Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Minor elements in sphalerite and some associated minerals Thompson, Robert Mitchell 1943

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1943_A7 T4 M5.pdf [ 13.21MB ]
Metadata
JSON: 831-1.0053060.json
JSON-LD: 831-1.0053060-ld.json
RDF/XML (Pretty): 831-1.0053060-rdf.xml
RDF/JSON: 831-1.0053060-rdf.json
Turtle: 831-1.0053060-turtle.txt
N-Triples: 831-1.0053060-rdf-ntriples.txt
Original Record: 831-1.0053060-source.json
Full Text
831-1.0053060-fulltext.txt
Citation
831-1.0053060.ris

Full Text

MINOR;: ELEMENTS I N SPHALERITE 'MS SOME  ASSOCIATED MINERALS, -  By  -  Robert M i t c h e l l Thompson  A Thesis submitted i n P a r t i a l F u l f i l l m e n t of the Requirements for the Degree of MASTER OF APPLIED SCIENCE i n the  f  DEPARTMENT OF GEOLOGY;  The U n i v e r s i t y of B r i t i s h Columbia •.•••April, 1943 V  Acknowledgments  The writer wishes to express h i s gratitude to Dr. H. V. Warren of the Department of Geology under whom t h i s work was  carried out, f o r h i s advice and a i d i n the  laboratory  studies and f o r h i s h e l p f u l suggestions i n the w r i t i n g of t h i s report.. The assistance of Mr. D . - C a r l i s l e who  checked many  of the author's q u a n t i t a t i v e determinations by the  logarithmic  sector, method and helped i n various ways i s g r e a t l y appreciated . The w r i t e r i s indebted to the Department of Mining and Metallurgy for the use of t h e i r assaying f a c i l i t i e s ,  and  to the Department of Mines, V i c t o r i a , B. C, f o r t h e i r kind cooperation throughout the period of t h i s work. Many U n i v e r s i t y colleagues/aided  i n their  several  ways; to them the w r i t e r wishes to express h i s thanks.  oOo  Introduction  I t has long been known that s p h a l e r i t e from numerous l o c a l i t i e s , when examined s p e c t r o s c o p i c a l i y , d i s c l o s e s the presence of various elements i n q u a n t i t i e s that would be missed by the more customary a n a l y t i c a l methods.  Among the  l e s s common of these elements, t i n , cadmium, indium, germanium, gallium, cobalt, n i c k e l , and manganese appear frequently and bismuth,, a r s e n i c , t h a l l i u m , and molybdenum are l e s s often detected, while mercury, chromium, palladium, vanadium, and titanium have each been reported i n only one or two l o c a l - , ities^-. The purpose of t h i s study i s t h r e e f o l d . 1.  To determine what minor elements are present i n sphaleri t e and a few associatedminerals i n B r i t i s h Columbia.  2.  To t r y and r e l a t e the minor element content of the minera l s examined to metallo'genetic provinces.  3.  To determine i f any of these elements are present i n commercial amounts. The data used consist of new spectrographic a n a l -  yses of minor elements i n 110 s p h a l e r i t e s , 110 galenas, 84 ~* . t e t r a h e d r i t e s , 19 golds, and over 100 other miscellaneous minerals, almost a l l of which are from B r i t i s h Columbia deposits. In order to c a l i b r a t e the s e n s i t i v i t y of the Graton, L. C. and' Earcourt, G. A.: Econ. Geol., 30: 800834, 1935. 1  • • .. •  I I . ••  procedure used, on the basis of determinations by other workers,, a number of mineral samples, c h i e f l y s p h a l e r i t e , from f o r e i g n occurrences were analyzed.  The r e s u l t s obtained are  i n e s s e n t i a l agreement w i t h the conclusions of these previous workers. Conclusions from the data indicate -that the minor element content of sphalerite and other minerals i s character i s t i e p r i m a r i l y of the metallogenetic province i n which they occur- and only secondarily of' t h e i r temperature of formation.  o 0 o  III.  Table of Contents  Acknowledgments  •  In*fc i* ocLizc "t i on  • * »•••••»•*••**••••*•••••«>«••»  Method of Analysis Iiine Identixxcation  ....«.«•*««..»«...«..».«.«..»..  •Quantitative Determinations Minor Elements i n Sphalerite ^1) OaIlium ) Ix^dILurn  ........... ...«.....«..««....«««.« .«««.....««.».«»«...«...«...«..«...  ..^ GreriAaxx3.x<mi• *.«.................*..»........ ^4) Cadmium ^o" 3 Tin.  .....»««««.««»« ............ .. ......  .«««.««».««*»««...«.«.«»««.«•«.«««.««.«  ^ 0th.er E_Lexi^en.ts  «».»«..«....«..•.««.«.«.«»..  Minor Elements i n Associated Minerals  ,  Analysis of Sphalerite and Some Associated Minerals from Various Mining D i v i s i o n s of B r i t i s h Columbia and Yukon T e r r i t o r y R e l a t i o n of Minor Element Concentration genetic Groups of Deposits Summary and Conclusions  to M e t a l l o -  IV  Tables and I l l u s t r a t i o n s  Page Plate I .  Table I .  Typical Spectra as Photographed by a H i l ^ e r Medium Quartz Spectrograph °,,  C r y s t a l Structure of Some Compounds and Elements ..... e e * B «  5  -  . 10.  Table I I .  Gallium Lines i n Spectrograms of Sphalerite  11.  Table I I I ,  Indium Lines i n Spectrograms of Sphalerite  14.  Table IV.  Germanium Lines i n Spectrograms of Sphal20.  Table V.  Minor Elements i n Tetrahedrite .....  28.  Table V I .  Minor Elements i n Gold  31«  V  ........  Minor Elements i n Sphalerite and Some Associated Minerals  Method of A n a l y s i s Arc spectra of mineral samples are made on a Hilger medium quartz spectrograph.  The arc w i t h a series inductance  i s operated at 5.5 amperes w i t h a 1.5 mm. gap. 110 v o l t s D.C. supplies the current.  The arc i s placed 61 cms. from the s l i t  and the l i g h t * i s focused by means of a quartz condensing lense 30.5 cms. from the s l i t so that the prism aperature i s completely f i l l e d with l i g h t .  The r e s u l t i n g l i n e s on the spec-  trogram are of uniform i n t e n s i t y from top t o bottom.  The s l i t  width i s .01 mm. and the Hartmann diaphragm i s placed, over the s l i t t o produce l i n e s on-the plate 2 mm. long.  The spectro-  grams are taken on Eastman type I I - F plates which have a usef u l range between 2200 and 6800 Angstroms.  The plates are  developed i n D 19 f o r 3.5 minutes,.rinsed, f i x e d i n F-5 f o r twenty minutes and washed i n cold running water f o r a t l e a s t one hour.  They are examined on an opal glass viewing screen  f i t t e d w i t h a t r a v e l l i n g eyepiece. Approximately ten milligrams of the mineral sample are picked as c l e a n l y as possible and placed i n a small hole bored i n the lower or p o s i t i v e electrode. Each sample i s arced f o r twenty seconds, .after which the plate i s racked 2 mm. and the a r c i n g i s continued f o r another t h i r t y seconds.  2.  By means of a Hartmann diaphragm, a series of exactl y tangent, narrow s t r i p s comprising the successive spectra of ( l ) the i r o n arc (from H i l g e r ' s i r o n rods), (s) the minera l sample arced f o r the l a s t t h i r t y seconds, (5) the mineral sample arced f o r the f i r s t twenty seconds, and (4) a t i n standard (from G. P. t i n ) .  Line I d e n t i f i c a t i o n By means of a wavelength s c a l e , the i r o n and t i n standards, which are reproduced on the photographic p l a t e , and standard plates of other elements, i t was possible to i d e n t i f y the l i n e s present by three d i s t i n c t and progressivel y accurate methods, thus eliminating u n c e r t a i n t i e s . For determining the o r i g i n of the l i n e s , i . e . the elements, several tables and charts were used. most comprehensive of these i s Massachusetts  One of the  I n s t i t u t e of  Technology Wavelength Tables which cover a l l data of known accuracy.  More commonly, however, tables are abbreviated  and l i s t only those l i n e s .which appear most p e r s i s t e n t l y . These p e r s i s t e n t l i n e s are c a l l e d "raies ultimes," because they are the l a s t to disappear w i t h decreasing concentration of the element from which they are derived, although they are not n e c e s s a r i l y the strongest l i n e s i n the spectrum.  I f the  p e r s i s t e n t l i n e s of- an element are absent, the assumption may be made that the element i s not present i n the sample. In every spectrum there are groups of l i n e s which are h i g h l y c h a r a c t e r i s t i c of the metal, and these become fami l i a r and recognizable at a glance by those making frequent  3.  PLATE I Typical  Spectrograms  Band No. 1 — S p h a l e r i t e . Band No. 2 —  H i l g e r Ratio Powder containing 0.10 per cent Be, Gs, Ga, I n , Ge, Rb, Sc, T l , Y.  Band No. 3 —  Sphalerite containing 0^.10 per cent indium. (Note indium l i n e s at 3256, 4102, 4511).  Band No. 4 — Stannite containing 0.10 per cent indium. Each band has:  ( l ) Iron spectrum (2) Sample arced f o r the l a s t 30 seconds (3) Sample arced f o r the f i r s t 20 seconds (4) T i n spectrum.  4.  use of the spectrograph.  For example, copper has a character-  i s t i c pair of l i n e s a t 3247.5 and 3274 Angstroms r e s p e c t i v e l y . In the search f o r a d e f i n i t e element at l e a s t two, and whenever possible three,- l i n e s must he i d e n t i f i e d before the element i s known p o s i t i v e l y to have been i n the sample. Lines whose o r i g i n i s unknown are f i r s t measured approximately by comparison w i t h the printed wavelength scale, then t h e i r wavelength i s f i x e d to w i t h i n one or two Angstroms by i n t e r p o l a t i o n between l i n e s on the i r o n spectrum.  Whenever neces-  sary, a standard plate of the suspected element i s placed over the sample spectrum f o r d i r e c t v i s u a l  comparison.  Quantitative Determinations The use of the spectrograph f o r q u a n t i t a t i v e a n a l y s i s i s based on c e r t a i n v a l i d 1.  assumptions.  The more intense the l i g h t source, the blacker w i l l be the l i n e s produced by that source on a photographic plate i n a given length of time.  2.  The greater the proportion of a given element i n a sample being examined, the more intense w i l l be the l i g h t produced by that element under e x c i t a t i o n . I f two samples of equal weight, containing 1/2 and 2 per cent antimony i n galena r e s p e c t i v e l y , are arced under standard c o n d i t i o n s , the antimony l i n e s i n the spectrum corresponding to the 2 per cent antimony w i l l be much stronger or blacker than those-in the 1/2 per cent a n t i mony. The lead l i n e s w i l l be very nearly the same blackness i n each spectrum.  A set of standard spectra may be made up from standard samples of the base material being examined by adding known amounts of the minor element being sought, i n percentages i n the range to be expected.  