Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Minor elements in sphalerite and some associated minerals Thompson, Robert Mitchell 1943

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1943_A7 T4 M5.pdf [ 13.21MB ]
Metadata
JSON: 831-1.0053060.json
JSON-LD: 831-1.0053060-ld.json
RDF/XML (Pretty): 831-1.0053060-rdf.xml
RDF/JSON: 831-1.0053060-rdf.json
Turtle: 831-1.0053060-turtle.txt
N-Triples: 831-1.0053060-rdf-ntriples.txt
Original Record: 831-1.0053060-source.json
Full Text
831-1.0053060-fulltext.txt
Citation
831-1.0053060.ris

Full Text

MINOR;: ELEMENTS IN SPHALERITE 'MS SOME ASSOCIATED MINERALS, -By -Robert Mi t c h e l l Thompson A Thesis submitted i n P a r t i a l Fulfillment of the Requirements for the Degree of MASTER OF APPLIED SCIENCE i n the f DEPARTMENT OF GEOLOGY; The University of B r i t i s h Columbia •.•••April, 1943 V Acknowledgments The writer wishes to express his gratitude to Dr. H. V. Warren of the Department of Geology under whom this work was carried out, for his advice and aid i n the laboratory studies and for his helpful suggestions i n the writing of this report.. The assistance of Mr. D.-Carlisle who checked many of the author's quantitative determinations by the logarithmic sector, method and helped i n various ways i s greatly appreci-ated . The writer i s indebted to the Department of Mining and Metallurgy for the use of their assaying f a c i l i t i e s , and to the Department of Mines, V i c t o r i a , B. C, for their kind cooperation throughout the period of t h i s work. Many University colleagues/aided i n their several ways; to them the writer wishes to express his thanks. oOo Introduction I t has long been known that sphalerite from numer-ous l o c a l i t i e s , when examined spectroscopicaliy, discloses the presence of various elements i n quantities that would be missed by the more customary a n a l y t i c a l methods. Among the less common of these elements, t i n , cadmium, indium, german-ium, gallium, cobalt, n i c k e l , and manganese appear frequently and bismuth,, arsenic, thallium, and molybdenum are less often detected, while mercury, chromium, palladium, vanadium, and titanium have each been reported i n only one or two l o c a l - , it i e s ^ - . The purpose of this study i s threefold. 1. To determine what minor elements are present i n sphaler-i t e and a few associatedminerals i n B r i t i s h Columbia. 2. To try and relate the minor element content of the miner-als examined to metallo'genetic provinces. 3. To determine i f any of these elements are present i n commercial amounts. The data used consist of new spectrographic anal-yses of minor elements i n 110 sphalerites, 110 galenas, 84 ~* . tetrahedrites, 19 golds, and over 100 other miscellaneous minerals, almost a l l of which are from B r i t i s h Columbia deposits. In order to calibrate the s e n s i t i v i t y of the 1 Graton, L. C. and' Earcourt, G. A.: Econ. Geol., 30: 800-834, 1935. • • . . • I I . • procedure used, on the basis of determinations by other wor-kers,, a number of mineral samples, c h i e f l y sphalerite, from foreign occurrences were analyzed. The results obtained are i n essential agreement with the conclusions of these previous workers. Conclusions from the data indicate -that the minor element content of sphalerite and other minerals i s character i s t i e primarily of the metallogenetic province i n which they occur- and only secondarily of' their temperature of formation. o 0 o I I I . Table of Contents Acknowledgments • In*fc i* ocLizc "t i on • * »•••••»•*••**••••*•••••«>«••» Method of Analysis Iiine Identixxcation ....«.«•*««..»«...«..».«.«..».. •Quantitative Determinations Minor Elements i n Sphalerite ^1) OaIlium ........... ...«.....«..««....«««.« ) Ix^dILurn .«««.....««.».«»«...«...«...«..«... ..^ GreriAaxx3.x<mi• *.«.................*..»........ ^4) Cadmium .....»««««.««»« ............ .. ...... o^" 3 Tin. .«««.««».««*»««...«.«.«»««.«•«.«««.««.« ^ 0th.er E_Lexi^en.ts «».»«..«....«..•.««.«.«.«».. Minor Elements i n Associated Minerals , Analysis of Sphalerite and Some Associated Minerals from Various Mining Divisions of B r i t i s h Columbia and Yukon Territory Relation of Minor Element Concentration to Metallo-genetic Groups of Deposits Summary and Conclusions -IV Tables and I l l u s t r a t i o n s Page Plate I. Typical Spectra as Photographed by a Hil ^ e r Medium Quartz Spectrograph °,, 5 -Table I. Table I I . Table I I I , Table IV. Table V. Table VI. Crystal Structure of Some Compounds and Elements ..... e e * B « . 10. Gallium Lines i n Spectrograms of Sphalerite 11. Indium Lines i n Spectrograms of Sphalerite 14. Germanium Lines i n Spectrograms of Sphal-Minor Elements i n Tetrahedrite ..... Minor Elements i n Gold ........ 20. 28. 31« V Minor Elements i n Sphalerite and Some Associated Minerals Method of Analysis Arc spectra of mineral samples are made on a Hilger medium quartz spectrograph. The arc with a series inductance i s operated at 5.5 amperes with a 1.5 mm. gap. 110 volts D.C. supplies the current. The arc i s placed 61 cms. from the s l i t and the l i g h t * i s focused by means of a quartz condensing lense 30.5 cms. from the s l i t so that the prism aperature i s com-pletely f i l l e d with l i g h t . The resulting l i n e s on the spec-trogram are of uniform intensity from top to bottom. The s l i t width i s .01 mm. and the Hartmann diaphragm i s placed, over the s l i t to produce lines on-the plate 2 mm. long. The spectro-grams are taken on Eastman type II-F plates which have a use-f u l range between 2200 and 6800 Angstroms. The plates are developed i n D 19 for 3.5 minutes,.rinsed, fixed i n F-5 for twenty minutes and washed i n cold running water for at least one hour. They are examined on an opal glass viewing screen f i t t e d with a t r a v e l l i n g eyepiece. Approximately ten milligrams of the mineral sample are picked as cleanly as possible and placed i n a small hole bored i n the lower or positive electrode. Each sample i s arced for twenty seconds, .after which the plate i s racked 2 mm. and the arcing i s continued for another t h i r t y seconds. 2. By means of a Hartmann diaphragm, a series of exact-l y tangent, narrow s t r i p s comprising the successive spectra of ( l ) the iron arc (from Hilger's iron rods), (s) the miner-a l sample arced for the l a s t t h i r t y seconds, (5) the mineral sample arced for the f i r s t twenty seconds, and (4) a t i n standard (from G. P. t i n ) . Line I d e n t i f i c a t i o n By means of a wavelength scale, the iron and t i n standards, which are reproduced on the photographic plate, and standard plates of other elements, i t was possible to i d e n t i f y the lin e s present by three d i s t i n c t and progressive-l y accurate methods, thus eliminating uncertainties. For determining the o r i g i n of the l i n e s , i . e . the elements, several tables and charts were used. One of the most comprehensive of these i s Massachusetts In s t i t u t e of Technology Wavelength Tables which cover a l l data of known accuracy. More commonly, however, tables are abbreviated and l i s t only those l i n e s .which appear most persistently. These persistent lin e s are called "raies ultimes," because they are the l a s t to disappear with decreasing concentration of the element from which they are derived, although they are not necessarily the strongest l i n e s i n the spectrum. I f the persistent li n e s of - an element are absent, the assumption may be made that the element i s not present i n the sample. In every spectrum there are groups of lin e s which are highly characteristic of the metal, and these become fam-i l i a r and recognizable at a glance by those making frequent 3. PLATE I Typical Spectrograms Band No. 1 — Sphalerite. Band No. 2 — Hilger Ratio Powder containing 0.10 per cent Be, Gs, Ga, In, Ge, Rb, Sc, T l , Y. Band No. 3 — Sphalerite containing 0^ .10 per cent indium. (Note indium lines at 3256, 4102, 4511). Band No. 4 — Stannite containing 0.10 per cent indium. Each band has: ( l ) Iron spectrum (2) Sample arced for the last 30 seconds (3) Sample arced for the f i r s t 20 seconds (4) Tin spectrum. 4. use of the spectrograph. For example, copper has a character-i s t i c pair of line s at 3247.5 and 3274 Angstroms respectively. In the search for a d e f i n i t e element at least two, and whenever possible three,- lines must he i d e n t i f i e d before the element i s known pos i t i v e l y to have been i n the sample. Lines whose or i g i n i s unknown are f i r s t measured approximately by comparison with the printed wavelength scale, then their wavelength i s fixed to within one or two Angstroms by i n t e r -polation between lines on the iron spectrum. Whenever neces-sary, a standard plate of the suspected element i s placed over the sample spectrum for direct v i s u a l comparison. Quantitative Determinations The use of the spectrograph for quantitative anal-ysis i s based on certain v a l i d assumptions. 