Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Minor elements in pyrites from the smithers map area, b.c. and exploration applications of minor element… Price, Barry James 1972

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1972_A6_7 P75.pdf [ 13.33MB ]
Metadata
JSON: 831-1.0053102.json
JSON-LD: 831-1.0053102-ld.json
RDF/XML (Pretty): 831-1.0053102-rdf.xml
RDF/JSON: 831-1.0053102-rdf.json
Turtle: 831-1.0053102-turtle.txt
N-Triples: 831-1.0053102-rdf-ntriples.txt
Original Record: 831-1.0053102-source.json
Full Text
831-1.0053102-fulltext.txt
Citation
831-1.0053102.ris

Full Text

MINOR ELEMENTS I N PYRITES FROM THE SMITHERS MAP AREA, AND-EXPLORATION APPLICATIONS OF MINOR ELEMENT STUDIES  by BARRY JAMES PRICE B.Sc.  (1965) U.B.C.  A t h e s i s submitted i n p a r t i a l f u l f i l l m e n t o f the r e q u i r e m e n t s , f o r t h e degree o f Master o f Science  in  the  DEPARTMENT OF GEOLOGY  We a c c e p t t h i s t h e s i s a s c o n f o r m i n g to t h e r e q u i r e d  standard  TEE UNIVERSITY OF BRITISH. COLUMBIA April  1972  In p r e s e n t i n g t h i s  thesis  an advanced degree at the L i b r a r y I  the U n i v e r s i t y  s h a l l make i t  f u r t h e r agree  in p a r t i a l  freely  f u l f i l m e n t o f the of B r i t i s h  available  for  requirements  Columbia, 1 agree  for  that  r e f e r e n c e and s t u d y .  t h a t p e r m i s s i o n f o r e x t e n s i v e copying o f t h i s  thesis  f o r s c h o l a r l y purposes may be g r a n t e d by the Head o f my Department o r by h i s of  this  representatives. thesis for  It  financial  is understood that copying o r p u b l i c a t i o n gain s h a l l  written permission.  Department o f The U n i v e r s i t y o f B r i t i s h Columbia Vancouver 8, Canada  not be allowed without my  i  MINOR ELEMENTS I N PYRITES FROM THE SMITHERS MAP AREA, B.C. AND EXPLORATION APPLICATIONS OF MINOR ELEMENT STUDIES  •  ABSTRACT  T h i s s t u d y was u n d e r t a k e n t o d e t e r m i n e m i n o r element g e o chemistry  o f p y r i t e and t h e a p p l i c a b i l i t y o f p y r i t e  research to exploration f o r mineral deposits.  minor-element  P r e v i o u s s t u d i e s show  t h a t Co, N i , and Cu a r e t h e most p r e v a l e n t c a t i o n s s u b s t i t u t i n g f o r Fe i n the p y r i t e l a t t i c e ; s i g n i f i c a n t amounts o f As and Se c a n s u b s t i t u t e f o r S.  Other e l e m e n t s s u b s t i t u t e l e s s commonly and i n  s m a l l e r amounts w i t h i n the l a t t i c e , i n i n t e r s t i t i a l s i t e s , o r w i t h i n d i s c r e t e mechanically-admixed phases.  Mode o f s u b s t i t u t i o n  i s d e t e r m i n e d most e f f e c t i v e l y w i t h t h e e l e c t r o n m i c r o p r o b e .  2+ C a t i o n s u b s t i t u t i o n f o r Fe  i s f a v o r e d by t r a n s i t i o n  elements  w i t h non-bonding " d " e l e c t r o n s .in l o w - s p i n c o n f i g u r a t i o n s , an o c t a h e d r a l c o v a l e n t r a d i u s s i m i l a r t o t h a t o f Fe (1.23 electronegativity.  and h i g h  A n i o n s u b s t i t u t i o n f o r S i s f a v o r e d by c h a l c o g e r i  and pnigogen e l e m e n t s w i t h a t e t r a h e d r a l c o o r d i n a t i o n r a d i u s c l o s e to 1.04  and h i g h e l e c t r o n e g a t i v i t y . S t a t i s t i c a l t e s t s performed on s e v e r a l hundred  pyrite  analyses  c o m p i l e d from t h e l i t e r a t u r e and s t o r e d on computer c a r d s  support:  ( l ) log-normal frequency d i s t r i b u t i o n s o f minor elements  i n h y d r o t h e r m a l p y r i t e ; (2) r e d i s t r i b u t i o n o f m i n o r elements i n  p y r i t e by metamorphism; (3) s t a t i s t i c a l d i f f e r e n t i a t i o n of hydrothermal, v o l c a n i c - e x h a l a t i v e , and syngenetic p y r i t e s on the b a s i s of Co and Ni concentrations and r a t i o s ; (4) r e l a t i o n s h i p of minor element " s p e c t r a " and concentrations i n disseminated p y r i t e to those i n adjacent rocks; and (5) r e l a t i o n s h i p of minor-element concentrat i o n s i n hydrothermal p y r i t e s to major ore-forming elements present. Forty p y r i t e samples from s e v e r a l d i s t i n c t types of mineral deposits i n the Smithers area, B.C. were analyzed f o r Co, N i , Mn, Cu, Pb, and Zn u s i n g atomic-absorption spectrophotometry.  Co  concentrations are highest i n p y r i t e s from v o l c a n i c rocks, massive sulphide deposits and a b r e c c i a pipe. uniformly lo*r.  Ni and Mn concentrations are  High contents of Cu, Fb, and Zn are caused by  i n c l u s i o n s of common sulphides.  C a l c u l a t i o n of c o r r e l a t i o n c o e f f i -  c i e n t s f o r minor elements revealed that contamination does not s i g n i f i c a n t l y a f f e c t Co or Ni concentrations.  Minor element data  from the Smithers p y r i t e s provides evidence f o r genetic r e l a t i o n s h i p s between s e v e r a l d i f f e r e n t mineral d e p o s i t s , the presence of "metallogenetic" sub-provinces, and minor-element zonation i n mineral deposits. Research i n t o minor-element geochemistry  of p y r i t e can be  u s e f u l i n e x p l o r a t i o n f o r mineral deposits; most e f f e c t i v e use i s during secondary stages of e x p l o r a t i o n . Most u s e f u l elements f o r e x p l o r a t i o n a p p l i c a t i o n s are Co, N i , Cu, Au, Ag, Hg, T l , Sn, As, and  Se.  ACKNOWLEDGMENTS  I would l i k e t o thank Dr. A . J . S i n c l a i r , who s u g g e s t e d the f i e l d o f s t u d y , p r o v i d e d •computer-based.statistical  f i n a n c i a l assistance  f o r the  s t u d i e s , and who o f f e r e d much  c o n s t r u c t i v e c r i t i c i s m and many h e l p f u l s u g g e s t i o n s preparation  during  o f the t h e s i s .  F i e l d work was c a r r i e d o u t w h i l e by Manex -Mining L t d . , who p r o v i d e d f i n a n c i a l assistance  t h e w r i t e r was employed  t r a n s p o r t a t i o n and  f o r the project.  Dr. W.K. F l e t c h e r p r o v i d e d  facilities for analytical  work, d e v e l o p e d t e c h n i q u e s f o r sample s o l u t i o n and e l i m i n a t i o n of a n a l y t i c a l i n t e r f e r e n c e s . provided  Much t e c h n i c a l a s s i s t a n c e was  d u r i n g sample p r e p a r a t i o n  Mr. A. B e n t z e n and Mr. A. D h i l l o n . were p r o v i d e d Clegg L t d .  and a n a l y s i s by F a c i l i t i e s f o r rock-crushing  by t h e M i n e r a l E n g i n e e r i n g  Department and Bondar-  (Assayers).  F i n a l l y I would l i k e t o thank A l e x i s Clague f o r typing the t h e s i s .  iv  TABLE OP CONTENTS  Page. , ABSTRACT  i  ACKNOWLEDGMENTS  i  .TABLE OF CONTENTS  i  i iv  L I S T OF TABLES  viii  LIST OF FIGURES  x i i 1  INTRODUCTION CHAPTER I PYRITE CRYSTAL CHEMISTRY  3.  A.  The P y r i t e Group and R e l a t e d Groups  3  1.  The P y r i t e Group  3  2.  M a r c a s i t e and O t h e r S t r u c t u r a l Groups  5  B.  The R e l a t i o n s h i p o f C r y s t a l - F i e l d Theory  9  t o P y r i t e Group M i n e r a l s C.  The C o - N i - F e - S  2  System  22  1.  N a t u r a l and S y n t h e t i c Phases  22  2.  Variation  25  of P r o p e r t i e s with Composition  a.  U n i t - c e l l Dimensions  26  b.  C o l o r , R e f l e c t i v i t y and Hardness  26  c.  Anisotropism  33  d.  Thermoelectric Effect  35  CHAPTER I I MINOR ELEMENTS' CONTAINED I N PYRITE  37  A.  37  General Discussion  TABLE OF CONTENTS ( C o n t i n u e d )  Page B.  Anion Substitution  i n Pyrite  -  C.  Cation Substitution  D.  The I n c o r p o r a t i o n o f M i n o r Elements i n P y r i t e  E.  D i s t r i b u t i o n o f M i n o r Elements w i t h i n a  i n Pyrite  40 42 45  Single Crystal  49  S p e c i f i c Minor Elements Contained i n P y r i t e  53  1.  The Copper Content o f P y r i t e  53  2.  The G o l d Content o f P y r i t e  57  3.  The S i l v e r Content o f P y r i t e  62  4.  P l a t i n u m Group Elements i n P y r i t e  63  5c  The Uranium Content o f P y r i t e  64  6.  T h a l l i u m Content o f P y r i t e  67  7.  The Mercury Content o f P y r i t e  69  8.  Manganese Content o f P y r i t e  71  9.  T i n Content o f P y r i t e  71  The S e l e n i u m Content o f P y r i t e  72  THE GEOCHEMISTRY OF COBALT AND NICKEL IN ROCKS  77  A.  Igneous Rocks  77  B.  S e d i m e n t a r y Rocks  83  C.  Metamorphic  90  F.  10. CHAPTER I I I  Rocks  vi  TABLE OF CONTENTS ( C o n t i n u e d )  Page CHAPTER I V STATISTICAL  STUDIES OF MINOR ELEMENTS I N PYRITE .  95  A.  Introduction  95  B.  F r e q u e n c y D i s t r i b u t i o n s o f M i n o r Elements  97  C.  Sedimentary P y r i t e  101  D.  Massive-Sulphide - Volcanic-Exhalative P y r i t e  110  E.  E f f e c t s o f Metamorphism  112  F.  Hydrothermal P y r i t e  G.  on P y r i t e  124  1.  Porphyry-Cu-Mo  124  2.  Normal V e i n and Replacement D e p o s i t s  Deposits  129  M i n o r Elements i n P y r i t e and S i l i c a C o n t e n t 137  o f A s s o c i a t e d Igneous Rocks CHAPTER V MINOR ELEMENTS I N PYRITE FROM THE SMITHERS AREA,  • 141  B.C. A.  Introduction  141  B.  G e n e r a l Geology o f t h e T h e s i s A r e a  143  1.  Stratigraphy  2.  Structure  143  3.  Igneous Rocks  144  4.  Mineral Deposits  144  '  143  C.  A n a l y t i c a l Method and R e s u l t s  146  D.  Discussion of Results  149  1.  151  Dome Mountain A r e a  TABLE OF CONTENTS ( C o n t i n u e d )  Page 2.  3.  Grouse Mountain A r e a  152  a.  Molymine D e p o s i t s  152  b.  Other D e p o s i t s  .162  E x p l o r a t i o n A p p l i c a t i o n s i n the S n i t h e r s Area  164  CHAPTER V I  SUMMARY AND CONCLUSIONS  -  166  APPENDICES I.  191  PROPERTY DESCRIPTIONS  I I . • SAMPLE PREPARATION,. ANALYSIS, AND 211  PRECISION CALCULATIONS . III. IV.  EXPLANATION OF DATA FILING SYSTEM  .  APPLICATION OF MINOR ELEMENT STUDIES TO EXPLORATION FOR MINERAL DEPOSITS  "  221:  -.• • 223  LIST OF TABLES Table  Page 6  1.  Pyrite Group - Minerals and properties  2.  E l e c t r o n i c configurations of the elements of the f i r s t t r a n s i t i o n s e r i e s  11  E l e c t r o n i c configurations and c r y s t a l - f i e l d s t a b i l i z a t i o n energies of t r a n s i t i o n metal ions i n octahedral coordination  12  The number of non-bonding d-electrons i n -\": dianionic compounds -  16  Minerals with 6, 7, or 8 non-bonding "d"-electrons  16  3.  4. 5. 6.  7.  Chalcogenides and pnictides of t r a n s i t i o n elements  „ 17  R e f l e c t i v i t y and hardness values f o r the zoned bravoite c r y s t a l i n r e l a t i o n to composition  30  R e f l e c t i v i t i e s , e f f e c t i v e number of free electrons and e l e c t r o n i c configuration of cations i n the p y r i t e type disulphides  32  Results of the quantitative determination of trace elements by the electron microprobe on the two types of p y r i t e  34  10.  Physicochemical parameters of anions  40  11.  Physical parameters of cations  12.  Ionization potentials, e l e c t r o n e g a t i v i t i e s , and i o n i c r a d i i f o r divalent and t r i v a l e n t cations  47  Comparison of minor element content of p y r i t e c r y s t a l cores and margins, Belukhinskoye and Bukhinskoye deposits, U.S.S.R.  52  Uranium content of pyrite samples from uranium deposits  66  8.  9.  "13.  14.  43-44  LIST OF TABLES (Continued) Table  Page 76  15.  Selenium content of p y r i t e s from some Canadian ore deposits •  16.  V a r i a t i o n of cobalt and n i c k e l w i t h rock types  78  Average Co and K i contents and Co/Ni. r a t i o s of sediments  83  18.  Average Co, N i contents and Co/Ni r a t i o s of syngenetic copper deposit sediments  84  19.  Zero order c o r r e l a t i o n s f o r Mn-Fe-Co-Ni i n sediments from various environments  89  Comparison of minor element content o f medium and high-grade metamorphic rocks, Adirondack Mountains, New York  91  Comparison of minor element content of low, medium and high-grade metamorphic rocks, New Hampshire  91  17.  20.  21.  22.  23.  24.  Comparison of means, standard d e v i a t i o n s and t - t e s t values f o r "syngenetic',' "hydrothermal" and "massive sulphide" p y r i t e s  107  Comparison of means, standard d e v i a t i o n s , and t - t e s t values f o r minor elements i n mediumgrade and high-grade metamorphic p y r i t e s  116  Comparison of means, standard d e v i a t i o n s , and t - t e s t values f o r minor elements i n p y r i t e s from the Berg and Endako "porphyry" deposits  126-127  25.  Minor element data - "porphyry" p y r i t e s  130  26.  Minor element data - hydrothermal v e i n and replacement p y r i t e  131  27.  Comparison of means, standard d e v i a t i o n s , and t - t e s t values f o r minor elements i n p y r i t e s from mineral deposits of d i f f e r e n t major metals  28.  R e l a t i o n s h i p of maximum N i content and Ni/Co r a t i o of sulphides to composition of adjacent igneous rocks  133-134  138  LIST OF TABLES  (Continued)  Table 29.  Page M i n e r a l d e p o s i t s o f the Done Mountain-Grouse M o u n t a i n a r e a , S m i t h e r s , B.C.  145  30.  P y r i t e a n a l y s e s from S m i t h e r s . map a r e a , B.C.  147  31.  Comparison o f Dome M o u n t a i n and Dome Babine pyrites  154  32.  33.  Comparison o f means, s t a n d a r d d e v i a t i o n s and., t - t e s t v a l u e s f o r p y r i t e s from Dome M o u n t a i n and Grouse M o u n t a i n m i n e r a l d e p o s i t s  155  Comparison o f Molymine p y r i t e s - minor element means  157  34.  Comparison o f Molymine p y r i t e - t - t e s t d a t a  35.  R e p l i c a t e a n a l y s e s - S m i t h e r s and T c h e n t l o  36.  Lake p y r i t e s P a i r e d p r e c i s i o n t e s t d a t a f o r combined S m i t h e r s and T c h e n t l o Lake p y r i t e s  37.  38.  R e p l i c a t e a n a l y s e s and p a i r e d p r e c i s i o n date f o r Smithers p y r i t e s  158-159  40. 41.  42.  43.  44.  218  test 219  M i n o r element d a t a , S l o c a n and S l o c a n C i t y pyrites  39.  217  229  . New B r u n s w i c k v e i n and e x h a l a t i v e p y r i t e  231  Amount o f o r e i n each range o f Co c o n t e n t a t t h e Kabu mine S t a n d a r d d e v i a t i o n s and c o e f f i c i e n t s o f d e t e r m i n a t i o n f o r the three c a l c u l a t e d trend-surfaces i l l u s t r a t e d i n F i g u r e 90 above S e l e n i u m c o n t e n t o f Noranda p y r i t e a n d - p y r r h o t i t e . w i t h depth Selenium depth  i n Campbell-Chibougamau p y r r h o t i t e w i t h  Selenium  i n Geco s u l p h i d e s w i t h d e p t h  245  247  251  251 251  LIST OF TA3LBS  (Continued)  Comparison o f Co and N i c o n t e n t s and Co/Ni r a t i o s i n p y r r h o t i t e s f r o m economic and " b a r r e n " m i n e r a l d e p o s i t s o f the F l i n F l o n area :  D i s t r i b u t i o n o f t r a c e e l e m e n t s among s p h a l e r i t e g a l e n a , and p y r i t e i n t i n , t u n g s t e n , and m o l y b d e n u m - p o l y m e t a l l i c ore d e p o s i t s o f Transbaikaliya  LIST OF FIGURES  The s t r u c t u r e o f p y r i t e Three d i m e n s i o n a l  view o f the p y r i t e s t r u c t u r e  The o r t h o r h o m b i c m a r c a s i t e  structure  The s t r u c t u r e o f m a r c a s i t e showing t h e S between t h e two i r o n t r i a d s  group  2  Boundary s u r f a c e s o f a t o m i c o r b i t a l s Molecular  o r b i t a l e n e r g y - l e v e l diagram f o r p y r i t e  C o m b i n a t i o n o f o c t a h e d r a i n (A) p y r i t e , (B) m a r c a s i t e , ( c ) l o e l l i n g i t e , \D) a r s e n o p y r i t e Diagrammatic r e p r e s e n t a t i o n o f t h e i n t e r a c t i o n o f the t£g o r b i t a l l o b e s i n s e c t i o n s p a r a l l e l t o t h e c-axis: (A) m a r c a s i t e , (B) l o e l l i n g i t e , (c) arsenopyrite S o l i d - s o l u t i o n f i e l d s , shown i n shaded a r e a s , " i n v a r i o u s p o l y a n i o n i c compounds o f F e , Co, and N i : (A) d i s u l p h i d e s , ( 3 ) s u l p h a r s e n i d e s , ( c ) d i a r s e n i d e s , (D) t r i a r s e n i d e s S o l i d - s o l u t i o n f i e l d s f o r s y n t h e t i c phases i n t h e system Co-Ni-Fe~S2 a t v a r i o u s t e m p e r a t u r e s N a t u r a l l y o c c u r r i n g s o l i d s o l u t i o n s i n the system Co-Ni-Fe-S2 V a r i a t i o n s of cell-edge with composition CoS2~CoSe2 system V a r i a t i o n o f c e l l edge v / i t h c o m p o s i t i o n N i S 2 - N i S e 2 system  i n the  i n the  Weight p e r c e n t a g e c o b a l t p l o t t e d a g a i n s t t h e d ( 5 1 l ) s p a c i n g f o r members o f t h e FeS2~CoS2 system C e l l edge v e r s u s c o m p o s i t i o n FeS2~CuS2 system  f o r members o f t h e  Xlll  LIST OF FIGURES ( C o n t i n u e d ) Figure 16.  Page L a t t i c e parameter " a " o f n a t u r a l and s y n t h e t i c p y r i t e s v e r s u s temperature  28  17.  L a t t i c e p a r a m e t e r " a " o f C0S2 v e r s u s t e m p e r a t u r e  28  18.  L a t t i c e parameter " a " v e r s u s composition o f m i x e d ( C o , F e ) S s u l p h i d e s a t 25°C Change i n l e n g t h o f c e l l - e d g e (Angstroms) w i t h i n c r e a s i n g a t o m i c number o f a n i o n  29  Change i n l e n g t h o f c e l l - e d g e (Angstroms) w i t h i n c r e a s i n g . a t o m i c number o f c a t i o n  29  Zoned b r a v o i t e c r y s t a l s e l e c t e d f o r r e f l e c t i v i t y studies  30  V a r i a t i o n i n r e f l e c t i v i t y ( a t 589 nm. i n a i r ) over the b r a v o i t e c r y s t a l  30  P l o t o f p e r c e n t r e f l e c t i v i t y (R) a g a i n s t e f f e c t i v e number o f f r e e e l e c t r o n s p e r u n i t volume ( H e f f ) f o r p y r i t e t y p e compounds. D a t a f o r g o l d and s i l v e r a r e a l s o shown.  32  2  19.  20.  21.  22.  23.  24.  28  E l e c t r o n microprobe scan across p y r i t e c r y s t a l ( a ) V a r i a t i o n i n i n t e n s i t y o f CoK<* r a d i a t i o n a l o n g s c a n p r o f i l e n o r m a l t o growth s t e p s o f (100) (b) V a r i a t i o n i n i n t e n s i t y o f CoK-* r a d i a t i o n normal t o growth steps ( i l l )  51  Copper z o n a l p a t t e r n s i n i n t e r g r o w t h o f p y r i t e c r y s t a l s as i n t e r p r e t e d f r o m 15 e l e c t r o n m i c r o probe t r a v e r s e s  55  E l e c t r o n m i c r o p r o b e t r a c e o f CuK«>< r a d i a t i o n a l o n g t r a v e r s e A-B  55  D i s t r i b u t i o n o f g o l d and s i l v e r i n t h e p r i n c i p a l ore m i n e r a l s o f t h e A l m a l y k d e p o s i t , U.S.S.R.  60  D i s t r i b u t i o n o f s e l e n i u m and t e l l u r i u m i n p r i n c i p a l ore minerals of the Almalyk ore deposit, U.S.S.R.  60  i ) G o l d i n p y r i t e from i r o n s k a r n s I i ) G o l d i n p y r i t e from g o l d - q u a r t z v e i n s  61  :  25.  26.  27.  28.  29.  LIST OF FIGURES  (Continued)  V a r i a t i o n o f Co, N i , Cu, and S i n r o c k s and r e s i d u a l m e l t s o f t h e S k a e r g a a r d i g n e o u s complex Variation of cobalt-nickel ratio with s i l i c a content o f igneous rocks S t a b i l i t y - f i e l d s f o r c o b a l t compounds as f u n c t i o n s o f Eh and pH a t 25° C and 1 atm, t o t a l p r e s s u r e , c h l o r i n i t y 19 p p t . S t a b i l i t y c o n d i t i o n s o f n i c k e l compounds under s i m i l a r c o n d i t i o n s a s i n F i g u r e 32 S t a b i l i t y f i e l d s f o r manganese compounds a s f u n c t i o n s o f Eh and pH a t 25° C and 1 atm. t o t a l p r e s s u r e , c h l o r i n i t y = 19 p p t . D e p l e t i o n o f Co and Fe i n b i o t i t e a d j a c e n t t o . quartz-scheelite-molybdenite veins, K i c h i p i c o t e n area, Ontario H i s t o g r a m o f N i i n p y r i t e from deposits. Arithmetic data  "porphyry"  H i s t o g r a m o f N i i n p y r i t e from deposits. Logarithmic data  "porphyry"  H i s t o g r a m o f Co i n h y d r o t h e r m a l A r i t h m e t i c data  pyrite.  H i s t o g r a m o f Co i n h y d r o t h e r m a l p y r i t e . Logarithmic data Histogram o f N i i n hydrothermal p y r i t e . Arithmetic data Histogram o f N i i n hydrothermal p y r i t e . Logarithmic data S c a t t e r diagram - C o b a l t v s . N i c k e l i n s y n g e n e t i c pyrite S c a t t e r diagram - Comparison o f c o b a l t and n i c k e l c o n t e n t o f marine s e d i m e n t s from the Red Sea and associated authigenic pyrite  XV  LIST OF FIGURES ( C o n t i n u e d )  Figure 44. :  45.  46. 47.  48.  49• 50.  51.  1  52.  53.  54.  55.  56.  57.  Page Comparison o f Co/Ni r a t i o s i n s e d i m e n t s and a s s o c i a t e d s u l p h i d e s o f Red Sea d e p o s i t s  105  S c a t t e r diagram - Comparison o f c o b a l t and n i c k e l c o n t e n t o f s y n g e n e t i c and v o l c a n i c e x h a l a t i v e (massive s u l p h i d e ) p y r i t e  108  H i s t o g r a m o f Co i n p y r i t e from s e d i m e n t a r y rocks. Arithmetic data  109  H i s t o g r a m o f Co i n p y r i t e from s e d i m e n t a r y rocks. Logarithmic data  109  H i s t o g r a m o f N i i n p y r i t e from s e d i m e n t a r y r o c k s . A r i t h m e t i c data  109  H i s t o g r a m o f N i i n p y r i t e from s e d i m e n t a r y r o c k s . Logarithmic data  109  C o b a l t and n i c k e l c o n t e n t s o f p y r i t e s from main.types o f ore d e p o s i t s i n the L i t t l e C a r p a t h i a n mountains  113  C o b a l t and n i c k e l c o n t e n t s o f p y r i t e s h i g h l y metamorphosed o r e s from Lower Carpathian deposits  113  from  H i s t o g r a m o f Co i n p y r i t e from medium-grade metamorphic r o c k s . A r i t h m e t i c d a t a , .  117  H i s t o g r a m o f Co i n p y r i t e from medium-grade metamorphic r o c k s . L o g a r i t h m i c d a t a  117  H i s t o g r a m o f N i i n p y r i t e from medium-grade metamorphic r o c k s . A r i t h m e t i c d a t a  117  H i s t o g r a m o f N i i n p y r i t e from medium-grade metamorphic r o c k s . L o g a r i t h m i c d a t a  117  H i s t o g r a m o f Co c o n t e n t o f p y r i t e from h i g h grade metamorphic r o c k s . A r i t h m i t i c d a t a  118  H i s t o g r a m o f Co c o n t e n t o f p y r i t e from h i g h grade metamorphic r o c k s . L o g a r i t h m i c d a t a  118  LIST OF FIGURES ( C o n t i n u e d )  H i s t o g r a m o f N i i n p y r i t e from h i g h - g r a d e metamorphic r o c k s . A r i t h m e t i c d a t a H i s t o g r a m o f N i i n p y r i t e from h i g h - g r a d e metamorphic r o c k s . L o g a r i t h m i c d a t a Comparison o f c o b a l t and n i c k e l c o n t e n t s o f p y r i t e s from medium and h i g h - g r a d e metamorphic r o c k s i n t h e C a r p a t h i a n mountains Comparison o f c o b a l t and n i c k e l c o n t e n t s o f p y r i t e from S t e e p r o c k Lake and Cyprus d e p o s i t s V a r i a t i o n o f Co c o n t e n t s and Co/Ni r a t i o s i n p y r i t e s w i t h d e p t h . Data from D a r n e l e y (1962) Diagrammatic r e p r e s e n t a t i o n o f g e n e r a l r a n g e s , and means f o r c o b a l t and n i c k e l i n p y r i t e from s e v e r a l t y p e s o f h y d r o t h e r m a l d e p o s i t s S c a t t e r d i a g r a m . Comparison o f Co and N i c o n t e n t s o f i g n e o u s r o c k s and p y r i t e s disseminated i n igneous rocks G e o l o g i c a l map o f t h e S m i t h e r s a r e a , B.C. showing b o u n d a r i e s o f t h e s i s a r e a and l o c a t i o n of properties studied S c a t t e r d i a g r a m - Co and N i i n p y r i t e from Dome Mountain-Grouse M o u n t a i n a r e a Comparison o f Co/Ni r a t i o means f o r p y r i t e s from Dome Mountain and Grouse M o u n t a i n mineral deposits S k e t c h map o f Molymine b r e c c i a p i p e Diagrammatic r e p r e s e n t a t i o n o f m i n e r a l o g i c a l and m i n o r element z o n a t i o n i n Molymine b r e c c i a pipe Map o f Dome Mountain a r e a , n e a r S m i t h e r s , B.C. showing g o l d - b e a r i n g q u a r t z v e i n s and l o c a t i o n o f samples BDM 1-7  LIST OF FIGURES  (Continued)  Figure  Page  71.  72.  73.  Hap o f Dome Babine g o l d p r o s p e c t , e a s t s i d e o f Dome Mountain, showing l o c a t i o n o f samples BD 1-6  196  G e o l o g i c map o f Molymine p r o s p e c t , showing sample l o c a t i o n s  201  Map o f Copper Ridge Cu-Zn p r o s p e c t on Grouse . M o u n t a i n , n e a r Houston, B.C. showing l o c a t i o n o f samples BCR 1,2 and 5  74.  207  Map o f L a s t Chance Ag-Cu p r o s p e c t on t h e n o r t h end o f Grouse M o u n t a i n n e a r Houston, B.C.  210  75.  Flow sheet, p r e p a r a t i o n o f p y r i t e c o n c e n t r a t e s  214  76.  S t o c k s ,• mines and t r a c e element g r o u p i n g s o f c h a l c o p y r i t e and s p h a l e r i t e , C e n t r a l m i n i n g d i s t r i c t , New Mexico  77.  D i s t i n c t i o n o f c h a l c o p y r i t e o f the C e n t r a l district  78. 79. ,  (  80.. 81.  82.  83.  84.  85.  225  based on Sn and I n c o n t e n t  225  S c a t t e r diagram - Co v s . N i i n Tasmanian p y r i t e  227  Map o f West o f England showing g r a n i t e p l u t o n s and l o c a t i o n o f m i n e r a l d e p o s i t s R e l a t i o n s h i p o f minor element c o n t e n t o f g a l e n a and s p h a l e r i t e t o d i s t a n c e from g r a n i t e p l u t o n s  235 235  V a r i a t i o n i n minor element c o n t e n t o f s p h a l e r i t e - from m i n e r a l d e p o s i t s o f h i g h and low d e p o s i t i o n temperature  236  S c a t t e r diagram o f b i s m u t h and antimony c o n t e n t s o f g a l e n a from d e p o s i t s i n c a r b o n a t e r o c k s  237  Gallium-indium r a t i o s i n sphalerites o f d i f f e r e n t origins  238  L a t e r a l z o n i n g o f Co, Mn, and FeS i n s p h a l e r i t e of t h e C e n t r a l d i s t r i c t  239  C o b a l t c o n t e n t o f o r e s o f the F r o l o v s k o e (1 and 2) and N i k i t i n s k o e (3) s k a r n - m a s s i v e s u l p h i d e d e p o s i t s , U.S.S.R.  240  LIST OF FIGURES ( C o n t i n u e d )  Figure ' 86.  Page V a r i a t i o n s i n t h e c o n t e n t s o f Co and N i i n p y r i t e a l o n g - s t r i k e o f the Vostochnaya d e p o s i t o f t h e P e r v y i S e v e r n y i n i n e , U.S.S.R.  240  87.  G e o l o g i c a l c r o s s s e c t i o n o f t h e Kabu orebody  242  88.  C o r r e l a t i o n between Co/Fe and Se/S i n p y r i t e from t h e Yanahara o r e d e p o s i t s  243  D i s t r i b u t i o n o f Co i n t h e Kabu orebody (a) p l a n o f l e v e l 21, ( b ) p l a n o f l e v e l 24  244  D i s t r i b u t i o n o f Co i n t h e Kabu orebody (a) p l a n o f l e v e l 27, ( b ) c r o s s s e c t i o n  244  V a r i a t i o n s i n Co/Fe, Se/S, 3 4 g ^ and S/Fe i n the p y r i t e v e i n s from t h e H i d a s h i r o d e p o s i t  245  Q u a d r a t i c t r e n d and r e s i d u a l maps f o r m i n o r e l e m e n t s i n s u l p h i d e s from S l o c a n d i s t r i c t , B.C. (A) Ag i n g a l e n a , ppm/100, (B) AS i n p y r i t e , ppm, (c) Sn i n s p h a l e r i t e , ppm  247  V a r i a t i o n s o f minor e l e m e n t s w i t h d e p t h a t Noranda, Quebec: (A) p y r r h o t i t e (B) c h a l c o pyrite  249  V a r i a t i o n s o f elements i n p y r i t e w i t h depth a t (A) H o l l i n g e r , Quebec; (B) Noranda, Quebec  250  Co and N i c o n t e n t o f p y r r h o t i t e s from "economic" d e p o s i t s o f the F l i n F l o n a r e a  255  Co and N i i n p y r r h o t i t e s from " b a r r e n " d e p o s i t s o f the F l i n F l o n a r e a  256  89. 90. 91. 92.  93.  94. 95.  96.  97.  98.  mineral  Frequency d i s t r i b u t i o n h i s t o g r a m s f o r Co and N i i n p y r r h o t i t e s from economic and b a r r e n m i n e r a l deposits, F l i n Flon area  257  Example o f "Roozeboom" diagram showing d i s t r i b u t i o n o f Co and N i between p y r i t e and p y r r h o t i t e from s e v e r a l m i n e r a l d e p o s i t s  260  LIST OF FIGURES (Continued)  Figure 99.  100.  101..  102.  103.  104.  Page Example of "concentration" diagrams showing dependence of p a r t i t i o n c o e f f i c i e n t s on element concentrations i n one or more phases  260  Example of " i n t e r a c t i o n " diagrams showing r e l a t i o n s h i p of Co/Ni r a t i o i n pyrite to d i s t r i b u t i o n c o e f f i c i e n t s f o r Co and Ni between p y r i t e and pyrrhotite  261  Plots of mole-fraction r a t i o s PbSe/PbS vs. ZnSe/ZnS calculated from experimental data f o r s i x temperatures  261  Summary of v a r i a t i o n of d i s t r i b u t i o n c o e f f i c i e n t s with temperature. Values are derived from study of synthetic sulphide systems by Bethke and Barton (1971)  263  V a r i a t i o n of c r y s t a l habit with changes i n temperature and concentration of solutions: (A) magnetite, (B) brookite, (c) c a s s i t e r i t e  269  Comparison of cobalt and n i c k e l content of cubic and pyritohedral p y r i t e from Cyprus deposits  270  MINOR ELEMENTS IN PYRITE FROM THE SMITHERS MAP AREA, AND EXPLORATION APPLICATIONS OF MINOR ELEMENT STUDIES  B.C.  INTRODUCTION P y r i t e , F e S 2 , the most abundant o f a l l s u l p h i d e m i n e r a l s , i s commonly found i n m i n e r a l d e p o s i t s , i n i g n e o u s and r o c k s and t h e i r metamorphic e q u i v a l e n t s . The  sedimentary  " s p e c t r a " and  c o n c e n t r a t i o n s o f minor elements p r e s e n t i n p y r i t e depend on a v a r i e t y o f f a c t o r s i n c l u d i n g the s u p p l y o f elements p r e s e n t a t the s i t e o f d e p o s i t i o n , p r e s s u r e , t e m p e r a t u r e , and c o m p o s i t i o n o f fluids responsible for deposition. i n any g i v e n environment at  may  In a d d i t i o n , p y r i t e present  have formed by more t h a n one  process  one o r more s e p a r a t e t i m e s , and p o s t - d e p o s i t i o n a l e f f e c t s  a l t e r c o m p o s i t i o n o f the p y r i t e .  may  Thus, we cannot expect t h a t  s i m p l e c h e m i c a l c h a r a c t e r i s t i c s o f one p y r i t e sample w i l l us to d e c i p h e r i t s g e n e t i c h i s t o r y .  enable  However, m i n o r element d a t a  from a l a r g e number o f samples i n a g i v e n a r e a , s t u d i e d w i t h r e f e r e n c e t o g e o l o g i c a l i n f o r m a t i o n can h e l p s u p p o r t o r d i s c r e d i t genetic  hypotheses.  T h i s s t u d y o f minor elements i n p y r i t e i s p r e s e n t e d u s i n g s e v e r a l d i f f e r e n t approaches.  I n the f i r s t c h a p t e r , p y r i t e  c r y s t a l c h e m i s t r y i s examined i n o r d e r to a c q u a i n t o u r s e l v e s w i t h f a c t o r s c o n t r o l l i n g r e l a t i o n s h i p s between a n i o n s and c a t i o n s in pyrite-type structures.  Evidence f o r a c c e p t a b i l i t y of i o n s  f o r s u b s t i t u t i o n i s derived from the study of:  ( l ) n a t u r a l and  s y n t h e t i c minerals belonging to or r e l a t e d to the p y r i t e group, ( l ) l i g a n d - f i e l d ( m o l e c u l a r - o r b i t a l ) theory, (3) parameters such as e l e c t r o n e g a t i v i t y and c o v a l e n t - r a d i u s . In the second chapter, mode and extent of minor element s u b s t i t u t i o n i n p y r i t e are examined through i n v e s t i g a t i o n of previous research and a n a l y t i c a l data. Chapter I I I describes numerous s t a t i s t i c a l t e s t s performed on groups of p y r i t e analyses compiled from the l i t e r a t u r e and stored i n a computer card d a t a - f i l e .  The t e s t s enable us to  examine c r i t i c a l l y s e v e r a l hypotheses formulated by e a r l i e r workers from more l i m i t e d data. In the f i n a l chapter, the w r i t e r presents h i s own  data—  p y r i t e analyses from s e v e r a l types of mineral deposits i n an area where g e o l o g i c a l r e l a t i o n s h i p s are reasonably w e l l known.  Minor  element data are i n t e r p r e t e d w i t h reference to t h e o r e t i c a l m a t e r i a l presented i n e a r l i e r chapters. Technical information concerning a n a l y t i c a l methods, sample preparation, and a n a l y t i c a l p r e c i s i o n are contained i n the appendices i n a d d i t i o n to a d e t a i l e d summary of previous a p p l i c a t i o n s of minor element s t u d i e s to e x p l o r a t i o n f o r mineral d e p o s i t s .  I . PYRITE CRYSTAL CHEMISTRY  THE PYRITE GROUP AND RELATED GROUPS  Sulphide  minerals  transition-element  o f the type AX^ (where A i s g e n e r a l l y a  c a t i o n and X i s a c h a l c o g e n o r pnigogen a n i o n )  a r e d i v i d e d i n t o s e v e r a l d i s t i n c t groups on t h e b a s i s o f m o l e c u l a r structure.  Four c l o s e l y r e l a t e d groups a r e :  Pyrite  group  Marcasite  group  Arsenopyrite Loellingite  A l l are polyanionic represented coordination  by X  2  group group  ( H u l l i g e r , 1958) c o n t a i n i n g a n i o n p a i r s  o r XY, and a r e c h a r a c t e r i z e d by o c t a h e d r a l  o f the c a t i o n t o t h e s i x n e i g h b o r i n g  anions,  i l l u s t r a t e d by the p y r i t e s t r u c t u r e ( F i g u r e s 1 and 2 ) . common c a t i o n s i n v o l v e d i n m i n e r a l s  best  The most  o f t h e above-mentioned  groups  a r e Mn, Fe, Co, N i , and Cu.  L e s s common c a t i o n s a r e T i , V, C r ,  Zn, Au, Ag, and the p l a t i n u m  group elements Ru, Rh, Pd, Os, I r ,  and P t .  Common anions a r e t h e c h a l c o g e n elements .S, Se, Te, and  the pnigogen elements As, Sb, B i , and i n r a r e cases P ( H u l l i g e r , 1968;.  The P y r i t e Group Minerals  o f t h e p y r i t e group b e l o n g t o t h e i s o m e t r i c  d i p l o i d a l symmetry group 2/m3, and space group Th^ - Pa3, w i t h  FIGURE 2. Three d i m e n s i o n a l v i e w of the p y r i t e (From H u l l i g e r . F . , 1968)  structure.  the u n i t c e l l 4(AX J(i«e., Z = A).  The s t r u c t u r e of p y r i t e i s  2  i l l u s t r a t e d i n Figure 2.  I f the S  2  atoms are v i s u a l i z e d as one  u n i t the s t r u c t u r e i s i d e n t i c a l to that of NaCl.  However the S  atoms l i e along the t r i g o n a l a x i s of the space group and account f o r the lower ( d i p l o i d a l j symmetry.  A l l minerals of the group  except Hauerite (MnS,,,) have m e t a l l i c l u s t r e , and most are hard. Minerals'-of the p y r i t e group and t h e i r p r o p e r t i e s are l i s t e d i n Table 1.  S y n t h e t i c and n a t u r a l " p y r i t e s " and r e l a t e d compounds  documented by H u l l i g e r (1968J are l i s t e d i n Table 6.  Marcasite and Other S t r u c t u r a l Groups In contrast to the p y r i t e s t r u c t u r e , i n which c o o r d i n a t i o n octahedra are joined at the corners (Figure 2) w i t h no metal-metal i n t e r a c t i o n , the marcasite, l o e l l i n g i t e , and arsenopyrite s t r u c t u r e s have octahedra which share edges along one d i r e c t i o n (Figures 3 and 1).  In the marcasite group s l i g h t metal-metal i n t e r a c t i o n  ( r e p u l s i o n ^ occurs, while i n the two remaining groups metal-metal i n t e r a c t i o n permits maximum s p i n - p a i r i n g of e l e c t r o n s .  Minerals  belonging to each group are l i s t e d i n Tables 5 and 6. Marcasite group minerals are orthorhombic.  Their structure  i s somewhat s i m i l a r to that of p y r i t e ; the metal atoms l i e at the corners and center of the orthorhombic c e l l and the i n c l i n e d anion groups are centered midway between i r o n atoms and l i e on r e f l e c t i o n planes (see Figures 3 and  A).  E a r l y researchers thought that s l i g h t d i f f e r e n c e s i n the  TABLE  1  PYRITE GROUP - MINERALS AND PROPERTIES NAME  COMP.  CELL EDGE 8  Pyrite  PeS  5.4165  Cattierite  CoS  Vaesite  NiS  Bravoite Villamaninite Pukuchilite  2  2  2  CPe,Co,NiJS  C u  3  2  5.018  5.523  4.80  5.679  4.45  5.69 var.  8  F e S  6-6.5  SP.G.  var.  2  (Fe,Co,Ni,Cu;S  H.  4.0  3.463  2.5-3  6.69?  MnS  2  6.097  Trogtalite  CoSe  2  5.88  Penroseite  (,Fe,Ni,CujSe  Cobaltite  CoAsS  5.65  6.28  Gersdorffite  NiAsS  5.68  5.964  Ullmanite  NiSbS  5.91  RuS  2  5.60  7.5  6.23  2  6.68  2.5  9.5  6-7  10.58  Hauerite  Laurite Michenerite  PdBi  6.017  2  Hollingworthite  (Rh,Pt,PdHAsSJ  Irarsite  (Ir,Rh,Ru,Pt;AsS  2  Sperrylite  PtAs  2  5.95  Aurostibite  AuSb  2  6.646  9-91  0sS  2  5.6196  9.59  Erlichmanite  7  FIGURE 4. The s t r u c t u r e of m a r c a s i t e showing t h e S between the two i r o n t r i a d s .  2  group  metal  : s u l p h u r r a t i o m i g h t e x p l a i n the polymorphism o f FeS^,  r e c e n t s t u d i e s ( K u l l e r u d and Yoder, 1359)  but  show t h a t d e v i a t i o n s from  the t h e o r e t i c a l v a l u e o f 1 : 2 a r e p r o b a b l y w i t h i n a n a l y t i c a l  error.  P y r i t e and m a r c a s i t e a r e commonly found t o g e t h e r i n n a t u r e and  may  be i n t e r g r o w n i n c o n c e n t r i c l a y e r s .  M a r c a s i t e can be c o n v e r t e d  p y r i t e by g r i n d i n g a t room temperature  to  o r by h e a t i n g a t 400-425° C  ( K u l l e r u d and Y o d e r , 1959J, but i t i s not p o s s i b l e t o change p y r i t e t o m a r c a s i t e a t any t e m p e r a t u r e .  M a r c a s i t e can be  precipitated  o n l y by a c i d i c s o l u t i o n s and i s l e s s s t a b l e t h a n p y r i t e , rapidly i n air.  oxidizing  M a r c a s i t e n o d u l e s o f a u t h i g e n i c o r i g i n a r e common  i n s h a l e s and mudstones.  Few m a r c a s i t e a n a l y s e s a r e a v a i l a b l e and t r a c e element c o n t e n t s a r e n o t w e l l known.  9  B.  THE RELATIONSHIP OF CRYSTAL FIELD THEORY TO PYRITE GROUP MINERALS  F o r a complete and s o p h i s t i c a t e d s t u d y o f minor element i n c o r p o r a t i o n into the p y r i t e l a t t i c e , the relevance o f c r y s t a l f i e l d t h e o r y must be c o n s i d e r e d .  A b r i e f review o f c r y s t a l  field  t h e o r y i s i n c l u d e d , w i t h much o f t h e m a t e r i a l t a k e n d i r e c t l y  from  H u l l i g e r ( 1 9 6 8 ) ; Burns ( 1 9 7 0 ) ; N i c k e l (1967, 1970); B i t h e r , e t a l . ( 1 9 6 8 ) ; and L a r s e n ( 1 9 6 5 ) . C r y s t a l f i e l d t h e o r y d e s c r i b e s t h e o r i g i n s and r e s u l t s o f i n t e r a c t i o n s o f s u r r o u n d i n g s on t h e o r b i t a l e n e r g y - l e v e l s o f a transition-metal ion.  T r a n s i t i o n - e l e m e n t s a r e those e l e m e n t s , t h e  atoms o r i o n s o f w h i c h c o n t a i n p a r t l y - f i l l e d " d " o r b i t a l s , p a r t i c i p a t e i n c h e m i c a l bond f o r m a t i o n .  which  The elements most commonly  r e p o r t e d a s t r a c e s i n p y r i t e a r e T i , V, C r , Mn, Co, N i , and Cu, w h i c h b e l o n g t o t h e f i r s t s e r i e s o f t h e t r a n s i t i o n e l e m e n t s ; A g and Au from Group I B ; c h a l c o g e n elements Se, and Te; and pnigogen  elements  A s , Sb, and B i .  The " i n t e r a c t i o n s , " mentioned  above, a r e e l e c t r o s t a t i c  f i e l d s t h a t o r i g i n a t e from n e g a t i v e l y charged a n i o n s o r d i p o l a r a n i o n groups ( l i g a n d s ) .  These l i g a n d s , v a r y i n g i n t y p e , p o s i t i o n ,  and symmetry, i n d u c e changes i n t h e symmetry and i n t e n s i t y o f t h e e l e c t r o s t a t i c f i e l d surrounding the metal i o n .  Each t r a n s i t i o n  m e t a l atom c o n s i s t s o f a n u c l e u s w i t h e l e c t r o n s p r e s e n t i n a s e r i e s of o r b i t a l s .  The i n n e r - m o s t o r b i t a l s , t h e a r g o n " c o r e " e l e c t r o n s ,  2 2 6 2 6 ( 1 s ) ( 2 s ) ( 2 p ) (3s) (3p) , do n o t take p a r t i n c h e m i c a l  bonding,  but t h e 3d and 4 s o r b i t a l s a r e f i l l e d p r o g r e s s i v e l y i n t h e s e r i e s Sc-Cu and t a k e p a r t i n b o n d i n g .  The 3d o r b i t a l s a r e i l l u s t r a t e d  10  i n F i g u r e 5 and  c o n f i g u r a t i o n s a r e l i s t e d i n T a b l e s 2 and  3.  In  i s o l a t e d gaseous atoms o r i o n s o f a g i v e n element, the f i v e o r b i t a l s a r e a l l o f the same energy.  "d"  In s o l i d state or i n s o l u t i o n ,  the e l e c t r i c a l charge f i e l d s o f a d j a c e n t d i p o l e s o r " l i g a n d s " a c t upon the  "d" o r b i t a l s , r a i s e them i n energy, and  d i f f e r e n t energy l e v e l s .  Electrons  s p l i t them i n t o  t h a t l i e a l o n g the same a x i s  a s the l i g a n d s w i l l be r a i s e d i n energy; t h o s e d i r e c t e d away from t h e l i g a n d s w i l l be r e d u c e d i n energy (see F i g u r e  A p p l i c a t i o n s t o P y r i t e Group  6).  Minerals  I n p y r i t e group compounds w i t h  octahedrally-coordinated  m e t a l i o n s , t h e o r b i t a l - e n e r g i e s a r e s p l i t i n t o two o r b i t a l s o f l o w e r energy and F i g u r e 6).  The  two  groups -  three  o r b i t a l s o f h i g h e r energy  (see  s t r e n g t h o f the l i g a n d f i e l d d e t e r m i n e s how  the  "d" e l e c t r o n s a r e d i s t r i b u t e d i n the  orbitals.  E l e c t r o n s i n the s u l p h i d e s , a r s e n i d e s ,  s e l e n i d e s , and  o f the t r a n s i t i o n - m e t a l s a r e g e n e r a l l y i n t h e l o w - s p i n  tellurides  state,  and  c r y s t a l s t r u c t u r e s adopted by t h e s e compounds a r e those w h i c h p e r m i t maximum s p i n - p a i r i n g o f the non-bonding ( t ^ g ) Transition-metal  c a t i o n s w i t h s i x o r more non-bonding  electrons. electrons  form s t r u c t u r e s i n w h i c h s p i n - p a i r i n g i s a c h i e v e d w i t h o u t  appreciable  i n t e r a c t i o n between c a t i o n s , e.g.,  skutterudite  s t r u c t u r e s (see F i g u r e 7 ) .  The  p y r i t e , marcasite,  and  c a t i o n s w i t h f e w e r than s i x  b o n d i n g e l e c t r o n s can o n l y a c h i e v e s p i n - p a i r i n g by  adopting  s t r u c t u r e s i n w h i c h t h e r e i s m e t a l - m e t a l i n t e r a c t i o n , e.g., p y r i t e and  l o e l l i n g i t e structures (Figure 7).  non-  arseno-  Compounds w i t h s i x  FIGURE 5. Boundary s u r f a c e s o f a t o m i c o r b i t a l s . (From B u r n s , Roger G., 1970)  • Electronic  e  Atomic number 19 20  Atom  Element K Ca  (Ar) s (Ar).p= 4  —  1  21  Sc  (Ar) rf' j  22 23  Ti V  (Ar)3rfV (Ar)3<f 3 4S 2  24  Cr  25 26  Mn Fe  27 28  Co  29  Cu  30  Zn Ga  c i*  91 I*  E  31 32  Ni  Ge  (III) —  (Ar)  1  O  M  M(II)  _o C tJ V,  configuration  .  —  M  (IV)  —  •  —  (Ar) rf (Ar)3rf-  (Ar) (Ar) <f'  (Ar)  (Ar)3rf3  (Ar) </  (Ar^  (Ar)" rfV (Ar) 3 rf 4j"-  (Ar) rf (Ar) rf>  (Ar)3rf3  (Ar) </  (Ar)3rf3  (Ar)3rf« 5  (Ar)3rf* (Ar)3rf'  (Ar) rf* (Ar) rf  3  4  2  3  3  3  5  3  4  !  s  (Ar)3rfV (Ar)3rf ° j 1  4  3  3  4  4  4  5  3  (Ar) rf« 3  (Ar) rf' (Ar) rf  (Ar) ^  (Arfcrf"  (Ar) J»  3  (Ar) J 3  3  (Ar) rf'»4j= 3  3  s  1  1  (Ar)rf'<4/>»  3  3  (Arfcrf  3  (Ar)3rf>«^  ( A r ) = A r g o n core,  2  3  4  3  (Ar) rf » i= /. (Ar) rf"> j=4^ 1  3  3  4  (Ar) rf' *  1  s  —  10  —  3  1  2  — —  (Ar) rf' 3  —  - —  —  (Ar) rf'° 3  i$-2s-2p '$$ 3/>6. r  TABLE 2. E l e c t r o n i c c o n f i g u r a t i o n s o f t h e elements o f the f i r s t t r a n s i t i o n s e r i e s . ( F r o m B u r n s , Roger G., 1970)  Number of 3'/ electrons o I 2  3 4. • 5 6 7 8 9 10  Ion 8  High-spin state * Electronic configuration Unpaired electrons M« t  -e •  2  Ca *, Sc *, Ti«+ Ti3* 2+ T i , V3* V21", Cr 3 *, Mn1* Cr 1 *, Mn3* •. Mn2* Fe2* Fe21-, Co3*, Ni** Co2'-, Ni 3 * Ni 2 * Cu2* Zn2*, Ga3*, Gc4*  o  t t t t .t ti tl ti  t f t t . t t f t t tlt ti ti n titi ti t; t i  I 2  t t t t t t t t t ti t ti ti  3 4 5 4 3 •  Low-spin state  CFSfi  o  o  •°A0 ' *A0  •S-A. vA„ o  i  •»A„ vA0 vA0 vA„  o  o  2  Electronic configuration Unpaired . electrons  t t t tl tl tl tl tl tl tl  .. t f t t t tl t tl tl tl tl t tl tl t t t l t l N't • t l t l tl t l  I , 2  s CFSE o  'A0 iA0  3 2 I  »A„ i'A0  O  2  vA0 "A„  I  ;-A  O  0  X  0  TABLE 3. E l e c t r o n i c c o n f i g u r a t i o n s and c r y s t a l f i e l d s t a b i l i z a t i o n energies o f t r a n s i t i o n metal ions i n octahedral c o - o r d i n a t i o n . (From Burns, Roger G.,1970)  13  *2g r.-4p"-  1  I I I I I  X  .1 > ll 1 t  cov-tr i  ^ = | = 3<j  ll \> tl = \\  • I I Ol  ANTI-BONDING ORBITALS  ll  cov-TC  i  NON-BONDING ORBITALS ^ g ^ g 3 s . 3 p • 3 V  V V  S-S bond other Fe^ ions  ///  BONDING ORBITALS  4  4s--«-  —  /  orbitols  molecular o r b i l a l s  sulphur  of free  in FeS2  orbitols  F«2« ion  (G atoms)  FIGURE 6. M o l e c u l a r o r b i t a l e n e r g y - l e v e l diagram f o r p y r i t e . (From B i t h e r e t . a l . , 1968)  FIGURE 7. Combination of octahedra i n (A) p y r i t e , (B) marc a s i t e , (C) l o e i l i n g i t e , and (D) arsenopyrite. Metal atoms are s o l i d c i r c l e s ; anions are open. (From N i c k e l , E.H.,1970)  FIGURE 8. Diagrammatic representation of the i n t e r a c t i o n of the t2g - o r b i t a l lobes i n sections p a r a l l e l to the c-axis. (A) marcasite, (B) l o e i l i n g i t e , (C) arseno p y r i t e . (From N i c k e l , E.H., 1970)  non-bonding "d" e l e c t r o n s have the p y r i t e o r m a r c a s i t e s i n c e no m e t a l - m e t a l i n t e r a c t i o n i s r e q u i r e d .  structure,  Those w i t h more  t h a n s i x non-bonding "d" e l e c t r o n s a l s o have the p y r i t e o r s t r u c t u r e , e x c e p t f o r CoTe^ and  NiTe2» k i ° w  n  s t r u c t u r e (somewhat r e l a t e d t o the m a r c a s i t e 5 and  6 l i s t common m i n e r a l s  S i n c e Se and  a  v  ^  e  brucite  structure).  l e s s valence e l e c t r o n than sulphur).  the  However the  Sb have  one  Thus, the t o t a l number o f  non-bonding "d" e l e c t r o n s i s r e d u c e d ; hence, m e t a l - m e t a l  inter-  be n e c e s s a r y to a c h i e v e maximum s p i n - p a i r i n g .  The  c a t i o n - a n i o n r e l a t i o n s h i p d i s c u s s e d h e r e can be r e l a t e d  t o the n a t u r e and group and  groups.  o r more As o r Sb atoms n e c e s s i t a t e s a  change i n the v a l e n c e o f the c a t i o n ( b o t h As and  a c t i o n may  Tables  t h e y can r e p l a c e  u p s e t t i n g the b a l a n c e o f c h a r g e s .  •replacement o f S^ by one  e  o f the p y r i t e and m a r c a s i t e  Te have the same v a l e n c e as S,  S atoms w i t h o u t  n  marcasite  e x t e n t o f s o l i d s u b s t i t u t i o n w i t h i n the p y r i t e  r e l a t e d g r o u p s ; and  of minor elements.  t h u s , may  be r e l a t e d t o i n c o r p o r a t i o n  I n the system C o - F e - N i - S 2 , phase s t u d i e s  s y n t h e t i c compounds has  of  shown t h a t complete s o l i d s o l u t i o n can  e x i s t between Fe-Co end members (6 and  7 non-bonding e l e c t r o n s )  between Co-Ni end members (7 and 8 noh-bonding e l e c t r o n s ) but between Fe and i s t h a t the two  H i (6 and  8).*  According  and  not  t o N i c k e l (1970) the r e a s o n  extra n i c k e l electrons i n M S 2  i n c r e a s e the  metal-  a n i o n d i s t a n c e t o a p o i n t where the complete range o f s o l i d s u b s t i t u t i o n i s not p o s s i b l e .  S i m i l a r r e l a t i o n s h i p s e x i s t i n the  *The h i a t u s between N i and Fe d i s u l p h i d e s i s not s u p p o r t e d by from a n a l y s i s o f n a t u r a l b r a v o i t e specimens.  data  Fe Co Ni  S 2 , Se 2 or Te2  AsS or SbS  6 7 8  5 6 7  As2 or Sb2 .4 5 6  TABLE A. The number of non-bonding d-electrons i n d i a n i o n i c compounds. (From N i c k e l , E.H., 1970)  Minerals with cations having 6 non-bonding d-electrons Composition  •Mineral  Structural type  FeS 2 CoAsS CoSbS FeS 2 FeSe 2 FeTe 2 NiAs 2  pyrite cobaltite  pyrite pyrite pyrite marcasite marcasite marcasite marcasite  '. -  marcasite ferroselite frohbergite rammelsbergite  ~ -  Minerals conta ining cations with 7 or S non-bonding d-electrons Composition CoS 2 CoSe2 NiAsS KiSbS . NiS 2 . NiSe 2 CoSe2 CoTe 2 NiTen  Mineral name cattferite . trogtalite gersdorffite ullmannite vaesite penroseite hastite -  melonite  No. of d-electrons  Structural type  7 7. 7 7 8 8 7 7 8  pyrite pyrite pyrite pyrite pyrite pyrite marcasite brucite brucite  TABLE 5. Minerals w i t h 6, 7, or 8 non-bonding d-electrons. (From N i c k e l , E.H., 1970)  PYRITE STRUCTURE hi^li-spin il':  .S' : 5/2. :intifcniiin;i^iii'tii', srmieuiidiicling • MnS... MnSc.,; . M u l e . . .  low-spin <1":  .S'  0,  .si'iiiicimdiK'tinu.  metallic*)  FeS.,(li), I'VScjfp). l-'i:Ti\,(p)\ KuS... KuSi\,. Ku'lV.,, ().sS., OsSe„ OsTe... Co PS, CoAsS. I'ciAsSc. Klil'S. KhAsS, KhShS, Klii'.iS. Khl'Sc. KliAsSo, UhSbSe, UhliiSc, KhAs'lV, KhSbTe, Khl'.iTo, Irl'S liAsS, liSbS. IrBiS. li'PSe. IrAsSe, liSbSc. lrHiSe, IrAsTe. IrSbTo. Irl'.iTe. Nil\(p)\ NiAs..(p)*, Nv s P.l„. 5 As;. PdAs*, lMSbJ. PtP 2 . PtAs3. VlSU... 7  metallic i l :  s  PtHi^r)*.  KliS-j. RhSe-.,, KhTe~3, IrS~3, IrSc_3, IrTe, 3 . 5 — •},•-*• 0, metallic CoS.„ CoSc(li), CoTc.,(p), IvhSc(li), K h T c ( r ) , IrSo(p), XiPS. MAsS. XiSbS. NiAsSe. NiSbSe, XiBiSe. PdAsS. PtlSbS. PdAsSc, PdSbSe, Pdl.iiSc, PdSbTo, PdBiTe, PtAsS. PtSbS, PtSbSc, PtBiSe. PtSbTe, PtBiTe. AnSb...  high-spin d :  5•= 1, semiconducting, 5 < 1, metallic*) XiS2(r). NiSjlp)*, NiSc*..' NiTes(p)*.  metallic d9:  5 = 0, metallic CuS,(p). CuSc„(p), CuTc2(p)..  .  •• - •• ;  ";  5 = 0, diamagnctic, semiconducting ZnS2(p), ZnSc2(p), CdS2(p), CdSe.fp).  LOELLINGITE STRUCTURE high-spin d2: d2, d 1 low-spin d':  5 = 1, antifcrromagnctic, semiconducting CrSb2. . ••  . .  ' "'  5,'= 1, S 2 = 0, semiconducting CrFcAs.,. 5 = 0, semiconducting FeP 2 . FcASo, FcSb2, KuP,, RuAs2, RuSb2, OsP2, OsAs2, OsSb2.  MARCASITE STRUCTURE low-spin d°: metallic d 7 : metallic d":  5 — 0, semiconducting, metallic ?*) • PcS2(r), FcSc.(r). FcTc2(r), NiAs2(h), NiSb?.  S ?t \; metallic CoSc2"(r), CoTe2(r).  ;  :  t  S = 0, metallic CuSc2(r).  ARSENOPYRITE STRUCTURE (d^-d1):  ' r \ - : - \. . •:  ..  _  __... ...... ..  5 = 0, semiconducting CoAsj, CoSb., RhP 2 , KhAs2. RhSb8. RhBi s (r), IrP 2 , IrAs2, IrSb2, IrBi 2 " " " " " FcPS, FeAsS, FeSbS. FePSc, FcAsSe, FeSbSo, FcAsTe, FeSbTc, KuPS. RuAsS, KuSbS. RuPSe, KuAsSe, RuSbSc, RuAsTe. RuSbTe, OsPS. OsAsS. OsbbS, OsPSc, OsAsSo, OsSbSc, OsBiSe. OsAsTe, OsSbTe, OsBiTe.  TABLE 6. Chalcogenides and pnictides of t r a n s i t i o n elements. (From H u l l i g e r , F . , 1968) (h) High-temperature phase, (r.) Room-temperature phase, (t) Low-temperature phase, (p) Synthesized under pressure.  7  Co  6  Co  650° C  800 C  FIGURE 9. S o l i d - s o l u t i o n f i e l d s , shown i n shaded areas, i n various polyanionic compounds of Fe,Co, and N i . A) Bisulphides, B) Sulpharsenides, C). Diarsenides, D) T r i arsenides,. The numbers at the v e r t i c e s indicate the number of non-bonding "d" electrons. (From Nickel,E.K.,1970).  19  ( C o N i F e J A s ^ system (see F i g u r e 9 ) . c o m p l e t e s u b s t i t u t i o n o f Co and have the p y r i t e s t r u c t u r e ) but between FeAsS and  N i end members i s p o s s i b l e  (and Sb)  is a  a d i f f e r e n t ( l e s s symmetrical) c r y s t a l  These r e l a t i o n s h i p s h e l p e x p l a i n the l i m i t e d  s u b s t i t u t i o n o f As  (both  there i s incomplete s o l i d - s u b s t i t u t i o n  the o t h e r end members s i n c e a r s e n o p y r i t e  5 - e l e c t r o n compound and has structure.  I n the (Co, N i , Fe)AsS system  solid  i n the p y r i t e l a t t i c e .  C r y s t a l f i e l d t h e o r y i s u s e f u l f o r e x p l a i n i n g the i s o s t r u c t u r a l (but non-isomorphous) r e l a t i o n s h i p between ~FeS^ MnS  As documented by H u l l i g e r (1968) and  2>  MnSg - h a u e r i t e - has  by N i c k e l ( 1 9 6 8 ) ,  the p y r i t e s t r u c t u r e , but the "d"  electrons  i n the Mn atom a r e i n the " h i g h - s p i n " s t a t e i n 5 s e p a r a t e with p a r a l l e l spins. e n e r g y i s z e r o . * The  The  corresponding  crystal-field  orbitals  stabilization  h i g h - s p i n s t a t e i s a t t r i b u t e d to  r e l a t i v e l y h i g h p a i r i n g energy and  "the  low o r b i t a l s e p a r a t i o n  r e l a t i v e to other t r a n s i t i o n elements."  energy  Thus t h e r e i s no  pronounced  t e n d e n c y f o r MnS£ t o c r y s t a l l i z e i n forms s t a b i l i z e d by a degree o f s p i n - p a i r i n g ( N i c k e l , 1968). s p i n compounds a r e known, and (Mn,Cu)Se2 and  o f Mn  Therefore,  Many 4 and  high  5 electron  t e l l u r i d e have been p r e p a r e d  although  the isomorphous s u b s t i t u t i o n  i n the p y r i t e l a t t i c e i s not encouraged by i t s h i g h - s p i n  nature,  i t s p r e s e n c e by c o u p l e d - s u b s t i t u t i o n i s p o s s i b l e . 3  No  " p y r i t e " compounds a r e known w i t h the l o w - s p i n  configuration.  Ions w i t h one,  two,  * CFSE f o r o c t a h e d r a l l y c o o r d i n a t e d (Nj.  2 g  e l e c t r o n s X 2/5 A ) Q  low-  s y n t h e t i c mixed c r y s t a l s (MnjCuJS^,  the c o r r e s p o n d i n g  ( H u l l i g e r , 1968).  and  d  or three e l e c t r o n s ( f o r cations i s :  - (Keg e l e c t r o n s X 3/5  &) Q  20  example T i , V , C r ) c a n have o n l y one e l e c t r o n i c c o n f i g u r a t i o n the 3d e l e c t r o n s occupy d i f f e r e n t o r b i t a l s o f t h e T^g group.  Thus  T i , V, C r a r e n o t e x p e c t e d t o c r y s t a l l i z e i n m o d i f i c a t i o n s o f t h e " p y r i t e " t y p e , a l t h o u g h some mixed c r y s t a l s w i t h s t r u c t u r e a r e known (.e.g., CrSb2» CrFeAs^,).  loellingite  Chalcogenides o f T i  and V c r y s t a l l i z e i n the C d l g s t r u c t u r a l system ( W e l l s , e t a l . ,  The  1962).  e l e m e n t s Cu, Ag, and Au have been i n c l u d e d w i t h t h e  t r a n s i t i o n e l e m e n t s ( L a r s e n , 1965J b u t Zn, Cd and Hg a r e n o t included although  they have some s i m i l a r i t i e s .  Electronic configura-  t i o n s a r e as f o l l o w s :  Cu  3d  4s  Zn  3d  4s  Au  4d  5s  Cd  4d  5s  Ag  5d  6s  Hg  5d  6s  These e l e m e n t s , h a v i n g 10 non-bonding " d " e l e c t r o n s ( c o m p l e t e Tgg f i l l i n g ) ,  c a n p o s s e s s o n l y one e l e c t r o n i c c o n f i g u r a t i o n .  The  c r y s t a l f i e l d s t a b i l i z a t i o n energies i n octahedral f i e l d s w i t h low-spin s t a t e s a r e very low:  Element Cu . Zn . • . . . • •  C.F.S.E. 3/5 . 0  These f a c t o r s , combined w i t h the g r e a t e r i o n i c r a d i i ,  inhibit  a c c e p t a n c e o f these elements i n t o p y r i t e s t r u c t u r e s under normal conditions.  However, d i c h a l c o g e n i d e s o f Cu, Zn and Cd have been  s y n t h e s i z e d a t 65 K b a r s p r e s s u r e and 600° C ( B i t h e r , e t a l . . 1968,)  21  The g e n e r a l e f f e c t o f t h e r e g u l a r a d d i t i o n o f non-bonding electrons  i s a n energy l o s s w i t h r e s p e c t t o t h e t o t a l e n e r g y .  Thus  the c o h e s i v e b o n d i n g f o r c e s d e c r e a s e , r e s u l t i n g i n i n c r e a s i n g inter-atomic  distances,  l a r g e r u n i t c e l l s and a d e c r e a s e i n  s t a b i l i t y o f t h e compound. properties  of FeS  2  - CoS  2  T h i s i s i n accord w i t h the p h y s i c a l - N1S  2  - CuS  2  - ZnS  2 >  The c r y s t a l - f i e l d r e l a t i o n s h i p between a n i o n and c a t i o n i s a major f a c t o r i n d e t e r m i n i n g whether a s p e c i f i c compound crystallize  will  i n t h e p y r i t e s t r u c t u r e , and i s t h e r e f o r e , a m a j o r  f a c t o r (but not the o n l y f a c t o r ) i n d e t e r m i n i n g the a c c e p t a b i l i t y o f minor elements i n t o the p y r i t e l a t t i c e .  22  C.  THE Co-Ni-Fe-S^ SYSTEM C o b a l t and n i c k e l , because o f t h e i r s i m i l a r i t y i n i o n i c p r o p e r t i e s t o i r o n (e.g., charge,  octahedral covalent radius,  e l e c t r o n e g a t i v i t y , e t c . J a r e g e n e r a l l y t h e most abundant m i n o r elements i n p y r i t e , and a r e t h e o n l y e l e m e n t s w i t h w h i c h p y r i t e forms a complete s o l i d - s u b s t i t u t i o n s e r i e s .  A r e v i e w o f t h e Co-  Ni-Fe-S2 system i s p r e s e n t e d , i n c l u d i n g t h e e x t e n t o f s o l i d s u b s t i t u t i o n i n n a t u r a l and s y n t h e t i c d i s u l p h i d e s , and v a r i a t i o n s i n properties with  1.  composition.  N a t u r a l and S y n t h e t i c Phases The  t h r e e end members o f t h e system a r e FeSg ( p y r i t e -  m a r c a s i t e j , CcS^ ( c a t t i e r i t e J , and N i S ^ ( v a e s i t e J .  The end members  a r e d e l i n e a t e d by K e r r (1945.) as those samples i n w h i c h t h e p r o p o r t i o n o f t h e dominant m e t a l or greater.  t o t h e t o t a l m e t a l c o n t e n t i s 80$  The r e l a t i o n s a r e b e s t d i s p l a y e d on a t e r n a r y d i a g r a m , *  Samples w i t h i n t e r m e d i a t e c o m p o s i t i o n a r e termed B r a v o i t e (Co,Ni,Fe I f t h e system were extended t o i n c l u d e c o p p e r , a d d i t i o n a l members would be F u k u c h i l i t e (Cu^FeSgJ and V i l l a m a n i n i t e  (Cu.NijCo.FeJS^.  C a t t i e r i t e and v a e s i t e were o r i g i n a l l y d e s c r i b e d f r o m t h e Shinkolobwe and Kasompi d e p o s i t s o f t h e Katangan copper b e l t by K e r r (19451.  The m i n e r a l s a r e found d i s s e m i n a t e d  i n dolomite,  as cubes and o c t a h e d r a , and b o t h have c u b i c c l e a v a g e . i s p i n k i s h ; the v a e s i t e i s g r e y .  The c a t t i e r i t e  Since Kerr's d e s c r i p t i o n , f u r t h e r  examples o f t h e two m i n e r a l s have been f o u n d i n t h e " R h o d e s i a n " * (See F i g u r e s 10 and 11)  both  copper b e l t and bravoite i s f a i r l y common.  Several.methods o f  synthesis of Co, N i , and Fe d i s u l p h i d e s have been developed. These i n c l u d e : 1) heating metal powders with S i n an  atmosphere;  2) heating metal oxides, S, and NH^Cl i n an evacuated tube; 3) f u s i o n o f the elements i n a L i C l - K C l melt (Klemm, 1965); 4) heating o f metal sulphates i n s o l u t i o n w i t h B^S and S (Springer, et a l . . 1964); 5) p r e c i p i t a t i o n of Co, N i , or Fe monosulphides from hot aqueous sulphate or c h l o r i d e s o l u t i o n by a d d i t i o n of d i l u t e d ammonium polysulphide, and heating the d r i e d p r e c i p i t a t e with S i n a sealed tube under hydrogen (Straumanis, et a l . . 1964). E a r l y r e p o r t s by Clark and K u l l e r u d (1959» 1960), and Klemm (1965) showed large areas o f the Co-Ni-Fe-^ composition f i e l d i n which s o l i d - s u b s t i t u t i o n does not occur (see Figure 10).  Most  ternary diagrams a t t h i s time showed a large gap i n the NiS2~FeS2 j o i n ; the gap was explained by l i g a n d - f i e l d theory  ( N i c k e l , 1970).  Under c e r t a i n conditions o f synthesis the "gap" may be caused by the  i n h i b i t i o n of s o l i d - s o l u t i o n of end-members due to coarseness  of the i n d i v i d u a l i n i t i a l phases.  Straumanis, et a l . (1964). found  that c o - p r e c i p i t a t i o n of Co and Fe as monosulphides was necessary to promote s o l i d s u b s t i t u t i o n i n d i s u l p h i d e s .  Using t h i s method,  complete s o l i d - s u b s t i t u t i o n of any proportion of Co : Fe was possible (see Figure 11).  D e t a i l e d work by Klemm (1965) and  FIGURE 11. N a t u r a l l y o c c u r r i n g s o l i d s o l u t i o n s i n the system C o - N i - F e - S , . ( M o d i f i e d from Klemm, D.D., 1965)  Springer, et a l , (1964), shows that a l l proportions  of Co, N i and  Fe are found i n n a t u r a l and s y n t h e t i c b r a v o i t e s (see Figure 1 1 ) . Most n a t u r a l l y - o c c u r r i n g bravoites are zoned (a t y p i c a l example i s i l l u s t r a t e d i n Figure 24), but unzoned and zoned c r y s t a l s may occur together both i n n a t u r a l and i n s y n t h e t i c environments. K u l l e r u d (1962) showed that b r a v o i t e , when heated f o r a s u f f i c i e n t length o f time, breaks down to p y r i t e and v a e s i t e . n a t u r a l l y o c c u r r i n g bravoites may be metastable.  Thus, Their  zonation  probably i n d i c a t e s that temperature of d e p o s i t i o n was low, and subsequently was too low to cause decomposition to s t a b l e phases (Springer, et a l . , 1964).  Zonation may have been caused by  l o c a l convection w i t h i n the ore f l u i d adjacent to growing c r y s t a l s . The study of s y n t h e t i c phases by Springer and h i s  colleagues  sheds l i g h t on the d e p o s i t i o n o f n a t u r a l b r a v o i t e s .  2.  V a r i a t i o n of p r o p e r t i e s w i t h corn-position P r o p e r t i e s of p y r i t e - t y p e minerals which have been noted  to change w i t h the a d d i t i o n of s o l i d - s u b s t i t u t i o n i m p u r i t i e s a r e : 1) L a t t i c e constants  5) S p e c i f i c g r a v i t y  2) Hardness  6) Anisotropism  3) R e f l e c t i v i t y  7) Thermoelectric e f f e c t  4) Color  8 ) C r y s t a l form  a) U n i t - C e l l Dimensions  A r e g u l a r i n c r e a s e i n c e l l edge w i t h a d d i t i o n o f i m p u r i t i e s causes the changes i n h a r d n e s s , r e f l e c t i v i t y and s p e c i f i c g r a v i t y . V a r i a t i o n s i n l a t t i c e constants of p y r i t e - g r o u p minerals are w e l l documented ( E l l i o t t , 1960; F i g u r e s 19'&'20  R i l e y , 1965;  Vaughan, 1969;  and others,).  i l l u s t r a t e , the i n c r e a s e i n c e l l edge w i t h a t o m i c  number o f major a n i o n o r c a t i o n c o n s t i t u e n t s .  The  increase with  a t o m i c number o f a n i o n s u b s t i t u e n t s i s e x p l a i n e d r e a d i l y by  the  r e g u l a r i n c r e a s e o f e f f e c t i v e r a d i u s o f the a n i o n s .  increase  I f the  i n c e l l edge o f p y r i t e w i t h a d d i t i o n o f c a t i o n s were s o l e l y r e l a t e d to e f f e c t i v e r a d i u s o f those c a t i o n s , the c e l l edge would be expected to decrease!  Such i s not the case however.  Although  s l i g h t i n i t i a l d e c r e a s e i s n o t e d when Co i s added t o the system ( S t r a u m a n i s ,  a  pyrite  e t a l . . 1964J, the m a j o r e f f e c t i s a r e g u l a r  i n c r e a s e ( F i g u r e 18;.  Thus, the e f f e c t o f the i n c r e a s e d number  o f . e l e c t r o n s i n "d" ( n o n - b o n d i n g j o r b i t a l s must c o u n t e r a c t lower e f f e c t i v e r a d i u s .  The  e f f e c t s o f c o b a l t and copper a d d i t i o n  to p y r i t e a r e i l l u s t r a t e d i n F i g u r e s 14 and o c c u r i n the NiS2-Se2 and shown i n F i g u r e s 12 and  the  15.  Similar effects  CoS2~Se2 systems (Klemm, 1962;  as i s  13.  b j C o l o r . R e f l e c t i v i t y and  Hardness  Vaughan (1969; had demonstrated t h a t b o t h m i c r o h a r d n e s s  and  r e f l e c t i v i t y o f zones i n b r a v o i t e d e c r e a s e w i t h i n c r e a s i n g amounts o f Co and N i ( T a b l e 7, F i g u r e s 21 and 22;. were r e a c h e d by Saager and  M i h a l i k (1967J  S i m i l a r conclusions a f t e r studies of p y r i t e  CoS;  CcSfj  V&CHT  FICURE .13. Variation! of c e l l edge w i t h composition i n the CoSj-CoSe^systeo. (From Klemm, 1966)  XCCW-T.  FIGURE 14. Weight percentage cobalt plotted against the d ( 5 U ) spacing f o r members of the FeS_-CoS system. (From R i l e y , John F.,1968). 2  t  2  i-H.Sti.t «'.h W« J * n g . » I » ) r  so •  s.s  1  /  w.,..,„.  -K.5tt.*ynlS(^iU(.lStQ o. N  NiS«..iinlr>(!lr1t / ,13'.Q)  tf  58 57 [-Ml.  r,s N:Sc  to  IB  ».  1. »«  2  FIGURE 13. V a r i a t i o n of c e l l edge with composition i n the NiS.-NiSe system. (From Klenm, 1966)  FICURE 13. C e l l edge versus composition f o r members of the FeS. CuS system. (From Shimazaki, H..and Clark, L.A., - 1970).  5 . 4 ! 10  5.4050 •  • 10  •  ' • 25 TEMPER AT. IN °C  ' 35  : 45  . 55 1  65  FIGURE 16. L a t t i c e parameter "a" of natural and synthetic p y r i t e s versus temperature. (From Straumanis e t . a l . , 196A)  FIGURE 17. L a t t i c e parameter "a" of C0S2 versus temperature. (From Straumanis e t . a l . , 1964)  4 X  DO  FIGURE 18. L a t t i c e parameter "a" versus composition of mixed (Co,Fe)S sulphides at 25°C. (From Straumanis e t . a l . , 1964) 2  Mn  Fe  Co  Ni  Cu  Zn  20  FIGURE 19. Change i n length of c e l l - e d g e (Angstroms) w i t h i n c r e a s i n g atomic number of anion FIGURE 2 0 . Clinngo i n . l e n c t h o f c o l l - o d g e (Angntromo) a t o n i c number o f c a t i o n  t  with increasing  FIGURE 21 . Zoned bravoite c r y s t a l selected f o r r e f l e c t i v i t y studies. (From Vaughan, David J.,1969) FIGURE 22. V a r i a t i o n i n r e f l e c t i v i t y (at 589 nm. i n a i r ) over the bravoite c r y s t a l . (From Vaughan, David J . , 1969)  Composition (.in Wt. ("c)  Rctleclivity ''.k'( air at 589 nm) 33.7 35.1 30.8  3&.4  Zone number  1  ! j.  i i  !  3S.S 39.7 -10.1 40.1 41.4 4S. 6 52.2  1  Metals ' Total  Fe  Co  lO 12 2  12.9 22.9 24.7  14.1 3.4 2.1  25.5 24.2 22.8  52.5 50.5 49.6  4 6  .28.5  IS  19.5  49.8  28.4 31.4 2S.0 31.4 28.7 34.1 47.9  0 0.3 2.0 0.4 0.2 1.2 0  15.1 17.8 19.5 17.7 19.1 10.9 0.1  43.5 49.5 49.5 49.5: 4S.0 46.2 4S.0  5  8 ! : '7 •  1 9 U 13  Trend in Vickcrs microhardncss (VHX1W1) "Violet bravoite" VHX„„ = 907±194  "Xickelian p\ rite'' VHXK,I,= 1,332 + 203  " Formula calculated /rum composition; f o r this zone (Fir, Co, Xiji.jSj. '• Calculated values of - metals for the- end members are: FeS2 46.6, CoSj 17.9, XiSi  TABLE 7. R e f l e c t i v i t y and hardness values f o r the zoned bravoite c y r s t a l i n r e l a t i o n to composition. (From Vaughan, David J . , 1969)  31  from A u - r i c h  " r e e f s " o f the W i t w a t e r s r a n d s e d i m e n t s .  i n the Co-Ni-Fe-S^ system a r e as  Color  changes  follows:  pyrite  - brass  yellow  low N i - p y r i t e  - yellow^pinkish  "Bravoite"  - p i n k i s h to v i o l e t  Ni,  Co-rich p y r i t e  - p i n k i s h grey to s t e e l y grey  The  r e f l e c t i v i t y and  yellow  c o l o r o f p y r i t e c o n t a i n i n g up t o 3 mol  %  copper a r e not v i s i b l y d i f f e r e n t from pure p y r i t e ( E i n a u d i , 1968J. W i t h i n c r e a s i n g Cu c o n t e n t , however, c o l o r changes from g r e y to p i n k i s h g r e y , and r e f l e c t i v i t y d e c r e a s e s .(Shimazaki and  The  Clark,  light  progressively  1970).  r e l a t i o n s h i p o f r e f l e c t i v i t y o f p y r i t e - t y p e compounds  t o m o l e c u l a r - o r b i t a l t h e o r y i s r e s e a r c h e d i n d e t a i l by Burns Vaughan ( 1 9 7 0 ) .  From a s t u d y o f the i n t e r a c t i o n o f  and  electromagnetic  waves w i t h " e x c i t a b l e " o r " f r e e " e l e c t r o n s , the a u t h o r s c a l c u l a t e d " N ( e f f J , " a measure of the e f f e c t i v e number o f f r e e e l e c t r o n s  per  atom o r m o l e c u l e .  the  When e l e c t r o m a g n e t i c  e x c i t a t i o n of f r e e e l e c t r o n s to higher  energy i s absorbed by  energy p o s i t i o n s , r e f l e c t i v i t y  r e s u l t s , as the e l e c t r o n s r e t u r n to t h e i r o r i g i n a l s t a t e and energy i n the form o f l i g h t .  High r e f l e c t i v i t y i s a s s o c i a t e d  a h i g h number o f N ( e f f J (see F i g u r e  23, T a b l e  8).  emit with  More s i g n i f i -  c a n t l y , the v a l u e s o f N ( e f f ) a r e r o u g h l y p r o p o r t i o n a l to the number o f energy l e v e l s a v a i l a b l e to the t,,g e l e c t r o n s e x c i t e d i n t o e  g  orbitals.  a r e 1.18  : 0.88  The  r a t i o s of N ( e f f J f o r FeS : 0.51  : 0.30  = 4 : 3 : 1.7  2  : CoS : 1.  2  : NiS The  2  the  : CuS  2  relationships  32  100  i  i  i  i  'S g A  -  90  -  80 70 -  —  -  Reflect Ivlty  60 _ 50 -  ®res  AO —  X  30  ®NiS  .20 X  : io -  CuS  2  1  2  S  2  A u  -  2  C U S e 2  -  '  2  1  0  CuTe  ®CoS  1  1  ( P c r unit  1  1  3  2 ^eff  5  4  FeS2  C0S2  NiS2  CuS2  51.6 1.18 2.97  34 0.8S 2.08  27  17  0.51  0.30  1.11  0.62  .—  electronic configurations of the metal 3d orbitals  | eA [  (K/= Fermi level)  /2„|  1 6  volume)  FIGURE 23. P l o t of percent r e f l e c t i v i t y (R) against number of free electrons per unit volume for p y r i t e type compounds. Data f o r gold are also shown. (From Burns and Vaughan,  Reflectivity at 496 nm (2.5 cV)" >ttti at 496 nm* AW at 496 nmc  ;  T  effective (N ff) and s i l v e r 1970) e  EF  T .  -—EF -—EF  11. T 1 • T I  T  T  Ti  t i • Ti TI  T 1 TI T 1  Ti T 1 T 1  TABLE 8 . R e f l e c t i v i t i e s , e f f e c t i v e number of free electrons and e l e c t r o n i c configurations of cations i n the p y r i t e type disulphides. (From Burns and Vaughan, 1970)  33  a r e shown d i a g r a m m a t i c a l l y  i n Table  8.  I n the S2-Se2~Te2 systems r e f l e c t i v i t y i n c r e a s e s w i t h  anion  s i z e , s i n c e the e f f i c i e n c y o f c o v a l e n t b o n d i n g i n c r e a s e s w i t h as does the p o l a r i z a b i l i t y o f the a n i o n s  (see F i g u r e 23).  size,  Thus  the d e r e a l i z a t i o n o f e x c i t e d " t ^ g " e l e c t r o n s i n c r e a s e s w i t h size.  anion  T h i s i s the o p p o s i t e e f f e c t to the FeS2-CoS2-NiS2-CuS2 s e r i e s , .  i n which c o v a l e n t bonding decreases.  S i n c e the e l e c t r o n i c c o n f i g u r a -  2+ t i o n o f Mn  has o n l y h a l f - f i l l e d 3d o r b i t a l s , the r e f l e c t i v i t y  „MnS2 i s a p p r e c i a b l y lower t h a n the more c o v a l e n t Co, N i , and  of  Fe  disulphides. c)  Anisotropism A n i s o t r o p i s m o f p y r i t e under r e f l e c t e d l i g h t was  c o n s i d e r e d anomalous, and  thought to be caused by  non-stoichiometric  p r o p o r t i o n s o f Fe and S, o r by h i g h a r s e n i c c o n t e n t . known t h a t the Fe  It i s  : S r a t i o i n pure p y r i t e i s 1 : 2.00;  crepancies are w i t h i n l i m i t s of a n a l y t i c a l e r r o r . 1957)  originally  Stanton  has f o u n d o p t i c a l a n i s o t r o p i s m i n p y r i t e t o be the  case; i t i s seen on a l l c r y s t a l f a c e s e x c e p t the (111) faces.  and  The  dis(1955.  general  octahedral  a n i s o t r o p i s m i s not a f f e c t e d by t e m p e r a t u r e up  570° C, but can be o b l i t e r a t e d by h a r s h g r i n d i n g .  now  to  Klemm (1962)  observed t h a t p e r f e c t c r y s t a l f a c e s a r e i s o t r o p i c , and  suggests  t h a t a n i s o t r o p i s m c o u l d r e s u l t from s u r f a c e p o l i s h i n g .  Gibbons  (1967) s u p p o r t s  t h i s t h e o r y - e x p l a i n i n g t h a t p o l i s h i n g may  cause  a t h i n " s k i n " o f d i s t o r t i o n i n the o r d i n a r i l y i s o m e t r i c l a t t i c e .  The  s k i n c o u l d be d e s t r o y e d  The  by g r i n d i n g .  p o s s i b i l i t y o f minor-element c o n t a m i n a n t s c a u s i n g  a n i s o t r o p i s m must be c o n s i d e r e d . Fiji,  shows marked a n i s o t r o p i s m  C o p p e r - r i c h p y r i t e from Nukumundu, ( F r e n z e l and Ottemann, 1968/.  two v a r i e t i e s o f p y r i t e from the W i t w a t e r s r a n d Table  9)*  optical  "basal reef"  Of  (.see  "the a n i s o t r o p i c v a r i e t y c o n t a i n s r e l a t i v e l y g r e a t amounts  o f a r s e n i c , c o b a l t , and n i c k e l (.Saager and M i h a l i k , 1967/.  Of  these three elements, only a r s e n i c could a f f e c t a n i s o t r o p i s m , s i n c e . -CoS2» N i S ^ and i n t e r m e d i a t e members a r e a l l i s o t r o p i c .  : TABLE 9  -  RESULTS OF THE QUANTITATIVE DETERMINATION OF TRACE ELEMENTS BY THE ELECTRON MICROPROBE . ON THE TWO TYPES OF PYRITE Type o f p y r i t e  Arsenic  Nickel  Cobalt  Isotropic variety  0.201  0.114  0.049  Anisotropic variety  0.877  0.460  0.233  Gibbons n o t e s t h a t p y r i t e i s a l m o s t i s o t r o p i c under y e l l o w light.  D i f f e r e n c e s i n a n i s o t r o p y r e p o r t e d by d i f f e r e n t  c o u l d r e s u l t from v a r i a t i o n s i n l i g h t s o u r c e s used.  authors  A l s o , because  m i n o r elements a f f e c t b o t h r e f l e c t i v i t y and h a r d n e s s o f p y r i t e , t h e s e two  f a c t o r s , combined w i t h p o l i s h i n g t e c h n i q u e may  o p t i c a l anisotropy.  enhance  S i n c e m i n o r elements d i s t o r t the n o r m a l  l a t t i c e constants, i t i s l i k e l y that c e r t a i n elemental i m p u r i t i e s c o u l d cause a n i s o t r o p i s m .  d) T h e r m o e l e c t r i c  Effect  S m i t h (1947) i n i t i a t e d and  thermoelectric studies of pyrite,  found t h a t p o s i t i v e o r n e g a t i v e  thermoelectric potential  c o u l d be f o u n d i n v a r i o u s p y r i t e specimens.  The e f f e c t i s measured  by c l o s e l y - s p a c e d h o t and " c o l d " w i r e probes t h a t touch t h e s u r f a c e o f the specimen and convey t h e s m a l l c u r r e n t g e n e r a t e d t o a g a l v a n o meter.  S m i t h thought t h a t t h e more t h e r m o e l e c t r i c a l l y - p o s i t i v e  values i n d i c a t e d higher temperatures o f d e p o s i t i o n . by F i s c h e r and H i l l e r c o r r e l a t i o n o f thermal and  (1956,) and S u z u k i  Later  research  (1963) r e v e a l s t h a t t h e  e.m.f. and t e m p e r a t u r e i s o n l y  qualitative,  i s a p p a r e n t l y r e l a t e d ( a g a i n i n a q u a l i t a t i v e way) t o m i n o r  element c o n t e n t .  F i s c h e r and H i l l e r s u g g e s t t h a t minor e l e m e n t s  Co, N i , and Cu cause p o s i t i v e t h e r m o e l e c t r i c e f f e c t .  H i l l and  Green (1962) r e l a t e h i g h r e s i s t i v i t y o f p y r i t e t o " h i g h "  contents  o f copper and molybdenum.  of their  However, t h e Cu and Mo c o n t e n t  samples i s by no means h i g h , n o r i s t h e d i f f e r e n c e between t h e i r , " h i g h " and " l o w " c o n t e n t  statistically  A review o f Suzuki's presented  significant.  d e t a i l e d study o f thermal  h e r e , as t h e t h e o r y i s r e l e v a n t t o minor-element s t u d i e s .  Four t y p e s o f p y r i t e were s t u d i e d by S u z u k i :  (1) syngenetic,  (2) m e t a m o r p h i c a l l y r e c r y s t a l l i z e d , ( 3 ) h y d r o t h e r m a l l y and  e.m.f. i s  (4) h y d r o t h e r m a l r e p l a c e m e n t .  deposited,  Four t y p e s o f i n t e r n a l  were f o u n d ; t h e s e were r e v e a l e d by e t c h i n g .  textures  Relationships  exist  between t h e r m o - e l e c t r i c p o t e n t i a l and t e x t u r a l and g e n e t i c  types  of p y r i t e .  36  B o t h p o s i t i v e and n e g a t i v e t h e r m a l e.m.f. a r e thought byS u z u k i t o r e s u l t from i m p u r i t i e s i n t h e p y r i t e . w i t h semi-conductor  I n accordance  t h e o r y , elements w h i c h s u p p l y e l e c t r o n s ( c a l l e d  donor e l e m e n t s ) a r e Co, N i , and Cu.  Donor e l e m e n t s cause n e g a t i v e  t h e r m a l e.m.f.  A c c e p t o r e l e m e n t s , A s , Sb, and Mn cause p o s i t i v e  t h e r m a l e.m.f.  Examples used by S u z u k i a r e c r y s t a l s from t h e  C h i c h i b u Mine - almost c o m p l e t e l y composed o f " p o s i t i v e "  zones.  The c r y s t a l s have a h i g h a r e s n i c c o n t e n t .  A l t h o u g h S u z u k i ' s t h e o r i e s sound r e a s o n a b l e , h i s f i n d i n g s a r e n o t d e f i n i t i v e , and much r e s e a r c h w i t h samples o f known m i n o r element c o n t e n t would be n e c e s s a r y t o v a l i d a t e h i s c o n c l u s i o n s .  II.  MINOR ELEMENTS CONTAINED IN PYRITE  GENERAL DISCUSSION .. The f i r s t comprehensive review of minor elements contained i n p y r i t e was that of F l e i s c h e r (1955) who compiled published i n many e a r l i e r s t u d i e s .  analyses  Most of these s t u d i e s i n c l u d e  spectrographic analyses w i t h q u a l i t a t i v e or semiquantitative few contain q u a n t i t a t i v e analyses.  data;  The most commonly reported  minor element " i m p u r i t i e s " i n p y r i t e are cobalt and n i c k e l ; l e s s commonly reported are Cu, Au, Ag, Mn, Zn, Se and As.  Some of the  more s o p h i s t i c a t e d e a r l y s t u d i e s were those by Auger (1941)» Hawley (1952), and Eawley and N i c h o l (1961). I t i s unfortunate that most o f t h e i r analyses were reported as " i n t e n s i t y r a t i o s , " and as such, could not be used i n the present s t a t i s t i c a l  study.  Auger. (1941) found the f o l l o w i n g elements i n spectrographic l i n e s from p y r i t e s and p y r r h o t i t e s analyzed: Mg, A l , S i , S, Ca, Ba (probably contaminants) , Sc, T i , V, Cr, Mn, Co, N i ( t r a n s i t i o n elements) Cu, Pb, Zn, Mo, Cd, Ag, Au, Pb, B i , Sn, I n (base metals, e t c . ) Sr, Y, Sc (rare earth elements) He concluded that the t r a n s i t i o n elements were those most l i k e l y to be present i n true s o l i d - s o l u t i o n .  Hawley (1952*) agreed w i t h  Auger's conclusion that Co and N i could s u b s t i t u t e isomorphously f o r Fe i n p y r i t e , but thought that Pb, Zn, and Mo could be i n c o r porated as p a r t i c l e s o f common sulphides, and Cr, Mn, T i , and V  38  could be incorporated as i n c l u s i o n s of w a l l rock and accessory magnetite-ilmenite.  Hegemann (1943J regarded Mn and Zn as  u n l i k e l y elements f o r isomorphous s u b s t i t u t i o n .  Hawley and N i c h o l  (1961) proposed that Cr, T i , and V, although having higher valence (+3J  than Fe {+2) may to a l i m i t e d extent proxy f o r Fe.  Irregular  d i s t r i b u t i o n of these elements, however, suggested t h e i r presence in inclusions.  As and Pb, according to the authors, have i o n i c  r a d i i too l a r g e to permit s u b s t i t u t i o n f o r Fe, and the presence of Sn was shown to c o r r e l a t e w i t h admixed c a s s i t e r i t e . A recent study by R.H.  M i t c h e l l (1968) revealed the presence  of the f o l l o w i n g elements i n p y r i t e s from v a r i o u s geologic e n v i r o n ments:  T i , V, Cr, Mn, Co, N i , Cu, Zn, Ga, Ge, As, Se, Y, Zr, Nb,  Mo, Sn, Te, Sb, Ba, Ce, La, Pb, and B i . From an e v i d e n t l y lengthy study of metal-sulphur bond lengths i n s u l p h i d e s , stereo-chemistry of bonds, and experimental p h a s e - e q u i l i b r i a , M i t c h e l l concluded that the f o l l o w i n g elements can s u b s t i t u t e isomorphously i n p y r i t e : For F e :  T i , V, Cr, Mn, Co, N i , Cu, Zn, Mo, Nb, Sn  For S ~:  As, Se, Te, Sb, B i  2 +  2  2  The i n c o r p o r a t i o n of Zr, Ga, Ge, Au, Hg, Pb, Th, and U occurs at defect s i t e s i n the l a t t i c e ( M i t c h e l l , 1968J. In a d d i t i o n to these elements, the platinum group elements, Pt, Pd, I r , Os, have been reported from p y r i t e (Hawley, et a l . , 1951; Hawley and Rimsaite, 1953J.  Thallium has been reported by Voskre-  senskaya (1969J and others; Selenium has been recorded by Coleman and Delevaux (1957J, and Edwards and Carlos (1954J.  Germanium,  Indium. T e l l u r i u m , Rhenium, and Cadmium c o n t e n t s o f p y r i t e a r e documented by F l e i s c h e r  (.1955}.  The c h e m i c a l r e l a t i o n s h i p s o f many o f t h e s e elements i n p y r i t e w i l l be d i s c u s s e d i n d e t a i l i n subsequent pages o f t h i s study.  40  B.  ANION SUBSTITUTION IN PYRITE  M i t c h e l l (1968J bond-lengths  concluded  from a s t u d y o f m e t a l - s u l p h u r  i n s u l p h i d e s , s t e r e o c h e m i s t r y o f bonds, and s u l p h i d e  phase e q u i l i b r i a , t h a t A s , Sb, B i , Se, and Te c a n r e p l a c e s u l p h u r i n the p y r i t e l a t t i c e .  T h i s c o n c l u s i o n i s s u p p o r t e d by t h e g r e a t  number o f c h a l c o g e n i d e , p n i c t i d e and mixed compounds c r y s t a l l i z i n g w i t h t h e p y r i t e s t r u c t u r e , and by p h y s i c o c h e m i c a l p a r a m e t e r s o f the a n i o n s g i v e n below ( T a b l e 1 0 J .  TABLE 10 PHYSICOCHEMICAL PARAMETERS OP ANIONS* ;ment  Atomic Number  Electron Config.  Covalent Radius  S  16  3s 3p  1.04  1.84"  Se  34  4s 4p  1.14  1.98  2.3  Te  52  5s 5p  1.32  2.21  2.1  As  33  2 3 4s"4p  1.18  1.91  2.2  Sb  51  ,2,3  1.36  2.08  1.9  Bi  83  6s 6p  1.46  2.13  1.9  P  15  * 2, 3 3s 3p -  1.10  1.86~  2  4  p  5s 5p 2  3  Ionic Radius a  Electroneg. eV 2  5  2.5  2.1  A l t h o u g h n e v e r c o n s i d e r e d by o t h e r r e s e a r c h e r s as a p o s s i b l e s u b s t i t u t e f o r s u l p h u r , phosphorus has s i m i l a r  physicochemical  parameters and o c c u r s i n s e v e r a l compounds w i t h t h e p y r i t e o r r e l a t e d s t r u c t u r e s ( s e e T a b l e 10).  From t h e i r t e t r a h e d r a l c o v a l e n t r a d i i , i t would be expected  t h a t As and Se s h o u l d more r e a d i l y s u b s t i t u t e f o r S  •(Yfedepohl, 1969)  t h a n s h o u l d the o t h e r a n i o n s .  Maximum amounts r e c o r d e d i n  p y r i t e by F l e i s c h e r and o t h e r s a r e : Se  (Coleman and D e l e v a u x ,  Te  340 ppm  (Fleischer,  As  jfo  Sb  700 ppm ( F l e i s c h e r ,  Bi  100 ppm  1957)  1955)  (Burkart-Saumann and Ottemann,  "  1955)  1971)  CATION SUBSTITUTION IN PYRITE  Evidence f o r the elements s u b s t i t u t i n g f o r i r o n i n the p y r i t e l a t t i c e , and t h e e x t e n t t o which t h e y s u b s t i t u t e , can be gained from: 1) Documentation o f n a t u r a l and s y n t h e t i c c r y s t a l l i z i n g with  compounds  the p y r i t e o r r e l a t e d  structures.  2) P h y s i c o c h e m i c a l p a r a m e t e r s such as c o o r d i n a t i o n  radii  o f i o n s and atoms, e l e c t r i c a l c h a r g e s o f common i o n s , and  electronegativity;  3) L i g a n d - f i e l d  relationships;  4) Homogeneity o f d i s t r i b u t i o n o f minor elements i n naturally occurring  phases and l a c k o f i n c l u s i o n s  c a r r y i n g the admixed element; and 5) R e p o r t e d amounts o f t h e s e elements found i n n a t u r a l pyrites.  Natural structures  and s y n t h e t i c  compounds and t h e i r c r y s t a l  a r e l i s t e d i n T a b l e s 5 and 6.  Ligand-field  relationships  a r e d i s c u s s e d under a s e p a r a t e h e a d i n g , as a r e r e p o r t e d abundances and  distribution.  The r e l e v a n t  p h y s i c o c h e m i c a l parameters o f  s u b s t i t u t i n g c a t i o n s a r e g i v e n i n t h e f o l l o w i n g t a b l e ( T a b l e 11) ( t h e i n t e r p r e t a t i o n o f o c t a h e d r a l c o v a l e n t - r a d i i i s h i n d e r e d by the wide range o f v a l u e s p u b l i s h e d by d i f f e r e n t  authors).  43  TABLE 11 PHYSICOCHEMICAL PARAMETERS OP CATIONS Atomic Number  Electron Config.  Sc  21  3d 4s  Ti  22  3d^4s  2  2  V  23  3d 4s  2  Cr  24  3d 4s  Mn  25  3d 4s  Fe .  26  3d 4s  Co  27  Ni  Element  0.83  5  5  E f f e c t i v e R.*(A)  Covalent R a d i u s (A)  1.20  5  0.76/.69  1.32  3  0.95 0.64  1  Electroneg.(V)  1.43 1.56  3  0.91 /-70  1.55  1.4  0.70  1.23  1.64  7 2 3d'4s  0.82  1.32  1.70  28  ^8. 2 3d 4s  0.78  1.39  1.85  Cu  29  3d  4s  0.70  1.35  1.75  Zn  30  3d  4s  0.83  1.31  1  Mo  42  4d 5s 5  1  0.68  4  Ru  44  4d 5s  1  0.65  4  1.33  Rh  45  4d 5s  0.68  3  1.32  Pd  46  4d  0.93  Ag  47  4d 5s  Cd  48  In  49  AA^r- 2 1.03 4d 5s .J 0 2 2 3 4d 5s 5p 0.92  Sn  50  .,10 2,. 2 4d 5s 5p 0.93/.71  W  74  5d 6s 4  2  0.68  4  Os  76  5d 6s 6  2  0.67  4  Ir  77  5d 6s  2  0.66  5  7  2  2  1 0  1 0  C  2.0 3  1.31  1.13 /.89  1  -5  1.64  1  2  •1.52  4  4  2.1 2.0 1.8  1  1.46  1.48  C  c  7  3  1.44  3  1.5  1.42  2  1.72  1.44  6  1.64  1.33  2.0  1.32  2.1  44  TABLE 11 ( c o n t i n u e d ) . PHTSICOCHEKICAL  PARAMETERS OF CATIONS  Element  Atomic Number  Electron Config.  Pt  78  5d 6s  Au  79  5d  Tl  81  5d^6s 6p^  1.05 /1.49  Pb  82  5d^6s 6p  1.32/.84  V  92  5f 6d  9  E f f e c t i v e R.*(A)  0.80  1  6s  1.37 /-85 1  2  2  4  Covalent Radius  2  2  5  3  6  • S u p e r s c r i p t numbers r e f e r t o v a l e n c e s t a t e s . Data from  1.31*  2.1  1.40  2.3  V e d e p o h l (1969)  Handbook o f G e o c h e m i s t r y V o l . I  4  1.47 1.46  4  1.05 /.83 4  1  Electroneg.(V)  2  1 , 3  1.8 1.6 1.7  45  D.  THE INCORPORATION OF -MINOR ELEMENTS IN,PYRITE' . M i n o r elements c a n be i n c o r p o r a t e d i n t o a g r o w i n g c r y s t a l by t h e f o l l o w i n g mechanisms: 1) S u b s t i t u t i o n f o r a n i o n s o r c a t i o n s a t r e g u l a r l a t t i c e s i t e s - l e a d i n g t o isomorphous  solid-solution;  -2.) I n t e r s t i t i a l s o l i d - s o l u t i o n , i . e . , i n t e r s t i t i a l t o r e g u l a r lattice 3)  sites;  Adsorption;  4) A d m i x i n g o f s o l i d o r f l u i d i n c l u s i o n s a s i n d e p e n d e n t phases. A c c o r d i n g t o G o l d s c h m i d t (.1.937)', " v i c a r i o u s " i o n s i n s o l u t i o n compete f o r l a t t i c e s i t e s on g r o w i n g c r y s t a l s .  Minor.elements s i m i l a r i n  s i z e t o t h e major element s u b s t i t u t e e a s i l y because o f t h e i r "camouflage" o f s i z e .  Elements o f g r e a t e r r a d i u s a r e concentrated  only i n l a t e r c r y s t a l l i z i n g fractions.  Elements w i t h s i m i l a r  size  b u t s t r o n g e r charge a r e " c a p t u r e d " by t h e g r o w i n g c r y s t a l , and t h o s e w i t h l e s s s t r o n g charges a r e " a d m i t t e d . "  These t h r e e " r u l e s " form  the b a s i s o f many g e o c h e n i c a l s t u d i e s , and i n many c a s e s t h e y agree w e l l w i t h o b s e r v e d major element-minor element r e l a t i o n s h i p s , b u t many o t h e r f a c t o r s have been shown t o i n f l u e n c e t h e s u b s t i t u t i o n o f minor elements f o r major e l e m e n t s .  Some o f t h e s e f a c t o r s a r e :  1) The system o f c o o r d i n a t i o n o f c a t i o n s and a n i o n s .  A  s p e c i f i c i o n , under d i f f e r e n t nodes o f c o o r d i n a t i o n , w i l l have d i f f e r e n t c o v a l e n t r a d i i .  Thus f o r a g i v e n system,  f o r example, p y r i t e - w i t h o c t a h e d r a l c o o r d i n a t i o n o f anions to c a t i o n s , the octahedral-coordination radius o f  c a t i o n s r a t h e r t h a n i o n i c r a d i u s i s a b e t t e r measure o f t h e possibility for cationic  substitution.  2) The r e l a t i v e p r o p o r t i o n o f i o n i c v s . c o v a l e n t b o n d i n g .  Two  f a c t o r s a f f e c t e d by bond t y p e s , i o n i z a t i o n p o t e n t i a l and e l e c t r o n a f f i n i t y , a r e measures o f t h e a b i l i t y o f atoms t o ^  respectively lose or gain electrons.  The two p r o p e r t i e s a r e  o f t e n combined i n t h e term " e l e c t r o n e g a t i v i t y . "  The r e l a -  t i o n s h i p o f i o n i z a t i o n p o t e n t i a l , e l e c t r o n e g a t i v i t y and i o n i c radius to the c h a l c o p h i l e - l i t h o p h i l e tendencies o f the i o n s i n v o l v e d i s i l l u s t r a t e d i n t h e accompanying t a b l e (Table  12).  3) The degree o f l i g a n d - f i e l d s p l i t t i n g and t h e e f f e c t o f c o m p l e t e n e s s o f f i l l i n g o f t h e non-bonding 3d o r b i t a l s . These t o p i c s a r e d i s c u s s e d i n an e a r l i e r s e c t i o n . 4) The a v a i l a b i l i t y and c o n c e n t r a t i o n o f s u b s t i t u t i n g e l e m e n t s a t the s i t e o f c r y s t a l l i z a t i o n . 5) The c h e m i c a l and p h y s i c a l n a t u r e o f t h e medium from w h i c h t h e p a r t i c u l a r m a j o r m i n e r a l i s c r y s t a l l i z i n g , f o r example, the pH, Eh, t e m p e r a t u r e , p r e s s u r e , a c t i v i t y o f v a p o r phases, etc.  A l l may have some e f f e c t on t h e s p e c i e s o f i o n s  available for substitution.  DeVore  (1955) c o n s i d e r s t h a t a d s o r p t i o n o f t r a c e elements i s i m p o r t a n t  during c r y s t a l l i z a t i o n . Chemisorption  A resume o f h i s t h e o r i e s i s p r e s e n t e d  here.  r e f e r s t o t h e t r a n s f e r o f m a t e r i a l from t h e d i s p e r s e d  phase t o t h e s u r f a c e o f a g r o w i n g m i n e r a l by any o f t h r e e  processes:  MEDIUM-SIZED CATIONS (0.65-0.89 A) j Mg2+ | Mn2*  2 2 2 F c = - | Co2* j Zn2* Ni * | Pi * .' Pd * Cu2* Ag2* ! i 16-24 ' 17-4 ! 17-94 20-3 22 { 15-03 15-64 18-2 19-3 19-9 1-65 (1-7): 1-5 1-7 (2-1) ; (1-22 j 1-40 (20) 20 7 j \l-23 j (1-60)* (1-64): (1-7) 1-77 1-75; (1-44) i (1-35)0-75)  j  /- (V) Electronegativity  i  1  Radius (A)  I  0-74  0-65 j 0-80  j j  1  0-72 ' 0-690-69 (0-80) : (0-80)(0-89) (0-89)  i  i  LARGE DIVALENT CATIONS (0.93-1.35 A) Ca2*  Sn2* j V2*  Pts*  11-03  119  14-63  14-65  15-05 | 16-9 ;  fO-85 \0-97  10 0- 99  1-0 1-04  1-65 (1-72)  — (1-45)  1-34  1- 12  1 -01  0-93  Ba2*  Si"*  /(V)  100  Electronegativity Radius (A)  ~0-9  Cd2*  ; He2" 18-9  1-60 1-50 ' 1-90 (1-55). 1 (1-46) (1-44) 1-20  j 0-97  \  I -10  TRIVALENT CATIONS Scs*  Sb3+  Bi5*  / 3 (V)  20-5  24-75  24-S3  25-56  Electronegativity  fl-2 \1-11  1-30 1-20  1-80 0-82)  1-80 . n 67)  0-92  0-81  0-74  0-96  Radius (A)  s+  V  26-5 1-35 1-45  0-76  j  In3-  • 2803 i 1-60 ! 1-49  i. j 0 81  TABLE 12. Ionization p o t e n t i a l s , e l e c t r o n e g a t i v i t i e s , and i o n i c r a d i i f o r divalent and t r l v a l e n t cations. (From Ahrens,L.H., 1964) V e r t i c a l double l i n e separates l i t h o p h i l e elements on l e f t f r o m c h a l c o p h i l e e l e m e n t s o n r i g h t .  48  1 ) t r a n s f e r and b o n d i n g to the s u r f a c e o f pre-formed  anion-  c a t i o n groups; 2) t r a n s f e r o f i o n s from a complex t o i o n s f i x e d a t the  mineral  s u r f a c e ( s i m p l e base exchange); 3)  condensed f i l m s o r i o n i c groups may  be f i x e d to the  mineral  s u r f a c e by van d e r Waals f o r c e s . I f added m a t e r i a l becomes p a r t o f the c r y s t a l s t r u c t u r e , the i s r e f e r r e d t o as a b s o r p t i o n .  fixation  I f the added m a t e r i a l cannot become  p a r t o f t h e r e g u l a r m i n e r a l s t r u c t u r e , i t must r e m a i n o u t s i d e s t r u c t u r e and occupy s i t e s o f i m p e r f e c t i o n s , o r o c c u r as f i l m s o r groups between mosaic and g r o w t h - t w i n n i n g unaccommodated m a t e r i a l may  surface  surfaces.  Such  even be a cause o f s u c h d i s l o c a t i o n s ,  i m p e r f e c t i o n s , mosaics or twinning s u r f a c e s .  The  f i x a t i o n of  unaccommodated i m p u r i t i e s i s c a l l e d a d s o r p t i o n , even though bonds may  form.  the  I f the a d s o r b e d i o n s make a s t r o n g and  s t a b l e bond w i t h the s u r f a c e , a n o n - d i s p l a c e d  chemical  relatively  imperfection  may  r e s u l t , and f i n a l c o n t e n t o f i m p u r i t i e s can be c o n s i d e r a b l e .  If  a d s o r p t i o n bonds a r e weak and u n s t a b l e the a d s o r b e d m a t e r i a l may d i s p l a c e d to the o u t s i d e o f the new of non-displaced  surface.  be  Continuous a d s o r p t i o n  m a t e r i a l c o u l d e x p l a i n the r e g u l a r d i s t r i b u t i o n  of  " e x s o l u t i o n " type i n c l u s i o n s , as the i n c l u s i o n s c o u l d be the  result  of aggregation  lower  o f adsorbed m a t e r i a l s I n t o new  compounds a t a  energy l e v e l - a means o f r e d u c i n g i m p e r f e c t i o n and mosaic s t r u c t u r e s . These mechanisms c o u l d a c c o u n t f o r the o c c u r r e n c e  of exsolved  i n p y r i t e , the breakdown o f f u k u c h i l i t e t o p y r i t e w i t h i n c l u s i o n s , and  gold  covellite  the h i g h T l , As, o r Sn c o n t e n t s o f i r o n d i s u l p h i d e s  w h i c h o r i g i n a t e d as m o n o s u l p h i d e s .  DISTRIBUTION OF MINOR ELEMENTS WITHIN A SINGLE CRYSTAL  S e v e r a l s t u d i e s have i n v e s t i g a t e d the o f minor elements w i t h i n s i n g l e c r y s t a l s .  The  spatial.distribution zonal  o f c o b a l t and n i c k e l i n b r a v o i t e i s w e l l documented.  distribution Copper  c o n c e n t r a t i o n s i n p y r i t e have s i m i l a r z o n a l p a t t e r n s (see F i g u r e I n v e s t i g a t i o n o f p y r i t e from e a s t e r n e t a l . . 1964;  Transbaikaliya.(Muravyeva,  showed t h a t c o r e s o f c r y s t a l s c o n t a i n e d more Sn,  and Cd t h a n m a r g i n s , but Pb and As were c o n c e n t r a t e d  s i x samples were used, and  Zn,  in crystal  Data from the s t u d y i s shown i n T a b l e 13.  margins.  Because o n l y  because many o f the minor e l e m e n t s c o u l d  be p r e s e n t as i n c l u s i o n s , the c o n c l u s i o n s r e g a r d i n g z o n a t i o n a r e doubtful v a l i d i t y .  25)»  F r o n d e l . et .al.-(1943). i n a study of  of  galena  and s p h a l e r i t e c r y s t a l s , a l s o found n o n - u n i f o r m d i s p e r s i o n o f m i n o r elements t h r o u g h o u t " h o s t " m i n e r a l s . p a t t e r n s may  be  \) P y r a m i d a l  Two  types of  concentration  present: regions (face l o c i ) i n which concentration  d i f f e r e n c e s a r i s e from u n e q u a l a d s o r p t i v e c a p a c i t y o f  the  • d i f f e r e n t forms on the g r o w i n g c r y s t a l ; 2) Z o n i n g p a r a l l e l t o e x t e r n a l growth s u r f a c e s w i t h o u t s e l e c t i v i t y as t o d i f f e r e n t c r y s t a l s u r f a c e s . zones may  The  marked growth  be p r e s e n t as a l t e r n a t i n g o r p e r i o d i c z o n e s , as  i n b r a v o i t e , o r as p r o g r e s s i v e z o n a t i o n caused by r e g u l a r v a r i a t i o n o f f a c t o r s c o n t r o l l i n g element p a r t i t i o n .  Recent s t u d i e s by V e l i k o b o r e t s and Lukyanchenko (1971) have confirmed  the r e l a t i o n s h i p between c r y s t a l f a c e s o f p y r i t e  absorption of cobalt.  In electron-microprobe  and  s t u d i e s of p y r i t e  * S i m i l a r z o n a t i o n o f As i n p y r i t e has r e c e n t l y been n o t e d Burkart-Baumann and Ottemann (1971).  by  50  from m a g n e t i t e  s k a r n s , the a u t h o r s n o t e d h i g h e r c o b a l t c o n c e n t r a t i o n s  on (100 J f a c e s than on (111J  f a c e s o f the same c r y s t a l .  Their  e x p l a n a t i o n f o r t h i s phenomenon i s the " l e s s e r , r e t i c u l a r d e n s i t y o f the (100;  p l a n e s composed o f r e g u l a r l y a l t e r n a t i n g i r o n and  i o n s , as compared w i t h the monatomic (111J c o b a l t was  absorbed  l i n e , w h i l e on (111j (see F i g u r e  planes."  absorbed  planes, straight  r h y t h m i c a l l y and u n i f o r m l y  24).  The a u t h o r s a l s o n o t e d p r e s e n t i n the p y r i t e .  The  two d i f f e r e n t t y p e s o f i n c l u s i o n s  f i r s t type c o n t a i n e d the same c o n c e n t r a -  t i o n s o f Co, H i , Cu, Fe, and S as the h o s t p y r i t e . proved  On (10QJ  r h y t h m i c a l l y along a s l i g h t l y ascending p l a n e s i t was  sulphur  t o be i n c l u s i o n s o f r e c r y s t a l l i z e d p y r i t e .  These p a r t i c l e s Other i n c l u s i o n s  were shown by e l e c t r o n - m i c r o p r o b e a n a l y s i s t o be d i s c r e t e g r a i n s o f cobaltite.  I n s t u d i e s o f the d i s t r i b u t i o n o f m i n o r elements w i t h i n a s i n g l e c r y s t a l , the e l e c t r o n - m i c r o p r o b e has proved  t o be i n v a l u a b l e  a s i t e n a b l e s d i f f e r e n t i a t i o n between isomorphous s u b s t i t u t i o n "mechanical"  admixtures.  and  (100)  FIGURE 2 4 . E l e c t r o n - m i c r o p r o b e scan a c r o s s p y r i t e c r y s t a l : a) v a r i a t i o n i n i n t e n s i t y of CoK a r a d i a t i o n a l o n g scan p r o f i l e normal t o growth s t e p s of (100) b) v a r i a t i o n i n i n t e n s i t y o f CoK a r a d i a t i o n normal to growth s t e p s ( 1 1 1 ) . (From V e l i k o b o r e t s and Lukyanchenko, 1970)  .t: a.  &  Content, % Sp. No. 2004  o'  "'i  c  Vein and country rock  (,\i:\rry No.. IS  Periphery Core Whole crystal  472  2003  2223  jjukhin.skc  0>>  G  ni 0.0:10 0.030 0.030  As  Tr.  Pb  Sn  0.1.10  0.004 0.004 0.004  o.oor. 0.000  Vein No. .'). granodiorite  732  —  0.000 0.000 0.045  .0.075  0.00.1  0.020  0.002  Vein No. 53, granodiorite Periphery Core Whole crystal  Tr. 0.000  0..'I00 0.075 0.120  0.00.3  Tr. 0.0002 0.004 0 . 0 0 0 1 0.002 0 . 0 0 0 2  o.oco  0.120  0.00.1  0.00:1 0.002  0.010 0.055 0.004  _  Vein No. 49, quartz diorite  Periphery Core Whole crystal  0.000 0.000 0.007  0.080 0.020 0.050  0.007 0.003 0.010  0.0040.020 0.012  Vein Ts, porphyritic quartz diorite  Periphery Core Whole crystal  0.000 0.000  0.030 0.040 0.120  0.013 0.C07 0.200  0.009 0.012 0.010  0.020 0.010 .0.015  0.003 0.002 0.005  0.007 0.0002 0.030 0 . 0 0 0 1 0.020 0.0002  •  571c  Ac  Periphery Core Whole crystal  1 <s  Part of crystal  Vein Ts, porphyritic quartz diorite  Periphery Core Whole crystal  o.oco 0.000 0.000  o.coo  —  —  Balance  Zn  Ctl  Cu  0.100 0.040 0.100  0.007  0.040 0.040 0.040  + Pb  0.100 0.250  0.007  o.oiw 0.008  0.007 0.040 0.020  -|- As -1-Sn. Zn. Cu  0.004 0.015 0.035  0.002  0.000  0.000  0.200  0.(XjH 0.00H  0.001 0.001  -|-Sn, Zn  0.003 0.020  0.007 0.040 0.020  + As, Pb ; -j- Sn, Zn, Cd, Cu  0.030 0.040 0.040  0.007 0.012 0.009  0.040 0.007 0.015  4- As, Pb, Qi + Sn, Zn, Cd  0.040 0.250 0.150  0.003 0.005 0.007  0.040 0.007 0.025  + As, Cu, Cd -j-Sn, Zn  0.150 0.120  0.001  0.035  TABLE 13;. Comparison of minor element content of p y r i t e c r y s t a l cores and margins, Belukhinskoye and Bukhinskoye deposits, U.S.S.R. (From Muravyeva e t , a l . , 1964)  ro  53  F.  SPECIFIC'MINOR ELEMENTS CPITTAINED IN PYRITE  1.  The  Copper C o n t e n t o f P y r i t e The  p o s s i b i l i t y t h a t copper (,Cu  ) could substitute f o r i r o n  i n the p y r i t e l a t t i c e has been c l a r i f i e d by r e c e n t s t u d i e s and  Ottemannj 1967;  E i n a u d i , 1968;  F l e i s c h e r (19.55.) r e v i e w e d 785 .maximum c o n t e n t  Kajiwara,  1969).  p y r i t e analyses  (Frenzel  Previously,  and r e p o r t e d  a  i n p y r i t e o f about 6 p e r c e n t c o p p e r , w i t h 75  o f the samples c o n t a i n i n g o v e r 10 ppm c o n t a i n i n g o v e r 1 p e r c e n t Cu. n o t a l l , o f t h e c o p p e r was  percent  and a f u r t h e r 10 p e r c e n t  F l e i s c h e r c o n c l u d e d t h a t most, i f  present  as admixed c h a l c o p y r i t e . 2  Comparing p h y s i c o c h e m i c a l  p r o p e r t i e s o f Cu  +  2  +  and Fe  we  n o t e t h a t the c o n f i g u r a t i o n s and e l e c t r o n e g a t i v i t i e s a r e  rather  d i s s i m i l a r but c o v a l e n t r a d i i a r e s i m i l a r ( F e ^ - 1.23  Cu^ -  +  P r e v i o u s s t u d i e s s u g g e s t e d t h a t copper, i f p r e s e n t  &;  1.35  +  A*),  i n minor amounts i n  p y r i t e , s h o u l d o c c u r as i n t e r s t i t i a l s u b s t i t u t i o n s o r as d i s c r e t e mineral i n c l u s i o n s . and  E v i d e n c e t o the c o n t r a r y e x i s t s .  