic program.  For example, every zooplankton  sample had a concurrent set of hydrographic data.  The following stations  were occupied for temperature, salinity, and oxygen determination during each cruise: QC (situated in Queen Charlotte Strait; Fig. l ) , and Kn 1, 3i 4 , 5» 6, 7 i 9 i and 1 1 , representing a series from the inlet mouth to theeinlet head (Fig. 2 ) .  Coordinates for each station are given in  the Institute of Oceanography Data Reports, 1974 and 1975•  Stations  Kn 4 and 6 were not occupied in October and December 1974. In the latter month, station Kn 1 and 5 were also omitted due to ship operation problems.  Stations K-l to K-3 were three localities in the K l i n i k l i n i  river extending from the mouth (K-l) through a salt marsh (K-2) to forest (K-3).  The latter station was approximately 3mkm from the inlet.  Station F - l was located at the rocky mouth of the Franklin river.  River  samples were taken for salinity and non-conservative property analysis, and were collected by directly immersing the sample bottle. Water for hydrographic analysis was collected using Atlas bottles. The following standard depths were sampled: 0, 5» 10> 2 0 , 3 0 , 5 0 , 7 5 . 100, 150, 2 0 0 , 300, 400, and 500 m. Where the inlet was shallower than 500 m, the deepest sample was taken approximately 20 m above the bottom. Temperatures were measured by Richter & Wiese and Yashino Keike reversing  11  thermometers attached to the Atlas bottles. with an approximate accuracy of - 0.02°G.  Values were read at sea Salinity was determined  ashore using an Auto-lab inductively coupled Salinometer.  The latter  has a reported accuracy of approximately 0.003°/oo in the salinity range above 28°/oo.  Surface temperature and salinity values were  obtained from bucket samples, the bucket thermometer being graduated in tenths of a degree centigrade. Density (expressed as cr ) was calculated using Knudson's formula from corrected temperature,and values.  salinity  Dissolved oxygen content was determined at sea by the Winkler  method, with the reagent modifications recommended by Garritt and Carpenter (1966).  An approximate measure of surface light penetration  was obtained at daytime stations using a Secchi disc.  Final calculation  of each hydrographic parameter was made using a local program on the Institute of Oceanography's PDP 12 computer.  ( i i ) Nutrients Water was collected ty 5 or 8 l i t r e Niskin bottles at stations QC, Kn 1, 3, 5, 7, 9, and 11.  The standard depth series was: 0, 10, 30,  50, 100, 200, 300, and 500 m.  Where the inlet was shallower than 500 m,  the deepest sample depth coincided with that of the deepest hydrographic sample.  A river sample was also taken at each of the four river stations.  Immediately after collection, each sample was passed through a separate 0.45 p i f i l t e r and frozen in polyethylene bottles.  Analysis for reactive  nitrate and reactive phosphate was carried out ashore by standard methods recommended by Strickland and Parsons (1972).  12  ( i l l ) Suspended sediments Samples for suspended sediments were taken at inlet stations Kn 3, 5, 7 i 9. and 11, and at a l l river stations.  The standard depth  series was: 0,,5, 10, 30, 50, 100, 200, 300, and 500 m.  Where the inlet  was shallower than 500 m, the deepest sample depth coincided with that of the deepest hydrographic sample. Niskin bottles.  Collection was by 5 or 8 l i t r e  Sediment was determined from a 3-5 l i t r e aliquot  passed under pressure through two pre-weighed 0.45 p i f i l t e r s .  The  f i l t e r s were stored in a small petri dish and frozen until weighed. Weighing was carried out after each f i l t e r had been dried at 60°C. Weight of sediment was expressed in terms of mg suspended sediment per l i t r e of water filtered.  (iv) Chlorophyll a Samples for chlorophyll determination were collected by 5 or 8 l i t r e Niskin bottles at stations QC, Kn 1, 3» 5» 7, 9, and 11. Standard depths of 0, 5» 10, 301 and 50 m were sampled.  Immediately  after collection, magnesium carbonate suspension was added to the sample and a one l i t r e aliquot passed through a 0.45 urn f i l t e r .  Filters  were folded and frozen at -20°C. Analysis was carried out a few days after collection by the trichromatic method recommended by Strickland and Parsons (1972). The equation of Strickland and Parsons was used to calculate chlorophyll a concentration filtered.  in terms ofrng/m^water  13  (b) D a t a d e s c r i p t i v e a n a l y s i s ( i ) Objectives The  and t e r m i n o l o g y  research  o b j e c t i v e was t o i n v e s t i g a t e z o o p l a n k t o n d i s t r i b -  u t i o n i n K n i g h t I n l e t i n r e l a t i o n t o c i r c u l a t i o n and d i f f e r e n c e s i n water " q u a l i t y " .  The i n t e n t i o n was t o i d e n t i f y b o d i e s o f water, a c c o r d -  i n g t o h y d r o g r a p h i c and o t h e r e n v i r o n m e n t a l p r o p e r t i e s by t h e methods described  i n t h i s s e c t i o n , and t h e n t o s e a r c h f o r f a u n a l  between such b o d i e s o f water.  differences  No attempt was made t o i d e n t i f y i n d i v i d -  u a l e n v i r o n m e n t a l f a c t o r s which may have been r e s p o n s i b l e f o r t h e observed f a u n a l d i f f e r e n c e s . When i d e n t i f y i n g water by c o n s e r v a t i v e  properties, the p h y s i c a l  oceanographer u s u a l l y r e f e r s t o Ithe terms "water t y p e " and "water mass". The  f o r m e r i s a p o i n t on a T-S p l o t ( o r a group o f p o i n t s  scattered  around a n i d e a l p o i n t ) w h i l s t a water mass i s c h a r a c t e r i s e d by a l i n e on such a p l o t ( o r a s c a t t e r o f p o i n t s about an i d e a l l i n e ) ( P i c k a r d  1963). N e i t h e r term c o u l d be employed i n t h e p r e s e n t s t u d y , s i n c e i n a d d i t i o n t o T-S r e l a t i o n s h i p s , water was c h a r a c t e r i s e d a c c o r d i n g t o geographical  d i s t r i b u t i o n of both conservative  properties.  The term "regime" was t h e r e f o r e  and n o n - c o n s e r v a t i v e  chosen t o a v o i d  confusion  w i t h t h e more s t r i c t l y d e f i n e d p h y s i c a l terms, and was used h e r e t o i n d i c a t e a body o f w a t e r a p p r o x i m a t e l y c h a r a c t e r i s e d a c c o r d i n g s u i t e of conservative  and n o n - c o n s e r v a t i v e p r o p e r t i e s .  to a  The term has  p r e v i o u s l y been used by e c o l o g i s t s a s a b r o a d c l a s s i f i c a t i o n o f h a b i t a t s (see N e l s o n 1970  f o r a marine example) and has had some precedence i n  marine z o o p l a n k t o n s t u d i e s . transect perpendicular  F o r example, P e t e r s o n  (1972) d i v i d e d a  t o t h e Oregon c o a s t i n t o S l o p e , O c e a n i c ,  Surface,  14  Transitional, and Deep regimes, on the "basis of combined hydrographic and nutrient data. The regimes would obviously have been unsuitable for an analytical physical oceanographic study. However, in the context of the outlined research objectives, the above approach seemed appropriate.  It allowed  maximum utilisation of a l l environmental information available, such as the distributions of chlorophyll a, suspended sediment, nitrate, and oxygen, in addition  to those of salinity, temperature, and density..  Although the non-conservative properties were treated with caution, their characteristic behaviour was a product of biological processes, and i t s e l f highly relevant.  For example, oxygen and nitrate were found  particularly useful as indicators of regime "age" or residence time within the deeper parts of the inlet.  ( i i ) Procedures of hydrographic analysis Two complementary me'thods were used to identify regimes. (a) Isopleths of salinity, temperature, dissolved oxygen, and nitrate were plotted for a l l cruises on longitudinal profiles of the study area (Fig. 3 j)» a-  The isopleth pattern for each parameter was then  examined for evidence of regimes.  Water circulation was deduced from  the form of the isopleths for each cruise, and by comparing differences between successive cruises.  This was essentially the method used by  Lafond and Pickard (1975) when studying property distributions and deep water renewal in Bute Inlet. (b) For each station occupied on a cruise, a Temperature against Salinity (T-S) plot was constructed, using a local program on the  15  Institute of Animal Resource Ecology's PDP 11 computer.  The plots  were examined individually and then grouped into their respective months (cruises).  Water was divided into "Surface", •'/Transition",  and "Deep" regimes by drawing envelopes around lines of similar slope and pattern (Fig. 4 ) .  Each was given a coded designation.  If temporal  continuity was suspected, the same code was used for successive months. However, i t i s emphasised that such continuity could not be proved. The longitudinal profile isopleths of hydrographic and nutrient data were frequently consulted at this stage, which therefore constituted a departure from normal procedures.  However, as described below, this  additional information was found particularly useful in identifying Transition regimes.  When possible, larger envelopes were drawn to  embrace a l l similar regimes in a particular area.  For example, a l l  Transition regimes in the inner basin were enclosed in one envelope, and a l l Deep regimes in another.  The original regimes were not discarded,  since they provided useful information, such as distinguishing between "newly intruded" and "old" inner basin water.  Finally, a l l regimes so  identified were plotted on monthly longitudinal profiles to illustrate temporal and spatial distribution (Fig. 5 j)» a-  ( i i i ) Example of regime identification by Temperature-Salinity analysis Reproduction of the original seventy T-S plots was obviously impractical and they are not included here.  However, these plots were  used to construct the Temperature-Salinity-Plankton shown in Figures 16-25»  a n |  i  o n  (T-S-P) diagrams  which the T-S limits of individual regimes  16  are Indicated.  The actual hydrographic data were not plotted on the  latter, since when this was attempted, the plankton data were obscured. In order that the procedure of water regime identification i s f u l l y understood, I have described the analysis of one cruise (June 1975) in detail. The original T-S diagram for June 1975 i s given in Figure 4 (but with extreme T-S values omitted), and isopleth profiles of temperature, salinity, oxygen, and nitrate appear in Figure Jg. The spatial distribution of derived regimes i s given in Figure 5g-  The T-S plot  showed that at station QC in Queen Charlotte Strait, temperature decreased and salinity increased with increasing depth.  However, the T-S line was  inflected at depths between 10 and 20 m, and between 50 and 75 m«  Water  from depths above the upper inflection were found to be of low nitrate and high oxygen and chlorophyll a content (see Fig. 10 for the latter). This suggested a regime considerably influenced by surface phenomena and i t was coded E'SFC.  In contrast, water below the lower inflection  was found to be of low oxygen but high nutrient content, therefore suggesting a regime apparently isolated from the surface for some time. It was coded E"DEEP. A comparison with data from precedihg^monthss taken at the same station, showed a spring and early summer increase to have occurred in deep water salinity and nitrate content, with a corresponding decrease in oxygen (Fig. 3 g)« e-  ion of water from an off-shore origin.  This indicated the intrus-  Water from depths between the  two inflections on the T-S plot was thought to be transitional between the Surface and Deep regimes.  It was therefore coded E"TRANS.  In Knight Inlet, the T-S diagram showed that salinity increased  1?  and temperature  d e c r e a s e d w i t h i n c r e a s i n g depth from t h e s u r f a c e t o  a p p r o x i m a t e l y JO m.  T h i s a g a i n corresponded  t o a zone o f low n i t r a t e  and h i g h oxygen and c h l o r o p h y l l a c o n t e n t , and i n d i c a t e d a regime c o n s i d e r a b l y i n f l u e n c e d by s u r f a c e phenomena. A SFG.  The r e g i m e was  coded  The v e r y low s u r f a c e s a l i n i t i e s shown on the l o n g i t u d i n a l  p r o f i l e s n e a r t h e i n l e t head were r e l a t e d t o t h e onset of g l a c i a l o f f from t h e K l i n i k l i n i and F r a n k l i n r i v e r s ( T a b l e i ) . depth a t s t a t i o n Kn I d i d n n o t f i t onto a T-S  line.  run-  Water a t JO m  The d a t a appeared  genuine a c c o r d i n g t o crj_ v a l u e s and s i n c e t h e f e a t u r e was a l s o observed i n J u l y , t h i s "depth" was  coded as a s e p a r a t e S u r f a c e regime, A'SFC.  A p p r o x i m a t e l y the same l o c a t i o n was  o c c u p i e d on t h e T-S  diagrams  by water from 50 m depth a t s t a t i o n Kn J i n t h e o u t e r b a s i n , as  was  o c c u p i e d by water from t h e same depth a t a l l i n n e r b a s i n s t a t i o n s . i s o p l e t h p r o f i l e s were found u s e f u l i n e x p l a i n i n g t h i s f e a t u r e . i n n e r b a s i n , i s o p l e t h s of temperature,  The  In the  oxygen, and n i t r a t e showed a  t r e n d t o s l o p e towards t h e s u r f a c e i n t h e d i r e c t i o n of t h e i n l e t head, and t h e n t o e x t e n d d o w n - i n l e t a t a p p r o x i m a t e l y 50 m depth as tongues of maximum (temperature and n i t r a t e ) o r minimum (oxygen) v a l u e s .  The  l a t t e r c o u l d be t r a c e d t o s t a t i o n Kn J i n t h e o u t e r b a s i n , but were n o t d e t e c t e d a t s t a t i o n Kn 1.  Deep s a l i n i t y i s o p l e t h s a l s o s l o p e d  upwards towards t h e i n l e t head, b u t were n o t i n f l e c t e d d o w n - i n l e t as a s u b - s u r f a c e maximum.  T h i s was  i n t e r p r e t e d as i n d i c a t i n g t h a t deep  i n n e r b a s i n water had moved u p - i n l e t and towards the s u r f a c e n e a r i n l e t head.  the  Some m o d i f i c a t i o n by m i x i n g and d i f f u s i v e p r o c e s s e s must  have o c c u r r e d t o account f o r t h e observed s a l i n i t y  characteristics.  The " u p w e l l e d " water t h e n moved d o w n - i n l e t a t a p p r o x i m a t e l y 50 m depth.  18  A comparison with T-S diagrams and inlet profiles for preceeding months indicated that the above circulatory feature had been present since at least March (Fig. Jd-g).  The outflow regime at 50 m depth was coded  G TRANS. Water from approximately 100 m depth at stations Kn 5» 7> and 9 also showed the same location on the T-S diagram.  The isopleth profiles  showed temperature and nitrate values to be lower, and oxygen values higher, than found in the 50 m depth outflow regime immediately above. This suggested a shallower origin.  A comparison with T-S diagrams and  isopleth profiles for the preceeding months indicated that this water was formed as a result of winter cooling in the comparatively shallow outer basin, after which i t gradually intruded into the inner basin where intermediate depths were occupied between February and April (Fig. 3c-g). The intrusion could be seen by the following up-inlet movement of the 7°C isotherm or the 4.0 ml/l isopleth for oxygen, which also indicated a gradual disappearance of this water from the inner basin after April. This probably resulted from both an advective volume loss, as some of the regime probably moved down-inlet with the 50 m depth sub-surface outflow, and a loss of identity through mixing and diffusion.  The  regime was coded F'TRANS. With increasing depth below approximately 150 m in the inner basin, there was aniincrease in both temperature and salinity.  Throughout the  study, this relationship was found to be generally characteristic of deep up-inlet water.  However, there was an inflection on the T-S lines  for stations Kn 7 and 9 at depMis of between 300 and 400 m and between 300 and 350 ni, respectively.  The inlet profiles showed these to be the  19  a p p r o x i m a t e depths a t which markedly upward d i s p l a c e m e n t o c c u r r e d of i s o p l e t h s of s a l i n i t y , t e m p e r a t u r e , oxygen, and n i t r a t e .  Water below  t h e s e depths was c h a r a c t e r i s e d by h i g h e r t e m p e r a t u r e , s a l i n i t y , n i t r a t e s , and l o w e r oxygen c o n t e n t .  I t was coded G DEEP.  and  A compar-  i s o n w i t h T-S diagrams f o r p r e c e e d i n g months showed t h a t t h i s regime had o c c u p i e d a p p r o x i m a t e l y the same p o s i t i o n on t h e p l o t s s i n c e i t s i n t r u s i o n i n t o t h e i n n e r b a s i n between October and December  1974.  The l a t t e r p r o c e s s was shown on t h e i s o p l e t h p r o f i l e s ( F i g . 3 ~b). a  The r e m a i n i n g deep water i n the i n n e r b a s i n was coded H DEEP. The T-S diagram d i d n o t i n d i c a t e t h a t t h i s regime c o u l d be s u b d i v i d e d . However, water between 200  and 300  m d e p t h a t s t a t i o n s Kn 4, 5> and 6  was seen t o i n c r e a s e i n temperature between May and June ( F i g . 3f~g)» d e s p i t e t h e presence of c o l d e r water above.  T h i s i n d i c a t e d t h a t the  regime had r e c e n t l y i n t r u d e d from t h e s h a l l o w e r o u t e r b a s i n , where warming o f t h e water column had o c c u r r e d i n i m m e d i a t e l y p r e c e e d i n g months.  However, a t t h e same depths a t s t a t i o n Kn 9 and 11,  the prev-  i o u s l y d e s c r i b e d upward d i s p l a c e m e n t of s a l i n i t y , t e m p e r a t u r e , n i t r a t e , and oxygen i s o p l e t h s was observed.  Whereas t h e l o w e r n i t r a t e and h i g h e r  oxygen c o n t e n t a t t h e s t a t i o n s n e a r t h e s i l l suggested a n e a r s u r f a c e o r i g i n , t h e h i g h and low v a l u e s , r e s p e c t i v e l y , a t t h e i n l e t head s t a t i o n s , suggested a deep o r i g i n .  Furthermore, the c o n t i n u i t y of  upwardly d i s p l a c e d i s o p l e t h s of t e m p e r a t u r e , oxygen, and n i t r a t e , w i t h the 50 m s u b - s u r f a c e maximum and minimum regime  (G TRANS) i n d i c a t e d t h e  f l o w r e l a t i o n s h i p a l r e a d y d i s c u s s e d between t h e i n l e t head deep water and t h e l a t t e r .  T h e r e f o r e , a l t h o u g h n o t j u s t i f i e d by t h e T - S , a n a l y s i s  a l o n e , t h e i n n e r b a s i n H DEEP regime was d i v i d e d i n t o an i n l e t head  20  portion, coded H"DEEP, and a near s i l l portion, coded H'DEEP, each characterised largely by non-conservative properties. With increasing depth below the Surface regime at station Kn 1 in the outer basin, the T-S diagram showed an increase in salinity and a decrease in temperature.  However, there were two distinct T-S lines.  One coded B"TRANS included water from depths of 50 to 100 m, whilst the other, coded B'"DEEP, included water from 150 to 200 m depth. Both lines were of the same slope, but the latter occurred further to the right, reflecting higher salinities.  The isopleth profiles for  preceeding months showed that salinity in the deep outer basin had risen steadily since between March and April (Fig. JeQg),  They also  indicated this rise to reflect an intrusion of high salinity water from Queen Charlotte Strait, where deep water salinity had also risen. On the T-S diagram, water from 100 m depth at station Kn 3 lay close to the B"TRANS regime and was therefore included with i t .  Similarly,  150 m water from the same station was included with the B""DEEP regime. In summary, the descriptive analysis of June hydrographic data indicated that at the Queen Charlotte Strait station, a high salinity regime occupied deep water, some of which intruded into the outer inlet basin.  At the same time, the inner inlet basin was invaded by  warmer and slightly more saline water from the outer basin.  The latter  event appeared to result in an up-inlet displacement of previously resident water, some of which was "flushed" down-inlet as a sub-surface outflow at approximately 50 m depth.  This interpretation i s illustrated  diagramatically in the "April to June" and "July to September" portions of Figure 6.  21  RESULTS AND DISCUSSION (i) Presentation of results Complete hydrographic data are available in the Institute of Oceanography Data Reports for 1974 and 1975-  Monthly longitudinal  isoplethsproflies of temperature, salinity, oxygen, and nitrate appear in Figure 3 j« a_  Profiles of phosphate concentration were omitted, since  their distribution always resembled those of nitrates.  Profiles of cr^  were also omitted, since the isopycnals were nearly always horizontal and so provided l i t t l e information concerning water circulation.  The  latter problem was also encountered by Laf-ond (1975) during a physical oceanographic study of Bute Inlet.  As previously explained, i t was  impractical to include the seventy original T-S plots.  However, the  way in which these were interpreted was f u l l y explained using the June 1975 example in the previous section (Fig. 4 ) .  A simplified summary  of assumed hydrographic circulation in the inlet during the study period i s given in Figure 6. The monthly distribution of suspended sediment and of chlorophyll a are given in longitudinal sections in Figures 8 and 10, respectively. Both parameters were also plotted as monthly accumulative values for the upper 50 meters (Fig. 9a-b).  Monthly nitrate concentration and s  suspended sediment load in the K l i n i k l i n i ahd Franklin rivers are given in Table I.  Since neither parameter varied greatly between the three  K l i n i k l i n i sampling stations, data from only one are included (station Kl 3, situated at the boundary between salt marsh and deciduous forest).  22  ( i i ) Inlet hydrography and the distribution of water regimes Below i s a four season summary of the hydrographic data. The code used to identify each regime i s given i n bracketed capitals following i t s f i r s t mention.  Autumn - October to December 1974 Queen Charlotte Strait Surface (E'SFC), Transition (E"TRANS), and Deep (E DEEP) ,M  regimes were identified f o r each month. They corresponded to segments of the T-S lines observed to have different slopes and to occupy d i f f erent positions on the T-S diagrams.  These differences were indicated  by the regime l i m i t s given i n Figures 16 and 17, which also showed that no Queen Charlotte regime retained i t s suite of October characte r i s t i c s through to December. The Deep regime i n October was characterised by high s a l i n i t y and nitrates, but with a low oxygen content (Fig. 3 )a  This suggested an off-shore origin through upwelling.  According to indices calculated from surface atmospheric data (Bakum, pers. comm.) upwelling between the north of Vancouver Island and the southern t i p of the Queen Charlotte Islands, ceased between September and October (Table IXa). There was no evidence of upwelled water i n December, when the Deep regime was of lower s a l i n i t y and nitrate, and higher oxygen content, than seen i n October (Fig. 3h). As with a l l Surface regimes observed i n this study, the Surface regime i n Queen Charlotte Strait was characterised by obvious influence from surface phenomena. For example, i n October, lower nitrate and higher oxygen contents probably reflected the presence of phytoplankton production,  23  as suggested by the small chlorophyll a maximum recorded i n the regime (Fig. 1 0 ) .  In December, l i t t l e chlorophyll was recorded at any depth  and the above features could not be seen.  Inlet - general Between October and December the large decline which occurred in the suspended sediment load carried by the K l i n i k l i n i r i v e r showed that g l a c i a l run-off ceased to enter the i n l e t between these two months (Table i ) . which  This was r e f l e c t e d on the s a l i n i t y p r o f i l e s (Fig. 3 h ) , a -  indicated that low s a l i n i t y water found at the surface i n the  inner basin i n October, was almost absent from the same location i n December. Surface regimes i n both i n l e t basins were characterised on the T-S diagrams by r a p i d l y increasing s a l i n i t y with small increases i n depth. This feature was responsible f o r the large area of the T-S-P diagrams occupied by the two Surface regimes (A'SFC and A"SFC) (Figs. 1 6 - 1 7 ) . These represented surface water i n the outer and inner basins, respectively.  The two were separated i n the T-S-P diagrams f o r b i o l o g i c a l  rather than hydrographic reasons, since although outer basin surface water was warmer than inner basin surface water, t h i s only r e f l e c t e d a steady sub-surface decrease i n temperature i n the up-inlet d i r e c t i o n (Fig. 3a-b). The presence of high s a l i n i t y water i n Queen Charlotte S t r a i t was responsible f o r a density gradient which extended from the l a t t e r location, across both i n l e t s i l l s , and into both i n l e t basins.  Con-  sequently, a high s a l i n i t y inflow occurred at depth u n t i l December,  2k  when the salinity of Queen Charlotte Strait had fallen.  Density data  were not presented, but since density in local fjord waters is prima r i l y related to salinity (Pickard 196l), good evidence of the inflow was provided by the downward slope of msohalines in the up-inlet direction shown in longitudinal profile (Fig. 3a).  The isohalines  also indicated that deep water in each basin at the time of the intrusion at  was of a salinity which corresponded to approximately that found s i l l depth on the down-inlet side of each respective s i l l .  Further-  more, water from 75 m depth at station Kn J was responsible for the low temperature part of the outer basin Transition regime B"TRANS, shown on the T-S-P diagram to have shared almost the same position on the plot as occupied by the inner basin Deep regime C DEEP (Fig.  16).  Similar flow relationships were frequently observed in the present study, as indicated by similarities in water properties recorded at s i l l depth in the outer basin, and those found characteristic of recently intruded water in the deep inner basin.  Inlet - outer basin The T-S lines for October showed a steady increase in salinity with depth.  However, the lines were broken into two segments by the  occurrence below the surface of warmer water at between 50 and 75 m depth and by another small but distinct temperature change at between 75 and 100 m. (Fig.  16),  The details were almost obscured on the regime T-S limits  but were represented on the isopleth profiles by a down-inlet  tongue of warm water at station Kn 3> and also by a nitrate maximum which extended from the inlet head region (Fig.  3 ). a  The two latter  25  regimes were designated, respectively, outer "basin Transition (B"TRANS) and outer "basin Deep (B'"DEEP). at station Kn 1.  In December, data were not collected  At station Kn 3» the same regimes were recognised as  in October, due to the continued presence of nitrate and temperature maxima.  The nitrate maximum was obscure and could only be detected  further up-inlet (Fig. Jb)- The latter could be clearly seen on the original T-S plot, but was not indicated on the T-S-P diagrams, since i t occurred at 75 m depth where no plankton sample was collected.  Inlet - inner basin In October, four regimes could be recognised beneath the surface, according to differences in the T-S line slope and positions occupied by such lines on the T-S diagrams (regime T-S limits were given in Figure 16). The new intrusion, G DEEP, was characterised by relatively high temperature and salinity (Fig. 3 ) and increasing temperature with a  salinity and depth.  Comparison with data collected in Knight Inlet  immediately before the present study period (i.O.U.B.C. Data Report for 1974) indicated that the up-inlet boundary of the new intrusion corresponded to approximately the 31.26°/oo isohaline. The above comparison also indicated that water resident in the inner basin during the summer of 1974 was slightly cooler and less saline than the new intrusion. In October, such water was found in the D'"DEEP regime T-S envelope (Fig. 16). Deep maxima of salinity and temperature shown on the isopleth profiles indicated that when the new intrusion (C DEEP) invaded the inner basin, the previously resident regime (D"'DEEP) was pushed up-inlet, and displaced towards the surface near the inlet head.  The latter  26  process was indicated "by isopleths of temperature, oxygen, and nitrate which were inclined towards the surface near station Kn 11 (Fig. 3a,). This interpretation was reinforced when the T-S coordinates of water included in the D"'DEEP T-S envelope were plotted on a longitudinal section (Fig. 5 ) a  A shallower regime, coded D TRANS, was detected at 1  depths of between 50 and 150 m.  In comparison with the deep regimes,  i t was characterised by relatively lower temperature and salinity on the isoplethsprofiles (Fig. 3 )> whilst the T-S plots also showed a  smaller increases in temperature to occur with a given increase in salinity.  Finally, a small sub-surface regime characterised by a temp-  erature maximum and a nitrate minimum was present at stations Kn 9 and 11 (Fig. 3 » 16). a  The isopleths for both parameters were continuous  with those of deep water (Fig. 3 ) which suggested that some previously a  resident deep inner basin water was leaving the inlet as a sub-surface flow. In December, the situation was basically similar to that observed in October.  The previously resident Deep regime (D'"DEEP) had a  temperature sufficiently lower than that of the new intrusion (C'DEEP), that despite the possession of a lower salinity, a higher density was maintained and i t was cut off by the overlying new intrusion (Fig. Jb} 5b).  The T-S lines for water in the inlet head region lay close togeither  and possessed the same slope. recognised (D'TRANS).  Therefore, only one Transition regime was  Temperature and salinity isopleths indicated that  a down-inlet tongue of the latter cut off a surface portion of the new intrusion (Fig. Jb)*  "the T-S limits of which were shown on the relevant  T-S-P diagram (Fig. 17).  27  W i n t e r - F e b r u a r y t o March  1975  Queen G h a r l o t t e S t r a i t I n February, t h e s a l i n i t y of water a t 150 QG r e a c h e d an a n n u a l minimum.  m depth a t s t a t i o n  This probably r e f l e c t e d a combination  o f d i r e c t l o c a l r u n - o f f and t h e presence o f wind d r i v e n  convergence  o f f - s h o r e ( T a b l e I X ) . The T-S diagram showed temperature t o i n c r e a s e f a i r l y r a p i d l y w i t h i n c r e a s i n g s a l i n i t y from t h e s u r f a c e t o a d e p t h of 75 m, below which t h e r e was a s m a l l e r temperature i n c r e a s e .  Water  above and below t h i s depth was d e s i g n a t e d S u r f a c e (E'SFC) and Lower (E"TRANS), r e s p e c t i v e l y .  The T-S  c h a r a c t e r i s t i c s mentioned c o u l d a l s o  be d i s t i n g u i s h e d from regime T-S l i m i t s ( F i g . 1 8 ) . I n March, t h r e e regimes were r e c o g n i s e d from t h e T-S  diagrams.  From t h e s u r f a c e t o 20 m d e p t h , a temperature i n c r e a s e o c c u r r e d w i t h out a c o r r e s p o n d i n g s a l i n i t y change.  Water from 10 t o 75 m d e p t h  i n c r e a s e d i n s a l i n i t y w i t h a s m a l l temperature d e c r e a s e , w h i l s t between 100  and 150  m, temperature r o s e w i t h i n c r e a s i n g s a l i n i t y .  The t h r e e  segments of theTT-S l i n e were d e s i g n a t e d S u r f a c e (E'SFC), T r a n s i t i o n (E"TRANS), and Deep :(]E"*DEEP) r e g i m e s , r e s p e c t i v e l y . e r i s t i c s of each was i n d i c a t e d on the r e l e v a n t T-S-P I t i s i n t e r e s t i n g t h a t the s a l i n i t y o f water from 100  The T-S  charact-  diagram ( F i g . 19)« t o 150  m depth  i n c r e a s e d between F e b r u a r y and March, and t h a t Bakum's u p w e l l i n g i n d i c e s suggested a s w i t c h t o have o c c u r r e d between t h e two months from c o n d i t i o n s i n d u c i v e o f c o n s i d e r a b l e convergence t o s l i g h t d i v e r g e n c e ( T a b l e l"X-).  Inlet - general M i n i m a l f r e s h w a t e r r u n - o f f o c c u r r e d d u r i n g t h i s p e r i o d and a  28  F e b r u a r y s u r f a c e s a l i n i t y of JO.k stations.  t o 30.6°/oo was  recorded  In F e b r u a r y , a c o l d water regime extended from the  to depths of over 50  m (Fig. 5c).  T-S  l i n e s f o r the regime  i s t i c a l l y showed t h a t w i t h i n c r e a s i n g depth, t h e r e was  a  r e f l e c t e d by regime T-S  l i m i t s given i n F i g u r e 18.  March, the S u r f a c e regime was typical  of the i n l e t .  The  surface  character-  considerable  temperature i n c r e a s e but o n l y a s l i g h t r i s e i n s a l i n i t y . was  at a l l i n l e t  This trend However, i n  of lower s a l i n i t y and t h e r e f o r e , more diagram ( i n d i c a t e d i n F i g u r e 19)  T-S  20  t h a t w i t h i n c r e a s i n g depth t o a p p r o x i m a t e l y  or 30  m,  showed  only a  small  temperature r i s e accompanied a c o n s i d e r a b l e i n c r e a s e i n s a l i n i t y . d i f f e r e n c e between the two t o t a l freeze-up  months may  Inlet  have been caused by a p o s s i b l e  of the K l i n i k l i n i and F r a n k l i n r i v e r s ,  not be v i s i t e d a t t h a t time due  to a  which c o u l d  blizzard.  - outer basin As a l r e a d y d e s c r i b e d , the s l o p e of the S u r f a c e regime  p l o t s changed between February and l i n e was  i n f l e x e d near 150  m,  due  March.  d e s i g n a t e d B"TRANS.  At s t a t i o n Kn  water i n February, and p a r a l l e l t o those  The  the T-S  150  At the same time,  i n f l e x e d between 75  was  and  m.  l a t t e r regime  coordinates  warmer was  of 150  m  m water i n March, l a y a d j a c e n t  and  of B"TRANS regime of the same month and they were  included with i t .  m depth.  of 100  3,  T-S  However, i n both months, the  t o the presence of r e l a t i v e l y  and more s a l i n e water a t a depth of 200  a t 100  The  The  too s m a l l t o be  and 150  the T-S  l i n e a t s t a t i o n Kn  m by the occurrence  l a t t e r regime was observable  was  of a temperature minimum  designated  w i t h the s t a n d a r d  3  F TRANS. interval  The of  feature  isotherms  29  ( F i g . 3c),  used here  "but t h e r e g i m e was  i n c l u d e d s i n c e i t was  d e t e c t e d on t h e u p - i n l e t s i d e o f t h e s i l l T-S  ( F i g . 5c).  The  approximate  l i m i t s o f t h e a b o v e r e g i m e s w e r e g i v e n w i t h t h e T-S-P  (Fig.  diagrams  18). A t s t a t i o n Kn 3 i n M a r c h , a t e m p e r a t u r e maximum was  t h e T-S  p l o t a t 50  m depth.  observed  T h i s was f o u n d t o c o r r e s p o n d w i t h  n i t r a t e maximum a n d o x y g e n minimum on t h e i s o p l e t h p r o f i l e s The r e g i m e was basin section  on  a 3d).  (Fig.  d e s i g n a t e d G' a n d G"TRANS, a n d i s d i s c u s s e d i n t h e  inner  below.  Inlet - inner  basin  I n F e b r u a r y , an i n f l e c t i o n 200  also  o f T-S  l i n e s at approximately  m d e p t h s e p a r a t e d t h e d e e p warm h i g h s a l i n i t y a u t u m n  intrusion  r e g i m e G DEEP f r o m a c o o l e r a n d l e s s s a l i n e r e g i m e a b o v e , D TRANS. approximate s p a t i a l d i s t r i b u t i o n p l o t t i n g t h e T-S  o f t h e two r e g i m e s was  c o o r d i n a t e s on a l o n g i t u d i n a l s e c t i o n  determined ( F i g . 3 )« C  The by This  s h o w e d t h a t i n a d d i t i o n t o s e p a r a t i n g t h e S u r f a c e a n d Deep r e g i m e s , t h e D TRANS r e g i m e was i n l e t head  the only water present beneath the surface a t the  i n F e b r u a r y and March.  The r e g i m e ' s d i s t r i b u t i o n  i m a t e l y p a r a l l e l e d t h a t shown b y i s o p l e t h s o f h i g h n i t r a t e (Fig.  approx-  concentration  3c-d), which t h e r e f o r e s u g g e s t e d water which had been a t d e p t h  f o r some t i m e .  T h i s i n d i c a t e d t h a t t h e D TRANS r e g i m e was  probably  c o m p o s e d l a r g e l y o f o l d i n n e r b a s i n summer r e s i d e n t w a t e r .  I t appeared  t o be l e a v i n g t h e i n l e t a s a s u b - s u r f a c e f l o w w h i c h c o u l d be d e t e c t e d i n M a r c h a t a p p r o x i m a t e l y 50  m d e p t h by t h e o c c u r r e n c e of an  minimum, a n d n i t r a t e a n d t e m p e r a t u r e maxima ( F i g . 3d).  oxygen  The o u t f l o w  30  regime was  subdivided into upper (*G'TRANS ) and lower (G"TRANS) portions  on the basis of lower and higher s a l i n i t y , respectively.  The d i v i s i o n  probably had l i t t l e hydrographic significance, but was retained i n case the observed s a l i n i t y change was  of value in understanding plankton  distribution. In March, depths between the sub-surface outflow, G TRANS, and G DEEP regimes were occupied by a regime characterised by low  salinity,  temperature, and nutrients, and by a high oxygen content (Fig. 3d). The regime was  coded F TRANS when f i r s t detected i n February, close to  the inner s i l l i n both basins. for  From February u n t i l A p r i l , isopleths  the above four parameters i n the s i l l region of the inner basin  suggested the regime to have been l a r g e l y a mid-depth intrusion from the outer basin (Fig. 3c-e).  The T-S  coordinates i n March showed a  shallower portion (coded F'TRANS) to be cooler and l e s s saline than a deeper portion which had presumably been affected by the warmer and higher s a l i n i t y C DEEP regime below. T-S-P  T-S l i m i t s are given with the  diagram (Fig. 19).  Spring - A p r i l to June  1975  Queen Charlotte S t r a i t Surface, Transition, and Deep regimes were i d e n t i f i e d and coded E'SFC, E"TRANS, E"'DEEP, respectively.  They were distinguished according  to differences i n slope and position of T-S plots.  The actual differences  were not considered here, since they closely resembled those discussed e a r l i e r f o r the June data (see Procedures in Methods section and F i g . 4). T-S l i m i t s f o r the regimes were given on the relevant T-S-P  plots (Figs. 20-  31  22).  Nitrate concentration in the Surface regime f e l l during this  period, presumably as a result of phytoplankton activity (Figs. 3e gi _  10).  Throughout the spring, salinity.of the Deep regime steadily in-  creased whilst the oxygen content f e l l .  The latter two characteristics  indicated, respectively, the intrusion of water from an off-shore origin and from depths below those affected by surface phenomena. The occurrence of upwelling off the northern tip of Vancouver Island in April and June was indicated by Bakum's indices (Table IXa).  Inlet - general The suspended sediment load carried by the two major rivers began to increase between April and May, indicating the advent of glacial run-off. However, only the Franklin river was carrying large quantities of sediment by June (Table i ) .  Up-inlet surface salinity  began to f a l l as a result of the discharge, and low surface salinities were recorded at increasing distances from the inlet head between successive months (Fig. 3 g)» e-  The T-S and non-conservative property  characteristics of the low salinity Surface regimes (A SFC and A'SFC) were as described earlier for June 1975-  T-S limits were given for  regimes on the T-S-P diagrams (Figs. 20-22). The presence of high salinity water in Queen Charlotte Strait createdda density gradient across the outer s i l l .  Consequently, a high  salinity inflow occurred, illustrated, for example, by the appearance of a 31«2°/oo isohaline in the outer basin in April.  The disappear-  ance of the latter in May and June perhaps reflected off-shore conditions, since Bakum's indices indicated convergence to have occurred in May  32  ( P i g . 3 g! e_  Table I ) .  I n June, a d i p i n i s o h a l i n e s i n s i d e of the  inner  s i l l , and the appearance below the l a t t e r of a 31«2°/oo i s o h a l i n e , suggested t h a t by t h i s month some of t h e Queen C h a r l o t t e S t r a i t i n t r u s i o n had e n t e r e d the i n n e r b a s i n .  I n l e t - o u t e r and i n n e r b a s i n I n the o u t e r b a s i n t h r o u g h o u t t h e s p r i n g , T r a n s i t i o n (B"TRANS) and Deep (B"'DEEP) regimes c o u l d be d e t e c t e d beneath the s u r f a c e . were i d e n t i f i e d by a p p r o x i m a t e l y  t h e same T-S  c h a r a c t e r i s t i c s as  £.ulJbydfor the same regimes i n June (see Methods s e c t i o n ) . s i t u a t i o n was  complicated  minimum a t a p p r o x i m a t e l y  i n A p r i l by the occurrence  described  However, the  of a temperature  iOOm d e p t h , w h i c h extended f r o m u p - i n l e t , where  i t o c c u p i e d a c o n s i d e r a b l e volume of the i n n e r b a s i n ( F i g s . 3e> was  They  5e).  It  coded F' TRANS and a comparison w i t h i s o p l e t h p r o f i l e s f o r F e b r u a r y  and March i n d i c a t e d i t t o r e p r e s e n t t h e c o l d t r a n s i t i o n water which invaded months.  i n t e r m e d i a t e depths i n the i n n e r b a s i n between the l a t t e r  two  The p r e s e n c e of t h i s regime i n the o u t e r b a s i n i n d i c a t e d i t  t o have been f o r m i n g a s u b - s u r f a c e  outflow.  As d e s c r i b e d  earlier  w i t h the June d a t a , t h i s i n t e r p r e t a t i o n was r e i n f o r c e d by the  gradual  d i s a p p e a r a n c e of t h i s c o l d and h i g h oxygen c o n t e n t regime from t h e b a s i n between A p r i l and June. and d i f f u s i o n may  inner  However, l o s s o f i d e n t i t y t h r o u g h m i x i n g  a l s o have been p a r t l y r e s p o n s i b l e f o r the regime's  disappearance. A l l o t h e r i n n e r b a s i n water regimes were d i s t i n g u i s h e d by approxi m a t e l y the same T-S  and n o n - c o n s e r v a t i v e  d e s c r i b e d e a r l i e r f o r the June d a t a .  p r o p e r t y c h a r a c t e r i s t i c s as  I n summary, a warm water regime  33  (H'TRANS i n May, depths i n May 5f-g).  Low  and H*  and H"DEEP i n June) appeared a t  intermediate  n e a r the i n n e r s i l l and moved u p - i n l e t i n June ( F i g s .  n i t r a t e and h i g h oxygen c o n t e n t  3f-g,  i n t h e v i c i n i t y of t h e  sill  suggested a near s u r f a c e o r i g i n of the above regime, which was  thought  to  This  have i n t r u d e d from i n t e r m e d i a t e  i n t e r p r e t a t i o n was  depths i n the o u t e r b a s i n .  r e i n f o r c e d by the f a c t t h a t T-S  characteristics for  the B"TRANS o u t e r b a s i n regime d i f f e r e d c o n s i d e r a b l y between A p r i l May.  However, T-S  coordinates  i m a t e l y 7.0°G temperature and the same as those 20-21). was  The  of the l a t t e r regime i n A p r i l 3 1 ' l ° / ° s a l i n i t y ) was 0  (approx-  almost e x a c t l y  of t h e H'TRANS regime i n t h e i n n e r b a s i n i n May  d i v i s i o n of t h i s i n t r u s i o n i n t o two  and  (Figs.  regimes (H' and H"DEEP)  f u l l y d i s c u s s e d w i t h the June example above. Two  probably  sub-surface  down-inlet  f l o w s were thought t o have  as a r e s u l t of displacement  regime i n t r u s i o n .  caused by the a r r i v a l of the H'DEEP  F i r s t l y , and as d e s c r i b e d above, mid-depth ( t r a n s i t i o n )  p a r t s of the w i n t e r c o l d low down-inlet  occurred,  s a l i n i t y i n f l o w (F'TRANS) appeared t o f l o w  above the i n t r u s i o n , where i t c o u l d be r e c o g n i s e d as a temp-  e r a t u r e minimum on the i s o p l e t h p r o f i l e s and T-S-P  diagrams ( F i g s . 3g>  22).  Deeper p a r t s of the same regime moved u p - i n l e t , where the i s o p l e t h p r o f i l e s i n d i c a t e d the a r r i v a l of c o l d water i n March and A p r i l  (Figs.3§dee, 5<l-e).  However, i n s u c c e s s i v e months the l a t t e r regime became p r o g r e s s i v e l y more d i f f i c u l t t o r e c o g n i s e Some 1974  i n the u p - i n l e t l o c a t i o n ( F i g . 3f g)» -  i n n e r b a s i n water (D DEEP) c o u l d o n l y be t e n u o u s l y  t i f i e d near the i n l e t head i n A p r i l by T-S  l i n e slope c r i t e r i a .  I t then  became i n d i s t i n g u i s h a b l e from the w i n t e r formed regime d e s i g n a t e d G"TRANS i n A p r i l and May,  and  G TRANS i n June.  T h i s regime was  iden-  as  taken  34  to incorporate a mixture of a l l regimes drawn or displaced towards the inlet head.  It was i t s e l f displaced down-inlet at a depth of approx-  imately 50 m depth, as indicated by continuity of upwardly inclined isopleths near the inlet head, with isopleths of strong sub-surface oxygen minima and nutrient and temperature maxima (Figs. 3 g i 5e~g)« e -  The above characteristics reflected the probable isolation of the regime from surface processes (such as phytoplankton production and winter cooling) for some time.  In April, the above outflow could also  be recognised by an up-inlet sub-surface salinity maximum (Fig. 3e). A small volume of the autumn high salinity intrusion regime (C DEEP) remained below 300 m in the inner basin (Fig. 5e~g).  It could be recog-  nised on the T-S-Plplets by an envelope of relatively high temperature and salinity, the values of which (7«5°C temperature and 31«2°/oo salinity) were constant from month to month (Figs. 2 0 - 2 2 ) .  Spatial  distribution of this regime could similarly be determined from isopleths of the above temperature and salinity values (Fig. 3e-g).  Summer - July to September 1975 Queen Charlotte Strait Throughout the summer three regimes were identified according to approximately the same differences in T-S line slope as described for the June data. They were Surface (E'SFC), Transition (E"TRANS), and Deep (E DEEP). m  As in June, the latter was characterised by high  salinity and nutrient values, and low temperature and oxygen content. This suggested the continued presence of an intrusion from off-shore, where Bakum's indices indicated conditions were suitable for the  35  occurrence  o f upwelling.,(Table  IXa).  I n l e t - general As d e s c r i b e d f o r t h e June example above, t h e i n l e t  Surface  regime (A SFC) was c h a r a c t e r i s e d on t h e T-S p l o t s by v e r y low s a l i n i t i e s , which i n c r e a s e d r a p i d l y w i t h s m a l l c o r r e s p o n d i n g w i t h depth.  i n c r e a s e s i n temperature  Surface s a l i n i t y decreased i n the u p - i n l e t d i r e c t i o n t o l e s s  t h a n l°/oo a t s t a t i o n Kn 9 and 11 ( F i g . 3h), i n d i c a t i n g t h e combined importance o f t h e K l i n i k l i n i and F r a n k l i n r i v e r d i s c h a r g e s .  Table I  i n d i c a t e d t h a t b o t h r i v e r s c a r r i e d t h e i r maximum g l a c i a l suspended sediment l o a d i n J u l y , which was t h e r e f o r e p r o b a b l y a l s o t h e month o f g r e a t e s t water d i s c h a r g e .  The above t a b l e a l s o suggested t h a t c o n s i d -  e r a b l e g l a c i a l r u n - o f f p e r s i s t e d i n t o September. of c u m u l a t i v e  The monthly  suspended sediment i n t h e upper 50 m o f t h e i n l e t a l s o  s u g g e s t e d J u l y t o have been t h e month o f peak d i s c h a r g e The  estimates  ( F i g . 9h).  c o n t i n u e d presence o f h i g h s a l i n i t y water i n Queen C h a r l o t t e  S t r a i t c r e a t e d a d e n s i t y g r a d i e n t which extended a c r o s s b o t h s i l l s . The  g r a d i e n t was r e f l e c t e d by i s o h a l i n e d i s t r i b u t i o n s w h i c h , i n p r o f i l e s ,  s l o p e d g e n t l y downwards i n t h e u p - i n l e t d i r e c t i o n .  The e f f e c t o f t h e  i n t r u s i o n was w e l l i l l u s t r a t e d by t h e p r o g r e s s i v e o c c u p a t i o n  of the  deep i n n e r b a s i n by water o f s a l i n i t i e s g r e a t e r t h a n Jl.l°/oo ( F i g . 3 h - j ) . The  c l o s e s i m i l a r i t y i n ThS p r o p e r t i e s o f newly i n t r u d e d deep i n n e r  b a s i n water and water i n t h e o u t e r b a s i n a t s i l l d e p t h , was i n d i c a t e d i n August by t h e s e p a r a t e  c o d i n g o f a s m a l l regime a t t h e l a t t e r l o c -  a t i o n (B"/H TRANS) ( F i g s . 51, 2 4 ) .  36  Inlet - outer and inner basins Beneath the surface in the outer basin, Transition (B"TRANS) and Deep (B"'DEEP) regimes were recognised according to approximately the same differences in T-S line slope as observed and explained for the June data.  These differences were partly illustrated by the slope  of regime limits plotted on the T-S-P diagrams (Figs. 23-25).  