UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

An electric analog simulation of ground water flow patterns at a potash waste disposal pond located near… Bourne, Douglas Randal 1976

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1976_A6_7 B68.pdf [ 8.01MB ]
Metadata
JSON: 831-1.0052869.json
JSON-LD: 831-1.0052869-ld.json
RDF/XML (Pretty): 831-1.0052869-rdf.xml
RDF/JSON: 831-1.0052869-rdf.json
Turtle: 831-1.0052869-turtle.txt
N-Triples: 831-1.0052869-rdf-ntriples.txt
Original Record: 831-1.0052869-source.json
Full Text
831-1.0052869-fulltext.txt
Citation
831-1.0052869.ris

Full Text

AN ELECTRIC ANALOG SIMULATION OF- GROUND' WATER FLOW PATTERNS AT A POTASH WASTE DISPOSAL POND LOCATED NEAR ESTERHAZY, SASKATCHEWAN by DOUGLAS RANDAL BOURNE • B.Sc . , U n i v e r s i t y of B r i t i s h Columbia, 19 7 4 A.THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE ; i n THE FACULTY OF GRADUATE STUDIES Department of G e o l o g i c a l Sciences We accept t h i s t h e s i s as conforming to the r e q u i r e d standard THE UNIVERSITY . OF BRITISH COLUMBIA A p r i l , 1976 ". © D o u g l a s Randa 1 Bourne In p re sent ing t h i s t he s i s in p a r t i a l f u l f i l m e n t o f the requirements f o r an advanced degree at the U n i v e r s i t y of B r i t i s h Columbia, I agree that the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r reference and study. I f u r t h e r agree tha t permiss ion fo r ex ten s i ve copying o f t h i s t he s i s f o r s c h o l a r l y purposes may be granted by the Head of my Department or by h i s r ep re sen ta t i ve s . It i s understood that copying or p u b l i c a t i o n of t h i s t he s i s f o r f i n a n c i a l ga in s h a l l not be a l lowed without my w r i t t e n permi s s ion . Depa rtment The U n i v e r s i t y of B r i t i s h Columbia 2075 Wesbrook Place Vancouver, Canada V6T 1W5 ABSTRACT This study r e p o r t s the r e s u l t s of an i n v e s t i g a t i o n of the p o t e n t i a l p o l l u t i o n hazard of a potash b r i n e d i s p o s a l pond l o c a t e d near Esterhazy, Saskatchewan. The most s e r i o u s problems a s s o c i a t e d with the b r i n e pond are the p o t e n t i a l p o l l u t i o n of groundwater resources and the p o s s i b l e contamination of a nearby stream by groundxvater d i s c h a r g e . The primary g e o l o g i c f e a t u r e i s a g l a c i a l b u r i e d v a l l e y a q u i f e r c o n s i s t i n g of highly-permeable sands and g r a v e l s . A three dimensional e l e c t r i c analog model was co n s t r u c t e d to simulate the steady s t a t e and t r a n s i e n t groundwater flow systems i n the b u r i e d v a l l e y a q u i f e r . The steady s t a t e a n a l y s i s enabled the author to c a l c u l a t e the co n v e c t i v e t r a v e l times of the b r i n e from the b r i n e pond to the nearby creek. The t r a n s i e n t a n a l y s i s was used to assess the f e a s i b i l i t y of r e v e r s i n g the h y d r a u l i c g r a d i e n t i n the b u r i e d v a l l e y a q u i f e r . Steady s t a t e r e s u l t s i n d i c a t e that the most s e r i o u s p o t e n t i a p o l l u t i o n hazard i s b r i n e seepage onto the s u r f a c e immed-i a t e l y east of the b r i n e pond. At a d i s t a n c e of 5600 f e e t from the b r i n e pond, t h i s seepage w i l l occur w i t h i n 30 years; nearer to the b r i n e pond, i t w i l l occur sooner. This type of b r i n e seepage could enter the nearby stream as a r e s u l t of s u r f a c e drainage. B r i n e p o l l u t i o n by groundwater di s c h a r g e d i r e c t l y i n t o the creek w i l l take between 640 to 1260 years, so t h i s mechanism does not pose an immediate p o l l u t i o n hazard. T r a n s i e n t r e s u l t s i n d i c a t e that low-rate i n j e c t i o n w e l l s (up to 50 IGPM) would not re v e r s e the h y d r a u l i c g r a d i e n t i n the b u r i e d v a l l e y a q u i f e r . I n j e c t i o n r a t e s between 370 to 575 IGPM would be r e q u i r e d , but f r e s h water s u p p l i e s of t h i s magnitude are not a v a i l a b l e . The design of f u t u r e b r i n e ponds should i n c l u d e seepage c a l c u l a t i o n s i n the i n i t i a l phases of design i n s t e a d of a f t e r the f a c t . i i . TABLE OF CONTENTS ABSTRACT . . i . ACKNOWLEDGMENTS x i . I. INTRODUCTION 1 Physiography 4 I I . GEOLOGY ' 9 Bedrock Geology 9 Bedrock Topography 9 P l e i s t o c e n e S t r a t i g r a p h y 13 i . B a t t l e f o r d Formation i i . F l o r a l Formation i i i . B u r i e d V a l l e y F l u v i a l Deposits G l a c i a l H i s t o r y : . . . 17 I I I . HYDROGEOLOGY 25 T h e o r e t i c a l Approach 25 i . Steady State i i . T r a n s i e n t H y d r a u l i c C o n d u c t i v i t y D i s t r i b u t i o n 32 i . T i l l i i . B u r i e d V a l l e y F l u v i a l Deposits i i i . Pump Tes t s i v . Theis Recovery Method v. H y d r a u l i c C o n d u c t i v i t y Estimates from G r a i n S i z e A n a l y s i s v i . Slug Tests v i i . T r a n s m i s s i b i l i t y Estimates from Well Logs P o r o s i t y and C o m p r e s s i b i l i t y D i s t r i b u t i o n s . 47 i i i . IV. ELECTRIC ANALOG MODEL . 49 Theory 49 i . Steady State i i . T r a n s i e n t S c a l i n g 55 Des ign . 56 E l e c t r i c a l Equipment 61 i . Steady State i i . T r a n s i e n t C o n s t r u c t i o n Techniques 64 E r r o r s . . . ., 65 V. RESULTS 67 Steady State R e s u l t s 69 T r a n s i e n t R e s u l t s 79 E f f e c t of Flowing Seismic Shot Hole ..' 83 VI. DISCUSSION 89 V I I . SUMMARY 9 2 V I I I . BIBLIOGRAPHY 95 IX. APPENDICES . ... 99 A - Pump t e s t data f o r o b s e r v a t i o n w e l l s A to G . . 99 B - Theis recovery method sheets f o r ob s e r v a t i o n s w e l l s A to G 109 J-V . LIST OF TABLES T a b l e 1.. C h e m i c a l a n a l y s i s of waste w a t e r from t h e I.M.C.C. K2 p l a n t 6 T a b l e 2. H y d r o g e o l o g i c components of t h e s t e a d y s t a t e and t r a n s i e n t g r o u n d w a t e r e l e c t r i c a n a l o g model 31 T a b l e 3. H y d r a u l i c c o n d u c t i v i t y v a l u e s f o r t i l l and s h a l e i n S a s k a t c h e w a n and o t h e r g e o l o g i c a l l y s i m i l a r a r e a s 33 T a b l e 4. T r a n s m i s s i b i 1 i t y and s t o r a g e c o e f f i c i e n t v a l u e s f o r t h e T h e i s and J a c o b methods 37 T a b l e 5. H y d r a u l i c c o n d u c t i v i t y e s t i m a t e s from t h e T h e i s r e c o v e r y method 40 T a b l e 6. H y d r a u l i c c o n d u c t i v i t y v a l u e s from s l u g t e s t s f o r o b s e r v a t i o n w e l l s D, F and G 46 T a b l e 7. M easured and c a l i b r a t e d h y d r o g e o l o g i c p a r a m e t e r s f o r t h e t i l l and b u r i e d v a l l e y a q u i f e r 59 T a b l e 8. I n j e c t i o n w e l l c o m b i n a t i o n s and t h e i r i n j e c t i o n r a t e s . 80 T a b l e 9. C o m b i n a t i o n s of i n j e c t i o n - p u m p i n g w e l l s and t h e i r i n j e c t i o n - p u m p i n g r a t e s . ." 84 •V . Table 10. T r a v e l times of b r i n e to move from the b r i n e pond to the f l o w i n g seismic shot hole with the sei s m i c shot hole both plugged and unplugged 88 Table 11. Quantity of water (or b r i n e ) f l o w i n g through c r o s s s e c t i o n s A-A"*" and E-E^ f o r v a r i o u s b r i n e pond e l e v a t i o n s 90 v i . LIST OF FIGURES F i g u r e 1. L o c a t i o n of Esterhazy, Saskatchewan. 2 F i g u r e 2. Kind and o r i g i n of wastes i n the Saskatchewan potash i n d u s t r y 5 F i g u r e 3. Regional s u r f a c e topography of the study s i t e 8 Fi g u r e 4. Regiona l s u r f a c e geology of the study s i t e 10, 11 Fi g u r e 5. Regional topography of the R i d i n g Mountain Formation 12 F i g u r e 6. D e t a i l e d bedrock topography of the study s i t e 14 Fi g u r e 7. Combined B a t t l e f o r d and F l o r a l Formations isopach map. ; 16 F i g u r e 8. Sand and g r a v e l isopach map, I.M.C'.C. K2 potash mine, Esterhazy, Saskatchewan. ... 18 F i g u r e 9. S t r a t i g r a p h i c cross s e c t i o n A-A^". 19 F i g u r e 10. S t r a t i g r a p h i c c r o s s s e c t i o n s B-B^ and C-C 1. 20 F i g u r e 11. S t r a t i g r a p h i c cross s e c t i o n D-D"*" 21 V 1 X . F i g u r e 12. S t r a t i g r a p h i c cross s e c t i o n E-E x at the study s i t e 22 F i g u r e 13. S t r a t i g r a p h i c cross s e c t i o n F-F^ at the study s i t e 23 F i g u r e 14. Cross s e c t i o n B-B"*" i l l u s t r a t i n g the e s s e n t i a l components of the study s i t e boundary value problem 27 F i g u r e 15. Cross s e c t i o n D-D"*" i l l u s t r a t i n g the e s s e n t i a l components of the study s i t e boundary value problem 28 F i g u r e 16. L o c a t i o n of o b s e r v a t i o n w e l l s at the study s i t e 38 F i g u r e 17. Jacob method a p p l i e d to o b s e r v a t i o n w e l l A 39 F i g u r e 18. Theis recovery method a p p l i e d to o b s e r v a t i o n w e l l F 41 F i g u r e 19a. Grain s i z e d i s t r i b u t i o n curve of a sand sample 43 F i g u r e 19b. H y d r a u l i c c o n d u c t i v i t y estimated from the ... p r e d i c t i v e curves of Masch and Denny (1966). 44 F i g u r e 20. T r a n s m i s s i b i l i t y estimate i n the b u r i e d v a l l e y f l u v i a l d e p o s i t s 48 v i i i . F i g u r e 21. Schematic r e p r e s e n t a t i o n of c u r r e n t " flow i n a three dimensional analog. 50 F i g u r e 22. D i s t r i b u t i o n of nodes i n the h o r i z o n t a l l a y e r s of the e l e c t r i c analog model 60 F i g u r e 23. L o c a t i o n of i n j e c t i o n w e l l s and f l o w i n g s e i s m i c shot hole . 68 F i g u r e 24. D i s t r i b u t i o n of nodes along cross s e c t i o n D-D1 70 F i g u r e 25. Steady s t a t e groundwater flow p a t t e r n i n the t i l l l a y e r f o r a b r i n e pond e l e v a t i o n of 1671 f e e t 71 F i g u r e 26. Steady s t a t e groundwater flow p a t t e r n i n the b u r i e d v a l l e y a q u i f e r f o r a b r i n e pond e l e v a t i o n of 1671 f e e t 72 F i g u r e 27. Steady s t a t e groundwater flow p a t t e r n along cross s e c t i o n D-D1 f o r a b r i n e pond e l e v a t i o n of 1671 f e e t 73 F i g u r e 28. Steady s t a t e groundwater flow p a t t e r n along cross s e c t i o n D-D1 f o r a b r i n e pond e l e v a t i o n of 1666 f e e t . . . 74 F i g u r e 29. Steady s t a t e groundwater flow p a t t e r n along c r o s s s e c t i o n D-D1 f o r a b r i n e pond e l e v a t i o n of 1661 f e e t 71 F i g u r e 30. Steady s t a t e , groundwater flow p a t t e r n along cross s e c t i o n D-D^ " with no b r i n e pond. F i g u r e 31. Graph i l l u s t r a t i n g a t r a v e l time of b r i n e moving from the b r i n e pond p l o t t e d a g a i n s t d i s t a n c e from the e a s t e r n dyke of the b r i n e p ond Fig u r e 32a. Change i n h y d r a u l i c head i n the b u r i e d v a l l e y a q u i f e r a f t e r 50 years of i n j e c t i o n at 30 IGPM Fi g u r e 32b. Re s u l t a n t h y d r a u l i c head d i s t r i b u t i o n i n the b u r i e d v a l l e y a q u i f e r a f t e r 50 years of i n j e c t i o n at 30 IGPM. Fi g u r e 33. Change i n h y d r a u l i c head i n the b u r i e d v a l l e y a q u i f e r a f t e r 5 years f o r the s e i s m i c shot hole d i s c h a r g i n g at a r a t e of 20 IGPM Fi g u r e 34. Change i n h y d r a u l i c head i n the b u r i e d v a l l e y a q u i f e r a f t e r 10 years f o r the se i s m i c shot hole d i s c h a r g i n g at a r a t e of 20 IGPM Fi g u r e 35. Change i n h y d r a u l i c head i n the b u r i e d v a l l e y a q u i f e r a f t e r 20 years f o r the se i s m i c shot hole d i s c h a r g i n g at a r a t e of 20 IGPM - - - -LIST OF PLATES P l a t e 1. A view of the waste d i s p o s a l pond and I.M.C.C. K2 p l a n t from the northern end of the b r i n e pond. 7 P l a t e 2. A view of the I.M.C.C. K2 waste d i s p o s a l pond 7 P l a t e 3. The f r o n t o.f the study s i t e e l e c t r i c analog model .. 58 P l a t e 4. The back of the e l e c t r i c analog model 58 P l a t e 5. \ The steady s t a t e e l e c t r i c analog model response equipment 62 P l a t e 6. The e x c i t a t i o n - r e s p o n s e apparatus f o r the t r a n s i e n t groundwater case. 62 ACKNOWLEDGMENTS would l i k e to express my s i n c e r e thanks t o : Dr. R. A. Freeze f o r h i s s u p e r v i s i o n of my t h e s i s and h i s constant r e v i s i o n of my haphazard w r i t i n g s t y l e . Dr. J . A l b e r t Vonhof f o r the t h e s i s t o p i c and s u p e r v i s i o n during the summer of 1975. Mr. J . A. Banner who's a s s i s t a n c e and advice on e l e c t r o n i c s was i n v a l u a b l e . Amoco Canada Petroleum Co. L t d . who provided d r a f t i n g and ty p i n g s e r v i c e s throughout the course of t h i s study. Myra, my w i f e , f o r her help i n c o n s t r u c t i n g the e l e c t r i c analog model. INTRODUCTION The mining of potash from the P r a i r i e E v a p o r i t e Formation i s a major i n d u s t r y i n Saskatchewan. During the e x t r a c t i o n of potassium c h l o r i d e from the potash ore, l a r g e q u a n t i t i e s of sodium c h l o r i d e are produced as waste. T h i s waste, both i n l i q u i d and s o l i d form, i s c u r r e n t l y s t o r e d i n waste d i s p o s a l basins which c o n s i s t of a r t i f i c i a l l y c o n s t r u c t e d lagoons and/or n a t u r a l d e p r e s s i o n s . The most s e r i o u s problem with waste d i s p o s a l lagoons i s the p o t e n t i a l p o l l u t i o n of groundwater resources (Meneley,1965). If subsurface p o l l u t i o n i s allowed to occur, the r e s t o r a t i o n of a f f e c t e d a q u i f e r s could take s e v e r a l hundred years ( Fry-berger, 1975) or i n some cases might w e l l be impossible (Meneley 1965). I t i s a l s o p o s s i b l e that s u r f a c e waters could be cont-aminated by the eventual d i s c h a r g e of groundwater i n t o r i v e r systems. Proper s i t i n g of waste lagoons i n the h y d r o g e o l o g i c a l environment can minimize the p o t e n t i a l f o r groundwater p o l l u t i o n The most important elements i n a s s e s s i n g the p o t e n t i a l hazard of waste lagoons are the d i r e c t i o n of the b r i n e movement through the g e o l o g i c a l formations and the t r a v e l time f o r p o l l -utants to move from t h e i r source to a pot a b l e a q u i f e r or stream. Determination of these elements r e q u i r e s an understanding of the geology and a knowledge of the d i s t r i b u t i o n of the hydro-g e o l o g i c flow parameters - h y d r a u l i c c o n d u c t i v i t y (K), c o m p r e s s i b i l i t y of the g e o l o g i c formations ( a ) , and p o r o s i t y (n). T h i s study r e p o r t s the r e s u l t s of an i n v e s t i g a t i o n of the p o t e n t i a l p o l l u t i o n hazard of the b r i n e d i s p o s a l lagoon at the I n t e r n a t i o n a l M i n e r a l s and Chemical C o r p o r a t i o n (Canada) L i m i t e d , K2 p l a n t , nine miles east of Este r h a z y , Saskatchewan (Fi g u r e 1). The g e o l o g i c a l model at t h i s s i t e has been d e f i n e d I— 60« 110° ~r — 2 a: • SI 105° TASKATCTHEWAN" 100° i 60° —\ 5 5 ° ^ • Prtnc* Albert © Saskatoon h- 50' no° \ E t t . j h a i y J # M o o » e J o » » © B E G I N A \ \ i»t«von €> 1. U.SA. 105° 50°-H A008 _1_ 100 50 0 100 200 MILES KILOMETRES 100 0 100 200 300 Figure 1. Location of Esterhazy, Saskatchewan. by Vonhof (1975b). A major b u r i e d v a l l e y c o n t a i n i n g h i g h l y permeable f l u v i a l d e p o s i t s u n d e r l i e s the lagoon arid trends towards Cutarm Creek, about 7000 h o r i z o n t a l f e e t from the waste lagoon. The method of a n a l y s i s u t i l i z e s an e l e c t r i c analog model of the h y d r o g e o l o g i c a l environment. The model i s used to s o l v e both steady s t a t e and t r a n s i e n t flow systems, and to assess the f e a s i b i l i t y of low r a t e i n j e c t i o n w e l l s designed to prevent the b r i n e from m i g r a t i n g as f a r as Cutarm Creek. It i s necessary at t h i s p o i n t to c l a r i f y the author's c o n t r i b u t i o n i n t h i s study s i n c e the author has drawn f r e e l y from a number of p e r t i n e n t papers, n o t a b l y Vonhof(1975b). The author's r o l e i s twofold: (1) to assess the d i s t r i b u t i o n of the h y d r o g e o l o g i c parameters-h y d r a u l i c c o n d u c t i v i t y , K, c o m p r e s s i b i l i t y , a, and p o r o s i t y , n; and, (2) to c o n s t r u c t and c a r r y out the steady s t a t e and t r a n s i e n t groundwater flow s i m u l a t i o n s on the e l e c t r i c analog model. In t h i s study only the c o n v e c t i o n of b r i n e w i t h i n the groundwater flow system i s c o n s i d e r e d . I t i s recognized that other mechanisms of p o l l u t a n t movement such as d i s p e r s i o n , mole-c u l a r d i f f u s i o n , hydrogeochemical r e t a r d a t i o n and chemical p r e c i p i t a t i o n , may a l t e r the flow path and time of t r a v e l , but at the Esterhazy s i t e the data needed to model these mechanisms i s u n a v a i l a b l e . Before proceeding with the h y d r o g e o l o g i c a l a n a l y s i s i t i s worth commenting b r i e f l y on the source and nature of the