Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Geochemical dispersion in bedrock and glacial overburden around a copper property in south central British… Hoffman, Stanley J. 1972

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Notice for Google Chrome users:
If you are having trouble viewing or searching the PDF with Google Chrome, please download it here instead.

Item Metadata

Download

Media
831-UBC_1972_A6_7 H63_4.pdf [ 18.3MB ]
Metadata
JSON: 831-1.0053099.json
JSON-LD: 831-1.0053099-ld.json
RDF/XML (Pretty): 831-1.0053099-rdf.xml
RDF/JSON: 831-1.0053099-rdf.json
Turtle: 831-1.0053099-turtle.txt
N-Triples: 831-1.0053099-rdf-ntriples.txt
Original Record: 831-1.0053099-source.json
Full Text
831-1.0053099-fulltext.txt
Citation
831-1.0053099.ris

Full Text

c\ GEOCHEMICAL DISPERSION IN BEDROCK AND GLACIAL OVERBURDEN AROUND A COPPER PROPERTY IN SOUTH CENTRAL BRITISH COLUMBIA by STANLEY J . HOFFMAN B.S c , McG i l l U n i v e r s i t y , 1 9 6 9 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE i n the Department of Geology We accept t h i s t h e s i s as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA May, 1972 In p resen t ing t h i s t hes i s in p a r t i a l f u l f i l m e n t o f the requirements f o r an advanced degree at the U n i v e r s i t y of B r i t i s h Columbia, I agree tha t the L i b r a r y sha l l make i t f r e e l y a v a i l a b l e f o r reference and s tudy . I f u r t h e r agree t h a t permiss ion fo r ex tens ive copying o f t h i s t h e s i s f o r s c h o l a r l y purposes may be granted by the Head of my Department or by h i s r e p r e s e n t a t i v e s . I t i s understood tha t copying or p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l ga in s h a l l not be a l lowed w i t h o u t my w r i t t e n permiss ion . Department o f The U n i v e r s i t y o f B r i t i s h Columbia Vancouver 8, Canada i i ABSTRACT The R a y f i e l d River copper property, 14 miles east of 70 Mile House i n south c e n t r a l B r i t i s h Columbia, i s underlain by a zoned syenite i n t r u s i o n of l a t e T r i a s s i c or e a r l y J u r a s s i c age. The b a t h o l i t h was introduced i n t o Mesozoic volcanics of the N i c o l a Group and has since been p a r t i a l l y buried by T e r t i a r y Basalt flows. The syenite grades from several hybrid phases at the country rock contact, through hornblende syenite, to leucocratic syenite and f i n a l l y , to several c e n t r a l l y disposed peg-m a t i t i c bodies. Chalcopyrite and bornite, the major s u l -phides present, occur as i n c l u s i o n s within hornblende, along feldspar v e i n l e t s and along fractures i n a con-c e n t r i c zone surrounding the l e u c r o c r a t i c syenite. On the property, the R a y f i o l d River dissects to 400 feet, a gently r o l l i n g plateau. G l a c i a l deposits are rare along the v a l l e y but commonly approach 50 feet i n thickness on the plateau. S o i l , lake sediment and water samples c o l l e c t e d from these young and r e l a t i v e l y unweathered s u r f i c i a l deposits are a l k a l i n e . Talus s o i l s along the v a l l e y , however, are s l i g h t l y more a c i d i c , due to oxidation of primary sulphide minerals. The value of geochemical patterns i n l o c a t i n g bedrock m i n e r a l i z a t i o n may be gauged by the success attained where sources of copper i n bedrock are known. Three copper r i c h areas have been found. The most i i i s t r i k i n g bedrock anomaly, near the center of the property, i s o u t l i n e d by copper-rich syenite f l o a t , stream s e d i -ment, lake water and sediment and talus s o i l s . The second, along the northern h a l f of the r i v e r v a l l e y , was found by stream sediment and talus surveys. The t h i r d bedrock anomaly, on the southeastern f r a c t i o n of the property, i s surrounded by f l o a t blocks r e l a t i v e l y high i n copper. Copper enrichment within g l a c i a l over-burden i s u s u a l l y detectable over twice the area under-l a i n by bedrock m i n e r a l i z a t i o n . Most secondary anomalies overly b a t h o l i t h i c rocks, except i n the south where rounded syenite f l o a t blocks, m i n e r a l o g i c a l l y and struc-t u r a l l y s i m i l a r to the most s t r i k i n g bedrock anomaly, were transported by a g l a c i a l Bonaparte River to where they now overly N i c o l a Volcanics. On a regional survey, boulder t r a c i n g and lake sediment or lake water sampling are most l i k e l y to i n d i c a t e the presence of a mineralized i n t r u s i v e . De-t a i l e d sampling reveals anomalous stream sediments of the R a y f i c l d River and copper-rich t a l u s along the v a l l e y sides of the northern half' of the property. Detailed s o i l sampling i s not sui t a b l e f o r out-l i n i n g copper m i n e r a l i z a t i o n , as a l k a l i n e s o i l and t h i c k overburden r e s t r i c t movement of copper ions. E r r a t i c high copper values are u s u a l l y r e l a t e d to mineralized f l o a t or bedrock. Analysis of second year growth of Douglas f i r or lodgepole pine apparently does not detect mineralization i n bedrock. i v TABLE OF CONTENTS Page ABSTRACT i i - i i i TABLE OE CONTENTS i v - v i i LIST OP TABLES v i i i - i x LIST OE FIGURES x - x i i i LIST OE PLATES x i i i ACKNOWLEDGEMENTS x iv CHAPTER 1 1-38 I. STATEMENT OE THE PROBLEM 1 I I . HISTORY OP GEOCHEMICAL SAMPLING OF GLACIAL OVERBURDEN 2-6 I I I . LOCATION MD ACCESS 7 IV. GEOLOGY 8-26 1. Regional Geology 8 2. Detailed Geology 11-26 A. Introduction 11 B. Intrusive Rocks 12-26 a. Hornblende syenite 12-18 b. Leucocrat ic syenite 18-20 c. Fine grained syenite 20 d. Hybrid phases 21-22 e. Pegmatites 22-23 f. A p l i t e and monzonite dikes 23 g. Diabase 23-24 C. Faults 24-V. CLIMATE 27 VI. TOPOGRAPHY AND DRAINAGE 27-31 VII. SOILS 31-36 VIIL VEGETATION AND WILDLIFE 36 IX. PREVIOUS EXPLORATION HISTORY OF THE RAY-FIELD RIVER COPPER PROPERTY 37-38 V Page CHAPTER 2 39-59 I . SAMPLE COLLECTION 39-50 1 0 I n t r o d u c t i o n 39-43 2. Bedrock 43-45 3. Stream, Spring and Lake Water 43-45 4. Stream and Lake Sediments 45-46 5o Hornblende Syenite F l o a t 46 6. S o i l s 47-50 7. V e g e t a t i o n 50 I I . ANALYTICAL TECHNIQUES 51-58 . 1. E m i s s i o n Spectroscopy 51 2„ Atomic Absorption 51-58 CHAPTER 3 59-181 I. INTRODUCTION 59 I I . PRIMARY DISPERSION 59-91 A. Metal Content of Bedrock 59-78 B. D i s c u s s i o n 79-91 (a) F a c t o r s . f f e c t i n g M e t a l Content of Bedrock 79-86 i„ I n t r o d u c t i o n 79 i i . Primary zoning 79-80 i i i . Genesis of sulp h i d e em-placement 81-86 (b) A p p l i c a t i o n to E x p l o r a t i o n 86-91 I I I . SECONDARY DISPERSION 92-181 1„ Stream, S p r i n g and Lake Water 92-109 A. Trace and Major Element D i s -t r i b u t i o n 92-95 i . Introd\;ction 92 i i . Stream water 92-93 i i i . S p r i n g water 94 i v . Lake water 94-95 v. Comparison of t r a c e and major element content of stream and l a k e water 95 B. D i s c u s s i o n 109-115 (a) F a c t o r s / f f e c t i n g Trace Element D i s t r i b u t i o n 109-114 i . T h e o r e t i c a l c o n s i d e r a t i o n s 109-110 i i . I n f l u e n c e of org a n i c matter, pH and evaporation on t r a c e element contents 110-114 (b) A p p l i c a t i o n to E x p l o r a t i o n 114-115 v i Pr.ge > 2. Stream Sediments 115-133 A. Trace Element D i s t r i b u t i o n 115-118 B„ D i s c u s s i o n 118-133 (a) F a c t o r s A f f e c t i n g Trace E l e -ment D i s t r i b u t i o n 118-131 (b) A p p l i c a t i o n to E x p l o r a t i o n 131-133 3, Lake Sediments 133-14-2 Ao Trace Element D i s t r i b u t i o n 133-134 B e D i s c u s s i o n 135-1^2 (a) F a c t o r s A f f e c t i n g Trace E l e -ment D i s t r i b u t i o n 135-141 (b) A p p l i c a t i o n to E x p l o r a t i o n 141-142 4» Hornblende Syenite F l o a t 143-152 Trace Element D i s t r i b u t i o n 143-145 Bo D i s c u s s i o n 145-152 (a) F a c t o r s A f f e c t i n g Trace E l e -ment D i s t r i b u t i o n 145-146 (b) A p p l i c a t i o n to E x p l o r a t i o n 146-152 5o S o i l s 152-176 Ao Trace Element D i s t r i b u t i o n 152-159 B„ D i s c u s s i o n 160 (a) F a c t o r s A f f e c t i n g Trace E l e -ment D i s t r i b u t i o n 160 i o I n t r o d u c t i o n 160 i i o Mechanisms of formation of copper anomalies 160-165 i i i . I n f l u e n c e of s i z e f r a c -t i o n , o r g a n i c matter, pH, calciu m carbonate, coarse fragments, h o r i z o n and topography on t r a c e e l e -ment contents 165-170 i v . Choice of h o r i z o n f o r sampling purposes 170-172 (b) A p p l i c a t i o n to E x p l o r a t i o n 172-176 6 . V e g e t a t i o n 176-181 A. Copper and Zinc D i s t r i b u t i o n i n S e l e c t e d Trees 176-179 Bo D i s c u s s i o n 180-181 (a) A p p l i c a t i o n to E x p l o r a t i o n 180-181 v i i Page CHAPTER 4 182-202 L INTERRELATIONSHIPS BETWEEN SURVEYS 182-194 1 . I n t r o d u c t i o n 182 2„ Genetic F a c t o r s A f f e c t i n g Copper Anomaly Formation 182-188 3o A p p l i c a t i o n to E x p l o r a t i o n on the R a y f i e l d R i v e r Copper P r o p e r t y 189-194 I I . CONCLUSIONS 195 -200 1. Summary 195-198 2 . Geochemical Sampling of Over-burden as an a i d to E x p l o r a t i o n 198-200 I I I . SUGGESTIONS FOR FURTHER WORK 200-202 BIBLIOGRAPHY 203-209 v i i i LIST OF TABLES Table Page I Thin section examination of horn-blende syenite 17 II Thin section examination of leuoo-cratic syenite 19 III Presumed faults along the Rayfield River 26 IV Approximate description of a modal s o i l p r o f i l e developed on g l a c i a l t i l l 32 V Horizon sequences for soils c l a s s i f i e d at the subgroup level of the s o i l c l a s s i f i c a t i o n system for Canada 33 VI Correlation between Canadian and American s o i l c l a s s i f i c a t i o n schemes 34 VII Types of geochemical samples collected, summer 1970 40,41 VIII Comparison of metal values in samples treated with and without HC1 in the f i e l d 44 IX Spectrographic equipment and standard operating conditions 52 X Operational characteristics and pre-cision at the 95$ confidence level of emission spectromenter analysis 53 XI Operational characteristics of atomic absorption analysis 55 XII Precision of atomic absorption anal-ysis at the 95$ confidence level estimated by replicate analysis of the UBC standard rock 56 XIII Precision of atomic absorption anal-ysis at the 95$ confidence level estimated by analysis of paired samples 57,58 XIV Physiographic regions of the Rayfield River copper property 60 i x Table XV XVI XVII XVIII XIX XX XXI XXII XXIII XXIV XXV XXVI XXVII XXVIII Page Trace metal content (ppm) of ex-tru s i v e and i n t r u s i v e bedrock, hydro-f l u o r i c / p e r c h l o r i c acid attack 67 Summary of populations detected on lo g p r o b a b i l i t y p l o t s of hornblende syenite bedrock data 68 Regional d i s t r i b u t i o n of major and minor elements i n stream and lake water 96 Comparison of trace and major element contents (ppm) and pH i n stream and lake water 97 Copper and zinc content (ppb) i n Ray f i e l d River water from Crater Lake to the Bonaparte River junction 98 Copper and zinc content (ppb) and pH of spring water 99 Major element content (ppm) and pH of Ray f i e l d and Bonaparte r i v e r water 100 Trace metal content (ppm) of stream sediments, -80 mesh f r a c t i o n , n i t r i c / p e r c h l o r i c acid attack 119 Comparison of trace metal content (ppm) of stream and lake sediment, -80 mesh f r a c t i o n , n i t r i c / p e r c h l o r i c acid attack 120 Trace metal and major element content of water and sediment c o l l e c t e d at time lapse sampling s t a t i o n s , summer 1970 121 Copper and zinc content (ppm) of i r o n and manganese r i c h sediments 122 Summary of populations detected on log p r o b a b i l i t y p l o t s of hornblende sye-n i t e f l o a t data 14-7 Trace element content (ppm) and pH of d i f f e r e n t s o i l horizons, -80 mesh f r a c t i o n , n i t r i c / p e r c h l o r i c acid attack 159 Copper and zinc content (ppm) of se-cond year growth of Douglas f i r and lodgepolc pine, based on oven dried weight, n i t r i c / p e r c h l o r i c acid attack 178 LIST OF FIGURES Figure Pago 1 L o c a t i o n and access to the Dansey-R a y f i e l d R i v e r copper p r o p e r t y , 70 M i l e House, B r i t i s h Columbia 3 2 Regional geology (modified from Campbell and T i p p e r , 1966) 10 3 L o c a l geology of the Dan s c y - R a y f i c l d R i v e r copper p r o p e r t y 12 4 P e r t h i t i c i n t c r g r o w t h s i n o r t h o c l a s e of the s y e n i t e b a t h o l i t h 16 5 L o c a t i o n of f a u l t s and l i n e a r s : d i s t r i -b u t i o n of the h i g h e s t d e n s i t y of a p l i t c and monzonite d i k e s and f e l d s p a r v c i n l e t s 25 6 S o i l parent m a t e r i a l d i s t r i b u t i o n 29 7 Approximate drainage catchment areas, l o c a t i o n of spr i n g s and l o c a t i o n of time la p s e sampling s i t e s 30 8 D i s t r i b u t i o n of copper (ppm) i n the ' B' h o r i z o n , -80 mesh . f r a c t i o n , compiled by Amax E x p l o r a t i o n , Inc„, 1969 49 9A D i s t r i b u t i o n of copper (ppm) w i t h i n the s y e n i t e i n t r u s i v e 69 9B D i s t r i b u t i o n of copper (ppm) i n horn-blende s y e n i t e 70 10A D i s t r i b u t i o n of z i n c (ppm) w i t h i n the s y e n i t e i n t r u s i v e 71 10B D i s t r i b u t i o n of z i n c (ppm) i n hornblende s y e n i t e 72 11A D i s t r i b u t i o n of i r o n (°/o) w i t h i n the s y e n i t e i n t r u s i v e 73 11B D i s t r i b u t i o n of i r o n (#) i n hornblende s y e n i t e 74 12A D i s t r i b u t i o n of potassium (#) v / i t h i n the s y e n i t e i n t r u s i v e 75 12B D i s t r i b u t i o n of potassium (%) i n horn-blonde s y e n i t e 1 76 x i Figure page 13A Log p r o b a b i l i t y p l o t s of copper and potassium data from hornblende syenite bedrock 77 13B Log p r o b a b i l i t y p l o t s of i r o n , manganese and zinc data from hornblende syenite bedrock 78 14A D i s t r i b u t i o n of copper (ppb) i n stream water 101 14B D i s t r i b u t i o n of zinc (ppb) i n stream water 102 14C pH of stream water 103 15A D i s t r i b u t i o n of copper (ppb) i n lake water 104 15B D i s t r i b u t i o n of zinc (ppb) i n lake water 105 16A D i s t r i b u t i o n of calcium (ppm) i n lake water 106 16B D i s t r i b u t i o n of sodium (ppm) i n lake water 107 16C D i s t r i b u t i o n of potassium (ppm) i n lake water 108 17A D i s t r i b u t i o n of copper (ppm) i n stream sediments, -80 mesh f r a c t i o n 123 17B D i s t r i b u t i o n of zinc (ppm) i n stream sediments, -80 mesh f r a c t i o n 124 17C D i s t r i b u t i o n of i r o n ($) i n stream sediments, -80 mesh f r a c t i o n 125 17D D i s t r i b u t i o n of manganese (ppm) i n stream sediments, -80 mesh f r a c t i o n 126 18 Log p r o b a b i l i t y p l o t s of copper and zinc data from stream sediments 127 19A D i s t r i b u t i o n of copper (ppm) i n lake sediments, -80 mesh f r a c t i o n 135 19B D i s t r i b u t i o n of zinc (ppm)- i n lake sediments, -80 mesh f r a c t i o n 136 XI1 F i g u r e Page 1 9 C D i s t r i b u t i o n of i r o n (°/o) i n lak e sediments, -80 mesh f r a c t i o n 137 1 9 D D i s t r i b u t i o n of manganese (ppm) i n l a k e sediments, -80 mesh f r a c t i o n 1 3 8 2 0 D i s t r i b u t i o n of copper (ppm) w i t h i n hornblende s y e n i t e f l o a t 148 21A Log p r o b a b i l i t y p l o t s of copper and potassium data of hornblende s y e n i t e f l o a t 149 2 1 B Log p r o b a b i l i t y p l o t s of i r o n , manganese and z i n c data of hornblende s y e n i t e f l o a t 1 5 0 2 2 V a r i a t i o n of copper i n s o i l s across the landscape surface 1 5 6 2 3 A Trace element d i s t r i b u t i o n and pH i n p r o f i l e 1 0 0 , -80 rnesh f r a c t i o n 1 5 7 2 3 B Trace element d i s t r i b u t i o n and pH i n p r o f i l e 108, -80 mesh f r a c t i o n 1 5 7 2 3 C Trace element d i s t r i b u t i o n and pH i n p r o f i l e 1 1 1 , -80 mesh f r a c t i o n 1 5 7 2 3 D Trace element d i s t r i b u t i o n and pH i n p r o f i l e 1 1 7 , -80 mesh f r a c t i o n < 1 5 7 2 3 E Trace element d i s t r i b u t i o n and pH i n p r o f i l e 114, -80 mesh f r a c t i o n 1 5 7 2 3 F Trace element d i s t r i b u t i o n and pH i n p r o f i l e 1 1 1 , -80 mesh f r a c t i o n 1 5 8 2 3 G Trace element d i s t r i b u t i o n and pH i n p r o f i l e 1 1 2 , -80 mesh f r a c t i o n 1 5 8 2 3 H Trace element d i s t r i b u t i o n and pH i n p r o f i l e 5, -80 mesh f r a c t i o n 1 5 8 231 Trace element d i s t r i b u t i o n and pH i n p r o f i l e 8 , -80 mesh f r a c t i o n 1 5 8 24 D i s t r i b u t i o n of copper (ppm) i n Douglas f i r and lodgepole p i n e 1 7 9 x i i i F i g u r e Page 25 Schematic diagram showing the r e l a t i o n -ship between copper r i c h bedrock and the d i f f e r e n t types of g l a c i a l over-burden 183 26 Summary of copper anomalies i n bedrock and g l a c i a l overburden 189 27 R a y f i e l d River-Bonaparte R i v e r r e g i o n a l reconnaissance, stream water and s e d i -ment sample l o c a t i o n s i n pocket 28 R a y f i e l d River-Bonaparte R i v e r r e g i o n a l reconnaissance, outcrop and horn-blende s y e n i t e f l o a t sample l o c a t i o n s i n pocket 29 The D a n s c y - R a y f i c l d R i v e r copper p r o p e r t y , water and sediment sample l o c a t i o n s i n pocket 30 The Dansey-Rayfield R i v e r copper p r o p e r t y , outcrop sample l o c a t i o n s i n pocket 31 The Dansey-Rayfield R i v e r copper p r o p e r t y , hornblende s y e n i t e f l o a t sample l o c a t i o n s i n pocket 32 The Dansey-Rayfield R i v e r copper p r o p e r t y , s o i l sample l o c a t i o n s i n pocket 33 The Dansey-Rayfield R i v e r copper p r o p e r t y , v e g e t a t i o n sample l o c a -t i o n s i n pocket LIST OF PLATES P l a t e 1 Copper deposited as malachite from ground water i n l e u c o c r a t i c s y e n i t e at the Z bend 113 x i v ACKNOWLEDGEMENTS I am g r a t e f u l to Miss Anne Baxter, Mr. Jim Leung and Mr. Michael Waskett-Meyers f o r helping i n sample preparation and analysis, to Mr. Amar D h i l l o n f o r conduct-ing some of the atomic absorption analysis, and to Mr. David Marshall f o r analysing rock chip samples on the emission spectrometer. I am thankful to the National Research Council f o r t h e i r Centennial Scholarship which covered the two and one h a l f years required f o r the preparation of t h i s t h e s i s and to Amax Exploration, Inc. f o r allowing me to c o l l e c t samples from t h e i r optioned property and f i n -ancing ( i n part) the f i e l d expenses incurred. Thanks i s also extended to Mr. C. W. Dansey, who i s the holder of the .mineral claims, and to the employees of Amax Exploration, Inc. (D. K. Mustard, J . F. Al l e n , T. G. F. Godfrey, C. J . Hodgson, R. F. Horsnail, H. P i r e s and others) whose help, advice and ideas were extended i n so many ways. I am indebted to Mr. James Chatupa f o r h i s able assistance i n the c o l l e c t i o n of the samples, to Dr. L. M« Lavkulich f o r c r i t i c a l l y examining chapters on s o i l sampling and to Dr. W. K. Fletch e r f o r h i s i n t e r e s t , "help and guidance during the f i e l d work and throughout the preparation of t h i s t h e s i s . _1_ CHAPTER 1 I STATEMENT OF THE PROBLEM The R a y f i e l d River copper property i s located 14 miles east of 70 Mile House on the Cariboo plateau of south c e n t r a l B r i t i s h Columbia. The property i s underlain by a mineralized syenite i n t r u s i v e containing up to 0.4$ copper. Bedrock i s l a r g e l y concealed by g l a c i o f l u v i a l sands and gravels, l a c u s t r i n e s i l t y clays and g l a c i a l t i l l s . Syenite outcrops are l a r g e l y r e s t r i c t e d to the deep v a l l e y s of the R a y f i e l d and Bonaparte Rivers. Although there i s almost a complete absence of high values i n samples c o l l e c t e d from the plateau, stream s e d i -ment and s o i l samples taken along the R a y f i e l d River v a l l e y ( F i g . 1) contain anomalous copper values. Traces of sulphide m i n e r a l i z a t i o n can be observed i n most exposures of syenite. The topographic control of the anomalous zone probably r e f l e c t s e i t h e r mechanical concentration or seepage deposition of copper. In the f i r s t process, c o l -luvium enriched i n copper and derived from syenite out-crops along the R a y f i e l d River v a l l e y accumulates as t a l u s under the influence of g r a v i t y . In the second, copper, leached from mineralized bedrock underlying the plateau surface, i s transported by ground water and deposited under suitable conditions along the v a l l e y sides. I t i s the aim of t h i s t h e s i s to: 1 . E x p l a i n the occurrence and means of formation of the observed anomaly. 2. Characterize the d i f f e r e n t processes and environ-ments e x i s t i n g on the plateau which would a f f e c t the geochemical dispersion of copper and deter-mine, by sampling g l a c i a l overburden, i f mineral-i z a t i o n can be detected through i t . II HISTORY OF GEOCHEMICAL SAMPLING OF GLACIAL OVERBURDEN Many papers have been written on the use of d i f -ferent aspects of geochemical sampling of g l a c i a l over-burden i n the search f o r copper sulphide m i n e r a l i z a t i o n . Drainage and s o i l sampling programs are r o u t i n e l y under-taken while bedrock, f l o a t , lake and vegetation surveys are c a r r i e d out to a l e s s e r extent. Geochemical samp-l i n g i s used at a preliminary stage i n many exploration programs i n Canada and other parts of the world where g l a c i a l deposits mask surface expression of mineral prospects and ore deposits. Many i n v e s t i g a t i o n s have been reported from Scan-danavia. Kauranne ( 1 9 6 7 ) , f o r example, working i n Finland, found that boulders containing sulphide minerals were d i s t r i b u t e d i n a t r a i n which could be traced back to a probable source i n bedrock along the d i r e c t i o n of FIGURE 1 N As T H E D A N S E Y - R A Y F I E L D R I V E R C O P P E R P R O P E R T Y LOCATION AND ACCESS TO THE DANSEY-RAYFIELD RIVER COPPER PROPERTY 70 MILE HOUSE, BRITISH COLUMBIA TOPOGRAPHIC LEGEND Cental Wervol 100 ' » * C t « » s . <TA R * « r » S « r o n v » Lc fcM Loca l Grid Control Point* !O00 ftET MAJOR ROADS, GRAVEL SECONDARY ROADS, GRAVEL EXPLORATION COMPANY CAMPSITE g l a c i a l transport. Measurement of fragment orientation and degree of roundness were suggested as guides to dis-tance and direction of ore boulder movement. Complexity in interpretation, however, may be introduced when two directions of glaciation and two boulder t i l l s mantle the area of interest. Kauranne also observed that podzol soils which develop on gl a c i a l t i l l are relatively de-pleted i n copper i n the 'A' and 'B! horizons and enriched in this metal in the 'C horizon. Fredriksson and Lindgren ( 1 9 6 7 ) , i n Sweden, noted that geochemical sampling of glac i a l overburden was successful i n locating underlying mineralization when the gla c i a l cover was thin and lo c a l l y derived. Salmi ( 1 9 6 7 ) and Bolviken ( 1 9 6 7 ) both confirmed the application of boulder tracing as a successful geochemical technique. In Western Ireland, Larssen and Nichol (1971) identified different types of bedrock, covered from surface examination for the most part, by glac i a l over-burden, by analyzing the mineralogy of the s i l t sized fraction of the t i l l . Webb ( 1 9 5 8 ) describes the form-ation of saline anomalies on the Isle of Man, near vein type lead-zinc mineralization. In Canada, proven geochemical techniques and newer concepts i n geochemical exploration are frequently used. Regional scale drainage surveys outline areas where further work i s necessary. Boyle et al ( 1 9 6 6 ) , - 5 -for example, found several zones anomalous for lead, zinc, copper, arsenic, antimony and sil v e r during analysis of New Brunswick stream sediments. Boulder tracing was successfully used prior to 1850 i n mine dis-covery and several examples have been reported by Dreimanis (1956, 1958 and I960) in eastern Canada. Soil sampling has also been successfully applied since 1950 by governmental agencies, exploration companies and university workers (Forgeron, 1971). Garrett (1971), for example, describes the successful application of overburden sampling and chemical analysis of the -80 mesh fraction at the Louvem deposit i n Quebec. Smith (1971) attempted to find skarn type mineralization i n a mixed acidic and basic environment in the Yukon T e r r i -tory by analysis of copper data from s o i l samples. Trans-port of copper by ground water may result in the formation of saline anomalies, where zones of enrichment are down-slope from mineralized bedrock. Such seepage anomalies are present at Vangorda, Yukon territory ( Chisholm, 1957). Several newer techniques may eventually prove as important to ore discovery as drainage, s o i l and boulder tracing surveys. These include stream and lake water, lake sediment, other physical aspects of glacial over-burden and vegetation sample collection. Boyle et al (1966) found that stream water flowing over orebodies i n -6-New Brunswick had a high heavy metal content. Boyle et a l (1971) further elaborated on the dispersion of copper and zinc expected from an ore deposit of the Canadian s h i e l d . Dyck (1971) and N i g r i n i (1971) report that lake water samples may indi c a t e regions anomalous i n Uranium and other elements. S i m i l a r l y , A l l e n (1971) located several zones of copper sulphide m i n e r a l i z a t i o n i n basalts of the Coppermine d i s t r i c t , Northwest T e r r i -t o r i e s , a f t e r i n t e r e s t was stimulated by r e s u l t s of a lake sediment survey. Eorgeron (1971) suggested that sampling of eskers or c o l l e c t i o n of s o i l gas may eventu-a l l y be added as a sampling t o o l to the f i e l d of s o i l geochemistry. S h i l t s (1971) emphasized the importance of size f r a c t i o n studies on the trace element content observed i n transported g l a c i a l t i l l s . Sampling of vegetation has long been advocated by Warren and Dela-vault (1966A), but many environmental factors may com-p l i c a t e subsequent i n t e r p r e t a t i o n s beyond usefulness to exploration (Barakso et a l , 1971). In B r i t i s h Columbia, White and A l l e n (1954) i n -vestigated the general a p p l i c a b i l i t y of s o i l sampling i n mineral exploration programs. Horsnail and E l l i o t t (1971) describe the migration and concentration of copper and molybdenum i n s o i l s and bogs of three geo-chemical environments. In t h e i r study, metal d i s t r i b -utions were strongly influenced by the topographic and -7-climatic conditions. Hornbrook (1970) observed that analysis of second year needles and stems from alpine f i r and lodgepole pine outlined an anomalous area over the Huckleberry deposit of Kennco (Western) Exploration, Inc., which had been i n -dicated i n a previous s o i l survey. This result confirmed research (Hornbrook, 1969) over the Lucky Ship deposit of Amax Exploration, Inc., i n the same part of B r i t i s h Col-umbia. Usik (1969) attempted to find botanical indic-ators of copper mineralization at Lornex and the Huckle-berry deposit and for molybdenum at the Lucky Ship de-posit, but was unsuccessful. III. LOCATION AND ACCESS The Dansey-Rayfield River copper property l i e s on both banks of the Rayfield River, south of the road be-tween 70 Mile House and Bridge Lake i n south central B r i t i s h Columbia. Main access to the property i s from 70 Mile House via fourteen miles of a l l weather road. Fig. 1 shows the location of roads on the prop-erty that are suitable for four wheel drive vehicles. Numerous service roads to percussion d r i l l sites and trenches were constructed during the f a l l of 1969 and 1970, principally in the northwest quarter of the property. No map i s available showing their location and their present condition i s unknown. -8-IV. GEOLOGY 1. Regional Geology P i g . 2 i s modified from the one inch to four mile geology map compiled by Campbell and Tipper (Bonaparte Lake 1966). The geological map has been s i g n i f i c a n t l y a l t e r e d from t h e i r -work as a r e s u l t of d e t a i l e d mapping. The oldest u n i t (Upper T r i a s s i c ) i s the N i c o l a Group comprised of augite andesite flows, breccias, and t u f f exposed at the southern l i m i t of the R a y f i e l d River copper property. Unit 13 i s a f i n e to medium grained, pink to brown and grey syenite and monzonite of Upper T r i a s s i c or Lower Jurassic age. I t underlies the R a y f i e l d River copper property. L o c a l l y , t h i s u n i t may be a coarsely p o r p h y r i t i c syenite or monzonite with orthoclase pheno-c r y s t s . Northern and southern contact zones grade to hornblende d i o r i t e s , hornblende monzonites and horn-blendites of uni t 14. Since there i s no evidence f o r an age difference d i s t i n g u i s h i n g u n i t s 13 and 14, the l a t t e r i s probably a contact phase of the b a t h o l i t h . Detailed mapping has shown that two i n t r u s i v e s are probably i n contact at the extreme western edge of the property. The second i n t r u s i v e consists of b i o t i t e granite, quartz d i o r i t e and hornblende granodiorite of Middle J u r a s s i c (?) age. P l a t e a u l a v a s , o l i v i n e b a s a l t s , b a s a l t a n d e s i t e s , r e l a t e d ash and b r e c c i a beds, b a s a l t i c a r e n i t e and minor necks and plugs of Miocene and/or P l i o c e n e age u n d e r l i e most of the area. Lavas are undeformed and t h e i r d i p s are probably o r i g i n a l or only s l i g h t l y d i s t u r b e d . They have been d i s s e c t e d and eroded by g l a c i a l a c t i o n ( o r were not o r i g i n a l l y continuous) t o expose the s y e n i t i c and g r a n i t i c i n t r u s i v e s i n the area of i n t e r e s t , , S u r f i c i a l d e p o s i t s of t h i s p a r t of B r i t i s h C o l -umbia were e x t e n s i v e l y m o d i f i e d by P l e i s t o c e n e glaciation„ Interbedded g l a c i o f l u v i a l sands and g r a v e l s , l a c u s t r i n e c l a y s or g l a c i a l t i l l s , g e n e r a l l y l o c a l l y d e r i v e d and up to 100 f e e t t h i c k , mantle the bedrock and a l l o w f o r o n l y a s m a l l f r a c t i o n of the geology to be a v a i l a b l e by i n -s p e c t i o n of outcrop exposures. P l u v i a l m o d i f i c a t i o n of g l a c i a l d e p o s i t s c o u l d be ext e n s i v e i n some areas. The Bonaparte R i v e r , f o r example, may have been an ancient meltwater channel, as l a r g e rounded s y e n i t e boulders have been observed 2 1/2 m i l e s and more downstream from the nearest known s i m i l a r bedrock, exposure. In g e n e r a l , however, g l a c i a l t r a n s p o r t i s r e s t r i c t e d to much s h o r t e r d i s t a n c e s . LU RAYFIELD RIVER - BONAPARTE RIVER REGIONAL RECONNAISSANCE FIGURE 2 REGIONAL GEOLOGY (KODIFIED FROM CAKPEELL AND TIPPER, I966) N A L5223 ROADS TOPOGRAPHIC LEGEND GEO Corrfoijr" 9nYervdl tO'd'11 29 [>B Creeks and Rivers Swamps 26 n Lakes Local Property Lots 17 0 Loose or Stabilized Surfaces, All Weatiier 14 I B Loose Surfaco, Dry 4 MILES 1 Weather i 13 • 12 ELI LOGIC LEGEND PLEISTOCENE AND RECENT T i l l , GRAVEL, CLAY, ALLUVIUM TERTIARY BASALT EIOTTTS GRANITE, QUARTZ DIG? HORNBLENDE DIORITE, KONZONTTI AND HORNELENDITE FINK AND GREY SYENITE AND MONZONITE, LCCA1LY PORPHYRY NICOLA G§OUPo^LCAN^ ctober 8 , -11-2. Detailed Geology A. Introduction The geological c l a s s i f i c a t i o n which follows has been maintained from the 1968 and 1969 d e t a i l e d maps of Amax Exploration, Inc., described i n assessment reports 1723 and 2135 of the B r i t i s h Columbia Department of Mines. The syenite i n t r u s i o n has been divided i n t o hornblende and leucocratic v a r i e t i e s having more or l e s s than about 6$ hornblende r e s p e c t i v e l y . Minor i n t r u s i v e u n i t s include f i n e grained syenite, pegmatite, hybrid phases and a p l i t e and monzonite dikes. The b a t h o l i t h i s co n c e n t r i c a l l y zoned, having a central core of leuco-c r a t i c syenite which i s f i r s t surrounded by a s h e l l of hornblende syenite and then by a s h e l l composed of d i f -ferent types of hybrid rocks. E i g . 3 i s a de t a i l e d geological map of the copper property. B. Intrusive Rocks a. Hornblende syenite Exposures of hornblende syenite form outcrop crags halfway up the sides of the R a y f i e l d River V a l l e y . In hand specimen, hornblende syenite i s t y p i c a l l y com-posed of 90$ medium grey (sometimes pi n k ) , medium to coarsely grained, subhedral, i n t e r l o c k i n g feldspar c r y s t a l s and 10$ black, medium grained, anhedral, i n t e r -FIGURE 3 N As THE DANSEY-RAYFIELD RIVER COPPER PROPERTY ICCAI GEOLOGY CF THE DAl^AY-PuiYFIELD PIVER COPPER PROPERTY TOPOGRAPHIC LEGEND —•»»•— Contour Intervol 100 feet Creeks, and Rivers <-'''--^'y Swamps I .) Lakes — | — Local Grid Control Points 5000 FEET GEOLOGIC LEGEND E 3 TERTIARY BASALT [ZD LEUCOCRATIC SYENITE | 1 HORNBLENDE SYENITE g g g PINE GRAINED SYENITE B i PEGMATITE (E3 HYBRID PHASES m NICOLA VOLCANO Qg tober 6, 1970 -13-s t i t i a l hornblende and accessory pyroxene, b i o t i t e and magnetite. A moderately w e l l developed f o l i a t i o n i s de-f i n e d by the o r i e n t a t i o n of the l o n g axes of these min-e r a l s and has an average d i r e c t i o n and dip of 130°/60°S. P h y s i c a l weathering of outcrop exposures has caused d i s t i n c t f r a c t u r e s to develop between adjacent f e l d s p a r c r y s t a l s . Grains e v e n t u a l l y break apart and form a coarse sand, termed grus„ Sediments from the R a y f i e l d R i v e r c o n s i s t of t h i s type of sand, r a t h e r than being d e r i v e d from g l a c i a l d e p o s i t s or b a s a l t i c bedrock. S i m i l a r l y , t a l u s d e p o s i t s along the v a l l e y are a l s o com-posed of grus d e r i v e d from crag outcrops. F e l d s p a r c r y s t a l s have a l s o been a l t e r e d somewhat to c l a y min-e r a l s and are sometimes s t a i n e d by m a l a c h i t e . Hornblende and other mafic m i n e r a l s weather p r e -dominately by chemical a c t i o n , forming secondary hydrous i r o n oxides and s o l u b l e species which are removed by r a i n and ground water. C h a r a c t e r i s t i c i r o n oxide c o l -oured s t a i n s are o c c a s i o n a l l y found on l i c h e n f r e e out-crop s u r f a c e s or w i t h i n hornblende, pyroxene and b i o t i t e g r a i n o u t l i n e s on f r e s h l y broken s u r f a c e s . Hydrous manganese ox i d e s , sometimes i n the form of d e n d r i t e s , are observed i n s i m i l a r environments, but l e s s f r e q u e n t l y . Thin s e c t i o n a n a l y s i s (Table I) shows t h a t hornblende i s the major mafic component, w i t h l e s s e r amounts of pyroxene, b i o t i t e and opaque -14-m i n e r a l s 0 Hornblende sometimes i s seen surrounding pyroxene or may i t s e l f be coated by b i o t i t e , i m p l y i n g a p o s s i b l e g e n e t i c sequence where pyroxene ^hornblende —»biotite du r i n g c r y s t a l l i z a t i o n of the b a t h o l i t h 0 Opaque m i n e r a l s are c l o s e l y a s s o c i a t e d w i t h these mafic m i n e r a l s and are s c a t t e r e d u n i f o r m l y throughout the f e l d -spar lathwork. The p r e v i o u s l y d e s c r i b e d f o l i a t i o n i s not complimented by a s i m i l a r o r i e n t a t i o n of f e l d s p a r axe So Orthoclase and p l a g i o c l a s e were observed i n a l l t h i n s e c t i o n s . Orthoclase i s present as very f i n e , medium and coarse anhedral c r y s t a l s , w i t h exsolved p l a g i o c l a s e ( F i g . 