UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

An evaluation of a shallow groundwater flow regime near Taber, Alberta Burnett, Ronald Gordon 1981

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Notice for Google Chrome users:
If you are having trouble viewing or searching the PDF with Google Chrome, please download it here instead.

Item Metadata

Download

Media
831-UBC_1981_A7 B97.pdf [ 12.75MB ]
Metadata
JSON: 831-1.0052866.json
JSON-LD: 831-1.0052866-ld.json
RDF/XML (Pretty): 831-1.0052866-rdf.xml
RDF/JSON: 831-1.0052866-rdf.json
Turtle: 831-1.0052866-turtle.txt
N-Triples: 831-1.0052866-rdf-ntriples.txt
Original Record: 831-1.0052866-source.json
Full Text
831-1.0052866-fulltext.txt
Citation
831-1.0052866.ris

Full Text

AN EVALUATION OF A SHALLOW GROUNDWATER FLOW REGIME NEAR TABER, ALBERTA ^*T^ RONALD GORDON BURNETT B.A.Sc, The U n i v e r s i t y of B r i t i s h Columbia, 1979 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF THE FACULTY OF GRADUATE STUDIES DEPARTMENT OF GEOLOGICAL SCIENCES We accept t h i s t h e s i s as conforming to the r e q u i r e d standard THE UNIVERSITY OF BRITISH COLUMBIA by MASTER OF APPLIED SCIENCE in March 1981 Ronald Gordon Burnett, 1981 i I n p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f t h e r e q u i r e m e n t s f o r an a d v a n c e d d e g r e e a t t h e U n i v e r s i t y o f B r i t i s h C o l u m b i a , I a g r e e t h a t t h e L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e a n d s t u d y . I f u r t h e r a g r e e t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y p u r p o s e s may be g r a n t e d by t h e h e a d o f my d e p a r t m e n t o r by h i s o r h e r r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l n o t be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . D e p a r t m e n t o f La~j£cU~. ^XZ j £ rJC£-~$ -The U n i v e r s i t y o f B r i t i s h C o l u m b i a 2075 W e s b r o o k P l a c e V a n c o u v e r , C a n a d a V6T 1W5 DE-6 (2/79) ABSTRACT The Shimbashi s i t e of the Taber I r r i g a t i o n Return Flow study occupies a 28 square-kilometer a g r i c u l t u r a l environment i n southern A l b e r t a . The s i t e i s s i t u a t e d i n a bend of the Oldman R i v e r and t h e r e f o r e i s encompassed by the r i v e r on 3 s i d e s . V a r i o u s types of e x i s t i n g and f i e l d - g e n e r a t e d g e o l o g i c , g e o p h y s i c a l , and h y d r o l o g i c data were employed to f u l l y e v a l u a t e the groundwater flow regime of the study s i t e . Mathematical m o d e l l i n g was c a r r i e d out to analyse the long-term e f f e c t s of f e r t i l i z a t i o n on the groundwater and r i v e r water q u a l i t y . Bedrock of the Foremost Formation subcrops throughout the whole of the Shimbashi study s i t e . T h i s i s o v e r l a i n by 3 to 10 meters of Saskatchewan g r a v e l and sand. The Saskatchewan g r a v e l s are covered by approximately 40 meters of g l a c i a l d e p o s i t s c o n s i s t i n g of t i l l and outwash sands. The water t a b l e over °the s i t e g e n e r a l l y s l o p e s down towards the r i v e r v a l l e y w a l l as a subdued r e f l e c t i o n of the topography. A channel i n the s u r f a c e outwash sands i n the northern p a r t of the s i t e causes a l o c a l d e p r e s s i o n i n the i i Water t a b l e . Another l a r g e r d e p r e s s i o n occurs to the south and i s caused by a channel of outwash sands b u r i e d by t i l l . There are two main routes the groundwater can t r a v e l to the r i v e r . Much of the groundwater e n t e r i n g the r i v e r has moved through the outwash sands that cover the north h a l f of the s i t e . Water i n f i l t r a t i n g the t i l l s , which underly the outwash sands and which occur at the s u r f a c e i n the south, moves e s s e n t i a l l y v e r t i c a l l y downward i n t o the Saskatchewan g r a v e l s and sand. Once i n the g r a v e l s the water flows i n t o the r i v e r . Mathematical modelling i n d i c a t e s t hat n i t r a t e s are a l r e a d y e n t e r i n g the r i v e r i n l i m i t e d amounts. F e r t i l i z a t i o n of lowland areas near the r i v e r r e s u l t s i n the i n t r o d u c t i o n of n i t r a t e s i n t o the r i v e r w i t h i n 3 y e a r s . Contaminated water in the s u r a f a c e sands i s a l s o e n t e r i n g the r i v e r . N i t r a t e c o n c e n t r a t i o n s i n t h i s water w i l l remain low unless a d d i t i o n a l acreage comes under i r r i g a t i o n . N i t r a t e s that move through the t i l l w i l l not reach the r i v e r i n s i g n i f i c a n t amounts f o r 5 to 50 y e a r s . Recommendations f o r f u t u r e r e s e a r c h at the Shimbashi s i t e i n c l u d e f i e l d t e s t i n g to e v a l u a t e the d i s p e r s i v i t y of the sands and t i l l , the i n s t a l l a t i o n of a d d i t i o n a l piezometers, a l a b o r a t o r y i n v e s t i g a t i o n of the c a t i o n exchange p o t e n t i a l of the t i l l , and a monitoring program of the r i v e r water q u a l i t y . TABLE OF CONTENTS Page ABSTRACT i i LIST OF TABLES v i LIST OF FIGURES v i i ACKNOWLEDGEMENT ix 1. INTRODUCTION 1 O b j e c t i v e s 1 L o c a t i o n 2 Climate 4 Topography 10 S o i l s 12 Land Use 13 F i e l d I n v e s t i g a t i o n 14 2. GEOLOGIC SETTING 16 Geology of s u r f i c i a l d e p o s i t s 18 P r e g l a c i a l d e p o s i t s 20 G l a c i a l d e p o s i t s 23 P o s t - g l a c i a l d e p o s i t s 45 Summary 47 3. SITE HYDROGEOLOGY 52 Methods of I n v e s t i g a t i o n 52 H y d r a u l i c p r o p e r t i e s of g e o l o g i c m a t e r i a l s 59 D i s t r i b u t i o n of h y d r a u l i c head 63 A n a l y s i s of groundwater flow 71 Estimates of groundwater recharge 77 General 77 Hydrol o g i c budget 77 Flow estimates from head f l u c t u a t i o n s 79 Groundwater flow volumes arid v e l o c i t i e s 80 4. MATHEMATICAL MODELLING 84 The computer program 85 Methods of mode l l i n g 89 i v TABLE OF CONTENTS Continued Page M o d e l l i n g r e s u l t s 93 1.. H y d r a u l i c head d i s t r i b u t i o n 93 2.. Solute t r a n s p o r t 97 5. CONCLUSIONS AND RECOMMENDATIONS 103 Summary and c o n c l u s i o n s 103 Geographical aspects 103 Geology 104 Hydrogeology 106 Computer s i m u l a t i o n s 108 Recommendations 110 APPENDIX A: BOREHOLE LOGS 113 APPENDIX B: GEOPHYSICAL LOGS * 178 APPENDIX C: BAIL TEST CURVES 190 APPENDIX D: GRAIN SIZE DISTRIBUTION CURVES 214 APPENDIX E: WATER TABLE ELEVATIONS 258 APPENDIX F: PIEZOMETRIC DATA 262 REFERENCES 271 V LIST OF TABLES Table Page I Mean monthly p r e c i p i t a t i o n , Shimbashi study s i t e 5 II Mean monthly temperature, Shimbashi study s i t e 6 III Mean monthly p o t e n t i a l e v a p o t r a n s p i r a t i o n , Shimbashi study s i t e 7 IV Comparison of s t r a t i g r a p h i c i n t e r p r e t a t i o n s .... 24 V Piezomter i n s t a l l a t i o n i n f o r m a t i o n 54 VI H y d r a u l i c c o n d u c t i v i t i e s c a l c u l a t e d from b a i l t e s t s 57 VII H y d r a u l i c c o n d u c t i v i t i e s c a l c u l a t e d from g r a i n s i z e curves 60 VIII Summary of hydrogeologic u n i t s and h y d r a u l i c c o n d u c t i v i t i e s 61 IX R e s u l t s of sample a n a l y s i s f o r t r i t i u m 33 X H y d r a u l i c c o n d u c t i v i t i e s f i n a l i z e d from mathematical m o d e l l i n g r e s u l t s 95 v i LIST OF FIGURES Fig u r e Page 1. L o c a t i o n map of Shimbashi r e s e a r c h s i t e , A l b e r t a 3 , , • {oversize. /\'rr\(Aa\-\o® ^p&c^cJl Cfih^v^ 2. Shimbashi s i t e plan /.... J. .. i n poc-k-e-t 3. Graph of monthly p r e c i p i t a t i o n and p o t e n t i a l e v a p o t r a n s p i r a t i o n 9 4. Surface topography 11 5. Bedrock topography 19 6. Saskatchewan g r a v e l s isopach map 22 7. L o c a t i o n map of c r o s s - s e c t i o n s , t e s t p i t s , and r i v e r exposures . 25 8. Photograph showing megablock exposed i n r i v e r v a l l e y w a l l 28 9. Photograph showing sandstone megablock o v e r l a i n and u n d e r l a i n by t i l l . .- 28 10. Ge o l o g i c c r o s s - s e c t i o n along s e c t i o n l i n e A-A'.. 31 11. Ge o l o g i c c r o s s - s e c t i o n along s e c t i o n l i n e B-B'.. 32 12. Ge o l o g i c c r o s s - s e c t i o n along s e c t i o n l i n e C-C'.. 33 13. Graph of sand content of t i l l v s. depth 34 14. Photograph showing massive, columnar j o i n t i n g of t i l l i n a r i v e r exposure 35 15. Photograph of s m a l l - s c a l e j o i n t i n g i n t i l l 35 16. T e x t u r a l c l a s s i f i c a t i o n of t i l l samples 37 17. Photograph of t i l l c o n t a i n i n g lenses of outwash m a t e r i a l 39 18. Photograph of t i l l showing i c e contact f e a t u r e s . 39 v i i LIST OF FIGURES Continued 19. Photograph of s m a l l - s c a l e f r a c t u r e s taken from t e s t p i t 40 20. Photograph of s m a l l - s c a l e f r a c t u r e s taken from t e s t p i t 40 21. S u r f i c i a l geology 42 22. Outwash sand g r a i n s i z e d i s t r i b u t i o n 43 23. Surface sands isopach map 44 24. Photograph of f l u v i a l d e p o s i t s from t e s t p i t .... 46 25. Photograph of f l u v i a l g r a v e l from t e s t p i t showing s a l t d e p o s i t i o n 46 26. F l o o d p l a i n g r a i n s i z e d i s t r i b u t i o n 48 27. Photograph of outwash sand from g r a v e l p i t 49 28. T i l l g r a i n s i z e d i s t r i b u t i o n 50 29. Water t a b l e e l e v a t i o n s 65 30. C r o s s - s e c t i o n A-A' showing p i e z o m e t r i c head d i s t r i b u t i o n 68 31. C r o s s - s e c t i o n B-B' showing p i e z o m e t r i c head d i s t r i b u t i o n 69 32. C r o s s - s e c t i o n C-C showing p i e z o m e t r i c head d i s t r i b u t i o n 70 33. Examples of water t a b l e f l u c t u a t i o n through time 81 34. F i n i t e element g r i d 88 35. C r o s s - s e c t i o n B-B' showing simulated h y d r a u l i c head d i s t r i b u t i o n 94 v i i i ACKNOWLEDGMENTS A major p r o p o r t i o n of the r e s e a r c h on the t h e s i s t o p i c was accomplished while the w r i t e r was employed with the T e c h n i c a l Resources Branch of the A l b e r t a Department of A g r i c u l t u r e d u r i n g the summer of 1980. For t h i s experience and p e r m i s s i o n to use data generated by the branch, the author i s extremely g r a t e f u l . Thanks are extended to the s t a f f of the T e c h n i c a l Resources Branch whose a s s i s t a n c e d i r e c t l y or i n d i r e c t l y a i d e d the Shimbashi p r o j e c t . The w r i t e r would e s p e c i a l l y l i k e to express h i s s i n c e r e g r a t i t u d e to Mr. J . Hendry, who su p e r v i s e d the author's work and pro v i d e d i n v a l u a b l e a s s i stance. P r o f e s s o r s R. A. Freeze, W. H. Mathews and N. S i t a r generously a s s i s t e d and adv i s e d the author throughout h i s study at the U n i v e r s i t y of B r i t i s h Columbia. T h e i r d i r e c t i o n and advice i n regard to the t h e s i s are g r a t e f u l l y a p p r e c i a t e d . ix 1 Chapter 1 INTRODUCTION Th i s t h e s i s i s an e v a l u a t i o n of the hydrogeology of the Shimbashi study s i t e . The work was done as a p a r t of the Taber I r r i g a t i o n Return Flow p r o j e c t i n i t i a t e d by the A l b e r t a Department of A g r i c u l t u r e i n 1978. The purpose of the Return Flow study i s to determine the long-term e f f e c t of i r r i g a t i o n on groundwater q u a l i t y and subsequently on r i v e r water q u a l i t y i n southern A l b e r t a . The Shimbashi s i t e , north of Taber, A l b e r t a , was chosen f o r t h i s study. O b j e c t i v e s The i n v e s t i g a t i o n of the Taber I r r i g a t i o n Return Flow study has four a s p e c t s : 1. The i d e n t i f i c a t i o n and e v a l u a t i o n of the n a t u r a l s a l i n i t y of the groundwater i n the study area; 2. The d e t e r m i n a t i o n of the changes induced by i r r i g a t i o n of the n a t u r a l s a l t balance i n water flowing out of the a q u i f e r s back i n t o the r i v e r , hence the term ' r e t u r n flow'; 2 3. The e x t r a p o l a t i o n of the r e s u l t s of t h i s i n v e s t i g a t i o n to determine the e f f e c t of more or l e s s i n t e n s i v e i r r i g a t i o n on r e t u r n flow water q u a l i t y , and; 4. The a p p l i c a t i o n the r e s u l t s of these i n v e s t i g a t i o n s to assess the e f f e c t of i r r i g a t i o n on groundwater q u a l i t y i n southern A l b e r t a . As a p a r t of the o v e r a l l study the o b j e c t i v e s of t h i s t h e s i s are twofold: 1. To d e l i n e a t e the groundwater flow regime i n the study area from a f i e l d hydrogeologic i n v e s t i g a t i o n , and; 2. To mathematically model the groundwater flow regime and s o l u t e t r a n s p o r t i n the study area to determine long-term e f f e c t s of f e r t i l i z a t i o n on groundwater and r i v e r water q u a l i t y . L o c a t i o n The Shimbashi study s i t e i s l o c a t e d i n southern A l b e r t a approximately 15 k i l o m e t e r s north of Taber and 60 k i l o m e t e r s east of L e t h b r i d g e , A l b e r t a (see F i g u r e 1). Using the system of land survey u n i t s f o r A l b e r t a , the s i t e i s encompassed by Township 11 and Range 16, west of the F o u r t h M e r i d i a n . The study s i t e comprises 28 square k i l o m e t e r s w i t h i n the Oldman River Drainage B a s i n . The Shimbashi s i t e i s s i t u a t e d on a meander i n the Oldman R i v e r known as Driftwood Bend, which i s o l a t e s the s i t e on 3 s i d e s as shown i n the s i t e p l a n , 4 F i g u r e 2 i n the back pocket. A l b e r t a Highway No. 36 b i s e c t s the s i t e . C limate The c l i m a t e of the Taber area i s c o l d , c o n t i n e n t a l and humid. I t i s denoted by the c l i m a t o l o g i c a l l e t t e r code Dbf, a c c o r d i n g to the Koeppen c l a s s i f i c a t i o n system as m o d i f i e d by Trewartha et a l (1968). S p e c i f i c a l l y , the code i n d i c a t e s a temperate c l i m a t e with an average monthly temperature g r e a t e r than 10°C f o r 4 to 8 months of the year. The summers are c o o l ; the g r e a t e s t average monthly temperature i s l e s s than 22"C. P r e c i p i t a t i o n i s more or l e s s u n i f o r m l y d i s t r i b u t e d throughout the year. Both the town of Taber to the south and the town of V a u x h a l l , 15 k i l o m e t e r s to the north of the s i t e have m e t e o r o l o g i c a l s t a t i o n s . Observations recorded i n Taber are b e l i e v e d to be more c h a r a c t e r i s t i c of the Shimbashi s i t e (Hendry, p e r s . comm.). M e t e r o l o g i c a l data from the Taber and V a u x h a l l s t a t i o n s are presented i n Tables I , I I , and III showing p r e c i p i t a t i o n , temperature and p o t e n t i a l e v a p o t r a n s p i r a t i o n r e s p e c t i v e l y . The Taber s t a t i o n data i n c l u d e s the years 1978 and 1979 and the V a u x h a l l data covers the 26 year p e r i o d between 1954 and 1979. P r e c i p i t a t i o n data c o l l e c t e d at Taber over the p e r i o d 1978-1979 i n d i c a t e s annual p r e c i p i t a t i o n of 45.9 c e n t i m e t e r s . T h i s corresponds c l o s e l y to the 43.5 c e n t i m e t e r s of annual TABLE I MEAN MONTHLY PRECIPITATION, SHIMBASHI STUDY SITE S t a t i o n J a n Feb Mar Apr May June J u l y Aug Sept Oct Nov Dec Year Taber 78-79 i n . 1.34 0.82 0.99 1.84 2.96 1.19 1.39 3.45 1.92 0.69 0.89 . 0.59 18.07 cm. 3.41 2.08 2.52 4.70 7.53 3.01 3.53 8.77 4.87 1.74 2.25 1.49 45.90 V a u x h a l l 54-79 i n . 1.11 0.81. 0.72 1.58 2.02 2.91 1.93 1.96 1.78 0.69 0.67 0.96 17.14 cm. 2.81 2.07 1.83 4.02 5.13 7.40 4,89 4.98 4.52 1.74 1.70 2.44 43.53 TABLE I I Mean Monthly Temperature, Shimbashi Study S i t e S t a t i o n Jan Feb Mar Apr May June J u l y Aug Sept Oct Nov Dec Year Taber 78-79 o F 6.8 13.1 29.8 43.3 53.1 61.2 66.9 64.4 58.1 48.0 28.6 23.7 41.4 °C -14,0 -10.5 -1.2 6.3 11.7 16.2 19.4 18.0 14.5 8.9 -1.9 -4.6 5.2 V a u k h a l l 5 A " 7 9 ° r 9 . 0 13.6 30.7 44.4 53.8 59.7 65.7 65.1 58.8 49.3 29.8 22.5 41.9 °C -12.8 -10.2 -0.7 6.9 12.1 15.4 18.7 18.4 14.9 9.6 -1.2 -5.3 5.5 TABLE I I I Mean Monthly P o t e n t i a l E v a p o t r a n s p l r a t i o n , S h imbashi Study S i t e S t a t i o n Jan Feb Mar Apr May June J u l y Aug Sept Oct Nov Taber 78-79 i n 0 0 0 1.4 3.1 4.4 5.5 4.6 3.0 1.6 0 cm 0 0 0 3.6 8.0 11.2 13.6 11.8 7.6 4.1 0 3.1 1.7 0 7.9 4.4 0 V a u x h a l l 54-79 i n 0 0 0 1.6 3.3 4.2. 5.0 4.9 cm 0 0 0 4.0 8.3 10.7 12.7 12.4 8 p r e c i p i t a t i o n c o l l e c t e d over the 26 year p e r i o d at V a u x h a l l . The short time span represented by the Taber m e t e o r o l o g i c a l data i s l i k e l y to r e s u l t i n data that v a r i e s s l i g h t l y from the long-term averages. A comparison of the Taber and Va u x h a l l p r e c i p i t a t i o n data i n F i g u r e 3 suggests that 1978 and 1979 do not give true average r e p r e s e n t a t i o n s of summer p r e c i p i t a t i o n i n Taber, as the amount of p r e c i p i t a t i o n was l e s s than the Va u x h a l l long-term average. Mean annual temperatures f o r Taber and V a u x h a l l are 5.2 and 5.5°C r e s p e c t i v e l y . At Taber, the warmest month i s J u l y with a mean maximum temperature of 26.5°C and the c o l d e s t month i s January with a mean minimum temperature of -19.1°C. There are approximately 190 f r o s t - f r e e days between May and October. P o t e n t i a l e v a p o t r a n s p i r a t i o n i s d e f i n e d as the e v a p o t r a n s p i r a t i o n which would occur from a s o i l s u r f a c e covered by v e g e t a t i o n which was never d e p l e t e d of water (Morton, 1968). True e v a p o t r a n s p i r a t i o n w i l l f a l l short of p o t e n t i a l e v a p o t r a n s p i r a t i o n whenever the v e g e t a t i o n i s de p r i v e d of water f o r any time. The p o t e n t i a l e v aporation values of Table III were c a l c u l a t e d by the author using the method of Thornthwaite (1948). The mean annual p o t e n t i a l e v a p o t r a n s p i r a t i o n f o r Taber was found to be 59.9 c e n t i m e t e r s . The H y d r o l o g i c a l T H O R N T H W A I T E C L I M A T E D I A G R A M T A B E R - P R E C I P I T A T I O N A N D P O T E N T I A L E V A P O T R A N S P I R A T I O N 10 A t l a s of Canada (Department of EMR, 1978) i n d i c a t e s the a c t u a l e v a p o t r a n s p i r a t i o n to be between 42 and 45 centimeters a n n u a l l y , a s h o r t f a l l of 15 to 18 c e n t i m e t e r s . F i g u r e 3 summarizes the r e l a t i o n s h i p between the p o t e n t i a l e v a p o t r a n s p i r a t i o n and p r e c i p i t a t i o n f o r the Shimbashi s i t e area. T h i s Thornthwaite diagram shows that the p o t e n t i a l e v a p o t r a n s p i r a t i o n exceeds the p r e c i p i t a t i o n from May to November. T h i s imposes a major c o n s t r a i n t on the amount of groundwater recharge i n a l l areas which are not i r r i g a t e d . During the winter, p r e c i p i t a t i o n exceeds the p o t e n t i a l e v a p o t r a n s p i r a t i o n but i n f i l t r a t i o n i s impeded by the froz e n ground. The optimum recharge c o n d i t i o n s f o r the s i t e as a whole e x i s t i n A p r i l and November when water i s a v a i l a b l e for i n f i l t r a t i o n and the ground i s not f r o z e n . Topography The Shimbashi study s i t e i s a r e l a t i v e l y f l a t p l a i n which drops away r a p i d l y i n t o a v a l l e y i n c i s e d to a depth of about 50 meters by the Oldman R i v e r . The i n c i s i o n extends through the g l a c i a l d e b r i s of the l a s t i c e age to the u n d e r l y i n g bedrock. T h i s i s by f a r the most s i g n i f i c a n t t o p o g r a p h i c a l f e a t u r e of the r e g i o n . The t o p o g r a p h i c a l f e a t u r e s of the s i t e are shown i n F i g u r e 4. The contour i n t e r v a l of the map i s 25 f e e t (7.6 meters). 12 E l e v a t i o n s at the s i t e range from 2560 f e e t (780 meters) i n the s o u t h - c e n t r a l p o r t i o n to 2380 f e e t (725 meters) i n the r i v e r v a l l e y . There i s a gradual decrease i n e l e v a t i o n from the middle of the s i t e to the north, west, and east u n t i l the b r i n k of the r i v e r v a l l e y i s encountered. Below the v a l l e y w a l l on the west and north s i d e s , a f l a t t e r r a c e slopes g r a d u a l l y down to the r i v e r . On both s i d e s of the s i t e i n the extreme south the r i v e r impinges upon the v a l l e y w a l l producing steep cutbanks. I t i s at these undercut banks that the most rugged topography o c c u r s . S o i l s The s o i l of the Shimbashi s i t e i s p r i m a r i l y an O r t h i c Brown Chernozem (Clayton et a l , 1977). Borden (1976) d e s c r i b e s the s o i l at the s i t e as "...mainly Cavendish.loamy sand and sandy loam. Pemukan sandy loam occurs i n a narrow s t r i p along the r i v e r bank. S o i l i n d e pressions throughout the area tend to be Low Humic E l u v i a t e d G l e y s o l s (Neidpath Loams)". 1 The Brown Chernozemic s o i l s are d e r i v e d from the u n d e r l y i n g g l a c i a l and f l u v i o g l a c i a l d e p o s i t s found on the s i t e . The s o i l s are weakly to moderately c a l c a r e o u s and dominantly loamy i n t e x t u r e . A high p r o p o r t i o n of sandy m a t e r i a l occurs xBorden, 1976 p. 3. 13 i n s o i l s d e r i v e d from the g l a c i a l outwash. As these s o i l s u s u a l l y have a moisture d e f i c i e n c y under n a t u r a l c o n d i t i o n s , the n a t u r a l v e g e t a t i o n i s sparse. The upper 15 centimeter zone of the s o i l p r o f i l e i s c l a s s i f i e d as 'Ah', a h o r i z o n e n r i c h e d with organic m a t e r i a l but c o n t a i n i n g l e s s than 17% organic carbon by weight. Below t h i s i s a 7 to 10 centimeter zone c l a s s i f i e d as B t j , a zone e n r i c h e d by organic carbon and c o n t a i n i n g some i l l u v i a t e d c l a y . The lowermost s o i l h o r i z o n i s u s u a l l y 5 to 10 c e n t i m e t e r s t h i c k and c l a s s i f i e d as Cca, a m i n e r a l h o r i z o n with l i t t l e o rganic matter but e n r i c h e d i n carbonates. Land Use The Shimbashi s i t e i s s i t u a t e d i n a region of e x t e n s i v e a g r i c u l t u r a l p r o d u c t i o n . The s i t e i t s e l f supports c a t t l e g r a z i n g p l u s the p r o d u c t i o n of wheat, b a r l e y , corn, c a r r o t s , sugarbeets and potatoes. The a c t u a l area under i r r i g a t i o n by p i v o t s p r i n k l e r s and sidewheel s p r i n k l e r s i s o u t l i n e d i n F i g u r e 2. T h i s accounts f o r approximately 65% of the t o t a l s i t e a r e a. The non-i r r i g a t e d areas are used fo r d r y l a n d g r a z i n g of c a t t l e . Two sand and g r a v e l p i t s c u r r e n t l y i n o p e r a t i o n are shown in F i g u r e 1-2. These are l a r g e commercial o p e r a t i o n s which have the c a p a b i l i t y to s o r t m a t e r i a l on s i t e . Small abandoned 14 p i t s can be found along the r i v e r v a l l e y w a l l i n the southwest corner of the s i t e . F i e l d I n v e s t i g a t i o n In order to determine the groundwater flow regime of the s i t e a d e t a i l e d f i e l d i n v e s t i g a t i o n was i n i t i a t e d . The f o l l o w i n g i s a summary of that i n v e s t i g a t i o n . A t o t a l of 164 holes were d r i l l e d between A p r i l 1978 and September 1980 using r o t a r y d r i l l s , hollow-stem auger d r i l l s , and s o l i d stem auger d r i l l s . Of t h i s number, 67 d r i l l h o l e s were f o r the purpose of i n s t a l l i n g open standpipe piezometers. Another 45 d r i l l h o l e s were used to i n s t a l l water t a b l e o b s e r v a t i o n w e l l s . The remaining d r i l l h o l e s c o n s i s t e d of t e s t h o l e s f o r s o i l sampling, borehole mapping, and e l e c t r i c l o g g i n g . These boreholes v a r i e d i n depth from 1.5 to 62 meters.. L o c a t i o n of piezometers and water t a b l e w e l l s are shown i n F i g u r e 2. E l e c t r i c l o g g i n g using the r e s i s t i v i t y , gamma-ray, and spontaneous p o t e n t i a l methods were c a r r i e d out on 12 t e s t h o l e s to depths of up to 62 meters. These l o g s are shown in Appendix B. Samples of g l a c i a l sediments f o r l a b o r a t o r y t e s t s were taken from 7 a d d i t i o n a l t e s t h o l e s . Borehole s o i l mapping was done on a l l h o l e s . Other f i e l d w o r k done on the s i t e c o n s i s t e d of t e s t p i t s dug by backhoes f o r d e t a i l e d 15 mapping of the t i l l s . B a i l t e s t s f o r h y d r a u l i c c o n d u c t i v i t y were c a r r i e d out on a l l of the piezometers. R i v e r exposures on both s i d e s of the Oldman River were mapped. The s t r a t i g r a p h y of both the bedrock and the u n c o n s o l i d a t e d m a t e r i a l was examined. 