Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Regional stream sediment reconnaissance and trace element content of rock, soil and plant material in… Doyle, Patrick J. 1972

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1972_A6_7 D69.pdf [ 13.18MB ]
Metadata
JSON: 831-1.0053143.json
JSON-LD: 831-1.0053143-ld.json
RDF/XML (Pretty): 831-1.0053143-rdf.xml
RDF/JSON: 831-1.0053143-rdf.json
Turtle: 831-1.0053143-turtle.txt
N-Triples: 831-1.0053143-rdf-ntriples.txt
Original Record: 831-1.0053143-source.json
Full Text
831-1.0053143-fulltext.txt
Citation
831-1.0053143.ris

Full Text

cI  REGIONAL STREAM SEDIMENT RECONNAISSANCE AND TRACE ELEMENT CONTENT OF ROCK, SOIL AND PLANT MATERIAL IN EASTERN YUKON TERRITORY  t>7  PATRICK J . DOYLE B . S c , U n i v e r s i t y o f Ottawa, 1969  A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE * i n the Department of Geology  We accept t h i s t h e s i s as conforming t o the r e q u i r e d standard  The U n i v e r s i t y o f B r i t i s h Columbia May,  1972  In presenting t h i s t h e s i s  in p a r t i a l  f u l f i l m e n t o f the requirements  an advanced degree at the U n i v e r s i t y o f B r i t i s h Columbia, t h e L i b r a r y s h a l l make i t  freely available  for  I agree  thesis  f o r s c h o l a r l y purposes may be g r a n t e d by the Head o f my Department  of  It  this thesis for financial  written  Department o f  f i W  3,Q iqU t  Columbia  or  publication  g a i n s h a l l not be allowed w i t h o u t my  QfQjJljD  The U n i v e r s i t y o f B r i t i s h Vancouver 8, Canada  Date  i s u n d e r s t o o d t h a t copying o r  permission.  that  r e f e r e n c e and s t u d y .  I f u r t h e r agree t h a t p e r m i s s i o n f o r e x t e n s i v e copying o f t h i s  by h i s r e p r e s e n t a t i v e s .  for  ii  ABSTRACT  Multi-element  stream sediment reconnaissance  i n the  Hess River region of the Eastern Yukon has outlined an extensive area characterized by anomalously high molybdenum values.  An accessible region i n the Hess Mountains, within  the high molybdenum zone, was selected f o r d e t a i l e d study of trace element l e v e l s i n stream sediment, rock, s o i l and vegetation.  In view of the frequently observed r e l a t i o n s h i p  between high forage molybdenum concentrations and the i n cidence of copper d e f i c i e n c y i n c a t t l e , molybdenum concent r a t i o n s i n plant species l i k e l y to be consumed by caribou and moose were of p a r t i c u l a r i n t e r e s t . High sediment molybdenum values are c h a r a c t e r i s t i c of catchments underlain by dark shales and l e s s commonly dark limestone. i n molybdenum.  These rocks and associated s o i l s are r i c h Concentrations  i n vegetation growing on  anomalous shaly s o i l s are c h a r a c t e r i s t i c a l l y low, while most plants growing on s o i l s derived predominantly from limestone are molybdenum-rich.  The Mo-Cu status of vegetation  on limey s o i l s i s t y p i c a l l y within the range associated with molybdenum induced hypocuprosis  i n cattle.  Low molybdenum uptake by plants on s o i l s derived from shales l i k e l y r e f l e c t s the u n a v a i l a b i l i t y of the molybdate anion,resulting from i t s adsorption onto clay minerals  iii  and s e s q u i o x i d e s under a c i d i c c o n d i t i o n s p r e v a l e n t i n these soils.  I n n e u t r a l t o m i l d l y b a s i c environments, t y p i c a l  of dark limestone s o i l s , molybdenum a d s o r p t i o n i s g r e a t l y decreased, and t h e r e f o r e molybdenum i s r e l a t i v e l y a v a i l able t o p l a n t s . I n the d e t a i l e d study area s o i l pH v a l u e s are t y p i c a l l y s i m i l a r t o pH l e v e l s i n a s s o c i a t e d stream water. Therefore by combining stream sediment molybdenum concent r a t i o n s w i t h stream pH d a t a , catchments l i k e l y t o c o n t a i n molybdenum-rich  v e g e t a t i o n can be p r e d i c t e d . U n f o r t u n a t e l y  stream pH v a l u e s were not obtained i n the r e g i o n a l survey. I n view o f the apparent r a r i t y o f dark limestone throughout the E a s t e r n Yukon, however,  molybdenum-rich  v e g e t a t i o n i s not l i k e l y t o be p a r t i c u l a r i l y widespread. W i l d l i f e i n t h i s a r e a , t h e r e f o r e , i s probably not s i g n i f i c a n t l y a f f e c t e d by molybdenum induced copper d e f i c i e n c y .  XV  TABLE 01 CONTENTS  CHAPTER I  PAGE INTRODUCTION NUTRITIONAL SIGNIFICANCE OP CEUSTAL TRACE ELEMENT ABUNDANCES APPLICATION OP STREAM SEDIMENT SURVEYS TO THE DETECTION OP TRACE ELEMENT IMBALANCES IN AGRICULTURE THESIS OBJECTIVES  II  III  3  5  SECTION A REGIONAL STUDY DESCRIPTION OF REGIONAL STUDY AREA LOCATION AND ACCESS GEOLOGY GLACIATION TOPOGRAPHY AND DRAINAGE CLIMATE SOIL VEGETATION WILDLIFE  7 8 8 11 11 13 14 14 15  REGIONAL GEOCHEMICAL RECONNAISSANCE SAMPLE COLLECTION AND PREPARATION SAMPLE ANALYSIS PRESENTATION OF DATA  16 17 17 22  TRACE ELEMENT PATTERNS IN STREAM SEDIMENTS DISTRIBUTION OF Mo, V, N i , Cr and Cu DISTRIBUTION OF Pb, S r , Mn and Co  24 24 36  DISCUSSION OF DISTRIBUTION PATTERNS RELATIONSHIP TO BEDROCK COMPOSITION RELATIONSHIP TO GLACIATION POSSIBLE RELATIONSHIP TO ANIMAL NUTRITION  37 37 38 38  SECTION B IV  1 2  DETAILED STUDY  DESCRIPTION OF DETAILED STUDY AREA LOCATION AND ACCESS GEOLOGY SOIL VEGETATION  41 42 42 45 49  V  CHAPTER V  VI  VII  VIII  IX  PAGE SAMPLE COLLECTION PREPARATION AND ANALYSIS SAMPLE'COLLECTION AND PREPARATION STREAM SEDIMENT ROCK SOIL VEGETATION FAECES SAMPLE ANALYSIS SEMI-QUANTITATIVE SPECTROGRAPHIC ANALYSIS ATOMIC-ABSORPTION ANALYSIS COLORIMETRIC ANALYSIS MEASUREMENT OF pH  51 52 52 52 55 54545456  TRACE ELEMENT CONCENTRATIONS IN ROCK MATERIAL PRESENTATION OF DATA TRACE ELEMENT CONCENTRATIONS IN BEDROCK COMPARISON OF CONCENTRATION IN BLACK SHALE FROM UNIT THREE WITH ESTIMATES OF NORMAL CONCENTRATIONS IN SIMILAR ROCK TYPES POSSIBLE MECHANISMS CONTROLLING TRACE ELEMENT LEVELS WITHIN CERTAIN UNIT THREE LITHOLOGIES  6465 65 68  TRACE ELEMENT CONCENTRATIONS IN SOIL MATERIAL PRESENTATION OF DATA TRACE ELEMENT CONTENT OF C HORIZONS DISTRIBUTION OF TRACE ELEMENTS IN SELECTED SOIL PROFILES FACTORS' AFFECTING THE METAL CONTENT OF SOILS POSSIBLE SIGNIFICANCE OF VARIATIONS IN COMPOSITION OF UPLAND AND VALLEY SOILS  7475 76 76  TRACE ELEMENT CONCENTRATIONS IN PLANT MATERIAL PRESENTATION OF DATA METAL CONTENT OF PLANTS FACTORS AFFECTING THE METAL LEVELS IN PLANTS POSSIBLE INFLUENCE OF METAL LEVELS IN PLANTS ON THE HEALTH OF WILDLIFE, PARTICULARLY CARIBOU AND MOOSE  87 88 88 95  56 62 63  70  82 85  98  TRACE ELEMENT CONCENTRATIONS IN STREAM SEDIMENT 105 PRESENTATION OF DATA " 104METAL CONCENTRATIONS IN STREAM SEDIMENT 104-  COMPARISON OF METAL CONTENT'OP STREAM SEDIMENT WITH THAT OF ASSOCIATED ROCK AND S O I L FACTORS A F F E C T I N G TRACE ELEMENT L E V E L S I N STREAM SEDIMENT COMPARISON OF METAL CONCENTRATIONS I N STREAM SEDIMENT WITH THOSE OF ASSOCIATED VEGETATION SUMMARY, CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH SUMMARY AND CONCLUSIONS SUGGESTIONS FOR FURTHER RESEARCH BIBLIOGRAPHY APPENDIX A APPENDIX B APPENDIX C APPENDIX D  RESULTS OF E M I S S I O N SPECTROG R A P H S ANALYSIS OF ROCK MATERIAL RESULTS OF ATOMIC-ABSORPTION A N A L Y S I S OF S O I L MATERIAL RESULTS OF ATOMIC-ABSORPTION A N A L Y S I S OF PLANT M A T E R I A L RESULTS OF E M I S S I O N SPECTROG R A P H S A N A L Y S I S OF STREAM SEDIMENTS  vii  LIST OP TABLES  TABLE I  PAGE Spectre-graphic equipment and operating conditions  19  Wavelengths and approximate d e t e c t i o n l i m i t s f o r s p e c t r a l l i n e s used t o estimate t r a c e element abundances i n stream sediments  20  III  A n a l y t i c a l p r e c i s i o n f o r spectrographic a n a l y s i s of stream sediments, at the 95$ confidence l e v e l , c a l c u l a t e d from 50 separate analyses o f U.B.C. Standard Rock.  21  IV  Range and geometric mean t r a c e element content (p.p.m.) o f the minus~80 mesh f r a c t i o n o f stream sediments a s s o c i a t e d w i t h each o f the major bedrock u n i t s w i t h i n r e g i o n a l study area.  23  L i t h o l o g i c a l c h a r a c t e r i s t i c s o f major bedrock u n i t s w i t h i n the d e t a i l e d study area.  4-4-  II  V  VI  P l a n t species and p a r t s sampled f o r t r a c e element a n a l y s i s  55  VII  Changes i n spectrographic procedure (Tables I and I I ) introduced f o r a n a l y s i s o f rock m a t e r i a l .  57  A n a l y t i c a l p r e c i s i o n f o r spectrographic a n a l y s i s o f rock m a t e r i a l , at the 95$ confidence l e v e l , c a l c u l a t e d from 25 r e p l i c a t e analyses o f U.B.C. Standard Rock.  58  VIII  IX X  Operating c o n d i t i o n s f o r Techtron AA-4- Spectrophotometer A. A n a l y t i c a l p r e c i s i o n (#) f o r Cu, Mn and Zn i n s o i l and p l a n t m a t e r i a l , at the 95$ confidence l e v e l , c a l c u l ated from the r e s u l t s o f atomicabsorption a n a l y s i s of both standard and p a i r e d samples  60 61  Vlll  TABLE B.  PAGE A r i t h m e t i c mean Cu, Mn-and Zn concent r a t i o n s (p.p.m.) i n U.B.C. standard samples.  61  A n a l y t i c a l p r e c i s i o n f o r molybdenum i n p l a n t and s o i l m a t e r i a l , a t the 95$ confidence l e v e l , c a l c u l a t e d from the r e s u l t s o f c o l o r i m e t r i c a n a l y s i s o f p a i r e d samples  62  XII  Range and geometric mean t r a c e element l e v e l s (p.p.m.) f o r major bedrock u n i t s w i t h i n d e t a i l e d study area  66  XIII  Range and geometric mean t r a c e element l e v e l s (p.p.m.) f o r v a r i o u s rock types w i t h i n U n i t 3.  67  XIV  Comparison o f t r a c e element l e v e l s (p.p.m.) w i t h i n dark grey t o b l a c k shales o f U n i t 3 w i t h estimates o f average metal c o n c e n t r a t i o n s i n shales of a l l kinds and median l e v e l s w i t h i n North American b l a c k shales  69  Range and a r i t h m e t i c mean concent r a t i o n s (p.p.m.) o f Mo, Cu, Zn and Mn i n t h e minus-2 mm. f r a c t i o n o f s o i l C horizons i n upland regions w i t h i n t h e d e t a i l e d study area.  77  XVT  Range and a r i t h m e t i c mean concent r a t i o n s (p.p.m.) o f Mo, Cu, Zn, and Mn i n the minus-2 m.m. f r a c t i o n o f s o i l C horizons i n the major r i v e r valleys  78  XVII  D i s t r i b u t i o n o f HNO^/HCIO^ e x t r a c t able metal c o n c e n t r a t i o n s i n s e l e c t e d soil profiles  79  XVIII  Morphological c h a r a c t e r i s t i c s o f s o i l p r o f i l e s considered i n Table XVII  80  :<XIX  Range and a r i t h m e t i c mean t r a c e element l e v e l s i n samples o f v o l c a n i c ash  81  Comparison o f mean t r a c e element l e v e l s (p.p.m.) i n s o i l C h o r i z o n s i n upland areas w i t h those i n a s s o c i a t e d bedrock  83  XI  XV  XX  Range and arithmetic mean molybdenum content of vegetation (p.p.m. dry weight) associated with various s o i l types Range and arithmetic mean manganese content on vegetation (p.p.m. dry weight) associated with various s o i l types. Range and arithmetic mean copper content of vegetation (p.p.m. dry weight) associated with various s o i l types. Range and arithmetic mean zinc content of vegetation (p.p.m. dry weight) associated with various s o i l types. Range and arithmetic mean concent r a t i o n (p.p.m.) of Mo, Cu, Zn and Mn i n caribou and moose faeces Range and geometric mean trace element content (p.p.m.) of stream sediment associated with major bedrock types within.,the d e t a i l e d study area and along the Canol Road Range and geometric mean trace element content (p.p.m.) of stream sediment associated with, (A) Unit 3, subdivided on the basis of stream pH, and (B) Yukon Group, subdivided topographically. Molybdenum, copper and manganese concentrations (p.p.m.) i n stream sediment and associated s o i l . Geometric mean trace element concent r a t i o n s (p.p.m.) i n rock and associated stream sediment Mean pH values of s o i l s and stream waters associated with various bedrock u n i t s .  X  TABLE  PAGE  XXXI  Range and a r i t h m e t i c mean t r a c e element content (p.p.m.) o f i r o n oxide p r e c i p i t a t e s from a c i d i c stream channels.  114  XXXII  Mean molybdenum, copper and manganese concentrations i n stream sediment and v e g e t a t i o n , and a s s o c i a t e d stream pH v a l u e s .  116  xi  LIST OF FIGURES  FIGURE  PAGE  1  D i s t r i b u t i o n of the p r i n c i p a l g e o l o g i c a l u n i t s w i t h i n the r e g i o n a l study area  o,  2  P h y s i o g r a p h i c s u b d i v i s i o n s o f the r e g i o n a l study area  12  3  Regional d i s t r i b u t i o n of Mo i n minus-80 mesh f r a c t i o n o f stream sediment from 10,000 meter squares  25  4-  Regional d i s t r i b u t i o n o f V i n minus-80 mesh f r a c t i o n o f stream sediment from 10,000 meter squares  26  5  Regional d i s t r i b u t i o n of N i i n minus80 mesh f r a c t i o n o f stream sediment from 10,000 meter squares  27  6  Regional d i s t r i b u t i o n o f Or i n minus-80 mesh f r a c t i o n o f stream sediment from 10,000 meter squares  28  7  Regional d i s t r i b u t i o n o f Cu i n minus-80 mesh f r a c t i o n of stream sediment from 10,000 meter squares  29  8  R e g i o n a l d i s t r i b u t i o n of Pb i n minus-80 mesh f r a c t i o n o f stream sediment from 10,000 meter squares  30  9  Regional d i s t r i b u t i o n o f S r i n minus-80 mesh f r a c t i o n o f stream sediment from 10,000 meter squares  31  10  Regional d i s t r i b u t i o n o f Mn i n minus-80 mesh f r a c t i o n o f stream sediment from 10,000 meter squares  32  11  Regional d i s t r i b u t i o n o f Co i n minus80 mesh f r a c t i o n o f stream sediment from 10,000 meter squares  33  12  D i s t r i b u t i o n of p r i n c i p a l geological u n i t s w i t h i n d e t a i l e d study area  4-3  xii  FIGURE  PAGE  13  Regosol i n g r a s s l a n d environment n o r t h e a s t o f MacMillan Pass  4.6  14  B r u n i s o l on a dwarf b i r c h and c a r i b o u moss covered knowl i n the main v a l l e y o f the South MacMillan River  4.7  15  G l e y s o l developed on dwarf b i r c h f l a t s n o r t h e a s t o f MacMillan Pass  48  16  Stream sediment and rock sample l o c a t i o n s w i t h i n the d e t a i l e d study area  i n pocket  17  S o i l and v e g e t a t i o n sample s i t e l o c a t i o n s w i t h i n the d e t a i l e d study area  i n pocket  18  S o i l and v e g e t a t i o n s i t e and stream sediment sample l o c a t i o n s along the Canol Road between Ross R i v e r and MacMillan Pass  i n pocket  xiii  ACKNOWLEDGEMENT  The author i s g r e a t l y indebted t o Dr. W. K. F l e t c h e r who suggested and a c t i v e l y supervised t h i s p r o j e c t . The extensive a s s i s t a n c e o f Dr. V. C. B r i n k , p a r t i c u l a r l y i n c o l l e c t i o n and c l a s s i f i c a t i o n o f p l a n t samples, i s a l s o g r e a t l y appreciated. Miss Ann Baxter, Mr. D h i l l o n , Mr. D. M a r s h a l l and Mr. M. Waskett-Myers analyzed many o f the samples.  Mr.  Waskett-Myers a l s o advised and a s s i s t e d the author i n d r a f t i n g c e r t a i n o f the f i g u r e s . s e v e r a l f o s s i l specimens.  Dr. R. V. Best i d e n t i f i e d  The t e c h n i c a l s t a f f o f the De-  partment o f Geology, e s p e c i a l l y Mr. Ed Montgomery, a s s i s t e d the author on s e v e r a l occasions. Support r e c e i v e d from the mining i n d u s t r y i s a l s o g r a t e f u l l y acknowledged.  Data s u p p l i e d by Spartan E x p l o r -  a t i o n s L t d . Vancouver, o r i g i n a l l y c a l l e d a t t e n t i o n t o t h e study area.  A t l a s E x p l o r a t i o n s L t d . , Vancouver, s u p p l i e d  s e v e r a l hundred stream sediment samples.  Field  quarters  were provided by Hudson Bay E x p l o r a t i o n and Development Co. Ltd. F i n a n c i a l support was provided by a Canada C o u n c i l K i l l a m Award (Grant No. C o u n c i l (Grants Nos.  69-0057),  A7714-  and  B r i t i s h Columbia (Grant No.  the N a t i o n a l Research  A5120)  21-9687).  and the U n i v e r s i t y o f  CHAPTER  ONE  INTRODUCTION  -2-  NUTRITIONAL SIGNIFICANCE OF CRUSTAL TRACE ELEMENT ABUNDANCES  According  t o V. M. Goldschmidt  "Modern geochemistry s t u d i e s the amounts and the d i s t r i b u t i o n o f the chemical elements i n m i n e r a l s , ores, r o c k s , s o i l s , waters and i n the atmosphere"  (Goldschmidt, 1954).  Many elements are e s s e n t i a l t o both p l a n t and animal life.  Of the minor or t r a c e elements f o r example,  adequate  s u p p l i e s o f i r o n , copper, c o b a l t , manganese, z i n c , molybdenum, selenium, c h l o r i n e and i o d i n e are considered mammals (Schutte, 1964).  e s s e n t i a l to  Other t r a c e elements such as l e a d ,  mercury and a r s e n i c are w e l l known f o r t h e i r p o t e n t i a l l y toxic effects. I f i n g e s t e d i n s u f f i c i e n t amounts however, even the e s s e n t i a l elements can be t o x i c .  For example, a h i g h d i e t a r y  i n t a k e of molybdenum, i n the presence of i n o r g a n i c s u l f a t e , may induce a s t a t e of copper d e f i c i e n c y i n ruminants (Underwood, 1962).  Knowledge of the r e g i o n a l d i s t r i b u t i o n  o f the elements, t h e r e f o r e , i s of considerable importance i n n u t r i t i o n a l s t u d i e s and epidemiology. Trace elements i n most s o i l s and v e g e t a t i o n are u l t i m a t e l y d e r i v e d from the u n d e r l y i n g bedrock.  A c i d i c igneous,  and coarse sedimentary rocks tend to c o n t a i n r e l a t i v e l y  low  c o n c e n t r a t i o n s of the t r a c e elements a s s o c i a t e d w i t h nutrition.  For example, the c o a s t a l p l a i n sands of the  E a s t e r n United S t a t e s support crops which are commonly def i c i e n t i n such elements as copper, i r o n , manganese and c o b a l t (Cannon, 1969). Metal t o x i c i t i e s , on the other hand, are commonly associated with shales.  I n Co. L i m e r i c k , I r e l a n d , f o r example,  t o x i c l e v e l s of selenium and molybdenum are present i n s o i l s and herbage o v e r l y i n g the C l a r e Shales, which c o n t a i n up to 30 p.p.m. selenium and 150 A t k i n s o n , 1965).  p.p.m. molybdenum (Webb and  S i m i l a r i l y , wheat crops grown i n the n o r t h -  c e n t r a l p l a i n s of the U n i t e d S t a t e s c o n t a i n t o x i c amounts of selenium, d e r i v e d from s e l e n i u m - r i c h v o l c a n i c ash l a y e r s w i t h i n the u n d e r l y i n g shales (Cannon, 1969). APPLICATION OF STREAM SEDIMENT SURVEYS TO THE DETECTION OF TRACE ELEMENT IMBALANCES IN AGRICULTURE A stream sediment approximates a composite sample of weathered rock and s o i l m a t e r i a l upstream from the p o i n t (Webb, 1968).  S o l u b l e products of weathering  may  sampling be  i n c o r p o r a t e d i n t o the sediment by e i t h e r a b s o r p t i o n or precipitation.  The t r a c e element content of a stream sediment  sample t h e r e f o r e , may  r e f l e c t t o some extent, t h a t of the s o i l s ,  rocks and even v e g e t a t i o n i n the catchment as a whole. Stream sediment sampling has been used s u c c e s s f u l l y  -4-  i n mineral exploration programs (Webb et a l , 1968). In Canada stream sediments are being u t i l i z e d i n p o l l u t i o n studies (Eortescue  et a l , 1971).  In the B r i t i s h I s l e s they  have been used extensively t o detect a g r i c u l t u r a l disorders a r i s i n g from trace element imbalances (Thornton and Webb, 1969). In Co. Wicklow, Ireland, the cobalt content of stream sediments has been r e l a t e d to the occurrence and s e v e r i t y of cobalt d e f i c i e n c y i n sheep and c a t t l e on s o i l s derived from granite (Webb, 1964-).  On the Vale of Clwyd, Wales, low  manganese l e v e l s i n sediments (<500 p.p.m.) have been associ a t e d with low l e v e l s i n herbage and u n t h r i f t i n e s s i n l i v e stock (Thornton and Webb, 1969). Drainage reconnaissance over part of Co. Limerick, Ireland, has o u t l i n e d large areas characterized by high molybdenum values (up to 200 p.p.m.) r e l a t e d to an outcrop of marine black shale (Webb and Atkinson,  1965).  Detailed  studies have shown the anomalies to be associated with molybdeniferous  s o i l s and rocks.  Though symptoms of molydenum  t o x i c i t y have been reported i n c a t t l e i n the molybdenumanomalous region, the sediment pattern defined large areas where p r e v i o u s l y unsuspected s u b - c l i n i c a l molybdenum induced copper d e f i c i e n c y i s s i g n i f i c a n t l y i n h i b i t i n g a g r i c u l t u r a l productivity.  -5-  THESIS OBJECTIVES During the course of a m i n e r a l e x p l o r a t i o n program undertaken by Spartan E x p l o r a t i o n s L t d . , Vancouver, i n the Hess Mountains, Yukon T e r r i t o r y , an area of over 100 square m i l e s , c h a r a c t e r i z e d by stream sediments w i t h anomalously h i g h molybdenum contents (up t o 50 p.p.m.), was  recognized.  B l a c k s h a l e s , which were thought t o be the source of the molybdenum, are common over a t o t a l area of more than 8,000 square m i l e s i n the E a s t e r n Yukon. In view of the p o s s i b l e e x i s t e n c e of extensive regions c h a r a c t e r i z e d by enhanced molybdenum l e v e l s i n rock, s o i l and forage m a t e r i a l s , t h i s study was undertaken (1)  t o i n v e s t i g a t e , u s i n g sediment samples c o l l e c t e d during a mineral e x p l o r a t i o n program, the r e g i o n a l extent of anomalous molybdenum l e v e l s i n an area of over 6,000 square m i l e s i n the E a s t e r n Yukon.  (2)  t o determine,  on a l o c a l s c a l e , t r a c e element  contents of bedrock, s o i l and v e g e t a t i o n i n molybdenum-anomalous and non-anomalous r e g i o n s .  SECTION  A  REGIONAL STUDY  CHAPTER  TWO  DESCRIPTION OP REGIONAL STUDY AREA  -8-  LOCATION AND ACCESS The r e g i o n a l survey area i n t h e E a s t e r n Yukon extends from approximately 130° t o 135° west l o n g i t u d e and 62° t o 64-° north l a t i t u d e (Figure 1 ) . I t i s a c c e s s i b l e by a i r from the town o f Ross R i v e r . The Canal Road, which t r a v e r s e s the southeastern h a l f o f the area ( F i g u r e 1 ) ,  i s open between Ross R i v e r and the  MacMillan Pass d u r i n g the summer months. GEOLOGY The d i s t r i b u t i o n o f the f i v e major g e o l o g i c a l u n i t s w i t h i n the r e g i o n a l study area i s i n d i c a t e d i n F i g u r e 1.  The  geology has been d e s c r i b e d by Bostock (Map 890A, 1947), Roddick and Green (Maps 12 - 1961, 13 - 1961), Campbell (G.S.C. Memoir 352, 1967), Campbell and Wheeler (Map 1221A 1967) and Blusson and Tempieman-Kluit (G.S.C. Paper 70-=-lA, 1970). P r o t e r o z o i c to M i s s i s s i p p i a n metasedimentary and sedimentary s t r a t a u n d e r l i e most o f the area.  These rocks  are i n t r u d e d by s m a l l , probably Cretaceous, g r a n i t i c stocks and are l o c a l l y o v e r l a i n by T e r t i a r y l a v a s . The P r o t e r o z o i c rocks o f the Yukon Group range i n composition from quartz-mica, graphite, and c h l o r i t e s c h i s t s i n the northwest, t o q u a r t z i t e and dark shales i n t h e c e n t r a l and southern r e g i o n s .  They are o v e r l a i n by a r a t h e r uniform  ALASKA  I  -  /  , 1  E3  Gronodiorite, Quartz  DEVO ON N II )A N  Figure  to  Monzonite  MISS1SS1PPIAN  Chert,  Chert-pebbie  conglomerate,  Argillite  I.  Distribution  of the  principal  geological  units  within  the regional s t u d y  area.  -10-  succession of P a l e o z o i c c h e r t s and s h a l e s . These dark, interbedded shales and c h e r t s cover much of the eastern p o r t i o n of the area.  T h e i r estimated  aggregate t h i c k n e s s i s 10,000 f e e t , w i t h the b a s a l p o r t i o n dominated by shale and the upper p o r t i o n by c h e r t .  Chert-  pebble conglomerate, limestone, q u a r t z i t e and p h y l l i t e are present i n minor amounts.  G r a p t o l i t e s , found i n c e r t a i n s h a l y  members, suggest an O r d o v i c i a n to S i l u r i a n age f o r p a r t of t h i s u n i t (Roddick & Green, 1961a).  The rocks of the Earn  Group, exposed i n the southwestern  corner of the area, are  Devonian to M i s s i s s i p p i a n i n age.  They c o n s i s t mainly of  c h e r t , chert-pebble conglomerate and  argillite.  Massive dark l a v a f l o w s , exceeding 5,000 f e e t i n aggregate t h i c k n e s s , l o c a l l y o v e r l i e the P a l e o z o i c s t r a t a . The upper flows are d a c i t i c , w h i l e the lower ones are domina n t l y a n d e s i t i c and b a s a l t i c .  Several small g r a n o d i o r i t e and  quartz monzonite stocks i n t r u d e both the Precambrian and Paleozoic rocks.  H o r n f e l s , and l o c a l l y m i n e r a l i z e d skarns,  are developed near t h e i r c o n t a c t s . on b i o t i t e s  A potassium-argon date  from the I t s i Range i n d i c a t e s a Middle C r e t a -  ceous age f o r the g r a n i t i c rocks (Roddick and Green, 1961a). S e v e r a l lead-zinc-copper v e i n and skarn d e p o s i t s have been r e p o r t e d i n the area, and tungsten and molybdenum mine r a l i z a t i o n i s a s s o c i a t e d w i t h the g r a n i t i c i n t r u s i v e s ( F i n d l a y , 1969). the Tom  At present the most promising d e p o s i t s are  P r o p e r t y (Hudson Bay E x p l o r a t i o n and Development  -11  Company L t d . ) , comprising stratabound galena and s p h a l e r i t e i n P a l e o z o i c s h a l e s , and the MacTung P r o p e r t y (American Metal Climax I n c o r p o r a t e d ) , w i t h p y r r h o t i t e - s c h e e l i t e m i n e r a l i z a t i o n i n a skarn zone surrounding a small s t o c k .  Both p r o p e r t i e s  are l o c a t e d i n the n o r t h e a s t , near MacMillan Pass.  GLACIATION Evidence o f the most recent P l e i s t o c e n e g l a c i a t i o n , the McConnell advance, i s abundant w i t h i n the study area (Hughes e t a l , 1968). accumulated  During the McConnell g l a c i a t i o n i c e  i n the Hess Mountains up t o an e l e v a t i o n of 5,000  f e e t (Bostock, 1948), and flowed westward onto the Yukon Plateau.  I c e movement was c o n t r o l l e d t o a great extent by  the main drainage channels, which as a r e s u l t were c o n s i d e r ably deepened, e s p e c i a l l y on the Stewart P l a t e a u . I n t h e MacMillan R i v e r v a l l e y t h e t o t a l t h i c k n e s s of g l a c i a l d r i f t g e n e r a l l y ranges from 400 t o 500 f e e t .  