Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The three dimensional structure of Batholiths as deduced from gravity data Ager, Charles Arthur 1974

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1975_A1 A34_7.pdf [ 12.59MB ]
Metadata
JSON: 831-1.0052998.json
JSON-LD: 831-1.0052998-ld.json
RDF/XML (Pretty): 831-1.0052998-rdf.xml
RDF/JSON: 831-1.0052998-rdf.json
Turtle: 831-1.0052998-turtle.txt
N-Triples: 831-1.0052998-rdf-ntriples.txt
Original Record: 831-1.0052998-source.json
Full Text
831-1.0052998-fulltext.txt
Citation
831-1.0052998.ris

Full Text

THE THREE DIMENSIONAL STRUCTURE OF BATHOLITHS AS DEDUCED FROM GRAVITY DATA b y Charles Arthur Ager B.A. Sacramento State College, 1968 M.Sc. University of Br i t i sh Columbia, 1972 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of Geophysics and Astronomy We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA September, 1974 I n p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f t h e r e q u i r e m e n t s f o r a n a d v a n c e d d e g r e e a t t h e U n i v e r s i t y o f B r i t i s h C o l u m b i a , I a g r e e t h a t t h e L i b r a r y s h a l l m a k e i t f r e e l y a v a i l a b l e f o r r e f e r e n c e a n d s t u d y . I f u r t h e r a g r e e t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y p u r p o s e s may b e g r a n t e d b y t h e H e a d o f my D e p a r t m e n t o r by h i s r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l n o t b e a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . D e p a r t m e n t o f T h e U n i v e r s i t y o f B r i t i s h C o l u m b i a V a n c o u v e r 8 , C a n a d a D a t e - i i -ABSTRACT The intent of the work presented here is to interpret the three dimensional structure of batholiths from gravity data. The batholiths studied were the Guichon Creek, Hogem and Iron Mask batholiths located in the central, inter ior of Br i t i sh Columbia and within the Canadian Western Cordi l lera. Despite their gross geological differences, these batholiths have a remarkably similar three dimensional shape. After correlating gross shape with existing theories of batholith emplacement, a new theory for the emplacement of these batholiths has been proposed. This 'tectonic in ject ion ' theory is intended to apply to a l l batholiths that f a l l within the class of "funnel-type" . As a corollary, ideas are also presented on the significance of the spatia l correlation of mineral occurrances with gross shape. - i i i -ACKNOWLEDGEMENTS I would l ike to sincerely thank a l l those individuals who have contributed to the accomplishment of this project. I accept f u l l responsibi l ity for a l l the f i e ld work and the interpretation of the data. I am indebted to the Gravity Divis ion, Ottawa, and to the University of Western Ontario for supplying the gravity instrumentation. In part icular, I would l i ke to thank J.B. Boyd, R.V. Cooper and Walter Burke for their technical support during the course of the surveys. I wish to thank the B.C. Dept. of Mines and Petroleum Resources for their major f inancia l support, Bryan Lee and David Lefebure for their excellent f i e l d assistance, and, in part icular, Dr. W.J. McMillan and Dr. J.A. Garnett for the use of their geological data and for the many enjoyable discussions relating to the geology of the Guichon Creek and Hogem batholiths. I sincerely thank Dr. J.A. Garnett for editing the text on the Hogem batholith, Dr. K.E. Northcote for offering his constructive critisms on the Iron Mask bathol ith, and to Dr. A.E. Soregaroli for reviewing the entire thesis and for providing many helpful suggestions. I would also l i ke to thank Drs. A. Sutherland Brown, W.F. Slawson and G.F. West for providing valuable advice during parts of the project. I am especially thankful to Dr. T .J . Ulrych, supervisor of this thesis project, for his help, guidance and encouragement during the course - iv -of the work and for his constructive crit ic isms during his review of the manuscript. Above a l l , I am thankful to my wife and family for enduring the hardships of f i e l d work and research, and for giving me moral support to bring this work to a successful conclusion. This work was supported in part by a bursary award from the National Research Council for the year 1972-73 and by a Killam Predoctoral Fellowship for the period 1973-74. - v -TABLE OF CONTENTS Page 1. INTRODUCTION 1 2 . BATHOLITHS IN GENERAL 5 2.1 Definit ion 5 2.2 Geology of Batholiths 7 2.3 Theories of Emplacement 8 2.4 Class i f icat ion of Batholiths 10 2.5 Magma Generation 11 2.6 Tectonic & Economic Significance 14 3. THE GRAVITY TECHNIQUE . 17 3.1 Observing the Earth's Gravity 17 3.2 F ie ld Procedures 18 3.3 The Gravity Map 19 3.4 Gravity in Mountains 25 3.5 Gravity Modelling of Batholiths 28 4. THE GUICHON CREEK BATHOLITH 35 4.1 Introduction 35 4.2 A Gravity Model for the Guichon Creek Batholith, South-central, Br i t i sh Columbia 35 5. THE HOGEM BATHOLITH 37 5.1 Introduction 37 5.2 Geological Setting 39 - v i -TABLE OF CONTENTS(Contd) Page 5.3 The Gravity Survey 42 5.4 Rock Densities 43 5.5 Anomaly Separation 45 5.5.1 HA-HA Creek (Profile AA1) 48 5.5.2 Old Hogem (Profile BB') 50 5.5.3 Kwanika Creek (Profile CC*) 52 5.6 The I n i t i a l Model of the Hogem Batholith 54 5.7 Model of the Hogem Batholith 61 5.7.1 HA-HA Creek Model 61 5.7.2 Old Hogem Model 63 5.7.3 Kwanika Creek Model 65 5.7.4 Gross Tectonic Features 67 5.7.5 Relationship of Mineral Deposits to Gross Shape 68 5.8 Conclusions 69 6. THE IRON MASK BATHOLITH ' 70 6.1 Introduction 70 6.2 Geological Setting 72 6.3 The Gravity Survey 73 6.4 Rock Densities 74 6.5 Anomaly Separation 76 6.6 The I n i t i a l Model of the Iron Mask Batholith 80 6.7 Model of the Iron Mask Batholith 90 6.7.1 Gross Shape & Bulk Composition 90 6.7.2 Tectonic Importance 95 6.7.3 Relationship of Ore Deposits to Gross Shape 96 6.8 Conclusions 97 - v i i -TABLE OF CONTENTS (Contd) SUMMARY & CONCLUSIONS REFERENCES APPENDIX I Gravity Anomaly Definitions & Formulae II F i l t e r i n g & F i l t e r Operators III Gravity Model Calculations IV Hogem Gravity Data V Iron Mask Gravity Data - v i i i -LIST OF FIGURES Page Figure 1-1 Location Map (Guichon Creek, Hogem & Iron Mask Batholiths) 3 Figure 2-1 Section of a Batholith 6 2-la Class ical Model 2- lb Current Model 2-2 Zones of Batholith Emplacement 10 2- 3 Oceanic-Continental Plate Col l i s ion 13 Figure 3-1 Regional-Residual-Noise Separation 22 3- 2 Distorted gravity anomaly due to an uneven surface 29 3- 3 Modelling Batholiths 31 3- 3a Forward Modelling 3-3b Inverse Modelling Figure 4-1 Location & Geology Map - Guichon Creek Batholith 36 4- 2 Density Map - Guichon Creek Batholith 36 4-3 Gravity Anomaly Map (AgA) 36 4-4 Data Compilation Plan 36 4-5 Total Aeromagnetic Field Map 36 4-6 Regional Aeromagnetic Map 36 4-7 Second Vert ica l Derivative Aeromagnetic Map 36 4-8 Gross Shape Plan 36 4-9 Calculated Anomaly Map (Ag^) 36 - ix -LIST OF FIGURES (Contd) 4-10 A. Depth/Gravity Section AA' B. Depth/Gravity Section BB' Figure 5-1 Location Map - Hogem Batholith 5-2 Geology Map - Hogem Batholith 5-3 Density Map - Hogem Batholith 5-4 Complete Bouguer Anomaly Map (Ag) 5-5 a) Aeromag/Gravity Section HA-HA Creek b) Aeromag/Gravity Section OLD HOGEM c) Aeromag/Gravity Section KWANIKA CREEK 5-6 Aeromagnetic Map 5-7 Smoothed Aeromagnetic Map 5-8 Second Derivative Aeromagnetic Map 5-9 Density Subdivisions of Hogem and Adjoining Rocks 59 5-10 Depth/Gravity Section (HA-HA Creek) 62 5-11 Depth/Gravity Section (Old Hogem) 64 5- 12 Depth/Gravity Section (Kwanika Creek) 66 Figure 6-1 Geology/Location Map - Iron Mask Batholith 71 6- 2 Density Map - Iron Mask Batholith 75 6-3 Complete Bouguer Gravity Map (Ag) 79 6-4 Anomolous Gravity Map (Ag^) 81 6-5 Aeromagnetic Map 83 6-6 Smoothed Aeromagnetic Map 84 Page 36 36 38 40 44 47 49 51 53 55 56 57 - x -LIST OF FIGURES (Contd) Page 6-7 Second Derivative Aeromagnetic Map 85 6-8 Density Subdivision of Iron Mask and Adjoining Rocks 88 6-9 Calculated Gravity Anomaly Map (^g^) 89 6-10 Gross Shape Plan 91 6-11 A. Depth/Gravity Section AA' 92 B.. Depth/Gravity Section BB' 93 Figure 7-1 Gross Shape of 'Funnel-Type' Batholiths. 100 - 1 -1. INTRODUCTION Batholiths are important re l i c s of past igneous act iv i ty . Many contain ore deposits that are associated in time and space with batholith emplacement. Exactly how batholiths are formed i s s t i l l a fundamental and unanswered question in gelogy. Despite the voluminous l i terature on the subject, (Gi l lu ly 1948, Buddington 1959, Hamilton and Myers 1967, Fyfe 1972, and others), very l i t t l e quantitative work has been done in determining their three dimensional structure. The physical parameters of bulk density and gross shape are fundamental assumptions in a l l theories of batholith emplacement, yet l i t t l e attempt has been made to measure these parameters. The main work of importance in this area i s by Bott and Smithson (1967) who present very simple two dimensional models of batholiths based on gravity prof i les . In the past, geophysical research has been directed more toward the development of modelling techniques rather than toward their geological applications. In geological studies of batholiths, quantitative aspects of geophysical data either have been ignored or have not been available. In short, the gross three dimensional structure of batholiths i s unknown. The work presented in this thesis attempts to provide quantitative three dimensional models of batholiths which are based on the analysis of geological and geophysical data. In part icular, the purpose of this work is twofold : - 2 -(1) To develop techniques for interpreting structural models of batholiths from gravity data, and ( 2 ) To show the tectonic and economic implications of this approach by applying the method to three batholiths in the Western Cordi l lera. The gravity data, which include the measurement of rock densities and the determination of gravity station elevations, were obtained for the following batholiths in the Intermontane and Omineca Belts of the Western Cordil lera of Br i t i sh Columbia (Figure 1-1) : Guichon Creek Batholith, Highland Valley, B.C., Hogem Batholith, Germansen Landing, B.C., and Iron Mask Batholith, Kamloops, B.C. These batholiths were selected for study because of their potential economic and tectonic signif icance. Three dimensional density models for each batholith have been constructed. Direct (forward) modelling techniques were applied since inverse modelling is d i f f i c u l t ( i f not impossible) due to overlap of source anomalies. The gravity models were constrained by detailed knowledge of the surface geology, rock densities and by available aeromagnetic data. Mathematical details are restr icted to the appendix in order that this work be readable by a larger audience. Discussion of f i e l d procedures and interpretation techniques i s confined to the speci f ic problem of gravity surveys over batholiths. Because batholiths generally occur in regions of Note: Subdivisions after Sutherland Brown et al., (1971) FIGURE I-1 0 200 LOCATION MAP S C A L E - MILES GUICHON, HOGEM 8 IRON MASK B A T H O L I T H S scale l" «*200mi date May 1974 - 4 -rough terrain, special attention is focused on interpretation of gravity in mountainous terrains. This study emphasizes the input of geological information as constraints to geophysical modelling. It deals with the use of gravity data as a tool for determining the physical parameters of gross shape and bulk density for individual batholiths. Once gross structure i s determined, i t i s then possible to test and evaluate theories for the emplacement of each batholith. By comparing the common features of three case h i s tor ies , presented in this thesis, a theory of emplacement for this type of batholith i s proposed. As a corol lary, ideas are also presented on the significance of the spatia l correlation of mineral occurances with gross shape. - 5 -2. BATHOLITHS IN GENERAL 2.1 DEFINITION The term "bathol ith" was defined or ig ina l ly in 1895 as "a stock-shaped or shield-shaped mass of igneous rock intruded as the fusion of older formations. On removal of i t s rock cover and on continued denudation, this mass holds i t s diameter or grows broader to unknown depths" (see Throwbridge, 1962). A more recent def in i t ion of "bathol i th" , given in the American Geological Institute's Glossery of Geology (see Gary, 1972), i s : "A large generally discordant, plutonic mass that has more than 40 sq.mi. 2 (100 km ) in surface exposure and which i s composed predominantly of grano-dior i te and guartz monzonite composition. No v i s ib le f loor for such masses has yet been reported. Though a subject of controversy, i t s formation currently i s believed by most investigators to involve magmetic processes." These definitions imply l i t t l e more than a surface description of a large mass of intrusive rocks of questionable orig in and unknown depth extent (Figure 2.1a). The 40 square mile area i s arbitrary, but is useful for separating smaller plutonic bodies (stocks) from larger ones (batholiths). Batholiths of many ages and sizes are exposed. The Coast Range Complex of Br i t i sh Columbia exhibits i t s e l f for at least 73,000 square miles; the Mesozoic Sierra Nevada in Cal i fornia crops out for more than 16,000 square miles; and the Guichon Creek Batholith of Br i t i sh Columbia underlies an area of approximately 400 square miles (Knopf 1955, Ager et a l 1973). Smaller plutons that average less than a few hundred square miles are by far - 6 -FIGURE 2-1 : SECTION OF A BATHOLITH A. CLASSICAL B. CURRENT R Roof Pendant 5 Stoped Blocks X Xenocrysts P the most numerous (Huang, 1962). In fact, batholiths themselves are compound intrusions. Research by Hamilton and Myers (1967), K i s t ler et a l (1971), and others on several batholiths in western North America suggests that they are shallow complexes composed of from 1 to > 100 plutons. The gravity modelling of batholiths presented by Bott and Smithson (1967) also shows that these bodies are shallow. Other work by Press and Biehler (1964) and Ager (1972) shows that batholiths appear to have root zones. There is mounting evidence to suggest that the c las s ica l concept of a batholith as shown in Figure 2-la i s outdated. In fact, a current def in i t ion more in l ine with present knowledge would be : "A batholith i s a plutonic 2 mass that has greater than 40 square mile (100 km ) horizontal extent, a re lat ive ly shallow depth extent, and one or more deeper root zones". This - 7 -def in i t ion sets the areal extent of the plutonic complex without requiring i t to crop out. Batholiths can be buried. The def in i t ion also specif ies the shallow nature and igneous (or pseudo-igneous) rock constituents of the complex. It also specifies that these bodies have one or more root zones (core regions). This 'current' def in it ion i s shown in Figure 2-lb and i t i s this def in i t ion that w i l l be used in the work presented here. 2.2 GEOLOGY OF BATHOLITHS On a world wide basis, the bulk composition of a typical batholith i s granit ic. These rock types are quartz r ich and grade through the granite-granodiorite series, (Verhoogen et a l , 1970). On a loca l scale, quartz poor syenite-diorite assemblages may be prevalent. Gabbroic and ultramafic rocks generally occur in smaller plutonic units such as stocks and dykes. In the Western United States, 87% of the mapped plutons are granitic, (quartz-diorite, granodiorite, granite), the remainder being gabbroic and ultramafic, (Moore, 1959). Some batholiths show one monotonous rock type scarcely varying in texture over thousnads of square miles. Others, such as the Coast Range Complex are composed of plutonic rock assemblages emplaced at different times over an interval of several mi l l ion years (Hutchinson, 1970). Individual batholiths may exhibit concentric textural and facies zoning and may have been emplaced during a very br ief period of geological time. Contacts can be sharp to gradational. As shown in Figure 2-1, batholiths generally have an intrusive relationship to their host rocks ; their tops are domes from - 8 -which pegmatite dikes and other igneous bodies project into the country rocks. The dome i s usually diversified by roof pendants. Inclusions which range in size from large stoped blocks of country rocks to small xenocrysts are a common constituent of some batholiths. The presence of inclusions and internal structures (such as flowage phenomena, joints and fracture systems) in batholiths strongly suggests that originally the bodies were magmatic and mobile. The magma had moved upward during crystallization and differentiation. This concept of magma and motion are fundamental in current theories for the origin of these plutonic assemblages. 2.3 THEORIES OF EMPLACEMENT Over the years geologists have tried to explain the presence of plutonic rocks at the surface i n terms of several different theories of emplacement, (Gilluly, 1948). Based on a large set of f i e l d observations i t appeared that heat and flow were necessary for their emplacement. This led to the idea that the igneous rocks were at one time mobile - this mobile stage i s referred to as "magma". The hot magma, in order to exhibit plastic flow, must have been at least a rheoid. Currently, a crystal mush composition for the magma i s popular. Three class i c a l theories for emplacement of batholiths are prevalent in the literature (Gilluly, 1948, Huang, 1962, Bott and Smithson, 1967) : (1) Magmatic Stoping - Emplacement of batholiths by magmatic - 9 -stoping was proposed or ig inal ly by Daly in 1903. This theory suggests that a body of magma works i t s way up into the earth's crust. The roof of the magma chamber is shattered. Any block of the roof rocks, with a density greater than that of the magma, w i l l either sink to the bottom of the magma or be consumed by i t . Thus, the magma can gradually "eat" i t s way up into the country rocks. (2) Forceful Injection - This theory requires that the walls move apart because the hydrostatic pressure exerted by the magma exceeds the l i thostat ic pressure on the rocks. The ver t ica l l y uprising magma pushes the overlying rocks upward. The movement of the magma may be entirely under the influence of gravity or i t may be pushed around by orogenic forces. The country rocks exhibit doming. (3) Granitization (Transformation) - Granitization is a group of processes whereby so l id rocks are changed into rocks of granitic composition and texture without passing through a magmatic stage. This theory requires that contacts between plutonic and country rocks be gradational, and that structural features of country rocks continue into the plutonic rocks. None of these theories accounts for emplacement of a l l batholiths. One theory may have particular merit for an individual bathol ith, but in other cases, none of the theories appears relevant. For example, the - 10 -comparative passive nature of emplacement of the main masses of the Sierra Nevada batholith suggests that stoping i s the pr incipal mechanism,(Kistler et a l 1971). However, consideration of the small amount of crustal strontium contamination and the lack of gravity evidence for sunken blocks, (Bott and Smithson 1967), suggests that not stoping but some other mechanism dominated. It i s clear that the theories of emplacement as outlined above provide an incomplete explanation for the formation of these bodies. 2.4 CLASSIFICATION OF BATHOLITHS Further considerations of ages of plutons and of depths of denudation led Buddington (1959) to c lass i fy plutons according to their leve l of emplacement. As shown in Figure 2-2, three zones were proposed FIGURE 2-2 ZONES OF BATHOLITH EMPLACEMENT (after Buddington, 1959) 0 2 4 6 6 10 12 miles i i i i i i EPIZONE  MESOZONE CATA20NE DEPTH 250°C 350°C 500°C TEMPERATURE - 11 -wherein emplacement occurs very di f ferent ly in response to the physical and chemical conditions prevalent at the time of crys ta l l i zat ion. These zones are gradational, but each zone has a depth parameter and an associated temperature, as shown in Figure 2 - 2 . Batholiths are discordant in the epizone and grade to concordant in the catazone. Emplacement by granitization is minor and loca l in the epizone (near surface); common but subordinate in the mesozone; and dominant in the catazone (great depth). Magma appears to be the major factor, either d irect ly or ind irect ly , in a l l zones. With the advent of the theory of plate tectonics r ea l i s t i c concepts of magma generation are now possible, and hence, theories for batholith emplacement and methods of c lass ifying them can be evaluated by looking more closely at the behaviour of the primary magma(s). 2.5 MAGMA GENERATION Within the framework of plate tectonics, there are several tectonic conditions that can generate magma. However, for this work, discussion w i l l be restr icted to magma generation for the Mesozoic batholiths of Western North America. The work of K i s t ler et a l (1971) has demonstrated that the heat source giving r ise to the Sierra Nevada and other western batholiths had characteristics of present day oceanic r ises. Exactly how enough heat energy was local ized in the Mesozoic as a l inear source is s t i l l unknown. Shaw et a l (1971) postulate that so l id earth tides can - 12 -concentrate enough energy along subduction zones to cause shear melting. Fr ic t iona l drag in the seismicity zone along an oceanic plate underthrusting a continental plate is an added poss ib i l i ty , Figure 2-3. K i s t ler et a l (1971) conclude that models of magma generation based primarily on radio-active heat production in the crust cannot completely explain the distr ibution and periodicity of the Sierra Nevada bathol ithic rocks. The source material for these magmas i s also unknown. G i l lu ly (1971) presents elaborate arguments to show that huge volumes of both sediment and basalt are dragged far down a subduction zone into the more dense mantle. He suggests that the sediments and basalts do not go a l l the way to the bottom of the subduction zone; instead, they get heated and d r i f t off to form magma. K i s t ler et a l (1971) suggest that the source of the major portion of the mobile granodiorite magmas of the Sierra Nevada was within the mantle, as indicated by strontium isotope data. The lack of gravity and geological evidence for large fractions of gabbroic material within granitic batholiths complexes (Bott and Smithson 1967 , Verhoogen et a l 1970 ) rules out di f ferent iat ion from a single basalt ic source magma. There is widespread confusion and disagreement in the l i terature regarding magma genesis. However, a l l agree that common igneous rocks are formed from magma. Verhoogen et a l (1970) postulate at least two fundamentally d ist inct series of primary magma : (1) One series covers the whole range of common basalts. Each batch of primitive basalt is generated uniquely as a primary magma by d i f ferent ia l fusion within the outer mantle. - 13 -FIGURE 2-3 OCEANIC-CONTINENTAL P L A T E COLLISION SUBDUCTION VOLCANOES (modified after Dickinson, 1971 ) - 14 -(2) The second series of magmas covers the granodiorite-granite (dacite-rhyolite) composition. Again each batch of magma is generated uniquely, but this time, by fusion of crustal , mainly geosynclinal sediments on the under-thrusting plate. The whole concept of magma being generated in the lower crust and/or upper mantle and r i s ing through the crust to coalesce near the surface and form a batholith is indeed remarkable. The tectonic and economic implications of this plutonic cycle of events, manifested in the form of a bathol ith, are discussed in the next section. 2.6 TECTONIC AND ECONOMIC SIGNIFICANCE There i s l i t t l e doubt that batholiths are exposed re l i c s of past igneous act iv i ty . Batholiths align themselves in great belts para l le l to major tectonic features. By studying their geology, i t i s clear that volcanism and plutonism are different expressions of the same process. From isotopic data i t i s possible to infer that their magmas have travelled through sol id crustal rocks without much crustal contamination. The theory of l ithospheric plates allows us to speculate that the magma was generated by concentration of heat energy on underlying subduction zones. Material for the magma chamber was supplied by oceanic crustal rocks on the underthrusting plate, by upper mantle material, or by both. Fyfe (1973) theorizes that these magmas r i se by Stokesian motion as bubbles through the crustal rocks. More c lass ica l theories suggest - 15 -that forceful injection, magmatic stoping or granitization were the principle mechanisms of emplacement. In western North America, plutonism and volcanism occurred as a series of magma pulses at periodic intervals during the Mesozoic. The resulting batholiths are accumulations of individual plutons that have coalesced as thin crystalline complexes beneath covers consisting largely of their own volcanic ejecta, (Hamilton and Myers, 1967). The plutonic cycle of events described above seems to account for the genetic history of batholiths i n general. The Mesozoic batholithic belts of western North America f i t into this tectonic scheme as discussed by Hamilton and Myers (1967), Monger et al (1972), and Rutland (1973). What is noticeably lacking, however, is more quantitative confirmation that this plutonic cycle of events is indeed valid for individual batholiths. One method of evaluating the plutonic cycle, i s to test each of it s parts. The work presented i n this thesis i s directed toward evaluating the theories of batholith emplacement. The approach is to determine, from gravity data over individual batholiths, the two basic parameters that are fundamental assumptions in a l l theories of emplacement - gross shape and bulk density. For example, i f the bulk density of the batholith implies that the density of i t s primary magma was greater than the crustal rocks through which i t intruded, how could i t have been emplaced by Stokesian motion or gravity rise ? On the other hand, i f the batholith exhibits sharp contacts with the country rocks and i s funnel shaped, how could - 16 -granitization be a mechanism for i t s emplacement ? Batholiths are also of economic importance; In Br i t i sh Columbia, several ore deposits are associated in time and space with bathol ithic emplacement. If the plutonic cycle of events i s correct then the potential for a batholith to contain ore deposits depends solely on the genesis of each of i t s plutons. Clearly each pluton must, f i r s t l y , have the metals in i t s magma and secondly, these metals need a concentrating mechanism during the period of coalescence. The problem of ore search within batholiths then reduces to examining each of i t s plutonic units. The potential for ore deposits being found within a batholith i s determined by applying theories of ore genesis to each plutonic unit. For example, i f mineralization prefers the outer margins of a d i o r i t i c unit, the gross shape of this plutonic unit can provide tremendous insight as to where more mineralization i s l i ke l y to occur. As w i l l be shown in the forthcoming case histor ies of three very different batholiths within the western Cordi l lera, quantitative interpretation of gravity data for gross structure can lead to important conclusions about the tectonic history and economic potential of each batholith. With these thoughts in mind, we now turn our attention to the development of the gravity techniques for modelling batholiths. - 17 -3. T H E GRAVITY TECHNIQUE 3.1 OBSERVING THE EARTH'S GRAVITY Gravity surveys using portable land instruments have been performed with regularity since about the 1930's. The main improvements since that time have been in the sensitivity and portability of the instruments. Most portable gravity meters (gravimeters) are essentially force measuring devices that sense the vertical component of the gravity f i e l d . By measuring the small force (F) exerted on a suspended mass (m), i t is possible to calculate g through the relation g = F/m. At the earth's surface, the value of g is around 980 gals*. Because i t changes by such a small amount, the unit of measurement i s usually the m i l l i g a l . In practice, we note that g can change on the order 3 2 1 of 10 mgals over the entire earth, 10 mgals within continents, 10 mgals on regional surveys and 10^ mgals in local areas. These small variations i n g have led to development of extremely sensitive instruments capable of detecting changes in the earth's f i e l d of one part in 100 million (10 mgals). The added need for portability has further restricted gravity instruments to measuring the difference in gravity (relative gravity) between successive observations. Absolute g observations are possible but add unnecessarily to the costs of the survey and supply l i t t l e useful information not already inherent in relative g observations. It i s the fluctuations i n g that are of * 2 3 1 gal. = 1 cm/sec = 10 mgals. - 18 -interest in most gravity surveys. 3.2 FIELD PROCEDURES In practice, instruments are very sensitive and they d r i f t on their own. This, combined with known earth tide fluctuations, causes the observed gravity (gQ) at any one point to change with the passage of time. In performing gravity surveys i t is therefore necessary to make observations relative to some base station located within the survey region. This base serves as an arbitrary reference, and by tying into i t at prescribed time intervals (2-8 hours, depending on the instrument) "diurnal and instrument" d r i f t can be measured and accounted for in the observed gravity maps. It i s further convenient to assign the arbitrary value 0.0 mgals to the base point. In this way g Q maps can exhibit negative and positive gravity values with no implied significance to negative gravity f ie lds . In Canada the Gravity Division in Ottawa has established a National Network of gravity base stations. The g Q values determined for this network are relat ive to the base point value in Ottawa which is t ied to the world base at Potsdam, East Germany. It is good practice to t ie survey base points to a national base station so that direct comparison can be made between survey data collected in different regions. The earth's gravity f i e l d changes by about 0.06 mgal per foot change in elevation. Gravity anomalies (fluctuations) due to ore deposits are about 1-2 mgals, and those due to batholiths about 15-40 mgals. It i s , - 19 -therefore, necessary to know the elevation of each gravity station in order that fluctuations in g Q that are due solely to elevation changes can be accounted for. This requirement to have elevation accuracies of ± .1 to ± 10.0 feet, depending on the nature of the survey, imposes a severe economic handicap on the use of gravity surveys, especially in mountainous terrains. Level surveys are necessary for measuring elevations accurate to ± 0.10 feet. Altimeters, supplemented by temperature and humidity corrections, can rarely y ie ld elevations to better than ± 5.0 feet (0.30 mgals). However, for surveys over batholiths, altimetry yields data of suff ic ient accuracy for detailed interpretation. In addition to d r i f t and elevation fluctuations, the gravity f i e l d also changes in response to density contrasts within the geologic units underlying the surveyed area. Rock densities vary appreciably and cannot be predicted as a function of their petrological c l a s s i f i ca t ion . It is therefore necessary to select a large number of representative samples from within the survey area and to measure their densities d i rect ly . As w i l l be shown in the next section, gravity, elevation and rock density measurements are each necessary in any meaningful interpretation of the observed gravity map. 3.3 THE GRAVITY MAP The observed gravity, g Q , represents the ver t i ca l component of the gravitational acceleration. It can be viewed as the superposition of at least four gravity f ie lds which are caused by the earth proper, the - 20 -regional geology, the local (residual) geology and various sources of ota+3 noise. The major problem in any interpretation of the data is to f i r s t isolate the component f i e ld of interest. (It is usually the loca l or residual geological anomaly f ie ld. ) This procedure necessarily requires modelling the f ields of non-interest and removing their components from the observed gravity map. In modelling the earth proper, the standard procedure described in most geophysics text books applies, (Grant & West, 1965, Dobrin, 1960). That i s , we calculate the theoretical f i e l d due to a "pure" upper crust earth model as : g E = g L + % A + + g T ( + g l ) * * ( 3 _ 1 ) where : g £ = calculated value of g for the pure (constant mean density) earth at the station coordinates. g^ = latitude effect at the geoid (~ MSL*) due to .earth's e l l i p t i c i t y and determined from surface measurements as represented by the International Gravity Formula. 