In  addition to high salinity, the Deep regime was characterised by a high nitrate and low temperature and oxygen content (Fig. 3h-j")«  The spatial  limits of the new intrusion in the inner basin could be determined by following the up-inlet movement and surface climb of the 31*2 and isohalines in successive months (Fig. 3 h - j ) .  Jl.J°/oo  The division of this regime  into two parts (H' and H"'DEEP) according to a temperature difference was explained earlier with the June data.  In September, there was no  obvious separation between the T-S lines and only one Deep regime was recognised (H"'DEEP).  The lack of temperature separation was illustrated  by the close proximity of plankton sample depth T-S coordinates on the T-S-P diagram (Fig. 25).  It was interesting that on the T-S diagrams,  line slopes and coordinates of the H'"DEEP regime closely resembled those of the C and D'"DEEP regimes which occupied the same inner basin locality in October 1974  (Figs. 5 » j i 16, 25). a  This illustrated the  apparent cyclic nature of deep water renewal in Knight Inlet over the study period, and the role of high salinity, high density intrusions in determining the timing of the cycle. Summer 1974 G DEEP regime water could no longer be detected in the inner basin after June 1975 (Fig. 5g h). -  In the latter month, low  oxygen content isopleths climbed from the deepest .part of the basin  37  ( s t i l l o c c u p i e d "by t h e G i n l e t head ( F i g .  3g)«  DEEP  regime) t o a sub-surface depth near the  However, i n J u l y , t h e oxygen c o n c e n t r a t i o n a t  a l l deep d e p t h s had r i s e n c o n s i d e r a b l y , r e f l e c t i n g t h e a r r i v a l o f t h e new i n t r u s i o n (H' and  H  , , ,  DEEP),  i n t e r m e d i a t e d e p t h s ( F i g . 3h).  b u t an oxygen minimum had appeared a t T h i s i n d i c a t e d t h a t i n J u l y t h e new  i n t r u s i o n had u p l i f t e d (and p r o b a b l y a l s o p a r t l y mixed w i t h ) t h e p r e v i o u s l y r e s i d e n t u p - i n l e t regimes c h a r a c t e r i s e d by l o w oxygen high n i t r a t e content.  and  The f a t e of such " o l d " r e s i d e n t water appeared  t o be upward d i s p l a c e m e n t towards t h e i n l e t head r e g i o n , f o l l o w e d by a d o w n - i n l e t s u b - s u r f a c e f l o w ( a g a i n c h a r a c t e r i s e d by t e m p e r a t u r e and oxygen minima and a n i t r a t e maximum)((Fig.  3h-j).  T h i s water c o r r e s -  ponded t o t h e T r a n s i t i o n regime G TRANS p r e v i o u s l y d i s c u s s e d w i t h t h e June d a t a .  I n September,  t h e s a l i n i t y o f t h e above regime r o s e s l i g h t l y ,  p o s s i b l y due t o t h e i n c l u s i o n of more deep water u p l i f t e d f r o m below by t h e i n t r u s i o n .  To i n d i c a t e t h i s p o s s i b i l i t y  t h e regime was  coded  G/H*TRANS ( F i g s . 5 j , 25). In summary, t h e h y d r o g r a p h i c c i r c u l a t i o n o f K n i g h t I n l e t d u r i n g the  s t u d y y e a r was dominated a t t h e s u r f a c e by t h e summer o u t f l o w of  the  low s a l i n i t y g l a c i a l r u n - o f f , and a t d e p t h by t h e summer i n t r u s i o n  of h i g h s a l i n i t y water f r o m Queen C h a r l o t t e S t r a i t . s p i l l e d over t h e i n n e r s i l l ,  When t h e i n t r u s i o n  p r e v i o u s l y r e s i d e n t i n n e r b a s i n water  a p p a r e n t l y u p l i f t e d , and l e f t t h e i n l e t as a s u b - s u r f a c e o u t f l o w ,  was The  c h i e f cause o f deep w a t e r r e n e w a l was t h e r e f o r e t h e summer appearance of h i g h s a l i n i t y w a t e r i n Queen C h a r l o t t e S t r a i t .  The o n l y l i k e l y  s o u r c e of such w a t e r was from u p w e l l i n g and, s i n c e t h e l a t t e r i s t o a g r e a t e r o r l e s s e r degree an a n n u a l event (Bakum 1973)» i t i s p r o b a b l e  38  t h a t a t l e a s t some exchange o f deep water o c c u r s every y e a r i n K n i g h t Inlet. A s u b - h a l o c l i n e i n f l o w , compensating  f o r e n t r a i n m e n t , was n o t  observed a l t h o u g h s a m p l i n g methods employed were p r o b a b l y i n a p p r o p r i a t e for i t s detection. and Rodgers (1959).  Such a f l o w was d e t e c t e d i n t h e i n l e t by P i c k a r d T h e i r measurements were t a k e n i n J u l y n e a r  Kn 3 and 5 u s i n g Ekman c u r r e n t meters and Chesapeake d r a g s . 1974 and i n A p r i l and September 1975,  stations  I n October,  a sub-surface c h l o r o p h y l l a  maximum extended u p - i n l e t a t between 5 and 10 m depth i n t h e i n n e r b a s i n ( F i g . 10).  T h i s corresponded t o t h e depth o f P i c k a r d and Rodger's  estuarine Inflow.  I n October and i n September, t h e c h l o r o p h y l l a max-  imum was u n l i k e l y t o have been produced a t t h e o o b s e r v e d l o c a l i t y , s i n c e t h e o v e r l y i n g s u r f a c e o u t f l o w l a y e r was v e r y t u r b i d w i t h g l a c i a l suspended sediment, and t h e S e c c h i depth was l e s s than 0.25 m.  The  most p r o b a b l e e x p l a n a t i o n f o r t h e maximum was, t h e r e f o r e , t h e u p - i n l e t a d v e c t i o n o f p h y t o p l a n k t o n from a d o w n - i n l e t l o c a t i o n by a s u b - h a l o c l i n e estuarine flow.  ( i i i ) D i s t r i b u t i o n o f c h l o r o p h y l l a , suspended s e d i m e n t s , and n i t r a t e An approximate  index of phytoplankton standing stock d i s t r i b u t i o n  was p r o v i d e d by t h e c h l o r o p h y l l a p r o f i l e s ( F i g . 10).  However, t h i s  parameter does n o t i n d i c a t e p r i m a r y p r o d u c t i o n (e.g. S t o c k n e r and C l i f f 1976).  The c u m u l a t i v e p l o t s ( F i g . 9a) i n d i c a t e d t h a t t h e s p r i n g  i n c r e a s e i n c h l o r o p h y l l a began a t u p - i n l e t s t a t i o n s i n F e b r u a r y ( e . g . s t a t i o n s Kn 7> 9> and 11) b u t was d e l a y e d u n t i l March a t l o c a t i o n s n e a r t h e i n l e t mouth (and i n Queen C h a r l o t t e S t r a i t , F i g . 10).  This  39  trend was a l s o observed i n terms of primary production i n Howe Sound and was a t t r i b u t e d t o e a r l i e r water column s t a b i l i t y being a t t a i n e d i n more sheltered c o n d i t i o n s , and under the i n f l u e n c e of a small amount of r i v e r r u n - o f f (Stockner et a l .  1977).  The l a t t e r authors  a l s o found highest production a t s t a t i o n s near the mouth of Howe Sound, which they explained as being due t o a combination of optimal thermal s t r a t i f i c a t i o n , entrainment of n u t r i e n t s through estuarine c i r c u l a t i o n , and freedom from the t u r b i d i t y of the Sq.uamish r i v e r .  These c r i t e r i a  were probably a l s o responsible f o r the occurrence i n the present study of higher c h l o r o p h y l l a concentrations a t s t a t i o n s Kn 1 and 3 than observed e i t h e r i n Queen Charlotte S t r a i t , or i n the inner basin (Figs. 9a, 10). L i t t l e c h l o r o p h y l l a was present a t u p - i n l e t s t a t i o n s Kn 9 and 11 a f t e r J u l y when water c a r r y i n g a high suspended sediment load was recorded i n both the F r a n k l i n and K l i n i k l i n i r i v e r s (Table I(). The absence of an autumn peak i n c h l o r o p h y l l a concentration a t s t a t i o n Kn 11 seemed t o be almost d i r e c t l y r e l a t e d to the presence of suspended sediment, since as the l a t t e r decresed down-inlet, the former increased.  At the time of g l a c i a l r u n - o f f , r i v e r suspended sediments  were i n i t i a l l y r e t a i n e d i n the u p - i n l e t low s a l i n i t y surface outflow ( F i g . 8 ) . Transmissometer studies i n Bute I n l e t by P i c k a r d and Giovando  (i960) and i n  Hardangerfjord by Aarthun  (l96l)  similarly  found highest t u r b i d i t y i n surface waters a t the ftjord head.  In add-  i t i o n t o reducing the t o t a l amount of r a d i a t i o n a v a i l a b l e f o r photosynthesis, Aarthun a l s o noted a s i g n i f i c a n t s p e c t r a l s h i f t i n t r a n s mitted l i g h t towards the red, away from that u t i l i s a b l e by phytoplankton. P r i o r t o the present study, l i t t l e time s e r i e s information was  40  available  on t h e d i s t r i b u t i o n o f n i t r a t e and phosphate i n t h e f j o r d s  of B r i t i s h Columbia.  In the following d i s c u s s i o n , only n i t r a t e s  will  be c o n s i d e r e d , s i n c e t h e d i s t r i b u t i o n s o f n i t r a t e s and phosphates were a l m o s t i d e n t i c a l i n t h e K n i g h t I n l e t Nitrate  study.  c o n c e n t r a t i o n i n t h e e u p h o t i c zone p r o b a b l y n e v e r l i m i t e d  p h y t o p l a n k t o n p r o d u c t i o n i n t h e i n l e t ( F a l k o w s k i and Stone 1975). When l o w l e v e l s were observed,  i t was i n t h e h i g h l y t u r b i d l o w s a l i n i t y  water a t t h e i n l e t head, when l i g h t l i m i t a t i o n would have .been t h e most important f a c t o r .  N u t r i e n t d e p l e t i o n i n t h e e u p h o t i c zone was p r o b a b l y  p r e v e n t e d by t h e e n t r a i n m e n t  o f n i t r a t e f r o m below.  The most s t r i k i n g f e a t u r e on t h e i s o p l e t h p r o f i l e s o f n i t r a t e (Fig.  3 ^ j ) was t h e o c c u r r e n c e o f h i g h v a l u e s i n deep i n n e r b a s i n water a  and n e a r t h e i n l e t head.  T h i s c o u l d have r e s u l t e d  source o r from r i v e r r u n - o f f .  f r o m e i t h e r a marine  The K l i n i k l i n i and F r a n k l i n r i v e r s b o t h  c a r r i e d water o f g l a c i a l o r i g i n , and were n o t c h a r a c t e r i s e d by a h i g h o r g a n i c l o a d (Lewis 1976).  However, Chalk and Keenay (1971) found  t h a t normal w e a t h e r i n g p r o c e s s e s r e l e a s e d s o l u b l e n i t r a t e and ammonium from l i m e s t o n e s .  T h i s mechanism was concluded by A p p o l l o n i s (1973) t o  have been r e s p o n s i b l e f o r t h e h i g h n i t r a t e c o n t r i b u t i o n o f g l a c i a l melt water i n an a r c t i c f j o r d . information available Franklin  However, a l t h o u g h t h e r e was no a b s o l u t e  on t h e u n d e r l y i n g geology o f t h e K l i n i k l i n i and  i c e f i e l d s , t h e two r i v e r s d i d n o t appear t o have c o n t r i b u t e d  l a r g e amounts o f n i t r a t e i n t h e p r e s e n t s t u d y (Table I ) . A l t e r n a t i v e l y , a more p r o b a b l e e x p l a n a t i o n i s t h a t t h e i n n e r b a s i n n i t r a t e s were o f a marine o r i g i n , and t h a t t h e observed h i g h v a l u e s were a p r o d u c t o f i n l e t c o u n t e r c u r r e n t c i r c u l a t i o n .  According t o t h i s  41  scheme, nitrate would have entered the fjord either by estuarine c i r culation or with the deep basin exchange.  Entrainment into the euphotic  zone would have occurred, followed by phytoplankton uptake.  Little  production was expected in the inner basin, due to the high turbidity of glacial run-off.  In the outer basin, chlorophyll levels indicated  possible production near the surface from late spring until early autumn. Assimilation and excretion by vertically migrating herbivores, together with phytoplankton sinking, could have transported much of this material to deeper depths.  Remineralisation would then have  taken place in the deep intruding water mass, giving an accumulation of dissolved material in the deep inner basin.  Nitrate and phosphate  concentrations were seen to rise at this location during autumn and winter. Regeneration of both nitrate and phosphate is an oxidative process. Therefore, assuming a constant elemental atomic ratio for phytoplankton ( G r i l l and Richards 1964), the regeneration of nutrient in a water mass can be predicted from the amount of oxygen consumed or apparent oxygen utilisation (A.O.U.).  This technique, developed by Redfield  et a l . (1963), was applied to the data.  Temperature and salinity were  used to characterise constituent water types of the intruding water mass during occupancy of the outer basin.  Changes in nutrient and  0-xygen concentration were then noted as the water types intruded the inner basin.  Nitrate regeneration (NO^ox) expected from the observed  A.O.U. was then calculated from Redfield's equation, NO^ox =  0.058  with a l l units expressed as ug a t / l .  A.O.U. The relationship'between the  42  o b s e r v e d n i t r a t e r e g e n e r a t i o n and A.O.U. c l o s e l y a p p r o x i m a t e d R e d f i e l d * s equation  ( F i g . 7).  T h i s s u p p o r t e d the e x p l a n a t i o n g i v e n h e r e , t h a t h i g h  n u t r i e n t c o n c e n t r a t i o n s i n the i n n e r b a s i n r e s u l t e d f r o m t h e o x i d a t i o n o f o r g a n i c m a t e r i a l c a r r i e d by the i n t r u d i n g water mass.  43  COPEPOD DISTRIBUTIONAL ECOLOGY  MATERIALS AND METHODS (a) Data c o l l e c t i o n and p r e l i m i n a r y a n a l y s i s ( i ) F i e l d procedure T h i s t h e s i s d e s c r i b e s an a t t e m p t t o compare a f j o r d community with s p a t i a l d i s t r i b u t i o n of environmental v a r i a b l e s .  This required  c o l l e c t i o n o f d i s c r e t e z o o p l a n k t o n samples over a v e r t i c a l l y depth r a n g e .  H o r i z o n t a l tows were t a k e n u s i n g m o d i f i e d  openin'g/closing samplers ( C l a r k e and Bumpus 1950; 1957)«  stratified  Clarke-Bumpus  P a q u e t t e and F r o l a n d e r  Each n e t had a mouth a p e r t u r e o f 12 can and was f i l l e d w i t h a n e t  o f number 2 mesh (mesh s i z e : 350 urn). 9, and 11 were sampled. 300, and 500 m.  S t a t i o n s QC, and Kn 1, J, 5» 7,  S t a n d a r d depths were 5» 10, 30, 50, 100, 200,  Where t h e i n l e t was s h a l l o w e r t h a n 500 m, t h e deepest  sample c o i n c i d e d w i t h t h e deepest h y d r o g r a p h i c sample depth.  A l l depths  were a p p r o x i m a t e , and were c a l c u l a t e d from w i r e a n g l e r e a d i n g s (see Woodhouse 197l)«  I n w i n t e r , sea c o n d i t i o n s f r e q u e n t l y put the 5 m  sampler i n danger o f b e i n g broken a g a i n s t t h e s h i p ' s h u l l , and i t was o f t e n o m i t t e d from t h e s e r i e s . simultaneously.  A t each s t a t i o n , a l l depths were sampled  Open n e t s were towed a t a s u r f a c e speed o f a p p r o x i m a t e l y  two k n o t s f o r a p e r i o d o f f i f t e e n minutes.  A c a l i b r a t e d flowmeter f i t t e d  i n t h e a p e r t u r e o f each n e t a l l o w e d samples t o be s e m i - q u a n t i t i v e (see Mc Hardy 1 9 6 l ) .  I m m e d i a t e l y a f t e r c o l l e c t i o n , each sample was t r a n s -  f e r r e d t o an e i g h t - o u n c e g l a s s b o t t l e , and p r e s e r v e d I n a b o r a x b u f f e r e d f o r m a l i n - s e a w a t e r s o l u t i o n ( a p p r o x i m a t e l y 5% f o r m a l i n : s e a w a t e r ) .  44  ( i i ) Laboratory procedure Each sample was transferred to a number of plastic petri dishes with 5  m m  square grids etched on the lower surface.  examined under a Wild M5 dissecting microscope.  Each dish was  A l l large organisms  (including Gopepoda of length in excess of 3 mm) were identified, removed and counted, by systematically working through the grid. were examined.  The same procedure was followed for successively smaller  size ranges of organisms to be counted.  A l l dishes  Numerically dominant species were the last  When the number of a species in a whole sample appeared  in excess of 400, the sample was recombined and sub-sampled using a Folsom splitter (McEwen, Johnson and Folsom 1954). The model used theoretically divided a sample into four equal aliquots, only one of which was examined.  The only taxon which ever required sub-sampling  mor than once per sample was the Gladocera. No material was discarded. The calibrated net flowmeter readings were used to convert the counts for each species to number per cubic meter of water filtered. As far as possible, a l l holoplanktonic forms of the Mollusca, Polychaeta, Crustacea, Chaetoghatha, Thaliacea and Appendicularia were counted and identified at the species level.  Calanoid copepods were  indisputably dominant both numerically and in terms of species diversity.  As far as possible, they were counted at the sexed copepodite  (instar) level.  ( i i i ) Discussion and evaluation of procedures Sampling gear One of the most d i f f i c u l t and largely unresolved problems encountered in biological oceanography i s that of estimating how accur-  45  ately a series of net derived samples reflects the real distribution of plankton (see Sameoto 1975)•  Difficulties arise both from the con-  tagious nature of plankton distributions, and from active avoidance of the net.  Unfortunately, the literature i s often contradictory concerning  the latter.  For example, G i l f i l l a n (in Clutter and Anraku 1968) analysed  samples of Euphausiacea, Calanus, and Euchaeta collected with different nets and over a variety of towing speeds.  He concluded that larger  animals were more successful at net avoidance than small animals, and supported the belief that nets with a larger aperture are more efficient than nets with a small aperture. However, Barnes and Tranter (1965) found no difference in avoidance between the Indian Ocean standard net (diameter 113 em) and the Clarke-Bumpus sampler (diameter 12 cm). Avoidance presumably involves a zooplanktor sensing the approach of a net in some way or of being displaced from the net's path (Clutter and Anraku 1968). Hence a net with a free opening should be the most efficient.  Gardner (1976) pointed out that this i s not a feature of  the Clarke-Bumpus sampler, which carries a good deal of metalwork. A mathematical model of net avoidance by Laval (1974) indicated an exponential decrease in avoidance with increasing net speed, and l i t t l e reduction in copepod avoidance at speeds above 150 cm sec \ He concluded that a majority of Acartia clausi Giesbrecht and Paracalanus parvus Claus could avoid a 45 cm diameter net towed at 30 cm sec Assuming complete acceptance of water by the Clarke-Bumpus samplers used in the present study, estimates derived from flowmeter readings indicated that net velocities normally f e l l between 73•5 and 147.0 cm sec \ An  An additional source of error results from selectivity by net mesh  46  size.  S m a l l organisms a r e o b v i o u s l y l o s t t h r o u g h a l a r g e mesh, b u t  s m a l l meshes a r e v u l n e r a b l e t o c l o g g i n g .  Smith e t a l . (1968)  found  333 p i t o be t h e s m a l l e s t mesh s i z e capable o f m a i n t a i n i n g a h i g h f i l t r a t i o n e f f i c i e n c y throughout a f i f t e e n minute tow.  I n the present  s t u d y , tows were o f f i f t e e n minutes d u r a t i o n , a n d a 350 urn mesh s i z e was used.  However, t h e e f f e c t o f c l o g g i n g would o b v i o u s l y have v a r i e d  w i t h ambient p l a n k t o n c o n c e n t r a t i o n ( p a r t i c u l a r l y p h y t o p l a n k t o n ) .  A  l i t e r a t u r e s u r v e y i n d i c a t e d t h a t a 350 urn mesh s h o u l d have r e t a i n e d most a d u l t c a l a n o i d copepods c o n s i d e r e d h e r e , w i t h t h e e x c e p t i o n o f M i c r o c a l a n u s pygmaeus. F i n a l l y , v a r i a t i o n between r e p l i c a t e samples c o u l d have r e s u l t e d from t h e p l a n k t o n i t s e l f , t h a t i s , i t s t y p e o f s t a t i s t i c a l ( C a s s i e 1962, 1963i and 1968).  The problem  distribution  o f p l a n k t o n p a t c h i n e s s and  i t s r e l a t i o n t o s a m p l i n g e r r o r has been s t u d i e d by Wiebe and H o l l a n d (1968).  They surveyed t h e l i t e r a t u r e r e p o r t i n g on r e p l i c a t e tows, and  c a l c u l a t e d a s e r i e s o f 95% c o n f i d e n c e l i m i t s a p p l i c a b l e f o r an i s o l a t e d replicate.  The c o n f i d e n c e l i m i t s v a r i e d g r e a t l y and were  o f t h e n e t t y p e employed.  independent  I n a n o t h e r i n v e s t i g a t i o n o f r e p l i c a t e tows,  Wiebe (>1972) found t h a t i n c r e a s e d tow l e n g t h r e s u l t e d i n a l a r g e r r e d u c t i o n i n sampling e r r o r ( i n c r e a s e d p r e c i s i o n o f r e p l i c a t e s ) than d i d a corresponding increase i n net diameter filtered).  ( i n terms o f water volume  Long tow l e n g t h s a r e u s u a l l y o n l y f e a s i b l e a s h o r i z o n t a l  or oblique hauls.  P a r k e r e t a l . - (19?6) used v e r t i c a l h a u l s t o i n v e s t -  i g a t e p l a n k t o n biomass v a r i a t i o n i n a B r i t i s h Columbia f j o r d .  Consider-  a b l e v a r i a t i o n between h a u l s was encountered and t h e a u t h o r s recommend a s e r i e s o f d i s c r e t e h a u l s a t d i f f e r e n t depths t o s o l v e t h e  problem.  47  T h i s emphasises t h e a t t r a c t i v e n e s s o f t h e Clarke-Bumpus sampler. Despite the l i m i t a t i o n s r e f e r r e d t o e a r l i e r , i t i s e a s i l y handled, s e v e r a l can be used s i m u l t a n e o u s l y t o g i v e a s e r i e s o f v e r t i c a l l y  dis-  c r e t e samples, and t h e sample i t s e l f i s an i n t e g r a t e d sample o f a l l p l a n k t o n patches which l a y i m m e d i a t e l y i n t h e n e t ' s p a t h .  As c o n c l u d e d  hy Gardner (1976), t h e Clarke-Bumpus sampler towed h o r i z o n t a l l y seems t o remain one o f t h e "best n e t s a v a i l a b l e f o r t h e s t u d y o f v e r t i c a l distribution.  S t a t i s t i c a l e s t i m a t e o f sample v a r i a b i l i t y A l t h o u g h t h e e r r o r o f an e s t i m a t e p r o v i d e d by a s i n g l e p l a n k t o n sample can t h e o r e t i c a l l y be e s t i m a t e d by r e p l i c a t i n g t h e sample, t h i s i s d i f f i c u l t t o achieve i n p r a c t i c e (Cassie of s a m p l i n g a p a t c h y environment  1968). The l o g i s t i c s  i n a moving medium, from a moving  p l a t f o r m , and w i t h n e t s o f v a r y i n g e f f i c i e n c y , makes i t almost i m p o s s i b l e to obtain true replicates.  However, I have t r i e d t o o b t a i n an approx-  imate e s t i m a t e o f sample e r r o r i n v o l v e d i n t h e K n i g h t I n l e t s t u d y . s t a t i s t i c a l procedure f o l l o w e d was t h a t o f C a s s i e (1962).  The  I n September,  19751 two s e r i e s o f r e p l i c a t e tows were t a k e n a t s t a t i o n Kn 9» one a t a depth o f 10 m and t h e o t h e r a t 350 m. depth.  The same n e t was used a t each  To the l i m i t s o f n a v i g a t i o n , a l l tows were i n t h e same d i r e c t i o n  and f o l l o w e d t h e same tow p a t h .  The s a m p l i n g p e r i o d was o f t h r e e h o u r s  d u r a t i o n and d i d n o t i n c l u d e a change o f t i d e (see Sameoto samples were c o l l e c t e d i n d a y l i g h t h o u r s .  1975).  A l l  Other p r o c e d u r e s were  s t a n d a r d t o t h e methods used t h r o u g h p u t t h i s s t u d y .  I n the l a b o r a t o r y ,  o n l y t h e copepod c o n t e n t was i d e n t i f i e d and counted.  Procedure was a s  48  o u t l i n e d e a r l i e r , e x c e p t t h a t a l l i n d i v i d u a l s were counted  (no s u b -  s a m p l i n g ) and no attempt was made t o d i s t i n g u i s h between c o p e p o d i t e s of t h e same s p e c i e s . R e s u l t s a r e g i v e n i n Table I I . A l l n o t a t i o n i s from G a s s i e and E l l i o t t ( l 9 ? l ) .  The c o e f f i c i e n t o f v a r i a t i o n  compare t h e r e l a t i v e v a r i a b i l i t y o f r e p l i c a t e s .  (1962)  (Gy)ccanbhe .usedtto -i  I t i s a term a p p l i e d  t o t h e sample s t a n d a r d d e v i a t i o n ( s ) when e x p r e s s e d a s a percentage of t h e sample mean (m). A c c o r d i n g t o G a s s i e for  (1963) t h e c o e f f i c i e n t  p l a n k t o n o f t e n has a v a l u e between 22 and 44%, a l t h o u g h h i g h e r  values are not rare.  The e s t i m a t e s o f V shown i n Table I I g e n e r a l l y  f e l l w i t h i n t h e range quoted by G a s s i e .  E x c e p t i o n s tended t o be  t h o s e s p e c i e s f o r which t h e t o t a l number o f i n d i v i d u a l s counted ( E x i ' ) was  small.  An i n t e r e s t i n g f e a t u r e was a tendency f o r t h e c o e f f i c i e n t  t o have a l o w v a l u e f o r s p e c i e s found i n l a t e r a n a l y s i s t o be i n h a b i t a n t s o f deep .water.  F o r example, Heterorhabdus  M e t r i d i a o k h o t e n s i s B r o d s k i i , Scaphocalanus  tanneri Giesbrecht,  b r e v i c o r n i s S a r s and  Spinocalanus brevicaudatus B r o d s k i i . The l o g a r i t h m i c c o e f f i c i e n t o f v a r i a t i o n ( V ) can be s i m i l a r l y used t o compare v a r i a b i l i t y o f r e p l i c a t e s (Winsor and C l a r k e  1940).  I t was c a l c u l a t e d here from d a t a t r a n s f o r m e d t o l o g - ^ ( x + l ) , where x - a r e p l i c a t e s p e c i e s count.  T h i s t r a n s f o r m a t i o n has been w i d e l y  used f o r t h e l o g n o r m a l i s i n g o f p l a n k t o n d i s t r i b u t i o n s ( G a s s i e  1968).  I t a l s o appeared a p p r o p r i a t e a f t e r c o n s i d e r a t i o n o f t h e v a r i a n c e t o mean r a t i o ( E l l i o t t 1971) and a l l o w e d t h e i n c o r p o r a t i o n o f z e r o counts. Gassie  (1968) has argued t h a t use o f V* makes sense i n t u i t i v e l y , s i n c e  t h e b i o l o g i c a l v a r i a b i l i t y r e s u l t i n g from v a r i a t i o n s i n b i o l o g i c a l and  49  p h y s i c a l p r o c e s s r a t e s i s more l i k e l y t o be r e f l e c t e d by a m u l t i p l i c a t i v e f a c t o r than an a d d i t i v e one. Transformed d a t a were used t o e s t i m a t e 95% c o n f i d e n c e l i m i t s t o t h e d i s t r i b u t i o n o f sample counts  ( a f t e r Winsor and C l a r k e 1940; C a s s i e  1962). These i n d i c a t e d , f o r example, t h a t 95% o f a l l o b s e r v a t i o n s o f Calanus m a r s h a l l a e F r o s t a t 10 m depth would have been e x p e c t e d t o f a l l w i t h i n t h e range I.69 t o 4.58.  None o f t h e l i m i t s were s e p a r a t e d  by more than one o r d e r o f magnitude, o n l y v a l u e s g r e a t e r than which were c o n s i d e r e d t o r e p r e s e n t e f f e c t s o t h e r t h a n s a m p l i n g by Marlowe and M i l l e r (1975).  T h e i r r e p l i c a t e s were, however, s e p a r a t e d  by a g r e a t e r t i m e i n t e r v a l than used i n t h e p r e s e n t The  variability  case.  s t a t i s t i c s r e p o r t e d h e r e r e f e r o n l y t o one s t a t i o n , a t one  t i m e , and a r e r e s t r i c t e d t o two depths.  However, a l t h o u g h n o t s u i t a b l e  f o r d i r e c t use i n l a t e r a n a l y s i s , t h e y do p r o v i d e a measure o f sample variability.  L a t e r d a t a a n a l y s i s was concerned  primarily with  presence/  absence i n h y d r o g r a p h i c regimes r a t h e r than samples, and o n l y w i t h g r o s s r e l a t i v e changes i n a b s o l u t e numbers.  F o r t h i s , the sampling  t e c h n i q u e d e s c r i b e d appeared adequate.  •Sub-sampling e r r o r T h i s procedure population s t a t i s t i c .  adds a n o t h e r source o f v a r i a n c e t o t h e  However, V e n r i c k (1971) concluded t h a t i f an  e s t i m a t e o f p o p u l a t i o n abundance i s r e q u i r e d , i t i s advantageous t o t a k e a l a r g e sample, t h e r e b y r e d u c i n g t h e f i e l d v a r i a n c e , and then t o sub-sample.  I n t h e p r e s e n t s t u d y , I sub-sampled o n l y when t h e  t o t a l count f o r a s p e c i e s appeared i n excess o f 400 i n d i v i d u a l s .  This  50  was a more c o n s e r v a t i v e l i m i t t h a n u s u a l l y f o u n d i n t h e l i t e r a t u r e . For  example, Marlowe and M i l l e r (1974) c o n s i d e r e d t h i r t y  t o be a r e a s o n a b l e sub-sample The e r r o r i n sub-sample  individuals  count. volume produced by t h e Folsom  used here was i n v e s t i g a t e d by Gardner d i v i s i o n and t r a y produced a sub-sample  (1972).  He f o u n d o n l y one  volume which c o n s i s t e n t l y  f a i l e d t o d e v i a t e s i g n i f i c a n t l y from 25% o f t h e o r i g i n a l . was used t h r o u g h o u t t h e p r e s e n t s t u d y .  Splitter  I n o r d e r t o check  This tray performance  of t h e s p l i t t e r i n terms o f p l a n k t o n c o n c e n t r a t i o n s a c t u a l l y p r e s e n t e d t o i t , I counted i n d i v i d u a l l y a l l Fseudocalanus e l o n g a t u s Boeck o c c u r r i n g i n f i v e samples.  Each was then sub-sampled  o u t l i n e d i n Table I I I .  a c c o r d i n g t o t h e procedure  R e s u l t s were s u b j e c t e d t o a C h i squared a n a l y s i s , '  and a r e g i v e n i n T a b l e I I I .  Copepod  identification  S e v e r a l d i f f i c u l t i e s were e n c o u n t e r e d .  Published descriptions  commonly concern o n l y t h e a d u l t s t a g e and, i n some c a s e s , a r e c o n f i n e d o n l y t o one sex.  W h i l s t t h i s may be t a x o n o m i c a l l y sound, i t i s u n f o r t -  unate f o r t h e e c o l o g i s t , s i n c e t h e a d u l t i s o f t e n s h o r t - l i v e d .  Indeed,  f o r many s p e c i e s i t i s t h e f i f t h c o p e p o d i t e w h i c h i s most f r e q u e n t l y encountered.  Furthermore, a r e l i a b l e r e f e r e n c e f o r the i d e n t i f i c a t i o n  of Noritheast P a c i f i c Copepoda i s n o t a v a i l a b l e .  The p r e s e n t s t u d y  r e l i e d h e a v i l y on B r o d s k i i (1950) and on o r i g i n a l d e s c r i p t i o n s .  Unfort-  u n a t e l y , t h e l o c a l marine f a u n a were l a r g e l y o v e r l o o k e d by t h e l a t e n i n e t e e n t h and e a r l y t w e n t i e t h c e n t u r y t a x o n o m i s t s . l o c a l forms have tended t o be named a f t e r A t l a n t i c  Consequently, congeners, b u t when  examined by a competent t a x o n o m i s t , many have been r a i s e d t o a new s p e c i e s  51  status.  T h i s has t e e n i l l u s t r a t e d by t h e work o f Park on G a i d i u s (1965).  Gaetanus  (1975) and E u c h i r e l l a (1976); and o f B r a d f o r d on A e t i d i u s  (1971) and A c a r t i a (1976). S h o r t r e v i e w s o f t h e problem c o n c e r n i n g Euchaeta have been g i v e n by Evans Frost  (1973) and c o n c e r n i n g Galanus by  (1974) and Gardner (1976). F i n a l l y , complete d e s c r i p t i o n s o f a l l c o p e p o d i t e  a v a i l a b l e i n t h e l i t e r a t u r e f o r o n l y a few s p e c i e s .  stages a r e This necessitated  the c o m p i l a t i o n o f a copepodite r e f e r e n c e c o l l e c t i o n f o r s e v e r a l species considered i n t h i s  study.  52  ("b) Data descriptive analysis (i) Objectives The zooplankton data analysis was designed to help answer the following questions concerning copepod distribution over an annual cycle in Knight Inlet. (1) Could patterns of distribution be identified?  In other words, could  species be grouped according to similarities and differences i n spatial and temporal occurrence? (2) Did inter-specific differences in l i f e history composition indicate that some species could maintain their inlet population by reproduction, whilst others relied on recruitment by immigration from elsewhere. (3) Did important intra-specific differences in l i f e history composition occur with depth or along inlet length?  For example, was the reprod-  uction of some species apparently restricted to the outer basin, and vice versa? (4) Could any features of distribution and l i f e history composition, identified by the three previous questions, be related to variation in the inlet's physical and biotic environment? Hydrographic circulation, water property distribution, phytoplankton- abundance?;. and the glacial ;  run-off nature of the inlet were probably the most important environmental variables. (5) Did copepods characteristics of an off-shore fauna ever appear in high salinity intrusions entering via Queen Charlotte Strait? what was their fate?  If so,  53  ( i i ) Procedures Monthly profiles of species presence/absence The monthly distribution of each copepod species was plotted under a presence/absence criteria on diagramatic longitudinal profiles of the study area. explanation.  The method was simple and requires l i t t l e  Plots were combined to group those species showing  similarities of distribution. incorporated. grouped.  Estimates pf abundance were i n i t i a l l y  However, these were d i f f i c u l t to handle when species were  The presence/absence criteria was then adopted and found by  comparison with abundance plots to adequately indicate patterns of distribution.  Abundance data were retained, and used in the study  of population structure described below. The plots were intended to provide information for'objectives 1 and 5 concerning both recognition and behaviour of distribution patterns.  They could also contribute to objective 4 concerning envir-  onmental association, i f compared with longitudinal profiles of individual hydrographic and environmental variables, or with the presumed circulation and regime distribution, derived from hydrographic analysis.  Monthly l i f e history composition Plots were made of the monthly l i f e history composition of a l l common copepods found in Queen Charlotte Strait and Knight Inlet samples.  The water column was divided into "Surface", "Transition",  and "Deep" categories, according to the nature of regimes identified in the hydrographic analysis.  The mean abundance of each copepodite  stage (instar) occurring in a given regime category was plotted as  54  numbers p e r c u b i c meter o f water f i l t e r e d .  S t a t i o n s were s e l e c t e d f o r  a n a l y s i s a c c o r d i n g t o t h e d i s t r i b u t i o n o f each s p e c i e s .  I f common at-  a l l l o c a t i o n s ( f o r example, Pseudocalanus e l o n g a t u s and Galanus marshallae), a separate entative stations.  s e r i e s o f p l o t s was made f o r up t o f o u r r e p r e s -  These were u s u a l l y s t a t i o n s QC, Kn 3» 7> n d 11. a  Data from s t a t i o n Kn 9 were s u b s t i t u t e d f o r m i s s i n g s t a t i o n Kn 11 d a t a f o r F e b r u a r y 1975-  Gentropages m c m u r r i c h i W i l l e r y , P a r a c a l a n u s  p a r v u s and Eucalahus b u n g i b u n g i Johnson were o n l y r e c o r d e d  i n low  numbers.  I n t h i s case, t h e mean abundance o f each copepodite  estimated  i n a g i v e n water c a t e g o r y f r o m a w e l l d e f i n e d g e o g r a p h i c  or hydrographic  r e g i o n (e.g. t h e i n l e t o u t e r ) b a s i n ) .  r e c o r d s a l s o meant t h a t o n l y p e r cent c o m p o s i t i o n c o u l d be used f o r E u c a l a n u s b u n g i b u n g i .  was  This paucity of  of copepodites  Such p r o c e d u r e makes any  conclusions concerning the l a t t e r three species vulnerable t o c r i t i c i s m . However, t h e a n a l y s i s was c o n s i d e r e d w o r t h w h i l e ,  since l i t t l e  on t h e i r l i f e c y c l e s i s a v a i l a b l e . i n t h e l i t e r a t u r e .  information  I f a s p e c i e s was  r e s t r i c t e d t o t h e i n l e t i n n e r b a s i n , d a t a were o n l y p l o t t e d f o r s t a t i o n Kn 7«  T h i s s t a t i o n was s e l e c t e d because o f i t s d e p t h , and t o a v o i d  the s u r f a c e d i s p l a c e m e n t n e a r t h e i n l e t head. a later section.  o f deep s p e c i e s f o u n d i n t h i s s t u d y t o o c c u r  I m p l i c a t i o n s o f t h i s phenomena a r e d i s c u s s e d i n  M e t r i d i a p a c i f i c a B r o d s k i i i s known t o undertake  extensive d i e l v e r t i c a l migration. abundance a t d i f f e r e n t s t a t i o n s .  T h i s was r e f l e c t e d i n p l o t s o f Consequently, o n l y l i f e h i s t o r y d a t a  f r o m s t a t i o n Kn 9 were used h e r e , s i n c e i t was a l w a y s sampled a t between 1300 and 1500 h o u r s .  F o r a l l s p e c i e s , data from "ignored" s t a t i o n s  were examined t o i n s u r e t h a t no major d i s c r e p a n c i e s escaped a t t e n t i o n .  55  Inter-comparison of l i f e history plots could indicate which species reproduced in the study area, and also suggest the season, depth and, in some cases, geographical location of major reproductive effort. were the issues raised "by questions 2 and 3 above.  These  It i s possible  that some l i f e cycle observations could also be explained by comparison with the results of hydrographic analysis (objective 4 above). For example, inlet circulation or patterns of chlorophyll, glacial sediment and water regime distribution. Copepods characteristic of an off-shore fauna occurred in only a few samples.  These were therefore not subjected to the above  analysis.  Monthly Temperature-Salinity-Plankton (T-S-P) diagrams T-S-P diagrams were prepared for each cruise and for a l l calanoid copepodsspecies found in the study area.  Arguments for the  use of this technique were presented in the introduction.  The method  was fundamentally that of Bary (1959)» tiut with three major modifications. Firstly, although basic T-S diagrams were constructed by standard methods (Pickard I963), envelopes were drawn around T-S lines of similar slope ordshape.  Since isopleth profiles of conservative and non-conservative  properties were consulted, and influenced the drawing of envelopes, they were not consistent with established physical oceanographic terminology.  Envelopes were therefore referred to as water regimes, and the  hydrographic methods section should be consulted for a f u l l explanation. Th  The presence and i n i t i a l l y the relative abundance of each species  collected was entered on the T-S diagram at the T-S point pertaining  56  t o a sample.  Diagrams were then combined t o see i f organisms w i t h  s i m i l a r i t i e s o f o c c u r r e n c e on each p l o t c o u l d be grouped. r e s u l t e d i n abundance b e i n g d i f f i c u l t t o h a n d l e .  The p r o c e d u r e  Hence B a r y ' s method  was f u r t h e r m o d i f i e d and t h e f i n a l diagrams p r e s e n t e d here show copepod d a t a e n t e r e d b y a presence/absence  criteria.  F i n a l l y , B a r y (1959) was concerned w i t h p l a n k t o n t a k e n from a s i n g l e depth.  I n t h e p r e s e n t s t u d y , t h i s approach was a p p l i e d t o  p l a n k t o n c o l l e c t i o n s from t h e s t a n d a r d depth s e r i e s r e p o r t e d , e x t e n d i n g from 5 t o 500 m . B a r y (1964, 1976) has h i m s e l f m o d i f i e d t h e t e c h n i q u e t o i n v e s t i g a t e T-S-P r e l a t i o n s h i p s w i t h depth. The problem w i t h p l a n k t o n d i s t r i b u t i o n p a t t e r n and e n v i r o n m e n t a l a s s o c i a t i o n ( o b j e c t i v e 4 above) was p a r t l y approached technique.  Water regimes drawn on t h e diagrams  u s i n g t h e T-S-P  i d e n t i f i e d water w i t h  s i m i l a r i t i e s i n c o n s e r v a t i v e and n o n - c o n s e r v a t i v e p r o p e r t i e s .  The  method, t h e r e f o r e , p r o v i d e d c o r r e l a t i o n diagrams between s p e c i e s o c c u r r e n c e and c e r t a i n e n v i r o n m e n t a l v a r i a b l e s . r e l a t i o n s h i p s were n o t suggested.  However, c a u s e / e f f e c t  .Temporal changes were i n v e s t i g a t e d  by examining diagrams f o r s u c c e s s i v e months, w h i l s t a s p a t i a l a s p e c t was p r o v i d e d b y t h e i n l e t h y d r o g r a p h i c p r o f i l e s , and p r o f i l e s o f copepod presence/absence.  The l a t t e r was s i m i l a r t o B a r y ' s (1963) use o f maps  showing water body and p l a n k t o n d i s t r i b u t i o n .  •R x r. Contingency  tables  The e s t i m a t e d mean abundance o f copepod s p e c i e s o c c u r r i n g w i t h i n water regimes was a r r a n g e d i n s e p a r a t e k x r c o n t i n g e n c y t a b l e s f o r December 1974 and F e b r u a r y , A p r i l , and J u l y 1975•  The procedure  57  was undertaken  t o f i n d i f t h e r e l a t i v e abundance o f a g i v e n s p e c i e s  v a r i e d s i g n i f i c a n t l y between regimes. followed that of E l l i o t t  The method d e s c r i b e d below  (1971), who e x p l a i n e d how a l a r g e 2 X 2  contin-  gency t a b l e c o u l d be used t o s t u d y a s s o c i a t i o n between abundance and geographical location.  Expected abundances were c a l c u l a t e d a c c o r d i n g  t o a n u l l h y p o t h e s i s (H ) which assumed t h e p r o p o r t i o n  o f a sample  composed o f a g i v e n s p e c i e s t o be c o n s t a n t between r e g i m e s (columns i n the contingency t a b l e s ) .  The presence  of p r o p o r t i o n a l i t y or heterogeneity  was then t e s t e d by c a l c u l a t i n g c h i squared v a l u e s f o r each of observed and e x p e c t e d e s t i m a t e s . used t o a c c e p t o r r e j e c t H .  combination  S i g n i f i c a n c e v a l u e s o f p<0.05 were  Abundance e s t i m a t e s o f l e s s than 5/^? were  g e n e r a l l y e l i m i n a t e d from the a n a l y s i s .  I f more than 5% o f such  had been i n c l u d e d , c a l c u l a t e d e s t i m a t e s would no l o n g e r have t h e t h e o r e t i c a l c h i squared d i s t r i b u t i o n ( S i e g e l 1956). d a t a were used, s i n c e themmethod i s n o n - p a r a m e t r i c  values  approximated  Non-transformed  ( S i e g e l 1956;  Elliott  1971). The  c o n t i n g e n c y t a b l e s were n o t i n t e n d e d t o p r o v i d e a r i g o r o u s  way o f d e t e c t i n g s i m i l a r i t i e s o f copepod d i s t r i b u t i o n o r h y d r o g r a p h i c association.  T h i s would be beyond t h e scope o f t h e p r o c e d u r e ,  was concerned  only w i t h p r o p o r t i o n a l i t y of species content.  p r e v i o u s l y i n t e r p r e t e d d a t a were i n c l u d e d ( t h e r e g i m e s ) .  which Furthermore,  However, t h e  t a b l e s d i d p r o v i d e a s i m p l e o p p o r t u n i t y f o r h a n d l i n g s p e c i e s abundance d a t a i n a n o n - g r a p h i c a l way.  They were used o n l y t o d e t e c t p r o p o r t i o n -  a l i t y and h e t e r o g e n e i t y o f s p e c i e s c o n t e n t between regimes and, w i t h t h i s l i m i t a t i o n , p r o v i d e d a p a r t i a l l y independent check on t h e i n t e r p r e t a t i o n o f T-S-P diagrams and z o o p l a n k t o n  inlet  profiles.  58  Spearman r a n k o r d e r c o r r e l a t i o n  coefficients  The Spearman r a n k o r d e r c o r r e l a t i o n c o e f f i c i e n t ( i ) i s 1  a n o n - p a r a m e t r i c a l t e r n a t i v e t o the c o r r e l a t i o n c o e f f i c i e n t ( r ) .  It  was used here t o i n v e s t i g a t e a p a r t i c u l a r problem a s s o c i a t e d w i t h t h e f i r s t o b j e c t i v e above.  S p e c i f i c a l l y , t h a t of p l a c i n g s p a t i a l  limits,  by a n o n - g r a p h i c a l approach, t o t h e d i s t r i b u t i o n of t h e deep copepod f a u n a i n the i n l e t i n n e r b a s i n .  A s u r f a c e d i s p l a c e m e n t o f the l a t t e r  towards t h e i n l e t head was i n d i c a t e d from a n a l y s i s o f s p e c i e s p r e s e n c e / absence p r o f i l e s .  I n t h e i n t r o d u c t i o n , i t was argued t h a t i f t h e  copepod igauna of K n i g h t I n l e t was s t r u c t u r e d i n t o s p a t i a l l y s e g r e g a t e d communities, t h e l a t t e r s h o u l d each be r e c o g n i s a b l e by a unique p a t t e r n of r a n k o r d e r o f s p e c i e s abundance.  The term community has been p l a c e d  between q u o t a t i o n marks i n t h e f o l l o w i n g , s i n c e o n l y a presumed p r o p e r t y of a community ( t h a t of s t a b l e r a n k o r d e r ) i s a c t u a l l y b e i n g examined. The c o e f f i c i e n t r  g  was here used f i r s t l y t o see i f a deep  "community" c o u l d be r e c o g n i s e d a c c o r d i n g t o a r a n k o r d e r c r i t e r i a , and t h e n t o p l a c e v e r t i c a l l i m i t s on the "communities"  distribution.  Data from s t a t i o n s Kn 5» 7» and 11 t a k e n i n September 1975 Three s e t s o f S  were a n a l y s e d .  v a l u e s were c a l c u l a t e d t o compare a l l p o s s i b l e combin-  a t i o n s of samples t a k e n a t t h e same s t a t i o n .  A separate m a t r i x of  i n t r a - s t a t i o n c o e f f i c i e n t s was c o n s t r u c t e d f o r each s t a t i o n .  Secondly,  l a t e r a l c o n t i n u i t y and v e r t i c a l d i s p l a c e m e n t of t h e deep "community" was i n v e s t i g a t e d by c a l c u l a t i n g r  v a l u e s f o r a l l sample c o m b i n a t i o n s 3  p o s s i b l e between a d j a c e n t s t a t i o n s .  I n t e r - s t a t i o n c o e f f i c i e n t s were  thenvplaced i n t h e two m a t r i c e s , one comparing s t a t i o n s Kn 5 and and t h e o t h e r , s t a t i o n s Kn 7 and  11.  7,  59  A l l values f o r r  were c a l c u l a t e d u s i n g t h e sum  g  o f squares c o r r e c t i o n  recommended by S i e g e l (1956) "to a d j u s t f o r t i e d r a n k s . has a t h e o r e t i c a l range e x t e n d i n g from +1,  The  coefficient  i n d i c a t i n g complete  concord-  ance i n rank o r d e r between samples, t o -1, i n d i c a t i n g complete d i s c o r d ance.  The  s i g n i f i c a n c e of c a l c u l a t e d p o s i t i v e r  g  v a l u e s was  by c o n s u l t i n g c r i t i c a l v a l u e s o f the s t a t i s t i c a t p = 0.05  evaluated  i n Table  P  of S i e g e l (1956). The f i n a l m a t r i c e s of r "communities". was  g  i n d i c a t e d the p r e s e n c e o f s e v e r a l copepod  An i d e a of the s p e c i e s c h a r a c t e r i s t i c o f each "community"  o b t a i n e d by s t u d y i n g t h e presence/absence p r o f i l e s .  However, a fc x r  contingency  t a b l e was  estimates.  T h i s t a b l e u t i l i s e d t h e s t a t i o n Kn 7 d a t a p r e v i o u s l y used  to calculate r  s  c o n s t r u c t e d , t o enable t h e i n c l u s i o n o f abundance  values.  P r o c e d u r e was as d e s c r i b e d above f o r the  R x f regime t a b l e s , except t h a t h e r e s p e c i e s s d a t a were e n t e r e d  as  i n d i v i d u a l sample d e p t h abundance, and n o t as mean abundance w i t h i n regimes.  The  c h i squared t e s t was  t h e r e f o r e concerned w i t h sample  d e p t h s p e c i e s p r o p o r t i o n a l i t y , which c o u l d t h e n be compared w i t h "community" d e p t h d i s t r i b u t i o n , as i n d i c a t e d by t h e r  matrices.  60  RESULTS AND DISCUSSION (i) The Data Calanoid copepods were the most abundant zooplanktors in the studyarea and,,with two exceptions, only data concerning this group are considered below.  The exceptions are Podon and Evadne species (Cladocera)  which were included due to their dominance of the summer low salinity surface layer. The only freshwater plankton to occur in samples were also considered.  These were unidentified larvae of Chaoborus species.  A complete l i s t i n g of copepod and Cladocera occurrence in a l l zooplankton samples i s given in Appendix A.  For each cruise, observed  species are listed within the species groups suggested by results described below.  For each species, estimated mean abundance and per  cent copepodite composition are tabulated by station and sample depth. The water regime from which a sample was collected i s also shown. The results of each method used to investigate copepod distribution are given and discussed below, and the interpretation i s summarised in Table X.  ( i i ) Monthly profiles of species presence/absence Similarities of spatial and temporal distribution on the inlet profiles indicated six zooplankton species groups could be recognised. Four were given names based on the group of water regimes (referred to as the water categories Surface, Transition, and Deep) in which they were usually found.  The f i f t h group was composed of off-shore species  apparently advected into the area by a high salinity intrusion. Finally, a group of seasonal and diel migrants was distinguished.  61  Each s p e c i e s group, i t s member s p e c i e s , and c h a r a c t e r i s t i c d i s t r i b u t i o n p a t t e r n i s d e s c r i b e d below.  The presence/absence p r o f i l e s were i n t e n d e d  to indicate s p a t i a l d i s t r i b u t i o n .  