16 Chapter 2 GEOLOGIC SETTING The Taber I r r i g a t i o n Return Flow study area i s l o c a t e d w i t h i n the western Canadian sedimentary b a s i n ; a very t h i c k sequence of r e l a t i v e l y u n d i sturbed sedimentary rocks which u n d e r l i e s much of the Canadian p r a i r i e s . At the study s i t e the uppermost u n i t i n t h i s sequence, the Foremost Formation of Upper Cretaceous age, i s o v e r l a i n by a s e r i e s of p o o r l y c o n s o l i d a t e d and un c o n s o l i d a t e d g l a c i a l and p r e g l a c i a l d e p o s i t s . Since the main o b j e c t i v e of t h i s study i s to determine the hydrogeologic regime i n the s u r f i c i a l d e p o s i t s , the f o l l o w i n g d i s c u s s i o n w i l l c o n c e n t r a t e mainly on the s t r u c t u r e , paleotopography, and p h y s i c a l c h a r a c t e r i s t i c s of the upper p a r t of the Foremost Formation and the s u r f i c i a l d e p o s i t s . D e t a i l e d g e o l o g i c d e s c r i p t i o n s of the area can be found i n : R u s s e l l and Landes (1940), Westgate (1968), and N i e l s e n (1971). The Foremost Formation i s composed of dark s h a l e , c o a l , sandstone, and s i l t s t o n e with the arenaceous rocks 17 predominating. The formation- i s t r a n s i t i o n a l with the u n d e r l y i n g Pakowki Formation and re p r e s e n t s the gradual r e t r e a t of the Pakowki Sea ( R u s s e l l and Landes, 1940). T h i s r e t r e a t of the sea i n c l u d e d numerous readvances r e s u l t i n g i n e s s e n t i a l l y freshwater or b r a c k i s h water d e p o s i t i o n of the beds. The Foremost Formation i s approximately 100 meters t h i c k i n the study area. The uppermost carbonaceous u n i t of the Foremost Formation i s a 2 meter t h i c k c o a l bed known as the Taber c o a l bed. T h i s u n i t outcrops along many p a r t s of the r i v e r bank making an e x c e l l e n t marker bed. The c o a l bed i s seen i n most boreholes that extend i n t o the bedrock. Another u n i t , a b e n t o n i t i c sandstone i s found i n many holes such as ho l e s 1809-E, 1813-E, and 1815-E (see Appendix A and l o c a t i o n map, F i g u r e 2). In the g e o p h y s i c a l logs (Appendix B) there are 3 t h i n u n i t s with high r e s i s t i v i t y which are present near the bedrock su r f a c e over much of the s i t e . The hig h r e s i s t i v i t y i s i n t e r p r e t e d to be due to the presence of coarse u n i t s . T h i s evidence suggests that the sandstone, s i l t s t o n e , s h a l e , and c o a l beds near the bedrock s u r f a c e are continous over much of the s i t e , however some of the other u n i t s i n the sequence show l a t e r a l t r a n s i t i o n a l changes which are c o n s i s t e n t with the d e p o s i t i o n a l environment at that time; a f l u c t u a t i n g s h o r e l i n e of the Pakowki Sea. 18 The only s i g n i f i c a n t g e o l o g i c s t r u c t u r e i n the region i s the Sweetgrass a r c h , a broad a n t i c l i n e of c o n s i d e r a b l e extent which trends to the north g i v i n g the bedrock s t r a t a at the s i t e a g e n t l e d i p of approximently one degree or 40 meters per kilometer to the west ( R u s s e l l and Landes, 1940). The upper boundary of the Foremost Formation i n the study area i s an e r o s i o n s u r f a c e which forms the bottom of a wide p r e g l a c i a l r i v e r v a l l e y known as the Lethbridge V a l l e y (Farvolden, 1969). The bedrock v a l l e y at t h i s l o c a t i o n i s from 5 to 7 k i l o m e t e r s i n width and 35 meters deep ( S t a l k e r , 1967). The v a l l e y f l o o r i s r e l a t i v e l y f l a t and tends to slope g e n t l y to the e a s t . J u s t to the south of the study area an e a s t e r l y t r e n d i n g bedrock r i s e marks the r i g h t hand s i d e of the v a l l e y . A map of the bedrock topography showing these f e a t u r e s i s presented i n F i g u r e 5. Geology of S u r f i c i a l D e posits Southern A l b e r t a has been overrun by up to f i v e g l a c i a l advances d u r i n g the Wisconsin stage of the P l e i s t o c e n e (Westgate, 1968). These i c e sheets have a l l been of L a u r e n t i d e o r i g i n and have advanced from the n o r t h and east d e p o s i t i n g s u c c e s s i v e t i l l sheets, each up to 40 meters t h i c k . R e t r e a t of each i c e sheet c r e a t e d g l a c i a l l a k e s and r e s u l t e d i n the d e p o s i t i o n of l a c u s t r i n e sands and s i l t s . Large outwash channels c r e a t e d the coulees t h a t now occur 20 throughout the p r a i r i e s . The t e r r a i n was b u r i e d under g l a c i a l d e p o s i t s of t i l l and outwash sands. P r e g l a c i a l r i v e r v a l l e y s were f i l l e d by great t h i c k n e s s e s of g l a c i a l d e b r i s . As a consequence of the d i s l o c a t i o n s and b r i e f time span s i n c e g l a c i a t i o n the drainage system of the A l b e r t a p l a i n s remains immature. The r i v e r v a l l e y s are steep-walled and narrow i n r e l a t i o n to t h e i r p r e g l a c i a l c o u n t e r p a r t s . The r i v e r s have downcut e x t e n s i v e l y through g l a c i a l d r i f t and bedrock l e a v i n g e x c e l l e n t exposures along the banks i n many p l a c e s . P r e g l a c i a l D e posits The Shimbashi s i t e of the Taber I r r i g a t i o n Return Flow study i s s i t u a t e d over a wide p r e g l a c i a l r i v e r v a l l e y . The g l a c i a l d e p o s i t s i n t h i s and other p r e g l a c i a l r i v e r v a l l e y s of the I n t e r i o r P l a i n s region tend to be of much grea t e r t h i c k n e s s than elsewhere i n the p l a i n s . The d e p o s i t immediately o v e r l y i n g the bedrock i n these b u r i e d r i v e r v a l l e y s and throughout the study area c o n s i s t s of p r e g l a c i a l sands and g r a v e l s of f l u v i a l o r i g i n . These sands and g r a v e l s were f i r s t r e p o r t e d by McConnell i n 1885, d i s c o v e r e d near the Cypress H i l l s area of Saskatchewan ( S t a l k e r , 1967). They are known to occur l o c a l l y throughout the western Canadian p l a i n s and are r e f e r r e d to as 21 Saskatchewan g r a v e l s and sands. The Saskatchewan g r a v e l s and sands were f i r s t d e p o s i t e d i n the Oligocene by r i v e r s f l o w i n g east and northeast from the Rocky Mountains. D e p o s i t i o n of the Saskatchewan g r a v e l s continued throughout the T e r t i a r y and w e l l i n t o the Quaternary ( S t a l k e r , 1967). S t a l k e r a l l o w s that t h i s long u n i n t e r r u p t e d p e r i o d , combined with a gradual u p l i f t of the p l a i n s and g e n t l e t i l t to the west, r e s u l t e d i n a very mature drainage system. The whole of the western p l a i n s was d r a i n e d by r e l a t i v e l y few major r i v e r s c o n t a i n e d in r i v e r v a l l e y s 3 to 10 k i l o m e t e r s wide, and up to 100 meters deep. The p r e g l a c i a l Oldman River was one of these major drainage channels. The Saskatchewan g r a v e l s and sands are found i n these l a r g e p r e g l a c i a l r i v e r v a l l e y s . They u n d e r l i e a l l g l a c i a l d e p o s i t s and c o n t a i n no Precambrian S h i e l d m a t e r i a l which was i n t r o d u c e d d u r i n g the f i r s t L a u r e n t i d e g l a c i a l advance ( S t a l k e r , 1967). The sands and g r a v e l s have been d e r i v e d from the Rocky Mountains. The d e p o s i t v a r i e s from 1 to 10 meters i n t h i c k n e s s at the Shimbashi s i t e ( f i g u r e 6). Outcrops along the l e f t bank of the r i v e r are common, but are r a r e on the Shimbashi s i d e . The major components of the g r a v e l s are q u a r t z i t e and c h e r t , with some limestone, v o l c a n i c s , sandstone, and shale d e r i v e d 23 from l o c a l bedrock and the C o r d i l l e r a ( S t a l k e r , 1962 and N i e l s e n , 1971). The g r a v e l s range from 4 to 15 c e n t i m e t e r s in diameter. Weathering and oxide s t a i n i n g are e v i d e n t i n the top and bottom of the s t r a t a . The sands and g r a v e l s are l o c a l l y cemented by r e c e n t , p o s t - d e p o s i t i o n a l p r e c i p i t a t i o n of c a l c i u m carbonate (Kupsch and Vonhof, 1967). The g e o p h y s i c a l logs of Appendix B show the c h a r a c t e r i s t i c high r e s i s t i v i t y of t h i s d e p o s i t . The Saskatchewan g r a v e l s and sands were found immediately o v e r l y i n g the bedrock i n a l l deep d r i l l h o l e s . G l a c i a l D e p o s i t s M u l t i p l e advances of the g l a c i e r s of the L a u r e n t i d e i c e sheet from the north d u r i n g the Wisconsin stage r e s u l t e d i n the d e p o s i t i o n of 2 to 5 separate t i l l sheets i n southern A l b e r t a (Dawson, 1885; Horberg, 1952; S t a l k e r , 1962; N i e l s e n , 1971). Table IV i s a comparison of s t r a t i g r a p h i c i n t e r p r e t a t i o n s i n the g e n e r a l region of the study s i t e . Most of these i n t e r p r e t a t i o n s are based p r i m a r i l y on exposures along r i v e r v a l l e y w a l l s . However Horberg (1952), N i e l s e n (1971) and Westgate (1968) a l l employed supplementary d r i l l i n g . One d r i l l h o l e used by Horberg (1952) was s i t u a t e d d i r e c t l y a c r o s s the r i v e r from the Shimbashi study s i t e . The hole l o c a t i o n i s shown i n F i g u r e 7. 24 TABLE IV COMPARISON OF STRATIGRAPHIC INTERPRETATIONS STAGE SUB-STAGI DAWSON McCONNELL 1895 HORBERG 1952 WESTGATE lqfiR NIELSEN 1Q71 MANKATO MAZAMA ASH WISCONSIN CAREY UPPER BOULDER CLAY UPPER TI L L LENZIE SILT LOWER TILL OLDMAN DRIFT ETZIKON DRIFT PAKOWKI DRIFT UPPER SANDS UPPER TILL LENZIE SILTS LOWER TTT.T. Nn . 2 WISCONSIN TAZEWELL WILD HORSE DRIFT LOWER TIL L No . 1 WISCONSIN IOWAN ELKWAT.ER DRIFT WOLF ISLAND SEDIMENTS BASAL TI L L WOLF ISLAND SEDIMENTS NEBRASKAN TO WISCONSIN SANGAMON SASKATCHEWAN GRAVELS NEBRASKAN TO WISCONSIN ILLINOIAK NEBRASKAN TO WISCONSIN YARMOUTH INTERGLACIAL BEDS NEBRASKAN TO WISCONSIN KANSAS LOWER BOULDER CLAY NEBRASKAN TO WISCONSIN AFTONIAN NEBRASKAN TO WISCONSIN NEBRASKAN SASKATCHEWAN GRAVELS ALBERTA DRIFT •REGLACIAL SASKATCHEWAN GRAVEL'S SASKATCHEWAN GRAVELS 26 Horberg (1952) mapped 3 t i l l sheets and an i n t e r g l a c i a l l a c u s t r i n e d e p o s i t a c r o s s the Oldman River from the c u r r e n t study s i t e . N i e l s e n (1971), i n h i s study of the area to the west, v e r i f i e d Horberg's f i n d i n g s . These u n i t s w i l l be b r i e f l y d e s c r i b e d and then d i s c u s s s e d i n r e l a t i o n to the f i n d i n g s of t h i s study. Basal T i l l - The Basal T i l l i s found to be from 0.3 to 5 meters t h i c k and i s g e n e r a l l y t h i c k e s t over p r e g l a c i a l v a l l e y s . I t i s very hard, dark greyish-brown t i l l with d i s t i n c t columnar j o i n t i n g i n i t . S a l t p r e c i p i t a t e s occur along the v e r t i c a l j o i n t s and the t i l l i s p a r t i a l l y o x i d i z e d though c h e m i c a l l y unweathered. A t h i n g r a v e l l a y e r p e r s i s t s at the top of the Basal T i l l which N i e l s e n (1971) c l a i m s g i v e s a d i s t i n c t i v e ' k i c k ' on e l e c t r i c r e s i s t i v i t y l o g s . Lower T i l l - The Lower T i l l , tending to the g r e a t e s t value in the p r e g l a c i a l v a l l e y s , v a r i e s from 5 to 40 meters i n t h i c k n e s s . I t i s s l i g h t l y l e s s dense than the Basal T i l l . The upper 3 to 5 meters i s o x i d i z e d and has columnar j o i n t i n g , though l e s s pronounced than that of the Basal T i l l . Iron s t a i n i n g occurs along these j o i n t s . The Lower T i l l c o n t a i n s more pebbles than the Basal T i l l and i s dark grey where unweathered. N i e l s e n (1971) found i t extremely d i f f i c u l t to p i c k out the base of t h i s u n i t where i t meets the Basal T i l l by e i t h e r borehole sampling or e l e c t r i c l o g s . 27 I t i s t h i s t i l l sheet which has been found to c o n t a i n 'megablocks' ( N i e l s e n , 1971), l a r g e masses of bedrock which have been t r a n s p o r t e d by the g l a c i e r i n a r e l a t i v e l y u ndisturbed s t a t e . S t a l k e r (1963) suggests the bedrock mass i s frozen to the 'bottom of the g l a c i e r and then l i f t e d and dragged from the surrounding bedrock to be d e p o s i t e d elsewhere. Such a megablock outcrops on the north s i d e of the Oldman R i v e r o p p o s i t e the study s i t e (see F i g u r e 7 f o r l o c a t i o n ) . F i g u r e s 8 and 9 are photographs of the megablock. I t c o n s i s t s of i n d u r a t e d grey sandstone approximately 10 meters t h i c k . A t h i n i r o n s t o n e bed i s found near the top. The megablock i s t r a c e a b l e f o r about 1 kilometer along the r i v e r . G l a c i a l d r i f t i s found both above and below i t . Lenzie S i l t - The L e n z i e S i l t i s a l a c u s t r i n e d e p o s i t formed durin g a r e t r e a t i n g stage of L a u r e n t i d e i c e . The d e p o s i t t h i n s from west to e a s t . Horberg maps i t as approximately 2 to 3 meters t h i c k at the Shimbashi s i t e . The L e n z i e S i l t c o n s i s t s of laminated sand, s i l t , and c l a y ; u s u a l l y b u f f . I t may be l o c a l l y mixed with t i l l such t h a t i t appears as only a sandier zone i n the t i l l d e p o s i t . N i e l s e n (1971) claims i t i s d i f f i c u l t to r e c o g n i z e the s i l t i n the subsurface and i s most o f t e n d i f f e r e n t i a t e d only by a l a c k of pebbles. Uppper T i l l - The Upper T i l l v a r i e s from 2 to 40 meters in t h i c k n e s s . I t d i f f e r s from the Lower T i l l by being l e s s compact and r i c h e r i n pebble f r a c t i o n s . The o x i d i z e d zone FIGURE 8. Photograph showing megablock exposed i n r i v e r v a l l e y w a l l . The white o u t l i n e of the sandstone can be traced away from the r i v e r i n the g u l l e y . FIGURE 9. Photograph showing sandstone megablock o v e r l a i n and un d e r l a i n by t i l l . The megablock l i e s almost p e r f e c t l y h o r i z o n t a l . 29 v a r i e s from 1 to 21 meters deep and j o i n t i n g i n i t i s l e s s d i s t i n c t than i n other t i l l s heets. The o x i d i z e d zone i s b u f f , otherwise the t i l l i s a dark grey to g r e y i s h - b l u e . Sand l e n s e s are common throughout the t i l l . The Upper and Lower T i l l sheets are very s i m i l i a r i n t e x t u r e . During the i n v e s t i g a t i o n of the g l a c i a l d e p o s i t s at the Shimbashi s i t e i t was d i f f i c u l t to d i f f e r e n t i a t e between s u c c e s s i v e t i l l s . Borehole sampling and e l e c t r i c l o g g i n g d i d i n d i c a t e a t h i n outwash g r a v e l l a y e r i n boreholes 1811-E, 1813-E, 1814-E, 1816-E, 1817-E, and 1818-E (Appendices A and B and l o c a t i o n map, F i g u r e 2). T h i s g r a v e l l a y e r may or may not be continuous. I t s e l e v a t i o n above the top of the Saskatchewan g r a v e l s and sands v a r i e s from 5 to 9 meters, i n d i c a t i n g a p o s i t i o n w i t h i n what may be the Basal T i l l sheet. The t h i c k n e s s of t h i s t i l l sheet i n these holes i s g r e a t e r than that recorded eleswhere but N i e l s e n (1971) d i d r e p o r t g e n e r a l l y t h i c k e r d e p o s i t s i n p r e g l a c i a l v a l l e y s . Samples taken i n t h i s zone, however, d i s p l a y no columnar j o i n t i n g or o x i d a t i o n . The s p l i t spoon sampling technique may p o s s i b l y have destroyed any j o i n t i n g present, thus making these o b s e r v a t i o n s i n c o n c l u s i v e . The c o l o u r of the t i l l below the g r a v e l i s the same dark g r e y i s h - b l u e as that of the t i l l above suggesting no weathering or o x i d a t i o n has taken p l a c e . 30 The r e s u l t s of the study are a l s o i n c o n c l u s i v e i n terms of being able t o d i f f e r e n t i a t e between an Upper and Lower T i l i , or to i d e n t i f y a Lenzie s i l t l a y e r between the two. The c r o s s - s e c t i o n s of Fig u r e 7 show many sand lenses throughout the t i l l (see F i g u r e s 10, 11, and 12 as we l l as borehole logs in Appendix A). However, no s i l t or sand l e n s p e r s i s t s over any gre a t area of the s i t e . Horberg (1952) suggests that i n some l o c a t i o n s the Lenzie s i l t has been mixed with t i l l i n t o a zone of sandier m a t e r i a l . While such zones are present at the s i t e , t h e i r v a r i a t i o n s i n e l e v a t i o n s and d i s c o n t i n o u s nature make i t imp o s s i b l e to i s o l a t e any p a r t i c u l a r widespread zone. T h i s i s v e r i f i e d by the t e x t u r a l c l a s s i f i c a t i o n with depth of samples presented i n F i g u r e 13 as w e l l as the borehole logs of Appendix A. The i n v e s t i g a t i o n found no o x i d i z e d or weathered zone at depth i n the t i l l which would i n d i c a t e the top of a t i l l sheet. N i e l s e n (1971) notes that the Lower T i l l has a much more pronounced columnar j o i n t i n g than the Upper T i l l . An examination of the l e f t - h a n d r i v e r bank r e v e a l e d two l o c a t i o n s , marked "A" and "B" on F i g u r e 7, where massive columnar j o i n t i n g was e v i d e n t . In both cases t h i s t i l l i s o v e r l a i n by a t i l l without such d i s t i n c t i v e j o i n t i n g (Figure 14). Many other outcrops along the r i v e r do not d i s p l a y columnar j o i n t s w i t h i n any pa r t of the t i l l . T h i s i s e s p e c i a l l y t r u e both above and below the megablock which 31 v. J 33 < ac C z 34 S A N D C O N T E N T O F T I L L 64 + -4- Tes t hole 4 1 1 7 - M A Test hole 4 1 1 6 - M 56-4 8 ' P E R C E N T S A N D S 40-A A * A A A + A A t + ^ A + A <V A 3 2 + 24 + F I G U R E 13 3 4 D E P T H (m) 35 FIGURE 14. Photograph showing massive, columnar j o i n t i n g of t i l l i n a r i v e r exposure. FIGURE 15. Photograph of s m a l l - s c a l e j o i n t i n g i n t i l l . (Courtesy of J . HENDRY) 36 N i e l s e n (1971) r e p o r t s i s found only i n the Lower T i l l sheet. Because of r i v e r e r o s i o n and d e p o s i t i o n on the i n s i d e bank, only a few areas of outcrop e x i s t on the Shimbashi side of the r i v e r . In none of these cuts i s columnar j o i n t i n g v i s i b l e , though small s c a l e j o i n t s are abundant as shown in F i g u r e 15. The upper p a r t of the t i l l s u c c e s s i o n i s weathered and o x i d i z e d over the whole study a r e a . The depth of o x i d a t i o n v a r i e d from 6 to 20 meters, and the boundary between the weathered and unweathered zones was found to be r e l a t i v e l y sharp r a t h e r than t r a n s i t i o n a l . T h i s c l e a r - c u t contact between the two zones was a l s o noted by Hendry (1980) i n a study n o r t h of the Shimbashi s i t e , along the Bow R i v e r . Hendry a l s o r e p o r t e d no a d d i t i o n a l o x i d a t i o n zone beneath the l a y e r of u n o x i d i z e d m a t e r i a l which would i n d i c a t e a second t i l l sheet. The c o l o u r of weathered t i l l i s an o l i v e to medium brown due to o x i d a t i o n of p a r t i c l e s w i t h i n the t i l l . The m a t e r i a l c h a r a c t e r i s t i c a l l y e x h i b i t s sandy loam to c l a y loam t e x t u r e (see F i g u r e 16). I t c o n t a i n s numerous pebbles and cobbles of sandstone and shale d e r i v e d from l o c a l bedrock of the Foremost Formation p l u s igneous and metamorphic rock from the Canadian S h i e l d . Coal fragments are common throughout the t i l l . F i g u r e 17 shows small sand lenses which occur at 38 c l o s e i n t e r v a l s i n t h i s t i l l . They vary i n l e n g t h from a few cen t i m e t e r s to greater than 100 meters. The slumped and convo l u t e d nature of some sand l e n s e s ( F i g u r e 18) i n d i c a t e s that much of the t i l l was d e p o s i t e d as i c e contact m a t e r i a l . These sand lenses c o n t a i n very l i t t l e c l a y . O c c a s i o n a l l y pea g r a v e l i s found as t h i n s t r e a k s , u s u a l l y a s s o c i a t e d with a sand l e n s . J o i n t s or f r a c t u r e s appear throughout the o x i d i z e d t i l l but are absent i n the u n d e r l y i n g , unweathered t i l l . Both l a r g e -s c a l e and s m a l l - s c a l e f r a c t u r e s are p r e s e n t . S m a l l - s c a l e f r a c t u r e s with a spacing of about 1 centimeter ( F i g u r e s 19 and 20) c o n s i s t of 3 f r a c t u r e s e t s : 1 h o r i z o n t a l and 2 s u b v e r t i c a l , r e s u l t i n g i n a n e a r l y c u b i c form. Gypsum s a l t s and i r o n s t a i n i n g occur along f r a c t u r e s i n some l o c a t i o n s but are absent i n o t h e r s . Large s c a l e f r a c t u r i n g , though l e s s d i s t i n c t than the s m a l l -s c a l e j o i n t s , i s a l s o evident i n some borehole samples and t e s t p i t s . These j o i n t s are n e a r l y v e r t i c a l and appear to be somewhat i s o l a t e d i n d i s t r i b u t i o n , without a d i s t i n c t i v e s p a c i n g . Oxides occur along some of these j o i n t s but no gypsum s a l t p r e c i p i t a t e was found. The u n o x i d i z e d t i l l does not show evidence of f r a c t u r i n g . The t i l l i s grey or b l u i s h - g r e y and, l i k e the weathered t i l l , c o n t a i n s numerous sand s t r e a k s . Pebbles of sandstone, 39 FIGURE 17. Photograph of t i l l c o n t a i n i n g lenses of outwash m a t e r i a l . Such sand lenses are found throughout the t i l l of the Shimbashi s i t e . FIGURE 18. Photograph of t i l l showing i c e - c o n t a c t f e a t u r e s . AO I FIGURE 19. Photograph of s m a l l - s c a l e f r a c t u r e s taken from a t e s t p i t . FIGURE 20. Photograph of s m a l l - s c a l e f r a c t u r e taken from a t e s t p i t . 41 s h a l e , and Precambrian S h i e l d rock are e v i d e n t , as w e l l as numerous fragments of c o a l d e r i v e d from l o c a l sources. The weathered and unweathered t i l l s have a s i m i l i a r t e x t u r e , as shown by the t e x t u r a l c l a s s i f i c a t i o n of F i g u r e 16. The s t r a t i g r a p h y evident i n the r i v e r b a n k s suggests that more than one t i l l sheet may have been d e p o s i t e d . However, data drawn from d r i l l h o l e sampling and e l e c t r i c l o g s would suggest that these t i l l s can be d i f f e r e n t i a t e d only by s p e c i a l i z e d techniques such as pebble counts or X-ray d i f f r a c t i o n (Westgate, 1968). Outwash d e p o s i t s of sand occur commonly in the t i l l of the s i t e . While the whole s i t e i s u n d e r l a i n by t i l l , the northern h a l f i s covered by up to 15 meters of c l e a n , medium to coarse g r a i n e d sand d e p o s i t e d w i t h i n a g l a c i a l meltwater channel ( F i g u r e s 21 and 27). G r a i n s i z e d i s t r i b u t i o n curves ( F i g u r e 22) show t h i s uniform nature. The sands t h i n out both towards the north, p i n c h i n g out along the r i v e r v a l l e y w a l l , and to the south (Figure 23). Other d i s c o n t i n u o u s pockets of sand are a l s o present ( F i g u r e 21). These sands show the same g r a i n s i z e d i s t r i b u t i o n as the meltwater channel sands and are b e l i e v e d a l s o to be of g l a c i o f l u v i a l o r i g i n . The same complex d e p o s i t s are found at depth. The c r o s s - s e c t i o n s of F i g u r e s 10 to 12 show the s p o r a d i c nature of the channels which become p r o g r e s s i v e l y more common near BOULDERS COBBLI GRAVEL SIZES SAND S I Z E S COARSE | FINE USE I MEDIUM F I N E IINTFTEO C L A S S I F I C A T I O N S I L T S I Z E S CLAY S I Z E S 12" 6" 3" 2" 1" 3 /8 /M 010 020 M O . 060 0200 I 1 .,.».. I . ' i 1 .'nil ^^tmrnAmilfiMminnma-^—r^-l—1—IIIII 'l II G R A I N S I Z E ( M I L L E M E T E R S ) O U T W A S H S A N D S | Z E D I S T R I B U T I O N 0.001 F I G U R E 2 2 45 the s u r f a c e . One major channel runs i n a north-south d i r e c t i o n down the middle of the s i t e , from no r t h of hole 1814-E and continues to 500 meters south of the s i t e where i t i n t e r s e c t s an east-west running sand channel along the s i d e of the p r e g l a c i a l r i v e r v a l l e y w a l l . P o s t - g l a c i a l D eposits The a c t i o n of the Oldman River s i n c e the end of g l a c i a t i o n has a l t e r e d and r e f i n e d the g l a c i a l landscape. The r i v e r has formed a s l i p - o f f slope along the i n s i d e of the bend around which i t t r a v e l s , l e a v i n g moderately s l o p i n g v a l l e y w a l l s some d i s t a n c e from the r i v e r on the north, west, and east s i d e s of the s i t e . These slo p e s f l a t t e n out i n t o a d i s c o n t i n u o u s t e r r a c e approximately 3 meters above the l e v e l of the r i v e r . Along the v a l l e y w a l l on the west and north s i d e s of the s i t e i n F i g u r e 21 are up to 7 meters of s t r a t i f i e d d e p o s i t s of sand to c o b b l e - s i z e m a t e r i a l . Sand lenses run throughout the r i v e r d e p o s i t s of rounded cobbles and g r a v e l s . These d e p o s i t s p i n c h out at the base of the v a l l e y w a l l s . They were d e p o s i t e d from the bed l o a d of the r i v e r as i t p r o g r e s s i v e l y moved to the west and n o r t h . Photos i n F i g u r e s 24 and 25 of a t e s t p i t dug i n these g r a v e l s show t h e i r w e l l -rounded, f l u v i a l nature. I FIGURE 24. Photograph of f l u v i a l d e p o s i t s from a t e s t p i t . The m a t e r i a l i s s o r t e d and v a r i e s i n s i z e from f i n e sand to cobbles. Photograph of f l u v i a l g r a v e l to cobble s i z e m a t e r i a l from t e s t p i t showing evidence of s a l t d e p o s i t i o n . 47 The f l a t t e r r a c e below the r i v e r v a l l e y w a l l s i s u n d e r l a i n by t i l l . In the lower e l e v a t i o n s along the northwest p o r t i o n of the t e r r a c e , t h i n dark brown d e p o s i t s 0 to 2 meters t h i c k of f i n e sand and s i l t d e p o s i t e d d u r i n g f l o o d i n g of the Oldman River are found on the s u r f a c e . Grain s i z e d i s t r i b u t i o n curves of t h i s m a t e r i a l shown (Figure 26) r e v e a l t h e i r uniform nature. Wind d e p o s i t e d l o e s s 0 to 1 meter t h i c k i s found at the s u r f a c e over much of the s i t e . The l o e s s c o n s i s t s of s i l t and f i n e sand but does not show any s t r a t i f i c a t i o n or bedding. Summary The Shimbashi s i t e i s s i t u a t e d over a p r e g l a c i a l r i v e r v a l l e y eroded i n the sedimentary rock of the Foremost Formation of Upper Cretaceous age. T h i s bedrock v a l l e y i s f i l l e d with u n c o n s o l i d a t e d p r e g l a c i a l and g l a c i a l sediments. The lowermost of these are the p r e g l a c i a l Saskatchewan g r a v e l s and sands; coarse g r a i n e d f l u v i a l d e p o s i t s d e r i v e d from the bedrock of the Rocky Mountains to the west. Above the Saskatchewan g r a v e l s and sands are t i l l and Outwash d e p o s i t e d by repeated advances of the L a u r e n t i d e i c e sheet. The t i l l i s o x i d i z e d and weathered to depths of 20 meters g i v i n g i t a brown c o l o u r . T h i s upper o x i d i z e d zone IINTFTED CLASSTFTCATTON 1000 oTdoi G R A I N S I Z E ( M I L L E M E T E R S ) F L O O D P L A I N D E P O S I T S I Z E D I S T R I B U T I O N F I G U R E 26 4> CO 49 FIGURE 27. Photograph of Note the rock outwash sand from commercial g r a v e l p i t . hammer f o r s c a l e . U N I F I E D C L A S S I F I C A T I O N BOULDERS COBBLI CRAVEL SIZES SAND S I Z E S COARSE FINE CSE | MEDIUM | F I N E S I L T S I Z E S CLAY S I Z E S 10 l'.O 0.1 G R A I N S I Z E ( M I L L E M E T E R S ) 0.001 T I L L S I Z E D I S T R I B U T I O N F I G U R E 28 51 e x h i b i t s both l a r g e and small s c a l e f r a c t u r i n g . The lower zone of the t i l l i s b l u i s h - g r e y i n c o l o u r and does not e x h i b i t f r a c t u r i n g of any kin d . The upper and lower t i l l u n i t s have the same t e x t u r e s . Pebbles d e r i v e d from l o c a l bedrock as w e l l as Precambrian metamorphic rocks of the Canadian S h i e l d and c o a l fragments are common. Sand l e n s e s are found throughout the t i l l , v a r y i n g from t h i n seams to major channel d e p o s i t s . An outwash channel f i l l of uniform sands covers the t i l l at the northern end of the s i t e , running i n an e a s t e r l y d i r e c t i o n . The sands and t i l l s have been eroded by the Oldman R i v e r along the nor t h and west s i d e s of the s i t e . L a t e r d e p o s i t i o n of sands and cobbles along the v a l l e y w a l l s by the r i v e r under d i f f e r e n t flow c o n d i t i o n s has occu r r e d i n these areas. 52 Chapter 3 SITE HYDROGEOLOGY The hydrogeologic i n v e s t i g a t i o n at the Shimbashi s i t e has two p r i n c i p a l o b j e c t i v e s : 1) to determine the d i s t r i b u t i o n of h y d r a u l i c head and the p a t t e r n s of groundwater movement, and 2) to develop conceptual and and q u a n t i t a t i v e models of groundwater movement at the s i t e f o r purposes of p r e d i c t i n g f u t u r e groundwater response to s u s t a i n e d i r r i g a t i o n . To meet these o b j e c t i v e s a f i e l d program c o n s i s t i n g of determining e l e v a t i o n s of the water t a b l e , the h y d r a u l i c head d i s t r i b u t i o n , and the h y d r a u l i c c o n d u c t i v i t i e s of the d i f f e r e n t m a t e r i a l s . The methods used to c a r r y out the hydrogeologic i n v e s t i g a t i o n , the h y d r a u l i c parameters obtained, and the r e s u l t i n g c onceptual model of the groundwater regime are d e s c r i b e d i n t h i s c h a pter. Methods of I n v e s t i g a t i o n A t o t a l of 67 piezometers were i n s t a l l e d on the s i t e i n 13 53 separate l o c a t i o n s between June 1978 and June 1980. The piezometers are d e s c r i b e d on an i n d i v i d u a l b a s i s i n Table V and the piezometer nests l o c a t i o n s are shown i n F i g u r e 2. The piezometers were a l l open PVC standpipes having an i n s i d e diameter of 3.8 or 5.1 c e n t i m e t e r s . Each piezometer had an i n t a k e s e c t i o n 45 c e n t i m e t e r s long c o n s i s t i n g of e i t h e r w e l l screen or s l o t t e d PVC pipe wrapped with g l a s s -f i b r e c l o t h . The intake s e c t i o n s were s i t u a t e d i n a 1 meter zone of coarse sand. T h i s zone was then s e a l e d and i s o l a t e d from the o v e r l y i n g m a t e r i a l by at l e a s t 15 c e n t i m e t e r s of b e n t o n i t e . The d r i l l h o l e was b a c k f i l l e d above the s e a l with d r i l l c u t t i n g s . In a d d i t i o n to the piezometers, water t a b l e o b s e r v a t i o n w e l l s were i n s t a l l e d i n 45 separate l o c a t i o n s over the s i t e . These w e l l s range in depth from 4.6 to 18.3 meters. They c o n s i s t e d of 5.1 centimeters i n s i d e diameter PVC standpipes which were s l o t t e d over much of t h e i r l e n g t h . No e f f o r t was made to i s o l a t e any s e c t i o n , thus the w e l l s recorded the a c t u a l water t a b l e e l e v a t i o n . At 7 of the w e l l s d e s c r i b e d above, continuous r e c o r d e r s were i n s t a l l e d to monitor the water t a b l e e l e v a t i o n . The l o c a t i o n of a l l piezometer nests and water t a b l e w e l l s are shown on F i g u r e 2, i n the back pocket. The standpipe piezometers were used to perform s l u g t e s t s 54 TABLE V PIEZOMETER INSTALLATION DATA PIEZOMETER DEPTH DRILLED BY DATE SCREEN 1809 -N 10. 