Ottemann d i s c o v e r e d  I n 1967  t h a t up t o 10 p e r c e n t copper was  zoned p y r i t e from the Cu-Zn d e p o s i t a t Nukumundu, F i j i . m i c r o p r o b e t r a v e r s e s a c r o s s the specimen r e v e a l e d apparently  i n s o l i d s o l u t i o n i n the  Frenzel  present  in  Electron-  the copper  was  pyrite.  E i n a u d i (1968) d i s c o v e r e d up t o 1.5  p e r c e n t copper i n p y r i t e  from c a v i t i e s i n c o a r s e l y - b r e c c i a t e d , s i l i c i f i e d v o l c a n i c s from n o r t h e r n p a r t o f the McCune p i t a t C e r r o de P a s c o , P e r u .  the  Electron-  m i c r o p r o b e t r a v e r s e s were made a c r o s s the c l u s t e r o f c r y s t a l s u s i n g copper and  c h a l c o p y r i t e as s t a n d a r d s ;  these t r a v e r s e s r e v e a l e d  copper  r i c h i n t e r m e d i a t e zones f o l l o w i n g c r y s t a l l p g r a p h i c d i r e c t i o n s , c o r e s and m a r g i n s o f the c r y s t a l s c o n t a i n i n g l e s s than . 2 wt. copper.  No o t h e r s u l p h i d e s were p r e s e n t  with percent  i n the sample, no i n c l u s i o n s  were seen a t m a g n i f i c a t i o n s o f 1 0 0 0 x , and  the z o n a l v a r i a t i o n s were  not r e v e a l e d by c o l o r , r e f l e c t i v i t y , a n i s o t r o p i s m . o r e t c h i n g changes. The  z o n i n g i s i l l u s t r a t e d i n F i g u r e s 25 and  26.  a n a l y s i s o f the p y r i t e i n d i c a t e s a p p r o x i m a t e l y Cu, w i t h s i l v e r and l e a d 50 ppm 5.148  each.  The  Spectrographic 500 ppm  1000  As and  ppm  r e p o r t e d c e l l edge i s  £.  S e v e r a l t h e o r i e s have been advanced f o r the method.of s u b s t i t u t i o n o f Cu i n p y r i t e .  E i n a u d i (1968) n o t e d t h a t b o t h  the  C e r r o de Pasco and Nukumundu p y r i t e s a r e a s s o c i a t e d w i t h e n a r g i t e ( L u z o n i t e - Cu^AsS^) m i n e r a l i z a t i o n , and system may  l e a d to "coupled  by R a d c l i f f e and  suggested t h a t the  substitution."  Cu-Fe-As-S  T h i s mechanism i s e x p l a i n e d  McSween (1969) u s i n g c r y s t a l f i e l d  theory.  The  2+  Cu  i o n i s g e n e r a l l y s t a b i l i z e d i n t e t r a h e d r a l or d i s t o r t e d  o c t a h e d r a l s i t e s , thus does not o r d i n a r i l y e n t e r p y r i t e i n  signifi-  c a n t amounts, but c r y s t a l l i z e s i n d i s c r e t e phases i n v o l v i n g t e t r a hedral coordination.  According  t o N i c k e l ( 1 9 6 8 ) , i f As i s s u b s t i -  t u t e d f o r Fe i n the p y r i t e s t r u c t u r e , an a d d i t i o n a l "d" e l e c t r o n from the c a t i o n must be used i n b o n d i n g .  The  r e s u l t a n t Cu^  c o u l d be s t a b l e i n the r e g u l a r o c t a h e d r a l f i e l d ; a r s e n i c forming a coupled  substitution.  +  the copper  ion and  Ypma ( 1 9 6 8 ) s t u d i e d  c u p r i a n b r a v o i t e (Co, N i , F e J S ^ , v i l l a m a n i n i t e (Cu, Co, N i , Fe/S,,, . and c u p r i a n v i l l a m a n i n i t e from the P r o v i d e n c i a Mine i n S p a i n f o u n d t h a t the c u p r i a n v a r i e t i e s were m a r k e d l y a n i s o t r o p i c .  and  1.4  1.0  0.6  0.2  0.0 wt % C u  FIGURE 25. Copper zonal patterns i n intergrowth of p y r i t e c r y s t a l s as i n t e r p r e t e d from 15 e l e c t r o n microprobe traverses. Traverse shown below i s labeled A-B. (from E i n a u d i , 1968.)  FIGURE 26- E l e c t r o n microprobe trace of CuKa r a d i a t i o n along traverse A-B. (From E i n a u d i , 1968)  56  R a d c l i f f e and McSween s u g g e s t t h a t the a n i s o t r o p i s m i m p l i e s d i s t o r t i o n 2+ o f the o c t a h e d r a l s i t e s o f the p y r i t e s t r u c t u r e , and could f i t n e a t l y i n t o these d i s t o r t e d s i t e s .  t h a t Cu  ions  C i r c u l a r reasoning i s  i n h e r e n t i n t h i s e x p l a n a t i o n , making i t i n v a l i d . Recently, Kajiwara  (1970) d i s c o v e r e d a c o p p e r - i r o n d i s u l p h i d e ,  P u k u c h i l i t e , i n K u r o k o - t y p e s u l p h i d e d e p o s i t s i n Japan.  Microprobe  a n a l y s e s o f 24 samples gave Cu/Fe r a t i o s c l o s e to 3 : 1, and Cu + Fe/S r a t i o s v a r y i n g from 1 : 1.7 f o r m u l a Cu^FeSg.  to 1 : 2.1.  The  d a t a suggest  the  Found i n b a r i t e - b e a r i n g gypsum-anhydrite o r e s  with  c o v e l l i t e and p y r i t e , F u k u c h i l i t e i s a l o w - t e m p e r a t u r e m i n e r a l , as i t decomposes to p y r i t e and c o v e l l i t e a t 200° C.  A s y n t h e t i c form w i t h  i d e n t i c a l o p t i c a l p r o p e r t i e s and x - r a y d i f f r a c t i o n p a t t e r n s has  been  prepared  has  by S h i m a z a k i ( i 9 6 0 ) .  The m i n e r a l i s s t a b l e a t 225° C,  the p y r i t e s t r u c t u r e , and a c e l l - e d g e d i m e n s i o n w h i c h v a r i e s i n p r o p o r t i o n t o the amount o f copper i n s o l i d s o l u t i o n ( a f o r a s o l i d s o l u t i o n w i t h 50 mol p e r c e n t Pure CuS^ The  Q  = 5.59  CuS^).  has been s y n t h e s i z e d by B i t h e r , e t a l . ( 1 9 6 8 ) .  l a r g e number o f a n t i b o n d i n g e l e c t r o n s p r e s e n t i n CuS^  (configura-  t i o n 3 d ^ 4 s ^ ) s u g g e s t s t h a t the compound s h o u l d be u n s t a b l e difficult  to prepare.  CuS~S m i x t u r e  A*  Conditions necessary  and  f o r s y n t h e s i s from a  ranged from 15 k i l o b a r s p r e s s u r e a t 400° C t o  65 k i l o b a r s a t 1600° C.  Thus the CuS^  compound i s n o t l i k e l y  to  be found i n n a t u r e .  The  evidence presented  above s u g g e s t s t h a t more c o p p e r  may  be p r e s e n t i n p y r i t e by isomorphous s u b s t i t u t i o n than i s g e n e r a l l y  thought.  However, t h e d i f f i c u l t y i n d e t e c t i n g t r u e isomorphous  s u b s t i t u t i o n , i n contrast t o mechanical admixtures, u s e f u l n e s s o f copper i n p y r i t e  i n h i b i t s the  research.  f • The  Gold C o n t e n t o f P y r i t e G o l d i s commonly a s s o c i a t e d w i t h p y r i t e i n h y d r o t h e r m a l base  metal deposits. which.gold  There has been much c o n t r o v e r s y o v e r t h e form i n  i s p r e s e n t i n t h e p y r i t e l a t t i c e - as m i c r o s c o p i c o r  sub-microscopic  p a r t i c l e s o f free gold,  s t i t u t e d f o r Fe.  or  isomorphously sub-  Evidence e x i s t s f o r both types o f occurrence.  F l e i s c h e r r e p o r t s 36 p y r i t e a n a l y s e s i n w h i c h g o l d i s p r e s e n t the mean c o n t e n t  o f these b e i n g l e s s t h a n 10 ppm.  More r e c e n t ,  r e s e a r c h on R u s s i a n g o l d d e p o s i t s r e v e a l s t h a t Au c o n t e n t  of pyrite  can be much h i g h e r . S y n t h e t i c a u r i f e r o u s p y r i t e has been p r e p a r e d by M a s l e n i t s k y ( i n J o r a l e m o n , 1950) and by K u r a n t i (1941, i n B o y l e ,  1961J.  M a s l e n i t s k y found t h a t t h e amount o f g o l d c o n t a i n e d i n t h e p y r i t e c o u l d be c o n t r o l l e d up t o a maximum 9.7 o z . p e r t o n (270 ppm). M i c r o s c o p i c i n v e s t i g a t i o n a t 1200x m a g n i f i c a t i o n r e v e a l e d no d i s c r e t e g o l d p a r t i c l e s ; i t was c o n c l u d e d t h a t t h e g o l d was i n s o l i d t u t i o n f o r Fe i n t h e p y r i t e l a t t i c e .  substi-  K u r a n t i prepared s i m i l a r  a u r i f e r o u s p y r i t e i n w h i c h no d i s c r e t e g o l d p a r t i c l e s c o u l d be seen at high magnification.  Spectrographic  analyses indicated  that the  g o l d was u n i f o r m l y d i s t r i b u t e d and x - r a y s t u d i e s showed t h a t t h e p y r i t e l a t t i c e constant decreased w i t h i n c r e a s i n g gold  content,  r e a c h i n g a c o n s t a n t v a l u e a t 2000 grams Au p e r t o n . o c t a h e d r a l c o v a l e n t r a d i u s o f g o l d i s 1.40 f o r Fe  2+  , the p y r i t e l a t t i c e should  isomorphously. (a  0  = 4.577  concluded  the  & compared t o 1.23  expand i f Au  2+  X  substitutes  Joralemon n o t e d an e x p a n s i o n o f the l a t t i c e  ,  o f p y r i t e from Amador, C a l i f o r n i a , c o n t a i n i n g about  5 o z . (140 ppmj g o l d p e r t o n . more d e e p l y  Since  The  a u r i f e r o u s p y r i t e was  etched  t h a n normal p y r i t e when t r e a t e d w i t h n i t r i c a c i d .  t h a t the g o l d was  i n s o l i d s o l u t i o n i n the p y r i t e .  Pyrite  and a r s e n o p y r i t e from the D o l p h i n e a s t l o d e , F i j i c o n t a i n up 33 o z . (924 ppm)  He  to  g o l d per t o n ( S t i l l w e l l and Edwards, 1946j  a l t h o u g h o n l y a few p a r t i c l e s c o u l d be seen m i c r o s c o p i c a l l y . Heating  t o 600° C caused the appearance o f c o a l e s c e d  v i s i b l e under the m i c r o s c o p e .  particles  S t i l l w e l l i n t e r p r e t s these  results  as an i n d i c a t i o n o f the p r e s e n c e o f g o l d i n l i m i t e d s o l i d s o l u t i o n i n the s u l p h i d e s .  I t c o u l d be argued t h a t h e a t i n g s h o u l d tend  preserve r a t h e r than terminate i s probable  the s o l i d s o l u t i o n s t a t e , and i t  t h a t the g o l d i s p r e s e n t i n i n d e p e n d e n t p a r t i c l e s  l a r g e r t h a n the g o l d u n i t c e l l (Joralemon,  1950).  Head (1935)  notes t h a t g o l d f l a k e s coated w i t h a magnetic i r o n m i n e r a l occur o r i e n t e d p a r a l l e l w i t h c r y s t a l l o g r a p h i c planes, exsolution origin. concludes  to  may  suggesting  I n the G e t c h e l l Mine, Hevada, J o r a l e m o n (1950)  that gold i s present  i n p a r t i c l e s r a n g i n g i n s i z e from  s l i g h t l y l a r g e r t h a n the u n i t c e l l t o n e a r l y one m i l l i m e t e r i n diameter,  and p r o b a b l y a l s o i n a t o m i c d i s p e r s i o n ( s o l i d  solution).  M i c r o s c o p i c a l l y v i s i b l e g o l d i s r e s t r i c t e d t o the r i c h e r ore and  the s u b m i c r o s c o p i c  gold i s widespread.  Joralemon  shoots,  concludes  gold may be i n solid-solution i n pyrite.  In the ore-shoots much  gold i s present i n "porous" pyrite, probably due to the great surface area available to adsorption of gold. >  The reason for the common association of gold (and also silver,) with pyrite i s thought to be the electrochemical nature of the surface of pyrite.  In hydrothermal gold deposits many minerals  may contain gold, either as microscopic to submicroscopic  particles  or i n solid-solution, but often pyrite i s the main "carrier." An example i s the Almalyk deposit, U.S.S.R. (Badalov, 1968).  Here,  the gold i s most concentrated i n chalcopyrite (up to 22 g/ton), but 72 percent of the total gold i s carried i n pyrite, at an average of 3 g/ton (see Figure 27).  At the same deposit, silver, selenium  and tellurium are a l l "carried" i n the pyrite, although selenium i s "concentrated" i n molybdenite and tellurium and silver i n galena (see Figures 27 and 28).  In an earlier study Badalov and Badalova  (1967) found that the gold content of pyrite i s highest i n goldquartz (+pyrite) veins. was over 650 ppm.  In one such deposit the average Au content  Typical abundance range i n pyrite from "porphyry"  copper and copper molybdenum deposits i s 3-4 ppm.  Similar results  were obtained by Vakhrushev and Tsimbalist (1967J from ore deposits of the Altay-Sayan deposits, where the average content for goldquartz veins was 35.6 ppm and the average for skarn gold deposits was 3.9 ppm (see Figure 29). This i s a most useful study from the point of view of exploration applications, because the gold content of pyrite from auriferous skarns i s significantly higher than those from barren magnetite skarns i n the same area.  Thus the gold  Relative amounts  m  /  W  g  230  43  JS  FIGURE 27. D i s t r i b u t i o n of gold and s i l v e r i n the p r i n c i p l e ore minerals of the Almalyk deposit, U.S.S.R. Mt-magnetite, Momolybdenite, Py-pyrite, Cp-chalcopyrite, Sp-sphalerite, Ga-galena. (From Badalov and Badalova, 1967)  FIGURE 28. D i s t r i b u t i o n of Selenium and Tellurium i n p r i n c i p a l ore minerals of the Almalyk ore deposit U.S.S.R. (From Badalov and Badalova, 1967)  S  35  35  JO  30  25  25  20  20  15  15  10  10  5 *»  »» *o" **> "•»****' **  r-l ri~l t  -o  ^  us  ^ *-*  I  I  to 55 S3  I  I  ^. l^,  S5  I  «J-  <J  W —••  «=>  c i «i  i.-; ^ I t i  V ( t i  I  S$  ^  — io"  1... *-^>  trV  *—>  c-^  c^,  i t t  S i7; X- —*  FIGURE 2 9 . I ) G o l d i n p y r i t e from i r o n s k a r n s (96 a n a l y s e s ) I I ) G o l d i n p y r i t e from g o l d - q u a r t z v e i n s (37 analyses. (From Vakhrushev and T s i m b a l i s t , 1967)  62  c o n t e n t o f p y r i t e s i s u s e f u l a s an e x p l o r a t i o n t o o l .  3.  S i l v e r Content i n P y r i t e  E x p e r i m e n t a l e v i d e n c e from t h e system Ag-Fe-S ( T a y l o r ,  1970J  a t t e m p e r a t u r e s up t o 700° C show t h a t l e s s than 0.05 p e r c e n t (.500 ppm; s i l v e r i s s o l u b l e i n FeS^, and t h a t s i l v e r does n o t measurably t h e c e l l edge o f p y r i t e i n t h i s system.  affect  This limited s o l u b i l i t y i s  e x p e c t e d , s i n c e the s i z e o f t h e A g ^ i o n i s much l a r g e r (1.52 +  2+ t h a n t h e Fe  i o n , and charges, i n v o l v e d a r e d i f f e r e n t .  "Argentiferous  p y r i t e " has been a common term i n many g e o l o g i c a l r e p o r t s b u t most evidence suggests that s i l v e r i s present i n p y r i t e i n m i c r o i n c l u s i o n s (as w i t h g o l d ) and i n f r a c t u r e f i l l i n g s .  Such i s t h e case f o r  " a r g e n t i f e r o u s p y r i t e " from t h e K i d d Creek d e p o s i t ( T a y l o r ,  1970).  C o n s i d e r a b l e s i l v e r i s p r e s e n t i n many p y r i t e samples from hydrothermal deposits. e i g h t specimens  (Hawley,  Sudbury p y r i t e s range from 2 t o 8 ppm Ag i n 1962).  P y r i t e s from t h e S l o c a n a r e a c o n t a i n  o v e r 1 p e r c e n t s i l v e r i n some c a s e s (W.H. Mathews, u n p u b l i s h e d d a t a ) but. c o n s i d e r i n g t h e h i g h c o n t a m i n a t i o n l e v e l  i n d i c a t e d by Pb, B i ,  Cu, and Zn a n a l y s e s , t h e s i l v e r i s p r o b a b l y p r e s e n t i n admixed s i l v e r - s u l p h o s a l t s , and i n g a l e n a .  I n t h e Karamazar r e g i o n  ( B a d a l o v and B a d a l o v a , 1967) s i l v e r o c c u r s i n p r a c t i c a l l y e v e r y o r e - m i n e r a l , b u t i s most c o n c e n t r a t e d i n p y r i t e from p o l y - m e t a l l i c o r e s (100-2400 ppm) and l o w e s t c o n c e n t r a t i o n s a r e i n p y r i t e  from  copper molybdenum " p o r p h y r y " - t y p e d e p o s i t s . P y r i t e i s commonly a " c a r r i e r " m i n e r a l f o r s i l v e r , a s has  63  been d i s c u s s e d p r e v i o u s l y f o r g o l d ( B a d a l o v ,  1965,  see page 5 9 ) .  I n the A l m a l y k d e p o s i t d i s c u s s e d by B a d a l o v ,  83 p e r c e n t o f the  total  s i l v e r o f the d e p o s i t i s c o n t a i n e d i n p y r i t e i n c o n c e n t r a t i o n s o f 60 g / t o n , w h i l e the r e m a i n d e r i s c o n c e n t r a t e d i n g a l e n a (up t o 850  4.  g/ton).  Platinum-Group Metals i n P y r i t e Pew  published analyses are a v a i l a b l e f o r  metals i n p y r i t e . •analyses.  Fleischer  platinum-group  (1955) r e p o r t s s e v e r a l u n p u b l i s h e d  Those o f S c h n e i d e r h o h n i n d i c a t e 10-100 ppm  p a l l a d i u m and 0.1  to .1 ppm  r u t h e n i u m , rhodium and  r e m a i n i n g a n a l y s e s showed up t o 0.38  ppm  platinum  iridium.  Pt and Pd and 0.5  and  The ppm  Pd.  S p e c t r o g r a p h i c a n a l y s e s p u b l i s h e d by Hawley, L e w i s and Wark (1951) show one Sudbury p y r i t e w i t h 0.011 o z / t o n (0.25 ppm)  Pd.  o z / t o n P t (0.3 ppm)  and 0.009  P y r i t e i s r a r e a t Sudbury d e p o s i t s and  platinum-  group m e t a l s a r e more abundant i n c h a l c o p y r i t e and p e n t l a n d i t e . The  t o t a l average o f Pt group m e t a l s i n Sudbury p y r i t e i s r e p o r t e d  t o be 1 . 9 0 ppm  (Hawley, 1962), d i s t r i b u t e d Pt Pd Rh  56.4$ ) ) 41.4$ ) ) 2.5$ )  as:  100.3$  P y r i t e from an " o f f s e t " d e p o s i t a t Sudbury a s s a y e d 4.714  ppm  Pt group,  w i t h r o u g h l y the same r a t i o as above f o r s p e c i f i c m e t a l s . Theoretically,  Pt-group metals are expected  p y r i t e l a t t i c e to a l i m i t e d e x t e n t .  to e n t e r  the  N a t u r a l l y o c c u r r i n g phases h a v i n g  pyrite structures are: PtAs^ - S p e r r y l i t e RuS^ - L a u r i t e PdBi  2  - Michenerite  •(RhPtPd)(AsS)  2  -Hollingworthite  ( I r , Rh, Ru, P t ) A s S - I r a r s i t e OsS^ - E h r l i c h m a n i t e I n a d d i t i o n , many s y n t h e t i c phases a r e known.(see T a b l e 6) i n v o l v i n g P t m e t a l s i n v a r i o u s p o l y a n i o n i c c o m b i n a t i o n s w i t h S, Se, Te, A s , Sb, and B i .  Octahedral covalent r a d i i f o r Pt metal  ions are as f o l l o w s :  X  2 +  1.33  X  +  1.32  .2  4 +  1.31  i  0s  Ru  2 +  1.33  Rh  5 +  1.32 I  Ir  5  Pd  4 +  1.31  Pt  %•  0  2*4*  Comparing t h e s e r a d i i w i t h t h a t o f i r o n (Fe  1.23 A ) , isomorphous  s u b s t i t u t i o n s h o u l d be p o s s i b l e , p a r t i c u l a r l y i f A s , e t c . a r e p r e s e n t to e f f e c t c o u p l e d The  substitutions.  s c a r c i t y o f p l a t i n u m and s i m i l a r m e t a l s i n p y r i t e i s  p r o b a b l y due t o l i m i t e d s u p p l y o f t h e s e m e t a l s i n common o r e - f o r m i n g fluids.  However, i t i s u n l i k e l y t h a t P t elements  are analyzed f o r  i n many s u l p h i d e r e s e a r c h p r o j e c t s , and f u r t h e r i n v e s t i g a t i o n s i n t o Pt group g e o c h e m i s t r y  c o u l d prove v a l u a b l e i n d e f i n i n g t h e r o l e o f  b a s i c magmas i n r e l a t i o n t o o r e - f o r m i n g  fluids.  The Uranium Content o f P y r i t e C o n s i d e r a t i o n o f t h e a t o m i c and i o n i c p r o p e r t i e s o f uranium  65  i n comparison w i t h i r o n i n d i c a t e s l i t t l e p r o b a b i l i t y f o r e x t e n s i v e a d m i t t a n c e o f uranium i n t o t h e p y r i t e  element  lattice:  common v a l e n c e  Fe  ionic radius . .82 1 *  +2  U +4 •(Wedepohl, 1969)  1.05 £  Of t h e u r a n i u m s u l p h i d e s , o n l y US has s t r u c t u r e s i m i l a r t o any common s u l p h i d e ( i n t h i s case g a l e n a ) ; none a r e s i m i l a r t o p y r i t e structure. The  presence o f uranium i n s u l p h i d e s i s r a t h e r easy to d e t e c t  by means o f a u t o r a d i o g r a p h s ,  and t h e d i s t r i b u t i o n o f u r a n i u m i n t h e  sample c a n be checked a t t h e same time. W r i g h t , S m i t h and H u t t a ( i 9 6 0 ) .  T h i s method was used by  According  to the authors, the  d i s t r i b u t i o n o f alpha p a r t i c l e emission t r a c k s should f o l l o w a " P o i s s o n " d i s t r i b u t i o n c u r v e i f t h e e m i t t e r i s randomly d i s t r i b u t e d i n t h e sample.  Study o f autoradiographs  showed t h a t t h e u p p e r  limit  f o r homogeneously d i s t r i b u t e d uranium i n p y r i t e was 46 ppm; n e a r l y a l l t h e t r a c k s i n samples w i t h s e v e r a l hundred t o s e v e r a l thousand -ppm U a r e d i s t r i b u t e d a l o n g g r a i n b o u n d a r i e s , discrete particles.  cleavages,  I t i s assumed by t h e a u t h o r s  or i n  t h a t homogeneous  uranium d i s t r i b u t i o n i n d i c a t e s i n c o r p o r a t i o n o f uranium d u r i n g crystallization,  w h i l e non-homogeneous d i s t r i b u t i o n i s more l i k e l y  to a r i s e from non-contemporaneous p r o c e s s e s .  The uranium  content  o f b a s e - m e t a l s u l p h i d e s i n u r a n i f e r o u s v e i n s would be r e l a t e d t o the uranium c o n c e n t r a t i o n o f t h e o r e - f o r m i n g  solutions i f :  (1) Uranium Not Homogeneously Distributed Uranium,* ppm Mine Calhoun Caribou Iron Sunshine De La Fontaine Sunshine . Baby ' Burlington Burlington Klingcr Cherokee Baby Democrat Josephine Baby Sunshine Democrat Springdalc Calhoun Calhoun Carroll Carroll Sunshine Democrat Sunshine Freedom No. 2 Argo German • Sunshine : German Democrat Lone Eagle Baby Baby Sunshine Lone Eagle Detroit Argo Democrat Summit  5700 2300 1700 670 530 510 420 390 ' 290 .200 • 170 160 130 120 110 76 75 57 52 51 - 45 43 43 42 39 37 35 32 30 25 24 23 22 17 16 16 6 3 2 2  (2) Uranium Homogeneously Distributed Uranium,* ppm Mine. Democrat Sunshine Sunshine De La Fontaine Democrat Prospector Detroit Democrat Prosperity Democrat Merry Wilson Detroit De La Fontaine Night Hawk Summit Sunshine German Peach Tunnel Sunshine Baby Carroll Sunshine Caribou Democrat Calhoun Black Hawk Lone Eagle Democrat Cherokee Bullion Century Sunshine Prosperity De La Fontaine Baby Primrose Summit Sunshine Sunshine  46 39 37 20 14 12 12 7 7 6 6 6 5 5 5 .4 4 r> -  0  3 3 o O o 3 3 2 2 2 2 .2 2 2 2 1 . 1 1  1 1 1  TABLE 14. Uranium c o n t e n t o f p y r i t e samples from uranium d e p o s i t s . (From W r i g h t e t . a l . , 1960)  1)  the uranium i s i n c o r p o r a t e d i n the s u l p h i d e l a t t i c e  during  crystallization; 2) the l i m i t o f s o l i d s u b s t i t u t i o n i s not c l o s e l y approached; •and 3)  the s u p p l y o f uranium around the c r y s t a l l i z i n g s u l p h i d e i s c o n t i n u o u s l y renewed by i n t r o d u c t i o n o f f r e s h s o l u t i o n s and by  diffusion.  I t i s c o n c e i v a b l e t h a t the uranium c o n t e n t o f p y r i t e  and  o t h e r s u l p h i d e s c o u l d be used as an i n d i c a t o r o f p r o x i m i t y t o economic c o n c e n t r a t i o n s o f uranium, a l t h o u g h q u i c k e r and more e f f i c i e n t methods a r e a v a i l a b l e .  Homogeneously and  inhomogeneously  d i s t r i b u t e d uranium c o n t e n t s o f p y r i t e from v a r i o u s mines i n the western United S t a t e s are presented  i n Table  14.  T h a l l i u m Content o f P y r i t e  T h a l l i u m d i f f e r s g r e a t l y from i r o n , c o b a l t , and n i c k e l i n c h e m i c a l p r o p e r t i e s , and  t h e o r e t i c a l l y s h o u l d not be  r e a d i l y i n t o the l a t t i c e o f i r o n s u l p h i d e s . content  accepted  However, t h a l l i u m  i s s u r p r i s i n g l y h i g h i n b o t h s y n g e n e t i c and  epigenetic  pyrites.  V o s k r e s e n s k a y a , e t a l . (1962, 1969) study of t h a l l i u m i n sedimentary s u l p h i d e s .  have made an  extensive  The f o l l o w i n g  r e l a t i o n s h i p s have been d i s c o v e r e d . 1) T h a l l i u m c o n t e n t i n s e d i m e n t a r y p y r i t e c o r r e l a t e s w e l l w i t h  the t h a l l i u m c o n t e n t o f a d j a c e n t  sediments.  2) T h a l l i u m c o n t e n t i n sediments i s d i r e c t l y r e l a t e d t o content of organic m a t e r i a l . 3) T h a l l i u m c o n t e n t i s somewhat r e l a t e d t o c l a y c o n t e n t . 4) T h a l l i u m i s g e n e r a l l y a b s e n t from c l a y s t o n e s and s a n d s t o n e s which are f r e e o f sulphides.  These o b s e r v a t i o n s l e a d one t o t h e c o n c l u s i o n t h a t the element i s s u p p l i e d by o r g a n i c s o u r c e s , i s p r e f e r e n t i a l l y a b s o r b e d on c l a y s and on s y n g e n e t i c o r a u t h i g e n i c p y r i t e s . noted  The a u t h o r s  t h a t h i g h e s t T l c o n c e n t r a t i o n s appear i n amorphous F e - s u l p h i d e s  i n c o l l o i d a l o r " c o l l o f o r m " masses o f s u l p h i d e s , and i n p y r i t e i n . c o a l beds.  T h a l l i u m contents i n v a r i o u s sediments a r e :  average o f s e d i m e n t s  .3 ppm  coal  0.4 - 2.3 ppm  S u l p h i d e s from c o a l  2 - 360 ppm  "Dictyonema" s h a l e p y r i t e  4 - 30  ppm  38  ppm  0.5 - 30  ppm  81  ppm  "Fuel Shale" C o a l beds, Moscow B a s i n C o a l beds, K i r g i z i a , U z b e k i s t a n  Extremely of hydrothermal  h i g h v a l u e s have been r e p o r t e d from some t y p e s  d e p o s i t s ( V l a s o v , 1967).  Colloform v a r i e t i e s of  FeS^ a r e r i c h e s t i n t h a l l i u m , c o n t a i n i n g up t o 0.57 p e r c e n t  (5700 ppm  A d s o r p t i o n , once a g a i n , i s t h e most l i k e l y mechanism f o r r e t e n t i o n w i t h the s u l p h i d e s .  I n some h y d r o t h e r m a l  d e p o s i t s t h a l l i u m forms  an i n d e p e n d e n t m i n e r a l , h u t c h i n s o n i t e , b u t i n many d e p o s i t s t h a l l i u m  i s contained  i n arsenic sulphosalts:  d u f r e n o y s i t e , and p r o b a b l y  rathite.  jordanite, graftonite, In arsenic-rich deposits,  t h a l l i u m i n c o l l o f o r m Pe s u l p h i d e s may a c t u a l l y be p r e s e n t i n i n c l u s i o n s o f these s u l p h o s a l t s . The  maximum and average T l c o n t e n t s  appear t o f o l l o w a  low t o h i g h - t e m p e r a t u r e z o n i n g sequence, w i t h maximum i n As-Sb-Hg d e p o s i t s , l e s s e r amounts i n M i s s i s s i p p i V a l l e y and v e i n - t y p e  Pb  d e p o s i t s , and l e a s t i n s k a r n - t y p e d e p o s i t s . I n low t o medium grade metamorphosed s t r a t i f o r m s u l p h i d e deposits, contents  o f t h a l l i u m i n p y r i t e range from 0-240 ppm.  In  d e p o s i t s w h i c h have undergone h i g h - g r a d e metamorphism, t h a l l i u m i s r a r e l y detected  i n pyrite.  V l a s o v s u g g e s t s t h a t under t h e s e c o n d i -  t i o n s , T l may p r e f e r e n t i a l l y e n t e r l a t t i c e s o f o t h e r  sulphides,  K-feldspar, o r s e r i c i t e . The  high t h a l l i u m content of colloform sulphides i n organic  s e d i m e n t a r y environments as w e l l as i n M i s s i s s i p p i V a l l e y - t y p e deposits i s "permissive" evidence that hydrocarbons i n subsurface " r e s e r v o i r " f l u i d s may p l a y a p a r t i n t h e g e n e s i s  of these d e p o s i t s .  •The Mercury Content o f P y r i t e Pew a n a l y s e s literature.  o f mercury i n p y r i t e a r e r e p o r t e d  i n the  Because the i o n i c c o o r d i n a t i o n i n Hg m i n e r a l s i s  g e n e r a l l y t e t r a h e d r a l ( a s w i t h Zn and C d ) , and t h e c o o r d i n a t i o n r a d i u s i s l a r g e , 1.48 2, isomorphous s u b s t i t u t i o n f o r i r o n i n p y r i t e i s not expected.  However, Hg may e n t e r t e t r a h e d r a l l y -  c o o r d i n a t e d m i n e r a l s such a s s p h a l e r i t e , c h a l c o p y r i t e , o r t e t r a h e d r i t e i n s o l i d s u b s t i t u t i o n f o r Zn, Cd, o r Cu, and thus c o u l d be p r e s e n t i n m i n e r a l i n c l u s i o n s i n . p y r i t e .  The h i g h v a p o r - p r e s s u r e  c o u l d l e a d t o t r a p p i n g o f Hg i n f r a c t u r e s o r p o r e s i n p y r i t e (Chan, 1969).  From Ag-Pb-Zn d e p o s i t s o f t h e Coeur d'Alene  Chan r e p o r t s from 1.0-2.5 ppm Hg i n p y r i t e . the same camp c o n c e n t r a t e mercury  area,  Other m i n e r a l s from  t o a g r e a t e r degree.  Galena  3.8 - 10.4 ppm  Chalcopyrite  3.5 -  Tetrahedrite  5.1 - 62.6 ppm  38  ppm  D v o r n i k o v (1967) d i s c u s s e s mercury c o n t e n t i n s y n g e n e t i c and h y d r o t h e r m a l p y r i t e from t h e N i k i t o v k a mercury d e p o s i t , where cinnabar occurs i n f i n e v e i n l e t s i n p y r i t i c c o a l - b e a r i n g sediments. P y r i t e from m i n e r a l i z e d a r e a s c o n t a i n e d 2907 ppm i n comparison t o 33 ppm c o n t a i n e d i n t h e c o a l i t s e l f .  S t r i c t l y syngenetic p y r i t e  c o n t a i n e d 100 t o 1000 times l e s s mercury pyrite.  than t h e h y d r o t h e r m a l  As and Sb f o l l o w e d much t h e same p a t t e r n o f enrichment i n  hydrothermal p y r i t e .  The a u t h o r c o n c l u d e d t h a t a n a l y s i s f o r t h e s e  minor elements i n p y r i t e c o u l d be an e f f e c t i v e e x p l o r a t i o n w i t h i n t h e Donetz b a s i n .  tool  A s i m i l a r example o f t h e use o f s u p r a -  o r e p y r i t e i n d e t e c t i o n o f mercury d e p o s i t s i s d i s c u s s e d i n t h e appendix.  71  8.  Manganese Content o f P y r i t e  Evidence sedimentation  from l i g a n d - f i e l d t h e o r y , m i n e r a l o g i c a l a s s o c i a t i o n s ,  s t u d i e s and  i o n i c - c o o r d i n a t i o n theory i n d i c a t e s that  o n l y l i m i t e d r e p l a c e m e n t o f i r o n by manganese s h o u l d o c c u r i n the pyrite lattice.  As d i s c u s s e d i n a p r e v i o u s c h a p t e r (page 19.)  MnS^  2+ i s i s o s t r u c t u r a l w i t h p y r i t e , but the Mn  ion i s i n high-spin  s t a t e , l e a d i n g to i o n i c b o n d i n g i n h a u e r i t e , compared t o covalent bonding i n p y r i t e . and m e t a l - s u l p h u r Fe Mn  2  2  predominantly  Respective octahedral covalent  radii  bond l e n g t h s a r e : 1.23  8  Fe-S  2.27  2  1.55  1  Mn-S  2.59  A*  I n deep-sea s e d i m e n t s manganese i s p r e s e n t i n c o n s i d e r a b l e amounts, 2+ but Eh-pH c o n t r o l o f Mn i o n i c s p e c i e s i s s u c h t h a t Mn  i s not  l i k e l y t o c o - p r e c i p i t a t e w i t h i r o n s u l p h i d e s (see page 87).  Mohr  (1960) r e p o r t s h i g h Mn c o n t e n t i n p y r i t e from M n - r i c h s h a l e s  but  c o n t a m i n a t i o n o f the p y r i t e samples i s p r o b a b l e . The maximum Mn c o n t e n t r e p o r t e d by F l e i s c h e r (1959) i s 1 percent  (1 s a m p l e j .  S i n c e b o t h s p h a l e r i t e and m a g n e t i t e  can  c o n t a i n a p p r e c i a b l e Mn i n s o l i d s o l u t i o n , some o f the Mn i n p y r i t e may  be c o n t r i b u t e d by i n c l u s i o n s o f these m i n e r a l s .  Limonite  or  manganese o x i d e s t a i n s o r t a r n i s h on p y r i t e c o u l d a l s o a c c o u n t f o r anomalously h i g h c o n c e n t r a t i o n s i n p y r i t e .  9.  T i n Content o f P y r i t e There i s ample e v i d e n c e  t h a t Sn can s u b s t i t u t e f o r Cu,  72  Zn, o r Fe i n t e t r a h e d r a l l y - c o o r d i n a t e d s u l p h i d e m i n e r a l s , s u c h as s p h a l e r i t e and c h a l c o p y r i t e , s i n c e s t a n n i t e ( C ^ F e S n S ^ ) i s i s o s t r u c t u r a l w i t h these m i n e r a l s .  N a t u r a l SnS^ has been f o u n d ,  b u t t h i s compound has h e x a g o n a l c r y s t a l s t r u c t u r e .  Because o f  d i s s i m i l a r i o n i c charge and c o v a l e n t r a d i u s , e x t e n s i v e s u b s t i t u t i o n of Sn f o r Fe i n p y r i t e i s n o t l i k e l y .  Most a n a l y s e s o f Sn i n  p y r i t e e n c o u n t e r e d i n the l i t e r a t u r e a r e l e s s t h a n 300 ppm.  Most  h i g h c o n t e n t s o f Sn i n p y r i t e a r e r e p o r t e d from massive s u l p h i d e and s t r a t i f o r m v o l c a n i c - e x h a l a t i v e d e p o s i t s ( S u t h e r l a n d , 1967; Roscoe, 1965; Hawley and N i c h o l , 1961), i n w h i c h the average Sn c o n t e n t i s a p p r o x i m a t e l y 200 ppm.  Since c a s s i t e r i t e i s occasionally  present i n these d e p o s i t s , the p o s s i b i l i t y o f m i c r o - i n c l u s i o n s i n p y r i t e s h o u l d n o t be i g n o r e d .  Hawley and N i c h o l (1961) found  admixed c a s s i t e r i t e i n p y r i t e and c h a l c o p y r i t e from the Manitowadge (Geco) d e p o s i t ; t h e s e m i n e r a l s assayed up t o 7000 ppm and 3500 ppm respectively.  10.  The S e l e n i u m Content o f P y r i t e  Many r e s e a r c h e r s d a t i n g from G o l d s c h m i d t (1933J, t h r o u g h to t h e p r e s e n t , have s t u d i e d t h e s e l e n i u m c o n t e n t o f p y r i t e . of  Most  the s t u d i e s have shown t h a t p y r i t e o f s e d i m e n t a r y o r i g i n can  g e n e r a l l y be d i s t i n g u i s h e d from t h a t o f h y d r o t h e r m a l o r i g i n on t h e b a s i s of selenium content.  G o l d s c h m i d t and S t r o c k (1935) found  t h a t s e d i m e n t a r y p y r i t e had a S : Se r a t i o o f 200,000 : 1 o r more ( i . e . , low Se c o n t e n t ] whereas h y d r o t h e r m a l p y r i t e had r a t i o s o f  Sn  73  10,000-20,000 : 1.  C a r s t e n s * found t h a t Norwegian s e d i m e n t a r y  p y r i t e had l e s s than 1 ppm Se, but h y d r o t h e r m a l p y r i t e 20-30 ppm  Se.  had  S i m i l a r c o n t e n t s were r e p o r t e d by Edwards and  C a r l o s (.1954); s e d i m e n t a r y and "supergene" p y r i t e and m a r c a s i t e c o n t a i n e d between 1 and 9 ppm  Se w i t h S : Se r a t i o s r a n g i n g from  38,000 t o 500,000 : 1; the m a j o r i t y o f h y d r o t h e r m a l p y r i t e s c o n t a i n e d 30 t o 50 ppm,  w i t h a maximum v a l u e o f 132 ppm.  studied  The  c o r r e s p o n d i n g S : Se r a t i o s were 9,000 : 1 t o 13,000 : 1.  An  i m p o r t a n t f a c t was d i s c o v e r e d by Edwards and C a r l o s ; some p y r i t e s o f known h y d r o t h e r m a l o r i g i n c o n t a i n v e r y s m a l l amounts o f s e l e n i u m . T h e r e f o r e a low s e l e n i u m c o n t e n t i s not a b s o l u t e p r o o f o f s e d i m e n t a r y o r i g i n of p y r i t e .  S u l p h i d e s and s e l e n i d e s form isomorphous  m i n e r a l groups,  f o r example: Galena (PbS) - C l a u s t h a l i t e  ( P b S e ) , and  A r g e n t i t e (Ag,>S) - Naumannite ( A g S e ) 2  FeSe^ ( f e r r o s e l i t e ) c r y s t a l l i z e s w i t h the m a r c a s i t e s t r u c t u r e ( o r t h o r h o m b i c ) , and the c u b i c s t r u c t u r e can o n l y be produced a t h i g h p r e s s u r e s ( H u l l i g e r , 1968).  T h e r e f o r e we  would  e x p e c t o n l y l i m i t e d s o l i d s u b s t i t u t i o n between FeS^ and FeSe^ a t t e m p e r a t u r e s and p r e s s u r e s p r e v a i l i n g d u r i n g h y d r o t h e r m a l m i n e r a l deposition.  Coleman and Delevaux  (1957), i n a d e t a i l e d study of  s e l e n i u m - r i c h sediments a d j a c e n t to and c o n t a i n i n g uranium found t h a t p y r i t e can c o n t a i n up t o 3 p e r c e n t Se i n s o l i d  deposits, solution.  Some samples were found to c o n t a i n o v e r 5 p e r c e n t Se but t h e s e were thought t o be c o n t a m i n a t e d . * In Fleischer  (1955)  The maximum Se c o n t e n t o f m a r c a s i t e  i n the same d e p o s i t s was found to be 0.65$ (6500 ppm,).  The s e l e n i u m  c o n t e n t o f p y r i t e s from o r e and from b a r r e n r o c k were compared f o r four different Se-rich horizons: Se i n p y r i t e Ore s u l p h i d e s T r i a s s i c ( C h i n l e Fm.j J u r a s s i c ( M o r r i s o n Fm.J Cretaceous Tertiary  19 ppm  (avg.)  Se i n p y r i t e Barren sulphides 12  ppm  2000 ppm  1400  ppm  50 ppm  60  ppm  870 ppm  15  ppm  The a u t h o r s c o n c l u d e d t h a t Se c o n t e n t was n o t always a r e l i a b l e i n d i c a t o r o f h y d r o t h e r m a l o r i g i n o f p y r i t e , a l t h o u g h t h e r e may  have  been problems w i t h d i s t i n c t i o n between h y d r o t h e r m a l and s y n g e n e t i c pyrite.  The major f a c t o r c o n t r o l l i n g Se c o n t e n t i n the d e p o s i t s  s t u d i e d seemed t o be g e o l o g i c age ( s t r a t i g r a p h i c p o s i t i o n ? ) r a t h e r than g e o g r a p h i c l o c a t i o n , s u g g e s t i n g a s o u r c e f o r the s e l e n i u m w i t h i n the sediments themselves - perhaps from i n c l u d e d v o l c a n i c debris.  Four a l t e r n a t i v e mechanisms f o r g e n e s i s and c o n c e n t r a t i o n  o f s e l e n i u m i n C o l o r a d o p l a t e a u - t y p e d e p o s i t s were proposed Coleman and  by  Delevaux:  a) P r i m a r y magmatic o r i g i n and h y d r o t h e r m a l d i s p e r s i o n (not considered l i k e l y ) ; b) A c q u i s i t i o n o f Se by h y d r o t h e r m a l f l u i d s p a s s i n g through S e - r i c h r o c k s ;  c)  D i a g e n e t i c a d s o r p t i o n by p y r i t e from a d j a c e n t S e - r i c h volcanic material;  75  d) C o n c e n t r a t i o n by ground w a t e r n e a r the t o p o f t h e ground-water t a b l e .  Hawley and N i c h o l (.1959)  s t u d i e d the selenium  s u l p h i d e s from s e v e r a l t y p e s o f m i n e r a l d e p o s i t s . d e t e c t a b i l i t y were 15 ppm; 173 p y r i t e samples were  content of  Limits of analyzed.  Range and mean f o r each d e p o s i t a r e g i v e n i n T a b l e 15.  The h i g h e s t  c o n c e n t r a t i o n s were found i n m a s s i v e Cu-Fe-Zn s u l p h i d e d e p o s i t s , where t h e a v e r a g e s a r e 50-590 ppm (.max. 1000 ppm,).  Stratiform  s u l p h i d e d e p o s i t s , g o l d - p y r i t e q u a r t z v e i n s , and bedded i r o n and uranium d e p o s i t s c o n t a i n e d u n i f o r m l y low amounts o f s e l e n i u m (0-79  ppm).  selenium  Sutherland  (1967) has a l s o f o u n d v e r y low amounts o f  from s t r a t i f o r m Cu-Pb-Zn d e p o s i t s i n New  Brunswick.  R e l a t i v e l y h i g h amounts (up t o 700 ppmj were r e p o r t e d from m a s s i v e s u l p h i d e d e p o s i t s o f S k e l l e f t e , Sweden and o f t h e U r a l m o u n t a i n s (Sindeeva,  1964 and B e r g e n f e l d t , 1953 i n A n d e r s o n , 1969).  "The use o f s e l e n i u m  c o n t e n t o f p y r i t e as a n e x p l o r a t i o n  t o o l i s d i s c u s s e d i n the a p p e n d i x .  T y p e of deposit  Location  No. of samples  Magnetite (Replacement)  M a r m o r a , Ontario  1  Xickeliferous C o p p e r sulfide ores  S u d b u r y , Ontario  4 1  M a s s i v e Cu-Fe(Zn)-S replacement deposits  N o r a n d a , Quebec U p p e r Levels L o w e r Levels L o v e r L e v e l s (run of mine) Q u c m o n t , Quebec  4  N o r m e t a l , Quebec  7  Gold-pyrite quartz vein  ppm  <15  ' 25-60 130  390-1000 38-445 33-88  50 130  590 " 175 63  40-250  120  <15 <15-320  <15 155  1  56  Campbell-Chibougainau. Quebec  1  51  14 7 5 26  44-88 50-270 97-310 44-310  60 127 163 97  Flin Flon. Manitoba  2 1  <1S 220  Suffield, Quebec  1  <15  H e a t h Steele. N . B .  1  20  M c l n t y r e M i n e . Porcupine. Ontario  21  <15-110  M i s c e l l . — R e n a b i . H a r d r o c k . HoweyHasaga (Red L a k e ) CathroyL a r d e r , O n t a r i o ; G r a n a d a , Quebec; Cariboo, B. C.  10  <15  Powell R o u y n , Quebec F o n d u l a c , A l g o l d . Sask. Banded Siderite-Pyrite j M i c h i p i c o t e n , Ontario ( R a n d X o . 2) P>Titiferous uranium banded or bedded deposits  4  ppm  Mean selenium content,  A l d e r m a c , Quebec  Geeo M i n e , Manitouwadge, Ontario 250' L e v e l 50'-450' Levels 350' L e v e l Average  Cu-Fe-Zn-S banded ores  6 20 6  Range of selenium content,  ( Algoma, Ontario I U-ore in conglom. j Sub-ore conglom. above j and below ore j Polymictic conglom. greywacke j matrix, greywacke, calc. grey1 wacke (above ore) j Quasi-basal conglom. (below ore) j Argillite (above ore) 1 I n Diabase j Pre-Huronian metavolcanics  1 2  23-24  1  26 2 11  33  <15 34 23 <15  16- 46 <15 17- 39  6  17-63  2 1 2 2  <15-17 41-43 36-47  28 <15 26 42 <15 79 42 41  TABLE... 15 .Selenium c o n t e n t o f p y r i t e s from some C a n a d i a n o r e d e p o s i t s . (From Hawley and N i c h o l , 1 9 5 9 ) .  III.  THE  GEOCHEMISTRY OF COBALT AND  NICKEL IN ROCKS  The  c h e m i s t r y o f m i n o r elements  i n geological  processes  such as magmatic d i f f e r e n t i a t i o n ; h y d r o t h e r m a l d e p o s i t i o n ,  sedimenta-  t i o n and metamorphism w i l l have a d i r e c t e f f e c t on the c o n t e n t o f those elements  i n m i n e r a l s formed by each p r o c e s s .  If regularities  o f m i n o r element c o n t e n t s o c c u r i n m i n e r a l s formed a t d i f f e r e n t times or l o c a t i o n s  by the same p r o c e s s , t h e n i n s i g h t i n t o the e x a c t  nature o f these processes i s gained. the most i m p o r t a n t minor elements to be a f f e c t e d  S i n c e c o b a l t and n i c k e l a r e  i n p y r i t e , and t h e l e a s t  likely  by c o n t a m i n a t i o n from o t h e r m i n e r a l s , a comprehensive  review of c o b a l t - n i c k e l  geochemistry i s presented  here,  IGNEOUS ROCKS  I n m e t e o r i t e s , c o b a l t and n i c k e l a r e s t r o n g l y i n the m e t a l phase i n s o l i d s o l u t i o n w i t h i r o n . siderophile  Cobalt i s l e s s  t h a n n i c k e l (Rankama, Sahama, 1950J.  Co and N i i n m e t e o r i t i c  concentrated  The c o n t e n t o f  s u l p h i d e phase i s g e n e r a l l y  low, because  d u r i n g c r y s t a l l i z a t i o n , l a r g e amounts o f Co and N i a r e s t a b i l i z e d only i n i r o n - n i c k e l a l l o y s or i n s c h r e i b e r s i t e  ( F e , N i , CoJ^P.  Average c o n t e n t s o f Co and N i i n m e t e o r i t e s i s l i s t e d i n T a b l e Cobalt-nickel  r a t i o s range from 0.059 t o 0.12.  16.  Significantly,  Co i s e n r i c h e d r e l a t i v e t o N i i n the s i l i c a t e phase.  In u l t r a b a s i c  r o c k s Co and N i a r e abundant; average c o n t e n t s  a r e a p p r o x i m a t e l y 200 ppm  and 2000 ppm  respectively.  The  elements  78  TABLE 16 VARIATION OF COBALT AND NICKEL WITH ROCK TYPES  Rock Type Meteorites  Ultrabasics  Co (ppm) N i (ppm) .  :  Fe-Ni Fe-Ni Troilite Silicate  :  phase (R+S) phase (V) phase (R+S) phase (R+S)  5700 800 100 400  Peridotite (G) Ultrabasics (S) U l t r a b a s i c s (T+W) Ultrabasics (V) Ultramafics (v;  84900 13500 1000 3300  0.07 0.059 0.10 0.12  150 200 200  3160 790 2000 1200 2000  0.08 0.30 0.075 0.17 0.10  158 47 130 160  237 237  Gabbro Gabbro + D o l e r i t e Basalt Basic  (G) (S) (T+W) (V)  79 24 48 45  Diorite "Intermediate"  (G) (V)  32 20  Granite Granites Ca-rich granites Ca-poor.granites acid B r a z i l i a n shield granites  (G) (S) (T+W) (T+W) (V) (D)  R+S V G T+W D  Rankama and Sahama (1950J Vogt ( i n D a v i d s o n , 1962) G o l d s c h m i d t ( i n D a v i d s o n , 1962) T u r e k i a n and Wedepohl (1§62) D a v i d s o n (1962J  (Co/Ni)  0.50 0.51 0.37 0.28  40 55 . A  0-8 7 1 - 5 3.8  0.80 0.36  3.3 Max.4.0 15 0.47 0.22 4.5 8 0.62 0.46 8.3  2-8  are " c a r r i e d " i n ferromagnesian  s i l i c a t e s , s u b s t i t u t i n g f o r Fe  2+ and Mg  i n octahedrally coordinated l a t t i c e s i t e s .  Cobalt  content  shows a good c o r r e l a t i o n w i t h Mg + Fe ( C a r r and T u r e k i a n , 1961); a s i m i l a r c o r r e l a t i o n would be expected i i i the f o l l o w i n g josephinite  for nickel.  m i n e r a l s i n b a s i c and u l t r a b a s i c  (Fe-Ni a l l o y s ) , g a r n i e r i t e  c h l o r i t e s , t r e v o r i t e (NiFe^O^).  Ni i s concentrated rocks:  awaruite,  (15-33$ N i ) , n i c k e l i a n  Co i s r e l a t i v e l y e n r i c h e d i n the  t i t a n i f e r o u s o x i d e m i n e r a l s w i t h the a v e r a g e c o n t e n t s o f Co and b e i n g 200 ppm  and 300 ppm  Ni  (Co/Ni = 0 . 6 7 ) .  I f a b a s i c magma c o n t a i n s a p p r e c i a b l e s u l p h u r , o r i f s u l p h u r i s i n t r o d u c e d from an e x t e r n a l s o u r c e , an e a r l y s t a g e i m m i s c i b l e s u l p h i d e phase may  form.  N i and Co p r e f e r e n t i a l l y e n t e r the s u l p h i d e  phase and a r e c o n c e n t r a t e d i n the r e s u l t i n g s u l p h i d e m i n e r a l s . i n i t i a l s u l p h u r c o n t e n t i s low, Co and N i may  be t a k e n up by  If  the  s i l i c a t e phase b e f o r e the s u l p h u r i s c o n c e n t r a t e d enough t o p r e c i p i tate sulphides.  I f t h i s i s the c a s e , l a t e r formed s u l p h i d e s can  be  r i c h i n Cu r e l a t i v e to Co and N i (Wager, e t a l . . 1957), as i n the Skaergaard  i n t r u s i o n (see F i g u r e 3 0 ) .  The average Co  : Ni r a t i o  o f e a r l y magmatic s u l p h i d e s i s a p p r o x i m a t e l y 0.08.* W i t h i n c r e a s e i n s i l i c a c o n t e n t o f d i f f e r e n t i a t i n g magmas, the a b s o l u t e c o n t e n t s o f Co and N i i n r o c k s d e c r e a s e and the Co  : Ni  r a t i o s i n c r e a s e , as i s shown i n F i g u r e s 31 and 64, i n d i c a t i n g t h a t Co i s e n r i c h e d r e l a t i v e to N i ( i . e . , N i i s accommodated i n f e r r o magnesian m i n e r a l s a t a g r e a t e r r a t e ) . * Rankama and Sahama (1950)  300  2SO  200  I  ISO IOO  SO  IOO 80  NICKEL in the rocks ond in the liquids .  COBALT, rocks liquids  Pr 40 20 O lOOO  •COPPER in the rocks ond in the liquids  800 600 L L  400 200 P  o lOOOn  SULPHUR in the rocks , and in the liquids  800  6OO 400 200  IO  20  30  40 50 6O 70 PH'.CENiACE SOLIDIFIED  SO  90  IOO  FIGURE 30. V a r i a t i o n o f Co, N i , Cu, and S i n r o c k s and r e s i d u a l m e l t s o f t h e S k a e r g a a r d i g n e o u s complex. (From Wager and M i t c h e l l , 1951)  FIGURE 31. V a r i a t i o n of c o b a l t - n i c k e l r a t i o with s i l i c a content of igneous rocks. (Data from Davidson, 1962)  82  I n some c a s e s N i (+2) i s c o n c e n t r a t e d i n r e s i d u a l magmas d u r i n g t h e l a t e r s t a g e s o f magmatic c r y s t a l l i z a t i o n ( a l o n g + 3 + 3 + 3 V , C r , and Sc  with  ). An example i s t h e S k a e r g a a r d i n t r u s i o n , where  N i , C r , V, and S c were l a r g e l y removed from the magma i n f e r r o magnesian  s i l i c a t e s o l i v i n e and pyroxene, b u t were a l s o  i n t h e l a t e - s t a g e granophyre.  enriched  Other examples i n c l u d e t h e g e n e r a l l y  late-stage c r y s t a l l i z a t i o n of nickel-bearing sulphides w i t h b a s i c i n t r u s i v e s (Ringwood, 1955).  Ringwood f e e l s t h a t magmas  r i c h i n v o l a t i l e s a r e a b l e t o keep t h e above-mentioned s o l u t i o n a s t e t r a h e d r a l complexes w i t h F  associated  cations i n  and (OH) , t h u s e x p l a i n i n g  t h e i r anomalous l a t e - s t a g e enrichment i n g r a n o p h y r e s , l a m p r o p h y r e s , and p e g m a t i t e s .  SEDIMENTARY ROCKS C h e m i c a l a n a l y s e s o f sediments r e v e a l t h a t i n most normal s e d i m e n t s , t h e c o n t e n t o f n i c k e l exceeds t h a t o f c o b a l t , and t h e c o r r e s p o n d i n g c o b a l t - n i c k e l r a t i o s a r e low ( < 1 . 0 ) .  Analyses of  t y p i c a l s e d i m e n t a r y r o c k s a r e p r e s e n t e d below ( T a b l e 1.7) s TABLE 17 : -AVERAGE CO AND NI. CONTENTS AND CO/NI RATIOS OF SEDIMENTS Co ppm. N i ppm ( T u r e k i a n and Wedepohl, 1961) Shales Sandstones •, • . Carbonates Deep-sea c a r b o n a t e s Deep-sea c l a y s .(Rankama and Sahama, 1950) Sandstone Shale Bitum. s c h i s t Limestone Quartzites Al-rich schists  19  0.3 0.1 7 74  68 2.0 20 30 355  1.0 ppm 2.0 150 60 70 30 3-10 .3-2.0 2-8 0 8 24  Co/Ni .28 .15 .005 .233 .28  .50 .40 .43 .03-.70 .13-.50 .33  Co$  Ni$  0.016 0.035  0.086 0.19  0.18 0.18  0.019 0.019  0.050 0.048  0.38 0.40  0.012  0.019  0.71  Sediments from i n l a n d se as The M e d i t e r r a n e a n Sea The B l a c k Sea The C a r i b b e a n Sea  0.017 0.021 0.014  0.054 0.087 0.049  0.31 0.24 0.28  Sea water  0.063  0.38  0.17  ( C a r a v a j a l and Near shore O f f west O f f west  L a n d e r g r e n , 1969, p. 118) sediments c o a s t o f Sweden c o a s t o f A f r i c a (Dakar)  Deep-sea sediments I n d i a n Ocean A t l a n t i c Ocean P a c i f i c Ocean ( c e n t r a l equatorial part)  Co/Ni  84  R e s e a r c h i n t o c o b a l t and n i c k e l c o n t e n t s o f t y p i c a l  sediments  by D a v i d s o n (1962) r e v e a l e d o v e r a thousand a n a l y s e s , none o f w h i c h showed c o b a l t i n e x c e s s o f n i c k e l .  I n c o n t r a s t , D a v i d s o n p r e s e n t e d e v i d e n c e from s e v e r a l " s y n g e n e t i c " copper s e d i m e n t s i n w h i c h c o b a l t exceeds n i c k e l . t h e R h o d e s i a n c o p p e r b e l t , the average Co  : N i r a t i o i s 2.4  a r g i l l i t e s and as h i g h as 25 : 1 i n q u a r t z i t e s .  In  : 1 in  Cobalt minerals  a r e common a c c e s s o r i e s t o c o p p e r , b o t h i n Rhodesian d e p o s i t s and i n s i m i l a r o c c u r r e n c e s i n the Katanga p r o v i n c e o f the Congo, a l t h o u g h n i c k e l m i n e r a l i z a t i o n i s l e s s common.  Other  examples  from the U.S.S.R. a r e d i s c u s s e d by D a v i d s o n , f o r example, Dzhezgkazgan  and Udokansk d e p o s i t s .  the  I n most o f t h e s e examples,  a l t h o u g h c o b a l t m i n e r a l i z a t i o n i s more e v i d e n t t h a n n i c k e l m i n e r a l i z a t i o n , t h e a c t u a l Co/Ni r a t i o s a r e n o t documented.  Pew a n a l y s e s  a r e a v a i l a b l e f o r s e d i m e n t s from s y n g e n e t i c copper d e p o s i t s , b u t those from the K u p f e r s c h i e f f e r Co>Ni.  and r e l a t e d s e d i m e n t s r a r e l y show  A n a l y s e s a r e p r e s e n t e d below ( T a b l e 1 8 ) :  .  