'FA free a i r effect due to decrease of f i e l d strength as we move away from the geoid (^ MSL) and oukick'.'Ls. modelled! us'ind, a point mass source for the earth. g B S = Bouguer slab effect due to the crustal material between the geoid (^ MSL) and the observation station and modelled by a slab of material of constant density with thickness equal to the elevation of the station. g T = Terrain effect due to surface i r regu lar i t ies of the crustal material which represents a refinement of the Bouguer slab effect.. *^ MSL approximately mean sea level ** This term is usually omitted in exploration gravity surveys. - 21 -= Isostatic effect due to crustal thickness changes and warping of the geoid under mountainous regions. (See Appendix I for exact equations used in this work.) Due to the lack of information the calculation of the regional gravity f i e ld by any direct means i s generally impossible. In practice i t is usually done indirect ly by f i r s t defining the complete Bouguer gravity anomaly map (Ag) as : A g = g o - g E (3-2) The regional or background f i e l d (gD) is then estimated from the Ag map. The l i terature is f i l l e d with schemes, both quantitative and qual itat ive, for computing an estimate of g . There is no one best method however. Because the local (residual) anomalies generally are of interest, choosing g is an extremely sensitive and important step. Poor estimates of g R can lead to large errors in modelling the loca l anomalous mass sources. A combination of experience with the proper analyt ical technique usually gives the best estimates of g . With the advent of computers hand graphical methods have generally yielded to computer algorithms and f i l t e r ing techniques for separating regional, residual, and noise components. As discussed by Ful ler (1967), Clarke (1969), Ulrych (1969) and others, this "regional-residual" anomaly separation can be viewed as a l inear decomposition of the map based on the d i f fer ing frequency information deemed inherent in each component f i e l d . As shown by Figure 3-1, this view is c l a r i f i ed by examining the Fourier transform of the Ag map and - 22 -FIGURE 3-1 REGIONAL - RESIDUAL - NOISE SEPARATION GRAVITY PROFILE POWER SPECTRUM DISTANCE N FREQUENCY - f x Nyquist \S^\Z [S>> I 2 1 / ^ 'N ^ 1 - r^h r[gri+ - 23 -in particular the power spectrum, | A g | ^ , where is the modulus of the Fourier transform of the A g map. Here, - partit ioning of the A g map can lead to rea l i s t i c and meaningful separations of component f ie lds . " F i l t e r i n g " is a term used for the actual operation of anomaly separation (or enhancement). F i l ter ing can be achieved by f i r s t selecting the frequency characteristics of a weighting ( f i l te r ) function (h). The f i l te red map i s then computed either by convolution in the space domain, or by multipl ication in the wavenumber (frequency) space (Appendix II). Depending on the f i l t e r chosen, this process can decompose the Ag map into either a regional anomaly map (g^), a loca l (residual) anomaly map ( g r ) » or a data noise map (g N ). The g^ component, caused by measurement errors, d i g i t i z ing noise, very loca l sources, etc. , usually i s removed entirely from the data. This can be done by hand smoothing or by supressing a l l frequencies above a certain percentage of the Nyquist frequency (f^), (usually noise prevails above 60 - 80% of f^), as shown in Figure 3-1. In addition to separation of anomalies f i l t e r operators are designed to perform other functions. Operations such as d i f ferent iat ion, ver t i ca l continuation and the l ike can be implemented. These enhancement techniques serve as valuable aids in the interpretation of the Ag map. For example, the second ver t i ca l derivative map serves two purposes : (1) i t amplifies subtle features easi ly missed by the unaided eye. - 24 -(2) i t plots the in f lect ion points of anomalies as "zero" which aid considerably in defining geological contacts. F i l ter ing schemes used on the gravity data in this work are based on the work of Ulrych (1969) and Ager (1972). Each application d i f fers somewhat in deta i l for each case studied in Chapters 4, 5 and 6, but the concepts are similar. The regional-residual-noise anomalies were separated by convolution of the Ag maps with f i l t e r s whose spectral images are shown in Appendix II. Other schemes, such as polynomial f i t t i n g as an estimate of the regional f i e l d , are not very satisfactory for two basic reasons : (1) Often the anomaly f i e l d i t s e l f i s included in determining the regional estimate, and. (2) No allowance i s made for input of geological information. Except for the f i r s t order case polynomial f i t t i n g schemes have a tendency to introduce frequency information into the data rather than part i t ion what is there in a meaningful way. Optimum (matched) f i l t e r i n g techniques proposed by Clarke (1969) hold much promise as experience is gained on how best to use them. F i l ter ing based on the idea of dividing the anomaly map into polar (regional) and dipolar (residual) map components have been proposed by Spector (.1968) and Syberg (1972a). These approaches place some physical va l id i ty on anomaly separation and are good approaches to the problem when - 25 -l i t t l e geological information is available - such as for interpreting deep-seated sources. However, for quantitative modelling of batholiths, they appear less attractive than the direct modelling approach as w i l l be discussed later. Regardless of the techniques used, we attempt to generate an anomalous map (Ag^), eliminating the f ie lds of noninterest. In our case, for batholiths : A g A = So ~ g E " g R - % ' ( 3 _ 3 ) If our estimates of g„ , g., and g.T are reasonably accurate, then the Ag^ map w i l l be a close approximation to the actual loca l geological anomaly map (g ). It i s this map, Ag. (=g ) , that we interpret for models of batholiths. 3.4 GRAVITY IN MOUNTAINS It i s a common bel ief or, at least, i t is often implied that "reduction" of the observed gravity (gQ) to the complete Bouguer Gravity (Ag) by equation (3-2) "moves" the station and the gravity value to what would be observed on the elevation datum plane. In fact this i s not the case at a l l . From the standpoint of the modelling approach to anomaly separation (reduction) presented here, i t i s immediately clear that Ag exists at the co-ordinates of observation. This real izat ion that the anomalous f i e l d i s , in fact, located at_ the place of observation i s of fundamental importance in mountainous terrains. - 26 -As shown by Figure 3-2 , after applying a l l the "corrections" of Equation 3-1 to the observed gravity map, i t is s t i l l possible to have a buried symmetrical source with an asymmetrical anomaly. This is c lear ly due to the fact that the anomaly values are located on an irregular surface. Quantitative interpretation, based on a horizontal elevation datum assumption, w i l l lead to gross misrepresentation of the subsurface shape of the source. The additional procedure of continuation to a horizontal surface is needed to c la r i f y the anomaly and to eliminate i t s assymmetry due to irregular surface topography. If the survey area i s large and elevation changes are small, then the standard procedure for anomaly separation (Equation 3-2) works wel l . If, however, the survey area i s small and/or the elevation fluctuations are large (as in the mountains of Br i t i sh Columbia), then i f we are to find small anomalies (1-2 mgals), or i f we are to model large anomalies (15-40 mgals) from horizontal surfaces properly, the additional continuation procedure to Ag i s essential. Henderson & Cordell (1971), Parker and Klitgord (1972) and others have suggested methods for upward continuation of potential f i e l d data to the horizontal from an uneven surface. Each of these approaches require the two-dimensionality of source constraint - something that i s far from rea l i s t i c in most gravity data. Syberg (1972b) has worked out the general solution for continuation of potential f ie lds between any two surfaces. He has calculated the general form for the space operator c(x,y) as : - 27 -n z(x,y) (k(x,y) - h(x,y)) c(x,y) = — z T T T T ( V + yl + (k(x,y) - h ( x , y ) ) V where we calculate : Ag(x,y,k(x,y)) = Ag(x,y,h(x,y)) A c(x,y) (3-5) and : Ag(x,y,k) = complete Bouguer anomaly map at continued surface (e.g. horizontal plane). Ag(x,y,h) = complete Bouguer anomaly map at observation surface. c(x,y) = space operator for continuation. * = convolution operation. k(x,y) = continued surface (e.g. horizontal plane). h(x,y) = observation surface. n (x,y) = magnitude of ver t i ca l component of normal vector to the surface h(x,y) at the point (x,y). When an' accurate description of the observation surface is available, the application of Equation 3-5 to the Ag map (before the removal of the regional f i e l d and noise component) i s essential for finding small anomalies (1-2 mgal) in rugged terra in. The density prof i l ing technique of Nettleton (Grant& West, p.241) and the Minimum Correlation Terrain F i l t e r of Clarke (1971) are essential ly equivalent attempts to find a gravity map that ref lects the surface eleva-tion in a minimum way. Indirect approaches l i ke these are commonly used and seem intu i t ive ly ju s t i f i ab le . However, examples (e.g. Dunbar (1972)) have shown that use of minimum correlation techniques on the two halves of one map give different results than i f applied to the whole map at once. Discrepancies l i ke these are intolerable i f one i s to use the data for - 28 -quantitative modelling. Simply stated, interpretation of gravity data collected in mountainous regions requires a constant awareness of the fact that the data are distributed on an uneven surface. The application of correlation techniques and continuation procedures to randomly distributed data (as is common in batholith type surveys) i s not only extremely d i f f i c u l t but also leaves the interpreter- i n some doubt as to i t s va l id i ty . For the gravity interpretations presented here, straightforward and direct approaches are used which bypass a l l these d i f f i c u l t i e s . The following section discusses the procedures in some deta i l . 3.5 GRAVITY MODELLING OF BATHOLITHS In Br i t i sh Columbia batholiths generally occur in regions of f a i r l y rough terrain. Bouguer gravity, density and geology maps re f lect data collected on an irregular surface over the bathol ith. Since topographic distortions are apparent in a l l these data, the f i r s t step in any quantitative modelling procedure is to decide on what surface to represent the data, especially the Bouguer gravity map. In practice we are interested in the three-dimensional shapes of batholiths, from the surface downward. Because gravity anomalies over batholiths generally range between 15-40 mgals, there i s l i t t l e chance of them being missed. However as shown in Figure 3-2 care must be taken so as not to distort the anomaly. The obvious procedure then is not to - 2 9 -FIGURE 3-2 DISTORTED GRAVITY ANOMALY DUE TO UNEVEN SURFACE GRAVITY PROFILE . (modified of ter Henderson a Cord e l l , 1971) - 30 -attempt to continue the Ag map to a horizontal plane but instead to model the f i e l d d irect ly from the ground surface. As shown in Figure 3-3a to calculate the gravity effect of an irregular-shaped body such as a batholith i t is convenient to represent i t by a f in i te number of discrete contingent volume elements. The gravity value at any point outside or on the body is then determined by summing the effects of each volume element on that point. We can represent this modelling procedure as : A % - k H P j k G l j k (3-6) where : Ag^ = gravity value calculated for the co-ordinate (x,y,z) due to the model at i th point k = universal gravitational constant p^k = density of each volume element G. ... = geometric factor relating geometry of the volume element to the the i th gravity co-ordinate (x,y,z) N = number of volume elements In forward (direct) modelling, shape and densities of the source are estimated f i r s t , the gravity map for the model (Ag^) is calculated, and the shape-density parameters then are adjusted un t i l a "good f i t " is achieved between the Ag^ map and the Ag^ map. The problems inherent in adjusting parameters of some i n i t i a l model unt i l a "good f i t " f i na l model i s achieved have led workers to - 31 -FIGURE 3-3 MODELLING BATHOLITHS A) FORWARD calculate A g M until A g M = A g where A g ; = k 2 Z / > J k G l j k B) INVERSE solve for [J5] , given [G] f [AgJ where [Ag*] - k [/>jk][GljU] > ^ > ( • < volume element with density pik and geometric factor G ^ w r t * ' t n gravity station position. - 32 -examine the idea of inverse modelling. Here, the l inear properties of Equation 3-6 are exploited. The gravity map matrix, [ g^], i s viewed as the product of two source parameter matrices : [Ag*] - k [ p j k ] • [G. j k ] (3-7) where : ^jk^ = t * i e density matrix [G. ] = the geometry (shape) matrix i j K [Ag^] = the gravity anomaly map k = Universal gravitational constant Two dimensional solutions to Equation 3-7 have been proposed by Green (1973) and Brai le et a l (1974), for the case where the system of equations i s overconstrained. That i s , for cases where the number of data points exceeds the number of elements in the density matrix. As shown in Figure 3-3b, the idea is to f i r s t specify the space in which the source is expected to l i e , to divide this space into small contingent geometric units ([G..,]), and then to solve Equation 3-7 for a part icular density for 4 each geometric unit. The density matrix, [p..] , represents the two-dimensional density distr ibution or the model of the source. Any pract ica l inversion of Equation 3-7 requires that the Ag map be continued to the horizontal (Figure 3-4b). The added problems of contraining the density matrix to rea l i s t i c values and of solving for three-dimensional models combine to make the inversion approach to modelling very cumbersome. In this work where three-dimensional and/or - 33 -multi-density models for batholiths with an uneven top surface are required, the forward modelling method (Figure 3-3a) is by far the most attractive and simplest method of interpretation. Several computational schemes are described in the l i terature to accomplish this. Talwani (1973) gives a good summary of the numerical techniques and where best to use each method. Each batholith has an unique (and usually incomplete) set of geological and geophysical data associated with i t . Each batholith requires a part icular approach to the interpretation of these data. There is no one best forward modelling procedure for a l l cases. A modelling technique is prescribed only after analysing the geology, density, gravity and aeromagnetic map for an individual bathol ith. The basic technique involves the following : (1) Calculate the complete Bouguer Anomaly map : Ag - g Q - g E (2) Calculate (estimate) the anomaly map : A g A 8 o ~ 8 E " SR " 8N (3) Define source parameters (geometries and densit ies). Constrain the choice by geology, magnetics and density data. (4) Calculate gravity f i e ld for the model and adjust the parameters un t i l good f i t is achieved. That i s , A % * A g A - 3 4 -In a l l cases, the i n i t i a l model should be guided by geologists thoroughly familiar with the geology and tectonic framework of each batholith. Without this pooling of thought i t is impossible to construct models for batholiths that meet the stringent requirements imposed on them by a l l the known geological and geophysical data. With these thoughts in mind, we now turn to the problem of determining three dimensional shapes for three different batholiths in the Western Cordi l lera of Br i t i sh Columbia. - 35 -4. THE GUICHON CREEK BATHOLITH 4.1 INTRODUCTION The gravity work and the interpretation of the model for the Guichon Creek Batholith has been reported on previously by Ager (1972) , Ager et a l (1972), and Ager et a l (1973). The presentation of the data here is in the form of a reprint of the a r t i c le published by Ager et a l (1973). Except for a few sl ight changes in nomenclature, the text of the reprint blends well with the format of this work. The changes to note are the following : (1) "Regional Bouguer Anomaly" i s changed to read "Anomalous Gravity (Ag^) " , and (2) "Regional Aeromagnetic" i s replaced with "Smoothed Aeromagnetic". The intent of the gravity study over the batholith was to delineate a three dimensional shape for the pluton. The gravity model presented in the accompanying a r t i c l e shows a str ik ing correlation of porphyry copper mineral deposits with the core zone of the intrusion. The tectonic and economic significance of the Guichon Creek Batholith and i t s three dimensional shape w i l l be discussed in more deta i l in Chapter 7. 4.2 A GRAVITY MODEL FOR THE GUICHON CREEK BATHOLITH, SOUTH-CENTRAL, BRITISH COLUMBIA (see attached reprint of Ager et a l (1973)). P R E V I O U S L Y C O P Y R I G H T E D M A T E R I A L , L E A V E S 3 6 a - 3 6 p , NOT M I C R O F I L M E D . ( R e p r i n t e d f r o m C a n a d i a n J o u r n a l o f E a r t h S c i e n c e s , v o l . 1 0 , n o . p a g e s 9 2 0 - 9 3 5 . 1 9 7 3 . ) 36a Repr in ted from: Canadian j o u r n a l of Ea r th Sc iences . Volume 10, number 6, pages 920-935. 1973. A Gravity Model for the Guichon Creek Batholith, South-central British Columbia C . A . A G E R A N D T . J . U L R Y C H Department of Geophysics and Astronomy, University of British Columbia, Vancouver, B.C. A N D W . J . M C M I L L A N British Columbia Department of Mines and Petroleum Resources, Victoria, B.C. Received July 17, 1972 Revision accepted for publication March 6, 1973 The Guichon Creek batholith, located in south-central British Columbia, contains several large, low-grade copper deposits of considerable economic importance. A three dimensional model for the batholith has been proposed on the basis of a gravity survey conducted in 1971. Its gross shape can be likened to that of a flattened funnel-like structure with a tilted spout. The distribution of mineral deposits appears to be spatially related to the surface projection of the core of the batholith. . Le batholithe de "Guichon Creek", situe au centre-sud de la Colombie Britanique, renferme plusieurs grands depots de cuivre a faible terieur ayant une importance economique considerable. Les auteur.s proposent un modele en trois dimensions de ce batholithe en se basant sur les releves gravimetriques effectues en 1971. En gros, il a la forme d'un entonnoir applati dont on aurait tordu le bee. La repartition au sol des depots mineralises correspond a la surface de projection du centre du batholithe. [Traduit par le journal] Introduction The Guichon Creek batholith (Fig. 1), lo-cated in south-central British Columbia, has attracted much attention in recent years. De-velopment of the large low-grade Bethlehem copper deposit in the batholith during the 1950's led to a mining boom unparalleled in the history of British Columbia. Several other large, low-grade, copper deposits have subse-quently been delineated and brought to various stages of production. Naturally, interest in the structure and the genesis of the batholith has been intense. : In response to this interest, many detailed geologic investigations have since been under-taken by various workers—noteworthy studies being the published work of Carr (1966), Northcote (1969), and the current work of McMil lan (1971, 1972). As a result of this collective effort, the surface geology of the batholith and its ore deposits is becoming relatively well known, but its vertical extent remains unknown. A three dimensional model for the batholith was desired. For this reason, a gravity survey was conducted along selected traverses over the batholith in the summer of 1971. Interpre-tation of the Guichon's Bouguer anomaly map has allowed a determination of a gross shape which is consistent with all known geological and geophysical data. The gravity model may be of considerable importance in evaluating the emplacement of the batholith and its re-lated ore deposits. Geological Setting Geography and Topography The Guichon Creek batholith underlies an area of approximately 400 mi.- (1036 km 2 ) within the interior plateau of British Columbia. The batholith is bounded by the Thompson River, Nicola River, and Guichon Creek valleys (Fig. 1). The geographic coordinates of the center of the batholith are 5 0 ° 3 0 ' N , 121 °00 ' W. The generally semi-arid climate of the region causes the vegetation to be sparse with occasional thick stands of timber. Much of the area is covered by deposits of glacial material laid down during Pleistocene time. The thick ice sheets overrode the highest peaks (6000 ft (1830 m ) ) , rounding their tops and deepening existing valleys, as they moved Can. J. Earth Sci.. 10. 92IMI973) 36b ACER ET AL.: GRAVITY MODEL 921 sco'e scote I I I I — S T - . - -a kilometer* FIG. 1. Location map and simplified geology of the Guichon Creek batholith. 36c CAN. J. EARTH SCI. VOL. 10. 1973 922 to the southeast. The ablation of the ice fields resulted in the formation of many cold water lakes and swamps by trapping the melt water in scoured depressions dammed by glacial debris. As a result bedrock exposures are not numerous; outcrops occurring on less than 3% of the batholith. Geology The Guichon Creek batholith is a semi-concordant dome that is elongated slightly west of north. It intrudes sedimentary and volcanic strata of the Permian Cache Creek and Upper Triassic Nicola Groups and is unconformably overlain by sedimentary and volcanic strata ranging in age from Middle Jurassic to Middle Tertiary. The batholith appears to be bounded on the east and west sides by faults of regional extent. In plan, Fig. 1, the batholith is composed of several nearly concentric phases which have contacts that may be sharp locally but are generally • gradational-. Extensive potassium- • argon dating has shown that all phases began retaining argon at approximately the same time, 198 ± 8 m.y. ago (Northcote 1969). How-ever, geological data indicate that phases are progressively younger from the border of the batholith inward. The phases of the batholith are separable on the basis of compositional and textural criteria (Northcote 1969, McMi l l an 1972). From the oldest to the youngest, the following phases are distinguishable: (1) the border, Hybrid phase, which is highly variable to uniform in composition as a result of contamination by adjoining country rock. It is typically rich in mafic minerals, (2) the Highland Valley phase which consists of the Guichon and Chataway granodiorites. The Guichon granodiorite has 15% mafic minerals which occur as unevenly distributed clusters of anhedral grains, whereas the Chata-way granodiorite has 12% mafic minerals and is characterized by blocky, evenly distributed mafic crystals, (3) the Bethlehem phase granodiorite has 8% mafic minerals. It characteristically has 3% of irregularly distributed coarse-grained poikilitic hornblende crystals in a matrix containing evenly distributed fine to medium-grained mafic crystals, and (4) the core of the batholith is composed of the Bethsaida phase quartz monzonite which has 6% mafic minerals. It is characterized by coarse-grained subhedral quartz phenocrysts and coarse-grained biotite books. A period of extensive dike-emplacement followed the in-trusion of the Bethlehem phase and a lesser period followed the Bethsaida phase. The Gravity Survey The gravity survey was conducted and the observations reduced according to National Standards as defined by the Gravity Division, Earth Physics Branch, Department of Energy, Mines and Resources, Ottawa, Canada. Three traverses over the central portion of the Guichon Creek batholith were selected on the basis of the mapped geology and accessi-bility by four wheel drive vehicle. Gravity observations were taken at 0.5 mi (0.8 km) intervals along two east-west and one north-south line (Fig. 3) . The gravity observations were made using a Worden Master gravity meter (no. W546) with scale constant 0.39937 mgal/scale division and reading accuracy of 0.10 scale divisions. Drift control was maintained by tying into a base station network within each four hour interval. Station elevations (above mean sea level) were measured to an accuracy of ± .10 ft (0.03 m) using a Jena Automatic Level. Rock Densities Rock samples were collected from 85 out-crops along and around the survey routes. Three samples were selected at random from each outcrop. Bulk densities were measured using a Mettler balance. The value assigned to each outcrop was the average density of the three samples. These densities were plotted along with over 1600 other measurements made by F . Karpick of the B . C . Department of Mines and Petroleum Resources on samples from the batholith. The contoured density map of the Guichon batholith is shown on Fig. 2. The mean density of rocks weighted by area for the surveyed region is 2.72 g /cm 3 . Rock densities generally increase from younger to older rock phases. However, to a first approxi-mation, only two major divisions of the batho-lith can be made on the basis of density. They are: AGER ET AL.: GRAVITY MODEL FIG. 2. Density map of rocks of the Guichon Creek batholith, contour interval 0.03 g/cnr 36e 924 CAN. J. EARTH SCI. VOL. 10, 1973 TABLE J. Summary of errors involved in calculating the Bouguer anomaly for each station Source of error Amount of error Range of error for survey Mean error for survey RMS error* for survey Observation Sensitivity Drift Calculation Latitude Elevation Terrain + 0.1 scale divisions ~ ± 0 . 0 4 mgal 10% of drift** ± 150 f t — ±0.04 mgal ±0.10 ft ~±0.006 mgal 14% of terrain effect + 0.04 mgal ±0.0001 to + .065 mgal ±0.04 mgal ±0.006 mgal ± . 17 to ±3.58 mgal ±0.04 mgal + 0.02 mgal ±0.04 mgal ±0.01 mgal ±0.66 mgal *Mean error is calculated to nearest .01 mgal. **Drift corrections were considered to be in error by a maximum of 10% of the effect for each station. + 0.66 meal (1) the Hybrid phase and country rocks, and (2) the Highland Valley, Bethlehem, and Beth-saida phases. Gravity Corrections The usual latitude, free air, Bouguer, and terrain corrections were applied to the gravity data. The Bouguer and terrain densities were taken.to be the average upper crustal density of 2.67 g/cm 1 1. Terrain effects ranged from 1.17 to 25.60 mgal, with an average of 4.70 mgal. The R M S error for the Bouguer anomaly at the gravity stations was determined to be ±0 .66 mgal (Table 1). Full details of the procedures used in reducing the gravity data are given by Ager (1972). Data Enhancement Techniques Interpolation to a Square Grid Since the batholith cannot be treated as two dimensional in cross section with infinite length, it is important that interpretation be done in a three dimensional sense. From a digital stand-point, this requires that the data be distributed on a regular grid. The corrected gravity, or Ag, values at the 205 survey stations together with several re-gional observations supplied by the Gravity Division were interpolated to a 1 mi X 1 mi (1.6 km X 1.6 km) square grid. The value assigned to a grid intersection by the interpola-tion algorithm was the average of the nearest values in each octant that have been weighted by 1/d'-, where d = distance from the data point to the grid intersection. The interpolated map was then smoothed with a low pass filter (Ulrych 1969) to suppress near surface and interpolation effects. The resulting Regional Ag Map is shown in Fig. 3. The contours are considered meaningful only near gravity sta-tions. In other regions they represent only an . approximation to the anomaly field, but are, however, required for a meaningful three di-mensional interpretation. The Initial Model of the Batholith Two. lines of approach were used to define the initial model which was tested against the results of the gravity survey. The first line was geological, the second geophysical. Flow folia-tions and the surface geology were used to suggest east-west and north-south profiles. From the half-width gravity profile, and by ' considering the second vertical derivative, it was possible to estimate the sense and dip of the contact of the Hybrid phase with younger phases of the batholith (Fig. 4 ) . (For details of this procedure see Bott (1962) and Ager (1972).) On the basis of the density map (Fig. 2) the following approximations appeared valid: (1) the Hybrid phase and older country rock can be treated as a single density-unit, (2) the grouped Highland Valley, Bethlehem, and Bethsaida phases can also be treated as a . single density unit, and (3) the density contrast between these two units ranges between —.10 and —.15 g/cm 3 . In order to gain further insight into the sub-surface nature of the batholith, published 1-mi (1.6-km)-scale aeromagnetic maps of the batholith were digitized by a 1 by 1-mi (1.6 by 1.6-km) interval. The derived total aeromagnetic field map and derived regional and second vertical derivative aeromagnetic maps are pre-sented on Figs. 5, 6, and 7. These maps were ACER ET AL.: GRAVITY MODEL 925 FIG. 3. Regional Bouguer anomaly map, 0.5 mgal contour interval. 36g FIG. 4. Data compilation plan showing the relationship between density, Highland Valley and younger phases contact, regional Ag second derivative zeros and peripheral magnetic highs. FIG. 5. Total aeromagnetic field map of the Guichon Creek batholith derived by digitizing published aeromagnetic maps, contour interval 2 0 0 7 . 928 CAN. J. EARTH SCI. VOL. 10. 1973 0 S 16 Kole i. . i i ... I - " — f c r l o m e f e n FIG. 6. Regional aeromagnetic map of the Guichon Creek batholith derived by filtering the total aeromagnetic field map, contour interval 200 y. AGER ET AL.: GRAVITY MODEL FIG. 7. Second vertical derivative aeromagnetic map of the Guichon Creek batholith derived by filtering the total aeromagnetic field map, contour 200 7/mi2. 36k 930 CAN. J. EARTH S derived by using filters described by Ulrych (1969). No attempt was made to interpret the magnetics quantitatively. However, the mag-netic information which is pertinent to the gravity model is as follows: (1) a halo of magnetic highs partially encloses the grouped younger phases. Thus the grouped younger phases and the Hybrid phase are mag-netically distinct; (2) the existence of these peripheral highs suggests that the batholith can be considered as a dipolar source. If this is true, then it is relatively shallow. The highs to the west have higher magnitude, therefore, the batholith prob-ably deepens to the east; (3) the zero trace of the second derivative also suggests that the Hybrid and younger phases are magnetically distinct. From the geological and geophysical data, the batholith is envisaged to be a funnel-shaped body with contacts that dip steeply eastward on the east and west edges, steeply northward on the south edge, and vertically on the north edge. The contact of the east edge is postulated to change to a moderate westward dip at depth (Fig. 4 ) . To facilitate calculation of the vertical com-ponent of the gravitational effect at each sta-tion, the model was divided into thin horizontal polygonal (12 sided) sheets at depth intervals of 1 km. The gravitational attraction of each sheet was computed using the well known Talwani and Ewing (1960) method and the effect for the body was found by summing the contributions of the sheets. The depths and the coordinates of the vertices of each sheet were adjusted and the model recomputed until an rms error fit of less than 0.90 mgal was ob-tained for the 205 gravity stations that were actually observed. The rms error fit for all the 1160 grid points of Fig. 3 was 3.81 mgal. Model of the Batholith Gross Shape A l l attempts to build a single density model with density contrast greater than —0.12 g /cm 3 failed to fit the gravity map with the neces-sary sharpness of detail. Density models with contrasts of —.13 and —.15 g /cm 3 which give a good fit to the gravity data are shown on Figs. 8 and 10. Both models suggest that the batholith is a. flattened funnel-shaped : i . VOL. 10, 1973 body. The spout of the funnel underlies High-land Valley and it plunges at about 7 5 - 8 0 ° . toward the northeast. The average depth is about 6 km, except in the central core where the depth is more than 12 km. Either of these models may be taken as support for the hy-pothesis that the batholith is tilted to the west-southwest. The Calculated Gravity Map The calculated gravity map for the batho-lith model is shown on Fig. 9. Care was taken to fit the data along gravity traverses. In other areas, especially peripheral to the batholith source and where observations are sparse, the model represents only an estimate. In the central region, the — 30-mgaI contour could only be approximated. In order to obtain a better fit, the addition of a near surface source is required. The discrepancy may be caused by thick overburden in the valley of Witches Brook. This feature appears to be of little importance in calculating the gross shape of the batholith. The large inflection in gravity contours to the north can be attributed to the anomaly caused by the overlying Kamloops volcanic rocks. To include this effect, the outcrop trace of the Kamloops Group was approximated by a 12-sided vertical prism and its gravity effect calculated as before and included in the com-puted Ag map. The density of the volcanic rocks was estimated from measurements on collected rock samples to be 2.60 g /cm 3 . The average depth of the group was found by trial and error to be about 1 km (see Fig . 8 ) . Calculated and Bouguer (regional) gravity anomalies together with depth profiles for sec-tions A - A ' and B - B ' are shown on Figs. 10a and 10b. Along these lines the fit is extremely good as evidenced by the comparison of the computed points with the actual Ag values. The fit of the north end of section B - B ' could be improved by thinning the Kamloops volcanic cover near B . The discrepancy between regional and calculated Ag at the south end of B - B ' is probably a result of interference caused by the Coyle granite which outcrops south of B ' . Relationship of Ore Deposits to Gross Shape Figure 8 locates the major ore deposits in Highland Valley; Bethlehem Copper, Valley Copper, Lornex, Highmont, and Bethlehem's 361 FIG. 8. Gross shape plan of the Guichon Creek batholith for P = interval 2 km. —0.13 g/cm', contour 36m 932 CAN. .1. EARTH SCI. VOL. 10, 1973 FIG. 9. Calculated Ag anomaly map for the model of the Guichon Creek batholith, in-cluding the effects of the overlying Kamloops volcanics to the north, 5 mgal contour interval. newly discovered J A deposit..The ore deposits are strikingly related to the surface projection of the batholithic core zone delineated by the gravity survey. Geological examination has shown that for at least Valley Copper, High-mont, Lornex, and probably the J A deposit, mineralization postdates emplacement of the Bethsaida phase. A t least for these deposits, it is postulated that metal-rich fluids, which were derived from the Bethsaida phase melt as it crystallized, accumulated under a cap of crys-talline Bethsaida quartz monzonite. Subse-A | -10 -20--30-Ag( regional value derived by filtering the complete Bouguer anomaly ' > O m > < surface (4055 f I Highland Volley ond younger phases FIG. 1 0 . A. Depth-gravity section A-A' looking northerly. 