40 A. A. A p r i l 1979 F* NM 8. 2 A. A. A p r i l 1979 F M 3. 5 A. A. A p r i l 1979 F SM 5 . 5 A. A. A p r i l 1979 F 1810 -N 17 . 8 E n v i r . - A. A. June 1978 F M 21. 7 E n v l r . - A. A. June 1978 F S 24 . 2 E n v i r . - A. A. June 1978 F 1811 -N 17 . 4 Camf i e l d March 1979 W* M 22 . 1 Camf i e l d March 1979 W S 24 . 5 C a m f i e l d March 1979 W 1812 -W 9 . 4 A. A. A p r i l 1979 F M 22 . 9 Camf i e l d March 1979 W E-N 15 . 6 E n v i r . - A. A. June 1978 F M 32. 5 E n v i r . - A. A. June 1978 F S 45. 5 E n v i r . - A. A. June 1978 F 1813 -w 24 . 1 A l l - K i n d June 1980 W M-NM 30. 2 C a m f i e l d March 1979 W SM 19 . 5 C a m f i e l d March 1979 W S 15 . 4 Camf i e l d March 1979 W E-N 9 . 6 E n v i r . - A. A. June 1978 F M 36. 7 E n v i r . - A. A. June 1978 F S 42 . 7 E n v i r . - A. A. June 1978 F 1814 -W-N 24 . 8 A l l - K i n d June 1980 W NM 2 . 3 Double D June 1980 W M 2 . 9 Double D June 1980 W SM 4. 4 Double D June 1980 W S 6. 9 Double D June 1980 W M-NM 32. 0 Camf i e l d March 1979 W SM 20 . 3 C a m f i e l d March 1979 W S 14 . 8 Camf i e l d March 1979 W E-N 9 . 2 E n v i r . - A. A. June 1978 F M 6 . 2 E n v i r . - A. A. June 1978 F S 45 . 0 E n v i r . - A. A. June 1978 F 1815 18. 2 C a m f i e l d March 1979 W 1816--W-N 31 . 9 A l l - K i n d June 1980 W M 4 . 5 Double D June 1980 W S 6 . 7 Double D June 1980 W M-M 7 . 6 A. A. A p r i l 1979 F S 13 . 2 A. A. May 1979 F E-N 28. 6 E n v i r . - A. A. June 1978 F S 41 . 6 E n v i r . - A. A. June 1978 F 55 - 2 -PIEZOMETER DEPTH DRILLED BY DATE SCREEN 1817-W-N 21 . 8 A l l - K i n d June 1980 W M 7 . 4 Double D June 1980 w S 5 . 7 Double D June 1980 w WM- S 7. 0 A. A. A p r i l 1979 F EM-N 32. 9 Camf i e l d March 1979 w M 27 . 0. C a m f i e l d March 1979 w S 16 . 4 Camf i e l d March 1979 W E- N 50 . 4 Wes tb ay November 1978 W M 36. 8 E n v i r . - A. A. June 1978 F S 41. 8 E n v i r . - A. A. June 1978 F 1818-W-N 4 . 5 Double D June 1980 W M 3. 5 Double D June 1980 W S 42. 6 A l l - K i n d June 1980 W M-•N 56. 6 Wes tb ay November 1978 W NM 5 . 9 E n v i r . - A. A. June 1978 F SM 7 . 2 E n v i r . - A. A. June 1978 F S 10 . 7 E n v i r . - A. A. June 1978 F E-•N 52. 9 Camf i e l d March 1979 W M 27 . 95 Camf i e l d March 1979 W S 13. 90 C a m f i e l d March 1979 W 1819 25 . 2 Camf i e l d March 1979 W 1820-W 34 . 1 A l l - K i n d June 1980 W M-•N 7 . 5 Double D June 1980 W S 27 . 1 A l l - K i n d June 1980 W E 21 . 7 A l l - K i n d June 1980 w 1821-N 27 . 0 A l l - K i n d June 1980 w M 20 . 9 A l l - K i n d June 1980 w S 15 . 0 A l l - K i n d June 1980 w F* - F i b e r g l a s s wrapped W* - W e l l s c r e e n 56 and b a i l t e s t s to c a l c u l a t e h y d r a u l i c c o n d u c t i v i t i e s of the u n c o n s o l i d a t e d m a t e r i a l s . These t e s t s measure the r a t e of response of the d e p o s i t to the a d d i t i o n or l o s s of water i n the standpipe piezometer. H y d r a u l i c c o n d u c t i v i t y v a l u e s were computed from the t e s t r e s u l t s using the f o l l o w i n g r e l a t i o n s h i p d e r i v e d by Hvorslev (1951): K=ln(2ML)d 2/(8LT) Where K i s the h y d r a u l i c c o n d u c t i v i t y , d i s the i n s i d e diameter of the piezometer, M i s a t r a n s f o r m a t i o n f a c t o r , L i s the screened i n t e r v a l , and T i s the b a s i c time l a g . The assumptions inherent i n t h i s procedure are : 1) the time l a g i s the only source of e r r o r ; 2) Darcy's Law i s v a l i d ; 3) a r t e s i a n c o n d i t i o n s p r e v a i l ; 4) the a q u i f e r i s homogeneous; 5) the a q u i f e r i s f u l l y c o n f i n e d ; and 6) the b a s i c time l a g i s taken from the f i e l d t e s t data as the time at which the r a t i o of the unrecovered head to the o r i g i n a l change i n head equals 0.37. The p l o t t e d t e s t r e s u l t s are presented i n Appendix C and summarized in Table VI. H y d r a u l i c c o n d u c t i v i t i e s determined u s i n g t h i s method are p r i m a r i l y a measure of the h o r i z o n t a l c o n d u c t i v i t y . However, because of the unsorted nature of the g l a c i a l d e p o s i t s and the d i f f i c u l t y i n measuring a n i s o t r o p y i n the f i e l d , i t was d ecided to assume that the v e r t i c a l h y d r a u l i c c o n d u c t i v i t y 57 TABLE VI HYDRAULIC CONDUCTIVITIES CALCULATED F R 0 M BAIL TESTS SAMPLE 1811- N 1813- M-SM -M-S 1814- M-SM -M-S -W-N -W-M 1818-M-NM -M-SM 1817-ME-S 1821-S 1809-SM 1812- W -E-N 1814-W-SM -W-S 1816- M-M 1817- W-M -W-S -MW-S 1818- M-S 1820-M-N HYDRAULIC CONDUCTIVITY 1.9x10 1.6x10 -4 -4 7.7x10 -5 1.1x10 1.1x10 6.2x10 5.4x10 -3 -4 -4 -4 3.3x10 7.6x10 -3 -3 5 . 2x10 1.2x10 6.5x10 -4 -3 -3 2.9x10 1.0x10 5.1x10 -5 1.2x10 2.1x10 -6 -7 6.3x10 7.3x10 -6 2.7x10 5.7x10 -7 -6 1.1x10 -5 MATERIAL OUTWASH SANDS SASKATCHEWAN GRAVELS FRACTURED T I L L 58 TABLE VI CONTINUED SAMPLE 1811- M -S 1812- E-M -M 1813- E-M -M-NM 1814- E-N -M-NM 1815 1816- E-N -E-S -M-S 1817- ME-N -ME-M -E-M 1818- E-N -E-M -E-S -W-S 1820- M-S -W 1821- N 1816- E-N -E-S -W-N 1813-W 1817- W-N 1820- E 1821- M HYDRAULIC CONDUCTIVITY 4.1x10 2.8x10 -7 -7 1.3x10 4.6x10 6.0x10 -8 - 6 -8 1.7x10 5.4x10 -6 -7 1.5x10 3 (?) -7 1x10 1.5x10 4.0x10 2.4x10 6.8x10 -7 -5 -7 -6 7.8x10 -7 1.1x10 8.8x10 2.4x10 -6 - 6 2 . 7 x l 0 - 4 (?) 4 . 4 x l 0 - 7 1 . 2 x l 0 - 3 (?) 3.2x10 - 6 -7 1.9x10 CONDUCTIVITIES WERE TOO LOW TO BE MEASURED MATERIAL UNWEATHERED T I L L 59 i s the same as the h o r i z o n t a l . In f r a c t u r e d m a t e r i a l such as the weathered t i l l of the Shimbashi s i t e , the e f f e c t i v e p o r o s i t y of the f r a c t u r e s i s so low that the s p e c i f i c d i s c h a r g e r a t e s of the groundwater fl o w i n g through the f r a c t u r e s may become l a r g e enough to make Darcy's Law i n v a l i d . The h y d r a u l i c c o n d u c t i v i t y that i s c a l c u l a t e d using the Hvorslev method i s the average c o n d u c t i v i t y of both the porous media and the f r a c t u r e s . T h i s c o n d u c t i v i t y i s assumed to be v a l i d f o r the u n i t as a whole even though the Hvorslev method i s i n v a l i d as a means of c a l c u l a t i n g the c o n d u c t i v i t y of the f r a c t u r e s a l o n e . C a l c u l a t i o n s of h y d r a u l i c c o n d u c t i v i t y f o r the sand d e p o s i t s were a l s o done with the a i d of the g r a i n s i z e d i s t r i b u t i o n curves shown i n Appendix D. The Hazeh equation i n Freeze and Cherry (1979), and the method of Masch and Denny (1966) were used as the b a s i s of c a l c u l a t i n g the c o n d u c t i v i t i e s . In these methods the g r a i n s i z e d i s t r i b u t i o n i s used to f i n d the r e p r e s e n t a t i v e diameters of the g r a i n s which are i n turn used i n the e m p i r i c a l equations to f i n d the h y d r a u l i c c o n d u c t i v i t i e s . A summary of the r e s u l t s f o r each method are presented i n Table V I I . H y d r a u l i c P r o p e r t i e s of Geologic M a t e r i a l s H y d r a u l i c c o n d u c t i v i t i e s were ob t a i n e d f o r a l l of the 60 T A B L E V I I H y d r a u l i c C o n d u c t i v i t y from G r a i n S i z e A n a l y s i s S ample Sample Depth (m) Haz em 10 3 cm/s 10 Masch Denny -3 cm/s M a t e r i a l 0-7A 2. 1 3.4 10 0-7B 2 . 1 2.5 8.3 4416-1 0.9 14 . 0 42 . 0 Average 6 . 6 20 . 1 4411-18 5 . 5 14 . 0 18.0 4413-11 16 . 2 6.9 25 .0 4416-5 7.0 17'. 0 50.0 4416-10 14 .6 2. 1 6 . 7 44 17-3 4.0 40.0 50.0 44 18-2 2.4 40.0 50 .0 4419-1 0.9 4 . 1 42.0 4419-5 6.7 10.0 50 . 0 1817-20 6 . 1 3.8 13.0 1818-2 0.8 27.0 33.0 1818-5 1. 5 53.0 67.0 1818-8 2.3 90.0 83 . 0 4B 1. 2 32.0 42.0 7B 2.1 16.0 42.0 IB 4 . 0 1 . 8 13.0 A v e r a g e 23 . 8 39 .0 F l o o d p l a i n Outwash Sand TABLE V I I I SUMMARY OF HYDROGEOLOGIC UNITS AND HYDRAULIC CONDUCTIVITIES HYDROGEOLOGIC UNIT RANGE OF VALUES AVERAGE CONDUCTIVITY OUTWASH SANDS RECENT FLUVIAL SAND AND GRAVEL 5x10 4 -- 8x10 3 -4 -3 1x10 -- 1x10 5x10 5x10 -3 -4 SASKATCHEWAN GRAVEL AND SAND 4x10 5 -- 6x10 3 1x10 -4 FRACTURED TILL 3x10 1 • — 5x1)0 -4 1x10 -5 UNWEATHERED T I L L -upper -lower 1x10 -7 .-8 •- 8x10 1x10 -- 1x10 -6 -6 8x10 2x10 -7 -7 A l l v a l u e s i n cm/sec 62 g e o l o g i c m a t e r i a l s found i n the shallow groundwater regime. Based on the r e s u l t s of these c a l c u l a t i o n s the g e o l o g i c m a t e r i a l s were separated i n t o hydrogeologic u n i t s e x h i b i t i n g s i m i l a r h y d r a u l i c p r o p e r t i e s (Table V I I I ) . The outwash sands were found to have the g r e a t e s t h y d r a u l i c c o n d u c t i v i t y , averaging 5x10" 3 cm/sec; the Recent sands and g r a v e l s a value of 5x10" 4 cm/sec; and the Saskatchewan g r a v e l s a value of 1x10" 3 cm/sec. The h y d r a u l i c c o n d u c t i v i t y of the t i l l decreases with depth; the weathered t i l l has a value of 1x10" 5 cm/sec and the unweathered t i l l has a c o n d u c t i v i t y of 8x10" 7 cm/sec, d e c r e a s i n g to 2x10" 7 cm/sec with i n c r e a s i n g depth. The c a l c u l a t e d value of the h y d r a u l i c c o n d u c t i v i t y of the Saskatchewan g r a v e l and sand i s q u e s t i o n a b l e . The b a i l t e s t data a v a i l a b l e i s l i m i t e d as few piezometers were p l a c e d i n t h i s u n i t . However, a value of 1x10" 3 cm/sec i s f e l t to be a working approximation based on the evidence a v a i l a b l e . The f a c t that the d e p o s i t i s l o c a l l y u n s a t u r a t e d near the r i v e r and that l a r g e v o i d s are known to e x i s t i n the g r a v e l s suggests a r e l a t i v e l y high and v a r i a b l e c o n d u c t i v i t y . The outwash sands were found to possess a u n i f o r m l y high c o n d u c t i v i t y suggesting that these sands w i l l be the major avenues of m i g r a t i o n f o r water, both at the s u r f a c e and at depth. The Recent sands and g r a v e l s d e p o s i t e d by the Oldman 63 R i v e r a l s o possess a c o n d u c t i v i t y much g r e a t e r than that of the t i l l below them. S a l t p r e c i p i t a t e s are abundant i n these sands and g r a v e l s , i n d i c a t i n g the steady i n f i l t r a t i o n of water through them. The g l a c i a l t i l l e x h i b i t s s i g n i f i c a n t l y d i f f e r e n t p e r m e a b i l i t y c h a r a c t e r i s t i c s between the f r a c t u r e d , o x i d i z e d zone and the unweathered zone beneath. The presence of s a l t p r e c i p i t a t e s , oxide s t a i n i n g , and f r e e - s t a n d i n g water along the small s c a l e f r a c t u r e s found i n the weathered t i l l i n d i c a t e s t h a t these f r a c t u r e s may impart a s i g n i f i c a n t secondary p e r m e a b i l i t y . For the purposes of t h i s study the t i l l has been d i v i d e d i n t o two hydrogeologic u n i t s based on the presence or absence of f r a c t u r e s . The weathered and f r a c t u r e d t i l l was found to have a h y d r a u l i c c o n d u c t i v i t y one to two ord e r s of magnitude g r e a t e r than the unweathered t i l l . Since the two hydrogeologic u n i t s have the same t e x t u r e , i t i s l i k e l y that the primary c o n d u c t i v i t y of the matrix of the weathered t i l l i s a p p r o x i m a t e l y l x l O " 7 to 8x10" 7 cm/sec. Thus the c o n d u c t i v i t y of the f r a c t u r e s w i l l be the c o n t r o l l i n g mechanism i n groundwater flow through t h i s m a t e r i a l . In the unweathered t i l l t here was observed a general decrease i n p e r m e a b i l i t y with i n c r e a s i n g depth. T h i s phenomenon i s p o s s i b l y due to the e f f e c t s of l o a d compaction 64 of the o v e r l y i n g sediments and i c e masses d u r i n g l a t e r g l a c i a l advances. Another hypothesis i s that the lowermost t i l l i s indeed a separate, more dense t i l l sheet which cannot be recognized i n borehole samples. D i s t r i b u t i o n of H y d r a u l i c Heads T h i s s e c t i o n d i s c u s s e s the d i s t r i b u t i o n of the h y d r a u l i c head along the water, t a b l e and the p i e z o m e t r i c s u r f a c e at depth. The water t a b l e e l e v a t i o n s are d i s c u s s e d below, f o l l o w e d by a d e s c r i p t i o n of the p i e z o m e t r i c heads at d i f f e r e n t depths. The water t a b l e occurs at the e l e v a t i o n where the h y d r a u l i c head i s equal to the e l e v a t i o n . A map of the d i s t r i b u t i o n of the water t a b l e over the s i t e i s presented i n F i g u r e 29. The e l e v a t i o n of the water t a b l e f l u c t u a t e s over approximately 0.5 meter d u r i n g the course of the year. F i g u r e 29 i s based on the p o s i t i o n of the water t a b l e d u r i n g the summer months. T h i s f i g u r e was compiled from readings of the water t a b l e w e l l s which are presented i n Appendix E. The h y d r a u l i c head of the water t a b l e v a r i e s between 770 and 773 meters f o r much of the land area above the r i v e r v a l l e y w a l l . Towards the n o r t h , west, and east the h y d r a u l i c head drops towards 760 meters as the v a l l e y w a l l i s approached. T h i s can be measured d i r e c t l y i n the outwash sands at the northern end 66 of the s i t e by the water e l e v a t i o n i n the numerous ponds found t h e r e . On the north and west s i d e s of the s i t e the h y d r a u l i c head drops to 750 meters at the base of the r i v e r v a l l e y w a l l . In the f l a t l a n d s below the v a l l e y w a l l the h y d r a u l i c head v a r i e s between 750 meters near the v a l l e y w a l l to l e s s than 730 meters by the Oldman R i v e r . There are two l o c a l areas above the v a l l e y w a l l where the gen e r a l d i s t r i b u t i o n of the h y d r a u l i c head of the water t a b l e i s not f o l l o w e d . One of these areas occurs i n the northwestern part of the s i t e . Here a low water t a b l e of approximately 760 to 762 meters runs i n a west to east d i r e c t i o n . The h y d r a u l i c head both to the north and to the south i s g r e a t e r than 765 meters. The second area of i n t e r e s t occurs i n the s o u t h - c e n t r a l p a r t of the Shimbashi s i t e near piezometer nests 1813-E, 1814-E, and 1817-E (see F i g u r e 2 f o r l o c a t i o n ) . Here the water t a b l e again d i p s as low as 755 meters. T h i s area i s connected i n the south to a zone of e q u a l l y low water t a b l e e l e v a t i o n running west to east along the southern edge of the s i t e which a p p a r e n t l y f o l l o w s the p r e g l a c i a l v a l l e y w a l l . Although the water t a b l e at t h i s s i t e cannot be c o n s i d e r e d a s t e a d y - s t a t e system, seasonal f l u c t u a t i o n s i n water l e v e l s do not appear to n o t i c e a b l y a f f e c t the d i r e c t i o n s of groundwater flow. T h i s c o n c l u s i o n was a r r i v e d at by 67 c o m p i l i n g water t a b l e maps of the s i t e f o r d i f f e r e n t times of the year. No s i g n i f i c a n t change in flow d i r e c t i o n takes p l a c e over the course of the year. The water t a b l e w i l l g e n e r a l l y vary over approximately 0.5 meters d u r i n g the year due to i r r i g a t i o n events and heavy r a i n f a l l . T h i s r e l a t i v e l y small v a r i a t i o n i n the water l e v e l , when compared to the o v e r a l l s a t u r a t e d t h i c k n e s s of the u n c o n s o l i d a t e d m a t e r i a l , suggests that a s t e a d y - s t a t e system i s a v a l i d approximation. However, the major c o n t r i b u t o r to the recharge of the groundwater regime i s i r r i g a t i o n ; an event that i s d i s t r i b u t e d over about 65 % of the t o t a l s i t e area f o r a few months per year. Our a t t e n t i o n now s h i f t s to the d i s t r i b u t i o n of the p i e z o m e t r i c head at d i f f e r e n t depths throughout the s i t e . P i e z o m e t r i c l e v e l s were recorded approximately once per month and t h i s data i s presented i n Appendix F. T h i s data has been superimposed onto g e o l o g i c c r o s s - s e c t i o n s i n F i g u r e s 30 through 32 to show the v a r i a t i o n i n h y d r a u l i c head throughout the system. Over the whole Shimbashi s i t e there i s a decrease i n the h y d r a u l i c head with depth i n the u n c o n s o l i d a t e d m a t e r i a l . The e q u i p o t e n t i a l s u r f a c e s are e s s e n t i a l l y h o r i z o n t a l over the s i t e , i n d i c a t i n g t h a t the flow i s v e r t i c a l l y downwards. The v e r t i c a l h y d r a u l i c g r a d i e n t s vary from 0.07 m/m i n the C R O S S - S E C T I O N L O O K I N G N O R T H T90 ui WEST ? " f « EAST S 2 <=, S LEGEND 720 710 700 H O R I Z O N T A L S C A L E 131250 V E R T I C A L S C A L E l ' 7 « 5 FIGURE 3» CO 70 z c u: .< 71 weaathered t i l l to approximately 1.0 m/m near the base of the unweathered t i l l . H o r i z o n t a l g r a d i e n t s are on the order of 0.001 to 0.01 m/m over most of the s i t e . The only e x c e p t i o n i s i n the region of piezometer nest 1813-E i n the s o u t h - c e n t r a l p a r t of the s i t e ( F i g u r e s 2 and 30). The h y d r a u l i c head at any p a r t i c u l a r depth i s lower than at the piezometers to the west (1812-E) and to the north (1814-E). T h i s f e a t u r e i s a r e f l e c t i o n of the depressed water t a b l e i n t h i s r e g i o n as seen i n F i g u r e 29. The drop i n the h y d r a u l i c head a c r o s s each l a y e r of the s t r a t i g r a p h i c s e c t i o n i s i n v e r s e l y p r o p o r t i o n a l to the h y d r a u l i c c o n d u c t i v i t y of the m a t e r i a l . There i s a small drop i n the h y d r a u l i c head through the weathered and f r a c t u r e d t i l l amounting to 2 to 3 meters. Below the weathered-unweathered t i l l c o n t a c t the h y d r a u l i c head drops approximately 10 to 15 meters from the 765 to 767 meter range to the 755 to 760 meter range over 15 to 20 meters. T h i s upper p a r t of the unweathered t i l l r e p r e s e n t s a zone of moderate h y d r a u l i c head drop conformable with the zone of g r e a t e r h y d r a u l i c c o n d u c t i v i t y noted i n the pr e v i o u s s e c t i o n . The g r e a t e s t drop i n the p i e z o m e t r i c head occurs through the unweathered t i l l i n the 10 meters immediately above the Saskatchewan sands and g r a v e l s . In t h i s d i s t a n c e the 72 h y d r a u l i c head changes from the 755 to 760 meter range to a head of 745 to 755 meters. A n a l y s i s of Groundwater Flow The water t a b l e at the Shimbashi s i t e i s g e n e r a l l y a subdued r e f l e c t i o n of the topography although important e x c e p t i o n s do occur. The average depth to the water t a b l e i s 5 to 7 meters f o r most of the higher land above the r i v e r v a l l e y w a l l . Near the w a l l the water t a b l e i s c l o s e r to the s u r f a c e and i n some l o c a t i o n s on the west s i d e s p r i n g s appear s p o r a d i c a l l y ( F i g u r e 29). Two major d e p r e s s i o n s i n the water t a b l e were noted i n the p r e v i o u s s e c t i o n . To the north the g l a c i a l outwash channel a c t s as a d r a i n running from west to e a s t . Water flows i n t o i t mainly from the south, but smaller amounts of water flow from the n o r t h . The r e s u l t i s the l i n e a r d e p r e s s i o n i n the water t a b l e d i s c u s s e d i n the p r e v i o u s s e c t i o n . T h i s channel d r a i n s i n t o the l a r g e pond b i s e c t e d by Highway 36 i n the n o r t h - c e n t r a l p a r t of the s i t e which a c t s as a recharge area f o r the lan d below the v a l l e y w a l l . The other major d e p r e s s i o n seen i n the c e n t r a l area of F i g u r e 29 occurs i n weathered t i l l with abundant sand l e n s e s . T h i s d e p r e s s i o n i s caused by water being drawn i n t o the b u r i e d outwash channel that runs i n a north to south 73 d i r e c t i o n . T h i s channel i s approximately 10 meters t h i c k , s t a r t i n g 12 meters below the ground s u r f a c e . I t i s connected to the s u r f a c e water by the abundant sand l e n s e s i n the t i l l , thus i t tends to act as a b u r i e d d r a i n f o r the groundwater. Water in the b u r i e d channel flows i n a s o u t h e r l y d i r e c t i o n u n t i l i t i n t e r s e c t s the b u r i e d sand d e p o s i t which runs west to east along the p r e g l a c i a l v a l l e y w a l l . Water t a b l e e l e v a t i o n s suggest that here the water i s d i r e c t e d westward towards the r i v e r . Seepage and s p r i n g s are a l s o common i n the southeast corner of the s i t e , o v e r l o o k i n g the Oldman R i v e r . T h i s area i s b e l i e v e d to be the e a s t e r n o u t l e t of the west to east sand channel. Sand d e p o s i t s outcropping along the r i v e r bank are abundant and c o n t a i n s i g n i f i c a n t amounts of water. Turning to the subsurface flow, the d i r e c t i o n of groundwater flow i s i n d i c a t e d by arrows in F i g u r e s 30 to 32. These f i g u r e s show that the major component of. flow i s i n a v e r t i c a l l y downward d i r e c t i o n and not h o r i z o n t a l as suggested by F i g u r e 29. T h i s i s to be expected due to the much g r e a t e r h y d r a u l i c g r a d i e n t s i n the v e r t i c a l d i r e c t i o n , not w i t h s t a n d i n g the f a c t t h a t the h y d r a u l i c c o n d u c t i v i t y may be s l i g h t l y g r e a t e r i n the h o r i z o n t a l plane. As was noted i n the p r e v i o u s s e c t i o n , a r e l a t i v e l y s m a l l v e r t i c a l head drop occurs a c r o s s the f r a c t u r e d and weathered 74 t i l l . T h i s i s mainly a r e f l e c t i o n of the g r e a t e r h y d r a u l i c c o n d u c t i v i t y of t h i s m a t e r i a l as imparted by the f r a c t u r i n g . Consequently there w i l l be a l a r g e r component of h o r i z o n t a l groundwater flow. Near the v a l l e y w a l l s t h i s flow i s outward, towards the r i v e r . In the c e n t r e of the s i t e the h o r i z o n t a l flow component i s towards the d e p r e s s i o n i n the water t a b l e and the b u r i e d outwash channel. The g r e a t e s t h y d r a u l i c g r a d i e n t occurs immediately above the Saskatchewan g r a v e l s i n the unweathered t i l l . The low h y d r a u l i c c o n d u c t i v i t y of t h i s m a t e r i a l accounts f o r the l a r g e head drop i n t o the Saskatchewan g r a v e l s below the t i l l . The low c o n d u c t i v i t y of the lower s e c t i o n of the unweathered t i l l may be caused by i c e l o a d i n g or a separate t i l l sheet, as d i s c u s s e d e a r l i e r i n t h i s chapter. In t h i s l a y e r the water flow i s v e r t i c a l l y downward. The m i g r a t i o n of water towards the b u r i e d sand channel i s i n d i c a t e d by the h y d r a u l i c head drop i n the e a s t e r l y d i r e c t i o n from piezometer nest 1812-E to 1813-E which i s s i t u a t e d i n the b u r i e d sand channel, i n d i c a t i n g the movement of water i n that d i r e c t i o n . The h y d r a u l i c head w i t h i n the sand channel i s gre a t e r at piezometer nest 1814-E than 1813-E i n d i c a t i n g a southern flow of water (see F i g u r e 2 f o r l o c a t i o n s ) . Water which e n t e r s the Saskatchewan g r a v e l s from the 75 o v e r l y i n g t i l l flows to the ce n t r e of the p r e g l a c i a l r i v e r v a l l e y . R e f e r r i n g to the bedrock topography of F i g u r e 5, i t appears that t h i s water flows towards the ce n t r e of the p r e g l a c i a l channel i n the v i c i n i t y of piezometer nest 1818-E and then east i n t o the Oldman R i v e r , f l o w i n g i n the same d i r e c t i o n as the r i v e r . Groundwater samples were taken from a number of piezometers and a n a l y s e d f o r t r i t i u m (see Table I X ) . T r i t i u m i s a r a d i o a c t i v e i sotope of hydrogen and has a h a l f - l i f e of 12.26 ye a r s . N a t u r a l environmental t r i t i u m l e v e l s are between 5 and 20 t r i t i u m u n i t s (TU), where one t r i t i u m u n i t i s equal to 1 t r i t i u m atom i n l x l O " 1 8 hydrogen atoms. However, t r i t i u m has a l s o entered the atmosphere as a r e s u l t of hydrogen bomb t e s t i n g which was c a r r i e d out du r i n g the p e r i o d 1954 to 1963. Any water which entered the hy d r o g e o l o g i c environment d u r i n g t h i s p e r i o d would c o n t a i n t r i t i u m l e v e l s much higher than the background l e v e l s . Many of the samples i n Table IX have t r i t i u m l e v e l s t h a t suggest 'nuclear water', water that entered the groundwater system between 1954 and 1963. The samples of 1813-M-S, 1814-M-S, and 1814-M-SM were taken from the b u r i e d sand channel i n the c e n t r e of the s i t e (see F i g u r e 2 f o r piezometer nest l o c a t i o n s ) . The high t r i t i u m l e v e l s i n d i c a t e that t h i s water has been i n the system between 17 and 26 ye a r s . T h i s i s 76 c o n s i s t e n t with the flow v e l o c i t i e s that have been c a l c u l a t e d f o r the t i l l d e p o s i t . The three shallow piezometers of 1818-E are a l l s i t u a t e d i n the s u r f i c i a l sands. T r i t i u m l e v e l s are f a i r l y high so that the age of the water i s unknown. 