4A and B), and as phenocrysts. P l a g -i o c l a s e , when not intergrown w i t h o r t h o c l a s e , i s found as i n t e r s t i t i a l c r y s t a l s t h a t are f i n e l y to medium gra i n e d and anhedral. With the e x c e p t i o n of the v e r y f i n e l y c r y s t a l l i n e o r t h o c l a s e , post i n t r u s i c a l t e r a t i o n has transformed the f e l d s p a r s to c l a y m i n e r a l s . Occas-i o n a l l y , muscovite i s seen r e p l a c i n g o r t h o c l a s e , c a l c i t e r e p l a c i n g f e l d s p a r and c h l o r i t e and secondary hydrous i r o n oxides a f t e r mafic m i n e r a l s . C a l c i t e , muscovite and c l a y m i n e r a l s may a l s o f i l l micro f r a c t u r e s which are common i n hornblende s y e n i t e . F e l d s p a r v e i n l e t s are numerous w i t h i n n o r t h e r n crag and e a s t e r n p l a t e a u outcrops. T h e i r d e n s i t y i s v a r -i a b l e , ranging from absent to over 25 per square f o o t . -15-EXSOLVED PLAGIOCLASE ORTHOCLASE TWINNED PLAGIOCLASE TWINNED PLAGIOCLASE ALIGNED ALONG CLEAVAGE PLANES OF ORTHOCLASE. SOMETIMES WITH FINE EXSOLUTION LAMELLAE OF PLAGIOCLASE A Coarse Perthite EXSOLVED PLAGIOCLAS FINE EXSOLUTION LAMELLAE OF PLAGIOCLASE WITHIN ORTHOCLASE CRYSTAL 0 L 015 SCALE- mm B Fine Perthite FIGURE 4 PERTHITIC INTERGROWTHS IN ORTHOCLASE OF THE SYENITE BATHOLITH -16-The h i g h e s t d e n s i t i e s are centered along a l i n e j o i n i n g 5400E, 5200N and 5700E, 4600N. ( F i g . 5 ) . V e i n l e t s are composed of f i n e to medium g r a i n e d , grey f e l d s p a r and range i n t h i c k n e s s from 1/16 t o 1/4- i n c h . Although two or three sets of d i r e c t i o n s may be observed i n any ex-posure, most are p a r a l l e l to the f o l i a t i o n but have a more variable., south f a c i n g , d i p . T h i n s e c t i o n a n a l y s i s shows t h a t the f e l d s p a r v e i n -l e t s are composed of zones of u n a l t e r e d , i n t e r l o c k i n g g r a n u l a r o r t h o c l a s e which cuts across or runs along g r a i n boundaries of o l d e r , a l t e r e d f e l d s p a r s or m a f i c s . Opaque mi n e r a l s and s u l p h i d e s are concentrated along these zones. Copper s u l p h i d e s are found i n three h a b i t s w i t h i n the hornblende s y e n i t e . The f i r s t h a b i t i s as i n c l u s i o n s w i t h hornblende and pyroxene g r a i n s , best observed at 5200E, 4900N ( F i g . 3 ) , c o n s i s t i n g of b o r n i t e w i t h minor amounts of c h a l c o -pyrite and grading up to 0.15$ copper. In the second mode of occurrence, f e l d s p a r v e i n l e t s c o n t a i n up to 0.4$ copper, as s u l p h i d e s i n outcrops along the n o r t h e r n h a l f of the r i v e r v a l l e y and on the e a s t e r n p l a t e a u . Here, c a l c o p y r i t e and b o r n i t e are found i n a 3 to 1 r a t i o . I n the t h i r d h a b i t , b o r n i t e and c h a l c o p y r i t e , i n the same r e l a t i v e p r o p o r t i o n , are smeared over j o i n t s urfaces n o r t h of the Z bend i n crag outcrops. Examples are best -17-Table I Thin s e c t i o n examination of hornblende s y e n i t e (14 s e c t i o n s ) MINERAL % SECTIONS IN WHICH MINERAL WAS OBSERVED GRAIN DIAMETER Hornblende 4. 14 F-M Pyroxene 1.5 10 F-M B i o t i t e 2. 10 F-M Muscovite 1.5 11 F-M Orthoclase 85o 14 VF-C P l a g i o c l a s e 5» 14 F-C C a l c i t e 1. 5 VF-F Opaques 1. 14 VF-F C h l o r i t e TR 2 F Garnet TR 2 F Sphene TR 1 F Ir o n oxides TR 1 VF : LEGEND VF - Very f i n e l y g r a i n e d - l e s s than 0.2mm diameter F - F i n e l y g r a i n e d - 0.2 to 1 mm diameter M - medium g r a i n e d - 1 to 5 mm diameter .C - Coarsely g r a i n e d - g r e a t e r than 5 mm diameter -18-observed where bedrock has been broken by trenching. Although bornite seems impressive i n hand specimens, i t does not appear to contribute more than 0.2% copper to the t o t a l metal content of any sample. P y r i t e has not been i d e n t i f i e d within the i n t r u s i o n . b. Leucocrat.ic syenite Leucocratic syenite i s exposed i n two areas. The major body forms the core of the syenite stock and i s exposed from 5200E, 5000N to 54-OOE, 4-000N along the Rayfield River v a l l e y (Pig. 3 ) . Although not exposed to the west, i t i s apparently e l l i p t i c a l l y shaped, with i t s long axis p a r a l l e l to the r i v e r . A smaller lens-shaped body crops out south of Crater Lake. The u n i t grades from hornblende syenite to sev-eral i r r e g u l a r bodies of coarsely grained, orthoclase pegmatite. Outcrops are more rubbly and surface stained by i r o n and manganese oxides than those of hornblende syenite. On broken surfaces, specimens appear medium pink ( r a r e l y medium grey) i n colour. 96$ of l e u c o c r a t i c syenite consists of subhedral, coarsely grained feldspar while the remaining 4$ i s subhedral to anhedral. mafic minerals. Several t e x t u r a l v a r i e t i e s of leucocratic syenite have been i d e n t i f i e d , including secondary i n t r o -duction of orthoclase (feldspar flooding) and porphy-r i t i c phases. Mineralogy i s summarized i n Table I I . -19-Table II Thin section examination of leucocratic syenite (15 sections) MINERAL % SECTIONS IN WHICH MINERAL V/AS OBSERVED GRAIN DIAMETER Hornblende 2. 10 P-M Pyroxene .5 6 P-M Biotite 1. 7 F-M Muscovite 3. 6 F-M Orthoclase 85. 15 VF-C Plagioclase 6 . 14 VF-C Calcite .5 3 VF-F Opaques 1. 13 VF-F Chlorite .2 3 VF-F Garnet TR 3 VF-F Sphene TR 2 VF-F Iron Oxides TR 7 VF Apatite TR 1 VF LEGEND VF - Very finely grained - less than 0.2mm diameter F - Finely grained - 0.2 to 1 mm diameter M - Medium grained - 1 to 5 mm diameter C - Coarsely grained - greater than 5 mm diameter -20-Copper sulphides grade to 0.1$ near the northern contact with hornblende syenite. Bornite and chalco-pyrite, in a 3 to 1 ratio occur as small inclusions with-in mafics and along fractures. c. Fine grained syenite Fine grained syenite occurs within the northwest part of the leucocratic syenite. This variety of syen-i t e i s resistant to weathering and outcrops are only sl i g h t l y fractured or broken. Hand specimens reveal great v a r i a b i l i t y over short distances across an outcrop exposure. It i s not uncommon for the hornblende content to vary between 3 and 8$ over twenty feet. Where hornblende i s present, i t s blade-like crystals form a closely spaced f o l i a t i o n along which the rock w i l l break only with d i f f i c u l t y . Because of the local extent of outcrops of fine grained syenite, the unit was not subdivided further. In thin section (1 section) medium grained, rounded crystals of orthoclase, plagioclase, and quartz (10$), and irregularly shaped crystals of hornblende and pyroxene are surrounded by a matrix of sugary orthoclase. Alteration of primary minerals i s similar to that des-cribed for hornblende syenite. d. Hybrid phases Rocks of w i d e l y v a r y i n g mineralogy, termed h y b r i d s , crop out south of C r a t e r Lake and n o r t h of the Bonaparte R i v e r . They form the most n o r t h e r l y and s o u t h e r l y i n -t r u s i v e exposures mapped. I n the n o r t h , the h y b r i d i s a b i o t i t e r i c h syen-i t e found along the s i d e s and bottom of the R a y f i e l d R i v e r v a l l e y . Specimens c o n t a i n l i t t l e or no hornblende, are h i g h l y f r i a b l e , b r e a k i n g along the b i o t i t e induced f o l i a t i o n and weather t o a r e d d i s h i r o n oxide s t a i n e d grus. B i o t i t e content v a r i e s between 10$ and 20$ i n hand specimens, and f e l d s p a r m i n e r a l s , on f i e l d oxamm— a t i o n resemble those of. hornblende s y e n i t e i n t e x t u r e . Exposures of h o r n b l e n d i t e , b i o t i t e monzonite and hornblende monzonite are found over a much wider area i n the south but i n d i v i d u a l outcrops are too w i d e l y s c a t t e r e d f o r g e n e t i c r e l a t i o n s h i p s to be deduced among the d i f f e r e n t phases. The term 'hornblendite' was adopted because of the 35$ to 50$ amphibole content i n hand specimens ( f e l d s p a r i s the other major c o n s t i t u e n t ) . Hornblende monzonite c o n t a i n s about 15$ hornblende w h i l e b i o t i t e s u b s t i t u t e s f o r hornblende i n b i o t i t e monzonite. Hand specimens are medium to dark grey i n c o l o u r , medium g r a i n e d , and d i s t i n c t l y magnetic. Outcrops are gener-a l l y o n l y s l i g h t l y weathered. I n t h i n s e c t i o n (1 s e c t i o n ) , hornblende monzon--22-i t e appears similar to the syenite variety, except for an increased plagioclase and mafic mineral content. The mafics are aligned, forming an easily observed f o l i -ation in both thin section and hand specimen. Sulphides are generally absent, although traces of malachite, an oxidation product, may be observed within some hornblende grains. e. Pegmatites Coarse grained orthoclase pegmatites form iso-lated irregular bodies within luecocratic syenite and have been mapped with thicknesses or diameters in excess of 20 feet. Exposures are limited and the exact dis-tribution of bodies i s uncertain. Weathered surface and disintegration products of pegmatites are similar to those described for leucocratic syenite. In thin section, the predominant feldspar i s orthoclase with lesser amounts of plagioclase. Textures are similar to those described for hornblende syenite, with two types of perthite (Fig. 4A and B), sugary and porphyritic orthoclase and extensive clay alteration. Biotite, muscovite, hornblende, pyroxene and opaque minerals have been identified in small amounts (about IP/o or less). Pegmatite dikes, 1/4 to 1/2 inch thick are found intruded into hornblende syenite at widely and unevenly spaced intervals. The dikes have p a r a l l e l walls and are composed of medium to coarse grained - 2 3 -o r t h o c l a s e c r y s t a l s . Sulphide m i n e r a l i z a t i o n i s r a r e l y observed i n i r r e g u l a r pegmatites. The most impressive example, at 54-59E, 2980N, contained only 0.06$ copper. No m i n e r a l -i z a t i o n has been i d e n t i f i e d w i t h i n pegmatite d i k e s . f. A p l i t e and monzonite dikes A p l i t e d ikes ( F i g . 3) are commonly sharp w a l l e d , l e s s than one f o o t i n diameter, and very r e s i s t a n t to weathering. I n hand specimens, they are f i n e g r a i n e d , medium to dark p i n k or red i n c o l o u r and have a g r a n u l a r t e x t u r e . M a f i c s i n c l u d e hornblende and b i o t i t e i n con-c e n t r a t i o n s t o t a l l i n g l e s s than 5$. Quartz i s present i n amounts ranging from 0$ to 15$ and f e l d s p a r , mainly o r t h o -c l a s e , completes the t o t a l . Two t h i n s e c t i o n s were examined. V a r i a b i l i t y .of quartz content d i s t i n g u i s h e s a p l i t e s from monzonites. The p i n k c o l o u r i s caused by small amounts (2-5$) of accessory garnet. Hornblende, pyroxene, b i o t i t e and opaques are evenly d i s p e r s e d throughout the s e c t i o n s at g r a i n boundaries of i n t e r l o c k i n g f e l d s p a r c r y s t a l s . g. Diabase One diabase pipe was found on the east bank of the R a y f i e l d R i v e r , 3/4 of a m i l e south of the Z bend (5350E, 4285N). The exposure forms a mushroom shaped knob, i n contact w i t h l e u c o c r a t i c s y e n i t e , and i s roughly c i r c u l a r over 150° of a r c . The s y e n i t e of the • -24-contact zone has recrystallized to a medium grained, light grey coloured rock containing less than 1 $ hornblende. In hand specimens, diabase appears spotted i n dark grey and black colours, i s medium grained and magnetic. Pyroxene and plagioclase, both subhedral and present in approximately equal amounts, form an interlocking crystal lathwork. Two diabase dikes were found, both intruding l eucocra t i c syenite near the Z bend. Hand samples are very fine l y grained, magnetic, and heavily altered to chlorite and clay minerals. Thin section study ( 1 section) shows that an equal proportion of pyroxene and plagio-clase, to t a l l i n g 80$, form an interlocking network which i s surrounded by a matrix of glass. C. Faults The Rayfield River,- on topographic maps and aerial photographs, can be divided into nine linear seg-ments which are probably fault controlled (Table III, Fig. 5) . Linear tributary valleys at 090° are common on the northern half of the property and may also be fault controlled. No relative movement has been ob-served along most of these proposed faults, however, there i s some evidence of movement along fault number 8 at the triangular shaped block of the Z bend. THE DANSEY-RAYFIELD RIVER COPPER PROPERTY FIGURE 5 LOCATION OF FAULTS AND LINEARS; DENSITY OF APLITE AND MONZONITE DIKES N TOPOGRAPHIC LEGEND — • » — Contour Irrtervol 100 feet Creeks, and Rivers ^ Swamps I 1 Lokes —I- Local Grid Control Points DISTRIBUTION OF THE HIGHEST AND FELDSPAR VEINLETS GEOLOGIC LEGEND — FAULTS, LINEARS APLITE DIKES MONZONITE DIKES FELDSPAR VEINLETS GEOLOGIC CONTACT Table I I I Presumed f a u l t s along the R a y f i e l d R i v e r ( F i g . 5) DIRECTION DISTANCE ALONG RAYFIELD RIVER-MILES ID NUMBER 055 Through the southern shore 1 of C r a t e r Lake 000 0--1 2 14-5 1- -1 1/2 3 000 1 1/2--1 3/4 4 14-0 1 3/4--2 1/4 5 155 2 1/4--3 6 140 3--3 1/4 7 170 3--5 1/2 8 160 5 1/2--6 ( g l a c i a l l y conta r o l l e d ) 050 6-•7 9 -27-V. CLIMATE The R a y f i e l d R i v e r copper p r o p e r t y l i e s i n the s e m i a r i d i n t e r i o r of B r i t i s h Columbia and has 10 to 20 inches of p r e c i p i t a t i o n per year. M e l t i n g of w i n t e r snow i n the s p r i n g p r o v i d e s most of the years r u n o f f water. During the summer, many small streams become dry and the volume of water i n major r i v e r s i s g r e a t l y reduced. Temperature v a r i a t i o n s are extreme, w i t h highs i n excess of lOO^F durin g the summer (average 70^E) but f a l l i n g t o -40°F du r i n g the w i n t e r (average 0°F) . V I . TOPOGRAPHY AND DRAINAGE The R a y f i e l d R i v e r runs north-south, e n t e r i n g the p r o p e r t y over a 100 foot w a t e r f a l l descending T e r t -i a r y b a s a l t flows i n t o C r a t e r Lake ( F i g . 1 ) . Below C r a t e r Lake, the r i v e r flows along an i n c i s e d v a l l e y 200 to 500 f e e t below the p l a t e a u s u r f a c e . V a l l e y s i d e s have slopes of 20 to 40 degrees. The R a y f i e l d R i v e r i s 20 f e e t wide where i t i s f r e e f l o w i n g , i n c r e a s i n g t o s e v e r a l hundred f e e t where i t has been dammed by beavers. R i v e r depth i s v a r i a b l e (1 i n c h to s e v e r a l f e e t ) , and depends on season and l o c a t i o n . Crag outcrops halfway up the v a l l e y s i d e s weather to crumbled rock and grus, forming t a l u s s l o p e s . R i v e r sediment i s mainly a coarse, angular f e l d s p a r sand d e r i v e d from t a l u s . A f l o o d p l a i n , 25 to 500 f e e t wide, -23-along the r i v e r i s composed of sands and g r a v e l s compo-s i t i o n a l l y s i m i l a r to the stream sediment. Coarse f r a g -ments i n c l u d e rounded and angular s y e n i t e and b a s a l t , pH of water i n the R a y f i e l d and Bonaparte R i v e r s i s u s u a l l y 7.8 (Table XXI). A r o l l i n g p l a t e a u , w i t h i s o l a t e d remnants of T e r t i a r y b a s a l t mesas r i s i n g above the p l a t e a u s u r f a c e , slopes g e n t l y towards the r i v e r over the remainder of the p r o p e r t y , Wear the r i v e r , the p l a t e a u i s mantled by g l a c i a l d e p o s i t s ( F i g . 6) c o n s i s t i n g of g l a c i o f l u v i a l g r a v e l s , outwash sands, l a c u s t r i n e s i l t y c l a y s , and lodgment t i l l s . Examination of trenches, roadcuts and p r o f i l e p i t s have shown t h a t sharp and u n p r e d i c t a b l e changes separate the d i f f e r e n t types of g l a c i a l d e p o s i t s , making i t i m p o s s i b l e t o p r e d i c t from surface examination what m a t e r i a l s w i l l be found at depth. Outcrops cover l e s s than Ifo of the p l a t e a u . The p l a t e a u i s drained by i n t e r m i t t e n t seasonal t r i b u t a r i e s of the R a y f i e l d R i v e r ( F i g . 7 ) . Stream sediment c o n s i s t s of f i n e quartzose sand or p a r t i a l l y decayed or g a n i c matter. Stream water pH v a r i e s from 7.0 t o 9°4, With minor exceptions t r i b u t a r y v a l l e y s , i n c i s e d 5 to 15 f e e t , have s i d e s which slope g e n t l y at 5 degrees. To the northwest, beaver dams have cr e a t e d numerous ponds and bogs. Lakes are the d i s t i n c t i v e p h y s i o g r a p h i c f e a t u r e r . i . 0^ C\J A A A A ' A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A , A A A A A A A A A A A A A A A A A A * A A A , A A A A A A A A A A A A A A A A A A A A A , A A A A A A A A A A A A A A A A A A A A A\A A A A A A A A A'A-A A"A A A A A A A A A , A A A A A A A A A A A A A A A A A A A A A A AA»A;A A A A A A A A A A A A A A A A A . A A A A A A A A A A A A A A A A A A-A-A A A A A A^A A A A A A A A AVA , A A A A A A j A A A A A A A A A A KA A/A A A A A A A A A A A A A A A A I A A A A A / V A A A A A A A A A A-'A>A A A A A A A A,A A A A A. A A A A A A'/ A A A - A A A A A A A A A A A A A X ^ A \ A A A A A A W A A A A A A A A , A A A A A A A A A A A A A A A A A A-AJK/S A A A A A A A A A AJ± A A A A A A A A A A A A A A A A A A A A A A A A A A/A A , A A A A A A A A A A A A A A A A A A A (VA A A A A , A A A A^A A A A A A A;A A.A A A A A A A A A A) A A A A A A A A A A A A A A A A A A A A A A A, A A A A A A A A A A A A A Ay\ A A A \ A A A A A A A A A A A^A A A A A Ay\ A A A A M *• A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A AV\ A A A A A A A A A A A A A A A A A A A A ' A A A A A A>\ A A A A A A A A A'A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A X A, A A A A A A A A A A ( A A A AVtv'A A A A A A A A A> A A " A A AlA A A A ^ A A y\v v^iXA A A A A A •A/V' A A A A A A A A A A A A A A A A f A A A A A A A A A A / ) A A\A A A ~ A A A A A,A A A A A A A A AAA A A\A A A A A A A\A A A A A A A»A A A A A A A A A A A A 'A A A A A A A A A A A A A A A A A A A 'A A A A A A A A A A A A" A A A A A A A A A A, A A A A A A M A AfA A A A A A . A A A A A A A'A A 'A A A A A A (A'A A t -A A A.AAi A A A A A A A J A A A A A A A A A A A A A 'A A A A A A A A.A A A A A A\^y\ A A A A A A A A A A A A A A A A A A A / V X >-I— cr LU Q_ O LT a. tr LJ a. o_ o o o l-l CO r—i K EH CO H P a > * UJ >-< f X ft 0* o LU CO 0QQII1 Q Z LU O UJ o X Q-< cr o o o. O 8 -2 t Iff I O U m _J -30 -THE DANSEY - RAYFIELD RIVER COPPER PROPERTY FIGURE 7 APPROXIMATE DRAINAGE CATCHMENT AREAS, LOCATION CF SPRINGS AND N As LOCATION- OF TIME LAPSE SAMPLING SITES TOPOGRAPHIC LEGEND - ~ — C o x a / w « r v o l tOO l « t * • • C r e f * i . a M Rivers c C O Sxo r rp * ' ' L akes — . — LocoP Grid Control Points I 5OC0 TOT TIM LAPSE SAMPLING SITE SPRINGS APPROXIMATE CATCHMENTS OF CREEKS AND RIVERS EACH SHADED DIFFERENTLY 31 of the p l a t e a u east of the R a y f i e l d River„ They have been formed by g l a c i a l a c t i o n and are elongated along the s o u t h e a s t e r l y d i r e c t i o n of i c e movement. Most do not have stream o u t l e t s and must l o s e t h e i r waters by e i t h e r underground drainage or e v a p o r a t i o n . Nearshore l a k e s e d i -ment composition v a r i e s from f i n e g r a v e l to organic muds. pH va l u e s of 7»1 t o 9.7 have been measured i n l a k e water. T r i b u t a r y streams f l o w i n g over the p l a t e a u become i n t e r m i t t e n t or are not v i s i b l e d u r i n g the steep descent to the R a y f i e l d R i v e r . Water moves underground through f r a c t u r e s i n the s y e n i t e and emerges near the toe of the slope as s p r i n g s or seepages. pH of s p r i n g water aver-ages 7.6 (Table XIX). V I I . SOILS F i v e s o i l parent m a t e r i a l s are r e c o g n i z e d and t h e i r d i s t r i b u t i o n i s shown i n F i g 6. Table IV r e p r e s -ents a modal p r o f i l e developed on g l a c i a l t i l l w h i l e Table V g i v e s h o r i z o n sequences f o r s o i l s r e c o g n i z e d on the p r o p e r t y and c l a s s i f i e d under the standard s o i l c l a s s -i f i c a t i o n system f o r Canada. Table VI c o r r e l a t e s t h i s nomenclature w i t h the U n i t e d S t a t e s department of a g r i -c u l t u r e 7th approximation. Because of h i g h base s t a t u s , absence of an 'Ah' h o r i z o n and evidence f o r 1 A e j ' and ' B t j ' h o r i z o n s , s o i l s developed on g l a c i a l m a t e r i a l s are c l a s s i f i e d as Degraded -32-Table IV Approximate d e s c r i p t i o n of a modal s o i l p r o f i l e developed on g l a c i a l t i l l . DEPTH INCHES HORIZON DESCRIPTION 0-1 L-H Ae or Aej 5-14 Bm or Bt or Bf 14-25 Ck or C Ca 25 + Parent m a t e r i a l Composed of f r e s h and p a r t l y de-cayed l e a v e s , twigs and grasses o v e r l y i n g m i n e r a l h o r i z o n s . Lower contact wavy but sharp, pH 4.5-6.2 Sandy loam, medium brown c o l o u r s ( r a r e l y white) , 0$ to 5$ rounded pebbles of b a s a l t i c or g r a n i t i c m a t e r i a l , g r a n u l a r t e x t u r e . May be absent from p r o f i l e , pH 5.8-6.2 R a r e l y ' B f or 'Bt' h o r i z o n s , loams, 5$ to 15$ rounded pebbles of b a s a l t i c or g r a n i t i c m a t e r i a l , or semirounded to angular horn-blende • s y e n i t e , g r a n u l a r , coarse b l o c k y , r a r e l y p l a t y s t r u c t u r e . Lower contact g r a d a t i o n a l and o s c i l l a t o r y , pH 5.0-8.6 Loam, white s t a i n i n g on pebbles, pebbles c o n s t i t u t e 10$ to 50$ of the h o r i z o n , rounded b a s a l t i c pebbles, or semiangular to ang-u l a r hornblende s y e n i t e (grus weathering), g r a n u l a r , coarse b l o c k y and r a r e l y p l a t y s t r u c -t u r e . Lower contact g r a d a t i o n a l and o s c i l l a t o r y . G l a c i a l t i l l s , g l a c i o f l u v i a l sands and g r a v e l s , l a c u s t r i n e s i l t y c l a y s , 0$ t o 95$ rounded b a s a l t i c or g r a n i t i c pebbles and cobbles, or semirounded to angular hornblende s y e n i t e • ( p a r t l y weathered to g r u s ) , g r a n u l a r , b l o c k y or p l a t y s t r u c t u r e . Contacts between d i f -f e r e n t parent m a t e r i a l s u s u a l l y sharp, pH 5-3-9.2. -33-Table V Horizon sequences f o r s o i l s c l a s s i f i e d at the subgroup l e v e l of the S o i l C l a s s i f i c a t i o n System f o r Canada SUBGROUP CLASSIFICATION HORIZON SEQUENCE O r t h i c E u t r i c B r u n i s o l L-H, Ah, Bm, C C a, Ck Degraded E u t r i c B r u n i s o l L-H.Ac or Aej,.Bm or B t j , Ck O r t h i c Grey L u v i s o l L-H, Ah.or Ahe, Ae, AB, Bt, '"'Ca' — Dark Grey L u v i s o l L-H, Ah or Ahe, Ae, Bt, C C n, Ck, C B r u n i s o l i c Grey L u v i s o l L-H, (Ah or Ahe, A e l or Bm), o r . ( B f , Bm, Ae2 or C ) . AB, B t , Ck, C or L-H, ( A e l or Bm) or Bf, Bm, Ae2. or C, AB, B t , Ck, _C O r t h i c Humo-Ferric Podzol L-H, Ae, Bfh or B f , . C M i n i Humo-Ferric Podzol L-H, Aej, Bfh or Bf, C Sombric Humo-Ferric Podzol L-H, Ah, Bfh.or Bf, C. O r t h i c Ferro-Humic Podzol L-H, Ae, Bhf, Bfh, Bf,.C Sombric Ferro-Humic P o d z o l L-H, Ah, AeJ, Bhf, B f h , B f , C O r t h i c Regosol L-H, Ah, Ck, C Cumulic Regosol C, 'hb, C, Ck, or Ah, C, Ahb, C or Ck. L i t h i c O r t h i c Regosol L-H, Ah, Ck, R Gleyed Cumulic Regosol C, Ahb, Ck, Cg or Ah, C, Ahb, Cg LEGEND * u n d e r l i n e d h o r i z o n s i n d i c a t e these must be present f o r the s o i l to be c l a s s i f i e d i n the f a s h i o n t h a t i t was. - 3 4 -Table VI C o r r e l a t i o n between Canadian and American s o i l c l a s s -i f i c a t i o n schemes. CANADIAN CLASSIFICATION AMERICAN EQUIVALENT O r t h i c E u t r i c B r u n i s o l Typic E u t r o c r e p t Degraded E u t r i c B r u n i s o l A l f i c E u t r o c r e p t O r t h i c Grey L u v i s o l E u t r o b o r a l f or G l o s s o b o r a l f Dark Grey L u v i s o l E u t r o b o r a l f or G l o s s o b o r a l f B r u n i s o l i c Grey L u v i s o l E n t i c E u t r o b o r a l f O r t h i c Humo-Ferric Podzol Haplorthod or Ferrod M i n i Humo-Ferric Podzol Haplorthod or H a p l i c F e r r o d Sombric Humo-Ferric Podzol Umbric Haplorthod O r t h i c Ferro-Humic Podzol Humic Haplorthod Sombric Ferro-Humic Podzol Umbric Humic Haplorthod O r t h i c Regosol U s t o r t h e n t s or Ustipsamments Cumulic Regosol U s t i f l u v e n t s or Ustipsamments L i t h i c O r t h i c Regosol L i t h i c - U s t o r t h e n t s Gleyed Cumulic Regosol Haplaquents, Hydraquents or Psammaquents 35-E u t r i c Brunisols. S o i l development depends on the degree of surface slope and the texture of the parent m a t e r i a l . Where clay content i s high, l u v i s o l s are common while high sand content or steep slope favours podzol formation. Podzols and l u v i s o l s were found to cover up to 5$ each of the plateau landscape. S o i l s formed on weathered b a s a l t i c rock on the mesas are dark brown to red i n colour, 2 to 8 inches t h i c k and have an 'Ah* horizon. Without exception, these s o i l s have been c l a s s i f i e d as L i t h i c Orthic Regosols. Talus forms the t h i r d major parent material. Talus i s composed of f i n e to coarse, angular, fragments of hornblende or leucocratic syenite, and has high por-o s i t y and permeability. Coarse fragments compose 60$ to 95$ of each s o i l horizon. S o i l s have developed on i n t e r -s t i t i a l f i n e s to depths i n excess of f i v e feet and have been mapped as regosols or podzols, depending on the degree of s t a b i l i z a t i o n of the t a l u s . Recent a l l u v i a l deposits, r a r e l y wider than 150 feet, f l o o r the Ra y f i e l d River v a l l e y . Parent material consists of feldspar sands (grus) and gravels i n beds 2 to 6 inches t h i c k . S o i l s are reg o s o l i c i n character and may have buried horizons. An organic r i c h sandy loam, 'Ah' horizon, with cumulic character i s common. The water table i s encountered at a depth between 15 and 24 inches. Below t h i s depth, secondary i r o n oxide mottles, evidence f o r gleying, are common. -36-Organic soils have developed along the margins of swamps created by beaver dams. They consist of partly decaying grasses, mosses, sedges, reeds and l i t t e r from willows, low brush and trees. No attempt was made to class i f y organic soils any further. VIII. VEGETATION AND WILDLIFE The region i s forested by lodgepole pine (Firms  contorta l a t i f o l i a ) . Trees are submature, rarely reach-ing one foot i n diameter and therefore not suitable for logging operations, Stands of the interior variety of Douglas f i r (Pseudoisuga menziesu) cover a major part of the Tertiary basalt. Locally, Douglas f i r i s found grow-ing on gl a c i a l deposits overlying intrusive rocks. Iso-lated stands of poplar (Populus trichocarpa) and ponderosa pine (Pinus ponderosa) have also been observed. Spruce trees are generally absent except along the a l l u v i a l banks of the Rayfield River. Since trees are well spaced and ground cover only grass, traversing i s f a i r l y easy. In swamps, vegetation consists of reeds, sedges, mosses, grasses and willows. Wildlife includes moose, deer, bear and many species of birds. The area i s considered open rangeland and cattle roam freely. -3 7-IX. PREVIOUS EXPLORATION HISTORY OF THE RAYFIELD RIVER COPPER PROPERTY Kennco (Western) E x p l o r a t i o n s , I nc. was the f i r s t mining e x p l o r a t i o n company t o look at the R a y f i e l d R i v e r c l a i m s . The p r o p e r t y v/as h e l d t w i c e , i n 1959 and 1963, during which the geology was mapped and s o i l samples taken. In 1966, Cominco Ltd„ ac q u i r e d 61 claims on the eas t e r n p l a t e a u . T h e i r assessment r e p o r t d e s c r i b e d b o r n i t e o c c u r r i n g as f r a c t u r e f i l l i n g s and minor d i s -seminations i n s y e n i t e . G e o l o g i c a l mapping, magneto-meter and geochemical surveys were run. In 1967, Mr. C. W„ Dansey staked the northern h a l f of the R a y f i e l d R i v e r p r o p e r t y and b u l l d o z e d s e v e r a l trenches. The p r o p e r t y was then optioned to Amax E x p l o r -a t i o n , I nc. A f t e r p r e l i m i n a r y s t u d i e s and a d d i t i o n a l s t a k i n g the geology of the p r o p e r t y was mapped, induced p o l a r i z a t i o n and magnetometer surveys run and a t o t a l of 1230 s o i l , stream sediment and water, and outcrop chip samples c o l l e c t e d f o r geochemical a n a l y s i s by the author. 6295 f e e t of trenches were b u l l d o z e d through overburden and 1420 f e e t through bedrock. S o i l samples at 4- to 6 inches depth were c o l -l e c t e d at 4-00 foo t i n t e r v a l s along north-south c l a i m l i n e s 1400 f e e t apart. Over the p l a t e a u , the survey d e t e c t e d o n l y i s o l a t e d h i g h copper v a l u e s . C o n s i s t e n t -38-copper anomalies were d i s c o v e r e d o n l y over the steep v a l l e y s i d e s of the r i v e r where val u e s of 100 to over 4000 ppm (rounded f i g u r e s ) and averaging 750 ppm copper were found. This f i g u r e may be compared w i t h an average value of 4-0 ppm on the p l a t e a u . S i m i l a r l y , stream s e d i -ments c o l l e c t e d from the R a y f i e l d R i v e r were d i s t i n c t l y anomalous (100 to 200 ppm versus a r e g i o n a l background of 25 ppm copper). In c o n t r a s t , t r i b u t a r i e s were not en-r i c h e d i n t h i s metal except where they entered the Ray-f i e l d R i v e r v a l l e y ( P i g . 17A)„ These r e s u l t s s t i m u l a t e d the present study. -39-CHAPTER 2 I . SAMPLE COLLECTION 1. I n t r o d u c t i o n Bedrock, stream and lak e water and sediment, horn-blende s y e n i t e f l o a t , s o i l s and v e g e t a t i o n samples were c o l l e c t e d d u r i n g J u l y and August, 1970. Table V I I sum-marizes the v a r i o u s types and numbers of samples c o l -l e c t e d . F i g s . 27-33 show the l o c a t i o n of stream water and sediment ( r e g i o n a l ) , outcrop and f l o a t ( r e g i o n a l ) , water and sediment ( d e t a i l e d a r e a ) , outcrop ( d e t a i l e d a r e a ) , f l o a t ( d e t a i l e d a r e a ) , s o i l and v e g e t a t i o n samples, r e s p e c t i v e l y . 2. Bedrock Approximately one pound of one cubic i n c h chips were broken from convenient bedrock s u r f a c e s and c o l -l e c t e d i n K r a f t paper envelopes. Care was taken to sample i n t r u s i v e rocks as randomly as p o s s i b l e , but an unavoid-able b i a s i n g i s caused by the nature of the sul p h i d e m i n e r a l i z a t i o n . Corners of i n t e r s e c t i n g j o i n t s were avoided and f e l d s p a r v e i n l e t s were i n c l u d e d i n rough p r o p o r t i o n to t h e i r observed d e n s i t y . Rock types, l o c -a t i o n , g r a i n s i z e and c o l o r were noted. The R a y f i e l d R i v e r copper p r o p e r t y was d i v i d e d -40-Table V I I Types of geochemical samples c o l l e c t e d , summer 1970, SAMPLE TYPE DESCRIPTION NUMBER DUPLI-CATES ANALYSED SAMPLE DENSITY /SQ. MILE ELEMENTS OUTCROP Hornblende s y e n i t e 111 10 2_7 Cu,Zn,Pe, Mn ,K Le u c o c r a t i c s y e n i t e 30 2 .8 Cu,Zn,Fe, Mn,K Pegmatite 7 2 .2 Cu,Zn,Pe, Mn,K Pine g r a i n e d s y e n i t e 1 0 .1 Cu, Zn, Fe , Mn, K E y b r i d rock types 11 1 .3 Cu,Zn,Fe, Mn,K Diabase 1 0 .1 Cu,Zn,Fe, Mn,K T e r t i a r y b a s a l t 31 0 ,8 Cu, Zn, Fe, Mn,K N i c o l a v o l c a n i c s 5 0 .1 Cu,Zn, Fe, Mn,K Tot a l - o u t c r o p s 198 15 5 = 0 Cu,- Zn, Fe, Mn, K PLOAT Eornblende Syenite 217 17 5«5 Cu,Zn,Fe, Mn,K SEDIMENTS 132 3.3 Cu,Zn,Fe, Mn WATER Mo f i e l d treatment 25 2 .7 Cu,Zn,Fe, Mn,HC03,pH 77 3 2 o 0 Ca,Na,Mg, K,S0/L,C1 41-Table V I I - continued SAMPLE TYPE DESCRIPTION NUMBER DUPLI-CATES ANALYSED SAMPLE DENSITY / S Q o MILE ELEMENTS F i e l d t r e a t e d 78 29 2.0 Cu, Zn, Fe, Mn 104 16 2.6 Ca,Na,Mg, K SOILS Analysed-27 p i t s - 8 trenche s 179 15 4.5 Cu,CxCu, Zn,Fe,Mn, pH C o l l e c t e d - 9 0 p r o f i l e s 461 15 11.5 Cu,CxCu, Zn,Fe,Mn, pH VEGE-TATION Douglas f i r 29 2 .7 Cu,Zn Lodgepole pine 22 2 .6 Cu,Zn Spruce 2 0 .1 Cu,Zn -42-along c l a i m l i n e s i n t o 170 boxes, each c o v e r i n g approx-i m a t e l y 1/4 square m i l e (1/8 square m i l e near the r i v e r ) . A maximum of three samples per rock type was c o l l e c t e d from each box. Hand specimens were a l s o taken from many of the s t a t i o n s f o r p e t r o g r a p h i c examination. P i g . 28 and 30 show the l o c a t i o n and sample number of rock chi p s c o l l e c t e d from outcrops. Sample p r e p a r a t i o n i n c l u d e d jaw, ceramic and s h a t t e r box cr u s h i n g and g r i n d i n g u n t i l 98$ of the rock was reduced to l e s s than 100 mesh. Care was taken d u r i n g each of the cru s h i n g stages to av o i d contamination from p r e v i o u s samples. 0.5 grams of powdered sample was p l a c e d i n a t e f lon d i s h c o n t a i n i n g s e v e r a l m i l l i l i t e r s of d i s t i l l e d water (to prevent d u s t i n g ) . 5 ml of concentrated hydro-f l u o r i c a c i d and 0.5 ml of concentrated p e r c h l o r i c a c i d was added and the s o l u t i o n was evaporated to dryness over a p e r i o d of 3 hours on a h o t p l a t e . The residue was e x t r a c t e d i n 3 ml of concentrated h y d r o c h l o r i c a c i d and s e v e r a l m i l l i t e r s of d i s t i l l e d water, t r a n s f e r r e d to a 25 ml v o l u m e t r i c f l a s k and d i l u t e d w i t h d i s i i l l e d water. Subsequent a n a l y s i s was done by atomic a b s o r p t i o n . Por comparative purposes, 40 samples and 4 dup-l i c a t e s v/ere analysed by emission spectroscopy. 100 mg of crushed sample and 100 mg of s p e c i a l l y t r e a t e d graph-i t e were mixed, a p l a s t i c b a l l was i n s e r t e d i n the sample -43-v i a l and the sample was shaken f o r 3 minutes. Subsequent f i r i n g and a n a l y s i s of s p e c t r a p l a t e s are d e s c r i b e d i n Chapter 2, page 51 . 3. Stream, Spring and Lake Water Water samples were u s u a l l y c o l l e c t e d complem-entary w i t h sediments. L o c a t i o n and sample number of water samples appears on F i g . 27 and 29. Three samples were taken at each s t a t i o n , two i n 500 ml, a c i d washed ( w i t h 50$ h y d r o c h l o r i c a c i d ) , n a l -gene b o t t l e s and one i n a 125 ml, water washed, nalgene b o t t l e . F i e l d analyses f o r pH (Orion model 404 pH meter), bicarbonate ( A p p l i e d geochemical r e s e a r c h group t e c h n i c a l communication 26), sulphate (AGRGTC 2 7 ) , and c h l o r i d e (AGRGTC 29) were done as soon as p o s s i b l e a f t e r c o l l e c t i o n ( u s u a l l y l e s s than one week). Most 125 ml samples were shipped to the geochemical l a b o r a t o r y of Amax E x p l o r -a t i o n , Inc. whore a n a l y s i s by atomic a b s o r p t i o n f o r copper, molybdenum and z i n c , w i t h s p e c i f i c i o n e l e c t r o d e s f o r pH and f l u o r i d e and by t u r b i d i m e t r y f o r sulphate was performed. The remaining 500 ml sample was a c i d i f i e d w i t h 1 ml of 6M h y d r o c h l o r i c a c i d , shipped to the Univ-e r s i t y of. B r i t i s h Columbia and analysed over a p e r i o d extending to f i v e months from c o l l e c t i o n by atomic ab-s o r p t i o n . Some u n a c i d i f i e d 500 ml samples were a l s o a n a l -ysed. R e s u l t s of the comparative study are given on Table V I I I . Most analyses agree to w i t h i n ±50$ r e g a r d l e s s -44-Table V I I I Comparison of metal v a l u e s i n samples t r e a t e d w i t h and without HC1 i n the f i e l d . ELEMENT NUMBER OF NUMBER 1,5-2 .0 NUMBER GREATER TOTAL SAMPLE RE- TIMES DIFFERENCE THAN 2 TIMES NUMBER SULTS APPROX- DIFFERE NCE OF IMATELY EQUAL HIGHER L O W E R HIGHER LOWER SAMPLES K 53 7 1 3 1 65 Mg 45 1 7 4 8 65 Ca 52 3 1 5 3 64 Na 53 4 0 6 2 65 -45-of t h e i r h i s t o r y of f i e l d treatment. Other analyses, how-ever, d i f f e r by f a c t o r s of 2 and more. Sample treatment has been d e s c r i b e d by F l e t c h e r ( 1 9 7 1 ) o 250 ml of sample c o n t a i n i n g 3 ml of concentrated h y d r o c h l o r i c a c i d was p l a c e d i n a 400 ml pyrex beaker, set on a h o t p l a t e and evaporated u n t i l only 15 ml of l i q u i d remained. The s o l u t i o n was t r a n s f e r r e d to a 25 ml v o l u m e t r i c f l a s k and f i l l e d to the mark w i t h d i s t i l l e d water, ( A l t e r n a t i v e l y , when only 125 ml of sample was c o l l e c t e d , 100 ml (or what was a v a i l a b l e ) was t r e a t e d and made up to 10 ml i n a v o l u m e t r i c f l a s k . ) When a p r e c i p i -t a t e formed on evaporation, the sample was t r a n s f e r r e d ( a f t e r o n l y 15 ml of l i q u i d remained) to a t e f l o n d i s h and t r e a t e d as d e s c r i b e d f o r bedrock samples (Chapter 2, page 42. 