1. The more intense the l i g h t source, the blacker w i l l be the lines produced by that source on a photographic plate i n a given length of time. 2. The greater the proportion of a given element i n a sample being examined, the more intense w i l l be the l i g h t pro-duced by that element under excitation. If two samples of equal weight, containing 1/2 and 2 per cent antimony i n galena respectively, are arced under standard conditions, the antimony lines i n the spectrum corresponding to the 2 per cent antimony w i l l be much stronger or blacker than those-in the 1/2 per cent a n t i -mony. The lead l i n e s w i l l be very nearly the same black-ness i n each spectrum. A set of standard spectra may be made up from stan-dard samples of the base material being examined by adding known amounts of the minor element being sought, i n percentages i n the range to be expected. Unknown samples shot under iden-t i c a l conditions with those of the standard may then be com-pared v i s u a l l y with the standards. This i s what was done to arrive at the approximate quantitative estimates i n the inves-tigati o n of sphalerite for t i n and iridium, • To estimate the cadmium content of sphalerite, four cadmium assays were made on samples which showed considerable vari a t i o n i n the strength of the main cadmium l i n e s . The per-centage of cadmium i n a sphalerite sample could be estimated by comparing the strength of the cadmium li n e s with the same lines of the assayed samples. This was also done i n the case of copper, s i l v e r , and antimony. A modification of the v i s u a l comparison method i s possible when a sensitive l i n e of the impurity occurs f a i r l y close to a l i n e of the main constituent, as the r e l a t i v e i n -te n s i t i e s of the two l i n e s can be made/the basis of the com-parison. Greater accuracy i s thus made possible since some of the uncertainties of exposure, etc. are thereby eliminated. This v a r i a t i o n i s known as the "internal standard method."s Standards of the remaining minor elements were not set up because: (l) the presence of Pb, As, Fe, Mn, i s of l i t -t l e importance i n sphalerite, (2) the r a r i t y of occurrence of Hg, A u, B i and Te i n sphalerite, (3) the d i f f i c u l t y of obtain-ing suitable standards of sphalerite containing Au, Ga, and Ge. %"wyman, F.: Spectrum Analysis with Hilger Instruments, P. 39,1935, The percentages of Pb, Fe, and Mn l i s t e d i n the tables are not of great accuracy. They are based both on as-says and the fact-:.that at a given percentage certain lines disappear from the spectrum. A method used to measure l i n e intensity quickly i s the logarithmic sector, which i s rotated i n front of the spec-trograph s l i t . By this device the exposure i s made to vary along the s l i t of the spectrograph, so that one end of the s l i t Is given a much larger exposure than i s the other end. The object i s to produce a spectral l i n e of graded density. The periphery of the vlogarithmic sector i s cut to a lo g a r i t h -mic curve. The net result i s to produce on the plate, lines whose lengths are a logarithmic function of their i n t e n s i t i e s . Several sphalerite samples which contained apprec-iable amounts of cadmium or t i n were checked by the logarithmic sector method. Results obtained by the v i s u a l comparison method and logarithmic sector . methods were found to agree s a t i s f a c t o r i l y . The author i s indebted to Mr. D. C a r l i s l e for the development of the logarithmic sector method. 7. Minor Elements i n Sphalerite Gallium Gallium forms ho known natural mineral, and occurs only as a minute component i n other minerals. Spectrographie research by various workers has demonstrated i t s widespread occurrence i n sphalerite and i t s presence i n a number of other minerals. The close r e l a t i o n of Ga to A l i n the period-i c table i s confirmed by the intimate natural association of . Ga to aluminous minerals-and rocks* Goldschmidt and Peters f i n d that'the gallium content increases i n the course of rock d i f f e r e n t i a t i o n from ultrabasic to acidic and a l k a l i c phases, which likewise corresponds i n a general way - to rising. Al-con-tentj the increase i n gallium continues notably i n the pegma-t i t e s , and especially i n those approaching hydrothermal char-a c t e r i s t i c s ^  :^.\T^  findings of Papish and S t i l s o n ^ of gallium i n a l l specimens of gahnite examined indicates a two-fold a l -legiance ^of the element: to A l -and to/ Zn. The author found this also. Papish's finding of noteworthy Ga i n l e p i d o l i t e Is i n l i n e with the conclusions of Goldschmidt and- Peters just mentioned. > Goldschmidt and Peters^ showed that the sphalerite of the Ivigtut occurrence carries much more Ga than the A l -r i c h c r y o l i t e of the same occurrence. The writer obtained ^ & 4Graton, L. C. and Earcourt - G. A.: Econ. Geol., 30; 800-824, 1935. ;5Idem. p. 814. 8. similar results on this material. Graton and Hareourt say the general available data suggest that gallium tends to concentrate with aluminum from the e a r l i e s t stages of magmatic d i f f e r e n t i a t i o n u n t i l those stages are reached where sulphide-deposition appears, and that thereafter gallium tends to desert such aluminum minerals as are then formed i n favour of sphalerite. The work of Graton and Harcourt, and Stoiber''' both show that the higher tempera-ture occurrences of sphalerite contain less gallium than those of lower-intensity o r i g i n . To account .for the preference of gallium for sphal-erite rather than for other sulphides, Goldschmidt and Peters® make the,interesting suggestion that the element occurs as GaA s, which has the same structural arrangement as sphalerite. That gallium i s present as GaAs, or GaSb i s seriously ques-tioned by the author, as of fourteen gallium-bearing sphaler-ites examined, only three showed the presence of arsenic, and seven the presence of antimony. I t i s interesting to note that a l l the antimony-bearing sphalerites showed the presence of lead. In the body-centered cubic, face-centered cubic, and diamond type of structures, i f "a." i s length of the unit c e l l , the closest approach of the atoms (atomic diameter) a^e given 6Idem. p. 815. 7Stoiber, R. E.: Econ. Geol., 35: 501-519, 1940. ®Idem. p. 815. 9, by the expressions V3 Body-centered cube .» »866a. Pace-centered cube 707a. Diamond type .... ..*434a* The hypothesis has been put forward by Hume-Rothery-1-0 and others, that where the atomic diameters of solvent and s o l -ute d i f f e r by more than about f i f t e e n per cent of that of the solvent, the "size-factor" i s unfavourable and the s o l i d solu-tion i s very r e s t r i c t e d , whilst when the atomic diameters are within this l i m i t the size-factor i s favourable, and consider-able s o l i d solutions may-be formed. The p o s s i b i l i t y exists that gallium may be present i n sphalerite as: ( l ) GaAs, (S) GaSb, (3) GaP, (4) GaS, (5) an atomic dispersion of Ga (to a small extent only). The f i r s t three compounds a l l have the same structural arrangement as sphalerite and closely similar l a t t i c e dimensions. I t w i l l be seen from Table 1 that of a l l the compounds with the same structure as sphalerite, only InSb has an atomic diameter which d i f f e r s by more than f i f t e e n per cent /from that of sphalerite, thus making for very r e s t r i c t e d s o l i d solution. No information was found on the sulphides of indium, gallium, and germanium, %ume-Rothery, W.: Structure of Metals and Alloys, Institute Of Metals, p. 30, 1936. l°Idem. p. 58. 10. Table r 1 Compound Structure Length of Atomic Diameter Unit C e l l ' a b c 2ns Diamond 5.43/1. • 2.35*-CdS ii 5.82 2.53 GaP ; • it 5.43 2.35 GaAs; ii 5.63 2.44 GaSb tt 6.11 2.65 ,6a Orthorhombic 4.51 4.516 7.644 2 .43 -'2 In F.C. Tetragonal 4.58 4.930. 3 .24 - 3 InSb Diamond 6.45 -2.80 Ge 1! 5.62 2.44 Au F.C. Cube 4.069 2.877 Ag • » ii 4.077 2,883 Cu I I it '3.607' : 2.551 Pd 11 H 3.882 2.745 . The spectral lines 4172.0, 4033.0, and 2943.0 may be used to establish the identity of gallium. Under the condi-tions existing i n this work, the l i n e 4033.0 i s overlapped by spectral lines of manganese and iron and was not used. The li n e at 4172.0 was -determined with d i f f i c u l t y i n some cases. A~s graphite electrodes were used i n the production of the arc, 13-Wyckoff,~ R. W. G.: The Structure of Crystals, A.S.C. Series No. 19, 1931. 