Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Sedimentology of a freshwater tidal system, Pitt River-Pitt Lake, British Columbia Ashley, Gail Mowry 1977

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1977_A1 A83.pdf [ 28.2MB ]
Metadata
JSON: 831-1.0052852.json
JSON-LD: 831-1.0052852-ld.json
RDF/XML (Pretty): 831-1.0052852-rdf.xml
RDF/JSON: 831-1.0052852-rdf.json
Turtle: 831-1.0052852-turtle.txt
N-Triples: 831-1.0052852-rdf-ntriples.txt
Original Record: 831-1.0052852-source.json
Full Text
831-1.0052852-fulltext.txt
Citation
831-1.0052852.ris

Full Text

SEDIMENTOLOGY OF A FRESHWATER TIDAL SYSTEM, PITT RIVER - PITT LAKE, BRITISH COLUMBIA  by GAIL MOWRY ASHLEY B.Sc.j U n i v e r s i t y o f M a s s a c h u s e t t s , 19^3 M.Sc,  U n i v e r s i t y of M a s s a c h u s e t t s , 1972  A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY'  -cn  THE FACULTY OF GRADUATE STUDIES Department o f G e o l o g i c a l  Sciences  We accept t h i s t h e s i s as conforming to the required standard  THE UNIVERSITY OF BRITISH COLUMBIA J u l y , 1977  ©  G a i l Mowry A s h l e y , ' 1 9 7 7  In p r e s e n t i n g t h i s  thesis  an advanced degree at  further  fulfilment  of  the  requirements  the U n i v e r s i t y of B r i t i s h Columbia, I agree  the L i b r a r y s h a l l make it I  in p a r t i a l  freely  available  for  agree t h a t p e r m i s s i o n f o r e x t e n s i v e copying o f  of  representatives.  this thesis for  It  financial  this  thesis  The  gain s h a l l not  Geological Sciences  U n i v e r s i t y o f B r i t i s h Columbia  2075 W e s b r o o k P l a c e V a n c o u v e r , Canada V6T 1W5  Date  July 14, 1977  or  i s understood that copying or p u b l i c a t i o n  written permission.  Department of  that  reference and study.  f o r s c h o l a r l y purposes may be granted by the Head of my Department by h i s  for  be allowed without my  S u p e r v i s o r : P r o f . W.H.Mathews i i .  ABSTRACT  P i t t R i v e r , 30 km i n l a n d from. Vancouver,  British  Columbia a t t h e s o u t h e r n margin o f t h e Coast M o u n t a i n s , l i n k s F r a s e r R i v e r e s t u a r y and P i t t Lake.'.  S a l t water  seldom extends t o w i t h i n 10 km o f Fraser. - P i t t c o n f l u e n c e ; n e v e r t h e l e s s , t i d e s modulate F r a s e r f l o w and cause  Pitt  R i v e r t o f l u c t u a t e 2 m and P i t t Lake as much as 1.2 m. There i s an upstream movement o f s e d i m e n t , i n P i t t  River  from F r a s e r R i v e r , e v i d e n c e d by i d e n t i c a l m i n e r a l o g y o f P i t t R i v e r and F r a s e r R i v e r s e d i m e n t s , a decrease i n g r a i n s i z e from the F r a s e r t o P i t t Lake, and a predominance o f f l o o d - o r i e n t e d bedforms  i n the r i v e r c h a n n e l .  A delta of  2  12 km the  a r e a has accumulated a t t h e lower ( d r a i n i n g ) . e n d o f  lake. The purposes o f t h e study were t o : ( 1 ) examine a s p e c t s  of t h e hydrodynamics  o f P i t t R i v e r and P i t t Lake as a t i d a l  system; ( 2 ) e v a l u a t e the e f f e c t o f b i d i r e c t i o n a l f l o w on r i v e r and d e l t a morphology;  ( 3 ) determine p r o c e s s e s o f  sediment movement i n t h e r i v e r and of-sediment d i s p e r s a l on t h e d e l t a ; and ( 4 ) e s t i m a t e p r e s e n t s e d i m e n t a t i o n r a t e on t h e d e l t a . Water Survey o f Canada stage d a t a from 3 l o c a t i o n s i n the  system, used i n c o n j u n c t i o n w i t h v e l o c i t y measurements  ( p r o f i l e s and t e t h e r e d m e t e r ) , r e v e a l e d l a r g e s e a s o n a l and t i d a l variations i n discharge.  Calculations indicate that  f l o o d b a s a l shear s t r e s s peaks e a r l y i n t h e f l o w , whereas ebb c u r r e n t s have a lower basal, shear s t r e s s which peaks l a t e i n the f l o w .  