2 O o m r ON 3 36p AGER ET Al..: GRAVITY MODEL quently, conduits formed, in part as a result of faulting, and ore deposits were formed in the shattered and brecciated conduits by the metal-rich fluids moving upward through them. The process would likely be periodic with volatiles accumulating, being released, then accumulat-ing again. Conclusions On the basis of the gravity and density data, only two subdivisions of the batholith appear justified: (a) the Hybrid phase and country rock and (b) the Highland Valley, Bethlehem and Beth-saida phases. Possible density models, based on the in-terpretation of gravity data, have been sug-gested for the Guichon batholith. Its gross shape can be likened to that of a flattened funnel-like structure with a tilted spout. The depth of the central core is at least 12 km. The models are tilted about 10°—15° from the vertical and plunge in an east-northeast direc-tion. A n estimate of the average depth of the Kamloops volcanics overlying the north edge of the batholith was made from the regional g map. Using P = 2.60 g/cm 3 , a depth of 1.0 km was determined. The application of linear filter operators greatly enhances the interpretation of potential field data and provides a useful means of anomaly separation. This is most clearly evi-dent on the regional magnetic map, Fig. 6, where resolution of regional magnetic features is remarkable. Another example is the use of the second vertical derivative map in defining the boundary of the source (Fig. 4 ) . In par-ticular, it suggests that the batholith terminates rather abruptly to the north, where it is covered by Kamloops volcanic rocks. Probably the most important result of this study in terms of ore search is shown in Fig. 8. Here a striking correlation between the spatial 935 relationship of the porphyry copper deposits and the core of the batholith has been dis-covered. These results point to possible value of using high precision regional gravity studies to delineate areas of higher than average eco-nomic potential in the search for large, low-grade ore deposits related to batholiths. Acknowledgments We are indebted to the Gravity Division, Geological Survey of Canada, Ottawa, for supplying instrumentation, computer time and expert advice. In particular, we would like to thank Drs. R. A . Stacey, J. B . Boyd, and R. V . Cooper for their unselfish technical support during the course of the survey. We thank Dr. A . Sutherland Brown and Dr. W. F. Slaw-son for initiating the project, the B . C . Depart-ment Of Mines for their major financiarsupport, and Bryan Lee for his excellent field-assistance. G . A . Ager and T. J . Ulrych gratefully acknowledge the financial assistance of the National Research Council of Canada. ACER, C. A. 1972. Gravity model for the Guichon Creek batholith. Unpubl. M.Sc. thesis, Dep. Geophys. Univ. B.C. Borr, M. H. P. 1962. A simple criteria for interpreting negative gravity anomalies. Geophysics 27, pp. 376-381. CARR, J. M. 1966. Preliminary Map, Highland Valley Area. B.C. Dep. Mines and Petrol. Res. MCMILLAN, W.J. 1971. Preliminary Map 7. Highland Val-ley. B.C. Dep. Mines and Petrol. Res. 1972. Highland Valley. In: 24th 1GC Guidebook to Field Excursion A09-C09, C. S. Ney, and A. Suther-land Brown (Eds.), pp. 53-69. NORTHCOTE, K. E. 1969. Geology and geochronology of the Guichon Creek batholith. B.C. Dep. Mines and Petrol. Res., Bull..56. TALWANI, M. and EVVING, M. 1960. Rapid computation of gravitational attraction of three dimensional bodies of arbitrary shape. Geophysics 25, pp. 203-225. ULRYCH, T. J. 1969. Wavenumber domain analysis and design of potential field filters. Proceedings of a Sym-posium on Decision-Making in Mineral Exploration II, Univ. B.C. - 3 7 -5. THE HOGEM BATHOLITH 5.1 INTRODUCTION The Hogem Batholith (Figure 5-1), which is within the Quesnel Trough (Roddick et a l , 1967) region of north-central Br i t i sh Columbia, has been subjected to an extensive mineral exploration program in recent years. The development of large copper-molybdenum deposits in the southern part of the Quesnel Trough in the 1960's supplied incentive for detailed inves t i -gation of the Hogem batholith as a possible source for.more ore deposits. Early geological work of Armstrong (1949) and Roots (1954) was expanded by Garnett (1972, 1974). During this period numerous mining companies have spent large sums of money investigating the mineral potential of the batholith. Despite the intensity of search, major ore deposite have not yet been developed within the Hogem batholith. This lack of economic success within a plutonic complex of apparent economic potential has naturally led to serious questions concerning the genetic history of the batholith and i t s ab i l i t y to concentrate mineralization. In order to understand bathol ithic intrusion, some three-dimensional insight was obviously was required, and, to this end, a gravity survey was conducted over the batholith in the summer of 1972. Interpretation of the Bouguer anomaly prof i les has delineated three-dimensional shapes for various sections of the Hogem. The gravity model, coupled with geological and geochronological data, provides considerable evidence for evaluating the genesis of the batholith and i t s related mineral deposits. - 3 8 -BRITISH COLUMBIA, CANADA FIGURE 5-1 200 SCALE Miles LOCATION MAP Hogem Batholith - NTS 93f^94C May 1974 - 39 -5.2 GEOLOGICAL SETTING The Hogem batholith is the largest body of exposed intrusive rock within the Swannell Ranges, a subdivision of the Omineca Mountains (Holland, 1964). The southern section of this body covers the central portion of the Manson Creek Topographic Sheet (NTS 93N). Generally, the terrain i s mountainous, with peaks to 6,600 feet and valley bottoms as low as 3,000 feet. Access to the eastern margin of the batholith i s by road from Fort St. James through Germansen Landing, and by a four-wheel drive road from Manson Creek to Takla Landing. In general, outcrops are sparse except along ridges. Access is l imited and d i f f i c u l t . The Hogem batholith occurs within a narrow belt of Lower Mesozoic volcanic rocks lying between highly deformed Proterozoic and Paleozoic strata to the east, and deformed Upper Paleozoic strata to the west. The Pinchi Fault Zone is the main structural feature of the Hogem area, (Figure 5-2), separating Permian rocks (Cache Creek Group) on the southwest from Upper Tr iass ic rocks (Takla Group) on the northeast. Geological mapping indicates that the batholith i s an assemblage of various plutonic units ranging from d i o r i t i c to granitic to syenit ic, Figure 5-2. Boundaries between mapped units are mainly gradational. The composite nature of the intrusion is exhibited by syenit ic and granitic units (Units 8,9) which c lear ly cut surrounding intrusive rocks. Tentative conclusions by Garnett (1974) for the southern half the batholith are : - 40 -GEOLOGY MAP - 41 -FIGURE 5-2b GEOLOGIC UNITS  H O G E M B A T H 0 L I T H L- CRETACEOUS Granite L -M JURASSIC 8 q 1 Duckling Creek Syenite Complex 8 b 1 Biotite syenite, quartz syenite JURASSIC HOGEM GRANODIORITE, granite 6Q'M Monzonite; b) Quartz monzonite 50^ )1 CHUCHI PLAGIOCLASE PORPHYRY a) monzonite b) syenite Monzodiorite 4 a 4 b 1 TCHENTLO MONZODIORITE 4 c I Quartz monzodiorite 3aJ>] Dioritej a)mesocratic bjleuocratic U- TRIASSIC TAKLA VOLCANIC SEQUENCE PERMIAN CACHE CREEK limestone I - 42 -(1) The major intrusive units of the Hogem batholith were emplaced as a differentiated mass approximately 189 my. ago and were essential ly barren of s ignif icant sulphide mineralization. (2) At least two s ignif icant periods of mineralization have been determined. One period is represented by copper mineralization direct ly associated with syenites intruding major units of the Hogem approximately 175 my. ago. The second period is represented by copper and/or molybdenum mineralization associated with fractured and. altered zones within granitic rocks which also intrude major units of the Hogem. A possible date for this event is approximately 121 my. ago. 5.3 THE GRAVITY SURVEY The-gravity survey was performed to the National Standards of the Gravity Division in Ottawa. Three eastwest traverses over the central part of the Hogem batholith were selected on the basis of the geology and the access ib i l i ty by either four-wheel drive vehicle or hel icopter. Additional gravity stations were observed along other interconnecting roads to provide some regional control for data interpretation. Gravity observa-tions were made at spacings of 0.25 miles along traverses. (See Figure 5-4). Observations were made using a Worden Master gravity meter (No. W546) with 1972 scale constant of 0.39910 mgal/scale divis ion and reading accuracy of - 43 -0.10 scale divis ions. Dr i f t control was maintained by tying into a base station network within each four hour interval . The base network was established by Walter Burke of the Gravity Divis ion, using helicopter ex-center t ies to the National network station at Germansen Landing. A LaCoste and Romberg gravity meter (reading accuracy of better than ± 0.02 mgals) was used for this work. Station elevations were measured using a pair of Wallace and Tiernan altimeters with a reading accuracy of ± 2 f t . By double running each survey traverse between elevation control points and by making temperature and relat ive humidity corrections to each of the four eleva-tions, average elevations accurate to better than ± 10 f t . were determined for the gravity stations. 5.4 ROCK DENSITIES Rock samples representing the major geological rocks -were collected from the Hogem batholith and adjoining country rocks. Bulk densities were measured for each sample suite using a Mettler balance. Measurements were done by Analytical Branch, B.C. Dept. of Mines & Petroleum Resources. These density values, over 750 in to ta l , were plotted and contoured to provide the density map for the central part of the Hogem batholith, Figure 5.3. The rock densities vary appreciably within and between major units of the Hogem plutonic complex. As wel l , there is considerable density contrast between the bathol ithic units and the surrounding country rocks. Based on density, the following major divisions > 7 5 0 samples + sample sites contour interval =0.50 g / c c DENSITY MAP (u , 4 Ml , £ H O G E M BATHOLITH N T S 9 3 N , 9 4 C scale l" = 4mi date May 1974 FIGURE 5-3 - 4 5 -are made : (1) Cache Creek rocks, p = 2.67 (2) Takla volcanic rocks, p = 2.87 - 2.92 (3) Hogem batholith ; (a) Syenitic units, p = 2.57 - 2.58 (b) Granitic units, p = 2.62 - 2.63 (c) D io r i t i c units, p = 2.80 - 2.85 . As w i l l be demonstrated in the modelling section, the large surface extent of geologic divisions (and hence, density divisions) does not necessarily imply any great depth extent to these same rocks. The density divisions are based on the large bulk (three-dimensional) extent of the various rocks as determined from the density map. 5.5 ANOMALY SEPARATION The earth's gravity f i e l d (g„) was modelled and removed from the g Q map using the standard procedure of Appendix I. No attempt was made to estimate the isostat ic f i e l d because this component i s , in fact , part of the batholith f i e l d . The Bouguer and Terrain densities were taken to be 2.67 gm/cc, which corresponds to the average upper crustal density and to the bulk density of the Cache Creek host rocks. Terrain effects were calculated from 1 : 250,000 elevation maps using the procedure outlined by Ager ^1972). Table 5-1 gives a summary of the errors involved in calculating the earth's f i e l d , and hence also the Bouguer anomaly map (Ag), - 46 -where Ag - g Q - g E . (5-1) TABLE 5-1 Source of ,. „ .. Mean error RMS error* Amount of error Range of error error for survey for survey Observation Sensitivity ± 0.1 scale div. ^ ± 0.04 mgals ±0.04 mgal ±0.04 mgal Drift 10% of d r i f t * * - .06 to ±0.03 mgal + .03 mgal Calculation Latitude ± 250' ^  .06 mgal ± .06 mgal ± .06 mgal Elevation ± 10 f t ^  .60 mgal ± .60 mgal ± .60 mgal Terrain 20% of effect** ± .08 to ± .46 mgal ±0.76 mgal ±1.57 mgal Mean error i s calculated to nearest 0.01 mgal. ** Drift and Terrain corrections were considered to be in error by a maximum of 10% and 20% respectively of the effect for each station. - 48 -Figure 5-4 represents the complete Bouguer anomaly map (Ag) covering the central part of the Hogem batholith. Contours are considered meaningful only near gravity stations. In other regions, they represent only an estimate and are presented for visual insight into the behaviour of the gravity f i e l d between traverses. The Ag map, Figure 5.4, i s relative to the survey base point at Old Hogem where the Ag value i s set =0.0 mgal. The Network complete Bouguer gravity value at Old Hogem is - 132.67 mgals, with g Q = 981,293.03 mgals. Since economics prevented better sampling, -interpretation w i l l be restricted to three east-west profiles, as shown on Figure 5-4. For convenience of reference these cross sections w i l l be referred to as Ha-Ha Creek (AA'), Old Hogem (BB') and Kwanika Creek ( C C ) . The regional component (g_) i s a qualitative judgment and was K estimated directly for each gravity p r o f i l e . 5.5.1 HA-HA CREEK (PROFILE AA') Examination of the aeromagnetic map (Figure 5-6) indicates the presence of magnetic rocks on the west end of the p r o f i l e as well as adjacent to the Pinchi fault. Garnett (1972, 1974) has correlated these mag-netic highs with d i o r i t i c rock units on the east side of the Pinchi fault, and has used the magnetic data to project the unexposed boundaries of these rock units under the overburden, Figure 5-2. They are surrounded by less dense rocks and therefore should exhibit a gravity high i n the v i c i n i t y of - 50 -the Pinchi fault. This expectation, coupled with the fact that the "basic" rocks to the west of the fault are close enough to cause some gravity interference near A, has led to the estimate of the regional gravity f i e l d at -4.8 mgals as shown on Figure 5-5a. The shift i n gravity values across the batholith and onto the Takla volcanics i s interpreted to be caused by the batholithic units and the Takla rocks overlying Cache Creek rocks. 5.5.2 OLD HOGEM (PROFILE BB') The west end of pro f i l e BB' l i e s i n an aeromagnetically f l a t region (Figure 5-6) of Cache Creek rocks (Figure 5-2). There are several stations along the Pinchi Fault as the traverse covers the region to Old Hogem. Garnett (1972, 1974), has mapped a s l i c e of Takla volcanic rock overlying a narrow unit of d i o r i t i c rocks which would imply a slight gravity high i n this section of the traverse. To the east of Old Hogem, along the Omineca River, less dense batholithic units are bordered by Takla volcanic rocks which i n turn overly Cache Creek rocks such as those exposed near Germansen Landing. The dramatic s h i f t i n gravity values between Cache Creek and Takla rocks can be attributed to a thickening of the volcanic rocks and to the presence of a border d i o r i t i c unit, and i s not attributed to any gross change in the geological basement topography. This interpretation i s consistent with the aeromagnetic profile along the traverse, Figure 5-5b, which reveals the border units of the batholith with l i t t l e indication of a gross change in the regional magnetic component. - T S -- 52 -Hence, the g R value for this traverse was estimated to be 6.0 mgals, as shown on Figure 5-5b. 5.5.3 KWANIKA CREEK (PROFILE CC') Inspection of the aeromagnetic map (Figure 5-6), as well as the magnetic pr o f i l e (Figure 5-5c), indicates the presence of weakly magnetic rocks near the west end of section CC'. The lack of gravity response over the feature suggests that the density of the rocks i s essentially that of Cache Creek. The magnetic high along the eastern edge of the Pinchi fault zone correlates well to a gravity high . Garnett (1972, 1974) has mapped this unit as d i o r i t i c . The shift i n magnitude of the gravity along the rest of the pr o f i l e i s i n accordance with the mapped density of the surface rocks. The major shift i n gravity values over the Takla contact i s interpreted from the magnetic data (Figure 5-5c) as due to a d i o r i t i c unit underlying the Takla volcanic rocks, both of which overlie Cache Creek rocks. The regional gravity value assigned to this traverse i s 8.0 mgals as shown on Figure 5-5c. The "high frequency" information superimposed on the gravity profiles i s attributed to near surface sources and to observation and calculation errors. It represents the "noise f i e l d " , g^. This f i e l d component was removed by applying a low pass f i l t e r (see Appendix II) to each p r o f i l e . o OB IM < Q -J bl 2 o T400H 6900H 6 4 0 0 H o e o o H 8 4 0 o J 3 e 5 I 19 id z 1 >• o © III o Ul o <J1 L O SCALE - MILE8 FIGURE 5-5c AEROMAG/GRAVITY SECTION KWANIKA CREEK H O G E M BATHOL ITH NTS 93N. 94C scale l u - 4 mi date May 1974 - 54 -As mentioned previously, iso la t ion of the 'anomaly' CAg )^ to be modelled depends c r i t i c a l l y upon estimates of the earth's f i e l d , the regional geological f i e l d and the noise f i e l d . For the Hogem bathol i th , careful consideration i s given f i r s t to the magnetic, gravity, density, elevation and geological data before reasonable anomaly prof i les can be estimated. This approach necessitates a mixture of analyt ical techniques and qualitative judgment. Any r e a l i s t i c modelling of the bathol i th depends heavily on the accuracy of the assumptions under which th is anomaly map (Ag^) i s generated. The Ag^ prof i les are presented in Figures 5-5a, 5b and 5c. 5.6 THE INITIAL MODEL OF THE BATHOLITH The Hogem batholi th i s a composite pluton. By inspection of the aeromagnetic map and the derived smoothed and second derivative maps (Figures 5-6, 5-7 and 5-8) the following features are observed : (1) The Pinchi Fault zone i s marked by a steep magnetic gradient, and i s pinpointed on the ground by the zero trace of the second derivative map. This corresponds well with Garnett's geology map, Figure 5-2, and i s therefore taken to be the western boundary of the bathol i th. SMOOTHED AEROMAGNETIC MAP HOGEM BATHOLITH N T S -93N, 9 4 C scale I * 4 m i date May 1974 Note: filtered aeromagnetic map using Ulrych low pass filter with f c - .25 cyc les /data interval ..... data interval * 1/2 mi X 1/2 mi ; -contour interval = 2 0 0 gammas FIGURE 5-7 • a v ft U SECOND DERIVATIVE MAP H O G E M BATHOLITH NTS 9 3 N , 9 4 C scale l " - 4 mi date May 1974 Note: filtered aeromagnetic map using Rosenbach operator on smoothed aeromagnetic map . data interval = 1/2 ml X 1/2 mi contour interval * 2 0 0 X m i 2 FIGURE 5-8 "8. - 58 -(2) The eastern boundary of the batholith i s not distinguish-able on the basis of magnetics alone. In the northeast sector, the boundary i s marked by a sharp magnetic gradient. In the central regions, the magnetic character is scrambled, but does suggest underlying basic rock. In the southeast section, the elongated high delineates an eastern section of the batholith s t i l l mostly buried beneath the Takla volcanic rocks. (3) Within the batholith i t s e l f , d i o r i t i c (magnetic) units of the batholith are readily distinguishable. The geological contacts correspond well with the 'magnetic* contacts and serve as an i n i t i a l division of the batholith into separate units, Figure 5-9. By correlating the density, geology and magnetic data we arrive at an i n i t i a l surface division of the batholith and host into separate density units, Figure 5-9. The subdivisions so outlined are referred to as Cache Creek, Takla, D i o r i t i c , Granitic and Syenitic. The relative densities assigned to each division are shown on Figure 5-9. How these density subdivisions behave with depth i s defined as the modelling problem. I t i s the three dimensional geometry of these density subdivisions that w i l l be determined. The elongated nature of the batholith, combined with the fact that gravity data are restricted to three main profiles, allows and necessitates that modelling in this case be done i n a two-dimensional - 59 -DENSITY SUBDIVISIONS OF HOGEM AND ADJOINING ROCKS SCALE - MILES F I G U R E 5 -9 - 60 -sense. To calculate the vert i c a l component of the gravitational effect at each station, the model cross-sections were approximated by polygonal bodies. The gravitational attraction for each density subdivision was computed using the method of Taiwan! (1973), (see Appendix III). The effect for the entire cross-section at each station was determined by summing the contributions of each density subdivision. The coordinates of the vertices of each polygon were adjusted and the model recomputed u n t i l a suitable f i t was made to the gravity values along each of the three traverses. Table 5-2 gives a summary of RMS errors. upper boundary of the polygons and as the points for which model gravities were calculated. In this way, distortions are not introduced i n the modelling procedure as discussed i n Chapter 3. It should be noted that surface elevations were taken as the TABLE 5-2 PROFILE NO. OF STATIONS RMS ERROR OF MODEL Ha-Ha Creek 28 1.50 mgal Old Hogem 20 0.81 mgal Kwanika Creek 20 1.13 mgal - 61 -5.7 MODEL OF THE HOGEM BATHOLITH The Gravity Models computed for the Hogem Batholith are shown in Figures 5-10,5-11 and 5-12. Because the modelling was restricted to the three gravity profiles, each depth section model for the batholith w i l l be discussed separately. 5.7.1 HA-HA CREEK MODEL (figure 5-10) The major feature of the HA-HA pro f i l e i s a gravity low over the granitic unit (density contrast - .04 g/cc). A l l attempts to f i t a model with density contrasts greater than - .10 g/cc i n this section of the profile failed to f i t the data with the necessary sharpness of d e t a i l . (A deep granitic unit (- .04 g/cc) generates a gravity anomaly much too broad to f i t the sharpness of the gravity profile.) This implies that the depth extent of the exposed granitic unit i s shallow... It further implies that the syenitic unit of density contrast - .10 that crops out to the east must underly the granitic unit. In addition, this same unit i s thin under i t s outcrop exposure. The gradual rise i n gravity values over the eastern d i o r i t i c unit implies either a horizontal density gradation or a gently dipping unit, or both. By considering the geological, magnetic and geochronological data, a thin unit of constant density d i o r i t i c material underlying the syenitic unit and exhibiting large horizontal extent, but shallow depth extent i n the eastern section of the traverse, i s preferred. Adjacent to and east of the Pinchi Fault, an equivalent d i o r i t i c unit of density contrast .18 g/cc i s modelled to account for the gravity 18-•2H -6H -I2i J x M o •^(anomaly volut) •070* l^^-ORANITIC A / • - .08 DIORITIC • , " GROUND SURFACE TAKLA A/» - + .80 CACHE CREEK ay " 0 . 0 g/cc •eala - mlltt FIGURE 5-10 DEPTH / GRAVITY SECTION HA-HA CREEK H O G E M BATHOL ITH NTS 93N, 94C scale f • 4mi date May 1974 - 63 -high anomaly in this region. A l l units overlie rocks f i t t i n g Cache Creek densities. On the east, the Takla rocks thicken from about 1.1 to 1.4 miles. The core of the batholith underlies the granitic unit. The whole batholith i s nearly mushroom-shaped and thin, with maximum depth extent of about 0.80 miles on the flanks to 6.0 miles at the core. Along Section AA', the whole structure exhibits a slight westerly t i l t with the axis of symmetry plunging 84° towards 070° . 5.7.2 OLD HOGEM MODEL (Figure 5-11) This gravity profile has similar form to the Ha-Ha Creek, except that the gravity low over the outcropping granitic units i s much more subtle and the gravity gradient steepens more abruptly toward the Takla rocks. The minimum density contrast that w i l l f i t the gravity low region i s - .05 g/cc and indicates that the bulk of the underlying rock units are granitic. If further syenitic units exist i n this region,_ they are at such depths that their surface expression i s masked by the granitic units. To account for the steep rise i n gravity values near the granitic unit-Takla rock contact, i t i s necessary to introduce a density unit of about .18 g/cc buried beneath the granitic unit and butting the Takla, as shown in section on Figure 5-11. This would correspond to the d i o r i t i c unit inferred from the magnetic data. Near and on the east of the Pinchi Fault, another d i o r i t i c unit of contrast .18 g/cc and irregular shape i s interpreted to l i e between the Cache Creek rocks and granitic unit. On the east, the Takla rocks are about 2.0 miles thick,and thin toward the east. The gross form of the batholith for the cross-section i s funnel »0n SCALE - MILES FIGURE 5-N DEPTH / GRAVITY SECTION OLD HOGEM H O G E M BATHOL ITH NTS 93N, 94C scale lN> 4 mi date May 1974 - 65 -shaped with flanks about 2 miles deep and core to 5.4 miles. The whole structure i s t i l t e d to the west with the axis of symmetry plunging 85° towards the northeast . 5.7.3 KWANIKA CREEK MODEL (Figure 5-12) Contrary to the previous gravity prof i l e s , the Kwanika Creek traverse exhibits a large gravity high near the Pinchi Fault over the d i o r i t i c units. The feature abruptly sinks to a gravity low over the granitic units and very steeply recovers to a gravity high over the Takla units. The observation that the half-width of the gravity high plots to the west of the Pinchi Fault, strongly infers that the western margin of the Batholith dips westward. If i n fact the western boundary of the batholith i s the Pinchi Fault, then i t i s certainly dipping west at about 40°. Modelling d i o r i t i c units as having a density contrast .18 g/cc, granitic units as -.04 g/cc and Takla rocks as 0.20 g/cc, the cross-section of Figure 5-12 i s determined for the Hogem batholith. A noteworthy feature of this cross section i s the large depth extent of the d i o r i t i c unit adjacent to the Pinchi fault. Its large depth extent suggests that i t can be considered as a separate pluton although the geological evidence infers that i t i s a hybrid phase of the granitic unit. In addition, the indication that the granitic unit underlies Takla rocks i s supported by the fact that this unit crops out to the south of the profile (Figure 5-2). The granitic core cannot be subdivided on the basis of density, although the geological data indicate a sharp contact c Ag (cqleuiatod)-£ 0. e x u 0 T - p -^ J " 1 ^ DIORITIC CACHE CREEK \ GRANITIC i / AgA( anomaly valua) •070* • GROUND flilRFACE_ \ TAKLA DIORITIC J Ap «+20 . N \ / CACHE CREEK tp • 0.0 9 Ac SCALE- MILES FIGURE 5-12 DEPTH / GRAVITY SECTION K WAN IK A CREEK H O G E M BATHOL ITH NTS 93N, 94C scale I"* 4ml date May 1974 - 67 -between the granite and quartz monzonite unit. The eastern part of the batholith i s s t i l l buried beneath a thin layer of volcanic rocks. A d i o r i t i c unit i s interpreted to l i e between the granitic unit and the Takla rocks. This corresponds well with the magnetic data. The Takla rocks average about 1.2 miles i n thickness and probably deepen near C Again, the gross shape of the cross section of the batholith i s funnel l i k e , with the core zone t i l t e d to the west and extending to about 5.0 miles depth, and flanks to around 2.0 miles. If the Pinchi Fault bounds the batholith on the west, It appears to dip about 40° towards the west-south-west. In section CC', the axis of symmetry plunges 80° towards 070°. 5.7.4 GROSS TECTONIC FEATURES By combining the individual gravity models along each traverse into one overall model for the entire Hogem Batholith, the following tectonic features are evident : (1) The Pinchi Fault dips 040° toward the west. Although paralleling the general strike of the batholith, i t appears unrelated to the intrusive events. (2) The bulk of the Hogem batholith appears to have intruded as an elongate mass and coalesced under i t s own volcanic ejecta at shallow depths. It differentiated and/or accumulated over approximately 25 million years C200 -175 my. age). The 175 my. syenitic unit i s the last major pulse of plutonism comprising the main mass of the - 68 -Hogem Batholith. The Kwanika Creek d i o r i t i c unit i s either a separate plutonic intrusion, or a hybrid zone to the granitic unit. (3) The entire mass of the Hogem Batholith appears t i l t e d about 5-10° toward the WSW. This implies either that the batholith has been t i l t e d after emplacement or that the tectonic path of emplacement was dipping about 80-85° toward the NNE. 5.7.5 RELATIONSHIP OF MINERAL DEPOSITS TO GROSS SHAPE As discussed by Garnett (1974) and shown on Figure 5-2, copper/ molybdenum and copper mineralization occurs within the batholith, or within Takla volcanic rocks neaif the intrusive contact. In every case, copper mineralization i s related spatially to syenitic rocks and potash feldspar alteration. This corresponds to copper being associated with, the younger syenitic phase (pluton). In the region of the Duckling Creek Syenite Complex, this syenitic unit i s thin and deposits i n i t may be spatially associated with the syenite-diorite contact zone. If this i s true, the obvious place of potential for copper deposits, based on the gravity models, w i l l be i n the southern Duckling Creek area where thin volcanic rocks overlie syenitic and d i o r i t i c units. Other regions of potential mineralization might well be above the central root zone West of Duckling Creek, as well as near the s y e n i t i c - d i o r i t i c contact i n the northern section of Figure 5-2. - 69 -Because copper/molybdenum deposits are noted at or near the younger granite contact with d i o r i t i c units, the d i o r i t i c units appear the most l i k e l y targets. The contact of the Kwanika d i o r i t i c unit with the bordering granite units are prime targets. In addition, equivalent units to the south (as indicated by the magnetic data) are also prime targets. 5.8 CONCLUSIONS The gravity models for the Hogem Batholith are geologically meaningful interpretations of the data. Through study of individual cross-sections i t i s possible to assimilate the geological, geochronological and magnetic data into r e a l i s t i c models of the batholith. Although the gravity models do not explain the presence or absence of economic mineralization directly, they do provide powerful three-dimensional insight. This fact alone i s valuable i n applying any theory of ore genesis and could well point to the most suitable places for further mineral exploration. - 7 0 -6. THE IRON MASK BATHOLITH 6.1 INTRODUCTION The Iron Mask batholith, Figure 6-1, i s 3 miles southwest of Kamloops, within the Intermontane region of central British Columbia. Associated with the batholith are numerous copper occurrences some of which contain appreciable values i n gold and s i l v e r . Since 1896 the search for mineral deposits has continued with limited success - the Iron Mask mine being the only important producer ever found. However, In 1972 the discovery of the Afton ore deposit within the batholith revived interest i n the area and sparked many exploration companies to re-examine the pluton i n more deta i l . As a result, the geological mapping work of Mathews (1941). Cockfield (1948), Carr (1956) and Preto (1969) i s being extended and updated by the B.C. Dept of Mines and Petroleum Resources through the current work of Northcote (1974). Because the Afton deposit i s at the contact of the batholith with the host Nicola units, questions concerning the subsurface shape of the pluton and the location of more favourable contact zones needed answering. To help resolve these problems, a gravity survey was conducted by the author over the batholith i n the summer of 1973. Quantitative interpretation of the gravity anomaly map has since led to a three dimensional model for the pluton. With the added input of future detailed geological and geochronological information, the model may well provide some of the insight necessary for understanding the genesis of - 71 -^KAMLOOPi " X ISO' CACHE CREEK UNITS v C ^ l NICOLA VOLCANICS ^ X M KAMLOOPS VOLCANICS IRON MASK BATHOLITH OTHER INTRUSIVES 4 8 SCALE MILES FIGURE 6-1 (after Cockfield,l948) GEOLOGY, LOCATION MAP IRON MASK BATHOL ITH scale r « * 4 m i date May 1974 - 72 -the batholith and i t s related copper mineralization. 6.2 GEOLOGICAL SETTING Originally the Iron Mask batholith was thought to be one continuous igneous intrusion partly overlain by Tertiary rocks as shown on Figure 6-1. It was believed to extend for some 20 miles i n a northwesterly direction and to crop out i n three locations of maximum width of about 3 miles. However, as w i l l be shown later, this interpretation appears to be i n error. The two parts of the batholith appear to be separate plutons. For the geolo-gical discussion we w i l l continue to use the term 'Iron Mask batholith' rather loosely to include a l l the separate plutons. However, for the interpretation section, the term w i l l be restricted to the main easterly plutonic unit. The batholith i s easily accessible by numerous roads. Vertical r e l i e f i s moderate, with elevations ranging between 2,000 feet and 3,600 feet. Precipitation i s low and much of the map area i s open grazing country except for the southwestern section which i s well timbered. Outcrops are abundant on the higher ground and are rare at the outer contacts of the batholith. Fresh water i s generally scarce. Saline ponds abound the region. The Iron Mask batholith intrudes rocks of the pre-Triassic Cache Creek and the Triassic Nicola volcanic groups. It i s overlain i n part by Tertiary Kamloops rocks. Carr (1956) and Preto (1967) have divided the batholithic rocks into two major divisions on the basis of f i e l d appearance - 7 3 -and fabric rather than on composition which were termed : a) Coarser-grained batholithic rocks (gabbro, diorite, pyroxenite, monzonite and syenite), and b) Finer-grained batholithic rocks (microdiorite, micromonzonite) Generally speaking the bulk of the exposed batholithic rocks can be class-i f i e d as diorite-gabbro. More definitive geological mapping i s needed before different density units comprising the batholith can be outlined. For this study, batholithic rocks are grouped as one body as shown on Figure 6-1. Preto (1974) reported a K/Ar date for a major d i o r i t i c unit of the batholith as 200 my. Nearby copper mineralization has also been dated as 200 my. 6.3 THE GRAVITY SURVEY As before, the gravity f i e l d survey was performed to National Standards. Several traverses were selected over the Iron Mask batholith and adjoining country rocks i n such a manner as to yie l d a good density of gravity coverage. Observations were made at 0.20 to 0.50 mile intervals along interconnecting roads as shown on Figure 6-3. In total, 622 observa-tions were made. A LaCoste & Romberg Model G gravity meter (Number G88) was used to determine the gravity values. The 1973 scale constant was i n the range 1.032615 - 1.032815 mgals/division for the counter intervals 4000.00 -- 74 -4800.00 divisions. This corresponds to a reading accuracy of about 0.01 mgals. Since the instrument was temperature compensated, instrument d r i f t averaged less than 0.15 mgals per day. This d r i f t s t a b i l i t y allowed the use of a single base point for the entire gravity survey. Elevations for the gravity stations were measured using a pair of Wallace and Tiennan altimeters with a reading accuracy of ± 2 feet. Since elevation control points were numerous i n the area, elevation ties were made at a maximum of every three hours. By double running each traverse between control points and by applying relative humidity and ambient temperature corrections to each of the four elevations, average elevations accurate to ± 5 feet were determined for each gravity station. Elevations ranged between 1134 and 4165 feet and averaged 2535 feet. 6.4 ROCK DENSITIES Surface rock samples were collected by the author from the units comprising the Iron Mask batholith and adjacent country rocks. Mass densities were determined for each sample suite using a Mettler balance. The 177 average values so determined were plotted for each s i t e and contoured to yie l d the Density Map for the Iron Mask batholith area, Figure 6-2. As the map indicates, too few samples were available for constructing a well defined surface density map. The map, therefore, i s only a gross representation of the areal density distribution. However, despite the sampling limitations, the following bulk DENS ITY MA P 2 mi i — — — • — i IRON MASK BATHOLITH .