4. Stream and Lake Sediments Stream sediments were taken at approximately 1200 fo o t i n t e r v a l s along the R a y f i e l d and Bonaparte R i v e r s and t h e i r t r i b u t a r i e s . One sample was c o l l e c t e d per s t a t i o n as c l o s e to the center of the stream as p o s s i b l e . Because the two major r i v e r s have very coarse sediment, samples were a l s o chosen as f i n e i n t e x t u r e as p o s s i b l e . Attempts were made t o avoid organic muds i n t r i b u t a r y streams. A time lapse study was i n i t i a t e d at s i x l o c a -t i o n s ( F i g . 7 ) . F i e l d notes i n c l u d e d sample l o c a t i o n , c o l o r , t e x t u r e , odor, v e g e t a t i o n , nature of the r i v e r bed -46-and other noteworthy f e a t u r e s . Lake sediments were c o l l e c t e d nearshore a t , or s l i g h t l y below, water l e v e l (1 sample per l a k e ) . Stream and l a k e sample sediment numbers and l o c a t i o n s are shown on F i g . 27 and 29. Samples were p l a c e d i n waterproof K r a f t paper envelopes and a i r d r i e d at ambient temperatures. When necessary, samples were p u l v e r i z e d i n a mortar. 0.5 grams of the -80 mesh s i e v e d sediment was p l a c e d i n an a c i d washed 50 ml pyrcx beaker c o n t a i n i n g s e v e r a l m i l l i l i t e r s of d i s t i l l e d water ( t o prevent dust-i n g , or f r o t h i n g i n carbonate r i c h samples). 5 ml of 4:1 :: concentrated n i t r i c a c i d : concentrated p e r c h l o r i c a c i d was added and contents of the beaker evaporated to dryness on a h o t p l a t e ( 4 h o u r s ) . The r e s i d u e was ex-t r a c t e d i n 3 ml of concentrated h y d r o c h l o r i c a c i d and s e v e r a l m i l l i l i t e r s of d i s t i l l e d water, t r a n s f e r r e d to a graduated t e s t tube and d i l u t e d w i t h d i s t i l l e d water to 25 ml. A n a l y s i s was performed by atomic a b s o r p t i o n ( F l e t c h e r , 1971). 5. Hornblende Syenite F l o a t Sample p r e p a r a t i o n and a n a l y s i s of hornblende s y e n i t e f l o a t was i d e n t i c a l to t h a t d e s c r i b e d f o r bed-rock samples, on pages 39 - 4 3 , Sample number and l o c -a t i o n of f l o a t samples i s shown on F i g , 28 and 31. - 4 7 -6 0 S o i l s F i g 0 8 i s a c o m p i l a t i o n by Amax E x p l o r a t i o n , I n c . , of copper analyses from s o i l s c o l l e c t e d at a depth of 4 to 6 i n c h e s . In the present study, three l i n e s of s o i l p i t s were sampled at i n t e r v a l s of 20 t o 2000 f e e t , depending on topography and l o c a t i o n i n r e l a t i o n to the s y e n i t e i n t r u s i v e . F i g . 32 shows s o i l sample l o c a t i o n s and numbers of t h i s survey. S o i l p i t s , one to f o u r f e e t deep, were dug w i t h a mattock. One s i d e of the p i t was s t r a i g h t e n e d and samples were then c o l l e c t e d from each h o r i z o n . A l l sam-p l e s were s t o r e d i n waterproof K r a f t paper envelopes and a i r d r i e d at ambient temperatures. A n a l y t i c a l f i e l d p r o -cedures f o l l o w e d those of L a v k u l i c h ( 1 9 6 9 ) . F i e l d notes i n c l u d e d : 1 . Sample l o c a t i o n ( l o c a l g r i d c o - o r d i n a t e s ) . 2. S o i l c o n s i s t e n c e - The f o r c e necessary t o impress a k n i f e i n t o the v i r g i n s o i l h o r i z o n was c o r -r e l a t e d w i t h hand a n a l y s i s . 3. Percentage of a s o i l sample coa r s e r than 2 mm i n diameter, shape, degree of a n g u l a r i t y , and rock type comprising t h i s coarse f r a c t i o n . P a r t i c u l a r a t t e n t i o n was given to the degree of a n g u l a r i t y ; weathered c h a r a c t e r ; extent of i r o n and manganese oxide or malachite s t a i n i n g ; evidence f o r miner-a l i z a t i o n and the percentage of coarse fragments - d e -composed of hornblende s y e n i t e . 4. Depth of p l a n t r o o t s and nature of o v e r l y i n g v e g e t a t i o n . 5. D i r e c t i o n and slope of the ground s u r f a c e , i n degrees. 6. Topographic f e a t u r e s i n the immediate v i c i n i t y of the p r o f i l e . S o i l samples were t r e a t e d i n a manner analogous to t h a t d e s c r i b e d f o r stream sediments (page 44 ). A c o l d e x t r a c t i o n technique was a p p l i e d t o eleven s e l e c t e d p r o f i l e s on the western h a l f of the bend t r a v e r s e . 0.5 grams of s i e v e d sample was p l a c e d i n a 75 ml a c i d washed t e s t tube. 10 ml of 0.5m h y d r o c h l o r i c a c i d was added, the t e s t tube stoppered and shaken mec h a n i c a l l y f o r 10 hours. One day was allowed f o r the p a r t i c u l a t e matter to s e t t l e and the supernatent l i q u i d was then decanted i n t o another t e s t tube. Samples were analysed by atomic a b s o r p t i o n f o r copper and c a l c i u m , and every f i f t h sample was analysed f o r i r o n , manganese and potassium. For d e t e r m i n a t i o n of pH, 10 gm of -10 mesh a i r d r i e d s o i l was p l a c e d i n a 50 ml g l a s s beaker and 10 ml of d i s t i l l e d water was added. The suspension was allowed to e q u i l i b r a t e f o r two hours, shaking i n t e r m i t t e n t l y . pH of the s o i l was determined w i t h a g l a s s e l e c t r o d e and f r i t t e d sleeve r e f e r e n c e e l e c t r o d e attached to the Orion model 407 pH meter, the s o l u t i o n a g i t a t e d by a magnetic THE DANSEY - RAYFIELD RIVER COPPER PROPERTY FIGURE 8 DISTRIBUTION OF COPPER (PPK) IN THE "E" HORIZON, -80 MESH FRACTION COMPILATION BY AMAX EXPLORATION, INC., I969 N TOPOGRAPHIC LEGEND — Contour Interval (00 leet • Creeks, and Rivers < ^ ^ > Swamps I I Lakes Local Grid Control Points 5000 FEET I GEOLOGIC AND GEOCHEMICAL LEGEND _ REGIONAL BOUNDARY GEOLOGIC CONTACT -*.>~ 100 - 500 ppm • i MORE THAN 500 ppm be-s t i r r i n g bar. Organic s o i l s r e q u i r e d up t o 30 ml of water f o r a pH d e t e r m i n a t i o n . 7. V e g e t a t i o n Samples of the c u r r e n t year growth of Douglas f i r , l odgepolc pine or spruce t r e e s were c o l l e c t e d i n the immediate v i c i n i t y of the s o i l p i t s i n a manner des-c r i b e d by Warren and D e l a v a u l t (1949). P i g . 34 shows the l o c a t i o n and sample number of v e g e t a t i o n samples. Samples were oven d r i e d f o r s e v e r a l days at 100° C. 2 grams of separated needles and stems were i g n i t e d i n a c i d washed, p o r c e l a i n c r u c i b l e s at 550°C f o r 12 hours. The ash was then e x t r a c t e d i n 1 ml of 6M hydro-c h l o r i c a c i d and evaporated to near dryness. The r e s i -due was taken up i n 5 ml of 6M h y d r o c h l o r i c a c i d , t r a n s -f e r r e d to graduated c y l i n d e r s , and d i l u t e d to 20 ml w i t h d i s t i l l e d water. Copper and z i n c contents were d e t e r -mined by atomic a b s o r p t i o n . -51-I I . ANALYTICAL TECHNIQUES 1 o Emission Spectroscopy A powdered rock sample i s mixed 1:1 w i t h graph-i t e c o n t a i n i n g 10 ppm Indium as i n t e r n a l standard. The mixture i s loaded i n t o a g r a p h i t e cup e l e c t r o d e , s e a l e d w i t h sugar s o l u t i o n , and e x c i t e d by a 12 ampere DC arc f o r 20 seconds. S p e c t r a are recorded on s p e c t r o g r a p h i c p l a t e s and element c o n c e n t r a t i o n s estimated v i s u a l l y by compar-i s o n w i t h master p l a t e s of known c o n c e n t r a t i o n prepared under i d e n t i c a l c o n d i t i o n s . The d e n s i t y of an Indium l i n e p r o v i d e s a check on burn q u a l i t y , 15 elements are determined over a c o n c e n t r a t i o n range of 1 to 10,000 ppm (Table X ) , 2„ Atomic A b s o r p t i o n The theory and o p e r a t i o n of atomic a b s o r p t i o n as an a n a l y t i c a l t o o l i s adequately d e s c r i b e d elsewhere (Abbey, 1 9 6 7 ) , A Tectron AA4 atomic a b s o r p t i o n s p e c t r o -meter was used f o r a l l measurements. An i n s t r u m e n t a l procedure has been d e s c r i b e d by .Fletcher ( 1 9 7 1 ) . Oper-a t i n g c o n d i t i o n s are summarized i n Table XI, D i g e s t s of bedrock and f l o a t were analysed f o r Cu, Zn, Fe, Mn, and K; s o i l s and stream sediments f o r Cu, Zn, Fe and Mn; water f o r Cu, Zn, Fe, Mn, K, Na, Ca - 5 2 -Table IX Spectrographic equipment and standard o p e r a t i n g c o n d i t i o n s Spectrograph H i l g e r - W a t t s Automatic Quartz Spectrograph Source E l c c t r o - m a t i c products (ARL), Model P6KS, Type 2R41 Arc/Spark stand Spex I n d u s t r i e s #9010 Microdensitomctor ARL S p e c t ^ o l i n e Scanner #2200 Anode Gr a p h i t e , N a t i o n a l L3709SPK Cathode Gr a p h i t e , N a t i o n a l L3803AGKS 3-step n e u t r a l f i l t e r Spex I n d u s t r i e s #1090; 5$, 20$, and 100$ tr a n s m i t t a n c e N e u t r a l f i l t e r Spex I n d u s t r i e s /^9022; 20$ t r a n s -mittance Emulsion Spectrum a n a l y s i s #1 Wavelength range 2775 to 4800 angstroms Mask 17 mm S l i t width 15 microns Arc c u r r e n t 12 amperes Arc gap 4 mm Exposure time 20 seconds P l a t e p r o c e s s i n g Developer Kodak D-19 at 23°C P l a t e p r o c e s s i n g Stopbath Kodak 30 seconds P l a t e P r o c e s s i n g F i x e r Kodak 5 minutes P l a t e development 3 minutes - 5 3 -Table X O p e r a t i o n a l c h a r a c t e r i s t i c s and p r e c i s i o n at the 95$ confidence l e v e l of emission spectrometer a n a l y s i s (Doyle, 1971) (50 analyses of UBC standard rock) ELEMENT SPECTRAL LINE ANGSTROMS AVE READ PPM PRECISION ± % Sr 4607.33 1280. 85 Ba 4554.04 1320. 90 Cr 4254.35 8.0 90 Co 3453.51 8.5 80 N i 3414.77 7.9 85 T i 3372.80 1400. 60 Cu 3273-96 16.1 50 I n 3256.09 25.5 45 V 3185.40 53.5 60 Ga 2943.64 16. 35 Pb 2833-07 4.1 95 Mn 2801.06 273. 85 -54--and Mg; and v e g e t a t i o n f o r Cu and Zn a f t e r they had been prepared by methods o u t l i n e d by the preceding s e c t i o n s . A UBC standard rock and a blank were i n c l u d e d w i t h each batch of 32 samples. A n a l y t i c a l r e s u l t s were t r e a t e d by a method o u t l i n e d i n Stanton (1966). P r e -c i s i o n at the 95$ confidence l e v e l , except f o r z i n c , was under - 25$ f o r both the n i t r i c / p e r c h l o r i c and hydro-f l u o r i c / p e r c h l o r i c a c i d a t t a c k s . Average elemental con-t e n t s determined by the f i r s t a t t a c k , however, was 95$ of t h a t found by the second a t t a c k f o r copper, 57$ f o r z i n c , 62$ f o r i r o n and 66$ f o r manganese (Table X I I ) . Computations were done on the UBC IBM 360/67 computer from a program w r i t t e n by F l e t c h e r (1971)» A d u p l i c a t e sample was i n c l u d e d f o r each 15 samples t r e a t e d . P r e c i s i o n at the 95$ confidence l e v e l on p a i r e d sample analyses were computed on the IBM 360/67 according to a procedure o u t l i n e d by G a r r e t t (1969) and programed by Fox (1971). D u p l i c a t e s o i l s t r e a t e d by n i t r i c / p e r c h l o r i c a c i d a t t a c k had p r e c i s i o n v a l u e s f o r copper, z i n c , i r o n and manganese (Table X I I I ) s i m i l a r to those determined f o r the UBC standard rock. Somewhat b e t t e r p r e c i s i o n was observed f o r p a i r e d bed-rock data f o r these elements (except f o r manganese) when compared w i t h Values obtained u s i n g the UBC stand-ard rock. Only i n water sample d u p l i c a t e s , , do t r a c e e l e -ment contents show poor p r e c i s i o n , a r e f l e c t i o n of the r e l a t i v e l y low co n c e n t r a t i o n s measured (Table X I I I ) . -55-Tablc XI Op e r a t i o n a l c h a r a c t e r i s t i c s of atomic a b s o r p t i o n a n a l y s i s . ELEMENT WAVELENGTH ANGSTROMS SLIT WIDTH CURRENT MA LT • A Cu 3247.5 50 1.7 3 Zn 2138.6 100 3.3 6 Ee 3719.9 25 0.8 5 Mn 2794.8 100 3.3 10 Mg 2852.1 50 1.7 4 Na 5890.0 100 3.3 5 Ca 4226.7 25 0.8 10 K 5889.9 200 6.6 10 Elame h e i g h t 2.3 Fuel gauge 2.5 A i r pressure 20.0-21.0 p s i -56-Table X I I P r e c i s i o n of atomic a b s o r p t i o n a n a l y s i s at the 95$ con-f i d e n c e l e v e l estimated by r e p l i c a t e a n a l y s i s of UBC standard rock HN03/HC10/+ ATTACK ELEMENT AVE READ PPM NUMBER OF SAMPLES PRECISION i $ Cu - 22 6 9 Zn 15 • 6 32 Fe 1.3$ 6 10 Mn 210 6 5 HF/HCIO^ ATTACK Cu 23 10 18 Zn 25 10 35 Fe 2.1$ 10 7 Mn 310 10 12 K 1.3$ 10 22 -57-Table X I I I P r e c i s i o n of atomic a b s o r p t i o n a n a l y s i s at the 95$ con-f i d e n c e l e v e l estimated by a n a l y s i s of p a i r e d samples SOIL HNO^/HCIO^ ATTACK ELEMENT AVE READ PPM NUMBER OF SAMPLES PRECISION + or -% Cu 200 17 14 Zn 67 17 12 Fe 2„1$ 17 20 Mn 560 17 7 ROCK HF/HC10 4 ATTACK Cu 121 32 14 Zn 65 • 32 10 Fe 1.8$ 32 13 Mn 780 32 37 K 4.2$ 32 12 - 5 8 -Table X I I I (continued) P r e c i s i o n of atomic a b s o r p t i o n a n a l y s i s at the 95$ con-f i d e n c e l e v e l estimated by a n a l y s i s of p a i r e d samples WATER SAMPLES ELEMENT AVE READ PPM NUMBER OP SAMPLES PRECISION + or -% Cu 0.01 15 120 Zn OoOl 15 260 K 3o8 15 11 Ca 40 15 14 Mg 25 15 53 Na 35 15 19 -59-CHAPTER 5 I . INTRODUCTION The R a y f i e l d R i v e r copper p r o p e r t y has been broken i n t o s i x p h y s i o g r a p h i c r e g i o n s ( F i g . 8 and Table XIV). Each s e c t i o n of Chapter 3 i s d i v i d e d i n t o two p a r t s . The f i r s t i s a p r e s e n t a t i o n of data, while the second i s an e v a l u a t i o n of r e s u l t s and t h e i r i m p l i c -a t i o n to e x p l o r a t i o n s t r a t e g y . Primary d i s p e r s i o n , r epresented by bedrock data w i l l bo considered f i r s t , f o l l o w e d by surveys of the secondary d i s p e r s i o n -stream and l a k e water and sediment, f l o a t , s o i l and v e g e t a t i o n , i n t h a t order. S p e c i a l a t t e n t i o n has been devoted w i t h i n each s e c t i o n to the d i s t r i b u t i o n of copper. I I . PRIMARY DISPERSION A. Metal Content of Bedrock Data from a n a l y s i s of outcrop samples have been t r e a t e d as i f they belong to a lognormal d i s t r i b u t i o n . The mean, range (mean ± 1 standard d e v i a t i o n ) and t h r e s -h o l d value of copper, z i n c , i r o n , manganese and potas-sium analyses (> mean + 2 standard d e v i a t i o n s ) have been c a l c u l a t e d (Table XV)„ Sample analyses have been grouped - 6 0 -Table 21V Ph y s i o g r a p h i c r e g i o n s of the R a y f i e l d R i v e r copper p r o p e r t y . REGION NUMBER DESIGNATION DESCRIPTION 1 Northern h a l f of western platoe.u the Beaver dams, boggy 2 Southern h a l f of western p l a t e a u the R e l a t i v e l y f l a t , l i t t l e s u r -face drainage or l a k e s 3 Northern h a l f of east e r n p l a t e a u the T e r t i a r y b a s a l t and b a s a l t d e r i v e d g l a c i a l d e p o s i t s 4- Southern h a l f of east e r n p l a t e a u the Many l a k e s , i n depressions, o v e r l y i n g s y e n i t i c g l a c i a l overburden 5 R a y f i e l d R i v e r D i s s e c t s s y e n i t e i n t r u s i v e , 6 • Bonaparte R i v e r D i s s e c t s g r a n i t i c and syen-i t i c i n t r u s i v e s , N i c o l a v o l c a n i c s and t h i c k g l a c i a l overburden and p l a c e d i n t o twenty c e l l s , c o n s t r u c t e d by t a k i n g h a l f standard d e v i a t i o n i n t e r v a l s of the lognormal d i s t r i b -u t i o n . The percentage of samples whose r e s u l t s l i e w i t h -i n each c e l l and the cumulative percentage has been de-termined. When the cumulative percentage on a probab-i l i t y s c a l e i s p l o t t e d a g a i n s t the lower c o n c e n t r a t i o n l i m i t of the c e l l on a. l o g a r i t h m i c s c a l e , the r e s u l t i n g f i g u r e i s a l o g p r o b a b i l i t y p l o t . I f choice of the l o g -normal f u n c t i o n i s c o r r e c t , then r e s u l t s should appear as a s t r a i g h t l i n e f o r a s i n g l e p o p u l a t i o n or as a set of l i n e segments f o r two or more p o p u l a t i o n s . Segment slope , d i s c r i m i n a t i o n of i n f l e c t i o n p o i n t s and ease of i d e n t i f i c a t i o n of p o p u l a t i o n s i s c o n t r o l l e d by the mean and standard d e v i a t i o n of each c o n t r i b u t i n g p o p u l a t i o n ( L e p e l t i c r , 1 9 69), P r o b a b i l i t y p l o t s of bedrock r e s u l t s i n t h i s transform show th a t the lognormal f u n c t i o n prob-ably c o r r e c t l y d e s c r i b e s the t r a c e element and potassium d i s t r i b u t i o n ( F i g , 13A and B). S e v e r a l p o p u l a t i o n s have been t e n t a t i v e l y i d e n t i f i e d and. w i l l be d i s c u s s e d t o -wards the end of t h i s s e c t i o n . R e l a t i v e l y few samples were c o l l e c t e d from Ter-t i a r y basa.lt and the N i c o l a group of v o l c a n i c s , as bed-rock exposures of these u n i t s are only v i s i b l e over a small p a r t of the p r o p e r t y . Each, however, has a d i s -t i n c t i v e t r a c e element composition (Table XV) u The N i c o l a v o l c a n i c s , host rocks f o r the i n t r u s i o n , have s i m i l a r copper, manganese and z i n c contents to the h y b r i d phases, but the l a t t e r i s n o t a b l y l e s s r i c h i n i r o n and potassium. D i f f e r e n c e s become magnified when analyses from these Mesozoic v o l c a n i c s are compared wit h data from the s y e n i t e i n t r u s i o n as a whole or w i t h other r e c o g n i z a b l e phases w i t h i n the b a t h o l i t h . In p a r t i c u l a r , i n t r u s i v e rocks have h i g h e r copper and potassium c o n c e n t r a t i o n s and lower i r o n , manganese and z i n c contents than samples from the N i c o l a group. Com-p a r i s o n between data from T e r t i a r y b a s a l t , extruded a f t e r the i n t r u s i o n , and i n t r u s i v e show t h a t the above d i f f e r e n c e s are f u r t h e r enlarged. T e r t i a r y b a s a l t i s noted f o r i t s low copper and potassium and h i g h i r o n and z i n c content. Manganese valu e s remain e s s e n t i a l l y the same as i n N i c o l a v o l c a n i c bedrock. The d i s t r i b u t i o n of copper i n the b a t h o l i t h i s shown i n F i g , 9A, L e u c o c r a t i c s y e n i t e analyses are below the average f o r the i n t r u s i o n (mean values of 62 ppm versus 14-0 ppm r e s p e c t i v e l y ) . Surrounding t h i s u n i t , w i t h i n the hornblende s y e n i t e , i s a s l i g h t l y to moderately p o s i t i v e zone up to 1/2 m i l e i n width, a t , or i n c l o s e p r o x i m i t y to the proposed c o n t a c t , A second copper anomaly o v e r l i e s an area along the v a l l e y of the R a y f i e l d R i v e r south of C r a t e r Lake, 'while a t h i r d i s i s o l a t e d i n r e g i o n 4-, Zinc, i r o n , manganese and potassium analyses p r o v i d e s i m i l a r evidence f o r zoning. Zinc c o n c e n t r a t i o n s arc r e l a t i v e l y low i n samples of l e u c o c r a t i c s y e n i t e (range 22 - 42 ppm) and w i t h i n hornblende s y e n i t e i n regions J and 4- ( F i g . 10A). Conversely, s e v e r a l areas h i g h i n z i n c were di s c o v e r e d along the northern h a l f of the r i v e r v a l l e y . Copper to z i n c r a t i o i n hornblende and l e u c o c r a t i c s y e n i t e i s , i n g e n e r a l , g r e a t e r than u n i t y . The d i s t r i b u t i o n of i r o n ( F i g . 11A) and mangan-ese i s s i m i l a r t o , but l e s s d e f i n e d than t h a t of copper. L e u c o c r a t i c s y e n i t e , r e l a t i v e l y low i n these elements, appears as a w e l l d e f i n e d c e n ter to the b a t h o l i t h while h y b r i d phases h i g h i n i r o n and manganese, form a contact zone w i t h the country r o c k s . These zones do not u s u a l l y c o i n c i d e w i t h those of copper. The i r o n maxima i n horn-blende s y e n i t e i s more d i s t a n t from the core than i s t h a t of copper. South of C r a t e r Lake however, copper and i r o n enhancement are found i n the same bedrock exposures. The d i s t r i b u t i o n of potassium i n F i g . 12A does not r e f l e c t the presence of l e u c o c r a t i c s y e n i t e . I n -stead, samples from the n o r t h e r n two t h i r d s of the prop-e r t y g e n e r a l l y have potassium c o n c e n t r a t i o n s which arc-s l i g h t l y above the average of 4$ while over the r e -mainder, bedrock i s s l i g h t l y d e f i c i e n t i n t h i s clement. The most d i s t i n c t i v e f e a t u r e s arc summarized: 1. L e u c o c r a t i c s y e n i t e forms a c e n t r a l core t o a zoned b a t h o l i t h and i s r e l a t i v e l y d e f i c i e n t i n copper, z i n c , i r o n and manganese. -64-2, Both hornblondo s y e n i t e and l e u c o c r a t i c s y e n i t e are i n t e r n a l l y zoned, 3. Northern exposures of hornblende s y e n i t e have h i g h e r copper, z i n c , i r o n and potassium concen-t r a t i o n s than those of the south, 4, L e u c o c r a t i c s y e n i t e i s not d i s t i n c t l y h i g h e r i n potassium content than hornblende s y e n i t e found to the n o r t h , 5. Hybrid rocks are r e l a t i v e l y h i g h i n i r o n and manganese and low i n potassium. When only hornblende s y e n i t e rock analyses are considered, there i s a focus of a t t e n t i o n towards the c e n t e r of each of the p r e v i o u s l y d e s c r i b e d copper, z i n c , i r o n and manganese anomalies seen i n F i g , 9A - H A ( F i g , 9B - 11B), Southern exposures along the R a y f i e l d R i v e r have s l i g h t l y h i g h e r i r o n and lower manganese con-c e n t r a t i o n s than outcrops along the northern h a l f of the r i v e r , Two zones become prominent f o r potassium ( F i g , 12B), The f i r s t runs from m i l e 1 to m i l e 2 1/2 along the R a y f i e l d R i v e r and continues onto the p l a t e a u . N e g l e c t i n g pegmatites, the h i g h e s t potassium values of the i n t r u s i o n are found here. The second, i n r e g i o n 4, c o n s i s t s of measurements below the mean v a l u e . On the b a s i s of these r e s u l t s , f u r t h e r grouping of the data i s p o s s i b l e . F i e l d appearance, degree of f r a c t u r i n g and weathering, evidence f o r surface contamination ( m a l a c h i t e , i r o n and manganese oxid e s , calcium carbon-ate) and nature of e r o s i o n a l environment suggest t h a t hornblende s y e n i t e outcrops on the p l a t e a u and along the r i v e r v a l l e y should bo considered s e p a r a t e l y (see Chapter 2, pages 27 31). Outcrop r e s u l t s along the r i v e r wore f u r t h e r s u b d i v i d e d , on the b a s i s of copperj z i n c and potassium d i s t r i b u t i o n s , n o r t h and south of the l e u c o c r a t i c s y e n i t e . Those throe elements roach t h e i r h i g h e s t values along the northern r i v e r v a l l e y ( t h r e s h o l d v a l u e s of 14-00 ppm, 120 ppm and 7.5$ r e s p e c t -i v e l y ) . Lower t h r e s h o l d s are c h a r a c t e r i s t i c of samples from bedrock on the p l a t e a u ( 4-00 ppm, 120 ppm, and 5.4-$ r e s p e c t i v e l y ) and along the southern r i v e r v a l l e y ( 250 ppm, 110 ppm and 5.2$ r e s p e c t i v e l y ) ( T a b l e XV). Log p r o b a b i l i t y p l o t s ( F i g , 13A and B) i n d i c a t e t h a t the t r a c e element data c o n s i s t s of s e v e r a l p o p u l -a t i o n s . Not a l l of the groupings d e s c r i b e d above are apparent, probably a r e s u l t of i n s u f f i c i e n t exposures on the p l a t e a u and along the southern h a l f of the R a y f i e l d R i v e r v a l l e y . Table XVI l i s t the mean, range and t h r e s -h o l d value from each p o p u l a t i o n f o r copper, z i n c , i r o n , manganese and potassium determined from F i g . 13A and B. Two i n f l e c t i o n p o i n t s are v i s i b l e on the l o g p r o b a b i l i t y p l o t of copper analyses ( F i g . 13A). One i n -f l e c t i o n r e p resents samples taken along the n o r t h e r n h a l f of the R a y f i e l d R i v e r v a l l e y , accounting f o r 43$ of a l l the samples and having a mean value of 360 ppm. The other i s formed by the remainder of the samples c o l -l e c t e d on the p l a t e a u and si d e s of the southern h a l f of the v a l l e y . Note t h a t mean, range and t h r e s h o l d values of Table XVI correspond c l o s e l y to those i n Table XV, however, d i s c r i m i n a t i o n between the l a s t two areas des-c r i b e d above i s not p o s s i b l e at pre s e n t . Log probab-i l i t y p l o t s of z i n c , i r o n and manganese ( P i g . 13B) and r e s u l t s r e p o r t e d i n Table XVI al s o show two p o p u l a t i o n s . A corresponding p l o t f o r potassium ( F i g . 13A) i s unique because i t app a r e n t l y i s composed of only one po p u l -a t i o n . A more d e t a i l e d a n a l y s i s of l e u c o c r a t i c s y e n i t e data o u t l i n e s a zone of low copper values running along the a x i s of the u n i t . U n f o r t u n a t e l y , as t h i s d i s t r i b -u t i o n was based on a s m a l l number of samples, zoning p a t t e r n s may be a c c i d e n t a l . The g r a d a t i o n a l nature of the contact between hornblende and l e u c o c r a t i c syen-i t e extends over s e v e r a l hundred f e e t and i s v i s i b l e on F i g s . 9A - 12A. Table XV Trace metal content (ppm) of extrusive and in t r u s i v e bedrock, hydrofluoric/perchloric a c i d attack HORNBLENDE SYEKJTE HORNBLENDE TERTIARY BASALT NICOLA VOLCANICS HYBRID PHASES ALL OUTCROPS PLATEAU OUTCROPS K. RIVER OUTCROPS S. RIVER OUTCROPS LEUCOCRATIC SYENITE PEGMATITE INTRUSIVE RCCKS SYENITE FLOAT Cu Threshold Mean Kange 70 34 24-49 820 75 23-250 625 110 46-260 1150 170 65-440 420 110 55-210 1400 205 80-520 240 75 42-135 370 62 26-150 180 55 28-95 800 110 41-300 560 85 31-215 Zn Threshold Mean Range 155 115 100-135 150 85 65-115 145 75 55-100 120 70 55-95 120 65 50-90 120 75 60-95 108 57 42-80 60 31 22-42 70 28 19-43 145 55 35-90 100 60 45-80 Threshold Mean Range 9 . 7 7 .6 6.8-8.6 6.7 5.0 4.4-5.8 6 . 5 3.4 2.5-4.7 3.5 1.8 1.3-2.5 2.9 1.7 1.3-2.2 3.5 1.9 1.3-2.5 3.7 1.8 1.4-2.5 1.3 0.7 0.5-1.0 1.9 0.8 0.5-1.2 4.4 1.7 0.9-2.6 3.3 1.8 1.3-2.4 Ka Threshold Mean Range 1500 1200 1100-1350 1850 1200 950-1500 2100 1000 675-1400 1600 800 550-1200 1300 750 570-1000 1550 800 580-1100 1800 780 520-1200 675 310 210-460 3200 200 50-800 2200 610 320-1150 1350 700 5IO-98O Threshold Mean Range 1.7 0.9 0.7-1.2 4.4 1.7 1.0-2.7 6.1 3.2 2.3-4.4 7.0 4.0 3.0-5.3 5.^ - 4.0 3 . 4 -4 . 7 7 .5 4.0 3 .5 -5 -5 5.2 4.0 3.5-4.5 5.8 4.3 3.7-5.0 8.7 6.0 5.0-7.2 6.8 4.0 3.1-5.2 6.2 3.7 2.9-4.8 Number of samples 31 5 11 104 36 54 14 31 7 154 213 . -68-Tablc XVI Summary of p o p u l a t i o n s detected on l o g p r o b a b i l i t y p l o t s of hornblende s y e n i t e bedrock data POPULATION A POPULATION B ELEMENT °/o TOTAL POPUL-ATION MEAN RANGE ANOM-ALOUS % TOTAL POPUL-ATION MEAN RANGE ANOM-ALOUS Cu 43 360 180-690 1340 57 83 47-140 2 50 Zn 40 72 60-120 200 60 62 37-90 110 Fe% 50 1„8 1.6-2.6- 4.1 50 1.7 l . l 2.0 2.3 Mn 50 840 750-1090 1700 50 690 440-940 1050 100 4.1 3.6-4.7 5.4 T H E D A N S E Y - R A Y F I E L D R I V E R C O P P E R P R O P E R T Y 9A DISTRIBUTION OF COPPER (PPM) WITHIN THE SYENITE INTRUSIVE TOPOGRAPHIC LEGEND — GEOLOGIC CONTACT » — Contou Interval 100 feet Creeks, and Rivers Swarrps - f H Lakes Loca l Grid Control Polnt« sooo r t r r GEOCHEhlCAL Li^ GElMD • LESS THAN 41 ppm • 41 - 110ppm • 110 - 300ppm 9 300 - 800 ppm MORE THAN 800 ppm THE DANSEY - RAYFIELD RIVER COPPER PROPERTY FIGURE 9B DISTRIBUTION OF COPPER (PPM) IN HORNBLENDE SYENITE N TOPO GRAPHIC LEGEND - GEOLOGIC CONTACT Contour Inter vol 100 fetf —• Creeks, and Rivers <^Z^> Swomps I 1 Lake* Loca l Grid Conlrol Points sooo Ftrr GEOCHEMICAL LEGEND • LESS THAN 170 ppm • 170 - 440 ppm 0 440 - 1150 ppm MORE THAN 1150 ppm THE DANSEY - RAYFIELD RIVER COPPER PROPERTY D I S T R I B U T I O N OF Z I N C (PPM) WITHIN T H E S Y E N I T E I N T R U S I V E TOPOGRAPHIC LEGEND G E O L O G I C CONTACT ~ w » — Contour Interval 100 feet Creeks, arxl Rivers < =^^> Swamps L i Lakes - f Locol Grid Control Point* 5000 FEET GEOCHEMICAL LEGEND A L E S S THAN 22 ppm • 22 - 35 ppm • 35 - 55 ppm • 55 - 90 PPm 0 9 0 - 145 PP"1 MORE THAN 1^ 5 ppm THE DANSEY-RAYFIELD RIVER COPPER PROPERTY FIGURE 10B DISTRIBUTION OF ZINC (PPM) IN HORNBLENDE SYENITE N AS TOPOGRAPHIC LEGEND GEOLOGIC CONTACT - M O O — Corrtour Intervol 100 feet — Creeks, and Rivers < = ^ ^ Swomps I . . . -J Lot.es - f Loca l Grid Control Pointt 5000 FEET GEOCHEMICAL LEGEND • LESS THAN 70 ppm • 70-95 ppm ^ 95 - 120 ppm I "MORE THAN 120ppm THE DANSEY - RAYFIELD RIVER COPPER PROPERTY FIGURE 11A DISTRTEDflOK OF IRON (%) WITHIN THE SYENITE INTRUSIVE N TOMOGRAPHIC LEGEND — REOIOGTC CONTACT » — Contour Interval 100 feet — — Creeks, and Rivers Sworrps Lokes j — Loca l Grid Control Points 5 0 0 0 FEET I I GEOCHEMICAL LEGEND A LESS THAN 0.5# • 0.5 - o.<# • 0.9 - 1.7# • 1.7 - 2.6$ • 2,6 -MORE THAN kAt S J HOFFMAN O^lulier 6. W O T H E D A N S E Y - R A Y F I E L D RIVER COPPER PROPERTY FIGURE 11B DISTRIBUTION CF IRON {€) IN HORNBLENDE SYENITE N As TOPOGRAPHIC LEGEND GEOLOGIC CONTACT - « ~ — C o n t M Intervol 100 leet ~- Creeks, and Rivers < ^ ^ r Swarrps I I Lakes — j — Loca l Grid Control Points 5 0 0 0 FEET GEOCHEMICAL LEGEND • LESS THAN 1 .3$ • 1.3 - 1 .8$ • 1.8 - 2.5$ • 2 .5 - 3 . 5 $ MORE THAN 3 . 5 $ C .1 wnFFMAN THE DANSEY - RAYFIELD RIVER COPPER PROPERTY 'FIGURE 12A DISTRIBUTION OF POTASSIUM (%) WITHIN' THE SYENITE'INTRUSIVE N TOPOGRAPHIC LEGEND GEOCHEMICAL LEGEND A s GEOLOGIC CONTACT Contour Intervol 100 leet B LESS THAN 3,2 $ Creeks, end Rivers ^ O O Zi 1 ol C=D U k e s • 4 > 1 _ 5 > 2 $ — | — Locol Grid Control Points 5 2 - 6 81 MORE THAN 6.8 $ 5 0 0 0 F E U THE DANSEY - RAYFIELD RIVER COPPER PROPERTY FIGURE 12B DISTRIBUTION OF POTASSIUM (0) IN HORNBLENDE SYENITE N As TOPOGRAPHIC LEGEND -GEOLOGIC CONTACT — Contour Intervol 100 Feet — Creeks, awl Rivers ;2> Swomps Z l Lokes Loca l Grid Control Points 5 0 0 0 FEET GEOCHEMICAL LEGEND . LESS THAN 4.0$ • **.0 - " 5 . 3 $ 5-3 - 7.0* - 7 7 -loopoo 50pOO lOpOO 5000 1000 500 100 0.01 0.1 80 9 5 9 9 99.9 99.99 FIGURE 13A LOG PROBABILITY PLOTS OF COPPER AMD POTASSIUM DATA FROM HORNBLENDE SYENITE BEDROCK LEGEND A,B CONTRIBUTING POPULATIONS t EXPERIMENTAL DATA POINTS o CALCULATED DATA POINTS - 7 8 -loopoo 50pOO lOpOO 5000 500 100 1000 -T 10. 0.01 0.1 t . .1. . . 80 95 99 99.9 99.99 FIGURE 13B LOG PROBABILITY PLOTS OF IRON, MANGANESE AND ZINC DATA FROM HORNBLENDE SYENITE BEDROCK LEGEND A,B CONTRIBUTING POPULATIONS + EXPERIMENTAL DATA POINTS o CALCULATED DATA POINTS - 79 -B„ D i s c u s s i o n ( a) A f f e c t i n g Metal Content of Bedrock. i 0 I n t r o d u c t i o n The most s t r i k i n g f e a t u r e of the bedrock data i s the topographic c o n t r o l of the copper anomaly. The h i g h e s t copper values are found i n crag outcrop c h i p s on both s i d e s of the n o r t h e r n h a l f of the R a y f i e l d R i v e r v a l l e y . Enhancements arc f i r s t encountered i n hornblende s y e n i t e samples south of C r a t e r Lake and continue to the l c u c r o c r a t i c s y e n i t e contact at the Z bend. Most con-c e n t r a t i o n s g r e a t e r than the t h r e s h o l d of 1200 ppm copper are observed j u s t n o r t h of t h i s c o n t a c t , i i . Primary zoning P i g s , 9A - 12A show t h a t the b a t h o l i t h may have a primary zoning r e l a t e d to the percentage of mafic m i n e r a l s p r e s e n t . The core of the b a t h o l i t h i s composed mainly of o r t h o c l a s e and i t s a l t e r a t i o n p r o ducts. Horn-blende, pyroxene and b i o t i t e , when pre s e n t , account f o r l e s s than '+% of the . t o t a l (Table 2 ) , Hornblende syen-i t e , however, i s more mafic r i c h , c o n t a i n i n g an average of 3% of these m i n e r a l s , as determined by t h i n s e c t i o n a n a l y s i s (Table 1 ) , Hybrid rocks are h i g h e s t i n mafic m i n e r a l s , f r e q u e n t l y exceeding 15$ i n f i e l d estimates (see Chapter 2, pages 21 - 22), -30-Th c core of the b a t h o l i t h i s r e l a t i v e l y d e p i c t e d i n i r o n and manganese. These elements i n c r e a s e i n con-te n t d i s c o n t i n u o u s l y u n t i l a maximum i s reached w i t h i n the h y b r i d phases. I t i s b e l i e v e d t h a t copper and other t r a c e elements more e a s i l y s u b s t i t u t e f o r f e r r o u s i r o n i n the l a t t i c e s of hornblende or pyroxene than f o r aluminium i n f e l d s p a r s ( M i t c h e l l , ' 1964), This f e a t u r e has been observed i n the more a c i d i c rocks of the Skacrgaard i n t r u s i o n where copper i s found i n h i g h e r q u a n t i t i e s i n pyroxene than i n c o e x i s t i n g p l a g i o c l a s o (page 180, Wager and Brown, 1967), A rough c o r r e l -a t i o n between the percentage of mafic m i n e r a l s and copper c o n c e n t r a t i o n of i n t r u s t i v e rock samples may t h e r e f o r e be expected. Such v a r i a t i o n i s seen i n p l o t s of copper data, however, a f a c t o r r e l a t e d to the emplacement of s u l p h i d e m i n e r a l i z a t i o n complicates any such simple i n t e r p r e t a t i o n . Potassium r e f l e c t s , i n an a n t i p a t h e t i c manner, the i r o n and manganese z o n a t i o n . Since hornblende, pyroxene and b i o t i t e c o n t a i n propor-t i o n a t e l y l e s s potassium than does o r t h o c l a s e , a decrease i n the percentage of the former i n t h i s b a t h o l i t h r e -s u l t s i n an i n c r e a s e of the l a t t e r . The lowest p o t a s -sium contents are found i n h y b r i d rock samples. I t i s u n c e r t a i n whether z i n c . d a t a f o l l o w s a s i m i l a r d i s t r i -b u t i o n , as probable enhancements thought to bo r e l a t e d to m i n e r a l i z a t i o n obscure the nature of any primary zoning. 81-i i i . Genesis of sulphide emplacement At p r e s e n t , two p o s s i b l e mechanisms f o r the em-placement of copper sulphide m i n e r a l i z a t i o n arc f o r -warded. In the f i r s t model, hydrothcrmal s o l u t i o n s der-i v e d as a d i f f e r e n t i a t e of the l a s t stages of c r y s t a l -l i z a t i o n of a s y e n i t e magma have migrated from the core, along f r a c t u r e s , to an a l r e a d y s o l i d i f i e d p a r t of the i n t r u s i o n . I t i s b e l i e v e d t h a t d e p o s i t i o n of copper, z i n c and potassium occurred w i t h i n hornblende s y e n i t e near 1 i t s contact w i t h l e u c o c r a t i c s j r c n i t e r e s u l t i n g i n a zoned d i s t r i b u t i o n . The processes i n v o l v e d i n the d e p o s i t i o n of copper by the second model remains essen-t i a l l y the same, however, the o r i g i n of the m i n e r a l i z i n g s o l u t i o n s i s not known i n t h i s case, A source e x i s t s at depth and t r a n s p o r t of d i s s o l v e d metals i n aqueous s o l u t i o n occurs along t h a t p a r t of the R a y f i e l d R i v e r f a u l t system c h a r a c t e r i z e d by h i g h copper values ( F i g . 