Only t h i s a s p e c t i s c o n s i d e r e d h e r e .  However, d i s t r i b u t i o n and h y d r o g r a p h i c a s s o c i a t i o n were f o u n d t o be-almost inseparable.  T h e r e f o r e , b r i e f mention i s o c c a s s i o n a l l y made t o i n l e t  hydrography, water r e g i m e s , and t h e d i s t r i b u t i o n o f o t h e r e n v i r o n m e n t a l variables.  However, t h e t o p i c o f a s s o c i a t i o n between s p e c i e s groups  and t h e i r environment i s d e a l t w i t h f u l l y i n a l a t e r s e c t i o n (see T-S-P a n a l y s i s and d i s c u s s i o n ) .  Summer s u r f a c e s p e c i e s group T h i s comprised t h o s e z o o p l a n k t o r s w i t h c h i e f o c c u r r e n c e r e s t r i c t e d t o t h e s u r f a c e f i f t y meters, b u t which were a b s e n t i n a l l samples c o l l e c t e d a f t e r October 1974 u n t i l June 1975 ( P i g . l l ) .  In  t h e l a t t e r m m o n t h , Podon and Evadne s i m u l t a n e o u s l y appeared a t a l l i n l e t inner basin stations.  B o t h s p e c i e s o f C l a d o c e r a n were a l s o  p r e s e n t i n t h e o u t e r b a s i n i n J u l y , August and September 1975» h u t were absent from t h e extreme i n n e r p a r t o f t h e i n l e t d u r i n g t h e p e r i o d o f peak g l a c i a l r u n - o f f ( J u l y and A u g u s t ) . l a r v a e were r e c o r d e d a t s t a t i o n Kn 11. i n Queen C h a r l o t t e S t r a i t .  A t t h i s t i m e ( J u l y ) Ghaoborus C l a d o c e r a were n e v e r f o u n d  Centropages m c m u r r i c h i W i l l e y was p r e s e n t  i n t h e o u t e r b a s i n i n October 1974, and was a g a i n r e c o r d e d t h e r e and i n Queen C h a r l o t t e S t r a i t from June u n t i l t h e end o f t h e s t u d y p e r i o d , , September 1975• (Kn 5 ) .  C. m c m u r r i c h i was seen a t o n l y one i n n e r b a s i n s t a t i o n  P a r a c a l a n u s p a r v u s C l a u s was f o u n d o n l y i n June, J u l y , and  August 1975*  A l l o c c u r r e n c e s were from t h e o u t e r b a s i n .  62  S u r f a c e and S u r f a c e T r a n s i t i o n a l s p e c i e s group T h i s group comprised a l l s p e c i e s d i s t r i b u t e d i n S u r f a c e  or  i n S u r f a c e and T r a n s i t i o n water r e g i m e s , or i n terms o f d e p t h , t o approximately  the upper 100  m o f water ( F i g . 12).  p o p u l a t i o n s t r u c t u r e graphs, k x r c o n t i n g e n c y  Reference to  t a b l e s , and Appendix A  showed t h a t r e c o r d s i n deep' water regimes were a l l a t v e r y low o f abundance.  levels  The above sources a l s o r e v e a l e d c o n s i d e r a b l e s e a s o n a l i t y  o f abundance, w i t h p o p u l a t i o n s a t low l e v e l s or u n d e t e c t a b l e However, s e a s o n a l i t y was  i n winter.  l e s s t h a n t h a t o f the Summer S u r f a c e  group,  which were a l s o g e n e r a l l y Absent from i n t e r m e d i a t e d e p t h s o c c u p i e d  by  t r a n s i t i o n water r e g i m e s . A c a r t i a l o n g i r e m i s L i l l j e b o r g was r e c o r d e d  throughout the  I n Queen C h a r l o t t e S t r a i t and i n b o t h i n l e t b a s i n s . d i s t r i b u t i o n was the i n n e r b a s i n .  However, i t s  s p a t i a l l y and t e m p o r a l l y more c o n t i n u o u s Tortanus discaudatus  year  o u t s i d e of  Thompson and S c o t t was  more  c o n f i n e d t o Queen C h a r l o t t e S t r a i t and the o u t e r i n l e t b a s i n than A. l o n g i r e m i s , and a p p a r e n t l y p o p u l a t e d  i n n e r b a s i n surface waters  o n l y a t a t i m e of mimimum s u r f a c e o u t f l o w ( F e b r u a r y and March).  T.  dis-  caudatus was r e s t r i c t e d t o deep samples i n Queen C h a r l o t t e S t r a i t from F e b r u a r y u n t i l A p r i l 1975•  The  o u t e r b a s i n p o p u l a t i o n appeared t o  undertake a much l e s s pronounced s e a s o n a l m i g r a t i o n one month l a t e r . I n c o n t r a s t t o A. l o n g i r e m i s and T. d i s c a u d a t u s , the d i s t r i b u t i o n of A c a r t i a c l a u s i G i e s b r e c h t showed s i g n s o f a s s o c i a t i o n w i t h the inner basin.  I t was  a b s e n t i n a l l F e b r u a r y 1975  samples, but  found one month l a t e r n e a r the i n l e t head a t s t a t i o n Kn 11. occurrences  were s t i l l c o n f i n e d t o the i n n e r b a s i n .  inlet was  In  May,  Thereafter, both  63  b a s i n s were o c c u p i e d f r o m June u n t i l the s t u d y c l o s e d (September 1975)• The  s p e c i e s was n e v e r seen i n samples c o l l e c t e d i n Queen C h a r l o t t e  Strait. A. l o n g i r e m i s , A.  c l a u s i , and T. d i s c a u d a t u s  were a b s e n t f r o m samples  t a k e n n e a r the i n l e t head d u r i n g the month of peak g l a c i a l r u n - o f f . was  a l s o i n the i n n e r b a s i n t h a t t h e i r v e r t i c a l d i s t r i b u t i o n was  s t r i c t l y confined t o the surface. August 1975.  p r o f i l e s ( F i g . 3» a  and i n  I n s p e c t i o n of t h e r e l e v a n t  i n v a d i n g deeper p a r t s of t h e i n n e r b a s i n .  I n the f o l l o w i n g clausi  i n deep water.  E p i l a b i d o c e r a a m p h i t r i t e s McMurrich c o u l d n o t be grouped w i t h o t h e r s p e c i e s .  Occurrence was  specimens were f o u n d between December 1974 abundance was r e c o r d e d  salinity  and September 1975> r e s p e c t i v e l y ) o n l y A.  c o u l d s t i l l be d e t e c t e d  sill  hydrographic  i ) . r e v e a l e d t h a t d u r i n g b o t h months a h i g h  months (December 1974  Table IVd).  most  samples c o l l e c t e d i n deep water u p - i n l e t of the i n n e r  contained a l l three species.  i n t r u s i o n was  However, i n October 1974  It  satisfactorily  h i g h l y s e a s o n a l , and and June 1975*  no  Highest  i n Queen C h a r l o t t e S t r a i t (see A p p e n d i x A; F i g . 28;  S m a l l e r numbers o c c u r r e d a t t h e seaward end  of the  outer  b a s i n ( s t a t i o n Kn l ) but t h e s p e c i e s was n e v e r seen upstream of the inner s i l l .  The  d a t a a l s o showed t h a t a l t h o u g h  present  i n deep  water r e g i m e s , t h e b u l k of t h e p o p u l a t i o n r e s i d e d i n s u r f a c e and  trans-  i t i o n water.  and  E. a m p h i t r i t e s was  t h e r e f o r e p l a c e d i n the S u r f a c e  S u r f a c e T r a n s i t i o n a l s p e c i e s group.  64  T r a n s i t i o n a l / D e e p s p e c i e s group T h i s group was n o t always easy t o r e c o g n i s e f r o m i n l e t  profiles  a l o n e , and was t e t t e r d e f i n e d when c o n s i d e r e d w i t h t h e k x f. c o n t i n g e n c y t a b l e s , T-S-P  diagrams, and p o p u l a t i o n s t r u c t u r e graphs.  However, c h i e f  c h a r a c t e r i s t i c s were a g e n e r a l absence from a l l s u r f a c e water r e g i m e s (shown i n T-S-P  a n a l y s i s ) and an apparent a f f i n i t y f o r t h e i n l e t  b a s i n ( F i g . 13)•  inner  P r e s e n c e o f t h e s e s p e c i e s i n t h e i n n e r b a s i n showed  no s i g n of b e i n g i n f l u e n c e d by t h e s e a s o n a l advent o f g l a c i a l r u n - o f f . The group was most p o o r l y r e p r e s e n t e d i n Queen C h a r l o t t e S t r a i t , w i t h a h i g h e r p r o p o r t i o n of species o c c u r r i n g i n the outer b a s i n .  In both  a r e a s , d i s t r i b u t i o n was u s u a l l y r e s t r i c t e d t o depths between JO o r 50 and t h e bottom. basin.  m,  A l l component s p e c i e s c o u l d always be found i n t h e i n n e r  Here v e r t i c a l d i s t r i b u t i o n l i m i t s were confused by a tendency  f o r t h e upper l i m i t o f a l l s p e c i e s t o be d i s p l a c e d towards t h e s u r f a c e i n t h e v i c i n i t y o f t h e i n l e t head.  T h i s phenomena was  o b v i o u s i n t h e months from F e b r u a r y t o May,  inclusive.  presence/absence, a good example would be October 1974,  least  I n terms of where t h e upper  . l i m i t of d i s t r i b u t i o n f o r Heterorhabdus t a n n e r i G i e s b r e c h t d e c r e a s e d i n d e p t h from 100  m near the s i l l  i n l e t head ( s t a t i o n Kn l l ) .  ( s t a t i o n Kn 5) "to 10 m n e a r t h e  Over t h e same h o r i z o n t a l d i s t a n c e , t h e  upper l i m i t f o r M e t r i d i a o k h o t e n s i s B r o d s k i i d e c r e a s e d from 200 10 m.  m to  Spearman r a n k c o r r e l a t i o n c o e f f i c i e n t s were a p p l i e d t o abundance  e s t i m a t e s i n o r d e r t o i n v e s t i g a t e t h i s f e a t u r e more f u l l y (see l a t e r section). A e t i d i u s d i v e r g e n s B r a d f o r d , S c o l e c i t h r i c e l l a minor Brady and Euchaeta .japonica Marukawa were t h e group members most commonly seen  65  i n Queen C h a r l o t t e S t r a i t and t h e i n l e t o u t e r b a s i n .  However, t h e y  were f r e q u e n t l y a b s e n t i n b o t h a r e a s from March u n t i l June 1975» o r were p r e s e n t a t v e r y low l e v e l s o f abundance (see F i g . 33i T a b l e I V c ; Appendix A ) .  R e g a r d l e s s of l o c a t i o n , A. d i v e r g e n s and S. minor were  c h a r a c t e r i s t i c o f samples t a k e n from depths between 30 and 100 m. i s w e l l i l l u s t r a t e d i n t h e October 1974  and May and June 1975  This  profiles.  The v e r t i c a l d i s t r i b u t i o n o f E. .japonica c o n s i s t e n t l y extended over a g r e a t e r range t h a n observed f o r t h e o t h e r s p e c i e s .  F o r example, i t  was f r e q u e n t l y observed a t depths of b o t h 30 and 500  m.  M e t r i d i a o k h o t e n s i s B r o d s k i i , G a i d i u s columbiae P a r k ,  Heterorhabdus  t a n n e r i G i e s b r e c h t , and Candacia columbiae Campbell were i r r e g u l a r l y seen i n o u t e r b a s i n samples from depths g r e a t e r than 50 m.  However,  t h i s o c c u r r e d most commonly o v e r two p e r i o d s , one from F e b r u a r y t o March and t h e o t h e r from J u l y u n t i l t h e study c l o s e d (September  1975)-  M. o k h o t e n s i s was a l s o found i n Queen C h a r l o t t e S t r a i t i n June and I n s p e c t i o n of h y d r o g r a p h i c p r o f i l e s ( F i g . 3g h) -  revealed that a high  s a l i n i t y i n t r u s i o n was t a k i n g p l a c e a t t h a t t i m e . August 1975)  July.  C. columbiae ( i n  was t h e o n l y o t h e r group member seen i n Queen C h a r l o t t e  Strait. A e t i d i u s d i v e r g e n s and C h i r i d i u s g r a c i l i s F a r r a n were t h e o n l y group s p e c i e s t o show t e m p o r a l c o n t i n u i t y i n t h e o u t e r b a s i n .  C. g r a c -  i l i s was f u r t h e r d i s t i n g u i s h e d by h a v i n g a h i g h e r abundance t h e r e t h a n i n t h e i n n e r i n l e t b a s i n ( F i g . 34).  66  Deep s p e c i e s group The Deep s p e c i e s group was c l e a r l y d e f i n e d .  Vertical distrib-  u t i o n resembled t h a t of t h e T r a n s i t i o n a l / D e e p s p e c i e s e x c e p t t h a t a g r e a t e r a s s o c i a t i o n w i t h deep water c o u l d be seen.  However, t h e t h r e e  component s p e c i e s , S p i n o c a l a n u s b r e v i c a u d a t u s B r o d s k i i ,  Scaphocalanus  b r e v i c o r n i s S a r s , and R a c o v i t z a n u s a n t a r c t i c u s G i e s b r e c h t , were a l m o s t e x c l u s i v e t o the i n l e t i n n e r b a s i n ( F i g . 14).  The o n l y u n u s u a l r e c o r d s  concerned t h e p r e s e n c e o f R. a n t a r c t i c u s i n t h e 100  m sample from Queen  C h a r l o t t e S t r a i t i n A p r i l and June, and t h e o c c u r r e n c e o f Scaphocalanus b r e v i c o r n i s and S p i n o c a l a n u s b r e v i c a u d a t u s i n t h e June and J u l y 150 samples from s t a t i o n Kn 3»  l  n  terms o f w a t e r r e g i m e s , t h e group  m  was  c h a r a c t e r i s t i c of i n n e r b a s i n Deep regimes (see T a b l e s IVa-d, V I I ; and T-S-P  analysis). I n t h e i n l e t i n n e r b a s i n , v e r t i c a l d i s t r i b u t i o n u s u a l l y ranged from  100 m t o t h e bottom (200-500 m).  However, as n o t e d f o r t h e T r a n s i t i o n a l /  Deep s p e c i e s group, t h i s was confused by a tendency f o r t h e upper l i m i t o f a l l s p e c i e s t o be d i s p l a c e d towards t h e s u r f a c e i n t h e v i c i n i t y o f t h e i n l e t head.  T h i s s u r f a c e t r e n d c o u l d be seen i n a l l p r e s e n c e /  absence p r o f i l e s e x c e p t f o r t h o s e o f F e b r u a r y , March, and A p r i l d a t a . The s i t u a t i o n , t h e r e f o r e , p a r a l l e l e d t h a t of t h e T r a n s i t i o n a l / D e e p s p e c i e s , which showed l i t t l e upward d i s p l a c e m e n t between F e b r u a r y and May 1975«  The phenomenon was f r e q u e n t l y p r o g r e s s i v e , from t h e  t o t h e i n l e t head. October 1974  sill  One of t h e c l e a r e s t examples was g i v e n by t h e  profile.  Here t h e minimum d e p t h a t which S p i n o c a l a n u s  b r e v i c a u d a t u s and Scaphocalanus b r e v i c o r n i s were seen was 100 30 m, and 10 m a t s t a t i o n s Kn 5> 7> 9» and 11,  respectively.  m, 50  m,  67  The p r o f i l e s i n d i c a t e d t h a t R a c o v i t z a n u s  a n t a r c t i c u s was  s p e c i e s most c o n f i n e d t o deep w a t e r , a l t h o u g h l e s s f r e q u e n t l y t h a n the o t h e r two s p e c i e s . caudatus was  the  i t was r e c o r d e d much Spinocalanus  " b r e v i-  o f t e n f o u n d a t a s l i g h t l y s h a l l o w e r depth than Scapho-  calanus b r e v i c o r n i s .  From A p r i l u n t i l J u l y , t h e group was n o t  a t s t a t i o n Kn 5> l o c a t e d j u s t i n s i d e of the i n n e r s i l l . the hydrographic  p r o f i l e s ( F i g . 3 ~g)  showed t h a t a low  e  i n t r u s i o n took place a t t h a t time.  The  h i g h s a l i n i t y w a t e r i n J u l y ( F i g . 3h). l a t e r (see T-S-P  Off-shore  recorded  I n s p e c t i o n of salinity  i n t r u s i o n began t o  introduce  This feature i s considered  section).  s p e c i e s group  T h i s was  composed of t h i r t y - s e v e n s p e c i e s , a l i s t of which  i s given i n Table V I I I . C h a r l o t t e S t r a i t 100  The m a j o r i t y were seen f i r s t i n the Queen  m sample taken i n J u l y .  u t u s G i e s b r e c h t , Gaetanus i n t e r m e d i n s  However, R h i n e a l a n u s n a s -  Campbell, and Calanus c r i s t a t u s  K r o y e r were a l s o f o u n d a t t h e same l o c a t i o n i n June.  Both the  abundance of i n d i v i d u a l s , and t h e number of c h a r a c t e r i s t i c d e c l i n e d r a p i d l y u n t i l the s t u d y t e r m i n a t e d  (September 1975)  total  species ( F i g . 15).  A s m a l l p e r c e n t a g e of s p e c i e s d i d e n t e r the o u t e r i n l e t b a s i n as f a r as s t a t i o n Kn 3» group was  an(  i  i n September, a h i g h e r number of s p e c i e s from the  seen a t s t a t i o n Kn I t h a n i n Queen C h a r l o t t e S t r a i t .  Species  c o u l d t h e r e f o r e be sub-grouped a c c o r d i n g t o whether seen f o r one month o n l y or f o r s e v e r a l months (see c a p t i o n f o r F i g . 16). the hydrographic 1975  p r o f i l e s and T-S  p l o t s f o r t h e p e r i o d June t o September  ( F i g . 3g~j »f 22-25) i n d i c a t e d the group was l  I n s p e c t i o n of  associated with a high  68  s a l i n i t y i n t r u s i o n , which r e a c h e d maximum i n t e n s i t y i n J u l y .  This  water moved i n t o t h e o u t e r i n l e t "basin f r o m J u l y u n t i l September, and a p p a r e n t l y c a r r i e d a l o n g some members o f t h e O f f - s h o r e s p e c i e s group. However, a t t h e time o f t h e l a s t c r u i s e , no member had been seen i n t h e i n n e r b a s i n d e s p i t e t h e i n v a s i o n o f t h e l a t t e r by t h e i n t r u s i o n . p r o b a b l y u n l i k e l y t h a t t h e i n n e r s i l l was e v e r c r o s s e d .  It is  The upper  l i m i t o f t h e group's v e r t i c a l d i s t r i b u t i o n was 100 m; w e l l below t h e i n n e r s i l l d e p t h ( a p p r o x i m a t e l y 65 m).  F u r t h e r m o r e , o n l y one member,  _G. c r i s t a t u s , was f o u n d n e a r t h e s i l l a t s t a t i o n Kn 3-  I t i s interesting  t h a t t h e l a t t e r s p e c i e s o c c u r r e d i n s m a l l numbers w i t h G. at  intermedius  50 m d e p t h i n J u l y and August i n Queen C h a r l o t t e S t r a i t . The Queen C h a r l o t t e S t r a i t s t a t i o n was a l w a y s sampled a t n i g h t .  However, no members o f t h i s group were f o u n d a t sample d e p t h s s h a l l o w e r than 100 m ( w i t h t h e two e x c e p t i o n s n o t e d a b o v e ) .  Several of the  group's s p e c i e s have been f o u n d by p r e v i o u s workers t o undertake significant d i e l migration.  A l t h o u g h e x t e n s i v e movement would be  i m p o s s i b l e i n t h e 150 m o f water a v a i l a b l e a t s t a t i o n QC, i t i s i n t e r e s t i n g t h a t t h e M e t r i d i i d a e , which have been r e p o r t e d t o o f t e n v i s i t the upper JO m (Vinogradov  1968) a p p a r e n t l y d i d n o t do so h e r e .  Many s p e c i e s o f t h e O f f - s h o r e group were p r e v i o u s l y in The  unrecorded  t h e c o a s t a l w a t e r s o f B r i t i s h Columbia ( s e e F u l t o n 1968; S h i h 1971)• s i g n i f i c a n c e o f t h i s group i s f u r t h e r c o n s i d e r e d i n t h e T-S-P  section.  69  M i g r a n t s p e c i e s group Presence/absence p r o f i l e s f o r t h e M i g r a n t s p e c i e s group f a i l e d t o c l a r i f y d i s t r i b u t i o n p a t t e r n s and t h e y a r e n o t i n c l u d e d h e r e .  Two  k i n d s o f v e r t i c a l m i g r a t i o n were encountered i n t h e s t u d y a r e a . Metridia 1968).  pacifica Brodskii  i s a w e l l documented d i e l m i g r a n t ( V i n o g r a d o v  Here i t generaelilylopcurred i n n e a r s u r f a c e samples a t n i g h t t i m e  stations  ( e . g . s t a t i o n QC) i n c o n t r a s t t o deeper depths a t daytime  stations  ( e . g . s t a t i o n Kn 3)«  of h o r i z o n t a l  1 <iid  n o  " t conduct a 24-hour t i m e  series  tows i n K n i g h t I n l e t , b u t such a s e r i e s i n Howe Sound  ( a p p r o x i m a t e l y 290 km t o t h e s o u t h ) , i n d i c a t e d  M. p a c i f i c a t o be t h e  o n l y copepod p r e s e n t which undertook a marked d i e l v e r t i c a l m i g r a t i o n (Stone, u n p u b l i s h e d d a t a ) .  Koeller  (1974) r a n a 24-hour t i m e  i n B u t e I n l e t and a l s o c o n c l u d e d t h a t M. p a c i f i c a was t h e o n l y  series copepod  p r e s e n t t o show o b v i o u s d i e l m i g r a t i o n . The e x t e n t t o which d i e l movements may have l e d t o b i a s i n t h e interpretation table  section.  of the Knight I n l e t data i s considered i n contingency E a r l y a t t e m p t s t o c o n s t r u c t p r o f i l e s o f presence/absence  f o r M. p a c i f i c a were abandoned due t o d i e l v a r i a b i l i t y . Galanus m a r s h a l l a e F r o s t ,  Galanus plumchrus Campbell, and E u c a l a n u s  b u n g i b u n g i Johnson a r e known t o u n d e r t a k e e x t e n s i v e s e a s o n a l v e r t i c a l migrations related  t o t h e i r l i f e h i s t o r i e s ( V i n o g r a d o v 1968).  Vinogradov  a l s o r e p o r t e d a l e s s c l e a r l y d e f i n e d movement f o r Pseudocalanus e l o n g a t u s Boeck, which t o g e t h e r w i t h C. m a r s h a l l a e tended t o be u b i q u i t o u s t h r o u g h out t h e s t u d y a r e a .  Some s t r u c t u r e  i n distributions  c o u l d , however, be  seen from abundance e s t i m a t e s , b u t t h i s was l o s t when presence/absence p r o f i l e s were a t t e m p t e d .  S i m i l a r l y , p r o f i l e s o f E. b u n g i b u n g i and  70  C. plumchrus c l a r i f i e d l i t t l e  concerning d i s t r i b u t i o n , since they occurred  i n v e r y low numbers i n b o t h i n l e t b a s i n s and- i n Queen C h a r l o t t e S t r a i t . S p a t i a l d i s t r i b u t i o n of t h e group was, however, examined u s i n g t h e R x r c o n t i n g e n c y t a b l e s and p o p u l a t i o n s t r u c t u r e graphs d e s c r i b e d below.  ( i i i ) Monthly T-S-P  diagrams  As d e s c r i b e d i n t h e Methods s e c t i o n , monthly T-S-P  diagrams ( F i g s .  16-25) were d e r i v e d f r o m s i n g l e s p e c i e s p l o t s l a t e r combined t o group s p e c i e s w i t h s i m i l a r i t i e s o f o c c u r r e n c e on t h e diagrams.  The s i x  groups so i d e n t i f i e d , and t h e s i x groups i s o l a t e d f r o m t h e p r e s e n c e / absence p r o f i l e s were o f i d e n t i c a l s p e c i e s c o n t e n t .  T h i s was e x p e c t e d  s i n c e b o t h methods examined t h e d i s t r i b u t i o n o f t h e same s p e c i e s d a t a w i t h i n t h e same water r e g i m e s , t h e c h a r a c t e r i s t i c s o f which were r e c o g n i s e d by t h e same methods.  Surface T r a n s i t i o n a l , Transitional/Deep,  M i g r a n t , and Deep s p e c i e s were each p l o t t e d on a s e p a r a t e monthly diagram.  However, Summer S u r f a c e and O f f - s h o r e s p e c i e s were p l o t t e d  w i t h S u r f a c e T r a n s i t i o n a l and Deep s p e c i e s , r e s p e c t i v e l y .  A l i s t of  s p e c i e s i n c l u d e d i n each group o v e r t h e e n t i r e s t u d y y e a r i s g i v e n w i t h the  Figure explanations.  On each diagram, w a t e r regime T-S l i m i t s a r e  e n c i r c l e d by coded e n v e l o p e s .  They a r e t h e m s e l v e s embraced by l a r g e r  envelopes t o i n c l u d e a l l r e g i m e s o f a s i m i l a r c a t e g o r y ( i . e . T r a n s i t i o n , and Deep).  The s p a t i a l d i s t r i b u t i o n o f any regime quoted  i n t h e f o l l o w i n g t e x t ( o r shown on a T-S-P c o n s u l t i n g F i g u r e 5-  Surface,  diagram) can be f o u n d by  71  Summer S u r f a c e s p e c i e s group The t e m p o r a l and s p a t i a l o c c u r r e n c e o f each Summer S u r f a c e s p e c i e s was d e s c r i b e d e a r l i e r w i t h t h e r e l e v a n t presence/absence p r o f i l e s . T-S-P  diagrams f o r October 1974 ( F i g . 16) and f o r t h e p e r i o d June t o  September 1975 ( F i g s . 22-25) showed t h a t w i t h minor e x c e p t i o n s a l l o c c u r r e n c e s o f group members were r e s t r i c t e d t o s u r f a c e water regimes (coded A f o r t h e i n l e t , and E' f o r Queen C h a r l o t t e S t r a i t ) .  The group  as a whole was n o t c h a r a c t e r i s e d by s a l i n i t y , s i n c e o c c u p i e d regimes v a r i e d f r o m l e s s t h a n 10°/oo t o a p p r o x i m a t e l y 31«5°/oo.  T h i s range  exceeded t h o s e o f a l l i n l e t T r a n s i t i o n and Deep r e g i m e s , w i t h t h e e x c e p t i o n o f o u t e r b a s i n deep water (coded B ) . m  Therefore, although  t h e s a l i n i t y range f o r each s p e c i e s was l e s s t h a n quoted above, t h e group i t s e l f was r e p r e s e n t e d i n water o f most s a l i n i t i e s a v a i l a b l e t o it.  However, when diagrams were compared w i t h r e s p e c t t o t e m p e r a t u r e ,  i t was f o u n d t h a t member s p e c i e s g e n e r a l l y appeared o n l y i n water warmer t h a n 7«8 t o 8.0°C, i r r e s p e c t i v e o f s a l i n i t y .  T h i s f e a t u r e was w e l l  i l l u s t r a t e d by comparing any T-S-P diagram f o r months e a r l i e r t h a n June 1975i w i t h any l a t e r diagrams o f the same y e a r o r w i t h October 1974. The above showed t h a t w a t e r warmer than 8.0°C was l a r g e l y r e s t r i c t e d t o t h e S u r f a c e regime (coded A ) .  Temperature a t 5  m  depth f i r s t  exceeded t h i s v a l u e i n A p r i l , May, and June i n t h e i n n e r b a s i n , o u t e r b a s i n and Queen C h a r l o t t e S t r a i t , r e s p e c t i v e l y .  T h i s sequence was  thought t o r e f l e c t d i f f e r e n c e s i n water s t a b i l i t y r e s u l t i n g from t h e exposed n a t u r e o f Queen C h a r l o t t e S t r a i t , and t h e p r o g r e s s i v e l y more s h e l t e r e d s i t u a t i o n encountered towards t h e i n l e t head.  The temperature  range o f Queen C h a r l o t t e T r a n s i t i o n (coded E") and o u t e r T r a n s i t i o n  72  (coded B") r e g i m e s o c c a s i o n a l l y exceeded 8.0 G i n t h e summer, b u t were r a r e l y found t o c o n t a i n Summer S u r f a c e s p e c i e s .  A s u b - s u r f a c e water  regime c h a r a c t e r i s e d by h i g h temperature was r e c o g n i s e d a t s t a t i o n Kn 1 i n May (coded A* i n F i g s . 5f-gi 21, 22). However, i t s s p e c i e s c o n t e n t was found t o v a r y l i t t l e from t h a t o f s u r r o u n d i n g s u r f a c e water except f o r t h e p r e s e n c e o f P a r a c a l a n u s , a s n o t e d below. The two G l a d o c e r a s p e c i e s (Podon and Evadne) were c o n s i s t e n t l y p r e s e n t i n t h e warmest (8-l4°C) and l e a s t s a l i n e (2-30°/oo) water. However, t h e presence/absence p r o f i l e s r e v e a l e d t h a t a t t h e t i m e o f peak g l a c i a l r u n - o f f , b o t h were absent from s u r f a c e water n e a r t h e i n l e t head.  T h i s may n o t have r e s u l t e d from a d i r e c t s a l i n i t y  effect,  s i n c e t h e s a l i n i t i e s o f " v a c a n t " samples f e l l w i t h i n t h e range which a t o t h e r t i m e s was f o u n d t o c o n t a i n t h e two s p e c i e s .  However, t h e  S u r f a c e regime a t t h a t t i m e and l o c a t i o n was a zone o f c o n s i d e r a b l e downstream t r a n s p o r t , d r i v e n by t h e a d d i t i o n o f f r e s h w a t e r a t t h e i n l e t head.  I n n e i g h b o u r i n g Bute I n l e t a t t h e t i m e o f peak  glacial  r u n - o f f , Tabata and P i c k a r d (1957) c a l c u l a t e d t h a t a f r e s h w a t e r p a r t i c l e had a maximum r e s i d e n c e time o f one week i n t h e i n l e t .  It  i s t h e r e f o r e p o s s i b l e t h a t t h e observed r e g i o n a l absence o f C l a d o c e r a was due t o l o s s o f t h e p r e - e x i s t i n g p o p u l a t i o n (June) by s u r f a c e a d v e c t i o n , t h e v e l o c i t y o f which p r e v e n t e d any r e c o l o n i s a t i o n . l a t t e r would be d e l a y e d u n t i l e i t h e r a f a l l  The  i n the r a t e of r i v e r  discharge occurred, r e s u l t i n g i n a lower surface t r a n s p o r t v e l o c i t y , or u n t i l a g i v e n s u r f a c e water " p a r c e l " had moved downstream, t h u s p r o v i d i n g t i m e f o r a p o p u l a t i o n t o be e n t r a i n e d and t h e n b u i l t up. T h i s t h e o r y was s u p p o r t e d by t h e g e n e r a l movement o f t h e C l a d o c e r a  73  p o p u l a t i o n from t h e i n l e t head r e g i o n o f t h e i n n e r b a s i n ( J u n e ) , t o t h e l o w e r i n n e r and t h e o u t e r b a s i n s i n J u l y and. August and t h e  apparent  r e c o l o n i s a t i o n o f t h e i n l e t head r e g i o n i n September ( F i g . l l ) .  The  i n n e r i n l e t p o p u l a t i o n o f Galanus f i n m a r c h i c u s Gunnerus i n a Norwegian f j o r d h a s been r e p o r t e d by Stromgren (1976) t o be "washed out" i n a s i m i l a r f a s h i o n by s e a s o n a l s u r f a c e r u n - o f f . The complete absence o f C l a d o c e r a from Queen C h a r l o t t e S t r a i t c o u l d n o t be e x p l a i n e d , n o r t h e sudden appearance o f t h e p o p u l a t i o n i n the i n n e r b a s i n . P a r a c a l a n u s parvus s i m i l a r l y appeared  i n the i n l e t without  evidence o f b e i n g r e l a t e d t o a p o p u l a t i o n i n Queen C h a r l o t t e S t r a i t (Fig. l l ) .  T-S-P diagrams f o r June, J u l y , and August ( F i g s . 22-24)  show a l l o c c u r r e n c e s were r e c o r d e d w i t h i n t h e r e l a t i v e l y narrow T-S range o f temperature  9»5 10.0°C and s a l i n i t y 2 9 - 3 0 / -  0  00  Only t h e  s u r f a c e water regime i n t h e o u t e r b a s i n p o s s e s s e d t h i s c o m b i n a t i o n o f properties.  A c c o r d i n g t o t h e l i t e r a t u r e , P. parvus i s c h a r a c t e r i s t i c  o f warm c o a s t a l n e r i t i c waters w i t h a z o n a l range e x t e n d i n g from temperate 1967).  t o s u b - t r o p i c a l ( B r o d s k i i 1950; FuruhashiJl'9'6' 6; F l e m i n g e r r  L o c a l s u r v e y s have g e n e r a l l y found t h e s p e c i e s t o be r a r e  ( l e g a r e 1957. Gardner 1976; and t h e p r e s e n t s t u d y ) .  However, F u l t o n  (1970) r e p o r t e d P. parvus a s b e i n g common i n t h e S t r a i t o f G e o r g i a , w h i l s t i t emerged a s one o f t h e p r i n c i p a l z o o p l a n k t o r s i n a CEPEX Bag experiment  conducted  i n S a a n i c h I n l e t ( K o e l l e r and Parsons 1977)-  Temperature and s a l i n i t y i n t h e l a t t e r case v a r i e d from 10.0 t o 13.5°G and 29.6 t o 30.2°/ » r e s p e c t i v e l y . oo  T h i s c l o s e l y p a r a l l e l e d t h e T-S  range g i v e n above f o r K n i g h t I n l e t o c c u r r e n c e s , a l t h o u g h t h e CEPEX bags  74  were s l i g h t l y warmer.  I t t h e r e f o r e seems p r o b a b l e t h a t P. parvus i s  c l o s e t o t h e n o r t h e r n l i m i t s of i t s z o n a l range when found o f f B r i t i s h Columbia, but t h a t l a r g e p o p u l a t i o n s can be r a p i d l y b u i l t up under s u i t a b l y warm and s t a b l e c o n d i t i o n s . From June u n t i l September 1975> Centropages m c m u r r i c h i was  generally  d i s t r i b u t e d i n samples from s u r f a c e water regimes i n Queen C h a r l o t t e S t r a i t (coded E') and the i n l e t o u t e r b a s i n (coded A and A')»  The  presence/absence p r o f i l e s showed t h a t o n l y one i n n e r b a s i n sample ( t a k e n from j u s t i n s i d e t h e s i l l a t s t a t i o n Kn 5) c o n t a i n e d t h e s p e c i e s (Fig. l l ) .  An absence from t h e extreme s u r f a c e i n Queen C h a r l o t t e  S t r a i t and t h e o u t e r b a s i n was a l s o i n d i c a t e d by t h e J u l y p r o f i l e . B o t h f e a t u r e s were r e f l e c t e d on t h e T-S-P  diagrams by t h e apparent a s s o c -  i a t i o n between o c c u r r e n c e and water t e m p e r a t u r e s c o o l e r than 10°C s a l i n i t i e s h i g h e r t h a n 25°/oo.  and  The l i t e r a t u r e s u g g e s t s t h a t l o w  s a l i n i t y was u n l i k e l y t o have been a s i g n i f i c a n t f a c t o r .  F o r example,  Legare (1957) r e p o r t e d presence i n water o f 2°/oo and a c t i v e b r e e d i n g i n 10°/oo s a l i n i t y .  I f t h e observed T-S-P  a s s o c i a t i o n was m e a n i n g f u l ,  a temperature r e l a t e d f a c t o r i s more l i k e l y t o have been s i g n i f i c a n t i n determining Knight I n l e t d i s t r i b u t i o n s .  C. m c m u r r i c h i i s g e n e r a l l y  r e g a r d e d as a n e r i t i c b o r e a l s u b - a r c t i c s p e c i e s ( F l e m i n g e r 1967; gradov 1970).  Vino-  Furthermore, t h e s t u d y a r e a i s p r o b a b l y n o t f a r n o r t h  o f the s o u t h e r n l i m i t o f t h e s p e c i e s range.  T h i s was i n d i c a t e d by Cross  and S m a l l (1967) who a s s o c i a t e d s e a s o n a l d i s t r i b u t i o n w i t h s e a s o n a l r e v e r s a l s i n water movements i n t h e c o a s t a l N.E.  Pacific.  They found  t h a t when the s u r f a c e n o r t h w a r d f l o w i n g Davidson c u r r e n t c o l l a p s e d i n summer, t h e s o u t h e r n l i m i t t o C. m c m u r r i c h i ' s d i s t r i b u t i o n moved s o u t h  75  f r o m 46 N t o a p p r o x i m a t e l y 42 N.  S u r f a c e and S u r f a c e T r a n s i t i o n a l s p e c i e s group The T-S-P diagrams showed t h i s group t o g e n e r a l l y o c c u r i n surfacewwater r e g i m e s (coded E' f o r Queen C h a r l o t t e S t r a i t , and A f o r the  inlet).  However, r e g u l a r o c c u r r e n c e was a l s o seen i n b o t h T r a n s i t i o n  and Deep r e g i m e s i n Queen C h a r l o t t e S t r a i t (coded E" and E " ' ) , and i n T r a n s i t i o n regimes i n t h e o u t e r b a s i n (coded B " ) .  Occurrence i n t h e  i n n e r b a s i n Deep and T r a n s i t i o n regimes was seen o n l y f o r two p e r i o d s (regimes D' and D"' i n October 1974; and H', H  , M  , and G / H * i n J u l y ,  August, and September 1975). In  t h e p r e v i o u s s e c t i o n I compared t h e presence/absence p r o f i l e s  w i t h p r o f i l e s o f w a t e r regime l i m i t s ( F i g . 5) and t h e r e l e v a n t h y d r o g r a p h i c p r o f i l e s ( F i g . 3)» of  I t was s u g g e s t e d t h a t u p - i n l e t o c c u r r e n c e  t h e group i n deep water was a s s o c i a t e d w i t h an i n t r u s i o n from t h e  outer basin.  T h i s was s u p p o r t e d by t h e T-S-P diagrams f o r June and  J u l y ( F i g s . 22,23) which i n d i c a t e d t h e t e m p e r a t u r e and s a l i n i t y o f Deep r e g i m e s H' and H'" c l o s e l y approximate t h o s e r e c o r d e d f o r t h e o u t e r b a s i n T r a n s i t i o n regime a t s i l l depth i n t h e p r e v i o u s month. For  example, i n June, T r a n s i t i o n regime water (coded B") i n t h e o u t e r  b a s i n was c h a r a c t e r i s e d by an envelope o f 7-2 t o 7•8°C t e m p e r a t u r e , and 31.2 t o 31•5°/°° s a l i n i t y .  I n J u l y , an envelope w i t h s i m i l a r  p r o p e r t i e s (7-1 t o 7«5°C temperature and 31.2 t o 31.3°/°° s a l i n i t y ) c h a r a c t e r i s e d t h e two i n n e r b a s i n Deep regimes (H' and H"').  I n August,  a s i m i l a r a s s o c i a t i o n w i t h t h e p r e v i o u s month c o u l d n o t be d e t e c t e d . However, water a t s i l l depth i n t h e o u t e r b a s i n (75 and 100 m) so c l o s e l y  76  r e s e m b l e d the i n n e r b a s i n Deep regimes t h a t i t was  coded B " / H .  This  s u g g e s t s n o t o n l y t h a t an i n t r u s i o n invaded the deep i n n e r b a s i n , but a l s o t h a t the r a t e of i n v a s i o n was  more r a p i d i n August t h a n i n J u l y .  T h i s was a l s o i n d i c a t e d by the appearance of t h e 31•3°/°° i s o h a l i n e i n the i n n e r b a s i n i n August, and the r a p i d e l e v a t i o n observed i n i t s depth between t h a t month and September ( F i g . 3 i j ) « -  I t t h e r e f o r e seems  l i k e l y t h a t the observed s e a s o n a l presence of t h e group i n the i n n e r b a s i n deep water r e g i m e s was  indeed caused by a d v e c t i v e t r a n s p o r t , and  r e f l e c t e d the o u t e r b a s i n t r a n s i t i o n a l o r i g i n of the above regimes. Summer and autumn i n n e r b a s i n water r e p l a c e m e n t i s p r o b a b l y  a  r e g u l a r event ( a l t h o u g h v a r y i n g i n i n t e n s i t y ) s i n c e i t i s a s s o c i a t e d w i t h the s e a s o n a l occurrence  of o f f - s h o r e u p w e l l i n g .  The  observed i n n e r  b a s i n p r e s e n c e of t h e S u r f a c e and S u r f a c e T r a n s i t i o n a l s p e c i e s group in  October 1974  above.  c o u l d t h e r e f o r e r e f l e c t the same events as o u t l i n e d  I t i s i n t e r e s t i n g t h a t the hydrographic  d a t a were i n t e r p r e t e d  as i n d i c a t i n g the .presence of some a d v e c t i o n a c r o s s the i n n e r s i l l all  t i m e s of t h e y e a r .  T h i s may  e x p l a i n t h e f r e q u e n t l y observed p r e s -  ence of the group a t s t a t i o n Kn 5» massive occurrence advection.  at  j u s t i n s i d e the s i l l .  However, a  i n t h e i n n e r b a s i n was n o t seen t o accompany such  T h i s may  have r e s u l t e d from the low abundance l e v e l s of a l l  member s p e c i e s a t a l l l o c a l i t i e s i n w i n t e r .  A l t e r n a t i v e l y , the d i f f e r e n c e  between t h e J u l y and August o b s e r v a t i o n s i n d i c a t e d t h a t a " r a p i d " movement of water took p l a c e a c r o s s the s i l l b e f o r e an a p p r e c i a b l e deep i n n e r b a s i n p o p u l a t i o n c o u l d be d e t e c t e d , and  i t i s possible that winter  a d v e c t i v e t r a n s p o r t was n o t " r a p i d " enough t o a c h i e v e a p o p u l a t i o n up.  build-  77  A l t h o u g h always a s s o c i a t e d w i t h S u r f a c e r e g i m e s , t h e group c o u l d n o t he c l e a r l y a s s o c i a t e d w i t h a s e t of T-S p r o p e r t i e s . range extended from 5*8 salinity.  t o 13.5°C t e m p e r a t u r e , and 12.0  The  observed  t o 32.5°/  00  Lack o f o c c u r r e n c e i n water o f l o w e r s a l i n i t y o r h i g h e r  temperature c o u l d have been caused by t h e wash-out p r o c e s s suggested e a r l i e r w i t h r e s p e c t t o t h e Summer S u r f a c e s p e c i e s . the  T h i s would e x p l a i n  observed d i s a p p e a r a n c e of A c a r t i a S l a u s i and A c a r t i a l o n g i r e m i s  from t h e i n l e t head s u r f a c e waters a t t h e time o f peak g l a c i a l r u n o f f (Jjuly). W i t h i n a g i v e n month, A. l o n g i r e m i s , T o r t a n u s d i s c a u d a t u s , and E p i l a b i d o c e r a a m p h i t r i t e s were u s u a l l y found i n warmer and more s a l i n e water than A. c l a u s i , r e f l e c t i n g t h e i r s p a t i a l a s s o c i a t i o n s w i t h t h e o u t e r and i n n e r i n l e t b a s i n s , r e s p e c t i v e l y .  However, t h i s  distinction  was l o s t when diagrams f o r s e v e r a l months were examined t o g e t h e r , and the T-S-P utions,  t e c h n i q u e f a i l e d t o suggest r e a s o n s f o r t h e observed d i s t r i b The l i t e r a t u r e d i d n o t c l a r i f y t h e problem and d i d n o t i n d i c a t e  t h a t any member s p e c i e s was h e r e c l o s e t o t h e l i m i t s o f i t s range. Jefferies  (1967) n o t e d t h a t b o t h A . c l a u s i and T. d i s c a u d a t u s a r e a b l e  t o b r e e d i n water s a l i n i t i e s r a n g i n g from 10 t o over 30 °/oo n o r t h western c o a s t a l A t l a n t i c .  i n the  Furthermore, a l l f o u r s p e c i e s a r e  g e n e r a l l y r e g a r d e d as n e r i t i c , and have been r e c o r d e d i n n o r t h e a s t e r n P a c i f i c c o a s t a l w a t e r s from C a l i f o r n i a t o the B e r i n g Sea ( D a v i s Legare 1957 5 Cameron 1957? F l e m i n g e r 1967;  P e a r c y 1972;  1949!  Motoda and  Minoda 1974). I t s h o u l d be n o t e d t h a t t h e r e i s some c o n f u s i o n i n t h e l i t e r a t u r e c o n c e r n i n g t h e taxonomy of A. c l a u s i , and t h a t g e o g r a p h i c a l range as  78  recorded in the literature may be inaccurate.  According to Bradford  (1976) A. clausi occurs only in the Northeast Atlantic and Mediterranean. Her description of material collected from San Francisco to the Queen Charlotte Islands conformed well with my specimens from Knight Inlet. Bradford concluded that the North Facific form was a variable species)?, and distinct from any other.  However, she did not give i t a name and,  I have consequently continued to use A. clausi to describe the species here.  Transitional/Deep species group The T-S-P diagrams show this group to have been rarely present in surface water regimes and to have occurred most frequently in Transition and Deep regimes of the inner basin.  Occurrence was therefore  largely restricted to water of T-S properties characteristic of the above regimes (i.e. 30*8 to 31'3°/oo salinity, and 6.5 to 8.0°C temperature ). Certain temporal and spatial distributional features observed in the presence/absence profiles were reflected in the T-S-P diagrams. One of the most important concerned the apparent surface displacement of Transitional/Deep and Deep species in the inlet head region.  This  mirrored a feature often observed in hydrographic and nutrient profiles; that of the upward displacement of isopleths in the inner basin.  These  sloped towards the surface near the inlet head, and sometimes extended down-inlet as a sub-surface tongue of minimum (e.g. oxygen) or maximum (e.g. nitrate) values.  This sub-surface water was often found on the  T-S plots to be characteristic of inner basin Deep or Transition regimes  79  ( a l s o suggested above).  by t h e oxygen minimum and n u t r i e n t maximum mentioned  I n the hydrographic  s e c t i o n , I i n t e r p r e t e d t h i s as i n d i c a t i n g  t h a t new i n t r u s i o n s i n t o t h e i n n e r b a s i n r e s u l t e d i n p r e v i o u s l y r e s i d e n t water b e i n g f l u s h e d u p - i n l e t and towards t h e s u r f a c e .  The  observed  s u b - s u r f a c e regime o f t r a n s i t i o n o r deep water o r i g i n t h e r e f o r e r e s u l t e d , and presumably f l o w e d , d o w n - i n l e t . observed  surface displacement  T h i s t h e o r y was c o m p a t i b l e w i t h t h e  o f T r a n s i t i o n a l / D e e p and Deep s p e c i e s  r e f e r r e d t o above, and was supported by t h e o c c u r r e n c e  of representative  s p e c i e s o f b o t h groups i n t h e u p - i n l e t s u b - s u r f a c e regimes.  T h i s was  w e l l i l l u s t r a t e d by t h e s p e c i e s c o n t e n t o f samples c o l l e c t e d i n r e g i m e s coded A"/D' i n October 1974 August and September 1975  ( F i g s . 5a, 16) and coded G and G / H ' i n J u l y ,  ( F i g s . 5h-j, 23-25).  This included  dus t a n n e r i , M e t r i d i a o k h o t e n s i s , and G a i d i u s columbiae. time's, some member s p e c i e s were even observed s t a t i o n s Kn 9 and 11.  Heterorhab-  A t t h e above  i n t h e S u r f a c e regime a t  These a r e t h e T r a n s i t i o n a l / D e e p and Deep s p e c i e s  r e c o r d e d on t h e l o w s a l i n i t y , h i g h temperature i n s e t o f each group (e.g. S. minor, Euchaeta j a p o n i c a , M. o k h o t e n s i s , and H. t a n n e r i i n J u l y ) . A t p r o g r e s s i v e l y f u r t h e r s t a t i o n s f r o m t h e i n l e t head, t h e subs u r f a c e water r e g i m e s become more d i f f i c u l t t o a s s o c i a t e w i t h a t r a n s i t i o n o r deep water o r i g i n , p r o b a b l y a s a r e s u l t o f m i x i n g and d i f f u s i o n . I n t h e o u t e r b a s i n t h e o n l y i n d i c a t i o n o f i t s presence was t h e f r e q u e n t occurrence  o f a n i t r a t e maximum, which was c o n f l u e n t w i t h t h a t o f t h e  s u b - s u r f a c e regime i n t h e i n n e r b a s i n (e.g. t h e n i t r a t e p r o f i l e s i n F i g . 3 )« a  I t i s i n t e r e s t i n g that the majority of Transitional/Deep  and Deep s p e c i e s d i s a p p e a r e d f r o m t h e s u b - s u r f a c e regimes between s t a t i o n s Kn 9 and Kn 7  (  which a l s o approximated t h e l o c a t i o n a t which t h e regime  80  became d i f f i c u l t t o a s s o c i a t e w i t h t r a n s i t i o n o r deep w a t e r u s i n g p r o p e r t i e s alone  ( F i g s . 13,  T-S  14).  When the i n l e t p r o f i l e s were c o n s i d e r e d above, i t was n o t e d t h a t A e t i d i u s d i v e r g e n s , Euchaeta .japonica, and  Scolecithricellamminorwwere  the most f r e q u e n t l y observed member s p e c i e s t o occur i n Queen C h a r l o t t e S t r a i t and the o u t e r b a s i n .  They a l s o tended t o occur i n water of  s l i g h t l y lower s a l i n i t y and h i g h e r temperature than quoted f o r t h e whole group.  The  o c c a s i o n a l presence of o t h e r s p e c i e s i n the  outer  b a s i n p r o b a b l y r e s u l t e d from a d v e c t i v e t r a n s p o r t , e i t h e r from the b a s i n or f r o m Queen C h a r l o t t e S t r a i t .  The  inner  l a t t e r seems u n l i k e l y , s i n c e  the o n l y group members t o be r e c o r d e d a t s t a t i o n QC  ( o t h e r t h a n the  t h r e e s p e c i e s n o t e d above) were M e t r i d i a o k h o t e n s i s  i n June and J u l y  ( F i g s . 22,  23)  and Candacia columbiae i n September ( F i g . 25).  The  s u r f a c e o u t f l o w regime f r o m the i n n e r b a s i n d i s c u s s e d above was most p r o b a b l e  sub-  the  source.  I t was d i f f i c u l t t o u n d e r s t a n d why  o c c a s i o n a l immigrants of; t h e  s p e c i e s group i n the o u t e r b a s i n a p p a r e n t l y f a i l e d t o e s t a b l i s h a population there.  S i m i l a r l y , why  Queen C h a r l o t t e S t r a i t ?  The T-S  were o n l y a few s p e c i e s observed i n p r o p e r t i e s o f the deeper p a r t s o f  b o t h a r e a s were s i m i l a r t o those which a t some time of t h e y e a r ed member s p e c i e s i n t h e i n n e r b a s i n . circulation.  The h y d r o g r a p h i c  support-  A p o s s i b l e explanation i s waterr  a n a l y s i s r e p o r t e d i n an e a r l i e r s e c t i o n  suggested a deep u p - i n l e t f l o w t o be u s u a l l y p r e s e n t t o a g r e a t e r o r l e s s e r degree a t most t i m e s o f the year. " l a y e r " from the s u b - s u r f a c e  I f immigrants e n t e r e d  the  o u t f l o w above, t h e y c o u l d have been  a d v e c t e d back i n t o the i n n e r b a s i n .  However, t h i s i s u n s a t i s f a c t o r y ,  81  s i n c e i t does n o t e x p l a i n t h e Queen C h a r l o t t e S t r a i t s i t u a t i o n , t h e more p e r s i s t e n t p r e s e n c e o f A. d i v e r g e n s , E. j a p o n i c a , and S. minor i n t h e o u t e r b a s i n , o r t h e observed c o n t i n u o u s presence o f C h i r i d i u s g r a c i l i s i n t h e same l o c a l i t y . f r o m t h e T-S-P  An a l t e r n a t i v e s u g g e s t i o n d e r i v e d  diagrams was t h a t t h e r e l a t i v e l y l a r g e a n n u a l range o f  p r o p e r t i e s i n o u t e r b a s i n o r Queen C h a r l o t t e S t r a i t deep water a s compared t o the much s m a l l e r range i n t h e i n n e r b a s i n , c o u l d have been significant.  F o r example, t h e deep water a n n u a l temperature range i n  t h e i n n e r b a s i n was a p p r o x i m a t e l y 0.5°C, i n c o n t r a s t t o 1.5 t o 2.0°C i n the outer b a s i n .  S i m i l a r l y , t h e f o r m e r had a s a l i n i t y range o f  0.4°/ » a s a g a i n s t 1.3°/oo i n t h e l a t t e r . oo  G i l f i l l a n (1972) f o u n d  evidence o f p h y s i o l o g i c a l a d a p t a t i o n i n l o c a l p o p u l a t i o n s o f the euphausid Euphausia p a c i f i c a Hansen t o l o c a l e n v i r o n m e n t a l parameters. I t i s p o s s i b l e t h a t t h e u p - i n l e t s p e c i e s o f t h e T r a n s i t i o n a l / D e e p group were i n some way a d j u s t e d t o t h e i n n e r b a s i n and were unable t o adapt t o t h e more v a r i a b l e environment o f t h e o u t e r b a s i n .  I t i s interesting  t h a t t h e l i t e r a t u r e s u g g e s t s A. d i v e r g e n s and S. minor t o be t y p i c a l of more s u r f a c e and, t h e r e f o r e , more v a r i a b l e water than s p e c i e s w i t h a r e p o r t e d deeper d e p t h r a n g e , such a s Heterorhabdus t a n n e r i , G a i d i u s columbiae, and C a n d a c i a columbiae ( B r o d s k i i 1950;  1966;  L e g a r e 1957? F u r u h a s h i  Vinogradov 1968).  Deep s p e c i e s group As d i s c u s s e d above w i t h t h e presence/absence p r o f i l e s , group c l o s e l y r e s e m b l e d t h e T r a n s i t i o n a l / D e e p group.  this  However, i t was  d i s t i n g u i s h e d by b e i n g a l m o s t e x c l u s i v e t o t h e i n n e r b a s i n , and showed  82  a g r e a t e r a f f i n i t y f o r Deep r e g i m e s . e v e r y T-S-P  B o t h f e a t u r e s c o u l d be seen i n  diagram, where t h e m a j o r i t y of samples from i n n e r b a s i n  Deep r e g i m e s c o n t a i n e d S p i n o c a l a n u s b r e v i c a u d a t u s and  Scaphocalanus  b r e v i c o r n i s , w h i l s t a much l o w e r p r o p o r t i o n o f T r a n s i t i o n regime samples c o n t a i n e d t h e same s p e c i e s .  The T-S range u s u a l l y observed f o r t h e  group was a p p r o x i m a t e l y J1.0 t o Jl.J°/oo s a l i n i t y , and 7.0 temperature.  