Unknown samples shot under iden-  t i c a l conditions with those of the standard may pared v i s u a l l y w i t h the standards.  then be com-  This i s what was done to  a r r i v e at the approximate q u a n t i t a t i v e estimates i n the invest i g a t i o n of s p h a l e r i t e f o r t i n and iridium, •  To estimate the cadmium content of s p h a l e r i t e , four  cadmium assays were made on samples which showed considerable v a r i a t i o n i n the strength of the main cadmium l i n e s . centage of cadmium i n a s p h a l e r i t e sample could be  The perestimated  by comparing the strength of the cadmium l i n e s with the same l i n e s of the assayed samples.  This was a l s o done i n the case  of copper, s i l v e r , and antimony. A modification of the v i s u a l comparison method i s possible when a s e n s i t i v e l i n e of the impurity occurs f a i r l y close to a l i n e of the main constituent, as the r e l a t i v e i n t e n s i t i e s of the two l i n e s can be made/the basis of the comparison.  Greater accuracy i s thus made possible since some of  the uncertainties of exposure, etc. are thereby eliminated. This v a r i a t i o n i s known as the " i n t e r n a l standard method."  s  Standards of the remaining minor elements were not set up because:  ( l ) the presence of Pb, As, Fe, Mn, i s of l i t -  t l e importance i n s p h a l e r i t e , (2) the r a r i t y of occurrence of Hg, A u, B i and Te i n s p h a l e r i t e , (3) the d i f f i c u l t y of obtaining s u i t a b l e standards of s p h a l e r i t e containing Au, Ga, and  Ge.  %"wyman, F.: Spectrum Analysis w i t h H i l g e r Instruments, P. 39,1935,  The percentages of Pb, Fe, and Mn l i s t e d i n the tables are not of great accuracy.  They are based both on as-  says and the fact-:.that a t a given percentage c e r t a i n l i n e s disappear from the spectrum. A method used to measure l i n e i n t e n s i t y q u i c k l y i s the logarithmic sector, which i s rotated i n f r o n t of the spectrograph s l i t .  By t h i s device the exposure i s made to vary  along the s l i t of the spectrograph,  so that one end of the  s l i t I s given a much larger exposure than i s the other end. The object i s t o produce a s p e c t r a l l i n e of graded density. v  The periphery of t h e l o g a r i t h m i c sector i s cut to a l o g a r i t h mic curve.  The net r e s u l t i s t o produce on the p l a t e , l i n e s  whose lengths are a logarithmic function of t h e i r i n t e n s i t i e s . Several s p h a l e r i t e samples which contained appreci a b l e amounts of cadmium or t i n were checked by the logarithmic sector method.  Results obtained by the v i s u a l comparison  method and logarithmic sector . methods were found to agree satisfactorily. for  The author i s indebted t o Mr. D. C a r l i s l e  the development of the logarithmic sector method.  7.  Minor Elements i n Sphalerite  Gallium Gallium forms ho known n a t u r a l mineral, and occurs only as a minute component i n other minerals.  Spectrographie  research by various workers has demonstrated i t s widespread occurrence i n sphalerite and i t s presence i n a number of other minerals.  The close r e l a t i o n of Ga to A l i n the period-  i c table i s confirmed by the intimate n a t u r a l a s s o c i a t i o n of . Ga to aluminous minerals-and rocks*  Goldschmidt and Peters  f i n d that'the g a l l i u m content increases i n the course of rock d i f f e r e n t i a t i o n from u l t r a b a s i c to a c i d i c and a l k a l i c phases, which likewise corresponds i n a general way - to rising. Al-cont e n t j the increase i n g a l l i u m continues notably i n the pegmat i t e s , and e s p e c i a l l y i n those approaching hydrothermal chara c t e r i s t i c s ^ ^:.\T^ f i n d i n g s of Papish and S t i l s o n ^ of g a l l i u m i n a l l specimens of gahnite examined i n d i c a t e s a two-fold a l legiance ^of the element: t h i s also.  to A l -and to/ Zn.  The author found  Papish's f i n d i n g of noteworthy Ga i n l e p i d o l i t e  Is i n l i n e w i t h the conclusions of Goldschmidt and- Peters j u s t mentioned. >  Goldschmidt and Peters^ showed that the sphalerite  of the I v i g t u t occurrence c a r r i e s much more Ga than the A l r i c h c r y o l i t e of the same occurrence. ^  &  4  Graton, L. C. and Earcourt - G. A.: 800-824, 1935. ; Idem. p. 814. 5  The w r i t e r obtained Econ. Geol., 30;  8.  s i m i l a r r e s u l t s on t h i s material. Graton and Hareourt  say the general a v a i l a b l e data  suggest that gallium tends to concentrate with aluminum from the e a r l i e s t stages of magmatic d i f f e r e n t i a t i o n u n t i l those stages are reached where sulphide-deposition appears, and that thereafter gallium tends t o desert such aluminum minerals as are then formed i n favour of s p h a l e r i t e .  The work of Graton  and Harcourt, and Stoiber''' both show that the higher temperature occurrences of s p h a l e r i t e contain l e s s gallium than those of lower-intensity o r i g i n . To account .for the preference of gallium f o r sphale r i t e rather than f o r other sulphides, Goldschmidt and Peters® make t h e , i n t e r e s t i n g suggestion that the element occurs as GaA s, which has the same s t r u c t u r a l arrangement as s p h a l e r i t e . That gallium i s present as GaAs, or GaSb i s seriously questioned by the author, as of fourteen gallium-bearing sphaleri t e s examined, only three showed the presence of arsenic, and seven the presence of antimony.  I t i s i n t e r e s t i n g to note  that a l l the antimony-bearing s p h a l e r i t e s showed the presence of lead. In the body-centered cubic, face-centered cubic, and diamond type of structures, i f "a." i s length of the unit c e l l , the closest approach of the atoms (atomic diameter) a^e given  6  7  Idem. p. 815. S t o i b e r , R. E.: Econ. Geol., 35: 501-519, 1940.  ®Idem. p. 815.  9,  3  by the expressions V  Body-centered cube .»  »866a.  Pace-centered cube Diamond type  707a. .... ..*434a* 1  0  The hypothesis has been put forward by Hume-Rothery- -  and others, that where the atomic diameters of solvent and s o l ute d i f f e r by more than about f i f t e e n per cent of that of the solvent, the " s i z e - f a c t o r " i s unfavourable and the s o l i d s o l u t i o n i s very r e s t r i c t e d , w h i l s t when the atomic diameters are w i t h i n t h i s l i m i t the s i z e - f a c t o r i s favourable, and considerable s o l i d solutions may-be formed. The p o s s i b i l i t y e x i s t s that gallium may be present i n sphalerite as:  ( l ) GaAs, (S) GaSb, (3) GaP, (4) GaS, (5) an  atomic dispersion of Ga (to a small extent o n l y ) .  The f i r s t  three compounds a l l have the same s t r u c t u r a l arrangement as sphalerite and c l o s e l y s i m i l a r l a t t i c e dimensions.  I t w i l l be  seen from Table 1 that of a l l the compounds w i t h the same structure as s p h a l e r i t e , only InSb has an atomic diameter which d i f f e r s by more than f i f t e e n per cent from that of s p h a l e r i t e , /  thus making f o r very r e s t r i c t e d s o l i d s o l u t i o n .  No information  was found on the sulphides of indium, gallium, and germanium, %ume-Rothery, W.: Structure of Metals and A l l o y s , I n s t i t u t e Of Metals, p. 30, 1936. l°Idem. p. 58.  10.  1  Table r Compound  Structure  Length of Unit C e l l ' a b c  Atomic Diameter  5.43/1. •  2.35*-  ii  5.82  2.53  GaP ; •  it  5.43  2.35  GaAs;  ii  5.63  2.44  GaSb  tt  6.11  2.65  2ns  Diamond  CdS  ,6a  Orthorhombic  4.51  In  F.C. Tetragonal  4.58  InSb  4.516  7.644  2 .43 -'2  4.930.  3 .24 - 3  Diamond  6.45  -2.80  Ge  1!  5.62  2.44  Au  F.C. Cube  4.069  2.877  4.077  2,883  Ag •  »  ii  Cu  II  it  Pd  11  H  '3.607' : 3.882  2.551 2.745  . The s p e c t r a l l i n e s 4172.0, 4033.0, and 2943.0 may be used t o e s t a b l i s h the i d e n t i t y of gallium.  Under the condi-  tions e x i s t i n g i n t h i s work, the l i n e 4033.0 i s overlapped by s p e c t r a l l i n e s of manganese and i r o n and was not used.  The  l i n e at 4172.0 was -determined w i t h d i f f i c u l t y i n some cases. A~s graphite electrodes were used i n the production of the arc, 13-Wyckoff,~ R. W. G.: No. 19, 1931.  The Structure of C r y s t a l s , A.S.C. Series  1 :  " •• I I *  il  cyanogen bands are commonly present i n the spectrograms, and  I  the l i n e 4172.0 l i e s w i t h i n one of these bands.  ij  i s of low i n t e n s i t y i t w i l l be obscured by the cyanogen band,  ;j  and as a r e s u l t the author believes that many minute traces of  I f this line  gallium i n the sphalerites examined were not detected. Four|  teen sphalerites were found to contain gallium.  These are l i s -  ted below together with the r e l a t i v e strength of the l i n e s used for i d e n t i f i c a t i o n . Table I I 1  -  Gallium Lines i n Spectrograms of Sphalerite ...... - • •  i *  No  Origin  1. Burke Channel, Skeena, B.C. •  Lines Used 4172 2943  •'•  'M.,  Sb  £1  vf  f  V  V  —  vf  V  V  vf  vf  V  V  V  vf  V  V  V  V  V  V  V  8. Westphalia, Germany  V  V  V  V  9. Cornwall, England  vf  X •  V  V  f  f  V  V  V  v  V  V  • "•  vf  V  V  V  :  —  vf  _—  f  f  V  f  t  Lucky Jim, Slocan, B.C.  .3. S u l l i v a n , B.C. V a l l e d'Argele, High Pyrenees 5. P i e r r e f i t t e , High Pyrenees 6. Villemagne, Central Plateau, France 7. San Traganton, " Plateau, Spain"  Neuthead, Cumberland, England 11. Derbyshire, England 12. I v i g t u t , Greenland H3. J o p l i n , Missouri .14.; Sonora, Mexico 15. B o l i v i a ( C y l i n d r i t e )  —  V  "C—.  V V  ~ —  --  ,' • - —  V V  V  V  To avoid confusion the author has used the same symbols (v, f , v f ) as Papish and S t i l s o n ^ to designate the strength of the s p e c t r a l l i n e s observed, but d i f f e r s somewhat i n their interpretation. v means d i s t i n c t , f means f a i n t , vf means i l l - d e f i n e d . As only three s p h a l e r i t e s from B r i t i s h Columbia were found to contain g a l l i u m i n amounts which made determina t i o n unquestionable, caution must be used i n drawing any general c o n c l u s i o n s / The r e s u l t s obtained show general agreement with p r i o r f i n d i n g s : the g a l l i u m content increases with d e c l i n i n g i n t e n s i t y - c h a r a c t e r of the deposits. Papish and S t i l s o n ' s ^ examinations of well-known high i n t e n s i t y examples of s p h a l e r i t e : - S u l l i v a n Mine, and Cornwall showed very f a i n t traces of gallium, as contrasted with s p h a l e r i t e of lower i n t e n s i t y conditions of formation such as a t . J o p l i n .  