1 : " • I I * il cyanogen bands are commonly present i n the spectrograms, and I the l i n e 4172.0 l i e s within one of these bands. I f this l i n e ij i s of low intensity i t w i l l be obscured by the cyanogen band, ;j and as a result the author believes that many minute traces of gallium i n the sphalerites examined were not detected. Four-| teen sphalerites were found to contain gallium. These are l i s -ted below together with the re l a t i v e strength of the lines used for i d e n t i f i c a t i o n . Table I I Gallium Lines i n Spectrograms of Sphalerite 1 - ...... - • • i * No Origin Lines 4172 Used 2943 •'• 'M., Sb £1 1. Burke Channel, Skeena, B.C. vf f • f t Lucky Jim, Slocan, B.C. V V .3. Sul l i v a n , B.C. — vf — V V Valle d'Argele, High Pyrenees V V "C—. V 5. P i e r r e f i t t e , High Pyrenees vf vf V ~ — 6. Villemagne, Central Plateau, France V V vf V V 7. San Traganton, " Plateau, Spain" V V V V V 8. Westphalia, Germany V V V V 9. Cornwall, England vf X • -- V V Neuthead, Cumberland, England f f 11. Derbyshire, England V V V v 12. Ivigtut, Greenland V V • "• vf V H3. J o p l i n , Missouri V V : ,' • - — V .14.; Sonora, Mexico — vf _ — V 15. B o l i v i a (Cylindrite) f f V V V To avoid confusion the author has used the same sym-bols (v, f, vf) as Papish and S t i l s o n ^ to designate the strength of the spectral lines observed, but d i f f e r s somewhat i n their interpretation. v means d i s t i n c t , f means f a i n t , vf means i l l - d e f i n e d . As only three sphalerites from B r i t i s h Columbia were found to contain gallium i n amounts which made determin-ation unquestionable, caution must be used i n drawing any general conclusions/ The results obtained show general agreement with prior findings: the gallium content increases with declining intensity-character of the deposits. Papish and S t i l s o n ' s ^ examinations of well-known high intensity examples of sphalerite:- Sullivan Mine, and Cornwall showed very f a i n t traces of gallium, as contrasted with sphalerite of lower intensity conditions of formation such as at . J o p l i n . The author's results are i n agreement with the above findings. ^ P a p i s h , J . and S t i l s o n , C. B.: American Mineralogist, 15: 521-527, 1930. Ibidem, p.' 814. -13. Indium Indium, next heavier r e l a t i v e of gallium i n the per-iodic table, i s less well investigated as to occurrence than germanium, gallium, and cadmium. No independent indium miner-a l i s known. I t has been found i n ir o n and manganese ores, also i n ores of t i n and tungsten, as well as i n sphalerites. I t would be expected that indium would show associations gen-e r a l l y p a r a l l e l to those for gallium, and on present evidence^ this seems to be true, but the data are as yet too meager to be conclusive. Gold&ehmidt expresses the beli e f that indium probably occurs i n sphalerite i n the bivalent form. This would not correspond with the view already mentioned that gal-lium occurs as a s o l i d solution of GaAs. The compound. InSb has the same cr y s t a l structure as sphalerite, but the l a t t i c e parameter i s 6.45. The atomic d i -ameter i s greater than the allowable f i f t e e n per cent d i f f e r -ence from the sphalerite atom diameter and thus InSb may form only a very r e s t r i c t e d s o l i d solution,with sphalerite. From Table I , the d i f f i c u l t y of f i t t i n g indium into the sphalerite structure may be seen. No data was found on indium sulphide. The following spectral l i n e s were used i n the iden-t i f i c a t i o n of indium: 4511.37, 4101.82, 3256.03, 3039.36, and 3258.55. The lines most easily determined under the conditions encountered i n this work were 3256.03 and 3039.36. I f these line s could hot be found, the lines 4511.37 and 4101.82 were 14. absent or inconclusively i d e n t i f i e d . The l i n e 3258,55 only appeared when the l i n e 3256.03 was easily v i s i b l e . The.results obtained show that indium has widespread occurrence i n B r i t i s h Columbia ,and certain definite ass Dela-tions. Listed below i n tabular form are the various minerals containing indium, and the r e l a t i v e intensity of the li n e s used i n i d e n t i f i c a t i o n . Table I I I Indium Lines i n Spectrograms of Sphalerite Lines Used No. • Origin 4511.5 4101.8 3256 3039 5258.5 1. A t l i n Ruffner, B.C. f — v v vf 2. Burke Channel,' B.C. — — f 3. Domion Claim, Copper River, B.C. v f v v f ": 4. A^lmenda #3,. Nicola^ B.C. — — v f .— 5. Rocky Point, Walachin, . . B-C; ' — . 6. Lucky Jim (#10 ore-body), B.C. 7. Lucky Jim (#20 ore-body), B.C. 8. Lucky Queen, Mayo, Yukon f 9. s Britannia (No. 8A ore-body), B.C. 10. Britannia, (#8 ore-body, 4500 L.), B.C. — v V V V V V V V V V V V 11. Mohawk, Vernon,. B.C. — v 12. Sullivan, Kimberly, B.C. — — v v v 13. Lavina, Lardeau, B.C. v v v f Indium Lines i n Spectrograms of Sphalerite Lines Used No. Origin 4511.3 4101.6 5856 3059 3 14. Hercules, Lardeau, B.C. v 15. Mohawk, Lardeau, B.C. — — v vf 16. True Fissure, Lardeau, B.C. v v v — v v v .v v v v v v V V V . V 17. Ajax, Lardeau, B.C. 18. Broadview, Lardeau, B.C. 19. Lead Star^ Lardeau, B.C. f 20. A l l c o , Revelstoke, B.C. f 21. Blue Bird, Ainsworth, B.C. — — v 22. Si l v e r Leaf, Nelson, B.C. — — v 23. June Group, Quatsino, V.I. v f v v 24. Mandalay Group, V.I. — —- v f 25. Nimpkish Lake, V.I. — — v " — 26. Skagit River Dev. Co. B.C. v v v v 27. A l l i s o n Pass, (Skagit area) • B.C. -— — v f 28. Camp McKinney, B.C. — — f 29. < Pay Streak, Teeta River, : . • V.I. — — f 30. Lucky Jim (#30 ore-hody) • B.C. • _ ~!- — f 31. Charleston, Slocan, B.C. — — f 32. Van Roi, Slocan, B.C. ~ — f 33. Premier, Portland Canal B.C. 16, Table I I I Cont. Indium Lines i n Spectrograms of Sphalerite 0 r i f t i n " '. Lines Used Nov 34. Abbot, Lardeau, B.C. 35. Yukon, Locality Unknown 36. E l Potosi, Mexico 37. Villemagne, Central,Pla-teau, France 38. San Traganton, Central Plateau, Spain 39. Neudorf-Harz,, Germany 40. Kapnik, Hungary 41. Bodna, Hungary 42. Iv i g t u t , Greenland 43. Broken Hill,'New South Wales. 4511.3 v v V V 4101.8 5256 3059 5258.5 vf v f f f v V V V V V V V V V V vf V V f V V Tetrahedrite 1. S i l v e r Basin, Portland Canal, B.C. 2. S i l v e r Cup, Lardeau^ B.C. .3. Dayton, Slogan, B.C. 4. Taylor Windfall, C l i n -ton, B.C. 5. No Cash, Mayo, Yukon v v V V X vf vf V V V Gylindrite 1. B o l i v i a v v v 17. v v f V V V V V V V — V - V V V Table I I I Cont. Indium Lines in"Spectrograms of Sphalerite No. Origin Lines Used • ' "4511.5 4-101.8 5856 3039 5858.5 Stannite 1. Snowflake, Revelstoke, B.C. v v v v v 2. Rose Pass, Nelson, B.C. 3. _ B o l i v i a 4. Cornwall, Eng. v 5. Zee&an, Tasmania v v — d i s t i n c t f — f a i n t vf —• i l l - d e f i n e d The association of indium with t i n sulphide minerals has already been noted by. Brewer and B a k e r T h e y report weak indium i n Cornish stannite, and strong indium (0.1 - 1 per cent) i n Bolivian c y l i n d r i t e . In order to make comparisons between the Snowflake and other available stannites, spectrograms were made of stan-nites from Tasmania, Cornwall, B o l i v i a , Rose Pass (B. C.), and c y l i n d r i t e from B o l i v i a . The results may be seen i n Table I I I . 14„ ••• Brewer, F. M. and Baker, E.: Journal of Chem. Soc.: 1886-1290, 1936. 18. Standards of p r a c t i c a l l y indium-free stannite were set up by adding known amounts of indium nitrate to give 0.50, 0.25, and 0.10 per cent indium respectively. By comparison with these standards, stannite from the Snowflake and Rose Pass contain 0.10 and 0.01 per cent indium respectively. The strength of the indium lines i n a sphalerite medicated with 0.1 per cent indium compare closely with the indium lin e s i n sphalerite from the June Group and the Skagit River Development Company. A l l other sphalerites from B r i t i s h Columbia were found to contain indium i n amounts considerably less than 0.10 per cent. I t i s interesting to note that stannite i s conspicu-ous i n polished sections of sphalerite from the No. 10 ore-body of the Lucky Jim mine. This stannite may be correlated with the indium content. Several B r i t i s h Columbia sphalerites show small but probably unimportant amounts of indium. Two sphalerites and one stannite. contain indium i n quantities considerably above the average. On the basis of the limited work done, stannite appears to be the best indicator and most consistent carrier of indium i n an ore. Further work on the indium content of stannites i s j u s t i f i e d i f a method of recovery on a commercial basis can be developed and a market obtained. S t o i b e r ^ states that the concentration of indium •^Idein. p. 518. 19. i s least i n deposits of the low temperature type, but i s usu-a l l y greatest i n deposits of intermediate type.. On the basis of the determined occurrences of indium i n B r i t i s h Columbia, the author i s i n complete agreement with Stoiber. Germanium"1'6 Germanium occurs as an essentail component of the minerals argyrodite, canfieldite and germanite, as well as i n small to minute quantities i n a variety of other minerals, including sphalerite, enargite, pyrargyrite, stannite, fran-ckeite, c a s s i t e r i t e and native copper among the ore minerals and notably topaz, tourmaline, spodumene and l e p i d o l i t e among the s i l i c a t e s . The characteristics of the metal as a l i g h t e r r e l a t i v e of bivalent-quadrivalent t i n are shown i n i t s presence i n the t i n minerals, especially i t s isomorphous as-sociation with t i n i n c a n f i e l d i t e . Its linkage with.quadriv-alent s i l i c o n , of which i t i s a heavier r e l a t i v e i n the perio-dic table, i s revealed by i t s rather noteworthy presence i n many s i l i c a t e s and by numerous analogies of synthetic german-ium compounds with corresponding s i l i c a minerals. The special -quantities of germanium found i n topaz, tourmaline, spodumene and l e p i d o l i t e speak for i t s s t a b i l i t y under pneu-motectic conditions. But among the sulphides i t appears more at home from the shallower mesothermal zone upwardj enargite, argyrodite, pyrargyrite and sphalerite appear to be i t s chief 1 6Graton, L. C. and Hareourt, G. A.: Econ. Geo!., 50: p. 815-816, 1935. 