9A), V a r i a t i o n s on each of these models i s p o s s i b l e . S e v e r a l f a c t o r s which may a f f e c t the d e p o s i t i o n or r e -moval of copper w i l l be considered i n an attempt to v e r i f y or d i s p e l c i t h e r or both of those t h e o r i e s . The r a d i o m e t r i c age of the i n t r u s i o n and pos-s i b l e subsequent a c t i v i t y has not been determined. Campbell and T i p p e r (1966) b e l i e v e that the b a t h o l i t h was i n t r u d e d d u r i n g the l a t e T r i a s s i c or e a r l y J u r a s s i c and evidence o u t l i n e d i n chapter 5, page 83 , shows t h a t i t was exposed to e r o s i o n before T e r t i a r y b a s a l t s wore extruded. The ago of m i n e r a l i z a t i o n , deduced from f i e l d and t h i n s e c t i o n examination (chapter 2\ pages 12 -IS ) i s post s o l i d i f i c a t i o n of the magma, Channelways i n t o the host rock were provi d e d by f r a c t u r e s which formed on c o o l i n g or f a u l t i n g of the b a t h o l i t h . M i n e r a l i z i n g s o l u t i o n s p e r v a s i v e l y a l t e r e d primary s i l i c a t e s of p a r t s of the hornblende and l e u c o c r a t i c s y e n i t e phases to c l a y m i n e r a l s . A d d i t i o n s of copper, z i n c and pot a s -sium were accompanied by the formation of s u l p h i d e s , o r t h o c l a s e and f e l d s p a r v e i n l e t s i n a zone surrounding the l e u c o c r a t i c s y e n i t e . I d e n t i f i c a t i o n of changes i n grade of copper m i n e r a l i z a t i o n l a t e r a l l y and w i t h depth i s important when p o s s i b l e expressions of primary geochemical anomali i n bedrock a f f e c t e d by hydrothormal s o l u t i o n s arc con-s i d e r e d . D i s t r i b u t i o n of copper sulphide m i nerals i s not constant over small d i s t a n c e s , a consequence of the d i f f e r e n t h a b i t s i n which c h a l c o p y r i t c and b o r n i t e are found (chapter 2, page 16 )» Suppose that each anom-alous zone de s c r i b e d p r e v i o u s l y (chapter 3, page 62 ) i s d i v i d e d i n t o c e l l s , thereby e l i m i n a t i n g l o c a l e f f e c t s of v e i n s and f r a c t u r e s . When copper values on the pl a t e a u are then compared w i t h those of the s e c t i o n d i s e c t c d by the R a y f i e l d R i v e r , 4-00 foct lower i n e l e v -a t i o n , up to ten times lower copper contents are found. Those lower c o n c e n t r a t i o n s may r e f l e c t an i n c r e a s i n g grade of m i n e r a l i z a t i o n w i t h depth, or be the r e s u l t of more ext e n s i v e l e a c h i n g from the p l a t e a u s u r f a c e . An estimate of the r e l a t i v e age of the s u r f a c e of the b a t h o l i t h on the p l a t e a u and v a l l e y s i d e s i s important i n a s s e s s i n g the s i g n i f i c a n c e of l e a c h i n g . A minimal amount of removal, t r a n s p o r t and d e p o s i t i o n of overburden by g l a c i a l a c t i o n i s i n d i c a t e d by the d i s -t r i b u t i o n of coarse f l o a t and ground magnetometer s t u d i e s . For example, T e r t i a r y b a s a l t f l o a t b l o c k s arc-r a r e l y found o v e r l y i n g the s y e n i t e i n t r u s i o n except at the margins of the mesas. A d d i t i o n a l l y , enhancements of copper i n angular hornblende s y e n i t e f l o a t b l o c k s occurs over s i m i l a r l y anomalous zones i n bedrock ( F i g . 20). Magnetic h i g h s , c h a r a c t e r i s t i c of T e r t i a r y b a s a l t s of the area, were not detected d u r i n g magnetometer s u r -veys of the p r o p e r t y . I f small remnants of flows or h i g h c o n c e n t r a t i o n s of b a s a l t f l o a t e x i s t e d on top of s y e n i t e and covered by g l a c i a l d e p o s i t s on the p r o p e r t y , they should have been found ( p e r s o n a l communication, McEnight, 1 9 6 9 ) . When these f a c t o r s are considered, i t i s u n l i k e l y t h a t T e r t i a r y b a s a l t capped a s i g n i f i c a n t l y g r e a t e r area before the P l e i s t o c e n e than at present and p a r t s of the i n t r u s i o n have been exposed to weathering f o r up to 60 m i l l i o n y ears. F i e l d o b s e r v a t i o n s and a n a l y t i c a l data suggest -84-t h a t the p l a t e a u surface r e a c t s d i f f e r e n t l y to weather-i n g than does the v a l l e y sides„ Crag outcrops are gen-e r a l l y more e x t e n s i v e l y f r a c t u r e d , h i g h l y f r i a b l e , t y p i c a l l y s t a i n e d by m a l a c h i t e , hydrous i r o n and mangan-ese oxides or calcium carbonate and e a s i l y eroded. A l -though the i n t e n s i t y of weathering i s g r e a t e r on the v a l l e y s i d e s , enhanced f o r c e s of e r o s i o n must be con-s i d e r e d before any c o n c l u s i o n s to the extent of l e a c h i n g are reached. I f weathering on the v a l l e y s i d e s extends to the same depth on the p l a t e a u i n i t i a l l y , i t s t h i c k -ness must be l e s s because of the slope of the ground s u r f a c e . A d d i t i o n a l l y , as e r o s i o n i s very a c t i v e on steep s l o p e s , removing weathered m a t e r i a l and exposing f r e s h s u r f a c e s , i t must, i n e f f e c t , cause unweathered rock to appear nearer the s u r f a c e . Because e r o s i o n occurs on a much reduced s c a l e over the p l a t e a u , weather-i n g and l e a c h i n g processes are consequently enhanced. Therefore, even i f i t i s hypothesized t h a t uniform l a t e r a l and v e r t i c a l d e p o s i t i o n of copper re p r e s e n t s the m i n e r a l i z a t i o n , p l a t e a u bedrock should be r e l a t i v e l y leached of t h i s clement compared wi t h crag outcrops. The c o n s t i t u t i o n of sulphide m i n e r a l s i n the b a t h o l i t h may i n f l u e n c e the geochemical d i s p e r s i o n p a t t e r n s observed, P y r i t e , f o r example, o x i d i z e s to form s u l p h u r i c a c i d which then a i d s i n the l e a c h i n g of copper m i n e r a l s . However, as p y r i t e i s absent, the r a t e of chemical weathering of c h a l c o p y r i t e and b o r n i t e should be low (Whitten, 19S7) » Presumably, a cumulative e f f e c t over 60 m i l l i o n years could be s i g n i f i c a n t . Thus f a r , the d i s c u s s i o n has centered on proper-t i e s which arc c o n s i s t e n t w i t h both mechanisms of gen-e s i s . The zon a t i o n of copper i s more e a s i l y e x p l a i n e d by the f i r s t mechanism,, Copper reaches i t s maximum value w i t h i n a zone surrounding the l e u c o c r a t i c syen-i t e d i s t i n c t from the i r o n maximum, suggesting t h a t t h i s u n i t i s important to the genes i s , A c o n c e n t r a t i o n r a t i o , d e f i n e d as the copper content of hornblende s y e n i t e to the copper content of l e u c o c r a t i c s y e n i t e along r i v e r v a l l e y outcrops on the nor t h e r n two t h i r d s of the prop-e r t y (both are i n f l u e n c e d by the same weathering en-vironment) was c a l c u l a t e d to be 3-3 from Table XV, Thi s genesis i s s i m i l a r to t h a t d e s c r i b e d by Braboc (1971) f o r the Guichon Creok b a t h o l i t h . However, the anomaly i s not formed by a uniform set of v a l u e s , but r a t h e r has a d i s t i n c t maximum j u s t n o r t h of the Z bend. I t i s t h i s f e a t u r e which suggested t h a t another g e n e t i c h i s t o r y may b e t t e r represent the emplacement of miner-a l i z a t i o n . The second mechanism more e a s i l y e x p l a i n s the occurrence of zones of copper enrichment c o i n -c i d e n t w i t h a potassium anomaly l y i n g along the s i d e s of the r i v e r vanes'- on the northern h a l f of the prop-e r t y . A d d i t i o n a l t h e o r i e s and v a r i a t i o n s on each of -86-tho two presented schemes i s p o s s i b l e . For example, m i g r a t i o n of m i n e r a l i z i n g s o l u t i o n s p r e f e r e n t i a l l y i n one d i r e c t i o n would y i e l d the observed d i s t r i b u t i o n . No r e s t r i c t i o n has boon found f o r the case where s o l -u t i o n s have moved northward from the l e u c o c r a t i c syen-i t e . Another ' p o s s i b i l i t y , the d e p o s i t i o n of copper by mechanism one, f o l l o w e d by a second i n t r o d u c t i o n ' o f metal n o r t h of the l e u c o c r a t i c s y e n i t e along f a u l t s t a p p i n g a deeper source would a l s o g i v e the observed d i s -t r i b u t i o n . No doubt other schemes can be e n v i s i g e d whicn wovtid y i e l d the r e s u l t i n g geochemical p a t t e r n s . At p r e s e n t , i t i s not p o s s i b l e to d i f f e r e n t i a t e the two mechanisms on the ground without d r i l l evidence. Each theory, however, has a p a r t i c u l a r s i g n i f i c a n c e - to the p a r t of the p r o p e r t y covered by the next stage of ex-p l o r a t i o n . (k) A p p l i c a t i o n to E x p l o r a t i o n Rock geochemistry i n 1962 was s t i l l i n i t s i n -fancy as a geochemical e x p l o r a t i o n technique (Hawkes and Webb, 1962). Features of importance recognized at the time i n c l u d e d a l t e r a t i o n a u r e o l e s , e p i g e n e t i c h a l o s and leakage d i s p e r s i o n s around ore d e p o s i t s . Use of primary halos of copper, z i n c , molybdenum and other elements i n e x p l o r a t i o n around v e i n tj/po ore-d e p o s i t s has been d e s c r i b e d by N a i r i s (1971) i n Sweden and by Ovchinnikov and Grigoryan (1971) i n the USSR. ~8r S a k r i s o n (1971) b r i e f l y d i s c u s s e s d e l i n e a t i o n of meta-l o g e n i c p r o v i n c e s , d i s c r i m i n a t i o n between barre n and m i n e r a l i z e d environments and the d e f i n i t i o n of d r i l l t a r g e t s on the b a s i s of rock geochemistry i n the Canadian s h i e l d , Kaysor and Pa r r y (1971) suggest r e g i o n a l geo-chemical sampling of b a t h o l i t h i c rocks and subsequent a n a l y s i s as a method f o r l o c a t i n g areas of i n t e r e s t w i t h i n a quartz monzonite stock i n A r i z o n a , T h e i r two b a s i c hypothesis are t h a t m e t a l l i c ore occurrences are g e n e t i c a l l y r e l a t e d to the i n t r u s i v e magrnatic system and th a t a geochemical r e l a t i o n s h i p should e x i s t between the occurrence and i t s " r e l a t e d " igneous stock. These o p i n -i o n s are the b a s i s of both mechanisms of p o s s i b l e s u l -phide emplacement at the R a y f i e l d R i v e r copper p r o p e r t y . Sulphide m i n e r a l i z a t i o n i s l o c a l i z e d w i t h i n hornblende s y e n i t e near the contact w i t h l e u c o c r a t i c s y e n i t e . D e p o s i t i o n of copper i s independent of t h a t of i r o n i n primary m i n e r a l s and i s , f o r the most p a r t , r e p r e s e n t -a t i v e of a d i s t i n c t episode i n the h i s t o r y of the bath-o l i t h . As "was the case i n the study by Kayscr and P a r r y , no orobodics have yet boon uncovered by a p p l i c -a t i o n of the p r i n c i p l e s of t h i s theory. Warren and D c l a v a u l t (I960) e s t a b l i s h e d guide l i n e s they considered s i g n i f i c a n t i n d i f f e r e n t i a t i n g a m i n e r a l i z e d from a barren i n t r u s i v e i n B r i t i s h Columbia, They found t h a t b a t h o l i t h s c o n t a i n i n g l o s s than 10 ppm -88 copper (aqua r e g i a a t t a c k ) were t y p i c a l l y v o i d of s u l -phide m i n e r a l s . Zinc i n these rocks v a r i e d between 25 and 75 ppm. M i n e r a l i z e d i n t r u s i v o s , however, had copper values g r e a t e r than 10 ppm and z i n c contents i n excess of 75 ppm. Important m i n e r a l i z a t i o n may bo present when these c o n d i t i o n s arc met and a copper to z i n c r a t i o g r e a t e r than u n i t y e x i s t s i n the rock sample. There i s no doubt the s y e n i t e i n t r u s t i o n on t h i s p r o p e r t y f u l -f i l l s both c o n d i t i o n s . Copper to z i n c r a t i o s i n peg-m a t i t e s , l e u c o c r a t i c s y e n i t e , hornblende s y e n i t e and h y b r i d phases averages 2 .1 , 2 . 0 , 2.4 and 1.5 r e s p e c t -i v e l y . Brabcc and White (1971) d e s c r i b e the z o n a t i o n of copper and z i n c i n rocks of the Guichon Creek bath-o l i t h , an i n t r u s i o n of great economic s i g n i f i c a n c e to B r i t i s h Columbia. The b a t h o l i t h shows a primary zoning, w i t h rocks of the B e t h s a i d a phase forming a c e n t r a l core-r e l a t i v e l y low i n copper and z i n c . Surrounding t h i s phase i s the Bethlehem, r i c h e r i n these two metals. Ore d e p o s i t s , such as V a l l e y Copper, Lornox and Highmont occur near the contact zone. Surrounding the Bethlehem i s the Highland V a l l e y and Hybrid phases whose samples c o n t a i n the highest copper and z i n c c o n c e n t r a t i o n s . Ore bodies of Bethlehem Mines occur at the contact of the Bethlehem end Fly l a n d V a l l e y phases. Comparison of the Guichon Creek b a t h o l i t h and the R a y f i e l d R i v e r copper p r o p e r t y r e v e a l s s i m i l a r i t i e s i n copper and z i n c zon-a t i o n and phase changes, A c o n c e n t r a t i o n r a t i o of copper i n Bethsaida to copper i n Bethlehem rocks i s approximately 3.5? a s i m i l a r f i g u r e to the one found i n the present study (chapter 3? page 85 )» Each u n i t of the R a y f i e l d R i v e r b a t h o l i t h con-t a i n s a d i s t i n c t i v e t r a c e element content. The centre,! core of l e u c o c r a t i c s y e n i t e i s r e l a t i v e l y d epleted i n copper (mean 60 ppm) compared w i t h hornblende s y e n i t e (mean 170 ppm). The d i f f e r e n c e i n c o n c e n t r a t i o n bo-comes g r e a t e r when only crag outcrops of hornblende s y e n i t e n o r t h of the Z bend along the r i v e r are compared (mean 200 ppm), perhaps a b e t t e r i n d i c a t o r because only rocks i n the same type of weathering environment arc con-s i d e r e d . Although h y b r i d r o c k s , w i t h a meo.n of 110 ppm copper are apparently d e f i c i e n t when compared w i t h the f i g u r e s given above f o r hornblende s y e n i t e , they c o n t a i n approximately the same copper content as do outcrops of hornblende s y e n i t e found on the p l a t e a u (moan 110 ppm)„ A c t u a l zoning, showing an i n c r e a s e i n t h i s metal towards the l i m i t s of the i n t r u s i o n , i s more c l e a r l y observed i n F i g , 9A and i s c o n s i s t e n t w i t h r e l a t i o n s found by Braboc and White (1971) f o r the Guichon Creek b a t h o l i t h . Occur-rence of coppor sulphide m i n e r a l i z a t i o n i n economic q u a n t i t i e s i s most probable w i t h i n hornblcnd o s y e n i t e near the contact w i t h l e u c o c r a t i c s y e n i t e . Jerome (I966)has b r i e f l y warned of the problem i n d i s t i n g u i s h i n g between primary and secondary d i s -p c r s i o n of coppor i n the porphyry copper d e p o s i t s of A r i z o n a . The most f a v o r a b l e t a r g e t s f o r e x p l o r a t i o n appear to bo ones which have r e l a t i v e l y h i g h copper contents i n potassium enriched phases. The n o r t h e r n tv/o t h i r d s of the R a y f i e l d R i v e r copper p r o p e r t y thus q u a l i f i e s as a f a v o r a b l e t a r g e t . Rock geochemistry o u t l i n e s those p a r t s of the b a t h o l i t h enriched i n copper as has been i n f e r r e d by v i s u a l e s t i m a t i o n of the percent s u l p h i d e s present i n outcrop exposures. Three coppor anomalies have boon found, one along the r i v e r v a l l e y south of C r a t e r Lake, another j u s t n o r t h of the Z bond along the r i v e r and the t h i r d on the p l a t e a u i n r e g i o n 4. The bend anomaly i s the l a r g e s t and has s e v e r a l analyses whose value i s g r e a t e r than the t h r e s h o l d of 1150 ppm copper. Other-wise, c o n c e n t r a t i o n s range between 165 ppm and 1150 ppm. The northernmost anomaly occurs i n bedrock along the v a l l e y s i d e s and i t s p o s s i b l e extensions east and west arc covered by l a v a flows of t e r t i a r y b a s a l t . The h i g h e s t value encountered i s only 825 ppm copper wh i l e most analyses range between 165 ppm and 440 ppm. The bend anomaly i s of a s i m i l a r c h a r a c t e r , but does extend somewhat onto the p l a t e a u . G r e a t e s t copper contents approach 3200 ppm and the range of c o n c e n t r a t i o n s i s g r e a t e r . Again, t h i s anomaly occurs i n crag outcrops and i s l e s s apparent f u r t h e r away from the r i v e r . The 9 1 -t h i r d zone i s found o n l y on tho p l a t e a u and hence i s i n a d i f f e r e n t geochemical environment than tho p r e v i o u s two. Maximum c o n c e n t r a t i o n of copper i s s l i g h t l y i n excess of 600 ppm and o n l y two sample analyses c o n s t i -t u t e tho anomaly. As outcrops i n the v i c i n i t y are l a c k -i n g and tho weathering, l e a c h i n g and o r o s i o n a l e n v i r o n -ment i s d i f f e r e n t here than f o r tho f i r s t two anomalies, f u r t h e r e x p l o r a t o r y work i s suggested f o r t h i s zone. L a t e r a l extensions under overburden of any of these anomalies or e s t i m a t i o n s of t h e i r v o r t i c a l extent and c h a r a c t e r can o n l y be a s c e r t a i n e d w i t h d r i l l survey evidence. Without d r i l l o r other evidence, i t must be assumed t h a t zones of copper enhancements i n bedrock w i l l u l t i m a t e l y prove the source of t h i s metal i n other s u r -veys. Thus, anomalies i n surveys of secondary d i s p e r -s i o n (such as stream and l a k e water and sediment, f l o a t , s o i l s and v e g e t a t i o n ) must e v e n t u a l l y bo r e l a t e d back to zones of m i n e r a l i z a t i o n i n bedrock as they aro p r e s -e n t l y understood. I f t h i s i s not p o s s i b l e , then a source i n bedrock hidden from surface i n s p e c t i o n must p r o v i d e the copper and w i l l probably only be detected by d r i l l programs. I l l , SECONDARY DISPERSION 1o Stream, Spr i n g and Lake Wator A, Trace and Major Element D i s t r i b u t i o n ( i ) I n t r o d u c t i o n The d i s t r i b u t i o n of streams or l a k e s on the p l a t e a u i s not uniform. Streams and l a k e s arc combined i n an i n t e g r a t e d system i n regio n s 1 and 2 , I n regions 3 and 4-, however, leices are more numerous and creeks, i f p r e s e n t , are s m a l l and i n t e r m i t t e n t l y f i l l e d w i t h water. The mean, range and t h r e s h o l d of t r a c e and major c o n s t i t u e n t s of stream and l a k e water i s r e p o r t e d i n Table X V I I I , F i g , 14 shows the d i s t r i b u t i o n of copper, z i n c , calcium, sodium or potassium data f o r l a k e water. Table XVII summarizes t r a c e and major element contents i n streams and l a k e s w i t h i n each p h y s i o g r a p h i c r e g i o n p r e v i o u s l y d e s c r i b e d , ( i i ) Stream water Anomalous stream water samples, c o n t a i n i n g up to 39 ppb copper and 90 ppb z i n c (compared w i t h r e g i o n a l mean values of 4- ppb and 7 ppb r e s p e c t i v e l y ) were c o l -l e c t e d from t r i b u t a r i e s of the R a y f i e l d R i v e r , These samples were taken near tho s y e n i t e - T e r t i a r y b a s a l t con t a c t ( F i g , 3) where streams arc s l i g h t l y l e s s a l k a l i n e , -93--by up to Oo? pH-units from the r e g i o n a l average of 7°S, and f l o w through swampy areas on the p l a t e a u , A decrease i n copper, z i n c , ( F i g , 14) i r o n and manganese contents i s apparent downstream from the contact and towards the R a y f i e l d R i v e r , R a y f i e l d and Bonaparte R i v e r water u s u a l l y c o n t a i n s l e s s than 4 ppb copper or z i n c (Table XIX) , A n a l y s i s f o r calcium, magnesium, sodium, potas-sium and bicarbonate (Table XVIII) shows t h a t water from t r i b u t a r y streams i s more concentrated i n these con-s t i t u e n t s than arc e i t h e r of the two r i v e r s . Both the R a y f i e l d and Bonaparte R i v e r s have a l k a l i , a l k a l i n e e a r t h and bicarbonate contents unique w i t h i n the r e g i o n s t u d i e d and, i n e f f e c t , f i n g e r p r i n t each r i v e r (Table XXI) , S i x l o c a t i o n s ( F i g , 7 ) were chosen whore stream water was c o l l e c t e d throughout the summer, d u r i n g which time no p r e c i p i t a t i o n f e l l . These time lapse s t u d i e s , r e p o r t e d i n Table XXIV, r e v e a l e d i n c r e a s e s of up to 30$ i n a l k a l i , a l k a l i n e e a r t h and bicarbonate content at s t a t i o n 2 , Trace element, c h l o r i d e and sulphate concen-t r a t i o n and pH, however, remained e s s e n t i a l l y constant w i t h i n a n a l y t i c a l p r e c i s i o n (Table X I I I ) at t h i s s t a t i o n . C o n s i s t e n t i n c r e a s e s w i t h time were observed at the other s t a t i o n s , but increments were w i t h i n the l i m i t s allowed by the a n a l y t i c a l p r e c i s i o n . i i i . S p ring water Springs arc not numerous on the p r o p e r t y . They are common, however, along tho R a y f i e l d R i v e r around the nor t h e r n h a l f of the Z bend and one h a l f m i l e n o r t h of the Bonaparte R i v e r j u n c t i o n . Copper and z i n c concen-t r a t i o n s of s p r i n g s at the Z bond range from 8 to over 800 ppb and from 4 to 150 ppb r e s p e c t i v e l y . I n response to the a d d i t i o n of s p r i n g water, copper content of the R a y f i e l d R i v e r i n c r e a s e s f o r 1/2 m i l e along the no r t h e r n h a l f of tho Z bend from 1 t o 17 ppb and z i n c from 4 to 42 ppb (Tables XIX and XX). Copper values i n water, to 17 ppb, are a l s o ob-served i n the second r e g i o n of emerging s p r i n g s , one h a l f mile n o r t h of tho Bonaparte R i v e r on the west side of the R a y f i e l d R i v e r . Zinc contents show a p a r a l l e l t r e n d , i n c r e a s i n g to 43 ppb (Table XX). No e f f e c t , however, i s seen on tho c o n c e n t r a t i o n of e i t h e r of these two metals i n water of tho R a y f i e l d R i v e r . i v . Lake water Tho d i s t r i b u t i o n of copper and z i n c i n l a k e water o u t l i n e s an area of i n t e r e s t w i t h i n the r e g i o n a l survey u n d e r l a i n by rocks of the s y e n i t e i n t r u s i o n . Copper and z i n c anomalies ( F i g . 15) o v e r l y m i n e r a l i z e d zones i n bedrock near the Z bend. Hero, val u e s (to 43 ppb copper and 170 ppb z i n c ) u s u a l l y exceed the average of 6 ppb copper and 27 ppb z i n c as determined from r e g i o n a l survey data (Table X V I I I ) , although s p o r a d i c values above background are sometimes observed elsewhere. Other f e a t u r e s noted i n c l u d e zones of r e l a t i v e d e f i c i e n c y i n z i n c and i r o n contents i n r e g i o n 4. Sodium, ca l c i u m , potassium and bicarbonate on tho other hand, are r e l a t i v e l y e n r i c h e d i n r e g i o n s 3 and 4 as compared w i t h regions 1 and 2 ( F i g . 16)„ Manganese con-t e n t s i n l a k e water appear to vary i n a random f a s h i o n over the p r o p e r t y . v. Comparison of t r a c e and major clement content of stream and lake water Copper, i r o n and manganese aro present i n essen-t i a l l y the same c o n c e n t r a t i o n i n lake and stream water. The e x c e p t i o n a l clement i s z i n c , which i s found i n f o u r times h i g h e r c o n c e n t r a t i o n s i n l a k e water samples. Tho t r e n d i s s i m i l a r f o r the major c o n s t i t u e n t s , whore en-hanced values aro observed i n l a k e water samples com-pared w i t h stream water samples c o l l e c t e d from the same r e g i o n . For example, potassium, sodium and bicarbonate each show a three to f o u r f o l d c o n c e n t r a t i o n i n c r e a s e w h i l e calcium and c h l o r i d e show a two f o l d enrichment r e s p e c t i v e l y . Magnesiums and sulphate are not s i g n i f i -c a n t l y d i f f e r e n t (Tabic X V I I I ) a f t e r the a n a l y t i c a l p r e c i s i o n i s considered (Table X I I I ) . Tho pH of l a k e water i s more a l k a l i n e then t h a t of stream water. Table XVII Regional d i s t r i b u t i o n of major and minor elements i n stream and l a k e water REGION WATER TYPE Cu Zn Pc Mn K Mg Ca Na 1 Stream M+ H+ M+ M+ M+ M+-M- H+ M+ 1 Lake M+ M +, M- E E E M+ E M-2 Stream M+ M+ M-i- H+ M-i- M-i—M- M+ MH-2 Lake s+ ND E ' E E M+ E E 3 Stream M+ H+ M+ M+ H+ M - M+ M+ 3 Lake M+ M+ E E M+ M+-M- M+ M+ 4- Stream S+ ND E M+ M+ M+ M+ H-i-4- Lake s+ M-- H- E H+ E H+ 5 R a y f i e l d R ND ND H- M - M+ M-- M+ M-6 Bonaparte R ND ND H- M - H~ M- ur H-LEGEND S+ s l i g h t l y p o s i t i v e (M)~(M+S) S- s l i g h t l y n e g a t i v e (M)-(M-S) M+ moderately p o s i t i v e (M+S)-(M+2S) H+ h i g h l y p o s i t i v e (M+2S) ND not detected M moan M- mod, n e g a t i v e , (M-S)-(M-2S) II- h i g h l y negative (M-2S) E r r a t i c r e s u l t s S standard d e v i a t i o n - 9 7 -Table XVIII Comparison of trace and major element contents (ppm) and pH i n stream and lake water STREAM WATER KSTAL CONTENT PPM NUMBER OF SAMPLES LAKE WATER METAL CONTENT PPM NUMBER OF ' SAMPLES Threshold 0.056 0.051 Cu Mean 0.004 69 0.006 28 Range 0.001-0.015 O.C02-0.018 Threshold 0.069 0.250 Zn Kean 0.007 69 0.027 28 Range 0.002-0.022 0.009*0.080 Threshold 7.9 6.8 Fe Mean 0.5 69 0.6 28 Range 0.12-2.0 0.18-2.0 Threshold 1.2 1.1 Mn Mean 0.04 69 0.03 28 Range 0.007-0.21 0.004-0.17 Threshold 5.8 46 K Kean 2.0 73 6.6 31 Range 1.2-3.4 2.4-17. Threshold 100 230 Ca Mean 23 73 50 31 Range 11-48 23-110 Threshold 80 100 Mg Kean 24 73 19 31 Range 13-44 8.2-43. Threshold 104 1150 Na Mean 19 73 71 31 Range 8.1-44. 17-290 Threshold 1.6 11 CI Kean 0.43 73 0.9 31 Range 0.22-0.84 0.23-3.1 Threshold 11 12 Kean 3.7 73 3.6 28 Range 2.1-6.5 1.9-6.7 Threshold 440 HCO-, Kean 220 71 Range 115-330 Threshold -8.7 9.5 PH Mean 7.8 V- 8.1 29 Range* 7.1-9.** 7.1-9.7 Range* i s the a c t u a l range of measurements made i n the f i e l d , f o r pH only -•98-Tablo XIX Copper and z i n c content (ppb) i n R a y f i e l d R i v e r water from C r a t e r Lake to the Bonaparte R i v e r J u n c t i o n SAMPLE NUMBER CU-PPB 1 ! ZN-PPB Pfi 1504 1 i — 1 4 8 .09 1517 1 4 7.98 1583 2 6 8.08 1588 LL 8 8.23 1595 4 4 ND 1599 3 4 ND 1607 17 42 8,02 1211 4 5 7.78 1403 c. 3 7 .50 1400 4 0 7.64 1398 -7 'j 3 7.98 1392 3 4 7.60 1390 1 7.70 1386 1 3 7.88 1373 c. 2 8.22 1360 2 3 7.95 1364 j < 2 3 8.01 ND Not determined Table XX Copper and z i n c content (ppb) and pH of s p r i n g water SAMPLE NUMBER CU-PPB ZN-PPB pH 1380 12 2 7.92 1382 3 3 7 .6? 1383 17 43 7.70 1386 1 3 7 088 1603 9 4 ND 1611 8 4 7.38 1674 810 148 7-77 1722 38 33 7o60 ND Not determined 100-Tablo XXI Manor clement content (ppm) and pH of R a y f i e l d and Bonaparte R i v e r water J RIVER K-PPM Mg-PPM Ca-PPM Na-PPM Cl-PPM S04 PPM pH Mean 2,2 23 24 18 0 .25 4 .2 7.9 Ray-f i e l d Range* 1,6-2,5 20-38 21-30 15-21 7,4-8,1 19 samples Mean ' 0 ,91 13 5.0 3 .7 0.05 2,5 7.7 Bona.-p a r t e Range* 0,80-1,0 12-14 4,5-5.7 3.3-4,2 7.3-8,1 10 samples Range* i s the a c t u a l range of measurements observed. THE DANSEY-RAYFIELD RIVER COPPER PROPERTY 'FIGURE 14A DISTRIBUTION OF COPPER (PPB) IN STREAM WATER N AS TOPOGRAPHIC LEGEND - GEOLOGIC CONTACT - Contour Intervol 100 leet - Creeks, and Rivers > Swomps • Lakes Loco l Grid Control Points GEOCHEMICAL LEGEND • LESS THAN 4 PPb 6 ^ - 15 ppb Q 16 - 56 ppb IMCRE THAN 5^ PPb THE DANSEY - RAYFIELD RIVER COPPER PROPERTY FIGURE 14B DISTRIBUTION OF ZINC (PPB) IN STREAM WATER N TOPOGRAPHIC LEGEND GEOLOGIC CONTACT ~ w » — Contour Interval 100 leet —• Creeks, and Rivers <^—^2 Swamps 1 I Lakes — J — Loca l Grid Control Points 5 0 0 0 TOT L _ 1 GEOCHEMICAL LEGEND • LESS THAN 7-ppb " 7 - 2 2 ppb 23 - 69 ppb MORE THAN 69 ppb N As THE DANSEY-RAYFIELD RIVER COPPER PROPERTY FIGURE U C pH CF STREAM WATER TOPOGRAPHIC LEGEND CreeRS, oM Rrvers i ; Lckw LOCO! Grid Control Po*rr» 5 C C 0 TVt GEOCHEMICAL LEGEND. • LESS THAN 7 A • 7.4-7 .3 O 7.9-8.3 GREATER THAN 8.3 -104-RAYFIELD RIVER - B O N A P A R T E RIVER REGIONAL R E C O N N A I S S A N C E 'FIGURE 15A DISTRIBUTION OF COPPER (PPB) IN LAKE WATER N A L5223 ROADS TOPOGRAPHIC LEGEND GEOLOGIC CONTACT Contour Intervol 100 Feet Creeks and Rivers Swamps Lakes Local Property Lots Loose or Stabilized Surfaces, Loose Surfaco, Dry Weather All Weatlier GEOCHEMICAL LEGEND • LESS THAN 6 ppb • 6 - 17 ppb $ 18 - 51ppb IMORE THAN 51 ppb 4 MILES S J HOFFMAN October 6, 1970 R A Y F I E L D R I V E R - B O N A P A R T E R I V E R R E G I O N A L R E C O N N A I S S A N C E FIGURE 15B DISTRIBUTION OF ZINC (PPB) IN LAKE WATER N A L5223 ROADS TOPOGRAPHIC LEGEND ci§oufJ9r^erv-ai 9cfi^  feeF^ Creeks and Rivers Swamps Lakes Locol Properly Lots Loose or Stabilized Surfaces, Loose Surface, Dry Weather 4 MILES All Weather GEOCHEMICAL LEGEND • LESS THAN 9 ppb • 9 - 2 7 ppb • 28 - 80 ppb 80 - 250 ppb S J HOFFMAN October 8, 1970 -106-RAYFIELD RIVER - BONAPARTE RIVER REGIONAL RECONNAISSANCE FIGURE 16A DISTRIBUTION OF CALCIUM (PPM) IN LAKE WATER N A L5223 ROADS TOPOGRAPHIC LEGEND ,sra c T Creeks and Rivers Swamps Lokes Local Property Lots Loose or Stabilized Surfoees, Al l Weatiier Loose Surface, Dry Weather 4 MILES GEOCHEMICAL LEGEND • LESS THAN 50 ppm • 50 - 110 ppm @ 110 - 230ppm MORE THAN 230 ppm S J HOFFMAN October 8, 1970 -107 RAYFIELD RIVER - BONAPARTE RIVER REGIONAL RECONNAISSANCE FIGURE 16B DISTRIBUTION OF SODIUM (PPM) IN LAKE WATER N TOPOGRAPHIC LEGEND Creeks and Rivers Zy Swamps ZD Lakes L5223 Local Property Lots ROADS Loose or Stabilized Surfaces, Al l Weather Loose Surfaco, Dry Weather 4 MILES GEOCHEMICAL LEGEND • LESS THAN 7 0 p p m • 70 - 2 9 0 p p m A 290 - l l 50ppm MORE THAN 1150ppm S J HOFFMAN October 8, 1970 -108-RAYFIELD RIVER - BONAPARTE RIVER RECONNAISSANCE REGIONAL FIGURE 16C DISTRIBUTION OF POTASSIUM (PPM) IN LAKE WATER N L5223 ROADS TOPOGRAPHIC LEGEND GEOLOGIC CONTACT Contour Interval 100 Feet Creeks and Rivers Swamps Lakes Local Property Lots GEOCHEMICAL LEGEND • LESS THAN 7 Loose or Stabilized Surfaces, Loose Surfaco, Dry Weather All Weatiier 7 - 1 8 ppm ppm 18 - 47 ppm MORE THAN 47 ppm 4 MILES S J HOFFMAN October 8, I97C -109-B„ D i s c u s s i o n (a) F a c t o r s A f f e c t i n g Trace Element D i s t r i b u t i o n 4 i„ T h e o r e t i c a l c o n s i d e r a t i o n s The t o t a l content of copper d i s s o l v e d i n aqueous s o l u t i o n may be expressed by the sum of the c o n t r i b u t i o n s from each of i t s s o l u b l e s p e c i e s . I n the present t r e a t -ment, only C u + + , CuOH+, CuCUj, CuCCO^)^'", and CuCCO^XQE^T have been considered. Other p o s s i b l e i n o r g a n i c complexes w i t h sulphate or c h l o r i d e and a broad range of org a n o m o t a l l i c complexes have been ig n o r e d , as no in f o r m -a t i o n t o t h e i r nature or c o n c e n t r a t i o n i s a v a i l a b l e . E q u i l i b r i u m constants have been taken from S i l l e n and M a r t e l l (1957). C u t Q t = ( C U + + ) + ( C U O I - I + ) H - ( C U C0 3) + ( C U ( C 0 3 ) 2 " 2 ) + C U ( C 0 3 ) (0H) 2" 2 "f" oooo C~^*) = (Cu* + ) + ( C u + + ) 1Q~7-5 ,.(Cu + +) 1 0 6 o 7 7 ( C 0 3 2 ) + (H +) ( 0 u + + ) 1 0 1 0 ° 0 1 ( 0 0 3 - 2 ) 2 + ( C u + + ) 10" 1 3(C0. 3" 2) = ( C u + + ) l+iolZl^  + io6o77(co:2)-f io101,01 ( C 0 ~ 2 ) 2 + (H +) io~13(co32) ( H + ) 2 = ( C u + + ) ( f a c t o r ) ; whore ( ) denotes the a c t i v i t y of a p a r t i c u l a r species and ( f a c t o r ) i s a term which i s dependent on the pH and carbonate i o n a c t i v i t y . •1 l o -i n a l k a l i n e s o l u t i o n s , species towards the end of equation 1 become important, whereas i n a c i d i c s o l -u t i o n s , copper e s s e n t i a l l y e x i s t s as the c u p r i c i o n (Silman, 1958), Copper i s l e a s t s o l u b l e i n n e u t r a l or s l i g h t l y a l k a l i n e c o n d i t i o n s (Krauskopf, 1967)» S o l i d s , such as ma l a c h i t e , a z u r i t e , b r o c h a n t i t e and others are not d i r e c t l y considered i n equation 1, They do, however, c o n s t r a i n the maximum a l l o w a b l e c u p r i c i o n c o n c e n t r a t i o n , For example, when malachite i s -present i n e q u i l i b r i u m w i t h water, a s o l u b i l i t y product r e l a t i o n s h i p K = ^ 2— — (Cu^^gCCO^ ) (OH )2 e x i s t s . Thus, i f the carbonate content and pH remain constant, an i n c r e a s e i n the c u p r i c i o n c o n c e n t r a t i o n w i l l r e s u l t i n the p r e c i p i -t a t i o n of malachite i f e q u i l i b r i u m i s to bo maintained. I t i s t h i s type of phenomena which l i m i t s the t o t a l d i s -s o l v e d copper content i n the environment of the R a y f i e l d R i v e r copper p r o p e r t y i n p a r t i c u l a r and t h i s p a r t of B r i t i s h Columbia i n g e n e r a l , i i . I n f l u e n c e of organic matter, pH and evaporation on t r a c e element contents No stream water sample contained a g r e a t e r copper c o n c e n t r a t i o n than the c a l c u l a t e d t h r e s h o l d of 56 ppb. Highest coppor (39 ppb) and z i n c (90 ppb) v a l u e s were i n samples c o l l e c t e d near the s y e n i t e - T e r t i a r y b a s a l t c o n t a c t . Here, streams arc swampy and water has a pH as low as 7»1. Since t r i b u t a r y stream water becomes more a l k a l i n e i n f l o w i n g towards the R a y f i e l d R i v e r ( F i g . 3AC), the observed decrease i n copper v a l u e s ( F i g . 14-A) may be e x p l a i n e d by the decreased s o l u b i l i t y under i n c r e a s i n g a l k a l i n e c o n d i t i o n s . One pH u n i t d i f f e r e n c e seen between t r i b u t a r y and R a y f i e l d R i v e r water may, as d e s c r i b e d i n s e c t i o n "A", r e s u l t i n up to a t e n f o l d decrease i n the maximum al l o w a b l e t o t a l copper content. The nature of the d i s s o l v e d organic matter or i t s content i s not known, but presumably, w i l l decrease as swampy c o n d i t i o n s are r e p l a c e d by sandy stream beds. Complex-a t i o n and hence c o n t r i b u t i o n s from organo-coppor com-p l e x e s to the t o t a l d i s s o l v e d content, i n g e n e r a l , v a r i e s s y m p a t h e t i c a l l y w i t h pH on t h i s p r o p e r t y . Hydromorphic d i s p e r s i o n of z i n c i s l e s s i n f l u -enced by pH then copper (Mehrtons, 1966), The e f f e c t of d i s s o l v e d o r g a n i c matter, however, may be of g r e a t e r importance. Zinc analyses do not seem to form a d i s -p e r s i o n t r a i n away from known m i n e r a l i z a t i o n , but r a t h e r shows the same d i s t r i b u t i o n ( F i g . 14B) as tha t of copper ( F i g . 