waste. Sodium c h l o r i d e (NaCl), both i n the d i s s o l v e d and s o l i d form, accounts f o r 50 to 70 per cent of the waste generated by potash mining i n Saskatchewan. The NaCl commonly occurs as the mineral h a l i t e i n t e r s p e r s e d with s y l v i t e (KC1). " S a l t horses", pockets, l e n s e s , and beds or channels are a minor source of h a l i t e . I n s o l u b l e s , which are mainly c l a y s , c a m a l l i t e (KC1 . MgC^ • 6H2O) , m i l l wash water, s h a f t water, and spent' m i l l chemicals, c o n s t i t u t e the remainder of the waste. Fi g u r e 2 summarizes the o r i g i n and kinds of waste generated by the Saskatchewan potash i n d u s t r y . Chemical a n a l y s i s of waste b r i n e from the IMCC K2 waste lagoon shows that the c o n c e n t r a t i o n of NaCl i n t h i s b r i n e i s much higher than i n sea water. Ta b l e 1 summarizes the chemical a n a l y s i s . T h i s waste i s pumped as a s l u r r y i n t o a 0.6 square mile (360 acre) waste d i s p o s a l b a s i n , which i s surrounded by an a r t i f i c i a l dyke ( P l a t e s 1 and 2 ) . Expansion of the b r i n e lagoon due to continued potash e x t r a c t i o n i s probable. Physiography The study area i s l o c a t e d i n the A s s i n i b o i n e River P l a i n s p h y s i o g r a p h i c d i v i s i o n (Acton et a l , 1960). Gently u n d u l a t i n g t i l l p l a i n s , ranging i n e l e v a t i o n from 1600 to 1675 f e e t ( F igure 3)," w i t h numerous temporary and permanent ponds, cover the m a j o r i t y of the area. Cutarm Creek V a l l e y , a r e l a t i v e l y broad, f l a t bottomed g l a c i a l , meltwater channel, i s the only e x c e p t i o n a l topographic f e a t u r e i n the area. The v a l l e y near the K2 mine l i e s at 1510 f e e t above mean sea l e v e l . R e g i o n a l drainage i n the area i s through s e v e r a l northwest t r e n d i n g creeks, of which Cutarm Creek i s one. These creeks d r a i n i n t o the Qu'appelle River which i n turn d r a i n s i n t o the A s s i n i b o i n e and Red R i v e r s , e v e n t u a l l y d i s c h a r g i n g i n t o Lake Winnipeg. Medium textured b l a c k s o i l s , which have developed on g l a c i a l t i l l , predominate i n the a r e a . Annual p r e c i p i t a t i o n , measured at Broadview (approximately 40 miles southwest of E s t e r h a z y ) , ranges from 9 to 27 inches o with an average of 17.5 inches. Temperatures range from + 109 F o o to -50 F with a mean of+35 F. H A L I T E (NaCI) interspersed with Sylvite, 50-70% NaCI/Ton I N S O L U B L E S mainly clays, interspersed with ore, or as thin layers up to 5%/Ton  H A L I T E (NaCI) from "salt horses" C A R N A L L I T I C O R E (KCI - M g C I 2 - 6 H 2 0 ) " WASH " W A T E R MILL S H A F T W A T E R SPENT M I L L C H E M I C A L S Figure 2. Kind and o r i g i n of wastes i n the Saskatchewan potash i n d u s t r y ( a f t e r Vonhof, 1975b) C o n s t i t u e n t Value S p e c i f i c Conductance (micromhos/cm) 264,000 T u r b i d i t y ( s i l i c a s c a l e ) 2.9 Temperature (°C) 23.4 Colour (standard c o b a l t s c a l e ) 5.0 pH 7.6 3 Density (gm/cm , c a l c u l a t e d ) 1.19 T o t a l Hardness 37,600 T o t a l A l k a l i n i t y Na + K + Mg + + C a + + M + + + + Mn Z n + + F e + + P b + + „ ++ Cu 98.1 88,500 39,500 7,940 1,980 8.4 0.045 > 0.02 0.018 0 .012 C l " 200,000 SO . = 4 2,100 0.5 F" 0 .1 Table 1. Chemical a n a l y s i s of waste water from the I.M.C.C. K2 p l a n t . Values are expressed i n pa r t s per m i l l i o n by weight (ppm) unless otherwise s p e c i f i e d . (Water Q u a l i t y Laboratory, Environment Canada, C a l g a r y ) . A view of the waste d i s p o s a l pond and I.M.C.C. K2 p l a n t from the northern end of the b r i n e pond. Note the NaCl that has p r e c i p i t a t e d around the b r i n e pond dyke . A view of the I.M.C.C. K2 waste d i s p o s a l pond . 8. GEOLOGY Regional s t u d i e s of the P l e i s t o c e n e s t r a t i g r a p h y have been conducted i n t h i s area by C h r i s t i a n s e n (1960 and 1971). The m a j o r i t y of the area i s covered by a t h i n mantle of P l e i s t o c e n e sediments, commonly t i l l , o v e r l y i n g Cretaceous shales of the R i d i n g Mountain Formation. Regional s u r f i c i a l geology i s i l l u s t r a t e d i n F i g u r e 4. At the Esterhazy s i t e , Vonhof (1975b) has d e f i n e d the g e o l o g i c a l model by d r i l l i n g and l o g g i n g 91 boreholes f o r the Department of the Environment during 1968 and 1971. F i g u r e s 5 to 13 i l l u s t r a t e the s i t e geology. The f o l l o w i n g d e s c r i p t i o n has been summarized from Vonhof(1975b). Bedrock Geology The R i d i n g Mountain Formation i s a gray, non-calcareous s i l t y c l a y or mudstone. I t averages 500 f e e t i n t h i c k n e s s i n the area. Beds of v e r y - f i n e - g r a i n e d s i l t y , g reenish-gray, non-calc a r e o u s to s l i g h t l y c a l c a r e o u s sands may be present. Mont-m o r i l l o n i t e , with minor amounts of i l l i t e and k a o l i n i t e , i s the most common c l a y m i n e r a l . The Odanah Member of the R i d i n g Mountain Formation i s present to the south of the study area (see F i g u r e 5). I t i s a l i g h t to dark gray, non-calcareous s i l i c e o u s s h a l e , comm-only interbedded with gray c l a y and i s o f t e n b r e c c i a t e d and m y l o n i t i c . In a h y d r o g e o l o g i c a l sense f o r shallow groundwater flow systems, the top of the R i d i n g Mountain Formation i s assumed to act as an impermeable boundary. The ol d e r u n d e r l y i n g s t r a t i g r a p h i c u n i t s w i l l t h e r e f o r e not be d i s c u s s e d . Bedrock Topography The bedrock s u r f a c e i s the contact between the P l e i s t o c e n e sediments and the R i d i n g Mountain Formation. The r e g i o n a l bedrock topography, F i g u r e 5 ( C h r i s t i a n s e n , 1971), r e v e a l s that - LEGEND -TILL AND MINOR AMOUNTS OF SAND AND GRAVEL TILL RIDGES 5-30 FEET HIGH ; TREND INDICATED BY PATTERN. FLUTINGS IN TILL AND BEDROCK. OUTWASH PLAINS CONSISTING OF SAND AND GRAVEL UP TO 20 FEET THICK. SAND AND GRAVEL IN SHALLOW TRENCHES. GLACIAL SPILLWAYS UP TO 400 FEET DEEP. To accompany Figure 4. 1 2 . Figure 5. Regional topography of the Riding Mountain Formation-. Stipled area represents the Odanah member (after Christiansen, 1971). the study area i s l o c a t e d upon the n o r t h e r n f l a n k of a bedrock h i g h . A more d e t a i l e d bedrock topography of the study area was determined by Vonhof (1975b), F i g u r e 6. Three b u r i e d v a l l e y s are e v i d e n t on the d e t a i l e d bedrock topography map. The main v a l l e y trends roughly east-west, slopes towards the west, and passes'under the northern p o r t i o n of the b r i n e pond. The second v a l l e y o r i g i n a t e s i n the south-east and runs p a r a l l e l to Cutarm Creek. I t j o i n s the main b u r i e d v a l l e y i n the n o r t h e a s t e r n p a r t of the study area. A small v a l l e y , t r i b u t a r y to the main v a l l e y and about 4500 f e e t long, passes under the n o r t h c e n t r e p a r t of the b r i n e pond (F i g u r e 6). H y d r o l o g i c a l l y , the bedrock s u r f a c e c o n t r o l s the ground-water flow i f the h y d r a u l i c c o n d u c t i v i t y , K, of the bedrock i s s i g n i f i c a n t l y lower than the o v e r l y i n g d e p o s i t s . In the study area, no K measurements of the bedrock are r e p o r t e d . However, K estimates from g e o l o g i c a l l y s i m i l a r formations i n Saskatchewan - 2 - 7 2 (Table 3) vary between 10 to 10 IGPD/ft . An average K 2 v a l u e of the b u r i e d f l u v i a l v a l l e y d e p o s i t s i s 3.3 x 10 2 IGPD/ft . (This f i g u r e i s estimated from a v a r i e t y of methods, which are d i s c u s s e d i n the hydrogeology s e c t i o n . ) The d i f f -erence i n K between these two u n i t s i s at l e a s t four orders of magnitude and i t can t h e r e f o r e be assumed that the bedrock s u r f a c e acts as an impermeable boundary. P l e i s t o c e n e S t r a t i g r a p h y A r e l a t i v e l y t h i n mantle of P l e i s t o c e n e sediments uncon-formably o v e r l i e s the R i d i n g Mountain Formation. Regional and l o c a l s t r a t i g r a p h i c s t u d i e s ( C h r i s t i a n s e n , 1960, Vonhof, 1975b) i n d i c a t e that the P l e i s t o c e n e sediments that u n d e r l i e the waste d i s p o s a l lagoon are composed of t i l l and b u r i e d v a l l e y f l u v i a l sediments. Vonhof (1975b) has r e c o g n i z e d two t i l l s at the study s i t e , the B a t t l e f o r d and F l o r a l . Format i o n s , d e s c r i b e d below Figure 6. Detailed bedrock topography of the study s i t e (modified a f t e r Vonhof, 1975b). 15. ( i ) B a t t l e f o r d Formation: T h i s u n i t , o r i g i n a l l y d e s c r i b e d by C h r i s t i a n s e n ( 1 9 6 8 ) , i s a gray to l i g h t o l i v e - g r a y , f r i a b l e , o x i d i z e d , c a l c a r e o u s , sandy and s i l t y t i l l . Thickness ranges from 6 - 17 f e e t and averages 10 f e e t . ( i i ) F l o r a l Formation: T h i s u n i t u n d e r l i e s the B a t t l e f o r d Formation and c o n s i s t s of o x i d i z e d to u n o x i d i z e d , c a l c a r e o u s pebbly t i l l . The upper pa r t of the F l o r a l Formation, from 8 to 20 f e e t , i s g e n e r a l l y o x i d i z e d . Vonhof (1975b) noted that t h i s formation possesses near v e r t i c a l f r a c t u r e s commonly extending up to t h i r t y f e e t deep . The F l o r a l Formation ranges from 15 - 100 f e e t t h i c k with an average t h i c k n e s s of 35 f e e t west of c r o s s - s e c t i o n C-C 1 ( F i g u r e s 6 and 7). East of t h i s s e c t i o n , the formation i s up to 250 f e e t t h i c k with an average t h i c k n e s s of 100 f e e t and contains a l a r g e number of t h i n sand and g r a v e l beds, l e n s e s , and i r r e g u l a r b odies. In most of the area, the F l o r a l Formation unconformably o v e r l i e s the R i d i n g Mountain Formation. F i g u r e 7 i s a combined B a t t l e f o r d and F l o r a l Formation isopach map. ( i i i ) Buried V a l l e y F l u v i a l D e p o s i t s : The f l u v i a l d e p o s i t s are composed of s i l t , sand, polymict g r a v e l , and s i l i c e o u s shale-pebble g r a v e l . Grains and pebbles i n the i n d i v i d u a l beds are g e n e r a l l y w e l l s o r t e d and subangular to subrounded. Sand s i z e s range from very f i n e (0.0625 - 0.125 mm) to very coarse (1 - 2 mm) with medium s i z e s (0.25 - 0.5 mm) predominating. The shale-pebble g r a v e l beds c o n s i s t - of sub-rounded to rounded s i l i c e o u s shale fragments, ranging i n s i z e from 2 mm to at l e a s t 50 mm. The s h a l e pebbles are g e n e r a l l y Figure 7. Combined B a t t l e f o r d and F l o r a l Formations.isopach map. imbedded i n a sandy matrix. S e v e r a l of the very c o a r s e - g r a i n e d sands c o n s i s t e n t i r e l y of rounded to w e l l rounded shale p a r t i c l e s . The shale pebbles and shale sand g r a i n s have been d e r i v e d from the u n d e r l y i n g R i d i n g Mountain Formation. The f l u v i a l d e p o s i t s occur as e x t e n s i v e v a l l e y f i l l s ( F i gures 8 to 13) west of s e c t i o n s 26 and 35, Township 19,Range 32, W1M. They u n d e r l i e the F l o r a l Formation, and r e s t unconformably upon the R i d i n g Mountain Formation. F i g u r e 8, a sand and g r a v e l isopach map, i n d i c a t e s that the maximum t h i c k n e s s a t t a i n e d by the f l u v i a l d e p o s i t s i s about 250 f e e t . The f l u v i a l d e p o s i t s occur as t h i n l a y e r s and l e n s e s , interbedded with t i l l , east of s e c t i o n s 27 and 34, Township 19, Range 32, W1M. The most s i g n i f i c a n t change i n l i t h o l o g y of the v a l l e y f i l l occurs i n the reach of the b u r i e d v a l l e y near Cutarm Creek (Figure 11). Thick d e p o s i t s of t i l l w ith minor amounts of sand and g r a v e l c o n s t i t u t e the v a l l e y f i l l . The t i l l s and sands were most l i k e l y d eposited by i c e t h r u s t i n g i n an e x i s t i n g v a l l e y which was l o c a t e d on the north slope of a bedrock upland (Vonhof, 1975 pers. comm.). G l a c i a l H i s t o r y The g l a c i a l h i s t o r y of the study s i t e and surrounding area has been d e s c r i b e d by C h r i s t i a n s e n (1960). The most important c r i t e r i a f o r determining the g l a c i a l h i s t o r y are the s t r a t i -graphy and the mo r p h o l o g i c a l f e a t u r e s , such as meltwater channels and moraines. The f o l l o w i n g phases of the g l a c i a l h i s t o r y are summarized from C h r i s t i a n s e n (1960) or are i n f e r r e d from f i e l d evidence: 1. The area, was e n t i r e l y covered by i c e . 2. The i c e r e t r e a t e d to a p o s i t i o n j u s t n o r t h of the study s i t e where the major v a l l e y was cut and i n f i l l e d with f l u v i a l sands and g r a v e l s . Figure 8. Sand and gravel isopach map, I.M.C.C. K2 potash mine, Esterhazy, Saskatchewan, (modified after Vonhof, 1975b). 1500 1700 1600 1500 UPPER C R E T A C E O U S 4 0 0 I— 120 50 I— 15 HOR IZONTAL S C A L E 0 400 800 F E E T 120 2 4 0 M E T E R S 100 F E E T Battleford Formation, scndy,s i l ly tilt, light olive gray ( 5 y , 6 / 2 ),ox, calc. Floral Formation (? ) , t l l l ,gray(5y,5/ l ) , unox, calc., with ox. joints. Sand and grovel. 0 15 V E R T I C A L S C A L E 30 M E T E R S Riding Mountain Format ion, s ha l e , sllty in p laces, gray (5y,5/l),uno>, n o n - c a l c . Geologic contact. Test ho le, E - l o g g e d , number (bedrock elevation) Identifies position test hole on c r o s s - s e c t i o n s ( F i gu re 8 ) S P - self po ten t i a l R — resist iv ity FIGURE 9 STRATIGRAPHIC CROS S - S ECTION A - A ' AT I.M.C.C:, K2 POTASH MINE , ESTERHAZY, SASKATCHEWAN, CANADA (after Vonhof , 1975 b ) 20. ITOO 1600 1500 MOO 1300 FIGURE 10 STRATIGRAPHIC CROSS - SECTIONS B - B ' AND C -C ' AT I.M.C.C..K2 POTASH MINE, ESTERHAZY, SASKATCHEWAN, CANADA (after Vonhof, 1975b) ami FIGURE II STRATGRAPHIC CROSS - SECTION D-D' AT I. M.C.C., K2 POTASH MINE , ESTERHAZY, SASKATCHEWAN, CAN ADA (after Vonhof , 1975b) Figure 12. Stratigraphic cross section E-E ' at the study site. F 1700 1514 < LU CO 2 < > O co < 2 O t— % 1600 1500 O 200 400 600 FEET O 60 120 180 METERS 1700 LEGEND SEE FIGURE 9 1600 1 1500 Figure 13. Stratigraphic cross section F - F ' at the s tudy s i te . •24. 3. The i c e readvanced, d e p o s i t i n g the F l o r a l Formation over the f l u v i a l d e p o s i t s . G l a c i a l i c e t h r u s t i n g deposited the t h i c k s e c t i o n of t i l l i n the e a s t e r n h a l f of the s i t e geology map. 4. The i c e r e t r e a t e d and readvanced d e p o s i t i n g the t i l l of the B a t t l e f o r d Formation. 5. The i c e r e t r e a t e d and uncovered the present landscape. One anomalous area i n the bedrock topography not explained by the g l a c i a l h i s t o r y i s the s m a l l a m p h i t h e a t r e - l i k e b u r i e d v a l l e y l o c a t e d to the west of the waste lagoon. T h i s b u r i e d v a l l e y i s i n t e r p r e t e d as part of the p r e - g l a c i a l drainage f o r t h i s part of the bedrock upland. During e i t h e r an i c e advance or r e t r e a t , t h i s v a l l e y was probably blocked by the i c e sheet, thereby c h a n n e l l i n g drainage p a r a l l e l to the i c e f r o n t . Presumably, t h i s drainage helped to cut the major b u r i e d v a l l e y . The two t i l l s and the b u r i e d v a l l e y f l u v i a l d e p o s i t s were probably formed during the l a s t g l a c i a t i o n . These d e p o s i t s are t h e r e f o r e Wisconsin i n age ( C h r i s t i a n s e n , 1968). R e g i o n a l l y , the i c e advanced to the southwest and r e t r e a t e d to the n o r t h e a s t . HYDROGEOLOGY In order to c a l c u l a t e c o n v e c t i v e t r a v e l times and the d i r e c t i o n of the p o l l u t a n t movement w i t h i n the g e o l o g i c u n i t s , groundwater flow nets are r e q u i r e d . Flow nets can be con s t r u c t e d by mapping key h y d r o l o g i c phenomena i n the f i e l d (Meyboom, 1963) or by s o l v i n g a mathematical model of the h y d r o g e o l o g i c a l system (Toth, 1963, Freeze and Witherspoon, 1966 and 1967). Once the mathematical model has been c a l i b r a t e d a g a i n s t f i e l d measurements, the model can then be u t i l i z e d f o r p r e d i c t i v e purposes. In t h i s study, a mathematical model has been adopted i n order to c o n s t r u c t groundwater flow n e t s . Theory The mathematical model approach i n v o l v e s r e p l a c i n g the h y d r o g e o l o g i c a l system with an e q u i v a l e n t mathematical model i n the form of a boundary value problem. Once the problem i s formulated i n a mathematical model, then accepted mathematical techniques of s o l v i n g boundary v a l u e problems can be employed. Boundary value problems c o n s i s t of f i v e e s s e n t i a l components: 1. the p a r t i a l d i f f e r e n t i a l e q u a t i o n which governs the system, 2. the shape of the r e g i o n . 3. the boundary c o n d i t i o n s . 