20. hosts. As Papish and Stilson's results indicate for gallium, so Goldschmidt and Peters conclude for germanium, that the hydrothermal sphalerites are richer than those of pneumatoly-t i c o r i g i n . They also f i n d that the sphalerites and wurtzites of lower-intensity conditions of formation have higher german-ium content than do those of the deeper hydrothermal zones. Goldschmidt and Peters suggest the presence of germanium i n sphalerite either as s o l i d solution of GeS or as an atomic dispersion of Ge. The author favours the idea of the existence of germanium i n sphalerite as an atomic dispersion. Table I shows that germainum and sphalerite have the same c r y s t a l structure and closely similar atomic diameters. Nine sphalerites were found to contain germanium. These are l i s t e d below with the r e l a t i v e strength of the lines used for i d e n t i f i c a t i o n . Table IV Germanium Lines i n Spectrograms of Sphalerite No. Origin Lines Used 3059.06 5269.49 . 1. Van Roi, Slocan, B. 0. V f 2. Hewitt, Slocan, B. C. f -3» J o p l i n , Missouri V V 4. Derbyshire, England V f 5. Neuthead, Cumberland, England V V 6. Valle d'Argele, High Pyrenees, France V V 7. P i e r r e f i t t e , High Pyrenees, France V f . -SI • Table IV Cont. Germanium Lines i n Spectrograms of Sphalerite Wo. Origin Lines Used 5059.06 5269.49 8. Villemagne, Central Plateau, France f 9. San Traganton, Central Plateau, Spain 10. Tramway, Butte, Mont. (Colusite.) v v v vf v — d i s t i n c t .; V f — faint' * vf — i l l - d e f i n e d . The occurrence of germanium i n B r i t i s h Columbia appears rare as only two sphalerites showed i t s presence. A l l nine germanium-bearing sphalerites may be placed • i n mesothermal to telethermal groups. The above results are i n agreement with the previous findings of other workers who suggest that the gallium and germanium content of sphalerite increases with the decreasing intensity-character of the dep-o s i t s . Cadmium With respect to the cadmium content of sphalerites, • i t i s probable where careful microscopic examination has f a i l e d to disclose the presence of the independent cadmium sulphide, greenockite, that the cadmium i s present i n s o l i d solution. The intimate association of cadmium with zinc i s indicated not only by the fact that i t i s the next heavier im-mediate r e l a t i v e i n the periodic table, with a l l the close res-emblances that this implies, but also by the peculiarity that whereas a l l the other metals known to c r y s t a l l i z e i n the hex-agonal close-packed arrangement have the eta r a t i o of l a t t i c e parameters 'approximating 1.63, the corresponding a x i a l r a t i o for zinc i s about 1.86, and for cadmium about 1.89. . From Table I i t can be seen how isomorphism i s read-i l y possible between ZnS and CdS as the difference i n atomic diameters of these two compounds i s considerably less than 15 per cent. There appears to be some disagreement regarding the physico-chemical conditions governing the concentration of cadmium. Graton and Harcourt 1 7 state that cadmium i s rarely f i x e d under orthotectic conditions, and that i t tends also to avoid the more intense phases of hydrothermal deposition. Their r e s u l t s , based partly on the analysis of eighteen sam-ples of sphalerite,' show that the cadmium content increases with the decreasing intensity-character of the deposits. Stoiber-*-® believes that low temperature sphalerite from other than epithermal veins rarely contains over 0.6 per cent cadmium, and that cadmium concentration i n sphalerite from intermediate and high temperature deposits varies from 0.01 to over 1 per cent. High concentrations of cadmium Ibidem, p. 812. 1 8Idem. p. 513. 23. would seem l i k e l y to occur i n sphalerite from deposits of other than low temperature type. The author's findings are i n close agreement with those of Stoiber. The highest cadmium content was obtained i n sphalerite from low mesothermal deposits, and the lowest cad-mium content from telethermal and pyrometasomatic types of deposits. Tin The occurrence of t i n i n sphalerite i s widespread, but 5|uite r e s t r i c t e d i n amounts approaching 0,1 per cent and greater. The author i s of the opinion that t i n i n sphalerite may be explained by the presence of the minerals stannite and c a s s i t e r i t e . Sphalerite from Bolivian and English mesothermal and hypothermal t i n veins contains unmixed stannite thus ind-ic a t i n g that t i n was present i n s o l i d solution i n the sphaler-i t e at the time of i t s formation.-'-® Polished section study and wet assaying of sphalerite from several B r i t i s h Columbia mines has proven t i n to occur as stannite and c a s s i t e r i t e , i n some cases i n amounts that are of economic interest. Cassiterite obtained from sphalerite from the Lucky Jim mine shows good c r y s t a l outline, geniculated twinning, and v e r t i c a l striations.' ^The color varies from colorless to amber to black. In some colorless crystals a purplish tinge was notedj t h i s tinge comes i n rather suddenly near a twin plane. The size of the c a s s i t e r i t e crystals varies greatly. Finely 1 9 S t o i b e r , R. E.: Econ. Geol., 35? p. 511, 1940. pulverized sphalerite, after digestion- with concentrated s u l -phuric acid, showed c r y s t a l fragments about t h i r t y microns i n size. Similar digestion, over a longer period of tiuBon coar-ser ground sphalei'ite gave mostly euhedral crystals varying i n size from sixty to more than three hundred microns. The l a r -gest c a s s i t e r i t e c r y s t a l found measured 670 by 470 microns. Stannite was found i n polished sections of sphaler-i t e from the Lucky Jim and Winona mines. I t occurs i n much the same manner as chalcopyrite-—dots, blebs, and irregular pat-ches. Color, etch te s t s , microchemical tests, and spectro-graph!^ analyses were used to check the presence of stannite. Sphalerite i s usually the best indicator of t i n i n an ore, but there are a few cases where this i s not true. The Sullivan mine i s one of these. Here, i n spite of several check analyses, t i n was absent i n sphalerite, but galena, pyrrhotite, and boulangerite a l l show the presence of t i n . The samples of sphalerite analyzed were taken from material r i c h i n boulangerite and i t may be that t i n has a greater af-f i n i t y for boulangerite than sphalerite. According to Banks, the main tin-bearing mineral at the Sullivan Is c a s s i t e r i t e , although some sulphide t i n i s present (up to 10 per cent of the, t o t a l t i n ) . Once again, the author's results are i n agreement with previous workers, that t i n i s more often detected and i s present i n larger amounts i n sphalerite from deposits of i n -termediate and high, rather than those of low temperature. 2 0Banks, H. R., Annual Meeting, B. C. Division, C.I.M.M., Oct. 1941. • . Other Elements With the exception of manganese and possibly iron to a small extent, minor quantities of Ag, As, Au, Gu, B i , Pb, Te, may be related to s l i g h t contamination of the sphalerite sample by minerals containing these elements i n major amounts. The s i l v e r content of sphalerite i s usually i n the order of 0.01 per cent unless i t contains such minerals as tetrahedrite or pyrargyrite, i n which case i t may be much higher. Arsenic i s not common i n sphalerite. In nearly every case where detected, the iron content of the sphalerite was about one per cent and arsenopyrite was known to be pre-sent i n the ore of the mines concerned. Gold was found i n three sphalerites from the Nelson, d i v i s i o n . A"s far as the author knows, no other investiga-tors have reported gold i n sphalerite. Small amounts of lead and copper are most l i k e l y due to microscopic inclusions of galena and chalcopyrite i n the sphalerite» Bismuth was found i n three sphalerites, a l l of which also showed lead. Tellurium was found i n one sphalerite and i t too showed the presence of lead. The presence of b i s -muth and tellurium' i n sphalerite may be related to bismuth t e l l u r i d e s , lead t e l l u r i d e , or lead bismuth minerals, some of which are known to be closely associated with galena of the same occurrences. 26. Manganese was found i n every type and i n a big ma-j o r i t y of the sphalerite samples. The greatest concentration occurs i n deposits of high temperature type. The cry s t a l structure of the manganese atom i s complex and the l i t e r a t u r e i s s i l e n t as to i t s mode of occurrence i n sphalerite. Cobalt and n i c k e l are not uncommon In sphalerite, but none were detected i n any B r i t i s h Columbia samples. They were detected however i n sphalerites from Cumberland, England,. and Broken H i l l , New South Wales, which i s i n agreement with S t o l b e r 8 S 1 S 1Idem. p. 505. 