Normally  i t c o n s i s t s o f a b a s a l boulder c l a y u n i t , o v e r l a i n by an i r r e g u l a r sequence o f s i l t s , sands and g r a v e l s (McConnell, 1905).  TOPOGRAPHY AND DRAINAGE The r e g i o n a l study area i s d i v i d e d i n t o two major physiographic r e g i o n s ( F i g u r e 2 ) , t h e Hess Mountains i n the n o r t h e a s t , and the E a s t e r n Yukon P l a t e a u i n the southwest (Bostock, 1948).  The Hess Mountains comprise a group o f  134°  133°  131°  132°  I30  c  1 STEWART  KP  H£  PLATEAU  'MP  MOUNTAINS LAN  RI V  + SM  MACMILLAN  4-  IR  'MAC  LEGEND  MS - Mount  Sheldon  SM - Selenous Mountain IR - Itsi Range  135°  KP - Keele  MP - MacMillan °  [34°  Figure  2 .  Physiographic  MILES  <j  PLATEAU  Peak Pass  o el  16 — 1 —  133°  subdivisions  o f the r e g i o n a l  132°  study  area.  f  ^ PELLY PLATEAU 131°  130°  -13-  i r r e g u l a r , somewhat subdued ranges, u n d e r l a i n by P a l e o z o i c sediments.  predominantly  The h i g h e s t peaks, i n excess of  7,000 f e e t , are g e n e r a l l y cored by g r a n i t i c i n t r u s i v e s . The E a s t e r n Yukon P l a t e a u i s subdivided from northwest to southeast, i n t o the Stewart, MacMillan and P e l l y P l a t e a u s . W i t h i n the study area both the Stewart and  MacMillan  P l a t e a u s c o n s i s t of t a b l e l a n d s , 4,000 to 5,000 f e e t i n e l e v a t i o n , d i s s e c t e d by a w e l l developed network of s t r u c turally controlled valleys.  Small mountain ranges,  rarely  exceeding 7,000 f e e t i n e l e v a t i o n , commonly crown these t a b l e lands.  The P e l l y P l a t e a u , on the other hand, i s only m i l d l y  d i s s e c t e d , w i t h a few small mountains separated by broad r e l a t i v e l y shallow v a l l e y s . The Hess and MacMillan R i v e r s d r a i n most of the region.  Both head i n the Hess Mountains and flow westward  across the p l a t e a u . CLIMATE Cut o f f from the p r e v a i l i n g w e s t e r l y winds by the peaks of the S a i n t E l i a s Range, the c l i m a t e i s predominantly c o n t i n e n t a l , c h a r a c t e r i z e d by r e l a t i v e l y l i t t l e r a i n f a l l extreme temperature ranges (Kendrew and K e r r , 1955).  and  The  mean d a i l y temperatures range from approximately -20°P during the w i n t e r months, t o about 60°F i n the summer.  The  high  summer mean i s i n p a r t due to the n e a r l y continuous s u n l i g h t experienced at t h a t time.  There i s no pronounced r a i n y  -14season, though most of the p r e c i p i t a t i o n f a l l s i n l a t e summer and e a r l y f a l l .  The t o t a l annual p r e c i p i t a t i o n i n c r e a s e s  from west to east, from about twelve inches on the p l a t e a u to over twenty inches i n the mountains. SOIL Topography i s one of the primary f a c t o r s c o n t r o l l i n g the d i s t r i b u t i o n of s o i l types.  Regosols, and t o a l e s s e r  extent B r u n i s o l s , are common on the w e l l drained upland r e g i o n s , whereas f l a t p o o r l y drained v a l l e y bottoms are c h a r a c t e r i z e d by G l e y s o l s and Organic s o i l s .  Because of the  c o l d c l i m a t e , r e l a t i v e l y rugged topography and recent  glaci-  a t i o n the depth of the solum of mineral s o i l s seldom exceeds two f e e t . out the  Permafrost i s d i s t r i b u t e d d i s c o n t i n u o u s l y through-  area. A one to two i n c h l a y e r of v o l c a n i c ash u n d e r l i e s  the organic surface h o r i z o n i n most areas.  Capps (1915)  has  suggested t h a t the ash was d e r i v e d from a major v o l c a n i c e r u p t i o n i n the S a i n t E l i a s Range approximately  1,500  years  ago. VEGETATION The d i s t r i b u t i o n o f p l a n t species i s c h i e f l y topog r a p h i c a l l y c o n t r o l l e d . Dense f o r e s t s occupy the bottoms of the major r i v e r v a l l e y s . The predominant species i s white spruce ( P i c e a g l a u c a ) , though s e v e r a l other species i n c l u d i n g b l a c k spruce ( P i c e a mariana), aspen (Populus t r e m u l o i d e s ) ,  -15-  and a l p i n e f i r (Abies l a s i o c a r p a ) are present 1903).  (McConnell,  The lower p a r t s o f the v a l l e y s l o p e s , up t o the  t r e e l i n e a t about 4,500 f e e t , are covered w i t h spruce and l o c a l l y w i l l o w ( S a l i x ) and a l d e r ( A l n u s ) .  Dwarf b i r c h and  c a r i b o u moss range between the t r e e l i n e and scree slopes a t the h i g h e s t a l t i t u d e s i n mountainous r e g i o n s . WILDLIFE A wide v a r i e t y o f mammalian species are known t o i n h a b i t the r e g i o n .  Of t h e l a r g e r mammals the g r i z z l y bear  (Ursus h o r r i b i l i s ) , caribou ( R a n g i f e r a r c t i c u s ) and mountain sheep (Ovis d a l l i ) roam c h i e f l y above t i m e r l i n e , w h i l e the b l a c k bear (Ursus americanus) and moose ( A l c e s americana) occupy the f o r e s t e d v a l l e y bottoms.  Mountain sheep and  c a r i b o u consume mainly grasses, sedges and w i l l o w s (Rand, 1945b).  I n the w i n t e r , however, caribou s u b s i s t almost en-  t i r e l y on c a r i b o u moss. aquatic  Moose consume w i l l o w s and a s s o r t e d  p l a n t s , w h i l e grasses, b e r r i e s and r o o t s are the  major food sources f o r the bear p o p u l a t i o n .  CHAPTER THREE REGIONAL GEOCHEMICAL RECONNAISSANCE  -17  SAMPLE COLLECTION AND PREPARATION A t l a s E x p l o r a t i o n s L i m i t e d , Vancouver, c o n t r i b u t e d n e a r l y 600 minus-80 mesh stream sediment samples.  They were  c o l l e c t e d during the summers o f 1968 and 1969, o r i g i n a l l y f o r m i n e r a l e x p l o r a t i o n purposes, over an area o f approximately 7,000 square m i l e s i n t h e E a s t e r n Yukon. Sample d e n s i t y ranges from about one sample p e r 5 square m i l e s t o approximately one sample p e r 50 square m i l e s . Catchment areas upstream from sample s i t e s are n o r m a l l y from two t o f i v e square m i l e s . SAMPLE ANALYSIS Stream sediments were analyzed by a semi-quantit a t i v e DC-arc spectrographic procedure ( F l e t c h e r , p e r s . comm.) f o r f i f t e e n elements:  S r , Ba, C r , Co, N i , Ag, T i , Cu, V,  Mo, B i , Ga, Sn, Pb and Mn. Pre-Analytical  Treatment  A small amount o f minus-80 mesh stream sediment mate r i a l was i g n i t e d at 550°C f o r t h r e e hours.  One hundred  m i l l i g r a m s of i g n i t e d sample were then mixed w i t h an equal weight o f g r a p h i t e , c o n t a i n i n g indium as an i n t e r n a l standard, and homogenized by shaking i n a Spex " M i x e r / M i l l " f o r three minutes.  The mixture was then packed i n t o the c a v i t y o f a  g r a p h i t e anode and sealed w i t h one drop of sugar s o l u t i o n  -18-  (20 gm.  sucrose d i s s o l v e d i n 75 ml. of ethanol and 25  ml.  of d i s t i l l e d water). A n a l y t i c a l Method The equipment and o p e r a t i n g c o n d i t i o n s f o r stream sediment a n a l y s i s are given i n Table I .  Metal c o n c e n t r a t i o n s  were estimated by v i s u a l comparison of the sample s p e c t r a w i t h those of s y n t h e t i c standards as described by N i c h o l and Henderson-Hamilton (1965).  The s p e c t r a l l i n e s used and  approximate d e t e c t i o n l i m i t s are i n d i c a t e d i n Table I I .  Table I  Spectre-graphic equipment and operating conditions.  Spectrograph  Hilger-Watts automatic quartz  Source  E l e c t r o - M a t i c Products (ARL), Model P6KS, Type 2R41  Arc/Spark Stand  Spex I n d u s t r i e s #9010  Microdensitometer  ARL S p e c t r o l i n e Scanner #2200  Anode  G r a p h i t e , N a t i o n a l L3709SPK  Cathode  Graphite, N a t i o n a l L3803AGKS  3-Step N e u t r a l Filter  spectograph  Spex I n d u s t r i e s #1090, 5$ 20$ and 100$ transmitance  Neutral F i l t e r  Spex I n d u s t r i e s #9022, 20$ transmitance  Emulsion  Spectrum A n a l y s i s #1  Wavelength Range  2775-4800 A°  Mask  17  S l i t Width  15  Arc Current  12a  Plate Processing  developer  Kodak D-19  3 min. at 23°C  stopbath  Kodak  30 sec.  fixer  Kodak  5 min.  mm. M.  Arc Gap  4  Exposure Time  20 sec.  m.m.  -20-  Table I I  Wave l e n g t h s and approximate d e t e c t i o n l i m i t s f o r s p e c t r a l l i n e s used t o estimate element abundances i n stream sediments.  Detection Limit (p.p.m.)  Element  Wavelength (A)  Sr  4607.33  50  Ba  4554.04  1  Cr  4254.35  1  Co  3453.51  5  Ni  3414.77  5  Ag  3382.89  1  Ti  3372.80  20  Cu  3273.96  10  In  3256.09  1  V  3185.40  20  Mo  3170.35  2  Bi  3067.72  10  Ga  2943.64  1  Sn  2839.99  5  Pb  2833.07  2  Mn  2801.06  1  -21-  Table I I I  A n a l y t i c a l p r e c i s i o n f o r spectrographs.c analysis of stream sediment at the 95$ confidence l e v e l , calculated from 50 separate analyses of U.B.C. Standard Rock.  Element  Mean Concentration (p.p.m.))  Precision (at 95$ confidence level)  Sr  1285  85  Ba  1520  85  Cr  8  90  Co  9  80  Ni  8  85  Ag  n.d.*  -  Ti  14-10  60  Cu  15  50  In  25  45  V  55  60  Mo  n.d.*  -  Bi  n.d.*  -  Ga Sn  15 n.d.*  30  -  Pb  4  95  Mn  275  85  *n.d. = not detected  -22-  Analytical Control A n a l y t i c a l p r e c i s i o n was estimated by r e p l i c a t e a n a l y s i s o f a standard rock sample i n c l u d e d i n each a n a l y t i c a l batch ( F l e t c h e r , p e r s . comm.). P r e c i s i o n , a t the 95$ confidence l e v e l , i s i n d i c a t e d , f o r each element, i n Table III.  Samples w i t h l e s s than 10 p.p.m., o r g r e a t e r than  50 p.p.m. o f the i n t e r n a l standard indium, were r e - a n a l i z e d . PRESENTATION OF DATA Range and geometric mean t r a c e element values f o r stream sediments d e r i v e d from each o f the p r i n c i p a l g e o l o g i c a l u n i t s are i n d i c a t e d i n Table IV.  F i g u r e s 3 t o 11 show the  r e g i o n a l d i s t r i b u t i o n s o f Mo, V, N i , C r , Cu, Pb, S r , Mn and Co.  Ag, B i and Sn, which were detected i n o n l y a few samples,  Ba and T i , which were commonly present i n c o n c e n t r a t i o n s above t h a t o f the h i g h e s t standard, and Ga, which i s v e r y u n i f o r m l y d i s t r i b u t e d over a l l rock t y p e s , are n o t considered. D i s t r i b u t i o n maps were compiled by computing the geometric mean t r a c e element l e v e l s w i t h i n the 10,000 meter squares o f t h e N a t i o n a l Topographic ( F l e t c h e r , p e r s . comm.).  S e r i e s map sheets  These mean v a l u e s were then grouped  according t o s p e c i f i c c l a s s i n t e r v a l s , the l i m i t s o f which correspond t o t h e midpoints between the spectrograph!c standards. T h i s method o f data p r e s e n t a t i o n has the advantage  -23-  Table IV  Range and geometric mean t r a c e element content (p.p.m.) of minus-80 mesh f r a c t i o n of stream sediments a s s o c i a t e d with each of the major bedrock u n i t s w i t h i n the r e g i o n a l study a r e a .  BEDROCK ELEMENT  YUKON GROUP  .EARN GROUP  Proterozoic  Paleozoic  Paleozoic  Cretaceous  chert, quartzite  dark s h a l e , chert  granodiorite  schist, quartzite, phyllite shale  UNIT 3  GRANITIC ROCK  VOLCANIC ROCK Tertiary dacite, andesite basalt  2 2-5  2 2-3  3 2-6  11 3-35  2 2-4  V  110 75-170  200 120-360  480 250-930  80 40-170  170 85-350  Ki  65 50-85  70 50-100  140 60-320  35 15-90  45 30-75  Cr  140 100-190  120 90-150  180 120-270  60 25-130  95 65-150  Cu  50 30-80  60 35-95  90 50-160  25 15-45  45 25-90  15 8-29  17 13-21  20 14-29  200 • 100-420  310 210-470  Mo*  \  Pb  18 11-28  Sr  270 150-470  330 210-520  Mn  770 390-1550  970 630-I500  Co  35 25-55 123  Number o f Samples t *  18 • 8-20  30 20-45 28  430 . 170-1090  ' 370 220-620  35 15-65 295  Range = geometric mean ± l o g standard d e v i a t i o n Values l e s s than 2 p.p.m. taken as 1 p.p.m.  20 10-35 18  720 500-1030 860 530-1390 30 20-50 17  -24.  of emphasizing the r e g i o n a l p a t t e r n s by smoothing over l o c a l irregularities.  However, because o f the uneven d i s t r i b u t i o n  of sample s i t e s , the number o f sediment samples used t o c a l c u l a t e each map value ranges from one up t o about t e n . Consequently, i n t h i s case, i s o l a t e d anomalous v a l u e s could give a f a l s e i n d i c a t i o n o f l o c a l background l e v e l s .  TRACE ELEMENT PATTERNS IN STREAM SEDIMENTS Regional d i s t r i b u t i o n p a t t e r n s o f the v a r i o u s elements may be subdivided i n t o two r e l a t i v e l y d i s t i n c t groups. I n the f i r s t , which i n c l u d e s molybdenum, vanadium, n i c k e l , copper and chromium, t h e h i g h e s t c o n c e n t r a t i o n s occur i n t h e n o r t h e a s t , c h i e f l y u n d e r l a i n by the dark shales and c h e r t s of U n i t 3 .  I n the second, comprising l e a d , s t r o n t i u m , man-  ganese and c o b a l t , high v a l u e s are most common i n the southwest.  D i s t r i b u t i o n o f Mo, V, N i , C r and Cu As i n d i c a t e d i n Table IV, sediments a s s o c i a t e d w i t h U n i t 3 t y p i c a l l y c o n t a i n enhanced molybdenum values (11 p.p.m.). Concentrations i n sediments d e r i v e d from other u n i t s are g e n e r a l l y low and o f t e n below the 2 p.p.m. d e t e c t i o n l i m i t . High c o n c e n t r a t i o n s , up t o 100 p.p.m., are most common i n the c e n t r a l p o r t i o n o f U n i t 3 ( F i g u r e 3 ) . over the small lens*, o f U n i t 3 rock  Molybdenum l e v e l s  i n the s o u t h - c e n t r a l  134°  Figure3.  Regional  133°  distribution  10,000 m e t e r  of M o in m i n u s - 8 0  squares.  132°  mesh fraction  131°  of  stream  sediment  134°  1  3  5  °  Figure 4 .  1  3  4  133°  °  133°  Regional, distribution 10,000  meter  132°  of  squares.  V  in m i n u s - 8 0  131°  132°  mesh  fraction  '31°  of  stream  sediment  from  134°  Figure 5 .  133°  Regional d i s t r i b u t i o n 10,000  meter  of  squares.  Ni  132°  in  minus-80  mesh  fraction  131°  of  stream  sediment  from  1  135  Figure 6.  Regional  10,000  distribution  meter  of  squares.  Cr  In  minus-80  mesh  fraction  of  stream  IT  .«  sed.ment  from  i  ro oo i  he 3 ° 6 3<H  Mean  Cu  Content  (p.p.m.)  >I60  7 0 - 1 5 0  3 2 - 6 9  <  32 WILES  0  8  I  13 5 °  Figure 7.  1  I  ro  —r  134  Regional 10,000  distribution meter  of  squares.  Cu in  minus-80  mesh  fraction  of  stream  sed iment  from  10,000  meter  squares.  10,000  meter  squares. -  10,000 meter  squares  Figure I I .  Regional 10,000  distribution meter  of  squares.  Co  in  minus-80  mesh  fraction  of  stream  sediment  from  ^ !  -34-  p o r t i o n o f the study area are somewhat lower than those a s s o c i a t e d w i t h the main body o f t h i s u n i t t o the n o r t h e a s t . Sediments from each g e o l o g i c a l u n i t are c h a r a c t e r i z e d by r e l a t i v e l y d i s t i n c t vanadium l e v e l s (Table I V ) .  Con-  sequently, the p o s i t i o n s o f a l l major g e o l o g i c a l c o n t a c t s are c l e a r l y evident i n t h e vanadium d i s t r i b u t i o n p a t t e r n (Figure 4 ) .  The northern contact o f the Earn Group w i t h t h e  Yukon Group f o r example, which i s i n d i s t i n g u i s h a b l e i n t h e d i s t r i b u t i o n p a t t e r n s f o r the other elements, i s d e f i n e d by an abrupt change i n c o n c e n t r a t i o n from approximately 250 p.p.m. over the Earn Group t o about 100 p.p.m. over the Yukon Group.  The h i g h e s t vanadium c o n c e n t r a t i o n s , up t o 1,500  p.p.m., are a s s o c i a t e d w i t h U n i t 3, and t h e lowest w i t h the g r a n i t i c rocks. The d i s t r i b u t i o n o f n i c k e l ( F i g u r e 5) resembles t h a t of vanadium, though the l o c a t i o n s o f the major g e o l o g i c a l contacts are o n l y vaguely r e f l e c t e d .  N i c k e l concentrations  over the small lensc o f U n i t 3 southwest o f Selenous Mountain (Figure 2) are r e l a t i v e l y e r r a t i c , w i t h adjacent values d i f f e r i n g by as much as 140 p.p.m. As i n d i c a t e d i n Figure 6, t h e chromium p a t t e r n i s subdued i n comparison w i t h those o f the p r e v i o u s l y mentioned elements.  This u n i f o r m i t y i s r e f l e c t e d i n the s i m i l a r mean  chromium l e v e l s (120 t o 180 p.p.m.) a s s o c i a t e d w i t h the three most abundant rock types (Table I V ) . The h i g h e s t mean copper c o n t r a t i o n s (90 p.p.m.) are a s s o c i a t e d w i t h U n i t 3, while t h e lowest (25 p.p.m.), occur  -35-  i n sediments d e r i v e d from g r a n i t i c r o c k s .  A few s t r i k i n g l y  h i g h copper v a l u e s , up t o 500 p.p.m., occur over U n i t 3 ( F i g u r e 7)"*. Large s c a l e r e g i o n a l v a r i a t i o n s i n t h e t r a c e element content o f stream sediments over both U n i t 3 and the Yukon Group are apparent f o r many o f these elements.  F o r example,  r e l a t i v e l y h i g h molybdenum (>8 p.p.m.), vanadium (>320 p.p.m.), n i c k e l (>150 p.p.m.) and chromium (>150 p.p.m.) v a l u e s i n the c e n t r a l p o r t i o n o f t h e main body o f U n i t 3 c o n t r a s t w i t h moderate t o low v a l u e s over the narrow northwestern arm o f this unit.  S i m i l a r i l y , over the Yukon Group, r e l a t i v e l y en-  hanced vanadium (>150 p.p.m.), chromium (>150 p.p.m.) and to a l e s s e r extent n i c k e l (>70 p.p.m.) v a l u e s are more abundant i n the southeast than i n the northwest. C e r t a i n i s o l a t e d anomalous v a l u e s over both U n i t 3 and the Yukon Group may r e f l e c t the presence o f small i n c l u s i o n s o f f o r e i g n bedrock.  The p o s i t i o n o f a g r a n i t i c  stock, f o r example, about twenty m i l e s northwest o f the I t s i Range ( F i g u r e 2 ) , i s c l e a r l y i n d i c a t e d by anomalously low t r a c e element l e v e l s ( F i g u r e s 3 t o 7).  I s o l a t e d h i g h molyb-  denum (>14 p.p.m.) and vanadium (>320 p.p.m.) v a l u e s ( F i g u r e s 3 and 4-), s i t u a t e d about twenty m i l e s northwest o f Selenous Mountain (Figure 2) over the Yukon Group, s t r o n g l y suggest the presence o f a small unmapped o u t l i e r o f U n i t 3 .  -36-  D i s t r i b u t i o n o f Pb, S r , Mn and Co Concentrations o f these elements i n stream sediments d e r i v e d from U n i t 3 are not p a r t i c u l a r l y enhanced.  With  the exception o f c o b a l t , t h e i r d i s t r i b u t i o n p a t t e r n s t y p i c a l l y display l i t t l e geological control. Range and mean l e a d v a l u e s a s s o c i a t e d w i t h a l l f i v e major g e o l o g i c a l u n i t s are remarkably s i m i l a r (Table I V ) . Consequently the d i s t r i b u t i o n p a t t e r n f o r l e a d i s very (Figure 8 ) .  uniform  F i v e anomalously h i g h values (up t o 180 p.p.m.)  are i n d i c a t e d i n Figure 8, f o u r o f which occur over Yukon Group r o c k s .  High l e a d values i n sediments d r a i n i n g T e r t i a r y  v o l c a n i c r o c k s , about t w e n t y - f i v e m i l e s south o f Selenous Mountain, are not apparent i n F i g u r e 8 due t o d i l u t i o n o f the anomalous samples w i t h surrounding ones, i n the same U.T.M. square, w i t h low l e a d contents. Strontium l e v e l s i n stream sediments are p a r t i c u l a r l y e r r a t i c over U n i t 3 ( F i g u r e 9 ) . Both abnormally  high (>750  p.p.m.) and low (<150 p.p.m.) v a l u e s are c o n f i n e d , w i t h few exceptions, t o r e g i o n s u n d e r l a i n by U n i t 3 .  As i n d i c a t e d i n  Table IV, the mean strontium c o n c e n t r a t i o n i n sediment d e r i v e d from T e r t i a r y v o l c a n i c s (720 p.p.m.) i s s u b s t a n t i a l l y h i g h e r than mean l e v e l s a s s o c i a t e d w i t h other rock types. R e l a t i v e l y wide manganese c o n c e n t r a t i o n ranges are a s s o c i a t e d w i t h each o f the major g e o l o g i c a l u n i t s (Table I V ) . As a r e s u l t , t h e d i s t r i b u t i o n p a t t e r n f o r manganese ( F i g u r e 10),  l i k e that of strontium, i s e r r a t i c .  High manganese  -37-  v a l u e s are t y p i c a l l y a s s o c i a t e d w i t h the Yukon Group, Earn Group and T e r t i a r y v o l c a n i c r o c k s . The r e l a t i v e l y uniform d i s t r i b u t i o n o f c o b a l t v a l u e s ( F i g u r e 11) i s r e f l e c t e d i n the narrow range o f mean c o b a l t c o n c e n t r a t i o n s (20 t o 35 p.p.m.) i n sediments d e r i v e d from the v a r i o u s bedrock u n i t s .  N e v e r t h e l e s s , the p o s i t i o n s o f  the boundaries o f both the Earn Group and the T e r t i a r y v o l c a n i c s are c l e a r l y r e f l e c t e d i n the c o b a l t d i s t r i b u t i o n pattern.  DISCUSSION OF DISTRIBUTION PATTERNS R e l a t i o n s h i p t o Bedrock Composition Data are a v a i l a b l e o n l y on the r e g i o n a l d i s t r i b u t i o n of molybdenum w i t h i n the g r a n i t i c r o c k s .  G a r r e t t (1971a) has  r e p o r t e d t h a t the mean molybdenum c o n c e n t r a t i o n i n a l l major stocks i s c h a r a c t e r i s t i c a l l y l e s s than 2 p.p.m. and never exceeds 6 p.p.m.  Low molybdenum l e v e l s i n stream sediments  d e r i v e d from these r o c k s (Table IV) are i n e x c e l l e n t agreement w i t h G a r r e t t ' s f i g u r e s . Gleeson (1967) has noted enhanced molybdenum v a l u e s ( o c c a s i o n a l l y > 1 0 p.p.m.) i n stream sediments a s s o c i a t e d w i t h g r a p h i t e and p y r i t e - r i c h p h y l l i t e s i n the Keno H i l l r e g i o n , Yukon T e r r i t o r y . These f i n d i n g s are c o n s i s t e n t w i t h the high mean molybdenum l e v e l ( 1 1 p.p.m.) i n sediments d e r i v e d from the U n i t 3 r o c k s , which i n c l u d e s i g n i f i c a n t amounts o f o r g a n i c - r i c h , o c c a s i o n a l l y p y r i t e b e a r i n g , s h a l e s .  -38-  Depending upon the influence of secondary environment, trace element l e v e l s i n stream sediment should r e f l e c t , to some extent, concentrations i n associated bedrock (Webb et a l . ,  1968).  Thus, Table IV suggests that  the dark cherts and shales of Unit 3 are l i k e l y  enriched,  r e l a t i v e to the other g e o l o g i c a l u n i t s , i n molybdenum and vanadium, and to a l e s s e r extent n i c k e l , copper and chromium. S i m i l a r l y , the T e r t i a r y v o l c a n i c s l i k e l y contain large amounts of strontium, while the l e v e l s of both cobalt and lead are probably very s i m i l a r i n a l l of the major bedrock types. Relationship to G l a c i a t i o n As previously noted, during the Pleistocene, g l a c i a l i c e accumulated i n the Hess Mountains (Figure 2 ) and westward across the Yukon Plateau.  flowed  I n t e r p r e t a t i o n of stream  sediment patterns i n terms of bedrock geology could therefore be complicated by the presence of exotic d r i f t over geological u n i t s i n the west.  The generally sharp change  i n sediment molybdenum, vanadium and n i c k e l values (Figures 3 , 4- and 5 ) across the contact between Unit 3 and the main body of the Yukon Group however, suggests that the influence of g l a c i a t i o n on regional sediment patterns has been r e l a tively  slight.  -39-  P o s s i b l e R e l a t i o n s h i p t o Animal N u t r i t i o n In I r e l a n d and the U n i t e d Kingdom molybdenum l e v e l s of over 10 p.p.m. i n stream sediment have d e l i n e a t e d r e g i o n s wherein abnormally h i g h molybdenum c o n c e n t r a t i o n s i n s o i l s and herbage g i v e r i s e t o molybdenum induced hypocuprosis and molybdenosis (Thornton and Webb, 1969).  Comparably h i g h  values are common over l a r g e areas u n d e r l a i n by U n i t 3, especi a l l y i n the east. A d e t a i l e d study was t h e r e f o r e undertaken t o r e l a t e the  r e g i o n a l geochemical p a t t e r n s t o molydenum l e v e l s i n  bedrock, s o i l s and v e g e t a t i o n .  P a r t i c u l a r a t t e n t i o n was  given t o sampling those p l a n t species l i k e l y t o be consumed by moose and c a r i b o u .  SECTION  B  DETAILED STUDY  CHAPTER IV DESCRIPTION OP DETAILED STUDY AREA  LOCATION AND ACCESS D e t a i l e d geochemical i n v e s t i g a t i o n s were undertaken i n an area of approximately 100 square m i l e s , near the c r e s t l i n e o f the Hess Mountains, i n the v i c i n i t y of MacMillan Pass ( F i g u r e 1 ) .  Access i s p r o v i d e d by both the Canol Road,  which i s open between the v i l l a g e of Ross R i v e r and MacMillan Pass d u r i n g summer months, and a small a i r s t r i p which i s s i t u a t e d i n the v a l l e y o f the South MacMillan R i v e r , a few m i l e s southwest of the pass. GEOLOGY U n i t 3 rocks are most abundant o f the three major geol o g i c a l u n i t s w i t h i n t h e d e t a i l e d study area ( F i g u r e 12). Much of the northern r e g i o n s , however, are u n d e r l a i n by the Yukon Group.  A few g r a n i t i c s t o c k s , t y p i c a l l y l e s s than three  m i l e s i n diameter, i n t r u d e both U n i t 3 and the Yukon Group. L i t h o l o g i c a l c h a r a c t e r i s t i c s of rock m a t e r i a l sampled are summarized i n Table V.  Of p a r t i c u l a r i n t e r e s t i s the  wide v a r i e t y of rock types comprising U n i t 3, i n c l u d i n g l i g h t to dark c o l o r e d s h a l e , s i l t s t o n e , chert-pebble and l i m e s t o n e .  conglomerate  No c h e r t s , reported by Roddick and Green  (1961a) t o be common w i t h i n t h i s u n i t were noted, though the l i g h t grey s h a l e s are t y p i c a l l y very s i l i c e o u s .  Styliolina,  observed i n c e r t a i n limestone samples (Best, pers. comm.), suggest a Middle i : S i l u r i a n t o Upper Devonian age f o r a t l e a s t a p o r t i o n o f U n i t . 3.  Tight f o l d i n g , complex f a u l t i n g and  LEGEND  QUATERNARY Unconsolidated deposits CRETACEOUS  glacial and alluvial  Granodiorite ORDOVICIAN to MISSISSIPPIAN S h a l e , s i l t s t o n e , c h e r t - pebble conglomerate, l i m e s t o n e  ^6000"  Contours Stream  ••••»••••-^  Lake Road  PROTEROZOIC P h y l l i t e , schist  /  Geological contact  0  " MILES | 2  3  4  Figure 12. Distribution of principal geological units within the d e t a i l e d study area.  Table V  Lithologlcal the detailed  AGE  GEOLOGICAL UNIT  KESOZOIC (Cretaceous?)  GRANITIC ROCK  characteristics study area.  of major bedrock u n i t s within  DESCRIPTION  B i o t i t e Granodiorite:  disseminated  sulfides  relatively  rare.  