Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Regional stream sediment reconnaissance and trace element content of rock, soil and plant material in.. 1972

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
UBC_1972_A6_7 D69.pdf [ 13.18MB ]
Metadata
JSON: 1.0053143.json
JSON-LD: 1.0053143+ld.json
RDF/XML (Pretty): 1.0053143.xml
RDF/JSON: 1.0053143+rdf.json
Turtle: 1.0053143+rdf-turtle.txt
N-Triples: 1.0053143+rdf-ntriples.txt
Citation
1.0053143.ris

Full Text

c I REGIONAL STREAM SEDIMENT RECONNAISSANCE AND TRACE ELEMENT CONTENT OF ROCK, SOIL AND PLANT MATERIAL IN EASTERN YUKON TERRITORY t>7 PATRICK J . DOYLE B.Sc, U n i v e r s i t y of Ottawa, 1969 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE * i n the Department of Geology We accept t h i s t h e s i s as conforming to the required standard The U n i v e r s i t y of B r i t i s h Columbia May, 1972 In p resen t ing t h i s t h e s i s in p a r t i a l f u l f i l m e n t o f the requirements f o r an advanced degree at the U n i v e r s i t y o f B r i t i s h Columbia, I agree tha t the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r reference and study. I f u r t h e r agree t h a t permiss ion f o r ex tens ive copying o f t h i s t h e s i s f o r s c h o l a r l y purposes may be granted by the Head o f my Department o r by h i s r e p r e s e n t a t i v e s . I t i s understood tha t copying o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l ga in sha l l not be al lowed w i thou t my w r i t t e n pe rm iss ion . Department o f QfQjJljD The U n i v e r s i t y o f B r i t i s h Columbia Vancouver 8, Canada Date f i W 3 ,Q tiqU i i ABSTRACT Multi-element stream sediment reconnaissance i n the Hess River region of the Eastern Yukon has outlined an ex- tensive area characterized by anomalously high molybdenum values. An accessible region i n the Hess Mountains, within the high molybdenum zone, was selected for detailed study of trace element levels i n stream sediment, rock, s o i l and vegetation. In view of the frequently observed relationship between high forage molybdenum concentrations and the i n - cidence of copper deficiency i n cattle, molybdenum concen- trations i n plant species l i k e l y to be consumed by caribou and moose were of particular interest. High sediment molybdenum values are characteristic of catchments underlain by dark shales and less commonly dark limestone. These rocks and associated soils are ri c h i n molybdenum. Concentrations i n vegetation growing on anomalous shaly soils are characteristically low, while most plants growing on soils derived predominantly from lime- stone are molybdenum-rich. The Mo-Cu status of vegetation on limey soils i s typically within the range associated with molybdenum induced hypocuprosis in cattle. Low molybdenum uptake by plants on so i l s derived from shales l i k e l y reflects the unavailability of the molybdate anion,resulting from i t s adsorption onto clay minerals i i i and sesquioxides under a c i d i c conditions prevalent i n these s o i l s . In neutral to m i l d l y basic environments, t y p i c a l of dark limestone s o i l s , molybdenum adsorption i s g r e a t l y decreased, and therefore molybdenum i s r e l a t i v e l y a v a i l - able to plant s . In the d e t a i l e d study area s o i l pH values are t y p i c a l l y s i m i l a r to pH l e v e l s i n associated stream water. Therefore by combining stream sediment molybdenum concen- t r a t i o n s with stream pH data, catchments l i k e l y to contain molybdenum-rich vegetation can be predicted. Unfortunately stream pH values were not obtained i n the regional survey. In view of the apparent r a r i t y of dark limestone throughout the Eastern Yukon, however, molybdenum-rich vegetation i s not l i k e l y to be p a r t i c u l a r i l y widespread. W i l d l i f e i n t h i s area, therefore, i s probably not s i g n i f i - c a ntly affected by molybdenum induced copper deficiency. XV TABLE 01 CONTENTS CHAPTER PAGE I INTRODUCTION 1 NUTRITIONAL SIGNIFICANCE OP CEUSTAL 2 TRACE ELEMENT ABUNDANCES APPLICATION OP STREAM SEDIMENT SUR- 3 VEYS TO THE DETECTION OP TRACE ELEMENT IMBALANCES IN AGRI- CULTURE THESIS OBJECTIVES 5 SECTION A REGIONAL STUDY I I DESCRIPTION OF REGIONAL STUDY AREA 7 LOCATION AND ACCESS 8 GEOLOGY 8 GLACIATION 11 TOPOGRAPHY AND DRAINAGE 11 CLIMATE 13 SOIL 14 VEGETATION 14 WILDLIFE 15 I I I REGIONAL GEOCHEMICAL RECONNAISSANCE 16 SAMPLE COLLECTION AND PREPARATION 17 SAMPLE ANALYSIS 17 PRESENTATION OF DATA 22 TRACE ELEMENT PATTERNS IN STREAM SEDIMENTS 24 DISTRIBUTION OF Mo, V, N i , Cr and Cu 24 DISTRIBUTION OF Pb, Sr, Mn and Co 36 DISCUSSION OF DISTRIBUTION PATTERNS 37 RELATIONSHIP TO BEDROCK COMPOSITION 37 RELATIONSHIP TO GLACIATION 38 POSSIBLE RELATIONSHIP TO ANIMAL 38 NUTRITION SECTION B DETAILED STUDY IV DESCRIPTION OF DETAILED STUDY AREA 41 LOCATION AND ACCESS 42 GEOLOGY 42 SOIL 45 VEGETATION 49 V CHAPTER PAGE V SAMPLE COLLECTION PREPARATION AND ANALYSIS 51 SAMPLE'COLLECTION AND PREPARATION 52 STREAM SEDIMENT 52 ROCK 52 SOIL 55 VEGETATION 54- FAECES 54- SAMPLE ANALYSIS 54- SEMI-QUANTITATIVE SPECTROGRAPHIC 56 ANALYSIS ATOMIC-ABSORPTION ANALYSIS 56 COLORIMETRIC ANALYSIS 62 MEASUREMENT OF pH 63 VI TRACE ELEMENT CONCENTRATIONS IN ROCK MATERIAL 64- PRESENTATION OF DATA 65 TRACE ELEMENT CONCENTRATIONS IN BEDROCK 65 COMPARISON OF CONCENTRATION IN BLACK 68 SHALE FROM UNIT THREE WITH ESTIM- ATES OF NORMAL CONCENTRATIONS IN SIMILAR ROCK TYPES POSSIBLE MECHANISMS CONTROLLING TRACE 70 ELEMENT LEVELS WITHIN CERTAIN UNIT THREE LITHOLOGIES VII TRACE ELEMENT CONCENTRATIONS IN SOIL MATERIAL 74- PRESENTATION OF DATA 75 TRACE ELEMENT CONTENT OF C HORIZONS 76 DISTRIBUTION OF TRACE ELEMENTS IN 76 SELECTED SOIL PROFILES FACTORS' AFFECTING THE METAL CONTENT 82 OF SOILS POSSIBLE SIGNIFICANCE OF VARIATIONS 85 IN COMPOSITION OF UPLAND AND VALLEY SOILS VIII TRACE ELEMENT CONCENTRATIONS IN PLANT MATERIAL 87 PRESENTATION OF DATA 88 METAL CONTENT OF PLANTS 88 FACTORS AFFECTING THE METAL LEVELS IN 95 PLANTS POSSIBLE INFLUENCE OF METAL LEVELS IN 98 PLANTS ON THE HEALTH OF WILDLIFE, PARTICULARLY CARIBOU AND MOOSE IX TRACE ELEMENT CONCENTRATIONS IN STREAM SEDIMENT 105 PRESENTATION OF DATA " 104- METAL CONCENTRATIONS IN STREAM SEDIMENT 104- COMPARISON OF METAL CONTENT'OP STREAM SEDIMENT WITH THAT OF ASSOCIATED ROCK AND SOIL FACTORS AFFECTING TRACE ELEMENT LEVELS IN STREAM SEDIMENT COMPARISON OF METAL CONCENTRATIONS IN STREAM SEDIMENT WITH THOSE OF ASSOCIATED VEGETATION SUMMARY, CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH SUMMARY AND CONCLUSIONS SUGGESTIONS FOR FURTHER RESEARCH BIBLIOGRAPHY APPENDIX A RESULTS OF EMISSION SPECTRO- GRAPHS ANALYSIS OF ROCK MATERIAL APPENDIX B RESULTS OF ATOMIC-ABSORPTION ANALYSIS OF SOIL MATERIAL APPENDIX C RESULTS OF ATOMIC-ABSORPTION ANALYSIS OF PLANT MATERIAL APPENDIX D RESULTS OF EMISSION SPECTRO- GRAPHS ANALYSIS OF STREAM SEDIMENTS v i i LIST OP TABLES TABLE PAGE I Spectre-graphic equipment and operating 19 conditions I I Wavelengths and approximate detection 20 l i m i t s f o r spectral l i n e s used to estimate trace element abundances i n stream sediments I I I A n a l y t i c a l p r e c i s i o n f o r spectro- 21 graphic analysis of stream sediments, at the 95$ confidence l e v e l , calculated from 50 separate analyses of U.B.C. Standard Rock. IV Range and geometric mean trace element 23 content (p.p.m.) of the minus~80 mesh f r a c t i o n of stream sediments associated with each of the major bedrock un i t s w i t h i n regional study area. V L i t h o l o g i c a l c h a r a c t e r i s t i c s of major 4-4- bedrock u n i t s w i t h i n the d e t a i l e d study area. VI Plant species and parts sampled f o r 55 trace element analysis VII Changes i n spectrographic procedure 57 (Tables I and I I ) introduced f o r analysis of rock material. VIII A n a l y t i c a l p r e c i s i o n f o r spectro- 58 graphic analysis of rock material, at the 95$ confidence l e v e l , calculated from 25 r e p l i c a t e analyses of U.B.C. Standard Rock. IX Operating conditions f o r Techtron 60 AA-4- Spectrophotometer X A. A n a l y t i c a l p r e c i s i o n (#) f o r Cu, Mn 61 and Zn i n s o i l and plant m a t e r i a l , at the 95$ confidence l e v e l , c a l c u l - ated from the r e s u l t s of atomic- absorption analysis of both standard and paired samples V l l l TABLE PAGE B. Arithmetic mean Cu, Mn-and Zn concen- 61 t r a t i o n s (p.p.m.) i n U.B.C. standard samples. XI A n a l y t i c a l p r e c i s i o n f o r molybdenum 62 i n plant and s o i l m a terial, at the 95$ confidence l e v e l , calculated from the r e s u l t s of co l o r i m e t r i c analysis of paired samples XII Range and geometric mean trace element 66 l e v e l s (p.p.m.) f o r major bedrock u n i t s w i t h i n d e t a i l e d study area XIII Range and geometric mean trace element 67 l e v e l s (p.p.m.) f o r various rock types w i t h i n Unit 3. XIV Comparison of trace element l e v e l s 69 (p.p.m.) wi t h i n dark grey to black shales of Unit 3 with estimates of average metal concentrations i n shales of a l l kinds and median l e v e l s w i t h i n North American black shales XV Range and arithmetic mean concen- 77 t r a t i o n s (p.p.m.) of Mo, Cu, Zn and Mn i n the minus-2 mm. f r a c t i o n of s o i l C horizons i n upland regions with i n the de t a i l e d study area. XVT Range and arithmetic mean concen- 78 t r a t i o n s (p.p.m.) of Mo, Cu, Zn, and Mn i n the minus-2 m.m. f r a c t i o n of s o i l C horizons i n the major r i v e r v a l l e y s XVII D i s t r i b u t i o n of HNO^/HCIO^ extract- 79 able metal concentrations i n selected s o i l p r o f i l e s XVIII Morphological c h a r a c t e r i s t i c s of s o i l 80 p r o f i l e s considered i n Table XVII :<XIX Range and arithmetic mean trace 81 element l e v e l s i n samples of volcanic ash XX Comparison of mean trace element l e v e l s (p.p.m.) i n s o i l C horizons i n upland areas with those i n associated bedrock 83 Range and arithmetic mean molyb- denum content of vegetation (p.p.m. dry weight) associated with various s o i l types Range and arithmetic mean manganese content on vegetation (p.p.m. dry weight) associated with various s o i l types. Range and arithmetic mean copper content of vegetation (p.p.m. dry weight) associated with various s o i l types. Range and arithmetic mean zinc content of vegetation (p.p.m. dry weight) associated with various s o i l types. Range and arithmetic mean concen- tration (p.p.m.) of Mo, Cu, Zn and Mn i n caribou and moose faeces Range and geometric mean trace element content (p.p.m.) of stream sediment associated with major bedrock types within.,the detailed study area and along the Canol Road Range and geometric mean trace element content (p.p.m.) of stream sediment associated with, (A) Unit 3, subdivided on the basis of stream pH, and (B) Yukon Group, subdivided topographically. Molybdenum, copper and manganese concentrations (p.p.m.) i n stream sediment and associated s o i l . Geometric mean trace element concen- trations (p.p.m.) i n rock and associated stream sediment Mean pH values of so i l s and stream waters associated with various bedrock units. X TABLE PAGE XXXI Range and arithmetic mean trace 114 element content (p.p.m.) of i r o n oxide p r e c i p i t a t e s from a c i d i c stream channels. XXXII Mean molybdenum, copper and manganese 116 concentrations i n stream sediment and vegetation, and associated stream pH values. x i LIST OF FIGURES FIGURE PAGE 1 D i s t r i b u t i o n of the p r i n c i p a l o, geological u n i t s w i t h i n the regional study area 2 Physiographic subdivisions of the 12 regional study area 3 Regional d i s t r i b u t i o n of Mo i n 25 minus-80 mesh f r a c t i o n of stream sediment from 10,000 meter squares 4- Regional d i s t r i b u t i o n of V i n minus-80 26 mesh f r a c t i o n of stream sediment from 10,000 meter squares 5 Regional d i s t r i b u t i o n of Ni i n minus- 27 80 mesh f r a c t i o n of stream sediment from 10,000 meter squares 6 Regional d i s t r i b u t i o n of Or i n minus-80 28 mesh f r a c t i o n of stream sediment from 10,000 meter squares 7 Regional d i s t r i b u t i o n of Cu i n minus-80 29 mesh f r a c t i o n of stream sediment from 10,000 meter squares 8 Regional d i s t r i b u t i o n of Pb i n minus-80 30 mesh f r a c t i o n of stream sediment from 10,000 meter squares 9 Regional d i s t r i b u t i o n of Sr i n minus-80 31 mesh f r a c t i o n of stream sediment from 10,000 meter squares 10 Regional d i s t r i b u t i o n of Mn i n minus-80 32 mesh f r a c t i o n of stream sediment from 10,000 meter squares 11 Regional d i s t r i b u t i o n of Co i n minus- 33 80 mesh f r a c t i o n of stream sediment from 10,000 meter squares 12 D i s t r i b u t i o n of p r i n c i p a l geological 4-3 u n i t s w i t h i n d e t a i l e d study area x i i FIGURE PAGE 13 Regosol i n grassland environment 4.6 northeast of MacMillan Pass 14 Brunisol on a dwarf b i r c h and 4.7 caribou moss covered knowl i n the main v a l l e y of the South MacMillan River 15 Gleysol developed on dwarf b i r c h f l a t s 48 northeast of MacMillan Pass 16 Stream sediment and rock sample i n pocket loc a t i o n s w i t h i n the d e t a i l e d study area 17 S o i l and vegetation sample s i t e i n pocket locations within the d e t a i l e d study area 18 S o i l and vegetation s i t e and stream i n pocket sediment sample lo c a t i o n s along the Canol Road between Ross River and MacMillan Pass x i i i ACKNOWLEDGEMENT The author i s gr e a t l y indebted to Dr. W. K. Fletcher who suggested and a c t i v e l y supervised t h i s p r o j e c t . The extensive assistance of Dr. V. C. Brink, p a r t i c u l a r l y i n c o l l e c t i o n and c l a s s i f i c a t i o n of plant samples, i s also g r e a t l y appreciated. Miss Ann Baxter, Mr. D h i l l o n , Mr. D. Marshall and Mr. M. Waskett-Myers analyzed many of the samples. Mr. Waskett-Myers also advised and assisted the author i n dr a f t i n g c e r t a i n of the f i g u r e s . Dr. R. V. Best i d e n t i f i e d several f o s s i l specimens. The tech n i c a l s t a f f of the De- partment of Geology, e s p e c i a l l y Mr. Ed Montgomery, ass i s t e d the author on several occasions. Support received from the mining industry i s also g r a t e f u l l y acknowledged. Data supplied by Spartan Explor- ations Ltd. Vancouver, o r i g i n a l l y c a l l e d attention to the study area. Atlas Explorations Ltd., Vancouver, supplied several hundred stream sediment samples. F i e l d quarters were provided by Hudson Bay Exploration and Development Co. Ltd. F i n a n c i a l support was provided by a Canada Council K i l l a m Award (Grant No. 6 9 - 0 0 5 7 ) , the National Research Council (Grants Nos. A 7 7 1 4 - and A5120) and the U n i v e r s i t y of B r i t i s h Columbia (Grant No. 2 1 - 9 6 8 7 ) . CHAPTER ONE INTRODUCTION -2- NUTRITIONAL SIGNIFICANCE OF CRUSTAL TRACE ELEMENT ABUNDANCES According to V. M. Goldschmidt "Modern geochemistry studies the amounts and the d i s t r i b u t i o n of the chemical elements i n minerals, ores, rocks, s o i l s , waters and i n the atmosphere" (Goldschmidt, 1954). Many elements are e s s e n t i a l to both plant and animal l i f e . Of the minor or trace elements f o r example, adequate supplies of i r o n , copper, cobalt, manganese, z i n c , molybdenum, selenium, chlorine and iodine are considered e s s e n t i a l to mammals (Schutte, 1964). Other trace elements such as lead, mercury and arsenic are w e l l known f o r t h e i r p o t e n t i a l l y t o x i c e f f e c t s . I f ingested i n s u f f i c i e n t amounts however, even the e s s e n t i a l elements can be t o x i c . For example, a high dietary intake of molybdenum, i n the presence of inorganic s u l f a t e , may induce a state of copper deficiency i n ruminants (Underwood, 1962). Knowledge of the regional d i s t r i b u t i o n of the elements, therefore, i s of considerable importance i n n u t r i t i o n a l studies and epidemiology. Trace elements i n most s o i l s and vegetation are u l t i m - a t e l y derived from the underlying bedrock. A c i d i c igneous, and coarse sedimentary rocks tend to contain r e l a t i v e l y low concentrations of the trace elements associated with n u t r i t i o n . For example, the coastal p l a i n sands of the Eastern United States support crops which are commonly de- f i c i e n t i n such elements as copper, i r o n , manganese and cobalt (Cannon, 1969). Metal t o x i c i t i e s , on the other hand, are commonly associated with shales. In Co. Limerick, Ireland, f o r example, t o x i c l e v e l s of selenium and molybdenum are present i n s o i l s and herbage overlying the Clare Shales, which contain up to 30 p.p.m. selenium and 150 p.p.m. molybdenum (Webb and Atkinson, 1965). S i m i l a r i l y , wheat crops grown i n the north- central p l a i n s of the United States contain t o x i c amounts of selenium, derived from selenium-rich volcanic ash layers w i t h i n the underlying shales (Cannon, 1969). APPLICATION OF STREAM SEDIMENT SURVEYS TO THE DETECTION OF TRACE ELEMENT IMBALANCES IN AGRICULTURE A stream sediment approximates a composite sample of weathered rock and s o i l material upstream from the sampling point (Webb, 1968). Soluble products of weathering may be incorporated i n t o the sediment by e i t h e r absorption or pre- c i p i t a t i o n . The trace element content of a stream sediment sample therefore, may r e f l e c t to some extent, that of the s o i l s , rocks and even vegetation i n the catchment as a whole. Stream sediment sampling has been used suc c e s s f u l l y -4- i n mineral exploration programs (Webb et a l , 1968). In Canada stream sediments are being u t i l i z e d i n pollution studies (Eortescue et a l , 1971). In the B r i t i s h Isles they have been used extensively to detect agricultural disorders arising from trace element imbalances (Thornton and Webb, 1969). In Co. Wicklow, Ireland, the cobalt content of stream sediments has been related to the occurrence and severity of cobalt deficiency i n sheep and cattle on soi l s derived from granite (Webb, 1964-). On the Vale of Clwyd, Wales, low manganese levels i n sediments (<500 p.p.m.) have been assoc- iated with low levels i n herbage and unthriftiness in l i v e - stock (Thornton and Webb, 1969). Drainage reconnaissance over part of Co. Limerick, Ireland, has outlined large areas characterized by high molybdenum values (up to 200 p.p.m.) related to an outcrop of marine black shale (Webb and Atkinson, 1965). Detailed studies have shown the anomalies to be associated with molyb- deniferous s o i l s and rocks. Though symptoms of molydenum toxic i t y have been reported i n cattle i n the molybdenum- anomalous region, the sediment pattern defined large areas where previously unsuspected sub-clinical molybdenum induced copper deficiency i s significantly inhibiting agricultural productivity. -5- THESIS OBJECTIVES During the course of a mineral exploration program undertaken by Spartan Explorations Ltd., Vancouver, i n the Hess Mountains, Yukon T e r r i t o r y , an area of over 100 square miles, characterized by stream sediments with anomalously high molybdenum contents (up to 50 p.p.m.), was recognized. Black shales, which were thought to be the source of the molybdenum, are common over a t o t a l area of more than 8,000 square miles i n the Eastern Yukon. In view of the possible existence of extensive regions characterized by enhanced molybdenum l e v e l s i n rock, s o i l and forage materials, t h i s study was undertaken (1) to i n v e s t i g a t e , using sediment samples c o l l e c t e d during a mineral exploration program, the regional extent of anomalous molybdenum l e v e l s i n an area of over 6,000 square miles i n the Eastern Yukon. (2) to determine, on a l o c a l scale, trace element contents of bedrock, s o i l and vegetation i n molybdenum-anomalous and non-anomalous regions. SECTION A REGIONAL STUDY CHAPTER TWO DESCRIPTION OP REGIONAL STUDY AREA -8- LOCATION AND ACCESS The regional survey area i n the Eastern Yukon extends from approximately 130° to 135° west longitude and 62° to 64-° north l a t i t u d e (Figure 1). I t i s accessible by a i r from the town of Ross River. The Canal Road, which traverses the southeastern h a l f of the area (Figure 1 ) , i s open between Ross River and the MacMillan Pass during the summer months. GEOLOGY The d i s t r i b u t i o n of the f i v e major geological units w i t h i n the regional study area i s indicated i n Figure 1. The geology has been described by Bostock (Map 890A, 1947), Roddick and Green (Maps 12 - 1961, 13 - 1961), Campbell (G.S.C. Memoir 352, 1967), Campbell and Wheeler (Map 1221A - 1967) and Blusson and Tempieman-Kluit (G.S.C. Paper 70-=-lA, 1970). Proterozoic to M i s s i s s i p p i a n metasedimentary and sedimentary s t r a t a underlie most of the area. These rocks are intruded by small, probably Cretaceous, g r a n i t i c stocks and are l o c a l l y o v e r l a i n by T e r t i a r y lavas. The Proterozoic rocks of the Yukon Group range i n composition from quartz-mica, graphite, and c h l o r i t e s c h i s t s i n the northwest, to quartzite and dark shales i n the central and southern regions. They are o v e r l a i n by a rather uniform ALASKA / I - , 1 G r o n o d i o r i t e , Q u a r t z M o n z o n i t e D E V O N I ) E3 I A N t o M I S S 1 S S 1 P P I A N C h e r t , C h e r t - p e b b i e c o n g l o m e r a t e , A r g i l l i t e Figure I. Distribution of the principal geological units within the regional s tudy a rea . -10- succession of Paleozoic cherts and shales. These dark, interbedded shales and cherts cover much of the eastern p o r t i o n of the area. Their estimated aggregate thickness i s 10,000 f e e t , with the basal p o r t i o n dominated by shale and the upper portio n by chert. Chert- pebble conglomerate, limestone, quartzite and p h y l l i t e are present i n minor amounts. G r a p t o l i t e s , found i n c e r t a i n shaly members, suggest an Ordovician to S i l u r i a n age f o r part of t h i s u n i t (Roddick & Green, 1961a). The rocks of the Earn Group, exposed i n the southwestern corner of the area, are Devonian to M i s s i s s i p p i a n i n age. They consist mainly of chert, chert-pebble conglomerate and a r g i l l i t e . Massive dark lava flows, exceeding 5,000 feet i n aggregate thickness, l o c a l l y o v e r l i e the Paleozoic s t r a t a . The upper flows are d a c i t i c , while the lower ones are domin- antly a ndesitic and b a s a l t i c . Several small granodiorite and quartz monzonite stocks intrude both the Precambrian and Paleozoic rocks. Hornfels, and l o c a l l y mineralized skarns, are developed near t h e i r contacts. A potassium-argon date on b i o t i t e s from the I t s i Range indi c a t e s a Middle Creta- ceous age f o r the g r a n i t i c rocks (Roddick and Green, 1961a). Several lead-zinc-copper v e i n and skarn deposits have been reported i n the area, and tungsten and molybdenum min- e r a l i z a t i o n i s associated with the g r a n i t i c i n t r u s i v e s (Findlay, 1969). At present the most promising deposits are the Tom Property (Hudson Bay Exploration and Development -11 Company L t d . ) , comprising stratabound galena and sphalerite i n Paleozoic shales, and the MacTung Property (American Metal Climax Incorporated), with p y r r h o t i t e - s c h e e l i t e m i n e r a l i z a t i o n i n a skarn zone surrounding a small stock. Both properties are located i n the northeast, near MacMillan Pass. GLACIATION Evidence of the most recent Pleistocene g l a c i a t i o n , the McConnell advance, i s abundant w i t h i n the study area (Hughes et a l , 1968). During the McConnell g l a c i a t i o n i c e accumulated i n the Hess Mountains up to an elevation of 5,000 feet (Bostock, 1948), and flowed westward onto the Yukon Plateau. Ice movement was c o n t r o l l e d to a great extent by the main drainage channels, which as a r e s u l t were consider- ably deepened, e s p e c i a l l y on the Stewart Plateau. In the MacMillan River v a l l e y the t o t a l thickness of g l a c i a l d r i f t generally ranges from 400 to 500 fee t . Normally i t consists of a basal boulder clay u n i t , o v e r l a i n by an i r r e g u l a r sequence of s i l t s , sands and gravels (McConnell, 1905). TOPOGRAPHY AND DRAINAGE The regional study area i s divided i n t o two major physiographic regions (Figure 2), the Hess Mountains i n the northeast, and the Eastern Yukon Plateau i n the southwest (Bostock, 1948). The Hess Mountains comprise a group of 1 3 4 ° 1 3 3 ° 1 3 2 ° 131° STEWART H £ PLATEAU MOUNTAINS LAN R I V MACMILLAN + SM 'MAC L E G E N D MS - Mount Sheldon KP - Keele Peak SM - Selenous Mountain MP - MacMillan Pass M I L E S IR - Itsi Range ° <j 16 PLATEAU I 3 0 c 1 KP 'MP 4- IR o el f ^ PELLY PLATEAU 1 3 5 ° [ 3 4 ° 1 3 3 ° Figure 2 . Physiographic