Thus, sediment moves f a r t h e r f o r w a r d  on a f l o o d f l o w t h a n i t moves back on t h e s u c c e e d i n g ebb. S t u d i e s o f t h e r i v e r channel u s i n g h y d r o g r a p h i c c h a r t s r e v e a l e d r e g u l a r meanders ( =  6100. m) and e v e n l y spaced  r i f f l e s and p o o l s which are s c a l e d t o t h e s t r o n g e s t f l o w (winter flood current, Q K  Meander p o i n t b a r s are  e  a c c r e t i n g on the "upstream" the f l o o d - o r i e n t e d f l o w .  s i d e i n d i c a t i n g d e p o s i t i o n by  The t h r e e d i m e n s i o n a l geometry  of t h e l a r g e - s c a l e bedforms which cover t h e sandy thalweg of both r i v e r and d e l t a c h a n n e l was determined by echo sounding and s i d e - s c a n sonar.  Three d i s t i n c t  sizes  ( h e i g h t / s p a c i n g = 0.8 m/10-15m; 1.5m/25-30 m; 3 m/50-60 m) of  l a r g e - s c a l e bedforms (sand waves) were found; t h e i r  • l i n e a r - r e l a t i o n s h i p o f h e i g h t ' v s . s p a c i n g ( X ) on l o g - . • D  log  p l o t suggests a common genesis..  The s i z e appears t o be  r e l a t e d t o c h a n n e l geometry, not t o depth o f f l o w .  Largest  forms are found i n reaches which s h a l l o w i n t h e d i r e c t i o n of water movement and s m a l l e s t forms o c c u r on r e l a t i v e l y topography. for  flat  The f o l l o w i n g t e n t a t i v e r e l a t i o n s h i p i s suggested  sandy meandering r i v e r s :  \ „ / ^ T ~ . M  a  =  Q . e  P i t t d e l t a morphology was s t u d i e d w i t h a e r i a l and depth soundings.  photos  I t s shape i s c o n s i d e r e d an e x c e l l e n t  iv  example o f sediment d i f f u s i o n and d e p o s i t i o n from a simple jet  i n t o a low energy l a c u s t r i n e environment.  Analysis  of 190 sediment samples from r i v e r , d e l t a , and l a k e bottom shows the sediment t o be polymodal. of t h e c u m u l a t i v e  Graphical partitioning  p r o b a b i l i t y p l o t s r e v e a l s t h a t sediments  are composed o f up t o 4 log-normal  distributions.  Each  d i s t r i b u t i o n i s i n t e r p r e t e d as a p o p u l a t i o n r e l a t e d t o a process  o f sediment t r a n s p o r t .  F i v e subenvironments i n  the P i t t system a r e c h a r a c t e r i z e d by unique c o m b i n a t i o n s . of these  "process"  populations.  Cores i n t h e d e l t a t o p s e t s and l a k e bottom sediments r e v e a l s i l t and c l a y r h y t h m i t e s , i n t e r p r e t e d as v a r v e s . The coarse l a y e r s a r e d e p o s i t e d d u r i n g w i n t e r when d i s c h a r g e of F r a s e r R i v e r i s low and t i d a l l y P i t t system i s h i g h .  induced  discharge i n  The f i n e l a y e r s a r e d e p o s i t e d  during  s p r i n g r u n - o f f when a d d i t i o n a l f i n e s a r e added t o t h e l a k e 137 from the P i t t b a s i n . Cs d a t i n g o f sediments shows t h a t as much as 1.8 cm/yr a r e a c c u m u l a t i n g i n t h e a c t i v e + 3 p o r t i o n s o f t h e d e l t a w i t h an e s t i m a t e d tonnes d e p o s i t e d  annually.  150 - 20 X 10  V  TABLE OF CONTENTS Page ABSTRACT  1 1  TABLE OF CONTENTS  V  LIST OF TABLES  viii.  LIST OF FIGURES  x  LIST OF APPENDICES  xiv  ACKNOWLEDGEMENTS  xv  PART I : INTRODUCTION GEOLOGIC HISTORY  1 •••  GEOMORPHOLOGY  6 9  SEDIMENTS  40  FLOW AND SEDIMENT TRANSPORT . .  45  Tides  45  Streamflow  64  Sediment t r a n s p o r t  88  Bedload Suspended sediment BED CONFIGURATIONS  89 103 108  Observations Interpretation Bedform s c a l i n g  117 117  R e l a t i o n s h i p o f meander wavelength to bedform s p a c i n g SUMMARY AND CONCLUSIONS REFERENCES CITED  121 13 0 133  vi  Page PART I I : INTRODUCTION  141  GEOLOGIC HISTORY  147  GEOMORPHOLOGY  151  Delta  151  Bed c o n f i g u r a t i o n s i n t h e c h a n n e l  164  HYDRAULICS  165  Tides  165  V e l o c i t y i n channel  171  SEDIMENTS  183  S t r a t i g r a p h y , d e l t a and l a k e b o t t o m  183  137 J 1  Cesium d a t i n g  189  Method  191  Results  191  Grain size analysis  198  A n a l y s i s of polymodal sediments  199  Introduction S t a t i s t i c a l method  200 •;•  SEDIMENTOLOGICAL PROCESSES Sediment m i x i n g  204 217 217  2 <j> i n f l e c t i o n  217  5 < } > •inflection  218  8.5 <j> i n f l e c t i o n  220  Conclusion  221  Grain size d i s t r i b u t i o n  221  Sediment d i s p e r s a l and a c c u m u l a t i o n  224  vii  Page CONCLUSIONS  223  REFERENCES CITED  230  APPENDICES  235  viii  PART I LIST OF TABLES TABLE I II  III  IV V VI  VII  VIII  IX X XI  Page Comparison o f m i n e r a l o g y f o r F r a s e r R i v e r and P i t t R i v e r sediments.  