** scale r » 2mi date May 1974 - 76 -density subdivisions are self evident : 1) The Kamloops volcanic sequence, p = 2.60 2) The Nicola and Cache Creek units, p = 2.67 - 2.85 (p" = 2.75) 3) The Iron Mask Batholith units, p = 2.70 - 3.00 As before, i t i s important to remember that the areal extent of surface densities and associated geological units can be misleading as to the depth extent of these same units. In order to settle on a minimum density contrast for the batholith model, (and hence on i t s bulk composition) i t i s necessary to see what values w i l l i n fact f i t the gravity data. The problem i s to determine a trade off between minimum density contrast and maximum geometry for the batholith source as w i l l be shown in the modelling section. 6.5 ANOMALY SEPARATION The standard procedure of Appendix I was used i n modelling the effect of the earth's gravity f i e l d (gg)• The average upper crustal density of 2.67 g/cc was used in the Bouguer and terrain calculations. The terrain effects at each station were estimated from 1 : 50,000 elevation maps by the procedure given by Ager (1972). The values ranged between .19 - 13.35 mgals with the mean being 1.96 mgals. As before, isostatic effects were not considered as this f i e l d was deemed to be part of the batholith f i e l d . The complete Bouguer anomaly map (Ag), Figure 6-3, represents the v e r t i c a l component of the gravity acceleration after the effects of the earth proper have been removed from the observed gravity - 77 -values. That Is Ag = g Q - g E (6-1) As given i n Table 6-1, the RMS error i n the Ag map i s about ± .49 mgal for each station. Table 6-1 Source of error Amount of error Range of error Mean error RMS error for survey for survey Observation Sensitivity ± 0.01 mgal ± 0.01 mgal ± 0.01 mgal Dr i f t Calculation Latitude Elevation 10% of d r i f t * * - 0.07 to ± 0.02 mgal + 0.04mgal ± 100' ±.03 mgal ± 0.03 mgal ± 0.03 mgal ± 5' .30 mgal ±0.30 mgal ±0.30 mgal Terrain 20% of effect** + 0.04 to ±0.39 mgal ±0.49 mgal 2.83 mgal Mean error i s calculated to nearest 0.01 mgal. Drift and Terrain corrections were considered to be i n error by a maximum of 10% and 20% respectively of the effect of each station. - 78 -The gravity values of Figure 6-3 are relative to the value at the survey base point which was set equal to 0.0 mgal. The National network complete Bouguer gravity determination for this station (Number 9452-69, Kamloops Airport) i s - 93.49 mgals. The observed gravity here i s 980,952.13 mgals. Inspection of the Ag map indicates a slight regional gradient increasing toward the north which can be attributed to broad scale changes in the country rocks enclosing the Iron Mask Batholith. For this reason, 67 gravity stations located i n the NE and SW sectors of the map and outside the anomalous zones were f i t t e d to a planar surface. This plane was then taken to be the regional geological component of the map (g^) and removed from the data. The regional plane was calculated to be : g R(x,y) = 5.57 - 0.19x + .16y mgals where : x, y are i n miles, and location of co-ordinate axes are as shown in Figure 6-3. In order to f a c i l i t a t e contouring and f i l t e r i n g of the gravity data on the computer, the irregularity spaced data were interpolated to a \ mile by y mile regular grid. The interpolation algorithm used was the UBC subprogram XPAND, the characteristic of which are mentioned i n Section 6.6. As shown on the Ag map, the interpolation procedure introduces some" n o i s e" into the map and also accentuates the "noise" already i n the data. However, since there are sufficient data points (65 by 40 grid), this noise f i e l d (g^ .) can easily be removed using a low Y i page 79 -f-> 6 2 2 gravity stations gravity station survey base point station * 9 4 5 2 - 6 8 gravity va lue , g0 = 9 8 0 , 9 5 2 . 1 3 mgals contour interval = 2.5 mgal 4-FIGURE 6-3 batholith outline 2 mi l- r-i BOUGUER ANOMALY MAP IRON MASK BATHOLITH scale l"=2mi date May 1974 - 8 0 -pass f i l t e r of appropriate cutoff wavenumber. For this map, the Ulrych low pass f i l t e r (see Appendix II) with cutoff 0.50 cycles/mile was convolved with the Ag - map to eliminate the gjj f i e l d . The anomalous map (AgA) , Figure 6-4, therefore contains the gravity anomaly attributed to the Iron Mask batholith. It i s this map that w i l l be interpretated. 6.6 THE INITIAL MODEL OF THE IRON MASK. BATHOLITH Inspection of the Ag^ map, Figure 6-4, indicates several features about the three dimensional shape of the Iron Mask batholith and adjoining country rocks that are extremely important in defining an i n i t i a l model : 1) There are two distinct gravity highs centered over the separate major outcropping portions of the mapped batholith. The Kamloops volcanic rocks that cover the region between the exposed parts of batholith are not deep enough to mask the gravity effect of the batholith were i t buried beneath them. This implies that the exposed parts of the batholith are i n fact at least two separate plutons. 2 ) The gravity anomaly over the main mass (Eastern part) of the batholith indicates that the body underlies the covering Kamloops, Nicola and Cache Creek rocks to the north-east. In fact, one major axis of elongation i s nearly east-west. This i s contrary to i t s outcrop direction which i s northwest - southeast. page 81 + + + contour interval = 2 . 5 mgal + FIGURE 6-4 ANOMALOUS GRAVl tY MAP 2 mi i 1 IRON MASK BATHOLITH scale l"= 2 mi date May 1974 - 82 -3) The northwestern pluton w i l l not be interpreted here. However, the available gravity data over i t suggests that the body i s only partly exposed and that i t underlies the Kamloops and Nicola rocks to the northwest. 4) The steep gravity gradient toward the gravity low area i n the southern sector of the map is caused by the outcropping Central Nicola Batholith (Cockfield, 1948) which i s s t i l l largely covered by Kamloops rocks. This gravity low anomaly overlaps the gravity high attributed to the Iron Mask batholith and w i l l make delineation of the southern boundary of the body d i f f i c u l t . 5) The existence of the gravity high over the whole batholith i s i n accordance with the surface density over some sections of the batho-l i t h . This suggests that the bulk composition of the pluton i s mainly dioritic-gabbroic. Any less dense surface intrusive units are thin and completely masked by the heavier dioritic-gabbroic units. In order to help sort out the i n i t i a l model of the batholith, published government aeromagnetic maps over the area were digitized at -|- mile by mile intervals, f i l t e r e d and computer contoured. The resulting total f i e l d , smoothed and second derivative aeromagnetic maps are presented i n Figures 6-5, 6-6 and 6-7. Examination of these maps leads to the following conclusions : 1) The magnetic highs, so clearly v i s i b l e and coincident with the batholith on Figure 6-6, indicate that the bulk of the Iron Mask N o t e : digitized at 1/4mi X 1/4mi i n te rva l , from government tota l f i e ld magnetic maps . AEROMAGNET IC M A P IRON MASK BATHOL ITH scale l"« 2 mi date May 1974 Note : filtered aeromagnetic map using Ulrych low pdss f i l t e r , with f c = .25 c y c l e s / d a t a interval . Da ta - in terva l » 1/4mi X 1/4mi . 2 mi SMOOTHED AEROMAGNETIC MAP IRON MASK BATHOLITH scale I"= 2 mi date Mayl974 Note : f i l tered aeromagnetic map , using Rosenbach operator on the smoothed aeromagnetic map..... Data interval z 1/4 mi X 1/4mi . Contour interval = 2 0 0 gammas/mi z X 10 - l 2 mi < — • - — \ SECOND DERIVATIVE MAP IRON MASK BATHOLITH scale l"?2mi. date May 1974 - 86 -batholith i s diorite-gabbro. 2 ) These highs are not connected between the parts of the Iron Mask batholith. This supports the gravity implication that there are in fact two separate plutons. 3 ) The presence of a subtle high above the mapped Kamloops rocks to the north of the main body can be attributed to a magnetic unit which could correspond to a subsurface extension of the batholith i n this region as inferred from the gravity data. 4) In some regions, the zero trace of the second v e r t i c a l derivative map corresponds well to the mapped geological contact and can therefore be used as a guideline for outlining the subcropping northern boundary of the batholith. 5) The areal extent of the second derivative magnetic anomaly over the exposed northwestern Kamloops Lake pluton i s small and i t broadens toward the northwest. This i s i n agreement with the gravity data that the body i s shallow where exposed and thickens under the volcanic cover toward the northwest. 6) The existence of magnetic high-low pairs associated with the plutons can be interpretated. i n two ways : the lows on the magnetic north side of the magnetic high sources are i n accordance with northern latitude induced anomalies; or they are caused by thin geological units of less magnetic susceptibility than the dioritic-gabbroic units; or both. - 87 -By combining the geological, density, gravity and magnetic data we arrive at an i n i t i a l density subdivision of the Iron Mask and adjoining country rocks, Figure 6-8. The subdivisions so defined are referred to as Kamloops, Cache Creek - Nicola, and Iron Mask batholith. The relative densities are shown on Figure 6-8. As w i l l be noted, there i s only a single density assigned to the entire batholith. Any further refinement is not warranted at this time due to the lack of more detailed geological and density data. The modelling problem for the batholith i s twofold : a) to solve for a minimum density contrast for the batholith unit (the bulk composition), and b) to solve for a three dimensional distribution for this density (the model). The method of Taiwan! & Ewing (1960) (Appendix III) was used to calculate the v e r t i c a l gravitational effect of the model at each station. The batholith was f i r s t approximated by 10 horizontal polygonal laminae of 17 sides each located at 0.3 mile depth intervals. The total effect of the body was found by v e r t i c a l integration of each lamina effect. The subsurface co-ordinates of the vertices and the depths of each lamina were adjusted and the model recomputed u n t i l a suitable f i t to the Ag A map was made. The effects of the overlying Kamloops rocks were included i n the modelling procedure i n a manner similar to the one above. The resulting - 88 -DENSITY SUBDIVISIONS OF IRON MASK  AND ADJOINING ROCKS |V V v 0 c„ o CN CN 0 o C N o ~ KAMLOOPS ROCKS 0 ^ 1 CACHE CREEK -N ICOLA ROGfA IRON MASK BATHOLITH  y% Exposed Units Bur ied Units geological contact inferred contact from gravity/magnetics Note i Al l density contrasts are relat ive to the combined CACHE CREEK - NICOLA ROCKS, where p * 2 . 7 5 g / cc . 0 2 4 8 S C A L E - M I L E S F I G U R E 6 - 8 FIGURE 6 -9 + 2 mi CALCULATED GRAVITY MAP A g m IRON MASK BATHOL ITH N T S 92-1 scale I"* 2mi date June 1974 - 90 -model for the batholith Includes depth Information about the Kamloops rocks as well. The computed gravity map (Ag^) i s shown on Figure 6-9. The RMS error for the f i n a l model is less than 1.0 mgals. 6.7 MODEL OF THE IRON MASK BATHOLITH 6.7.1 GROSS SHAPE & BULK COMPOSITION The gravity model computed for the Iron Mask batholith i s shown in Figure 6-10. Depth/gravity sections for two cross-sections of the model are given i n Figures 6-lla, l i b . The minimum density contrast for the batholith model that would allow the gravity map to be f i t t e d with the necessary sharpness of detail was 0.30 g/cc. Using 2.75 g/cc as the mean density of the host material implies that the bulk density of the batholith i s at least 3.05 g/cc. As indicated by the density map, Figure 6-2, this implies that the denser border units of the plutonic complex must have larger depth extent than indicated by their surface geology. The bulk composition of the batholith can therefore be cl a s s i f i e d as either heavy diorite or gabbro. In general, the batholith i s very shallow (Figure 6-10). It averages less than 0.60 miles i n thickness, except near the core where i t deepens to a maximum of 5.0 miles. The major mass of the body appears to be aligned i n the direction 103° as shown on section BB', Figure 6-llb. A second axial preference i s toward 129°, i n the direction of i t s outcrop. The batholith i s modelled as mushroom shaped with page 9 I Contour interval * 0.30 miles, except where indicated 0 <COPPE-/Z FIGURE 6-10 2 mi IRON MASK - GROSS SHAPE 1. • + i — — i IRON MASK NTS BATHOLITH 9 2 - 1 scale r = 2 m i date June 1974 I 5 I X 0. u o 10-o-i 2H 5 J I SCALE - MILES AQA (anomaly valuo) A' I mgal CACKE CREEK - NICOLA • 0.0 g/oo FIGURE 6 - l l a DEPTH /GRAVITY SECTION A - A' IRON MASK B A T H O L I T H NTS 921 scale r » 2 m i date June 1974 2<H IS* = 1 0 " e E I K Ag (ooloutotad) O-i E 2H 4-« Ag A (anomaly voluo ) B' filiRFACEL. C A C H E C R E E K - N I C O L A tfi • 0.0 gVcc FIGURE 6-1 lb DEPTH /GRAVITY SECTION B - B' IRON MASK B A T H O L I T H NTS 921 scale l" • 2mi date June 1974 - 94 -a f l a t top that has spread out along the two major directions as mentioned above. Contacts are d i f f i c u l t to model due to the lack of sufficient detailed information about the overlying Kamloops and adjoining Nicola-Cache Creek rocks. The interference from the Central Nicola batholith anomaly makes delineation of the southern contact d i f f i c u l t . In i t s northeastern sector, the batholith appears to grade into the country rock rather than having a sharp contact. The axis of symmetry of the batholith model pierces the surface to the southwest of Coal H i l l and plunges 84° toward 168°, as plotted i n Figure 6-10. The Kamloops volcanlcs i n the northern sector of the map sheet have a -5.0 mgal anomaly associated with them. Using a density of 2.60 g/cc (Ap 3 3 - .15 g/cc) their maximum thickness i s calculated to be 3800 feet (0.72 miles). In this region, the gravity values indicate that the Kamloops unit thins toward the batholith. Their exact depth and their relationship at the contact cannot be calculated better u n t i l more geological and density detail i s available. The southeastern part of the batholith (south of Knutsford) i s about 0.30 miles thick. In fact, the presence of a deeper zone of 0.60 miles within this section i s highly suggestive that i t i s a separate pluton adjoining the main body. In order to get a better f i t to the gravity map i n the central core zone of the batholith, a denser near surface source needs to be introduced into the model. However, at this time, there i s not sufficient - 95 -geological and density information available to warrant a further subdivi-sion within the model. When the mapping of Northcote (1974) i s complete, this model should be reappraised and refined as required by the new geological information. 6.7.2 TECTONIC IMPORTANCE The interpreted three dimensional shape for the Iron Mask batholith implies that i t was emplaced through i t s core zone and aligned i t s e l f along two intersecting tectonic axes. In fact, i t appears that the intersection of these two tectonic weaknesses provided the channel way for the emplacement of the batholith. Although l i t t l e information i s reported i n the literature on the densities of molten magmas, the high bulk density of this batholith strongly suggests that Stokesian r i s e (Pyfe, 1973) was at most only partly responsible for i t s emplacement. The absence of evidence for sunken blocks of country rock plus the fact that the country rocks are lighter than the batholith and therefore cannot sink rules out magmatic stoping as.a method of emplacement. Emplacement of the batholith by granitization of the country rocks seems impossible due to the fact that the body was originally magmatic. In fact, the only class i c a l theory of emplacement that comes close to explaining the observations i s that of emplacement by forceful injection. On the other hand, the lack of evidence for ver t i c a l u p l i f t and shouldering aside of the country rocks makes this theory highly improbable. It appears that none of the classi c a l theories of batholith exmplacement seems to f i t - 96 -the model of the batholith. Recent K/Ar dating reported by Preto (1974) shows that the batholith i s about 200 my. old. This would place i t at the same age as the surrounding Nicola rocks and adds support for the theory that the batholith intruded and coalesced under i t s own volcanic ejecta. Its alignment along two tectonic axes suggests that 'tectonic squeezing' played the major role i n i t s reaching the upper crust. 6.7.3 RELATIONSHIP OF ORE DEPOSITS TO GROSS SHAPE The most prominent element of economic importance associated with the Iron Mask batholith i s copper. Cockfield (1948), Preto (1967), and' personal communication with geologists familiar with the area indicate that copper occurs as chalcopyrite, bomite and native copper. The mineral deposits occur very i r r e g u l a r i l y , as lenses, within a l l constituent rock units of the batholith as well as i n the adjoining Nicola units. The most prominent occurrences have been discovered at or near the contact of the batholith with the Nicola rocks. The age of the mineralization has been reported to be about 200 my. (Preto, 1974), which indicates that i t i s syngenetic to the batholith's emplacement. Copper mineralization i s reported to be associated with magnetite i n the western part of the batholith. In the southeastern sector, copper mineralization i s less abundant than i n the western part. The mined out Iron Mask deposit, the newly discovered Afton deposit as well as some other smaller occurrences are plotted on Figures 6-1 - 97 -and 6-10. Just by inspection of these maps i t appears that copper mineralization i s preferentially concentrated at the batholithic contact furthest from the basic core region. The reported east-west trend to the mineral occurrences can be explained by the major tectonic direction of the main mass of the batholith as interpretated from the gravity data. By viewing the Iron Mask batholith as an accumulation of two adjoining plutons and by using the geochronological evidence that copper mineralization i s syngenetic to plutonic emplacement, we can get some three dimensional insight from the gravity model as to where copper deposits are l i k e l y to occur. For this case, the batholith-Nicola as well as the pluton-pluton contacts are the prime targets. 6.8 CONCLUSIONS The Iron Mask batholith i s i n fact two separate plutonic bodies. The Kamloops rocks covering the region between them are about 0.72 miles (3800 feet) thick and do not mask any extensions of the batholith. The easterly plutonic complex (Figure 6-1) i s referred to i n this work as the Iron Mask batholith, and i t i s this body that was interpretated for three dimensional shape and bulk density. Based on the gravity data the batholith i s modelled as a thin dioritic-gabbroic unit with one deep core and one shallower core (?). It aligns i t s e l f i n two main tectonic directions. The major mass of the batholith i s aligned nearly eastwest which i s at an acute angle to i t s outcrop direction of northwest-southeast. - 98 -In fact , the eastern batholith can be interpreted as two adjoining plutons - one of which i s shallow, the other deep rooted. The high density of the batholith model (3.05 g /cc ) , i t s alignment in two different d i rect ions, and i t s deep core at the intersection of these two major tectonic directions strongly suggests that ' tectonic squeezing' played a major role i n i t s emplacement i n the upper crust o The overlap of the large gravity low anomaly in the southern region of the map with Iron Mask bathol i th 's gravity f i e l d i s attributed to the Central Nicola bathol i th. The presence of th is batholi th i n close proximity ot the Iron Mask batholi th and the overlap of their gravity f ie lds could be s ign i f icant . It might well infer that the Iron Mask batholith i s i n fact genetical ly related to the Central Nicola bathol i th . In terms of ore search, the interpretation that the bathol i th i s rea l ly two separate plutonic un i ts , one of which may be two adjoining plutons i s important. Because the copper deposits appear to loca l i ze themselves at the outer margin of the bathol i th , the iso la t ion of these Nicola-batholi th contact regions by the gravity model i s valuable. In addit ion, the inference of a pluton-pluton contact within the bathol i th does point to a new area of interest , namely the region to the east-north-east of Jacko Lake. - 99 -7. CONCLUSIONS The purpose of this work was to estimate the three dimensional gross structure of three geologically different batholiths. The most important conclusion i s that despite their large differences i n bulk density (geological composition) they are remarkably similar i n gross shape. The cross-sections i n Figure 7-1 summarize the geometric forms of the Guichon Creek, Hogem and Iron Mask batholiths. A cross-section of an average gross shape is also given for the class of batholiths to which these three belong. Each batholith can be likened to a shallow funnel-l i k e structure with a deeper core zone. For the sake of reference, this class of batholiths w i l l hereafter be referred to as the "funnel type" of batholith. (It should be noted that for elongated masses l i k e the Hogem batholith, the term 'keel-type' may be more appropriate to emphasize the linear nature of the root zone. However, the gravity evidence suggests there are separate and deeper core zones within this root zone which make them funnel-like as well.) Average depth of the batholiths i s about 2.0 miles, except near the core zones which extend to about 6.0 miles. A l l models show a slight westward t i l t of 5-10° from the v e r t i c a l . It i s interesting to note that the funnel-type batholith i s very similar i n shape to putty models of these bodies as derived by Ramberg (1969) i n the labratory. Simply because these batholiths display remarkably similar shape, i t i s logical to postulate a common mechanism of emplacement. Let us f i r s t evaluate the cl a s s i c a l theories of emplacement : - 100 -FIGURE 7-1 GROSS SHAPE OF 'FUNNEL-TYPE* BATHOLITHS - 101 -(1) Magmatic stoping : None of the batholiths exhibits blocks of stoped material. In the case of the Iron Mask batholith, the country rocks are less dense than the batholith and, therefore, couldn't be stoped. There i s no gravity or magnetic evidence to suggest the presence of large sunken blocks beneath the batholiths. There i s no evidence to support magmatic stoping as a major mechanism of emplacement. At most, i t was a second order process operative only i n the narrow hybrid zones surrounding each intrusion. C2) Forceful Injection : The country rocks surrounding each of the batholiths that were studied show l i t t l e doming or u p l i f t that can be associated i n time and space with the batholith*s emplacement . In each case the emplacement was rather concordant and not disruptive as the theory of forceful injection requires. Although the mechanisms of gravity r i s e and tectonic squeezing of the primary magma appear to have been operative, the theory of forceful injection of the magma to form a batholith does not f i t the case studies presented here. (3) Granitization : There i s l i t t l e doubt that each of the batholiths studies originated from a magma. This fact alone completely rules - 102 -out granitization as a mechanism for their emplacement. From the foregoing discussion, i t i s clear that none of the cl a s s i c a l theories of emplacement explains the emplacement of a l l the batholiths studied. In fact, none of the theories explains the emplacement of even one of the batholiths. Based on three case histories of Mesozoic batholiths i n the Western Cordillera, the author proposes a new theory for batholith emplacement called "tectonic injection" that accounts for the "funnel-type" batholith as illu s t r a t e d i n Figure 7-1 : Tectonic Injection : This theory for batholith emplacement views volcanism and plutonism as equivalent events that d i f f e r only i n their f i n a l stages - one magma reaches the surface, the other does not. In tectonic injection, the primary magma migrates from i t s point of origin i n response to gravity r i s e and/or tectonic forces. Its entire volume i s injected into the upper crust through harrow ports that are located along zones of tectonic weaknesses. Once i n the upper crust the magma coalesces. Each magma pulse results i n either a pluton, a volcano or both. The accumulation of one or more plutons beneath cover consisting largely of i t s own volcanic ejecta results i n a batholith that i s of the "funnel-type", with shallow flanks and a deeper root zone. - 103 -Within the framework of tectonic injection mineralization i s related to the magma source material and hence to each individual pluton comprising the batholith. Copper deposits within the 200 my. Guichon Creek batholith are spatially related to the less dense core of the batholith. Copper mineralization within the Hogem batholith i s associated with the younger less dense syenitic pluton, whereas copper/molybdenum deposits within the Hogem occur at or near the younger granitic contact with heavier d i o r i t i c units. Copper occurrences within the Iron Mask batholith are spatially related to the outermost extremities of the body. Gravity i s a good tool for delineating their three dimensional shape and bulk densities simply because of the appreciable density contrasts associated with batholiths. Because most batholiths occur i n mountainous regions, standard gravity reduction procedures can lead to gross errors i n interpreting the complete Bouguer gravity anomaly map. It i s important to realize that the anomaly values are located at the co-ordinates of the gravity station, and any interpretation procedure should include this i n the modelling problem. In addition, limited geophysical information over the Pinchi fault suggests that i t dips about 40° to the west. As well, the Iron Mask batholith i s shown to be at least two separate plutons. To sum up, gravity surveys over batholiths supply the necessary insight into their three dimensional structure. After correlating gross shape with existing theories of batholith emplacement a new theory for - 104 -the emplacement of three Mesozoic batholiths of the Western Cordi l lera has been proposed. This ' tectonic inject ion ' theory i s intended to apply to a l l batholiths that f a l l within the class of "funnel-type". As a corol lary, ideas are also presented on the significance of the spatia l correlation of mineral occurrences with gross shape. - 105 -REFERENCES CITED Ager, C.A. (1972). A gravity model for the Guichon Creek bathol ith, M.Sc. thesis, University of B r i t i sh Columbia. Ager, C.A., McMillan, W.J., and Ulrych, T . J . (1972). Gravity, magnetics and geology of the Guichon Creek bathol ith, B.C. Dept. of Mines & Petroleum Resources Bul let in 62. Ager, C.A., Ulrych, T . J . , and McMillan, W.J. (1973). A gravity model for the Guichon Creek bathol ith, south-central Br i t i sh Columbia, Canadian Journal of Earth Sciences v. 10, pp 920-935. Armstrong, J .E . (1949). Fort St. James Map-area, Cassiar and Coast D i s t r i c t s , B.C., Geological Survey of Canada Memoir 252. Bott, M.H.P. (1962). A simple c r i t e r i a for interpreting negative gravity anomalies, Geophysics, v. 27, pp 376-381. Bott, M.H.P., and Smithson, S.B. (1967). Gravity investigations of the subsurface shape and mass distributions of granite batholiths, Geological Society of America Bu l le t in , v. 78, pp 859-878. Brai le, L.W., Kel ler , G.R., and Peeples, W.J. (1974). Inversion of gravity data for two-dimensional density d istr ibut ions, Journal of Geophysical Research v. 79, pp 2007-2148. Buddington, A.F. (1959). Granite emplacement with special reference to North America, Geological Society of America Bu l le t in , v. 70, pp 671-747. Carr, J.M. (1956). Deposits associated with the eastern part of the Iron Mask batholith near Kamloops, B.C. Dept. of Mines & Petroleum Resources Annual Report, pp 47-53. Clarke, G.K.C. (1969). Optimum second-derivative and downward continuation f i l t e r s , Geophysics, v. 34, pp 424-437. Clarke, G.K.C. (1971). Linear f i l t e r s to suppress terrain effects on geophysical maps, Geophysics, v. 36, pp 963-966. Cockfield, W.E. (1948). Geology and mineral deposits of Nicola map-area, Br i t i sh Columbia, Geological Survey of Canada Memoir 249. Cooley, J.W., and Tukey, J.W. (1965). An algorithm for the machine calculation of complex fourier ser ies, Math. Comput. v. 19, pp 297-301. - 106 -Dickinson, W.R. (1971). Plate tectonic models of geosynclines, Earth Planet. Sci. Letter, v. 10, pp 165-174. Dobrin, M.B. (1960). Introduction to geophysical prospecting, McGraw-Hill Book Co., N.Y. Dunbar, S. (1972). The analysis of aeromagnetic maps and application of a f i l t e r to remove magnetic terrain noise, B.Sc. thesis, U.B.C. Dept. of Geophysics & Astronomy, 81 pp. Ful ler , B.D. (1967). Two dimensional frequency analysis and design of grid operators, Mining Geophysics, Society of Exploration Geophysics, vol . 2, pp 658-708. Fyfe, W.S. (1973). The generation of batholiths, Tectonophysics, v. 17, pp 273-283. Garnett, J.A. (1972). Preliminary geological map of part of the Hogem bathol ith, Duckling creek area, B.C. Dept. of Mines & Petroleum Resources pre l . map # 9, and Geology, Exploration and Mining in B.C., 1971, pp 203-210. Garnett, J.A. (1974). Kwanika Creek Area. Geology, Exploration and Mining in B.C., 1972. Gary, M., McAfee J r , R., and Wolf, C.L. (19-72) editors. Glossery of geology, American Geological Institute, Washington, D.C. G i l l u l y , J . (1948) chairman. Origin of granite, Geological Society of America Memoir 28. G i l l u l y , J . (1971). Plate tectonics and magnetic evolution. Geological Society of America Bu l let in , v. 82, pp 2383-2396. Grant, F.S., and West, G.F. (1965). Interpretation theory in applied geophysics, McGraw-Hill Book Co. Inc., N.Y. Green, W.R. (1973). Some new approaches to gravity modelling, M.Sc. thesis, University of B.C. Dept. of Geophysics & Astronomy. Hamilton, W., and Myers, W.B. (1967). The nature of batholiths, U.S. Geological Survey Professional paper 554-C. Henderson, R.G., and Cordel l , L. (1971). Reduction of unevenly spaced potential f i e l d data to a horizontal plane by means of f i n i t e harmonic series, Geophysics, v. 36, pp 856-877. Huang, W.T. (1962). Petrology, McGraw-Hill Book Co. Inc., N.Y., 480 pp. - 107 -Hutchison, W.W. (1970). Metamorphic framework and plutonic styles in the Prince Rupert region of the central coast mountains, Br i t i sh Columbia, Canada Journal of Earth Science, v. 7, pp 376-405. K i s t le r , R.W., Everden, J . F . , and Shaw, H.R. (1971). Sierra Nevada plutonic cycle : part 1, Origin of composite granite batholiths, Geological Society of America Bul let in v. 8 2 , pp 853-868. Knopf, A. (1955). Bathyliths in time, Geological Society of America Spec. Paper 62, pp 685-702. Ku, C.C., Telford, W.M. , and Lim, S.H. (1971). The use of l inear f i l t e r i n g in gravity problems, Geophysics, v. 36, pp 1174-1203. Mathews, W.H. (1941). Geology of the Iron Mask bathol ith, M.Sc. thesis, U.B.C. McMillan, W.J. (1972). Highland Valley porphyry copper d i s t r i c t , International geologic congress, guidebook, XXIV session, C.S. Ney and A. Sutherland-Brown, editors, pp 64-82. Monger, J.W.H., Souther, J .G . , and Gabrielse, H. (1972). Evolution of the Canadian cord i l lera : a plate tectonic model, Am. J . of Sc., v. 272, pp 577-602. Moore, J.G. (1959). The quartz d ior i te boundary l ine in the western United States, J . Geology, v. 67, pp 198-210. Northcote, K.E. (1969). Geology and geochronology of the Guichon Creek bathol ith, B.C. Dept. of Mines & Petroleum Resources Bul let in No. 56. Northcote, K.E. (1974). Personal communication. Parker, R.L., and Kl itgord, K.D. (1972). Magnetic upward continuation from an uneven track, Geophysics, v. 37, pp 662-668. Press, F., and Bichler, S. (1964). Inferences on crustal ve loc i t ies and densities from P wave delays and gravity anomalies, Journal of Geophysical Research, v. 69, pp 2979-2995. Preto, V.A.G. (1967). Geology of the eastern part of Iron Mask bathol ith, B.C. Minister of Mines Annual Report, 1967, pp 137-141. Preto, V.A.G. (1974). Personal communication. Ramberg, H. (1969). Model studies in relat ion to intrusion of plutonic bodies, in Mechanisms of igneous intrusion, Geol. Jour. Special Issue No. 2, pp 261-286. - 108 -Roddick, J .A. , Wheeler, J.O., Gabrielse, H., and Souther, J.G. (1967). Age and nature of the Canadian part of the circum-pacific orogenic be l t , Tectonophysics, v. 4, pp 319-337. Roots, E.F. (1954). Geology and mineral deposits of Aiken Lake map-area, B.C. Geological Survey of Canada Memoir 274. Rutland, R.W.R. (1973). On the interpretation of Cordil leran orogenic belts, Am. J . of Sc., v. 273, pp 811-849. Shaw, H.R., R i s t ler , R.W., and Evernden, J .F . (1971). Sierra Nevada plutonic cycle : part II, t i da l energy and a hypothesis for orogenic - epeirogenic per iod ic i t ies , Geological Society of America Bul let in v. 82, pp 869-896. •A Spector, A. (1968). Spectral analysis of aeromagnetic data. Ph.D. thesis, University of Toronto. Sutherland-Brown, A., Cathro, R.J., Panteleyev, A., and Ney, C.S. (1971). Metallogeny of the Canadian cord i l le ra , Canada Institute Mining Bul let in for May 1971. Syberg, F.J.R. (1972a). A fourier method for the regional-residual problem of potential f i e ld s , Geop. Prosp., v. 20, pp 47-75. Syberg, F.J.R. (1972b). Potential f i e ld continuation between general surfaces, Geop. Prosp., v. 20, pp 267-282. Talwani, M., and Ewing, M. (1960). Rapid computation of gravit ional attraction of three dimensional bodies of arbitrary shape, Geophysics, v. 25, pp 203-225. Talwani, M. (1973). Computer usage in the computation of gravity anomalies s Methods in Computational Physics, v. 13, pp 344-389. Trowbridge, A.C. (1962) editor. Dictionary of geological terms, Doubleday & Co., N.Y. 545p. Ulrych, T . J . (1969). Wavenumber domain analysis and design of potential f i e ld f i l t e r s , Proceedings of a symposium on decision making in mineral exploration II, U.B.C. Verhoogen, J . , Turner, F . J . , Weiss, L., Wahrhaftig, C., and Fyfe, W.S. (1970). The Earth, Holt, Rinehart and Winston, N.Y. 313pp. - 109 -ADDITIONAL REFERENCES S i l l i t o e , R.H. (1972). A plate tectonic model for the origin of porphyry copper deposits, Econ. geol. v. 67, pp 184-197. S i l l i t o e , R.H. (1973). Tops and bottoms of porphyry copper deposits, Econ. geol. v. 68, pp 799-815. Tabor, R.W., and Crowder, D.F. (1969). On batholiths and volcanoes, DSGS Prof. Paper 604. O - 110 -APPENDIX I GRAVITY ANOMALY DEFINITIONS & FORMULAE DEFINITIONS 1) Observed gravity g Q i s defined to be composed of the following component f ie lds : So = g E + 8 R + 8 r + g N where : g„ = f i e l d due to the earth proper gjj = f ie ld attributed to the regional geology g r = f ie ld attributed to the loca l (residual) geology = f i e ld attributed to geological and data noise 2 ) Complete Bouguer anomaly Ag Ag - g Q - gg 3 ) Gravity anomaly (anomolous gravity) Ag A A G A " 8 o " 8 E " SR " % - Ag - g R - % 8 r - I l l -4) Earth's gravity g £ is defined by the following pure earth model : 8 E *L + + + g T + 8I where : g L = Latitude effect at the geoid (MSL) determined from surface measurements and represented by the International Gravity Formula, 1930, and due to the earth's e l l i p i c i t y . 