TABLE 18  AVERAGE CO, NI CONTENTS AND CO/NI RATIOS OP SYNGENETIC COPPER DEPOSIT SEDIMENTS Sedimentary rock  Co(ppm)  M a n s f e l d , Germany ( D a v i d s o n ) Posidonia L i a s shale Dictyonema Alum s h a l e  (Deans) (Deans)  K u p f e r s c h i e f f e r , Germany M a r l S l a t e , Durham  (Deans)  (Deans)  Z e c h s t e i n Pb-Zn s h a l e s ( H a r a n c z y k )  Ni(ppm)  Co/Ni  100  .40  0-40  0-250  ?  20-50  100-240  ?  30-180  40-400  0  30  230  .13  80  220  .36  40  85  Thus, a l t h o u g h sediments from c e r t a i n s y n g e n e t i c copper d e p o s i t s may  c o n t a i n Co i n g r e a t e r amounts than N i , a Co/Ni r a t i o  >1.0  cannot be c o n s i d e r e d r e p r e s e n t a t i v e f o r t h i s type o f sediment. I t i s p o s s i b l e , i n the R h b d e s i a n c o p p e r - r i c h s e d i m e n t s , t h a t h i g h Co c o n t e n t s can be r e l a t e d t o the metamorphic  grade, o r t o e n r i c h -  ment by t h e r m a l f l u i d s o r i g i n a t i n g i n o r m i g r a t i n g from the C o - r i c h basement g r a n i t e s (see F i g u r e 61 )..  Other n a t u r a l e n v i r o n m e n t s i n  w h i c h c o b a l t may predominate o v e r n i c k e l a r e ( 1 ) l a t e r i t e s and b a u x i t e s , (2) b o g - i r o n o r e s , (3) marine Fe o r M n - r i c h s e d i m e n t s , (4) sediments p r e c i p i t a t e d by Red Sea b r i n e s .  The  following  examples a r e t a k e n from Rankama and Sahama (1950).  Sediment  Ni  Co  Laterite-bauxite  300  Bog-iron ores  130  40  3.25  200  200  1.00  300  50  6.00  Marine s i l i c e o u s o o l i t i c  i r o n ore  M a r i n e s i d e r i t e ore  ppm  180  Co/Ni ppm  1.67  Recent a n a l y s e s o f sediments from the P a c i f i c Ocean (Mero, 1965) many examples where Co exceeds N i . a l l y between 1.0 and 2.0.  reveal  The Co/Ni r a t i o s however a r e g e n e r -  Manganese n o d u l e s a r e o f t e n e n r i c h e d i n  Cu, Co and N i and i n c e r t a i n a r e a s o f the P a c i f i c the Co/Ni r a t i o s o f n o d u l e s a r e commonly g r e a t e r than  1.0.  The Red Sea b r i n e s and a s s o c i a t e d sediments have been s t u d i e d i n d e t a i l by s e v e r a l i n v e s t i g a t o r s (see Degens and Ross, e d i t o r s , In  the b r i n e s t h e m s e l v e s , Co and N i showed o n l y s l i g h t  o v e r normal s e a w a t e r .  1969)-  enrichment  However, the i n t e r s t i t i a l b r i n e s o f many c o r e s  a r e more c o n s i s t e n t l y e n r i c h e d , and Co commonly exceeds N i . a v e r a g e s f o r each a r e :  Co, 3-4 ppm;  N i , 2-3 ppm.  The  I n sediments o f  t h e A t l a n t i s I I deep, Zn, Cu, Ag, Pb, Cd, As, and Co a r e e n r i c h e d i n the s u l p h i d e phase.  More d e t a i l s a r e g i v e n i n a subsequent c h a p t e r .  The i n t e r r e l a t i o n s h i p s o f Co, N i , and Mn i n marine have been s t u d i e d by C a r v a j a l and L a n d e r g r e n ( 1 9 6 9 ) . showed t h a t  sediments  Experiments  ,  1) Mn o x i d e s and t o a l e s s e r e x t e n t h y d r a t e d Fe  (ill)  o x i d e s a r e by f a r the g r e a t e s t " c h e m i c a l s c a v e n g e r s , " removing c o b a l t and n i c k e l from sea w a t e r . 2) Co and N i a r e absorbed and removed i n about the same r a t i o as t h a t o f the i n i t i a l  solution.  Cores from the A t l a n t i c , P a c i f i c , and I n d i a n Oceans and from the M e d i t e r r a n e a n Sea were a n a l y z e d f o r Co, N i , Fe, Mn.  Results of  f a c t o r a n a l y s i s , shown i n T a b l e 19, i n d i c a t e :  1) I n s h e l f and s l o p e s e d i m e n t s , Co and N i c o r r e l a t e e q u a l l y w e l l w i t h Fe o r  Mn.  2) I n deep-sea s e d i m e n t s , Co and N i c o r r e l a t e w e l l w i t h Mn  only.  3) I n r e d u c i n g e n v i r o n m e n t s Co and N i do n o t c o r r e l a t e w i t h Fe o r Mn. From t h i s , i t i s assumed t h a t h y d r a t e d Fe and Mn o x i d e s a d s o r b Co and N i i n s h e l f and s l o p e s e d i m e n t s , w h i l e Mn o x i d e s a r e the main s c a v e n g e r s i n deeper w a t e r s e d i m e n t s .  In anoxic or reducing  87  e n v i r o n m e n t s manganese p r o b a b l y remains i n s o l u t i o n as Mn  whereas  i r o n i s p r e c i p i t a t e d as FeS, p o s s i b l y s c a v e n g i n g some Co and N i a l o n g w i t h i t ( s e e T a b l e 19).  F i r s t o r d e r c o r r e l a t i o n c o e f f i c i e n t s f o r Co/Ni-Mn and Co/Ni-Fe a r e +0.885 and +0.23 r e s p e c t i v e l y i n t h e s t u d y by C a r a v a j a l and Landergren.  T h i s i n d i c a t e s t h a t c o b a l t s h o u l d be removed from s e a  w a t e r more r e a d i l y t h a n n i c k e l i n manganese-rich deep-sea regions.  sediment  T h i s t h e o r y i s s u p p o r t e d by Co/Ni r a t i o s o f n e a r s h o r e  s e d i m e n t s ( a v g . 0.18) and i n l a n d s e a s e d i m e n t s (.24-.31) compared w i t h deep-sea s e d i m e n t s (.38-.71) r e p o r t e d i n T a b l e 17.  By e x a m i n i n g t h e s t a b i l i t y f i e l d s f o r Co and N i compounds under d i f f e r i n g pH and Eh c o n d i t i o n s ( F i g u r e s 32 and 33) we see t h a t i n r e d u c i n g e n v i r o n m e n t s t h e s t a b i l i t y f i e l d s f o r CoS and N i S a r e almost i d e n t i c a l .  Thus t h e Co/Ni r a t i o i n p r e c i p i t a t e d  s h o u l d approach t h a t o f s e a w a t e r .  material  The s t a b i l i t y f i e l d f o r MnS  ( F i g u r e 34) i s much more r e s t r i c t e d , s u p p o r t i n g t h e l a c k o f c o r r e l a t i o n o f Co and N i w i t h Mn i n r e d u c i n g e n v i r o n m e n t s .  The e f f e c t o f s e d i m e n t a r y c o n d i t i o n s on m i n o r  element  c o n t e n t o f p y r i t e i s d i s c u s s e d i n a subsequent c h a p t e r (page 1 0 1 ) .  2.4  FIGURE 32. S t a b i l i t y f i e l d s f o r cobalt compounds as functions of Eh and pH at 25 C° and 1 atm. t o t a l pressure, c h l o r i n i t y .» 19 ppt. (From Carvajal and Landergren, 19680 2.0  FIGURE 33. S t a b i l i t y conditions of n i c k e l compounds under s i m i l a r conditions as i n figure 35. (From Carva a l and Landergren, 1968)  1.6  FIGURE 34' S t a b i l i t y f i e l d s f o r manganese compounds as functions of Eh and pH at 25 C a n d 1 atmosphere t o t a l pressure, c h l o r i n i t y 19 ppt.(From Carvajal and Landergren, 1968)  Correlated pairs  Shelf anj slope sed imcnts 7  r  Mn-Fe Co-FcNi-Fe Co-Mn Ni-Mn Co-Ni  + + + + + +  0.69 0.78 0.S7 0.76 0.SS 0.93  + + + + + +  0.65 0.75 0.S6 0.73 0.S7 0.92  Deep-sea sediments r  + 0.27 + 0.27 + 0.26 + 0.9S + 0.91+ 0.93  r  + + + + + +  0.22 0.22 0.21 0.9S 0.91 0.93  Reducint; or anoxic environments r  r  -0.86 + 0.34 + 0.42 -0.11 -0.1S + 1.00  -0.82 i i i i  +1.00  TABLE 19. Zero order correlations f o r Mn-Fe-Co-Ni i n sediments from various environments, r = c o r r e l a t i o n c o e f f i c i e n t ; r = corrected c o r r e l a t i o n c o e f f i c i e n t . (From Carvajal and Landergren, 1968)  90  C.  METAMORPHIC ROCKS A l t h o u g h metamorphic e f f e c t s such a s m e l t i n g , m o b i l i z a t i o n , r e c r y s t a l l i z a t i o n and b l a s t e s i s have been w e l l documented from numerous areas, evidence  f o r migration o f ore-forming  c i a t e d minor elements i s s c a n t y .  elements and t h e i r  asso-  The m i g r a t i o n o f o r e - f o r m i n g  elements ( i n a f l u i d phase) away from metamorphic c e n t e r s has been proposed by s e v e r a l p e o p l e (DeVore, 1955; but l i t t l e evidence  Sutherland-Brown,  e x i s t s f o r such mechanisms.  1969)  Several studies  d i s c u s s e d by M c l n t y r e show t h a t f r a c t i o n a t i o n o f Ba, S c , T i , V, C r , Mn, Co, N i , Y, Yb, and Z r between b i o t i t e and g a r n e t may be dependent on metamorphic grade.  T h i s i l l u s t r a t e s t h a t d i f f u s i o n , a t l e a s t on  a s m a l l s c a l e , does o c c u r d u r i n g metamorphism.  DeVore (1955) f e e l s  t h a t p r o g r e s s i v e metamorphism c o u l d r e l e a s e Cr, Cu, Co, and N i , and t h a t r e t r o g r e s s i v e metamorphism o f h o r n b l e n d e c o u l d r e l e a s e Pb, Zn, Fe, T i , and Mn.  C o n f l i c t i n g evidence  i s present f o r the behaviour  N i d u r i n g r e g i o n a l metamorphism.  o f Co and  Shaw (1954) s t u d i e d low, medium  and h i g h - g r a d e metamorphic p e l i t e s from t h e Devonian L i t t l e t o n F o r m a t i o n o f New Hampshire.  Whole-rock a n a l y s e s i n d i c a t e d most  minor elements remained a t r e m a r k a b l y c o n s t a n t c o n c e n t r a t i o n s metamorphism, a l t h o u g h  t h e r e was a w e a k l y - d e f i n e d  during  tendency f o r  d e c r e a s e o f N i and Cu, and i n c r e a s e o f L i and Pb ( c o r r e l a t a b l e w i t h K-metasomatism o f t h e f o r m a t i o n ) .  Average minor-element  f o r t h e t h r e e metamorphic grades a r e shown i n Table  2Q  contents  0  E n g e l and E n g e l (1958) d e f i n e d two metamorphic p r o c e s s e s i n  High-Grade Metamorphism  Middle-Grade Metamorphism  Element  Sensitivity*  Littleton formation (Shaw  1954) 1 Co Cr Cu Ga Ni Pb Sc Sr  V Y ' Zr  Least altered gneiss Group 1  Granitic gneiss Group 1  2  3  19 113 23 16 64 16 11 524 125 39 191  2 5 1 5 2 10 •-' 2 2 2 10 2  8 35 16 11 15 12 .12 ' 310 56 46 171  Littleton for- Least altered gneiss mation (Shaw, 1954) Group 5  4  is 109 13 20 57 27 16 760 120 52 • 203  4 4 19 12 . 4 ' 38 6 270 24 35 150 :  Incipiently granitized gneiss Group 5  5 7 56 12 14 21 15 17 304 81 58 176  6 5 18 18 12 8 . - 32 8 225 - 30 30 160 •  Number of specimens  20  9  :._ 3 ';  -  30  8  4  TABLE 2 0 . Comparison o f minor element c o n t e n t o f medium and h i g h - g r a d e metamorphic r o c k s , A d i r o n d a c k m o u n t a i n s , New Y o r k . (From E n g e l and E n g e l , 1958)  Element  Low-grade  Medium-grade  Ga Cr  20.8 116 109 .54.7 80.5 16.8 23.1 11.3 191 38.8 524 16.1  15.9 113 125 108 63.7 19.4 23.8 11.9 213 37.9 731 23.3  V Li Ni Co Cu Sc Zr Y" Sr Pb  High-grade  19.8 109 120 .127 57.4 18.0 12.5 15.6 203 51.7 760 27.3  Final average  18.8 112 119 106 64.2 "" 18.2 18.3 13.5 204 44.7 705 23.7  Final S.D.  6.34 33.1 38.5 104 25.5 6.59 18.0 7.35 72.7 20.0 310 12.3  Number of rocks  63 63 63 63 63 63 63 63 63 63 57 63  Final average (rounded off)  19 110 120 110 64 18 18 14 200 .. 45 710 24  TABLE 2 1 . Comparison o f minor element c o n t e n t o f l o w , medium, and h i g h - g r a d e metamorphic r e e k s , New Hampshire. (From Shaw,D.T., 1954)  t h e same g e n e r a l r o c k t y p e s a s s t u d i e d by Shaw.  "Basification" of  t u f f a c e o u s s e d i m e n t s was accompanied by decrease  i n K, S i , Fe, H2O,  and Ba, w i t h i n c r e a s e i n Mg, Ca, C r , Ga, N i , and V. elsewhere  w i t h i n t h e s t u d y a r e a caused d e c r e a s e  Sc, S r , T i , V, and Y.  Granitization  i n Co, C r , Mn, N i ,  Elements were p a r t l y i n t r o d u c e d from unknown  s o u r c e s and p a r t l y "sweated o u t o f a s s o c i a t e d b a s i f i e d g n e i s s . " R e s u l t s o f t h e s t u d y a r e g i v e n i n T a b l e 21 .  A r e c e n t s t u d y by M a k r y g i n a ,  -  e t a l . (1969) g i v e s some u s e f u l  i n f o r m a t i o n r e g a r d i n g t h e b e h a v i o u r o f Co and N i d u r i n g metamorphism. Four sedimentary  r o c k u n i t s were i n v e s t i g a t e d i n s e v e r a l metamorphic  zones r a n g i n g from c h l o r i t e - s e r i c i t e ( g r e e n s c h i s t f a c i e s ) kyanite-almandine  (amphibolite f a c i e s ) .  through  "Concentrator" minerals f o r  Co a r e c h l o r i t e and c h l o r i t o i d i n l o w e r grade metamorphic r o c k s and b i o t i t e and s t a u r o l i t e i n h i g h e r grade r o c k s . lusakite i spossible.)  (Co-rich staurolite-  N i i s c o n c e n t r a t e d i n c h l o r i t e and b i o t i t e .  There i s a c l o s e c o r r e l a t i o n o f N i and Co w i t h F e ^ f a l t h o u g h no c o r r e l a t i o n e x i s t s w i t h FeO o r MgO c o n t e n t o f t h e r o c k .  The  a c c u m u l a t i o n o f t h e s e m i n o r elements i n c o n c e n t r a t o r m i n e r a l s i s s u p p o r t e d by marked d i f f e r e n c e s i n p a r t i t i o n c o e f f i c i e n t s between "most and l e a s t - r i c h " m i n e r a l phases. metamorphic f a c i e s b o u n d a r i e s  Changes i n parageneses a t  a l s o r e s u l t s i n marked changes i n  c o n c e n t r a t i o n s and p a r t i t i o n - c o e f f i c i e n t s o f minor  Thus i t i s apparent  elements.  t h a t Co and N i , a s w e l l a s many o t h e r  minor elements a r e l i k e l y t o d i f f u s e from o r i g i n a l m i n e r a l g r a i n s i n t o new m i n e r a l s formed d u r i n g metamorphism, a l t h o u g h d i s t a n c e s o f  d i f f u s i o n are probably small.  M i n o r elements appear t o a c c u m u l a t e  i n c o n c e n t r a t o r m i n e r a l s as metamorphism  progresses.  S u p p o r t i n g e v i d e n c e f o r c o n c e n t r a t i o n o f minor elements i n p y r i t e d u r i n g metamorphism i s p r o v i d e d by N i c k e l (1954)• A n a l y s i s o f b i o t i t e s i n w a l l - r o c k s c h i s t s adjacent  to quartz-  s c h e e l i t e - m o l y b d e n i t e v e i n s shows d e p l e t i o n o f Co and N i i n p y r i t i c zones ( s e e F i g u r e 35). adjacent  C o b a l t c o n t e n t o f the p y r i t e  to the v e i n s i s correspondingly  high.  94  FIGURE  35. D e p l e t i o n o f Co a n d F e i n b i o t i t e  quartz-scheelite-molybdenite (From N i c k e l , E . H . , 1 9 5 4 ) .  adjacent  veins, Michipicoten  to  area.Ont.  IV..  STATISTICAL STUDIES OF MINOR ELEMENTS IN PYRITE  INTRODUCTION I n t h i s s t u d y , p y r i t e a n a l y s e s have been c o m p i l e d p u b l i s h e d l i t e r a t u r e and from u n p u b l i s h e d p r o j e c t s undertaken ment o f Geology.  t h e s e s and  from  research,  a t the U n i v e r s i t y o f B r i t i s h Columbia  Most a n a l y s e s a r e from h y d r o t h e r m a l  Depart-  mineral  d e p o s i t s o f v a r i o u s t y p e s , a l t h o u g h a l i m i t e d number a r e from s y n g e n e t i c and metamorphosed p y r i t e b o d i e s .  Each d e p o s i t  c l a s s i f i e d as t o g e n e t i c t y p e , major m e t a l s p r e s e n t , a s s o c i a t i o n s and many o t h e r f a c t o r s .  was  igneous  This information, along  w i t h s o u r c e o f i n f o r m a t i o n and a c t u a l a n a l y t i c a l v a l u e s ,  was  punched on computer c a r d s a c c o r d i n g to the format o u t l i n e d i n Appendix I I I .  The  i n f o r m a t i o n was  treated s t a t i s t i c a l l y using  TRIP ( t r i a n g u l a r r e g r e s s i o n package) r o u t i n e s d e v e l o p e d U.B.C. computing c e n t r e ( B j e r r i n g and Seagraves,  I t was  a t the  1970).  a n t i c i p a t e d t h a t minor elements i n p y r i t e would have  l o g - n o r m a l f r e q u e n c y d i s t r i b u t i o n s ; hence a s u b - r o u t i n e was  added  to major programmes t o t r a n s f o r m raw a n a l y s e s t o l o g a r i t h m i c v a l u e s , i n o r d e r to c a l c u l a t e g e o m e t r i c  means.  U s i n g the above-mentioned TRIP computer r o u t i n e s , i t was p o s s i b l e to check s t a t i s t i c a l l y s e v e r a l t h e o r i e s and proposed by e a r l i e r m i n o r - e l e m e n t s t u d i e s . s e l e c t e d f o r study are:  problems  Problems w h i c h were  96  1) How a r e m i n o r elements d i s t r i b u t e d  (statistically) i n  pyrite? 2) Does s y n g e n e t i c p y r i t e have s i m i l a r minor-element c o n c e n t r a t i o n s to surrounding sedimentary rock? 3) Do s y n g e n e t i c and h y d r o t h e r m a l p y r i t e s d i f f e r  significantly  i n minor-element c o n t e n t ? 4) Can s y n g e n e t i c p y r i t e be d i s t i n g u i s h e d from t h a t o f " m a s s i v e s u l p h i d e " o r " s t r a t i f o r m " d e p o s i t s on t h e b a s i s o f m i n o r element c o n t e n t ? 5) Does metamorphism o f p y r i t e cause e l e m e n t a l r e d i s t r i b u t i o n ? 6) Does major element c o n t e n t o f h y d r o t h e r m a l m i n e r a l d e p o s i t s a f f e c t o r c o n t r o l minor-element c o n t e n t o f a s s o c i a t e d (contemporaneous)  pyrite?  7) Does Co and N i c o n t e n t o f p y r i t e d i s s e m i n a t e d i n i g n e o u s r o c k s r e f l e c t p a r t i t i o n o f e l e m e n t s d u r i n g magmatic d i f f e r entiation? 8) Can minor-element c o n c e n t r a t i o n s , r a t i o s o r a s s o c i a t i o n s i n p y r i t e be used i n e x p l o r a t i o n f o r m i n e r a l d e p o s i t s ?  97  B.  FREQUENCY  DTSTBTTOITTONS OF MTNOT? ELEMENTS  Most elements i n s p e c i f i c m i n e r a l s o r igneous r o c k  types  do n o t f o l l o w normal d i s t r i b u t i o n l a w s , a l t h o u g h examples o f n o r m a l d i s t r i b u t i o n o f m i n e r a l s i n r o c k s a r e known.  Ahrens (1965) has  shown t h a t S i O ^ c o n t e n t i n a c i d i c and b a s i c v o l c a n i c r o c k s f o l l o w s normal d i s t r i b u t i o n l a w s , a l t h o u g h SIO2 c o n t e n t i n g r a n i t e i s n e g a t i v e l y skewed. Most elements i n m i n e r a l s have d i s t r i b u t i o n s w h i c h a r e approximately log-normal  (Rodionov,  1965).  T h i s means l o g a r i t h m i c  transforms o f a n a l y t i c a l data are normally d i s t r i b u t e d .  Oertel  (1969) b e l i e v e s l o g - n o r m a l f r e q u e n c y d i s t r i b u t i o n s cannot be generated  i n a m i n e r a l body i n w h i c h i n i t i a l c o n c e n t r a t i o n s a r e  u n i f o r m and w h i c h i s c l o s e d t o m a t t e r .  O e r t e l c o n c l u d e s even elements  i n one m i n e r a l s p e c i e s a r e u n l i k e l y t o demonstrate l o g - n o r m a l b u t i o n , and s u g g e s t s g a m m a - d i s t r i b u t i o n s natural conditions.  distri-  a r e more l i k e l y t o s a t i s f y  However, f o r most p r a c t i c a l p u r p o s e s ,  log-normal  d i s t r i b u t i o n s are considered t o s a t i s f y n a t u r a l l y o c c u r r i n g minorelement c o n c e n t r a t i o n s .  S i n c e the g e o m e t r i c mean i s more r e p r e -  s e n t a t i v e o f t r u e mean than i s the a r i t h m e t i c mean, f o r many types o f d a t a , the l o g a r i t h m i c t r a n s f o r m has been used i n t h i s s t u d y f o r s t a t i s t i c a l a n a l y s i s o f minor-element d a t a .  Detailed investigations into s t a t i s t i c a l distributions of t r a c e elements i n p y r i t e have been c a r r i e d out by Cambel and J a r k o v s k y (1967, 1969).  Over 500 a n a l y s e s have r e v e a l e d l o g - n o r m a l  frequency  d i s t r i b u t i o n o f Mn, V, T i , Cu, and Zn i n p y r i t e .  Co and N i a r e  d i s t r i b u t e d l o g - n o r m a l l y e x c e p t i n metamorphosed a r e a s i n w h i c h r e d i s t r i b u t i o n o f t h e s e elements has o c c u r r e d .  I n the- p r e s e n t s t u d y , p y r i t e a n a l y s e s from " p o r p h y r y " t y p e d e p o s i t s and from h y d r o t h e r m a l base m e t a l d e p o s i t s o t h e r t h a n "massive s u l p h i d e " type were p r o c e s s e d w i t h a computer program d e s i g n e d by Mr. J . O r r .  The program produces r a n g e s , means,  s t a n d a r d d e v i a t i o n s , and f r e q u e n c y - d i s t r i b u t i o n h i s t o g r a m s f o r b o t h a r i t h m e t i c and l o g a r i t h m i c a l l y - t r a n s f o r m e d d a t a .  Analyses  were o b t a i n e d from the l i t e r a t u r e and from c u r r e n t r e s e a r c h p r o j e c t s o f g e o l o g y g r a d u a t e s t u d e n t s a t U.B.C.  Prom t h e r e s u l t a n t h i s t o g r a m s i t i s c o n c l u d e d t h a t a l l elements i n p y r i t e from p o r p h y r y and o t h e r h y d r o t h e r m a l d e p o s i t s have d i s t r i b u t i o n s t h a t a r e a p p r o x i m a t e l y l o g - n o r m a l .  Distributions  o f l o g - t r a n s f o r m e d d a t a from " p o r p h y r y " d e p o s i t s a r e d i s t i n c t l y c l o s e r t o normal t h a n a r e t h o s e from the h y d r o t h e r m a l d a t a , s i n c e the "hydrothermal" data r e p r e s e n t s s e v e r a l d i s c r e t e types o f d e p o s i t , each o f w h i c h has i t s own c h a r a c t e r i s t i c parameters.  distribution  Examples from b o t h " p o r p h y r y " and " h y d r o t h e r m a l v e i n  and r e p l a c e m e n t " d a t a s e t s a r e shown on the f o l l o w i n g pages ( F i g u r e s 36 to 4 1 ) .  True normal d i s t r i b u t i o n c u r v e s a r e p l o t t e d  on the f i g u r e s f o r comparison.  99 40  FIGURE 36. H i s t o g r a m o f N i i n p y r i t e from d e p o s i t s . A r i t h m e t i c data  35  "porphyry"  N = 171 X = 104 ppm S = 145 ppm I = 36 ppm  30  25 w o < H W  u Pi  20  15  10  0 '  '  '  1  L  '  <  •  '  •  '  LOWER LIMITS - PPM.  4o  r  T-  -si"  to  O r-  t— T-  co  o  to  in  r - cr\  •<t  N  Ol  \D  to  c\i to  FIGURE 37. H i s t o g r a m o f N i i n p y r i t e from d e p o s i t s . Logarithmic data  35  30  to  I—1  O  i n v o  "porphyry"  N = 171 X = 1.688 (49 ppm) S = 0.635 ppm I = 0.16 ppm  25 o  •< H 53  20  w  u  Pi  w *  15 10 Normal c u r v e drawn from calculated values.  o o  00  in  tn  o  to in  O CM  co CM  CM  LOWER LIMITS PPM (LOG)  40 r  40  35  N • 284 X = 717 ppm. S = 1258 ppm.  30  I » 314 ppm. •FIGURE 38. Histogram of Co i n hydrothermal p y r i t e . A r i t h m e t i c data  20  u o <  35  N »  30  S  25  FICURE 40..  X» e  284 507 ppm. 790 ppm.  I » 197 ppm.  Histogram of N i i n hydrothermal p y r i t e . A r i t h m e t i c data  20 15 10 -  LOWER LIMIT - PPM.  -rin>  oo <r  CO  o ft  lA n»  C7*  <T  O lO  H  n-i  n n  35  N = 284  N = 284 £ = 2.084 (121 ppm.) S = 0.956  X •» 2.149(141 ppm.)  30  S = 0.997  25  FICURE 39.  30  I " 0.25  Histogram o f Co i n hydrothermal p y r i t e . Logarithmic data.  20  I - 0.239 FIGURE 41 .  25  e w o  «  u fe  fe 15  CM  40  40  35  ha  LOWER LIMIT - PPM.  ro csl f> sO <N GO  Histogram of N i i n hydrothermal p y r i t e . Logarithmic data  20 15 _  10  •  N \  IT'-. LA  L A L A L A L A in  •"I °. 1 "1 -I ~°.  m  ' -a-  ^  o o ~ « — i c s t c s i r - i r o  LOWER LIMIT -PPM.  (LOG)  X  s •s • 1  -1  1  0 0 . - i » - i r 4 < " ^ r  s  „[7T>» LOWER LIMIT PPM. (LOG) v  " > p " v  10T  C.  SEDIMENTARY PYRITE  Conditions o f formation o f p y r i t e i n sedimentary environments have been o u t l i n e d by B e r n e r ( 1 9 7 0 ) .  Black, fine-grained  i r o n monosulphides s u c h a s FeS ( n o n - c r y s t a l l i n e ) , m a c k i n a w i t e ( t e t r a g o n a l F e ^ - x S ) , and g r e i g i t e ( c u b i c Fe^S^) a r e formed by t h e r e a c t i o n o f H^S w i t h f e r r o u s i r o n i n s o l u t i o n o r w i t h i r o n m i n e r a l s . The monosulphides a r e c o n v e r t e d t o d i s u l p h i d e s by o x i d a t i o n w i t h e l e m e n t a l s u l p h u r , w h i c h p r o b a b l y o r i g i n a t e s from t h e o x y g e n a t i o n o f R ^ S - r i c h deep w a t e r by m i x i n g a t t h e s u r f a c e .  Organic matter i s  n e c e s s a r y as an energy s o u r c e f o r t h e b a c t e r i a l c o n v e r s i o n o f d i s s o l v e d s u l p h a t e t o rL^S, and B e r n e r ' s r e s e a r c h has shown t h a t t h e e x t e n t o f p y r i t i z a t i o n o f sediments i s p r o p o r t i o n a l t o o r g a n i c c a r b o n c o n t e n t o f t h e sediment.  F a c t o r s w h i c h a f f e c t t h e minor-element c o n c e n t r a t i o n s i n sedimentary p y r i t e a r e :  ( a ) minor elements a s s o c i a t e d w i t h  detrital  o r c h e m i c a l l y - p r e c i p i t a t e d i r o n m i n e r a l s ; t h e s e minor elements may f o l l o w i r o n i n t h e f o r m a t i o n o f m o n o s u l p h i d e s ; ( b ) t h e minor  element  c o n t e n t o f organisms w h i c h decay i n s e d i m e n t s ; ( c ) t h e r e l e a s e o r a c c e p t a n c e o f minor elements by i r o n monosulphides upon c o n v e r s i o n to p y r i t e .  M i t c h e l l (19)68) proposes t h a t p u r i f i c a t i o n may r e s u l t  from t h i s c o n v e r s i o n , b u t i t i s p o s s i b l e t h a t t r a c e  impurities,could  be t r a p p e d a t g r a i n b o u n d a r i e s o r l a t t i c e d e f e c t s d u r i n g t h e t r a n s formation.  R e l a t i v e l y few a n a l y s e s o f p y r i t e from normal s e d i m e n t a r y r o c k s a r e a v a i l a b l e , and i n t h i s s t u d y , " s e d i m e n t a r y e x h a l a t i v e "  102  t y p e p y r i t e s u c h a s t h a t from S t e e p r o c k Lake was grouped w i t h "syngenetic" p y r i t e , since conditions o f formation f o r both types were p r o b a b l y s i m i l a r .  Sample l o c a l i t i e s and mean c o n t e n t s o f  minor elements a r e l i s t e d i n the appendix.  A s c a t t e r diagram o f  Co and:Ni c o n t e n t i n s e d i m e n t a r y p y r i t e i s g i v e n on t h e f o l l o w i n g page ( F i g u r e 42).  Maximum Co a n d N i  c o n t e n t s a r e 1000 ppm, and  v a l u e s f o r t h e Co/Ni r a t i o l i e between 1 : 8  and 8 : 1, a narrow  r a n g e compared t o t h e same r a t i o f o r samples o f h y d r o t h e r m a l (see  page 131).  Average  Co and N i c o n t e n t s f o r s e d i m e n t a r y  pyrite  pyrite  are:  Geo. Mean  S.D.  Co  41 ppm  .813  Ni  65 ppm  .672 .  Co/Ni  0.63  The average Co/Ni r a t i o (0.63) i s comparable  t o t h a t from  r o c k s ( a p p r o x . 0.50, Rankama and Sahama, 1950).  sedimentary  The c o r r e l a t i o n  c o e f f i c i e n t f o r Co and N i i n s e d i m e n t a r y p y r i t e i s 0.93; a v e r y strong c o r r e l a t i o n i s present.  F i g u r e s 43 and 44 compare Co and  N i c o n t e n t s i n sediments and c o n t a i n e d s u l p h i d e s i n Red Sea sediments.  I t i s e v i d e n t t h a t t h e elements have s i m i l a r r a n g e s o f  c o n c e n t r a t i o n s i n b o t h sediment and s u l p h i d e ; the Co/Ni  ratios  c o r r e l a t e w e l l , b u t Co i s s l i g h t l y c o n c e n t r a t e d r e l a t i v e t o N i i n . the s u l p h i d e f r a c t i o n .  I n summation, Co and N i c o n c e n t r a t i o n s i n  sedimentary p y r i t e are c o n t r o l l e d ,  a t l e a s t i n p a r t , by t h e i r  c o n c e n t r a t i o n s i n adjacent sediments.  1000  3  4  5 6 7 8 ° 1 0  5  NICKEL  S  *  J 6 7 8 9  ppm  100  3  4 i 6 7 8»1000  o  105  5r  / •  ••  •  /  /  /  s  /  M  w a  2  / /  ss —  0  0'  o  0  !  2  Co/Ni RATIO IN SULPHIDE. FIGURE 44. Comparison of Co/Ni ratios i n sediments and associated sulphides of Red Sea deposits (From Degens and Ross, ed., 1969).  106  T - t e s t d a t a show g e o m e t r i c means o f Co and N i c o n t e n t s i n s y n g e n e t i c p y r i t e a r e s i g n i f i c a n t l y l o w e r t h a n those o f h y d r o t h e r m a l and v o l c a n i c e x h a l a t i v e ( o r massive s u l p h i d e ) p y r i t e (see T a b l e - S c a t t e r diagrams show the c o n t r a s t between " s y n g e n e t i c " and • s u l p h i d e " p y r i t e more c l e a r l y ( F i g u r e 45).  22).  "massive  Massive s u l p h i d e p y r i t e s  a r e d e s c r i b e d i n d e t a i l under a s e p a r a t e h e a d i n g (page  110).  I t s h o u l d be n o t e d t h a t numerous h y d r o t h e r m a l p y r i t e s have Co/Ni r a t i o s l e s s t h a n 1.0;  t h u s low Co/Ni r a t i o s a r e not n e c e s s a r i l y  i n d i c a t i v e of syngenetic o r i g i n f o r p y r i t e .  Also, syngenetic p y r i t e  from d e p o s i t s r i c h i n Fe ( e . g . , S t e e p r o c k L a k e ) , Mn  (manganese  s h a l e s ) and Cu ( R h o d e s i a n copper b e l t ) a l l have Co/Ni r a t i o s g r e a t e r t h a n 1.0,  i l l u s t r a t i n g the s c a v e n g i n g e f f e c t o f Fe and Mn o x i d e s ,  ..and the enrichment o f Co when a s s o c i a t e d w i t h Cu. Frequency d i s t r i b u t i o n s o f Co and N i i n s e d i m e n t a r y p y r i t e a r e p r o b a b l y l o g - n o r m a l i n c h a r a c t e r ( F i g u r e s 46 t o be b i m o d a l .  t o 49 )» but  T h i s p r o b a b l y i s caused by inhomogeneous d a t a  ( s e d i m e n t a r y p y r i t e s from the Rosebery. a r e a , Tasmania, a r e a b n o r m a l l y poor i n Co and N i ) .  appear  TABLE 22  COMPARISON: OP MEANS, STANDARD DEVIATIONS AND T-TEST VALUES FOR "SYNGENETIC," "HYDROTHERMAL," AND "MASSIVE SULPHIDE" PYRITES  Means and S t a n d a r d D e v i a t i o n s ( L o g a r i t h m i c )  Syngenetic  Hydrothermal  Massive Sulphide  Co  41 ppm (.813)  141 ppm (.996)  486 (.366)  Ni  65 ppm (.672)  121 ppm (.954)  56 (.600)  Co/Ni  0.63  1.17  8.70  T-Test V a l u e s  Syngenetic-Hydrothermal  Syngenetic-Massive Sulphide  Co  10.33*  Ni  5.67*  9.7*  Co/Ni  6.39*  12.36*  • s i g n i f i c a n t a t 95$ c o n f i d e n c e l e v e l .  22.76*  35 -  N «  35 -  N » 74  30  S • 0,807 ppm.  74  K » 1.534 ppm.  K •  107 ppm.  S •  167 ppm. *  I "  42 ppm.  I " 0.202 p p n . 25  FICURE 4 6 . Histogram o f Co i n p y r i t e sedimentary r o c k s . A r i t h m e t i c data  from  FICURE 4 7 .  pyrite from  u  Histogram of Co i n sedimentary r o c k s . L o R a r i t h n i c data  3  .  10  LOWER LIMIT - PPM.  n .. i** O ,-t  O ON  It*.  LOWER LIMIT PPM. (LOG)  "»  00 <H tA <7 CM m ^  •  *  • »  O O O r H r t O i r s J r M 40  35  N = 74  -  N = 74  X =172 ppm. S = 236 ppm. 1-59 25 -  X" =  I • 0.175 p p a .  ppm.  FICURE 48. Histogram o f N i i n p y r i t e sedimentary r o c k s . Arithmetic data  1.777 ppm.  S •» 0.698 p p a .  30  FICURE 49.  25 from 20  Histogram of N i i n p y r i t e sedimentary r o c k s . L o g a r i t h m i c data  from  15  10  LOWER L I M I T - P P M .  mn n ;.n  LOWER LIMIT PPM. O O O r t r H f H f N i r s t  IN  (LOO)  O  110  D.  MASSIVE SULPHIDE AND  VOLCANIC EXHALATIVE MINERAL DEPOSITS  P y r i t e a n a l y s e s from m a s s i v e - s u l p h i d e  replacement d e p o s i t s  and s t r a t i f o r m " v o l c a n i c - e x h a l a t i v e " d e p o s i t s were grouped for  together  s t a t i s t i c a l a n a l y s i s because o f t h e i r s i m i l a r g e o l o g i c a l e n v i r o n -  ment, m i n e r a l o g y ,  and m i n o r element c o n t e n t i n p y r i t e .  r e p l a c e m e n t d e p o s i t s such as Noranda, Matagami, and a t Manitouwadge, o c c u r as l e n s - s h a p e d  Typical  the Geco d e p o s i t  ore b o d i e s r o u g h l y  conformable  to e n c l o s i n g s t r a t a w h i c h a r e g e n e r a l l y a c i d i c t o i n t e r m e d i a t e v o l canics or p y r o c l a s t i c s .  Other r e p l a c e m e n t d e p o s i t s s u c h as P l i n - P l o n  o r Campbell-Chibougamau a r e c o n f i n e d t o s h e a r zones, w h i c h commonly p a r a l l e l enclosing strata.  Examples o f t r u e s t r a t i f o r m v o l c a n i c  e x h a l a t i v e d e p o s i t s a r e the Pb-Zn-Cu d e p o s i t s o f a r e a , New  Bathurst-Newcastle  B r u n s w i c k ( S u t h e r l a n d , 1967), the p y r i t e d e p o s i t s o f  Cyprus ( J o h n s o n , 1970), and p o s s i b l y the Pb-Zn-Cu d e p o s i t s o f A n v i l a r e a , Y.T.  ( a l t h o u g h the l a t t e r d e p o s i t s a r e c o n s i d e r e d o f r e p l a c e -  ment o r i g i n by Templeman-Kluit, 1968).  A s c a t t e r diagram comparing Co and N i c o n t e n t o f s e d i m e n t a r y and v o l c a n i c e x h a l a t i v e massive s u l p h i d e p y r i t e ( F i g u r e 45) r e v e a l e d t h a t s y n g e n e t i c p y r i t e g e n e r a l l y has much l o w e r r a t i o s as a r e s u l t o f l o w e r Co c o n t e n t and h i g h e r N i  has  Co/Ni  content.  M a s s i v e s u l p h i d e p y r i t e i s c h a r a c t e r i z e d by a Co/Ni r a t i o between 5.0  and 50.0,  t h a n 100 ppm.  Co u s u a l l y g r e a t e r than 100 ppm, The  f i e l d occupied  p l o t i s o u t l i n e d on F i g u r e  63.  and N i u s u a l l y l e s s  by most samples on a Co-Ni s c a t t e r  111  The c o r r e l a t i o n between Co and N i i s n o t pronounced  compared  t o t h a t o f s e d i m e n t a r y p y r i t e ( s e e page 132).  A l i s t i n g o f mean m i n o r element c o n c e n t r a t i o n s and s t a n d a r d d e v i a t i o n s f o r p y r i t e from "massive s u l p h i d e " d e p o s i t s i s g i v e n i n the a p p e n d i x .  Elements w h i c h appear t o have promise a s " i n d i c a t o r s "  f o r t h i s t y p e o f d e p o s i t a r e t i n ( e s t i m a t e d mean 200 ppm), s i l v e r ( e s t i m a t e d mean 35 ppm), and s e l e n i u m  ( e s t i m a t e d mean 250 ppm).  112  E.  EFFECTS OF METAMORPHISM ON  The  PYRITE  b e h a v i o u r o f m i n o r e l e m e n t s i n p y r i t e d u r i n g metamorphism  i s uncertain.  M i t c h e l l (1968) found t h a t t r a c e elements i n metamorphic  p y r i t e (9 samples) were s i m i l a r t o those o f h y d r o t h e r m a l p y r i t e and c o n c l u d e d t h a t l i t t l e change i n m i n o r element c o n t e n t metamorphism.  occurs  during  S i n c e the metamorphosed samples s t u d i e d were from  d i f f e r e n t g e o l o g i c a l e n v i r o n m e n t s and g e o g r a p h i c a l  a r e a s t h a n the  h y d r o t h e r m a l p y r i t e s , h i s c o n c l u s i o n can h a r d l y be t a k e n s e r i o u s l y . Cambel and  (1966, 1968)  Jarkovsky  r e p o r t t h a t h i g h l y metamorphosed  p y r i t e from the L i t t l e C a r p a t h i a n s  c o n t a i n s much more c o b a l t t h a n  l e s s h i g h l y metamorphosed o r e s (see F i g u r e s 50 and 51)• p e r f o r m e d on the a n a l y s e s  support t h e i r conclusions  T-tests 23).  (Table  I n a d d i t i o n t h e y r e p o r t t h a t d u r i n g metamorphic c o n v e r s i o n t o p y r r h o t i t e , Co r e m a i n s c o n c e n t r a t e d becomes c o n c e n t r a t e d (Cambel and log-normally  i n the p y r i t e , w h i l e  i n the p y r r h o t i t e .  Jarkovsky,  1966)  i t was  of p y r i t e  I n an e a r l i e r  Ni  study  o b s e r v e d t h a t Co and N i  are  d i s t r i b u t e d i n p y r i t e from unmetamorphosed d e p o s i t s ,  but d u r i n g metamorphism the m i n o r e l e m e n t s a r e homogenized, g i v i n g an " a r i t h m e t i c ' - n o r m a l  distribution.  I n a s t u d y o f the New  Calumet d e p o s i t , S a n g s t e r (1967)  n o t e d t h a t the Co and N i c o n t e n t  o f p y r r h o t i t e and  the Co  content  o f • s p h a l e r i t e v a r y i n v e r s e l y w i t h the amount o f p y r r h o t i t e i n the o r e body.  S a n g s t e r assumes t h a t p y r i t e was  metamorphism i r o n s u l p h i d e , and n i c k e l and  the dominant p r e -  p r o p o s e s t h a t d u r i n g metamorphism  c o b a l t were r e d i s t r i b u t e d t o p y r r h o t i t e and s p h a l e r i t e ,  FIGURE 50. C o b a l t and n i c k e l c o n t e n t s o f p y r i t e s from main types of o r e d e p o s i t s i n the L i t t l e C a r p a t h i a n H t s . U.S.S.R. (From Cambel and J a r k o v s k y , 1969)  10°% «•  2 f  f 6 4 !  W' 8 e  Hi  i  il I !il!iiH!t? li!:J!  Hi!  « 2 10 m J  ill  ;i ilii ii ! i i Iii!  i  iii II  i  jjisiiij i  i!!{!  !!i iiili  liniuilliiiililiiii!! Ii! pip!! .ilti Si Hi!! mM  IIP  ill if iiiiili I! i i ilil iti  tii hi Hi iii i  FIGURE 51, C o b a l t and n i c k e l c o n t e n t s of p y r i t e s from h i g h l y metamorphosed o r e s from Lower C a r p a t h i a n d e p o s i t s . (From Cambel and J a r k o v s k y , 1 9 6 9 ) .  114  w i t h c r y s t a l f i e l d s t a b i l i z a t i o n energy d i f f e r e n c e s and Co  tetrahedral  i n octahedral  f i e l d s a c c o u n t i n g f o r the r e l a t i v e c o n c e n t r a t i o n o f  i n s p h a l e r i t e and  Ni i n pyrrhotite.  The  energy d i f f e r e n c e s  are  l i s t e d below.  CP.S.E. octahedral f i e l d (pyrrhotite)  C.F.S.E. tetrahedral f i e l d (sphalerite)  Cobalt  8  12  Nickel  12  8  E v i d e n c e has  been p r e s e n t e d i n a p r e v i o u s c h a p t e r f o r  metamorphic r e d i s t r i b u t i o n o f Co from b i o t i t e to p y r i t e  the  during  metamorphism ( N i c k e l , 1954). I n summary, from t r a c e - e l e m e n t p a r t i t i o n c o e f f i c i e n t t h e o r y , f r o m a c t u a l a n a l y s e s o f m i n e r a l s from metamorphic assemblages,  and  from observed f i e l d r e l a t i o n s h i p s , i t a p p e a r s t h a t m i n o r e l e m e n t s ( i n c l u d i n g o r e - f o r m i n g e l e m e n t s ) can  be r e l e a s e d from  m i n e r a l assemblages d u r i n g metamorphism and co-existing  may  silicate  be a c c e p t e d  by  o r newly-formed p y r i t e .  Metamorphosed -pyrite  S e v e r a l s e t s o f a n a l y s e s o f metamorphosed p y r i t e were statistically cobalt  and  to check the  treated  t h e o r y t h a t metamorphism r e d i s t r i b u t e s  nickel in pyrite.  115  The p y r i t i c d e p o s i t s s t u d i e d by Cambel and J a r k o v s k y i n the. L i t t l e C a r p a t h i a n mountains o f C z e c h o s l o v a k i a .  occur  A l l deposits  a r e s i t u a t e d i n a g e o s y n c l i n a l zone and a r e i n d i r e c t c o n t a c t w i t h b a s i c e x t r u s i v e , i n t r u s i v e , o r p y r o c l a s t i c r o c k s i n t e r p r e t e d as "ophioliteso"  The p y r i t e o c c u r s i n p y r o c l a s t i c and s e d i m e n t a r y  rocks  b o t h u n d e r l a i n and o v e r l a i n by "magmatogenic" a m p h i b o l i t e s w h i c h a r e metamorphosed v o l c a n i c s .  The a m p h i b o l i t e - g r a d e  r e g i o n a l metamorphism  i s c o m p l i c a t e d i n p l a c e s by c o n t a c t metamorphism produced by numerous g r a n i t i c i n t r u s i o n s i n the a r e a .  S e v e r a l t y p e s o f d e p o s i t s have  been d i s t i n g u i s h e d based on t e x t u r a l and m i n e r a l o g i c a l d i f f e r e n c e s , but p y r i t e a n a l y s e s a r e grouped as "medium" o r " h i g h grade metamorphosed" for s t a t i s t i c a l analysis.  S i m p l e p l o t s o f a n a l y s e s , s c a t t e r diagrams  and T - t e s t s show t h a t d i f f e r e n c e s i n Co and N i c o n c e n t r a t i o n s between t h e two t y p e s o f p y r i t e do e x i s t and t h a t these d i f f e r e n c e s a r e significant.  The  pages ( F i g u r e s 52  s t a t i s t i c a l t e s t s a r e i l l u s t r a t e d on the t o 60, T a b l e  following  23).  Frequency d i s t r i b u t i o n s o f Co and N i i n p y r i t e from the metamorphic grades were p l o t t e d u s i n g the h i s t o g r a m Examination  o f the medium grade h i s t o g r a m s  two  program.  ( F i g u r e s 52  t o 55")  shows  Co has a p p r o x i m a t e l o g - n o r m a l d i s t r i b u t i o n , but N i f o l l o w s a more n o r m a l d i s t r i b u t i o n ( w h i c h i s not v i s i b l y improved by t r a n s f o r m a t i o n ) . T h i s i n d i c a t e s e i t h e r ( l ) N i was  originally normally-distributed i n  t h e p y r i t e ( n o t c o n s i d e r e d l i k e l y ) , o r (2) has " n o r m a l i z e d " N i d i s t r i b u t i o n .  medium-grade metamorphism  D i s t r i b u t i o n o f these elements  i n h i g h l y metamorphosed p y r i t e i 3 r o u g h l y normal ( F i g u r e s 56  and  N o r m a l i t y i s not improved by l o g a r i t h m i c t r a n s f o r m s ( F i g u r e s 58  57). and  TABLE 23  ,  COMPARISON OP MINOR ELEMENT MEANS, STANDARD DEVIATIONS "• AND T-TEST DATA FOR METAMORPHOSED PYRITE FROM . .DEPOSITS I N THE CARPATHIAN MOUNTAINS  Medium Grade Element  ,  Co  Mean 81 ppm  S.D.(log)  H i g h Grade Mean  S.D.(log)  0.415  855 ppm  0.256  Ni  1620  0.080  564  0.256  Mn  2  0.519  6  0.690  Ti  74  0.506  67  6  0.663  5  0.820  36  0.492  6  0.699  0.05  0.343  1.5  0.322  V Mo Co/Ni  T-Value  .  D.F.  Co  vs.  Co  -14.097*  65  Ni  vs.  Ni  8.631*  29  Mh  vs.  Mn  - 2.633*  42  Ti  vs.  Ti  0.222  33  V  vs.  V.  0.029  45  Mo  vs.  Mo  5.147*  40  Co/Ni  VSo  Co/Ni  -18.178*  58  • s i g n i f i c a n t v a l u e a t 95$ c o n f i d e n c e  0.987  level  35  30  25  35 -  N <  42  %'  114 p p a .  S '  125 ppm.  I '  31 ppm.  FIGURE 52. Histogram o f Co i n p y r i t e from medium-grade metamorphic rocks A r i t h m e t i c data  20  N »  42  K »  1652 ppm.  s -'  30  I »  341 ppm. 85 ppm.  25 FICURE 54. Histogram of N i i n p y r i t e from medium-grade metamorphic r o c k s . A r i t h m e t i c data  20  10  o csi  LOWER LIMIT - PPM.  40  m oo  I A  *ff rt  r*. o csl  csi <f n ON o. r l  LOWER LIMIT PPM. 40  r  35  n  UL  o csl rv  r  35  N = 42 R = 1.909 (81.0ppm.) S=  30  0.353  30  I - 0.09  N =  42  * «•  3.209 (1618 ppn.)  S =  0.088  I " , 0.022  25  FIGURE 53.  25  20  Histogram o f Co i n p y r i t e from medium-grade metamorphic r o c k s . L o g a r i t h m i c data  20  . FICURE 55. Histogram o f N i i n p y r i t e from medium-grade metamorphic r o c k s . L o g a r i t h m i c data  15  10  10  1  :£L  LOWER LIMIT - PPM. (L00) rt  ^  i-i  fT>-n  n O rt rt  IN  LOWER 3 LIMIT A PFM. (LOG)  35  35 -  N o 26 K =  I'» 25  26 671 ppm.  S  30  S = 470 ppm.  30  N '  976 ppm.  118 ppm.  I '  25  FIGURE 56. Histogram of Co content o f p y r i t e from high-grade metamorphic r o c k s . A r i t h m e t i c data  1  428 ppm. 107 ppm.  FIGURE 58. Histogram of N l i n p y r i t e from High-grade metamorphic.rocks. A r i t h m e t i c data  20  IS  15 -  10 -  10 -  LOWER LIMIT PPM.  LOWER LIMIT PPM.  40 35  35  N = 26  30  2>  2.932  S=  .2553  N = 26 A =  I ° .062 "' FIGURE 57. Histogram o f Co content o f p y r i t e from high-grade metamorphic r o c k s . L o g a r i t h m i c data  25 20  15  10  10  CN  CN  CN  <N  «M  n  m  Histogram o f N i i n p y r i t e from high-grade metamorphic r o c k s . L o g a r i t h m i c data  20  15  LOWER LIMIT PPM. (LOC)  FICURE 59.  25 o <  2.751  S.» .2553 I - .065  30  LOWER LIMIT „ PPM, (LOG) «  „ «  „ •»  „ *  „ ^  00  /  -  o  0  /  1000  o  o o o  0  y  o/  3  /  • • •  y ^  1^4^  —  »s» y ^ ^  e  *  O 0O0O«»  e  i  i  i  i  i i i i  l  1  l  t  1 1»r  FIGURE 60. COMPARISON OF COBALT AND NICKEL CONTESTS OF PYRITES FROM MEDIUM AND HICU GRADE METAMORPHIC ROCKS IN ThE CARPATHIAN MTS. (Data: Cambel and J a r k o v s k y , 1969) 0 8  J  V,  2  3  I  4  [  I I I I I  i o78  1 Q  1 '  3  •1  3  NICKEL  I1 4  I1 I1 I1 I11I I  5  6 7 JQQ  ppm  1 '  2  II  3  I  4  1 11 1 T, i1l 1l '  5 47 ,  0  0  B.Price 0  HIGH GRADE DEPOSITS MEDIUM GRADE DEPOSITS 1971  120  59)•  I t i s concluded  t h a t Co and N i i n h i g h - g r a d e  p y r i t e from the C z e c h o s l o v a k i a n  metamorphic  d e p o s i t s have been r e d i s t r i b u t e d .  H i s t o g r a m s were c o n s t r u c t e d f o r Co, N i , and Mn i n p y r i t e from Pb-Zn-Cu d e p o s i t s o f the A n v i l a r e a ( S t o c k w e l l , have been s u b j e c t e d t o medium to h i g h - g r a d e and f r e q u e n c y d i s t r i b u t i o n h i s t o g r a m s r e d i s t r i b u t i o n o f Co and N i .  1970).  The  deposits  r e g i o n a l metamorphism  i n d i c a t e d p o s s i b l e metamorphic  However the number o f samples  l i m i t e d and r e l i a b i l i t y o f a n a l y s i s was  was  d o u b t f u l , so the h i s t o g r a m s ,  a r e not i n c l u d e d i n t h i s d i s c u s s i o n .  A problem a r i s e s i n i n t e r p r e t a t i o n o f Co-Ni r e l a t i o n s h i p s i n p y r i t e from v o l c a n i c e x h a l a t i v e d e p o s i t s w h i c h have been s u b j e c t e d t o . r e g i o n a l metamorphism.  The  o n l y c l u e as t o the e f f e c t s o f meta-  morphism i s the f r e q u e n c y d i s t r i b u t i o n o f minor e l e m e n t s (see page but t h i s i n f o r m a t i o n , w i l l not e n a b l e one Co c o n c e n t r a t i o n s i n the p y r i t e .  t o e s t i m a t e the  112).  original  Co-Ni r e l a t i o n s h i p s between meta-  morphosed and unmetamorphosed v o l c a n i c e x h a l a t i v e p y r i t e s a r e i l l u s t r a t e d by means o f a s c a t t e r d i a g r a m i n F i g u r e 6 i .  Steeprock  Lake p y r i t e , a l t h o u g h c l a s s i f i e d i n t h i s s t u d y as " s e d i m e n t a r y " t i v e i n n a t u r e , does have v o l c a n i c a f f i l i a t i o n s and might be as an example o f an unmetamorphosed " C y p r u s " p y r i t i c d e p o s i t .  exhala-  regarded I f so,  then low grade metamorphism such as o c c u r s i n the Cyprus d e p o s i t s may  be s u f f i c i e n t to i n c r e a s e Co c o n c e n t r a t i o n s i n p y r i t e .  The h i g h Co c o n c e n t r a t i o n s and Co/Ni r a t i o s i n s e d i m e n t s and p y r i t e from the R h o d e s i a n copper b e l t may metamorphic r e d i s t r i b u t i o n .  be e x p l a i n e d by h i g h grade  F i g u r e 62 i l l u s t r a t e s the i n c r e a s e i n  UPPER SCALE: Co/Ni RATIO IN PYRITE. LOWER SCALE: Co CONTENT IN PYRITE. 200  10  — r  1—i—r i i i i i :  A.6 o'° A.6  I I I M  1  ~r  10'  I  5 ,'vein., 1' pyrite  100  10.  1  10  i  r  I I I 11  I0 ppm 4  J  Q4S0 Q300  \  300  \ \  A 400  A.5  \  \ \.  A .9  w  \  o  53  500  o  id  o  1.5  \  \ QIAO  \\  N  0.1200^  A2.o N  600  A  \  9.4  S  O'osoo *^O.12000 -granite  A 700  2.8 Sill  A  58.5 sill  800  A 10.7 FIGURE 62. V a r i a t i o n o f Co and Co/Ni i n p y r i t e w i t h d e p t h i n R h o d e s i a n copper d e p o s i t s (from D a r n e l e y , 1962;  Co c o n c e n t r a t i o n i n p y r i t e w i t h d e p t h i n two s e p a r a t e Cu-Co d e p o s i t s i n R h o d e s i a ( b a r n l e y , 1966).  The h i g h c o n c e n t r a t i o n s i n  p y r i t e from basement g r a n i t e s s u g g e s t s t h a t r e m o b i l i z a t i o n o f components d u r i n g metamorphism may have l e d t o the t r a n s f e r o f Co and p o s s i b l y o t h e r elements t o " c o n c e n t r a t o r " m i n e r a l s such as pyrite.  HYDROTHERMAL PYRITES  S e v e r a l hundred p y r i t e a n a l y s e s from h y d r o t h e r m a l d e p o s i t s a r e recorded  mineral  i n t h e l i t e r a t u r e ; most o f t h e s e have been  done by e m i s s i o n s p e c t r o g r a p h i c methods, and r a r e l y a r e enough a n a l y s e s a v a i l a b l e from one g e o g r a p h i c a l a r e a t o i n v e s t i g a t e thoroughly the genetic implications  o f m i n o r element  relationships.  The m a j o r i t y o f p y r i t e s a n a l y z e d i n t h e l i t e r a t u r e a r e from d e p o s i t s w h i c h c a n be c a t e g o r i z e d a s f o l l o w s : 1.  Cu-Mo " p o r p h y r y "  deposits  2.  W-Sn-Mo v e i n s  3.  Cu(Co,Ag) v e i n s  4.  Pb-Zn-(Cu,Ag) v e i n s o r r e p l a c e m e n t s  5.  Au-Quartz v e i n s  6.  Massive s u l p h i d e replacement o r s t r a t i f o r m d e p o s i t s .  These c a t e g o r i e s w i l l be examined i n more d e t a i l i n t h e subsequent pages.  Porphyry  Cu-Mo D e p o s i t s  The  term " p o r p h y r y "  i s an a r t i f i c i a l term o f c l a s s i f i c a t i o n ,  u s e d t o d e s c r i b e low-grade copper and/or molybdenum d e p o s i t s , g e n e r a l l y present as d i s s e m i n a t i o n s o r stockwork v e i n s a s s o c i a t e d with a c i d i c to intermediate p o r p h y r i t i c i n t r u s i v e bodies. a n a l y s e s from f i v e " p o r p h y r y "  Pyrite  d e p o s i t s from t h e C o r d i l l e r a n  have been completed by g r a d u a t e s t u d e n t s and f a c u l t y o f t h e  region  125  U n i v e r s i t y o f B r i t i s h Columbia Geology Department. and s o u r c e s o f i n f o r m a t i o n a r e l i s t e d  Deposits studied  below.  Deposit  Metals  Source  B e r g , B.C.  Mo-Cu  P a n t e l e y e v , A. (Ph.D. i n p r o g . )  85  Spec.  Dawson, K. (Ph.D. i n p r o g . )  67  Spec.  13  A.A.  .25  A.A.  6  A.A.  Endako, B.C.  Mo  Samples  C a s i n o , Y.T.  Cu-Mo  Godwin, C. (Ph.D. i n p r o g . )  T c h e n t l o L k , B.C.  Cu-Mo  S i n c l a i r , A.J. (Pers. r e s . )  -Molymine, B.C.  Mo  Price, B.J. (M.Sc. i n p r o g . )  A n a l , method  Means and s t a n d a r d d e v i a t i o n s f o r elements a n a l y z e d a r e g i v e n i n T a b l e 25.  I n g e n e r a l , Co/Ni r a t i o s a r e g r e a t e r t h a n 1.0; t h e  s m a l l e r d e p o s i t s , T c h e n t l o Lake and Molymine, have mean Co-Ni r a t i o s o f 31 and 27 r e s p e c t i v e l y , b u t l a r g e r d e p o s i t s have r a t i o s r a n g i n g from 2.7 t o 5.7.  Most o f t h e m i n o r e l e m e n t s a n a l y z e d a r e p r e s e n t i n  low c o n c e n t r a t i o n s , compared t o c o n c e n t r a t i o n s i n p y r i t e s from v e i n and r e p l a c e m e n t d e p o s i t s . o T i - t e s t s showed Co c o n t e n t i n p y r i t e from m a j o r d e p o s i t s , B e r g , Endako, and C a s i n o t o be s t a t i s t i c a l l y i d e n t i c a l , a l t h o u g h o t h e r elements show c o n s i d e r a b l e v a r i a t i o n . D i v i s i o n o f B e r g a n a l y s e s i n t o two g r o u p s , " i n t r u s i v e " and " h o r n f e l s " p y r i t e s , and t e s t i n g o f g e o m e t r i c means f o r a l l e l e m e n t s w i t h T - t e s t s , r e v e a l e d no s i g n i f i c a n t d i f f e r e n c e s between t h e two groups ( s e e T a b l e 24).  However, f u r t h e r c l a s s i f i c a t i o n o f samples a c c o r d i n g  t o m i n e r a l o g i c a l a s s o c i a t i o n and v e i n t y p e s r e s u l t s i n r e c o g n i z a b l e  TABLE 24 COMPARISON OF MINOR ELEMENTS I N PYRITE FROM THE BERG AND ENDAKO "PORPHYRY" DEPOSITS  Element  Berg Hornfels S.D.do*)  Mean Co  ( .716)  210 ppm  Berg  Endako  Intrusion  Mean  S.D.(log)  242 ppm  Mean  ( .448)  S.D.(lo  164 ppm  (.362)  Ni  77  ( .644)  89  ( .398)  29  (.644)  Mn  4  ( .602)  4  ( .653)  25  (.699)  Ti  368  02479  (.519)  Mo  (1.114)  650  (1.246)  58  ( .568)  . 