The author's r e s u l t s are i n agreement  with the above f i n d i n g s .  ^ P a p i s h , J . and S t i l s o n , C. B.: 521-527, 1930. Ibidem, p.' 814.  -  American M i n e r a l o g i s t , 15:  13.  Indium Indium, next heavier r e l a t i v e of gallium i n the peri o d i c t a b l e , i s less w e l l investigated as t o occurrence than germanium, gallium, and cadmium. a l i s known.  No independent indium miner-  I t has been found i n i r o n and manganese ores,  a l s o i n ores of t i n and tungsten, as w e l l as i n s p h a l e r i t e s . I t would be expected that indium would show associations gene r a l l y p a r a l l e l to those f o r gallium, and on present evidence^ t h i s seems to be true, but the data are as yet too meager to be conclusive.  Gold&ehmidt expresses the b e l i e f that indium  probably occurs i n s p h a l e r i t e i n the b i v a l e n t form.  This  would not correspond w i t h the view already mentioned that g a l lium occurs as a s o l i d s o l u t i o n of GaAs. The compound. InSb has the same c r y s t a l structure as s p h a l e r i t e , but the l a t t i c e parameter i s 6.45.  The atomic d i -  ameter i s greater than the allowable f i f t e e n per cent d i f f e r ence from the s p h a l e r i t e atom diameter and thus InSb may form only a very r e s t r i c t e d s o l i d solution,with s p h a l e r i t e .  From  Table I , the d i f f i c u l t y of f i t t i n g indium i n t o the s p h a l e r i t e structure may be seen.  No data was found on indium sulphide.  The f o l l o w i n g s p e c t r a l l i n e s were used i n the ident i f i c a t i o n of indium:  4511.37, 4101.82, 3256.03, 3039.36, and  3258.55. The l i n e s most e a s i l y determined under the conditions encountered i n t h i s work were 3256.03 and 3039.36.  I f these  l i n e s could hot be found, the l i n e s 4511.37 and 4101.82 were  14.  absent or i n c o n c l u s i v e l y i d e n t i f i e d .  The l i n e 3258,55 only  appeared when the l i n e 3256.03 was e a s i l y v i s i b l e . The.results obtained show that indium has widespread occurrence i n B r i t i s h Columbia ,and c e r t a i n d e f i n i t e ass Delations.  L i s t e d below i n tabular form are the various minerals  containing indium, and the r e l a t i v e i n t e n s i t y of the l i n e s used in identification.  Table I I I Indium Lines i n Spectrograms of Sphalerite No. •  Origin  Lines Used 4511.5 4101.8 3256 3039  1.  A t l i n Ruffner, B.C.  f  —  v  2.  Burke Channel,' B.C.  —  —  f  3.  Domion Claim, v  f  v  Copper R i v e r , B.C. ": 4.  A^lmenda #3,. N i c o l a ^ B.C.  —  5. Rocky Point, Walachin, . . B-C; ' 6. Lucky Jim (#10 orebody), B.C. 7. Lucky Jim (#20 orebody), B.C. 8.  Lucky Queen, Mayo, Yukon  —  5258.5  v  vf  v  f  v  f  .—  v — .  f  V  V  V  V  V  V  V  V  V  V  s  9. B r i t a n n i a (No. 8A orebody), B.C. 10.  B r i t a n n i a , (#8 orebody, 4500 L . ) , B.C.  —  11.  Mohawk, Vernon,. B.C.  —  12.  S u l l i v a n , Kimberly, B.C.  —  13.  Lavina, Lardeau, B.C.  v  v —  V  v  v  v  v  v f  Indium Lines i n Spectrograms of Sphalerite Lines Used 4101.6 5856 3059 3  No. 14.  Origin Hercules, Lardeau, B.C.  15.  Mohawk, Lardeau, B.C.  —  16.  True F i s s u r e , Lardeau, B.C.  v  17.  Ajax, Lardeau, B.C.  v  18.  Broadview, Lardeau, B.C.  19.  Lead Star^ Lardeau, B.C.  f  20.  A l l c o , Revelstoke, B.C.  f  21.  Blue B i r d , Ainsworth, B.C. —  —  v  22.  S i l v e r Leaf, Nelson, B.C.  —  —  v  23.  June Group, Quatsino, V.I.  v  f  v  v  24.  Mandalay Group, V.I.  —  —-  v  f  25.  Nimpkish Lake, V.I.  —  —  v  " —  26.  Skagit River Dev. Co. B.C. v  v  v  v  27.  A l l i s o n Pass, (Skagit area) • f  28.  —  v v  v vf  —  v  v  .v  v  v  v  V  V  -—  —  v  Camp McKinney, B.C.  —  —  f  —  f  B.C.  •  _  !  ~-  :  — —  v  v  B.C.  29. < Pay Streak, Teeta R i v e r , . • V.I. 30. Lucky Jim (#30 ore-hody) •  4511.3 v  f  31.  Charleston, Slocan, B.C.  —  —  f  32. 33.  Van R o i , Slocan, B.C. Premier, Portland Canal B.C.  ~  —  f  V .  V  16,  Table I I I Cont. Indium Lines i n Spectrograms of Sphalerite Nov  0 r i  34.  Abbot, Lardeau, B.C.  vf  35.  Yukon, L o c a l i t y Unknown  v  36.  E l P o t o s i , Mexico  f  37.  Villemagne, C e n t r a l , P l a teau, France  v  San Traganton, Central Plateau, Spain  v  f  V  V  vf  V  v  V  V  V  38.  ft  i n  " '. Lines Used 4511.3 4101.8 5256 3059 5258.5  f  39.  Neudorf-Harz,, Germany  40.  Kapnik, Hungary  V  41.  Bodna, Hungary  V  V  42.  I v i g t u t , Greenland  V  V  43.  Broken Hill,'New South Wales.  V  V  V  f V  V  Tetrahedrite 1.  S i l v e r Basin, Portland Canal, B.C.  2.  S i l v e r Cup, Lardeau^ B.C.  .3.  Dayton, Slogan, B.C.  4.  Taylor W i n d f a l l , C l i n ton, B.C.  5.  v  VX  vf v V  No Cash, Mayo, Yukon  vf V  V  V  Gylindrite 1.  Bolivia  v  v  v  17.  Table I I I Cont. Indium Lines in"Spectrograms of Sphalerite No.  Origin  Lines Used • ' "4511.5 4-101.8 5856  3039 5858.5  Stannite 1.  Snowflake, Revelstoke, B.C.  2.  v  v  Rose Pass, Nelson, B.C.  3. _ B o l i v i a 4. Cornwall, Eng. 5. Zee&an, Tasmania v —  distinct  f —  faint  V  v v  V  V  -  v v  v  v  V  V  V  V  V  V  v f V  —  V  v f —• i l l - d e f i n e d The a s s o c i a t i o n of indium w i t h t i n sulphide minerals has already been noted by. Brewer and B a k e r T h e y report weak indium i n Cornish stannite, and strong indium (0.1 - 1 per cent) i n B o l i v i a n c y l i n d r i t e . In order t o make comparisons between the Snowflake and other a v a i l a b l e stannites, spectrograms were made of stann i t e s from Tasmania, Cornwall, B o l i v i a , Rose Pass (B. C.), and c y l i n d r i t e from B o l i v i a .  The r e s u l t s may be seen i n  Table I I I . 14„ ••• Brewer, F. M. and Baker, E.: Journal of Chem. Soc.: 18861290, 1936.  18.  Standards of p r a c t i c a l l y indium-free stannite were set up by adding known amounts of indium n i t r a t e to give 0.50, 0.25, and 0.10 per cent indium r e s p e c t i v e l y .  By comparison  with these standards, stannite from the Snowflake and Rose Pass contain 0.10 and 0.01 per cent indium r e s p e c t i v e l y . The strength of the indium l i n e s i n a sphalerite medicated w i t h 0.1 per cent indium compare c l o s e l y w i t h the indium l i n e s i n s p h a l e r i t e from the June Group and the Skagit River Development Company. A l l other sphalerites from B r i t i s h Columbia were found to contain indium i n amounts considerably less than 0.10 per cent. I t i s i n t e r e s t i n g t o note that stannite i s conspicuous i n polished sections of s p h a l e r i t e from the No. 10 orebody of the Lucky Jim mine.  This stannite may be correlated  w i t h the indium content. Several B r i t i s h Columbia sphalerites show small but probably unimportant amounts of indium.  Two sphalerites and  one stannite. contain indium i n q u a n t i t i e s considerably a b o v e the average.  On the basis of the l i m i t e d work done, stannite  appears to be the best i n d i c a t o r and most consistent c a r r i e r of indium i n an ore. Further work on the indium content of stannites i s j u s t i f i e d i f a method of recovery on a commercial basis can be developed and a market obtained. S t o i b e r ^ states that the concentration of indium •^Idein. p. 518.  19. i s l e a s t i n deposits of the low temperature type, but i s usua l l y greatest i n deposits of intermediate type.. On the basis of the determined occurrences of indium i n B r i t i s h Columbia, the author i s i n complete agreement with Stoiber. 1  6  Germanium" '  Germanium occurs as an e s s e n t a i l component of the minerals argyrodite, c a n f i e l d i t e and germanite, as w e l l as i n small to minute q u a n t i t i e s i n a v a r i e t y of other minerals, including s p h a l e r i t e , enargite, p y r a r g y r i t e , stannite, f r a n c k e i t e , c a s s i t e r i t e and native copper among the ore minerals and notably topaz, tourmaline, spodumene and l e p i d o l i t e among the s i l i c a t e s .  The c h a r a c t e r i s t i c s of the metal as a  l i g h t e r r e l a t i v e of bivalent-quadrivalent t i n are shown i n i t s presence i n the t i n minerals, e s p e c i a l l y i t s isomorphous ass o c i a t i o n with t i n i n c a n f i e l d i t e .  I t s linkage with.quadriv-  alent s i l i c o n , of which i t i s a heavier r e l a t i v e i n the p e r i o dic t a b l e , i s revealed by i t s rather noteworthy presence i n many s i l i c a t e s and by numerous analogies of synthetic germanium compounds with corresponding s i l i c a minerals.  The  s p e c i a l -quantities of germanium found i n topaz, tourmaline, spodumene and l e p i d o l i t e speak f o r i t s s t a b i l i t y under pneumotectic conditions. But among the sulphides i t appears more at home from the shallower mesothermal zone upwardj enargite, a r g y r o d i t e , p y r a r g y r i t e and s p h a l e r i t e appear to be i t s chief 16  G r a t o n , L. C. and Hareourt, G. A.: Econ. Geo!., 50: 816, 1935.  p. 815-  20.  hosts.  As Papish and S t i l s o n ' s r e s u l t s indicate f o r gallium,  so Goldschmidt and Peters conclude f o r germanium, that the hydrothermal sphalerites are r i c h e r than those of pneumatolytic origin.  They also f i n d that the sphalerites and wurtzites  of lower-intensity conditions of formation have higher germanium content than do those of the deeper hydrothermal zones. Goldschmidt and Peters suggest the presence of germanium i n s p h a l e r i t e either as s o l i d s o l u t i o n of GeS or as an atomic d i s p e r s i o n of Ge. The author favours the idea of the existence of germanium i n sphalerite as an atomic dispersion.  Table I  shows that germainum and s p h a l e r i t e have the same c r y s t a l structure and c l o s e l y s i m i l a r atomic diameters. Nine s p h a l e r i t e s were found t o contain germanium. These are l i s t e d below w i t h the r e l a t i v e strength of the l i n e s used f o r i d e n t i f i c a t i o n . Table IV Germanium Lines i n Spectrograms of Sphalerite No.  Origin  Lines Used 3059.06 5269.49 .  1.  Van R o i , Slocan, B. 0.  V  f  2.  Hewitt, Slocan, B. C.  f  -  3»  J o p l i n , Missouri  V  V  4.  Derbyshire, England  V  f  5.  Neuthead, Cumberland, England  V  V  6.  