8FA = F r e e a i r e f f e c t d u e t o t h e f a l 1 o f f o f f i e l d strength as we move away from the geoid (MSL) and modelled using a point source for the earth's mass. ggg = Bouguer slab effect due to the crustal material between the geoid (MSL) and the observation station and modelled using a slab of material of constant density with thickness equal to the elevation of the station. gj = Terrain effect due to surface irregularities of the upper crustal material and represents a refinement of the Bouguer slab effect for mountainous regions. gj = Isostatic effect due to crustal thickening or down-'warping of the geoid under mountainous regions. g £ = Earth's gravity effect at the coordinates of the gravity station and calculated using a pure earth model as defined by the above equation. - 112 -GRAVITY FORMULAE (see Grant & West, 1965) 1) gT = 978.049(1 + 0.0052884 sin2<j> - 0.0000059 sin22<|>) gals where 4> geocentric latitude 2) g p A = (- 0.9406 - 0.0070 cos 2<J> )h gu where i)> geocentric latitude (degrees) h station elevation (feet) 3) gg S = 0.1276hp + 0.68 x 10~ 7 h 2 gu where h station elevation (feet) p Bouguer slab density (g/cc) 4) g^ , Terrain effects were calculated for each station by f i r s t d ig i t i z ing the elevation maps out to a radius of 25 km about each station and then using the method of Ager (1972) to evaluate the effect of mountains and valleys on each station. The gravity value so calculated was defined to be the terrain effect. 5) gj Isostatic effects were not calculated for the earth model since this effect is deemed to be part of the batholith f i e l d . Hence, g^ . = 0.0 mgal for a l l maps calculated. - 113 -APPENDIX II FILTERING & FILTER OPERATORS FILTERING As discussed in Chapter 3, rea l i s t i c anomaly separation can be achieved by ' f i l t e r i n g ' the complete Bouguer anomaly map. Theoretically, the f i l tered map ^ g Q u t ) is simply the input map (Ag^n) convolved with an appropriate f i l t e r or weighting operator (h). It is given by the relat ion : Ag i n (x,y) * h(x,y) (II-l) CO » f Ag. ( x ' . y ^ M x - x ' ,y-y') dx ' dy ' ii  i n —oo However, in practise, the gravity map is not continuous nor of i n f in i te s ize. It is usually a discrete set of data of f i n i te size (NxM). This pract ica l l imitat ion of the data forces the following approximation to Equation I I- l : N/2 M/2 A g o n t ( x » y ) " l I A g i n W ' y ; ) M x - x ' y-y!) (n -2) u u u K M J J i=-— i=- — 1 2 J 2 Examination of Equation II-2 shows that in order to achieve any meaningful results the f i l t e r operator must also be of f i n i te size (LxL). Since we lose (L-l)/2 data points at the egde of each f i l te red map, the L x L f i l t e r must be much shorter than the data set N x M . However, the A g o u t ( x > y ) = - 114 -necessity of short f i l t e r operators severely constrains the wavenumber (frequency) characteristics of the f i l t e r (Ful ler, 1967, Ulrych, 1969). Instead of using ideal operators, we end up with pract ica l approximations to these as shown by the example in Figure I I - lc. In an attempt to bypass the problems of convolution with discrete record lengths several workers have made use of the properties of the Fourier transform (Ulrych, 1969, Ku et a l . , 1971). With the advent of the Fast Fourier algorithm for discrete records (Cooley & Tukey, 1965), this approach is pract ical whenever a computer i s available. Under Fourier transformation, convolution transforms to multipl ication and the 'process of f i l t e r i n g ' i s greatly c l a r i f i e d . We have A A A Ag .(k , k ) = Ag. (k , k )h(k , k ) (II-3) out x y °in x y x y ' where 0 0 A Ag, (k , k ) = °in x y f -2iri(xk +yk ) Ag ± n (x, y) e dx dy Figure I l - l a i l lus t rates the equivalence of the f i l t e r i n g process in the space domain (x,y) and in the wavenumber domain (k , k ) . In x y practise, however, i t i s d i f f i c u l t to calculate an accurate amplitude spectrum (|Ag(k, k )|) for short record dimensions (say, 30 x 30) . x y The procedure requires tapering the data before transformation and - 115 -REPRESENTATION OF FILTERING PROCESS S P A C E DOMAIN - < t > WAVENUMBER DOMAIN weighting function h ( a ) A g out transfer function h ^ in SELECTION OF (b) CUTOFF WAVENUMBER USING VERTICAL PRISM / / / / / / • • 25 cpm SIGNAL - NOISE (c) SEPARATION 0 - 2 5 5 0 c y c l e s / m i l e EXAMPLE: Ax=lmile kN =1/2cpm w^2miles =0 k c =1/4 cpm FIGURE I I - l - 116 -extending the map with f i c t i t i ons zeros to l imit "wrap-around". However, the amplitude spectrum is s t i l l only an approximation of the true spectrum and consequently care must be exercised when f i l t e r i n g is accomplished in the frequency domain. For this work, f i l t e r coeff icients were designed in the wavenumber domain and convolved with the data map in the space domain. This approach proved to be the most convenient. Since edge effects were discarded the problems inherent i n wavenumber f i l t e r i n g were minimized. Spatial f i l t e r i n g suffers from the drawback that the f i l t e r coeff icients are not data adaptive. In most cases, this l imitat ion i s of l i t t l e signif icance. FILTER OPERATORS 1) ULRYCH LOW PASS FILTER The Ulrych low pass f i l t e r with spectral image and weighting ( f i l t e r ) coeff icients i s shown on Figure II-2. It has cutoff near 0.25 cycles/data interval and serves as a good general 'smoothing' operator. Its application is equivalent to removing the 'noise' component from the data map. For this work, i t was used to generate the smoothed aeromagnetic maps as well as an indirect method to remove the noise f i e l d (g^) from the gravity maps. It has a d is t inct advantage of being symmetrical and only 7 points in total-length (a 4 point f i l t e r ) . - 117 -ULRYCH LOW PASS FILTER AMPLITUDE SPECTRUM K x C Y C L E S / A X WEIGHTING COEFFICIENTS t - 0 - 0 0 8 4 - ^ 0 - 0 0 7 8 — 0 0 0 3 3 0 0 0 0 0 0 - 0 2 3 7 — 0 0 0 8 8 — 0 - 0 0 7 9 — 0 0 0 3 3 £ 0 - 1 2 3 2 — 0 - 0 7 7 8 — 0 0 0 8 8 — 0 - 0 0 7 8 0-1843 — 0 - 1 2 3 2 — 0 - 0 2 3 7 — " 0 0 0 8 4 F I R S T Q U A D R A N T (AX) - 118 -2 ) ROSENBACH SECOND DERIVATIVE FILTER The Rosenbach second derivative f i l t e r i s a good approximation to the ideal operator at low wavenumbers and attenuates higher wavenumbers. It has a distinct advantage of being only 5 points in length. The f i l t e r (weighting) coefficients together with i t s spectral image are shown in Figure I I - 3 . It serves to amplify subtle features i n the data map and to pinpoint points of inflection (contacts) in the original map. - 119 -ROSEN BACH SECOND DERIVATIVE FILTER AMPLITUDE SPECTRUM C Y C L E S /AX WEIGHTING COEFFICIENTS O O O O — 0 0 4 2 0 - 0 0 0 \ ~ - 0 - 7 5 0 ^ 0 - 3 3 4 0 0 4 2 5 ' ' 4 - 0 0 0 - ^ 0 - 7 5 0 — - 0 - 0 0 0 F I R S T Q U A D R A N T (AX) FIGURE I I -- 120 -APPENDIX III GRAVITY MODEL CALCULATIONS Two Dimensional Body of Arbitraty Shape, Talwani (1973) (see Figure III-l) n Ag = 2Gp I X i Z i + l z i x i + l i=l ( x i + 1 - x . ) 2 + ( z . + 1 - z ± ) 2 x i ( X i + l " X i ) tan -1 - tan Zi+1* x 1+1 + 2< zi+l " z i ) l n 2 _i_ ^ ^ Xi+1 + Zi+1 2 , 2 x. + z± where n = number of sides of polygonal body cross section x, , z i ' " i x, z coordinates of each of the polygon vertices relative to the gravity station p = density of body G = Universal gravitational constant Ag = ver t i c a l component of the gravity value for the body at the gravity station - 121 -Ag PARAMETERS ZD BQPY OF ARBITRARY SHAPE STATION 0 l Z I s 1, 2,. . . , n 3D BODY OF ARBITRARY S H A P E station thin horizontal lamina n-gon 1 = 1 , 2 ; ,n body of arbitrary shape lamina approximation to body Z 2 depth section FIGURE H I " I - 122 -Three Dimensional Body of Arbitrary Shape, Talwani and Ewing (1960) A g = f top V dz bottom (HI - 2 ) where V = n Gp I i=l W cos r x i + i r i + i + y,-r. 1 ry i+l i+iJ - i f z q i s 1 - i f z f - s i " { ( p 2 + ,2,1/2} • - { ( p 2 ; . * , ! « } and S = + 1 i f p. > 0, S = - 1 i f p. < 0 x — . 1 W = + 1 i f M 1 >_ 0, W = - 1 i f M ± < 0 ( I H - 3 ) y i " y i + l X i ~ x i + l q i = M = — r i , i + l X. l r i , i + l Y ± x. - x.,, l i+l X. • - i + y i " y i + l r i , i + l r. i r i , i + l r. l X. - X. , , 1 1+1 Xi+1 , y i " y i + l y i + l r i , i + l r i + l r i , i + l r i + l y i Xi+1 y i + l X i • i r i r i + l r i + l r i - 123 -r. 1 + 2.1/2 r i+1 1+1 r i , i + l n = number of vertices of polygonal lamina. V = vert ica l component of the gravitational attraction per unit thickness of a thin horizontal polygonal lamina, evaluated at a point p ' (0,0,z). g = numerical integration of equation II I-l; the total ver t i ca l component of the gravitational attraction found by applying Simpson's rule to a series of laminae approximating the body at depths - 124 -A P P E N D I X I V H f l O E M G R A V I T Y D A T A * K E L M I V E C f A V fcf F E C T S K P F « C E S T N * E L E V C B S 6 C U G S T N N O E L E V C E L T * E * • L A I • f A I R • P S L A f j + 1 E P R N = T C T * L * F A C T O R C - R A V A N C f ' L Y 9 3 6 5 2 5 4 3 . C c . C - 0 . 0 - 0 . 0 0 . 0 0 . 0 C . c 0 . 0 C . C C O 9 3 6 C 2 9 3 2 , . 0 3 8 9 . . C 4 . 5 1 - 3 6 , . 4 9 1 3 . 2 7 - o . : 3 8 - 1 5 . 1 0 - 0 . 0 6 1 1 0 . 4 4 2 9 . 5 4 9 3 6 1 5 5 5 5 . c 3 C 1 2 . C 1 2 . 0 6 - 2 8 2 . 5 4 1 C 2 . 7 3 - 3 . 6 7 - 1 7 1 . 6 2 - 0 . 0 6 1 - 1 4 3 . £ 2 2 7 . 8 0 9 3 6 2 2 9 5 6 . c 4 1 3 . C 2 2 . 66 - 3 8 , . 7 4 1 4 . 0 9 - 0 . 7 2 - 2 . 5 2 - C . 0 6 1 1 2 . 2 4 1 4 . 7 6 9 3 6 3 4 4 2 7 . c 1 E E 4 . C U . 1 4 - 1 7 6 , . 7 3 6 4 . 2 6 - i . C I . ~J - 1 C 2 . £ 7 - C . 0 6 1 - 9 0 . 8 9 1 1 . 9 8 9 3 6 4 2 7 4 9 . 0 ? C f c . 0 1 2 . 5 7 - 1 9 . 3 2 7 . C 3 - l . c e - C . 6 C - C . 0 6 5 7 6 - 2 . 9 6 9 3 5 9 2 5 C 6 . c - 3 7 . . c 4 . 1 4 3 . 4 7 - 1 . 2 6 - 3 . 2 5 3 . I C 0 . 0 2 3 3 1 . 7 0 2 8 . 6 0 9 3 6 6 2 5 7 6 . 0 - - . 0 0 . 1 5 . I C 1 . 1 3 - C . C C - 1 . 6 3 - C . 0 6 0 - 1 . 2 0 0 . 6 3 9 3 6 1 2 5 f e . 0 2 5 . 0 1 . 5 6 - 2 . 3 5 0 . 8 5 - 0 . 1 8 - C . 1 1 - 0 . 0 6 7 3 3 . 8 1 3 3 . 9 2 9 3 6 8 3 7 3 7 . c 1 1 9 4 . c - 7 . 4 3 - 1 1 2 . C C 4 C . 7 2 - 1 . 0 3 - 7 S . 7 4 - 0 . 0 6 1 - 5 0 . 2 1 2 9 . 5 3 9 3 6 9 4 7 6 3 . 0 2 2 2 0 . 0 - 2 1 . C l - 2 C 8 . 2 4 7 5 . 7 2 - 3 . 3 4 - 1 5 6 . 6 7 - c . 0 6 1 - 1 4 5 . 4 4 1 1 . 4 3 9 3 7 C 3 1 6 6 . c 6 2 5 • c - 2 0 . 5 4 - 5 8 . 6 3 2 1 . 3 2 - 0 . 4 1 - 5 E . 2 6 - c . 0 6 C - 3 6 . 7 9 1 9 . 4 7 9 3 7 1 3 3 8 8 . 0 £ 4 5 • c - 2 2 . 6 4 - 7 9 . 2 6 2 8 . 6 2 - 0 . 6 4 - 7 3 . 5 2 - G . 0 6 1 - 6 5 . 6 8 8 . 2 4 9 3 7 2 3 2 5 5 . 0 7 1 2 . 0 - 1 0 . 8 9 - 6 6 . 7 9 2 4 . 2 8 - 0 . 8 6 - 5 4 . 2 6 - C . 0 6 1 - 4 6 . 7 1 5 . 5 5 9 3 7 3 3 2 4 4 . c 7 C 1 . c - P . £ 2 - 6 5 . 7 6 2 3 . 9 1 - 3 . 4 1 - 5 4 . 0 8 - 0 . 0 6 5 - 4 4 . 9 3 9 . 1 5 1 6 0 0 1 3 1 7 8 . 0 6 3 5 . 0 - 2 0 . 2 3 — 5 9 . 5 7 2 1 . 6 6 - C . 3 3 - 5 £ . 4 6 - 0 . 0 6 0 - 3 7 . 7 9 2 0 . 6 7 1 6 0 0 2 3 1 8 2 . 0 6 3 9 . 0 - 1 9 . 9 6 - 5 S . 9 4 2 1 . 7 9 - C . 2 8 - 5 f . 3 8 - 0 . 0 6 C - 3 6 . 3 4 2 0 . 0 4 1 6 . C C 3 3 2 3 C . c 6 8 7 . c - 1 9 . 6 2 - 6 4 . 4 4 2 3 . 4 3 0 . 2 5 - 6 C . 3 8 - 0 . 0 5 9 - 3 8 . 1 0 2 2 . 2 8 1 6 0 0 4 3 3 0 3 . 0 7 6 0 . c - 1 9 . 3 0 - 7 1 . 2 9 2 5 . 9 2 C . 3 C - 6 4 . 3 7 - 0 . 0 5 9 - 4 1 . S 3 2 2 . 4 4 1 6 C 0 5 3 3 1 9 . 0 7 7 6 . c - 1 9 . 2 3 - 7 2 . 7 9 2 6 . 4 7 0 . 3 4 - 6 5 . 2 1 - 0 . 0 5 9 - 4 3 . 1 6 2 2 . 0 5 1 6 0 0 6 3 3 2 5 . 0 7 8 2 . c - I t . 9 6 - 7 3 . 3 5 2 6 . 6 7 0 . 3 5 - 6 5 . 3 C - 0 . 0 5 9 - 4 2 . 2 8 2 3 . 0 2 1 6 0 0 7 3 3 2 9 . 0 7 8 6 . 0 - I B . 6 9 - 7 3 . 7 3 2 6 . 8 1 0 . 2 c - 6 5 . 2 6 - 0 . C 5 5 - 4 1 . C 8 2 4 . 1 6 1 6 C C 8 3 3 6 2 . c 8 1 9 • C - 1 8 . 4 2 - 7 6 . 8 3 2 7 . 9 3 0 . 3 4 - 6 6 . 9 7 - 0 . 0 5 9 - 4 1 . 0 7 2 5 . 9 0 1 6 0 0 9 3 3 8 9 . 0 6 4 £ . c - 1 8 . 1 3 - 7 9 . 3 6 2 8 . £ 5 c . 3 4 - 6 6 . 3 C - 0 . 0 5 9 - 4 1 . 3 5 2 6 . 9 5 1 6 0 1 0 3 3 9 0 . 0 8 4 7 . 0 - 1 7 . « 9 - 7 9 . 4 5 2 8 . 6 9 0 . 3 6 - 6 6 . C 9 - 0 . 0 5 9 - 4 C . 4 7 2 7 . 6 2 1 6 0 1 1 3 3 4 8 . 0 8 C 5 • c - 1 7 . 5 4 - 7 5 . 5 1 2 7 . 4 6 0 . 3 2 - 6 5 . 2 8 - 0 . 0 5 9 - 3 9 . 3 5 2 5 . 9 3 1 6 0 1 2 3 3 5 0 . 0 8 1 5 . 0 - 1 7 . 6 7 - 7 6 . 4 5 2 7 . e c c . 3 1 - 6 f . C I - 0 . 0 5 9 - 4 4 . 1 4 2 1 . 8 7 1 6 0 1 3 3 3 7 2 . c 8 2 9 . 0 - 1 7 . 5 4 - 7 7 . 7 6 2 3 . 2 7 0 . 1 9 - 6 6 . 8 4 - 0 . 0 5 9 - 4 6 . 1 3 1 6 . 7 1 1 6 0 1 4 3 3 5 2 . 0 E C S . c - 1 7 . 6 7 - 7 5 . £ 9 2 7 . 5 9 - 0 . 0 2 - 6 5 . 9 9 - 0 . 0 6 0 - 4 9 . 0 0 1 6 . 9 9 1 6 0 1 5 3 3 6 1 . 0 8 1 8 . c - 1 7 . 7 6 - 7 6 . 7 3 2 7 . 9 0 - 0 . 1 2 - 6 6 . 7 2 - c . 0 6 C - 5 C . 1 6 1 6 . 5 6 1 6 C 1 6 3 3 7 4 . c £ 3 1 • C - 1 7 . 8 6 - 7 7 . 9 5 2 8 . 3 4 - 0 . 4 0 - 6 7 . 6 7 - c . 0 6 0 - 5 1 . 7 9 1 6 . 0 8 1 6 0 1 7 3 3 7 5 . 0 8 3 2 . c - 1 8 . C 3 - 7 £ . C 4 2 8 . 3 8 . - c . 2 3 - 6 7 . S 4 - C . 0 6 0 - 5 3 . 4 6 1 4 . 4 8 1 6 C 1 8 3 4 0 7 . 0 8 6 4 . 0 - 1 0 . 0 3 - P I • C 5 2 9 . 4 7 - c . 5 6 - 7 C . 2 2 - c . 0 6 C - 5 6 . 6 9 1 3 . 5 3 1 6 C 1 9 3 4 2 4 . c 8 6 1 . c - I t . 1 5 - 6 2 . 6 4 3 0 . 0 5 - 1 . 1 3 - 7 1 . 8 8 - 0 . 0 6 1 - 5 8 . 8 8 1 3 . 0 0 1 6 0 2 0 3 4 4 3 . 0 9 0 0 . c - 1 8 . 2 0 - 6 4 . 4 2 3 0 . 7 C - 1 . 2 7 - 7 3 . 2 C - 0 . 0 6 1 - 6 3 . 3 8 9 . 8 2 1 6 0 2 1 3 3 5 9 . 0 8 1 6 . 0 - 1 8 . 2 0 - 7 6 . 5 4 2 7 . 8 3 - c . 5 1 - 6 7 . 4 3 - c . 0 6 0 - 5 6 . 4 8 1 C . 9 5 1 6 C 2 2 3 3 9 2 . 0 £ 4 9 . c - 1 8 . 1 5 - 7 9 . 6 4 2 8 . 9 6 - 1 . 8 C - 7 C . 6 4 - 0 . 0 6 2 - 5 9 . 2 7 1 1 . 3 7 1 6 0 2 3 3 4 4 0 . 0 8 9 7 . 0 - 1 8 . 1 5 - 8 4 . 1 4 3 C . = c - 1 . 0 3 - 7 2 . 7 4 - c . 0 6 1 - 6 2 . 4 6 1 0 . 2 8 1 6 0 2 4 3 3 9 7 • C £ 5 4 . c - 1 8 . 2 3 - 3 0 . 1 1 2 9 . 1 3 - 1 . 0 3 - 7 C . 2 9 - 0 . 0 6 1 - 5 9 . s e 1 C . 3 1 1 6 0 2 5 3 4 0 9 . 0 E f c t . c - 1 8 . 3 7 - t l . 2 3 2 9 . 5 4 - 1 . 0 3 - 7 1 . 1 0 - 0 . 0 6 1 - 6 1 . 2 1 9 . 8 9 1 6 0 2 6 3 3 4 5 . 0 8 C 2 . 0 - I P . 5 9 - 7 5 . 2 3 2 7 . 3 5 - c . 6 C - 6 7 . C 7 - c . 0 6 C - 5 6 . i e 3 . 8 9 1 6 C 2 7 3 3 6 3 . 0 6 2 C . c - 1 6 . 8 4 - 7 6 . 9 2 2 7 . 9 7 - 0 . 4 0 - 6 6 . 1 8 - 0 . , 0 6 0 - 5 9 . , 5 7 8 . 6 1 1 6 0 2 8 3 3 6 7 . L 8 2 4 • C - 1 9 . 1 5 - 7 7 . 2 9 2 £ . I C - c . 1 2 - 6 6 . 4 7 - 0 . , C 6 C - 6 0 . , 1 7 8 . 3 0 1 6 0 2 9 3 3 6 2 . 0 8 1 9 . 0 - 1 9 . 2 8 - 7 6 . 8 3 2 7 . 9 3 - c . 3 C - 6 6 . 4 7 - C . , 0 6 0 - 6 C . 6 4 7 . 6 3 1 6 C 3 C 3 3 7 ? . c £ 2 9 . c - 1 9 . 4 7 - 7 7 . 7 6 2 6 . 2 7 - 0 . 2 0 - 6 9 . 1 6 - 0 . . 0 6 0 - 6 1 . , 6 7 7 . 4 9 1 6 0 3 1 3 3 9 9 . 0 £ 5 6 . c - 1 9 . 6 7 - £ C • 3 C 2 C.. 1 9 - c . 6 1 - 7 1 . 3 8 - c . 0 6 C - 6 3 . 2 3 e . 1 5 1 6 0 3 2 3 4 0 P . 0 P 6 * . 0 - 1 9 . b l - 8 1 . 1 4 2 9 . 5 0 - 0 . 3 7 - 7 1 . 6 2 - C . , 0 6 C - 6 4 . , 1 4 7 . 6 6 1 6 0 3 3 3 4 3 ; . c 6 9 C . c - 1 9 . 9 8 - 6 3 . 4 9 3 C . 3 5 - c . 5 6 - 7 3 . 6 3 - 0 . , 0 6 0 - 6 5 . , 6 0 8 . 0 8 1 6 0 3 4 3 4 5 0 . 0 9 0 7 • C - 2 C . 1 3 - 8 5 . 0 8 3 0 . 9 3 - c . 3 6 - 7 4 . 6 5 - c . , C 6 C - 6 7 . 2 7 7 . 3 8 1 6 C 3 5 3 4 6 C . 0 9 1 7 . c - 2 0 . 3 5 - 8 6 . 0 2 3 1 . 2 f - 1 . 2 5 - 7 6 . 3 4 - 0 . . 0 6 1 - 6 e . . 1 8 C 1 6 1 6 0 3 6 3 4 2 7 . 0 £ 8 4 . c - 2 C . 6 4 - 6 2 . 9 2 3 C . 1 5 - c . 9 6 - 7 4 . 3 9 - 0 . , 0 6 1 - 6 6 . , 6 6 7 . 7 3 1 6 0 3 1 3 4 5 1 . c 9 0 8 • G - 2 0 . . 9 6 - 0 5 . 1 7 3 C . , 9 7 - c . 6 7 - 7 5 . , 8 3 - C . , 0 6 C - 6 7 . . 6 6 7 . 9 7 . 1 6 0 3 6 3 * 4 6 . c < C 5 . 0 - 2 1 . 3 2 - 6 4 . 8 9 3 0 . , 8 7 - c . , 5 8 - 7 5 . , 9 3 - 0 . . 0 6 0 - 6 8 . . 0 5 7 . 6 8 1 6 0 3 9 3 4 4 1 . 0 8 9 f . 0 - 2 1 . , 7 1 - e « . 2 4 3 C . 6 3 - c . 3 f - 7 5 . 7 C - c . , 0 6 C - 6 8 . , 0 5 7 . 6 5 1 6 C 4 C 3 4 4 8 . 0 9 0 5 . 0 - 2 1 . , 9 8 - 8 4 . 8 9 3 0 . , 6 7 - c . , 3 6 - 7 6 . , 3 6 - 0 . . 0 6 C - 6 £ . , 9 7 7 . 3 9 1 6 C 4 1 3 4 a t . 0 9 4 5 . c - 2 2 . 1 3 - 8 6 . 6 4 3 2 . , 2 3 0 . , 3 6 - 7 E . , 1 8 - 0 , . 0 5 9 - 7 0 . , 8 8 7 . 3 0 1 6 0 4 2 3 5 3 2 . 0 9 P 9 . c - 2 2 . , 2 C - 9 2 . 7 7 , 7 3 c . , 3 2 - e c . 9 2 - c . . 0 5 9 - 7 3 . , 3 1 7 . 6 1 - 125 -1 6 C 4 2 3 5 C 3 . C 9 6 L . C - 2 2 . 2 C - 9 0 . 0 5 3 2 . 7 4 0 . 2 5 - 7 9 . 2 6 - 0 . 0 5 9 - 7 1 . 8 3 7 . A 3 1 6 0 4 4 3 4 2 5 . 0 9 8 2 . C - 1 7 . 2 C - 6 2 . 7 3 3 C . C 6 C . l l - f e e . 7 5 - C . 0 6 0 - 4 9 . 4 9 2 0 . 2 6 1 6 C 4 5 3 4 5 5 . C 9 1 2 . 0 - I t . 8 6 - 8 5 . 5 5 3 1 . I C - C . 1 6 - 7 1 . 4 6 - C . 0 6 0 - 5 1 . C 6 2 C . 4 C 1 6 0 4 6 3 4 6 2 . C 9 2 9 . C - 1 6 . 6 2 - 6 6 . C 6 3 2 . 0 3 - 0 . 2 6 - 7 2 . 9 4 - 0 . 0 6 0 - 5 2 . 7 4 2 0 . 2 0 1 6 0 4 7 3 5 1 0 . 0 9 6 7 . C - 1 6 . 3 ? - S C . 7 1 3 2 . 9 6 - C . 5 6 - 7 4 . 6 1 - 0 . 0 6 0 - 5 4 . 1 9 2 0 . 4 2 1 6 C 4 8 3 5 3 3 . C 9 9 C . C - 1 6 . C I - 9 2 . 8 7 3 3 . 7 6 - 0 . 5 6 - 7 5 . 6 9 - 0 . 0 6 0 - 5 6 . C £ 1 9 . 6 1 1 6 0 4 9 3 5 2 7 . C 9 £ 4 . C - 1 5 . 6 4 - 9 2 . 2 C 3 3 . 5 6 - 0 . 4 C - 7 4 . 7 9 - C . 0 6 0 - 5 4 . 7 3 2 0 . 0 6 1 6 0 5 C 3 5 3 7 . 0 9 9 4 . 0 - 1 5 . 2 3 - 9 3 . 2 4 2 3 . 9 C - C . 5 6 — 7 5 . I E - C . 0 6 C - 5 1 . 7 C 2 3 . 4 8 1 6 C 5 1 5 5 6 C . C 1 C 1 7 . C - 1 5 . G l - 9 5 . 4 0 3 4 . 6 9 - 0 . S 2 - 7 6 . 5 4 - 0 . 0 6 1 - 5 5 . 0 6 2 1 . 4 8 1 6 0 5 2 3 4 9 7 . C 9 5 4 . C - 1 4 . 7 7 - 6 9 . 4 9 3 2 . 5 4 - C . 7 2 - 7 2 . 4 4 - C . 0 6 0 - 5 4 . 1 5 1 6 . 2 9 1 6 0 5 3 3 5 1 2 . C 9 6 9 . 0 - 1 4 . 4 7 - 9 0 . 9 0 3 3 . 0 5 - 2 . 2 6 - 7 4 . 6 C - C . 0 6 2 - 5 4 . 5 1 2 0 . 0 9 1 6 C 5 4 3 4 S C . C 9 3 7 . C - 1 4 . 2 6 - £ 7 . 6 9 3 1 . 9 6 - 1 . 8 7 - 7 2 . 0 6 -0 .0cI - 5 4 . 5 2 1 7 . 5 4 1 6 0 5 5 3 4 7 C . 0 9 2 7 . C - 1 3 . 9 1 - 6 6 . 9 6 3 1 . 6 2 - 2 . C 7 - 7 1 . 3 2 - 0 . 0 6 2 - 5 4 . 2 5 1 7 . C 7 1 6 0 5 < 3 4 4 6 . 0 9 0 5 . 0 - 1 3 . 6 9 - 8 4 . 6 9 3 0 . 3 7 - 1 . 9 3 - 6 9 . 6 5 - 0 . 0 6 2 - 5 3 . 4 6 1 6 . 1 9 1 6 0 5 7 3 4 7 7 . C 9 3 4 . C - 1 3 . S C - 6 7 . 6 1 3 1 . 3 6 - 2 . 1 1 - 7 1 . 3 7 - 0 . 0 6 2 - 5 4 . 5 5 1 6 . 8 ? 1 6 0 5 6 3 5 1 6 . 0 9 7 3 . 0 - 1 3 . 2 3 - 9 1 . 2 7 3 3 . 1 9 - 2 . 3 9 - 7 3 . 7 C - C . 0 6 2 - 5 6 . 7 9 1 6 . 9 1 1 6 C 5 9 3 4 9 6 . C 9 5 3 . 0 - 1 3 . 0 4 - 8 9 . 3 9 3 2 . 5 C - 1 . 0 9 - 7 1 . C 2 - 0 . 0 6 1 - 5 6 . C O 1 5 . 0 2 1 6 0 6 C 3 4 1 7 . 0 6 7 4 . C - 1 2 . 7 4 - 6 1 . 9 6 2 9 . 6 1 - 1 . 2 1 - 6 t . l 3 - 0 . C 6 1 - 5 2 . 5 8 1 3 . 5 5 1 6 0 6 1 3 3 8 8 . 0 8 4 5 . 0 - 1 2 . 4 3 - 7 9 . 2 6 2 6 . 3 2 - 1 . 3 3 - 6 < . 2 5 - C . 0 6 1 - 5 1 . 6 8 1 2 . 5 7 1 6 C 6 2 3 3 6 C . C 6 3 7 . C - 1 2 . 2 1 - 7 6 . 5 1 2 8 . 5 5 - 1 . 4 8 - 6 3 . 6 5 - 0 . 0 6 1 - 5 1 . 7 8 1 1 . 8 7 1 6 0 6 3 3 3 9 2 . 0 P 4 9 . C - 1 1 . 9 4 - 7 9 . 6 4 2 6 . 9 6 - l . C C - 6 3 . 6 2 - 0 . 0 6 1 - 5 2 . 9 1 1 0 . 7 1 1 6 0 6 4 3 4 9 2 . 0 9 4 9 . 0 - 1 1 . 6 2 - 8 9 . 0 2 3 2 . 3 7 - 1 . 0 6 - 6 9 . 3 3 - 0 . 0 6 1 - 5 6 . 6 7 1 0 . 4 6 1 6 0 6 5 3 4 5 1 . C 9 C C . C - 1 1 . 3 8 - 6 5 . 1 7 ' 3 C . 9 7 - 1 . 2 4 - 6 6 . 8 3 - 0 . 0 6 1 - 5 6 . 6 4 9 . 9 9 1 6 0 6 6 3 3 9 1 . 0 6 4 6 . C - 1 1 . 0 9 - 7 9 . 5 5 2 8 . 9 2 - C . 9 7 - 6 2 . 6 6 - C . 0 6 1 - 5 3 . 1 4 9 . 5 4 1 6 C 6 7 3 4 1 1 . C £ 6 6 . C - 1 0 . b 4 - 3 1 . 4 2 2 9 . 6 0 - 1 . 3 1 - 6 3 . 9 6 - C . O c l - 5 4 . 5 0 9 . 4 6 1 6 0 6 8 3 3 9 5 . 0 6 5 2 . C - 1 C . 6 2 - 7 S . 9 2 2 9 . 0 6 - 1 . 0 5 - 6 2 . 5 3 - C . O t o l - 5 3 . 9 2 8 . 6 1 1 6 C 6 9 3 4 3 4 . 0 9 9 1 . 0 - 1 0 . 3 3 - 6 3 . 5 9 3 C . 3 9 - 1 . 3 7 - 6 4 . 8 9 - 0 . 0 6 1 - 5 5 . 6 8 9 . 2 1 1 6 C 7 C 3 4 7 C . C 9 2 7 . C - 1 0 . C 6 - 3 6 . 9 6 3 1 . 6 2 - 1 . 6 3 - 6 7 . 2 4 - 0 . O 6 2 - 5 7 . 7 3 9 . 5 1 1 6 0 7 1 3 4 6 5 . 0 9 2 2 . 0 - 9 . 8 2 - 6 6 . 4 9 3 1 . 4 5 - 1 . 9 5 - 6 6 . 6 2 - 0 . 0 6 2 - 5 6 . 7 4 1 0 . 0 8 1 6 0 7 2 3 4 3 1 . C 6 8 9 . 0 - 9 . 4 9 - 8 3 . 3 C 3 0 . 2 9 - 3 . 3 4 - 6 5 . 8 3 - 0 . 0 6 3 - 5 5 . 5 1 1 C . 3 2 1 6 C 7 3 3 3 8 C . 0 6 3 7 . C - 9 . 1 6 - 7 6 . 5 1 2 a . 5 5 - 3 . 0 3 - 6 2 . 1 6 - 0 . 0 6 3 - 5 2 . 1 2 1 0 . 0 4 1 6 0 7 4 3 3 0 1 . 0 7 5 9 . C - 8 . 8 5 - 7 1 . I C 2 5 . 6 5 - 3 . 7 6 - 5 7 . 6 6 - 0 . 0 6 5 " - 4 6 . 1 8 9 . 6 8 1 6 C 7 5 3 2 6 0 . 0 7 1 7 . C - 8 . 5 0 - 6 7 . 2 6 2 4 . 4 5 - 3 . 3 7 - 5 4 . 6 6 - 0 . 0 6 4 - 4 6 . 2 7 8 . 4 1 1 6 0 7 6 3 3 1 0 . 0 7 f e 7 . C - 6 . 3 6 - 7 1 . 9 5 2 6 . 1 6 - 3 . 9 C - 5 6 . 0 5 - 0 . 0 6 5 - 4 6 . 7 5 9 . 3 0 1 6 0 7 7 3 2 8 1 . 0 7 3 8 . 0 - 8 . 0 4 - 6 9 . 2 3 2 5 . 1 7 - 3 . 3 9 - 5 5 . 4 9 - C . C 6 4 - 4 6 . 8 5 8 . 6 4 1 6 C 7 6 3 2 9 1 . 0 7 4 6 . C - 7 . 7 2 - 7 0 . 1 7 2 5 . 5 1 - 2 . 4 9 - 5 4 . 3 7 - 0 . 0 6 3 - 4 7 . 4 2 7 . 4 5 1 6 0 7 9 3 2 7 9 . C 7 3 t . O - 7 . 3 6 - 6 9 . C 4 2 5 . I C - 3 . 0 5 - 5 4 . 3 5 - 0 . 0 6 4 - 4 6 . 9 1 7 . 4 4 1 6 0 8 C 3 2 6 5 . 0 7 2 2 . 0 - 7 . 0 4 - 6 7 . 7 3 2 4 . 6 2 - 4 . 0 9 - 5 4 . 2 3 - 0 . 0 6 5 - 4 5 . 9 6 8 . 2 6 1 6 C 8 1 3 2 2 C . C 6 7 7 . C - 6 . 6 3 - 6 3 . 5 C 2 3 . C 9 - 5 . 1 9 - 5 2 . 2 8 - 0 . 0 6 7 - 4 3 . 4 2 8 ._8_6_ 1 6 0 8 2 3 2 0 7 . 0 6 6 4 . 0 - 6 . 3 8 - 6 2 . 2 9 2 2 . 6 5 - 3 . 7 5 - 4 9 . 7 6 - 0 . 0 6 5 - 4 1 . 7 1 8 ~ . 0 7 " 1 6 0 0 3 3 1 9 5 . 0 6 5 2 . 0 - 6 . 1 2 - 6 1 . 1 6 2 2 . 2 4 - 3 . 3 9 - 4 6 . 4 3 - 0 . 0 6 5 - 4 C . 4 C 6 . 0 3 1 6 0 8 4 3 1 8 9 . 0 6 ^ 6 . C - 5 . 6 2 - 6 C . 6 C 2 2 . 0 3 - 3 . 7 9 - 4 8 . 1 8 - 0 . 0 6 6 - 3 9 . 2 9 8 . 8 V 1 6 0 8 5 3 1 8 3 . 0 ( 4 0 . C - 5 . 4 3 - 6 0 . 0 3 2 1 . 8 3 - 3 . 0 9 - 4 6 . 7 3 - C . 0 6 5 - 3 7 . 9 9 E . 7 4 1 6 C 8 6 3 1 5 6 . C 6 1 3 . C - 5 . 0 9 - 5 7 . 5 0 2 0 . 9 1 - 2 . 5 3 - 4 4 . 2 2 - 0 . 0 6 4 - 3 5 . 8 4 l i . 3 8 1 6 0 8 7 3 0 4 5 . C 5 C 2 . C - 4 . 6 7 - 4 7 . C 9 1 7 . 1 2 - 2 . 9 5 - 3 7 . 7 9 - 0 . 0 6 6 - 2 9 . 6 7 6 . 1 2 1 6 0 8 6 2 9 3 0 . 0 3 8 7 . C - 4 . 5 8 - 3 6 . 3 0 1 2 . 2 0 - 3 . 1 3 - 3 C . 6 1 - C . C 6 8 - 2 2 . 3 6 8 . 4 3 1 6 C 8 9 2 8 9 1 . C 3 4 C . C - 4 . 2 9 - 3 2 . 6 4 1 1 . 8 7 - 2 . 5 9 - 2 7 . 6 5 - 0 . 0 6 7 - 2 0 . 6 0 6 . 6 5 1 6 0 9 0 2 8 7 6 . C ~ ? 5 . C - 4 . C O - 3 1 . 4 2 1 1 . 4 3 - 2 . 3 9 - 2 6 . 3 9 - 0 . 0 6 7 - 1 9 . 7 3 6 . 6 6 1 6 0 9 1 2 8 7 3 . 0 3 3 0 . C - 3 . 7 0 - 3 0 . 9 6 1 1 . 2 5 - 2 . 1 ? - 2 5 . 5 3 - 0 . 0 6 6 - 1 6 . IC 6 . 6 2 1 6 0 9 2 2 8 7 4 . C 2 2 1 . C - 3 . 3 1 - 3 1 . C 5 1 1 . 2 9 - 1 . 8 4 - 2 4 . 9 1 - 0 . 0 6 5 - 1 4 . 9 3 9 . 9 6 1 6 0 9 2 2 9 3 3 . 0 2 ^ 0 . 0 - 2 . 9 7 - 2 7 . 2 C 9 . 6 9 - 1 . 6 4 - 2 1 . 9 3 - C . 0 6 5 - 1 2 . 1 1 9 . 6 2 1 6 C 9 4 2 6 0 7 . C 2 6 4 . C - 2 . 7 0 - 2 4 . 7 o 9 . 0 0 - 1 . 6 6 - 2 C . 1 4 - 0 . 0 6 6 - 1 C . 7 2 9 . 4 2 1 6 0 9 5 2 7 8 6 . 0 2 4 5 . C - 2 . 4 1 - 2 2 . 9 6 9 . 3 6 - 1 . 5 1 - 1 6 . 5 5 - C . 0 6 6 - 9 . 7 3 8 . 6 2 1 6 0 9 6 2 7 7 5 . 0 2 3 2 . 0 - 2 . 1 4 - 2 1 . 7 6 7 . 9 1 - C . 2 2 - 1 6 . 2 2 - 0 . 0 6 1 - 9 . C 2 7 . 2 0 1 6 C 9 7 2 7 5 9 . C 2 1 6 . C - 1 . 6 C - 2 0 . 2 6 7 . 3 7 - 0 . 1 7 - 1 4 . 6 7 - 0 . 0 6 0 - 7 . 9 1 6 . 9 6 1 6 0 9 8 2 7 4 6 . 0 2 0 3 . 0 - 1 . 5 1 - 1 9 . C 4 6 . 9 2 - C . 1 6 - 1 2 . 7 9 - C . 0 6 1 - 8 . 1 2 5 . 6 7 1 6 C 9 9 2 6 7 7 . 0 1 3 4 . C - 1 . 2 4 - 1 2 . 5 7 4 . 5 7 - C . 1 7 - 9 . 4 1 - 0 . 0 6 1 - 5 . 1 6 4 . 2 5_ I t I C C 2 6 7 9 . C 1 2 < . C - 1 . C 2 - 1 2 . 7 6 4 . 6 4 - 0 . 1 2 - 9 . ^ 7 - 0 . 0 6 1 - 2 . 8 1 5 . 4 ~ 6 1 6 1 0 1 2 6 9 5 . 0 1 5 2 . C -C.tt - 1 4 . 2 6 5 . 1 6 - C C 1 - < . £ 2 - C . 0 6 0 - 1 . 5 9 8 . 2 4 1 6 1 0 2 2 6 7 5 . 0 1 3 2 . 0 - 0 . 5 1 - 1 2 . 3 3 4 . 5 0 - 0 . 0 9 - 6 . 4 8 - 0 . 0 6 C - 2 . C 5 5 . 4 3 - 126 -1 6 1 C 2 1 6 1 0 4 1 6 1 C 5 1 6 1 0 6 1 6 1 C 7 1 6 1 0 8 2 6 4 8 . 0 2 6 4 1 . 0 2 5 9 5 . 0 2 5 5 0 . 0 3 3 3 7 . 0 3 3 4 9 . 0 1 0 5 . C 9 8 . 0 5 2 . C 7 . 0 7 9 4 . C F C 6 . C - 0 . 4 4 - 0 . 4 9 - C . 4 6 - C . 1 9 - b . 7 7 - 8 . 8 0 - 9 . 8 5 - 9 . 1 9 - 4 . e e - C . 6 6 - 7 4 , 4 b - 7 5 . 6 1 3 . 5 6 3 . 3 4 1 . 7 7 C . 2 4 2 7 . 0 3 2 7 . 4 9 1 6 1 0 9 1 6 1 1 C 1 6 1 1 1 3 3 2 2 . 0 3 3 2 6 . C 3 3 0 2 . C 7 7 9 . C 7 6 5 . C 7 5 9 . C - C . C 9 - 0 . 0 9 0 . 0 1 C . C 1 - 3 . 4 6 - 3 . 7 8 - 8 . 9 4 - 9 . 0 4 - 9 . 1 1 - 7 3 . 0 7 - 7 3 . 6 4 - 7 1 . 2 C - t . £ C - < . 4 3 - 3 . 5 6 - C . 6 C - 5 9 . 6 2 - 6 C . 6 9 - 0 . 0 6 1 - 0 . 0 6 1 - C . 0 6 0 - 0 . 0 5 8 - 0 . 0 6 4 - 0 . 0 6 4 - 2 . 3 1 - 2 . e e - 1 . 4 9 - C . 3 9 - 5 1 . 4 C - 5 3 . 1 0 4 . 4 9 3 . 5 5 2 . 0 7 C . 2 1 6 . 2 3 7 . 5 9 2 6 . 5 7 2 6 . 7 7 2 5 . 8 9 1 6 1 1 2 1 6 1 1 2 1 6 1 1 4 1 6 1 1 5 3 3 4 6 . 0 3 3 6 5 . C 3 3 3 9 . 0 8 0 3 . 0 £ 2 7 . C 6 4 6 . C - 9 . 1 6 - 9 . 2 6 - 9 . 4 5 - 3 . 9 3 - 3 . 0 5 - 3 . 3 2 - 7 5 . 3 2 - 7 7 . 1 1 - 7 9 . 2 6 - 5 9 . 3 7 - 5 6 . 9 5 - 5 7 . 7 5 2 7 . 2 9 2 8 . 0 4 2 6.65 - 3 . 9 7 - 3 . 2 6 - 2 . 9 3 6 1 . C 7 6 1 . 5 9 6 2 . - 0 . 0 6 5 - 0 . 0 6 4 - 0 . 0 6 4 - 5 1 . 8 5 - 5 2 . 2 0 - 5 1 . 5 7 7 . 5 2 6 . 7 5 6 . 2 3 6 9 - 6 7 . 4 6 - 6 3 . 7 3 - 6 * . 1 9 - 6 1 . 6 6 - 5 5 . 4 1 - 5 4 . 7 1 - C . 0 6 5 - 0 . 0 6 4 - 0 . 0 6 3 - 5 4 . 1 4 - 5 4 . 5 6 - 5 5 . 6 3 6 . 9 3 7 . 0 3 7 . 2 6 1 6 1 1 6 1 6 1 1 7 3 4 3 4 . C 3 4 0 6 . C 3 4 0 9 . 0 6 9 1 . 0 £ 6 3 . C 6 6 6 . C - 9 . 5 5 - 9 . 6 5 - 9 . 8 4 - 8 3 . 5 3 - 6 C . 9 5 - e i . 2 3 1 6 1 1 8 1 6 1 1 9 1 6 1 2 0 2 0 . 3 9 2 9 . 4 3 2 9 . 5 4 3 3 6 2 . C 3 2 5 2 . C 3 2 6 0 . 0 6 1 9 . C 7 C 9 . C 7 1 7 . 0 - 1 0 . 0 9 - I C . 1 9 - 1 0 . 3 3 - 4 . 7 1 - 2 . 6 1 - 2 . 6 5 - Y f > . 6 3 - 6 6 . 5 1 - 6 7 . 2 6 2 7 . 9 3 2 4 . 1 6 2 4 . 4 5 - 0 . 0 6 5 - O . o 6 3 - 0 . 0 6 3 - 5 7 . 1 9 - 5 6 . 8 4 - 5 7 . 4 9 1 0 . 2 7 4 . 9 4 6 . 7 0 - 2 . 7 0 - 2 . 9 C - 1 . 5 8 - 0 . 0 6 3 - 0 . 0 6 4 - 0 . C 6 2 - 5 4 . 4 5 - 4 9 . 0 9 - 4 9 . 4 4 7 . 2 3 6 . 3 2 5 . 2 7 1 6 1 2 1 1 6 1 2 2 1 6 1 2 3 3 2 9 4 . C 3 2 9 9 . 0 3 3 3 0 . C 7 5 1 . C 7 5 6 . C 7 3 7 . 0 - 1 0 . 4 5 - 1 0 . 5 8 - 1 0 . 7 2 - 7 0 . 4 5 - 7 C . 9 2 - 7 3 . 8 ? 2 5 . 6 1 2 5 . 7 6 2 6 . 8 4 1 6 1 2 4 1 6 1 2 5 1 6 1 - 2 6 1 6 1 2 7 3 3 0 3 . C 3 2 7 1 . 0 3 3 0 C . C 7 6 C . C 7 2 6 . C 7 5 7 . C - 1 0 . 8 2 - 1 C . 9 9 - j o . 4 0 - 1 . 5 5 - C . 7 6 - C . 6 7 - 5 6 . 3 4 - 5 t . 4 7 - 5 6 . 2 7 - 7 1 . 2 9 - 6 6 . 2 9 - 7 1 . 0 1 2 5 . 9 2 . 2 4 . 6 3 2 5 . 9 2 - 0 . b 7 - 1 . 2 9 0 . 3 2 - 5 7 . 0 6 - 5 5 . 7 4 - 6 4 . 2 6 — J . 0 6 2 - 0 . 0 6 1 - 0 . 0 6 1 - 5 1 . 6 2 - 5 1 . 7 3 - 5 3 . 0 4 5 . 2 2 4 . 7 4 5 . 3 3 - 0 . 0 6 1 - 0 . 0 6 1 - 0 . 0 5 9 - 5 1 . 3 5 - 5 C . 5 8 - 4 2 . C 3 5 . 7 1 5 . 1 6 2 1 . 2 3 1 6 1 2 8 1 6 1 2 9 2 3 3 2 . 0 3 3 3 9 . 0 3 3 2 5 . C 7 8 9 . C 7 9 6 . 0 7 8 2 . C - 1 8 . 6 6 - 1 8 . 6 4 - 1 8 . 0 8 1 6 1 3 C 1 6 1 3 1 1 6 1 2 2 3 2 6 7 . C 3 2 5 0 . 0 3 2 4 9 . C 1 6 1 3 3 1 6 1 3 4 1 6 1 3 5 1 6 1 3 6 3 2 5 5 . 0 3 2 6 8 . 0 3 2 5 6 . 0 7 2 4 . C 7 0 7 . 0 7 C 6 . C 7 1 2 . C 7 2 5 . 0 7 1 5 . C - 7 4 . C I - 7 4 . 6 7 - 7 3 . 3 5 2 6 . 9 1 2 7 . 1 5 2 6 . 6 7 - 1 8 . 1 3 - 1 7 . 7 6 - 1 7 . 5 2 - 1 7 . 2 3 - 1 7 . 1 6 - 1 6 . 9 6 0 . 3 2 0 . 2 3 0 . 3 4 - 6 7 . 9 1 - 6 6 . 2 2 - 6 6 . 2 3 - 6 I. 6 5 - 6 5 . 6 3 - 6 4 . 4 2 2 4 . 6 9 2 4 . 1 1 2 4 . 0 3 C . 3 4 C . 3 3 0 . 3 2 - 6 6 . 7 9 - 6 8 . 0 1 - 6 7 . C 7 • 6 1 . C I - 5 9 . 6 4 - 5 9 . 3 4 - 0 . 0 5 9 - C . C 5 9 - 0 . 0 5 9 - 4 1 . 2 3 - 2 9 . £ 0 - 2 6 . 2 8 2 4 . 4 2 2 6 . 0 3 2 6 . 1 4 - 0 . C 5 9 - 0 . 0 5 9 - 0 . 0 5 9 - 3 9 . 2 6 - 2 9 . 6 0 - 4 1 . 7 6 2 4 . 2 8 2 4 . 7 3 2 4 . 3 9 C . 3 1 0 . 3 3 - 0 . 0 0 - 5 9 . 4 7 - 6 0 . 1 1 - 5 9 . 6 5 2 1 . 6 5 2 0 . 0 4 1 7 . 5 8 - 0 . C 5 9 - 0 . 0 6 0 - 4 4 . 6 3 . - 4 6 . 9 4 - 4 8 . 8 6 1 4 . 8 4 1 2 . 1 7 1 0 . 7 9 1 6 1 3 7 1 6 1 3 8 3 2 7 4 . 0 3 3 7 1 . C 3 4 Q 7 . C 7 3 1 . C 8 2 8 . C £ t 4 . C - 1 6 . 8 9 - 1 6 . 6 9 - 1 6 . 5 7 - 6 8 . 5 7 - 7 7 . 6 7 - 8 1 . C 5 2 4 . 9 3 2 8 . 2 4 2 9 . 4 7 0 . 0 1 - 0 . 0 2 - C . 0 1 - 6 C . 5 2 - 6 6 . 1 5 - 6 6 . 1 5 - C . C 6 0 - C . 0 6 C - C . 0 6 C - 5 1 . 3 8 - 5 6 . 6 4 - 6 0 . 4 0 9 . 1 4 7 . 5 1 7 . 7 6 1 6 1 3 9 1 6 1 4 C 1 6 1 4 1 3 4 7 5 . 0 3 5 3 9 . C 3 5 4 2 . 0 9 3 2 . 0 9 9 6 . C 1 0 0 0 . 0 • 1 6 . 4 0 • 1 6 . 1 6 • 1 6 . C 6 - 8 7 . 4 2 - 9 3 . 4 3 - 9 2 . S C 1 6 1 4 2 1 6 1 4 2 1 6 1 4 4 3 5 3 5 . 0 3 6 2 7 . 0 3 5 9 9 . 0 1 0 4 2 . 0 1 C 6 4 . C K C 6 . C 2 1 . 7 9 3 3 . 9 7 3 4 . 1 1 - 1 5 . 9 4 - 1 5 . 6 4 -1 5 . 9 1 - 0 . 0 5 - 0 . 0 5 - C . 0 9 - 9 7 . 7 4 1 C 1 . 6 6 - 9 9 . C 6 — 7 2 . C £ - 7 5 . 6 6 - 7 5 . 6 5 - C . 0 6 C - 0 . 0 6 0 - C . 0 6 0 - 6 4 . 6 3 - 6 8 . 5 0 - 6 9 . 0 6 7 . 4 5 7 . 1 6 6 . 7 9 3 5 . 5 4 3 6 . 9 7 2 6 . C 2 - 0 . 0 6 0 . 2 6 C . 2 C - 7 6 . 2 1 - 8 0 . 2 9 - 7 6 . 6 5 - C . 0 6 C - 0 . 0 5 9 - C . 0 6 C - 1 * 1 . 4 9 ! - 7 4 . 4 5 - 7 2 . 4 9 6 . 7 2 5 . 8 4 6 . 1 6 1 6 1 4 5 1 6 1 4 6 1 6 1 4 7 3 6 0 6 . C 3 8 1 6 . C 3 9 3 2 . 0 1 6 1 4 6 1 6 1 4 9 1 6 1 5 C 4 C 5 6 . 0 4 1 4 3 . 0 4 0 9 4 . 0 1 U 3 . C 1 2 7 3 . C 1 3 3 9 . 0 1 5 1 5 . C 1 6 0 0 . 0 1 5 5 1 . C - 1 5 . 6 7 - 1 4 . 4 7 -- 1 4 . 0 4 -- 9 9 . 7 1 1 1 9 . 4 1 1 3 C . 2 9 3 6 . 2 5 4 3 . 4 2 4 7 . 3 7 1 3 . 7 9 - 1 4 2 . 1 1 1 3 . 5 5 - 1 5 C . C 9 1 3 . 4 0 - 1 4 5 . 4 9 1 4 4 . 9 3 1 3 9 . 7 7 1 3 3 . 7 6 C . 2 4 - 0 . 6 0 - C . 7 2 5 1 . 6 7 5 4 . 5 7 5 2 . 9 0 - 7 6 . 6 9 - 9 1 . 0 7 - 9 7 . 6 7 • 1 . 4 6 -1 . 3 2 -1 . 2 C -1 0 5 . 6 9 1 1 C . 2 9 1 C 7 . 1 9 - 0 . 0 5 9 - C . 0 6 C - C . 0 6 C - 7 2 , 4 1 - 7 9 . 0 0 - 6 4 . 1 5 6 . 4 6 1 2 . 0 7 1 3 . 5 2 - 0 . 0 6 1 - 0 . 0 6 1 - 0 . 0 6 0 - 6 9 . 2 6 - 9 1 . 6 5 - 6 7 . 3 0 1 6 . 4 3 1 8 . 5 4 1 9 . 6 9 1 6 1 5 1 1 6 1 5 2 1 6 1 5 3 4 C £ t . C 4 0 3 2 . 0 3 9 6 9 . C 1 5 4 5 . C 1 4 9 0 . 0 1 4 2 6 . 0 - 1 3 . 2 6 -- 1 2 . 1 1 -- 1 3 . 0 6 -5 2 . 6 9 5 C . 6 2 4 8 . 6 4 - 1 . 0 5 -- l . C C -- 0 . 9 4 1 6 1 5 4 3 9 4 C . 0 1 2 9 7 . 0 - 1 3 . C t - 1 2 1 . C 4 4 7 . 6 5 - 0 . 9 6 1 6 1 5 5 3 8 6 6 . 0 1 3 4 5 . 0 - 1 3 . 0 6 - 1 2 5 . 9 3 4 5 . C O - 0 . 4 6 1 0 6 . 5 4 1 C 3 . C 6 - 9 9 . 1 2 - 0 . 0 6 0 - 0 . 0 6 0 - C . 0 6 0 - 8 5 . 8 7 - 6 1 . 6 4 - 7 7 . 5 7 - 9 7 . 4 2 - 9 2 . c 9 2 0 . 6 7 2 1 . 4 2 2 1 . 5 6 - 0 . 0 6 0 - C . C 6 C - 7 5 . 2 9 • 7 1 . 9 8 2 2 . 1 3 2 1 . 7 1 1 6 1 5 7 2 7 9 2 . C 1 2 4 9 . C - 1 3 . 2 6 - 1 1 7 . 1 6 4 2 . 6 C - 1 . 2 C - 6 9 . C 2 t» . ^ - 0 . 0 6 1 — C I . O J - 6 7 . 1 6 C l . i. o 2 1 . 8 6 1 6 1 5 8 3 6 2 0 . u 1 C 7 7 . 0 - 1 3 . 3 5 - 1 0 1 . 0 3 2 6 . 7 3 - 1 . 4 C - 7 9 . C 5 - C . C 6 1 - 5 E . 5 C 2 0 . 5 5 1 6 1 5 9 3 5 6 9 . C 1 C 4 6 . C - 1 3 . 1 6 - 9 6 . 1 2 3 5 . 6 7 - 1 . 1 9 - 7 6 . 8 1 - 0 . 0 6 1 - 5 5 . 9 4 2 0 . 8 7 I t 1 6 0 3 6 1 2 . 0 1 C 6 9 . 0 - 1 2 . 9 2 - I C O . 2 6 2 6 . 4 6 - C . 3 4 - 7 7 . C 7 - C . 0 6 0 - 5 6 . 4 2 2bTh5 1 6 1 6 1 3 6 0 6 . 0 1 0 6 5 . C - 1 2 . 7 0 - 9 9 . 9 0 3 6 . 3 2 - 0 . 3 4 - 7 6 . 6 1 - C . 0 6 C - 5 5 . 3 1 2 1 . 3 C 1 6 1 6 7 3 6 5 7 . C 1 1 1 4 . C - 1 2 . 4 3 - 1 0 4 , 5 C 3 7 . 9 9 - 0 . 0 3 - 7 8 . 9 6 - 0 . 0 6 0 - 5 7 . 6 2 2 1 . 3 4 - 127 -1 6 1 6 3 3 6 3 1 . C 1 C P P . 0 - 1 2 . 2 6 - l u 2 . C 6 3 7 . 1 1 C . 0 7 - 7 7 . 1 3 - C . C 6 C - 5 5 . 7 5 2 1 . 3 8 1 6 1 6 4 3 6 5 1 . C 1 1 C 8 . 0 - 1 1 . 9 4 - 1 0 3 . 9 3 3 7 . 7 9 0 . 1 6 - 7 7 . 9 2 - 0 . 0 6 0 - 5 7 . 0 6 2 0 . 8 6 1 6 1 6 5 3 7 3 9 . 0 1 1 9 6 . 0 - 1 1 . 7 5 - 1 1 2 . 1 9 4 C . 7 9 C . 1 1 -63. C 4 - C . C c O - 6 2 . 3 7 2 0 . 6 7 1 6 1 6 6 3 7 1 7 . C 1 1 7 4 . 0 - 1 1 . 4 3 - 1 1 0 . 1 3 4 0 . 0 4 - 0 . 1 1 -G 1 . 6 3 - G . C 6 C - 6 1 . 3 C 2 0 . 33 1 6 1 6 7 3 7 2 0 . 0 1 1 7 7 . C - 1 1 . l t - 1 1 0 . 4 1 4 0 . 1 4 - 0 . 1 1 - 8 1 . 5 3 - 0 . 0 6 0 - 6 1 . 5 0 2 0 . 0 3 1 6 1 6 0 3 7 1 7 . 0 1 1 7 4 . 0 - 1 1 . 0 1 - 1 1 C . 1 3 4 C . C 4 - 0 . 1 3 -6 1 . 2 2 - C . 0 6 C - 6 1 . 6 6 1 9 . 5 6 1 6 1 6 S 3 7 2 5 . C 1 1 3 2 . C — 1 0' . 5 C - 1 1 0 . 8 3 t0. J l - 0 . 1 2 -6 1 . 1 9 - 0 . 0 6 0 - 6 2 . 7 0 1 6 . 4 9 1 6 1 7 0 3 7 8 2 . L 1 2 3 9 . C - 1 C . C 6 - 1 1 6 . 2 2 4 2 . 2 6 - C . 1 2 -6 4 . 1 5 - 0 . 0 6 0 - 6 3 . 4 5 2 0 . 7 0 1 6 1 7 1 3 8 6 1 . 0 1 3 1 C . 0 - 9 . 55- 1 2 3 . 6 3 4 4 . 9 5 - C . 1 3 - 6 6 . 2 6 - C . 0 6 C - 6 5 . 6 1 2 2 . 5 5 1 6 1 7 2 3 3 4 C . C 1 2 9 7 . C - 9 . 1 6 - 1 2 1 . 6 o 4 4 . 2 4 - 0 . 1 9 - 6 6 . 7 8 - O . U 6 U - 6 3 . 5 0 2 3 . 2 8 1 6 1 7 3 3 8 1 8 . 0 1 2 7 5 . 0 - £ . 7 2 - 1 1 9 . 6 C 4 3 . 4 9 - C . 2 9 - 6 5 . 1 3 - C . C 6 0 - 6 0 . 3 0 2 4.6 3 1 6 1 7 4 3 7 3 2 . 0 1 2 3 9 . 0 - P . 4 3 - 1 1 6 . 2 2 4 2 . 2 6 - 0 . 4 7 -62.66 - c . o t o - 5 6 . 2 5 2 6 . 5 1 1 6 1 7 5 3 7 6 9 . 0 1 2 2 6 . C - 8 . 1 4 - 1 1 5 . C C 4 1 . 8 1 - 0 . 7 6 - 6 2 . C 9 - 0 . J 6 U - 5 4 . 9 2 2 7 . 1 7 1 6 1 7 6 3 6 7 6 . 0 1 1 3 3 . 0 - 7 . 8 2 - 1 0 6 . 2 8 3 8 . 6 4 - C . 5 2 - 7 5 . 9 8 - C . 0 6 C - 4 S . 2 9 2 6 . 6 9 1 6 1 7 7 3 5 3 4 . C S 9 1 . 0 - 7 . 6 3 - 9 2 . 9 6 3 3 . 8 0 - C . 5 6 - 6 7 . 2 4 - 0 . 0 6 C - 4 1 . 1 9 2 6 . 1 5 1 6 1 7 8 3 1 4 9 . 0 6 C 6 . C - 2 C . 6 1 - 5 6 . 6 4 2 C . f - 7 - C . 4 6 - 5 7 . 4 5 - C . 0 6 0 - 3 8 . 5 6 1 8 . 8 9 1 6 1 7 9 3 1 5 0 . 0 6 0 7 . 0 - 2 1 . 1 5 - 5 6 . 9 4 2 0 . 7 0 - C . 5 5 - 5 7 . S 3 - 0 . C 6 1 - 2 9 . 1 3 i e . 8 1 1 6 i e C 3 1 4 1 . C 5 9 6 . C - 2 1 . 5 2 - ^ 6 . C 9 2 0 . 4 0 - 0 . 4 8 - 5 7 . 6 9 - 0 . 0 6 U - 4 0 . 5 0 1 7 . 1 9 1 6 1 8 1 3 1 1 7 . 0 5 7 4 . C - 2 1 . 7 4 - 5 2 . 6 4 1 9 . 5 6 - C . 5 S - 5 6 . 6 C - C . 0 6 1 - 4 0 . 1 5 1 6 . 4 5 1 6 1 8 2 3 0 9 8 . 0 5 5 5 . 0 - 2 2 . 1 0 - 5 2 . 0 6 1 8 . 9 3 - C . 6 5 - 5 5 . 6 9 - 0 . 0 6 1 - 4 C . 6 4 1 5 . 0 5 1 6 1 3 3 3 0 8 4 . C 5 4 1 . C - 2 2 . 3 5 - 5 C . 7 5 1 8 . 4 5 - 0 . 2 6 - 5 4 . 9 C - 0 . 0 6 0 - 4 0 . 9 2 1 3 . 9 8 1 6 1 8 4 3 0 3 3 . 0 5 4 0 . C - 2 2 . 7 1 - 5 C . 6 5 1 6 . 4 2 - C . 6 9 - 5 5 . 6 4 - 0 . 0 6 1 - 4 1 . 9 0 1 3 . 7 4 1 6 1 8 5 3 1 3 9 . 0 5 9 6 . C - 2 2 . 9 5 - 5 5 . 9 1 . 2 0 . 3 3 - C . 6 5 - 5 9 . 3 9 - 0 . 0 6 1 - 4 5 . 7 0 1 3 . 6 9 1 6 1 8 6 3 1 3 2 . 0 5 8 9 . C - 2 3 . 1 7 - 5 5 . 2 5 2 0 . 0 9 - 1 . 6 5 - 5 5 . 9 9 - 0 . 0 6 3 - 4 5 . 5 1 1 4 . 4 8 1 6 1 8 7 3 1 6 8 . 0 6 2 5 . 0 - 2 3 . 4 2 - 5 8 . 6 3 2 1 . 3 2 - 2 . 1 7 - 6 2 . 9 C - C . 0 6 3 - 4 7 . 7 b 1 5 . 1 2 1 6 1 8 6 3 4 7 1 . C 9 2 8 . C - 1 6 . 1 8 - 8 7 . C 5 3 1 . 6 5 - 0 . 0 1 - 7 1 . 5 5 - C . 0 6 C - 6 5 . 7 7 5 . 8 2 1 6 1 8 9 3 2 9 7 . C 7 5 4 . C - 1 6 . 5 2 - 7 C . 7 3 2 5 . 7 2 C . C C - 6 1 . 5 3 - C . 0 6 0 - 5 4 . 9 3 6 . 6 0 1 6 1 9 C 3 4 3 5 . 0 8 9 2 . 0 - 1 6 . 8 4 - 6 3 . 6 7 3 Q . 4 2 - C . 0 1 - 7 C . 1 C - C . 0 6 C - 6 2 . C 4 8 . 0 6 1 6 1 9 1 3 5 2 S . C 9 8 6 . 0 - 1 7 . 1 6 - 9 2 . 4 9 3 3 . 6 3 0 . 2 9 - 7 5 . 7 3 - 0 . 0 5 9 - 6 7 . 4 0 8 . 3 2 1 6 1 9 2 3 6 1 0 . 0 1 0 6 7 . 0 - 1 7 . 5 2 - I C O . C 9 3 6 . 3 9 C . ? C - 6 1 . C 2 - C . 0 6 C - 7 2 . 2 4 8 . 7 6 1 6 1 9 3 3 6 7 4 . 0 1 1 3 1 . 0 - 1 7 . 7 6 - 1 0 6 . C 9 3 3 . 5 7 0 . 0 4 - 6 5 . 2 4 - 0 . 0 6 C - 7 6 . 3 1 8 . 9 3 1 6 1 9 4 3 7 3 2 . 0 1 1 8 9 . C - 1 7 . 9 3 - 1 1 1 . 5 3 4 0 . 5 5 - 0 . 6 7 - 6 9 . 5 9 - 0 . 0 6 0 - d 0 . 3 1 9 . 2 8 1 6 1 9 5 3 8 0 7 . 0 1 2 6 4 . C - 1 8 . 2 3 - 1 1 6 . 5 7 4 3 . 1 1 - C . 9 6 - 9 4 . 6 5 - C . 0 6 0 - 8 4 . 2 7 1 C . 3 8 1 6 1 9 6 3 6 6 5 . 0 1 3 4 6 . C - 1 6 . 5 4 - 1 2 6 . 2 6 4 5 . 9 1 - 1 . 0 8 - 9 9 . 9 8 - 0 . 0 6 1 - 6 7 . 9 5 1 2 . 0 3 1 6 1 9 7 4 0 1 5 . 0 1 4 7 2 . C - 1 8 . 8 1 - 1 3 6 . C 6 5 C . 2 0 - 1 . 0 8 - 1 0 7 . 7 7 - C . C 6 0 - 9 4 . 6 2 1 3 . 1 5 1 6 1 9 8 4 1 4 4 . 0 1 6 0 1 . 0 - 1 9 . 0 6 — 1 5 0 . 1 6 5 4 . 6 C - 1 . 2 3 - 1 1 5 . 6 6 - C . C 6 C - I C 1 . 5 8 1 4 . 2 6 ; 1 6 1 9 9 4 2 0 3 . 0 1 6 6 0 . C - 1 9 . 3 0 - 1 5 5 . 7 1 5 o . 6 2 - 2 . 2 4 - 1 2 C . 7 4 - u . 0 6 1 - 1 0 5 . 9 0 1 4 . 6 4 1 6 2 0 C 4 2 7 5 . C 1 7 2 2 . 0 - 1 9 . 5 9 - 1 6 2 . 4 7 5 9 . C 7 - 2 . 6 S - 1 2 5 . 6 6 - 0 . 0 6 1 - 1 1 0 . 1 7 1 5 . 1 5 1 1 6 2 0 1 4 4 1 2 . 0 1 6 7 0 . C - 1 9 . 8 8 - 1 7 5 . 4 1 6 3 . 7 8 - 2 . 3 2 - 1 3 3 . 6 4 - 0 . 0 6 1 - 1 1 7 . 4 1 1 6 . 4 2 1 6 2 C 2 4 4 6 3 . C 1 S 2 C . C - 2 C . 1 5 - 1 6 C . 1 C 6 5 . 4 6 - 2 . 3 4 - 1 3 7 . 1 1 - 0 . 0 6 1 - 1 2 0 . 9 8 1 6 . 1 3 . 1 6 2 0 3 4 5 3 9 . 0 1 9 9 6 . C - 2 0 . 3 7 - 1 6 7 . 2 2 6 6 . e e - 2 . 