48  ( .432)  18  (.634)  Cu  1413  ( .898)  1067  ( .839)  164  (.398)  Pb  49  ( .519)  45  ( .800)  Zn  43  ( .492)  47  ( .813)  Ag  7.5  As  13  Bi  5  Co/Ni  21  ( .432)  8.0  ( .580)  (1.452)  6  0.284)  n.a.  ( .623)  5.5  ( .692)  7  2.72  Berg Deposit:  2.8  T-Value  D.F. -  Co  vs.  Co  0.486  83  Ni  vs.  Ni  0.544  82  Mn  . vs.  Mn  0.044  72  Ti  vs.  Ti  0.937  72  Mo  vs.  Mo  -0.771  84  (.301) —  .  (.833) 5.55  "Hornfels" Pyrite v s . "Intrusion " Pyrite  Element  (.544)  1.9  2.73  (.682)  TABLE 24  (Continued)  COMPARISON OP-MINOR ELEMENTS I N PYRITE FROM THE BERG AND ENDAKO "PORPHYRY" DEPOSITS  Berg Deposit:  "Hornfels" Pyrite vs. "Intrusion"  Element  T-Value  Pyrite  (Continued)  D.F.  Cu  vs.  Cu  -0.649  78  Pb  vs.  Pb  -0.202  56  Zn  vs.  Zn  0.262  53  Ag  vs.  Ag  0.250  62  As  vs.  As  -1.100  80  Bi  vs.  Bi  0.399  75  B e r g P v r i t e vs. Endako P v r i t e Element  T-Value  D.F  1.929  61  - Ni  4.814*  99  vs.  Mn  -5.966*  76  Ti  vs.  Ti  -2.607*  41  Cu  vs.  Cu  5.5H*  44  Pb  vs.  Pb  7.682*  62  Zn  vs.  Zn  2.289*  52  Ag  vs.  Ag  5.999*  46  Bi  vs.  Bi  Co  vs.  Co  Ni  vs.  Mn  -0.823  * S i g n i f i c a n t a t 95$ c o n f i d e n c e l e v e l 0 = contaminated  85  128  minor-element r e l a t i o n s h i p s  ( P a n t e l e y e v , 1971, p e r s .  comm.).  C o r r e l a t i o n m a t r i c e s f o r b o t h groups o f d a t a show r e c o g n i z a b l e differences.  P o s i t i v e inter-element correlations  from the quartz-monzonite  i n the p y r i t e  a r e p r e s e n t between the f o l l o w i n g  Mn : Zn, Mo : Ag, Cu : Ag, Pb : Ag, Pb : Zn.  elements:  I n t h e h o r n f e l s zone  Co : N i , Pb : Zn, Mo : Cu, and B i : Ag have s i g n i f i c a n t c o r r e l a t i o n coefficients.  The a n a l y s e s w i l l n o t be d i s c u s s e d f u r t h e r , as  A. P a n t e l e y e v w i l l be c o v e r i n g t h e t o p i c i n g r e a t e r d e t a i l  (Ph.D.  thesis i n progress).  Factor analysis  on p y r i t e a n a l y s e s from Endako d e p o s i t have  r e v e a l e d s p e c i f i c e l e m e n t a l f a c t o r s c h a r a c t e r i s t i c o f t h e o r e zone and the s u r r o u n d i n g b a r r e n p y r i t i c zone (K. Dawson, Ph.D. t h e s i s , i n progress).  C o r r e l a t i o n matrices prepared  by t h e w r i t e r from Dawson's  data.show mutual c o r r e l a t i o n between N i , Mn, T i , and Sn. t h r e e elements thus a f f e c t Co/Ni r a t i o s .  The l a t t e r ,  The c o r r e l a t i o n s may r e s u l t  f r o m c o n t a m i n a t i o n o f t h e p y r i t e by one o r more m i n e r a l phases c o n t a i n i n g t h e l i s t e d e l e m e n t s , such as m a g n e t i t e - i l m e n i t e o r p o s s i b l y rutile.  Some o f t h e p y r i t e may have formed by s u l p h i d i z a t i o n o f s u c h  ferride-element r i c h minerals.  P y r i t e s from t h e B e r g d e p o s i t  also  contain high concentrations of T i .  Vague z o n a t i o n i n minor e l e m e n t s i n p y r i t e from t h e T c h e n t l o Lake d e p o s i t  was n o t e d by S i n c l a i r (1971, p e r s o n a l r e s e a r c h ) .  c e n t r a l p a r t o f the i n t r u s i v e i s c h a r a c t e r i z e d Co/Ni v a l u e s and low Mn, Zn, and Cu c o n t e n t s .  The  by p y r i t e w i t h h i g h  Mean v a l u e s f o r elements i n a l l " p o r p h y r y " p y r i t e s a r e l i s t e d i n T a b l e 25*  D i s p e r s i o n o f v a l u e s from t h e i r r e s p e c t i v e means i s  s u r p r i s i n g l y low f o r most elements e x c e p t Cu, Zn, and A s , which a r e p r o b a b l y p r e s e n t as s u l p h i d e m i c r o i n c l u s i o n s .  Normal V e i n and Replacement D e p o s i t s P y r i t e from t h e f o l l o w i n g f o u r c a t e g o r i e s o f h y d r o t h e r m a l v e i n and replacement d e p o s i t s were compared  statistically.  a.  V-Sn-Mo v e i n s  84 a n a l y s e s  b.  Cu-(Ag,Co) v e i n s  31 a n a l y s e s  c.  Pb-Zn-Ag-(Cu) v e i n s and r e p l a c e m e n t s 109 a n a l y s e s  d.  Au-Quartz v e i n s  ..57 a n a l y s e s  A t a b u l a t i o n o f d e p o s i t s , w i t h means and s t a n d a r d d e v i a t i o n s f o r elements determined i s g i v e n i n the appendix.  T a b l e 26, w h i c h shows  o v e r a l l means and s t a n d a r d d e v i a t i o n s appears on page 131. the  Since  "spectrum" o f elements d e t e r m i n e d v a r i e s c o n s i d e r a b l y between  d e p o s i t s , o n l y Co and N i a r e d i s c u s s e d i n t h e . f o l l o w i n g  statistical  treatment.  Loftus-Hills  and Solomon (1968) proposed t h a t p y r i t e from  copper d e p o s i t s a s s o c i a t e d w i t h v o l c a n i s m may c o n t a i n h i g h e r conc e n t r a t i o n s o f c o b a l t t h a n p y r i t e from l e a d - z i n c d e p o s i t s i n t h e same g e o l o g i c a l environment and show e v i d e n c e from Tasmanian d e p o s i t s t o s u p p o r t t h e i r c o n c l u s i o n s ( s e e F i g u r e 75).  Other a u t h o r s  have suggested t h a t major m e t a l s p r e s e n t i n h y d r o t h e r m a l d e p o s i t s  TABLE 25 MINOR ELEMENT DATA - PORPHYRY PYRITES Low  Mean  S.D. ( l o g )  Element  No.  High  Co  171  1605 ppm  Ni  171  925  0  49  .6335  Mn  122  240  0  17  .6435  Ti  contaminated  V  i n s u f f i c i e n t data  Cr  i n s u f f i c i e n t data  2 ppm  204 ppm  .4914  Sn  66  122  2  25  .3979  Ko.  86  2000  13  53  .5185  Cu  159  10000  6  514  .8195  Pb  109  1200  0  41  .6021  Zn  156  10000  0  33  .5911  Ag  147  130  0.5  4.4  • 5185  Au  i n s u f f i c i e n t data  As  29  15000  300  760  .3617  Sb  2  45  37  41  .0607  Bi  100  5000  0  16  .6021  \  TABLE 26 MINOR ELEMENT DATA - HYDROTHERMAL VEIN AND REPLACEMENT PYRITE  Element  No.  Co  284  Ni  284  Mn  High 10000 ppm  Low  Mean  S.D. ( l  0 ppm  141 ppm  .9956  6000  0  121  .9542  134  4000  0  28  .8633  Ti  59  3000  15  82  .4771  V  21  100  2  15  .6532  Cr  57  300  0  15  .6990  Mo  18  100  2  28  .5051  Sn  112  16000  0  64  .9031  Cu  198  30000  5  425  .7993  P  95  13000  0  321  .9345  Zn  110  40000  16  1071  .8633  Ag  47  400  16  .6812  Au  0.8  i n s u f f i c i e n t data -  As  76  .; 85000  10  1268  .7634  Sb  9  200  10  73  .3802  Bi  26  3000  10  83  .5911  0  10  .5185  20  69  .3424  Se In Tl Cd  i n s u f f i c i e n t data • 19  100  i n s u f f i c i e n t data 24.  450  132  may c o n t r o l o r a f f e c t m i n o r element c o n t e n t s o f common s u l p h i d e minerals.  To t e s t t h e s e h y p o t h e s e s , t h e w r i t e r c a r r i e d out T - t e s t s  comparing mean Co and N i c o n t e n t s i n p y r i t e from t h e f o u r c a t e g o r i e s above ( T a b l e 27),- and p l o t t e d s c a t t e r diagrams o f a n a l y s e s f o r v i s u a l comparison.  The s c a t t e r diagrams showed d i s t i n c t  fields  f o r W-Sn-Mo v e i n s and A u - q u a r t z v e i n s ( o u t l i n e d i n F i g u r e 63). V a l u e s f r o m Cu and Pb-Zn-Ag v e i n s a r e more d i s p e r s e d , and no s p e c i f i c f i e l d s c o u l d be a s s i g n e d .  From t h e diagrams i t i s a p p a r e n t t h a t  Co/Ni r a t i o s a l o n e cannot p o s s i b l y c h a r a c t e r i z e m i n e r a l d e p o s i t s ; a b s o l u t e c o n c e n t r a t i o n s and mean c o n c e n t r a t i o n s a r e more c h a r a c t e r i s t i c . B o u n d a r i e s o f the p l o t t e d Co-Ni f i e l d s a r e l i s t e d  below.  1.  W-Sn-Mo v e i n p y r i t e :  Co Ni Co/Ni  100-7000 ppm 100-10,000 ppm 5.0 ( a v g . 1.03)  2.  Au-Quartz v e i n p y r i t e :  Co Ni Co/Ni  40-1000 ppm 50-1000 ppm 2.5 ( a v g . 0.71)  I t i s o b s e r v e d from s c a t t e r diagrams and c o r r e l a t i o n m a t r i c e s t h a t t h e s e two groups o f p y r i t e w i t h t h e most d i s t i n c t Co/Ni f i e l d s and l o w e s t Co/Ni r a t i o s , a l s o have t h e h i g h e s t Co/Ni c o r r e l a t i o n coefficients.  The same r e l a t i o n s h i p i s t r u e o f s e d i m e n t a r y p y r i t e  (see F i g u r e 4 2 ) .  Thus, i n t h e d e p o s i t s s t u d i e d t h e r e a p p e a r s t o be  an i n v e r s e c o r r e l a t i o n between Co/Ni r a t i o and Co-Ni c o r r e l a t i o n coefficient.  Comparisons o f t h e two f a c t o r s a r e g i v e n below:  \  Co/Ni r a t i o  W-Sn-Mo p y r i t e Au-Qtz. " Pb-Zn-Ag "  Cu(Co,Ag)  Co-Ni c o r r . c o e f f .  1.03 0.71 1.92  0.7599 0.8238 0.4809  0.3579  "  1.94  Mass s u l p h . "  8.70  0.5380  Syng.  0.63  0.9309  "  TABLE 27 MINOR ELEMENT DATA - HYDROTHERMAL VEIN AND REPLACEMENT PYRITES EFFECT OF MAJOR ELEMENTS ON COBALT AND NICKEL CONTENTS Major elements  Cobalt.  Nickel  Co/Ni  Mean  S.D.  Mean  S.D.  Mean  w -• Sn - Mo  584 ppm  .9031  566 ppm .7482  1.03  Au  318  .6582  164  .4472  1.94  Cu - (Co,Ag)  189  .5315  269  .4624  0.71  Pb - Zn - Ag  25  1.1135  13  .9395  1.92  T-Test Values T-Value  Name  D.F.  W-Sn-Mo vs. Au Co  vs . Co  1.711  74  Ni  vs . N i  5.887*  92  -3.002*  50  Co/Ni vs . Co/Ni  W-Sn--Mo v s . Pb-Zn-Ag Co  vs . Co  '9.404*  190  Ni  vs . N i  13.505*  191  -2.244 N  176  Co/Ni vs . Co/Ni  W-Sn-Mo v s . Cu-Co-Ag Co  v s . Co  4.050*  136  Ni  vs. Ni  3.195*  138  2.182*  130  Co/Ni v s . Co/Ni  -  TABLE 27  (Continued)  MINOR ELEMENT DATA - HYDROTHERMAL VEIN AND REPLACEMENT PYRITES EFFECT OF MAJOR ELEMENTS ON COBALT AND NICKEL CONTENTS  T-Test V a l u e s ( C o n t i n u e d ) Name  T-Value  D.F.  Au v s . Pb-Zn-Ag  Co  v s . Co  6.946*  84  Ni  vs. N i  8.241*  110  Co/Ni v s . Co/Ni  0.831  81  Au v s . Cu-Co-Ag Co  v s . Co  1.656  Ni  vs. N i  -3.407*  65  4.604*  37  Co/Ni v s , Co/Ni  51  Cu-Co-Ag v s . Pb-Zn-Ag-Cu  Co  v s . Co  -6.872*  163  Ni  vs. N i  -12.076*  163  3.993*  138  Co/Ni v s . Co/Ni  * S i g n i f i c a n t a t 95$ l e v e l o f c o n f i d e n c e  1 1/  ,  1  2  I I I I I I I 3 4 5 6 7 8 9 10  I  I  I  I  2  3  4  NICKEL  ppm  I I I I 1 I 5 6 7 8 « 100  1  I  I  2  3 4 5 6 7  I  I  1  I 8°1000  I I  136  I t i s i n t e r e s t i n g t o s p e c u l a t e on t h e cause o f t h e i n v e r s e c o r r e l a tion.  V e i n s c o n t a i n i n g V/, Sn, Mo, and i n some c a s e s Au a r e t r a d i -  t i o n a l l y regarded as b e i n g o f h i g h temperature o r i g i n , b u t s e d i mentary  d e p o s i t s s u r e l y must be a t t h e lower-most  ture scale.  end o f t h e tempera-  The phenomenon.may n o t be temperature-dependent, b u t  might r e s u l t from e f f e c t s o f c o m p o s i t i o n , o r c o n c e n t r a t i o n o f o r e fluids.  S i m p l e o r e - f l u i d c o m p o s i t i o n might l e a d t o c l o s e r c o r r e l a -  t i o n between Co and N i .  I f t y p e s o f d e p o s i t s a r e r a n k e d a c c o r d i n g t o Co o r N i conc e n t r a t i o n s , t h e sequence  i s from W-Sn-Mo t h r o u g h Cu and A u t o  Pb-Zn-Ag, r o u g h l y p a r a l l e l i n g t h e normal z o n i n g , sequence w i t h i n many m i n e r a l d i s t r i c t s ( B a r n e s , 1963).  observed  A c c o r d i n g l y , t h e Co  and N i c o n t e n t s o f h y d r o t h e r m a l p y r i t e c a n be s a i d t o be q u a l i t a t i v e l y r e l a t e d t o major m e t a l s p r e s e n t i n t h e accompanying  mineralization.  A p o s s i b l e e x p l a n a t i o n f o r h i g h c o n c e n t r a t i o n s o f Co and N i i n W-Sn-Mo d e p o s i t s i s t h e f a c t t h a t r e s i d u a l ( o r p e g m a t i t i c ) f l u i d s r e s u l t i n g from magmatic d i f f e r e n t i a t i o n may be e n r i c h e d i n t h e s e elements. \  S i g n i f i c a n t l y , many o f t h e R o o i b e r g a r e a t i n l o d e s c o n s i s t  o f p e g m a t i t i c r e p l a c e m e n t vugs i n s e d i m e n t s .  I t i s u n f o r t u n a t e t h a t so few a n a l y s e s a r e a v a i l a b l e f o r e l e m e n t s o t h e r than Co and N i , bacause i t i s p o s s i b l e t h a t s u c h a s A s , Sb, B i , Se, Te, Sn, e t c . c o u l d be u s e f u l elements f o r c e r t a i n t y p e s o f h y d r o t h e r m a l d e p o s i t s .  elements  indicator  MINOR ELEMENTS IN PYRITE AND SILICA  CONTENT OF ASSOCIATED IGNEOUS ROCKS  W i l s o n (1953) has demonstrated between s i l i c a  a qualitative  correlation  c o n t e n t o f i g n e o u s r o c k s and N i c o n c e n t r a t i o n i n  a s s o c i a t e d "magmatic" s u l p h i d e d e p o s i t s ( s e e T a b l e  ;  28). I t  i s e x p e c t e d t h a t p y r i t e from such d e p o s i t s and p y r i t e d i s s e m i n a t e d i n i g n e o u s r o c k s s h o u l d have s i m i l a r q u a l i t a t i v e c o r r e l a t i o n o f Co and N i c o n t e n t w i t h s i l i c a c o n t e n t o f a s s o c i a t e d r o c k s .  R e l a t i v e l y few a n a l y s e s o f p y r i t e from i g n e o u s r o c k s a r e recorded i n the l i t e r a t u r e .  Most o f t h e a n a l y s e s from  acidic  i g n e o u s r o c k s n o t e d i n t h i s s t u d y a r e from d i s s e m i n a t e d p y r i t e i n H e e m s k i r k and Mt. B i s c h o f f g r a n i t e s i n Tasmania ( L o f t u s - H i l l s  and  Solomon, 1968); i n t h e s e samples Co and N i a r e p r e s e n t i n e x t r e m e l y low c o n c e n t r a t i o n s , and may n o t be r e p r e s e n t a t i v e o f g r a n i t e s I n general.  A n a l y s e s from b a s i c and u l t r a b a s i c r o c k s a r e m a i n l y  from t h e Sudbury d i s t r i c t .  I n t h e s e samples,  those  e i t h e r Co o r N i may  be e n r i c h e d , and d i s p e r s i o n o f v a l u e s even from a s i n g l e d e p o s i t i s usually great.  Mean v a l u e s f o r Co and N i i n p y r i t e from a c i d i c and  b a s i c i g n e o u s r o c k s a r e t a b u l a t e d below. A c i d i c rocks Mean  Basic rocks  S.D.(log.)  Mean  S.D.(log.)  Co  6 ppm  0.544  4120 ppm  . 0.416  Ni  16 ppm  0.590  6575 ppm  0.826  Co/Ni  0.38  0.63  F r e q u e n c y - d i s t r i b u t i o n h i s t o g r a m s i n d i c a t i n g mixed p o p u l a t i o n s w i t h d i f f e r e n t means a r e p r e s e n t f o r b o t h elements  i n t h e two c a t e g o r i e s ;  LOCALITY*  ROCK TYPE  MAXIMUM % NICKEL IN THE SULPHIDE  Werner Lake, Ontario Peridotite ,10.0 Rankin Inlet, 10.0 N.W.T. Serpentine Shebando9.0 wan, Ontario Peridotite Norpax, 8.5 Peridotite Alexo, 8.0 Peridotite Thompson, 7.5 Manitobat.. Peridotite Bruvand, 7.0 Norway Peridotite Mystery Lake, 5.4 Manitobat.. Peridotite Choate, B.C. . Pyroxenite 5.0+ : Espedelen, ' '4.5 Norway. ......Pyroxenite Hosander, 6.5 Norite Sudbury, 3.0—6.0 Norite Rice Island, 5.0 Manitoba... Norite Herb Bay, 4.0 Manitoba... Norite Bamle, 3.75—4.0 Norite Romsaas, 3.5—3.75 Norite Norway Yakobi Island, Alaska Norite 3.0 Klefva. 2 .6 Norite Erno, Ontario Gabbro 3.1 LakeAthabaska, Saskatchewan .. Diorite 1.0 Chibougamou, Quebec Anorthosite 0.5  DEPOSIT  Ni/Co  ASSOCIATED ROCK  Thompson, Man... 66 Rankin Inlet, . N.W.T 52 Werner Lake. Ont..'• 47' Moak Lake, Man. .40 Norpax, Ont 39 Mystery Lake, Man. 36 Hudson Yukon, Y.T.... 28  Peridotite  Falconbridge, Ont.;  Norite  24  Emo, Ont. 19 St. Stephen, N.B. . ' 15 Contact Bay, Ont. . 11 Redditt, Ont...... ... 11 New Manitoba, Man 6  -a  a  Gabbro ,»  Diabase Gabbro  :  •The data for the Scandinavian deposits are those of Vogt (1923). tThompson and Mystery Lake from a few specimens.  TABLE 28. R e l a t i o n s h i p o f maximum N i c o n t e n t and Ni/Co r a t i o o f s u l p h i d e s t o c o m p o s i t i o n o f a d j a c e n t igneous r o c k s . (From W i l s o n and A n d e r s o n , 1959)..  139  i n a d d i t i o n , many o f t h e a n a l y s e s from b a s i c r o c k s have o n l y one element d e t e r m i n e d . tentative.  Thus t h e f i g u r e s above s h o u l d be r e g a r d e d as  When Co and N i a n a l y s e s from d i s s e m i n a t e d p y r i t e a r e  p l o t t e d on a s c a t t e r diagram,  t h e extreme d i s p e r s i o n o f v a l u e s i n  p y r i t e s from t h e Sudbury a r e a i s emphasized.  The d i s p e r s i o n r e s u l t s  from t h e m i x i n g o f d a t a from magmatic s u l p h i d e p y r i t e , w h i c h i s Co r i c h , w i t h d a t a from N i - r i c h p y r i t e d i s s e m i n a t e d i n t h e Onaping t u f f (Besborough and L a r s e n , 1971).  I n t h e s c a t t e r p l o t ( F i g u r e 64)  p y r i t e a n a l y s e s a r e compared t o those o f i g n e o u s r o c k s and t o t h o s e o f m e t e o r i t e s .  themselves  I t i s seen t h a t Co and N i c o n c e n t r a t i o n s  i n p y r i t e s from i g n e o u s r o c k s a r e c o n t r o l l e d a t l e a s t i n p a r t by t h e i r concentrations i n the rocks  themselves.  Adams (1963) s t u d i e d p y r i t e from p e g m a t i t e s and found r e l a t i v e l y h i g h c o n c e n t r a t i o n s o f b o t h Co and N i i n h i s samples ( h i g h e r than i n h y d r o t h e r m a l v e i n p y r i t e , b u t l o w e r t h a n i n m a s s i v e sulphide).  T h i s "anomalous" enrichment  of late-stage, residual  f l u i d s might be comparable t o a s i m i l a r e f f e c t n o t e d i n l a t e - s t a g e i g n e o u s r o c k s ( s e e page 82 ). encountered  The two p e g m a t i t e p y r i t e samples  i n t h i s s t u d y ( D a r n l e y , 1966) b o t h have  h i g h N i c o n t e n t , s u p p o r t i n g Adams's f i n d i n g s .  anomalously  140  100000  FIGURE 64.  S c a t t e r diagram c o m p a r i s o n o f Co and N i c o n t e n t s o f i g n e o u s r o c k s and p y r i t e s d i s s e m i n a t e d i n i g n e o u s r o c k s . Open symbols a r e p y r i t e s , d a r k symbols a r e r o c k s .  V.  MINOR ELEMENTS IN PYRITE FROM THE SMITHERS AREA, B.C.  INTRODUCTION  Smithers,  i n i t i a l l y a locus f o r base-metal m i n e r a l explora-  t i o n i n the e a r l y p a r t o f the century, i s p r e s e n t l y a centre f o r i n t e n s i v e e x p l o r a t i o n f o r "porphyry"-type deposits.  The town i s a p p r o x i m a t e l y  copper and molybdenum  500 m i l e s n o r t h o f Vancouver  and i s e q u i d i s t a n t from t h e c i t i e s o f P r i n c e George and P r i n c e R u p e r t on Highway No. 16. The a r e a was mapped i n r e c o n n a i s s a n c e  by J.E. A r m s t r o n g  o f t h e G e o l o g i c a l S u r v e y o f Canada i n 1944 (Map 4 4 - 2 3 ) .  Further  mapping and c o m p i l a t i o n by N.C. C a r t e r and R.V. Kirkhara was c o m p l e t e d i n 1969. (B.C.  Dept. o f Mines Map 69-1), and t h e a r e a i s  p r e s e n t l y b e i n g mapped i n d e t a i l by W.H.  T i p p e r o f t h e G.S.C. /  The  a r e a encompassed by t h e p r e s e n t s t u d y i s a range o f  h i l l s w h i c h c o u l d be c o n s i d e r e d t h e s o u t h e r n c o n t i n u a t i o n o f t h e B a b i n e mountains.  The n o r t h e r n boundary i s t h e S m i t h e r s - B a b i n e  l a k e road, and Highway 16 from Houston t o Telkwa marks t h e w e s t e r n boundary.  Figure  65 °  n  t h e f o l l o w i n g page shows g e n e r a l  geology,  m i n e r a l d e p o s i t s and o u t l i n e o f t h e t h e s i s a r e a . F o r t y p y r i t e samples were t a k e n from s e v e r a l d i s t i n c t  type  o f m i n e r a l d e p o s i t s ; t h e p y r i t e s were a n a l y z e d f o r Co, N i , Mn, Cu, Pb, and Zn u s i n g a t o m i c  absorption spectrophotometry.  From t h e  a n a l y s e s i n f e r e n c e s were made c o n c e r n i n g m e t a l l o g e n e t i c p r o v i n c e s , g e n e t i c r e l a t i o n s h i p o f d e p o s i t s , and m i n o r element z o n a t i o n within deposits.  142  Pleistocene Tertiary volcanics Eocene sediments 7 16  V). J u r - L . C r e t . sediments HAZELTON CP. M.Jur? v o l c a n i c s M.Jur,+L.Jur. sediments M.Jur.+L.Jur. v o l c a n i c s  | 2 | U.Cret.-L.Tert. i n t r u s i o n s Mineral deposit (Map m o d i f i e d from C a r t e r Kirkham, 1969, Map 69-1)  and miles  FIGURE 65.  G e o l o g i c a l map o f t h e s i s a r e a showing b o u n d a r i e s o f t h e s i s a r e a and l o c a t i o n s o f p r o p e r t i e s s t u d i e d  GENERAL GEOLOGY OF THE THESIS AREA  Stratigraphy  The sedimentary  t h e s i s a r e a i s u n d e r l a i n by v o l c a n i c , p y r o c l a s t i c , and r o c k s o f t h e H a z e l t o n Group, o f e a r l y J u r a s s i c t o e a r l y  C r e t a c e o u s age ( r e p r e s e n t e d by u n i t s 4 t o 8 on t h e accompanying map). The  lowermost u n i t c o n s i s t s o f v a r i c o l o r e d a n d e s i t i c t o r h y o l i t i c  f l o w b r e c c i a s and t u f f s w i t h t h i n i n t e r c a l a t e d s e d i m e n t a r y  beds.  T h i s u n i t i s c o r r e l a t e d w i t h the Tachek Group t o t h e s o u t h e a s t ( T i p p e r , 1970).  U n i t 5, e a r l y and m i d d l e J u r a s s i c i n age, i n c l u d e s  p y r o c l a s t i c and normal s e d i m e n t a r y  r o c k s c o n t a i n i n g marine f o s s i l s .  U n i t 6 c o n s i s t s o f p r e d o m i n a n t l y b a s a l t i c and a n d e s i t i c v o l c a n i c f l o w s , b r e c c i a s , and t u f f s .  U n i t s 7 and 8 were n o t o b s e r v e d  i n the  area o f study.  Structure  Rocks o f t h e H a z e l t o n Group a r e g e n t l y f o l d e d and b l o c k f a u l t e d i n the s t u d y a r e a , a l t h o u g h complex f o l d i n g and i m b r i c a t e f a u l t i n g have been observed ( T i p p e r , 1970).  i n the Babine mountains t o t h e n o r t h  The v a l l e y o f t h e B u l k l e y R i v e r was g e n e r a t e d by  normal f a u l t i n g ( A r m s t r o n g ,  1944); major n o r t h w e s t - t r e n d i n g f a u l t s  a r e p r e s e n t on t h e e a s t e r n m a r g i n o f t h e v a l l e y , and s i m i l a r  faults  bound t h e e a s t e r n margin o f t h e Babine mountains ( T i p p e r , 1970). Prominent  n o r t h w e s t - t r e n d i n g l i n e a m e n t s v i s i b l e on a e r i a l photographs  a r e common throughout  t h e a r e a , and i n some a r e a s ( f o r example Dome  M o u n t a i n ) n o r t h e a s t - t r e n d i n g c r o s s - f r a c t u r e s a r e a l s o common.  144  3.  Igneous r o c k s  H a z e l t o n Group r o c k s i n the t h e s i s a r e a have been i n t r u d e d by a wide v a r i e t y o f i g n e o u s r o c k s i n c l u d i n g gabbro, q u a r t z d i o r i t e , s y e n o d i o r i t e , t r a c h y t i c g r a n o d i o r i t e , quartz-monzonite, alaskite.  g r a n i t e and  S e v e r a l ages o f i n t r u s i o n a r e p r o b a b l y r e p r e s e n t e d ; more  complex g r a n o d i o r i t e b o d i e s might be r e l a t e d t o " T o p l e y " o f J u r a s s i c age b u t s i m p l e q u a r t z - m o n z o n i t e  intrusions  and g r a n i t e s t o c k s a r e  p r o b a b l y o f T e r t i a r y (Eocene) age.  4.  M i n e r a l de-posits -  Most m i n e r a l d e p o s i t s i n t h e a r e a a r e r e l a t e d s p a t i a l l y , i f n o t g e n e t i c a l l y , t o a c i d and i n t e r m e d i a t e i n t r u s i o n s .  Deposits are  g e n e r a l l y i n t h e lowermost v o l c a n i c u n i t , c l o s e t o i t s u p p e r c o n t a c t w i t h sediments  o f u n i t 5.  Most m i n e r a l d e p o s i t s i n t h e t h e s i s a r e a  were examined w h i l e t h e w r i t e r was employed w i t h Manex M i n i n g L t d . , engaged i n e x p l o r a t i o n and p r o p e r t y development.  Where p o s s i b l e ,  p y r i t e samples and m i n e r a l o g i c a l samples were t a k e n .  Table  29  l i s t s d e p o s i t s , c h a r a c t e r i s t i c s and m i n e r a l o g y o f each, and number o f samples t a k e n .  Table 30 l i s t s a n a l y t i c a l  results.  The o n l y o t h e r s i g n i f i c a n t d e p o s i t s i n t h e a r e a a r e t h e Bot Brenda showing, c o n s i s t i n g o f d i s s e m i n a t e d copper m i n e r a l s i n v o l c a n i c and s e d i m e n t a r y r o c k s , and t h e Deep Creek (Tom-Tom) showing o f m a s s i v e p y r r h o t i t e and s p h a l e r i t e .  I n both d e p o s i t s p y r i t e i s  s c a r c e and r e p r e s e n t a t i v e samples c o u l d n o t be c o l l e c t e d .  D e t a i l e d g e o l o g i c a l d e s c r i p t i o n s o f the p r o p e r t i e s a r e i n c l u d e d i n t h e a p p e n d i x ; maps o f t h e Dome Mountain and Molymine deposits are included.  : •.•}''/¥  v " ' /  "'•  ;  •  "  "•'--">'  TABLE 2 9  MINERAL DEPOSITS OF THE DOME MOUNTAINGROUSE MOUNTAIN AREA, SMITHERS, B.C.  Samples  Code  Qtz-py-sph-gn-(tet,cp)  6  BDM  Quartz v e i n s  Qtz-py-sph-gn-tet-(cp,Au)  6  BD  Replacement  Sph-cp-py-(gn,asp)  1  BD  Ascot  Stratiform  Sph-gn-py  1  BTG  L a s t Chance  Quartz v e i n  Sph-tet-gn-py  1  BCH  Copper R i d g e  Replacement  Sph-cp-py  3  BCR  a; Merkely shaft  Replacement  Cp-py-mag  1  BMH  b) D i o r i t e zone  Quartz v e i n  Py-sph-gn(tet)  7  BDZ  c ) South zone  Quartz v e i n "Porphyry"  Py-sph-gn-tet(cp) Py-mo  2 7  BMH BMH  d) B r e c c i a zone  Breccia pipe  Mo-cp-py(tet,sph)  5  BZ  Deposit  Type  Mineralogy*  Dome Mtn.  Quartz v e i n s  Dome Babine Federal  Creek  Molymine  •Abbreviations :  qtz = py = sph = gn =  quartz pyrite sphalerite galena  tet = asp = mo = mag = Au =  tetrahedrite arsenopyrite molybdenite magnetite gold  ANALYTICAL METHOD AND RESULTS  P y r i t e c o n c e n t r a t e s from the samples were r o a s t e d t o c o n v e r t the s u l p h i d e t o o x i d e .  The o x i d e m a t e r i a l was d i s s o l v e d i n h y d r o -  c h l o r i c a c i d and r e s u l t i n g s o l u t i o n s were a s p i r a t e d t h r o u g h a T e c h t r o n A-4 atomic a b s o r p t i o n s p e c t r o p h o t o m e t e r , v i o u s l y w i t h standard s o l u t i o n s .  A complete  c a l i b r a t e d pre-  d e s c r i p t i o n of concentra-  t i o n and a n a l y t i c a l methods i s i n c l u d e d i n the a p p e n d i x ;  accuracy  and p r e c i s i o n a r e a l s o d i s c u s s e d .  A n a l y t i c a l r e s u l t s a r e l i s t e d i n T a b l e 30 and r e p e a t a n a l y s e s i n Table  36.  TABLE 30, PYRITE ANALYSES FROM SHITHERS MAP AREA, B.C. (A). DOME MOUNTAIN AREA SAMPLE NUMBER  Co ppm.  Nl ppm.  1) Doce Babine Au-Pb-Zn-Cu veins 120 12 BD 3 5 BD 45 8 BD 75 1 BD 55 1 BD 3 1 BD * » contaminated, >10000 ppm 2) Pome Mountain Pb-Zn-Cu-Au veins BDM 1 90 5 87 4 EDM 1 R BDM 2 45 1 BDM 2 S 63 1 120 BDM 3 10 88 BDM 3 R 10 BDH 4 40 5 BDM 5 75 5 45 BDH 5 R 6 BDM 6 1 1 3) Fedral Creek Zn-Pb-Cu-Au replacement BD 7 6 110  Mn ppm *  Cu ppm.  Pb ppm.  1225 2580 336 379 1078 1594  3775 4385 2060 3110 944 1332  1102 5190 3460 1480 1990  28  4  5780 2675 17600 2675 34200 8900 253 547 408 . 2760  15 14 210  11 20 240 159 197 294 35 88 92 81  28  336  610  2930  42 35  5 0  187 137  4  26 2 8 17 19  . 2 5 4  10 13 22 4 4  5  4) Ascot Pb-Zn syngenetic? (possibly replacement) BIG 1 1 1 11 BIG 1 R 1 1 8  0  745 345 5 5 0  (B) GROUSE MOUNTAIN AREA 1) Molymine Mo "porphyry * deposit BMH 6 115 1 BMH 9 100 1 BMH 10 62 15 BMH 10 A 165 1 BMH 10 A R 165 2 EMU 11 90 15 BMH 12 1605 95 2) Molymine Pb- Zn-Cu-Ag veins 255 BDZ 1 250 BDZ 1 R BDZ 2 345 BDZ 3 780 130 BDZ 4 BDZ 5 150 BDZ 6 345 300 BDZ 6 R 135 BMH 7 142 BMH 7 A  48 621 1509 308 208 1810 664  0  0  63 0 0 0 0 0  15. 34 12 25 5 12  1 1 12 25 1 1 25 12 20 12  13 3 14 11 5 15 13 66 12 25  2800 590 457 2342 704 1463 8530 2200 690 1231  6645 5140 0 0 4800 138 860 215 1610 50  223 71 531 465 3900 1670 882 101  3) Molymine breccia pipe Ho-Cu 1408 BZ 1 45 1508 BZ 1 R 43 22 BZ 2. 285 1554 BZ 3 50 22 BZ 4 685 22 895 BZ 5  12 11 18 38 7 18  267 130 56 580 870 940  10 5 285 1930 33 600  43 54 18 134 53 2700  2535  202  87  420 485 0  1750 2730 120  4) Kerkely shoving, Cu replacenen BMH 1 2220 305 5) Copper Ridge Cu-Zn replacement 405 18 BCR 1 247 31 BCR 2 202 BCR 5 2  24 36 37  957 690 1720  6) Last Chance Pb-Zn-Cu-Ag v e i n BCH 3 440 660  13  7780  * » contaminated >10000 ppm.  1025  DISCUSSION .OP; RESULTS  P y r i t e analyses  completed d u r i n g the s t u d y p r o v i d e d  c i e n t data f o r i n f e r e n c e s concerning m e t a l l o g e n e t i c  suffi-  provinces,  g e n e s i s o f m i n e r a l d e p o s i t s , mode o f minor-element s u b s t i t u t i o n i n p y r i t e , and a p p l i c a b i l i t y o f minor-element s t u d i e s t o m i n e r a l e x p l o r a tion.  R e s u l t s conformed to those o b t a i n e d  i n similar  research  r e p o r t e d i n the l i t e r a t u r e and  to t h e o r e t i c a l c o n s i d e r a t i o n s  in  thesis.  'previous  chapters of t h i s  reviewed  F a c t o r s w h i c h i n h i b i t the a p p l i c a t i o n o f p y r i t e minor-element r e s e a r c h to m i n e r a l e x p l o r a t i o n a r e : 1) Pure p y r i t e c o n c e n t r a t e s  a r e sometimes d i f f i c u l t  to  prepare. 2) S e v e r a l u n r e l a t e d g e n e r a t i o n s  o f p y r i t e may  be  present  i n a single mineral deposit. 3) Sample p r e p a r a t i o n p r i o r to a n a l y s i s i s time-consuming.  Thus, p y r i t e a n a l y s i s i s more u s e f u l d u r i n g s e c o n d a r y s t a g e s  of  m i n e r a l e x p l o r a t i o n , where g e o l o g y o f the d e p o s i t i s f a i r l y w e l l known, l a b o r a t o r y f a c i l i t i e s a r e adequate and a v a i l a b l e , and s u f f i c i e n t time can be spent c o l l e c t i n g a l a r g e number o f samples.  A l i m i t i n g f a c t o r i n the use o f a t o m i c a b s o r p t i o n photometry f o r p y r i t e a n a l y s i s a t the p r e s e n t  time i s the  number o f elements t h a t can be a n a l y z e d  Emission  for.  g r a p h i c methods have the advantage o f s i m u l t a n e o u s  spectrolimited  spectro-  a n a l y s i s of  many elements and s i m p l e p r e p a r a t i o n t e c h n i q u e s f o r samples, b u t d e t e c t i o n l i m i t s a r e h i g h e r , p r e c i s i o n i s n o t as good, and p r e p a r a t i o n o f s t a n d a r d s i s more time-consuming.  Minor elements  i n p y r i t e determined  i n samples from the  m i n e r a l d e p o s i t s i n t h e t h e s i s a r e a were c o b a l t , n i c k e l , manganese, copper, l e a d , and z i n c .  These were t h e o n l y elements  considered  p r a c t i c a l f o r atomic a b s o r p t i o n a n a l y s i s c o n s i d e r i n g t e c h n i c a l f a c i l i t i e s a v a i l a b l e and time budgeted f o r t h e s t u d y . Mn were chosen a s elements  Co, N i , and  p r e s e n t i n s o l i d s u b s t i t u t i o n f o r Fe i n  the p y r i t e l a t t i c e and Cu, Pb, and Zn were chosen t o i n v e s t i g a t e the . e f f e c t s o f c o n t a m i n a t i o n .  Inter-element c o r r e l a t i o n c o e f f i c i e n t s  c a l c u l a t e d f o r numerous m i n e r a l d e p o s i t s r e v e a l e d no s i g n i f i c a n t c o r r e l a t i o n s o f Cu, Pb, o r Zn w i t h e i t h e r Co o r N i , i n d i c a t i n g c o n t a m i n a t i o n o f Co and N i by m i n e r a l i n c l u s i o n s ( s u c h a s g a l e n a , s p h a l e r i t e , or c h a l c o p y r i t e ) i s not s i g n i f i c a n t .  C o b a l t shows t h e most promise of p y r i t e f o r the f o l l o w i n g  as an i n d e x o f g e n e t i c o r i g i n  reasons:  •  1) Co i s p r e s e n t i n c o n c e n t r a t i o n s w e l l above d e t e c t i o n l i m i t s o f t h e a n a l y t i c a l method used; hence a n a l y t i c a l errors are small. 2) D i s p e r s i o n o f v a l u e s o f Co c o n t e n t s i n p y r i t e i s low w i t h i n a s i n g l e d e p o s i t compared t o o t h e r  elements.  3) S u f f i c i e n t c o n t r a s t i s p r e s e n t i n Co c o n c e n t r a t i o n s between d i f f e r e n t d e p o s i t s . 4) The e f f e c t s o f c o n t a m i n a t i o n a r e i n s i g n i f i c a n t .  N i c k e l i s p r o b a b l y as u s e f u l a s c o b a l t i n c e r t a i n a r e a s , b u t i n t h e t h e s i s a r e a , n i c k e l i s p r e s e n t i n low c o n c e n t r a t i o n s and c o n t r a s t between d e p o s i t s i s s m a l l .  Manganese i s p r e s e n t i n v e r y low c o n c e n t r a  t i o n s from a l l d e p o s i t s , and i s s u b j e c t t o c o n t a m i n a t i o n from Mn o x i d e s , s p h a l e r i t e , m a g n e t i t e , and f e r r o m a g n e s i a n  silicates.  Theore-  t i c a l c o n s i d e r a t i o n s i n d i c a t e o n l y l i m i t e d s o l i d s o l u t i o n of-Mn i n pyrite i s possible.  Copper i n p y r i t e i s p o t e n t i a l l y u s e f u l i n minor,  element s t u d i e s , as c o n c e n t r a t i o n s a r e u s u a l l y h i g h and d i s p e r s i o n o f v a l u e s i s r e l a t i v e l y low.  However t h e element i s s u b j e c t t o  c o n t a m i n a t i o n by many common s u l p h i d e s , l i m i t i n g i t s u s e f u l n e s s . i.  •  • •  •  •  Lead and z i n c a r e p r e s e n t i n w i d e l y v a r y i n g c o n c e n t r a t i o n s i n t h e p y r i t e s s t u d i e d ( i . e . , s t a n d a r d d e v i a t i o n s a r e h i g h ) , and c o r r e l a t i o n between t h e s e elements  i s o f t e n p r e s e n t , i n d i c a t i n g a marked degree  o f c o n t a m i n a t i o n by s p h a l e r i t e and g a l e n a .  Dome M o u n t a i n a r e a  C o n c e n t r a t i o n s o f Co and N i , and Co/Ni r a t i o s from Dome M o u n t a i n p y r i t e s a r e c o n s i d e r a b l y l o w e r t h a n i n p y r i t e from environments  on Grouse Mountain.  Means and s t a n d a r d d e v i a t i o n s f o r  t h e two a r e a s a r e l i s t e d below:  Dome Mountain (12  samples)  Grouse Mountain (10 *  samples)  geometric  similar  Co  Ni  mean*"  28 ppm  3 ppm  s.d.(log)  .708  .448  mean  229 ppm  6 ppm  s. d.  .230  .634  Co/Ni 9.4  38.2  152  T - t e s t s c o n f i r m i n g the s i g n i f i c a n c e o f t h e s e v a l u e s a r e shown on the f o l l o w i n g page ( T a b l e 31). C o n t e n t s o f Mn, Cu, Pb, and Zn a r e not s t a t i s t i c a l l y d i f f e r e n t .  P y r i t e s from the v e i n s a t t h e top o f  Dome M o u n t a i n d i f f e r from v e i n p y r i t e a t the Dome Babine o n l y i n Pb and Zn c o n c e n t r a t i o n s .  property  Mineralogy o f both areas a r e  i d e n t i c a l except f o r v e r y c l o s e a s s o c i a t i o n o f p y r i t e w i t h s p h a l e r i t e and g a l e n a i n the Dome B a b i n e v e i n s .  The h i g h mean v a l u e s f o r Cu,  Pb, and Zn r e f l e c t c o n t a m i n a t i o n by i n c l u s i o n s o r f r a c t u r e - f i l l i n g s . S i m i l a r i t y o f p y r i t e s i n m i n e r a l o g i c a l a s s o c i a t i o n s and m i n o r element c o n t e n t s i n t h e Dome M o u n t a i n a r e a suggest  t h a t a l l v e i n s sampled  had the same o r a t l e a s t v e r y s i m i l a r g e n e t i c o r i g i n .  No z o n a t i o n  i s apparent from the d a t a .  2.  Grouse M o u n t a i n A r e a a) Molymine d e p o s i t s Three m a j o r t y p e s o f m i n e r a l i z a t i o n a r e p r e s e n t a t t h e Molymine p r o p e r t y :  "porphyry"-type  v e i n s and d i s s e m i n a t i o n s ,  s t o c k w o r k q u a r t z v e i n s i n a b r e c c i a p i p e , and normal q u a r t z v e i n s . M i n o r element c o n c e n t r a t i o n s and Co/Ni r a t i o s o f p y r i t e from t y p e a r e compared i n Table 33. a r e shown on page 155.  T - t e s t s c o m p a r i n g these v a l u e s  Co/Ni r a t i o s from t h e t h r e e g e n e t i c t y p e s  o f d e p o s i t a r e s t a t i s t i c a l l y t h e same.*  A b s o l u t e c o n t e n t s o f Co  and N i from " p o r p h y r y " and v e i n p y r i t e s a r e n o t s t a t i s t i c a l l y a l t h o u g h Mn, Zn, and Pb c o n t e n t s a r e .  * See F i g u r e 67  each  different,  P y r i t e from the b r e c c i a p i p e ,  TABLE 31 COMPARISON OF DOME MOUNTAIN AND DOME BABINE PYRITES Element  Dome Mountain Mean 33 ppm  Co  S.D.(log) .7559  Dome Babine Mean  S.D.(log)  24 ppm  .7160  Ni  3  .4314  3  .5051  Mn  6  .2553  9  .4314  Cu  2600  .7482  939  .3424  Pb  22  1.0170  2260  .2553  Zn  77  .4472  2890  .3617  Co/Ni  9.6  8.6  T-Test Data - Dome Mountain v s . Dome Babine P y r i t e s Element  T-Value  D.F.  Co  vs.  Co  -0.304  10  Ni  vs.  Ni  -0.307  10  Mn  vs.  Mn  0.908  8  Cu  vs.  Cu  -1.308  7  Pb  vs.  Pb  4.674*  6  Zn  vs.  Zn  6.706*  10  Co/Ni vs. Co/Ni  -0.118  * S i g n i f i c a n t a t 95^ confidence l e v e l  9  155  TABLE 32 T-TEST DATA - DOME MOUNTAIN PYRITE VS. GROUSE MOUNTAIN PYRITE  Element  T-Value  D.F.  -4.215*  14  Co  vs.  . Co  Ni  vs.  Ni  -1.303  18  • Mn  vs.  Mn  -1.281  21  ' Cu  vs.  Cu  0.491  19  Pb  vs.  Pb  -0.049  20  Zn  vs.  Zn  -0.146  21  -2.411*  21  Co/Ni v s . Co/Ni  * S i g n i f i c a n t a t 95$ c o n f i d e n c e  level  p r e s e n t m a i n l y as f i n e d i s s e m i n a t i o n s i n h o r n f e l s f r a g m e n t s ,  has  s i g n i f i c a n t l y h i g h e r Co and N i c o n t e n t s than p y r i t e from v e i n s . The d i f f e r e n c e may  be accounted  f o r by g e n e s i s o f t h e b r e c c i a  p y r i t e by s u l p h i d i z a t i o n o f C o - r i c h v o l c a n o g e n i c m a t e r i a l  prior  t o d e p o s i t i o n o f q u a r t z , m o l y b d e n i t e and o t h e r s u l p h i d e s . Supporting t h i s theory are t e x t u r a l features i n d i c a t i n g s t a g e s o f p y r i t e f o r m a t i o n and a n a l y t i c a l e v i d e n c e ; Co  two content  o f sample BZ2 r e p r e s e n t i n g second s t a g e p y r i t e i s s i g n i f i c a n t l y l o w e r t h a n t h a t o f the d i s s e m i n a t e d p y r i t e , and i s comparable to t h e average Co c o n t e n t o f v e i n p y r i t e (see T a b l e s  30 and 33  Correspondance  mineralogy  o f minor element c o n c e n t r a t i o n s and  )•  s u p p o r t g e n e t i c r e l a t i o n o f the p o r p h y r y m i n e r a l i z a t i o n and v e i n mineralization. Z o n i n g i n m i n e r a l o g y and m i n o r elements i n p y r i t e may i n d i c a t e d by the r e l a t i o n s h i p s p l o t t e d on the accompanying (Figures  68, 69 ).  be  diagrams  A l t h o u g h p y r i t e and m o l y b d e n i t e a r e p r e s e n t  throughout the b r e c c i a zone, o t h e r s u l p h i d e s such as  tetrahedrite,  c h a l c o p y r i t e , g a l e n a , and s p h a l e r i t e appear to be p r e s e n t m a i n l y o u t s i d e the I f c ^ - r i c h zone ( F i g u r e outward  69).  Co i n p y r i t e  from the M0S2 zone and Cu i n c r e a s e s .  Induced  decreases polarization  s u r v e y s show a vague r i m o f h i g h e r c h a r g e a b i l i t y c o r r e s p o n d i n g t o the s u s p e c t e d margin o f the b r e c c i a .  Computer mapping o f t r e n d  s u r f a c e s g e n e r a t e d from Co and N i a n a l y s e s from the whole a r e a was a t t e m p t e d , but d a t a a r e i n s u f f i c i e n t i n q u a n t i t y and b u t i o n f o r reasonable  interpretation.  distri-  TABLE 33 COMPARISON OF MOLYMINE PYRITE - MINOR.ELEMENT MEANS Element  Veins  Breccia  Porphyry  mean  s.d.  mean  s.d.  mean  s.d.  Co  221 ppm  .2553  830 ppm  .3010  160 ppm  .5051  Ni  6*  .6532  30  .1761  5  .8451  Mn  9  .2304  13  .3222  '4  .1461  Cu  1064  .3424  351  .5185  490  .5798  Pb  220  1.4314  154  .9638  2  .7324  Zn  45  .7160  111  .8325  9  .5441  Co/Ni  40.0  * Rounded to nearest ppm  28.0  30.0  TABLE 34 T-TEST DATA - COMPARISON OF MOLYMINE PYRITES Name  T-Value  D.F.  V e i n p y r i t e v s . b r e c c i a pipe p y r i t e Co  vs.  Co  -3.718*  7  Ni  vs.  Ni  -3.307*  11  Mn  vs.  Mn  -0.924  6  Cu  vs.  Cu  1.876  6  Pb  vs.  Pb  0.247  11  Zn  vs.  Zn  1.384  7  Co/Ni vs. Co/Ni  0.783  12  Vein p y r i t e vs. porphyry p y r i t e Co  vs.  Co  0.626  6  Ni  vs.  Ni  0.049  9  Mn  vs.  Mn  4.642*  14  Cu  vs.  Cu  1.288  7  Pb  vs.  Pb  3.761*  14  Zn  vs.  Zn  5.319*  13  Co/Ni vs. Co/Ni  0.352  9  B r e c c i a pipe p y r i t e vs. porphyry p y r i t e Co  vs.  Co  2.890*  8  Ni  vs.  Ni  2.128  6  Mn  vs.  Mn  3.835*  5  TABLE 34  (Continued)  T-TEST DATA - COMPARISON OF MOLYMINE PYRITES  Name  T-Value  D.F.  B r e c c i a pipe p y r i t e v s . porphyry p y r i t e  -0.440  (continued)  9  Cu  vs.  Cu  Pb  vs.  Pb  3.593*  7  Zn  vs.  Zn  2.500*  7  Co/Ni v s . Co/Ni  -0.127  * S i g n i f i c a n t v a l u e a t 95$ c o n f i d e n c e  6  level  160 FIGURE SKETCH MAP OF MOLYMINE  60.  BRECCIA  PIPE  v/iiiA  l  v/im  LEGEND  O  Overburden  drill-hole  Overburden  drill-hole,  Sample  MoS  2  greater than  0.12 %  location  Trench Induced  Polarization  contour  (milliseconds)-  chargeabiiity.  )  3000 in N CO  CO N  N CD  N  00  m  O o g ^  o  c  o  -A  \ Cu Pb Zn  \  Zone — Mo Zone  A \ -** \  100  FIGURE 69. DIAGRAMMATIC REPRESENTATION OF MINERALOGICAL AND MINOR ELEMENT ZONATION IN MOLYMINE BRECCIA P I P E .  b ) Other D e p o s i t s Copper Ridge p r o s p e c t P y r i t e samples from t h e m a s s i v e c h a l c o p y r i t e - s p h a l e r i t e d e p o s i t s a t t h e Copper Ridge p r o s p e c t have r e l a t i v e l y h i g h  concen-  t r a t i o n s o f Cu, Zn, and Mn; t h e l a t t e r element p o s s i b l y p r e s e n t i n sphalerite inclusions.  Co/Ni r a t i o s a r e h i g h , and f a l l i n t h e  range e x h i b i t e d by p y r i t e s from o t h e r m a s s i v e Cu-Zn d e p o s i t s  such  as Noranda and Mattagami. Examination of polished s e c t i o n s o f high-grade m i n e r a l i z a t i o n reveals that p y r i t e i s associated only with never w i t h s p h a l e r i t e .  chalcopyrite,  S p h a l e r i t e and c h a l c o p y r i t e a r e i n t i m a t e l y  mixed as- a r e s u l t o f p o s t - m i n e r a l i z a t i o n s h e a r i n g .  The  textures  s u g g e s t t h a t p y r i t e d e p o s i t i o n was e a r l y ; s u b s e q u e n t l y c h a l c o p y r i t was d e p o s i t e d  around t h e p y r i t e g r a i n s and remained w i t h t h e p y r i t  as t h e p y r i t e was f r a c t u r e d d u r i n g  deformation.  H e r k e l y showing  <  Sample BMH 1, from a m a s s i v e pod o f c h a l c o p y r i t e i n basic volcanic rocks, contains  the h i g h e s t  Co o f a l l samples a n a l y z e d i n t h i s s t u d y c o n t e n t i s a l s o h i g h (305 concentrations  ppm).  enclosed  concentration  (2220 ppm).  of  Nickel  The w r i t e r f e e l s t h a t the h i g h  are a d i r e c t r e s u l t of a s s o c i a t i o n with  basic  v o l c a n i c m a t e r i a l ; t h e p y r i t e might have formed by s u l p h i d i z a t i o n of p r e - e x i s t i n g ferromagnesian oxide o r s i l i c a t e (Magnetite i s associated w i t h the p y r i t e . )  minerals.  The c o r r e l a t i o n o f  h i g h Co/Ni r a t i o s i n p y r i t e w i t h v o l c a n o g e n i c  o r i g i n has been  n o t e d by L o f t u s - H i l l s and Solomon (1967-)•*  L a s t Chance showing Sample BCH  3 c o n t a i n s the h i g h e s t N i c o n c e n t r a t i o n o f  o f the samples (440 ppm)  and m o d e r a t e l y h i g h Co (660 ppm).  The  p y r i t e o c c u r s as s m a l l , b r i g h t p y r i t o h e d r a s u r r o u n d e d by a n k e r i t e , and  quartz  c h l o r i t e , w i t h minor.amounts o f s p h a l e r i t e ,  and t e t r a h e d r i t e .  Fragments o f v o l c a n i c and s e d i m e n t a r y  any  galena rocks  a r e a l s o p r e s e n t i n the v e i n s and p y r i t e c r y s t a l s a r e s e e n w i t h i n the v o l c a n i c fragments.  T e x t u r e s a t the m a r g i n s o f the f r a g m e n t s  a r e i n d i c a t i v e o f " l i b e r a t i o n " o f p y r i t e c r y s t a l s i n t o the v e i n f r o m the v o l c a n i c r o c k s .  Thus, h i g h N i and Co c o n c e n t r a t i o n s i n  t h e p y r i t e might be e x p l a i n e d by i t s o r i g i n a l v o l c a n i c a f f i l i a t i o n .  Ascot  showing Sample BTG  1, p r o v i d e d by Mr.  J. Fraser, consists of  f i n e l y c r y s t a l l i n e p y r i t e i n a m a t r i x o f q u a r t z and s e r i c i t e .  The  p y r i t e c o n t a i n s no Co o r N i * and o n l y s m a l l amounts o f Mn,  Pb,  and Zn.  A r e c e n t a n a l y s i s by D.  shows 50 ppm  Se i n the sample.  Cu,  Brabec ( o r a l communication) The  c o n t e n t o f Se and the absence  o f Co and N i i s i n c o m p a t i b l e w i t h a s e d i m e n t a r y e x h a l a t i v e o r i g i n f o r the p y r i t e .  or volcanic  T e x t u r e s and m i n o r element  * Zero v a l u e s i n T a b l e 30 a r e n o t e d as 1 ppm • s t a t i s t i c a l calculations.  f o r purpose o f  164  d a t a suggest a h y d r o t h e r m a l  origin.  P y r i t e s from low t e m p e r a t u r e  Pb-Zn d e p o s i t s g e n e r a l l y have l o w c o n c e n t r a t i o n s o f minor e l e m e n t s , and low Co/Ni r a t i o s ( s e e F i g u r e 63 ) .  3.  E x p l o r a t i o n a p p l i c a t i o n s i n the Smithers  area  From t h e a n a l y s e s c o m p l e t e d by t h e w r i t e r and from d a t a i n v e s t i g a t e d by s t a t i s t i c a l methods i n p r e v i o u s c h a p t e r s , some g e n e r a l i z a t i o n s c a n be made w h i c h might h e l p i n l o c a t i n g m i n e r a l deposits. 1)  P y r i t e s from m a s s i v e s u l p h i d e d e p o s i t s and p o r p h y r y  Cu-Mo d e p o s i t s have h i g h Co c o n t e n t Co/Ni r a t i o s ( 5 - 5 0 ) .  (100-2000 ppm) and h i g h  Larger porphyry  x  d e p o s i t s i n t h e a r e a have  p y r i t e s w i t h l o w e r Co/Ni r a t i o s ( a v e r a g i n g . 5«0).  "Porphyry"  p y r i t e s g e n e r a l l y have low Pb and Zn c o n t e n t s .  2)  Vein-type  Pb-Zn-(Ag.Au) d e p o s i t s have p y r i t e s w i t h l o w  c o n c e n t r a t i o n s o f Co and N i and r e l a t i v e l y l o w Co/Ni r a t i o s (1.0-10.0).  C o n c e n t r a t i o n s o f Cu, Pb, and Zn a r e u s u a l l y h i g h  because o f c o n t a m i n a t i o n by f r a c t u r e f i l l i n g s and m i n e r a l  inclusions,  b u t these i n c l u s i o n s t h e m s e l v e s may be i n d i c a t i v e o f p r o x i m i t y t o h i g h e r grade m a t e r i a l .  3)  P y r i t e o f s t r i c t l y s y n g e n e t i c o r i g i n commonly h a s l o w  to moderate Co and N i c o n c e n t r a t i o n s and Co/Ni = 1 . 0 .  4)  Low c o n c e n t r a t i o n s o f a l l minor elements might be i n d i -  c a t i v e o f low t e m p e r a t u r e Pb-Zn r e p l a c e m e n t d e p o s i t s .  165  5)  Z o n a t i o n o f m i n o r elements i n p y r i t e away f r o m  thermal  c e n t e r s ( f o r example, a t the Molymine b r e c c i a p i p e ) might be u s e f u l i n p i n p o i n t i n g target., a r e a s .  Even i f the p y r i t e s o c c u r w i t h i n  v o l c a n i c r o c k s by " s u l p h i d i z a t i o n " o r by h y d r o t h e r m a l  dissemination,  c o n c e n t r a t i o n s o f minor elements c o u l d be i n d i c a t i v e o f " b l i n d " ore-bodies  6)  underneath.  P y r i t e i n unmineralized portions of i n t r u s i o n s  can  c o n t a i n minor elements i n d i c a t i v e o f m i n e r a l i z a t i o n nearby (see page 253,  appendix IV )• I t s h o u l d be k e p t i n mind t h a t t h e s e a r e o n l y g e n e r a l i z a -  tions.  Comparisons o f m i n o r element d a t a s h o u l d be made o n l y between  m i n e r a l d e p o s i t s o f one sub-province.  type w i t h i n one m e t a l l o g e n e t i c p r o v i n c e o r  VI.  SUMMARY AND CONCLUSIONS  Prom s t u d i e s  of naturally occurring  and s y n t h e t i c  compounds b e l o n g i n g t o t h e p y r i t e and r e l a t e d m i n e r a l g r o u p s , i t i s a p p a r e n t t h a t the f o l l o w i n g elements a r e commonly found s u b s t i t u t i n g i n the p y r i t e l a t t i c e : and  (a) cations  Co, N i , Cu, Au  p l a t i n u m group e l e m e n t s ; ( b ) a n i o n s A s , Sb, B i , Se and Te.  O t h e r e l e m e n t s w h i c h may be p r e s e n t i n o x i d e o r s u l p h i d e m i n e r a l i n c l u s i o n s , f l u i d i n c l u s i o n s , f i l m s on i n t e r g r a n u l a r surfaces,  or twinning  o r a t s i t e s o f i m p e r f e c t i o n s a r e T i , V, C r , Mn, Zn, Cd,  Hg, Ga, Ge, I n , T l , Sn, Mo, W, Pb, U, and p r o b a b l y many o t h e r s . Elements s u c h a s Cu, Mn, and C r may be p r e s e n t i n " c o u p l e d s u b s t i t u t i o n " w i t h other elements.  Diadochic substitutions i n physical properties reflectivity  a r e o f t e n accompanied by changes  such as u n i t c e l l l e n g t h ,  and a n i s o t r o p y .  c o l o r , hardness,  M i n o r elements c a n be d i s t r i b u t e d  homogeneously w i t h i n a s i n g l e c r y s t a l , o r c a n e x h i b i t i r r e g u l a r o r rhythmic zonation. i n properties somatism.  regular,  Z o n a t i o n i s caused by v a r i a t i o n  of original depositional  f l u i d s o r by l a t e r meta-  S t u d y o f t h e d i s t r i b u t i o n o f m i n o r elements w i t h i n  s i n g l e c r y s t a l s i s most d e f i n i t i v e when done w i t h t h e e l e c t r o n microprobe. Acceptability or non-acceptability lattice  positions  o f m i n o r elements i n  c a n be p a r t i a l l y e x p l a i n e d u s i n g l i g a n d - f i e l d  t h e o r y and i t s c o u n t e r p a r t f o r c o v a l e n t l y - b o n d e d m i n e r a l s , m o l e c u l a r  o r b i t a l theory.  Ease o f s u b s t i t u t i o n by e l e m e n t s o f the f i r s t  t r a n s i t i o n - e l e m e n t s e r i e s i s promoted by l o w - s p i n c o n f i g u r a t i o n i n the  e l e c t r o n s and i s i n h i b i t e d by presence  "e " e l e c t r o n s .  of antibonding  T h i s e x p l a i n s t h e r e l a t i v e absence o f T i , V, C r ,  and Mn i n t h e p y r i t e l a t t i c e because i o n s o f these elements a r e g e n e r a l l y found w i t h h i g h s p i n c o n f i g u r a t i o n . Elements w i t h reasonably well-known l i m i t s o f s u b s t i t u t i o n are  Co  100$  Se  3$  Ki  100$  As  7-8$  Cu  10$  Sb  700 ppm  Because Co and N i a r e t h e most common m i n o r e l e m e n t s found i n p y r i t e , the geochemistry briefly.  