4. the i n t i a l c o n d i t i o n s ; and, 5. the h y d r o g e o l o g i c a l parameter d i s t r i b u t i o n s f o r K, a, and n i n the r e g i o n of flow. The two most common methods f o r s o l v i n g boundary value problems are by a n a l y t i c a l and n u m e r i c a l techniques. A n a l y t i c a l techniques produce the most s a t i s f a c t o r y form of s o l u t i o n but these techniques are only e f f e c t i v e i f geometries, hydrogeologic parameter d i s t r i b u t i o n s , and boundary c o n d i t i o n s are a l l r e l a t i v e l y simple (Bear, 1972). Any complex boundary value problem must £. D . be solved using numerical techniques, e i t h e r by the f i n i t e d i f f e r e n c e method or f i n i t e element method. The f i n i t e d i f f e r e n c e method i s adopted i n t h i s study. In order to s o l v e the boundary value problem n u m e r i c a l l y , e i t h e r a d i g i t a l computer or an analog model may be employed. A d i g i t a l computer i s the most e f f i c i e n t method of s o l u t i o n but the e l e c t r i c analog o f f e r s s e v e r a l advantages i n p r a c t i c a l s i t u a t i o n s : 1. A very l a r g e one, two, or three dimensional g r i d can be used whereas i n a d i g i t a l computer storage may be l i m i t e d or computation time may become e x c e s s i v e . 2. The h y d r a u l i c c o n d u c t i v i t y v a r i a t i o n e i t h e r w i t h i n or between g e o l o g i c formations can exceed four orders of magnitude i n an e l e c t r i c analog model. D i g i t a l s o l u t i o n s f o r such cases may r e q u i r e e x c e s s i v e computer time (Freeze, 1975, pers. comm.). 3. Analogs are more e f f e c t i v e as a communication t o o l with p r a c t i c i n g engineers, a d m i n i s t r a t o r s , and laymen (Meneley, 1975, pers. comm.). 4. N o n - t e c h n i c a l personnel can operate the analog at a minimum co s t . The s o l u t i o n or output of an e l e c t r i c analog model of a steady s t a t e groundwater flow problem i s a h y d r a u l i c head value f o r each nodal p o i n t i n the system, namely <}> ( x , y , z ) . In the t r a n s i e n t case, the output i s A cp (x , y , z , t ) , the change i n h y d r a u l i c head from time zero to time t . Both a steady s t a t e and t r a n s i e n t a n a l y s i s have been a p p l i e d to the study s i t e analog model. A short d e s c r i p t i o n of the e s s e n t i a l components of these two boundary value problems i s necessary before proceeding. F i g u r e 14 and 15 i l l u s t r a t e the study s i t e boundary value problem. 1700 - i B WASTE LAGOON B' L U > o < LU UJ "J UJ — 1 < •y UJ _ to Z Z o < > TILL 1300 —' LEGEND XXXXX IMPERMEABLE BOUNDARY - APPROXIMATE WATER TABLE Mill llllll CONSTANT FLUX BOUNDARY GROUNDWATER FLOW DIRECTION SHALE r 1700 X X X X X X X X X X h 1600 h 1500 h 1400 1300 HORIZONTAL SCALE 400 0 400 800 FEET 0 0 120 50 120 50 I' 1 I " " 15 0 15 VERTICAL SCALE 240 METERS 100 FEET 30 METERS Figure 14. Cross section B-B' i l l u s t r a t i n g the e s s e n t i a l components of the study s i t e boundary value problem. LU > 1700-1 o < LU 1600-111 LU LU 1500-zz o< p "J 1400-> III 111 _ l 1300-LU CONSTANT FLUX BOUNDARY WASTE LAGOON § < 3 x x x x x x x x x x SHALE HORIZONTAL S C A l f tOO 0 400 800 FEET THEORETICAL IMPERMEABLE BOUNDARY 120 50 i --I 120 240 METERS 50 -4- 100 FEET —I • LEGEND SEE FIGURE 14 15 0 T5 30 METERS VERT ICAL SCALE F i g u r e 15. C r o s s s e c t i o n D - D ' i l l u s t r a t i n g the e s s e n t i a l c o m p o n e n t s of t h e s t u d y s i t e b o u n d a r y v a l u e p r o b l e m . ( i ) Steady S t a t e : The n o n l i n e a r p a r t i a l d i f f e r e n t i a l equation d e s c r i b i n g heterogeneous, a n i s o t r o p i c , steady s t a t e , s a t u r a t e d , ground-water flow through a porous medium i n three dimensions i s : 3_ (K(x,y,z) _9_£) + _3_ (K(x,y,z) d±) + _9_ (K(x,y,z) Z±)= 0 3:< 3x 3y 3y 3z 3z where: <j) = h y d r a u l i c head, L K(x,y,z) = h y d r a u l i c c o n d u c t i v i t y , L/T x,y,z = c a r t e s i a n c o - o r d i n a t e s , L Both impermeable and constant head boundary c o n d i t i o n s are present at the s i t e . Impermeable boundaries are l o c a t e d i n two p l a c e s : 1. the contact of the shale bedrock and the u n c o n s o l i d a t e d d e p o s i t s and, 2. under Cutarm Creek. The water t a b l e i s a constant head boundary; the h y d r a u l i c head along the water t a b l e being equal to i t s e l e v a t i o n . The r e g i o n of flow i s r e s t r i c t e d to the u n c o n s o l i d a t e d d e p o s i t s . Of the three h y d r o g e o l o g i c parameters (K,cc,n), only K i s needed f o r the steady s t a t e case. The K d i s t r i b u t i o n i n the r e g i o n of flow i s obtained by employing a number of tech-niques, which are d e s c r i b e d i n the f o l l o w i n g s e c t i o n s . ( i i ) T r a n s i e n t Case: The n o n l i n e a r p a r t i a l d i f f e r e n t i a l equation d e s c r i b i n g heterogeneous, a n i s o t r o p i c , t r a n s i e n t , s a t u r a t e d , three dimensional flow through a porous medium i s : 3_.(K(x,y,z) 3 1 ) + 3_ (K(x,y,z) _3_1) + 3_ (K(x,y,z) 3 1 ) = 3x 3x 3y 3y 3 z 3 z (2 ) y(a(x,y,z) + n(x,y,z)B) 3 1 + Q(x,y,z,t) 3 t 2 2 where: Y = s p e c i f i c weight of water (M/L T ) 2 «(x,y,z) = c o m p r e s s i b i l i t y of the medium, (L/MT ) n(x,y,z) = p o r o s i t y 3 = c o m p r e s s i b i l i t y of water (L/MT2) t = time (T) Q(x,y,z,t) = volume r a t e of withdrawal or i n j e c t i o n at 3 any node (L /T) . Two types of boundary c o n d i t i o n s , impermeable and constant f l u x , a r e p r e s e n t . The r e g i o n of flow i s , as i n the steady s t a t e case, c o n f i n e d to the u n c o n s o l i d a t e d d e p o s i t s . The d i s t r i b u t i o n of the h y d r o g e o l o g i c flow parameters, K, a, and n, must be known i n order to o b t a i n a t r a n s i e n t s o l u t i o n . The K d i s t r i b u t i o n i s the same as that i n the steady s t a t e case. The d i s t r i b u t i o n s of c o m p r e s s i b i l i t y , a, and p o r o s i t y , n, can be obtained i n d i r e c t l y from pump t e s t s and w i l l be d i s c u s s e d l a t e r . Table 2 summarizes the r e q u i r e d hydro-g e o l o g i c flow parameters f o r both the steady s t a t e and t r a n s i e n t cases. GROUNDWATER FLOW EQUATIONS BOUNDARY CONDITIONS HYDROGEOLOGIC PARAMETERS IMPERM. CONSTANT HEAD CONSTANT FLUX K h STEADY STATE 72(K(X,Y,Z)tp)=0 X X X TRANSIENT 72(K{X,Y,Z)ip) = X X X X X Table 2. Hydrogeologic components of the steady state and transient groundwater electric analog model. H y d r a u l i c C o n d u c t i v i t y D i s t r i b u t i o n S e v e r a l methods were employed to estimate the h y d r a u l i c c o n d u c t i v i t y d i s t r i b u t i o n w i t h i n the subsurface g e o l o g i c u n i t s . Pump t e s t s , s l u g t e s t s (Hvorslev piezometer t e s t s ) , h y d r a u l i c c o n d u c t i v i t y estimates from g r a i n s i z e a n a l y s i s , e l e c t r i c l o g s , and the p u b l i s h e d l i t e r a t u r e p rovided a good b a s i s f o r s e l e c t i n g K v a l u e s , ( i ) T i l l : No K measurements of the t i l l were made at the study s i t e . Freeze (1969b) noted that i n the absence of a c t u a l f i e l d measurements of K, two approaches could be f o l l o w e d : 1. E s t i m a t i n g K from the t e x t u r e of the sediment using e m p i r i c a l l y or e x p e r i m e n t a l l y j u s t i f i e d r e l a t i o n s ; and 2. the use of K measurements from g e o l o g i c a l l y s i m i l a r areas. Since there was i n s u f f i c i e n t data a v a i l a b l e on the t e x t u r a l c h a r a c t e r i s t i c s of the t i l l at the study s i t e , the h y d r a u l i c c o n d u c t i v i t y was t h e r e f o r e based on v a l u e s determined f o r geo-l o g i c a l l y s i m i l a r areas. Table 3 summarizes K measurements of f r a c t u r e d and u n f r a c t u r e d t i l l from Saskatchewan and other geo-l o g i c a l l y s i m i l a r areas. Note that there i s a d i s t i n c t d i f f e r e n c e i n K-values between f r a c t u r e d and u n f r a c t u r e d t i l l . Three important parameters i n determing the h y d r a u l i c c o n d u c t i v i t y of f r a c t u r e d porous media - f r a c t u r e d e n s i t y , width of f r a c t u r e s , and f r a c t u r e o r i e n t a t i o n - were not measured f o r the f r a c t u r e d F l o r a l Formation at the study s i t e . A v alue of K = 1 IGPD/Ft. 2 was s e l e c t e d f o r the t i l l at the study s i t e on the b a s i s of Table 3. The h y d r a u l i c c o n d u c t i v i t y i s assumed to be i s o t r o p i c and homogeneous w i t h i n the t i l l . T h i s K-value f o r t i l l gains credence i n l i g h t of some t h e o r e t i c a l two-dimensional s t u d i e s c a r r i e d out by the author using a f i n i t e d i f f e r e n c e model designed by Freeze (1975,pers.comm.) These r e s u l t s ' i n d i c a t e that i f K r a t i o s between the t i l l and sand l a y e r s are higher than 1:330, there i s too much h y d r a u l i c + Table 3. Hydraulic conductivity values f o r t i l l and shale i n Saskatchewan and other geologically s i m i l a r areas. GEOLOGICAL . FORMATION FRACTURED UNFRACTURED UNKNOWN LOCATION SOURCE METHOD HYDRAULIC CONDUCTIVITY . IGPD/FT? RANGE OR AVERAGE FRACTURED UNFRACTURED UNKNOWN PUMP TEST SLUG TEST LABORATORY TRITIUM GRAIN SIZE ESTIMATE DIGITAL SIMULATION ESTIMATED DEPTH* (FEET) FRACTURED UNFRACTURED UNKNOWN PUMP TEST SLUG TEST LABORATORY TRITIUM GRAIN SIZE ESTIMATE DIGITAL SIMULATION ESTIMATED MEAN K HORIZONTAL K VERTICAL K T i l l X A l l a n H i l l s , Sask. Meyboom (19G6b) X 0-50 0.025-6 . 75 T i l l X Gravelbourg, Sask. Freeze (1964) X 75 0.05 to T i l l X South Central Sask Meyboom X 0-50 0.125 to 1 2 5 5 • Cl T i l l and Shale X South Central Sask Meyboom (19G6a) X 0-250 <0.4 T i l l X Southern Sask. Mawson (1964) X 0-30 0.17 to 1 7 T i l l X Ohio N o r r i s (1962) X X 0-110 <0. 75 T i l l Saskatoon, Sask. Meneley (1970) Shallow R-R92 t o T i l l X Good S p i r i t Lake, Sask. Freeze (1969a) X 7.9xl0~3 to 3.0 T i l l X North Dakota Sloan (1972) X Shallow 0.012 to 0.12 T i l l X Sou t heastern, 51 an i rob a C l i s t e r (1973) X Shallow 0.17x10-' to 0.17 Ti 11 X Alb e r t a , Sask. & Man i 1nU; Grisak et a l (1975) * 5-65 5.6xl0- 3 T i 11 X Eastern Manitoba Grisak & Cherry(197! >) X X 0-75 3 x l 0 - 3 T i l l X Eastern Manitoba Grisak & Cherry(197! ) X 0-75 9 x l 0 " 5 T i l l X Hegina, Sask. Lissey (1962) X Shallow 0.024 to n K Bearpaw Shale X South Central Sask Meyboom X 0-200 Bearpaw Shale X South Central Sask Meyboom X 300 0.009 Bearpaw Shale X South Sask. Reservoir Peterson (1954) X 100 1 0 - 1 0 10" J - 10"' * Based on Snow's aperture formula. + Modified from Freeze (1969b). 34. head l o s s through the t i l l . T h e r e f o r e , the modeled . h y d r a u l i c head val u e s do not correspond to f i e l d measurements. In f a c t , h y d r a u l i c head measurements i n the f i e l d correspond best to the simulated values d e r i v e d from the e l e c t r i c analog model with a K r a t i o of 1:330. As w i l l be d i s c u s s e d p r e s e n t l y , the best estimate f o r the 2 K-value of the b u r i e d v a l l e y f l u v i a l d e p o s i t s i s 330 IGPD/Ft. , 2 t h e r e f o r e , a h y d r a u l i c c o n d u c t i v i t y for the t i l l of 1 IGPD/Ft. seems reasonable. ( i i ) B uried V a l l e y F l u v i a l D e p o s i t s : The h y d r a u l i c c o n d u c t i v i t y of the bur i e d v a l l e y f l u v i a l d e p o s i t s was c a l c u l a t e d from a v a r i e t y of methods to have an 2 average value of 330 IGPD/Ft. . These f l u v i a l d e p o s i t s are comprised b a s i c a l l y of sand and g r a v e l . The average K-value 2 of the sand measures 200 IGPD/Ft. . The average K-value f o r 2 the g r a v e l was estimated and measured at 1000 IGPD/Ft. Once again, the h y d r a u l i c c o n d u c t i v i t y w i t h i n the b u r i e d v a l l e y f l u v i a l d e p o s i t s i s assumed to be i s o t r o p i c and homogeneous. The methods used to estimate and measure the h y d r a u l i c cond-u c t i v i t y are d i s c u s s e d i n d e t a i l i n the f o l l o w i n g s e c t i o n s . ( i i i ) Pump T e s t s : Pump t e s t data were analyzed by the author using the Th e i s , Jacob, and Theis Recovery methods. These methods provide d e t e r m i n a t i o n of the d e r i v e d formation parameters t r a n s m i s s i b i l i t y (T) and storage c o e f f i c i e n t (S); where: K.b (3) b . Y (ct+nB) = bS g (4) th i c k n e s s of the g e o l o g i c a l formation (L) the s p e c i f i c storage ( 1 / L ) . T = and S = where: b = S = s 3 i> . The Theis and Jacob n o n - e q u i l i b r i u m methods are approximate s o l u t i o n s to boundary value problems d e s c r i b i n g t r a n s i e n t ground-water flow. These methods are based on a n a l y t i c a l mathematical s o l u t i o n s that r e l a t e the lowering of the h y d r a u l i c head i n a pumping w e l l to T and S of the a q u i f e r . The theory and assumptions behind these methods i s d i s c u s s e d i n Todd (1959). An e s p e c i a l l y h e l p f u l , e n g i n e e r i n g guide i s Kruseman and de Ridder (1970). Three important assumptions i n the theory of pump t e s t s ar e: 1. the a q u i f e r i s of i n f i n i t e a r e a l extent, 2. the pumping w e l l f u l l y p enetrates the a q u i f e r , 3. there i s no leakage from adjacent g e o l o g i c u n i t s . At Esterhazy, none of these assumptions i s s a t i s f i e d , so these are l i m i t a t i o n s on the d i r e c t a p p l i c a t i o n of the methods to the data. The f i r s t assumption r e s t r i c t e d the a n a l y s i s to very e a r l y drawndown-versus-time data to p r o p e r l y match the Theis type curve. N o t i c e a b l e d e v i a t i o n s from the type curve f o r l a r g e times due to leakage and boundary e f f e c t s makes t h i s data u n s u i t -able f o r d i r e c t c a l c u l a t i o n . In a q u i f e r s that are only p a r t i a l l y penetrated by a pumping w e l l , flow l i n e s around d i s c h a r g i n g w e l l s are not h o r i z o n t a l but r a d i a l l y o r i e n t e d around the w e l l s c r e e n . Only at some d i s -tance from the pumping w e l l i s the flow h o r i z o n t a l . Kruseman and de Ridder (1970) s p e c i f y t h i s d i s t a n c e as approximately 2.b, where b i s the s a t u r a t e d t h i c k n e s s of the a q u i f e r . At the s i t e , the b u r i e d v a l l e y f l u v i a l d e p o s i t s have a maximum thi c k n e s s of 250 feet, so a p a r t i a l p e n e t r a t i o n c o r r e c t i o n method should be u t i l i z e d f o r any o b s e r v a t i o n w e l l w i t h i n 500 f e e t ' o f a pumped w e l l . As i t turns o u t , a l l d i s t a n c e s between o b s e r v a t i o n w e l l s and pumping w e l l s i n the Esterhazy t e s t s are g r e a t e r than 500 f e e t , s o the Theis and Jacob methods hold without c o r r e c t i o n . R e s u l t s of the Theis and Jacob methods are summarized i n Table 4. Observation w e l l l o c a t i o n s are i l l u s t r a t e d i n F i g u r e 16. An example of a p l o t of the Jacob method i s i l l u s t -r a t e d i n F i g u r e 17. There i s a wide v a r i a t i o n i n the r e s u l t s both between and w i t h i n each method. In g e n e r a l , the Jacob method gives a b e t t e r estimate of the T value because bound-ary e f f e c t s can be r e a d i l y determined on the graphs and a f f e c t e d data i d e n t i f i e d . ( i v ) Theis Recovery Method: A f t e r pumping of a w e l l has stopped,the water l e v e l w i l l r i s e again, u l t i m a t e l y to i t s o r i g i n a l p o s i t i o n . The r a t e at which the water l e v e l r i s e s r e f l e c t s the t r a n s m i s s i b i 1 i t y of the a q u i f e r . The l i m i t i n g assumptions are the same as i n the Theis and Jacob methods. Kruseman and de Ridder (1970) d e s c r i b e the t h e o r e t i c a l and p r a c t i c a l aspects of the method. The Theis recovery method was a p p l i e d to each of the pumping-w e l l s . The r e s u l t s are l i s t e d i n Table 5 and a sample p l o t of the Theis recovery method i s i l l u s t r a t e d i n F i g u r e 18. The values i n d i c a t e d are of the same order, of magnitude as those obtained with the Theis and Jacob methods. H y d r a u l i c c o n d u c t i v i t i e s ( K g ) a r e u s u a l l y c a l c u l a t e d by d i v i d i n g t r a n s m i s s i b i i i t y by the l e n g t h of the w e l l screen (b ). r • s However, i n the case of p a r t i a l l y - p e n e t r a t i n g w e l l screens, d i v i d i n g T by the average s a t u r a t e d t h i c k n e s s of the a q u i f e r (b ) r e s u l t e d i n b e t t e r h y d r a u l i c c o n d u c t i v i t y (K ) values a • a because the p a r t i a l l y p e n e t r a t i n g w e l l screen i s r e c e i v i n g water from the t o t a l t h i c k n e s s of the a q u i f e r and not j u s t over the length of the w e l l screen. Both val u e s are re p o r t e d i n Table 5. (v) H y d r a u l i c C o n d u c t i v i t y Estimates From G r a i n S i z e D i s t r i b u t i o n s H y d r a u l i c c o n d u c t i v i t y estimates d e r i v e d from g r a i n - s i z e -d i s t r i b u t i o n curves have been s u c c e s s f u l l y a p p l i e d to uncpnsol-THEIS METHOD J A C O B M E T H O D OBSERVATION W E L L i PUMPED W E L L A V E R A G E T. IGPD/FT. s i T IGPD/FT. S A B 15000 -4 2.9x10 67000 2.0xl0" 4 C 12000 1.3xl0" 4 40000 0.9xl0" 4 F 15000 1.8xl0~ 4 1 89000 1.8xl0~ 4 G 11000 . 