27. Minor Elements i n Associated Minerals The minor element content of galena i s different i n kind and amount from that of sphalerite. With the exception of cadmium,' the elements present i n sphalerite presumably as so l i d solutions ( i n , Ga, Ge) were not detected i n any of the galenas examined. The cadmium content of galena did not ex-ceed0.02 per cent. This low figure, as compared with sphal-e r i t e may be explained by the fact that the cry s t a l structure of galena i s different from that of sphalerite and i s not am-enable to the entrance of Cd, In, Ga, and Ge as so l i d solu-tions. Tin i s present i n a number of galenas but i t s t i n content rarely exceeds that of sphalerite from the same occur-rence. I t s mode of occurrence i n galena was not determined. The most common impurities i n galena are Ag, As, Cu, Sb, B i , and Te, These impurities may be related to contamina-tion of the galena by minerals containing these elements i n major amounts. Py r i t e , pyrrhotite, and arsenopyrite contain l i t t l e i n the way of interest other than occasional traces of gold, bismuth and tellurium. Small amounts of cadmium were noted in two specimens of pyrite which were free from zinc. Minor amounts of V, Mo, Co, Wi and Ti have been reported i n these minerals by some investigators, but were not looked for by the author. H • - - . P-i ft . Mn LP ." « i V LT 1 i \ tr l I • i IT < 1 * i « 1 \ A « i A • ! LA • ; ! • a ft '- « W ) % EH A * H + + e : r-) + • + « H « + H « + H • H • 1 H • H H • + CO o * H • 4-• • H • © :• & • H • t-i • H H • • H H • • H • H + • H • H « H • H O • •A • • • tS] !2 CO is "j* CO CO CO CO ' « r-S • H Lf\ LA « A • I A ! As & CO CO CO 'N CO CO •H m is o KV # » CM o • o OJ o • H o CM © • OJ o • H o • OJ o . «' CM • ' © e OJ • CM « • CO CD • 1 LA o • -1 O 0. i O • 1 "A O • \ % ; LA O • 1 Property cd ra r-f W Calumet Si ra cd o o © cd CO Silver King o H ' Silver Basin Pi d o U CO cd © Monarch Group I Surprise Snowshoe Little Joe Alice Arm (H.B Babine Bonanza Criss Creek © - H w cd m © Charleston Dayton Division o Skeena Portland Canal Omineca Kamloops Slocan 4=>. si o o CD H cd EH • si ft : PH • • "A JH ' • * u - • -• EH 1 I EH 1 ) w CO « • M • HI • o A (A • • -• OJ rH J <! ' • + J <u * • r-i " • H '••'. H • H • H • 9 Si tsj CO > CO CO CO • ?H EH • ft • » « H + ra «1 to •te! CO CO •H W -d CM H H -d CM o OJ o o • -• • . • Pi to o O O O • • • • I 1 Si "•-i -o H • ra H cd ft H <H a +=> CD -cf o ?H pq JH S=J 41 <D CD •H EH ft <d •P fcg ' EH O si: cd O • u JH cd ;' & u o ft CD o H CD O ,£> > © 44 -P rl •H H H tlD •H U •H i—1 •H <~| cd cd CO < 'W EH o <D •d X} o o -P o cf += o ii o cd ra pj O o o ra <D H pj & ' -p & •H CO <D ra •H l> 54 > CD S3 •H ?H cd CD SH •rt H cd Hi • Cd *i: o o -p .1 ra CD JH. ft ft cd si o JH 4= CO I CO -p si CD O JH CD Pi 51 •H ra CD •ri CD O cd JH E-I I I • JH EH CD Table V shows the minor element content of tetra-hedrite. Arsenic, s i l v e r , i r o n , zinc, manganese and cadmium , are the most persistent impurities. I t i s interesting to note how the cadmium content rises vri.th an increase i n zinc con-tent. Tin i s present i n sphalerite from most of the mining divisions to which the tin-bearing tetrahedrites belong. No tetrahedrite contained s u f f i c i e n t t i n to suggest the presence of the variety of colusite which has 4 per cent t i n . A spec-imen of colusite from Butte, Montana was analyzed and i t showed the presence of a small amount of. germanium. Positive i d e n t i f i c a t i o n of mercury i n the Criss Creek tetrahedrite vra.s not possible as no material was a v a i l -able for a check analysis. I t may be the mercurial variety known as schwazite. The occurrence of mercury i n Tertiary beds nearby i s of interest. 31. H o H ! M t> Pi <D CD r-i £ 4=> CD cd H EH Pi o Pi •H 1 • Pi EH • Pi EH 3 • Pi EH • Pi EH Pi EH &• Pi EH <d P4 '&£ : W Pi EH « Pi EH C-' Pi EH C" Pi EH « Pi EH • Pi EH PH >• Pi EH P4 F4 • H PI EH Pi EH % EH LA • • H Pi EH PI EH "A LA • CO H o * i o « H • H • H o • • H H o e CJ Pi EH m o Pi 'EH d o H" O e « o * 1 H~ O • 1 H o 9 ITS • • "A e • • + H « iA « LA « LA e tA e «4 H o • CO o • • H + tt + « H 4* • H + * H + « H + H + • • H + e H + « H + «••• H + CD EH •H PQ :  is • Pi EH fee •a •d o H o « CM o © Pi CO o © i •A O • I LA O e 1 Placer + + + .'+ CD -d o + + 4--+ + + + + + Property Broulan, Ontario e CO 0 £H cd CD l-q 1? o H P4 >» Pi cd ttf) W # cd PH CO CD Pi CD > cd <d cd i> CD P? CD -P ra CD x( o o • •H H cd o •> M CD © Pi o Pi cd H H •H G? O Pi o xl o CiJ PS •H i—1 •3 R Pi o a !>H M CD CD Pi o 43 CD w Pi o 1 CD CD Pi o Pi o tsj •H Pi <A # o • pq f>s ra P4 O EH • o • pq ra t> « o e pq •H w o PH a cd o O © pq Pi CD CD Pi o •H P4 CD Pi Pi o H cd Pi pq N +3 Pi cd <T id H O tis o o 4=> •H Pi cd o EH o o CD H cd EH «d PH I1) CO HO EH pq CD P* O JH ft ft ft JH EH •tr\ O pq •H CCi •¥> Q JH CD Pi Pi O o A H o + o pq in © !> •H Pi Pi cd CO CO o pq © •H Pi © © o pq © © -p cd l> •H in ft c>« EH A H + CO to CCi •H H cd JH -P CO d cd f-i SH o 43 O © IS EH EH 43 Pi © CO © 5H ft ft © o JH © Pi pj •H CO © JH d •rH o in +» CO 8 I-•H © cd © CO g •33. Table VI shows s i l v e r , copper, lead and mercury to be the commonest impurities i n gold. - From Table I i t can be seen how the elements copper, s i l v e r , and palladium may form s o l i d solutions with gold. The predominance of manganese i n placer gold i s i n -teresting i n that i t i s one of the agents called upon for the solution of gold. The occurrence of palladium i n Gopper Mountain gold make i t one of the few r e a l l y outstanding golds from the view-point of minor element content. The presence of t i n i n gold from Dublin Gulch makes gold another mineral which may be added to the large number of minerals from the Yukon known to contain t i n . As c a s s i t e r i t e i s also found In the gulch i t would suggest that both gold and c a s s i t e r i t e were associated with the same intrusion. This i s another i l l u s t r a t i o n of the valuable use to which the spectro-graph^ method can be put i n outlining favorable areas for prospecting. 34. ANALYSES OF SPHALERITE AND.SOME ASSOCIATED MINERALS - FROM VARIOUS MINING;DIVISIONS OF BRITISH COLUMBIA AND YUKON TERRITORY Lt • 1 • u 1 • • 1 e • 1 A © 1 « 1 1 • I S3 . to c •< ) » H : •• : + ur c > • Lf c > 3 • A O . • HI in 5 Pi M p- 1 ft ' As i P E- > P E* l 1 to to : m to CO to © EH •H .'SB Is. IS . fe © Fq r-J • I t-i • • H OJ • • H H « i-f + « + ft H 4-H 9 d ft ft PI tSJ •25. :-a ft3 - ' • Pi E-j t-i H « • H r4 • 1 « r-4 HO <l • H • * ,. 4-• I H • 4-•H . « H • ". + r-i 4-H H 1 - d o "St-o 1 H A o './ r~i • O . • 1 ' o • © • .1 A A 0 rd o OJ • "A • o • OJ • OJ • • • OJ o • © • CM © OJ O PI to o • I A ; O - • I Galena © P H © Pr /3 f © p -H H P o © H © cd tS< © p H Pi © a. Pi © •H to © s> •H fe ! U © > H H CO >! d' © © -P •H P{ •H -P CO : © -p <H Pi -d © cd • += © . . EH • © += •H Pi •d © si. n © EH © -P •H P) nd © si t © EH © -P •H Pi -d: © PJ 4s © EH © +=> 4» . O Pi PI /Premier ; Pi © > •H Pf -d U cd .> H H O R d Aj cd EH CO •H Pi cd H O ft PS • •H (—1 ra cd .£« pq o d Pi At © 03 > a toS d 6 . SH c3 03 cd M © EH Pi d o Pi Si o Pi © . CO •H Pi Pi P) d to <d o CJ3 Pi G 0 H cd CO 3.6. 4= Pi CD ra CD P| PH ra 4=> SH CD a CD r-i O N •r-i ra si CD +» a HI 4= O Xi| co! r-j cd Pr CD Pi •r-i iS!' N -p> Pi CD P4 o Pi ft • LA • 1 LA • LA • LA • 1 W • W x> ra r-C CO i— G > « H Pi M i • ft Pi M ft ft -As W • oj m CD • EH CD EH «H pq •H : pq « Pi EH Pi EH CD Pq LA • •r-i + CD Pq ft • ' « r-i .+ • H •+ e H + r-4 •' d ft d «! " Pt N Pi tS] • »: ft CA • + o ft CO » ft •< i—1 • + H . * 8 r-i + H ft R <J ft • ft ft + Pi ft o • H . • « I r-j I "'. ft. ' « d O ' o e I ITS e 1 : • 1 gj d o 0 o . i ." ^ O « ' 1 H O , <d o CM © • LA • 1 •d to CM CM O » LA LA • *. ft « Sn LA O * LA O t Pi CO y C~ Pi £4 Lf\ O. « I Galena CD H Pi CD ft ' I-Pi CD •H H CD O o CO CD += •H Pi X> •H -P CO 4= O XJ to ft cd Pi CD Pi •H a: CD +» Pi CD • Xi P) 43 CD & cd Pi CD H cd ci CD 4=> •H Pi P o o H cd xl o CD 4=> H P) ft CD TH PI CD 4= •H Pi CD ft cd XI ; Pi CO CD -4= - 'H O O O H 5-O CD 4= •r-i u CD H cd Xj Pi CO -d H O ciJ i Pi • • -H Pi H CD Pi <D CD Pi •H f PH d o Pi cis Pi o •H N 4=» Pi CD P O Pi ft 1 1>S d CD 3d 03 H Ar> Cd cdft a ft o cd M t(D ft d o Pi C6 Pi CD m P! M Pi d CO ft CD cd xl 0 CD Pi d pq Pi O R Pi CD Pi ^ ft Pi O OO PI^IT •HiH (D a cd t>, Orf-iH R O CcS .M ra 37. 4= a CD CO CD •Sri PH CO 4= Pi fe CD o a H CD CO H M Pq-£> Pq-H -H P . ' o <-i o H--P-T •H fe CO H Pi CD O 4-? Pi 1 H 1 EH O M P-J EH CO M P EH CO EH P-J g 4=> O .3 CO H cd Pi CD Pi •H far;! F=-l i>5 4=» Pl CD ft O Pi 1 ^ ! '•'-• ir 1 f •\ Lfs • a ! tJtS • 1 1 s » A « 1 IX • PI EH 1 iQ CO « i * • H • H • 1 H i As fee • tg i  1 « Pi EH * Pi EH © Pi EH EH •H pq v-CD Fq •A • • • + t-i • CM O • A • • H •• H • CM H O • .1 H o • 1 A + A A 4-P-H PH r N A • . • -H • • HO t-i • • . 1 H • * * H O • 1 oo o • t-i o • CO o e oo o • H o • H • I © I H • •A O d o A © i <* © 1 o • •I'..". A * A © • O e I O . «• 1 o « ; I © t © •' i o 9 o O o CM O • CM O . » A • H . o CM O r4 o • • t-i o • K\ e CM O • • Pi co: A O • i; A. O « 1 Sphalerite CD H «S Pi r CD i-4 i. cd tJj t CD y r-i Pi a> -1 t: Pi O CD +3 •H Pi <d CD cd Pi +». CD EH t CD 4= H Pi CD -4 OCj , ft o> 4-* H P| CD": no cd o -q 1 CD —1 cd CD 4= H Pi >s CD 4= •H Pi CD H -M' CO f CD *-> H CD 4=> •ri Pi " rP ' •H 4=* . CO CD +? •H Pi -Q •H +=> CO CD 4= •H Pi -Q •H +» CO Pi CD f> H •H "CO CD > •rH fe CD 4= •H Pi CD •H cd -d Pi to t CD H cjj CD 4-* •H Pi CD r4 cd A Pi to o •d cd Pi. o Pi o o Glacier Gulch cd CD N Pi Pi •H cd -o pj cd o pq pq Silver Standard CD H-l •H XI O Pi «H £4 Fire Pan Mtn. CO CD a CO e 4= pq CO Pi CD Si 4= •H a to CD •H a Pi d O Pi CD l> r-i •H CO II HI CO M t> ft H M «=~*. O EH O ft w EH CO m EH CO += Pi CD CO CD u PH CO 4= • CD a CD H : 4= •H ra Pi CD ft 4=> O x! CO CD Pi •H Pi <D ft O Pi PH •ft 0 ; CO Xi CO t-« P3 H ra :«? •fee 0 EH •H , W . . Is CD PR • • • CM ft * CM • ft * Pf • is! CO s « <! CO o - • o « ft : ft -d o • © 1 O » ! © • » •d o CM © t • • ft O CM' O CM Pi CO o » O • Pi r CD H . CD f=> H Pi CD H Cd EJ ft O Pi CD r-i •H CO CD > ' 0} 43 •H Pi >d © xj cd P» 4=> © EH © •Pi <d © ; x! =«• © EH © 4= •H Pi -d © • . A ••' cd Pi . • 4=>-© EH Sunrise M CD CD Pr O Pi -o ra PJ © o x! ra © PJ CO © o © H +» 4= •H ft >s 9 pq Pi «TP1-o © ra.