t o 7.5°G  However, o c c u r r e n c e was a l s o o c c a s i o n a l l y r e c o r d e d i n  c o o l e r and l e s s s a l i n e water, u s u a l l y a s s o c i a t e d w i t h t h e s u b - s u r f a c e u p - i n l e t water r e g i m e s d i s c u s s e d a t l e n g t h i n t h e p r e v i o u s s e c t i o n . The presence of Deep s p e c i e s i n t h i s water c o u l d be e x p l a i n e d by the  same water d i s p l a c e m e n t and a d v e c t i v e t r a n s p o r t o f p l a n k t o n as d e s -  c r i b e d f o r the T r a n s i t i o n a l / D e e p species. i n October 1974  The phenomenon was d e t e c t e d  and i n J u l y , August, and September 1975•  I t therefore  c o i n c i d e d w i t h t h e t i m e s a t which i n t r u s i o n s o y e r t h e s i l l was  thought  t o be most i n t e n s e (see h y d r o g r a p h i c s e c t i o n and t h e d i s c u s s i o n o f S u r f a c e and S u r f a c e / T r a n s i t i o n a l group appearances i n t h e i n n e r b a s i n given above).  I f r e l a t e d i n t h e way e x p l a i n e d h e r e , t h e upward d i s -  placement of t r a n s i t i o n and deep water would a l s o be e x p e c t e d t o be more i n t e n s e , and t h e p r o b a b i l i t y of "deep" p l a n k t o n b e i n g a d v e c t e d towards t h e s u r f a c e would be g r e a t e r . p r o v i d e d by t h e T-S-P  An example of t h e f e a t u r e  diagram from October 1974  ( F i g . 16)  was  which showed  t h a t S p i n o c a l a n u s b r e v i c a u d a t u s and Scaphocalanus b r e v i c o r n i s were b o t h p r e s e n t i n t h e s u b - s u r f a c e regime coded A"/D*  a t s t a t i o n s Kn 9 and  11.  In t h e same month, b o t h s p e c i e s were a l s o f o u n d a t t h e same s t a t i o n s i n S u r f a c e regime water o f s a l i n i t y 29 t o 2>0°/oo. Another i n t e r e s t i n g T-S f e a t u r e concerned water i n t r u s i o n from the  83  o u t e r "basin, and t h e b e h a v i o u r of t h i s group a t s t a t i o n Kn 5 ( j u s t i n s i d e of t h e s i l l ) .  When the i n t r u s i o n was  water (as i n March, A p r i l , May,  of c o o l and r e l a t i v e l y low  salinity  and June 1975» F i g . 5d-g), the group  c o u l d n o t be d e t e c t e d a t t h i s s t a t i o n ( F i g . 1 4 ) .  I t i s tempting t o  suggest t h a t t h i s r e f l e c t e d t h e i r b e i n g pushed u p - i n l e t by the i n t r u s i o n . However, when the l a t t e r was  of water more t y p i c a l i n T-S  properties to  the r e s i d e n t i n n e r b a s i n r e g i m e s (as i n October and December 1974  and  from J u l y t o September 1975i F i g . 5 h - j ) , the group r e a p p e a r e d ( F i g . 14). Furthermore, I considered  the summer and autumn i n t r u s i o n s t o be  the  more i n t e n s e , which s u g g e s t s a d i s p l a c e m e n t e f f e c t , i f o p e r a t i v e , would have been more o b v i o u s i n the autumn t h a n i n the s p r i n g . o p p o s i t e was  Since  the  observed, i t i s u n l i k e l y t h a t d i s p l a c e m e n t caused t h e group's  s p r i n g d i s a p p e a r a n c e from t h e i n n e r s i l l  region.  An a l t e r n a t i v e e x p l a n a t i o n i s the s m a l l a n n u a l v a r i a t i o n of h y d r o g r a p h i c p r o p e r t i e s i n the i n n e r b a s i n which can a l s o p r o v i d e a p o s s i b l e e x p l a n a t i o n f o r the Deep s p e c i e s group b e i n g r e s t r i c t e d t o t h a t l o c a l i t y . As p o i n t e d out above, t h e most d i s t i n c t i v e f e a t u r e o f deep i n n e r b a s i n water r e g i m e s was salinity.  t h e i r r e l a t i v e l y low a n n u a l range i n temperature  S t a t i o n Kn 5 was,  were r e c o r d e d  t h e r e , due  b a s i n (e.g. F i g . 3h-d).  however, u n u s u a l , s i n c e g r e a t e r extremes  t o the passage of i n t r u s i o n s f r o m the Such water was  "new"  been l i t t l e m o d i f i e d by m i x i n g and a d v e c t i o n inner basin).  and  outer  a t t h a t l o c a t i o n ( i . e . hadd s i n c e i t s a r r i v a l i n the  As proposed t o e x p l a i n d i s t r i b u t i o n a l b e h a v i o u r of the  Transitional/Deep  group, Deep s p e c i e s may  to maintain populations  have s i m i l a r l y been unable  i n any l o c a t i t y c h a r a c t e r i s e d by  e n v i r o n m e n t a l v a r i a t i o n . T h i s was  considerable  c e r t a i n l y suggested by the  T-S-P  diagrams f o r t h e Deep s p e c i e s group.  When t h e s e were examined f o r t h e  e n t i r e s t u d y y e a r , i t was f o u n d t h a t a l l r e g i m e s appeared t o s e a s o n a l l y m i g r a t e about t h e diagram, w i t h t h e e x c e p t i o n o f i n n e r b a s i n Deep r e g i m e s , which remained more o r l e s s f i x e d i n a n envelope o f approxima t e l y 31.0 t o 31-3°/oo s a l i n i t y , and 7 t o 7.5°C temperature.  Deep  s p e c i e s were, however, a l s o found i n T r a n s i t i o n regimes o f JO t o 31°/oo s a l i n i t y , u n t i l t h e l a t t e r ' s temperature f e l l below a p p r o x i m a t e l y 6.5°C i n F e b r u a r y ( F i g . 1 8 ) . A t t h a t t i m e , t h e group became a l m o s t e x c l u s i v e t o t h e more s t a b l e ( w i t h r e s p e c t t o temperature and s a l i n i t y ) Deep regime e n v e l o p e s .  T h i s s i t u a t i o n p e r s i s t e d u n t i l A p r i l when t h e  temperature o f T r a n s i t i o n regimes r o s e above 6.5°C,aaridSSpinocalanus b r e v i c a u d a t u s and Scaphocalanus b r e v i c o r n i s r e a p p e a r e d ( F i g . 20). Both species are regarded i n the l i t e r a t u r e as being c h a r a c t e r i s t i c o f deep open ocean water ( G r i c e 1971; Roe 1972; Damkaer 1975) n d a r e a  a p p a r e n t l y r e s t r i c t e d i n t h e c o a s t a l B r i t i s h Columbia r e g i o n t o f j o r d s w i t h deep b a s i n s ( K o e l l e r 1974).  The s a l i n i t i e s f o u n d i n t h e l a t t e r ,  however, ( P i c k a r d 196l; t h i s s t u d y ) a r e c h a r a c t e r i s t i c o f s u r f a c e o r s u b - s u r f a c e waters i n t h e open ocean, a d e p t h n o t v i s i t e d by S p i n o c a l a n u s b r e v i c a u d a t u s o r Scaphocalanus b r e v i c o r n i s (see above f o r a u t h o r s ) . I t t h e r e f o r e seems r e a s o n a b l e t o propose t h a t observed absence o f t h e s e s p e c i e s f r o m c o a s t a l b a s i n s ( e . g . Queen C h a r l o t t e S t r a i t , t h e o u t e r b a s i n o f K n i g h t I n l e t , and s t a t i o n Kn 5 o f t h e i n n e r b a s i n ) does n o t r e s u l t from a d i r e c t T-S e f f e c t b u t c o u l d r e f l e c t t h e i n a b i l i t y o f t h e two s p e c i e s t o m a i n t a i n p o p u l a t i o n s i n a v a r i a b l e environment, e s p e c i a l l y w i t h r e s p e c t t o temperature o r a temperature a s s o c i a t e d p r o p e r t y . R a c o v i t z a n u s a n t a r c t i c u s i s g e n e r a l l y r e p o r t e d a s o c c u p y i n g mid-  85  depths  (200-500 m) i n t h e N o r t h P a c i f i c ( F u r u h a s h i 1966; P e t e r s o n 1972),  w h i l s t i t i s a p p a r e n t l y r a r e i n t h e S t r a i t o f G e o r g i a and c h a r a c t e r i s t i c of deep water ( F u l t o n  1970).  I n the present study, although found i n  T-S diagrams t o be t h e s p e c i e s most e x c l u s i v e t o i n n e r b a s i n Deep regimes,  i t was a l s o t h e o n l y member o f t h e Deep group t o be r e c o r d e d  i n Queen C h a r l o t t e S t r a i t ( A p r i l and June  1975)*  I f advective transport  from o f f S s h o r e was r e s p o n s i b l e , t h e A p r i l r e c o r d i s p a r t i c u l a r l y  diff-  i c u l t t o e x p l a i n , s i n c e t h e major i n t r u s i o n o f h i g h s a l i n i t y water d i d n o t o c c u r u n t i l June and J u l y .  I t i s i n t e r e s t i n g that Fleminger  a l s o f o u n d R. a n t a r c t i c u s i n n e a r - s h o r e  (1964)  s t a t i o n s along the C a l i f o r n i a  c o a s t o n l y i n A p r i l and June. S p i n o c a l a n u s b r e v i c a u d a t u s and Scaphocalanus b r e v i c o r n i s o c c u r r e d i n t h e o u t e r b a s i n Deep regime (B"') a t s t a t i o n Kn 3 i n June and J u l y , r e s p e c t i v e l y ( F i g s . 22, 23)•  T h i s probably r e s u l t e d from a d v e c t i v e  t r a n s f e r b y t h e upper i n l e t s u b - s u r f a c e regime (G) thought t o have a l s o been r e s p o n s i b l e f o r t h e appearance o f T r a n s i t i o n a l / D e e p s p e c i e s i n t h e outer basin.  N e i t h e r s p e c i e s was f o u n d i n samples c o l l e c t e d i n Queen  Charlotte S t r a i t .  O f f - s h o r e s p e c i e s group The i n l e t p r o f i l e s showed t h e s e s p e c i e s t o be e x c l u s i v e t o deep samples c o l l e c t e d i n Queen C h a r l o t t e S t r a i t and t h e o u t e r b a s i n from June u n t i l September  1975* Temporal and s p a t i a l a s p e c t s  o f t h e i r d i s t r i b u t i o n were d e s c r i b e d i n t h a t s e c t i o n . (Figs.  inlet  The T-S diagrams  22-25) c o n f i r m e d t h a t a l m o s t a l l o c c u r r e n c e s were i n samples f r o m  Deep regimes (coded E'" f o r Queen C h a r l o t t e S t r a i t and B"' f o r t h e o u t e r  86  basin).  Therefore, a l l observations were from a T-S envelope of 7.2  to 7.8°G temperature, and 31*8  to 32.8°/oo salinity.  However, the  majority of member species were found ©nlyhin the July 100 m sample from station QG, and were therefore restricted in the present study to the water type found at that location, depth, and time (7.2°G temperature and 32.8  / oo salinity).  Hydrographic data without a plankton sample  were collected at 150 m and,iinJJ.uly, gave values of 6.8°C temperature and 33«l°/°° salinity.  T-S analysis indicated that both the 100 m and  150 m samples were from the same water regime, and i t i s likely that the group was also present at the 150 m depth. The temporal and spatial decline in abundance of species and individuals belonging to the group, discussed in the previous section, was reflected on the T-S-P diagrams by each relevant coordinate having a much shorter Off-shore species l i s t than the July 100 m stationnQCC coordinate.  Although the latter sample was characterised by a higher  salinity and temperature than the other coordinates at which an Offshore species occurred, the magnitude of decline at station QC between July and September or between station QG and Kn 1 in the outer basin, did not seem to be related to the degree of temperature and/or salinity change involved.  For example, the observed changes in hydrographic  properties at station QG between July and September were small, and in the order of  0.3°/°° salinity  and  0.3°G temperature.  For an "immig-  rant" passing over the outer s i l l into the outer basin, a greater change in the order of 1.0°/oo salinity, and 0.6°G temperature would have been experienced (Figs. 3h-j,  23-25)•  However, in August and September,  approximately the same number of Off-shore species were present in  87  b o t h s t a t i o n QC and s t a t i o n Kn 1 samples ( F i g . 15). a l t h o u g h t h e d i f f e r e n c e s i n temperature  In contrast,  and s a l i n i t y between 200 m  water a t s t a t i o n Kn 1, and 150 m water a t s t a t i o n Kn 3» were s m a l l and b o t h were p l a c e d i n t h e same regime, o n l y one O f f - s h o r e s p e c i e s (Galanus c r i s t a t u s ) was r e c o r d e d a t t h e l a t t e r s t a t i o n . t h a t the disappearance  I t i s unlikely  o f t h e Queen C h a r l o t t e S t r a i t p o p u l a t i o n was  due t o d e s c e n t i n t o deeper water which t h e n e t f a i l e d t o sample, s i n c e s t a t i o n QC i s s i t u a t e d a t one o f t h e deepest p a r t s o f t h e s t r a i t . Furthermore,  v e r t i c a l h a u l s w i t h a 75 cm d i a m e t e r n e t from 150 m t o  t h e s u r f a c e i n August and September, caught o n l y a few o f t h e O f f - s h o r e s p e c i e s t a k e n t h i r t y minutes p r e v i o u s l y w i t h a Clarke-Bumpus  sampler.  The d i f f e r e n c e presumably r e f l e c t e d t h e s u s c e p t a b i l i t y o f v e r t i c a l hauls t o plankton patchiness. A p a r t i a l e x p l a n a t i o n , based o n l y on c i r c u m s t a n t i a l be a c o m b i n a t i o n o f t h e f o l l o w i n g .  evidence, could  I n June, t h e O f f - s h o r e group e n t e r e d  Queen C h a r l o t t e S t r a i t a s a l a r g e " p a t c h " , presumably formed a s a r e s u l t of u p w e l l i n g a l o n g t h e o u t e r P a c i f i c c o a s t . through t h e s t u d y a r e a .  The p a t c h was t h e n  A t s t a t i o n QC i n June o n l y t h e p e r i m e t e r o f  t h e p a t c h was sampled, a c c o u n t i n g f o r t h e presence s p e c i e s i n t h a t sample.  advected  o f a few O f f - s h o r e  I n J u l y , t h e p a t c h was more c o m p l e t e l y sampled,  r e s u l t i n g i n t h e r e c o r d e d presence  of t h i r t y - s e v e n Off-shore species;  but i n August and September, i t had d i s p e r s e d o r moved e l s e w h e r e , and o n l y a s m a l l e r number o f O f f - s h o r e s p e c i e s were seen.  Although a p o r t i o n  of t h e p a t c h was a d v e c t e d i n t o t h e o u t e r b a s i n , i t d i d n o t r e a c h s t a t i o n Kn 3, a c c o u n t i n g f o r t h e almost complete absence o f O f f - s h o r e s p e c i e s at the l a t t e r s t a t i o n .  A t t h e same t i m e , i n d i v i d u a l abundance and s p e c i e s  88  number i n the patch may have been declining i n response to hydrographic and environmental  changes which occurred between the time of upwelling  and the time when the group was detected at station QC i n July. I f t h i s was the case, and environmental changes observed a f t e r July were not s i g n i f i c a n t , approximately the same species should have been present in l a t e r samples from both station QC and station Kn 1. the case (Figs. 15,24,25)-  This was indeed  For example, at station QC i n August,  Metridia princeps Giesbrecht was the only group member present which was not present at the same time a t station Kn 1. Species included i n t h i s group,havehbegh observed i n l o c a l waters before.  However, the majority havennot.  This may p a r t l y r e f l e c t  some avoidance i n the past of the tedious task of taxonomically working through plankton samples, but i t also indicates that the event was unusual.  observed  Monthly samples from station QC were available f o r 1974,  and I found them to contain no zooplanktors•of any taxon which could be considered c h a r a c t e r i s t i c of off-shore water. The species content of the group i t s e l f was d i f f i c u l t to interpret, since i t contained both species considered to be sub-arctic, suchaas Calanus cristatus Kroyer, and species considered to be t r a n s i t i o n a l or even sub-tropical, such as Heterorhabdus spinifrons Claus.  The  publications of Fager and McGowan (1963); Fleminger (1967); Vinogradov (1968); McGowan(!97J., 1974); Morioka (1972); Peterson (1972); Pearcy (1972); and Motoda and Minoda (1974) were found the most useful r e f e r ences i n determining known geographical d i s t r i b u t i o n (Table V I I l ) . I t i s perhaps s i g n i f i c a n t that the species which were observed f o r the longest period i n the present study and reached the outer i n l e t basin,  89  were g e n e r a l l y those which have been p r e v i o u s l y r e c o r d e d from B r i t i s h Columbian waters ( T a b l e V I I l ) .  F u r t h e r m o r e , t h e y were r e g a r d e d  by  t h e above a u t h o r s as b e i n g c h a r a c t e r i s t i c of the s u b - a r c t i c domain, which extends westwards from the Canadian c o a s t . Queen C h a r l o t t e S t r a i t , they may  When r e c o r d e d i n  t h e r e f o r e n o t have been i n such " f o r e i g n "  c o n d i t i o n s as were the s p e c i e s p r e v i o u s l y o n l y r e c o r d e d f u r t h e r t o the south o f f Oregon and C a l i f o r n i a .  These were a l m o s t e x c l u s i v e t o the  J u l y sample i n Queen C h a r l o t t e S t r a i t and p o s s i b l y d i d n o t s u r v i v e f o r long afterwards. The  s p e c i e s r i c h n e s s of the J u l y Queen C h a r l o t t e S t r a i t sample  also d i f f i c u l t to interpret.  was  I t c o n t a i n e d t w i c e as many copepod s p e c i e s  as I f o u n d i n any o t h e r sample d u r i n g the s t u d y .  In a d d i t i o n , t h i s  " d i v e r s i t y " , and the t o t a l number of o f f - s h o r e copepods c o l l e c t e d , seems t o have been c o n s i d e r a b l y h i g h e r than observed  o f f Oregon by  Peterson  (1972) and Pearcy (1972). I n o r d e r t o a t t e m p t an e x p l a n a t i o n o f how  the observed  species  were b r o u g h t i n t o the s t u d y a r e a , the o f f - s h o r e oceanography of the r e g i o n must be c o n s i d e r e d .  T h i s i s dominated by a z o n a l c u r r e n t , t h e  West Wind D r i f t ( o r s u b - a r c t i c c u r r e n t ) , which f l o w s i n an e a s t e r l y d i r e c t i o n and d i v e r g e s as the N o r t h American c o a s t i s approached a t a l a t i t u d e approximate t o t h a t of the S t r a i t o f Juan de Fuca (Dodimead et a l .  1963.  1976). ©ne b r a n c h f l o w s south as the C a l i f o r n i a C u r r e n t  and the o t h e r n o r t h i n t o the G u l f of A l a s k a as the A l a s k a  Current.  The f a u n a o f t h e system a r e t y p i c a l l y s u b - a r c t i c (McGowan  1971» 1974),  and i n more s o u t h e r l y l o c a t i o n s , the C a l i f o r n i a C u r r e n t i s a w e l l known source o f s u b - a r c t i c immigrants ( B r i n t o n  1976). At the s u r f a c e , a  90  c u r r e n t moves northwards a l o n g the c o a s t i n w i n t e r ( t h e Davidson c u r r e n t ) but Ithis d i s a p p e a r s f o r the d u r a t i o n of the u p w e l l i n g season from A p r i l o r May  u n t i l September (Bakum 1973;  Dodimead e t a l . 1976).  The  northern  e x t e n t of t h i s c u r r e n t i s n o t known, but the l a t t e r a u t h o r s r e p o r t i t as p r e s e n t o f f Vancouver I s l a n d . approximately  200  A non-seasonal northward f l o w a t  m d e p t h and known as the C a l i f o r n i a U n d e r c u r r e n t  a l s o been observed t o f l o w a l o n g the c o a s t (Cannon and L a i r d Dodimead e t a l . 1976).  has  1974;  This current i s apparently strongest o f f C a l i -  f o r n i a , but has been r e c o r d e d as f a r n o r t h as Vancouver I s l a n d where i t s f l o w i s weak and v a r i a b l e (Reed and Halpern^1976).'  Off the  Strait  of Juan de Fuca, c y c l o n i c e d d y - l i k e f e a t u r e s have been observed In the undercurrent  (Ingram 1967)  and m o d i f i c a t i o n s a l s o appear t o occur  there  due t o m i x i n g w i t h a d j a c e n t s u b - a r c t i c water (Reed and H a l p e r n 1976). I t i s i n t e r e s t i n g t h a t t h e s p e c i e s content of the J u l y i n t r u s i o n r e p o r t e d h e r e , i n d i c a t e d a s i m i l a r m i x t u r e of s u b - a r c t i c water w i t h water f r o m a more s o u t h e r l y o r i g i n . There i s some i n d i c a t i o n t h a t 1975 year.  may  have been an unusual  upwelling  Bakum $1973) has d e s c r i b e d a method t o e s t i m a t e i n d i c e s of i n t e n s i t y  of w i n d - i n d u c e d u p w e l l i n g .  The  i n d i c e s a r e based on c a l c u l a t i o n of o f f -  shore Ekman s u r f a c e t r a n s p o r t from monthly mean s u r f a c e atmospheric  data.  Table IXa (Bakum, u n p u b l i s h e d d a t a ) l i s t s t h e s e monthly i n d i c e s f o r the p e r i o d 1972  t o 1975  for  a  s t a t i o n l o c a t e d a t 51°N  Vancouver I s l a n d and the Queen C h a r l o t t e I s l a n d s ) . i n 1975  131°W  (midway between  I t can be seen t h a t  t h e most i n t e n s i v e u p w e l l i n g would have been expected  o c c u r r e d i n June. y e a r s (1972  t o 1974)  t o have  I n c o n t r a s t , Bakum's i n d i c e s f o r immediately i n d i c a t e August (and September i n 1972)  preceeding  as the month  91  o f most i n t e n s i v e e x p e c t e d u p w e l l i n g .  However, t h i s p r o b a b l y o n l y  r e f l e c t s a v e r y v a r i a b l e phenomenon s i n c e mean monthly v a l u e s f o r t h e i n d i c e s f o r a twenty y e a r p e r i o d i n d i c a t e maximum v a l u e s t o o c c u r i n June and J u l y ( T a b l e IXb from Bakum 1973)-  I t i s interesting that i n  1975» Bakum's i n d i c e s i n d i c a t e most i n t e n s i v e u p w e l l i n g t o have o c c u r r e d i n June, t h e month i m m e d i a t e l y p r e c e e d i n g t h e appearance o f most O f f shore s p e c i e s i n Queen C h a r l o t t e S t r a i t .  Furthermore,  t h e June i n d e x  was more t h a n t w i c e t h e mean i n d e x f o r t h a t month. U n f o r t u n a t e l y , t h e u l t i m a t e f a t e i s n o t known of t h e few  Off-shore  s p e c i e s which c o u l d s t i l l be f o u n d i n t h e o u t e r b a s i n and Queen C h a r l o t t e S t r a i t i n September 1975«  I t would be i n t e r e s t i n g t o know, f o r example,  i f any s p e c i e s c r o s s e d t h e i n n e r s i l l , b r e v i c a u d a t u s , Scaphocalanus i n d i c a t e s an environment o f f - s h o r e organisms.  where t h e presence  of Spinocalanus  b r e v i c o r n i s , and R a c o v i t z a n u s a n t a r c t i c u s  i n some way f a v o u r a b l e f o r t h e s u r v i v a l of  Presumably,  the i n n e r b a s i n p o p u l a t i o n s of t h e  above t h r e e s p e c i e s were brought i n t o t h e a r e a by a s i m i l a r o f o c e a n i c water.  intrusion  However, i t i s s t r a n g e t h a t n e i t h e r S p i n o c a l a n u s  b r e v i c a u d a t u s o f Scaphocalanus  b r e v i c o r n i s were observed i n t h e i n t r u s i o n  r e p o r t e d h e r e , and t h a t R a c o v i t z a n u s a n t a r c t i c u s was J u l y 100 m sample a t s t a t i o n  seen i n o n l y t h e  QC.  M i g r a n t s p e c i e s group As mentioned e a r l i e r , t h e d i u r n a l and s e a s o n a l movements u n d e r t a k e n by t h i s group r a r e l y i n v o l v e d a l l members o f a s p e c i e s p o p u l a t i o n , t h e r e b y making m i g r a t i o n s a l m o s t u n d e t e c t a b l e by t h e t e c h n i q u e s used f o r t h e i n l e t p r o f i l e s and T-S-P  presence/absence  diagrams.  For only  92  one species, Galanus marshallae, could a seasonal migration be clearlyseen from the diagrams.  These show the species to be present at most  T-S coordinates i n Surface regimes (coded E' and A) from March' u n t i l August 1975  (Figs. 1 9 - 2 4 ) , but generally absent from those regimes  i n p r i o r or l a t e r months (Figs. 16-18, 25) > Eucalanus bungi bungi and Galanus plumchrus showed a s i m i l a r seasonal behaviour, but t h i s i s d i f f i c u l t to detect from the diagrams because of the r a r i t y of both species i n the study area.  The s i t u a t i o n concerning Pseudocalanus  elongatus was p a r t i c u l a r l y confused by incomplete movements of the population, and i t was more p r o f i t a b l e t o discuss the d i s t r i b u t i o n of a l l Migrant species with the r e s u l t s of contingency t a b l e s and l i f e history analysis.  ( i v ) E x f. Contingency t a b l e s The a n a l y s i s of these t a b l e s by the Chi squared t e s t was undertaken to see i f the r e l a t i v e abundance of a given species v a r i e d s i g n i f i c a n t l y between water regimes.  I t i s again emphasised that the  t e s t could only be used to i n d i c a t e p r o p o r t i o n a l i t y or heterogeneity of species content, and i t was not a t e s t to detect d i f f e r e n c e s i n absolute abundance. and T-S-P  However, i n t e r p r e t a t i o n of the i n l e t p r o f i l e s  diagrams was l i m i t e d by t h e i r use of presence/absence data  and, as employedhhere, the contingency t a b l e s provided a simple and p a r t i a l l y independent check on conclusions drawn from the former g r a p h i c a l methods.  Furthermore,  two  since the technique incorporated  abundance data, d i s t r i b u t i o n of the Migrant group could be studied. The method was described e a r l i e r and the r e s u l t s f o r the whole study  93  a r e a i n December 1974 and, F e b r u a r y , A p r i l , and J u l y 1975 a r e g i v e n i n T a b l e IVa-d.  T a b l e V I I d i f f e r s i n c o n t a i n i n g mean abundance d a t a  a t i n d i v i d u a l sample d e p t h s f o r o n l y one s t a t i o n (Kn 7) i n September. I t was i n t e n d e d t o supplement t h e Spearman r a n k c o r r e l a t i o n a n a l y s i s , b u t t h e r e s u l t s a r e a l s o r e l e v a n t here.  U n f o r t u n a t e l y , many abundance  e s t i m a t e s were o f l e s s than f i v e organisms/m^, and t h e C h i squared a n a l y s i s c o u l d n o t be a p p l i e d .  I t s h o u l d a l s o be n o t e d t h a t a l t h o u g h t h e C h i  squared t e s t i s a good i n d i c a t o r o f p r o p o r t i o n a l i t y , i t i s n o t a good measure.  T h e r e f o r e , s i g n i f i c a n c e a t t h e p = 0.001 l e v e l does n o t  i n d i c a t e a g r e a t e r degree o f d i s p r o p o r t i o n a l i t y than does s i g n i f i c a n c e a t a l e v e l o f p = 0.05 ( G i l b e r t 1973).  Summer S u r f a c e and S u r f a c e and S u r f a c e / T r a n s i t i o n a l s p e c i e s groups The g r o u p i n g o f t h e s e s p e c i e s a c c o r d i n g t o t h e i r a s s o c i a t i o n w i t h s u r f a c e water regimes i n T-S-P and presence/absence p r o f i l e a n a l y s i s was  s u p p o r t e d by t h e C h i squared t e s t s r e p o r t e d h e r e .  Table IVd f o r  J u l y i n d i c a t e d t h a t t h e two C l a d o c e r a s p e c i e s Podon and Evadne a v o i d e d water o f s a l i n i t i e s h i g h e r than 25°/oo o r l o w e r than 5°/oo, and t h a t no o t h e r z o o p l a n k t o r appeared t o be a s s o c i a t e d w i t h t h a t s a l i n i t y  range.  The t a b l e showed t h i s " f r e s h w a t e r " o u t f l o w l a y e r a t t h e time o f peak g l a c i a l r u n - o f f t o be' almost d e v o i d o f c a l a n o i d copepods.  I n t h e same  month, Centropages m c m u r r i c h i was c h i e f l y r e s t r i c t e d t o a s u b - s u r f a c e regime found a t s t a t i o n Kn 1 i n t h e o u t e r b a s i n (coded A')> and A c a r t i a c l a u s i was a l s o a s s o c i a t e d w i t h i n n e r and o u t e r b a s i n S u r f a c e  regimes.  A. l o n g i r e m i s was a p p a r e n t l y more a s s o c i a t e d w i t h S u r f a c e regimes i n K n i g h t I n l e t than i n Queen C h a r l o t t e S t r a i t , where t h e p o p u l a t i o n  94  appeared to "be generally dispersed i n December and February (Table IVa-b), and then to be associated with Surface (coded E') and Transition (coded E") regimes i n July. I t i s i n t e r e s t i n g that an abrupt v e r t i c a l separation appeared to exist between A. c l a u s i and A. longiremis i n September 1975 at station Kn ?.  Table VII showed that A. c l a u s i was s i g n i f i c a n t l y  concentrated  only at the 5 m depth, whilst A. longiremis was s i g n i f i c a n t l y at only the 10 m depth.  concentrated  The observed A. c l a u s i population was therefore  present i n lower s a l i n i t y water than the s l i g h t l y deeper A. longiremis population.  I f t h i s was not a l o c a l or s h o r t - l i v e d feature, i t may  explain some of the d i s t r i b u t i o n a l observations made from the presence/ absence p r o f i l e s (Figs.112,  16-25).  For example, the r e s t r i c t i o n of  A. c l a u s i to the i n l e t , and i t s p a r t i c u l a r a f f i n i t y to the inner basin, where surface s a l i n i t i e s were always lower than i n Queen Charlotte S t r a i t ; and the tendency f o r A. longiremis to be poorly represented in the inner basin. There was a suggestion that Tortanus discaudatus was concentrated i n deep water i n winter (TageelVb), a feature also indicated on the presence/absence p r o f i l e s .  However, i n July, t h i s species was c l e a r l y  associated with the Transition regime (coded E " ) i n Queen Charlotte S t r a i t and with Surface regimes (coded A and A ' ) intthe i n l e t outer basin.  Transitional/Deep and Deep species group The Chi squared tests were again i n general agreement with the grouping derived from T-S-P diagrams and presence/absence p r o f i l e s . No member species was s i g n i f i c a n t l y concentrated i n a Surface regime,  95  w i t h t h e e x c e p t i o n i n J u l y o f Euchaeta .japonica and M e t r i d i a o k h o t e n s i s . In  t h e f o r m e r case, t h e p o p u l a t i o n was composed a l m o s t e n t i r e l y o f  second and t h i r d c o p e p o d i t e  stages  i c a l l y s u r f a c e d w e l l e r s (Evans  (Appendix A) w h i c h a r e c h a r a c t e r i s t -  1973)•  M e t r i d i a o k h o t e n s i s was f o u n d  i n l a r g e r numbers i n s u r f a c e w a t e r s n e a r t h e i n l e t head i n J u l y and August (Appendix A ) , and t h e f e a t u r e w i l l be d i s c u s s e d below w i t h t h e Migrant  s p e c i e s group.  Only one member o f t h e Deep s p e c i e s group, S p i n o c a l a n u s  brevi-  caudatus , was c o n s i s t e n t l y p r e s e n t a t l e v e l s o f abundance s u i t a b l e for  t h e C h i squared t e s t .  T a b l e IVa-d showed t h a t a l t h o u g h t h i s  was  o c c a s i o n a l l y concentrated  i n T r a n s i t i o n r e g i m e s , i t c o u l d be d i s t i n -  guished from t h e T r a n s i t i o n a l / D e e p species by always being concentrated  i n Deep r e g i m e s .  species  significantly  Scaphocalanus abundance d a t a e n t e r e d i n  Table V I I d i d n o t p e r m i t C h i squared a n a l y s i s , b u t ab.Glear^a££iMtyjXor-r Deepeinfie^Msinni^gimesnfe Table V I I a l s o supported  t h e o b s e r v a t i o n made from t h e p r e s e n c e /  absence p r o f i l e s t h a t A e t i d i u s d i v e r g e n s and S c o l e c i t h r i c e l l a minor were u s u a l l y f o u n d a t between 30 and 100 m d e p t h .  C h i squared t e s t s  on t h e September Kn 7 d a t a showed b o t h s p e c i e s ( t o g e t h e r w i t h Euchaeta .japonica) t o be s i g n i f i c a n t l y c o n c e n t r a t e d  Migrant  o n l y a t a d e p t h o f 30 m.  s p e c i e s group  T a b l e I V a showed Calanus m a r s h a l l a e  t o be a b s e n t f r o m  s u r f a c e w a t e r i n b o t h i n l e t b a s i n s i n December 1974.  At t h a t time,  o n l y a v e r y s m a l l p o p u l a t i o n was d e t e c t e d i n Queen C h a r l o t t e S t r a i t . T h i s s i t u a t i o n was a l s o seen i n F e b r u a r y ,  a l t h o u g h abundance i n t h e i n n e r  96  b a s i n had f a l l e n , and no s i g n i f i c a n t c o n c e n t r a t i o n s were d e t e c t e d there.  In A p r i l , p o p u l a t i o n s i n t h e two i n l e t b a s i n s were s i g n i f i c -  a n t l y c o n c e n t r a t e d i n t h e S u r f a c e regimes b u t , by J u l y , t h e o u t e r p o p u l a t i o n had a g a i n descended t o deeper water.  In the inner b a s i n ,  a s s o c i a t i o n w i t h t h e s u r f a c e c o n t i n u e d a l t h o u g h i t was  indicated i n  T a b l e V I I t h a t by September, a descent had o c c u r r e d t o a Deep regime. The above s e a s o n a l m i g r a t i o n , t h e r e f o r e , g e n e r a l l y f o l l o w e d t h a t r e p o r t e d f o r most n o r t h e r n Galanus s p e c i e s ( M a c l e l l a n 1967; F u l t o n 1973).  Vinogradov  1968;  The l a t e summer p e r s i s t e n c e o f Galanus m a r s h a l l a e i n  s u r f a c e water n e a r the i n l e t head was d i f f i c u l t t o i n t e r p r e t , and p r e v i o u s l y mentioned, M e t r i d i a o k h o t e n s i s appeared t o be i n t h e same water.  One  as  concentrated  p o s s i b i l i t y i s t h a t as a r e s u l t o f poor p r i m a r y  p r o d u c t i o n i n t h e h i g h l y t u r b i d u p - i n l e t s u r f a c e w a t e r ( i n d i c a t e d by s  c h l o r o p h y l l a c o n c e n t r a t i o n s and i s o p l e t h s of suspended sediments i n F i g s . 9&-b,  10), Galanus a t s t a t i o n s Kn 9 and 11 were under n u t r i t i o n a l  s t r e s s and i n some way d e l a y e d t h e i r d e s c e n t t o deeper water. I d e a l l y , t h e l a t t e r would have been i n d i c a t e d f r o m t h e r e l e v a n t l i f e h i s t o r y c o m p o s i t i o n graphs ( F i g . 29).  However, t h e s e were a l s o  d i f f i c u l t t o i n t e r p r e t , s i n c e a t s t a t i o n QG t h e r e were two  separate  peaks i n abundance of a d u l t s w i t h f o l l o w i n g peaks of c o p e p o d i t e s 1 t o 3, 4, and 5 i  n  sequence.  I t i s , t h e r e f o r e , p o s s i b l e t h a t two  generations  were produced, o r t h a t two p o p u l a t i o n s w i t h t e m p o r a l l y s e p a r a t e d c y c l e s were observed.  breeding  I f t h i s i s i g n o r e d , F i g u r e 29 i n d i c a t e s t h a t a t  s t a t i o n Kn 11 a c o h o r t a p p a r e n t l y took from March and A p r i l  until  August t o d e v e l o p from c o p e p o d i t e s t a g e s 1 and 3 t o stage 5«  In contrast,  t h e m a j o r i t y of t h e c o r r e s p o n d i n g p o p u l a t i o n a t s t a t i o n Kn 3 i  n  July  was  97  composed of stage 5 and a d u l t c o p e p o d i t e s .  The p r e s e n c e of the  was  ait so "be i n d i c a t i v e of  i t s e l f d i f f i c u l t t o u n d e r s t a n d , and may  latter  autumn b r e e d i n g . I n summary, the h i g h e r p r o p o r t i o n of s t a g e 4 c o p e p o d i t e s a t s t a t i o n Kn 11 than a t s t a t i o n Kn 3 does suggest t h a t more p r o l o n g e d development a t u p - i n l e t l o c a t i o n s may o f Galanus t h e r e .  have been r e s p o n s i b l e f o r the l a t e d e s c e n t  However, the s i t u a t i o n i s n o t c l e a r , and a l l  stage 5 c o p e p o d i t e s of G. m a r s h a l l a e  c o l l e c t e d n e a r the i n l e t head  appeared t o be as h e a v i l y l a d e n w i t h o i l i n June, J u l y , and August as specimens c o l l e c t e d i n the o u t e r b a s i n .  F u r t h e r m o r e , the  possibility  of i n l e t c i r c u l a t i o n c o n c e n t r a t i n g Galanus a t the i n l e t head i n summer c o u l d n o t be r u l e d out.  The  inner basin held only a small  population  i n w i n t e r , but by August the h i g h e s t abundances were r e c o r d e d ( F i g . 29.  Appendix A ) .  there  T h i s c o u l d have r e s u l t e d f r o m an a d v e c t i v e  con-  c e n t r a t i n g mechanism but might a l s o be a p r o d u c t of d i f f e r e n t m o r t a l i t y r a t e s i n the two  basins.  F i n a l l y , i t i s i n t e r e s t i n g that M e t r i d i a okhotensis  was  also  p r e s e n t a t h i g h l e v e l s of abundance i n t h e i n n e r b a s i n S u r f a c e w h i l s t the o u t e r b a s i n p o p u l a t i o n was (Table IVd).  a s s o c i a t e d w i t h deep water  I n t h i s case, t h e r e d i d n o t appear t o be any r e l a t i o n s h i p  w i t h d i f f e r e n c e s i n copepodite composition locations.  regime,  of p o p u l a t i o n s a t the  two  I t i s p o s s i b l e t h a t t h i s species i s a d i e l migrant, since  i n F e b r u a r y and March when s t a t i o n Kn 7 was  sampled a t n i g h t ,  l a r g e numbers were c o l l e c t e d i n the S u r f a c e regime ( F i g . 35» S t a t i o n QG d a t a  unusually Appendix A ) .  (which were a l w a y s c o l l e c t e d a t n i g h t ) d i d n o t  t h e s i t u a t i o n s i n c e the s p e c i e s was r a r e l y p r e s e n t t h e r e .  clarify  I d i d not  98  f i n d evidence o f d i e l m i g r a t i o n f o r M. o k h o t e n s i s i n Howe Sound (Stone, u n p u b l i s h e d d a t a ) b u t d i s t i n c t m i g r a t i o n has been r e p o r t e d i n o c e a n i c  waters (Vinogradov 1968). An i n t e r e s t i n g t o p i c f o r f u t u r e r e s e a r c h would be t o i n v e s t i g a t e the r o l e of l i g h t e x t i n c t i o n i n determining the v e r t i c a l  distribution  o f p l a n k t o n under c o n d i t i o n s o f g l a c i a l r u n - o f f i n a f j o r d .  Considerable  evidence has been accumulated t o suggest t h a t d i e l v e r t i c a l m i g r a t i o n s of f i s h and z o o p l a n k t o n a r e r e l a t e d t o n a t u r a l v a r i a t i o n s i n l i g h t i n t e n s i t y (e.g. Boden and Kampa 1967).  One t h e o r y developed  (1927) proposed t h a t m i g r a t i n g organisms aggregate t h e d i e l movements o f which t h e y f o l l o w .  by R u s s e l  around o p t i m a l i s o l u m e s ,  Variations i n the e x t i n c t i o n  c o e f f i c i e n t r e f l e c t i n g v a r i a t i o n s i n water t u r b i d i t y would a l s o a f f e c t t h e depth o f a p a r t i c u l a r isolume and hence t h e d i s t r i b u t i o n o f a n i m a l s . was i n d i c a t e d e x p e r i m e n t a l l y w i t h Daphnia by L i n c o l n (1970).  This  The i n t r o -  d u c t i o n o f t u r b i d g l a c i a l r u n - o f f a t t h e head o f K n i g h t I n l e t i n summer may t h e r e f o r e have caused an upward d i s p l a c e m e n t  o f any z o o p l a n k t o r which  dfetermin'edti depth a c c o r d i n g t o an o p t i m a l i s o l u m e . An a l t e r n a t i v e mechanism proposed by R i n g e l b e r g (1964) suggests t h a t t h e s t i m u l u s f o r v e r t i c a l movement i s n o t r e l a t e d t o a t t e m p t s t o remain i n an o p t i m a l i n t e n s i t y , b u t r e s u l t s f r o m t h e r a t e o f r e l a t i v e change o f i n t e n s i t y .  The b e h a v i o u r o f t h e s c a t t e r i n g l a y e r i n S a a n i c h  I n l e t was found by Bary((l967) t o be c o n s i s t e n t w i t h R i n g e l b e r g ' s  concept.  However, t h i s p r o p o s a l may a l s o suggest a s u r f a c e d i s t r i b u t i o n o f organisms under t u r b i d c o n d i t i o n s .  A c c o r d i n g t o R i n g e l b e r g (1964), t h e  magnitude o f i n t e n s i t y change determines response.  t h e magnitude o f m i g r a t o r y  T h e r e f o r e , s i n c e d i e l changes i n l i g h t i n t e n s i t y a r e g r e a t e r  99  i n c l e a r t h a n i n t u r b i d water, m i g r a t i o n may o c c u r t o a g r e a t e r d e p t h under t h e f o r m e r c o n d i t i o n s than t h e l a t t e r ( B a r y 1967). s u p p o r t e d b y B a r y ' s (1967) o b s e r v a t i o n t h a t t h e daytime  T h i s was scattering  l a y e r o c c u r r e d a t a deeper d e p t h i n t h e " c l e a r o c e a n i c " w a t e r s o f t h e N o r t h P a c i f i c ( s t a t i o n P ) than i t d i d i n t h e " t u r b i d c o a s t a l " w a t e r s o f Saanich I n l e t . Eucalanus b u n g i b u n g i and Galanus plumchrus were n e v e r p r e s e n t a t abundance l e v e l s s u i t a b l e f o r t h e C h i squared t e s t .  However, t h e y have  b o t h been r e p o r t e d t o undertake a s i m i l a r s e a s o n a l m i g r a t i o n t o t h a t shown by G. m a r s h a l l a e ( V i n o g r a d o v 1968; F u l t o n 1973)>  an(  l b o t h were  r e s t r i c t e d i n o c c u r r e n c e t o Deep regimes i n F e b r u a r y 1975*  The l i f e  h i s t o r y c o m p o s i t i o n d i a g r a m g i v e n here f o r Eucalanus b u n g i b u n g i ( F i g . 31) conformed w i t h t h a t i n d i c a t e d by Vinogradov (1968).  The r e c e n t d e c l i n e  i n abundance o f G. plumchrus i n t h e S t r a i t o f G e o r g i a and a d j a c e n t waters has been a n a l y s e d by Gardner (1976). Pseudocalanus e l o n g a t u s c o u l d n o r m a l l y be f o u n d a t a l l depths and was u s u a l l y t h e most common copepod i n any sample.  The l o w s a l i n i t y  s u r f a c e l a y e r was a v o i d e d i n mid-summer ( T a b l e IVd) and t h e deepest depths i n t h e i n n e r b a s i n u s u a l l y h e l d l o w e r numbers o f t h e s p e c i e s (Appendix A ) .  A rather i l l - d e f i n e d seasonal migration occurred, with  t h e p o p u l a t i o n a p p a r e n t l y moving from S u r f a c e t o T r a n s i t i o n To Deep r regimes between December and A p r i l ( T a b l e I V a - c ) .  In July, concentration  appeared t o o c c u r i n t h e S u r f a c e and Deep regimes a t s t a t i o n QG; i n Subs u r f a c e , T r a n s i t i o n , and Deep regimes i n t h e o u t e r b a s i n ; and o n l y i n Deep regimes i n t h e i n n e r b a s i n .  The l a t t e r was a l s o observed a t s t a t i o n  Kn 7 i n September ( T a b l e V I I ) , and may have been a s s o c i a t e d w i t h t h e  100  m a j o r i t y o f the p o p u l a t i o n "being p r e s e n t as t h e o v e r w i n t e r i n g stage ( c o p e p o d i t e 5) a t t h a t t i m e .  I n c o n t r a s t , l a r g e numbers o f s t a g e 4 and  a d u l t c o p e p o d i t e s o f b o t h s e x were p r e s e n t i n t h e o u t e r b a s i n and a t s t a t i o n QC  ( F i g . 30).  (Kn 7 and Kn 11)  T h i s f i g u r e a l s o showed t h a t a t u p - i n l e t s t a t i o n s  t h e r e was a t r e n d f o r an e a r l y summer ( A p r i l - J u n e )  appearance o f stage 4 c o p e p o d i t e s , f o l l o w e d by a d e s c e n t i n t o deeper water as s t a g e 5 c o p e p o d i t e s .  I n c o n t r a s t , s t a g e 4 c o p e p o d i t e s were  p r e s e n t a t s t a t i o n s Kn 3 and QC i n S u r f a c e and T r a n s i t i o n regimes i n l a r g e numbers i n October and December 1974, ember 1975•  and from A p r i l u n t i l  Sept-  There was l i t t l e i n d i c a t i o n of s t a g e 5 c o p e p o d i t e s w i n t e r i n g  •in deep water as observed u p - i n l e t .  F i g u r e s 9a and 10 show t h a t from  mid-summer u n t i l w i n t e r , t h e s t a n d i n g c r o p of p h y t o p l a n k t o n was much l o w e r i n t h e i n l e t i n n e r b a s i n than i n Queen C h a r l o t t e S t r a i t and t h e outer basin.  T h i s was presumably  a r e s u l t of t h e h i g h l y t u r b i d  glacial  r u n - o f f which r e s t r i c t s p r i m a r y p r o d u c t i o n n e a r t h e a r e a o f d i s c h a r g e i n t h i s type of f j o r d (Stockner e t a l . f e e d i n g h e r b i v o r e ( P o u l e t 1973» 1974,  1977). 1975)  Pseudocalanus  is a  filter  and r e g i o n a l d i f f e r e n c e s  i n d i s t r i b u t i o n observed i n t h e c o n t i n g e n c y t a b l e s may  p o s s i b l y have  r e s u l t e d from s i m i l a r r e g i o n a l d i f f e r e n c e s i n p h y t o p l a n k t o n s t a n d i n g c r o p and Pseudocalanus  l i f e h i s t o r y composition.  The i n n e r b a s i n  p o p u l a t i o n may have been a b l e t o a c h i e v e r e p r o d u c t i o n and growth o n l y i n the p e r i o d between t h e onset o f t h e s p r i n g bloom, and the onset of g l a c i a l discharge.  They may  then have descended as o v e r w i n t e r i n g s t a g e  5 c o p e p o d i t e s t o deep water regimes.  I n t h e o u t e r b a s i n and i n Queen  C h a r l o t t e S t r a i t , growth c o u l d have o c c u r r e d f o r a much l o n g e r p e r i o d . Some s t a g e 5 c o p e p o d i t e s would have moved t o Deep r e g i m e s , but o t h e r s  101  would have molted  i n t o a d u l t s and a second g e n e r a t i o n t e e n spawned  t o occupy S u r f a c e and T r a n s i t i o n regimes. be determined  U n f o r t u n a t e l y , i t cannot  from the d a t a i f t h i s d i d occur o r even how  a t i o n s of Pseudocalanus were produced, s i n c e the j60 jm n o t p r o v i d e q u a n t i t a t i v e v s a n v p l e s o f the s m a l l e r  (v) Spearman rank o r d e r c o r r e l a t i o n  many gener-  mesh net c o u l d  copepodites.  coefficients  Spearman rank o r d e r c o r r e l a t i o n c o e f f i c i e n t s were c a l c u l a t e d f i r s t l y t o see i f the copepod f a u n a of the i n n e r b a s i n were v e r t i c a l l y o r g a n i s e d i n t o "communities" which c o u l d be r e c o g n i s e d and d i s t i n g u i s h e d by concordance and d i s c o r d a n c e a d j a c e n t samples.  i n the compared rank o r d e r s of  I t t h e r e f o r e p r o v i d e d a simple  vertically  s t a t i s t i c a l method  of d e t e r m i n i n g whether the r e l a t i v e abundance o f s p e c i e s , w i t h r e s p e c t t o one another,  changed s i g n i f i c a n t l y w i t h depth and,  the h y d r o g r a p h i c hydrographic  by r e f e r e n c e t o  d a t a , whether changes o c c u r r e d a t boundaries  regimes.  An  i n d i c a t i o n of the s p e c i e s i n v o l v e d i n such  changes or i n c l u d e d i n "communities", was  g i v e n by a contingency t a b l e  (Table V I I ) drawn up from the same d a t a as used f o r one order matrices  ( s t a t i o n Kn  The above procedure  was  of the rank  7). a l s o undertaken so t h a t the  lateral  c o n t i n u i t y of i d e n t i f i e d "communities" c o u l d be i n v e s t i g a t e d . i c u l a r , I wished toosee  between  i f the upward d i s p l a c e m e n t  In p a r t -  near the i n l e t - head  of T r a n s i t i o n a l / D e e p and Deep s p e c i e s d i s c u s s e d e a r l i e r , c o u l d be s t a t i s t i c a l l y d e t e c t e d through  an upward d i s p l a c e m e n t  of a deep "comm-  unity" . The  i n t r a - s t a t i o n m a t r i c e s a r e g i v e n i n T a b l e Va-c.  I t can be  seen  102  t h a t a t s t a t i o n Kn 5t  t h r e e "communities" c o u l d he r e c o g n i s e d a c c o r d i n g  t o s i g n i f i c a n t s i m i l a r i t i e s i n r a n k o r d e r between the 5 m and 10 m t h e 30 m, 50 m, and 100 A t s t a t i o n Kn 7,  m samples, and the 100  m, 200 m, and 300 m samples.  t h e 50 m sample was "unique" and showed no  similarity  i n rank o r d e r w i t h samples from a s h a l l o w e r o r deeper d e p t h . "community" appeared t o e x t e n d from 100 "community" f r o m 5 ra t o 30m.  sample,  The deep  m t o 500 m, and t h e s h a l l o w e r  S p e c i e s abundance f o r each sample d e p t h  a t t h i s s t a t i o n i s g i v e n i n T a b l e V I I , where i t can be s e e n n t h a t g r o u p i n g a c c o r d i n g t o T-S-P  a n a l y s i s and water regime d i s t r i b u t i o n  corresponded  f a i r l y w e l l t o g r o u p i n g i n d i c a t e d by C h i squared t e s t s and water r e g i m e s . However, t h e Spearman r a n k o r d e r c o e f f i c i e n t s i n d i c a t e d a s u r f a c e "commu n i t y " e x t e n d i n g from 5 m t o 30 m, which would have i n c l u d e d most of t h e p o p u l a t i o n s o f A e t i d i u s d i v e r g e n s , Euchaeta .japonica, and r i c e l l a minor.  Scolecith-  The deep "community", however, would have remained  c h a r a c t e r i s e d by t h e r e m a i n i n g T r a n s i t i o n a l / D e e p and a l l Deep s p e c i e s suggested by t h e T-S-P  analysis.  The b o u n d a r i e s o f t h e above t h r e e  "communities" a t s t a t i o n s Kn 5 and 7 a p p r o x i m a t e d t h e b o u n d a r i e s o f t h e t h r e e ambient h y d r o g r a p h i c r e g i m e s , S u r f a c e ( A ) , T r a n s i t i o n ( G / H ' ) , and Deep ( H " ' ) . n o t so c l e a r .  A t s t a t i o n Kn 11  below, t h e h y d r o g r a p h i c a s s o c i a t i o n  was  Here t h e 5 m sample was u n i q u e , r e f l e c t i n g t h e absence  of a l m o s t a l l z o o p l a n k t o n e x c e p t t h e C l a d o c e r a .  The 10 m, 30 » m  and 50 m  samples were s i g n i f i c a n t l y s i m i l a r i n rank o r d e r , as were t h e 50 m, 100 and 200 m samples.  T h i s suggested t h a t i f t h e deep "community" was  c o n f l u e n t w i t h t h a t a t s t a t i o n s Kn 5 and 7, d i s p l a c e m e n t had o c c u r r e d n e a r t h e i n l e t  t h e n a s i g n i f i c a n t upward  head.  The i n t e r s s t a t i o n m a t r i c e s ( T a b l e V l a - b ) i n d i c a t e d  significant  m,  103  l a t e r a l c o n t i n u i t y o f b o t h t h e s u r f a c e and deep "communities".  Further-  more, i n t h e u p - i n l e t d i r e c t i o n , t h e deep "community" was p r o g r e s s i v e l y d i s p l a c e d towards t h e s u r f a c e .  F o r example, t h e 200 m and 300 m samples  f r o m s t a t i o n Kn 5 n e a r t h e i n n e r s i l l , had s i g n i f i c a n t l y s i m i l a r r a n k o r d e r s t o t h e 200 m and 300 m samples a t s t a t i o n Kn 7 i w h i l s t t h e l a t t e r were s i g n i f i c a n t l y s i m i l a r t o a l l samples below and i n c l u d i n g t h e 50 m sample a t s t a t i o n Kn 11 n e a r t h e inihet head. I n summary, t h e r a n k o r d e r c o r r e l a t i o n c o e f f i c i e n t s i n d i c a t e d t h e e x i s t e n c e o f two major d e p t h zones i n t h e i n n e r b a s i n , w i t h i n w h i c h t h e r e l a t i v e abundance o f copepod s p e c i e s w i t h r e s p e c t t o one a n o t h e r , d i d n o t vary s i g n i f i c a n t l y .  