1.2xl0~ 4 64000 -4 1.2x10 B A 18000 2.6xl0" 4 1 73000 2.2xl0~ 4 C 15000 2.7xl0" 4 62000 2.4xl0~ 4 F 24000 3.2xl0" 4 ! 426000 * 6.4xl0~ 4 G 13000 1.9xl0~ 4 377000 * ^4 6.0x10 C A 38000 2.7xl0~ 4 188000 2.5xl0~ 4 B 6000 3.3xl0" 4 I 76000 5.6x10"4 F 19000 2.1xl0~ 4 22000 3.3xl0~ 4 G 3000 5.3xl0 - 4 347000 5.7xl0~ 4 D F 72000 2.3xl0~ 4 183000 1.4xl0~ 4 G 12000 0.9xl0" 4 213000 1.6xl0 - 4 F A 7000 l . l x l O " 4 88000 1.7xl0~ 4 B 45000 3.1xl0" 4 96000 1.9xl0~ 4 C 49000 2.4xl0" 4 94000 1.3xl0~ 4 D 29000 2.0xl0 - 5 191000 1.6xl0" 4 „ ( v e r t T G i c a l ) 18000 4.0xl0" 3 36000 0. 37 G A 2000 4.8xl0~ 5 69000 1. 6xl0~ 4 B 18000 2.4xl0~ 4 172000 * 3.5xl0" 4 C 23000 1.7xl0" 4 259000 * 2.6xl0" 4 10000 1.4xl0" 4 1126000 2.lxl O " 4 „ (vertr F i c a l ) 17000 5.3xl0" 3 36000 0.7 * Not enough p o i n t s t o make a r e l i a b l e p r e d i c t i o n . Table 4. T r a n s m i s s i b i l i t y and storage c o e f f i c i e n t values f o r the Theis and Jacob methods. 0.12 TIME , r, in days Figure 1-7. Jacob method applied to observation well A with observation well B pumping at 8.3 IGPM. • 40. PUMPING W E L L W E L L S C R E E N L E N G T H b s ( f t . ) A V E R A G E A Q U I F E R THICKNESS b a ( f t . ) Q IGPM T IGPD/FT. 5 b s I G P D / F T 2 I G P D / F T 2 A 8 60 49.9 57.000 7125 950 B 10 180 8.3 55,000 5500 305 C 8 165 16.6 66,000 8250 400 D 10 190 16.6 68,000 6800 358 E 8 230 49.9 110,000 13,750 478 F 14 220 49.9 38,000 2715 173 G 8 220 49.9 33,000 4125 150 Table 5. Hydraulic conductivity estimates from the Theis recovery method for observation wells A to G. 4 1 . D E P T H t o W A T E R F igure 18. T h e i s r e c o v e r y m e t h o d a p p l i e d t o o b s e r v a t i o n w e l l F . i d a t e d sands, ranging i n diameter from 2.0 mm to 0.0625 mm (Masch and Denny, 1966). This technique i n v o l v e s the determ-i n a t i o n of the median g r a i n s i z e (MD^-Q) and the i n c l u s i v e graphic standard d e v i a t i o n (a^.) from g r a i n s i z e d i s t r i b u t i o n curves. A set of type curves i s then used to t r a n s l a t e these two measurements, MD^Q and a , i n t o an estimate of the h y d r a u l i c c o n d u c t i v i t y , K. F i g u r e s 19a and 19b i l l u s t r a t e one sample to which the type curves of Masch and Denny have been a p p l i e d . H y d r a u l i c c o n d u c t i v i t y values f o r approximately 60 samples were determined by t h i s method. The K values ranged from 66 to 2 2 1000 IGPD/Ft. and averaged 200 IGPD/Ft. . These f i g u r e s compare w e l l with p u b l i s h e d f i g u r e s on K-values f o r unconsol-id a t e d sands (Todd, 1959, Bear, 1972). A l s o , these r e s u l t s agree with the K-values c a l c u l a t e d f o r the b u r i e d v a l l e y f l u v i a l d e p o s i t s from the pump t e s t s . 0 h- i ; i 1 1 1 -1.0 0.0 1.0 20 3.0 4.0 COARSE FINE GRAIN SIZE - 0 UNITS Figure 19a. Grain size distribution curve of a sand sample from the buried valley f l u v i a l deposits. M D C Q - 0 U N I T S Hydraulic conductivity estimated from the p r e d i c t i v e curves of Masch and Denny (1966) f o r sand sample i n Figure 19a. 45. ( v i ) S l u g T e s t s : The ' s l u g t e s t ' , or H v o r s l e v p i e z o m e t e r t e s t , " c o n s i s t s of i n s t a n t a n e o u s l y a d d i n g or r e m o v i n g a known volume of water to a w e l l and o b s e r v i n g t h e s u b s e q u e n t c h a nges i n t h e w a t e r l e v e l i n t h e w e l l . T r a n s m i s s i b i l i t y of an a q u i f e r i s e s t i m a t e d i f th e r a d i u s of the w e l l , t h e a p p r o x i m a t e s t o r a g e c o e f f i c i e n t of the a q u i f e r y . and t h e change i n h y d r a u l i c head w i t h t i m e , a r e a l l known by u s i n g t h e t y p e c u r v e s of Coo p e r e t a l (1967, 1 9 7 3 ) . Vonhof (1975a) a n a l y z e d t h r e e o b s e r v a t i o n w e l l s , D, F and G, a t t h e s t u d y s i t e u s i n g t h i s t e c h n i q u e . R e s u l t s ( T a b l e 6) i n d i c a t e K v a l u e s i n t h e same r a n g e as d e t e r m i n e d by pump t e s t s and g r a i n s i z e e s t i m a t i o n t e c h n i q u e s . H y d r a u l i c c o n d u c t i v i t y e s t i m a t e s were o b t a i n e d by d i v i d i n g t h e c a l c u l a t e d t r a n s m i s s i b -i l i t i e s (T) of each w e l l by the l e n g t h o f t h e i r w e l l s c r e e n ( b g ) Th i s method of c a l c u l a t i n g h y d r a u l i c c o n d u c t i v i t y v a l u e s f r o m t r a n s m i s s i b i l i t i e s c o n t r a s t s w i t h t h e T h e i s r e c o v e r y method where r e a s o n a b l e K - v a l u e s were o b t a i n e d by d i v i d i n g T by t h e a v e r a g e s a t u r a t e d t h i c k n e s s of t h e a q u i f e r . ( v i i ) T r a n s m i s s i b i l i t y E s t i m a t e s From W e l l L o g s : A t o t a l t r a n s m i s s i b i l i t y e s t i m a t e f o r e a c h t e s t h o l e i n t h e b u r i e d f l u v i a l d e p o s i t can be d e t e r m i n e d u s i n g l i t h o l o g i c and g e o p h y s i c a l w e l l l o g s . The method i s as f o l l o w s : T o t a l t h i c k n e s s o f b o t h sand and g r a v e l i s c a l c u l a t e d u s i n g t h e a v a i l a b l e w e l l l o g s , a s s u m i n g t h e s e a r e t h e o n l y l i t h o l o g i c u n i t s p r e s e n t . U s i n g t h e h y d r a u l i c c o n d u c t i v i t y e s t i m a t e s f o r the sand and g r a v e l p r e v i o u s l y d e t e r m i n e d , t h e t o t a l t r a n s m i s s -i b i l i t y a t a w e l l i s e s t i m a t e d from: T t o t a l ( b t o t a l sand * K s a n d ) + ( b t o t a l g r a v e l ' K g r a v e l ) ( 5 ) O B S E R V A T I O N W E L L T cm^/sec T IGPD/FT W E L L S C R E E N L E N G T H , FT. K I G P D / F T 2 D 1.03 5.9 x 1 0 2 10 60 F 1.75 10 x 1 0 2 14 72 G 5.58 32 x 1 0 2 8 404 Table 6..- Hydraulic conductivity values from slug tests f o r observation weils D, P and G (summarized from Vonhof, 1975a)/ 47, T o t a l t r a n s m i s s i b i l i t y v a l u e s , T t o t a l , were p l o t t e d at each w e l l i n the bu r i e d a q u i f e r then contoured to give an i n i t i a l T estimate f o r the a q u i f e r ( F i g u r e 20). The average K-value of the a q u i f e r i s c a l c u l a t e d by d i v i d i n g the tra n s m i s s -i b i l i t y by the sa t u r a t e d t h i c k n e s s of the a q u i f e r at a number of p o i n t s . T h i s method of c a l c u l a t i o n produced an average 2 K-value f o r the bu r i e d v a l l e y f l u v i a l d e p o s i t s of 330 IGPD/Ft . P o r o s i t y and C o m p r e s s i b i l i t y In a d d i t i o n to the h y d r a u l i c c o n d u c t i v i t y , t r a n s i e n t s i m u l a t i o n s r e q u i r e values to the d i s t r i b u t i o n of p o r o s i t y , n, and c o m p r e s s i b i l i t y of the g e o l o g i c a l u n i t s , a, i n the re g i o n of flow. No d i r e c t measurements of n and a .were made at the s i t e , however an i n d i r e c t measurement of these parameters i s the storage c o e f f i c i e n t ( S ) , where S = b.Y(cc+n3) (4) and b, Y, and 8 are known c o n s t a n t s . The storage c o e f f i c i e n t i s measured i n the b u r i e d v a l l e y f l u v i a l d e p o s i t s during pump -4 t e s t s . An i n i t i a l average value of S = 2.3 x 10 was s e l e c t e d from Table 4 f o r the b u r i e d v a l l e y f l u v i a l d e p o s i t s . Assuming the average s a t u r a t e d t h i c k n e s s f o r the f l u v i a l d e p o s i t s i s 125 f e e t , S => 2 x 10" 6 1 / f t . s Since the storage c o e f f i c i e n t or s p e c i f i c storage was not -4 measured during pump t e s t s f o r the t i l l , an estimate of 7 x 10 was s e l e c t e d (Domenico, 1970). -Figure 2,0. Tramsmissibility estimate (IGPD/ft) in the buried valley f l u v i a l deposits. 49.. ELECTRIC ANALOG MODEL The e l e c t r i c - a n a l o g - m o d e l approach has been s e l e c t e d to s o l v e the p r e v i o u s l y o u t l i n e d boundary value problem at the study s i t e . The m a j o r i t y of t h i s s e c t i o n deals with the theory and equipment of e l e c t r i c analog models. Those readers who are f a m i l i a r with these elements may proceed d i r e c t l y to the DESIGN s e c t i o n where there i s a d e s c r i p t i o n of the s p e c i f i c e l e c t r i c analog model used at the study s i t e . Theory Two systems are analogous i f there i s a one to one correspondence between the c h a r a c t e r i s t i c equations that govern each system ( i . e . every element i n the i n v e s t i g a t e d system must be present i n the analog system). In the e l e c t r i c a l a n a l o g y : t o groundwater flow, the flow of water through a porous medium i s analogous to the flow of e l e c t r i c i t y through a r e s i s t o r -c a p a c i t o r (R-C) network. The r e s i s t o r s simulate r e s i s t a n c e to flow of water while c a p a c i t o r s r e p r e s e n t the storage of water. The analogy may be e s t a b l i s h e d e i t h e r by a p h y s i c a l approach or a more c o n v e n t i o n a l mathematical treatment. The f o l l o w i n g mathematical d e r i v a t i o n , i s m o d i f i e d from Karplus ( 1 9 5 8 ) , S k i b i t z k e (1961), and Walton and P r i c k e t t (1963). The f i r s t step i n the mathematical approach i s the r e p l a c e -ment of the continuous porous media by a d i s c r e t i z e d c o - o r d i n a t e g r i d . E r r o r s i n the p o t e n t i a l f i e l d are n e g l i g i b l e i f the d i s t a n c e s between the nodes i n the c o - o r d i n a t e g r i d are small enough (Karplus, 1958). F i g u r e 21 i l l u s t r a t e s one c e l l of the c o - o r d i n a t e g r i d with the a p p r o p r i a t e h y d r a u l i c heads and d i s tance's . The second step i n v o l v e s approximating the 2nd order p a r t i a l d i f f e r e n t i a l equation of groundwater flow by f i n i t e d i f f e r e n c e e x p r e s s i o n s . Since we are d e a l i n g with two equat-i o n s , the steady s t a t e and t r a n s i e n t , i t i s best at t h i s p o i n t Figure 21. Schematic Representation of Current Flow in a Three - Dimension Analog of a cube of porous media (modified after Patten, 1965). to c a r r y out the remainder of the p r e s e n t a t i o n s e p a r a t e l y . ( i ) Steady S t a t e : As s t a t e d p r e v i o u s l y , the nonlinear,heterogeneous, a n i s o t r o p i c , p a r t i a l d i f f e r e n t i a l equation that d e s c r i b e s three dimensional steady s t a t e groundwater flow i s : 3_ (K(x,y,z) 3£)+ 3_ (K(x,y,z) 3£)+ 3_ (K(x,y,z) d±) = 0 (1) 3x 3x 3y 3y 3z 3z F i n i t e d i f f e r e n c e equations f o r the f i r s t space d e r i v a t i v e s of t h i s equation are approximated between nodes as t h e i r poten-t i a l d i f f e r e n c e d i v i d e d by the d i s t a n c e between them (Ka r p l u s , 1958): = l i _ T _ l o _ < 6 a) . 3_£ .= <!>_ <J> 3 X AY j y — ( 1 - 0 ) flA 3 y ( 0 - i O A Y 11 a * 2 3<f> n n \ ( 6 b ) 3Z = *5 - 0Q ( 6 e ) X0-2) A X t S - 0 ) A ^ 8 y A Y (6c) 3 2 n — { b t ) ( 3 - 0 ) v ^ 0 - 6 ) A Z where the s u b s c r i p t s r e f e r to the nodal p o i n t s i n F i g u r e 21. The h y d r a u l i c c o n d u c t i v i t y between any two nodes i s assumed to be an average of the two nodal v a l u e s . For example, between nodes 1 and 0, the h y d r a u l i c c o n d u c t i v i t y i s : „ _ K - + K K ^ O - _ i o 2 (7) S i m i l a r l y , the average h y d r a u l i c c o n d u c t i v i t i e s f o r nodes 0 to 2, 3 to 0, 0 to 4, 5 to 0, and 0 to 6 are KQ_ 2> K 3 _ Q ' K Q - 4 ' 52. K c and K- , r e s p e c t i v e l y . j—U u-0 The second d e r i v a t i v e of the space v a r i a b l e i s obtained by s u b t r a c t i n g the forward from the backward f i n i t e d i f f e r e n c e approximations: 2 ( 8 9 ) _ M _ 1$. 9 X 0 3 X ( l - 0 ) 9 X ( p - 2 ) (8) AX S u b s t i t u t i n g equations 6a and 6b, and i n s e r t i n g the corresponding average h y d r a u l i c c o n d u c t i v i t y values i n t o equation 8: 2 K. . *l - *° _. K n . '+0 - + 2 ( M ) - A X °" 2 - A X — <9> 8 X 0 K K. ( 3 % ) - * o ) + ° " 2 <<f>2" * 0 > ' ( 1 0 a ) 3X AX ' : ' 7T7 0 AX < M- > - K3-d ( ^ 3 ~ + »> + *0> < 1 0 b> S i m i l a r l y , the second space d e r i v a t i v e s of y and z are: 2 < T • 2- 2  a y 0 AY ; AY ( 9 9 ) = K 5 _ 0 5 - 0 + 0 _6 6 0 (10c) az 2 51 0 A Z AZ Combining equations 10a, 10b, and 10c, assuming AX = 2 AY = AZ = a, and m u l t i p l y i n g by a , one o b t a i n s : K ( 9 - 9 ) .+ K ( 9 - 9 ) + K ( 9 - 9 ) + M 1 > 1~ 0 1 0 0 -2 2 0 3 _ 0 3 0 ( H ) K U - A ^ + 'if ( • - • ) + K ( 9 - 9 ) - o ( \ V + K5"0 5 ° °" 5 6 ° 53. The equation f o r the nodal network ( F i g u r e 21), which i s analogous to the volume of porous media (F i g u r e 21), i s obtained by a p p l y i n g K i r c h o f f ' s c u r r e n t law. The t o t a l c urrent e n t e r i n g the node 0 equals zero, t h e r e f o r e : }ml T±-0 " V o + J2-0 + V u + h-0 + T5-0 + h-0 ' ° ( 1 2 ) S u b s t i t u t i n g Ohm*s law (I = V/R) i n t o equation (12): 2_ ( v r v 0 ) + ^ ( V v 0 ) + ^ _ ( v 3 - v 0 ) + i _ ( v 4 _ v Q ) + ^ _ ( v 5 - v 0 ) +• Ra Rb Rc Rd Re 1 (V,-V.) = 0 (13) Rf 6 ° The formal analogy becomes apparent by comparing equations (11) and (13). The analogous q u a n t i t i e s are: H y d r a u l i c E l e c t r i c P o t e n t i a l , head i n f e e t <j>-V. V o l t a g e , i n v o l t s H y d r a u l i c c o n d u c t i v i t y , i n I GPD/ft. 2 K-l/R R e s i s t a n c e , i n ohms Length, i n f e e t £^ -£^ Model l e n g t h , i n f e e t ( i i ) T r a n s i e n t : The n o n l i n e a r p a r t i a l d i f f e r e n t i a l equation that d e s c r i b e s heterogeneous, a n i s o t r o p i c , t r a n s i e n t groundwater flow i n three dimens ions i s : 9_(K(x,y,z) 3_£ ) + 3_ (K(x,y,z,) 3jfc) + H(K(x,y,z) 3_£_) = 3 x 3 x 3 y 3y 3 z 3 x (2) y(cf(x,y,z) + n ( x , y , z ) B ) 3 j> 3t The f i r s t and second space d e r i v a t i v e s are e x a c t l y the same as i n the steady s t a t e equation, t h e r e f o r e sub-s t i t u t i n g equations (10a), (10b), and ( 1 0 c ) , r e a r r a n g i n g , 2 assuming AX=AY = AZ = a, and m u l t i p l y i n g by a , equation (2) b ecomes: K (<)> - 4>) + • K ' (<f> - <f> ) + K (cf> - <j> ) + l - 0 1 0 0-2 2 0 3 -0 3 0 K (<j> - cj> ) + K (<j> - > ) + K (<(> - cj, ) = 0 _4 h 0 5 -0 5 0. 0 _6 6 0 2 a y (a + n g) • _9_£ 0 o - J ^ " d^) Again, the h y d r a u l i c c o n d u c t i v i t y between any two nodes i s assumed to be an average of the two nodal v a l u e s . The equation f o r the nodal network (F i g u r e 21) i s obtained by a p p l y i n g K i r c h o f f ' s c u r r e n t law. This time, however, the t o t a l c u r r e n t e n t e r i n g the node 0 equals the cur r e n t flow from the node to the c a p a c i t o r : h - 0 + h - o + h - 0 + h - 0 + h - 0 + h - o = " e ( 1 5 ) S u b s t i t u t i n g Ohm's law int'b equation (15): 1_ (V -V ) + 1_(V -V ) + 1 (V -V_) + 1 (V -V.) + Ra 1 0 Rb 2 ° RT 3 ° Rd 4 -° 1_(V -V ) + 1_(V -V ) (16) Re 5 0 Rf 6 0 The r a t e at which the c a p a c i t o r w i l l s t o r e energy i s p r o p o r t i o n a l to the r a t e of change with time of the a p p l i e d v o l t a g e : - £ = 0 3^ (17) 9 t Combining equations (16) and (17): 55. 1_(V -V ) + 1_(V -V > + 1_(V -V ) + 1_(V,-V ) + 1 (V -V ) Ra 1 DK 2 U ^ J U — 4 0 — 5 n Rb Rc Rd Re 1 (V -V n) = C 3V Rf 6 ° 37 (18) The formal analogy becomes apparent by comparing equations (14) and (18). Analogous q u a n t i t i e s i n the t r a n s i e n t system are: H y d r a u l i c P o t e n t i a l , head i n f e e t 'A -V H y d r a u l i c c o n d u c t i v i t y , i n I G PD/ft 2 Storage c o e f f i c i e n t Discharge, i n IGPD a 2S K-l/R -C q -q w e Volume (or mass), i n IG Q -Q w e Time, i n days Length, i n f e e t t - t w e 1 -1 w e E l e c t r i c V o l t a g e , i n v o l t s R e s i s t a n c e , i n ohms Capacitance, i n farads C u rrent, i n amperes Energy, i n coulombs Time, i n seconds Length, i n f e e t . where y(cc + n B) 0 0 S e a l i n g The analogous q u a n t i t i e s are made e q u i v a l e n t through the use of p r o p o r t i o n a l i t y c o n s t a n t s or s c a l i n g f a c t o r s . These s c a l i n g f a c t o r s are a r b i t r a r y , but must be s e l e c t e d so that the range of values of the e l e c t r i c a l analog components are commercially a v a i l a b l e . The four s c a l e f a c t o r s SC^, SC,,, SC^, and SC^ are d e f i n e d as f o l l o w s (Walton and P r i c k e t t , 1963): Q = SC, Q w 1 ^e * = s c 2 V qw = S C 3 q e t , = SC. t d 4 s SC^ = Imp. Gal./Coulomb SC 2 = F e e t / V o l t SC 3 = IGPD/amp SC^ = days/sec. (19) (20) (21) (22) 56. Scale f a c t o r s SC., SC„, and SC. are r e l a t e d by: 1 3 4 SC„ x SC. = SC 3 4 1 In order to c o n s t r u c t e i t h e r a steady s t a t e or t r a n s i e n t e l e c t r i c analog model, i t i s necessary to o b t a i n an e x p r e s s i o n r e l a t i n g h y d r a u l i c c o n d u c t i v i t y to r e s i s t i v i t y . S u b s t i t u t i n g and Darcy's laws i n t o equation (21) y i e l d s : R - s c 3 . AX (24) X s c 2 AY • AZ • K X R y • S C 3 . AY (25) s c 2 AX • AZ • K y R z = S C 3 . AZ (26) s c 2 AY • AX • K z Equations 24, 25, and 26 can t h e r e f o r e be used to c a l c u l a t e values of r e s i s t o r s f o r both i n t e r i o r and boundary nodes of the e l e c t r i c analog model. The values of the c a p a c i t o r s f o r i n t e r i o r and boundary nodes f o r t r a n s i e n t s o l u t i o n s are d e r i v e d by u s i n g equations (19) arid (20) plus the d e f i n i t i o n s of the storage and c a p a c i t -ance c o e f f i c i e n t s : C = 6.23 AXr AY r AZ • S g m. SC 2 (27) sc7 where C i s the farads and S , the s p e c i f i c s t o r a ge, i n f e e t . T h e r e f o r e , i n order to c o n s t r u c t a steady s t a t e e l e c t r i c analog model i n three dimensions, the values of the r e s i s t o r s are c a l c u l a t e d using equations 24, 25 and 26. Design The e l e c t r i c analog model of the study s i t e was c o n s t r u c t e d using approximately 2000 r e s i s t o r s and 550 c a p a c i t o r s . The model i s three dimensional, i n that i t has two R-C ( r e s i s t o r -c a p a c i t o r ) l a y e r s i n t e r c o n n e c t e d by r e s i s t o r s i n the Z 57. d i r e c t i o n ( P l a t e s 3 and 4). In order to c a l c u l a t e the v a l u e s of the r e s i s t o r s and c a p a c i t o r s with equations 24, 25, 26 and 27, the f o l l o w i n g v a l u e s are r e q u i r e d : 1. the s c a l e f a c t o r s . 