Dark grey t o black Shale: organic carbon a b u n d a n t ; small s p h e r i c a l s i l i c a grains (<. 5m. m. i n diameter) resembling diatoms (Best, pers. comm.) common i n siliceous varieties; locally euhedral p y r i t e c r y s t a l s occupy cores of s i l i c a spheres.  in  Medium to l i g h t grey Shales organic carbon less common (lOJi)* than in black s h a l e ; certain v a r i e t i e s are very r i c h i n s i l i c a ) no true cherts,with c o n c h l o d A l fracture, were noted.  SIXICEI  (50$)*  Dark S i l t s t o n e i (30$) *  is ! | i  PALEOZOIC (Middle S i l u r ian t o Upper Devonian i n part)  UNIT 3  CALCAREOUS  Conglomeratei (5%) *  YUKON GROUP  associated with s i l t s t o n e s i angular chert pebbles (up t o 10 m.m. i n length) are common; black shale and q u a r t z i t e pebbles are r e l a t i v e l y r a r e ; gradded bedding may be present.  Dark grey t o black Limestone; f i n e grained; organic (Si)* carbon common; l o c a l l y f o s s i l i f e r o u s ; contains S t v l i o l i n a (Best. Ders. comm.) which ranges from Kiddle S i l u r i a n t o Upper Devonian (Moore, 1962).  Chlorite PROTEROZOIC  c h i e f l y interbedded s i l t y , s h a l e y and sandy laminations; i n d i v i d u a l laminations range from less than one to a few millimeters i n thickness; s i l t y laminations a r e most common and sandy ones Inar.t ccinoi.! organic carbon i s abundant i n shaley ay.d s i l t y layers.  Schist;  Quartz P h i l l i t e i  mainly c h l o r i t e with some quartz. mainly quartz with minor muscovite and c h l o r i t e .  * r e l a t i v e abbundance of Unit 3 rock material sampled f o r analysis  -4-5-  the absence o f d i s t i n c t i v e marker horizons combine t o make determination o f r e l a t i v e s t r a t i g r a p h i c p o s i t i o n s o f v a r i o u s Unit 3 l i t h o l o g i e s d i f f i c u l t . SOIL Each o f n e a r l y 100 s o i l p r o f i l e s examined was c l a s s i f i e d to the subgroup l e v e l according t o the c l a s s i f i c a t i o n system of the Canadian Department o f A g r i c u l t u r e (1970).  Members  of the Regosolic ( F i g u r e 13), B r u n i s o l i c ( F i g u r e 14-), G l e y s o l i c (Figure 15) and Organic Orders are recognized. Regosols are the most abundant Order, comprising n e a r l y seventy percent o f the s o i l s examined.  They are d i s t r i b u t e d  throughout a wide v a r i e t y o f environments ranging from the f l o o r s o f the MacMillan and Ross R i v e r v a l l e y s , t o the mountainous uplands above t i m e r l i n e . B r u n i s o l s , G l e y s o l s and Organic s o i l s are g e n e r a l l y confined t o main v a l l e y bottoms.  Both G l e y s o l s and Organic  s o i l s , c h a r a c t e r i s t i c o f p o o r l y drained environments, are commonly s a t u r a t e d w i t h water w i t h i n one f o o t o r l e s s o f the s o i l surface. materials.  B r u n i s o l s develop on porous, w e l l drained  parent  T h e i r v i r t u a l absence i n upland regions may be due  to r a p i d e r o s i o n i n these  areas.  A discontinuous ash l a y e r , g e n e r a l l y l e s s than two inches t h i c k , separates the L-H from the u n d e r l y i n g mineral h o r i z o n i n many s o i l s ( F i g u r e s 13 and 14-).  Permafrost was  encountered a t a v a r i a b l e depth i n about t e n percent o f the s o i l s examined.  -46-  Figure 13.  Regosol i n g r a s s l a n d environment northeast of MacMillan Pass ( S i t e 33).  •  Note l a c k of p r o f i l e development. (Scale i n inches)  _47-  Figure 14.  B r u n i s o l on a dwarf b i r c h and c a r i b o u moss covered k n o l l i n the main v a l l e y of the South MacMillan R i v e r ( S i t e  Note leached Ae h o r i z o n o v e r l y i n g Bm h o r i z o n .  19).  yellowish-brown  -48-  Figure 15.  G l e y s o l developed on dwarf b i r c h f l a t s n o r t h east of MacMillan Pass ( S i t e  29).  Note mottled Cg h o r i z o n o v e r l y i n g permafrost Cz ( s c a l e i n i n c h e s ) .  zone,  -49-  I t i s common beneath dwarf b i r c h f l a t s n o r t h e a s t o f MacMillan Pass and i n the densely f o r e s t e d regions o f the MacMillan and Ross R i v e r v a l l e y s .  The absence o f permafrost i n upland  regions may be due t o r e l a t i v e l y sparse v e g e t a t i o n and r a p i d drainage i n these areas. VEGETATION D i s t r i b u t i o n o f p l a n t types i n the d e t a i l e d study area i s c o n t r o l l e d p r i m a r i l y by topography and drainage.  Grasses  and w i l l o w c h a r a c t e r i z e much o f the f l a t wet f l o o r o f the South MacMillan R i v e r v a l l e y .  Comparatively w e l l drained  k n o l l s , s c a t t e r e d near t h e margins o f the v a l l e y f l o o r , are covered c h i e f l y by dwarf b i r c h ( B e t u l a glandulosa) and c a r i b o u moss ( C l a d o n i a a l p e s t r i s ) .  Near the head o f the v a l l e y , i n  the v i c i n i t y o f MacMillan Pass, these k n o l l s merge i n t o ext e n s i v e dwarf b i r c h - c a r i b o u moss f l a t s . With the e x c e p t i o n o f c e r t a i n l i c h e n s such as U m b i l i c a r i a , summits o f most mountains are e s s e n t i a l l y devoid of v e g e t a t i o n . At lower e l e v a t i o n s l i c h e n s and dwarf b i r c h become abundant.  At about 4,000 f t . a l p i n e f i r (Abies  l a s i o c a r p a ) r e p l a c e s dwarf b i r c h as the dominant woody s p e c i e s . Mixed stands o f a l p i n e f i r and white spruce ( P i c e a glauca) b l a n k e t the lower p o r t i o n s o f v a l l e y w a l l s i n the southwestern corner o f the d e t a i l e d study area. Shrubs such as white heather (Cassiope tetragona) and crowberry (Empetrum nigrum) are common on k n o l l s i n v a l l e y f l o o r s and a t lower e l e v a t i o n s along v a l l e y w a l l s .  Porbs,:  -50-  i n c l u d i n g fireweed (Epilobium l a t i f o l i u m ) and l u p i n  (Lupinus  a r c t i c u s ) , and v a r i o u s grasses are c h a r a c t e r i s t i c of a l p i n e meadows, which occur near t h e heads o f many t r i b u t a r y  streams  d r a i n i n g i n t o the main v a l l e y of the South MacMillan R i v e r . C e r t a i n meadows and adjacent uplands, u n d e r l a i n by dark U n i t 3 l i m e s t o n e , c h a r a c t e r i s t i c a l l y support a s t r i k i n g l y wide v a r i e t y o f p l a n t types.  Caribou moss and dwarf '..  b i r c h however are conspicuously absent i n these calcareous environments.  CHAPTER  V  SAMPLE COLLECTION, PREPARATION AND ANALYSIS  -52-  SAMPLE COLLECTION AND  PREPARATION  Between June 15th 1,100  and J u l y 31st, 1971,  approximately  samples were c o l l e c t e d w i t h i n the d e t a i l e d study area  and along the Canol Road. stream sediments, 350 animal  Of these approximately 120  s o i l , 350  v e g e t a t i o n , 250  were  rock and  30  faeces.  STREAM SEDIMENT Stream sediment sample s i t e s are i n d i c a t e d i n Figures 16 and 18.  F i n e , a c t i v e , organic f r e e sediment was  where p o s s i b l e .  collected  At each sample s i t e b r i e f d e s c r i p t i o n s were  made of the stream and i t s l o a d , and stream water pH measured w i t h BDH  Liquid Universal Indicator.  was  Samples were  c o l l e c t e d i n k r a f t paper bags and oven d r i e d i n the  field.  A p o r c e l a i n mortar was used to disaggregate samples i n the l a b o r a t o r y .  A f t e r thorough mixing, a 10 to 15  sample was passed through a minus-80 mesh nylon, f i n e s were r e t a i n e d f o r spectrographic  g.  sub-  sieve,  and  analysis.  ROCK Rock sample l o c a t i o n s are shown i n Figure 16. samples were c o l l e c t e d as continuous chips taken to bedding of s e l e c t e d rock s e c t i o n s .  Most  perpendicular  Each sample c o n s i s t e d  of a mixture of s m a l l , l i t h o l o g i c a l l y s i m i l a r c h i p s , c o l l e c t e d over an i n t e r v a l of ten s t r a t i g r a p h i c f e e t . chip samples were a l s o obtained, exposures.  A representative  A few random  c h i e f l y from small stream  specimen  of each major l i t h o l o g y  sampled was taken f o r t h i n s e c t i o n examination. I n i t i a l l y rock chips were passed through a jaw crusher and then between ceramic p l a t e s .  A f t e r thorough mixing a  10 g. sub-sample was ground i n a Spex "Shatterbox" t o minus100 mesh.  Between runs the jaw crusher and ceramic p l a t e s  were cleaned w i t h compressed a i r and brushes, and the d i s h of the Shatterbox was r i n s e d i n tap water and d r i e d w i t h acetone.  Samples were ground i n numeric order t o ensure t h a t ,  i f contamination occurred, i t s source c o u l d be r e a d i l y i d e n t ified. SOIL F i g u r e s 17 and 18 show l o c a t i o n s o f the n e a r l y 100 s o i l p r o f i l e s examined.  At each s o i l s i t e a small p i t was dug  and each s o i l h o r i z o n i d e n t i f i e d and i t s morphology noted. Vegetation, drainage and parent m a t e r i a l , as w e l l as o t h e r important v a r i a b l e s i n the s o i l environment were a l s o described.  Samples o f each s o i l h o r i z o n were c o l l e c t e d i n k r a f t  bags and oven d r i e d i n the f i e l d .  Coarse rock c h i p s from C  h o r i z o n s were c o l l e c t e d s e p a r a t e l y . M i n e r a l and organic h o r i z o n s s e l e c t e d f o r t r a c e element a n a l y s i s were disaggregated i n the l a b o r a t o r y w i t h a p o r c e l a i n mortar. Because i n a g r i c u l t u r e , t r a c e element content o f s o i l i s t y p i c a l l y expressed i n terms of the minus-2 m.m. disaggregated samples were passed through a 2 m.m. sieve.  fraction, nylon:  F i n e s were then mixed and a 10 g. sub-sample ground  to minus-100 mesh i n a "Shatterbox ! 1  Organic h o r i z o n m a t e r i a l ,  -54-  intended f o r pH measurement, was i n i t i a l l y ground i n a r o t a r y blender. VEGETATION P l a n t m a t e r i a l was c o l l e c t e d i n a roughly 10 x 10 perquadrat i n the v i c i n i t y of each s o i l p i t .  m.  Species common  over a wide range of s o i l parent m a t e r i a l s and a l t i t u d e s were sampled p r e f e r e n t i a l l y .  Sampling procedures f o r v a r i o u s  p l a n t types c o l l e c t e d are i n d i c a t e d i n Table VI.  Samples,  i n l a r g e paper bags, were a i r d r i e d as soon as p o s s i b l e i n the f i e l d and again at 70°0 i n the l a b o r a t o r y , before being ground i n a Wiley m i l l . FAECES Where a v a i l a b l e , s a m p l e s were taken of both c a r i b o u and moose f a e c e s .  A few grams of d r i e d sample were ground  i n a small blender p r i o r to d i g e s t i o n . SAMPLE ANALYSIS Stream sediment and rock samples were analyzed by a s e m i q u a n t i t a t i v e DC-arc spectrographic procedure f o r Sr, Cr, Co, N i , Cu, V, Mo, Pb and Mn.  Atomic-absorption s p e c t r o -  photometry was used to measure Cu, Mn and Zn l e v e l s i n s o i l , v e g e t a t i o n and f a e c e s , and Zn i n s e l e c t e d sediment and rock samples ( F l e t c h e r , p e r s . comm.).  Mo was determined  color-  m e t r i c a l l y i n s o i l , v e g e t a t i o n and f a e c a l m a t e r i a l .  Glass  e l e c t r o d e s were used to measure s o i l  pH.  -55Table VI  P l a n t species and p a r t s sampled f o r t r a c e element a n a l y s i s .  P l a n t Type  P l a n t Species  Trees  Abies l a s i o c a r p a ( F i r ) P i c e a glauca (white spruce)  Shrubs  B e t u l a glandulosa (dwarf birch) S a l i x alexensis (willow) S a l i x p h y l i c i f o l i a (willow) Cassiope tetragona (white heather) Empetrum nigrum (crowberry) Potentilla flabeliformis (shrubby c i n g u e f o i l )  Forbs  Senecio t r i a n g u l a r i s Lupinus a r c t i c u s ( l u p i n e ) Epilobium l a t i f o l i u m ( f i r e weed) Epilobium a n g u s t i f o l i u m (fireweed) Valarian sitchensis Veratrum v i r i d e ( f a l s e hellibore) Polygonum alaskanum  Sampling Procedure F i r s t and second year l e a v e s and twigs taken t o i n clude f l o w e r s and f r u i t s , where present  Terminal 2 inches taken t o i n c l u d e f l o w e r s and f r u i t s  Cut 1 i n c h above s o i l to i n c l u d e flowering parts: o l d growth excluded  Grasses  Pestuca a l t a i c a (rough fescue) Carex a q u a t a l i s (sedge) Calamagrostis canadensis Carex microshaeta  Cut 1 i n c h above s o i l surface t o i n c l u d e clums; o l d growth excluded  Lichens  Cladonia a l p e s t r i s (caribou moss) Stereocaulon Alectoria  Sampled above pigment l i n e  Umbilicaria  S t r i p p e d from rock surfaces  -56SEMI-QUANTITATIVE SPECTROGRAPHS ANALYSIS Procedures used f o r stream sediment m a t e r i a l are i d e n t i c a l t o those d e s c r i b e d f o r t h e r e g i o n a l study (pages 17 t o 22).  For rock m a t e r i a l however, changes were made i n  operating conditions  (Table VIIA) and i n wavelengths used  to estimate copper and manganese abundances (Table VILB). P r e c i s i o n f o r rock analyses, a t t h e 95$ confidence l e v e l , i s i n d i c a t e d i n Table V I I I . ATOMIC-ABSORPTION ANALYSIS P r e - A n a l y t i c a l Treatment S o i l and V e g e t a t i o n :  E i t h e r a 0 . 5 g. sample o f minus-  100 mesh s o i l m a t e r i a l o r 1 g. o f d r i e d and m i l l e d p l a n t m a t e r i a l was weighed i n t o a 100 m l . beaker. A f t e r adding 10 ml. o f 4:1 n i t r i c - p e r c h l o r i c a c i d , the sample was r e f l u x e d f o r one hour a t low heat. The  s o l u t i o n was then evaporated t o dryness and the  r e s i d u e taken up w i t h 10 m l . 6 M. h y d r o c h l o r i c  acid.  A f t e r s t a n d i n g , a 5 ml. a l i q u o t o f c l e a r s o l u t i o n was s e t aside f o r c o l o r i m e t r i c determination o f molybdenum.  The remaining 5 ml. were d i l u t e d t o 20 ml.  w i t h d i s t i l l e d water and t h i s s o l u t i o n reserved f o r determination o f copper, z i n c and manganese. Rock and Stream Sediment:  A 0 . 5 g. sample o f minus-  100 mesh rock, o r minus-80 mesh stream sediment m a t e r i a l was digested  i n 10 m l . of 4:1 n i t r i c - p e r -  -57 Table V I I  Operating  Changes i n spectrographic procedure Tables I and I I ) i n t r o d u c e d f o r a n a l y s i s of rock m a t e r i a l . Conditions Changed from 4  Arc Gap Exposure Time  to  m.m.  6  m.m.  20 sec.  30 sec.  3 min.  5 min.  P l a t e Development  Spectral Lines Wavelength (A' )  Detection Limit (p.p.m.)  Changed  Changed  Prom  to  Prom  to  Cu  3273.96  3247.55  10  2  Mn  2801.06  2794.82  1  1  58-  Table V I I I  Element  A n a l y t i c a l p r e c i s i o n f o r spectrographic a n a l y s i s of rock m a t e r i a l , a t the 95$ confidence l e v e l , c a l c u l a t e d from 25 r e p l i c a t e analyses o f U.B.C. Standard Rock.  Mean Concentration (p.p.m.)  Precision  %  ( a t 9 5 $ confidence l e v e l )  Sr  685  30  Cr  5  50  Co  4  30  Ni  7  95  Cu  25  60  In  25  40  V  35  75  Mo  n.d.*  -  Pb  8  65  Mn  14-5  65  * n.d. = not detected.  -59-  c h l o r i c a c i d and evaporated t o dryness.  The r e s i d u e  was taken up i n 20 ml. of 1,5 M h y d r o c h l o r i c a c i d f o r the d e t e r m i n a t i o n o f z i n c . Faeces:  A 1 g. sample o f ground f a e c a l m a t e r i a l was  i g n i t e d i n a p o r c e l a i n c r u c i b l e f o r twelve hours at 550° C.  The ash was t r e a t e d w i t h 1 ml. o f 6 M hydro-  c h l o r i c a c i d and evaporated t o near dryness.  The  r e s i d u e was taken up i n 10 m l . 6 M h y d r o c h l o r i c a c i d and t r e a t e d as d e s c r i b e d f o r s o i l and p l a n t m a t e r i a l s . A n a l y t i c a l Method: C a l i b r a t i o n standards were prepared i n 1.5 M hydrochloric acid.  Samples and standards were a s p i r a t e d i n t o t h e  a i r - a c e t y l e n e flame o f a Techtron AA-4- spectrophotometer. Operating c o n d i t i o n s f o r hollow-cathode lamps are shown i n Table I X . Analytical Precision: Each a n a l y t i c a l batch contained a t l e a s t one standard and one p a i r o f d u p l i c a t e samples.  P r e c i s i o n a t t h e 95$ con-  f i d e n c e l e v e l , c a l c u l a t e d from a n a l y t i c a l r e s u l t s f o r both standard and p a i r e d samples (Pox, p e r s . comm.) i s i n d i c a t e d i n Table X.  The technique o f p r e c i s i o n c a l c u l a t i o n u s i n g  p a i r e d samples i s d e s c r i b e d by G a r r e t t (1969). G e n e r a l l y p r e c i s i o n v a l u e s obtained by d i f f e r e n t methods compare f a v o u r a b l y . Low p r e c i s i o n f o r copper i n t h e standard moss sample i s a t t r i b u t a b l e t o the f a c t t h a t copper c o n c e n t r a t i o n s i n t h i s m a t e r i a l are very near t o the a n a l -  -60-  Table I X  Element*  Operating c o n d i t i o n s f o r the Techtron A A-4 Spectrophotometer  Current (ua)  Air Pressure (psi)  Slit Width w .  Wavelength  a)  Cu  3  21  50  Mn  10  20  100  2795  Zn  6  20  100  2138.6  * Standard s e t t i n g s f o r a l l  elements:  flame h e i g h t  2.3  f u e l guage  2.5  3247.5  -61Table X.  A.  A n a l y t i c a l p r e c i s i o n ($) f o r Cu, Mn and Zn i n s o i l and p l a n t m a t e r i a l , a t the 95$ confidence l e v e l , c a l c u l a t e d from r e s u l t s o f atomicabsorption a n a l y s i s o f both standard and p a i r e d samples  Element  Vegetation Paired Analyses  Soil Paired Analyses  Replicate Analyses  U.B.C U.B.C. Standard Standar d Moss Grass  Replicate Analyses U.B.C. Standard Rock  Cu  25  45  20  15  20  Mn  12  10  10  9  9  Zn  10  14  12  8  25  18 p a i r s  18  17  No. o f samples  B.  6  15 p a ir s  A r i t h m e t i c mean Cu, Mn, and Zn c o n c e n t r a t i o n s * (p.p.m.) i n U.B.C. standard samples.  Element Moss  U.B.C. Standard Grass  Rock  Cu  4  13  25  Mn  75  165  210  Zn  14  35  20  * HNO^/HClOy, e x t r a c t a b l e metal content  -62y t i c a l detection  limit.  COLORIMETRIC ANALYSIS Molybdenum was  determined c o l o r i m e t r i c a l l y by  method of Stanton and Hardwick (1967). procedures are described a n a l y s i s (page  the  Sample d i g e s t i o n  i n the s e c t i o n on atomic-absorption  56).  B r i e f l y the method i n v o l v e s e x t r a c t i o n of a green molybdenum-dithiol complex i n t o a l a y e r of petroleum s p i r i t s , and v i s u a l comparison of the c o l o r of t h i s l a y e r with of standards.  Because of h i g h i r o n concentrations  s o i l samples the standard procedure was m o d i f i e d  that  in certain slightly.  An a d d i t i o n a l 1 ml. of i r o n s o l u t i o n was used to prepare standards, and an e x t r a 2 ml. of reducing s o l u t i o n was  added  to both standards and samples before a d d i t i o n of z i n c d i t h i o l . A n a l y t i c a l p r e c i s i o n c a l c u l a t e d from p a i r e d sample a n a l y s i s i s i n d i c a t e d i n Table X I .  Table XI  A n a l y t i c a l p r e c i s i o n f o r molybdenum i n p l a n t and s o i l m a t e r i a l , at the 95$ confidence l e v e l , c a l c u l a t e d from the r e s u l t s of c o l o r i m e t r i c a n a l y s i s of p a i r e d samples  Material  Plant Soil  Number of Pairs 7 15  Precision $ ( a t 95$ confidence level) 30 25  -63  MEASUREMENT OF pH S o i l pH determinations were made on d r i e d samples i n the l a b o r a t o r y .  Organic samples were i n i t i a l l y ground  i n a blender and a 10 g. sub-sample mixed w i t h 50 ml. o f d i s t i l l e d water ( L a v k u l i c h , p e r s . comm.). For mineral  horizons  a 1:1 mixture by weight o f minus-2 m.m. s o i l m a t e r i a l and d i s t i l l e d water was used.  S o i l - w a t e r mixtures were allowed  to e q u i l i b r a t e f o r a t l e a s t one hour w i t h r e g u l a r  stirring  (Jackson, 1958) before pH measurement w i t h a g l a s s e l e c t r o d e meter.  E l e c t r o d e s were c a l i b r a t e d p e r i o d i c a l l y , between  measurements, i n b u f f e r s o l u t i o n s o f pH 4-;>0 and 9.0.  sample  CHAPTER VI TRACE ELEMENT CONCENTRATIONS IN ROCK MATERIAL  -65-  PRESENTATION OF DATA Range and geometric mean t r a c e element l e v e l s f o r rock samples from U n i t 3 , the Yukon Group and g r a n o d i o r i t e are l i s t e d i n Table X I I .  Concentrations w i t h i n the v a r i o u s  l i t h o l o g i e s o f U n i t 3 are i n d i c a t e d i n Table X I I I .  Overall  l e v e l s f o r U n i t 3 were c a l c u l a t e d assuming t h a t the number of samples o f each rock type r e f l e c t s i t s r e l a t i v e abundance w i t h i n the u n i t . f o r i n d i v i d u a l rock  Appendix A l i s t s a n a l y t i c a l r e s u l t s  . .  samples.  I t should be noted t h a t , because o f the l i m i t e d number and d i s t r i b u t i o n o f rock sample s i t e s , and g e n e r a l l y low p r e c i s i o n f o r rock analyses (Table V I I I ) , values i n Tables X I I and X I I I must be considered o n l y approximations t o the mean metal content o f the v a r i o u s rock t y p e s .  Furthermore,  i n s i t u l e a c h i n g o f many o f the exposures sampled may,to some e x t e n t , have a l t e r e d primary rock composition. TRACE ELEMENT CONCENTRATIONS IN BEDROCK As Table X I I i n d i c a t e s , U n i t 3 i s s t r i k i n g l y enriched i n both molybdenum (10 p.p.m.) and vanadium (4-35 p.p.m.), and r e l a t i v e l y poor i n manganese (15 p.p.m.) and t o a l e s s e r degree strontium (70 p.p.m.).  R e l a t i v e l y wide c o n c e n t r a t i o n  ranges f o r most elements r e f l e c t the chemical h e t e r o g e n e i t y of t h i s u n i t . Molybdenum c o n c e n t r a t i o n s i n both Yukon Group p h y l l i t e s and s c h i s t s and g r a n i t i c rocks are low (1 p.p.m.).  High  -66-  Table XII  Range and geometric mean trace element levels (p.p.m.) for major bedrock units within detailed study area.  BEDROCK  ELEMENT UNIT 3 Mo*  YUKON GROUP  GRANODIORITE 1  1  10 3-29  <l-3  —  V  435 180-1075  80 50-130  80 15-470  Ni  30 10-85  45 30-60  6 1-8  Cr  75 40-140  55 30-105  Cu  30 10-90  30 15-60  7 2-20  Pb  15 7-25  16  II-25  19 17-21  Sr  70 20-225  Mn  15 5-65  Co  4 2-8  Zn** Number of Samples  -  18 12-25  145 100-210  300  485 275-855  175 130-240  •  -  14 9-25  18 3-90 213  7 5-8 5 —  13  t  Range = geometric mean ± log standard deviation  *  Values <2p.p.m. taken as 1 p.p.m.  ** Number of zinc analysis: Unit 3 = 46, Granodoirite = 1.  5  -67-  Table XIII  Ranee'and geometric mean t r a c e element l e v e l s (p.p.m.) f o r v a r i o u s rock types w i t h i n Unit 3.  ROCK TYPE.  ELKHSNT  SILICIOUS dark grey to black shale Mo*  12 6-20  17  8-35  V  315-1320  25  Ni  13-^5 60  Cr  18  Pb  Sr  10 4-30  35-95  55  30-105  16  6 2-16  55  2C-180 \  4-15 • Co  <5  -  8  Zn»*  2-30 Kumber of Samples  112  60  115  90  2^5  25-150  75  5  3-9 20  9 5-20 100  W0  15 5-55  30 10-65  "5  70  35-125  13-165 1095 560-2135 190 90-1*15 215 130-350  30 10-90  "5 25-80  10  13 7-25  7 5-11  20  60 20-170  680 310-1480  "5  6-15  30  140  15  4-55  55-175  <5  4 2-8  <5-7  55  35 1-200  170-200  10-95 <5-10  50-195  59  9  170-995  25  dark limestone  3-25  55  30-70  13 10-18  siliceous rock combined  30-95  70 35-140  "5-175  <5  2  <2-4.  18-W  55  <5-5  chert-pebble conglomerate  90-140  2 5 - I zr.  8  Kn  4 2-5 260 160-U30  6-50 10-30  dark siltstone  340 155-730  "5 25-75  35-105 Cu  medium t o light grey shale  CALCAREOUS  9  <5  205  t Range = geometeric mean ± l o g standard d e v i a t i o n * Values <2p.p.m. taken as 1 p. p.m. ** Number of z i n c a n a l y s e s i b l a c k shale = 26, grey s h a l e => 5, s i l t s t o n e = 12, conglomerate = 1, limestone = 2.  185  13  manganese c o n c e n t r a t i o n s (485 p.p.m.) c h a r a c t e r i z e Yukon Group w h i l e g r a n o d i o r i t e i s d i s t i n g u i s h e d by low copper, n i c k e l and chromium v a l u e s . A wide range o f molybdenum and vanadium values occur w i t h i n the i n d i v i d u a l rock types o f U n i t 3 (Table X I I I ) . Molybdenum l e v e l s are low i n s i l t s t o n e s and conglomerate Gs5 p.p.m.), r e l a t i v e l y h i g h i n shales (up t o 35 p.p.m.) and s t r i k i n g l y h i g h i n dark limestone (up t o 165 p.p.m.). The d i s t r i b u t i o n o f vanadium resembles t h a t o f molybdenum, w i t h mean concentrations ranging from an average o f 55 p.p.m. i n conglomerate up t o 1095 p.p.m. i n limestone. High c o n c e n t r a t i o n s f o r most elements are found i n dark limestone, while low values are t y p i c a l i n chert-pebble conglomerate.  F o r example the mean strontium content o f  limestone i s 680 p.p.m. w h i l e t h a t o f conglomerate i s only 20 p.p.m. Concentrations i n dark and l i g h t c o l o r e d shales are remarkably  similar.  Both rock types are s t r i k i n g l y low  i n c o b a l t (<5 p.p.m.), manganese (<15 p.p.m.) and z i n c (<30 p.p.m.). COMPARISON OF CONCENTRATIONS IN BLACK SHALES FROM UNIT 3 WITH ESTIMATES OF NORMAL CONCENTRATIONS IN SIMILAR ROCK TYPES Table XIV l i s t s mean metal values i n b l a c k shales from U n i t 3 , estimates o f average c o n c e n t r a t i o n s f o r a l l types o f s h a l e s , and median l e v e l s i n North American b l a c k shales.  I t should be noted t h a t d i f f e r e n t parameters are  Table XIV  Comparison of t r a c e element l e v e l s (p.p.m.) w i t h i n dark grey to b l a c k shales of U n i t 3 w i t h estimates of average metal c o n c e n t r a t i o n s i n shales of a l l kinds and median l e v e l s w i t h i n North American b l a c k s h a l e s . Black Shale** (median)  Element  Dark Grey to Black Shales of U n i t 3 (geometric mean)  Shales* (average)  Mo  17  2.6  10  V  645  130  150  Ni  25  70  50  Cr  60  90  100  Cu  20  45  70  Pb  15  20  20  Sr  55  300  200  Mn  10  850  150  Co  <5  19  10  Zn  8  95  300  *  Tourekian and Wedepohl (1961)  ** Vine and T o u r t e l o t (1970)  -70-  used t o measure the c e n t r a l tendency of the a n a l y t i c a l data i n each column. The r e l a t i v e l y high molybdenum c o n c e n t r a t i o n i n U n i t 3 b l a c k shales (17 p.p.m.) i s c o n s i s t e n t with t h a t of North American b l a c k shales (10 p.p.m.) and much g r e a t e r than the average molybdenum value f o r a l l types o f shale (<3 p.p.m.).  Vanadium i s f a r more abundant i n the b l a c k  shales o f U n i t 3 (64-5 p.p.m.) than i n e i t h e r t y p i c a l  North  American b l a c k shale o r i n shales g e n e r a l l y . Most other elements, e s p e c i a l l y manganese, strontium and z i n c are low i n U n i t 3 b l a c k s h a l e s .  