V a l l e d'Argele, High Pyrenees, France  V  V  7.  P i e r r e f i t t e , High Pyrenees, France  V  f  . -SI •  Table IV Cont. Germanium Lines i n Spectrograms of Sphalerite Wo.  Origin  Lines Used 5059.06  5269.49  8.  Villemagne, Central Plateau, France  f  9.  San Traganton, Central Plateau, Spain  v  v  Tramway, Butte, Mont. (Colusite.)  v  vf  10.  v — ;  . Vf — vf —  distinct faint'  *  ill-defined. The occurrence of germanium i n B r i t i s h Columbia  appears rare as only two s p h a l e r i t e s showed i t s presence. A l l nine germanium-bearing sphalerites may be placed • i n mesothermal to telethermal groups.  The above r e s u l t s are  i n agreement w i t h the previous f i n d i n g s of other workers who suggest that the gallium and germanium content of s p h a l e r i t e increases with the decreasing i n t e n s i t y - c h a r a c t e r of the deposits. Cadmium With respect to the cadmium content of s p h a l e r i t e s , • i t i s probable where c a r e f u l microscopic examination has f a i l e d to d i s c l o s e the presence of the independent cadmium sulphide, greenockite, that the cadmium i s present i n s o l i d solution.  The intimate a s s o c i a t i o n of cadmium with zinc i s  indicated not only by the f a c t that i t i s the next heavier immediate r e l a t i v e i n the periodic t a b l e , with a l l the close resemblances that t h i s i m p l i e s , but also by the p e c u l i a r i t y that whereas a l l the other metals known to c r y s t a l l i z e i n the hexagonal close-packed arrangement have the eta r a t i o of l a t t i c e parameters 'approximating 1.63, the corresponding a x i a l r a t i o f o r zinc i s about 1.86, and f o r cadmium about 1.89. . From Table I i t can be seen how isomorphism i s readi l y possible between ZnS and CdS as the difference i n atomic diameters of these two compounds i s considerably l e s s than 15 per cent. There appears to be some disagreement regarding the physico-chemical cadmium.  conditions governing the concentration of  Graton and H a r c o u r t  17  state that cadmium i s r a r e l y  f i x e d under o r t h o t e c t i c conditions, and that i t tends also to avoid the more intense phases of hydrothermal deposition. Their r e s u l t s , based p a r t l y on the a n a l y s i s of eighteen samples of sphalerite,' show that the cadmium content increases with the decreasing i n t e n s i t y - c h a r a c t e r of the deposits. Stoiber-*-® believes that low temperature sphalerite from other than epithermal veins r a r e l y contains over 0.6 per cent cadmium, and that cadmium concentration i n s p h a l e r i t e from intermediate and high temperature deposits v a r i e s from 0.01 to over 1 per cent. Ibidem, p. 812. 18  Idem. p. 513.  High concentrations of cadmium  23. would seem l i k e l y to occur i n s p h a l e r i t e from deposits of other than low temperature type. The author's f i n d i n g s are i n close agreement with those of Stoiber.  The highest cadmium content was obtained i n  sphalerite from low mesothermal deposits, and the lowest cadmium content from telethermal and pyrometasomatic types of deposits.  Tin The occurrence of t i n i n s p h a l e r i t e i s widespread, but 5|uite r e s t r i c t e d i n amounts approaching 0,1 per cent and greater.  The author i s of the opinion that t i n i n s p h a l e r i t e  may be explained by the presence of the minerals stannite and cassiterite.  Sphalerite from B o l i v i a n and English mesothermal  and hypothermal t i n veins contains unmixed stannite thus i n d i c a t i n g that t i n was present i n s o l i d s o l u t i o n i n the sphaleri t e at the time of i t s formation.-'-® Polished section study and wet assaying of s p h a l e r i t e from several B r i t i s h Columbia mines has proven t i n to occur as stannite and c a s s i t e r i t e , i n some cases i n amounts that are of economic i n t e r e s t . C a s s i t e r i t e obtained from s p h a l e r i t e from the Lucky Jim mine shows good c r y s t a l o u t l i n e , geniculated twinning, v e r t i c a l s t r i a t i o n s . ' ^The to black.  and  color v a r i e s from c o l o r l e s s to amber  In some c o l o r l e s s c r y s t a l s a p u r p l i s h tinge was  notedj t h i s tinge comes i n rather suddenly near a twin plane. The s i z e of the c a s s i t e r i t e c r y s t a l s v a r i e s g r e a t l y . S t o i b e r , R. E.: Econ. Geol., 35? p. 511, 1940.  1 9  Finely  pulverized s p h a l e r i t e , a f t e r digestion- with concentrated s u l phuric a c i d , showed c r y s t a l fragments about t h i r t y microns i n size.  S i m i l a r d i g e s t i o n , over a longer period of tiuBon coar-  ser ground sphalei'ite gave mostly euhedral c r y s t a l s varying i n s i z e from s i x t y to more than three hundred microns.  The l a r -  gest c a s s i t e r i t e c r y s t a l found measured 670 by 470 microns. Stannite was found i n polished sections of sphaleri t e from the Lucky Jim and Winona mines.  I t occurs i n much the  same manner as chalcopyrite-—dots, blebs, and i r r e g u l a r patches.  Color, etch t e s t s , microchemical t e s t s , and spectro-  graph!^ analyses were used to check the presence of s t a n n i t e . Sphalerite i s u s u a l l y the best i n d i c a t o r of t i n i n an ore, but there are a few cases where t h i s i s not true. S u l l i v a n mine i s one of these.  The  Here, i n spite of several  check analyses, t i n was absent i n s p h a l e r i t e , but galena, p y r r h o t i t e , and boulangerite a l l show the presence of t i n . The samples of s p h a l e r i t e analyzed were taken from m a t e r i a l r i c h i n boulangerite and i t may be that t i n has a greater aff i n i t y f o r boulangerite than s p h a l e r i t e .  According to Banks,  the main t i n - b e a r i n g mineral at the S u l l i v a n Is c a s s i t e r i t e , although some sulphide t i n i s present (up to 10 per cent of the, t o t a l t i n ) . Once again, the author's r e s u l t s are i n agreement with previous workers, that t i n i s more often detected and i s present i n larger amounts i n s p h a l e r i t e from deposits of i n termediate and high, rather than those of low 20  temperature.  B a n k s , H. R., Annual Meeting, B. C. D i v i s i o n , C.I.M.M., Oct. 1941. • .  Other Elements With the exception of manganese and possibly i r o n to a small extent, minor quantities of Ag, As, Au, Gu, B i , Pb, Te, may be r e l a t e d t o s l i g h t contamination of the sphalerite sample by minerals containing  these elements i n major amounts.  The s i l v e r content of sphalerite i s usually i n the order of 0.01 per cent unless i t contains such minerals as t e t r a h e d r i t e or p y r a r g y r i t e , i n which case i t may be much higher. Arsenic i s not common i n s p h a l e r i t e .  In nearly  every case where detected, the i r o n content of the sphalerite was about one per cent and arsenopyrite  was known to be pre-  sent i n the ore of the mines concerned. Gold was found i n three sphalerites from the Nelson, division.  A"s f a r as the author knows, no other i n v e s t i g a -  t o r s have reported gold i n s p h a l e r i t e . Small amounts of lead and copper are most l i k e l y due to microscopic i n c l u s i o n s of galena and chalcopyrite i n the sphalerite» Bismuth was found i n three s p h a l e r i t e s , a l l of which also showed lead.  Tellurium was found i n one sphalerite  and i t too showed the presence of lead.  The presence of b i s -  muth and tellurium' i n sphalerite may be r e l a t e d t o bismuth t e l l u r i d e s , lead t e l l u r i d e , or lead bismuth minerals, some of which are known t o be c l o s e l y associated with galena of the same occurrences.  26.  Manganese was found i n every type and i n a b i g maj o r i t y of the sphalerite samples.  The greatest concentration  occurs i n deposits of high temperature type.  The c r y s t a l  structure of the manganese atom i s complex and the l i t e r a t u r e i s s i l e n t as to i t s mode of occurrence i n s p h a l e r i t e . Cobalt and n i c k e l are not uncommon In s p h a l e r i t e , but none were detected i n any B r i t i s h Columbia samples. were  They  detected however i n sphalerites from Cumberland, England,.  and Broken H i l l , New South Wales, which i s i n agreement w i t h Stolber S 1  8  S1  Idem. p. 505.  27.  Minor Elements i n Associated Minerals  The minor element content of galena i s d i f f e r e n t i n kind and amount from that of s p h a l e r i t e .  With the exception  of cadmium,' the elements present i n sphalerite presumably as s o l i d solutions ( i n , Ga, Ge) were not detected i n any of the galenas examined.  The cadmium content of galena d i d not ex-  ceed0.02 per cent.  This low f i g u r e , as compared with sphal-  e r i t e may be explained by the f a c t that the c r y s t a l structure of galena i s d i f f e r e n t from that of s p h a l e r i t e and i s not amenable t o the entrance of Cd, I n , Ga, and Ge as s o l i d solutions. Tin i s present i n a number of galenas but i t s t i n content r a r e l y exceeds that of s p h a l e r i t e from the same occurrence.  I t s mode of occurrence i n galena was not determined. The most common impurities i n galena are Ag, As, Cu,  Sb, B i , and Te,  These i m p u r i t i e s may be r e l a t e d to contamina-  t i o n of the galena by minerals containing these elements i n major amounts. P y r i t e , p y r r h o t i t e , and arsenopyrite contain l i t t l e i n the way of i n t e r e s t other than occasional traces of gold, bismuth and t e l l u r i u m .  Small amounts of cadmium were noted i n  two specimens of p y r i t e which were free from z i n c .  Minor  amounts of V, Mo, Co, Wi and T i have been reported i n these minerals by some i n v e s t i g a t o r s , but were not looked f o r by the author.  H  a  &  ©  i  •  #  KV  !2  H  A  ." «  +  * +  i  H •  +  r-)  e  I  l  \ tr  :  •  ' «  i  •  •  •  +  H  •  CM »  o  &  CO is  t-iH  •  H  1  LPV LT  • - - .  ) '- « W  :•  tS]  •H  m o  H  o  «  •  •  P-i 1  «  *  «  i  +  H  IT <  H + •  •  r-S  H H +  " j *  CO  OJ H o o •  "A O ;  \ « 1  •  •  H  H  CO  CM  i  H  A «  •  • 1 H  CO  is OJ o  • •  ©  • «  H  H  •  'N H o  H  H  OJ o  H •  + •  CO Lf\  CM  . «'• '  CO  *  o  LA «  e  ©  A !  •  %  •  EH  H 4H O •  Criss Creek  •  Kamloops  \ %  -  • •  •  CO  •A •  CO A !  