Such zones p r o b a b l y c o r r e s p o n d t o "comm-  u n i t i e s " i n t h e sense used by McGowan ( 1 9 7 7 ) .  F u r t h e r m o r e , t h e zones  o r "communities" were c o n f l u e n t between t h e i n n e r s i l l and t h e i n l e t head ( s t a t i o n Kn l l ) . d i s p l a c e m e n t o f a deep "community"  ( s t a t i o n Kn 5)  The p r e v i o u s l y s u s p e c t e d s u r f a c e i n t h e u p - i n l e t d i r e c t i o n was  d e t e c t e d , even though t h e d a t a were t a k e n f r o m a month (September 1975) when t h e f e a t u r e was no p a r t i c u l a r l y a p p a r e n t f r o m t h e presence/absence profiles.  ( v i ) Monthly l i f e h i s t o r y c o m p o s i t i o n The c o p e p o d i t e ( i n s t a r ) c o m p o s i t i o n o f e v e r y sample c o l l e c t e d i s g i v e n i n Appendix A, and summarised a s d e s c r i b e d i n t h e Methods i n F i g u r e s 26-37•  section  I t i s emphasised t h a t l i t t l e c o u l d be c o n c l u d e d  f r o m t h e s e d a t a i n terms o f p o p u l a t i o n s t r u c t u r e o r c o h o r t a n a l y s i s , s i n c e t h e 360um mesh would have f a i l e d t o r e t a i n t h e n a u p l i i and s m a l l e r c o p e p o d i t e s o f most s p e c i e s .  However, i n t h e absence o f  104  i m m i g r a t i o n , t h e appearance o f a new g e n e r a t i o n must have r e s u l t e d from b r e e d i n g .  T h e r e f o r e , i t was p o s s i b l e t o use t h e d a t a t o suggest  which s p e c i e s b r e d i n K n i g h t I n l e t and t o i n d i c a t e t h e l o c a t i o n and season o f b r e e d i n g . be suggested  I n most cases I c o n s i d e r e d a new g e n e r a t i o n t o  by t h e o c c u r r e n c e  and f o u r t h s t a g e s .  o f any c o p e p o d i t e s  between t h e f i r s t  A n o t h e r i n d i c a t o r o f b r e e d i n g was based on t h e common  o b s e r v a t i o n t h a t most s u b - a r c t i c h e r b i v o r o u s copepods o v e r w i n t e r as stage  5 c o p e p o d i t e s (e.g. V i n o g r a d o v 1968). T h e r e f o r e , t h e presence o f a d u l t (stage 6 copepodites)  c o u l d be i n t e r p r e t e d a s evidence t h a t b r e e d i n g  was about t o be a t t e m p t e d .  T h i s was p a r t i c u l a r l y t h e case when a d u l t  males were seen, s i n c e i n many s p e c i e s t h e s e have r e d u c e d mouth-parts and a r e a p p a r e n t l y s h o r t - l i v e d .  The e a r l y c o p e p o d i t e s  ( s t a g e s 1 t o 4)  of v e r y s m a l l s p e c i e s were p o o r l y r e p r e s e n t e d o r absent f r o m samples. I n t h e s e cases ( e . g . A c a r t i a c l a u s i and A c a r t i a l o n g i r e m i s ) t h e o n l y evidence a v a i l a b l e c o n c e r n i n g t h e t i m i n g o f l i f e  c y c l e s e v e n t s was t h e  presence o f a d u l t s and o f spermatophores a t t a c h e d t o f e m a l e s .  Any  c o n c l u s i o n s drawn must t h e r e f o r e be t r e a t e d w i t h c a u t i o n . In t h e f o l l o w i n g d i s c u s s i o n , I f r e q u e n t l y r e f e r t o s p e c i e s a s b e i n g h e r b i v o r o u s , omnivorous, o r c a r n i v o r o u s .  I t i s s t r e s s e d t h a t t h e purpose  i s o n l y t o i n d i c a t e t h e degree o f immediate dependence each s p e c i e s would be e x p e c t e d t o have ( a c c o r d i n g t o f e e d i n g b e h a v i o u r s r e p o r t e d i n t h e l i t e r a t u r e ) on t h e s p a t i a l and t e m p o r a l d i s t r i b u t i o n o f p h y t o p l a n k t o n . T h i s i s a major o v e r s i m p l i f i c a t i o n , as i t has o f t e n been f o u n d to  c l a s s i f y feeding behaviour,  e s p e c i a l l y s i n c e i n t h e same s p e c i e s t h e  l a t t e r may change under d i f f e r e n t e n v i r o n m e n t a l  conditions or a t d i f f -  e r e n t s t a g e s i n t h e l i f e c y c l e (e.g. Anraku and Omori 1963; Ithoh  difficult  1970; M a r s h a l l 1973; S e k i g u c h i 1974).  Gauld  1966;  105  Four copepod s p e c i e s appeared t o "breed i n "both i n l e t "basins and a t s t a t i o n QC i n Queen C h a r l o t t e S t r a i t . ( F i g . 27),  Calanus m a r s h a l l a e ( F i g . 29),  and M e t r i d i a p a c i f i c a ( F i g . 32). and presence/absence  They were: A c a r t i a l o n g i r e m i s Pseudocalanus  e l o n g a t u s ( F i g . 30),  As a l r e a d y n o t e d from t h e T-S-P  diagrams  p r o f i l e s , t h e p o p u l a t i o n o f A. l o n g i r e m i s appeared  t o be c e n t r e d i n t h e i n l e t o u t e r b a s i n and i n Queen C h a r l o t t e S t r a i t . I n the l a t t e r l o c a t i o n , a d u l t males were seen i n a l l months e x c e p t Febr u a r y , March, and A p r i l , but appeared  i n t h e u p - i n l e t d i r e c t i o n t o be  p r o g r e s s i v e l y more r e s t r i c t e d i n season t o e a r l y summer; w h i l s t o n l y females were seen n e a r the i n l e t head ( a t s t a t i o n Kn l l ) .  This s p a t i a l  d i f f e r e n c e p r o b a b l y r e f l e c t s t h e poor n u t r i t i o n a l s t a t u s f o r a h e r b i v o r e o f t h e i n n e r b a s i n a f t e r t h e a r r i v a l o f g l a c i a l r u n - o f f i n June and (shown i n terms of c h l o r o p h y l l a i n F i g u r e 9a, i n F i g u r e s 8 and  and of suspended  July  sediment  9h).  The l i f e c y c l e s o f C. m a r s h a l l a e and P. e l o n g a t u s were d i s c u s s e d e a r l i e r w i t h the contingency t a b l e s .  I t i s i n t e r e s t i n g t h a t i n both  s p e c i e s l a r g e r numbers o f young c o p e p o d i t e s were r e c o r d e d a t an month i n t h e two i n l e t b a s i n s than i n Queen C h a r l o t t e S t r a i t .  earlier For  example, t h e f i r s t t h r e e c o p e p o d i t e s t a g e s o f C. m a r s h a l l a e were a t peak o c c u r r e n c e i n A p r i l a t a l l i n l e t s t a t i o n s , i n c o n t r a s t t o J u l y f o r t h e Queen C h a r l o t t e p o p u l a t i o n ( F i g . 29).  The s i t u a t i o n i s c o n f u s e d ,  however, s i n c e a s m a l l peak o c c u r r e d i n Queen C h a r l o t t e S t r a i t i n A p r i l . A s i m i l a r p a t t e r n was  shown by t h e o c c u r r e n c e and abundance o f stage 4  c o p e p o d i t e s of P. e l o n g a t u s ( F i g . 30).  Both species are p r i m a r i l y  h e r b i v o r e s , and t h e above t e m p o r a l t r e n d may s p r i n g d i s t r i b u t i o n of phytoplankton.  have been r e l a t e d t o t h e  As n o t e d e a r l i e r , b o t h  inlet  106  p r o f i l e s and c u m u l a t i v e p l o t s f o r c h l o r o p h y l l a ( F i g s . 9a,, 10) i n d i c a t e d t h a t t h e s p r i n g bloom i n K n i g h t I n l e t o c c u r r e d  first  near the f j o r d  head and t h e n moved p r o g r e s s i v e l y d o w n - i n l e t towards Queen- C h a r l o t t e Strait.  T h i s c o u l d be e x p l a i n e d by e a r l i e r water column s t a b i l i t y i n  the i n n e r b a s i n , r e s u l t i n g f r o m l o w e r s u r f a c e s a l i n i t y and g r e a t e r degrees o f s h e l t e r .  A s i m i l a r e x p l a n a t i o n was used by M a c l e l l a n (1967)  t o e x p l a i n t e m p o r a l d i f f e r e n c e s i n t h e appearance o f new  generations  of Calanus g l a c i a l i s , Y a s h n o v , observed between i n n e r and o u t e r populations  inlet  i n Godthab f j o r d , Greenland.  L i t t l e a t t e m p t was made t o a n a l y s e d a t a f o r M e t r i d i a p a c i f i c a , due to complications  a r i s i n g from t h e s p e c i e s ' marked d i e l v e r t i c a l  migration.  However, monthly l i f e h i s t o r y c o m p o s i t i o n i s g i v e n i n F i g u r e JZ f o r a l o c a t i o n always sampled i n d a y l i g h t ( s t a t i o n Kn 9). As r e p o r t e d by previouslworkers  (e.g. V i n o g r a d o v 1968), a d u l t males were l a r g e l y  r e s t r i c t e d t o deep w a t e r , and comparison w i t h n i g h t t i m e (Appendix A) showed t h a t t h e y d i d n o t m i g r a t e .  s t a t i o n data  I t i sinteresting that,  i n d a y t i m e , t h e youngest c o p e p o d i t e s r e g u l a r l y caught were g e n e r a l l y d i s t r i b u t e d i n Surface,  T r a n s i t i o n , and Deep water r e g i m e s .  a t i o n appeared t o o v e r w i n t e r  l a r g e l y as stage 5 copepodites i n Surface  and T r a n s i t i o n r e g i m e s , w h i l s t b r e e d i n g a p p a r e n t l y in  The p o p u l -  occurred  chiefly  s p r i n g b u t w i t h a s m a l l e f f o r t a l s o i n autumn. The  young c o p e p o d i t e s t a g e s o f S c o l e c i t h r i c e l l a minor, A e t i d i u s  divergens,  and Euchaeta j a p o n i c a were c h i e f l y f o u n d i n samples f r o m t h e  i n n e r i n l e t b a s i n and o c c a s i o n a l l y from t h e o u t e r b a s i n .  In contrast,  v e r y few were seen i n Queen C h a r l o t t e S t r a i t ( a t s t a t i o n QC).  The l i f e  h i s t o r y and d i s t r i b u t i o n a l e c o l o g y o f E. j a p o n i c a h a s been s t u d i e d more  107  c o m p l e t e l y elsewhere here.  (Pandyan 1971.  Evans 1973)  and was n o t c o n s i d e r e d  However, t h e apparent r e s t r i c t i o n o f most b r e e d i n g e f f o r t t o t h e  i n n e r b a s i n p r o b a b l y r e f l e c t s t h e deep water d i s t r i b u t i o n of n a u p l i a r and f i r s t stage c o p e p o d i t e s r e p o r t e d by t h e above a u t h o r s .  The  monthly  l i f e h i s t o r y c o m p o s i t i o n o f S. minor and A. d i v e r g e n s ( F i g . 33) suggested t h a t based on t h e appearance o f f o u r t h stage c o p e p o d i t e s , b r e e d i n g o c c u r r e d i n e a r l y s p r i n g and i n l a t e summer.  However, i n the  case of A. d i v e r g e n s , s m a l l numbers of f o u r t h s t a g e c o p e p o d i t e s were p r e s e n t a t o t h e r t i m e s of t h e y e a r except i n December. r e f l e c t s f e e d i n g behaviour.  This possibly  The c l o s e l y r e l a t e d s p e c i e s A e t i d i u s  armatus Boeck i s c o n s i d e r e d a c a r n i v o r e o r scavenger and was  observed  by Matthews (1964), i n a Norwegian f j o r d , t o b r e e d a t t i m e s which d i d n o t c o i n c i d e w i t h p e r i o d s o f maximum p h y t o p l a n k t o n abundance. The tendency o f t h e above t h r e e T r a n s i t i o n a l / D e e p group s p e c i e s t o b r e e d c h i e f l y i n t h e i n n e r b a s i n was shown more a b s o l u t e l y by t h e f o l l o w i n g : M e t r i d i a o k h o t e n s i s , Heterorhabdus  t a n n e r i , G a i d i u s columbiae,  Candacia columbiae, S p i n o c a l a n u s b r e v i c a u d a t u s , and Scaphocalanus cornis.  brevi-  W i t h i n Knight I n l e t , a l l records of Racovitzanus a n t a r c t i c u s  were of a d u l t f e m a l e s t a k e n from t h e i n n e r b a s i n .  S i n c e t h e s e were  p r e s e n t t h r o u g h o u t the y e a r , and no specimens were seen i n samples f r o m deep i n t r u s i o n s p a s s i n g t h r o u g h t h e o u t e r b a s i n , t h i s s p e c i e s p r o b a b l y a l s o bred only a t u p - i n l e t l o c a t i o n s .  Of t h e above, M. o k h o t e n s i s was  t h e most f r e q u e n t l y observed i n Queen C h a r l o t t e S t r a i t and the o u t e r basin.  However, i t i s u n l i k e l y t h a t b r e e d i n g o c c u r r e d i n t h e l a t t e r  l o c a t i o n , s i n c e no t h i r d o r f o u r t h stage c o p e p o d i t e s were r e c o r d e d t h e r e ( F i g . 35)•  Stage 4 c o p e p o d i t e s were most abundant i n A p r i l f o r  108  t h i s s p e c i e s and f o r H. t a n n e r i ( F i g . 30) G.  columbiae ( F i g . 36)  and G. columbiae ( F i g .  37).  showed a s i m i l a r A p r i l peak, but l a r g e numbers  o f f i r s t t o d t h i r d s t a g e c o p e p o d i t e s were a l s o r e c o r d e d i n J u l y .  How-  e v e r , f o r a l l s p e c i e s , the p r e s e n c e of young c o p e p o d i t e s a t a l l months f r o m A p r i l t o October p r o b a b l y r e f l e c t s t h e i r s u s p e c t e d omnivorous f e e d i n g  carnivorous/  behaviour.  The above t r e n d towards n o n - s e a s o n a l i t y o f b r e e d i n g c y c l e  was  more c o m p l e t e l y shown by the two "Deep" group s p e c i e s , Scaphocalanus b r e v i c o r n i s and S p i n o c a l a n u s b r e v i c a u d a t u s stage c o p e p o d i t e s  whose f o u r t h  comprised a p p r o x i m a t e l y t h e same p r o p o r t i o n o f the  p o p u l a t i o n t h r o u g h o u t the y e a r . B u t e e l n l e t by K o e l l e r w i t h Mauchline's  ( F i g . 37)»  The  same o b s e r v a t i o n was a l s o made i n  (1974) who p o i n t e d out t h e a p p a r e n t agreement  (1972) h y p o t h e s i s o f i l l - d e f i n e d b r e e d i n g seasons  b e i n g c h a r a c t e r i s t i c o f b a t h y p e l a g i c organisms.  The l a t t e r a r e n o t  h e r b i v o r e s and t h e r e f o r e a r e o n l y i n d i r e c t l y dependent on s u r f a c e p r o d u c t i v i t y (Harding  1974). Matthews (1964) was a b l e t o d e t e c t some  s e a s o n a l i t y i n the deep community of a Norwegian f j o r d , and f o u n d i t t o be g e n e r a l l y out o f phase w i t h p e r i o d s o f s u r f a c e p r o d u c t i v i t y .  The  p r e s e n t d a t a were n o t c l e a r i n t h i s r e s p e c t . The T-S-P  diagrams and presence/absence p r o f i l e s b o t h i n d i c a t e d  t h a t G h i r i d i u s g r a c i l i s was a member o f t h e T r a n s i t i o n a l / D e e p s p e c i e s group. was  However, w h i l s t the d i s t r i b u t i o n o f a l l members o f t h e group  c e n t r e d i n t h e i n n e r i n l e t b a s i n , G. g r a c i l i s was most f r e q u e n t l y  seen i n t h e o u t e r b a s i n .  F u r t h e r m o r e , o n l y samples f r o m t h e  l o c a t i o n c o n t a i n e d young c o p e p o d i t e s ( F i g . 34).  The  latter  of s t a g e s 1 t o 3 and stage  s p e c i e s was n o t r e c o r d e d a t s t a t i o n QG,  4  and the d a t a  109  therefore suggested that recruitment through reproduction occurred only in the outer basin, and that immigrants advected into the inner basin failed to give rise to a new generation. There i s some indication in the literature that in many species of the Aetideidae, a close association with the sea bed occurs to a varying degree at some time during the animal's l i f e history (Matthews 1964;  Grice 1972; Koeller and Littlepage 1976).  Isopleths of suspended  sediment (Fig. 8 ) indicated that a large proportion of the glacial sediment load settled out in the inner basin, where Lewis (1976) suspected occasional resuspension to occur through the action of slumping or turbidity currents.  Ovigerous females of C. gracilis apparently  retain their eggs (iMaclellan and Shih 1974), but i f the nauplii have an epibenthic stage in their development, the observed l i f e history and distributional features of the species in Knight Inlet may reflect the unsuitability of sedimentary conditions in theiinnerbbasin. However, i t i s stressed that the above is only speculation. Eucalanus bungi bungi was the only regularly seen copepod which apparently did not breed in the study area (Fig. Jl).  It was present  throughout the year only in the inner basin, where i t occupied Deep water regimes during the winter as fifthe stage copepodites.  However,  younger copepodites, which appeared between May and July, were only seen in Queen Charlotte Strait and the outer basin.  Presumably, they were  the offspring of a population located elsewhere, and were advected into the area by the summer intrusion.  E. bungi bungi i s regarded as  a sub-arctic species (Vinogradov I968) with a similar seasonal vertical migration to that of Calanus marshallae.  It i s d i f f i c u l t to understand  110  why a b r e e d i n g p o p u l a t i o n was a p p a r e n t l y m i s s i n g i n K n i g h t Although Tortanus discaudatus  Inlet.  i s a c a r n i v o r e (Wickstead  1962), t h e  s e a s o n a l abundance o f c o p e p o d i t e s t a g e s 1 t o 3 n d stage 4, i n t h e s t u d y a  a r e a , suggested t h a t b r e e d i n g autumn ( F i g . 26). the p o p u l a t i o n s  occurred  c h i e f l y i n e a r l y summer and l a t e  However, abundance was v e r y l o w i n m i d - w i n t e r , when  o f f o u r o t h e r s p e c i e s , Gentropages m c m u r r i c h i ( F i g . 2 8 ) ,  P a r a c a l a n u s p a r v u s ( F i g . 2 8 ) , E p i l a b i d o c e r a a m p h i t r i t e s ( F i g . 2 8 ) , and A c a r t i a c l a u s i ( F i g . 27) d i s a p p e a r e d  from t h e p l a n k t o n .  The p r e s e n c e /  absence p r o f i l e s d i d n o t suggest t h a t r e a p p e a r a n c e r e s u l t e d from a d v e c t i o n v i a t h e Queen C h a r l o t t e S t r a i t ( F i g . 12).  A possible  explan-  a t i o n i s t h a t summer p o p u l a t i o n s  o f a t l e a s t t h r e e o f t h e above s p e c i e s  were d e r i v e d from r e s t i n g eggs.  These have been r e p o r t e d f o r A. c l a u s i  and  C. m c m u r r i c h i by K a s a h a r a e t a l .  (1974), and f o r members o f t h e  P o n t e l l i d a e (the f a m i l y which i n c l u d e s E. a m p h i t r i t e s ) by G r i c e and Lawson  (1976) and G r i c e and Gibson (1977)-  I f t h i s i s the case, f a c t o r s  r e l a t e d t o t h e g r e a t e r d e p t h and more a c t i v e s e d i m e n t a t i o n  of the inner  b a s i n may have been r e s p o n s i b l e f o r t h e Queen C h a r l o t t e S t r a i t and o u t e r b a s i n d i s t r i b u t i o n o f E, a m p h i t r i t e s and C. m c m u r r i c h i .  In  c o n t r a s t , t h e p o p u l a t i o n o f A. c l a u s i appeared t o move d o w n - i n l e t  from  s t a t i o n Kn 11 ( F i g . 12), and i t i s i n t e r e s t i n g t o s p e c u l a t e on whether the K l i n i k l i n i s a l t marsh was t h e o v e r w i n t e r i n g s i t e f o r i n d i v i d u a l s or r e s t i n g eggs o f t h i s e u r y h a l i n e  species.  Ill  SUMMARY AND CONCLUSIONS A s y n o p t i c a c c o u n t o f water c i r c u l a t i o n i n K n i g h t I n l e t was p r e p a r e d for of  t h e y e a r October 1974  - September 1975-  g l a c i a l r u n - o f f and t h e replacement  The summer s u r f a c e o u t f l o w  o f deep waters by a summer h i g h  s a l i n i t y i n t r u s i o n were t h e dominant f e a t u r e s .  The a r r i v a l o f a new  i n t r u s i o n i n t h e i n l e t appeared t o r e s u l t i n an u p - i n l e t movement o f p r e v i o u s l y r e s i d e n t w a t e r s , which were t h e n u p l i f t e d and d i s p l a c e d down-inlet as sub-surface flows.  The h y d r o g r a p h i c s u r v e y a l s o  r e s u l t e d i n t h e " c o m p a r t m e n t a l i s a t i o n " o f i n l e t water i n t o a number of r e g i m e s , each i d e n t i f i e d by a p a r t i c u l a r s e t o f t e m p e r a t u r e , oxygen, and n i t r a t e  salinity,  characteristics.  C h l o r o p h y l l a c o n c e n t r a t i o n s i n s p r i n g were seen t o i n c r e a s e f i r s t at  t h e i n l e t head and l a t e r a t d o w n - i n l e t s t a t i o n s .  a t t r i b u t a b l e t o e a r l i e r water s t r a t i f i c a t i o n .  T h i s was p a r t l y  Chlorophyll v i r t u a l l y  d i s a p p e a r e d from t h e i n n e r b a s i n s u r f a c e waters a f t e r t h e l a t t e r became t u r b i d w i t h g l a c i a l f l o u r i n t h e summer.  Therefore, except i n s p r i n g ,  t h i s r e g i o n was p r o b a b l y i m p o v e r i s h e d f o r f i l t e r f e e d i n g h e r b i v o r e s . H i g h e r c h l o r o p h y l l a c o n c e n t r a t i o n s were observed i n t h e o u t e r b a s i n than found i n Queen C h a r l o t t e S t r a i t o r elsewhere i n t h e i n l e t . b a f h e h y d r o g r a p h i c d a t a suggested t h i s t o r e s u l t from h i g h e r l e v e l s o f t h e r m a l stratification.  Except i n t h e v e r y l o w s a l i n i t y s u r f a c e o u t f l o w l a y e r ,  t h e e u p h o t i c zone appeared t o be n e v e r i i m p o v e r i s h e d o f n u t r i e n t s , which p r o b a b l y r e f l e c t e d t h e i r e n t r a i n m e n t from below.  F i n a l l y , although  c h l o r o p h y l l a i s n o t a measure o f p r i m a r y p r o d u c t i o n , i t s s p a t i a l and temporal d i s t r i b u t i o n i n the i n l e t r e f l e c t e d those expected of primary production according t o Stockner's  (1977) s t u d i e s i n a n o t h e r g l a c i a l  112  run-off inlet.H i g h n u t r i e n t c o n c e n t r a t i o n s i n t h e i n l e t i n n e r b a s i n were described-. No e v i d e n c e was found t o suggest t h a t t h e y were n o t of marine o r i g i n . .AA c o n s i d e r a t i o n of the countercurrent nature of i n l e t c i r c u l a t i o n ,  the  d i s t r i b u t i o n o f c h l o r o p h y l l a, and t h e apparent  oxygen u t i l i z a t i o n o f  water i n t r u d i n g i n t o t h e i n n e r b a s i n , suggested  t h e h i g h observed inner-  b a s i n v a l u e s t o have l a r g e l y r e s u l t e d from t h e r e m i n e r a l i s a t i o n of " o l d " outer basin phytoplankton production.  I t was  suggested  t h a t t h i s mech-  anism can a c t as a " n u t r i e n t t r a p " which would t e n d t o r e t a i n m a t e r i a l i n c o r p o r a t e d i n t o p r i m a r y p r o d u c t i o n i n the  any  inlet.  C o n c e r n i n g t h e z o o p l a n k t o n s u r v e y , s i x groups o f copepods were r e c o g n i s e d a c c o r d i n g t o s i m i l a r i t i e s i n o c c u r r e n c e w i t h i n w a t e r regime envelopes  on t h e T-S-P  diagrams.  F i v e of t h e groups were named a f t e r  t h e regime w i t h which t h e y appeared t o be a s s o c i a t e d .  The  s p e c i e s groups  were: "Summer S u r f a c e " , " S u r f a c e and S u r f a c e T r a n s i t i o n a l " ,  "Transitional/  Deep", "Deep", and " O f f - s h o r e " .  "Migrant",  The f i n a l group was  called  and c o n t a i n e d d i e l and s e a s o n a l v e r t i c a l migrants'. The above g r o u p i n g was  l a r g e l y r e i t e r a t e d by k x r  t a b l e s c o n s t r u c t e d t o determine  contingency  whether s p e c i e s p r o p o r t i o n a l i t y d i f f e r e d  s i g n i f i c a n t l y between r e g i m e s ( a c c o r d i n g t o a s e r i e s of C h i  squared  tests). I n d i v i d u a l s p e c i e s were a l s o p l o t t e d by a presence/absence c r i t e r i a on monMily i n l e t p r o f i l e s .  In c o m b i n a t i o n w i t h s i m i l a r p r o f i l e s of  water regime l i m i t s , t h e s e p r o v i d e d a v a l u a b l e s p a t i a l a s p e c t t o t h e T-S-P  diagrams. ' For example, an u p - i n l e t d i s p l a c e m e n t  of Deep s p e c i e s  group copepods was f r e q u e n t l y observed n e a r t h e i n l e t head. - A s i m i l a r  113  phenomena had been observed i n Bute I n l e t by K o e l l e r a t t r i b u t e d t o t h e i r b e i n g a s s o c i a t e d w i t h a l o c a l low minimum.  he  temperature  However, a s s p o i n t e d out by K o e l l e r , a s i m i l a r d o w n - i n l e t  temperature fauna.  (1974) which  minimum was n o t accompanied by a c h a r a c t e r i s t i c a l l y "deep"  I n K n i g h t I n l e t , I c o n f i r m e d t h e presence  of t h e phenomena by  u s i n g a s e t of Spearman r a n k o r d e r c o r r e l a t i o n c o e f f i c i e n t s . u p - i n l e t d i s p l a c e m e n t o c c u r r e d b o t h w i t h temperature  Here t h e  maxima and minima,  depending on whether c o l d o r warm water was b e i n g u p l i f t e d t h e r e a t the time.  I t t h e r e f o r e seems more p r o b a b l e t h a t t h e u p - i n l e t and  near  s u r f a c e o c c u r r e n c e of the "Deep" s p e c i e s group r e s u l t s from t h e  up-  l i f t i n g o f t h e i r r e s i d e n t deep water r e g i m e , a f t e r t h e a r r i v a l o f a new  intrusion.  -  Only one r e g u l a r l y o c c u r r i n g copepod s p e c i e s i n t h e i n l e t d i d n o t show e v i d e n c e o f b r e e d i n g t h e r e (Eucalanus b u n g i b u n g i ) .  The Summer  S u r f a c e s p e c i e s group d i s a p p e a r e d i n w i n t e r months b u t d i d n o t seem t o r e c o l o n i s e by i m m i g r a t i o n from Queen C h a r l o t t e S t r a i t .  This  phenomenon was a l s o observed f o r some S u r f a c e and S u r f a c e T r a n s i t i o n a l s p e c i e s and r e p o r t s of r e s t i n g eggs were quoted from t h e l i t e r a t u r e as p o s s i b l y p r o v i d i n g an e x p l a n a t i o n .  With t h e e x c e p t i o n o f A c a r t i a  c l a u s i , members o f b o t h s p e c i e s groups above showed e v i d e n c e of b r e e d i n g o n l y i n t h e o u t e r b a s i n o r i n the o u t e r b a s i n and Queen C h a r l o t t e S t r a i t . T h i s was p o s s i b l y due p a r t l y t o t h e low l e v e l s of p h y t o p l a n k t o n  product-  i o n which c o u l d have o c c u r r e d i n t h e i n n e r b a s i n , but a f l u s h i n g out e f f e c t o f p l a n k t o n i n the extreme s u r f a c e l a y e r was p r o b a b l y a l s o significant. Calanus m a r s h a l l a e and Pseudocalanus  elongatus are both  interzonal  114  s p e c i e s a c c o r d i n g t o Vinogradov's (1968) d e f i n i t i o n .  Young c o p e p o d i t e s  c h a r a c t e r i s t i c a l l y feed a t the surface, w h i l s t f i f t h stage copepodites w i n t e r a t depth. migration.  C. m a r s h a l l a e conformed t o t h i s p a t t e r n o f s e a s o n a l  However, a l t h o u g h p o p u l a t i o n s of b o t h s p e c i e s appeared  t o b r e e d t h r o u g h o u t t h e summer i n t h e o u t e r b a s i n and i n Queen C h a r l o t t e S t r a i t , o n l y one g e n e r a t i o n was observed n e a r t h e i n l e t head.  P. e l o n -  g a t u s was observed t o undergo a marked s e a s o n a l v e r t i c a l m i g r a t i o n o n l y at  this location.  The d a t a were d i f f i c u l t t o i n t e r p r e t but seemed  to  i n d i c a t e d i f f e r e n c e s i n p o p u l a t i o n s t r u c t u r e a l o n g the i n l e t l e n g t h ,  p r o b a b l y r e f l e c t i n g t h e poor " t r o p h i c p o t e n t i a l " o f the i n n e r b a s i n for  a h e r b i v o r e a f t e r the a r r i v a l of g l a c i a l r u n - o f f . With one e x c e p t i o n , a l l T r a n s i t i o n a l / D e e p and Deep s p e c i e s appeared  to breed only i n the i n n e r b a s i n . the  I t was suggested t h a t t h i s r e f l e c t e d  r e l a t i v e s t a b i l i t y o f t h e l a t t e r l o c a l i t y i n terms o f temperature  and s a l i n i t y changes.  There was a t r e n d w i t h i n the f o r m e r group  towards a n o n - s e a s o n a l b r e e d i n g c y c l e , which appeared t o be  character-  i s t i c o f t h e two common Deep s p e c i e s , S p i n o c a l a n u s b r e v i c a u d a t u s and Scaphocalanus b r e v i c o r n i s . i n the o u t e r b a s i n .  C h i r i d i u s g r a c i l i s appeared t o breed o n l y '  I t was suggested t h a t t h i s may r e f l e c t t h e p r e s e n c e  of an e p i b e n t h i c s t a g e i n t h e l i f e c y c l e , w h i c h f o r an unknown r e a s o n i s unable t o s u r v i v e on t h e i n n e r b a s i n sediments. F i n a l l y , l a r g e numbers o f copepods c h a r a c t e r i s t i c o f an o f f - s h o r e f a u n a were c a r r i e d i n t o Queen C h a r l o t t e S t r a i t w i t h t h e mid-summer intrusion.  The s p e c i e s c o n t e n t c o n t a i n e d b o t h s u b - a r c t i c and warm  t r a n s i t i o n zone components.  T h i s suggested t h a t t h e i n t r u s i o n con-  t a i n e d a mixture of waters of d i f f e r i n g o r i g i n s .  The most l i k e l y s o u r c e  o f " s o u t h e r l y " water i s t h e C a l i f o r n i a U n d e r c u r r e n t . the warm t r a n s i t i o n zone s p e c i e s were r e c o r d e d  Almost a l l o f  i n one month o n l y .  However, s m a l l numbers o f t h e s u b - a r c t i c s p e c i e s p e r s i s t e d u n t i l September, when t h e study p e r i o d ended. was t h e r e f o r e n o t known.  The f a t e o f t h e s e  species  A l t h o u g h S p i n o c a l a n u s b r e v i c a u d a t u s and  Scaphocalanus b r e v i c o r n i s were n o t observed i n t h e s e samples, t h e i r deep i n l e t i n n e r b a s i n p o p u l a t i o n s must have been i n i t i a l l y seeded by such an i n t r u s i o n .  116  T a b l e 1: Monthly v a l u e s o f suspended sediment and r e a c t i v e n i t r a t e i n t h e K l i n i k l i n i and F r a n k l i n r i v e r s . K > 3 = K l i n i k l i n i r i v e r s t a t i o n number 3» s i t u a t e d a t t h e s a l t m a r s h / f o r e s t boundary; F = Franklin river station.  SUSPENDED SEDIMENT mg/l MONTH OCTOBER  K -3  F  210.8  10.2  Lig  NITRATE a t NO^ N / l  KJ-3  F  3.3  #•  4.3  6.9  DECEMBER  6.5  FEBRUARY  •*  *  5-1 4.4  2.9 8.0  6.4  5.7  3-8  8.8  MAY  20.1  21.4  9-9  9.0  JUNE  43.0  174.8  5.6  4.3  JULY  108.0  271.5  3.0  2.5  AUGUST  40.0  96.9  1.0  SEPTEMBER  48.5  155.8  0.7  1.5 0.6  MARCH APRIL  #•*  I S t a t i s t i c s on r e p l i c a t e samples taken by Clarke-Bumpus nets at station Kn 9, September 1 9 7 5 .  SAMPLE DEPTH (m)  SPECIES  Exi*  CALANUS MARSHALLAE  103 "  PSEUDOCALANUS ELONGATUS 10  3.02  42  22?.06  27  r 2.8? 220.51  V  30  116  3.86  37  3-68  35  562  15.73  12  15-45  12  10546  ACARTIA LONGIREMIS  900  CALANUS MARSHALLAE  283.34  23.01  95% CONFIDENCE LIMITS LOWER UPPER  34  EUCHAETA JAPONICA  19  279.28  21  29  22.32  31  I.69 159-62 2.21 14.38 . 220.84  16.64  4.58 307.39 5.83 17.82 353.13  n.Afl  208  6.11  42  5-73  ^3  3-30  CALANUS PLUMCHRUS  9.50  6  0.16  73  0.15  12  O.32  EUCALANUS BUNGI BUNGI  4  0.00  0.09  3178  90.71  10.49  65.50  121.99  388  GAIDIUS COLUMBIAE  2  0.06  • CHIRIDIUS GRACILIS  1  10 64  0.02 0.28  90  0.25  23  0.00  14  62.22  1.75  11  2-15  35  1.05  -  1.42  2  0.06  1.73  62  0.94  44  22.00  10  0.24  2.05  21.89  12  81  2.21  13  2.19  li-  7  0.18  68  1.80  0.17  ra  22  0.01  O.36  O.63  69  0.57  35  0.08  1.29  PSEUDOCALANUS ELONGATUS SPINOCALANUS BREVICAUDATUS  EUCHAETA JAPONICA SCAPHOCALANUS BREVICORNIS RACOVITZANUS ANTARCTICUS METRIDIA PACIFICA  798  METRIDIA OKHOTENSIS HETERORHABDUS TANNERI CANDACIA COLUMBIAE ACARTIA CLAUSI vherei  CV  METRIDIA PACIFICA ACARTIA CLAUSI  350  8822  m  _  24 24  -  _  89.38  28  10.22  27  _  •  8.28  15.21  _  _  _  _  18.85  25.38  2.64  n i s the t o t a l number of r e p l i c a t e tows (n = 5 ) Exi' i s the t o t a l number of Individuals counted i n n = 5 replicates, m 13 tho sample mean (moan counts per cub.lc mo tro of water f i l t e r e d ) . CV i s tho coefficient of variation (V = a i $ ^ ) , whero s i s the standard deviation, r i s the derived mean. V i s the logarithmic c o e f f i c i e n t of variation. Data transformed to l o g ( x + l ) was used to calculate r , and V*. 95# confidence l i m i t s derived from logarithmic standard deviations. 1 0  Confidence l i m i t s indicate the range within which 9 5 $ of observations f o r a species would have f a l l e n . S t a t i s t i c s omitted f o r species with less than 5 occurrences.  118  Table I I I : X analysis on sub-sample counts of Pseudocalanus elongatus obtained with the Folsom S p l i t t e r .  1  2  SAMPLE  4  3  5  EXPECTED COUNT  4340  916  1250  1306  1010  OBSERVED COUNT  4257  963  1203  1289  1061  X WITH ONE DEGREE OF FREEDOM  1.59  2.41  1.77  0.22  2.58  X WITH FOUR DEGREES OF FREEDOM  1 + 2+ 3 + 4 + 5 = 8 • 57  2  2  where: Expected count was obtained by counting a l l i n d i v i d u a l s . Observed count was obtained from:4(25% volume sub-sample count). A l l values f o r Chi squared indicate no difference between observed and expected counts at the 95% significance l e v e l .  Table IT  I Tho estimated moan abundance of copepod species within water regimes in (a) December 1974, (b) February 1975» (c) A p r i l 1 9 7 5 . and (d) July 1 9 7 5 . Data are arranged l n a k x i contingency table. A measure^ of the association of an ubiquitous species with particular regimes can be obtained by chi squared tests. The n u l l hypothesis (H ) i s that the proportion (P) of a sample composed of a species (s) i s constant between regimes or columns. Thus H 1 P E ' S F C " ^sE"TRANS rejection of Ho by the occurrence of concentrations greater than expected l a indicated at the following significance values for X . * s i g n i f i c a n t at p * 0.05, * * s i g n i f i c a n t at p - 0.01, * * * s i g n i f i c a n t at p - 0.001. Bracketed figures indicate observed concentrations too low to Justify s t a t i s t i c a l treatment. Concentrations are expressed as numbers per cubic metre. Q  S  0  2  (a) 1 December 1 9 7 4 . QUEEN CHARLOTTE STRAIT S P E C I E S GROUP S U R F A C E AND  Ssmor  SURFACE E'  SPECIES ACARTIA  CLAUSI  ACARTIA  LONGIREMIS  TORTANUS  20.0  DISCAUDATUS  (1.6)  METRIDIA  PACIFICA  AETIDIUS  DIVERGENS  METRIDIA  DEEP  gHiMDi'ds  (4.9)  6.0  (2.0)  (0.9) (0.1)  (1.5)  (2.1)  88.2***  (1.6)  414.0**  411.1  (0.1)  27.8  489.3 (4.3)  (0.3)  686.2 81.2***  (0.9)  22.5  32.4  13.5***  10.7***  (3.8)  (0.6)  (3.0)  (3.4)  (0.5) (0.1)  TANNERI  COLUMBIAE .  24.5***  (2.0)  ,(0.4)  (1.9)  104.0 (3.1)  12.5***  53.3 (1.9)  (0.1)  (0.1)  (0.8) (0.5)  27.0***  14.7***  (0.1)  (0.5)  (0.2)  (0.1)  (1.5)  (0.7)  (0.1) 5.6***  BREVICAUDATUS  RACOVITZANUS ANTARCTICUS  • (0.3)  (0.1)  GRACILIS  SPINOCALANUS  -  (3.5)  (1.4)  SCAPHOCALANUS BREVICORNIS"  m  (2.5) (0.3)  (0.1)  (2.3)  MINOR  CANDACIA COLUMBIAE  D  (0.1)  OKHOTENSIS  HETERORHABDUS  DEEP  41.0***  JAPONICA  TRANSITION/  GAIDIUS  (3.9)  DEEP C"'  (0.1)  ELONGATUS  SCOLECITHRICELLA  -  17.5  TRANSITION D' C"  (0.1)  (1.2)  CALANUS MARSHALLAE  . EUCHAETA  TRANSITION SURFACE B" A"  BUNGI  CALAMUS PLUMCHRUS  PSEUDOCALANUS  SURFACE A'  INLET INNER B A S I N  (2.5)  EUCALANUS BUNGI  MIGRANTS  LOWER E"  KNIGHT OUTER B A S I N  v  (1.3) (0.1)  (3.7)  7.4***  (0.8) (2.0) (0.1)  Table  I V ( b ) : February 1975-  SPECIES GROUP SURFACE AND SURFACE TRANSITION  SPECIES  QUEEN CHARLOTTE STRAIT SURFACE LOWER E" E'  5.9  ACARTIA LONGIREMIS  6.2  TORTANUS DISCAUDATUS  KNIGHT INLET OUTER BASIN INNER BASIN TRANSITION SURFACE LOWER SURFACE F D A A. B"  8.6* (2.4)  5.8 4.7*  (3-9) (1.1)  (2.0) (2.5) (0.2) (0.1)  EUCALANUS BUNGI BUNGI CALANUS PLUMCHRUS MIGRANTS  CALANUS MARSHALLAE PSEUDOCALANUS ELONGATUS METRIDIA PACIFICA  4.7  18.3  98.3 8.2*  131.4 (2.4)  6.9 155.53 (2.5)  37.6*** 110.3*** 9-3  (0.9) 37-2 (1.2)  . 8.1 14-5.7* (0.3)  (1.9) 189.4 17.2*  MICROCALANUS PYGMAEUS  (0.6) (0.1)  AETIDIUS DIVERGENS EUCHAETA JAPONICA  6.9 (0.5)  SCOLECITHRICELLA MINOR TRANSITION/ DEEP  (0.7) (0.1) (0.2)  9.3** (0.6) (0.2)  (0.1)  (1.7) (1.2)  METRIDIA OKHOTENSIS CHIRIDIUS GRACILIS  (0.6) (0.4) (0.6) (3-2)  (1.3) (1.1)  (4.9) (0.8) 5.9  HETERORHABDUS TANNERI GAIDIUS COLUMBIAE CANDACIA COLUMBIAE DEEP  SPINOCALANUS BREVICAUDATUS SCAPHOCALANUS BREVICORNIS  DEEP C  (0.1)  •  (0.1)  (1.7)  (1.0) (0.6) 10.1** (2.4)  12.5 45.4 (1.4) (o.l) (2.6) (1.8) I6.3*** (0.1) (0.3)' (0.7) (1.3) 9.6*** (1.0)  T a b l e IV  (c)s  April  1975QUEEN CHARLOTTE STRAIT SPECIES  SPECIES GROUP SURFACE AND SURFACE TRANSITION  ACARTIA LONGIREMIS  SURFACE E'  TRANSITION E"  KNIGHT INLET OUT EE BASIN DEEP E m  PURFACE A  12.9***  4-3 (1.9)  TORTANUS DISCAUDATUS  (1.6)  TRANSITION B"  INNER BASIN DEEP B"'  PURFACE A  TRANSITION G F'  30.3**  10.5 (z.o)  (1.1) (0.1)  EUCALANUS BUNGI BUNGI  (0.7)  CALANUS PLUMCHRUS MIGRANTS  CALANUS MARSHALLAE  26.2  PSEUDOCALANUS ELONGATUS  23.0  METRIDIA PACIFICA AETIDIUS DIVERGEIIS  6.0  25.1  (1.6)  112.5***  476.0*** 147.0***| 54.8 125.3*** 14.3  96.9  5-8  229.O*** 180.9***|209.2 (3.7)  6.2  DEEP  CHIRIDIUS GRACILIS  5.2  (2.5) 7.9**  6.7  (0.2) 20.9  (0.7) 57.4  8.7  7.4*  3.5*** (0.1) 4.5*** 2*** 4.1*** 8.8*** 24.8*** (2.0)  (0.4) (3.7)  12.4***  GAIDIUS COLUMBIAE  (0.8)  4.8***  CANDACIA  (0.4)  COLUMBIAE  (1.4)  BREVICAUDATUS  SCAPHOCALANUS BREVICORNIS RACOVITZANUS ANTARCTICUS  (0.3) (0.2)  (0.4)  7.4  HETERORHABDUS TANNERI  SPINOCALANUS  DEEP  (0.5) 17.9 27.9 110.2*** 43.lt  (1.65)  SCOLECinmiCELLA MINOR METRIDIA OKHOTENSIS  (2.0)  (0.4)  (2.7)  EUCHAETA JAPONICA  TRANSITION/  DEEP C  (1.3) 9,0*** (2.2) (0.2)  (0.4) (1.9)  (1.4)  3,8*** 28.5** (0.6) (2.2) (3.4)  (0.8) (2.2)  4.3*** 10.8*** 13.8*** (2.8) (0.2)  (0.3)  Table IV (d): July 1975.  SPECIES GROUP SUMMER SURFACE  SPECIES  QUEEN CHARLOTTE KNIGHT INLET STRAIT OUTER BASIN SURFACE TRANSITION DEEP (SURFACE SURFACE TRANSITION DEEP E' E" E"' A A' B" B'"  PARACALANU3 PARVUS CENTROPAGES MCMURRICHI  SURFACE AND SURFACE TRANSITION  (0.3)  (0.3)  ..  (2.6) 27.2***  138.8*** 116.0***  TORTANUS DISCAUDATUS  (0.3)  19.4***  EUCALANUS BUNGI BUNGI  (0.1)  (0.4)  CALANUS PLUMCHRUS MIGRANTS  141.4***  36.7***  PSEUDOCALANUS ELONGATUS  816.9***  36.6  AEHDIU3 DIVERGES  22.5** 9-2* (1.6)  6.2  6.7  (1.0) (0.2) (0.8)  (0.5)  HETESORHABDUS TANNERI GAIDIUS COLUMBIAE  DEEP  (0.3) 7.2  (1.9)  7518.0***  45.0*** 1-5  153.2*** (0.4)  DEEP H"  6.9  (0.9) (0.6) (0.1)  15.2 217.2***  21.4*** 36.7*** (3.2)  (0.4)  (2.5)  (0.3)  (0.8)  35.6  (0.1) (0.1)  1104.9***1106.4*** 243.7*** 0.3  (1.3)  166, 0***  (0.4)  7.1***  METRIDIA OKHOTENSIS CHIRIDIUS GRACILIS  243.6*** 27.9  (0.1)  390.4***j 76.3 27.5*** 1.6 1.5  SCOLECITHRICELLA MINOR  (0.1) 6.2  (0.1)  EUCHAETA JAPONICA TRANSITION/ DEEP  DEEP H'  (0.7) (1.7)  (0.3) 3.8  (0.2)  CALANUS MARSHALLAE METRIDIA PACIFICA  21. 4***  172.0***  ACARTIA CLAUSI ACARTIA LONGIREMIS  TRANSITION G  (3-t) (1.2)  PODCN AND EVADNE EPILABIDOCERA AMPHITRITES  INNER BASIN A SURFACE >25 7oo ?»„WO ^oo  (0.1)  84.8***  17.5***  36.9  94.1  8.91 (1.3) 14.0***  (2.5) 99.4*** 85,4***  16.9*** (2.2)  (0.5)  (0.5)  81.9*** 6.06  (3.9)  (1.3)  (0.1)  94.5***  43.4***  (3-0)  (0.2) 4.5 91.5" 3.72  (0.5)  (3.6)  6.3*** (0.1)  6.6  (2.9) 21.5***  (0.2)  (1.5)  (1.4)  (2-9)  (1.3)  CANDACIA COLUMBIAE  (1.0)  (1.3)  (0.1)  (3-D  (1.1)  (1.2)  (1.8)  SPINOCALANUS BREVICAUDATUS  (1.1)  SCAFHOCALANUS BREVICORNIS RACOVITZANUS ANTARCTICUS  Note 1 No organisms were found In water of s a l i n i t y less than 5i</oo.  (0.3)  (2.6) 0.7  5-7*** 1.1  8.7*** 3.0 0.1  123  Table V ( a - c ) ;  I n t r a - s t a t i o n m a t r i c e s of Spearman rank o r d e r c o r r e l a t i o n c o e f f i c i e n t s ( r ) between zooplankton samples from the Inner b a s i n of K n i g h t I n l e t , September 1975The c o e f f i c i e n t r has a t h e o r e t i c a l range f r o m +1, i n d i c a t i n g complete concordance between samples, t o -1, i n d i c a t i n g complete d i s c o r d a n c e . P o s i t i v e c o e f f i c i e n t s s i g n i f i c a n t a t p = 0.05 a r e i n d i c a t e d by an a s t e r i s k . P r o b a b i l i t y v a l u e s a r e from T a b l e P i n S i e g a l (1956). A n a l y s i s c o n f i n e d t o C a l a n o i d copepoda. Compared sample depth i s g i v e n i n metres a t the top and on the r i g h t o f each matrix. N i s the t o t a l s p e c i e s number. s  s  (a) STATION Kn 5-  N =  18.  10  30  0.83*  0.02  50  0.28  -0.11  0.160.86*  100  200  300  -0.27  -0.46  -0.23 -0.05 0.19  0.08  0.57* 0.72*  -0.19 0.05 0.23 O.37  0.24  0.50*  0.64* (b) STATION Kn 7.  N =  5 10 30 50 100 200  18.  10  30  0.59*  0.40*  -0.06  O.56*  -0.02 -0.03  50  100 -0.03 -0.07 0.12 -0.11  . 200 -0.26 -0.02 -0.43 -0.31 0.45*  300  500  -0.08  -0.70 -0.90 -1.00 -0.86  -0.50  -0.84 -O.53 0.06  O.58*  -0.18  0.44* 0.74*  HON  Kn  11.  N =  12.  10_  30  50  0.37  0.34  0.23 0.51* O.56*  0.61*  100  200  0.11  -0.10  0.29  0.04  O.38 0.83*  0.07 O.56* 0.78*  5 10 30 50 100  5 10 30 50 100 200 300  124  Table TI (a-b): I n t e r - s t a t i o n m a t r i c e s of Spearman rank order c o r r e l a t i o n c o e f f i c i e n t s ( r ) between zooplankton samples from the I n n e r b a s i n o f K n i g h t I n l e t , September 1 9 7 5 ' The c o e f f i c i e n t r has a t h e o r e t i c a l range f r o m +1, i n d i c a t i n g complete concordance between samples, t o - 1 , i n d i c a t i n g complete discordance. P o s i t i v e c o e f f i c i e n t s s i g n i f i c a n t a t p = 0 . 0 5 are i n d i c a t e d by an a s t e r i s k . P r o b a b i l i t y v a l u e s a r e from T a b l e P in Siegel (1956). A n a l y s i s c o n f i n e d t o C a l a n o i d copepoda. Compared sample depth ( i n metres) and s t a t i o n l o c a t i o n i s g i v e n a t t h e t o p and on the r i g h t of each m a t r i x . N = 18 i s t h e t o t a l s p e c i e s number. s  s  (a) STATIONS Kn 5 and Kn 7.  5 O.96* O.34 0.35 O.09 -0.20 -0.37 -O.58 -0.69  10 0.85* 0.73* 0.49* 0.26 0.05 -0.11 -0.42  -0.76  30  0.15 0.28  0.82* -0.10 0.14  -0.18  -0.45 -0.90  50  Kn  5  -0.08  100 -O.38  200 -0.50  0.31 0.61* -0.19 -O.56 -0.09 -O.35 -0.87  0.27 0.30 -0.30 -0.02 0.05 -0.16 -0.67  -0.27 -O.38 -O.38 0.28 O.63* 0.47*  100  200  -0.04  -0.20 -0.32 -0.60 -0.53 0.32 0.67* O.58* 0.67*  0.24  300 -0.30  5 10 30 50 100 200 300 500  0.14  -0.16 -0.50 0.25 0.69* 0.25 0.01  STATIONS Kn 11 and Kn 7.  5  0.44*  -0.09 0.22 0.35 -O.23 -0.53 -1.00 -1.00  10  30  0.66*  O.36  0.82*  O.54* 0.51* O.36  0.40*  0.24  -0.60 0.18  -O.56 -0.62  0.28  0.29 -0.09 -0.52  50  Kn  0.16 0.03 -0.07 ' 0.29 O.56* 0.47* 0.43* 0.13  11  0.11 -0.09 0.01 0.59* 0.85* 0.55* 0.30  5 10 30 50 100 200 300 500  Kn  7  Kn  7  Table V l l  i  The estimated mean abundance of copepod species at Individual sample depths, station Kn 7. SeDtembnr 1975. Data axe arranged l n a k x r contingency table. A measure of the association of an ubiquitous species with a p a r t i c u l a r depth can be obtained by chi squared tests. The n u l l hypothesis (H ) I S that the proportion of a sample composed of a species i s constant between samples or columns. The r e j e c t i o n of H by the 'occurrence of concentrations greater than expected i s indicated a t the following significance valuos f o r X . * significant a t p - 0 . 0 5 , ** s i g n i f i c a n t a t p - 0 . 0 1 , * * * s i g n i f i c a n t a t p = 0.001. Bracketed figures indicate observed concentrations too low to j u s t i f y s t a t i s t i c a l treatment. Concentrations are expressed as numbers per cubic metre. 0  0  2  SAMPLE DEPTH (m) AND WATER REGIME LIMITS SPECIES GROUP  SURFACE 5 10  SPECIES  oUKrACK AND  SURFACE  ACARTIA CLAUSI  TRANSITION  ACARTIA LONGIREMIS  266.0*** 0.9  33,6 I9.3***  30 31.4  TRANSITION 50 12.3  100  4.6  200  DEEP 100'  2.3  (3.4)  EUCALANUS BUNCI BUNGI  '  CALANUS PLUMCHRUS MIGRANTS  CALANUS MARSHALLAE PSEUDOCALANUS ELONGATUS METRIDIA PACIFICA  (1.1)  6.4  EUCHAETA JAPONICA SCOLECITHRICELLA MINOR TRANSITION/  DEEP  8.8***  48.2  6.8  (3-9)  4.2***  AETIDIUS DIVERCENS (2.7)  15.7  (2.7)  (1.0)  5-1***  (l'.O)  8.5***  (1.3)  I2.9***  CHIRIDIUS GRACILIS  (0.3)  CAIDIUS COLUMBIAE  6.1*** (1.0) (2.3)  CANDACIA COLUMBIAE SPINOCALANUS BREVICAUDATUS DEEP  SCAPHOCALANUS BREVICORNIS * RACOVITZANUS ANTARCTICUS ,  62. Q*** (2.3)  (0.7)  (0.1)  (1.1)  4.7  (2.6)  81.9***  6I.5***  (1.5)  (0.5)  5.9***  METRIDIA OKHOTENSIS  HETERORHABDUS TANNER I  ^nn  10.4*  19.5*** 10.6  (1-4)  (1.7)  (0.2) (3.6)  (4.4)  (1.6)  5.1* (1.8)  (2.3)  (0.8)  (1.8)  5.8  16.5***  (2.4)  9.5***  (0.3)  (0.7)  T a b l e V l l l : The O f f - s h o r e s p e c i e s group A l i s t o f a l l C a l a n o i d copepods thought t o be c h a r a c t e r i s t i c o f an o f f - s h o r e f a u n a , c o l l e c t e d i n Queen C h a r l o t t e S t r a i t ( s t a t i o n QC) and t h e Outer B a s i n o f K n i g h t I n l e t , f r o m June u n t i l J u l y 1975' The complete l i s t g i v e s occurrence i n Queen C h a r l o t t e S t r a i t o n l y . Additional presence i n t h e I n l e t Outer B a s i n i s i n d i c a t e d by an a s t e r i s k i n t h e r e l e v a n t column. A b r i e f resume o f r e c o r d s i n t h e N.E. P a c i f i c i s g i v e n i n r e m a i n i n g columns. S h i h e t a l . (1971) r e v i e w e d a l l r e c o r d s i n B r i t i s h Columbian c o a s t a l waters. Other a u t h o r s were concerned w i t h o f f - s h o r e water a d j a c e n t t o : Washington (Davis 1949), Oregon ( P e t e r s o n 1972; Pearcy 1972), and C a l i f o r n i a ( E s t e r l y 1905, 1906, 1911, 1913, 1924; F l e m i n g e r 1964, 1967). M i s c e l l a n e o u s r e p o r t s a r e g i v e n i n t h e r i g h t - h a n d column. A b r a c k e t e d a s t e r i s k i n d i c a t e s p o s s i b l e taxonomic difficulty.  W H IH CO P < O pq  SPECIES  FAMILY Calanidae  Galanus c r i s t a t u s K r o y e r  Eucalanidae  Rhincalanus nasutus  Aetideidae  Gaetanus i n t e r m e d i u s Campbell Gaetanus p i l e a t u s  CO H >  O  CO  *  *• *  *  (*) (*)  *  Giesbrecht  B  1-3  CO  _e±.  JL  *  *  EH CO  OTHERS  *  Farran  Gaetanus m i l e s G i e s b r e c h t Euchirella rostrata  0-35°N ( B r o d s k i i #•  Claus  E u c h i r e l l a pseudopulchra  Park  E u c h i r e l l a curticauda Giesbrecht Ghirundina s t r e e t s ! Giesbrecht  *  *  *  *  *  *  1950)  *  (*) (*) (*)' (*) ('*) (*) Always n o r t h o f 26°N * * * ( F l e m i n g e r 1967)  *  *  Undeuchaeta b i s p i n o s a E s t e r l y Euchaetidae  Euchaeta media G i e s b r e c h t Euchaeta s p i n o s a G i e s b r e c h t Paraeuchaeta  *  *  *  C e n t r a l N. P a c i f i c (Park 1968)  californica Esterly  ro ON  CONTINUED ON FOLLOWING PAGE  T a b l e V l l l (cont'd)'!  CO  FAMILY  E-i CO  SPECIES  O  pq  H  M >  CO  O PS <  s  CO  Is  >H r-H  EH  OTHERS  CO  PH PH — { « —  Scolecithricidae  •x-  •X-  Lophothrix f r o n t a l i s Giesbrecht  •x  •X  ,Scaphocalanus magnus T. S c o t t  •x-  •X-  •x  -X-  S c o t t o c a l a n u s persecans  Giesbrecht  *  S c o l e c i t h r i c e l l a ovata Farran Metridildae  *  M e t r i d i a boecki Giesbrecht  -X  M e t r i d i a princeps Giesbrecht  *  Pleuromamma a b d o m i n a l i s Lubbock  *  Pleuromamma x i p h i a s G i e s b r e c h t  *  Pleuromamma b o r e a l i s  *  *  -x-  •X  •X-  -X  •x  •x-  •X-  •X-  •X  -X  -X  -x  #  •x  G a u s s i a p r i n c e p s T. S c o t t Lucicutiidae  L u c i c u t i a b i c o r n u t a Wolfenden  Heterorhabdldae  D i s s e t a maxima E s t e r l y  *  -x  1972)  Oyoshio (Morioka  1972)  •X  - -x •X  H e t e r o r h a b d u s p a p i l l i g e r Claus  •x-  •X  -X  #  Heterorhabdus s p i n i f r o n s  •X  Glaus  Heterostylites longicornis  Giesbrecht  H a l o p t i l u s oxycephalis Giesbrecht Johnson  C e n t r a l N. P a c i f i c (Park 1968)  •X  Heterorhabdus c l a u s i Giesbrecht  Centraugaptilus porcellus  Oyoshio (Morioka  Dahl  Pleuromamma s c u t u l l a t a B r o d s k i i  Augaptilidae  •X •X  Dahl  PlelSomaiimia q u a d r u n g u l a t a  •X-  Kuroshio  (Morioka  * (*) -X  * Off C a l i f o r n i a (Johnson 1936)  CONTINUED ON FOLLOWING PAGE  1972)  Table V l l l  (cont'd):  FAMILY  SPECIES  Augaptilidae  P a c h y p t i l u s p a c i f l e u s Johnson  Arietelliidae  A r i e t e l l u s p l u m i f e r Sars Phyllopus integer Esterly  Candacildae  Candacia b i p i n n a t a Giesbrecht  CO  •EH CO  M  5 <  w  O  co  pq  H  >  PI  >H  o  g CO  -fid.  o H  EH  s rH  CO  OTHERS  1  Off C a l i f o r n i a (Johnson 1936)  T a b l e l X $ a ) : Monthly c o a s t a l u p w e l l i n g i n d i c e s a t a s t a t i o n l o c a t e d a t 51 N 131 W, f o r t h e y e a r s 1972 t o 1975" U n i t s a r e c u b i c meters o f water p e r second p e r 100 m l e n g t h of c o a s t . N e g a t i v e v a l u e s i n d i c a t e onshore t r a n s p o r t o f s u r f a c e waters and r e s u l t a n t downwelling. Abridged from Bakum's u n p u b l i s h e d d a t a .  MONTH  YEAR JAN  FEB  MAR  1972  2  -59  -25  1973 1974  -75  -50  .-3  5 -9  -37 -72  1975  -6 2  APR  3 5 -9 17  MAY  2 -20 -3 -l  JUN  JUL  AUG  SEP  6  17  4  -15 7 38  5 8 6  38 -6  40  44 7  3 7  OCT  NOV  9 -19 -35  -91 2  -24  -35  -42  DEG  -7 -81  -62 -30  T a b l e l X ( b ) : Mean monthly v a l u e s o f ' c o a s t a l u p w e l l i n g i n d i c e s a t a s t a t i o n l o c a t e d at 51°N 131°W f o r t h e 20 y e a r p e r i o d 1948 t o 1967. U n i t s a s i n Table i x ( a ) . A b r i d g e d from T a b l e 3 i n Bakum, 1973;  JAN  -64  FEB  -36  MAR  -12  * APR  -5  MAY  JUN  JUL  AUG  SEP  4  15  16  12  -3  OCT  -40  NOV  -58  DEG  -57  H to MD  Table Xi Surcnary of copepod species d i s t r i b u t i o n s with respect .to season, l o c a t i o n , and water regime l n Queen Charlotte S t r a i t and Knight I n l o t . An a s t e r i s k Indicates that most occurrences f o r a spocloo wore recorded i n tho category noted f o r that column. Species groups are as f o l l o w s ! l i Summer Surface 2: Surface and Surface T r a n s i t i o n a l Ji Tran3ltlonal/Dcop 4, Deep 5, Migrant. The Off-shore species are omitted. This table l a a major g e n e r a l i s a t i o n , and the text should bo consulted f o r d e t a i l s . WATER REGIME CATEGORY  SPECIES AND SPECIES CROUP  SPECIES  1  FARACALANUS PARVUS  1  (CLADOCERAN) 1  ACARTIA LONCIREMIS • ACARTIA CLAUSI  2 2  TORT ANUS DISCAUDATUS  2  E7ILARTD0CERA AMTHITRITES  2  ASTIDIUS DIVERGR1S  3  SCOLECITHRICELLA MINOR  3  EUCHAETA JAPONICA  3  METRIDIA OKHCTBISIS  3  CAIDIUS COLUMBIAE  3  HETERORHABDUS TAJfNERI  3  CANDACIA COLUMBIAE  3  CKIRIDIUS CRACILIS  3  SPKOCALA1IUS BREVICAUDATUS  b  SCAH10CALANUS EREYICORNIS  k  RACOVTTZAMUS ANTARCTICUS'  <*  CALAMUS MARSHALLAE  5  CALANUS PLUMCHRUS  5  EUCALANUS BUNCI BUNCI  5  PSEUDOCALANUS ELONCATUS  5  METRIDIA  5  PACIFICA  LOCALITY OBSERVED  RANCE  COMMENTS  e  CEITSOFAGES MCMURRICHI  PODOH AJID EVADHE  WHEN OBSERVED  25.0-31.0. 