2. the nodal spacings - AX, AY, and AZ; and 3. the h y d r o g e o l o g i c a l parameters - K, a, and n. In l i g h t of the e a r l i e r d i s c u s s i o n on s c a l i n g f a c t o r s , the f o l l o w i n g values were chosen: 5.0 x 1 0 1 1 IG/coulomb 5.0 F e e t / v o l t 5.0 x 10 7 IGPD/amp 4 1.0 x 10 Days/sec. An analog model spacing of 1 1/2 inches = 300 f e e t f o r the X and Y d i r e c t i o n s , was considered accurate enough to minimize e r r o r s due to d i s c r e t i z i n g a continuous media ( F i g u r e 22). The southeast area of the g e o l o g i c model was not c o n s i d -ered h y d r o l o g i c a l l y important because of the t h i c k s e c t i o n of t i l l . T h e r e f o r e , a nodal spacing f o r AX and AY-of 3 inches = 600 f e e t was employed. Techniques f o r j o i n i n g areas with d i f f e r e n t s c a l e s i s d i s c u s s e d i n Karplus (1958). Nodal spacings f o r Z vary c o n s i d e r a b l y over the map area due to the change i n t h i c k n e s s i n the g e o l o g i c u n i t s . The val u e s of the h y d r o g e o l o g i c parameters - K, a, and n -have been d i s c u s s e d i n d e t a i l i n the preceding s e c t i o n s . However, c a l i b r a t i o n of the e l e c t r i c analog model to known h y d r a u l i c head measurements and pump t e s t s i n the f i e l d r e q u i r e d a change i n the s p e c i f i c s torage of the b u r i e d v a l l e y a q u i f e r . Table 7 summarizes the measured parameters, K, a, and n and a l s o t h e i r c a l i b r a t e d f i g u r e s . Note that S , the s p e c i f i c s t o r a g e , i s used ra t h e r than a and n. In the g e o l o g i c model, the major b u r i e d v a l l e y i s not bounded on the west but extends some unknown d i s t a n c e . I t i s apparent that by t e r m i n a t i n g the analog model on the west ( F i g u r e 22), e r r o r s w i l l occur i n the p o t e n t i a l d i s t r i b u t i o n i n the r e g i o n S C 1 = sc 2 = sc„ = SC'; = 4 The f r o n t of the study s i t e e l e c t r i c analog model. A topographic map has been mounted on a 4 f e e t by 8 f e e t sheet of hardboard. The back of the e l e c t r i c analog model i l l u s t r a t i n g r e s i s t o r s i n three dimensions and a c a p a c i t o r attached to each nodal p o i n t . 59. M E A S U R E D C A L I B R A T E D A V E R A G E K, I G P D / F T 2 . S 1 , 1/FT. A V E R A G E K I G P D / F T . 2 S 1 , 1/FT. T I L L 1 7 x 10" 4 1 7 x 1 0 - 4 BURIED V A L L E Y F L U V I A L DEPOSITS 330 2 x 10- 6 330 4.9 x 10* 4 Measured and calibrated hydrogeologic parameters for the t i l l and buried valley aquifer. ) 61. of i n t e r e s t . In order to a v o i d t h i s problem, a t e r m i n a t i o n s t r i p was employed (Karplus, 1958). The t e r m i n a t i o n s t r i p extends the western p o r t i o n of the b u r i e d v a l l e y a q u i f e r approximately 9,000 f e e t so that e r r o r s i n the p o t e n t i a l d i s t r i b u t i o n i n the area around the b r i n e pond are n e g l i g i b l e . E l e c t r i c a l Equipment Once the R-C network has been c o n s t r u c t e d , t h e steady s t a t e and t r a n s i e n t analog models r e q u i r e d i f f e r e n t e l e c t r i c a l g e n e r a t i n g and measuring equipment to c a r r y out a s i m u l a t i o n . ( i ) Steady S t a t e : The steady s t a t e case r e q u i r e s : 1. s i m u l a t i o n of the water t a b l e , and, 2. measurement of the r e s u l t i n g v o l t a g e at every nodal p o i n t i n the analog model. The water t a b l e i s s i m u l a t e d by a p p l y i n g a v o l t a g e to each of the water t a b l e nodes ( F i g u r e 24) . Since there are about 450 nodal p o i n t s , those p o i n t s with s i m i l a r voltages are attached by s o l d e r i n g t i n n e d w i r e between nodes. This s i m p l i f -i c a t i o n r e s u l t s i n a s l i g h t l y u n r e a l i s t i c water t a b l e and s l i g h t e r r o r s i n the r e s u l t i n g p o t e n t i a l d i s t r i b u t i o n . Voltages are a p p l i e d with a v o l t a g e generator and measured with a d i g i t a l v o l t m e t e r ( P l a t e 5) . ( i i ) Trans i e n t : In the t r a n s i e n t case, we are i n t e r e s t e d i n measuring changes i n v o l t a g e as a response to simulated pumping or i n j e c t i o n of water. T h i s r e q u i r e s a c u r r e n t generating d e v i c e , and v o l t a g e versus time plots f o r every nodal poi n t i n the model. This equipment i s c a l l e d the e x c i t a t i o n - r e s p o n s e apparatus. It r e q u i r e s that the wat er t a b l e s i m u l a t o r , used i n the steady s t a t e case, be detached. 62. The steady s t a t e e l e c t r i c analog model response equipment i l l u s t r a t i n g a v o l t a g e generator r e s t i n g on a d i g i t a l readout v o l t m e t e r . P l a t e 6. power supply and an o s c i l l o s c o p e . E x c i t a t i o n - r e s p o n s e apparatus f o r c e s e l e c t r i c a l energy, i n the form of c u r r e n t , i n t o the analog model and measures the response or energy l e v e l s throughout the e n e r g y - d i s s i p a t i v e , r e s i s t o r - c a p a c i t o r network. The e x c i t a t i o n - r e s p o n s e apparatus, P l a t e 6, c o n s i s t s of a power supply, a waveform generator, a pulse generator, and an o s c i l l o s c o p e . The f o l l o w i n g sequence of events occurs during the t r a n s i e n t t e s t i n g of an e l e c t r i c analog model: 1. The waveform generator sends a p o s i t i v e pulse to the o s c i l l o s c o p e and s i m u l t a n e o u s l y a negative or p o s i t i v e sawtooth waveform i s sent to the p u l s e generator. 2. The pulse generator i s set to t r i g g e r when the v o l t a g e of the input sawtooth,from the waveform generator, exceeds a p r e s e l e c t e d l e v e l , thereby producing a r e c t a n g u l a r pulse of d e s i r e d d u r a t i o n and amplitude. The d u r a t i o n and amplitude of the pulse are analogous to the volume of water pumped or i n j e c t e d i n t o the model. 3. Model response to the r e c t a n g u l a r pulse from the pulse generator i s monitored on the o s c i l l o s c o p e as a time-v o l t a g e curve, analogous to a time-drawdown' graph f o r an o b s e r v a t i o n w e l l . In order to c o n s t r u c t d i s t a n c e versus change i n h y d r a u l i c head maps f o r time, t, a s u f f i c i e n t number of nodal p o i n t s must be monitored. E i t h e r pumping or i n j e c t i o n of water can be simulated using the above apparatus by producing e i t h e r a negative (pumping) or p o s i t i v e ( i n j e c t i o n ) c u r r e n t p u l s e output from the p u l s e g e n e r a t o r . Since the e x c i t a t i o n - r e s p o n s e apparatus produces only pulse of v o l t a g e , c u r r e n t i s c a l c u l a t e d by s u b s t i t u t i n g Ohm's law i n t o equation (21) which y i e l d s : q = V SC 3 (28) w where: q pumping r a t e , i n IGPD w V v o l t a g e , i n v o l t s R. r e s i s t a n c e i n ohms l s c a l e f a c t o r 3 i n IGPD/amp Ther e f o r e a known v o l t a g e drop (V), which i s s e l e c t e d using the pulse generator, across a predetermined r e s i s t a n c e (R^) produces a c u r r e n t which i s analogous to the i n j e c t i o n or pumping r a t e (q ). w C o n s t r u c t i o n Techniques Two e l e c t r i c analog models, a prototype and a f i n a l , were c o n s t r u c t e d . The p r o t o t y p e model was c o n s t r u c t e d using 24 gauge t i n p l a t e as a mounting medium or base. A square g r i d was drawn on the t i n p l a t e and ceramic c a p a c i t o r s were so l d e r e d to the a p p r o p r i a t e node. The unattached end of the c a p a c i t o r served as a nodal p o i n t f o r the r e s i s t o r s . T h i s arrangement proved s a t i s f a c t o r y as an e l e c t r i c a l grounding medium, however, the nodes are d i f f i c u l t to r e l a t e to topog-r a p h i c l o c a t i o n s . T h e r e f o r e , i t i s not an e f f e c t i v e d i s p l a y and communication t o o l . The f i n a l model c o n s i s t e d of 1/8 i n c h tempered masonite or hardboard as a base ( P l a t e s 3 and 4). Holes (0.093 inch diameter) were d r i l l e d i n a 1 1/2 i n c h g r i d p a t t e r n . A topo-graphic map of the area was glued onto the masonite and v e c t -orboard push-in t e r m i n a l s (#T9.4) were i n s e r t e d i n the holes to serve as nodal j u n c t i o n s or t e r m i n a l s . The hardboard was mounted onto a wooden frame f o r d i s p l a y and c o n s t r u c t i o n purposes. Tinned copper wire (16 gauge) was placed t h e ; f u l l 65. l e n g t h on the back of the model between a l t e r n a t e ' rows of nodes to serve as a grounding mechanism.-Fixed carbon r e s i s t o r s ( t o l e r a n c e ± 5%) ranging from 10 ohms to 1.0 x 10^ ohms, and ceramic d i s c c a p a c i t o r s , ranging from — 6 — 11 0. 22 x 10 to 1.0 x 10 fa r a d s were fastened and s o l d e r e d to the t e r m i n a l s . In g e n e r a l , leakage of e l e c t r i c i t y i s the main source of e r r o r . In order to determine the extent of leakage from the te r m i n a l s through the masonite, t h r e e t e r m i n a l s were i n s e r t e d and s o l d e r e d one node apart on the hardboard. The r e s i s t a n c e between these t e r m i n a l s was measured and recorded before each e l e c t r i c analog model run. R e s u l t s show that the r e s i s t a n c e between t e r m i n a l s i s 1 0 ^ ohms. T h i s r e s i s t a n c e i s 3 orders of magnitude l a r g e r than the h i g h e s t v a l u e r e s i s t o r i n the e l e c t r i c analog model t h e r e f o r e demonstrating that leakage would be i n s i g n i f i c a n t . Other p o i n t s to co n s i d e r when c o n s t r u c t i n g an e l e c t r i c analog model are: 1. The t o t a l c a p a c i t a n c e of the model should be kept as low as p o s s i b l e because the l a r g e r the t o t a l c a p a c i t a n c e of the model the g r e a t e r the chance f o r leakage from the c a p a c i t o r s to the ground. 2. The t o t a l r e s i s t a n c e of the model should be kept low so that the c u r r e n t drawn by the model i s s m a l l . 3. Spring c l i p s and mechanical f a s t e n e r s , although time saving, do not gi v e a r e l i a b l e e l e c t r i c a l c o n t a c t . S o l d e r i n g i s the best e l e c t r i c a l connecting d e v i c e . E r r o r s Four sources of e r r o r s are i n h e r e n t a n a l y s i s of a h y d r o g e o l o g i c a l problem: i n an e l e c t r i c analog 66. 1. E r r o r s due to the replacement of a continuous f i e l d by a d i s c r e t i z e d model. 2. E r r o r s i n the e l e c t r i c a l equipment. 3. Leakage of e l e c t r i c i t y i n the e l e c t r i c analog model; and, 4. E r r o r s i n the h y d r o g e o l o g i c a l model, i . e . i n the c o n f i g u r a t i o n of the h y d r o g e o l o g i c parameters - K, a, and n. Karplus (1958) d i s c u s s e s items (1) and (2) i n d e t a i l . D i s c r e t i z i n g e r r o r s can be kept w i t h i n reason by s e l e c t i n g the nodal d i s t a n c e s s m a l l enough. I n a c c u r a c i e s due to (2) above seldom exceed 3% a c c o r d i n g to Karplus (1958). The more s o p h i s -t i c a t e d e l e c t r i c a l equipment of r e c e n t years has probably reduced t h i s f i g u r e even f u r t h e r . As d i s c u s s e d p r e v i o u s l y i n the Model C o n s t r u c t i o n s e c t i o n , leakage of e l e c t r i c i t y i n the e l e c t r i c analog model i s n e g l i g i b l e The l a r g e s t e r r o r s i n a h y d r o g e o l o g i c a l study are i n the e s t i m a t i o n of the h y d r o g e o l o g i c parameter d i s t r i b u t i o n s (K,cx and n ) . These e r r o r s are d i f f i c u l t to measure, t h e r e f o r e a complete e r r o r a n a l y s i s of these parameter d i s t r i b u t i o n s was not under-taken. We have assumed the two h y d r o g e o l o g i c formations are homogeneous and i s o t r o p i c , although i n nature they are h e t e r -ogeneous and a n i s o t r o p i c . E r r o r s due to t h i s assumption are probably small w i t h i n a h i g h l y permeable b u r i e d v a l l e y a q u i f e r . 67 . RESULTS R e s u l t s of the Esterhazy s i t e h y d r o g e o l o g i c a l problem are presented i n two p a r t s : steady s t a t e and t r a n s i e n t . Before proceeding with the r e s u l t s , there are three important p o i n t s that must be made. F i r s t , an important h y d r o l o g i c f e a t u r e at the study s i t e i s a f l o w i n g s e i s m i c shot hole l o c a t e d between o b s e r v a t i o n w e l l s D and F ( F i g u r e 23). T h i s shot h o l e , which p r e s e n t l y flows at 20 IGPM, i s completed i n the b u r i e d v a l l e y f l u v i a l d e p o s i t s . I t provides an escape route f o r some of the subsurface flow and reduces the t r a v e l time of a small p o r t i o n of the b r i n e from i t s source to the s u r f a c e waters of Cutarm Creek. A l l steady s t a t e s o l -u t i o n s are simulated with the f l o w i n g seismic shot hole plugged. Secondly, a l l h y d r a u l i c head valu e s at the b r i n e pond are m u l t i p l i e d by the b r i n e d e n s i t y of 1.19 so that the h y d r a u l i c heads of the b r i n e and freshwater are c o n s i s t e n t . L a s t l y , a l l c a l c u l a t i o n s of b r i n e t r a v e l are made from a true s c a l e cross s e c t i o n (D - D"*"). This ensures that a l l d i s t a n c e s are t r u e . Steady s t a t e r e s u l t s i n c l u d e both the c a l c u l a t i o n of co n v e c t i v e t r a v e l times and the d i r e c t i o n of the b r i n e m i g r a t i o n from the b r i n e pond to i t s d i s c h a r g e p o i n t s . Darcy's law pr o v i d e s the s p e c i f i c d i s c h a r g e v = Q/A. The a c t u a l v e l o c i t y of f l u i d movement i s v' = Q/nA where n i s the p o r o s i t y . C a l c u l a t i o n of steady s t a t e b r i n e t r a v e l times are t h e r e f o r e based on: v* = -K 9h (29) n 31 Since the v e l o c i t y of groundwater v a r i e s with the h y d r a u l i c g r a d i e n t , each flow l i n e i s d i v i d e d i n t o s e v e r a l c o n s t a n t - h y d r a u l i c - g r a d i e n t segments. The t r a v e l time f o r each segment i s then c a l c u l a t e d from: t = (6.23) l.