subdivisions o f the reg iona l study area. — 1 — 1 3 2 ° 131° 1 3 0 ° -13- i r r e g u l a r , somewhat subdued ranges, underlain predominantly by Paleozoic sediments. The highest peaks, i n excess of 7,000 fe e t , are generally cored by g r a n i t i c i n t r u s i v e s . The Eastern Yukon Plateau i s subdivided from northwest to southeast, i n t o the Stewart, MacMillan and P e l l y Plateaus. Within the study area both the Stewart and MacMillan Plateaus consist of tablelands, 4,000 to 5,000 feet i n elevation, dissected by a w e l l developed network of struc- t u r a l l y c o n t r o l l e d v a l l e y s . Small mountain ranges, r a r e l y exceeding 7,000 feet i n elevation, commonly crown these t a b l e - lands. The P e l l y Plateau, on the other hand, i s only m i l d l y dissected, with a few small mountains separated by broad r e l a t i v e l y shallow v a l l e y s . The Hess and MacMillan Rivers drain most of the region. Both head i n the Hess Mountains and flow westward across the plateau. CLIMATE Cut o f f from the p r e v a i l i n g westerly winds by the peaks of the Saint E l i a s Range, the climate i s predominantly continental, characterized by r e l a t i v e l y l i t t l e r a i n f a l l and extreme temperature ranges (Kendrew and Kerr, 1955). The mean d a i l y temperatures range from approximately -20°P during the winter months, to about 60°F i n the summer. The high summer mean i s i n part due to the nearly continuous sunlight experienced at that time. There i s no pronounced rain y -14- season, though most of the p r e c i p i t a t i o n f a l l s i n l a t e summer and e a r l y f a l l . The t o t a l annual p r e c i p i t a t i o n increases from west to east, from about twelve inches on the plateau to over twenty inches i n the mountains. SOIL Topography i s one of the primary factors c o n t r o l l i n g the d i s t r i b u t i o n of s o i l types. Regosols, and to a l e s s e r extent B r u n i s o l s , are common on the w e l l drained upland regions, whereas f l a t poorly drained v a l l e y bottoms are characterized by Gleysols and Organic s o i l s . Because of the cold climate, r e l a t i v e l y rugged topography and recent g l a c i - a t ion the depth of the solum of mineral s o i l s seldom exceeds two f e e t . Permafrost i s d i s t r i b u t e d discontinuously through- out the area. A one to two inch l a y e r of volcanic ash underlies the organic surface horizon i n most areas. Capps (1915) has suggested that the ash was derived from a major volcanic eruption i n the Saint E l i a s Range approximately 1,500 years ago. VEGETATION The d i s t r i b u t i o n of plant species i s c h i e f l y topo- gr a p h i c a l l y c o n t r o l l e d . Dense fo r e s t s occupy the bottoms of the major r i v e r v a l l e y s . The predominant species i s white spruce (Picea glauca), though several other species i n c l u d i n g black spruce (Picea mariana), aspen (Populus tremuloides), -15- and alpine f i r (Abies lasiocarpa) are present (McConnell, 1903). The lower parts of the v a l l e y slopes, up to the t r e e l i n e at about 4,500 f e e t , are covered with spruce and l o c a l l y willow ( S a l i x ) and alder (Alnus). Dwarf b i r c h and caribou moss range between the t r e e l i n e and scree slopes at the highest a l t i t u d e s i n mountainous regions. WILDLIFE A wide v a r i e t y of mammalian species are known to i n - habit the region. Of the l a r g e r mammals the g r i z z l y bear (Ursus h o r r i b i l i s ) , caribou (Rangifer a r c t i c u s ) and mountain sheep (Ovis d a l l i ) roam c h i e f l y above t i m e r l i n e , while the black bear (Ursus americanus) and moose (Alces americana) occupy the forested v a l l e y bottoms. Mountain sheep and caribou consume mainly grasses, sedges and willows (Rand, 1945b). In the winter, however, caribou subsist almost en- t i r e l y on caribou moss. Moose consume willows and assorted aquatic p l a n t s , while grasses, b e r r i e s and roots are the major food sources f o r the bear population. CHAPTER THREE REGIONAL GEOCHEMICAL RECONNAISSANCE -17 SAMPLE COLLECTION AND PREPARATION Atlas Explorations Limited, Vancouver, contributed nearly 600 minus-80 mesh stream sediment samples. They were c o l l e c t e d during the summers of 1968 and 1969, o r i g i n a l l y f o r mineral exploration purposes, over an area of approximately 7,000 square miles i n the Eastern Yukon. Sample density ranges from about one sample per 5 square miles to approximately one sample per 50 square miles. Catchment areas upstream from sample s i t e s are normally from two to f i v e square miles. SAMPLE ANALYSIS Stream sediments were analyzed by a semi-quanti- t a t i v e DC-arc spectrographic procedure (Fletcher, pers. comm.) fo r f i f t e e n elements: Sr, Ba, Cr, Co, N i , Ag, T i , Cu, V, Mo, B i , Ga, Sn, Pb and Mn. Pr e - A n a l y t i c a l Treatment A small amount of minus-80 mesh stream sediment mat- e r i a l was i g n i t e d at 550°C f o r three hours. One hundred milligrams of i g n i t e d sample were then mixed with an equal weight of graphite, containing indium as an i n t e r n a l standard, and homogenized by shaking i n a Spex " M i x e r / M i l l " f o r three minutes. The mixture was then packed i n t o the ca v i t y of a graphite anode and sealed with one drop of sugar s o l u t i o n -18- (20 gm. sucrose dissolved i n 75 ml. of ethanol and 25 ml. of d i s t i l l e d water). A n a l y t i c a l Method The equipment and operating conditions f o r stream sediment analysis are given i n Table I . Metal concentrations were estimated by v i s u a l comparison of the sample spectra with those of synthetic standards as described by Nichol and Henderson-Hamilton (1965). The spectral l i n e s used and approximate detection l i m i t s are indicated i n Table I I . Table I Spectre-graphic equipment and operating conditions. Spectrograph Source Arc/Spark Stand Microdensitometer Anode Cathode 3-Step Neutral F i l t e r Neutral F i l t e r Emulsion Wavelength Range Mask S l i t Width Arc Current P l a t e Processing Arc Gap Exposure Time Hilger-Watts automatic quartz spectograph Electro-Matic Products (ARL), Model P6KS, Type 2R41 Spex Industries #9010 ARL Spectroline Scanner #2200 Graphite, National L3709SPK Graphite, National L3803AGKS Spex Industries #1090, 5$ 20$ and 100$ transmitance Spex Industries #9022, 20$ transmitance Spectrum Analysis #1 2775-4800 A° 17 mm. 15 M. 12a developer Kodak D-19 3 min. at 23°C stopbath Kodak 30 sec. f i x e r Kodak 5 min. 4 m.m. 20 sec. - 2 0 - Table I I Wave lengths and approximate detection l i m i t s f o r spectral l i n e s used to estimate element abundances i n stream sediments. Element Wavelength (A) Detection Limit (p.p.m.) Sr 4607.33 50 Ba 4554.04 1 Cr 4254.35 1 Co 3453.51 5 Ni 3414.77 5 Ag 3382.89 1 T i 3372.80 20 Cu 3273.96 10 In 3256.09 1 V 3185.40 20 Mo 3170.35 2 B i 3067.72 10 Ga 2943.64 1 Sn 2839.99 5 Pb 2833.07 2 Mn 2801.06 1 -21- Table III Analytical precision for spectrographs.c analysis of stream sediment at the 95$ confidence l e v e l , calculated from 50 separate analyses of U.B.C. Standard Rock. Element Mean Concentration (p.p.m.)) Precision (at 95$ confidence level) Sr 1285 85 Ba 1520 85 Cr 8 90 Co 9 80 Ni 8 85 Ag n.d.* - Ti 14-10 60 Cu 15 50 In 25 45 V 55 60 Mo n.d.* - Bi n.d.* - Ga 15 30 Sn n.d.* - Pb 4 95 Mn 275 85 *n.d. = not detected -22- A n a l y t i c a l Control A n a l y t i c a l p r e c i s i o n was estimated by r e p l i c a t e analysis of a standard rock sample included i n each analyt- i c a l batch (Fletcher, pers. comm.). P r e c i s i o n , at the 95$ confidence l e v e l , i s in d i c a t e d , f o r each element, i n Table I I I . Samples with l e s s than 10 p.p.m., or greater than 50 p.p.m. of the i n t e r n a l standard indium, were re-analized. PRESENTATION OF DATA Range and geometric mean trace element values f o r stream sediments derived from each of the p r i n c i p a l geological u n i t s are indicat e d i n Table IV. Figures 3 to 11 show the regional d i s t r i b u t i o n s of Mo, V, N i , Cr, Cu, Pb, Sr, Mn and Co. Ag, B i and Sn, which were detected i n only a few samples, Ba and T i , which were commonly present i n concentrations above that of the highest standard, and Ga, which i s very uniformly d i s t r i b u t e d over a l l rock types, are not considered. D i s t r i b u t i o n maps were compiled by computing the geometric mean trace element l e v e l s w i t h i n the 10,000 meter squares of the National Topographic Series map sheets (Fletcher, pers. comm.). These mean values were then grouped according to s p e c i f i c c lass i n t e r v a l s , the l i m i t s of which correspond to the midpoints between the spectrograph!c standards. This method of data presentation has the advantage - 2 3 - Table IV Range and geometric mean trace element content (p.p.m.) of minus-80 mesh f r a c t i o n of stream sediments associated with each of the major bedrock units within the regional study area. BEDROCK ELEMENT YUKON GROUP .EARN GROUP UNIT 3 GRANITIC ROCK VOLCANIC ROCK Proterozoic Paleozoic Paleozoic Cretaceous T e r t i a r y s c h i s t , quart- z i t e , p h y l l i t e shale chert, quartzite dark shale, chert granodiorite dacite, andesite basalt Mo* 2 2-3 3 2-6 11 3-35 2 2-4 2 2-5 V 110 75-170 200 120-360 480 250-930 80 40-170 170 85-350 Ki 65 50-85 70 50-100 140 60-320 35 15-90 45 30-75 Cr 140 100-190 120 90-150 180 120-270 60 25-130 95 65-150 Cu 50 30-80 \ 60 35-95 90 50-160 25 15-45 45 25-90 Pb 18 11-28 18 • 8-20 15 8-29 17 13-21 20 14-29 Sr 270 150-470 330 210-520 200 • 100-420 310 210-470 720 500-1030 Mn 770 390-1550 970 630-I500 430 . 170-1090 ' 370 220-620 860 530-1390 Co 35 25-55 30 20-45 35 15-65 20 10-35 30 20-50 Number of Samples 123 28 295 18 17 t Range = geometric mean ± log standard deviation * Values less than 2 p.p.m. taken as 1 p.p.m. -24. of emphasizing the regional patterns by smoothing over l o c a l i r r e g u l a r i t i e s . However, because of the uneven d i s t r i b u t i o n of sample s i t e s , the number of sediment samples used to calc u l a t e each map value ranges from one up to about ten. Consequently, i n t h i s case, i s o l a t e d anomalous values could give a f a l s e i n d i c a t i o n of l o c a l background l e v e l s . TRACE ELEMENT PATTERNS IN STREAM SEDIMENTS Regional d i s t r i b u t i o n patterns of the various elements may be subdivided i n t o two r e l a t i v e l y d i s t i n c t groups. In the f i r s t , which includes molybdenum, vanadium, n i c k e l , copper and chromium, the highest concentrations occur i n the northeast, c h i e f l y underlain by the dark shales and cherts of Unit 3 . In the second, comprising lead, strontium, man- ganese and cobalt, high values are most common i n the south- west. D i s t r i b u t i o n of Mo, V, N i , Cr and Cu As indicated i n Table IV, sediments associated with Unit 3 t y p i c a l l y contain enhanced molybdenum values (11 p.p.m.). Concentrations i n sediments derived from other u n i t s are generally low and often below the 2 p.p.m. detection l i m i t . High concentrations, up to 100 p.p.m., are most common i n the c e n t r a l p o r t i o n of Unit 3 (Figure 3 ) . Molybdenum l e v e l s over the small lens*, of Unit 3 rock i n the south-central 1 3 4 ° 1 3 3 ° 1 3 2 ° 131° F i g u r e 3 . Regiona l d i s t r i b u t i o n of Mo in m i n u s - 8 0 mesh f rac t i on of stream sediment 10,000 meter s q u a r e s . 1 3 4 ° 1 3 3 ° 1 3 2 ° 131° 1 3 5 ° 1 3 4 ° 1 3 3 ° 1 3 2 ° ' 3 1 ° Figure 4 . Regional , d is t r ibut ion of V in m i n u s - 8 0 mesh f r a c t i o n of s t ream sed iment f r o m 10 ,000 meter s q u a r e s . 1 3 4 ° 1 3 3 ° 1 3 2 ° 131° Figure 5 . Regional d is t r ibu t ion of Ni in m i n u s - 8 0 mesh f rac t ion o f s t ream s e d i m e n t f r o m 1 0 , 0 0 0 me te r s q u a r e s . 1 1 3 5 IT . « Figure 6. Regional d i s t r i b u t i o n of Cr In m i n u s - 8 0 m e s h f r a c t i o n of s t r e a m sed.ment f r o m 10,000 meter squares. i ro oo i 6 3 < H he 3 ° M e a n C u C o n t e n t (p.p.m.) > I 6 0 7 0 - 1 5 0 3 2 - 6 9 < 3 2 W I L E S 0 8 I I 1 ro 13 5 ° —r 1 3 4 Figure 7. Regiona l d i s t r i b u t i o n of Cu in m i n u s - 8 0 m e s h f r a c t i o n of s t r e a m sed 1 0 , 0 0 0 m e t e r s q u a r e s . iment f r o m 1 0 , 0 0 0 meter s q u a r e s . 10,000 meter s q u a r e s . - 10,000 meter squares Figure I I . Regional d is t r ibu t ion of Co in m i n u s - 8 0 mesh f r a c t i o n of s t r e a m s e d i m e n t f r o m ^ 10 ,000 meter squares . ! -34- p o r t i o n of the study area are somewhat lower than those associated with the main body of t h i s u n i t to the northeast. Sediments from each geological u n i t are characterized by r e l a t i v e l y d i s t i n c t vanadium l e v e l s (Table IV). Con- sequently, the p o s i t i o n s of a l l major geological contacts are c l e a r l y evident i n the vanadium d i s t r i b u t i o n pattern (Figure 4). The northern contact of the Earn Group with the Yukon Group f o r example, which i s i n d i s t i n g u i s h a b l e i n the d i s t r i b u t i o n patterns f o r the other elements, i s defined by an abrupt change i n concentration from approximately 250 p.p.m. over the Earn Group to about 100 p.p.m. over the Yukon Group. The highest vanadium concentrations, up to 1,500 p.p.m., are associated with Unit 3, and the lowest with the g r a n i t i c rocks. The d i s t r i b u t i o n of n i c k e l (Figure 5) resembles that of vanadium, though the l o c a t i o n s of the major geological contacts are only vaguely r e f l e c t e d . N i c k e l concentrations over the small lensc of Unit 3 southwest of Selenous Mountain (Figure 2) are r e l a t i v e l y e r r a t i c , with adjacent values d i f - f e r i n g by as much as 140 p.p.m. As indic a t e d i n Figure 6, the chromium pattern i s subdued i n comparison with those of the previously mentioned elements. This uniformity i s r e f l e c t e d i n the s i m i l a r mean chromium l e v e l s (120 to 180 p.p.m.) associated with the three most abundant rock types (Table IV). The highest mean copper contrations (90 p.p.m.) are associated with Unit 3, while the lowest (25 p.p.m.), occur - 3 5 - i n sediments derived from g r a n i t i c rocks. A few s t r i k i n g l y high copper values, up to 500 p.p.m., occur over Unit 3 (Figure 7)"*. Large scale regional v a r i a t i o n s i n the trace element content of stream sediments over both Unit 3 and the Yukon Group are apparent f o r many of these elements. For example, r e l a t i v e l y high molybdenum (>8 p.p.m.), vanadium (>320 p.p.m.), n i c k e l (>150 p.p.m.) and chromium (>150 p.p.m.) values i n the ce n t r a l p o r t i o n of the main body of Unit 3 contrast with moderate to low values over the narrow northwestern arm of t h i s u n i t . S i m i l a r i l y , over the Yukon Group, r e l a t i v e l y en- hanced vanadium (>150 p.p.m.), chromium (>150 p.p.m.) and to a l e s s e r extent n i c k e l (>70 p.p.m.) values are more abun- dant i n the southeast than i n the northwest. Certain i s o l a t e d anomalous values over both Unit 3 and the Yukon Group may r e f l e c t the presence of small i n - clusions of foreign bedrock. The p o s i t i o n of a g r a n i t i c stock, f o r example, about twenty miles northwest of the I t s i Range (Figure 2 ) , i s c l e a r l y i n d i c a t e d by anomalously low trace element l e v e l s (Figures 3 to 7). Isolated high molyb- denum (>14 p.p.m.) and vanadium (>320 p.p.m.) values (Figures 3 and 4-), situated about twenty miles northwest of Selenous Mountain (Figure 2) over the Yukon Group, strongly suggest the presence of a small unmapped o u t l i e r of Unit 3 . -36- D i s t r i b u t i o n of Pb, Sr, Mn and Co Concentrations of these elements i n stream sediments derived from Unit 3 are not p a r t i c u l a r l y enhanced. With the exception of cobalt, t h e i r d i s t r i b u t i o n patterns t y p i c a l l y d isplay l i t t l e geological c o n t r o l . Range and mean lead values associated with a l l f i v e major geological u n i t s are remarkably s i m i l a r (Table IV). Consequently the d i s t r i b u t i o n pattern f o r lead i s very uniform (Figure 8 ) . Five anomalously high values (up to 180 p.p.m.) are i n d i c a t e d i n Figure 8, four of which occur over Yukon Group rocks. High lead values i n sediments draining T e r t i a r y volcanic rocks, about twenty-five miles south of Selenous Mountain, are not apparent i n Figure 8 due to d i l u t i o n of the anomalous samples with surrounding ones, i n the same U.T.M. square, with low lead contents. Strontium l e v e l s i n stream sediments are p a r t i c u l a r l y e r r a t i c over Unit 3 (Figure 9). Both abnormally high (>750 p.p.m.) and low (<150 p.p.m.) values are confined, with few exceptions, to regions underlain by Unit 3 . As indicat e d i n Table IV, the mean strontium concentration i n sediment derived from T e r t i a r y volcanics (720 p.p.m.) i s s u b s t a n t i a l l y higher than mean l e v e l s associated with other rock types. R e l a t i v e l y wide manganese concentration ranges are associated with each of the major geological u n i t s (Table IV). As a r e s u l t , the d i s t r i b u t i o n pattern f o r manganese (Figure 10), l i k e that of strontium, i s e r r a t i c . High manganese - 3 7 - values are t y p i c a l l y associated with the Yukon Group, Earn Group and T e r t i a r y volcanic rocks. The r e l a t i v e l y uniform d i s t r i b u t i o n of cobalt values (Figure 11) i s r e f l e c t e d i n the narrow range of mean cobalt concentrations (20 to 35 p.p.m.) i n sediments derived from the various bedrock u n i t s . Nevertheless, the p o s i t i o n s of the boundaries of both the Earn Group and the T e r t i a r y volcanics are c l e a r l y r e f l e c t e d i n the cobalt d i s t r i b u t i o n pattern. DISCUSSION OF DISTRIBUTION PATTERNS Relationship to Bedrock Composition Data are av a i l a b l e only on the regional d i s t r i b u t i o n of molybdenum withi n the g r a n i t i c rocks. Garrett (1971a) has reported that the mean molybdenum concentration i n a l l major stocks i s c h a r a c t e r i s t i c a l l y l e s s than 2 p.p.m. and never exceeds 6 p.p.m. Low molybdenum l e v e l s i n stream sediments derived from these rocks (Table IV) are i n excellent agree- ment with Garrett's f i g u r e s . Gleeson (1967) has noted enhanced molybdenum values (occasionally> 1 0 p.p.m.) i n stream sediments associated with graphite and p y r i t e - r i c h p h y l l i t e s i n the Keno H i l l region, Yukon T e r r i t o r y . These findings are consistent with the high mean molybdenum l e v e l (11 p.p.m.) i n sediments derived from the Unit 3 rocks, which include s i g n i f i c a n t amounts of org a n i c - r i c h , occasionally p y r i t e bearing, shales. - 3 8 - Depending upon the influence of secondary environ- ment, trace element levels in stream sediment should r e f l e c t , to some extent, concentrations i n associated bed- rock (Webb et a l . , 1 9 6 8 ) . Thus, Table IV suggests that the dark cherts and shales of Unit 3 are l i k e l y enriched, relative to the other geological units, i n molybdenum and vanadium, and to a lesser extent nickel, copper and chromium. Similarly, the Tertiary volcanics l i k e l y contain large amounts of strontium, while the levels of both cobalt and lead are probably very similar i n a l l of the major bedrock types. Relationship to Glaciation As previously noted, during the Pleistocene, g l a c i a l ice accumulated i n the Hess Mountains (Figure 2 ) and flowed westward across the Yukon Plateau. Interpretation of stream sediment patterns i n terms of bedrock geology could there- fore be complicated by the presence of exotic d r i f t over geological units i n the west. The generally sharp change i n sediment molybdenum, vanadium and nickel values (Figures 3 , 4- and 5 ) across the contact between Unit 3 and the main body of the Yukon Group however, suggests that the influence of glaciation on regional sediment patterns has been re l a - t i v e l y slight. -39 - Possible Relationship to Animal N u t r i t i o n In Ireland and the United Kingdom molybdenum l e v e l s of over 10 p.p.m. i n stream sediment have delineated regions wherein abnormally high molybdenum concentrations i n s o i l s and herbage give r i s e to molybdenum induced hypocuprosis and molybdenosis (Thornton and Webb, 1969). Comparably high values are common over large areas underlain by Unit 3, espec- i a l l y i n the east. A d e t a i l e d study was therefore undertaken to r e l a t e the regional geochemical patterns to molydenum l e v e l s i n bedrock, s o i l s and vegetation. P a r t i c u l a r a t t e n t i o n was given to sampling those plant species l i k e l y to be consumed by moose and caribou. SECTION B DETAILED STUDY CHAPTER IV DESCRIPTION OP DETAILED STUDY AREA LOCATION AND ACCESS Detailed geochemical in v e s t i g a t i o n s were undertaken i n an area of approximately 100 square miles, near the c r e s t l i n e of the Hess Mountains, i n the v i c i n i t y of MacMillan Pass (Figure 1). Access i s provided by both the Canol Road, which i s open between the v i l l a g e of Ross River and MacMillan Pass during summer months, and a small a i r s t r i p which i s situated i n the v a l l e y of the South MacMillan River, a few miles southwest of the pass. GEOLOGY Unit 3 rocks are most abundant of the three major geo- l o g i c a l u n i t s w i t h i n the det a i l e d study area (Figure 12). Much of the northern regions, however, are underlain by the Yukon Group. A few g r a n i t i c stocks, t y p i c a l l y l e s s than three miles i n diameter, intrude both Unit 3 and the Yukon Group. L i t h o l o g i c a l c h a r a c t e r i s t i c s of rock material sampled are summarized i n Table V. Of p a r t i c u l a r i n t e r e s t i s the wide v a r i e t y of rock types comprising Unit 3, in c l u d i n g l i g h t to dark colored shale, s i l t s t o n e , chert-pebble conglomerate and limestone. No cherts, reported by Roddick and Green (1961a) to be common within t h i s u n i t were noted, though the l i g h t grey shales are t y p i c a l l y very s i l i c e o u s . S t y l i o l i n a , observed i n c e r t a i n limestone samples (Best, pers. comm.), suggest a Middle i:Silurian to Upper Devonian age f o r at l e a s t a portion of Unit. 3. Tight f o l d i n g , complex f a u l t i n g and QUATERNARY Unconsolidated glacial and alluvial LEGEND deposits CRETACEOUS Granodior i te ORDOVICIAN to MISSISSIPPIAN Shale,s i l ts tone,cher t - pebble conglomerate, l imestone PROTEROZOIC P h y l l i t e , schist / Geological contact ^ 6 0 0 0 " Contours Stream ••••»••••-̂ Lake Road " MILES 0 | 2 3 4 Figure 12. Distribution of principal geological units within the detai led study area. Table V Lithologlcal characteristics of major bedrock units within the detailed study area. AGE GEOLOGICAL UNIT DESCRIPTION KESOZOIC (Cretaceous?) GRANITIC ROCK Biotite Granodiorite: disseminated sulfides relatively r a r e . Dark grey to black Shale: organic carbon abundant; small (50$)* spherical s i l i c a grains (<. 