The manganese  c o n c e n t r a t i o n i n t y p i c a l s h a l e s , f o r example, i s 850 p.p.m. w h i l e the mean value i n the b l a c k shales o f U n i t 3 i s o n l y 10 p.p.m. POSSIBLE MECHANISMS CONTROLLING TRACE ELEMENT LEVELS WITHIN CERTAIN UNIT 3 LITHOLOGIES Enhanced molybdenum values i n b l a c k shales are g e n e r a l l y attributed  t o s o r p t i o n o f molybdenum from sea water by  sediments c o l l e c t i n g i n anaerobic, stagnant b a s i n s .  This  contention i s supported by the presence o f h i g h molybdenum concentrations i n sediments from modern l a n d - l o c k e d marine basins where anaerobic c o n d i t i o n s p r e v a i l . Manheim (1961) has r e p o r t e d up t o 80 p.p.m. molybdenum i n organic r i c h , oxygen d e f i c i e n t the B a l t i c Sea.  sediment c o l l e c t i n g i n  Gross (1967) has noted molybdenum concen-  t r a t i o n s as h i g h as 67 p.p.m. i n reducing sediments i n the  -71-  c e n t r a l p o r t i o n o f Saanich I n l e t , a small f j o r d near the southeastern end o f Vancouver I s l a n d .  He concluded  that  sea water was the source o f the molybdenum and observed t h a t r e l a t i v e l y l i t t l e o f the t o t a l molybdenum content o f the seawater i n the f j o r d need be removed t o account f o r l e v e l s i n the sediments. LeRiche (1959) i n v e s t i g a t i n g samples o f b l a c k shale from the U n i t e d Kingdom, and Vine and T o u r t e l b t (1970) studying North American b l a c k s h a l e s , both found t h a t molybdenum i s s t r o n g l y a s s o c i a t e d w i t h organic matter.  I n Saanich  I n l e t sediments however, molybdenum showed no c o r r e l a t i o n w i t h organic carbon, but was r e l a t e d t o the reducing c a p a c i t y of t h e sediments (Gross, 1967). Korolev (1958) has shown e x p e r i m e n t a l l y t h a t r e l a t i v e l y l a r g e amounts o f molybdenum may be c o p r e c i p i t a t e d w i t h i r o n s u l f i d e g e l s , such as h y d r o t r o i l i t e e v e n t u a l l y age t o p y r i t e .  (FeS.n^O),  which  He suggests t h a t high molybdenum  c o n c e n t r a t i o n s i n organic shales are due t o t h e presence o f molybdenum-rich s u l f i d e s i n the o r i g i n a l  sediments.  S u l f i d e s are a c t i v e l y forming i n modern, anaerobic, molybdenum-rich b a s i n s (Gross, 1967^ Dunhan 1961).  Manheim  (1961) has noted t h a t molybdenum has a strong tendency t o f o l l o w i r o n s u l f i d e i n B a l t i c Sea sediments. No q u a n t i t a t i v e organic carbon o r s u l f i d e  determin-  a t i o n s were c a r r i e d out during t h i s i n v e s t i g a t i o n .  The molyb-  denum-rich b l a c k shales o f U n i t 3 however, are o b v i o u s l y  a l s o r i c h i n organic m a t e r i a l and l o c a l l y c o n t a i n abundant pyrite.  The dark limestone, which contains even more molyb-  denum than the s h a l e s , a l s o c o n t a i n s c o n s i d e r a b l e amounts of organic matter. Vine and T o u r t e l o t (1970) have noted t h a t very h i g h median molybdenum values (up t o 300 p.p.m.) i n c e r t a i n North American b l a c k shales are d i f f i c u l t t o e x p l a i n , simply by e x t r a c t i o n o f molybdenum from sea water.  They suggest  t h a t e x t e r n a l l y d e r i v e d , m e t a l - r i c h connate s o l u t i o n s may have penetrated and enriched c e r t a i n b l a c k s h a l e s , e i t h e r during o r a f t e r d i a g e n i s e s .  Such p o s t - d e p o s i t i o n a l e n r i c h -  ment however, i s u n l i k e l y t o have a f f e c t e d the rocks o f Unit 3 since: (i)  t h e maximum molybdenum c o n c e n t r a t i o n found w i t h i n U n i t 3, 100 p.p.m., i s not very d i f f e r ent from t h e 80 p.p.m. i n modern B a l t i c Sea sediment (Manheim, 1961).  ( i i ) e x c e s s i v e l y l a r g e q u a n t i t i e s o f connate f l u i d s would be r e q u i r e d t o e n r i c h the thousands o f cubic m i l e s o f U n i t 3 rock. With the exception o f molybdenum and vanadium, t r a c e element c o n c e n t r a t i o n s i n U n i t 3 b l a c k shales are r e l a t i v e l y low.  T h i s c o u l d be a primary f e a t u r e o r a r e s u l t o f i n s i t u  l e a c h i n g o f outcrops sampled.  I t i s i n t e r e s t i n g t o note  t h a t elements i n which these rocks are poorest are most s o l u b l e i n a c i d i c environments such as those o f streams d r a i n i n g the shales (Hawkes and Webb, 1962).  -73-  In a d d i t i o n t o molybdenum, vanadium, n i c k e l , copper, chromium and z i n c are a s s o c i a t e d w i t h the organic f r a c t i o n of many b l a c k shales (Vine and T o u r t e l o t , 1970).  High  l e v e l s o f most o f these elements i n the dark limestone could t h e r e f o r e be a consequence o f metal s o r p t i o n by the organic component of these r o c k s . Strontium and manganese, according t o Vine and T o u r t e l o t (1970) are c h a r a c t e r i s t i c o f the carbonate of most North American b l a c k s h a l e s .  fraction  High c o n c e n t r a t i o n s  of both o f these elements are present i n the dark limestone member o f U n i t 3 . comparative  This a s s o c i a t i o n l i k e l y r e f l e c t s the  ease w i t h which both strontium and manganese  can r e p l a c e calcium i n the c a l c i t e l a t t i c e .  CHAPTER V I I TRACE ELEMENT CONCENTRATIONS IN SOIL MATERIAL  -75-  PRESENTATION OP DATA Because t r a c e element c o n c e n t r a t i o n s i n s o i l s are p r i m a r i l y a f u n c t i o n of the composition of g e o l o g i c a l parent m a t e r i a l s (Vinogradov 1959, Swaine and M i t c h e l l I960, M i t c h e l l 1964-) , s o i l s , i n t h i s study are grouped according to t h e i r occurrence over c h e m i c a l l y d i s t i n c t i v e bedrock types.  Furthermore, because parent m a t e r i a l s i n upland  areas are l i k e l y of r e s i d u a l c h a r a c t e r , while those i n main v a l l e y s may have been t r a n s p o r t e d r e l a t i v e l y f a r from t h e i r source, v a l l e y and upland s o i l s over the same bedrock are grouped s e p a r a t e l y .  The boundary between these two e n v i r o n -  ments was a r b i t r a r i l y set at 4000 f t . above sea l e v e l . I n i t i a l l y samples of o n l y one h o r i z o n from each p r o f i l e were analyzed.  soil  The C h o r i z o n was chosen s i n c e i t  i s the o n l y m i n e r a l h o r i z o n present i n a l l p r o f i l e s .  Con-  c e n t r a t i o n s of molybdenum, copper, z i n c and manganese i n the minus-2 m.m.  f r a c t i o n - of t h i s h o r i z o n , grouped according 1  to topographic p o s i t i o n and a s s o c i a t e d bedrock, are summari z e d i n Tables XV and XVI. Some of the more i n t e r e s t i n g s o i l p r o f i l e s were analyzed in their entirety.  Trace element c o n c e n t r a t i o n s and mor-  p h o l o g i c a l c h a r a c t e r i s t i c s f o r each h o r i z o n i n s i x of these p r o f i l e s are g i v e n i n Tables XVII and XVIII r e s p e c t i v e l y . Metal l e v e l s i n the t h i n v o l c a n i c ash l a y e r which u n d e r l i e s the L-H h o r i z o n i n many s o i l s are summarized i n Table XIX.  Appendix B l i s t s s e p a r a t e l y t r a c e element l e v e l s  -76f o r a l l s o i l h o r i z o n s analyzed. TRACE ELEMENT CONTENT OF C HORIZONS V a r i a t i o n s i n C h o r i z o n compositions i n upland  soils  a s s o c i a t e d w i t h d i f f e r e n t bedrock types are evident i n Table XV.  Calcareous > U n i t 3 s o i l s are c o n s i d e r a b l y enriched  i n molybdenum (30 p.p.m.), copper (65 p.p.m.) and z i n c (585 p.p.m.).  G r a n i t i c s o i l s , i n contrast, contain s t r i k -  i n g l y low c o n c e n t r a t i o n s o f these elements.  Somewhat en-  hanced molybdenum values (11 p.p.m.) occur i n s i l i c e o u s U n i t 3 s o i l s , w h i l e upland s o i l s over the Yukon Group are c h a r a c t e r i z e d by low molybdenum l e v e l s (<1 p.p.m.) and h i g h c o n c e n t r a t i o n s of manganese (690 p.p.m.). Metal c o n c e n t r a t i o n s i n C h o r i z o n s o f v a l l e y s o i l s (Table XVI) are g e n e r a l l y not very d i f f e r e n t from those s i m i l a r bedrock i n upland r e g i o n s .  over  The mean molybdenum  l e v e l i n U n i t 3 v a l l e y s o i l s (7 p.p.m.) i s , however, somewhat l e s s than t h a t o f corresponding upland s o i l s (11 p.p.m.). R e l a t i v e l y low manganese c o n c e n t r a t i o n s i n v a l l e y s o i l s over the Yukon Group are a l s o noteworthy. DISTRIBUTION OF TRACE ELEMENTS IN SELECTED SOIL PROFILES Enhanced l e v e l s o f manganese and z i n c are t y p i c a l of many L-H h o r i z o n s (Table X V I I ) .  I n p r o f i l e no. 72, f o r  example, the L-H h o r i z o n contains 844-5 p.p.m. manganese and 500 p.p.m. z i n c , while corresponding values i n the u n d e r l y i n g C h o r i z o n are o n l y 135 p.p.m. and 130 p.p.m. r e s p e c t i v e l y .  -77-  Table XV  Range and a r i t h m e t i c mean c o n c e n t r a t i o n s * (p.p.m.) of Mo, Cu, Zn and Mn i n the minus-2 mm f r a c t i o n o f s o i l C h o r i z o n s i n upland regions w i t h i n the d e t a i l e d study area.  Bedrock Element  Mo  Unit 3 Calcareous Siliceous 30 10-48  Cu  Zn  PH No. of Samples  Granitic Rocks  11  0.7  1.5  1-26  0.2-1.6  0.8-2.4  35  65 40-120  15-90  585  150  355-1400 Mn  Yukon Group  25-570  30  5  15-45  2-10  115  45  50-170  25-65  690  255  210  360  30-305  15-2700  6.7  4.3  4.5  4.7  7  23  12  3  * HNO-z/HClO^, e x t r a c t a b l e metal  240-1220  content  180-315  -78-  Table X I I  Range and a r i t h m e t i c mean c o n c e n t r a t i o n s * (p.p.m.) o f Mo, Zn, Cu and Mn i n the minus-2 mm f r a c t i o n o f s o i l C horizons i n major r i v e r v a l l e y s .  Bedrock Element Mo  Unit 3 7 1-2 4  Cu Zn  Mn  40  Yukon Group 2.6 0.8-5.2 30  10-85  20-40  180  130  10-475  70-250  155  300  5-480  135-415  pH  4.7  5.2  No. o f Samples  26  8  * HNO^/HCIO/, e x t r a c t a b l e metal content  _79Table XVTI  Bedrock Unit Unit 3 Calcareous  D i s t r i b u t i o n o f HNO^/HCIO^ e x t r a c t a b l e metal concentrations i n selected s o i l p r o f i l e s .  Site Number 45  48  Mo  Cu Zn (ppm)  L-H C  20  45  305  270  45  40  355  235  L-H  14  55  730  415  1 102 Ash Bm IIC  17  95  570  210  14 1 14  45  210  10  25  280 30  80 60  495  165  5.9  465  165  5.5  L-H  9  290  120  290  175  570  460  4.4 3.8 4.4  125  4.9  4.5 4.6 4.8  Horizon  I C  Unit 3 Acidic  50  °i c  15  55 55  15  75  Ash Bm IC IIC  0.8 2.8 2.0 3.6  15  L-H Ash C L-H Bm C  2  Yukon Group  30  72  Granitic Rock  35  10  40  Mn  25  115  30  190  450 830  30  250  435  0.4 0.4 2.8  30  500  20  15  225  35  130  135  7 0.2 0.8  25  5 2  8445  80 40  295  25  315  220  pH 6.6 7.2 4.2 5.3 5.5 5.9  4.8 5.0 4.5 4.1 4.6 4.6  Table XVIII  Morphological considered  BEDROCK  M0RPH0L0GY  DEPTH (inches)  46  L-H C .  2-0 0-  chiefly lichens v e r y dark g r e y (10YR single grain; loose;  L-H  ic,  5- 0 0-4  IC  2  4-6  Ash  6- 8  Bra  8-11  c h i e f l y liohens v e r y dark g r e y i s h brown (10YR 3/2); s i l t y c l a y ; no c o a r s e fragments; f i n e g r a n u l a r i f r i a b l e : s t i c k y ; p l a s t i c , v e r y dark g r e y i s h brown (lOTR 3/2); s h a l y s i l t y c l a y loam; 15$ c o a r s e f r a g m e n t s ; f i n e g r a n u l a r ; l o o s e ; s l i g h t l y s t i c k y ; slightly plastic. l i g h t y e l l o w i s h brown (10YR 4 / 6 ) ; s i l t y c l a y loam; no c o a r s e fragments; s i n g l e g r a i n ; f i r m ; s t i c k y ; s l i g h t l y p l a s t i c , d a r k brown (10YR 4 / 3 ) ; loam; 30$ c o a r s e f r a g m e n t s ; s i n g l e grain ; loose: s l i g h t l y sticky; non-plastic, v e r y dark g r e y i s h brown (10YR 3/2) ; sandy loam-; 20$ c o a r s e fragments; f i n e g r a n u l a r ; very f r i a b l e ; s l i g h t l y s t i c k y ; slightly plastic.  3  IIC  50 -3  siliceous  L-H IC IIC  30  Yukon  72  35  11-  1-0  0-5  Ash  50-3  Bm  3-6  IC IIC  Group  Granitic  i n T a b l e XVII.  HORIZON  calcareous  Unit  profiles  SOIL SITE  48 Unit  c h a r a c t e r i s t i c s of s o i l  L-H Ash  6-12 12-  3-0  0-3  C  3-  L-H Bm  2-0  C  6-  Rock  0-6  3/l)J sandy loam; 50$ c o a r s e f r a g m e n t s ; slightly sticky; non-plastic.  chiefly lichens v e r y dark g r e y i s h brown (10YR 3/2); c l a y loam; 15$ c o a r s e fragmen+,3; f i n e g r a n u l a r ; l o o s e ; s t i c k y ; • s l i g h t l y p l a s t i c , as f o r IC w i t h 20$ c o a r s e f r a g m e n t s . y e l l o w i s h brown (10YR 5/4)) s i l t loam; no c o a r s e f r a g m e n t s ; s i n g l e g r a i n : f r i a b l e ; s]:i;_'htly s t i c k y ; s l i g h t l y p l a s t i c . 'dark' "brown" (10YR 3/3); s i l t loam; no c o a r s e f r a g m e n t s ; fine granular; f r i a b l e ; s t i c k y j s l i g h t l y p l a s t i c . y e l l o w i s h brown (10YR 5/4)S as f o r Bm. l i g h t o l i v e brown (2.5Y 5/4)5 s l a t y sand; 60$ c o a r s e fragments; s i n g l e g r a i n ; l o o s e ; s l i g h t l y s t i c k y ; n o n - p l a s t i c chiefly lichens l i g h t g r e y (10YR 7 / 2 ) ; s i l t y c l a y loam; no c o a r s e f r a g m e n t s ; single grain; loose; sticky; p l a s t i c . brown (7-5YR 4/4)5 c o b b l y sand; 45$ c o a r s e f r a g m e n t s ; s i n g l e g r a i n ; loose; s l i g h t l y s t i c k y ; non-plastic. chiefly lichens l i g h t y e l l o w i s h brown (10YR 6 / 4 ) ; sand;<5$ coarse fragments; single grain; loose; s l i g h t l y sticky; non-plastic, b r o w n i s h y e l l o w (10YR 6 / 6 ) ; sand; <5$ c o a r s e f r a g m e n t s ; single grain; loose; s l i g h t l y p l a s t i c ; s l i g h t l y s t i c k y .  -Si-  Table XIX  Range /and a r i t h m e t i c mean t r a c e element l e v e l s * i n samples o f v o l c a n i c ash  Element  Concentration (p.p.m.)  Mo  1.1 0.2-6.4  Cu  11 5-18  Zn  18 5-40  Mn  65 15-225  PH  4.9  No. o f Samples  * HNO^/HCIO,, e x t r a c t a b l e metal content.  9  -82-  Molybdenum and copper l e v e l s i n most L-H h o r i z o n s are not remarkably  high.  Concentrations i n B h o r i z o n s ( p r o f i l e nos. 30 and 35) are g e n e r a l l y about equal t o , o r l e s s than,those l y i n g C horizons.  i n under-  Adjacent C h o r i z o n s w i t h d i f f e r e n t  lith©)logical c h a r a c t e r i s t i c s may vary g r e a t l y i n composition. In p r o f i l e no. 50, f o r example, h o r i z o n s C-^ and C are 2  d i s t i n g u i s h e d o n l y by the presence o f s l i g h t l y fewer coarse rock fragments i n the former h o r i z o n . 175 p.p.m. manganese, while C  2  Horizon C^ c o n t a i n s  c o n t a i n s 460 p.p.m.  The v a l c a n i c ash l a y e r , which separates L-H and mineral h o r i z o n s i n many p r o f i l e s c o n t a i n s u n i f o r m l y low concent r a t i o n s o f a l l elements (Table XIX). FACTORS AFFECTING THE METAL CONTENT OF SOILS Concentrations o f both molybdenum and copper i n s o i l C h o r i z o n s are very s i m i l a r t o those i n a s s o c i a t e d bedrock. As shown i n Table XX, g r a n i t i c s o i l s and rock both c o n t a i n about 1 p.p.m. molybdenum and s i l i c e o u s U n i t 3 rock and s o i l m a t e r i a l c o n t a i n 9 and 11 p.p.m. molybdenum r e s p e c t i v e l y . Copper c o n c e n t r a t i o n s are equal (30 p.p.m.) i n Yukon Group s o i l and rock. Webb e t a l (1965, 1968) have noted the c l o s e associ a t i o n between molybdenum c o n c e n t r a t i o n s i n s o i l s and bedrock i n both I r e l a n d and the U n i t e d Kingdom.  Vinogradov  (1959) has remarked on the importance o f parent m a t e r i a l s  Table XX  ELEMENT  Comparison of mean trace element levels (p.p.m.) i n s o i l C horizons* i n upland areas with those i n the associated bedrock**.  UNIT 3 CALCARIOUS  UNIT 3 SILICEOUS  YUKON GROUP  GRANITIC ROCK  ROCK  SOIL  ROCK  SOIL  ROCK  SOIL  ROCK  SOIL  Mo  45  30  9  11  1  0.7  1  0.5  Cu  45  65  30  35  30  30  7  5  Zn  185  5.85  35  150  115  5  45  Mn  140  210  15  360  690  175  255  PH  6.7  485  4.3  t Rock means geometric; s o i l means arithmetic. * HNO3/HCIO4extractable metal content ** Total metal content  4.5  4.7  -84-  i n determining the copper content of Russian  soils.  R e l a t i v e z i n c and manganese l e v e l s i n s o i l s are c o n s i s t e n t w i t h r e l a t i v e c o n c e n t r a t i o n s i n a s s o c i a t e d bedrock.  Absolute s o i l l e v e l s however are i n v a r i a b l y above  those i n rock.  Enrichment f a c t o r s f o r z i n c range from  3 to 8, and f o r manganese may be over 20. High s o i l values could be due e i t h e r to r e s i d u a l enrichment  or e x t e r n a l a d d i t i o n s of metals.  R e s i d u a l en-  richment c o u l d r e s u l t from e i t h e r h i g h manganese and z i n c c o n c e n t r a t i o n s i n s o i l minerals which are p a r t i c u l a r l y r e s i s t a n t t o weathering, or from f i x i n g of these elements i n the s o i l a f t e r t h e i r r e l e a s e to the s o i l s o l u t i o n . processes however r e q u i r e extensive chemical  Both  weathering,  u n l i k e l y i n the p e d o l o g i c a l l y young s o i l s of the MacMillan Pass area.  Extremely high manganese l e v e l s i n c e r t a i n s o i l s  (>2500 p.p.m.) d e r i v e d from rock m a t e r i a l low i n t h i s element suggest t h a t some manganese i s of e x t e r n a l o r i g i n . B l e e k e r et a l (1969) found manganese l e v e l s i n c e r t a i n New  Guinea s o i l s to be s u b s t a n t i a l l y h i g h e r than  c o n c e n t r a t i o n s i n u n d e r l y i n g parent m a t e r i a l s .  Enrichment  i s g r e a t e s t i n s o i l s subject t o frequent a l t e r n a t i n g p e r i o d s of o x i d a t i o n and r e d u c t i o n .  They suggest t h a t manganese i s  m o b i l i z e d deep i n the p a r e n t - m a t e r i a l under reducing cond i t i o n s , and t r a n s p o r t e d up p r o f i l e w i t h a r i s i n g water t a b l e , where at a l a t e r stage i t i s immobilized by o x i d a t i o n . A s i m i l a r process could be a c t i v e i n the MacMillan Pass area.  I t i s noteworthy however t h a t G l e y s o l s , which  85should be most a f f e c t e d by a l t e r n a t i n g o x i d i z i n g and r e ducing c o n d i t i o n s , are not e x c e s s i v e l y enriched i n manganese. Enhanced c o n c e n t r a t i o n s o f manganese and z i n c i n c e r t a i n L-H h o r i z o n s are l i k e l y a r e s u l t of b i o c y c l i n g . This process i n v o l v e s removal by p l a n t r o o t s , o f i n o r g a n i c m a t e r i a l from lower s o i l h o r i z o n s , and i t s accumulation i n surface organic l a y e r s (Barshad, 1964-).  As i n d i c a t e d by l a c k  of h i g h metal c o n c e n t r a t i o n s i n B h o r i z o n s , other s o i l forming processes, such as i l l u v i a t i o n , have not n o t i c e a b l y a l t e r e d the primary t r a c e element d i s t r i b u t i o n i n most s o i l profiles. POSSIBLE SIGNIFICANCE OF VARIATIONS IN COMPOSITION OF UPLAND AND VALLEY SOILS The molybdenum content o f Yukon Group v a l l e y s o i l s (2.6 p.p.m.) i s somewhat h i g h e r than t h a t i n upland (0.7 p.p.m.).  regions  Since s e v e r a l v a l l e y sample s i t e s are  l o c a t e d downstream from exposures o f molybdenum-rich U n i t 5 r o c k s , d e b r i s d e r i v e d from U n i t 3 i s l i k e l y present i n v a l l e y f i l l over p a r t s of, t h e Yukon Group. Molybdenum c o n c e n t r a t i o n s i n v a l l e y s o i l s over U n i t 3 (7 p.p.m.) are s l i g h t l y lower than those i n upland (11 p.p.m.).  Examination o f the geographical  areas  distribution  of v a l l e y s o i l s poorest i n molybdenum (<4- p.p.m.) r e v e a l s t h a t most such s o i l s occur o u t s i d e o f the d e t a i l e d study area, on the eastern edge o f the Yukon P l a t e a u .  These  molybdenum-poor s o i l s may have been d e r i v e d from U n i t 3  l i t h o l o g i e s low i n t h i s element, such as s i l t s t o n e o r conglomerate.  Alternatively,  parent m a t e r i a l s f o r thes  s o i l s could c o n t a i n s i g n i f i c a n t amounts of rock d e b r i s from other molybdenum-poor g e o l o g i c a l  units.  CHAPTER V I I I TRACE ELEMENT CONCENTRATIONS IN PLANT MATERIAL  -88-  PRESENTATION OP DATA Concentrations o f molybdenum, copper, z i n c and manganese i n a few s e l e c t e d p l a n t s p e c i e s , and o v e r a l l l e v e l s i n each o f the f i v e major v e g e t a t i o n c l a s s e s ( t r e e s , shrubs, f o r b s , grasses and l i c h e n s ) are summarized i n Tables XXI t o XXIV.  Since upland and v a l l e y s o i l s assoc-  i a t e d with the same bedrock are c o m p o s i t i o n a l l y very s i m i l a r (Tables XV and XVI), p l a n t s were not subdivided on the b a s i s o f t h e i r r e l a t i v e topographic p o s i t i o n s .  Metal con-  c e n t r a t i o n s and sample s i t e numbers f o r a l l p l a n t s analyzed are l i s t e d i n Appendix C. METAL CONTENT OP PLANTS Low molybdenum c o n c e n t r a t i o n s , t y p i c a l l y l e s s than 0.2 p.p.m., occur i n n e a r l y a l l species a s s o c i a t e d w i t h Yukon Group s o i l s (Table XXI).  P l a n t s on s i l i c e o u s U n i t 3  and g r a n i t i c s o i l s may c o n t a i n somewhat h i g h e r molybdenum levels.  Over the Yukon Group, f o r example, f o r b s contains  an average o f 0.2 p.p.m. molybdenum, while those a s s o c i a t e d w i t h s i l i c e o u s U n i t 3 and g r a n i t i c s o i l s c o n t a i n 1.2 p.p.m. and 0.7 p.p.m. r e s p e c t i v e l y . Of p a r t i c u l a r i n t e r e s t however i s the remarkably h i g h molybdenum content o f n e a r l y a l l species sampled over calcareous U n i t 3 s o i l s .  Pireweed (Epilobium l a t i f o l i u m ) ,  f o r example, contains up t o 44 p.p.m. molybdenum and rough fescue (Pestuca a l t a i c a ) up t o 50 p.p.m.  Warren and  Table XXI  CLASS  Range and arithmetic mean molybdenum content*of vegetation (ppm dry weight) associated with various s o i l types.  SPECIES •  Abies lasiocarpa (fir)  SOIL TYPE UK IT 3 UNIT 3 YUKON CALCAREOUS SILICEOUS GROUP 0.2 0.1 0.1-1.4  (5)  0.2  0.1  0,1-1.4 (16)  0.2 0.1-0,4  (8)  (3)  0.1  0.1  (10)  (2)  Trees**  SHRUES  Betula glandulosa (dwarf birch) Salix alaxensis (willow)  C.l 0.1-0.4 (43) 4 1.2-12 (6)  0.2 0.1-1.2 (22)  5  0.2 0.1-1.2  Shrubs * *  0.5-12 (9) Senecio triangularis  9 1.6-18  (89) 0.4 0.1-1.2  FORBS  W  Epilobium l a t i f o l i u m (fireweed)  (4) . Forbs**  Festuca a l t a i c a (rough fescue)  GRASS:  22 12-44-  Calmagrostis canadensis  12 1.6-44 (11) 4o  12-50 (3) 2.4  Grasses**  16  0.3-50 (8)  HENS  (5) . 4.5 .  (1)  1.2 0.1-4.5  (13) 0.9 0.1-3.6 (8)  , 0.9  0.1-3.6  . (1)  Cladonia alpestris (caribou moss)  (9)  Lichens**  t * **  0.1  (10) 0.1 0.1-0.5  (43)  (1)  0.4 (1) 0.2 0.1-0.4  (5)  0.1  0.4  (2)  (1)  0.5  0.1-0.8 (3) 0.2 0.1-0.8 (12)  0.7 0.1-1.2 (4)  0.2 0.1-0.6  1.2  (5) 0.3 (1)  (1) 0.4 (1)  0.9 0.1-3.6 (22)  0.4 0.1-1.2 (12)  0.8 0.4-1.2 (2)  0.1 0.1-2.4  0.1  0.1  (35)  M  0.4  (ID  ft  K £-"  GRANITIC  0.2 0.1-2.4 (42)  (14) 0.1 (20)  . l p.p.m. values less than 0.2 p.p.m . taken as )( number of samples f o r various species included i n t h i s vegetation class see Table VI.  (1)  0.5  0.1-0.8 (2)  Table XXII  CLASS  Range and arithmetic mean manganese content of vegetation (ppm dry weight) associated with various s o i l types.  SPECIES  SOIL TYPE YUKON . GRANITIC UNIT 3 OK IT 3 GROUP . CALCAREOUS SILICEOUS  510 250-745 (11)  1210 270-1670 (5)  320  565 65-1145 (16)  900 135-I670 (8)  310 95-515 (3)  680 70-1755 (43)  790 270-1360 (10)  395 305-485  430 55-865 (10)  310  (6)  280 30-690 (22)  50 20-100 (9)  395 30-1755 (89)  495. .55-1360  465 225-975 (5)  30 15-40 (4)  105 20-175 (5)  225 180-27C (2)  50 20-90 (4)  195 (^  120 35-215 (3)  40 10-90 .  125  310  Abies l a s i o c a r p a  (fir) TREES  (*)• Trees**  SHRUBS  Bet.ula glnndulosa (dwarf b i r c h ) SaTix ala>:ensis (willow)  Shrubs**  FORBS  •Senecio t r i a r i f r u l a r i s  Epilobium l a t i f o l i u m (fireweed)  F o r b s **  60 40-85  (11) Festuca a l t a i c a (rough fescue)  GRASS:  a  Calmaprostis canadensis  Cladonia a l p e s t r i s ( c a r i b o u moss)  cn  H  285 (1)  Grasses**  o  55 30-70 • (3)  i  Lichens**  *  **  100 40-285 (8)  20-300 (13) 230 115-435 (8) 180 70-375 (9) 200 50-435 (22)  (43)  35-1395 (12) 400 170-78C  (1)  (2)  (1)  140 (1)  • 125 65-I85 (4) 270  (5)  (1)  . 210  230  (1)  (1)  290 50-780 (12)  55 20-155 (35)  60 20-110 (14)  50 5-155 (42)  50 20-110 (20)  number of samples for various species included i n this vegetation class see Table VI.  250 230-270 (2) 30 .' (1) 20 10-30 (2)  Table XXIII  CLASS  Range and arithmetic mean copper content of vegetation (ppm dry weight) associated with various s o i l types.  SPECIES  TREES  Abies lasiocarna (fir)  SOIL TIPS UKTT 3 ' UK IT 3 YUKON IALCA7;EGUS SILICEOUS GROUP 4 5 3-6 3-10 (11) (5) (*)  Trees**  5 ?-10 (16)  • SHRUBS  Botula glanHulor.a (dwarf birch) Salix alnxensis (willow) Shrubs **  Senecio t r i a n g u l a r i s  ?  3-lo 6 1-9 (6) 6 3-9 (9) 8  FORBS  (4)  Epilobiurr. l a t i f o l i u m (firewoed)  CO  GRASS  Calmaprostis canadensis  LICHENS  Grasses **  Cladonia a l p e s t r i s (caribou moss)  14 9-17  12  9  6-17  i  Lichens**  10 6-17  8 (11)  (13)  5  6 3-7 (8)  4-6  . ,  (1)  (3)  8  4-17 (12)  (9)  (1)  7  5-14  7 3-12  4-12  (6)  (22)  3 1-10  6  (5)  (1)  3 1-4  (4)  5  8  '  7 3-11  4-6  9 6-12  12  (42)  * **  (2)  4-7  (35) •  6  (43)  (1)  (3) w  6  4-15  7  5-20 Festuca a l t a i c a (rough fescue)  i/•A /\  (89)  5-6 (4)  '•. Forbs- **  (10)  6  5-7 (5)  (5)  6  6 5-7 (2)  6 3-8  .2-15  5-10  3-5  6  6  7  CO  3-9 (10)  (22)  '  r,  43-6 (80  (43) 2-10  G-:AI\j.TIC  7 (12)  2  8 (1)  7 6-8  l> 2  2  1-3 (14)  4 1-14 (20)  number of samples for various species included i n this vegetation class see Table VI.  CO 3  2-5 (2)  Table XXIV  Range and arithmetic mean zinc content of vegetation (ppm dry weight) associated with various s o i l types.  SPECIES  CLASS  SOIL T J. 1 LJ OKJ": 3 'J;;TT 3 GROUP :AI.CARSGUS SILICEOUS  Abies lasiocarpa (fir) TREES  Trees**  35-^5 (U) 50 35-70 (16)  Set.ulfi glandulosa (dwarf birch)  150 6 P - 3 1 0  SHRUBS  ( 4 3 )  Salix alaxensis (wilDov;) Shrubc**  ? 2 C  175 (9)  Seneci.o trianja.ilaris  55 30-75  FCRBS  (4) Spilobium l a t i f o l i u m (f ir&weod.) Forbs **  30  w ^5  (11)  Calrr.agrostis canadensis  CRASS  f3  ' 65 '+C-30 (3) 1 9 5  . (1) Grassos **  80 I 5 - 3 I O ( 8 9 )  80 55-U5 (5) 7 5  2 0 - 4 0  25-75  Festuca a l t a i c s (rough fescue)  1 7 0  100-280 (22)  1 2 5 - 3 3 0  < ! >  ?0 55-H5 (13)  i  Cladnnia a l p e s t r i s (caribou moss)  w  ta M  i  Lichens**  * *•  3 5 - 6 0  (5) 55 3 5 - 1 3 0  (8) 1 6 0  0 5  55 25-105  (3)  1 2 0 - 2 1 5  1 5 0  1 9 0  55-250  )  ( 1 0 )  9 5  1 3 5  •10-2 .O c  (<0) 1 6 5  120-205  (2)  30-215  (5) 25 \ ) A  UO  . 