'Post-nuclear' water would be expected i n the s u r f a c e sands but t h i s c o u l d not be determined without some knowledge of the t r i t i u m l e v e l s i n the p r e c i p i t a t i o n and i r r i g a t i o n water. T h i s i n t e r p r e t a t i o n would be c o n s i s t e n t with the g r e a t e r flow v e l o c i t i e s which occur w i t h i n the sands. T r i t i u m v a l u e s i n both the f r a c t u r e d and the unweathered t i l l a l l i n d i c a t e water d e r i v e d from n u c l e a r sources. The one e x c e p t i o n , 1811-N, may i n d i c a t e the approximate boundary between n u c l e a r and p o s t - n u c l e a r water but t h i s i s not supported by the shallower piezometers i n the b u r i e d channel which c o n t a i n n u c l e a r water.the low t r i t i u m l e v e l s found i n the water at t h i s piezometer cannot be r e a d i l y e x p l a i n e d . I t does appear however that most of the upper h a l f of the t i l l u n i t c o n t a i n s water between 17 and 26 years i n age g i v i n g some i n d i c a t i o n of the r a t e of movement through the t i l l . E s t i m a t e s of Groundwater Recharge General 77 Recharge of the groundwater flow regime can be estimated from o b s e r v a t i o n s of the h y d r o l o g i c a l environment. S e v e r a l t r a d i t i o n a l methods e x i s t to c a l c u l a t e r e g i o n a l groundwater recharge. In t h i s study the recharge w i l l be c a l c u l a t e d using these three methods: a h y d r o l o g i c budget; a n a l y s i s of water t a b l e f l u c t u a t i o n s ; and a n a l y s i s of h y d r a u l i c g r a d i e n t s i n the subsurface. The f i r s t two methods are d i s c u s s e d below and the t h i r d method i s analysed i n the f o l l o w i n g s e c t i o n . H y d r o l o g i c Budget A h y d r o l o g i c budget i s an attempt to account f o r a l l water e n t e r i n g and l e a v i n g the s i t e by any means. A b a s i c budget equation i s given by Rapp et a l (1969) as: D+p=w+L Where D i s gross d i v e r s i o n of water to the s i t e ; P i s p r e c i p i t a t i o n i n the p r o j e c t area; W i s consumptive water requirement; and L i s i r r i g a t i o n l o s s e s , a loose term f o r a l l e v a p o t r a n s p i r a t i o n , i n f i l t r a t i o n , r u n - o f f , and r e t u r n flow. The g r e a t e s t unknown in t h i s equation, as f a r as the present study i s concerned, i s the amount of i r r i g a t i o n water which i s a p p l i e d . The p i v o t s p r i n k l e r s are not used on a set 78 schedule but depend on the weather and i n g e n e r a l no records are kept by the farmers. Rapp et a l (1969) r e p o r t values of gross water d i v e r s i o n of 58 to 89 c e n t i m e t e r s f o r l a r g e r i r r i g a t i o n p r o j e c t s i n southern A l b e r t a . Losses of water i n conveyance p l u s the f a c t that not a l l of the l a n d i s i r r i g a t e d w i l l reduce these values to the range of 50 to 70 c e n t i m e t e r s of average net i r r i g a t i o n . P r e c i p i t a t i o n i n the Taber region i s on the order of 46 c e n t i m e t e r s a n n u a l l y (from Table I ) . Water consumptive requirements of 46 centimeters per year were taken from Rapp et a l (1969) based on work by Sonmor (1963) for southern A l b e r t a . Using the above values i n the hydrology equation g i v e s i r r i g a t i o n l o s s e s of 50 to 70 c e n t i m e t e r s . Of t h i s amount, 42 to 45 c e n t i m e t e r s are l o s t through e v a p o t r a n s p i r a t i o n and approximately 2 c e n t i m e t e r s through r u n - o f f ( H y d r o l o g i c A t l a s of Canada, 1978). T h i s leaves between 3 and 26 c e n t i m e t e r s of i n f i l t r a t i o n or recharge to the system, a r a t h e r l a r g e v a r i a t i o n that t e l l s us l i t t l e . Flow Estimates From Head F l u c t u a t i o n s Toth (1962) noted a r e l a t i o n s h i p between f l u c t u a t i o n s of the water t a b l e and the s a t u r a t e d flow of groundwater i n h i s s t u d i e s of groundwater flow i n s m a l l drainage b a s i n s . I n f i l t r a t i o n events are an important cause of these 79 f l u c t u a t i o n s i n water t a b l e e l e v a t i o n s , and because of t h i s , measurements of f l u c t u a t i o n s can l e a d to q u a l i t a t i v e i n f o r m a t i o n on recharge. Toth (1968) used t h i s f a c t as the b a s i s of c a l c u l a t i n g the n a t u r a l y i e l d of a flow system. The equation that was d e r i v e d i s : Q ( i , t ) = S ( y ) f ( d , t ) A ( i , d ) = S ( y ) f ( u , t ) A ( i , u ) Where Q ( i , t ) i s the n a t u r a l y i e l d of the flow system, S(y) i s average s p e c i f i c y i e l d of the d e p o s i t , f ( d , t ) i s average drop of water l e v e l s i n the area of downward flow, A ( i , d ) , and f ( u , t ) i s average r i s e of the water t a b l e i n the area of upward flow A ( i , u ) . Toth (1968) a l s o showed that i n cases where the seasonal changes i n the h y d r a u l i c g r a d i e n t i n the flow system are small i n comparison to the average g r a d i e n t , the t o t a l y i e l d of the system over an annual c y c l e can be c a l c u l a t e d by: Q ( i , T ) = Q ( i , t ) T / t Where T equals an annual c y c l e , and t i s the p e r i o d of flow c a l c u l a t i o n , Q ( i , t ) . The use of t h i s equation a l l o w s the ba s i n y i e l d d u r i n g the winter months, between November and March. T h i s p e r i o d i s the most convenient f o r measurement of the f l u c t u a t i o n s due to n a t u r a l groundwater flow. 80 An example of water t a b l e f l u c t u a t i o n over the winter months i s p resented i n F i g u r e 33. From Toth's equation of b a s i n y i e l d a recharge value of 4 to 5 c e n t i m e t e r s per year was c a l c u l a t e d . T h i s i s comparable to the lower range of the recharge c a l c u l a t e d from the h y d r o l o g i c budget. Groundwater Flow Volumes and V e l o c i t i e s Groundwater flow v e l o c i t i e s can be c a l c u l a t e d from the h y d r a u l i c g r a d i e n t s evident i n F i g u r e 29 through 32 and a knowledge of the h y d r a u l i c c o n d u c t i v i t i e s of the d i f f e r e n t m a t e r i a l s . The g r e a t e s t v e l o c i t i e s are observed i n the outwash sands that cover much of the northern p a r t of the s i t e . The h y d r a u l i c c o n d u c t i v i t y here i s 5x10" 3cm/sec and the g r a d i e n t s are up to 0.05 to 0.06 m/m. V e l o c i t i e s of up to 250 to 300 meters per year may be expected near and i n the outwash channel. The flow through the outwash sands to the n o r t h e a s t , however, may be as low as 2 to 5 meters per year. The water flowing south that i s c o n t a i n e d i n the b u r i e d outwash channel w i l l move a d i s t a n c e of 15 to 30 meters per year. In the t i l l s at the s i t e the average downward v e l o c i t y i s on the order of 15 to 75 c e n t i m e t e r s per year based on an e f f e c t i v e p o r o s i t y of 0.20. H o r i z o n t a l flow takes p l a c e 82 under much sm a l l e r g r a d i e n t s . However, f r a c t u r e s i n the upper t i l l may have a higher c o n d u c t i v i t y and a lower e f f e c t i v e p o r o s i t y so that the h o r i z o n t a l component of flow may be r e l a t i v e l y g r e a t e r . T h e r e f o r e the h o r i z o n t a l flow may vary anywhere up to a few meters per year. The amount of recharge of the system necessary to maintain a s t e a d y - s t a t e system w i l l be on the order of 5 to 15 c e n t i m e t e r s per year. Other s t u d i e s i n southern A l b e r t a have found recharge r a t e s on the order of 5 to 10 c e n t i m e t e r s per year (Hendry, 1980). Another estimate of the necessary recharge i s the i n f i l t r a t i o n needed to maintain the s t e a d y - s t a t e computer s i m u l a t i o n d e s c r i b e d i n the next c h a p t e r . R e s u l t s from the computer m o d e l l i n g show an i n f i l t r a t i o n r a t e of 10 c e n t i m e t e r s per year. The amount of recharge a v a i l a b l e to the groundwater regime was s i g n i f i c a n t l y l e s s p r i o r to the i n t r o d u c t i o n of i r r i g a t i o n at the Shimbashi s i t e . The c o n t a c t between the weathered, o x i d i z e d t i l l and the unweathered t i l l , which g e n e r a l l y occurs w e l l below the present water t a b l e , probably r e p r e s e n t s the h i s t o r i c a l water t a b l e . I f the i n c r e a s e d e l e v a t i o n of the water t a b l e i s a t t r i b u t e d s o l e l y to i r r i g a t i o n p r a c t i s e s the groundwater system at t h i s s i t e i s not i n e q u i l i b r i u m . The i n c r e a s e d storage at the s i t e would use an average of 8 c e n t i m e t e r s of recharge water per year. 3-3 TABLE IX Sample R e s u l t s of Sample A n a l y s i s f o r T r i t i u m Depth (m) T r i t i u m (TU) M a t e r i a l 1811-N M S 17 . 4 22 . 1 24 . 5 -4 + 22 + 18 T i l l T i l l T i l l 1813-M-S M-NM 15.4 30.2 +46 +49 Sand T i l l 1814-E-N M-S M-SM M-NM 9 . 2 14 . 8 20 . 3 32.0 + 14 +4 2 + 20 + 27 T i l l Sand Sand T i l l 1818-M-NM M-SM M-S E-S E-M 5 . 9 7 . 2 10 . 7 13.9 28.0 + 8 -19 -13 + 2 1 + 51 S and Sand S and T i l l T i l l 4399 6.2 + 18 T i l l 84 Chapter 4 MATHEMATICAL MODELLING Mathematical modelling of the s i t e hydrogeology u s i n g a d i g i t i a l computer was c a r r i e d out with two o b j e c t i v e s i n mind. The f i r s t o b j e c t i v e was to c o n f i r m the co n c e p t u a l model of the groundwater flow regime at the s i t e . T h i s was accomplished by c o n s t r u c t i n g c r o s s - s e c t i o n a l q u a n t i t a t i v e models and imposing upon them boundary c o n d i t i o n s to match the c o n d i t i o n s at the s i t e . The r e s u l t i n g h y d r a u l i c head and v e l o c i t y d i s t r i b u t i o n s were compared ag a i n s t the known d i s t r i b u t i o n s taken from the f i e l d data. The second o b j e c t i v e of the computer modelling program was to p r e d i c t the behavior of a s o l u t e through time. The s o l u t e was in t r o d u c e d i n t o the groundwater system with v a r i o u s i n i t i a l c o n d i t i o n s . The p r o p e r t i e s of the medium that c o u l d a f f e c t the r a t e of s o l u t e t r a n s p o r t were a l t e r e d i n order to study the s e n s i t i v i t y of the system. These p r e d i c t i o n s gave some i n d i c a t i o n of the r e l a t i v e c o n c e n t r a t i o n s that c o u l d be expected at d i f f e r e n t l o c a t i o n s of the s i t e . 85 To meet these o b j e c t i v e s a number o f models were c o n s t r u c t e d and run under v a r i o u s i n i t i a l c o n d i t i o n s and with d i f f e r e n t p h y s i c a l p r o p e r t i e s . The computer program which vas u s e d , the models t h a t were a t t empted , and the q u a n t i t a t i v e r e s u l t s t h a t were o b t a i n e d are a l l d e s c r i b e d i n t h i s c h a p t e r . The Computer Program The computer program used i n t h i s s tudy i s a t w o - d i m e n s i o n a l f i n i t e e lement program c a l l e d TRANSAT, w r i t t e n by John P ickens whi le at. the U n i v e r s i t y o f W a t e r l o o . Minor a d a p t i o n s of the program were made by the a u t h o r . TRANSAT uses a f i n i t e element method based on a G a l e r k i n t e c h n i q u e to model the t r a n s i e n t movement of s o l u t e s i n a s t e a d y - s t a t e s a t u r a t e d flow s y s t e m . The program s o l v e s f o r s t e a d y - s t a t e h y d r a u l i c head and Darcy v e l o c i t y d i s t r i b u t i o n s as w e l l as t r a n s i e n t c o n c e n t r a t i o n d i s t r i b u t i o n s . TRANSAT i s c a p a b l e o f h a n d l i n g both r e a c t i v e and n o n r e a c t i v e s o l u t e s . The g o v e r n i n g e g u a t i o n s account f o r a d v e c t i o n , mechanica l d i s p e r s i o n , m o l e c u l a r d i f f u s i o n , r e v e r s i b l e i n s t a n t a n e o u s s o r p t i o n , and a f i r s t - o r d e r decay r e a c t i o n . The govern ing d i f f e r e n t i a l e q u a t i o n f o r the s t e a d y - s t a t e h y d r a u l i c head d i s t r i b u t i o n i n an a n i s o t r o p i c , heterogeneous medium i n two-d imens ions i s ( P i c k e n s , 1979): «L (K . dh) + A (K dh) - Q H = 0 I xx -\— — zz — 8 6 where h i s t h e h y d r a u l i c h e a d , x and z a r e t h e C a r t e s i a n d i r e c t i o n s , and K-u a r e t i e p r i n c i p a l c o m p o n e n t s o f t h e h y d r a u l i c c o n d u c t i v i t y t e n s o r , a n d i s a l i g u i d s o u r c e c r s i n k f u n c t i o n . The D a r c y v e l o c i t i e s c a n be e x p r e s s e d a s : q = -K <*.h x xx — (Lx q = -K J-h z z z -dz where q x and q z a r e t h e D a r c y v e l o c i t i e s i n t h e x and z d i r e c t i o n s . The a v e r a g e i n t e r s t i t i a l p o r e w a t e r v e l o c i t i e s a r e c a l c u l a t e d by d i v i d i n g t h e D a r c y v e l o c i t i e s by t h e p o r c s i t y . The s o l u t e t r a n s p o r t e g u a t i o n d e s c r i b i n g t h e t r a n s i e n t c o n c e n t r a t i o n d i s t r i b u t i o n o f a s o l u t e i n a s a t u r a t e d two-d i m e n s i o n a l p o r o u s medium i s ( P i c k e n s , 1979): (8 + P , K J i C - A_ (6D + 9D olC) b d ~r— v xx T — xz ~ ~ tJl t J . X v-i X <J- 2 -<j- (3D d C + 6 D <i. C) + q d. C + q <^C v z x T — z z x z T~ d-z c). x <L z o- x <L z + x (e + eb K d) c + Q c = o where 8 i s t h e p o r o s i t y o f t h e medium, a b i s t h e b u l k d e n s i t y o f t h e medium, K i s t h e d i s t r i b u t i o n c o e f f i c i e n t , C 87 i s the c o n c e n t r a t i o n o f the s o l u t e , D , D , D # D xx xz z x z z are the components of the hydrodynamic d i s p e r s i o n t e n s o r , i s a f i r s t - o r d e r r e a c t i o n c o n s t a n t and Q c i s the mass r a t e per u n i t volume f o r a d d i t i o n cr removal o f s o l u t e at a source c r s i n k . The components o f the hydrcdynamic d i s p e r s i o n t e n s o r i n c l u d e the e f f e c t s o f teecbanical d i s p e r s i o n and m o l e c u l a r d i f f u s i o n . The G a l e r k i n t e c h n i q u e i s used t o s o l v e the h y d r a u l i c head and s o l u t e t r a n s p o r t e q u a t i o n s . The medium i s c o n s i d e r e d to be c c n t i n o u s but. i s d i s c r e t i z e d i n t o a s y s t e i of l i n e a r t r i a n g u l a r e l e m e n t s . P r o p e r t i e s o f the medium may vary s p a t i a l l y but are assumed to be homogenous w i t h i n each e l ement . An example of a f i n i t e element g r i d vh ich was used i n t h i s study i s g i v e n i n F i g u r e 3U. T h i s g r i d « a s used t c model p lane view or a r e a l s i m u l a t o n s of the s i t e . . C r o s s -s e c t i o n a l models , which are d i s c u s s e d e x t e n s i v e l y i n the next s e c t i o n , use a s i m i l i a r type of f i n i t e e le i tent mesh. A number of a s sumpt ions are i m p l i c i t in the use of the TB ANSAT program [ l i c k e n s and Lennox, 1976). They a r e : 1) The groundwater b a s i n can be bounded on a l l s i d e s by an impermeable b o u n d a r y , by a c o n s t a n t f l u x b o u n d a r y , or by a c o n s t a n t head b o u n d a r y . 2) The water t a b l e does not change wi th t i m e . 3) A l l water and contaminant movement i s i n the plane o f the s e c t i o n . , U) P r o p e r t i e s of t h e e lements are 88 89 homogeneous and i s o t r o p i c w i t h i n each element of the system. 5) The seepage v e l o c i t i e s are w i t h i n the range of v a l i d i t y of the Darcy equation. These seepage v e l o c i t i e s are based upon a h y d r a u l i c c o n d u c t i v i t y that i s an average of the f r a c t u r e c o n d u c t i v i t y and the porous m e d i a . c o n d u c t i v i t y . 6) The d e n s i t y of the groundwater i s not a l t e r e d by the presence of the s o l u t e . 7) The s o l u t i o n and sorbed phases of the contaminant are i n e q u i l i b r i u m . A d e t a i l e d d e s c r i p t i o n of the TRANSAT program and l i s t i n g may be found i n Pickens (1979). Methods Of M o d e l l i n g The f i r s t o b j e c t i v e of the computer s i m u l a t i o n s was to co n f i r m the conceptual model of the groundwater flow system which had been developed. To accomplish t h i s , c r o s s -s e c t i o n a l models were c o n s t r u c t e d along the same g e o l o g i c s e c t i o n s as F i g u r e 10 and F i g u r e 11. T h i s allows the simu l a t e d h y d r a u l i c heads to be compared a g a i n s t those measured i n the f i e l d . The h y d r a u l i c c o n d u c t i v i t i e s that were pre s e n t e d i n the pr e v i o u s chapter were assign e d to the models. These h y d r a u l i c c o n d u c t i v i t i e s were v a r i e d s l i g h t l y f o r each s i m u l a t i o n to t r y to c l o s e l y match the measured h y d r a u l i c head d i s t r i b u t i o n and analyse the o v e r a l l s e n s i t i v i t y of the system. The t o t a l i n f i l t r a t i o n necessary 90 to maintain the s t e a d y - s t a t e system was measured and compared a g a i n s t the values p r e v i o u s l y c a l c u l a t e d . The computer s i m u l a t i o n s were c a r r i e d out on the Amdahl 470 V-8 computer at the U n i v e r s i t y of B r i t i s h Columbia. The f i n i t e element g r i d s that were c o n s t r u c t e d c o n t a i n e d from 40 to 442 elements. The f i r s t s i m u l a t i o n s of the s o l u t e t r a n s p o r t were c a r r i e d out on those c r o s s - s e c t i o n s on which the h y d r a u l i c head d i s t r i b u t i o n s were modelled. The s o l u t e was i n t r o d u c e d i n t o the system along the water t a b l e i n the area c u r r e n t l y under i r r i g a t i o n . C o n c e n t r a t i o n s were s p e c i f i e d i n a d i m e n s i o n l e s s form with the i n i t i a l c o n c e n t r a t i o n equal to 1.0. In t h i s way the c o n c e n t r a t i o n at any p o i n t i n space or time i s measured r e l a t i v e to the i n i t i a l c o n c e n t r a t i o n and not i n ab s o l u t e terms. I t was assumed t h a t there was no background c o n c e n t r a t i o n of s o l u t e i n the groundwater before the mo d e l l i n g began. T h i s assumption does not a f f e c t the e q u i l i b r i u m of the system, as the s o l u t e i s modelled with no r e a c t i o n s t a k i n g p l a c e between the s o l u t e and the medium. Problems were encountered using the c r o s s - s e c t i o n models. The c o n c e n t r a t i o n at the nodal p o i n t s i s based upon an aver-aging process of the c o n c e n t r a t i o n s of the a d j o i n i n g elements. In cases where two a d j o i n i n g elements were of g r e a t l y d i f f e r e n t h y d r a u l i c c o n d u c t i v i t i e s and s o l u t e 91 c o n c e n t r a t i o n s , the program would not converge to a s o l u t i o n under t r a n s i e n t c o n d i t i o n s . To overcome these problems i t was necessary to model only the f r a c t u r e d t i l l p l u s any s u r f a c e sands or sands and g r a v e l s . The flow f i e l d of the f u l l c r o s s - s e c t i o n a l models was maintained by s p e c i f y i n g the h y d r a u l i c head val u e s which had been c a l c u l a t e d from the p r e v i o u s runs. T h i s imposed the same v e l o c i t y d i s t r i b u t i o n on the new c r o s s - s e c t i o n s as i s the p r e v i o u s c r o s s - s e c t i o n s . These s i m p l i f i e d c r o s s - s e c t i o n a l models were a l t e r e d to r epresent a l l of the v a r i o u s s u r f i c i a l g e o l o g i e s found on the s i t e . By changing the p h y s i c a l p r o p e r t i e s of some of the elements i t was p o s s i b l e to show s u r f i c i a l sands above the r i v e r v a l l e y w a l l ; sands and g r a v e l s c o v e r i n g the v a l l e y w a l l ; or sands below the r i v e r v a l l e y w a l l . The time span over which the s o l u t e was i n t r o d u c e d i n t o the system was a l s o v a r i e d d u r i n g the s i m u l a t i o n s . The contaminant was i n t r o d u c e d i n two ways: on a continuous b a s i s throughout the year, and; f o r a p e r i o d of 150 days i n each year. Another f a c t o r i n v e s t i g a t e d was the e f f e c t of f e r t i l i z a t i o n of the f l a t l a n d s below the v a l l e y w a l l on groundwater q u a l i t y . I t was necessary to estimate some of the p h y s i c a l p r o p e r t i e s of the medium such as the d i s t r i b u t i o n c o e f f i c i e n t and the l o n g i t u d i n a l and t r a n s v e r s e d i s p e r s i v i t i e s . A range of 92 p o s s i b l e v a l u e s were t e s t e d f o r each p r o p e r t y to e s t a b l i s h the s e n s i t i v i t y of the system to each v a r i a b l e . In t h i s manner the range of movement of the s o l u t e c o u l d be d e f i n e d . One-dimensional t e s t s were run to measure the time span f o r v e r t i c a l movement of water and contaminant through the t i l l i n t o the Saskatchewan g r a v e l and sand u n i t . These t e s t s assumed the minimum p o s s i b l e t h i c k n e s s e s of both f r a c t u r e d and unweathered t i l l t h a t would be encountered to ensure c o n s e r v a t i v e r e s u l t s . Values of h y d r a u l i c head were s p e c i f i e d on both upper and lower boundaries to induce v e l o c i t y d i s t r i b u t i o n s comparable to those of the e a r l i e r f u l l c r o s s - s e c t i o n a l models. V a r i a t i o n of the d i s p e r s i v i t y and d i s t r i b u t i o n c o e f f i c i e n t was done as p a r t of a s e n s i t i v i t y a n a l y s i s . The s o l u t e was i n t r o d u c e d both on a c o n t i n u a l b a s i s over the year and d i s c o n t i n u o u s l y at a r a t e of 150 days per year. The one-dimensional t e s t s were intended to g i v e an i n d i c a t i o n of the r a t e at which the b a s a l Saskatchewan sands and g r a v e l s c o u l d become contaminated. Model s i m u l a t i o n s on a plan view were a l s o c a r r i e d out but were f e l t to be i n c o n c l u s i v e . A r e l a t i v e l y l a r g e percentage of the t o t a l area of the s i t e i s under i r r i g a t i o n a l l o w i n g only a small p r o p o r t i o n to be used f o r m o d e l l i n g the s o l u t e t r a n s p o r t . In the plan view the nodal p o i n t r e p r e s e n t s the f u l l t h i c k n e s s of the a q u i f e r or d e p o s i t . When a contaminant 93 i s i n t r o d u c e d at a nodal p o i n t there i s an instantaneous contamination f o r the f u l l t h i c k n e s s of the a q u i f e r . T h i s was f e l t to be l e s s than r e a l i s t i c i n a f r a c t u r e d t i l l and confirmed by the one-dimensional t e s t s . T h i s r e s u l t e d i n u n r e a l i s t i c a l l y short p e r i o d s before contamination of the r i v e r occured. M o d e l l i n g R e s u l t s 1. H y d r a u l i c head d i s t r i b u t i o n The h y d r a u l i c head d i s t r i b u t i o n s were simulated by a c r o s s -s e c t i o n a l model which i n c l u d e d a l l u n c o n s o l i d a t e d m a t e r i a l s as d e s c r i b e d i n the p r e v i o u s s e c t i o n . The r e s u l t i n g h y d r a u l i c head d i s t r i b u t i o n s were p l a c e d on c r o s s - s e c t i o n s and contoured. The d i s t r i b u t i o n s were then compared a g a i n s t the h y d r a u l i c head values measure in the f i e l d and shown i n F i g u r e s 30 and 31. One of the s i m u l a t i o n s done u s i n g the f i n a l i z e d h y d r a u l i c c o n d u c t i v i t i e s i s contoured and shown in F i g u r e 35. These r e s u l t s may be compared a g a i n s t the f i e l d h y d r a u l i c head d i s t r i b u t i o n of F i g u r e 31. The h y d r a u l i c c o n d u c t i v i t i e s used to achieve the r e s u l t s of F i g u r e 35 are shown by Table X. The h y d r a u l i c c o n d u c t i v i t y of 5x10" 3 cm/sec used f o r the sands and 1x10" 5 cm/sec used fo r the f r a c t u r e d t i l l are the same as the c o n d u c t i v i t e s d e r i v e d from the f i e l d measurements (see Table V I I I ) . These H O R I Z O N T A L S C A L E I 31250 V E R T I C A L S C A L E I1 785 . F I G U R E 35 TABLE X H y d r a u l i c C o n d u c t i v i t i e s D e r i v e d from M o d e l l i n g M a t e r i a l K (cm/sec -2 Sask S & G 2x10 Sand 5 x l 0 ~ 3 F r a c t u r e d T i l l 1x10 5 Unweathered T i l l - Upper 4x10 7 - L o w e r 2x10 7 96 h y d r a u l i c c o n d u c t i v i t i e s were used i n i t i a l l y as the s t a r t i n g b a s i s . I t q u i c k l y became evident that they had l i t t l e e f f e c t on the o v e r a l l r e s u l t s which were c o n t r o l l e d by the c o n d u c t i v i t y of the unweathered t i l l and the Saskatchewan g r a v e l . The h y d r a u l i c c o n d u c t i v i t y of the Saskatchewan g r a v e l and sand was f i n a l i z e d as 2x10" 2 cm/sec. T h i s value i s an order of magnitude higher than the c o n d u c t i v i t y which was d e r i v e d from the f i e l d m o n i t o r i n g . However, i t was noted i n the p r e v i o u s chapter that the r e s u l t s were q u e s t i o n a b l e due to a l a c k of good data. Gabert (1975) measured a h y d r a u l i c c o n d u c t i v i t y of approximately 1x10" 2 cm/sec du r i n g a pump t e s t i n these g r a v e l s near Red Deer, A l b e r t a , so the r e s u l t s of the s i m u l a t i o n s are not unreasonable. The h y d r a u l i c c o n d u c t i v i t y of 4x10" 7 cm/sec f o r the upper part of the unweathered t i l l and 2x10" 7 cm/sec f o r the lower parti are both one-half the v a l u e s d e r i v e d from f i e l d measurements. These values are w e l l w i t h i n the range of response that was measured i n the f i e l d . The computed h y d r a u l i c heads i n both the unweathered t i l l and the Saskatchewan g r a v e l s proved to be very s e n s i t i v e to changes in h y d r a u l i c c o n d u c t i v i t i e s . T h i s s e n s i t i v i t y leads- to a l a r g e degree of confidence i n the v a l u e s which were f i n a l l y used f o r them. Since model s i m u l a t i o n s were done on two c r o s s - s e c t i o n s with c o n s i s t e n t l y good r e s u l t s u s i n g the h y d r a u l i c c o n d u c t i v i t i e s shown i n Table X these 97 c o n d u c t i v i t i e s are f e l t to be good r e p r e s e n t a t i o n s of the r e a l f i e l d v a l u e s . The h y d r a u l i c c o n d u c t i v i t y of the Saskatchewan g r a v e l s was v a r i e d between 1x10" 1 cm/sec and 1x10"* cm/sec i n the v a r i o u s models of the groundwater regime. The unweathered t i l l c o n d u c t i v i t i e s were v a r i e d between 1x10"' cm/sec and 1x10'* cm/sec. The r a t i o of the c o n d u c t i v i t i e s of the upper and lower s e c t i o n s of the unweathered t i l l were v a r i e d from 1:1 to 10:1 throughout t h i s range. The h y d r a u l i c c o n d u c t i v i t i e s of Table X gave the best h y d r a u l i c head r e s u l t s . The t o t a l i n f i l t r a t i o n that was necessary to maintain a s t e a d y - s t a t e system was 10.0 cm/yr. T h i s value i s w e l l w i t h i n the range of v a l u e s c a l c u l a t e d i n the p r e v i o u s c h a p t e r . To lower the i n f i l t r a t i o n , r a t e i t would be necessary to i n c r e a s e the c o n d u c t i v i t y of the Saskatchewn g r a v e l and sands while lowering the c o n d u c t i v i t y of the t i l l . The low h y d r a u l i c c o n d u c t i v i t y of the unweathered t i l l r e s u l t e d i n l a r g e changes i n h y d r a u l i c head over short v e r t i c a l d i s t a n c e s . T h i s f a c t o r p l u s the s i m p l i f i e d geology necessary i n the model s i m u l a t i o n s made i t impossible to e x a c t l y d u p l i c a t e the h y d r a u l i c head at any s p e c i f i c p o i n t i n the t i l l . The r e s u l t s of F i g u r e 35 are u s u a l l y w i t h i n 1 98 to 3 meters of the corresponding measured head. The r e s u l t i n g flow paths and v e l o c i t i e s are very s i m i l a r . One f u r t h e r aspect worthy of comment i n F i g u r e 35 i s the i n d i c a t i o n of seepage at the top of the v a l l e y w a l l . T h i s tendency i s r e f l e c t e d i n some l o c a t i o n s i n the f i e l d but not in o t h e r s . Seepage does occur s p o r a d i c a l l y at the f i e l d l o c a t i o n i n d i c a t e d i n the c r o s s - s e c t i o n . Minor changes i n the p o s i t i o n of the water t a b l e and t h i c k n e s s of the f r a c t u r e d t i l l i n the model w i l l e l i m i n a t e such seepage. 2. S o l u t e Transport I t was p o s s i b l e to model the movement of s o l u t e s i n only the most gen e r a l terms. The s o l u t e i n q u e s t i o n i n t h i s study i s n i t r a t e , which i s a p p l i e d d u r i n g crop i r r i g a t i o n . I r r i g a t i o n occurs as needed between May and September. N i t r a t e s are a p p l i e d on an i r r e g u l a r b a s i s perhaps one dozen times per year. High background l e v e l s of n i t r a t e s d e r i v e d from c o a l l e n s e s i n the t i l l and bedrock i n c r e a s e d contaminant l e v e l s i n the groundwater (Hendry, p e r s . comm.). These f a c t o r s make the m o d e l l i n g of n i t r a t e movement extremely d i f f i c u l t . To be c o n s e r v a t i v e i n m o d e l l i n g the n i t r a t e movement no r e t a r d a t i o n f a c t o r was used. T h i s assumes no i n t e r a c t i o n between the s o i l and the n i t r a t e s i n s o l u t i o n i n the groundwater. Recent r e s e a r c h i n d i c a t e s that a n i o n i c s p e c i e s 99 such as nitrates undergo l i t t l e reaction with the s o i l once in solution (Hendry, 1980). A d i f f u s i o n c o e f f i c i e n t was used however. Freeze and Cherry (1979) indicate that the d i f f u s i o n c o e f f i c i e n t in t i l l varies from l x l O " 1 0 to l x l 0 " x l m 2/sec. It was found that these values had no ef f e c t on the rate of solute transport. The one variable which was found to have a s i g n i f i c a n t e f f e c t was the d i s p e r s i v i t y . The d i s p e r s i v i t y i s a measure of the heterogenieties that occur in the deposit. It has been found to be extremely d i f f i c u l t to measure accurately in either the f i e l d or the laboratory. For the modelling exercise the longitudinal d i s p e r s i v i t y was varied between 1.0 meter and 100 meters and the tranverse d i s p e r s i v i t y between 0.1 and 5 meters. By increasing the longitudinal d i s p e r s i v i t y one hundredfold, the contaminant was found to move through the system approximately 3 times as quickly. The actual value of d i s p e r s i v i t y in the sands and in the t i l l of the Shimbashi s i t e i s unknown. By using such extremes as 1.0 and 100 meters a range of response may be evaluated. The r e s u l t s of the solute transport modelling can be described only in general terms. It i s impossible to relate absolute concentrations or d e f i n i t e time spans to the model simulations. However, some d e f i n i t e facts do .come out of the 100 m o d e l l i n g . I r r i g a t i o n and f e r t i l i z a t i o n on the f l a t l a n d s area near the r i v e r r e s u l t i n the n i t r a t e s reaching the r i v e r very q u i c k l y . A r e l a t i v e c o n c e n t r a t i o n of 0.01 w i l l occur w i t h i n l e s s than one year of f e r t i l i z i n g and w i l l reach c o n c e n t r a t i o n s of 0.50 i n three to ten y e a r s . However, i t must be remembered that i n a b s o l u t e terms the amount of n i t r a t e r e a c h i n g the r i v e r from the lowlands alone w i l l be r e l a t i v e l y s m a l l . The i n t r o d u c t i o n of n i t r a t e s i n t o the area above the v a l l e y w a l l i s a d i f f e r e n t problem e n t i r e l y . Much of the i r r i g a t i o n o c c u r r i n g above the coulee w a l l i s i n areas where the s u r f a c e m a t e r i a l i s f r a c t u r e d t i l l . The movement of n i t r a t e s in t h i s m a t e r i a l i s e s s e n t i a l l y downward. T h i s l e a v e s two p o s s i b l e flow paths to the r i v e r . The f i r s t i n v o l v e s i n f i l t r a t i n g through the f r a c t u r e d t i l l i n t o the b u r i e d sand channel i n the middle of the s i t e . Once i n the channel the n i t r a t e s would t r a v e l south u n t i l the b u r i e d v a l l e y w a l l was i n t e r s e c t e d , then move east or west to the r i v e r . The estimated time f o r a r e l a t i v e c o n c e n t r a t i o n of 0.10 i s from 1 to 8 y e a r s . However i t must be r e c a l l e d that t r i t i u m r e s u l t s show the water i n the b u r i e d channel to be a t l e a s t 17 years i n the groundwater system suggesting once again that the m o d e l l i n g r e s u l t s may be c o n s e r v a t i v e . 