A  • CO  I CO  CM  «  OJ •  © H  w  cd  m ©  ft LA • ; ! •  ft  •  H  •  CO  •  LA O • 1  Charleston Dayton  Pi  d  o U  CO cd ©  Snowshoe Little Joe Alice Arm (H.B Babine Bonanza  O • 1  '  Omineca  LA O o 0. •1 i  ©  Silver King  CO CD • 1  Si ra cd  o  o H  Monarch Group Surprise I  cd CO  Silver Basin  Portland Canal  cd ra o  Skeena  r-f  Slocan  W  o  Calumet  . Mn As Property Division  4=>.  si o o CD  H  cd  EH  •  •  w  :  ft PH  I EH  u  1  M  •  '  •  " A  1  -•-  • -  HI •  H  •  • 9  •  ?H EH  H  +  CO  . •  O  H o  O  •  Si o  o o  cd o  ?H  •H  &  cd o  U  O o ,£> •H  EH  a o 41  ra ft  1  "•-i H • cd  H  o  •H  ii o -p  EH  cd  rl  O  u  fcg '  •H  S=J  -cf  <H  I  •  CO  «  CO  H  " •  J  •  •  r-i  JH  * i :  S3 •rt  ra  O &  X} -P  CD •P cd & CD -P •H <~|  O  OJ  CO  •  ( A rH  «  •  OJ  A  H  CO  »  •  H H CD pq  <d si: cd ;' H 44 tlD •H 'W  •d o o pj  <D CD SH  *  •  •-  ' •  • JH EH  •  CO o  •  *  H  >  ©  H i—1  o  H o  •te!  •  CO  to  ••  CM  o  JH  CD  >  < <D  o  ra  += <D  H  >  CO CD • Cd  cf cd  H •H CO  '••'.  ' •+  )  si  <! <u  Si tsj  ft ra  «1 •H W -d o  Pi to  +=> ?H <D  ft  O • u  ft  o  ra l>  •H  54 cd Hi  -p  .1 ra CD JH.  ft ft  cd  si o  JH  4= I  CO  CO  si  -p CD O  JH CD  Pi  51 •H  ra CD  •ri  CD  O cd  I  JH E-I  • I  JH EH  CD  Table V shows the minor element content of t e t r a hedrite.  Arsenic, s i l v e r , i r o n , z i n c , manganese and cadmium ,  are the most persistent i m p u r i t i e s .  I t i s i n t e r e s t i n g to note  how the cadmium content r i s e s vri.th an increase i n zinc content. Tin i s present i n sphalerite from most of the mining d i v i s i o n s to which the tin-bearing tetrahedrites belong.  No  t e t r a h e d r i t e contained s u f f i c i e n t t i n to suggest the presence of the v a r i e t y of c o l u s i t e which has 4 per cent t i n . A specimen of c o l u s i t e from Butte, Montana was analyzed and i t showed the presence of a small amount of. germanium. P o s i t i v e i d e n t i f i c a t i o n of mercury i n the Criss Creek t e t r a h e d r i t e vra.s not possible as no material was a v a i l able f o r a check a n a l y s i s .  I t may be the mercurial v a r i e t y  known as schwazite. The occurrence of mercury i n T e r t i a r y beds nearby i s of i n t e r e s t .  H  t> <D r-i 4=> cd  EH  !  H o  M  Pi CD  £  CD H Pi o  Pi •H  :  1  <d  P4  '&£  W  CO CJ d o «4 CD  EH  •H PQ  •d o Pi CO  CD -d o  Pi EH  H "  O e  •  «  H o  +  Ontario Broulan,  Placer Property  «  Pi EH  o  *  1  •  CO o  +  e  CO 0  £H  cd CD l-q 1?  o  H  P4  Pi  C-' EH  H ~  O •  •  1 H +  >» Pi  ttf)  cd  W  # cd  PH  CO CD Pi  CD >  H o 9  • Pi  EH  C"  Pi  *  •  EH  H H  o i  • Pi EH  «  Pi EH PI EH  o  3  Pi  • Pi EH  • Pi EH  %  «  •  •  EH  H  H +  .'+  Pi o  1 CD CD Pi o  Pi o tsj  •H Pi  <A  •  EH  H  "A e  «  •  ITS  •  •A  I  +  Pi o  M  w  o 43 CD  Pi  CD CD  !>H  a  •  O  H +  *  H +  o i  +  Pi o  xl o  CiJ PS  •H i—1  ©  is  •  :  « 4*  H  +  -  •  H •H G? O  H  Pi cd  © Pi o  CD  M  •>  cd o  •H H  tt +  4-  cd <d cd i>  CD P? CD -P  ra CD x( o o  •3 R  PH  Pi  >•  H  •  •  EH  •  «  H  ra t>  o • pq  •  +  1  e  O  L A  ©  CM o  EH  Pi  •  •  H  •  LA H  o  Pi  •  EH  +  «  H +  H o  +  #  o • pq f>s  ra P4  O  EH  Pi EH  •  «  iA  H +  +  « o e pq  •H w o PH  a  cd o  • EH  Pi  EH  F4  Pi  P4  "A  o  H  e  31. &• Pi EH  •  L A  Pi  o 'EH  tA e  H +  «•••  H +  cd o  Pi  4=> •H  o  O tis o  id H  < T  cd  Pi  N +3  +  a  CD Pi  pq  Pi  H cd  Pi o  +  fee •  «  LA  m  e  PI EH  e  «  L A  H +  +  ©  O pq Pi  CD CD  Pi  o  •H P4  o o  CD  H  cd  EH  «d PH  1  I)  CO  HO EH  pq  CD P*  O  JH  ft  ft ft JH EH  •tr\ O  pq •H CCi  •¥>  Q JH  CD Pi Pi  O  o  pq  o  in © !>  •H  Pi Pi  cd CO  CO  o  A  pq  © •H  Pi © ©  o  H o  +  pq  © © -p cd  l> •H in ft  EH  c>« EH  A  H + CO  to  CCi •H H cd JH - P  CO d  SH  cd f-i o 43 O  ©  43 Pi © CO 5H  ©  IS  ft  ©  •H  ft  EH  EH  CO  o in +» I-  8 CO g  © o JH  © Pi  CO  pj •H ©  JH  d  •rH  cd ©  •33.  Table VI shows s i l v e r , copper, lead and mercury to be the commonest i m p u r i t i e s i n gold. - From Table I i t can be seen how the elements copper, s i l v e r , and palladium may form s o l i d solutions with gold. The predominance of manganese i n placer gold i s i n t e r e s t i n g i n that i t i s one of the agents c a l l e d upon f o r the s o l u t i o n of gold. The occurrence of palladium i n Gopper Mountain gold make i t one of the few r e a l l y outstanding golds from the viewpoint of minor element  content.  The presence of t i n i n gold from Dublin Gulch makes gold another mineral which may be added to the large number of minerals from the Yukon known to contain t i n .  As c a s s i t e r i t e  i s also found In the gulch i t would suggest that both gold and c a s s i t e r i t e were associated w i t h the same i n t r u s i o n .  This i s  another i l l u s t r a t i o n of the valuable use to which the spectrog r a p h ^ method can be put i n o u t l i n i n g favorable areas f o r prospecting.  34.  ANALYSES OF SPHALERITE AND.SOME ASSOCIATED MINERALS - FROM VARIOUS MINING;DIVISIONS OF BRITISH COLUMBIA AND YUKON TERRITORY  S3  • • 1  • I  H  P  i>  E-  H  H  : ••  •  :+  t-i  t-i  A o  ©  H  p -P o  •  Pi E-j  - '•  p- 1  H  r-J  •< ) »  Lt  c  -  H  © H  P  ©  Pr /3 f  ©  1 OJ " A • • o  o  "St  •  .'SB  . to HI  in Pi  M  © EH  •H  ©  Fq d  PI  tSJ  3  ft HO  <l  - d o rd  o  /Premier  ' As PI to  Galena ;  u • 1  ur  •  «  • OJ •  c•>  H  I  H  ,. 4O  • *  './ r~i  ©  H  •  a.  ©  Pi  p  • . • 1'  •  OJ  ©  cd tS<  Lf> •  c3  5  l  1  P E*  •  •  ft  H  o  U  e  1  • 1  .•  A O  •  4-  H  •25.  H  Is.  to  >  ©  H  «  •H  0  . «  A  ".  PS  ra  ©  1  A  •  cd .£« pq o d  Pi A t a  © 03  >  toS  :  « 1 1  • I  9  fe  CO  .  1  H  .  -a  H  to  H 4-  «  r-4 H  :  ft  m  IS  «  +  •  r4 1 r-i  4-  O  - • I  Pi •d  s  PJ  ©  CO •H Pi Pi P) d to  EH  ©  4  ©  Pi -d:  OJ  CM ©  ©  •  ©  - P •H  ©  - P •H  A O  © += •H  nd ©  P) ©  si.  Si  o Pi  o Pi  d  Pi  EH  ©  si  n t ©  EH  d 6  EH  ©  cd M  03  c3  . SH  ;  ft  to  +  i-f  H • +  •  OJ  o  ©  -p <H  Pi -d ©  ©  -P  cd += ©  P{ •H  •H  OJ • • •  © A  • • .1  •  o I  ©  Pi  •H  H  to H © CO  s>  •  .  - P  CO :  >! © •H d '  fe !  • H (—1  . EH •  Pf -d  CO Pi cd H O ft  •H  EH  d Aj cd  Pi  U  cd .>  ©  >  •H  H H O R  to  ft  © +=>  4» . O Pi PI  <d o CJ3  Pi G 0 H cd CO  4=  Pi  CD  ra CD  P| PH  ra  4=> SH CD  a CD  r-i O  N •r-i  ra si CD +»  •  W  r-  •  +  •  i—1  i •  x> C ra Pi M  CD EH  «H pq CD Pq  d N  " Pt ft •< e  I  •  CM ©  •  ft  LA •  *  CA • +  8  H .  ITS  e 1 :  LA •  d 'o  O  <d o  Pi  CD  H Pi ft IPi  CD  t  LA LA O O *  Pi  • • -H H CD  i  Galena  a  !  H I  4=  O Xi|  CD  co r-j cd Pr Pi •r-i  iS!'  N  -p>  Pi CD P4 o Pi  ft  As Sn  LA •  •r-i +  ft  r-i +  CD  •H H ' CD O  o CO  Pi <D CD  Pi f  •H  •  1  CD += •H  Pi X> •H -P CO  PH  d o Pi cis  Pi o •H  •  1 W CO Pi M W oj CD EH  •H  : pq CD Pq  d «! Pi tS]  to  •d  o ft CO H ft R <J gj d 1 Pi CO  4=  O XJ to ft cd  Pi CD Pi •H  a: N 4=» Pi CD P O Pi ft  •  •  m  >  i— G  «  Pi EH  •  LA •  ft  CD  CO  ft CD cd  xl CD  0  Pi d pq  -  .  LA •  • H •+  H I  • «  CD 'H  -4=  R  Pi O  Pi OO O CD ft H cd XI ;O5Pi  •H  4=  LA  « ' 1  ^  ' « r-i  ."  .+  ft o o. i Pi  C~  £4  CD TH PI  P!  M Pi d CO  O  •  ft ftPi +  o 0  »  CM O  y CD  4=>  ft  »:  •  ft  CM  CD +»  •H  ft d o Pi Pi m  CD  C6  Pi Pi CD P cd o CD Xi Pi o 4H=> P) HCD Hcd P) cd xl o ft ci CD  43  &  H Cd  1 1>S d CD 3d 03  Ar>  cdft  t(D  a ft o cd M  ^ Pi  e  1  •  L A  ft  H +  r-j  I H  • *.  LA  CD  4=  •r-i u CD  H cd Xj Pi  CO  CD  Pi O  ft  Pi O O  (D  PI^IT •HiH  a cd t>, O r f - i H R O CcS  -  "'.  '  3.6.  «  H  Pi  EH  •'  r-4  »  ft «  ft.  O , «  ft Lf\ O. « I  -d H O ciJ  ra  .M  4=  a  CO  CD CO CD •Sri PH  v  -  H •  !  * © i CM O •  i  H O  o  1  •  tJtS  1  •  CM O A • • •  *  <* ©  •  • tg i  ••  •.  H  A  1  o  o o t-i o  • A  •  •  *  H  s » 1  •  PH  e  •  CO o o o o  A © •  CD —1 cd  1  H o  •  H Pi >s  CD  4=  *  •  CM r 4 O o A O  • i; o>  4-*  no  H P| CD":  cd , -q  ft o  CD +3 CD •H 4= Pi H <d CD P i CD cd - 4 P i OCj +». CD EH t  1 •I'..". CM A H O • . o . »  fee  «  i r•\ Lfs • a 1  •  • A t-i • • • • +  t-i •  A  . 1  ! '•'-•  1 ^f IX 1 iQ CO  H  EH  pq  -  co:  Pi  o  d o  • HO  r  N  H  P-  •H  Pi CD CD Fq  4= CD H Pq  H-•H CO Pi CD  O  4=>  Pi H  4-?  -H  a  fe  .'o  o  H CO M £> H P <-i o P-T  fe  H O 1 EH O M P-J EH CO M P  EH CO  EH  .3 CD y  r-i Pi a> P i r- 1 CD i-4 i.t: cd P i tJj tO  •  CM  O e I  •  CD  4=  t-i  o •  •H Pi CD CD *-> -H H  M'  CO f  «  Pi EH  O . «• 1  CD  4=> •ri  Pi "rP ' •H  4=* . CO  CD H-l •H XI O Pi «H £4  ;  H O • .1  «  H • I o I  CD +? •H Pi -Q •H +=> CO  Fire Pan Mtn.  CD H  «S  cd CD N Pi P i • H cd - o pj cd o pq pq  Silver Standard  P-J  g  o •d  cd Pi.  o  Pi o o  Glacier Gulch  CO H cd Pi CD Pi •H far;! F=-l  i>5  4=» Pl CD ft O Pi  Sphalerite  As i  • PI  EH  * Pi  ©  EH  t  CD  4=  •H Pi -Q •H +» CO  a  CO CD  CO e  4= pq  •'  -  H o • 1  i  ©  Pi CD f> H •H "CO CD > •rH  fe  CO Pi CD  « 1  A  A +  9  I  ©  o  K\ e  CD  4=  •H Pi CD •H cd -d Pi to  Si  a  CD •H  4= •H  a to  H •  ©  Pi EH  •  A  H  o  •  CM O  1  «  A. O  t  CD H cjj  Pi d O Pi CD l> r-i  •H CO  37.  • 1  H  A  •  4-  H •A O  O  •  CD  4-* •H Pi CD r4 cd  Pi  A  to  II H I CO M t> ft H  M «=~*.  O  EH O  ft  w EH  CO  m EH CO  += Pi CD CO CD u PH  CO , 4= • CD  •ft  ;  0  Xi CO  «  •• •  t-  CO  »  •  !  O  o o«  - •  1  © CM  »  © •• t oO  r  CD f=> H Pi CD Pi H CD Cd H .EJ ft O  •  P3 H  ra :«? 0 EH  W  •H  CD PR Pf  a CD H  : s  d  Pi CO  •d o  o  <!  4= •H ra Pi CD ft  O  4=> x! CO  CD Pi •H  Pi <D ft O  Pi PH  Sunrise  CO  •fee  CM  *  ft  ft O  0} 43 •H Pi >d © xj cd P» 4=> © EH  © o - x! ra  '  • »  ©  Pi CD r-i •H CO  CD  >  M CD CD  Pr O  Pi o ra PJ  © PJ CO  •  -  ••'  . . Is ft  <r]  ft W +»  o © ra.-N O rd • •H d Pi  >s 9 pq Pi «TP1-  EH  © 4= •H Pi -d © •. A cd Pi . • 4=>©  CM  ft  «  *  CM •  CO  :  is!  ft  CM' O  ©  •Pi <d © ; x! =«•  © EH  © o © H +» 4= •H ft  is; O H CO M > r-i R o o pq H Cd <! o  EH O  r-i Cd  EH  CO H R  E-l CO  w EH  Cd  g  si  •p CD CO CD  CQ  JH PH  s  -p  a CD  o .H '4=1 •rH CO 51 CD -P 51 H  43 O •Xl CO H cd u CD 51 •H  H  -p JH  CD ft O u PH  o  CO 51 H CO  CO  '  H H  1 CM  i  CD  - P  H  cd 0 H CD erf H X J cd " t i s CO  N - P JH  >rj H o  o. d a? o  JH  •H cd  o  0-  JH EH  BIS  CO  cvj|'H.  LA O  51 •r-i CD  O  pq  •  1  CO  H  O  CM  O  H  Lf\|Lf\] O  CD - P JH  •H  PH  CD 0 r-i cd • H JH si  <S tpo  cd 51 CD r-i  51  cd H ra H  H]  H H  *  51 o ra  O  H cd xi Pi CO  JH 0  •rl  0 - P  LfMC\  I  O  i  w o o JH  tQ  •H cd o  i  CO  JH EH  H  o  H  " A O  0 • P  a>  •H J4 °d A cd JH - P ©  EH  51 O ra  PH  EH  0 o cd x t O  fe o  H CO rH >  H p  21 o o  H  fe r i  EH  O H  +3  0>  CQ CD  Pi  p ?  