20-70 (3) 4 5 2 0 - 2 0 5 ( 1 2 )  30  35-195  7 5  35-140  (2)  2C-4C  55 " 30-35 (9)  \ 1  x  ( 1 0 )  5 0  ' (3)  1\  I 6 5  80-195  30-105  (£)  n  3 0  4 5  4 5  (*)  CSAMTIC  (5)  ( 4 )  3  N  /' \  \^  1  35  2 5 /: \-  25 20-30  \ J  (1) 30  2 0 - 5 0 ( 1 2 )  (2)  14  15  15 5-30 (35)  8 - 2 5  15 5-30 (42)  8-30  I 5 - 2 5  ( 2 0 )  (2)  (1) 1 5  nu;r.bor of campion f o r various : ; p o c i o s includod i n t h i s vegotation class ceo Tablo VI.  20  _93-  Delevault  (1965)  have r e p o r t e d h i g h molybdenum l e v e l s i n  fireweed growing over molybdenite m i n e r a l i z a t i o n i n B r i t i s h Columbia. Where molybdenum i s a v a i l a b l e f o r b s and grasses u s u a l l y c o n t a i n more o f this, element than do woody s p e c i e s . Forbs growing on calcareous U n i t 3 s o i l s , f o r example, t y p i c a l l y c o n t a i n 1 2 p.p.m. molybdenum, w h i l e shrubs, such as w i l l o w ( S a l i x a l a x e n s i s ) a s s o c i a t e d w i t h the same s o i l g e n e r a l l y c o n t a i n l e s s than 5 p.p.m. Manganese l e v e l s i n p l a n t s growing on calicareous U n i t 3 s o i l s are t y p i c a l l y low, w h i l e p l a n t s growing on Yukon Group s o i l s are c h a r a c t e r i s t i c a l l y r i c h i n manganese (Table XXII). Shrubs, i n c l u d i n g such species as w i l l o w ( S a l i x a l a x e n s i s ) and dwarf b i r c h ( B e t u l a g l a n d u l o s a ) , cont a i n an average o f 4 9 5 p.p.m. manganese a s s o c i a t e d w i t h the Yukon Group and only 5 0 p.p.m. i n more b a s i c U n i t 3 e n v i r o n ments. Calgmagrostis  canadensis i s e x c e p t i o n a l i n i t s  r e l a t i v e l y h i g h manganese content  ( 2 8 5 p.p.m.) a s s o c i a t e d  w i t h calcareous U n i t 3 r o c k s . A l l woody p l a n t s c o n t a i n l a r g e amounts o f manganese. Dwarf b i r c h ( B e t u l a glandulosa) i n p a r t i c u l a r . , may c o n t a i n ?  up t o 1 7 5 5 p.p.m. o f t h i s element.  Kubota e t a l ( 1 9 7 0 )  found  s i m i l a r i l y h i g h manganese l e v e l s ( 1 1 2 0 p.p.m.) i n leaves from t h i s species i n Alaska. V a r i a t i o n s i n copper c o n c e n t r a t i o n s i n p l a n t s associ a t e d w i t h d i f f e r e n t s o i l types are s l i g h t .  O v e r a l l mean  l e v e l s i n grasses, f o r example, are 7 p.p.m. a s s o c i a t e d w i t h a l l f o u r s o i l types (Table X X I I l ) .  -94-  Copper c o n c e n t r a t i o n s a l s o vary l i t t l e between species.  Mean values t y p i c a l l y range from about 4- p.p.m.  i n t r e e s up t o 8 p.p.m. i n f o r b s .  Only Senecio  triangularis  and Calamagrostis canadensis c h a r a c t e r i s t i c a l l y c o n t a i n copper l e v e l s o f 8 p.p.m. o r g r e a t e r .  I n c o n t r a s t , Kubota  et a l . (1970) found an average o f only 3 . 5 p.p.m. copper i n Calamagrostis canadensis  from A l a s k a .  R e l a t i o n s h i p s between z i n c l e v e l s i n p l a n t s p e c i e s and s o i l type are o f t e n c o n t r a d i c t o r y . As i n d i c a t e d i n Table XXIV, f o r example, mean z i n c c o n c e n t r a t i o n s are h i g h e s t i n t r e e s growing on g r a n i t i c s o i l s (75 p.p.m.) w h i l e grasses are poorest i n z i n c (30 p.p.m.) when a s s o c i a t e d w i t h the same s o i l s . Zinc l e v e l s i n c e r t a i n shrubs are p a r t i c u l a r l y h i g h . Willow ( S a l i x a l e x e n s i s ) may c o n t a i n up t o 330 p.p.m. z i n c i n c o n t r a s t t o u s u a l values o f l e s s than 100 p.p.m. i n most other s p e c i e s . Lichens g e n e r a l l y , and Cladonia i n p a r t i c u l a r , cont a i n low c o n c e n t r a t i o n s o f a l l elements.  Copper concen-  t r a t i o n s do not exceed 5 p.p.m., w h i l e average z i n c l e v e l s are o n l y about 15 p.p.m.  S c o t t e r and M i l t i m o r e ( p e r s . comm.)  i n the Northwest T e r r i t o r i e s , and Havre (1969) i n Norway, have both r e p o r t e d s i m i l a r l y low metal values i n v a r i o u s Cladonia s p e c i e s , i n c l u d i n g Cladonia a l p e s t r i s .  -95-  FACTORS AFFECTING METAL LEVELS IN PLANTS Metal c o n c e n t r a t i o n s i n p l a n t s are i n f l u e n c e d by both the t o t a l metal content o f the s o i l and the form i n which metals are h e l d .  Trace elements w i t h i n the c r y s t a l  l a t t i c e o f primary and secondary s o i l minerals are r e l a t i v e l y u n a v a i l a b l e compared t o i o n s present i n the s o i l s o l u t i o n or adsorbed on e i t h e r c l a y minerals o r organic  matter.  The p r o p o r t i o n o f s o i l s o l u t i o n and adsorbed i o n s a v a i l a b l e to the p l a n t i s determined, t o a l a r g e extent, by Eh and pH c o n d i t i o n s i n the s o i l . Low molybdenum l e v e l s ( t y p i c a l l y < 0 . 2 p.p.m.) i n p l a n t s o f most species growing on Yukon Group s o i l s are c o n s i s t e n t w i t h low t o t a l molybdenum c o n c e n t r a t i o n s (<3 p.p.m.) i n these s o i l s .  R e l a t i v e l y high molybdenum con-  c e n t r a t i o n s (8 p.p.m.) i n s i l i c e o u s U n i t 3 s o i l s , however, c o n t r a s t with low values i n a s s o c i a t e d woody p l a n t s and lichens.  Forbs such as fireweed (Epilobium l a t i f o l i u m ) , and  grasses such as rough fescue (Festuca a l t a i c a ) , growing on these s i l i c e o u s s o i l s may c o n t a i n somewhat enhanced molybdenum l e v e l s (up t o 4 . 5 and 3.6 p.p.m. r e s p e c t i v e l y ) . The average molybdenum c o n c e n t r a t i o n i n calcareous U n i t 3 s o i l s (30 p.p.m.) i s about f o u r times g r e a t e r than that of s i l i c e o u s v a r i e t i e s .  However, mean molybdenum l e v e l s  f o r p l a n t s growing i n b a s i c s o i l s may be, as i n the case o f rough fescue(Festuca a l t a i c a ) , over f o r t y times g r e a t e r than l e v e l s a s s o c i a t e d w i t h a c i d i c s o i l s (Table X X I ) .  -96-  Barshad  (1951) has r e p o r t e d t h a t s o i l c l a y m i n e r a l s  adsorb i n c r e a s i n g amounts o f molybdenum, as MO^, w i t h dec r e a s i n g pH.  S i m i l a r l y , Reisenaur et a l (1962) have shown  t h a t t h e amount o f molybdenum adsorbed by hydrous oxides of i r o n and aluminum, both common i n s o i l s , decreases w i t h i n c r e a s i n g pH. G e n e r a l l y low c o n c e n t r a t i o n s o f molybdenum i n p l a n t s growing on molybdenum-rich s i l i c e o u s U n i t 3 s o i l s t h e r e f o r e r e f l e c t the dominant i n f l u e n c e o f low pH (mean value 4.5) over t o t a l metal content i n r e s t r i c t i n g molybdenum a v a i l a b i l ity.  I n the calcareous s o i l s (pH 6.7) both molybdenum and  pH values are h i g h , and hence both f a c t o r s favour p l a n t uptake. Molybdenum-rich v e g e t a t i o n has a l s o been r e p o r t e d growing on o r g a n i c - r i c h a c i d i c s o i l s (Walsh e t a l , 1953, Kubota et a l , 1961).  I n the MacMillan Pass area, however,  no enhanced p l a n t molybdenum l e v e l s were noted a s s o c i a t e d w i t h s o i l s o f t h i s type. In c o n t r a s t t o molybdenum, a v a i l a b i l i t y o f manganese to p l a n t s i n c r e a s e s w i t h decreasing pH (Hodgson, 1970). P l a n t s growing i n a c i d i c s o i l s , such as those d e r i v e d from the Yukon Group, h i g h i n t o t a l manganese (520 p.p.m.), c o n t a i n high manganese c o n c e n t r a t i o n s (Table X X I I ) .  Soils  w i t h s i m i l a r manganese contents but d i f f e r e n t pH l e v e l s , f o r example calcareous and s i l i c e o u s Unit 3 s o i l s , p l a n t s w i t h very d i f f e r e n t manganese l e v e l s .  support  Willow ( S a l i x  a l a x e n s i s ) contains approximately 280 p.p.m. manganese on  -97a c i d i c s i l i c e o u s s o i l s and only 6 0 p.p.m. on more b a s i c calcareous  soils.  S o i l type g e n e r a l l y e x e r t s l i t t l e i n f l u e n c e on copper concentrations i n p l a n t s i n v e s t i g a t e d .  F o r example,  grasses c o n t a i n an average o f 7 p.p.m. copper on both g r a n i t i c s o i l s , which c o n t a i n 5 p.p.m. copper, and s i l i c e o u s U n i t 3 s o i l s , with 3 5 p.p.m. copper.  Furthermore  mean copper values f o r v a r i o u s p l a n t species c h a r a c t e r i s t i c a l l y range between only 4- and 8 p.p.m.  I t therefore  appears t h a t c e r t a i n homeostatic mechanisms, common t o most p l a n t species s t u d i e d , e f f e c t i v e l y r e g u l a t e copper i n take. Copper a v a i l a b i l i t y ,  l i k e t h a t o f manganese, r e -  p o r t e d l y decreases w i t h i n c r e a s i n g pH (Hodgson,  1970).  This  i s c o n s i s t e n t w i t h the l a c k o f h i g h p l a n t copper values a s s o c i a t e d w i t h b a s i c c o p p e r - r i c h ( 6 5 p.p.m.) U n i t 3 s o i l . I n view o f the importance o f p l a n t response f a c t o r s i n l i m i t i n g copper uptake however, the absence o f enhanced p l a n t copper concentrations i s n o t n e c e s s a r i l y o n l y a pH e f f e c t . Zinc l e v e l s i n p l a n t s are o f t e n not c o n s i s t e n t w i t h s o i l pH and t o t a l z i n c content.  Both Yukon Group and  s i l i c e o u s U n i t 3 s o i l s , f o r example, c o n t a i n s i m i l a r amounts of z i n c and have s i m i l a r pH values (Tables XV and X V I ) . The mean z i n c c o n c e n t r a t i o n i n Senecio t r i a n g a l a r i s growing on the former s o i l s , o f 1 6 5 p.p.m., i s however, approximately twice t h a t a s s o c i a t e d w i t h the l a t t e r s o i l s .  Variations of  t h i s type c o u l d be due t o s o i l f a c t o r s such as organic matter  -98-  content and the chemical form i n which z i n c i s p r e s e n t , which were not i n v e s t i g a t e d i n t h i s study. R e l a t i v e l y h i g h z i n c l e v e l s i n shrubs and grasses associated  with calcareous U n i t 3 s o i l s are not i n agree-  ment with the reported low a v a i l a b i l i t y of z i n c i n b a s i c s o i l s (Hodgson, 1970).  These high c o n c e n t r a t i o n s may  r e f l e c t the a b i l i t i e s o f p l a n t s concerned t o absorb z i n c more than the a b i l i t y of s o i l s t o supply i t . POSSIBLE INFLUENCE OF METAL LEVELS IN PLANTS ON THE HEALTH OF WILDLIFE, PARTICULARLY CARIBOU AND MOOSE The a b i l i t y of an animal t o t o l e r a t e molybdenum i s a f f e c t e d by a number of f a c t o r s , i n c l u d i n g i t s copper status and i n t a k e and the i n o r g a n i c (Underwood, 1962).  s u l f a t e content of i t s d i e t  Although the nature of m e t a b o l i t i c  i n t e r a c t i o n s of these elements are p o o r l y understood, i t appears t h a t the p r i n c i p a l t o x i c e f f e c t of prolonged h i g h d i e t a r y molybdenum uptake i s t o induce a s t a t e of copper d e f i c i e n c y (hypocuprosis).  A minimum amount o f i n o r g a n i c  s u l f a t e must however be present i f t h i s t o x i c a c t i o n i s t o be e f f e c t i v e . cuprosis  C a t t l e experiencing molybdenum induced hypo-  s u f f e r severe l o s s of c o n d i t i o n and scouring. Tolerance t o high d i e t a r y i n t a k e s o f molybdenum  v a r i e s considerably 1962).  w i t h d i f f e r e n t animal species (Underwood,  Of domestic farm animals, f o r example, c a t t l e are  much l e s s t o l e r a n t of molybdenum than are horses and p i g s . Tolerance l i m i t s o f caribou and moose have not been s t u d i e d .  -99Nevertheless,  since as ruminants, these animals share  c e r t a i n b a s i c m e t a b o l i t i c processes w i t h c a t t l e , t h e i r t o l e r a n c e l e v e l s could be s i m i l a r l y low. P r e c i s e t o l e r a n c e l e v e l s f o r c a t t l e are not w e l l e s tablished.  Kubota e t a l (1961) have suggested t h a t on im-  p e r f e c t l y t o p o o r l y drained mineral s o i l s i n the western U n i t e d S t a t e s , molybdenum concentrations o f over 15 p.p.m. i n forage p l a n t s are p o t e n t i a l l y t o x i c t o c a t t l e , while on organic s o i l s 2 t o 5 p.p.m. i n forage may be t o x i c .  In  I r e l a n d , on the other hand, the p r o v i s i o n a l t h r e s h o l d l e v e l f o r t o x i c herbage i s given as 5 p.p.m. i n d r y matter (Walsh et a l . , 1952). In view o f the m e t a b o l i t i c i n t e r a c t i o n o f copper and molybdenum, t h e Cu/Mo r a t i o o f forage i s perhaps a more meaningful parameter o f t o x i c i t y .  M i l t i m o r e and Mason (1971)  have observed t h a t , i n B r i t i s h Columbia, feeds w i t h Cu/Mo r a t i o s o f l e s s than 2.0 are a s s o c i a t e d w i t h symptoms o f copper d e f i c i e n c y i n c a t t l e . Average Cu/Mo r a t i o s f o r p l a n t s growing i n a l l but b a s i c U n i t 3 s o i l s are w e l l above 2 . 0 .  With very few ex-  ceptions however, p l a n t s a s s o c i a t e d w i t h b a s i c s o i l s have r a t i o s below t h i s l i m i t .  O v e r a l l r a t i o s f o r f o r b s and shrubs,  f o r example, are 0.68 and 1.25 r e s p e c t i v e l y . The lowest Cu/Mo r a t i o f o r an i n d i v i d u a l s p e c i e s i s 0.13 f o r rough fescue. These b a s i c s o i l s , d e r i v e d p r i m a r i l y from dark l i m e s t o n e , are r e l a t i v e l y r a r e w i t h i n the d e t a i l e d study  area.  While l i t t l e i s known about t h e f e e d i n g h a b i t s o f  -100-  e i t h e r c a r i b o u o r moose, most p l a n t species sampled are at l e a s t p o t e n t i a l forage f o r these animals.  Caribou moss  (Cladonia a l p e s t r i s ) i n p a r t i c u l a r i s l i k e l y t o be one o f the main food sources f o r c a r i b o u d u r i n g w i n t e r months. I t i s i n t e r e s t i n g t o note t h a t , w h i l e molybdenum l e v e l s i n t h i s l i c h e n are low (<0.2 p.p.m.), c o n c e n t r a t i o n s o f both copper (3 p.p.m.)- and z i n c (15 p.p.m.) are w e l l beloxtf the minimum d i e t a r y l e v e l s o f 10 and 50 p.p.m. r e s p e c t i v e l y , recommended f o r domestic c a t t l e ( A g r i c u l t u r a l Research C o u n c i l , 1965). An i n d i c a t i o n of the metal i n t a k e o f these may be given by the metal content of t h e i r faeces XXV).  animals (Table  Of 30 samples analyzed, only two contained more than  2 p.p.m. molybdenum. Removal of molybdenum by d i g e s t i v e processes o r l e a c h i n g o f faeces by r a i n w a t e r , however, may be r e s p o n s i b l e f o r some o f the low v a l u e s . In summary, i f (i)  molybdenum-rich calcareous rock i s r e l a t i v e l y uncommon w i t h i n U n i t 3 as a whole, as i s suggested from s t u d i e s i n the MacMillan Pass area and p u b l i s h e d g e o l o g i c a l r e p o r t s ,  ( i i ) molybdenum t o l e r a n c e l e v e l s of c a r i b o u and moose are s i m i l a r to those o f c a t t l e , ( i i i ) g r a z i n g h a b i t s o f caribou and moose are i n dependent o f s o i l type, i t i s u n l i k e l y t h a t these animals s u f f e r from molybdenum induced copper d e f i c i e n c y .  -101-  Table XXV  Range and a r i t h m e t i c mean c o n c e n t r a t i o n * (p.p.m.) o f Mo, Cu, Zn and Mn i n c a r i b o u and moose f a e c e s .  Element  Faeces Caribou  Mo  1.6 0.1-9.7  Cu  14 11-22  Zn  260 175-415  Mn  No. o f Samples  Moose 1.2 0.1-14.0 10 7-16 365 175-515  700  465  300-1405  130-1010  12  18  * HNOy'HClO^ e x t r a c t a b l e metal content expressed i n terms of sample d r y weight.  -102-  However, i f c a r i b o u moss i s the p r i n c i p a l food source f o r c a r i b o u i n w i n t e r , the p o s s i b i l i t y of d e f i c i e n c y symptoms r e s u l t i n g from low l e v e l s of copper and z i n c i n t h i s species i s very r e a l .  S i m i l a r c o n d i t i o n s may a f f e c t  r e i n d e e r i n Norway (Havre, 1969) and the Northwest T e r r i t o r i e s ( S c o t t e r and M i l t i m o r e , pers. comm.).  CHAPTER XI TRACE ELEMENT CONCENTRATIONS IN STREAM SEDIMENT  -104-  PRESEN TATION OF DATA Tables. XXVI and, XXVII summarize metal c o n c e n t r a t i o n s i n sediments a s s o c i a t e d w i t h d i f f e r e n t bedrock t y p e s . Samples c o l l e c t e d over U n i t 3 were subdivided on the b a s i s of t h e i r a s s o c i a t i o n w i t h e i t h e r basic, o r n e u t r a l t o a c i d i c stream water.  B a s i c streams i n v a r i a b l y d r a i n areas under-  l a i n , i n p a r t , by dark l i m e s t o n e . Sediments from v a l l e y bottoms over the Yukon Group are  considered s e p a r a t e l y s i n c e streams i n these environments  commonly d r a i n areas u n d e r l a i n p a r t i a l l y by T e r t i a r y v o l c a n i c s and/or U n i t 3 .  Trace element concentrations and  U.T.M. c o - o r d i n a t e s of a l l stream sediment samples c o l l e c t e d w i t h i n the d e t a i l e d study area and along the Canol Road are l i s t e d i n Appendix D. METAL CONCENTRATIONS IN STREAM SEDIMENT As shown i n Table XXVI U n i t 3 sediments from the MacMillan Pass r e g i o n c o n t a i n l a r g e c o n c e n t r a t i o n s of molybdenum (26 p.p.m.), vanadium p.p.m.).  (720 p.p.m.) and copper  (200  Molybdenum and vanadium l e v e l s i n p a r t i c u l a r are  c o n s i d e r a b l y h i g h e r than v a l u e s f o r U n i t 3 sediments from the  r e g i o n a l study area (11 and 480 p.p.m. r e s p e c t i v e l y ) .  Sediments a s s o c i a t e d w i t h b a s i c stream waters (Table XXVII A) are  enriched i n n i c k e l (420 p.p.m.), molybdenum (40 p.p.m.),  vanadium  (905 p.p.m.) and strontium (275 p.p.m.), r e l a t i v e  to those of a c i d streams.  Table XXVI  BEDROCK  ELEMENT  Mo* V Ni Cr Cu  YUKON GROUP  26 10-65 720 385-1345 100 30-345 200 130-320 110 60-210  3 1-6  1  115 55-230  30  25 15-45  Sr  145  Co Zn** Number of Samples  GRANITIC ROCK  UNIT 3  Pb  Mn  Range and geometric mean trace element content (p.p.m.) of stream sediment associated with major bedrock types within the detailed study area and along the Canol Road.  65-320 340 95-1230 30 10-70  80  45-145  165 130-215 60 35-110 20 15-35 230 145-375  770 425-1400  -  20-40  11 3-20 22  15-30  8 5-12 17 15-20 175 50-300 200  -  45  6 3-10  30  2  30-80  135 35-530 69  t Range = mean + log standard deviation * Values less than 2 ppm taken as 1 ppm ** Number of zinc analyses = 36  -106-  Table XXVII  ELEMENT  SEDIMENTS SAMPLED OVER UNIT 3 Stream  Stream  40  24  pH>7  Mo*  V Ni Cr Cu Pb Sr Mn  Co  Zn**  Number of Samples  Range and geometric mean trace element content (p.p.m.) of stream sediment associated with, (A) Unit j subdivided on the basis of stream pH, (B) Yukon Group subdivided topographically.  15-105 905  10-55 680  345-1345  420  75  345  ELEMENT  25-220 180  Mo* V. Ni Cr  240-505  125-260  130 85-200  Cu  10-40  105 55-210 25 15-45  275 ^ 130-600  125 60-225  Sr  490  310  • Mn-  20  170-1400  25 10-65  375  45 15-115  *3  56  210-680  Pb  80-1175  50 35-75  SEDIMENTS SAMPLED OVER YUKON GROUP Uplands  PH$7  720-114-5  265-660  B.  Co  Number of Samples  Valleys  1 3.5 1 . 5 -8.5 <1-1.5 145 65 70-290 55-80 70 60-85  90 45-175  160 I90 170-210 120-210 75 60-110  55 30-105  30  20 10-30  20-40  225 250 190-320 130-390 1020  640-1625  75 65-85 9  t Range = mean ± log standard deviation * Values less than 2p.p.m. taken as lp.p.ra. ** Number of zinc analyses: stream pH>7 = 19 stream pH$7 = 1 7  685 370-1260 40  25-65 21  -107-  Yukon Group sediments are g e n e r a l l y low i n molybdenum (3 p.p.m.) and r i c h i n manganese (770 p.p.m.).  A  few h i g h molybdenum and vanadium v a l u e s ( g r e a t e r than 10 and 480 p.p.m. r e s p e c t i v e l y ) occur i n v a l l e y sediments over the Yukon Group.  O v e r a l l c o n c e n t r a t i o n s i n sediments  a s s o c i a t e d w i t h the Yukon Group from both r e g i o n a l and d e t a i l e d study areas are remarkably s i m i l a r . Both sediment samples d e r i v e d from a b i o t i t e granod i o r i t e stock southwest of MacMillan Pass are s t r i k i n g l y low i n a l l elements (Table XXVI).  Metal l e v e l s i n g r a n i t i c  sediments from the r e g i o n a l study are t y p i c a l l y higher,by f a c t o r s of from two t o t h r e e , than c o n c e n t r a t i o n s i n these g r a n o d i o r i t i c sediments.  Furthermore, low molybdenum l e v e l s  (<2 p.p.m.) i n the sediments near MacMillan Pass c o n t r a s t w i t h enhanced c o n c e n t r a t i o n s (up t o 16 p.p.m.) r e p o r t e d i n sediments a s s o c i a t e d w i t h g r a n i t i c i n t r u s i o n s i n the Keno H i l l r e g i o n (Gleeson, 1966). COMPARISON OF METAL CONTENT OF STREAM SEDIMENT WITH THAT OF ASSOCIATED ROCK AND SOIL Trace element c o n c e n t r a t i o n s i n rock, s o i l and stream sediment m a t e r i a l are summarized i n Tables XXVIII and XXIX. Low c o n c e n t r a t i o n s of molybdenum i n g r a n i t i c and Yukon Group sediment and r e l a t i v e l y and h i g h v a l u e s i n calcareous U n i t 3 sediment are c l e a r l y r e f l e c t e d i n a s s o c i a t e d rock and s o i l .  Calcareous sediment, f o r example, contains  Table XXVIII  ELEMENT  BEDROCK Unit 3 Calcareous  Mo  Unit 3 Siliceous Yukon Group Granitic Rock Unit 3 Calcareous  Cu  Unit 3 Siliceous Yukon " Group 1  Granitic Rock Unit 3 Calcareous Mn  Unit 3 Siliceous Yukon Group  T  Granitic Rock *  Molybdenum, copper and manganese concentrations (p.p.m.) i n stream sediment and associated s o i l material. STREAM SEDIMENT* 40  15-105 24  10-55 1 <1-1.5 1  -  130  85-200 105 55-210  75 60-110 8 5-12 490 170-1400  310  80-1175 1020 640-1625  200  -  SOU**  30 10-50 8 1-26  0.7 0.2-1.6 1.5  0.2-2.4 65  45-120 40  10-90 30 15-45 5 2-10 210  30-305 250 5-2695  690  240-1220  255  180-315  Total analysis by emission spectroscopy; geometric mean values quoted, ** HN03/HC10 extractable metal content determined by atomic-absorption spectrophotometry; arithmetic means, t Sediment values r e f e r to upland areas only. 4  Table XXIX  Geometric mean t r a c e element concentrations (p.p.m.)* i n rock and a s s o c i a t e d stream sediment.  ELEMENT  SILICEOUS UNIT 3 CALCAREOUS UNIT 3 SEDIMENT ' ROCK SEDIMENT ROCK .......  Mo V Ni Cr Cu Pb Sr Mn Co Zn**  45 1095 190 215 45 7 680 140 <5 185  40 905 420 345 130 20 275 490 50 375  9 410 30 70 30 13 60 15 4 35  105 25 125 310 25 45  13  13  205  56  Number o f Samples  24 680 75 180  1UK0N GROUP SEDIMENT ROCK 1 80 45 55 30 16 145 485 14 —  12  1 65 70 190 75 30 250 1020 75 —  9  GRANITIC ROCK SEDIMENT ROCK 1 80 6 18  1 30 11 22 8  7 19 300 175 7 5  17 175 200 6  5  2  —  * t o t a l a n a l y s i s by emission spectroscopy (except f o r z i n c ) ••HNOj/HClO^ e x t r a c t a b l e Zn measured by atomic-absorption s p e c t r o p h o t o m e t r y  i  M O vO \  -110an average o f 40 p.p.m. molybdenum, while c o n c e n t r a t i o n s i n a s s o c i a t e d rock and s o i l are 45 and 30 p.p.m. r e s p e c t i v e l y . Mean molybdenum c o n c e n t r a t i o n i n s i l i c e o u s U n i t 3 sediment (24 p.p.m.) however, i s approximately three times g r e a t e r than rock and s o i l v a l u e s .  Similar relationships exist  f o r vanadium concentrations i n rock and stream sediment material. Sediments d e r i v e d from both U n i t 3 and the Yukon Group c o n t a i n two t o three times more copper than a s s o c i a t e d rock and s o i l . i n sediments,  Manganese l e v e l s are a l s o r e l a t i v e l y high though the enrichment f a c t o r i s more v a r i a b l e  than t h a t o f copper.  The mean manganese c o n c e n t r a t i o n i n  s i l i c e o u s U n i t 3 sediment, f o r example, i s 310 p.p.m. while those o f a s s o c i a t e d bedrock and s o i l are 15 and 250 p.p.m. respectively.  Concentrations o f a l l other elements i n U n i t  3 and Yukon Group stream sediment are s i m i l a r l y enhanced r e l a t i v e t o rock v a l u e s , w i t h the s i n g l e exception o f s t r o n tium i n calcareous U n i t 3 environments (Table XXIX). Metal l e v e l s i n sediments d e r i v e d from g r a n o d i o i t e , i n c o n t r a s t t o l e v e l s o f most elements i n sediments from other bedrock types, are t y p i c a l l y very s i m i l a r t o concent r a t i o n s i n rock and s o i l m a t e r i a l .  Por example, g r a n i t i c  stream sediment contains 8 p.p.m. copper, w h i l e l e v e l s o f ,5 and 7 p.p.m. c h a r a c t e r i z e a s s o c i a t e d s o i l / , and rock respectively.  Vanadium and strontium c o n c e n t r a t i o n s i n  g r a n i t i c sediment are e x c e p t i o n a l i n t h a t l e v e l s are l e s s than those o f the source rock.  -111-  FACTORS AFFECTING TRACE ELEMENT LEVELS IN STREAM SEDIMENT Since stream sediments approximate a composite sample of rock and s o i l m a t e r i a l upstream from the sample s i t e , t h e i r composition i s c o n t r o l l e d , to a c o n s i d e r a b l e extent, by compositions of these m a t e r i a l s .  Processes  a c t i v e i n the stream channels however, such as l e a c h i n g o r a d s o r p t i o n , may a l t e r sediment composition to some e x t e n t . A comparison of Tables XXVIII and XXIX i n d i c a t e s compositions of rock and s o i l m a t e r i a l i n the MacMillan Pass area, are g e n e r a l l y not very d i f f e r e n t .  Relatively large  d i f f e r e n c e s are common however, between the composition of these two m a t e r i a l s and the a s s o c i a t e d sediment. The extent to which sediment composition i s m o d i f i e d i n stream channels i s determined by a number of f a c t o r s i n c l u d i n g Eh and pH values i n the channel and the a s s o c i a t e d s o i l , the amount and nature of d i s s o l v e d m a t e r i a l i n stream water, the g r a i n s i z e and m i n e r a l composition of the  sediment,  and the nature of the element being considered. Metals may be d i s s o l v e d i n s o i l or stream water as e i t h e r c a t i o n s o r complex anions.  Of the elements  con-  s i d e r e d i n Table XXIX o n l y two, molybdenum and vanadium, are m o b i l i z e d as anions (Hawkes and Webb, 1962).  Eh and pH  changes a f f e c t these two groups of i o n s i n opposite f a s h i o n s . S o i l and stream pH values are summarized i n Table XXX.  Stream pH values are t y p i c a l l y one or more u n i t s  above s o i l l e v e l s .  Though no Eh measurements were made  -112-  stream channels are l i k e l y t o be more o x i d i z i n g than s o i l environments. C o n s i d e r i n g the elements m o b i l i z e d as c a t i o n s , c o n c e n t r a t i o n s are t y p i c a l l y much h i g h e r i n sediments than i n the a s s o c i a t e d rock (Table XXIX).  