5m. m. in diameter) resembling diatoms (Best, pers. comm.) common i n siliceous varieties; locally euhedral pyrite crystals occupy cores of s i l i c a spheres. i s ! in Medium to light grey Shales organic carbon less common (lOJi)* than in black s h a l e ; certain varieties are very rich i n s i l i c a ) no true cherts,with conchlodAl fracture, were noted. | i PALEOZOIC (Middle S i l u r - ian to Upper Devonian i n part) UNIT 3 SI XI CE I Dark Siltstonei chiefly interbedded s i l t y , s h a l e y and (30$) * sandy laminations; i n d i v i d u a l laminations range from less than one to a few millimeters in thickness; s i l t y laminations are most common and sandy ones Inar.t ccinoi.! organic carbon is abundant in shaley ay.d s i l t y layers. Conglomeratei associated with siltstonesi angular chert ( 5 % ) * pebbles (up to 10 m.m. in length) are common; black shale and quartzite pebbles are relatively r a r e ; gradded bedding may be present. CA LC AR EO US  Dark grey to black Limestone; fine grained; organic ( S i ) * carbon common; loc a l l y fossiliferous ; contains S t v l i o l i n a (Best. Ders. comm.) which ranges from Kiddle Silurian to Upper Devonian (Moore, 1 9 6 2 ) . PROTEROZOIC YUKON GROUP Chlorite Schist; mainly chlorite with some quartz. Quartz P h i l l i t e i mainly quartz with minor muscovite and chlorite. * re l a t i v e abbundance of Unit 3 rock material sampled for analysis -4-5- the absence of d i s t i n c t i v e marker horizons combine to make determination of r e l a t i v e s t r a t i g r a p h i c p o s i t i o n s of various Unit 3 l i t h o l o g i e s d i f f i c u l t . SOIL Each of nearly 100 s o i l p r o f i l e s examined was c l a s s i f i e d to the subgroup l e v e l according to the c l a s s i f i c a t i o n system of the Canadian Department of Agriculture (1970). Members of the Regosolic (Figure 13), B r u n i s o l i c (Figure 14-), G l e y s o l i c (Figure 15) and Organic Orders are recognized. Regosols are the most abundant Order, comprising nearly seventy percent of the s o i l s examined. They are d i s t r i b u t e d throughout a wide v a r i e t y of environments ranging from the f l o o r s of the MacMillan and Ross River v a l l e y s , to the mountain- ous uplands above t i m e r l i n e . B r u n i s o l s , Gleysols and Organic s o i l s are generally confined to main v a l l e y bottoms. Both Gleysols and Organic s o i l s , c h a r a c t e r i s t i c of poorly drained environments, are commonly saturated with water w i t h i n one foot or l e s s of the s o i l surface. Brunisols develop on porous, w e l l drained parent materials. Their v i r t u a l absence i n upland regions may be due to rapid erosion i n these areas. A discontinuous ash l a y e r , generally l e s s than two inches t h i c k , separates the L-H from the underlying mineral horizon i n many s o i l s (Figures 13 and 14-). Permafrost was encountered at a vari a b l e depth i n about ten percent of the s o i l s examined. -46- Figure 13. Regosol i n grassland environment northeast of MacMillan Pass ( S i t e 33). • Note lack of p r o f i l e development. (Scale i n inches) _47- Figure 14. Brunisol on a dwarf b i r c h and caribou moss covered k n o l l i n the main v a l l e y of the South MacMillan River (Sit e 19) . Note leached Ae horizon overlying yellowish-brown Bm horizon. -48- Figure 15. Gleysol developed on dwarf b i r c h f l a t s north- east of MacMillan Pass (Site 2 9 ) . Note mottled Cg horizon overlying permafrost zone, Cz (scale i n inches). -49- I t i s common beneath dwarf b i r c h f l a t s northeast of MacMillan Pass and i n the densely forested regions of the MacMillan and Ross River v a l l e y s . The absence of permafrost i n upland regions may be due to r e l a t i v e l y sparse vegetation and rapid drainage i n these areas. VEGETATION D i s t r i b u t i o n of plant types i n the deta i l e d study area i s c o n t r o l l e d p r i m a r i l y by topography and drainage. Grasses and willow characterize much of the f l a t wet f l o o r of the South MacMillan River v a l l e y . Comparatively wel l drained k n o l l s , scattered near the margins of the v a l l e y f l o o r , are covered c h i e f l y by dwarf b i r c h (Betula glandulosa) and caribou moss (Cladonia a l p e s t r i s ) . Near the head of the v a l l e y , i n the v i c i n i t y of MacMillan Pass, these k n o l l s merge into ex- tensive dwarf birch-caribou moss f l a t s . With the exception of c e r t a i n lichens such as Umb i l i c a r i a , summits of most mountains are e s s e n t i a l l y devoid of vegetation. At lower elevations li c h e n s and dwarf b i r c h become abundant. At about 4,000 f t . alpine f i r (Abies lasiocarpa) replaces dwarf b i r c h as the dominant woody species. Mixed stands of alpine f i r and white spruce (Picea glauca) blanket the lower portions of v a l l e y walls i n the southwestern corner of the de t a i l e d study area. Shrubs such as white heather (Cassiope tetragona) and crowberry (Empetrum nigrum) are common on k n o l l s i n v a l l e y f l o o r s and at lower elevations along v a l l e y w a l l s . Porbs,: -50- i n c l u d i n g fireweed (Epilobium l a t i f o l i u m ) and l u p i n (Lupinus a r c t i c u s ) , and various grasses are c h a r a c t e r i s t i c of alpine meadows, which occur near the heads of many t r i b u t a r y streams draining i n t o the main v a l l e y of the South MacMillan River. Certain meadows and adjacent uplands, underlain by dark Unit 3 limestone, c h a r a c t e r i s t i c a l l y support a s t r i k - i n g l y wide v a r i e t y of plant types. Caribou moss and dwarf '.. b i r c h however are conspicuously absent i n these calcareous environments. CHAPTER V SAMPLE COLLECTION, PREPARATION AND ANALYSIS -52- SAMPLE COLLECTION AND PREPARATION Between June 15th and J u l y 31st, 1971, approximately 1,100 samples were c o l l e c t e d w i t h i n the d e t a i l e d study area and along the Canol Road. Of these approximately 120 were stream sediments, 350 s o i l , 350 vegetation, 250 rock and 30 animal faeces. STREAM SEDIMENT Stream sediment sample s i t e s are indicated i n Figures 16 and 18. Fine, a c t i v e , organic free sediment was c o l l e c t e d where po s s i b l e . At each sample s i t e b r i e f descriptions were made of the stream and i t s load, and stream water pH was measured with BDH L i q u i d Universal Indicator. Samples were c o l l e c t e d i n k r a f t paper bags and oven dried i n the f i e l d . A p o r c e l a i n mortar was used to disaggregate samples i n the laboratory. A f t e r thorough mixing, a 10 to 15 g. sub- sample was passed through a minus-80 mesh nylon, sieve, and f i n e s were retained f o r spectrographic a n a l y s i s . ROCK Rock sample loc a t i o n s are shown i n Figure 16. Most samples were c o l l e c t e d as continuous chips taken perpendicular to bedding of selected rock sections. Each sample consisted of a mixture of small, l i t h o l o g i c a l l y s i m i l a r chips, c o l l e c t e d over an i n t e r v a l of ten s t r a t i g r a p h i c f e e t . A few random chip samples were also obtained, c h i e f l y from small stream exposures. A representative specimen of each major l i t h o l o g y sampled was taken f o r t h i n section examination. I n i t i a l l y rock chips were passed through a jaw crusher and then between ceramic p l a t e s . A f t e r thorough mixing a 10 g. sub-sample was ground i n a Spex "Shatterbox" to minus- 100 mesh. Between runs the jaw crusher and ceramic p l a t e s were cleaned with compressed a i r and brushes, and the dish of the Shatterbox was rinsed i n tap water and dried with acetone. Samples were ground i n numeric order to ensure that, i f contamination occurred, i t s source could be r e a d i l y ident- i f i e d . SOIL Figures 17 and 18 show loc a t i o n s of the nearly 100 s o i l p r o f i l e s examined. At each s o i l s i t e a small p i t was dug and each s o i l horizon i d e n t i f i e d and i t s morphology noted. Vegetation, drainage and parent m a t e r i a l , as well as other important vari a b l e s i n the s o i l environment were also des- cribed. Samples of each s o i l horizon were c o l l e c t e d i n k r a f t bags and oven dried i n the f i e l d . Coarse rock chips from C horizons were c o l l e c t e d separately. Mineral and organic horizons selected f o r trace element analysis were disaggregated i n the laboratory with a po r c e l a i n mortar. Because i n a g r i c u l t u r e , trace element content of s o i l i s t y p i c a l l y expressed i n terms of the minus-2 m.m. f r a c t i o n , disaggregated samples were passed through a 2 m.m. nylon: sieve. Fines were then mixed and a 10 g. sub-sample ground to minus-100 mesh i n a "Shatterbox1! Organic horizon ma t e r i a l , -54- intended f o r pH measurement, was i n i t i a l l y ground i n a rotary blender. VEGETATION Plant material was c o l l e c t e d i n a roughly 10 x 10 m. perquadrat i n the v i c i n i t y of each s o i l p i t . Species common over a wide range of s o i l parent materials and a l t i t u d e s were sampled p r e f e r e n t i a l l y . Sampling procedures f o r various plant types c o l l e c t e d are indicated i n Table VI. Samples, i n large paper bags, were a i r dried as soon as possible i n the f i e l d and again at 70°0 i n the laboratory, before being ground i n a Wiley m i l l . FAECES Where available,samples were taken of both caribou and moose faeces. A few grams of dried sample were ground i n a small blender p r i o r to digestion. SAMPLE ANALYSIS Stream sediment and rock samples were analyzed by a semiquantitative DC-arc spectrographic procedure f o r Sr, Cr, Co, N i , Cu, V, Mo, Pb and Mn. Atomic-absorption spectro- photometry was used to measure Cu, Mn and Zn l e v e l s i n s o i l , vegetation and faeces, and Zn i n selected sediment and rock samples (Fletcher, pers. comm.). Mo was determined co l o r - m e t r i c a l l y i n s o i l , vegetation and f a e c a l material. Glass electrodes were used to measure s o i l pH. -55- Table VI Plant species and parts sampled f o r trace element an a l y s i s . Plant Type Plant Species Sampling Procedure Trees Abies l a s i o c a r p a ( F i r ) Picea glauca (white spruce) F i r s t and second year leaves and twigs taken to i n - clude flowers and f r u i t s , where present Shrubs Betula glandulosa (dwarf birch) S a l i x alexensis (willow) S a l i x p h y l i c i f o l i a (willow) Cassiope tetragona (white heather) Empetrum nigrum (crowberry) P o t e n t i l l a f l a b e l i f o r m i s (shrubby c i n g u e f o i l ) Terminal 2 inches taken to include flowers and f r u i t s Forbs Senecio t r i a n g u l a r i s Lupinus ar c t i c u s (lupine) Epilobium l a t i f o l i u m ( f i r e - weed) Epilobium angustifolium (fireweed) Valarian s i t c h e n s i s Veratrum v i r i d e ( f a l s e h e l l i b o r e ) Polygonum alaskanum Cut 1 inch above s o i l to include flowering parts: old growth ex- cluded Grasses Pestuca a l t a i c a (rough fescue) Carex aquatalis (sedge) Calamagrostis canadensis Carex microshaeta Cut 1 inch above s o i l surface to include clums; o l d growth excluded Lichens Cladonia a l p e s t r i s (caribou moss) Stereocaulon A l e c t o r i a Sampled above pigment l i n e U m b i l i c a r i a Stripped from rock surfaces -56- SEMI-QUANTITATIVE SPECTROGRAPHS ANALYSIS Procedures used f o r stream sediment material are i d e n t i c a l to those described f o r the regional study (pages 17 to 22). For rock material however, changes were made i n operating conditions (Table VIIA) and i n wavelengths used to estimate copper and manganese abundances (Table VILB). P r e c i s i o n f o r rock analyses, at the 95$ confidence l e v e l , i s indicated i n Table V I I I . ATOMIC-ABSORPTION ANALYSIS Pr e - A n a l y t i c a l Treatment S o i l and Vegetation: E i t h e r a 0 .5 g. sample of minus- 100 mesh s o i l material or 1 g. of dried and m i l l e d plant material was weighed i n t o a 100 ml. beaker. A f t e r adding 10 ml. of 4:1 n i t r i c - p e r c h l o r i c acid, the sample was refluxed f o r one hour at low heat. The s o l u t i o n was then evaporated to dryness and the residue taken up with 10 ml. 6 M. hydrochloric acid. A f t e r standing, a 5 ml. aliquot of c l e a r s o l u t i o n was set aside f o r c o l o r i m e t r i c determination of molyb- denum. The remaining 5 ml. were d i l u t e d to 20 ml. with d i s t i l l e d water and t h i s s o l u t i o n reserved f o r determination of copper, zinc and manganese. Rock and Stream Sediment: A 0 .5 g. sample of minus- 100 mesh rock, or minus-80 mesh stream sediment material was digested i n 10 ml. of 4:1 n i t r i c - p e r - -57 Table VII Changes i n spectrographic procedure Tables I and I I ) introduced f o r analysis of rock material. Operating Conditions Changed from to Arc Gap 4 m.m. 6 m.m. Exposure Time 20 sec. 30 sec. Plat e Development 3 min. 5 min. Spectral Lines Wavelength Detection Li m i t (A' ) (p.p.m.) Changed Changed Prom to Prom to Cu 3273.96 3247.55 10 2 Mn 2801.06 2794.82 1 1 5 8 - Table VIII A n a l y t i c a l p r e c i s i o n f o r spectrographic analysis of rock material, at the 95$ confidence l e v e l , calculated from 25 r e p l i c a t e analyses of U.B.C. Standard Rock. Element Mean Concentration (p.p.m.) P r e c i s i o n % (at 9 5 $ confidence l e v e l ) Sr 6 8 5 3 0 Cr 5 50 Co 4 3 0 Ni 7 9 5 Cu 25 6 0 In 25 4 0 V 3 5 7 5 Mo n.d.* - Pb 8 6 5 Mn 14-5 6 5 * n.d. = not detected. -59- c h l o r i c a c i d and evaporated to dryness. The residue was taken up i n 20 ml. of 1,5 M hydrochloric acid f o r the determination of z i n c . Faeces: A 1 g. sample of ground faecal material was i g n i t e d i n a porce l a i n c r u c i b l e f o r twelve hours at 550° C. The ash was treated with 1 ml. of 6 M hydro- c h l o r i c a c i d and evaporated to near dryness. The residue was taken up i n 10 ml. 6 M hydrochloric acid and treated as described f o r s o i l and plant materials. A n a l y t i c a l Method: C a l i b r a t i o n standards were prepared i n 1.5 M hydro- c h l o r i c acid. Samples and standards were aspirated into the air-acetylene flame of a Techtron AA-4- spectrophotometer. Operating conditions f o r hollow-cathode lamps are shown i n Table IX. A n a l y t i c a l P r e c i s i o n : Each a n a l y t i c a l batch contained at l e a s t one standard and one p a i r of duplicate samples. P r e c i s i o n at the 95$ con- fidence l e v e l , calculated from a n a l y t i c a l r e s u l t s f o r both standard and paired samples (Pox, pers. comm.) i s indicated i n Table X. The technique of p r e c i s i o n c a l c u l a t i o n using paired samples i s described by Garrett (1969). Generally p r e c i s i o n values obtained by d i f f e r e n t methods compare favourably. Low p r e c i s i o n f o r copper i n the standard moss sample i s a t t r i b u t a b l e to the f a c t that copper concentrations i n t h i s material are very near to the anal- -60- Table IX Operating conditions f o r the Techtron A A-4 Spectrophotometer Element* Current (ua) A i r Pressure (psi) S l i t Width w . Wavelength a) Cu 3 21 50 3247.5 Mn 10 20 100 2795 Zn 6 20 100 2138.6 * Standard settings f o r a l l elements: flame height 2.3 f u e l guage 2.5 -61- Table X. A. A n a l y t i c a l p r e c i s i o n ($) f o r Cu, Mn and Zn i n s o i l and plant m a t e r i a l , at the 95$ confidence l e v e l , calculated from r e s u l t s of atomic- absorption analysis of both standard and paired samples Element Vegetation S o i l Paired Analyses Replicate Analyses Paired Analyses d Replicate Analyses U.B.C. Standard Moss U.B.C Standar Grass U.B.C. Standard Rock Cu Mn Zn No. of samples 25 12 10 18 p a i r s 45 10 14 18 20 10 12 17 15 9 8 15 p a i 20 9 25 rs 6 B. Arithmetic mean Cu, Mn, and Zn concentrations* (p.p.m.) i n U.B.C. standard samples. Element U.B.C. Standard Moss Grass Rock Cu 4 13 25 Mn 75 165 210 Zn 14 35 20 * HNO^/HClOy, extractable metal content -62- y t i c a l detection l i m i t . COLORIMETRIC ANALYSIS Molybdenum was determined c o l o r i m e t r i c a l l y by the method of Stanton and Hardwick (1967). Sample digestion procedures are described i n the section on atomic-absorption analysis (page 5 6 ) . B r i e f l y the method involves extraction of a green molybdenum-dithiol complex i n t o a l a y e r of petroleum s p i r i t s , and v i s u a l comparison of the c o l o r of t h i s l a y e r with that of standards. Because of high i r o n concentrations i n c e r t a i n s o i l samples the standard procedure was modified s l i g h t l y . An a d d i t i o n a l 1 ml. of i r o n s o l u t i o n was used to prepare standards, and an extra 2 ml. of reducing s o l u t i o n was added to both standards and samples before addition of zinc d i t h i o l . A n a l y t i c a l p r e c i s i o n calculated from paired sample analysis i s indicated i n Table XI. Table XI A n a l y t i c a l p r e c i s i o n f o r molybdenum i n plant and s o i l m a terial, at the 95$ confidence l e v e l , c a l - culated from the r e s u l t s of c o l o r i m e t r i c analysis of paired samples Material Number P r e c i s i o n of $ P a i r s (at 95$ confidence l e v e l ) Plant 7 30 S o i l 15 25 -63 MEASUREMENT OF pH S o i l pH determinations were made on dried samples i n the laboratory. Organic samples were i n i t i a l l y ground i n a blender and a 10 g. sub-sample mixed with 50 ml. of d i s - t i l l e d water (Lavkulich, pers. comm.). For mineral horizons a 1:1 mixture by weight of minus-2 m.m. s o i l material and d i s t i l l e d water was used. Soil-water mixtures were allowed to e q u i l i b r a t e f o r at l e a s t one hour with regular s t i r r i n g (Jackson, 1958) before pH measurement with a glass electrode meter. Electrodes were c a l i b r a t e d p e r i o d i c a l l y , between sample measurements, i n b u f f e r solutions of pH 4-;>0 and 9.0. CHAPTER VI TRACE ELEMENT CONCENTRATIONS IN ROCK MATERIAL -65- PRESENTATION OF DATA Range and geometric mean trace element l e v e l s f o r rock samples from Unit 3 , the Yukon Group and granodiorite are l i s t e d i n Table XII. Concentrations within the various l i t h o l o g i e s of Unit 3 are indicat e d i n Table X I I I . Overall l e v e l s f o r Unit 3 were calculated assuming that the number of samples of each rock type r e f l e c t s i t s r e l a t i v e abund- ance w i t h i n the u n i t . Appendix A l i s t s a n a l y t i c a l r e s u l t s . . f o r i n d i v i d u a l rock samples. I t should be noted that, because of the l i m i t e d number and d i s t r i b u t i o n of rock sample s i t e s , and generally low pr e c i s i o n f o r rock analyses (Table V I I I ) , values i n Tables XII and X I I I must be considered only approximations to the mean metal content of the various rock types. Furthermore, i n s i t u leaching of many of the exposures sampled may,to some extent, have altered primary rock composition. TRACE ELEMENT CONCENTRATIONS IN BEDROCK As Table XII i n d i c a t e s , Unit 3 i s s t r i k i n g l y enriched i n both molybdenum (10 p.p.m.) and vanadium (4-35 p.p.m.), and r e l a t i v e l y poor i n manganese (15 p.p.m.) and to a l e s s e r degree strontium (70 p.p.m.). R e l a t i v e l y wide concentration ranges f o r most elements r e f l e c t the chemical heterogeneity of t h i s u n i t . Molybdenum concentrations i n both Yukon Group p h y l l i t e s and s c h i s t s and g r a n i t i c rocks are low (1 p.p.m.). High -66- Table XII Range and geometric mean trace element levels (p.p.m.) for major bedrock units within detailed study area. ELEMENT BEDROCK UNIT 3 YUKON GROUP GRANODIORITE Mo* 10 1 1 3-29 <l-3 — V 435 80 80 180-1075 50-130 15-470 Ni 30 45 6 10-85 30-60 1-8 Cr 75 55 18 40-140 30-105 12-25 Cu 30 30 7 10-90 15-60 2-20 Pb 15 16 19 7-25 II-25 17-21 Sr 70 - 145 300 20-225 100-210 - Mn 15 485 175 5-65 275-855 130-240 Co 4 • 14 7 2-8 9-25 5-8 Zn** 18 5 3-90 — Number of Samples 213 13 5 t Range = geometric mean ± log standard deviation * Values <2p.p.m. taken as 1 p.p.m. ** Number of zinc analysis: Unit 3 = 46, Granodoirite = 1. -67- Table XIII Ranee'and geometric mean trace element levels (p.p.m.) for various rock types within Unit 3. ELKHSNT ROCK TYPE. SILICIOUS CALCAREOUS dark grey medium to dark chert-pebble siliceous dark to l i g h t s i l t s t o n e conglomerate rock limestone black shale grey shale combined Mo* 1 7 12 4 2 9 " 5 8 - 3 5 6 - 2 0 2 - 5 < 2 - 4 . 3 - 2 5 1 3 - 1 6 5 V 340 260 55 W 0 1095 315-1320 155-730 1 6 0 - U 3 0 30-95 170-995 560-2135 Ni 25 10 6 0 15 30 190 13-̂ 5 4-30 3 5 - 9 5 5 - 5 5 1 0 - 6 5 90-1*15 Cr 6 0 " 5 115 25 7 0 215 35-105 25-75 90-140 1 8 - W 3 5 - 1 2 5 130-350 Cu 1 8 5 5 70 " 5 30 " 5 6-50 30-105 3 5 - 140 30-70 1 0 - 9 0 2 5 - 8 0 Pb 1 6 6 13 10 13 7 10-30 2 - 1 6 1 0 - 1 8 6-15 7-25 5-11 Sr 5 5 5 5 90 20 60 680 2 C - 1 8 0 \ 2 5 - I zr. " 5 - 1 7 5 - 20-170 3 1 0 - 1 4 8 0 Kn 8 75 30 15 1 4 0 4-15 2^5 25-150 1 0 - 9 5 4-55 5 5 - 1 7 5 • Co < 5 <5 9 < 5 4 < 5 - < 5 - 5 5 - 2 0 < 5 - 1 0 2 - 8 < 5 - 7 Zn»* 8 5 100 5 5 35 1 8 5 2-30 3-9 50-195 1-200 170-200 Kumber of Samples 112 20 59 9 205 13 t Range = geometeric mean ± log standard deviation * Values <2p.p.m. taken as 1 p. p.m. ** Number of zinc analysesi black shale = 26, grey shale => 5, s i l t s t o n e = 12, conglomerate = 1, limestone = 2. manganese concentrations (485 p.p.m.) characterize Yukon Group while granodiorite i s distinguished by low copper, n i c k e l and chromium values. A wide range of molybdenum and vanadium values occur with i n the i n d i v i d u a l rock types of Unit 3 (Table X I I I ) . Molybdenum l e v e l s are low i n s i l t s t o n e s and conglomerate Gs5 p.p.m.), r e l a t i v e l y high i n shales (up to 35 p.p.m.) and s t r i k i n g l y high i n dark limestone (up to 165 p.p.m.). The d i s t r i b u t i o n of vanadium resembles that of molybdenum, with mean concentrations ranging from an average of 55 p.p.m. i n conglomerate up to 1095 p.p.m. i n limestone. High concentrations f o r most elements are found i n dark limestone, while low values are t y p i c a l i n chert-pebble conglomerate. For example the mean strontium content of limestone i s 680 p.p.m. while that of conglomerate i s only 20 p.p.m. Concentrations i n dark and l i g h t colored shales are remarkably s i m i l a r . Both rock types are s t r i k i n g l y low i n cobalt (<5 p.p.m.), manganese (<15 p.p.m.) and zinc (<30 p.p.m.). COMPARISON OF CONCENTRATIONS IN BLACK SHALES FROM UNIT 3 WITH ESTIMATES OF NORMAL CONCENTRATIONS IN SIMILAR ROCK TYPES Table XIV l i s t s mean metal values i n black shales from Unit 3 , estimates of average concentrations f o r a l l types of shales, and median l e v e l s i n North American black shales. I t should be noted that d i f f e r e n t parameters are Table XIV Comparison of trace element l e v e l s (p.p.m.) wi t h i n dark grey to black shales of Unit 3 with estimates of average metal concentrations i n shales of a l l kinds and median l e v e l s within North American black shales. Element Dark Grey to Black Shales of Unit 3 (geometric mean) Shales* (average) Black Shale** (median) Mo 17 2.6 10 V 645 130 150 Ni 25 70 50 Cr 60 90 100 Cu 20 45 70 Pb 15 20 20 Sr 55 300 200 Mn 10 850 150 Co <5 19 10 Zn 8 95 300 * Tourekian and Wedepohl (1961) ** Vine and Tourtelot (1970) -70- used to measure the cen t r a l tendency of the a n a l y t i c a l data i n each column. The r e l a t i v e l y high molybdenum concentration i n Unit 3 black shales (17 p.p.m.) i s consistent with that of North American black shales (10 p.p.m.) and much greater than the average molybdenum value f o r a l l types of shale (<3 p.p.m.). Vanadium i s f a r more abundant i n the black shales of Unit 3 (64-5 p.p.m.) than i n e i t h e r t y p i c a l North American black shale or i n shales generally. Most other elements, e s p e c i a l l y manganese, strontium and zinc are low i n Unit 3 black shales. The manganese concentration i n t y p i c a l shales, f o r example, i s 850 p.p.m. while the mean value i n the black shales of Unit 3 i s only 10 p.p.m. POSSIBLE MECHANISMS CONTROLLING TRACE ELEMENT LEVELS WITHIN CERTAIN UNIT 3 LITHOLOGIES Enhanced molybdenum values i n black shales are generally a t t r i b u t e d to sorption of molybdenum from sea water by sediments c o l l e c t i n g i n anaerobic, stagnant basins. This contention i s supported by the presence of high molybdenum concentrations i n sediments from modern land-locked marine basins where anaerobic conditions p r e v a i l . Manheim (1961) has reported up to 80 p.p.m. molybdenum i n organic r i c h , oxygen d e f i c i e n t sediment c o l l e c t i n g i n the B a l t i c Sea. Gross (1967) has noted molybdenum concen- t r a t i o n s as high as 67 p.p.m. i n reducing sediments i n the -71- c e n t r a l portion of Saanich I n l e t , a small f j o r d near the southeastern end of Vancouver Island. He concluded that sea water was the source of the molybdenum and observed that r e l a t i v e l y l i t t l e of the t o t a l molybdenum content of the seawater i n the f j o r d need be removed to account f o r l e v e l s i n the sediments. LeRiche (1959) i n v e s t i g a t i n g samples of black shale from the United Kingdom, and Vine and Tourtelbt (1970) studying North American black shales, both found that molyb- denum i s strongly associated with organic matter. In Saanich I n l e t sediments however, molybdenum showed no c o r r e l a t i o n with organic carbon, but was r e l a t e d to the reducing capacity of the sediments (Gross, 1967). Korolev (1958) has shown experimentally that r e l a t i v e l y large amounts of molybdenum may be coprecipitated with i r o n s u l f i d e g e l s , such as h y d r o t r o i l i t e (FeS.n^O), which eventually age to p y r i t e . He suggests that high molybdenum concentrations i n organic shales are due to the presence of molybdenum-rich s u l f i d e s i n the o r i g i n a l sediments. Su l f i d e s are a c t i v e l y forming i n modern, anaerobic, molybdenum-rich basins (Gross, 1967^ Dunhan 1961). Manheim (1961) has noted that molybdenum has a strong tendency to follow i r o n s u l f i d e i n B a l t i c Sea sediments. No quantitative organic carbon or s u l f i d e determin- ations were c a r r i e d out during t h i s i n v e s t i g a t i o n . The molyb- denum-rich black shales of Unit 3 however, are obviously also r i c h i n organic material and l o c a l l y contain abundant p y r i t e . The dark limestone, which contains even more molyb- denum than the shales, also contains considerable amounts of organic matter. Vine and Tourtelot (1970) have noted that very high median molybdenum