29.0-30.0 2.0-30.0 22.0-32.5 12.0-32.5 22.0-32.5 22.0-32.5 30.0-32.5 30.0-32.5 30.0-32.5 30.0- 32.0 30.5-31.3 30.5-31.3 30.5-31.3 30.9-32.5 31.1- 31.3 31.2- 31.3 31.2-31.3 26.0-31.3 30.0-31.3 30.5-31.3 20.0-31.3 26.0-31.3  SFC-50 SFC-30  Occurred only where temp.>8.0 C.  SFC-30  5-100 5-100 5-100 5-200 30-200 30-100 30-500 50-500 50-500 50-500 50-500 50-500 100-500 100-500 200-500 5-500 5-500 5-500 5-500 5-500  Absent ln February and April.  Appeared t o breed only l n outer basin.  Seasonal v e r t i c a l migrants. Young c o p e o o d i t e 3 occupy surface r e v i s e s i n spring and e a r l y suj.mcr, but population overwinters as 5th stage copopodltes. C. plu-ichrun and E. bin-.p:! both r a r o . Soasonal v o r t i c a l migration seen noar i n l o t hoad but not elsowhere, D i e l v e r t i c a l algrant.  btJifl  131  Figure  1:  N o r t h e r n Vancouver I s l a n d and t h e s t u d y r e g i o n i n t h e v i c i n i t y o f K n i g h t I n l e t . The l o c a t i o n of s t a t i o n QC i s i n d i c a t e d . Adapted f r o m P i c k a r d (1956).  132  F i g u r e 2: The s t u d y shows t h e The l o w e r the i n l e t  area, Knight I n l e t . The upper f i g u r e i n l e t and l o c a t i o n of s a m p l i n g s t a t i o n s . figure i s a l o n g i t u d i n a l p r o f i l e along showing bottom topography. Adapted  from P i c k a r d (1956). A : Kliniklini B : Franklin  river.  river.  132a  133  Figure 3 (  a -  j ) : D i a g r a m a t i c l o n g i t u d i n a l p r o f i l e s of K n i g h t I n l e t , showing i s o p l e t h s o f s a l i n i t y , tempe r a t u r e , oxygen, and n i t r a t e , from October 1974 u n t i l September 1975. Values above the dashed s u r f a c e l i n e f o r oxygen a r e 5 meter samples. F o r the o t h e r p a r a m e t e r s , t h i s i s a s u r f a c e v a l u e . Dashed l i n e s i n d i c a t e i s o p l e t h s whose p o s i t i o n was known w i t h l e s s c e r t a i n t y t h a n was t h e case f o r i s o p l e t h s g i v e n c o n t i n u o u s lines.  a  134  F i g u r e 4: T e m p e r a t u r e - S a l i n i t y (T-S) diagram and water regime l i m i t s f o r June 1975Extreme T-S v a l u e s of s u r f a c e water a r e o m i t t e d . Three l i n e t y p e s embrace a l l S u r f a c e , T r a n s i t i o n and Deep r e g i m e s . Identical l i n e s i n d i c a t e T-S l i m i t s of i n d i v i d u a l r e g i m e s , i d e n t i f i e d by codes d i s c u s s e d i n t h e t e x t .  DEPTH 90-  m.  REGIMES  0.10,20.30,50,75.100,150 200 3O0 350 400 500  SURFACE TRANSITION DEEP STATIONS or. KN 1  8-5-J  P  3 80-  UJ  7  CC  ZD  E"  <  CC  Lu  CL  — ^ ^ - ^  g  7-5-1  LU  70-  6-5  290  30 0  3 1  .  S A L I N I T Y  380  0  %  0  —1  33 0  135  F i g u r e 5 ( j ) : D i a g r a m a t i c l o n g i t u d i n a l p r o f i l e s of K n i g h t I n l e t , showing the monthly d i s t r i b u t i o n of water r e g i m e s d u r i n g t h e s t u d y p e r i o d . Each c a p i t a l l e t t e r i s t h e code f o r a r e g i m e , i d e n t i f i e d and e x p l a i n e d i n t h e t e x t . Black d o t s i n d i c a t e depths of Clarke-Bumpus zoop l a n k t o n samples. a -  135a  135t  136  F i g u r e 6: D i a g r a m a t i c l o n g i t u d i n a l p r o f i l e s of K n i g h t I n l e t , showing a s i m p l i f i e d a c c o u n t o f water c i r c u l a t i o n observed from October 1974 t o September 1975./  136a  Run-off Outflow Displaced Inrer (Upper Win too VBasinT^Water .High  100  S%  0  200 300-i 20km  400 500  _ w  E  x  S e p t - D e c 1974  Winter . LowT°/S7< VWate r  I 0 0 i  200  IQ.  300  g  400i 500  Q  , 2,0 km  J a n - M a r c h 1975  Upwelling . Inner | Basi n Water  137  F i g u r e ?: Apparent oxygen u t i l i s a t i o n (A.O.U.) o f deep water a f t e r i n t r u s i o n i n t o t h e i n n e r "basin o f K n i g h t I n l e t (open c i r c l e s ) . The l i n e i n d i c a t e s A.O.U. f o r n i t r a t e a s p r e d i c t e d "by t h e r e l a t i o n ship N0o = 0.O58(A.O.U.). n Y  137a  138  F i g u r e 8: L o n g i t u d i n a l s e c t i o n s of K n i g h t I n l e t , showing t h e monthly d i s t r i b u t i o n of suspended sediments (mg/l) d u r i n g t h e s t u d y y e a r . S t a t i o n Kn 1 i s e x c l u d e d . From L e w i s (1975)-  138a  STATIONS  139  F i g u r e 9(a-b): V a r i a t i o n i n c h l o r o p h y l l and suspended sediment i n t h e upper 50 meters o f water i n K n i g h t I n l e t d u r i n g t h e s t u d y p e r i o d . S t a t i o n Kn 1 i s excluded. a b  Chlorophyll a Suspended sediment  Each parameter i s p l o t t e d a s an accumulated v a l u e f o r a water column one square meter i n a r e a a t t h e s u r f a c e , and e x t e n d i n g t o a d e p t h of 50 meters. RZ i s t h e r a t i o o f t h e maximum minus t h e minimum c h l o r o p h y l l v a l u e t o t h e maximum minus t h e minimum v a l u e i n t h e X d i r e c t i o n . I t was s e l e c t e d t o produce t h e b e s t o v e r v i e w o f t h e s u r f a c e and t h e two f i g u r e s a r e i n t e n d e d o n l y t o i l l u s t r a t e r e l a t i v e v a l u e s . From L e w i s (1976).  139a  I — I  i  1 1  !  O D F M A M J  1—-j  J A  J  i  S  140  Figure 10: Isopleths of chlorophyll a in the upper 50 meters of water i n Knight Inlet, from October 1974 to September 1975• Chlorophyll a expressed as mg chlorophyll a/m^. Standard sampling depths are indicated by small dots on one graph only. Broken lines indicate isopleths drawn at a lower level of confidence.  14 Ob  H Id  3  Q  o o  141  Figure 11: The monthly d i s t r i b u t i o n of species group, Summer Surface, i n the study area (October 1974 t o September 1975)- This f i g u r e provides a s p a t i a l aspect t o the T-S-P p l o t s . The presence of a species a t a sample' depth i s i n d i c a t e d as f o l l o w s : D E G H  : : : :  Gentropages mcmurrichi Podon and Evadne species (Cladocera) Paracalanus parvus Chaoborus species larvae  The absence of a sample a t a sample depth i s i n d i c a t e d by an a s t e r i s k (*). This group could not be found from October 1974 u n t i l June 1975•  141a  SAMPLE DEPTH (m)  Ici  QC  KN 1  _9C_  KN 1 DG  rg  :STATION J 5  —  n  ^  <•  Q  2  ,,  ii_  30 50 100  OCTOBER  150 200 300 350 500  SAMPLE DEPTH Cm)  JUNE  5 10 30 50 100 150 200 300 350 500  SAMPLE DEPTH (m)  JULY  5 10 30 50 100  AUGUST  STATION  QC  G KND D  QC D D -  1  KN 1 DEG DEG  E E DE  SEPTEMBER 150 200 300 350 500  E E  D  3 DE D  5_  11  11  E. DE  STATION 5 E E D E E  11  -g  E E * E E *  200 300 350 500  5 10 30 50 100  E E E  STATION  -2  150  SAMPLE DEPTH (m)  L  D  5 10 30 50 100 150 200 300 350 . 500  SAMPLE DEPTH (m)  J  QC D *  KN 1 DE DE D D  2 E E  STATION 5 E E  11  E E  E .  E  E E  F i g u r e 12:  The monthly d i s t r i b u t i o n of copepod s p e c i e s group, S u r f a c e and S u r f a c e T r a n s i t i o n a l , i n t h e s t u d y a r e a (October 197^ t o September 1975). T h i s f i g u r e p r o v i d e s a s p a t i a l a s p e c t t o the T-S-P p l o t s . The presence of a s p e c i e s a t a sample depth i s i n d i c a t e d as f o l l o w s : A B C F  : : : :  Acartia longiremis Acartia clausi Tortanus discaudatus Epilabidocera amphitrites  The absence o f a sample a t a sample d e p t h i s i n d i c a t e d by an a s t e r i s k (*)•  142a  SAMPLE DEPTH fm) 10 30 50 100 OCTOBER 150 200 300 350 500  SAMPLE DEPTH (m) 10 30 50 100 DECEMBER 150 200 300 350 500 •  SAMPLE DEPTH (m) 10 30 50 1  FEBRUARY  MARCH  APRIL  0  0  QC ACF ACF ACF ACF  SAMPLE DEPTH fm) 5 10 30 50 1°° 150 200 300 350 500  *  3  STATION  AC AC AC AC  5  7  *  •  ABC A AB ABC  A  AB AB AB  AB  9  11 B B B  AB AB AB B  *  *  B  B  *  •  B  Z A ABC AB A * * A *  2 A A  11  *  *  STATION QC AC AC AC AC  QC A A A AC  150 200 300 350 500  SAMPLE DEPTH (m) 5 10 30 50 100 150 200 300 350 500  KN 1 AC AC AC ACF  KN 1 * * * * * *  KN 1 AC AC AC AC * AC  3 ABC AC AC AC  2 AC AC AC AC AC  5 * * * * * * *  STATION 5. AC AC AC AC *  7 AC A A A *  *  9 AC A A A *  '  11 * * * * * *  * *  STATION QC A A A  AC  KN 1 A AC AC AC C *  3_ AC AC AC AC C  5 * AC AC C C *  2 A A  2 *  1L_ ABC AC  A A  *  *  *  * *  STATION QC A A  C  KN 1 A A A AC AC *  3 A AC  5 C  * A  2 A A  9_ * A  11 .  A  A  C  *  *  * *  *  *  142b  SAMPLE DEPTH (m)  MAY  10 30 50 100 150 200 300 350 500  SAMPLE DEPTH (m)  JUNE  5 10 30 50 100 150  5 10 30 50  100  KN 1 A  3 A  AC  *  •  KN 1 AB ABC ABC A AC  3 A AB ABC  *  50 100 AUGUST  KN 1 B ABC ABCF ABCF ABC * AB  200 300 350 500  *  5 * AB  Z BC AB  *  *  2  5  Z  BC ABC ABC ACF A  AB AB AB  AB  *  *  C  KN 1 AC ABCF ABCF ACF ACF * AF  3_ ABC ABC ABC ABC AC A  KN 1 AC ACF ACF AC AC »  3 ABC ABC ABC AC A  SAMPLE  SEPTEMBER 1 5 0  *  2  11  A A  A  *  *  _  _  9  "  11  *  •  *  *  STATION QC A CF ACF ACF ACF  150  5 10 30 50 100  *  STATION QC AC ACF ACF ACF  200 300 350 500  DEPTH (m)  11  '  SAMPLE  10 30  2 AB  *  150  5  Z AB  STATION QC A A A A A  200 300 350 500  DEPTH (m)  5 • AB ' AB  »  200 300 350 500.  SAMPLE DEPTH (m)  JULY  STATION QC AC A AC AC  5_ ABC ABF AB ABC AB * B BC  7 AB AB AB ABC AB * BC BC * AB  •  9_ B B B  11 B  B * B * B  *  2 B AB B B B »  11_ B AB B B B *  STATION QC ACF * ACF CF ACF  AC  5 ABC ABC BC B *  7 AB AB AB B B * ' B *  B  • B  '  14-3  Figure 13:  The monthly d i s t r i b u t i o n of copepod species group, Transitional/Deep, i n the study area (October 197^ to September 1975). This f i g u r e provides a s p a t i a l aspect to the T-S-P plots. The presence of a species a t a sample depth i s indicated as follows: A B C D E F G H  : : : : : : : :  Aetidius divergens S c o l e c i t h r i c e l l a minor Euchaeta .japonica Metridia okhotensis Gaidius columbiae Heterorhabdus tanneri Gandacia columbiae Ghiridius g r a c i l i s  The absence of a sample at a sample depth i s indicated by an a s t e r i s k  143a  SAMPLE DEPTH (m) 10 30 50 100  OCTOBER  150  QC • A AC AB AB  200 300 350 500  SAMPLE DEPTH (m)  QC  200 300 350 500  10 30 50 100  FEBRUARY  150  ABG AB AD  KN 1  MARCH  SAMPLE DEPTH (m)  ABC ABCF BCDEF  ACDEH CDEGH  BCDEF CDF  *  * * * * * *  * *  A A A AH  * * * *  QC A AC AB  KN 1  APRIL  350  500  *  A A ABCGH  *  ABCDGH  *  CDEF  *  11  BCDF BCDEF CUEFG CDEF » DEFH  DEF  7  F BCE CDH » BCDE CDEF  *  9  11  BCEF BCF BCF DF  CF ACF CF CDEFG  CDF  DEFGH  * *  •  DE  STATION 3  C AG AC AC ABCDGH  AC AC  *  ACDEG ACDEFGH  7  9  AD ABCD ABCDE  A ABC BC  ACDEG ACDEG  ACDEF  *  *  11 •  * * *  •  *  *  ACDEG  2 CD CD ACDE ' ABCDE ABCDG * ACDEFGH ACDEFH * ACDEFG  2 *  ACDEFG  STATION QC  KN 1  3  C  C * ACDH  QC  KN 1  BC BC C ACDGH  3_  5 * AB BC C * ACDGH ACDEFH  STATION _ J  5 10 30 50  100 150 200 300  *  9  B BEF ABCDF BCDEF  STATION 3  5 10  30 50 100 150 200 300 350 500  ' AB ABC ABCF  CDEF  200 300 350 500  SAMPLE " DEPTH (m)  •  7  . CDEF  150  SAMPLE DEPTH' (m)  A  STATION 3  AH  10 30 50 100  DECEMBER  KN 1  A  • CH  ACH  ACDGH * AB CDEGH ABCDEFGH  2 B B ABCDE * BCDEF CDEFG * CDEFGH _  ABC BC A CD * ACDEFG * CDEFG  2  B ABCDF * ABCDEF * DEF  11 CD B ABC ABC • ACDEFGH  1L_  AB ACDF * CDEF  SAMPLE DEPTH (m) 10 30  MAY  50 100  150  200 300 350 500  SAMPLE DEPTH (m)  QC  5 10  JUNE  QC  30 50 100 150 200 300 350  D D D '  KN 1  3  H * AH  H  KN 1  2  C * H  STATION  5  2  2  BC ABCDF AD • * ABCDEFG * CDEFG  CD ABCDF CDF * CDEFG * CDEF  5  2  2  ABC ABC ACF * ACDEG ABCDEFH  ABC ABCF ACDF * ACDEFGH ABCDEF • ACDEF  ABC ABCF * ACDEFG ABCDEGH  STATION  *  A D DH  500  SAMPLE DEPTH (m) 5  JULY  10 30 50 100 150 200 300  QC A AD CD  KN_1  ACD * ACDH  ~ STATION 3 5  AF ABCDF ABCDEFGH  350  ABC ABCDF ABCDEFG * B CDEFG BCDEFGH  500  SAMPLE DEPTH (m)  QC  5 10  AUGUST  30 50 100 150 200 300 350 500  SAMPLE DEPTH fm) 5 10 3°  5° 100 SEPTEMBER 150 200  3°° 350 50p  A AC  KN 1 A A ADH * DH  3  STATION  A ADEFH  5  B ABE BCE * ACDEFG CDEFGH  2 A ACF ABCDEF ACDEFG * ACDEFG CDFG * CDEFGH  2 ABCF ABE BCF * ACDEFG ACDEFG * CDEFG  1L_ , D D ACDF CDEF * DEF  11  C D ACDF ABCDF BCDF ACDEF ABCDEFG ACDF * * ACDEFG ACDEFG * CDF  2 BCDF B CDEFG CDEFG CDF * CDEFG * DFG  2 CD CEF ABCDEF ABCDEFGH * CDF * ACDEFG  11 BCD BCEFG BCFS CDF * CDFG  1L_ C CDEF CDF CDFG * CDEF  STATION QC  A ACG  KN 1 AD A ACDGH * EFGH  3 AB AB ABC CDFGH  5  2  ABC ABC AC  C ABC EF ACDEF  c BCE CDEF CDEF  CDEFG DFG  CDFG  ABCDEFGH CPE  DEFG  2  *  CDF  11 BCF DEF CDEF CDEF  144  Figure 14: The monthly distribution of copepod species group, Deep, in the study area (October 1974 to September 1975)' This figure provides a spatial aspect to the T-S-P plots. The presence of a species at a sample depth i s indicated as follows: A : Spinocalanus brevicaudatus B : Scaphocalanus brevicornis G : Racovitzanus antarcticus The absence of a sample at a sample depth i s indicated by an asterisk (*).  144a  SAMPLE DEPTH (m)  OCTOBER  10 30 50 100  QC  150  3_  KN_1  STATION  ~  9  AB AB  AB AB . AB  ~ 11 AB AB AB AB  AB  AB  AB  AB_  AB  AB * AB  * AB  AB •  *  200 ,n  j  5  n  3°°  •  £n 500  •  SAMPLE DEPTH (B1  KN 1  10 30 50 100  J  STATION 5_  11  AB AB AB  DECEMBER- 150  ».  200 300 350 500  AB  ABC  SAMPLE DEPTH (m)  KN 1  10 30 50 100  *  MARCH  5 10 30 50 100 150 200 300 350 500  SAMPLE DEPTH (m) 5 10 30 50 100  APRIL  150 200 300 350 500  AB AB  KN 1  AB AB • ABC  AB * AB  * *  STATION  J  5_  AB  KN 1  11  L  200 300 350 500  QC  *  ABC  STATION  J  FEBRUARY 150  SAMPLE DEPTH (m)  AB * AB  A AB  11  A * A A * ABC  A AB  A * ABC  *  AB  STATION 11  •  AB ABC  *  ABC  AB * AB  * AB  144b \  SAMPLE DEPTH (m)  MAY  10 30 50 100 150 200 300 350 500  SAMPLE DEPTH (m) 5 10 30 50 100  JUNE  QC  KN 1  2  AB AB * AB  QC  KN 1  3  ' STATION g  200 300 350 500  5 10 30 50 100  STATION QC  KN_1  AB  *  200 300 350 500  5 10 30 50 100  A AB  QC  KN 1  2  * A AB  200 300 350 500  5 10 30 50 100  SEPTEMBER 150  200 300 350 500  QC  KN_1  "  2  AB  " 7  o  "— ^  A  AB  AB  AB  AB  AB AB * ABC  AB * AB  AB  7  9  ^  AB AB  A AB A AB  A A A AB  A * ABC  AB  *  *  ABC AB * AB  STATION  *  *  STATION 5_  150  SAMPLE DEPTH (m)  *  ABC * ABC  ~~ 5  2  AB  *  ~~~  *  150  SAMPLE DEPTH (m)  11  *  SAMPLE  AUGUST  5  150  DEPTH (m)  JULY  STATION  5  * AB  *  11  * A ABC * ABC  AB AB * AB * AB  "  2  A * AB ABC * ABC  A  AB AB * ABC "  N  A AB * ABC * ABC  A A AB • ABC  145  \  F i g u r e 15: The o c c u r r e n c e o f O f f - s h o r e copepod s p e c i e s i n t h e study a r e a . These s p e c i e s were encountered o n l y f r o m June t o September 1975> and were n e v e r r e c o r d e d i n t h e i n l e t i n n e r b a s i n . Occurrence i n a sample i s e x p r e s s e d a s a p e r c e n t a g e o f t h e maximum number o f O f f - s h o r e s p e c i e s f o u n d i n a s i n g l e sample. ( T h i s was t h e 100 m sample a t s t a t i o n Q,G i n J u l y 1975» which c o n t a i n e d 37 O f f - s h o r e s p e c i e s ) . The absence of a sample a t a sample d e p t h i s i n d i c a t e d by an a s t e r i s k (*). See F i g . 16 f o r a s p e c i e s l i s t .  SAMPLE DEPTH (m)  QC  STATION KN 1  QC  STATION KN 1  5 10 30  JUNE  50 100 150 200  SAMPLE DEPTH (m) 5 10 30  JULY  50 100 150 200  SAMPLE DEPTH fm)  AUGUST  5 10 30 50 100 150 200  SAMPLE DEPTH (m)  5 100 *  3  QC  3 26  QC  SEPTEMBER 50 200  8 * 21  5 10 30 100 150  STATION KN 1  18  STATION KN 1  146  Figure 16: Temperature - SalinityOctober 1974.  Plankton (T-S-P) diagrams and water regime l i m i t s f o r  Three heavy l i n e types embrace a l l Surface, -Transition, and Deep regir.es. Identical f a i n t l i n e s indicate T-S l i m i t s of individual regimes, i d e n t i f i e d by codes discussed i n the text. A small inset accomodates extreme T-S values. Line types are, Surface , Transition , and Deep . The temperature s a l i n i t y intercept f o r each plankton sample i s indicated by a small dot, beside which i s an alphabetically coded l i s t of species present. Species are grouped according to s i m i l a r i t i e s i n occurrence on T-S-P diagrams. The four major groups, Surface and Surface T r a n s i t i o n a l , Transitional/Deep, Migrants, and Deep species are plotted separately. Summer Surface species appear with the Surface and Surface Transitional, and Off-shore speci&s with the Deep species groups, respectively. Species and codes are given below f o r the entire study period. SPECTES GROUP: SUMVSR SURFACE CENTROPAGES MCMURRICHI PODON spp. and EVADME spp. PARACALANUS PARVUS CHAEBORUS LARVAE  SPECIES GROUP: OFF-SHORE D E G H  SPECIES GROUP: SURFACE AND SURFACE TRANSITIONAL ACARTIA LONGIREMIS ACARTIA CLAUSI TORTANUS DISCAUDATUS EPILABIDOCERA AMPHITRITES  A B C F  SPECIES GROUP: MIGRANTS CALANUS 'MARSHALLAE PSEUDOCALANUS ELONGATUS METRIDIA PACIFICA EUCALANUS BUNGI BUNGI CALANUS PLUKCHRUS  S P E C T E S GROUP:  A B C D E  TRANSITIONAL/DSEP  AETIDIUS DIVERGENS S C O L E C I T H R I C E L L A MINOR EUCHAETA J A P C U I C A METRIDIA CKKOTENSIS G A I D I U S COLUJ-SiAS HETERORHABDUS T A N N E R I CANDACIA C0LU>3IAE CHIRIDIUS GRACILIS MICROCALANUS PYGMAEUS '  A B C D E F G H I  SPECIES GROUP: DEEP SPTNOCALAHUS BREVICAUDATUS SCAPHOCALANUS BREVTCCRNIS RACOVITZANUS ANTARCTICUS  A B C  GAETANUS INTERMEDIUS RHINCALANUS NASUTUS CALANUS CRISTATUS EUCHIRELLA ROS7RATA EUCHIRELLA PSEUDOPULCHRA FLEUROKAt-™ QUADRUNGULATA PLEUROMAMMA XIPHIAS PLEUROMAMMA AEDOMINALIS METRIDIA PRINCEPS CANDACIA BIPINHATA  D E F G H I J K L M  The following off-shore species occurred only i n one sample. A l l are coded N: GAETANUS PILEATUS GAETANUS MILES CHIRUNDINA STREETSI UNDEUCHAETA BISPINCSA EUCHIRELLA CURTICAUDA PARAEUCKAETA CALIFCRNICA EUCHAETA MEDIA EUCHAETA SPIN OS A SCOTTOCALANUS PESECANS LOPHOTKRIX FRONTALIS SCAPHOCALANUS MAGNUS SCOLECITHRICELLA OVATA METRIDIA BOECKI PLEUROMAMMA SCUTULLATA PLEUROMAMMA BOREALIS GAUSSIA PRINCEPS LUCICUTIA BICORNUTA DISSETA MAXIMA HETER0RHA3DUS PAPILLIGER HETERORHABDUS CLAUSI HETERORHABDUS SFINIFRONS HETEROSTYLTTES LCNCICCRNIS CENTRAUGAPTILUS PORCELLUS PACHYPTILUS FACIFICUS PHYLLOPUS INTEGER ARIETELLUS FLUMFER HALOPTILUS OXYCEFriALUS  N N N N N N N N N N N N N N N N N N N H N N N H N N N  147  Figure  17:  Temperature-Salinity-Plankton (T-S-P) diagrams'and water regime l i m i t s f o r December 1 9 7 ^ . Three heavy l i n e types embrace a l l Surface, Transition, and Deep regimes. Identical f a i n t lines indicate T-S l i m i t s of individual regimes, i d e n t i f i e d by codes discussed in the text. A small inset accomodates extreme T-S values. Line types are, Surface , Transition , and Deep . The temperature s a l i n i t y intercept f o r each plankton sample i s indicated by a small dot, beside which i s an alphabetically coded l i s t of species present. Species are grouped according to s i m i l a r i t i e s i n occurrence on T-S-P diagrams. The four major groups, Surface and Surface Transitional, Transitior.al/Deep, Migrants, and Deep species are plotted separately. Suraier Surface species appear with the Surface and Surface Transitional, and Off-shore species with the Deep speci.es groups, respectively. Species and codes are given below f o r the entire study period. SPECIES CROUP: SUMMER SURFACE CENTROPAGES. MCMURRICHI PODON spp. and EVADNE spp. PARACALANUS PARVUS CHAEBORUS LARVAE  SPECIES GROUP: 0FF-SHOR5 D E .G H  SPECIES GROUP: SURFACE AND SURFACE TRANSITIONAL ACARTIA LONGIREMIS ACARTIA CLAUSI TORTANUS DISCAUDATUS EPILABIDOCERA AMPHITRITES  A B C F  SPECIES GROUP: MIGRANTS CALANUS MARSHALLAE PSEUDOCALANUS ELONGATUS METRIDIA PACIFICA EUCALANUS BUNGI BUNGI CALANUS PLUMCHRUS  A B C D E  S P E C I E S GROUP: T R A N S I T I O N A L / D E E P AETIDIUS DIVERGENS S C O L E C I T H R I C E L L A MINOR EUCHAETA J A P O N I C A METRIDIA OKHOTENSIS G A I D I U S COLUMBIAE HErERORHABDUS T A N N E R I CANDACIA C0LUM3IAE CHIRIDIU3 GRACILIS MICROCALANUS FYGMAEUS  A B C • D E P G H I  SPECIES GROUP: DEEP SPINOCALANUS BREVICAUDATUS SCAPHOCALANUS BREVICORNIS RACOVITZANUS ANTARCTICUS  A B C  GAETANUS INTER MEDIUS RHINCALANUS NASUTUS CALANUS CRISTATUS EUCHIRELLA ROSTRATA EUCHIRELLA PSEUDOPULCKRA PLEUROMAMMA QUADRUNGULATA PLEUROMAMMA XIFHIAS PLEUROMAMMA ABDOMINALIS METRIDIA PRINCSPS CANDACIA BIPINNATA  D' E P G H I J K L M  The following off-shore species occurred only i n one sample. A l l are coded N: GAETANUS PILEATU3 GAETANUS MILES CHIRUNDINA STREETS I UNDEUCHAETA BISPINOSA EUCHIRELLA CURTICAUDA PABAEUCHAETA CALIFORNICA EUCHAETA MEDIA EUCHAETA SPINOSA SCOTTOCALANUS PES3CANS LOFHOTHRIX FRONTALIS SCAPHOCALANUS MAGNUS SCOLECITHRICELLA OVATA METRIDIA BOECKI PLEUROMAMMA SCUTULLATA PL EUROMAMMA BOREALIS GAUSSIA PRINCSFS LUC1CUTIA BICORNUTA DISSErA MAXIMA HETERORHABDUS PAPILLIGER HETERORHABDUS CLAUSI HETERORHABDUS SPINIFRCNS HETEROSTYLITES LCNGICCRNIS CENTRAUCAPTILUS PGRCELXUS PACHYPTILUS PACIFICUS PHYLLOPUS INTEGER ARIETELLUS PLUMIFER HALOPflLUS OXYCEFHALUS  "N N N N N N N N N N N N N N N N N N N K N N N H N K N  8-F  7-f  8  C  A"  T N I  7f s K  •  •* 6  6  8  8f  7+ BCEF~"V<  29  30  TRANSITIONAL DEEP  V  31  32  33  6  i—•  "29  SALINITY  (%o)  148  Figure 18: Temperature-Salinity-Plankton February 1 9 7 5 .  (T-S-P) diagrams and water regime l i m i t s f o r  Three heavy l i n e types embrace a l l Surface, T r a n s i t i o n , and Deep regines. Identical f a i n t lines indicate T-S l i m i t s of individual regimes, i d e n t i f i e d by codes discussed i n the text. A small inset accomodates extreme T-5 values. Line types are, Surface - - - , Transition , and Deep . The temperature s a l i n i t y intercept f o r each plankton sample i s i n d i c a t e d by a small dot, beside which i s an alphabetically coded l i s t of species present. Species are grouped according to s i m i l a r i t i e s i n occurrence on T - 3 - ? diagrams. The four major groups, Surface and Surface T r a n s i t i o n a l , Transitional/Deep, Migrants, and Deep species are plotted separately. Summer Surface species appear with the Surface and Surface Transitional, and Off-shore speci&s with the Deep species groups, respectively. Species and codes are given below f o r the entire study period. SPECIES GROUP: SUMMER SURFACE  SPECIES GROUP: OFF-SHORE  CENTROPAGES MCMURRICHI PODON spp. and EVADNE spp. PARACALANUS PARVUS CHAEBORUS LARVAE  D E G H  SPECIES GROUP: SURFACE AND SURFACE TRANSITIONAL ACARTIA LONGIREMIS ACARTIA CLAUSI TORTANUS DISCAUDATUS EPILABIDOCERA AMPHITRITES  A B C F  SPECIES GROUP: MIGRANTS CALANUS MARSHALLAE PSEUDOCALANUS ELONGATUS METRIDIA PACIFICA EUCALANUS BUNGI BUNGI ' CALANUS PLUMCKRUS  A B C D E  SPECIES GROUP: TRANSITIONAL/DEEP ABTIDIUS DIVERGENS SCOLECITHRICELLA MINOR EUCHAETA JAPONICA METRIDIA OKHOTENSIS GAIDIUS.COLUMBIAE HETERORHABDUS TANNERI CANDACIA COLUMBIAE CHIRIDIUS GRACILIS HICROCALANUS PYGMAEUS  . A B C -B E F G H I  SPECIES GROUP: DEEP SPINOCALANUS BREVICAUDATUS SCAPHOCALANUS BRE'/ICCRNIS RACOVITZANUS ANTARCTICUS  A B C  GAETANUS INTERMEDIUS RHINCALANUS NA3UTUS CALANUS CRISTATUS EUCHIRELLA ROSTRATA EUCHIRELLA PSEUDOPULCHRA PLEUROMAMMA QUADRUNGULATA PLEUROMAMMA XIFRTAS PLEUROMAMMA ABDOMINAL IS METRIDIA PRINCEPS CANDACIA BIPINNATA  D E F G H I J K L M  Tho following off-shore species occurred only i n one sanple. A l l are coded N: GAETANUS PILEATUS GAETANUS MILES CHIRUNDINA STREETSI ' UNDEUCHAETA BISPINCSA EUCHIRELLA CURTICAUDA PARA EUCHAETA CALIFCRNICA EUCHAETA MEDIA EUCHAETA SPINCSA SCOTTOCALANUS PESECANS LOPHOTKRIX FRONTALIS SCAPHOCALANUS MAGNUS SCOLECITHRICELLA OVA?A METRIDIA BOECKI PLEUROMAMMA SCUTULLATA PLEUROMAMMA BCREALIS GAUSSIA PRINCEPS LUCICUTIA BICORNUTA DISSETA MAXIMA HETERORHABDUS PAPILLIGER HETERORHABDUS CLAUSI HETERORHABDUS SPINIFRCNS METEROSTYLITSS LCNGICCRNIS CRNTRAUGAPTILUS PCRCELLUS PACHYPTILUS PACIFICUS PHYLLOPUS INTEGER ARIETELLUS PLUMIFER HALOPTILUS OXYCEFHALUS  * N N N N N N N N N N N N N N N N K N N N N N N N N H N  8-r  8T  SURFACE AND S U R F A C E TRANSITIONAL  MIGRANT  A B C J'»»YA-E  7+  7+ A B C  6-f  6-F  8  T  8  TRANSITIONAL/ DEEP  T  7+  6f  6-F 30  B  /  DEEP  A.C-H  7-f  29  A B O V  31  32  33 29 SALINITY(%o)  30  31 F E B R U A R Y 1975  32  33  149  Figure 19: Temperature-Salinity-Plankton March 1975.  (T-S-P) diagrams and water regime l i m i t s f o r  Three heavy l i n e types embrace a l l Surface, Transition, and Deep regimes. Identical faint lines indicate T-S l i m i t s of individual regimes, I d e n t i f i e d by codes discussed in the text. A small inset accomodates extreme T-S values. Line types are, Surface ; , Transition , and Deep . The temperature s a l i n i t y intercept f o r each plankton sample i s indicated by a small dot, beside which i s an alphabetically coded l i s t of species present. Species are grouped according to s i m i l a r i t i e s in occurrence cn T-S-P diagrams. The four major groups, Surface and Surface T r a n s i t i o n a l , Transiticnal/Deep, Migrants, and Deep species are plotted separately. Sunner Surface species appear with the Surface and Surface Transitional, and Off-shore species with the Deep species groups, respectively. Species and codes are given below f o r the entire study period. SPECIES GROUP: SUMMER SURFACE  SPECIES GROUP: OFF-SHORE  CENTROPAGES MCURRICHI PODON spp. and EVADNE spp. PARACALANUS PARVUS CHAEBORUS LARVAE  D E G H  SPECIES GROUP: SURFACE AMD SURFACE TRANSITIONAL 'ACARTIA LONGIREMIS ACARTIA CLAUSI TORTANUS DISCAUDATUS EPILABIDOCERA AMPHITRITES  A B C F  SPECIES GROUP: MIGRANTS CALANUS MARSHALLAE PSEUDOCALANUS ELONGATUS METRIDIA PACIFICA EUCALANUS BUNGI BUNGI CALANUS PLUMCHRUS  S P E C I E S GROUP:  A . B C D E  TRANSITIONAL/PSSP  AETIDIUS DIVERGENS SCOLECITHRICELLA MINOR EUCHAETA JAPONICA METRIDIA OKHOTENSIS GAIDIUS COLUMBIAE HETERORHABDUS TANNERI CANDACIA COLUMBIAE CHTRIDIUS GRACILIS MICROCALANUS PYGMAEUS  A B C . D E F G H I  SPECIES GROUP: DEEP SPINOCALANUS BREVICAUDATUS SCAPHOCALANUS BREVICCRNIS RACOVITZANUS ANTARCTICUS  A B C  GAETANUS INTERMEDIUS RHINCALANUS NASUTUS CALANUS CRISTATUS EUCHIRELLA ROSTRATA EUCHIRELLA PSEUDOPULCHRA PLEUROMAMMA QUADRUNGULATA PLEUROMAMMA XIPHIAS PLEUROMAKMA ABDOMINAL IS METRIDIA PRINCEPS CANDACIA BIPINNATA  D E F G H I J K L M  .  The following off-shore species occurred only i n one sample. A l l are coded. N: GAETANUS P I L E A T U S  N  GAETANUS M I L E S CHIRUNDINA STRESTSI UNDEUCHAETA B I S F I N O S A  N N N  EUCHIRELLA CURTICAUDA PARAEUCHAETA C A L I F C R N I C A EUCHAETA MEDIA EUCHAETA S P I N O S A  K N N N  SCOTTOCALANUS  P2SSCANS  N  LOPHOTKRIX FRONTALIS S C A P H O C A L A N U S MAGNUS SCOLECITHRICELLA OVATA METRIDIA BOECKI  N N N N  ELEUROMAMMA S C U T U L L A T A PLEUROMAKMA B C R E A L I S GAUSSIA PRINCEPS LUCICUTIA BICCRNUTA D I S S E T A MAXIMA  N N K N N  HETERORHABDUS P A P I L L I G E R HETERORHABDUS C L A U S I HETERORHABDUS S F T N I F R C X S "HETEROSTYLITES LCNGICCRNIS CENTRAUGAPTILUS F O R C H L U S PACHYPTILUS PACIFICUS PHYLLOPUS INTEGER ARIETELLUS PLUMIFER HALOPTILUS OXYCEPHALUS  N K K N N N N N N  8  SURFACE AND SURFACE TRANSITIONAL  T  8T-  MIGRANT  All stations ._ within indicatedj"^ T K  7-F  7-F AC/  #5> ~  JUMWB"  ABC  u  5>'  ABC  E'  ABC»__,  AC A AC C  6-F _  o  '  UJ  or z> \-  < LU 8 Q_ UJ  8  TRANSITIONAL/ DEEP  T  DEEP  ;T»tA,C-G A.C-Hfj  ,^AC-F.H  7+  */V'A.C-G » i A . D G A C D G H A C £ >  ABC ACDE  7-f  ( C A C D G H  6-  :  29  »  30  a  A  B  CD  31  32  33  29  SALINITY(%o)  30  31 M A R C H 1975  32  33  S  150  Figure 20: Temperature-Salinlty-Plankton April  (T-S-P) diagrams and water regime l i m i t s f o r  ly/j.  Three heavy l i n e types embrace a l l Surface, Transition, and Deep regimes. Identical f a i n t lines indicate T-S l i m i t s of individual regimes, i d e n t i f i e d by codes discussed i n the text. A small inset accomodates extreme T-S values. Line types are, Surfa Transition , and Deep •-. The temperature s a l i n i t y intercept f o r each plankton sample i s i n d i c a t e d by a small dot, beside which i s an alphabetically coded l i s t of species present. Species are grouped according to s i m i l a r i t i e s in occurrence on T-S-P diagrams. The four major groups, Surface and Surface Transitional, Transitional/Deep, Migrants, and Deep species are plotted separately. Summer Surface species appear with the Surface and Surface Transitional, and Off-shore speci&s with the Deep species groups, respectively. Species and codes are given below-for the entire study period. S P E C I E S C R O U P : - SUMMER S U R F A C E  SPECIES GROUP: OFF-SHORE  CENTROPAGES MCMURRICHI PODON spp. and E V A D N E spp.  D E  PARACALANUS PARVUS CHAEBORUS L A R V A E  G H  S P E C I E S GROUP:  SURFACE AND SURFACE TRANSITIONAL  ACARTIA LONGIREMIS  A  ACARTIA  B  CLAUSI  TORTANUS DISCAUDATUS  C  EPILABIDOCERA AMPHITRITES  F  S P E C I E S GROUP:  MIGRANTS  GAETANUS INTERMEDIUS RHINCALANUS NASUTUS CALANUS CRISTATUS EUCHIRELLA ROSTRATA EUCHIRELLA FSEUDOFULCHRA PLEUROMAMMA QUADRUNGULATA PLEUROMAMMA XIFrilAS PLEUROMAMMA. ABDOMINALIS METRIDIA FRINCEPS CANDACIA BIPINNATA  The following off-shore species occurred only i n one sample. A l l are coded N : GAETANUS  PILEATUS  . GAETANUS  MILES  CALANUS MARSHALLAE  A  CHIRUNDINA  PSEUDOCALANUS ELONGATUS  B  UNDEUCHAETA  KETRIDIA  C  EUCHIRELLA  EUCALANUS BUNGI BUNGI  D  PARAEUCHAETA  CALANUS PLUMCHRUS  E  EUCHAETA  MEDIA  EUCHAETA  S P I N OS A  PACIFICA  STREETSI BISPINOSA CURTICAUDA CALIFCRNICA  SCOTTOCALANUS PESECANS S P E C I E S GROUP:  TRANSITIONAL/DSSP  LOPHOTHRIX  FRONTALIS  S C A P H O C A L A N U S MAGNUS AETIDIUS  DIVERGENS  SCOLECITHRICELLA  MINOR  A  SCOLECITHRICELLA  B '  METRIDIA  OVATA  30ECKI  EUCHAETA  JAPONICA  C  PLEUROMAMMA  METRIDIA  OKHOTENSIS  D  PLEUROMAMMA B O R E A L I S  GAIDIUS  C0LUM3IAS  SC'JTULLATA  E  GAUSSIA  HETERORHABDUS TANNERI  F  LUCICUTIA  CANDACIA COLUMBIAE  G  DISSETA  CHTRIDIUS  H  HETERORHABDUS  I  HETERORHABDUS  CLAUSI  HETERORHABDUS  SPINIFRCNS  GRACILIS  MTCROCALANUS PYGMAEUS  PRINCEFS BICORNUTA  MAXIMA PAPILLIGER  HETER0STYLITE3 SPECIES  GROUP:  DEEP  CENTRAUGAFTILUS PACHYPTILUS  LCNGICCRNIS FCRCELLUS  PACIFICUS  SPINOCALANUS BREVICAUDATUS SCAPHOCALANUS BRE'/ICCRNIS  A B  PHYLLOPUS ARIETELLUS  PLUMIFER  RACOVITZANUS  C  HALOPTILUS  OXYCEFHALUS  ANTARCTICUS  D E F C H I J K .L M  INTEGER  N N N N N N N N N H  N N N  K  N N N N N N N N N N N N N  8r  ~10  A.  20  G." T / ^ F " ACV«/ 11  8  A  (J  T  25 29  Sal.(%o)  7f  7+  u o  LU CC z>  6-f  6f  SURFACE AND SURFACE TRANSITIONAL  MIGRANT  < or  UJ  o_  8  -10 o  T  UJ  20 ACDF4> ; s  rtfA-F.H  7f  8 25  Sal.(•/..)  (• A  T  29  i  7f  AACH  6+  TRANSITIONAL DEEP  6r  DEEP H  29  30  31  32  33  29  SALINITY  (°/oo)  30  31 APRIL 1975  32  33  O  151  Figure 21i Temperature-Salinity-Plankton May 1975.  (T-S-P) diagrams and. water regime l i m i t s f o r  Three heavy l i n e types embrace a l l Surface, Transition, and Deep regimes. Identical f a i n t l i n e s indicate T-S l i m i t s of individual regimes, i d e n t i f i e d by codes discussed i n the text. A s n a i l Inset accomodates extreme T-S values. Line types are, .Surface , Transition , and Deep -• . The temperature s a l i n i t y intercept f o r each plankton sample i s i n d i c a t e d by a small dot, beside which i s an a l p h a b e t i c a l l y coded l i s t of species present. Species are grouped according to s i m i l a r i t i e s i n occurrence on T-S-P diagrams. The four major groups, Surface and Surface T r a n s i t i o n a l , Transitional/Deep, Migrants, and Deep species are plotted separately. Summer Surface species appear with the Surface and Surface T r a n s i t i o n a l , and Off-shore species with the Deep species groups, respectively. Species and codes are given below f o r the entire study period. SPECIES GROUP: SUMMER SURFACE  SPECIES GROUP: OFF-SHORE D E G H  CENTROPAGES MCMURRICHI PODON spp. and EVADNE si)p. PARACALANUS PARVUS * CHAEBORUS LARVAE  SPECIES GROUP: SURFACE AND SURFACE TRANSITIONAL A B C F  'ACARTIA LONGIREMIS ACARTIA CLAUSI TORTANUS DISCAUDATUS EPILABIDOCERA AMFHITRITES SPECIES GROUP: MIGRANTS CALANUS MARSHALLAE PSEUDOCALANUS ELONGATUS METRIDIA PACIFICA EUCALANUS BUNGI BUNGI CALANUS PLUMCHRUS  A . B C D E  SPECIES GROUP: TRANSITIONAL/DEEP AETIDIUS DIVERCENS SCOLECITHRICELLA MEN OR EUCHAEPA JAPONICA METRIDIA OKHOTENSIS GAIDIUS COLUMBIAE HETERORHABDUS TANNERI CANDACIA COLUMBIAE CHIRIDIUS GRACILIS KECROCALANUS FYGMAEUS  A B C . D E F G • H I  SPECIES GROUP: DEEP SPINOCALANUS BREVICAUDATUS SCAPHOCALANUS BREVICORNIS RACOVITZANUS ANTARCTICUS  A B C  GAETANUS INTERMEDIUS RHINCALANUS NASUTUS CALANUS CRISTATUS EUCHIRELLA ROSTRATA EUCHIRELLA PSEUDOPULCHRA PLEUROMAMMA QUADRUNGULATA PLEUROMAMMA XIPKIA3 PLEUROMAMMA ABDCMTNALIS METRIDIA FRIN CEPS CANDACIA BIPINNATA  D E F G H I J K L ,M  The following off-shore species occurred only i n one sample. A l l are coded N: GAETANUS PILEATUS GAETANUS MILES CHIRUNDINA STREETS I UNDEUCHAETA BISFINGSA EUCHIRELLA CURTICAUBA PARAEUCHAETA CALIFCRNICA EUCHAETA MEDIA EUCHAETA SPINOSA SCCTTOCALANUS PESECANS LOPHOTKRIX FRONTALIS SCAPHOCALANUS MAGNUS SCOLECITHRICELLA OVATA METRIDIA BOSCXI PLEUROMAMMA SCUTULATA PLEUROMAMMA BOREALIS GAUSSIA PR IN CEPS LUCICUTIA 3IC0RNUTA DISSETA MAXIMA H £ r E R 0 R H A 3 D U S PAPILLIGER HErffiORHA3DUS CLAUSI HETERORHABDUS SPINIFRCNS HETEROSTYLITSS LCNGICCRNIS CENTHAUGAPTILUS PGRCELLUS PACHYPTILUS PACIFICUS PirYLLOPUS INTEGER ARIETELLUS PLUMIFER HALOPTILUS OXYCEFHALUS  N N N N N N N N N N N N N N N N N N N N N N N N N N N  9  SURFACE AND SURFACE TRANSITIONAL  T  9  T  G10 8 • 15  8 AB  *mr  8K  AC?*  74-  <  ABCD  i%^ABC  ABCE"~AB ABE I  A  Q:  *\ ABC  *30  \  \\ V./  •<ABCD 1  TRANSITIONAL/ DEEP  T  u  10 v. I I I I I l I >i 20 25 Sal.(°/oo)  I I I I  8f  15  A t \ ii l  x  la  111111111111. &  ft| *30  rs  9  ,/ J.CDEF  N N  SCH° *-fA-H F  2.9  I > Ja  Sal.(°/oo)  /^-ABCD  S  _J  7  25  R  7f  9  T|  20  r\  h-  UJ 2 o LU_  I I I I I I I  15  ^ A C y\E"' \ \  o  Z>  -  20 25> * 3 0 Sal. (<>/..)  !AC  u  LU or  ••• | iiii|  ABCDNrCF-  30  _l  ACDF AH ABCF I  31  1  \  \  :  32  33  2.9 A S A L I N I T Y (°/oo)  MAY 1975  15  20 25 Sal.C/oo)  *30  152  Figure 22i Temperature-Salinity-Plankton June 1975.  (T-S-P) diagrams and water regime l i m i t s f o r  Three heavy l i n e types embrace a l l Surface, Transition, and Deep regimes. Identical f a i n t lines indicate T-S l i m i t s of individual regir.es, i d e n t i f i e d b y codes discussed i n the text. A small inset accomodates extreme T-S values. Line types are, Surface , Transition , and Deep . The temperature s a l i n i t y intercept f o r each plankton sample i s i n d i c a t e d by a small dot, beside which'is an alphabetically coded l i s t of species present. Species are grouped according to s i m i l a r i t i e s i n occurrence on T-S-P diagrams. The four major groups, Surface and Surface T r a n s i t i o n a l , Transiticr.al/Deep, Migrants, and Deep species are plotted separately. Summer Surface species appear with the Surface and Surface Transitional, and Off-shore species with the Deep species groups, respectively. Species and codes are given below f o r the entire study period. SPECIES GROUP: SUMMER SURFACE  SPECIES GROUP: OFF-SKORE  CENTROPAGES MCMURRICHI PODON spp. and EVADNE spp. PARACALANUS. PARVUS CHAEBORUS LARVAE  D E G H  SPECIES GROUP: SURFACE AND SURFACE TRANSITIONAL ACARTIA LONGIREMIS ACARTIA CLAUSI TORTANUS DISCAUDATUS EPILABIDOCERA AMPHITRITES  A .B C F  SPECIES GROUP: MIGRANTS A B C D E  CALANUS MARSHALLAE PSEUDOCALANUS ELONGATUS METRIDIA PACIFICA EUCALANUS BUNGI BUNGI CALANUS PLUMCHRUS SPECIES GROUP: TRANSITIONAL/DEEP AETIDIUS DIVERGENS SCOLECITHRICELLA MINOR EUCHABrA JAPONICA MErRIDIA OKHOTENSIS GAIDIUS COLUMBIAE HETERORHABDUS TANNERI CANDACIA COLUMBIAE CHIRIDIUS GRACILIS MICROCALANUS PYGMAEUS  A B C • D 'E F G H I  SPECIES GROUP: DEEP SPINOCALANUS BREVICAUDATUS SCAPHOCALANUS ERSVICCRNIS RACOVITZANUS ANTARCTICUS  A B C  GAETANUS INTERMEDIUS RHTNCALANUS NASUTUS CALANUS CRISTATUS EUCHIRELLA ROSTRATA EUCHIRELLA PSEUDOPULCKRA PLEUROMAMMA QUADRUNGULATA PLEUROMAMNA XIFHIAS PLEUROMAMMA ABDOMINALIS METRIDIA PRIM CEPS CANDACIA BIPINNATA  D E FG H I J K L M  The following off-shore species occurred only i n one sample.- A l l are coded N: GAETANUS PILEATUS GAETANUS MILES' CHIRUNDINA STREETSI UNDEUCHAETA BISPIN03A EUCHIRELLA CURTICAUDA PARAEUCHAETA CALIFORNICA EUCHAETA MEDIA EUCHAETA SPINOSA SCCTTOCALANUS PESECANS LOPKOTHRIX FRONTALIS SCAPHOCALANUS MAGNUS SCOLECITHRICELLA OVATA METRIDIA BOECKI PLEUROMAMMA SCUTULLATA PLEUROMAMMA BOREALIS GAUSSIA PRINCEPS LUCI'CUTIA BICORNUTA DISSETA MAXIMA HETERORHABDUS PAPILLIGER HETERORHABDUS CLAUSI HETERORHABDUS SPINIFRCNS HETEROSTYLITSS LONGICORNIS CENTRAUGAPTILUS PORCELLUS PACHYPriLUS PACIFICUS PHYLLOPUS INTEGER ARIETELLUS PLUMIFER HALOPTILUS OXYCEFHALUS  'N N N N N N N N N N N N N N N N N N N N N N N N N N N  14r  SURFACE AND SURFACE TRANSITIONAL  9  « " ! - ^  T  7^  |DEEP|  9  T  s  10  8-K •  15 20 Sal. (•/..)  25  *30  I ABCP  7-f 32  33  SALINITY (% ) 0  29  A  30  31  32  33  JUNE 1975  IV)  153  Figure 2 3 : Temperature-Salinity-Plankton July 1975.  (T-S-P)'diagrams and water regime l i m i t s f o r  Three heavy l i n e types embrace a l l Surface, Transition, and Deep regimes. Identical f a i n t lines indicate T-S l i m i t s of i n d i v i d u a l regimes, i d e n t i f i e d b y codes discussed i n the text. A small inset accomodates extrer.e T-S values. Line types are, Surface , Transition , and Deep . The temperature s a l i n i t y intercept f o r each plankton sample i s i n d i c a t e d by a small dot, beside which i s an alphabetically coded l i s t of species present. Species are grouped according to s i m i l a r i t i e s i n occurrence cn T-5-? diagrams. The four major groups, Surface and Surface T r a n s i t i o n a l , Transitional/Deep, Migrants, and Deep species are plotted separately. Summer Surface species appear with the Surface and Surface Transitional, and Off-shore species with the Deep speci.es groups, respectively. Species and codes are given below f o r the entire study period. SPECIES GROUP: SUMMER SURFACE  SPECIES GROUP: OFF-SHORE D E G H  CENTROPAGES MCMURRICHI ' PODON spp. and EVADNE spp. PARACALANUS PARVUS CHAEBORUS LARVAE  SPECIES GROUP: SURFACE AND SURFACE TRANSITIONAL A B C F  ACARTIA LONGIREMIS ACARTIA CLAUSI TORTANUS DISCAUDATUS EPILABIDOCEHA AMPHITRITES SPECIES GROUP: MIGRANTS CALANUS MARSHALLAE PSEUDOCALANUS ELONGATUS METRIDIA PACIFICA EUCALANUS BUNGI BUNGI ' CALANUS PLUMCHRUS  S P E C I E S GROUP:  A B C D ' E  TRANSITIONAL/DESP  AETIDIUS DIVERGENS  A  S C O L E C I T H R I C E L L A MINOR EUCHAETA J A P O N I C A METRIDIA OKHOTENSIS GAIDIUS COLUMBIAE HETERORHABDUS T A N N E R I CANDACIA COLUMBIAE CHTRIDIUS G R A C I L I S MICROCALANUS PYGMAEUS  B C D E F G H I  r  '  SPECIES GROUP: DEEP SPINOCALANUS BREVICAUDATUS SCAFKOCALANUS BREVICORNIS RACOVITZANUS ANTARCTICUS  A B C  GAETANUS INTERMEDIUS D RHINCALANUS NASUTUS E CALANUS CRISTATUS F EUCHIRELLA ROSTRATA G EUCHIRELLA PSEUDOPULCKRA H PLEUROMAMMA QUADRUNGULATA I PLEUROMAMMA XIFHIA3 J PLEUROMAMMA ABDOMINALIS K METRIDIA PRINCEPS L CANDACIA BIPINNATA M / The following off-shore species occurred only i n cne sample. A l l are coded N: GAETANUS PILEATUS GAETANUS MILES CHIRUNDINA STREBTSI ' UNDEUCHAETA BISFINCSA EUCHIRELLA CURTICAUDA PARAEUCHAETA CALIFCRNICA EUCHAETA MEDIA EUCHAETA SPINOSA SCOTTOCALANUS PESECANS LOPHOTHRIX FRONTALIS SCAPHOCALANUS MAGNUS SCOLECITHRICELLA OVATA METRIDIA BOECKI PLEUROMAMMA SCUTULLATA PLEUROMAMMA BOREALIS GAUSSIA PRINCEPS LUCICUTIA EICORNUTA DISSETA MAXIMA HETERORHABDUS PAPILLIGER HETERORHABDUS CLAUSI •HETERORHABDUS SFINIFRCNS HETEROSTYLITES LCNCICCRNIS CEHTRAUGAPTILUS PCRCELLUS PACHYPTILUS PACIFICUS PHYLLOPUS INTEGER ARIETELLUS PLUMIFER HALOPTILUS OXYCEFHALUS  ' N N N N N N N N K N N N H N N N N N N N N N N N N N N  JULY 1975  154  Figure 2k: Temperature-Salinity-Plankton (T-S-P) diagrams and water regime l i m i t s f o r August 1975« Three heavy l i n e types embrace a l l Surface, Transition, and Deep regimes. Identical f a i n t lines indicate T-S l i m i t s of individual regimes, i d e n t i f i e d by codes discussed in the text. A small inset accomodates extreme T-S values. Line types are, Surface , Transition , and Deep - • . The temperature s a l i n i t y intercept f o r each plankton sample i s indicated by a small dot, beside which i s an alphabetically coded l i s t of species present. Species are grouped according to s i m i l a r i t i e s i n occurrence on T-S-P diagrams. The four major groups, Surface and Surface T r a n s i t i o n a l , Transitional/Deep, Migrants, and Deep species are plotted separately. Summer Surface species appear with the Surface and Surface Transitional, and Off-shore specie-s with the Deep species groups, respectively. Species and codes are given below f o r the entire study period. SPECIES GROUP: SUMMER SURFACE  SPECIES GROUP: OFF-SHORE D' E G H  CENTROPAGES MCMURRICHI PODON spp. and EVADNE spp. PARACALANUS PARVUS CHAEBORUS LARVAE  SPECIES GROUP: SURFACE AND SURFACE TRANSITIONAL 'ACARTIA LONGIREMIS ACARTIA CLAUSI TORTANUS DISCAUDATUS EPILABIDOCERA AMPHITRITES  A B C F  SPECIES GROUP: MIGRANTS CALANUS MARSHALLAE •PSEUDOCALANUS ELONGATUS METRIDIA PACIFICA EUCALANUS BUNGI BUNGI CALANUS PLUMCHRUS  A .B C D E  SPECIES GROUP: TRANSITIONAL/DEEP AETIDIUS DIVERGENS SCOLECITHRICELLA MET OR EUCHAETA JAPONICA METRIDIA OKHOTENSIS GAIDIUS COLUMBIAE HETERORHABDUS TANNERI CANDACIA COLUMBIAE CHIRIDIUS GRACILIS MICROCALAiNUS PYGMAEUS  . A B C D E ' T G H I  SPECIES CROUP; DEEP SPINOCALANUS BREVICAUDATUS SCAPHOCALANUS 3RSVICGRNIS RACOVITZANUS ANTARCTICUS  A B C  GAETANUS INTERMEDIUS RHTNCALANUS NASUTU3 CALANUS CRISTATUS EUCHIRELLA ROSTRATA EUCHIRELLA PSEUDOPULCKRA PLEUROMAMMA QUADRUNGULATA PLEUROMAMMA XIFHIAS PLEUROMAMMA ABDOMINALIS METRIDIA PRINCEPS CANDACIA BIPINNATA  D E " F G H I J K L M  The following off-shore species occurred only i n one sample. A l l are coded N: GAETANUS PILEATUS GAETANUS MILES CHTRUNDINA STRESTSI UNDEUCHAETA 3ISPINCSA EUCHIRELLA CURTICAUDA PARAEUCHAETA CALIFGRNICA EUCHAETA MEDIA EUCHAETA SPINCSA SCOTTOCALANUS PESSCANS LOPHOTHRIX FRONTALIS SCAPHOCALANUS MAGNUS SCOLECITHRICELLA OVATA METRIDIA BOECKI PLEUROMAMMA SCUTULLATA PLEUROMAMMA BOREALIS GAUSSIA PRINCEPS LUCICUTIA BICORNUTA DISSETA MAXIMA HETERORHABDUS PAPILLIGES HETERORHABDUS CLAUSI HETERORHABDUS SPINIFRCNS HETEROSTYLITHS LCNGICCRNIS CENTRAUGAPTILUS FOR CELL US PACHYPTILU3 PACIFICUS PHYLLOPUS INTEGER ARIETELLUS PLUMIFER HALOPTILUS OXYCEFHALUS  N N N N N N N N N N N N N N N N N N N N N N N N N N N  155  Figure 25: Temperature-Salinity-Plankton September 1975'  (T-S-P) diagrams and water regime l i m i t s f o r  Three heavy l i n e types embrace a l l Surface, T r a n s i t i o n , and Deep regimes. Identical f a i n t l i n e s indicate T-S l i m i t s of i n d i v i d u a l regimes, i d e n t i f i e d by codes discussed i n the text. A small inset accomodates extreme T-S values. Line types are, Surface , Transition , and Deep . The temperature s a l i n i t y intercept f o r each plankton sample i s indicated by a small dot, beside which i s an a l p h a b e t i c a l l y coded l i s t of species present. Species are grouped according t o s i m i l a r i t i e s i n occurrer.ee on T-S-P diagrams The four major groups, Surface and Surface T r a n s i t i o n a l , Transitional/Deep, Migrants, and Deep species are plotted separately. Summer Surface species appear with the Surface and Surface Transitional, and Cff-shore species with the Deep species groups, respectively. Species and codes are given below f o r the entire study period. SPECIES GROUP: SUMMER SURFACE CENTROPAGES MCMURRICHI .PODON spp. and EVADNE spp. PARACALANUS PARVUS CHAEBORUS LARVAE  SPECIES GROUP: OFF-SHORE D E G H  SPECIES GROUP: SURFACE AND SURFACE TRANSITIONAL ACARTIA LONGIREMIS ACARTIA CLAUSI TORTANUS DISCAUDATUS EPILABIDOCERA AMPHITRITES  A B C F  SPECIES GROUP: MIGRANTS CALANUS MARSHALLAE PSEUDOCALANUS ELONGATUS METRIDIA PACIFICA EUCALANUS BUNGI BUNGI CALANUS PLUKCHRUS  A B C D E  SPECIES GROUP: TRANSITIONAL/DEEP AETIDIUS DIVERGENS SCOLECITHRICELLA KETCR EUCHAETA JAPONICA METRIDIA OKHOTENSIS CAIDIUS COLUMBIAE HETERORHABDUS TANNERI CANDACIA C0LUK3IAS CHIRIDIU3 GRACILIS KICROCALANUS PYGMAEUS  A B C D E F G H I  SPECIES CROUP: DEEP SPINOCALANUS BREVICAUDATUS • S CATHOC AL AN US BREVICORNIS RACOVITZANUS ANTARCTICUS  A B C  GAETANUS INTERMEDIUS RHINCALANUS NASUTUS CALANUS CRISTATUS EUCHIRELLA ROSTRATA EUCHIRELLA PSEUDOPULCKRA PLEUROMAMMA QUADRUNGULATA PLEUROMAMMA XIFKIAS PLEUROMAMMA ABDOMINALIS METRIDIA PRINCEPS CANDACIA BIFINNATA  D E F G H I J K L M  The following off-shore species occurred only i n one sample. A l l are coded N: GAETANUS PILEATUS GAETANUS MILES CRTRUNDINA STREETSI UNDEUCHAETA BI3PIN0SA EUCHIRELLA CURTI CAUDA PARA EUCHAETA CALIFCRNICA EUCHAETA MEDIA EUCHAETA SPIN OS A SCOTTOCALANUS PESECANS LOPKOTHRIX FRONTALIS SCAPHOCALANUS MAGNUS SCOLECITHRICELLA OVATA METRIDIA BCECKI ' PLEUROMAMMA SCUTULLATA PLEUROMAMMA BOREALIS GAUSSIA PRINCEPS LUCICUTIA BICORNUTA DISSETA MAXIMA HETERORHABDUS PAPILLIGER HETERORHABDUS CLAUSI HETERORHABDUS SFINIFRCNS HETEROSTYLITES LCNCICCRNIS CENTRAUGAPTTLUS PCRCSLLUS PAQIYPTILUS PACIFICUS PHYIXOFUS INTEGER ARIETELLUS PLUMIFER HALOPTILUS OXYCEFHALUS  N N N N N N H N N N N N N N N N H N N N N N N N N N N  4  156  F i g u r e 26:  The monthly l i f e h i s t o r y c o m p o s i t i o n o f Tortanus d i s c a u d a t u s from October 19?4 t o September 1975 i n Queen C h a r l o t t e S t r a i t and K n i g h t I n l e t ( s t a t i o n s QG, Kn 3 and 7). The d a t a i s s u b d i v i d e d a c c o r d i n g t o (a) s u r f a c e , (b) t r a n s i t i o n , and ( c ) deep water ( c a t e g o r i e s as i d e n t i f i e d i n the h y d r o g r a p h i c p o r t i o n of t h e text). Graphs f o r c a t e g o r i e s a r e o m i t t e d o n l y when the s p e c i e s f a i l e d t o o c c u r i n t h a t c a t e g o r y a t any t i m e d u r i n g t h e y e a r . I f a water c a t e g o r y c o u l d n o t be i d e n t i f i e d i n a p a r t i c u l a r month, t h e c a p i t a l l e t t e r of t h a t month i s o m i t t e d from t h e graph. N i g h t samples a r e i n d i c a t e d by a b a r beneath t h e month. Abundance i s e x p r e s s e d as t h e e s t i m a t e d mean c o n c e n t r a t i o n p e r c u b i c meter of a p a r t i c u l a r water c a t e g o r y f i l t e r e d .  156a  TORTANUS  DISCAUDATUS KN  QC  3 It  ll I «.  KEY  • 13  *C6  0— —-  A  ?  *C 4  I I 01  | _F |_M I A | M  (DI  ] J I Tl  I  A IS,  >' \  •  .8<  oT  o t  l/\f.  ^1  F I M l A | M  • 14  P  1  \  b  A A V  "751 Ip"!  . |M  . .  M  i °  ... W  M I A I M|_J  b  y  -  i_J_ I _A 1_S •12  /•II  I  V.  rrpvTFA|Mi J j JTAITI  »11 »8  I M| A J M I J | J | A | S I  i, 0  E  c  3 o|  1D|  O]  p D  '] 0  KN 7  | " | M I AIM|J IJ ! Alsl  ^  MONTH  I A  ,  j  | F | M l A | M | J |J  | l S I A  IM I J  A  I J I A |S I  157  F i g u r e 27: The monthly l i f e h i s t o r y c o m p o s i t i o n o f A c a r t i a l o n g i r e m i s and A c a r t i a c l a u s i f r o m October 1974 t o September 1975 i n Queen C h a r l o t t e S t r a i t and K n i g h t I n l e t ( s t a t i o n s QC, Kn 3, 7, and l l ) . a b c_  S u r f a c e water T r a n s i t i o n water Deep water  S t a t i o n Kn 9 d a t a i s s u b s t i t u t e d f o r m i s s i n g Kn 11 d a t a i n F e b r u a r y . Format a s d e s c r i b e d f o r F i g u r e 26.  157a  ACARTIA  LONGIREMIS  ACARTIA  CLAUSI  OC  200  KN  3  io<H *>• 10 10'  to 50 40'  »•  A  20'  »• 1' 0  pi  I  p|"  |_F  IM  | A  IMI  J | J | A | S| A.LONGIREMIS  C  A.CLAUSI :  C ° °' Ccfo-  o  100'  90-  9  »  -  Co* " •  80' 10' 60'  50  SO' 40' 30'  \  20'  10 •  P-6 \ »  1'  e J?l 10' «0' SO' 40' SO*  "Fl  |D|''|F,|M|A|M|j|j|A|S|  h  |  F | M | A"|~M  I  jTj I  A  i  0  50  I  20.  E \ c  20  10'  I A | M | J | J'TA'I'TI  MONTH  S  I  ACARTIA  LONGIREMIS  ACARTIA  CLAUSI  KN 7  KN  30fr|  11  900 100 10 10  e >  70  /\ /\ / V / \ / \  «<H so 40  I  JO  a  \  JO'  J/N  10'  | F I Ml A i Ml'  OiTBI  OI  ATSI  200  I  D|  '•I  | F | M | A | M | J j J | A |sl  A. L ONGIREMIS:  iooi  A.C L A U S I :  to 10  C6$ C6 d •—• C6? C 6 d* ° —  * 4 t 4 44  70  It *  CO'  /  / v  SO' 40' 30' JO10-  ^ 01  I Ul  I  ^ F  I Ml  A  I  M  I  J |J |  E  . A .  01  MONTH  10 1  IF  I  Ml A  I  Ml  JI  8 A |S  0 1.  |D|  | F | M| A | M| J |  J|  A  isl  J  J | A | S|  0  0[  I  F  | M | A | M | J | J|A  I S"l  158  F i g u r e 28: The monthly l i f e h i s t o r y c o m p o s i t i o n o f Gentropages m c m u r r i c h i and P a r a c a l a n u s parvus i n t h e o u t e r b a s i n o f K n i g h t I n l e t , and o f E p i l a b i d o c e r a a m p h i t r i t e s i n Queen C h a r l o t t e S t r a i t ( s t a t i o n QG) and i n K n i g h t I n l e t ( s t a t i o n Kn 3). October 1974 t o September 1975a b c  S u r f a c e water T r a n s i t i o n water Deep water  Format a s d e s c r i b e d f o r F i g u r e 26.  