The magnitude o f t h i s  enrichment i s v a r i a b l e , ranging from l e s s than 2 t o g r e a t e r than 2 0 .  Only g r a n i t i c sediments are not enriched i n t h i s  fashion. Table XXX  Mean pH v a l u e s o f s o i l s and stream waters a s s o c i a t e d w i t h v a r i o u s bedrock u n i t s .  Bedrock  PH Soils  Stream waters  Calcareous  6.7  7.8  Acidic  4.5  5.3  Yukon Group  4.8  6.7  G r a n i t i c Rocks  4.7  6.7  CFnit X ^  I r o n oxide p r e c i p i t a t e s are common on sediment i n many o f the more a c i d i c streams d r a i n i n g U n i t 3 l i t h o l o g i e s , p a r t i c u l a r l y p y r i t e b e a r i n g dark shale.  According t o  Stumm and Morgan (1970) o x i d a t i o n o f p y r i t e r e l e a s e s both  -113-  f e r r o u s and hydrogen i o n s .  Ferrous ions may subsequently  be o x i d i z e d to the f e r r i c s t a t e and p r e c i p i t a t e d as f e r r i c hydroxide i n stream channels.  Precipitation of f e r r i c  hydroxide r e l e a s e s more hydrogen i o n s thus accounting f o r very low stream pH values a s s o c i a t e d w i t h i r o n p r e c i p i t a t e s . I r o n and manganese p r e c i p i t a t e s may scavenge cons i d e r a b l e amounts o f such t r a c e elements a s ' n i c k e l , c o b a l t , copper and z i n c from stream water (Theobald et a l . , 1962, H o r n s n a i l e t a l . 1969).  Chemical a n a l y s i s of p r e c i p i t a t e s  i n the MacMillan Pass area however (Table XXXI) r e v e a l low values f o r most elements w i t h the exception of molybdenum and z i n c . An a l t e r n a t i v e and more l i k e l y mechanism f o r e n r i c h ment o f sediment r e l a t i v e to rock and s o i l m a t e r i a l i s cation adsorption.  This i n v o l v e s a d s o r p t i o n of p o s i t i v e l y  charged i o n s by the c l a y - s i z e f r a c t i o n o f stream sediment, such as c l a y m i n e r a l s and organic matter.  Since the e f f e c t -  iveness o f c a t i o n a d s o r p t i o n i n c r e a s e s w i t h i n c r e a s i n g pH (Hawkes and Webb,  1962),  c a t i o n s m o b i l i z e d i n the r e l a t i v e l y  a c i d i c s o i l s of the MacMillan Pass area should tend to be adsorbed i n the more b a s i c stream channels (Table Lack of enrichment  XXX).  i n g r a n i t i c sediment i s somewhat  s u r p r i s i n g i n view of r e l a t i v e l y l a r g e pH d i f f e r e n c e s between s o i l s and stream channels (4.7 v s . 6.7).  Sediment i n  these channels however i s composed c h i e f l y of sand-size g r a i n s o f quartz and mica, whereas, as p r e v i o u s l y noted, adsorption occurs p r i n c i p a l l y on the c l a y - s i z e component  Table XXXI  Element  Mo  Range and a r i t h m e t i c mean t r a c e element content* (p.p.m.) o f i r o n oxide p r e c i p i t a t e s from a c i d i c stream channels  Concentration (p.p.m.) 20 <0.2-70.0  Ni  5 3-12  Cu  45 15-115  Pb  11 3- 45  Mn  14 6-35  Co  6 4- 8  Zn  75 30-200  * 6M HC1 e x t r a c t a b l e metal c o n c e n t r a t i o n determined by atomic-absorption spectrophoternetry.  -115of the sediment. _2 Anions o f molybdenum and vanadium (MoO^ and VO^  ) i i& c o n t r a s t t o c a t i o n s , should be most mobile i n  the r e l a t i v e l y b a s i c o x i d i z i n g stream channels.  Since  molybdenum and vanadium c o n c e n t r a t i o n s i n sediment are t y p i c a l l y s i m i l a r t o a s s o c i a t e d rock and s o i l l e v e l s , these elements however are not l i k e l y being leached from sediments to any great extent. S i l i c e o u s U n i t 3 sediments are e x c e p t i o n a l i n t h a t they c o n t a i n more molybdenum and vanadium than the associ a t e d rock.  As p r e v i o u s l y noted however, hydrous i r o n oxide  p r e c i p i t a t e s which are common as c r u s t s on these sediments may c o n t a i n l a r g e amounts (up t o 70 p.p.m.) o f molybdenum. Jones (1957) has shown t h a t hydrous i r o n oxides are s u p e r i o r to c l a y m i n e r a l s i n t h e i r a b i l i t y t o sorb molybdenum. Vanadium c o n c e n t r a t i o n s i n these p r e c i p i t a t e s are unknown, but i t seems probable' t h a t , l i k e molybdenum, they are r e l a t i v e l y high. COMPARISON OF METAL CONCENTRATIONS IN STREAM SEDIMENT WITH THOSE OF ASSOCIATED VEGETATION Low molybdenum c o n c e n t r a t i o n s i n stream sediment d e r i v e d from both Yukon Group and g r a n i t i c rock are c l e a r l y r e f l e c t e d i n low mean molybdenum c o n c e n t r a t i o n s i n v e g e t a t i o n growing over these rocks (Table XXXII).  However h i g h con-  c e n t r a t i o n s t y p i c a l o f U n i t 3 sediments are not always a s s o c i a t e d w i t h enriched v e g e t a t i o n .  The mean molybdenum  c o n c e n t r a t i o n i n s i l i c e o u s U n i t 3 sediment, f o r example,  -116-  Table XXXII  Mean molybdenum, copper and manganese concentrations i n stream sediment and vegetation, and associated mean stream pH values. CONCENTRATION (ppra) Vegetation** Stream Sediment*  BEDROCK  ELEMENT  Mo  40  10  Unit 3 Siliceous  24  0.4  Yukon* Group  1  0.2  6,7  Granitic Rock  1  0.4  6.8  Unit 3 Siliceous Yukon* Group Granitic Rock Unit 3 Calcareous Unit 3 Siliceous  Mn  -7.8  Unit 3 Calcareous  Unit 3 Calcareous Cu  STREAM PH  Yukon* Group Granitic Rock  130  7  7?. 8.  105  6  5- 3:  75  6  6>. 7/'  8  5  6.8  490  60  7.8  310  330  5.3  1020  380  6-7  200  260  6.8  *  T o t a l analysis by emission spectroscopy;  **  HN0 /HC10 extractable metal content determined by atomic-absorption spectrophotometry; arithmetic means; 3  geometric means.  4  c o n c e n t r a t i o n expressed i n terms o f dry -weight. t  Sediment values r e f e r to upland areas only.  -117-  i s 24 p.p.m. w h i l e t h a t o f a s s o c i a t e d v e g e t a t i o n i s o n l y 0.4 p.p.m. L As p r e v i o u s l y noted, low molybdenum v a l u e s i n veget a t i o n growing over s i l i c e o u s U n i t 3 rock are p r i m a r i l y an e f f e c t o f low pH values i n s o i l s d e r i v e d from these rocks.  As Table XXXII i n d i c a t e s these low s o i l pH values  are r e f l e c t e d i n low pH l e v e l s i n a s s o c i a t e d stream water. S i m i l a r l y high stream pH values a s s o c i a t e d w i t h calcareous U n i t 3 sediment ( 7 . 8 ) are c o n s i s t e n t w i t h h i g h values i n the calcareous s o i l s , w h i c h t y p i c a l l y support molybdenum enriched v e g e t a t i o n .  Thus by c o n s i d e r i n g both stream s e d i -  ment c o n c e n t r a t i o n s and stream pH v a l u e s , p r e d i c t i o n o f areas l i k e l y t o c o n t a i n enhanced molybdenum l e v e l s i n v e g e t a t i o n should be p o s s i b l e . S o i l pH i s a l s o an important f a c t o r i n determining the a v a i l a b i l i t y o f manganese t o p l a n t s .  Consequently, as  i n the case o f molybdenum, both sediment c o n c e n t r a t i o n s and stream pH v a l u e s must be known i f estimates are t o be made of p l a n t molybdenum l e v e l s .  For example, i n view o f the  r e l a t i v e l y h i g h c o n c e n t r a t i o n s o f manganese i n the sediment of streams d r a i n i n g U n i t 3 limestone (Table XXXII), low veget a t i o n values would not be expected unless these environments were known t o be r e l a t i v e l y b a s i c , as i n d i c a t e d by stream pH l e v e l s . I n c o n t r a s t t o molybdenum and manganese, p l a n t copper c o n c e n t r a t i o n s are apparently u n r e l a t e d t o e i t h e r pH l e v e l s o r metal c o n c e n t r a t i o n s i n sediment.  This s i t u -  -118-  a t i o n i s not s u r p r i s i n g , s i n c e as Table X X I I I i n d i c a t e s , copper c o n c e n t r a t i o n s i n v e g e t a t i o n are to a l a r g e extent independent of s o i l type, i n c l u d i n g s o i l copper content and  pH.  CHAPTER  X  SUMMARY, CONCLUSIONS AND SUGGESTIONS POR FURTHER RESEARCH  -120-  SUMMARY AND CONCLUSIONS A r e g i o n a l stream sediment reconnaissance  survey  was undertaken i n the E a s t e r n Yukon, u s i n g sediment samples o r i g i n a l l y c o l l e c t e d by A t l a s E x p l o r a t i o n s L t d . Vancouver, f o r mineral e x p l o r a t i o n purposes.  A t o t a l area o f over  6,000 square m i l e s was covered, c h i e f l y w i t h i n the  drainage  basins o f the Hess and MacMillan R i v e r s . Enhanced molybdenum values (>8 p.p.m.) are present i n sediments over an area o f more than 1,300 square m i l e s . Most o f these enriched sediments are d e r i v e d from a t h i c k succession of P a l e o z o i c sedimentary  rocks, c o n s i s t i n g pre-  dominantly o f dark shales and chert ( U n i t 3 ) . Molybdenum l e v e l s a s s o c i a t e d w i t h the other manor bedrock u n i t s , namely the Yukon Group, Earn Group, T e r t i a r y v o l c a n i c s and g r a n i t i c r o c k s , are t y p i c a l l y low (<4 p.p.m.). Stream sediments d e r i v e d from U n i t 3 are a l s o n o t i c e a b l y enriched i n vanadium (480 p.p.m.), and t o a l e s s e r extent n i c k e l (140 p.p.m.), copper (90 p.p.m.) and chromium (180 p.p.m.).  Those a s s o c i a t e d w i t h T e r t i a r y v o l c a n i c s  are r e l a t i v e l y r i c h i n strontium (?20 p.p.m.), while g r a n i t i c sediments c o n t a i n low c o n c e n t r a t i o n s o f most elements. A d e t a i l e d follow-up study o f t r a c e element conc e n t r a t i o n s i n rock, s o i l , stream sediment and p l a n t m a t e r i a l was undertaken i n the v i c i n i t y o f MacMillan Pass, near the eastern l i m i t o f the reconnaissance  study area.  This r e g i o n  i s u n d e r l a i n by U n i t 3 , Yukon Group metasediments and g r a n i t i c  -121rocks.  U n i t 3 i s composed o f a wide v a r i e t y o f l i t h o l o g i e s  i n c l u d i n g b l a c k and l i g h t grey s h a l e s , dark s i l t s t o n e s , chert-pebble conglomerate and dark limestone. The dark grey t o b l a c k s h a l e s , which i n the M a c M i l l a n Pass area are the most abundant rock type w i t h i n U n i t 3, c o n t a i n r e l a t i v e l y l a r g e amounts o f molybdenum (17 p.p.m.), as do the l e s s common l i g h t c o l o r e d shales (12 p.p.m.). S i l t s t o n e s and chert-pebble conglomerates l e s s than 4- p.p.m. molybdenum.  t y p i c a l l y contain  Concentrations are h i g h e s t  (up t o 100 p.p.m.) i n the r e l a t i v e l y uncommon dark limestone member o f U n i t 3.  Vanadium, n i c k e l , chromium and z i n c values  are a l s o h i g h i n the limestone. I n a d d i t i o n t o molybdenum, b l a c k shales are enriched i n vanadium (645 p.p.m.), but are r e l a t i v e l y poor i n most o t h e r elements, e s p e c i a l l y strontium (55 p.p.m.), manganese (8 p.p.m.) and z i n c (8 p.p.m.).  Enhanced molybdenum and  vanadium values are l i k e l y a consequence o f s o r p t i o n o f  :  these  elements,by o r g a n i c - r i c h sediments, from sea water i n a l a r g e anaerobic b a s i n .  Low values f o r other elements could  be a primary f e a t u r e o f the sediments, o r could be a r e s u l t of i n s i t u l e a c h i n g o f shale exposures sampled. The C h o r i z o n s o f a l l s o i l s a s s o c i a t e d w i t h U n i t 3 c o n t a i n high molybdenum c o n c e n t r a t i o n s .  S o i l s d e r i v e d from  dark limestones c o n t a i n an average o f 30 p.p.m. molybdenum, w h i l e those a s s o c i a t e d w i t h other rock types o f U n i t 3 t y p i c a l l y c o n t a i n about 10 p.p.m.  Molybdenum l e v e l s i n both  Yukon Group and g r a n i t i c s o i l s are low (<:3 p.p.m.).  -122-  Copper l e v e l s i n s o i l C h o r i z o n s are u s u a l l y very c l o s e t o values i n the u n d e r l y i n g rock.  Both manganese  and z i n c however are enriched i n s o i l r e l a t i v e t o rock material.  S o i l s d e r i v e d from s i l i c e o u s U n i t 3 r o c k s , f o r  example, c o n t a i n an average o f 360 p.p.m. manganese and 150 p.p.m. z i n c w h i l e rocks themselves c o n t a i n o n l y 15 and 35 p.p.m. o f these elements r e s p e c t i v e l y . Molybdenum a v a i l a b i l i t y t o p l a n t s i s c h i e f l y cont r o l l e d by s o i l pH. P l a n t s are capable o f absorbing molybdenum o n l y i n n e u t r a l t o b a s i c s o i l s such as those a s s o c i a t e d w i t h Unit 3 limestone.  These molybdenum-rich calcareous  s o i l s t y p i c a l l y support v e g e t a t i o n w i t h enhanced molybdenum levels.  Average c o n c e n t r a t i o n s i n f o r b s and grasses, f o r  example, are 12 and 16 p.p.m. r e s p e c t i v e l y . I n a c i d i c cond i t i o n s however, c h a r a c t e r i s t i c o f molybdenum-rich U n i t 3 s o i l s , c o n c e n t r a t i o n s i n p l a n t s are g e n e r a l l y l e s s than 0*2 p.p.m.  Molybdenum-poor Yukon Group and g r a n i t i c s o i l s a l s o  support v e g e t a t i o n low i n t h i s element. Manganese c o n c e n t r a t i o n s i n p l a n t s are a l s o dependent on s o i l pH. R e s t r i c t e d manganese a v a i l a b i l i t y i n b a s i c environments i s r e f l e c t e d , f o r example, i n low manganese l e v e l s i n p l a n t s growing on calcareous U n i t 3 s o i l s .  Copper l e v e l s ,  on the other hand, are remarkably uniform, and apparently independent o f s o i l c o n d i t i o n s .  V a r i a t i o n s o f z i n c concen-  t r a t i o n s i n c e r t a i n species • o f t e n c o n t r a d i c t estimates o f z i n c a v a i l a b i l i t y based on the t o t a l metal content and pH of a s s o c i a t e d s o i l s .  -123  Molybdenum l e v e l s i n stream sediments are g e n e r a l l y c o n s i s t e n t w i t h rock and s o i l v a l u e s .  S i m i l a r i l y , low  sediment values t y p i c a l l y r e f l e c t low c o n c e n t r a t i o n s i n associated vegetation.  However, e i t h e r molybdenum-rich  or molybdenum-poor v e g e t a t i o n may be a s s o c i a t e d w i t h s e d i ment c o n t a i n i n g enhanced amounts o f molybdenum.  I n anomalous  areas, c h a r a c t e r i z e d by molybdenum-poor v e g e t a t i o n , stream pH values are g e n e r a l l y a c i d i c .  N e u t r a l t o b a s i c stream  water, on the other hand, i s t y p i c a l l y a s s o c i a t e d w i t h molybdenum-rich v e g e t a t i o n . Because o f the absence p f stream pH values from the r e g i o n a l study area, the d i s t r i b u t i o n v e g e t a t i o n cannot be p r e d i c t e d .  o f molybdenum-rich  However, i n the v i c i n i t y  of MacMillan Pass, h i g h p l a n t values are a s s o c i a t e d w i t h dark molybdenum-rich limestone o n l y .  Since these  are apparently not common w i t h i n the reconnaissance area, i t may be t e n t a t i v e l y  limestones study  concluded t h a t molybdenum-  enriched v e g e t a t i o n i s not l i k e l y t o be s u f f i c i e n t l y widespread t o endanger the h e a l t h o f w i l d l i f e i n t h i s p o r t i o n of the Eastern Yukon.  124_  SUGGESTIONS POR FURTHER RESEARCH In view of the s i g n i f i c a n c e o f t r a c e elements t o p l a n t and animal n u t r i t i o n , maps showing the r e g i o n a l d i s t r i b u t i o n of t r a c e metals are u r g e n t l y r e q u i r e d on a world-wide s c a l e .  Geochemical data should then be combined  w i t h e p i d e m i o l o g i c a l i n f o r m a t i o n i n an attempt t o assess p o s s i b l e causal r e l a t i o n s h i p s between t r a c e element abundances and disease  patterns.  Where adequate surface drainage e x i s t s , stream sediment surveys can be used t o compile such maps.  Basic  r e s e a r c h , however, i s r e q u i r e d i n t o p o s s i b l e m o d i f i c a t i o n s of stream sediment reconnaissance techniques o r i e n t e d toward environmental, r a t h e r than mineral e x p l o r a t i o n programs. For example, while i t i s standard p r a c t i c e i n mineral e x p l o r a t i o n t o measure the metal content of the minus-80 mesh f r a c t i o n o f sediment, other s i z e f r a c t i o n s may be more meaningful i n terms o f r e g i o n a l rock and s o i l  chemistry.  Furthermore, a p p l i c a t i o n of v a r i o u s c o l d and hot e x t r a c t i o n techniques to stream sediment m a t e r i a l may prove more u s e f u l than the t o t a l metal content i n assessing t r a c e element a v a i l a b i l i t y to plants. Since w e l l developed r i v e r drainage systems are n o t always present i n areas o f geochemical i n t e r e s t ,  research  i s r e q u i r e d i n t o use o f rock and/or s o i l m a t e r i a l i n r e g i o n a l surveys.  F i n a l l y , p o s s i b l e a p p l i c a t i o n s o f remote  sensing techniques, such as measurement o f metal l e v e l s the atmosphere, t o geochemical reconnaissance p r o j e c t s should be i n v e s t i g a t e d .  -126BIBLIOGRAPHY A g r i c u l t u r a l Research C o u n c i l , 1965. The n u t r i e n t r e q u i r e ments o f farm l i v e s t o c k , No. 2. Ruminants, 264 pp. Barshad, I . , 1951. F a c t o r s a f f e c t i n g the molybdenum cont e n t o f pasture p l a n t s : I . Nature o f s o i l molybdenum, growth of p l a n t s and s o i l pH. S o i l S c i e n c e , V o l . 71, pp. 297-313. Barshad, I . , 1964. Chemistry of s o i l development. I n Chemistry of the S o i l , F.E. Bear ed., Reinhold Pub. Corp., N.Y., pp. 1-70. B l e e k e r , P., and M.P. A u s t i n , 1970. R e l a t i o n s h i p s between t r a c e element contents and other s o i l v a r i a b l e s i n some Papua-New Guinea s o i l s , as shown by r e g r e s s i o n analyses. A u s t r a l i a n J o u r n a l o f S o i l Research, V o l . 8, pp. 133-143. Blusson, S.L., and D. J . Tempieman-Kluit, 1970. Operation Stewart, Yukon T e r r i t o r y , D i s t r i c t o f MacKenzie. Report o f A c t i v i t i e s , G e o l o g i c a l Survey of Canada Paper 70-1A, pp. 29-32. Bostock, H.S., 1947. Mayo, Yukon T e r r i t o r y . Survey of Canada, Map 890A.  Geological  Bostock, H.S., 1948. The physiography of the Canadian C o r d i l l e r a , with s p e c i a l r e f e r e n c e t o the area n o r t h of the 55th p a r a l l e l . G e o l o g i c a l Survey of Canada Memoir 247. Bostock, H.S., 1966. Notes on the g l a c i a t i o n o f the C e n t r a l Yukon. G e o l o g i c a l Survey of Canada Paper 65-36. Brown, R.J., I960. The d i s t r i b u t i o n of permafrost and i t s r e l a t i o n t o a i r temperature i n Canada and the U.S.S.R. A r c t i c , pp. 163-177. Campbell, R. B., 1967. Glenlyon map area, Yukon T e r r i t o r y . G e o l o g i c a l Survey o f Canada Memoir 352. Campbell, R. B. and J . 0. Wheeler, 1967. Geology, G l e n l y o n , Yukon T e r r i t o r y . G e o l o g i c a l Survey of Canada Map 1221A. Canada Department o f A g r i c u l t u r e , 1970. The system of s o i l c l a s s i f i c a t i o n f o r Canada. 249 pp. Cannon, Helen L., 1969. Trace element excesses and d e f i c i e n c i e s i n some geochemical p r o v i n c e s o f the U n i t e d S t a t e s . Proceedings o f the U n i v e r s i t y of M i s s o u r i ' s 3rd Annual Conference on Trace Substances and Environ-  -127-  mental H e a l t h , pp.  21-43.  Capps, S. R., 1 9 1 5 . An ancient v o l c a n i c e r u p t i o n i n the upper Yukon B a s i n . U n i t e d S t a t e s G e o l o g i c a l Survey P r o f . Paper 95-D. C o l l i n s J.P. and S. W. B o u l , 1 9 7 0 . E f f e c t s of f l u c t u a t i o n s i n the Eh-pH environment of i r o n and/or manganese e q u i l i b r i a . S o i l Science, V o l . 1 1 0 , pp. 1 1 1 - 1 1 8 . Davies, E.B. 1 9 5 6 . F a c t o r s a f f e c t i n g molybdenum a v a i l a b i l i t y i n s o i l s . S o i l S c i e n c e , V o l . 81, pp. 2 0 9 - 2 2 1 . Dunham, K., 1961. Black s h a l e , o i l and s u l f i d e o r e . B r i t i s h A s s o c i a t i o n f o r Advancement o f S c i e n c e , Sept., pp. 2 8 4 - 2 9 9 . P i n d l a y , D.C., 1 9 6 9 . The m i n e r a l i n d u s t r y of Yukon T e r r i t o r y and Southwestern D i s t r i c t o f MacKenzie, 1968. G e o l o g i c a l Survey o f Canada Paper 6 9 - 5 5 . Portescue, J . , J . Dupuis, R. Winn, J . Hughes, E. Gawron, and I . Ernesaks, 1 9 7 1 . P r e l i m i n a r y study o f the use o f stream sediment geochemistry t o detect the e f f e c t o f man's a c t i v i t i e s on the environment around St. C a t h e r i n e s , O n t a r i o . Brock U n i v e r s i t y , Department of G e o l o g i c a l Science, Research Report S e r i e s No. 2 , S t u d i e s i n Landscape Geochemistry No. 1 , 2 2 pp. G a r r e t t , R.Gr., 1 9 6 9 . The d e t e r m i n a t i o n of sampling and a n a l y t i c a l e r r o r s i n e x p l o r a t i o n geochemistry. Economic Geology, V o l . 64, pp. 5 6 8 - 5 7 4 . G a r r e t t , R.G., 1 9 7 1 a . Molybdenum and tungsten i n some a c i d i c p l u t o n i c rocks o f Southeast Yukon T e r r i t o r y . G e o l o g i c a l Survey of Canada Open P i l e 5 1 , 3 pp. G a r r e t t , R. G., 1 9 7 1 b . Regional geochemical census o f p l u t o n i c rocks i n E a s t e r n Yukon T e r r i t o r y . G e o l o g i c a l Survey of Canada, Report of A c t i v i t i e s , P a r t A, A p r i l t o Octoteer. 1 9 7 0 , pp. 7 2 - 7 5 . Gleeson, C. F., 1 9 6 7 . Molybdenum content of stream and s p r i n g sediments, Keno H i l l a r e a , Yukon T e r r i t o r y . G e o l o g i c a l Survey o f ..Canada Map 5 1 - 1 9 6 5 . Goldschmidt, V.M., 1 9 5 4 . Geochemistry. Clarendon P r e s s , Oxford, 730 pp. Gross, M.G., 1 9 6 7 . Concentrations of minor elements i n diatomaceous*. sediments o f a stagnant f j o r d . Amer.  -128  Assoc. Adv. S c i . , Pub. No. 83, E s t u a r i e s , pp. 273-282. Havre, G. N., 1969. The mineral composition of l i c h e n r e l a t e d to studies of trace element metabolism i n reindeer. Trace Element Metabolism i n Animals, Proc. W.A.A.P./I.B.P. International Symposium, Aberdeen, Scotland, pp. 380-382. Hawkes, H.E. and J . S. Webb, 1962. Geochemistry i n mineral exploration. Harper and Row, New York, 4-15 pp. Hodgson, J.G., 1970.. Chemistry of trace elements i n s o i l s with reference to trace element concentrations i n p l a n t s . Proceedings of U n i v e r s i t y of Missouri's 3rd Annual Conference on Trace Substances i n Environmental Health, pp. 45-58. Horsnail, R. P., I . N i c h o l , and J.S. Webb, 1969. Influence of v a r i a t i o n s i n secondary environment on metal content of drainage sediments. Quarterly of the Colorado School of Mines, V o l . 64, pp. 307-322. Hughes, O.L., R. B. Campbell, J . E. Muller, and J . 0. Wheeler, 1968. G l a c i a l l i m i t s and flow patterns, Yukon T e r r i t o r y south of 65 degrees north l a t i t u d e . Geological Survey of Canada Paper 68-34. Jackson, M.L., 1958. S o i l chemical a n a l y s i s . Englewood C l i f f s , N.J., 498 pp.  Prentice-Hall,  Jones, L.H.P., 1957. The s o l u b i l i t y of molybdenum i n symp l i f i e d systems and aqueous s o i l suspensions. Journal of S o i l Science, V o l . 8, pp. 313-327. Keele, J . , 1910. Mountains Yukon and of Canada  A reconnaissance across the MacKenzie on the P e l l y , Ross and Gravel Rivers, Northwest T e r r i t o r i e s . Geological Survey Pub. No. 1097.  Kendrew, W. G. and D. P. Kerr, 1955. Climate of B r i t i s h Columbia and Yukon T e r r i t o r y . Ottawa, 222 pp. Kindle, E.D., 1945. Geological reconnaissance along the Canol Road from T e l s i n River to MacMillan Pass, Yukon. Geological Survey of Canada Paper 45-21. Korolev, D. P., 1958. The r o l e of i r o n s u l f i d e s i n the accumulation of molybdenum i n sedimentary rocks of the reducing zone. Geochemistry, No. 4, pp. 452-463.  -129-  Kubota, J . , V. A. Lazar, L. N. Langan and K.C. Beeson, 1961. The r e l a t i o n s h i p of s o i l s t o molybdenum t o x i c i t y i n c a t t l e i n Nevada. S o i l Science S o c i e t y of America, P r o c , V o l . 25, pp. 227-231. Kubota, J . , V. A. L a z a r , G. H. Simonson, and W. W. H i l l , 1967. The r e l a t i o n s h i p of s o i l s to molybdenum t o x i c i t y i n g r a z i n g animals i n Oregon. S o i l Science S o c i e t y of America P r o c , V o l . 31, PP. 667-671. Kubota, J . , S. Rieger and V. A. L a z a r , 1970. Mineral composition of herbage browsed by moose i n A l a s k a . J o u r n a l of W i l d l i f e Management, V o l . 34, pp. 565-569. Leahey, A., 1954. F a c t o r s a f f e c t i n g the extent of arable lands and the nature of s o i l s i n the Yukon T e r r i t o r y . P r o c 7th P a c i f i c Science Congress 1949, V o l . 6, pp. 16-20. LeRiche, H. H., 1959. D i s t r i b u t i o n of t r a c e elements i n the Lower L a i s of Southern England. Geochimica et Cosmochimica A c t a , V o l . 16, pp. 101-122. Lewis, A. H. 1943. The.teart pastures of Somerset. J o u r n a l of A g r i c u l t u r a l Science, V o l . 33, pp. 52-63. Manheim, P.T., 1961. A geochemical p r o f i l e i n the B a l t i c Sea. Geochimica et Cosmochimica A c t a , V o l . 25, pp. 52-70. Mason, B., 1966. P r i n c i p l e s of geochemistry. and Sons, New York, 329 pp.  John Wiley  Massey, H.P., R. H. Lowe, and H. H. B a i l e y , 1967. Relationship of e x t r a c t a b l e molybdenum to s o i l s e r i e s and parent rock i n Kentucky. S o i l Science S o c i e t y of America P r o c , V o l . 31, pp. 200-202. McConnell, R.C., 1903. The MacMillan R i v e r , Yukon D i s t r i c t . G e o l o g i c a l Survey of Canada Summary Report f o r 1902, pp. 20-36. M i l t i m o r e , J . E., and J . L. Mason, 1971. Copper to molybdenum r a t i o and molybdenum and copper c o n c e n t r a t i o n s i n ruminant feeds. Canadian J o u r n a l of Animal Science, V o l . 51, PP. 193-200. M i t c h e l l , R. L., 1964. Trace elements i n s o i l s . Chemistry of the S o i l , F.E. Bear ed., R e i n h o l d Pub;. Corp., New York, pp. 320-368.  -130-  Moore, R. C. ( e d . ) , 1962. T r e a t i s e on I n v e r t i b r a t e Paleont o l o g y , P a r t W, M i s c e l l a n e a . G e o l o g i c a l S o c i e t y of America and U n i v e r s i t y o f Kansas P r e s s . N i c h o l , I . , and J . C. Henderson-Hamilton, 1965. A r a p i d q u a n t i t a t i v e spectrographic method f o r the a n a l y s i s of r o c k s , s o i l s and stream sediments. Trans. I n s t . Min. M e t a l l . V o l . 74, pp. 955-961. N i c h o l , I . , R.P. H o r s n a i l and J . S. Webb, 1967. Geochemical p a t t e r n s i n stream sediment r e l a t e d t o p r e c i p i t a t i o n o f ' manganese oxides. Trans. Sect. B. I n s t . Min. M e t a l l . V o l . 76, pp. B113-B115. Rand, A. L., 1945a. Mammal i n v e s t i a t i o n s on the Canol Road, Yukon and Northwest T e r r i t o r i e s , 1944. N a t i o n a l Museum o f Canada B u l l . 