14-A). High z i n c v a l u e s , then, appear more i n f l u e n c e d by the swampy nature of the creeks than by primary s u l p h i d e s . S p r i n g water contains h i g h e r copper and z i n c contents r e l a t i v e to stream and l a k e water (Tables XVIII and XX). Springs are not found i n s u f f i c i e n t numbers to bo of more than p a s s i n g i n t e r e s t . They do, however, i n f e r i n f o r m a t i o n on the formation of stream -412-sediment and s o i l anomalies. S p r i n g water i s s l i g h t l y -l e s s a l k a l i n e by 0.5 pH u n i t s than R a y f i e l d R i v e r water. When s p r i n g water merges w i t h t h a t of the R a y f i e l d R i v e r , i t s pH i s i n c r e a s e d and p r e c i p i t a t i o n may occur to s a t i s i f y equation 1. Extent of copper p r e c i p i t a t i o n i s dependent on tho r e l a t i v e volume of water from the s p r i n g and tho r i v e r . Springs are common on the east bank of the R a y f i e l d R i v e r at the Z bend. They are r e s t r i c t e d to narrow channels and i n f l u e n c e the t r a c e metal content of o n l y a s m a l l area. Seeps, on the other hand, emerge over a much wider area on tho other bank of the Z bend. Evap o r a t i o n of water, concomitant w i t h d e p o s i t i o n of t h e i r d i s s o l v e d l o a d r e s u l t s i n the formation of copper anomalies. Such i s the case i n l e u c o c r a t i c s y e n i t e where h i g h l y f r a c t u r e d and f r i a b l e rock i s f a v o r a b l e f o r water p e r c o l a t i o n from l a k e s on the p l a t e a u . P l a t o 1 c l e a r l y shows the process of anomaly formation where malachite i s p r e c i p i t a t e d from ground water. Sodium, potassium, calcium and magnesium con-t e n t s are h i g h e r i n t r i b u t a r y creeks than i n the R a y f i e l d or Bonaparte R i v e r . Lake water samples c o n t a i n s t i l l h i g h er c o n c e n t r a t i o n s . This t r e n d suggests t h a t evap-o r a t i o n i s more important as a mechanism f o r l o s i n g water than i s r u n o f f , c o n s i s t e n t w i t h the sem i a r i d c l i m a t e and o c c a s i o n a l s a l t p r e c i p i t a t e s v i s i b l e around the shores of some l a k e s . Lake water i s s l i g h t l y more a l k a l i n e than stream water (pH of 8.1 versus 7..8) and i s Copper deposited as malachite from ground water i n l e u c o c r a t i c s y e n i t e at the Z bend. - 1 1 ' ! a media where complex formation i s more l i k e l y . These two f a c t o r s a p p a r e n t l y cancel each other f o r copper, i r o n and manganese, as t h e i r contents i n streams or la k e s are e s s e n t i a l l y the same (Table XVIII)„ Z i n c , however, i s probably more i n f l u e n c e d by the organic matter content and hence i s present i n higher concen-t r a t i o n s i n lake water. Subject t o the pre c e d i n g con-s t r a i n t s , the copper and z i n c d i s t r i b u t i o n a p p a r ently r e f l e c t s m i n e r a l i z a t i o n i n bedrock and f l o a t . T h i s r e -l a t i o n s h i p w i l l be c l e a r e r a f t e r the discusson on la k e sediments i s considered. (b) A p p l i c a t i o n to E x p l o r a t i o n Water sampling has not been w i d e l y used as a geochemical e x p l o r a t i o n t o o l . Boylo c t a l (1966) found t h a t most known orebodies i n Nov; Brunswick were dra i n e d by creeks having a h i g h heavy metal content. Boyle c t a l (1971) f u r t h e r e l a b o r a t e d on the expected . d i s p e r s i o n t r a i n of z i n c away from a Cu-Zn deposit i n the Canadian s h i e l d . Warren et a l (1966) observed t h a t water c o l -l e c t e d from a s p e c i f i c s i t e along a creek may c o n t a i n anomalous copper c o n c e n t r a t i o n s f o r only a short p e r i o d of time d u r i n g tho year. Byck (1971) and K i g r i n i (1971) r e p o r t the uso of la k e water samples i n r e g i o n a l e x p l o r -a t i o n f o r Uranium and other elements. V a r i a t i o n of copper content i n a l k a l i n e e n v i r o n -ments may not be s u f f i c i e n t l y groat to a l l o w f o r d e t e c t i o n -115-of anomalioSo The search f o r t h i s metal i s r e s t r i c t e d by such e q u i l i b r i u m f a c t o r s as p r e c i p i t a t i o n , adsorp-t i o n onto sediment, complexation w i t h organic matter and u t i l i z a t i o n by organisms. Each can act independ-e n t l y and i n a nonuniform manner over the p r o p e r t y . Thus, i t i s not p o s s i b l e t o a s c e r t a i n i f the copper content of stream water i s at the maximum a l l o w a b l e by e q u i l i b r i u m c o n d i t i o n s or i f copper enhancements are r e l a t e d to su l p h i d e m i n e r a l i z a t i o n . Although tho same r e l a t i o n s are true f o r l a k e water, a r e g i o n a l anomaly seems to o v e r l y rocks of the s y e n i t e i n t r u s i v e . Reason f o r the success of the l a t t e r survey, however, i s not known. Chemical e q u i l i b r i u m and the r i s k of contamination d u r i n g sample p r c t r c a t m e n t s o f t e n l i m i t s the u s e f u l n e s s of t h i s typo of survey, 2, Stream Sediments A, Trace element d i s t r i b u t i o n Trace element data f o r stream sediments were t r e a t e d e m p i r i c a l l y as a p o p u l a t i o n f o l l o w i n g a lognormal d i s t r i b u t i o n (Table X X I I I ) , Log p r o b a b i l i t y p l o t s of the r e s u l t s ( E i g , 18) suggest s e v e r a l p o p u l a t i o n s , a p p a r e n t l y i n d i c a t i v e of tho R a y f i e l d R i v e r , other r e g i o n a l streams i n c l u d i n g the Bonaparte R i v e r and seepages (Table X X I I ) , Tho copper anomaly d e f i n e d by the Amax survey of 1969 was confirmed d u r i n g the present work. R a y f i e l d R i v e r sediments taken on the p r o p e r t y have c o n s i s t e n t l y h i g h e r copper c o n c e n t r a t i o n s compared w i t h those taken from i t s t r i b u t a r i e s and other creeks on the r e g i o n a l survey. Enhancements are t y p i c a l from C r a t e r Lake to v/i t h i n 1 /2 m i l e of the j u n c t i o n w i t h the Bonaparte R i v e r , forming a d i s p e r s i o n t r a i n 6 m i l e s l o n g , A maxi-mum value of 200 ppm copper was found j u s t n o r t h of the Z bend and the mean value of 100 ppm i s n e a r l y f o u r times g r e a t e r than a r e g i o n a l background of 26 ppm (Table X X I I ) , Only sediments a s s o c i a t e d w i t h seepages, where the average value i s 250 ppm, have h i g h e r contents, Tho anomaly decays over s e v e r a l hundred f e e t p r i o r to the j u n c t i o n of the R a y f i e l d and Bonaparte R i v e r s , No evidence f o r anomalous sediments can be detected at the j u n c t i o n of tho two r i v e r s or along the Bonaparte R i v e r , Copper to z i n c r a t i o s c a l c u l a t e d from mean values i n Table XXII exceed u n i t y only i n most R a y f i e l d R i v e r and seepage samples. The g r e a t e s t average z i n c , i r o n and manganese contents are a l s o found i n R a y f i e l d R i v e r sediments„ Zinc data, on F i g 17B, appears more complex than t h a t of copper. The g r e a t e s t z i n c contents wore meas-ured i n sediment samples from the R a y f i e l d R i v e r whore i t flows over the n o r t h e r n h a l f of tho p r o p e r t y (range of 75 - 110 ppm) wh i l e values lower than the mean of 65.ppm are common over tho southern h a l f of tho r i v e r . I n comparison, the z i n c content of Bonaparte R i v e r s c d i -merit v a r i e s w i t h i n tho narrow l i m i t s of 34 - 47 ppm and has an average c o n c e n t r a t i o n (40 ppm) s i m i l a r t o t h a t found f o r creeks on the p l a t e a u , although the lattc3? shows g r e a t e r v a r i a b i l i t y (moan 40 ppm, range 25 - 65 ppm) „ Two p o p u l a t i o n s are apparent i n F i g , 18, the p r o b a b i l i t y p l o t of z i n c analyses. One p o p u l a t i o n en-compasses 33$ of the samples and has a mean value of 73 ppm, A t h r e s h o l d of 74 ppm f o r the second population-i s only exceeded i n samples taken from the R a y f i e l d R i v e r , R a y f i e l d and Bonaparte R i v e r sediments have above average i r o n contents ( F i g , 1 7 0 ) . The g r e a t e s t value i n e i t h e r r i v e r , 3°8/4 was found i n a sediment c o l l e c t e d south of C r a t e r Lake along tho.t p a r t of the R a y f i e l d R i v e r f l a n k e d by T e r t i a r y b a s a l t outcrops. Other measurements g r e a t e r than tho mean were almost ex-c l u s i v e l y r e s t r i c t e d to s i l t s c o l l e c t e d from crocks o v e r l y i n g or i n c l o s e p r o x i m i t y to T e r t i a r y b a s a l t or N i c o l a v o l c a n i c bedrock. I n c o n t r a s t , lower values were observed elsewhere on tho p l a t e a u and i n seepages. Three i r o n r i c h sediments found i n regions 2 and 3 (Table XXV) were not enriched i n copper or z i n c . The d i s t r i b u t i o n of manganese ( F i g . 17D) i s sim-i l a r to t h a t of copper, R a y f i e l d R i v e r sediments have an average content of 1350 ppm which i s n e a r l y double t h r e g i o n a l mean of 700 ppm whil e those of the Bonaparte R i v e r are r e l a t i v e l y low and constant (mean 300 ppm, 118-range 200 - 4-00 ppm) ° Values lower than the r e g i o n a l moan arc found i n region s 3 and 4 and hig h e r i n regions 1 and 2 0 The copper anomalies d i s c o v e r e d on the p l a t e a u c o e x i s t w i t h s i m i l a r zones of manganese enrichment. S i l t sediments f o r a time l a p s e study were c o l -l e c t e d from the same s i t e s as r e p o r t e d under the data s e c t i o n f o r stream water (chapter 3 , page 9 3 ) . Stream sediment analyses show a s i m i l a r t r e n d i n values w i t h time o n l y at s t a t i o n 1, l o c a t e d near many emerging spr i n g s at the Z bend. Here, enhancements of 4-0$ to 50$ i n t r a c e metal contents d u r i n g the summer were ob-served. Otherwise, values at other s t a t i o n s remained e s s e n t i a l l y constant w i t h i n a n a l y t i c a l p r e c i s i o n (Table X I I I ) . B„ D i s c u s s i o n (a) F a c t o r s a f f e c t i n g t r a c e clement d i s -t r i b u t i o n Stream sediment sampling has detected an anom-alous area at l e a s t f o u r times enriched i n coppor versus a r e g i o n a l background of 26 ppm„ Copper enhancements are f i r s t encountered when the R a y f i e l d R i v e r begins to d i s s e c t rocks of tho s y e n i t e i n t r u s i o n . The R a y f i e l d R i v e r anomaly extends 6 m i l e s commencing at C r a t e r Lake and p e r s i s t i n g u n t i l 1/2 m i l e n o r t h of the Bonaparte R i v e r j u n c t i o n , decaying r a p i d l y over s e v e r a l hundred Table XXII Trace metal content (ppm) of stream sediments, -80 mesh f r a c t i o n , n i t r i c / p e r c h l o r i c a c i d a t t a c k PLATEAU PLATEAU AND BONAPARTE RIVER RAYFIELD RIVER BONAPARTIj SEEPAGE RIVER j Cu Threshold 180 144 400 31 2700 Moan 28 26 101 17 250 Range 11-71 11-60 50-205 13-23 76-825 Zn Threshold 105 96 150 55 • 128 Mean 40 40 65 40 40 Range 25-65 26-62 43-99 34-47 22-72 Fe$ Threshold 8,8 7.7 5.6 2.5 7.2 Mean 1.6 1.6 2.4 1.8 1.1 Range 0.7-3.7 0 .7-3 .5 1.6-3.7 1.6-2.1 0.45-2.9 Mn Threshold 1.7;' 1„2# 9500 500. 3300 Mean 860 700 1350. 300. 620 Range 190-3800 170-2850 300-3600 215.-390. 270-1400 Number of samples 50 62 22 12 10 Tabic X X I I I Comparison of t r a c e metal content (ppm) of stream and lak e sediment, -80 mesh f r a c t i o n , n i t r i c / p e r c h l o r i c a c i d a t t a c k STREAM SEDI-MENTS VALUE-PPM NUMBER OP SAMPLES LAKE SEDI-MENTS VALUE NUMBER OP SAMPLES Cu Threshold 490 • 95 Moan 48 91 23 30 Range 15-155 12-47 Zn Threshold 120 96 Mean 46 91 38 30 Range 28-75 24-60 Pe$ Threshold 5 = 9 4.6 Mean 1.6 91 1.4 30 Range 0.8-3 .1 0.76-2.5 Mn Threshold 7 300 1025 Mean 700 91 300 30 Range 230-2300 160-560 Table XXIV Trace metal and major element content of water and sediment c o l l e c t e d from time lapse sampling s t a t i o n s , summer 1 9 7 0 WATER WATER SEDIMENT pra PPB PPM STATION DATE K Kg Ca Na HCO3 SO4 C l Cu Zn Fe Mn PH Cu Zn Fei Kn 1 2 / 7 2 . 2 2 2 26 20 175 2 . 5 0 . 2 5 ft 5 6 7 . 8 125 6 0 2 . f t 9 0 0 1 0 / 7 2 . 2 2 2 2 f t 18 195 2 . 5 0 . 2 5 3 3 6 7 . 6 185 9 0 3 . 2 1 3 0 0 2 5 / 7 2 . f t 2 1 3 0 2 0 200 5 . 0 0 . 2 5 2 3 3 3 0 9 0 8.0 18 2 1 1 . 0 600 1 5 / 7 2 . 8 2 2 28 2 f t 220 2 . 5 1 3 220 1 0 0 7 . 7 2 0 2 5 1 . 3 600 19/0 3 . 2 28 3 2 3 1 2 5 0 2 . 5 2 ft 3 2 0 9 5 7 . 9 2 3 2 7 1 . 3 1 9 0 0 3 5 / 7 0.07 1 2 ft.7 3 . f t 5 5 2 . 5 O . 2 5 . 1 1 7 7 . 7 19 3 6 1 . 7 2ft0 1 5 / 7 0 . 9 f t 1 3 ft. 7 3 . 5 5 5 2 . 5 1 2 3 2 0 10 7 . 3 16 ftz 1 . 8 260 1 9 / 8 0 . 9 I 1 f t ft.O 3 . 9 6 0 2 . 5 1 2 6 7 . 8 17 fto 1 . 7 2 7 0 ft 1 3 / 7 O . 9 6 1 5 5 . 7 ft.o 6 5 2 . 5 1 3 10 8.1 1 f t 3 5 1 . 8 2 7 0 19/0 0 . 9 9 1 f t 6 . 0 5 . 0 6 0 2 . 5 1 2 6 5 3 3 7 . 7 1 f t 3 3 1 . 7 260 5 1 3 / 7 0 . 9 f t 1 f t ft.6 3 . 3 5 5 2 . 5 1 3 6 5 7 7 . f t 12 ftl 1 . 8 280 19/8 0 . 9 I 1 f t ^ . 9 3 . 8 6 5 ft.O 1 5 3 5 6 8.0 1 f t ft3 1 . 9 3 5 0 6 7 / 7 1 . 6 3 f t 2 3 17 200 2 . 5 2 3 1 3 0 60 7 . 8 2 5 57 2 . 2 1 2 5 0 1 9 / 8 1 . 8 3 7 2 9 2 f t 2 2 5 2 . 5 3 9 9 5 100 7 . 8 22 5* 3.3 1200 S t a t i o n 1 1 Crossing bf the R a y f i e l d River at the Z bend S t a t i o n 2 j R a y f i e l d River above the junction with the Bonaparte River S t a t i o n 3 i Bonaparte River above the junction with the R a y f i e l d River S t a t i o n fti Bonaparte River 2|- miles downstream from the junction S t a t i o n 5 1 Bonaparte River 2\ miles upstream from the junction S t a t i o n 61 R a y f i e l d River above f a l l s t o Crater Lake Tabic XXV Copper and z i n c content (ppm) of i r o n and manganese r i c h sediments SAMPLE NUMBER fSFe #Mn PPM Cu PPM Zn 1282 9 2.7 7 21 1295 18 o„9 10 40 2053 17 4 , 2 6 27 - 1 2 3 THE DANSEY - RAYFIELD RIVER COPPER PROPERTY FIGURE 17A DISTRIBUTION OF COPPER (PPM) IN STREAM SEDIMENTS -80 MESH FRACTION TOPOGRAPHIC LEGEND GEOCHEMICAL LEGEND N GEOLOGICAL CONTACT Contour Intervol 100 feel Creeks, and Rivers Swamps I I Lakes Loca l Grid Control Points T LESS THAN l5ppm • 15 - 48 ppm • 48 - 155 ppm 9 155 - 490 ppm MORE THAN 490 ppm THE DANSEY-RAYFIELD RIVER COPPER PROPERTY FIGURE 17B DISTRIBUTION OF ZINC (PPM) IN STREAM SEDIMENTS N . -SO MESH FRACTION 1 • TOPOGRAPHIC LEGEND GEOCHEMICAL LEGEND 1 GEOLOGIC CONTACT Contour Intervol 100 feet r _ Creeks, and Rivers LESS THAN 28 p p r a W » ^ 28-46 ppm 46 - 75 p p m • L o k f s Loco l Grid Control Polrtti 5000 f t r r 75 - 120 ppm MORE THAN 120 p p m N 4 N THE DANSEY - RAYFIELD RIVER COPPER PROPERTY FIGURE 17C DISTRIBUTION OF IRON (#) IN STREAM SEDIMENTS -80 MESH FRACTION TOPOGRAPHIC LEGEND GEOCHEMICAL LEGEND GEOLOGIC CONTACT + Contour Intervol 100 lee) Creeks, ml Rivers Swamps Lakes Loca l Grit) Control Points 5 0 0 0 F t t T LESS THAN 0.8 % 0.8 - 1.6 i 1.6 - 3 .1 i 3.1 - 5.9 $ MORE THAN 5 .9 £ -126 THE DANSEY-RAYFIELD RIVER COPPER PROPERTY FIGURE 17D DISTRIBUTION OF MANGANESE (PPM) IN STREAM SEDIMENTS N As -80 MESH FRACTION TOPOGRAPHIC LEGEND GEOCHEMICAL LEGEND GEOLOGIC CONTACT — Contour Intervol 100 feet Creeks, and Rivers < = ^ ^ > Swomps Lakes Loco l Grid Control Points 5000 FEET LESS THAN 230 ppm _ 230 - 725 ppm • 725 - 2300 p p m W 2300 - 7300 ppm MORE THAN 7300 ppm - 1 2 7 -10,000 5,000 1000 5 0 0 1 0 0 . a, 10 N ) \ \ \ v \ \ \ > \ \ \ \ V \ V ZN \ \ \ N \ \ \ \ . \ \ cu " > \ 0.01 o. I 2 0 8 0 95 99 99.9 99.99 FIGURE 18 LOG PROBABILITY PLOTS OF COPPER AND ZINC DATA FROM STREAM SEDIMENTS LEGEND A,B CONTRIBUTING POPULATIONS +,• EXPERIMENTAL DATA POINTS o CALCULATED. DATA POINTS 1 oo — X.CXJ — f e e t to background v a l u e s , A maximum value of 200 ppm o v e r l i e s tho most s t r i k i n g copper anomaly i n bedrock as de s c r i b e d i n chapter 3 , page 90, In c o n t r a s t , areas of copper enrichments are ra r e on the p l a t e a u . Only two s i g n i f i c a n t anomalies have been detected, each based on three sample analyses, i n regions 2 and 3 , S e v e r a l e x p l a n a t i o n s are forwarded: 1, Coppor sulphide minerals wore never deposited w i t h i n s y e n i t e which u n d e r l i e s the p l a t e a u , that i s genesis number 2 (chapter 3, page 81). A l t e r n a t i v e l y , p l a t e a u creeks d i s s e c t barren bedrock and do not i n t e r s e c t many m i n e r a l i z e d zones which may u n d e r l i e the p l a t e a u . This hypothesis i s c o n s i s t e n t w i t h genesis number 1 (page 81 ), where tho grade of copper enrichment i n the c o n c e n t r i c zone i s not uniform, 2, A geochemical response to u n d e r l y i n g sulphide m i n e r a l i z a t i o n i s not p o s s i b l e because the g l a c i a l overburden i s too t h i c k , Tho e r o s i v e a b i l i t y of t r i b u t a r y creeks i s not s u f f i c i e n t to penetrate tho s u r f i c i a l d e p o s i t s and a t t a c k bedrock, 3° Copper m i g r a t i o n i n ground water s o l u t i o n s i s a r r e s t e d by p r e c i p i t a t i o n i n the a l k a l i n e ' C h o r i z o n of tho s o i l . Therefore, copper cannot enter the drainage system from p e r c o l a t i n g sub-surface water. -129 •  4, Stream sediment samples belong to d i f f e r e n t pop-u l a t i o n s . The c h a r a c t e r of s i l t s c o l l e c t e d from tho R a y f i e l d R i v e r d i f f e r s from those of i t s t r i b u t a r i e s i n the composition of the parent m a t e r i a l , g r a i n s i z e , organic matter content and pl-l 0 Each of the above e x p l a n a t i o n s may c o n t r i b u t e to d i f f e r e n t extents at any given p o s i t i o n on tho topographic s u r f a c e . The primary d i s p e r s i o n of copper has been d i s -cussed i n a preceding s e c t i o n (chapter 3, pages 59 - 91) and i t was seen t h a t no d e f i n i t e c o n c l u s i o n s on the con-s i s t e n c y and grade of the copper m i n e r a l i z a t i o n could be made. No doubt overburden t h i c k n e s s e s i n excess of 25 f e e t , which are common, and the a l k a l i n e c o n d i t i o n s of the parent m a t e r i a l m i t i g a t e a g a i n s t a geochemical ex-p r e s s i o n of p o s s i b l e m i n e r a l i z e d zones i n bedrock hidden beneath g l a c i a l d e p o s i t s of the p l a t e a u . And y e t , tv/o anomalies have been d i s c o v e r e d i n s p i t e of the absence of bedrock i n t h e i r v i c i n i t y , F a c t o r 4 above i s important i n e x p l a i n i n g the occurrence of the R a y f i e l d R i v e r stream sediment coppor anomaly. Along the northern h a l f of i t s course, the R a y f i e l d R i v e r i s a c t i v e l y abrading m i n e r a l i z e d bedrock, forming a sediment r i c h i n o r t h o c l a s e . Hornblende, pyroxene and b i o t i t e , other c o n s t i t u e n t m i n e r a l s of hornblende s y e n i t e , arc c h e m i c a l l y weathered to hydrous i r o n oxides and s o l u b l e c o n s t i t u e n t s , and are t h e r e f o r e found i n reduced q u a n t i t i e s i n the sediment,, Over the p l a t e a u , sediment i s d e r i v e d from g l a c i a l d e p o s i t s and i s r i c h i n quartz and organic matter. Higher copper and other t r a c e element contents are more t y p i c a l of the former sediment type than of the l a t t e r . Thus, sediment t e x t u r e , d i r e c t l y r e l a t e d to provenance can be c o r r e l a t e d approximately w i t h copper content on t h i s p r o p e r t y . Copper may be concentrated i n accumulations of o r g a n i c matter or adsorbed onto the surface of hydrous secondary i r o n oxides or p r e c i p i t a t e s (Boyle et a l , 1966), E i t h e r of these two f a c t o r s can be r e s p o n s i b l e f o r spur-i o u s l y h i g h v a l u e s , A h i g h copper value a s s o c i a t e d w i t h s i l t s e n r i c h e d i n organic matter may be discounted i n some cases i f a c o r r e s p o n d i n g l y high z i n c content i s a l s o found ( H o r s n a i l et a l , 196?) -> I n the present study, the g r e a t e s t z i n c c o n c e n t r a t i o n i s o n l y 110 ppm. A l -though samples l i s t e d i n Table XXV are enhanced i n c i t h e r i r o n or manganese, copper does not appear to have been en r i c h e d . Consequently, n e i t h e r i n c l u s i o n of copper i n organic accumulations or a d s o r p t i o n onto secondary hydrous i r o n or manganese oxides i s thought 'to bo s i g -n i f i c a n t . (b) A p p l i c a t i o n to e x p l o r a t i o n Stream sediment surveys have been used extens-i v e l y as a f i r s t stage i n m i n e r a l e x p l o r a t i o n . Govern-mental agencies and e x p l o r a t i o n companies u t i l i z e r e g i o n a l geochemical programs as a step i n the d e f i n -i t i o n of areas of abnormal c o n c e n t r a t i o n of a p a r t i c u l a r metal or metals, Boyle et a l (1966) f o r example, found s e v e r a l l e a d , z i n c , copper, a r s e n i c , antimony and s i l v e r zones by a n a l y s i s of stream sediments i n New Brunswick, Other examples are given by Hawkcs and Webb (1962), In the present, study, tho R a y f i e l d R i v e r copper anomaly i s of a s u f f i c i e n t l y l a r g e s i z e so t h a t even a sample d e n s i t y between 1/2 and 1 per m i l e would be adequate f o r i t s d e t e c t i o n . D e t a i l e d surveys are common once a t a r g e t zone has been e s t a b l i s h e d . Sample spacings v a r y , depending on t e r r a i n and company ph i l o s o p h y , but i s g e n e r a l l y about ;+ s i t e s p er mile (5 s i t e s per mile i n the present work). Examples of t h i s type of drainage survey i n B r i t i s h Columbia are a v a i l a b l e i n annual r e p o r t s of tho Bureau of Mines, V i c t o r i a where work has been claimed i n l i e u of assessment fees on mi n e r a l c l a i m s . Copper values of the R a y f i e l d R i v e r anomaly vary between 75 ppm and 200 ppm along i t s 6 m i l e l e n g t h , Tho g r e a t e s t accumulations of t h i s metal i n sediments o v e r l i e the most s t r i k i n g copper anomaly detected i n bedrock. Measurements decay r a p i d l y to 13 ppm near the -13 2~ j u n c t i o n of the Bonaparte R i v e r over a d i s t a n c e of 3000 f e e t . Two p r e v i o u s l y unknown zones of enrichment were dis c o v e r e d i n region s 2 and 3 ( F i g . 1?A), 200 ppm i s the maximum copper content of tho anomaly i n r e g i o n 2, comparable w i t h v a l u e s obtained from tho R a y f i e l d R i v e r , w h i l e 300 ppm i s the hig h e s t measurement of the zone i n r e g i o n 3. U n f o r t u n a t e l y , only a small f r a c t i o n of the p l a t e a u surface i s d i s s e c t e d by creeks and, t h e r e f o r e , i n f o r m a t i o n i s not a v a i l a b l e f o r a great p r o p o r t i o n of the p r o p e r t y . P e c u l i a r i t i e s v i t a l to s u c c e s s f u l d i s c o v e r y of t h i s p r o p e r t y i n c l u d e ease of access and re f e r e n c e data on the area a v a i l a b l e i n governmental p u b l i c a t i o n s . As roads do not t r a v e r s e zones of copper enrichment of tho b a t h o l i t h ( P i g , 1 and 17A), sediments c o l l e c t e d from creeks f l o w i n g near roads are not u s u a l l y anomalous i n t h i s metal. Values higher than 100 ppm, on a reconno.is-sance s c a l e , w i l l only be found i f a s p e c i a l e f f o r t i s made to descend 300 to 400 f e e t t o the bottom of tho R a y f i e l d R i v e r valley... E a s i l y reached p a r t s of the R a y f i e l d R i v e r above C r a t e r Lake and at the Bonaparte-R i v e r j u n c t i o n aro not anomalous i n copper. Thus, sampling at the most a c c e s s i b l e s i t e s would l i k e l y miss the copper r i c h zone. The g e o l o g i c a l map of Campbell and Ti p p e r (1966) does not d i f f e r e n t i a t e the s y e n i t e bath-o l i t h from the Thuy b a t h o l i t h . Sediments c o l l e c t e d from tho many road c r o s s i n g s r e g i o n a l l y (unpublished f i e l d r e p o r t s , Amax E x p l o r a t i o n I n c . , 1968-1969) have copper values l e s s than or s i m i l a r to those d e s c r i b e d here as background (moan 26 ppm, range 11 - 60 ppm). Such r e -s u l t s do not f a v o r a more d e t a i l e d study r e q u i r e d f o r p r o p e r t y d i s c o v e r y . 3. Lake Sediments A. Trace Element D i s t r i b u t i o n The d i s t r i b u t i o n of copper, i r o n , manganese and z i n c i n nearshore l a k e sediments o u t l i n e s bedrock of the s y e n i t e i n t r u s i o n . Zones of copper enhancement c o i n c i d e w i t h s i m i l a r anomalies d i s c o v e r e d i n outcrop ( F i g . 9A) and f l o a t ( F i g . 20) samples. The most s t r i k i n g zone of copper enrichment ( F i g , 19A) i s centred around the Z bend where up to 150 ppm has boon measured. Lake sediments over tho remainder of the b a t h o l i t h have copper contents g r e a t e r than 23 ppm, the mean value of the r e g i o n a l survey. Lakes sampled elsewhere d u r i n g the r e g i o n a l program had copper contents between 10 and 20 ppm i n t h e i r sediments. R e s u l t s a l s o show t h a t l a k e s i l t s c o n t a i n a lower range (12 - 4-7 ppm versus 15 - 150 ppm) and t h r e s h o l d (95 ppm versus 500 ppm) of t h i s metal than samples from creoks c o l l e c t e d i n the same area. No c o r r e l a t i o n was observed between f i e l d e s t i m -ates of the organic matter content of samples and t h e i r -134-coppcr content„ Organic r i c h sediments do, however, show a g r e a t e r v a r i a b i l i t y i n copper v a l u e s than i s ob-served w i t h sandy sediments. Organic r i c h s i l t s show a range i n values between 4 and 150 ppm, while sandy s e d i -ments have contents v a r y i n g between 13 and 55 ppm. The h i g h e s t z i n c content ( P i g . 19B) of s i l t s o v e r l y i n g s y e n i t e bedrock i s only s l i g h t l y h i g h e r than the r e g i o n a l mean of 38 ppm and i s found i n a small zone oast of the Z bond. Lake sediments from tho remainder of the b a t h o l i t h have s l i g h t l y lower v a l u e s . T h i s t r e n d i s r e v e r s e d where u n d e r l y i n g bedrock i s T e r t i a r y b a s a l t . Examination of Table X X I I I shows t h a t l a k e sediments arc r e l a t i v e l y poorer i n z i n c than stream sediments (means of 38 ppm versus 46 ppm and t h r e s h o l d s of 96 ppm versus 120 ppm). Coppor to z i n c r a t i o s are approximately equal to u n i t y i n sediments taken above i n t r u s i v e rocks and l e s s than one elsewhere i n tho area. I r o n and manganese v a l u e s vary i n a s i m i l a r manner ( P i g . 19C and D). Greatest enrichments of these elements approximately o v e r l y the r e g i o n of maximum i r o n content i n the i n t r u s i v e ( P i g . 11A) and over T e r t i a r y b a s a l t bedrock. The d i s t r i b u t i o n of i r o n and manganese over the i n t r u s i v e forms two e n r i c h e d zones l y i n g n o r t h and south of the copper and z i n c anomalies. Again, l a k e sediments are s i g n i f i c a n t l y d epleted i n i r o n and mangan-ese compared w i t h those of streams (Table X X I I I ) . RAYFIELD RIVER - BONAPARTE RIVER REGIONAL RECONNAISSANCE FIGURE 19A DISTRIBUTION OF COPPER (PPM) IN LAKE SEDIMENTS ' -80 MESH FRACTION N L5223 ROADS TOPOGRAPHIC LEGEND GEOLOGIC CONTACT Contour Interval 100 Feet Creeks and Rivers Swamps Lakes Local Property Lots Loose or Stabilized Surfaces, Loose Surfaca, Dry Weather 4 MILES All Weatiier GEOCHEMICAL LEGEND • LESS THAN 23 ppm 9 2 3 - 4 7 ppm W - 95 ppm MORE THAN 95 ppm S J HOFFMAN Ocloter 8, 9 7 0 RAYFIELD RIVER - BONAPARTE RIVER REGIONAL RECONNAISSANCE FIGURE 19B DISTRIBUTION OF ZINC (PPM) IN LAKE SEDIMENTS -80 MESH FRACTION N /|\ TOPOGRAPHIC LEGEND GECCHEMICAI LEGEND GEOLOGIC CONTACT - 3 0 0 0 — Contour Interval 100 Feet « T T ? O O m t T A j T *>Q Creeks and Rivers - ^ S JHAN 3° ppm c ^ D Swamps • 38 ~ 60 ppm 1 I Lakes L5223 Local Property Lots ROADS Loose or Stabilized Surfaces, All Wealiier Loose Surfaco, Dry Weather 4 MILES 0 60 - 95 PP"1 © MORE THAN 95 ppm S J HOFFMAN October 8, I97C =132-RAYFIELD RIVER - B O N A P A R T E RIVER REGIONAL R E C O N N A I S S A N C E FIGURE 19C DISTRIBUTION OF IRON (i) IN LAKE SEDIMENTS -80 MESH FRACTION N /\ TOPOGRAPHIC LEGEND GEOCHEMICAL LEGEND GEOLOGIC CONTACT T 1 W , m t I A„ „ ., . - 3 0 0 0 - Contour Interval 100 Feet • LESS THAN 1.4^ Creeks and Rivers 0 j. 4 — 2,5^ £ = ^ 0 Swamps _ * * \. I 1 Lakes Q 2.5 - 4.6% L5223 Local Property Lots ROADSLoose or Stabilized Surfaces, Al l Weatiier Loose Surfaco, Dry Weather 4 MILES @ MORE THAN 4.6$ S J HOFFMAN October 8, 1970 - 1 3 _ 8 -«20 « ° MO «50 R A Y F I E L D R I V E R - B O N A P A R T E R I V E R R E G I O N A L R E C O N N A I S S A N C E •FIGURE 19D DISTRIBUTION OF MANGANESE (PPM) IN LAKE SEDIMENTS -80 MESH FRACTION N A L5223 ROADS TOPOGRAPHIC LEGEND GEOLOGIC CONTACT Contour Intervol 100 Feet Creeks and Rivers Swamps Lakes Local Property Lots Loose or Stabilized Surfaces, Loose Surfoco, Dry Weather 4 MILES GEOCHEMICAL LEGEND • LESS THAN 300 p p m > 300 - 575 ppm | 575 - 1000 ppm MORE THAN 1000 ppm All Weatiier S J HOFFMAN October 6, 1970 B. D i s c u s s i o n (a) F a c t o r s a f f e c t i n g t r a c e element d i s t r i b u t i o n An anomalous r e g i o n o v e r l y i n g tho s y e n i t e i n -t r u s i o n and centered around the Z bend was di s c o v e r e d on a n a l y s i s of ncarshoro l a k e sediment samples f o r coppor ( F i g . 19A). A mean value of 23 ppm and range of 12 - 4-7 ppm i s l e s s than t h a t found i n nearby stream sediments (moan 4-8 ppm, range 15 - 150 ppm) (Table X X I I I ) . This r e p r e s e n t s a s i t u a t i o n s i m i l a r t o t h a t observed by Dyck (1971) i n the Beaverlodgc d i s t r i c t of Saskatchewan. Table XXII shows the r e l a t i v e d e p l e t i o n of l a k e sediments i n t h i s element compared to s i l t s from creeks d r a i n i n g the p l a t e a u (mean 28 ppm, range 11 - 70 ppm). S i m i l a r l y , comparison of the t r a c e metal content i n d i f f e r e n t s o i l h o r i z o n s (Table XXVII)and la k e sediments shows t h a t o n l y the 'L-H' w i t h a mean of 27 ppm (range 10 - 75 PP*n and tho 'Ae' w i t h a mean of 33 ppm (range 10 - 110 ppm) have comparable copper v a l u e s . A d d i t i o n or removal of copper from l a k e sediments may be accomplished by mechanical or chemical t r a n s p o r t . C o n t r i b u t i o n s from stream sediment i s unimportant because r e l a t i v e l y few streams e x i s t , and those which do are small and p e r i o d i c a l l y dry. For most l a k e s , any mechan-i c a l a d d i t i o n of m a t e r i a l must be accomplished by the a c t i o n of r u n o f f water. The e f f e c t i v e n e s s of surface r u n o f f as an agent of e r o s i o n i s low duo to i n f r e q u e n t storms, c o n s i s t e n t w i t h a s c m i a r i d c l i m a t e , and the coarse t e x t u r e of d e p o s i t s l y i n g on the surface of tho ground. As d i f f e r e n c e s i n r e l i e f on the p l a t e a u aro s m a l l , c h a n n e l l i n g of water i s not expected. Moltwatcr, a p o t e n t i a l source of shectwash, seeps i n t o the s o i l r a t h e r than running o f f i n the s p r i n g . Thus, mechanical a d d i t i o n s w i t h r u n o f f water i s u n l i k e l y to c o n t r i b u t e s i g n i f i c a n t amounts of m a t e r i a l to l a k e sediments. This may not, however, have been the case i n the p a s t . Copper c o n t r i b u t i o n s from ground water should be low. Water p a s s i n g through the 'C h o r i z o n of the s o i l i s i n e q u i l i b r i u m w i t h an a l k a l i n e pH (chapter 2, pages 27 - 31 ). pH of la k e water i s of comparable or g r e a t e r b a s i c i t y . Under these c o n d i t i o n s , copper i s s p a r i n g l y s o l u b l e i n the form of complex i o n s . Although some of t h i s metal may be i n s o l u t i o n (Bloom, 1966), i t i s thought t h a t hydromorphic t r a n s p o r t of copper here i s not conducive to formation of zones of enrichment. I n -formation i s not a v a i l a b l e f o r the p o s s i b l e case where more a c i d i c s p r i n g s c o n t r i b u t e metals to the l a k e . The i n e f f e c t i v e n e s s of mechanical or ground water a d d i t i o n s of copper to l a k e sediments i s seen i n tho l e v e l s of t h i s metal which have been measured. Although the anomaly c l o s e l y o u t l i n e s the most i n t e r e s t i n g zones of m i n e r a l i z a t i o n i n bedrock, no enhancement above stream sediment or s o i l v a l u e s has been observed. I t i s thought t h a t anomalies found i n la k e sediment on tho p r o p e r t y r e f l e c t primary d i s t r i b u t i o n of coppor i n bed-rock f l o u r formed by g l a c i e r s d u r i n g the P l e i s t o c e n e . Since t h a t time, environmental c o n d i t i o n s have not f a v -ored great changes i n c o n c e n t r a t i o n of copper w i t h i n the l a k e , save f o r simple r e d i s t r i b u t i o n . The z i n c d i s t r i b u t i o n i s s i m i l a r to t h a t of copper ( P i g . 19B) except t h a t i t s c o n t r a s t r a t i o i s lower. I r o n and manganese data ( P i g . 19C and D) each have two enhancement zones l o c a t e d n o r t h and south of the r e g i o n of hi g h e s t copper and z i n c v a l u e s . This p a t -t e r n was unexpected and may r e l a t e to a primary zoning caused by m i n e r a l i z a t i o n . (b) A p p l i c a t i o n to e x p l o r a t i o n Lake sediment sampling as a geochemical e x p l o r -a t i o n technique i s s t i l l i n i t s i n f a n c y and few papers have been w r i t t e n on the s u b j e c t . S e v e r a l m i n e r a l ex-p l o r a t i o n companies such as Rio T i n t o , B r i n o x and B a r r i n -ger Research have used l a k e sediment surveys to l o c a t e r e g i o n s of i n t e r e s t ( A l l a n , 1971). Work done i n the Coppermine d i s t r i c t of the Northwest T e r r i t o r i e s by A l l a n (1971) and the G e o l o g i c a l Survey of Canada u s i n g t h i s technique o u t l i n e d s e v e r a l zones of copper m i n e r a l -i z a t i o n i n b a s a l t s . P u b l i s h e d accounts of more d e t a i l e d surveys arc r a r e . Schmidt (1956) s y s t e m a t i c a l l y sampled s e v e r a l l a k e s i n New Brunswick and found c o n s i s t e n t Zn, Pb-Zn, and Pb-Zn-Cu anomalies. The present study, however, i s -14-2-c s s e n t i a l l y reconnaissance i n nature„ Enrichments of copper and z i n c i n l a k e sediments o v e r l y rocks of the s y e n i t e b a t h o l i t h . Highest copper val u e s arc found over m i n e r a l i z e d zones i n bedrock. The absolute content of t h i s metal, however, i s low and i t i s b e l i e v e d t h a t copper m i g r a t i o n i s r e s t r i c t e d by the a l k a l i n i t y of tho l a k e and surrounding s o i l s . Thus, anomaly f o r m a t i o n represents a primary feature, r e l a t e d to g l a c i a l d i s p e r s i o n . Of p a r t i c u l a r i n t e r e s t t o t h i s p r o p e r t y i s a comparison between the ease of stream (chapter 3, pages 132 - 133) and l a k e sediment c o l l e c t i o n . Lakes occur . on the p l a t e a u near or w i t h i n easy walking d i s t a n c e of e x i s t i n g l o g g i n g roads. Anomalies were detected on the b a s i s of one sample per ten square m i l e s , although a c l o s e r sampling i n t e r v a l was used on tho p r o p e r t y i t s e l f . Range of copper values w i t h i n each l e v e l contoured on F i g . 19A i s only 20 to 4-0 ppm. Such s m a l l d i f f e r e n c e s are more s u s c e p t i b l e to sampling and a n a l y t i c a l e r r o r s , y e t , the d i s t r i b u t i o n of copper i n l a k e sediments i s remarkably r e g u l a r and appears to o u t l i n e i n t e r e s t i n g r egions on the reconnaissance survey worthy of followup study. 4-. Hornblende- Syenite F l o a t A. Trace clement d i s t r i b u t i o n Samples of hornblende s y e n i t e f l o a t were chipped from coarse fragments l y i n g on the ground or taken from h o r i z o n s i n s o i l p i t s and trenches w i t h i n g l a c i a l over-burden. S t a t i s t i c a l a n a l y s i s of data was s i m i l a r to t h a t d e s c r i b e d f o r bedrock (chapter 3 , pages 59 - 61 ) . Moan, range and t h r e s h o l d copper values of 85 ppm, 31 -220 ppm and 560 ppm, r e s p e c t i v e l y , i n f l o a t aro lower than s i m i l a r measurements determined f o r hornblende s y e n i t e outcrop samples (mean 165 ppm, range 63 - 44-0 ppm and t h r e s h o l d 1150 ppm)(Table XV). Log p r o b a b i l i t y p l o t s of f l o a t data ( F i g . 