m)  w -a to  CD EH  to  ft •ri pq  ft  N  PS  <  Pq  CD -  -f=> Pl CD  a H P-l <rH o  >5 +» •rH CO Pi CD 4-> Pi  HO <  o  •d  , . .  H  r-i  O  9  1  •  rH  -A  •  r-i e  • Pi  EH  fa  H  « -  C\J o 0  1  r— 1  •  i  r-i  +  1  ft  .  u -EH  oo o •  PH  H  •  A  •  «  •A  rH  ft  H  *  CM  O • A O  i  ©  H Pi © © += H «H Pi :  © H  73  ft •J>9 til  '  H  1 1  .rH • - a •<*  LT\ « 1  A •  1  O  H a  11 ft.  •H  ©  ft  1  *  r-i  !  .© O : •• H o A O 0  1  cd Pi © rH  cts  Sphalerite  erf EH  to  H  Pi  CO  ©  •H Pi ©  ft  © H cd cb  IA • o  fe cd ©  a H  o  •  1  A  « «  a"  6  H  A  rH  •  » •  r—i t-i  o  H e  !  0  CO  o  *  '«* o A §  «  •  OJ  o  A  O 1  Pi © H cd dj  rH O  o  fe cd  EH  ©  a.  sphalerite  PI  EH  4=» O .d CO  .  CO  , cd • ©  a •  Enterprise  r-I  cd  ?H CD Pi •H  >>  4=  P)  <D  ft O P)  ft  King William  • As In  «  rH «  H  o 1  A ©  O -. i CM  •  ©  cd Pi © rH  cd ts  »  CM  o  fe © ©  'rH  Pi Pi ©  pq  •  r-i  " SB  :  O «  rH  H  # '  CM  -cd Pi © rH  o  cd Pi o Pi o o  51  4= CD  ra CD  ra  54 ft 4=  51  CD  a CD  ft o  N «H CO 51 CD  4= 51 ft  4=  O xl CO  ft cd 54 CD  51  >5 54  CD  ft O 54 PH  Pi XI CO  CD EH  •rH  • pq CD  cf <! 51  to  -ta) <  o  o 51  CO  ' 1  )  ;  •  CO  l  <ft »•  H •  ft O  -4  •  ft': ©  ft O •  "<*• o  ,  •  N  :'>  GO  ©  «  %  cd 51  4= O ©  43  o  a  pq  CD  4= ft  ClJ  $  "ft  CD  o  4,  CM  o . •" • ITS  o 1  cd 51 <D  ft  xi  U  CD CD  O  ©  43 O CO  o  CM  e  oo •• o  Q-  »  E-  »  : %•)  H  CD +» •H  . +  «  ft ft - ©' P  ,  ]  •  54  •d CD  x! cd 54 4= <D  EH  Greek  In As  ft •  +  :  '«.  ft  • 1  ft •  •  + CM  e  . • •  o i  CD  4= •H 54 CD  ft cd  X J  ft CO  •  •  ft  ft o  oo * '  ©  o  * 1  »  CM  o  o  CD  ••'  '  ft o • 1  «  •  ft + ©  o  ft u CD O  cd  A  ft 4T ©-  ft  CO  X{  f.  - H  p=s  cd £ 14 ra CD  u CD  54  CD CD  rtM ft  E»  O  pq ©  o ft CO  ft H |ZJ<  O  i 0 PC XI CO ,;  51 ft CO  <4 CD EH  pq  •H  CD  Pq  tSJ  ft  •ft  w  <u Ei ©  <d ©  51 CO  4= O XJ CO  ft cd 54 CD  Si  •H  m  4=> 54  •A •  ft  • •  *  •A  ©  •  «  ft  O  •  + ©  CD  CD  4= •r-i 54 ft  1 ft  *  CO  ft  CD  1  O  54 ft  to  CD  ft ft to  o >j 43  ri CD  1 HC  w -Q CO  ri H  CO  r—I t )  ©  H  •A a t  fe fe CO  <t5 CD EH CO  t  o  H  •H  pq CD  ri ri  ft H •  + •  •  «  ft  A  H O  H  A  «  »  0  ! H O  O •  1  CO •  4-  H •  «  fe  H  >A  • 1  H O e 1  •  B  H  0  rH  rH O »  rH .0  4«  »  0  ^-  i  A O  CM O «  cd ri © H cd CiJ  1=*-  LT B I  0  0  c  t— f  H  O !  CM O 0-  H  «  -'0  A  +  0 '8  O  fe  H rH O  H O  H  »  © 4=  •H ft © t-i cd © H  ft cd to l  H cd H  ©  •riH HOH •H  W pq  IT\ !  O I  «  0  ft  H t-i O  «  CO A  « A CM  ©  4=  rrH ft -C-f © .d cd ft 43  © EH  Argentite  ri"  A O •  ©  43  ft 4=  ft ft  •i-i  !>» ft © O  rH cd -ri 0  0  ©  ri © • r i  •H  i>  rH r-i cd  to  Native Silver  •  o ri CO  cd ri CD H  cd •H  ri. o 4=  ri ©  O ft ft  Sphalerite  •rH CO  H 4=  ft CD ft O ft  ft  Sphalerite  ent lemen Int Mineral Shot  1  <  0  fe  «  LT i  H O I  •«  •  r-i  A  O  0  t  0  «  a H  A  0 r-i H O O rH c +  O e 1  I  . «  rH O  0 1  A O  0  LT <» 1  H  0  rH •  CO  0  «  t-i  ft EH  0  «  0  CM O  1  O  r H DO O O  r-i 9  + ®  ©  ©  43  cd ri  ftcd  © si- r-i  H ft ©  4->  ©  CO  4 -  •H ft cd © ri r-i © cd r d . d rH H O C5  <g tfto cb  © •ri  ;  K  CO  M  As  :  >  PH  o •  -  1=1  ©  ft O  © •H 54  •  •H  PH  LTV «  ft  «  ft o  •  •  ?  o  o  ft • 1  © 4> ©  ft cd 44 ft CO  ©  •H _cd,  •H  > 54 cd  © -H -d > •H © ft  Pq  EI ©  PH  ft ft  f! <d ft O  ft  Pi  »  ft  ft .0  o I  e  •  OO  o o  ••  CM O  O #  1  cd  © ft  '  o ft  CO H !> H M  CO  H  1 W CO Pi M  ra  54  d  PH  «  54  •  EH  ft  •  g  •  —~—— ft  «  O 1  &  -d ft o  • 54  EH  ft  u \  o  © •H  ii o pq  54  o  o  ft 3 o  ft 54  © 4=  •H  !>5  14 cd  PH!  o |  ©.  4=  54  Si  © 54 •H  ft  o 44 CO  CO  54  nd O  o  i? ft  tS3  d  © Pq  © ft  ft  ft  >»+» © o ra cd  wl  rd ©  H ©  o $4  © ra  54 '  © +>  EH  ©  Pq ' d •  d  o •d O  Si  CO  r  •H  •H  ;  Bi  +=" ft d>  of  ft ft!  :  1  HI0  to  hi  CD  tP ft HO  ri o  O  ri to  LTN • 1  • r-!  ft CO  H  • 4-  «  «  w  H  •  is  •  •  -A-  H  A  o  A O  o H •H  cis  cd ri CD r-i  I  0  *  " • "T-n— CVI  •  •A' o  CD  4-»  •H ft rd CD ..." A crJ ft CD EH  Dayton  N  ri  p-H  pq  •ri  CD EH  As  fe  •A CD •  -A O « I  CD 4=  t-i ft >s  P4  cd  PH  to  ri  A 9  I  0  r-i  *  *  A ©  o i  •A O « 1  CD  4->  •H ft CD r-i cd -ri Pi  to  ft o  cd 4=» O v-t o ri r-i O  t o 5sj  A  • 1  •  ft  A  e  0  r-i O  o  •  8  O  r-i •  CD 43  •H ft CD r-i rri Pi  to  a M  o ri  6  H  • ©  •  • 8 CM O «  A © ®  1  ©  H cd  r— G «  H  r-i O «  "H e  0  © H 0  CD 4=  •H ft CD  p)  to  si O  4=  o  •  r-J  s>  •  r-i  /  ft A © e  i © r-i <U GiJ  cd  ft 43  CO ri cd 0 0  r-i CO  e  *  H  H O  J  m A «  0  iA  H  ©  h-  ©  r-i  O  H «  fe  ^  ft  0  0  KN  O H 0-  Pi CO  ra 0  PP  >  ©  •  © 1  ©  r-i  cd< ri  9  e  A ©  0  O  CM  0  ©  CO  ft  O I  ©  1—1  r—1 r-i <  A ©  e  co O 9  <  0  ©  H «  O  © |  > © •  f=  i  ©  p  to  ©  ri 0  fe.  4=  ©  © ©  4=  •H ft  •<-l ft © r-i  »  ©--" H C>• © > •  f • C> »  e  r-i r-i O O « •  e  A  CM  0  «  O  0  •  CM O e  © •H  Fq © H rQ O fe  -H ft  r-i 4 = ri © Cd-H © r-i - r i ft r-1  O  A O  ®  A  l  cd  ri ©  .ri  ri  43  •H ft O O  H  0  H ©  0  ©  0  CO  0  J  CM 0  O  •  •A O  cd ri  ©  ©  CO •H ft Pi ft ri  to  •  44. A 1  «  r-i O «  O  H  « 1  O  1  0  K%  • 1  ©  © 4=  ©  •H ft r-i cd -ri Pi  to  EH O  o o H CO H  !>  H  R <!  o  o ft CO  . 8  EH O M Pti  .  1 W rQ CO  - P  CD EH  ra CD  dQ  PH  Pi N  E<  Pq  CD  m  ft ra - P  CD CD fx):  ft O  i>=  - P  ra  •H Pi CD - P  Pi H  o  PJ  •  j  l  «  «  \  e  ft o  1— (  ft 0  o •  ©  !  •  CM O o  o ft  LA »  ©  t  ft «  «  ft © •St-  o  LA  ft  «  LA  . 0  • r-l «  ft «  o  •  CM ©1•  • LA O «  ft  tr\ e I  e  >  •  1  1  l— «  ft «  ft •  ft  o  «  o  LA o 0  e  t— I  <  ft ©  •  ft  ft  ft  «  ft  1  •  ft  «  LA  o  Pf EH  «  ft  •  ft © 6 8  ft  ft  o  CO  »  CO  !  ®  CO  o  ft LA  o  ft © 1  LA O  ra cd  «  a  ft ©  o  1 o  ft rA tS  LA © 8  - '«  -P 4» •H CD  w  CD ft  •i  LA ©  e  ft ©  ©  n  <  ft  cd  a  O '  ©  CD ft  e  •A O  1  ©  ft  © 8  o  «  «  o  «  ®  •  ©  o  «  CO  ;  o o  O ft  ft ft •  e  t£s  <S  CD ft  t  <A o  • 9  ft ft o o  1  •  1  O  LA  1  o  ft  e  •  o  OO  S3  LA 9  LA »  »  ft  • LA  8  ft  •  r-•1  ft © «  1  «  o «  •;  *•  «  ft O ©  « CM © *  ®  LA ©  •  CD -P •H  ft  CD P H  cd Pi CD ft cd  &  •H G PI  Galena CD EH  LT> e  e  ©  "A e 1  LA O e  LA e  «  ft  «.  4 5 .  ft o  «  ft o ft o  o  J  ft o  8  . «  LA O  Riiby Silver  •  Pi  Pi  cd CD P i CD ft cd  ft  ft CO  CD O  cd  "I  cd  Sphalerite  »  s  ft  CD H H CD cd ft  Pi  cd o •H Pi  a> )>s 0 o <rj p q  Sphalerite  EH  CO H  Pi CO  CD ft cd  cd CD Pi  o pq  o  PI  Sphalerite  -P o  x!  >»  CD Pi  ft  Last Ghanee  CO  ft  ccl p. CD Pi •r-i  Pi  N •p CD ft O  Pi ft  Sphalerite  -.01 Galena Sphalerite  In As Bi  *  £H  o o o  H CO M HH  ft O  o  CO  ft  I [ •  51  4= K)  CD CD  JH PH  CO +=>  54 CD  w3 • CO  CD EH •H pq CD  Pq.  <d  -a CD ft •m-  <on tsi  S>=  Si CO  rrj : ©  El ©  CtO <!  4=> •H  ra  54 CD 4= 54 H  •Pi s CO  "H cd JH CD  54 •rH  +» JH  CD  P-4 O JH PH.  CO  (A  CO L A •  i  0  ft +•  0  fA  Tetrahedrite Grey Eagle  In As  H 4  1  •  JH  EH  0  O  o  CO 0 0  0  PH  i  L A *«  0  LA  i  ft © . 0  0  4= •H  ft CO  x!  cd  ft  CD  JH  ©  LA  o  ft ft H o  cd  Si  CD rH cd CJ3  54  o  ra CD ft  JH  cd  Xl o  to  L A  0  CO L A 1  ft 0  CM  ©  JH  4= •H  H  A  «  r-4 «  O  ft 0  o.. L A  O  «  1  H  IA • I  0 L A 0  0 LA  o 0  ©  JH  4= •H  © ft  © cd 54  XI  XI  ©  CO  JH  ©  ft  cd  4»  H cd  cd  EH  tij  1  •rH  •xl  4=  I  rH 0  L A  O 0  '? 0  CM O  ® 1  L A  O  © H cd  " A  ft  « 1  ft «  ft +  e  •  « I  |S  CO  o 0  I*  o CM O 0  <=*• © CM © 0 ©  O  0  L A  e  cd  Si  rH cd CJ3  pq  ft  ©  pq  •rH  JH  TH  © © ft cd  Si  © JH  i  •H  O 4=  Pq ©  • H 54  © xl ra  s F=5  •1-1  fl ra JH  CD l> ft •H CO  .  i  L A •  r-i 0 I  L A 0  r4 O  0  L A  0  •  rA  O  H  © 4>  «  0  0  0  0  L A  ft  H  ft  H 0  J.  •si- H  o  0  CM O  ©  54  1  LA •  I  0  ft o  &  H 0  «  L A O  rH  0  ©  i> H •r-i 4»  e J-I  EH  0  ft o  PH  «  L A  o  i*  o  rH © »  ®  L A  8  O  © 4= •H  dO  ©  JH  51 cd  o pq  © >9  5(0 J H si * H •rH p q N  C(0 cd ft • H © cd ft ft >  Xl  Si'—'  o o  +» © 1  43  ©  Hi  •H •rH to 54 54 © cd © © ft rH 51 cd © l> xcdl x! ft ftH ft to &cd 4=cd CO  -d JH  cd >d 51 cd 4» CO  4-»  ri  © CO CD ft  mi  PH  ri ©  a.  CD H  p-q R  H O  >> +»: •H CO CD]  H  %  4= G  .ri CO  cd ft  CD  ri •rH  += ft CD  of  ft  PHI  1 He w to  rQ  to  CD  EH  •rH  <!  :  ri'  HO  PH  ri  ri  ;p-i  •  o «d  o PI;  to  4  LT\  H  •H '0  fe  LT  ;''r- 1  m  9 +  t-i  H «  e H  i  ®  +  A  •  r-i  r-i  © •  O  r-i •••  CD  43  o PQ  cd  e  1  1  PH  ft ft  &  -P O  CD •rH CD -P ft 4 CD • H •H  ft CD  ©  © © © • • 0 ( •  CO H o © '• o e 1  H  O  •A 9  cd  ri cd CD . d Pi H to <g  Sullivan  In  -  •.  fe o to t - i •: H  R @ R  l-H O  CJ>  -.:  :  HC)  M rQ  ri  xo  H  CO  < CD E-l  •ri  ri  CD  m  ;  ri  PH  HO  ri o  O  ri to  +-> o -ri to H cd ft CD  ri •rH  4»  .-ft' CD P O ft PH  r-1  e  O  :  A •  1  r-i  cvj • ;  •«.  ©  • • i-  A O  'r-i .©"  • o  _ 0 :  © •H  Pi to  si  ft cd CD d i-l CD cd i—1  cd ciJ  .ri o ft  ri o  '  A 0  r-i 9  ••  •>+' © 8  «  tA  CD  ©  Pi to  si  H cd  4= •rH ft ©  • ©  HO  ri •rH  M co O ft O W •H  M  •  •  <c(  A  H  0  .  0 '  r-i  r§l  0  co ©  •  0  o  A  H  0 •  A ©  1  ©  H  ©  cd © © ri G? H3  fe  o  M CO r-H  !=•  HI  p t> p 8  - P  Pl  © CQ  ©  Pi  PH  CO •p Pl CD  a  CD  H)  p-q  o  >3  •P •ri  CO Pi CD 4= PJ  HI  0  •  . I  H  A O •  •  H O •  H) •  •  ®  H o  © 1  !  •  PH  0  e  fe:  H  A H  o 0  •=t O  •  H  1  OO o «  0  ©  «  r-i 9  0 SH H  © 0  «  p*  EH  PH  CO  0 r-i  CO  H 0  +  r-H 0  H o 0  0 Pi  0  EH  H  H 0  •  i—1  CM O 0  r-i 0  r-i 0  EH  Pi  0  0  •  !  H O  HI  0  Pi  E-l  0  r-1 ©  C Pi  0  0  EH  H  H  H ©  H o 0  CM 0.  H  H ©  H  0  *=t o 0 8 H © e 8  •  A  •  PH  »  Pi  e  EH  H  A  0  +  »  PH PH  1  PH  Hi  A O  e  «  0  r-H O «  0  H  ft 8"-  o  r-i O «  +  0  r-i ©  4-  r-H  o  r-i O 0  r-i e  •*t o  e  «A 0  0  ••*•  cd -d  8  Sphalerite  CM H O #  r-i O 0 8  A O  0  A O  e  Sphalerite  « A O  0  Hercules  O '  «-}• 0  A O  A O 0 8  © -p  Pi  •H  ©  cd Pi - P  cd Pi © H cd Kb  «  Hi © •rH -p - P  © fe  Sphalerite  •  •A O  © H cd C3 ©  EH  !>s  H0 o Pq  Layina  *-! H1 i  :  o •»  © HI cd Kb  >» cd P  e  cd © H Pi •r-1 - P  1  Galena  CM O e  •A O  !  