-N O rd • •H d Pi ft W +» <r] is; O H CO M > r-i R o o pq H Cd <! o EH O r-i Cd EH CO H R E-l CO w EH Cd g •p si CD CO CD JH PH CQ -p s a CD o .H '4=1 •rH CO 51 CD -P 51 H 43 O •Xl CO H cd u CD 51 •H H -p JH CD ft O u PH CO 51 H CO o CO HH ' o 1 CM CD HXJ cd " tis i CD -P H cd 0 H erf CO 0-JH EH BIS 1 CO CO cvj|'H. LA O O H H • O CM N -P JH o. d o a? •H >rj JH H cd o 51 •r-i CD O pq PH Lf\|Lf\] O CD -P •H JH cd CD 0 51 r-i CD cd •H r-i si JH <S p to H] HH LfMC\ O O * I 0 -P •rl JH 0 H cd xi Pi CO 51 cd H ra H i w o o tQ •H JH 51 cd o o ra i CO JH EH H H o "A O 0 •P •H J4 °d a> A cd JH -P © EH 51 O ra PH 0 o cd xt O EH fe o H CO rH > H p 21 o o H fe r i EH O H erf EH to H PI EH +3 0> CQ CD Pi ft to -f=> Pl CD a H P-l <rH o >5 +» •rH CO Pi CD 4-> Pi 4=» O .d CO r-I cd ?H CD Pi •H >> 4= P) <D ft O P) ft p ? , . . LT « 1 \ A • 1 A • 1 m w ) -a to r-i e r— 1 i 1 1 1 H O a r— i t-i » • rH « r-i • In ft • As • Pi EH :" SB CD EH fa •ri pq u -EH CD Pq - H r-i + ' H r-i * 1 H o e ! • rH H o « 1 rH O « < ft PH PS N ft A « HO < r-i O 9 1 H H • H oo o • .rH • - a CO o 0 H o « A © H o rH • « -* rH A • •<* .© O: ! '«* o * § A 6 O -. i •d -A C\J o 0 CM O • •A « •• H o OJ o • a" CM © • CM # ' Pi CO A O • i A O 0 1 A O « 1 © •H Pi © . ft • CO 1 © H cd cb © H til © H: Pi © H ft 73 © += «H Pi •J>9 ft . cd Pi © rH cts Sphalerite © •H 11 ft. Pi © H cd dj sphalerite cd Pi © rH cd ts -cd Pi © rH , cd • © a • King William Enterprise IA • o fe cd © a H rH O o fe cd a . © EH CM » o fe © © 'rH Pi Pi © pq o cd Pi o Pi o o 4= 51 CD ra CD 54 ft ra 4= 51 CD a CD ft o N «H CO 51 CD 4= 51 ft 4= O xl CO ft cd 54 CD 51 >5 54 CD ft O 54 PH ' 1 » i •A • Pi ] Q-: %• , E- ) ) PC 0 XI CO ft': • © • ft • + ft • XI CO ,; In 51 ft ft As N CO <4 CD EH CD EH •rH • pq CO :'> •H pq CD ft - ©' » ft P • l ft O • ' « . ft ft o • ft o • 1 CD Pq • • cf <! 51 to tSJ • 1 o ft CO ft H |ZJ< O •ft ft •A * -ta) < H « . + ;<ft »• oo •• o , GO © ft • oo © * ' « ft + o ft CO ft H |ZJ< O w <u ft © « o H • "<*• o e % « 4-• + o ••' * 1 © • o ft CO ft H |ZJ< O Ei © O • o ft O CM o . •" • CM , o CM : . • • CM o <d © + 51 CO ITS o 1 o o e i o » 51 CO © • CD • +» •H 54 •d CD x! cd 54 4= <D EH -4 cd 51 <D ft cd 51 CD "ft $ ClJ CD 4= •H 54 CD ft cd XJ ft CO CD ft 4T ©-f. ft o ' u CD O cd A 4= O XJ CO ft cd 54 CD Si •H m CD 4= •r-i 54 CD ft 1 ft CO Greek xi 43 CD O CD O U CO © 4= ft CD pq a o 43 4= O © u CD rtM ft CD E» CD O 54 pq © ft cd £ 14 ra CD X{ -H CO p=s 4=> 54 CD ft O 54 ft * 1 1 >A • 1 LT I B IT ! \ LT « i LT < 1 » HC w -Q CO r— ) I t H • H O e 1 t— f < H 1 O I rH • ri H ent CO <t5 fe fe B to CD ft ft to CD EH CO to CD ft ft to •H pq CO a CO lemen CD H o t H « « H • rH 0 H O c H « t-i H O « 0 • « r-i H « H 0 t-i 0 « ri ft ft o >j 43 ri fe fe CO fe ft EH •rH CO ri CD ft •A a t A « A » ! 0 A -'0 + A « A • Int H • + H © H O • H O 0 H 4-rH O » H O 0 H « A CM H O r-i O c 0 rH + rH O 0 DO O 0 • ri" • O • 1 rH « rH .0 H » O ! O 0 '8 O 0 I O e 1 O 0 t A r-i 9 + O « 1 o A O • CO • 4-CM O « ^-0 CM O 0-rH O . « I 0 ® CM O 0 ri CO A O » i A O 0 1 Mineral Shot cd ri CD H © 43 ft !>» ft O rH cd -ri 0 © 4= •i-i ft ft Sphalerite cd ri © H cd CiJ Sphalerite © 4= •H ft © t-i cd ft to l © H cd Native Silver © 4= rrH ft -C-f © .d cd ft 43 © EH Argentite cd ri © H <g cb © 4-•H ft © r-i cd .d ft to rd rH O C5 © 4-> H ft © si-ft CO © r-i cd H 4= ft CD ft O ft ft cd •H ri. o 4= ri © © 0 ri © •ri •H i> O ft ft 1=*-rH r-i cd to H cd H •riH HOH •H © W pq © •ri cd ri 43 © 1 K W PH CO -ft » CO M Pi M ; As : > 1=1 ra EH © ft Bi •H • 54 EH © Pq LTV « ft o .0 I © Pq ; ' d • ft PH d ft o ft CO H !> H M H CO 54 tS3 ft o ft CO H !> H M H CO i? ft « 54 EH ft o « OO o • o ft CO H !> H M H CO u\ o • ft d o o • o • ? o e o ft CO H !> H M H CO d o —~—— ft • • •d O • CM O • • o ft CO H !> H M H CO nd O Si CO ft O • ft o • 1 O # 1 o ft CO H !> H M H CO 54 CO O « 1 © +> •H 54 ' r ft o $4 © ra © •H PH © •H 54 PH © 4> © ft cd 44 ft CO cd © ft o 44 CO ft © 54 •H Si © •H ii o pq -d ft o & >»+» © o H© rd ra © cd wl ft ft f! <d ft O EI © © -H -d > •H © ft cd Pi ft © •H > ' 54 •H _cd, Pq !>5 4= 54 ©. o| PH! 54 •H 14 cd © 4= ft 54 ft 3 o o o g 44. +=" ft d> of ft ft! 1 LTN • 1 A 9 I A • 1 A • 1 HI 0 to H • r-i 0 r— G « H • r-J • H e H r-i © r— < 1 r-i > © H : hi ft As • is fe h-f= CD EH •ri pq CD p-H • r-! -A-• * A • H 6 H O * J iA 0 © H O « 0 1—1 © O I H © 0 r-i O « ft ft ri N CO m fe tP ft HO H • 4-H • •A CD • A © r-i O e r-i O « • s> A « r-i O • r-i O « co O 9 A © e CO © • CO 0 0 H O « ri o A " • "T-n— o * i o 0 8 "H e © • 8 o • 0 « A e e > © • © | © 0 0 © 1 0 © J O « 1 O « CVI o * • 0 CM O « r-i ft CM O e CM O • • C f H > O » « KN 0 CM O 0 CM O 0 1 K% 0 ri to •A' o « A O 0 I -A O « I •A O « 1 O r-i • © H 0 A © ® 1 A © e / A O ® l A O 0 ©--" H C » < i >• © > • O H 0-A © e 9 •A O • © • 1 CD 4-» •H ft rd CD ..." A crJ ft CD EH cd ri CD r-i cis CD 4= t-i ft >s P4 CD 4-> •H ft CD r-i cd -ri Pi to CD 43 •H ft CD r-i rri Pi to CD 4= •H ft CD p) to © H cd i © r-i <U GiJ cd ri © © r-i © 4= •H ft © © r-i 4= Cd-H -ri ft p^ to ft ri © r-1 © 4= •<-l ft © r-i Pi CO cd< ri © r-i cd ri © © 4= •H ft © r-i cd -ri Pi to Dayton o H •H w cd PH to ft ri o cd 4=» O v-t o ri r-i O to 5sj a M o ri si 4= O ft cd 43 CO ri cd 0 0 r-i CO .ri 43 ri •H ft O O © •H Fq © H rQ O fe -H ft © ri 0 fe. ra 0 PP © CO •H ft Pi ft ri to 45. -P ra CD m ft EH ra O . -P o CD o CD H ft CO fx): H !> H O R i>= -P <! •H o ra o Pi ft CD CO -P Pi . 8 H EH O M Pti EH CO H Pi -P o x! CO ft ccl p. CD Pi •r-i N •p Pi CD ft O Pi ft 1 j e \ t tr\ e I 1 > • 1 LT> e "A e W • 1 rQ CO 1— ( l • r-l « r-•1 • l—1 « ft « ft • t— < I ft ft • ft • ft « In ft ft As S3 « Pf EH CD EH Bi CD Pq -.01 « ft « ft © « 1 ft e 8 LA 9 ft © • ft ft o » ! ft © 6 8 o LA « ft © « ft o e ft o « E< Pi N PH LA » ® ft dQ ft 0 ft o « ft « ft © « ft « ft O • ft » OO o • ft « CO o « LA o « CO o « CO o CO o « o a ft o «. © • ! o • o • 1 •St-o . 0 © « o « LA •; o e o • 1 ft • ft ® o o © ; 8 ft e © 1 o ft « o CM O o LA » CM ©• • LA « CM © * *• « ft o 1 ft o e ft o • 9 • ft © 1 ft © © 1 rA tS ft o ft o © J LA e PJ CO © » o ft • LA O LA ft « ft • LA © ® LA O 1 LA o 0 <A o e O ft © LA O •A O e LA © - '« 8 LA © LA O . « 8 LA O e Galena Sphalerite CD ft cd Sphalerite s H CD ft CD P H Pi CD H cd ft CD -P •H Pi CD ft ft CO cd Pi CD ft cd cd Pi CD ft cd & t CD ft <S t£s Sphalerite Galena n CD ft © Sphalerite •i CD ft Riiby Silver Sphalerite CD Pi >» ft cd CD Pi Pi cd o •H Pi a> )>s 0 o <rj pq CD O "I cd Last Ghanee •H G PI cd ra cd CD EH O ' a cd ft < -P 4» •H CD w PI o o pq 4= 51 CD K) CD JH PH CO * +=> £H I 54 CD o -a o [ • CD ft •m-o H <n CO o M S>= HH 4=> ft •H ra 54 CD O 4= o 54 ft H CO •Pi s CO "H cd JH CD 54 •rH +» JH CD P-4 O JH PH. IA • I I "A « 1 LA • i « LA • 1 w 3 • CO H 4 1 H « ft • ft « r-i 0 I ft 0 ft o 0 I In PH As CO • JH EH to & CD EH •H pq e -J-I EH CD Pq. (A O 0 LA *« i LA 0 rH 0 « I e LA 0 H 0 H 0 ft o 0 <d ft PH tsi CO CO |S LA • i LA 0 i LA 1 LA 0 CtO <! 0 ft +• CO o 0 ft © . 0 ft 0 r-4 « H 0 LA O 0 CO o 0 ft + r4 O 0 H 0 LA O « LA o « El © ft 0 ft o O A LA 0 '? <=*• © o I* LA 0 •si-o J. H 0 rH o i* rrj © : fA 0 H o 0 LA 0 CM ft o.. 0 0 CM O 0 CM © 0 CM O 0 rA • CM O 0 0 rH © » Si CO LA O « 1 LA o 0 LA O ® 1 LA O e © 0 O . H LA O ® 8 Tetrahedrite cd Si CD rH cd CJ3 © 4= •H JH CD ft cd x! ft CO © 4= •H JH © XI cd JH 4» © EH cd 54 © H cd tij © 4= •H JH © ft cd XI ft CO © H cd cd Si © ft cd © rH cd CJ3 © 4> •rH 54 © rH cd x! ft to cd 51 © ft cd & 54 © i> H •r-i to © l> H 4= cd Hi © 4» •H 54 © ft cd xl ft CO © 4= •H JH © dO 51 cd o pq Grey Eagle 54 o ra CD ft JH cd Xl o •xl 4= •1-1 fl ra JH CD l> ft •H CO 1 •rH s F=5 JH © xl ra •H 54 Pq © © Si •H O 4= i TH JH •rH pq © ft pq -d JH cd >d 51 cd 4» CO o o © 43 1 © 5(0 JH si *H •rH pqN Si'—' >9 +» © Xl C(0 cd ft •H © cd ft ft > 4-» ri © CO CD ft PH mi ri © a. CD H p-q RH O >> +»: •H CO CD] % H 4= G .ri CO cd ft CD ri •rH += ft CD of ft PHI 1 LT \ LT A • 1 A 0 A 0 He w HC M ) rQ to H 4 ;''r-1 rQ xo H 0 ' In -.: ri H to m CO < CD EH CD E-l •rH ;p-i •ri m •H '0 H « + 9 t-i + CD r-1 O e : r-i 9 r-i ri ;ri ri fe •. fe o to t-i •: H R @ R l-H O - CJ> ri r§l PH A e •. fe o to t-i •: H R @ R l-H O - CJ> PH HO <! CO o ' • H © H ® •. fe o to t-i •: H R @ R l-H O - CJ> : HO A O • • i-• • co © 0 • ri' o: o e 1 © • ( • © • i © 0 •. fe o to t-i •: H R @ R l-H O - CJ> ri o © •«. •>+' © 8 A • «d o H O • r-i © • •. fe o to t-i •: H R @ R l-H O - CJ> O 'r-i .©" • cvj • ; tA « H • o 0 PI; to •A 9 O r-i ••• © e 1 ri to r-i o _ 0 : ' • © • A © 0 • 1 A © 0 • 1 cd ri CD H <g CD -P •H ft CD r-i cd .d Pi to CD 43 •rH ft CD cd o PQ CD 4-1 •H -P O & ft ft PH +-> o -ri to H cd ft CD ri •rH cd d CD i—1 cd ciJ © •H ft CD i-l cd si Pi to CD 4= •rH ft © H cd si Pi to © H . Sullivan 4» .-ft' CD P O ft PH .ri o ft ri o HO ri •rH © M co O ft •H O M W <c( © cd © © ri H3 G? -P Pl © CQ © Pi PH CO •p fe Pl o CD M a CO CD r-H H) !=• p-q HI p o t> >3 •P p •ri CO *-! Pi H1 CD 4= i PJ 8 HI -p o Si CO r-H CD Pi •ri -p Pi CD & P) PH 0 • ! p* EH A • » 1 H . • I H) • H « r-H 0 HI • i—1 • H 0 • PH PH PH PH PH PH fe: CO » Pi EH 0 Pi E-l H O • H o • e H 1 r-i 9 0 r-i H o 0 r-1 © 0 H O 0 H © e H r-i © 4-H 0 + Hi 0 CO 0 Pi EH C Pi EH 0 Pi EH A 0 0 SH • A 0 + A O • ® H o 0 OO o « H © 0 H 0 + H 0 H 0 r-i 0 H r-i O 0 r-H o e r-i O « r-H O « © 1 •=t O • © 0 « H 0 H 0 r-i 0 *=t o 0 8 «A 0 r-i e o ft 8"-0 -.01 CM O e ! CM : O' • «-}• 0 H O « # CM 0. H o 0 H © ! CM O 0 H © e 8 ••*• 0 •*t o « o i •A O ® 1 o •» A O 0 1 O r-i 0 •A O e A O A O 0 8 A O 0 A O e A O 0 r-i O 0 8 A O e n CD H cd cS Sphalerite CD -P •H Pi PH Galena Sphalerite Galena Sphalerite © -p •H Pi © cd Pi -P © EH © HI cd Kb © H cd C3 cd Pi © H cd Kb Galena Sphalerite Sphalerite Sphalerite Sphalerite Excise -p ri o o CO Abbot Silver Gup cd © H Pi •r-1 -P 1 >» cd P !