99, B i o l o g i c a l S e r i e s 28, 52 pp. Rand, A. L., 1945b. Mammals o f the Yukon. Canadian N a t i o n a l Museum B u l l . 100, B i o l o g i c a l S e r i e s 29, 93 pp. Reisenaur, H., A. Tabikh and P. Stout, 1962. Molybdenum r e a c t i o n s w i t h s o i l s and the hydrous oxides o f i r o n , aluminum and t i t a n i u m . S o i l Science S o c i e t y P r o c , V o l . 26, pp. 23-27. Roddick, J . A. and L. H. Green, 1961a. Geology, Sheldon Lake, Yukon. G e o l o g i c a l Survey of Canada, Map 12 1961. Roddick, J . A. and L. H. Green, 1961b. Geology, JTay R i v e r , Yukon T e r r i t o r y . G e o l o g i c a l Survey of Canada Map 13-1961. Schutte, K. H., 1964. The b i o l o g y of the t r a c e elements. Crosby, Lockwood and Sons, London, 228 pp. Stanton, R. E., and A. J . Hardwick, 1967. The c o l o r i m e t r i c determination o f molybdenum i n s o i l s and sediments by z i n c d i t h i o l . A n a l y s t , V o l . 92, pp. 387-390. Stumm, W. and J . Morgan, 1970. ..Aquatic chemistry. I n t e r s c i e n c e , New York, 583 pp.  Wiley-  Swaine, D. J . , and R. L. M i t c h e l l , I960. Trace element d i s t r i b u t i o n i n s o i l p r o f i l e s . Journal of S o i l Science, V o l . 11, pp. 347-368. Theobald J r . , P.K., H.W. L a k i n and D. B. Hawkins, 1963. The p r e c i p i t a t i o n o f aluminum, i r o n and manganese at the j u n c t i o n of Deer Creek w i t h the Snake R i v e r ,  -131-  i n Summit County, Colorado. Geochimica e t Cosmochimica A c t a , V o l . 27, pp. 121-132. Thornton, I . , W. A t k i n s o n , J . S. Webb and D. B. P o o l e , 1966. Geochemical reconnaissance and b o i v i n e hypocuprosis i n Co. L i m e r i c k , I r e l a n d . I r i s h J o u r n a l o f ' A g r i c u l t u r a l Research, V o l . 5, PP. 280-283. Thornton, I . , R. N. Moon and J . S. Webb, 1969. Geochemical reconnaissance o f the Lower L a i s . Nature, V o l . 221, pp. 457-459. Thornton, I . , and J . S. Webb, 1969. Geochemical r e c o n n a i s sance and the d e t e c t i o n of t r a c e element d i s o r d e r s i n animals. Trace Element Metabolism i n Animals, P r o c . W.A.A.P./I.B.P. I n t e r n a t i o n a l Symposium, Aberdeen, S c o t l a n d , pp. 397-407. T i t l e y , S.R., 1963. Some b e h a v i o u r a l aspects of molybdenum i n the supergene environment. S o c i e t y of Mining Engineers Trans., V o l . 226, pp. 199-204. ' Turekian, K. K. and K. H. Wedepohl, 1961. Distribution of the elements i n some major u n i t s of the earth's c r u s t . G e o l o g i c a l S o c i e t y of America B u l l . , V o l . 72 pp. 175-192. Underwood, E . J . , 1962. Trace elements i n human and animal n u t r i t i o n . Academic P r e s s I n c . , 429 pp. Vine, J . D. and B. Tourtolot,-, 1970. Geochemistry of b l a c k shale d e p o s i t s - a summary r e p o r t . Economic Geology, V o l . 65, pp. 253-272. Vinogradov, A.P., 1959. The geochemistry o f r a r e and d i s persed chemical elements i n s o i l s . Consultants Bureau, New York. Walsh, T., M. Neenan and L. O'Moor, 1952. The importance of molybdenum i n r e l a t i o n t o some cropping and l i v e s t o c k problems under I r i s h c o n d i t i o n s . E r i e Dept. A g r i , J . , V o l . 48, pp. 32-43. Walsh, T., M. Neenan, and L. O'Moor, 1953. High molybdenum l e v e l s i n herbage on a c i d s o i l s . Nature, V o l . 171, p. 1120. Warren, H.V. and R. E. D e l e v a u l t , 1965. F u r t h e r s t u d i e s i n the biogeochemistry o f molybdenum. Western Miner, V o l . 38, pp. 64-72. Webb, J . S., 1964. Geochemistry and l i f e . V o l . 2 3 , pp. 504-507.  New S c i e n t i s t ,  -132  Webb, J . S., 1970. Some g e o l o g i c a l a p p l i c a t i o n s o f r e g i o n a l geochemical reconnaissance. Webb, J . S., and W. J . A t k i n s o n , 1965. Regional geochemical reconnaissance a p p l i e d t o some a g r i c u l t u r a l problems i n Co. L i m e r i c k , I r e l a n d . Nature, V o l . 208, pp. 1056-1059. Webb, J . S., I . N i c h o l , and I . Thornton, 1968. The broadening scope o f r e g i o n a l geochemical reconnaissance. P r o c . X X I I I I n t e r n a t i o n a l G e o l o g i c a l Conference, V o l . 6, pp. 131-147. Webb, J . S., I . Thornton and K. F l e t c h e r , 1968. Geochemical reconnaissance and hypocuprosis. Nature, V o l . 217, pp. 1010-1012. Wedepohl, K. H., 1971. Geochemistry. Winston, New York, 231 pp.  H o l t , R i n e h a r t and  Wheeler, J . 0., 1953. A g e o l o g i c a l reconnaissance o f the n o r t h e r n Selwin Mountains r e g i o n , Yukon and Northwest T e r r i t o r i e s . G e o l o g i c a l Survey o f Canada Paper 53-7.  CNTR  XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX>>XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX  RF S NO.  023792  UNIVERSITY  OF 8 C COMPUTING CENTRE  $SIGNON AWKF PRIO=L COPIES=2 **LAST SIGNQN WAS: 13:18:52 WED MAY 03/72 USER "AWKF" SIGNED ON AT 01:37:22 ON THU MAY 04/72 $LIST ^SOURCE* 1 2 3 4 5 6 7 8 9 APPENDIX A 10 11 PART I 12 13 RESULTS OF EMISSION SPECTRCGRAPHIC ANALYSIS IMETHOD 2 14 MACMILLAN PtSS AREA 15 PPF 16 17 18 ID NO FEO% WLSS SR E A CR CO NI AG TI CU IN 19 20 WL£ = WEIGHT LOSS ON IGNITION 21 22 40 20 100 23 16 2.0 5.0 401000 1 50 2.5 10 2.05000 24 94 5.0 5.0 3004000 180 8.0 100 0.59999 30 20 500 15 500 50 25 9G8000 40 2.5 40 2.O40C0 124 5.0 2.5 40 15 400 405000 4G 2.5 30 0.55000 26 125 1.0 2.5 126 2.0 2.5 50 20 900 27 40 0.58000 406G00 60 2.5 50 204000 20 0.55CGC 15 900 30 2.5 28 127 1 .0 5.C 151000 50 0.54000 50 29 128 2.0 5.0 407000 50 2.5 40 0.53000 40 151000 30 129 1.0 5.0 205000 40 2.5 15 900 40 0.54000 4C 205000 40 2.5 31 130 1 .0 5.C 50 201000 32 50 2.5 100 2.04000 203000 131 2.0 5.C 50 132 2.0 5.0 509998 50 2.04000 15 900 33 90 2.5 34 20 10 100 202000 20 0.51000 40 2.5 133 1.0 5.C 151000 10 2.5 30 0.52000 20 35 134 1.0 2.5 201000 20 2.04000 20 10 500 135 1 .0 2.5 203000 40 2.5 36 40 20 500 37 136 3.0 5.0 205000 20 2.05000 60 2.5 101000 38 202000 20 2.5 80 0.52000 50 137 0.5 2.5 40 2.5 25 2.02000 20 151500 205000 39 138 1.0 5.0 202000 20 1.04000 20 40 139 1.0 5.0 202000 30 2.5 20 1.02000 2C 151500 140 2.0 5.0 203000 50 2.5 41 40 201000 42 20 4.05000 205000 50 2.5 141 4.0 5.0 50 20 2.02000 202000 43 142 2.0 5.0 9C50 CO 70 2.5 15 2.05000 5C 202000 50 2.5 44 703000 143 8.0 5.0 10 1.O200O 50 101000 144 2.0 5.0 40 2.5 45 203000 40 202000 10 1.04000 101000 46 145 2.0 2.5 20 2.5 15 0.52000 10 500 154 1.0 2.5 10 47 201000 10 2.5 48 49 50 51 52  mS(ANl92)  ) OF ROCK  MO  4 2 30 15 40 90 50 40 60 50 50 10 15 20 20 10 20 10 15 25 10 70 15 20 10  BI  GA  10 40 8 4 10 7 8 8 10 8 10 5 4 5 10 4 5 5 5 7 5 7 5 5 4  01:37: 18  THU MAY  MATERIAL  SN  PB  MN  10 10 10 1C 15 10 15 15 10 10 10 10 10 20 20 10 2C 15 20 20 20 20 30 20 15  10 20 30 20 10 5 7 7 10 10 10 7 7 10 10 5 5 5 10 8 8 5 5 5 5 I  04/72  53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112  155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 171 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195  1.0 2.0 1.0 2.0 2.0 2.0 0.5 1.0 1.0 1.0 1.0 2.0 2.0 2.0 1.0 2.0 4.0 5.0 2.0 4.0 2.0 4.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 5.0 2.0 2.0 4.0 2.0 2.0  2.5 204000 5.0 203000 5.0 202000 2.5 204000 5.0 205000 2.5 203000 5.0 204000 2.5 205000 2.5 204000 2.5 204000 2.5 205000 2.5 204000 2.5 205000 2.5 204000 2.5 201500 2.5 2C02000 2.5 1009999 2.5 2C09999 2.5 2C09999 5.015CG9999 5.C 1009999 2.51G008000 2.5 2C500G 2.5 506000 5.0 1C09998 5.0 1C08000 2.5 1C08000 5.0 1008000 2.5 1008000 2.5 1CG6000 5.0 1008000 5.0 1009GOO 5.C 1C09000 5.0 1C09000 2.5 15C8000 5.0 1509000 5.0 1509998 5.0 8009998 5.0 9C09998  50 40 30 50 40 50 50 60 80 40 40 70 40 40 10 8 50 70 80 100 ICO 100 80 90 90 100 50 80 ICG 80 80 90 90 100 90 80 60 90 90  2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 5.0 2.5 4.0 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5  30 20 20 20 20 20 20 20 30 20 20 15 10 30 10 20 20 50 20 30 20 50 30 20 20 20 20 20 20 20 40 30 50 50 20 20 30 20 30  0.55000 1.03000 0.52000 2.0 5000 0.55000 1.07000 1.06000 1.O6G00 0.55000 0.55000 1.05000 2.04000 2.04000 2.02000 0.52000 0.53000 0.57000 0.56000 0.56000 0.58COO 0.58GGC 0.58000 0.58CC0 0.59000 0.58000 0.58C00 0.58000 0.56GCO 0.580QO 0.59000 0.580GO 0.59000 0.59GG0 0.55998 0.59000 0.59000 0.59998 0.59000 0.59000  50 20 15 15 10 10 10 10 5 10 5 20 30 40 10 15 20 30 15 15 10 20 3 3 3 3 5 5 3 3 15 5 7 20 2 5 5 5 5  105000 151500 102000 102000 151000 151000 152000 151000 201000 20 600 20 800 15 500 15 300 10 800 10 500 10 20 20 500 20 400 20 400 20 400 20 400 20 500 15 500 15 500 20 400 15 400 15 400 30 500 20 500 15 500 20 500 20 500 30 900 20 900 20 500 20 500 20 900 201000 20 500  20 30 15 20 20 10 10 10 10 10 10 10 10 10 5 1 20 20 20 30 20 20 10 20 40 20 20 20 15 20 30 20 20 20 15 20 30 20 20  6 6 5 8 10 10 15 15 15 10 10 10 7 7 2 20 20 15 15 15 15 20 20 20 30 20 15 20 15 15 20 20 20 20 20 20 20 20 15  20 6 20 . 8 20 8 30 5 30 10 30 15 20 10 20 10 20 8 20 10 30 8 30 8 40 7 15 5 10 2 30 100 40 8 50 10 30 5 20 7 20 10 15 8 10 10 15 10 15 15 20 10 20 15 20 15 15 8 15 8 2C 20 10 20 20 10 30 15 20 10 20 10 15 10 20 10 20 10  113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172  196 2.0 199 2.0 200 2.0 201 2.0 1202 2.0 2202 5.0 203 2.0 204 5.0 205 9.0 206 5.0 207 2.0 208 2.0 209 5.0 210 5.0 211 5.0 212 5.0 213 5.0 21410.0 215 2.0 216 5.0 217 5.0 218 5.0 219 5.0 220 5.0 221 5.0 222 4.0 223 5.0 224 5.0 225 7.0 226 5.C 227 5.0 228 5.0 229 7.0 2 30 5.0 2 31 5.0 232 5.0 233 6.0 234 8.0 235 8.0  5.0 2.5 2.5 2.5 2.5 5.0 5.0 2.5 5.0 5.C 5.0 5.0 5.0 5.G 2.5 5.0 5.0 2.5 2.5 5.C 5.0 2.5 5.0 5.0 5.0 2.5 2.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.G 5.0  4009998 20 400 6G2GC0 20 300 20 700 1C03000 20 200 20 300 501500 20 300 502000 502000 20 500 1003000 1003000 1504000 1003000 20 150 1003000 2002000 , 902000 1003000 1C02000 1C02000 1003000 1G03000 1504000 1C04000 1004000 1004000 1504000 1C04000 1004000 1004000 1004000 1504000 1CG40C0 904000 1505000  90 2.5 30 2.5 100 2.5 30 2.5 50 2.5 100 2.5 20 2.5 20 2.5 150 2.5 30 2.5 150 2.5 1 50 2.5 4050.0 15015.0 1C020.0 150 8.0 100 5.C 20 2.5 150 2.5 100 5.C 100 8.0 15010.0 100 8.C 100 2.5 100 5.0 100 5.0 100 7.0 100 5.C 100 5.0 100 5.0 100 5.C ICO 5.0 10015.0 10015.0 10015.0 150 7.0 10020.0 10020.0 1CC2 0. 0  20 20 30 15 20 15 40 30 30 30 20 15 2 50 100 50 40 40 30 40 50 100 100 30 60 50 50 50 40 50 60 60 60 100 90 50 100 60 50  5 0.59000 20 0.52000 30 0.58000 0.52000 40 20 0.5700C 40 0.59999 0.52000 50 0.540GO 50 0.59999 90 50 0.53000 0.59999 30 50 0.59999 0.520C0 90 0.59999 ICO 90 0.59999 0.59999 50 80 4.09998 0.54000 5G 0.59998 40 2.09999 80 0.59999 50 0.59998 70 90 0.59998 50 0.59998 1.09998 60 0.59998 70 2.09998 70 50 1.09998 1.09998 50 0.59998 40 0.59998 50 0.5S998 50 90 0.59998 0.59998 70 90 0.59998 40 0.59999 0.59999 3 00 0.59999 80 90 0.59999  20 10 20 15 20 30 20 15 30 20 20 20 20 30 30 30 30 20 30 30 30 30 30 30 20 20 30 20 20 20 20 20 20 20 20 40 30 20 20  500 30 300 100 200 400 50 50 500 50 500 500 50 200 200 200 200 100 400 400 300 500 300 400 300 300 300 200 400 300 200 300 400 400 400 400 300 400 400  20 1 3 3 5 4 1 1 4 3 3 4 5 2 2 2 2 5 3 4 4 5 3 3 5 4 5 5 5 2 2 3 5 4 3 5 5 5 5  15 3 15 5 10 30 5 5 20 5 30 20 7 30 30 40 30 5 30 20 20 20 20 20 20 20 20 30 20 20 30 30 20 20 20 30 20 20 30  20 15 10 10 5 6 5 5 10 10 1C 10 15 8 10 10 10 15 20 20 20 20 20 15 15 15 20 20 20 15 20 15 15 15 15 15 15 15 12  10 20 30 20 15 40 50 40 30 30 10 10 100 150 100 100 100 100 20 40 40 30 100 20 50 50 80 50 100 50 50 40 100 100 100 50 100 100 100  173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 2 02 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 224 22 5 226 227 228 229 230 231 232  236 6.0 5.0 1004000 237 9.0 5.0 1004000 238 6.0 5.0 1C05G00 904000 2 39 5.0 5.0 240 8.0 5. 0 1505000 241 5.0 5.0 1004000 2 42 5.0 5.C 1004000 243 5.0 5.0 1503000 24410.0 5.C 1504000 245 8.0 5.0 1504000 246 8.0 5.0 1504000 24720.0 5.0 1504000 248 8.0 5.0 1503000 249 8.010.0 2004000 250 7.010.0 15C5000 251 8.0 5.0 1004000 252 5.0 5.0 1004000 2 53 5.0 5.0 1004000 504G00 254 5.0 5.0 505000 25 5 6.0 5.0 256 6.0 2.5 505000 2 57 5.0 5.C 1G04000 258 2.0 5.G1C002000 259 2.0 2.510004000 260 2.0 5.C10004000 261 2.0 5.C10C02000 269 5.0 2.5 300 500 270 5.0 2.5 300 500 271 5.0 5.0 300 500 272 2.0 2.5 3G015OO 273 3.0 2.5 202000 274 5.0 2.5 1005000 286 8.0 5.G 7C01000 364 5.0 5.0 209999 365 2.0 2.5 2070CO 374 5.0 2.5 3002000 384 2 .010.0 209999 396 1.0 5. G 209999 5G5C00 424 5.0 5.0  10015.0 10020.0 10020.0 10015.0 1C020.0 1C020.0 10020.G 10010.0 1G020.0 10030.0 15010.0 15020.C 1GC20.0 15G20.0 1502C.0 15020.G 15C1C.0 15010.0 150 5.C 15010.0 15015.0 2G0 5.0 200 4.0 2 CO 4.0 200 3.0 200 3.0 20 8.0 20 6.0 30 9.0 15 5.0 50 5.0 10020.C 15020.0 40 2.5 30 2.5 815.0 30 2.5 80 2.5 80 2.5  50 60 60 50 60 60 80 9G 150 150 90 1G0 100 100 100 100 100 100 50 100 50 200 100 300 300 300 8 5 5 7 50 100 50 100 30 20 30 5 20  0.59998 1.09999 0.59998 0.59998 0.59998 0.59998 0.59998 0.59999 2.09999 0.59999 0.59999 2.09999 0.59999 0.59999 0.5 9999 0.59999 0.59999 0.59999 0.59999 0.59999 0.59999 0.55CCC 0.51000 0.55CGO 0.54000 0.52000 O.550GO 0.58000 O.58G00 O.550C0 0.55000 1.09998 0.59998 0.55000 0.54000 0.59998 0.54000 0.57000 0.59998  50 50 ICG 50 50 50 60 70 3 00 3C0 200 3 CO 300 200 200 200 ICO 200 40 50 50 30 40 6C 40 40 2G 30 3 3 50 9C 30 50 20 3 30 5 10  4 20 400 4 20 400 20 400 5 20 400 5 20 400 5 4 20 300 20 400 4 4 20 300 5 200 30 40 200 5 5 30 200 30 200 5 5 20 200 200 20 5 4 20 200 5 20 200 20 200 4 4 30 200 30 400 5 500 4 30 30 400 5 302000 50 401000 50 402000 ICQ 402000 ICO 301000 100 1 3C 400 30 300 1 1 40 200 10 1 20 15 100 2 20 500 5 2 30 100 15 600 50 15 800 15 30 20 20 5 10 400 20 400 3 20 400 3  20 20 20 20 20 20 20 30 30 20 30 30 20 30 20 20 30 30 30 30 20 8 5 5 5 5 20 20 20 20 6 30 10 7 5 20 7 15 20  15 12 10 15 15 10 10 15 20 20 15 15 10 15 15 15 10 15 10 15 20 5 5 5 5 5 2C 20 20 15 10 20 IC 30 10 20 IC 20 10  100 100 100 100 100 100 100 100 200 400 200 200 200 100 100 100 100 100 40 90 20 50 100 100 100 100 200 200 200 ICO 50 50 200 5 10 200 7 15 10  233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 2 54 255 256 257 258 2 59 260 261 262 263 264 2 65 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292  423 5.0 469 1.0 538 1.0 551 6.0 585 3.0 710 9.0 711 5.0 712 8.0 71310.0 714 5.0 715 5.0 716 5.0 717 7.0 718 7.0 171910.0 271910.0 72010.0 795 5.0 896 1.0 897 3.0 898 2.0 899 2 .0 900 6.0 901 2.0 902 2.0 903 2.0 904 1 .0 905 1.0 906 1 .0 907 2.0 908 1.0 909 1 .0 910 1.0 911 1.0 912 1.0 913 2 .0 914 2 .0 915 2.0 916 2.0  5.0 1C05000 5.025002000 204000 5.0 2.5 201000 2.5 300 8 00 5.0 150 500 2.5 100 500 2.5 ICO 800 90 800 5.0 2.5 100 800 5.0 150 700 2.5 100 800 5.0 150 500 5.0 150 400 2.5 2G0 400 2.5 200 500 5.0 200 400 2.5 9C01000 20 200 5.C 5.0 3001500 5.0 3002000 5.0 3002000 5.0 3001500 2.5 3C01000 2.5 4GC1000 2.5 3001000 5.0 4001500 5.0 3002000 2.5 3C01500 5.0 100 800 2.5 2001000 2.5 3001000 2.5 200 600 2.5 1001500 2.5 1001500 5.C 202000 2.5 201000 2.5 202000 201500 2.5  1 GO 2.5 20 0.59998 150 2.5 300 0.52000 10 0.55000 60 2.5 40 0.59998 90 7.0 7 0.54000 10 6.0 50 0.55999 7010.C 50 9.0 30 0.59999 50 0.59999 5020.0 70 0.59998 504C.C 40 0.59999 50 9.0 60 0.55998 5015.0 50 0.59998 5020.0 6020.0 60 0.59999 1G02C.0 40 0.59999 40 0.59999 9010.0 30 0.59999 10010.C 50 0.59998 1C01C.0 100 8.0 30 0.55000 15 2.5 2 0.52000 100 2.5 15 0.59998 100 2.5 2G 0.59999 150 2*5 30 0.55998 40 0.59999 100 2.5 30 0.55000 90 2.5 ICO 2.5 30 0.55000 150 2.5 40 0.55C00 15 1.07000 150 2.5 15 1.05000 150 2.5 100 2.5 30 0.54000 20 0.52000 40 2.5 10 0.53000 70 2.5 10 0.54GG0 80 2.5 10 0.54000 50 2.5 60 2.5 10 0.52000 15 0.58000 60 2.5 30 0.56COO 50 2.5 2G O.56GG0 30 2.5 20 0.52000 50 2.5 20 0.54000 50 2.5  2C 50 3 30 3 20 20 50 3G 50 50 4C 40 40 20 40 30 10 50 50 30 20 20 15 30 20 10 3 3 30 20 10 5 5 8 40 60 20 20  20 200 202000 152000 30 100 15 30 30 100 30 100 30 100 40 100 20 100 30 50 20 50 30 100 30 100 30 100 30 100 40 100 40 200 8 20 20 600 20 800 20 300 20 500 20 400 20 200 20 500 20 500 20 500 20 500 20 200 20 200 10 200 10 200 10 300 15 500 20 500 15 500 20 800 201000  2 70 10 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 3 5 5 5 7 5 5 5 5 10 15 40 15 15 10 20 20 90 70 20 10  20 4 10 20 20 30 20 30 20 20 20 20 20 20 30 20 30 10 2 20 15 20 20 20 20 20 20 20 20 10 15 20 10 10 15 8 10 8 10  10 20 3 50 7 15 IC 200 20 200 40 500 15 5C0 101000 201000 20 500 20 200 10 200 10 700 IC 600 20 500 15 500 15 800 10 500 10 3 5 2C 5 40 10 20 15 100 40 15 15 50 10 20 5 40 2 50 40 3 2 30 2 40 5 50 3 30 2 4G 30 2 20 5 5 15 5 10 10 5  293 294 295 296 29 7 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 32 6 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352  917 2.0 918 1.0 919 0.5 920 0.5 921 2.0 922 4.0 923 5 .0 924 5.0 925 5.0 927 4.0 928 5.0 9 29 3.0 9 30 1.0 931 2.0 9 32 2.0 933 3.0 947 2 .0 948 3.0 949 2.0 950 2.0 951 5.0 952 7.0 9 53 5.0 954 7.0 955 5.0 956 0.5 957 0.5 958 1.0 960 1 .0 961 3.0 962 0.5 963 1 .0 964 1 .0 965 3.0 966 1.0 967 0.5 96810.0 96920.0 97015.0  2.5 5.0 5.0 2.5 2.5 5.C 5.0 5.0 2.5 5.0 5.C 2.5 2.5 2.5 5.0 2.5 2.5 2.5 2.5 2.5 2.5 2.5 5.0 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 5.0 2.5 5.0 5.0 5.0  3C 2.04000 204000 40 2.5 30 1.08000 205000 70 2.5 204000 30 0.55000 60 2.5 205000 30 2.08000 60 2.5 40 2.5 206000 40 0.52000 208000 50 2.5 90 0.55000 209999 50 2.5 150 1.06000 209998 50 2.5 100 1.05000 209998 40 2.5 100 1.09998 60 1 .05000 207000 40 2.5 208000 50 2.5 60 0.55000 30 0.56000 205000 50 2.5 10 0.54000 204000 40 2.5 20 2.05000 201500 40 2.5 50 0.54000 609999 40 2.5 80 0.55GG0 509999 30 2.5 30 4.05000 1501500 80 2.5 1003000 20 4.05000 50 2.5 40 5.0 5 000 702000 50 2.5 15 5.09999 503000 40 2.5 502000 50 2.5 15 2.09998 40 2.5 20 2.09999 203000 206000 40 5.0 20 4.09998 20 3.09998 202000 40 2.5 20 O.5700O 202000 40 2.5 20 800 5 0.51CC0 20 2.5 20 2.5 8 0.510GO 20 500 8 5.01000 20 400 20 2.5 40 2.5 7 3.05000 100 800 9 4.03000 1001000 70 2.5 ICO 200 30 2.5 15 6.OfCCO 5 5.05000 30 2.5 ICO 150 100 400 40 2.5 2 5.0*000 1009998 50 2.5 20 2.05000 ICO 600 20 2.5 5 1.02000 2.5 2 1.02000 100 500 50 2 0.55000 1002000 50 2.5 2 0.550GG 1C07000 80 2.5 0.59999 50 1501000 1803C.0  70 20 20 20 100 15C 2 00 90 80 50 5C 40 40 3G 50 60 40 80 90 50 100 ICO ICO 90 90 30 30 30 60 80 40 60 50 40 35 10 ICO ICO 50  201000 201500 152000 204000 15 500 151000 151000 15 800 152000 101000 151000 15 500 15 600 15 500 20 900 15 500 15 150 15 300 20 300 15 500 15 400 20 500 15 300 15 400 20 200 10 300 10 400 10 400 20 400 20 400 15 70 10 50 15 120 30 400 15 300 15 600 15 500 203000 30 80  20 50 50 40 20 20 40 20 60 20 20 10 10 15 10 15 10 7 10 15 15 15 10 15 15 10 10 5 15 10 7 8 8 15 15 7 30 60 3  10 10 10 10 7 6 10 10 8 8 8 10 10 8 8 5 10 15 10 10 15 10 10 10 10 5 5 5 8 10 3 2 6 7 3 4 7 7 15  5 10 5 8 5 7 5 1C 5 8 8 8 7 10 8 10 10 1C 10 5 10 5 5 10 3 10 4 10 5 10 5 10 4 10 5 15 5 20 5 10 20 5 2 15 20 10 5 20 5 8 5 2 2 3 2 3 3 2 4 2 2 2 2 5 8 3 5 10 5 2 4 2 2 3 2 7 15 400  353 354 355 356 357 3 58 359 360 361 3 62 363 364 365 366 367 368 369 3 70 371 3 72 373 374 375 376 377 378 379 380 381 382 383 384 38 5 386 387 388 389 390 391 392 393 394 39 5 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412  201000 97110.0 5.0 5.0 20 800 97210.0 201000 97310.0 5.0 201000 97410.0 5.0 1003000 989 5.0 5.0 990 5.0 5.0 1C03000 991 1.0 5.0 1002000 501500 1001 8.0 5.0 100810.0 5.0 1001500 20 400 1024 1.0 5.0 10 51 1.0 5.0 50 600 401000 1052 2.0 5.0 5G1000 10 53 2.010.0 1068 2.010.0 4001500 1078 1.010.01000 500 1079 2.010.0 7003000 1082 6.0 5.0 5C03000 1092 5.010.0 7C05000 1093 5.010.0 5C09999 1097 7.010.0 3003000 * **  100 5 .0 10010 .0 100 10 .0 15020 .0 ICO 3 .0 100 5 .0 80 2 .5 1G01C .0 150 8 .0 40 2 .5 1 50 2 .5 200 2 .5 300 2 .5 300 5 .0 300 2 .5 800 2 .5 200 8 .0 200 7 .0 300 4 .0 150 5 .0  30 50 80 100 10 15 15 30 30 20 10 10 15 500 100 400 300 100 90 150  0.57000 30 0.58000 40 0.58000 40 40 0.57000 0.57000 40 0.57000 30 0.54000 10 0.57000 20 O.57G0O 3C 0.53000 10 0.53000 3 2.06000 3 2.09998 3 2.0 900 ICO 0.5 800 50 0.55000 ICC 0.56000 50 1.04000 50 2.05998 50 0.59998 40  20 90 3 20 80 4 15 100 3 15 100 3 20 300 3 20 300 3 15 700 10 20 100 1 20 150 1 20 10 800 15 500 10 15 700 15 15 151000 201000 100 50 301000 202000 50 201000 100 20 20 500 15 500 3 201000 60  15 15 15 20 30 30 15 20 30 5 10 15 20 10 5 10 20 15 30 20  15 10 10 15 10 10 5 10 10 5 20 15 20 IC 8 10 10 10 10 15  20 40 50 100 100 100 8 100 150 10 5 5 5 80 100 50 100 150 20 100  BLANK = NOT DETECTED 9998 = 10,000 9999 = >10,CC0 PART I I HN03/HCL04 EXTRACTABLE ZN CONTENT OF SELECTED SAMPLES DETERMINED BY ATCM IC-ABSCRPTICN SPECTROPHOTOMETRY ZN(PPM )  ID NO 124 128 132 136 140  0 0 0 0 0  C 0 G 0 C  43.119 14.277 17.161 6.489 1.875  I  vO sC sO vO sO sO sO vO vO sO vO r o r o r o r o r o r o r o r o r o r o r o r o r o r o r o i—» c r o IS) r o (—* t—* o O O o aOJ U) r o r o r o o sO U1 -ps O UJ o -o - J UJ vO UJ vO U l cO- l\) CO NJ 00 J> o o r o co 1  l - l 1—' I— M CO CO -J -J O o f > r o 00 00 1  t—' y— o Ui o o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  r o o* o  OJ u i c r  ro  in  os \ C - J . u a i — O j s O O s O i n r o u i r o i J n h - ' i - '  N O J l ( X l i D c D > U ) O c O O > - < l ' « J M - s l H O u i U ) C O •t*  ro  -t» UJ  \0  sO r o r o r o co » v O W K - ^ W O U ^ ^ a c O W * » C N l ^ H g N l O U l i - u i W > U l ^ H r o > O i O v ) i ^ 0 1 H O ^ i N ) ^ W ^ W ^ ^ U l ^ O O ^ I » < C O W m \ l W C ^ U l O > l C 0 0 0 O - J O O W O W W £ > a ) W U « D N O  -0+7 T~  m IA  a 2  >  o CO CO 00 C 0 C 0 C 0 C O - » J « « l « J - » l - s j - > j - « J Tl o Ul FILE  O n Tl  ~z o  vO  -J co -fco  vO  o  o  o  o  o  o  o  o  o  •  •  • • vD  0 H* 0 <D 02 U l  xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx  CNTR  RFS NO. 023793  UNIVERSITY  OF B C COMPUTING CENTRE  MTSUN192)  01:39:28  $SIGNON AWKF PRIO=L C0PIES=2 THU MAY 04/72 **LAST SIGNON WAS: 01:38:38 USER "AWKF" SIGNED ON AT 01:39:31 ON THU MAY 04/72 $LIST *SCURCE 1 2 3 4 5 6  7  8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52  APPENDIX B RESULTS OF ATOMIC-ABSORPTION ANALYSIS OF SOIL MACMILLAN PASS AREA HN03/HCL04 EXTRACTABLE  MATERIAL  METAL CONTENT  PPK  ID NO  CU  C=CLASSIF ICATION  1 2 3 4 S = SOIL SITE NUMBER 7 9 12 13 14 15 23 31 36 42 51 55 65 70 75 80 85 91 96 97 98 99  0 0 0 0 0 0 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 G 0  c  C 0 0 C  c c  0 0  c  0  c c  0 0 0 0 0 0  FE  MN  ZN  MO  PH  REGOSOL BRUNISOL ORGANIC GLEYSOL  14.128 53.687 5.415 32.487 33.570 48.035 50.861 67.815 21.192 77.7C4 39.559 56.512 28.256 45.210 26.843 7.064 31.082 42.384 6.497 17.327 15.161 14.128  0.547 2. 108 0.261 0.730 2.711 2.468 2. 889 0.984 1.000 4. 217 1.952 3.014 2. 108 3.670 1.952 0.937 3. 280 4. 061 0.483 1.077 2.092 2. 218  20.754 87.167 21.858 21.858 77. 814 147.353 213.766 6.226 45.659 233.482 35.282 31.131 53.960 210.653 195.087 36.319 378.760 97.544 28.852 32.35C 56.831 65.375  29.432 117.128 11.311 131.891 99.767 186.204 198.217 12.013 78.085 285.312 87.696 285.312 117.128 336.368 160.676 69.076 267.292 426.467 10.633 28.731 58.593 72.079  1.2 4.0 0.4 12.0 12.0 10.4 8 .8 2.4 7.2 3.2 9.6 18.4 5.2 6.0 3.2 1.2 2.8 8.8 0.2 1.6 2.4 2.8  4.0 4.6 4.1 3.8 3.7 4.5 4.5 4.2 4.2 4.5 4.8 4. 5 4.9 5.5 5.0 4.3 4.5 5.4 3.9 4.1 4.1 4.7  1 1 2 2 2 2 2 1 1 1 4 4 1 1 1 4 2 2 2 2  2 2 3 3 3 3 4 5 6 7 8 9 11 12 13 14 15 16 17 17 17 17 (X)  I  THU MAY 04/72  53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112  107 no 114 266 278 283 297 301 307 312 313 314 315 324 328 334 3 66 368 3 671 3672 375 376 401 406 407 408 419 420 421 430 44 C 441 45 5 461 470 476 477 478 479  0 0  G  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  16.954 19.779 18.366 55.228 38.43 3 68.512 55.144 25.065 25.065 15.161 27.073 28.156 31.749 33.420 41.775 25.065 23.233 1.671 5.415 4.332 18.342 15.039 15.039 5.415 10.829 16.710 18.342 24.907 31.749 91.906 78.538 5 8.4 86 86.751 42.797 31.792 55.025 94.213 44.399 10.829  1.8 74 1.843 1.015 2.364 1.410 2.850 2.625 2. 220 3. 451 1.003 3. 355 4. 122 3.000 3.781 3. 376 2. 250 2.316 1. 380 1. 770 1.349 0. 528 0.675 1.8 30 0.272 1. 275 2. 130 0.528 0.817 1.275 3.631 4. 321 4.276 4.217 1. 16 5 0.718 0. 36 7 2. 265 1. 349 0.32 3  89.242 157.730 44.621 245.683 152.032 95.374 254.961 228.521 2 64.404 126.776 450.273 830.601 434.379 290.845 307.842 481.594 221.762 316.341 292.896 298.142 90.004 15.109 14.165 20.109 11.366 15.1C9 84.436 14.863 15.109 56.658 1180.376 1868.602 410.278 270.011 231.040 416.615 210.710 278.907 28.852  96.706 180.197 57.062 726.193 213.942 177.415 152.629 70.966 1Z9.580 37.780 116.055 187.769 250.469 195.679 140.889 86.099 79.557 22.699 37.328 29.1.83 102.221 23.918 44.354 7.466 32.577 39.136 71.295 36.423 35.222 114.798 477.456 433.102 393.651 304.537 344.670 729.473 567.833 210.392 24.206  2.4 2.4 1.6 33.0 2.8 2.8 2.0 1.2 2.8 0.8 2.8 2.0 3.6 2.6 5.2 7.2 7.0 0.8 0.2 0.4 3.4 15.2 22.0 0.2 16.8 22.0 1.4 6.0 12.8 7.2 10.0 14.8 6.8 19.0 13.0 14.0 16.8 13.6 1.2  4.3 4.6 4.4 5.8 4.8 4.4 5.4 4.6 5.5 4.9 4.5 4.6 4.8 5. 5 4.8 4.4 4.1 4.6 4.6 4.4 3.9 4.2 4.1 4.0 4.2 4.0 3.2 3.5 3.8 4.0 5.0 6.2 5.5  2 4 1 1 1 1 4 1 4 2 2 2 2 4 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1  6.6  1 1 2 2 2 2  5.5 4.2 5.3 5.5 5.9  4  18 19 20 22 23 24 27 28 29 30 30 30 30 31 32 33 35 35 35 35 36 36 38 39 39 39 41 41 41 42 43 43 45 46 47 48 48 48 48  113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 13 7 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172  480 500 505 506 507 526 527 533 534 535 548 561 570 577 5 78 587 601 620 628 629 630 653 661 662 672 680 6 84 685 695 724 730 741 752 768 769 770 785 786 798  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  c  0 0 0 0 0  c  0 0 0 0 0 0 0 0  80.135 57.368 56.248 72.759 55.228 30.7 83 34.980 40.352 25.186 13.296 12.593 46.174 30.783 14.692 15.391 8.395 39.178 43.376 50-134 16.244 34.673 31.783 12.228 23.115 24.560 36.117 64.807 37.562 30.339 43.341 13.002 41.8 96 23.115 28.124 18.409 33.228 7.580 11.558 18.781  2.736 3.342 1.909 3.027 2. 587 2.1 17 2.677 8.125 3.657 1.052 1.295 2.808 3.902 2.493 2.957 3.700 1.837 4.217 1. 368 0.805 4. 299 3.894 0.488 4.060 4.115 3.968 6.487 4. 721 3.674 6.429 2.094 4.886 3.766 0.501 0. 459 2. 517 0.212 2.094 1.8 27  163.497 464.530 119.696 462.27C 173.989 73.466 77.987 140.109 23.735 13.115 57.642 2695.631 161.625 411.974 134.499 272.954 91.550 552.689 499.195 63.825 1034.343 1221.1G0 379.5G0 475.511 258.586 3 73.5 13 2143.385 890.684 876.319 948.148 238.474 876.319 511.425 8443.633 222.951 135.039 43.716 415.174 317.486  495.440 276.190 290.373 571.429 291.834 126.984 148.571 92.305 49.206 23.754 33.016 242.857 93.651 36.190 47.937 65.714 132.698 123.810 156.990 25.564 106.104 98.131 58.311 104.264 113.771 114.998 153.449 111.624 93.838 171.730 51.212 143.517 117.451 498.119 16.741 129.717 5.656 77.892 76.972  14.0 8.0 9.0 14.8 15.2 14.0 26.0 24.0 22.0 6.4 2.4 2.4 2.8 4.2 3.6 2.4 7.2 1.3 1.0 0.4 1.6 0.2 0.2 0.2 0.8 1.6 1.0 0.2 0.4 0.2 0.8 0.4 0.4 0.4 0.4 2.8 0.2 0.8 1.6  5.9 4.1 4.4 4.4 3.8 4.0 3.8 3.8 4.3 4.7 5.0 5.0 3.9 4.0 3.8 4.4 4.3 4.4 4.3 4.6 4.3 4.1 4.3 4.8 4.0 4.2 4.6 4.3 3.9 5.1 4.5 5.7 5.0 4.8 5.0 4.5 6.9 7.1 4.6  2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1  48 49 50 50 50 52 52 53 53 53 54 55 56 57 57 58 59 61 62 62 62 63 64 64 165 265 66 66 67 68 69 70 71 72 72 72 74 74 75  173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 END OF F I L E  SSIGNOFF  806 807 842 8 52 869 880 £83 893 994 1011 1018 1031 1041 1042 1058 10 64 1085 1101 1117 1124 1125 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  24.455 6.497 52.009 21.670 52.009 25.600 21.333 44.089 22.756 21.333 24.178 14.222 18.342 15.644 59.733 103.936 48.356 19.564 41.244 50.134 72.533 36.978 45.511 41.244 42.394 45.318 52.627 51.165 51 .165 51.165 49.703  0.731 1660.892 181.778 8.370 0. 