o f these e l e m e n t s i n r o c k s i s c o n s i d e r e d  I n m e t e o r i t e s and u l t r a b a s i c r o c k s a b s o l u t e c o n t e n t s o f  Co and N i a r e h i g h , w i t h Co/Ni r a t i o s a v e r a g i n g 0.10.  With  i n c r e a s i n g magmatic d i f f e r e n t i a t i o n ( i . e . , i n c r e a s i n g S i O ^ c o n t e n t ) a b s o l u t e c o n c e n t r a t i o n s o f b o t h Co and N i d e c r e a s e , b u t a t d i f f e r e n t r a t e s , r e s u l t i n g i n i n c r e a s i n g Co/Ni r a t i o s . t i a t e s such a s granophyres,  pegmatites  Late stage  differen-  and l a m p r o p h y r e s m i g h t be  r e l a t i v e l y e n r i c h e d i n N i (and o t h e r f e r r i d e e l e m e n t s ) because o f f o r m a t i o n o f complex i o n s w i t h v o l a t i l e c o n s t i t u e n t s .  I n most "normal"  sedimentary  r o c k s , Co and N i c o n c e n t r a -  . t i o n s a r e low and Co/Ni r a t i o s a r e l e s s t h a n 1.0.  However, i n  s e d i m e n t s c o n t a i n i n g s i g n i f i c a n t amounts o f Fe and/or Mn o x i d e s ,  f o r example deep water oozes, Red Sea m e t a l - r i c h sediments,  iron  ores and manganese nodules, Co and Ni are concentrated and Co/Ni r a t i o s g e n e r a l l y exceed 1.0.  Increased concentrations are due to  adsorption of Co and Ni by the oxides during d e p o s i t i o n and increased Co/Ni r a t i o s are due to p r e f e r e n t i a l adsorption of Co w i t h respect to N i .  Deep-sea sediments have higher Co/Ni r a t i o s  than near shore sediments.  Unmetamorphosed c u p r i f e r o u s sediments  such as the K u p f e r s c h i e f f e r shale have normal Co/Ni r a t i o s ; high Co concentrations and Co/Ni r a t i o s i n Rhodesian copper b e l t sediments might be due to Co-metasomatism a f t e r d e p o s i t i o n . Although m o b i l i z a t i o n of minor elements ( i n c l u d i n g oreforming elements) during metamorphism has been proposed by Shaw (1954) and others, whole rock analyses of metamorphic rocks i n d i c a t e that m o b i l i z a t i o n , i f p o s s i b l e , occurs only over short distances, unless e f f e c t e d by f u l i d t r a n s p o r t .  Makrygina,  et a l . (1969), and N i c k e l (1954) show that Co and Ni can be enriched i n "concentrator minerals" ( i n c l u d i n g p y r i t e ) during metamorphism. A computer-oriented  s t a t i s t i c a l study of s e v e r a l hundred  p y r i t e analyses gleaned from the l i t e r a t u r e helps support s e v e r a l hypotheses proposed by e a r l i e r workers.  When s u f f i c i e n t analyses  from one deposit or one genetic type of deposit are a v a i l a b l e , i t is'seen that minor-element frequency d i s t r i b u t i o n s are log-normal.  approximately  Thus, l o g a r i t h m i c transforms should be performed on  analyses before s t a t i s t i c a l  tests are carried out.  Co/Ni r a t i o s o f s y n g e n e t i c p y r i t e a r e r e l a t e d d i r e c t l y t o Co/Ni r a t i o s i n a d j a c e n t s e d i m e n t s ,  a l t h o u g h Co i s e n r i c h e d i n t h e  pyrite with respect to N i . S y n g e n e t i c p y r i t e s from n o r m a l s e d i m e n t a r y  r o c k have Co/Ni  r a t i o s a v e r a g i n g l e s s t h a n 1.0, whereas h y d r o t h e r m a l  pyrites  g e n e r a l l y ( b u t n o t a l w a y s ) have Co/Ni g r e a t e r than 1.0 and v o l c a n i c e x h a l a t i v e p y r i t e s have Co/Ni r a t i o s r a n g i n g f r o m 5 t o 50. c o n c l u s i o n i s s u p p o r t e d by T - t e s t d a t a .  This  Mean v a l u e s f o r t h e t h r e e  d i s t i n c t t y p e s o f p y r i t e a r e g i v e n below.  Type  Co(ppm)  Syngenetic  ,.  Ni(ppm)  Co/Ni  41  65  0.63  Volcanic exhalative  486  56  8.70  Hydrothermal  141  121  1.17  vein-replacement  D u r i n g medium t o h i g h grade metamorphism f r e q u e n c y b u t i o n s o f Co and N i a r e changed and become more n e a r l y Evidence  distri-  normal.  i s a v a i l a b l e from s e v e r a l s o u r c e s i n d i c a t i n g Co i s c o n c e n -  t r a t e d i n p y r i t e d u r i n g h i g h grade metamorphism, r e s u l t i n g i n a n o m a l o u s l y h i g h Co/Ni r a t i o s .  Upon c o n v e r s i o n o f p y r i t e t o  p y r r h o t i t e , Co c a n be c o n c e n t r a t e d i n p y r i t e o r o t h e r new m i n e r a l s whereas N i i s c o n c e n t r a t e d i n the p y r r h o t i t e .  Co i s c o n c e n t r a t e d i n h y d r o t h e r m a l p y r i t e from b a r r e n a r e a s .  p y r i t e s r e l a t i v e to  Such i s t h e case f o r " p o r p h y r y " and  170  " v o l c a n i c e x h a l a t i v e " p y r i t e s a s w e l l a s many v e i n and r e p l a c e m e n t pyrites.  O t h e r elements s u c h a s Se, A s , Sn, A g , e t c . might  be  u s e f u l ' i n d i c a t o r s " but r e l a t i v e l y l i t t l e d a t a i s a v a i l a b l e f o r these elements a t the present.  H i g h c o n c e n t r a t i o n s o f T i , V, C r , Mn, Sn,  Cu, Pb, Zn, e t c . a r e g e n e r a l l y i n d i c a t i v e o f c o n t a m i n a t i o n or oxide minerals, but i f contamination  by s u l p h i d e  i s consistently high within  o r a d j a c e n t t o o r e b o d i e s , t h e n even these i m p u r i t i e s c o u l d be useful "indicators."  Contaminants c a n g e n e r a l l y be r e c o g n i z e d by  c a l c u l a t i n g c o r r e l a t i o n c o e f f i c i e n t s f o r each group o f a n a l y s e s . Common c o n t a m i n a n t s such a s s p h a l e r i t e , c h a l c o p y r i t e , and g a l e n a r a r e l y c o n t a i n enough Co o r N i t o a f f e c t s i g n i f i c a n t l y Co/Ni r a t i o s of p y r i t e .  A b s o l u t e c o n c e n t r a t i o n s o f Co and N i a r e r e l a t e d t o major e l e m e n t s c o n t a i n e d i n o r e d e p o s i t s .  qualitatively  I f types o f d e p o s i t s  a r e ranked a c c o r d i n g t o c o n c e n t r a t i o n s o f Co o r N i i n c o n t a i n e d p y r i t e , t h e sequence i s from W-Sn-Mo d e p o s i t s t h r o u g h Au and Cu d e p o s i t s t o Pb-Zn-Ag d e p o s i t s ; a sequence r o u g h l y p a r a l l e l i n g t h a t o f n o r m a l m i n e r a l o g i c a l z o n a t i o n i n many m i n e r a l d i s t r i c t s .  High  c o n c e n t r a t i o n s o f Co and N i i n p e g m a t i t i c p y r i t e s might r e s u l t by f o r m a t i o n o f i o n i c complexes w i t h v o l a t i l e s i n r e s i d u a l  Although  few  a n a l y s e s a r e a v a i l a b l e f o r p y r i t e s from  i g n e o u s r o c k s , i t appears t h a t t h e b e h a v i o u r  o f Co and N i i n p y r i t e s  from igneous rocks i s s i m i l a r to t h e i r behaviour themselves.  fluids.  i n the rocks  171  F o r t y p y r i t e samples c o l l e c t e d from s e v e r a l d i s t i n c t o f m i n e r a l d e p o s i t s i n t h e S m i t h e r s a r e a , B.C. were  types  concentrated  and d i s s o l v e d u s i n g t e c h n i q u e s d e v i s e d by the w r i t e r , Mr. A. B e n t z e n , and Dr. W.K.  Fletcher.  M i n o r element a n a l y s e s were performed f o r  Co, N i , Cu, Mn, Pb, and Zn u s i n g atomic a b s o r p t i o n  M i n o r element r e l a t i o n s h i p s i n S m i t h e r s to  those d e t e r m i n e d by s t a t i s t i c a l  p y r i t e analyses.  treatment  spectrophotometry.  p y r i t e s were s i m i l a r  of previously reported  Co and N i c o n c e n t r a t i o n s were h i g h e s t i n p y r i t e s  f r o m massive s u l p h i d e d e p o s i t s and a b r e c c i a p i p e and l o w e s t i n vein pyrites.  Mn c o n c e n t r a t i o n s were low i n a l l samples; Pb, Zn,  and Cu were h i g h e s t i n v e i n p y r i t e s where c o n t a m i n a t i o n by o t h e r s u l p h i d e s c o u l d be seen u n d e r t h e m i c r o s c o p e . M e t a l l c g e n e t i c p r o v i n c e c o n c e p t s were i l l u s t r a t e d by p l a t t i n g Co/Ni r a t i o means f o r s e p a r a t e d e p o s i t s on l o g - l o g s c a t t e r d i a g r a m s . Mean Co/Ni r a t i o •• f o r Dome M o u n t a i n d e p o s i t s i s 10.0; Grouse M o u n t a i n d e p o s i t s i s 30.0.  Combined m i n e r a l o g i e s ! and m i n o r  element d a t a f o r d e p o s i t s i n t h e Molymine a r e a s u p p o r t hypotheses:  t h a t from  the f o l l o w i n g  ( l ) v e i n , b r e c c i a p i p e , and " p o r p h y r y " m i n e r a l i z a t i o n  a r e r e l a t e d ; ( 2 ) z o n i n g i s p r e s e n t w i t h i n t h e Molymine b r e c c i a p i p e .  C o n s i d e r i n g t h e r e s u l t s o f t h e o r e t i c a l , s t a t i s t i c a l , and p r a c t i c a l r e s e a r c h , t h e s t u d y o f minor e l e m e n t s i n p y r i t e shows promise as a t o o l i n e x p l o r a t i o n f o r m i n e r a l d e p o s i t s , p a r t i c u l a r l y d u r i n g secondary stages o f e x p l o r a t i o n .  172  BIBLIOGRAPHY  Adams, Samuel S. ( 1 9 6 3 ) , " M i n o r e l e m e n t c o n t e n t o f p e g m a t i t i c s u l p h i d e s , " ( A b s t . ) G.S.A. Special Paper, No. 73, p. 101. Ahrens,  L.H. for the the  (1964) , "The s i g n i f i c a n c e o f t h e c h e m i c a l bond c o n t r o l l i n g the geochemical d i s t r i b u t i o n o f e l e m e n t s , " P t . 1, i n Physics and Chemistry of Earth, Pergamon P r e s s , pp. 3-53.  (1965). Distribution of the Elements Planet. M c G r a w - H i l l , 110 pp Amstutz,  in our  G.C.. ( 1 9 6 3 ) , " A c c e s s o r i e s on p y r i t e , p y r i t e and zoned p y r i t e , " Schweiz. Mineral, und Mittelungen. V o l . 4 3 , pp. 111-122.  zoning, Petrogr.  3  Armstrong,  Arnold,  Auger,  J . E . (1944), "Smithers Preliminary Map 44-23.  map a r e a , West  half^GSC  R.G. , Coleman , R.G. and F r y k l u n d , V.C. ( 1 9 6 2 ) , " T e m p e r a t u r e o f c r y s t a l l i z a t i o n o f p y r r h o t i t e and s p h a l e r i t e from t h e H i g h l a n d - S u r p r i s e m i n e , Coeur d ' A l e n e D i s t r i c t , " Idaho Econ. Geol., V o l . 57, p. 1163. P.E. ( 1 9 4 1 ) , " Z o n i n g and d i s t r i c t v a r i a t i o n s o f m i n o r e l e m e n t s i n p y r i t e o f C a n a d i a n g o l d . d e p o s i t s ," Econ. Geol., Vol. 36, pp. 401-423.  Anderson  C h a r l e s A. ( 1 9 6 9 ) , " M a s s i v e s u l p h i d e d e p o s i t s and v o l c a n i s m , " Econ. Geol. , V o l . 64, No. 2, p. 129.  B a d a l o v , S.T. and B a d a l o v a , R.P. ( 1 9 6 7 ) , "Some r e g u l a r i t i e s i n d i s t r i b u t i o n o f g o l d and s i l v e r i n t h e p r i n c i p a l o r e m i n e r a l s o f hypogene d e p o s i t s o f K a r a m a z a r and W e s t e r n K a z a k h s t a n , " Geochem. Intern. /Vol. 4, pp. 660-667. 3  173  Badalov,  S.T. ( 1 9 6 5 ) , "The r o l e o f m a j o r components i n t h e g e o c h e m i s t r y o f minor and r a r e e l e m e n t s o f o r e , d e p o s i t s , " Geochem. Intern. V o l . 2, pp. 857-860. 3  Barnes,, H.L. (1962) , "Mechanisms o f m i n e r a l Geol. V o l . 57, pp. 30-37.  zoning,"  Eoon.  3  Berner,  R.A. ( 1 9 6 4 ) , " I r o n s u l p h i d e s formed f r o m aqueous s o l u t i o n a t low t e m p e r a t u r e and a t m o s p h e r i c p r e s s u r e ," Jour. Geol. V o l . 72, pp. 293-306. 3  Bethke,  P.M. and B a r t o n , P.B. ( 1 9 5 9 ) , " T r a c e e l e m e n t d i s t r i b u t i o n as an i n d i c a t o r o f p r e s s u r e and t e m p e r a t u r e o f o r e d e p o s i t i o n , " ( A b s t . ) GSA Bulletin No. 70, p. 1569-1570. 3  ( 1 9 7 1 ) , " D i s t r i b u t i o n o f some m i n o r e l e m e n t s between some c o - e x i s t i n g s u l f i d e m i n e r a l s , " Eoon. Geol. V o l . 66, pp. 140-163. 3  Bither,  T.A., et al. ( 1 9 6 8 ) , " T r a n s i t i o n m e t a l p y r i t e d i c h a l cogenides: h i g h p r e s s u r e s y n t h e s i s and c o r r e l a t i o n o f p r o p e r t i e s , " Inorg. Chem. V o l . 7, pp. 2208-2220. 3  Bjerring,  James and S e a g r a v e s , P a u l ( 1 9 7 0 ) . U.B.C. TRIP T r i a n g u l a r r e g r e s s i o n p a c k a g e , U n i v e r s i t y o f B.C. computing c e n t e r .  Bjorlykke,  H. and J a r p , S v e r r e (1950), "The c o n t e n t o f c o b a l t i n some N o r w e g i a n s u l f i d e d e p o s i t s , " Norsk. Geol. Tids. V o l . 28, pp. 151-156.  ;  3  Boyle,  R.W. ( 1 9 6 1 ) , " G e o l o g y , g e o c h e m i s t r y and o r i g i n o f t h e ore d e p o s i t s o f t h e Y e l l o w k n i f e d i s t r i c t , " G.S.C.  Memoir  3  Bradbury,  No. 310.  James, C. ( 1 9 6 1 ) , " M i n e r a l o g y and t h e q u e s t i o n o f zoning, Northwestern I l l i n o i s z i n c - lead d i s t r i c t , " Eoon. Geol. V o l . 56, pp. 132-148. 3  174  British  C o l u m b i a M i n i s t e r o f Mines Annual Reports 1923, 1926, 1937, 1938 - p r e s e n t .  for  1922,  B u r k a r t - B a u m a n n , I . , and O t t e m a n n , J . ( 1 9 7 1 ) , " A r s e n f u h r e n d e P y r i t mit B r a v o i t a h n l i c h e n S t r u k t u r e n , " Mineral. Deposita (Berlin), V o l . 6, pp. 148-152. Burnham, C.W. (1959), " M e t a l l o g e n i c p r o v i n c e s of southwest U.S. and n o r t h e r n M e x i c o , " New Mexico Bureau of Mines Bull., No. 65, 76 pp. Burns,  R.G. and F y f e , W.S. (1967), "Trace element d i s t r i b u t i o n r u l e s and t h e i r s i g n i f i c a n c e , " C h e m . Geol^, V o l . 2, pp. 89-104.  Burns,  Roger G. field  Cambel, B.  (1970). Theory.  Mineralogical Application of Cambridge U n i v e r s i t y P r e s s .  Crystal-  and J a r k o v s k y , J . ( 1 9 6 5 ) , "Rare e l e m e n t s i n p y r i t e from t h e west C a r p a t h i a n o r e d e p o s i t s and t h e i r p o s s i b l e use i n the s t u d y o f t h e m i n e r a l i z a t i o n g e n e s i s , " Geokhim. Ada. Nauk. SSR. Inst. Geokhim. i, A n a l i t Khim. ( 1 9 6 5 ) , pp. 245-266 (Chem a b s . 1966, V o l . 64, p. 6 3 1 1 ) . (1968) , " M i c r o e l e m e n t s i n p y r i t e and p y r r h o t i t e as g e n e s i s i n d i c a t o r s , " Int. Geol, Congr. Abst., S e c . 6, p. 155. — . ( 1 9 6 6 ) , "On t h e and Zn d i s t r i b u t i o n i n p y r i t e s , " Abst. , V o l . 20, p. 2144.  c h a r a c t e r of Mineralogical  Cu  ( 1 9 6 9 ) , "Rare e l e m e n t s i n p y r i t e d e p o s i t s of the Western C a r p a t h i a n s i n c o n n e c t i o n w i t h g e n e t i c p r o b l e m s o f m i n e r a l i z a t i o n , " i n H.I. K h i t a r o v . ( e d . ) , Problems of Geochemistry (Vinogradov.), V o l . 1, pp. 266-282, QE 515, A42713.  distribution and t i t a n i u m p. 6311.  ,(1967), "The c h a r a c t e r o f t h e o f manganese, v a n a d i u m , molybdenum, i n pyrites Chem. Abst., V o l . 64,  175  Carr, M.H.,  and Turekian, K.K. Cobalt," Geochim.  9-60. Cartens, C.W.  (1941), "0m  Norsk.  1955.  Carter, N.C.,  Geol.  (1961), "The geochemistry of  Cosmoahim.  3  pp.  geokemiske unders0kelser av maimer,"  Tids.  3  V o l . 21, pp. 213-22, in Fleischer  and Kirkham, R.V.  t i o n Map of the Smithers  Areas. Map Resources.  V o l . 23,  Acta.-  (1969). 3  Geological  Eazelton  and  3  Compila-  Terrace  69-1, B.C. Dept. of Mines and Petroleum  C a r v a j a l , Marta Campa, and Landergren, Sture (1968), "Marine sedimentation processes - the i n t e r - r e l a t i o n s h i p s of manganese, cobalt, and n i c k e l , " Stockholm Contributions  in Geology,  V o l . XV111 , pp. 1 00-122.  Chakrabarti , Ananda, K. (1967), "On the trace element geochemistry of Zawa.r sulphides and i t s r e l a t i o n to metallogenesis," Can. Mineral., V o l . 9, Pt. 2, pp. 258-262. Chan, Samuel S. (1969), "Suggested guides for exploration • from geochemical investigation of ore veins at the Galena mine deposits, Shoshone County, Idaho," Quart.  Colorado  139-168.  School  of Mines,  V o l . 64,  pp.  Clark, A.H. (1970), "Copper zoning in pyrite from Cerro de Pasco, Peru," further discussion ,' Am. Mineral. . Vol. 55, pp. 525-527. 3  Claussen, G.E. (1934), "Spectroscopic analysis of certain galenas, sphalerites and pyrites," Am. Mineral. Vol. 19, pp. 221 -224.  3  Coleman, R.G. and Delevaux, M. (1957), "Occurrence of selenium in sulphides from some sedimentary rocks of the Western United States," Econ. Geol. V o l . 52, pp. 499-527. 3  176  Czamanske, G e r a l d K. and I n g a m e l l s , C O . (1970) , " S e l e c t i v e chemical d i s s o l u t i o n o f s u l f i d e m i n e r a l s : a method o f m i n e r a l s e p a r a t i o n , " Am. Mineral., V o l . 55, pp. 2131-2134. D a r n l e y , A.G. ( 1 9 6 6 ) , " S u l f u r i s o t o p e s o f some c e n t r a l s u l f i d e d e p o s i t s ( d i s c u s s i o n ) , " Econ. Geol., 61 , pp. 409-41 3. Davidson,  Deer,  African Vol.  C F . ( 1 9 6 2 ) , "On t h e Co: Ni '.rati o . i n o r e d e p o s i t s , " Mining Mag., V o l . 106, pp. 78-85.  Howie, and Zussman ( 1 9 6 6 ) . Rock-Forming Minerals.  Degens, E.T. (1965).. Geochemistry Hal 1 , New J e r s e y .  An Introduction to the Longman, L o n d o n . of Sediments..  Prentice-  Degens, E.T. and Ross ( e d . 1 9 6 9 ) . Hot Brines and Recent Heavy Metal Deposits in the Red Sea, a Geochemical and Geophysical Account. Springer, Berlin. D e s b o r o u g h , George A. and L a r s e n , R i c h a r d R. ( 1 9 7 0 ) , " N i c k e l b e a r i n g i r o n s u l f i d e s i n t h e Onaping Formation, Sudbury B a s i n , O n t a r i o , " Econ. Geo., V o l . 6 5 , pp. 728-730. De  V o r e , G.W. ( 1 9 5 5 a ) , "The r o l e o f a d s o r p t i o n i n t h e f r a c t i o n a t i o n and d i s t r i b u t i o n o f e l e m e n t s , " Jour. Geol., V o l . 63, pp. 159-190. ( 1 9 5 5 b ) , " C r y s t a l growth and t h e d i s t r i b u t i o n o f t h e e l e m e n t s , " Jour. Geol., V o l . 63, pp. 471 494.  Doe,  B.R. ( 1 9 6 2 ) , " D i s t r i b u t i o n and c o m p o s i t i o n o f s u l f i d e m i n e r a l s a t B a l m a t , N.Y.," G.S.A. Bull., V o l . 73, pp. 833-854.  Dvornikov,  G. ( 1 9 6 7 ) , " C e r t a i n d a t a on t h e d i s t r i b u t i o n o f m e r c u r y i n i r o n d i s u l p h i d e s from c o a l beds o f t h e C e n t r a l Donets b a s i s , " Dokl. Akad. Nauk., SSSR, V o l . 172, pp. 1419-1422 ( R u s s . ) , Chem. Abst., V o l . 6 7 , p. 1325.  177  E d w a r d s , A.B. and C a r l o s , G.G. ( 1 9 5 4 ) , "The s e l e n i u m c o n t e n t o f some A u s t r a l i a n s u l f i d e d e p o s i t s , " Australian Inst. Min. and Met. Proc, No. 172, pp. 31-64. Elliott,  Norman ( 1 9 6 0 ) , " I n t e r a t o m i c d i s t a n c e s i n F e S , CoS and N i S , " Journ. Chem. Physios, V o l . 33, No. 3, pp. 903-905. 2  2  Einaudi,  El  2  M.T. ( 1 9 6 8 ) , "Coper z o n i n g P a s c o , P e r u , " Am. Mineral,  i n p y r i t e f r o m C e r r o de V o l . 53, pp. 1748-1752.  S h a z l y , E.M., Webb, J . S . and W i l l i a m s , D. ( 1 9 5 7 ) , " T r a c e e l e m e n t s i n s p h a l e r i t e , g a l e n a and a s s o c i a t e d m i n e r a l s f r o m t h e B r i t i s h I s l e s , " Trans. Inst. Mining Met., V o l . 66, pp. 241-271.  F a r a m a z y a n , A.S. and Z a r y a n , R.N. ( 1 9 6 4 ) , " G e o c h e m i s t r y o f S e l e n i u m and T e l l u r i u m i n t h e o r e s o f t h e K a d z h a r a n d e p o s i t , " Geoehem. Intern., pp. 1103-1105. T r a n s , from: Geokhimiya, No. 11, pp. 1164-1170. Faulkner,  E . L . ( 1 9 6 8 ) , " G e n e t i c i m p l i c a t i o n s o f c o b a l t and n i c k e l d i s t r i b u t i o n i n s u l p h i d e d e p o s i t s of the C o r o n a t i o n mine," GSC Paper 68-7, Symposium on the C o r o n a t i o n Mine.  F i t z g e r a l d , A.C. et al. ( 1 9 6 7 ) , "The a p p l i c a t i o n and s i g n i f i c a n c e o f g o l d - s i l v e r r a t i o s a t V a l d'Or, Quebec," Eoon. Geol., V o l . 62, pp. 502-516. Fleischer,  M i c h a e l (1955), "Minor m i n e r a l s , " Eoon. Geol., pp. 970-1024.  e l e m e n t s i n some s u l f i d e 50th .Am.' V o l .', P t . I I ,  Fletcher,  W.K. ( 1 9 7 0 ) . Analysis of Rooks and Minerals by Atomic Absorption Spectrophotometry. U.B.C. G e o l o g y Dept. Unpublished personal r e s e a r c h .  F r e n z e l , G e r h a r d and B l o s s , F. D o n a l d ( 1 9 6 7 ) , " C l e a v a g e i n p y r i t e , " Am. Mineralogist, V o l . 52, p. 994.  F r e n z e l , Gerhard and Ottemann, Joachim (1967), "Eine s u l f i d paragenese mit Kupferhaltigem Z o n a r p y r i t von Nukundamu, Fi j _ * ," Mineralium Depositee, V o l . 1, pp. 307-316. F r o n d e l , C l i f f o r d , Newhouse, W.H., and J a r r e 11-, R.F. (1942), " S p a t i a l d i s t r i b u t i o n of minor elements i n s i n g l e c r y s t a l s ," Am. Mineral., V o l . 27, pp. 726-745. F r y k l u n d , V.C. J r . and F l e t c h e r , J.D. (1955) "Geochemistry of s p h a l e r i t e from the Star mine, Coeur d'Alene d i s t r i c t , Idaho," Econ. Geol., V o l . 50, pp. F r y k l u n d , V.C. J r . and Harner, R.S. (1955), "Comments on minor elements i n p y r r h o t i t e , " Econ. Geol., V o l . 50, pp. 339-344. F y f e , W.S., "Isomorphism and bond type," Am. Min., V o l . 36, pp. 538-542. G a r r e t t , Robert G. (1969), "The d e t e r m i n a t i o n of sampling and a n a l y t i c a l e r r o r s i n e x p l o r a t i o n geochemistry," Econ. Geol., V o l . 64, pp. 568-579. G a v e l i n , S. and G a b r i e l s o n , 0. (1948), "Spectrochemical i n v e s t i g a t i o n of s u l p h i d e minerals from ores of the S k e l l e f t e d i s t r i c t , " Sveriges Geol. Undersok., V o l . 41, S e r . C, No. 10, P I . 45. Ghosh-Dastidar, P. et al. (1970), "Factors a f f e c t i n g t r a c e element p a r t i t i o n c o e f f i c i e n t s between c o e x i s t i n g s u l f i d e s , " Econ. Geol., V o l . 65, pp. 815-837. Gibbons, G.S. (1967) s " O p t i c a l a n i s o t r o p y i n p y r i t e , " Am. Mineral., V o l . 52, pp. 359-370. Goni , J . and G u i l l e m i n , C. (1964), " S i t e s of t r a c e elements i n minerals and r o c k s , " Geochem. Intern., Vol. 1 pp. 1014-1016. T r a n s , from Bull. Soc. Franc. Miner. Cryst., No. 87, pp. 149-156 (1965).  179  Godwin, C . I . ( 1 9 6 9 ) , " P y r i t e a n a l y s e s from t h e C a s i n o c o p p e r molybdenum d e p o s i t , Yukon T e r r i t o r y , " p e r s o n a l r e s e a r c h , Dept. o f G e o l o g y , U.B.C. G o l d s c h m i d t , V.M. Sel ens: Masse,  and H e f t e r , 0. ( 1 9 3 3 ) , " Z u r Geochemie des Ges. W i s s . G b ' t t i n g e n , N a c h r . , " Math-Phys. pp. 245-252, i n F l e i s c h e r , 1955.  G o l d s c h m i d t , V.M. and S t r o c k , L.W. (1935) , " Z u r Geochemie des S e l e n s I I : Ges. W i s s . G o t t i n g e n N a c h r . , " Math-Phys, Klasse, F a c h g r . IV, V o l . 1, pp. 123-142, i n F l e i s c h e r , M. , 1955. .' • • ' Hall,  W'.E.  and Heyl , A.V. ( 1 9 6 8 ) , " D i s t r i b u t i o n o f m i n o r e l e m e n t s i n o r e and h o s t r o c k , I l l i n o i s , K e n t u c k y f l u o r i t e d i s t r i c t and u p p e r M i s s i s s i p p i V a l l e y L e a d - z i n c d i s t r i c t , " Econ. Geol., V o l . 63, p. 655.  H a r a n c z y k , C. ( 1 9 7 1 ) , " Z e c h s t e i n l e a d - b e a r i n g s h a l e s i n P o l a n d , " Econ. Geol., V o l . 65, pp. 481-495. Hawley, J . E . ( 1 9 5 2 ) , " S p e c t r o g r a p h i c some E a s t e r n C a n a d i a n g o l d V o l . 47, pp. 260-304. —  . (1962) , "The Sudbury 7,  studies of p y r i t e i n m i n e s , " Econ. Geol.,  ores,"  Can. Mineral.,  Vol.  Hawley, J . E . , L e w i s , C.L. and Wark, W.J. ( 1 9 5 1 ) , " S p e c t r o g r a p h i c s t u d y o f p l a t i n u m and p a l l a d i u m i n common s u l p h i d e s and a r s e n i d e s o f t h e Sudbury d i s t r i c t , O n t a r i o , " Econ. Geol., V o l . 46, pp. 149-162. Hawley, J . E . and N i c h o l , Ian ( 1 9 6 1 ) , " T r a c e e l e m e n t s i n py r i t e , p y r r h o t i te, and c h a l c o p y r i t e o f d i f f e r e n t o r e s , " Econ. Geol., V o l . 56, No. 3, pp. 608-628. Hawley, J . E . and R i m s a i t e , Y. ( 1 9 5 3 ) , " P l a t i n u m m e t a l s i n some C a n a d i a n u r a n i u m and s u l f i d e o r e s , " Am. Mineral., V o l . 38, pp. 463-475.  180  Head, R.E. ( 1 9 3 5 ) , "Form and o c c u r r e n c e o f g o l d i n p y r i t e from a m e t a l l u r g i c a l s t a n d p o i n t - c o a t e d g o l d , " U.S. Bur. Mines Report, I n v . 3275, pp. 39-46. Hegemann, F r . ( 1 9 4 3 ) , " D i e g e o c h e m i s c h e B e d e u t u n g von K o b a l t und N i c k e l im P y r i t , " Z. Angew. Mineral., V o l . 4, pp 1 121 -239 , i n F l e i s c h e r , M., 1 955 . Hill,  P a t r i c k A r t h u r and G r e e n , R o n a l d ( 1 9 6 2 ) , "Thermoelect r i c i t y and r e s i s t i v i t y o f p y r i t e from R e n i s o n B e l l and Mr. B i s h o f f , T a s m a n i a , " Eoon. Geol., V o l . 57, pp. 579-586.  Hulliger,  F. and M o o s e r , E. ( 1 9 6 5 ) , "Semi c o n d u c t i v i ty. i n p y r i t e , m a r c a s i t e and a r s e n o p y r i t e p h a s e s , " J. •  Phys. Hulliger,  itoh,  Chem. Solids,  V o l . 26 , pp . 429-433.  F. ( 1 9 6 8 ) , " C r y s t a l c h e m i s t r y o f c h a l c o g e n i d e s and p n i c t i d e s of the t r a n s i t i o n elements," Structure and Bonding, V o l . 4, pp. 83-229.  S h i r o (1971), "Chemical c o m p o s i t i o n o f c o u n t r y r o c k s and m i n o r e l e m e n t s i n s u l f i d e m i n e r a l s f r o m bedded c u p r i f e r o u s p y r i t e d e p o s i t s o f Tenryu 'River b a s i n , "  Bull. '  Geol.  Surv.  Japan.,  V o l . 22, No. 3, pp.  15-30. ( 1 9 7 1 ) , "Minor elements i n S u l f i d e m i n e r a l s from S h i r a t a k i mine, K o c h i p r e f e c t u r e , " Bull. Geol.  Surv.  Japan,  V o l . 22, No. 7 , pp. 1 -18.  J a r k o v s k y , J . ( 1 9 6 4 ) , "The d i s t r i b u t i o n o f t r a c e e l e m e n t s i n p y r i t e and i t s g e o l o g i c a l s i g n i f i c a n c e i n t h e s t u d y o f t h e mode o f f o r m a t i o n o f t h e West C a r p a t h i a n  ore  d e p o s i t s ," Geol.  15 ( 1 ) , pp. 121-146 Vo. 6 1 , 14365 e. Johnson,  Sbornik.  (Bratislava), Vol.  (German) , Chem. Abs., 1964 ,  A. ( 1 9 7 1 ) . " T e x t u r a l s t u d y o f c u p r i f e r o u s p y r i t e o r e s , Cyprus." U n p u b l i s h e d Ph.D. T h e s i s , Queens Univ., K i n g s t o n , Ont.  181  Joralemon,  P. ( 1 9 5 0 ) , "The o c c u r r e n c e o f g o l d a t G e t c h e l l M i n e , Nevada," Econ. Geol.., V o l . 46, pp. 267-31 0.  K a j i w a r a , Y. (1969) , " F u k u c h i l i t e , C u F e S , a new m i n e r a l from t h e Hanawa mine, A k i t a P r e f e c t u r e , J a p a n , " Min. Journ. ( J a p a n ) , V o l . 5, pp. 399-416, i n Mineral. Abst., Vo\. 21, No. 1 , p. 71 . 3  Kerr,  8  P.F. (T945), " C a t t i e r i t e and V a e s i t e . New m i n e r a l s from t h e B e l g i a n Congo," Am. V o l . 30, pp. 483-497.  Keith,  Co - Ni Mineral.,  M.L. and Degens, E.T. ( 1 9 5 9 ) , " G e o c h e m i c a l indicators o f m a r i n e and f r e s h w a t e r s e d i m e n t s , " A b e l s o n , P.H. ( e d ) , Researches in Geochemistry, pp. 38-61, J . W i l e y and S o n s , I n c . , New Y o r k .  Klemm, D.D. ( 1 9 6 5 ) , " S y n t h e s e n and a n a l y s e n i n den D r e i e c k s diagrammen. FeAsS - CoAsS - NiAsS und F e S C o S - N i S , " Neues Jahrb. Mineral Abhandl., V o l . 103, p. 250. 2  2  2  -. ( 1 9 6 2 ) , " U n t e r s u c h u n g e n uber d i e M i s c h k r i s t a l I b i l dung im D r e i e c k d i a g r a m m FeS - CoS - N i S und i h r e B e z i e h u n g e n zum A u f b a u d e r N a t u r l i c h e n 'Bravoit'," N. Jb. Miner. Mh., pp. 76-91. 2  2  2  -. ( 1 9 6 2 ) , " D i e s y n t h e s e n d e r M i s c h k r i s t a l l r e i h e n NiS - NiSe und C o S - C o S e und i h r e Beziehung zum n a t u r l i c h e n A u f t r e t e n d e r M i n e r a l i e n V a e s i t B l o c k i t und C a t t i e r i t - T r o g t a l i t , " N. Jb. Miner. Mh., pp. 32-41. 2  Kostov,  2  2  2  Ivan (1966) , " N o t a t i o n and g e n e t i c s i g n i f i c a n c e o f c r y s t a l h a b i t s , " I n t e r n a t i o n a l M i n e r a l o g i c a l Assoc i a t i o n P r o c . , . 5 t h G e n e r a l M e e t i n g , The M i n e r a l o g i c a l S o c i e t y , London 1968.  Kullerud,  G. and Y o d e r , H.S. ( 1 9 5 9 ) , " P y r i t e t i o n s i n t h e Fe - S s y s t e m , " Econ. 54, pp. 533-570.  stability relaGeol., V o l .  182  L a G a n z a , R.F. ( 1 9 5 9 ) , " P y r i t e i n v e s t i g a t i o n s a t N a i r n e , South A u s t r a l i a , " Econ. Geol., V o l . 54, pp. 895-902. Lang,  A.H.  (1940),  "Houston  a r e a , B.C. ," G.S.C. Paper  Larsen,  Edwin M. ( 1 9 6 5 ) . W.A. Benjamin,  Transitional New York.  Elements.  Lenker,  E a r l e S. ( 1 9 6 2 ) , "A t r a c e e l e m e n t s t u d y o f s u l f i d e m i n e r a l s from t h e e a s t e r n U n i t e d ( A b s t . ) Econ. Geol. V o l . 57, p. 1006.  183  40-18. pp.  selected States,"  3  Leonard,  B.F., D e s b o r o u g h , George A., and Page, Norman J . ( 1 9 6 9 ) , "Ore m i c r o s c o p y and c h e m i c a l c o m p o s i t i o n o f some L a u r i t e s , " Am. Mineral., V o l . 54, pp. 1330-1346.  L e u b e , A.  and Stumpf1 , E.F. ( 1 9 6 3 ) , "The R o o i b e r g and t i n m i n e s , T r a n s v a a l , S o u t h A f r i c a , " Econ. V o l . 58, pp. 527-557.  Leeuwpoort Geol.,  L o f t u s - H i 11 s , G., and S o l o m o n , M. ( 1 9 6 7 ) , " C o b a l t , ' n i c k e l . , and s e l e n i u m i n s u l p h i d e s as i n d i c a t o r s o f o r e g e n e s i s , " Mineralium Deposita, V o l . 2, pp. 228-242. Makrygina,  V.A., P e t r o v , B.V., and G l a z u n o v a , A.D. (1969), " B e h a v i o u r o f Co, N i , C r , and V i n some m e t a m o r p h i c r o c k s o f t h e Patom u p l a n d s , " Geochem. Intern., V o l . 6, pp. 742-752.  M a l a k h o v , A.A. ( 1 9 6 8 ) , Geochemistry,  "Bismuth V o l . 5,  and pp.  A n t i m o n y • i n . g a l e n a s ,"• . 1055-1066.  M c D o n a l d , J.A. ( 1 9 6 7 ) , "Metamorphism and i t s a f f e c t on s u l p h i d e a s s e m b l a g e s , " Mineralium Deposita, V o l . 2, pp. 200.220. M c l n t y r e , W.L. (1963), "Trace element p a r t i t i o n c o e f f i c i e n t s a r e v i e w o f t h e o r y and a p p l i c a t i o n s t o g e o l o g y , " Geochim. Cosmochim. Acta., V o l . 27, pp. 1209-1264.  183  Minguzzi,  C. and T a l l u r i , A. ( 1 9 5 1 ) , " M i n o r c o n s t i t u e n t s o f I t a l i an p y r i t e s ," Atti soc.Toscana sci. nat. (Pisa) Mem 48, S e r . A., pp. 89-120, i n Chem. Abs., Vol.47 4 7 , 4251 f .  Marshall,  R.R.. and J o e n s u u , D. ( 1 9 6 1 ) , " C r y s t a l h a b i t and t r a c e e l e m e n t c o n t e n t o f some g a l e n a s , " Econ. Geol., V o l . 56 , pp. 758-771 .  Mero, John  L. ( 1 9 6 5 ) . The Mineral E l s e v i e r , Amsterdam.  Mintser,  Resources  of  the  Sea.  E.F. ( 1 9 6 4 ) , " C r y s t a l l o c h e m i c a l f a c t o r s o f i s o m o r p h i s m i n e s s e n t i a l l y c o v a l e n t compounds as i l l u s t r a t e d by s p h a l e r i t e , " Geochem. Int. No. 11, pp. 285-289. 3  Mitchell,  R.H. ( 1 9 6 8 ) , "A semi quanta.ti ve s t u d y o f t r a c e - e l e m e n t s i n p y r i t e by s p a r k - s o u r c e mass s p e c t r o g r a p h y , " Norsk. Geol. Ti.ds. V o l . 48, pp. 65-80. 3  Mohr, P.A.  ( 1 9 6 0 ) , "The d i s t r i b u t i o n o f some m i n o r e l e m e n t s between s u l p h i d e and s i l . i c a t e ' phases. i n • s e d i m e n t s ," U n i v . C o l l . A d d i s . Ababa F a c . S c i . C o n t r i b . Geophys. O b s e r v . S e r . A. No. 2.  M u r a v y e v a , L.P., B a r b a n o v , V.F. and K l e r , M..M. (1964), "Inv e s t i g a t i o n o f t r a c e e l e m e n t s i n p y r i t e from t h e t u n g s t e n d e p o s i t s o f e a s t e r n T r a n s b a i k.al i y a ," Geochem. Intern., V o l . 1 , pp. 1096-1102. Trans, from: Geokhimiya, No. 11, pp. 1157-1163 ( 1 9 6 4 ) . N e c h e l y u s t o v , N.V., P o p o v a , N.N. and M i n s t e v , E.F. ( 1 9 6 2 ) , "On t h e i s o m o r p h i s m o f S e l e n i u m and T e l l u r i u m i n G a l e n a , " Geochem. Intern. ( E n g l i s h t r a n s . ) , No. 11 , pp. 1 129-1 1 35. Nickel,  E.H. ( 1 9 5 4 ) , "The d i s t r i b u t i o n o f i r o n , n i c k e l and c o b a l t between c o - e x i s t i n g b i o t i t e i n w a l l - r o c k a l t e r a t i o n , " Am. V o l . 39, pp. 494-503.  manganese, p y r i t e and Mineral. 3  —. (1967), " S t r u c t u r a l s t a b i l i t y o f m i n e r a l s w i t h p y r i t e , m a r c a s i t e , a r s e n o p y r i t e and l o l l i n g i t e s t r u c t u r e s , " Can. Mineral., V o l . 9, pp. 312-321.  the  184  Nickel,  E.H. ( 1 9 7 0 ) , "The a p p l i c a t i o n o f L i g a n d - F i e l d c o n c e p t s t o an u n d e r s t a n d i n g o f t h e s t r u c t u r a l stabi1ities and s o l i d - s o l u t i o n l i m i t s o f s u l p h i d e s and r e l a t e d m i n e r a l s , " Chem. Geol. V o l . 5, pp. 233-241. 3  Nickel,  E.H. , W e b s t e r , A.H., and R i p i e y , L.G. (1971 ) , "Bond s t r e n g t h s i n t h e d i s u l p h i d e s o f i r o n , c o b a l t , and n i c k e l , " Can. Mineral. V o l . 13, pp. 773-780. 3  Oertel,  A.C. ( 1 9 6 9 ) , " F r e q u e n c y d i s t r i b u t i o n s o f e l e m e n t c o n c e n t r a t i o n s , " P t . I , T h e o r e t i c a l a s p e c t s , Geochim. Cosmochim. Acta. V o l . 33, pp. 821-831. 3  O v c h i nni kov, L.N. ( 1 9 6 7 ) , "Impuri t y e l e m e n t s as i n d i c a t o r s o f the p r o c e s s o f o r e f o r m a t i o n and a p p l i c a t i o n o f t h e p a t t e r n s o f t h e i r d i s t r i b u t i o n t o s e a r c h and p r o s p e c t i n g f o r o r e d e p o s i t s , " i n V i n o g r a d o v , A.P. ( e d . ) Chemistry of the Earths Crust Vol.I I , ( V e r n a d s k y Commem. V o l . ) . 3  P a n t e l e y e v . A, ( i n . p r e p . ) . . "Geol o g i c s e t t i ng, mi n e r a l o g y and aspects o f zoning at the Berg 'porphyry' coppermolybdenum p r o s p e c t . " B.C. Unpubl i shed Ph . D. .th.es i s Dept. o f G e o l o g y , U.B.C. Park,  C. F.  (1955) , "The z o n a l t h e o r y o f o r e d e p o s i t s , " Geol. F i f t i e t h Ann. V o l . , pp. 226-248.  Econ.  3  Pauling,  L. ( 1 9 6 0 ) . The Nature of the Chemical E d i t i o n , Cornell Univ. Press.  Bond.  3rd  Peacock,  M.A. and S m i t h , F.G. ( 1 9 4 1 ) , " P r e c i s e measurements o f t h e cube edge o f common p y r i t e and n i c k e l i f e r o u s p y r i t e , " U n i v . o f T o r o n t o S t u d i e s , Geol. Ser. V o l . 46, pp. 107-117. 3  \ Pratico,  V a l m a r , V. ( 1 9 7 0 ) . Some Minor elements in pyrite from the Summit Camp. U n i v . o f B.C. G e o l . 409 (mineralography) report.  Prokhorov,  V.G. ( 1 9 6 5 ) , "Minor e l e m e n t s i n p y r i t e s and t h e use o f p y r i t e s i n p r o s p e c t i n g f o r o r e d e p o s i t s , " Geol. i, Geofiz. Akad. Nauk. SSSR Sibirsk otd. V o l . a , pp. 67-74 ( R u s s i a n ) , Chem. Abs. Chem. A b s . V o l . 64, 1820g. 3  3  185  Pyatenko,  Yu A. (1965) , " I s o m o r p h i s m o f atoms and l o g i c a l c o n s e q u e n c e s , " ( A b s t . ) Geochem. 2, p. 268.  Radcliffe,  D. arid McSween, H.Y. ( 1 9 6 9 ) , "Copper z o n i n g i n p y r i t e from C e r r o de P a s c o , P e r u : a discussion, Am. Mineral., V o l . 54, pp. 1216-1217.  Rankama, K. and Sahama . (1949). Geochemistry. o f C h i c a g o P r e s s , C h i c a g o and London. Riley,  i t s mineraInt., Vol.  University  J . F . ( 1 9 6 5 ) , "An i n t e r m e d i a t e member o f the b i n a r y system - F e S ( p y r i t e ) - CoS ( c a t t i e r i t e ) ," Am. Mineral., V o l . 50, pp. 1083-1086. 2  ——-—. (1968), Mineral.,  2  "The c o b a l t i f e r o u s p y r i t e V o l . 53, pp. 293-295.  series,"  Am.  Ringwood, A.E. ( 1 9 5 5 ) , " P r i n c i p l e s g o v e r n i n g t r a c e e l e m e n t d i s t r i b u t i o n - I. I n f l u e n c e o f e l e c t r o n e g a t i v i t y , " Geochim. Cosmochim. Acta., V o l . 7, pp. 189-202. Roscoe,  S.M. ( 1 9 6 5 ) , " G e o c h e m i c a l and I s o t o p i c and Mattagami a r e a s , " C.I.M.M. Bull., ' pp. 965-971 .  s t u d i e s , Noranda V o l . 58,  R o s e . A r t h u r A. (1970) , " O r i g i n o f t r a c e e l e m e n t d i s t r i b u t i o n p a t t e r n s i n s u l f i d e s o f the C e n t r a l and Bingham • . d i s t r i c t s ,• W e s t e r n U.S.A.," Mineral. Deposita ( B e r l i n ) , V o l . 5, pp. 1 57-163. .  (1967), "Trace elements i n s u l f i d e m i n e r a l s from t h e C e n t r a l d i s t r i c t , New Mexico and t h e Bingham d i s t r i c t , U t a h , " Geochim. Cosmochim. Acta., V o l . 31 , pp. 547-586. R y a b e h i k o v , I.D. ( 1 9 6 5 ) , " B e h a v i o r o f t r a c e phase s e p a r a t i o n , " Geochem. Int., 170. Saager,  R.  elements d u r i n g V o l . 2, pp.. 1.63-  and M i h a l i k , P. ( 1 9 6 7 ) , "Two v a r i e t i e s o f p y r i t e from the basal r e e f of the W i t w a t e r s r a n d system," Econ. Geol., V o l . 62, pp. 719-731.  186  S a n g s t e r , A.L. ( 1 9 6 7 ) . "Metamorphism o f t h e New C a l u m e t s u l p h i d e d e p o s i t , Quebec." U n p u b l i s h e d M.Sc. Thesis, Carleton University. S h a r p e , W.  (1967, 1968). "Molymine company r e p o r t s , Molymine  Deposit. Unpublished Exploration Ltd.  Scherbina,  V.V. ( 1 9 6 5 ) , "Dependence o f i s o m o r p h o u s t i o n on p r e s s u r e , " ( A b s t . ) Geochem. Int., p. 415.  substituV o l . 2,  S c h w a r t z , G.M. ( 1 9 5 1 ) , " C l a s s i f i c a t i o n and d e f i n i t i o n s o f t e x t u r e s and m i n e r a l s t r u c t u r e s i n o r e s , " Econ. Geol., V o l . 46, pp. 578-591. Shaw, D.M.  ( 1 9 5 3 ) , "The c a m o u f l a g e p r i n c i p l e and t r a c e e l e m e n t d i s t r i b u t i o n i n magmatic m i n e r a l s ," Jour. Geol., V o l . 61, pp. 142-151 .  • S h i m a z a k i , H. ( 1 9 6 9 ) , " S y n t h e s i s o f a c o p p e r - i r o n d i s u l f i d e p h a s e , " ( A b s t . ) Can. Mineral.-, V o l . 9, p. 146. S h i m a z a k i , H. and C l a r k , solid solution Can. Mineral., Sinclair,  Smith,  L.A. (1970) , " S y n t h e t i c F e S - C u S and F u k u c h i l i t e - l i k e m i n e r a l s , " V o l . 10, P t . 4, pp. 648-664. 2  A . J . (1967), "Trend s u r f a c e a n a l y s i s of minor elements i n s u l f i d e s o f t h e S l o c a n m i n i n g camp, B r i t i s h C o l u m b i a , Canada," Econ. Geol., V o l . 62, pp. 10951101 .  F.G. ( 1 9 4 7 ) , "The p y r i t e g e o t h e r m o m e t e r , " V o l . 42, pp. 515-523.  Springer,  Econ.  Geol.  G. , S c h a c h n e r - K o r n , D. and L o n g , J.V.P. ( 1 9 6 4 ) , " M e t a s t a b l e s o l i d s o l u t i o n r e l a t i o n s i n the system FeS - C o S - N1S ," Econ. Geol., V o l . 59, pp. 475-491. 2  Stanton,  2  2  2  R.L. ( 1 9 5 7 ) , " S t u d i e s o f p o l i s h e d s u r f a c e s o f p y r i t e , and some i m p l i c a t i o n s , " Can. Mineral., V o l . 6, pp. 87-118.  187  Stillwell,  F.L. and Edwards, A.B. ( 1 9 4 6 ) , "On t h e o c c u r r e n c e o f s u b m i c r o s c o p i c g o l d i n p y r i t e from t h e D o l p h i n E a s t L o d e , T a m a , F i j i , " Aust. Inst. Min. - Metv. Proc., V o l . 141 ( i n Edwards, A.B. ( 1 9 6 0 ) , Textures  of the Ore Minerals Inst.  Min.  Met.,  and  their Significance,  Aust.  Melbourne.  Stockwell , J . (1970). " C o b a l t , N i c k e l and Manganese i n P y r i t e From, F a r o No. 1, V a n g o r d a and Swim Lakes D e p o s i t s , A n v i l Range, Y.T." U n p u b l i s h e d B.Sc. T h e s i s , U n i v e r s i t y o f B.C. Stoiber,  R.E. ( 1 9 4 0 ) , " M i n o r e l e m e n t s i n s p h a l e r i t e , " Geol., V o l . 35, pp. 501-519.  S t r a u m a n i s , M.E.-et al. ( 1 9 6 4 ) , " S y n t h e s i s and X - r a y g a t i o n s w i t h i n the system F e S - C o S , " N. Miner. Abh., V o l . 101, pp. 127-141. 2  2  Econ.  investiJb.  S u t h e r l a n d , J.K. ( 1 9 6 7 ) , "The C h e m i s t r y o f some New Brunswick p y r i t e s , " Can. Mineral., V o l . 9, pp. 71-84. Sutherland  Brown, A. ( 1 9 6 9 ) , " M i n e r a l i z a t i o n i n C o l u m b i a and t h e c o p p e r and molybdenum  C.I.M.M. Bull., S u z u k i , T.  ( 1 9 6 3 ) , "On Tohoku Univ.  V o l . 62, pp.  British deposits,"  1-13.  the t h e r m o e l e c t i c p o t e n t i a l o f p y r i t e , " Sci. Rept., V o l . 8, pp. 317-419.  T a k a h a s h i , K i y o s h i ( 1 9 6 3 ) , " G e o c h e m i c a l s t u d y on m i n o r ments i n s u l f i d e m i n e r a l s . S u l f i d e m i n e r a l s i n n e r N o r t h e a s t J a p a n P r o v i n c e , " Geol. Surv. R e p o r t No. 199. Talapatra,  Talluri,  elefrom Japan,  A.K. ( 1 9 6 8 ) , " S u l f i d e m i n e r a l i z a t i o n a s s o c i a t e d w i t h m i g m a t i z a t i o n i n t h e s o u t h e a s t e r n p a r t o f the Singhbhum s h e a r z o n e , B i h a r , I n d i a ," Econ. Geol., V o l . 63, pp. 156-165.  A. ( 1 9 5 1 ) , " A r s e n i c i n I t a l i a n p y r i t e s , " Atti. Toscana Sci. nat. ( P i s a ) Me. 58, S e r . A., pp. 153, i n Chem. Abs., V o l . 47, 4251h.  soc. 137-  188  Taylor,  L.A. ( 1 9 7 0 ) , "The system. Ag-Fe-S : Phase and m i n e r a l a s s e m b l a g e s , " Mineral.Deposita V o l . 5, pp. 41-58.  equilibria (Berlin)  T e m p e l m a n - K l u i t , D.J. (1968) " G e o l o g i c s e t t i n g o f the F a r o , V a n g o r d a , and Swim b a s e - m e t a l d e p o s i t s , Yukon T e r r i t o r y ( 1 0 5 K ) , " Geol. Surv. Can., P a p e r 68-1A, pp. 43-52. Tipper,  H.W. (1970), "Smithers map-area, B r i t i s h Columbia P r o j e c t 690009," G.S.C. Report of A c t i v i t i e s , P a p e r 71-1, P a r t A, pp. 34-37.  Troshin,  Yu. P. ( 1 9 6 2 ) , " G a l l i u m - I n d i u m r a t i o o f T r a n s b a i k a l i y a , " Geochem. Intern., pp. 378-386.  . ( 1 9 6 5 ) , "The d i s t r i b u t i o n o f t r a c e e l e m e n t s o f d i f f e r e n t v a l e n c e s among h y d r o t h e r m a l m i n e r a l s as an i n d e x o f t h e o x i d a t i o n - r e d u c t i o n regime w i t h i n the s y s t e m , " Geochem. Intern., V o l . 2, pp. 937-946.  ;  Troshin,  in sphalerites V o l . 4,  Yu. P. and T r o s h i n a , G.M. ( 1 9 6 5 ) , "On t h e s t a b i l i t y of d i s t r i b u t i o n o f t r a c e elements d u r i n g the format i o n of• p o l y m e t a l 1 i c d e p o s i t s , " Geochem. Intern., V o l . 2, pp. 42-46.  Turekian,  K.K. ( 1 9 6 3 b ) , "The use o f t r a c e e l e m e n t g e o c h e m i s t r y s o l v i n g g e o l o g i c p r o b l e m s , " i n Shaw, D.M. ( e d . )  Studies  in A n a l y t i c a l  Toronto  Press,  pp.  Geochemistry.  Univ. of  3-24.  Turekian,  K.K. and Wedepohl , K.H. ( 1 9 6 1 ) , " D i s t r i b u t i o n o f the e l e m e n t s i n some m a j o r u n i t s o f t h e e a r t h s c r u s t , " G.S.A. Bull., V o l . 72, pp. 175-192.  Turovskii,  S.D. et al. ( 1 9 6 7 ) , " T r a c e e l e m e n t s as i n d e x e s o f d i f f e r e n c e i n age o f p o l y m e t a l l i c m i n e r a l i z a t i o n i n the n o r t h e r n T i e n - S h a n , " Chem. Abst., V o l . 67, p. 8748.  189  V a k h r u s h e v , V.A. and T s i m b a l i s t , V.G. ( 1 9 6 7 ) , " D i s t r i b u t i o n of gold i n s u l f i d e s o f the Altay-Sayan skarn d e p o s i t s , " Geochem. Intern., V o l . 4, pp..972-977. Vaughan, D a v i d J . ( 1 9 6 9 ) , " Z o n a l v a r i a t i o n i n B r a v o i t e , " The American Mineralogist, V o l . 54, pp. 1075-1083. V e l i k o b o r e t s , T.A. and L u k ' y a n c h e n k o , Ye. M. ( 1 9 7 0 ) , "On t h e mode o f o c c u r r e n c e o f c o b a l t i n p y r i t e , " T r a n s . Geokhimya, No. 7, pp. 859-863. V i n o g r a d o v , A.P. ( 1 9 6 2 ) , "Average c o n t e n t s o f c h e m i c a l e l e ments i n t h e p r i n c i p a l t y p e s o f i g n e o u s r o c k s o f t h e e a r t h s c r u s t , " Geochem., No. 7, pp. 641-664. Vlasov,  K.A. ( e d . 1 9 6 6 ) . Geochemistry and Mineralogy of Rare Elements and Genetic Types of their Deposits. 3 Vols. I s r a e l program f o r s c i e n t i f i c t r a n s l a t i o n s .  V o s k r e s e n s k a y a , N.T. ( 1 9 6 9 ) , " T h a l l i u m i n s e d i m e n t a r y s u l f i d e s ' , " Geochem. Intern., V o l . 6, No. 2, pp. 225236. W a r r e n , H.V. and Thompson, R.M. (1945), W e s t e r n Canada," Econ. Geol., 335. Wedepohl , K.H. ( E d . ) ( 1 9 6 9 ) . Handbook S p r i n g e r - V e r l a g , New Y o r k .  " S p h a l e r i t e s from V o l . 50, pp. 309-  of  Geochemistry.  W e l l s , John D., S t o i s e r , Lee R. and E l l i o t t , James E. ( 1 9 6 9 ) , " G e o l o g y and G e o c h e m i s t r y o f t h e C o r t e z D e p o s i t Nevada," Econ. Geol., V o l . 64, pp. 526-537. Williams,  K.T. and B y e r s , H.G. ( 1 9 3 4 ) , " O c c u r r e n c e o f s e l e n i u m i n p y r i t e s , " Ind. Eng. Chem. Anal. Ed., V o l . 6, pp. 296-297.  W i l s o n , H.D.B. and A n d e r s o n , D.T. ( 1 9 5 9 ) , "The c o m p o s i t i o n o f C a n a d i a n s u l p h i d e o r e d e p o s i t s , " C.I.M.M. Bull., V o l . 52, pp. 619-631.  190  Wright,  D.M. (1965), "Syngenetic p y r i t e a s s o c i a t e d with a P r e c a m b r i a n i r o n o r e d e p o s i t , " Econ. Geol., V o l . 60, pp. 998-1019.  Wright,  H a r o l d , D. S m i t h , C h e s t e r , M. and H u t t a , J o s e f J . (1960) " R o l e o f t r a c e amounts o f u r a n i u m i n some base m e t a l s u l f i d e s from v e i n d e p o s i t s , " I n t . G e o l . C o n g r e s s , 2 1 s t S e s s . N o r d e n , P t . XVI, pp. 248-260.  Yamamoto, M. , O g u s h i , N. and S a k a i , H. ( 1 9 6 8 ) , " D i s t r i b u t i o n o f s u l f u r i s o t o p e s , s e l e n i u m and c o b a l t i n t h e Y a n a h a r a o r e d e p o s i t s , Okayama-Ken, J a p a n , " Geochemical Journal, V o l . 2, pp. 137-156. Yamaoka, Kazuo, " S p e c t r o g r a p h i c s t u d i e s on i n p y r i t e , " Kumamoto Jour. Sci., pp. 31-37 (1962-65).  the t r a c e elements S e r . B., S e c t . 1,  Ypma, P.J.M. ( 1 9 6 8 ) , " P y r i t e g r o u p : An u n u s u a l member Cuo.6o 'Nioiif» Coo.o3, F e o . 2 3 - S , " Science, V o l . 159, p. 194. 2  191  APPENDIX I PROPERTY DESCRIPTIONS  Ascot  (Sample BTG 1) The A s c o t p r o p e r t y , owned by Texas G u l f S u l p h u r L t d . , i s  s i t u a t e d midway between Mt. M c K e n d r i c k and Dome M o u n t a i n a p p r o x i mately f o u r miles east o f the Smithers-Babine i s by f o u r - w h e e l  Lake highway.  d r i v e v e h i c l e o v e r a v e r y poor road  Access  connecting  Dome M o u n t a i n and the B a b i n e Lake highway, 18 m i l e s from  Smithers.  V e r y l i t t l e i n f o r m a t i o n i s a v a i l a b l e c o n c e r n i n g the p r o p e r t y , b u t m i n e r a l i z a t i o n i s thought t o be " s t r a t i f o r m " i n n a t u r e ,  with  s p h a l e r i t e , g a l e n a , and p y r i t e p r e s e n t i n s t r o n g l y - f o l d e d s e d i m e n t s o f u n i t 5 o f t h e H a z e l t o n Group.  R h y o l i t i c flows o v e r l i e the s e d i -  ments a t t h i s l o c a l i t y , a s i s t h e case a t Dome M o u n t a i n nearby. The d e p o s i t was d i s c o v e r e d by g e o c h e m i c a l methods; development work has i n c l u d e d d e t a i l e d s o i l s a m p l i n g , e x p l o r a t o r y diamond  g e o l o g i c a l mapping, and  drilling.  A specimen o f p y r i t e w a s - p r o v i d e d by Mr. J . F r a s e r , g e o l o g i s t f o r Texas G u l f S u l p h u r L t d . d u r i n g the summer o f 1969. P y r i t e o c c u r s a s t i n y s u b h e d r a l g r a i n s c o m p r i s i n g 80 p e r c e n t o f t h e specimen; m a t r i x m i n e r a l s a r e q u a r t z and s e r i c i t e . a r e p r e s e n t i n t h e specimen. o r i g i n a l bedding laminae,  No o t h e r s u l p h i d e s  P y r i t e g r a i n s appear t o have r e p l a c e d  thus t h e d e p o s i t may be o f r e p l a c e m e n t  o r i g i n r a t h e r than b e i n g s t r i c t l y  syngenetic.  192  2.  Dome Mountain area (Samples BDM 1-6)  Dome Mountain i s a glaciated k n o l l with maximum elevation 5750 feet, situated 20  mile3  due east of Smithers.  Dome Mountain  and adjacent h i l l s form the southern extension of the Babine Mountains. Access to mineral deposits i n the Dome Mountain area i s by four-wheel drive vehicle on gravel road from a point on Highway 16, two miles east of Telkwa to Guess Lake, then eight miles of poor d i r t road which i s generally impassable.  An alternate route i s v i a the newly  constructed access road which leaves the Babine Lake road at a point 18 miles from Smithers.  This road i s also generally impassable.  Transportation to the area during the summer of 1969 was p r i n c i p a l l y by helicopter from  Smithers.  Sulphide-bearing quartz veins were discovered on the mountain p r i o r to 1914, but exploration has been sporadic since that time. Many short adits and shafts and numerous trenches have explored the veins.  Topography and vein locations are shown on Figure 70.  Claim  names have been changed several times, and r e s o l u t i o n of geographic locations of veins from published reports i s exceedingly d i f f i c u l t . Sample locations are shown on Figure 70.  The top of Dome Mountain  has been strongly glaciated and much bare rock i s exposed. The mountain top i s underlain by greenish-grey t u f f s and andesites and maroon argillaceous t u f f s .  The rocks are strongly sheared, as  evidenced by stretched volcanic fragments.  According to Carter (1969)  the mountain i s a n t i c l i n a l with f o l d axes and shearing having a north to northwest  strike.  Strong northeast trending cross-fractures are  enhanced by g l a c i a l  "plucking" of fracture blocks.  s t r i k e northwesterly, p a r a l l e l to shearing.  Quartz veins  On t h e c r e s t o f t h e  mountain q u a r t z v e i n s a r e narrow and d i s c o n t i n u o u s ; m i n e r a l i z a t i o n was a t l e a s t i n p a r t p r e d e f o r m a t i o n , noted  i nseveral l o c a l i t i e s .  