-n (30) K 9_h 81 F i ^ r e 23. Location of injection wells and flowing seismic shot hole. 69. where n = p o r o s i t y ( dimensionless) t = time (days) 1, = d i s t a n c e ( f e e t ) 2 K = h y d r a u l i c c o n d u c t i v i t y (IGPD/ft ) 8h = h y d r a u l i c g r a d i e n t (dimensionless) 31 T o t a l t r a v e l times f o r each flow l i n e , from t h e i r source to t h e i r d i s c h a r g e p o i n t , are c a l c u l a t e d by adding the t r a v e l times of the v a r i o u s segments. Steady s t a t e r e s u l t s are recorded f o r the two h o r i z o n t a l l a y e r s of the e l e c t r i c analog model. Cross s e c t i o n D - D 1 i s made from these measurements. F i g u r e 24 d i s p l a y s the nodal p o i n t s of cross s e c t i o n D - D 1. Once the t r a v e l times and d i r e c t i o n s of b r i n e m i g r a t i o n have been e s t a b l i s h e d , i t i s p o s s i b l e to c a r r y out a t r a n s i e n t a n a l y s i s of some p o s s i b l e remedial measures that have been suggested to prevent the b r i n e from m i g r a t i n g to the s u r f a c e waters of Cutarm Creek. T r a n s i e n t r e s u l t s are recorded only f o r the h o r i z o n t a l b u r i e d sand and g r a v e l l a y e r of the e l e c t r i c analog model. Steady State R e s u l t s Four steady s t a t e cases are i n v e s t i g a t e d : A. b r i n e pond at present e l e v a t i o n of 1671 f e e t , B. b r i n e pond at an e l e v a t i o n of 1666 f e e t , C. b r i n e pond at an e l e v a t i o n of 1661 f e e t ; and, D. the n a t u r a l groundwater flow system with no b r i n e pond. F i g u r e s 25 and 26 i l l u s t r a t e the measured h y d r a u l i c head values i n the two h o r i z o n t a l l a y e r s of the e l e c t r i c analog model f o r case A. F i g u r e 27 i s the groundwater flow p a t t e r n .1 of cross s e c t i o n D - D 1 f o r case A. F i g u r e s 28, 29, and 30 represent the groundwater flow p a t t e r n s of cross s e c t i o n D - D " f o r cases B, C, and D. Flow l i n e s are not drawn on these cross ELEVATION ABOVE MEAN SEA LEVEL '01 Figure 25. Steady state groundwater- flow pattern i n the t i l l layer for a brine pond elevation of 1671 feet. Figure 26. Steady state groundwater flow pattern i n the buried valley aquifer for a brine pond elevation of 1671 f t . Figure 27. Steady state groundwater flow pattern along cross-section D-D' for a brine pond elevation of 1671 f t . UJ > U l < UJ CO z < UJ 2 UJ > o CD < z o 1 LU _ J 1350-f HORIZONTAL S C A L E 1000 2000 FEET I 0 300 600 METERS 16 TIMES VERTICAL EXAGGERATION LEGEND -HYDRAULIC HEAD IN F E E T I5B0-GROUNDWATER FLOW DIRECTION » BRINE POND ELEVATION - 1666 F E E T . CONTOUR INTERVAL - 20 F E E T . Figure 28. Steady state groundwater flow pattern along cross-section D - D« f o r a brine pond e l e v a t i o n of 1666 f t . Figure 29. Steady state groundwater flow pattern along cross-section D - D 1 for a brine pond elevation of 1661 f t . ^ Figure 30 • Steady state groundwater flow pattern along cross-section D-D- with no brine pond. 77 . s e c t i o n s b e c a u s e t h e d i a g r a m s a r e v e r t i c a l l y e x a g g e r a t e d 16 t i m e s . In t h e s e c a s e s , f l o w l i n e s a r e n o t a t r i g h t a n g l e s t o t h e e q u i p o t e n t i a l l i n e s and i t i s a t i m e - c o n s u m i n g t a s k t o l o c a t e them a c c u r a t e l y . Note i n a l l t h e s t e a d y s t a t e c r o s s s e c t i o n s , t h e h y d r a u l i c head measurements w h i c h i n t e r s e c t the g r o u n d s u r f a c e do n o t c o r r e s p o n d t o t h e ground e l e v a t i o n . T h e r e a r e two r e a s o n s f o r t h i s : 1. t h e h y d r a u l i c head measurements o f the b r i n e pond a r e h i g h e r t h a n the g r o u n d e l e v a t i o n b e c a u s e of t h e i n c r e a s e d d e n s i t y of the b r i n e ; and, 2. t h e w a t e r t a b l e i s a p p r o x i m a t e d as a s t e p f u n c t i o n r a t h e r t h a n a c o n t i n u o u s f u n c t i o n . T h i s p r o b l e m of i n c o n s i s t e n t h y d r a u l i c head measurements a t t h e w a t e r t a b l e i s p a r t i c u l a r l y n o t i c e a b l e n e a r Cutarm C r e e k and a r o u n d the b r i n e pond. R e c h a r g e and d i s c h a r g e a r e a s f o r e ach c a s e a r e a l s o i l l u s t -r a t e d on t h e c r o s s s e c t i o n s . F o r c a s e s A, B, and C, t h e r e c h a r g e and d i s c h a r g e a r e a s a r e i d e n t i c a l , w i t h r e c h a r g e o c c u r r i n g west of p o i n t X and d i s c h a r g e e a s t of t h i s p o i n t . S i n c e t h e d i s c h a r g e a r e a s a r e t h e same, t o t a l t r a v e l t i m e s for a number of f l o w l i n e s a r e p l o t t e d a g a i n s t t h e d i s t a n c e from t h e e a s t e r n dyke of t h e b r i n e pond to Cutarm C r e e k ( F i g u r e 31). Note i n t h i s f i g u r e , t h a t t h e s u r f a c e a r e a f r o m p o i n t X e a s t t o t h e u n c o n f o r m i t y i n t h e b u r i e d v a l l e y a q u i f e r w i l l be p o l l u t e d by b r i n e w i t h i n 30 y e a r s f o r a l l b r i n e pond e l e v a t i o n s . From t h e u n c o n f o r m i t y ( a b o u t 5600 f e e t e a s t o f t h e b r i n e pond) t o Cutarm C r e e k , t h e b r i n e t r a v e l t i m e s i n c r e a s e s i g n i f i c a n t l y . A l s o , as t h e b r i n e pond e l e v a t i o n i s d e c r e a s e d a s l i g h t i n c r e a s e i n b r i n e t r a v e l time i s a p p a r e n t . D i r e c t b r i n e c o n t a m i n a t i o n of C utarm C r e e k by any of the. c a s e s A,B, and C w i l l t a k e between 640 a n d 1260 y e a r s . T h e r e f o r e , 78 . 9200 8400 7600 6800 6000 5200 4400 3600 2800 2000 1200 400 CUTARM CREEK UNCONFORMITY BRINE POND ELEVATION -1671 FT. BRINE POND ELEVATION -1666 FT. BRINE POND ELEVATION -1661 FT. - L —I I 1 1 * I I I 10OO 10 100 TIME IN YEARS Figure 31 . . Graph i l l u s t r a t i n g the t r a v e l time of brine moving from the brine pond plotted against distance from the eastern dyke of the brine pond. 79. t h i s mechanism of s u r f a c e water p o l l u t i o n does not pose an immediate problem. The most urgent problem i s the contamination by b r i n e seepage of the s u r f a c e between point X to 5600 f e e t east. Brine d i s c h a r g i n g at the s u r f a c e could be i n c o r p o r a t e d i n t o the s u r f a c e drainage and d i s c h a r g e d i r e c t l y i n t o Cutarm Creek. Another area of concern i s the b u r i e d v a l l e y a q u i f e r to the west of the b r i n e pond. The steep h y d r a u l i c g r a d i e n t there ensures that the b r i n e w i l l be r e a d i l y convected through t h i s area. .Contamination of the a q u i f e r i s almost c e r t a i n unless remedial measures are undertaken. P r e v e n t i v e measures designed to s o l v e these problems are i n v e s t i g a t e d i n the f o l l o w i n g s e c t i o n on t r a n s i e n t r e s u l t s . T r a n s i e n t R e s u l t s Vonhof (1975b) has suggested that a few low r a t e i n j e c t i o n w e l l s , p r o p e r l y l o c a t e d , might r e v e r s e the h y d r a u l i c g r a d i e n t , thereby l i m i t i n g the m i g r a t i o n of the b r i n e i n the b u r i e d v a l l e y a q u i f er. There are two reasons why o n l y low i n j e c t i o n r a t e s are f eas i b l e : 1. very l i t t l e p o t a b l e water i s a v a i l a b l e f o r i n j e c t i o n w e l l s i n the study area; and, 2. these w e l l s when completely equipped are r e l a t i v e l y inexpensive as compared to h i g h - r a t e i n j e c t i o n w e l l s . S e v e r a l combinations of i n j e c t i o n w e l l s , l o c a t e d i n F i g u r e 23, were simulated on the e l e c t r i c analog model. Table 8 summarizes the i n j e c t i o n w e l l combinations, t h e i r pumping r a t e and d u r a t i o n of pumping. None of the i n j e c t i o n w e l l combinations i n v e s t i g a t e d were s u c c e s s f u l i n r e v e r s i n g the h y d r a u l i c g r a d i e n t i n e i t h e r the east or west p o r t i o n s of the b u r i e d v a l l e y a q u i f e r (see F i g u r e s 32a and 32b). .. 80. INJECTION W E L L COMBINATIONS PUMPING R A T E , IGPM 5 10 A . B 15 30 50 5 C,D,E,F 10 30 50 5 A , B , G , H 10 30 50 5 10 G , H 15 30 50 Table 8. Injection well combinations and their injection rates. Each injection rate was simulated for 5, 10, 20 and 50 years. ' Figure 32b. Resultant hydraulic head distribution in the buried valley aquifer after 50 years of injection at 30 IGPM. 83. fe A few combinations of i n j e c t i o n and pumping w e l l s were i n v e s t -i g a t e d . Table 9 r e p r e s e n t s the r e s u l t s of the injection-pumping w e l l scheme. The v a r i o u s combinations simulated on the e l e c t r i c analog model were a l s o u n s u c c e s s f u l i n r e v e r s i n g the h y d r a u l i c g r a d i e n t i n the b u r i e d v a l l e y a q u i f e r on e i t h e r s i d e of the b r i n e pond. It i s evident that low-rate i n j e c t i o n w e l l s cannot be considered a f e a s i b l e remedial measure. E f f e c t of Flowing Seismic Shot Hole The f l o w i n g s e i s m i c shot h o l e , l o c a t e d i n F i g u r e 23, was simulated on the e l e c t r i c analog model i n order to examine i t s e f f e c t on the flow paths and p o l l u t a n t t r a v e l times of the steady s t a t e s o l u t i o n s . Changes i n h y d r a u l i c head a f t e r 5, 10 and 20 years f o r the s e i s m i c shot h o l e , f l o w i n g at 20 IGPM, are i l l u s t r a t e d i n F i g u r e s 33, 34 and 35. In order to examine the e f f e c t of the s e i s m i c shot h o l e on v a r i o u s steady s t a t e s o l u t i o n s , p o l l u t a n t t r a v e l times from the b r i n e pond to the s e i s m i c shot hole were c a l c u l a t e d w i t h the shot hole both plugged and unplugged (see Table 10). As i s apparent from Table 10, there i s very l i t t l e d i f f e r e n c e i n p o l l u t a n t t r a v e l times f o r v a r i o u s b r i n e pond e l e v a t i o n s . • • • Up u n t i l the present time (March, 1976), brine-contaminated water has not reached the s e i s m i c shot h o l e . However, f r e s h -water i s f l o w i n g from the shot h o l e at 29,000 IGPD. As the b r i n e pond e l e v a t i o n i s i n c r e a s e d , there i s an i n c r e a s e i n the h y d r a u l i c g r a d i e n t around the s e i s m i c shot h o l e . This r e s u l t s i n an i n c r e a s e i n the o u t f l o w of f l u i d f l o w i n g through the shot h o l e . T h e r e f o r e , from a p o l l u t i o n p o i n t of view, the volume of br ine that may be d i s c h a r g e d by the s e i s m i c shot hole i n the f u t u r e i s a more s e r i o u s problem than the small i n c r e a s e i n t r a v e l time f o r the b r i n e c r e a t e d by the e x i s t e n c e of the shot h o l e . COMBINATION OF R A T E , IGPM W E L L S INJECTION PUMPING INJECTION PUMPING A ,B 50 G,H 50 C,D 30 E.F 30 A , B 30 G,H 30 C,D 15 E,F 15 A . B 50 G f H 50 C.D 15 E.F 15 Table 9. Combinations of injection-pumping wells and their injection-pumping rates. Each injection-pumping scheme was simulated for 5, 10, 20 and 50 years. LEGEND — ® FLOWING SEISMIC SHOT HOLE (20 IGPM) -1.0— CHANGE IN HYDRAULIC HEAD (IN FEET) AFTER 5 YEARS. WEST VALLEY WALL CUTARM CREEK. S C A L E 1 0 0 0 0 1 0 0 0 F E E T » » c . 2 8 . T p . 1 9 , B . 3 2 WI 3 0 0 M E T E R S »»c. 27 Tp.19, R.32 W.I mor HIGHWAY 22 Figure 33. Change i n hydraulic head in the buried valley aquifer after 5 years for the seismic shot hole discharging at a rate of 20 IGPM. co Ln Figure 34. Change i n hydraulic head in the buried valley aquifer after 10 years for the seismic shot hole discharging at a rate of 20 IGPM. Figure 35. Change i n hydraulic head i n the buried valley aquifer after 20 years for the seismic shot hole discharging at a rate of 20 IGPM. BRINE POND E L E V A T I O N IN feet a.m.s.l. Y E A R S TO R E A C H FLOWING SEISMIC SHOT H O L E P L U G G E D U N P L U G G E D 1661 10.5 9.9 1666 9.8 9.3 > 1671 8.7 3.6 Table 10. Travel times of brine to move from the brine pond to the flowing seismic shot hole with the seismic shot hole both plugged and unplugged. 89. DISCUSSION Two problems are evident from the steady s t a t e s o l u t i o n s . 6 2 F i r s t , b r i n e p o l l u t i o n of the s u r f a c e area (about 15 x 10 f t . ) to the east of the b r i n e pond w i l l occur w i t h i n 30 years. It i s important that t h i s b r i n e not be i n c o r p o r a t e d i n t o the s u r f a c e drainage. The best way to avoid t h i s type of p o l l u t i o n may be to dyke o f f the brine-contaminated area. The b r i n e - a f f e c t e d water which accumulates behind t h i s dyke could then be p e r i o d i c a l l y pumped back i n t o the b r i n e pond. Secondly, b r i n e p o l l u t i o n of the western p o r t i o n of the b u r i e d v a l l e y a q u i f e r poses problems of a d i f f e r e n t nature. The b r i n e w i l l flow through t h i s s e c t i o n more q u i c k l y than any other area i n the b u r i e d v a l l e y a q u i f e r because the h y d r a u l i c g r a d i e n t i s s t e e p e s t t h e r e . In order to t r a c e the b r i n e , more d e t a i l e d s t r a t i g r a p h i c i n f o r m a t i o n w i l l be necessary to d e l i n e a t e the western extent of the b u r i e d v a l l e y . The t e r m i n a t i o n s t r i p on the e l e c t r i c analog model re p r e s e n t s the western extension of the b u r i e d v a l l e y a q u i f e r . C a l i b r a t i o n of the e l e c t r i c analog model with f i e l d measurements suggest that the b u r i e d v a l l e y a q u i f e r extends at l e a s t 9000 f e e t west. The r e f o r e the western p o r t i o n of the b u r i e d v a l l e y a q u i f e r i s f a i r l y e x t e n s i v e and widespread p o l l u t i o n of t h i s a q u i f e r i s probable without remedial measures. In order to understand why low r a t e i n j e c t i o n w e l l s are not e f f e c t i v e i n r e v e r s i n g the h y d r a u l i c g r a d i e n t , one must look at the amount of b r i n e being t r a n s m i t t e d through the b u r i e d a q u i f e r at v a r i o u s b r i n e pond e l e v a t i o n s . The q u a n t i t y of b r i n e f l o w i n g through the b u r i e d a q u i f e r i s c a l c u l a t e d by: Q = - KA 3_h (31) 31 2 where K = 330 IGPD / f t . Table 11 r e p r e s e n t s the c a l c u l a t i o n s of b r i n e q u a n t i t i e s f l o w i n g through s t r a t i g r a p h i c cross s e c t i o n s A - A 1 and E - E^. Cross s e c t i o n areas f o r A - A 1 and E - E 1 are BRINE POND E L E V A T I O N IN feet a.m.s.l. H Y D R A U L I C G R A D I E N T Q U A N T I T Y FLOWING T H R O U G H A Q U I F E R , IGPM A - A ' E-E' A - A ' E-E' 1661 0.023 0.008 465 370 1666 0.025 0.010 505 460 1671 0.028 0.011 565 505 Table 11. Quantity of water (or brine) flowing through cross-sections A - A ' and E - E ' for various brine pond elevations. 91. 2 2 88,000 f t . and 200,000 f t . r e s p e c t i v e l y . The f i g u r e s i n Table 11,ranging from 370 to 565 IGPM, i n d i c a t e that a minimum of 370 to 565 IGPM would have to be i n j e c t e d i n t o the b u r i e d v a l l e y a q u i f e r to r e v e r s e the h y d r a u l i c g r a d i e n t . At t h i s s i t e , i n j e c t i o n w e l l s of t h i s magnitude are not f e a s i b l e because of the reasons p r e v i o u s l y s t a t e d . In order to check the v a l i d i t y of the b r i n e q u a n t i t y c a l c u l a t i o n s , a t r a n s i e n t e l e c t r i c analog s i m u l a t i o n was under-taken with a b r i n e pond e l e v a t i o n of 1671 f e e t . R e s u l t s show that a combined i n j e c t i o n r a t e of 500 IGPM at w e l l l o c a t i o n s A and B i s necessary to r e v e r s e the h y d r a u l i c g r a d i e n t i n the western p o r t i o n of the a q u i f e r . T h e r e f o r e , t h i s a n a l y s i s supports r e s u l t s i n Table 11. A l l the remedial measures analyzed were designed to reduce the h y d r a u l i c g r a d i e n t of the most permeable paths. The author suggests that perhaps the best approach to t h i s problem would be to t r y to reduce the seepage at the b r i n e pond. Although i t i s r ecognized that the implementation of the f o l l o w i n g may not be f e a s i b l e at the study s i t e because of economic c o n s i d e r a -t i o n s , i t could be accomplished i n one of two ways: a. plac e a p l a s t i c l i n e r on the bottom and s i d e s of the b r i n e pond; or, b. evaporate a s m a l l amount of b r i n e on the bottom of the b r i n e pond. This would l i n e the bottom of the pond with a r e l a t -i v e l y low-K l a y e r of s a l t . E l e c t r i c analog s i m u l a t i o n s were not c a r r i e d out f o r these l i n e r methods at the study s i t e . In the f u t u r e , seepage c a l c u l a t i o n s should be r e q u i r e d at proposed b r i n e ponds as part of a r e g i o n a l environmental impact assessment. Modeling of the type d i s c u s s e d i n t h i s r e p o r t i s one method of p r e d i c t i v e a n a l y s i s that could be used to optimize b r i n e pond desi g n . 92. SUMMARY Thi s study i s an i n v e s t i g a t i o n of the p o t e n t i a l p o l l u t i o n hazard of a b r i n e d i s p o s a l pond l o c a t e d near Esterhazy, Saskat-chewan. The main g e o l o g i c f e a t u r e at the study s i t e i s a b u r i e d v a l l e y a q u i f e r c o n s i s t i n g of h i g h l y permeable sand and g r a v e l d e p o s i t s . An assessment of the p o t e n t i a l p o l l u t i o n hazard r e q u i r e s a knowledge of the d i s t r i b u t i o n of the hydro-g e o l o g i c flow parameters (K, a, and n) and these have been determined f o r the a q u i f e r through a v a r i e t y of methods, i n c l u d i n g pump t e s t s , Theis recovery t e s t s , s l u g t e s t s , g r a i n s i z e d i s t r i b u t i o n curves, e l e c t r i c logs and the p u b l i s h e d l i t e r a t u r e . A complete a n a l y s i s of groundwater p o l l u t i o n would r e q u i r e c o n s i d e r a t i o n of s e v e r a l mechanisms of mass t r a n s f e r : c o n v e c t i o n , d i s p e r s i o n , molecular d i f f u s i o n , hydrogeochemical r e t a r d a t i o n and chemical p r e c i p i t a t i o n . In t h i s study, only c o n v e c t i o n has been considered because the data needed to model the other mechanisms i s u n a v a i l a b l e and because they are expected to be of minor importance, compared to c o n v e c t i v e t r a n s f e r , i n a permeable sand and g r a v e l a q u i f e r . A three dimensional e l e c t r i c analog model was c o n s t r u c t e d to s o l v e both the steady s t a t e and t r a n s i e n t groundwater flow problems a s s o c i a t e d with the b r i n e contamination. The f o l l o w i n g conclus iocs, and recommendations have been formulated from the r e s u l t s : 1. The e l e c t r i c analog model i s a u s e f u l t o o l i n e v a l u a t i n g the hydrogeologic problems a s s o c i a t e d with b r i n e d i s p o s a l ponds. These models can be c o n s t r u c t e d and operated economically and they can be kept on s i t e where engineers can assess proposed waste management d e c i s i o n s before they are implemented. E q u i v a l e n t d i g i t a l computer models are expensive and are not always r e a d i l y a c c e s s i b l e . 