43  E s t i m a t e d l a g time f o r h i g h stage and low stage o f t i d e t o t r a v e l from S t r a i t o f G e o r g i a t o v a r i o u s p o i n t s i n P i t t system.  58  C a l c u l a t i o n s demonstrating t o t a l discharge p a s s i n g through r i v e r i s e q u a l t o volume added t o or s u b t r a c t e d from t h e l a k e .  60  Summary o f peak mean v e l o c i t i e s measured in profiles.  65  Summary o f v e l o c i t y d a t a measured w i t h t e t h e r e d meter (March, 1976).  81  C o r r e l a t i o n between t i d a l range i n S t r a i t o f G e o r g i a and maximum mean v e l o c i t i e s r e c o r d e d at s i t e IA.  84  R e l a t i o n o f maximum mean v e l o c i t i e s i n P i t t system t o F r a s e r d i s c h a r g e , under s i m i l a r t i d a l ranges.  84  C r i t i c a l shear s t r e s s c a l c u l a t i o n s (from S h i e l d s ' graph) f o r v a r i o u s g r a i n s i z e s found i n P i t t r i v e r channel sediment.  91  C a l c u l a t i o n s o f V , A and V A a t P i t t - F r a s e r c o n f l u e n c e f o r August 11, 1975.  95  s  c  C  Suspended sediment measurements (5 h r p e r i o d ) during flooding t i d e . 107 C r i t e r i a f o r s e l e c t i o n o f Q , ' A., and A-. e ii rs v  n  „_  L2.o  ix  PART I I LIST OP TABLES TABLES  Page Summary o f l a k e stage i n P i t t Lake.  II III IV  V VI  fluctuations  E s t i m a t e d s e a s o n a l and t i d a l d i s c h a r g e s i n P i t t system.  169 169  P r o p o r t i o n o f time devoted t o f l o w a t v a r i o u s magnitudes ( f l o o d and ebb).  180  Summary o f maximum and average v e l o c i t i e s f o r " c o n t i n u o u s " v e l o c i t y measurements t a k e n i n l a k e channel one meter o f f bottom.  181  Summary o f modal s t a t i s t i c s .  216  P i t t R i v e r data a p p l i e d t o Middleton's (1976) shear v e l o c i t y - f a l l v e l o c i t y relationship.  219  X  PART I LIST OF FIGURES FIGURE  Page  1.  L o c a t i o n map o f t h e P i t t t i d a l system.  3  2.  A e r i a l photo o f lower P i t t v a l l e y w i t h locations' of important geographic features.  11  Maps o f P i t t R i v e r w i t h f l o o d f l o w p a t t e r n , l o c a t i o n o f v e l o c i t y measurement s i t e s , and mean g r a i n s i z e d i s t r i b u t i o n .  15  4.  Longitudinal  17  5.  A e r i a l photo o f m i d - c h a n n e l b a r , and meander s c a r s .  3.  p r o f i l e of thalweg. point bar,  21  6.  Stratigraphic  cross s e c t i o n at the bridges.  7.  L e o p o l d and Wolman (I9 60) p l o t o f X r . M  and  M  8.  Summary o f t h e h y d r a u l i c  9.  Water s l o p e c a l c u l a t i o n s .  10.  23  geometry o f P i t t R i v e r  27 31 35  L e o p o l d and Wolman (L957 ) s l o p e - d i s c h a r g e plot.  37  11.  T i d a l curve f o r S t r a i t o f G e o r g i a .  47  12.  T i d a l theory.  49  13.  R e l a t i o n of dE/dl;., v e l o c i t y , and s l o p e i n P i t t River.  53  14.  Stage-time p l o t s f o r 4 stage r e c o r d i n g s t a t i o n s .  57  15-  Bargraph o f dE/dT  63  16. 17.  Comparison o f time devoted t o f l o o d and ebb f l o w Va te l olcoicta yt i opnrso f i i lne Ps i;t tl oRgi vdepth vs. velocity, er.  ( P i t t L a k e ) ; f l o o d v s . ebb.  67 71  xi  FIGURE 18. 1920. 21. 22. 23. 24.  Page T i m e - v e l o c i t y curve f o r complete t i d a l cycle  75  T u r b u l e n c e generated by f l o o d o r i e n t e d bedforms  77  Examples from " c o n t i n u o u s " v e l o c i t y measurements (one meter from bottom).  83  P a t t e r n of f l o o d and ebb f l o w a t Fraser - P i t t confluence.  87  3 t i m e - v e l o c i t y curves dominated f l o w .  