because deformed v e i n s were  Most m i n e r a l i z a t i o n on t h e c r e s t o f  the mountain i s p r e s e n t i n a v e i n system w h i c h f o l l o w s a narrow r h y o l i t e dyke ( a l s o d e f o r m e d ) ; m i n e r a l i z a t i o n c o n s i s t s o f minor amounts o f p y r i t e , c h a l c o p y r i t e , and h e m a t i t e .  On t h e n o r t h e a s t  f l a n k o f the mountain v e i n s a r e w i d e r , more c o n t i n u o u s , and c o n t a i n s i g n i f i c a n t amounts o f p y r i t e , c h a l c o p y r i t e , s p h a l e r i t e , and g a l e n a , w i t h m i n o r amounts o f t e t r a h e d r i t e .  A r s e n o p y r i t e was r e c o r d e d by  B.C. Department o f Mines p e r s o n n e l , b u t none was o b s e r v e d writer.  by t h e  S i x c o m p o s i t e samples were c o l l e c t e d from s e p a r a t e v e i n s ,  shown on the accompanying map ( F i g u r e 7 0 ) .  Dome B a b i n e P r o p e r t y (Samples BD 1-6)  The Dome Babine showings were d i s c o v e r e d i n 1914 by A l e x Chisholm,  who s t a k e d t h e major showing a s Free G o l d No. 1 c l a i m .  The showings a r e l o c a t e d on the e a s t s l o p e o f Dome M o u n t a i n approximately  2 m i l e s due e a s t o f the mountain c r e s t ( s e e F i g u r e  The camp i s a p p r o x i m a t e l y d i s t a n c e by road  18 m i l e s e a s t - n o r t h e a s t o f Telkwa, b u t  (see p r e v i o u s p r o p e r t y d e s c r i p t i o n ) i s 26 m i l e s .  L i t t l e e x p l o r a t o r y work was done on t h e p r o p e r t y u n t i l 1932, when Babine Gold Mines L t d . o p t i o n e d t h e p r o p e r t y .  From 1932 t o  1935 s t r i p p i n g and t r e n c h i n g were done; a main a d i t was d r i v e n 350  FIGURE 70, Map of Dome Mountain area, near Smithers B.C., showing gold-bearing quartz veins and l o c a t i o n of samples BDM 1 - 7 . (Modified from B.C. Min. Mines Ann.Rept. 1922, p. 101.)  195  f e e t t o i n t e r s e c t the major v e i n s , w i t h an a d d i t i o n a l 4 0 0 f e e t o f c r o s s c u t t i n g t o e x p l o r e the v e i n s .  Several v e r t i c a l shafts i n t e r -  s e c t t h e c r o s s c u t s as shown on t h e accompanying map ( F i g u r e 7 1 ) . S e v e r a l q u a r t z v e i n s and q u a r t z o s e in  s h e a r zones a r e  present  "en e c h e l o n " arrangement, s t r i k i n g n o r t h 35°W and i n most p l a c e s  dipping steeply to the northeast.  The v e i n s , v a r y i n g i n w i d t h  from  s e v e r a l i n c h e s t o 2-=r f e e t , c o n t a i n p y r i t e , s p h a l e r i t e , and g a l e n a , w i t h l e s s e r amounts o f t e t r a h e d r i t e and c h a l c o p y r i t e . present  Free gold i s  i n the quartz as w e l l as i n the sulphide m i n e r a l s .  Assays o f  up t o 12 o z . g o l d and 2-3 o z . s i l v e r p e r t o n have been r e c o r d e d ; samples t a k e n from 1932  t o 1938 assayed about 2 o z . g o l d and 2 o z .  s i l v e r per ton with approximately z i n c (B.C.M.H., 1 9 3 8 ) .  bulk  1.5 p e r c e n t l e a d and 5 p e r c e n t  F u r t h e r a s s a y s by Dome Babine Mines L t d . and  o t h e r companies have i n d i c a t e d an o v e r a l l average o f 7 o z . g o l d p e r ton.  S e v e r a l e x p l o r a t i o n companies examined t h e p r o p e r t y s i n c e 1935  but l i t t l e e x p l o r a t o r y work was done.  The p r o p e r t y was a c q u i r e d by  Dome Babine Mines L t d . (N.P.L.) i n 1968, and e x p l o r a t o r y work i n c l u d e d ground magnetometer and e l e c t r o m a g n e t i c  surveys, geochemical s o i l  s a m p l i n g , g e o l o g i c a l mapping, f u r t h e r t r e n c h i n g , and seven s h o r t diamond d r i l l h o l e s .  The magnetometer s u r v e y and mapping r e v e a l e d  a s m a l l g r a n i t i c s t o c k r o u g h l y 5 0 0 f e e t wide by a t l e a s t 1500 long adjacent  t o the v e i n s y s t e m .  The major v e i n was found t o  f o l l o w a narrow " f e l s i t e " dyke o f t h e same c o m p o s i t i o n intrusion.  feet  as the  G r a n i t i c n a t u r e o f t h e i n t r u s i o n was i n f e r r e d from q u a r t z  "eyes" o r p h e n o c r y s t o , a l t h o u g h  the f i n e - g r a i n e d n a t u r e and s e r i c i t i c  196  LEGENO Andesitic voicanics I  GRANITE •  Stripping  Oz.GoldDzSilver:;CoppEr."iLEad%Zirx 3tondump_2.3Z  • •—  Quartz vein  II.0  3-Z  nil.  1  {generally sloughed))  2.8  Open-cut  \ /  Shaft Adit •^•N \  Oz.Gold O z . S i l v e f X C o p p e r % L e a d % Z i n c 3tondump_8.30i?l 5.0 1.3 I.I 6.3  ft' ". 1  Csbber, grade  1 , Oz.GoidOzSilver%Coppergteadg2inc  of S'ton dump p  -  —  :  ——•— —•— :  1  r  eet.  FIGURE 71 , Map o f Dome B a b i n e g o l d p r o s p e c t , e a s t s i d e o f Dome M t n , showing l o c a t i o n o f samples BD 1 - 6 . ( M o d i f i e d f r o m B.C. M i n i s t e r o f Mines A n n . R e p t . 1938, p . B18.)  197  a l t e r a t i o n o f the m a t e r i a l concealed other t e x t u r e s . Diamond d r i l l i n g revealed f r e s h g r a n i t e a t depth.  The i n t r u s i o n has caused  propylitic  a l t e r a t i o n of adjacent t u f f s , v/ith the formation of much magnetite. L i t t l e hydrothermal a l t e r a t i o n i s present near v e i n s other than bleached "envelopes" up to a f o o t wide.  The quartz veins are b e l i e v e d  by the w r i t e r to be g e n e t i c a l l y r e l a t e d to the g r a n i t i c stock. At l e a s t two generations of p y r i t e are present a t the deposit. The f i r s t type i s f i n e l y c r y s t a l l i n e , contains no gold, and i s present only i n the bleached w a l l rock adjacent to v e i n s .  The v e i n p y r i t e i s  coarser, w i t h subhedral c r y s t a l s up to -5- i n c h diameter, and contains appreciable gold and i n c l u s i o n s of s p h a l e r i t e , galena, and minor amounts of c h a l c o p y r i t e .  The p y r i t e i s s t r o n g l y shattered and i s veined by  other sulphides, e s p e c i a l l y s p h a l e r i t e . probably deposited contemporaneously,  S p h a l e r i t e and p y r i t e were  as m i c r o i n c l u s i o n s of p y r i t e are  abundant i n a l l s p h a l e r i t e from the deposit, and p y r i t e contains abundant s p h a l e r i t e i n c l u s i o n s .  The s p h a l e r i t e a l s o contains t e t r a -  h e d r i t e and galena i n c l u s i o n s . The f o l l o w i n g paragenetic sequence i s reported by the Department o f Mines and Resources, Ottawa (B.G.M.M., 1938): s p h a l e r i t e - t e t r a h e d r i t e - c h a l c o p y r i t e - galena.  pyrite -  I n the same study  gold was observed to occur as i r r e g u l a r g r a i n s i n galena and c h a l c o p y r i t e . S i x samples were taken from four major v e i n s and from ore dumps near the s h a f t s .  Locations of samples are shown on Figure 71.  Each sample taken was composite i n nature, averaging 5-10 pounds to ensure homogeneity o f subsequent p y r i t e concentrates.  198  Fedral*Creek  P r o p e r t y (Sample BD  7)  The P e d r a l Creek p r o p e r t y , o r i g i n a l l y known as the group, was work was  s t a k e d by G. H a z e l t o n p r i o r to 1922.  L i t t l e development  done because o f deep o v e r b u r d e n i n the a r e a .  I n 1922  20 c l a i m s i n the immediate v i c i n i t y were o p t i o n e d by T.E. who  employed 10-15  men  "Forks"  Jefferson  and an a s s a y e r t o examine and d e v e l o p  p r o p e r t y (B.C.M.M., 1923).  A major v e i n 20-30 f e e t wide  e x p l o r e d by t u n n e l i n g and c o n s i d e r a b l e ore a v e r a g i n g $20 t o n i n g o l d and s i l v e r was  outlined.  about  the  was t o $30  per  The v e i n s t r i k e s N30°E and  c u t s r e d d i s h a n d e s i t e p r o b a b l y b e l o n g i n g t o the lowermost v o l c a n i c u n i t (4) o f the H a z e l t o n Group, n e a r the upper c o n t a c t w i t h o v e r l y i n g sediments.  The  s t r o n g l y sheared encouraging  " s c h i s t " o f t e n mentioned i n e a r l y r e p o r t s i s p r o b a b l y and a l t e r e d a n d e s i t e .  r e s u l t s (average  I n i t i a l e x p l o r a t i o n gave  1-8 oz. g o l d per t o n , a c c o r d i n g t o Lang,  1943), and Dome Mountain Gold M i n i n g Company was F e d e r a l M i n i n g and S m e l t i n g Company t o d e v e l o p was  formed by  the  the p r o p e r t y .  A shaft  sunk t o the 100 f o o t l e v e l on the F o r k s v e i n and e x t e n s i v e  c a r r i e d out.  drilling  D i s c o n t i n u i t y o f ore r e s u l t e d i n shutdown o f e x p l o r a t i o n ,  a l t h o u g h a l a r g e camp had been b u i l t and much equipment assembled. Up u n t i l 1969  the crown-granted c l a i m s were s t i l l h e l d by K . J .  Springer.  P o l i s h e d specimens o f ore show t h a t the most common s u l p h i d e s p r e s e n t are p y r i t e , s p h a l e r i t e , c h a l c o p y r i t e and g a l e n a .  Extensive  s h e a r i n g o f v e i n m a t e r i a l i s r e f l e c t e d i n extreme s h a t t e r i n g and o f p y r i t e and i n f i l l i n g o f i n t e r g r a n u l a r spaces by more p l a s t i c and c h a l c o p y r i t e .  C h a l c o p y r i t e i s much more common a t t h i s  • O r i g i n a l s p e l l i n g on government maps.  rounding galena  property  1  than at other properties on Dome Mountain; sphalerite i s more i r o n r i c h , and contains abundant chalcopyrite i n c l u s i o n s . of  Concentration  sulphide minerals by vein shearing has resulted i n "massive  sulphide" appearance of some specimens.  One composite sample, BDM 7, was obtained from a small dump near the main s h a f t .  Molymine Property (Samples BMH-1-12, BDZ 1-6, BZ 1-5) The property under option by Molymine Explorations Ltd. (N.P.L.) encompasses several d i s t i n c t types of mineral occurrence.  The property  i s on the west facing slope of Grouse Mountain above Helen or "Fishpan" Lake near the P e l i s s i e r Ranch.  A good road leaves the main highway at  the top of "Hungry H i l l " 8 miles north of Houston and reaches the camp at 2900 feet elevation. to  Branch roads from the main camp extend  the separate mineral showings.  The property area, known o r i g i n a l l y as Mineral H i l l , was explored extensively p r i o r to and during 1926; the Venus group was centered on a s i g n i f i c a n t vein, 3 to 4 feet wide containing scattered 1  sphalerite, galena, chalcopyrite, p y r i t e , and s i l v e r - b e a r i n g t e t r a hedrite.  The vein was explored by a shaft 66 feet deep and traced f o r  275 feet by open cuts. easterly. Shaft.  The vein s t r i k e s N35°W (mag.) and dips 60°  The present camp i s situated d i r e c t l y beside the Venus  Pyrite samples BMH 7 and 7A were obtained from the vein.  Detailed mapping by W.M. Sharp (1966-1968), Cominco geologists  200  ( 1 9 6 6 ) , A. S u t h e r l a n d - B r o w n  (1965), and  the w r i t e r (1968-1969) have  shown a wide v a r i e t y o f i g n e o u s i n t r u s i o n s p e n e t r a t i n g h o r n f e l s e d sediments  and t u f f s o f the H a z e l t o n Group.  The  two most i m p o r t a n t  i n t r u s i o n s a r e a s m a l l a l a s k i t e ( l e u c o g r a n i t e ) body and a  larger  p o r p h y r i t i c g r a n i t e s t o c k a p p r o x i m a t e l y 2000 f e e t e a s t o f the a l a s k i t e b o d y . * The g r a n i t e body has a p l i t i c m a r g i n s and b o t h i n t r u s i o n s c o n t a i n d i s s e m i n a t e d p y r i t e and m o l y b d e n i t e , a l t h o u g h m i n e r a l i z a t i o n i s s p a r s e i n the g r a n i t e . comparison  Compositions  of both bodies are l i s t e d  (Sutherland-Brown,  Mineral  1965):  Alaskite  Quartz  35$  Perthite (Microcline)  20  Plagioclase  25  Muscovite  Granite .  :  41$ 29  (An 38)  4  Opaques  belov; f o r  27  (An  33+)  3  1  -  .  B o t h r o c k t y p e s a r e f a i r l y c o a r s e , have rounded q u a r t z g r a i n s and only s l i g h t s e r i c i t i c  alteration.  The m o l y b d e n i t e m i n e r a l i z a t i o n was i n 1962  by W.D."  r e c o g n i z e d i n the a l a s k i t e  Y o r k e - H a r d y ; the p r o p e r t y has s i n c e been examined by  Southwest P o t a s h L t d . (1962), and Cominco L t d . (1966). geochemical overburden  Extensive  s o i l s a m p l i n g , magnetometer and I.P. s u r v e y s , t r e n c h i n g , and diamond d r i l l i n g have f a i l e d to r e v e a l s u f f i c i e n t  to w a r r a n t development a l t h o u g h grade i s r e p o r t e d to be 0.12$ (Manex p e r s o n n e l , p e r s o n a l comm.). *See F i g u r e 7 2 .  ore  M0S2  E x p l o r a t i o n work has been done  201  «DZ I  *>» \  *  BDZ 3  X X  BHH 2  I » *0-  DlORITl • . . BDZ'S  •flOMIE-  .... -*"* HO&KFLLS *  HAP OF DIORITE ZONE ShOtflKC GLulCGY AND SAMPLE L O C A I l U S S  •call  0  Dot*: Dloricc zone ahtfced  FIGURE 7 2 .  2 0 0  1000 f t .  400  600800 (t.  of true l o c .  G e o l o g i c map o f Molymine p r o s p e c t showing sample locations.  202  under the d i r e c t i o n o f W.M.  Sharp,  c o n s u l t i n g g e o l o g i s t , and  Beley,. e x p l o r a t i o n manager f o r Manex M i n i n g L t d .  M.J.  (N.P.L.).  Other i g n e o u s r o c k t y p e s p r e s e n t on the p r o p e r t y w h i c h  are  probably u n r e l a t e d to m i n e r a l i z a t i o n are 1) D i o r i t e :  a d i o r i t e s t o c k c r o p s out on t h e upper s l o p e s  o f Grouse Mountain from e l e v a t i o n 3900' to the t o p o f the m o u n t a i n .  Minor amounts o f p y r i t e and c h a l c o p y r i t e  a r e p r e s e n t i n p l a c e s as v e r y f i n e g r a i n s d i s s e m i n a t e d through the i n t r u s i o n . . 2) Dykes o f m o n z o n i t i c c o m p o s i t i o n a r e found northward  striking  between the a l a s k i t e and g r a n i t e i n t r u s i v e s .  The dykes a r e " d i a b a s i c " t e x t u r e d , a c c o r d i n g t o Sutherland-Brown  (1965)*  "Diabasic texture" i s i n t e r -  p r e t e d t o be s i m i l a r t o t h a t p r e s e n t i n t r a c h y t o i d p o r p h y r y dykes s t r i k i n g n o r t h w a r d  a t t h e t o p o f the  mountain, w h i c h c o n t i n u e to the Copper Ridge s e v e r a l m i l e s t o the s o u t h .  property  M a g n e t i t e i s an abundant  a c c e s s o r y m i n e r a l i n each o c c u r r e n c e . . B o r n f e l s i n g o f the sediments  i s p r o b a b l y due  metamorphic e f f e c t o f the a c i d i c p l u t o n s .  The metamorphism has  camouflaged d i f f e r e n c e s between r o c k t y p e s and new created (Sutherland-Brown,  1965).  to c o n t a c t -  b i o t i t e has been  Much o f the h o r n f e l s i s s t r o n g l y  f r a c t u r e d and v e i n e d w i t h q u a r t z , as i s the a l a s k i t e  intrusion.  The m i n e r a l i z e d a r e a , c o n t a i n i n g p y r i t e and m o l y b d e n i t e , i s shovm i n F i g u r e 72.  203  1-5)  a) B r e c c i a zone (BZ  During e x p l o r a t i o n f o r molybdenite m i n e r a l i z a t i o n outside o f the " a l a s k i t e zone" a body o f m i n e r a l i z e d b r e c c i a was near a s m a l l creek roughly  discovered  3000 f e e t n o r t h o f the a l a s k i t e i n t r u s i o n .  O r i g i n a l l y termed a " c r a c k l e b r e c c i a , " the body i s i n t e r p r e t e d by the w r i t e r as a t r u e b r e c c i a " p i p e . "  Dimensions o f the  breccia  a r e a a r e not known as o v e r b u r d e n i s v e r y t h i c k o v e r much o f  the  a r e a , but d i a m e t e r i n d i c a t e d by o v e r b u r d e n d r i l l i n g i s a t l e a s t 1000  feet.  A l t e r e d h o r n f e l s f r a g m e n t s i n the b r e c c i a a r e cemented  by c o a r s e l y c r y s t a l l i n e m i l k y q u a r t z w i t h o c c a s i o n a l t a b u l a r  K-  feldspar crystals.  the  Molybdenum m i n e r a l i z a t i o n i s c o n f i n e d  to  e a s t e r n p a r t o f the b r e c c i a t e d a r e a but c h a l c o p y r i t e i s common i n the westernmost t r e n c h e s w i t h minor amounts o f t e t r a h e d r i t e a n d , v e r y . rarely,sphalerite.  B r e c c i a fragments are of v a r y i n g  and a r e p a r t i a l l y a l t e r e d to s e r i c i t e . hedral disseminated  Many f r a g m e n t s c o n t a i n  sub-  p y r i t e grains o l d e r i n paragenesis than p y r i t e  from i n t e r s t i t i a l q u a r t z . and  compositions  a l t e r a t i o n zoning  makes t h i s d i f f i c u l t  There a p p e a r s to be rough m i n e r a l o g i c a l  i n the b r e c c i a t e d a r e a a l t h o u g h l i m i t e d - o u t c r o p to v e r i f y .  Genetic  a f f i l i a t i o n o f the b r e c c i a  zone w i t h " p o r p h y r y " and v e i n type m i n e r a l i z a t i o n on the p r o p e r t y considered 1)  is  p o s s i b l e because:-  M o l y b d e n i t e i s p r e s e n t b o t h i n the b r e c c i a p i p e and  igneous  intrusives; 2') K - f e l d s p a r matrix;  fragments o r c r y s t a l s a r e p r e s e n t i n the b r e c c i a  204  3) S p h a l e r i t e and  t e t r a h e d r i t e i d e n t i c a l i n appearance a r e  p r e s e n t b o t h i n v e i n s and  i n the b r e c c i a p i p e ;  4) S p a t i a l l y the d i f f e r e n t m i n e r a l o c c u r r e n c e s  a r e c l o s e to  each o t h e r and f r a c t u r e d e n s i t y and o r i e n t a t i o n suggest consanguinity. F i v e samples, BZ 1-5,  b) D i o r i t e zone (BDZ  were taken from the b r e c c i a zone.  1-6)  Ten p y r i t e samples were o b t a i n e d  from s u l p h i d e - b e a r i n g  v e i n s a t the "Venus" s h a f t and i n the d i o r i t e zone. a northwesterly s t r i k e , with widely varying dips.  quartz  The v e i n s have Mineralization i s  r a t h e r s p a r s e i n most v e i n s w i t h s c a t t e r e d c l o t s o f s p h a l e r i t e , g a l e n a , t e t r a h e d r i t e , c h a l c o p y r i t e and p y r i t e i n q u a r t z gangue w i t h minor amounts o f c r e a m - c o l o r e d c a r b o n a t e . g e n e r a l l y ranges between 1 and  S i l v e r content  10 oz. per t o n , a l t h o u g h  the "Venus" v e i n a r e c o n s i d e r a b l y h i g h e r . are lens-shaped,  property are probably  S e v e r a l s h a f t s and a d i t s  Sample l o c a t i o n s a r e shown on F i g u r e  Pyritization "envelopes"  seen on  the  72.  1)  " M e r k e l e y " s h a f t , 40 f e e t deep, and  s i n c e a t l e a s t 1926,  diorite  those r e p o r t e d from the M i c k e y group (B.C.M.M.,  c ) M e r k e l e y showing (BMH  The  v e i n s i n the  t o v e i n s i s common and r a r e l y b l e a c h e d  were seen s u r r o u n d i n g v e i n s .  p. A137).  The  a s s a y s from  f r e q u e n t l y l e s s t h a n 10 f e e t i n l e n g t h . '  i n d i o r i t e adjacent  1926,  (in tetrahedrite)  i s approximately  f i l l e d w i t h water  4000 f e e t due  south of  the  205  southernmost " D i o r i t e zone" v e i n s (see F i g u r e 72 ).  No r o a d e x t e n d s  t o t h i s showing, but s i n c e the t r e e c o v e r i s s p a r s e , i t can be r e a c h e d o v e r l a n d by f o u r - w h e e l d r i v e v e h i c l e .  The s h a f t i s d r i v e n on a  r e l a t i v e l y s m a l l pod o f c h a l c o p y r i t e , p y r i t e and m a g n e t i t e t h a t has replaced p r o p y l i t i z e d andesites.  O r i e n t a t i o n o f the pod i s u n c e r t a i n ,  b u t major f r a c t u r e s i n the a d j a c e n t a n d e s i t e s s t r i k e n o r t h w a r d and d i p s t e e p l y t o the west, p o s s i b l y p a r a l l e l t o a major a i r - p h o t o thought t o be a normal f a u l t .  linear  I t i s r e p o r t e d t h a t 20 t o n s o f o r e ,  a s s a y i n g 17 p e r c e n t copper and 6 o z . s i l v e r p e r t o n , were r e c o v e r e d from the showing.  S e v e r a l samples o f m i n e r a l i z a t i o n were r e t a i n e d  f o r p o l i s h e d s e c t i o n s t u d y , and one composite p y r i t e sample  6.  c o l l e c t e d f o r a n a l y s i s (Sample BMH  1 ).  Copper Ridge. P r o p e r t y (Samples BCR  1, 2,  was  . s  5)  The Copper R i d g e p r o p e r t y , p r e s e n t l y owned by Copper Ridge Mines L t d . , was d i s c o v e r e d i n 1914 by Samuel Bush, L o u i s S c h o r n , and partners.  C a s s i a r Crown Copper Company was formed t o d e v e l o p the  property.  From 1914 t o 1927 development work i n c l u d e d a s h a f t on  the Copper Crown c h a l c o p y r i t e showing, two c r o s s c u t a d i t s on the Copper Crown and Ruby zones w i t h c o n n e c t i n g d r i f t s , and s h a l l o w a d i t s and t r e n c h e s on the L a k e v i e w and S c h o r n zones (see F i g u r e 73 )• Development  ceased i n 1927 but resumed  a g a i n i n 1951 when Copper  R i d g e S i l v e r Z i n c Mines L t d . ( c o n t r o l l e d by T r a n s c o n t i n e n t a l R e s o u r c e s L t d . ) was formed.  Over 9000 f e e t o f diamond d r i l l i n g was done by  the company on the f o u r major zones. f o r several years.  The p r o p e r t y has remained dormant  The a r e a was mapped i n 1915 by J.D. MacKenzie o f  206  t h e G.S.C., and i n 1951  by J.M.  B l a c k , o f the B.C.  Department o f  Mines.  Acces3  t o the p r o p e r t y i s v i a a s t e e p and rough j e e p road  "which l e a v e s the main highway n e a r the m i d - p o i n t o f "Hungry" H i l l , 16 m i l e s e a s t o f Telkwa.  F i g u r e 73  a r e a and sample l o c a t i o n s .  shows the g e o l o g y o f the p r o s p e c t  Sedimentary  r o c k s b e l o n g i n g to the  H a z e l t o n Group c o v e r most o f the a r e a and i n c l u d e t h i n l y - b e d d e d t o massive  t u f f s , s a n d s t o n e s , a r g i l l i t e s , and v o l c a n i c b r e c c i a s .  members o f the sequence c o n t a i n b e l e m n i t e s ( B l a c k , "1951). ments g e n e r a l l y d i p s h a l l o w l y southward. beds s t r i k e n o r t h w e s t w a r d  Some  The  sedi-  Minor f r a c t u r e s i n t h i n n e r  and d i p a t moderate a n g l e s to the  southwest.  T h e i r o r i e n t a t i o n i s p a r a l l e l to dykes c u t t i n g the s e d i m e n t s . dykes o c c u r n e a r no. 2 a d i t and n e a r Coppermine Lake.  Diorite  The w i d e s t dyke  i s about 200 f e e t i n w i d t h , a l t h o u g h a w i d e r , i r r e g u l a r d i o r i t e mass o c c u r s e a s t o f the l a k e .  F e l d s p a r p o r p h y r y dykes and masses o c c u r  s o u t h and west o f the a d i t s .  These b o d i e s a r e i n t e r m e d i a t e i n compo-  s i t i o n , have t r a c h y t o i d t e x t u r e , w i t h p l a g i o c l a s e p h e n o c r y s t s up to f o u r i n c h e s l o n g , and c o n t a i n much m a g n e t i t e .  S i m i l a r dykes have  been n o t e d a t the Molymine P r o s p e c t to the s o u t h and a t s i m i l a r topographic e l e v a t i o n .  Massive s u l p h i d e bodies c o n s i s t i n g of s p h a l e r i t e ,  chalcopyrite,  and p y r i t e o c c u r i n s h e e t e d v e i n zones, c o n s i s t i n g o f numerous l e n s o i d v e i n s r a n g i n g i n t h i c k n e s s from one i n c h to s e v e r a l f e e t . s t r i k e n o r t h e a s t w a r d to e a s t w a r d , but a few s t r i k e  Most v e i n s  northwestward.  S m a l l amounts o f q u a r t z - c a l c i t e gangue a r e o b s e r v e d , a l t h o u g h numerous specimens from dumps n e a r the a d i t s have massive and  replacement  FIGURE 7 3 . Map o f Copper R i d g e Cu-Zn p r o s p e c t , on Grouse M t n . near H o u s t o n , B.C., showing l o c a t i o n o f samples BCR 1,2, and 5. ( M o d i f i e d from B.C.Min. Mines A n n . R e p t . 1926 )  208  textures.  D i s s e m i n a t i o n s o f s u l p h i d e i n w a l l r o c k a r e common  ( f r e q u e n t l y i n v o l c a n i c b r e c c i a , a c c o r d i n g to B l a c k , 1951).  Exami-  n a t i o n o f s e v e r a l p o l i s h e d s e c t i o n s o f s u l p h i d e s showed e x t e n s i v e p o s t - m i n e r a l i z a t i o n s h e a r i n g has o c c u r r e d .  P y r i t e and c h a l c o p y r i t e  a r e c l o s e l y a s s o c i a t e d , p a r t i c u l a r l y where s h e a r i n g has g r a n u l a t e d • the p y r i t e and c h a l c o p y r i t e has deformed p l a s t i c a l l y to  surround  the p y r i t e g r a i n s .  noted i n  Z o n a t i o n of.masses o f . s p h a l e r i t e was  some c a s e s ; from l i g h t c o l o r e d , c h a l c o p y r i t e - f r e e m a t e r i a l i n the c e n t e r to brown i n c l u s i o n - r i c h m a t e r i a l a t margins o f the masses. The  change from c h a l c o p y r i t e - r i c h m i n e r a l i z a t i o n a t the Copper Crown  zone t o s p h a l e r i t e - r i c h m a t e r i a l a t the Ruby zone may  reflect  similar  zonation. Average grade f o r Ruby zone m i n e r a l i z a t i o n i s e s t i m a t e d  by  B l a c k (1951) t o be 5 p e r c e n t combined copper and z i n c , w i t h -g- o z . s i l v e r per t o n .  Copper-zinc  r a t i o s a r e between 10 : 1 and 20 : 1.  An u n o f f i c i a l e s t i m a t e o f ore tonnage i s 250,000 t o n s , c o n s i d e r e d uneconomic a t the p r e s e n t  time.  Sample l o c a t i o n s a r e shown on the accompanying m a p . ( F i g u r e 7 3 ) .  7.  L a s t Chance P r o s p e c t (BCH M i n e r a l i z a t i o n was 1935 was  3) d i s c o v e r e d on the L a s t Chance c l a i m s i n  by J . Oakes and p a r t n e r s (B.C.M.M., 1937,  p. C11).  The  then a c c e s s i b l e by wagon road t r a v e r s i n g the n o r t h w e s t  Grouse Mountain from the "Low  Ranch" n e a r W a l c o t t .  property  slope of  A branch  road  209  f r o m t h e Copper R i d g e p r o p e r t y a c c e s s r o a d now makes a c c e s s by four-wheel d r i v e v e h i c l e p o s s i b l e .  The p r o p e r t y i s now owned by  M. Chapman and p a r t n e r s who have done e x t e n s i v e s t r i p p i n g , t r e n c h i n g , and  s h a l l o w diamond d r i l l i n g on t h e v e i n s .  Greenish a n d e s i t e s near  the p o r t a l s t r i k e N70°E and d i p t o t h e s o u t h e a s t .  Narrow d i s c o n t i n u o u s  q u a r t z v e i n s i n t h e s t r i p p e d and t r e n c h e d a r e a , a l s o exposed i n t h e a d i t , c o n t a i n t e t r a h e d r i t e , p y r i t e , s p h a l e r i t e , and g a l e n a i n q u a r t z carbonate  gangue.  A s s a y s and l o c a t i o n s a r e shown on t h e accompanying  map ( F i g u r e 74 ). V e i n w i d t h s v a r y from 6 t o 15 i n c h e s , average s t r i k e i s N51°E w i t h a 45° d i p t o t h e s o u t h e a s t .  I n the c e n t r a l  open c u t t h e v e i n i s i n t e r r u p t e d , b u t n o t d i s p l a c e d , by a narrow b a s i c dyke c o n t a i n i n g a p a t i t e and m a g n e t i t e .  Three samples were  t a k e n from t h e open c u t s and dump n e a r t h e p o r t a l , b u t o n l y sample BCH 3 from t h e dump c o n t a i n e d s u f f i c i e n t p y r i t e f o r a n a l y s i s .  210  F I G U R E 74, G r o u s e Mtn. near  Map  o f L a s t Chance  near Houston,  the northern  adit.  B.C.  (From  Ag-Cu  prospect  S a m p l e BCH B.C.  on  the north  3 i s from a  M i n . Mines Ann.  small  Rept.  end o f dump  1937.  )  211  APPENDIX I I SAMPLE PREPARATION, ANALYSIS, AND PRECISION  A.  PREPARATION  CALCULATIONS  OF SAMPLES  I n p y r i t e a n a l y s i s t h e most time-consuming o p e r a t i o n , b u t perhaps t h e most i m p o r t a n t , concentrates.  i s t h e p r e p a r a t i o n o f pure  pyrite  The optimum method o f c o n c e n t r a t i o n depends on t h e  n a t u r e o f t h e p y r i t e , i t s a s s o c i a t e d m i n e r a l s , and t h e i r abundances.  relative  C o n c e n t r a t i o n and c l e a n i n g methods most commonly  encountered i n the l i t e r a t u r e a r e :  1 ) p a n n i n g and s u p e r - p a n n i n g , 2) m a g n e t i c s e p a r a t i o n , 3) heavy l i q u i d  *  concentration.  I n i t i a l samples used i n t h i s s t u d y were f r a g m e n t s o f r o c k s  and v e i n m a t e r i a l r a n g i n g i n s i z e from one i n c h t o s e v e r a l i n c h e s i n diameter.  Some o f t h e samples were sawn t o remove most o f t h e s u l p h i d e  contaminants.  The samples were crushed  i n a s i x i n c h "chipmunk" jaw  c r u s h e r a t t h e l a b o r a t o r y o f B o n d a r - C l e g g L t d . i n N o r t h Vancouver. The c r u s h e d  m a t e r i a l was panned t o c o n c e n t r a t e  t h e s u l p h i d e s and t o  wash o f f " f i n e s " - t h e f r a c t i o n most l i k e l y t o be c o n t a m i n a t e d . P a n n i n g a l s o h e l p s remove much o f t h e m o l y b d e n i t e .  The d r i e d c o n -  c e n t r a t e s were s i e v e d t o i s o l a t e t h e 1 0 - 4 0 mesh f r a c t i o n - t h a t w h i c h i s most amenable t o h a n d - p i c k i n g  under t h e b i n o c u l a r m i c r o s c o p e .  When t h e s u l p h i d e s were t o o f i n e l y i n t e r g r o w n  f o r e f f e c t i v e hand-  212  p i c k i n g t h e 40-100 mesh f r a c t i o n was e i t h e r :  a ) p r e c o n c e n t r a t e d by heavy l i q u i d  (Broraoform) i n a  separatory funnel, or b) t r e a t e d d i r e c t l y w i t h t h e magnetic s e p a r a t o r . The m a g n e t i c s e p a r a t o r i s e f f e c t i v e i n r e m o v i n g F e - b e a r i n g m i n e r a l s , c h a l c o p y r i t e , F e - r i c h s p h a l e r i t e , some t e t r a h e d r i t e , and some l i m o n i t e stained quartz.  S e v e r a l passes through the s e p a r a t o r a r e necessary  for effective separation.  T h e o r e t i c a l l y , p y r i t e and q u a r t z c a n be  separated magnetically, using reverse t i l t , maximum a p p l i e d v o l t a g e t o the s e p a r a t o r .  low s l o p e a n g l e , and I n p r a c t i c e t h e method i s  r a r e l y e f f e c t i v e - t h e e l e c t r o m a g n e t i c c o i l s o v e r h e a t b a d l y and s e p a r a t i o n time i s l o n g .  W i t h l o w e r v o l t a g e and e x p e r i m e n t a t i o n t h e  method w i l l o c c a s i o n a l l y be u s e f u l . T y p i c a l l y , a f t e r magnetic s e p a r a t i o n , the concentrate p y r i t e , q u a r t z , and m i n o r amounts o f g a l e n a and s p h a l e r i t e .  contains Most o f  the q u a r t z can be removed by s w i r l i n g t h e c o n c e n t r a t e i n a s h a l l o w d i s h f i l l e d w i t h w a t e r and t a k i n g the l i g h t e r m a t e r i a l from t h e c e n t e r w i t h a p i p e t t e (A. Bentzen, p e r s o n a l comm.).  Much o f t h e g a l e n a and  s p h a l e r i t e can be l e a c h e d o u t w i t h h o t 6M HC1. and ZnS i s noted by t h e e v o l u t i o n o f H^S. o f t h e l i m o n i t e s t a i n i n g on p y r i t e .  T h i s method removes much  This step i s probably  s i n c e Mn02 may accompany t h e l i m o n i t e .  important  Excess q u a r t z c a n be l e a c h e d  w i t h warm c o n c e n t r a t e d h y d r o f l u o r i c a c i d . be h a n d - p i c k e d  The s o l u t i o n o f PbS  Remaining c o n t a m i n a n t s  under a b i n o c u l a r m i c r o s c o p e .  may  The f i n a l c o n c e n t r a t e i s ground t o a p p r o x i m a t e l y 200 mesh i n an a g a t e m o r t a r and p e s t l e .  The "Spex" b a l l - m i l l was c o n s i d e r e d f o r  t h e g r i n d i n g o p e r a t i o n b u t much f i n e l y - d i v i d e d p o r c e l a i n i s mixed i n w i t h t h e p y r i t e , c a u s i n g c a r r y - o v e r c o n t a m i n a t i o n and w e i g h i n g  errors  A f l o w s h e e t i l l u s t r a t i n g t h e c o n c e n t r a t i o n method i s shown i n F i g u r e 75.  PRE-ANALYSIS PREPARATION  B e f o r e t h e p r e s e n t system o f sample s o l u t i o n was a system u s i n g HNO^ - H C l s o l u t i o n was a t t e m p t e d .  developed,  The method was  s i m p l e and s o l u t i o n was e f f e c t i v e but Fe and SO^ i o n s i n s o l u t i o n caused a n a l y t i c a l i n t e r f e r e n c e s and c o r r o s i o n o f t h e s p e c t r o p h o t o m e t e nebulizer. developed Mr. A.  A method f o r removal o f Fe and S from t h e system was by D r . W.K.  F l e t c h e r w i t h the t e c h n i c a l a s s i s t a n c e o f  Bentzen. i  The f i n e l y - g r o u n d sample (25 mg) i s r o a s t e d i n a m u f f l e f u r n a c e a t 550°C f o r a t l e a s t two h o u r s t o remove t h e s u l p h u r (550°C i s t h e optimum temperature d e t e r m i n e d  by e x p e r i m e n t a t i o n ) .  A f t e r t h e f i r s t h o u r t h e o x i d e i s tamped w i t h a g l a s s r o d t o b r e a k the c r u s t and expose any u n o x i d i z e d g r a i n s .  A f t e r r o a s t i n g the oxide  i s d i s s o l v e d i n a few ml o f 6M H C l to c o n v e r t t h e o x i d e t o c h l o r i d e . The sample i s d r i e d and t h e n d i s s o l v e d i n 6M H C l , and made up t o 25 ml i n a v o l u m e t r i c f l a s k ; t h e d i l u t i o n f a c t o r i s thus 100.  The  25 ml s o l u t i o n i s homogenized t h o r o u g h l y by s h a k i n g , and i s t r a n s f e r r e d t o a s e p a r a t o r y f u n n e l where i t i s shaken w i t h an e q u a l  214  FIGURE 75. PREPARATION OF PYRITE CONCENTRATES  80 mesh  40-80 mesh  heavy l i q sep  >  crush  i n a g <PO <r-  hand pick  magnet >  hand pick  sph,cp <ferromags ^_  ma  j.  se3  /*  SiOo  HC1 Y~* leach  <r  swirl  SPH  I—> gn  >Si0 etc 2  FINAL CONCENTRATE  215  volume o f m e t h y l i s o - b u t y l ketone (MIBK).  Upon s h a k i n g , the Fe  is  p a r t i t i o n e d i n t o the MIBK.. The r e m a i n i n g s o l u t i o n i s d r a i n e d i n t o c l e a n p o l y t h e n e sample b o t t l e s , and i s r e a d y f o r a n a l y s i s .  During  the p r e s e n t s t u d y i t was found t h a t the presence o f copper i n the F e C l ^ s o l u t i o n i n h i b i t s the e x t r a c t i o n o f Fe, and d o u b l e e x t r a c t i o n s were n e c e s s a r y i n some c a s e s .  C.  ANALYTICAL METHOD Samples were a n a l y z e d w i t h the T e c h t r o n AA-4  Spectrophotometer  b e l o n g i n g to the U.B.C. G e o c h e m i s t r y L a b o r a t o r y , a c c o r d i n g to p r o c e d u r e s o u t l i n e d by Dr. W.K.  F l e t c h e r (1970).  Secondary s t a n d a r d s , p r e p a r e d  f r e s h l y from p r i m a r y s t a n d a r d s o l u t i o n s , were a s p i r a t e d b e f o r e and a f t e r each group o f twenty sample s o l u t i o n s .  No c o r r e c t i o n s were  n e c e s s a r y f o r background a b s o r p t i o n f o r Co, N i , o r Pb.  Hand drawn  c a l i b r a t i o n c u r v e s were used t o c o n v e r t sample a b s o r b a n c e s to c o n c e n t r a tions.  Sample d i l u t i o n s were n e c e s s a r y f o r s e v e r a l samples w i t h h i g h  c o n c e n t r a t i o n s o f Cu, Pb, and Zn.  D.  ANALYTICAL'PRECISION A n a l y t i c a l p r e c i s i o n was c a l c u l a t e d from r e p l i c a t e a n a l y s e s a c c o r d i n g to the method used by G a r r e t t (1969) f o r g e o c h e m i c a l samples. P a i r e d p r e c i s i o n t e s t s were performed u s i n g a computer program by Mr.. L. Fox.  written  S i n c e minor element f r e q u e n c y d i s t r i b u t i o n s a r e e s s e n -  t i a l l y l o g a r i t h m i c a l l y n o r m a l , o n l y l o g a r i t h m i c v a l u e s were used i n the c a l c u l a t i o n s .  216  P r e c i s i o n c a l c u l a t i o n s a r e based on the f o r m u l a  P = 1.96  X  % ^  X  100$  A r  where S.D.<u =  a n a l y t i c a l s t a n d a r d d e v i a t i o n and Xr  =  r e p l i c a t e mean.  Because p y r i t e s from S m i t h e r s and T c h e n t l o Lake a r e a s were analyzed concurrently, i n the p a i r e d and p a i r e d  r e p l i c a t e samples from b o t h groups were combined,  precision test.  Replicate  a n a l y s e s a r e shown i n T a b l e  p r e c i s i o n t e s t d a t a i n T a b l e 36.  alone are presented i n Table  35  Data f o r S m i t h e r s p y r i t e s  37.  Overall a n a l y t i c a l p r e c i s i o n i s considered reasonable f o r Co, N i , Cu, and Zn, but i s poor f o r Pb and Mn.  Much o f the a n a l y t i c a l  e r r o r f o r Cu, Pb, Zn, and p o s s i b l y Mn i s caused by the p r e s e n c e o f m i n e r a l i n c l u s i o n s i n the p y r i t e ; p r e c i s i o n c o u l d be improved h o m o g e n i z a t i o n o f the samples by f i n e r g r i n d i n g .  by  In a d d i t i o n ,  several  o f t h e p y r i t e c o n c e n t r a t e s were h a n d - p i c k e d and l e a c h e d v/ith H C l p r i o r to r e p e t i t i o n o f a n a l y s e s i n an a t t e m p t to reduce the c o n t a m i n a t i o n l e v e l s f o r Cu, Pb, and- Zn. i n f a c t "sampling e r r o r . "  Thus, much o f the " a n a l y t i c a l " e r r o r i s Correlation coefficients calculated for  the S m i t h e r s samples show t h a t Co and N i a r e n o t affected  significantly  by the p r e s e n c e o f s p h a l e r i t e , g a l e n a , o r  contamination.  chalcopyrite  P r e c i s i o n v a l u e s f o r N i and Mn a r e a c c e n t u a t e d by  t h e low c o n c e n t r a t i o n s o f these two elements i n t h e samples P a r t o f the a n a l y t i c a l e r r o r may w e i g h t s a f t e r "tamping"  be caused by s m a l l changes i n sample  ( n e c e s s a r y t o ensure complete  d u r i n g the r o a s t i n g p r o c e d u r e p r i o r t o p r e p a r a t i o n solutions.  studied.  roasting)  o f the sample  Sample BDM L BDM IR BDM 2 BDM 2R BDM 3 BDM 3R BDM 5 BDM 5R BTG 1 BTG IR BMH 10A BMH 10AR BDZ 1 BDZ IR BDZ 6 BDZ 6R BZ 1 BZ IR P8 1 P8 2 P8A 1 P8A 2 P12 1 P12 2 P12A1 P12A2 P15 1 P15 2 P15A1 P15A2 P20 1 P20 2 P20A1 P20A2 P25 1 P25 2 P25A1 P25A2  Co Iii " ' Mn' Cu Pb 90. G 2.0 5 780 .0 5 .0 28 .0 8 7.0 . 5. 0" 2 67 5.0 4. 0 1.0 4 5.0 1.3 4.0 17600.0 745.0 6 3.0 1.0 10.0 2675.0 345.0120.0 . - 10. 0 13.0 34 2C0.0 5. 0 6 8.0 . 10 .0 22 .0 3 900 .0 5.0 75.0 547. 0 5.0 4. 0 15.0 4 5.0 .. 6 .0 ........ 5.0. .408.0 14.0 1.0 1.0 11.0 42.0 5.0 1.0 8. 0 35. 0 1.0 1 .0 16 5.0 . 2.0 '308.0 1.0 1.0 165.0 2.0 3.0 2G8 .0 1.0 25 5. 0 13. C 1.0 2800.0 6 645.0 250.0 . 3.0 590 .0 . 1.0 5140.0 "34 5.0 2 5. 0 13.0 3 5 30.0 860 . 0 300 .0 66.0 12.0 2200. 0 215. 0 14 0 8.0 10.0 12 .0 267.0 45 .0 150 8. 0 4 3.0 1 1. 0 130. 0 5 .0 648.0 10. J 214. 0 8 .0 1.0 66 6. 0 ; 17. J . '..__8. 0. ...115.0 -. 1.0 1250.0 • 2.0 2 84.0 10.0 1. 0 12 5 0.0 3.0 10.0 154.0 1.0 <?R9,0 490..0 1. 0 21.0 1.0 23.3 1012 .0. 2.0 356. 0 1.0 621 .0 •67 .0 40 .0 287.0 1.0 6 3 6.0.. 62.0 . _:40. 0 .. .193.0 . . 1.0 6 14.0 42.0 1220.0 1.0 1.0 4 6. ) 3.0 S80 .0 625.0 1 .0 44. 0 70 5. 0 1.0 84. 0 1.0 716.0 42 .0 1 .0 44 .0 1.0 795.0 6. 0 5 86.0 17. 0 , 1.0 773.0 6.0 . ,284.0 . 17 .0 1.0 _275.0 3 3.0 3.0 708 .0 1.0 27 3.0 6. 0 595. 0 3 3. 0 1.0 1640.0 4.0 261 .0 2.0 1.0 16 3 0.0 4. 3 • 3.0 191.0 1 .0 289.0 17. 3 3.0 10 7. 0 1. 0 . 2 6 3.0 17.0 2.0 7 5.0 1.0  Zn 11.0' . . 20.0 2 40.0 1 59.0 197.0 294.0 88.0 92. 0 187.0 13 7.0 12.0 25.0 1.0 1.0 3900.0 167G.0 • 43.0 54. 0 . 2.0 2.0 1.0 1.0 30.0 11.0 6.0 : 7.0 6.0 6.0 1.0 1.0 7.0 . . 4. 0 7.0 8.0 2. 0 2.0 l.Q 1 .0  TABLE 35. R e p l i c a t e a n a l y s e s - S m i t h e r s and T c h e n t l o Lake p y r i t e s  |NAMF 1 ANALYTICAL I ANALYTIC ALTANALYT ICALl  | ICO |NI | MN |CU )PR  _1_YA£1A mc.E_l_.SIQ ______!.£ £££! S l _ _ l |' " • I | I |  |Z___1_  O.OOl 0.011' 0.151 0. 071 0.081  R EPL I CAT E I REPLICATE)  _____  L  0.051 0.C8I 0.221 0 .26| 0. 291  4.101 16. 831 56.311 19.361 97. 53]  45.951 18.651 14.551 48 .61] 11.131  __12l  22_251  21^2Ql  _£__ ;  DATA  I  DATA  1--M1A----1--I.0-D-- __1  2.421 0.98| 0. 77| 2.56) C.59|  ~ ~  '  0.571" 0.351 0.211 '0.421 1.19|  1^121  TABLE 36. P a i r e d p r e c i s i o n t e s t d a t a f o r combined S m i t h e r s and Tchentlo lake p y r i t e s .  6.75| 0.. 59 | 0.461 C. 64 J 1.09]  £__2l________2_l  Sample BDM BDM BDM BDM BDM BDM BDM BDM BTG BTG BMH BMH BDZ BDZ BDZ BDZ BZ BZ  1 IR 2 2R* 3 3R* 5 5R 1 IR 10A 10AR 1 IR* 6 6R* 1 IR  Co  Ni  ' ' ' 'Mn'  Cu Pb 2 8.0 5 7 8 0.0 5.0 2. 0 90. 0 . 1.0 2 67 5 .0 . . 4.0 .... 5 .0 8 7.0 .. 17600.0 745.0 4. 0 1.0 45. 0 345. 0 2675.0 1 .0 10.0 63.0 5.0 34 200 .0 13.0 10.0 120.0 8SC0.0 5.0 10. 0 2 2.0 8 8.0 547.0 15.0 4.0 5.0 7 5.0 408.0 3.4 .0 6.0 ... . . 5.0 .45.0. 5. C 42.0 1.0 11.0 1.0 35.0 1.0 • 8 .0 1 .0 1 .0 1.0 2.0 2 08 .0 ; 16 5.0 1.0 1.0 2C8. 0 3.0 165.0 2.0 . 6645.0 2800 .0 13 .0 25 5 .0 1 .0 590. 0 . 5140.0 1.0 . 3.0 2 50.0 8 530.0 86 0.0 25.0 13.0 ' 3 4 5.0 215.0 2200 .0 66.0 12.0 300.0 267. 0 45. ) 12.0 1 C. 0 140 8.0 5.0 11.0 130 .0 1. 5 G 8 . C 43 .0  i n d i c a t e s sample hand-picked  Zn . . 11.0 20.0 2 40.0 159. 0 197.0 294.0 88. 0 92.0 18.7. 0 137.0 12.0 2 5. 0 1.0 1.C 3900.0 1670 .0 4 3. 0 54.0  or leached p r i o r to r e - a n a l y s i s .  I| NAME | ANAL YTICAL I ANALYTICAL I ANALYTICAL I RE: PL I C AT F: I  REPLICATE!  DATA  |!  DATA  |;  SUBS i MAN l_^Mlii^££-l-SILL^D£M -l 17.61) 1.96| 0.75 1 0.86 1 5. 39 1 0.601 0.33 I 0.58 1 :l NI 8. 461 0.941 0. 191 0. 43 1 ;| MN 25.501 2.83 | 0.59J 0.77|' )CU 31.131 1.24| 1.771 • 1.331 ;| PB 16^.421 i^82l 0A80l ; 0*901 TABLE 37. R e p l i c a t e a n a l y s e s and p a i r e d p r e c i s i o n t e s t d a t a f o r Smithers p y r i t e s . ll  ;ico  _l_y_  A R I A N I .  £_i_Sin.J0£^_l-£RECIil£Nl 01 I C.C7| 7.30 1 Oil 0.1 11 35. 54 1 07 | C.27| 5 7 . 34| 12 1 0.34| 23. 73 1 18| 0.42|~ 67.121 CUISI 1 6 ^ 8 1 Q2l__  A  220  D e s p i t e the poor a n a l y t i c a l p r e c i s i o n f o r s e v e r a l  elements,  t h e p r e c i s i o n f o r Co and N i i s c o n s i d e r e d adequate f o r the use o f a n a l y s e s f o r these e l e m e n t s i n the p r e s e n t s t u d y .  A n a l y s e s f o r a l l samples a r e l i s t e d i n T a b l e  30.  APPENDIX I I I EXPLANATION OF DATA F I L I N G  Information is  arranged  f o r each d e p o s i t  on computer  location  o f samples  cards;  data  INFORMATION  1-25 26-30 31-36 37-42 43-48  Geographic  Type o f d e p o s i t Major metals i n d e p o s i t Igneous a f f i l i a t i o n s o f d e p o s i t Types o f w a l l - r o c k ( t w o types c a n be e n t e r e d , w i t h t h r e e columns f o r each type Degree o f metamorphism ( p o s t - m i n e r a l )  49-50 51-54 55-58  Age o f d e p o s i t , i f known Number o f s a m p l e s ( p r e f i x e d b y " C " w h e r e v a l u e s a r e averages o f s e v e r a l samples)  59-80  Comments, w h e r e  needed  B r i e f d e s c r i p t i o n o f r e f e r e n c e from sample a n a l y s e s a r e taken  CARD 2:  Two c a r d s a r e u s e d s a m p l e . On e a c h c a r d  f o rstorage of a n a l y t i c a l  the f i r s t  s a m p l e name a n d number. C a r d sixteen. Analyses five  i sfiled  as follows:  CARD 1 : COLUMNS  with  SYSTEM  spaces  fifteen  number  a r e entered f o r each  data  which  f o r each  columns a r e r e s e r v e d f o r  (1 o r 2) i s e n t e r e d  as parts per m i l l i o n  i n column  (format  element. Elements a r e arranged  F5.0)  as  foll-  ows; 'CARD 1: C o , N i , M n , T i , V , C r , M o , S n , C u , P b , Z n , A g , A u . CARD 2: A s , S b , B i , S e . T e , I n , G a , G e , T l , C d , H g , W . Alphabetic  codes used  i n the f i l i n g  system a r e e x p l a i n e d  below: DESCRIPTION  T Y P E S OF D E P O S I T SYNG  Sedimentary or  SEDX  Pyrite or  pyrite of s t r i c t l y  accompanying m i n e r a l  d e p o s i t s i n beds  lenses of exhalative origin.  strata  a r e sedimentary  VOLCX  Pyrite  of volcanic exhalative  DISSM  Disseminated  PORPH  Deposits present  throughout  o f low grade  associated with o f magmatic  Pegmatitic  deposits  rocks  , mineralization stockworks,  plutonic  rocks Deposits  Enclosing  origin  igneous  as d i s s e m i n a t i o n s o r  spatially MAG PEG  syngenetic  authigenic o r i g i n  origin  igneous  PYMET HYDR HYDV  Pyrometasomatic deposits Hydrothermal replacement deposits Hydrothermal v e i n deposits  MISSV  "Mississippi Valley"  SECND  P y r i t e of  secondary  hotite,e.g. Australia.)  Nairne  t y p e Pb-Zn origin  pyrite  deposits  (after  Pyrr-  deposit,South  IGNEOUS A F F I L I A T I O N S ACT) INT BAS  Acidic composition Intermediate composition Basic composition  WALL ROCKS GRN  Granite  LST  Limestone  GRD  Granodiorite  DOL  Dolomite  QMZ  Quartz monzonite  SST  Sandstone  ALK SYT GBR ANO  Alkaline intrusive Syenite Gabbro Anorthosite  SHL SLT QZT TFF  Shale Siltstone Quartzite Tuff  PRD  Peridotite  SED  Sedimentary(Urispec)  VLC  ^  Volcanic  MET SCH PHL  (unspecified)  Metamorphic Schist Phyllite  (unspecified)  METAMORPHIC GRADE HI  High  MD  Medium  LO  Low  AGE  CAMB, CRET e t c . , r e s t r i c t e d The  grade grade  grade  alphabetic  code c o u l d  c o d e f o r more complex operations  used  i n the  be  easily  computer-based present  to  study,  geologic converted  studies.For cards  were  periods. to  the  a  numeric  computer  hand-sorted.  APPENDIX I V A REVIEW OF APPLICATIONS OF MINOR-ELEMENT STUDIES TO ' GEOLOGY OF MINERAL DEPOSITS  One o f the main r e a s o n s f o r s t u d y i n g the m i n o r - e l e m e n t c o n t e n t o f s u l p h i d e s i s t o d e t e r m i n e whether minor element r e l a t i o n s h i p s can be u s e d t o a i d e x p l o r a t i o n f o r m i n e r a l d e p o s i t s . F o r m i n o r element s t u d i e s t o be u s e f u l a) C h a r a c t e r i s t i c minor e l e m e n t s must be p r e s e n t ( i n d i c a t o r elements),  '  '  b ) C h a r a c t e r i s t i c c o n c e n t r a t i o n s o f elements must be present, or o) C h a r a c t e r i s t i c i n t e r - e l e m e n t r e l a t i o n s h i p s o r g r a d i e n t s o f element c o n c e n t r a t i o n s must o c c u r ( Z o n a t i o n ) . These c r i t e r i a may be a p p l i e d t o a s i n g l e m i n e r a l d e p o s i t , a group o f d e p o s i t s , o r to d e f i n i t i o n o f b r o a d g e o g r a p h i c a l a r e a s metallogenic provinces.  I n known m i n e r a l d e p o s i t s , m i n o r element  s t u d i e s may be u s e f u l i n d e f i n i n g t h e d i s t r i b u t i o n o f b e n e f i c i a l i m p u r i t i e s (such a s Au, Ag, i n " p o r p h y r y " d e p o s i t s ) , o r o f " a n t a g o n i s t i c " i m p u r i t i e s (such as S and P i n i r o n o r e d e p o s i t s , o r As i n base m e t a l d e p o s i t s ) .  \  224  I.  METALLOGENETIC PROVINCES M e t a l l o g e n e t i c provinces are geographical areas c h a r a c t e r i z e d by anomalous c o n c e n t r a t i o n s o f s p e c i f i c m e t a l s c o n c e n t r a t e d deposits.  i n mineral  The o r i g i n o f m e t a l l o g e n e t i c p r o v i n c e s i s u n c e r t a i n ; they  c o u l d a r i s e from i n h o m o g e n e i t i e s  i n metal d i s t r i b u t i o n i n c r u s t or  m a n t l e , o r by c o n c e n t r a t i o n o f elements from a homogeneous s o u r c e s p e c i f i c combinations  by  of g e o l o g i c a l events w i t h i n a g i v e n area.  Burnham (1959) has demonstrated t h a t these p r o v i n c e s can  be  d e f i n e d by m i n o r element assemblages i n common s u l p h i d e s , h i g h c o n c e n t r a t i o n s o f m i n o r elements c o r r e s p o n d mineral deposits.  w i t h b e l t s c o n t a i n i n g major  Perhaps the b e s t example o f a m e t a l l o g e n e t i c  p r o v i n c e i n w e s t e r n Canada i s the " t i n b e l t " o f n o r t h e r n Columbia and  the Yukon T e r r i t o r y ,  British  Anomalous c o n c e n t r a t i o n s o f t i n  have been found i n s p h a l e r i t e and g o l d from t h i s a r e a (Warren and Thompson,  1 9 4 1 ) . . . ' •  W i t h i n one m i n i n g d i s t r i c t , a s p e c i f i c m e t a l may  be c o n c e n -  t r a t e d i n m i n e r a l d e p o s i t s r e g a r d l e s s o f d e p o s i t t y p e , age, a s s o c i a t e d w a l l - r o c k (as i n the a r e a s t u d i e d by Burnham). o t h e r hand, s e v e r a l m i n e r a l d e p o s i t s w i t h i n a s p e c i f i c d i s t r i c t may  On  the  mining  each have a s p e c i f i c assemblage o r c o n c e n t r a t i o n o f  minor elements. (Rose, 1970)  or  The b e s t example i s the C e n t r a l m i n i n g  district  i n w h i c h c h a l c o p y r i t e s from d i f f e r e n t d e p o s i t s can  d i s t i n g u i s h e d by t h e i r I n and Sn c o n c e n t r a t i o n s (see F i g u r e s 76 77  ).  be and  Other e l e m e n t s , such as Co and N i a r e u s e f u l i n c h a r a c t e r i z i n g  y M i n e or prospect,  i  / v? Y  3  1 mile  2  1  ' v\ / V 5  v  I /  v  v  y  '*/•••* L \ V  /."TV-. /  *-\ 1 / •  • /  'XJJ .•  FIGURE 7 6 , S t o c k s , mines and t r a c e element g r o u p i n g s of c h a l c o p y r i t e and s p h a l e r i t e . C e n t r a l m i n i n g d i s t r i c t , New M e x i c o . 1. Santa R i t a s t o c k - p o r p h y r y Cu and t a c t i t e 2. Hanover F i e r r o s t o c k - t a c t i t e Cu-Fe and v e i n Cu o r e s . 3. t a c t i t e Cu o r e 4. Zn and Pb-Zn o r e s i n t a c t i t e and v e i n s 5. t a c t i t e Zn o r e s ( m o d i f i e d from R o s e , 1 9 7 0 ) ,  -  100  A  A  1  /  '  V  3  ,"  y n  D  °o  o  c  \  10  \  P.  /  so —  \ /  o  '\ bo i  i  . iAI  .i i i 11 i  10  1  n  n  ppm.  o  i p p i I i 11  Sn  100  FIGURE 77. D i s t i n c t i o n o f c h a l c o p y r i t e of t h e C e n t r a l d i s t r i c t based on Sn and In c o n t e n t . Dashed l i n e s i n d i c a t e c o n c e n t r a t i o n ranges w i t h i n w h i c h most samples of a group f a l l . (From Rose, 1970)  226  each d e p o s i t .  D i f f e r e n c e s i n c o n c e n t r a t i o n o f elements a r i s e , i n  t h i s example, from d i f f e r e n t i n t r u s i v e b o d i e s w i t h w h i c h each deposit i s associated.  One o f t h e most e n l i g h t e n i n g s t u d i e s i n t h e p a s t few y e a r s r e l a t i n g m i n o r elements i n p y r i t e t o m e t a l l o g e n e t i c p r o v i n c e s has been t h a t o f L o f t u s - H i l l s and Solomon (1968).  