101 The second p o s s i b i l i t y i s the movement of n i t r a t e s through both the f r a c t u r e d and unweathered t i l l i n t o the Saskatchewan g r a v e l s . Model r e s u l t s i n d i c a t e a minimum of 15 to 35 years to reach a r e l a t i v e c o n c e n t r a t i o n of 0.10 and 21 to 50 years to reach a r e l a t i v e c o n c e n t r a t i o n of 0.50 i n the Saskatchewan g r a v e l s . These times are based upon a 10 meter t h i c k n e s s of f r a c t u r e d t i l l and a 10 meter t h i c k n e s s of unweathered t i l l . Those are f e l t to be minimum t h i c k n e s s e s that would be encountered on the s i t e and t h e r e f o r e a c o n s e r v a t i v e e s t i m a t e . Again the t r i t i u m r e s u l t s i n d i c a t e that these p r e d i c t i o n s may be o v e r l y p e s s i m i s t i c and that the s o l u t e w i l l take s i g n i f i c a n t l y longer to make i t s way through the t i l l . The h o r i z o n t a l movement of the n i t r a t e s through the f r a c t u r e d t i l l would be slower than the v e r t i c a l movement. The e x c e p t i o n to t h i s statement i s the s o l u t e that i s t r a n s p o r t e d along the f r a c t u r e s . Here the s o l u t e w i l l move a few meters per year but the t o t a l amount of s o l u t e i n v o l v e d w i l l be very s m a l l . Even i n the v i c i n i t y of the r i v e r v a l l e y w a l l the pa s s i n g of many decades would be necessary to t r a n s p o r t the contaminant anywhere near the r i v e r . The Darcy flow v e l o c i t i e s are on the order of 0.1 to 0.4 meters per year i n t h i s a r e a . The c o n t r o l l i n g f a c t o r over much of the s i t e t h e r e f o r e appears to be the l e n g t h of time necessary to 102 t r a n s p o r t the n i t r a t e s v e r t i c a l l y through the t i l l to the Saskatchewan g r a v e l s . The great e x c e p t i o n to t h i s r u l e occurs i n those areas which have g l a c i a l outwash sands or sands and g r a v e l s at the s u r f a c e (see F i g u r e 21). In these d e p o s i t s the n i t r a t e s are t r a n s p o r t e d l a r g e d i s t a n c e s y e a r l y . F e r t i g a t e d waters which enter i n t o the s u r f a c e sands and g r a v e l s w i l l reach the Oldman R i v e r w i t h i n 2 to 5 y e a r s . However, a great d i l u t i o n of the n i t r a t e c o n c e n t r a t i o n s w i l l take p l a c e because of the small p r o p o r t i o n of these water that have an i r r i g a t i o n source. Consequently, the n i t r a t e c o n c e n t r a t i o n s w i l l remain low with time. However, i t i s probable that i n c r e a s e d acreage i n the northern part of the Shimbashi s i t e w i l l be i r r i g a t e d i n the f u t u r e thus i n c r e a s i n g the o v e r a l l c o n c e n t r a t i o n s of n i t r a t e s . To sum, up, i t appears evident that n i t r a t e s from f e r t i l i z a t i o n are a l r e a d y reaching the r i v e r through the outwash sands i n low c o n c e n t r a t i o n s . Within 5 to 50 years a d d i t i o n a l n i t r a t e s w i l l enter i n t o the Oldman River that have t r a v e l e d through some t h i c k n e s s of t i l l . The e f f e c t s of c a t i o n exchange and r e t a r d a t i o n i n t h i s t i l l may s i g n i f i c a n t l y slow the r a t e of progress of n i t r a t e s through the system. These geochemical q u e s t i o n s are beyond the scope of t h i s study. 103 Chapter 5' CONCLUSIONS AND RECOMMENDATIONS In t h i s t h e s i s an attempt has been made to d e s c r i b e the hydrogeology of a small a g r i c u l t u r a l r e s e a r c h s i t e i n southern A l b e r t a . As o u t l i n e d at the beginning of the t e x t , the main purpose of the t h e s i s i s to d e l i n e a t e the groundwater flow regime and mathematically model the long-term e f f e c t s of f e r t i l i z a t i o n on the groundwater and r i v e r water q u a l i t y . A summary of the major f i n d i n g s of t h i s i n v e s t i g a t i o n i s presented below. Summary and Conclusions Geographical Aspects 1. The Shimbashi s i t e i s comprised of 28 square k i l o m e t e r s s i t u a t e d w i t h i n the Oldman R i v e r drainage b a s i n . The topography i s a r e l a t i v e l y f l a t p l a i n i n t o which the r i v e r has cut to a depth of approximately 50 meters. 104 2. The mean annual p r e c i p i t a t i o n i s approximately 46 cen t i m e t e r s and the mean annual temperature i s approximately 5 C. The p o t e n t i a l e v a p o t r a n s p i r a t i o n was c a l c u l a t e d by the Thornthwaite method on a monthly b a s i s to be about 60 centimeters a n n u a l l y . 3. In n o n - i r r i g a t e d areas of the s i t e the optimum recharge c o n d i t i o n s e x i s t i n A p r i l and November. During these months the amount of p r e c i p i t a t i o n exceeds the p o t e n t i a l e v a p o t r a n s p i r a t i o n and the ground i s not f r o z e n . In i r r i g a t e d areas the maximum i n f i l t r a t i o n w i l l occur d u r i n g i r r i g a t i o n events between May and October. 4. The dominant s o i l type at the s i t e i s an O r t h i c Brown Chernozem. T h i s s o i l c o n s i s t s of loam sand and sandy loam d e r i v e d from the s u r f i c i a l g l a c i a l d e p o s i t s . Geology 1. The bedrock formation which subcrops throughout the Shimbashi s i t e i s " t h e Foremost Formation of Upper Cretaceous age. T h i s formation i s composed of dark s h a l e , sandstone, s i l t s t o n e and c o a l u n i t s . The upper boundary of the Foremost Formation i s an 105 e r o s i o n a l s u r f a c e which forms a wide p r e g l a c i a l r i v e r v a l l e y . The study s i t e i s s i t u a t e d completely w i t h i n t h i s p r e g l a c i a l v a l l e y . The whole of the p r e g l a c i a l bedrock v a l l e y i s covered by 1 to 10 meters of the Saskatchewan g r a v e l s and sands. These g r a v e l s are f l u v i a l i n o r i g i n , d e r i v e d from the Rocky Mountains to the west. They were d e p o s i t e d before the f i r s t L a u r e n t i d e g l a c i a l advance. G l a c i a l d e p o s i t s are up to 40 meters t h i c k , c o n s i s t i n g of t i l l and outwash sands. The upper part of the t i l l i s weathered and f r a c t u r e d t o depths of 10 to 20 meters g i v i n g i t a brownish c o l o u r . The lower p o r t i o n of the t i l l i s b l u i s h - g r e y and does not e x h i b i t f r a c t u r i n g of any kind. The upper and lower t i l l u n i t s have the same t e x t u r e . Sand lenses and c o a l fragments are common throughout the t i l l . Outwash d e p o s i t s c o n s i s t of medium to coarse g r a i n e d uniform sands. These outwash d e p o s i t s occur as channels b u r i e d i n the t i l l and on the s u r f a c e i n the northern p a r t of the s i t e . They are c r i t i c a l to the movement of groundwater throughout the s i t e . 106 Hydrogeology 1. The r e p r e s e n t a t i v e h y d r a u l i c c o n d u c t i v i t i e s were found to be 5x10" 3 cm/sec i n the outwash sands and 1x10" 3 cm/sec f o r the Saskatchewan sand and g r a v e l . The weathered and unweathered t i l l s were found to be two d i s t i n c t h y drogeologic u n i t s . The weathered t i l l had a h y d r a u l i c c o n d u c t i v i t y of 1x10" 5 cm/sec. The c o n d u c t i v i t y of the unweathered t i l l was found to decrease with depth. The upper p a r t of the u n i t had a h y d r a u l i c c o n d u c t i v i t y of 8x10"'' cm/sec but t h i s decreased to 4x10" 7 cm/sec near the bottom of the t i l l . 2. The e l e v a t i o n of the water t a b l e i s between 770 and 773 meters over much of the area above the r i v e r v a l l e y w a l l . The water t a b l e d e c l i n e s as the v a l l e y w a l l i s approached. At the base of the v a l l e y w a l l i t i s l e s s than 750 meters a . s . l . and drops away to l e s s than 730 meters at the Oldman R i v e r . A channel in the su r f a c e outwash d e p o s i t s i n the northern p a r t of the s i t e causes a l o c a l d e p r e s s i o n i n the water t a b l e . Another, l a r g e r d e p r e s s i o n occurs to the south and i s caused by a b u r i e d outwash channel. 3. The dominant flow d i r e c t i o n of water i n the t i l l s of 107 the s i t e i s v e r t i c a l l y downward. F r a c t u r e s i n the weathered t i l l r e s u l t i n a small h o r i z o n t a l component of flow that moves r a d i a l l y towards the r i v e r over most of the s i t e . The exception to t h i s i s the c e n t r e of the s i t e where the water flows towards the b u r i e d sand channel. 4. Water e n t e r i n g the b u r i e d outwash channel moves southward to the b u r i e d bedrock v a l l e y w a l l then flows to the west along the w a l l i n t o the r i v e r or i n t o the Saskatchewan g r a v e l s . Water which p e r c o l a t e s through the t i l l i n t o the Saskatchewan g r a v e l s w i l l migrate towards the middle of the b u r i e d v a l l e y and hence i n t o the r i v e r . 5. The t o t a l i n f i l t r a t i o n averaged over the s i t e i s between 5 and 15 c e n t i m e t e r s per year. The m a j o r i t y of t h i s i s a t t r i b u t e d to i r r i g a t i o n p r a c t i s e s . The c o n t a c t between the weathered and unweathered t i l l p robably r e p r e s e n t s the h i s t o r i c a l water t a b l e ; one that c o u l d be maintained with l e s s i n f i l t r a t i o n than i s c u r r e n t l y t a k i n g p l a c e . 6. Groundwater flow v e l o c i t i e s throughout the sand d e p o s i t s i n the north of the s i t e were found to be 108 up to 250 to 300 meters per year i n the outwash channel. M i g r a t i o n of water through the s u r f a c e sands on the northeast v a r i e s from 2 to 5 meters per year. V e r t i c a l propagation throught the t i l l s i s approximately 15 to 75 c e n t i m e t e r s per year. H o r i z o n t a l movements w i l l be up to a few meters per year. Water moving through the b u r i e d sand channel w i l l t r a v e l up to 30 meters per year. 7. The t o t a l d i s c h a r g e through the Shimbashi study s i t e i s on the order of 2 to 3.5 m i l l i o n c u b i c meters per year that can be a t t r i b u t e d to the shallow groundwater regime which has been d e s c r i b e d . Computer S i m u l a t i o n s 1. The most r e p r e s e n t a t i v e h y d r a u l i c head d i s t r i b u t i o n s were achieved using a h y d r a u l i c c o n d u c t i v i t y of 5x10" 3 cm/sec f o r the outwash sands and 1x10" 5 cm/sec f o r the f r a c t u r e d t i l l . These values are the same as the v a l u e s c a l c u l a t e d from f i e l d t e s t i n g . The h y d r a u l i c c o n d u c t i v i t i e s used i n the unweathered t i l l were 4x10" 7 cm/sec in the upper p o r t i o n and 2x10" 7 cm/sec i n the lower p a r t of the d e p o s i t . The c o n d u c t i v i t y used f o r the Saskatchewan g r a v e l and 109 c o n d u c t i v i t y used f o r the Saskatchewan g r a v e l and sand was 2x10" 2 cm/sec, an order of magnitude gr e a t e r than was c a l c u l a t e d from the f i e l d program. The p h y s i c a l p r o p e r t y which d i s p l a y e d the g r e a t e s t c o n t r o l over the s o l u t e t r a n s p o r t was the d i s p e r s i v i t y . By v a r y i n g the d i s p e r s i v i t y between 1.0 and 100 meters the r a t e of s o l u t e movement c o u l d be v a r i e d t h r e e f o l d . The d i f f u s i o n c o e f f i c i e n t was found to have l i t t e or no e f f e c t on the system. A r e t a r d a t i o n f a c t o r was not a p p l i e d . N i t r a t e s are a l r e a d y e n t e r i n g the Oldman R i v e r from two sources. The lowland areas below the r i v e r v a l l e y w a l l that are under i r r i g a t i o n are the source of some of these n i t r a t e s . R e l a t i v e c o n c e n t r a t i o n s of 0.50 w i l l be achieved w i t h i n the next 10 y e a r s . N i t r a t e s i n t r o d u c e d i n t o the s u r f i c i a l sands to the n o r t h are a l s o e n t e r i n g the r i v e r . C o n c e n t r a t i o n s i n t h i s water w i l l remain low u n l e s s a d d i t i o n a l acreage comes under i r r i g a t i o n . N i t r a t e s e n t e r i n g the t i l l have two paths to the r i v e r . R e l a t i v e c o n c e n t r a t i o n s of n i t r a t e s i n the b u r i e d sand channel w i l l reach 0.10 i n 1 to 8 y e a r s . 110 Movement of the s o l u t e through the t i l l to the Saskatchewan g r a v e l s w i l l take 15 to 35 years to reach c o n c e n t r a t i o n s of 0.10. These estimated times are very c o n s e r v a t i v e i n nature. Movement of s o l u t e to the r i v e r through the f r a c t u r e d t i l l would take many decades and t h e r e f o r e i s made i n s i g n i f i c a n t by the other pathways to the r i v e r . Recommendations To p r o p e r l y assess the impact of i r r i g a t i o n and f e r t i l i z a t i o n on the q u a l i t y of r i v e r water i t w i l l be necessary to know i n ab s o l u t e terms the amount of s o l u t e s e n t e r i n g the r i v e r at present and the c o n c e n t r a t i o n s that may be expected i n the f u t u r e . The master's t h e s i s of D. Pike at the U n i v e r s i t y of A l b e r t a on the geochemistry of the groundwater of the Shimbashi s i t e w i l l a i d i n t h i s assessment. However, to p r o p e r l y monitor the progress of s o l u t e s through the groundwater system other work i s necessary. Background l e v e l s of s a l t s and n i t r a t e s should be measured f o r the r i v e r water and the groundwater. T h i s would a i d g r e a t l y i n determining the degree of contamination that i s a c t u a l l y t a k i n g p l a c e . Measuring the c o n c e n t r a t i o n s of contaminants i n the i r r i g a t i o n water as i t en t e r s the system I l l would give the r e l a t i v e c o n c e n t r a t i o n of 1.0 or the g r e a t e s t p o s s i b l e degree of contamination. Some i n d i c a t i o n of the frequency of a p p l i c a t i o n of t h i s f e r t i l i z e d water would suggest t o t a l volumes of con c e n t r a t e being a p p l i e d and would allow b e t t e r c o n t r o l of any a d d i t i o n a l s o l u t e t r a n s p o r t computer m o d e l l i n g . A d r i l l i n g program c o u l d be i n s t i g a t e d to determine the extent of the b u r i e d outwash channels on the s i t e . I n s t a l l a t i o n of piezometers would make p o s s i b l e the monitoring of the channels to groundwater flow r a t e s and s o l u t e c o n c e n t r a t i o n l e v e l s . A f i e l d program to measure those p h y s i c a l p r o p e r t i e s that c o n t r o l the r a t e of movement of the s o l u t e would g r e a t l y enhance the accuracy of any p r e d i c t i o n s . L i t t l e work has been done to date i n measuring l o n g i t u d i n a l and t r a n s v e r s e d i s p e r s i v i t i e s i n the f i e l d . Such work would a t t r a c t the i n t e r e s t of other r e s e a r c h e r s i n contaminant m i g r a t i o n . There are four b a s i c types of f i e l d d i s p e r s i v i t y t e s t s (Freeze and Cherry, 1979). These a r e : 1) n a t u r a l g r a d i e n t t r a c e r t e s t s ; 2) s i n g l e - w e l l w i t h d r a w a l - i n j e c t i o n t e s t ; 3) two-well r e c i r c u l a t i n g w i t h d r a w a l - i n j e c t i o n t e s t s ; and 4) two-well pulse t e s t s . N a t u r a l g r a d i e n t t r a c e r t e s t s would work w e l l i n the outwash sand d e p o s i t s . They i n v o l v e the i n j e c t i o n of a t r a c e r i n t o a w e l l and then monitoring 112 c o n c e n t r a t i o n s at one or more sampling p o i n t s . The low c o n d u c t i v i t y of the t i l l may make the t r a c e r t e s t s and the pump t e s t s d i f f i c u l t and i m p r a c t i c a l . A l a b o r a t o r y i n v e s t i g a t i o n of the c a t i o n exchange c a p a c i t y and r e t a r d a t i o n s that may be expected i n the t i l l s would provide a d d i t i o n a l v a l u a b l e data. The r e t a r d a t i o n of the n i t r a t e s and s a l t s c o u l d have a very l a r g e e f f e c t on the expected a r r i v a l times and c o n c e n t r a t i o n s of s o l u t e s . Therefore some measurement of t h i s f a c t o r i s s t r o n g l y recommended. A program of monitoring the r i v e r water q u a l i t y at both the beginning of the s i t e and as the r i v e r passes the end of the s i t e i s recommended. T h i s program c o u l d provide an o v e r a l l c o n t r o l to e v a l u a t e the accuracy of p r e d i c t i o n s of contamination as time p r o g r e s s e s . A d d i t i o n a l l y , the d i f f e r e n c e between c o n c e n t r a t i o n s at the s t a r t and f i n i s h of the r i v e r ' s journey around the s i t e c o u l d be used to c a l c u l a t e the t o t a l contamination e n t e r i n g the r i v e r . T h i s data c o u l d then be e x t r a p o l a t e d to other regions of southern A l b e r t a , thus f u l l y a s s e s s i n g the long-term impact of i n t e n s i v e i r r i g a t i o n over l a r g e a r e a s . APPENDIX A BOREHOLE LOGS 114 HYDROGEOLOGIC LOG BOREHOLE N 0.1 . 8 0 9 - E : l . Page..i.. . .of ..1 Project J M L L ^ M J . O N A E . M N . . J M W Reference elevotion ...732,8.... T y p e of drilling R o t a r y Contractor A l ta . . . E n v i r o n m e n t . S u r v e y e d E3 c . , . . ' J r * i Elevation type = Altimeter • Rig . f , A , . . . l Q 0 0 Logged by . M - . C , . , . e t . ± L , H F r o m m a p a D r i l l f lu id .Water Checked by Date drilled. June. 2 9 , . 1978 Purpose of hole S t r a t i . g r a p . h i c . control . .and.arQ.und. wa.1;er..P.l3S.er.va.ti.Qn Lithology Sample No. Type Completed Construction Comments Date of Completion Type of Intake GROUND SURFACE T I L L : o l i v e brown sandy c l a y t i l l , becoming c . ; g r a i n e d a t 2 .4m. 4 . 3 G r a v e l : c. sand to t i n e grave p r i m a r i l y q u a r t z g r a i n s . 6 .6 f- SILTS I ONE: s i l t s t o n e i n t e r b e d d e d w i t h brown s h a l e s . S h a l e s v a r y i n hardness from hard t o s o f t and a r e o f t e n c a r b o n a c e o u s . R e n t o n i t i c sands tone from| 6 .6 to 7 .1m. T h i n s o f t c o a l l a y e r s a t 6 .6m, 7.1m and 12.8m. m 30 .5 B o r e h o l e t e r m i n a t e d a t 30.5m i n s i l t s t o n e . •3 .4 -5 .6 •8.1 -10.35 April 1979 Fiberglass wrap Apri l 1979 Fiberglass wrap April 1979 Fiberglass wrap Apri l 1979 Fiberglass wrap - i ALBERTA AGRICULTURE - Irrigation Division 11 5 o 2 o HYDROGEOLOGIC LOG BOREHOLE N o l S W - E - L Page...!. ..of ...I.... Project TABER _I RRI.GATI.ON.RETURN..FLOVl Reference elevation ..7.33.. 1.... Type of drilling J?}?.:?. Contractor . A . l . t a ^ i n v l r o n m e n t Surveyed m , „ n n , L k» r ot =i Elevation type = Altimeter • Rig .fA..A9P.9 Logged by .«•.?:.•„££.li: From map • Dril l fluid...1!'?.1:!.': Checked by Date dri l led. . Jy.n.?..??...A?7.?.... Purpose of hole S t ^ ^ S " ^ ! ? . . ? . ^ 1 ^ Lithology Sample No. Type Completed Construction Comments Date of Completion Type of Intake GROUND SURFACE p" 111 lT~olive brown sandy c lay J i ^ jc^ Uj h SAND AND GRAVEL 6.1 m OP . 0.0 0: O.o b SILTSTOME: i n t e r b e d d e d s i l t s t o n e ! | M i n o r s h a l e bed from 10.4m to 10 .7m. 12 .5 t SANDSTONE 14 .6 SILTSTOME: i n t e r b e d d e d brown s i I t s tones 23.5 SANDSTONE: v e r y f i n e g r a i n e d s a n d s t o n e . 30.5 B o r e h o l e t e r m i n a t e d at 30.5m i n s a n d s t o n e . 2 •17.8 -21.8 -24 .2 June 1978 Fiberglass wrap June 1978 Fiberglass wrap June 1978 Fiberglass wrap ALBERTA AGRICULTURE - Irrigation Division 116 o -O o -3 HYDROGEOLOGIC LOG BOREHOLE No.iaU.-.E.-.l. Page. .1... .of ...I.... Project TftBER.IRRIJBATIpM. RETURN FLOW Reference elevation ...76.4>J6.... T y p e of drilling . . . Rg.ta.r.y Contractor Al . t a . . .E jmr .anrae j i t . . S u r v e y e d i-,- FA m n n . U M r ,^ Elevation type: A l t i m e t e r O Rig .FA....JP.9P. Logged by M , . . . e t =n. >*• F r o m m Q p ^ Dril l f luid.Water Checked by Date dri l led.June. 3 0 ^ 1 9 7 8 Purpose of hole ?.tr.a.Wsrap.bi\Q..c.P.ntr^  Lithology Sample No. Type Completed Construction Comments Date of Completion Type of Intake GROUND SURFACE t SAND AND GRAVEL: C. sand and g r a v e l . 5 .8 0 0 | QO Q: b T I L L : da rk g r a y i s h brown c . sandy c l a y t i l l becoming a dense r dark o l i v e g rey f . sandy c l a y t i l l a t 7 .0m. T h i n (0.2m) g r a v e l l a y e r , a t 11 .3m. 1 7 . 0 SAfin ANC r,R£VFi a 6° . • 6 P T I L L : o l i v e g ray c. sandy c l a y t i l l . 23 .2 SAND AND GRAVEL: c . -sand t o f . g r a v e l , p r i m a r i l y q u a r t z and g r a n i t i c g r a i n s , o c c a s i o n a l c o a l c h i p s . $2 27.7 lO'C SILTS TONE: s i l t s t o n e w i t h t h i n _ i n t e r b e d s o f brown s h a l e " t h r o u g h o u t . Majo r s h a l e beds ( 1 . 0 m and 0.3m t h i c k ) a t 32.0m ( c o n t a i n i n g ca rbonaceous and c o a l l a y e r s ) and 5 5 . 8 m . -17.8 -21.8 -24.1 March 1979 Well screen March 1979 Well screen March 1979 Well screen - i 1 1 ALBERTA AGRICULTURE - Irrigation Division 117 HYDROGEOLOGIC LOG BOREHOLE No.18.U-E.-L.. Page..?....of..? Project. .7AB.ER..?£?A?AT.19N.RETURN FLOW Reference elevation ...764,6.... Type of drilling R o t a r y C o n t r a c t o r A l t a - E n v i r . o n . m ? . n . t . Surveyed E3 innn • . . M r «+ , i Elevation type •• Altimeter O Rig ...FA...1P.9P. Logged b y M ; C : , . e £ i l , K From map O Drill fluid .Water- Checked by Date drilled.p.".".! 30,.1978 Purpose of hole . s.*?.l9Jr?J?t 1.!?..?.QPjt.rP.I..J31TP.yfl^..wa.te.TT..Qbsery.a.t.i.g.n., Lithology Sample No. Type Completed Construction Comments 45 "STTTSJCNE: c o n t i n u e d T h i n c o a l l a y e r a t 45 .1m. Hard sandstone bed (0.3m) a t 55 .8m. 6 1 . 0 B o r e h o l e t e r m i n a t e d a t 61.0m i n s i l t s t o n e . r i 3 ALBERTA AGRICULTURE - Irrigation Division 118 o 2 o -3 HYDROGEOLOGIC LOG BOREHOLE No.l?12-E-l. Page...!... of...?.... Project ...TARER IRRIGATION .RETURN. FLOW Reference elevation ..7.76.JL... Type of drilling . . .R?t?r .J f Contractor A ^ a . Jnylronment. Surveyed EE cn Kind Elevation type = Altimeter • Rig ..F A....l?°.? Logged bytUC.w..et.Al- From map • Drill f l u id . . . ^ fT . Checked by Date drilled. June .3.Q,..1.9.7.8 Purpose of hole .Strat.''.9.rl?P.'??.?..9P.'}?.,rP.l.AC1.*?.Fl^..watejr_.objservatl.on, Lithology Sample No. Type Completed Construction Comments Date of Completion Type of Intake "STLT:~cTayey sandy TTTV S-^5AHD: f . sand f- TILL: olive clay t i l l becoming blue-gray clay t i l l at 12.2m, coal chips through-out . Coal layer (0.6m) encountered at 10.1m. 0 ° 0 Oo o Encountered boulder at 27.7m. ol O \>P\ la-o o 36.0 I SAND AND GRAVEL: c. Z sand and gravel •A 42.7 E SHAJ.E:br.carb. shale, soft 4,3-6. SILTSTONE -9.3 -15.4 • 23.0 •32.3 April 1979 Fiberglass wrap June 1978 Fiberglass wrap March 1979 Well screen June 1978 Fiberglass wrap ALBERTA AGRICULTURE - Irrigation Division 11 9 BOREHOLE No . l812 r E T l . . . . Page..?....of . . .2. . . HYDROGEOLOGIC LOG Project...TABER. .1RRIGAJ.IP.N.RETURN.FLOW Reference elevation...77.6U.... Type of drilling .??tary. ContractorA]ta.-..Eny.tronrnent... S u r v e y e d m Elevation type = Altimeter • Rig ...1000 Logged byM-.C,J..et From map • Dri l l f luid. . Wate r Checked by Date drilled..June.3.q,..19.78. Purpose of hole Stra11 graphi c .control and ground .wajter qbservati.on. Lithology Sample No. Type Completed Construction Comments Date of Completion Type of Intake 45 t SILTSTONE: continued c c. si l tstone t thin carb. shale at 46.9m 49.4 t-SANDSTONETT p sandstone, soft. Thin, brown siltstone at SlsSm. Thin, hard shale at 57.6m. 61.0 •45.5 Tune~1978""~ Fiberglass wrap Borehole terminated at 61.0m in sandstone. ALBERTA AGRICULTURE - Irrigation Division 1 2 0 HYDROGEOLOGIC LOG BOREHOLE No.l813-E-l Poge..l....of..? Project . . . . J A ^ l l . L ^ A ? * ! ^ . ^ ^ ! . ^ . Reference elevation ...77.6,2. Type of drilling . . R o t a r y Contractor . A l t . a . , . E n v i r . q n m e , t . . ^ S u r v e y e d ^ From map • Rig . FA..A 0P.9 Logged hyM.C, e t a l r i l l f luid.Water Checked by Date drilled. J u l y . A. . . .1?.7.8.. Purpose of hole S t r a t i graphic c o n t r o l a ion. Lithology Sample No. Type Completed Construction Comments Date of Completion Type of Intake GROUND SURFACE T I L L : g r a y i s h brown sandy c l a y t i l l becoming dense r a t 2 .4m. A t 11.0m t i l l becoming s a n d i e r . T h i n c o a l l a y e r a t 2 . 9 m . M i n o r g r a v e l l a y e r a t 7 .6m. 12 .2 I m SAND: c . sand w i t h m i n o r interbedjs . o f g r a v e l . 18 .6 rP-T I L L : v e r y dense da rk g r a y i s h brown sandy c l a y t i l l . G r a v e l l e n s e s e n c o u n t e r e d a t 3 2 . 0 m , 35.7m and 37.8m B o u l d e r s ( ? ) e n c o u n t e r e d at | 21.2m and 24 .7m. 38 .1 GRAVEL: c o n s o l i d a t e d g r a v e l w i t h m i n o r c . s a n d . 4 1 . 4 SANDSTONE: s o f t t o v e r y ha rd s i l t y s a n d s t o n e . •5* b. o. .o , J O T cQ lb; Kg 2 30.4 -9.5 •15.4 • 19.8 -24.1 2 2 •36.8 •42.6 June 1978 Fiberglass wrap March 1979 Well screen March 1979 Well screen June"1980 Well screen March 1979 Well screen June 1978 Fiberglass wrap June 1978 Fiberglass wrap -A ALBERTA AGRICULTURE - Irrigation Division 12.1 o HYDROGEOLOGIC LOG BOREHOLE NoASA?-E.-.l Page..?....of . . . . .2 . . . Project T A B E R I R R I G A T I 0 N R E T l J R N FLOW Reference elevation..7.76.2.... Type o f ' d ^ p t a r ; ; ; : : E i e v a t i o n g Rig ...FA .1000 Logged b y M . : . Q : . ' . J l i i From mop • Drill f luid.Water. Checked by Date dril led. . ^ L ^ k l 9 . ! ? . Purpose of hole S t r a t i g r a p h i c cpntro\ ^ Lithology Sample No. Type Completed Construction Comments 45 SANDSTONE: c o n t i n u e d Coal seam (0.3m) a t 4 5 . 4 m . B e n t o n i t i c sands tone from 4 5 . 4 m to 5 0 . 9 m . Sha le i n t e r b e d s from 51i5m to 54 .5m. 54 .5 SILTSTONE 5 8 . 2 t -SANDSTOME: c . sands tone 6 1 . 0 B o r e h o l e t e r m i n a t e d a t 61.0m i n s a n d s t o n e . ALBERTA AGRICULTURE - Irrigation Division 1 2 2 o Z O -3 BOREHOLE No. 1.514,7 E.T.1. P o g e . o f . . . . ? . . . HYDROGEOLOGIC LOG Project lMf*:™}3JM.!™LF.L0.W Reference elevation...7.7.3,8 ... Type of drilling .Rotary. Contractor Al.ta....Envi.rpn.me.n.t. Surveyed E j F« mnn . u M r a i Elevation type = Altimeter • Rig . . . F A.. . . !9°°. Logged b y e t . | l " F r o m m a p • Drill fluid.Water Checked by Date dr i l led . . Ju ly . . l , . l ?78 Purpose of hole Stratigrajjhlc control[.and.jrpund.water..Qb.s.er^at.1p.n, Lithology Sample No. Typs Completed Construction Comments Date of Completion Type of Intake GROUND SURFACE TILL: olive becoming pale.olive at 2.4m, dark grayish brown at 3.6m and olive gray at 8.2m sandy clay t i l l . Coal chips encountered from 3.6m to 8.2m. m. sand layer from 2.7m to 3. 6m. J L 1 f E I do m SAND: f. to m. sand with interbed of gravel. 22.3 F TILL: very dark gray c. sandy clay t i l l . Gravel layers (0.2m and 0.6m) encountered at 26.5m and 36.0m respectively. 37.5 l-O' o'O GRAVEL: consolidated gravel primarily composed of quartz and granitic material. 