99  showing f l o o d  Model f o r sediment t r a n s p o r t i n flood direction. Bedform types found i n P i t t  105  River  drawn t o n a t u r a l s c a l e .  113  25.  Depth soundings.  115  26.  Stability f i e l d for ripples, and dunes ( C o s e t t o , 1 9 7 4 ) .  27.  A /A M  B  oc  Q  e  bars, 123 i 2 ?  xii  PART I I LIST OF FIGURES FIGURES  Page  1.  L o c a t i o n map o f P i t t t i d a l system.  143  2.  A e r i a l photo o f lower P i t t v a l l e y w i t h l o c a t i o n s o f important physiographic features.  145  3-  4.  Map o f i m p o r t a n t geomorphic f e a t u r e s of P i t t Lake and l o c a t i o n s o f c h a n n e l c r o s s s e c t i o n s and s i t e s o f cores taken f o r cesium d a t i n g .  153  A e r i a l photos o f c h a n n e l m a r g i n , l e v e e s and end o f d e l t a d i s t r i b u t a r y .  155,156  5.  D e l t a channel cross s e c t i o n s .  159  6.  L o n g i t u d i n a l p r o f i l e o f d e l t a channel and depth sounding showing sand waves. Stage-time p l o t s f o r 4 stage r e c o r d i n g  161  stations .  167  8.  P a t t e r n s o f f l o o d and ebb f l o w on d e l t a .  173  9.  T i m e - v e l o c i t y p l o t o f f l o o d "flow take at l a k e o u t l e t . Examples from " c o n t i n u o u s " v e l o c i t y measurements i n d e l t a c h a n n e l (one meter from bottom).  179  11.  Map o f mean g r a i n s i z e d i s t r i b u t i o n .  185  12.  Diagram and photos o f d e l t a f o r e s e t sediments.  187  6.3 cm d i a m e t e r core from a c t i v e front.  193  7.  10.  1314.  Diagram  of Ge(Li) detector.  177  delta 195  xiid  FIGURES  Page 137  15.  R e l a t i o n of Cs c o n c e n t r a t i o n w i t h depth (time). Summary of the range of g r a i n s i z e s covered by the f i v e s i z i n g t e c h n i q u e s used i n t h i s study. The percentage o f each p r o c e s s p o p u l a t i o n o c c u r i n g w i t h each environment i s presented.  203  Map of d e p o s i t i o n a l environments w i t h i n the P i t t system.  207  18.  I d e a l b i m o d a l and t r i m o d a l p r o b a b i l i t y curve ( S i n c l a i r , 1976)..  209  19.  Polymodal c u m u l a t i v e p r o b a b i l i t y c u r v e s .  211  20.  Schematic diagram of p r o c e s s p o p u l a t i o n s .  215  16.  17.  197  xiv  LIST  OF  APPENDICES Page  Appendix  1  Bedform  Appendix  2  Velocity  Appendix  3  Grain  Appendix  4  Bedload  spacing p r o f i l e  size  235 data  analyses  calculations  238 251 402  XV  ACKNOWLEDGEMENTS;  Much a p p r e c i a t i o n i s extended to. W.H.  Mathews f o r  guidance and encouragement d u r i n g a l l phases of t h i s study.. My i d e a s were f o r m u l a t e d , i n p a r t , t h r o u g h c o n v e r s a t i o n s w i t h I . J . Duncan, M. Church, W.C. CH.  B a r n e s , W.H.  Mathews,  Pharo, and A. Tamburi. I am g r a t e f u l to C H .  for use o f the S e d i g r a p h  Pharo ( I n l a n d Waters D i r e c t o r a t e ) use o f g r a i n s i z e  2000,  statistics  program, u n p u b l i s h e d P i t t Lake b a t h y m e t r y , and c l a y m i n e r a l o g y of the P i t t Lake s e d i m e n t s ; t o L.E. Moritz- ( T r i - u n i v e r s i t y 1^7  Meson F a c i l i t y , U.B.C.) f o r  J I  C s a n a l y s i s ; t o P.A.  Peach  (Brock U n i v e r s i t y ) f o r r u n n i n g the Quantimet 720 a n a l y s e s ; t o J.C. B o o t h r o y d and T. Donlon ( U n i v . of Rhode I s l a n d ) f o r p r o c e s s i n g sand samples t h r o u g h the Rapid Sediment A n a l y z e r ; t o D. Swan (G.S.C.) f o r use o f g r a i n s i z e s t a t i s t i c s  program;  to M. Church f o r h e l p i n d e v e l o p i n g s e v e r a l computer programs and use o f the Raytheon # 719 depth sounder; t o R. Hebda ( U n i v . o f W a t e r l o o ) f o r macrophyte i d e n t i f i c a t i o n ; t o Jon J o l l e y , I n c . , S e a t t l e , Wash, f o r use o f the K l e i n s i d e - s c a n s o n a r ; t o J.C. B o o t h r o y d and H." Van Der Meulen f o r h e l p i n the f i e l d ; t o R. Mac.donald and D. Reimer f o r t e c h n i c a l a s s i s t a n c e ; t o D. • Dobson '(Water- -'Survey o f Canada) f o r . l i b e r a l use o f s t a g e r e c o r d s and t o R. Bruun ( C i v i l U.B.C.) f o r d r a f t i n g .  