93 . 2. S e v e r a l c o n c l u s i o n s can be drawn on the b a s i s of the steady s t a t e and t r a n s i e n t e l e c t r i c analog s i m u l a t i o n s of ground-water flow c o n d i t i o n s i n the v i c i n i t y of the Esterhazy br ine pond: a. The s u r f a c e area from the b r i n e pond to 5600 f e e t eastward w i l l be p o l l u t e d by b r i n e w i t h i n 30 y e a r s . The b r i n e could then be i n c o r p o r a t e d i n t o the s u r f a c e drainage and be discharged d i r e c t l y i n t o Cutarm Creek. Th e r e f o r e , b r i n e seepage onto the s u r f a c e immediately east of the b r i n e pond c o n s t i t u t e s a s e r i o u s p o t e n t i a l p o l l u t i o n hazard. b. Brine p o l l u t i o n by groundwater d i s c h a r g e d i r e c t l y i n t o Cutarm Creek i s not an imminent p o l l u t i o n hazard. I t w i l l take between 640 to 1260 years, depending on the e l e v a t i o n of the b r i n e l e v e l i n the b r i n e pond, f o r p o l l u t a n t s to reach the creek v a l l e y v i a subsurface r o u t e s . The presence of a t h i c k s e c t i o n of low p e r m e a b i l i t y t i l l east of cross s e c t i o n C - C 1 s i g n i f i c a n t l y i n c r e a s e s the b r i n e t r a v e l time of the b r i n e i n t h i s area. c. Only a s l i g h t i n c r e a s e i n c o n v e c t i v e t r a v e l times would accompany a decrease i n b r i n e pond e l e v a t i o n . d. Brine contamination of the western extension of the b u r i e d v a l l e y a q u i f e r i s c e r t a i n . The author recommends that f u r t h e r hydrogeologic s t u d i e s be undertaken to d e l i n e a t e the western extension of the b u r i e d v a l l e y a q u i f e r . 94. e. Low r a t e i n j e c t i o n w e l l s (up to 50 IGPM) would not reverse the h y d r a u l i c g r a d i e n t i n the b u r i e d a q u i f e r . C a l c u l a t i o n s i n d i c a t e that i n j e c t i o n r a t e s of between 370 and 565 IGPM would be r e q u i r e d . In that such q u a n t i t i e s of f r e s h water are not r e a d i l y a v a i l a b l e , i n j e c t i o n w e l l s can not be considered a f e a s i b l e remedial measure to p r o t e c t the b u r i e d v a l l e y from b r i n e encroachment. T h e r e f o r e , the author recommends that low h y d r a u l i c c o n d u c t i v i t y l i n e r s , designed to prevent b r i n e seepage at the b r i n e pond, be i n v e s t i g a t e d . f . A flowing seismic shot hole i s p r e s e n t l y d i s c h a r g i n g water at a r a t e of 29,000 IGPD. Once the b r i n e reaches the seismic shot hole ( i n approximately 9 years) b r i n e w i l l be d i s c h a r g e d , and l a r g e s c a l e p o l l u t i o n of s u r f a c e water i s i n e v i t a b l e . The author recommends that the. f l o w i n g s e i s m i c shot hole be plugged. The study a l s o provided some u s e f u l hydrogeologic i n f o r m a t i o n about the study s i t e . Pump t e s t s , Theis recovery t e s t s , s l u g t e s t s , estimates from g r a i n - s i z e a n a l y s i s , e l e c t r i c l o g estimates and the p u b l i s h e d l i t e r a t u r e y i e l d e d the f o l l o w i n g estimates of h y d r o g e o l o g i c parameters: F r a c t u r e d t i l l K = 1 IGPD/ft. 2 -4 -1 S g= 7 x 10 f t . Buried v a l l e y f l u v i a l d e p o s i t s (sand and g r a v e l ) K = 330 IGPD/ft . 2 S = 4.9 x 10~ 4 f t . " 1 The Jacob method proved the most u s e f u l method f o r e v a l u a t i n g pump t e s t data i n narrow bu r i e d v a l l e y f l u v i a l d e p o s i t s because data a f f e c t e d by impermeable boundaries can e a s i l y be i d e n t i f i e d . BIBLIOGRAPHY Acton, D.F., C l a y t o n , J.S., E l l i s , J.G., C h r i s t i a n s e n , E.A., and W.O. Kupsch. 1960. P h y s i o g r a p h i c D i v i s i o n s of Saskatchewan. Sask. Res. C o u n c i l , Map 1. Bear, J . 1972. Dynamics of F l u i d s i n Porous Media. Am. E l s e v i e r Pub. Co. L t d . , New York, p. 732 . C h r i s t i a n s e n , E.A. 1960. Geology and Groundwater Resources of the Qu'appelle Area Saskatchewan. Sask. Res. C o u n c i l , Geology D i v i s i o n , Report No. 1. C h r i s t i a n s e n , E.A. 1968. P l e i s t o c e n e s t r a t i g r a p h y of the Saskatoon area, Saskatchewan, Canada. Can. J . Earth Sc., v o l . 5, p . 1167-1173. C h r i s t i a n s e n , E.A. 1971. Geology and Groundwater Resources of the M e l v i l l e Area, Saskatchewan. Sask. Res. C o u n c i l , Map 12. Cooper, H.H. J r . , Bredehoeft, J.D., and I.S. Papadopulos. 1967. Response of a f i n i t e - d i a m e t e r w e l l to an instantaneous -charge of water. Water Res. Res., v o l . 3, p.263-269. Domenico, P.A. 1972. Concepts and Models i n Groundwater Hydro-logy. McGraw H i l l Book Co., Toronto, 403 p . Dyck, J.H., Keys, W.S., and W.A. Meneley. 1972. A p p l i c a t i o n of G e o p h y s i c a l Logging to groundwater s t u d i e s i n Southern Saskatchewan. Can. J . E a r t h S c i e n c e s , V o l . 9, No. 1, p. 78 - 94 Freeze, R.A. 1962. A q u i f e r Notes. G e o l . Survey Can. T o p i c a l . Report 48, 107 p. Freeze, R.A. 1969a. Hydrogeology of the Gravelbourg a q u i f e r , Saskatchewan. Inland Waters Branch, S c i e n t i f i c S e r i e s No. 6. 60 p. Freeze, R.A. 1969b. Regional groundwater flow-Old Wives Lake Drainage b a s i n , Saskatchewan. Inland Waters Branch, S c i e n t i f i c S e r i e s No. 5, 245 p. Freeze, R.A. and P.A. Witherspoon. 1966. T h e o r e t i c a l A n a l y s i s of r e g i o n a l groundwater flow: (1) A n a l y t i c a l and Numerical s o l u t i o n s to the mathematical model. Water Res. Res., 2, p. 641 - 656. Freeze, R.A. and P.A. Witherspoon. 1967. T h e o r e t i c a l a n a l y s i s of r e g i o n a l groundwater flow: (2) E f f e c t of water-t a b l e c o n f i g u r a t i o n and s u b s u r f a c e p e r m e a b i l i t y v a r i a -t i o n . Water Resources Res., 3, p.623-634. Fryberger, J.S.. 1975. I n v e s t i g a t i o n and r e h a b i l i t a t i o n of a b r i n e - contaminated a q u i f e r . Groundwater, V o l . 23, No. 2, p. 155-160. G r i s a k , G.E., and J.A. Cherry. 1975. H y d r o l o g i c c h a r a c t e r i s t i c s and response of a f r a c t u r e d t i l l and c l a y c o n f i n i n g a shallow a q u i f e r . Can. Geotech. J . V o l . 12, No. 1, p. 23-43. G r i s a k , G.E., Cherry, J.A., Vonhof, J.A., and J.P. Blumele. 1975. Hydrogeologic and hydrochemical p r o p e r t i e s of f r a c t u r e d t i l l i n the I n t e r i o r P l a i n s r e g i o n . Paper submitted to: G l a c i a l T i l l - An I n t e r d i s c i p l i n a r y Conference, Ottawa, 1975. Hubbert, M. King. 1940. The theory of groundwater motion. J. Geol. v o l . 48, p. 785-944. Kar p l u s , W.J. 1958. Analog S i m u l a t i o n . McGraw-Hill Book Co., Inc., New York, 434 p. Kruseman, G.P. and N.A. de Ridder. 1970. A n a l y s i s and e v a l u a t i o n of pumping t e s t data. I n t . I n s t i t u t e f o r Land Reclamation and Improvement, Wageningen, B u l l . 11. Kupsch, W.O. 1962. I c e - t h r u s t r i d g e s i n Western Canada. J . Geol., v o l . 70, No. 5, p. 582-594. Masch, F.D. and K.J. Denny. 1966. G r a i n s i z e d i s t r i b u t i o n and i t s e f f e c t on the p e r m e a b i l i t y of u n c o n s o l i d a t e d sands. Water Res. Res., v o l . 2, No. 4, p. 665-677. Meneley, W.A. 1965. Geohydrologic aspects of s a l t d i s p o s a l i n Saskatchewan. In: Proc. Sask. Potash Show, 1965. Sask. Dept. Industry and Commerce, Regina, 377 p. Meneley, W.A. 1965. The requirements of ground-water geology. Groundwater, V o l . 3, No. 2. Meneley, W.A. 1970. Groundwater r e s o u r c e s . In: C h r i s t i a n s e n , E.A. (ed.), P h y s i c a l environment of Saskatoon. Nat. Res. Counc. Can., Ottawa, p. 39-48. Meyboom, P. 1963. Pa t t e r n s of groundwater flow i n the p r a i r i e p r o f i l e . Proc. Hydrology Symposium No. 3, Nat. Res; Counc. of Canada, p. 5-20. Meyboom, P. 1967. Groundwater s t u d i e s i n the A s s i n i b o i n e River drainage b a s i n . Part I I : H y d r o l o g i c c h a r a c t e r i s t i c s of p h r e a t o p h y t i c v e g e t a t i o n i n s o u t h - c e n t r a l Saskatchewan. Geol. Surv. Can., B u l l . 139, Pt. I I , 64 p. 9 7.. Moran, S.R. 1972. Hydrogeology of s e l e c t e d b r i n e - d i s p o s a l lagoons i n g l a c i a t e d t e r r a i n . Paper presented to G.S.A., North C e n t r a l S e c t i o n , May. N o r r i s , S.E. 1962. P e r m e a b i l i t y of g l a c i a l t i l l . U.S.G.S. P r o f . Paper 450-E, p. 150-151. Papadopoulos, I.S., Bredehoeft, J.D., and H.H. Cooper. 1973. On the a n a l y s i s of 'Slug T e s t ' data. Water Res. Res., v o l . 9, n.o. 4, p. 1087-1089. Patten, E.P. J r . 1965. Design, c o n s t r u c t i o n , and use of e l e c t r i c analog models. In: Analog model study of ground water i n the Houston d i s t r i c t , Texas. Texas Water Commission B u l l e t i n 6508. Render, F.W. 1971. E l e c t r i c analog and d i g i t a l m o d e l l i n g of the upper carbonate a q u i f e r i n the m e t r o p o l i t a n Winnipeg area. G.A.C. S p e c i a l Paper no. 9, p. 311-320. S k i b i t z k e , H.E. 1961. The use of analog computers f o r s t u d i e s i n groundwater hydrology. Geol. Soc. of London, I n s t , of Water Eng., v o l . 17, no. 3 May. Sloan, C.E. 1972. Groundwater hydrology of p r a i r i e potholes i n North Dakota. USGS P r o f . Paper 585-C. Stallman, R.W. 1963.. E l e c t r i c analog of three-d i m e n s i o n a l flow to w e l l s and i t s a p p l i c a t i o n to unconfined a q u i f e r s . USGS Water Supply Paper 1536-H. . Todd, D.K. 1959. Groundwater hydrology. John Wiley and Sons, New York, 336 p. Toth, J . 1963. A t h e o r e t i c a l a n a l y s i s of groundwater flow i n small drainage b a s i n s . J . Geophys. Res., v o l . 68, No. 16, p. 4795-4811. Vonhof, J.A. 1975a. Hydrodynamic response - or s l u g t e s t s as a means to monitor w e l l development. Can. Geotech. J . , V o l . 12, No. 1, p. 1-12. Vonhof, J.A. 1975b. Waste d i s p o s a l problems near potash mines i n Saskatchewan, Canada. Paper presented to the meeting of I n t e r n a t i o n a l Union of Geodesy and Geophysics. Walton, W.C. 1962. S e l e c t e d a n a l y t i c a l methods f o r w e l l and a q u i f e r e v a l u a t i o n . I l l i n o i s S t ate Water Survey, B u l l . 49. 98. Walton, W.C. 1970. Groundwater Resource E v a l u a t i o n . McGraw-Hill Book Co. Inc., New York, 664 p. Walton, W.C. and T.A. P r i c k e t t . 1963. Hydrogeologic e l e c t r i c analog computers. Proc. Amer. Soc. C i v i l Eng., V o l . 89, No. HY6, p. 67-90. Wheeler, M.L. 1970. E l e c t r i c analog model study of the hydrology of the Saginaw formation i n the Lansing, Michigan Area - 1963. I n s t . Water Res., Michigan State U n i v e r s i t y , T e c h n i c a l Report No. 10. Appendix A - Pump t e s t data f o r o b s e r v a t i o n w e l l s - A to G. P- U M P I N G T E S T D A T A - D R A W D O W N T E S T OBSERVATION WELL A Nearest t e s t h o l e ( s ) IWB 44 E l e v a t i o n 1 6 6 1 32 f t . Depth 45.5 Et. TIME Pumping Well B c F G SINCE START Kacnus (.rj • ODU 1915 1305 1305 OF PUMPING pumping rate 16.66 49.98 49 .98 minutes days Dwdn. V r 2 l O " 8 Dwdn. V r 2 l O " 7 Dwdn. V 2 l O " 8 Dwdn. V r 2 i o - 8 15 0.0142 0.006 1.92 0.014 0 .83 0.021 30 0.0208 0.0115 2.81 0.039 1.22 0.057 45 0.0312 0.016 4 .23 0.062 1.83 0.09 60 0.0416 0.02 5.63 0.0166 ' 0.1136 0.088 2.45 0.123 75 0.052 — — . . .. — i... • ., ,, , m 0.023 7.03 0.0249 0.1418 0.11 3.05 0.15 90 0.0625 0.0275 8.45 0.129 3.67 0.18 105 0.0729 0.0301 9.86 0.148 4 .28 0.202 120 0.0833 0.035 11.26 0.166 4 .89 0 .23 135 0.0937 0.0375 12.68 0.0498 0.2556 0 .183 5.50 0.25 150 0.104 0.04 14.06 0 .20 6.11 0.27 165 0.114 0.0435 15.49 • 180 0.125 0.047 16.90 0.2275 7.34 0._31 195 0.135 0.049 18.31 0.0747 0.368 210 0.145 0.051 19.71 0.252 8.56 0.342 240 0.167 0.057 22.58 0.0913 0.4554 0.277 9.81 0.374 270 0.187 0.060 25.35 . 0.301 1.10 0.402 . 300 0.208 0.064 28.16 0.321 1.22 0.43 360 0.250 0.0725___ J 3 . 8 0 0.36 1.47 0.478 450 0.312 0.083 42.25 0.41 1.83 0 .533 600 0.417 0.1826 1.137 0.476 2.45 0.611 750 . 0,520 900 0.625 " I 0.2407 1.704 PU F I F I N G T E S T D A T A - DRAWDOWN T E S T OBSERVATION WELL B N e a r e s t t e s t h o l e ( s ) IWB 43 E l e v a t i o n - 1 6 5 9 . 1 3 f t . ; D e p t h 4 7 . 3 f t . T IME S INCE STAP OF PUMPIN P u m p i n g W e l l A. C F G T IG R a d i u s ( r ) 860 1U85 1935 1935 P u m p i n g r a t e CQ) 4 9 - 9 1 6 . 6 49 .9 4 9 . 9 m i n u t e s d a y s Dwdn. V r 2 ( 1 0 - 8 Dwdn. V r 2 i o - 7 Dwdn. V l O " 8 Dwdn. t / r 2 , l 0 - J 15 0 . 0142 0 . 0 5 1. 919 30 0 . 0208 0 . 1 0 2 . 812 0 . 0 1 0 . 1 7 7 0 . 0 0 1 5 0 . 5 5 6 0 . 0 0 1 5 0 . 556 45 0 . 0 312 0 . 1 4 4 . 225 0 . 0 2 5 0.266 0 . 0 0 7 0 . 8 3 5 0 . 0 0 7 0 . 835 60 0 . 0416 0 . 1 8 5 . 634 0 . 0 3 4 0 . 3 5 5 0 . 0 1 7 1 . 1 1 3 0 . 0 2 1. 1 1 3 75. 0 . 052 0 . 2 2 7. 03 0 . 0 2 6 1 . 3 8 8 0 . 0 3 4 5 . 1. 388 90 0 . 0 625 0 . 2 4 8 . 45 0 . 0 5 6 0 . 5 3 1 9 0 . 0 3 8 1 . 669 0 . 0 5 _ _ L - 669 105 0 . 0729 0 . 2 6 5 9 . 856 0 . 0 5 1 . 9 4 7 0 . 0 7 5 I. 947 120 0 . 0 833 0 . 2 9 5 1 1 . 26 0 . 0 7 7 0 . 7 0 9 0 . 0 6 2 . 2 2 5 0 . 0 8 2 . 225 135 0 . 0 9 3 7 0 . 3 2 1 2 . 67 0 . 0 7 1 2 . 5 0 4 0 . 0 9 6 2 . 504 150 180 C. 0 . 104 125 . . . 0 . 34 . 0 . 3 8 5 1 4 . 06 0.081 2 . 7 7 7 0.111 ?. 72.7. 1 6 . 90 ' 0 . 1 1 1 .064 0 . 1 0 3 3 . 3 3 8 0 . 1 4 1 3 . 3 38 210 0 . 1 4 5 0 . 4 3 I?.- 71 0 . 1 2 5 .1 .24 . 0 . 1 2 3 3 . 8 9 8 . 0 . 1 7 3.. 89.8 240 0 . 1 6 7 0 . 4 5 5 2 2 . 579 0 . 1 3 7 1. .42 0 . 1 4 1 4 . 4 6 0 . 1 9 5 _4. 46 270 0 . 187 0 . 4 8 5 2 5 . 35 0 . 1 5 1 .59 0 . 1 6 5.01. 0 . 2 2 __J5. 01 300 0 . 208 0 . 5 1 5 _28. 16_ 0 . 1 7 9 5 . 5 6 0 . 2 4 5 5 56 330 0 . 229 0 . 5 4 30 . 98 360 0 . 250 0 . 2 1 6 . 6 8 0 . 2 9 6_. 6 8 _ _ 390 0 . 270 0 . 5 8 7 3 6 . 61 0 . 1 9 3 2 . 3 0 450 0 . 3 1 2 0 . 6 3 4 2 . 25 0 . 2 1 2 . 6 6 0 . 2 5 1 8 . 3 4 0 . 3 4 4 8 . 34 0 . 354 0 . 6 6 5 4 7 . 88 • -- •-P u n P I N G T E S T D A T A DRAWDOWN T E S T OBSERVAT ION WELL c N e a r e s t t e s t h o l e ( s ) IWB 49 ! E l e v a t i l o n 1 6 5 9 . 56 f t . . D e p t h 5 0 . 6 f t . 1—. i i T IME P u m p i n g W e l l A B F G I S INCE START K a a i u s (.r j 1085 3000 3000 j OF PUMPING mumping r a t e ' (01 ^ 9 8 . 3 3 49 .9 4 9 . 9 j m i n u t e s i d a y s Dwdn. V r 2 l O " 8 Dwdn. V r 2 1 0 " 7 Dwdn. V r 2 l O " 8 Dwdn. V 2 ! 30 0 . 0 2 0 8 0 . 0 0 8 5 0 . 5 6 7 i 45 j 0 . 0 3 1 2 0 . 0 2 0 . 8 5 2 0 . 0 0 1 0 . 2 6 6 ! 60 1 0 . 0 4 1 6 0 . 0 3 5 1 .136 0 . 0 0 4 0 . 3 5 5 ! 75 0 . 0 5 2 0 . 0 5 1 .418 0 . 0 0 8 0 . 4 4 3 0 . 0 0 3 0 . 5 7 7 0 . 0 0 1 0 . 5 7 7 1 90 JL.062.5_  0 . 0 6 9 1 .704 0 . 0 1 _0.5319_ 0 V 00_85_ 0 . 6 9 4 _ p . _ 0 0 4 0 . 6 9 4 105 _0^0729 0 .087 1 . 988 0 . 0 1 3 0 . 6 2 0 ! 120 0 . 0 8 3 3 0 . 1 0 4 2 . 2 7 2 0,01175 0 . 7 0 9 0 . 0 1 6 0 . 9 2 5 0 . 0 2 8 0 . 9 2 5 - . - - 1 3 5 . 0 . 0 9 3 7 0 . 1 2 2 5 2 . 5 5 6 .0 .02 . 0 . 79.8 1 50 0 . 1 0 4 0 . 1 4 ._..2;_835_ 0 . 0 2 3 0 . 8 8 5 0 . 0 2 6 1 . 1 55 0 . 0 4 5 1 . 1 55 180 0 . 1 2 5 0 . 1 7 3 . 4 0 8 0 . 0 2 9 1, 064 210 , , . . 0 . 1 4 5 0 . 1 9 3 3 . 9 7 6 0 . 0 3 4 1 .24 0 . 0 4 9 1 .62 0 . 0 7 8 1 .620 240 _ ° - J : 6 7 _ 0 . 2 2 4 . 5 5 4 ...0.04 .1.42 0 . 0 6 1 . 8 55 0 . 0 9 5 1 .855 270 0 . 1 8 7 0 . 2 5 8 5 . 1 1 3 0 .044 1 .59 J > i _ 0 7 2 2 . 0 8 3 _ 0 . 1 1 1 2 .083 300 . 3 3 0 ' 0 . 208 . 0 . 2 2 9 0 . 2 8 1 . . 5 . 6 8 0 . . 0 . 0 4 8 5 0 . 0 5 2 5 1 . 77 1 .95 0.08.4. . ..2..314._._ 0 . 1 2 8 . 2 , 3 1 4 360 0 . 2 5 0 0 . 3 2 5 6 . 817 0 . 0 5 6 2 . 1 3 390 0 . 2 7 0 0 . 3 4 7 7 . 3 85 0 . 1 1 6 3 . 0 0 9 4 5 0 0 . 3 1 2 0 . 3 8 5 8_.522_ 0 . 0 6 8 2 . 66 0 . 1 3 8 • 3 . 4 7 2 510 0 . 3 4 5 0 . 4 2 9 . 4 1 3 600 0 . 4 1 7 0 . 4 6 8 1 1 . 3 7 2 C . 0 8 3 5 3 . 55 0 . 1 8 5 4 . 6 3 3 750 0 . 520 - 0.09.2 4 . 4 3 900 0 , 6 2 5 0 . 1 0 5 5 .32 o P U M P I N G T E S T D A T A - DRAWDOWN T E S T OBSERVATION WELL D N e a r e s t t e s t h o l e ( s ) IWB 56 E l e v a t i o n 1 6 5 4 . 4 4 f t . D e p t h 3 3 . 8 f t . I T IME P u m p i n g W e l l F G S INCE START K a c a u s (.rj 2035 OF PUMPING Hump ing r a t e (01 49 .9 m i n u t e s d a y s Dwdn. V r 2 1 0 - 8 Dwdn. V r 2 l O " 8 Dwdn. V r 2 Dwdn. V r 2 15 0 . 0 1 4 2 0 . 0 1 0 . 3 4 3 0 . 0 0 5 0 . 3 4 30 0 . 0 2 0 8 0 . 0 2 0 . 5 0 2 0 . 0 1 7 0 . 5 0 45 0 . 0 3 1 2 0 . 0 3 0 . 7 5 4 0 . 0 2 5 0 . 7 5 60 0 . 0 4 1 6 0 . 0 4 3 1 . 00 0 . 0 3 6 1 .00 75 0 . 0 5 2 0 . 0 6 1 . 255 0 . 0 5 1.26 90 0 . 0 6 2 5 0 . 0 7 1 1 .51 0 . 0 6 5 1.51 105 0 . 0 7 2 9 0 . 0 8 4 1 .76 0 . 0 8 1.76 120 0 . 0 833 - 0 . 1 0 2 . 0 1 0 . 0 9 5 _ 2 . 0 1 135 0 . 0 9 3 7 0 . 1 1 2 2 . 26 _ _ _ p . l l 2 . 26 150 0 . 1 0 4 0 . 1 2 6 2 . 5 1 0 . 1 2 5 2 . 51 180 0 . 1 2 5 0 . 1 5 3 . 0 2 0 . 1 5 2 3 . 0 2 210 0 . 1 4 5 0 . 1 7 1 3 . 5 2 0 . 1 7 8 3 . 52 240 0 . 1 6 7 0 . 1 9 2 4 . 0 3 0 . 2 0 4 4 . 0 3 270 0 . 1 8 7 0 . 2 1 5 4 . 5 3 0 . 2 2 6 4. '54 300 0 . 2 0 8 0 . 2 3 5 5 . 0 3 0 . 2 5 5 . 03 360 0 . 2 7 3 0 . 2 5 0 6 . 0 4 0 . 2 9 6 . 0 4 450 0 . 