values (up to 300 p.p.m.) i n c e r t a i n North American black shales are d i f f i c u l t to explain, simply by e x t r a c t i o n of molybdenum from sea water. They suggest that e x t e r n a l l y derived, metal-rich connate solutions may have penetrated and enriched c e r t a i n black shales, e i t h e r during or a f t e r diagenises. Such post-depositional enrich- ment however, i s u n l i k e l y to have affected the rocks of Unit 3 since: ( i ) the maximum molybdenum concentration found wi t h i n Unit 3, 100 p.p.m., i s not very d i f f e r - ent from the 80 p.p.m. i n modern B a l t i c Sea sediment (Manheim, 1961). ( i i ) excessively large quantities of connate f l u i d s would be required to enrich the thousands of cubic miles of Unit 3 rock. With the exception of molybdenum and vanadium, trace element concentrations i n Unit 3 black shales are r e l a t i v e l y low. This could be a primary feature or a r e s u l t of i n s i t u leaching of outcrops sampled. I t i s i n t e r e s t i n g to note that elements i n which these rocks are poorest are most soluble i n a c i d i c environments such as those of streams draining the shales (Hawkes and Webb, 1962). -73- In addition to molybdenum, vanadium, n i c k e l , copper, chromium and zinc are associated with the organic f r a c t i o n of many black shales (Vine and Tourtelot, 1970). High l e v e l s of most of these elements i n the dark limestone could therefore be a consequence of metal sorption by the organic component of these rocks. Strontium and manganese, according to Vine and Tourtelot (1970) are c h a r a c t e r i s t i c of the carbonate f r a c t i o n of most North American black shales. High concentrations of both of these elements are present i n the dark limestone member of Unit 3 . This association l i k e l y r e f l e c t s the comparative ease with which both strontium and manganese can replace calcium i n the c a l c i t e l a t t i c e . CHAPTER VII TRACE ELEMENT CONCENTRATIONS IN SOIL MATERIAL -75- PRESENTATION OP DATA Because trace element concentrations i n s o i l s are p r i m a r i l y a function of the composition of geological parent materials (Vinogradov 1959, Swaine and M i t c h e l l I960, M i t c h e l l 1964-) , soils, i n t h i s study are grouped according to t h e i r occurrence over chemically d i s t i n c t i v e bedrock types. Furthermore, because parent materials i n upland areas are l i k e l y of r e s i d u a l character, while those i n main v a l l e y s may have been transported r e l a t i v e l y f a r from t h e i r source, v a l l e y and upland s o i l s over the same bedrock are grouped separately. The boundary between these two environ- ments was a r b i t r a r i l y set at 4000 f t . above sea l e v e l . I n i t i a l l y samples of only one horizon from each s o i l p r o f i l e were analyzed. The C horizon was chosen since i t i s the only mineral horizon present i n a l l p r o f i l e s . Con- centrations of molybdenum, copper, zinc and manganese i n the minus-2 m.m. fraction 1- of t h i s horizon, grouped according to topographic p o s i t i o n and associated bedrock, are summar- ize d i n Tables XV and XVI. Some of the more i n t e r e s t i n g s o i l p r o f i l e s were analyzed i n t h e i r e n t i r e t y . Trace element concentrations and mor- phological c h a r a c t e r i s t i c s f o r each horizon i n s i x of these p r o f i l e s are given i n Tables XVII and XVIII r e s p e c t i v e l y . Metal l e v e l s i n the t h i n volcanic ash l a y e r which underlies the L-H horizon i n many s o i l s are summarized i n Table XIX. Appendix B l i s t s separately trace element l e v e l s -76- f o r a l l s o i l horizons analyzed. TRACE ELEMENT CONTENT OF C HORIZONS Variations i n C horizon compositions i n upland s o i l s associated with d i f f e r e n t bedrock types are evident i n Table XV. Calcareous > Unit 3 s o i l s are considerably enriched i n molybdenum (30 p.p.m.), copper (65 p.p.m.) and zinc (585 p.p.m.). G r a n i t i c s o i l s , i n contrast, contain s t r i k - i n g l y low concentrations of these elements. Somewhat en- hanced molybdenum values (11 p.p.m.) occur i n s i l i c e o u s Unit 3 s o i l s , while upland s o i l s over the Yukon Group are characterized by low molybdenum l e v e l s (<1 p.p.m.) and high concentrations of manganese (690 p.p.m.). Metal concentrations i n C horizons of v a l l e y s o i l s (Table XVI) are generally not very d i f f e r e n t from those over s i m i l a r bedrock i n upland regions. The mean molybdenum l e v e l i n Unit 3 v a l l e y s o i l s (7 p.p.m.) i s , however, some- what l e s s than that of corresponding upland s o i l s (11 p.p.m.). R e l a t i v e l y low manganese concentrations i n v a l l e y s o i l s over the Yukon Group are also noteworthy. DISTRIBUTION OF TRACE ELEMENTS IN SELECTED SOIL PROFILES Enhanced l e v e l s of manganese and zinc are t y p i c a l of many L-H horizons (Table XVII). In p r o f i l e no. 72, f o r example, the L-H horizon contains 844-5 p.p.m. manganese and 500 p.p.m. zin c , while corresponding values i n the underlying C horizon are only 135 p.p.m. and 130 p.p.m. res p e c t i v e l y . -77 - Table XV Range and arithmetic mean concentrations* (p.p.m.) of Mo, Cu, Zn and Mn i n the minus-2 mm f r a c t i o n of s o i l C horizons i n upland regions w i t h i n the d e t a i l e d study area. Bedrock Element Unit 3 Yukon G r a n i t i c Calcareous S i l i c e o u s Group Rocks Mo 30 11 0 .7 1.5 10-48 1-26 0.2-1.6 0.8-2.4 Cu 65 35 30 5 40-120 15-90 15-45 2-10 Zn 585 150 115 45 355-1400 25-570 50-170 25-65 Mn 210 360 690 255 30-305 15-2700 240-1220 180-315 PH 6 .7 4.3 4.5 4 .7 No. of Samples 7 23 12 3 * HNO-z/HClÔ , extractable metal content -78- Table XII Range and arithmetic mean concentrations* (p.p.m.) of Mo, Zn, Cu and Mn i n the minus-2 mm f r a c t i o n of s o i l C horizons i n major r i v e r v a l l e y s . Element Bedrock Unit 3 Yukon Group Mo 7 2.6 1-2 4 0.8-5.2 Cu 40 30 10-85 20-40 Zn 180 130 10-475 70-250 Mn 155 300 5-480 135-415 pH 4.7 5.2 No. of Samples 26 8 * HNÔ /HCIO/, extractable metal content _79- Table XVTI D i s t r i b u t i o n of HNO^/HCIO^ extractable metal concentrations i n selected s o i l p r o f i l e s . Bedrock Unit S i t e Number Horizon Mo Cu Zn (ppm) Mn pH Unit 3 Calcareous 45 L-H C 20 45 45 40 305 355 270 235 6.6 7.2 48 L-H 14 55 730 415 4.2 I C 1 17 95 570 210 5.3 102 14 45 210 280 5.5 Ash 1 10 25 30 5.9 Bm 14 80 495 165 5.9 IIC 10 60 465 165 5.5 Unit 3 Aci d i c 50 L-H °i 9 15 55 55 290 290 120 175 4.4 3.8 c 2 15 75 570 460 4.4 Yukon Group 30 Ash Bm 0.8 2.8 15 25 40 115 125 450 4.9 4.5 IC 2.0 30 190 830 4.6 IIC 3.6 30 250 435 4.8 72 L-H 0.4 30 500 8445 4.8 Ash 0.4 20 15 225 5.0 C 2.8 35 130 135 4.5 G r a n i t i c Rock 35 L-H Bm 7 0.2 25 5 80 40 220 295 4.1 4.6 C 0.8 2 25 315 4.6 Table XVIII Morphological c h a r a c t e r i s t i c s of s o i l p r o f i l e s considered i n Table XVII. BEDROCK SOIL SITE HORIZON DEPTH (inches) M0RPH0L0GY 46 L-H C . 2-0 0- c h i e f l y l i c h e n s very dark grey (10YR 3/l)J sandy loam; 50$ coarse fragments; s i n g l e g r a i n ; loose; s l i g h t l y s t i c k y ; n o n - p l a s t i c . U n i t 3 c a l c - areous 48 L-H ic, I C 2 Ash Bra IIC 5 - 0 0-4 4-6 6- 8 8-11 11- c h i e f l y liohens very dark g r e y i s h brown (10YR 3/2); s i l t y c l a y ; no coarse fragments; f i n e g r a n u l a r i f r i a b l e : s t i c k y ; p l a s t i c , very dark g r e y i s h brown (lOTR 3/2); shaly s i l t y c l a y loam; 15$ coarse fragments; f i n e granular; loose; s l i g h t l y s t i c k y ; s l i g h t l y p l a s t i c . l i g h t y e l l o w i s h brown (10YR 4 / 6 ) ; s i l t y c l a y loam; no coarse fragments; s i n g l e g r a i n ; f i r m ; s t i c k y ; s l i g h t l y p l a s t i c , dark brown (10YR 4 / 3 ) ; loam; 30$ coarse fragments; s i n g l e g r a i n ; loose: s l i g h t l y s t i c k y ; n o n - p l a s t i c , very dark gr e y i s h brown (10YR 3/2) ; sandy loam-; 20$ coarse fragments; f i n e granular; very f r i a b l e ; s l i g h t l y s t i c k y ; s l i g h t l y p l a s t i c . U nit -3 s i l i c - eous 50 L-H IC IIC 1-0 0-5 5- c h i e f l y l i c h e n s very dark greyish brown (10YR 3/2); c l a y loam; 15$ coarse fragmen+,3; f i n e granular; loose; s t i c k y ; • s l i g h t l y p l a s t i c , as f o r IC with 20$ coarse fragments. Yukon Group 30 Ash Bm IC IIC 0-3 3-6 6-12 12- y e l l o w i s h brown (10YR 5/4)) s i l t loam; no coarse fragments; s i n g l e g r a i n : f r i a b l e ; s]:i;_'htly s t i c k y ; s l i g h t l y p l a s t i c . 'dark' "brown" (10YR 3/3) ; s i l t loam; no coarse fragments; f i n e granular; f r i a b l e ; s t i c k y j s l i g h t l y p l a s t i c . y e l l o w i s h brown (10YR 5/4)S as f o r Bm. l i g h t o l i v e brown (2.5Y 5/4)5 s l a t y sand; 60$ coarse fragments; s i n g l e g r a i n ; loose; s l i g h t l y s t i c k y ; non-plastic - 72 L-H Ash C 3-0 0-3 3 - c h i e f l y l i c h e n s l i g h t grey (10YR 7/2) ; s i l t y c l a y loam; no coarse fragments; s i n g l e g r a i n ; loose; s t i c k y ; p l a s t i c . brown (7-5YR 4/4)5 cobbly sand; 45$ coarse fragments; s i n g l e g r a i n ; loose; s l i g h t l y s t i c k y ; n o n - p l a s t i c . G r a n i t i c Rock 35 L-H Bm C 2-0 0-6 6- c h i e f l y l i c h e n s l i g h t y e l l o w i s h brown (10YR 6 / 4 ) ; sand;<5$ coarse fragments; s i n g l e g r a i n ; loose; s l i g h t l y s t i c k y ; n o n - p l a s t i c , brownish yellow (10YR 6 / 6 ) ; sand; <5$ coarse fragments; s i n g l e g r a i n ; loose; s l i g h t l y p l a s t i c ; s l i g h t l y s t i c k y . - S i - Table XIX Range /and arithmetic mean trace element l e v e l s * i n samples of volcanic ash Element Concentration (p.p.m.) Mo 1.1 0.2-6.4 Cu 11 5-18 Zn 18 5-40 Mn 65 15-225 PH 4 .9 No. of Samples 9 * HNÔ /HCIO,, extractable metal content. -82- Molybdenum and copper l e v e l s i n most L-H horizons are not remarkably high. Concentrations i n B horizons ( p r o f i l e nos. 30 and 35) are generally about equal to,or l e s s than,those i n under- l y i n g C horizons. Adjacent C horizons with d i f f e r e n t lith©)logical c h a r a c t e r i s t i c s may vary greatly i n composition. In p r o f i l e no. 50, f o r example, horizons C-̂  and C 2 are distinguished only by the presence of s l i g h t l y fewer coarse rock fragments i n the former horizon. Horizon C^ contains 175 p.p.m. manganese, while C 2 contains 460 p.p.m. The valcanic ash l a y e r , which separates L-H and mineral horizons i n many p r o f i l e s contains uniformly low concen- t r a t i o n s of a l l elements (Table XIX). FACTORS AFFECTING THE METAL CONTENT OF SOILS Concentrations of both molybdenum and copper i n s o i l C horizons are very s i m i l a r to those i n associated bedrock. As shown i n Table XX, g r a n i t i c s o i l s and rock both contain about 1 p.p.m. molybdenum and s i l i c e o u s Unit 3 rock and s o i l material contain 9 and 11 p.p.m. molybdenum re s p e c t i v e l y . Copper concentrations are equal (30 p.p.m.) i n Yukon Group s o i l and rock. Webb et a l (1965, 1968) have noted the close assoc- i a t i o n between molybdenum concentrations i n s o i l s and bed- rock i n both Ireland and the United Kingdom. Vinogradov (1959) has remarked on the importance of parent materials Table XX Comparison of mean trace element levels (p.p.m.) i n s o i l C horizons* i n upland areas with those in the associated bedrock**. ELEMENT UNIT 3 CALCARIOUS UNIT 3 SILICEOUS YUKON GROUP GRANITIC ROCK ROCK SOIL ROCK SOIL ROCK SOIL ROCK SOIL Mo 45 30 9 11 1 0.7 1 0.5 Cu 45 65 30 35 30 30 7 5 Zn 185 5.85 35 150 115 5 45 Mn 140 210 15 360 485 690 175 255 PH 6.7 4.3 4.5 4.7 t Rock means geometric; s o i l means arithmetic. * HNO3/HCIO4extractable metal content ** Total metal content -84- i n determining the copper content of Russian s o i l s . Relative zinc and manganese l e v e l s i n s o i l s are consistent with r e l a t i v e concentrations i n associated bed- rock. Absolute s o i l l e v e l s however are i n v a r i a b l y above those i n rock. Enrichment factors f o r zinc range from 3 to 8, and f o r manganese may be over 20. High s o i l values could be due e i t h e r to r e s i d u a l enrichment or external additions of metals. Residual en- richment could r e s u l t from e i t h e r high manganese and zinc concentrations i n s o i l minerals which are p a r t i c u l a r l y r e s i s t a n t to weathering, or from f i x i n g of these elements i n the s o i l a f t e r t h e i r release to the s o i l s o l u t i o n . Both processes however require extensive chemical weathering, u n l i k e l y i n the p e d o l o g i c a l l y young s o i l s of the MacMillan Pass area. Extremely high manganese l e v e l s i n c e r t a i n s o i l s (>2500 p.p.m.) derived from rock material low i n t h i s element suggest that some manganese i s of external o r i g i n . Bleeker et a l (1969) found manganese l e v e l s i n c e r t a i n New Guinea s o i l s to be s u b s t a n t i a l l y higher than concentrations i n underlying parent materials. Enrichment i s greatest i n s o i l s subject to frequent a l t e r n a t i n g periods of oxidation and reduction. They suggest that manganese i s mobilized deep i n the parent-material under reducing con- d i t i o n s , and transported up p r o f i l e with a r i s i n g water ta b l e , where at a l a t e r stage i t i s immobilized by oxidation. A s i m i l a r process could be active i n the MacMillan Pass area. I t i s noteworthy however that Gleysols, which 85- should be most affected by a l t e r n a t i n g o x i d i z i n g and re- ducing conditions, are not excessively enriched i n manganese. Enhanced concentrations of manganese and zinc i n ce r t a i n L-H horizons are l i k e l y a r e s u l t of b i o c y c l i n g . This process involves removal by plant roots, of inorganic material from lower s o i l horizons, and i t s accumulation i n surface organic layers (Barshad, 1964-). As indicat e d by lack of high metal concentrations i n B horizons, other s o i l forming processes, such as i l l u v i a t i o n , have not noticeably al t e r e d the primary trace element d i s t r i b u t i o n i n most s o i l p r o f i l e s . POSSIBLE SIGNIFICANCE OF VARIATIONS IN COMPOSITION OF UPLAND AND VALLEY SOILS The molybdenum content of Yukon Group v a l l e y s o i l s (2.6 p.p.m.) i s somewhat higher than that i n upland regions (0.7 p.p.m.). Since several v a l l e y sample s i t e s are located downstream from exposures of molybdenum-rich Unit 5 rocks, debris derived from Unit 3 i s l i k e l y present i n v a l l e y f i l l over parts of, the Yukon Group. Molybdenum concentrations i n v a l l e y s o i l s over Unit 3 (7 p.p.m.) are s l i g h t l y lower than those i n upland areas (11 p.p.m.). Examination of the geographical d i s t r i b u t i o n of v a l l e y s o i l s poorest i n molybdenum (<4- p.p.m.) reveals that most such s o i l s occur outside of the d e t a i l e d study area, on the eastern edge of the Yukon Plateau. These molybdenum-poor s o i l s may have been derived from Unit 3 l i t h o l o g i e s low i n t h i s element, such as s i l t s t o n e or conglomerate. A l t e r n a t i v e l y , parent materials f o r thes s o i l s could contain s i g n i f i c a n t amounts of rock debris from other molybdenum-poor geological u n i t s . CHAPTER VIII TRACE ELEMENT CONCENTRATIONS IN PLANT MATERIAL -88- PRESENTATION OP DATA Concentrations of molybdenum, copper, zinc and manganese i n a few selected plant species, and o v e r a l l l e v e l s i n each of the f i v e major vegetation classes (trees, shrubs, forbs, grasses and lichens) are summarized i n Tables XXI to XXIV. Since upland and v a l l e y s o i l s assoc- i a t e d with the same bedrock are compositionally very s i m i l a r (Tables XV and XVI), plants were not subdivided on the basis of t h e i r r e l a t i v e topographic p o s i t i o n s . Metal con- centrations and sample s i t e numbers f o r a l l plants analyzed are l i s t e d i n Appendix C. METAL CONTENT OP PLANTS Low molybdenum concentrations, t y p i c a l l y l e s s than 0.2 p.p.m., occur i n nearly a l l species associated with Yukon Group s o i l s (Table XXI). Plants on s i l i c e o u s Unit 3 and g r a n i t i c s o i l s may contain somewhat higher molybdenum l e v e l s . Over the Yukon Group, f o r example, forbs contains an average of 0.2 p.p.m. molybdenum, while those associated with s i l i c e o u s Unit 3 and g r a n i t i c s o i l s contain 1.2 p.p.m. and 0.7 p.p.m. res p e c t i v e l y . Of p a r t i c u l a r i n t e r e s t however i s the remarkably high molybdenum content of nearly a l l species sampled over calcareous Unit 3 s o i l s . Pireweed (Epilobium l a t i f o l i u m ) , f o r example, contains up to 44 p.p.m. molybdenum and rough fescue (Pestuca a l t a i c a ) up to 50 p.p.m. Warren and Table XXI Range and arithmetic mean molybdenum content*of vegetation (ppm dry weight) associated with various s o i l types. CLASS SPECIES SOIL TYPE • UNIT 3 CALCAREOUS UK IT 3 SILICEOUS YUKON GROUP GRANITIC ft K £-" Abies lasiocarpa ( f i r ) 0.2 0.1-1.4 ( I D 0.1 (5) 0.4 (1) Trees** 0.2 0,1-1.4 (16) 0.1 (8) 0.2 0.1-0,4 (3) Betula glandulosa (dwarf birch) C.l 0.1-0.4 (43) 0.1 (10) 0.1 (2) SH RU ES  Salix alaxensis (willow) 4 1.2-12 (6) 0.2 0.1-1.2 (22) 0.1 (10) 0.4 (1) Shrubs * * 5 0.5-12 (9) 0.2 0.1-1.2 (89) 0.1 0.1-0.5 (43) 0.2 0.1-0.4 (5) Senecio triangularis 9 1.6-18 W 0.4 0.1-1.2 (5) 0.1 (2) 0.4 (1) FO RB S Epilobium latifolium (fireweed) 22 12-44- (4) . 4.5 . (1) 0.5 0.1-0.8 (3) . Forbs** 12 1.6-44 (11) 1.2 0.1-4.5 (13) 0.2 0.1-0.8 (12) 0.7 0.1-1.2 (4) Festuca altaica (rough fescue) 4o 12-50 (3) 0.9 0.1-3.6 (8) 0.2 0.1-0.6 (5) 1.2 (1) Calmagrostis canadensis 2.4 , 0.9 0.3 0.4 GR AS S:  . (1) 0.1-3.6 (9) (1) (1) GR AS S:  Grasses** 16 0.3-50 (8) 0.9 0.1-3.6 (22) 0.4 0.1-1.2 (12) 0.8 0.4-1.2 (2) HE NS  Cladonia alpestris (caribou moss) 0.1 0.1-2.4 (35) 0.1 (14) 0.1 (1) M Lichens** 0.2 0.1-2.4 (42) 0.1 (20) 0.5 0.1-0.8 (2) t values less than 0.2 p.p.m . taken as ( ).l p.p.m. * number of samples ** for various species included in this vegetation class see Table VI. Table XXII Range and arithmetic mean manganese content of vegetation (ppm dry weight) associated with various s o i l types. CLASS SPECIES SOIL TYPE UNIT 3 CALCAREOUS OK IT 3 SILICEOUS YUKON . GROUP . GRANITIC TR EE S Abies lasiocarpa ( f i r ) (*)• 510 250-745 (11) 1210 270-1670 (5) 320 (1) TR EE S Trees** 565 65-1145 (16) 900 135-I670 (8) 310 95-515 (3) Bet.ula glnndulosa (dwarf birch) 680 70-1755 (43) 790 270-1360 (10) 395 305-485 (2) SH RU BS  SaTix ala>:ensis (willow) 60 40-85 (6) 280 30-690 (22) 430 55-865 (10) 310 (1) Shrubs** 50 20-100 (9) 395 30-1755 (89) 495. .55-1360 (43) 465 225-975 (5) •Senecio triarifrularis 30 15-40 (4) 105 20-175 (5) 225 180-27C (2) 140 (1) FO RB S Epilobium l a t i f o l i u m (fireweed) 50 20-90 (4) 195 (^ 120 35-215 (3) Forbs ** 40 10-90 . (11) 125 20-300 (13) 310 35-1395 (12) • 125 65-I85 (4) Festuca a l t a i c a (rough fescue) 55 30-70 • (3) 230 115-435 (8) 400 170-78C (5) 270 (1) a Calmaprostis canadensis 285 180 . 210 230 GR AS S:  (1) 70-375 (9) (1) (1) Grasses** 100 40-285 (8) 200 50-435 (22) 290 50-780 (12) 250 230-270 (2) cn Cladonia a l p e s t r i s (caribou moss) 55 20-155 (35) 60 20-110 (14) 30 .' (1) o H i Lichens** 50 5-155 (42) 50 20-110 (20) 20 10-30 (2) * ** number of samples for various species included in this vegetation class see Table VI. Table XXIII Range and arithmetic mean copper content of vegetation (ppm dry weight) associated with various s o i l types. CLASS SPECIES SOIL T IPS UKTT 3 IALCA7;EGUS ' UK IT 3 SILICEOUS YUKON GROUP G-:AI\j.TIC TR EE S Abies lasiocarna ( f i r ) (*) 5 3-10 ( 1 1 ) 4 3-6 (5) r, CO TR EE S Trees** 5 ?-10 ( 1 6 ) 3 -6 (80 4- 3-5 Botula glanHulor.a (dwarf birch) ? 3-lo ( 4 3 ) 6 3-9 ( 1 0 ) 6 5-7 (2) • S HR UB S Salix alnxensis (willow) 6 1-9 ( 6 ) ' 6 2 - 1 0 (22) 6 3 - 8 (10) 6 /• \ i A / Shrubs ** 6 3-9 ( 9 ) 7 .2-15 ( 8 9 ) 6 4-15 ( 4 3 ) 6 5-7 (5) Senecio triangularis 8 5-10 ( 4 ) 14 9 - 1 7 (5) 12 6 - 1 7 ( 2 ) 9 ( 1 ) FO RB S Epilobiurr. latifolium (firewoed) 6 5-6 ( 4 ) 7 (1) 4 - 7 ( 3 ) '•. Forbs- ** 8 5-20 ( 1 1 ) 10 6 - 1 7 (13) 8 4-17 (12) 7 3-11 ( 4 ) Festuca altaica (rough fescue) 5 4 - 6 (3) 6 . 3 -7 , ( 8 ) 5 4 - 6 (5) 6 CO w Calmaprostis canadensis 12 9 8 8 GR AS S ( 1 ) ' 6 -12 ( 9 ) (1) ( 1 ) Grasses ** 7 5-14 ( 6 ) 7 3-12 ( 2 2 ) 7 4 - 1 2 ( 1 2 ) 7 6 - 8 l2> LI CH EN S Cladonia alpestris (caribou moss) 3 1-4 (35) 2 1-3 ( 1 4 ) 2 CO LI CH EN S i Lichens** • 3 1-10 ( 4 2 ) 4 1-14 ( 2 0 ) 3 2-5 (2) * number of samples ** for various species included in this vegetation class see Table VI. Table XXIV Range and arithmetic mean zinc content of vegetation (ppm dry weight) associated with various s o i l types. CLASS SPECIES SOIL T J. 1 L J 'J;;TT 3 :AI.CARSGUS OKJ": 3 SILICEOUS GROUP CSAMTIC TR EE S Abies lasiocarpa ( f i r ) (*) 4 5 35-̂ 5 ( U ) 4 5 3 5 - 6 0 (5) 3 0 1- \ \ x 1 TR EE S Trees** 50 35-70 (16) 55 3 5 - 1 3 0 (8) 7 5 3 5 - 1 4 0 (3) Set.ulfi glandulosa (dwarf birch) 150 6 P - 3 1 0 ( 4 3 ) 1 6 0 8 0 - 1 9 5 ( 1 0 ) I 6 5 1 2 0 - 2 1 5 (2) SH RU BS  Salix alaxensis (wilDov;) ? 2 C 1 7 0 100-280 (22) 1 5 0 5 5 - 2 5 0 ( 1 0 ) 1 9 0 ) Shrubc** 175 1 2 5 - 3 3 0 (9) 80 I 5 - 3 I O ( 8 9 ) 9 5 • 1 0 - 2 c . O (<0) 1 3 5 3 0 - 2 1 5 (5) Seneci.o trianja.ilaris 55 3 0 - 7 5 (4) 80 55-U5 (5) 1 6 5 1 2 0 - 2 0 5 (2) 25 \ A ) FC RB S Spilobium latifolium (f ir&weod.) 30 2 0 - 4 0 w 7 5 < ! > UO . 20-70 (3) Forbs ** ^5 2 5 - 7 5 (11) ?0 55-H5 (13) 4 5 2 0 - 2 0 5 ( 1 2 ) 25 20-30 ( 4 ) Festuca altaics (rough fescue) ' 65 '+C-30 (3) 5 0 3 0 - 1 0 5 ' (3) 30 2 C - 4 C (5) 3 N /' \ \^ 1 f3 Calrr.agrostis canadensis 1 9 5 55 2 5 35 CR AS S . (1) " 30-35 (9) /: \ \- J (1) Grassos ** 0 5 3 5 - 1 9 5 (£) 55 2 5 - 1 0 5 2 0 - 5 0 ( 1 2 ) 30 (2) in w ta M Cladnnia alpestris (caribou moss) i Lichens** 15 5-30 (35) 15 5-30 (42) 14 8 - 2 5 1 5 8-30 ( 2 0 ) 15 (1) 20 I 5 - 2 5 (2) * nu;r.bor of campion *• for various : ; p o c i o s includod in this vegotation class ceo Tablo VI. _ 9 3 - Delevault ( 1 9 6 5 ) have reported high molybdenum l e v e l s i n fireweed growing over molybdenite m i n e r a l i z a t i o n i n B r i t i s h Columbia. Where molybdenum i s ava i l a b l e forbs and grasses usually contain more of this, element than do woody species. Forbs growing on calcareous Unit 3 s o i l s , f o r example, t y p i c a l l y contain 1 2 p.p.m. molybdenum, while shrubs, such as willow ( S a l i x alaxensis) associated with the same s o i l generally contain l e s s than 5 p.p.m. Manganese l e v e l s i n plants growing on calicareous Unit 3 s o i l s are t y p i c a l l y low, while plants growing on Yukon Group s o i l s are c h a r a c t e r i s t i c a l l y r i c h i n manganese (Table XXII). Shrubs, inc l u d i n g such species as willow ( S a l i x alaxensis) and dwarf b i r c h (Betula glandulosa), con- t a i n an average of 4 9 5 p.p.m. manganese associated with the Yukon Group and only 5 0 p.p.m. i n more basic Unit 3 environ- ments. Calgmagrostis canadensis i s exceptional i n i t s r e l a t i v e l y high manganese content ( 2 8 5 p.p.m.) associated with calcareous Unit 3 rocks. A l l woody plants contain large amounts of manganese. Dwarf b i r c h (Betula glandulosa) ? i n particular., may contain up to 1 7 5 5 p.p.m. of t h i s element. Kubota et a l ( 1 9 7 0 ) found s i m i l a r i l y high manganese l e v e l s ( 1 1 2 0 p.p.m.) i n leaves from t h i s species i n Alaska. Variations i n copper concentrations i n plants assoc- i a t e d with d i f f e r e n t s o i l types are s l i g h t . Overall mean l e v e l s i n grasses, f o r example, are 7 p.p.m. associated with a l l four s o i l types (Table X X I I l ) . -94- Copper concentrations also vary l i t t l e between species. Mean values t y p i c a l l y range from about 4- p.p.m. i n trees up to 8 p.p.m. i n forbs. Only Senecio t r i a n g u l a r i s and Calamagrostis canadensis c h a r a c t e r i s t i c a l l y contain copper l e v e l s of 8 p.p.m. or greater. In contrast, Kubota et a l . (1970) found an average of only 3 .5 p.p.m. copper i n Calamagrostis canadensis from Alaska. Relationships between zinc l e v e l s i n plant species and s o i l type are often contradictory. As ind i c a t e d i n Table XXIV, f o r example, mean zinc concentrations are highest i n trees growing on g r a n i t i c s o i l s (75 p.p.m.) while grasses are poorest i n zinc (30 p.p.m.) when associated with the same s o i l s . Zinc l e v e l s i n c e r t a i n shrubs are p a r t i c u l a r l y high. Willow ( S a l i x alexensis) may contain up to 330 p.p.m. zinc i n contrast to usual values of l e s s than 100 p.p.m. i n most other species. Lichens generally, and Cladonia i n p a r t i c u l a r , con- t a i n low concentrations of a l l elements. Copper concen- t r a t i o n s do not exceed 5 p.p.m., while average zinc l e v e l s are only about 15 p.p.m. Scotter and Miltimore (pers. comm.) i n the Northwest T e r r i t o r i e s , and Havre (1969) i n Norway, have both reported s i m i l a r l y low metal values i n various Cladonia species, i n c l u d i n g Cladonia a l p e s t r i s . - 9 5 - FACTORS AFFECTING METAL LEVELS IN PLANTS Metal concentrations i n plants are influenced by both the t o t a l metal content of the s o i l and the form i n which metals are held. Trace elements with i n the c r y s t a l l a t t i c e of primary and secondary s o i l minerals are r e l a t i v e l y unavailable compared to ions present i n the s o i l s o l u t i o n or adsorbed on e i t h e r clay minerals or organic matter. The proportion of s o i l s o l u t i o n and adsorbed ions a v a i l a b l e to the plant i s determined, to a large extent, by Eh and pH conditions i n the s o i l . Low molybdenum l e v e l s ( t y p i c a l l y < 0 . 