Engineering,  xv i  E a r l i e r v e r s i o n s o f t h e t h e s i s were r e v i e w e d by W.H. Mathews, J.D. M i l l i m a n , M. Church, W.C.  Barnes,  R.E. K u c e r a , C H . Pharo, a n d . I . J . Duncan. Many o f t h e U.B.C. graduate s t u d e n t s a i d e d i n t h e f i e l d and a p p r e c i a t i o n i s e x p r e s s e d f o r t h e s e r v i c e s and r e s e a r c h f a c i l i t i e s p r o v i d e d by t h e Department o f G e o l o g i c a l S c i e n c e s at  t h e U n i v e r s i t y o f B r i t i s h Columbia.  S.C. A s h l e y a s s i s t e d  i n t h e f i e l d and was i n v a l u a b l e i n d a t a r e d u c t i o n and p r o v i d i n g m o r a l support f o r t h e d u r a t i o n o f t h e s t u d y . N a t i o n a l Research C o u n c i l o f Canada Grant A-1107 ( P r o f . W.H.'Mathews) p r o v i d e d support f o r both f i e l d work and p r e p a r a t i o n of t h e m a n u s c r i p t .  1  PART ONE:  INTRODUCTION  P i t t R i v e r (North) - P i t t Lake - P i t t R i v e r system i s s i t u a t e d i n a g l a c i a l l y the  Coast M o u n t a i n s , B r i t i s h  scoured v a l l e y  (South) within  Columbia, a p p r o x i m a t e l y  30 km i n l a n d from t h e p o r t o f Vancouver  ( F i g . 1 ) . The  v a l l e y o f the P i t t , 70 km i n l e n g t h , opens a b r u p t l y i n t o the  Fraser lowland.  P i t t R i v e r ( N o r t h ) d r a i n s 816 km  i n c l u d i n g s e v e r a l mountain g l a c i e r s and p r o v i d e s a mean d i s c h a r g e o f 80 cu m/sec t o t h e l a k e .  P i t t R i v e r (North)  i s not i n c l u d e d i n t h i s study and t h e term P i t t R i v e r h e r e a f t e r r e f e r t o P i t t R i v e r (South) which j o i n s  will  Pitt  Lake t o t h e F r a s e r R i v e r . P i t t R i v e r and P i t t Lake a r e t i d a l , b e i n g connected to the ocean ( S t r a i t  o f G e o r g i a ) by lower F r a s e r R i v e r .  Although water l e v e l s i n the P i t t system respond t o the t i d e s , s a l t water seldom extends c l o s e r t h a n 10 km downstream 'of the F r a s e r - P i t t c o n f l u e n c e . ( f l o o d t i d e ) i n the S t r a i t ,  R i s i n g water  retards flow of the Fraser  and r a i s e s i t s e l e v a t i o n , o r stage l e v e l ,  progressively  eastward u n t i l t h e water l e v e l a t t h e F r a s e r - P i t t c o n f l u e n c e i s h i g h e r than i n P i t t R i v e r .  Flow i n t h e  P i t t t h e n r e v e r s e s and w a t e r d i v e r t e d from t h e F r a s e r f l o w s northward up P i t t R i v e r i n t o P i t t  Lake.  2  F I G U R E 1.  Location Pitt  Lake  map  of P i t t  system.  River  -  4  As t h e water e l e v a t i o n f a l l s (ebb t i d e ) i n t h e S t r a i t , Fraser River flow i s a c c e l e r a t e d . e l e v a t i o n i s lowered  p r o g r e s s i v e l y , eastward  l e v e l a t the F r a s e r - P i t t c o n f l u e n c e o f the P i t t R i v e r .  The s u r f a c e u n t i l the  i s lower than t h a t  Flow then r e v e r s e s i n t h e P i t t  system  and d r a i n s toward t h e s e a . H e r e a f t e r , f l o w northward away from t h e ocean and toward P i t t Lake i s r e f e r r e d t o as f l o o d ; f l o w r e t u r n i n g t o t h e F r a s e r R i v e r and ocean i s ebb. The F r a s e r R i v e r e s t u a r y , P i t t R i v e r , and P i t t Lake a l l e x h i b i t a t i m e - s t a g e  asymmetry.  That i s , water  e l e v a t i o n s r i s e more q u i c k l y d u r i n g f l o o d t i d e than f a l l on the ebb.  levels  T h i s produces a v e l o c i t y i n e q u a l i t y such  t h a t t h e f l o o d u s u a l l y has t h e h i g h e s t average peak velocities. Although  P i t t River i s subjected to c o n t i n u a l l y  r e v e r s i n g f l o w i t has few e s t u a r i n e c h a r a c t e r i s t i c s . e s t u a r i e s o f t e n have a b r a n c h i n g  system o f t i d a l  whose numbers I n c r e a s e i n an up-estuary they commonly have s e p a r a t e f l o w ( P r i t c h a r d , 1967). f o r both f l o w d i r e c t i o n s .  