21A and B) c o n t a i n two p o p u l a t i o n s . The percentage each con-t r i b u t e s to the t o t a l p o p u l a t i o n and t h e i r moan, range and t h r e s h o l d s are l i s t e d i n Table XXVI. Comparison of Table XXVI and Table XVI shows th a t copper, z i n c , i r o n and manganese data c o n t a i n s i m i l a r and p o s s i b l y corres-ponding p o p u l a t i o n s . I t i s not p o s s i b l e at p r e s e n t , however, to suggest t h a t any component p o p u l a t i o n w i t h i n the f l o a t data has been d e r i v e d from one p o p u l a t i o n com-p r i s i n g the bedrock data. Copper anomalies i n f l o a t may o v e r l i e m i n e r a l -i z e d zones i n bedrock. The l a t e r a l extent of t h i s type of anomaly i s g r e a t e r than t h a t of the primary source i n outcrop, showing the d i s p e r s i n g e f f e c t of g l a c i a l - I n -a c t i o n ( P i g , 20 and 9A) . The zone of copper enrichment, approximately 4 m i l e s i n l e n g t h , 1/2 t o 1 mile i n width, elongated along the probable d i r e c t i o n of i c e movement (160°) and l y i n g mainly on the eas t e r n p l a t e a u i s of t h i s type. Examination of F i g , 20 r e v e a l s a second, s l i g h t -l y s m a l l e r , anomaly o v e r l y i n g N i c o l a v o l c a n i c s and hy-b r i d phases of the i n t r u s i o n . Here, hornblende s y e n i t e f l o a t i s w e l l rounded, i n d i c a t i v e of ext e n s i v e f l u v i a l t r a n s p o r t . I t s numerous f e l d s p a r v e i n l e t s and t r a c e s of sulphide m i n e r a l i z a t i o n are t y p i c a l of outcrops found at l e a s t 4 m i l e s to the n o r t h and n o r t h e a s t . Two zones of copper enhancement d e f i n e d i n the stream sediment survey, i n region s 2 and 5 (chapter 3, page 132) , have f l o a t b l o c k s r e l a t i v e l y d e f i c i e n t i n copper compared w i t h hornblende s y e n i t e fragments on other p a r t s of the p l a t e a u . Another zone of i r o n and manganese enrichment i n f l o a t i s found i n r e g i o n 2, along tho R a y f i e l d R i v e r v a l l e y s i d e , w i t h i n a r e g i o n of ground water seepage. Here, f l o a t i s salmon p i n k or red i n c o l o r and i n t e n s e l y f r a c t u r e d . Sample c o l o r i s caused by f i n e l y d i v i d e d hydrous i r o n o x i d e s . Manganese d e n d r i t e s are common on f r a c t u r e s u r f a c e s . Hornblende s y e n i t e f l o a t c o l l e c t e d i n the v i c -i n i t y of l e u c r o c r a t i c s y e n i t e bedrock i s r e l a t i v e l y de-f i c i e n t i n i r o n , manganese and z i n c . Correspondingly, h y b r i d phases of the b a t h o l i t h are o v e r l a i n by i r o n r i c h -145-ancf potassium poor f l o a t . E v i d e n t l y , i n c l u s i o n of some l e u c o c r a t i c chips i n the former or h y b r i d chips i n the l a t t e r case i s r e s p o n s i b l e f o r these r e s u l t s , B, D i s c u s s i o n (a) .Factors A f f e c t i n g Trace Fete.! D i s t r i b u t i o n Hornblende s y e n i t e f l o a t contains h a l f as much copper as s i m i l a r bedrock samples (means of 85 ppm versus 165 ppm), p o s s i b l y r e f l e c t i n g the e f f e c t of chem-i c a l weathering on coarse fragments i n the s u r f i c i a l environment. In c o n t r a s t , the mean content and range of values of i r o n , manganese, potassium and z i n c i n f l o a t and bedrock data are the same w i t h i n a n a l y t i c a l p r e c i s i o n (Tables XV and XII)„ When the d i s t r i b u t i o n of any of these elements i s examined, no trends are d i s c e r n a b l e which may a i d i n ex-p l o r a t i o n f o r copper d e p o s i t s . Copper data, however, o u t l i n e two anomalies which may help i n the d e t e c t i o n of p r e v i o u s l y unknown zones of m i n e r a l i z a t i o n or extensions of e x i s t i n g ones i n the s y e n i t e i n t r u s i o n . A l o g p r o b a b i l i t y p l o t of copper data (Pi g„ 21A) r e v e a l s two p o p u l a t i o n s and i r t h i s respect i s s i m i l a r to outcrop data. The mean, range and t h r e s h o l d of pop-u l a t i o n l a b e l l e d B of Table XVI and Table XXVI are very s i m i l a r . These p o p u l a t i o n s show l i m i t e d range i n metal content, probably r e f l e c t i n g c o n t r i b u t i o n s from a non-m i n e r a l i z e d p a r t of the b a t h o l i t h (background). The -146-other p o p u l a t i o n seems r e l a t e d to m i n e r a l i z a t i o n , w i t h t h r e s h o l d s of 1300 ppm i n f l o a t and 900 ppm i n outcrop data. T h e i r mean and range, however, are s i g n i f i c a n t l y d i f f e r e n t , f o r which no e x p l a n a t i o n i s o f f e r e d . A d i f -ference i n bedrock and f l o a t sampling d e n s i t y r e s u l t s i n a d i f f e r e n t p r o p o r t i o n each of these p o p u l a t i o n s c o n t r i b u t e s to the o v e r a l l r e s u l t s . Two major copper anomalies have been o u t l i n e d , one o v e r l y i n g or g l a c i a l l y "down i c e " from known exposures of m i n e r a l i z e d hornblende s y e n i t e and the other o v e r l y i n g barren N i c o l a v o l c a n i c s or h y b r i d rocks along the Bona-p a r t e R i v e r . The f i r s t anomaly i s the l a r g e r of the two i n area and i s composed of angular b l o c k s b e l i e v e d c l o s e to a source of copper s u l p h i d e s i n bedrock. The second was formed i n response to f l u v i a l t r a n s p o r t of boulders f o r d i s t a n c e s i n the order of 4 m i l e s from the n o r t h and n o r t h e a s t (Tipper, 1971) from bedrock and t i l l sources. This hypothesis i s c o n s i s t e n t w i t h the rounded nature of the f l o a t b l o c k s and t h e i r veined and m i n e r a l i z e d c h a r a c t e r . (b) A p p l i c a t i o n to E x p l o r a t i o n F l o a t or boulder t r a c i n g , as a geochemical t o o l , has e x i s t e d p r i o r to 1850 and has been r e s p o n s i b l e f o r the d i s c o v e r y of many mines (Lee, 1971). Boulder t r a i n s and boulder t r a c i n g have been d e s c r i b e d by Kauranne (1967). Salmi (1967), and B o l v i k e n (1967) i n Sca n d i n a v i a and by 147-TABLE XXVI Summary of p o p u l a t i o n s detected, on l o g p r o b a b i l i t y p l o t s of hornblende s y e n i t e f l o a t data POPULATION A POPULATION B ELE-MENT °/o TOTAL POPULAT MEAN RANGE ANOM-ALOUS % TOTAL POPULAT. MEAN RANGE ANOM-ALOUS Cu 60 89 27-290 920 40 79 49-125 200 Zn 60 62 53-73 86 40 58 41-80 110 Fe% 60 1.9 1.6-2.3 2,8 40 1.6 1.0-2.4 .3 .6 Mn 75 760 640-1000 1240 25 540 360-780 1120 ¥L°/o 60 4.1 3.8-4.4 4.9 40 3.2 2.3-4.3 5.0 THE DANSEY-RAYFIELD RIVER COPPER PROPERTY FIGURE 20 DISTRIBUTION OF COPPER (PPM) WITHIN HORNBLENDE SYENITE FLOAT N T0PCG2APKIC LEGEND GE0IO3TC COJTTACT - « " » — Contour Intervol 100 leet — Creeks, and Rivers Sworrps f~ I Lakes Loca l Grid Control Points 5000 FEET GEOCHEMICAL LEGEND . LESS THAN 85 p p m • 85 - 215 ppm £ 215 - 56O ppm ^ MORE THAN 56O ppm 149-loopoo 50POO lopoo 5000 1000-500. 100 50. 10 _.L_ 0.01 0.1 FIGURE 21A LOG PROBABILITY PLOTS OF COPPER. AND POTASSIUM DATA FROM HORNBLENDE SYENITE FLOAT LEGEND A,B CONTRIBUTING POPULATIONS + EXPERIMENTAL DATA POINTS -150 K» 0,000. 50P00. I0p00-5000. 1000. ft 100. 50. 10 0.01 C.I 99.9 99.99 FIGURE 21B LOG PROBABILITY PLOTS OF IRON, MANGANESE AND ZINC DATA FROM HORNBLENDE SYENITE FLOAT LEGEND A,B CONTRIBUTING POPULATIONS + EXPERIMENTAL DATA POINTS o CALCULATED DATA POINTS • 151-Dreimanis ( 1 9 5 6 , 1 9 5 8 , and I 9 6 0 ) i n Canada. Boulders of hornblende s y e n i t e f l o a t are found over a more ex t e n s i v e area than rocks of the i n t r u s i o n i t s e l f , thus p r o v i d i n g a b e t t e r t a r g e t f o r m i n e r a l e x p l o r a t i o n . Both of the anomalies d e s c r i b e d p r e v i o u s l y cover approx-i m a t e l y 4- square m i l e s , one o v e r l y i n g m i n e r a l i z a t i o n and the other f a r removed from a source of copper r i c h bedrock, A sample d e n s i t y of one per square m i l e i s probably s u f f i c i e n t f o r d e t e c t i o n of these zones, although d e t a i l e d work would be r e q u i r e d f o r b e t t e r d e f i n i t i o n of the l i m i t s of any p a r t i c u l a r anomaly. Values ranging from the mean of 85 ppm copper to i n excess of the t h r e s -h o l d of 550 ppm are undoubtedly of s u f f i c i e n t magnitude to l e n d inducement f o r f u r t h e r work needed to l o c a t e the source of t h i s metal. Anomalous samples are mainly found, w i t h i n the alr e a d y mentioned zones and r a r e l y occur i n a sporadic f a s h i o n elsewhere on the p r o p e r t y , Problems of access and d e t e c t i o n of m i n e r a l i z a t i o n are of s p e c i a l s i g n i f i c a n c e t o t h i s p r o p e r t y . P l o a t of the f l u v i a l l y t r a n s p o r t e d anomaly occurs beside an e x c e l l e n t main g r a v e l road. I t s m i n e r a l i z e d and veined c h a r a c t e r , when i n s p e c t e d , i s s u f f i c i e n t l y i n t e r e s t i n g to warrant an immediate search f o r i t s source. Boulder t r a c i n g would i n e v i t a b l y l e a d to d i s c o v e r y of the prop-e r t y . The anomaly o v e r l y i n g m i n e r a l i z a t i o n would be de-t e c t e d d u r i n g the second stage of e x p l o r a t i o n , when de-t a i l e d work along l o g g i n g and settlement roads on the / -152-eastern p l a t e a u i s done. Here, anomalous f l o a t b l o c k s are found over a greater area than the primary s u l p h i d e zone. Composition of coarse fragments and t h e i r a n g u l a r i t y (chapter 2 , pages 46 - 50 , and chapter 5, pages 83 -8 4 ) have suggested t h a t t r a n s p o r t of f l o a t by g l a c i e r s was not e x t e n s i v e . D e t a i l e d i n s p e c t i o n by d r i l l i n g of t h i s anomaly, t h e r e f o r e , may i n d i c a t e u n d e r l y i n g sources of m i n e r a l i z a t i o n p r e s e n t l y unknown because they are covered by overburden. 5. S o i l s A. Trace Element D i s t r i b u t i o n The g e o g r a p h i c a l d i s t r i b u t i o n of copper w i t h i n each s o i l h o r i z o n i s s i m i l a r to t h a t found i n the top of the ' B' h o r i z o n by Amax E x p l o r a t i o n , I n c . , ( P i g . 8 ) . The mean, range and t h r e s h o l d value of the t r a c e metal con-t e n t and pH i s l i s t e d i n Table XXVII. Copper values vary from 7 ppm to i n excess of 3800 ppm, depending on topo-g r a p h i c l o c a t i o n , slope and closeness to bedrock. Trace element v a r i a t i o n s i n p r o f i l e s on the p l a t e a u are s i m i l a r i n many re s p e c t s to those from the v a l l e y s i d e s . S e v e r a l s e l e c t e d p r o f i l e s have been chosen to i l l u s t r a t e these r e l a t i o n s h i p s . P r o f i l e 100 ( F i g . 23A) and 108 ( F i g . 23B) are l o c a t e d on the p l a t e a u s u r f a c e , w h i l e p r o f i l e s 111 ( F i g . 23C), 114 ( F i g . 23E) and 117 ( F i g . 23D) are s i t u a t e d on the v a l l e y s i d e s ( F i g . 3 2 ) , S e v e r a l p r o f i l e c h a r a c t e r i s t i c s remain e s s e n t i a l l y -153-constant, r e g a r d l e s s of the slope of the topographic s u r f a c e . The organic l i t t e r , 'L-H' h o r i z o n , commonly has the lowest average pH (5°4), lowest mean copper (27 ppm) and i r o n (0.8$) content and the hi g h e s t average z i n c (95 ppm), manganese (950 ppm) and organic matter (not determined a n a l y t i c a l l y ) c o n c e n t r a t i o n w i t h -i n any p a r t i c u l a r s e c t i o n . Values f o r the l a s t two e l e -ments are markedly decreased i n u n d e r l y i n g m i n e r a l h o r i z o n s . When present 'Ah' ho r i z o n s have a c h a r a c t e r i n t e r m e d i a t e between organic accumulations and mi n e r a l s o i l (Table XXVII). Copper c o n c e n t r a t i o n s w i t h i n the m i n e r a l s o i l i n -creases g e o m e t r i c a l l y to the bottom of the s e c t i o n ( F i g . 23A, B and D). Accumulations of copper w i t h i n the 'B* h o r i z o n , as i n p r o f i l e number 114 ( F i g . 23E) do not appear to be t y p i c a l . I r o n content of the m i n e r a l s o i l a l s o i n c r e a s e s l o g a r i t h m i c a l l y to a maximum at the bottom of the s o i l p i t , w i t h i n the 'C h o r i z o n , f o r most of the p r o f i l e s s t u d i e d ( F i g . 23A, B and D). Again, enrichment of i r o n w i t h i n the 'Bf', 'Bt' or 'Bm' h o r i -zons as i n p r o f i l e number 114 i s not g e n e r a l l y encount-ered. Z i n c values remain e s s e n t i a l l y constant w i t h depth, having contents between 49 ppm and 55 ppm on the average (Table XXVII). Manganese, however, has a more e r r a t i c d i s t r i b u t i o n , having a minimum value near the contact between the 'A' and »B' h o r i z o n s and then i n -c r e a s i n g w i t h depth i f the pH of the sample i s a l k a l i n e -154-( E i g s . 23A - D)o pH i n c r e a s e s w i t h depth at a v a r i a b l e r a t e u n t i l a maximum of up to 9 . 2 ( u s u a l l y the pH i s 8 . 2 ) i s obtained w i t h i n the 'C n ' h o r i z o n ( F i g . 23B, C oa and E) . Calcium i s concentrated at the top of the 1 C h o r i z o n as calcium carbonate powder which coats coarse fragments and permiates the f i n e f r a c t i o n . The ' C„ 1 oa h o r i z o n t y p i c a l l y c o ntains 2$ to 4$ calcium. Otherwise, s o i l or parent m a t e r i a l h o r i z o n s t h a t are a c i d i c commonly have l e s s than 0 , 1 $ calcium while those which are b a s i c have between 0 . 5 $ and 1 , 0 $ . V a r i a t i o n s of t r a c e metal content i n u n d e r l y i n g parent m a t e r i a l s (the 'C hor i z o n ) i s independent of trends d e s c r i b e d f o r the o v e r l y i n g solum ('A' and 'B' h o r i z o n s ) . The 'C h o r i z o n i s composed of s t r a t i g r a p h i c u n i t s , each having a d i f f e r e n t p r o p o r t i o n of sand, s i l t , c l a y and coarse fragments. pH of the parent m a t e r i a l i s commonly a l k a l i n e (mean pH of 7.7) and depends on the l i t h o l o g i c u n i t sampled. Horizons c o n t a i n i n g l a r g e q u a n t i t i e s of hornblende s y e n i t e f l o a t u s u a l l y have r e l a t i v e l y h i g h copper c o n c e n t r a t i o n s . Conversely, u n i t s composed of g l a c i o f l u v i a l sands t y p i c a l l y have low copper and other t r a c e metal contents. Comparison of analyses of bedrock i n contact w i t h overburden, when a v a i l a b l e , r e v e a l s t h a t copper i s not n o t i c e a b l y t r a n s l o c a t e d up-wards to the g l a c i a l d e p o s i t s . An obvious d i f f e r e n c e between the p l a t e a u and the steep slopes of the R a y f i e l d R i v e r v a l l e y i s the nature -155-and t h i c k n e s s of the overburden and the p r o x i m i t y of a p a r t i c u l a r s e c t i o n to known zones of sulp h i d e m i n e r a l -i z a t i o n i n bedrock. The v a l l e y s i d e s are t h i n l y mantled by t a l u s d e b r i s from crag outcrops c o n t a i n i n g c h a l c o -p y r i t e and b o r n i t e , A source f o r copper i s t h e r e f o r e r e a d i l y a v a i l a b l e . Overburden on the p l a t e a u , however, comes from an unknown source t h a t was not n e c e s s a r i l y m i n e r a l i z e d , and may exceed f i f t y f e e t i n t h i c k n e s s . I t should not be unexpected, t h e r e f o r e , t h a t w h i l e copper values on the p l a t e a u at the base of the solum range up to 50 ppm copper, they may exceed 3800 ppm at the base of the t a l u s slope ( F i g . 2 2 ) . The z i n c content v a r i e s s y m p a t h e t i c a l l y , averaging 60 ppm i n p l a t e a u samples and rea c h i n g 300 ppm i n t a l u s slope s o i l s when the copper content exceeds 1000 ppm. Copper to z i n c r a t i o s are u s u a l l y l e s s than u n i t y i n p l a t e a u s o i l s and g r e a t e r than one i n samples from the v a l l e y s i d e s . Cold e x t r a c t a b l e copper from m i n e r a l h o r i z o n s on the p l a t e a u accounted f o r 40$ t o 60$ of the t o t a l ( F i g , 231), At the c r e s t of the v a l l e y above the t a l u s s l o p e s , the percentage of c o l d e x t r a c t a b l e copper to t o t a l copper i n c r e a s e d to 70$ t o 97$ ( P i g . 23H), Highest c o l d e x t r a c t a b l e copper content w i t h i n most p r o f i l e s are observed i n the 1C^ ' h o r i z o n . Talus slopes have'the O c t g r e a t e s t absolute c o n c e n t r a t i o n of c o l d e x t r a c t a b l e metal, but t h i s corresponds to o n l y 40$ to 80$ removal of the t o t a l as determined by concentrated h y d r o f l u o r i c -p e r c h l o r i c a c i d a t t a c k ( F i g . 23F). LANDSCAPE SURFACE 3600 TERTIARY H £ 3400 e ^ T - ^ g s GLACIAL DEPOSITS-LU LU _1 LU e Q. O. (X LU Q. 0. O O 3200-3000" 10,000-5000-1000 500 ? 7 i r r ~ i . - ^ ^ VARIATION OF COPPER IN DIFFERENT SOIL HORIZONS FIGURE 22 VARIATION OF COPPER IN SOILS ACROSS THE LANDSCAPE SURFACE HORIZON Cu * — ^ f r T O P OF 'C' HORIZON CxCu HORIZON Cu • 'Bf' HORIZON CxCu 'Bm' HORIZON Cu • •fern' HORIZON CxCu 5 0 0 0 F E E T ' 'Ah' HORIZON Cu * *• 'Ah' HORIZON CxCu TOP OF ' C ' 'Bf' 'L-H' HORIZON Cu SCALE -157-T E X T U R E A PROFLE 100 REMARKS S U R F A C E S L O P E 5"W T E X T U R E PROFILE 108 REMARKS S U R F A C E S L O P E 2'S ROUNDED L E U C R O C R A T I C S Y E N I T E F L O A T B L O C K S LOAM Cu-ppm lO Zn-ppm I F e - % I Mn-ppmICO c P R O F L E III S U R F A C E S L O P E 4 5 * E M A L A C H I T E S T A I N E D H O R N B L E N D E S Y E N I T E B L O C K S A N D T A L U S F I N E S LOAM S A N D PROFILE 114 100 10 I 1000 1000 100 10 10000 t: 5 7 pH S U R F A C E S L O P E 90*W R O U N D E D B A S A L T I C F L O A T B L O C K S W A T E R S A T U R A T E D :0f pp.q £••0: m D P R O F L E IIT Cu-ppm 10 100 1000 Zn-ppm I 10 100 F « - % I I 10 Mn ppmlOO 1000 0 0 0 0 S U R F A C E S L O P E 3 5 * W M A L A C H I T E S T A N E O H O R N B L E N D E S Y E N I T E B L O C K S A N D T A L U S F I N E S 5 7 9 P H P E R C E N T COARSE FRAGMENTS W I T H I N S O I L P R O F I L E 1 0 - 3 % " J 5 - 2 0 % 2 0 - 4 0 % 4 0 - 7 0 % E 3 to 7 0 - 1 0 0 % S H A D E D F R A G M E N T S I N D I C A T E H O R N B L E N D E S Y E N I T E F R A C T I O N A S P E R A B O V E S C A L E U N L E S S O T H E R W I S E N O T E D I N GEOCHEMICAL LEGEND C u - ppm Z n - p p m . F E - % M N - p p m A B B R E V I A T I O N S L - H L E A F L I T T E R T B E D R O C K C u F F L O A T C u D O U G L A S FIR N E E D L E S C u D O U G L A S FIR S T E M S C u L O D G E P O L E PINE N E E D L E S C u L O D G E P O L E PINE S T E M S C u ON DS P N P S REMARKS TOPOGRAPHIC LEGEND V A L L E Y S I D E P R O F I L E S 111,114,117 P L A T E A U P R O F I L E S 100, 108 FIGURE 23 TRACE ELEMENT DSTRIBUTION AND pH IN SOIL PROFILES, -80 MESH FRACTION -158-TEXTURE F PROFILE in SANDY LOAM REMARKS SURFACE SLOPE 4 5 ' E T O •10 TEXTURE •20 SANDY L O A M •30 -40 •50 H PROFILE 5 I! I SURFACE SLOPE I5'E THINLY BEDDED : \ i ! -o -20 jcn!-40 -60 -80 -100 SANDY CLAY PROFILE M 2 PROFILE 8 I; ! I i I L-H. | *"C i 1 V o B I o \ •. —*=* <=Co \ •5* C i : i : / 2C . | •! ; \ •=1 3 C : i / REMARKS SURFACE SLOPE 4 5 ' E MALACHITE STAINED HORNBLENDE SYENITE BLOCKS AND TALUS FINES HIGH CONTENT OF ORGANIC M A T T E R WATER SATURATED I SURFACE SLOPE 3 ° S . S T R O N G V E R Y •I C O A H S I . I ' L A T Y Cu-ppm 10 Co-ppmlOO . 100 0 0 0 1000 opoo .5 7 9 0 6 08 10 pH C«Cu/Cu OO OOO 1000 OjOOO ! ! 5 7 9 0 6 0 8 10 pH CXGJA^I GEOCHEMICAL LEGEND Cu - ppm C*Cu - ppm Co - ppm TOPOGRAPHIC LEGEND VALLEY SIDE PROFILES III, 112 PLATEAU PROFILES 5, 8 PROFILE SYMBOLS AND ABBREVIATIONS ON PRECEEOlNG PAGE FIGURE 23 TRACE ELEMENT DISTRIBUTION AND pH IN SOIL. PROFILES, "80 MESH FRACTION -159-Tab l e XXV I I T race e l ement c on t en t (ppm) and pH o f d i f f e r e n t s o i l h o r i z o n s , -80 mesh f r a c t i o n , n i t r i c / p e r c h l o r i c a c i d a t t a c k L-H HORIZON Ah HORIZON Ae HORIZON Bm HORIZON B f HORIZON BC HORIZON C HORIZON Cu T h r e s h o l d Mean Range 210 27 10-75 730 49 13-190 340 33 10-105 290 48 20-120 1500 140 44-460 650 80 28-230 910 100 32-300 Zn T h r e s h o l d Mean Range 245 95 60-150 380 70 31-165 175 55-32-100 115 50 33-75 145 55 32-85 160 55 30-95 140 50 31-85 T h r e s h o l d Mean Range 2.1 0.8 0.5-1.3 2.8 1.8 1.4-2.2 2.5 1.2 0.8-1.7 3.7 1.9 1.4-2.7 3-5 2.5 2.1-3.0 4.1 2.4 1.8-3.1 3.5 2.2 1.7-2.8 Mn T h r e s h o l d Mean Range 3000 950 5^ 0-1700 4800 640 230-1700 1150 500 330-770 1000 380 240-620 1500 440 240-800 1950 580 320-1050 1450 580 360-920 Number of samples 26 *9 10 32 9 11 93 PH ^Thresho ld Mean Range* - T h r e s h o l d '6.5 4.5-6.2 4.4 7.2 6.1 4.8-7.8 5.0 6.5 6.0 5.7-6.2 5.5 8.1 6.3 5.1-8.6 4.6 7.8 6.8 5.7-7.3 5.8 7.5 6.6 6.1-7.3 5.8 9.5 7.7 5.3-9.2 5.9 Number o f samples 28 19 10 35 8 10 73 Range* i s t h e a c t u a l range o f measurements; made i n t h e f i e l d , f o r pH o n l y -160-B„ D i s c u s s i o n (a) F a c t o r s A f f e c t i n g Trace Element D i s -t r i b u t i o n i . I n t r o d u c t i o n Copper has been concentrated i n s o i l s which have developed on the s i d e s of the R a y f i e l d R i v e r v a l l e y . Few samples enriched i n t h i s metal have been found e l s e -where on the p r o p e r t y . The occurrence of s o i l s enhanced i n copper on t a l u s slopes p r o v i d e another example of anomaly formation caused by d i s i n t e g r a t i o n of copper r i c h bedrock, i i . Mechanisms of formation of copper anomalies A t y p i c a l set of copper values w i t h i n the 1B 1 h o r i z o n across tho landscape might be r e p o r t e d as 50 ppm on the p l a t e a u , 400 ppm at the c r e s t of the v a l l e y s i d e s , 2000 ppm i n t a l u s m a t e r i a l s , 100 ppm i n a l l u v i a l de-p o s i t s of the r i v e r and 200 ppm i n r i v e r sediment ( F i g , 22), This d i s t r i b u t i o n i n d i c a t e s t h a t copper i s p r e f e r -e n t i a l l y e n r i c h e d i n t a l u s m a t e r i a l which, i n t u r n , suggests a reconnaissance e x p l o r a t i o n t o o l which i s r a r e l y used — t a l u s f i n e sampling, A copper anomaly may form w i t h i n t a l u s i n one of two manners, mechanical c o n c e n t r a t i o n of sulphide m i n e r a l s or p r e c i p i t a t i o n of d i s s o l v e d metal from m i g r a t i n g ground water s o l u t i o n s . The chances of t a l u s anomaly formation by mech-a n i c a l accumulation of sulphide m i n e r a l g r a i n s i s ex-c e l l e n t i n a l k a l i n e environments, where l e a c h i n g i s -161-slow, and s u l p h i d e s form v e i n s and occur along f r a c t u r e s . Weathering most e a s i l y a t t a c k s these zones of weakness i n the outcrop. Copper m i n e r a l s become d i s l o d g e d and f a l l near the base of the exposure. E v e n t u a l l y , chips break o f f the outcrop, and l a r g e r b l o c k s and f i n e r m a t e r i a l (mainly f e l d s p a r but a l s o s u l p h i d e s ) accumulate w i t h p r e v i o u s l y weathered products to form a t a l u s cone. I t can be p r e d i c t e d t h a t , because of the nature of the m i n e r a l i z a t i o n , the coarse b l o c k s are r e l a t i v e l y de-p l e t e d i n copper versus the f i n e m a t e r i a l . Thus, as o n l y the f i n e s are sampled, an enhancement i n values of t h i s metal i s t o be expected. Ground water may t r a n s p o r t s i g n i f i c a n t q u a n t i t i e s of copper when the pH i s l e s s than 5.5 or moderately b a s i c (Krauskopf, 1967). D e p o s i t i o n can be caused by an i n c r e a s e i n the a l k a l i n i t y of the environment, a h i g h r a t e of water evaporation or an abundance of an absorbing medium such as secondary hydrous i r o n and manganese oxi d e s . S o l u t i o n and p r e c i p i t a t i o n of copper i s c e r t a i n l y o c c u r r i n g w i t h i n the t a l u s , but a knowledge of the d i s t a n c e t r a v e l l e d by the ground water i s of prime importance to the f u t u r e of subsequent e x p l o r -a t i o n programs. An e s t i m a t i o n of t h i s d i s t a n c e w i l l s h o r t l y be d i s c u s s e d . E i t h e r of these process may act alone or combined to form a t a l u s anomaly, and the problem remains to d i s t i n g u i s h among the v a r i o u s p o s s i b i l i t i e s . S e v e r a l methods of a t t a c k are p o s s i b l e , such as s i z e f r a c t i o n -162-a n a l y s i s , m i c r o s c o p i c i d e n t i f i c a t i o n of s u l p h i d e min-e r a l s i n the -80 mesh f r a c t i o n or c o l d e x t r a c t i o n t e c h -niques. Only the l a s t method was s t u d i e d i n d e t a i l . Cold e x t r a c t a b l c copper may be d e r i v e d from many sources, i n c l u d i n g secondary m i n e r a l s such as m a l a c h i t e , metal adsorbed to c l a y m i n e r a l surfaces (weakly bonded to s i l i c a t e s ) , metal adsorbed to p r e c i p i t a t e s which have a hi g h surface area such as secondary hydrous i r o n and manganese ox i d e s , s i l i c a t e bound metal and sulphide metal. The l a s t two sources have r e l a t i v e l y s t r o n g bonds compared w i t h the f i r s t three and must remain i n the sample i f the weak a t t a c k i s to be s u c c e s s f u l . The low percentage of c o l d e x t r a c t a b l c copper on the p l a t e a u ( F i g , 231) i s probably an i n d i c a t i o n of s i l i c a t e bonded metal, mainly a s s o c i a t e d w i t h c l a y min-e r a l s . S u l p h i d e s , i f i n i t i a l l y present i n the g l a c i a l t i l l , have weathered and been adsorbed to c l a y m i n e r a l s u r f a c e s which i s then removed by the weak a t t a c k . At the c r e s t of the v a l l e y , m i n e r a l i z e d bedrock and f l o a t s t a i n e d by malachite are i n d i c a t i o n s t h a t h i g h c o l d e x t r a c t a b l e metal v a l u e s w i l l be determined ( F i g . 23H), The h i g h percentage of c o l d e x t r a c t a b l e to t o t a l copper content undoubtedly r e f l e c t s chemical weathering of primary s u l p h i d e s and the d i f f e r e n c e i n value between the two a t t a c k s i s the c o n t r i b u t i o n from the remaining s u l p h i d e m i n e r a l s or the s t r o n g l y bonded s i l i c a t e metal. The ' Gn 1 h o r i z o n i s s l i g h t l y dif--oa f e r e n t , as the r a t i o of the two types of copper i s -163-i s approximately u n i t y . The pH approaching the ' C^ ' h o r i z o n ' i n c r e a s e s r a p i d l y , concomitantly decreasing the m o b i l i t y of copper d i s s o l v e d i n s o l u t i o n . I t i s to be expected, t h e r e f o r e , t h a t the ' ' would have Oa the h i g h e s t c o n c e n t r a t i o n of weakly bonded copper of any h o r i z o n w i t h i n the s o i l p r o f i l e . Samples c o l l e c t e d from t a l u s slopes c o n t a i n the g r e a t e s t c o l d e x t r a c t a b l e and t o t a l copper content of any thus f a r d e s c r i b e d . These r e s u l t s i n d i c a t e t h a t t h i s metal has undoubtedly been t r a n s p o r t e d i n ground water, although i t i s not p o s s i b l e to a s c e r t a i n the d i s t a n c e s i n v o l v e d . I t i s p o s s i b l e , f o r example, t h a t the c o l d e x t r a c t a b l e copper content merely r e f l e c t s chem-i c a l weathering, i n s i t u , of primary m i n e r a l s . What i s more important, however, i s the r e l a t i v e l y h i g h p e r c e n t -age of copper which has remained i n the pulp a f t e r com-p l e t i o n of the weak a t t a c k . This content i s i n d i c a t i v e of the p r o p o r t i o n of primary s u l p h i d e s i n i t i a l l y p resent i n the sample. Undoubtedly, d e p o s i t i o n from seepage i s important at the toe of the t a l u s slope where water i n t e r a c t s w i t h s l i g h t l y a c i d i c s o i l s . Copper, z i n c and organic matter are en r i c h e d to values h i g h e r than any other found i n the 'B' h o r i z o n on the p r o p e r t y ( F i g . 23G). Sol u -b i l i t y of copper and z i n c i s favored by o x i d a t i o n of primary s u l p h i d e m i n e r a l s which s l i g h t l y a c i d i f i e s the ground water, e n a b l i n g h i g h e r c o n c e n t r a t i o n s of copper and other c o n s t i t u e n t s to remain i n s o l u t i o n . Subsequent -164-d e p o s i t i o n occurs when water i s l o s t through evaporation or i n s o l u b l e o rganic complexes are formed. Such i s thought the case f o r the h i g h t r a c e element content of p r o f i l e 112 ( F i g . 23G) , although c o l d e x t r a c t i o n data arc not a v a i l a b l e f o r c o n f i r m a t i o n . With the e x c e p t i o n of t h i s p r o f i l e , mechanical c o n c e n t r a t i o n appears more important to anomaly formation than d e p o s i t i o n from ground water on t h i s p r o p e r t y . Most samples i n F i g . 8 t h a t are h i g h i n copper were taken from t a l u s s l o p e s . Talus samples were not t r e a t e d s t a t i s t i c a l l y as a separate p o p u l a t i o n by Amax, and hence zones where enrichments are g r e a t e s t can only q u a l i t a t i v e l y be approximated by t a k i n g , say the 500 ppm contour. Once accomplished, the a p p l i c a b i l i t y of t a l u s f i n e sampling i n p o i n t i n g to m i n e r a l i z e d zones i n bedrock becomes apparent. Few t a l u s samples c o n t a i n l e s s copper than 50 ppm, a t y p i c a l l y h i g h value f o r s o i l s on the p l a t e a u . Copper values i n excess of 1000 ppm are r e s t r i c t e d to t a l u s s o i l s c o l l e c t e d between C r a t e r Lake and tho Z bend, along both banks of the r i v e r . As outcrop exposures are not continuous, metal values are d i s t r i b u t e d i n an e r r a t i c f a s h i o n . Sampling of t a l u s on adjacent s i d e s of the r i v e r i s necessary because copper anomalies do not u s u a l l y encompass both banks. The d i s p e r s i o n t r a i n of copper i n t a l u s f i n e s i s more co n f i n e d than i n c o e x i s t i n g stream sediments and hence p r o v i d e s a b e t t e r method f o r -165-l o c a l i z i n g a t t e n t i o n to zones of copper enrichment i n bedrock. i i i . I n f l u e n c e of s i z e f r a c t i o n , o rganic matter, pH, calcium carbonate, coarse fragments, h o r i z o n and top-ography on t r a c e clement contents S e v e r a l f a c t o r s i n f l u e n c e the d i s t r i b u t i o n of copper i n d i f f e r e n t s o i l h o r i z o n s . These i n c l u d e the s i z e f r a c t i o n d i s t r i b u t i o n , organic matter content, pH and calcium carbonate content, nature of the coarse fragments, depth of the h o r i z o n from the ground surface and topographic p o s i t i o n of tho p r o f i l e on the l a n d -scape s u r f a c e . For those f a c t o r s not s t u d i e d i n do-t a i l here, q u a l i t a t i v e f i e l d notes and l i t e r a t u r e r e f e r e n c e s w i l l be i n c l u d e d so t h a t the d i s c u s s i o n i s complete. When s o i l s are used as a geochemical sample, i t i s i n t u i t i v e l y assumed t h a t many p o p u l a t i o n s are being considered. Organic r i c h samples c o n t a i n i n g g r e a t e r than 50?o o r g a n i c matter are t r e a t e d s e p a r a t e l y i n tho Canadian and other s o i l c l a s s i f i c a t i o n schemes as of 1971 and so tho 'L-H' i s considered s e p a r a t e l y here. S i m i l a r l y , an attempt has been made to subd i v i d e m i n e r a l s o i l s on tho b a s i s of g e n e t i c processes which act to form the d i f f e r e n t h o r i z o n s . F a i l u r e to recognize h o r i z o n a t i o n may subsequently prove m i s l e a d i n g t o f u t u r e work (Warren et a l , 1966A). For most purposes, s u b d i v i s i o n ends here without d e l e t e r i o u s s i d e e f f e c t s . Problems, however, may a r i s e when sandy s o i l s w i t h -166-l i t t l c c l a y arc compared w i t h c l a y e y s o i l s w i t h l i t t l e sand. Obvious d i f f e r e n c e s i n mineralogy and a d s o r p t i v e c a p a b i l i t i e s w i l l a f f e c t the t r a c e element content of a sample. Hence, s i z e f r a c t i o n analyses aro d e s i r a b l e when such cases a r i s e , Barakso et a l (1971), f o r example, found a d i r e c t c o r r e l a t i o n of elemental content w i t h mesh s i z e analysed. I n tho present study, s e v e r a l s e c t i o n s c o n t a i n sand beds or len s e s which, although surrounded by g l a c i a l t i l l s or bedrock high i n copper, wore themselves r e l a t i v e l y poor i n t h i s metal. Care i n g e n e t i c i n t e r p r e t a t i o n i s r e q u i r e d when only these types of m a t e r i a l are a v a i l a b l e f o r study. T h e i r t c x -t u r a l p e c u l i a r i t y must bo recognized i n the subsequent f o r m u l a t i o n of any theory on metal m i g r a t i o n or depos-i t i o n . Tho organic matter content of any h o r i z o n may bo important f o r some elements (Warren et a l , 1966A). A l -though tho percentage of organic matter has not boon determined a n a l y t i c a l l y , an approximation to i t s con-c e n t r a t i o n has been made on the b a s i s of c o l o u r , pH and h o r i z o n d e s i g n a t i o n . Contrary to the r e s u l t s of Warren et a l (1966A) and S c o t t (1965), the 'L-H' h o r i z o n on t h i s p r o p e r t y u s u a l l y has the lowest copper value w i t h i n the p r o f i l e , i n agreement w i t h Barakso et a l (1971). Zinc analyses, however, aro i n accordance w i t h trends found by a l l these workers. High p e r c e n t -ages of org a n i c matter were found to c o e x i s t w i t h s i m i l a r l y h i g h manganese contents, whereas the r e l a t i o n -ship i s a n t i p a t h e t i c f o r the case of i r o n i n t h i s study. S o i l s c l a s s i f i e d as organic or bogs were not i n v e s t i g a t e d . pH was shown to be d i r e c t l y r e l a t e d to t r a c e e l e -ment co n c e n t r a t i o n s i n a study by Barakso et a l ( 1 9 7 1 ) . The presence of calcium carbonate as a p r e c i p i t a t e w i t h i n tho ' C~ ' h o r i z o n may have a dramatic i n f l u e n c e oa on the copper content, as seen i n chapter 3, pages 154 - 163. When the a l k a l i n i t y of the environment i n -creases, copper g e n e r a l l y p r e c i p i t a t e s a c c o r d i n g t o equation 1 (page 1 0 9 ) . The maximum content of t h i s metal i n tho p r o f i l e should l i o w i t h i n the 'C~ ' hor-Oa i z o n because tho r a t e of change of pH i s g r e a t e s t hero, a l l o w i n g f o r more copper d e p o s i t i o n than elsewhere i n the s e c t i o n . This d i s t r i b u t i o n agrees w i t h o b s e r v a t i o n s by H o r s n a i l and E l l i o t t ( 1 9 7 1 ) on tho same p r o p e r t y . The f o l l o w i n g g e n e t i c sequence f o r t h i s type of anomaly formation i s suggested. Copper d i s s o l v e s from m i n e r a l i z e d f l o a t b l o c k s during chemical weathering near the ground surface and enters the f i n e f r a c t i o n of the s o i l . Copper i n i t i a l l y present i n tho f i n e f r a c t i o n as primary s u l p h i d e s has l o n g s i n c e d i s s o l v e d and i s now thought present adsorbed to s i l i c a t e l a t t i c e s . This c o n t r i b u t i o n t o the s o i l r e s u l t s i n a h i g h background content found over the b a t h o l i t h . Prolonged l e a c h i n g t r a n s p o r t s metal d e r i v e d from both sources downward and d e p o s i t i o n occurs near the 'Cn ' h o r i z o n . The r a t i o of c o l d e x t r a c t a b l e • 168-to t o t a l copper should i n c r e a s e down tho p r o f i l e , i f t h i s genesis i s v a l i d , which indeed appears to bo the case ( F i g 23H). Horizons found below the 'Gn ' oa u s u a l l y range i n pH between 8.1 and 8.5, a c o n d i t i o n unfavorable f o r m i g r a t i o n of copper on the same s c a l e as t h a t found f o r horizons above the 1C~ Thus, i t oa i s u n l i k e l y t h a t copper from u n d e r l y i n g m i n e r a l i z e d bedrock could c o n t r i b u t e s i g n i f i c a n t l y to values seen i n the 'C~ '. The amount of copper observed i n t h i s oa h o r i z o n may be a measure of the l c a c h a b l e and t o t a l metal content present i n o v e r l y i n g s o i l h o r i z o n s . Nature of the coarse fragments i s important when they c o n t a i n t r a c e s of sulphide m i n e r a l s . F l o a t b l o c k s over the b a t h o l i t h aro predominontly hornblende s y e n i t e . R e s u l t s of the survey by Amax E x p l o r a t i o n , I n c . , ( F i g . 