43.3 S O 1 SILTSTONE l a -2.3 -2 .9 -4.4 -6.2 -6.9 -9.3 h June 1980 [r Well screen June 1980 Well screen June 1978 Fiberglass wrap r-^June 1980 Well screen ne 1978 berglass wrap FlfE -14.5 •20 .4 •24 .8 •32.0 • 44 .8 March 1979 Well screen March 1979 Well screen June 1978 Well screen March 1979 Well screen June 1978 Fiberglass wrap ALBERTA AGRICULTURE - Irrigation Division 123 o Z J3 O BOREHOLE No.!814-E-l Page....2,.of HYDROGEOLOGIC LOG Project T A B E R . i r a i G A T I O N , RETURN .FLOW Reference elevation ...773.8.... Type of drilling..Rotary. Contractor.A1.^.-...E.n.vJ".r.?n.m?.nh. Surveyed IO FA 1000 . J U M P o t a i Elevation type • Altimeter O Rig Logged by . * ! • . ? . . . . . ! ! a l , 3 V F r o m m a p a Drill f luid. . .Water Checked by Date dr i l led . . . J4]y . . l , . 1 9 7 8 . . . Purpose of hole . Stra.tl3rap.hic. control..and .ground Lithology Sample No. Type Completed Construction Comments 45 SILTSTOME: c o n t i n u e d Dark b r . s i l t s t o n e w i t h t h i n da rk b r . s h a l e beds a t 44.5m 46.5m and 5 4 . 6 m . T h i n c o a l l a y e r a t 54 .6m. 5 4 . 6 ' SANDSTONE: s o f t sands tone w i t h 0.3m t h i c k s h a l e l a y e r a t 5 5 . 5 m . 6 0 . 0 F S I L T S T O N E 6 1 . 0 B o r e h o l e t e r m i n a t e d a t 61.0m i n s i l t s t o n e . ALBERTA AGRICULTURE - Irrigation Division 124 o Z £} O BOREHOLE No.l§15-E-l Page...! ..of.. HYDROGEOLOGIC LOG Project TABER .IRRIGATION .RETURN..FLOW Reference elevation ..7.6.3.,2..... T y p e of drilling . . . R o t a r y Contractor A l t a . . . E n v i r o n p i e n t . Surveyed E 2 r , , „„„ . , . u - . . Elevation type • A l t i m e t e r O Rig .....FA..1.9P0 Logged byM.:.C :,. H a l . , K F r o m m o p a Dril l fluid:.WATER Checked b y . . Dote drilled...«?RlX.?.t.A?7.§ Purpose of hole . . . ? * r a * ! . ' ? r a P . n . 1 . c c o n t r o l , and ,9J"ound wa te r obser-yatiqn Lithology Sample No. Type Completed Construction Comments Date of Completion Type of Intake GROUND SURFACE T I L L : da rk g r a y i s h brown becoming}^ ; o l i v e a t 1.2m c . g r a i n e d sandy c l a y t i l l G r a v e l (0.3m) l a y e r a t 1.2m. 5.8 0 GRAVEL: c o n s o l i d a t e d g r a v e l and c sand p r i m a r i l y composed o q u a r t z and g r a n i t i c m a t e c f a l . HA 1 00? b SILTSTONE: s o f $ t o ' e b n s a l i d a t e d f . to c . g r a i n e d s i l t s t o n e f 1 4 . 6 b"SANDSTONE: c . g r a i n e d s a n d s t o n e . B e n t o n i t i c f rom 23.5m to 25 .6m. T h i n (~0.3m) s o f t c o a l l a y e r s a t 2 2 . 3 m , 23.2m and) 25 .6m. 2 5 . 9 SILTSTONE-2 8 . 7 P SANDSTONE 3 2 . 0 SILTSTONE: i n t e r b e d d e d s i l t s t o n e s m i n o r ca rbonaceous s t r e a k s . Hard sands tone bed from| 35 .7m t o 3 6 . 3 m . 4 3 . 6 SAND.STQNF S 3 — 1 8 2 March 1979 W e l l s c r e e n i -t ALBERTA AGRICULTURE - Irrigation Division 125 o z XI o HYDROGEOLOGIC LOG BOREHOLE No..l815-E 7 . l . Poge..?....of..? p r o j e c t TABER IRRIGATION RETO Reference elevation../.?.3..-.2.. Type rfiS^^^ Elevatjon t y p e : S r g Rig ...f.A.A9° 0. Logged byM,.Q ; , . j t l i ~ From map •Drill fluid..Water Checked by. . . Date drilled. Jh!*.?.'.!?.7.?.. Purpose of hole s.t.CAtt9r.?P.bic. control..an.4.around..wat;er..P.bs.er.Ya.tifla» ... Lithology Sample No. Type Completed Construction Comments 45 SANDSTONE: c o n t i n u e d - T h i n (<07$ m) s h a l e a t , 4 3 . 5 m , 46.9m SILTSTONE 4 9 . 1 —SANDSTONE 5 0 . 9 SILTSTONE: i n t e r b e d d e d s i l t s t o n e s ; Hard s h a l e l a y e r from 58.8m t o 5 9 . 4 m . 5 9 . 4 b-SANDSTONE 6 1 . 0 B o r e h o l e t e r m i n a t e d a t 61.0m i n s a n d s t o n e . ALBERTA AGRICULTURE - Irrigation Division 126 HYDROGEOLOGIC LOG B O R E H O L E N0.I8I6-E-J P a g e . . 1 . . . . o f . . ? . . . . . P r o j e c t .TABER. IRRIGATION.BETUEOkQW. R e f e r e n c e e leva t ion . .7 .7 .5 .0 . . . . T y p e o f d r i l l i n g . . .Rotary C o n t r a c t o r A l t a . Env i ronmen t S u r v e y e d E 3 R i g f.A 1000 L 0 g g e d by*£.j'&&ZZ" E l e V Q t i o n t y P e : p ' o m map • D r i l l f l u i d Water; C h e c k e d b y D a t e d r i l l e d . J y l . y . . 2 ^ . . 1 9 7 8 P u r p o s e o f h o l e . . . ? t r a t1gra | )h1c_ c o n t r o l a n d ground wa te r pbserva^^^ on.. L i t h o l o g y S a m p l e No. T y p e C o m p l e t e d C o n s t r u c t i o n C o m m e n t s Date o f C o m p l e t i o n Type o f I n t a k e GROUND SURFACE T I L L : o l i v e becoming dark g r a y sandy c l a y t i l l a t 9 .8m. T h i n c o a l l a y e r s a t 10.7m and 25 .0m. T h i n g r a v e l l a y e r s a t 12.8m 17 .7m, 21.6m and 29 .9m. 3 0 . O: 1 i teS. I h SAND AND GRAVEL 3 1 . J I L L : da rk g ray sandy c l a y t i l l , d e n s e . T h i n c o a l l a y e r a t 3 6 . 9 m . T h i n g r a v e l l a y e r a t 35.4m SAND AND GRAVEL: c . sand and g r a v e l c o c c a s i o n a l c o a l c h i p . 40-Rh' • 4.5 -6.7 • 7.6 •13.2 • 28.6 • 31.1 • 4 0 . 3 June 1980 W e l l s c r e e n June 1980 W e l l s c r e e n A p r i l 1979 F i b e r g l a s s wrap May 1979 F i b e r g l a s s wrap June 1978 F i b e r g l a s s wrap June 1980 W e l l s c r e e n June 1978 F i b e r g l a s s wrap ALBERTA AGRICULTURE - Irrigation Division 1 2 7 z x> BOREHOLE N0..I8I6-E-I Poge...2..of.,,2.'."" HYDROGEOLOGIC LOG p r 0 j e c t 7£?AR..IRRIjSATIOrA.RETURN FLOW Reference elevation ...775..Q.... Type of drilling . . R o t a r y Contractor A ] t a , . . E n v i r o n m e n t . ? ? 5 - v e y f d P n . u r „* n Elevation type = Altimeter O Rig FA....1P.9P. Logged by*-p.;... •£*.£!. From map D Drill fluid Water Checked by Date drilled.My..?....!??.? Purpose of hole ...?tr.a.ti.9r.aP.I)j^^^ Lithology Sample No T y p e Completed Construction Comments 45 SAND AND GRAVEL: cnnt in .mrf M L J S I U N E : s o f t SI l t < = t n n 0 4 6 . 3 m 4 8 . 2 E SANDSTONE: b e n t o n i t i c s ands to i SILTSTONE S i i n t e r b e d d e d s i l t s t o n e s . brown ca rbonaceous s t r e a k s t h r o u g h o u t . T h i n c o a l seam a t 5 4 . 3 m . 5 6 . 4 SANDSTONE: f. g r a i n e d b e n t o n i t i c sands tone '__ 5 9 . 7 SILTSTONE: 6 1 . 0 B o r e h o l e t e r m i n a t e d a t 61.0m i n s i l t s t o n e . ALBERTA AGRICULTURE - Irrigation Div ision 128 o Z - d O ~3 HYDROGEOLOGIC LOG B O R E H O L E N o . ! . 8 1 7 - E - l . P a g e . . . ! . . o f . . . 2 . . . P r o j e c t ™.ER.IRRIGATION.RETURN.FLOW R e f e r e n c e e l e v a t i o n . . . 7 7 . 3 , 5 . . . T y p e o f d r i l l i n g . . . . ? . 0 . : ? . 1 : / . C o n t r a c t o r A l t ? . - . . Env i ronmen t S u r v e y e d I D , „ „ , , u . . . E l e v a t i o n t y p e « A l t i m e t e r • R i g FA 1000 L o g g e d b y e t j i ' v F r o m m a p a D r i l l f l u i d Water C h e c k e d b y D o t e d r i l l e d . M x . ? * . .1.97.8 P u r p o s e o f h o l e . . ? ? . r ^ t i s r a . P £ 1 . c . . . c . 0 . ^ L i t h o l o g y Sample N o . Type C o m p l e t e d C o n s t r u c t i o n C o m m e n t s Date o f C o m p l e t i o n Type o f I n t a k e GROUND SURFACE T I L L : o l i v e becoming g r a y i s h brn sandy c l a y t i l l a t 4.3m. G r a v e l l a y e r from 4.0m to 4 . 3 m . 5 .8 SANU: Sand W i t h t h i n (U.2ffl) gy^yg T I L L : o l i v e sandy c l a y t i l l . T h i n g r a v e l l a y e r s a t 10.4m 14.0m and 19 .5m. ft 0 : 2 0 . 4 T I L L : o l i v e g r a v e l l y c l a y t i l l E T I L L : olive sandy clay t i l l 2 2 . 8 2 5 . 0 11LL: olive gravelly clay t i l l 2 6 . 8 t GRAVEL: t: T I L L : 2 9 . 0 dark gray sandy clay—597g  t . KlJ T I L L : da rk g ray s i l t y c l a y t i l l  T I L L : da rk g r a y sandy c l a y t i l l . T h i n g r a v e l l a y e r a t 34 .7m. 3 7 . 2 GRAVEL: g r a v e l and o c c a s i o n a l coa r se s a n d . E SILTSTONE: I t . brn. t o b l k . s i l t s t o n e . 5 0 3 55c -5.7 -6.7 -7.4 June 1980 'We l l s c r e e n |_ A p r i l 1979 i b e r g l a s s wrap K J u p e 1980 W e l l s c r e e n E>3 16.4 -21.8 • 2 6 . 6 • 32 .7 • 37 .2 -41.5 March 1979 W e l l s c r e e n June 1980 W e l l s c r e e n March 1979 W e l l s c r e e n March 1979 W e l l s c r e e n June 1978 F i b e r g l a s s wrap June 1978 F i b e r g l a s s wrap ALBERTA AGRICULTURE - Irrigation Division 129 o XI o HYDROGEOLOGIC LOG B O R E H O L E N o . l . 8 . 1 7 - E - l . P o g e . . . . ? . . o f . . 2 . . . . . P r o j e c t _TABER..IRRIGATION. RETU RN..FLOW R e f e r e n c e e l e v a t i o n ...77.3.5.... t y p e o f ' d r n i i n g " M a ^ ; ; C o n t r a c t o r A U a , . . E n y i r ^ e n t . . . ^ jgJ^J g R i g FA 1000 L o g g e d by M . - . ? . v . . l £ . S l F r o m map O D r i l l fluidi"...w«*f.r C h e c k e d b y D a t e drilled..*.!/...3.!..1.?.7.?. P u r p o s e o f h o l e . . S „ t r „ a t 1 j g r a p h i c . c o n t r o l . . a n ^ L i t h o l o g y No. S a m p l e T y p e C o m p l e t e d C o n s t r u c t i o n C o m m e n t s 45 SILTSTONE: c o n t i n u e d T h i n c o a l seams a t 40.8m, 41.8m and 44.5m 48.5 SANDSTONE: b e n t o n i t i c s a n d s t o n e . 5 2 . 4 SILTSTONE: i n t e r b e d d e d s i l t s t o n e s c o n t a i n i n g c o a l from 52.4m t o 5 3 . 5 m . T h i n (0.6m) s h a l e bed at 60 .3m. 6 1 . 0 B o r e h o l e t e r m i n a t e d a t 61.0m i n s i l t s t o n e . ALBERTA AGRICULTURE - Irrigation Division 130 O HYDROGEOLOGIC LOG B O R E H O L E No. 1 ? 1 8 : E - 1 . Page. .A. ..of. Reference elevation ...7T.4/.3... p r 0 j e c t TABER. IRRIGATION. RETURN. .FLOW. T y p e o f d r i l l i n g . . Rot a r y C o n t r a c t o r A l t a . . . E n v l r o n n i e n t R j g FA.loop L o g g e d by ...P. 5.w^..£l±L D r i l l f l u i d . Water C h e c k e d by D a t e drilled...J.u.lx.4^.1.97.8 P u r p o s e o f h o l e .. s.tr. a.t.i.9r. aPM^ Surveyed IT] Elevation type * Altimeter • From map • Limnology GROUND SURFACE SAND: m. sand p r i m a r i l y composed o f f e l d s p a r , q u a r t z and c o a l 7 . 0 ^ l i K A V L L : c . g r a v e I t o D o u l d e r s . p Z I T I L L : sandy c l a y t i l l , s o f t . m 1 3 . 7 SAND 15 .2 b T I L L : sandy c l a y t i l l , d e n s e . G r a v e l l a y e r (0.7m) a t 4 0 . 8 m . Coal l a y e r (0.3m) a t 37.2m B e n t o n i t i c c l a y (0 .3m) a t 28 .7m. % \Q o m oo Of Sample No. i 1 pi Typs C o m p l e t e d C o n s t r u c t i o n 2 2 2 -3.5 - 4 . 4 - 5 . 9 -7 .2 10.6 -13.9 C o m m e n t s Date o f C o m p l e t i o n Type o f I n t a k e \ June 1980 j W e l l s c r e e n June 1978 F i b e r g l a s s wrap June 1978 F i b e r g l a s s wrap March 1979 W e l l s c r e e n 53 2 8 . 0 42 .6 March 1979 W e l l s c r e e n June 1980 W e l l s c r e e n | 3 ALBERTA AGRICULTURE Irrigation Division 131 O ~3 B O R E H O L E No. . l818-E/ : . l . P a g e . . . o f ?.. HYDROGEOLOGIC LOG Project TABER..IRRIGATJON.RETURN...FLOW Reference elevation..7.7.4.3.... T y p e o f drilling .Romany Contractor . A l t a . . Env i ronmen t , x S u r v e y e d m CA , n n n . n<:u „* ,1 E evation type •• Altimeter L J Rig F.A A9P.9 Logged b y ° s w . ! . . e t _aj. From map • Dril l fluid Water Checked by Date drilled...^i)X.h.\.W.%.... P u r p o s e of hole . . S . t r a t . i g r a f l h . i . c . . c a n l ^ Lithology Sample No. Type Completed Construction Comments Date of Completion Type of Intake 45 t T I L L : c o n t i n u e d 49.7 I GRAVEL: f i n e t o medium g r a v e l , o c c a s i o n a l c o a l c h i p s . 5 3 . 3 t SANDSTONE: s o f t t o ha rd sands tone o f t e n c l a y e y and b e n t o n i t i c . 6 1 . 0 B o r e h o l e t e r m i n a t e d a t 61.0m i n s a n d s t o n e . -52.9 March 1979 Well screen i ALBERTA AGRICULTURE - Irrigation Division 132 HYDROGEOLOGIC LOG BOREHOLE N o . l 8 1 ? - E - l Poge . l of . . ! . . . . Project TAKR.IRRJ.fiA.TION.RETyRN.FLOW Reference elevation...737,4..... T y p e of drilling . R o t a r y ContractorA.lta...E.n.vir.onroe.ot.. Surveyed OD r>. CP. m n n i j u n .. ^ i Elevation type •• Altimeter • R'S -F-A Logged by P . : W , , . e t . l L v From map • D r i l l fluid Water Checked by Date drilledJu."Ly.-5-»-197-8 Purpose of hole arAP.hlP..P°p.*r.Q3..?n.d.jgrojind .watsr..Qk$firya^lan Lithology Sample No. Type Completed Construction Comments Date of Completion Type of Intake GROUND SURFACE SAND 4 .3 GRAVEL: g r a v e l , o c c a s i o n a l c o a l c h i p s . 10.4 SILTSTONE: g r a y s i l t s t o n e , t h i n ca rbonaceous l a y e r s a t 10 .4m, 17.1m and 19 .5m. T h i n c o a l seam a t 18 .9m. m an ,s B o r e h o l e t e r m i n a t e d a t 30.5m i n s i l t s t o n e . - 2 5 . 4 March 1979 Well screen 3 I =1 ALBERTA AGRICULTURE - Irrigation Division 133 BOREHOLE No..Jl«Q.-.J6... Poge..l....of . . .A . . . HYDROGEOLOGIC LOG Project TABER, .IRRIGATION.RETURN.SUM Reference elevation..77.3,.4.... Type of drilling ....Rotary. Contractor ..^.IrJCind .. Logged by ...G..B.. Checked by Rig Failing..15.00. Drill fluid «f?ter Purpose of hole .Str at ij^ .^ hic.£?ET.e. JS?.i.9n..SIS'..PA?.?°ffi?.t.?r...WAtSl.l.ation Surveyed G59 Elevation type < Altimeter O From map O Date drilled..J.uae„19.?P. Lithology Sample No. Type Completed Construction Comments Date of Completion Type of Intake  Ground Surface h Sand and s i l t 1.0 TILL olive becoming greyish-brown sandy clay t i l l at 12.7. m. gravel layer at 17.4 to. 17.9 m and 21.3 to 21.9 m. sand and gravel layer at 30.5 to 31.4 m. . 0 : b I 34.0 0 Borehole terminated at 34. in t i l l . 0 m -7.4 -21.5 •27.0 IHl 33.6 June 1980 Well screen June 1980 Well screen June 1980 Well screen June 1980 Well screen ALBERTA AGRICULTURE - Irrigation Division 1> BOREHOLE No.. 1821. Page. 1....of . . . . l . . . HYDROGEOLOGIC LOG Project..TMER.iroiGATipN.ffiT^ Reference elevation.,. 714*2... Type of drilling . . . . R o t a r y Contractor...MXZUR4.~ Surveyed CD , , Elevation type < Altimeter • Rig Fa.Uinfc.lSQP. Logged by ...J3.B.— From map a Drill fluid ...Water. Checked by Date drilled.. J.un.e...i9.8p. Purpose Of hole ...Stratijnrap.hJ^ „ Lithology - S a m p l e No. Type Completed Construction Comments Date of Completion Type of Intake Ground Surface TILL olive sandy-clay t i l l sand lense at 3.4 m t i l l becomes sandy t i l l at IS.2m. 16.2 TILL greyish-brown t i l l grading into blue-grey t i l l . 2B.OI Borehole terminated at 28.0 m in t i l l . -14.9 -20.8 53 27.0 June 1980 Well screen June 1980 Well screen June 1980 Well screen ALBERTA AGRICULTURE - Irrigation Division 135 BOREHOLE No..*™. Poge.,,l...of ...l.... HYDROGEOLOGIC LOG Project .TABER..IRRIGATION..RETURN.£LQtf. Reference elevation. Type of drilling ..Auger Contractor... A...?...A. Rig ....M?J?iA?„?-?.Q Logged by Drill fluid Checked by Surveyed £• Elevation type : Altimeter • From map O Date drilled AerAi..i9.7ft... Purpose of hole . . . ! ! ! J ? ? . . ? . ^ ? . M 1 „ . i M , . U t t i ! 5 . Lithoiogy Sample No. Type Completed Construction Comments Ground surface r Sand and s i l t TILL med. brown sandy t i l l coal chips, oxidized 6.2 to Borehole terminated at 6.2 m in t i l l ALBERTA AGRICULTURE - Irrigation Division 136 HYDROGEOLOGIC LOG BOREHOLE No..f3?3-M Poge...i,., of Project —TABER.IRRI.QAII0N.J5E.TURN..FI0H Reference elevation ...77A-A... Type of drilling ....AHSe.r Contractor A.D.A^  Surveyed LD Rig ^ile.B,30...... Logged by P,G. E l e V a t i ° " * P « ' J J J ^ g Drill fluid Checked by Date drilled...August.i?79 Purpose of hole ...w.a?.®F..?.^Ae..1!'.e.?* installation Lithology Sample No. Type Completed Construction Comments Ground Surface t Sand and S i l t P T I L L 0 . 3 ^ -olive sandy clay t i l l some coal fragments oxidized 6.1 3:0 Q* ft A Borehole terminated at 6.1 m in t i l l . A L B E R T A A G R I C U L T U R E -137 BOREHOLE No..4?.?4-M. Poge,j-.,.,.of, HYDROGEOLOGIC LOG Project TAPER..IJUUGAT10H.RETURN.JLOH Reference elevotion ..77.4/.? Type of drilling WT. Contractor AJ1.A 4 . , Surveyed a , r , . Elevation type • Altimeter • Rig ....M9PA.i.e. B-30 Logged by ....P..G,._ From map • Drill fluid Checked by Date drilled August..;?.??. Purpose of hole . . . . . w . a ? . ? . r . . . W . ? J . L A £ ^ Lithology Sample No, Type Completed Construction Comments Ground Surface SAND greyish-brown med. to coarse grained sand some gypsum salts at 1.9 m 6.1 Borehole terminated at 6.1 m in sand. ALBERTA AGRICULTURE - Irrigation Division 1 3 8 HYDROGEOLOGIC LOG BOREHOLE N0..439S-M. Page..1....of . . . l : . . p r 0 j e c t TABER IRRiGATION RETURN FLOW Reference elevation ...11?.:?.... Type of drilling... Auger Contractor „AjD.A. ??f.yey?d S ' r Elevation type < Altimeter • From map O Pig ^ b i i e B-30 Logged by Drill fluid. Checked by.„ Date drilled August..1979. Purpose of hole ^?^^.y.f^k^?^}.^?n.. Lithology Sample No. Type Completed Construction Comments Ground Surface SAND med. brown coarse sand 4 . 0 — TILL - olive sandy clay t i l l 6.1 Pi Borehole terminated at 6.1 m in t i l l . ALBERTA AGRICULTURE - Irrigation Division 139 HYDROGEOLOGIC LOG Project. —TABER. .IRRIGATION. .RETURN. £ LOW. Type of drilling A.Vger. Contractor A.-.?.-.A~-.Mobile, B-30 Logged by o Z -O o Rig . Drill fluid Purpose of hole Checked by. BOREHOLE No....4.??6-M Poge...l...of . . . l . . . . Reference elevation ..77.?.\§ Surveyed K3 Elevation type 1 Altimeter • From map • Dote drilled ....AHSH?.*...1.?.7.? Water table well installation Lithology Ground Surface SAND med. brown grading to greyish blue sand clay lenses at 2.2 m 4.9 TILL - blue-grey clay t i l l 6. Borehole terminated at 6.1 m in t i l l . Sample No. Type Completed Construction Comments ALBERTA AGRICULTURE - Irrigation Division HYDROGEOLOGIC LOG BOREHOLE No...*??.?:.". Page..i...of .....i... Pro je ct TABER. .IRRIGATION. RETURN. .FLOW. Type of drilling .Aug". Contractor A..D.A...... Rig ^biie B-30 Logged by ...J.-.9.: Drill fluid Checked by Purpose of hole Water.taMewen^^ Reference elevation ..77J3.fi  Surveyed LTD Elevation type ! Altimeter • From map • Date drilled August..l?79 ... Lithology Sample No. Type Completed Construction Comments Ground Surface SAND med. to coarse grained sand dk. brown becoming greyish-blue colour 6.1 Borehole terminated at 6.1 m in sand. ALBERTA AGRICULTURE - Irrigation Division 141 HYDROGEOLOGIC LOG BOREHOLE No...l3.??-M.. Poge. . l . . .of jO O -a Project TABER..IRRIGATION.RETURN..FLOW Reference elevation ...77.5*6.... Type of drilling .....Auger Contractor _ A . D S A . _ ^ Surveyed DD „ . . , „ , „ . , , „ „ Elevation type : Altimeter • Rig * b i i e . B-30 Logged by F...G, i r F r o m m a p a Drill fluid Checked by ^ Date drilled...Aug.us.t.,19.79 Purpose of hole ...w.ater.table.we^l.l. in.st.al.ia.xjp.n Lithology Sample No. Type Completed Construction Comments Ground Surface SAND med. brown coarse uniform sand 6.1 Borehole terminated at 6.1 m in sand. ALBERTA AGRICULTURE - Irrigation Division HYDROGEOLOGIC LOG BOREHOLE No....4.39?-M. Poge..l....of ...X... Project ._ TABER.IBRIGATJON..RETURN..FLOW Reference elevation ...11~>.:I... Type of drilling Auger. Contractor „AJLA-_ Surveyed GD „ , . . , „ , « . J L „ Elevation type > Altimeter O Rig . . . . .M?bi ie .B-30 Logged by P, .G. ' R F R O M M A P • Drill fluid Checked by Date drilled.....August.;???..... Purpose of hole ...WajtM„tah}.e..jjeAJ..in5.taJLlation Lithology Sample No. Type Completed Construction Comments Ground S u r f a c e SAND med. t o c o a r s e g r a i n e d sand med. brown becoming g r e y i s h -b l u e c o l o u r 6.1 B o r e h o l e t e r m i n a t e d at 6 . 1 m i n s a n d . ALBERTA AGRICULTURE - Irrigation Division 1^ 3 HYDROGEOLOGIC LOG BOREHOLE No..4400-M Poge..l....of ...I.... o z o -3 Project .TABER IRRIGATION .RE.TJJ$OLQ.W Reference elevation 776.6 Type of drilling ....Auger Contractor _A.D.A. _ Surveyed d Rig .....Mobi.Ie.B,30 L o g g e d b y p | g u J E'evation type . A . t i n ^ • Drill fluid Checked by Date drilled.. August.197.9 Purpose of hole .^^..^.^..HfAL^ Lithology Ground Surface F T I L L olive becoming grey colour with depth gypsum salts and sand streaks throughout sandy clay t i l l Borehole terminated at 6.1 m in t i l l . Sample No Type Completed Construction Comments ALBERTA AGRICULTURE - Irrigation Division 1 4 4 HYDROGEOLOGIC LOG BOREHOLE No...44pl-M. Poge. l . . . .of Project. ..TABER .IRRIGAJIQN.RETURN..FLOW. Reference elevation..?.7.?;.? Type of drilling Auge r Contractor A . . p . . . A 1 . _ Surveyed QTJ n- u.,,;,. „ ,„ . . . _ „ Elevation type ' Altimeter • R'a M&.US..B7.30 Logged by P...G, F r o m m a p a Drill fluid Checked by Date drilled....AHBHSX. 197.9 Purpose of hole ...!???.??.. Lithology Sample No. Type Completed Construction Comments Ground Surface T I L L olive sandy t i l l becoming greyish-blue sandy clay t i l l with depth sand streaks at 4.1 m 6.1 •a Borehole terminated at 6.1 m in t i l l . ALBERTA AGRICULTURE - Irrigation Division 145 o ~3 BOREHOLE No.44q3-M Poge..l....of ...X... HYDROGEOLOGIC LOG Project T A ? M . GATION RETURN .FLOW „ Reference elevation ..771:1..... Type of drilling ....Auger Contractor A,.d,J^ _, . _ Surveyed E ) Elevation type • Altimeter • Rig Mobile. B-30 Logged by . . . . — From map • Drill fluid ... Checked by Date drilled....A.¥g.V?.t..iR7?..... Purpose of hole w.a?.??..?.^ Ae..¥.e.k\.i5£J.^ A?.t.4P.1} Lithology Sample No. Type Completed Construction Comments Ground Surface. b SAND-med. grained brown sand 1.5 T I L L olive becoming greyish brown sandy t i l l sand lense at 3.0 m 6.1 Borehole terminated at 6.1 m in t i l l . ALBERTA AGRICULTURE - Irrigation Division 146 HYDROGEOLOGIC LOG BOREHOLE N o . . . 4 4 0 4 T M . Poge..I....of ..1 Project TABER.Xmtmm.J&Vm.fJjm Reference elevation..7.73.9..... Type of drilling .....Auger. Contractor . . . . A J L A Surveyed GD Elevation type • Altimeter • From map • Rig Mob.Ufi.J5-3P. Logged by . . . £ , £ . . „ Drill fluid. Checked by. Date drilled August.A97.9... .a o Purpose of hole ....?S?er..tabl.e.wen„i^  Lithology Sample No. Type Completed Construction Comments Ground Surface SAND light brown med. grained uniform sand Borehole terminated at 6.1 m in sand. ALBERTA AGRICULTURE - Irrigation Division 147 XI o HYDROGEOLOGIC LOG Project IABJE R. IKRI CATION. REIUBJS. .FLOW Type of drilling ..Auger Contractor -A.p..A.„ Rig .Mp.bii?..?-.3.? Logged by F.-.P.-Drill fluid Checked by Purpose Of hole _Wate r ^  t ab 1 e _ we ^In s Jt a_l 1 at ion. _ _ BOREHOLE No....44.05-M.... Poge..i....of . . . I . . . Reference elevation .JJ.h.k.... Surveyed £3 Elevation type < Altimeter • From map O Date drilled.Augus.t..19.79. Lithology Ground Surface Sand and S i l t 1.8 TILL olive sandy clay t i l l contains coal fragments h SAND-med. brown sand 6.1S 5.5 ° 1 Borehole terminated at 6.1 m in sand. Sample No. Type Completed Construction Comments ALBERTA AGRICULTURE - Irrigation Division HYDROGEOLOGIC LOG BOREHOLE No.... 4. 4.?. 6.:". Poge..l....of . . . l . . . Project TABER .IRRIGATJ0{{.RJEIURN..FLOW. Reference elevation ..7.57.:.3 Type of drilling Aug?.?. Contractor . . . . A . . D . . A . _ . _ Rig .Jto.bUe.B-30 Logged by ... .?,£...„ Drill fluid Purpose of hole . .. Checked by. Surveyed LID Elevation type 1 Altimeter • From map • Date drilled....August.JS7F..... Water table well installation Lithology Ground Surface Sand and S i l t fine sand to s i l t greyish-brown colour 4.6 Borehole terminated at 4.6 m in sand and s i l t . Sample No. Type Completed Construction Comments ALBERTA AGRICULTURE - Irrigation Division HYDROGEOLOGIC LOG BOREHOLE No..4.49.7. Poge,.l....of . . . l . . . Project _ . TABER IRRIGATION_P^TURN..FLOW Reference elevation..7.76..Z.... Type of drilling Auger Contractor A : P , A , . - Elevation |ypfl , ft"** g Pig Mobile B-40 Logged by G.B. From map • Drill fluid Checked by Date drilled July. ».?P..... Purpose Of hole Stratigraphic.cpra^ Lithology Sample No. Type Completed Construction Comments Ground Surface h Sand and S i l t 1.0 b TILL olive sandy clay t i l l becoming sandy t i l l at 8.2 m 13.7 1 Borehole terminated at 13.7 m in t i l l . ALBERTA AGRICULTURE - Irrigation Division 150 HYDROGEOLOGIC LOG B 3 R V £ ; f : V ? Project _ TABER IRRIGATION..RETURN.F.LQ.W Reference elevation Type of drilling ...Auger Contractor.... A.-.D.A, Surveyed QD . , , _ c Elevation type = Altimeter • Rig Mobile.B-40 Logged by R.s ; J y F r o m map D Drill fluid Checked by Date drilled...Augu5.t.l9B0 Purpose Of hole Stratijgraphi.c correlation..and^ Lithology Stratigraphy Sample Completed Construction Comments Stratigraphy No. Type Ground Surface Z T I L L Z- olive sandy clay t i l l Z becoming dk. brown at depth ~ coal fragments throughout ~ moderately oxidized = 18.8 i a IS n — SAND ; light brown med. uniform sand : 27.4 _^ Borehole terminated at 27.4 m 2 in sand. ALBERTA AGRICULTURE - Irrigation Division 151 HYDROGEOLOGIC LOG BOREHOLE No 4 4 1 1 . Page...!...of Project .TABER..1 REI.GA.TIOK.RETURN.siov- Reference elevation ..77.6,.2 Type of drilling ...Auge.T. Contractor ....^bile Surveyed DTJ „ . . , „ , „ . . . „ „ Elevation type ! Altimeter D Rig . . . . M i i e . B - 4 . q Logged by ...£.,?.,..„ ' * F r o m m a p a Drill fluid Checked by Date drilled... June.A98.Q Purpose of hole ..?^atigT. aPM. c.. .9?^^ Lithology Sample No. Type Completed Construction Comments Ground S u r f a c e SAND l i g h t g r ey u n i f o r m m e d . g r a i n e d sands m i n o r c l a y s t r e a k s 5.9 B o r e h o l e t e r m i n a t e d at 5 .9 m i n s a n d . ALBERTA AGRICULTURE - Irrigation Division HYDROGEOLOGIC LOG Project TAPER .IRRIGATION. RETURN. .FLOW. Reference elevotion ..77.4...8. BOREHOLE No.... 4 4.*?.. Poge. l . . . .of . . . 1 . . . Type of drilling ..Auger Contractor....MQb.iJ.e_. Rig ....JMobile..R-4.Q Logged by ...?..?....„ Drill fluid Checked by Surveyed CG Elevation type ! Altimeter O From map • Dote drilled... J«ne..I?.?? Purpose Of hole . A t ^ t i g r a p h i c c o r r e l a t i o n _and_wat Lithology -Sample No. Type Completed Construction Comments Ground Surface TILL dk. brown sandy clay t i l l contains coal fragments and streaks o f gypsum s a l t s 0. 14.6 Borehole terminated at 14.6 m in t i l l . ALBERTA AGRICULTURE - Irrigation Division 153 JQ O ~3 BOREHOLE No 44.13. Po9e..l....of l . HYDROGEOLOGIC LOG Project .TABES..IRRIGATION.RETURN-SUM Reference elevation..77.4.. 1.... Type of drilling Auger Contractor M?MiS._ .. . ! V ! . v 9 V f d H , v * ,, „ . „ • Elevation type ! Altimeter O Rig *bile .B-40 Logged by J>.?.: From map O „ Date drilled..June..19.80 Drill fluid. Checked by . . Purpose Of hole ...Strati^raphic. coTT.e.lation.and.wat? Lithoiogy Sample No. Type Completed Construction Comments Ground Surface TILL olive sandy clay t i l l coal fragments abundant gypsum streaks throughout F S A N D - brown med. grained 14.9 CG f I 16.2 Borehole terminated at 16.2 in sand. ALBERTA AGRICULTURE - Irrigation Division 154 BOREHOLE No... .44.14. Poge.l . . . .of l . . o z o HYDROGEOLOGIC LOG Project I f ? . ? * . . 1 . ^ . ^ ™ Reference elevotion..7.73,5 Type of drilling....Augar. Contractor....Mobile L. t Surveyed CD „ v . , * n , J L n D Elevation type = Altimeter • Rig . . . . M i l ? . .B-40 Logged by ...P.-.?.-. J K From map • Drill fluid Checked by Date drilled....J.™.?. i?.?o Purpose of hole ?i r. a.?AK aPM9..cp.rreJLati Lithology Sample No. Type Completed Construction Comments Ground Surface T I L L dk. greyish brown sandy clay t i l l coal fragments throughout local gypsum salt streaks t i l l oxidized throughout gravel lense at 12.3 m L L 4 p i I Borehole terminated at 17.4 m in t i l l . ALBERTA AGRICULTURE - Irrigation Oivision 155 HYDROGEOLOGIC LOG BOREHOLE No...44.15. Poge..l,...of ,.1.... P r o j e c t . „ T A B E R . I R R I G A ™ Reference elevotion..7.U.&.... Type of drilling ....Auger........ Contractor Mobile.- _. Surveyed DD , . _ _ Elevation type' Altimeter • Rig Mp.tele.B-40 Logged by D.P. ' y From map • Drill fluid Checked by Date drilled June.l?.80 Purpose of hole . . . ^ a t i graphic „c?^ Lithology Sample No. Type Completed Construction Comments Ground Surface E T I L L olive sandy clay t i l l becomes dk. grey sandy clay t i l l at 16.5 m abundant clay layers throughou-fine sand and s i l t layer from 8. 7 to 9.1m D c '•a 18.0 I Borehole terminated at 18.0 m in t i l l . ALBERTA AGRICULTURE - Irrigation Division 156 o z HYDROGEOLOGIC LOG BOREHOLE No. 4416. Page..!....of ...1.. Project TABER..jRRI.GAUQN.RE.TURN..FLOW. Reference elevation ..77.4..4 Type of drilling ...Auger Contractor ....Mobile Surveyed C3 . . . . . „ . . . Elevation type < Altimeter • Rig .Mobile.B-4.0 Logged by . . . O , . , K F R O M M A P A Drill fluid Checked by Date drilled.J.ms..19.8.0 Purpose of hole „?* r **A??i a EkA c . .^ Lithology Sample No. Type Completed Construction Comments Ground surface tSandand s i l t 1.8 T I L L - sandy clay t i l l - o l i v e 3.4 Sand and s i l t - light brown 49 JILL, - olive sandy clay t i l l s 4 SAND - It . brown uniform sand 7 8 Od t T I L L olive clay t i l l heavily oxidized coal fragments 12.5 P SAND F - light grey uniform sand [ 4 g Borehole terminated at 14.9 m in sand. ALBERTA AGRICULTURE - Irrigation Division HYDROGEOLOGIC LOG BOREHOLE No...4417. Page..I....of ...1... Project TABER..IRRIGATION.RETURN.