301 23.607 0. 107 21692.480 10303.777 1272.639 1.72 7 2758.250 254.528 861.953 3.233 12.661 102.365 3.780 86.526 115.213 3.672 2522.456 554.541 2. 412 92 .979 5. 381 153.195 268.378 5. 201 30.386 63.304 4.031 78.900 1. 944 16.4 59 41.357 56.894 95.571 2.207 34.317 44.313 3. 258 140.495 2.700 87.359 1. 314 1C69.42 0 294.135 29.120 454.629 1.818 361.195 50.IC5 0.582 109.991 3.995 179.783 568.941 0.528 2495.977 475.160 3 87,419 4.085 81.029 193.584 1.998 138.002 178.918 2. 196 172.186 258.112 2.610 195.951 2. 138 73.031 155.191 173.827 2.343 2.412 149.974 176.988 183.309 2.206 139.542 147.366 180.148 2. 343 2.309 163.016 167.506 180.148 2.412 155.191  0.4 0.2 760.0 8.0 2.0 0.4 6.8 24.0 6.8 8.0 10.0 11.2 6.0 16.0 8.8 18.0 14.0 2.4 1.2 18.0 24.0 8.0 7.2 6.8 6.4 4.8 5.2 5.6 4.0 3.2 4.0  5.2 4.8 4.9 7.0 6.4 4.4 4.4 7.2 4.5 4.5 3.9 3.9 4.2 4.3 4.0 5.6 6.0 7.4 4.3 5.4 5.4 4.8 4.5 4.8 4.8 4.7 4.5 4.7 5.0 4.6 4.8  1 76 1 76 1 77 1 78 1 80 1 81 1 81 1 85 1 87 4 88 1 89 1 90 1 91 1 91 1 292 1 93 1 94 95 3 1 96 1 97 1 97 1 98 1 98 1 98 1 98 1 98 1 98 1 98 1 98 1 98 1 98  CNTR  XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX  RFS NO. 023794  UNIVERSITY OF B C COMPUTING  CENTRE  MTS(AN192)  $SIGNON AWKF PR IO=L C0PIES = 2 **LAST SIGNON WAS: 01:38:02 THU MAY 04/72 USER "AWKF" SIGNED ON AT 01:38:38 ON THU MAY 04/72 $LIST *SCURCE* 1 2 3 4 5 6 7 8 9 APPENDIX C 10 RESULTS OF ATOMIC-ABSORPTION ANALYSIS OF PLANT MATERIAL 11 MACMILLAN PASS AREA 12 13 HN03/HCL04 EXTRACTABLE METAL CONTENT 14 EXPRESSED AS P.P.M. DRY WEIGHT 15 16 17 ID NO CU FE MN ZN MO 18 19 SITE = SOIL SITE NUMBER 20 SPP= SPECIES ABBREVIATION TREES 21 ABL = ABIES LASIOCARPA 22 PIG = PICEA GLAUCA 23 POT = POPULUS TREMULOIDES 24 SHRUBS 25 BEG = BETULA GLANDULOSA 26 SAA = SALIX ALAXENSIS 27 SAP = SALIX PHYLICIFOLIA 28 CAT = CASSICPE TETRAGONA 29 EMN = EMPETRUM NIGRUM 30 POF = POTENTILLA FABELL IFORMlS 31 DYI = DRYAS INTEGRIFOLIA 32 FORBES 33 LUA = LUPINUS ARCTICUS 34 EPL = EPILOBIUM LATIFOLIUM 35 EPA = EPILOBIUM ANGUSTIFOLIUM 36 VAS = VALAR I AN STICHENSIS 37 VEV = VERATRUM VIRIDE 38 SET = SENECIO TRIANGULARIS 39 PCA = POLYGONUM ALASKANUM 40 GRASSES 41 CAA = CAREX AQUATALIS 42 FEA = FESTUCA ALTAICA 43 CAC = CALAMAGROSTIS CANADENSIS 44 CAM = CAREX MICROCHAETA 45 DEC = DECHAfPSIA CAESPITOSA 46 LICHENS 47 CLA = CLADOMA ALPESTRIS 48 49 50 51 52  01:38:34  SPP  SITE  I  THU MAY  04/72  53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112  CEN ALX UMX STX 3 4 7 10 11 17 18 24 25 32 33 37 38 43 44 52 53 56 57 58 62 63 66 67 72 76 77 78 81 82 83 86 87  0 C 0 0 0 0 0 0 G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 C 0 0 0 0 C 0 0 0 0 0 0 0 0 0 G 0 0 0 0 0 0 0 0  10.805 10.805 10.084 10.8 05 3.602 10.805 3.602 10.805 3.602 7.923 3.6 02 3.602 10.084 4.322 7.923 3.6 02 6.983 11.173 6.285 6.983 3.492 6.983 9.776 6.983 6.983 2.793 7.681 8.380 3.492 6.893 5.586 6.983 7.681  = = = =  CETRARIA NIVALIS ALECTORI A UMBILICARIA STEREOCAULON  81.344 88.824 60.774 73.864 169.233 69.189 202.893 80.409 155.208 89.759 143.053 1C3.784 100.044 131.833 65.449 107.524 88.928 •55. 551 87.982 88.928 105.011 103.119 74.738 65.277 69.061 87.982 62.439 48.248 72.846 56.868 69.061 82.306 74.738  104.559 218.674 190.567 387.879 16. 864 241.160 21.924 421.6 07 27.545 213.052 17.426 82.635 1101.801 54.528 803.865 82.635 653.920 115.893 240.202 157.329 102.944 1754.578 219.484 159.919 77.C46 156.034 1638.038 407. 891 49.206 610.8C0 427.314 213.010 1599.191  67.057 243.435 307.654 110.516 11.500 140.386 12.993 134.412 12.694 97.075 22.253 11.201 141.879 17.025 141.879 14 .039 162.902 64.459 279.462 228.906 17.273 167.115 237.332 164.3 07 136.220 17.835 174.137 53.224 12.499 259.313 63 .054 209.245 265.418  0.6  CAA SAA BEG BEG CLA BEG CLA BEG CLA BEG CLA CLA BEG CLA BEG CLA BEG CAC SAA BEG CLA BEG BEG SAA SAA CLA BEG ABL CLA BEG ABL SAA BEG  1 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 9 10 10 11 11 12 13 13 13 14 14 14 15 15 •Pi  113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172  88 92 93 108 109 111 112 116 117 121 122 123 2 67 268 279 280 284 285 289 290 294 295 298 299 302 303 308 309 310 311 316 317 318 322 325 326 329 3 30 331  0 0 0 0 0 0  c  0 0 0 0 0 0  C  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 G 0 0  c  0 0 0 G 0 0  c  0 0 0 0  c  0  C  0 0 0 0 0 0  c  0  c  0 0 0 G 0  c  0 0 0 0 0  9.776 5.586 6.983 3.446 6.893 4.825 6.893 6.893 5.514 8.644 7.923 5.042 13.7 86 9.650 4.136 6.893 6.8 93 6.8 93 6.204 2.757 6.2G4 6.893 6.8 93 6.893 3.446 6.8 93 9.112 7.290 2.430 10.327 4.252 7.290 7.290 6.075 6.682 6.682 3.645 0.6G7 5.467  47.302 1 16.364 80.414 97.888 131.449 97.888 81.1C7 90.430 103.481 86.954 69.189 28.985 2004.371 1165.332 90.430 58.733 77.378 71 .784 84.836 6 6 . 191 116.533 92.294 9 2. 29 4 105.346 81.10 7 88.565 68.073 70.305 90.392 236.583 68.073 65.841 179.669 63.609 65.841 79.233 47.986 85.929 50.218  420.840 264.229 524.431 55.186 830.473 280.218 1189.452 1393.G52 407.200 494.686 1349.144 1068.073 67.509 35.362 €8. 045 1553.789 107.694 546.505 921.558 80.368 600.084 1264.463 632.231 1098.368 73.403 269.502 915.033 643.137 58.562 204.967 294.379 773.856 34.510 56.993 449.673 141.699 637.908 33.987 496.732  57.437 167.115 265.418 15.532 162.071 168.824 226.899 202.589 110.748 235.968 171.749 44.05 7 108.047 45.785 14.181 175.577 114.800 129.657 164.772 11.480 110.748 189.083 151.266 229.600 11.210 73.607 178.119 130.518 14.587 50.518 31.171 153.551 72.476 36.084 176.583 41.766 12.438 11.516 153.551  0.4  4.5 3.5 0.3  1.0 0.6 0.6 0.5 1.2  ABL SAA BEG CLA BEG SAA BEG BEG SAA SAA BEG PIG CAA VAS CLA BEG SAA BEG BEG CLA SAA BEG SAA BEG CLA BEG BEG SAA CLA CAA FEA BEG EPL PDF SAA CAA EMN CLA BEG  15 16 16 18 18 19 19 20 20 21 21 21 22 22 23 23 24 24 25 25 26 26 27 27 28 28 29 29 29 29 30 30 130 230 31 31 32 32 32  173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 2 04 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232  335 336 1337 233 7 338 340 3 42 347 348 349 350 351 352 3 53 354 355 356 3 57 3 60 361 3 62 363 3 70 371 3 72 373 379 380 381 3 82 3 83 389 390 391 392 393 394 39 5 402  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  c  0 0 0 0 0 0 0  c  0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0  c  0 G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  7.290 0.607 3.645 7.897 8.505 4.900 7.290 12.150 6.682 11.542 9.72 0 3.645 3.037 6.075 4.860 7.290 9.720 7.962 9.112 5.467 6.075 7.349 4.860 1.822 6.682 5.467 3.645 2.574 7.722 6.435 7.722 2.5 74 6.435 3.861 5.792 6.435 9.010 5.792 2.574  61. 378 85.929 43.522 70.305 1450.742 66.657 248.858 113.465 49.700 42.198 53.451 27. 194 25.319 70.330 34.696 137.846 152.850 76.317 75.956 162.227 68.454 74.385 797.070 209. 114 59.077 77.831 468.865 148.027 57.082 70.627 64.822 117.067 59.017 41.602 51.277 62.887 63.855 49.342 109.327  784.314 43.399 250.458 136.471 690.196 435.C2C 286.536 102.901 100.179 21.234 50.634 1143.344 936.453 301.081 256.436 103.990 451.893 248.245 150.812 173.679 157.346 261.485 8.711 31.034 306.525 256.436 7.078 40.233 275.669 256.795 299.511 110.765 794.723 521.537 71.028 208.118 620.877 86.923 44.206  168.906 15.048 33.628 65.873 191.93 9 30.369 43.762 69.333 63.852 49.185 53.481 47.852 36.889 207.407 72.741 100.741 53.481 39.652 59.556 17.630 12.741 58.483 23.556 14.074 214.815 28.000 20.593 14.243 194.343 26.489 67.221 13.710 15.042 36.339 36.073 130.449 215.641 62.695 11.181  0.4 1.4 0.6 2.8 1.4 0.6  2.8 0.4 2.6 0.8 1.2 2.0 0.8  1.0  0.7 0.6 1.4 0.6 0.6 2.6  BEG CLA FEA CAA SAA FEA CAA CAC CAC SET EPA P IG PIG SAA PIG EPA CAA CAC POA CAT EMN FEA UMX CLA BEG CAT UMX CLA BEG CAT POA CLA EMN ABL CAC SAP BEG POA CLA  33 33 33 33 33 3 33 10 12 12 12 13 14 14 15 15 16 16 34 34 34 34 35 35 35 35 36 36 36 36 36 37 37 37 37 37 37 37 38  233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 2 58 2 59 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292  403 404 405 409 1410 2410 415 416 417 425 426 427 428 434 435 436 437 438 443 444 445 446 4 50 451 452 458 459 4 60 464 465 466 467 468 4 74 475 486 487 488 489  0 0 0 0 0 0 0  c  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  5.792 6.435 3.861 5.148 2.574 10.297 7.079 5.148 5.102 2.551 8.291 7.015 5.740 3.827 3.827 5.740 3.827 1.913 3.189 3.189 6.378 3.827 2.551 1.913 2.551 3.189 1 .913 4.464 6.175 4.322 9.262 5.557 6.175 6.1 75 4.322 9.262 19.141 6.7 92 10.497  47.407 51.277 66.757 57.082 97.717 1596.373 52.245 73.530 99.06 5 118.682 59.831 1275.096 89.257 124.567 79.448 67.678 104.950 165.763 25.502 25.502 48.061 61.793 53.946 83.372 57.870 104.550 81.410 44.138 97.270 42.179 63.699 49.065 62.838 55.091 50.787 62.838 63.699 42.179 56.812  720.217 417.229 745.052 461.933 44.206 30.299 69.042 224.013 28.104 72.048 268.264 7.665 194.683 277.461 602.954 510.978 367.904 50.587 613.174 65.916 80.224 36.279 210.012 174.244 163.002 203.88C 73.070 510.978 72.759 27.342 38.465 55.148 19.928 12.513 19.928 57.466 38.465 28.269 25.952  158.403 18.502 42.463 127.787 14.509 24.093 295.507 266.223 225.216 8.705 172.712 20.311 19.482 103.627 16.995 168.566 22.798 8.428 56.788 72.262 165.803 24.594 172.712 96.718 25.838 165.803 15.889 149.223 27.527 42.743 331.988 24.207 25.314 26.697 29.464 307.089 75.112 43.020 75.666  0.8  0.8 0.3 0.3  0.6 0.3 0.5 14.0 52.0 12.0 14.0 12.0 17.0 1.8 1.0 2.8 9.0 5.0  BEG EMN ABL BEG CLA UMX BEG SAP SAA CLA BEG UMX CAT SAA EMN BEG CAT CLA ABL PIG SAA CAT BEG SAA CAA SAA CLA BEG EPL FEA SAA LUA CAT EPL DYI SAA VEV EPA SET  38 38 38 39 39 39 40 40 40 41 41 41 41 42 42 42 42 42 43 43 43 43 44 44 44 45 45 45 46 46 46 46 46 47 47 48 48 48 48  293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 33 5 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352  490 491 492 494 5 03 5 04 509 510 511 521 522 529 530 531 1532 2532 542 543 544 54 5 546 552 5 53 554 555 564 565 5 72 5 74 581 582 583 584 585 590 591 592 593 594  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  c  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  c  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  c  0  6.792 5.557 6.792 12.349 2.470 5.5 57 3.705 1.235 6.792 5.929 6.522 7.114 5.336 6.522 1 .186 8.893 6.522 2.371 11.857 15.415 5.929 2.371 5.929 15.415 6.522 7.114 14.822 1. 186 5.032 5.920 3.848 5.032 2.664 8.5 85 5.920 6.809 10.657 4.736 7.993  59.395 52.508 54.230 49.065 93.827 76.611 37.014 71.446 54.220 41.167 81.376 54.570 64.144 46.911 96.694 60.314 75.632 175.198 50.740 73.717 113.927 123.500 1072.251 299.656 89.035 56.485 69.888 108. 182 60.952 62.828 27.194 42.198 96.586 62.828 60.952 92.835 62.828 32.821 70.330  19.928 71.832 43.099 285.938 64.417 260.912 625.634 88.516 194.178 39.399 55.815 600.366 483.107 544.082 34.709 89.586 183.393 23.921 375.229 95.214 61.444 52.063 8. 912 205.907 254.687 187.146 154.313 22.045 178.801 223.168 532.409 479.168 81.192 137.095 268.423 976.083 105.151 319.445 228.492  36.104 73. 729 89.914 196.426 21.164 131.412 64.876 23.654 74.006 42.728 181,050 13.470 18.974 112.975 9.704 32.299 48.232 20.422 47.942 54.894 20.13 3 16.657 17.815 27.375 56.343 105.733 115.872 13.180 32.275 33.4^99 33.499 16.367 20.650 22.792 31.969 120.841 28.910 28.910 32.581  1.6 12.0 2.4 2.4  4.5 0.3 0.5 0.8 0.6 2.4 0.3 0.7 0.5  0.3  0 .4 1.2 1.2 0.4 0.4  VAS FEA CAA CAC CLA SAA ABL CLA EPL CAA SAA EMN CAT BEG LUA CLA FEA CLA CAC SET CAT CLA ALX CAT FEA FEA SET CLA FEA CAT ABL EMN CLA SET FEA SAP LUA ABL CAC  48 48 48 48 49 49 50 50 50 51 51 52 52 52 46 52 53 53 53 53 53 54 54 54 54 55 55 56 56 57 57 57 57 58 58 58 58 58 58  3 53 354 355 356 3 57 358 3 59 360 361 3 62 363 364 365 36 6 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 39 5 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412  604 605 606 607 608 612 613 614 615 616 618 622 623 624 625 626 627 633 634 635 636 637 638 639 640 641 642 656 657 658 659 660 665 666 667 668 675 6 76 677  0 0  c  0 0 G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 G 0 0 0 0 0 0 0 G 0  c  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  7.105 2.3 6 8 2.664 3.256 2.960 7.697 3.848 9.177 4.736 6.203 5.075 14.661 8.458 8.458 2.819 5.639 14.097 5.639 8.458 5.639 4.642 16.916 5.075 11.841 1.692 6.767 12.969 6.203 5.639 5.998 2.399 4.199 1.799 3.599 5.998 5.998 2.359 2.959 2.399  68.454 83.458 81.582 218 .49 1 79.707 70.330 74.081 87.209 135.971 59.831 138.299 2550.193 63.755 8 3.372 392.337 75.525 1667.4 33 59.831 83.372 50.023 42.825 87 .295 46. 100 61.793 150.069 67.678 1618 .391 95.142 128.490 48.209 132.821 32.467 73.789 30.500 54.112 38.371 103.305 105.273 34.435  621.144 31.501 101.601 32.388 31.501 2 13.407 255.113 240.915 319.445 231 .868 294.9C0 231.868 495.251 652.832 64.833 459.233 22.061 432.219 115.709 1305.663 0.0 180.542 281.393 105.804 42.772 432.219 27.014 5 85.297 6 75.343 974.378 58.463 1283.327 77.475 1663.573 1359.376 903. 082 57.037 27.092 46.105  229.445 8. 719 14.532 19.732 6.577 73.576 46.042 62.868 160.612 179.426 114.833 27.416 132.057 186.603 25.694 29.426 22.823 13.062 28.565 57.847 37.053 117.703 20.813 79.665 21.675 106.220 30.2 87 60.431 79.378 149.523 10.070 36.771 7.781 36.465 175.461 14.800 13.579 22.734 9.002  0.8  BEG CLA CEN STX ALX CAM ERA CAC SAP BEG SAA CAT BEG SAA CLA FEA ALX EMN VAS ABL FEA SET CAT VEV CLA SAA ALX LUA SAP BEG CLA ABL CLA ABL BEG EMN CLA STX ALX  59 59 59 59 59 160 160 160 160 160 260 61 61 61 61 61 61 62 62 62 62 62 62 62 62 62 62 63 63 63 63 63 64 64 64 64 165 165 165  413 414 415 416 417 418 419 420 421 422 423 424 42 5 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 4 61 462 463 464 465 466 467 468 469 470 471 472  678 679 681 682 683 688 689 690 691 692 698 699 700 701 702 703 7 04 726 727 72 8 732 733 734 735 736 737 744 745 746 747 748 755 756 757 758 759 7 73 774 775  0 •0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  c  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  4.642 7.198 11.996 6.598 8.3 97 5.998 4.799 2.399 6.124 8.3 97 5.802 4.642 5.222 1.741 5.222 6.383 6.3 83 5.802 5.802 6.383 4.062 4.642 2.321 4.642 5.802 5.222 6.383 6.3 83 5.512 8.7 04 3 .913 5.590 5.031 2.236 3.354 6.148 3.913 5.031 4.472  0.0 52.145 229.239 256.787 63.951 63.951 122.982 292.206 72.453 71.822 59 .955 103.732 61.859 92.312 39.019 151.316 157.026 111.346 56.149 265.517 58.052 324.521 46.632 51. 390 58.0 52 1808 .179 69.472 1 11.346 56.996 200.803 221.893 47.479 57.169 86.238 31.976 39.727 72.672 39.727 55.231  0.0 408.763 437.281 166.8 33 208.660 627.404 380.245 74.623 780.199 380.245 937.289 1528.502 276. 38C 92.768 696.958 215.817 480.661 1393.917 865.190 471.047 576.793 35.088 75.464 672.926 605.633 20.668 384.529 221.585 286.073 50.95C 268.007 321.608 66.037 33.018 268.007 237.990 135.933 814.740 110.204  21.371 170.884 50.502 34.940 22.734 190.718 21.208 17.851 39.652 45.620 141.448 36.746 15.836 8.149 12.454 21.832 35.977 25.522 146.060 12.146 17.988 13.684 11.685 12.761 196.797 19.833 115.311 45.971 38.591 37.668 21.655 248.276 34.621 16.414 45.379 27.724 129.655 19.172 28 .000  0.8 0.4 0.3  0.3  0.3 0.8  CAT BEG CAA DEA CAC SAA CAT CLA FEA LUA BEG ABL CAT CLA EMN EPL LUA LUA SAA EMN CAT CLA ALX EMN BEG ALX SAP CAM FEA DEC CAT SAA CAT CLA ABL EMN POT EMN EPL  165 165 265 265 265 66 66 66 66 66 67 67 67 67 67 67 67 68 68 68 69 69 69 69 69 69 70 70 70 70 70 71 71 71 71 71 72 72 72  473 474 475 476 477 478 479 480 481 482 483 484 485 486 4 87 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532  776 7 77 778 779 780 782 783 789 ' 790 791 792 7 93 794 800 801 803 802 811 812 813 814 815 816 984 997 998 999 1014 1015 1016 1021 1022 1023 1034 1C35 1036 1037 1045 1046  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0  0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  3.3 54 2.795 4.472 5.031 4.900 5.590 5.590 6.148 1.677 3.3 54 5.031 3.302 6.053 4.953 3.302 2.201 4.953 4.953 4.953 3.302 6.0 53 4.953 2.752 8.564 2.284 4.567 9.135 7.349 10.602 17.297 5.022 2.2 32 6.696 3.906 5.022 6.696 1.116 4.464 2.790  53.293 66.858 59.107 62.983 45.404 148.251 119.182 76.548 109.493 51.355 72.672 166.017 92.341 83.500 46.170 64.835 77.606  57.959 127.906 158.942 50.786 46.084 45.404 89.202 69.857 119.295 142.939 78.455 33.317 50.512 52.662 89.202 72.007 127.893  132.503 643.216 66.894 1166.365 170.698 272.295 224.268 80. 188 21.012 196.824 55.317 27.121 115.747 136.088 799.092 107.030 34.385 93.470 64.412 513.356 308.982 484.298 184.518 48.128 3 8.4 05 213.414 340.296 243.517 72.426 175.621 208.757 39.290 539.645 247.574 212.544 305.325 21.775 254.201 20.828  165.517 168.276 23.034 213.793 22.147 2 04.138 44.000 18.759 10.069 5 0.897 53.655 9.838 14.273 80.785 40.878 12.887 17.598 138.568 21.478 56.951 187.067 117.783 30.624 34.527 10.186 22.885 178.586 32.491 56.564 102.843 18 .591 11.998 145.035 36.786 20.173 57.882 9.361 17.272 10.680  0.6 0.4  0.4  0.5  0.4 1.2  SAA 8EP LUA BEG FEA SAP CAA POF CLA PIG SAA SHC EMN SAA PIG CLA LUA POT LUA PIG SAA BEG EPA CAA CLA CAT BEG CAC VEV SET CAT CLA BEG ABL CAT BEG CLA CAT CLA  72 72 72 72 72 73 73 74 74 74 74 74 74 75 75 75 75 76 76 76 76 76 76 86 87 87 87 88 88 88 89 89 89 90 90 90 90 91 91  533 534 535 536 53 7 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 * 572 END OF F I L E  $SIGNOFF  1047 10 61 1062 1063 1069 1070 1071 10 72 1073 1088 1089 1090 1091 1104 11 05 1106 1107 1121 1122 1123 1129 1130 1131 1132 1133 1134 1135  0 0 0 0 0 0  c  G 0 0 0 0 0 0 0 0 0 0  0  0 0 0 0 0  0  0 0  0  0 0 0 0  c  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  C  0 0 0  6.6 96 6.696 2 .790 3.906 8.370 6. 138 6.124 10.602 6.214 2.824 3.389 4.519 4.519 5.084 1 .130 3.389 7.908 5.084 4.519 1.695 6.214 7.343 6.214 3.389 6.778 8.473 6.778  BLANK = <0 .2 P.P.M.  44. 064 47. 288 155. 836 25. 793 114. 996 58. 03 5 41. 540 6 1 . 259 37 .816 67. 610 85. 945 175. 327 49. 275 324. 297 49. 27 5 46. 983 40. 107 572. 963 30. 940 81. 361 44. 691 56. 150 184. 494 40. 107 46. 983 56. 150 41. 253  243.787 591.716 24.142 497.041 48.757 54.9 11 66.672 33.6 09 89.745 101.778 74.704 37.101 196.036 20.556 83.228 101.778 I4.54G 200.047 551.508 83.729 269.738 104.787 752.G57 115.817 150.913 75.707 99.773  98 .888 121 .302 6.724 32.567 243.923 200.412 79.967 73.572 37.793 136.003 125.541 30.208 32.562 21.054 130.772 23 .931 41.978 91.541 38.316 14.777 228.852 228.852 222.313 43.547 56.624 78.202 85.002  8.0 5.0 50.0 18.0 44.0 1.2 2.0 1.6 1.0 12.0 1.2 0.4 12.0  1.4 1.2 0.4 3.6 3.0 1.2 3.6  BEG BEG CLA ABL SAA SAP FEA SET EPL SAP SAA SET CAA EPL SAA CAA SET SAP ABL CLA SAP SAA BEG FEA EPA SET CAC  91 292 292 292 93 93 93 93 93 94 94 94 94 95 95 95 95 96 96 96 97 97 97 97 97 97 97  CNTR  XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX  RFS NO. 023795  UNIVERSITY  OF B C COMPUTING CENTRE  fSIGNON AWKF PRIO=L C0PIES=2 THU MAY 04/72 **LAST SIGNON WAS: 01:37:22 ON AT 01:38:02 ON THU MAY USER "AfcKF" SIGNED $LIST *SOURCE* 1 2 3 4 5  MTS(AN 192)  01:37: 58  04/72  6  7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52  APPENDIX D PART I RESULTS OF EMISSION  SPECTROGRAPHS ANALYSIS (METHOD 1) OF STREAM MACNILLAN PASS AREA  SEDIMENTS  PPH  ID NO LOC  LOC  = U.T.M.  6 700019 700026 700027 700028 700034 700039 700045 700046 7000 59 7CC068 700073 700079 700084 700089 700094 700095 700102 700103 700113 700118 700146 700151 700153 700262  SR  EA  CR  CO  NI  AG  TI  CU  IN  MO  25 500 20 500 20 500 60 500 30 700 25 800 40 700 202000 202000 30 400 30 60 20 300 30 500 30 500 30 500 25 500 3 5 200 30 500 40 200 30 200 20 500 20 800 252000 301500 301500  30 20 25 30 20 40 30 60 60 20 2 10 10 10 15 10 5 20 15 20 20 20 40 50 40  BI  GA  SN  PB  MN  15 15 15 15 20 18 20 15 15 20 20 15 20 20 20 20 20 20 18 18 15 20 20 20 15  15 500 10 40 20 300 2C5C00 204000 20 300 2C1C00 100 30 30 20 2 0 200 20 400 20 300 20 400 2C1C00 15 500 15 500 151CC0 5 151000 252000 15 700 10 700 40 100 25 50 50 50 50 20 400  CO-ORDINATES  4477013 4477011 4477010 4467010 4447007 4417006 43 97 005 4387004 43 87002 4386997 4396995 4396993 4346991 4316989 4276985 4276986 4246979 4236978 4166974 4076971 4427004 4417005 4407005 44370G8  801000 80 100 70 100 100 80 60 60 100 4C0 80 100 80 80 120 100 1G0 80 ICO 100 60 80 80 150  150 80 250 15 40 150 40 60 150 1 50 4CC 700 60 200 200 30 500 200 180 100 3 50 10 120 180 5 20 100 18 30 40 20 10 15 60 ICO 30 80 180 60 200 200 80 50 100 30 70 100 100 40 100 20 200 180 50 40 100 80 20 80 30 100 150 80 30 15 180 20 180 30 500 200  8GC0 500 90 200 3C0 3 400 200 500 80 5C 80 18 70 70 80 70 60 60 100 60 60 100 50 30 50 150  I  THU MAY  04/72  53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112  700263 700264 700275 30 4 319 320 321 323 332 700341 700 343 700483 700495 700496 700512 700514 700523 700539 7G0556 700562 700563 700576 700578 700581 700594 700595 700643 700645 700647 700649 700651 7CC708 700762 700764 700766 819 820 821 822  4437009 200 4447009 2C0 4406998 5C05000 2009998 3005000 1505000 1005000 1009998 4477011 200 4457008 70 4427010 ICO 4427009 200 4427 008 700 4417008 2C0 4417009 100 44070C81000 4427003 80 4417G02 100 4427002 200 80 4427001 4417001 5CG 4407002 60 4407CCC 300 4407001 100 4397000 60 4447023 3C0 4447022 200 4427022 3C0 4437023 300 4427023 4C0 4417024 200 4407023 200 4397024 200 4407025 20 0 1005000 2004000 2001800 2C02000  50 600 300 50 500 400 30 30 60 150 200 100 500 180 70 100 60 .100 150 60 200 150 200 70 400 60 300 200 50 300 30 30 200 2C0 5C 400 200 500 30 300 40 300 4C0 30 200 2G0 60 600 400 10 180 60 15 50 180 1001CCC1000 50 1 80 70 6G 40 150 3C 80 180 20 10 15 40 60 ICO 15 50 200 7C 90 180 60 70 200 70 50 200 180 80 60 60 200 80 70 200 80 90 200 ICO 70 70 200 60 70 150 30 90 180 90 180 50 20 40 80 20 50 ICO  8000 9998 eoco 9998 8000 9000  9998 9998 5000 7000  60 ICO 302000 30 80 401000 30 40 12 30 100 20 2 CO 30 500 15 5 40 100 70 50 30 400 10 25 400 10 70 30 800 100 20 20 150 30 600 50 100 151500 20 30 800 90 20C 301000 30 200 301000 30 20 ICO 40 800 20 150 30 600 2 00 501000 200 251000 60 80 30 200 10 50 ICO 100 80 10 20 400 70 15 60 30 60 5 25 400 20 100 25 20 70 25 500 20 201000 150 50 ICO 40 60 2 100 2 5 80 60 25 80 60 25 70 100 30 60 60 20 80 2 30 60 100 60 2 5 60 3 0 50 60 5 25 100 80 90 25 100 2 2 30 25 150 30 25 100  20 15 20 20 25 30 25 20 20 25 15 20 15 20 20 20 15 15 20 15 15 25 20 15 20 20 30 30 30 30 25 25 30 25 30 15 15 15 15  20 200 10 400 20 200 20 500 2C1C00 405000 20 500 15 5C0 30 500 30 500 15 100 20 200 20 500 20 200 2C 200 20 200 205000 3C 80 30 500 5 15 15 100 5 20 500 30 500 15 200 20 400 30 200 503000 30 500 20 800 301000 301000 301C00 401C00 201000 3C1G00 1001C00 10 600 15 5C0 15 500  10  113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 169 170 171 172  823 824 825 826 827 828 8 29 830 700831 700832 700833 700834 7C0835 700836 7008 37 700838 7008 39 859 700934 700937 7009 39 700940 700975 700977 700985 7CC987 701002 701006 701025 701027 7010 38 70 1048 70 1074 701076 701080 701095 701098 701109 701111  3786933 3836945 3846946 3906951 3956955 3966956 3976958 3986966 4006967 4447004 4457004 4447005 4447006 4437004 443700 3 44 970C6 4497007 4487007 44 87006 4477006 44770C7 4477008 4467008 4367011 4377011 4377010 4377009 4377008 4397008 4387008  2002000 1G02000 5C09998 2009998 3006000 5009999 5009998 3009998 4C0 200 200 400 600 600 400 4C0 50 0 4001500 100 100 80 80 5G0 ICO 500 6C0 300 200 50 80 1G0 ICO  5C0 200 400 500 100 100 500  120 20 50 40 100 20 30 80 2C0 20 60 150 100 20 50 50 150 200 200 40 80 200 40 70 2 CO 40 70 2 CO 60 80 2 CO 50 100 200 40 80 30 80 2C0 80 200 40 200 40 100 4CG 50 300 5C0 60 400 300 20 100 200 20 70 50 100 200 200 80 50 200 50 100 15 180 15 10 200 20 60 150 15 70 3C0 15 50 200 400 40 50 20 200 10 30 200 200 15 40 200 20 40 300 30 4CG 400 6C 500 400 70 500 300 ICO 600 200 80 400 700 8C1000 4C0 70 500  5998 2G 8000 20 70 9998 60 ecco 8000 30 9998 120 9998 80 8000 30 30 80 ICC 90 80 70 60 3CC 200 80 8000 3G0 200 200 300 20 ICC 3 100 4 2 CO 100 200 80 80 ICO 100 80 ICC 3 00 150 200 100 100  2 25 100 2 5 90 5 40 300 5 30 100 30 70 2 5 40 100 5 30 100 30 80 2 2 30 80 30 100 2 30 200 5 5 30 200 30 300 5 40 500 2 30 500 5 301500 30 401000 20 301000 15 25 500 15 20 500 15 25 500 15 25 500 15 25 20 500 202000 90 30 400 30 25 700 60 50 301000 301500 100 252000 60 301000 80 251000 20 40 251000 251000 400 251500 80 20 301000 40 700 20 40 40 700 40 700 20 50 301000  15 15 20 20 20 25 25 20 25 20 20 20 20 25 25 25 30 25 25 20 20 20 15 15 25 20 25 20 15 25 20 20 15 15 20 20 30 25 20  5  5 5 5 5 5  15 200 10 5C0 20 500 20 500 15 600 251000 20 500 101000 151G00 151000 151G00 15 1C00 401000 20 700 151000 152000 202000 15 500 30 200 30 500 40 700 3G 700 30 15 400 30 40 200 40 200 20 200 50 400 15 100 40 40 20 200 20 2G0 8 150 15 500 10G 500 502000 401500 301500 20 500  173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232  2009999 300 1151 701181 4417004 100 150 4G05959 300 1183 *  **  20 100 5 15 20 70  6CC0  3  80 60 9998 100  301000 15 302000 100 252000 60  25 20 15  15 500 100 50 30 800  BLANK = >2,000 P.P.M. 9998 = 10,GCO P.P.M. 9999 = >10,000 P.P.M. BLANK = NOT DETECTED PART II HNC3/HCL04 EXTRA DETERMINED BY ZN(PPM)  ID NO 19 28 34 46 146 151 153 262 2 63 2 64 341 343 483 49 5 496 512 514 523 539 595 934  0 0 0 0 C 0 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  77.233 222.043 260.660 30.314 45.374 24.174 27.611 289.622 299.276 662.269 276.106 47.305 235.559 220.113 191.150 218.182 764.602 608.206 47.305 29.735 71.440 I  I—i  <n  •z. o  m z o  a Tl  ro  ro  Ul \0  Ul 03  Ul - j  1—  1—'  Tl Tl  ro Ul o  ro Ul  ro Ul  Ul  ro Ul UJ  ro Ul ro  ro  ro  Ul i—  Ul o  - J Ul  OJ  ro  <o0 0  m  l— t-  1  1  f-  M  I—> i—• i —  t-  1  o O o o o o o ro ro o o -J Ul  J>  00  -j  Ul  o ro  vO UJ  -J  o o o o o o o o o o o o o o o o o o o o o o  00 ro  Ul UJ  ro ro  oo  Ul - J  o Ul > • • • • • • -o o  UJ  -09 T-  UJ -si  O 'Ul  Ul  CO r o 1-*  ro vD o ro O  *  - J J> 00  oo ro  o  o  ro ro  t—< t>  • -•0 U•J • o UJ Ul  ro  ro  Ul  o  ro  ro 0^  ro Ul  ro  ro  •t* U J  ro ro  ro  ro  i—> o  ro u)  ro  ro  ro  ro  ro  UJ oo  UJ  OJ  OJ  - J  Ul  4>  r o OJ 0J  Figure 16.  Stream sediment and rock sample locations within the detailed study  area  Figure 17. Soil and vegetation sample site locations within the detailed study a r e a .  132° 63*  Soil and vegetation sample sites 823V^  Stream sediment sample locations.  24  Stream Lake  / ( >/*76  MILES /  R o s s River  c  132°  131°  Figure  18.  Soil and vegetation site and stream sediment sample locations between Ross River and MacMillan Pass.  along the Canol Road  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0053143/manifest

Comment

Related Items