8) showed t h a t i s o l a t e d anomalous copper values on tho p l a t e a u were caused by sample c o l l e c t i o n i n c l o s e prox-i m i t y to m i n e r a l i z e d boulders. S i m i l a r e f f e c t s are al s o v i s i b l e w i t h i n t r e n c h p r o f i l e s , whore a h i g h p e r -centage of hornblende s y e n i t e f l o a t i s accompanied by measurement of high copper v a l u e s . Conversely, hor-i z o n s which c o n t a i n l i t t l e or no hornblende s y e n i t e b l o c k s are only r a r e l y anomalous. I t i s t h e r e f o r e necessary to i d e n t i f y t h i s type of source f o r copper and d i f f e r e n t i a t e i t from any c o n t r i b u t i o n s from under-l y i n g m i n e r a l i z a t i o n i n bedrock. Depth of tho sampled h o r i z o n a f f e c t s such s u b j e c t s as i n t r o d u c t i o n and decomposition of org a n i c matter and • 169-o l u v i a t i o n and t r a n s l o c a t i o n of c l a y m i n e r a l s , s c s q u i -oxidos, organic matter, t r a c e elements and calcium carbonate. Accessory p r o p e r t i e s which vary w i t h depth i n c l u d e pH and l e v e l of tho water t a b l e . Most of these f a c t o r s are dis c u s s e d elsewhere (Boar, 1964). A f e a t u r e of importance hero i s the e f f e c t of i n t e r -a c t i o n s of topography w i t h the water t a b l e . The case of anomaly formation i n seepage areas has been p r e v i o u s l y d escribed (chapter 3, pages 161 - 165) and d e p o s i t i o n of copper, z i n c and organic matter from ground water has als o been o u t l i n e d i n chapter 3, pages 163 - 165). D e p o s i t i o n i n seepages and from ground water are i n s t r u -mental i n the formation of copper enrichments at the toe of the t a l u s s l o p e . Topography can e f f e c t a r e d i s t r i b u t i o n of energy w i t h i n g e n e t i c processes i n v o l v e d i n s o i l f o r m a t i o n . The f o l l o w i n g examples i l l u s t r a t e t h i s r e l a t i o n s h i p . Mechanical e r o s i o n , by r u n o f f , of surface h o r i z o n s l i m i t s the v e r t i c a l development of the s o i l . Weathering and g r a v i t y combine to move t a l u s d e b r i s w i t h concomitant formation of copper anomalies. Chemical r e a c t i o n s i n f l u e n c e d by the r a t e of movement of ground water and i t s i n t e r a c t i o n w i t h m a t e r i a l through which i t passes are a l s o enhanced by steep s l o p e s . Seepage anomalies develop i n response to r a p i d changes of surf a c e s l o p e . S o i l genesis i s l i k e w i s e a f f e c t e d by ground water per-c o l a t i o n . Well d r a i n e d c o n d i t i o n s f a v o r the formation of podzols which, i n t u r n , have tho a b i l i t y to scavenge - -170-and concentrate t r a c e metals from ground water. H o r s n a i l and E l l i o t t (1971) suggest t h a t podzols are a l s o favored by steep s l o p e s . Coarse t e x t u r e s , however, a l s o promote r a p i d drainage. I n the present example, a combination of s o i l t e x t u r e and slope i n c r e a s e s tho chances of podzol formation along the v a l l e y s i d e s . i v . Choice of h o r i z o n f o r sampling purposes Each s o i l h o r i z o n was t r e a t e d as a separate popu-l a t i o n and tho moan, range and t h r e s h o l d v a l u e s wore c a l c u l a t e d (Table XXVII). A comparison of these measurements i n d i f f e r e n t h o r i z o n s shows t h a t the 'L-H' h o r i z o n has the lowest copper values (27 ppm, 10 - 75 ppm, and 210 ppm r e s p e c t i v e l y ) w h i l e the 'Bf', a zone of i r o n enrichment, has the h i g h e s t (140 ppm, 44 - 460 ppm, and 1500 ppm r e s p e c t i v e l y ) . V/ithin the m i n e r a l s o i l , the 'Ac' h o r i z o n , a zone of l e a c h i n g , i s lowest i n copper (33 ppm, 10 - 105 ppm, and 340 ppm r e s p e c t -i v e l y ) w h i l e the 'C h o r i z o n , i n the absence of a ' B f , i s commonly h i g h e s t i n t h i s metal (100 ppm, 32 - 300 ppm and 910 ppm r c s p o c t i v o l y ) . F i g . 22 was drawn showing tho i n f l u e n c e of topo-graphic slope on tho copper d i s t r i b u t . on i n d i f f e r e n t s o i l h o r i z o n s . The range i n metal values w i t h i n the 'L-H' i s not g r o a t . When coupled w i t h problems i n v o l v e d d u r i n g a n a l y s i s of organic samples, there tends to bo a poor demarcation of the l a t e r a l extent of the anomaly. 171-Thus, on F i g . 22, tho copper anomaly i n the 'L-H' hor-i z o n i s small compared w i t h t h a t of other h o r i z o n s and only o v e r l i e s areas of known outcrop exposures. Tho anomaly i n tho 'Ah', a m i n e r a l h o r i z o n c o n t a i n i n g a few percent o r g a n i c matter, i s s l i g h t l y l a r g e r and i s formed by values two to three times g r e a t e r than those found i n the 'L-H'. The 'Ae' h o r i z o n i s not found over a s u f f i c -i e n t l y wide area to be considered here. The 'B' h o r i z o n p r o v i d e s the most r e l i a b l e samples. I t i s found at approximately s i x inches i n depth and i s , t h e r e f o r e , e a s i l y a c c e s s i b l e to sampling methods. The ' B f h o r i z o n , as a l r e a d y noted, has the g r e a t e s t range i n coppor values and i s probably the u n i t most s u i t e d f o r d e t e c t i o n of areas enriched i n copper. Un-f o r t u n a t e l y , the ' B f i s a l s o not w i d e l y found, and so cannot be used as a r e g i o n a l sampling t o o l . The 'Bt' h o r i z o n , formed by t r a n s l o c a t i o n of c l a y m i n e r a l s , i s l e s s common and t h e r e f o r e not considered. Thus, o n l y the 'Bm' and 'C horizons remain (the 'BC h o r i z o n a l s o i s not found e x t e n s i v e l y ) . Examination of P i g . 22 shows tha t both are e q u a l l y s u i t a b l e i n d e f i n i n g the copper anomaly. The zone o u t l i n e d i s l a r g e r than t h a t found i n tho 'A' h o r i z o n and c l o s e l y corresponds to areas surrounding known exposures of m i n e r a l i z e d bedrock. Values w i t h i n the *C h o r i z o n are two t o three times g r e a t e r than those of the 'Bm' w i t h i n a p a r t i c u l a r s e c t i o n . U n f o r t u n a t e l y , tho 'C i s o n l y found s i x to twelve inches deeper than the 'Bm1 and hence i s l e s s amenable to r a p i d sample c o l l e c t i o n . Thus, i t i s sug-gested t h a t the 'Bm', a h o r i z o n o n l y moderately changed from u n d e r l y i n g parent m a t e r i a l , be sampled at an ap-pr o x i m a t e l y constant depth of s i x to ei g h t inches f o r e x p l o r a t i o n purposes where s o i l sampling i s r e q u i r e d . Other h o r i z o n s may have b e n e f i c i a l c h a r a c t e r i s t i c s , but r e q u i r e excessive e f f o r t f o r r o u t i n e surveys. Data from the top of the 'B' h o r i z o n are p l o t t e d i n F i g . 8, com-p i l e d by Amax E x p l o r a t i o n , I n c . b. A p p l i c a t i o n to E x p l o r a t i o n S o i l sampling has been used s u c c e s s f u l l y s i n c e 1950 to l o c a t e zones of sulp h i d e m i n e r a l i z a t i o n . Since then, numerous s t u d i e s by governmental agencies, m i n e r a l e x p l o r a t i o n companies and u n i v e r s i t y r e s e a r c h e r s have boon undertaken w i t h v a r i a b l e degrees of success (Forgoron, 1971)= R e s u l t s of some of those surveys have been de s c r i b e d by Hawkes and Webb (1962) and arc indexed by Hawkes (1970). Other papers p e r i o d i c a l l y appear i n g e o l o g i c a l j o u r n a l s or arc on f i l e at pr o -v i n c i a l and f e d e r a l bureau of mines o f f i c e s . Climate and recent g l a c i a l d e p o s i t s have i n t e r -acted to form an a l k a l i n e geochemical environment which i s t y p i c a l of many thousands of square m i l e s i n c e n t r a l B r i t i s h Columbia. The e f f e c t i v e n e s s of ground water a c t i o n on anomaly formation i s s e v e r e l y c u r t a i l e d , a l -though some copper may be t r a n s p o r t e d i n s o l u t i o n • 173-(Bloom, 1966). Chances of geochemical e x p r e s s i o n of bedrock m i n e r a l i z a t i o n , consequently, decreases as the th i c k n e s s of overburden i n c r e a s e s . Tho geochemical anomaly i n s o i l s o v e r l y i n g the pr o p e r t y , determined by Amax ( F i g . 8 ) , i s approximately 6 m i l e s l o n g , along the R a y f i e l d R i v e r . G reatest coppor v a l u e s , noar the base of the v a l l e y side w i t h i n t a l u s m a t e r i a l , occur n o r t h of the Z bend along the r i v e r . Analyses from the present survey have y i e l d e d a contrast-r a t i o f o r copper of 3.3 f o r t h i s anomaly. Bedrock that outcrops as crags near the c r e s t of the v a l l e y c ontains v i s i b l e b o r n i t e and c h a l c o p y r i t o , p r o v i d i n g a source of copper which, under tho i n f l u e n c e of weathering and g r a v i t y , moves downslope and c o n t r i b u t e s to anomaly formation. Seepage and sp r i n g s are a l s o common and may bo a s i g n a l showing t h a t a d d i t i o n of t r a c e elements from s o l u t i o n i s probable. Thus, a source of copper and mechanisms f o r i t s t r a n s p o r t are r e a d i l y a v a i l a b l e to form tho observed t a l u s anomalies . Talus samples have boon suggested i n s e c t i o n " i i " as a type of geochemical sample which may prove i n v a l u -able to m i n e r a l e x p l o r a t i o n i n re g i o n s having steep topography. Two mechanisms were o u t l i n e d f o r copper anomaly formation i n t a l u s cones where m i n e r a l i z a t i o n i s disseminated along v e i n s or f i n e f r a c t u r e s . E i t h e r mechanical c o n c e n t r a t i o n or d e p o s i t i o n from ground water of copper may r e s u l t i n s i m i l a r l y appearing d i s -p e r s i o n t r a i n s . I f the two can be d i s t i n g u i s h e d , then t a r g e t zones may be e s t a b l i s h e d f o r f u r t h e r work. The r e l a t i v e percentage of c o l d e x t r a c t a b l e t o t o t a l metal i s thought to be a measure of tho copper content which has boon deposited from ground water s o l u t i o n s . A r e l a t i v e l y h i g h weak e x t r a c t a b l c metal content may i n -d i c a t e occurrence of a t r a n s p o r t e d anomaly. As des-c r i b e d on page 164, mechanical c o n c e n t r a t i o n of s u l p h i d e minerals by weathering of crag outcrops, p o s s i b l y accom-panied by l o c a l s o l u t i o n and p r e c i p i t a t i o n , i s thought to represent t a l u s anomaly formation on t h i s p r o p e r t y . S o i l anomalies i n t a l u s are more c l o s e l y r e l a t e d to m i n e r a l i z e d bedrock than arc stream sediments of the v i c i n i t y . Each t a l u s cone forms independently, has i t s own t r a c e clement content, and thereby p o i n t s t o more l o c a l i z e d areas of i n t e r e s t . A more d i f f i c u l t problem f o r s o i l geochemistry l i e s w i t h the d e t e c t i o n of p o s s i b l e s u l p h i d e s u n d e r l y i n g the p l a t e a u . A combination of s o i l p r o f i l e , f l o a t and goomorphic s t u d i o s arc suggested f o r the case where the environment i s a l k a l i n e . Thickness of g l a c i a l over-burden i s v a r i a b l e , but has been found to exceed 60 f e e t i n one d r i l l h o l e . Geochemical sampling of the overburden r e v e a l s o n l y i s o l a t e d anomalous copper values found d i r e c t l y r e l a t e d to m i n e r a l i z e d b l o c k s of horn-blende s y e n i t e f l o a t . Highest copper contents i n most of the p r o f i l e s s t u d i e d occurs w i t h i n the 'C„ ' h o r i z o n oa where enhancement f a c t o r s of two or three times aro common compared w i t h the 'Bm' and even h i g h e r when com-• 175-parod w i t h most other h o r i z o n s . The h i g h r e l a t i v e per-centage of c o l d e x t r a c t a b l e copper i n the 1C„ 1 has 1/3. developed i n response to p r e c i p i t a t i o n of t h i s metal from ground water l e a c h i n g tho solum once i n c r e a s e s of one or more pH u n i t s over a few inches of depth are encountered. Tho f o l l o w i n g e x p l o r a t i o n program i s suggested f o r t h i s typo of geochemical environment, a f t e r s u f f i c i e n t evidence has been c o l l e c t e d which v e r i f i e s i t s e x i s t e n c e . When i s o l a t e d h i g h copper values are found d u r i n g a p r o p e r t y s o i l survey, and f e a t u r e s such as seepage, bog or other geochemical t r a p s have been e l i m i n a t e d as a cause f o r these enrichments, then they must bo r e -l a t e d to bedrock or f l o a t sources. As bedrock i s g e n e r a l l y covered, determination of tho extent and c h a r a c t e r of m i n e r a l i z e d f l o a t should be the next stage, r a t h e r than systematic or g r i d s o i l sampling. Perhaps a few outcrops may be l o c a t e d which w i l l a i d i n the mapping. F i n a l l y , tho d i s t r i b u t i o n and d e n s i t y of t h i s s p e c i a l typo of f l o a t b l o c k w i l l o u t l i n e the area of i n t e r e s t . Next, g r i d t r e n c h i n g or s o i l sampling t o the ' 0 n ' h o r i z o n i n v o l v i n g depths of up t o f i v e f e e t Oa are r e q u i r e d , as the copper content of the * ' appears oa to bo a measure of the copper c o n c e n t r a t i o n i n the over-l y i n g h o r i z o n s . Such geochemical sampling i s l o s s prone to b i a s e d i n t u i t i o n than i s a v i s u a l e s t i m a t i o n of percent s u l p h i d e s i n coarse and weathered b l o c k s . -176-Anomalies are then traced back to zones of probable o r i g i n of the metal. Such a procedure has not been v e r i -f i e d on t h i s property, but i t i s thought that a program would reveal u s e f u l information on the eastern plateau where f l o a t , containing bornite and chalcopyrite, i s abundant. Where the g l a c i a l h i s t o r y i s complex, chances of success f o r s i m i l a r programs are diminished. Detailed g r i d s o i l sampling on the plateau does not appear to o f f e r the help i n exploration u s u a l l y ex-pected. Geochemical expression of hidden m i n e r a l i z a t i o n i s bluntod by the a l k a l i n e nature and thickness of the s o i l mantle. Randomly dispersed mineralized f l o a t blocks a f f e c t s o i l samples i n an e r r a t i c and non-uniform manner. Small differences i n topographic r e l i e f and the dry climate are detrimental to formation of s a l i n e anomalies. When a l l these f a c t o r s are combined, d e t a i l e d s o i l sampling, when performed, does not reveal largo or consistent zones of copper enrichment which might be followed up by a d d i t i o n a l exploration programs. 6. Vegetation A. Copper and Zinc D i s t r i b u t i o n i n Selected Trees Second year growth stems and needles of Douglas f i r and lodgepole pino were chosen, as these are tho only species of trees found widely over tho property. Mean, range and threshold values arc given i n Table XXVIII. I t can be seen that needles of both types of trees are --177-onhanccd approximately 75$ i n coppor compared with com-plementary stems. Tho converse relationship i s evident for zinc, where up to 100$ differences in metal values havo boen observed in the two typos of samples. Whon tho data on stems and noodles aro plotted across tho landscape along the bond traverse(Pig. 24), tho results aro erratic and do not reproduce s o i l geo-chemical anomalies (Pig. 22). Areas known to bo underlain by mineralized bedrock aro represented in this survey by, at most, a meager 50$ enhancement of copper over background. Unfortunately, too few needle and stem samples were analysed for computation of the analytical precision to bo made, but i t i s thought that, on visual comparison of duplicate samples, d i f -ferences of this magnitude arc not necessarily sig-nificant. Douglas f i r noodles, however, suggest the presence of an anomalous zone for copper undor tho valley sides. I f the sampling density had boon uniform along the traverse l i n e , i t i s believed that no such observation would have been made. No other s i g n i f i c -ant trend for either coppor or zinc was found. -178-Tablo XXVIII Copper and zinc content (ppm) of second year growth of Douglas f i r and lodgepolo pine, based on oven dried weight, nitric/perchloric acid attack DOUGLAS FIR LODGEPOLE PINE NEEDLES STEMS NEEDLES STEMS Threshold 6.7 12.8 14.0 9.2 Cu Mean 3.9 6.7 7.9 4.8 Range 2.5-5.3 3.6-9.7 4.8-11 2.6-7.0 Threshold 88 58 58 34 Zn Mean 60 38 40 21 Range 46-74 28-48 32-49 15-28 Number of samples 22 20 29 29 0 N FIGURE Z4A DISTRIBUTION OF COPPER (PPK) IH DOUGLAS FIR NEEDLE* SECOND YEAR GROWTH, OVEN DRIED WEIGHT GEOCHEMICAL LLGtND LESS THAN 7-9 PPm 7.9 - 11 ppm 11 - 14 ppm MORE THAN 14 ppm FIGURE 24E DISTRIBUTION OF COPriSR {f?K) Lw DOUGLAS FIR STEMS SECOND YtAK GROWTH, OVfci. DRIED WEIGHT GEOCHEMICAL LEGEND • LESS THAN 4.8 ppm 0 4.8 - 7.0 P P " 7.0 - 9.2 ppm MORE THAN 9.2 PP™ rIGUPE 24C DISTRIBUTION OF COPPER (PPK) IN LODGEPOLS PIKE NEEDLES SECOND YEAR GROWTH, OVEN DRIED WEIGHT GEOCHE'ICAL LEGETO LESS THAN 6.7 ppm 6.7 - 9.7 ppm 9.7 - 13 PPm MORE THAN 13 PPm FIGURE 24D DISTRIBUTION OF COPPER (PPM) IN LODGEPOLE PINE STEMS SECOND YEAR GROWTH, CVEf.' riRIED WEIGHT GEOCHEMICAL LEGEND • LESS THAN 3.9 Ppm £ 5-3 - 6.7 ppm • 3.9 - 5.3 PPm ^ MORE THAN 6.7 ppm fICU":i TA CIS TP I5UTICF C-K CCiYEP (FPK) TK DOUGLAS FIR AND LODGEPOLE PINK TOPOGRAPHIC LEGENT N + CONTOUR INTERVAL 100 FEET CREEKS AND RIVERS SWAKPS UKES LOCAL GRID CONTROL POINTS 179-5000 FEET I i Bo Dj.scusni.on (a) A p p l i c a t i o n t o E x p l o r a t i o n Hav/kcs and Webb (1962) and Wolfe (1971) d e s c r i b e the theory of biogeochemical e x p l o r a t i o n , i n c l u d i n g m i g r a t i o n of elements from the s o i l to the d i f f e r e n t p l a n t organs. Warren, D c l a v a u l t and Cross (1966/) give a comparison of the copper content i n l o d g c p o l c pine and Douglas f i r t i p s , needles and stems, showing t h a t , i n ppm of ash weight, values i n d i f f e r e n t p l a n t organs are by no means the same. The r e g i o n of the survey, Copper Mountain, B r i t i s h Columbia, has a s i m i l a r c l i m a t e as the R a y f i e l d R i v e r , but comparison of v a l u e s i s not p o s s i b l e , as oven d r i e d weight was used here. F u r t h e r work by those authors (1966B) on numerous m i n e r a l prospects and mine s i t e s have enforced the i d e a t h a t , a f t e r c a r e f u l d i s c r i m i n a t i o n of types of p l a n t organs c o l l e c t e d , anomalies may bo r e p r e s e n t i n g u n d e r l y i n g m i n e r a l i z a t i o n t h a t might have been missed by s o i l s u r -veys. Warren and D c l a v a u l t (1967) note, i n a review a r t i c l e , t h a t biogeochemical e x p l o r a t i o n i s not a w i d e l y accepted t o o l f o r p r o s p e c t i n g i n Canada, even though the p r a c t i c e would y i e l d f a v o r a b l e r e s u l t s i n r e g i o n s o v e r l a i n by p e d o g o n i c a l l y young g l a c i a l d e p o s i t s . Concentration of molybdenum or a r s e n i c arc j u s t two examples where v e g e t a t i o n sampling programs may a i d i n d e t e c t i o n of covered m i n e r a l i z a t i o n . Barakso et a l • 181-(1971) also found p lants good i n d i c a t o r s of minera l i zed areas, but fac tors a f f e c t i n g t h e i r d i s t r i b u t i o n were, perhaps, too complex for rout ine geochemical surveys . On t h i s property , i t appears that biogeochemical prospect ing i s not too succes s fu l . Perhaps Douglas f i r needles can be used to detect under ly ing m i n e r a l -i z a t i o n , but assoc iated s o i l surveys provide greater anomaly contrast and more r e l i a b l e samples. Graat en-richment of copper was not apparent even when copper sulphides i n bedrock wore known to l i e s l i g h t l y below the base of the tree r o o t s . I t i s probable that the a l k a l i n e environment r e s t r i c t s copper migrat ion upwards i n the p r o f i l e , r equ ired for t h i s metal to reach the p l a n t , from under ly ing m i n e r a l i z a t i o n . Tree roots a l so do not extend much fur ther than 3 feet from the surface , thus f a i l i n g to penetrate through the g l a c i a l deposits required to detect bedrock m i n e r a l i z a t i o n . Comparison of these resu l t s with s o i l data shows that tree sampling on th i s property y i e lds lower contrast r a t i o s for copper. As tree sample c o l l e c t i o n requires a d d i t i o n a l e f for t compared with s o i l sampling, the l a t t e r technique appears superior i n o u t l i n i n g the sulphide minera l i za t ion within the syeni te . ChA PTER I INTERRELATIONSHIPS BETWEEN SURVEYS 1. I n t r o d u c t i o n D i f f e r e n t geochemical surveys have p r o v i d e d i n -formation which, when combined, gi v e a p i c t u r e of the p h y s i c a l and chemical processes o p e r a t i n g on the prop-e r t y . The success of surveys of secondary d i s p e r s i o n i n l o c a t i n g m i n e r a l i z a t i o n must be gauged by the degree of correspondence they show wi t h known zones of copper sulphide m i n e r a l s i n bedrock. U n f o r t u n a t e l y , the most important v a r i a b l e , the l o c a t i o n of copper su l p h i d e m i n e r a l i z a t i o n , i s not e n t i r e l y understood. The f o l l o w -i n g d i s c u s s i o n i s , t h e r e f o r e , l i m i t e d i n i t s scope to an e v a l u a t i o n of copper anomalies i n stream and l a k e water and sediment, f l o a t and s o i l s and how they are r e l a t e d to and d e r i v e d from bedrock sources. P i g . 25 i s a schematic diagram which i l l u s t r a t e s the d i f f e r e n t r e -l a t i o n s h i p s . 2. Genetic F a c t o r s A f f e c t i n g Copper Anomaly Formation Enhancements of copper and other d i s t r i b u t i o n p a t t e r n s found i n each survey of chapter 3 are genet-i c a l l y i n t e r r e l a t e d and u l t i m a t e l y d e r i v e d from bedrock sources. In the f o l l o w i n g d i s c u s s i o n , d i s p e r s i o n of copper from s u l p h i d e zones i n hornblende s y e n i t e bedrock 183-HORNBLENDE SYENITE BEDROCK HORNBLENDE SYENITE FLOAT y i 1 ! l i MECHANICAL WEATHERING CHEMICAL WEATHERING "B^ TREAM  SEDIMENT ANOMALY TALUS ANOMALY SPRINGS "AND SEEPAGES _ J , SEEPAGE; ANOMALY" ROUNDED TRANS-PORTED FLOAT ANOMALY; LOCAL FLOAT ANOMALY LEACHING RANDOM SOIL ANOMALIES ANGULAR ROCK FLOUR ! SOILS WITH A HIGH BACK-GROUND OF COPPER FLOOR OF LAKES-LAKE "SEDI-MENT ' NOMALY V, LAKE WATER ANOMALY FIGURE 25 SCHEMATIC DIAGRAM SHOWING THE RELATIONSHIP BETWEEN COPPER RICH BEDROCK A.ND THE DIFFERENT TYPES OP GLACIAL OVERBURDEN • 134-w i l l bo t r a c e d to the d i f f e r e n t types of g l a c i a l over-burden o One event i n tho ancient h i s t o r y of the p r o p e r t y deserves s p e c i a l a t t e n t i o n — P l o i s t o c o n o g l a c i a t i o n . G l a c i e r s a t tacked bedrock exposed at that time and formed t i l l whoso p a r t i c l e s range i n s i z e from l a r g o b l o c k s to f i n e rock f l o u r . Transport of coarse m a t e r i a l was not over groat d i s t a n c e s , although some movement d i d occur. F l u v i a l t r a n s p o r t of b l o c k s d u r i n g t h i s p e r i o d forming one of the anomalies on F i g . 20, f o r example, i s a case i n p o i n t . The e f f e c t of g l a c i a t i o n , however, was to d i s r u p t p o s s i b l e geochemical p a t t e r n s which may have e x i s t e d i n p r o - P l e i s t o c e n e time and to d i s p e r s e , m e c h a n i c a l l y , b l o c k s and other m a t e r i a l con-t a i n i n g b o r n i t e and c h a l c o p y r i t c from t h e i r bedrock source. Thus, w i t h tho disappearance of the i c e and the r e i n i t i a t i o n of a "normal" c y c l e of weathering and e r o s i o n , geochemical p a t t e r n s t h a t developed were r e -l a t e d to the t r a c e clement content i n both bedrock and g l a c i a l l y d e r i v e d s u r f i c i a l d e p o s i t s . Since the P l e i s t o c e n e , the R a y f i e l d R i v e r coppor pr o p e r t y has been subjected to a s c m i a r i d c l i m a t e , a f a c t o r which combined w i t h the r e l a t i v e l y unweathcred nature of the s u r f i c i a l d e p o s i t s loads to the develop-ment of an a l k a l i n e environment. This a l k a l i n e con-d i t i o n has been r e f e r r e d to many times p r e v i o u s l y , and should a f f e c t geochemical d i s p e r s i o n of t r a c e elements. As might be expected, the a l k a l i n e environment i s one i n which s o i l s and r e l a b e d sediments have pH v a l u e s g r e a t e r than 7.0 and u s u a l l y around 8.1. When t e s t i n g the s o i l f o r pH, the 'A' and top of the 'B' h o r i z o n are u s u a l l y a c i d i c or n e u t r a l . I t i s not u n t i l when the base of the 'B1 h o r i z o n or the parent m a t e r i a l i s sampled t h a t alka-l i n e c o n d i t i o n s are encountered. The solum i s u s u a l l y t h i n compared wi t h the depth of the overburden and t h e r e -f o r e these a c i d i c c o n d i t i o n s are secondary i n importance i n c o n t r o l l i n g the geochemical d i s p e r s i o n p a t t e r n s . The a l k a l i n e environment i s the r e s u l t of incomplete l e a c h i n g of calcium from s u r f i c i a l d e p o s i t s , c h a r a c t e r i s t i c where r a i n f a l l i s low or the s o i l i s r i c h i n calcium carbonate. Under these c o n d i t i o n s , the m o b i l i t y of copper d i s s o l v e d i n s o l u t i o n i s g r e a t l y reduced (equation 1, chapter 3, page 109)> although some metal i s s t i l l t r a n s p o r t e d by ground and surface water (Bloom, 1966). Thus, i t i s t o be expected t h a t , s i n c e the P l e i s t o c e n e , f o r m a t i o n of geo-chemical anomalies d e r i v e d from bedrock m i n e r a l i z a t i o n has occurred o n l y where g l a c i a l d e p o s i t s are t h i n , or where topographic e f f e c t s cause an area to become sub-s t a n t i a l l y e n r i c h e d i n a p a r t i c u l a r metal. •The e x i s t -ence of a g l a c i a l source f o r copper can i n i t i a l l y o n l y complicate any i n t e r p r e t a t i o n of data from the surveys of chapter 3. The geochemical environment on the p r o p e r t y can be f u r t h e r subdivided i n t o the p l a t e a u r e g i o n and the -186-valley sides. Each w i l l be considered separately. Enhancements along the valley are thought directly related to bornite and chalcopyrite bearing outcrops occurring as crags two thirds of the way up the valley sides. Mechanical concentration and associated redistribution by ground water of contained copper have combined to form talus anomalies in response to metal rich zones in bedrock (Fig. 8). Springs and seepages, when present, emerge near the base of the talus deposits. They are found at several locations and .appear s l i g h t l y less basic than stream water due to their permeation through zones of oxidizing sulphide minerals. Spring and seepage water contain relatively high copper contents that precipitate on contact with the more basic Rayfield River. Deposition of copper from seepages near the toe of talus slopes also helps i n anomaly formation i n the v i c i n i t y of the Z bend. Glacial deposits lying above outcrop exposures are more typical of the plateau and are considered later. Insufficient collection of samples of river alluvium has made i t impossible to predict i f this type of sample would reflect bedrock rich i n copper. It i s thought, however, that alluvium can be directly related to stream sediments which do closely reflect mineralization. The Rayfield River copper anomaly i s 6 miles long of which 2 1/2 miles l i e s downstream from the most interesting outcrop exposures. This result i s the f i r s t example of an extensive dis-• 187-p e r s i o n t r a i n ( F i g . 17A). A s s o c i a t e d water c o n t a i n s l e s s than 4- ppb copper, an extremely lov; content com-pared w i t h sediment w i t h which i t i s i n dynamic e q u i l -i b r i u m . E v i d e n t l y , a pH of 7.9 to 8.1 i s not f a v o r a b l e f o r copper c o n c e n t r a t i o n s h i g h e r than t h i s value ( P i g . 14A). On the p l a t e a u , g l a c i a l d e p o s i t s appear more important than bedrock i n c o n t r o l l i n g the formation of geochemical anomalies. Copper enriched f l o a t b l o c k s o v e r l i e or are "downice" from m i n e r a l i z e d zones i n bed-rock. A s i m i l a r r e s u l t i s expected f o r sample analyses of rock f l o u r . Surveys of secondary d i s p e r s i o n r e v e a l anomalous c o n d i t i o n s d i r e c t l y c o r r e l a t a b l e w i t h h i g h copper values i n hornblende s y e n i t e f l o a t . Thus, both l a k e sediments and s o i l samples o u t l i n e a r e g i o n of copper enhancement which i s roughly the same as t h a t found i n f l o a t data, e x c l u d i n g the f l u v i a l l y t r a n s p o r t e d anomaly along the Bonaparte R i v e r . Lake sediment data r e v e a l the presence of the s y e n i t e b a t h o l i t h and i n d i c a t e anomalous c o n d i t i o n s around the Z bend ( P i g . 19A). Lake water, i n dynamic e u q i l i b r i u m w i t h the sediment, e s s e n t i a l l y p o r t r a y s the same r e s u l t s ( P i g . 15A). S o i l development i s r e s t r i c t e d to downward l e a c h -i n g of copper at a slow r a t e , f o l l o w e d by p r e c i p i t a t i o n i n the ' ' h o r i z o n where the pH t y p i c a l l y becomes more b a s i c by one or more u n i t s ( P i g . 2j5). L i t t l e , i f any, • 188-upward c o n t r i b u t i o n s of t h i s metal come from u n d e r l y i n g bedrock or t i l l because the pH i s too h i g h . A rough c o r r e l a t i o n appears to e x i s t between the percentage of hornblende s y e n i t e f l o a t i n any p r o f i l e and i t s copper content. Random h i g h copper values i n the survey by Amax E x p l o r a t i o n , I n c . ( F i g . 8) on the p l a t e a u have been a t t r i b u t e d to m i n e r a l i z e d f l o a t b l o c k s from the sample p i t . S o i l samples, at pre s e n t , cannot be used to det e c t u n d e r l y i n g m i n e r a l i z a t i o n . R e s u l t s of sampling of the 'B1 h o r i z o n i s dependent on the presence of f l o a t b l o c k s , pH and s o i l t e x t u r e and. i s u n l i k e l y to y i e l d c o n s i s t e n t anomalies. I t has been suggested (chapter 3, pages 175 " 1 7 6 ) t h a t sampling of the 'Cn ' h o r i z o n would pro-oa v i d e the best measure of the copper content of the solum, which, when p l o t t e d , might be used i n a f a s h i o n s i m i l a r to boulder t r a c i n g . Stream sediment data has r e v e a l e d two anomalies on the p l a t e a u which cannot, at present, be d i r e c t l y r e l a t e d to bedrock or f l o a t sources ( F i g . 17A). Other-wise, p l a t e a u creek sediments do not r e v e a l \mderlying m i n e r a l i z a t i o n . Water f l o w i n g i n these creeks have t h e i r h i g h e s t copper content over the s y e n i t e — T e r t i a r y b a s a l t c o n t a c t . This i s probably a response to lower pH values ( F i g . 14-C) and c o n d i t i o n s f a v o r i n g complexation w i t h organic l i g a n d s r a t h e r than being caused by the d i s s o l u t i o n of copper su l p h i d e m i n e r a l s . THE DANSEY-RAYFIELD RIVER COPPER PROPERTY FIGURE 26 SUMMARY OF COPPER ANOMALIES IN BEDROCK AND GLACIAL OVERBURDEN AS TOPOGRAPHIC LEGE NO - Con**/ intervol 100 leet — Creefcs, and Rrvert 5 SwOrrpS -J L a k n Loca l G r d Control Po r t e GEOCHEMICAL LEGEND CZ3 110 ppm i n BEDROCK •V::» 85 ppm i n FLOAT 23 ppm i n LAKE SEDIMENT 6 ppb i n LAKE WATER T^-> 100 ppm i n SOILS 48 ppm i n STREAM SEDIMENTS m+ 155 PPm i n STREAM SEDIMENTS • 190-3 . A p p l i c a t i o n to E x p l o r a t i o n on the R a y f i e l d R i v e r Copper P r o p e r t y F i g . 26 i s a c o m p i l a t i o n of the geochemical anomalies found i n the surveys d e s c r i b e d i n chapter 3 . The e x t e n t , c o n t r a s t and a c c e s s i b i l i t y are a l l f a c t o r s which are important to d e t e c t i o n and e x p l o r a t i o n of t h i s p r o p e r t y . A c c e s s i b i l i t y i s perhaps l e a s t important where no roads or many roads e x i s t . However, i n southern B r i t i s h Columbia, access i s v i t a l to the d i s c o v e r y of coppor m i n e r a l i z a t i o n by geochemical techniques. I t i s f i r s t u s e f u l t o c o n s i d e r r e f e r e n c e i n f o r m a t i o n on the area i n the form of tho g e o l o g i c a l map by Campbell and Tip p e r (1966). Bedrock u n d e r l y i n g the R a y f i e l d R i v e r coppor p r o p e r t y has been mapped as belon g i n g to the Thuy b a t h o l i t h , noted f o r an extremely low copper content ( p e r s o n a l communication, Waterman, 1 9 7 1 ) . Other rocks of the area i n c l u d e T e r t i a r y b a s a l t , considered by Amax and other companies to have a low chance of c o n t a i n i n g economic s u l p h i d e s and N i c o l a v o l c a n i c s , r e g i o n a l l y high i n copper, but without any major producer so f a r . P r e -l i m i n a r y work i n the area might be r e l e g a t e d to stream sampling along roads, c o l l e c t i o n of tho o c c a s i o n a l s o i l sample and perhaps more d e t a i l e d work near or over the N i c o l a V o l c a n i c s . R e s u l t s of t h i s type of survey are negative and the area would be dropped erroneously. Next, i t i s necessary to evaluate which sampling 191-programs would be most s u c c e s s f u l i n f i n d i n g copper m i n e r a l i z a t i o n on t h i s p r o p e r t y . The d i s t r i b u t i o n of roads on F i g . 1 i s such t h a t a t r a i n e d observer would n o t i c e m i n e r a l i z e d b l o c k s of hornblende s y e n i t e south of tho Bonaparte R i v e r . Boulder t r a c i n g would i n e v i t -ably l e a d to the other f l o a t anomaly o v e r l y i n g m i n e r a l i z -a t i o n i n bedrock. Both these zones of copper enrichment are approximately f o u r square m i l e s i n area and t h e r e -f o r e only r e q u i r e a sampling d e s n i t y of perhaps 2 per square m i l e f o r d e t e c t i o n . Maximum c o n t r a s t r a t i o of copper (maximum metal c o n c e n t r a t i o n / t h r e s h o l d value) i n f l o a t samples i s c l o s e t o 3 . 0 . Anomalous zones i n f l o a t analyses on F i g . 