£LQW. Reference elevation... 775,.$ Type of drilling ....Auger Contractor Mob;Ue„ Surveyed E Rig ...JfcbiA...Wfl Logged by .....w...y...„ Elevation g Drill fluid Checked by Date drilled....Jyn.e..i9.8p. Purpose of hole ....^JT?.?.1.^.*?.^ L'ithology Sample No. Type Completed Construction Comments Ground Surface SAND light brown uniform sand grading into grey t i l l : 8.1 TILL grey sandy t i l l abundant sand layers 13.1 Borehole terminated at 13.1 m in t i l l . ALBERTA AGRICULTURE - Irrigation Division 158 HYDROGEOLOGIC LOG BOREHOLE No. 4418. Poge. l . . . .of o Z .o o ~3 Project .TABER. IRRIGATION..RETURN.FLOW Reference elevation ..7.7?..6 Type of drilling Augex Contractor .....tobiLe Surveyed CO vv ,Ki i» o An i • • T u Elevation type •  Altimeter • Rig . . . »p i l e .B-40 Logged by . . . J .H . , K From map CD Drill fluid Checked by Date drilled...*?V?l?..l?8Q Purpose of hole ....?!£?.!..J.?.^ ..kc..5° Lithology Sample No. Type Completed Construction Comments Ground Surface SAND light brown uniform sand 4.0 F~ T I L L grey sandy t i l l many grey sand layers throughout 14.8 PS :o: i f Borehole terminated at 14.8 m in t i l l . ALBERTA AGRICULTURE - Irrigation Division 159 BOREHOLE No.. .4419 Poge .j. . , . .of,..]_.,, HYDROGEOLOGIC LOG p r o j e c t TAJ3E.I$.IRRIGATION..RE.TURN..FXOW Reference elevation ...7.73.,6. Type of drilling ....Au^r. Contractor ...Mobile fypi , Jjf[*>jJ D Rig Mobile. B-40 Logged by ..J..-J.. From mop • Drill fluid Checked by Dote drilled.. . Jj»fi..l?«y. Purpose of hole ?.t.TAli.?.r.?P.hi.?..?P.T?.?.lati installation Lithology Ground Surface SAND light brown uniform sand 2.1 TILL greyish-brown sandy clay t i l l with coal layers oxidized 6.4 •93 m 2o t — SAND - dk. grey uniform 7.9 TILL dk. grey sandy clay t i l l some coal layers sand lense at 10.7 m and 12.1 d 17.7 § Da .Cr, 1 Borehole terminated at 17.7 m in t i l l . Sample No. Type Completed Construction Comments ALBERTA AGRICULTURE - Irrigation Division 160 BOREHOLE No. .442.0... Page,i....of ...1... HYDROGEOLOGIC LOG Project TA??.?..J.^A?ATION.j^JURN.PkQW Reference elevation...7.7.6.2.... Type of drilling Auger Contractor .. A.D.A. Surveyed ED Rig ....Mile .B,4.q L o g g e d by ...G.B,. E , E V A T I O N ! • Drill fluid Checked by Date drilled....lHly...\?.a.9. Purpose of hole ....s.?.r.a.ti£xaEki.P..?o Lithology Ground Surface t SAND med. brown uniform coarse sand coal layer from 2.4 to 30 m 7Xi r — TILL med. brown sandy clay t i l l n y i di Ti?d 9.8 b Sand and Gravel h TILL - sandy clay t i l l 11.3 I 2 . 2 P Borehole terminated at 12.2 m in t i l l . •A Sample No. Type Completed Construction Comments ALBERTA AGRICULTURE - Irrigation Division 161 BOREHOLE No.. 4421. Poge..l....of ...x... HYDROGEOLOGIC LOG p r o j e c t TABER_IRRIGATION .RETURN. FLOW Reference elevotion....77.4.4... Type of drilling ....RMaxy. Contractor . A i i r S n i . . . ^ ! ?» r v e y f d S , K * „ Elevation type ! Altimeter • Rig Fai.kin&.lSOO Logged by ...G:B. From map • Drill fluid Checked by Date drilled....J™?..*?.??. Purpose of hole S t r a t i S T . a P . b j c corTelation^a^^^^ Lithology Sample No. Type Completed Construction Comments Ground Surface Sand and S i l t 1.5 t r TILL olive sandy clay t i l l coal fragments some gravel at S.S m lor — SAND grey sand with clay lenses 7.0 0. TILL - greyish brown sandv """ clay t i l l 9.1 10. SAND - grey uniform sand with clay lenses 13.4 F_ TILL - grey sandy clay t i l l ,5 2 T7o Borehole terminated at 15.2 in t i l l . ALBERTA AGRICULTURE - Irrigation Division 162 HYDROGEOLOGIC LOG BOREHOLE No...44.22 P o q e l of ....I... Project .TABEB.JRBI.GA1IQN..RETURN.ELQW Reference elevation....771.6... Type of drilling ...Rotary. Contractor ..All.:Kind Surveyed LT] . . . . . . . . , , . _ „ Elevation type •• Altimeter • Rig ..F.ffii.nK.isoq Logged by p.-.?.: J y F r o m m a p a Drill fluid Checked by „ Date drilled ^.e...\?.^9. Purpose of hole ...Stratigraphic^^ Lithology Sample No. Type Completed Construction Comments Ground Surface t TILL olive sandy clay t i l l coal fragments sand lense from 10.1 to 10.7 m 12.2 I I t SAND light greyish brown uniform sand gravel lense at 13.8 m t i l l lense from-15.5 to 16.5 m 19.8 Borehole terminated at 19.8 m in sand. ALBERTA AGRICULTURE - Irrigation Division 163 HYDROGEOLOGIC LOG BOREHOLE No..4423. Poge .X....Q1 ...I... Project TABER.JWIGATION.RETURN..FLOW Reference elevotion ...Z7.Q.2... Type of drilling ....Rotary. Contractor.. AJ.l-Kjijd_._ Surveyed LTD . . ; , . „ .rnn 1 J 1. r D Elevation type : Altimeter • Rig ?Hi.WJ5. isqo Logged by ' f F r o m m a p a Drill fluid.....i.?*?.1. Checked by Date drilled... J.une..i?80 Purpose of hole ?. t.?i.t. i.§. rap.i^ Lithology Sample No. Type Completed Construction Comments Ground Surface P~ Sand and S i l t 0.9 f - TILL dk. brown clay t i l l coal fragments slightly oxidized 11.6 P~ Mixed sand and t i l l 13.7 a $ •a If • 01 I_ SAND grey uniform sand 15.81 t TILL greyish blue sandy t i l l with sand lenses near top 19.8 Borehole terminated at 19.8 m in t i l l . ALBERTA AGRICULTURE - Irrigation Division 164 o z xt o -3 HYDROGEOLOGIC LOG BOREHOLE No..4424. Poge,.i....of Project — TABER IRRIGATION RETURN FLOW Reference elevation. 7.75.,4. Type of drilling ....Rotary Contractor ...All-Kind Rig Failing.1500 Logged by Drill f l u i d . . . w . a t . e r . Checked by _ — _ Purpose Of hole ... s.trati&raphic..correlation .and. water Surveyed 1X1 Elevation type : Altimeter • From map O Date drilled.. June. 19.80 Lithology Ground Surface Sand and S i l t 1.5 TILL olive sandy clay t i l l coal fragments heavily oxidized 10.7 p S a n d and Gravel 11.9 t " TILL-dk. brown sandy t i l l 13.4 SAND light grey uniform sand gravel lense at 14.1 m some t i l l lenses throughout 9? 19.8 p Borehole terminated at 19.8 m in sand. Sample No. Type Completed Construction Comments ALBERTA AGRICULTURE - Irrigation Division 165 BOREHOLE No.4425.... Poge.l . , . .of . o z JQ O "9 HYDROGEOLOGIC LOG p r 0 j e c t TABER IRRIGATION RETURN FLOW Reference elevation ...77a.2..... Type of drilling .AvS?.r. Contractor ??.uk.e..P_ _, .. . ! " r . v e y ? d S „ Elevation type< Altimeter • Rig M?^.1.?..?.-.3.0. Logged by 9.-.P.: From map • Drill fluid Checked by Date drilled....June.1980. Purpose of hole K«.e.x..j;.ab.le..Ke.U.Ans.taXJ.atiPJi Lithology Ground Surface F T I L L olive sandy clay t i l l some coal fragments moderately oxidized 7.6 •a. Borehole terminated at 7.6 m in t i l l . Sample No. Type Completed Construction Comments ALBERTA AGRICULTURE - Irrigation Division 166 BOREHOLE No.. 4426. P o g e o f ..l o z .o o -3 HYDROGEOLOGIC LOG Project TrV?P.R. I^J.^TiP^..!^TJ^..fkQw. Reference elevation ..7.7.2,5. Type of drilling ....Auger Contractor ....PsubieJ) Rig Mobile. B-30 Logged by fi.fi, Dri l l fluid Checked by Purpose Of hole Wa?.<?r..?SbA?..".elA.Ans^M.lation Surveyed DO Elevation type « Altimeter O From map • Date drilled....June..J9.80, Lithology Sample No. Type Completed Construction Comments Ground Surface SAND light brown uniform sand clay lenses at 3.2 and 4.0 m 4.6 Borehole terminated at 4.6 m in sand. ALBERTA AGRICULTURE - Irrigation Division 16? HYDROGEOLOGIC LOG BOREHOLE No...4427 Page. .of ...1... o Z o "3 Project 7*?.??..A!W RATION, RETURN.FLOW Reference elevation...767.1... Type of drilling ....Aweer Contractor ....Pswfel.e..B Surveyed EH _ . UM„-I<. n m i • • ~ „ Elevation type • Altimeter • Rig .Mpbi.le.B-30 Logged by ." ' F r o m m a p j - , Drill fluid Checked by ; Date drilled....June. i?.80 Purpose of hole y!*?.?1..?.^.^?..^!^.^??.^^*?.?-0.1? Lithology Sample No. Type Completed Construction Comments Ground Surface T I L L olive sandy clay t i l l coal fragments gypsum salts present 7.6 D m Borehole terminated at 7.6 m in t i l l . ALBERTA AGRICULTURE - Irrigation Division 168 HYDROGEOLOGIC LOG BOREHOLE No 4428 Poge.,.3L,.of . . . l , , . o Z JB O ~3 Project . _ . T A B E R IRRIGATION.RETUW.^OW Reference elevotion....?69.i... Type of drilling ....Auger.....;... Contractor Double D Surveyed ED Rig . ^ i l e . B , 3 0 L O G G E D B Y G , B , E l e v ° " ° " type • A l t i m e ^ • Drill fluid. Checked by Date drilled...J.une..1980. Purpose of hole ®.. w .?^ Lithology Ground Surface T I L L olive sandy clay t i l l coal fragments moderately oxidized 7.6 Borehole terminated at 7.6 m in t i l l . I or Sample No. Type . Completed Construction Comments ALBERTA AGRICULTURE - Irrigation Division 169 HYDROGEOLOGIC LOG BOREHOLE No.. 4429. Poge..i.. . .of . . i . . . . Project.._ .TABER .IRRIGATION..5ETUBN.FXQW Reference elevation...7.??.-.?.. Type of drilling ....Auger Contractor. ..P.oub;.e.J5._ Surveyed E Rig .....M9bi.le.B-30..... L o g g e d by G.B. Elevation type = Mtimeter • Drill fluid Checked by_.._„_ „ Date drilled....June. .i?8p. Purpose of hole .t.?b.^.e..*?11 installation Lithology Ground Surface t ~ "Sand and S i l t 0.6. Z_ T I L L 2 olive sandy clay t i l l Z heavily oxidized sand lense at 7.0 m 7.6 Borehole terminated at 7.6 m p~ in t i l l . 1 w -.O a Sample No. Type Completed Construction Comments ALBERTA AGRICULTURE - Irrigation Division 170 HYDROGEOLOGIC LOG BOREHOLE No....44.30. Poge. . l ...of . . l Project Thm..mxmiQK.B£Tma.ELQV. Reference elevation..7.68.1.... Type of drilling .Auger Contractor ...Pp.ub.le..p...„ Surveyed CD 14,1,4 1-, n in • J L. n n Elevation type ! Altimeter • Rig .Mobile.B-30 Logged by G.B. , F F R O M M A P • Drill fluid. .. Checked by. Date drilled....June..i?80. Purpose of hole .Wble.wel^ Lithology Ground Surface SAND light brown uniform sand 4.0 h- TILL - dk grey clay t i l l 6.1 Borehole terminated at 6.1 m in t i l l . Sample No. Type Completed Construction Comments ALBERTA AGRICULTURE - Irrigation Division 171 BOREHOLE No..4431. Page. .1.. ..of ...i.. HYDROGEOLOGIC LOG Project . . . . .TABER .IRRIGATION .RETURN.. FXP.w Reference elevation 76.2..-.s. Type of drilling..Auger Contractor....PpubJe.J? Surveyed E ' y * Elevation type • Altimeter O Rig .....Mp.by?..?-.3.? Logged by G . B . p r o m m a p o Drill fluid Checked by Date drilled....J.uae..l9.80. Purpose Of hole Water..table. we.;}.. .ins.ta.UstAPJj Lithology Ground Surface SAND light brown uniform sand 6.1 F TILL - dk grey clay t i l l 7.6 Borehole terminated at 7.6 m in t i l l . Sample No Type Completed Construction Comments ALBERTA AGRICULTURE - Irrigation Division 172 BOREHOLE No...MAR.. _ _ P a g e . . l . . . o f ...1... o z JQ O ~3 HYDROGEOLOGIC LOG Project. TABER..IRRIGATION.RETURN.J.LOW. Reference elevation..?.!?.:?. Type of drilling Auger Contractor .....A...D.A... Rig ...Mobile..B-40 Logged by ?.•.?.•. Drill fluid Checked by Purpose of hole ?# a . ^ .S? .*P£K^^ Surveyed D Elevation type < Altimeter • From map CD Date drilled J.V^J. 9.?. 0. Lithology -Sample No. Type Completed Construction Comments Ground Surface SAND light brown med. grained sand to coarse-4.6 t TILL greyish-brown sandy t i l l increasing clay content with depth coal chips, oxidized 10.7 h SAND light greyish-brown med. to coarse-grained uniform sand 18.3 Borehole terminated at 18.3 m in sands. ALBERTA AGRICULTURE - Irrigation Division 173 v HYDROGEOLOGIC LOG BOREHOLE No.. .MAR. Poge..i....of .Z... o Z JO o -3 Project TABER .IRRIGATION.RETURN,.FLOW. Reference elevation ....77.3..?... Type of drilling....Auger Contractor ....Habile. „ , Surveyed O „ v , » ,„ . J L „ Elevation type = Altimeter O Rig ....M?bile.B,40 Logged by J Y From map E l Drill fluid Checked by Date drilled Iw?..J.??.? Purpose of hole . . . . ^ " i ^ P . h ^ Lithology Sample No. Type Completed Construction Comments Ground Surface T I L L med. brown sandy t i l l moderately oxidized occasional coal chips sand lense from 4.0 to 4, 6 m. 11.6 0 4 h T I L L blue-grey sandy-clay t i l l t i l l -occasional coal chips 19.8 I 4 Borehole terminated at 19.8 m in t i l l . ALBERTA AGRICULTURE - Irrigation Division 174 BOREHOLE No.. MAR..-.?.. Poge.l of ...1... JQ O -3 HYDROGEOLOGIC LOG p r 0 j e c t TABER IRRIGATION RETURN FLOW Reference elevation Type of drilling ...Aug- Contractor... A, D , A , _ t y p e , S = d g Rig Mobile .B-40 Logged by From map O Drill fluid Checked by Date drilled...August.J.9.8.Q Purpose of hole StratigT.aph^ Lithology Ground Surface Sand and S i l t 1.0 F_ TILL olive clay t i l l contains sand stTeaks oxidized 6.4 SAND light brown med. grained uniform sand siltstone 12.2 13.1 Borehole terminated at 13.1 in bedrock. Sample No. Type Completed Construction Comments ALBERTA AGRICULTURE - Irrigation Division 175 o z x> o -3 HYDROGEOLOGIC LOG BOREHOLE Poge.i. No MAR - 4 ...of ....I... Project T A B M . I . ^ . ^ T . I . 9 . N „ . ^ . T ^ Reference elevation Type of drilling .A«.2.er. Contractor f.-.P.-A-. Surveyed • . , , _ . Elevation type 1 Altimeter • Rig .....M?bile.B-40 Logged by , K F r o m m a p m Drill fluid Checked by Date drilled Augjist.ASSQ... Purpose of hole J?4-^ FF*Pli4-.,=.-*=9J^ 71,53-»'?Ai9R. Lithology Sample No. Type Completed Construction Comments Ground Surface TILL olive sandy clay t i l l coal fragments throughout moderately oxidized sand lense at 7.3 m 13.7 o w i 1 .in t_ Siltstone 15.2 Borehole terminated at 15.2 m in bedrock. ALBERTA AGRICULTURE - Irrigation Division 176 HYDROGEOLOGIC LOG BOREHOLE No..MAR. Page.1....of ...X... O -3 Projec t ._ TABER _IRRIGATION, MTURN .FLOW Reference elevation Type of drilling .Auger Contractor .....A.p.,A, Surveyed • . , . „ „ Elevation type • Altimeter • Rig .....Mpbiie.B-40 Logged by R.s. ' r F r o m m a p r r j Drill fluid Checked by Date drilled...August.I98.Q Purpose of hole fSaI*A?..?.°..?.e.1.ation Lithoiogy -Sample No. Type Completed Construction Comments Ground Surface t TILL olive sandy clay t i l l sand lenses throughout t i l l 7.6 .Si •°-'C SAND dk. brown uniform sand be-coming greyish-blue colour at 9.2 m occasional gravel lense 22.9 Borehole terminated at 22.9 m in sand. ALBERTA AGRICULTURE - Irrigation Division 177 ' HYDROGEOLOGIC LOG BOREHOLE N0.MAR.-.6. Poge..l...of ....1... ProjeCt......TABER.IRRIGATION.RETURN..FLOK Type of drilling Aug$r. Contractor.....AJ..A-... Rig ..M°bAi?..?r.'.P. Logged by J?.-.?.... Drill fluid Checked by Purpose of hole S t " ^ . . ? . * ! * ^ Reference elevation Surveyed • Elevation type > Altimeter • From map GD Date drilled.August. 1281. Lithology Sample No. Type Completed Construction Comments Ground Surface t SAND and Gravel dk. brown fine to coarse sand and gravel coarse gravel layers through-out. 14.3 t T TILL greyish blue sandy t i l l and interbedded sand layers (g ^  ? 0 0 -•Q Borehole terminated at 18.3 m in t i l l . ALBERTA AGRICULTURE - Irrigation Division APPENDIX B GEOPHYSICAL LOGS 179 • • 1 • i • • < • i . • • GEOPHYSICAL LOGS AND STRATIGRAPHY AT TESTHOLE 1809E SPONTANEOUS POTENTIAL DEPTH (mVl (ft.) 20 16 12 8 4 0 i i I I 1_ SANDY CLAY TILL SHALE SILTSTONE * IE i o H GRAVEL SANDSTONE AND SHALE 3 0 -SILTSTONE 4 0 -SHALE 5 0 -SILTSTONE : s o -7 0 -8 0 -9 0 -100-110 120-130-: 140 150-160 170 180 190 2 0 0 4 8 J L. RESISTIVITY (ohmeters) DEPTH 12 16 20 24 28 32 34 40(m) i i i i I I 1_ - 5 - 1 0 •15 ( - 20 25 - 3 0 - 3 5 - 4 0 •45 - 5 0 - 5 5 . - 6 0 MKICULTUKE IMIIOATION OCVItlOM 1UIWTTI0 0*TE oeawieo o*»«m...*...T CHICKED M T E .1980. .09 II. 180 I . I . I . I GEOPHYSICAL LOGS AND STRATIGRAPHY AT TESTHOLE I8IOE 3 g SANDY CLAY TILL GRAVEL SILTSTONE SANDSTONE SILTSTONE SANDSTONE 8 SPONTANEOUS POTENTIAL RESISTIVITY DEPTH (mV) fohmeters) (ft.) 50 40 30 20 10 0 10 20 30 40 50 60 70 80 90 0-1 1 1 1 I I I I I I I I I L DEPTH 100 (m) 80-90-100-110-120-130-140-150-160-170-180-190-200 -- 5 -10 15 - 2 0 - 2 5 - 3 0 - 3 5 40 - 4 5 - 5 0 55 60 MOICULTVCt imiSATIOH MVItlOH tuawTTco 0*TC DATE T S ocsmco M*«M.. * CMCCXCO B«TC .. '..'.I*80'.'P9'. j.'l" 181 l i l i l i I i i i i i i i i i GEOPHYSICAL LOGS AND STRATIGRAPHY AT TESTHOLE 181 IE SAND AND GRAVEL SANDY CLAY TILL SAND AND GRAVEL SANDY CLAY TILL GRAVEL SILTSTONE SHALE SPONTANEOUS ^ T „ T l , POTENTIAL RESISTIVITY DEPTH (mV) (ohmeters) (ft.) 50 40 30 20 10 0 20 40 6 0 80 100 120140160 o H — i — i — i — i — i — i — i i i i i i i -100-H 110-120 • 130-SILTSTONE interbedded with BROWN SHALE 1 4 0 ' COAL SEAM at 148 ft. SANDSTONE from 192 to 194 ft. I 50H 160-170-180-190 -200 -DEPTH I80 200(m) 0 - 5 -10 -15 - 2 0 - 2 5 - 3 0 - 3 5 - 40 45 - 5 0 - 5 5 - 6 0 AMICULTUKE IRftlCATION DIVISION SUBMITTED . DATE APPROVED.., DATE DtSIONEO DRAWN. W..T.S, CMECXED DATE .1980. .09. II.. 182 i i i i i i i i i GEOPHYSICAL LOGS AND STRATIGRAPHY AT TESTHOLE I8I2E o g CLAY TILL GRAVEL < SHALE SILTSTONE SANDSTONE SHALE at 190 ft. SPONTANEOUS POTENTIAL RESISTIVITY DEPTH (mV) (ohmeters) (ft.) 50 40 30 20 10 0 20 40 60 80 100 120 140 160180 0-1—1—1 I I I I I I 1 1 1 1 1 DEPTH 200(m) 10-20-30-40-50-60-70-80-90-100-110-120-130--H40 • 150-I6Q-170-180 -190-200 - 5 -10 -15 - 2 0 MRICULTUftC IROISATION OtVISION S U B M I T T E D . DATE APPftOVCO DATE DCSIQNEG M A « N W T . S . CMECKED OATE .1980. 0 ? .1.1 183 • t • i • i • i GEOPHYSICAL LOGS AND STRATIGRAPHY AT TESTHOLE I8I3E 2 M -I h e SPONTANEOUS POTENTIAL DEPTH (mV) (ft.) 50 40 30 20 10 0 0-1 " 1 1 ' L SANDY CLAY TILL SAND TILL. SAND SANDY CLAY TILL GRAVEL at 69.5 and 81 ft. GRAVEL SANDSTONE INTERBEDDED SILTSTONE SILTSTONE 10-20-30 H - 4 0 ; 50--60 =j 70-80-90-100-110-120-I 3 0 H .140-150-160-170--180--190 = SANDSTONE 200-RESISTIVITY (ohmeters) 20 40 60 80 100120140160180 _J I I I I I I I L DEPTH 200(m) 0 5 -10 -15 - 2 0 - 2 5 - 3 0 •35 - 40 - 4 5 - 5 0 •55 J - 6 0 / d l t e r t a AOKieuLTU*! IMIIUTIOH OWItlOH tuamrm. 0»T£ •WtOVfD,.. 0»TE ccatNto <x.»««...w.,TS,. CMtCKCD BATE 1980 09. II. 184 I • . . I GEOPHYSICAL LOGS AND STRATIGRAPHY AT TESTHOLE I8I4E TILL 0 -SAND ^ — l o . = 2 0 -SANDY CLAY TILL 3 0 -4 0 -5 0 -SAND GRAVEL LENSES 6 0 -7 0 -8 0 -9 0 -SANDY CLAY TILL 100 -110-1 2 0 -GRAVEL 1 3 0 -140 -SILTSTONE 150-SANDSTONE 160 -SILTSTONE 1 7 0 -180-SANDSTONE SPONTANEOUS POTENTIAL RESISTIVITY DEPTH (mV) (ohmeters) DEPTH (ft) 50 40 30 20 10 0 20 40 60 80100 120 140 160 I80200(m) i i i i i i i i i i i i i i 190-200 - 5 0 - 5 5 - 6 0 HWIOATION DWItlON lUtWTTEO o o t m c o DATE D«A«. . . .W.,T..S, APPROVED o tccno K A L E • M E E T Of DATE D A T E 1980 09 II FILE MO. 185 I i I i GEOPHYSICAL LOGS AND STRATIGRAPHY AT TESTHOLE I8I5E g 0 -SANDY CLAY TILL 1 0 -2 0 -GRAVEL 3 0 -4 0 -SILTSTONE 50 = SANDSTONE 6 0 -70 -INTERBEDDED COAL, SILTSTONE SANDSTONE 8 0 -SIL TSTONE 9 0 -SANDSTONE 1 0 0 -110-SPONTANEOUS POTENTIAL DEPTH (mv) (ft.) 50 40 30 20 10 0 20 40 60 80 100120 140160 180 ' ' ' I I I I 1 ! I ! I L L RESISTIVITY (ohmeters) SILTSTONE SANDSTONE at 117 to 119 ft. 1 2 0 -130 -140 -SANDSTONE 150 -SILTSTONE SANDSTONE 160 -1 7 0 -SILTSTONE 180-190 -SANDSTONE AND SHALE 200 -DEPTH 200(m) 0 - 5 -10 -15 - 2 0 - 2 5 - 3 0 - 3 5 - - 4 0 -- 4 5 - 5 0 - 5 5 - - 6 0 Ahem W t l C U L T U I I C I R f t l G A T I O * D W I f t l O N l U » W T T t D . MTC 0*Tt DC3KMC0 0«»WI(...W.-.T: 5.-c x t e x t o M T t .1980. .09..11 GEOPHYSICAL LOGS AND STRATIGRAPHY AT TESTHOLE I8I6E SANDY CLAY TILL thin gravel seam at 42,58,66,71 and 92 ft. SAND AND GRAVEL SANDY CLAY TILL GRAVEL SILTSTONE  SANDSTONE SILTSTONE SANDSTONE 2 0 0 m i M t i w owi*io» Itri "1980 09 II t o n . t"«T OF FH.I Ma. 187 • 1 • ' • ' • 1 1 • • • ' • • GEOPHYSICAL LOGS AND STRATIGRAPHY AT TESTHOLE I8I7E SPONTANEOUS POTENTIAL DEPTH (mV) (ft.) 50 40 30 20 10 0 0-1 1 1 1 1 L SANDY CLAY TILL SAND 10 -"20 = SANDY CLAY TILL 30-40-50-60-7 0 -GRAVELLY CLAY TILL 8 0 -GRAVEL 90-1 100 -SANDY CLAY TILL 110 — 1 2 0 -RESISTIVITY (ohmeters) DEPTH 10 20 30 40 50 60 70 80 90IOO(m) -I 1 1 1 I I i ' i GRAVEL • 130-140 • SILTSTONE COAL at 134 and 137 ft 150-SANDSTONE 160-170-SILTSTONE SHALE at 174 and 182 ft. 180-190-200 • 5 -10 -15 - 2 0 25 - 3 0 - 3 5 - 40 - 4 5 - 5 0 - 5 5 - 6 0 ^^ ibCffGl MKICULTUDC IMtlMTION OfVltlON -su«i»rrrto OCStONCO. DATE OHAWK...W...T.S.. APPROVED DATE CKECXEO OATE 1980 09 II •CALE SHEET Of OWO. Ha FILE Ho. GEOPHYSICAL LOGS AND STRATIGRAPHY AT TESTHOLE I8I8E SPONTANEOUS ^^IbCTrd A G R I C U L T U R E IRRIGATION DIVISION S U B M I T T E D . . . DESIGNED. D A T E DRAWN ..W.I: 5... APPROVED CHECKED S C A L E S H E E T Of DATE D A T E I960 09 II DWG- No. F I L E No. 189 ' • ' • ' GEOPHYSICAL LOGS AND STRATIGRAPHY AT TESTHOLE I8I9E SPONTANEOUS „ „ T l J POTENTIAL RESISTIVITY DEPTH (mv) (ohmeters) (ft.) 50 40 30 20 10 0 10 20 30 40 50 60 70 80 90 O H 1 1 1 1 1 1 1 I i i ' SANDY TILL SILTSTONE SANDSTONE at 83 ft. DEPTH 100 (m) 10 H GRAVEL 2 0 -3 0 -4 0 -SILTSTONE 5 0 -eo -COAL AND SHALE . 7 o 80 90 100 110 120 130 140 150 160 170-180 • 190-200 y^ ibCffC] AGRICULTURE IRRIGATION DIVISION SUBMITTED . . DESIGNED DATE... APPROVED ORAWN...W..T. S, CHECKED i n n n rtO i i SCALE SHEET OF DATE I 7 B U U ? 11 DWG. No. FILE No. 190 APPENDIX C BAIL TEST CURVES 191 . i l 1 1 1 \ 1 1 1 1 b-0 .3 .6 .9 U 1.5 1.8 2.1 2.4 2.7 TIME (MIN.) (xlOOO) 192 193 1.2 1.8 2.4 T I M E 3 ( M I N . ) 3.6 (xlO) 4.2 4.8 5.4 194 + \ 1 1 1 l 5 6 7 8 9 10 TIME (M IN.) (xlOOOO) 195 196 T=50400 min. K=1.7xlO~8 cm/sec. 198 199 -* 1 1 1 6 7 8 9 10 T I M E ( M I N . ) (xlOOO) 200 201 202 H 1 \ 1 i 1 1 1— 1.2 1.8 2.4 3 3.6 4.2 4.8 5.4 T I M E ( M I N . ) (xlOOO) 203 T-2110 min. K=l.lxl0" 6 cm/sec. H I 1 1 1 1 *r-.9 1.2 L5 1.8 2.1 ZA 2.7 TIME (MIN.) (xlOOO) 204 1.0 » .9 .8 .7 .6 H_ 1816-M-S - • — . \ -~ \ \ \ \ ^* \ \ X T=6700 min. X K=6.3xl0 7 cm/sec. X T=17500 min. \ K=2.4xl0~ 7 cm/sec. X X X X 1.0 .9 .8 .7 .6 H H„ N 1-8 3.6 5.4 7.2 9 10.8 12.6 T 1ME ( M IN.) (xlOOO) 16.2 18 -1816-M-M T=20625 min. K=2.1xl0 - 7 cm/sec. 1.8 3.6 5A 7.2 9 10.8 T I M E ( M I N . ) (xlOOO) — J — 12.6 14.4 16^ 18 205 206 207 T=675 min. K=6.3xl0~ 6 cm/sec. -H 1 1 \ 1 1 1 1 1 = 1.5 3 4.5 6 7.5 9 10.5 -1 2 \3J5 1 5 T I M E ( M I N . ) (xlOO) 208 209 T I M E ( M I N . ) 210 211 T=1165 min. K=3.6xlO"6 cm/sec. 0 '-5 3 4.5 6 7.5 9 10.5 1 2 \3J5 15 T I M E ( M I N . ) (xlOO) 212 - i 1 1 \ 1 1 1 1 1 1.8 3 £ SA 7.2 9 10.8 12.6 14.4 16.2 18 T I M E ( M 1 N J (xlOOO) 213 APPENDIX D GRAIN SIZE DISTRIBUTION CURVES UNIFIED CLASSIFICATION BOULDERS C0BBL1T GRAVEL SIZES COARSE FINE SAND SIZES CSE MEDIUM F I N E SILT SIZES CLAY SIZES 12" 6" 3" 2" 1" 3/8 04 010 #20 /MO //60 0200 1000 10 l ' . O 0.1 G R A I N S I Z E ( M I L L E M K T f R S ) P R O J E C T ' T A B E R I R R I G A T I O N R E T U R N F L O W H O L E ' M A R - I D E P T H ' 2.7m lINTFTEp CLASSTFTCATTON BOULDERS COBBL1T GRAVEL SIZES COARSE | FINE SAND SIZES CSE | MEDIUM F I N E S I L T S I Z E S CLAY SIZES 12" 6" 3" 2" 1" 3/8 #10 #20 WO #60 #200 1 604 1000 100 ro r.o o . i G R A I N S I Z E ( M I L L E M E T E R S ) 0.\)1 o.boi o.doi P R O J E C T ' T A B E R I R R I G A T I O N R E T U R N F L O W H O L E ' 0 - 7 A D E P T H ' 1.8m IINTFTED CLASS TFTCATTfIN BOULDERS COBBLlf GRAVEL SIZES COARSE FINE SAND SIZES CSE | MEDIUM | F I N E SILT SIZES CLAY SIZES 12" 3" 2" 1" 3/8 #4 • ,' . • .' • ' #10 #20 #40 #60 #200 N o.doi 1000 100 ro r.o o . i G R A I N S I Z E ( M I L L E M E T F R S ) o.m o.ooi P R O J E C T ' T A B E R I R R I G A T I O N R E T U R N F L O W H O L E ' 0 - 7 B D E P T H ' 2 2 .m UNIFIED C L A S S I F I C A T I O N BOULDERS COBBLIT CRAVEL SIZES COARSE FINE SAND S I Z E S CSE MEDIUM FINE S I L T SIZES CLAY SIZES 12 604 1000 6" 3" 2" 1" 3/8 #4 #10 #20 #40 #60 #200 ' I .1 • I •' A 1, ,—I . . I, i I • I 100 10 1.0 0.1 G R A I N S I Z E ( M I L L E M E T E R S ) O.XH o.boi 0.001 P R O J E C T ' T A B E R I R R I G A T I O N R E T U R N F L O W H O L E ' 4B D E P T H 1 1.4 in BOULDERS COBB LIT CRAVEL SIZES COARSE FINE SAND SIZES CSE | MEDIUM | F I N E UNIFIED CLASSTFTCATTON SILT SIZES CLAY SIZES 12" 6" 3" 1 -J, 2" 1" 3/8 #4 i - J •>,,,, •> #10 #20 #40 #60 #200 0-, 1000 " O o i 100 ro r.o o . i G R A I N S I Z E ( M I L L E M E T E R S ) o.m o.boi P R O J E C T ' T A B E R I R R I G A T I O N R E T U R N F L O W H O L E ' 7B D E P T H ' 2.2m UNTFIED CLASSTFTCATTQN BOULDERS COBB LIT GRAVEL SIZES COARSE FINE SAND SIZES CSE | MEDIUM | F I N E S I L T S I Z E S CLAY SIZES 12" 2<i 2" 1" 3/8 #10 #20 #40 #60 #200 I — V 100 o.boi 1000 10 Ho o.i GRAIN SIZE (MILLEMETERS) 0.YJ1 0.001 PROJECT- TABER IRRIGATION RETURN FLOW HOLE' I3A DEPTH'4.2m IINTFTF [) CLASS T FTCATTON BOULDERS COBBLI CRAVEL SIZES SAND S I Z E S S I L T S I Z E S CLAY SIZES COARSE | FINE CSE MEDIUM | FINE 12 6" 3 2" 1" 3/8 #4 #10 #20 #40 #60 #200 •»,- , .1, • — I ,.\.. . I. i I . I I, 1.0 0.1 G R A I N S I Z E ( M I L L E M E T E R S ) 0.VJ1 0.001 o.ooi P R O J E C T ' T A B E R I R R I G A T I O N R E T U R N F L O W H O L E ' 1818 D E P T H ' 0.8 in UNTFTED CLASSIFICATION BOULDERS COBBLlf GRAVEL SIZES SAND S I Z E S COARSE | FINE | CSE [ MEDIUM [ FIN"E~ S I L T S I Z E S CLAY SIZES 100-90-12" 6" _ i 3/8 #4 .1 1 010 #20 #40 #60 #200 z 80-< X 70. s «4i z = 50-u at ul CL 3(W \ 20+ 10^ 1000 100 10 1.0 0.1 GRAIN SIZE (MILLEMETERS) 0/01 0.001 o.doi PROJECT' TABER IRRIGATION RETURN FLOW HOLE' 1818 DEPTH' 1.5 m i UNIFIED CLASSTFTCATTON BOULDERS COBBLIf GRAVEL SIZES COARSE FINE SAND SIZES CSE | MEDIUM | F I N E S I L T SIZES CLAY SIZES 100 90 12" 6" 3" 2" I" J I ,1 ,1 ,1 3/8 #4 #10 #20 #40 #60 #200 .1,., , .1. • — I . • I. , I , I—., , l , , I, 3 Z 80-< \ = 7a 5 6<H z 50 40 H Z u u at ui 30-a. 20-10+ 1000 100 10 .0 0 0. •01 o.boi o.doi G R A I N S I Z E ( M I L L E M E T E R S ) P R O J E C T ' T A B E R I R R I G A T I O N R E T U R N F L O W H O L E ' 1818 D E P T H ' 2.3 m UNTFIE n CLASSTFTCATTON BOULDERS GRAVEL SIZES SAND SIZES S I L T S I Z E S CLAY SIZES COBBLI COARSE | FINE CSE | MEDIUM | F I N E GRAIN SIZE (MILLEMETF.RS) PROJECT' TABER IRRIGATION RETURN FLOW HOLE' 4411 DEPTH' 5.5 m UNIFIED CLASSIFICATION BOULDERS COBBLlf GRAVEL SIZES COARSE FINE SAND SIZES CSE | MEDIUM | F I N E S I L T SIZES CLAY S I Z E S 12" 6" ^ I I 2" l " I, . I ,1 . l ,1 3/8 #4 •I > #10 #20 #40 #60 #200 l, , I , I „1 Z -X 704+ H 0.001 1000 —V 100 i-o r.o o.i G R A I N S I Z E ( M I L L E M E T F R S ) O.X)l 0.001 P R O J E C T ' T A B E R I R R I G A T I O N R E T U R N F L O W H O L E ' 4413 D E P T H ' 16.2 m UNIFIED CLASSIFICATION BOULDERS COBBLIf GRAVEL SIZES COARSE FINE SAND SIZES CSE | MEDIUM 1 F I N E S I L T SIZES CLAY S I Z E S 2" 6" 3" 2" I" 3/8 #4 #10 #20 #40 " I , l ,l .1,,, , , l , , , V ,,\, . ,1 #60 #200 i i i i Z 80-X 70| \ O r 1000 — T 100 10 1.0 0.1 GRAIN SIZE (MILLEMETERS) o.m o.ooi o.ooi PROJECT' TABER IRRIGATION RETURN FLOW HOLE' 4416 DEPTH' 0.9 m UNTFTED CLASSTFTCATTON BOULDERS COBBLlf CRAVEL SIZES COARSE FINE SAND SIZES CSE 1 MEDIUM | FINE SILT SIZES CLAY SIZES 100-j 90-1 12" 6" 3" 2" 1" 3/8 04 1,1 .1 A . • • ,1 10 020 040 060 0200 z 801 X 70J 604 50 40^ Z Ui u w 30J 2(H 10+ 0-1000 —V 100 io r.o 0:1 o.m GRAIN SIZE (MILLEMETFRS) 0.D01 " O O I PROJECT' TABER IRRIGATION RETURN FLOW HOLE' 4416. DEPTH' 6.9 m UNIFIED CLASSIFICATION BOULDERS COBBLIf GRAVEL SIZES COARSE FINE SAND SIZES CSE | MEDIUM | FINE SILT SIZES CLAY SIZES 100 90 z 8°-< = 7a 2" 6" 3 l 2" 1" 3/8 #4 #10 #20 #40 #60 #200 • l , I , l ' ' ' I ' ,, ,1,. I, z 60-50 40-Z u u 5 3a 2a 10+ N a 1000 100 10 Ho o.i G R A I N S I Z E ( M I L L E M E T E R S ) O.TU o.ooi 0.001 P R O J E C T > T A B E R I R R I G A T I O N R E T U R N F L O W H O L E ' 4416 D E P T H - 14.6 m ozz UNTFTEp CLASSTFTCATTON BOULDERS COBBLlf GRAVEL SIZES COARSE FINE SAND SIZES CSE | MEDIUM | F I N E S I L T SIZES CLAY- SIZES 2" 6" 3" 2" 1" 3/8 04 #10 .020 040 060 0200 J ...I, , I .1 • I .1 .Vl I I • 1 ,,U . • ', i I • I r^A-rJ. ft 1000 — T 100 "OJ3OI 10 1.0 o . i G R A I N S I Z E ( M I L L E M E T F R S ) 0.TJ1 o.boi P R O J E C T 1 T A B E R I R R I G A T I O N R E T U R N F L O W H O L E ' 4418 D E P T H ' 0.7 in UNIFIED CLASSIFICATION BOULDERS COBBLIf GRAVEL SIZES COARSE FINE SAND SIZES CSE | MEDIUM | FINE S I L T SIZES CLAY SIZES 12 3" 2" 1" 3/8 #4 ' ' 1 J .1 1 #10 #20 #40 A-N #60 #200 J I 1_ 1000 100 io r.o o : i o.'oi G R A I N S I Z E ( M I L L E M E T E R S ) o.boi o.ooi P R O J E C T ' T A B E R I R R I G A T I O N R E T U R N F L O W H O L E ' 4419 D E P T H • 0.9 m UNIFIED C L A S S I F I C A T I O N BOULDERS COBBLlf CRAVEL SIZES COARSE | FINE SAND SIZES CSE | MEDIUM | F I N E S I L T S I Z E S CLAY S I Z E S 100 90 12" 6" 3" 2" 1" _l .. ,l, . | .1 . l .1 3/8 04 —A i 010 020 040 060 0200 z 8°-< = 70. Z ^ 50 40-u 5 30-a. 20+ 10 0-r 1000 X o o i T 100 10 110 0.1 GRAIN SIZE (MILLEMETFRS) 0.TJ1 0.001 PROJECT' TABER IRRIGATION RETURN FLOW HOLE' 4419 DEPTH' 1.5m to CO U) UNIFIED C L A S S I F I C A T I O N BOULDERS COBBLlf CRAVEL SIZES COARSE | FINE SAND SIZES CSE MEDIUM FINE S I L T SIZES CLAY S I Z E S 12" 6" 3" 2" 1" -1 ,, ,1, , I ,1 ,1 ,1 3/8 010 020 040 060 0200 A.. • I, , ' • I .,,1 N N o.boi 1000 100 10 r.o o . i GRAIN SIZE (MILLEMETFRS) 0.YJ1 o.doi PROJECT' TABER IRRIGATION RETURN FLOW HOLE' WTWI DEPTH' 6.2 m UNIFIED CLASSIFICATION BOULDERS COBBLIf CRAVEL SIZES COARSE FINE SAND SIZES CSE | MEDIUM | FINE SILT SIZES CLAY SIZES 100 90 12 3" 2" 1" 3/8 l, • I .1 , l A #10 #20 #40 #60 #200 z 80--< X 7a 60+ 50 40-Z ul <J at ui 30-0. 