2 p.p.m.) i n plants of most species growing on Yukon Group s o i l s are consistent with low t o t a l molybdenum concentrations (<3 p.p.m.) i n these s o i l s . R e l a t i v e l y high molybdenum con- centrations (8 p.p.m.) i n s i l i c e o u s Unit 3 s o i l s , however, contrast with low values i n associated woody plants and lic h e n s . Forbs such as fireweed (Epilobium l a t i f o l i u m ) , and grasses such as rough fescue (Festuca a l t a i c a ) , growing on these s i l i c e o u s s o i l s may contain somewhat enhanced molybdenum l e v e l s (up to 4 .5 and 3.6 p.p.m. r e s p e c t i v e l y ) . The average molybdenum concentration i n calcareous Unit 3 s o i l s (30 p.p.m.) i s about four times greater than that of s i l i c e o u s v a r i e t i e s . However, mean molybdenum l e v e l s f o r plants growing i n basic s o i l s may be, as i n the case of rough fescue(Festuca a l t a i c a ) , over f o r t y times greater than l e v e l s associated with a c i d i c s o i l s (Table XXI). -96- Barshad (1951) has reported that s o i l clay minerals adsorb increasing amounts of molybdenum, as MÔ , with de- creasing pH. S i m i l a r l y , Reisenaur et a l (1962) have shown that the amount of molybdenum adsorbed by hydrous oxides of i r o n and aluminum, both common i n s o i l s , decreases with increasing pH. Generally low concentrations of molybdenum i n plants growing on molybdenum-rich s i l i c e o u s Unit 3 s o i l s therefore r e f l e c t the dominant influence of low pH (mean value 4.5) over t o t a l metal content i n r e s t r i c t i n g molybdenum a v a i l a b i l - i t y . In the calcareous s o i l s (pH 6.7) both molybdenum and pH values are high, and hence both factors favour plant uptake. Molybdenum-rich vegetation has also been reported growing on organic-rich a c i d i c s o i l s (Walsh et a l , 1953, Kubota et a l , 1961). In the MacMillan Pass area, however, no enhanced plant molybdenum l e v e l s were noted associated with s o i l s of t h i s type. In contrast to molybdenum, a v a i l a b i l i t y of manganese to plants increases with decreasing pH (Hodgson, 1970). Plants growing i n a c i d i c s o i l s , such as those derived from the Yukon Group, high i n t o t a l manganese (520 p.p.m.), contain high manganese concentrations (Table XXII). S o i l s with s i m i l a r manganese contents but d i f f e r e n t pH l e v e l s , f o r example calcareous and s i l i c e o u s Unit 3 s o i l s , support plants with very d i f f e r e n t manganese l e v e l s . Willow ( S a l i x alaxensis) contains approximately 280 p.p.m. manganese on - 9 7 - a c i d i c s i l i c e o u s s o i l s and only 6 0 p.p.m. on more basic calcareous s o i l s . S o i l type generally exerts l i t t l e influence on copper concentrations i n plants investigated. For example, grasses contain an average of 7 p.p.m. copper on both g r a n i t i c s o i l s , which contain 5 p.p.m. copper, and s i l i c e o u s Unit 3 s o i l s , with 3 5 p.p.m. copper. Furthermore mean copper values f o r various plant species character- i s t i c a l l y range between only 4- and 8 p.p.m. I t therefore appears that c e r t a i n homeostatic mechanisms, common to most plant species studied, e f f e c t i v e l y regulate copper i n - take. Copper a v a i l a b i l i t y , l i k e that of manganese, r e - portedly decreases with increasing pH (Hodgson, 1 9 7 0 ) . This i s consistent with the lack of high plant copper values associated with basic copper-rich ( 6 5 p.p.m.) Unit 3 s o i l . In view of the importance of plant response factors i n l i m i t i n g copper uptake however, the absence of enhanced plant copper concentrations i s not necessarily only a pH e f f e c t . Zinc l e v e l s i n plants are often not consistent with s o i l pH and t o t a l zinc content. Both Yukon Group and s i l i c e o u s Unit 3 s o i l s , f o r example, contain s i m i l a r amounts of zinc and have s i m i l a r pH values (Tables XV and XVI). The mean zinc concentration i n Senecio t r i a n g a l a r i s growing on the former s o i l s , of 1 6 5 p.p.m., i s however, approximately twice that associated with the l a t t e r s o i l s . V ariations of t h i s type could be due to s o i l f a c t o r s such as organic matter -98- content and the chemical form i n which zinc i s present, which were not investigated i n t h i s study. R e l a t i v e l y high zinc l e v e l s i n shrubs and grasses associated with calcareous Unit 3 s o i l s are not i n agree- ment with the reported low a v a i l a b i l i t y of zinc i n basic s o i l s (Hodgson, 1970). These high concentrations may r e f l e c t the a b i l i t i e s of plants concerned to absorb zinc more than the a b i l i t y of s o i l s to supply i t . POSSIBLE INFLUENCE OF METAL LEVELS IN PLANTS ON THE HEALTH OF WILDLIFE, PARTICULARLY CARIBOU AND MOOSE The a b i l i t y of an animal to t o l e r a t e molybdenum i s affected by a number of f a c t o r s , i n c l u d i n g i t s copper status and intake and the inorganic s u l f a t e content of i t s d i e t (Underwood, 1962). Although the nature of metabolitic i n t e r a c t i o n s of these elements are poorly understood, i t appears that the p r i n c i p a l t o x i c e f f e c t of prolonged high dietary molybdenum uptake i s to induce a state of copper deficiency (hypocuprosis). A minimum amount of inorganic s u l f a t e must however be present i f t h i s t o x i c action i s to be e f f e c t i v e . C a t t l e experiencing molybdenum induced hypo- cuprosis s u f f e r severe l o s s of condition and scouring. Tolerance to high dietary intakes of molybdenum varies considerably with d i f f e r e n t animal species (Underwood, 1962). Of domestic farm animals, f o r example, c a t t l e are much l e s s t o l e r a n t of molybdenum than are horses and pigs. Tolerance l i m i t s of caribou and moose have not been studied. - 9 9 - Nevertheless, since as ruminants, these animals share c e r t a i n basic metabolitic processes with c a t t l e , t h e i r tolerance l e v e l s could be s i m i l a r l y low. Precise tolerance l e v e l s f o r c a t t l e are not we l l es- tabli s h e d . Kubota et a l (1961) have suggested that on im- p e r f e c t l y to poorly drained mineral s o i l s i n the western United States, molybdenum concentrations of over 15 p.p.m. i n forage plants are p o t e n t i a l l y t o x i c to c a t t l e , while on organic s o i l s 2 to 5 p.p.m. i n forage may be t o x i c . In Ireland, on the other hand, the p r o v i s i o n a l threshold l e v e l f o r t o x i c herbage i s given as 5 p.p.m. i n dry matter (Walsh et a l . , 1952). In view of the metabolitic i n t e r a c t i o n of copper and molybdenum, the Cu/Mo r a t i o of forage i s perhaps a more meaningful parameter of t o x i c i t y . Miltimore and Mason (1971) have observed that, i n B r i t i s h Columbia, feeds with Cu/Mo r a t i o s of l e s s than 2.0 are associated with symptoms of copper deficiency i n c a t t l e . Average Cu/Mo r a t i o s f o r plants growing i n a l l but basic Unit 3 s o i l s are well above 2 . 0 . With very few ex- ceptions however, plants associated with basic s o i l s have r a t i o s below t h i s l i m i t . Overall r a t i o s f o r forbs and shrubs, f o r example, are 0.68 and 1.25 r e s p e c t i v e l y . The lowest Cu/Mo r a t i o f o r an i n d i v i d u a l species i s 0.13 f o r rough fescue. These basic s o i l s , derived p r i m a r i l y from dark limestone, are r e l a t i v e l y rare w i t h i n the d e t a i l e d study area. While l i t t l e i s known about the feeding habits of -100- e i t h e r caribou or moose, most plant species sampled are at l e a s t p o t e n t i a l forage f o r these animals. Caribou moss (Cladonia a l p e s t r i s ) i n p a r t i c u l a r i s l i k e l y to be one of the main food sources f o r caribou during winter months. I t i s i n t e r e s t i n g to note that, while molybdenum l e v e l s i n t h i s l i c h e n are low (<0.2 p.p.m.), concentrations of both copper (3 p.p.m.)- and zinc (15 p.p.m.) are well beloxtf the minimum dietary l e v e l s of 10 and 50 p.p.m. re s p e c t i v e l y , recommended f o r domestic c a t t l e ( A g r i c u l t u r a l Research Council, 1965). An i n d i c a t i o n of the metal intake of these animals may be given by the metal content of t h e i r faeces (Table XXV). Of 30 samples analyzed, only two contained more than 2 p.p.m. molybdenum. Removal of molybdenum by digestive processes or leaching of faeces by rainwater, however, may be responsible f o r some of the low values. In summary, i f ( i ) molybdenum-rich calcareous rock i s r e l a t i v e l y uncommon within Unit 3 as a whole, as i s suggested from studies i n the MacMillan Pass area and published geological reports, ( i i ) molybdenum tolerance l e v e l s of caribou and moose are s i m i l a r to those of c a t t l e , ( i i i ) grazing habits of caribou and moose are i n - dependent of s o i l type, i t i s u n l i k e l y that these animals s u f f e r from molyb- denum induced copper deficiency. -101- Table XXV Range and arithmetic mean concentration* (p.p.m.) of Mo, Cu, Zn and Mn i n caribou and moose faeces. Element Faeces Caribou Moose Mo 1.6 0.1-9.7 1.2 0.1-14 .0 Cu 14 11-22 10 7-16 Zn 260 175-415 365 175-515 Mn 700 300-1405 465 130-1010 No. of Samples 12 18 * HNOy'HClO^ extractable metal content expressed i n terms of sample dry weight. -102- However, i f caribou moss i s the p r i n c i p a l food source f o r caribou i n winter, the p o s s i b i l i t y of deficiency symptoms r e s u l t i n g from low l e v e l s of copper and zinc i n t h i s species i s very r e a l . S i m i l a r conditions may a f f e c t reindeer i n Norway (Havre, 1969) and the Northwest T e r r i t o r i e s (Scotter and Miltimore, pers. comm.). CHAPTER XI TRACE ELEMENT CONCENTRATIONS IN STREAM SEDIMENT -104- PRESEN TATION OF DATA Tables. XXVI and, XXVII summarize metal concentrations i n sediments associated with d i f f e r e n t bedrock types. Samples c o l l e c t e d over Unit 3 were subdivided on the basis of t h e i r association with e i t h e r basic, or neutral to a c i d i c stream water. Basic streams i n v a r i a b l y drain areas under- l a i n , i n part, by dark limestone. Sediments from v a l l e y bottoms over the Yukon Group are considered separately since streams i n these environments commonly drain areas underlain p a r t i a l l y by T e r t i a r y v o l - canics and/or Unit 3 . Trace element concentrations and U.T.M. co-ordinates of a l l stream sediment samples c o l l e c t e d w i t h i n the d e t a i l e d study area and along the Canol Road are l i s t e d i n Appendix D. METAL CONCENTRATIONS IN STREAM SEDIMENT As shown i n Table XXVI Unit 3 sediments from the MacMillan Pass region contain large concentrations of molyb- denum (26 p.p.m.), vanadium (720 p.p.m.) and copper (200 p.p.m.). Molybdenum and vanadium l e v e l s i n p a r t i c u l a r are considerably higher than values f o r Unit 3 sediments from the regional study area (11 and 480 p.p.m. r e s p e c t i v e l y ) . Sediments associated with basic stream waters (Table XXVII A) are enriched i n n i c k e l (420 p.p.m.), molybdenum (40 p.p.m.), vanadium (905 p.p.m.) and strontium (275 p.p.m.), r e l a t i v e to those of acid streams. Table XXVI Range and geometric mean trace element content (p.p.m.) of stream sediment associated with major bedrock types within the detailed study area and along the Canol Road. ELEMENT BEDROCK UNIT 3 YUKON GROUP GRANITIC ROCK Mo* 26 3 1 10-65 1-6 - V 720 115 30 385-1345 55-230 20-40 Ni 100 80 11 30-345 45-145 3-20 Cr 200 165 22 130-320 130-215 15-30 Cu 110 60 8 60-210 35-110 5-12 Pb 25 20 17 15-45 15-35 15-20 Sr 145 230 175 65-320 145-375 50-300 Mn 340 770 200 95-1230 425-1400 - Co 30 45 6 10-70 30-80 3-10 Zn** 135 35-530 Number of 69 30 2 Samples t Range = mean + log standard deviation * Values less than 2 ppm taken as 1 ppm ** Number of zinc analyses = 36 -106- Table XXVII Range and geometric mean trace element content (p.p.m.) of stream sediment associated with, (A) Unit j subdivided on the basis of stream pH, (B) Yukon Group subdivided topographically. ELEMENT SEDIMENTS SAMPLED OVER UNIT 3 Stream pH>7 Stream PH$7 Mo* 40 15-105 24 10-55 V 905 720-114-5 680 345-1345 Ni 420 265-660 75 25-220 Cr 345 240-505 180 125-260 Cu 130 85-200 105 55-210 Pb 20 10-40 25 15-45 Sr 275 ̂  130-600 125 60-225 Mn 490 170-1400 310 80-1175 Co 50 35-75 25 10-65 Zn** 375 210-680 45 15-115 Number of Samples *3 56 B. ELEMENT SEDIMENTS SAMPLED OVER YUKON GROUP Uplands Valleys Mo* 1 <1-1.5 3.5 1.5-8.5 V. 65 55-80 145 70-290 Ni 70 60-85 90 45-175 Cr I90 170-210 160 120-210 Cu 75 60-110 55 30-105 Pb 30 20-40 20 10-30 Sr 250 190-320 225 130-390 • Mn- 1020 640-1625 685 370-1260 Co 75 65-85 40 25-65 Number of Samples 9 21 t Range = mean ± log standard deviation * Values less than 2p.p.m. taken as lp.p.ra. ** Number of zinc analyses: stream pH>7 = 19 stream pH$7 =17 -107- Yukon Group sediments are generally low i n molyb- denum (3 p.p.m.) and r i c h i n manganese (770 p.p.m.). A few high molybdenum and vanadium values (greater than 10 and 480 p.p.m. respectively) occur i n v a l l e y sediments over the Yukon Group. Overall concentrations i n sediments associated with the Yukon Group from both regional and det a i l e d study areas are remarkably s i m i l a r . Both sediment samples derived from a b i o t i t e grano- d i o r i t e stock southwest of MacMillan Pass are s t r i k i n g l y low i n a l l elements (Table XXVI). Metal l e v e l s i n g r a n i t i c sediments from the regional study are t y p i c a l l y higher,by factors of from two to three, than concentrations i n these g r a n o d i o r i t i c sediments. Furthermore, low molybdenum l e v e l s (<2 p.p.m.) i n the sediments near MacMillan Pass contrast with enhanced concentrations (up to 16 p.p.m.) reported i n sediments associated with g r a n i t i c i n t r u s i o n s i n the Keno H i l l region (Gleeson, 1966). COMPARISON OF METAL CONTENT OF STREAM SEDIMENT WITH THAT OF ASSOCIATED ROCK AND SOIL Trace element concentrations i n rock, s o i l and stream sediment material are summarized i n Tables XXVIII and XXIX. Low concentrations of molybdenum i n g r a n i t i c and Yukon Group sediment and r e l a t i v e l y and high values i n calcareous Unit 3 sediment are c l e a r l y r e f l e c t e d i n associated rock and s o i l . Calcareous sediment, f o r example, contains Table XXVIII Molybdenum, copper and manganese concentrations (p.p.m.) i n stream sediment and associated s o i l material. ELEMENT BEDROCK STREAM SOU** SEDIMENT* Unit 3 40 30 Calcareous 15-105 10-50 Unit 3 24 8 Mo Siliceous 10-55 1-26 Yukon 1 0.7 Group <1-1.5 0.2-1.6 Granitic 1 1.5 Rock - 0.2-2.4 Unit 3 130 65 Calcareous 85-200 45-120 Unit 3 105 40 Cu Siliceous 55-210 10-90 Yukon1" 75 30 Group 60-110 15-45 Granitic 8 5 Rock 5-12 2-10 Unit 3 490 210 Calcareous 170-1400 30-305 Unit 3 310 250 Mn Siliceous 80-1175 5-2695 YukonT 1020 690 Group 640-1625 240-1220 Granitic 200 255 Rock - 180-315 * Total analysis by emission spectroscopy; geometric mean values quoted, ** HN03/HC104 extractable metal content determined by atomic-absorption spectrophotometry; arithmetic means, t Sediment values refer to upland areas only. Table XXIX Geometric mean trace element concentrations (p.p.m.)* i n rock and associated stream sediment. ELEMENT CALCAREOUS UNIT 3 SILICEOUS UNIT 3 1UK0N GROUP GRANITIC ROCK ROCK ....... SEDIMENT ' ROCK SEDIMENT ROCK SEDIMENT ROCK SEDIMENT Mo 45 40 9 24 1 1 1 1 V 1095 905 410 680 80 65 80 30 Ni 190 420 30 75 45 70 6 11 Cr 215 345 70 180 55 190 18 22 Cu 45 130 30 105 30 75 7 8 Pb 7 20 13 25 16 30 19 17 Sr 680 275 60 125 145 250 300 175 Mn 140 490 15 310 485 1020 175 200 Co <5 50 4 25 14 75 7 6 Zn** 185 375 35 45 — — 5 — Number of Samples 13 13 205 56 12 9 5 2 * t o t a l analysis by emission spectroscopy (except f o r zinc) ••HNOj/HClO^ extractable Zn measured by atomic-absorption spectrophotometry i M O vO \ -110- an average of 40 p.p.m. molybdenum, while concentrations i n associated rock and s o i l are 45 and 30 p.p.m. r e s p e c t i v e l y . Mean molybdenum concentration i n s i l i c e o u s Unit 3 sediment (24 p.p.m.) however, i s approximately three times greater than rock and s o i l values. S i m i l a r r e l a t i o n s h i p s e x i s t f o r vanadium concentrations i n rock and stream sediment material. Sediments derived from both Unit 3 and the Yukon Group contain two to three times more copper than associated rock and s o i l . Manganese l e v e l s are also r e l a t i v e l y high i n sediments, though the enrichment f a c t o r i s more vari a b l e than that of copper. The mean manganese concentration i n s i l i c e o u s Unit 3 sediment, f o r example, i s 310 p.p.m. while those of associated bedrock and s o i l are 15 and 250 p.p.m. res p e c t i v e l y . Concentrations of a l l other elements i n Unit 3 and Yukon Group stream sediment are s i m i l a r l y enhanced r e l a t i v e to rock values, with the single exception of stron- tium i n calcareous Unit 3 environments (Table XXIX). Metal l e v e l s i n sediments derived from granodioite, i n contrast to l e v e l s of most elements i n sediments from other bedrock types, are t y p i c a l l y very s i m i l a r to concen- t r a t i o n s i n rock and s o i l m a t erial. Por example, g r a n i t i c stream sediment contains 8 p.p.m. copper, while l e v e l s of ,5 and 7 p.p.m. characterize associated s o i l / , and rock r e s p e c t i v e l y . Vanadium and strontium concentrations i n g r a n i t i c sediment are exceptional i n that l e v e l s are l e s s than those of the source rock. -111- FACTORS AFFECTING TRACE ELEMENT LEVELS IN STREAM SEDIMENT Since stream sediments approximate a composite sample of rock and s o i l material upstream from the sample s i t e , t h e i r composition i s c o n t r o l l e d , to a considerable extent, by compositions of these materials. Processes active i n the stream channels however, such as leaching or adsorption, may a l t e r sediment composition to some extent. A comparison of Tables XXVIII and XXIX indi c a t e s compositions of rock and s o i l material i n the MacMillan Pass area, are generally not very d i f f e r e n t . R e l a t i v e l y large differences are common however, between the composition of these two materials and the associated sediment. The extent to which sediment composition i s modified i n stream channels i s determined by a number of factors i n c l u d i n g Eh and pH values i n the channel and the associated s o i l , the amount and nature of dissolved material i n stream water, the grain si z e and mineral composition of the sediment, and the nature of the element being considered. Metals may be dissolved i n s o i l or stream water as e i t h e r cations or complex anions. Of the elements con- sidered i n Table XXIX only two, molybdenum and vanadium, are mobilized as anions (Hawkes and Webb, 1962). Eh and pH changes a f f e c t these two groups of ions i n opposite fashions. S o i l and stream pH values are summarized i n Table XXX. Stream pH values are t y p i c a l l y one or more u n i t s above s o i l l e v e l s . Though no Eh measurements were made -112- stream channels are l i k e l y to be more o x i d i z i n g than s o i l environments. Considering the elements mobilized as cations, concentrations are t y p i c a l l y much higher i n sediments than i n the associated rock (Table XXIX). The magnitude of t h i s enrichment i s v a r i a b l e , ranging from l e s s than 2 to greater than 20. Only g r a n i t i c sediments are not enriched i n t h i s fashion. Table XXX Mean pH values of s o i l s and stream waters associated with various bedrock u n i t s . Bedrock PH S o i l s Stream waters Calcareous CFnit X ^ Ac i d i c 6 .7 4 .5 7.8 5.3 Yukon Group 4.8 6 .7 G r a n i t i c Rocks 4 .7 6 .7 Iron oxide p r e c i p i t a t e s are common on sediment i n many of the more a c i d i c streams draining Unit 3 l i t h o l o g i e s , p a r t i c u l a r l y p y r i t e bearing dark shale. According to Stumm and Morgan (1970) oxidation of p y r i t e releases both -113- ferrous and hydrogen ions. Ferrous ions may subsequently be oxidized to the f e r r i c state and p r e c i p i t a t e d as f e r r i c hydroxide i n stream channels. P r e c i p i t a t i o n of f e r r i c hydroxide releases more hydrogen ions thus accounting f o r very low stream pH values associated with i r o n p r e c i p i t a t e s . Iron and manganese p r e c i p i t a t e s may scavenge con- siderable amounts of such trace elements a s ' n i c k e l , cobalt, copper and zinc from stream water (Theobald et a l . , 1962, Hornsnail et a l . 1969). Chemical analysis of p r e c i p i t a t e s i n the MacMillan Pass area however (Table XXXI) reveal low values f o r most elements with the exception of molybdenum and z i n c . An a l t e r n a t i v e and more l i k e l y mechanism f o r enrich- ment of sediment r e l a t i v e to rock and s o i l material i s cation adsorption. This involves adsorption of p o s i t i v e l y charged ions by the c l a y - s i z e f r a c t i o n of stream sediment, such as clay minerals and organic matter. Since the e f f e c t - iveness of cation adsorption increases with increasing pH (Hawkes and Webb, 1962), cations mobilized i n the r e l a t i v e l y a c i d i c s o i l s of the MacMillan Pass area should tend to be adsorbed i n the more basic stream channels (Table XXX). Lack of enrichment i n g r a n i t i c sediment i s somewhat sur p r i s i n g i n view of r e l a t i v e l y large pH differences be- tween s o i l s and stream channels (4.7 vs. 6.7). Sediment i n these channels however i s composed c h i e f l y of sand-size grains of quartz and mica, whereas, as previously noted, adsorption occurs p r i n c i p a l l y on the c l a y - s i z e component Table XXXI Range and arithmetic mean trace element content* (p.p.m.) of i r o n oxide p r e c i p i - tates from a c i d i c stream channels Element Concentration (p.p.m.) 20 <0.2-70.0 5 3-12 45 15-115 11 3- 45 14 6-35 6 4- 8 75 30-200 Mo Ni Cu Pb Mn Co Zn * 6M HC1 extractable metal concentration determined by atomic-absorption spectrophoternetry. -115- of the sediment. _2 Anions of molybdenum and vanadium (MoO^ and VO^ ) i i& contrast to cations, should be most mobile i n the r e l a t i v e l y basic o x i d i z i n g stream channels. Since molybdenum and vanadium concentrations i n sediment are t y p i c a l l y s i m i l a r to associated rock and s o i l l e v e l s , these elements however are not l i k e l y being leached from sediments to any great extent. S i l i c e o u s Unit 3 sediments are exceptional i n that they contain more molybdenum and vanadium than the assoc- i a t e d rock. As previously noted however, hydrous i r o n oxide p r e c i p i t a t e s which are common as crusts on these sediments may contain large amounts (up to 70 p.p.m.) of molybdenum. Jones (1957) has shown that hydrous i r o n oxides are superior to clay minerals i n t h e i r a b i l i t y to sorb molybdenum. Vanadium concentrations i n these p r e c i p i t a t e s are unknown, but i t seems probable' that, l i k e molybdenum, they are r e l a t i v e l y high. COMPARISON OF METAL CONCENTRATIONS IN STREAM SEDIMENT WITH THOSE OF ASSOCIATED VEGETATION Low molybdenum concentrations i n stream sediment derived from both Yukon Group and g r a n i t i c rock are c l e a r l y r e f l e c t e d i n low mean molybdenum concentrations i n vegetation growing over these rocks (Table XXXII). However high con- centrations t y p i c a l of Unit 3 sediments are not always associated with enriched vegetation. The mean molybdenum concentration i n s i l i c e o u s Unit 3 sediment, f o r example, -116- Table XXXII Mean molybdenum, copper and manganese concentrations i n stream sediment and vegetation, and associated mean stream pH values. ELEMENT BEDROCK CONCENTRATION (ppra) STREAM Stream Sediment* Vegetation** PH Unit 3 Calcareous 40 10 -7.8 Mo Unit 3 Siliceous 24 0.4 Yukon* Group 1 0.2 6,7 Granitic Rock 1 0.4 6.8 Unit 3 Calcareous 130 7 7?. 