>s H0 o Pq « Hi © •rH -p -P © fe Layina Hercules cd -d 8 True Fissure 4= Pi © CO © u PH ra +» PI © a 0 H o W| 43 •H CO Pi 0 += Pi H += O Xl CO 0 Pi •H 4= Pi: © Pi o Pi PH 4 hC • 1 \ i L^ 1 Mi. w CO H o • I H e H o • r-i 0 H e r-i « I H 0 rH © • r-i • r-i 9 Pi H PH PH PH ra © « Pi EH Bi 0 Pi EH © pq H o e H H o • I • 0 r-i O « r-i « ft r-i « H r-i • < Pi CO LA * H • » r-i 0 a r-i LA e LA ® I LA e i LA 0 LA e H o © © « H o • CO o « CO o r-i o « co o » r-i O « , CO © LA O « H * H ® + r-i O 0 H 0 GO O 0 vs o UN O o 0 ! o 0 ! o « I LA 0 o « 8 o 0 8 o e 5 O e © 8 o » 1 © LA 0 LA .0 o • 0 H o • ft CM o 0 CVI o ' 0 CM O « CM O * CM o 0 Pi CO o CM LA o « I LA O • LA O e LA O © LA o e 1 o H « LA © © 1 LA O • LA O » i H © 0 I LA H 0 LA O « 1 © . 4= •H Pi © H : cd si P to © 43 fcj •H +3 Pi PI !>> cd PH Pi OG>' O H*d cd Pi Xl cd © © 4= •H PI © rH cd Xl Pi CO © •H Pi © HO PS cd o pq © rH cd tjj © 43 •H PH © H Pi CO © r-i cd CJ3 © 4=> •H Pi © H Xl Pi to © rH cd tjj © 43 •HI Pi >»• PH © 4* •H Pi >5 P o o H cd xl © © H <S t£> © r-i Cj3 © 4= •H Pi © rH Pi to' © 4» •H Pi >s PH cd Pi © r-i <2 tiJ © Pi © a CO si M cd •r-0 <3 © !> •rH pq dD •H pq © •H > cd o Pi pq Pi cd 43 CO rd cd © © •H Pi EH Black Y/arrior © ra •H Pi PI to © o Pi cd xl © -p ri CD CO CD ft ft CO 4= ri CD a CD pq" o += •H CO ri CD ri 4= O >d co H cd ft CD ri 43 ft CD PHI O ft ft Mil W ) ft ^> CO H © r-i • : 0 r— • « r4 • H. 0 ri H CO 1 fe • fe ft EH CD • EH fe •H PQ e ft EH fe CD . Pq r-i o • "A • H r-i O e r-i O 0 H O ' © ri < ft ri • : fe CO fe ft • A 0 < O « r-i 0. • CO O e r-i + O H 4-H 0 4-rH 0 ri © 1; A * o • 1 O e i H 0 o 0 I o e s o H •o • -,l CM © • rH O • CM O e rH © 0 rH O 0 CM o • ri CO o rH A O .« 1 A • •A o © A O • J. A O 0 Galena cd ri CD r-i cd CD 4= •H ft >a ft CD H cd CtJ % CD rH <g -ri rH O CiJ CD rH cjs cd ri CD H <g & St. Patrick CD O •H ft 4= cd CD PQ ri s o o cd PQ ri cd •H •d •rH ft CD >* CO Pi o E4 CD ri •ri ft CD .ri 4= cd o CO if •H ft Pi CO 43 O w 43 ri CD CO CD ft PH CO 43 ri CD a CD H !3 <H o N += •H CO ri CD += ri 43 O A CO H cd ft CD ri •H 43 ft CD P) O ft PH 1 • LP, • 1 A • I ,0 CO H .» H © H e • . H 0 H • r-i 0 In PH As :' fe fe CD EH <H PH fe :,fe to fe Fe H H « H O 0 r-i O S H O « -! 0 r-i ri PH ri ft EH /fe . to to g; W ft EH 9 • ft EH H + HO •H O • GO O * OO 0 • rH e : r-i 9 H « rH H « LC\ 0 0 .ri O • '• t : • ! * -4-O 0 O ® I .0 0 ! © • " 1. • 0 . • + <d 0 H O • «=)-0 H O » • H O .. • " r-i 0 « CM O » CM © 0 CM O . e CM 0 ri to •A " 0 • "A 0 A 0 e 1 A O • 1 A O • A © ' © A © 0 1 ; Pyrit e 3 CD H cd Kb © 4= t-i ft CD H cd .d PH to © : 43; ': <H : ft.: •ri © A ccj ft ; 4= 1 CD EH cd •-ri. CD H « cd ri CD r-i cd & © 43 •H ft CD 4= •H 4= to 4= ft 1 cd ri CD r-i Kb 3 © H •<S © 4= Jj 43 ri © 0 ri 0 0 Alio© a cd f-4 •—>, © M cd ft d H CD fe cd S> Q HOH ri CD Ti tO Pd tOv—' . p) •H EH :• ft © S> H •ri CO © H cd 43 K) O 0 rl «8 O 52, += CD ra CD 5H PH O m H 4= CO 51 H CD !> a H CD o H w P-q EH CH Cd o o •s >l to ^ : •r-i 1—i ra <J 51 CD ! 4» 1 51 M EH to HH Cd EH CO I 1 I 1 Pi 4= O 44 CO JH CD •HI 4» JH CD P, O 54 PH w I5 LTV I* LTJ, LA w CO H * I H e rH o 0 1 ft • ft • ft • ft © In PH ft ra <3 ^ . CD EH Bi 54 EH CD Pq r-i O « rH O e •A « ft O e ft ft ft 0 © ft 0 « ft to • ft • ft < PH PH ft 51 N CO • ts CO PH LA © dO < OJ o ft * ft O ' • oo to 0 ft « ft .to « ft « ft to © ft « fA © ft to 1* ft + a o o © J ft « to » 1 • to > LA - « O « 1 ft • O ® 8 to ® I ft © •d u H o « I ft o » 9 • ft to ' .• © ft O « 8 9 OJ O 0 ft O « ® OJ « 54 co o 9 1 O H .© + © e to ft 0 LA o • s LA to • i LT\ to 9 • to ft • LA to 9 8 LA 0 e O ft e LA to 0 I Galena 3 CD ft sis CD 4= •HI 54 CD Pi CO CD 4= <d iH 51 JH cd i>s p CD O 4= O •H ft 54 cd >a44 PH o CD 43 •r-i 54 h> Pi; O. 51 CD ra 54 CD 4=> •H 54 !>* Pi O CO ra JH CD 43 •H 43 O 44 54 i=v ft CD ft cd to JH CD i> ft •H CO CD > •ri 43 cd CD 43 •H-14 CD ft cd 44 ft to CD ft to CD 4= •ri JH CD ft ft to cd 54 CD ft cd to CD ft to-CD 4= •H u CD ft M ft CO CD +» •iH JH CD <d •ri CO CD 43 •rH 54 <d CD 44 cd JH 43 CD EH Tariff fj 54 •H rQ CD H H H CD pq CD a ft pq >> rQ r=> •ri ft 0 cd 54 M <H cd CD ft 54 CD i> ft •ri CO © 54 •ri is JH CD 4= CD 4= •H 53. •a • i 0 I "J. 1 LA 0 i «A » I •a CO H « ft 0 1 ft « ft o • II ft • ft © ft 0 ft 0 Pi M ft As IS CD EH rS . BI 0 Pi EH 0 Pi EH is CD PH ft 0 r-i O « rH ft © ft ft * ft © LA 0 ft to © i ft 0 ft 4-< LA 0 ft ft ft ft ft ft Pi CO CO & m CO • LA 0 LA 0 LA 0 ® Pi EH LA © LA 0 <j CO o e H O 0 r-i O © o r-i 0 LA O 0 ft 0 ft o e ft 0 ft ft © © ft O 0 ft © + CO o 0 ft o 0 ft o 0 LA O « to ft 0 O • 8 O 0 1 O -0 1 H 0 1 ft 0 o 0 t o LA 0 to •1 •<* P 0 O 0 1 O 0 ! ft 0 O 0 ! o © I -d o CM 0 "A 0 CM O 0 « «=}-0 0 CM to 0 CM O © © CM o • ft to 0 e C-0 CM to a Pi CO LA o 0 i LA O • LA to 0 1 to ft LA to • 8 cd Pi CD H cd to Sphalerite CD 4= •H SH CD ft & Sphalerite CD 4=> •H 43 O si u u >> PH CD 4= •H P) fV ft O Pi CO 02 Pi <*»• i 03 ft <s to CD •H Pi CD ft st ft to PI CD ft <s to n CD ft cd to Sphalerite CD 4" •H Pi Galena cd Pi CD ft to CD 4= •r-i Pi CD ft cd si ft to CD 4= •<H Pi CD ft 1 ft to CD 43 •rH cd 4° to i o • ; cd PH o Pi CD Cd 0 CD ft Pt ft •rH Pi .a -rH o CO CD SB ft ft CD PQ cd Pi CD +» O o M & o Pi CD •O* o o to CD CD P) to ft CD CD si to cd •H Pi P< O <VH •H ft cd to to CO p ft CD ra 0 Cd 4= Pi © CO CD ft PH CO 4=> Pi <DI a CD rH <rH °! >J +3 •ri CO Pi CD Pi H -P O .ri CO H cd ft CD P) •H &<~< f=1 ft © Ol ft. PHI a e ft EH I e 1 x C>' ft HH • ! 1 HO • w HC PH PM CO CO Pi rH PH : "PI H CO . fe to fe ; CO fe : fe '•fe' fe CD C-l CD EH ; fe •H •ri m . "9'. ft EH CD Pq rH H • » CD Pq rH « H • H O 9 1 rH O • 8 r-i O 0 1 rf ri < PH • S fe o w to ri ESS I? fe o w to A « • « ft EH HO H 9 rH . o • H t> w R H0 <tj r-i O e • • • rH + • rH + H 0 • rH O ri o O • 1 • EH o o ri o ^j-0 1 » e • -J-O ' 8 O e 1 ©.. e 1 •ri o KV 9 H tA ri CO • I ri to CD 4? •H . ft: PH; CD 43 •ri ft -d CD XX cd ft CD EH CD 4= •H ri & •ri to 43 0 .ri to r-i cd ft ri •ri © . 4= •H ri rQ to H © •ri H • O © 4=> •ri ri rQ •H 43 CO © 4= •ri - - ft © • ft to © 43 I: PH © 43 •ri ri rQ •ri 4= CO H ft ,cd © <rH rid !>»ri ; cd «H . EH fe . o M o !>» co cd.->. •HrH CD ft+»^J ft cd cd ,Q EH (-4 •i>s •4° ft CD ft O ft PH CO CO © ft w 0 ft © 0 ' PH © 0 H PQ O . 43 Pi •H • 3 r>5 © ft rH © ft > ri -H CO CO © rH ft © © PH » Pi 4= +» 4=> •ri a to 55. 4=> Pi 0) ra CD J4 ft ra += CD a CD 'r—I. (H" o •r-i ra PI CD 4= Pi M 4» O XI CO ft cd Pi CD Pi •r-i >i 4= P) CD Pi o Pi PH a LA 0 • 1 LA • i LA * I 1 LA 0 1 LA 0 1 w P4 : "Xt. CO (—1 ft • 1 ft 1 ft O 0 Pi r-4 ft ft ra <• CD EH • Pi EH •H CD Pq ft • © • ft ft e LA 0 0 ' ft 0 ft « ft Pi Pi <3 ' CO "A LA )• ..•ft": « ft o • e© O a lA to » ft • ft to • 1 LA O '» ft © 0 • 0 0 ft •• O 0 <«* G> 9 I •A e ft • LA O I •A 0 " LA •'• O » 1 *d ©: CM . -to' CM '.' O « 9 ft to 0 K\ 0 rA 0 K\ 0 . Sll LA 0 0 1 LA 0 • CD . '4= •r-i Pi CD 4=> •ri Pi rV Pi © o ft J to © ft cd to cd Pi CD ft to © •rH Pi © ft cd xl - ft CO OD » O ** a © ft 43 •H O Pi to >iO ft ^ -ft © 43 © •ri O Pi LA PS'**" ft O *• GCO ft © • Xl G to !2i Lr\ 0 O © ft © to • ft CD O 43 LT\ •ri sfr Pl <J> -^OO X! • ft O CO .2j « . ft "© CD to 43 Lf\ •ri u cd .. Xl • ; ft 0 CO J2) 9' ,4 -0 '•0 © LA 43 -3-•<H Pi -CD pq ft CO © Xl • ft 0 CO JS5 •''>»''' • CD H " ft ft Pl4= d © S pi to H ra a) cd 4= ft El +=»pq Pi d Pi G cd PlXl rd to ttf) PJ xl cd cd co cd Pi ft M U X! H © +» S cd © ra cd to Pi <d to _-/o ra ft © Pi < ra - a ft -H ft cd © r-i M to cd •H cd 4= •H Pi pq 4=> ri CD to CD ft - PH ra 4=>: Pi CD a CD H| Ol >>! +» •H CO ri CD 4= ri H EH O I I 1 1 EH CO *H P n E-l CO O .ri CO ft CD ri •H 4= ft CD I 5 i •A | Hi. !ri HL CO rQ CO In ri H - PH As CO CD EH CD EH •• fe •rH m •ri pq fe CD . Pq e CD Pq H ri <l ri PH ri (XI fe O IH CO H > r-H P ; ri IX! : .rO: PH 9 fe O IH CO H > r-H P rQ Pi t*Q <! H O fe O IH CO H > r-H P <A "\ • H • t> « : ri o • EH Pq o ri o o e 1: O » 1. o .NY o W CO; •ri o N\ ri CO ri to rH ' ,' -o CD CD 4= ur\ •H ft CD *" H u\ cd .ri • • PH O CO |2i O -ri to H CD ri •ri CD . .43 •ri ft CD H= •ri ft CD rH ' cd .ri p, CO Britannia (Oont.) i>S 4= ft CD P< O ft PH CD 43 4= CD •ri •rH *=-43 •n'ri" O -ri PH .ri 0 !>s cd M H OffJ 0 fe fe o H CO H ' > r-i E-l CO fe H E-l CO pq pq fe ri © ra © ft PH co -p ri I © H pq <HH o N -p •H CO Pi CD •s 1 EH O r-H Pd EH CO t—1 H n -P EH o CO X) to al ft © ri •H *s! r=3 >! -P ft CD ft O ft PH . 1 + rQ to H H " ri o . H 0 ri H to PH CO fe CD EH CO •rH w fe: CD PH H • + H o • 1 A : 0 .0* r-i' rH - o • 0 H •• • ri* M PH PH PH ri IS] -to •A 0 ft E-l t\D H o • r-i 9 CO P 0 • CO o e -H © 1 GO •P H © : I "ri o : LC\ 0 o • • . i • A 0 A ; * " ^- '•' o • o e 1 A e P 0 1 o e ! .<ri o CM © • OJ *' 0 CM O 0' r-i o CM © 0 ' A © ri to A : ©; • A © • -A O © , I CD 4= •rH ft CD H ri xi ft to ri CD Ci5 i 0 H ri © rH © -p : •H ft ;.:;,(&.. © •P •H ft >* PH © -P •H ft "t>» -ft O ri © CO ft © H © -P •H ft © H •ccj xi ft CO Skagit Hiver Development .: Co. (25 miles B. of Hope) CD H © ft pq ^N. PH © © ri W ri O irj H ft -H pq cis Pd y—« : rH O ft ri & o CO «-H fe ft • ft pq cd pHs-' >—>. ft CO ri.H OH ft ri tij :rH cd © ri > o ri ft -p o to _ ri o ri © -•rH EH • • o pq o o ft **' <d ri © © H OH ft O ft -ri O Kb Kb jsj jij O l>» •ri ri r-H ri0 •H ft © • i> H •rH CO ra CO ri PH ri O CO •rH r-i r-i CD CO CD S-i ft co 4= 54 CD a CD r-4 pq O 43 •H C0| 54 CD J3 4= O 44 CO H CD 54 •H ''Si *1 CD O •54 PH 1 a do P4 CO rQ CO 54 H 54 HH CO «J CO CD E-l •r4 pq •H pq CD ft O a CD Pq ft d •<!