20-10+ 0-1000 100 ro r.o o . i GRAIN SIZE (MILLEMETE O.XU 0.001 0.001 RS) PROJECT' TABER IRRIGATION RETURN FLOW HOLE' 14-B DEPTH' 0.3 m U> Ul lINTFTF.n CI. ASS T FTC ATT ON BOULDERS COBBLlf CRAVEL SIZES COARSE FINE SAND SIZES CSE | MEDIUM | F I N E S I L T SIZES CLAY S I Z E S 12" 6" 3" 2" 1" 3/8 04 0 I I . ' .1 1 10 020 040 060 0200 I,, , l, . I , I—r^A-20+ 1000 100 10 GRA r.o o.i IN SIZE (MILLEMETERS) 0.VJ1 o.boi o.ooi PROJECT 1 TABER IRRIGATION RETURN FLOW HOLE> 14- B DEPTH' 1.9 m BOULDERS I COBBL GRAVEL SIZES COARSE FINE SAND SIZES CSE | MEDIUM | F I N E UNTFTF.n C I . A S S T F T C A T T O N S I L T SIZES CLAY S I Z E S 1000 12" on 2" 1" • i | i 3/8 100 #10 #20 #40 #60 #200 10 .0 0. 0. "01 0. 001 0.001 GRAIN SIZE (MILLEMETERS) PROJECT' TABER IRRIGATION RETURN FLOW HOLE' 1816 DEPTH' 4.6 m IINTFTF.p CLASSTFTCATTON BOULDERS COBBLIf CRAVEL SIZES COARSE | FINE SAND SIZES CSE | MEDIUM | FINE~ SILT SIZES CLAY SIZES 100 90 12" 6" •i 2" i " 3/8 A-^i-J A #4 #10 #20 #40 #60 t #200 ( Z 8 0 < x 7a £5 60+ z 50 5 4& 5 304 a. N 20+ 10+ 0-1000 100 no i .o I o: i GRAIN SIZE (MILLEMETERS) o.m o.boi o.doi PROJECT- TABER IRRIGATION RETURN FLOW HOLE' 1816 DEPTH' 6.1 m 1INTFTFD C1.ASSTFTCATT0N BOULDERS COBBLlf GRAVEL SIZES COARSE FINE SAND SIZES CSE MEDIUM FINE SILT SIZES CLAY SIZES 12" 6" '• 2" 1" 3/8 #4 #10 #20 #40' #60 #200 • I • l ,1 1.,. .1. • ! .A. . . I, , I , l ..X.K 20+ 001 1000 100 10 l'.O 0.1 GRAIN SIZE (Ml LEE METERS) 0.TJ1 0. 0.001 PROJECT' TABER IRRIGATION RETURN FLOW HOLE' 1816 ,.. DEPTH' 6.1 m UNIFIED CLAfifiTFTCATTOH BOULDERS COBBLIf CRAVEL SIZES SAND SIZES COARSE | FINE | CSE | MEDIUM | FINE~ S I L T SIZES CLAY SIZES 2" 6" 3" 2' 1" 3/8 #4 #10 #20 #40 #60 #200 • • • • • i l l I L z N N " O o i 1000 100 I'O r.o o . i GRAIN SIZE (MILLEMETERS) o.xn o.ooi PROJECT' TABER IRRIGATION RETURN FLOW HOLE' 1816 DEPTH' 6.2 m lINTFTF.p CLASSIFICATION GRAVEL SIZES BOULDERS | COBBLlj C Q A R S E | FINE SAND SIZES CSE | MEDIUM FINE SILT SIZES CLAY SIZES 12" 6" 3" 2" 3/8 M #10 1120 WO #60 #200 l'.O 0.1 GRAIN SIZE (MILLEMETFRS) PROJECT' TABER IRRIGATION RETURN FLOW HOLE' 1816 DEPTH'6.5 m IJNTFTKp CLASSTFTCATTON BOULDERS COBBLIf GRAVEL SIZES COARSE FINE SAND SIZES CSE | MEDIUM | FINE SILT SIZES CLAY SIZES 12" 6" 3" 2" 1" 3/8 #4 #10 #20 #40 #60 #200 • I I i .1 1. . L_ • • l. i I i I ..,1,, I. 1000 100 ID r .o o . i G R A I N S I Z E ( M I L L E M E T E R S ) o.xn o.boi o.ooi P R O J E C T ' T A B E R I R R I G A T I O N R E T U R N F L O W H O L E ' 1816 D E P T H ' 6.6 in PROJECT' TABER IRRIGATION RETURN FLOW HOLE' 1816 DEPTH' 6.7 m PROJECT' TABER HOLE' 1816 DEPTH- 6.9 m IRRIGATION RETURN FLOW BOULDERS COBBLIf CRAVEL SIZES COARSE | FINE SAND SIZES CSE | MEDIUM | F I N E UNTFTEp CLASSTFTCATTON SILT SIZES CLAY SIZES 12" 6" 3' 2" 1" 1,1 ,i 3/8 #4 #10 #20 #40 #60 #200 ,>., , l. i I i I . , ,1, . ' , 10+ 0-1000 TTooi — V 100 10 l ' .O 0.1 GKAIN SIZE (MILLEMETERS) 0/01 o.boi PROJECT- TABER IRRIGATION RETURN FLOW HOLE- 1820 DEPTH- 4.6 m IINTFTE p C L A S S I F I C A T I O N BOULDERS COBBLI GRAVEL SIZES SAND SIZES S I L T SIZES CLAY S I Z E S COARSE | FINE CSE | MEDIUM | F I N E GRAIN SIZE (MILLEMETERS) PROJECT 1 TABER IRRIGATION RETURN FLOW HOLE- 1820 DEPTH- 6.1 m lINTFTF.p CLASSIFICATION 100-90 BOULDERS COBBLlf GRAVEL SIZES COARSE FINE SAND SIZES CSE | MEDIUM | FINE SILT SIZES CLAY SIZES 12" 6" i _ ^ I I 2M i 1 1 • i l l 3/8 1/4 #10 #20 #40 #60 #200 z 8°-< I 70 H 604 50 2 ^o-u et ui 30-o. 20-lot 1000 100 ID l'.O 0.1 GRAIN SIZE (MILLEMETFRS) 0.VJ1 o.boi o.ooi PROJECT' TABER IRRIGATION RETURN FLOW HOLE' 1820 DEPTH' 6.1 m 1INTFTED CLASSTFTCATTON BOULDERS COBBLIf CRAVEL SIZES COARSE FINE SAND SIZES CSE | MEDIUM | FINE SILT SIZES CLAY SIZES 100 90 12" 3" 2" 1" • • t i l 3/8 #4 #10 #20 #40 #60 #200 l, , I , I I, z 80-< x 7a S 60| z = 50 4a t-z ul O at ui 3a o-N 2a l a a 1000 100 io r.o o.i GRAIN SIZE (MILLEMETERS) o.xn o.boi 0 . 0 0 1 PROJECT' TABER IRRIGATION RETURN FLOW HOLE' 1820 DEPTH' 6.2 m 00 UNIFIED CLASSTFTCATTON BOULDERS COBBLlf GRAVEL SIZES SAND SIZES COARSE | FINE | CSE | MEDIUM | FINE~ SILT SIZES CLAY SIZES 12" 6" 3" 2" 1 1" 3/8 04 .1,,, , ,1 010 020 040 060 0200 N N T 100 1000 io r.o o.i GRAIN SIZE (MILLEMETFRS) O.'Ol 0.001 0.001 PROJECT 1 TABER IRRIGATION RETURN FLOW HOLE' 4412 DEPTH' 5.5 m BOULDERS COBBLlf GRAVEL SIZES COARSE | FINE SAND SIZES CSE | MEDIUM | FINE UNIFIED CLASSTFTCATTON SILT SIZES CLAY SIZES 12" 6" 3" 1000 2" 1" 3/8 04 010 020 040 060 0200 1 . ' . I \ l i t i i 1.0 0.1 GRAIN SIZE (MILLEMETFRS) O o i PROJECT' TABER IRRIGATION RETURN FLOW HOLE' 4414 DEPTH' 1.2 m BOULDERS COBBLIf CRAVEL SIZES COARSE FINE SAND SIZES CSE MEDIUM FINE UNTFTEp CLASSTFTCATTON SILT SIZES CLAY SIZES 100-90-X 70+ £ 6"| Z 1 50-H 2 40-u £ 30-a. 12 i i i n 3" 2 i, ' 1" 3/8 - l #4 #10 #20 #40 #60 #200 ' • i i I i l I 20+ 1& 0-1000 100 10 l'.O 0.1 GRAIN SIZE (MILLEMETERS) O.t)! 0.001 o.ooi PROJECT' TABER IRRIGATION RETURN FLOW HOLE> 1414 DEPTH- I.K m IJNTFTFD CLASSIFICATION BOULDERS COBBLlf GRAVEL SIZES COARSE FINE SAND SIZES CSE | MEDIUM | FINE SILT SIZES CLAY SIZES 100 90-2 80 I 70l 12" 6" 3" 2" 1" 3/8 •'• , I .1 , t ,W A #4 #10 #20 #40 #60 #200 ' ' • i l l i . i S <4 Z ^ 50-H £ 40-u oc u) 30-20 N 10+ 0-1000 —V 100 io r.o o.i GRAIN SIZE (MILLEMETFRS) 0.VJ1 o.boi o.ooi PROJECT' TABER IRRIGATION RETURN FLOW HOLE' 4414 DEPTH' 2.4 m UNIFIED CLASSIFICATION BOULDERS 100-90-Z 8°1 < I 70-COBBLIT GRAVEL SIZES COARSE FINE SAND SIZES CSE | MEDIUM FINE SILT SIZES CLAY SIZES 12" 2" 1" ' 1.1 ,1 3/8 #10 #20 #40 #60 #200 z Z 50 B ^  u at ui a. 3oJ 2Ch N N iot 1000 100 i'o r.o o.i GRAIN SIZE (MILLEMETERS) O.'Ol 0.001 0.001 PROJECT' TABER IRRIGATION RETURN FLOW HOLE' 4414 DEPTH' 3.4 m ITNTFTF.n CI.ASSTFTCATTON l'.O 0.1 GRAIN SIZE (MILLEMETERS) PROJECT• TABER IRRIGATION RETURN FLOW HOLE- 4415 DEPTH' 2.7 m UNIFIED CLASSIFICATION BOULDERS COBBLlf GRAVEL SIZES COARSE FINE SAND SIZES CSE MEDIUM FINE SILT SIZES CLAY SIZES 100 90-2" 6" 3" 2" 1" 3/8 04 010 020 040 060 0200 • I . ' , • ,' • ' I | , , • , , • . » . . ,1.. I, z 8°-x 7(4 60+ N 50 40 H Z u u et w 30-r i 20+ 10 0-1000 100 io r.o o.i GRAIN SIZE (MILLEMETFRS) 0.VJ1 0.001 0.001 PROJECT' TABER IRRIGATION RETURN FLOW HOLE' 4417 DEPTH' 1.2 m ro BOULDERS COBBLIf GRAVEL SIZES COARSE FINE SAND SIZES CSE MEDIUM FINE UNTFTED CLASSTFTCATTON SILT SIZES CLAY SIZES 100-90 12" 6" 3" 2" Z ™ < X 70. 60+ 50 40-Z w u DC ui 30-1" 3/8 #4 # U i 10 //20 #40 #60 #200 N 20+ 10-0-1000 100 10 GRA l'.O 0.1 IN SIZE (MILLEMETERS) 0/01 0.001 0.001 PROJECT- TABER IRRIGATION RETURN FLOW HOLE' 4418 DEPTH' 0.9 m UNTFTED CI.ASSTFTCATTON BOULDERS COBBLIf GRAVEL SIZES COARSE FINE SAND SIZES CSE | MEDIUM FINE SILT SIZES CLAY SIZES 12" 1" 3/8 #10 #20 #40 #60 #200 A. . • I, i I i I I, £ 60+ Z "6T001 1000 100 ro r.o o . i GRAIN SIZE (MILLEMETERS) 0/01 o.boi PROJECT' TABER IRRIGATION RETURN FLOW HOLE' 4419 DEPTH' 3.7 m N3 APPENDIX E WATER TABLE ELEVATIONS PROJECT TABER IRRIGATION RETURN FLOW TABLE SHEET 1 GROUND WATER ELEVATIONS TESTHOLE NUMBER MONITOR May 25 1979 June 14 1979 J u l y 23 1979 A u g . 30 1979 O c t . 10 1979 N o v . 1 1979 Nov . 28 1979 J a n . 3 1980 J a n . 30 1980 M a r . 10 1980 No. Type Depth 1809 4.6 Dry Dry Dry Dry Dry Dry Dry D r y Dry Dry 1812 4 . 9 Dry Dry 771.64 771 .74 771 .88 771 .96 771 .99 772 .03 772 .06 772 .08 1813 4 . 9 Dry Dry Dry Dry D r y Dry Dry Dry Dry Dry 1814 6 . 1 771 .78 771 .63 771.68 771 .81 771.75 771 .78 771 .68 771 .62 771 .47 771 .40 1816 6 . 1 769 .96 771.14 771 .13 771 .51 771 .62 771 .60 7 7 1 . 5 8 771 .54 772 .17 1817 6 . 1 769 .41 769.41 769.42 769 .29 769 .20 769 .02 769 .09 768 .99 768 .97 1818 6 . 1 771 .03 771 .08 771 .11 7 7 1 . 1 1 771 .05 7 7 1 . 1 0 7 7 1 . 0 7 771 .05 1820 6 ;1 770 .73 770 .81 770 .73 770 .66 770 .49 770 .60 7 7 0 . 5 1 770 .52 1821 5 .9 Dry Dry D r y Dry Dry Dry Dry WTW-1 6 . 2 770 .91 770 .85 770 .66 7 7 0 . 5 7 770 .38 7 7 0 . 5 1 770 .42 770 .49 4393 6 . 2 D r y 771 .33 7 7 1 . 7 3 772 .18 772 .54 772 .65 F r o z e n 4394 6 . 3 770,. 52 770 .55 770 .56 770 .55 770 .59 770 .61 770.62 4395 5 .5 770 .99 770 .97 770 .96 770 .95 7 7 0 . 9 7 7 7 0 . 9 3 770 .93 4396 6 . 3 770 .15 770 .13 770 .12 770 .13 770 .17 770 .16 770 .21 4397 5 .4 767 .50 766 .90 766 .86 766 .82 7 6 7 . 1 8 766 .83 766 .82 4398 6 . 3 771 .20 771 .21 771 .20 771 .19 771 .21 771 .17 771 .22 4399 6 . 2 770 .95 771 .01 771 .01 771 .01 771.OS 771 .01 770 .98 4400 5 . 8 D r y Dry Dry Dry Dry Dry - 4401 6 . 2 773 .55 772 .53 773 .45 773 .27 773 .31 773.14 773 .06 4403 6 . 2 770 .47 772 .81 773 .25 773 .46 773 .52 773 .54 773 .54 4404 5 . 0 770 .40 770 .37 770 .39 770 .36 770 .37 770 .36 770 .38 4405 5 . 3 Dry Dry Dry Dry Dry Dry Dry 4406 4 . 5 Dry D r y Dry Dry Dry Dry D r y • - Waltr Tablo Well TECHNICAL RESOURCES BRANCH P R O J E C T T A B E R IRRIGATION RETURN FLOW T A B L E GROUND WATER ELEVATIONS S H E E T . TESTHOLE NUMBER MONITOR April 1 1980 April 29 1980 June 4 1980 July 23 1980 Aug. 6 1980 Aug. 15 1980 Oct. 7 1980 Oct. 28 1980 Nov. 27 1980 No. Type Depth 1809 4.6 Dry Dry Dry Dry Dry Dry Dry Dry Dry 1812 4.9 772.63 772.00 771.78 Dry 771.90 771.94 771.98 Dry 772.P6 1813 4.9 Dry Dry Dry Dry Dry Dry Dry Dry Dry 1814 6.1 771.43 771.72 771.86 771.93 771.95 772.00 772.07 772.20 772.09 1816 6.1 770.52 771.20 771.53 769.79 770.33 770.72 771.26 771.44 771.50 1817 6.1 768.82 768.94 768.92 768.71 768.87 768.92 768.82 768.47 768.86 1818 6.1 771.00 771.10 771.12 771.17 771.15 771.13 771.36 771.15 771.34 1820 6.1 770.37 770.45 770.64 770.71 770.82 770.86 770.84 770.79 770.82 1821 5.9 Dry Dry Dry Dry Dry Dry Dry Dry Dry WTW-1 6.2 770.37 770.52 770.55 770.54 770.53 770.60 770.43 770.38 770.47 4393 6.2 772.22 772.59 773.72 772.55 772.22 772.38 772.70 772.75 772.78 4394 6.3 770.63 770.66 770.68 770.70 770.72 770.72 770.74 770.75 770.78 4395 5.5 770.95 771.03 771.01 770.82 770.79 770.80 771.35 770.80 4396 6.3 770.17 770.21 4397 5.4 766.75 766.82 766.97 767.69 767.60 767.60 767.60 4398 6.3 771.17 771.19 771.24 771.23 771.23 771.23 771.74 771.25 771.20 4399 6.2 770.93 770.91 771.03 771.01 771.03 771.05 771.09 771.09 770.87 4400 5.8 Dry Dry Dry Dry Dry Dry Dry Dry Dry 4401 6.2 772.99 773.32 773.49 773.58 773.59 773.63 773.61 773.58 773.55 4403 6.2 773.18 773.43 773.59 773.28 772.94 773.09 773.38 773.45 773.51 4404 5.0 770.53 770.39 770.42 770.46 770.42 770.43 770.41 770.40 770.40 4405 5.3 Dry Dry Dry Dry Dry Dry Dry Dry Dry 4406 4.5 Dry Dry Dry Dry Dry Dry Dry Dry Dry ON o PluomiUr Water Table Well TECHNICAL RESOURCES BRANCH PROJECT TABER IRRIGATION RETURN FLOW TABLE SHEET _ ! GROUND WATER ELEVATIONS TESTHOLE NUMBER MONITOR No. Type Depth July 23 1980 Aug. 6 1980 Aug.15 1980 Oct. 7 1980 Oct. 28 1980 Nov. 271 1980 4407 4408 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4.9 15.4 14.8 18.2 17.9 14.5 12.0 4.4 17.7 13.1 18.5 18.7 19.5 6.7 4.3 8.0 8.1 7.7 6.0 772.58 773.36 763.42 757.81 770.86 771.74 771.41 771.24 769.26 771.27 770.25 764.66 768.74 766.92 770.21 764.03 765.64 Dry 765.68 773.08 772.59 773.18 763.56 757.79 770.93 771.74 771.42 771.24 769.85 769.98 771.18 770.14 764.76 768.80 766.88 770.21 763.94 765.94 Dry 765.62 773.10 772.62 773.12 763.63 757.83 771.00 771.75 771.42 771.25 769.87 769.93 771.13 770.07 764.71 768.87 766.87 770.21 763.91 766.07 Dry 765.59 773.04 753.30 772.61 722.78 763.81 757.86 770.85 771.78 771.45 771.26 769.93 769.78 770.96 770.31 7 64 . 68 769.00 770.17 763.85 766.23 Dry 765.62 773.13 753.07 772.64 772.79 763.87 757.86 771.46 771.80 771.45 771.26 769.95 Dry 770.96 770.30 7 64 . 65 769.07 770.16 763.84 766.30 Dry 772.95 752.56 772.61 772.70 763.85 757.90 770.76 771.79 771.44 771.26 770.00 769.32 771.03 770.31 764 . 68 769.23 770.18 763.89 766.32 Dry 765.58 • - Pluomtttr l - Wattr Tab It Wall TECHNICAL RESOURCES BRANCH APPENDIX F PIEZOMETRIC DATA PROJECT TABER IRRIGATION RETURN FLOW TABLE SHEET GROUND WATER ELEVATIONS TESTHOLE NUMBER MONITOR May 25 1979 June 14 1979 July 23 1979 Aug. 30 1979 Oct. 10 1979 Nov. 1 1979 Nov. 21 1979 Jan. 3 1980 Jan. 30 1980 Mar. 10 1980 No. Typ« Depth 1809 N 10.4 722.67 722.85 722.96 722.62 722.74 722.81 722.88 723.00 723.08 723.22 NM 8.2 726.37 726.40 726.48 725.13 724.30 72S.36 725.45 725.56 725.62 725.77 M 3.5 Dry Dry Dry Dry Dry Dry Dry Dry Dry Dry SM 5.5 728.66 728.54 728.03 728.03 727.99 727.97 727.93 728.06 728.24 728.47 1810 N 17.8 733.15 733.08 732.86 732.24 732.23 732.14 732.10 732.05 731.56 M 21.7 726.59 726.74 726.89 726.83 726.85 726.87 726.94 726.99 727.10 S 24.2 729.83 729.83 729.79 729.55 729.58 729.54 729.58 729.58 729.59 1811 N 17.4 755.79 755.75 755.71 755.56 755.64 755.54 755.50 M 22.1 752.13 752.16 752.17 752.13 752.06 751.82 751.86 S 24.5 Dry 740.93 741.39 741.89 742.16 742.20 742.50 1812 W 9.4 772.70 772.66 772.66 772.80 . 772.79 772.73 772.68 772.68 772.64 772.64 M 22.9 772.64 772.62 772.79 772.80 772.76 772.80 772.77 772.83 772.84 772.86 E-S 45.5 735.37 735.64 735.62 734.43 734.94 735.07 735.18 735.36 735.42 735.52 E-M 32.5 760.90 760.85 761.01 750.69 750.67 750.68 750.67 750.67 750.64 750.67 E-N 15.6 772.62 772.54 772.62 772.59 772.66 772.66 772.69 • - PUiomtUr • - Wot.r Toble Wall TECHNICAL RESOURCES BRANCH PROJECT TABER IRRIGATION RETURN FLOW , TABLE SHEET 1 GROUND WATEf^  ELEVATIONS TESTHOLE NUMBER MONITOR April 1 1980 April 2£ 1980 July 23 1980 Aug. 6 1980 Aug. 15 1980 Oct. 7 1980 Dct. 28 1980 Nov. 27 1980 No. Type Depth 1809 N 10.4 722.81 722.92 722.68 722.71 722.90 722.96 723.01 NM 8.2 725.34 725.47 725.09 725.13 725.33 725.39 725.45 M 3.5 Dry Dry Dry Dry Dry Dry Dry SM 5.5 728.42 727.87 728.68 727.75 727.97 727.94 727.91 1810 N 17.8 722.86 723.37 M 21.7 726.23 726.35 726.77 726.81 726.85 S 24.2 723.72 723.86 724.41 724.45 724.56 1811 N 17.4 755.25 755.25 754.97 755.06 755.18 755.31 758.90 755.49 M 22.1 751.51 751.70 751.17 751.59 751.61 751.80 751.85 752.36 S 24.5 741.79 742.73 741.60 743.24 743.40 743.94 744.20 744.49 1812 W 9.4 771.89 772.71 772.68 772.66 772.66 772.66 Dry 772.73 M 22.9 772.64 772.69 772.70 772.76 772.75 772.79 772.76 772.79 E-S 45.5 735.54 735.60 735.12 735.10 735.16 735.40 Dry 735.44 E-M 32.5 749.45 749.66 745.64 745.66 745.67 745.73 745.73 745.78 E-N 15.6 772.59 772.65 772.70 772.59 772.59 772.59 772.61 772.65 • - Wat.r Table Well TECHNICAL RESOURCES BRANCH PROJECT TABER IRRIGATION RETURN FLOW TABLE SHEET. GROUND WATER ELEVATIONS TESTHOLE NUMBER 1813 1814 1815 MONITOR No. W M-S M-SM M-NM B-S E-M E-N W-S W-SM W-M W-NM W-N M-S M-SM M-NM E-S E-M E-N Type Depth 24.1 15.4 19.5 30.2 42.7 36.7 9.6 6.9 4.4 2.9 2.3 24.8 14.8 20.3 32.0 45.0 6.2 9.2 18.2 May 25 1979 Dry 760.84 758.78 734.23 766.58 Dry 734.29 772.25 771.53 June 14 1979 Dry 760.93 759.72 734.24 766.16 Dry 734.23 772.71 771.50 July 23 1979 761.11 761.08 760.23 734.21 765.22 Dry 769.85 769.89 770.23 734.18 772.69 771.59 761.67 Aug. 30 1979 761.41 761.35 760.54 734.20 753.15 Dry 769.89 769.90 769.95 732.57 767.78 771.47 750.64 Oct. 10 1979 761.69 761.62 760.93 734.20 753.03 Dry 769.89 769.88 769.93 732.63 767.79 771.69 752.66 Nov. 1 1979 761.84 761.76 761.15 734.19 752.80 Dry 769.91 769.88 769.93 732.65 767.76 771.73 753.31 Nov. 1979 761.89 761.84 761.28 734.19 752.51 Dry 281 769.91 769.90 769.90 732.68 767.76 771.67 753.88 Jan. 3 1980 762.10 762.04 761.62 734.23 752.15 Dry 769.95 769.95 769.98 732.74 767.76 771.59 754.46 Jan. 30 1980 762.10 762.09 761.69 734.23 751.91 Dry 769.92 769.92 769.93 732.77 767.75 771.49 754.79 Mar. 10 1980 762.11 762.19 761.85 734.27 751.58 Dry 769.78 769.96 770.00 732.83 767.74 771.30 755.19 TECHNICAL RESOURCES BRANCH • - Pltiometer • - Wattr Table Well PROJECT TABER IRRIGATION RETURN FLOW TABLE SHEET. GROUND WATER ELEVATIONS TESTHOLE NUMBER MONITOR No. Type Depth April 1 1980 April 29 1980 July 23| 1980 Aug. 6 1980 Aug. 15 1980 Oct. 7 1980 Oct. 28 1980 Nov. 27 1980 1813 1814 W M-S M-SM M-NM B-S E-M E-N W-S W-SM] W-M W-NM| W-N M-S M-SMl M-NM] E-S E-M E-N 1815 24.1 15.4 19.5 30.2 42.7 36.7 9.6 6.9 4.4 2.9 2.3 24.8 14.8 20.3 32.0 45.0 6.2 9.2 18.2 762.17 762.14 761.25 734.14 751.38 Dry 762.25 762.23 761.83 734.28 751.19 Dry 769.91 769.89 769.91 732.47 767.58 768.73 755.35 769.92 769.90 769.93 732.54 767.64 771.29 755.54 769.76 762.59 762.43 757.25 Dry 748.95 Dry 768.55 771.93 771.86 771.94 770.17 769.99 770.00 769.97 733.47 Dry 770.32 745.99 769.68 762.68 762.62 758.69 734 . 29 748.89 Dry 769.45 771.88 771.97 771.95 770.16 769.95 769.93 769.94 733.45 767.60 771.45 747.12 769.64 762.79 762.73 759.51 734.28 748.84 Dry 769.92 772.14 772.02 772.01 770.17 769.95 769.93 769.94 733.46 767.60 771.73 748.19 769.48 763.27 763.20 761.31 734.29 748.57 Dry 769.92 772.02 772.09 772.09 770.19 769.97 769.85 769.96 733.48 767.58 771.95 750.49 769.39 Dry Dry Dry Dry 748.44 Dry 769.92 772.13 772.21 772.24 770.20 770.02 769.98 770.00 733.46 Dry 772.07 751.63 769.35 763.62 763.56 762.30 734.30 748.31 Dry 771.61 772.06 772.12 772.13 770.23 770.04 769.99 770.03 733.47 Dry 772.01 752.67 • - PUiomcUr ' - Woltr Tablo Wall TECHNICAL RESOURCES BRANCH PROJECT TABER IRRIGATION RETURN FLOW TABLE SHEET GROUND WATER ELEVATIONS TESTHOLE NUMBER MONITOR May 25 1979 June 14 1979 July 23 1979 Aug. 30 1979 Oct. 10 1979 Nov. 1 1979 Nov. 28 1979 Jan. 3 1980 Jan. 30 1980 Mar. 10 1980 No. Type Depth 1816 W-N 31.9 W-M 4.5 W-S 6.7 M-M 7.6 Dry 767.72 767.86 768.65 769.02 769.42 769.85 770.08 770.35 M-S 13.2 762.23 765.08 765.31 770.49 768.26 768.86 769.56 769.81 770.14 E-N 28.6 755.02 755.85 752.81 753.43 753.74 754.08 754.54 754.84 755.25 E-S 41.6 740.06 740.13 736.79 736.98 736,99 737.01 737.06 737.07 737.13 1817 W-S 5.7 W-M 7.4 W-N 21.8 WM 7.0 769.39 769.35 769.28 769.24 769.19 769.14 769.00 769.00 EM-S 16.4 769.52 769.45 769.30 769.20 769.00 769.12 769.00 769.01 EM-M 27.0 764.75 763.71 764.65 764.76 764.77 764.77 764.70 764.69 EM-N 32.9 760.09 759.64 759.62 759.58 759.43 759.69 759.61 759.65 E-S 41.8 735.74 735.17 734.61 734.62 734.63 734.64 734.64 734.63 734.67 E-M 36.8 757.60 757.34 757.00 756.93 756.92 756.90 756.89 756.81 756.85 T - Pl.iomtHi • - Wotar Table Wall TECHNICAL RESOURCES BRANCH PROJECT TABER IRRIGATION RETURN FLOW GROUND WATER ELEVATIONS TABLE SHEET. TESTHOLE NUMBER MONITOR April 1 April 29 1980 July 22 1980 Aug. 6 1980 Aug. 15 1980 Oct. 7 198() Oct. 28 1980 Nov. 27 1980 No. Type Depth 1980 1816 W-N 31.9 768.88 768.81 768.78 768.63 768.55 768.46 W-M 4.S Dry Dry Dry 770.63 770.67 770.74 W-S 6.7 768.43 768.57 768.64 769.66 770.01 770.37 M-M 7.6 767.92 768.48 767.96 767.84 768.02 768.41 768.15 769.27 M-S 13.2 767.76 768.64 762.83 763.90 764.66 766.18 766.72 768.72 E-N 28.6 752.77 754.. 16 749.78 750.00 750.23 751.51 751.08 750.48 E-S 41.6 737.10 737.16 771.84 771.85 771.86 771.90 771.05 771.91 1817 W-S S.7 769.61 768.77 768.81 768.73 769.10 768.85 W-M 7.4 769.28 768.80 768.83 768.74 768.74 768.74 W-N 21.8 769.43 769.36 769.34 769.23 769.20 769.13 WM 7.0 768.42 768.89 768.48 768.75 768.82 768.83 768.81 768.80 EM-S 16.4 768.85 768.98 768.20 768.89 768.95 768.85 768.85 768.90 EM-M 27.0 761.95 763.53 763.96 761.93 762.82 764.30 764.42 764 . 50 EM-N 32.9 759.21 759.45 758.90 759.07 759.15 759.22 759.29 759.35 B-S 41.8 734.50 734.55 732.18 734.70 734.67 734.67 734.68 E-M 36.8 756.68 756.93 755.96 756.75 756.74 756.85 756.88 Wat.r Table Wall TECHNICAL RESOURCES BRANCH PROJECT TABER IRRIGATION RETURN PLOW GROUND WATER ELEVATIONS TABLE SHEET. TESTHOLE NUMBER MONITOR May 25 June 14 July 23 Aug. 30 Oct. 10 Nov. 1 Nov. 28 Jan. 3 Jan. 30 Mar. 10 No. Type Depth 1979 1979 1979 1979 1979 1979 1979 1980 1980 1980 1818 W-N 4.5 W-M 3.5 W-S 42.6 M-S 10.7 770.98 771.07 771.13 771.12 771.08 771.11 771.11 771.12 M-SM 7.2 771.03 771.10 771.17 771.14 771.09 771.09 771.11 77.1.09 M-NM 5.9 771.03 771.09 771.09 771.13 771.10 771.13 771.10 771.09 E-S 13.9 769.94 770.00 770.09 770.14 770.15 770.22 770.24 770.29 E-M 28.0 768.55 768.61 768.76 768.48 768.50 768.57 768.62 768.66 B-N 52.9 738.00 738.08 738.04 738.04 737.85 738.05 738.02 738.10 1819 25.2 715.42 715.14 714.82 716.14 716.46 716.99 717.33 717.81 1820 W 34.1 M-N 7.5 M-S 27.1 E 21.7 1821 N 27.0 M 20.9 S 15.0 Pleiomeltr I - Woltr Table wall TECHNICAL RESOURCES BRANCH PROJECT TABER IRRIGATION RETURN FLOW GROUND WATER ELEVATIONS TABLE SHEET L TESTHOLE| NUMBER MONITOR 1818 1821 N o- I Type Depth | April 1 April 2<j July 23 Aug. 6 1980 1980 I 1980 1980 Pluomtttr 4.5 3.5 42.6 10.7 771.05 771.08 7.2 771.07 771.12 5.9 771.08 771.11 13.9 770.24 770.26 28.0 768.14 768.65 52.9 737.95 738.05 771.42 771.40 771.42 771.45 767.45 767.45 771.19 771.19 771.23 771.21 771.22 771.20 770.41 770.40 768.75 768.75 738.27 738.26 25.2 | 714.02 | 715.31 | 717.17 716.52 758.32 758.31 770.81 770.85 7S8.20 758.21 758.64 758.57 765.13 765.88 773.54 772.83 765.97 766.02 • - WoUf Tablf Wtll Aug. 15 Oct. 7 Oct. 28 Nov. 27| 1980 1980 1980 1980 771.42 771.49 771.92 771^91 771.46 772.01 772.00 771.98 767.49 767.67 766.93 767.57 771.20 771.37 771.37 771.26 771.22 771.33 771.28 771.27 771.22 771.22 '771.59 771.24 770.41 770.50 770.53 770.57 768.75 768.82 768.86 768.88 738.28 738.28 738.28 738.29 717.33 758.32 770.84 758.30 758.54 765.89 772.69 766.10 720.89 721.73 722.58 758.34 758.34 770.87 770.85 758.25 758.17 758.50 758.54 765.94 765.94 771.50 770.87 766.04 766.10 758.33 770.83 758.36 I 758.58 765.97 770.66 766.29 ro O TECHNICAL RESOURCES BRANCH 271 REFERENCES Barendregt, Rene W., 1977: A d e t a i l e d geomorphological survey of the Pakowki-Pinhorn area of southeastern A l b e r t a ; Queen's Univ., PhD T h e s i s ( u n p u b l i s h e d ) . Bear, Jacob, 1979: H y d r a u l i c s of Groundwater; McGraw-Hill S e r i e s i n Water Resources and Environmental E n g i n e e r i n g , New York, N.Y. Borden, R. W., 1976: S o i l i r r i g a b i l i t y i n v e s t i g a t i o n f o r the west Big Bend area; r e p o r t of the S o i l S e c t i o n , T e c h n i c a l Resources Branch, A l b e r t a Dept. of A g r i c u l t u r e . Bouwer, Herman and R. C. Rice, 1976: A s l u g t e s t f o r determining h y d r a u l i c c o n d u c t i v i t y of unconfined a q u i f e r s with completely or p a r t i a l l y p e n e t r a t i n g w e l l s . Water Resour. Res. 12(3), pp. 423-428. Chow, V. T., 1964: Handbook of A p p l i e d Hydrology; McGraw-H i l l Book Co., Montreal. C l a y t o n , J . S., W. A. E h r l i c h , D. B. Cann, J . H. Day, and I. B. M a r s h a l l , 1977: S o i l s of Canada ; Can. Dept. A g r i c u l t u r e . Dawson, G. M., 1885: On the s u p e r f i c i a l d e p o s i t s and g l a c i a t i o n of the d i s t r i c t i n the v i c i n i t y of the Bow and B e l l y r i v e r s ; G. S. C. Rept. Progress, 1882-84, pp. 139c-152c. Farvolden, R. N., 1969: Bedrock channels of southern A l b e r t a ; rn E a r l y c o n t r i b u t i o n s to the groundwater hydrology of A l b e r t a ; Research C o u n c i l of A l b e r t a B u l l e t i n 2, pp. 63-75. 272 Freeze, R. A l l a n , 1969: Regional groundwater flow — Old Wives Lake drainage b a s i n , Saskatchewan: Inland Waters Branch, S c i e n t i f i c S e r i e s No. 5; Dept. Energy Mines and Resources, Ottawa. , and J . A. Cherry, 1979: Groundwater ; P r e n t i c e -H a l l , Inc., New J e r s e y . Freeze, R. A l l a n , and P^ T A. Witherspoon, 1967: T h e o r e t i c a l a n a l y s i s of r e g i o n a l groundwater flow, 2. E f f e c t of water t a b l e c o n f i g u r a t i o n and subsurface p e r m e a b i l i t y v a r i a t i o n s ; Water Resour., Res. 3, pp. 623-634. Gabert, G. M., 1975: Hydrogeology of Red Deer and v i c i n i t y A l b e r t a ; A l b e r t a Research C o u n c i l B u l l e t i n 31. Garven, Grant, 1980: hydrogeology of the Pine Lake r e s e a r c h b a s i n , A l b e r t a , Canada; Univ. of A r i z o n a M.Sc. t h e s i s ( u n p u b l i s h e d ) . Gray, Donald M., ed., 1970: Handbook on the P r i n c i p l e s of  Hydrology ; N a t i o n a l Research C o u n c i l of Canada. Hendry, M. J . , 1980: Hydrogeology of a shallow t i l l under i r r i g a t i o n ; ASCE I r r i g a t i o n and Drainage S p e c i a l t y Conf., Boise, Idaho. Holmes, R. M., and G. W. Robertson, 1960: A p p l i c a t i o n of the r e l a t i o n s h i p between a c t u a l and p o t e n t i a l e v a p o t r a n s p i r a t i o n i n arid-zone a g r i c u l t u r e ; Paper No. 60-200, Annual Meeting, American S o c i e t y of A g r i c u l t u r a l Engineers, June, 12-15. Horberg, L e l a n d , 1952: P l e i s t o c e n e d r i f t sheets i n the L e t h b r i d g e r e g i o n , A l b e r t a , Canada; J . G e o l . 60(4), pp. 303-330. 273 Hvo r s l e v , M. J . , 1951: Time l a g and s o i l p e r m e a b i l i t y i n groundwater o b s e r v a t i o n s ; U. S. Corps of Engineers, Waterways Experimental S t a t i o n , V i c k s b u r g , M i s s i s s i p p i , B u l l . 36. Kupsch, W. D., and J . A. Vonhof, 1967: S e l e c t i v e cementation i n T e r t i a r y sands and g r a v e l s , Saskatchewan; Can. J . E a r t h Sc. 4, pp. 769-775. Masch, F. D. and K. J . Denny, 1966: Gr a i n s i z e d i s t r i b u t i o n and i t s e f f e c t on the p e r m e a b i l i t y of u n c o n s o l i d a t e d sands; Water Resour. Res., 2, pp. 665-677. Matyas, E. L. 1967: A i r and water p e r m e a b i l i t y of compacted s o i l s ; i n P e r m e a b i l i t y and c a p i l l a r i t y of s o i l s , ASTM STP 417, pp. 160-175. Meyboom, Peter, 1967: Estimates of groundwater recharge on the P r a i r i e s ; Royal S o c i e t y of Canada Symposium on Water Resources of Canada, U n i v e r s i t y of Toronto P r e s s , pp.. 128-153. Morton, F. I., 1968: Evaporation and c l i m a t e : a study i n cause and e f f e c t ; Inland Waters Branch, S c i e n t i f i c S e r i e s No. 4, Dept. of Energy Mines and Resources, Ottawa. N e i l s e n , Grant Leroy, 1971: Hydrogeology of the I r r i g a t i o n Study Basin, Oldman R i v e r Drainage, A l b e r t a , Canada; Brigham Young U n i v e r s i t y Geology S t u d i e s , 18(1). Papadopolus, S. S., J . D. Bredehoeft, and H. H. Cooper, J r . , 1973: On the a n a l y s i s of s l u g t e s t data; Water Resour. Res., 9(4), pp. 1087-1089. Payne, B. R. , 1972: Isotope hydrology; i_n Advances i n Hydroscience, 8, pp. 95-138. 274 Pickens, J . F. 1979: TRANSAT -- A f i n i t e element model f o r s i m u l a t i o n of s o l u t e t r a n s p o r t i n steady s a t u r a t e d flow f i e l d s ; N a t i o n a l Hydrology Research I n s t i t u t e , Paper No. 10, Inland Waters D i r e c t o r a t e B u l l e t i n 118, Dept. Energy Mines and Resources, Ottawa. , and W. C. Lennox, 1976: Numerical s i m u l a t i o n of waste movement i n steady groundwater flow systems; Water Resour. Res., 12(2), pp. 171-180. Rapp, E. and J . C. van Schaik, 1971: Water t a b l e f l u c t u a t i o n s i n g l a c i a l t i l l s o i l s as i n f l u e n c e d by i r r i g a t i o n ; Can. Ag. Eng., 13(1), pp. 8-12. , 1972: A long-time water t a b l e study of an i r r i g a t i o n p r o j e c t i n southern A l b e r t a ; Can. Ag. Eng., 14(1), pp. 29-32. , and N. N. Khana, 1969: A h y d r o l o g i c budget f o r a southern A l b e r t a i r r i g a t i o n d i s t r i c t ; Can. Ag. Eng., 11(2), pp. 54-57. R u s s e l l , L. S. and R. W. Landes, 1940: Geology of the southern A l b e r t a p l a i n s ; G. S. C. Mem. 221. S t a l k e r , A. MacS., 1960: Bu r i e d v a l l e y s i n c e n t r a l and southern A l b e r t a ; G. S. C. Paper 60-32. , 1963: Quaternary s t r a t i g r a p h y i n southern A l b e r t a ; G. S. C. Paper 62-34. , 1968: I d e n t i f i c a t i o n of Saskatchewan g r a v e l s and sands; Can. J . E a r t h Sc., 5, pp. 155-163. • , 1973: S u r f i c i a l geology of the Drumheller area, A l b e r t a ; G. S. C. Mem. 370. 275 Somnor, L. G., 1963: S e a s o n a l consumptive use of water by c r o p s i n s o u t h e r n A l b e r t a and i t s r e l a t i o n s h i p t o e v a p o t r a n s p i r a t i o n ; Can. J . S o i l S c i . , 43, pp. 287-297. T h o r n w a i t e , C. W. , 1948: An approach toward a r a t i o n a l c l a s s i f i c a t i o n of c l i m a t e ; Geog. Review, 38, pp. 55-34. Todd, D. K., 1959: Groundwater H y d r o l o g y ; John W i l e y and Sons, New York, N. Y. T o t h , J o z s e f , 1968: A h y d r o g e o l o g i c a l s t u d y of the Three H i l l s a r e a , A l b e r t a ; R e s e a r c h C o u n c i l of A l b e r t a B u l l e t i n 24. , 1970: A c o n c e p t u a l model of the groundwater regime and the h y d r o g e o l o g i c environment; J . H y d r o l o g y , 1 0 ( 2 ) , pp. 164-176. T r e w a r t h a , G. T., A. H. R o b i n s o n , and E. H. Hammond, 1968 Fundamentals of P h y s i c a l Geography ; M c G r a w - H i l l Book Co., New York, N. Y. Vandenberg, A., 1980: R e g i o n a l groundwater motion i n r e s p o n s e t o an o s c i l l a t i n g water t a b l e ; J . H y d r o l o g y , 47, pp. 333-348. Walto n , W i l l i a m C , 1970: Groundwater Resource E v a l u a t i o n ; M c G r a w - H i l l S e r i e s i n Water Resources and E n v i r o n m e n t a l E n g i n e e r i n g ; New York, N. Y. Westgate, J . A., 1968: S u r f i c i a l g e o l o g y of the Foremost C y p r e s s H i l l s a r e a , A l b e r t a ; R e s e a r c h C o u n c i l of A l b e r t a B u l l e t i n 22. 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            data-media="{[{embed.selectedMedia}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0052866/manifest

Comment

Related Items