o ®  Galena Sphalerite  O r-i 0  Silver Gup  A O 0 1  Sphalerite  1  Abbot  i  CD  Pi  - P •H  PH  Galena  -p o  Si CO  n  CD H cd  cS  -p ri o o CO  Sphalerite True Fissure  r-H  CD  Pi •ri  -p Pi CD & P) PH  Sphalerite  -.01 Excise  4= Pi © CO  ©  u PH  ra +» PI  a  © 0  H o  W| •H  43 CO  Pi 0  += Pi H  += O Xl CO  0  Pi •H  4= Pi: © Pi  o  Pi PH  4 hC Mi. \  w CO Pi H  ra ©  © pq  < Pi  H o  •  1  e  ©  *  L A  H o  UN  O  vs  o  •  .  « Pi EH 0 Pi EH  • »  H  © «  Pi PI !>> cd P H Pi OG>' O H * d cd P i cd  © 4 3 fcj © •H + 3 4= •H Pi © H cd  o  Pi CO  :  si P  to ©X l  © Pi ©  a CO  si  I  H o •  PH  H  •  0  r-i  H o  o 0  ! 0  PI  © 4= •H © rH cd Xl Pi CO  M cd •r-0  <3  H o  •  I  «  CO  o  o 0  !  o CM  ©  H  CO  o  o  e  «  •  I  H o  L A  o  © rH cd tjj  «  ©  I  o pq  •H  •H Pi © HO PS cd  !>  Pi pq  o  cd  >  ©  •rH  pq dD •H pq  i  H o •  PH  • 0  a r-i  «  r-i  o  ft  0  L A  O  L A  •  PH  © 43 •H © H  Pi CO  r-i 0  r-i O «  »  co o  o « 8  0  CM  o  L A  O e  © r-i cd CJ3  Pi cd 43 CO rd cd ©  1  L ^  PH  r-i «  e  L A  r-i O « , o 0 8  L A  O ©  © 4=> •H Pi © H  Xl Pi  to  H e  CO  ©  o e 5 CVI  o '0 L A  o e 1  © rH cd tjj  ©  •H Pi EH  r-i « I  ®  I  L A  e  «  L A  O  O  o H «  © 43 •HI Pi >»•  PH  e  LA  i  ©  LA  ©  1  >5  © 4* •H Pi P o o  H  cd xl ©  Black Y/arrior  Bi  0  *  H  H  rH © •  ft r-i  CO  H ®  + 1  o »  8  *  CM  ©  CM  O  L A  «  O  O  O  L A  »  H  «  L A 0  0  r-i O  ©  ©  H  0 I  Pi  i  ©  to'  •  r-i  © 4= •H Pi © rH ©  Cj3  H  <S t£>  ra  ©  •H Pi PI  to  r-i •  e  L A  H 0 0  L A  r-i 9  •  r-i  0  GO  O  L A .0  CM  L A  0 L A  o  H  O « 1  tiJ  <2  cd Pi © r-i  0  © 4» •H Pi >s PH  © o Pi cd xl ©  ri  -p CD • CO CD ft ft CO 4=  CD  ri  a CD pq" o  += •H CO  ri CD  ri  4=  O >d co  H cd ft CD  ri  43  ft CD  PHI  O  ft ft  )  •  W ^>  CO  ri H CO  CD EH •H PQ CD . Pq  ri  < ri  ft  < ri  o  ri CO  :  H ©  r-i •  fe  «  o  O  ©  1; H •  •o o  -,l rH  Galena St. Patrick  Mil 1  fe  •  "A  CO  0.  r-i  A *  CM © •  A  O .« 1  cd ri CD r-i cd  CD O •H ft 4=  cd CD PQ  •  o  fe  • •  • 1  A •  CD  4=  •H ft >a ft  ri  s o o  cd PQ  r-i  •: 0  e  ft EH  CO O e  rH O •  CD H cd CtJ  ri cd •H •d •rH ft CD  r— • «  fe H  ft fe  r-i  e  + O  i CM O e  •A o ©  %  ft  ft EH  0  r-i O e  A  •  r4  0  0  r-i O  H  4-  O  4-  H  o  0  H .  fe  ' ©  O  H  rH 0  s  e  I  CM o •  o  rH O 0  0  w  O  43  CO  Pi  ft  i f •H  CO  <g &  cd ri CD H  A  O  •ri ft CD  o  cd  4=  .ri  ri  CD  cjs  CD rH  A O • J.  0  H  0  0  rH ©  CD - r i rH rH O <g CiJ  >* CO  Pi  o  E4  43  ri  CD CO CD ft  PH  CO 43  ri  1 ,0 CO  CD EH  <H PH  CD  ri  a  <d  ri to  0  . r i  HO  g;  ri  CD H ! 3  <H o  N= + •H  CO  ri ri  CD +=  43 O A CO  H cd  ft CD  ri •H  CD  43 ft P) O ft PH  :'  fe  ft  EH  W  ft EH  •  •H O  ; Pyrit e Alio©  In  As Fe  •  :  .»  H  GO O * O •  •  '• t H O  •A  " 0 •  3 CD H  cd  Kb  •  H  !  «=)0  «  fe H  /fe .  9  :  » •  OO 0 •  H O  ©  1  ccj ft ;  EH  4= CD  43; ': © <H : 4= ft.: t-i •ri ft © CD A  H cd .d PH  to  ©  0  H  O  H  *  rH e  H O .. •  " A  0  cd • - r i .  CD  H  «  a  cd f-4  :  :  H  , f e  e  r-i 9  0  fe  A  O • 1  •  -4O  «  " r-i 0 A  0 e 1  ft  cd © ri 4 3 CD • H r-i cd  &  LP, • 1  PH  to  • ft «  EH  H  CM O »  CD 4= •H  4=  to  S  r-i O  O ®  I  A O •  4= ft  1  . 0  H  to  rH  .0 0  !  0  CM © A  ©  cd  ri CD r-i Kb  p) EH  •H  cd  •—>, © M  ft d  CO  •ri  H  :• ft © S>  H CD fe cd S> Q H O H ri  CD Ti tO Pd t O v — ' .  '  H  H  •  « -  «  !  O  H  © • " 1. • CM O .e ©  3 © H  •<S ©  cd  H 43 K) O  •  A • I  0  r-i  fe 0  r-i  PH  to H +  0  LC\ 0  0 .  +  0  0  CM A ©  1  Jj  © 4=  0  43 ri © ri 0 0  0  rl  O  «8  O H  CO  H  !>  H  o w  EH  Cd o  •s  to  ^ :  +=  ra  CD CD  5H PH  m 4= CD  51  a  CD  o  H  H P-q C  >l  ra  •r-i  51  1—i  <J  M  51  CD  4»  1  ! EH  to HH Cd  EH  CO 1 1 II  Pi  4= O 44 CO  JH CD  •HI  JH  4»  P,  CD O 54 PH  w CO  ra <3 CD EH  CD  Pq  < 51  N  PH  dO  < a o •d  u 54  co  H * I  «  r-i O  «  OJ  o  H  o I  o 9 1  Galena Tariff  In Bi  H e  rH O e  ©  *  ft o J  I  PH  •A «  5  ft '•  O  ft «  4= •H  CO  0  oo to  o  PH  o • s  CD 43 •r-i 54 h>  54  ra  CD  51  O.  Pi;  to L A ft 0  CD  i>s  p CD O O ft  PH  54 cd Pi >a44 CO  4= CD <d i H 4 = 51 J H •HI cd 54 CD  e  ©  ft o » • 9  O  H .©  +  3 CD ft sis  fj CD  54 •H rQ  H  0  rH o 1  PH  LA  •  to i  ft  ft  54 i=v  CD 4=> •H CD 54 4 3 !>* • H P i 43 O 44 O  CO  ra JH  H H CD pq  a  CD  pq  ft  •  ft  54 EH  e  ft O  «  ft  to » 1 •  ft to LT\  ' .•  9•  to  CD ft cd to  >> rQ r=>  •ri  ft  • ts  LA ©  to >  JH  CD i> ft •H CO CD > •ri 43 cd  0 cd 54  M  LTV I*  ft  •  ft  ft to •  •  ft 0 «  «  ©  ft  ©  fA  ®  LA 0 e  CD ft  4= •H  CD  CD 4=  JH  to  -  •  ft  1*  ft to  ©  ®  e  ft CO  u  .  52,  LTJ, L A  ^  ft  CO  ft  +  OJ «  I  0  LA to  CD 43 CD •rH 4= 54 •H CD <d +» CD •iH 4 4 CD JH cd ft CD J H M <d 4 3 CD •ri E H CO  O ft  to ft I  ®  9 8  cd 54 CD ft cd to  «  8  0  OJ  O  ft O  O  ft to ft  CD  © 54 •ri is  to  ft  CD ft  JH  4= •ri  •  to L A ft to  9  •  ft  ©  ft  ft ©  «  8  ft O  O « 1  «  ft  ft 0 ft  ft «  . t o  LA - «  ©  to  CD 43 •H14 CD ft cd CD 4 4 ft  ft to  <H cd CD  ft 54  CD i> ft •ri CO  •a  CO Pi M  CD EH  H  «  CD  ft  0  0  •  0  LA  CO  e  CO o  ft  0  "A  O • 8  H O  PH  < Pi  <j  to 0  0  0  Pi EH  ft  0  LA  ©  0  r-i O  O 1  0  LA o i  SH  CD 4= •H  i  •  ©  CO  ft •  o II  e  ft  o  0  LA  to 0  1  CD  st  ft  •H Pi CD ft  ft  ft  ft  ft  ft  0  LA  0  ft o  to  03 ft <s  i  «=}0  t  0  0  0  O  Pi CO 02 Pi <*»•  ft Pi  to  LA O  H 0  1  «  CD 4=> •H 43 O  si u u >> PH  0  CD  ft  ft o  «  rH  ft  CD 4= •H P) fV ft  0  1  r-i O «  0  o r-i  O -0 1  0  CM O  LA O •  CD  ft  &  o  Pt •rH  .a -rH  I  0  ft  "J. 1  0  ft  0  ©  ft  0  LA  Pi EH  ft ft 0  Pi  0  O  •  o  CM  !  0  +  ©  ft  &  ©  *  EH  ®  0  LA  O  CD 4" •H Pi  1  0  O  ft ft  P  ©  0  •<*  ©  ft © to •1  ©  CM O  n CD ft cd to  CD  ft ft PQ  cd Pi CD +» O  o M  & o Pi CD •O*  o o to  0  LA i  IS  rS  is  ft  ft o  0  LA ©  4-  ft to ft 0  O  o © I  0  C-  LA  •  to 8  CD 4= •<H Pi CD ft  1  cd •H Pi P< O <VH •H ft cd to  «A » I  5 3 .  ft  CO  0  LA  «  LA O  CM to a  CD 43 •rH cd  Cd  0  CD ra  ft  p  CO  to  ft ft 4 ° to to to  si  cd  ft  Pi CD  •r-i  CD 4=  e  !  0  0  ft  i  m  0  CO o  ft 0  0  ft to  cd Pi CD ft  to  CD CD P) to ft CD CD  si to  ft o  ft  ©  •  ft  ft  ft 0  LA 0  0  CM to  to ft  PI  CD ft <s  to  o CO CD SB  Galena  CM  •  Pi CD Cd  Sphalerite  -d  cd Pi CD  H  cd  to  o  i cd PH  Sphalerite  o Pi CO  ;  Sphalerite  As . BI  a HO  .  e  ft EH  PH  to  rH  H 9  K V 9  CD  43 •ri  • I  fe  O • 1  •w CO  Pi rH CO  CD  CO  ri  •ri o  o  ri  HO  I?  S  rf  Pq  •H  CD  4= Pi © CO CD  ft  •  C-l  PH CO  4=> Pi <DI  a CD  rH  <rH  °!  > J +3 •ri CO  Pi  CD  Pi H  -P  O .ri CO  ft CD  -d  .  fe  H • »  rH o •  •  CD  ri  4= •H  •ri  cd ft  XX  CD 4? •H  H cd ft . ft:  .  o  ;  ft+»^J ft cd cd , Q E H (-4  o !>» co c d . - > . • H r H CD  M  &  CD CD  fe  H ft ,cd © <rH r i d !>»ri cd « H EH  P)  .  to  ;  PH; E H  •H &<~< f=1  ft © Ol ft. PHI  fe o w to H t> w R EH  o o H  tA  I HC  CO  H  : "PI  CO  CD  EH  m  •ri  CD  Pq  ri  < ri ESS  A H0 <tj ri o  ri to  43 0 .ri to r-i cd  ft ri  •ri  CD  •i>s •4° ft ft  O  ft PH  fe ;  e 1 PH  fe  rH «  H ©  ©  ft 0 PH  x  '  • r-i O • rH e • +  1  ^j0  © . 4= •H  ri rQ to  CO CO ©  ft  w 0  :  •  .  C>'  ft  HH PM  fe  "9'.  ft EH  H •  • rH +  »  O  • r i  H  ©  ' • f e '  •  H O 9 1  H 0  e  ri  © 4=> •ri  •H  rQ  CO  43  0  O . 43  3  Pi •H  •  H PQ  !  •  •  rH O 8  « •  8  • -JO '  © 4= •ri  ©  to  ft  - - ft •  -H  r>5 © ft rH © ft >  ri  1  PH  «  ft EH rH O  e 1  O  ©  43  I: PH  CO CO  © rH ft © © PH  fe  1  0  r-i O  ©.. e 1  © 43  ri  •ri  CO  rQ •ri 4=  »  Pi 4= +» 4=> •ri a to  4=>  Pi  0)  ra  CD J4  ft ra += CD  H" o  a CD 'r—I. (  •r-i ra PI  CD 4= Pi M  4» O XI CO cd  ft  Pi CD Pi  •r-i  >i  4= P) CD Pi o Pi PH  :  a w P4 "Xt. CO (—1  Pi r-4  ra <•  CD EH •H  CD Pq Pi  Pi  *d  ©:  "  CD . '4= Pi  LA 0 • 1  <3 '  ft  o •  CD 4=>  •ri Pi r V Pi ©  •  to  J  •r-ifto  CD H  ft  ft  • ' ' > » ' ' '  Sll  .  •  •  ft 1  ©  ft  e© O a G>  <«* 9 I CM - t o '  © ft cd to  H  pi  Pl4= d ©  S  to  ra a) cd 4= ft El +=»pq  LA •  1  ft  • Pi EH  •  ft  CO  lA to » •A e  «  CM O  cd Pi CD ft  to  Pi X! S cd to  '.'  ©  M  cd © to P i _ - / o  H  ft  Pi d Pi G cd PlXl r d to ttf) PJ x l cd cd co cd U +» ra <d  -  i  e  ft  "A  •  ft  ft  • 9  OD O  » ©  L A  ^  >iO  ft  cd 4= •H Pi pq  cd •H  ** a © ft 43 •H O P i to  •rH Pi © ft cd xl ft CO  ra ft ©  a -H cd  Pi  to  < ra ft ft  © r-i M  LA * I  LA )•  •  1  ft to  ©  -ft © 43  •ri O Pi L A PS'**"  ft  0  ft O  0  LA  LA O '»  I  O  0  ft to LA 0 0 1  0  Lr\ O  to  O *• © GCO ft ft © © • Xl G to ! 2 i  •ri u  ••  55. LA  0 1  «  LA 1  ft  ft  0  «  0 1  ft  0  0  ft  •  ft O  O  9' ,4 -  0 .  » 1  LA •'•  K\  ft  « .  LA 0 •  rA 0  0  ..•ft":  0 '  ft  0  ft ©  0 "  •A  •  0  K\  •ri  0 ft '•0 "© CD to © L A 43 L f \ 43 -3CD O •<H Pi 43 LT\ CD p q sfr ft C O cd .. © Xl • ;Xl • ft 0 ft 0 CO J2) CO JS5 Pl <J> ^ O O X! • ft O CO .2j  EH O 1I 1I  P  EH CO *H  n  E-l CO  ri  4=> CD  to  CD  ft ra  - PH  Pi  :  4=> CD  a CD  H| Ol  >>!  +» •H CO  ri CD 4=  ri H  O .ri CO  CD  ft ri  •H  4= ft CD  I  :  5 Hi.  !ri CO  CD  EH  •rH  m CD  (XI .rO PH  t*Q <!  ri  :  ri  ri <l  . Pq  : o  o  ri CO  H O  i  e  9  • . N Y  rH  - o  '  ,'  fe O IH CO  H  >  r-H  P EH  Pq o o W  CO;  ;  HL  rQ CO  ri H CO  CD EH  •ri  pq CD  Pq  ri ri IX! Pi  rQ  <A ri o  •ri  o ri to  O  -ri to  PH  ft  P< O  4= ft CD  i>S  •ri  ri  CD  CD CD 4= ur\ •H *"  H  •  ft CD  H u\ cd .ri • PH O CO | 2 i  Britannia (Oont.)  In As  ••  .  fe  fe  PH  "\ • o e 1:  CD .43 •ri ft  CD 43 4= CD •ri  •rH *=-  -  •  43  •A |  PH  H  «  H t>  »  1.  O  N\  CD H=  cd  •ri ft CD rH  p,  .ri  CO  -ri .ri 0  •n'ri" O  PH  !>s cd M H OffJ 0 fe  '  fe  o H CO H ' > r-i  E-l CO fe H E-l CO pq  pq  fe 1  ri ra  © ©  ft PH  co -p  .1 rQ to  ri H CO  CD EH •rH  w CD PH  ri*  :  t\D  IS]  ri  M  ri •• •  I  © H pq o  <HH  N  -p •H CO Pi CD  to  ri  .o <ri  •s "ri o  -P  :  •  +  H  to  fe  H +  •  0  • A  H o  H  H o • 1  -  r-i 9  A  ©; © • -  CM © •  LC\ o 0 •• .i •  A  •  ft  CD 4= •rH  ri CD Ci5  Skagit Hiver Development .: Co. (25 miles B. of Hope)  EH O r-H Pd EH CO t—1 H  n EH CO Xo ) to CD H  ri  xi  © ft to  PH  >! -P ft CD ft O ft  •H *s! r=3  ft ri  al  *'  CO  A  0  PH  to  0  0 •  CO P  A  OJ 0  i  0 H  CD H  ©  :  ^ N .  © ft pq  PH  © ri W ri O i r j H ft - H p q cis P d  "  O  .  r i o  fe:  .0*  r-i'  ;  e -  CO o  A  *  0'  CM O  ri © rH  y—« : rH  o  PH  •  ©  H 1 o e 1  © •P •H ft  >* PH  pq **'  _ ri o ri © •rH E H • •  " ^- '•' o  © -p : •H  ft  H  o  © © H ft -ri O Kb Kb j s j j i j  ft  o cd © ri > o o ri ft -pH<d Ori o t o O ft  >—>. ft CO ri.H O H ft ri tij :r  ;.:;,(&..  