channels  Shallow  channels  direction.  Also  f o r f l o o d and ebb  The P i t t has o n l y a s i n g l e  channel  At l e a s t two a s p e c t s o f the  P i t t system may account f o r t h e d i s t i n c t l a c k o f e s t u a r i n e characteristics.  (1) A s h a l l o w e s t u a r y whose depth would  n o r m a l l y decrease up e s t u a r y has been r e p l a c e d by a c o n d u i t ( P i t t R i v e r ) and a r e s e r v o i r ( P i t t L a k e ) .  This r e s e r v o i r  5  w i t h l a r g e s t o r a g e c a p a c i t y a l l o w s f l o o d t i d e water t o f l o w t h r o u g h P i t t R i v e r w i t h no more impedance than i n a normal r i v e r c h a n n e l . ( 2 ) P i t t b a s i n d r a i n a g e c o n t r i b u t e s a d i s c h a r g e which v a r i e s from %% t o 5 0 % o f t h e t o t a l volume o f water moving through the system and thus i s not always dominated by t i d a l f l o w .  P i t t River i s a t i d a l  channel t h a t can be thought o f as a s i m p l e water course s u b j e c t e d t o two d i f f e r e n t u n i d i r e c t i o n a l f l o w s w i t h t h e s t r o n g e r f l o w ( f l o o d ) h a v i n g the g r e a t e r e f f e c t i n s h a p i n g its  morphology. There i s an apparent upstream movement o f sediment  i n P i t t R i v e r from. F r a s e r R i v e r t o P i t t Lake. evidenced' by a predominance  of f l o o d - o r i e n t e d  This i s bedforms  i n the r i v e r c h a n n e l and a decrease i n g r a i n s i z e from t h e F r a s e r t o the l a k e .  A l a r g e a r e a o f sediment (12 km ) i s  a c c u m u l a t i n g a t the lower end o f t h e l a k e .  The purposes  of t h i s study a r e t o examine t h e hydrodynamics  of t h e  P i t t as a t i d a l r i v e r and t o e v a l u a t e t h e e f f e c t o f b i d i r e c t i o n a l f l o w on b o t h sediment movement and t h e d e v e l o p ment o f the p r e s e n t day c h a n n e l morphology.  6  GEOLOGIC HISTORY  D u r i n g t h e P l e i s t o c e n e Epoch, r e p e a t e d g l a c i a t i o n s a i d e d by p r e - and i n t e r - g l a c i a l stream- a c t i v i t y , have deeply  eroded v a l l e y s o r i e n t e d a l o n g a north-west and n o r t h -  e a s t o r i e n t e d j o i n t p a t t e r n o c c u r i n g i n t h e Coast Mountains (Peacock, 1935)-  F o l l o w i n g the most r e c e n t d e g l a c i a t i o n  (15,000 - 11,000 B.P.) the m e l t i n g i c e l e f t numerous elongate  l a k e s i n i n t e r i o r v a l l e y s and a c o a s t l i n e dominated  by f i o r d s .  However, i n e a r l y p o s t g l a c i a l times t h e l o c a t i o n  of t h e shore f l u c t u a t e d as a r e s u l t o f complex i n t e r a c t i o n of e u s t a t i c s e a l e v e l changes and c r u s t a l rebound (Mathews et a l . , 1 9 7 0 ) .  D u r i n g t h i s p e r i o d o f i n s t a b i l i t y , ocean  waters f l o o d e d p a s t t h e mouth o f P i t t V a l l e y , as by marine s h e l l s  (12,690  evidenced  * 190 B.P.; 1 5 9 5 9 , Mathewes, 1973)  c o l l e c t e d a t an e l e v a t i o n o f 107 m on the east s i d e of Pitt valley.  Glaciomarine  sediment (up t o 275 meters t h i c k )  was d e p o s i t e d i n the v a l l e y d u r i n g t h i s p o s t - g l a c i a l p e r i o d . I s o s t a t i c u p l i f t began around 13,000 B.P. and was e s s e n t i a l l y complete by 8,000 B.P. (Mathews, et_ a l . , 1 9 7 0 ) .  Fraser  R i v e r , s u p p l i e d by abundant g l a c i a l sediment, r a p i d l y c o n s t r u c t e d a d e l t a westward and by 8,290 - 140 B.P. (G.S.C. 2 2 9 , Dyck e t a l . , 1 9 6 5 ) " P i t t F i o r d " was s e a l e d o f f a t i t s southern  end by t h i s d e l t a .  a s h o r t t i d a l channel m a i n t a i n e d  It is likely  that  a c o n n e c t i o n between t h e  7  f i o r d and F r a s e r e s t u a r y .  Tidal currents flowing  through  t h i s channel must have c a r r i e d sediment from F r a s e r R i v e r i n t o t h e f i o r d , b u i l d i n g a f l o o d t i d a l d e l t a which t o grow northward as t h e F r a s e r d e l t a p r o g r e s s e d By 4 , 6 4 5 - 9 5 B.P. ( 1 7 0 4 7 ; Mathews,  1976,  continued  westward.  