158a  CENTROPAGES  MCMURRICHI  PARACALANUS  O U T E R  PARVUS  BASIN  KEY  0C6 ?  e  a A  1  Ol  T51  IF  IM  I A I M I J I J  I A l S l  E PI L A B I D O C E R A  Ol  [7J"1  -  AC4  | J  | A 1 S I  I D I  I F I M I A IM 1 J IJ  IA I S I  | D |  | F I M | A | M | J | J | A | S |  I F | M | A | M | J  AMPHITRITES  Q C  KN  •  »\  I \  f 0|  | D|  IT  | M | A | M | J  I J  ;  \  • •  | A | S |  Ol  /AS.  "ol m i  IF  I M IA IM I J I J  IM MONTH  I A I M  I A  u.  \1TJ\  A  Is |  | S |  •oT  I  A | M  | J  | J  |  A | S l  159  F i g u r e 29: The monthly l i f e h i s t o r y c o m p o s i t i o n o f Galanus m a r s h a l l a e from October 1974 t o September 1975 i n Queen C h a r l o t t e S t r a i t and K n i g h t I n l e t ( s t a t i o n s QG, Kn 3, 7, and l l ) . a b c  S u r f a c e water T r a n s i t i o n water Deep water  S t a t i o n Kn 9 d a t a i s s u b s t i t u t e d f o r m i s s i n g Kn 11 d a t a i n F e b r u a r y . Format a s d e s c r i b e d f o r F i g u r e 26.  159a  CALANUS  MARSHALLAE  100' 50  f  <0'  I  l\ l\  10' 20' 10'  E  N  TMT MONTH  A  rM i  J  I  J  | A  i JI  0  I [  r.h. V I AIMI'J  \ I JI'AI  s [  159b  CALANUS  1  100 50  A /\ /\  U  A  I \ I \ I /  ><H 10-  /  \  10-  '  ' *  °  V 10  1.  0  MARSHALLAE  0  OT  DI  I F. I M l A I M l J I  3  .» I A iS I  TMI  A  I M|"J I J  |AIS  KEY oC6 ?  e  ——-BCGO* *  JO'  —-  AC4  10'  £ e  Oj MONTH  | 0 |  |'F  |M|I  A  I M ( jjJI A j S I  I F IM I A I MI J I J I A I S I  I  160  F i g u r e JO: The monthly l i f e h i s t o r y 'composition o f Pseudocalanus e l o n g a t u s from October 1974 t o September 1975 i n Queen C h a r l o t t e S t r a i t and K n i g h t I n l e t ( s t a t i o n s QC, Kn 3, 7, and l l ) . a b c  S u r f a c e water T r a n s i t i o n water Deep water  S t a t i o n Kn 9 d a t a i s s u b s t i t u t e d f o r m i s s i n g Kn 11 data i n February. Format a s d e s c r i b e d f o r F i g u r e 26.  160a  PSE  U D O C A L A N U S  ELONGATUS  QC  KN 3 3  900  o  9  6*  4  3001  ' I.  J/  5 / \ o /;  100  VP.  # 0  50'  30'  '/\/  V  0  «•  20'  «H v o  r— c  ol  V/  TD P T T I M  10338  •359  I \ I \ I \ I •o -  iooi  If  JOS17. G530 0591  I  o  20' 10' 1' 0 100'  Pi  rpn  R T M T A T M IJ  i A I M I j I j ITTsl  rSTTTTM  0  300  100  \  V,  30'  \  I A IM I J IJ I A I S 1  . C376 I  to-  1  I  I \ 1 \  -  I J I A I"b402 _S 300 I 617,0 *  ol  ID i  •  i i  •  ir \  MI  A I M I J I J~l A I S I B351  200-  100-  /A.V  100  SO-  c  «• 30'  /  2010-  E  s  "I M l A l M I J I J T A T T I  c  MONTH  0  ol  TA~I  MI  t  VV  J IJ I A ISI  PSEUDOCALANUS  ELONGATUS KN 11  7  I KN  JOOn  o  a  ft  soH » A  p  /  \  i  /y  n  6 V,  VC  OvxO \  -id  75"l  IM I A IM | J I J I A I S I  IF  TD~1  iFlMlAlMlj  >8  IjlAlSl  300 KEY  o  eC6  0  i i ^ ^ t C 6 o*  b  A  - !t\i.  //; ! / /A'* v  100-  A  •  -  AC4  o  .#V s .  TDI  W'  ~—aC1 ~ 3  I F l M | A | M | J I J I A I  10'  A'  • o  s  I  oT  •  I M I A j ivl  o-r'e  1  J I J A r I S 0333  w  161  F i g u r e Jl: The monthly l i f e h i s t o r y c o m p o s i t i o n of Eucalanus b u n g i b u n g i from October 197^ t o September 1975 I n a b c  Queen C h a r l o t t e S t r a i t ( s t a t i o n Knight I n l e t outer basin Knight I n l e t inner basin  QC)  No depth d i s t r i b u t i o n i s i n d i c a t e d and p o p u l a t i o n s t r u c t u r e i s e x p r e s s e d as p e r cent c o m p o s i t i o n of c o p e p o d i t e s .  EUCALANUS  BUNGI BUNGI  oc  100  eo  BO.  to60' CO-  4 0' soso-  \ \  1 o0  o  lj  TDH  I  Ml A | M | j | j  j  A|S  1.  OUTER 100 BO'  80  KEY 0  70.  e  c6  ?  I \  00. 5 0'  «C4 ••""-oCI-3  40SO-  *  20-  ft,.  \ \  104  O^  Ol  TTJl  I F IM I A I M | J | j | A I Sl  w •4-*  T> O  CL <D CL O  o c o  /  INNER  100  BO 80 70 60' 60' 40-  o  30-i  E o  eO'  CL  V  I • I  10' o  ol  TUT  MONTH  TTI M  1  I 1 | A  I Ml  J| J| A  I  S  162  F i g u r e 32: The monthly l i f e h i s t o r y c o m p o s i t i o n of M e t r i d i a p a c i f i c a from October 197^- t o September 1975 i n K n i g h t I n l e t ( s t a t i o n Kn 9)« a b c  S u r f a c e water T r a n s i t i o n water Deep water  Format as d e s c r i b e d f o r F i g u r e 26.  METRIDIA  PACIFICA KN 9  '4 %  !  tt tt  tf  >/  O,  f ' >t ft '  A  / . \ m -\ * ~  t'  \  0  /A  01  TDT  tt '  -I'-V"'/ V  [V\  %  <\'  '/  M | A 11 M ' | " J | J I A i s I  KEY c  oCG ?  / / t t  t i t t  A C 4  A  tA Ol  i  .  1086-  «i  t•  v..  <•  E0  O  l  | D  I  I  M 1 A  IM  1J  |J  I  A  I  S  * 121  E  ol MONTH  TDT  HTMIA1 MTJ I J I A I s I  16  F i g u r e 33"  The monthly l i f e h i s t o r y c o m p o s i t i o n of S c o l e c i t h r i c e l l a minor and A e t i d i u s d i v e r g e n s from October 19?4 t o September 1975 i n K n i g h t I n l e t ( s t a t i o n Kn 7)« a b c  S u r f a c e water T r a n s i t i o n water Deep water  Format as d e s c r i b e d f o r F i g u r e 26.  3  163a  SCOLECITHRICELLA  MINOR  AETIDIUS  KN 7  DIVERGENS  KN 7  a  a \  J D | ' I f | M'| A I M | J \ J | A I S |  or  1D |  fTfM | A | M | J | J |A | S  o  KEY  o  cC6 ?  5'  o^^" '''^oC5 r  &  -  D  ^C4  <•  <DC1 - 3  b  •A I/ X  o/ ,'/  o  iM  I'  M  (A  \  I 'o \  \  P~_-  O  \  /  i M i J i j i A n n oT ih l" if ftfi A1M'| J I J [ A I s I  '7 * /\  E  N  | F | M I A fMl J | J | A | S I MONTH  oi D I i TnMTAi^jnYf^rV-  164  F i g u r e Jk: The monthly l i f e h i s t o r y c o m p o s i t i o n of G h i r i d i u s g r a c i l i s f r o m October 197^ t o September 1975 i n K n i g h t I n l e t ( s t a t i o n s Kn 3 d 7). a n  a b c  S u r f a c e water T r a n s i t i o n water Deep water  Format a s d e s c r i b e d f o r F i g u r e  26.  164a  CHIRIDIUS KN  GRACILIS  3 KN  7  b 1  D |  | F | M |A | M |J  |J  | A | S |  Ol  |  D  |  IF |  M  IA I M | J | J | A  I  410-3  \  V \  oT  I  AIMI'J'I  j T x f s l °'o|  MONTH  |D |  KEY o  oCC$  B  c  *  :  c 6 o"  *C4  IFTMIAIMI  j]  J'|'A|S  SI  165  F i g u r e 35'  The monthly l i f e h i s t o r y c o m p o s i t i o n of M e t r i d i a o k h o t e n s i s from October 197^ t o September 1975 i n K n i g h t I n l e t ( s t a t i o n s Kn 3 n d 7). a  a b c  S u r f a c e water T r a n s i t i o n water Deep water  Format as d e s c r i b e d f o r F i g u r e  26.  165a  KN 3  METRIDIA  OKHOTENSIS  KN  7  • to / ' l\  12  / 5ot  10  •A  2 I  i A ' M ' 'i  '<\'.\ ol  TDI  I  I  F I Ml A  I  M| J  J  I  I  A  S  A190  IT  251 6  20  \\\  A  r '  b  / :  is; I:  I  D  I1F I  M  I  A | M | J  | J |' A | S |  or  1D 1  IF lid  |TA1  M  I I J  J |'A  |S  25  O180 20,  H\  /  E  N c  /  | A j M | J | J | A l S |  MONTH  OI  nil I  my  A  F |M  \ / \ =•  I  A |M  I  J  I  J  I  A  IS  166  F i g u r e 36: The monthly l i f e h i s t o r y c o m p o s i t i o n of Heterorhabdus t a n n e r i and G a i d i u s columbiae from October 1974 t o September 1975 i n K n i g h t I n l e t ( s t a t i o n Kn ? ) . a b c  S u r f a c e water T r a n s i t i o n water Deep water  Format as d e s c r i b e d f o r F i g u r e  26.  166a  HETERORHABDUS  TANNERI K N  Ol  TDT  1  f IM  GAIDIUS  7  COLUMBIAE K N  | A i M I J I j I A1 S I  "ol  Tol  7  I F I M I A IM I J jJ iA j  S  «1 KEY »  oC6 ?  QrS''''S O C 5 A  -  — AC4  _a ol  TDT  |F  I M I A | M | J |"J1  5  A  ATSI  4 4 4 4 4 4 4  \ of  I M I A |MI J  k  \ \ S\ 1  D~1 jT]ti |'A I M I J I J I A ls"l ol MONTH  IT  of  .• TrTl  >V\  IJ  I A fs~  A '  I F I M I A IM 1 J 1 J 1 A ] s l  I  16?  F i g u r e 37: The monthly l i f e h i s t o r y c o m p o s i t i o n i n K n i g h t I n l e t of Candacia columbiae ( s t a t i o n s Kn 3 and 7 ) , and of S p i n o c a l a n u s b r e v i c a u d a t u s and Scaphoc a l a n u s b r e v i c o r n i s ( s t a t i o n Kn 7 ) . October 197^ t o September 1975a b c  S u r f a c e water T r a n s i t i o n water Deep water  Format as d e s c r i b e d f o r F i g u r e  26.  l6?a  C A N D A C I A  KN 3  C O L U M B I A E K N  06  06  ~  7  o  0 4. 0-2'  0-2' ^ 3 .  eo  | F | M | A  fD~|  IM I J  IA  | J  | S |  00  "ol  TDI  |F  1  IA  M  IM I J | J | A |  s|  1-2 10  0 8' OC  e  0<. 02-  0 2'  00  | A |M | J ] J I A SPINOCALANUS  fs  //  A '  A  00  I  "0~1  BREVICAUDATUS  | D |  / L t _ \ J  | F | M | A | M f"j  SCAPHOCALANUS  KN7 b  1  f J  i A i S |  BREVICORNIS  KN 7  $ ''  I'/  ON 0|  I  Dl  TF  | M |~A | M |  J"1  I  J  A | S~|  ol  T51 I F  |M  IA  A  / V 1" V '  o] M O N T H  | D I  ~~ f  |F  •  M  I J I J IA Is j  KEY 0  oC6 ? T, Q 6 o*  B  0's''''so C 5  \  *C4  1  o—~=«-»0ci-3  I  I  |M  I  V  A  I  M  1  IJ  /'  I J  1  A  m  i — •. TBI | i I MI  >0  A  i  J_  A | M  A  I  J  | J  |: A | S ]  168  REFERENCES A a r t h u n , K.E. 196I. The n a t u r a l h i s t o r y of t h e H a r d a n g e r f j o r d . 2. Submarine d a y l i g h t i n a g l a c i e r - f e d Norwegian f j o r d . S a r s i a 1:7-20 A n g e l , M.V. and M.J.E. Fasham. 1973SOND C r u i s e , 1965: f a c t o r and c l u s t e r a n a l y s i s of the p l a n k t o n r e s u l t s , a g e n e r a l summary. J . Mar. B i o l . Assoc. U.K. 53:185-231 . 1974. SOND C r u i s e , 1965: f u r t h e r f a c t o r a n a l y s i s of t h e p l a n k t o n d a t a . J . Mar. B i o l . Assoc. U.K. 54:879-894  . 1975» A n a l y s i s of t h e v e r t i c a l and g e o g r a p h i c d i s t r i b u t i o n s of t h e abundant s p e c i e s of p l a n k t o n i c o s t r a c o d s i n the n o r t h - e a s t Atlantic. J . Mar. B i o l . Assoc. U.K. 55:709-737 Anraku, M. and M. Omori. 1963P r e l i m i n a r y s u r v e y of t h e r e l a t i o n s h i p between t h e f e e d i n g h a b i t and t h e s t r u c t u r e o f the mouth p a r t s of marine copepods. L i m n o l . Oceanogr. 8:116-126 A p o l l o n i o , S. 1973* G l a c i e r s and n u t r i e n t s i n A r c t i c seas.  S c i e n c e 180  (4085): 491-493  Bakum, A. 1973* C o a s t a l u p w e l l i n g i n d i c e s , west c o a s t of N o r t h America. 19^6-1971. N0AA Tech. Report No. NMFS-SSRF-67I B a r b e r , F.G. 1956a. S e a s o n a l temperature and s a l i n i t y v a r i a t i o n s i n Queen C h a r l o t t e S t r a i t , B.C. F i s h . Res. Bd. Can., P a c i f i c Prog.  Report 105:14-15  . 1956b. O b s e r v a t i o n s o f c u r r e n t s n o r t h of T r i a n g l e I s l a n d , B.C.  F i s h . Res. Bd. Can., P a c i f i c Prog. R e p o r t 108:15-18  . 1957The e f f e c t of t h e p r e v a i l i n g winds on t h e i n s h o r e water masses of t h e Hecate S t r a i t r e g i o n , B.C. J . F i s h . Res. Bd.  Can. 14:945-952  B a r n e s , H. and D.J. T r a n t e r . 1965« A s t a t i s t i c a l e x a m i n a t i o n of t h e c a t c h e s , numbers, and biomass t a k e n by t h r e e commonly used p l a n k t o n n e t s . A u s t . J . Mar. Freshwater Res. 16:293-306 B a r y , B.M. 1959. S p e c i e s of z o o p l a n k t o n as a means of i d e n t i f y i n g d i f f e r e n t s u r f a c e waters and d e m o n s t r a t i n g t h e i r movements and m i x i n g .  Pac. S c i . 13:14-34  . 1963a. Temperature, s a l i n i t y and p l a n k t o n i n t h e e a s t e r n N o r t h A t l a n t i c and c o a s t a l waters of B r i t a i n , 19571- The c h a r a c t e r i s a t i o n and d i s t r i b u t i o n of s u r f a c e waters. J . F i s h . Res. Bd. Can. 20:789-826  169  B a r y , B.M. 1963b. Temperature, s a l i n i t y and p l a n k t o n i n t h e e a s t e r n N o r t h A t l a n t i c and c o a s t a l waters o f B r i t a i n , 1957. 11. The r e l a t i o n s h i p between s p e c i e s and water b o d i e s . J . F i s h . Res. Bd.  Can. 20:1031-1065  . 1963c. Temperature, s a l i n i t y and p l a n k t o n i n t h e e a s t e r n N o r t h A t l a n t i c and c o a s t a l waters o f B r i t a i n , 1957- 111. The d i s t r i b u t i o n o f z o o p l a n k t o n i n r e l a t i o n t o water b o d i e s . J . F i s h . Res. Bd. Can. 20:1519-1548  . 1963d. D i s t r i b u t i o n s o f A t l a n t i c p e l a g i c organisms i n r e l a t i o n t o s u r f a c e water b o d i e s . Roy. Soc. Can. Spec. P u b l . 5"51-67 . 1964. Temperature, s a l i n i t y and p l a n k t o n i n t h e e a s t e r n N o r t h A t l a n t i c and c o a s t a l waters o f B r i t a i n , 1957- I V . The s p e c i e s ' r e l a t i o n s h i p t o t h e water body; i t s r o l e i n d i s t r i b u t i o n and i n s e l e c t i n g and u s i n g i n d i c a t o r s p e c i e s . J . F i s h . Res. Bd. Can. 21:  183-201  . 1967. D i e l v e r t i c a l m i g r a t i o n s o f underwater s c a t t e r i n g , m o s t l y i n S a a n i c h I n l e t , B r i t i s h Columbia. Deep-Sea Res. 14:35~50 B a r y , B.M. and L. Regan. 1976. I n f l u e n c e o f water p r o p e r t i e s on an E u p h a u s i i d and a Copepod i n c o a s t a l a r e a s o f B r i t i s h Columbia. Pages 179-191 i n S k r e s l e t , S. e t a l . ( e d s . ) , F r e s h w a t e r on t h e s e a . A s s o c i a t i o n o f Norwegian Oceanographers, O s l o . B e l l , W.H. 1976. The exchange o f deep water i n A l b e r n i I n l e t . M m a n u s c r i p t . Pac. Mar. S c i . Rept. No. 76-22. Environment Marine S c i e n c e s D i r e c t o r a t e , V i c t o r i a , B.C. 19PP»  Unpublished Canada,  Boden, B.P. and E.M. Kampa. 1967. The i n f l u e n c e o f n a t u r a l l i g h t on t h e v e r t i c a l m i g r a t i o n s o f an a n i m a l community i n t h e sea. Symp. Z o o l . Soc. Lond. 19:15-26 B r a d f o r d , J.M. 1971. A e t i d e u s and E u a e t i d e u s (Copepoda: C a l a n o i d a ) f r o m The A t l a n t i c and P a c i f i c Oceans. N.Z. J . Mar. F r e s h w a t e r Res. 5"12-40 . 1976. P a r t i a l r e v i s i o n o f t h e A c a r t i a subgenus A c a r t i u r a (Copepoda: C a l a n o i d a : A c a r t i i d a e ) . N.Z. J . Mar. F r e s h w a t e r Res. 10:  159-202  B r i n t o n , E. 1962. The d i s t r i b u t i o n o f t h e P a c i f i c e u p h a u s i i d s . S c r i p p s I n s t . Oceanogr. 8(2):51-270  Bull.  . 1976. P o p u l a t i o n b i o l o g y o f Euphausia p a c i f i c a o f f s o u t h e r n C a l i f o r n i a . F i s h . B u l l . U.S. 74:733-762  170  B r o d s k i i , K.A. 1950- C a l a n o i d a o f t h e f a r e a s t e r n seas and p o l a r b a s i n of t h e U.S.S.R. T r a n s l a t e d f r o m t h e R u s s i a n by t h e I s r a e l Program f o r S c i e n t i f i c T r a n s l a t i o n , J e r u s a l e m , No. TT-67-51200. 1967. 440pp. Cameron, F.E. 1957- Some f a c t o r s i n f l u e n c i n g t h e d i s t r i b u t i o n o f p e l a g i c copepods i n t h e Queen C h a r l o t t e I s l a n d a r e a . J . F i s h . Res. Bd. Can. 14:165-202 Campbell, M.H. 1929a. A p r e l i m i n a r y q u a n t i t a t i v e s t u d y o f t h e z o o p l a n k t o n i n t h e S t r a i t o f G e o r g i a . T r a n s . Roy. Soc. Can. 23:1-28 . 1929t>. Some free-swimming copepods o f t h e Vancouver I s l a n d r e g i o n . 1. T r a n s . Roy. Soc. Can. 23:303-332 . 1930« Some free-swimming copepods o f t h e Vancouver I s l a n d r e g i o n . 11. T r a n s . Roy. Soc. Can. 24:177-182 . 1934. The l i f e h i s t o r y and p o s t embryonic development o f t h e copepods, Calanus t o n s u s Brady and Euchaeta j a p o n i c a Marukawa. J . B i o l . Bd. Can. 1:1-65 Cannon, G.A. and N.P. L a i r d . 1974. Flow a l o n g t h e c o n t i n e n t a l s l o p e o f f Washington. Trans. Am. Geophys. Union 56:1135 C a r r i t t , D.E. and J.H. C a r p e n t e r . 1966. Comparison and e v a l u a t i o n o f c u r r e n t l y employed m o d i f i c a t i o n s o f t h e W i n k l e r method f o r d e t e r m i n i n g d i s s o l v e d oxygen i n seawater; A NASCO r e p o r t . J . Mar. Res. 24:286-318 C a s s i e , R.M. 1962. Frequency d i s t r i b u t i o n i n t h e e c o l o g y o f p l a n k t o n and o t h e r organisms. J . Anim. E c o l . 31:65-92 . 1963- M i c r o d i s t r i b u t i o n o f p l a n k t o n . Marine B i o l o g y : an Annual Review 1:223-252 . 1968. Sample d e s i g n . I n Zooplankton Methodol. UNESCO 2:105-121  Oceanography and  s a m p l i n g . Monogr. Oceanog.  C h a l k , P.M. and D.R. Ke'eney. 1971. N i t r a t e and ammonium c o n t e n t s o f W i s c o n s i n l i m e s t o n e s . N a t u r e 229:42 C l a r k e , G.L. and D.F. Bumpus. 1950- The p l a n k t o n sampler - an i n s t r u m e n t f o r q u a n t i t a t i v e plankton i n v e s t i g a t i o n s . S p e c i a l P u b l . No. 5» Am. Soc. L i m n o l . Oceanogr. C M t t e r o k R . I . and M. Anraku. 1968. Avoidance o f samplers. I n Z o o p l a n k t o n s a m p l i n g . Monogr. Oceanog. Methodol. UNESCO 2:57-76  171  C o l e b r o o k , J.M. 1 9 6 4 . Continuous p l a n k t o n r e c o r d s : a p r i n c i p a l component a n a l y s i s o f t h e g e o g r a p h i c a l d i s t r i b u t i o n o f z o o p l a n k t o n . B u l l . Mar. E c o l . 6:78-100 C r o s s , F.A. and L.F. S m a l l . 1 9 6 7 . Copepod i n d i c a t o r s o f s u r f a c e water movements o f f t h e Oregon c o a s t . L i m n o l . Oceanogr. 12:60-72 Damkaer, D. 1975- C a l a n o i d copepods o f t h e genera S p i n o c a l a n u s and Mimocalanus f r o m t h e c e n t r a l A r c t i c Ocean, w i t h a r e v i e w o f t h e Spinocalanidae. NOAA Tech. R e p o r t No. NMFS-CIRC-391 D a v i s , C C . 1 9 4 9 . The p e l a g i c copepoda o f t h e N.E. U n i v . Washington P u b l . B i o l . 14:1-118  P a c i f i c Ocean.  Dodimead, A . J . , F. F a v o r i t e , and T. H i r o n o . 1 9 6 3 - Review o f oceanography o f t h e S u b - a r c t i c P a c i f i c r e g i o n . B u l l . No. 1 3 . I n t . N. P a c . F i s h . Comm. 1 9 5 P P Dodimead, A . J . and G.L. P i c k a r d . 1 9 6 7 . A n n u a l changes i n t h e o c e a n i c c o a s t a l waters o f the eastern S u b a r c t i c P a c i f i c . J . F i s h . Res. Bd.  Can. 24:2207-2227  Dodimead, A.J., F. F a v o r i t e and K. Nasu. 1 9 7 6 . Review o f oceanography of t h e S u b - a r c t i c P a c i f i c r e g i o n , 1960-71. B u l l . No. 3 3 . I n t . N. Pac. F i s h . Comm. I87pp Dyer, K.R. 1973• E s t u a r i e s : a p h y s i c a l i n t r o d u c t i o n . London. I40pp  Wiley I n t e r s c i e n c e ,  E l l i o t , J.M. 1 9 7 1 . Some methods f o r the s t a t i s t i c a l a n a l y s i s o f samples of .benthic i n v e r t e b r a t e s . F r e s h w a t e r B i o l o g i c a l A s s o c i a t i o n U.K. Spec. P u b l . No. 25:121-124 Evans, M.S. 1973- The d i s t r i b u t i o n a l e c o l o g y o f the c a l a n o i d copepod P a r a e u c h a e t a e l o n g a t a E s t e r l y . Ph.D. T h e s i s , I n s t i t u t e o f Oceanography and Department o f Z o o l o g y , U n i v e r s i t y o f B r i t i s h Columbia. 112pp F a g e r , E.'W. and J.A. North P a c i f i c .  McGowan. 1 9 6 3 . Z o o p l a n k t o n s p e c i e s groups i n t h e S c i e n c e 140:453-460  F a l k o w s k i , P.G. and D.P. Stone. 1 9 7 5 « N i t r a t e uptake i n marine p h y t o p l a n k t o n : energy s o u r c e s and t h e i n t e r a c t i o n w i t h carbon f i x a t i o n . Mar. B i o l . 3 2 : 7 7 - 8 4 F l e m i n g e r , A. 1 9 6 4 . D i s t r i b u t i o n a l a t l a s o f c a l a n o i d copepods i n t h e C a l i f o r n i a C u r r e n t r e g i o n . CalCOFI A t l a s No. 2, S t a t e o f C a l i f o r n i a M a r i n e R e s e a r c h Committee.  172  F l e m i n g e r , A. 1967- D i s t r i b u t i o n a l a t l a s o f c a l a n o i d copepods i n t h e C a l i f o r n i a C u r r e n t r e g i o n . CalCOFI A t l a s No. 7, S t a t e o f C a l i f o r n i a Marine R e s e a r c h Committee. F r o s t , B.W. 1974. Calanus m a r s h a l l a e , a new s p e c i e s o f c a l a n o i d copepod c l o s e l y a l l i e d t o t h e s i b l i n g s p e c i e s C. f i n m a r c h i c u s and C. g l a c ialis. Mar. B i o l . 26:77-99 F u l t o n , J . 1968. A l a b o r a t o r y manual f o r t h e i d e n t i f i c a t i o n o f B r i t i s h Columbia marine z o o p l a n k t o n . F i s h . Res. Bd. Can., Tech. Rept. No. 55- l ^ l p p . 1973- Some a s p e c t s o f t h e l i f e h i s t o r y o f Calanus plumchrus i n t h e S t r a i t o f G e o r g i a . J . F i s h . Res. Bd. Can. 30:811-815 F u r u h a s h i , K. 1966. S t u d i e s on t h e v e r t i c a l d i s t r i b u t i o n o f copepods i n t h e Oyashio r e g i o n e a s t o f Japan and i n t h e K u r o s h i p r e g i o n s o u t h o f Japan. P u b l . Seto Mar. B i o l . Lab. X1V$4):295-322 Gardner, G.A. 1972. The d i s t r i b u t i o n o f t h e l i f e h i s t o r y s t a g e s o f Calanus plumchrus Marukawa (Copepoda: C a l a n o i d a ) i n t h e S t r a i t o f G e o r g i a . M.Sc. T h e s i s , I n s t i t u t e o f Oceanography and Department of Zoology, U n i v e r s i t y o f B r i t i s h Columbia. 55PP . 1976. The a n a l y s i s o f z o o p l a n k t o n p o p u l a t i o n f l u c t u a t i o n s i n t h e S t r a i t o f G e o r g i a , w i t h emphasis on the r e l a t i o n s h i p s between Galanus plumchrus Marukawa and Galanus m a r s h a l l a e F r o s t . Ph.D. T h e s i s , I n s t i t u t e o f Oceanography and Department o f Z o o l o g y , U n i v e r s i t y o f B r i t i s h Columbia. l44pp  the  . 1977• A n a l y s i s o f z o o p l a n k t o n p o p u l a t i o n f l u c t u a t i o n s i n S t r a i t o f G e o r g i a , B r i t i s h Columbia. J . F i s h . Res. Bd. Can.  34:1196-1206  G a u l d , D.T. 1966. The swimming and f e e d i n g o f p e l a g i c copepods. Pages, 313-334 i n B a r n e s , H. ( e d . ) , Some contemporary s t u d i e s i n marine s c i e n c e . A l l e n and Unwin, London. G i l b e r t , N. 1973- B i o m e t r i c a l i n t e r p r e t a t i o n .  Clarendon P r e s s , O x f o r d .  125PP G i l f i l l a n , E. 1972. S e a s o n a l a n d l a t i t u d i n a l e f f e c t s on t h e r e s p o n s e s of Euphausia p a c i f i c a Hansen ( C r u s t a c e a ) t o e x p e r i m e n t a l changes of temperature and s a l i n i t y . Pages 443-463 i n T a k e n o u t i e t a l . ( e d s . ) B i o l o g i c a l oceanography o f t h e n o r t h e r n N o r t h P a c i f i c Ocean. I d e m i t s u s h o t e n , Tokyo. 626pp G r i c e , G.D. 1971• Deep water c a l a n o i d copepods from t h e M e d i t e r r a n e a n sea. F a m i l y S p i n o c a l a n i d a e . G a h i e r s de B i o l o g i e Marine. Tome X L I :  273-281  173  G r i c e , G.D. 1972. The e x i s t e n c e o f a " b o t t o m - l i v i n g c a l a n o i d copepod f a u n a i n deep water w i t h d e s c r i p t i o n s o f f i v e new s p e c i e s . G r u s t a c e a n a 23:219-242 G r i c e , G.D. and T.J. Lawson. 1976. R e s t i n g eggs i n the marine c a l a n o i d copepod L a b i d o c e r a a e s t i v a (Wheeler). C r u s t a c e a n a 30:9-12 G r i c e , G.D. and V.R. G i b s o n . 1977. R e s t i n g eggs i n Ponte11a meadi (Copepoda: G a l a n o i d a ) . J . F i s h . Res. Bd. Can. 34:410-412 G r i l l , E.V. and F.A. R i c h a r d s . 1964. N u t r i e n t r e g e n e r a t i o n f r o m phyto9 p l a n k t o n decomposing i n seawater. J . Mar. Res. 22:51-69 H a r d i n g , G.G.H. 1974. The f o o d o f deep s e a copepods. U.K. 54:141-155  J . Mar. B i o . A s s o c .  Hummon, W.D. 1974. : a s i m i l a r i t y i n d e x based on s h a r e d s p e c i e s d i v e r s i t y , used t o a s s e s s t e m p o r a l and s p a t i a l r e l a t i o n s among i n t e r t i d a l marine G a s t r o t r i c h a . O e c o l o g i a 17:203-220 Ingram, W.J.,Jr. 1967• The g e o s t r o p h i c c i r c u l a t i o n and d i s t r i b u t i o n o f p r o p e r t i e s o f f t h e c o a s t o f Vancouver I s l a n d and Washington, s p r i n g and f a l l 1963. F i s h . B u l l . U.S. 66:223-250 I t o h , K. 1970. A c o n s i d e r a t i o n on f e e d i n g h a b i t s o f p l a n k t o n i c copepods i n r e l a t i o n t o "the s t r u c t u r e o f t h e i r o r a l p a r t s . B u l l . P l a n k t o n Soc. Japan 17:1-10 ( o r i g i n a l n o t seen, c i t e d by P a r s o n s and Takah a s h i 1973) J e f f r i e s , H.P. 1967. S a t u r a t i o n o f e s t u a r i n e z o o p l a n k t o n by c o n g e n e r i c a s s o c i a t e s . Pages 500-508 i n L a u f f , G.H. ( e d . ) , E s t u a r i e s : e c o l o g y and p o p u l a t i o n s . Amer. A s s o c . Adv. S c i . , P u b l . No. 8 3 , Washington, D.C. K a s a h a r a , S., S. Uye and T. Obe. 1974. C a l a n o i d bottom muds. Mar. B i o l . 26:167-172  copepod eggs i n s e a  K o e l l e r , P.A. 1974. Taxonomy, d i s t r i b u t i o n and a s p e c t s o f the b i o l o g y of some d e e p - l i v i n g copepods i n B.C. i n l e t s and a d j a c e n t water. M.Sc. T h e s i s , Department o f B i o l o g y , U n i v e r s i t y o f V i c t o r i a , B.C. 128pp  K o e l l e r , P.A. and J.L. L i t t l e p a g e . 1976. A z y g o k e r a s c o l u m b i a e , a new genus and s p e c i e s o f marine e p i b e n t h i c c o p e p o d . ( C a l a n o i d a : A e t i d e i d a e ) from B r i t i s h Columbia. J . F i s h . Res. Bd. Can. 33:1547-1552 K o e l l e r , P.A. and T.R. P a r s o n s . 1977. The growth o f young s a l m o n i d s (Onchorhynchus k e t a ) : c o n t r o l l e d ecosystem p o l l u t i o n e x p e r i m e n t . B u l l . Mar. S c i . 27:114-118  174  Lafond, G.A. 1975* Deep water exchange i n Bute Inlet. M.Sc. Thesis, Institute of Oceanography,and Department of Physics, University of B r i t i s h Columbia. 109pp Lafond, CA. and G.L. Pickard. 1975- Deep water exchanges i n Bute I n l e t , B r i t i s h Columbia. J . Fish. Res. Bd. Can. 22:2075-2089 Laval, P.H. 1974. A mathematical model of net avoidance by plankton, i t s p r a c t i c a l application and i t s r e l i a b i l i t y as checked i n d i r e c t l y by using the parasitism of the pelagic amphipod V i b i l l a armata B o v a l l i u s . J. Exp. Mar. B i o l . Ecol. 14:57-87. (Trans, from French by F i s h . Mar. Serv. Transl. Ser. No. 3116) Legare, J.E.H. 1957- The q u a l i t a t i v e and quantitative d i s t r i b u t i o n of plankton i n the S t r a i t of Georgia i n r e l a t i o n to certain oceanographic f a c t o r s . J . Fish. Res. Bd. Can. 14:521-552 Lewis, A.G. and M.S. Evans. 1971• Natural chelators - an indication of a c t i v i t y with the calanoid copepod Euchaeta japonica. Mar. B i o l . 11:1-4 Lewis, A.G., P.H. Whitfield and A. Ramnarine. 1972. Some particulate and soluble agents a f f e c t i n g the r e l a t i o n s h i p between metal toxi c i t y and organism survival i n the calanoid copepod Euchaeta japo onica. Mar. B i o l . 17:215-221 Lewis, A.G. 1976. The b i o l o g i c a l a v a i l a b i l i t y of copper i n estuarine and marine environments. F i n a l Report. INCRA Project No. 2 4 6 . H5PP  Maclellan, D.C. 1967« The annual cycle of certain calanoid species i n West Greenland. Can. J. Zool. 45:101-115 Maclellan, D.C. and C T . Shih. 1974. Descriptions of copepodite stages of Ghiridius g r a c i l i s Farran 1908 (Crustacea: Copepoda). J. F i s h .  Res. Bd. Can. 31:1337-1349 Marlowe, C.J. and C.B. M i l l e r , 1974. The v e r t i c a l d i s t r i b u t i o n of zooplankton at Ocean "P" i n June - July 1971• Data Rep. Oregon State University. School of Oceanography. Ref. 74-13 . 1975- Patterns of v e r t i c a l d i s t r i b u t i o n and migration of zooplankton at Ocean Station "P". Limnol. Oceanogr. 20:824-844 Marshall, S.M. 1973* Respiration and feeding i n copepods. i n Marine Biology 11:57-120  Advances  Matthews, J.B.L. 1 9 6 4 . On the biology of some bottom-living copepods (Aetideidae and Phaennidae) from Western Norway. Sarsia 16:1-46  175  M a u c h l i n e , J . 1972. The b i o l o g y o f b a t h y p e l a g i c organisms, e s p e c i a l l y C r u s t a c e a . Deep-Sea Res. 19:753-780 McEwen, G.G., M.W. Johnson and H.R. Folsom. 1954. A s t a t i s t i c a l a n a l y s i s of t h e performance o f t h e Folsom p l a n k t o n sample s p l i t t e r , based upon t e s t o b s e r v a t i o n s . S c r i p p s I n s t . Oceanogr. C o n t r i b u t i o n No. 689 McGowan, J.AA. 1971. Oceanic b i o g e o g r a p h y o f t h e P a c i f i c . Pages 3 74 i n F u n n e l , B.M. and W.R. R i e d e l ( e d s . ) , The m i c r o p a l e o n t o l o g y o f t h e oceans. Cambridge U n i v e r s i t y P r e s s . -  •  . 1974. The n a t u r e o f o c e a n i c ecosystems. Pages 309 321 i n M i l l e r , C B . ( e d . ) , The b i o l o g y o f t h e o c e a n i c P a c i f i c . Oregon State University Press, C o r v a l l i s . -  . 1977- What r e g u l a t e s p e l a g i c ' community s t r u c t u r e i n t h e P a c i f i c ? Pages 423-443 i n Anderson, N.R. and B . J . Zahuranec ( e d s . ) , Oceanic sound s c a t t e r i n g . p r e d i c t i o n . Plenum P r e s s , New York. 857PP McGowan, J.A. and P.M. WIlMaiiis. 1973* Oceanic h a b i t a t d i f f e r e n c e s i n the North P a c i f i c . J . Exp. Mar. B i o l . E c o l . 12:187-217 McHardy, R.A. 1961. C a l i b r a t i o n o f Clarke-Bumpus p l a n k t o n samplers i n t h e f i e l d . M a n u s c r i p t R e p o r t No. 8. I n s t i t u t e o f Oceanography, U n i v e r s i t y o f B r i t i s h Columbia. lOpp M o r i o k a , Y. 1972. The v e r t i c a l d i s t r i b u t i o n o f c a l a n o i d copepods o f f t h e s o u t h e a s t c o a s t o f Hokkaido. Pages 3 9 321 i n T a k e n o u t i , A. ( e d . ) , B i o l o g i c a l oceanography o f t h e n o r t h e r n N o r t h P a c i f i c Ocean. I d e m i s t u s h o t e n , Tokyo. 626pp U  _  Motoda, S. and T. Minoda. 1974. P l a n k t o n o f t h e B e r i n g Sea. Pages 207242 i n Hood, D.W. and E . J . K e l l e g ( e d s . ) , Oceanography o f t h e B e r i n g Sea. I n s t i t u t e o f Marine S c i e n c e , U n i v e r s i t y o f A l a s k a . 623pp N e l s o n , J.B. 1970. The r e l a t i o n s h i p between b e h a v i o u r and e c o l o g y i n t h e S u l i d a e w i t h r e f e r e n c e t o o t h e r s e a b i r d s . Oceanography and Marine B i o l o g y : an A n n u a l Review 8:501-574 Pandyan, A.S. 19,71* Food and t r o p h i c r e l a t i o n s h i p s o f t h e d e v e l o p m e n t a l s t a g e s o f Euchaeta j a p o n i c a Marukawa and C a l a n u s plumchrus Marukawa. PMD. T h e s i s , I n s t i t u t e o f Oceanography and Department o f Z o o l o g y , U n i v e r s i t y o f B r i t i s h Columbia. P a q u e t t e , R.G. and H.F. F r o l a n d e r . 1957. Improvements i n t h e C l a r k e Bumpus p l a n k t o n sampler. J . Cons. Perm. I n t . Exp. Mer 22:284-288 P a r k , T.S. 19^5. Two s p e c i e s o f copepods f r o m t h e S t r a i t o f G e o r g i a , B r i t i s h Columbia, Canada. J . F i s h . Res. Bd. Can. 24:231-241  176  Park, T.S. 1975- Calanoid copepods of the genera Gaetanus and Gaidius from the Gulf of Mexico. Bull. Mar. Sci. 25:9~34 . 1976. A new species of Euchirella (Copepoda: Calanoida) from the Pacific coast of North America, with notes on Euchirella pulchra (Lubbock). Crustaceana 31:208-212 Parker, E.E., B.A. Kask and B. Windecker. 1976. Vertical distribution of macrozooplankton in respect to the halocline, Alberni Inlet, during April, June, and August 1971• An atlas. Fish. Mar. Serv. Ees. Dev. Tech. Eep. 494; 275pp Parsons, T.R. and M. Takahashi. 1973* Biological oceanographic processes. Pergamon Press, Oxford. I86pp Pearcy, W.G. 1972. Distributions and ecology of oceanic animals off Oregon. Pages 351 377 in Pruter, A.T. and D.L. Alverson (eds.), The Columbia river estuary and adjacent ocean waters. University of Washington Press. 868pp _  Peterson, W.T. 1972. Distribution of pelagic Copepoda off the coasts of Washington and Oregon during I96I and 1962. Pages 313"343 in Pruter, A.T. and D.L. Alverson (eds.), The Columbia river estuary and adjacent ocean waters. University of Washington Press. 868pp Peterson, W.T. and C. Miller. 1976. Zooplankton along the continental shelf off Newport, Oregon. 1969-1972. Oregon State University. Sea Grant College Program. Publication No. OEESU-T-76-OO2. Pickard, G.L. and G.K. Rodgers. 1959- Current measurements in Knight Inlet, British Columbia. J. Fish. Ees. Bd. Can. 16:635-678 Pickard, G.L. and L.F. Giovando. i960. Some observations of turbidity in British Columbia inlets. Limnol. Oceanogr. 5:162-170 Pickard, G.L. I96I. Oceanographic features of inlets in the British Columbia mainland coast. J. Fish. Ees. Bd. Can. 18:907-999 . 1963« Descriptive physical oceanography. Oxford. 199PP  Pergamon Press,  . 1975• Annual and longer term variations of deepwater properties in the coastal waters of southern British Columbia. J. Fish. Ees. Bd. Can. 32:1561-1587 Poulet, S.A, 1973- Grazing of Pseudocalanus minutus on naturally occurring particulate matter. Limnol. Oceanogr. 18:564-573 . 1974. Seasonal grazing of Pseudocalanus minutus on particles. Mar. Biol. 25:109-123  177  P o u l e t , S»A. and J.P. Chanut. 1975- N o n - s e l e c t i v e f e e d i n g "by Pseudoc a l a n u s minutus. J . F i s h . Res. Bd. Can. 32:706-713 R e d f i e l d , A . C , B.H. Ketchum,.and F.A. R i c h a r d s . 1963. The i n f l u e n c e o f organisms on t h e c o m p o s i t i o n o f seawater. Pages 26-77 i n H i l l , M.N. ( e d . ) , The sea. 2. W i l e y I n t e r s c i e n c e , New York. 554pp Reed, R.K. and D. H a l p e r n . 1976. O b s e r v a t i o n s o f t h e C a l i f o r n i a underc u r r e n t o f f Washington and Vancouver I s l a n d . L i m n o l . Oceanogr. 21:389-398  R i n g e l b e r g , J . 1964. The p o s i t i v e l y p h o t o t a c t i c r e a c t i o n o f Daphnia magna. A c o n t r i b u t i o n t o t h e u n d e r s t a n d i n g o f d i u r n a l v e r t i c a l m i g r a t i o n . Neth. J . Sea Res. 2:319-406 Roe, H.S.J. 1972a. The v e r t i c a l d i s t r i b u t i o n and d i u r n a l m i g r a t i o n s o f c a l a n o i d sopepods c o l l e c t e d on t h e SOND C r u i s e , 1965- 2. S y s t e m a t i c Account: F a m i l i e s , C a l a n i d a e up t o and i n c l u d i n g t h e A e t i d e i d a e . J . Mar. B i o l . Assoc. U.K. 52:315-3^3 . 1972b. The v e r t i c a l d i s t r i b u t i o n and d i u r n a l m i g r a t i o n s o f c a l a n o i d copepods c o l l e c t e d on t h e SOND C r u i s e , 1965« 2. S y s t e m a t i c Account: F a m i l i e s Euchaetidae up t o and i n c l u d i n g t h e M e t r i d i i d a e . J . Mar. B i o l . Assoc. U.K. 52:525-552 R u s s e l l , F.S. 1927. The v e r t i c a l d i s t r i b u t i o n o f p l a n k t o n i n t h e sea. B i o l . Rev. 2:213-262 Sameoto, D.D. 1975* T i d a l and d i u r n a l e f f e c t s on z o o p l a n k t o n sample v a r i a b i l i t y i n a n e a r s h o r e marine environment. J . F i s h . Res. Bd. Can.  32:347-366  S e k i g u c h i , H. 1974. R e l a t i o n between t h e o n t o g e n e t i c v e r t i c a l m i g r a t i o n and t h e mandibular gnathobase i n p e l a g i c copepods. B u l l . F a c u l t y of F i s h e r i e s . Mie U n i v e r s i t y 1:1-10 Shan, K . C 1962. S y s t e m a t i c and e c o l o g i c a l s t u d i e s on copepoda i n I n d i a n Arm, B r i t i s h Columbia. M.Sc. T h e s i s , I n s t i t u t e o f Oceanography and Department o f Zoology, U n i v e r s i t y o f B r i t i s h Columbia. S h i h , C T . , A.J.G. F i g u e i r a and E.H. G r a i n g e r . 1971. A s y n o p s i s o f Canadian marine z o o p l a n k t o n . F i s h . Res. Bd. Can. B u l l . 176. Ottawa. 264pp  S i e g e l , S. 1956. Non-parametric s t a t i s t i c s f o r t h e b e h a v i o r a l s c i e n c e s . M c G r a w - H i l l , New York. 312pp Smith, P.E., R.C. Counts and R.I. C l u t t e r . 1968. Changes i n f i l t e r i n g e f f i c i e n c y o f p l a n k t o n n e t s under tow due t o c l o g g i n g . J . Cons. Perm. I n t . Exp. Mer 32:1-13  178  Stockner, J.G. and D.D. C l i f f . 1976. Effects of pulpmill effluent on phytoplankton production in coastal marine waters of British Columbia. J. Fish. Res. Bd. Can. 33:2433-2442 Stockner, J.G., D.D. C l i f f and D.B. Buchanan. 1977- Phytoplankton production and distribution in Howe Sound, British Columbia: a coastal marine embayment - fjord under stress. J. Fish. Res. Bd. Can.  7:907-917  Strickland, J.D.H. and T.R. Parsons. 1972. A practical handbook of seawater analysis. Fish. Res. Bd. Can. Bull. 167. (Second edition). 311pp  Stromgren, T. 1976. Relationship between freshwater supply and standing crop of Calanus finmarchicus in a Norwegian fjord. Pages 173-177 in Skreslet, S., et al.(eds.), Freshwater on the sea. Association of Norwegian Oceanographers, Oslo. Tabata, S. and G.L. Pickard. 1957• The physical oceanography of Bute Inlet, British Columbia. J. Fish. Res. Bd. Can. 14:487-520 Tully, J.P. 1958. On structure, entrainment, and transport in estuarine embayments.  J. Mar. Res. 17:523 535 _  Venrick, E.L. 1971. The statistics of sub-sampling.  Limnol. Oceanogr.  16:811-818  Vinogradov, M.E. 1968. Vertical distribution of the oceanic zooplankton. Moscow 'Nauka'. (Translation: Israel Program for Scientific Translation, Jerusalem, 1970. No. TT 69-59015). 3 3 9 P P Whitfield, P.H. and A.G. Lewis. 1976. Control of the biological availability of trace metals to a calanoid copepod in a coastal fjord. Estuarine and Coastal Marine Science 4:255-266 Wicket, W.P. and J.A. Thomson. 1976. Transport computations for the North Pacific Ocean, 1975- Fisheries and Marine Service Data Record No. 16. Pacific Biological Station, Nanaimo, B.C., Canada. Wickstead, J.H. 1962. Food and feeding in pelagic copepods. Soc. London 139:5^5-555  Proc. Zool.  Wiebe, P.H. and W.R. Holland. 1968. Plankton patchiness: effects on repeated net tows. Limnol. Oceanogr. 13:315"321 Wiebe, P.H. 1971. A f i e l d investigation of the relationship between length of tow, size of net and sampling error. J. Cons. Perm. Int. Exp. Mer 34:110-117  179  W i l l i a m s , W.T. 1971. P r i n c i p l e s o f c l u s t e r i n g . S y s t e m a t i c s 2:303-326  Ann. Rev. E c o l o g y  and  W i l l i a m s o n , M.H. I 9 6 I . A method o f s t u d y i n g t h e r e l a t i o n o f p l a n k t o n v a r i a t i o n s t o hydrography. B u l l . Mar. E c o l . 5:224-229 Winsor, G.P. and G.G. C l a r k e . 1940. A s t a t i s t i c a l study o f v a r i a t i o n i n t h e c a t c h of p l a n k t o n n e t s . J . Mar. Res. 3 : 1 3 ^ _  Woodhouse, D.C. 1971. A s t u d y o f t h e e c o l o g i c a l r e l a t i o n s h i p s and taxonomic s t a t u s o f two s p e c i e s o f t h e genus Calanus ( C r u s t a c e a : Copepoda). Ph.D. T h e s i s , I n s t i t u t e o f Oceanography and Department of Z o o l o g y , U n i v e r s i t y o f B r i t i s h Columbia.  180  APPENDIX A The copepod and c l a d o c e r a n abundance d a t a T h i s t a b l e c o n t a i n s , i n t a b l e form, t h e e s t i m a t e d abundance of every s p e c i e s i n e v e r y sample.  The d a t a a r e a r r a n g e d a c c o r d i n g t o  month, s p e c i e s , s t a t i o n , and depth.  The t a b l e i s e x p l a i n e d as f o l l o w s :  S p e c i e s a r e i d e n t i f i e d i n t h e l e f t - h a n d column by acronyms, e x p l a i n e d below. The  s t a t i o n and depth i n meters from which a sample was t a k e n i s  g i v e n i n the "STN"  and " z " columns, r e s p e c t i v e l y .  "Water regimes" a r e as e x p l a i n e d i n t h e h y d r o g r a p h i c s e c t i o n of the text. Abundance e s t i m a t e s , "n/m  ", a r e e x p r e s s e d as e s t i m a t e d numbers  of a s p e c i e s i n a c u b i c meter o f water.  A double or s i n g l e a s t e r i s k  b e s i d e an e s t i m a t e i n d i c a t e s t h a t l e s s than f i v e , o r l e s s than t e n i n d i v i d u a l s , r e s p e c t i v e l y , were found i n t h e sample.  A l l other estimates  were determined from counts e x c e e d i n g t e n specimens per sample. " I " i s an i n d e x of a n n u a l r e l a t i v e abundance.  I t was  obtained  by d i v i d i n g the e s t i m a t e d abundance of a s p e c i e s i n a g i v e n sample, by t h e maximum e s t i m a t e d sample abundance found a t any time d u r i n g t h e s t u d y , and then m u l t i p l i e d by  100.  The p e r cent c o p e p o d i t e c o m p o s i t i o n of each s p e c i e s i s a l s o g i v e n f o r e v e r y sample. L i s t of acronyms b e g i n s on f o l l o w i n g page.  181  Acronyms used to i d e n t i f y species i n Appendix A.  SPECIES GROUP  SPECIES  ACRONYM  Paracalanus parvus Claus  P. PAR  Centropages mcmurrichi Willey  C. MCM  Podon and Evadne species  POD/EVA  SURFACE  Epilabidocera amphitrites McMurrich  E. AMPH  AND  Acartia c l a u s i Giesbrecht  A. CLAU  SURFACE  Acartia longiremis L i l l j e b o r g  A. LONG  TRANSITIONAL  Tortanus discaudatus Thompson and Scott  T. DISC  Aetidius divergens Bradford  A. DIV  Microcalanus pygmaeus Sars  M. PYG  Euchaeta japonica Marukawa  E.  TRANSITIONAL/  S c o l e c i t h r i c e l l a minor Brady  SCOL. M  DEEP  Metridia okhotensis Brodskii  M. OKH  CKIridius g r a c i l i s Farran  C. GRAG  Heterorhabdus  H. TAN  SUMMER SURFACE  tanneri Giesbrecht  Gaidius columbiae Gandacia columbiae  DEEP  MIGRANT  OFF-SHORE  JAP  GAD. C  Park Campbell  CAN. C  Spinocalanus brevicaudatus Brodskii  SPINO  Scaphocalanus brevicornis Sars  SCAPH  Racovitzanus antarcticus Giesbrecht  RACO  Eucalanus bungi bungi Johnson  E. BUN  Calanus plumchrus Marukawa  CAL. P  Calanus marshallae Frost  CAL. M  Pseudocalanus  P. ELO  elongatus Boeck  Metridia p a c i f i c a Brodskii  M. PAC  Galanus c r i s t a t u s Kroyer  CAL. C  Rhincalanus nasutus Giesbrecht  R. NAS  Gaetanus intermedius  G. INT  Campbell  Gaetanus pileatus Farran  G. PIL  CONTINUED ON FOLLOWING PAGE  182  SPECIES GROUP  SPECIES  ..  ACRONYM  Gaetanus m i l e s G i e s b r e c h t  G. MIL '  E u c h i r e l l a r o s t r a t a Claus  EUC. R  E u c h i r e l l a pseudopulchra  Park  EUC. P  E u c h r r e l l a curticauda Giesbrecht  EUC. C  Chlxundlna  CHIRUN  s t r e e t s ! Giesbrecht  Undeuchaeta b i s p i n o s a E s t e r l y  UNDEU  OEFhSHORE  Euchaeta media G i e s b r e c h t  E. MED  (Cont'd)  Euchaeta s m n o s a G i e s b r e c h t  E. SPIN  Paraeuchae'ta' c a l i f o r h i c a E s t e r l y  P. CAL  S c o t t o c a l a n u s persecans  SCOT  Giesbrecht  - Lophothrix f r o n t a l i s Giesbrecht  LOPH  Scaphocalanus magnus T. S c o t t .  S. MAG  S c o l e c i t h r i c e l l a ovata F a r r a n  SCOL. 0  M e t r i d i a boecki Giesbrecht  M. BOE  Metridia princeps Giesbrecht  .'  M. PRM  Pleuromamma a b d o m i n a l i s Lubbock  !  P. ABD  Pleuromamma x i p h i a s G i e s b r e c h t  P. XIPH  Pleuromamma b o r e a l i s Dahl  P. BOR  Pleuromamma q uadrungulata  Dahl  P. QUAD  Pleuromamma s c u t u l l a t a B r o d s k i i  P. SCT  G a u s s i a p r i n c e n s T. S c o t t  GAUS  L u c i c u t i a b i c o r n u t a Wolfenden  LUCIC  D i s s e t a maxima E s t e r l y  DIS. M  Heterorhabdus p a p i l l i g e r Claus  -  H. PAP  Heterorhabdus c l a u s i G i e s b r e c h t  H. GLA  Heterorhabdus s p i n i f r o n s Claus  H. SPIN  H e t e r o s t y l i t e s longicornis Giesbrecht  HETER  H a l o p t i l u s oxycephalis Giesbrecht  H. OXY  P a c h y p t i l u s p a c i f i c u s Johnson  PAGHY  A r i e t e l l u s p l u m i f e r Sars  ARIET  Phyllopus integer E s t e r l y  PHYLL  Gandacia b i p i n n a t a G i e s b r e c h t  C. B I P  183  SPECIES SPECIES  GROUP: STN  SUMMER  z  MONTH:  OCTOBER  n/m->  I  1974  SURFACE WATER  1  REGIME C.  MCM  SPECIES SPECIES  1 GROUP: STN  10  A'SFC  0.23**  %  COMPOSITION OF  2  3  40* 4o  COPEPODITES  5d*  5$  6o* 60^  0.62  100  SURFACE/TRANSITION  z  WATER  I  REGIME  £  l  COMPOSITION OF  2  3  k<3 4o  CO?E?CDI7E3 56* 50. 60* 60.  E.  AMPH  QC  10  E'SFC  0.62**  16.27  E.  AMPH  QC  30  E'SFC  0.40**  IO.50  E.  AMPH  QC  50  E'SFC  0.18**  4.72  100  E.  AMPH  QC  100  E"  0.11**  2.89  100  E.  AMPH  1  100  B " ' DEEP  O.31**  8.14  100  A.  CLAU  5  10  A"  SFC  32.57  9-55  9  91  A.  CLAU  5  50  A"  SFC  4.32  1.27  41  59  A.  CLAU  5  100  D*  TRANS  5.88  1.72  17  A.  CLAU  5.  200  C  DEEP  1-75  0.51  A.  CLAU  7  10  A"  SFC  21.08  A.  CLAU  7  30  A"  SFC  3.82  A.  CLAU  7  50  D'TRANS  A.  CLAU  9  10  A"  A.  CLAU  9  30  A/D  A.  CLAU  9  50  TRANS  40  60 100  83 100  5.89  12  88  30  55  2.91  0.85  11  89  .10.92  3.20  15  85  10.89  3.19  5  95  D'TRANS  4.86  1.43  6  94  SFC TRANS  .  1.12  - 15 -  A.  CLAU  9  100  D'TRANS  0.68**  0.20  A.  CLAU  9  200  . D"'DEEP  1-39*  0.41  100  A.  CLAU  9  350  D'"DEEP  1.40*  0.41  100  A.  CLAU  11  10  A"  5.17  1.52  A.  CLAU  11  30  A/D  0.41**  0.12  A.  CLAU  11  50  D'TRANS  5.02  1.47  A.  CLAU  11  200  D"'DEEP  0.26**  0.08  100  A.  LONG  QC  10  1.96  100  SFC TRANS  E'SFC  10.81  100  2  98 100  3  97  A.  LONG  QC  30  E'SFC  19.63  3.56  3  97  A.  LONG  QC  50  E'SFC  9.06  1.64  18  82  A.  LONG  QC  100  42.82  7.77  1  A.  LONG  1  10  A'SFC  5-91  1.07  A.  LONG  1  30  A'SFC  31-^7  5-71  A.  LONG  1  50  B"TRANS  20.33  3.69'  100  A.  LONG  1  100  B"'DEEP  5-25  0.95  100  A.  LONG  1  200  B'"DEEP  0.41 **  0.07  100  A.  LONG  3  10  A'SFC  5.19*  0.94  100  A.  LONG  3  30  A'SFC  15.28  2.77  100  A.  LONG  3  50  A'SFC  12.04  2.19  100  O.67  100  E"TRANS  A.  LONG  3  100  A.  LONG  5  10  A"SFC  A.  LONG  5  30  A.  LONG  5  50  B  '"DEEP  3.70*  99 100  5  95  10.51  1.91  A" SFC  2-33  0.42  100  A" SFC  2.80  0.51  100  17  83  184 MONTH i OCTOBER 1974 SPECIES GROUP: SURFACE/TRANSITION  z  (Cont'd)  WATER REGIME  n/m3  100  D 'TRANS  12.42  2.25  100  200  C DEEP  2.23  0.40  100  10  A"SFC  8.71  1.58  7  30  A"SFC  O.57**  0.10  A. LONG  7  50  D'TRANS  O.76**  0.14  100  A. LONG  9  10  A"SFC  2.38*  0.43  100  A. LONG  9  30  A/D TRANS  1.09**  0.20  100  A. LONG  9  50  D'TRANS  0.27**  0.05  T. DISC  QC  10  E'SFC  T. DISC  QC  30  E'SFC  T. DISC  00  50  E'SFC  T. DISC  QC  100  E" TRANS  55-59  18.70  T. DISC  1  10  A'SFC  2.78  0.94  T. DISC  1  30  A'SFC  1  6.93  2.33  T. DISC  50  B"TRANS  15-42  T. DISC  1  100  5-29  B'"DEEP  19.76  6.65  T. DISC  3  10  A'SFC  I.95**  0.66  T. DISC  3  30  A'SFC  0.28**  0.09  T. DISC  3  50  A'SFC  0.92*  O.31  T. DISC  3  100  B"'DEEP  7.94  2.67  T. DISC  5  10  A"SFC  0.13**  0.04  T. DISC  5  100  D'TRANS  2.62*  0.88  SPECIES  STN  A. LONG  5  A. LONG  5  A. LONG  7  A. LONG  I  1  % COMPOSITION OF COPEPCDITES 2 3 4o* 4o_5c? 6c?  6  100  13.10  11  32.85  11.05  9  - 30 -  27.99  9.41  2  -  38.95  94 100  8  6  7  4  4  28  40  46  15  40  57  33  67  17  29  33  19  23  27  15  11 11 15  11  30  22  3  5S  36  33  33  1-  - 13 -  8-  1 8  3 33  100 16  34  16  34  67  33  100 13  24  50  13  SPECIES GROUP: TRANSITIOT/DEEP SPECIES  STN  z  WATER REGIME  n/m3  I  1  % COMPOSITION OF COPEPODITES 2 3 4d* 4$ 5<? 52 63  60  PYG  QO  10  E'SFC  2.33  M. PYG  1  30  A'SFC  0.27**  100  PYG  7  10  11-59  M.  A"SFC  O.35**  15.02  100  M.  PYG  7  30  A"SFC  O.38**  16.31  100  M.  PYG  7  50  D'TRANS  0 . 1 5 * * • 6.44  7  200  100  M. PYG  D"'DEEP  0.12**  100  7  500  5.15  M. PYG  D"'DEEP  0.46**  19.74  100  PYG  9  30  A/D TRANS  0.27**  11.59  100  M. PYG  9  100  D'TRANS  O.34**  14.59  100  M.  PYG  11  30  A/D TRANS  0.28**  12.02  100  M.  PYG  11  50  D'TRANS  O.33**  14.16  100  M.  PYG  11  200  D"'DEEP  O.65**  27.90  100  A. DIV  QC  10  E'SFC  1-35  9.09  100  A. DIV  QC  30  E'SFC  1.20*  8.08  33  44  23  A. DIV  QC  50  E'SFC  1-75  11.78  40  45  15  M.  M.  100.00  100  185 MONTH: OCTOBER 1974 SPECIES GROUP: TRANSITION/DEEP (Cont'd') SPECIES  STN  z  WATER  n/m3  I  1  REGIME  100  E" TRANS  4.29  A. D I V  1  100  B"'DEEP  A. D I V  1  200  B"'DEEP  A. D I V  3  30  A. D I V  3  50  A. D I V  3  A. D I V  %  2  COMPOSITION  3  OF C 0 P E P C D I T 3 S  4c/ 4o  5 ° * 5?  6rf* 60  28.89  39  37  5-56  37.44  38  56  1.83  12.32  A'SFC  2.'69  18.11  A'SFC  1.54*  IO.37  100  B'"DEEP  6.35  42.76  33  50  17  3  150  B'"DEEP  3.78*  25.45  50  17  33  A. D I V  5  30  A"SFC  1.16*  7.81  A. D I V  5  50  A"SFC  2.03*  A. D I V  5  100  D'TRANS  4.91  20  46  20  A. D I V  5  200  C  1.44*  9.70  22  33  A. D I V  7  30  A"SFC  O.38**  2.56  100  A. D I V  7  50  D'TRANS  0.45**  3.03  33  30  E'SFC  0.27**  0.62  A. D I V  QC  DEEP  42 40  15  30  28  57  13.67  37  63  33-06  7  7  58  10.. 20  33  E.  JAP  • 5  50  A"SFC  0.51**  1.18  100  E.  JAP  5  100  D'TRANS  0.98**  2.26  100  E.  JAP  5  200  C  DEEP  0.64**  1.48  E.  JAP  5  300  C  DEEP  0.81**  1.87  E.  JAP  7  30  A*'SFC  O.57**  1.32  100  E.  JAP  7  50  D'TRANS  1.84  4.25  83  E.  JAP  7  100  D'TRANS  9-89  22.82  36  32  E.  JAP  7  200  D'"DEEP  1.10*  2.54  45  55  E.  JAP  7 .  300  C  O.53**  1.22  25  75  E.  JAP  7  500  D"'DEEP  0.46**  1.06  33  67  E.  JAP  9  50  D'TRANS  1.08**  2.49  E.  J A P  9  100  D'TRANS  3-42*  7.89  30  40  E.  JAP  9  200  D"'DEEP  O.31**  0.72  E.  JAP  11  10  A"SFC  2.61  6.02  49  E.  JAP  11  30  A/D  3-72  8.58  4  E.  JAP  11  50  D'TRANS  I.67*  3.85  E.  J A P  11  100  D'TRANS  0.24**  0.55  E'SFC  0.79*  4.03  33  67  E" T R A N S  1.46  7.45  62  38  100  M  QC  50  SCOL.  M  QC  100  SCOL.  M  3  30  A'SFC  0.28**  1.43  SCOL.  M  3  50  A'SFC  0.92*  M9.  SCOL.  M  3  150  B"'DEEP  5.67*  28.91  SCOL.  M  5  30  A"SFC  1.00*  5.10  SCOL.  M  5  50  A"SFC  4.06  20.70  SCOL.  M  5  100  D'TRANS  1.97*  10.05  SCOL.  M  7  30  A"SFC  3.81  19.43  SCOL.  M  7  50  D'TRANS  6.12  31.21  SCOL.  