3 5 - 14 1 . 9 2 - 0 . 0 6 1 - 1 2 5 . 1 9 1 6 . 7 3 1 6 2 C 4 4 5 5 S . 0 2 C 1 5 . C - 2 0 . 6 2 - 1 3 9 . 0 1 6 3 . 7 2 - 2 . 3 9 - 1 4 2 . 2 C - 0 . C 6 1 - 1 2 7 . 6 7 1 5 . 6 3 1 6 2 0 5 4 6 0 6 . 0 2 C 6 2 . v. - 2 C . 6 1 - 1 9 2 . 5 2 7 C . 3 6 - 2 . 5 5 - 1 4 6 . 5 2 - 0 . 0 6 1 - 1 3 3 . 3 7 1 3 . 1 5 1 6 2 0 6 4 7 6 8 . 0 2 2 2 5 . 0 - 2 0 . 9 8 - 2 0 8 . 7 1 7 5 . 8 9 - 3 . 3 4 - 1 5 7 . 1 4 - 0 . 0 6 1 - 1 4 5 . 3 5 1 1 . 7 9 1 6 2 C 7 4 9 1 2 . C 2 3 6 5 . C - 2 1 . 1 0 - 2 2 2 . 2 2 8 0 . 6 0 - 2 . 7 5 - 1 6 5 . 2 7 - 0 . 0 6 1 - 1 5 4 , 3 4 1 0 . 9 3 1 6 2 0 6 2 9 0 2 . C 2 5 9 . C 4 . C 9 - 2 2 . 6 6 1 2 . 2 4 - C . 3 5 - 1 7 . 6 6 - 0 . 0 6 1 1 5 . 3 9 3 1 . 0 7 1 6 2 C S 2 7 7 3 . 0 2 3 0 . 0 3 . 2 4 - 2 1 . 5 7 7 . 8 4 C O 6 - 1 C . 4 C - 0 . C 5 9 2 2 . 1 5 3 2 . 5 5 1 6 2 1 C 2 6 6 7 . C 1 2 4 . C 2 . 6 3 - 1 1 . 6 3 4 . 2 3 0 . 1 3 - 4 . 6 4 - 0 . 0 5 9 2 6 . 3 1 3 2 . 9 5 1 6 2 1 1 2 6 9 1 . 0 1 4 6 . C 2 . 4 6 - 1 2 . 6 6 5 . C 5 C . C 6 - 6 . 3 C - 0 . 0 5 9 2 6 . 7 4 3 3 . 0 4 1 6 2 1 2 2 7 1 1 . C 1 6 P . C 2 . 4 4 - 1 5 . 7 6 5 . 7 3 0 . 0 7 - 7 . 5 2 - 0 . 0 5 9 2 5 . 6 5 3 3 . 3 7 1 6 2 1 2 2 7 1 3 . C 1 7 C . C 2 . 4 9 - 1 5 . 9 5 5 . 8 C 0 . 1 0 - 7 . 5 6 - 0 . 0 5 9 2 5 . 6 7 3 3 . 2 3 1 6 2 1 4 2 6 4 9 . 0 1 C 6 . C 2 . 2 9 - 9 . 9 4 3 . 6 2 - C . 1 5 - 4 . 1 9 - 0 . 0 6 1 2 9 . 1 1 3 3 . 3 C 1 6 2 1 5 2 5 6 1 . C 1 6 . C 2 . 1 0 - 1 . 6 9 0 . 6 1 - 0 . 2 0 C . 8 2 - 0 . 0 7 1 3 2 . 7 2 3 2 . 9 0 1 6 2 1 6 2 5 0 5 . C - 3 P . C 1 . 9 7 3 . 5 6 - 1 . 2 0 - 0 . 2 6 2 . 9 6 - O . t . 5 2 3 6 . 5 0 2 2 . 5 4 1 6 2 1 7 2 5 3 0 . C - 1 3 . 0 . 1 . 8 3 I . 2 2 - 0 . 4 4 - 0 . 2 3 2 . 2 7 - u . 0 4 2 3 5 . 5 7 3 3 . 2 C . 1 6 2 1 6 2 5 3 S . C - 4 . C 1 . 7 1 0 . 3 3 - 0 . 1 4 - 0 . 2 1 1 . 7 3 - 0 . 0 0 7 3 4 . 7 2 2 2 . 9 9 1 6 2 1 9 2 5 4 4 . 0 1 . 0 1 . 6 6 - C . C 9 C . C 3 - C . 1 6 1 . 4 5 - 0 . 2 2 6 3 4 . 8 0 3 3 . 3 5 1 6 2 2 C 2 9 2 2 . C 3 7 9 . 0 4 . 4 6 - 3 5 . 5 5 1 2 . 9 3 - C . 3 5 - 1 6 . 5 1 - C . 0 6 1 1 1 . 4 2 2 9 . 9 2 1 6 2 2 1 2 9 7 5 . C 4 2 2 . C 4 . 3 6 - 4 C . 5 2 1 4 . 7 3 - 0 . 3 4 - 2 1 . 7 7 - 0 . 0 6 0 9 . 1 7 3 C 9 4 1 6 2 2 2 3 0 1 4 . 0 4 7 1 . C 4 . 2 6 - 4 4 . 1 6 1 6 . C 6 - C . 4 C - 2 4 . 1 5 - 0 . 0 6 1 6 . 1 3 3 2 . 2 6 - 128 -1 6 2 2 2 3 C 4 9 . C 5 C 6 . C 4 . 5 1 - 4 7 . 4 6 1 7 . 2 6 - 0 . 3 9 - 2 6 . 0 9 - 0 . 0 6 0 6 . 3 2 3 2 . 4 1 1 6 2 2 4 3 0 5 3 . 0 5 1 0 . 0 4 . 5 3 - 4 7 . 8 4 1 7 . 2 9 - C . 3 9 - 2 6 . 3 C - 0 . 0 6 0 6 . 1 9 3 2 . 4 9 1 6 2 2 5 3 0 2 9 . 0 4 8 6 . 0 4 . 4 3 - 4 5 . 5 9 1 6 . 5 8 - C . C 3 - 2 4 . 6 C - 0 . 0 6 0 6 . 7 4 3 1 . 3 4 1 6 2 2 6 3 0 4 2 . C 4 9 9 . 0 4 . 2 6 - 4 6 . 6 1 1 7 . C 2 - 0 . 9 6 - 2 6 . 3 8 - 0 . 0 6 2 5 . 5 8 2 1 . 9 6 1 6 2 2 7 3 0 3 0 . 0 4 8 7 . 0 4 . 4 6 - 4 5 . 6 8 1 6 . 6 1 - 1 . I C - 2 5 . 7 1 - C . 0 6 2 6 . 2 0 3 1 . 9 1 1 6 2 2 8 3 0 2 1 . C 4 7 8 . 0 4 . 5 6 - 4 4 . 8 4 1 6 . 3 0 - 1 . 0 2 - 2 4 . 9 £ - 0 . 0 6 2 5 . 4 0 • 2 C . 4 6 1 6 2 2 9 2 0 1 8 . 0 4 7 5 . C 4 . 6 1 - 4 4 . 5 6 1 6 . 2 0 -o. 9 e - 2 4 . 7 3 - 0 . O 6 2 5 . 0 7 2 9 . 6 0 1 6 2 3 0 2 9 9 6 . 0 4 5 3 . 0 4 . 5 8 - 4 2 . 4 9 1 5 . 4 5 - 0 . 9 l f - 2 2 . 4 2 - 0 . C 6 2 5 . 4 2 2 8 . 8 4 1 6 2 3 1 2 9 C 8 . C 3 6 5 . C 4 . 5 3 - 3 4 . 2 4 1 2 . 4t> - 1 . 0 2 - 1 6 . 2 7 - 0 . 0 6 2 8 . 6 9 2 6 . 9 6 1 6 2 3 2 2 8 5 4 . 0 2 1 1 . 0 4 . 5 3 - 2 9 . 1 7 I C . t 1 - 1 . 1 6 - 1 5 . 2 1 - o . 0 6 2 1 1 . 1 4 2 6 . 2 5 1 6 2 3 2 2 7 3 1 . 0 2 3 6 . 0 4 . 2 4 - 2 2 . 3 3 8 . 1 2 - 0 . 6 3 - 1 C . 6 C - 0 . 0 6 2 1 4 . 6 4 2 5 . 2 4 1 6 2 3 < . 2 5 4 2 . C - l . C 3 . 7 5 C . C 9 - 0 . 0 3 - 1 . 3 0 2 . 5 2 1 . 2 3 7 2 5 . 4 0 2 2 . 8 6 1 6 2 3 5 2 5 9 4 . 0 5 1 . 0 4 . 1 9 - 4 . 7 6 1 . 7 4 - 2 . 4 C - 1 . 2 5 - 0 . 1 0 7 2 2 . 5 9 2 3 . 8 4 1 6 2 3 6 2 5 9 6 . 0 5 3 . 0 3 . 8 5 - 4 . 9 7 1 . 8 1 - 2 . 7 4 - 2 . C 6 - 0 . 1 1 1 2 1 . 9 4 2 4 . 0 C 1 6 2 3 7 2 5 7 1 . C 2 8 . C 2 . 6 1 - 2 . 6 3 C . 9 5 - 2 . 5 e - C . 6 4 - 0 . 1 5 2 2 2 . 9 7 2 3 . 6 1 1 6 2 3 8 2 5 4 9 . 0 6 . C 3 . 5 1 - 0 . 5 6 0 . 2 0 - 4 . 5 0 - 1 . 2 5 - C . 6 0 9 2 4 . 5 1 2 5 . 8 6 1 6 2 3 9 2 5 1 7 . C - 2 6 . 0 3 . 5 3 2 . 4 4 - 0 . 8 9 - 4 . 5 0 C . 5 9 C . 1 1 3 2 6 . 6 9 2 6 . 3 0 1 6 2 4 0 2 5 1 8 . C - 2 5 . C 3 . 5 6 2 . 3 5 - c . 6 5 - 5 . 4 C - C . 2 5 0 . 1 5 6 2 7 . 8 8 2 8 . 2 3 1 6 2 4 1 2 5 2 0 . 0 - 2 3 . 0 3 . 6 1 2 . 1 6 - 0 . 7 8 - 7 . 7 9 - 2 . 6 1 C . 2 7 9 2 6 . 1 5 2 C . 9 6 1 6 2 4 2 2 5 1 5 . C - 2 6 . C 3 . 6 6 2 . 6 3 - c . 9 5 - 6 . 6 0 - 1 . 2 8 0 . 1 7 6 2 9 . 4 9 2 0 . 7 7 1 6 2 4 3 2 6 5 2 . 0 1 0 9 . 0 3 . 7 5 - 1 C . 2 2 •a # 7 2 - 5 . 5 4 - E . 3 C - 0 . 1 1 1 2 3 . 3 4 2 1 . 6 4 1 6 2 4 4 2 7 1 9 . 0 1 7 6 . 0 3 . 9 7 - 1 6 . 5 1 6 . 0 0 - 5 . 7 2 - 1 2 . 2 5 - 0 . 0 9 2 2 C . 6 1 3 2 . 6 6 1 6 2 4 5 2 7 7 1 . 0 2 2 6 . C 4 . C 7 - 2 1 . 3 9 . 7 . 7 8 - 5 . 7 2 - 1 5 . 2 6 - 0 . 0 8 5 1 9 . 2 5 3 4 . 5 1 1 6 2 4 6 2 7 3 3 . 0 1 9 0 . 0 4 . 1 2 - 1 7 . 6 2 6 . 4 8 - 4 . 5 8 - 1 1 . e c - C . 0 8 4 2 1 . 1 9 3 2 . 9 9 . . 1 6 2 4 7 3 C 0 C . C 4 5 7 . C 4 . 9 0 - 4 2 . 8 7 1 5 . 5 9 - 0 . 1 5 - 2 2 . 5 4 - 0 . 0 6 0 4 . 4 0 2 6 . 9 4 1 6 2 4 8 2 1 1 3 . 0 5 7 C . C 5 . 3 1 - 5 3 . 4 7 1 9 . 4 4 0 . 1 4 - 2 6 . 5 6 - 0 . C 5 9 - 0 . 3 0 2 8 . 2 8 1 6 2 4 9 3 1 2 5 . 0 5 8 2 . 0 5 . 5 3 - 5 4 . 5 9 1 9 . 8 5 0 . 0 4 - 2 9 . 1 2 - C . 0 6 0 - 1 . 1 7 2 7 . 9 5 1 6 2 5 C 3 1 6 6 . C 6 2 3 . 0 5 . 9 5 - 5 8 . 4 4 2 1 . 2 5 0 . 0 3 - 3 1 . 1 7 - 0 . 0 6 0 - 2 . 4 4 2 8 . 7 3 1 6 2 5 1 3 2 4 7 . 0 7 0 4 . C 6 . 2 1 - 6 6 . C 4 2 4 . C 1 C . 0 6 - 3 5 . 7 4 - C . 0 6 0 - 7 . 1 4 2 8 . 6 0 1 6 2 5 2 3 2 9 9 . 0 7 5 6 . 0 6 . 5 1 - 7 0 . 9 2 2 5 . 7 8 - C . 0 6 - 2 6 . 7 1 - C . 0 6 C - 9 . 2 7 2 9 . 3 4 1 6 2 5 2 3 3 5 C . 0 6 0 7 . C 6 . 6 7 - 7 5 . 7 C 2 7 . 5 2 - 0 . 1 7 - 4 1 . 4 7 - 0 . 0 6 0 - 1 1 . 9 2 2 9 . 5 5 1 6 2 5 4 3 3 6 2 . 0 8 1 9 . C 7 . 1 6 - 7 6 . 6 2 2 7 . 9 3 - C . 3 C - 4 2 . C 3 - 0 . 0 6 0 - 1 2 . 0 7 2 9 . 9 6 1 6 2 5 5 3 4 0 4 . 0 6 6 1 . C 7 . 4 8 - 6 0 . 7 6 2 9 . 3 7 - 0 . 3 8 - 4 4 . 2 C - 0 . 0 6 C - 1 4 . 2 7 2 9 . 9 3 1 6 2 5 6 3 4 3 5 . 0 6 9 2 . C 7 . 7 5 - 6 3 . 6 7 3 C . 4 2 - 1 . 3 4 - 4 6 . 8 4 - 0 . 0 6 1 - 1 6 . 1 2 3 0 . 7 2 1 6 2 5 7 3 5 2 9 . 0 9 8 6 . 0 7 . 8 5 - 9 2 . 4 9 3 3 . 6 3 - 5 . 1 7 - 5 £ . 1 6 - 0 . 0 6 5 - 2 1 . 7 7 3 4 . 4 1 . 1 6 2 5 8 3 6 4 9 . 0 1 1 C 6 . C 7 . 9 2 - 1 0 3 . 7 5 3 7 . 7 2 - 4 . 4 1 - 6 2 . 5 2 - C . 0 6 4 - 2 6 . 6 2 3 3 . 9 0 1 6 2 5 9 3 8 0 8 . 0 1 2 6 5 . C 7 . 9 9 - 1 1 8 . i t 4 3 . 1 4 - 2 . 7 7 - 7 1 . 2 9 - 0 . 0 6 3 - 3 6 . 3 5 3 2 . 9 4 1 6 2 6 C 3 7 4 1 . 0 1 1 9 8 . 0 8 . 0 4 - 1 1 2 . 3 8 4 C . 8 6 - 4 . 2 2 - 6 7 . 7 1 - 0 . 0 6 3 - 3 7 . 5 9 3 C . 1 2 1 6 2 6 1 3 7 9 6 . 0 1 2 5 2 . C 6 . 2 9 - 1 1 7 . 5 4 4 2 . 7 3 - 4 . 2 3 - 7 C . 7 5 - 0 . 0 6 3 - 4 1 . 9 2 2 6 . 8 3 1 6 2 6 2 3 8 8 2 . 0 1 3 4 0 . 0 8 . 5 0 - 1 2 5 . 7 C 4 5 . 7 C - 6 . 6 5 - 7 6 . 2 4 - 0 . 0 6 5 - 4 6 . 1 3 3 0 . 2 1 . 1 6 2 6 3 3 8 6 4 . 0 1 3 2 1 . 0 8 . 7 5 - 1 2 3 . 9 1 4 5 . 0 5 , - 2 . 6 8 - 7 2 . 9 9 - 0 . 0 6 2 - 4 6 . 4 8 2 4 . 5 1 1 6 2 6 4 3 9 0 5 . 0 1 3 f ? . C 6 . 9 9 - 1 2 7 . 7 6 4 6 . 4 5 - 2 . 6 1 - 7 4 . 9 3 - 0 . 0 6 2 - 5 1 . 2 8 2 3 . 5 5 1 6 2 6 5 3 9 5 C . 0 1 4 0 7 . C 9 . 3 6 - 1 3 1 . 9 6 4 7 . 9 9 - 2 . 5 2 - 7 7 . 1 6 - 0 . C 6 1 - 5 2 . 4 9 2 3 . 6 7 1 6 2 6 * 4 C 2 6 . 0 1 4 8 3 . 0 9 . 7 5 - 1 3 9 . 1 1 5 0 . 5 8 - 5 . 9 4 - 8 4 . 7 2 - 0 . 0 6 4 - 5 6 . C 7 2 6 . 6 6 1 6 2 6 7 4 1 3 8 . 0 1 5 9 5 . C I C . 1 4 - 1 4 9 . 6 2 5 4 . 4 C - 5 . 1 5 - 9 C . 2 3 - 0 . 0 6 3 - 6 4 . 6 5 2 5 . 2 8 1 6 2 6 8 4 2 1 2 . 0 1 6 6 9 . 0 1 0 . 5 0 - 1 5 6 . 5 6 5 6 . 9 2 - 2 . 8 3 - 9 2 . 9 6 - 0 . 0 6 2 - 6 9 . 1 5 2 3 . 8 1 1 6 2 6 9 4 3 3 5 . C 1 7 9 2 . C I C . 9 7 - 1 6 6 . 1 0 6 1 . 1 2 - 2 . 9 9 - 9 9 . 0 0 - 0 . 0 6 1 - 7 5 . 2 7 2 3 . 6 2 1 6 2 7 C 4 4 7 1 . 0 1 9 2 8 . C l l . 3 t - 1 6 C . 6 5 6 5 . 7 6 - 3 . 4 2 - 1 C 7 . 1 7 - 0 . 0 6 1 - 8 3 . 0 2 2 4 . 1 5 1 6 2 / 1 4 6 0 2 . 0 2 C 5 9 . 0 1 1 . 7 0 - 1 9 3 . 1 4 7 0 . 2 i - 2 . 5 9 - 1 1 3 . 6 1 - 0 . 0 6 1 - 9 C . C 7 2 2 . 7 4 1 6 2 7 2 4 7 4 6 . 0 2 2 C 5 . C 1 2 . C 9 - 2 C 6 . 6 4 7 5 . 2 C - 5 . 3 6 - 1 2 4 . 9 1 - 0 . 0 6 2 - 9 6 . 9 3 2 7 . 9 8 1 6 2 7 3 4 9 6 6 . 0 2 4 2 2 . 0 1 2 . 4 0 - 2 2 7 . 2 9 6 2 . 6 4 - 4 . 6 f - 1 3 < . 9 2 - 0 . 0 6 2 - I C 6 . 1 7 2 6 . 7 6 1 6 2 7 4 5 1 3 2 . 0 2 5 6 9 . 0 1 2 . 2 3 - 2 4 2 . 6 6 8 8 . 3 0 - 2 . 9 6 - 1 4 5 . 2 C - 0 . 0 6 1 - 1 1 7 . 5 8 2 7 . 7 2 1 6 2 7 5 5 3 4 3 . 0 2 6 C C . C 1 1 . 9 9 - 2 6 2 . 6 5 9 5 . 5 0 - 4 . 1 3 - 1 5 9 . 2 9 - 0 . 0 6 1 - 1 2 9 . 1 5 2 0 . 1 4 1 6 2 7 6 2 5 6 6 . 0 2 5 . 0 1 . 5 6 - 2 . 3 5 C . 8 5 - C . l f - C . l l - 0 . C 6 7 3 3 . 6 1 3 3 . 9 2 1 6 2 7 7 2 5 6 3 . 0 2 C . C " 1 . 4 4 - 1 . 6 6 0 . 6 8 - 0 . 1 2 C . l l - 0 . 0 6 b 3 2 . 6 4 5 2 . 5 3 1 6 2 7 6 2 6 1 3 . C 7 0 . 0 1 . 2 9 - 6 . 5 7 2 . 2 9 C . 0 2 - 2 . 7 7 - C . 0 5 9 2 6 . / 9 2 9 . 5 6 1 6 2 7 9 2 6 4 2 . 0 9 9 . 0 1 . 2 7 - 9 . 2 9 3 . 3 8 C . 0 2 - 4 . 6 1 - 0 . 0 5 9 2 2 . C 7 2 6 . 6 8 _ 1 6 2 8 C 2 6 4 5 . C 1 C 2 . C 1 . 2 2 - 9 . 5 7 3 . 4 8 0 . 0 5 - 4 . 8 2 - 0 . 0 5 9 1 9 . 0 2 2 3 . 6 4 1 6 2 3 1 2 6 0 3 . 0 6 0 . 0 1 . 1 7 - 5 . 6 3 2 . C 5 C . C 6 - 2 . 2 4 - U . 0 5 3 2 0 . 6 1 2 2 . 9 5 1 6 2 3 2 2 6 4 6 . 0 1 P 3 . 0 1 . 0 7 - 9 . 6 6 3 . 5 1 0 . 0 9 - 4 . 9 9 - O . C 5 9 1 4 . 4 9 1 9 . 4 6 - 129 -1 6 2 8 2 2 6 6 2 . C 1 1 9 . 0 1 . 0 2 - 1 1 . 1 6 4 . C 6 C . 0 9 - 5 . 5 9 - C . C 5 9 1 2 . 4 0 1 8 . 2 9 1 6 2 3 4 2 6 1 4 . 0 7 1 . 0 0 . 8 5 - 6 . 6 6 2 . 4 2 0 . 1 C - 3 . 2 9 - 0 . 0 5 8 1 3 . 6 8 1 6 . 9 7 1 6 2 3 5 2 5 8 2 . C 3 9 . 0 C . 6 8 - 3 . 6 6 1 . 3 3 O . I C - 1 . 5 5 - 0 . 0 5 7 1 4 . 3 8 1 5 . 9 3 1 6 2 8 6 . 2 5 6 9 . 0 2 6 . 0 0 . 5 4 - 2 . 4 4 C . £ 9 C . C 3 - C S S - 0 . 0 5 9 1 3 . 3 7 1 4 . 3 6 1 6 2 8 7 2 5 6 6 . 0 2 3 . 0 0 . 5 * - 2 . 1 6 0 . 7 8 0 . 0 5 - C . 7 9 - 0 . 0 5 8 1 2 . 8 9 1 3 . 6 8 1 6 2 S 8 2 6 2 4 . 0 6 1 . C C . 5 6 - 7 . 6 C 2 . 7 6 0 . 0 5 - 4 . 2 3 - 0 . 0 5 9 8 . 5 3 1 2 . 7 6 1 6 2 3 S 2 5 3 6 . 0 4 3 . 0 C . 4 I - 4 . 0 3 1 . 4 7 C . 0 5 - 2 . I C - 0 . C 5 9 e . 8 4 1 0 . 9 4 1 6 2 9 C 2 6 8 2 . C 1 3 9 . C 0 . 3 4 - 1 3 . 0 4 •* . 7 4 0 . 0 5 - 7 . 9 C - C . C 5 9 2 . 1 3 1 0 . 0 3 1 6 2 9 1 2 7 2 2 . C 1 7 9 . C C . 3 7 - 1 6 . 7 9 6 . I C C . 0 5 - 1 ( . 2 7 - 0 . C 5 9 - 1 . 8 3 8 . 4 4 1 6 2 9 2 2 7 9 0 . 0 2 4 7 . 0 0 . 4 1 - 2 3 . 1 7 8 . 4 2 0 . 0 5 - 1 4 . 2 6 - C . 0 5 9 - 7 . 5 1 6 . 7 7 1 6 2 9 2 2 7 8 5 . C 2 4 2 . 0 C . 4 1 - 2 2 . 7 C 6 . 2 5 C . C 5 - 1 3 . s e - 0 . C 5 9 - 8 . 2 7 5 . 7 1 1 6 2 9 4 2 7 9 1 . 0 2 4 3 . 0 0 . 5 1 - 2 3 . 2 6 8 . 4 6 0 . 0 3 - 1 4 . 2 6 - C . C 6 0 - 9 . 7 6 4 . 5 C 1 6 2 9 5 2 6 3 4 . C 2 9 1 . 0 0 . 5 4 - 2 7 . 3 C 9 . 9 2 0 . 0 3 - 1 6 . 8 0 - 0 . 0 6 0 - 1 4 . 2 0 2 . 6 C 1 6 2 9 6 2 8 1 0 . 0 2 6 7 . 0 C . 5 8 - 2 5 . C 5 9 . 1 1 C . C 3 - 1 5 . 3 2 - 0 . 0 6 0 - 1 2 . 2 1 2 . 1 1 1 6 2 9 7 2 7 5 8 . 0 2 1 5 . 0 0 . 5 1 - 2 0 . 1 7 7 . 3 3 0 . 0 3 - 1 2 . 2 9 - 0 . 0 6 C - 1 C . 4 3 1 . 8 6 1 6 2 9 6 2 6 3 3 . 0 9 C . 0 0 . 3 7 - 6 . 4 4 3 . 0 7 0 . 0 4 - 4 . 9 7 - 0 . 0 5 9 - 4 . 4 5 0 . 5 2 1 6 2 9 9 2 5 3 3 . 0 - 5 . 0 0 . 1 9 0 . 4 7 - 0 . 1 7 C . 0 4 C . 5 4 - C . 0 6 8 C . 4 4 - 0 . 1 0 1 6 3 C C 2 5 8 C . C 3 7 . C 0 . 1 5 - 3 . 4 7 1 . 2 6 0 . 0 5 - 2 . C 2 - 0 . 0 5 8 - 1 . 6 8 0 . 3 4 1 6 2 0 1 2 6 3 6 . C 5 2 . C C . 1 7 - 6 . 7 2 — • 1 7 - C . 0 1 - 5 . 3 9 - C . 0 6 C - 4 . 9 2 0 . 4 7 1 6 3 C 2 2 6 7 1 . 0 1 2 8 . 0 0 . 1 9 - 1 2 . 0 1 4 . 3 7 - C . O C - 7 . 4 5 - 0 . C 6 C - 6 . 6 8 C . 7 7 1 6 3 C 2 2 6 6 2 . C 1 1 9 . C 0 . 2 4 - 1 1 . 1 6 4 . 0 6 - 0 . 0 0 - 6 . 8 6 - 0 . 0 6 0 - 6 . 4 9 0 . 3 7 1 6 3 0 4 2 6 6 5 . 0 1 2 2 . 0 0 . 2 7 - 1 1 . 4 4 4 . 1 6 - C . C C - 7 . C 2 - 0 . 0 6 0 - 6 . 4 2 0 . 6 0 1 6 3 0 5 3 4 2 C . 0 8 7 7 . 0 8 . 1 9 - 8 2 . 2 7 2 9 . 9 1 - 2 . 6 2 - 4 6 . 7 9 - 0 . 0 6 3 - 1 6 . 7 6 3 0 . 0 2 1 6 3 0 6 3 3 6 7 . C 8 2 4 . C e . 3 6 - 7 7 . 2 9 2 8 . 1 0 - 4 . 2 1 - 4 5 . C 4 - 0 . 0 6 5 - 1 3 . 3 8 3 1 . 6 6 1 6 3 0 7 3 3 5 8 . 0 8 1 5 . C 6 . 5 3 - 7 6 . 4 5 2 7 . 8 0 - 7 . 0 0 - 4 7 . 1 3 - C . C 6 6 - 1 2 . 6 0 3 4 . 5 3 1 6 3 C 6 3 3 4 3 . 0 8 C C . C 8 . 9 2 - 7 5 . 0 4 2 7 . 2 b - 4 . 1 6 - 4 2 . 0 0 - 0 . 0 6 5 - 1 2 . 2 1 3 0 . 7 9 1 6 3 0 9 3 3 4 4 . C 8 C 1 . C 9 . 2 1 - 7 5 . 1 4 2 7 . 3 2 - 2 . 6 5 - 4 2 . 4 6 - 0 . 0 6 5 - 1 1 . 7 8 3 0 . 6 3 1 6 3 1 0 3 3 4 5 . 0 8 0 2 . 0 9 . 3 1 - 7 5 . 2 3 2 7 . 3 5 - 2 . 4 C - 4 C . 9 7 - 0 . C 6 3 - 1 C . 5 8 3 C . 3 9 1 6 3 1 1 1 6 3 1 2 3 3 C 8 . C 3 3 6 2 . 0 7 6 5 . C 81<= . C 5 5 9 2 - 7 1 . 7 6 • 7 6 . 6 3 2 6 . 0 9 2 7 . 5 3 - 2 . 9 2 - 3 9 . 0 4 - 0 . 0 6 4 • 9 . 1 5 - 1 . 6 1 - 4 C . 5 S - C . 0 6 2 - 1 2 . 3 9 2 9 . 8 9 2 e . 2 0 1 6 3 1 3 3 3 6 9 . 0 8 2 6 . C 1 0 . 2 3 - 7 7 . 4 8 1 6 3 1 4 3 3 3 7 . C 7 9 4 . C 1 C . 4 2 - 7 4 . 4 6 1 6 3 1 5 3 2 5 3 . 0 7 1 0 . C 1 0 . 5 8 - 6 6 . 6 0 1 6 3 1 6 3 2 1 5 . 0 6 7 2 . 0 1 1 . 2 1 - 6 3 . 0 4 1 6 3 1 7 3 1 8 2 . 0 6 3 9 . C 1 1 . 6 4 - 5 S . 5 4 1 6 3 1 8 3 1 6 6 . 0 6 2 5 . 0 1 2 . 3 3 - 5 6 . 6 3 2 3 . 1 7 - 1 . C 3 2 7 . C 8 - 0 . 8 9 2 4 . 2 2 - C . 2 1 - 4 C . S 1 - 0 . 0 o 2 - 1 5 . 4 0 - 3 7 . 8 6 - 0 . 0 6 1 - 1 1 . 4 9 - 3 2 . C 2 - C . C 6 C - 6 . 9 1 2 7 . 5 1 2 6 . 3 7 2 5 . 1 1 2 2 . 9 2 - 0 . 3 0 - 2 5 . 2 1 - C . 0 6 C - 5 . 2 8 2 3 . 9 3 2 1 . 7 5 - 0 . 7 8 - 2 7 . 0 6 - 0 . 0 6 1 - 4 . 4 1 2 2 . 6 7 . 2 1 . 3 2 - 2 . 8 5 - 2 7 . 6 2 - C . C 6 4 - 3 . 6 2 2 4 . 0 1 1 6 3 1 9 1 6 3 2 C 3 2 1 C O 3 2 5 3 . C 6 6 7 . C 7 1 C . 0 1 2 . 8 9 1 2 . 5 0 - 6 2 . 5 7 - 6 6 . 6 C 2 2 . 7 5 2 4 . 2 2 - 5 . 3 4 • 1 . 5 3 - 3 2 . 2 7 - j . 0 6 6 - 3 C . 6 2 - 0 . C 6 2 - 6 . 5 5 - 9 . 2 7 2 5 . 7 2 2 1 . 5 5 1 6 3 2 2 -» t. W V . V 3 2 5 6 . C 6 9 3 . 0 i -t • i i 1 4 . 7 2 - 6 5 . C I 2 3 . 6 4 - i • •» z - 1 . 3 5 c § • ^ c - 2 6 . C C - 0 . 0 6 2 — 1 . ~u - 6 . 6 7 1 9 . 3 3 . 1 6 3 2 3 3 2 3 1 . 0 7 3 8 . 0 1 5 . 5 0 - 6 9 . 2 3 2 5 . 1 7 . - 0 . 5 5 - 2 5 . 1 1 - C . 0 6 0 - I C 1 5 1 8 . 9 6 1 6 3 2 4 3 2 7 8 . 0 7 3 5 . C 1 6 . 0 6 - 6 8 . 9 5 2 5 . 0 7 - 0 . 4 F - 2 6 . 3 C - 0 . 0 6 C - 1 C . 2 4 1 8 . 0 6 1 6 3 2 5 3 3 1 2 . C 7 6 5 . C 1 6 . 6 5 - 7 2 . 1 3 2 6 . 2 3 - c . i e - 2 9 . 3 9 - U . 0 6 0 - 1 2 . 2 5 1 7 . 1 4 1 6 3 2 6 3 2 6 8 . 0 7 2 5 . C 1 7 . 4 2 - 6 8 . 0 1 2 4 . 7 3 - C . 0 7 - 2 5 . 5 3 - C . 0 6 C - 6 . 1 8 1 7 . 7 5 1 6 3 2 7 3 2 6 C . 0 7 1 7 . C 1 3 . 1 3 - 6 7 . 2 5 2 4 . 4 5 - C . 4 4 - 2 5 . 1 1 - C . 0 6 0 - 2 . 5 7 2 2 . 7 4 1 6 3 2 8 2 2 5 5 . C 7 1 2 . C I t . 7 9 - 6 6 . 7 = 2 4 . 2 8 - C . 2 C - 2 4 . C 2 - C . 0 6 0 - 3 . 5 8 2 0 . 6 4 1 6 3 2 9 3 1 6 7 . 0 6 2 4 . 0 1 9 . 4 5 - 5 6 . 5 3 2 1 . 2 8 - 0 . 2 1 - 1 6 . C 2 - C . 0 6 C 3 . 5 6 2 1 . 5 8 1 6 3 3 C 3 1 4 7 . C 6 C 4 . C 2 C . 1 0 - 5 6 . 6 6 2 0 . 6 0 0 . 2 4 - 1 5 . 7 1 - 0 . 0 5 9 6 . 1 4 2 1 . 8 5 1 6 3 3 1 3 1 7 8 . 0 6 2 5 . 0 2 0 . 3 7 - 5 5 . 5 ? 2 1 . 6 6 0 . 4 C - 1 " . . 1 4 - o . u 5 9 1 . 6 2 1 8 . 7 6 1 6 3 3 2 3 1 6 7 . 0 6 2 4 . 0 2 0 . 5 7 - 5 8 . 5 3 2 1 . 2 8 C . 4 6 - 1 6 . 2 2 - 0 . 0 5 5 0 . 5 3 1 6 . 7 5 1 6 3 2 2 3 2 4 C . 0 6 5 7 . C 2 0 . 9 6 - 6 5 . 3 6 2 3 . 7 7 C . 2 8 - 2 C . 3 5 - 0 . 0 5 9 - 3 . 6 7 1 6 . 6 8 1 6 3 3 4 3 2 1 C . 0 6 f 7 . 0 2 1 . 2 5 - 6 2 . 5 7 2 2 . 7 5 C 2 ? - 1 6 . 2 5 - C C 5 5 - 2 . 3 2 1 5 . 9 3 1 6 3 2 5 3 2 1 9 . C 6 7 6 . C 2 1 . 0 3 - o 3 . 4 1 2 3 . 0 6 - 0 . 0 3 - 1 5 . 2 5 - 0 . 0 6 C - C . 6 9 1 8 . 4 6 1 6 3 3 6 3 1 5 7 . 0 i1 / . o r 6 1 4 . C c t_« c r% 2 1 . c 7 1 '* i\ -i - 5 7 . 6 0 P C . 9 4 0 . 0 9 - 1 c . C C - C . 0 6 0 1 . 6 9 1 6 . 6 9 1 6 3 3 6 1 6 3 3 9 1 6 3 4 0 1 6 3 4 1 1 6 3 4 2 3 C 9 5 . C 3 0 2 5 . 0 3 0 2 7 . 0 3 C 2 C . C 3 0 0 2 . 0 5 5 2 . C 4 P 2 . 0 2 2 . 6 6 2 2 . 8 1 - 5 1 . 7 8 - 4 5 . 2 1 1 3 . 3 3 1 6 . 4 4 - 0 . 8 6 - 1 . 2 4 • 1 1 . 1 5 - 7 . 2 C - 0 . 0 6 1 - 0 . 0 6 2 4 . 0 7 8 . 6 5 4 8 4 . 0 4 7 7 . C 4 5 9 . 0 2 2 . 8 3 2 2 . 6 6 2 2 . 7 4 - 4 5 . 4 0 - 4 4 . 7 4 - 4 2 . C 6 1 6 . 5 1 1 6 . 2 7 1 5 . 6 5 - 1 . 6 4 - 1 . 1 3 - 1 . 1 5 - 7 . 5 C - 6 . 9 4 - 5 . 8 6 - 0 . 0 6 4 - 0 . 0 6 2 - 0 . 0 6 2 8 . 8 5 9 . 2 5 S . 6 1 1 5 . 2 2 1 5 . 8 5 1 6 . 7 5 1 6 . 1 9 1 5 . 4 7 - 130 -1 6 3 4 2 2 9 8 7 . C 4 4 4 . C 2 2 . 7 6 - 4 1 . 6 5 1 5 . 1 4 - 1 . 1 9 - 4 . 9 1 - 0 . 0 6 2 1 0 . 4 8 1 5 . 3 9 1 6 3 4 4 3 0 8 8 . 0 5 4 5 . 0 2 2 . 8 8 - 5 1 . 1 2 I E . 5 9 - 2 . 3 3 - 1 1 . 9 9 - 0 . 0 6 4 5 . 4 9 . 1 7 . 4 8 1 6 3 4 5 3 1 3 5 . C 5 9 2 . 0 2 2 . 7 4 - 5 5 . 5 3 2 0 . 1 9 - 1 . 7 C - 1 4 . 3 1 - 0 . 0 6 3 7 . 4 5 2 1 . 7 6 1 6 3 4 6 2 9 9 3 . 0 4 5 C . C 2 2 . 5 4 - 4 2 . 2 1 1 5 . 3 5 - 1 . 4 4 - 5 . 7 6 - 0 . 0 6 3 9 . 9 0 1 5 . 6 6 1 6 3 4 7 2 9 9 0 . 0 4 4 7 . C 2 2 . 5 6 - 4 1 . 9 2 1 5 . 2 5 - 1 . 3 E - 5 . 5 C - C . 0 6 3 9 . 3 8 1 4 . 6 8 1 6 2 4 8 3 0 4 6 . 0 5 C 3 . C 2 2 . 7 4 - 4 7 . 1 3 1 7 . 1 6 - 1 . 2 6 - 6 . 5 5 - C . 0 6 2 5 . 3 3 1 3 . 6 8 1 6 3 4 9 3 0 5 1 . 0 5 C 6 . C 2 2 . 9 5 - 4 7 . 6 5 1 7 . 3 3 - 1 . 6 b - 9 . C 5 - 0 . 0 6 3 3 . 8 8 1 2 . 9 3 1 6 3 5 C 3 0 7 1 . 0 5 2 8 . 0 2 3 . 0 5 - 4 9 . 5 3 1 8 . 0 1 - 1 . 6 8 - 1 C . 1 5 - 0 . 0 6 3 2 . 6 4 1 2 . 7 9 1 6 3 5 1 3 C 8 2 . 0 5 3 9 . C 2 3 . 2 2 - 5 0 . 5 6 1 8 . 3 6 - 1 . 6 8 - 1 C . 6 4 - 0 . 0 6 3 1 . 7 1 1 2 . 5 5 1 6 3 5 2 3 0 8 6 . 0 5 4 3 . C 2 2 . 2 7 - 5 C . 9 4 1 6 . 5 2 - 2 . C 6 - 1 2 . 1 3 - 0 . 0 6 5 l . o 3 1 3 . 1 6 1 6 3 5 3 3 0 9 4 . C 5 5 1 . 0 2 3 . 4 7 - 5 1 . 6 9 1 6 . 7 9 - 2 . 4 6 - 1 1 . 9 C - 0 . 0 6 4 C . 6 3 1 2 . 5 3 1 6 3 5 4 3 1 C 3 . C 5 6 0 . C 2 2 . 4 4 - 5 2 . 5 3 1 9 . 1 0 - 2 . 1 9 - 1 2 . 1 8 - 0 . 0 6 4 C . 1 4 1 2 . 3 2 1 6 3 5 5 3 0 3 5 . 0 4 9 2 . 0 2 3 . 3 9 - 4 6 . 1 5 1 6 . 7 6 - 2 . 2 7 - 9 . 2 4 - O . O 6 0 3 . 9 7 1 3 . 2 1 1 6 3 5 6 3 0 2 5 . 0 4 8 2 . 0 2 3 . 3 2 - 4 5 . 2 1 1 6 . 4 4 - 1 . 9 2 - 7 . 3 8 - 0 . 0 6 4 4 . 1 6 1 1 . 5 4 1 6 3 5 7 3 0 3 3 . 0 4 9 C . C 2 3 . 0 6 - 4 5 . 9 6 1 6 . 7 1 - 2 . 0 7 - 8 . 2 4 - 0 . 0 6 4 2 . 9 2 1 1 . 1 6 1 6 3 5 8 3 0 3 5 . 0 4 9 2 . 0 2 3 . 0 5 - 4 6 . 1 5 1 6 . 7 6 - 2 . 4 9 - 6 . 6 1 - 0 . 0 6 5 2 . 2 0 1 1 . 0 1 1 6 3 5 9 3 C 6 1 . C 5 1 8 . C 2 3 . 2 V - 4 8 . 5 9 1 7 . 6 7 - 2 . 0 2 - 9 . 6 7 - 0 . 0 6 4 C . 7 6 1 0 . 4 3 1 6 3 6 C 3 0 6 5 . 0 5 2 2 . C 2 3 . 4 4 - 4 8 . 9 7 1 7 . E C - 1 . 1 6 - 6 . 9 C - 0 . 0 6 2 0 . 1 5 9 . 0 5 1 6 3 6 1 2 9 8 4 . 0 4 4 1 . 0 2 3 . 3 0 - 4 1 . 3 7 1 5 . 0 4 - 1 . 3 C - 4 . 3 2 - 0 . 0 6 3 1 C . 2 2 1 4 . 6 5 1 6 3 6 2 3 C C 1 . 0 4 5 6 . C 2 3 . 8 3 - 4 2 . 9 6 1 5 . 6 2 - 1 . 2 1 - 4 . 7 2 - 0 . 0 6 2 8 . 2 4 1 2 . 9 6 1 6 3 6 3 2 9 6 8 . 0 . 4 2 5 . 0 2 4 . 4 2 - 3 9 . 6 7 1 4 . 5 C - 1 . 2 C - 2 . 2 5 - 0 . 0 6 2 1 0 . 8 7 1 3 . 1 2 1 6 3 6 4 3 0 0 6 . 0 4 6 3 . 0 2 4 . 9 5 - 4 3 . 4 3 1 5 . 7 9 - 1 . 5 9 - 4 . 2 8 - 0 . 0 6 3 £ . 7 1 1 2 . 9 9 1 6 3 6 5 2 9 2 9 . 0 2 P 6 . C 2 5 . 4 6 - 2 6 . 2 1 1 3 . 1 6 - 1 . 8 0 0 . 6 2 - 0 . 0 6 4 1 4 . 7 4 1 4 . 1 2 1 6 3 6 6 2 9 9 9 . 0 4 5 6 . 0 2 6 . 0 5 - 4 2 . 7 7 1 5 . 5 5 - 1 . 9 5 - 3 . 1 2 - C . C 6 4 1 1 . 1 1 1 4 . 2 4 1 6 3 6 7 2 9 3 9 . 0 3 9 6 . C 2 6 . 5 6 - 3 7 . 1 5 1 3 . 5 1 - 2 . 6 2 C . 1 C - 0 . 0 6 7 1 4 . 5 8 1 4 . 4 6 1 6 3 6 8 2 9 3 1 . 0 2 6 6 . C 2 7 . 1 7 - 3 6 . 4 C 1 3 . 2 2 - 1 . 1 4 2 . 6 7 - 0 . 0 6 3 1 3 . 6 6 1 0 . 7 9 1 6 3 6 9 2 9 5 3 . 0 4 1 0 . 0 2 7 . 7 1 - 3 8 . 4 6 1 3 . 9 e - 2 . 0 9 1 . 1 4 - 0 . 0 6 5 1 2 . C 6 1 C . 9 2 1 6 3 7 C 2 9 6 1 . C • 4 1 6 . C 2 8 . 3 2 - 3 9 . 2 1 1 4 . 2 6 - 1 . 9 9 1 . 3 7 - 0 . 0 6 4 1 2 . 1 0 1 0 . 7 3 1 6 3 7 1 2 9 5 6 . 0 4 1 3 . 0 2 8 . 8 5 - 2 6 . 7 4 1 4 . C 9 - 1 . 9 6 2 . 2 4 - 0 . 0 6 4 1 2 . 9 7 1 0 . 7 3 1 6 3 7 2 2 9 2 6 . 0 3 6 3 . 0 2 9 . 3 6 - 3 5 . 9 3 1 3 . 0 6 - 2 . 9 6 3 . 5 4 - 0 . 0 6 7 1 4 . 6 5 1 1 . 3 1 1 6 3 7 3 2 9 3 4 . 0 3 9 1 . C 2 9 . 6 3 - 3 6 . 6 6 1 3 . 3 4 - 3 . 9 4 2 . 5 4 - 0 . 0 7 0 1 2 . 5 2 1 C . 9 9 1 6 3 7 4 3 0 6 2 . 0 5 1 9 . C 3 0 . 2 7 - 4 6 . 6 6 1 7 . 7 C - 4 . 4 5 - 5 . 1 6 - 0 . 0 6 6 7 . 6 2 1 2 . 9 8 1 6 3 7 5 5 5 6 2 . 0 3 C 1 9 . C 1 2 . 3 6 - 2 6 3 . 1 9 1 0 2 . 9 7 - 3 . 4 4 - 1 7 1 . 2 9 - 0 . 0 6 1 - 1 4 4 . 7 9 2 6 . 5 0 1 6 3 7 6 . 5 3 3 1 . 0 2 7 8 6 . C 1 2 . 4 5 - 2 6 1 . 5 ? 9 5 . C 9 - 3 . 1 2 - 1 5 7 . 1 1 - 0 . 0 6 1 - 1 3 0 . 2 6 2 6 . 8 5 1 6 3 7 7 2 8 2 6 . 0 2 3 3 . 0 1 0 . 8 2 - 2 6 . 5 5 9 . 6 5 - 0 . 8 9 - 6 . 9 7 - 0 . 0 6 3 - 7 . 6 6 - 0 . 8 9 1 6 3 7 6 2 8 0 5 . 0 2 6 2 . C 1 0 . 6 9 - 2 4 . 5 6 6 . 9 4 - 1 . 0 7 - 5 . 6 2 - 0 . 0 6 4 - 6 . 2 7 - C . 4 5 1 6 3 7 9 2 7 9 7 . C 2 5 4 . C 1 1 . 2 6 - 2 3 . 8 3 £ . 6 6 - 1 . 2 6 - 5 . 1 9 - 0 . 0 6 5 - 6 . 8 3 - 1 . 6 4 1 6 3 8 C 2 7 9 6 . 0 2 5 3 . 0 1 1 . 3 8 - 2 3 . 7 3 6 . 6 3 - 1 . 3 1 - 5 . C 2 - C . C 6 5 - 6 . 8 0 - 1 . 7 7 1 6 3 8 1 2 7 8 6 . 0 2 4 5 . C 1 1 . 7 5 - 2 2 . 9 6 8 . 3 6 - 1 . 5 6 - 4 . 4 4 - 0 . 0 6 6 - 6 . 0 0 - 1 . 5 6 1 6 3 8 2 2 7 6 6 . 0 2 4 2 . 0 1 1 . 8 2 - 2 2 . 7 9 6 . 2 9 - 1 . 3 C - 2 . 9 9 - 0 . C 6 5 - 6 . 6 4 - 2 . 6 5 1 6 3 8 3 2 7 8 5 . 0 7 4 2 . 0 1 1 . 9 9 - 2 2 . 7 0 8 . 2 5 - 1 . 1 6 - 2 . 6 4 - 0 . C 6 5 - 6 . 5 7 - 2 . 9 3 " 1 6 3 3 4 2 7 6 6 . 0 2 4 5 . C 1 2 . 3 8 - 2 2 . 9 6 3 . 3 6 - 0 . 9 9 - 2 . 2 3 - 0 . 0 6 4 - 6 . 4 9 - 3 . 2 6 1 6 3 8 5 2 7 7 9 . 0 2 2 6 . 0 1 2 . 6 0 - 2 2 . 1 4 8 . 0 5 " - 0 . 7 C - 2 . 1 9 - C . 0 6 2 - 6 . 6 1 - 4 . 4 2 1 6 3 8 6 2 7 6 8 . C 2 2 5 . 0 1 2 . 4 8 - 2 1 . 1 1 7 . 6 7 - 2 . 0 4 - 2 . C C - 0 . 0 6 9 - 5 . 4 2 - 2 . 4 2 1 6 3 8 7 2 7 7 9 . C 2 3 6 . C 1 2 . 5 5 - 2 2 . 1 4 6 . C 5 - C . 5 3 - 2 . C 7 - 0 . 0 6 2 - 6 . 6 6 - 4 . 7 9 1 6 3 8 8 2 7 6 2 . 0 2 1 9 . 0 1 2 . 6 7 - 2 0 . 5 4 7 . 4 7 - C . 6 3 - 1 . 2 2 - 0 . 0 6 3 - 5 . C 3 - 3 . 8 C " 1 6 3 8 9 2 7 4 C . C 1 9 7 . 0 1 2 . 5 3 - 1 3 . 4 8 6 . 7 2 - 1 . 2 1 - 0 . 5 5 - 0 . 0 6 6 - 2 . 1 3 - 2 . 5 8 1 6 3 9 0 2 7 3 5 . 0 1 9 2 . 0 1 2 . 2 2 - I E . 0 1 6 . 5 5 - 1 . 2 2 - C . 5 6 - 0 . 0 6 7 - 2 . 6 1 - 2 . 0 5 1 6 3 9 1 2 7 3 C . 0 1 6 7 . 0 1 2 . 3 b - 1 7 . 5 4 6 . 3 8 - 1 . 3 5 - C . 1 3 - O . C 6 7 - 4 . 1 7 - * . 0 4 1 6 3 9 2 2 7 0 8 . 0 1 6 5 . C 1 1 . 9 4 - 1 5 . 4 6 5 . 6 3 - 1 . 3 2 C . 7 7 - 0 . 0 6 8 2 . 1 4 1 . 3 7 1 6 3 9 3 2 7 0 0 . 0 1 5 7 . 0 1 1 . 4 C - 1 4 . 73 5 . 2 5 - 2 . 2 C - C . 1 7 - 0 . 0 7 4 3 . 5 7 3 . 7 4 1 6 3 9 4 3 6 4 1 . C 1 C 9 6 . C 1 3 . 2 6 - 1 0 3 . 0 0 3 7 . h 5 - 5 . 3 0 - 5 7 . 5 7 - 0 . 0 6 5 - 6 6 . 3 6 - 6 . 7 9 " 1 6 3 9 5 3 7 2 7 . C 1 1 6 : 4 . C 1 4 . C 4 - U 1 . C 6 4 0 . 3 8 - 2 . 3 6 - 5 9 . 0 3 - 0 . 0 6 2 - 7 3 . 6 6 - 1 4 . 6 3 1 6 3 9 6 3 7 7 8 . 0 1 2 3 5 . 0 1 4 . 7 2 - 1 1 5 . 6 5 4 2 . 1 2 - 1 . P 5 - 6 C . 6 6 - 0 . C 6 1 - 7 6 . 3 4 - 1 7 . 4 6 1 6 3 9 7 3 7 8 9 . C 1 2 4 6 . C 1 5 . 1 b - U 6 . 6 y 4 2 . 5 0 - 1 . 4 4 - 6 0 . 6 5 - O . 0 6 I -18.)0 - 1 6 . 2 5 1 6 3 9 8 3 6 4 5 . 0 1 2 0 2 . 0 1 5 . 2 5 - 1 2 2 . 1 2 4 4 . 4 1 - 1 . 6 4 - 6 4 . 1 1 - 0 . 0 6 1 - 8 1 . 7 8 - 1 7 . 6 7 1 6 3 9 9 3 8 4 7 . 0 1 3 C 4 . 0 1 5 . 6 2 - 1 2 2 . 2 2 4 4 . 4 7 - 1 . 3 3 - 6 3 . 5 5 - C . 0 6 1 - 6 1 . 2 6 - 1 7 . 7 1 1 6 4 C C 3 6 4 6 . C 1 3 C 5 . C 1 5 . 7 9 - 1 2 2 . 4 1 4 4 . 5 1 - 1 . 7 0 - 6 3 . 8 1 - 0 . 0 6 1 - 8 0 . 7 0 - 1 6 . 6 9 1 6 4 0 1 3 8 0 5 . 0 1 2 6 7 . C L 6 . 2 0 - 1 1 8 . 3 8 4 3 . C 4 - 1 . 9 9 - 6 1 . 1 2 - 0 . 0 6 1 - 7 4 . 6 7 - 1 5 . 7 5 1 6 4 J 2 3 8 0 5 . 0 1 7 6 2 . 0 1 6 . 4 5 - 1 1 6 . 3 8 4 3 . 0 4 - 1 . 4 0 - 6 C . 2 9 - 0 . 0 6 1 - 7 5 . 5 2 - 1 5 . 2 3 - 131 -1 6 4 0 2 1 6 4 0 4 1 6 4 C 5 1 6 4 0 6 1 6 4 C 7 1 6 4 0 f 3 7 8 8 . C 3 7 7 3 . 0 3 7 C 7 . C 3 6 3 5 . 0 3 6 0 5 . 0 3 5 9 6 . C 1 P 4 5 . C 1 2 3 0 . 0 1 1 6 4 . C 1 C 6 2 . 0 1 C 6 2 . 0 1 C 5 2 . C 1 6 4 0 9 1 6 4 1 C 1 6 4 1 1 1 6 . 7 7 -1 7 . 0 3 -1 7 . 1 2 -1 7 . 4 7 -1 7 . 5 5 1 7 . 7 2 3 5 9 6 . 0 3 4 6 1 . C 3 4 5 1 . C 1 C 5 3 . 0 9 1 6 . C S C 6 . C 1 1 6 . 7 9 1 1 5 . 3 8 I C S . I S 1 C 1 . 5 0 - 9 9 . 6 2 - S t . 7 8 4 2 . 4 6 4 1 . 9 5 3 9 . 7 0 2 6 . 9 C 2 6 . 2 2 2 5 . 9 1 1 7 . 8 5 1 8 . 5 2 1 8 . 4 0 - 2 . 0 4 - 2 . 0 5 - 1 . 3 8 - 1 . 6 6 - 1 . 2 2 - 1 . 2 2 1 6 4 1 2 1 6 4 1 2 1 6 4 1 4 3 4 4 1 . 0 3 4 4 1 . C 3 4 2 5 . 0 - 9 8 . 7 8 - 6 6 . 1 1 - 8 5 . 1 7 8 9 8 . 0 6 5 6 . C 8 8 2 . 0 3 5 . 5 1 3 1 . 3 1 2 C . 9 7 - 5 S . 6 C - 5 J . 4 4 - 5 2 . 7 4 - 4 £ . S 8 - 4 7 . C 2 - 4 6 . 3 6 - 0 . 0 6 1 - 0 . C 6 1 - 0 . 0 6 1 - 0 . 0 6 1 - 0 . 0 6 1 - 0 . 0 6 1 - C . 9 C - 2 . 9 2 - 2 . 7 6 1 fi . 5 7 1 6 . 7 4 1 9 . C 1 - 4 5 . 6 8 - 3 S . 2 C - 3 f . 5 7 1 6 4 1 5 1 6 4 1 6 1 6 4 1 7 3 4 2 5 . 0 3 4 3 2 . C 3 4 3 4 . 0 ? 8 2 . C £ 6 9 . C 6 9 1 . 0 - 8 4 . 2 4 - 8 4 . 2 4 - 8 2 . 7 2 3 0 . 6 3 3 0 . 6 3 2 C . C £ - C . 0 6 1 - 0 . 0 6 3 - 0 . 0 6 3 - 7 2 . 4 9 - 6 6 . 8 2 - 6 0 . 6 8 - 5 4 . 9 8 - 5 2 . 7 5 - 5 1 . 2 5 - 1 2 . 8 9 - 1 0 . 3 0 - 6 . 9 4 - 6 . 0 0 - 5 . 7 3 - 4 . 9 6 1 6 4 1 6 1 6 4 1 S 1 6 4 2 C 1 6 4 2 1 3 4 3 3 . C 3 4 2 C . C 3 4 3 5 . 0 1 9 . 0 1 I S . 1 5 1 9 . 2 8 6 9 C . C £ 6 7 . C 8 9 2 . 0 - 8 2 . 7 3 - 6 3 . 3 9 - 6 2 . 5 6 3 0 . 0 8 3 C . 3 2 3 C . 3 9 1 9 . 4 9 1 9 . 7 4 2 0 . 2 5 - 2 . 7 C - 4 . 4 2 - 2 . 6 2 - 2 . 7 4 - 3 . 0 3 - 1 . 1 2 - S C . 1 6 - 3 9 . 5 0 - 3 9 . 1 9 - 4 . 2 8 - 0 . 3 0 - 0 . 6 2 - 3 7 . 7 4 - 3 9 . 2 9 - 3 6 . 4 7 - C . 0 6 3 - 0 . 0 6 5 - 0 . C 6 3 - 3 £ . 7 5 - 3 8 . 2 0 - 3 5 . 8 0 - 1 . 0 1 1 . 0 5 0 . 6 7 - 3 6 . 3 6 - 3 6 . 9 5 - 3 5 . C 4 - 3 3 . 4 9 - 6 3 . 2 C - 8 3 . 6 7 3 0 . 3 5 2 C . 2 5 2 0 . 4 2 - 0 . 0 6 3 - 0 . 0 6 3 - 0 . 0 6 1 - 0 . 9 9 - 0 . 2 C C . 1 4 - 2 4 . 7 3 - 2 2 . 2 2 - 3 2 . 6 9 1 . 6 5 3 . 7 3 1 . 3 5 - 3 4 . 6 2 - 3 2 . 4 2 - 2 2 . £ 6 - 0 . C 6 1 - 0 . 0 6 0 - C . C 6 C - 3 C . 6 1 - 2 9 . 2 5 - 2 S . 1 7 4 . 0 1 4 . 1 7 3 . 6 9 1 6 4 2 2 1 6 4 2 3 3 4 1 6 . C 3 3 8 8 . 0 3 3 5 9 . 0 8 7 3 . C 8 4 5 . C 8 1 6 . 0 2 C . 5 2 2 0 . 6 6 2 1 . 1 3 1 6 4 2 4 1 6 4 2 5 1 6 4 2 6 3 5 5 C . C - 3 3 1 5 . 0 3 2 3 C . 0 6 C 7 . C 7 7 2 . 0 6 8 7 . 0 - 6 1 . 8 9 - 7 5 . 2 6 - 7 6 . 5 4 2 9 . 7 7 2 6 . 6 2 2 7 . 8 3 1 6 4 2 7 1 6 4 2 8 1 6 4 2 9 1 6 4 3 C 1 6 4 3 1 1 6 4 3 2 3 0 8 6 . 0 3 0 5 2 . 0 3 2 7 8 . 0 3 3 5 2 . 0 5 5 5 1 . 0 5 5 3 C . 0 2 1 . 5 0 2 1 . 4 9 2 2 . 0 0 0 . 1 9 C . 2 5 C . 2 6 5 4 3 . C 5 0 9 . 0 7 3 5 . C - 7 5 . 7 1 - 7 2 . 4 2 - 6 4 . 4 4 2 7 . 5 2 2 6 . 3 3 2 3 . 4 3 - 3 1 . 4 1 - 2 S . 5 3 - 2 7 . 2 1 - 0 . 0 5 9 - 0 . 0 5 9 - 0 . 0 5 9 2 5 . 5 2 2 3 . 9 3 2 2 . 4 9 0 . 2 8 C . 2 9 0 . 1 9 - 5 C . S 4 - 4 7 . 7 5 - 6 8 . 9 5 6 1 C . C 3 C 0 C . 0 2 5 6 7 . C 1 6 4 3 2 1 6 4 3 4 1 6 4 3 5 5 4 3 8 . 0 5 2 3 3 . 0 5 0 6 4 . 0 2 2 . 1 7 1 2 . 4 3 1 2 . 1 4 ^ 7 5 . S 8 - 2 3 2 . 1 6 - 2 E C . 1 5 1 8 . 5 2 1 7 . 3 6 2 5 . 0 7 - 2 6 . 6 C - 2 4 . 3 C - 1 6 . 8 1 - 2 6 . 6 5 - 2 5 . 2 9 - 2 2 . 2 1 4 . 7 6 4 . 2 4 5 . 1 C - o . 0 5 9 - 0 . 0 5 9 - C . C 5 9 - 0 . 3 9 - 0 . 7 6 - 1 . 6 3 - 2 1 . 4 0 - 1 6 . 6 5 - 1 1 . 3 4 5 . 2 0 5 . 6 5 7 . 4 7 2 8 9 5 . 0 2 6 9 0 . 0 2 5 2 1 . C 1 6 4 3 6 1 6 4 3 7 1 6 4 3 8 1 6 4 3 5 1 6 4 4 C 1 6 4 4 1 4 9 2 9 . 0 4 6 7 9 . 0 4 3 9 4 . C 1 1 . 7 7 -1 1 . 3 2 -1 1 . 6 5 -2 7 . 6 3 1 C 2 - . 5 9 1 C 1 . 8 7 - 9 . 3 0 - 7 . 2 2 - 2 3 . 2 1 - 0 . 0 6 0 - 0 . 0 6 1 - 0 . C 6 2 - C . C 7 - 2 . 9 4 -- 4 . 1 4 -2 7 1 . 5 6 2 5 2 . 3 3 2 3 6 . 4 6 2 2 8 6 . C 2 1 3 6 . 0 1 8 5 1 . C 1 1 . 9 2 -1 2 . 0 6 -1 2 . 2 6 -S 6 . 7 4 9 1 . 7 5 £ 5 . 9 8 - 2 6 . 2 5 i 7 c . c e 1 7 C . 3 2 - 1 . 2 0 1 7 . 2 5 - 1 1 . 4 0 8 . 1 0 2 4 . 4 7 1 1 . 8 1 - 0 . C 6 C - 0 . 0 6 1 -- 0 . 0 6 1 -2 2 3 . £ 2 • 2 0 0 . 3 6 1 7 3 . 6 3 - 2 . 1 S -- 3 . 1 9 -- 4 . 0 2 -e i . 3 8 7 2 . 8 . 5 6 2 . 1 2 1 6 4 . 2 4 1 5 1 . S 6 1 4 2 . 8 7 - 0 . 0 6 1 -- 0 . 0 6 1 -- 0 . 0 6 1 -- 1 6 . 3 5 1 4 6 . 5 4 1 4 5 . 7 1 9 . 9 0 2 2 . 5 4 2 4 . 6 1 - 4 . 3 E -- 4 . 9 0 -- 5 . 1 C -1 3 4 . S C 1 2 C . 3 5 1 C 2 . 2 5 1 3 9 . 4 9 1 2 6 . 6 4 1 1 7 . 0 3 2 4 . 7 5 2 5 . 1 2 2 5 . 6 4 - 0 . 0 6 2 -- 0 . 0 6 2 - 0 . 0 6 2 I C S . 6 6 - S 5 . C 5 - 7 9 . 4 5 2 5 . 0 4 2 5 . 2 C 2 3 . 9 0 • 4 3 2 0 . 0 4 1 8 5 . 0 3 9 3 6 . 0 1 6 4 4 2 1 6 4 4 2 1 6 4 4 4 1 6 4 4 5 " 3 3 1 7 . 0 3 8 6 5 . 0 3 8 0 7 . 0 1 7 7 7 . 0 1 6 4 2 . C 1 4 4 3 . 0 1 2 7 4 . 0 1 2 2 2 . C 1 2 6 4 . 0 1 2 . 2 3 -1 2 . 0 4 -1 1 . 8 4 -1 1 . 8 2 -1 1 . 7 0 -1 1 . 5 3 -1 6 6 . 6 9 1 5 4 . 0 3 1 2 5 . 2 6 6 0 . 6 1 5 6 . 0 0 4 S . 2 1 - 5 . 6 4 - 5 . 5 1 - 4 . 7 3 1 1 9 . 5 1 1 2 4 . C I 1 1 6 . 5 7 4 3 . 4 5 4 5 . 0 9 4 2 . 1 1 - S S . 4 S - 9 1 . 5 0 - 7 S . C 3 - 0 . 0 6 3 - 0 . 0 6 3 - 0 . 0 6 3 - 3 . 5 5 -1 . 5 9 • 1 . 3 7 - 7 4 , 6 3 - 6 6 . 7 3 - 5 5 . 8 8 2 4 , 8 6 2 4 , 7 7 2 3 . 1 5 - 6 7 . 6 2 - 6 8 . 8 2 - 6 5 . 3 C - 0 . 0 6 3 - 0 . 0 6 1 - C . 0 6 1 - 4 7 . 8 7 - 5 0 . 7 1 - 4 7 . 6 0 1 9 . 9 5 1 8 . 1 1 1 7 . 7 0 1 6 4 4 6 1 6 4 4 7 3 8 2 5 . 0 3 9 2 3 . 0 4 0 3 6 . 0 1 2 6 2 . C 1 3 6 C . 0 1 4 9 3 . 0 1 6 4 4 6 1 6 4 4 9 1 6 4 5 C 4 1 2 3 . 0 4 0 9 7 . 0 4 1 7 7 . 0 1 1 . 3 6 -1 1 . 3 6 -1 1 . 2 6 -1 2 0 . 2 6 1 2 S . 4 5 1 4 0 . 0 5 1 5 6 C . C 1 5 6 4 . C 1 6 3 4 . 0 1 1 . 1 6 -1 1 . C 9 -1 0 . 9 2 -4 3 . 7 2 . 4 7 . 0 7 5 0 . 9 2 - 1 . 3 2 - 1 . 3 3 - 2 . I S 1 6 4 5 1 1 6 4 5 2 1 6 4 5 3 1 6 4 5 4 1 6 4 5 5 1 6 4 5 6 1 6 4 5 7 4 1 4 C . C 4 1 6 2 . 0 4 2 4 9 . 0 4 2 5 5 . 0 4 2 6 4 . 0 4 2 8 6 . C 1 4 6 . 2 1 1 4 5 . 7 7 1 5 3 . 2 7 - 6 6 . S C - 7 2 . 3 5 - s c . c e 1 5 S 7 . C 1 6 1 9 . 0 1 7 0 6 . 0 1 0 . S 4 -1 C . 9 9 -1 0 . 8 2 -5 3 . 3 9 5 2 . C C 5 5 . 7 3 - C . 0 6 1 - 0 . 0 6 1 - 0 . 0 6 1 - 2 . 9 6 - 2 . 2 S - 2 . 2 S - 4 5 . 0 0 - 5 4 . 6 4 - 6 1 . 1 1 1 7 . 5 C 1 7 . 7 1 1 8 . 9 5 - 6 6 . 1 2 - 6 4 . S 7 - 6 S . S 2 1 7 1 C . C 1 7 2 1 . C 1 7 4 3 . C 1 4 S . 6 L 1 5 1 . 6 7 1 6 0 . C i 1 0 . 7 7 -1 0 . 6 0 -1 0 . 5 3 -5 4 . 4 7 5 5 . 2 2 5 8 . 1 8 - 0 . 0 6 2 - O . 0 6 2 - 0 . 0 6 2 - 2 . 7 8 - 3 . 5 2 - 4 . 1 6 - 6 6 . 9 8 - 6 5 . 6 7 - 7 2 . 5 3 1 9 . 1 4 1 9 . 3 0 1 7 . 3 4 1 C C . 4 C 1 6 1 . 4 4 1 6 3 . 5 0 5 3 . 3 2 5 3 . 7 0 5 9 . 4 5-- 8 7 . 1 7 - 6 S . 1 6 - 9 5 . 1 6 - 0 . 0 6 1 - 0 . 0 6 2 - 0 . 0 6 2 - 2 . 4 5 - 2 . 1 3 - 1 . 9 5 - 7 1 . 4 8 - 7 2 . 5 6 - 7 S . 4 7 - 9 2 . 7 6 - 9 5 . 2 7 - 9 5 . 4 6 1 5 . 6 9 1 5 . 6 2 1 5 . 7 1 - 0 . 0 6 1 - 0 . 0 6 2 - 0 . C 6 1 - 8 C . 9 9 - £ 1 . 4 8 - 8 2 . 7 2 1 2 . 7 7 1 3 . 7 9 1 2 . 7 6 1 6 4 5 8 1 6 4 5 S 1 6 4 6 C 1 6 4 6 1 1 6 4 6 2 4 3 1 3 . 0 4 3 8 3 . 0 4 4 3 5 . C 4 4 2 7 . 0 4 4 6 4 . 0 4 4 4 9 . 0 1 7 7 C . C 1 6 4 0 . 0 1 6 5 2 . C 1 C . 6 2 -J 0 . 6 4 -1 1 . 0 4 -1 6 6 . C 3 1 7 2 . 6 0 1 7 7 . 4 6 1 6 6 4 . 0 1 9 2 1 . 0 1 S C 6 . C 6 C . 3 7 6 2 . 7 6 6 4 . 5 3 1 1 . 1 1 -1 1 . 3 8 -1 1 . 4 3 -- 1 . 6 7 - 1 . 6 3 -• l . 6 9 -1 7 6 . 7 2 i e o . 2 c 1 7 £ . 7 S - 9 6 . 7 1 1 C C . 6 2 1 0 2 . 6 0 6 4 . 2 6 6 5 . 5 2 6 5 . C I - O . o o l - 0 . 0 6 1 - 0 . 0 6 1 - 6 4 . 4 8 - 6 6 . 6 C - 9 1 . 2 8 - I . 7 4 -- 1 . 7 4 --1 . 9 9 -1 C 2 . I C 1 C 5 . C 4 1 0 4 . 3 5 1 2 . 2 3 1 2 " , 0 3 1 2 . 3 2 - 0 » 0 6 1 - 0 . 0 6 1 - 0 . 0 6 1 - S O . 8 9 - 9 2 . 6 8 - 9 2 . 8 6 1 2 . 2 1 1 2 . 3 6 1 1 . 4 7 - 132 -1 6 4 6 3 1 6 4 6 4 1 6 4 6 5 1 6 4 6 6 1 6 4 6 7 1 6 4 6 8 1 6 4 6 9 4 5 0 1 . 0 4 6 1 C . 0 4 7 2 2 i 0 -4 7 7 7 . 0 4 7 9 8 . 0 4 3 7 6 . 0 1 9 5 6 . 0 2 C 6 7 . C 2 1 7 9 . 0 2 2 3 4 . 0 2 2 5 5 . C 2 3 5 5 . C 1 1 . 7 7 -1 2 . 1 1 -1 2 . 3 5 -1 2 . 7 0 -1 3 . 0 1 -1 3 . 2 6 -1 8 3 . 6 7 1 9 3 . 8 9 2 0 4 . 4 0 2 0 9 . 5 6 2 1 1 . 5 3 2 1 9 . C 3 6 6 . 7 8 7 0 . 5 0 7 4 . 3 2 7 6 . 1 9 7 6 . 9 1 7 9 . 6 4 - 1 . 9 C -- 1 . 1 9 -- C . C 2 -- 1 . 1 8 -- 2 . 0 9 -- 2 . 0 9 -1 C 7 . C 2 1 1 2 . 4 7 1 1 t . 6 4 1 2 1 . 8 5 1 2 2 . 6 9 1 2 6 . 2 2 - C . C 6 1 - o . u 6 0 -- 0 . 0 6 0 -- G . 0 6 C -- 0 . 0 6 1 -- 0 . 0 6 1 -1 0 0 1 0 4 1 0 7 1 0 4 1 C 4 . 2 3 . 5 8 , 9 3 . C 4 . 4 0 4 0 1 1 . 7 9 1 1 . 8 9 1 3 . 7 1 1 4 . 8 1 1 9 . 2 9 2 3 . 8 2 1 6 4 7 C 1 6 4 7 1 4 9 5 6 . U 5 0 1 4 . 0 5 1 3 5 . 0 1 6 4 7 2 1 6 4 7 3 1 6 4 7 4 5 1 6 4 . C 5 1 7 0 . 0 5 2 7 7 . 0 2 4 1 3 . 0 2 4 7 1 . C 2 5 9 ? . 0 1 3 . 3 0 -1 2 . 9 6 -1 3 . 1 1 -2 2 6 . 3 5 2 3 1 . 7 9 2 4 2 . 1 4 8 2 . 3 0 8 4 . 2 8 6 3 . 4 0 1 . 2 6 -• 1 . 5 6 -1 . 9 5 -1 6 4 7 5 1 6 4 7 6 5 3 1 7 . 0 5 3 6 6 . 0 2 6 2 1 . C 2 6 3 5 . 0 2 7 3 4 . 0 1 3 2 . C C 1 2 6 . 1 3 1 4 2 . 5 6 1 3 . 4 5 -1 2 . 6 5 -1 3 . 7 4 -- 0 . 0 6 0 -- 0 . 0 6 0 -- c . c e c -2 4 5 . 8 6 2 4 7 . 1 7 2 5 6 . 4 6 1 0 7 . 5 1 1 1 1 . 5 3 1 1 7 . 6 1 2 7 7 4 . C 2 8 2 3 . 0 6 9 . 5 9 6 9 . 6 7 9 3 . 2 5 2 4 . 4 9 2 4 . 7 5 2 5 . 7 7 - 1 . 9 1 -• 1 . 7 4 -• 1 . 7 6 -1 4 4 . 9 5 1 4 5 . 3 9 1 5 1 . 2 5 1 4 . L 4 -1 4 . 3 3 -- 0 . 0 6 0 -- 0 . 0 6 C -- 0 . 0 6 C -2 6 0 . 2 1 2 6 4 . 8 1 9 4 . 6 1 9 6 . 2 8 - 1 . 7 4 -- 2 . 2 5 -1 1 6 . 6 3 1 1 9 . 6 3 1 2 5 . 2 1 2 6 . 2 5 2 5 . 7 1 2 6 . 0 4 1 5 2 . 2 0 1 5 6 . 4 5 - 0 . 0 6 0 -- C . 0 6 0 -1 2 8 . 4 6 1 2 1 . C 8 2 4 . 6 2 2 5 . 3 7 T H E P A R A M E T E R S A T T H E E A S E P C I M ( 9 3 6 5 ) A P E : . G E O G R A P H I C L A T = 5 5 . 7 8 9 ; G E O C E N T R I C L A T = H E I G H T A P C V F E L E V A T I O N D A T U M = O . C 9 E E T 5 5 . 6 C 9 . ( C E G R E E S ) T H E U R E T I C A L ( A B S C L L T E ) G R A V I T Y E F F E C T S ( M G A L S ) : L A T I T U D E 9 6 1 5 5 7 . C 4 7 F P E F A I R ( P E L T C N S L ) - 2 2 8 . 5 4 2 B C L G L E R S L A B ( 2 . 6 7 C ) T E R R A I N < 2 . 6 7 C ) T G T A L T H E O R E T I C A L G R A V I T Y 8 6 . 7 3 2 - C . 6 5 6 9 8 1 4 0 4 . 3 6 0 f G A L S O B S E R V E C ( A B S O L L T E ) G R A V I T Y 9 8 1 2 9 3 . 0 2 0 f G A L S C C M F L E T E E C U G U E P A N C f A L Y T H E E L E V A T I O N O A T l . K F O P T H E S U R V E Y I S - 1 1 1 . 3 5 0 M C A L S 2 5 4 3 . C F E E T T H E M E A N S T A T I C N E L E V A T I C N = 3 4 1 6 . 9 F E E T T H E M E A N E L E V A T I O N F A C T O R F O R T H I S S L R V E Y I S = - C . C 5 9 C C A l / F C C T T H E M E A N T C T A L T F R P A I N E F F E C T F C P T H I S S U R V E Y = 2 . 3 C 7 ^ G A L S / S T A T I O N T H E M E A N R E L A T I V E T E R R A I N E F F E C T F C R T H I S S L R V E Y = - 1 . 4 5 1 N G A L S / S T A T I C N S T O P 0 E X E C L T I C N ' T E R M I N A T E C - 133 -A P P E N D I X V I R O N _ M A S K ^ R A V I T Y _ p A T A _ S T N N O - 0 . 9 4 5 2 . - 0 . 0 . - 0 . 1. E L E V " l ^ O T i V l ~ G R W ^ W r T W i f n « 7 E i C H S T N * E L E V O B S R O U G D E L T A E * * L A T * F A I R • B S L A B • T E R R N = T C T * L * F A C T O R G R A V A N O M L Y -0. - 0 . - 0 . -0. -0 . -0. 1 1 3 4 . 0 1 1 5 6 . C 2 5 6 9 . 0 0 . 0 2 2 . C 1 4 3 5 . 0 - 0 . 0 - 0 . 0 - 2 . C 9 - 2 . 0 7 - 7 . 1 9 - 1 3 4 . 7 7 0 . 0 0 . 7 5 4 8 . 9 4 0 . 0 0 . 0 - 0 . 9 2 - 4 . 3 2 - 0 . 3 6 - 9 3 . 3 8 0 . 0 0 . 0 0 . 0 - 0 . 1 0 2 1 . 1 9 5 . 5 1 - 0 . 0 6 C - 7 7 . 6 9 1 5 . 6 9 2. 3. 4. 5. 6. 7. 2 5 8 9 . C 2 6 3 2 . C _ 2 6 8 6 . 0 2 7 2 2 . 0 2 7 3 6 . 0 2 7 8 0 . 0 1 ^ 5 5 . C - 7 . 3 9 - 1 3 6 . 6 5 4 9 . 6 2 - 0 . 4 9 - 9 4 . 9 1 1 4 9 8 . 0 - 7 . 6 4 - 1 4 0 . 6 9 5 1 . 0 9 - 0 . 1 6 - 9 7 . 3 9 1 5 5 2 . 0 _ - 7 . 8 4 - 1 4 5 . 7 6 _ 5 2 . 9 3 - 0 . 6 2 - 1 0 1 . 2 9 1 5 8 8 i O - 8 . 0 8 - 1 4 9 . 1 4 5 4 . 1 6 - 0 . 1 7 - 1 0 3 . 2 3 1 6 0 2 . 0 - 8 . 3 5 - 1 5 0 . 4 6 5 4 . 6 4 - 0 . 1 7 - 1 0 4 . 3 5 1 6 4 6 . 0 - 8 . 4 6 - 1 5 4 . 5 9 5 6 . 1 4 - 0 . 2 5 - 1 0 7 . 1 6 - 0 . 0 6 0 - 7 9 . 3 5 1 5 . 5 6 - 0 . 0 6 0 - 8 2 . 0 3 1 5 . 3 6 - 0 . 0 6 C - 8 5 . 7 1 1 5 . 5 8 - 0 . 0 6 0 - 8 8 . 8 7 " 1 4 . 3 6 " - 0 . 0 6 0 - 9 1 . 1 7 1 3 . 1 8 - 0 . 0 6 C - 9 4 . 1 6 1 3 . 0 0 -0 . 8. -0 . 9 . -0. 10. 2 7 9 1 . 0 2 8 2 1 . 0 2 8 1 9 . 0 1 6 5 7 . C 1 6 8 7 . 0 1 6 8 5 . 0 - 8 . 5 7 - 1 5 5 . 6 2 - 8 . 6 4 - 1 5 8 . 4 4 - 8 . 7 0 - 1 5 8 . 2 5 - 0 . 11. - 0 . 12. - 0 . 13. 2 8 1 6 . C 2 8 4 0 . 0 2 8 4 6 . C 1 6 8 2 . 0 1 7 0 6 . 0 1 7 1 2 . C - 6 . 8 6 - 1 5 7 . 9 7 - 8 . 7 5 - 1 6 0 . 2 2 - 8 . 7 4 - 1 6 0 . 7 9 5 6 . 5 1 5 7 . 5 4 5 7 ^ 4 7 5 7 . 3 7 5 8 . 1 8 5 8 . 3 9 0 . 0 7 - 1 0 7 . 6 1 - 0 . C 6 - 1 0 9 . 6 2 - 0 . 0 1 ^ 1 0 9 . 4 9 - 6 . T l - i 0 9 : " 5 7 0 . 3 C - 1 1 0 . 4 9 0 . 2 1 - 1 1 0 . 9 3 - 0 . 0 6 0 - 9 5 . 5 2 1 2 . 0 9 - 0 . 0 6 C - 9 7 . 6 1 1 2 . 0 1 - 0 . 0 6 0 _ 2 . 9 8 . 5 2 1 0 . 9 7 - 0 . 0 6 0 - 9 8 . 5 2 1 1 . 0 5 - 0 . 0 6 C - 9 9 . 9 5 1 0 . 5 4 - 0 . 0 6 0 - 1 0 0 . 0 6 1 0 . 8 7 - 0 . 14. - 0 . 15. - 0 . 16. 2 8 6 4 . 0 2 8 8 9 . 0 2 9 1 4 . C - 0 . 1 7 . - 0 . 1 8 . - 0 . 1 9 . 2 9 0 6 . 0 2 9 2 7 . 0 2 8 9 3 . C 1 7 3 0 . C 1 7 5 5 . 0 1 7 8 C . C 1 7 7 2 . 