8. Cu Unit 3 Siliceous 105 6 5- 3: Yukon* Group 75 6 6>. 7/' Granitic Rock 8 5 6.8 Unit 3 Calcareous 490 60 7.8 Mn Unit 3 Siliceous 310 330 5.3 Yukon* Group 1020 380 6-7 Granitic Rock 200 260 6.8 * Total analysis by emission spectroscopy; geometric means. ** HN03/HC104 extractable metal content determined by atomic-absorption spectrophotometry; arithmetic means; concentration expressed i n terms of dry -weight. t Sediment values refer to upland areas only. -117- i s 24 p.p.m. while that of associated vegetation i s only 0.4 p.p.m. L As previously noted, low molybdenum values i n vege- t a t i o n growing over s i l i c e o u s Unit 3 rock are p r i m a r i l y an e f f e c t of low pH values i n s o i l s derived from these rocks. As Table XXXII i n d i c a t e s these low s o i l pH values are r e f l e c t e d i n low pH l e v e l s i n associated stream water. S i m i l a r l y high stream pH values associated with calcareous Unit 3 sediment (7.8) are consistent with high values i n the calcareous soils,which t y p i c a l l y support molybdenum enriched vegetation. Thus by considering both stream sedi- ment concentrations and stream pH values, p r e d i c t i o n of areas l i k e l y to contain enhanced molybdenum l e v e l s i n vegetation should be pos s i b l e . S o i l pH i s also an important f a c t o r i n determining the a v a i l a b i l i t y of manganese to plant s . Consequently, as i n the case of molybdenum, both sediment concentrations and stream pH values must be known i f estimates are to be made of plant molybdenum l e v e l s . For example, i n view of the r e l a t i v e l y high concentrations of manganese i n the sediment of streams draining Unit 3 limestone (Table XXXII), low vege- t a t i o n values would not be expected unless these environments were known to be r e l a t i v e l y basic, as indicated by stream pH l e v e l s . In contrast to molybdenum and manganese, plant copper concentrations are apparently unrelated to e i t h e r pH l e v e l s or metal concentrations i n sediment. This s i t u - -118- ation i s not s u r p r i s i n g , since as Table XXIII i n d i c a t e s , copper concentrations i n vegetation are to a large extent independent of s o i l type, i n c l u d i n g s o i l copper content and pH. CHAPTER X SUMMARY, CONCLUSIONS AND SUGGESTIONS POR FURTHER RESEARCH -120- SUMMARY AND CONCLUSIONS A regional stream sediment reconnaissance survey was undertaken i n the Eastern Yukon, using sediment samples o r i g i n a l l y c o l l e c t e d by Atlas Explorations Ltd. Vancouver, f o r mineral exploration purposes. A t o t a l area of over 6,000 square miles was covered, c h i e f l y w i t h i n the drainage basins of the Hess and MacMillan Rivers. Enhanced molybdenum values (>8 p.p.m.) are present i n sediments over an area of more than 1,300 square miles. Most of these enriched sediments are derived from a t h i c k succession of Paleozoic sedimentary rocks, c o n s i s t i n g pre- dominantly of dark shales and chert (Unit 3). Molybdenum l e v e l s associated with the other manor bedrock u n i t s , namely the Yukon Group, Earn Group, T e r t i a r y volcanics and g r a n i t i c rocks, are t y p i c a l l y low (<4 p.p.m.). Stream sediments derived from Unit 3 are also n o t i c e - ably enriched i n vanadium (480 p.p.m.), and to a l e s s e r extent n i c k e l (140 p.p.m.), copper (90 p.p.m.) and chromium (180 p.p.m.). Those associated with T e r t i a r y volcanics are r e l a t i v e l y r i c h i n strontium (?20 p.p.m.), while g r a n i t i c sediments contain low concentrations of most elements. A d e t a i l e d follow-up study of trace element con- centrations i n rock, s o i l , stream sediment and plant material was undertaken i n the v i c i n i t y of MacMillan Pass, near the eastern l i m i t of the reconnaissance study area. This region i s underlain by Unit 3 , Yukon Group metasediments and g r a n i t i c -121- rocks. Unit 3 i s composed of a wide v a r i e t y of l i t h o l o g i e s i n c l u d i n g black and l i g h t grey shales, dark s i l t s t o n e s , chert-pebble conglomerate and dark limestone. The dark grey to black shales, which i n the MacMillan Pass area are the most abundant rock type within Unit 3, contain r e l a t i v e l y large amounts of molybdenum (17 p.p.m.), as do the l e s s common l i g h t colored shales (12 p.p.m.). S i l t s t o n e s and chert-pebble conglomerates t y p i c a l l y contain l e s s than 4- p.p.m. molybdenum. Concentrations are highest (up to 100 p.p.m.) i n the r e l a t i v e l y uncommon dark limestone member of Unit 3. Vanadium, n i c k e l , chromium and zinc values are also high i n the limestone. In addition to molybdenum, black shales are enriched i n vanadium (645 p.p.m.), but are r e l a t i v e l y poor i n most other elements, e s p e c i a l l y strontium (55 p.p.m.), manganese (8 p.p.m.) and zinc (8 p.p.m.). Enhanced molybdenum and vanadium values are l i k e l y a consequence of sorption o f : these elements,by organic-rich sediments, from sea water i n a large anaerobic basin. Low values f o r other elements could be a primary feature of the sediments, or could be a r e s u l t of i n s i t u leaching of shale exposures sampled. The C horizons of a l l s o i l s associated with Unit 3 contain high molybdenum concentrations. S o i l s derived from dark limestones contain an average of 30 p.p.m. molybdenum, while those associated with other rock types of Unit 3 t y p i c a l l y contain about 10 p.p.m. Molybdenum l e v e l s i n both Yukon Group and g r a n i t i c s o i l s are low (<:3 p.p.m.). -122- Copper l e v e l s i n s o i l C horizons are u s u a l l y very close to values i n the underlying rock. Both manganese and zinc however are enriched i n s o i l r e l a t i v e to rock material. S o i l s derived from s i l i c e o u s Unit 3 rocks, f o r example, contain an average of 360 p.p.m. manganese and 150 p.p.m. zinc while rocks themselves contain only 15 and 35 p.p.m. of these elements r e s p e c t i v e l y . Molybdenum a v a i l a b i l i t y to plants i s c h i e f l y con- t r o l l e d by s o i l pH. Plants are capable of absorbing molyb- denum only i n n e u t r a l to basic s o i l s such as those associated with Unit 3 limestone. These molybdenum-rich calcareous s o i l s t y p i c a l l y support vegetation with enhanced molybdenum l e v e l s . Average concentrations i n forbs and grasses, f o r example, are 12 and 16 p.p.m. re s p e c t i v e l y . In a c i d i c con- d i t i o n s however, c h a r a c t e r i s t i c of molybdenum-rich Unit 3 s o i l s , concentrations i n plants are generally l e s s than 0*2 p.p.m. Molybdenum-poor Yukon Group and g r a n i t i c s o i l s also support vegetation low i n t h i s element. Manganese concentrations i n plants are also dependent on s o i l pH. Res t r i c t e d manganese a v a i l a b i l i t y i n basic en- vironments i s r e f l e c t e d , f o r example, i n low manganese l e v e l s i n plants growing on calcareous Unit 3 s o i l s . Copper l e v e l s , on the other hand, are remarkably uniform, and apparently independent of s o i l conditions. Variations of zinc concen- t r a t i o n s i n c e r t a i n species • often contradict estimates of zinc a v a i l a b i l i t y based on the t o t a l metal content and pH of associated s o i l s . -123 Molybdenum l e v e l s i n stream sediments are generally consistent with rock and s o i l values. S i m i l a r i l y , low sediment values t y p i c a l l y r e f l e c t low concentrations i n associated vegetation. However, e i t h e r molybdenum-rich or molybdenum-poor vegetation may be associated with sedi- ment containing enhanced amounts of molybdenum. In anomalous areas, characterized by molybdenum-poor vegetation, stream pH values are generally a c i d i c . Neutral to basic stream water, on the other hand, i s t y p i c a l l y associated with molybdenum-rich vegetation. Because of the absence pf stream pH values from the regional study area, the d i s t r i b u t i o n of molybdenum-rich vegetation cannot be predicted. However, i n the v i c i n i t y of MacMillan Pass, high plant values are associated with dark molybdenum-rich limestone only. Since these limestones are apparently not common withi n the reconnaissance study area, i t may be t e n t a t i v e l y concluded that molybdenum- enriched vegetation i s not l i k e l y to be s u f f i c i e n t l y wide- spread to endanger the health of w i l d l i f e i n t h i s p o r t i o n of the Eastern Yukon. 124_ SUGGESTIONS POR FURTHER RESEARCH In view of the s i g n i f i c a n c e of trace elements to plant and animal n u t r i t i o n , maps showing the regional d i s t r i b u t i o n of trace metals are urgently required on a world-wide scale. Geochemical data should then be combined with epidemiological information i n an attempt to assess possible causal r e l a t i o n s h i p s between trace element abund- ances and disease patterns. Where adequate surface drainage e x i s t s , stream sediment surveys can be used to compile such maps. Basic research, however, i s required i n t o possible modifications of stream sediment reconnaissance techniques oriented toward environmental, rather than mineral exploration programs. For example, while i t i s standard p r a c t i c e i n mineral exploration to measure the metal content of the minus-80 mesh f r a c t i o n of sediment, other s i z e f r a c t i o n s may be more meaningful i n terms of regional rock and s o i l chemistry. Furthermore, a p p l i c a t i o n of various cold and hot ex t r a c t i o n techniques to stream sediment material may prove more useful than the t o t a l metal content i n assessing trace element a v a i l a b i l i t y to plant s . Since w e l l developed r i v e r drainage systems are not always present i n areas of geochemical i n t e r e s t , research i s required i n t o use of rock and/or s o i l material i n regional surveys. F i n a l l y , possible applications of remote sensing techniques, such as measurement of metal l e v e l s the atmosphere, to geochemical reconnaissance projects should be investigated. -126- BIBLIOGRAPHY A g r i c u l t u r a l Research Council, 1965. The nut r i e n t require- ments of farm l i v e s t o c k , No. 2. Ruminants, 264 pp. Barshad, I . , 1951. Factors a f f e c t i n g the molybdenum con- tent of pasture plants: I. Nature of s o i l molyb- denum, growth of plants and s o i l pH. S o i l Science, Vol. 71, pp. 297-313. Barshad, I . , 1964. Chemistry of s o i l development. In Chemistry of the S o i l , F.E. Bear ed., Reinhold Pub. Corp., N.Y., pp. 1-70. Bleeker, P., and M.P. Austin, 1970. Relationships between trace element contents and other s o i l v a r i a b l e s i n some Papua-New Guinea s o i l s , as shown by regression analyses. A u s t r a l i a n Journal of S o i l Research, Vol. 8, pp. 133-143. Blusson, S.L., and D. J . Tempieman-Kluit, 1970. Operation Stewart, Yukon T e r r i t o r y , D i s t r i c t of MacKenzie. Report of A c t i v i t i e s , Geological Survey of Canada Paper 70-1A, pp. 29-32. Bostock, H.S., 1947. Mayo, Yukon T e r r i t o r y . Geological Survey of Canada, Map 890A. Bostock, H.S., 1948. The physiography of the Canadian C o r d i l l e r a , with s p e c i a l reference to the area north of the 55th p a r a l l e l . Geological Survey of Canada Memoir 247. Bostock, H.S., 1966. Notes on the g l a c i a t i o n of the Central Yukon. Geological Survey of Canada Paper 65-36. Brown, R.J., I960. The d i s t r i b u t i o n of permafrost and i t s r e l a t i o n to a i r temperature i n Canada and the U.S.S.R. A r c t i c , pp. 163-177. Campbell, R. B., 1967. Glenlyon map area, Yukon T e r r i t o r y . Geological Survey of Canada Memoir 352. Campbell, R. B. and J . 0. Wheeler, 1967. Geology, Glenlyon, Yukon T e r r i t o r y . Geological Survey of Canada Map 1221A. Canada Department of A g r i c u l t u r e , 1970. The system of s o i l c l a s s i f i c a t i o n f o r Canada. 249 pp. Cannon, Helen L., 1969. Trace element excesses and d e f i c - i e n c i e s i n some geochemical provinces of the United States. Proceedings of the U n i v e r s i t y of Missouri's 3rd Annual Conference on Trace Substances and Environ- -127- mental Health, pp. 2 1 - 4 3 . Capps, S. R., 1 9 1 5 . An ancient volcanic eruption i n the upper Yukon Basin. United States Geological Survey Prof. Paper 95-D. C o l l i n s J.P. and S. W. Boul, 1 9 7 0 . E f f e c t s of f l u c t u a t i o n s i n the Eh-pH environment of i r o n and/or manganese e q u i l i b r i a . S o i l Science, V o l . 1 1 0 , pp. 111-118. Davies, E.B. 1 9 5 6 . Factors a f f e c t i n g molybdenum a v a i l - a b i l i t y i n s o i l s . S o i l Science, Vol. 81, pp. 2 0 9 - 2 2 1 . Dunham, K., 1961. Black shale, o i l and s u l f i d e ore. B r i t i s h Association f o r Advancement of Science, Sept., pp. 2 8 4 - 2 9 9 . Pindlay, D.C., 1 9 6 9 . The mineral industry of Yukon T e r r i t o r y and Southwestern D i s t r i c t of MacKenzie, 1968. Geological Survey of Canada Paper 6 9 - 5 5 . Portescue, J . , J . Dupuis, R. Winn, J . Hughes, E. Gawron, and I . Ernesaks, 1 9 7 1 . Preliminary study of the use of stream sediment geochemistry to detect the e f f e c t of man's a c t i v i t i e s on the environment around St. Catherines, Ontario. Brock U n i v e r s i t y , Depart- ment of Geological Science, Research Report Series No. 2 , Studies i n Landscape Geochemistry No. 1 , 2 2 pp. Garrett, R.Gr., 1 9 6 9 . The determination of sampling and a n a l y t i c a l errors i n exploration geochemistry. Economic Geology, Vol. 64, pp. 5 6 8 - 5 7 4 . Garrett, R.G., 1 9 7 1 a . Molybdenum and tungsten i n some a c i d i c plutonic rocks of Southeast Yukon T e r r i t o r y . Geological Survey of Canada Open P i l e 5 1 , 3 pp. Garrett, R. G., 1 9 7 1 b . Regional geochemical census of plutonic rocks i n Eastern Yukon T e r r i t o r y . Geological Survey of Canada, Report of A c t i v i t i e s , Part A, A p r i l to Octoteer. 1 9 7 0 , pp. 7 2 - 7 5 . Gleeson, C. F., 1 9 6 7 . Molybdenum content of stream and spring sediments, Keno H i l l area, Yukon T e r r i t o r y . Geological Survey of ..Canada Map 5 1 - 1 9 6 5 . Goldschmidt, V.M., 1 9 5 4 . Geochemistry. Clarendon Press, Oxford, 730 pp. Gross, M.G., 1 9 6 7 . Concentrations of minor elements i n diatomaceous*. sediments of a stagnant f j o r d . Amer. -128 Assoc. Adv. Sci., Pub. No. 83, Estuaries, pp. 273-282. Havre, G. N., 1969. The mineral composition of lichen re- lated to studies of trace element metabolism in reindeer. Trace Element Metabolism i n Animals, Proc. W.A.A.P./I.B.P. International Symposium, Aberdeen, Scotland, pp. 380-382. Hawkes, H.E. and J. S. Webb, 1962. Geochemistry i n mineral exploration. Harper and Row, New York, 4-15 pp. Hodgson, J.G., 1970.. Chemistry of trace elements in soils with reference to trace element concentrations in plants. Proceedings of University of Missouri's 3rd Annual Conference on Trace Substances i n Environmental Health, pp. 45-58. Horsnail, R. P., I. Nichol, and J.S. Webb, 1969. Influence of variations in secondary environment on metal content of drainage sediments. Quarterly of the Colorado School of Mines, Vol. 64, pp. 307-322. Hughes, O.L., R. B. Campbell, J. E. Muller, and J. 0. Wheeler, 1968. Glacial limits and flow patterns, Yukon Territory south of 65 degrees north latitude. Geological Survey of Canada Paper 68-34. Jackson, M.L., 1958. Soil chemical analysis. Prentice-Hall, Englewood C l i f f s , N.J., 498 pp. Jones, L.H.P., 1957. The s o l u b i l i t y of molybdenum i n sym- p l i f i e d systems and aqueous s o i l suspensions. Journal of Soil Science, Vol. 8, pp. 313-327. Keele, J., 1910. A reconnaissance across the MacKenzie Mountains on the Pelly, Ross and Gravel Rivers, Yukon and Northwest Territories. Geological Survey of Canada Pub. No. 1097. Kendrew, W. G. and D. P. Kerr, 1955. Climate of B r i t i s h Columbia and Yukon Territory. Ottawa, 222 pp. Kindle, E.D., 1945. Geological reconnaissance along the Canol Road from Telsin River to MacMillan Pass, Yukon. Geological Survey of Canada Paper 45-21. Korolev, D. P., 1958. The role of iron sulfides i n the accumulation of molybdenum i n sedimentary rocks of the reducing zone. Geochemistry, No. 4, pp. 452-463. -129- Kubota, J . , V. A. Lazar, L. N. Langan and K.C. Beeson, 1961. The r e l a t i o n s h i p of s o i l s to molybdenum t o x i c i t y i n c a t t l e i n Nevada. S o i l Science Society of America, P r o c , Vol. 25, pp. 227-231. Kubota, J . , V. A. Lazar, G. H. Simonson, and W. W. H i l l , 1967. The r e l a t i o n s h i p of s o i l s to molybdenum t o x i c i t y i n grazing animals i n Oregon. S o i l Science Society of America P r o c , Vol. 31, PP. 667-671. Kubota, J . , S. Rieger and V. A. Lazar, 1970. Mineral composition of herbage browsed by moose i n Alaska. Journal of W i l d l i f e Management, Vol. 34, pp. 565-569. Leahey, A., 1954. Factors a f f e c t i n g the extent of arable lands and the nature of s o i l s i n the Yukon Ter r i t o r y . P r o c 7th P a c i f i c Science Congress 1949, V o l . 6, pp. 16-20. LeRiche, H. H., 1959. D i s t r i b u t i o n of trace elements i n the Lower Lais of Southern England. Geochimica et Cosmochimica Acta, Vol. 16, pp. 101-122. Lewis, A. H. 1943. The.teart pastures of Somerset. Journal of A g r i c u l t u r a l Science, V o l . 33, pp. 52-63. Manheim, P.T., 1961. A geochemical p r o f i l e i n the B a l t i c Sea. Geochimica et Cosmochimica Acta, Vol. 25, pp. 52-70. Mason, B., 1966. P r i n c i p l e s of geochemistry. John Wiley and Sons, New York, 329 pp. Massey, H.P., R. H. Lowe, and H. H. B a i l e y , 1967. R e l a t i o n - ship of extractable molybdenum to s o i l series and parent rock i n Kentucky. S o i l Science Society of America P r o c , Vol. 31, pp. 200-202. McConnell, R.C., 1903. The MacMillan River, Yukon D i s t r i c t . Geological Survey of Canada Summary Report f o r 1902, pp. 20-36. Miltimore, J . E., and J . L. Mason, 1971. Copper to molyb- denum r a t i o and molybdenum and copper concentrations i n ruminant feeds. Canadian Journal of Animal Science, Vol. 51, PP. 193-200. M i t c h e l l , R. L., 1964. Trace elements i n s o i l s . Chemistry of the S o i l , F.E. Bear ed., Reinhold Pub;. Corp., New York, pp. 320-368. -130- Moore, R. C. (ed.), 1962. Treatise on Inv e r t i b r a t e Paleon- tology, Part W, Miscellanea. Geological Society of America and Un i v e r s i t y of Kansas Press. N i c h o l , I . , and J . C. Henderson-Hamilton, 1965. A rapid quantitative spectrographic method f o r the analysis of rocks, s o i l s and stream sediments. Trans. Inst. Min. M e t a l l . Vol. 74, pp. 955-961. Nichol, I . , R.P. Horsnail and J . S. Webb, 1967. Geochemical patterns i n stream sediment r e l a t e d to p r e c i p i t a t i o n of' manganese oxides. Trans. Sect. B. Inst. Min. M e t a l l . Vol. 76, pp. B113-B115. Rand, A. L., 1945a. Mammal i n v e s t i a t i o n s on the Canol Road, Yukon and Northwest T e r r i t o r i e s , 1944. National Museum of Canada B u l l . 99, B i o l o g i c a l Series 28, 52 pp. Rand, A. L., 1945b. Mammals of the Yukon. Canadian National Museum B u l l . 100, B i o l o g i c a l Series 29, 93 pp. Reisenaur, H., A. Tabikh and P. Stout, 1962. Molybdenum reactions with s o i l s and the hydrous oxides of i r o n , aluminum and titanium. S o i l Science Society P r o c , Vo l . 26, pp. 23-27. Roddick, J . A. and L. H. Green, 1961a. Geology, Sheldon Lake, Yukon. Geological Survey of Canada, Map 12 - 1961. Roddick, J . A. and L. H. Green, 1961b. Geology, JTay River, Yukon T e r r i t o r y . Geological Survey of Canada Map 13-1961. Schutte, K. H., 1964. The biology of the trace elements. Crosby, Lockwood and Sons, London, 228 pp. Stanton, R. E., and A. J . Hardwick, 1967. The co l o r i m e t r i c determination of molybdenum i n s o i l s and sediments by zinc d i t h i o l . Analyst, V o l . 92, pp. 387-390. Stumm, W. and J . Morgan, 1970. ..Aquatic chemistry. Wiley- Interscience, New York, 583 pp. Swaine, D. J . , and R. L. M i t c h e l l , I960. Trace element d i s t r i b u t i o n i n s o i l p r o f i l e s . Journal of S o i l Science, Vol. 11, pp. 347-368. Theobald J r . , P.K., H.W. Lakin and D. B. Hawkins, 1963. The p r e c i p i t a t i o n of aluminum, i r o n and manganese at the junction of Deer Creek with the Snake River, -131- i n Summit County, Colorado. Geochimica et Cosmo- chimica Acta, Vol. 27, pp. 121-132. Thornton, I . , W. Atkinson, J . S. Webb and D. B. Poole, 1966. Geochemical reconnaissance and boivine hypocuprosis i n Co. Limerick, Ireland. I r i s h Journal of ' A g r i c u l t u r a l Research, Vol. 5, PP. 280-283. Thornton, I . , R. N. Moon and J. S. Webb, 1969. Geochemical reconnaissance of the Lower L a i s . Nature, Vol. 221, pp. 457-459. Thornton, I . , and J . S. Webb, 1969. Geochemical reconnais- sance and the detection of trace element disorders i n animals. Trace Element Metabolism i n Animals, Proc. W.A.A.P./I.B.P. International Symposium, Aberdeen, Scotland, pp. 397-407. T i t l e y , S.R., 1963. Some behavioural aspects of molybdenum i n the supergene environment. Society of Mining Engineers Trans., Vol. 226, pp. 199-204. ' Turekian, K. K. and K. H. Wedepohl, 1961. D i s t r i b u t i o n of the elements i n some major u n i t s of the earth's crust. Geological Society of America B u l l . , Vol. 72 pp. 175-192. Underwood, E.J., 1962. Trace elements i n human and animal n u t r i t i o n . Academic Press Inc., 429 pp. Vine, J . D. and B. Tourtolot,-, 1970. Geochemistry of black shale deposits - a summary report. Economic Geology, Vol. 65, pp. 253-272. Vinogradov, A.P., 1959. The geochemistry of rare and d i s - persed chemical elements i n s o i l s . Consultants Bureau, New York. Walsh, T., M. Neenan and L. O'Moor, 1952. The importance of molybdenum i n r e l a t i o n to some cropping and l i v e s t o c k problems under I r i s h conditions. E r i e Dept. A g r i , J . , Vol. 48, pp. 32-43. Walsh, T., M. Neenan, and L. O'Moor, 1953. High molybdenum l e v e l s i n herbage on acid s o i l s . Nature, Vol. 171, p. 1120. Warren, H.V. and R. E. Delevault, 1965. Further studies i n the biogeochemistry of molybdenum. Western Miner, Vol. 38, pp. 64-72. Webb, J . S., 1964. Geochemistry and l i f e . New S c i e n t i s t , Vol. 23, pp. 504-507. -132 Webb, J . S., 1970. Some geological applications of regional geochemical reconnaissance. Webb, J . S., and W. J . Atkinson, 1965. Regional geochemical reconnaissance applied to some a g r i c u l t u r a l problems i n Co. Limerick, Ireland. Nature, V o l . 208, pp. 1056-1059. Webb, J . S., I . N i c h o l , and I . Thornton, 1968. The broadening scope of regional geochemical reconnaissance. Proc. XXIII International Geological Conference, Vol. 6, pp. 131-147. Webb, J . S., I . Thornton and K. Fletcher, 1968. Geochemical reconnaissance and hypocuprosis. Nature, Vol. 217, pp. 1010-1012. Wedepohl, K. H., 1971. Geochemistry. Holt, Rinehart and Winston, New York, 231 pp. Wheeler, J . 0., 1953. A geological reconnaissance of the northern Selwin Mountains region, Yukon and Northwest T e r r i t o r i e s . Geological Survey of Canada Paper 53-7. CNTR XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX>>XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX RF S NO. 023792 UNIVERSITY OF 8 C COMPUTING CENTRE mS(ANl92) 01:37: 18 THU MAY 04/72 $SIGNON AWKF PRIO=L COPIES=2 **LAST SIGNQN WAS: 13:18:52 WED MAY 03/72 USER "AWKF" SIGNED ON AT 01:37:22 ON THU MAY $LIST ^SOURCE* 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 04/72 48 49 50 51 52 APPENDIX A PART I RESULTS OF EMISSION SPECTRCGRAPHIC ANALYSIS IMETHOD 2 ) OF ROCK MATERIAL MACMILLAN PtSS AREA PPF ID NO FEO% WLSS SR E A CR CO NI AG TI CU IN WL£ = WEIGHT LOSS ON IGNITION MO BI GA SN PB MN 23 16 2.0 5.0 401000 1 50 2.5 10 2.05000 40 20 100 4 10 10 10 24 94 5.0 5.0 3004000 180 8.0 100 0.59999 30 20 500 2 40 10 20 25 124 5.0 2.5 9G8000 40 2.5 40 2.O40C0 50 15 500 30 8 10 30 26 125 1.0 2.5 405000 4G 2.5 30 0.55000 40 15 400 15 4 1C 20 27 126 2.0 2.5 406G00 60 2.5 40 0.58000 50 20 900 40 10 15 10 28 127 1 .0 5.C 204000 30 2.5 20 0.55CGC 50 15 900 90 7 10 5 29 128 2.0 5.0 407000 50 2.5 50 0.54000 50 151000 50 8 15 7 30 129 1.0 5.0 205000 40 2.5 40 0.53000 40 151000 40 8 15 7 31 130 1 .0 5.C 205000 40 2.5 40 0.54000 4C 15 900 60 10 10 10 32 131 2.0 5.C 203000 50 2.5 100 2.04000 50 201000 50 8 10 10 33 132 2.0 5.0 509998 90 2.5 50 2.04000 50 15 900 50 10 10 10 34 133 1.0 5.C 202000 40 2.5 20 0.51000 20 10 100 10 5 10 7 35 134 1.0 2.5 201000 10 2.5 30 0.52000 20 151000 15 4 10 7 36 135 1 .0 2.5 203000 40 2.5 20 2.04000 20 10 500 20 5 20 10 37 136 3.0 5.0 205000 60 2.5 20 2.05000 40 20 500 20 10 20 10 38 137 0.5 2.5 202000 20 2.5 80 0.52000 50 101000 10 4 10 5 39 138 1.0 5.0 205000 40 2.5 25 2.02000 20 151500 20 5 2C 5 40 139 1.0 5.0 202000 30 2.5 20 1.04000 20 202000 10 5 15 5 41 140 2.0 5.0 203000 50 2.5 20 1.02000 2C 151500 15 5 20 10 42 141 4.0 5.0 205000 50 2.5 20 4.05000 40 201000 25 7 20 8 43 142 2.0 5.0 9C50 CO 70 2.5 20 2.02000 50 202000 10 5 20 8 44 143 8.0 5.0 703000 50 2.5 15 2.05000 5C 202000 70 7 20 5 45 144 2.0 5.0 203000 40 2.5 10 1.O200O 50 101000 15 5 30 5 46 145 2.0 2.5 202000 20 2.5 10 1.04000 40 101000 20 5 20 5 47 154 1.0 2.5 201000 10 2.5 15 0.52000 10 10 500 10 4 15 5 I 53 54 55 56 57 58 59 60 61 62 63 155 1.0 2.5 204000 50 2.5 30 64 156 2.0 5.0 203000 40 2.5 20 65 157 1.0 5.0 202000 30 2.5 20 66 158 2.0 2.5 204000 50 2.5 20 67 159 2.0 5.0 205000 40 2.5 20 68 160 2.0 2.5 203000 50 2.5 20 69 161 0.5 5.0 204000 50 2.5 20 70 162 1.0 2.5 205000 60 2.5 20 71 163 1.0 2.5 204000 80 2.5 30 72 164 1.0 2.5 204000 40 2.5 20 73 165 1.0 2.5 205000 40 2.5 20 74 166 2.0 2.5 204000 70 2.5 15 75 167 2.0 2.5 205000 40 2.5 10 76 168 2.0 2.5 204000 40 2.5 30 77 169 1.0 2.5 201500 10 2.5 10 78 171 2.0 2.5 2C02000 8 5.0 20 79 173 4.0 2.5 1009999 50 2.5 20 80 174 5.0 2.5 2C09999 70 4.0 50 81 175 2.0 2.5 2C09999 80 2.5 20 82 176 4.0 5.015CG9999 100 2.5 30 83 177 2.0 5.C 1009999 ICO 2.5 20 84 178 4.0 2.51G008000 100 2.5 50 85 179 1.0 2.5 2C500G 80 2.5 30 86 180 1.0 2.5 506000 90 2.5 20 87 181 2.0 5.0 1C09998 90 2.5 20 88 182 2.0 5.0 1C08000 100 2.5 20 89 183 2.0 2.5 1C08000 50 2.5 20 90 184 2.0 5.0 1008000 80 2.5 20 91 185 2.0 2.5 1008000 ICG 2.5 20 92 186 2.0 2.5 1CG6000 80 2.5 20 93 187 2.0 5.0 1008000 80 2.5 40 94 188 2.0 5.0 1009GOO 90 2.5 30 95 189 2.0 5.C 1C09000 90 2.5 50 96 190 5.0 5.0 1C09000 100 2.5 50 97 191 2.0 2.5 15C8000 90 2.5 20 98 192 2.0 5.0 1509000 80 2.5 20 99 193 4.0 5.0 1509998 60 2.5 30 100 194 2.0 5.0 8009998 90 2.5 20 101 195 2.0 5.0 9C09998 90 2.5 30 102 103 104 105 106 107 108 109 110 111 112 0.55000 50 105000 20 6 20 6 1.03000 20 151500 30 6 20 . 