p e r s . comm.) t h e  l e a d i n g edge o f t h e P i t t d e l t a stood a t l e a s t 2 0 km n o r t h of F r a s e r R i v e r near t h e p r e s e n t o u t l e t o f P i t t Lake (Fig. 1). was  At some time d u r i n g t h i s p e r i o d " P i t t  Fiord"  f l u s h e d o f s a l i n e water and became P i t t Lake.  No  s a l t water remains i n the l a k e ; n o t even i n deepest b a s i n (150  m).  As t h e s e a - l a n d r e l a t i o n s h i p has been much t h e  same as a t p r e s e n t s i n c e 5 , 5 0 0 B. P. ••' (Mathews et_ a l . , i t i s probable  1970),  t h a t P i t t Lake has been i n e x i s t e n c e f o r a t  l e a s t s i x thousand y e a r s .  D u r i n g the l a s t 4 , 7 0 0 y e a r s , P i t t  t i d a l d e l t a has advanced up t o 6 km f a r t h e r i n t o P i t t Lake a t an average r a t e o f 1 . 2 8 m . y r . . -1  However, t h i s  s e d i m e n t a t i o n r a t e has most l i k e l y decreased e x p o n e n t i a l l y , s t a r t i n g a t meters p e r y e a r and t a p e r i n g o f f t o the rate of approximately  a c e n t i m e t e r p e r year  present  (Ashley, 1 9 7 7 ) .  P i t t R i v e r p r e s e n t l y f l o w s a l o n g the w e s t e r n edge o f the v a l l e y and t h e r e i s no geomorphic evidence  on t h e  f l o o d p l a i n t o suggest t h a t t h e channel has m i g r a t e d e x t e n s i v e l y d u r i n g i t s development.  Dikes b u i l t a l o n g 85%  of t h e r i v e r s h o r e l i n e d u r i n g the l a s t 50 y e a r s a r e f o r f l o o d p r e v e n t i o n r a t h e r than t o prevent bank e r o s i o n and  8  appear t o have no e f f e c t on c o n t r o l l i n g r i v e r processes .  On  the o t h e r hand two b r i d g e s , and the l o g s t o r a g e areas c o n s t r u c t e d along most o f the r i v e r bank's, i s l a n d s , and midchannel s h o a l s l o c a l l y e f f e c t e r o s i o n and s e d i m e n t a t i o n .  9  GEOMORPHOLOGY  The P i t t R i v e r f l o o d p l a i n o c c u p i e s the complete w i d t h ( r a n g i n g from 5-10 km) o f t h e lower P i t t V a l l e y and 17.2 km of  i t s l e n g t h from the banks o f F r a s e r R i v e r t o t h e o u t l e t  of  P i t t Lake ( F i g . 2 ) . ' The P i t t R i v e r c h a n n e l (20.7 km) i s  o n l y s l i g h t l y l o n g e r than i t s f l o o d p l a i n , r e s u l t i n g i n a low sinuosity of  (Schumm, 1963) o f 1.2.  The f l o o d p l a i n s u r f a c e I s  low r e l i e f , l e s s t h a n 3 meters above mean sea l e v e l  (M.S.L.), and appears t o be graded t o the F r a s e r R i v e r f l o o d p l a i n l o c a t e d t o the south and west.  Bedrock knobs p r o t r u d e  through the p l a i n , i n d i c a t i n g t h a t the bedrock s u r f a c e i s one o f m o d e r a t e l y h i g h r e l i e f .  B o r e h o l e s ( G e o l . Survey o f  Canada^unpublished d a t a ) t h r o u g h the P i t t sediments r e v e a l a monotonous sequence  (up t o 275 m t h i c k ) o f s i l t  w i t h o c c a s i o n a l t h i n u n i t s of sand. found below 25 m.  clay  S a l t water i s commonly  The upper p o r t i o n of the s i l t s  l i k e l y d e p o s i t e d i n F r a s e r d e l t a and " P i t t F i o r d " i n t h e i r early stages.  and  was delta  These sediments grade up i n t o more  r e c e n t P i t t R i v e r f l o o d p l a i n d e p o s i t s which p r o b a b l y c o n t a i n minor amounts o f F r a s e r overbank m a t e r i a l . The d e t a i l e d study o f the P i t t c h a n n e l  geomorphology  was based on l a r g e - s c a l e b a t h y m e t r i c c h a r t s (Dept. P u b l i c Works, 1966, u n p u b l i s h e d d a t a ) which were v e r i f i e d i n the  10  FIGURE  2.  Aerial Pitt  photo  River  of  lower  floodplain.  Pitt  Lake  and  12  !  no page 12  13  f i e l d by depth soundings  (Raytheon, model #DE-1190; Furuno,  model #F-850 Mark I I s e r i e s ) and s i d e s c a n sonar r e c o r d i n g s ( K l e i n , model #400).  