3 2 6 0 . 3 1 2 5 7 . 5 5 0 . 3 4 7 7 . 55 600 0 . 4 0 7 0 . 4 1 7 1 0 . 0 7 0 . 4 3 1 1 0 . 0 7 - o P U M P I N G T F S T 11 AT A - n p - f l w n n p N T F 0 T OBSERVATION WELL E IWB 59 E l e v a t i o n 1 6 6 9 . 9 1 f t . , ^ 5 ( > ^ ^ T IME S INCE START P u m p i n g W e l l B R a d i u s (r) " 3 7 l 5 " OF I 'LIMPING P u m p i n g n CP) l t e 8 . 3 3 m i n u t e s d a y s Dwdn. t/r2 1 0 _ B Dwdn. V Dwdn. Dwdn. 255 0 . 1 6 7 0 . 1 7 7 0 . 0 0 1 0 . 0 0 3 1 . 2 1 0 1 1 . 2 83 • -•— — •'  270 0 . 1 8 7 0 . 0 0 4 5 1 . 358 ! 285 0 . 1 9 7 0 . 0 0 6 5 1 .434 1 . 509 1 . 661 1 . 812 300 0 . 2 0 8 0 . 2 2 9 0 . 0 0 7 330 0 . 0 1 360 390 0 . 2 5 0 0 . 0 1 4 5 0 . 2 7 0 0 . 0 1 8 5 1 . 962 420 4 5 0 480 0 . 2 9 1 0 . 3 1 2 0 . 3 3 3 0 . 0 2 1 2 . 1 1 4 2 . 2 6 4 2 . 4 1 3 0 . 0 2 5 0 . 0 2 7 0 . 0 3 0 . 0 3 4 510 540 0 . 3 5 4 0 . 3 7 5 2 . 5 6 6 2 . 7 1 7 2 . 8 6 8 3 . 0 2 2 .. -570 600 0 . 3 9 5 0 . 4 1 7 0 . 0 3 9 0 . 0 4 1 • - - - -•-- - • o P U M P I N G T E S T D A T A - D R A W D 0 W N T E S T OBSERVATION WELL F N e a r e s t t e s t h o l e ( s ) IWB 70 E l e v a t i o n 1 6 5 5 . 5 1 f t . D e p t h 212 .3 f t . T IME P u m p i n g W e l l A B C D S INCE START K a a i u s [ r j 1JU5 i y 3 b 3000 3035 OF P UMPING f u m p i n g r a t e 8 . 3 3 1 6 . 6 1 6 . 6 m i n u t e s d a y s Dwdn. | V r 2 l O " 8 Dwdn. V r 2 1 0 " 7 Dwdn. V r 2 l O " 8 Dwdn. V r 2 1 0 - 8 15 0 . 0 1 4 2 0 . 0 1 1 0 . 8 3 3 0 . 0 0 1 5 0 . 3 4 3 30 0 . 0 2 0 8 0 . 0 4 1 .22 0 . 0 0 5 0 . 5 0 2 45 0 . 0 3 1 2 0 . 0 6 2 1 .83 0 . 0 0 3 5 0.JB35 0 . 0 0 9 0 . 7 5 4 60 0 . 0 4 1 6 0 . 1 0 5 2 . 4 5 0 . 0 0 5 1 . 113 0 . 0 1 3 1 . 0 0 75 0 . 0 5 2 0 . 1 3 5 3 .05 0 . 0 0 6 5 1 . 388 0 . 0 0 5 0 . 5 7 __0 .018 1 . 2 55 90 0 . 0 6 2 5 0 . 1 6 5 3 . 67 0 . 0 0 9 5 1 . 669 0 . 0 0 7 0 . 6 9 0 . 0 2 4 1 . 51 105 0 . 0 7 2 9 0 . 1 8 5 4 . 2 8 0 . 0 1 0 5 _ : „ i _ v ? i 7 0 . 0 2 9 1 . 76 120 0 . 0 8 3 3 0 . 2 1 4 . 8 9 0 . 0 1 3 2 . 2 2 5 0 . 0 1 1 0 . 9 2 5 0 . 0 3 4 _ . . 2 J L 0 1 2 . 2 6 135 0 . 0 9 3 7 0 . 2 3 5 5 . 5 0 0 . 0 1 5 2 . 5 0 4 . 0 . 0 3 9 150 0 . 1 0 4 0 . 2 5 5 6 .11 0 . 0 1 8 5 2 . 7 7 7 o . o i 7 ; 1 . 1 5 0 . 0 4 5 2.J1_ 1 8 0 0 . 1 2 5 0 . 3 0 7 .34 0 . 0 2 2 3 . 3 3 8 0 . 0 5 4 3 . 0 2 210 0 . 1 4 5 0 . 3 2 5 8 . 5 6 _0 .027 3 . 8 9 8 0 . 0 3 1 .62 0 . 0 6 3 3 . 5 2 4 . 0 3 240 0 . 1 6 7 0 . 3 5 5 9 . 81 0 . 0 3 0 5 4 . 4 6 0 . 0 3 6 1 . 85 0 . 0 7 3 270 300 0 . 1 8 7 0 . 2 0 8 0 . 3 7 1 _ 0 . 4 0 5 1 . 10 1 .22 0 . 0 3 2 0 . 0 3 5 5 5 . 01 5 . 56 0 . 0 4 3 0 . 0 5 1 2 , 0 8 _ 2 . 3 1 0 , 0 8 2 0 . 0 9 4 , 5 3 5 . 0 3 6 . 0 4 7.55 . _ 360 450 5 1 0 0 . 2 5 0 0 . 3 1 2 -.. ° - 3 4 5 0 . 4 5 0 . 5 2 0 . 5 4 1 .47 1 . 83 _._2.03 0 . 0 4 2 5 _ 0 . 0 5 2 5 6 , 6 8 8 . 3 4 . 0 . 0 8 3.47.. 0 . 1 0 4 0 . 1 2 5 600 750 900 0 . 4 1 7 0 . 5 2 0 0 . 6 2 5 .... 0 . 5 8 3 2 . 4 5 . 0 . 0 6 2 1 1 . 1 3 7 0 . 1 0 4 0 . 1 2 7 0 . 1 5 4 . 6 3 5 . 7 8 6 . 9 4 0 . 1 5 7 1 0 . 0 7 P U M P I N G T E S T D A T A - DRAWDOWN T E S T OBSERVATION WELL F N e a r e s t t e s t h o l e ( s ) I W B 7 0 E l e v a t i o n 1 6 5 5 . 5 1 f t . D e p t h 212.3 f t . 1 T IME S INCE START OF PUMPING P u m p i n g W e l l G R a d i u s ( r J P u m p i n g r a t e 40, 9 (Q) [  m i n u t e s d a y s Dwdn. V 1 0 - 0 Dwdn. . V r * Dwdn. Dwdn. V 15 0 .0142 0 .155 0 .604 30 0 .0208 0 .235 0 .885 45 0 .0312 0 .29 1.33 60 0 .0416 ' , 0.335 1 .77 75 0.052 0 .38 2.21 90 0 .0625 0 .415 2.66 105 0 .0729 0.45 3.10 135 0 .0937 0 .50 3.99 150 0 .104 0 .527 4.43 180 0 .125 0 .57 5.32 210 0.145 0 .61 6.20 240 0 .167 0 .647 7.11 300 0 .208 0 .71 8 . 8 6 360 0 .250 0.76 10.64 1 4 50 67312 0 .82 1 3 . 2 9 600 0 .417 0 .91 1 7 . 7 5 -— • — .'. . . -• — o ON P U M P I N G T E S T D A T A DRAWDOWN . T E S T OBSERVATION WELL G Nearest testhole(s) IWB 70 Elevation 1 6 5 5 . 6 2 f t . . Depth 5 7 . 0 f t . 1 ^_^=. T IME • P u m p i n g W e l l A B z D S INCE START Kaaius (.rj 1935 3000 2035 OF PUMPING Humping rate (Q) * 9 ' 9 8 . 3 3 16 .6 1 6 . 6 minutes days Dwdn. V l O " 8 Dwdn. V 1 0 " 8 Dwdn. V l O ' 8 Dwdn. 15 0 . 0 3 1 2 0 . 0 0 5 0 . 8 3 30 0 . 0 4 1 6 0 . 0 3 7 1 .22 45 0 . 0 3 1 2 0 . 0 7 1 . 83 0 . 0 0 1 5 0 . 8 3 5 0 . 0 0 3 5 0 . 7 5 4 60 0 . 0 4 1 6 0 . 1 0 5 ._2_. .45. 0 . J 0 3 5 . __. 1 .113 0.00_25 0 . 4 6 _ 0 . 0 0 8 1 . 0 0 75 0 . 0 5 2 0 . 1 3 3 . 05 0 . 0 0 5 1 .388 O...OC4._ 0 . 5 7 _ p _ o n 1 . 2 5 5 90 0 . 0 6 2 5 0 . 1 6 2 3 . 6 7 0.0_Q6 1 .669 0 . 0 0 6 0 . 6 9 0 . 0 1 7 5 1 . 51 105 0 . 0 7 2 9 0 . 1 8 5 4 . 2 8 0._0_0_7_5 . 1 . 9 4 7 0 , 0 0 8 5 0 . 8 1 0 . 0 2 1 1 . 76 120 0 . 0 8 3 3 0 . 2 1 4 . 8 9 0 .011 .... 2.225 0 . 0 1 0 5 0 . 9 3 0 . 0 2 7 5 2 . 0 1 _ 1 3 5 0 . 0 9 3 7 0 . 2 3 5 _ . . 5_50 _ 0 . 0 1 2 5 _ 2 . 5 0 4 0 . 0 1 3 1 . 04 0 . 0 3 3 2 . 2 6 150 0 . 1 0 4 0 . 2 6 6 . 11 0 . 0 1 6 2 . 7 7 7 0 . 0 1 7 5 . 1 . 15 0 . 0 3 8 5 2 . 5 1 180 0 . 1 2 5 0 . 3 0 7 . 34 0^021 3 . 3 3 3 0 . 0 2 4 5 1 . 3 8 0 . 0 4 9 3 . 0 2 210 0 . 1 4 5 0 . 3 3 5 . . 8 . 5 6 ....0.02.5 ..... 3 . 8 98 0 . 0 3 1 . 62 0 . 0 5 8 5 3 . 5 2 240 0 . 1 6 7 0 . 3 7 9 . 8 1 0 . 0 3 0 4 . 4 6 0 . 0 3 8 5 1 . 85 0 . 0 6 8 4 . 0 3 270 0 . 1 8 7 0 . 3 9 8 . . . i - i o ( 1 ° 0 . 0 3 2 5 . 01 0 . 0 4 5 2 . 0 8 0 . 0 7 7 4 . 5 3 300 0 . 2 0 8 0 . 4 2 4 1 .22 0 . 0 3 6 5 . 56 0 . 0 5 2 2 . 3 1 0 . 0 8 4 5 . 0 3 360 0 . 2 5 0 0 . 4 6 7 1 .47 0 . 0 4 2 6 . 6 8 0 . 0 6 5 2 . 7 8 0 . 0 9 9 6 . 0 4 450 0 . 3 1 2 0 . 5 2 6 1 . 83 0 . 0 5 3 8 .34 0 . 0 8 2 5 3 . 4 7 0 . 1 2 7 . 5 5 510 0 . 3 5 4 0 . 5 5 9 2 . 0 3 600 0 . 4 1 7 0 . 6 0 3 2 . 4 5 0 . 0 6 4 1 1 . 1 3 7 0 . 1 0 6 4 . 6 3 0 . 1 5 3 5 1 0 . 0 7 750 0 . 5 2 0 0 . 1 2 8 5 . 7 8 900 0 . 6 2 5 0 . 1 5 0 6 . 9 4 P U M P I N G T E S T OBSERVATION WELL E l e v a t i o n 1 6 5 5 . 6 2 f t . T IME S INCE START OF PUMPING minutes 15 30 45 60 75 d a y s -QjL.0j.l_2_ 0 . 0 4 1 6 0 . 0 3 1 2 0 . 0 4 1 6 0 . 0 5 2 90 105 120 135 150 180 210 2 4 0 : _300 360 450 600 0 . 0 6 2 5 0 . 0 7 2 9 0 . 0 8 3 3 0 . 0 9 3 7 0 . 1 0 4 0 . 1 2 5 0 . 1 4 5 0 . 1 6 7 0 . 2 0 8 0 . 2 5 0 O.J312 0 . 4 1 7 P u m p i n g W e l l F R a d i u s ( r ) ~ P u m p i n g r a t e [0J_ - 4 9 - 9 -Dwdn. .0 .11. .. 0 . 1 7 7 0 . 2 2 0 . 2 5 4 °J.287 0 . 3 1 3 0 . 3 3 7 0 . 3 6 0 . 3 8 0 . 4 0 0 . 4 4 4 0 . 4 6 4 0 . 5 0 0 . 5 5 5 0 . 5 9 9 0 . 6 5 4 0 . 7 2 8 V r 2 1 0 _ b .0,60 0 . 8 8 1 .33 1 .77 2 . 2 1 2 . 66 3 . 1 0 3 . 54 3 . 99 4 . 4 3 5 . 32 6 . 2 0 7 . 11 8 . 8 6 1 0 . 6 4 1 3 . 2 9 1 7 . 7 5 D A T A DRAWDOWN T E S T IWB 70 N e a r e s t t e s t h o l e ( s ) D e p t h 5 1 . 0 f t . Dwdn. V r 2 Dwdn. V r 2 Dwdn. V r 2 O CO Appendix B - Theis recovery method data sheets f o r o b s e r v a t i o n w e l l s A to G. 110. Page of THE I S R E C O V E R Y M E T H O D D A T A S H E E T Well - A Elevat ion - 1661.32 f t . Depth - 45.5 f t . Diameter-Length-wel l s c reen - 8 f t - S i z e -Pumping Star ted - 24/3/71 - 16:45 Pumping Stopped (Recovery Starts)-25/3/71 - 10:30 Total Pumping Time - 1065 m i n . Pumping Rate ( Q ) - 49.98 I m p . - g a l . / m i n . Remarks : Completion Zone: Pump Sett ing -Radius -Date T i m e t t" Depth to Water 25/3/71 ' 10:30 1065.0 0.0 19.30 f t . 1065.1 0.1 10651.0 14.77 1065.2 0.2 5326.0 12.20 1065.3 0.3 3551.0 11.14 1065.4 0.4 2663.5 10.53 1065.5 0.5 2131.0 10.11 1065.6 0.6 1776.0 9.87 1065.7 0.7 1522.4 • 9.69 1065.8 0.8 1332.2 9.57 1065.9 0.9 1184.3 9.48 1066.0 1.0 1066.0' 9.41 1066.5 1.5 711.0 9.28 1067.0 2.0 533.5 9.21 1067.5 2.5 427.0 9.18 1068.0 3.0 356.0 9.15 • 1068.5 3.5 305.3 9.13 1069.0 4.0 267.2 9.12 1069.5 4.5 237.7 9.11 1070.0 5.0 • 214.0 9.10 1070.5 5.5 194.6 9.09 1071.0 6.0 178.5 9.08 111. Page 1_ of i _ THE IS R E C O V E R Y M E T H O D D A T A S H E E T Well - A E levat ion -Depth - Diameter-Length-well s c reen - S i z e -Pumping Started -Pumping Stopped (Recovery Star ts ) -Total Pumping Time -Pumping Rate ( Q ) -Remarks : Completion Zone: Pump Sett ing -Radius -Da te T i m e t t" /,« Depth to Water 25/3/71 1071.5 6.5 164.8 9.07 1072.0 7.0 153.1 9.06 1072.5 7.5 143.0 9.06 10:38 1073.0 8.0 134.1 9.06 1073.5 • 8.5 126.3 9.05 10.74.0 9.0 119.3 9.04 1074.5 9.5 113.1 9.03 1075.0 10.0 107.5 9.03 1077.0 12.0 89.7 9.02 1080.0 15.0 72.0 9.00 1085.0 20.0 54.2 8.96 1095.0 30.0 36.5 8.93 1105.0 40.0 27.6 8.89 11:30 1125.0 60.0 18.7 8.83 13:45 1260.0 195.0 6.5 8.60 • I 112.. 1 2 Page _ of _f_ THEIS R E C O V E R Y M E T H O D D A T A S H E E T Well - B E levat ion - 1659.13 f t . Depth - 47.3 f t . Diameter-Length-well screen- S ize -Pumping Started - 11/3/71 - 17:25 Pumping Stopped (Recovery Starts)-12/3/71 14:10 Total Pumping Time - 12A5 mlns. Pumping Rate ( Q ) - 8.33 Imp.-gal./min.  Remarks : Completion Zone: Pump Sett ing Radius -Date T i m e t t" Depth to Water 12/3/71 14:10 1245.0 0.0 10.85 12A5.1 0.1 12451.0 10.44 1245.2 0.2 6.226.0 10.05 1245.3 0.3 4151.0 9.67 1245.4. 0.4 3113.5 9.33 1245.5 0.5 2491.0 9.02 1245.6 0.6 2076.0 8.73 1245.7 0.7 1779.6 8.A4 1245.8 0.8 1557.3 8.22 1245.9 0.9 1384.3 7.98 1246.0 1.0 1246.6 7.74 1246.5 1.5 831.0 6.87 1247.0 2.0 623.5 6.28 1247.5 2.5 499.0 5.87 1248.0 3.0 416.0 5.57 12A8.5 3.5 356.7 5.37 1249.0 4.0 312.2 5.23 1249.5 4.5 277.7 5.14 1250.0 5.0 250.0 5.08 1251.0 6.0 208.5 5.01 113. . 2 2 Page of THE IS R E C O V E R Y M E T H O D D A T A S H E E T Well - B E levat ion -Depth -length-wel l screen-Remarks : Diameter-S ize -Pumping Star ted -Pumping Stopped (Recovery Starts) -Total Pumping Time -Pumping Rate ( Q ) -Completion Zone: Pump Sett ing -Radius -Date T i m e t t" Depth to Water 12/3/71 1252.0 7.0 178.6 4.95 1253.0 8.0 156.6 4.92 1254.0 9.0 139.3 4.90 1255.0 10.0 125.5 4.90 14:22. 1257.0 • 12.0 104.7 4.90 1258.0 13.0 96.7 4.89 1260.0 15.0 84.0 4.89 1265.0 20.0 63.2 4.89 1270.0 25.0 50.8 4.89 14:40 1275.0 30.0 42.5 4.89 1280.0 35.5 36.6 4.89 1290.0 45.0 28.7 4.89 15:15 1305.0 60.0 21.7 4.86 114.. Page of THE I S R E C O V E R Y M E T H O D D A T A S H E E T Well - c Elevat ion - 1659.56 f t . Depth - 50.6 f t . Diameter-Lenath-wel l s c reen - 8 f t . S i z e -Pumping S tar ted - 9/3/71 17:30 Pumping Stopped (Recovery Starts)-10/3/71 14:05 Total Pumping Time - 1235 m i n s . Pumping Rate ( Q ) - 16.66 Imp . - g a l s . / m i n . V — Remarks : Completion Zone: Pump Sett ing -Radius -Date T i m e t t" /t " Depth to Water 10/3/71 14:04 1235.0 0.0 23.11 1235.1 0.1 12351.0 21.86 1235.2 0.2 6176.0 20.64 1235.3 ' 0.3 4117.7 19.52 1235.4 •• 0.4 3088.5 18.48 1235.5 0.5 2471.0 17.52 1235.6 0.6 2059.3 16.64 1235.7 0.7 1765.3 15.80 1235.8 0.8 1544.7 15.05 1235.9 0.9 1373.2 14.45 1236.0 1.0 1236i0 13.71 1236.5 1.5 824.3 11.13 1237,0 2.0 618.5 9.31 1238.0 3.0 412.7 7.18 1239.0 4.0 309.7 6.12 1240.0 5.0 248.0 5.58 1241.0 6.0 206,8 5.31 1242.0 7.0 177,4 5.17 1243.0 8.0 155.4 5.09 1244.0 9.0 138.2 5.05 1245.0 10.0 124.5 5.02 1 1 5 . Page .. of THE I S R E C O V E R Y M E T H O D D A T A S H E E T Well - C E levat ion -Depth - Dlameter-Length-wel l s c reen - S i z e -Pumping Started -Pumping Stopped (Recovery S tar t s ) -Total Pumping Time -Pumping Rate (Q ) -Remarks : Completion Zone: Pump Sett ing -Radius -Date T i m e t t" Depth to Water 10/3/71 1247.0 12.0 103.9 4.98 1250.0 15.0 83.3 4.96 1255.0 20.0 62.7 4.95 1265.0 30.0 42.2 4.91 1275.0 40.0 31.9 4.87 1285.0 50.0 25.7 4.87 1295.0 60.0 21.6 4,85 1315.0 80.0 16.4 4.82 1335.0 100.0 13,3 4.80 1353.0 118.0 11.5 . 4.80 • 116. Page 1_ of __. THE I S R E C O V E R Y M E T H O D D A T A S H E E T Well - D Pumping Star ted - 15/3/71 17:20 E levat ion - 1659.56 f t . Pumping Stopped (Recovery Starts) -16/3/71 10:50 Depth - 50.6 f t . Diameter- Total Pumping Time - 1110 mins. Length-wel l s c reen - 10 f t .S i z e - Pumping Rate ( Q ) - 16 .66 Imp.-gal./min. Remarks : Completion Zone: Pump Sett ing -Radius -Da te T i m e t t" / t " Depth to Water 16/3/71 10:50 1110.0 0.0 27.22 1110.1 0.1 11101.0 26.00 1110.2 0.2 5551.0 24.74 1110.3 0.3 3701.0 23.60 1110.4 - 0.4 2776.0 22.50 1110.5 0.5 2221.0 21.44 1110!6 0.6 1851.0 20.44 1110.7 0.7 1586.7 19.52 1110.8 0.8 1388.5 18.65 1110.9 0.9 1234.3 17.86 1111.0 1.0 1111.0 17.08 1111.5 1.5 741.0 13.37 1112.0 2.0 556.0 11.36 1112.5 2.5 445.0 9.44 1113.0 3.0 371.0 7.92 • 1113.5 3^5 318.1 6.85 1114.0 4.0 278.5 6.04 1114.5 4.5 247.7 5.42 1115.0 5.0 223.0 4.95 1116.5 6.5 171.8 . 4.08 1117.0 7.6 159.6 3.91 117.. 2 2 Page of THE I S R E C O V E R Y M E T H O D D A T A S H E E T Well - D E levat ion -Depth - Dlameter-l enath-wel l s c reen - S i z e -Pumping S tar ted -Pumping Stopped (Recovery Star ts ) -Total Pumping Time -Pumping Rate ( Q ) -£— — — Remarks : Completion Zonei Pump Set t ing -Radius -Date T i m e t t" Depth to Water 16/3/71 . 1118.0 8.0 139.7 3.70 1119.0 9.0 . 124.3 3.57 1120.0 10.0 112.0 3.49 1122.0 12.0 93.5 3.42 1125/0 • 15.0 75.0 3.40 1127.5 17.5 64.4 3.40 1130.0 20.0 56.5 3.37 1135.0 25.0 45.4 3.35 1140.0 30.0 38.0 3.34 1150.0 40.0 28.7 3.34 1160.0 50.0 23.2 3.33 1200.0 90.0 13.3 3.32 1280.0 170.0 "7.53 3.29 14:10 1330.0 220.0 6.1 ; 3.29 118. Page 1 of 2 THE I S R E C O V E R Y M E T H O D D A T A S H E E T Well - E E levat ion - X669.91 f t . Depth - 56.0 f t . Diameler-Length-wel l s c reen - 8 f t , S i z e -Pumping Started - 18/3/71 17:00 Pumping Stopped (Recovery S ta r t s ) -19/3 /71 14:55 Total Pumping Time - 1315 mins. Pumping Rate ( Q ) - 49.98 Imp.-gal./min. Remarks : Completion Zone: Pump Set t ing -Radius -Date T i m e t t" Depth to Water 19/3/71 • 14:55 1315.0 0.0 26.64 1315.1 0.1 13151.0 22.50 1315.2 0.2 6576.0 19.52 1315.3 0.3 4384.3 17.94 1315.4 0.4 3288.5 17.24 1315.5 0.5 2631.0 16.83 1315.6 0.6 2192.7 16.49 1315.7 0.7 1879.6 1-6.27 1315.8 0.8 1644.7 16.06 1315.9 0.9 1462.1 15.88 1316.0 1.0 1316.0 15.81 1316.5 1.5 877.7 15.66 1317.0 2.0 658.5 15.61 1317.5 2.5 527.0 15.60 1318.0 3.0 439.3 15.59 • 1319.0 4.0 329.7 15.58 1320.0 5.0 264.0 15.57 1321.0 6.0 220.2 15.56 1322.0 7.0 188.9 15.55 1323.0 8.0 165.4 , 15.54 1324.0 9.0 •147.1 15.54 119. 2 2 Page of THE I S R E C O V E R Y M E T H O D D A T A S H E E T Well - E Elevat ion -Depth -Length-well screen-Remarks: Diameter-S i z e -Pumping Star ted -Pumping Stopped (Recovery Starts ) -Total Pumping Time -Pumping Rate ( Q ) -Completion Zonei Pump Sett ing Radius -Date T i m e t t" Depth to Water 19/3/71 1325.0 10.0 132.5 15.53 1327.0 12.0 110.6 15.52 1330.0 15.0 88.7 15.51 15:15 1335.0 20.0 66.7 15.50 1340.0 25.0 53.6 15.48 1365.0 50.0 ' 27.3 15.43 1390.0 75.0 18.5 • 15.40 1420.0 105.0 13.5 15.36 1470.0 155.0 9.5 15.31 1615.0 300.0 5.4 15.22 21:45 1725.0 410.0 4.2 15.17 20/3/71 01:00 1920.0 605.0 3.2 15:10 10:25 2340.0 1025.0 2.3 14.98 • 120 Page 1 of 1 THE I S R E C O V E R Y M E T H O D D A T A S H E E T Well - F Elevat ion - 1655.51 f t . D e p t h - 212.3 f t . Diameter-Length-well s c reen -14 f t . S ize-Remarks : Pumping Star ted - 20/3/71 16:00 Pumping S topped (Recover y St a rts) -21/3/71 11:00 Total Pumping Time - 1140 mins. Pumping Rate ( Q ) - 49.98 Imp . -ga l . /min•  i — Completion Zone: Pump Set t ing -Radius Date T i m e t t " Depth to Water 21/3/71 11:00 1140.0 0.00 68.1 • 1140.48 0.48 2376.0 48.00 1141.0 1.0 1141.0 37.70 1141.5 1.5 761.0 30.30 1142.0- 2.0 571.0 24.30 1142.5 2.5 457.0 19.79 1143.0 3.0 381.0 16.27 1143.5 3.5 ' 326.7 13.50 1144.0 4.0 286.0 11.35 1144.5 4.5 254.3 9.65 1145.0 5.0 229. o" 8.35 1146.0 6.0 191.0 6.53 1147.0 7.0 163.9 5.48 1148.5 8.5 135.1 4 .50 1150.0 10.0 115.0 4.05 1152.0 12.0 96.0 3.80 1155.0 15.0 77.0 3.70 1160.0 20.0 58.0 3.63 1165.0 25.0 46.6 3.61 1170.0 30.0 39.0 3.59 1180.0 40.0 29.5 3.55 121. Page _ i _ of THE IS R E C O V E R Y M E T H O D D A T A S H E E T Well - _• E levat ion -Depth -Length-wel l screen-Diameter-S ize -Remarks : Pumping Started -Pumping Stopped (Recovery S tar t s ) -Total Pumping Time -Pumping Rate ( Q ) -Completion Zones Pump Sett ing -Radius -Date T i m e t t" Depth to Water 21/3/71 1200.0 60.0 20.0 3.51 1235.0 95.0 13.0 3.44 1260.0 120.0 10.5 3.41 1350.0 210.0 6.4 • 3.32 1500.0 360.0 4.2 3.23 20:00 1680.0 540.0 3.1 3.18 22/3/71 0:15 1935.0 795.0 2.4 3.13 8:15 2415.0 1275.0 1.9 3.12 122.. Page of THE IS R E C O V E R Y M E T H O D D A T A S H E E T Well - G E levat ion - 1 6 5 5 . 6 2 f t . D e p t h - 51.0 f t . Diameter-Length-well s c reen- 8 f t . S i z e -Pumping Started - 22/3/71 16:05 Pumping Stopped (Recovery S tar t s ) -23/3/71 10:30 Total Pumping Time - 1105 mins. Pumping Rate ( Q ) - 49.98 Imp . - ga l . /m in . Remarks : Completion Zones Pump Set t ing -Radius -Date T i m e t t" Depth to Water 23/3/71 10:30 1105.0 0.0 23.39 1105.1 0.1 11051.0 17.93 1105.2 0.2 5526.0 14.46 1105.3 0.3 3684.3 13.10 1105.4- 0.4 2763.5 10.89 1105.5 0.5 2211.0 9.63 1105.6 0.6 1842.7 8.69 1105.7 0.7 1579.6 7.83 1105.8 0.8 1382.2 7.20 1105.9 0.9 1228.8 6.60 1106.0 1.0 1106.0 6.12 1106.5 1.5 737.7 4.75 1107.0 2.0 553.5 4.32 1107.5 2.5 443.0 4.20 1 1108.0 3.0 369.3 4,13 i 1108.5 3.5 316.7 • 4.08 1109,0 4.0 277.2 4.07 1110.0 5.0 222.0 4.03 1111.0 6.0 185.2 4.02 1112.0 7.0 158.9 3.99 1113.0 8.0 139.1 3.98 123 Page _2_ of _2_ THE IS R E C O V E R Y M E T H O D D A T A S H E E T Well - G Elevat ion -Depth - Diameter-Length-well s c reen - S i z e -Pumping Started -Pumping Stopped (Recovery S tar t s ) -Total Pumping Time -Pumping Rate ( Q ) -Remarks: Completion Zone: Pump Set t ing -Radius -Date T i m e t t" / t » Depth to Water 23/3/71 10:39 1114.0 9.0 123.8 3.97 1115.0 To.o 111.5 3.96 1117.0 12.0 93.1 3.95 1120.0 15.0 74.7 3.93 1125.0- 20.0 56.2 3.90 , 1130.0 25.0 45,2 3.88 1135.0 30.0 37.8 3.85 1145.0 40.0 28.6 3.81 1165.0 60.0 19.4 3.73 1180.0 75.0 15.7 3.69 1195.0 90.0 13.3 3.66 1255.0 150.0 8.4 3.56 1305.0 200.0 6.5 3,50 1375.0 270.0 5.1 3.43 1445.0 340.0 4.2 3.40 1465.0 360.0 4..1 3.38 1555.0 450.0 3.5 3.33 1780.0 675.0 2.6 3.23 22:45 1840.0 735.0 2.5 3.23 24/3/71 8:25 2420.0 1315.0 1.8 3.11 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0052869/manifest

Comment

Related Items