8 0.52000 15 102000 15 5 20 8 2.0 5000 15 102000 20 8 30 5 0.55000 10 151000 20 10 30 10 1.07000 10 151000 10 10 30 15 1.06000 10 152000 10 15 20 10 1.O6G00 10 151000 10 15 20 10 0.55000 5 201000 10 15 20 8 0.55000 10 20 600 10 10 20 10 1.05000 5 20 800 10 10 3 0 8 2.04000 20 15 500 10 10 30 8 2.04000 30 15 300 10 7 40 7 2.02000 40 10 800 10 7 15 5 0.52000 10 10 500 5 2 10 2 0.53000 15 20 10 1 20 30 100 0.57000 20 20 500 20 20 40 8 0.56000 30 20 400 20 15 50 10 0.56000 15 20 400 20 15 30 5 0.58COO 15 20 400 3 0 15 20 7 0.58GGC 10 20 400 20 15 20 10 0.58000 20 20 500 20 20 15 8 0.58CC0 3 15 500 10 20 10 10 0.59000 3 15 500 20 20 15 10 0.58000 3 20 400 40 30 15 15 0.58C00 3 15 400 20 20 20 10 0.58000 5 15 400 20 15 20 15 0.56GCO 5 30 500 20 20 20 15 0.580QO 3 20 500 15 15 15 8 0.59000 3 15 500 20 15 15 8 0.580GO 15 20 500 3 0 20 2C 20 0.59000 5 20 500 20 20 20 10 0.59GG0 7 30 900 20 20 20 10 0.55998 20 20 900 20 20 30 15 0.59000 2 20 500 15 20 20 10 0.59000 5 20 500 20 20 20 10 0.59998 5 20 900 30 20 15 10 0.59000 5 201000 20 20 20 10 0.59000 5 20 500 20 15 20 10 113 114 115 116 117 118 119 120 121 122 123 196 2.0 5.0 4009998 90 2.5 20 0.59000 5 20 500 20 15 20 10 124 199 2.0 2.5 20 400 30 2.5 20 0.52000 20 10 30 1 3 15 20 125 200 2.0 2.5 6G2GC0 100 2.5 30 0.58000 30 20 300 3 15 10 30 126 201 2.0 2.5 20 300 30 2.5 15 0.52000 40 15 100 3 5 10 20 127 1202 2.0 2.5 20 700 50 2.5 20 0.5700C 20 20 200 5 10 5 15 128 2202 5.0 5.0 1C03000 100 2.5 15 0.59999 40 30 400 4 30 6 40 129 203 2.0 5.0 20 200 20 2.5 40 0.52000 50 20 50 1 5 5 50 130 204 5.0 2.5 20 300 20 2.5 30 0.540GO 50 15 50 1 5 5 40 131 205 9.0 5.0 501500 150 2.5 30 0.59999 90 30 500 4 20 10 30 132 206 5.0 5.C 20 300 30 2.5 30 0.53000 50 20 50 3 5 10 30 133 207 2.0 5.0 502000 150 2.5 20 0.59999 30 20 500 3 30 1C 10 134 208 2.0 5.0 502000 1 50 2.5 15 0.59999 50 20 500 4 20 10 10 135 209 5.0 5.0 20 500 4050.0 2 0.520C0 90 20 50 5 7 15 100 136 210 5.0 5.G 1003000 15015.0 50 0.59999 ICO 30 200 2 30 8 150 137 211 5.0 2.5 1003000 1C020.0 100 0.59999 90 30 200 2 30 10 100 138 212 5.0 5.0 1504000 150 8.0 50 0.59999 50 30 200 2 40 10 100 139 213 5.0 5.0 1003000 100 5.C 40 4.09998 80 30 200 2 30 10 100 140 21410.0 2.5 20 150 20 2.5 40 0.54000 5G 20 100 5 5 15 100 141 215 2.0 2.5 1003000 150 2.5 30 0.59998 40 30 400 3 30 20 20 142 216 5.0 5.C 2002000 100 5.C 40 2.09999 80 30 400 4 20 20 40 143 217 5.0 5.0 , 902000 100 8.0 50 0.59999 50 30 300 4 20 20 40 144 218 5.0 2.5 1003000 15010.0 100 0.59998 70 30 500 5 20 20 30 145 219 5.0 5.0 1C02000 100 8.C 100 0.59998 90 30 300 3 20 20 100 146 220 5.0 5.0 1C02000 100 2.5 30 0.59998 50 30 400 3 20 15 20 147 221 5.0 5.0 1003000 100 5.0 60 1.09998 60 20 300 5 20 15 50 148 222 4.0 2.5 1G03000 100 5.0 50 0.59998 70 20 300 4 20 15 50 149 223 5.0 2.5 1504000 100 7.0 50 2.09998 70 30 300 5 20 20 80 150 224 5.0 5.0 1C04000 100 5.C 50 1.09998 50 20 200 5 30 20 50 151 225 7.0 5.0 1004000 100 5.0 40 1.09998 50 20 400 5 20 20 100 152 226 5.C 5.0 1004000 100 5.0 50 0.59998 40 20 300 2 20 15 50 153 227 5.0 5.0 1504000 100 5.C 60 0.59998 50 20 200 2 30 20 50 154 228 5.0 5.0 1C04000 ICO 5.0 60 0.5S998 50 20 300 3 30 15 40 155 229 7.0 5.0 1004000 10015.0 60 0.59998 90 20 400 5 20 15 100 156 2 30 5.0 5.0 1004000 10015.0 100 0.59998 70 20 400 4 20 15 100 157 2 31 5.0 5.0 1004000 10015.0 90 0.59998 90 20 400 3 20 15 100 158 232 5.0 5.0 1504000 150 7.0 50 0.59999 40 40 400 5 30 15 50 159 233 6.0 5.0 1CG40C0 10020.0 100 0.59999 3 00 30 300 5 20 15 100 160 234 8.0 5.G 904000 10020.0 60 0.59999 80 20 400 5 20 15 100 161 235 8.0 5.0 1505000 1CC2 0. 0 50 0.59999 90 20 400 5 30 12 100 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 236 6.0 5.0 1004000 10015.0 50 0.59998 50 20 400 4 20 15 100 184 237 9.0 5.0 1004000 10020.0 60 1.09999 50 20 400 4 20 12 100 185 238 6.0 5.0 1C05G00 10020.0 60 0.59998 ICG 20 400 5 20 10 100 186 2 39 5.0 5.0 904000 10015.0 50 0.59998 50 20 400 5 20 15 100 187 240 8.0 5. 0 1505000 1C020.0 60 0.59998 50 20 400 5 20 15 100 188 241 5.0 5.0 1004000 1C020.0 60 0.59998 50 20 300 4 20 10 100 189 2 42 5.0 5.C 1004000 10020.G 80 0.59998 60 20 400 4 20 10 100 190 243 5.0 5.0 1503000 10010.0 9G 0.59999 70 20 300 4 30 15 100 191 24410.0 5.C 1504000 1G020.0 150 2.09999 3 00 30 200 5 30 20 200 192 245 8.0 5.0 1504000 10030.0 150 0.59999 3C0 40 200 5 20 20 400 193 246 8.0 5.0 1504000 15010.0 90 0.59999 200 30 200 5 30 15 200 194 24720.0 5.0 1504000 15020.C 1G0 2.09999 3 CO 30 200 5 30 15 200 195 248 8.0 5.0 1503000 1GC20.0 100 0.59999 300 20 200 5 20 10 200 196 249 8.010.0 2004000 15G20.0 100 0.59999 200 20 200 5 30 15 100 197 250 7.010.0 15C5000 1502C.0 100 0.5 9999 200 20 200 4 20 15 100 198 251 8.0 5.0 1004000 15020.G 100 0.59999 200 20 200 5 20 15 100 199 252 5.0 5.0 1004000 15C1C.0 100 0.59999 ICO 20 200 4 30 10 100 200 2 53 5.0 5.0 1004000 15010.0 100 0.59999 200 30 200 4 30 15 100 201 254 5.0 5.0 504G00 150 5.C 50 0.59999 40 30 400 5 30 10 40 2 02 25 5 6.0 5.0 505000 15010.0 100 0.59999 50 30 500 4 30 15 90 203 256 6.0 2.5 505000 15015.0 50 0.59999 50 30 400 5 20 20 20 204 2 57 5.0 5.C 1G04000 2G0 5.0 200 0.55CCC 30 302000 50 8 5 50 205 258 2.0 5.G1C002000 200 4.0 100 0.51000 40 401000 50 5 5 100 206 259 2.0 2.510004000 2 CO 4.0 300 0.55CGO 6C 402000 ICQ 5 5 100 207 260 2.0 5.C10004000 200 3.0 300 0.54000 40 402000 ICO 5 5 100 208 261 2.0 5.C10C02000 200 3.0 300 0.52000 40 301000 100 5 5 100 209 269 5.0 2.5 300 500 20 8.0 8 O.550GO 2G 3C 400 1 20 2C 200 210 270 5.0 2.5 300 500 20 6.0 5 0.58000 30 30 300 1 20 20 200 211 271 5.0 5.0 300 500 30 9.0 5 O.58G00 3 40 200 1 20 20 200 212 272 2.0 2.5 3G015OO 15 5.0 7 O.550C0 3 20 10 1 20 15 ICO 213 273 3.0 2.5 202000 50 5.0 50 0.55000 50 15 100 2 6 10 50 214 274 5.0 2.5 1005000 10020.C 100 1.09998 9C 20 500 5 30 20 50 215 286 8.0 5.G 7C01000 15020.0 50 0.59998 30 30 100 2 10 IC 200 216 364 5.0 5.0 209999 40 2.5 100 0.55000 50 15 600 50 7 30 5 217 365 2.0 2.5 2070CO 30 2.5 30 0.54000 20 15 800 15 5 10 10 218 374 5.0 2.5 3002000 815.0 20 0.59998 3 30 20 20 20 20 200 219 384 2 .010.0 209999 30 2.5 30 0.54000 30 10 400 5 7 IC 7 220 396 1.0 5. G 209999 80 2.5 5 0.57000 5 20 400 3 15 20 15 221 424 5.0 5.0 5G5C00 80 2.5 20 0.59998 10 20 400 3 20 10 10 224 22 5 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 423 5.0 5.0 1C05000 1 GO 2.5 20 244 469 1.0 5.025002000 150 2.5 300 245 538 1.0 5.0 204000 60 2.5 10 246 551 6.0 2.5 201000 90 7.0 40 247 585 3.0 2.5 300 8 00 10 6.0 7 248 710 9.0 5.0 150 500 7010.C 50 249 711 5.0 2.5 100 500 50 9.0 30 250 712 8.0 2.5 ICO 800 5020.0 50 251 71310.0 5.0 90 800 504C.C 70 252 714 5.0 2.5 100 800 50 9.0 40 253 715 5.0 5.0 150 700 5015.0 60 2 54 716 5.0 2.5 100 800 5020.0 50 255 717 7.0 5.0 150 500 6020.0 60 256 718 7.0 5.0 150 400 1G02C.0 40 257 171910.0 2.5 2G0 400 9010.0 40 258 271910.0 2.5 200 500 10010.C 30 2 59 72010.0 5.0 200 400 1C01C.0 50 260 795 5.0 2.5 9C01000 100 8.0 30 261 896 1.0 5.C 20 200 15 2.5 2 262 897 3.0 5.0 3001500 100 2.5 15 263 898 2.0 5.0 3002000 100 2.5 2G 264 899 2 .0 5.0 3002000 150 2*5 30 2 65 900 6.0 5.0 3001500 100 2.5 40 266 901 2.0 2.5 3C01000 90 2.5 30 267 902 2.0 2.5 4GC1000 ICO 2.5 30 268 903 2.0 2.5 3001000 150 2.5 40 269 904 1 .0 5.0 4001500 150 2.5 15 270 905 1.0 5.0 3002000 150 2.5 15 271 906 1 .0 2.5 3C01500 100 2.5 30 272 907 2.0 5.0 100 800 40 2.5 20 273 908 1.0 2.5 2001000 70 2.5 10 274 909 1 .0 2.5 3001000 80 2.5 10 275 910 1.0 2.5 200 600 50 2.5 10 276 911 1.0 2.5 1001500 60 2.5 10 277 912 1.0 2.5 1001500 60 2.5 15 278 913 2 .0 5.C 202000 50 2.5 30 279 914 2 .0 2.5 201000 30 2.5 2G 280 915 2.0 2.5 202000 50 2.5 20 281 916 2.0 2.5 201500 50 2.5 20 282 283 284 285 286 287 288 289 290 291 292 0.59998 2C 20 200 2 20 10 20 0.52000 50 202000 70 4 3 50 0.55000 3 152000 10 10 7 15 0.59998 30 30 100 2 20 IC 200 0.54000 3 30 15 1 20 20 200 0.55999 20 30 100 2 30 40 500 0.59999 20 30 100 1 20 15 5C0 0.59999 50 30 100 1 30 101000 0.59998 3G 40 100 1 20 201000 0.59999 50 20 100 1 20 20 500 0.55998 50 30 50 1 20 20 200 0.59998 4C 20 50 1 20 10 200 0.59999 40 30 100 1 20 10 700 0.59999 40 30 100 1 20 IC 600 0.59999 20 30 100 1 30 20 500 0.59999 40 30 100 1 20 15 500 0.59998 3 0 40 100 1 30 15 800 0.55000 10 40 200 1 10 10 500 0.52000 50 8 20 3 2 10 3 0.59998 50 20 600 5 20 2C 5 0.59999 30 20 800 5 15 40 5 0.55998 20 20 300 5 20 20 10 0.59999 20 20 500 7 20 15 100 0.55000 15 20 400 5 20 15 40 0.55000 30 20 200 5 20 50 15 0.55C00 20 20 500 5 20 20 10 1.07000 10 20 500 5 20 40 5 1.05000 3 20 500 10 20 50 2 0.54000 3 20 500 15 20 40 3 0.52000 30 20 200 40 10 30 2 0.53000 20 20 200 15 15 40 2 0.54GG0 10 10 200 15 20 50 5 0.54000 5 10 200 10 10 3 0 3 0.52000 5 10 300 20 10 4G 2 0.58000 8 15 500 20 15 30 2 0.56COO 40 20 500 90 8 20 5 O.56GG0 60 15 500 70 10 15 5 0.52000 20 20 800 20 8 10 5 0.54000 20 201000 10 10 10 5 293 294 295 296 29 7 298 299 300 301 302 303 917 2.0 2.5 204000 40 2.5 3C 2.04000 70 201000 2 0 10 10 5 304 918 1.0 5.0 205000 70 2.5 30 1.08000 20 201500 50 10 8 5 305 919 0.5 5.0 204000 60 2.5 30 0.55000 20 152000 50 10 7 5 306 920 0.5 2.5 205000 60 2.5 30 2.08000 20 204000 40 10 1C 5 307 921 2.0 2.5 206000 40 2.5 40 0.52000 100 15 500 20 7 8 5 308 922 4.0 5.C 208000 50 2.5 90 0.55000 15C 151000 20 6 8 8 309 923 5 .0 5.0 209999 50 2.5 150 1.06000 2 00 151000 40 10 10 7 310 924 5.0 5.0 209998 50 2.5 100 1.05000 90 15 800 20 10 10 8 311 925 5.0 2.5 209998 40 2.5 100 1.09998 80 152000 60 8 1C 10 312 927 4.0 5.0 207000 40 2.5 60 1 .05000 50 101000 20 8 10 5 313 928 5.0 5.C 208000 50 2.5 60 0.55000 5C 151000 20 8 10 5 314 9 29 3.0 2.5 205000 50 2.5 30 0.56000 40 15 500 10 10 10 5 315 9 30 1.0 2.5 204000 40 2.5 10 0.54000 40 15 600 10 10 10 3 316 931 2.0 2.5 201500 40 2.5 20 2.05000 3G 15 500 15 8 10 4 317 9 32 2.0 5.0 609999 40 2.5 50 0.54000 50 20 900 10 8 10 5 318 933 3.0 2.5 509999 30 2.5 80 0.55GG0 60 15 500 15 5 10 5 319 947 2 .0 2.5 1501500 80 2.5 30 4.05000 40 15 150 10 10 10 4 320 948 3.0 2.5 1003000 50 2.5 20 4.05000 80 15 300 7 15 15 5 321 949 2.0 2.5 702000 50 2.5 40 5.0 5 000 90 20 300 10 10 20 5 322 950 2.0 2.5 503000 40 2.5 15 5.09999 50 15 500 15 10 10 5 323 951 5.0 2.5 502000 50 2.5 15 2.09998 100 15 400 15 15 20 5 324 952 7.0 2.5 203000 40 2.5 20 2.09999 ICO 20 500 15 10 15 2 325 9 53 5.0 5.0 206000 40 5.0 20 4.09998 ICO 15 300 10 10 20 10 32 6 954 7.0 2.5 202000 40 2.5 20 3.09998 90 15 400 15 10 20 5 327 955 5.0 2.5 202000 40 2.5 20 O.5700O 90 20 200 15 10 8 5 328 956 0.5 2.5 20 800 20 2.5 5 0.51CC0 30 10 300 10 5 2 5 329 957 0.5 2.5 20 500 20 2.5 8 0.510GO 30 10 400 10 5 2 3 330 958 1.0 2.5 20 400 20 2.5 8 5.01000 30 10 400 5 5 2 3 331 960 1 .0 2.5 100 800 40 2.5 7 3.05000 60 20 400 15 8 2 3 332 961 3.0 2.5 1001000 70 2.5 9 4.03000 80 20 400 10 10 2 4 333 962 0.5 2.5 ICO 200 30 2.5 15 6.OfCCO 40 15 70 7 3 2 2 334 963 1 .0 2.5 ICO 150 30 2.5 5 5.05000 60 10 50 8 2 5 2 335 964 1 .0 2.5 100 400 40 2.5 2 5.0*000 50 15 120 8 6 8 3 336 965 3.0 2.5 1009998 50 2.5 20 2.05000 40 30 400 15 7 10 5 337 966 1.0 5.0 ICO 600 20 2.5 5 1.02000 35 15 300 15 3 5 2 338 967 0.5 2.5 100 500 50 2.5 2 1.02000 10 15 600 7 4 2 4 339 96810.0 5.0 1002000 50 2.5 2 0.55000 ICO 15 500 30 7 2 3 340 96920.0 5.0 1C07000 80 2.5 2 0.550GG ICO 203000 60 7 7 2 341 97015.0 5.0 1501000 1803C.0 50 0.59999 50 30 80 3 15 15 400 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 3 58 359 360 361 3 62 363 97110.0 5.0 201000 100 5 .0 30 0.57000 30 20 90 3 15 15 20 364 97210.0 5.0 20 800 10010 .0 50 0.58000 40 20 80 4 15 10 40 365 97310.0 5.0 201000 100 10 .0 80 0.58000 40 15 100 3 15 10 50 366 97410.0 5.0 201000 15020 .0 100 0.57000 40 15 100 3 20 15 100 367 989 5.0 5.0 1003000 ICO 3 .0 10 0.57000 40 20 300 3 30 10 100 368 990 5.0 5.0 1C03000 100 5 .0 15 0.57000 30 20 300 3 30 10 100 369 991 1.0 5.0 1002000 80 2 .5 15 0.54000 10 15 700 10 15 5 8 3 70 1001 8.0 5.0 501500 1G01C .0 30 0.57000 20 20 100 1 20 10 100 371 100810.0 5.0 1001500 150 8 .0 30 O.57G0O 3C 20 150 1 30 10 150 3 72 1024 1.0 5.0 20 400 40 2 .5 20 0.53000 10 10 800 20 5 5 10 373 10 51 1.0 5.0 50 600 1 50 2 .5 10 0.53000 3 15 500 10 10 20 5 374 1052 2.0 5.0 401000 200 2 .5 10 2.06000 3 15 700 15 15 15 5 375 10 53 2.010.0 5G1000 300 2 .5 15 2.09998 3 151000 15 20 20 5 376 1068 2.010.0 4001500 300 5 .0 500 2.0 900 ICO 201000 100 10 IC 80 377 1078 1.010.01000 500 300 2 .5 100 0.5 800 50 301000 50 5 8 100 378 1079 2.010.0 7003000 800 2 .5 400 0.55000 ICC 202000 50 10 10 50 379 1082 6.0 5.0 5C03000 200 8 .0 300 0.56000 50 201000 100 20 10 100 380 1092 5.010.0 7C05000 200 7 .0 100 1.04000 50 20 500 20 15 10 150 381 1093 5.010.0 5C09999 300 4 .0 90 2.05998 50 15 500 3 30 10 20 382 1097 7.010.0 3003000 150 5 .0 150 0.59998 40 201000 60 20 15 100 383 384 38 5 386 387 388 389 390 391 392 393 394 39 5 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 * BLANK = NOT DETECTED ** 9998 = 10,000 9999 = >10,CC0 ID NO PART II HN03/HCL04 EXTRACTABLE ZN CONTENT OF SELECTED SAMPLES DETERMINED BY ATCM IC-ABSCRPTICN SPECTROPHOTOMETRY ZN(PPM ) 124 0 C 43.119 128 0 0 14.277 132 0 G 17.161 136 0 0 6.489 140 0 C 1.875 I vO sC sO vO sO sO sO vO vO sO vO r o r o r o r o r o r o r o r o r o r o r o r o r o r o r o i—» c I—1 M l - l 1—' t—' y— r o IS) r o (—* t—* o O O o a- U1 OJ U) r o r o r o o sO CO CO - J - J O o o U i O- l \ ) CO NJ 00 J> o o r o co o -o - J UJ vO UJ vO U l c-1 UJ -ps O f > r o 00 00 o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o r o o * o OJ u i c r r o i n os \C - J . u a i — O j s O O s O i n r o u i r o i J n h - ' i - ' NOJl(Xl iDcD>U)OcOO>-<l '«JM-slHOuiU)CO •t* ro -t» UJ sO \0 r o r o r o co » v O W K - ^ W O U ^ ^ a c O W * » C N l ^ H g N l O U l i - u i W > U l ^ H r o > O i O v ) i ^ 0 1 H O ^ i N ) ^ W ^ W ^ ^ U l ^ O O ^ I » < C O W m \ l W C ^ U l O > l C 0 0 0 O - J O O W O W W £ > a ) W U « D N O -0+7 T~ m IA ~z o a > 2 o CO CO 00 O T l o U l n T l F I L E  C 0 C 0 C 0 C O - » J « « l « J - » l - s j - > j - « J vO vO -J o co -fc- o o o o o o o o o • • • • vD 0 H * 0 <D 02 U l CNTR xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx RFS NO. 023793 UNIVERSITY OF B C COMPUTING CENTRE MTSUN192) 01:39:28 THU MAY 04/72 $SIGNON AWKF **LAST SIGNON USER "AWKF" $LIST *SCURCE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 PRIO=L C0PIES=2 WAS: 01:38:38 THU MAY 04/72 SIGNED ON AT 01:39:31 ON THU MAY 04/72 48 49 50 51 52 APPENDIX B RESULTS OF ATOMIC-ABSORPTION ANALYSIS OF SOIL MATERIAL MACMILLAN PASS AREA HN03/HCL04 EXTRACTABLE METAL CONTENT P P K ID NO CU C=CLASSIF ICATION 1 REGOSOL 2 BRUNISOL 3 ORGANIC 4 GLEYSOL S = SOIL SITE NUMBER FE MN ZN MO P H 26 7 0 0 14.128 0.547 20.754 29.432 1.2 4.0 1 2 27 9 0 G 53.687 2. 108 87.167 117.128 4.0 4.6 1 2 28 12 0 0 5.415 0.261 21.858 11.311 0.4 4.1 2 3 29 13 0 c 32.487 0.730 21.858 131.891 12.0 3.8 2 3 30 14 0 C 33.570 2.711 77. 814 99.767 12.0 3.7 2 3 31 15 0 0 48.035 2.468 147.353 186.204 10.4 4.5 2 3 32 23 C 0 50.861 2. 889 213.766 198.217 8 .8 4.5 2 4 33 31 0 C 67.815 0.984 6.226 12.013 2.4 4.2 1 5 34 36 0 c 21.192 1.000 45.659 78.085 7.2 4.2 1 6 35 42 0 c 77.7C4 4. 217 233.482 285.312 3.2 4.5 1 7 36 51 0 0 39.559 1.952 35.282 87.696 9.6 4.8 8 3 7 55 0 0 56.512 3.014 31.131 285.312 18.4 4. 5 4 9 38 65 0 c 28.256 2. 108 53.960 117.128 5.2 4.9 4 11 39 70 0 0 45.210 3.670 210.653 336.368 6.0 5.5 12 40 75 0 c 26.843 1.952 195.087 160.676 3.2 5.0 1 13 41 80 0 c 7.064 0.937 36.319 69.076 1.2 4.3 1 14 42 85 0 0 31.082 3. 280 378.760 267.292 2.8 4.5 1 15 43 91 0 0 42.384 4. 061 97.544 426.467 8.8 5.4 4 16 44 96 0 0 6.497 0.483 28.852 10.633 0.2 3.9 2 17 45 97 0 0 17.327 1.077 32.35C 28.731 1.6 4.1 2 17 46 98 0 0 15.161 2.092 56.831 58.593 2.4 4.1 2 17 47 99 0 0 14.128 2. 218 65.375 72.079 2.8 4.7 2 17 (X) I 53 54 55 56 57 58 59 60 61 62 63 107 0 0 16.954 1.8 74 89.242 96.706 2.4 4.3 2 18 64 n o 0 0 19.779 1.843 157.730 180.197 2.4 4.6 4 19 65 114 G 0 18.366 1.015 44.621 57.062 1.6 4.4 1 20 66 266 0 0 55.228 2.364 245.683 726.193 33.0 5.8 1 22 67 278 0 0 38.43 3 1.410 152.032 213.942 2.8 4.8 1 23 68 283 0 0 68.512 2.850 95.374 177.415 2.8 4.4 1 24 69 297 0 0 55.144 2.625 254.961 152.629 2.0 5.4 4 27 70 301 0 0 25.065 2. 220 228.521 70.966 1.2 4.6 1 28 71 307 0 0 25.065 3. 451 2 64.404 1Z9.580 2.8 5.5 4 29 72 312 0 0 15.161 1.003 126.776 37.780 0.8 4.9 2 30 73 313 0 0 27.073 3. 355 450.273 116.055 2.8 4.5 2 30 74 314 0 0 28.156 4. 122 830.601 187.769 2.0 4.6 2 30 75 315 0 0 31.749 3.000 434.379 250.469 3.6 4.8 2 30 76 324 0 0 33.420 3.781 290.845 195.679 2.6 5. 5 4 31 77 328 0 0 41.775 3. 376 307.842 140.889 5.2 4.8 1 32 78 334 0 0 25.065 2. 250 481.594 86.099 7.2 4.4 1 3 3 79 3 66 0 0 23.233 2.316 221.762 79.557 7.0 4.1 2 35 80 368 0 0 1.671 1. 380 316.341 22.699 0.8 4.6 2 35 81 3 671 0 0 5.415 1. 770 292.896 37.328 0.2 4.6 2 35 82 3672 0 0 4.332 1.349 298.142 29.1.83 0.4 4.4 2 35 83 375 0 0 18.342 0. 528 90.004 102.221 3.4 3.9 1 36 84 376 0 0 15.039 0.675 15.109 23.918 15.2 4.2 1 36 85 401 0 0 15.039 1.8 30 14.165 44.354 22.0 4.1 1 38 86 406 0 0 5.415 0.272 20.109 7.466 0.2 4.0 1 39 87 407 0 0 10.829 1. 275 11.366 32.577 16.8 4.2 1 39 88 408 0 0 16.710 2. 130 15.1C9 39.136 22.0 4.0 1 39 89 419 0 0 18.342 0.528 84.436 71.295 1.4 3.2 1 41 90 420 0 0 24.907 0.817 14.863 36.423 6.0 3.5 1 41 91 421 0 0 31.749 1.275 15.109 35.222 12.8 3.8 1 41 92 430 0 0 91.906 3.631 56.658 114.798 7.2 4.0 1 42 93 44 C 0 0 78.538 4. 321 1180.376 477.456 10.0 5.0 43 94 441 0 0 5 8.4 86 4.276 1868.602 433.102 14.8 6.2 4 43 95 45 5 0 0 86.751 4.217 410.278 393.651 6.8 5.5 45 96 461 0 0 42.797 1. 16 5 270.011 304.537 19.0 6.6 1 46 97 470 0 0 31.792 0.718 231.040 344.670 13.0 5.5 1 47 98 476 0 0 55.025 0. 36 7 416.615 729.473 14.0 4.2 2 48 99 477 0 0 94.213 2. 265 210.710 567.833 16.8 5.3 2 48 100 478 0 0 44.399 1. 349 278.907 210.392 13.6 5.5 2 48 101 479 0 0 10.829 0.32 3 28.852 24.206 1.2 5.9 2 48 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 480 0 0 80.135 2.736 163.497 495.440 14.0 5.9 2 48 124 500 0 0 57.368 3.342 464.530 276.190 8.0 4.1 2 49 125 505 0 0 56.248 1.909 119.696 290.373 9.0 4.4 1 50 126 506 0 0 72.759 3.027 462.27C 571.429 14.8 4.4 1 50 127 507 0 0 55.228 2. 587 173.989 291.834 15.2 3.8 1 50 128 526 0 0 30.7 83 2.1 17 73.466 126.984 14.0 4.0 1 52 129 527 0 0 34.980 2.677 77.987 148.571 26.0 3.8 1 52 130 533 0 0 40.352 8.125 140.109 92.305 24.0 3.8 1 53 131 534 0 0 25.186 3.657 23.735 49.206 22.0 4.3 1 53 132 535 0 0 13.296 1.052 13.115 23.754 6.4 4.7 1 53 133 548 0 0 12.593 1.295 57.642 33.016 2.4 5.0 1 54 134 561 0 0 46.174 2.808 2695.631 242.857 2.4 5.0 1 55 135 570 0 0 30.783 3.902 161.625 93.651 2.8 3.9 56 136 577 0 0 14.692 2.493 411.974 36.190 4.2 4.0 1 57 13 7 5 78 0 0 15.391 2.957 134.499 47.937 3.6 3.8 1 57 138 587 0 0 8.395 3.700 272.954 65.714 2.4 4.4 1 58 139 601 0 0 39.178 1.837 91.550 132.698 7.2 4.3 59 140 620 0 0 43.376 4.217 552.689 123.810 1.3 4.4 1 61 141 628 0 0 50-134 1. 368 499.195 156.990 1.0 4.3 1 62 142 629 0 0 16.244 0.805 63.825 25.564 0.4 4.6 1 62 143 630 0 0 34.673 4. 299 1034.343 106.104 1.6 4.3 1 62 144 653 0 0 31.783 3.894 1221.1G0 98.131 0.2 4.1 1 63 145 661 0 0 12.228 0.488 379.5G0 58.311 0.2 4.3 1 64 146 662 0 0 23.115 4.060 475.511 104.264 0.2 4.8 1 64 147 672 0 c 24.560 4.115 258.586 113.771 0.8 4.0 1 165 148 680 0 0 36.117 3.968 3 73.5 13 114.998 1.6 4.2 4 265 149 6 84 0 0 64.807 6.487 2143.385 153.449 1.0 4.6 1 66 150 685 0 0 37.562 4. 721 890.684 111.624 0.2 4.3 1 66 151 695 0 0 30.339 3.674 876.319 93.838 0.4 3.9 1 67 152 724 0 0 43.341 6.429 948.148 171.730 0.2 5.1 1 68 153 730 0 c 13.002 2.094 238.474 51.212 0.8 4.5 1 69 154 741 0 0 41.8 96 4.886 876.319 143.517 0.4 5.7 1 70 155 752 0 0 23.115 3.766 511.425 117.451 0.4 5.0 1 71 156 768 0 0 28.124 0.501 8443.633 498.119 0.4 4.8 1 7 2 157 769 0 0 18.409 0. 459 222.951 16.741 0.4 5.0 1 72 158 770 0 0 33.228 2. 517 135.039 129.717 2.8 4.5 1 72 159 785 0 0 7.580 0.212 43.716 5.656 0.2 6.9 1 74 160 786 0 0 11.558 2.094 415.174 77.892 0.8 7.1 1 74 161 798 0 0 18.781 1.8 27 317.486 76.972 1.6 4.6 1 75 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 806 0 0 24.455 0.731 1660.892 181.778 0.4 5.2 1 76 184 807 0 0 6.497 0. 301 23.607 8.370 0.2 4.8 1 76 185 842 0 0 52.009 0. 107 21692.480 10303.777 760.0 4.9 1 77 186 8 52 0 0 21.670 1.72 7 2758.250 1272.639 8.0 7.0 1 78 187 869 0 C 52.009 3.233 861.953 254.528 2.0 6.4 1 80 188 880 0 0 25.600 3.780 12.661 102.365 0.4 4.4 1 81 189 £83 0 0 21.333 3.672 115.213 86.526 6.8 4.4 1 81 190 893 0 0 44.089 2. 412 554.541 2522.456 24.0 7.2 1 85 191 994 0 0 22.756 5. 381 153.195 92 .979 6.8 4.5 1 87 192 1011 0 0 21.333 5. 201 30.386 268.378 8.0 4.5 4 88 193 1018 0 0 24.178 4.031 63.304 78.900 10.0 3.9 1 89 194 1031 0 0 14.222 1. 944 16.4 59 41.357 11.2 3.9 1 90 195 1041 0 0 18.342 2.207 95.571 56.894 6.0 4.2 1 91 196 1042 0 0 15.644 3. 258 44.313 34.317 16.0 4.3 1 91 197 1058 0 0 59.733 2.700 87.359 140.495 8.8 4.0 1 292 198 10 64 0 0 103.936 1. 314 294.135 1C69.42 0 18.0 5.6 1 93 199 1085 0 0 48.356 1.818 29.120 454.629 14.0 6.0 1 94 200 1101 0 0 19.564 0.582 50.IC5 361.195 2.4 7.4 3 95 201 1117 0 0 41.244 3.995 179.783 109.991 1.2 4.3 1 96 202 1124 0 0 50.134 0.528 2495.977 568.941 18.0 5.4 1 97 203 1125 0 0 72.533 4.085 3 87,419 475.160 24.0 5.4 1 97 204 1171 0 0 36.978 1.998 81.029 193.584 8.0 4.8 1 98 205 1172 0 0 45.511 2. 196 138.002 178.918 7.2 4.5 1 98 206 1173 0 0 41.244 2.610 172.186 258.112 6.8 4.8 1 98 207 1174 0 0 42.394 2. 138 73.031 195.951 6.4 4.8 1 98 208 1175 0 0 45.318 2.343 155.191 173.827 4.8 4.7 1 98 209 1176 0 0 52.627 2.412 149.974 176.988 5.2 4.5 1 98 210 1177 0 0 51.165 2.206 139.542 183.309 5.6 4.7 1 98 211 1178 0 0 51 .165 2. 343 147.366 180.148 4.0 5.0 1 98 212 1179 0 0 51.165 2.309 163.016 167.506 3.2 4.6 1 98 213 1180 0 0 49.703 2.412 155.191 180.148 4.0 4.8 1 98 END OF FILE SSIGNOFF CNTR XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX RFS NO. 023794 UNIVERSITY OF B C COMPUTING CENTRE MTS(AN192) 01:38:34 THU MAY 04/72 $SIGNON AWKF PR IO=L C0PIES = 2 **LAST SIGNON WAS: 01:38:02 THU MAY 04/72 USER "AWKF" SIGNED ON AT 01:38:38 ON THU MAY 04/72 $LIST *SCURCE* 1 2 3 4 5 6 7 8 9 APPENDIX C 10 RESULTS OF ATOMIC-ABSORPTION ANALYSIS OF PLANT MATERIAL 11 MACMILLAN PASS AREA 12 13 HN03/HCL04 EXTRACTABLE METAL CONTENT 14 EXPRESSED AS P.P.M. DRY WEIGHT 15 16 17 ID NO CU FE MN ZN MO SPP SITE 18 19 SITE = SOIL SITE NUMBER 20 SPP= SPECIES ABBREVIATION TREES 21 ABL = ABIES LASIOCARPA 22 PIG = PICEA GLAUCA 23 POT = POPULUS TREMULOIDES 24 SHRUBS 25 BEG = BETULA GLANDULOSA 26 SAA = SALIX ALAXENSIS 27 SAP = SALIX PHYLICIFOLIA 28 CAT = CASSICPE TETRAGONA 29 EMN = EMPETRUM NIGRUM 30 POF = POTENTILLA FABELL IFORMlS 31 DYI = DRYAS INTEGRIFOLIA 32 FORBES 33 LUA = LUPINUS ARCTICUS 34 EPL = EPILOBIUM LATIFOLIUM 35 EPA = EPILOBIUM ANGUSTIFOLIUM 36 VAS = VALAR I AN STICHENSIS 37 VEV = VERATRUM VIRIDE 38 SET = SENECIO TRIANGULARIS 39 PCA = POLYGONUM ALASKANUM 40 GRASSES 41 CAA = CAREX AQUATALIS 42 FEA = FESTUCA ALTAICA 43 CAC = CALAMAGROSTIS CANADENSIS 44 CAM = CAREX MICROCHAETA 45 DEC = DECHAfPSIA CAESPITOSA 46 LICHENS 47 CLA = CLADOMA ALPESTRIS 48 49 50 51 52 I 53 54 55 56 5 7 58 59 60 61 62 63 64 65 66 67 68 69 70 71 7 2 73 74 75 76 77 78 79 80 81 82 83 84 85 86 8 7 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 CEN = CETRARIA NIVALIS ALX = ALECTORI A UMX = UMBILICARIA STX = STEREOCAULON 3 0 0 10.805 81.344 104.559 67.057 4 C 0 10.805 88.824 218.674 243.435 7 0 0 10.084 60.774 190.567 307.654 10 0 0 10.8 05 73.864 387.879 110.516 11 0 0 3.602 169.233 16. 