• d 54 ; ssi 54 rQ PH LA ' e O H CO 1—1 f> H Pi ft ft Lf\ « ' ! . -W «i • ... ft • + O H CO 1—1 f> H Pi ft dO •<JJ ft o « "ri-LA « O H CO 1—1 f> H Pi ft El O Lf\ e <d o O H CO 1—1 f> H Pi ft •d © # CO 54 to ^ • sola (Placer) 4= O 44 CO ft CTJ 54 CD 51 •r4 m CD 4= •H 54 CD ft . pi CO :"• 54": -CD . • > •HI S3 '•• rCT:' O CD CD ft H 4= 54 CD Pi O 54 ft CD 51 •ri ® 0 .59. •a CD M CD SH PH ra 1=5 -p O Pi' H CD to 0 r-i CD {=• H H H o p 4= P •rH CO <ri PI CD O 4= Pi 1 Hi I o xl to rH cd Pi CD I >4 4= Pi CD P o Pi pq O I <A 0 1 1 LA 0 J LA' • t IA 1 LA 0 LA 0 1 LA 0 1 W to H • 1 H P 0 H 0 H 0 H 0 In PH PH PH PH CO •<S CO CD EH &? Bi 0 Pi EH CO 0 Pi EH CD Pq 0 H • H 0 rH LA • • LA 0 H 0 H © e r-i 0 r-i 0 rH O 0 rH O • • I H <t| Pi tsr £' PM H <3 H © 0 . rH O • 0 H O 9 I P 0 0 r-i + rH O 0 1 H © 0 LA 0 0 r-i • 0 H © Pi o . o 0 o • 0 1 © • 1 rH © 0 v i ^' o ..''..•I-' H 0 « 1 o 0 1 CO LA 0 1 r-i 0 LA . e © 8 Q « 1 LA' o « LA • OJ OJ • 0 OJ o • OJ © • » •sh 9 *<* 0 « OJ O « H © 0" I 0 Pi to CD 4s .•rH .Pi -CD H cd 44 Pi to CD •P' •ri . •Pi .• CD cd 44 Pi to CD 4» •ri Pi CD H cd 44 Pi to CD 4= •ri Pi CD r-i n. Pi to CD 4=> •ri U CD H J" Pi to CD 4=> •H Pi CD r-i 44 Pi CO n CD r-i •d rH O P cd Pi CD rH cd P CD 43 •ri Pi CD H cd 44 Pi to CD 43 •H Pi © H 44 Pi to CD •H Pi _ CD H cd 44 Pi to cd Pi CD rH <S P cd Pi <D r-i P CD 4s •H Pi CD r-i cd 44 Pi CO 'u CD l> Cd 'H CD Pd Pi cd CO 4=> . CD • !>s CD •;• cd E4 Pi d d Pi P CD ; CD HH 44 CO •H Pli a •H |2i CD Pi •H N P3 cd Pt r-i cd Pi <d d Pi o cd Pi m P Pi CD CD cd > •ri Pi PH Pi cd 4= to to © H CD H 4= Cd: •<H ,Q 44 CD & [S3 O Pi © PS CD Pd O O • 3 PH CD CD 4=» cd to d • CO H O cd H Pi H 4° cd Pi rQ CD CD © tS3 60. 4= ri 0 ra o ft PH CO 43 ri 0 r4 <H O •H to !4 0 ri 43 O si to r-i ri ft 0 ri •H 4= ft 0 PHI a ' • 1 • 1 \ 0 I A • 1 • A © -0 1 •:W ra • H « .+ H 0 + . • 4-H • H 9 : 4-In PH PH PH As fe fe' fe fe :fe 0 E4 •rH PQ 0 ft EH ' © pq H o # . a r-i • H rH ' • e H H O 9 » A © -9 rH H 0 rH O 0 rH ri < •'A m Pi. fe S3 PH r-i . * 1 9 < H 4-© r-i + » f-j 4 rH 4-® r4 4-« ' r-i •:' 4-© H 4-O © e r-i + « rH 4-rH 0 4-CO CD 0 ri o o • "• I © • O ® -1 0 0 J • O; . - e I rH « •* O 9 1 O © • -O '0. : ' rH. • ' '9 Co. OJ o • CO •o 0' IA • 0 CM 0 0 NY 0^ CM O r-4 O - 0 1 •'• © CM © • : tA 9 - ; CM O 0 r-i O « © ri CO A O * 8 O A o e i A O • 1 O • 8 A ' © 9 A O A O * A O 9 A 0 0. 1 tr\ O 9 I A. O 0 1 A O 0 1 ri ri © H © 43 •H-ft <d © .ri ri ft +3 © EH ri ri © <S © 43 •ri ft •ri © si P ft 43 © EH © 43 •ri ft © r-j ri si PH CO © rH © 43 •ri ft •ri © si ri ft 43 © EH ri © r-i: ft © >• r-i •ri tti: © •r-i 43; # fe © 43 ' •ri ft © rH-'" .ri PH CO © r-i © 43 -•ri ft -d „© ri. P ft 43 © EH © 43 •ri ft -ri © ; .ri ri ft •• 4s © EH © 43 •ri ri 0 CO © a cd hs © 43 •ri ft © r-i ri si PH CO Silver King-ri •CO rH © a ri H ri 0 ri © © ri a? >> M 0 4 . 1 •d I a ft •rH PQ si CO ccj 0 0 fe © •H -ri ri CO PH ri 0 0 •ri 43 © ft 1 .1 >» 43 •ri H ri cd g 00 3 H 61. EH O ft Cd EH CO ft ft EHl P ft Pd O EH H Pd Pd EH SI +3 CD [ CO CD JH PH CO % CD a CD H <H o M •H CO, Pi CD •s M +» O XJ CO ft CD •rH LT « 1 \ + I* < P & IT « e ! 1 MJJ w •W J « Pi EH pd c -CO ft . H X> ft O X CO PI ft Pi ft Pi H •As is CO CO CD EH © EH © EH •iH pq te! •ri pq •ri w CD Pq o ft © e 0 Fq • cr\ © pq • • d PH d <d '•' d ft EH PI CNl o 'ft Cd EH : Pi N « 1 O H Pd PJ EH o 'ft Cd EH Xs ft «! rH » + rH O » CO Hi ft •W o P •HO <! ® ft + CO ft ft dC Q • d p © e 1 LC\ 0 -H o e 1... O • 8 CO Hi ft •W o P d © • CO cd P d O -d o Is? H ft : rd p H ft t-r-1 •d o PI CO "A o; i o e 1 1 Pi CO •A O tH PI CO CD • : 43 •ri PI rQ •rH 43 CO rd( rH: © p Xl 4=»" £ a to TH . pq CD 4^ •H Pi CD CD CD 43 •ri 4= O Xl Pi PH 43 o xl CO ft n © Pi •H 'd ft o P © 4= •ri a © Pi <H ft £ © +3 •ri Pi © 43 •ri to © o . - ' 43 o xl CO ft © Pi © PS •ri © +3 •ri PI Pi O pq CD CD •Pi ° > 4* CD •Xl W) •H w CD CD^-N Pi Pi © CD O *» cd CD H Xtft •H w M CD 0 Pi © 4» Pi 0 a © o 43 Pi 0 ft O Pi ft xl o 'd P/~V •ri O ft © d ft ft-w N 4= Pi © ft o Pi ft PI © 43. © Pi p 5 Win EH 51 w > : •. • bl W ) rH EH 1 W • CO rQ CO I 1 O • 1 rQ CO Pi M ri H ri M sent CQ CQ <CJ CQ •=tj Pre 0) EH CD EH CD EH nts •ri pq CO •ri pq •ri pq of Eleme PH CD PH rH : O • rH O at CD PH rH 0 t-i 0 H O « <H o 9 r-i 9 -p •ri Pi EH ri ri ISJ fe CQ a CD -P PI H O M n EH rQ PH e rH EH fe o rQ PH PH EH - '9 i LTV 0 1 CQ a CD -P PI H QU <I OO o • CO rH P ;• M r*i o ©•' H rH © e i ISIA: W) <i H 0 1 •• H l H '0 1 O 9 o 0 ri. o CO rH P ;• M r*i o ri o » r-s P fe o EH •<!• .'.ri Lf\ « LTN 0 rH 9' rH 0 O » Pi EH 2! o r-s P fe o EH •<!• -ri O ri CO rH • ri' CO fe ri. CO o e ' '1 • a r LTN O 9 1 O 9 1 -P O A ' to rH ri H 03 Pi 'H Galena Mineral Shot Gold Cassiterite -p o rC! CO H ri Pi CD ri •ri r^ Chalcosti-bite? 0) -p •ri ri M ri •ri . Plagionite? Stibnite Altered wall rocks Property Prospect near KTuane Lake Property Arizona Greek (Placer) Property ri •ri CD U <D •P Pi o PH Caroline Fissure 63. Relation of Minor Element Concentration to Metallogenetic Groups of Deposits This study has attempted to show that there i s a closer s i m i l a r i t y i n composition of sphalerite from a single metallogenetic group of deposits than from deposits of a s i n -gle temperature group. Furthermore, the sphalerite from each region has d i s t i n c t i v e kind and amount of minor elements. Sphalerite from the Slocan, Fort Steele, and Ains-worth mining divisions i s characterized by a moderate cadmium content-(.4 - .5 per cent) and the presence of t i n . Lardeau sphalerite has a s l i g h t l y lower t i n content but some shows the presence of indium. Zinc deposits i n the Omineca show no t i n but a f a i r amount of cadmium (.6 - .75 per cent). Sphalerite from the Cariboo has less than 0.05 per cent t i n , 0.4 per cent cadmium and traces of bismuth. Many minerals from the Skeena mining d i v i s i o n show traces of bismuth. Other variations may be seen i n the tables. The fact that no germanium, gallium, or indium was found i n sphalerite from the Monarch and Kicking Horse mines, which are the closest approach i n B r i t i s h Columbia to depos-i t s of the Mississippi Valley type, which contain these ele-ments, leads the author to believe that the nature of the ore bearing f l u i d s has more to do with minor element content than have the temperature and pressure conditions. 6.4. That temperature and pressure are important to some extent i s shorn by the fact that the concentration of mangan-ese increases i n successively higher temperature deposits. 65, Summary and Conclusions The variations i n kind of minor elements i n sphaler-i t e and the .amount of each have been correlated" with two fac-tors, namely temperature type and metallogenetic province represented. . Evidence for a correlation between temperature type of deposit and minor element content i s derived from a study of the d i s t r i b u t i o n of minor element concentration i n analyses from different temperature types. Gallium and germanium are rare i n B r i t i s h Columbia,' but from a study of other areas their concentration seems to increase with decreasing temperature of formation. Indium has widespread occurrence i n B r i t i s h Columbia but occurs mainly i n mesothermal and contact metamorphic deposits with the greatest concentration i n the former. With the exception of the Sullivan Mine, t i n occurs mainly i n t y p i c a l mesothermal deposits and there i s a p o s s i b i l i t y of recovering t i n from a number of zinc ores of this type in- the Slocan and Lardeau areas, Cadmium i s .present i n sphalerite from a l l types of deposits but has greatest concentration i n low mesothermal deposits. Although not clearly shown by the material presen-ted, manganese concentration increases i n successively higher temperature deposits. Sphalerite from the same metallogenetic group of deposits contains similar kinds and amounts of minor constit-uents but the composition from each metallogenetic province, 66. i s d i s t i n c t i v e . The composition of sphalerite from the Omin-eca, most of which has a high cadmium content, i s different from that of the Slocan. which i s distinguished by the pres-ence of t i n and a medium cadmium content. Tin i s notably ab-sent i n Vancouver Island. Many other cases of a lack of sim-i l a r i t y between sphalerite from different metallogenetic prov-inces but of the same temperature type exist. A greater number of minor elements may be expected i n sphalerite from a telescoped deposit than one i n which zoning had taken place. In the l a t t e r case the minor elements would have a chance to adjust themselves to temperature changes. The author believes that differences i n minor ele-ment content of sphalerite from deposits of similar tempera-ture type must be ascribed mainly to the varying chemical character of the depositing solutions i n the various metallo-genetic provinces, and not so much to the variable temperature of sphalerite formation within the range considered. o 0 o 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0053060/manifest

Comment

Related Items