26 aro enclosed w i t h i n a contour having a lower l i m i t of 85 ppm copper. Lake sediment or l a k e water sampling p r o v i d e nov; techniques whose chances of success are a l s o assured. Perhaps more e f f o r t i n sample c o l l e c t i o n i s r e q u i r e d than f o r f l o a t , but t r a v e r s i n g on the p l a t e a u i s not a d i f f i c u l t t a s k . When h e l i c o p t e r support i s a v a i l a b l e , r e g i o n a l sampling i s made ovon e a s i e r . Sediment data o f f e r s a more c o n s i s t e n t r e g i o n a l p a t t e r n f o r coppor than a s s o c i a t e d water sample data and so may be p r e f e r r e d , although the l a t t e r g i v e s e s s e n t i a l l y the same r e s u l t s . R egional c o n t r a s t f o r copper i n sediments may be as h i g h as 1.6, but i n g e n e r a l , r a t i o s much l e s s than u n i t y aro observed. Range i n values i s a l s o low, and t h e r e f o r e , any p a r t i c u l a r sample might be g r e a t l y i n f l u e n c e d by -192-m i n o r a l i z o d f l o a t b l o c k s l y i n g at the bottom of the l a k e Copper i n a s s o c i a t e d water samples appears to bo i n some form of e q u i l i b r i u m w i t h the sediment, although pH, organic complexation and b i o l o g i c a l a c t i v i t y , v a r y i n g randomly over the p r o p e r t y , may l o c a l l y enhance or r e -duce the c o n c e n t r a t i o n of t h i s metal. The l a k e anomalio are of s u f f i c i e n t s i z e t h a t l a k ^ . s a m p l i n g may be s u i t -a b ly undertaken w i t h a d e n s i t y of 1 sample per 2 square m i l e s f o r c i t h e r sediment or water sampling programs. Contoured l e v e l i n F i g . 26 i s 23 ppm f o r sediments and 6 ppb f o r water. Other surveys are probably d e s t i n e d to f a i l on a reconnaissance s c a l e i f sampling i s done along roads. As scon i n F i g . 1, a f t e r roads b u i l t t o s e r v i c e the copper p r o p e r t y are ignored, the most convenient sampling s t a t i o n s are not s i t u a t e d near anomalous r e g i o n seen i n F i g . 26. I f , however, the zealous worker t r a -verses along the v a l l e y f l o o r , a job r e q u i r i n g 2 days f o r 7 m i l e s , then he i s rewarded by the d i s c o v e r y of tho R a y f i e l d R i v e r copper anomaly i n stream sediments and t a l u s d e p o s i t s . Contrast r a t i o of tho sediment anomaly i s l o s s than 0.3 and averages c o n s i s t e n t l y be-tween 0.2 and 0.3 along i t s 6 m i l e l e n g t h . Copper con-t e n t s , however, are t y p i c a l l y g r e a t e r than 100 ppm, a value approximately 4 times tho r e g i o n a l background. A sampling d e n s i t y of 1 per 1 1/2 or 2 m i l o s i s s u f f i c -i e n t f o r anomaly d e t e c t i o n . Tho worm r e p r e s e n t a t i o n of data i n F i g . 26 has lower l i m i t s of 4-8 ppm and 155 ppm • 193-f o r the narrow and t h i c k width, r e s p e c t i v e l y . More de-t a i l e d drainage surveys would detect two, as yet -unex-p l a i n e d , copper enrichment zones on the p l a t e a u i n regions 2 and 3. Contrast here i s s i m i l a r to t h a t found f o r R a y f i e l d R i v e r sediments, but as the zones of enhancement e x i s t along o n l y a s m a l l p a r t of the creek, a reduced sampling d e n s i t y of 5 per m i l e would be r e -q u i r e d to ensure d i s c o v e r y . A s s o c i a t e d water samples do not appear to a i d i n m i n e r a l e x p l o r a t i o n . On a d e t a i l e d l e v e l , the complexity of the g l a c i a l d e p o s i t s and frequent occurrence of m i n e r a l i z e d b l o c k s has l i m i t e d the u s e f u l n e s s of g r i d s o i l sampling. Con-t r a s t of copper values reaches a maximum f o r the p r o p e r t y i n t a l u s samples, where r a t i o s i n excess of 4-.0 have boon observed. On the p l a t e a u , however, r a t i o s l o s s than u n i t y aro tho example except whore the copper content of a p a r t i c u l a r sample i s i n f l u e n c e d by m i n e r a l i z e d hornblende s y e n i t e b l o c k s . The area enclosed by con-t o u r i n g i n P i g . 26 i s r e p r e s e n t a t i v e of s o i l s c o n t a i n i n g i n excess of 100 ppm of t h i s metal i n the top of the 'B* h o r i z o n . A sampling d e n s i t y s i m i l a r to t h a t d e s c r i b e d f o r stream sediments of the r i v e r seems adequate f o r d e t e c t i o n of the copper enriched t a l u s . Talus anomalies p o i n t to m i n e r a l i z e d zones i n bedrock, but data from samples on the p l a t e a u , at p r e s e n t , cannot bo used. I t appears t h a t a n a l y s i s of primary d i s p e r s i o n data w i l l s a t i s f a c t o r i a l y l e a d to more d e t a i l e x p l o r a t i o n -194-of m i n e r a l i z e d zones i n bedrock, while anomalies formed by secondary d i s p e r s i o n do not s i g n i f i c a n t l y enlarge on the extent of the present concepts of m i n e r a l i z a t i o n . Copper to z i n c r a t i o s f o r a l l phases of the s y e n i t e i n -t r u s i o n exceed u n i t y . Coppor values f o r the i n t r u s i o n as a whole average 110 ppm, w e l l i n excess of the 10 pprn copper demanded by Warren and D c l a v a u l t (i960) as a probably p r e r e q u i s i t e f o r a m i n e r a l i z e d b a t h o l i t h . Maximum c o n t r a s t r a t i o f o r copper i n bedrock data i s 2.8. Tho zone of copper enhancement i s of s u f f i c i e n t s i z e t h a t a d e n s i t y of 1 or 2 samples per square m i l e would be adequate f o r d i s c o v e r y of two of the anomalies. D i l i g e n c e must be e x o r c i s e d , however, as exposures on the p l a t e a u are r a r e , and there remains a tendency to map o n l y those outcrops along the v a l l e y s i d e s . T h i s mapping technique w i l l not f u l l y o u t l i n e the m i n e r a l -i z a t i o n , but w i l l a l l o w f o r i n i t i a l d i s c o v e r y of zones of copper enrichment i n bedrock. More d e t a i l e d s t u d i e s at a l a t e r stage w i l l d e fine the f u l l extent of any anomalous r e g i o n found p r e v i o u s l y . Contents g r e a t e r than 110 ppm copper have been i n c l u d e d w i t h i n tho shaded r e g i o n of F i g . 26. 195-I I CONCLUSIONS 1. Summary The R a y f i e l d R i v e r copper p r o p e r t y l i e s w i t h i n a s e m i a r i d c e n t r a l p l a t e a u of B r i t i s h Columbia and has overburden which was m o d i f i e d during the P l e i s t o c e n e g l a c i a t i o n , , Thickness of g l a c i a l d e p o s i t s i s v a r i a b l e and bedrock exposures are r a r e . The geochemical en-vironment of tho g l a c i a l m a t e r i a l i s a l k a l i n e , having a pH g e n e r a l l y g r e a t e r than 7.0, ensuring, at b e s t , very slow d i s s o l u t i o n and m i g r a t i o n of copper i n ground water. Hydromorphic d i s p e r s i o n should, t h e r e f o r e , bo slow and the formation of copper anomalies by t h i s mechanism weak. Most enrichments of copper i n s o i l s , l a k e s , streams and f l o a t aro probably the r e s u l t of mechanical accumulations. Although the coppor p r o p e r t y may bo detected by any one of s e v e r a l geochemical sampling programs, i t was found a c c i d o n t l y by l o c a l r e s i d e n t s who n o t i c e d m a l a c h i t e s t a i n e d rock along tho r i v e r v a l l e y . The p r o p e r t y was discovered i n I960, but only w i t h the Amax e x p l o r a t i o n program of 1969 was the f u l l extent of the coppor anomaly d e l i m i t e d . F a i l u r e of geochemistry to i n i t i a l l y be im-p o r t a n t i s r e l a t e d to the a c c e s s i b i l i t y of the anomalous zones to e x p l o r a t i o n and tho apparently unfavorable' g e o l o g i c a l environment of the Thuy b a t h o l i t h . The degree of success of any geochemical sampling technique i n l o c a t i n g copper sulphide m i n e r a l i z a t i o n i n -196-bedrock covered by g l a c i a l deposits may bo ascertained by tests i n regions of known sources of mi n e r a l i z a t i o n . Three zonos of copper enrichment i n hornblende syenite have been outlined and represent these sources. Disper-sion by g l a c i a t i o n , weathering and erosion has l e d to the formation of several coppor anomalies i n d i f f e r e n t typos of g l a c i a l overburden. Copper enhancements within hornblende syenite f l o a t blocks and lake sediments can be d i r e c t l y traced back along the g l a c i a l d i r e c t i o n to bedrock which was pulverized and broken in t o material grading from rock f l o u r to l a r g e r blocks high i n coppor during the P l e i s -tocene. S i m i l a r l y , zones of copper enrichment i n ta l u s s o i l s have formed by mechanical accumulation of sulphide mineral grains, under the influence of gra v i t y , during weathering of crag outcrops along the v a l l e y sides. Anomalies within f l o a t , lake and t a l u s samples can, therefore, be d i r e c t l y correlated with known zones of miner a l i z a t i o n i n bedrock. Results of stream sediment surveys cannot nec-e s s a r i l y be re l a t e d back to coppor r i c h bedrock. I t i s true that the R a y f i e l d River coppor anomaly has developed i n response to the erosive action of th<? r i v e r on mineral-i z e d hornblende syenite north of the 2 bond, with sub-sequent dispersion f o r 2 1/2 miles past the hornblende syenite - le u c o c r a t i c syepito contact, however, two unexplained anomalies on tho plateau remain to be tested. At present, no source of coppor f o r these zones of on--197-richmcnt i s known. S o i l surveys, i n g e n e r a l , do not appear to a i d i n e x p l o r a t i o n because m i n e r a l i z e d b l o c k s of hornblende s y e n i t e c o n t r i b u t e coppor unevenly to d i f f e r e n t s o i l h o r i z o n s . As a n a l y s i s of s o i l sampling programs i s complicated by the e f f e c t s of g l a c i a t i o n , they can o n l y g i v e , at b e s t , a rough approximation of i n t e r e s t i n g areas, s i m i l a r to those i n d i c a t e d by f l o a t data. C o l -l e c t i o n of stream water and cu r r e n t year growth noodles and stems of Douglas f i r and lodgopolo p i n e samples and subsequent a n a l y s i s l i k e w i s e does not y i e l d i n f o r m a t i o n u s e f u l to m i n e r a l e x p l o r a t i o n . On a more d e t a i l e d l e v e l , .a p l o t o f bedrock analyses show t h a t the b a t h o l i t h i s zoned. I r o n , manganese, copper and z i n c arc r e l a t i v e l y d epleted i n samples of l e u c o c r a t i c s y e n i t e . Zoning of the f i r s t two elements i s r e l a t e d to tho primary mafic m i n e r a l content. Copper f o l l o w s a s i m i l a r t r e n d , but docs not reach i t s maximum value i n the same exposures as i r o n , i n d i c a t i n g a g e n e t i c h i s t o r y d i s t i n c t from mere c r y s t a l l i z a t i o n of minerals from tho s y o n i t i c magma. Both z i n c and potassium co>itonts are higher i n outcrops of the northern h a l f of cho p r o p e r t y . Potassium, i n p a r t i c u l a r , i s h i g h e s t i n va?ue along a b o l t f o l l o w -i n g the r i v e r v a l l e y , continuing onto the p l a t e a u . I f f u r t h e r work proves t h i s tror- 1 v a l i d , tho f a u l t emplace-ment of m i n e r a l i z a t i o n theo"/ of genesis of sul p h i d e s • 198-i m p l i e s there i s a b e t t e r than even chance tho h i g h e s t grade of copper m i n e r a l i z a t i o n w i l l bo found i n c l o s e p r o x i m i t y ( p o s s i b l y d i s s e c t e d ) to t h i s zone (Jerome, 1966). I f , on the other hand, the potassium anomaly i s a c c i d e n t a l , a much l a r g e r area remains to bo t e s t e d according to tho zoned b a t h o l i t h concept. C l a r i f i c a t i o n may be p o s s i b l e on the b a s i s of d e t a i l e d examination of t h i n s e c t i o n s c o l l e c t e d along t r a v e r s e l i n e s c r o s s i n g the potassium anomaly, 2. Geochemical sampling of Overburden as an A i d to E x p l o r a t i o n Regional s c a l e sampling of f l o a t and l a k e s appears most l i k e l y to l e a d to d i s c o v e r y of copper m i n e r a l i z a t i o n , however, each survey has i t s shortcom-i n g s , F l o a t c o l l e c t i o n r e q u i r e s an astute observer who w i l l r e a l i z e the p o t e n t i a l of a host rock such as horn-blonde s y e n i t e , as i t i s i m p r a c t i c a l to c o l l e c t a l l typos of f l o a t from the area because of the number of samples t h a t would be i n v o l v e d and the t e d i o u s job r e -q u i r e d f o r sample p r e p a r a t i o n p r i o r to a n a l y s i s . Lake sediment anomalies have a low c o n t r a s t r a t i o and copper values range w i t h i n narrow l i m i t s . C a r e f u l choice of sampling d e n s i t y i s v i t a l to the success of t h i s program. Lake water sampling, l i k e w i s e , r e q u i r e s the same con-s i d e r a t i o n s and has the a d d i t i o n a l problem of e r r a t i c d i s t r i b u t i o n s caused by v a r y i n g pH, organisms and organic complexes, s t a b i l i t y of metal contents i n samples -199-w i t h time and p o s s i b l e contamination i f sample p r o -treatments are necessary. Bedrock sampling on a r e g i o n a l s c a l e would a l s o be rewarded, but again t h i s technique i s r a r e l y a p p l i e d at the reconnaissance l e v e l because of d i f f i c u l t i e s i n a c c e s s i b i l i t y to exposures and lengthy sample pr c t r e a t m e n t s . Chances of success of other types of surveys depend on the perseverance of the sample c o l l e c t o r . There i s no doubt tho R a y f i e l d R i v e r sediment anomaly should be detected during tho r e g i o n a l program, but not i f samples are c o l l e c t e d at road c r o s s i n g s or other p o i n t s of convenience. Tho two p l a t e a u anomalies r e -q u i r e more d e t a i l e d work f o r t h e i r d i s c o v e r y . S i m i l a r l y i f t a l u s samples aro taken, the most r e l i a b l e i n d i c a t o r of m i n e r a l i z a t i o n would bo found. Tho nature of tho mechanism of formation of t a l u s anomalies may i n i t i a t e s e r i o u s c o n t r o v e r s y as to what the next stage of explor-a t i o n should be. C o n s i d e r i n g tho a l k a l i n e nature of tho s o i l s , s e m i a r i d c l i m a t e and absence of p y r i t e i n out crops, mechanical accumulation of copper m i n e r a l s from v i s i b l e exposures seems more obvious than p r e c i p i t a t i o n from ground water l e a c h i n g m i n e r a l i z a t i o n hidden beneath the p l a t e a u . D e t a i l e d s t u d i e s of overburden, w i t h the p o s s i b l e xception of stream and t a l u s sampling, does not r e v e a l a d d i t i o n a l i n f o r m a t i o n . An o u t l i n e of m i n e r a l i z a t i o n i n bedrock can best be accomplished by a n a l y s i s of out-crop chip samples. T e s t i n g f o r extensions to known 200-anomalous zones w i l l probably be undertaken by tho use of d r i l l surveys. S i m i l a r l y , i n f o r m a t i o n on the v a r i -a t i o n of grade of copper w i t h depth w i l l be forthcoming when d r i l l holes aro cut i n t o tho b a t h o l i t h . I l l SUGGESTIONS FOR FURTHER WORE Although the d i r e c t i o n of movement of coppor between bedrock and d i f f e r e n t p a r t s of the overburden i s f a i r l y w e l l known, l i t t l e i n f o r m a t i o n i s a v a i l a b l e on the mechanisms of these t r a n s f e r s . The question can bo d i v i d e d i n t o two p a r t s . How i s copper h e l d i n d i f f e r e n t types of samples and how does i t migrate? Weak e x t r a c t i o n and s i z e f r a c t i o n a n a l y s i s of stream sediment samples, p a r t i c u l a r l y those from the R a y f i e l d R i v e r w i l l help determine i f coppor i s bonded w i t h i n s i l i c a t e l a t t i c e s , adsorbed onto c l a y m i n e r a l s or present as f i n e d i s c r o t e s u l p h i d e g r a i n s . This i n -formation may bo t r a n s l a t e d i n t o a geochemical h i s t o r y of the anomaly. S i m i l a r experiments can be a p p l i e d to s o i l samples where a knowledge of the processes i n v o l v e d i n the formation of copper anomalies would a i d i n f u t u r e e x p l o r a t i o n . I n p a r t i c u l a r , the suggestion has been forwarded t h a t g r i d sampling of the 1 ' h o r i z o n would oa o u t l i n e an anomalous r e g i o n s i m i l a r to t h a t found f o r f l o a t data on the b a t h o l i t h , but s u p e r i o r because b i a s i n g i n v o l v e d i n c o l l e c t i o n of f l o a t c h i p s would bo e l i m i n a t e d . 201-This program appears u s e f u l as copper seems to accumu-l a t e i n tho 'Gn ' from above. The r e s u l t i n g a n a l y s i s oa i s a measure of coppor i n the solum which should be l o s s a f f e c t e d by l i t h o l o g i c v a r i a t i o n s w i t h i n the s o i l than arc i n d i v i d u a l s o i l samples. The hypothesis remains t o be t e s t e d i n the f i e l d . O x i d a t i o n of sul p h i d e m i n e r a l s , w i t h i n bedrock, by b a c t e r i a and other organisms may produce gaseous sulphur compounds unique to the environment which s l o w l y escape through t h i c k overburden i n t o tho atmosphere. I t i s probable t h a t these types of compounds arc d i f f e r -ent i n c h a r a c t e r and c o n c e n t r a t i o n from thoso forming i n o v e r l y i n g bogs and other types of s u r f i c i a l d e p o s i t s . I t i s a l s o p o s s i b l e that m i n e r a l i z e d f l o a t b l o c k s , l y i n g w i t h i n the zone of a e r a t i o n of tho s o i l , would produce a s c r i e s of compounds which arc d i s t i n g u i s h -able from those d e r i v e d from bedrock. A n a l y s i s of s o i l gas may e v e n t u a l l y be added to the scope of r o u t i n e sampling when g l a c i a l d e p o s i t s arc too t h i c k f o r success-f u l c o n v e n t i o n a l geochemical surveys, i f problems i n -v o l v e d i n d e t e c t i o n and a n a l y s i s of low contents of sulphur species can be overcome. The d i s t r i b u t i o n of copper and other elements w i t h i n each l a k e i s unknown. The correspondence of anomalies i n F i g . 1?A w i t h m i n e r a l i z e d bedrock may bo f o r t u i t o u s . More noarshore l a k e sediment samples from the same l a k e and a geochemical survey over a wider area i s r e q u i r e d to prove the a p p l i c a b i l i t y of t h i s type of survey to e x p l o r a t i o n . Perhaps i t would a l s o bo of i n t e r e s t t o i n v e s t i g a t e the r e l a t i o n s h i p between sediment samples from tho center of tho l a k e and tho nearshore. -203-BIBLIOGRAPHY Abbey S., 1967, A n a l y s i s of rocks and minerals by atomic a b s o r p t i o n spectroscopy, p a r t 1, d e t e r m i n a t i o n of magnesium, l i t h i u m , z i n c and i r o n , Paper 67-37, 35 pages. A l l a n R,, J., 1971, Lake sediment: a medium f o r r e g i o n a l e x p l o r a t i o n of tho Canadian s h i e l d , the Canadian Mining and M e t a l l u r g i c a l B u l l e t i n 64-, (715) , pages 43-59. A p p l i e d geochemical r e s e a r c h group t e c h n i c a l communication 26 (carbonate and b i c a r b o n a t e ) , August 1962, I m p e r i a l C o l l e g e , London. A p p l i e d geochemical resear c h group t e c h n i c a l communication 29 ( c h l o r i d e ) , August 1962, I m p e r i a l C o l l e g e , London. A p p l i e d geochemical r e s e a r c h group t e c h n i c a l communication 27 ( s u l p h a t e ) , August 1962, I m p e r i a l C o l l e g e , London. Barakso J. J . , Rowlcs C. A. and L a v k u l i c h L. M., 1971, Some r e l a t i o n s h i p s i n elemental content of bed-rock, s o i l s and p l a n t s i n m i n e r a l i z e d areas of B r i t i s h Columbia, Western Miner, pages 37-44. Bloom H., 1966, Geochemical e x p l o r a t i o n as a p p l i e d t o copper - molybdenum de p o s i t s i n "Geology of tho Porphyry Copper D e p o s i t s , Southwestern North America", ed. T i t l c y S„ R. and Hicks C. L., pages 111-119. B o l v i k e n B., 1967, Recent geochemical p r o s p e c t i n g i n Norway, Geochemical P r o s p e c t i n g i n Pennoscandia, e d i t e d by As l a k Kvalhoim, c h a p t e r 16, pages 225-253. B o l v i k e n B. , N i l s s o n , C. '.. and Wennorvirta H. , 1971, Summary of re s e a r c h and development i n geo-chemical e x p l o r a t i o n i n Scandinavian c o u n t r i e s , C.I.M.M. S p e c i a l Volume 11, page 11-14. Boyle R. W., Tuppor W. M., Lynch J . , F r c i d r i c h G., Zia u d d i n M„, S h a f i q u l l a h M., C a r t e r M„, and Bygrave K., 1966, Geochemistry of Pb, Zn, Cu, As, Sb, Mo, Sn, W, Ag, N i , Co, Cr, Ba, and Mn i n tho waters and stream sediments of the Bathurst-Jacquot R i v e r D i s t r i c t , New Brunswick, Geol Survey Canada paper 65-42, 49 pages. Boyle R. W., Hornbrook E.H.W., Al l a n R. J . and Smith A.Y., 1971, Hydrogcochcmical methods - a p p l i c -ation i n tho Canadian s h i e l d , The Canadian Mining and M e t a l l u r g i c a l B u l l e t i n 64, (715)» pages 60-71« Braboc D., 1971, A geochemical study of the Guichon Creek b a t h o l i t h , B.C., Phd t h e s i s , U n i v e r s i t y of B r i t i s h Columbia, 149 pages. Brabcc D. and White W. H., 1971, D i s t r i b u t i o n of copper • and zinc i n rocks of the Guichon Creek b a t h o l i t h , B r i t i s h Columbia, i n Geochemical Exploration, C.I.M.M. Special Volume 11, pages 291-297. Campbell R. B. and Tipper H. W., 1966, Map 3-1966 Bona-parte River B r i t i s h Columbia 92P. Chisholm, E. 0 . , 1957, Geophysical exploration of a lead-zinc deposit i n Yukon T e r r i t o r y , i n S i x t h Commonwealth Mining and Metallurgy Congress, page 269-277. Driemanis A., 1956, Stoop Rock ore boulder t r a i n , Proc. Geol. Assoc. Canada, V8, #1, pages 27-70. Drcimanis A,., 1958, Tracing ore boulders as a prospecting method i n Canada CIM B u l l e t i n 51, pages 73-80. Dreimanis A.., I960, Geochemical prospecting f o r coppor, load and zinc i n gla c i a t e d areas, eastern Canada, i n International Geological Congress XXI Session, part 2, pages 7-19. Dyck W., 1971, Lake sampling versus stream sampling f o r regional geochemical surveys, Geological Survey of Canada Paper 71-1, page 2. Ermengen S.V., 1957, Geochemical prospecting i n Chiboug-amau, Canadian Mining Journal, 78, #4, pages 99-104. Fletcher W. K., 1971, Atomic absorption methods, Geology department, University of B r i t i s h Columbia. Forgcron F. D., 1971, S o i l geochemistry i n the Canadian s h i e l d C.I.M. B u l l e t i n 64, (715), pages 37-42. Frodriksson K. and Lindgron I . , 1967, Anomalous copper content i n g l a c i a l d r i f t and plants i n a copper mineralized area of the Caledonidos, Geochemical Prospecting i n Fcnnoscandia, edited by Aslak Kvalhoim, chapter* 14, page 193-202. -205-G a r r o t t R„ G„, 1969, The det e r m i n a t i o n of sampling and a n a l y t i c a l e r r o r s i n e x p l o r a t i o n geochemistry, Econ. Geol. 64, page 568-569. G a r r e t t R. G. , 1971, Tho d i s p e r s i o n of coppor and z i n c i n Va l g l a c i a l overburden at the Louvcm d e p o s i t , d'Or, Quebec, C.I.M.M. S p e c i a l Volume 11, 157-158 page Gleeson C. G. and Cormier R., 1971, E v a l u a t i o n by geo-chemistry of geop h y s i c a l anomalies and g e o l o g i c a l t a r g e t s u s i n g overburden sampling at depth, C.I.M.M. S p e c i a l Volume 11, page 159-165. Hawkcs H. E„, 1970, B i b l i o g r a p h y on geochemical p r o s -p e c t i n g , T h i r d I n t e r n a t i o n a l Geochemical E x p l o r -a t i o n Symposium, Toronto, 46 pages. Hawkes H. E. and Webb J . S., 1962, Geochemistry i n M i n e r a l E x p l o r a t i o n , Harper and Row, New York, 415 pages. Hornbrook E. H. W., 1969, Biogeochemical p r o s p e c t i n g f o r molybdenum i n west c e n t r a l B r i t i s h Columbia, G e o l o g i c a l Survey of Canada Paper 68-56, 41 pages. Hornbrook E. H. W., 1970, Biogeochemical p r o s p e c t i n g f o r copper i n west c e n t r a l B r i t i s h Columbia, G e o l o g i c a l Survey of Canada Paper 69-49, 39 pages. H o r s n a i l R. P., N i c h o l I . , and Webb J.S., 1967, I n f l u e n c e of v a r i a t i o n s i n secondary environment on tho metal content of drainage sediments, Q u a r t e r l y , Colorado School of Mines, 64, pages 307-322. H o r s n a i l R. P. and E l l i o t t I . L., 1971, Some e n v i r o n -mental i n f l u e n c e s on the secondary d i s p e r s i o n of molybdenum and coppor i n western Canada, C.I.M.M. S p e c i a l Volume 11, page 166-175. Jcromo S. E., 1966, Some f e a t u r e s p e r t i n e n t i n e x p l o r -a t i o n f o r porphyry coppor d e p o s i t s i n "Geology of tho Porphyry Coppor D e p o s i t s , Southwestern North America", ed. T i t l c y S. R. and Hicks C.L., pages 75-85. Kauranno L„ K., 1967, Trace element c o n c e n t r a t i o n s i n l a y e r s of g l a c i a l d r i f t at Kolima, c e n t r a l F i n l a n d , Geochemical P r o s p e c t i n g i n Pennoscandia, e d i t e d by Aslak Kvalheim, chapter 13, page 181-191. 206-Kaurannc L. K., 1967, P r o s p e c t i n g f o r copper by geo-chemical and r e l a t e d methods at Kotanon, V i i t a s a a r i , c e n t r a l F i n l a n d , Geochemical P r o s -p e c t i n g i n Ponnoscandia, e d i t e d by Aslak Kvalhcim, chapter 17, page 255-260. Kaurannc L. K., 1967, Aspects of geochemical humus i n -v e s t i g a t i o n i n g l a c i a t e d t e r r a i n , Geochemical P r o s p e c t i n g i n Ponnoscandia, e d i t e d by A s l a k Kvalhcim, chapter 18, page 261-271. Kaurannc L„ K., 1967, Pacts to be n o t i c e d i n podogco-chemical p r o s p e c t i n g by sampling and a n a l y s i n g g l a c i a l t i l l , Geochemical P r o s p e c t i n g i n Ponnoscandia, chapter 19, page 273-277. Kaysor R. B. and P a r r y W. T„, 1971, A geochemical e x p l o r -a t i o n experiment on the Texas CJanyon stock, Cochise County, A r i z o n a , C.I.M.M. S p e c i a l Volume 11, pages 35^-356. Krauskopf K. B., 1967, I n t r o d u c t i o n to geochemistry, McGraw H i l l Book Company, 721 pages. Larsson J . 0. and N i c h o l I . , 1971, A n a l y s i s of g l a c i a l m a t e r i a l as an a i d i n g e o l o g i c a l mapping, C.I.M.M. S p e c i a l Volume 11, page 197-203. L a v k u l i c h L. M., 1969, Canadian S o i l C l a s s i f i c a t i o n Scheme, S o i l science department, U n i v e r s i t y of B r i t i s h Columbia. L a v u l i c h L. M., 1969, S o i l morphology, S o i l science department, U n i v e r s i t y of B r i t i s h Columbia, 8 pages Lee H. A., 1963, G l a c i a l fans i n t i l l from K i r k l a n d Lake P a u l t - a method of g o l d e x p l o r a t i o n , G e o l o g i c a l Survey of Canada, paper 63--45. Lee H. A., 1971, M i n e r a l d i s c o v e r y i n tho Canadian s h i e l d u s i n g the p h y s i c a l aspects of overburden, C.I.M. B u l l e t i n 64, (715), pages 32-36. L c p o l t i o r C„, 1969, .'- s i m p l i f i e d s t a t i s t i c a l treatment of geochemical data by g r a p h i c a l r e p r e s e n t a t i o n , Econ. Gool. 64, page 538-550. Lyons, C. P., 1954, Trees, shrubs and f l o w e r s to know i n B r i t i s h Columbia, J . M. Dent and Sons L t d . , 194 pages. 2 0 7 -Mehrtons M. B., 1966, Geochemical d i s p e r s i o n from base metal m i n e r a l i z a t i o n , c e n t r a l Norway, Phd-t h e s i s , U n i v e r s i t y of London. M i t c h e l l , R. L., 1964, i n Chemistry of the S o i l , Ed. Bear F„ E . , pages 320-368. Munsoll s o i l c o l o u r c h a r t s , 19 54-, M u n s c l l Colour Company, B a l t i m o r e , Maryland. N a i r i s B., 1971, Endogenic d i s p e r s i o n aureoles around • Rthc Rudjebackcn sulphide ore i n the /..dak area, n o r t h e r n Sweden, C.I.M.M. S p e c i a l Volume 11, pages 357-37^-. N i c h o l I . , 1971, Future trends i n e x p l o r a t i o n geochemistry i n Canada, C.I.M.M. S p e c i a l Volume 11, page 32-38. N i g r i n i A., 1971, Transport and d e p o s i t i o n of ore i n d i c -a t o r elements i n streams and sediments, Geolog-i c a l Survey of Canada Paper 71-1, B, pages 74-75. Ovchinnokov L. N. and Grigoryan S. V., 1971, Primary h a l o s i n p r o s p e c t i n g f o r sulphide d e p o s i t s , C.I.M.M. S p e c i a l Volume 11, pages 375-380. P o l l o c k , J . P., S c h i l l i n g e r , A.W., and Bur, I . , I960, A geochemical anomaly a s s o c i a t e d w i t h a g l a c i a l l y t r a n s p o r t e d boulder t r a i n , Mount Bhcmia, Kcwacnaw County, Michigan, i n I n t e r n a t i o n a l G e o l o g i c a l Congress XXI S e s s i o n , p a r t 2, page 20-27. Report of m i n i s t e r of mines and petroleum resources, 1966, Assessment r e p o r t 859, Pot I.D.S. c l a i m s , page 135. Report of m i n i s t e r of mines and petroleum r e s o u r c e s , 1967, Assessment Report 954, Assessment Report 1172, Joe c l a i m s . Report of m i n i s t e r of mines and petroleum r e s o u r c e s , 1967, BD c l a i m s , page 127. Report of m i n i s t e r of mines and petroleum r e s o u r c e s , 1968, .Assessment Report 1723, BD c l a i m s , page 159. Report of m i n i s t e r of mines and petroleum r e s o u r c e s , 1969, Assessment.Report 2135, VB, WIN c l a i m s , page 184. 208-S a k r i s o n , II. C , 1971, Rock geochemistry - i t s current u s e f u l n e s s on the Canadian s h i e l d C.I.M. B u l l e t i n 64, (715), pages 28-31. Salmi M. , 1967, Peat i n p r o s p e c t i n g i n Ponnoscandia, cdibod by Aslak Kvalhoim, chapter 10, page 113-126. Schmidt R. C., 1956, Adsorption of Cu, Pb, and Zn on some common rock forming; minerals and i t s e f f e c t on l a k e sediments, Phd t h e s i s , M c G i l l U n i v e r -s i t y , Montreal. S c o t t , B. P. and Byors A.P., 1965, Trace copper and z i n c i n the Coronation Mine overburden, C.I.M. B u l l e t i n 58, ( 6 3 7 ) , pages 534-537. S h i l t s W. V/., 1971, T i l l s t u d i e s and t h e i r a p p l i c a t i o n to r e g i o n a l d r i f t p r o s p e c t i n g , Canadian Mining J o u r n a l , page 45-50. S i l l e n L. G. and M a r t e l l A.E., 1957, S t a b i l i t y constants of m e t a l - i o n complexes, S p e c i a l P u b l i c a t i o n 17, Chemical S o c i e t y , London. Silman J . F. B., 1958, The s t a b i l i t i e s of some o x i g i z e d copper minerals i n aqueous s o l u t i o n s at 25 C and 1 atmosphere p r e s s u r e , Phd t h e s i s , Harvard, 98 pages. Smith P. M., 1971, Geochemical e x p l o r a t i o n over complex mountain g l a c i a l t e r r a i n i n tho Whitehorse c o p p c r b e l t , Yukon T e r r i t o r y - f e a t u r e s , r e s u l t s and i n t e r p r e t a t i o n , C.I.M.M. S p e c i a l Volume 11 , page 265-275. Stanton, R. E., 1966, Rapid methods of t r a c e a n a l y s i s f o r geochemical a p p l i c a t i o n , Edward A r n o l d L t d . , London. Tipper H„ ¥., 1971, G l a c i a l geomorphology and P l e i s t o c e n e h i s t o r y of c e n t r a l B r i t i s h Columbia, Map 1293/, Bonaparte Lake. Un i t e d S t a t e s Department of A g r i c u l t u r e , 1951, S o i l Survey Manual, Handbook Number 18, Washington, D.C. Un i t e d S t a t e s Department of A g r i c u l t u r e , I 9 6 0 , S o i l C l a s s i f i c a t i o n System - 7 t h Approximation, Washington, D.C. Us i k L., 1969, B o t a n i c a l i n v e s t i g a t i o n s at throe known mi n e r a l d e p o s i t s , G e o l o g i c a l Survey of Canada paper 68-71, 32 pages. -2o9~ Van T a s s e l R.E,, 1969, E x p l o r a t i o n by overburden d r i l l i n g at Kono H i l l Mines L t d . , 2nd I n t e r n a t i o n a l Geochemical Symposium, Q u a r t e r l y , Colorado School of Minos, 64, ( 1 ) , page 457-4-78. Wager L. R. and Brown G.M., 1967, Layered igneous r o c k s , O l i v e r and Boyd L t d . , London, 588 pages. Warren, H. V., D e l a v a u l t , R.E. and I r i s h , R. I . , 1949. Biogeochcmical researches on copper i n B r i t i s h Columbia, Trans. Royal Soc. of Canada, t h i r d s e r i e s , v o l . 43, s e c t i o n 4, pages 119-137. Warren H. V. and D e l a v a u l t , R. E., I960, Aqua r e g i a e x t r a c t a b l c copper and z i n c i n p l u t o n i c rocks i n r e l a t i o n to ore d e p o s i t s , T r a n s a c t i o n s of the I n s t i t u t i o n of. Mining and M e t a l l u r g y , 69, P a r t 9, 1959-1960, page 495-504. Warren H. V., D e l a v a u l t R. E. and Cross C. H., 1966, Some problems i n a p p l i e d geochemistry Proceed-i n g s , Symposium on Geochemical P r o s p e c t i n g , Ottawa, pages 253-264. Warren H. V., D e l a v a u l t R. E„ and Cross C. H., 1966, Geochemistry i n m i n e r a l e x p l o r a t i o n , p a r t s 1 and 2, Western Miner, February, pages 22-27, June, pages 36-42. Warren H. V. and D e l a v a u l t R. E., 1967, Geochemical P r o s p e c t i n g has now come of age, Northern Miner, pages 49-57. Webb, J . S„, 1958, Notes on geochemical p r o s p e c t i n g f o r l e a d - z i n c d e p o s i t s i n the B r i t i s h I s l e s , I n s t . Mining M e t a l l u r g y , London, Paper 19, T e c h n i c a l a i d s to e x p l o r a t i o n of Symposium on the Future of Non-Ferrous Mining i n Great B r i t a i n and I r e l a n d page 23-40. White W. H. and A l l e n T. M., 195^, Copper s o i l anomalies i n the boundary d i s t r i c t of B r i t i s h Columbia, Mining E n g i n e e r i n g , page 49 -52 . Whitten G„, 1967, Guides to oro, E x p l o r a t i o n and Mining Geology, pages 193-204. Wolfe W. J . , 1971, Biogeochcmical p r o s p e c t i n g i n g l a c i -ated t e r r a i n of the Canadian Procambrian s h i e l d , C.I.M. B u l l e t i n 64, (715) pages 72-80. RAYFIELD RIVER - BONAPARTE RIVER REGIONAL RECONNAISSANCE F i m j m 28 OUTCROP AS$3 irzrrjzDy. s r ^ m i z FLOAI —3000-L5223 ROADS TOPOGRAPHIC LEGEND Contour Interval 1 0 0 Feet Creeks and Rivers Swamps Lakes Local Property Lots Loose or Stabilized Surfaces, All Weather Loose Surface, Dry Weather i l Miii «JWIP*' llllilti • • * * * ». * - -' < . . . < >. i „ J ^ , " •* - > • - . ' • • • • • i L . v ..1 L / ; • » • 4 MILES S J HOFFMAN October 8, 1970 5 6 9 0 620 630 .At . O r L Z - - - • olSpf 6 4 0 6 5 0 RAYFIELD RIVER - BONAPARTE RIVER REGIONAL RECONNAISSANCI 27 STREAM tfftTER AMD M^FLE LOCATIONS —3000-ROADS TOPOGRAPHIC LEGEND Contour Intervol 100 Feet Creeks and Rivers Swamps Lakes Local Property Lots Loose or Stabilized Surfaces, All Weather Loose Surface, Dry Weather GEOCHEMICAL LEGEND tltt till Saropte Location and Number Both Present at Same Stc s 2443 Silt Only Water Silt MILES S J HOFFMAN October 8, 1970 THE DANSEY - RAYFIELD RIVER COPPER PROPERTY FIGURE 33 VEGETATION SAMPLE LOCATIONS GEOCHEMICAL LEGEND Samp!3 Location and Number - Spruce and Lodippctt Pins Rtsptetively « ma Scrnple Location end Nuflbtf - Spruco • m i $&09 LoeflHon ond Number - Lodgepob Pint * •» Sompto Loeoffen owd Number - Atynt Br /N TOPOGRAPHIC LEGEND - 3 0 0 0 - Contdur Interval 100 feet Creeks, and Rivers Swamps Lakes Local Grid Control Points 5 0 0 0 FEET S J HOFFMAN October 6, I FIGURE 32 SOIL SAMPLE' LOCATIONS T O P O G R A P H I C LEGEND GEOCHEMICAL LEGEND — 3000— :- -c.:zn Contour Interval 1 0 0 feet Creeks, and Rivers Swamps Lakes Local Grid Control Points 5 0 0 0 F E E T ' . , i * 1213 - 28 Sample Location arid Number Indicates Soil Samples Fill a PROFILE NUMBER SAMPLE NUMBER Continuous Numbering Sequence : 5 3104-3120 Indicates Soil Samples do not Fill a Continuous Numbering Sequence ; 8 j 100 3159-3167 1004-1007 1081-1084 112 1088-1090 1098-1102 114 117 1117-1119 S J HOFFMAN October 6, 1970 2 0 0 S THE DANSEY - RAYFIELD RIVER COPPER PROPERTY FIGURE 31 HORNBLENDE SYENITE FLOAT SAMPLE LOCATIONS N T O P O G R A P H I C LEGEND .1000-in: Contour Interval 100 feet Creeks, and Rivers' Swamps Lakes Local Grid Control Points 5 0 0 0 FEET GEOCHEMICAL LEGEND • 1978 Sample Location and Number S J HOFFMAN October 6, 1970 IC 2( N THE DANSEY - RAYFIELD RIVER COPPER PROPERTY FIGURE 30 OUTCROP SAMPLE LOCATIONS TOPOGRAPHIC LEGEND 3000- - Contour Interval iGO feet -— Creeks, and Rivers •c^Z"^ Swamps Li I Lakes f Local Grid Control Points GEOCHEMICAL LEGEND •sea Sample Location and Number 5 0 0 0 FEET S J . HOFFMAN ' October 0, h"*' THE DANSEY - RAYFIELD RIVER COPPER PROPERTY FIGURE 29 WATER AND SEDIMENT SAMPLE LOCATIONS TOPOGRAPHIC LEGEND — 3 0 0 0 - Contour Interval 100 feet Creeks, and Rivers Swamps Lakes Local Grid Control Points 1367 OR , (904 1908 * 1003 1318 GEOCHEMICAL LEGEND Sample Location and Number [^j3tter - Both Present at Same Site Water Only Silt Only 5 0 0 0 F E E T S J HOFFMAN 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            data-media="{[{embed.selectedMedia}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0053099/manifest

Comment

Related Items