ft ri &  CO «-H fe ft • ft p q cd pHs-'  -  H 0  rH o • PH  GO •P  P 0  1  0 '  CM ©  © H  0  ri •H ft © • i> H •rH CO  ft  e  E-l  A  r-i  o A  O © , I  © -P •H ft "t>» -ft O ri © CO  ft  O l>» • r i ri  r-H  0  PH  H  © :  H  I e  ©  !  o  A  © -P •H ft © H •ccj  xi  ft CO  ra CO  ri ri  PH  O CO •rH r-i r-i  CD CO CD S-i ft co 4= 54 CD  a pq  CD r-4 O  43 •H C0| 54 CD J3  4= O 44 CO H  CD 54 •H  ''Si  CD  *1 O •54  PH  1 do P4  CO 54 H CO  «J CD E-l  pq  •r4  CD  d •<!•  54  ; ssi  PH  rQ  W  «i " r i -  <d  o  CO  '••  >  ft O a  LA  •  'e  ft + LA «  rCT:' O CD CD ft  S3  •HI  :"• 5 4 " : CD . •  -  sola (Placer)  •  ...  O H CO  1—1 f> H  Pi  ft  a rQ CO 54 HH CO  •H  pq CD  Pq d  54  ft dO •<JJ El O  •d  © 54  •  to  ^  4= O 44 CO  ft CTJ 54 CD 51 •r4  m H 4= 54 CD Pi O 54 ft  ft  .  . -  « '  Lf\ !  «  ft o  e  Lf\  #  CD 4= •H 54 CD ft  pi CO  CD 51 •ri  ® 0  1=5  O H  to r-i  {=•  H  p P  •a CD M CD SH  W  to  CO  •<S CD EH  PH  ra Pq  CD  -p Pi' 0  CD  <t|  Pi tsr  CD H  H o PM  £'  <3  Pi o  o  Pi to  •;•  4= •rH CO  PI  CD 4=  <ri  O Hi  Pi  >4  o Pi pq  CD P  Pi  4=  I  CD  rH cd  o xl to  Pi  1  I  In  Bi .  O  I  0  PH  H  o 0  «  s  CD 4 .•rH  <A 0  1  •  PH  H  0 .  H ©  o  • 0  1  L A  •  CD  •P'  •ri  cd 44  1  PH  0  rH  ©  L A 0  J  L A  ••  rH ©  OJ •  0  OJ  CD 4= •ri  i  CD 4» •ri  Pi  • v  1  Pi CD  r-i cd  cd m  <d Pi  LA' •  1  IA  H  H O  H  CD 4=>  44  Pi  cd > •ri PH  Pi  CD CD  CO  Pi  CD r-i  Pi  •H  0  0  9 I  0  t  PH  0  Pi  EH L A 0  H  rH O  •0  ^ '  o  Pi d P  Pi  o  to  Pi  J"  H  CD 4=> •ri U CD  ..''..•I-'  n.  N  Pt  P3 cd  •H  Pi  CD  Pi to  r-i  CD H  cd 44  Pi to CD  44 CO •H  HH  P  Pli  |2i  •H  a  CD ;  Pi d d Pi  Pi to  CD  . P i - . •Pi .• CD  H  cd 44  Pi to  'u CD  l>  Cd ' H CD Pd  Pi  cd CO 4=> . CD •  !>s CD  cd E 4  H  • 1  CO  P 0  «  1  •  OJ  o  n  H P 0  0  +  r-i  o 0  1  CD • d r-i r H O  P  H  CO  OJ  0  •»  ©  cd  Pi  CD  rH  cd P  Pi  LA 0  CO  0  Pi  EH  H  © e  L A 0  1  L A 0  1  r-i 0  0  r-i  H ©  0  0  rH O  .e  L A  1  0  •H  •3  O O  Pi to  cd 44  H  _ CD  Pi  CD  «  r-i  *<* 0  •sh 9  •H  44  Pi to  Pi ©  CD 43  CD 43 •ri  H  Pi  CD H  cd 44  Pi to  O  © H  cd 4= to  to  ,Q  Pi © •<H  Pd  PS CD  CD H 4 = Cd: 4 4 CD & [S3  H 0  &?  0  rH O  0  L A  0  8  ©  OJ  O  «  cd  Pi  CD  <S  rH  P  PH  CD CD 4=» cd  to d •  •  H  O  0  •  rH I  • 0  r-i  «  1  Q  0"  H ©  I  cd  1  L A 0  H  H ©  L A '  0  Pi  s  CD 4 •H  CO  CD r-i cd 44  Pi  <D r-i  H  CO O  Pi P  H cd  H cd  Pi  rQ  4°  CD tS3  Pi  CD ©  .59.  4= ri 0  ra o ft  PH  CO 43  ri  0 r4  <H O  •H to !4 0  ri  43 O  si to  ri ft  r-i  0  ri •H  4= ft 0  PHI  a • : W ra  0 E4  •rH  PQ ' © pq  ri  < •'A  PH  S3  < ri o  ri CO  • H  «  #  .+  H o  4-  H o • "• I  OJ o •  ' • 1  . a  r-i  m  © r-i +  A O O * 8  © 43 •H-  ft <d © ri . r i ri ri © ft H +3 © EH  Silver King-  In As  Co.  H 0  »  +  4  f-j  © •  CO  e  0'  •o  A  o  i  ri ri ©  \  • 1  •  fe  H  rH 4-  IA • A O • 1  ft  rH ' •  r-i * 1 .  O ® -  1  0  O • 8  si PH CO  © 43 •ri © 43 • r i •ri © ft si © r-j ri  P ft  43  © <S EH  ri •CO rH  '  .• 4-  0  ft EH  0  e  I  fe'  H  Pi.  «  0^  © 43 •ri ft •ri ©  ri ft 43 © EH  si  A O  NY  •  9  H  O  H  »  fe  «  • O ; rH  A O  ri © © ri  -  0  1 ••' A O  9  ft ©  # fe  A • 1  ©  ©-  PH  A  O  •* O 9  1  ©  A 0 0. 1  PH  CO  4 .  >> M 0  a?  >• r-i © •ri 4 3 ' tti: •ri ft © © rH-'" ri © •r-i r-i: 4 3 ; . r i  *  CM r-4 O O  . - e I  ® © r4 ' r-i •:' H 4- 440 0  J  0  CM 0  A  © 9  © rH  ©  a ri  H ri  0  H 9 : 4-  e r-i +  O © • -  CM © •  tr\ O 9 I  © r-i  1 •d  :  •  fe  PH  fe  0  CM O  4-  0  rH  0  H  « rH 4-  9  9 rH  ;  9 -  tA  A  © 43 •ri ri 0 CO ©  a cd hs  PH ri 0  0 •ri  43 © ft  '  1  60.  0  1  P H  rH  '9  rH. • '  ©  ri  © 43 •ri ft © r-i  si PH CO  ri  3H  cd g 0 0  H  >» 43 •ri  .1  :  ©-  :fe  0  rH O  CO CD 0  '0.  O  «  r-i O  A O  ft  s  -ri © ; .ri ri ft •• 4 © EH  © •H -ri  ri  CO  0  A . O  1  0  0  © 43 •ri  1  P  ri.  © 43 •ri ft -d „©  ft 43 ©  EH  si  fe  CO ccj 0  ft  Ia PQ  •rH  EH O  ft Cd  EH CO  ft ft  EHl  P ft  Pd  O EH  H Pd Pd EH  SI  CD [  +3  CO  CD JH PH  CO  % CD  a CD  H <H o M  •H CO,  Pi CD  •s M  +» O  XJ CO  ft CD  •rH  MJJ  w CO PI  ft  d  p  -d  o PI  CO  d  >  is  o  © e 1  LT\ « 1  ft.  te!  « 1  »  rH  +  e  H  ft ©  1...  H LC\ o 0 - e  "A  i  o;  pq  +  CD 4^ X l •H 4=»" P i CD £ rd( a r H : to © T H . CD  p  CD CD^-N Pi Pi © CD O  *» cd •Xl W)  w  Xtft  H  4* CD  •H  w  CD •H  CD CD •Pi °  CD • : 43 •ri PI rQ •rH 43 CO  «!  • •  Pq  CD  pq  •iH  CD EH  •As  I*  PH  »  rH O  O • 8  e  o 1  CD 43 •ri 4= O  Xl  Pi PH  M  CD 0 Pi © 4» Pi 0  a  ©  o  EH  O  H  Pd CO Hi ft  •W  o  P Is? H ft  1  J  •W X>  Pi  ft CO  © EH  •ri pq 0  Fq d <d PI  CNl  •HO <! d ©  : rd  p Pi CO  43  CO  o xl  n  ft  © Pi •H  43 Pi 0 ft O Pi ft  P &  <  «  Pi  EH  ft O  •  PJ  ®  EH  ft + •  •A  O  'd ft  o P  xl o 'd  «  IT  ©  e  !  cr\  © +3  4= • r i •ri P i a © © 43 P i •ri <H to ft ©  £o  P/~V  ft  •ri O ft © d ft-w  . -  o Cd  ' f t  '•'  :  1  c pd  CO  X  Pi  H CO  © EH  w  •ri  © pq d  s  Pi  N X ft  dC  EH  CO ft ft  d  CO  o xl  43  PI CO  o  •d  O  CO  cd P  H ft t-r-1  tH  '  ft © Pi © PS •ri  N  4= Pi © ft  o  Pi ft  -  •  ft  Q  © +3  •ri PI Pi O pq  PI  © 43. © Pi  p  61.  •ri  -p CQ  a CD -P PI  5 w CO  Pi M  >  :  •. •  bl) W  CO  rQ  ri H  EH  •  1  1  rH EH I  O  1  rH at  ISIA: fe  P o  EH •<!•  fe  51 W  CO  rQ  ri M  CQ  •  0  rH  EH  PH  PH  1  0  H  <i .'.ri  -ri O  ri.  e  0  t-i  l  ••  H  H  O  H  «  1  '0  0  LTN  LTN O  «  Lf\  a  1  9  r  0)  ri •ri  ri M  -p •ri  ' '1 •  o  W)  rQ  ISJ  ri  PH  CD  pq  •ri  •=tj  CQ  •  e i  ©  rH  O  <CJ  CQ  rH  CD EH  pq CD  PH  rH  e  M  EH  »  ©•'  PH  H  rQ  EH CO  rH  P M r*i  o  2!  ori  n  ri  O  CD  :  EH  0)  EH  O  fe o  EH  ;•  •ri  CO  •  OO  o  » Pi EH  • ri'  r-s  •ri pq  PH  Pi  QU <I  ori. O o rH  Gold Cassiterite  CO  Arizona Greek (Placer)  ri CO  Mineral Shot  CO  o  rC!  -p CO  H  ri Pi CD  ri •ri r ^  . Plagionite?  Win Property  H  -P O  A ' to  rH ri H  03 Pi H  o  U <D •P Pi  CD  •ri  ri  Chalcostibite? PH  9 9  r-i  <H  0  1  9  0  rH  o  1  0  LTV  fe  o  9  i  - '9  O  9'  rH  O  Stibnite Altered wall rocks Caroline Fissure  '  Property  Galena Prospect near KTuane Lake  of Eleme nts Pre sent Property  63.  Relation of Minor Element Concentration t o Metallogenetic Groups of Deposits  This study has attempted to show that there i s a closer s i m i l a r i t y i n composition of sphalerite from a single metallogenetic group of deposits than from deposits of a s i n gle temperature group.  Furthermore, the sphalerite from each  region has d i s t i n c t i v e kind and amount of minor elements. Sphalerite from the Slocan, F o r t Steele, and Ainsworth mining d i v i s i o n s i s characterized by a moderate cadmium content-(.4 - .5 per cent) and the presence of t i n .  Lardeau  s p h a l e r i t e has a s l i g h t l y lower t i n content but some shows the presence of indium. Zinc deposits i n the Omineca show no t i n but a f a i r amount of cadmium (.6 - .75 per cent). Sphalerite from the Cariboo has less than 0.05 per cent t i n , 0.4 per cent cadmium and traces of bismuth. Many minerals from the Skeena mining d i v i s i o n show traces of bismuth.  Other v a r i a t i o n s may be seen i n the tables.  The f a c t that no germanium, gallium, or indium was found i n s p h a l e r i t e from the Monarch and Kicking Horse mines, which are the closest approach i n B r i t i s h Columbia t o deposi t s of the M i s s i s s i p p i V a l l e y type, which contain these e l e ments, leads the author to believe that the nature of the ore bearing f l u i d s has more t o do with minor element content than have the temperature and pressure conditions.  6.4.  That temperature and pressure are important to some extent i s shorn by the f a c t that the concentration of manganese increases i n successively higher temperature deposits.  65,  Summary and  Conclusions  The v a r i a t i o n s i n kind of minor elements i n sphaleri t e and the .amount of each have been correlated" with two f a c t o r s , namely temperature type and metallogenetic province represented.  .  Evidence f o r a c o r r e l a t i o n between temperature type of deposit and minor element content i s derived from a study of the d i s t r i b u t i o n of minor element concentration i n analyses from d i f f e r e n t temperature types. Gallium and germanium are rare i n B r i t i s h Columbia,' but from a study of other areas t h e i r concentration seems to increase w i t h decreasing temperature of formation.  Indium has  widespread occurrence i n B r i t i s h Columbia but occurs mainly i n mesothermal and contact metamorphic deposits with the greatest concentration i n the former.  With the exception of  the S u l l i v a n Mine, t i n occurs mainly i n t y p i c a l mesothermal deposits and there i s a p o s s i b i l i t y of recovering t i n from a number of zinc ores of t h i s type in- the Slocan and Lardeau areas,  Cadmium i s .present i n sphalerite from a l l types of  deposits but has greatest concentration i n low mesothermal deposits.  Although not c l e a r l y shown by the material presen-  ted, manganese concentration increases i n successively higher temperature deposits. Sphalerite from the same metallogenetic group of deposits contains s i m i l a r kinds and amounts of minor c o n s t i t uents but the composition from each metallogenetic province,  66.  is distinctive.  The composition of sphalerite from the Omin-  eca, most of which has a high cadmium content, i s d i f f e r e n t from that of the Slocan. which i s distinguished by the presence of t i n and a medium cadmium content. T i n i s notably absent i n Vancouver Island.  Many other cases of a lack of sim-  i l a r i t y between sphalerite from d i f f e r e n t metallogenetic provinces but of the same temperature type e x i s t . A greater number of minor elements may be expected i n s p h a l e r i t e from a telescoped deposit than one i n which zoning had taken place.  In the l a t t e r case the minor elements  would have a chance to adjust themselves t o temperature changes. The author believes that differences i n minor e l e ment content of s p h a l e r i t e from deposits of similar temperature type must be ascribed mainly to the varying chemical character of the depositing solutions i n the various metallogenetic provinces, and not so much to the v a r i a b l e temperature of s p h a l e r i t e formation w i t h i n the range considered.  o  0 o  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0053060/manifest

Comment

Related Items