The a u t h o r s  Co and N i c o n c e n t r a t i o n s i n p y r i t e f r o m s e v e r a l d i f f e r e n t  studied genetic  t y p e s o f d e p o s i t s i n Tasmania and p l o t t e d t h e r e s u l t s on s c a t t e r diagrams w i t h a r i t h m e t i c s c a l e .  The p r e s e n t w r i t e r has r e p l o t t e d  the d a t a on s i m i l a r d i a g r a m s , b u t w i t h l o g a r i t h m i c s c a l e t o make m i n o r element r e l a t i o n s h i p s  clearer.  v i s i b l e on t h e diagrams i s t h e e x t r e m e l y  An o u t s t a n d i n g r e l a t i o n s h i p low and s i m i l a r Co and N i  c o n c e n t r a t i o n s i i i p y r i t e s from R o s e b e r y Pb-Zn r i c h s e d i m e n t s , f r o m d i s s e m i n a t i o n s i n g r a n i t e s , and from Sn and Pb-Zn v e i n d e p o s i t s ( s e e F i g u r e 78 ) . The p y r i t e s from v e i n s and g r a n i t e s a r e p r o b a b l y g e n e t i c a l l y r e l a t e d , b o t h o r i g i n a t i n g from D e v o n i a n - C a r b o n i f e r o u s magmatic e v e n t s .  The m e t a l l o g e n e t i c p r o v i n c e i n t h i s case r e s u l t s  f r o m s i m i l a r provenance o f a c i d i c i n t r u s i v e s .  Deposits i n or asso-  c i a t e d w i t h Cambrian Mt. Read v o l c a n i c s have p y r i t e s w i t h much h i g h e r Co and N i c o n t e n t  (see Figure 78).  S i m i l a r methods have been u s e d t o s t u d y groups o f p y r i t e analyses  from o t h e r m e t a l l o g e n e t i c  a) Czechoslovakian  pyrite  provinces*  deposits  As demonstrated by Cambel and J a r k o v s k y  (1966), t h e p y r i t e s  228  f r o m s y n g e n e t i c d e p o s i t s w i t h i n the same grade o f r e g i o n a l metamorphism have s i m i l a r m i n o r element c o n t e n t s .  The e f f e c t s o f meta-  morphism have a l r e a d y been d i s c u s s e d .  b) S m i t h e r s  area.  B.C.  S t u d y o f Co and N i i n p y r i t e s from m i n e r a l d e p o s i t s i n the S m i t h e r s a r e a has shown t h a t p y r i t e f r o m "Dome M o u n t a i n v e i n d e p o s i t s c o n t a i n s s i g n i f i c a n t l y l e s s c o b a l t , and has l o w e r mean Co/Ni r a t i o t h a n p y r i t e from s i m i l a r v e i n s on Grouse M o u n t a i n , 25 m i l e s to the south--.(see F i g u r e 67 )•  I n the S m i t h e r s  region pyrite i s characterized  by low N i c o n t e n t , b u t d i f f e r e n t i a t i o n o f the two s m a l l e r m e t a l l o g e n e t i c a r e a s i s on t h e b a s i s o f Co c o n c e n t r a t i o n s and Co/Ni r a t i o s .  c) Slocan area.  B.C.  P y r i t e a n a l y s e s from t h e S l o c a n and S l o c a n C i t y m i n i n g camps i n t h e Kootenay d i s t r i c t o f B.C. were compared by T - t e s t .  The  test  showed mean c o n t e n t s o f Co, T i , C r , Cu, Zn, and As a r e s t a t i s t i c a l l y the same f o r b o t h camps.  Only Mn and Sn a r e s i g n i f i c a n t l y  different,  and c o n s i d e r i n g t h e low c o n c e n t r a t i o n s and h i g h s t a n d a r d d e v i a t i o n s o f t h e s e e l e m e n t s , the d i f f e r e n c e s c o u l d be a r e s u l t o f c o n t a m i n a t i o n . T - t e s t d a t a a r e shown i n ;Table 38.  S i m i l a r i t i e s i n mineralogy,  s t r u c t u r e , and m i n o r element c o n c e n t r a t i o n s o f the d e p o s i t s  (Sinclair,  1967) i n d i c a t e the two m i n i n g camps a r e i n the same m e t a l l o g e n e t i c province.  TABLE  38  MINOR ELEMENT- DATA - SLOCAN AND SLOCAN CITY PYRITES  Element  Slocan P y r i t e Mean  Slocan City  S.D.(log.)  Mean  Pyrite  S.D.(log.)  Co  5 ppm  1.1038  3 ppm  Ni  7  1.0086  0  -  Mn  17  1.0792  2  .9868  Ti  39  .7243  77  .4472  Cr  7  .4150  8  .3802  Sn  48  .9823  9  .2304  Cu  1275  .9191  1272  .6128  Zn  155  1.5977  170  1.9159  As  196  1.8169  63  Co/Ni  .71  .6812  1.8182  3  T - t e s t Data Element  T-Value  D.F.  Co v s . Co  -0.552  35  Mn v s . Mn  -2.503*  32  Ti vs. Ti  1.538  35  Cr v s . Cr  0.518  33  Sn v s . Sn  -3.446*  24  Cu v s . Cu  0.211  35  Zn v s . Zn  -0.847  26  As v s . As  -0.391  30  * s i g n i f i c a n t a t 95$ l e v e l o f c o n f i d e n c e  230  d) New  B r u n s w i c k Pb-Zn-Cu d e p o s i t s  P y r i t e from v e i n and v o l c a n i c - e x h a l a t i v e Pb-Zn-Cu d e p o s i t s i n New  B r u n s w i c k have been i n v e s t i g a t e d by S u t h e r l a n d  (1967).  F u r t h e r s t a t i s t i c a l t e s t s by the p r e s e n t w r i t e r "-have shown s i g n i f i c a n t d i f f e r e n c e s between the two  types o f p y r i t e .  Means, s t a n d a r d  devia-  t i o n s and T - t e s t v a l u e s f o r elements w h i c h d i f f e r a r e shown on f o l l o w i n g page.  E l e m e n t s w h i c h have h i g h e r c o n c e n t r a t i o n s i n v e i n  p y r i t e a r e N i and Sn;  t h e i r h i g h e r c o n c e n t r a t i o n s may  be due  g e n e t i c a s s o c i a t i o n o f the v e i n s w i t h g r a n i t e s o f D e v o n i a n The  the  to age.  volcanic-exhalative pyrite contains higher concentrations  Zn, As, B i (because o f e x t r e m e l y  f i n e - g r a i n e d t e x t u r e o f the  of ores,  l e a d i n g t o d i f f i c u l t y i n s e p a r a t i o n o f p y r i t e s ) and Se, w i t h h i g h e r Co/Ni r a t i o s .  The  two  l a t t e r d i f f e r e n c e s may  be caused by  genetic  a s s o c i a t i o n o f d e p o s i t s w i t h v o l c a n i c r o c k s , as i s p o s t u l a t e d A n d e r s o n (1969) and L o f t u s - H i l l s and Solomon (1968). of metallogenetic provinces, i t i s probably  wrong  by  In discussion t o compare  p y r i t e s from d i f f e r e n t g e n e t i c t y p e s o f d e p o s i t , even though the d e p o s i t s a r e i n the same g e o g r a p h i c a r e a .  Other g e o g r a p h i c a r e a s w i t h c h a r a c t e r i s t i c m i n e r a l d e p o s i t s , s u c h as the R o o i b e r g a r e a Sn l o d e s , c o n t a i n p y r i t e w i t h m i n o r element c o n c e n t r a t i o n s t h a t v a r y c o n s i d e r a b l y between d i f f e r e n t d e p o s i t s . Thus, f a c t o r s o t h e r t h a n  m e t a l l o g e n e t i c p r o v i n c e a f f e c t minor  element r e l a t i o n s h i p s i n p y r i t e .  TABLE 39 NEW BRUNSWICK VEIN AND EXHALATIVE PYRITE Element  Vein Pyrite Mean  Ni  V o l e . Ex. P y r i t e  S.D.  115 ppm  Mean  S.D.  3.0  38 ppm  2.2  Sn  37  1.5  15  2.6  Zn  1158  3.7  3570  3.0  As  292  4.4  1660  5.9  Bi  8  6.3  98  1.4  Se  1,0  1.7  4  3.0  Co/Ni  4.6  2.3  17.0  2.7  T-Test Data Element  T-Value  D.F.  T-Prob.  P-Prob.  Co v s . Co  -0.462  12  0.655  0.020  16  0.018  0.369  NI v s . N i  2.617*  Mn v s . Mn  -0.682  12  0.5U  0.096  Ti vs. Ti  -1.214  17  0.240  0.665  V vs. V  -0.074  17  0.899  0.871  Cr v s . Cr  0.0  17  1.000  0.857  Mo v s . Mo  1.812  16  0.086  0.615  Sn v s . Sn  -4.059*  10  0.002  0.013  Cu v s . Cu  -2.144  16  0.046  0.306  Pb v s . Pb  -0.498  17  0.630  0.616  Zn v s . Zn  -2.231*  17  0.038  0.662  Ag v s . Ag  -0.041  17  0.919  0.737  As v s . As  -2.311*  16  0.033  0.585  Sb v s . Sb  -0.847  12  0.418  0.116  Bi vs. Bi  -4.268*  10  0.002  0.000  Se v s . Se  -2.742*  11  0.019  0.032  In vs. In  -0.495  16  0.632  0.665  Ga v s . Ga  -0.000  17  0.951  0.821  Cd v s . Cd  0.0  17  1.000  0.429  16  0.006  0.611  Co/Ni v s . Co/Ni  -3.159*  • S i g n i f i c a n t v a l u e a t 957° l e v e l o f c o n f i d e n c e  ZONATION THEORY  M i n e r a l o g i c z o n i n g has been w e l l e s t a b l i s h e d a t Bingham, U t a h ; B u t t e , Montana; t h e C o r n i s h t i n l o d e s , E n g l a n d ; other l o c a l i t i e s .  and many-  Z o n a t i o n o f m i n o r elements i s a l s o w e l l  documented; examples a r e g i v e n below.  The r e a s o n s f o r such  z o n i n g have n o t been c o m p l e t e l y c l a r i f i e d , b u t t h e r m a l g r a d i e n t s a r e t h e most commonly c i t e d cause. a r e thought  Gradients i n ^ S  activity  to a f f e c t zoning a t Butte ( S a l e s , i n Park,  1955).  Other f a c t o r s which probably i n f l u e n c e z o n a t i o n o f elements a r e ( l ) p r e s s u r e , (2) c o n c e n t r a t i o n o f m i n e r a l i z i n g s o l u t i o n s , (3) r e l a t i v e c o n c e n t r a t i o n s o f elements,  (4) r e a c t i o n s w i t h  w a l l - r o c k , (5) s o l u b i l i t y o f c h e m i c a l complexes, ( 6 ) r e a c t i o n s w i t h i n the i n i t i a l s o l u t i o n .  The f i r s t  four factors  probably  a f f e c t m i n o r element p a r t i t i o n c o e f f i c i e n t s ( M c l n t y r e , 1 9 6 3 ) , a l t h o u g h temperature B a r t o n , 1971;  i s p r o b a b l y t h e major i n f l u e n c e (Bethke and  see F i g u r e 99 ).  Ovchinnikov  (1967) b e l i e v e s t h a t  low m o b i l i t y o f m i n o r elements (because o f t h e i r low c o n c e n t r a t i o n s ) causes t h e i r r e g u l a r l o g a r i t h m i c d e c r e a s e  outward from a  f l u i d source, i n accordance w i t h laws o f d i f f u s i o n .  He a l s o  p o s t u l a t e s t h i s mechanism f o r t h e l o g n o r m a l d i s t r i b u t i o n p a t t e r n s o f m i n o r elements i n o r e b o d i e s ; a l t h o u g h t h e c o i n c i d e n c e o f l o g n o r m a l d i s t r i b u t i o n and c o n c e n t r a t i o n g r a d i e n t s does n o t a l w a y s o c c u r , and may even be r a r e .  B a r n e s (1962) has shown  t h a t r e l a t i v e s t a b i l i t y o f i o n complexes g e n e r a l l y f o l l o w the o r d e r Hg-Cd-Pb-Cu-Zn-Sn-Ni-Fe-Co-Mn ( i n o r d e r o f d e c r e a s i n g s t a b i l i t y ) , w h i c h f i t s most m i n e r a l o g i c z o n i n g sequences r e a s o n a b l y  233  veil.  V a r i a t i o n s from t h i s p a t t e r n c o u l d be caused by;  1) V a r i a t i o n s i n abundance i n o r i g i n a l 2) D e v i a t i o n s  from normal i o n i c  3) Temperature  solutions  coordination  fluctuations, etc.  These d e v i a t i o n s w i l l be r e f l e c t e d i n m i n o r element c o n t e n t s a s well.  Rose (1970) i n h i s d i s c u s s i o n o f m i n o r element z o n a t i o n a t  the S a n t a R i t a s t o c k ,  c o n c l u d e s t h a t m a j o r f a c t o r s i n v o l v e d were:  1) Complex i o n f o r m a t i o n 2) S o l i d - l i q U i d phase r e l a t i o n s h i p s 3) S u b o r d i n a t e e f f e c t s o f t e m p e r a t u r e The e f f e c t s o f t e m p e r a t u r e may be more i m p o r t a n t t h a n i s g e n e r a l l y considered,  and t h e p a r t i t i o n c o e f f i c i e n t between c o e x i s t i n g  s u l p h i d e m i n e r a l s ( a l s o t e m p e r a t u r e dependent) must s u r e l y be a major f a c t o r i n t h e d i s t r i b u t i o n o f m i n o r elements w i t h i n one m i n e r a l species.  A.  LATERAL ZONATION OF MINOR ELEMENTS 1  Numerous examples o f z o n a t i o n documented i n r e c e n t  literature.  o f m i n o r e l e m e n t s have been  Most z o n a l p a t t e r n s  are centered  on i g n e o u s i n t r u s i v e s .  1.  Cornwall-Devon a r e a o f G r e a t B r i t a i n  Sphalerite deposited contains  w i t h i n o r near g r a n i t e i n t r u s i v e s  r e l a t i v e l y l a r g e amounts o f I n , Mn, and Sn, b u t s p h a l e r i t e s  234  f r o m t e l e t h e r m a l d e p o s i t s c o n t a i n Ga and Ge; not f o u n d i n d e p o s i t s i n or near i n t r u s i v e s ( E l . Shazly et a l . .  1957).  S i m i l a r l y galenas  a s s o c i a t e d w i t h the i n t r u s i v e s c o n t a i n r e l a t i v e l y l a r g e amounts o f Sn and B i ( s e e F i g u r e s accompanied controlled.  79-81  ).  The m i n o r element z o n a t i o n i s  by m i n e r a l o g i c z o n a t i o n and i s thought t o be  temperature-  T h i s c o n c l u s i o n i s s u p p o r t e d by d a t a from h i g h - t e m p e r a t u r e  d e p o s i t s v s . l o w - t e m p e r a t u r e d e p o s i t s , and by d a t a from R u s s i a n d e p o s i t s ( s e e F i g u r e s 82, 8 3 ) .  2.  C e n t r a l m i n i n g d i s t r i c t , New Pronounced  Mexico  l a t e r a l z o n a t i o n i s shown by m i n o r e l e m e n t s i n  s p h a l e r i t e from the C e n t r a l m i n i n g d i s t r i c t , New  Mexico (Rose, 1970).  M i n e r a l o g i c z o n i n g i s shown by a d e c r e a s e i n Pb/Zn r a t i o o f o r e s outward from t h e S a n t a R i t a s t o c k .  T h i s t r e n d i s accompanied  marked d e c r e a s e i n Co, Mn, and Fe i n s p h a l e r i t e ( F i g u r e  by a  84).  Elements w h i c h i n c r e a s e l a t e r a l l y from t h e i n t r u s i v e c o n t a c t a r e Ga, and p o s s i b l y Cd, Ag, and Ge.  The z o n a t i o n i s t h o u g h t t o r e f l e c t  a c o m b i n a t i o n o f changes i n s o l i d - l i q u i d p a r t i t i o n i n g f a c t o r ,  and  complex-ion formation w i t h subordinate e f f e c t s of temperature.  3.  Copper-Iron skarns  O v c h i n n i k o v (1967) d i s c u s s e s s e v e r a l c o p p e r - i r o n s k a r n d e p o s i t s i n the U.S.S.R. i n w h i c h s e v e r a l d i s t i n c t z o n a t i o n p a t t e r n s o f c o b a l t and n i c k e l i n p y r i t e have been o b s e r v e d . are i l l u s t r a t e d i n Figures  85 t o 86 .  Three examples  C o b a l t and n i c k e l g e n e r a l l y  .  1. 2. 3. 4. 5.  Knap Down Combe Martin Wheal Exmouth Devon and Courtney South Crebor  6. 7. 8. 9.  10. S o u t h T e r r a s 11. S o u t h St. G e o r g e 12. T r e s a v e a n 13. W h e a l M a r y  Penhawger Liskeard Herodsfoot Penaenna •  FIGURE '79. Map o f West o f England showing g r a n i t e p l u t o n s and l o c a t i o n o f m i n e r a l d e p o s i t s . ( E l S h a z l y e t . a l . 1957) GALENA  SPHALERITE  6000 4000  MANGANESE  2000  50  n.d.  n.d.  300,  100  500  n.d.  n.d.  INDIUM  200  I  o _  —  100 n.d  £  5  100r  GALLIUM _1  50  f n.d.I  BISMUTH  I II  0 l'/2 3 3 4 5 6 38 1 Horizontal distance from granite (miles  300  n.d.  TIN  1000  TIN  200 '  100  I  I  •  L  5  t— t~  o  c V  (T C  o c „  o  f O L. W J: ? D IA V O »J  o  v •_ O O ^> o.  E o  u  N.B. Wheal Exmouth veins although near to the granite are r e l a t i v e l y low-temperature mineralisations as implied by the quartz-barite gangue.  GERMANIUM 0  i  i i i i cz3 0 1V2 3 .4^2 38 38  All  f i g u r e s in p.p. m.  Horizontal distance from, granite (miles) n.d. = o  *  5 f ft  not d e t e c t e d  o  a E o  u  FIGURE 80. R e l a t i o n s h i p o f minor element c o n t e n t o f g a l e n a and s p h a l e r i t e t o d i s t a n c e from g r a n i t e p l u t o n s . (From E l S h a z l y e t . a l . , 1957).  Higher Temperature Deposits  Lower Temperature Deposits  Higher Temperature  n  p.p.m. -300  r-j__ CALLIUM  -200 :  100  Ln.d.  500 if: GERMANIUM  1-300 -200 -100 .n.d. h300  ANTIMONY  i n i!  'A  m u >  ro  a)  1/1 t\j OD \j r\i ^  ^  <\|  ^ , ^ 3 ,  _ -  •—  c  C  win  <z  z  _j / i>  _j « / >  *-»  S'O-i*' j-^raot ^ 171  x>—  n  200  i  -100  !!  '"*  n.d.  CO ^  ttJ  |  i  < ! <!  ^  ««  OJ CO  rvjCO  <I?Tt »/>  ,3,3,  ^  u c  C  _  JC  « «J -2 a. a. X  c  soa. -^>J : „> c* u «a a.«> ^cn•» * - *3 *  1-  —  1/1  FIGURE 8 1 . V a r i a t i o n i n minor element c o n t e n t o f s p h a l e r i t e from m i n e r a l d e p o s i t s o f h i g h and low d e p o s i t i o n temperature. (From E l Shazly e t . a l . , 1957).  ro  237  Bi  v 10000  V O  V  °  °  O  V  1000  o  o ° °  o  O  Q  o o o°v^ v  0  °c$  2  0L  O  0_  v  100  o  °  '  „  0  ~  •  10  v  °  v  • V  o  v  °  O  V  o  0  O O  o  o  O  u  ' . V" V  O  V  v o o v  • • D  i  i i i  l  10  .  •  i i I • 1111  100  • •  i  •  •  i i I i 11 il  p p|Yj  1000  1—i—LJ  1 Sb  10000  FIGURE 82. Scatter diagram of bismuth and antimony contents of galena from deposits i n carbonate rocks, (Modified from Malakhov.A.A., 1968) • O a  Skarn deposits Vein deposits S t r a t i f o r m deposits  238  FIGURE 83. Gallium-Indium r a t i o s i n s p h a l e r i t e s of d i f f e r e n t o r i g i n s . ( M o d i f i e d from T r o s h i n . Y u . P . , 1 9 6 2 )  239  1000  r  Co  lpl  '  I  I  I  I  |  I  |  I  I  I  |  loooor  I 0  I 2000  meters  I  4000  I  6000  from n e a r e s t s t o c k  FIGURE 84, L a t e r a l z o n i n g o f Co, Mn, and FeS i n s p h a l e r i t e o f the C e n t r a l d i s t r i c t p l o t t e d a g a i n s t d i s t a n c e to the nearest s t o c k . Large c i r c l e s a r e averages o f samples over i n t e r v a l s o f 610 in., l a s t c i r c l e i s f o r samples over 3060 m, (From Rose, 1970),  [3)  O.u  Limestone 0.3  32-  Garnet  skarn  Massive  0.2  pyrite-chalcopyrite  Disseminated ore  0.1 0  0  i  2  3  Distance, m  F I G U R E 85  • Cobalt content  Frolovskoe sulphide  of pyrite  (1 a n d 2) a n d N i k i t i n s k o e  d e p o s i t s , U.S.S.R. . ( F r o m  F I G U R E 86. V a r i a t i o n strike  from  ores of the  (3)  skarn-massive  Ovchinnikov,  1965).  i n t h e c o n t e n t s o f Go a n d N i i n  pyrite  along  of the Vostochnaya  Pervyi  S e v e r n y i m i n e , U.S.S.R.  (From  deposit of the  Ovchinnikov,  1965).  241  have s i m i l a r p a t t e r n s , and h i g h e s t c o n t e n t s o f t h e s e e l e m e n t s a r e i n v a r i a b l y i n massive o r e s ,  4.  Yanahara p y r i t i c ore d e p o s i t s The Yanahara ore d e p o s i t s a r e groups o f m a s s i v e and l e n s -  shaped ore b o d i e s i n s e d i m e n t a r y  rocks near contacts w i t h i n t r u s i v e  quartz-diorite s i l l s or phacoliths.  "Ore" m i n e r a l s a r e p y r i t e  and  p y r r h o t i t e ; t h e i r r e l a t i o n s h i p t o the i n t r u s i v e b o d i e s i s u n c e r t a i n . Evidence  e x i s t s b o t h f o r p r i m a r y o r i g i n o r metamorphic o r i g i n o f  pyrrhotite.  Yamamoto e t a l . (1968) have found z o n a t i o n o f c o b a l t and s e l e n i u m i n the p y r i t e (see F i g u r e s 87 Se/S  and Co/Fe were found  (Figure  88).  t o 91  ) and the r a t i o s  to have l o g a r i t h m i c - l i n e a r  correlation  In a d d i t i o n a close inverse c o r r e l a t i o n  exists  between the amount o f ore and the average Co/Fe r a t i o (shown i n Table 40).  S u l p h u r i s o t o p e r a t i o s measured on the same samples  show no c o r r e l a t i o n w i t h Co  The  content.  z o n a t i o n o f s e l e n i u m , as shown by c o n c e n t r a t i o n p l o t s  a c r o s s the H i d a s h i r o v e i n ( F i g u r e 91 ), i s o p p o s i t e i n n a t u r e t o that of cobalt.  C o b a l t i s c o n c e n t r a t e d i n p y r i t e n e a r the p y r i t e -  p y r r h o t i t e c o n t a c t , but s e l e n i u m i s c o n c e n t r a t e d i n p y r r h o t i t e . I n the c e n t r a l o r p y r i t i c p o r t i o n s o f the o r e b o d i e s c o b a l t has r e l a t i v e l y low c o n c e n t r a t i o n s ; - s e l e n i u m c o n t e n t i s r e l a t i v e l y h i g h (see F i g u r e 91 ).  E i t h e r s h o r t range exchange o f Co  and  Se has o c c u r r e d a t m a r g i n s o f ore b o d i e s , o r e l s e f o r m a t i o n o f  200m  FIGURE 8 7 . G e o l o g i c a l c r o s s - s e c t i o n o f t h e Kabu orebody: 1. Orebody, 2. S l a t e , 3 . D i a b a s e , 4 . Metaq u a r t z - d i o r i t e , (From Yamamoto e t . a l . , 1 9 6 8 ) .  50  » Kcbu ore body  20  B SfiTioyoriohora ore body X  o core sample 10  c.  ••  A Hidoshiro era body  X country rock  A T / 6 "  >^  • •  n  O X  5  to 2  a  1 05  0O2  0O5  0.1  02  Q5  1  2  5  10  20  50  C o / F e x 10*  FIGURE 8 8 . C o r r e l a t i o n between Co/Fe and Se/S i n p y r i t e from t h e Yanahara o r e d e p o s i t s . The s o l i d l i n e ( f i t t e d by l e a s t - s q u a r e s method) i s drawn f o r a n a l y s e s from t h e Kabu orebody o n l y . (From Yamamoto e t . a l . , 1 9 6 8 ) .  F I G U R E 89. D i s t r i b u t i o n (a) P l a n  of l e v e l  21,  o f Co  (b) P l a n  ( F r o m Yamamoto, e t . a l . , 1 9 6 8 ) ,  i n t h e Kabu  of l e v e l  24.  orebody:  244  oPyrtto •Pyrrhotite  OZ3-2  S. o o  «a>-3  5-  oso-i  in  20-2  7-I-C-I UL  7-1-1 (-41)4  • .  : .•.;.-"%  •20 ••i9'.-: •'.18'| • * * •. '•/.'•'.i  •—  slate  tuft  Po  16  17  : •.'.'. •*•"« * -  .15 .*.-'•• • 14'  .'12*; ; l i " ' .  • : '. .'  Py 0  10  20om  FIGURE 91. V a r i a t i o n s i n Co/Fe, Se/S, S, and S/Fe i n the p y r i t e v e i n from t h e H i d a s h i r o d e p o s i t . (From Yamamoto e t . a l , , 1968). Co content range, ppm 0-  Amount of ore 3 3 xlO m  F  Atomic ratio (Co/Fe)'* x 10-«  10  103  1.000  10- 100  1,610  0.967  0.10  100- 200  "747  0.600  1.04  200- 400  670  0.363  1.79  400 - 600  351  0.150  2.87  600 - 800  85  800-1,000  36  > 1,000  2  0.001  4.17  0  0.000  4.19 = ( Co/Fe )\  -  0.039  3.70  0.012  4.02  * Average Co concentration in each range is assumed to be equal to the arithmetic mean of the two boundary figures. In the range higher than 1,000 ppm, the average is assumed to be 2,000 ppm. Weighted average for the ore body.  TABLE 40. Amount o f o r e i n each range o f Co c o n t e n t a t t h e Kabu mine. (From Yamamoto e t . a l . , 1 9 6 8 ) .  246  p y r r h o t i t e i n e q u i l i b r i u m with p y r i t e i s necessary  to e x p l a i n the  d i s t r i b u t i o n (Yamamoto e t a l . . 1968).  5.  Slocan D i s t r i c t ,  B.C.  Z o n a t i o n o f m i n o r elements i n p y r i t e and o t h e r s u l p h i d e s from Ag-Pb-Zn d e p o s i t s o f the S l o c a n m i n i n g a r e a , B.C., o u t l i n e d by t r e n d - s u r f a c e a n a l y s i s ( S i n c l a i r , 1967).  has  been  Spectrographic  a n a l y s e s f o r s e v e r a l minor elements i n p y r i t e , s p h a l e r i t e and g a l e n a were o b t a i n e d by W.H.  Mathews ( p e r s o n a l r e s e a r c h ) .  The  c o n t e n t s o f As i n p y r i t e , Sn i n s p h a l e r i t e , and Ag i n g a l e n a were f i t t e d t o q u a d r a t i c s u r f a c e s by computer ( F i g u r e 92  ).  Although  the f i t o f each v a r i a b l e t o t h e q u a d r a t i c s u r f a c e i s r a t h e r poor i n each c a s e ? the f a c t t h a t a l l t h r e e p a t t e r n s show s i m i l a r w i t h n e a r l y c o i n c i d e n t c e n t e r s and axes s u g g e s t s are v a l i d .  t h a t the  zonation  trends  A l l t h r e e c e n t r a l " h i g h s " l i e c l o s e t o the Sandon  m i n i n g camp - one o f the major p r o d u c e r s  o f the S l o c a n  area.  Z o n a t i o n o f m i n o r e l e m e n t s outward from a c e n t e r i s c o n s i s t e n t w i t h h y p o t h e s e s t h a t temperature g r a d i e n t s a r e c o i n c i d e n t w i t h m i n o r element c o n t e n t g r a d i e n t s ; the c e n t e r s may f o r hydrothermal  indicate a  source  f l u i d s w h i c h d e p o s i t e d o r e s o f the Slocan/camp  ( S i n c l a i r , 1967).  B.  VERTICAL ZONATION IH DEPOSITS E a r l y s t u d i e s by Auger (1940),.Hawley (1952), and and N i c h o l (1961) i n v e s t i g a t e d the p o s s i b i l i t y o f v e r t i c a l * see T a b l e  41  Hawley zonation  247  FIGURE 92, Q u a d r a t i c t r e n d and r e s i d u a l maps f o r minor elements i n s u l p h i d e s from S l o c a n d i s t r i c t , B.C. A) Ag i n g a l e n a , ppm./IOO B) As i n p y r i t e , ppm.; C) Sn i n s p h a l e r i t e , ppm. R e s i d u a l maps D,E,and F f o r t h e r e s p e c t i v e t r e n d maps a r e c o n t o u r e d i n s t a n d a r d d e v i a t i o n s . C o n t r o l p o i n t s a r e marked by d o t s . (From S i n c l a i r , A . J . , 1967). Quadratic surface Variable  No. of specimens Std. dev. (ppm)  A g i n Galena A s i n Pyrite S n i n Sphalerite  61 31 24  102.2 41.2 31.S  Coef. of determ. 0.11 0.13 0.17  TABLE 41 . Standard d e v i a t i o n s and c o e f f i c i e n t s o f d e t e r m i n a t i o n for the three c a l c u l a t e d trend surfaces i l l u s t r a t e d i n f i g u r e above (From S i n c l a i r , A . J . , 1967).  248  of m i n o r e l e m e n t s i n p y r i t e from s e v e r a l d e p o s i t s .  Data f o r p y r i t e  f r o m the Noranda and H o l l i n g e r d e p o s i t s a r e p l o t t e d as d e p t h v s . speptrographic i n percent  l i n e - i n t e n s i t y , l o g - i n t e n s i t y , or a c t u a l  content  (Figure 93).  Although  the d a t a a r e p o o r l y d i s p l a y e d , marked v e r t i c a l  d e c r e a s e s f o r Zn, N i , and Cr a r e e v i d e n t a t the H o l l i n g e r mine. A t the Noranda mine, Auger's d a t a show i n c r e a s i n g c o n t e n t s o f T i , and V i n p y r i t e toward the base o f each o f the "upper H" " l o w e r H" ore b o d i e s decrease v e r t i c a l l y .  (see F i g u r e s The  93 and  94 ).  C o b a l t and  Ag, and  zinc  t r e n d s o f m i n o r element c o n t e n t s i n  p y r r h o t i t e and c h a l c o p y r i t e a r e s i m i l a r e x c e p t i n the case o f c o b a l t , w h i c h i n c r e a s e s v e r t i c a l l y ( o p p o s i t e t o the t r e n d f o r . pyrite).  Perhaps t h i s anomaly r e f l e c t s m i n e r a l o g i c a l z o n i n g  and  p y r i t e - p y r r h o t i t e e q u i l i b r i u m , as i n the Yanahara m a s s i v e s u l p h i d e d e p o s i t s (page  241).  A t the S i s c o e g o l d mine, Quebec, Auger n o t e s t h a t Ag, Mn,  T i , I n , and S r p y r i t e i n c r e a s e w i t h d e p t h .  Ni  A t the K e r r A d d i s o n  g o l d mine, Au and Ag i n p y r i t e i n c r e a s e w i t h d e p t h , w i t h l e s s n o t i c e a b l e d e c r e a s e o f Co and N i .  A t K i r k l a n d Lake, m i n o r element  c o n t e n t s a r e s t r i k i n g l y u n i f o r m o v e r the whole d e p o s i t and selenium  to a  d e p t h o f 6000 f e e t .  The  c o n t e n t o f p y r i t e and p y r r h o t i t e  a t Noranda o r e b o d i e s  a p p e a r s to d e c r e a s e w i t h d e p t h . * I n h i s summary  o f m i n o r element v a r i a t i o n s , Hawley (1952) c o n c l u d e s  " I n none o f  d e p o s i t s i s t h e r e any o u t s t a n d i n g change i n c o m p o s i t i o n w i t h depth." * see T a b l e s  42-44  of pyrite  the  249  FIGURE 93. V a r i a t i o n o f elements i n p y r i t e w i t h d e p t h a t (A) H o l l i n g e r , Quebec, (B) Noranda, Quebec. (From Auger, P.E., 1941).  FIGURE 94. V a r i a t i o n o f m i n o r elements w i t h d e p t h a t Noranda, Quebec: (A) p y r r h o t i t e , (B) c h a l c o p y r i t e . (From Auger, P.E., 1941).  Pyrite  . Pyrrhotite  Depth  U p p e r levels 0-200' 23A sub-level 31st level Lower levels 23A. 31st (average) L o w e r levels (run of mine)  No. of samples  Range  Mean  No.  Range  Mean  6 14 6  390-1,000 38-262 142-330  • 590  9 7  90-555 36-143  375  20 6  38-445 33-88  175 64  132 275  100  'm -  TABLE 4 2 . Selenium c o n t e n t of Noranda p y r i t e and p y r r h o t i t e w i t h d e p t h . (Se i n ppm.) (From Hawley and N i c h o l , 1959).  Depth  •  No.  Range  Mean Se  7 9 5  32-47 15-51 49-82  40 22 66  250-448' L. 550-850' L. 1.000-1,1501..  TABLE 43. Selenium i n Campbell-Chibougamau p y r r h o t i t e d e p t h . (Se i n ppm.) (From Hawley and N i c h o l , 1 9 5 9 ) .  Pyrite  Pyrrhotite  with  Chalcopyrite  Depth No. of samples  Range  50' level  (1)  (70)  250' level  (3)  (50-270)  (14) 350'level  (5)  450' level  (1)  (40-80) (130-310)  Se  No.  Range  Se  No.  Range  Se  70  (2)  50-250  150  (2)  135-210  170  (4)  21-595  180  (2)  230-540  3S5  190 60 160 100  (1)  TABLE 44, Selenium i n Geco s u l p h i d e s w i t h d e p t h . (From Hawley and N i c h o l , 1959).  170  (Se i n ppm.)  252  III.  INDICATOR ELEMENTS  M i n o r e l e m e n t s i n p y r i t e w h i c h show promise as  "indicators"  f o r m i n e r a l e x p l o r a t i o n a r e c o b a l t , a r s e n i c , and s e l e n i u m . • e l e m e n t s g e n e r a l l y s u b s t i t u t e f o r Fe and S i n l a t t i c e  These  p o s i t i o n s , and  a r e most u s e f u l s i n c e they show g r e a t e r v a r i a n c e t h a n most m i n o r e l e m e n t s , a r e i n c o n c e n t r a t i o n s g r e a t enough to r e d u c e a n a l y t i c a l e r r o r , and a r e l e a s t l i k e l y to r e s u l t f r o m c o n t a m i n a t i o n .  The  u s e f u l n e s s o f Sn, T i , V, C r , and Mn i s as y e t u n p r o v e n , p a r t l y to a n a l y t i c a l and c o n t a m i n a t i o n d i f f i c u l t i e s .  Tin i s present i n  m a s s i v e s u l p h i d e p y r i t e i n c o n c e n t r a t i o n s a v e r a g i n g 200 though t h e h i g h c o n t e n t may  ppm.  Even  r e s u l t from c a s s i t e r i t e o r s t a n n i t e  i n c l u s i o n s , i f the c o n t a m i n a t i o n i t may  due  i s c o n s i s t e n t (as i t a p p e a r s t o b e ) ,  prove t o be a u s e f u l i n d i c a t o r .  C o b a l t shows promise as an i n d i c a t o r element f o r m a s s i v e s u l p h i d e ( o r v o l c a n i c - e x h a l a t i v e d e p o s i t s , as w e l l as f o r c o p p e r v e i n o r r e p l a c e m e n t d e p o s i t s ; see F i g u r e s  45 and  63 ).  This  element i s . a l s o e n r i c h e d i n R h o d e s i a n c o p p e r b e l t , " s y n g e n e t i c " d e p o s i t s , but h i g h c o n c e n t r a t i o n s may r e m o b i l i z a t i o n ( D a r n e l y , 1966).  r e s u l t from metamorphic  C o b a l t has been used as an  f o r uranium-vanadium d e p o s i t s o f the C o l o r a d o and Delevaux, 1957)  plateau area  indicator (Coleman  because Co c o n t e n t s a r e h i g h i n p y r i t e from o r e  deposits.  P y r i t e from the b r e c c i a - p i p e a t the Molymine p r o s p e c t Smithers,  B.C.  near  c o n t a i n s h i g h c o n c e n t r a t i o n s o f Co r e l a t i v e to p y r i t e  f r o m t h e a d j a c e n t a l a s k i t e and q u a r t z v e i n s .  A diagrammatic  geolo-  g i c a l c r o s s s e c t i o n w i t h c o b a l t v a l u e s i s p r e s e n t e d i n F i g u r e 69. There i s a s u g g e s t i o n o f m i n e r a l o g i c z o n a t i o n w i t h i n t h e b r e c c i a t e d a r e a a l t h o u g h o u t c r o p i s poor.  In  t h e same a r e a p y r i t e from a s i l i c i f i e d  (but unmineralized)  d i o r i t i c i n t r u s i o n adjacent to a l e n t i c u l a r v e i n c o n t a i n i n g coarse g a l e n a , s p h a l e r i t e , and a r g e n t i f e r o u s t e t r a h e d r i t e , c o n t a i n s r e l a t i v e l y h i g h c o n c e n t r a t i o n s o f Pb and Zn. a n a l y s i s f o r t h e s e elements guide i n t h i s area.  T h i s suggests t h a t  i n p y r i t e c o u l d be a u s e f u l e x p l o r a t i o n  S i m i l a r r e l a t i o n s h i p s are present i n the East  T i n t i c a r e a , U t a h , where v e i n p y r i t e i n v o l c a n i c s above t h e T i n t i c o r e b o d i e s , c a r r i e s s i g n i f i c a n t l y h i g h e r c o n c e n t r a t i o n s o f base m e t a l s compared t o d i s s e m i n a t e d p y r i t e i n t h e v o l c a n i c s ( K e n n e c o t t Copper Corp. e x p l o r a t i o n s t a f f , p e r s o n a l  communication).  Selenium, although p r e s e n t i n g a n a l y t i c a l d i f f i c u l t i e s , to be a p r o m i s i n g i n d i c a t o r .  appears  The r e l a t i v e l y h i g h c o n t e n t i n p y r i t e s  from S e - r i c h s e d i m e n t a r y sequences i s n o t e d by Coleman and Delevaux (1957).  H i g h Se c o n t e n t s i n s u l p h i d e s from m a s s i v e Cu-Zn o r e s have  been d i s c u s s e d i n a p r e v i o u s c h a p t e r (page 110).  The r e l a t i v e l y  h i g h c o n t e n t i n p y r i t e - p y r r h o t i t e d e p o s i t s o f t h e Yanahara r e g i o n i s documented by Yamamoto e t a l . ( 1 9 6 8 ) .  Mercury.  Fedorchuk and N i k i f o r o v ( i n O v c h i n n i k o v , 1967)  found p y r i t e s i n Carbonaceous s h a l e s above mercury-antimony d e p o s i t s to be e n r i c h e d i n Hg, Sb, A s , and Zn.  On t h e a x i a l p o r t i o n o f t h e  254  a n t i c l i n a l s t r u c t u r e c o n t a i n i n g t h e o r e , Sb i s e n r i c h e d i n p y r i t e t o a d e p t h o f a few dozen m e t e r s , As and Zn t o 200 m e t e r s , and Hg t o many hundreds o f m e t e r s .  Along s t e e p l y dipping pre-ore  faults  m i n o r element c o n t e n t s r e m a i n h i g h f o r c o n s i d e r a b l e d i s t a n c e s .  The  a u t h o r s s t a t e t h a t m i n o r element s t u d i e s were u s e f u l i n : 1.  determining ore-structure,  2.  o u t l i n i n g target areas,  3.  e s t i m a t i n g depth t o o r e .  Cobalt i n p y r r h o t i t e .  I n the v i c i n i t y o f the Coronation  mine ( F l i n F l o n a r e a , M a n i t o b a ) F a u l k n e r (1970) h a s shown t h a t Co and N i c o n c e n t r a t i o n s i n p y r r h o t i t e a r e c h a r a c t e r i s t i c f o r economic and b a r r e n d e p o s i t s .  Economic d e p o s i t s a r e e s s e n t i a l l y  "conformable"  massive sulphide ore bodies c o n t a i n i n g p y r i t e , p y r r h o t i t e , c h a l c o p y r i t e , s p h a l e r i t e and o c c a s i o n a l l y m a g n e t i t e . metamorphosed v o l c a n i c s and p y r o c l a s t i c s .  Wall rocks are  "Barren" deposits are  v e i n - l i k e r e p l a c e m e n t b o d i e s c o n t a i n i n g p y r i t e and p y r r h o t i t e , w i t h l e s s than '1$ c h a l c o p y r i t e and s p h a l e r i t e .  S c a t t e r diagrams o f  c o b a l t and n i c k e l c o n t e n t s a r e shown i n F i g u r e s 95 and mean c o n t e n t s a r e g i v e n i n T a b l e  45.  d i s t r i b u t i o n s are also given (Figure  97).  and 96 ; r a n g e s  Histograms o f frequency Economic d e p o s i t s have  r e l a t i v e l y low n i c k e l c o n t e n t s ( l e s s t h a n 700 ppm) w i t h most Co/Ni r a t i o s g r e a t e r than 1.0.  B a r r e n d e p o s i t s have r e l a t i v e l y low c o b a l t  c o n t e n t s w i t h most Co/Ni r a t i o s l e s s t h a n 0.5.  Faulkner  suggests  t h a t t h e economic and b a r r e n d e p o s i t s a r e g e n e t i c a l l y u n r e l a t e d ; b a r r e n d e p o s i t s may r e s u l t from s u l p h i d i z a t i o n o f n o r m a l r o c k -  (b)  OTHER  ECONOMIC  Dmro%rrs  3SOO-  8.v<h Lokc M ; „ .  -I <T cO Q  ^ j <z  #00 l * v « l  CQJooo O  3ooo  > > sr  <J  c" aa:  Q Coo °o b o o  ltv«l  600 l»y»t.«> Cupru( H i n c ^ Had  oo o oo o o O S*oU LoVt, Mo*, u o o L.a»«l.  o —I  -1—I— /ooo  r-  P.RM. N I C K E L  FIGURE 95« Co and N i c o n t e n t o f p y r r h o t i t e s from "economic" d e p o s i t s o f t h e F l i n F l o n a r e a , (From F a u l k n e r , E , L . , 1 9 6 8 ) .  256  Co ppm  Ni ppm  Deposits  No.  Range  Mean  Coronation mine  60  68-4150  890  Other 'economic' deposits  16  85-3450  'Barren' deposits  76  10- 525  Range  Mean  Mean  Co/Ni  25-1050  315  2. 82  1550  45- 275  116  165  125-2720  925  13.4  0. 178  TABLE 42. C o m p a r i s o n o f Co a n d N i c o n t e n t s a n d C o / N i r a t i o s i n p y r r h o t i t e s from economic a n d " b a r r e n " m i n e r a l d e p o s i t s o f t h e F l i n F l o n a r e a . (From F a u l k n e r , E . L . , 1968).  F I G U R E 9 6 . Co a n d N i i n p y r r h o t i t e s f r o m " b a r r e n " m i n e r a l d e p o s i t s o f t h e F l i n F l o n a r e a . (From F a u l k n e r , E , L , , 1968).  Barren  10  Pe.fros.~it:  1 E|  Bfip  so  40  IS  3o  f 6r  0-/7S  r i o  soo  tOOO  fom. Cobalt-  0-OOI O-Ol  iroo  IOOO  o-ID IOO I O O POO Rot.'os.  Co/Ni  jjoo  .2000  Pf"*"- Cobalt. flea*, Co 2 IO? Mean I Co»"0*lCrf<Orl  M.^tT '. *"  Ai«o^ W; :  SeTf>f>~.  /OO  IOOO  Heart  30  0-OOI  OOl  2>'30  , CororKif  OIO  i^^  IOO  Co/N,'  rli'^Q  *  IOO  IOO  Ratios. .  FIGURE 97. F r e q u e n c y d i s t r i b u t i o n h i s t o g r a m s f o r Co a n d N i i n p y r r h o t i t e s from economic and b a r r e n m i n e r a l d e p o s i t s , F l i n F l o n a r e a . (From F a u l k n e r , E . L , , 1968).  f o r m i n g s i l i c a t e s , b u t economic d e p o s i t s p r o b a b l y were d e p o s i t e d by m e t a l - r i c h c h l o r o c o m p l e x  hydrothermal  b a s i c i n t r u s i v e s p r e s e n t i n the a r e a .  fluids associated with  259  IV.  APPLICATIONS OF MINOR ELEMENT PARTITION COEFFICIENTS T h e o r e t i c a l aspects of minor element p a r t i t i o n c o e f f i c i e n t s are explained h e l l by Mclntyre (1963) and others, and w i l l not be . repeated here.  Eethke et a l . (1958, 1959) found that the i n f l u e n c e  of temperature on p a r t i t i o n c o e f f i c i e n t s i s much greater than that of pressure.  P a r t i t i o n r e l a t i o n s h i p s i n c o e x i s t i n g sulphides may  be displayed by s e v e r a l types o f diagrams (Ghosh-Dastidar e t a l . . 1970).  Simple "Roozeboom" diagrams w i l l show l i n e a r c o r r e l a t i o n of  element contents i n two minerals i f e q u i l i b r i u m conditions p r e v a i l e d during d e p o s i t i o n and i f concentrations  i n each phase were d i l u t e  enough to conform to Henry's Law. T y p i c a l Roozeboom diagrams are i l l u s t r a t e d i n Figure 98. Scattered patterns observed on Roozeboom diagrams may be the r e s u l t i f : 1)  Henry's Law was obeyed but temperature and/or pressure v a r i e d during  deposition.  2)  Henry's Law was not obeyed.  3)  Deposits are i n gross d i s e q u i l i b r i u m .  4)  Mineral i n c l u s i o n i m p u r i t i e s are present.  5) A n a l y t i c a l e r r o r s are present. 6)  Complex i n t e r a c t i o n s occur between elements.  Scattered patterns do not n e c e s s a r i l y mean that minerals were i n gross d i s e q u i l i b r i u m .  I f the data i s r e p l o t t e d on "concentration"  or " i n t e r a c t i o n " diagrams (Figures 99 and 100), h i t h e r t o unsuspected  260  1. 7  Letite  62»/  /  •1. »  1.  •  3  'Jl I  7t ..73 68«*70  0 . 35  /  •72  0. 55  •69 •67  •  /«49 0.15  f  O  "SM. •44  IS c o © E <a  i  .72  -  /.  •a  l  .0. 7  0.5  -  /  58  52V50 .  1.1  >. o. •S0. 9 o X  so.; 59./  Letite  0.45  = 2  •77  • 0 0.15  Cameron & S. Oliv. 60 52 . . cP D-05 5859<»»»50  •  _:0. 05  5  67  O  00  Oliver  0.15 31 34  •cMT—  "  3 3 s  1  •79 0.3 -.as -»83 •91 i i i (a) o *92.95.97.  / 0  0 0.1 0. 2 0  i  . 691°  ^3 I  I  0.1  i  0.  i  1  *  0 , 1 . . .  0  Gull Pond  0  736.  0.1  072  0 , , , , 0  0.1  0.3  (b)  -  94 «  3 _ l  83 •  •  1 * 2 2 - . .79  -JL. 0.5 1  1  1  ....0.7  1  1  Wt: % Ni in po  Wt. % Co in po  FIGURE 9 8 . Example o f "Roozeboom" diagram showing d i s t r i b u t i o n o f Co and N i between p y r i t e and p y r r h o t i t e from s e v e r a l min m i n e r a l d e p o s i t s . (From Ghosh-Dastidar e t , a l . , 1 9 7 0 ) .  0.35  0.25 o  /  z  cc 0.15  V  3t' 31o»  •43  / 0.05  •(c)  7 0.05  0.15 0.25 Wt. % Ni in py  0.35  (d) % Z n in py X10 2  FIGURE 9 9 . Example of " c o n c e n t r a t i o n " diagrams showing dependence o f p a r t i t i o n c o e f f i c i e n t s on element c o n c e n t r a t i o n s i n one o r more p h a s e s . (From Ghosh-Dastidar e t . a l . , 1970).  1  .  261 1.4  10  1.0  o ft  13  6  *,  ,68,71 ••73.70 •69  2  OC  (Oliver)  0.6  US  •67  *33/ / •67  0.2  M J66,89.73  '5(Co/Ni) p y 25  (Oliver)  (b)  50  (Lento)  --'  ,5  (Co/Ni) py  2 5  —N—  FIGURE 100, Example of " i n t e r a c t i o n diagram" showing r e l a t i o n s h i p of Co/Ni r a t i o i n p y r i t e to d i s t r i b u t i o n c o e f f i c i e n t s f o r Co and N i between p y r i t e and p y r r h o t i t e , (From Ghosh-Dastidar e t . al.,1970).  .12  .04  .08  ZnSe/ZnS  FIGURE 01. P l o t s * o f m o l e - f r a c t i o n r a t i o s PbSe/PbS vs.ZnSe/ZnS c a l c u l a t e d from experimental data f o r s i x temperatures (From Bethke and Barton, 1971). 1  ?7» 50  262  r e l a t i o n s h i p s may a p p e a r .  C o n c e n t r a t i o n p l o t s show t h e dependence  o f p a r t i t i o n c o e f f i c i e n t s on element c o n c e n t r a t i o n s i n one o r b o t h c o e x i s t i n g phases.  I n t e r a c t i o n p l o t s show t h e i n f l u e n c e o f o t h e r  m i n o r elements on d i s t r i b u t i o n c o e f f i c i e n t s .  Ghosh-Dastidar et a l .  (1970) r e p o r t t h a t i f s u b s t i t u t i o n o f a n element i n a s t r u c t u r e necessitates s t r u c t u r a l vacancies, p a r t i t i o n c o e f f i c i e n t s f o r that element between d i f f e r e n t phases w i l l n o t f o l l o w t h e d i s t r i b u t i o n law.  The a u t h o r s p r e s e n t v a r i o u s p a r t i t i o n diagrams and r e l a t i o n s h i p s  from s u l p h i d e d e p o s i t s i n Newfoundland and New B r u n s w i c k .  A criticism  o f some o f t h e i r work i s t h e c o n t e n t o f some o f t h e e l e m e n t s i n v o l v e d , Pb, Zn, B i , e t c . , i s so h i g h t h a t c o n t a m i n a t i o n a s m i n e r a l i n c l u s i o n s must s u r e l y be p r e s e n t . I n a r e c e n t s t u d y , Bethke and B a r t o n (1971) have shown t h a t d i s t r i b u t i o n o f c e r t a i n minor elements between s y n t h e t i c s u l p h i d e phases i s i n d e p e n d e n t o f c o m p o s i t i o n  ( c o n c e n t r a t i o n ) , and p a r t i t i o n  r e l a t i o n s h i p s v a r y . s u f f i c i e n t l y w i t h temperature f o r r e a s o n a b l y p r e c i s e temperature e s t i m a t e s .  T h i s f i e l d o f s t u d y seems t o h o l d  p r o m i s e f o r d e c i p h e r i n g m i n o r element r e l a t i o n s h i p s i n s u l p h i d e deposits.  Examples o f v a r i a t i o n o f p a r t i t i o n - c o e f f i c i e n t s i n  s y n t h e t i c systems a r e shown i n F i g u r e s 101 and 102.  FIGURE 102, Summary o f v a r i a t i o n o f d i s t r i b u t i o n c o e f f i c i e n t s w i t h t e m p e r a t u r e . V a l u e s a r e d e r i v e d from s t u d y of s y n t h e t i c s u l p h i d e systems by Bethke and B a r t o n , (1971).  264  V.  OTHER APPLICATIONS  A.  INDEX OF OXIDATION-REDUCTION REGIME  ( T r o s h i n , 1965)  T r o s h i n (1965) has attempted  to d e f i n e q u a l i t a t i v e l y the  o x i d a t i o n - r e d u c t i o n regime o f h y d r o t h e r m a l  f l u i d s on t h e b a s i s o f  d i s t r i b u t i o n o f minor elements i n c o e x i s t i n g s u l p h i d e s .  According  t o T r o s h i n , minor e l e m e n t s such a s Cd and I n , p r e s e n t i n a s i n g l e v a l e n c e s t a t e under h y d r o t h e r m a l  c o n d i t i o n s a r e c h a r a c t e r i z e d by a  v e r y narrow range o f c o n c e n t r a t o r m i n e r a l s and " h o s t "  elements.  E l e m e n t s w h i c h c a n o c c u r w i t h more t h a n one v a l e n c e , f o r example Cu and Mn, c a n i s o m o r p h o u s l y elements.  replace a greater v a r i e t y o f host  From a s t u d y o f i o n i c r a d i i o f minor e l e m e n t s i n v a r i o u s  s t a t e s o f o x i d a t i o n (valence) T r o s h i n s t a t e s that an i n t e n s i f i c a t i o n o f t h e o x i d i z i n g regime i n a h y d r o t h e r m a l  system s h o u l d s h i f t t h e  e q u i l i b r i u m d i s t r i b u t i o n o f minor c a t i o n s towards c r y s t a l l i z a t i o n in sphalerite.  C o n v e r s e l y an i n c r e a s e d r e d u c i n g environment s h o u l d  cause i n c r e a s e d c o p r e c i p i t a t i o n o f m i n o r e l e m e n t s i n p y r i t e and galena.  I t i s u n f o r t u n a t e t h a t T r o s h i n ' s d a t a do n o t a d e q u a t e l y s u p p o r t h i s own c o n c l u s i o n s  ( T a b l e 46).  One must c o n c l u d e  that  many o t h e r f a c t o r s b e s i d e s o x i d a t i o n - r e d u c t i o n p o t e n t i a l c o n t r o l the d i s p e r s i o n o f m i n o r elements among .-. c o e x i s t i n g sulphides.  hydrothermal  Accompanying mineralization Tin  8  Tungsten  Molybdenum  Sn  Cu  Sherlovogorck Buku.Ua Khaltasopskoye (DzMda) Pe rvo m ay sk oy e (Dzhida) BugdaLnskoye Vershlnoshakhtama Davenda  Mn  PbS  FeS2  ZnS  PbS  FeS 2  ZnS  PbS  FeS2  ZnS  PbS  FeS 2  ZnS  100  40  70  500  1500  70  100  50  1500  200  1800  . 10  200  40 40 70  40 40 30  100 10 400  60 20 20  600 300 1000  100 100 60  <50 530 300  30  — —  2000 2000 300  100  500  100 100 500  400 400 1000  40 5000 200  20 30  —  500 100 1  200  —  50 50  150 60 30  —  200  —'  5  30  —  300 300 300  200 300 100  300 10 1000  10 20 100  —  Zns Srnlrnov Khapcheranga polymetalllc vein lead vein Tarbal'dzhey  Sb  A3  —  60 5  5 4  —  —  — —.  PbS  FeS 2  —  _  600 . 1000 500 200 1500 500  0.33 0.14 0.22 0.15  10  —  —  —  —  —  —  —  200 50  — —  300 2000 100  —  —  70 200  —  —  (0.42) 0.42 0.43  2.  —  —  . —  20  -  -  1000  -  .-  (0.54)  4 1  50 50 1000  50 200 300  400 900 100  — —  400 250 250  —  —  300 10 3000  200 300 200  —  100 30  K  50  80  •  50 —  GO  0.49 0.50 0.53  TABLE 46. D i s t r i b u t i o n of trace elements among sphalerite, galena, and pyrite i n t i n , tungsten, and molybdenum-polymetallic ore deposits of Transbaikaliya. A l l analyses i n J7g. (From Troshin, 1965). * K = distribution coefficient.  266  B.  AGES OF MINERALIZATION  T u r o v s k i i e t a l , (1967) showed t h a t p o l y m e t a l l i c m i n e r a l d e p o s i t s o f f o u r d i f f e r e n t ages had n o t i c e a b l y d i f f e r e n t m i n o r . element c o n t e n t s . g i c a l . composition.  A l l d e p o s i t s had more o r l e s s s i m i l a r Determination  mineralo-  o f m i n o r elements i n galena,,  s p h a l e r i t e , and p y r i t e showed t h a t P e r m i a n m i n e r a l d e p o s i t s  contained  the g r e a t e s t amounts o f S e , Te, B i , T l , and I n , and e l e v a t e d amounts o f Ga and Cd were t y p i c a l o f S i l u r i a n - D e v o n i a n o r e s .  S t u d i e s o f t h i s n a t u r e may be v a l i d w i t h i n s m a l l a r e a s , b u t p r o b a b l y r e f l e c t d i f f e r e n t magmatic s o u r c e s  geographical  r a t h e r than  age o f d e p o s i t s .  C.  METAL RATIOS CHARACTERISTIC OF DEPOSIT TYPES  P r o k h o r o v (1965) r e p o r t s t h a t p y r i t e from d e p o s i t s o f v a r i o u s t y p e s h a s c h a r a c t e r i s t i c s t y p i c a l o f each g e n e t i c type o f d e p o s i t . M e t a l r a t i o s , d e c r e p i t a t i o n t e m p e r a t u r e s , thermo-EMF, and " d " s p a c i n g o f t h e p y r i t e l a t t i c e a r e g i v e n f o r each type o f d e p o s i t .  Type  Cu/Zn  Ag/Zn  Pb/Zn  Co/Ni  Pyrite  4-160  0.01-0.7  0.4-3.0  0.6-9.0  Metamorphic  0.3-0.2  0.006-0.08  0.02-0.14  0.06-0.6  Rare m e t a l  0.9-14  0.24-0.1  1.0-8.0  1.0  Au-bearing  0.7  0.7  0.6  T decreg. C  Type  Thermo  "d"  EHF  Pyrite  450-550°.  -14  Metamorphic  500-600°  -76  V/°C  4.5-5.0 X  Rare m e t a l  300-400  -72  V/°C  4.8  Au-bearing  350-450  +130  to +160  p  o  to -100  V/°C  spacing  V/°C  3.8-5.0 X.  X  4.5-4.9 X  W i t h o u t s u p p o r t i n g s t a t i s t i c a l d a t a , the v a l i d i t y o f P r o k h o r o v ' s c o n c l u s i o n s cannot be  checked.  RELATIONSHIP OF CRYSTAL MORPHOLOGY AND  MINOR-ELEMENT CONTENTS . .  I n a p o r p h y r y copper d e p o s i t a t Cuajone, P e r u , Amstutz found changes i n morphology  (1963)  o f p y r i t e from p y r i t o h e d r a i n normal  c o u n t r y r o c k t o cubes i n r e g i o n s o f a l t e r a t i o n and h i g h c o p p e r c o n t e n t . The a u t h o r a l s o n o t e s t h a t most sedimentar3 and metamorphic p y r i t e s r  are  s i m p l e cubes, whereas morphology  i s much more v a r i a b l e i n  i g n e o u s and h y d r o t h e r m a l e n v i r o n m e n t s .  Marked changes i n morphology  w i t h temperature and degree o f s u p e r s a t u r a t i o n have been d i s c o v e r e d w i t h b r o o k i t e , c a s s i t e r i t e , and o t h e r m i n e r a l s by K o s t o v (see  F i g u r e 103).  (1966)  N o t i c e a b l e e f f e c t s on c r y s t a l morphology  seen by a d d i n g i m p u r i t i e s to g r o w i n g s y n t h e t i c c r y s t a l s ,  can be  therefore,  i t i s c o n c e i v a b l e t h a t v a r i a t i o n s i n type o f c o n c e n t r a t i o n o f m i n o r elements c o u l d be m a n i f e s t e d i n p y r i t e c r y s t a l s o f d i f f e r e n t morphology  i n mineral deposits.  O b s e r v a t i o n o f e f f e c t would  h i n d e r e d by c o m p l e x i t y o f m i n e r a l i z a t i o n o r m u l t i - g e n e r a t i o n mineralization.  be  Johnson (1971) n o t e d t h a t p y r i t o h e d r a l p y r i t e from c u p r i f e r o u s p y r i t e d e p o s i t s o f Cyprus have v i r t u a l l y no n i c k e l , whereas c u b i c p y r i t e f r o m the same d e p o s i t s c o n t a i n s 100-1000 ppm 10-500 ppm N i ( F i g u r e 104).  Co and  A l t h o u g h t h i s r e l a t i o n s h i p may  hold  t r u e f o r one d e p o s i t o r one type o f d e p o s i t i t cannot be s t a t e d as a general  rule.  Thus, a l t h o u g h numerous p r a c t i c a l a p p l i c a t i o n s have been s u g g e s t e d f o r t h e s t u d y o f m i n o r e l e m e n t s i n p y r i t e , the a r e a s o f r e s e a r c h w h i c h a p p e a r t o h o l d the most p r o m i s e a r e :  1.  The d e t e r m i n a t i o n o f i n d i c a t o r elements f o r c e r t a i n types of deposits,  2.  M i n o r - e l e m e n t z o n a t i o n w i t h i n and a d j a c e n t  to ore  bodies, 3.  P a r t i t i o n - c o e f f i c i e n t studies to a i d i n determination of temperatures of d e p o s i t i o n of m i n e r a l d e p o s i t s ,  4.  D e f i n i t i o n o f m e t a l l o g e n e t i c p r o v i n c e s by m i n o r element  relationships.  FIGURE 103. V a r i a t i o n o f c r y s t a l h a b i t w i t h changes i n temperature and c o n c e n t r a t i o n o f s o l u t i o n s ; (A) m a g n e t i t e , ( B ) b r o o k i t e , ( C ) cassiterite, (From R o s t o v , 1 9 6 6 ) .  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0053102/manifest

Comment

Related Items