0 1 7 9 3 . 0 1 7 5 9 . C - 8 . 8 3 - 1 6 2 . 4 6 5 9 . C C - 8 . 8 6 - 1 6 4 . 8 3 5 9 . 8 6 - 6 . 9 1 - 1 6 7 . 1 7 6 0 . 7 1 - 8 . 8 9 - 1 6 6 . 4 2 6 0 . 4 4 - 8 . 7 8 - 1 6 8 . 3 9 6 1 . 1 5 - 8 . 7 0 - 1 6 5 . 2 0 5 9 . 9 9 0 . 2 1 - 1 1 2 . C 9 0 . 2 9 - 1 1 3 . 5 4 - 0 . 0 0 - 1 1 5 . 3 8 - 0 . 5 1 - 1 1 5 . 2 9 " - 0 . 0 2 - 1 1 6 . C 4 - 0 . 1 2 - 1 1 4 . 0 2 - 0 . 0 6 0 - 1 0 0 . 5 1 1 1 . 5 8 - 0 . 0 6 C - 1 0 0 . 9 4 1 2 . 6 0 j ^ O . 0 6 0 - 1 0 1 . 9 8 1 3 . 4 0 - 0 . 0 6 C - 1 0 1 " . 6 2 ' 1 3 ^ 7 7 - 0 . 0 6 C - 1 0 2 . 2 2 1 3 . 8 2 - 0 . 0 6 C - 1 0 0 . 3 0 1 3 . 7 2 - 0 . 2 0 . - 0 . 2 1 . - 0 . 2 2 . - 0 . 2 3 . - 0 . 2 4 . - 0 . 25. 2 9 2 5 . 0 2 9 4 6 . C J 9 5 2 ^ 0 2 9 8 9 . 0 3 0 0 6 . 0 3 0 9 0 . 0 1 7 9 1 . 0 1 8 1 2 . 0 _ 1 8 1 8 . 0 1 8 5 5 . 0 1 8 7 2 . C 1 9 5 6 . 0 - 8 . 8 5 - 1 6 8 . 2 1 - 9 . 0 2 - 1 7 0 . 1 8 - 9 . 1 6 - 1 7 0 . 7 4 - 9 . 3 2 - 1 7 4 . 2 2 - 9 . 5 5 - 1 7 5 . 8 1 - 9 . 7 7 - 1 8 2 . 7 C 6 1 . 0 8 6 1 . 8 0 6 3 . 2 7 6 3 . 8 5 6 6 . 7 1 0 . 2 3 - 1 1 5 . 7 4 0 . 2 0 - 1 1 7 . 2 0 0 . l C - 1 1 7 . 8 0 - 0 . 0 4 - 1 2 0 . 3 1 - 0 . 1 5 - 1 2 1 . 6 6 - 0 . 2 9 - 1 2 7 . C 5 - 0 . 0 6 C - 1 0 3 . 2 6 1 2 . 4 8 - 0 . 0 6 0 - 1 0 5 . 3 9 1 1 . 8 1 - 0 . 0 6 C - 1 0 7 . 3 8 _ 1 0 . 4 2 " - b . 6 6 C - i l d . 2 6 " 1 0 . 0 5 - 0 . 0 6 0 - 1 1 2 . 9 4 8 . 7 2 - 0 . 0 6 0 - 1 1 8 . 8 4 8 . 2 1 - 0 . 26. - 0 . 27. - 0 . 28. - 0 . 2 9 . - 0 . 30. - 0 . 31. 3 1 2 2 . C 3 1 3 5 . C J U 9 4 . _ C 3 1 9 8 . 0 3 2 0 6 . 0 3 1 9 9 . 0 1 9 8 8 . 0 - 9 . 9 8 - 1 8 6 . 7 1 6 7 . 8 0 2 0 C I . C - I C . 1 5 - 1 6 7 . 9 3 6 8 . 2 5 2 0 6 0 J 1 p _ ^ l C K 2 5_3 1 9 3 . 4 7 7 0 ._Z6_ 2 0 6 4 . C - 1 0 . 4 7 - 1 9 3 . 8 5 7 0 . 3 9 2 0 7 2 . 0 - 1 0 . 6 7 - 1 9 4 . 6 C 7 0 . 6 7 2 0 6 5 . 0 - 1 0 . 9 6 - 1 9 3 . 9 4 7 0 . 4 3 - 0 . 6 9 - 1 2 9 . 5 7 - 0 . 0 4 - 1 2 9 . 8 7 - 0 . 0 6 - 1 3 3 . 5 2 - 0 . 0 8 - 1 3 4 . 0 1 - 0 . 5 6 - 1 3 5 . 1 8 - 0 . 4 0 - 1 3 4 . 8 8 - 0 . 0 6 0 - 1 2 2 . 4 5 7 . 1 2 - 0 . 0 6 0 - 1 2 3 . 4 9 6 . 3 8 - 0 . 0 6 C H 1 2 7 . 9 5 _ 5 . 5 7 - 6 . 0 6 ) 6 - 1 2 9 . 1 2 4 . 8 9 - 0 . 0 6 0 - 1 3 0 . 6 6 4 . 5 2 - 0 . 0 6 0 - 1 3 2 . 4 9 2 . 3 9 - 0 . 32. - 0 . 33. - 0 . 34. - 0 . 35. -0'. 36. - 0 . 37. 3 2 0 6 . C 3 2 9 1 . 0 _256J>JLC_ 2 5 8 6 . C 2 6 0 6 . 0 2 6 2 8 . 0 2 C 7 2 . 0 2 1 5 7 . 0 1 4 3 2 . 0 1 4 5 2 . C 1 4 7 2 . 0 1 4 9 4 . 0 - 1 1 . 2 2 - 1 9 4 . 6 C - 1 1 . 4 3 - 2 0 2 . 5 8 - 7 . 2 5 - 1 3 4 . 4 9 - 7 . 2 6 - 1 3 6 . 3 7 - 7 . 3 3 - 1 3 8 . 2 5 - 7 . 1 8 - 1 4 0 . 3 1 - 0 . 38. - 0 . 39. - 0 . 40. - 0 . 41. - 0 . 42. - 0 . 43. 2 7 0 5 . 0 2 7 8 3 . 0 2 8 2 4 . C _ 2 6 9 8 . 0 2 7 8 4 . C 2 8 1 5 . C 1 5 7 1 . 0 1 6 4 9 . 0 1 6 9 C O 1 5 6 4 . 6 1 6 5 0 . 0 1 6 8 1 . 0 - 7 . 2 4 - 1 4 7 . 5 4 - 7 . 2 7 - 1 5 4 . 8 7 _ - 7 . 2 7 - 1 5 8 . 7 2 - 8 . 5 6 - 1 4 6 . 8 5 - 8 . 7 9 - 1 5 4 . 9 6 - 8 . 9 6 - 1 5 7 . 8 8 7 0 . 6 7 7 3 . 5 7 _ 4 8 _ . 8 4 _ 4 9 . 5 2 5 0 . 2 0 5 0 . 9 5 5 2 . 5 6 5 6 . 2 4 5 7 - 6 4 5 3 . 3 4 5 6 . 2 7 5 7 . 2 3 - 0 . 4 1 - 1 3 5 . 5 6 0 . 0 5 - 1 4 C . 4 0 _ - 0 . 1 7 - 9 3 . 0 7 - 6 . 2 5 " - 9 4 . 3 6 - 0 . 2 6 - 9 5 . 6 3 - 0 . 2 5 - 9 6 . 7 9 - 0 . 0 6 0 - 1 3 4 . 7 1 0 . 8 5 - 0 . 0 6 C - 1 4 1 . 1 2 - 0 . 7 2 - 0 . 0 6 0 - 7 7 . 1 7 1 5 . 9 0 - 0 . 0 6 " C - 7 8 . 5 5 1 5 . 8 1 - 0 . 0 6 C - 7 9 . 6 0 1 6 . 0 3 - 0 . 0 6 0 - 8 1 . 5 9 1 5 . 2 0 - 0 . 4 4 . - 0 . 4 5 . - 0 . 4 6 . - 0 . 4 7 . - 0 . 4 8 . - 0 . 4 9 . - 0 . 50. - 0 . 51. - 0 . 52. - 0 . 53. - 0 . 54. - 0 . 55. 2 8 9 0 . 0 1 7 5 6 . 0 - 9 . 2 1 - 1 6 4 . 9 2 5 9 . 8 9 2 9 2 0 . C 1 7 8 6 . C - 9 . 4 8 - 1 6 7 . 7 4 6 0 . 9 1 2 9 5 4 . 0 _ 1 8 2 0 . 0 - 9 . 7 3 - 1 7 C . 9 3 6 2 . 0 7 2 9 9 0 . C 1 8 5 6 . C - 9 . 7 0 - 1 7 4 . 3 1 6 3 . 3 0 " 3 0 2 4 . C 1 8 9 0 . 0 - 9 . 1 4 - 1 7 7 . 5 C 6 4 . 4 6 3 0 5 1 . 0 1 9 1 7 . 0 - 9 . 7 4 - 1 8 0 ^ 0 4 6 5 . 3 8 3 0 8 1 . 0 1 9 4 7 . 0 - 9 . 8 7 - 1 8 2 . 8 6 6 6 . 4 0 3 1 3 9 . 0 2 0 0 5 . 0 - 9 . 9 7 - 1 8 8 . 3 1 6 6 . 3 8 _ 3 1 9 1 . 0 2 0 5 7 . 0 - 1 0 . 0 4 - 1 9 3 . 1 9 7 0 . 1 6 3 2 5 9 . 0 2 1 2 5 . C - 1 C . 1 2 - 1 9 9 . 5 6 " 7 2 . 4 8 " 3 3 4 8 . 0 2 2 1 4 . 0 - 1 0 . 2 6 - 2 C 7 . 9 3 7 5 . 5 1 3 3 9 2 . 0 2 2 5 8 . 0 - 1 0 . 4 2 - 2 1 2 . 0 7 7 7 . 0 1 - C . 2 7 - 1 0 1 . 4 8 - 0 . 0 9 - 1 0 5 . 9 9 ^ 0 . 6 2 - 1 0 8 . 9 7 - 0 . 3 7 - 1 0 2 . 4 8 0 , 0 6 - 1 0 7 . 4 2 0 . 2 6 - 1 0 9 . 2 5 0 . 2 1 - 1 1 4 . C 3 0 . 4 1 - 1 1 5 . 9 0 _ 0 . 3 0 - 1 1 8 . 2 9 0 . 3 0 - 1 2 0 . 4 2 0 . 1 3 - 1 2 2 . 6 5 - 0 . 2 1 - 1 2 4 . 6 1 - 0 . 0 6 0 - 8 6 . 9 6 - 0 . 0 6 C - 9 3 . 0 3 - 0 . 0 6 0 ^ 9 6 . 4 3 - 0 . C 6 C - 9 1 . 1 4 - 0 . 0 6 0 - 9 7 . 4 1 - 0 . 0 6 0 - 9 9 . 9 6 - 0 . 1 3 - 1 2 6 . 4 5 - C . 2 3 - 1 3 0 . 1 3 - 0 . 0 8 - 1 3 3 . 1 6 0 . 0 8 - 1 3 7 . 1 4 0 . 1 4 - 1 4 2 . 5 4 0 . 0 7 - 1 4 5 . 4 1 - 0 . 0 6 C - 1 0 4 . 9 2 - 0 . 0 6 0 - 1 0 6 . 5 4 - 0 . C 6 C - 1 0 8 . 7 3 ' - b . 0 6 C - H C . 3 6 " - 0 . 0 6 0 - 1 1 2 . 0 3 - 0 . 0 6 0 - 1 1 3 - _ 5 p _ - 0 . 0 6 0 - 1 1 5 . 8 6 - 0 . 0 6 0 - 1 1 9 . 3 8 - 0 . 0 6 C - 1 2 1 . 3 2 - 0 . 0 6 0 - 1 2 4 . 3 1 - 0 . C 6 C - 1 2 9 . 8 3 - 0 . 0 6 0 - 1 3 3 . 1 7 1 4 . 5 2 1 2 . 9 6 1 2 . 5 4 1 1 . 3 4 1 0 . 0 1 9 . 2 9 9 . 1 1 9 . 3 6 9 . 5 6 1 0 . 0 6 1 0 . 6 2 1 1 . 1 1 1 0 . 5 9 1 0 . 7 5 1 1 . 8 4 1 2 . 8 3 1 2 . 7 1 1 2 . 2 4 - 134 -- 0 . 56. 3 3 8 9 . 0 2 2 5 5 . 0 - I C . 6 2 - 2 1 1 . 7 6 7 6 . 9 1 - 0 . 57. 3 3 5 1 . 0 2 2 1 7 . 0 - 1 0 . 8 4 - 2 0 8 . 2 2 7 5 . 6 1 - 0 . 58. 3 3 4 3 . C 2 2 0 9 . 0 - 1 1 . C 8 - 2 C 7 . 4 6 7 5 . 3 4 - 0 . 59. 3 3 6 9 . 0 2 2 3 5 . 0 - 1 1 . 3 5 - 2 C 9 . 9 1 7 6 . 2 3 - 0 . 60. 3 3 6 3 . 0 2 2 2 9 . 0 - 1 1 . 5 6 - 2 0 9 . 3 4 7 6 . C 2 - 0 . 6 U 3 3 7 0 . 0 2 2 3 6 . 0 - 1 1 . 7 6 - 2 1 0 . 0 0 7 6 . 2 6 - 0 . 6 2 . 3 3 7 2 . 0 2 2 3 8 . 0 - 1 1 . 9 9 - 2 1 0 . 1 9 7 6 . 3 3 - 0 . 6 3 . 3 3 7 0 . 0 2 2 3 6 . 0 - 1 2 . 2 0 - 2 1 0 . 0 0 7 6 . 2 6 - 0 . 6 4 . 3 3 8 2 . 0 2 2 4 8 . 0 - 1 2 . 4 3 - 2 1 1 . 1 3 7 6 . 6 7 - 0 . 6 5 . 3 4 2 9 . 0 2 2 9 5 . 0 - 1 2 . 5 0 - 2 1 5 . 5 4 7 8 . 2 7 - 0 . 6 6 . 3 3 9 6 . C 2 2 6 2 . 0 - 1 2 . 7 0 - 2 1 2 . 4 4 7 7 . 1 5 - 0 . 6 7 . 3 4 1 3 . 0 2 2 7 9 . 0 - 1 2 . 9 3 - 2 1 4 . 0 4 7 7 . 7 3 C . 2 6 - 1 4 5 . 2 4 0 . 4 0 - 1 4 3 . 0 4 0 . 4 3 - 1 4 2 . 7 7 0 . 4 6 - 1 4 4 . 5 7 0 . 4 3 - 1 4 4 . 4 5 0 . 2 7 - 1 4 5 . 2 3 - 0 . 68. 3 4 1 7 . 0 2 2 8 3 . 0 - 1 2 . 9 8 - 2 1 4 . 4 1 7 7 . 8 6 - 0 . 69. 3 4 2 9 . 0 2 2 9 5 . 0 - 1 2 . 9 2 - 2 1 5 . 5 4 7 8 . 2 7 - 0 . 70. 3 4 3 3 . 0 2 2 9 9 . 0 - 1 3 . 0 0 - 2 1 5 . 9 2 7 8 . 4 1 - 0 . 71. 3 4 2 9 . 0 2 2 9 5 . 0 - 1 3 . 1 1 - 2 1 5 . 5 4 7 8 . 2 7 - 0 . 72. 3 4 6 5 . C 2 3 3 1 . 0 - 1 3 . C 7 - 2 1 8 . 9 2 7 9 . 5 0 - 0 . 73. 2 6 9 5 . 0 1 5 6 1 . 0 - 7 . 9 1 - 1 4 6 . 6 1 5 3 . 2 4 0 . 4 4 - 1 4 5 . 4 0 0 . 4 7 - 1 4 5 . 4 7 0 . 5 2 - 1 4 6 . 3 6 0 . 4 9 - 1 4 9 . 2 8 - 0 . 0 4 - 1 4 8 . 0 4 0 . C 6 - 1 4 9 . 1 7 - 0 . 0 6 C - 1 3 4 . 8 0 1 0 . 4 4 - 0 . 0 6 0 - 1 3 4 . 7 5 8 . 2 9 - 0 . 0 6 0 - 1 3 5 . 5 4 7 . 2 3 - 0 . 0 6 C - 1 3 9 . 2 7 5 . 3 0 - 0 . 0 6 C - 1 4 C . 2 4 4 . 2 1 ^ 0 6 0 - 1 4 2 _ 2 9 2 . 9 4 - 0 . 0 6 0 - 1 4 3 . 9 7 1 . 4 3 - 0 . 0 6 0 - 1 4 5 . 2 4 0 . 2 3 - 0 . 0 6 0 - 1 4 7 . 1 5 - 0 . 7 9 - 0 . 0 6 C - 1 5 1 . 0 3 - 1 . 7 5 - 0 . 0 6 C - 1 4 9 . 9 1 - 1 . 8 7 - 0 . 0 6 0 - 1 5 3 . 1 6 - 3 . 9 9 - 0 . 74. - 0 . 75. - 0 . 76. - 0 . 77. - 0 . 78. - 0 . 79. 2 7 2 6 . C 2 8 0 9 . 0 _ 2 9 0 C _ C 2 9 4 8 . 0 " 2 9 6 5 . 0 3 C 2 8 . C 1 5 5 2 . C 1 6 7 5 . 0 I 7 6 6 . C 1 8 1 4 . 0 1 8 3 1 . 0 1 8 9 4 . C - 0 . C 3 - 1 4 5 . 5 6 0 . 2 5 - 1 4 9 . 9 4 _ C . 1 7 - 1 5 C . 3 4 6 . " 1 5 - 1 5 C . 2 4 " 0 . 1 6 - 1 5 2 . 3 3 0 . 1 2 - 1 0 1 . 1 6 - 6 . C 2 - 1 4 9 . 5 2 - 8 . 0 9 - 1 5 7 . 3 1 - 8 . 2 3 - 1 6 5 . 8 6 - 8 . 2 7 - 1 7 C . 3 7 - 8 . 2 6 - 1 7 1 . 9 6 - 8 . 2 6 - 1 7 7 . 8 8 5 4 . 3 0 5 7 . 1 3 6 0 . 2 3 6 1 . " 8 7 6 2 . 4 5 6 4 . 6 0 - 0 . 0 6 C - 1 5 3 . 6 9 - 4 . 1 3 - 0 . 0 6 0 - 1 5 3 . 8 8 - 3 . 9 4 - 0 . 0 6 0 - 1 5 5 . 3 3 - 4 . 9 9 - 0 . 0 6 C - 1 5 5 . 7 5 - 5 . 5 1 - 0 . 0 6 0 - 1 5 8 . 6 1 - 6 . 2 8 - 0 . 0 6 C - 8 5 . 6 0 1 5 . 5 6 - 0 . 80. 3 0 9 4 . 0 1 9 6 0 . 0 - 8 . 3 0 - 1 8 4 . 0 8 6 6 . 8 5 - 0 . 81. 3 1 3 9 . 0 2 0 C 5 . C - 8 . 2 8 - 1 8 8 . 3 1 6 8 . 3 8 - 0 . 82. 3 2 1 4 . C 2 C 8 0 . 0 - 8 . 0 6 - 1 9 5 . 3 5 7 C . 9 4 - 0 . 83. 3 3 1 0 . 0 2 1 7 6 . 0 - 8 . 1 7 - 2 0 4 . 3 7 7 4 . 2 1 - 0 . 84. 3 3 8 0 . 0 2 2 4 6 . 0 - 8 . 1 1 - 2 1 0 . 9 4 7 6 . 6 0 - 0 . 85. 3 3 7 7 . 0 2 2 4 3 . 0 - 7 . 9 0 - 2 1 0 . 6 6 7 6 . 5 C 0 . 0 1 - 1 0 3 . 2 3 0 . 0 9 - 1 0 8 . 1 8 _ 0 . 2 2 - U 3 . 6 3 0 . 3 0 - 1 1 6 . 4 6 0 . 2 6 - 1 1 7 . 5 0 0 . 1 1 - 1 2 1 . 4 3 - 0 . 0 6 C - 8 8 . 2 5 1 4 . 9 8 - 0 . 0 6 0 - 9 3 . 5 9 1 4 . 5 9 - 0 . 0 6 0 - 1 0 0 . 0 5 1 3 . 5 8 - 0 . 0 6 0 - 1 0 3 . 7 2 1 2 . 7 4 " - 0 . 0 6 C - 1 0 5 . 2 6 1 2 . 2 4 - 0 . 0 6 0 - 1 0 9 . 1 9 1 2 . 2 5 - 0 . 8 6 . 2 9 8 9 . 0 1 8 5 5 . 0 - 9 . 9 6 - 1 7 4 . 2 2 6 3 . 2 7 - 0 . 8 7 . 3 0 3 1 . C 1 6 9 7 . C - 1 0 . 2 2 - 1 7 8 . 1 6 6 4 . 7 0 - 0 . 8 8 . 3 0 6 3 . 0 1 9 2 9 . 0 - 1 0 . 4 3 - 1 8 1 . 1 7 6 5 . 7 9 C . I C - 1 2 5 . 4 4 0 . 1 3 - 1 2 8 . 0 7 0 j . 0 9 _ 1 3 2 . 3 9 - 0 . 5 4 - 1 3 8 . 6 6 - 0 . 1 9 - 1 4 2 . 6 4 - 0 . C 9 - 1 4 2 . 1 4 - 0 . 0 6 C - 1 1 4 . 3 5 - 0 . 0 6 C - 1 1 7 . 3 8 - 0 . 0 6 0 - 1 2 2 . 0 5 _ - 0 . 0 6 C - 1 2 7 . 6 l - 0 . 0 6 0 - 1 3 1 . 8 3 - 0 . 0 6 0 - 1 3 1 . 7 6 - 0 . 89. 3 0 8 2 . 0 1 9 4 8 . C - I C . 6 3 - 1 6 2 . 9 5 6 6 . 4 4 " - 0 . 90. 3 1 2 4 . 0 1 9 9 0 . 0 - 1 0 . 6 4 - 1 8 6 . 9 C 6 7 . 6 7 -0. 91. 3 1 9 6 . C 2 C 6 2 . C - 1 1 • C 5 - 1 9 3 . 6 6 7 0 . 3 3 0 . 1 5 - 1 2 C . 7 6 0 . 1 6 - 1 2 3 . 5 2 - 0 . 2 9 - 1 2 6 . C 9 - 0 . 9 2 . 3 2 2 8 . C 2 C 9 4 . 0 - 1 1 . I 7 - 1 9 6 . 6 6 7 1 . 4 2 - 0 . 9 3 . 3 2 4 7 . 0 2 1 1 3 . 0 - 1 1 . 4 0 - 1 9 8 . 4 5 7 2 . 0 7 - 0 . 94. 3 2 8 5 . 0 2 1 5 1 . 0 - 1 1 . 5 5 - 2 C 2 . 0 2 7 3 . 3 6 - 0 . 95. 3 3 5 1 . 0 2 2 1 7 . 0 - 1 1 . 8 2 - 2CS~. 2 2 7 5 . 6 1 - 0 . 96. 3 3 9 1 . 0 2 2 5 7 . 0 - 1 2 . 0 5 - 2 1 1 . 9 7 7 6 . 9 8 - 0 . 97. 3 4 4 2 . 0 2 3 0 8 . 0 - 1 2 . 3 1 - 2 1 6 . 7 6 7 8 . 7 2 - 0 . 0 8 - 1 2 7 . 2 3 0 . C 2 - 1 2 9 . 8 5 - 0 . 0 6 - 1 3 4 . 4 4 - 0 . 0 6 C - 1 1 0 . 2 7 - 0 . 0 6 0 - 1 1 3 . 2 8 - 0 . 0 6 C - J 1 5 . 2 8 - 0 . 0 6 0 - 1 1 6 . 5 1 - 0 . 0 6 C - 1 1 8 . 7 5 - 0 . 0 6 0 - 1 2 3 . 0 0 1 1 . 0 9 1 0 . 6 9 1 0 . 3 _ 4 1 1 . 2 5 1 0 . 8 1 1 0 . 3 8 1 0 . 4 9 1 0 . 2 4 1 0 . 8 1 1 0 . 7 2 1 1 . 1 0 1 1 . 4 4 - 0 . 2 3 - 1 3 6 . 6 5 - 0 . 1 3 - 1 3 7 . 9 1 - 0 . 8 4 - 1 4 1 . 0 4 - 0 . 1 3 - 1 4 4 . 5 6 - 0 . 0 8 - 1 4 7 . 1 3 0 . 2 4 - 1 5 0 . 1 1 - 0 - 9 8 . 3 4 9 0 . 0 2 3 5 6 . 0 - 1 2 . 5 3 - 2 2 1 . 2 7 6 C . 3 5 C . 3 9 - 1 5 3 . 0 6 - 0 . 9 9 . 3 5 0 8 . C 2 3 7 4 . 0 - 1 2 . 7 6 - 2 2 2 . 9 6 8 0 . 9 7 0 . 4 5 - 1 5 4 . 3 1 - 0 . 1 0 0 . 3 5 2 4 . C 2 3 J 9 0 . C - 1 2 . 9 8 _ _ 2 2_4 . 4 6 8 1 _ _ 5 1 0 . 5 4 - 1 5 5 . 4 0 - 0 . 1 0 1 . 3 5 3 5 . 0 2 4 0 1 . 0 - 1 3 . 1 6 - 2 2 5 . 5 0 8 1 . 8 9 0 . 4 9 - 1 5 6 7 2 7 " - 0 . 1 0 2 . 3 5 7 8 . 0 2 4 4 4 . 0 - 1 3 . 3 7 - 2 2 9 . 5 4 8 3 . 3 6 0 . 5 3 - 1 5 9 . 0 2 • 0 . 1 0 3 . 3 5 6 8 . 0 2 4 3 4 . C - 1 3 . 5 7 - 2 2 8 . 6 C 8 3 . 0 1 0 . 5 0 - 1 5 8 . 6 6 -0. 104. -0. 105. -0. 106. -0. 107. -0. 1C8. -0. 109. 3 5 6 6 . 0 3 5 3 7 . C _ 3 5 3 6 . C _ 2 9 4 1 . 0 2 9 4 4 . C 2 9 3 8 . 0 -0 . 110. - 0 . 111. -0 . 112. -0. 113. -0. 114. •0. 115. 2 9 2 4 . 0 2 9 3 5 . C 2 9 4 0 . 0 2 9 3 7 ic " 2 9 3 9 . C 2 9 2 2 . 0 2 4 3 2 . 0 2 4 C 3 . 0 2 4 C 2 . C _ 1 8 0 7 . 0 1 8 1 0 . C 1 8 0 4 . 0 1 7 9 0 . 0 1 8 C 1 . C _ 1 8 0 6 . 0 _ 1 8 0 3 . 0 l eo s . c 1 7 8 8 . 0 - 1 3 . 7 4 - 2 2 8 . 4 1 8 2 . 9 5 - 1 3 . 9 7 - 2 2 5 . 6 8 8 1 . 9 6 _ 1 4 . 2 1 - 2 2 5 . 5 9 8 1 . 9 2 1 1 . 2 7 - 1 6 9 . 7 1 6 1 . 6 3 • 1 0 . 2 6 - 1 6 9 . 9 9 6 1 . 7 3 1 0 . 2 1 - 1 6 9 . 4 2 6 1 . 5 3 - 0 . 0 6 0 - 1 2 4 . 8 3 1 1 . 8 2 - 0 . 0 6 0 - 1 2 4 . 9 8 1 2 . 9 3 r 0 . 0 6 0 - 1 2 5 . 9 9 1 5 . 0 5 - 0 . 0 6 C - l " 3 0 T 8 9 1 3 7 - 0 . 0 6 0 - 1 3 5 . 0 0 1 2 . 1 3 - 0 . 0 6 0 - 1 4 1 . 3 0 8 . 8 1 - 0 . C 6 C - 1 4 7 . 3 5 5 . 7 1 - 0 . 0 6 0 - 1 5 1 . 4 1 2 . 9 0 - 0 . 0 6 0 - 1 5 4 . 5 0 0 . 9 0 _ - 0 . 0 6 C - 1 5 " 7 . ' 7 C - 1 . 4 3 - 0 . 0 6 0 - 1 6 1 . 7 2 - 2 . 7 0 - 0 . 0 6 C H 1 6 2 . 3 1 - 3 . 6 5 0 . 4 3 - 1 5 6 . 7 7 0 . 4 6 - 1 5 7 . 2 4 0 . 4 7 - 1 5 7 . 4 1 - I . 2 C - 1 2 0 . 6 6 - 0 . 1 8 - 1 1 8 . 7 0 C . 4 3 - 1 1 7 . 6 8 - l -0 .22-168. i l 61.05 -11. 47-169.1 5 61 .42 _ l l .7C-169.62 61.60 -11.9 7-169.33 61.49 •12. 17- 169. 52 61. 56 •12.33-167.93 60.98 0 . 2 9 - 1 1 7 . 0 C - 0 . 3 3 - 1 1 9 . 5 3 l O _ e 9 _ J 2 0 . 6 l _ 6 . 0 0 - 1 1 9 . 8 0 - 0 . C 4 - 1 2 C . 1 7 0 . 3 2 - 1 1 9 . 0 0 - 0 . 0 6 C - 1 6 2 . 8 7 - 4 . 1 0 - 0 . 0 6 C - 1 6 2 . 4 9 - 5 . 2 5 : 0 . 0 6 0 - 1 6 4 . 3 9 - 6 . 9 8 - 0 . 0 6 1 - 1 0 9 . 7 5 1 0 . 9 1 - 0 . 0 6 0 - 1 0 8 . 6 9 1 0 . 0 1 - 0_. 0 6 0 - 1 0 8 . 2 5 9 . 4 3 " 0 . 0 6 0 - 1 0 7 . 8 6 9 . 1 4 - 0 . 0 6 0 - 1 1 0 . 4 2 9 . 1 1 - 0 . 0 6 C - 1 1 1 . 1 9 9 . 4 2 - 0 . 0 6 C - 1 1 2 . 0 2 7 . 7 8 - 0 . 0 6 0 - 1 1 2 . 4 0 7 . 7 7 - 0 . 0 6 C - U 2 . 2 9 6 . 7 1 - 135 -- 0 . 116. 2 9 1 7 . C 1 7 8 3 . C - 1 2 . 6 2 - 1 6 7 . 4 6 6 0 . 8 1 0 . 0 5 - 1 1 9 . 2 2 - 0 . 0 6 0 - 1 1 2 . 6 4 6 . 5 8 - 0 . 117. 2 9 0 6 . 0 1 7 7 2 . 0 - 1 2 . 9 1 - 1 6 6 . 4 2 6 0 . 4 4 0 . 1 3 - 1 1 8 . 7 6 - 0 . 0 6 C - 1 1 3 . 6 7 5 . 0 9 - 0 . 118. 2 8 8 2 . C 1 7 4 8 . 0 - 1 3 . 3 2 - 1 6 4 . 1 7 5 9 . 6 2 - 0 . 2 1 - 1 1 8 . 0 8 - 0 . 0 6 C - 1 1 3 . 8 4 4 . 2 4 - 0 . 119. 2 8 2 4 . C 1 6 9 C . C - 1 3 . 5 7 - 1 5 8 . 7 2 5 7 . 6 4 - 0 . 8 3 - 1 1 5 . 4 8 - 0 . 0 6 0 - 1 1 1 . 3 3 4 . 1 5 - 0 . 1 2 0 . 2 7 6 0 . 0 1 6 2 6 . 0 - 1 3 . 7 8 - 1 5 2 . 7 1 5 5 . 4 6 - 1 . 5 6 - 1 1 2 . 6 1 - 0 . C 6 1 - 1 0 8 . 8 2 3 . 7 9 - 0 . 121. 2 6 5 9 . C 1 5 2 5 . 0 - 1 3 . 9 4 - 1 4 3 . 2 2 5 2 . 0 1 - 0 . 9 6 - 1 0 6 . 1 1 - 0 . 0 6 0 - 1 0 4 . 8 7 1 . 2 4 - 0 . 1 2 2 . 2 5 4 6 . 0 1 4 1 2 . 0 - 1 4 . C 8 - 1 3 2 . 6 1 4 8 . 1 6 - 3 . 4 4 - 1 0 1 . 9 7 - 0 . 0 6 2 - 9 9 . 9 6 2 . 0 1 - 0 . 1 2 3 . 2 4 1 9 . 0 1 2 8 5 . 0 - 1 4 . 2 2 - 1 2 0 . 6 8 4 3 . 8 3 - 2 . 4 1 - 9 3 . 4 9 - 0 . 0 6 2 - 9 2 . 8 7 0 . 6 2 - 0 . 1 2 4 . 2 3 6 9 . C 1 2 3 5 . C _ _ J _ 4 . 3 I - 1 1 5 . 9 9 4 2 ^ 1 2 Z l * C 7 _ - 9 1 . 2 5 - 0 . 0 6 2 - 8 9 . 8 1 1 . 4 4 _ - 0 . 1 2 5 . 2 3 0 9 . 0 lTtT . O - 1 4 7 5 3 - 1 1 0 . 3 5 4 0 . 0 7 - 2 . 2 5 - 8 7 . C 5 - 0 . 0 6 2 - 8 7 . 5 2 - 0 . 4 7 - 0 . 126. 2 3 0 4 . C 1 1 7 0 . 0 - 1 4 . 9 5 - I C 9 . 8 8 3 9 . 9 0 - 3 . 9 0 - 8 8 . 8 2 - 0 . 0 6 3 - 8 8 . 2 5 0 . 5 7 - 0 . 127. 2 8 5 9 . C 1 7 2 5 . C - 8 . 9 6 - 1 6 2 . 0 1 5 8 . 8 3 0 . 4 7 - U 1 . 6 7 - 0 . 0 6 0 - 1 0 2 . 0 5 9 . 6 2 - 0 . 128. 3 2 4 3 . 0 2 1 0 9 . 0 - 7 . 8 4 - 1 9 8 . 0 7 7 1 . 9 3 - 0 . 3 C - 1 3 4 . 2 8 - 0 . C 6 C - 1 2 7 . 3 4 6 . 9 4 - 0 . 129. 3 1 8 7 . 0 2 C 5 3 . 0 - 8 . 7 0 - 1 5 2 . 8 1 7 0 . 0 2 0 . 4 8 - 1 3 1 . 0 1 - 0 . 0 6 0 - 1 2 1 . 9 5 9 . 0 6 - 0 . 1 3 0 . 3 1 2 1 . 0 1 9 8 7 . 0 - 8 . 8 3 - 1 8 6 . 6 1 6 7 . 7 7 - 0 . 1 1 - 1 2 7 . 7 9 - 0 . 0 6 C - 1 2 0 . 2 5 7 . 5 4 - 0 . 131. 3 1 0 4 . 0 1 ~ 9 7 0 . 0 - 8 . 9 0 - 1 8 5 . 0 2 6 7 . 1 9 0 . 5 1 - 1 2 6 . 2 2 - 0 . 0 6 C - 1 1 8 . 2 4 7 . 9 8 " - 0 . 132. 308e . O 1 9 5 4 . C - 8 . 9 0 - 1 8 3 . 5 2 6 6 . 6 4 0 . 4 4 - 1 2 5 . 3 3 - 0 . 0 6 0 - 1 1 6 . 5 9 8 . 7 4 - 0 . 133. 3 1 2 3 . 0 1 9 8 9 . 0 - 6 . 7 6 - 1 8 6 . 8 0 6 7 . 8 4 0 . 3 5 - 1 2 7 . 3 7 - 0 . 0 6 C - U 8 . 1 1 9 . 2 6 - 0 . 1 3 4 . 3 1 3 3 . 0 1 9 9 9 . 0 - 8 . 5 9 - 1 8 7 . 7 4 6 8 . 1 8 0 . 2 4 - 1 2 7 . 9 1 - 0 . 0 6 C - U 8 . 8 7 9 . 0 4 - 0 . 135. 3 1 8 2 . C 2 C 4 8 . C - 8 . 3 6 - 1 9 2 . 3 4 6 9 . 8 5 0 . 1 5 - 1 3 C . 7 1 - 0 . 0 6 0 - 1 2 1 . 4 5 9 . 2 6 - 0 . 1 3 6 . 3 1 9 1 . 0 2 0 5 7 . 0 - 8 . 2 2 - 1 9 3 . 1 9 7 0 . 1 6 0 . 1 5 - 1 3 1 . 1 0 - 0 _ 0 6 C - 1 2 1 . 6 4 9 . 4 6 _ - 0 . 137. 3 0 5 7 . 0 1 9 2 3 . 0 - 1 0 . i 2 - 1 8 b . 6 C 6 5 . 5 9 0 . 5 6 - 1 2 4 . 5 8 - 0 . 0 6 0 - 1 1 8 . 9 5 5 . 6 3 - 0 . 138. 2 9 7 5 . 0 1 8 4 1 . 0 - 1 0 . 1 8 - 1 7 2 . 9 C 6 2 . 7 S 0 . 6 2 - 1 1 9 . 6 7 - 0 . 0 5 9 - 1 1 8 . 6 2 1 . 0 5 - 0 . 139. 3 1 0 0 . 0 1 9 6 6 . 0 - 1 0 . 2 3 - 1 8 4 . 6 4 6 7 . 0 5 0 . 6 4 - 1 2 7 . 1 8 - 0 . 0 5 9 - 1 1 9 . 9 2 7 . 2 6 - 0 . 140. 3 0 3 5 . C 1 9 C I . C - 1 0 . 1 7 - 1 7 8 . 5 4 6 4 . 8 4 0 . 5 9 - 1 2 3 . 2 8 - 0 . 0 6 0 - 1 1 5 . 3 1 7 . 9 7 - 0 . 141. 3 0 0 6 . 0 1 8 7 2 . C - 1 0 . 1 7 - 1 7 5 . 8 1 6 3 . 8 5 0 . 5 0 - 1 2 1 . 6 4 - 0 . 0 6 C - 1 1 3 . 3 8 8 . 2 6 - 0 . 1 4 2 . 2 9 3 1 . 0 1 7 9 7 . C - 1 0 . 3 5 - l _ 6 8 . 7 7 6 1 _ _ 2 9 0 . 5 2 - 1 1 7 . 3 1 ^ 0 . 0 6 C - 1 0 8 . 9 2 8 . 3 9 ^ - 0 . 143. 2 9 7 4 . 0 1 8 4 0 . C - 1 C . 9 3 - 1 7 2 . 8 1 6 2 . 7 6 - 0 . 3 2 - 1 2 1 . 3 0 - 0 . 0 6 0 - 1 1 6 7 5 1 1 0 . 7 9 - 0 . 144. 2 9 4 7 . 0 1 8 1 3 . 0 - 1 0 . 6 0 - 1 7 0 . 2 7 6 1 . 8 3 0 . 2 4 - 1 1 8 . 8 C - 0 . C 6 C - 1 0 8 . 6 8 1 0 . 1 2 - 0 . 145. 2 9 1 0 . C 1 7 7 6 . C - 9 . 9 2 - 1 6 6 . 8 0 6 0 . 5 7 0 . 2 2 - 1 1 5 . 9 2 - 0 . 0 6 0 - 1 0 7 . 2 3 8 . 6 9 - 0 . 146. 2 8 6 5 . 0 1 7 3 1 . 0 - 9 . 6 6 - 1 6 2 . 5 7 5 9 . C 4 0 . 3 2 - 1 1 2 . 8 7 - 0 . 0 6 0 - 1 0 4 . 3 1 8 . 5 6 - 0 . 147. 2 8 6 0 . 0 1 7 2 6 . 0 - 9 . 3 2 - 1 6 2 . 1 0 5 8 . 8 7 0 . 5 1 - 1 1 2 . 0 5 - 0 . C 6 C - 1 0 3 . 5 3 8 . 5 2 - 0 . 1 4 8 . 2 8 3 5 . 0 L 7 C _ 1 « _ C . _ _ Z § . ' 6 2 . _ k 5 i - 7 J _ . 8 - Q i 9 _ - 1 2 _ l l O . 0 4 _ 0 . 0 6 0 _ _ - 9 8 . 6 9 _ 1 1 _ . 3 5 - 0 . 149. 2 8 1 3 . 0 1 6 7 9 . 0 - 8 . 3 6 - 1 5 7 . 6 9 5 7 . 2 6 0 . 2 9 - 1 0 8 . 4 3 0 . 0 6 C - 9 5 7 6 2 " " 1 2 . 8 1 " - 0 . 150. 2 5 7 1 . C 1 4 3 7 . 0 - 6 . 8 7 - 1 3 4 . 9 6 4 9 . 0 1 - 0 . 2 5 - 9 3 . 0 7 - 0 . 0 6 0 - 7 8 . 0 4 1 5 . 0 3 - 0 . 151. 2 5 1 7 . C 1 3 8 3 . C - 6 . 5 6 - 1 2 9 . 8 9 4 7 . 1 7 - 0 . 6 7 - 8 9 . 9 6 - 0 . 0 6 0 - 7 3 . 9 8 1 5 . 9 8 - 0 . 152. 2 5 0 0 . 0 1 3 6 6 . 0 - 6 . 2 3 - 1 2 8 . 2 9 4 6 . 5 9 - 1 . 2 8 - 8 9 . 2 6 - 0 . 0 6 1 - 7 3 . 4 2 1 5 . 8 4 - 0 . 153. 2 4 5 5 . C 1 3 2 1 . 0 - 5 . 5 6 - 1 2 4 . 0 7 4 5 . 0 5 - 1 . 2 8 - 8 6 . 2 5 - 0 . 0 6 1 - 7 0 . 3 9 1 5 . 8 6 - 0 . 154. 2 4 0 2 _ 0 1 2 6 8 _ . 0 _ _ 5 • 6 4 - 1 1 9 . 0 9 _ _ 4 3 _ _ 2 5 - l . C C - 8 2 . 4 8 _ _ _ 0 ^ 0 6 1 _ - 6 7 . 3 6 _ 1 5 . 1 2 - 0 . 155. 2 3 5 2 . 0 12TP.0 - 5 . 3 3 - 1 1 4 . 3 9 " 4 1 . 5 4 - 0 . 6 8 - 7 " 8 7 8 6 - 6 . 0 6 C - 6 4 . 3 4 1 4 . 5 2 - 0 . 156. 2 2 6 7 . 0 1 1 3 3 . 0 - 5 . C l - l C 6 . 4 l 3 8 . 6 4 - 1 . 1 8 - 7 3 . 9 6 - 0 . 0 6 1 - 5 9 . 7 5 1 4 . 2 1 -0." 157. 2 1 8 3 . 0 1 C 4 9 . 0 - 4 . 7 0 - 9 8 . 5 2 3 5 . 7 8 - 0 . 8 8 - 6 e . 3 2 - 0 . 0 6 1 - 5 3 . 9 9 ' 1 4 . 3 3 - 0 . 158. 2 0 7 0 . C 9 3 6 . 0 - 4 . 6 7 - 8 7 . 9 1 3 1 . 9 2 - 1 . 2 6 - 6 1 . 9 0 - 0 . 0 6 1 - 4 7 . 0 7 1 4 . 8 3 - 0 . 159. 2 0 7 9 . 0 9 4 5 . 0 - 4 . 6 0 - 8 8 . 7 5 3 2 . 2 3 - 1 . 2 9 - 6 2 . 4 2 - 0 . 0 6 1 - 4 7 . 6 5 1 4 . 7 7 - 0 . 160. 2 1 5 7 . 0 1 0 2 3 . 0 - 4 . 5 4 - 9 6 . 0 8 3 4 . 8 9 - 1 . 3 5 - 6 7 _ C 8 _ _ 0 . 0 6 I _ - 5 2 . 3 8 1 4 . 7 0 - 0 . l i t . 2 2 3 9 . C 1 1 0 5 . 0 - 4 . 3 1 - 1 0 3 . 7 8 3 7 . 6 9 - 1 . 6 4 - 7 2 . 0 4 - 6 . 0 6 1 " - 5 6 . 3 1 1 5 . 7 3 - 0 . 162. 2 2 9 6 . 0 1 1 6 2 . 0 - 3 . 9 1 - 1 0 9 . 1 3 3 9 . 6 3 - 0 . 7 3 - 7 4 . 1 5 - 0 . 0 6 0 - 5 8 . 5 9 1 5 . 5 6 - 0 . 163. 2 3 1 2 . 0 1 1 7 8 . 0 - 3 . 7 5 - 1 1 0 . 6 4 4 0 . 1 8 - l . O C - 7 5 . 2 0 - 0 . 0 6 1 - 6 0 . 6 2 1 4 . 5 8 - 0 . 1 6 4 . 2 3 2 4 . C 1 1 9 0 . C - 3 . 5 2 - 1 1 1 . 7 6 4 0 . 5 9 - 0 . 9 2 - 7 5 . 6 2 - 0 . 0 6 1 - 6 1 . 8 4 1 3 . 7 8 - 0 . 165. 2 3 4 9 . 0 1 2 1 5 . 0 - 3 . 5 1 - 1 1 4 . 1 1 4 1 . 4 4 - 1 . 3 3 - 7 7 . 5 1 - 0 . 0 6 1 - 5 9 . 6 1 1 7 . 9 0 - 0 . 166. 2 3 4 7 . 0 1 2 1 3 . 0 - 3 . 4 9 - 1 1 3 . 9 2 4 1 . 3 7 - I , 0 9 _ _ 7 7 . 1 4 _ - 0 . 0 6 1 - 6 0 . 5 0 1 6 . 6 4 - 0 . 167. 2 3 7 0 . 0 1 2 3 6 . C - 3 . 5 5 - 1 1 6 . 0 8 4 2 . 1 6 - 0 . 5 2 - 7 8 . 0 0 - 0 . 0 6 0 " - 6 1 7 7 3 1 6 . 2 2 - 0 . 168. 2 3 8 0 . 0 1 2 4 6 . 0 - 3 . 6 0 - 1 1 7 . 0 2 4 2 . 5 0 - 0 . 3 9 - 7 6 . 5 1 - 0 . 0 6 C - 6 4 . 0 9 1 4 . 4 2 - 0 . 169. 2 3 6 0 . 0 1 2 2 6 . 0 - 3 . 4 6 - 1 1 5 . 1 4 4 1 . 8 1 - 0 . 3 3 - 7 7 . 1 2 - 0 . 0 6 0 - 6 3 . 7 7 1 3 . 3 5 - 0 . 170. 2 3 2 0 . 6 1 1 8 6 . 0 - 3 . 2 3 - 1 1 1 . 3 5 4 0 . 4 5 - C . 4 P - 7 4 . 6 5 - 0 . 0 6 0 - 6 2 . 8 8 1 1 . 7 7 - 0 . 171. 2 3 0 4 . 0 1 1 7 0 . 0 - 3 . 1 7 - 1 0 9 . 8 8 3 9 . 9 0 - 0 . 4 8 - 7 3 . 6 2 - 0 . 0 6 C - 6 2 . 8 3 1 0 . 7 9 - 0 . 172. 2 2 9 2 . 0 1 1 5 8 . C _ - 2 . 1 6 - l C f i . 7 6 3 9 . 4 9 - 0 . 3 2 - 7 2 . 7 6 - 0 . 0 6 0 - 6 2 . 8 7 9 . 8 9 - 0 . 173. 2 2 5 2 . 0 1 1 1 8 . 0 - 3 . 1 4 - 1 C 5 . 0 C 3 8 . 1 3 - C . 2 5 - 7 0 . 2 6 - 0 . 0 6 C - 6 C . 6 4 " 9 . 6 2 - 0 . 1 7 4 . 2 2 2 4 . C 1 C 9 0 . 0 - 3 . 2 0 - 1 0 2 . 3 7 3 7 . 1 8 - 0 . 4 2 - 6 8 . 8 1 - 0 . 0 6 0 - 5 9 . 4 4 9 . 3 7 - 0 . 175. 2 2 0 1 . C 1 C 6 7 . C - 3 . 3 2 - 1 C 0 . 2 1 3 6 . 3 9 - 0 . 2 6 - 6 7 . 4 0 - 0 . 0 6 C - 6 0 . 0 7 7 . 3 3 - 1 3 6 -- 0 . 1 7 6 . - 0 . 1 7 7 . - 0 . 1 7 8 . - 0 . 1 7 9 . - 0 . 1 8 0 . - 0 . 1 8 1 . 2 1 5 3 . 0 2 1 6 2 . C 2 1 6 3 . 0 2 1 6 3 . C 2 1 5 9 . 0 2 1 8 5 . 0 1 0 1 9 . 0 1 C 2 8 . 0 1 0 2 9 . 0 1 C 2 9 . 0 1 0 2 5 . 0 1 0 5 1 . 0 - 3 . 4 7 - 3 . 6 2 - 3 . 6 9 - 3 . 7 2 - 3 . 7 6 - 3 . 8 4 - 0 . 1 8 2 . - 0 . 1 8 3 . - 0 . 1 8 4 . - C . 1 8 5 . - 0 . 1 8 6 . - 0 . 1 8 7 . 2 2 1 3 . C 2 1 5 4 . 0 2 0 9 5 . 0 2 0 3 7 . 0 " 2 0 0 0 . 0 1 9 5 3 . 0 I C 7 9 . 0 1 0 2 0 . 0 9 6 1 . 0 9 C 3 . 0 8 6 6 . 0 8 1 9 . 0 - 3 . 9 0 - 3 . 8 0 - 3 . 7 6 - 3 . - 7 4 - 3 . 5 0 - 3 . 2 5 - 9 5 . 7 0 - 9 6 . 5 5 - 9 6 . 6 4 - 9 6 . 6 4 - 9 6 . 2 7 j - 9 8 ^ 7 l _ - 1 0 1 . 3 4 - 9 5 . 8 0 - 9 0 . 2 5 - e 4 . 8 1 - 8 1 . 3 3 - 7 6 . 9 2 3 4 . 7 5 3 5 . 0 6 3 5 . 1 C 3 5 . 1 0 3 4 . 9 6 3 J 5 . 8 5_ 3 6 . 8 0 3 4 . 7 9 3 2 . 7 8 3 0 . 8 0 2 9 . 5 4 2 7 . 9 3 - 0 . 0 1 - 6 4 . 4 2 0 . 2 0 - 6 4 . 9 0 C . 2 0 - 6 5 . C 3 0 . 3 4 - 6 4 . 9 2 0 . 3 C - 6 4 . 7 7 0 . 1 9 - 6 6 . 5 1 - 0 . 0 6 C - 0 . 0 6 0 - 0 . 0 6 C - 0 . 0 5 9 - 0 . 0 6 0 - 0 . 0 6 C 0 . 1 6 - 6 8 . 2 8 - C . 2 6 - 6 5 . C 9 ^ 0 . 4 3 - 6 1 . 6 7 - 0 . 4 8 - 5 8 . 2 3 - 0 . 8 6 - 5 6 . 1 6 - 0 . 7 8 - 5 3 . 0 2 - 0 . 1 8 8 . 1 9 2 8 . C 7 9 4 . C - 3 . C 2 - 7 4 . 5 7 2 7 . 0 8 - 1 . 3 1 - 5 1 . 8 3 - 0 . 1 8 9 . 1 8 8 7 . 0 7 5 3 . 0 - 2 . 7 5 - 7 0 . 7 2 2 5 . 6 8 - 1 . 1 9 - 4 6 . 9 8 - 0 . 1 9 0 . 1 8 3 0 . C 6 9 6 . 0 - 2 . 1 5 ^ 6 5 . 3 7 2 3 . 7 4 _ 2 _ 1 . 7 5 _ r 4 5 . 5 3 - 0 . 1 9 1 . 1 8 8 7 . 0 7 5 3 . 0 - 1 . 8 6 - 7 0 . 7 2 2 5 . 6 8 - 1 . 4 8 - 4 8 . 3 8 - 0 . 1 9 2 . 1 8 5 1 . 0 7 1 7 . 0 - 1 . 6 3 - 6 7 . 3 4 2 4 . 4 5 - 1 . 8 0 - 4 6 . 3 2 - 0 . 1 9 3 . 1 7 6 5 . 0 6 3 1 . 0 - 1 . 3 3 - 5 9 . 2 6 2 1 . 5 2 - 0 . 7 1 - 3 9 . 7 7 - 0 . 1 9 4 . - 0 . 1 9 5 . - 0 . 1 9 6 . - 0 . 1 9 7 . - 0 . I S 8 . - 0 . 1 9 9 . 1 6 8 1 . 0 1 6 3 6 . C _ 1 6 0 2 ^ 0 _ 1 5 7 3 . 6 1 5 5 6 . C 1 5 3 2 . 0 5 4 7 . 0 5 0 2 . 0 4 6 6 . C_ " 4 3 9 . 6 4 2 2 . 0 3 9 8 . 0 - 0 . 8 9 - 0 . 5 6 ^ C . 2 C - 6 . 1 4 0 . 0 7 C . 3 4 - 5 1 . 3 7 - 4 7 . 1 5 j ^ 4 3 . 9 5 - 4 1 . 2 3 - 3 9 . 6 3 - 3 7 . 3 6 - 0 . 0 6 0 - 0 . 0 6 0 - 0 . 0 6 C - 0 . 0 6 0 - 0 . 0 6 1 - 0 . 0 6 1 - 0 . 0 6 1 - 0 . 0 6 1 - 0 . 0 6 2 - 0 . 0 6 2 - 0 . 0 6 2 - 0 . 0 6 1 - 5 2 . 8 9 - 4 9 . 8 4 ^ 4 3 . 2 3 - 4 4 . 8 9 - 4 3 . 2 6 - 3 6 . 6 7 1 8 . 6 6 1 7 . 1 2 1 5 . 9 6 1 4 . 9 7 1 4 . 3 9 1 3 . 5 7 - 1 . 0 6 - 0 . 8 6 2 . 3 0 3 . 4 9 3 . 0 6 3 . 1 0 - C . 5 4 - 3 4 . 1 5 - 0 . 0 6 1 - 3 C . 7 5 3 . 4 0 - 0 . 3 1 - 3 0 . 9 0 - 0 . 0 6 C - 2 5 . 4 1 5 . 4 9 - 0 . 5 5 - 2 6 . 7 5 - 0 . 0 6 1 - 2 2 . 1 5 6 . 6 0 - 0 . 0 6 2 - 2 0 . 4 6 6 . 7 9 - 0 . 0 6 4 - 1 8 . 8 5 8 . 2 7 - 0 . 8 5 - 2 7 . 2 5 - 1 . 9 5 - 2 7 . 1 2 - 0 . 2 0 0 . 1 5 4 3 . 0 4 0 9 . 0 0 . 5 0 - 3 8 . 4 1 1 3 . 9 5 - 1 . 1 8 - 2 5 . 1 5 - 0 . 0 6 3 - 1 7 . 3 8 7 . 7 7 - C . 2 C 1 . 1 5 6 6 . C 4 3 2 . 0 0 . 6 9 - 4 C . 5 7 1 4 . 7 3 - 0 . 8 4 - 2 5 . 9 9 - 0 . 0 6 2 - 1 8 . 0 2 7 . 9 7 - 0 . 2 0 2 . 1 5 2 3 . 0 3 8 9 . 0 C . 9 4 — 3 6 . 5 3 1 3 . 2 7 - C . 4 7 - 2 2 . 8 0 - 0 . C 6 1 - 1 4 . 6 2 8 . 1 8 - 0 . 2 0 3 . 1 4 1 1 . C 2 7 7 . 0 1 . 0 8 - 2 6 . 0 2 9 . 4 5 - 0 . 4 8 - 1 5 . 9 7 - 0 . 0 6 2 - 8 . 0 3 ~ 7 . 9 4 - 0 . 2 0 4 . 1 4 0 1 . 0 2 6 7 . C 1 . 1 5 - 2 5 . 0 6 9 . 1 1 - 0 . 5 5 - 1 5 . 3 7 - 0 . 0 6 2 - 9 . 1 8 6 . 1 9 - 0 . 2 0 5 . 1 3 6 9 . 0 2 3 5 . 0 1 . 2 4 - 2 2 . 0 7 8 . 0 1 - 1 . 0 4 - 1 3 . 6 6 - 0 . 0 6 4 - 8 . 2 4 5 . 6 2 - 0 . 2 C 6 . 1 3 5 5 . C 2 2 1 . 0 1 . 3 7 - 2 0 . 7 6 7 . 5 4 - 1 . 1 8 - 1 3 . 0 3 - 0 . 0 6 5 - 8 . 0 2 5 . 0 1 - 0 . 2 0 7 . 1 3 5 1 . 0 2 1 7 . 0 1 . 4 7 - 2 0 . 3 8 7 . 4 C - 1 . 2 8 - 1 2 . 7 8 - 0 . 0 6 6 - 7 . 3 0 5 . 4 8 - 0 . 2 0 8 . 1 3 0 0 . 0 1 6 6 . 0 1 . 6 4 - 1 5 . 5 9 5 . 6 6 - 1 . 8 2 - 1 0 . 1 1 - 0 . 0 7 1 - 6 . 8 7 3 . 2 4 - 0 . 2 C 9 . 1 3 7 2 . 0 2 3 8 . 0 1 . 7 8 - 2 2 . 3 5 8 . 1 2 - I . 2 6 - 1 3 . 7 1 - 0 . 0 6 5 - 7 . 4 5 6 . 2 6 - 0 . 2 1 0 . 1 3 8 7 . 0 2 5 3 . 0 1 . 9 5 - 2 3 . 7 6 8 . 6 3 - l . C * - 1 4 . 2 4 - 0 . 0 6 4 - 8 . 7 7 5 . 4 7 - 0 . 2 1 1 . 1 3 7 3 . C 2 3 9 . 0 2 . 1 0 - 2 2 . 4 5 8 . 1 5 - 1 . 7 5 - 1 3 . 9 4 - 0 . 0 6 7 - 8 . 2 7 5 . 6 7 - 0 . 2 1 3 . - 0 . 2 1 4 . 1 3 3 5 . 0 1 4 2 9 . 0 2 0 1 . 0 2 9 5 . 0 - 0 . 2 1 5 . - 0 . 2 1 6 . - 0 - 2 1 7 . 2 3 9 0 . 0 2 4 3 8 . 0 2 5 C 9 . C 1 2 5 6 . 0 1 3 0 4 . 0 1 3 7 5 . 0 2 . 5 0 2 . 6 6 • 3 . 6 5 -- 3 . 8 1 - 4 . 0 2 - 1 8 . 8 8 - 2 7 . 7 1 1 1 7 . 9 6 • 1 2 2 . 4 7 • 1 2 9 . 1 4 6 . 8 6 _ 1 0 . 0 6 _ 4 2 . 6 4 4 4 . 4 7 4 6 . 9 0 - 0 . 2 1 8 . - 0 . 2 1 9 . - 0 . 2 2 0 . • 1 . 2 4 - 1 1 . 5 8 - 1 . 6 8 - 1 1 . 2 1 - 2 . 5 9 - 1 7 . 5 8 - 1 . 5 C - 8 0 . 2 7 - 1 . 3 1 - 8 3 . 1 1 -1 . 8 4 - 8 8 . 1 1 - 0 . 0 6 6 - 0 . 0 6 8 - 0 . 0 6 9 - 0 . 0 6 1 - 0 . 0 6 1 - 0 . 0 6 1 - 8 . 1 9 - 7 . 6 4 j M . 2_. 1 5 - 5 7 . 2 9 - 6 3 . 9 0 - 6 7 . 3 5 - 0 . 2 2 1 . - 0 . 2 2 2 . - 0 . 2 2 3 . 2 6 0 2 . 0 2 6 8 8 . 0 2 7 3 0 . C 2 7 4 5 . 6 2 7 9 0 . 0 2 8 5 2 . 0 1 4 6 8 . 0 1 5 5 4 . C _ l 5 9 t . j ; _ 1 6 1 1 . 0 1 6 5 6 . 0 1 7 1 8 . 0 - 4 . 2 5 - 4 . 4 0 ^ 4 . 3 7 - 4 . 3 5 : - 4 . 4 9 - 4 . 7 1 -1 3 7 . 8 7 1 4 5 . 9 5 1 4 9 . 8 9 1 5 1 . 3 0 1 5 5 . 5 3 1 6 1 . 3 5 3 . 3 9 3 . 5 7 5 . 4 3 2 2 . 9 8 ~ 1 9 . 2 1 2 0 . 7 6 5 C . C 7 5 3 . 0 0 J 5 4 . 4 3 5 - 4 . 9 4 5 6 . 4 8 5 6 . 5 9 • 1 . 5 8 - 9 3 . 6 3 - 1 . 3 8 - 9 8 . 7 3 - 1 . 4 9 - 1 0 1 . 3 2 - 2 . 4 8 - T 0 2 . 1 8 " -1 . 1 0 - 1 0 4 . 6 4 - 1 . 5 9 - 1 0 9 . C 6 - 0 . 2 2 4 . - 0 . 2 2 5 . - 0 . 2 2 6 . 2 9 2 9 . 0 2 9 3 3 . 0 2 9 3 4 . 0 - 0 . 2 2 7 . - 0 . 2 2 8 . - 0 . 2 2 9 . 2 9 6 1 . C 2 9 4 3 . C 2 9 0 6 . 0 1 7 9 5 . 0 1 7 9 9 . C 1 8 0 0 . 0 1 8 2 7 . C 1 8 0 9 . 0 1 7 7 2 . 0 - 4 . 9 3 -- 5 . 1 0 -- 5 _ . 3 6 -- 5 . 7 0 -• 5 . 5 4 -- 6 . 2 0 -1 6 3 . 5 8 1 6 8 . 9 6 1 6 9 . 0 5 1 7 1 . 5 9 1 6 9 . 9 0 1 6 6 . 4 2 - 0 . 0 6 1 - 0 . 0 6 1 ; 0 . 0 6 1 - 0 . 0 6 1 - 0 . 0 6 0 - 0 . 0 6 1 6 1 . 2 2 6 1 . 3 6 6 1 . 3 9 6 2 . 3 1 6 1 . 7 0 6 0 . 4 4 • 0 . 2 3 0 . - 0 . 2 3 1 . - 0 . 2 3 2 . - 0 . 2 3 3 . - 0 . 2 3 4 . - 0 . 2 3 5 . 2 8 7 3 . C 2 8 6 0 . 0 _ 2 8 7 3 . 0 2 8 6 3 . 0 2 8 5 0 . 0 2 8 0 8 . 0 1 7 3 9 . 0 1 7 2 6 . 0 1 7 3 9 ^ 0 1 7 2 9 . C 1 7 1 6 . 0 1 6 7 4 . 0 - 6 . 4 1 -• 6 . 6 2 -- 6 . 8 1 -: 7 . - " ' C 8 -• 7 . 2 4 -- 7 . 5 7 -1 6 3 . 3 2 1 6 2 . I C 1 6 3 . 3 2 1 6 2 . 3 6 1 * 1 . 1 * 1 5 7 . 2 2 - 0 . 3 1 - 1 1 2 . 6 0 - 0 . 2 2 - 1 1 2 . 9 2 - C . J C C - 1 1 3 . C 4 0 . 1 9 - 1 1 4 . 7 9 0 . 0 7 - 1 1 4 . 0 7 0 . 3 1 - 1 1 1 . 6 8 - 0 . C 6 C - 0 . 0 6 0 - 0 . O t C - 6 . 0 6 C - 0 . 0 6 0 - 0 . 0 6 C - 7 4 . 6 3 - 7 9 . 8 8 - 8 4 . 1 9 - 8 * . 4 4 - 8 7 . 9 5 - 9 1 . 4 3 - 9 5 . 2 0 - 9 6 . 2 7 - 9 6 . 2 9 - 9 7 . 5 1 - 9 6 . 3 5 - 9 3 . 8 8 1 9 . 0 0 1 8 » 8 5 1 7 . J 3 _ 1 6 . 7 4 1 6 . 6 9 1 7 . 6 3 5 9 . 3 1 5 8 . 8 7 5 9 . 3 1 " 5 8 . 9 7 5 8 . 5 3 5 7 . 0 9 0 . 1 3 - 1 1 0 . 3 0 0 . C 1 - 1 0 9 . 8 4 0 . 0 3 - 1 1 0 . 7 9 ~ 6 . 2 3 - i l 0 . 2 7 - 0 . 2 5 - 1 1 0 . 2 2 0 . 2 2 - 1 0 7 . 4 7 - 0 . 0 6 0 - 0 . 0 6 C - 0 _ . 0 6 C _ - 0 . 0 6 0 - 0 . 0 6 C - 0 . 0 6 C - 9 1 . 5 3 - 9 0 . 3 9 - 9 0 . 2 8 - - 9 1 . 5 8 - 9 1 . 6 4 - 8 9 . 6 9 1 7 . 4 0 1 6 . 6 5 1 6 . 7 5 1 7 . 2 8 1 7 . 7 2 _ 1 8 . 0 0 _ 1 8 . 7 7 1 9 . 4 5 2 0 . 5 1 1 8 . 6 9 " 1 8 . 5 8 1 7 . 7 8 - 137 -- 0 . 2 3 6 . 2 8 0 8 . 0 1 6 7 4 . 0 - 7 . 8 0 - 1 5 7 . 2 2 5 7 . C S - 0 . 2 6 - 1 0 8 . 2 1 - 0 . 0 6 0 - 9 1 . 4 3 1 6 . 7 8 - 0 . 2 3 7 . 2 8 7 0 . 0 1 7 3 6 . 0 - 8 . 0 3 - 1 6 3 . 0 4 5 9 . 2 1 0 . 1 6 - 1 1 1 . 7 0 - 0 . 0 6 C - 9 8 . 2 9 1 3 . 4 1 - 0 . 2 3 8 . 2 8 9 6 . C 1 7 6 2 . C - 8 . 2 7 - 1 6 5 . 4 8 6 0 . 0 9 0 . 1 8 - 1 1 3 . 4 8 - 0 . 0 6 0 - 1 0 1 . 7 0 1 1 . 7 8 - 0 . 2 3 9 . 2 9 0 3 . 0 1 7 7 4 . 0 - 8 . 5 1 - 1 6 6 . 6 1 6 0 . 5 C - C . 5 8 - 1 1 5 . 2 0 - 0 . 0 6 C - 1 0 5 . 1 7 1 0 . 0 3 - 0 . 2 4 0 . 2 9 8 5 . 0 1 8 5 1 . 0 - 8 . 7 6 - 1 7 3 . 8 4 6 3 . 1 3 0 . 4 8 - 1 1 8 . 9 9 - 0 . 0 6 0 - 1 1 2 . 1 0 6 . 8 9 - 0 . 2 4 1 . 3 0 0 3 . C 1 8 7 4 . 0 - 8 . 9 6 - 1 7 6 . C C 6 3 . 9 1 0 . 4 9 - 1 2 0 . 5 6 - 0 . 0 6 0 - 1 1 5 . 4 1 5 . 1 5 - 0 . 2 4 2 . 3 0 2 6 . 0 1 8 9 2 . 0 - 9 . 2 1 - 1 7 7 . 6 9 6 4 . 5 3 0 . 3 4 - 1 2 2 . 0 4 - 0 . C 6 C - 1 1 8 . 1 6 3 . 8 8 - 0 . 2 4 3 . 3 0 7 7 . 0 1 9 4 3 . 0 - 9 . 5 5 - 1 6 2 . 4 8 6 6 . 2 7 0 . 3 4 - 1 2 5 . 4 2 - 0 . 0 6 0 - 1 2 2 . 3 5 3 . 0 7 - 0 . 2 4 4 . 3 1 8 2 . 0 2 0 4 8 . 0 ^ 9 . 9 2 - 1 9 2 . 3 4 6 9 . 8 5 0 . 1 7 - 1 3 2 . 2 5 -Q.06C- 1 3 C . 9 2 1 . 3 3 - 0 . 2 4 5 . 3 2 4 3 . 0 2 1 0 9 . 0 - 1 0 . 2 8 - 1 9 8 . 0 7 7 1 . 9 3 " 0 . i 7 - " l 3 6 " . 2 5 " - 6 . 0 6 0 - 1 3 7 . 0 7 - 0 . 8 2 - 0 . 2 4 6 . 3 3 0 5 . C 2 1 7 1 . 0 - 1 0 . 6 7 - 2 C 3 . 9 C 7 4 . C 4 - 0 . C 4 - 1 4 C . 5 6 - 0 . 0 6 0 - 1 4 4 . 0 8 - 3 . 5 2 - 0 . 2 4 7 . 3 3 8 3 . 0 2 2 4 9 . 0 - 1 0 . 9 8 - 2 1 1 . 2 2 7 6 . 7 C 0 . 2 0 - 1 4 5 . 2 9 - 0 . 0 6 C - 1 5 1 . 7 8 - 6 . 4 9 - 0 . 2 4 8 . 3 4 1 2 . C 2 2 7 e . 0 - 1 1 . 2 9 - 2 1 3 . 9 4 7 7 . 6 9 0 . 1 2 - 1 4 7 . 4 1 - 0 . 0 6 0 - 1 5 5 . 4 9 - 8 . 0 8 - 0 . 2 4 9 . 3 4 7 9 . 0 2 3 4 5 . 0 - 1 1 . 6 4 - 2 2 0 . 2 4 7 9 . 9 8 0 . 1 5 - 1 5 1 . 7 5 - 0 . 0 6 0 - 1 6 1 . 3 2 - 9 . 5 7 - 0 . 2 5 0 . 3 6 0 4 . 0 2 4 7 0 . 0 - 1 2 . 0 2 - 2 3 1 . 9 8 8 4 . 2 4 0 . 0 9 j M 5 9 . 6 6 ^ 0 . 0 6 0 - 1 7 1 . 4 1 - 11 . 7 5 _ - 0 . 2 5 1 . 3 7 1 U 0 2 5 7 7 . C - 1 2 . 3 6 - 2 4 2 . 0 3 8 7 . 8 9 Q . 0 6 - i~66<". 4 6 - 0 " 0 6 0 - 1 7 9 . 8 2 - 1 3 . 3 6 - 0 . 2 5 2 . 3 7 8 5 , 0 2 6 5 1 . 0 - 1 2 . 9 3 - 2 4 3 . 9 8 9 0 . 4 2 0 . 1 5 - 1 7 1 . 3 3 - 0 . 0 6 C - 1 8 8 . 7 1 - 1 7 . 3 8 - 0 . 2 5 3 . 3 7 3 1 . C 2 5 9 7 . 0 - 1 2 . 9 6 - 2 4 3 . 9 0 8 8 . 5 7 0 . 0 8 - 1 6 8 . 2 1 - 0 . 0 6 0 - 1 8 4 . 3 3 - 1 6 . 1 2 - 0 . 2 5 4 . 3 6 7 3 . C 2 5 3 9 . 0 - 1 2 . 8 2 - 2 3 8 . 4 6 8 6 . 6 C 0 . 0 2 - 1 6 4 . 6 7 - 0 . 0 6 0 - 1 7 8 . 2 8 - 1 3 . 6 1 - 0 . 2 5 5 . 3 6 7 4 . 0 2 5 4 0 . 0 - 1 2 . 7 6 - 2 3 8 . 5 5 8 6 . 6 3 0 . 0 2 - 1 6 4 . 6 6 - 0 . 0 6 0 - 1 7 5 . 8 6 - 1 1 . 2 0 - 0 . 2 5 6 . 3 6 6 5 . C 2 5 3 1 . C - 1 2 . 7 2 - 2 3 7 . 7 1 8 6 . 3 2 0 . 2 0 - 1 6 3 . 9 1 ^ 0 . 0 6 0 - 1 7 5 . 8 6 - 1 1 . 9 5 _ - 0 . 2 5 7 . 3 6 0 2 . 0 2 4 6 8 . 0 - 1 2 . 6 0 - 2 3 1 . 7 9 8 4 . 1 7 0 . 3 7 - 1 5 9 . 8 5 - O " . 0 6 6 - 1 6 9 . 5 5 - 9 . 7 0 - 0 . 2 5 8 . 3 6 1 5 . 0 2 4 8 1 . 0 - 1 2 . 7 2 - 2 3 3 . 0 1 8 4 . 6 2 0 . 3 4 - 1 6 0 . 7 7 - 0 . 0 6 C - 1 7 C . 5 8 - 9 . 8 1 - 0 . 2 5 9 . 3 5 8 2 . 0 2 4 4 8 . 0 - 1 2 . 4 5 - 2 2 9 . 9 1 8 3 . 4 9 0 . 2 9 - 1 5 8 . 5 8 - 0 . 0 6 0 - 1 6 4 . 3 3 - 5 . 7 5 - 0 . 2 6 0 . 3 5 4 0 . 0 2 4 0 6 . 0 - 1 2 . 1 1 - 2 2 5 . 9 7 8 2 . 0 6 0 . 2 4 - 1 5 5 . 7 8 - 0 . 0 6 C - 1 5 9 . 8 1 - 4 . 0 3 - 0 . 2 6 1 . 3 4 7 4 . 0 2 3 4 0 . 0 - 1 1 . 7 6 - 2 1 9 . 7 7 7 9 . 8 1 0 . 1 2 - 1 5 1 . 6 0 - 0 . 0 6 0 - 1 5 3 - 5 7 - 1 . 9 7 - 0 . 2 6 2 . 2 8 5 0 . C 1 7 1 6 . 0 - 4 . 6 0 - 1 6 1 . 1 6 5 6 . 5 3 - 1 . 1 6 - 1 0 8 . 4 C - 0 . 0 6 C - 9 0 . 6 5 1 7 ^ , 7 5 _ - 0 . 2 6 3 . 2 9 0 7 . 0 1 7 7 3 . 0 - 4 . 8 5 - 1 6 6 . 5 2 6 0 . 4 7 - 0 . 5 5 - 1 1 1 . 4 5 - 0 . 0 6 C - 9 2 . 5 0 1 8 . 9 5 - 0 . 2 6 4 . 2 9 1 3 . C 1 7 7 9 . 0 - 5 . 1 4 - 1 6 7 . O e 6 0 . 6 7 - 0 . 2 1 - 1 1 1 . 7 5 - 0 . 0 6 0 - 9 3 . 2 4 1 8 . 5 1 - 0 . 2 6 5 . 3 0 1 4 . 0 1 8 8 0 . 0 - 5 . 3 7 - 1 7 6 . 5 7 6 4 . 1 2 0 . 0 5 - 1 1 7 . 7 7 - 0 . 0 6 0 - 9 8 . 6 7 1 9 . 1 0 - 0 . 2 6 6 . 3 0 8 2 . 0 1 9 4 8 . 0 - 5 . 5 2 - 1 8 2 . 9 5 6 6 . 4 4 - 0 . 1 3 - 1 2 2 . 1 6 - 0 . 0 6 0 - 1 0 1 . 6 3 2 0 . 5 3 - 0 . 2 6 7 . 3 1 3 4 . C 2 0 C C . 0 - 5 . 7 2 - 1 6 7 . 8 4 6 8 . 2 1 - 0 . 0 4 - 1 2 5 . 3 8 - 0 . 0 6 0 - 1 0 4 . 5 1 2 0 . 8 7 - 0 . 2 6 8 . 3 1 5 0 . 0 2 0 1 6 . 0 - 6 . 0 9 - 1 8 9 . 3 4 6 8 . 7 6 0. 1 7 - 1 2 6 . 5 0 ^ 0 . C 6 C - 1 0 3 . 0 4 2 3 . 4 6 _ - 0 . 2 6 9 . 3 1 1 6 . 6 1 9 8 2 . 0 - 6 . 2 6 - 1 8 6 . 1 5 6 7 . 6 0 6 . 1 9 - 1 2 4 . 6 2 - 6 . 0 6 0 - 1 0 0 . 5 1 2 4 . 1 1 - 0 . 2 7 0 . 3 1 0 7 . C 1 9 7 3 . 0 - 6 . 3 3 - 1 8 5 . 3 C 6 7 . 2 9 - 0 . 1 5 - 1 2 4 . 5 3 - 0 . 0 6 C - 9 8 . 4 9 2 6 . 0 4 - 0 . 2 7 1 . 3 1 8 9 . 0 2 0 5 5 . 0 - 6 . 1 8 - 1 9 3 . 0 0 7 0 . 0 9 - 1 . 6 C - 1 3 C . 7 G - 0 . 0 6 1 - 1 0 4 . 0 5 2 6 . 6 5 - 0 . 2 7 2 . 3 3 6 2 . C 2 2 2 8 . C - 6 . 3 5 - 2 C 9 . 2 5 7 5 . 9 9 - 2 . 9 5 - 1 4 2 . 5 6 - 0 . 0 6 1 - 1 1 5 . 1 2 2 7 . 4 4 - 0 . 2 7 3 . 3 1 9 7 . 0 2 0 6 3 . 0 - 6 . 7 3 - 1 5 3 . 7 5 7 C . 3 6 0 . C 7 - 1 3 C . C 5 - 0 . 0 6 0 - 1 0 4 . 4 8 2 5 . 5 7 - 0 . 2 7 4 . 3 1 5 9 . 0 2 0 2 5 . 0 - 7 . C 6 - 1 9 0 . 1 8 6 9 . 0 6 0 . 2 0 ^ 1 2 7 ^ 9 9 _ - 0 . 0 6 0 ^ 1 0 5 . 0 7 _ 2 2 . 9 2 _ - 0 . 2 7 5 . 3 1 7 9 . C 2 0 4 5 . C - 7 . 3 0 - 1 9 2 . 6 6 6 9 . 7 5 0 . 3 4 - 1 2 9 . 2 8 - 6 . 0 6 0 - 1 0 6 ; 3 6 2 2 . 9 2 - 0 . 2 7 6 . 3 1 5 8 . 0 2 0 2 4 . 0 - 7 . 5 5 - 1 9 0 . 0 5 6 9 . 0 3 0 . 5 3 - 1 2 6 . C 8 - 0 . 0 6 C - 1 0 5 . 9 9 2 2 . 0 9 -O". 2 7 7 . 3 1 4 7 . 0 2 0 1 3 . 0 - 7 . 7 4 - 1 8 9 . 0 6 6 8 . 6 6 0 . 5 1 - 1 2 7 . 6 4 - 0 . 0 6 0 - 1 0 5 . 1 7 2 2 . 4 7 - 0 . 2 7 8 . 3 1 7 9 . C 2 0 4 5 . 0 - 7 . 9 6 - 1 9 2 . 0 6 6 9 . 7 5 0 . 1 4 - 1 3 0 . 1 3 - 0 . 0 6 C - 1 0 7 . 5 3 2 2 . 6 0 - 0 . 2 7 9 . 3 1 6 1 . 0 2 0 2 7 . 0 - 8 . 1 8 - 1 9 0 . 3 7 6 9 . 1 3 0 . 5 4 - 1 2 8 . 8 8 - 0 . 0 6 C - 1 0 8 . 6 3 2 0 . 2 5 - 0 . 2 6 0 . 3 1 9 6 . J C 2 0 6 2 . 0 - 8 . 4 0 - 1 9 3 . 6 6 7 O j . 3 J 0 ^ 4 7 ^ 1 3 1 . 2 6 - 0 . 0 6 C - 1 0 8 . 1 5 2 3 . 1 1 - 0 . 2 8 1 . 2 9 4 7 . 0 1 8 1 3 . 0 - 8 . 7 5 - 1 7 C . 2 7 6 1 . 8 3 0 . 4 4 - 1 1 6 . 7 5 - 0 . 0 6 0 - 1 0 2 . 8 5 1 3 . 9 0 " - 0 . 2 8 2 . 2 9 3 2 . 0 1 7 9 8 . 0 - 8 . 7 1 - 1 6 8 . 8 6 6 1 . 3 2 0 . 3 1 - 1 1 5 . 9 4 - 0 . 0 6 C - 1 0 2 . 2 7 1 3 . 6 7 - 0 . 2 8 3 . 2 9 3 2 . 0 1 7 9 8 . 0 - 8 . 6 6 - 1 6 6 . 8 6 6 1 . 3 2 0 . 4 1 - 1 1 5 . 8 0 - 0 . 0 6 0 - 1 0 1 . 5 5 1 4 . 2 5 - 0 . 2 8 4 . 2 9 9 C . C 1 8 5 6 . C - 8 . 7 2 - 1 7 4 . 3 1 6 3 . 3 0 0 . 4 4 - 1 1 5 . 2 9 - 0 . 0 6 C - 1 0 4 . 3 8 1 4 . 9 1 - 0 . 2 8 5 . 2 3 4 4 . C 1 2 1 0 . 0 - 4 . 1 3 - 1 1 3 . 6 4 4 1 . 2 7 - C . 7 1 - 7 7 . 2 1 - 0 . 0 6 0 - 6 1 . 4 8 1 5 . 7 3 - 0 . 2 8 6 . 2 3 9 7 .JD 1 2 6 3 . 0 - 4 . 3 0 - 1 1 8 . 6 2 4 3 . 0 8 - 0 . 5 5 - 8 C . 4 3 - 0 . 0 6 C " 6 4 . 5 0 _ 1 5 . 9 3 - 0 " . 2 8 7 . 2 4 2 8 . C 1 2 9 4 . 6 - 4 . 5 1 - 1 2 1 . 5 3 4 4 . 1 3 - 1 . 0 9 - 8 3 . 0 0 - 0 . 0 6 1 - 6 4 . 1 9 1 8 . 8 1 - 0 . 2 8 8 . 2 4 3 0 . 0 1 2 9 6 . 0 - 4 . 7 1 - 1 2 1 . 7 2 4 4 . 2 C - 1 . 1 3 - 8 3 . 3 5 - 0 . 0 6 1 - 6 6 . 3 2 1 7 . 0 3 - 0 . 2 8 9 . 2 4 6 9 . 0 1 3 3 5 . 0 - 4 . 9 2 - 1 2 5 . 3 8 4 5 . 5 3 - 1 . 2 3 - 8 6 . C C - 0 . 0 6 1 - 6 8 . 9 9 1 7 . 0 l _ - 0 . 2 9 0 . 2 5 2 7 . C 1 3 9 3 . 0 - 5 . 2 5 - 1 3 C . 8 3 4 7 . 5 1 - 2 . 5 4 - 9 1 . 1 0 - 6 . 0 6 2 - 7 2 . 1 3 1 8 . 9 7 - 0 . 2 9 1 . 2 6 4 5 . 0 1 5 1 1 . 0 - 5 . 2 7 - 1 4 1 . 9 1 5 1 . 5 3 - 2 . 6 5 - 9 6 . 2 0 - 0 . 0 6 2 - 7 8 . 7 2 1 9 . 5 8 - 0 J ! _ 2 5 2 . 2 8 3 1 . 0 _ _ 1 6 9 7 . 0 - 5 . 2 6 - 1 5 9 . 3 8 5 7 . 8 8 -2.2k- 1 0 9 . 0 2 - 0 . 0 6 1 - 8 3 . 2 0 2 0 . 8 2 - 6 . 2 5 3 . 2 4 8 1 . C 1 3 4 7 . C - 3 . 7 7 - 1 2 6 . 5 1 4 5 . 5 4 - 2 . C 9 - 8 6 . 4 3 - 6 . 0 6 1 - 6 6 . 3 4 2 0 . 0 9 - 0 . 2 9 4 . 2 6 1 4 . 0 1 4 8 0 . 0 - 4 . 0 6 - 1 3 9 . 0 0 5 0 . 4 8 - 2 . 2 2 - 9 4 . 6 2 - 0 . 0 6 1 - 7 6 . 5 3 1 8 . 2 9 - 0 . 2 5 5 . 2 7 5 5 . 0 1 6 2 1 . 0 - 4 . 3 6 - 1 5 2 . 2 4 5 5 . 2 9 - 7 . 8 6 - 1 0 9 . 1 8 - 0 . 0 6 5 - 8 3 . 