864 11.500 17 0 0 10.805 69.189 241.160 140.386 18 0 0 3.602 202.893 21.924 12.993 24 0 0 10.805 80.409 421.6 07 134.412 25 G 0 3.602 155.208 27.545 12.694 32 0 C 7.923 89.759 213.052 97.075 33 0 0 3.6 02 143.053 17.426 22.253 37 0 0 3.602 1C3.784 82.635 11.201 38 0 0 10.084 100.044 1101.801 141.879 43 0 0 4.322 131.833 54.528 17.025 44 0 C 7.923 65.449 803.865 141.879 52 0 0 3.6 02 107.524 82.635 14 .039 53 0 0 6.983 88.928 653.920 162.902 56 0 0 11.173 •55. 551 115.893 64.459 57 0 0 6.285 87.982 240.202 279.462 58 0 0 6.983 88.928 157.329 228.906 62 0 0 3.492 105.011 102.944 17.273 63 0 0 6.983 103.119 1754.578 167.115 66 0 0 9.776 74.738 219.484 237.332 67 0 0 6.983 65.277 159.919 164.3 07 72 0 G 6.983 69.061 77.C46 136.220 76 0 0 2.793 87.982 156.034 17.835 77 0 0 7.681 62.439 1638.038 174.137 78 0 0 8.380 48.248 407. 891 53.224 81 0 0 3.492 72.846 49.206 12.499 82 0 0 6.893 56.868 610.8C0 259.313 83 0 0 5.586 69.061 427.314 63 .054 86 0 0 6.983 82.306 213.010 209.245 87 0 0 7.681 74.738 1599.191 265.418 0.6 CAA SAA BEG BEG CLA BEG CLA BEG CLA BEG CLA CLA BEG CLA BEG CLA BEG CAC SAA BEG CLA BEG BEG SAA SAA CLA BEG ABL CLA BEG ABL SAA BEG 1 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 9 10 10 11 11 12 13 13 13 14 14 14 15 15 •P- i 113 114 115 116 117 118 119 120 121 122 123 88 0 0 9.776 47.302 420.840 57.437 ABL 15 124 92 0 G 5.586 1 16.364 264.229 167.115 SAA 16 125 93 0 0 6.983 80.414 524.431 265.418 BEG 16 126 108 0 0 3.446 97.888 55.186 15.532 CLA 18 127 109 0 c 6.893 131.449 830.473 162.071 BEG 18 128 111 0 0 4.825 97.888 280.218 168.824 SAA 19 129 112 c 0 6.893 81.1C7 1189.452 226.899 BEG 19 130 116 0 0 6.893 90.430 1393.G52 202.589 BEG 20 131 117 0 G 5.514 103.481 407.200 110.748 0.4 SAA 20 132 121 0 0 8.644 86.954 494.686 235.968 SAA 21 133 122 0 0 7.923 69.189 1349.144 171.749 BEG 21 134 123 0 c 5.042 28.985 1068.073 44.05 7 PIG 21 135 2 67 0 0 13.7 86 2004.371 67.509 108.047 4.5 CAA 22 136 268 C 0 9.650 1165.332 35.362 45.785 3.5 VAS 22 137 279 0 0 4.136 90.430 €8. 045 14.181 CLA 23 138 280 0 0 6.893 58.733 1553.789 175.577 BEG 23 139 284 0 c 6.8 93 77.378 107.694 114.800 0.3 SAA 24 140 285 0 0 6.8 93 71 .784 546.505 129.657 BEG 24 141 289 0 C 6.204 84.836 921.558 164.772 BEG 25 142 290 0 0 2.757 66. 191 80.368 11.480 CLA 25 143 294 0 0 6.2G4 116.533 600.084 110.748 SAA 26 144 295 0 0 6.893 92.294 1264.463 189.083 BEG 26 145 298 0 0 6.8 93 9 2. 29 4 632.231 151.266 SAA 27 146 299 0 0 6.893 105.346 1098.368 229.600 BEG 27 147 302 0 0 3.446 81.10 7 73.403 11.210 CLA 28 148 303 0 c 6.8 93 88.565 269.502 73.607 BEG 28 149 308 0 0 9.112 68.073 915.033 178.119 BEG 29 150 309 0 c 7.290 70.305 643.137 130.518 SAA 29 151 310 0 0 2.430 90.392 58.562 14.587 CLA 29 152 311 0 0 10.327 236.583 204.967 50.518 1.0 CAA 29 153 316 0 0 4.252 68.073 294.379 31.171 0.6 FEA 30 154 317 0 G 7.290 65.841 773.856 153.551 BEG 30 155 318 0 0 7.290 179.669 34.510 72.476 0.6 EPL 130 156 322 0 c 6.075 63.609 56.993 36.084 0.5 PDF 230 157 325 0 0 6.682 65.841 449.673 176.583 SAA 31 158 326 0 0 6.682 79.233 141.699 41.766 1.2 CAA 31 159 329 0 0 3.645 47.986 637.908 12.438 EMN 32 160 3 30 0 0 0.6G7 85.929 33.987 11.516 CLA 32 161 331 0 0 5.467 50.218 496.732 153.551 BEG 32 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 335 0 0 7.290 61. 378 784.314 168.906 BEG 33 184 336 0 0 0.607 85.929 43.399 15.048 CLA 33 185 1337 0 0 3.645 43.522 250.458 33.628 0.4 FEA 33 186 233 7 0 0 7.897 70.305 136.471 65.873 1.4 CAA 33 187 338 0 0 8.505 1450.742 690.196 191.93 9 SAA 33 188 340 0 0 4.900 66.657 435.C2C 30.369 0.6 FEA 3 189 3 42 0 0 7.290 248.858 286.536 43.762 2.8 CAA 33 190 347 0 0 12.150 113.465 102.901 69.333 CAC 10 191 348 0 0 6.682 49.700 100.179 63.852 1.4 CAC 12 192 349 0 0 11.542 42.198 21.234 49.185 SET 12 193 350 0 0 9.72 0 53.451 50.634 53.481 0.6 EPA 12 194 351 0 0 3.645 27. 194 1143.344 47.852 P IG 13 195 352 0 c 3.037 25.319 936.453 36.889 PIG 14 196 3 53 0 0 6.075 70.330 301.081 207.407 SAA 14 197 354 0 G 4.860 34.696 256.436 72.741 PIG 15 198 355 0 0 7.290 137.846 103.990 100.741 EPA 15 199 356 0 0 9.720 152.850 451.893 53.481 2.8 CAA 16 200 3 57 0 0 7.962 76.317 248.245 39.652 0.4 CAC 16 201 3 60 0 0 9.112 75.956 150.812 59.556 2.6 POA 34 202 361 0 0 5.467 162.227 173.679 17.630 0.8 CAT 34 203 3 62 c 0 6.075 68.454 157.346 12.741 1.2 EMN 34 2 04 363 0 0 7.349 74.385 261.485 58.483 2.0 FEA 34 205 3 70 0 0 4.860 797.070 8.711 23.556 0.8 UMX 35 206 371 0 0 1.822 209. 114 31.034 14.074 CLA 35 207 3 72 0 0 6.682 59.077 306.525 214.815 BEG 35 208 373 0 0 5.467 77.831 256.436 28.000 CAT 35 209 379 0 0 3.645 468.865 7.078 20.593 1.0 UMX 36 210 380 0 0 2.574 148.027 40.233 14.243 CLA 36 211 381 c 0 7.722 57.082 275.669 194.343 BEG 36 212 3 82 0 0 6.435 70.627 256.795 26.489 CAT 36 213 3 83 0 0 7.722 64.822 299.511 67.221 0.7 POA 36 214 389 0 0 2.5 74 117.067 110.765 13.710 CLA 37 215 390 0 0 6.435 59.017 794.723 15.042 0.6 EMN 37 216 391 0 0 3.861 41.602 521.537 36.339 1.4 ABL 37 217 392 0 0 5.792 51.277 71.028 36.073 0.6 CAC 37 218 393 0 0 6.435 62.887 208.118 130.449 0.6 SAP 37 219 394 0 0 9.010 63.855 620.877 215.641 BEG 37 220 39 5 0 0 5.792 49.342 86.923 62.695 2.6 POA 37 221 402 0 0 2.574 109.327 44.206 11.181 CLA 38 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 403 0 0 5.792 47.407 720.217 158.403 BEG 38 244 404 0 0 6.435 51.277 417.229 18.502 0.8 EMN 38 245 405 0 0 3.861 66.757 745.052 42.463 ABL 38 246 409 0 0 5.148 57.082 461.933 127.787 BEG 39 247 1410 0 0 2.574 97.717 44.206 14.509 CLA 39 248 2410 0 0 10.297 1596.373 30.299 24.093 0.8 UMX 39 249 415 0 0 7.079 52.245 69.042 295.507 BEG 40 250 416 c 0 5.148 73.530 224.013 266.223 SAP 40 251 417 0 0 5.102 99.06 5 28.104 225.216 0.3 SAA 40 252 425 0 0 2.551 118.682 72.048 8.705 CLA 41 253 426 0 0 8.291 59.831 268.264 172.712 BEG 41 254 427 0 0 7.015 1275.096 7.665 20.311 0.3 UMX 41 255 428 0 0 5.740 89.257 194.683 19.482 CAT 41 256 434 0 0 3.827 124.567 277.461 103.627 SAA 42 257 435 0 0 3.827 79.448 602.954 16.995 EMN 42 2 58 436 0 0 5.740 67.678 510.978 168.566 BEG 42 2 59 437 0 0 3.827 104.950 367.904 22.798 CAT 42 260 438 0 0 1.913 165.763 50.587 8.428 CLA 42 261 443 0 0 3.189 25.502 613.174 56.788 ABL 43 262 444 0 0 3.189 25.502 65.916 72.262 PIG 43 263 445 0 0 6.378 48.061 80.224 165.803 SAA 43 264 446 0 0 3.827 61.793 36.279 24.594 0.6 CAT 43 265 4 50 0 0 2.551 53.946 210.012 172.712 0.3 BEG 44 266 451 C 0 1.913 83.372 174.244 96.718 SAA 44 267 452 0 0 2.551 57.870 163.002 25.838 CAA 44 268 458 0 0 3.189 104.550 203.88C 165.803 0.5 SAA 45 269 459 0 0 1 .913 81.410 73.070 15.889 CLA 45 270 4 60 0 0 4.464 44.138 510.978 149.223 BEG 45 271 464 0 0 6.175 97.270 72.759 27.527 14.0 EPL 46 272 465 0 0 4.322 42.179 27.342 42.743 52.0 FEA 46 273 466 0 0 9.262 63.699 38.465 331.988 12.0 SAA 46 274 467 0 0 5.557 49.065 55.148 24.207 14.0 LUA 46 275 468 0 0 6.175 62.838 19.928 25.314 12.0 CAT 46 276 4 74 0 0 6.1 75 55.091 12.513 26.697 17.0 EPL 47 277 475 0 0 4.322 50.787 19.928 29.464 1.8 DYI 47 278 486 0 0 9.262 62.838 57.466 307.089 1.0 SAA 48 279 487 0 0 19.141 63.699 38.465 75.112 2.8 VEV 48 280 488 0 0 6.7 92 42.179 28.269 43.020 9.0 EPA 48 281 489 0 0 10.497 56.812 25.952 75.666 5.0 SET 48 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 490 0 0 6.792 59.395 19.928 36.104 1.6 VAS 48 304 491 0 0 5.557 52.508 71.832 73. 729 12.0 FEA 48 305 492 0 0 6.792 54.230 43.099 89.914 2.4 CAA 48 306 494 0 0 12.349 49.065 285.938 196.426 2.4 CAC 48 307 5 03 0 0 2.470 93.827 64.417 21.164 CLA 49 308 5 04 0 0 5.5 57 76.611 260.912 131.412 SAA 49 309 509 0 0 3.705 37.014 625.634 64.876 ABL 50 310 510 0 0 1.235 71.446 88.516 23.654 CLA 50 311 511 0 0 6.792 54.220 194.178 74.006 4.5 EPL 50 312 521 0 0 5.929 41.167 39.399 42.728 0.3 CAA 51 313 522 0 0 6.522 81.376 55.815 181,050 0.5 SAA 51 314 529 0 0 7.114 54.570 600.366 13.470 0.8 EMN 52 315 530 0 0 5.336 64.144 483.107 18.974 0.6 CAT 52 316 531 0 0 6.522 46.911 544.082 112.975 BEG 52 317 1532 0 0 1 .186 96.694 34.709 9.704 LUA 46 318 2532 0 c 8.893 60.314 89.586 32.299 2.4 CLA 52 319 542 0 0 6.522 75.632 183.393 48.232 0.3 FEA 53 320 543 0 0 2.371 175.198 23.921 20.422 CLA 53 321 544 c 0 11.857 50.740 375.229 47.942 0.7 CAC 53 322 54 5 0 0 15.415 73.717 95.214 54.894 0.5 SET 53 323 546 0 0 5.929 113.927 61.444 20.13 3 CAT 5 3 324 552 0 0 2.371 123.500 52.063 16.657 CLA 54 325 5 53 0 0 5.929 1072.251 8. 912 17.815 ALX 54 326 554 0 0 15.415 299.656 205.907 27.375 0.3 CAT 54 327 555 0 0 6.522 89.035 254.687 56.343 FEA 54 328 564 0 0 7.114 56.485 187.146 105.733 FEA 55 329 565 0 0 14.822 69.888 154.313 115.872 SET 55 330 5 72 0 0 1. 186 108. 182 22.045 13.180 CLA 56 331 5 74 0 0 5.032 60.952 178.801 32.275 FEA 56 332 581 0 0 5.920 62.828 223.168 33.4^99 CAT 57 333 582 0 0 3.848 27.194 532.409 33.499 ABL 57 334 583 0 0 5.032 42.198 479.168 16.367 EMN 57 33 5 584 0 0 2.664 96.586 81.192 20.650 CLA 57 336 585 0 0 8.5 85 62.828 137.095 22.792 0 .4 SET 58 337 590 0 0 5.920 60.952 268.423 31.969 1.2 FEA 58 338 591 0 0 6.809 92.835 976.083 120.841 SAP 58 339 592 0 0 10.657 62.828 105.151 28.910 1.2 LUA 58 340 593 0 c 4.736 32.821 319.445 28.910 0.4 ABL 58 341 594 0 0 7.993 70.330 228.492 32.581 0.4 CAC 58 342 343 344 345 346 347 348 349 350 351 352 3 53 354 355 356 3 57 358 3 59 360 361 3 62 363 604 0 0 7.105 68.454 621.144 229.445 BEG 59 364 605 0 0 2.3 6 8 83.458 31.501 8. 719 CLA 59 365 606 c 0 2.664 81.582 101.601 14.532 CEN 59 36 6 607 0 0 3.256 218 .49 1 32.388 19.732 STX 59 367 608 0 G 2.960 79.707 31.501 6.577 ALX 59 368 612 G 0 7.697 70.330 2 13.407 73.576 CAM 160 369 613 0 0 3.848 74.081 255.113 46.042 ERA 160 370 614 0 0 9.177 87.209 240.915 62.868 0.8 CAC 160 371 615 0 0 4.736 135.971 319.445 160.612 SAP 160 372 616 0 0 6.203 59.831 231 .868 179.426 BEG 160 373 618 0 0 5.075 138.299 294.9C0 114.833 SAA 260 374 622 0 0 14.661 2550.193 231.868 27.416 CAT 61 375 623 0 G 8.458 63.755 495.251 132.057 BEG 61 376 624 0 0 8.458 8 3.372 652.832 186.603 SAA 61 377 625 0 c 2.819 392.337 64.833 25.694 CLA 61 378 626 0 0 5.639 75.525 459.233 29.426 FEA 61 379 627 0 0 14.097 1667.4 33 22.061 22.823 ALX 61 380 633 0 0 5.639 59.831 432.219 13.062 EMN 62 381 634 0 0 8.458 83.372 115.709 28.565 VAS 62 382 635 0 0 5.639 50.023 1305.663 57.847 ABL 62 383 636 0 0 4.642 42.825 0.0 37.053 FEA 62 384 637 0 0 16.916 87 .295 180.542 117.703 SET 62 385 638 0 0 5.075 46. 100 281.393 20.813 CAT 62 386 639 0 0 11.841 61.793 105.804 79.665 VEV 62 387 640 0 0 1.692 150.069 42.772 21.675 CLA 62 388 641 0 0 6.767 67.678 432.219 106.220 SAA 62 389 642 0 0 12.969 1618 .391 27.014 30.2 87 ALX 62 390 656 0 0 6.203 95.142 5 85.297 60.431 LUA 63 391 657 0 0 5.639 128.490 6 75.343 79.378 SAP 6 3 392 658 0 0 5.998 48.209 974.378 149.523 BEG 63 393 659 0 0 2.399 132.821 58.463 10.070 CLA 63 394 660 0 0 4.199 32.467 1283.327 36.771 ABL 63 39 5 665 0 0 1.799 73.789 77.475 7.781 CLA 64 396 666 0 0 3.599 30.500 1663.573 36.465 ABL 64 397 667 0 0 5.998 54.112 1359.376 175.461 BEG 64 398 668 0 0 5.998 38.371 903. 082 14.800 EMN 64 399 675 0 0 2.359 103.305 57.037 13.579 CLA 165 400 6 76 0 0 2.959 105.273 27.092 22.734 STX 165 401 677 0 0 2.399 34.435 46.105 9.002 ALX 165 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 678 0 0 4.642 0.0 0.0 21.371 CAT 165 424 679 •0 0 7.198 52.145 408.763 170.884 BEG 165 42 5 681 0 0 11.996 229.239 437.281 50.502 0.8 CAA 265 426 682 0 0 6.598 256.787 166.8 33 34.940 0.4 DEA 265 427 683 0 0 8.3 97 63.951 208.660 22.734 0.3 CAC 265 428 688 0 0 5.998 63.951 627.404 190.718 SAA 66 429 689 0 0 4.799 122.982 380.245 21.208 CAT 66 430 690 0 0 2.399 292.206 74.623 17.851 CLA 66 431 691 0 0 6.124 72.453 780.199 39.652 FEA 66 432 692 0 0 8.3 97 71.822 380.245 45.620 LUA 66 433 698 0 0 5.802 59 .955 937.289 141.448 BEG 67 434 699 0 0 4.642 103.732 1528.502 36.746 ABL 67 435 700 0 0 5.222 61.859 276. 38C 15.836 CAT 67 436 701 0 0 1.741 92.312 92.768 8.149 CLA 67 437 702 0 0 5.222 39.019 696.958 12.454 EMN 67 438 703 0 0 6.383 151.316 215.817 21.832 EPL 67 439 7 04 c 0 6.3 83 157.026 480.661 35.977 LUA 67 440 726 0 0 5.802 111.346 1393.917 25.522 LUA 68 441 727 0 0 5.802 56.149 865.190 146.060 SAA 68 442 72 8 0 0 6.383 265.517 471.047 12.146 EMN 68 443 732 0 0 4.062 58.052 576.793 17.988 CAT 69 444 733 0 0 4.642 324.521 35.088 13.684 CLA 69 445 734 0 0 2.321 46.632 75.464 11.685 ALX 69 446 735 0 0 4.642 51. 390 672.926 12.761 EMN 69 447 736 0 0 5.802 58.0 52 605.633 196.797 BEG 69 448 737 0 0 5.222 1808 .179 20.668 19.833 ALX 69 449 744 0 0 6.383 69.472 384.529 115.311 0.3 SAP 70 450 745 0 0 6.3 83 1 11.346 221.585 45.971 CAM 70 451 746 0 0 5.512 56.996 286.073 38.591 FEA 70 452 747 0 0 8.7 04 200.803 50.95C 37.668 DEC 70 453 748 0 0 3 .913 221.893 268.007 21.655 CAT 70 454 755 0 0 5.590 47.479 321.608 248.276 SAA 71 455 756 0 0 5.031 57.169 66.037 34.621 CAT 71 456 757 0 0 2.236 86.238 33.018 16.414 CLA 71 457 758 0 0 3.354 31.976 268.007 45.379 ABL 71 458 759 0 0 6.148 39.727 237.990 27.724 EMN 71 459 7 73 0 0 3.913 72.672 135.933 129.655 POT 72 460 774 0 0 5.031 39.727 814.740 19.172 0.3 EMN 72 4 61 775 0 0 4.472 55.231 110.204 28 .000 0.8 EPL 72 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 776 0 0 3.3 54 53.293 132.503 165.517 SAA 72 484 7 77 0 0 2.795 66.858 643.216 168.276 8EP 72 485 778 0 0 4.472 59.107 66.894 23.034 LUA 72 486 779 0 0 5.031 62.983 1166.365 213.793 BEG 7 2 4 87 780 0 0 4.900 45.404 170.698 22.147 FEA 72 488 782 0 0 5.590 148.251 272.295 2 04.138 SAP 73 489 783 0 0 5.590 119.182 224.268 44.000 0.6 CAA 73 490 789 ' 0 0 6.148 76.548 80. 188 18.759 0.4 POF 74 491 790 0 0 1.677 109.493 21.012 10.069 CLA 74 492 791 0 0 3.3 54 51.355 196.824 5 0.897 PIG 74 493 792 0 0 5.031 72.672 55.317 53.655 SAA 74 494 7 93 0 0 3.302 166.017 27.121 9.838 0.4 SHC 74 495 794 0 0 6.053 92.341 115.747 14.273 EMN 74 496 800 0 0 4.953 83.500 136.088 80.785 SAA 75 497 801 0 0 3.302 46.170 799.092 40.878 PIG 75 498 803 0 0 2.201 64.835 107.030 12.887 CLA 75 499 802 0 0 4.953 77.606 34.385 17.598 0.5 LUA 75 500 811 4.953 93.470 138.568 POT 76 501 812 4.953 64.412 21.478 LUA 76 502 813 3.302 513.356 56.951 PIG 76 503 814 6.0 53 308.982 187.067 0.4 SAA 76 504 815 0 0 4.953 57.959 484.298 117.783 BEG 76 505 816 2.752 184.518 30.624 1.2 EPA 76 506 984 0 0 8.564 127.906 48.128 34.527 CAA 86 507 997 0 0 2.284 158.942 3 8.4 05 10.186 CLA 87 508 998 0 0 4.567 50.786 213.414 22.885 CAT 87 509 999 0 0 9.135 46.084 340.296 178.586 BEG 87 510 1014 0 0 7.349 45.404 243.517 32.491 CAC 88 511 1015 0 0 10.602 89.202 72.426 56.564 VEV 88 512 1016 0 0 17.297 69.857 175.621 102.843 SET 88 513 1021 0 0 5.022 119.295 208.757 18 .591 CAT 89 514 1022 0 0 2.2 32 142.939 39.290 11.998 CLA 89 515 1023 0 0 6.696 78.455 539.645 145.035 BEG 89 516 1034 0 0 3.906 33.317 247.574 36.786 ABL 90 517 1C35 0 0 5.022 50.512 212.544 20.173 CAT 90 518 1036 0 0 6.696 52.662 305.325 57.882 BEG 90 519 1037 0 0 1.116 89.202 21.775 9.361 CLA 90 520 1045 0 0 4.464 72.007 254.201 17.272 CAT 91 521 1046 0 0 2.790 127.893 20.828 10.680 CLA 91 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 53 7 538 539 540 541 542 543 1047 0 0 6.6 96 44. 544 10 61 0 0 6.696 47. 545 1062 0 0 2 .790 155. 546 1063 0 0 3.906 25. 547 1069 0 0 8.370 114. 548 1070 0 c 6. 138 58. 549 1071 c 0 6.124 41. 550 10 72 G 0 10.602 61. 551 1073 0 0 6.214 37 . 552 1088 0 0 2.824 67. 553 1089 0 0 3.389 85. 554 1090 0 0 4.519 175. 555 1091 0 0 4.519 49. 556 1104 0 0 5.084 324. 557 11 05 0 0 1 .130 49. 558 1106 0 0 3.389 46. 559 1107 0 0 7.908 40. 560 1121 0 0 5.084 572. 561 1122 0 0 4.519 30. 562 1123 0 0 1.695 81. 563 1129 0 0 6.214 44. 564 1130 0 0 7.343 56. 565 1131 0 0 6.214 184. 566 1132 0 C 3.389 40. 567 1133 0 0 6.778 46. 568 1134 0 0 8.473 56. 569 1135 0 0 6.778 41. 570 571 572 * BLANK = <0 .2 P.P.M. END OF FILE 064 243.787 98 .888 BEG 91 288 591.716 121 .302 BEG 292 836 24.142 6.724 CLA 292 793 497.041 32.567 ABL 292 996 48.757 243.923 8.0 SAA 93 03 5 54.9 11 200.412 5.0 SAP 93 540 66.672 79.967 50.0 FEA 93 259 33.6 09 73.572 18.0 SET 93 816 89.745 37.793 44.0 EPL 93 610 101.778 136.003 1.2 SAP 94 945 74.704 125.541 2.0 SAA 94 327 37.101 30.208 1.6 SET 94 275 196.036 32.562 1.0 CAA 94 297 20.556 21.054 12.0 EPL 95 27 5 83.228 130.772 1.2 SAA 95 983 101.778 23 .931 0.4 CAA 95 107 I4.54G 41.978 12.0 SET 95 963 200.047 91.541 SAP 96 940 551.508 38.316 ABL 96 361 83.729 14.777 CLA 96 691 269.738 228.852 1.4 SAP 97 150 104.787 228.852 1.2 SAA 97 494 752.G57 222.313 0.4 BEG 97 107 115.817 43.547 3.6 FEA 97 983 150.913 56.624 3.0 EPA 97 150 75.707 78.202 1.2 SET 97 253 99.773 85.002 3.6 CAC 97 $SIGNOFF CNTR XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX RFS NO. 023795 UNIVERSITY OF B C COMPUTING CENTRE MTS(AN 192) 01:37: 58 THU MAY 04/72 fSIGNON AWKF PRIO=L **LAST SIGNON WAS: USER "AfcKF" SIGNED $LIST *SOURCE* 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 C0PIES=2 01:37:22 THU MAY 04/72 ON AT 01:38:02 ON THU MAY 04/72 48 49 50 51 52 RESULTS APPENDIX D PART I OF EMISSION SPECTROGRAPHS ANALYSIS MACNILLAN PASS P P H (METHOD 1) OF STREAM AREA SEDIMENTS ID NO LOC SR EA CR CO NI AG TI CU IN T.M. CO-ORDINATES MO BI GA SN PB MN LOC = U. 23 6 801000 150 80 250 8GC0 500 25 500 30 15 15 500 24 700019 4477013 80 150 15 40 90 20 500 20 15 10 40 25 700026 4477011 100 150 40 60 200 20 500 25 15 20 300 26 700027 4477010 70 1 50 4CC 700 3C0 60 500 30 15 2C5C00 27 700028 4467010 100 200 60 200 3 400 30 700 20 20 204000 28 700034 4447007 100 200 30 500 200 25 800 40 18 20 300 29 700039 4417006 80 180 100 3 50 500 40 700 30 20 2C1C00 30 700045 43 97 005 60 120 10 80 202000 60 15 100 30 31 700046 4387004 60 180 5 20 5C 202000 60 15 30 20 32 7000 59 43 87002 100 100 18 30 80 30 400 20 20 2 0 200 33 7CC068 4386997 4C0 40 10 20 18 30 60 2 20 20 400 34 700073 4396995 80 ICO 15 60 70 20 300 10 15 20 300 3 5 700079 4396993 100 180 30 80 70 30 500 10 20 20 400 36 700084 4346991 80 200 60 200 80 30 500 10 20 2C1C00 37 700089 4316989 80 100 50 80 70 30 500 15 20 15 500 38 700094 4276985 120 100 30 70 60 25 500 10 20 15 500 39 700095 4276986 100 100 40 100 60 3 5 200 5 20 151CC0 40 700102 4246979 1G0 180 20 200 100 30 500 20 20 5 151000 41 700103 4236978 80 100 40 50 6 0 40 200 15 18 252000 42 700113 4166974 ICO 80 20 80 60 30 200 20 18 15 700 43 700118 4076971 100 150 30 100 100 20 500 20 15 10 700 44 700146 4427004 60 80 30 50 20 800 20 20 25 40 100 45 700151 4417005 80 180 15 30 252000 4 0 20 50 50 46 700153 4407005 80 180 20 50 301500 50 20 50 50 47 700262 44370G8 150 200 30 500 150 301500 40 15 20 400 I 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 700263 4437009 200 300 50 600 ICO 302000 60 20 20 200 70 700264 4447009 2C0 400 50 500 80 401000 30 15 10 10 400 71 700275 4406998 30 12 30 40 20 20 200 72 30 4 5C05000 150 30 60 8000 20 30 100 20 20 500 73 319 2009998 200 100 500 9998 2 CO 30 500 15 25 2C1C00 74 320 3005000 180 70 100 eoco 70 40 100 5 30 405000 75 321 1505000 150 60 .100 9998 50 30 400 10 25 20 500 76 323 1005000 150 60 200 8000 70 25 400 10 20 15 5C0 77 332 1009998 200 70 400 9000 100 30 800 20 20 30 500 78 700341 4477011 200 200 60 300 150 30 600 20 25 30 500 79 700 343 4457008 70 300 30 50 100 151500 50 15 15 100 80 700483 4427010 ICO 2C0 30 200 90 30 800 2 0 20 20 200 81 700495 4427009 200 200 5C 400 20C 301000 30 15 20 500 82 700496 4427 008 700 500 30 300 200 301000 30 20 20 200 83 700512 4417008 2C0 4C0 40 300 ICO 40 800 20 20 2C 200 84 700514 4417009 100 2G0 30 200 150 30 600 20 20 20 200 85 700523 44070C81000 400 60 600 2 00 501000 200 15 205000 86 700539 4427003 80 180 10 60 80 251000 60 15 3C 80 8 7 7G0556 4417G02 100 180 15 50 50 30 200 10 20 30 500 88 700562 4427002 200 1001CCC1000 ICO 100 80 10 15 5 15 89 700563 4427001 80 1 80 50 70 70 20 400 15 15 15 100 90 700576 4417001 5CG 6G 40 150 60 30 60 5 25 5 20 500 91 700578 4407002 60 180 3C 80 100 25 400 20 20 30 500 92 700581 4407CCC 300 15 10 20 25 20 15 15 200 93 700594 4407001 100 ICO 40 60 70 25 500 20 20 20 400 94 700595 4397000 60 200 15 50 150 201000 50 20 30 200 95 700643 4447023 3C0 180 7C 90 ICO 40 60 30 503000 96 700645 4447022 200 200 60 70 100 2 5 80 2 30 30 500 97 700647 4427022 3C0 200 70 50 60 25 80 30 20 800 98 700649 4437023 300 180 80 60 60 25 70 30 301000 99 700651 4427023 4C0 200 80 60 100 30 60 25 301000 100 7CC708 4417024 200 200 80 70 60 20 80 2 25 301C00 101 700762 4407023 200 200 ICO 90 100 30 60 30 401C00 102 700764 4397024 200 200 70 70 60 2 5 60 2 5 201000 103 700766 4407025 20 0 150 60 70 60 3 0 50 30 3C1G00 104 819 1005000 180 30 90 9998 80 25 100 5 15 1001C00 105 820 2004000 180 50 90 9998 90 25 100 2 15 10 600 106 821 2001800 80 20 40 5000 30 25 150 2 15 15 5C0 107 822 2C02000 ICO 20 50 7000 30 25 100 15 15 500 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 823 2002000 120 20 50 5998 2G 25 100 2 15 15 200 130 824 1G02000 100 20 40 8000 20 2 5 90 15 10 5C0 131 825 5C09998 2C0 30 80 9998 70 40 300 5 20 20 500 132 826 2009998 150 20 60 ecco 60 30 100 5 20 20 500 133 827 3006000 100 20 50 8000 30 30 70 2 20 15 600 134 828 5009999 200 50 150 9998 120 40 100 5 25 251000 135 8 29 5009998 200 40 80 9998 80 30 100 5 25 20 500 136 830 3009998 200 40 70 8000 30 30 80 2 20 101000 137 700831 3786933 4C0 2 CO 40 70 30 30 80 2 25 151G00 138 700832 3836945 200 2 CO 60 80 80 30 100 2 20 151000 139 700833 3846946 200 2 CO 50 100 ICC 30 200 5 20 151G00 140 700834 3906951 400 200 40 80 90 30 200 5 20 15 1C00 141 7C0835 3956955 600 2C0 30 80 80 30 300 5 20 5 401000 142 700836 3966956 600 200 40 80 70 40 500 2 25 20 700 143 7008 37 3976958 400 200 40 100 60 30 500 5 25 151000 144 700838 3986966 4C0 4CG 50 300 3CC 301500 30 25 152000 145 7008 39 4006967 50 0 5C0 60 400 200 401000 20 30 202000 146 859 4001500 300 20 100 8000 80 301000 15 25 15 500 147 700934 4447004 100 200 20 70 3G0 25 500 15 25 30 200 148 700937 4457004 100 200 50 100 200 20 500 15 20 30 500 149 7009 39 4447005 80 200 50 80 200 25 500 15 20 40 700 150 700940 4447006 80 200 50 100 300 25 500 15 20 3G 700 151 700975 4437004 5G0 180 15 20 20 500 25 15 30 15 152 700977 443700 3 ICO 200 15 10 3 ICC 202000 90 15 400 30 153 700985 44 970C6 500 150 20 60 100 30 400 30 25 40 200 154 7CC987 4497007 6C0 3C0 15 70 4 2 CO 25 700 60 20 40 200 155 701002 4487007 300 200 15 50 100 301000 50 25 20 200 156 701006 44 87006 200 400 40 50 200 301500 100 20 50 400 157 701025 4477006 50 200 20 10 80 252000 60 15 15 100 158 701027 44770C7 80 200 30 80 301000 80 25 40 40 159 7010 38 4477008 1G0 200 15 40 ICO 251000 20 20 20 200 160 70 1048 4467008 ICO 200 20 40 100 251000 40 20 20 2G0 161 70 1074 4367011 5C0 300 30 4CG 80 251000 400 15 8 150 162 701076 4377011 200 400 6C 500 ICC 251500 80 15 15 500 163 701080 4377010 400 400 70 500 3 00 301000 20 20 5 10G 500 164 701095 4377009 500 300 ICO 600 150 40 700 20 20 5 502000 165 701098 4377008 100 200 80 400 200 40 700 40 30 5 401500 166 701109 4397008 100 700 8C1000 100 40 700 20 25 5 301500 167 701111 4387008 500 4C0 70 500 100 301000 50 20 5 20 500 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 1151 2009999 300 190 701181 4417004 100 150 191 1183 4G05959 300 192 193 194 * BLANK = >2,000 P.P.M. 195 9998 = 10,GCO P.P.M. 196 9999 = >10,000 P.P.M. 197 ** BLANK = NOT DETECTED 198 199 200 201 202 HNC3/HCL04 EXTRA 203 DETERMINED BY 204 205 ID NO ZN(PPM) 206 207 19 0 0 77.233 208 28 0 0 222.043 209 34 0 0 260.660 210 46 0 0 30.314 211 146 C 0 45.374 212 151 0 0 24.174 213 153 C 0 27.611 214 262 0 0 289.622 215 2 63 0 0 299.276 216 2 64 0 0 662.269 217 341 0 0 276.106 218 343 0 0 47.305 219 483 0 0 235.559 220 49 5 0 0 220.113 221 496 0 0 191.150 222 512 0 0 218.182 223 514 0 0 764.602 224 523 0 0 608.206 225 539 0 0 47.305 226 595 0 0 29.735 227 934 0 0 71.440 228 229 230 231 232 20 100 5 15 20 70 6CC0 80 3 60 9998 100 301000 15 302000 100 252000 60 25 20 15 15 500 100 50 30 800 PART II I I—i <n •z. o T l T l m z o r o r o r o r o r o r o r o r o r o r o r o r o r o r o r o r o r o r o r o r o r o r o r o r o r o r o a U l U l U l U l U l U l U l U l U l U l u ) U J U J O J O J O J T l \0 0 3 - j o U l U J r o i — o <o 0 0 0 ^ U l •t* U J r o i—> o o o - J U l 4> 0 J m l— 1 1— 1—' I—> i—• i — t- 1 t - 1 o O o o o o o vO f - -J ro ro o o - J OJ U J M U l J > 0 0 - j U l o ro U l -J o o o o o o o o o o o o o o o o o o o o o o U l r o r o t—< 0 0 U J r o o o U l vD o o o t > r o o U l > - J O r o r o o • • • • • • * • • • • - o - J - 0 U J o o U J O U l CO r o J > U J o r o U l U J - s i 'U l 1-* 0 0 U l r o r o o -09 T- Figure 16. Stream sediment and rock sample locations within the detailed study area Figure 17. Soil and vegetation sample site locations within the detailed study area. 132° 63* 823V^ 2 4 >/*76 / ( / R o s s River c 132° Soil and vegetation sample sites Stream sediment sample locations. Stream Lake MILES 131° Figure 18. Soil and vegetation site and stream sediment sample locations along the Canol Road between Ross River and MacMillan Pass.

Cite

Citation Scheme:

    

Usage Statistics

Country Views Downloads
China 23 32
Japan 4 0
United States 3 3
France 1 0
United Kingdom 1 0
City Views Downloads
Beijing 15 2
Hangzhou 6 0
Tokyo 4 0
Unknown 2 0
Shanghai 2 0
Mountain View 1 3
Redmond 1 0
Ashburn 1 0

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}

Share

Share to:

Comment

Related Items