M  7  100  D'TRANS  2.52  12.85  33  100  QC  SCOL.  12  33  JAP  TRANS  6 100  E.  DEEP  24  25 67  75 33  17 11  25  6  4  11  50  25  20  10  37  8  4  11  4  4  26  30  4  19  10  10  20  30  10  20  100  100  • 13  2  6  5  50  16  34  45  22  33  50  17  31  19  17  66  10  15  27  24 25  33 6  25 17 75  2  40 75  186 MONTH: OCTOBER  1974  SPECIES GROUP: TRANSITION/DEEP (Cont'd) SPECIES  STN  z  n/ni3  WATER  I  REGIME SCOL.  M  SCOL.  M  SCOL.  M  SCOL.  M  SCOL.  M  SCOL.  M  SCOL.  M  M.  OKH  M.  OKH  M.  OKH  M.  OKH  M.  OKH  M..  OKH  M.  OKH  M.  OKH  M.  OKH  M.  OKH  M.  OKH  M.  OKH  M.  OKH  M.  OKH  M.  OKH  M.  OKH  M.  OKH  M.  OKH  C.  GRAC  C.  GRAC  C.  GRAC  C.  GRAC  C.  GRAC  C.  GRAC  H.  TAN  H.  TAN  H.  TAN  H.  TAN  H.  TAN  H.  TAN  H.  TAN  H.  TAN  H.  TAN  H.  TAN  H.  TAN  200 10 30 9 50 9 100 11 10 ll 30 1 100 3 100 3 150 5 200 5 300 7 100 7 200 7 ' 300 7 500 9 50 9 100 9 200 9 350 11 10 11 30 11 50 11 100 11 200 1 200 3 150 5 200 5 300 9 350 11 200 5 100 7 50 7 100 7 200 7 300 7 500 9 30 9 50 9 100 9 200 9 350 7 9 9  TRANS  D'TRANS D'TRANS  6.04  A" SFC A/D  TRANS  B"'DEEP  C  DEEP  4.30 3-75  2.73  D'TRANS  12.42  D*"DEEP C  16.05 13.02  DEEP  D"'DEEP  3-51  D'TRANS  11.64 IO.83  D'TRANS D"'DEEP D"'DEEP A" SFC A/D  TRANS  D'TRANS D'TRANS D  M  D E E P  B"'DEEP  '  B '"DEEP C  DEEP  C  DEEP  D"'DEEP D*"DEEP D'TRANS D'TRANS D'TRANS D"'DEEP C  DEEP  D"'DEEP A/D  TRANS  D'TRANS D'TRANS D'"DEEP D"'DEEP  3  O F C O r E ? O :: ; T E S  40* 4$  30.80 13.36  0.12 1.59** 0.16 10.69 1.05  B"'DEEP  DEEP  2.62  1.24**  B"'DEEP  C  COMPOSITION  •1 2  O.49**  D"'DEEP A" SFC A/D  2.50 5-70 29.07 4.09 20.86 1.62* 8.26 2.05* 10.45  %  0.42  0.37 0.27 1.22 1.58  1.28  0.35  1.14  1.06 15.97 1-57 1.08* 0.11 5-92 0.58 5.02 0.49 7.47 0.73 t.55 0.45 11.06 47.51 23.28 100.00 2.07 8.89 0.27** 1.16 0.60** 2.58 0.26** 1.12 1.64** 5.86 0.46** 1.64  2.52 9.00 0.49** 1.75 0.40** 1.43 0.91* 3.25 0.81** 2.89 1.08** 3.86  2.05*  7.32  0.61** 2.18  1.00** 3-57  ;  5? 60* 24 76 21 29 27 20 33 17 17 33 39 52 16 5 5 75 25 100 41 59 41 52 57 36 38 62 17 23 44 38 45 39 2 38 54 21 26 20  24  39 32 10 30 49 •  4 15 30 37 5 5 39 51  40  53 43 5 10 34 32 46 33  31  60  50 53 50 50 9  74  7 7 60 18 14  8 53 2 5^ 29 60 11 4 85 34 14  100  67 50  23 50  20  80  67 33 8 34 58 24 76 33 67 -16 - 68 16 33 67 75 25 -17 - 33 50 75 25 40 60  187  MONTH: OCTOBER 1974 SPECIES GROUP: TRANSITION/DEEP (Cont'd) STN  SPECIES  z  n/m3  WATER  %  I  C O M P O S I T I O N'  3  2  1  REGIME  4o*  0?  H  COPEPCDITSS  50* 5?. 60*  H. T A N  11  10  A" S F C  0.76*  2.71  14  86  H. T A N  11  30  A/D  0.55**  1.96  25  75  H. T A N  11  50  D'TRANS  0.50**  1.79  67  33  H. T A N  11  100  D'TRANS  0.24**  0.86  50  50  H. T A N  11  200  D"'DEEP  0.91*  86  14  5  200  C  DEEP  3.82  28.81  8  DEEP  1.61*  TRANS  3.25 13  GAD.  C  GAD.  C  5  300  C  12.14  17  50  GAD.  C  7  100  D'TRANS  1.05**  1.92  60  40  GAD.  C  7  200  D"'DEEP  0.97*  1.32  D'" D E E P  0.46**  3-^7  A/D  0.27**  2.04 12.90  29  37  13  17  17  12  25  51  12  67  33  GAD.  C  7  500  GAD.  C  9  30  GAD.  C  9  100  D'TRANS  1.71**  GAD.  C  9 .  200  D"'DEEP  O.30**  2.26  50  50  GAD.  C  9  350  D"'DEEP  0.60**  4.52  67  33  GAD.  C  11  30  A/D  0.84*  6.33  33  17  33  GAD.  C  11  50  D'TRANS  20  20  10  12  25  25  50  TRANS  TRANS  100 20  17  1.66*  12.52  30  7.24  12  GAD.  C  11  100  D'TRANS  O.96*  GAD.  C  11  200  D"'DEEP  O.52**  3-92  3  30  A'SFC  O.56**  10.98  50  5  300  C  0.54**  10.59  50  CAN.  C  CAN.  C  CAN.  C  SPECIES SPECIES  .  ll GROUP: STN  50 INLET  z  DEEP  0.17**  D'TRANS  20  60  20  33  12 25  50 50 100  3-33  DEEP  n/mJ  WATER  I  %  •  1  COMPOSITION  2  3  OF C O P E ? C D I - E S :  4d" 4  6c? 6  5*  35  34.80  21  28  51  22.34 •  16  23  61  22  22  45  38  62  REGIME  ?  2  5  100  D'  SPINO  5  200  C  DEEP  9.86  SPINO  5  300  C  DEEP  2.42*  5.48  SPINO  7  50  D'TRANS  1.22*  2.76  SPINO  7  100  D'TRANS  8.83  20.00  5  7  12  16  SPINO  7  200  D"'DEEP  16.46  37.29  7 10  13  36  27  7 28  SPINO  15.36  TRANS  SPINO  7  300  C  SPINO  7  500  D'"DEEP  SPINO  9  30  A/D  SPINO  9  50  D'TRANS  DEEP  TRANS  SPINO  9  100  D'TRANS  SPINO  9  200  D"'DEEP  4.27  9.67  12  19  25  10.44  23.65  10  4  22  24  7.90  17.90  3  10  24  28  34  10  30  40  20  12  20  60  47  31  22 83  6.12  8.56  19.39  4.95  11.21 10.40  4  4  1  39  13  4  1.45  17  17  17  50  14.05  31.83  15  17  22  18  D'TRANS  5-85  13-25  9  29  37  14  D'TRANS  4.23  9.58  31  43  26  D"'DEEP  8.19  18.55  2  35  29  30  D'TRANS  2.29*  18.24  14  . 15 43  28  SPINO  9  350  D"'DEEP  4.59  SPINO  11  10  A" SFC  0.64*  SPINO  11  30  A/D  SPINO  11  50  SPINO  11  100  SPINO  11  200  5  100  SCAPH  60  16  2.70* ,  11  TRANS  9  3  5  3  26  188  MONTH; OCTOBER 1974 SPECIES GROUP: INLET DEEP (Cont'd) SPECIES  STN  z  WATER  n/m3  I  SCAPH  5  200  C  DEEP  O.32**  2.01  SCAPH  5  300  C  DEEP  1.35**  8.49  SCAPH  7  50  D'TRANS  0.31**  SCAPH  7  100  D'TRANS  3.15  SCAPH.  7  200  D"'DEEP  O.85*  5-35  SCAPH  7  300  C  O.53**  3-33  SCAPH  DEEP  7  500  D"'DEEP  5.52  SCAPH  9  30  A/D  1.09**  SCAPH  TRANS  <% C O M P O S I T I O N  1 2  REGIME  3  4o*  0?  COPEPODITES  4<j> 50*  40  5o_ 6d*  6  ?  50  50  20  40  100  1.95 19.81  40  60  44  28  25  34.72  6  28  25 50  - 11 -  33 39  6.86  25  8  3  75  9  50  D'TRANS  1.62*  IO.19  SCAPH  9  100  D'TRANS  2.05*  12.89  17  67  17  SCAPH  9  200  D"'DEEP  0.61**  3.84  25  50  25  SCAPH  9  350  D"'DEEP  5-39  33.90  55  SCAPH  11  10  A"SFC  0.54**  3.40  41 41  59  SCAPH  11  30  A/D  O.83*  5.22  17  66  SCAPH  ' 11  50  D'TRANS  0.34**  2.14  50  50  SCAPH  11  100  D'TRANS  0.96*  6.04  38 50  12  SCAPH  11  200  D"'DEEP  3-51  22.08  41 48  11  n/m3  .1  SPECIES SPECIES  GROUP: STN  TRANS  33 67  17  MIGRANTS  z  WATER REGIME  %  1 2  COMPOSITION  3  4o*  OF COPEPODITES  4o_ 50*  1  200  B '"DEEP  0.81*  35.53  37  E. B U N  7  300  C  0.53**  23.25  75  E. B U N  7  500  D"'DEEP  0.15**  6.58  E. B U N  4  DEEP  55 60*  63 25 100  E. B U N  9  350  D"'DEEP  0.60**  26.32  33 67  CAL.  P  9  350  D"'DEEP  0.40**  7.07  - 100 -  CAL.  M  QC  E'SFC  0.74*  0.02  - 100 -  CAL.  M  QC  30  E'SFC  2.41  0.05  CAL.  M  QC  50  E'SFC  2.55  0.06  CAL.  M  QC  100  E" T R A N S  7.23  CAL.  M  1  10  A'SFC  0.12**  CAL.  M  1  100  B"'DEEP  5.86  0.13  - 100 -  CAL.  M  1  200  B"'DEEP  88.84  1.93  - 100 -  CAL.  M  3  30  CAL.  M  3  CAL.  M  CAL.  M  CAL.  M  10  - 5 -  56 96 -  4  0.16  -  98 -  2  <0.01  - 100 -  A'SFC  0.28**  0.01  - 100 -  100  B "' D E E P  6.82  0.13  - 100 -  3  150  B '"DEEP  294.34  6.40  - 100 -  5  100  D'TRANS  O.65**  0.01 •  - 100 -  5  200  C  DEEP  4.45  0.11  - 100 -  C  DEEP  26.01  0.57  - 100 -  CAL.  M  5  300  CAL.  M  7  50  CAL.  M  7  200  D"'DEEP  CAL.  M  7  300  C  CAL.  M  7  500  D'"DEEP  D'TRANS  DEEP  0.15**  •=0.01  - 100 -  1.34  0.03  - 100 -  17.51  0.38  - 100 -  «=0.01  - 100 -  0.31**  16  -  189  MONTH: OCTOBER 1974 SPECIES GROUP: MIGRANTS (Cont'd) SPECIES  STN  z  WATER REGIME  n/m3  I  1  •5? COMPOSITION OF CO?ErCDITES 2 3 4o* 4 5$ 60* 6$ ?  CAL. M  9  10  A"SFC  0.48**  0.01  - 100 -  CAL. M  9  200  D'" DEEP  2.17  0.05  - 100 -  CAL. M  9  350  D."'DEEP  1.40*  0.03  - 100 -  CAL. M  11  10  A"SFC  2.80  0.06  - 100 -  CAL. M  11  200  D"'DEEP  9.61  0.21  P. ELO  QC  10  E'SFC  258.32  12.13  P.  ELO  QO  30  E'SFC  333.52  15.66  P.  ELO  QC  50  E'SFC  P.  ELO  QC  100  P.  ELO  1  10  P.  ELO  1  P.  ELO  - 100 17  18  29  28  2  6  45  46  1  8  42  47  1  10  17.87  0.84  288.58  13.55  49  18.78  0.88  51  A'SFC  14  22  26  30  15  A'SFC  181.87  8.54  2  34  32  1  28  1  50  3  B"TRANS  70.16  3.30  4  1  1  100  39.  ' B '"DEEP  120.68  3  P. ELO  5-67  ELO  1  200  B"'DEEP  335.09  15.74  P. ELO  3  10  A'SFC  17.54  0.82  11  P.  ELO  3  30  A'SFC  34.80  15  I.63  4  6  3  50  A'SFC  7.41  43  ELO  157.72  39  P.  2  41  3  B "' DEEP  129.09  6.06  43  ELO  100  3  P.  52 < 1  P.  ELO  3  150  43  B'"DEEP  548.43  25.76  5  A"SFC  46.03  2.16  47  ELO  10  1 <1  53  P.  ELO  5  30  A"SFC  0.37  4  33  P.  7.80  36  6  36  P.  ELO  5  50  A"SFC  12.46  •  2  37  P.  ELO  5  100  0.59  D'TRANS  34.97  1.64  P.  ELO  5  200  54  C DEEP  56.68  2.66  53  ELO  5  300  47  P.  C DEEP  114.75  5-39  P.  ELO  10  47  7  53  A"SFC  P.  ELO  7  30  P.  ELO.  7  50  P.  ELO  7  100  P.  ELO  7  200  P.  ELO  7  300  C DEEP  P.  ELO  7  500  P.  ELO  P.  ELO  P. P.  P.  E" TRANS  24  29  51  45  51  49  22  33  23  4 19 2  6 11 4 30  33  4  17  43  2  16  45  1  3.83  0.18  59  41  A"SFC  O.95**  0.05  40  60  D'TRANS  1.22*  0.06  62  38  D'TRANS  9.26  0.44  57  43  D"'DEEP  27.77  1.30  65.24  3.06  D"'DEEP  9.37  9  10  A"SFC  9  30  ELO  9  ELO  53  47 49  0.44  51 46  54  2.38*  0.11  60  1.09**  30  A / D TRANS  0.05  50  6.21  25  75  D'TRANS  0.29  61  9  100  D'TRANS  14.39  0.68  39 45  55  53  47  51  49  66  22  11  51  8  P.  ELO  9  200  D"'DEEP  41.17  1.93  P.  ELO  9  350  D"'DEEP  87.22  4.10  P.  ELO  11  30  A / D TRANS  P.  ELO  11  50  D'TRANS  10.54  49.50  41  P.  ELO  11  100  D'TRANS  17.25  0.81  48  ELO  11  200  52  P.  D"'DEEP  56.75  2.67  52  48  1.25*  0.06  10  190  MONTH:  OCTOBER  1974  SPECIES GROUP: MIGRANTS (Cont'd) SPECIES  STN  z  WATER  n/m3  I  M.  PAC  QG  %  1  REGIME  10  E'SFC  31.32  10.47  13.75  COMPOSITION  2  3  OF CO? EPCDITES  4a* 49 5* -  5 ? 60* 65, 27  22  15  5  17  19  18  30  64  14  8  9  14  13  4.60  23  24  16  5  6  22  7  M.  PAC  QC  30  E'SFC  M.  PAC  QC  50  E'SFC  11.35  3-79  M.  PAC  QC  100  E" T R A N S  15.25  5.10  2  1  11  8  M.  PAC  1  10  A'SFC  1.86  0.62  19  12  25  38  M.  PAC  1  30  A'SFC  10.12  3.38  45  21 29  M.  PAC  1  50  B"TRANS  11.15  3-73  32  38 29  M.  PAC  1  100  B '"DEEP  128.72  43.02  M.  PAC  1  200  B '"DEEP  8.62  2.88  M.  PAC  3  10  A'SFC  3.90*  1.30 •  M.  PAC  3  30  A'SFC  1.98  0.66  43  21 36  M.  PAC  3  50  A'SFC  9.26  3.09  55  18 22  M.  PAC  3-  100  B"'DEEP  124.86  41.73  M.  PAC  3  150  B"'DEEP  16.98  5.68  M.  PAC  5  10  A"SFC  7.69  2.57  M.  PAC  5  30  A"SFC  0.67**  0.22  75 25  M.  PAC  5  50  A"SFC  2.03*  0.68  63  M.  PAC  5  100  D'TRANS  14.39  4.81  M.  PAC  5  200  C  DEEP  12.24  4.09  M.  PAC  5  300  C  DEEP  4.02  1.34  M.  PAC  7  10  A"SFC  1.91  0.64  9  18  M.  PAC  7  30  A"SFC  1.71*  0.57  33  56  M.  PAC  7  50  D'TRANS  0.10  100  M.  PAC  7  100  D'TRANS  42.95  14.35  D"'DEEP  4.02  1.34  1.46  0.49  0.31**  8 17  10 47  32  25  9 33  8  6 5  23  20  16  24  28  32  27  13  17  33  2  3  24  20  12  26  78  22  61  18  28 37  36 32 9  12  100 73  11 100  M.  PAC  7  200  M.  PAC  7  300  C  M.  PAC  7  500  D"'DEEP  1.70  0.57  M.  PAC  9  10  A"SFC  3.09  I.03  M.  PAC  9  30  A/D  8.17  M.  PAC  9  50  D'TRANS  1.08**  M.  PAC  9  100  D'TRANS  8.22  2.75  M.  PAC  9  200  D"'DEEP  3.70  1.24  M.  PAC  9  350  D"'DEEP  2.20  0.74  M.  PAC  11  10  A"SFC  6.O3  2.02  M.  PAC  ll  30  A/D  13.91  4.65  M.  PAC  11  50  D'TRANS  5.68  1.90  M.  PAC  11  100  D'TRANS  O.96*  O.32  38  62  M.  PAC  11  200  D"'DEEP  O.65**  0.22  40  60  DEEP  TRANS  TRANS  88  12  9  9  82  18  18  18  46  30  16  2.73  17  30  O.36  50  50 13  87  29  21  29  21  27  27  46  12  20  68  8  86  54  6 3  6  9  53  65  18  191  MONTH: DECEMBER 1974 SPECIES GROUP: SUMMER SURFACE: ABSENT FROM SAMPLES SPECIES GROUP: SURFACE/TRANSITION n/V  I  % COMPOSITION CF. COPEPODITES 2 3 4o* 4 ? 5 ^ 5? 60* 6c.  SPECIES  STN  z  WATER REGIME  A. CLAU  3  10  A'SFC  5.10  1.50  100  A. CLAU  7  30  D'TRANS  O.20*»  0.06  100  A. CLAU  7  50  D'TRANS  0.42**  0.12  1  100  A. LONG  QC  10  E'SFC  15-97  2.90  18  A. LONG  23-75  4.31  26  74  5-95  57  43  O.58  100  QC  30  E'SFC  A. LONG  QC  50  E" TRANS  A. LONG  QC  100  A. LONG  3  10  A'SFC  A. LONG  3  30  A'SFC  A. LONG  3  50  A. LONG  3'  100  A. LONG  7 7  A. LONG  .  E" TRANS  32.79 3.20**  82  13.88  100  6.05*  1.10  100  B"TRANS  9-72  1.76  100  B"TRANS  8.94  1.62  100  10  A"SFC  5.66  1.03  100  30  D'TRANS  3-56  O.65  100  76.50  A. LONG  7  50  D'TRANS  2.99  0.54  100  A. LONG  7  100  C'TRANS  2.53*  0.46  100  0.27**  0.05  100  A. LONG  7  300  A. LONG  C"'DEEP  9  10  A"SFC  0.3O**  0.05  100  A. LONG  9  30  D'TRANS  2.56*  0.46  100  T. DISC  QC  10  E'SFC  1.85  0.62  T. DISC  QC  30  E'SFC  1.25**  0.42  T. DISC  QC  50  E" TRANS  4.68**  1-57  T. DISC  QC  100  E" TRANS  3.20**  1.0.8  100  T. DISC  3  10  A'SFC  4.74  1-59  69  31  T. DISC  3  30  A'SFC  4.70*  1.58  86  14  T. DISC  3  50  B"TRANS  1.82** 0.61  100  T. DISC  3  100  B"TRANS  2.55*  0.86  7  30  D'TRANS  0.40**  O.13  T. DISC  8  54  38  100 100  33  67  - 50 -  50  SPECIES GROUP: TRANSITI ON/DEEP SPECIES A. DIV A. DIV A. DIV  STN  z  3  '30  WATER REGIME  n/m3  A'SFC  O.67**  I  1  % COMPOSITION OF CO?'EPODITSS 2 3 4c? 4o 5? 60* 6$ 100  4.51  3  50  B"TRANS  2 . 4 3 * * 16.36  3  100  B'TRANS  2.13** 14.34  100 100  A. DIV  3  150  B"TRANS  2.42** 16.30  A. DIV  11  30  D'TRANS  O.38**  2.56  E. JAP  7  50  D'TRANS  0.84**  1.94  E. JAP  7  100  D"TRANS  2.02*  4.66  E. JAP  7  300  C'DEEP  0.13**  0.30  E. JAP  D'" DEEP  7  500  0.13**  O.30  E. JAP  9  10  A"SFC  3-85  8.88  E. JAP  9  30  D'TRANS  1.80*  4.15  100  66  34  25  12  50 25  25 12  12 39 100 100  8  56 12 57  4  8  4  28 15  8  192  MONTH: DECEMBER 1974 SPECIES GROUP: TRANSITION/DEEP(Cont'd') SPECIES  STN  E. JAP  z  n/m3  WATER REGIME  I  1.10**  2.54  20  40  0.78*  1.80  50  50  11  40  49  16  41  16  9  50  D'TRANS  E. JAP  9  200  D'TRANS  E. JAP  11  10  A "SFC  0.24**  E. JAP  11  30  D'TRANS  5-65  13.04  E. JAP  11  50  D'TRANS  2.66  6.14  E. JAP  '  % COMPOSITION: OF CC? EPCDITES 2 3 4o* 4o. 5? 60* 60  <  1  20  20 50  0.55 11  5  50  11  ll  100  D'TRANS  0.81*  1.87  28  44  SCOL. M  7  50  D'TRANS  1.70*  8.67  12  35  SCOL. M  7  300  C'DEEP  0.79*  4.03  SCOL. M  9  10  A" SFC  1.80  9.18  SCOL. M  9  30  D'TRANS  I.03**  5.25  SCOL. M  9  50  D'TRANS  1.10**  5.61  20  M. OKH  3  150  B"TRANS  5.80  0.57  100  M. OKH  7  100  ' C'TRANS  O.51**  0.05  100  M. OKH  7 '  300  C'DEEP  26.70  2.62  M. OKH  7  500  D"'DEEP  17.00  1.67  M. OKH  9  100  D'TRANS  9  10  52  45  2.06*  0.20  M. OKH  9  200  D'TRANS  10.35  1.02  M. OKH  9  350  D DEEP  12.30  1.21  M. OKH  11  100  D'TRANS  M. OKH  m  0.23**  28 50  16  50  37  84 33  67  25  75  40  40  36  34  30  40  36  24  13  1  3 100  0.02 22  16  38  24  11  200  D'TRANS  16.79  1.65  C. GRAC  3  150  B"TRANS  10.16  43.64  C. GRAC  7  100  C'TRANS  0.51**  2.19  100  C. GRAC  100  11  200  D'TRANS  0.24**  1.03  H. TAN  7  30  D'TRANS  0.59**  2.11  H. TAN  80  24  14  8  55  100  7  500  D"'DEEP  O.38**  1.36  34  66  H. TAN  9  10  A" SFC  0.90*  3.21  17  83  H. TAN  9  30  D'TRANS  0.51**  1.82  100  H. TAN  9  50  D'TRANS  0.44**  1.57  100  H. TAN  9"  100  D'TRANS  1.03**  3.68  75  25  H. TAN  9  200  D'TRANS  0.52**  1.86  75  25  H. TAN  11  10  A "SFC  0.12**  0.43  H. TAN  11  30  D'TRANS  O.38**  I.36  34  66  100  H. TAN  ll  50  D'TRANS  O.56**  2.00  25  75  H. TAN  11  100  D'TRANS  0.24**  0.86  50  50  H. TAN  ll  200  D'TRANS  O.36**  1.29  33  GAD. C  7  50  D'TRANS  0.21**  1.58  GAD. C  7  300  C"'DEEP  1.56  GAD. C  7  500  D"'DEEP  0.88*  6.64  GAD. C  9  10  A" SFC  0.60**  4.52  GAD. C  9  350  D"'DEEP  0.57**  4.30  GAD. C  11  100  D'TRANS  0.47**  3.54  GAD. C  11  200  D'TRANS  O.36**  2.71  67 100  11.76 28  27  73  15  57 100  40 26  48  26 100  60  193  MONTH: DECEMBER 1 9 7 4 SPECIES GROUP: TRANSITION/DEEP (Cont'd) SPECIES  STN  z  WATER REGIME  n/m3  I  % COMPOSITION OF COPEPODITES 2 3 40" ho 50* 50. 60* 6$  1  CAN. C  11  100  D'TRANS  0 . 4 7 * *  9.22  CAN. C  11  200  D'TRANS  0.12**  2 . 3 5  26  74 100  SPECIES GROUP: INLET DEEP WATER REGIME  n/m3  300  C"'DEEP  3-71  500  D*"DEEP  8.31  30  D'TRANS  1.29**  9  50  D'TRANS  9  100  D'TRANS  7.43  I6.83  9  200  D'TRANS  0.91*  2.06  SPINO  9  350  D"'DEEP  6.50  SPINO  11-  50  D'TRANS  0.70**  SPINO  11  100  D'TRANS  25.43  57.61  3  SPINO  11  200  D'TRANS  5.84  13.23  4  SCAPH  7  300  C*"DEEP  0.80*  SCAPH  7  500  D DEEP  3.15  SCAPH  9  30  D'TRANS  SCAPH  9  50  SCAPH  9  SCAPH  STN  z  SPINO  7  SPINO  7  SPINO  9  SPINO SPINO SPINO  SPECIES  14.89  I  1  % COMPOSITION OFCC? EPCDITES 6d* 65. 2 3 4cf 4g 5# 5 $  8.41  18  29  I8.83  18  18  20  2.92  1  33-73  7  3  60 1  36 20 93  5  10  7  73  29  29  42  30  38  32  20  20  20  40  14.73 1.59  53 27  4 -  12  16  65  8  6  31  39  12  34  16  19.81  8  16  20  20  1.28**.  8.05  40  D'TRANS  1.55*  9.75  100  D'TRANS  2.83*  9  200  D'TRANS  SCAPH  9  350  SCAPH  11  SCAPH  11  -  5.03  28  28  27  9  27  0.91*  5.72  29  14  14  D"'DEEP  1.02*  6.42  100  D'TRANS  1.74  IO.94  200  D'TRANS  4.41  27.74  11 7 3  32 20  40  17.80  -  50 4  20  13  14  30  44 37  14  29  23  67  33  27  8  46  RACO  7  500  D "' DEEP  O.13**  17.81  100  RACO  11  200  D'TRANS  O.36**  49.32  100  SPECIES GROUP: MIGRANTS SPECIES  STN  E. BUN  z  WATER REGIME  n/m3  I  1  % COMPOSITION OF COPEPODITES 60* 6c. 2 3 4<f 495c/ 5 ?  7  300  C"'DEEP  0.27**  11.84  E. BUN  9  350  D"'DEEP  0.22**  9.65  50  50  E. BUN  11  200  D'TRANS  0.60**  26.32  40  60  CAL. P  QC  50  E" TRANS  2.34**  41.34  - 100 -  CAL. P  9  200  D'TRANS  O.I3**  2.30  - 100 -  CAL. M  QC  10  E'SFC  1.71  0.04  - 100 -  CAL. M  QC  30  E'SFC  2.50**  0.05  - 100 -  QC  100  E" TRANS  3.20**  0.07  - 100 -  CAL. M  100  3  50  B"TRANS  0.61**  0.02  CAL. M  3  100  B"TRANS  8.94  0.20  - 100 -  CAL. M  3  150  B"TRANS  5.56  - 100 -  CAL. M  7  30  D'TRANS  0.20 * * < 0 . 0 1  - 100 -  CAL. M  7  50  D'TRANS  0.21** <0.01  - 100 -  CAL. M  255.32  100  194  MONTH; DECEMBER 1974 SPECIES GROUP: MIGRANTS (Cont'd) SPECIES  STN  z  WATER REGIME  n/m3  I  1  % COMPOSITION OF COPEPODITES 2  3  4o* 4$ 50* 5$  7 7  300  C "' DEEP  24.54  0.53  - 100 -  500  D"'DEEP  1.76  0.04  - 100 -  CAL. M  9  10  A" SFC  0.15**  <0.01  - 100 -  CAL. M  9  200  D'TRANS  1.57  0.03  - 100 -  CAL. M  9  350  D"*DEEP  0.46  - 100 -  CAL. M CAL. M  21.0?  CAL. M  ll  100  D'TRANS  0.23**  <0.01  - 100 -  CAL. M  11  200  D'TRANS  7.86  0.17  - 100 -  P. ELO  QC  10  E'SFC  468.84  22.02  P. ELO  QC  30  E'SFC  360.00  16.91  P. ELO  QC  50  E" TRANS  568.96  P. ELO  QC  100  E" TRANS  P. ELO  3  10  P. ELO  3  30  P. ELO  3  50  P. ELO  3  100  P. ELO  150  P. ELO  3 7  10  P. ELO  7  P. ELO P. ELO P. ELO P. ELO  A'SFC  1  l  49  46  1  4  63  29  26.72  2  2  69  26  235.33  11.05  5  43.72  2.05  12  3 62 27 5 48 23  <1  60" 6$  <1  3 2 <1  1  2 12  935.50  43.94  5  2  56  37  <1  1381.90  64.91  1  2  32  <1  B"TRANS  520.60  65  24.45  <1  2  58  40  <1  B"TRANS  156.20  7.30  2  2  32  63  A" SFC  6.29  O.3O  30  D'TRANS  2.98  0.14  3 55 7 - 60  20  13  7  50  D'TRANS  9.19  0.43  19  2  7 7 7  C'TRANS  32.40  79  100  1.52  2  300  C'DEEP  103.98  4.88  <1  500  D"'DEEP  32.61  1.53  A'SFC . B"TRANS  P. ELO  9  10  A" SFC  0.60**  O.03  P. ELO  9  30  D'TRANS  4.10  0.19  P. ELO  9  50  D'TRANS  26.67  P. ELO  1  5  -  35  2  70  25  1  l  47  52  <1  32  66  75  25  12  38  31  1.25  45  55 45  19  3  2  9  100  D'TRANS  5.64  0.27  55  P. ELO  9  200  D'TRANS  40.32  I.89  54  46  P. ELO  9  350  D"'DEEP  74.07  3.48  52  48  P. ELO  11  10  A" SFC  3.61  0.17  55  45  P. ELO  11  30  D'TRANS  6.16  0.29  39  47  P. ELO  11  50  D'TRANS  IO.76  O.51  52  48  P. ELO  11  100  D'TRANS  7.85  0.37  54  46  P. ELO  11  200  D'TRANS  112.86  5.30  49  51  M. PAC  QC  10  E'SFC  M. PAC  QC  50  E" TRANS  23.36*  7.77  30  60  10  M. PAC  QC  100  E" TRANS  32.20  IO.76 .  10  30  60  M. PAC  3  30  A'SFC  2.92  38  62  M. PAC  3  50  B"TRANS  9.72  3-25  M. PAC  3 3 7  100  B"TRANS  102.18  34.15  150  B"TRANS  131.81  44.05  10  A" SFC  7  30  D'TRANS  M. PAC M. PAC M. PAC  0.14**  8.74  14  100  O.05  1.10*  0.37  2.99  1.00  50  50  3  10  80  3  3  26  5 24  57  2 10  34 43  34  46  13  7  195  MONTH; DECEMBER 1974 SPECIES GROUP: MIGR All TS (Cont'd) SPECIES  STN  z  WATER REGIME  n/m3  I  % COMPOSITION OF  1 2  3  4cf  4o.  c o?:EPODITES rf 5? 60* 60.  7  50  D'TRANS  4.00  1.34  36  M. PAC  7  100  C'TRANS  0.51**  0.05  100  M. PAC  7  300  C"'DEEP  3.06  1.02  9  M. PAC  7  500  D"'DEEP  3.15  1.05  8  M. PAC  9  10  A" SFC  14.56  4.8?  M. PAC  9  30  D'TRANS  29.74  9.94  16.89  5.65  M. PAC  M. PAC  9  50  D'TRANS  M. PAC  9  100  D'TRANS  0.26**  0.09  M. PAC  9  200  D'TRANS  1.18*  0.39  M. PAC  9  350  D"'DEEP  0.68*  0.23  M. PAC  11  10  A"SFC  24.93  M. PAC  11  30  D'TRANS  32.91  11.00  M. PAC  11  50  • D'TRANS  14.40  4.81  M. PAC  11-  100  D'TRANS  3.12  1.04  M. PAC  11  200  D'TRANS  1.43  0.48  MONTH: ABSEN'T  SPECIES  GROUP:  SUMMER  SPECIES  GROUP:  SURFACE/TRANSITION  SPECIES  STN  z  SURFACE:  WATER  64 26  65 92  2  70  3  25  5  23  28  24  18  2  18  27  24  12  16  3 100 100  8.33 .  50  16  9  18  10  29  34  8  14  17  34  27  3  1  45  51  45  55  34  100  FEBRUARY 1975  FROM SAMPLES  n/m3  I  REGIME  1  %  2  COMPOSITION  3  OF  COFjI P O D I T E S ' 60*  4o" 4o. 50" 5$  6§_  A.  LONG  QC  10  E'SFC  12.22  2.22  100  A.  LONG  QC  30  E'SFC  3.30  0.60  100  A.  LONG  QC  50  E'SFC  1.77  0.32  100  A.  LONG  QC  100  E"L0WER  6.24  1.13  100  A.  LONG  1  10  A  SFC  4.04  0.73  A.  LONG  1  30  A  SFC  13.01  2.36  100 4  96  A.  LONG  1  50  A  SFC  9.73  1.77  100  A.  LONG  1  100  A  SFC  5.71  1.04  100  A.  LONG  1  200  B"TRAN~S  6.93  1.26  100  A.  LONG  3  10  A  SFC  8.19  1.49  100  A.  LONG  3  30  A  SFC  11.58  2.10  100  A.  LONG  3  50  A  SFC  8.18  1.48  100  A.  LONG  3  100  F  TRANS  4.23  0.77  100  A.  LONG  3  150  B"TRANS  4.69  0.85  100  A.  LONG  5  10  A SFC  3.66  0.66  100  A.  LONG  5  30  A SFC  3.30  0.60  100  A.  LONG  5  50  A  3-47  O.63  100  A.  LONG  5  100  A.  LONG  7  10  A SFC  A.  LONG  7  30  A.  LONG  7  50  SFC  3-97  0.72  100  I.63  O.30  100  A SFC  3-95  0.72  A SFC  4.07  0.74  F  TRANS  100 . 100  196  MONTH: FEBRUARY 1975 SPECIES GROUT: SURFACE/TRANSITION (Cont'd) SPECIES  STN  z  WATER  n/m3  I  REGIME  1  %  COMPOSITION  2  3  OF COPEPODITES  4o* 4o 5 o ^ 5v  60* 69.  2.68*  0.49  100  A SFC  3.28  0.60  100  30  A  5.88  1.07  100  A. LONG  7  100  A SFC  A. LONG  9  10  A. LONG  9  A. LONG  9  50  A SFC  6.14  1.11  100  9  100  A SFC  5.80  1.05  100  E"LOWER  0.20**  0.07  A  SFC  1.98  0.67  SFC  A. LONG  100  QC  SFC  100  T.  DISC  T.  DISC  1  10  T.  DISC  1  30  A  2.53  0.85  T.  DISC  1  50  A SFC  0.4-3**  0.14  100  T.  DISC  1  100  A SFC  5-71  1.92  20  T.  DISC  1  200  B"TRANS  3-70  1.24  33 67  T.  DISC  3  10  A SFC  O.38**  0.13  61  T.  DISC  3.  30  ASFC  1.96  0.66  45  55  T.  DISC  3  50  ASFC  4.09  1.38  47  53  T.  DISC  3  100  F  TRANS  5.43  I.83  42 5 3  T.  DISC  3  150  " B"TRANS  5-67  1.91  41 59  T.  DISC  5  10  2.97  0.94  55 45  T.  DISC  T.  DISC  A SFC  5 13 14  5  39  43  57  24 80 39  5  30  A SFC  1.60  0.54  40 60  5  50  A SFC  3.22  1.08  58  42  4.67  1.57  58  42  T.  DISC  5  100  T.  DISC  7  10  ASFC  1.96  0.66  61  39  9  10  A SFC  2.02*  0.68  62  33  T.  DISC  SPECIES SPECIES  GROUP: STN  F  TRANS  TRANSITION/DEEP  z  WATER  n/mJ  I  0.95**  40.77  100  REGIME  M. PYG  7  300  C  DEEP  1  %  COMPOSITION  2  3  OF COPEPODITES  4o* 4o  5c? 5?  60* 6$  M. PYG  7  500  C  DEEP  O.35**  15.02  100  M. PYG  9  200  C  DEEP  0.91**  39.06  100  M. PYG  9  350  C  DEEP  0.19**  8.15  100  A.  DIV  QC  30  E'SFC  0.58*  3-91  A.  DIV  QC  50  E'SFC  .1.17  7.88  A.  DIV  QC  100  E"LOWER  6.94  46.73  A.  DIV  1  30  ASFC  1.08*  A.  DIV  1  50  A SFC  1.00*  A.  D I V  1  100  A  SFC  1.85  12.46  A.  DIV  1  200  B"TRANS  5.21  35.O8  A.  DIV  3  30  A SFC  0.30** 0.57**  A.  DIV  A.  DIV  A.  DIV  A.  DIV  3  50  A  3  100  F  3  150  5  50  SFC TRANS  B"TRANS  100 42 25 6  4  7.27  33  33  6.73  57  29  5  11 20  87.27  10 16  32.79  A.  DIV  5  200  C  DEEP  4.87  7  42  17 13  14  4  23  9  6  45  100  1.68 12.39  TRANS  15  40 20  0.25**  F  88  3.84  12.96  100  6  67  ASFC  5  14  6  40  21 17  DIV  61 33  33  21.14  A.  33 7  2.02  3.14  1.84  9 13  8  39 54 4  18  15  11  4  43  197  MONTH: FEBRUARY 1975 SPECIES GROUP: TRANSITION /DEEP (Cont'd) STN  z  WATER REGIME  n/m3  I  A. DIV  5  300  C DEEP  2.39  16.09  A. DIV  7  30  A SFC  1.05**  7.07  A. DIV  7  50  A SFC  1-35**  9.09  A. DIV  7  100  A SFC  1.67**  11.25  A. DIV  7  200  D TRANS  4.92  33.13  A. DIV  7  300  C DEEP  3.22  21.68  A. DIV  SPECIES  1  %  2  COMPOSITION! OF COPEPODITES 3 4c? 4o_ 5c? 55 6<f 21  21  20  14 40  20  20  40  18  8  44  36  30  12  35  6  500  C DEEP  1.04*  7.00  9  30  A SFC  1.47**  9.90  A. DIV  9  50  A SFC  1.02**  6.87  67  A. DIV  9  200  C DEEP  O.91**  6.13  80  A. DIV  9  350  C DEEP  3.54  E. JAP  QC  50  E'SFC  0.10**  0.23  E. JAP  1  100  A SFC  0.12**  0.28  E. JAP  50  47  200  B"TRANS  0.18**  0.42  3  10  A SFC  0.08**  0.18  E. JAP  3  50  A SFC  0.34**  0.78  E. JAP  3  100  F TRANS  3.47  8.01  59  41  E. JAP  3  150  B"TRANS  1.11*  2.56  44  56  E. JAP  5  50  A SFC  0.24**  0.55  50  E. JAP  5  100  F TRANS  0.71**  1.64  E. JAP  5  200  C DEEP  1.62*  3.72  E. JAP  5  300  C DEEP  2.91  6.71  E. JAP  7  50  A SFC  0.54**  1.25  100  E. JAP  7  100  A SFC  0.6?**  1.55  100  E. JAP  7  200  D TRANS  0.79**  1.82  E. JAP  C DEEP  0.95**  2.19  7  500  C DEEP  3.47  8.01  E. JAP  9  50  A SFC  I.36**  3.14  E. JAP  9  100  A SFC  2.05*  4.73  E. JAP  34 25  33 20 26  16  10  100  1  300  16 75  100  E. JAP  7  20 40  12  7  23.84  36 40  60  A. DIV  E. JAP  7  50  50  100 100  50 100 22  56  11  11  100  25  25  50  100 55  10  35 75 33  25  67  9  200  C DEEP  0.18**  0.42  E. JAP  9  350  C DEEP  1.87*  4.31  SCOL. M  QC  •100  E"L0WER  O.50**  2.55  100  SCOL. M  1  100  A SFC  0.74*  3-77  100  SCOL. M  1  200  B"TRANS  0.28**  1.43  SCOL. M  3  150  B"TRANS  0.49**  2.50  24  76  SCOL. M  7  50  A SFC  1.62*  8.26  33  17  50  SCOL. M  7  100  A SFC  1-33**  6.78  25  75  SCOL. M  9  50  A SFC  1.70**  8.67  20  20  60  SCOL. M  9  100  A SFC  2.38*  12.14  29  29  M. OKH  1  200  B"TRANS  2.74  0.27  10  38  M. OKH-  3  150  B"TRANS  0.62**  0.06  200  C DEEP  6.14  0.60  9  6  M. OKH  5  100 100  100  43 52 60  40  35  50  198  MONTH: FEBRUARY 1975 SPECIES GROUP: TRANSITION/DEEP (Cont'd) STN  z  M. OKH  5  300  M. OKH  7  30  A SFC  M. OKH  7  50  A SFC  M. OKH  SPECIES  WATER REGIME  n/m3  C DEEP  22.78  2.08*  I  % COMPOSITION OF COPEPODITES 2 3 4o* 4$ 5<? 6c? 6g  2.24  2  41 46  11  0.20  100  20.33  2.00  100  12.71  1.25  5-90  O.58  7  100  A SFC  M. OKH  7  200  D TRANS  M. OKH  7  300  C DEEP  5.10  0.50  M. OKH  7  500  C DEEP  36.74  9  200  C DEEP  4.18  3.61  22.95  M. OKH  1  M. OKH  9  350  C DEEP  C. GRAC  1  100  A SFC  0.25**  C. GRAC  100  3  0.41  33  17  83  59  41  48  17 100  79  2.25  21  100  1.07  1  200  B"TRANS  0.66*  2.84  42  58  C. GRAC  3  150  B"TRANS  1.73  7.43  57  43  C. GRAC  5  300  C DEEP  0.68**  2.92  75  25  H. TAN  5-  300  C DEEP  O.51**  H. TAN  7  500  C DEEP  O.35**  1.25  H. TAN  9  200  C DEEP  0.73**  2.61  GAD. C  5  200  C DEEP  O.36**  GAD. C  5  300  C DEEP  O.85**  GAD. C  7  100  A SFC  1.33**  10.03  50  GAD. C  7  200  D TRANS  0.98**  7.39  40  GAD. C  7  300  C DEEP  O.76**  5.73  25  GAD. C  7  500  C DEEP  1.21*  9.13  14 14 72  GAD. C  9  200  C DEEP  O.36**  2.71  GAD. C  9  350  C DEEP  0.75**  •5.66  CAN. C  1  100  A SFC  0.12**  CAN. C  1  200  B"TBANS  1.32  CAN. C  3  30  A SFC  0.69*  13.53  71 29  CAN. C  3  150  B"TRANS  2.09  40.98  CAN. C  5  C DEEP  1.08*  23  200  21.18  33 67  CAN. C  5  300  C DEEP  1.19*  23.33  43  CAN. C  7  200  D TRANS  0.59**  11.57  CAN. C  7  300  C DEEP  1.90*  37.25  CAN. C  7  500  C DEEP  1.39*  27.25  38  CAN. C  9  350  C DEEP  2.06  40.39  27 -  WATER REGIME  n/m3  I  1.82  • 33  67 100  25  75 100  2.71  6.41  20  20 25  60 25  •20  40  25  50 100  2.35  100  25.88  14  7  - • 18 - 6 18 14 20  4  36 -  75  29  50  12  23  43 66  . 30 20  25  34  30  12  25  25  9  9  18  SPECIES GROUP: INLET DEEP SPECIES  STN  z  SPINO  5  200  C DEEP  4.51  10.22  SPINO  5  300  C DEEP  9.07  20.55  SPINO  7  200  D TRANS  10.23  23.18  SPINO  7  300  C DEEP  9.08  SPINO  7  500  C DEEP  14.21  SPINO  9  200  C DEEP  9  350  C DEEP  SPINO  7.82 13.06  20.57 32.19  1  % COMPOSITION OF COPEPODITES 2 3 4o" 4o. 6cf 6 5°* 5? 12 2  10  8  20  6  2  40  47  23  29  2  46  56  6  15  8  4  56  12  7  18  12  6  44  7  26  14  2  51  10  4  16  20  4  46  17.72 29.59  4  4  ?  199  MONTH: FEBRUARY 1975 SPECIES GROUP: INLET DEEP (Cont'd) SPECIES SCAPH  WATER REGIME  n/ra3  200  C DEEP  0.72**  4.53  C DEEP  0.85**  5-35  STN 5  "T  % COMPOSITION OF COPEPODITES 2~^~3 40* 4c. 50" 5% 6o" 50  25  25  6c.  60  40  8  17  33  8 33  13  27  33  7 20  SCAPH  5  300  SCAPH  7  200  D TRANS  2.37  SCAPH  7  300  C DEEP  0.57**  SCAPH  7  500  C DEEP  2.60  SCAPH  9  200  C DEEP  O.36**  2.26  100  SCAPH  9  350  C DEEP  0.93**  5-85  100  RACO  7  500  C DEEP  O.35**  47.95  14.91  100  3-58 16.35  100  SPECIES GROUP: MIGRANTS % COMPOSITION OF COPEPODITES 2 3 46* 4c. 50* 5§ 6c? 69  STN  z  WATER REGIME  n/m3  E. BUN  7  300  C DEEP  0.19**  8.33  E. BUN  9  200  C DEEP  O.36**  15-79  E. BUN  9'  350  C DEEP  O.37**  16.23  - 100 -  CAL. P  9  350  C DEEP  0.37**  6.54  - 100 -  CAL. M  QC  10  E'SFC  0.59*  0.01  - 100 -  5.15  0.11  -  77 - 21  2  8.43  0.18  -  56 - 41  3  18.33  0.40  -  63 - 29  8  SPECIES  CAL. M  QC  30  E'SFC  CAL. M  QC  50  E'SFC  CAL. M  QC  100  CAL. M  1  10  A SFC  0.09**  CAL. M  1  30  A SFC  5.06  E"LOWER  I  1  100 - 100 -  - 100 -  <0.01 0.11  -  59 - 36  5  55 - 38  7  CAL. M  1  50  A SFC  17.74  0.39  -  CAL. M  1  100  A SFC  25.06  0.55  -  70-27  2  CAL. M  1  200  B"TRANS  31.59  O.69  -  77 - 21  2  A SFC  0.46*  -  50-50  30  A SFC  0.20**  <0.01  -  50-50  3  50  A SFC  0.22**  <0.01  CAL. M  3  100  F TRANS  CAL. M  3  150  B"TRANS  CAL. M  5  10  A SFC  CAL. M  5  30  A SFC  0.11**  <0.01  - 100 -  CAL. M  5  50  A SFC  0.12**  <0.01  - 100 -  CAL. M  5  200  C DEEP  12.29  CAL. M  5  300  C DEEP  17.46  CAL. M  7  10  A SFC  0.11**  CAL. M  7  30  A SFC  1.04**  0.02  -  CAL. M  7  50  A SFC  1.35**  0.03  -  60-40  CAL. M  7  100  A SFC  3.34*  0.07  -  50-30  CAL. M  7  200  D TRANS  29-72  0.65  -  54 - 37  CAL. M  7  300  C DEEP  6.81  0.15  -  69-31  CAL. M  7  500  C DEEP  11.79  0.26  -  78-22  CAL. M  9  30  A SFC  1.11**  0.02  -  67-33  CAL. M  9  50  A SFC  0.68**  0.01  - 100 -  3  10  CAL. M  3  CAL. M  CAL. M  32.65 • 43.65 0.39**  0.01  1  -  50-50  0.71  -  76 - 20  4  0.95  -  70 - 26  4  -  74 -  0.01  0.27  -  54 - 43  0.38  -  35-65  <0.01  26  3  - 100 60-20  20 20 9  200  MONTH: FEBRUARY 1975 SPECIES GROUP: MIGRANTS (Cont'd) SPECIES  STN  z  WATER REGIME  I 1  CAL. M  9  50  A SFC  0.68**  0.01  CAL. M  9  100  A SFC  2.04*  0.04  CAL. M  9  200  C DEEP  14.73  0.32  CAL. M  9  350  C DEEP  12.12  0.26  P. ELO  % COMPOSITION OF COPEPOEUTES 2 3 4o* 4$ 5a* 5?- 6c/ 6  ?  - 100 -  -  -  50 - 33  17  53 - 33  14  71 - 29  QC  10  E'SFC  33.80  1-59  47  P. ELO  51  QC  30  E'SFC  145.58  6.84  P. ELO  49  QC  50  E'SFC  115.61  51  5.44  QC  100  51  48  P. ELO  E"LOWER  131.42  6.17  46  48  P. ELO  1  10  A SFC  16.67  0.78  P. ELO  1  43  30  A SFC  173-02  8.I3  40  P. ELO  1  50  A SFC  81.83  3.84  20  29  302.74  14.22  2 2 1  4  37  7  12  46  12  3  30  21  P. ELO  1  100  A SFC  47  5  2  1  200  45  P. ELO  B"TRANS  91.46  4.30  41  20  P. ELO  5  3  10  34  A SFC  78.09  3-67  41  42  8  9  P. ELO  3  30  A SFC  168.79  7.93  40  46  10  4  A SFC  17  2  P. ELO  3  50  267.61  12.57  46  P. ELO  100  35  3  F TRANS  119.73  5.62  15  7  3  150  37  41  P. ELO  B"TRANS  129.10  6.06  41  10  2  P. ELO  47  4  5  10  A SFC  22.86  1.07  40  50  6  P. ELO  5  30  A SFC  27.91  37  9  5  50  A SFC  159.36  43  11  P. ELO  1-31 7.48  44  46  P. ELO  5  100  7  4  F TRANS  355.25  16.69  38  44  14  4  P. ELO  5  200  C DEEP  18.62  0.87  48  16  1  P. ELO  5  300  35  C DEEP  37-16  1..75  6  45  7  10  49  P. ELO  A SFC  6.10  0.29  34  48  14  P. ELO  7  30  A SFC  9.77  0.46  40  7  50  A SFC  51.23  53  7  P. ELO  2.41  41  20  P. ELO  7  100  37  A SFC  133.11  6.25  7  200  47  3 2  P. ELO  31  20  D TRANS  189-37  8.89  28  20  P. ELO  300  19  34  7  C DEEP  59.92  2.81  25  C DEEP  51.64  47  7  500  23  6  P. ELO  2.43  10  P. ELO  9  10  A SFC  P. ELO  9  • 30  A SFC  P. ELO  9  50  P. ELO  9  P. ELO  4  16  41  33  0.39  33  52  15  13.60  0.64  32  54  14  A SFC  29.01  1.36  45  100  25  19  12  A SFC  57.67  2.71  200  25  9  C DEEP  23  43  9  56.72  2.66  16  26  21  P. ELO  36  9  350  C DEEP  48.32  2.27  22  QC  10  E'SFC  10.71  47  24  M. PAC  3-58  4  6  M. PAC  QC  30  E'SFC"  5-73  1.92  M. PAC  QC  50  E'SFC  8.35  2.79  M. PAG  QC  100  E"LOWER  2.42  0.81  M. PAC  1  50  A SFC  4.87  1.63  8.33 .  1  2  3  15  9  8 87  9  88  15  85  62  38  32  44  201  MONTH: FEBRUARY 1975 SPECIES GROUP: MIGRANTS ''Cont'd) SPECIES  STN  Z  WATER REGIME  n/m-  I  5  1  % COMPOSITION OF COPEPODITES 2 3 4o* 4 j 5c/ 59 6ci* 60  M. PAC  1  100  A SFC  12.53  4.19  10  9  46  M. PAC  1  200  B"TRANS  8.91  2.74  1  2  66  M. PAC  3  10  A SFC  0.08**  0.03  M. PAC  3  100  F TRANS  O.65*  0.22  B"TRANS  M. PAC  3  150  M. PAC  5  10  M. PAC  5  M. PAC  10.48  100  4  3.50  1  58  0.19**  0.02  100  F TRANS  O.56**  0.19  5  200  C DEEP  2.17  0.73  41  M. PAC  5  300  C DEEP  1.03*  0.34  100  M. PAC  7  100  A SFC  M. PAC  7  200  D TRANS  M. PAC  7  300  C DEEP  1.71*  0.57  M. PAC  7  500  C DEEP  1.04*  0.35  M. PAC  9  30  A SFC  1.47**  0.49  M. PAC  9  100  A SFC  5.12  1.71  M. PAC  9  200  C DEEP  1.27*  0.42  9  350  C DEEP  1.68*  O.56  M. PAC  6.35  31  100 •  A SFC  17.12  35  38 100  25  2.12  16  5-72  75 59  11  3  2  11  33  74 1  93 56  16  54  25 33  13  7  20  75  27 100 22  78  MONTH: MARCH 1975 SPECIES GROUP: SUMMER SURFACE: ABSENT FROM SAMPLES SPECIES GROUP: SURFACE/TRANSITION SPECIES  STN  z  WATER REGIME  n/m3  I  1  % COMPOSITION CF COPEPODITES 2 3 4c? 49 50" 5? 6<f 1  60  A. CLAU  11  5  A SFC  2.85  0.84  100  A. CLAU  11  10  A SFC  O.56**  0.16  100  A. LONG  QC  5  E'.SFC  0.64*  0.12  100  A. LONG  QC  10  E'SFC  3-19  O.58  100  A. LONG  QC  30  E" TRANS  7.08  1.28  100  A. LONG  QC  100  A. LONG  1  5  A SFC  A. LONG  1  10  A. LONG  1  30  A. LONG  1  A. LONG  3  A. LONG A. LONG  1.71  0.31  100  12.59  2.29  100  A SFC  6.41  1.16  100  A SFC  4.84  0.88  100  50  A SFC  1.66  0.30  100  5  A SFC  6.10  1.11  100  3  10  A SFC  1.68  0.30  100  3  30  G'TRANS  3-03  0.55  100  A. LONG  3  50  C'TRANS  3.08  O.56  100  A. LONG  5  10  A SFC  1.51  0.27  100  A. LONG  5  30  G* TRANS  7.19  1.30  100  A. LONG  7  5  A SFC  0.61*  0.11  100  A. LONG  7  10  A SFC  0.28**  0.05  100  A. LONG  9  10  A SFC  2.28*  0.41  100  E"'DEEP  202  MONTH:  MARCH  1975  SPECIES GROUP: SURFACE/TRANSITION SPECIES  STN  z  WATER  n/m-  5  %  I  1  REGIME  C O M P O S I T I O N OF  2  4cf 4$  3  COPEPODITES  5<? 52  6cf  60  G'TRANS  2.05*  0.37  100  5  A SFC  3.24  0.59  100  11  10  A SFC  1.00*  0.18  100  QC  100  E"'DEEP  2.19  0.74  48  52 71  A.  LONG  9  30  A.  LONG  11  A.  LONG  T.  DISC  T.  DISC  1  10  A SFC  0.66*  0.22  29  T.  DISC  l  30 .  A SFC  1.32  0.44  75  25 50  T.  DISC  1  50  A SFC  1.10*  0.37  50  T.  DISC  1  100  A SFC  0.51**  0.17  33  67  3  5  A SFC  2.35  0.79  34  66 80  T.  DISC  T.  DISC  3  10  A SFC  0.32**  0.11  20  T.  DISC  3  30  G'TRANS  1.31*  0.44  70  30  3  50  1.95  0.66  42  58  34  66  T.  DISC  T.  DISC  3.  100  T.  DISC  5  10  C'TRANS B"TRANS  0.95*  0.32  A SFC  0.25**  0.08  100 50  50 69  T.  DISC  5  30  G'TRANS  5.22*  1.76  T.  DISC  5  50  G'TRANS  1.99  0.67  31  5  100  C'TRANS  0.29  20  T.' D I S C  11  5  SPECIES  GROUP:  T.  DISC  SPECIES  STN  A SFC  0.85** 0.26**  80 100  0.09  TRANSITION/DEEP  z  WATER  n/W  %  I  1  REGIME  COMPOSITION  2  3  OF C O P E P O D I T E S  4c? 4$ 1  5°* 5?  60* 69. 100  PYG  9  200  F"DEEP  0.43**  A. D I V  1  200  B"TRANS  8.14  54.81  6  14  2  73  6.98  47.00  23  21  4  52 43  M.  18.45  A. D I V  3  150  B"TRANS  A. D I V  5  30  G'TRANS  9.14  61.55  21  29  7  51.31  17  30  7" 46  25  11  7  A. D I V  5  200  F'TRANS  7.62  A. D I V  5  300  F"DEEP  4.07  27.41  A. D I V  7  30  G'TRANS  4.49  30.24  33  27  41  24  38  24  9  25  16  16  22 28  3  5  36  28  6  28  39  6  11  14  21  A. D I V  7  50  C'TRANS  2.94  19.80  A. D I V  7  100  F'TRANS  1.64  11.04  A. D I V  7  200  F"DEEP  8.12  54.68  A. D I V  7  300  F"DEEP  3-75  25.25  6  11  22  19-39  '6  22  17  7  500  A. D I V  9  30  G'TRANS  0.68**  A. D I V  9  100  F'TRANS  1.15**  9  200  F"DEEP  2.86  A. D I V  A. D I V  C  DEEP  2.88  14 34 6  7-74  20  30  57  43  13  37  44  56  11  50  D  DEEP  0.82*  5.52  A. D I V  11  100  D  DEEP  0.78*  5.25  DEEP  2.34 '  15.76  50  A. D I V  11  200  D  E. J A P  QC  100  E"'DEEP  0.10**  0.23 1.98  80  3.07  62  E. J A P  1  100  A SFC  E. J A P  1  200  B "TRANS  1.33*  75.  25  19.26  A. D I V  0.86**  50  50  4.58  100 20 25  21  13  5  45  203  MONTH: MARCH 1975 SPECIES GROUP: TRANSITION/DEEP (Cont'd) SPECIES  STN  z  WATER REGIME  n/m3  I  1  % COMPOSITION OF CO?EPCDITES 2 3 40* 4$ 50* 5$ 60* 6  3  30  G'TRANS  0.13**  E. JAP  3  50  G" TRANS  0.81**  1.87  E. JAP  3  100  B"TRANS  0.80**  1.85  E. JAP  3  150  B"TRANS  0.80*  1.85  E. JAP  5  50  G'TRANS  1.68  3.88  E. JAP  5  100  G"TRANS  2.22  5.12  E. JAP  5  200  F'TRANS  4.47  IO.31  E. JAP  5  300  F"DEEP  5-67  13.08  E. JAP  7  5  A SFC  1.40  7  10  3-23  E. JAP  A SFC  1.51  3.48  E. JAP  7  30  G'TRANS  7.27  16.77  53 40  E. JAP  7  50  G"TRANS  8.51  19.64  44  56  E. JAP  2.19  5.05  75  19  E. JAP  0.30  ?  100 100 60  40 68  27  16  16  73 85  15  41 59 33  56  10  7  100  F'TRANS  E. JAP  7  200  F"DEEP  5-59  12.90  E. JAP  7  300  F"DEEP  8.19  53  47  E. JAP  7  500  3-55  C DEEP  10.43  24.07  51  38  E. JAP  9  30  G'TRANS  1.70**  3.92  40 60  E. JAP  9  50  G TRANS  O.92**  2.12  50  E. JAP  9  100  F'TRANS  2.30*  9  200  5.31  E. JAP  F"DEEP  O.85*  1.96  E. JAP  9  350  C DEEP  I.65**  3.81  E. JAP  11  10  A SFC  0.22**  0.51  E. JAP  25  13  19  44  44  13  25  19  2  5 6  84 16  63  11 )  25  25  37 16 11  56  84 33  100  11  50  D DEEP  O.58**  I.34  E. JAP  11  100  D DEEP  1.26  2.91  E. JAP  11  200  D DEEP  1.68  3.88  SCOL. M  3  30  G'TRANS  1.18*  6.02  11 22  67  SCOL. M  3  50  G"TRANS  1.79  9.13  27 27  46  SCOL. M  5  30  G'TRANS  4.57*  23.30  57  5  50  G'TRANS  3.35  17.08  43  SCOL. M  55  7  50  23  SCOL. M  G"TRANS  5.99  30.55  SCOL. M  7  100  F'TRANS  0.82* . 4.18  SCOL. M  9  •30  G'TRANS  2.72*  13-87  SCOL. M  9  50  G TRANS  1.15**  5.86  SCOL. M  11  30  G'TRANS  1.97  SCOL. M  11  50  D DEEP  3.02  SCOL. M  11  100  D DEEP  M. OKH  1  200  B"TRANS  M. OKH  3  150  M. OKH  5  60  40 100  50  28  11  5  23 5  7 30 26 33  17  25  38  5  33 50 25  13  40 20  40  IO.05  20  15.40  35  45  19  27  54  1-55  7-90  19  56  0.08  25  O.83**  20  80  B"TRANS  2.15  0.21  200  F'TRANS  4.14  0.41  56  44  F"DEEP  3.50  0.34  79  21  M. OKH  5  300  M. OKH  7  M. OKH  7  44  5  A SFC  100.97  9.91  10  10  A SFC  96.77  9.50  4  19  38  8  6 76  5  2  89  204  MONTH: MARCH 1975 SPECIES GROUP: TRANSITION/DEEP (Cont'd) SPECIES  STN  z  WATER REGIME  n/m-*  I  1  % COMPOSITION OF COPEPODITES 2 3 4(7* 49 50" 5$ 60* 69  M. OKH  7  30  G'TRANS  55.82  5.48  M. OKH  7  50  G"TRANS  19.38  1.90  90  M. OKH  7  100  10  F'TRANS  3-83  O.38  59  7  200  11  M. OKH  F"DEEP  4.44  0.44  300  F"DEEP  2.09*  11  M. OKH  7  89  0.21  10  7  500  90  M. OKH  C DEEP  4.01  0.39  64  36  M. OKH  0.86**  0.08  90  5  2  93  9  100  F'TRANS  M. OKH  9  200  F"DEEP  1.72  10  M. OKH  9  350  C DEEP  O.55**  0.05  11  10  A SFC  0.22**  0.02  67  M. OKH M. OKH  11  50  D DEEP  7.21  0.71  M. OKH  11  200  D DEEP  8.21  0.81  C. GRAC  1  200  B"TRANS  5.65  24.27  38  62  C. GRAC  17.57  100 33 100 100 8  3'  150  B"TRANS  3.62  44  56  5  200  15.55  C. GRAC  F'TRANS  15.68  55  F"DEEP  1.61  6.92  45  5  300  3.65  C. GRAC  27  7  200  63  C. GRAC  F"DEEP  0.25**  1.07  C. GRAC  7  300  F"DEEP  0.21**  0.90  C. GRAC  11  200  D DEEP  0.37**  H. TAN  5  300  1-59  F"DEEP  8.32  H. TAN  7  200  2.33  F"DEEP  2.67  H. TAN  7  300  F"DEEP  H. TAN  7  500  H. TAN  9  H. TAN  92  0  100 100 .25 12  56  -  19 -  9.54  81  1.46*  - "19 -  5.21  -  0.48**  71  C DEEP  200  1.71  F"DEEP  2.00  7.14  -  350  65  9  C DEEP  2.57  9.18  43  21  H. TAN  11  200  36  D DEEP  3.54  12.64  18 -  GAD. C  5  300  77  -  F"DEEP  0.87*  6.56  GAD. C  7  30  33  G'TRANS  0.73*  5.51  GAD. C  7  50  C'TRANS  2.09  15.76  GAD. C  7  200  F"DEEP  2.15  16.21  GAD. C  7  300  F"DEEP  0.42**  3-17  GAD. C  0.80**  6.03  12  29 33  7  75  67  29 3  3 67 100 100 29  71  100  7  500  C DEEP  GAD. C  9  200  F"DEEP  0.86*  6.49  100  GAD. C  9  350  C DEEP  0.37**  200  100  GAD. C  11  2.79  D DEEP  1.31  9.88  3  150  15  B"TRANS  0.26**  7  CAN. C  5.10  5  F'TRANS  O.50**  9.80  50  CAN. C  200  50 66  7  100  34  CAN. C  F'TRANS  O.83*  16.27  49  7  200  17  CAN. C  F"DEEP  2.29  44.90  7  C DEEP  0.96*  45  CAN. C  500  6  18.82  CAN. C  9  200  F"DEEP  1.71  9  350  33-53  CAN. C  C DEEP  O.73**  14.31  11  200  25  CAN. C  D DEEP  IO.98  84  . O.56*  20  17  80  6  17  50 25  8  17 -  75 16  17 10 17  33  42  8  79  17  205  MONTH: MARCH 1975 SPECIES GROUP: INLET D^EP SPECIES  STN  z  WATER REGIME  n/mJ 10.34  I 1  % COMPOSITION OF COPEPODITES ' 2 3 4c/ 4 5o* 5? 6c? 60 ?  SPINO  5  300  F"DEEP  SPINO  7  100  F'TRANS  SPINO  7  200  F"DEEP  13-97  31.65  24  SPINO  7  300  F"DEEP  17.72  40.14  SPINO  7  500  C DEEP  13.81  31.29  SPINO  9  200  F"DEEP  8.99  20.37  SPINO  9  350  C DEEP  15.96  36.16  1  SPINO  11  50  D DEEP  1.59  50  SPINO  11  100  D DEEP  1.56  3.53  SPINO  11  200  D DEEP  26.43  59-88  0.82*  0.70*  23.43  8  13  50  17  13  25  6 16  13  15 19  15  3  5  6  300  F"DEEP  1.03*  6.48  15  500  C DEEP  1.44*  9.06  11  SCAPH  9  200  F"DEEP  2.00  12.58  9  350  C DEEP  2.20  13.84  100  D DEEP  0.20**  SCAPH  12  1  26  18  14  8  25  13  27  22  3  16  19  17  14  30  38  7  14  2  13  3  31  17  33  28  5 7  11  39  17  SCAPH SCAPH  7  14  SCAPH  SCAPH  17  1.86  25  1.26  25  44  20  23  33  31 15  43 33  44  11  15  7  79 50  17  8  50  50  2  5  11  200  D DEEP  4.20  26.42  RACO  7  500  C DEEP  0.32**  43.84  100  RACO  9  350  C DEEP  O.37**  50.68  100  2  91  SPECIES GROUP: MIGRANTS SPECIES  STN  z  WATER REGIME  n/m3  I 1  E. BUN  9  350  C DEEP  0.18**  7.89  E. BUN  11  200  D DEEP  0.09**  3-95  D DEEP  0.09**  1.59  % COMPOSITION' OF COPEPODITES 2 3 4cT 4o 5o" 5? 6&  =•?  100 100  CAL. P  11  200  CAL. M  QC  5  E'SFC  20.56  0.45  -  1 -  CAL. M  QC  10  E'SFC  18.11  0.39  -  8 -  12  80  CAL. M  QC  30  E" TRANS  27.71  0.60  -  8 -  12  81  11.02  0.24  -  1 -  4  95  15.34  0-33  _ k _  14  82  9  -100 -  CAL. M  QC  50  E"TRANS  CAL. M  QC  100  E"'DEEP  CAL. M  1  5  A SFC  0.87  0.02  - 28 -  CAL. M  1  10  A SFC  1.50  0.03  -  CAL. M  1  30  A .SFC  I.65  0.04  - 13 -  CAL. M  1  50  A SFC  2.76  0.06  CAL. M  1  100  A SFC  10.50  0.23  CAL. M  1  200  B"TRANS  36.37  CAL. M  3  5  A SFC  CAL. M  3  10  CAL. M  3  30  CAL. M  1  6 -  93  63 94  7  80  - 25 -  5  70  - 18 -  20  62  0.79  -  7 -  49  44  1.62  0.04  - 23 -  9  68  A SFC  1.52  0.03  - 16 -  84  G'TRANS  O.39**  0.01  - 67 -  33  3  50  C'TRANS  1.62*  0.04  - 30 -  10  60  CAL. M  3  100  B"TRANS  7.77  0.17  - 24 -  4  CAL. M  3  150  71  B"TRANS  24.03  0.52  45  3.03  0.07  _  50  5  10  13  83  CAL. M  A SFC  5 4 _  '  206  MONTH: MARCH 1975 SPECIES GROUP: MIGRANTS (Cont'd) SPECIES  STN  z  WATER REGIME  n/m3  I  30  G'TRANS  1.96*-*  0.04  33  67  ~1  % COMPOSITION OF COPEPCDITES 2 3 W~k~^ 5o" 5$ 6d*  6$  CAL. M  5  CAL. M  5  50  G'TRANS  2.29  0.05  - 27 - 20  5  100  53  CAL. M  G"TRANS  8,02  0.17  - 50 -  2  63  CAL. M  5  200  F'TRANS  25.33  0.55  - 12 - 41  47  CAL. M  5  300  F"DEEP  5-97  0.13  - 27 - 22  51  CAL. M  7  1  93  CAL. M  7  CAL. M  5  A SFC  110.00  2.39  - 6 -  10  A SFC  94.51  2.06  -  .7  30  G'TRANS  190.29  4.14  - 5 -  CAL. M  7  50  G"TRANS  4.88  0.11  - 23 -  CAL. M  4 -  96 2  93  28  49  7  100  F'TRANS  2.05  0.04  - 13 - 27  60  CAL. M  7  200  F"DEEP  5.33  0.12  59  14  CAL. M  7  300  F"DEEP  0.21**  CAL. M  7  500  C DEEP  4.65  0.10  CAL. M  9  10  A SFC  2.61*  0.06 100  CAL. M  9  30  G'TRANS  1.71**  0.04  CAL. M  9  100  F'TRANS  3-75  0.08  CAL. M  9  200  F"DEEP  11.29  0.25  - 20 - 19  CAL. M  9  350  C DEEP  0.18** < 0 . 0 1  100  CAL. M  11  5  A SFC  O.13** < 0 . 0 1  CAL. M  11  10  A SFC  4.12  0.09  CAL. M  11  30  G'TRANS  O.30**  0.01  CAL. M  11  50  D DEEP  O.59**  0.01  CAL. M  11  100  D DEEP  CAL. M  11  200  D DEEP  P. ELO  QC  5  E'SFC  •- 26 -  <0.01  100  - 17 - 24 59 ICO ICO 61 100  -  8 -  5  87 100  - 20 -  80  14.17  0.31  100  4.67  0.10  7.75  O.36  - 40 - 58 19 22 28 8 42  P. ELO  QC  10  E'SFC  38.23  1.80  P. ELO  QC  30  E"TRANS  106.68  5.01  25 -24 27  23  P. ELO  QC  50  E" TRANS  42.17  1.98  18 21 20  42  P. ELO  QC  100  E"'DEEP  20.58  0.97  15  31  48  6  P. ELO  1  5  A SFC  112.81  5.30  11 12  1  76  P. ELO  1  10  A SFC  121.21  5.69  16 18  62  P. ELO  1  P. ELO  1  50  P. ELO  1  13  P. ELO  9  8  30  53  • 30 A SFC  74.29  3-49  5 20 28 40  A SFC  119.45  5.61  17 34  35  100  A SFC  115.65  5.43  13  22  43  22  1  200  B "TRANS  70.11  3-29  9 44  41  P. ELO  3  5  A SFC  81.26  3.82  15 14  2  P. ELO  3  10  A SFC  117-98  5.54  16 18  5  61  P. ELO  3  30  G'TRANS  74.61  3.50  18 28 43  12  P. ELO  6  12  69  3  50  G"TRANS  153.89  7.23  34  B"TRANS  IO3.65  15  3  100  19 33  P. ELO  4.87  10 19  46  24  P. ELO  3  150  B"TRANS  64.83  3.04  9  42  40  5  10  A SFC  97.85  4.60  18 22  5  55  P. ELO  8  207  MONTH: MARCH 1975 SPECIES GROUP: MIGRANTS (Cont'd) SPECIES  STN  z  WATER REGIME  n/m3  I  1  % COMPOSITION OF CO?'EPCDITES 2  3  4o* 4$  50"  5?  60* 60  5  30  G'TRANS  37.26  1.75  16  25  47  12  P. ELO  5  50  G'TRANS  139.91  6.57  16  41  29  14  P. ELO  5  100  C'TRANS  107.34  5.04  12  18  46  24  5  200  F'TRANS  51.00  2.40  9  12  37  41  P. ELO  5  300  F"DEEP  14.99  0.70  46  38  2  15  P. ELO  7  5  A SFC  397.38  18.66  3  2  2  93  P. ELO  7  10  A SFC  347.16  16.31  2  1  1  96  P. ELO  59  P. ELO  P. ELO  7  30  G'TRANS  15.65  0.74  22  17  2  P. ELO  7  50  C'TRANS  15.35  0.72  17  25  6  P. ELO  7  100  F'TRANS  20.00  0.94  8  10  10  72  P.- ELO  2  "5  51  7  200  F"DEEP  I6.5O  0.77  32  28  P. ELO  7  300  F"DEEP  6.04  0.28  24  38  3  P. ELO  7_  500  C DEEP  20.22  0.95  29  35  7  A SFC  12.70  0.60  23  18  59 75  P. ELO  9  10  P. ELO  9  30  G'TRANS  23.55  1.11  14  10  P. ELO  9  50  G TRANS  11.34  0.53  6  10  P. ELO  9  100  F'TRANS  84.44  3-97  8  6  P. ELO  9  .200  F"DEEP  59.71  2.80  9  6  P. ELO  9  350  C DEEP  3.67  0.17  30  15 .  P. ELO  11  5  A SFC  9-33  0.44  19  24  P. ELO  11  10  A SFC  26.45  1.24 *  25  5ii 1  85 85 . 55  13  44  5  95  P. ELO  11  30  G'TRANS  13.03  0.61  16  14  70  P. ELO  11  50  D DEEP  11.28  O.53  7  3  90  P. ELO  11  100  D DEEP  34.47  1.62  3  2  95  P. ELO  11  200  D DEEP .  22.41  1.05  3  1  96  M. PAC  QC  100  E"'DEEP  7.05  2.36  1  23  M. PAC  1  30  A SFC  1.10*  0.37  30  70  M. PAC  1  50  A SFC  0.69**  0.23  M. PAC  1  100  A SFC  3-79  1.27  M. PAC  1  200  B "TRANS  M. PAC  3  10  A SFC  0.08**  0.03  M. PAC  3  100  B"TRANS  0.48**  0.16  M. PAC  3  150  B"TRANS  M. PAC  5  10  A SFC  0.13**  0.04  100  M. PAC  5  30  G'TRANS  7.19  2.40  100  M. PAC  5  100  C'TRANS  0.34**  0.11  100  M. PAC  5  200  F'TRANS  9.44  3.16  37  M. PAC  5  300  F"DEEP  1.61  0.54  9  28.38  100  24.75  17.73  8.27 •  5-93  49  27 41  59  100 9  23  47  21 100  33  5  19  44  67 32  63 91  M. PAC  7  5  A SFC  84.91  M. PAC  7  10  A SFC  106. 06  35-45  100  M. PAC  7  30  G'TRANS  16.26  5.43  100  M. PAC  7  50  C'TRANS  30.40  10.16  100  208  MONTH: MARCH 1975 SPECIES GROUP: MIGRANTS (Cont'd) SPECIES  STN  z  n/m3  WATER  I  REGIME  %  1  2  O F CC? S P O D I T E S 4c? 4o 5c? 5? 60* 60  COMPOSITION  3  M.  PAC  7  100  F'TRANS  0.27**  0.09  M.  PAC  7  200  F"DEEP  2.79  M.  PAC  7  300  0.93  F"DEEP  0.42**  0.14  M.  PAC  7  500  C  1.44*  0.48  M.  PAC  9  10  A SFC  O.98**  M.  PAC  9  30  G'TRANS  1.02**  0.33 O.34  M.  PAC  9  200  F"DEEP  1.43*  0.48  M.  PAC  11  10  A SFC  1.00*  100  PAC  11  0.33  M.  30  G'TRANS  0.20**  0.07  100  DEEP  100 68  100 22 66  100 10 90  M.  PAC  11  50  D  DEEP  1.05*  11  0.35  45  55  PAC  100  D  DEEP  O.98*  O.33  40  PAC  11  10  M.  200  D  DEEP  4.58  1.53  14  10  MONTH: GROUP:  SUMMER  SPECIES  GROUP:  SURFACE/TRANSITION  SPECIES  STN  z  SURFACE:  WATER  ABSENT  APRIL  78  34  M.  SPECIES  32  50 59  16  1975  FROM SAMPLES  n/m3  I  REGIME  1  %  2  COMPOSITION  3  46*  OF COPEPODITES  6c? 69  ko 5c?  A.  LONG  1  5  A'SFC  32.48  A.  LONG  1  10  A'SFC  17.15  3.11  LONG  1  6 94  A.  30  A'SFC  9.41  LONG  50  F'TRANS  38.85  7.05  31 69  A.  1  "1.71  A.  LONG  1  100  F'TRANS  4.36  0.79  100  A.  LONG  3,  0.59  100  A.  LONG  A.  LONG  A.  6 94  5-89  13  87  5  A'SFC  3.26*  3  10  A'SFC  2.49**  0.45  100  5  10  A'SFC  9.60  1.74  100  LONG  7  5  A'SFC  230.82  41.89  A.  LONG  7  10  A'SFC  7.46  A.  LONG  7  30  1.35  A'SFC  5-39  0.98  49.58  9.00  550.98