5 8 2 5 . 6 0 - 133 -- 0 . 2 9 6 . 2 8 5 8 . 0 1 7 2 4 . 0 " - 4 . 7 1 - 1 6 1 . 9 1 5 8 . 8 0 - 2 . 3 5 - 1 1 C . 2 1 - 0 . 0 6 1 - 8 7 . 6 1 2 7 . 6 0 - 0 . 2 5 7 . 2 9 9 4 . C 1 8 6 0 . 0 - 4 . 9 9 - 1 7 4 . 6 9 6 3 . 4 4 - 1 . 7 2 - 1 1 7 . 4 6 - 0 . 0 6 0 - 9 4 . 9 1 2 2 . 5 5 - 0 . 2 9 8 . 2 8 2 4 . 0 1 6 9 0 . 0 - 5 . 4 9 - 1 5 8 . 7 2 5 7 . 6 4 - 2 . 7 7 - 1 0 5 . 3 4 - 0 . 0 6 1 - 8 8 . 3 2 2 1 . 0 2 - 0 . 2 5 9 . 2 9 9 4 . C 1 8 6 0 . 0 - 5 . 6 7 - 1 7 4 . 6 9 6 3 . 4 4 - 2 . 3 9 - 1 1 9 . 8 1 - 0 . 0 6 1 - 9 9 . 2 9 2 0 . 5 2 - 0 . 3 0 0 . 3 2 0 1 . 0 2 0 6 7 . 0 - 6 . 1 0 - 1 5 4 . 1 2 7 C . 5 C - 3 . 3 2 - 1 3 3 . C 6 - 0 . 0 6 l - l 1 0 . 1 1 2 2 . 9 5 - 0 . 3 0 1 . 3 5 9 5 . 0 2 4 6 1 . 0 - 6 . 3 2 j ^ 2 3 J . 1 3 8 3 . 5 3 - 1 3 . 3 5 - 1 6 6 . 8 7 - 0 . 0 6 5 - 1 3 2 . 6 5 3 4 _ . 2 2 - 0 . 3 C 2 . 3 2 4 8 . C 2 1 1 4 . C - 6 . 5 4 - 1 5 8 . 5 4 7 2 . 1 0 - 0 . 2 3 - 1 3 3 . 6 1 - 6 . 0 6 0 - 1 1 1 . 8 0 2 1 . 8 1 - 0 . 3 0 3 . 3 1 7 2 . 0 2 0 3 8 . 0 - 7 . 1 1 - 1 5 1 . 4 0 6 5 . 5 1 0 . C 5 - 1 2 6 . 5 6 - 0 . 0 6 C - 1 0 8 . 3 1 2 0 . 6 5 - 0 . 3 C 4 . 3 3 2 1 . 0 2 1 8 7 . C - 7 . 3 0 - 2 0 5 . 4 0 7 4 . 5 9 - 0 . 0 6 - 1 3 8 . 1 7 - 0 . 0 6 C - 1 2 C . 7 8 1 7 . 3 9 - 0 . 3 0 5 . 3 3 3 7 . C 2 2 0 3 . C - 7 . 5 5 - 2 C 6 . 9 C 7 5 . 1 4 - 6 . 6 7 - 1 3 5 . 3 9 - 0 . 0 6 C - 1 2 4 . 1 2 1 5 . 2 7 - 0 . 3 0 6 . 3 1 6 6 . 0 2 0 3 2 . 0 - 7 . 6 2 - 1 9 0 . 8 4 6 9 . 3 0 - 0 . 0 2 - 1 2 5 . 1 7 - 0 . C 6 C - 1 1 4 . 8 4 1 4 . 3 3 - 0 . 3 C 7 . 3 2 8 4 . 0 2 1 5 0 . 0 ^7. 2 2 - 2 0 1 . 9 2 7 3 . 3 3 - 0 . 9 4 - 1 3 6 . 7 5 - 0 . 0 6 0 - 1 1 8 . 9 6 1 7 ^ 9 - 0 . 3 0 8 . 3 1 9 5 . 0 2 0 6 1 . 0 - 6 . 8 7 - 1 9 3 . 5 6 7 C . 2 5 - 1 . 6 8 - 1 3 1 . 8 2 - 0 . 0 6 1 - 1 1 3 . 0 7 1 8 . 7 5 - 0 . 3 0 9 . 2 8 1 0 . 0 1 6 7 6 . 0 - 6 . 5 1 - 1 5 7 . 4 1 5 7 . 1 6 - 1 . 7 3 - 1 0 8 . 4 9 - 0 . 0 6 1 - 9 0 . 6 7 1 7 . 8 2 - 0 . 3 1 0 . 2 7 4 6 . C 1 6 1 2 . C - 6 . 2 7 - 1 5 1 . 4 C 5 4 . 9 8 _ - 1 . 4 8 - 1 0 4 . 1 6 - 0 . 0 6 I - 8 7 . 8 9 1 6 . 2 7 - 0 . 3 1 1 . 2 0 7 6 . 0 " 9 4 2 . 0 - 3 . 3 9 " - 8 8 . 4 7 3 2 . 1 3 " - T . 6 7 - 6 1 . 4 1 - 0 . 0 6 2 - 5 9 . 9 8 " l . 4 3 " " - 0 . 3 1 2 . 2 1 7 2 . C 1 0 3 8 . 0 - 3 . 3 6 - 5 7 . 4 9 3 5 . 4 0 - 0 . 5 6 - 6 6 . 0 0 - 0 . 0 6 0 - 6 5 . 0 5 0 . 9 5 - 0 . 3 1 3 . 2 3 2 5 . 0 1 1 9 1 . 0 - 3 . 8 4 - 1 1 1 . 8 6 4 0 . 6 2 - 0 . 6 8 - 7 5 . 7 6 - 0 . 0 6 0 - 7 4 . 8 7 0 . 8 9 - 0 . 3 1 4 . 2 4 3 2 . 0 1 2 9 8 . 0 - 4 . 1 9 - 1 2 1 . 9 1 4 4 . 2 7 - 0 . 8 4 - 8 2 . 6 7 - 0 . 0 6 C - 8 0 . 6 1 2 . 0 6 - 0 . 3 1 5 . 2 4 5 2 . C 1 3 1 8 . 0 - 4 . 5 0 - 1 2 3 . 7 8 4 4 . 9 5 - 1 . 2 9 - 8 4 . 6 2 - 0 . 0 6 1 - 8 1 . 6 1 3 . 0 1 - 0 . 3 1 6 . 2 3 8 9 . 0 1 2 5 5 . 0 - 4 . 7 1 - 1 1 7 . 8 7 4 2 . 8 0 - 3 . 5 b ^ B 3 . 7 4 ^ 0 . C 6 2 - 7 9 ^ 0 1 4 ^ 7 3 - 0 . 3 1 7 . 2 3 7 5 . 0 1 2 4 1 . 0 - 5 . 0 0 - 1 1 6 . 5 5 4 2 . 3 3 " - 1 . 6 0 - 8 0 . 8 3 - 6 . 0 6 1 - 7 8 . 8 6 T . 9 7 - 0 . 3 1 8 . 2 3 4 8 . C 1 2 1 4 . C - 5 . 2 6 - 1 1 4 . 0 2 4 1 . 4 C - 1 . 3 2 - 7 9 . 2 C - 0 . 0 6 1 - 7 8 . 3 3 0 . 8 7 - 0 . 3 1 9 . 2 3 4 3 . 0 1 2 0 9 . 0 - 5 . 5 7 - 1 1 3 . 5 5 4 1 . 2 3 - 1 . 4 2 - 7 5 . 3 C - 0 . 0 6 1 - 7 8 . 8 0 0 . 5 0 - 0 . 3 2 0 . 2 4 C 8 . C 1 2 7 4 . 0" - 5 . 5 3 - 1 1 9 . 6 5 4 3 . 4 5 - 2 . 4 6 - 8 4 . 5 9 - 0 . 0 6 2 - 8 3 . 2 1 1 . 3 8 - 0 . 3 2 1 . 2 5 9 2 . 0 1 4 5 8 . 0 - 6 . 1 4 - 1 2 6 . 9 3 4 9 . 7 3 - 1 . 5 7 - 9 4 . 9 2 - 0 . 0 6 1 - 8 8 . 2 3 6 . 6 9 - 0 . 3 2 2 . 2 5 6 8 . 0 1 4 3 4 . 0 _ = 6 . 4 1 - 1 3 4 . 6 8 4 8 . 9 1 - l ^ ^ - j n ^ J 8 _ - 0 . 0 6 1 - ^ 9 7 . 8 5 - 4 . 4 7 - 0 . 3 2 3 . 2 6 1 5 . 0 1 4 8 1 . 0 - 6 . 7 3 - 1 3 9 . 0 9 5 0 . 5 1 - 1 . 7 3 - 9 7 . 0 4 " - 6 . 0 6 1 - 9 5 . 5 7 I . 4 7 - 0 . 3 2 4 . 2 7 1 9 . 0 1 5 8 5 . 0 - 6 . 9 9 - 1 4 8 . 8 6 5 4 . 0 6 — 2 . 1 1 - 1 0 3 . 5 0 - 0 . 0 6 1 - 1 0 2 . 5 6 1 . 3 4 - 0 . 3 2 5 . 2 9 1 7 . C 1 7 8 3 . C - 6 . 9 8 - 1 6 7 . 4 6 6 0 . 8 1 - 2 . 6 6 - 1 1 6 . 2 9 - 0 . 0 6 1 - 1 1 4 . 4 0 1 . 8 9 - 0 . 3 2 6 . 3 C 8 7 . C 1 9 5 3 . 0 - 7 . C 2 - 1 8 3 . 4 2 6 6 . 6 1 - 3 . 4 2 - 1 2 7 . 2 5 - 0 . 0 6 2 - 1 2 4 . 3 7 2 . 8 8 - 0 . 3 2 7 . 3 3 0 2 . 0 2 1 6 8 . 0 - 7 . 0 1 - 2 0 3 . 6 1 7 3 . 9 4 - 3 . 7 8 - 1 4 C . 4 6 - 0 . 0 6 2 - 1 3 6 . 2 6 4 . 2 C - 0 . 3 2 8 . 3 5 3 2 . C 2 3 9 8 . 0 - 7 . 1 0 - 2 2 5 . 2 1 8 1 . 7 9 ^ .J0-154.03 - 0 . 0 6 1 - 1 4 9 . 3 9 4 . 6 4 - 0 . 3 2 9 . 3 6 8 6 . 0 2 5 5 2 . C - 7 . 3 7 - 2 3 5 . 6 8 8 7 . 0 4 - 3 . 4 C - 1 6 3 . 4 1 - 0 . 0 6 1 - 1 5 9 . 6 2 3 . 7 9 - 0 . 3 3 0 . 3 8 8 5 . 0 2 7 5 1 . 0 - 7 . 6 8 - 2 5 8 . 3 7 9 3 . 8 3 - 2 . 7 0 - 1 7 4 . 5 2 - 0 . 0 6 1 - 1 7 1 . 2 5 3 . 6 7 - 0 . 3 3 1 . 4 0 5 4 . 0 2 9 2 C . 0 - 7 . 9 8 - 2 7 4 . 2 4 9 9 . 5 9 - 2 . 7 4 - 1 8 5 . 3 8 - 0 . 0 6 1 - 1 8 1 . 8 7 3 . 5 1 - 0 . 3 3 2 . 4 1 8 4 . 0 3 0 5 0 . 0 - 8 . 6 2 - 2 8 6 . 4 5 1 0 4 . 0 2 - 1 . 9 5 - 1 9 3 . 0 3 - 0 . 0 6 C — 1 9 2 . 8 6 0 . 1 7 - 0 . 3 3 3 . 2 2 6 1 . 0 1 1 2 7 . 0 - 5 . 4 1 - 1 0 5 . 8 5 3 8 . 4 4 - 1 . 0 6 - 7 3 . 8 8 - 0 . 0 6 1 - 7 4 . 3 7 - 0 . 4 9 - 0 . 3 3 4 . 2 3 7 C . 0 _ 1 2 3 6 . C - 4 ^ 1 7 ^ 1 1 6 . 0 8 4 2 . _ 1 6 - 1 . C 9 - 7 5 . 1 8 - 0 . 0 6 1 - 7 6 . 4 3 2 . 7 5 - 0 . 3 3 5 . 2 4 9 6 . 0 1 3 6 2 . 0 - 4 . 1 1 - 1 2 7 . 9 2 4 6 . 4 5 - 1 . 7 0 - 8 7 . 2 8 - 6 . 0 6 l i - 8 2 . 7 3 4 . 5 5 - 0 . 3 3 6 . 2 5 7 e . C 1 4 4 4 . 0 - 4 . 2 1 - 1 3 5 . 6 2 4 9 . 2 5 - 2 . 5 7 - 9 3 . 1 6 - 0 . 0 6 2 - 8 6 . 9 6 6 . 2 0 - 0 . 3 3 7 . 2 7 3 6 . 0 1 6 0 2 . 0 - 4 . 3 3 - 1 5 0 . 4 6 5 4 . 6 4 - 3 . 2 1 - 1 0 3 . 3 6 - 0 . 0 6 2 - 9 5 . 8 7 7 . 4 9 - 0 . 3 3 8 . 2 8 6 7 . 0 1 7 3 3 . 0 - 4 . 3 4 - 1 6 2 . 7 6 5 9 . 1 1 - 3 . 0 5 - 1 1 1 . 0 4 - 0 . 0 6 2 - 1 0 2 . 5 5 8 . 4 9 - 0 . 3 3 9 . 2 9 4 9 . C 1 8 1 5 . C - 4 . 3 7 - 1 7 C . 4 6 6 1 . 9 0 - 3 . 3 9 - 1 1 6 . 3 2 - 0 . 0 6 2 - 1 0 7 . 5 8 8 . 7 4 - 0 . 3 4 0 . 3 0 1 0 . 0 1 8 7 6 . 0 - 3 ^ 9 5 - 1 7 6 . 1 9 6 3 . 9 8 - 2 . 0 0 - 1 1 8 . 1 6 - 0 . 0 6 1 - 1 1 0 . 1 8 7 . 9 8 _ - 0 . 3 4 1 . 3 2 2 7 . C 2 C 9 3 . 0 - 3 . 9 6 - 1 9 6 . 5 7 " 7 1 . 3 8 - 2 . 4 4 - 1 3 1 . 5 8 - 0 . 0 6 1 - 1 2 2 . 4 6 9 . 1 2 " - 0 . 3 4 2 . 1 1 5 0 . 0 1 6 . 0 - 2 . 3 6 - 1 . 5 C C . 5 5 - C . 3 2 - 3 . 6 3 - 0 . 0 8 C - 0 . 9 3 2 . 7 0 - 0 . 3 4 3 . 1 1 8 4 . 0 5 0 . 0 - 2 . 5 7 - 4 . 7 0 1 . 7 1 - 1 . 7 5 - 7 . 3 1 - 0 . 0 9 5 C . 2 8 7 . 5 9 - 0 . 3 4 4 . 1 9 9 8 . C 8 6 4 . C - 4 . 4 6 - 8 1 . 1 4 2 9 . 4 7 - 1 . 0 8 - 5 7 . 2 2 - 0 . 0 6 1 - 1 . 4 0 5 5 . 8 2 - 0 . 3 4 5 . 1 9 0 3 . 0 7 6 9 . 0 - 4 . 1 7 - 7 2 . 2 2 2 6 . 2 3 - C . 5 C - 5 1 . 0 6 - 0 . 0 6 1 - 3 7 . 1 1 1 3 . 9 5 - 0 . 3 4 6 . 1 8 0 8 . 0 6 7 4 . 0 rA-<~l_-6_"' •"•<" _ 2 2 ; l ? 9 - 0 . 8 8 . - 4 5 . 1 3 - 0 . 0 6 1 - 3 3 . 1 7 _ 1 1 . 9 6 - 0 . 3 4 7 . 1 7 2 1 . 0 5 8 7 . C - 3 . 5 4 - 5 5 . 1 3 2 0 . 0 2 - 0 . 6 6 - 3 9 . 3 2 - 0 . 0 6 1 - 2 8 . 5 3 1 0 . 7 9 - 0 . 3 4 8 . 1 6 7 2 . 0 5 3 8 . 0 - 3 . 1 3 - 5 0 . 5 3 1 8 . 3 5 - 0 . 5 1 - 3 6 . 2 2 - 0 . 0 6 1 - 2 7 . 0 2 9 . 2 0 - 0 . 3 4 9 . 1 5 7 5 . C 4 4 1 . 0 - 2 . 8 1 - 4 1 . 4 2 1 5 . 0 4 - 1 . 2 2 - 3 0 . 4 1 - 0 . 0 6 3 - 2 1 . 5 8 8 . 8 3 - 0 . 3 5 0 . 1 4 5 1 . 0 3 1 7 . C - 2 . 9 3 - 2 5 . 7 7 I C . 6 1 - 1 . 3 6 - 2 3 . 2 5 - 0 . 0 6 4 - 1 4 . 0 6 9 . 1 9 - 0 . 3 5 1 . 2 4 5 4 . 0 1 3 2 0 . 0 - 6 . 3 9 - 1 2 3 . 9 7 4 5 . 0 2 - 1 . 0 3 - 8 6 . 3 7 - 0 . 0 6 1 - 7 C . 0 8 1 6 . 2 9 - 0 . 3 5 2 . 2 3 5 3 . C _ _ 1 2 1 5 . C - 6 . 1 2 r 1 1 4 . 4 5 4 1 . 5 8 -0.3b - 7 9 . 3 9 - 0 . 0 6 0 - 6 3 . 8 0 _ 1 5 . 5 9 _ - 0 . 3 5 3 . 3 4 5 5 . 0 2 3 2 1 . 0 - 6 . 4 5 - 2 1 7 . 9 6 7 5 . 1 6 - 6 . 5 3 - 1 4 6 . 2 0 - 6 . 0 6 C - 1 3 7 . 8 8 8 . 3 2 - 0 . 3 5 4 . 3 3 7 9 . 0 2 2 4 5 . 0 - 5 . 8 7 - 2 1 0 . 8 5 7 6 . 5 7 - 1 . 9 5 - 1 4 2 . 0 9 - 0 . 0 6 1 - 1 3 3 . 7 9 8 . 3 0 - 0 . 3 5 5 . 3 0 0 5 . C 1 8 7 1 . C - 5 . 5 9 - 1 7 5 . 7 2 6 3 . 8 1 - 1 . 9 5 - 1 1 9 . 4 5 - 0 . 0 6 1 - 1 0 7 . 9 1 11 . 5 4 - 139 -- 0 . 3 5 6 . 2 6 7 5 . 0 1 5 4 1 . 0 - 4 . 8 2 - 1 4 4 . 7 3 5 2 . 5 6 - 2 . 8 1 - 9 9 . 8 0 - 0 . 0 6 2 - 8 * 3 . 5 9 1 0 . 2 1 - 0 . 3 5 7 . 1 9 7 7 . C 8 4 3 . 0 - 4 . 1 6 - 7 9 . 1 7 2 8 . 7 5 - 2 . 4 4 - 5 7 . 0 2 - 0 . 0 6 3 - 4 9 . 1 8 7 . 8 4 - 0 . 3 5 8 . 1 5 8 0 . 0 4 4 6 . 0 - 3 . 5 6 - 4 1 . 8 9 1 5 . 2 1 - 2 . 9 C - 3 3 . 1 5 - 0 . 0 6 6 - 2 6 . 0 4 7 . 1 1 - 0 . 3 5 9 . 1 7 2 4 . C 5 9 0 . 0 - 3 . 9 7 - 5 5 . 4 1 2 0 . 1 2 - 2 . 6 7 - 4 1 . 9 3 - 0 . 0 6 4 - 3 3 . 7 9 8 . 1 4 - 0 . 3 6 0 . 1 7 9 6 . C 6 6 2 . C - 4 . 1 4 - 6 2 . 1 7 2 2 . 5 8 - 2 . 9 8 - 4 6 . 7 2 - 0 . 0 6 4 - 3 7 . 0 3 9 . 6 9 - 0 . 3 6 1 . 1 9 8 9 . 0 8 5 5 . 0 - 4 . 3 7 - 8 0 . 3 C 2 9 . 1 6 - 2 . 9 1 - 5 6 . 4 2 - 0 . 0 6 3 - 4 6 . 1 5 1 2 . 2 7 - 0 . 3 6 2 . 2 1 5 4 . C 1 0 2 0 . 0 - 4 . 5 5 - 9 5 . 8 0 3 4 . 7 9 - 2 . 3 8 - 6 7 . 9 4 - 0 . 0 6 2 - 5 6 . 3 2 1 1 . 6 2 - 0 . 3 6 3 . 2 3 6 8 . 0 1 2 3 4 . 0 - 4 . 7 7 - 1 1 5 . 8 5 4 2 . C S - 2 . 7 1 - 8 1 . 2 9 - 0 . 0 6 2 - 6 9 . 1 3 1 2 . 1 6 - 0 . 3 6 4 . 2 4 2 j _ - _ 0 1 2 9 3 . 0 _ 4 . 9 _ 9 _ 1 2 I. 44 4 4 . 1 0 - 3 . 1 3 - 8 5 _ 4 6 - 0 . 0 6 2 - 7 2 . 1 4 1 3 . 3 2 - 0 . 3 6 5 . 2 4 2 4 . 0 1 2 9 C . 0 - 5 . 0 6 - 1 2 1 . 1 5 4 4 . 0 0 - 1 . 1 7 - 8 3 . 3 3 - 0 . 0 6 1 - 7 1 . 6 6 1 1 . 7 2 - 0 . 3 6 6 . 2 4 2 1 . 0 1 2 8 7 . 0 - 3 . 5 4 - 1 2 C . 8 7 4 3 . 6 9 - 1 . 4 7 - 8 1 . 9 9 - 0 . 0 6 1 - 6 8 . 1 2 1 3 . 8 7 - 0 . 3 6 7 . 2 4 1 3 . 0 1 2 7 9 . 0 - 3 . 2 1 - 1 2 0 . 1 2 4 3 . 6 2 - 2 . 7 0 - 8 2 . 4 0 - 0 . 0 6 2 - 6 9 . 5 2 1 2 . 8 8 - 0 . 3 6 8 . 2 2 3 0 . C 1 C 9 6 . C - 2 . 5 4 - I C 2 . 9 3 3 7 . 3 8 - 3 . 7 5 - 7 2 . 2 4 - 0 . 0 6 3 - 5 9 . 2 6 1 2 . 9 8 - 0 . 3 6 9 . 2 2 6 6 . 0 1 1 3 2 . 0 - 2 . 6 4 - 1 0 6 . 3 1 3 8 . 6 1 - 4 . 3 5 - 7 4 . 6 9 - 0 . 0 6 4 - 6 2 . 2 9 1 2 . 4 0 - 0 . 3 7 C . 2 2 2 5 . C 1 C 9 1 _ 0 _ 2 . 3 3 - 1 0 2 . 4 6 3 7 . 2 1 _ 4 _ 4 8 - 7 2 . 0 7 - 0 . 0 6 4 - 6 0 . 3 3 _ _ l l . 7 4 - 0 . 3 7 1 . 1 9 5 6 . 0 8 2 2 . 0 - 2 . 0 2 - 7 7 . 2 C 2 8 . C 4 - 4 . 9 3 - 5 6 . 1 1 - 6 . 0 6 6 - 4 4 . 2 2 1 1 . 8 9 - 0 . 3 7 2 . 2 3 0 7 . 0 1 1 7 3 . 0 - 3 . 7 0 - 1 1 0 . 1 7 4 0 . 0 1 - 0 . 9 7 - 7 4 . 8 3 - 0 . 0 6 1 - 6 2 . 6 3 1 2 . 2 0 - 0 . 3 7 3 . 2 8 1 8 . C 1 6 8 4 . 0 - 7 . 7 7 - 1 5 8 . 1 6 5 7 . 4 3 0 . 2 1 - 1 0 8 . 2 8 - 0 . 0 6 0 - 9 5 . 8 7 1 2 . 4 1 - 0 . 3 7 4 . 2 8 6 3 . 0 1 7 2 9 . 0 - 6 . 8 9 - 1 6 2 . 3 6 5 8 . 5 7 0 . C 6 - 1 1 C . 2 5 - 0 . 0 6 C - 9 1 . 5 3 1 8 . 7 2 - 0 . 3 7 5 . 2 8 3 0 . 0 1 6 9 6 . 0 - 6 . 9 2 - 1 5 9 . 2 8 5 7 . 8 4 0 . 4 4 - 1 0 7 . 9 3 - 0 . 0 6 C - 9 2 . 2 5 1 5 . 6 8 - 0 . 3 7 6 . 2 8 2 5 . C 1 6 9 1 . 0 - 6 . 9 3 - 1 5 8 . 8 1 5 7 . 6 7 0 . 4 0 - 1 0 7 . 6 8 __0 _ 0 6 0 _ 9 5 . 2 7 1 2 . 4 1 - 0 . 3 7 7 . 2 8 6 4 . 0 1 7 3 0 . 0 - 6 . 6 9 - 1 6 2 . 4 8 5 9 . 6 6 0 . 1 5 - 1 1 C . C I - 0 . C 6 C - 9 6 . 8 1 1 3 . 2 0 - 0 . 3 7 8 . 2 9 4 3 . 0 1 8 0 9 . 0 - 6 . 3 9 - 1 6 9 . 9 0 6 1 . 7 0 - 0 . 2 3 - 1 1 4 . 8 2 - 0 . 0 6 0 - 9 9 . 0 3 1 5 . 7 9 - 0 . 3 7 9 . 2 2 4 4 . 0 1 1 1 0 . 0 - 5 . 3 3 - 1 C 4 . 2 5 3 7 . 6 6 - 0 . 6 5 - 7 2 . 4 1 - 0 . 0 6 0 - 7 4 . 2 0 - 1 . 7 9 - 0 . 3 8 0 . 2 2 4 7 . 0 1 1 1 3 . 0 - 5 . 3 2 - 1 0 4 . 5 3 3 7 . 9 6 - 0 . 4 8 - 7 2 . 3 7 - 0 . 0 6 C - 7 2 . 7 9 - 0 . 4 2 - 0 . 3 8 1 . 2 2 4 0 . C 1 1 0 6 . C - 5 . 2 5 - 1 C 3 . 8 7 3 7 . 7 2 - 0 . 2 7 - 7 1 . 6 8 - 0 . 0 6 0 - 7 3 . 6 5 - 1 . 9 7 - 0 . 3 8 2 . 2 3 0 9 . 0 1 1 7 5 . C - 5 . 2 9 - U C . 3 5 4 0 . C 7 - 0 . 2 3 - 7 5 . 8 0 - 0 . 0 6 0 - 7 7 . 4 8 _ _ _ l _ - 6 8 - 0 . 3 8 3 . 2 3 4 3 . 0 1 2 0 9 . 0 - 5 . 2 0 - 1 1 3 . 5 5 4 1 . 2 3 - 0 . 0 1 - 7 7 . 5 2 - 0 . 0 6 C - 7 8 . 9 5 - 1 . 4 3 - 0 . 3 6 4 . 2 3 8 3 . 0 1 2 4 9 . 0 - 5 . 2 7 - 1 1 7 . 3 0 4 2 . 6 0 0 . 1 2 - 7 9 . 8 6 - 0 . 0 6 0 - 8 0 . 6 6 - 0 . 8 0 - 0 . 3 8 5 . 2 4 4 5 . 0 1 3 1 1 . 0 - 5 . 3 2 - 1 2 3 . 1 3 4 4 . 7 1 0 . C 5 - 8 3 . 6 9 - 0 . 0 6 0 - 8 3 . 4 7 0 . 2 2 - 0 . 3 8 6 . 2 4 6 5 . 0 1 3 3 1 . 0 - 5 . 3 4 - 1 2 5 . 0 0 4 5 . 4 0 0 . 0 8 - 8 4 . 8 7 - C . 0 6 C - 8 3 . 7 7 1 . 1 0 - 0 . 3 6 7 . 2 4 4 9 . C 1 3 1 5 . C - 5 . 2 2 - 1 2 3 . 5 C 4 4 . 8 5 - 0 . 3 8 - 8 4 . 2 6 - 0 . 0 6 0 - 7 9 . 6 0 4 . 6 6 - 0 . 3 8 8 . 2 4 2 7 . 0 1 2 9 3 _ 0 Z±lA bZJl 1 * 4 4 4 4 _1 C O . C 1 - 8 2 . 1 9 _ _ - 0 . 0 6 C - 7 4 . 9 1 7 . 2 8_ - 0 . 3 8 9 . 2 4 5 4 . 6 1 3 2 0 . 0 - 4 . 6 2 - 1 2 3 . 9 7 4 5 . 0 2 - 0 . 2 1 - 8 3 . 7 8 - 6 . 0 6 C " - 7 3 " . 6 9 1 0 . " 0 9 - 0 . 3 9 0 . 2 5 2 6 . C 1 3 9 2 . 0 - 4 . 6 C - 1 3 C . 7 3 4 7 . 4 8 - 0 . 1 9 - 8 8 . 0 5 - 0 . 0 6 C - 7 5 . 3 4 1 2 . 7 1 - 0 . 3 9 1 . 2 5 1 0 . 0 1 3 7 6 . 0 - 4 . 4 0 - 1 2 9 . 2 3 4 6 . 9 3 - 0 . G 7 - 8 6 . 7 7 - 0 . 0 6 C - 7 3 . 7 1 1 3 . 0 6 - 0 . 3 9 2 . 2 5 2 5 . C 1 3 9 1 . 0 - 4 . 2 9 - 1 3 0 . 6 4 4 7 . 4 4 - 0 . 0 4 - 8 7 . 5 3 - 0 . 0 6 0 - 7 2 . 6 1 1 4 . 9 2 - 0 . 3 9 3 . 2 5 3 9 . C 1 4 0 5 . 0 - 4 . 1 9 - 1 3 1 . 9 5 4 7 . 9 2 - 0 . 1 4 - 8 8 . 3 6 - 0 . 0 6 C - 7 1 . 5 2 1 6 . 8 4 - 0 . 3 9 4 . 2 4 9 _ . 0 1 3 6 3 . 0 - 3 . 9 9 - 1 2 8 . 0 1 4 6 . 4 9 - 0 . 4 1 - 8 5 . 5 3 - 0 . 0 6 C - 6 9 . 7 4 _ I 6 . 1 9 - 0 . 3 9 5 " . 2 3 8 2 . C 1 2 4 8 . C - 3 . 7 4 - 1 1 7 . 2 1 4 2 . 5 6 - 0 . 3 0 - 7 8 . 6 8 - 0 . 0 6 0 - 6 4 . 5 3 1 4 . 1 5 - 0 . 3 9 6 . 2 5 6 3 . 0 1 4 2 9 . 0 - 5 . 5 0 - 1 3 4 . 2 1 4 6 . 7 4 - 0 . 4 1 - 9 1 . 3 7 - 0 . 0 6 C - 8 6 . 2 1 5 . 1 6 - 0 . 3 9 7 . 2 6 4 4 . 0 1 5 1 0 . 0 - 5 . 5 9 - 1 4 1 . 3 2 5 1 . 5 0 - 0 . 7 2 - 9 6 . 6 3 - 0 . 0 6 C - 9 0 . 0 0 6 . 6 3 - 0 . 3 9 8 . 2 6 6 7 . C 1 5 3 3 . C - 5 . 5 2 - 1 4 3 . 9 8 5 2 . 2 8 - 0 . 6 1 - 9 8 . 2 3 - 0 . 0 6 0 - 9 2 . 6 0 5 . 6 3 - 0 . 3 9 9 . 2 6 5 1 . 0 1 5 1 7 . 0 - 6 . 2 2 - 1 4 2 . 4 7 5 1 . 7 4 - 0 . 5 4 - 9 7 . 4 9 - 0 . 0 6 C - 9 1 . 8 3 5 . 6 6 - C . 4 C 0 . 2 6 3 2 . 0 1 4 9 8 . 0 - 6 . 6 2 - 1 4 0 . 6 9 _ 5 l _ 0 9 - 0 . 0 8 _ _ 9 6 . 3 0 - 0 . 0 6 0 - 9 0 . 9 6 5 _ , 3 4 - 0 . 4 0 1 . 2 6 4 3 . 0 1 5 0 9 . 0 - 6 . 8 6 - 1 4 1 . 7 2 " 5 1 . 4 7 C . 2 3 - 9 6 . 8 9 - 0 . 0 6 C - 9 0 . 6 2 6 . 2 7 " - 0 . 4 0 2 . 2 6 6 6 . 0 1 5 3 2 . 0 - 7 . 0 0 - 1 4 3 . 8 8 5 2 . 2 5 0 . 2 1 - 9 8 . 4 3 - 0 . 0 6 C - 9 0 . 7 8 7 . 6 5 - 0 . 4 C 3 . 2 7 1 5 . C 1 5 6 1 . C - 7 . 1 2 - 1 4 8 . 4 8 5 3 . 9 2 0 . 0 8 - 1 0 1 . 6 0 - 0 . 0 6 0 - 9 2 . 4 0 9 . 2 0 - 0 . 4 0 4 . 2 7 7 0 . 0 1 6 ~ 3 6 . 0 - 7 . 2 2 - 1 5 2 . 6 5 5 5 . 6 C 0 . 3 4 - 1 0 4 . 6 3 - 0 . 0 6 C - 9 5 . 1 2 9 . 7 1 - 0 . 4 0 5 . 2 7 9 7 . C 1 6 6 3 . 0 - 7 . 6 4 - 1 5 6 . 1 9 5 6 . 7 2 0 . 3 7 - 1 0 6 . 7 4 - 0 . 0 6 C - 9 5 . 0 4 1 1 . 7 0 - 0 . 4 0 6 . 2 8 1 8 . C 1 6 8 4 . 0 _ - 7 . 8 C - 1 5 8 . 1 6 5 7 . 4 3 0 . 2 8 - 1 0 3 . 2 5 - 0 . 0 6 0 - 9 9 . 7 9 _ 8 . 4 6 - 0 . 4 0 7 . 2 8 1 0 . 0 1 6 7 6 . 0 - 8 . 0 4 - 1 5 7 . 4 1 5 7 . 1 6 0 . 2 8 — I C 6 . C C - 6 . 0 6 C - 1 0 2 . 5 3 5 . 4 7 - C . 4 C 8 . 2 7 9 1 . 0 1 6 5 7 . 0 - 7 . 9 2 - 1 5 5 . 6 2 5 6 . 5 1 0 . 1 2 - 1 0 6 . 9 1 - 0 . 0 6 0 - 1 0 2 . 4 6 4 . 4 5 - 0 . 4 0 9 . 2 8 1 0 . 0 1 6 7 6 . 0 - 7 . 9 7 - 1 5 7 . 4 1 5 7 . 1 6 C . 1 6 - 1 0 8 . C 4 - 0 . 0 6 C _ l 0 5 _ 0 6 2 . 9 8 - 0 . 4 1 0 . 2 8 5 7 . 0 1 7 2 3 . 0 - 7 . 9 0 - 1 6 1 . 8 2 5 8 . 7 6 O . C S - 1 1 0 . 8 7 - 0 . 0 6 C - 1 0 8 . 5 6 2 . 3 1 - 0 . 4 1 1 . 2 8 3 2 . 0 1 6 9 8 . 0 - 7 . 7 5 - 1 5 9 . 4 7 5 7 . 9 1 0 . 0 5 - 1 0 9 . 2 5 - 0 . 0 6 0 - 1 0 8 . 1 6 1 . 0 9 _ _ 0 _ , _ 4 J 2 . _ 2 9 1 3 . 0 _ 1 7 7 9 . 0 - 8 . 0 3 - 1 6 7 . 0 8 6 0 . 1 7 _ _ - C . 1 C - 1 1 4 . 5 4 - C . 0 6 C - 1 1 4 . 4 8 0 . 0 6 - 0 . 4 1 3 . 2 9 5 5 . C 1 8 2 1 . C - 8 . 3 7 - 1 7 1 . 0 2 6 2 . i l - 0 . 3 0 - 1 1 7 . 5 9 - 0 . 0 6 C - 1 1 7 . 5 1 0 . C 8 - 0 . 4 1 4 . 3 0 4 6 . C 1 9 1 4 . 0 - 8 . 6 5 - 1 7 9 . 7 6 6 5 . 2 8 - 0 . 2 7 - 1 2 3 . 4 0 - 0 . 0 6 0 - 1 2 4 . 9 0 - 1 . 5 0 - 0 . 4 1 5 . 1 9 2 6 . 0 7 9 2 . 0 - 2 . 0 4 - 7 4 . 3 e 2 7 . 0 1 - 1 . 6 3 - 5 1 . 2 4 - 0 . 0 6 2 - 4 8 . 2 5 2 . 9 9 - 140 -- 0 . 416. - 0 . 417. - 0 . 418. - 0 . 419. - 0 . 420. - 0 . 421. 1 9 0 6 . C 1 8 5 4 . 0 1 8 5 9 . C 1 8 4 7 . C 1 8 6 8 . 0 1 8 6 9 . C - 0 . 422. - 0 . 423. - 0 . 424. 7 7 2 . C 7 2 0 . 0 7 2 5 . C 7 1 3 . C 7 3 4 . 0 7 3 5 . C - 0 . 425. - 0 . 426. - 0 . 427. - 0 . 428. - 0 . 429. - 0 . 430. - 0 . 431. - 0 . 432. - 0 . 433. - 0 . 434. - 0 . 435. - 0 . 436. 1 9 6 2 . 0 1 1 5 4 . 0 1 1 6 1 . C 1 1 4 7 . 0 1 1 2 8 . 0 1 1 2 9 . C 1 1 2 5 . 0 1 1 2 3 . C 1 1 2 4 . 0 1 1 2 4 . 6 1 1 1 7 . 0 1 1 1 8 . 0 - 0 . 4 3 7 . - 0 . 438. - 0 . 439. 1 1 3 5 . 0 1 4 6 5 . C 1 5 5 3 . C - 0 . 440. - 0 . 441. - 0 . 442. - 0 . 443. - 0 . 444. - 0 . 445. - 0 . 446. - 0 . 447. - 0 . 448. - 0 - 449. - 0 . 450. " P . 451. - 0 . 452. - 0 . 453. - 0 . 454. - 0 . 455. - 0 . 456. - 0 . 457. - 141 -- 0 . 4 7 6 . 2 2 9 5 . 0 1 1 6 1 . 0 - 1 6 . 9 1 - 1 0 9 . 0 4 3 9 . 6 0 - 6 . 5 3 - 9 2 . 8 8 - 0 . 0 6 5 - 9 2 . 9 9 - 0 . 1 1 - 0 . 4 7 7 . 2 3 0 7 . C 1 1 7 3 . 0 — 17. 5 6 - 1 1 C . 1 7 4 0 . C I - 3 . 5 0 - 9 1 . 2 3 - 0 . 0 6 3 - 9 6 . 1 5 - 4 . 9 2 - 0 . 4 7 8 . 2 3 1 7 . 0 1 1 8 3 . 0 - 1 8 . C 4 - 1 1 1 . 1 C 4 0 . 3 5 - 4 . 5 6 - 9 3 . 76 - 0 . 0 6 4 - 9 9 . 9 4 - 6 . 1 8 - 0 . 4 7 9 . 3 5 8 6 . C 2 4 5 2 . 0 - 1 4 . 8 0 - 2 3 0 . 2 9 8 3 . 6 3 0 . 4 8 - 1 6 0 . 9 7 - 0 . 0 6 C - 1 7 1 . 8 2 - 1 0 . 8 5 - 0 . 4 8 0 . 3 6 1 9 . 0 2 4 8 5 . C - 1 5 . 4 2 - 2 2 3 . 3 9 8 4 . 7 5 C . 4 7 - 1 6 3 . 5 8 - 0 . 0 6 0 - 1 7 5 . 0 3 - 1 1 . 4 5 - 0 . 4 8 1 . 3 6 5 1 . 0 2 5 1 7 . 0 - 1 6 . 0 4 - 2 3 6 . 3 9 8 5 . 8 4 0 . 3 4 - 1 6 6 . 2 5 - 0 . 0 6 C - 1 7 9 . 2 1 - 1 2 . 9 6 - 0 . 4 8 2 . 3 5 9 3 . C 2 4 5 9 . 0 - 1 6 . 6 5 - 2 3 0 . 9 4 8 3 . 8 7 0 . 5 4 - 1 6 3 . 1 9 - 0 . 0 6 0 - 1 7 8 . 7 1 - 1 5 . 5 2 - 0 . 4 8 3 . 3 5 0 2 . 0 2 3 6 8 . 0 - 1 7 . 2 9 - 2 2 2 . 4 C 8 C . 76 0 . 5 2 - 1 5 6 . 4 C - 0 . 0 6 0 - 1 7 6 . 6 1 - 1 8 . 2 1 - 0 . 4 8 4 . 4 0 1 3 . 0 2 8 7 9 ^ 0 - 1 7 . 1 7 - 2 7 0 _3 9 9 8 . 1 9 - 4 . 5 8 - 19 3 . 9 4 _ - 0 . 0 6 1_-215.89 r 2 1 . 9 5 - 0 . 4 8 5 . 3 9 8 8 . C 2 8 5 4 . C 1 6 . 6 2 - 2 6 e . 0 4 9 7 . 3 4 - 0 . 3 5 - 1 8 7 . 6 6 - 6 . 0 6 0 - 2 1 4 . 6 8 - 2 7 . 0 2 - 0 . 4 8 6 . 3 9 9 8 . 0 2 8 6 4 . 0 - 1 5 . 9 7 - 2 6 8 . 9 8 9 7 . 6 8 - 0 . 1 3 - 1 8 7 . 4 0 - 0 . 0 6 C - 2 1 4 . 3 6 - 2 6 . 9 6 - 0 . 4 8 7 . 3 9 6 0 . C 2 8 2 6 . 0 - 1 5 . 4 3 - 2 6 5 . 4 1 9 6 . 3 8 - 0 . 1 0 - 1 3 4 . 5 6 - 0 . 0 6 0 - 2 0 8 . 3 8 - 2 3 . 8 2 - 0 . 4 8 8 . 3 9 1 0 . C 2 7 7 6 . C - 1 4 . e 2 - 2 6 0 . 7 2 9 4 . 6 8 0 . C 5 - 1 8 0 . 8 2 - 0 . 0 6 0 - 1 9 8 . 6 0 - 1 7 . 7 8 - 0 . 4 8 9 . 3 8 2 8 . 0 2 6 9 4 . 0 - 1 4 . 2 5 - 2 5 3 . 0 1 9 1 . 8 8 - 0 . 1 1 - 1 7 5 . 5 C - 0 . 0 6 C - 1 9 1 . 17 - 1 5 . 6 7 - 0 . 4 9 0 . 3 6 2 7 . 0 2 4 9 3 . 0 - 1 3 . 6 8 - 2 3 4 . 1 4 8 5 . 0 3 - 0 . 1 9 - 1 6 2 . 9 8 - 0 . 0 6 0 - 1 7 6 . 4 8 - 1 3 . 5 0 - 0 . 4 9 1 . 3 5 3 9 . 0 2 4 0 5 . o - 1 3 . 3 9 - 2 2 5 . 87 8 2 . 02 - C . 2 4 - 1 5 7 7 4 8 - 0 . 0 6 0 - 1 6 8 . 4 7 - 1 0 . 9 9 - 0 . 4 9 2 . 3 0 0 4 . 0 1 8 7 0 . 0 - 1 2 . 5 1 - 1 7 5 . 6 3 6 3 . 7 8 0 . 1 4 - 1 2 4 . 2 2 - 0 . 0 6 C - 1 1 8 . 8 4 5 . 3 8 - 0 . 4 9 3 . 2 9 7 5 . C 1 8 4 1 . C - 1 2 . 6 8 - 1 7 2 . 9 0 6 2 . 7 9 0 . 4 3 - 1 2 2 . 3 6 - 0 . 0 6 0 - 1 1 7 . 8 5 4 . 5 1 - 0 . 4 5 4 . 2 9 6 0 . C 1 8 2 6 . C - 1 2 . 6 9 - 1 7 1 . 4 9 6 2 . 2 8 0 . 2 0 - 1 2 1 . 7 1 - 0 . 0 6 C - 1 1 6 . 8 I 4 . 9 0 - 0 . 4 9 5 . 2 9 8 9 . 0 1 8 5 5 . C - 1 2 . 4 9 - 1 7 4 . 2 2 6 3 . 27 0 . 2 8 - 1 2 3 . 1 6 - 0 . 0 6 0 - 1 1 9 . 3 5 3 . 8 1 - 0 . 4 9 6 . 3 0 0 7 . 0 1 8 7 3 . 0 - 1 2 . 4 3 - 1 7 5 . 9 1 6 3 . 8 8 0__ 1 3 - 12 4 _3 2 _ - _ 0 . 0 6 C - 1 2 1 . 0 6 3 . _ 2 6 _ - 0 . 4 9 7 . 3 8 9 6 ^ C 2 7 6 2 . 0 - i 3 . 4 5 - 2 5 9 . 4 0 9 4 . 2 0 0 . 1 1 - " 1 7 8 . 5 4 - 0 . 0 6 0 - 1 9 9 . 7 4 - 2 1 . 2 0 - 0 . 4 9 8 . 4 0 3 3 . 0 2 8 9 9 . 0 - 1 4 . 1 3 - 2 7 2 . 2 7 9 8 . 8 7 - 0 . 4 7 - 1 8 7 . 9 9 - 0 . 0 6 C - 2 1 0 . 9 4 - 2 2 . 9 5 - 0 . 4 9 9 . 4 1 5 3 . 0 3 C 1 9 . 0 - 1 4 . 8 3 - 2 8 3 . 5 4 1 0 2 . 9 7 0 . 1 9 - 1 9 5 . 2 1 - 0 . 0 6 C - 2 2 1 . 18 - 2 5 . 9 7 - 0 . 5 0 0 . 4 1 6 5 . C 3 0 3 1 . 0 - 1 5 . 6 2 - 2 6 4 . 6 6 1 0 3 . 3 8 0 . 1 7 - 1 9 6 . 7 4 - 0 . 0 6 0 - 2 2 3 . 8 8 - 2 7 . 1 4 - 0 . 5 0 1 . 1 9 4 8 . 0 8 1 4 . C - C . 9 5 - 7 6 . 4 5 2 7 . 7 6 - 0 . 8 4 - 5 C . 4 8 - 0 . 0 6 1 - 4 4 . 3 8 6 . 1 0 - 0 . 5 C 2 . 2 0 4 8 . 0 9 1 4 . 0 - 0 . 9 5 - 8 5 . 8 4 3 1 . 1 7 - 0 . 8 0 - 5 6 . 4 2 - 0 . 0 6 1 _ _ 4 9 J . 6 4 6 . 7 8 - 0 . 5 0 3 . 2 0 8 1 . 0 9 4 7 . C - 1 . 1 2 - 8 8 . 9 4 3 2 . 3 0 - 1 . 1 6 - 5 8 . 9 4 - 0 . 0 6 1 - 5 2 . 9 1 6 . 0 3 - 0 . 5 0 4 . 2 3 6 3 . 0 1 2 2 9 . 0 - 1 . 4 9 - 1 1 5 . 4 2 4 1 . 9 2 - 2 . 2 2 - 7 7 . 2 2 - 0 . 0 6 2 - 7 C . 0 0 7 . 2 2 - 0 . 5 C 5 . 2 4 9 2 . 0 1 3 5 8 . 0 - 1 . 7 7 - 1 2 7 . 5 4 4 6 . 3 2 - 2 . 4 2 - 8 5 . 4 2 - 0 . 0 6 2 - 7 8 . 9 0 6 . 5 2 - 0 . 5 0 6 . 2 7 2 2 . 0 1 5 8 8 . 0 - 2 . 1 1 - 1 4 9 . 1 4 5 4 . 1 6 - 2 . 5 C - 9 9 . 5 9 - 0 . 0 6 1 - 9 2 . 7 0 6 . 8 9 - 0 . 5 0 7 . 1 1 3 9 . 0 5 . 0 0 . 3 2 - 0 . 4 7 0 . 1 7 - 0 . 1 6 - 0 . 1 4 - 0 . 0 9 2 4 . 3 4 4 . 4 8 - 0 . 5 0 8 . 113 1 . 0 0 . 72 - C . 0 5 0 . 0 3 - 0 . 5 1 0 . 15 - 0 . 5 6 5 5 . 4 5 5 - 3 0 _ - 0 . 5 0 9 . 1 1 3 0 . 0 - 4 . 0 0 . 8 0 0 . 3 8 - 0 . 1 4 - 0 . 5 2 C.52" 0 . 0 6 9 1 . 0 6 0 . 5 4 - 0 . 5 1 0 . 1 1 3 7 . C 3.0 0 . 8 4 - 0 . 2 8 0 . 1 0 - 1 . 2 3 - 0 . 5 6 - 0 . 4 6 9 - 0 . 4 4 0 . 1 2 - 0 . 5 1 1 . 1 1 4 6 . 0 1 2 . C 1 . 0 8 - 1 . 1 3 C . 4 1 - 1 . 6 6 - 1 . 3 0 - 0 . 1 9 8 - 1 . 6 2 - 0 . 3 2 - 0 . 5 1 2 . 1 1 5 1 . 0 1 7 . 0 1 . 2 6 - 1 . 6 C 0 . 5 8 - 4 . 0 4 - 3 . 8 0 - 0 . 2 9 8 - 3 . 9 4 - 0 . 1 4 " - 0 . 5 1 3 . 1 1 4 9 . 0 1 5.0 1 . 5 7 - 1 . 4 1 0 . 5 1 - 4 . 4 4 - 3 . 7 7 - 0 . 3 5 6 - 4 . 4 2 - 0 . 6 5 - 0 . 5 1 4 . 1143__0 9 . 0 1 . 66 - 0 . 8 5 0 . 3 1 __2__82 - 1 . 6 9 - 0 . 37 3 - 4 . 4 1 - 2 . 7 2 - 0 . 5 1 5 . 1 1 4 7 . 0 1 3 . 0 1 . 7 9 - 1 . 2 2 0 . 4 4 - 2 . 1 2 - 1 . 1 2 - 0 . 2 2 2 - 3 . 8 0 - 2 . 6 8 - 0 « 5 1 6 . 1 2 2 3 . 0 8 9 .0 2 . 0 0 - 8 . 3 6 3 . 0 4 - 1 . 4 4 - 4 . 7 6 - 0 . 0 7 6 - 6 . 3 4 - 1 . 5 8 - 0 . 5 1 7 . 1 2 1 9 . 0 8 5 . 0 2 . 1 0 - 7 . 9 8 2 . 9 0 - 1 . 4 3 - 4 . 4 2 - 0 . 0 7 7 - 5 . 0 6 - 0 . 6 4 - 0 . 5 1 8 . 1 1 8 6 . C 5 2 . 0 . 1 . 9 1 - 4 . 8 8 1 . 7 7 - 0 . 9 0 - 2 . 1 0 - 0 . 0 7 7 - 2 . 8 1 - 0 . 7 1 - 0 . 5 1 9 . 1 3 2 3 . C 1 8 9 . C 2 . 1 7 - 1 7 . 7 5 6 . 4 5 - 1 . 9 C - 1 1 . 0 3 - 0 . C 7 C - 9 . 9 6 1 . 0 7 - 0 . 5 2 0 . 1 6 0 2 . 0 4 6 8 .0 2 . 4 5 r 4 3 . 9 5 1 5 . 9 6 _ - 3 . 1 4 __2£__67 - 0 . 0 6 7 - 2 5 . 4 8 3_,_19_ - 0 . 5 2 1 . 1 7 7 1 . C 6 3 7 . 6 2 . 7 6 - 5 5 . 8 3 2 1 . 7 3 - 3 . 5 1 - 3 8 . 8 2 - 6 . 0 6 5 - 3 3 . 5 7 5 . 2 5 " - 0 . 5 2 2 . 1 9 8 2 . 0 8 4 8 .0 3 . 1 3 - 7 9 . 6 4 2 8 . 5 2 - 1 . 8 6 - 4 9 . 4 6 - 0 . 0 6 2 - 4 3 . 5 9 5 . 8 7 - 0 . 5 2 3 . 2 0 1 7 . 0 8 8 3 .0 3 . 4 4 - 8 2 . 9 3 3 0 . 1 2 - 2 . 3 2 - 5 1 . 7 0 - 0 . 0 6 2 - 4 5 . 3 0 6 . 4 0 - 0 . 5 2 4 . 2 0 5 8 . C 9 2 4 . 0 3 . 6 3 - 6 6 . 7 8 3 1 . 5 1 - 2 . 0 3 - 5 3 . 6 7 - 0 . 0 6 2 - 4 4 . 6 7 9 . 0 0 - 0 . 5 2 5 . 2 0 3 3 . 0 8 9 9 .0 3 . 9 1 - 8 4 . 4 3 3 0 . 6 6 - 3 . 0 5 - 5 2 . 5 5 - 0 . C 6 3 - 4 2 . 4 9 1 0 . 4 6 - 0 . 5 2 6 . 2C52._C ?18__0^ 4 . 0 3 r 8 6 . 2 2 3 1 . 3 1 - 3 . 2 2 - 5 4 . 1 C _ - 0 .063___V 1 . 8 3 _ 1 2 . 2 7 _ - 0 . 5 2 7 . 2 0 9 1 . 0 5 5 7 . C 4 . 2 6 - 6 9 . 8 e 3 2 . 6 4 - 2 . 4 5 - 5 5 . 4 3 - 0 . 0 6 2 - 4 1 . 9 1 1 3 . 5 2 - 0 . 5 2 8 . 2 0 0 9 . 0 8 7 5 .0 4 . 0 5 - 8 2 . 1 8 2 9 . 8 4 - 1 . 9 2 - 5 0 . 2 C - 0 . 0 6 2 - 3 5 . 0 7 1 5 . 1 3 - 0 . 5 2 9 . 2 C 9 6 . C 9 6 2 . 0 4 . 2 2 - 9 0 . 3 5 3 2 . 8 1 - 2 . 0 9 - 5 5 . 4 1 - 0 . 0 6 2 - 3 9 . 8 7 1 5 . 5 4 - 0 . 5 3 0 . 2 0 6 4 . 0 9 3 0 . 0 " 4 . 2 5 - e 7 . 3 4 3 1 . 7 2 - 2 . 3 3 - 5 3 . 7 C - 0 . 0 6 2 - 3 7 . 6 4 1 6 . 0 6 - 0 . 5 3 1 . 2 0 2 3 . 0 8 8 9 . 0 4 . 3 1 - 8 3 . 4 9 3 0 . 3 2 - 2 . 5 3 - 5 1 . 3 9 - 0 . 0 6 3 - 3 4 . 8 1 1 6 . 5 8 __0 . _ 5 3 2 . _ 1 8 5 2 . C 7 1 8 . C 4 . 35 - 6 7 . 4 3 _ 2 4 . 4 9 r 2 . 4 5 - 4 1 . 0 0 - 0 . 0 6 3 - 2 6 . 2 9 1 4 . 7 1 - 6 . 5 3 3 . 1 6 9 1 . 6 5 5 7 . 0 4 . 3 3 - 5 2 . 3 1 1 9 . 6 6 - 3 . 4 6 - 3 2 . 4 4 - 0 . C 6 6 - 1 7 . 4 6 1 4 . 9 8 - 0 . 5 3 4 . 1 1 4 5 . 0 1 1.0 3 . 8 4 - 1 . 0 3 0 . 3 8 - 3 . 8 3 - 0 . 6 4 - 0 . 4 0 8 1 2 . 2 3 1 2 . 8 7 - 0 . 5 3 5 . 1 1 7 6 . C 4 2 .0 3 . 5 9 - 3 . 9 4 1 . 4 3 - 3 . 3 4 - 2 . 2 6 - 0 . 1 3 9 1 1 . 6 3 1 3 . 8 9 - 142 -- 0 . 5 3 6 . 1 3 3 6 . C 2 0 2 . 0 3 . 9 1 - 1 8 . 9 7 6 . 8 9 - 4 . 1 0 - 1 2 . 2 7 - 0 . C 8 C 3 . 8 4 1 6 . 1 1 - 0 . 537. 1 3 9 5 . 0 2 6 1 . 0 3 . 8 4 - 2 4 . 5 1 8 . 9 0 - 4 . 1 0 - 1 5 . 8 7 - 0 . 0 7 6 0 . 2 5 1 6 . 1 2 -0 . 538. 1 5 1 6 . 0 3 8 2 . 0 4 . 0 1 - 3 5 . 8 8 1 3 . 0 3 - 4 . 4 5 - 2 2 . 3 3 - 0 . C 7 2 - 7 . 3 5 1 5 . 9 8 - 0 . 5 3 9 . 1 1 1 9 . 0 - 1 5 . 0 1 . 2 8 1 . 4 1 - 0 . 5 1 - 0 . 4 2 1 . 7 6 - 0 . 0 3 2 - 3 . 7 9 - 5 . 5 5 - 0 . 540. 1 4 2 9 . 0 2 9 5 . 0 2 . 4 1 - 2 7 . 7 1 1 0 . C 6 - I . 5 C - 1 6 . 7 3 - 0 . 0 6 5 - 1 8 . 4 8 - 1 . 7 5 - 0 . 541. 1 6 7 1 ^ 0 5 3 7 . 0 2 . 6 4 - 5 0 . 4 3 1 8 . 3 1 - 1 . 6 7 - 3 1 . 3 5 - 0 . 0 6 3 - 3 2 . 6 1 - 1 . 2 6 - 0 . 5 4 2 . 1 8 5 6 . C 7 2 2 . C 3 . C I - 6 7 . 8 1 2 4 . 6 2 - 1 . 8 5 - 4 2 . 0 3 - 0 . 0 6 2 - 4 3 . 3 3 - 1 . 3 0 - 0 . 5 4 3 . 2 0 9 8 . 0 9 6 4 . 0 3 . 4 6 - 9 0 . 5 4 3 2 . 8 6 - 2 . 1 1 - 5 6 . 3 1 - 0 . 0 6 2 - 5 7 . 2 2 - 0 . 9 1 -0 . 5 4 4 . 2 7 9 4 . C 1 J 6 0 . 0 3 . 8 5 - 1 0 8 . 9 4 3 9 . 5 6 - 2 . 1 7 ^ - 6 7 . 7 0 - 0 . 0 6 2 - 6 8 . 2 9 - 0 . 5 9 - 0 . 5 4 5 . 2 4 4 0 " . C' 1 3 0 6 . 0 4 . 1 0 - 1 2 2 . 6 6 4 4 . 5 4 - 2 . 3 8 - 7 6 . 4 0 " - 0 . 0 6 2 " - 7 5 " . 7 6 0 . 6 4 - 0 . 5 4 6 . 2 1 7 0 . 0 1 0 3 6 . 0 3 . 1 5 - 9 7 . 3 0 3 5 . 3 3 - 2 . 5 5 - 6 1 . 3 6 - 0 . 0 6 2 - 5 7 . 3 4 4 . 0 2 - 0 . 5 4 7 . 2 3 3 7 . C 1 2 0 3 . 0 3 . 4 2 - 1 1 2 . 9 8 4 1 . 0 3 - 2 . 9 8 - 7 1 . 5 2 - 0 . 0 6 2 - 6 8 . 2 3 3 . 2 9 - 0 . 5 4 8 . 2 5 4 5 . 0 1 4 1 1 . 0 2 . 8 9 - 1 2 2 . 5 2 4 8 . 1 2 - 3 . 7 3 - 8 4 . 2 4 - 0 . 0 6 2 - 8 1 . 7 3 2 . 5 1 - 0 . 5 4 9 . 2 6 6 1 . 0 1 5 2 7 . 0 4 . 4 9 - 1 4 3 . 4 1 5 2 . 0 8 - 5 . 2 1 - 9 2 . 0 6 - 0 . 0 6 3 - 8 9 . 7 1 2 . 3 5 - 0 . 5 5 0 . 2 5 0 3 . C 1 3 6 5 . C 5 . 2 9 - 1 2 8 . 5 7 4 6 . 6 9 - 5 . 5 1 -a 2 . 1 1 - 0 . 0 6 4 - 8 1 . 4 6 _ 0 . 6 5 - 0 . 5 5 1 . 2 1 5 5 . 0 1 0 2 1 . 0 3 . 7 8 - 9 5 . 8 5 3 4 . 6 2 - 3 . C i - 6 C . 3 0 - 0 . 0 6 2 - 5 4 . 1 9 6 . 1 1 - 0 . 5 5 2 . 2 1 2 1 . 0 9 8 7 . 0 3 . 3 2 - 9 2 . 7 0 3 3 . 6 6 - 1 . 2 1 - 5 6 . 5 3 - 0 . 0 6 1 - 4 5 . 8 6 1 1 . 0 7 - 0 . 5 5 3 . 2 1 3 3 . 0 5 9 9 . 0 2 . 5 6 - 5 3 . 8 2 3 4 . 0 7 - 2 . 0 6 - 5 8 . e 6 - 0 . 0 6 2 - 4 6 . 1 8 1 2 . 6 8 - 0 . 5 5 4 . 1 9 5 8 . 0 8 2 4 . 0 2 . 8 3 - 7 7 . 3 9 7 8 . 1 0 - 3 . 2 0 - 4 5 . 6 5 - 0 . 0 6 4 - 3 6 . 0 8 1 3 . 5 7 - 0 . 5 5 5 . 1 7 3 1 . C 5 9 7 . 0 2 . 5 7 - 5 6 . 0 7 2 0 . 3 6 - 4 . 3 3 - 3 7 . 4 8 - 0 . 0 6 7 - 2 6 . 0 4 1 1 . 4 4 - 0 . 5 5 6 . 2 2 2 3 . 0 1 C 8 9 . 0 4 7 4 - • 1 C 2 . 2 6 _ 3 7 . , 1 4 - 5 . 1 3 _ _ - 6 5 . 5 3 ^ 0 . 0 6 5 - 4 8 . 9 2 1 6 . 6 1 - 0 . 5 5 7 . 2 3 4 6 . 6 1 2 1 2 . 6 4 . 9 8 - 1 1 3 . 8 3 4 " i . 3 4 - 3 . 2 4 - 7 0 . 7 4 - 6 . 0 6 2 - 5 3 . 9 6 1 6 . 7 8 - 0 . 558. 2 4 9 5 . C 1 3 6 1 . 0 5 . 4 4 - 1 2 7 . 8 2 4 6 . 4 2 - 5 . 8 5 - 8 1 . 8 2 - 0 . 0 6 4 - 6 5 . 2 5 1 6 . 5 7 - 0 . 5 5 9 . 2 6 8 4 . 0 1 5 5 0 . 0 5 . 8 7 - 1 4 5 . 5 7 5 2 . 6 6 - 9 . 1 6 - 9 6 . C O - 0 . 0 6 6 - 8 1 . 2 0 1 4 . 8 0 - 0 . 560. 2 3 7 2 . 0 1 2 3 8 . 0 5 . 1 8 - 1 1 6 . 2 7 4 2 . 2 2 - 3 . 2 5 - 7 2 . 1 2 - 0 . 0 6 2 - 5 4 . 4 4 1 7 . 6 8 - 0 . 561. 2 2 8 6 . C 1 1 5 2 . C 5 . 1 2 - 1 0 8 . 1 5 3 9 . 2 9 - 4 . 0 9 - 6 7 . 8 7 - 0 . 0 6 3 - 4 9 . 1 8 1 8 . 6 9 - 0 . 5 6 2 . 2 2 6 4 . 0 1 1 3 0 . 0 5 . 2 6 - 1 0 6 . 1 3 3 8 . 5 4 - 3 . 5 2 - 6 6 . 2 4 - 0 . 0 6 3 - 4 9 . 2 2 1 7 . 0 2 , - 0 . 5 6 3 . 2 1 9 6 . 0 1 0 6 2 . 0 5 . 1 0 - 9 9 . 7 4 3 6 . 2 2 - 3 . 8 4 - 6 2 . 2 6 - 6 . 0 6 3 - 4 4 . 4 6 1 7 . 8 0 - 0 . 5 6 4 . 2 1 9 2 . 0 1 0 5 8 . 0 5 . 2 6 - 9 9 . 3 7 3 6 . C£ - 6 . 3 2 - 6 4 . 3 2 - 0 . 0 6 6 - 4 5 . 8 7 1 8 . 4 5 - 0 . 565. 2 3 0 6 . 0 1 1 7 2 . 0 5 . 6 5 - 1 1 0 . 0 7 3 5 . 9 7 - 7 . 8 0 - 7 2 . 2 5 - 0 . 0 6 6 - 5 3 . 2 5 1 9 . 0 0 - 0 . 5 6 6 . 2 3 6 6 . C 1 2 3 2 - 0 6 . C 1 - 1 1 5 . 7 1 4 2 . 0 2 - 8 . 1 7 - 7 5 . 8 5 - 0 . 0 6 6 - 5 5 . 7 4 2 0 . 1 1 - 0 . 5 6 7 . 2 4 9 1 . 0 1 3 5 7 . 0 6 . 3 0 - 1 2 7 . 4 5 4 6 . 2 8 - 8 . 1 7 - 8 3 . C 4 - 0 . 0 6 6 - 6 6 . 8 0 1 6 . 2 4 - 0 . 5 6 8 . 1 9 4 4 . C 8 1 0 . 0 3 . 5 4 - 7 6 . 0 7 2 7 . 6 3 - 2 . 4 5 - 4 7 . 3 6 - 0 . 0 6 3 - 3 1 . 5 9 1 5 . 7 7 _ - 0 . 5 6 9 . 1 9 8 5 . C 8 5 1 . C 3 . 2 6 - 7 5 . 9 2 2 9 . 0 2 - 3 . 2 2 - 5 0 . 8 4 - 0 . 0 6 4 - 3 4 . 8 6 1 5 . 9 8 -0 . 570. 1 8 5 7 . 0 7 2 3 . 0 3 . 0 4 - 6 7 . 9 0 2 4 . 6 6 - 4 . C 6 - 4 4 . 2 7 - 0 . 0 6 5 - 2 8 . 3 1 1 5 . 9 6 - 0 . 571. 1 5 6 2 . C 42e . O 2 . 8 7 - 4 0 . 2 0 1 4 . 6 0 - 4 . 8 9 - 2 7 . 6 3 - 0 . 0 7 1 - 1 3 . 8 1 1 3 . 8 2 - 0 . 5 7 2 . 2 1 9 1 . 0 1 0 5 7 . 0 - 3 . 4 3 - 5 9 . 2 7 3 6 . C 5 C . 2 3 - 6 6 . 4 2 - 0 . 0 6 0 - 6 5 . 0 5 1 . 3 7 - 0 . 573. 2 2 5 7 . 0 1 1 2 3 . 0 - 3 . 2 0 - 1 0 5 . 4 7 3 8 . 3 0 0 . 0 6 - 7 0 . 3 1 - 0 . 0 6 C - 6 7 . 7 3 2 . 5 8 - 0 . 5 7 4 . 2 3 3 6 . C 1 2 C 2 . 0 - 2 . 8 7 - 1 1 2 . 8 5 4 1 . 0 0 - 1 . 5 9 - 7 6 . 3 6 - 0 . 0 6 1 - 7 U 3 0 5 . 0 6 _ - 0 . 575. 2 4 0 5 . C 1 2 7 1 . 0 - 2 . 5 6 - 1 1 9 . 3 7 4 3 . 2 5 - C . 4 1 - 7 8 . 5 9 " - 0 . 0 6 C - 7 5 . 5 5 3 . 4 4 - 0 . 5 7 6 . 2 3 6 1 . C 1 2 2 7 . 0 - 2 . 2 4 - 1 1 5 . 2 4 4 1 . 8 5 - 0 . 6 9 - 7 6 . 2 1 - 0 . 0 6 C - 7 2 . 1 9 4 . 1 2 - 0 . 577. 1 8 2 2 . C 6 8 8 . 0 - C . 4 5 - 6 4 . 6 2 2 3 . 4 6 - 1 . 7 2 - 4 3 . 3 5 - 0 . 0 6 2 - 3 6 . 9 3 6 . 4 ? -0 . 578. 1 8 3 3 . 0 6 9 9 . 0 - 0 . 3 9 - 6 5 . 6 5 2 3 . 8 4 - 2 . 0 6 - 4 4 . 2 6 - 0 . 0 6 3 - 3 6 . 5 7 7 . 6 9 - 0 . 579. 1 8 6 6 . C 7 3 2 . C - 0 . 2 6 - 6 8 . 7 5 2 4 . 9 7 - 0 . 8 4 - 4 4 . 8 8 - 0 . 0 6 1 - 3 6 . 6 7 8 . 2 1 -0 . 580. 1 8 8 9 . 0 7 5 5 . 0 - 0 . 0 4 - 7 C . 9 1 2 5 _ . 7 5 - 1 . 1 0 - 4 6 . 3 C - 0 . 0 6 1 - 3 6 . 3 0 1 0 . 0 0 _ - 0 . 581. 1 8 5 6 . 0 7 2 2 ~ 0 6 . 3 3 - 6 7 . 3 1 2 4 . 6 2 - 2 . 2 8 - 4 5 " 1 3 - 0 . 0 6 3 - 3 6 . 2 3 " 8 . 9 0 - 0 . 562. 1 8 1 2 . 0 6 7 8 . 0 0 . 0 2 - 6 3 . 6 8 2 3 . 1 2 - 0 . 6 0 - 4 1 . 1 3 - 0 . 0 6 1 - 3 1 . 6 3 9 . 5 0 - 0 . 583. 1 7 8 5 . 0 6 5 1 . 0 - 0 . 1 5 - 6 1 . 1 4 2 2 . 2 C - C . 2 6 - 3 5 . 3 5 - 0 . 0 6 C - 3 0 . 2 6 9 . 0 9 -0 . 5 8 4 . 1 7 4 1 . 0 6 0 7 . C 0 . 2 0 - 5 7 . 0 1 2 0 . 7 0 - 1 . 4 2 - 3 7 . 5 3 - 0 . 0 6 2 - 2 6 . 5 2 1 1 . 0 1 • - 0 . 585. 1 7 9 0 . 0 6 5 6 . C 0 . 4 4 - 6 1 . 6 1 2 2 . 3 7 - 1 . 9 8 - 4 0 . 7 8 - 0 . 0 6 3 - 2 9 . 4 5 1 1 . 3 3 -0 . 5 8 6 . 1 8 9 9 . 0 7 6 5 . 0 0 . 6 9 ^ 7 1 . 8 5 2 6 . 0 9 - 3 . 2 8 _ ^ 4 6 . 3 5 - 0 . C 6 4 j - 3 5 . 6 5 1 2 . 7 0 - 0 . 587. 1 5 5 3 . 0 8 1 9 . 6 0 . 3 7 " - 7 6 . 9 2 2 7 . 9 3 - 2 . 6 4 - 5 1 . 2 6 - 0 . 0 6 3 - 3 9 " 4 8 " 1 1 . 7 8 - 0 . 5e8. 2 3 0 5 . 0 1 1 7 1 . 0 - 2 . 4 3 - l C 9 . 9 e 3 9 . 5 4 - 1 . 6 1 - 7 4 . C 8 - 0 . 0 6 1 - 6 8 . 8 1 5 . 2 7 - 0 . 5 8 9 . 2 2 8 6 . 0 1 1 5 2 . 0 - 2 . 7 9 - 1 0 8 . 1 9 3 9 . 2 9 - 1 . 3 4 - 7 2 . C 3 - 0 . 0 6 1 - 6 9 . 4 1 3 . 6 2 _ - 0 . 5 5 0 . 2 2 2 3 . C 1 C 8 9 . 0 - : . 1 4 - I C 2 . 2 8 3 7 . 1 4 - 0 . 9 0 - 6 9 . 1 7 - 0 . 0 6 1 - 6 6 . 1 0 3 . 0 7 - 0 . 5 9 1 . 2 2 8 2 . 0 1 1 4 8 . 0 - . 1 . 5 0 - 1 C 7 . 8 2 3 5 . 1 5 - 1 . 7 4 - 7 1 . 9 0 - 0 . 0 6 1 - 6 7 . 0 2 4 . 8 8 - 0 . 552. 1 1 3 1 . C -3 .J) - 1 . 7 7 0 . 2 8 ^ 0 . 1 0 0 . 0 9 - U 5 0 ^ 0 . 0 8 5 - 4 . 5 6 - 3 . 4 6 - 0 . 5 9 3 . 1 1 4 2 . C 8 .0 - 6 . 8 7 - C . 7 5 0 ~ 2 7 0 . 3 2 - 1 . 0 2 - 6 . 0 1 9 - 7 . 3 4 - 6 . 3 2 - 0 . 5 9 4 . 1 1 4 3 . 0 9 . 0 - 0 . 2 5 - 0 . 8 5 0 . 3 1 0 . 3 6 - C . 4 3 - 0 . 0 2 C - 3 . 9 9 - 3 . 5 6 - 0 . 5 5 5 . 1 1 4 9 . 0 1 5 . 0 0 . 4 7 - 1 . 4 1 0 . 5 1 0 . 1 2 - 0 . 3 0 - 0 . 0 5 2 1 . 3 0 1 . 6 0 _ - 143 -- 0 . 5 9 6 . - 0 . 5 9 7 . - 0 . 5 9 8 . - 0 . 5 9 9 . - 0 . 6 C 0 . - 0 . 6 0 1 . - 0 . 6 0 2 . - 0 . 6 C 3 . - 0 . 6 0 4 . - 0 . 6 0 5 . - 0 . 6 0 6 . - 0 . 6 C 7 . 1153.a 1145.C 1143.C 1140.0 1140.C 3106.0 3539.0 3731.C 4007.0 3993. 0" 4027.0 2303. C 1 9 . 0 1 1 . 0 9 . 0 6 . 0 6 . 0 1 9 7 2 . 0 0 . 5 9 0 . 6 3 0 . 5 2 0 . 7 6 0 . 7 5 - 1 . 7 8 - 1 . 0 3 - 0 . 8 5 - 0 . 5 6 - 0 . 5 6 4 . 7 9 - 1 P 5 . 2 1 0 . 6 5 0 . 3 8 0 . 3 1 0 . 2 0 0 . 2 0 6 7 . 2 6 - 0 . 4 3 - 1 . 1 3 - 0 . 6 5 - 3 . I C - 2 . 1 1 - 0 . - 1 . - C . ( - 2 . ' - 1 5 8 1 7 6 7 7 0 7 3 - 5 . 7 C - U 8 . 8 6 - 0 . 0 8 2 - 0 . 1 6 3 - 0 . 1 3 2 - 0 . 5 7 6 - 0 . 4 1 2 - 0 . 0 6 3 1. 1 6 2 . 5 0 4 . 8 7 6 . 9 5 9 . 2 5 - 1 1 7 . 7 6 2 . 1 4 3 . 6 7 5 . 5 4 9 . 6 5 1 0 . 9 8 1 . 1 0 2 4 0 5 . 0 2 5 9 7 . C 2j3 7 J _ _ 0 _ 2 8 5 9 . 0 2 8 9 3 . 0 1 1 6 9 . 0 5 . 4 3 - 2 2 5 . 8 7 5 . 7 3 - 2 4 3 . 9 C 6 . 2 7 - 2 6 9 . 8 3 8 2 . 0 2 8 8 . 5 7 9 7 . 9 9 - 0 . 6 0 8 . - 0 . 6 0 9 . - 0 . 6 1 0 . 2 2 5 8 . 0 2 1 9 9 . 0 2 2 0 4 . C - 0 . 611. - 0 . 612. - 0 . 613. 2 1 7 5 . 0 2 2 0 1 . 0 2 1 1 6 . C 7 . 0 7 - 2 6 8 . 5 1 9 7 . 5 1 7 . 5 7 - 2 7 1 . 7 C 9 8 . 6 7 - 1 3 . 9 8 - 1 0 9 . 7 9 3 9 . 8 7 1 1 2 4 . C - 1 3 . 4 4 - 1 C 5 . 5 6 3 8 . 3 4 1 0 6 5 . 0 - 1 3 . 0 7 - 1 0 0 . 0 2 3 6 . 3 2 1 0 7 0 . 0 - 1 2 . 5 6 - 1 0 0 . 4 9 3 6 . 4 9 _ 1 0 4 i ; o - l i . 7 5 - 5 7 . 7 7 3 5 . 5 C 1 0 6 7 . 0 - 1 1 . 7 6 - 1 0 0 . 2 1 3 6 . 3 9 9 8 2 . 0 - 1 1 . 2 6 - 9 2 . 2 3 3 3 . 4 9 - 5 . 0 7 - 1 4 3 . - 5 . 1 9 - 1 5 4 . _ - 3 . Ur_16 8 . - 1 . 4 8 - 1 6 5 . - 1 . 4 4 - 1 6 6 . - 3 . 7 6 - 8 7 . 4 9 7 9 5 8_ 4 1 5 1 6 6 - 0 . 0 6 2 -- 0 . 0 6 2 - 0 . 0 6 1 - 6 . 0 6 C -- 0 . 0 6 C - 0 . 0 6 3 • 1 4 3 . 5 3 - 1 5 1 . 9 8 - 1 6 8 . 0 3 : 1 6 5 . 1 1 - 1 6 5 . 4 1 - 8 4 . 3 4 - 0 . 0 4 2 . 8 1 0 . 5 5 0 . 3 0 " 1 . 5 0 . 3 . 3 2 - 5 . 0 9 - 8 5 - 4 . 6 1 - 8 1 - 4 . 8 0 - 8 1 - 7 . 5 9 - 8 2 - 6 . 2 C - 8 1 - 6 . 9 6 - 7 6 - 0 . 6 1 4 . - 0 . 6 1 5 . - 0 . 6 1 6 . - 0 . 6 1 7 . - 0 . 6 1 8 . - 0 . 6 1 9 . 2 0 7 4 . 0 2 0 8 7 . C 2 0 2 5 . 0 _ 3 2 3 7 . 0 3 3 0 0 . 0 3 5 0 2 . 0 9 4 0 . 0 9 5 3 . 0 8 9 1 . 0 _ 2 1 0 3 . 0 2 1 6 6 . 0 2 3 6 8 . 0 - 1 0 . 5 3 - 8 6 . 2 8 3 2 . C 6 - 3 . 4 3 - 7 C - 9 . 7 9 - 8 9 . 5 0 3 2 . 5 0 - 6 . 4 0 - 7 3 - 9 . 0 5 - 8 3 . 6 8 3 0 . 3 9 - 6 . 1 1 - 6 8 - 1 0 . 2 9 - 1 9 7 . 5 1 7 1 . 7 2 0 . 1 7 - 1 3 5 - 1 0 . 3 8 - 2 0 3 . 4 3 7 3 . 8 7 - 0 . 1 8 - 1 4 0 - I C . 9 5 - 2 2 2 . 4 C 8 C . 7 6 - 0 . 4 3 - 1 5 3 . 7 6 . 3 7 . 3 6 . C I . 7 8 . 9 5 . 1 9 . 1 8 _ 4 6 . S C . 1 2 C 2 - 0 . 0 6 4 - 0 . 0 6 4 j _ 0 . 0 6 4 -67 C 6 7 - 0 . 0 6 6 - 0 . 0 6 7 - 8 3 . 2 5 - 7 9 . 4 3 _ - 8 0 . 9 3 - 8 0 . 6 2 - 8 2 . 7 1 - 7 9 . 4 5 2 . 5 1 1 . 9 4 0 . 4 3 1 . 3 9 - 0 . 9 3 - 2 . 5 0 - 0 . 0 6 3 - 0 . 0 6 7 - 0 . 0 6 7 - 0 . 0 6 C - 0 . 0 6 0 - 0 . 0 6 C - 7 6 . 7 0 - 7 4 . 7 2 - 6 8 _ . 5 0 _ - 1 4 0 . 6 3 - 1 4 5 . 9 8 - 1 6 1 . 9 9 - 6 . 5 1 - 1 . 5 4 - 0 . 0 4 - 4 . 7 3 - 5 . 8 6 - 8 . 9 7 - 0 . 620. - 0 . 621. 3 4 7 3 . C 3 3 0 1 - 0 2 3 3 9 . 0 2 1 6 7 . 0 - 1 1 . 0 8 - 2 1 9 7 6 7 7 9 7 T 7 - 1 . 1 7 - 1 5 2 . 1 5 - 0 . 0 6 0 - 1 6 0 . 3 7 - 8 . 2 2 • 1 1 . 2 7 - 2 0 3 . 5 2 7 3 . 9 1 - C . 9 6 - 1 4 1 . 8 4 - 0 . 0 6 0 - 1 4 2 . 5 8 - 0 . 7 4 T H E P A R A M E T E R S A T T H E B A S E P C I N T ( - 0 . 9 4 5 2 . ) A R E : G E O G R A P H I C L A T = 5 0 . 7 C 6 ; G E O C E N T R I C L A T = H E I G H T A B O V E E L E V A T I O N D A T U M = 0 - 0 F E E T 5 0 . 5 1 6 . ( C E G R E E S ) T H E O R E T I C A L ( A B S O L U T E ) G R A V I T Y E F F E C T S ( M G A L S ) : L A T I T U O E 9 8 1 1 1 4 . 2 7 7 F R E E A I R ( R E L T O M S L ) _ 0 j _ 5 0 3 B O U G U E R " S L A B ( 2 . 6 7 0 ) T E R R A I N ( 2 . 6 7 C ) T O T A L T H E O R E T I C A L G R A V I T Y 3 8 . 6 7 6 - 0 . 8 2 6 9 8 1 0 4 5 . 6 2 4 M G A L S O B S E R V E D ( A B S O L U T E ) G R A V I T Y 9 8 0 9 5 2 . 1 3 0 M G A L S C O M P L E T E B O U G U E R A N O M A L Y - 9 3 . 4 9 4 M G A L S T H E E L E V A T I O N D A T L M F O P T H E S U R V E Y I S = U34.0 F E E T T H E M E A N S T A T I O N E L E V A T I O N = 2 5 3 5 . 0 F E E T T H E M E A N E L E V A T I O N F A C T O R F O R T H I S S U R V E Y I S = - 0 . 0 6 7 . M G A L / F C O T T H E M E A N T O T A L T E R R A - I N E F F E C T F O R T H I S S U R V E Y = 1 . 9 6 2 M G A L S / S T A T I O N T H E M E A N R E L A T I V E T E R R A I N E F F E C T F C P T H I S S U R V E Y = - 1 . 1 3 6 fGALS/STATICN STOP 0 E X E C U T I C N T E R M I N A T E D t S I C N O F F 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0052998/manifest

Comment

Related Items