A e r i a l photographs  ( s c a l e , 1:15,840  and 1:31,680) were used f o r i n t e r p r e t a t i o n o f p l a n i m e t r i c f e a t u r e s o f b o t h c h a n n e l and f l o o d p l a i n . The morphology o f P i t t R i v e r channel c o n s i s t s o f s e v e r a l s l i g h t l y curved reaches and one major s-shaped  bend  ( F i g . 3 ) . The l o c a t i o n and shape o f t h i s bend appears t o be m a i n l y due t o bedrock c o n t r o l but may be a i d e d by t r i b u t a r i e s e n t e r i n g t h e r i v e r a t t h e p o i n t s o f maximum curvature.  B a n k f u l channel w i d t h (wO v a r i e s from 250 m  to 900 m w i t h an o v e r a l l average o f 600 m. profile  The l o n g i t u d i n a l  ( P i g . 4) shows g r e a t v a r i a b i l i t y i n depth w i t h  the deepest s e c t i o n s a t t h e b r i d g e s and meander bends. Consequently c r o s s - s e c t i o n a l a r e a i s a l s o v a r i a b l e , r a n g i n g from 2390 m  2  t o 4831 m  2  w i t h a mean o f 3251 m . 2  Depth (d)  v a r i e s from 8 m t o 24.4 m, and mean depth i s 1 2 . 1 m g i v i n g P i t t R i v e r a f a i r l y low w i d t h / d e p t h r a t i o o f 5 0 . P i s k ( 1 9 5 D and Schumm ( i 9 6 0 ) noted t h a t r i v e r s w i t h f i n e g r a i n e d bank m a t e r i a l s would be expected t o be narrow and deep, as w e l l as slow t o m i g r a t e . The f l o o d p l a i n geomorphology r e v e a l s no evidence o f e x t e n s i v e r i v e r c h a n n e l m i g r a t i o n from i t s p r e s e n t s i t e on t h e west s i d e o f P i t t V a l l e y . was p r o g r a d i n g westward  S i n c e the F r a s e r D e l t a  and u l t i m a t e base l e v e l f o r the  14  FIGURE 3A.  Flow p a t t e r n of f l o o d o r i e n t e d  currents.  Flow l i n e s drawn p e r p e n d i c u l a r  to c r e s t s  of l a r g e s c a l e t w o - d i m e n s i o n a l  bed  configurations  (15 - 60 m i n  spacing,  1 - 3 in i n h e i g h t ) .  FIGURE  3B. Mean g r a i n s i z e ( i n mm) and  distribution  map  l o c a t i o n of c u r r e n t measurement s i t e s .  16  FIGURE 4.  L o n g i t u d i n a l p r o f i l e along of P i t t  River.  thalweg  DEPTH IN METERS OJ  ro  CO  1 ii i  H I—o  3 >  _  0 o o o•FRASER  <  RIVER  m X  o  m —I ; u o <= <  2 m o> o> CO  BRIDGES  x  H  m r~ 33  o  Tl  rn  QUARRY I STURGEON SLOUGH DELTAC  q  POINT ADDINGTON  ro 7s  QUARRY II  LAKE OUTLET  Z.-T  18  no page 18  19  former " P i t t F i o r d " (the ocean) was  a l s o t o t h e west, the  e a r l y t i d a l c h a n n e l was. l i k e l y p o s i t i o n e d on the v a l l e y ' s west s i d e .  As sediment g r a d u a l l y f i l l e d i n the f i o r d  and  the channel l e n g t h e n e d i t would t e n d t o remain on the west. In  a d d i t i o n , A l o u e t t e R i v e r ( F i g . 2 ) , the main t r i b u t a r y  P i t t R i v e r , f l o w s westward and would r e i n f o r c e t h i s  of  tendancy.  Not only has the g e n e r a l l o c a t i o n of the P i t t channel ••" a p p a r e n t l y been s t a b l e , but even l o c a l l y t h e r e have been few major channel changes.  F i g . 3 shows t h r e e d i s p l a c e m e n t s  which i n t o t a l have not had an a p p r e c i a b l e e f f e c t i n changing channel l e n g t h . have a s i m i l a r o r i g i n .  The two n o r t h e r n ones appear t o I t i s proposed t h a t the s h i f t s  o c c u r r e d by b i f u r c a t i o n o f the c h a n n e l w i t h the growth of a mid-channel the bend was  bar.  The l e s s - u s e d c h a n n e l on the i n s i d e o f  s u b s e q u e n t l y abandoned and another mid-  channel bar would grow, a g a i n b i f u r c a t i n g the channel (Fig.  5).  The t h r e e channel s h i f t s o c c u r i n opposing  d i r e c t i o n s so t h a t the m i d d l e one c o u n t e r a c t s the d i r e c t i o n o f s h i f t of the o t h e r two.  The  southernmost  channel d i s p l a c e m e n t at the b r i d g e s appears t o have o c c u r r e d r i n s m a l l increments w i t h no bar development. h o l e i n f o r m a t i o n ( P e t e r s , 1973)  Bore-  shows t h a t the r i v e r i s  c o n s t r a i n e d here i n i t s eastward movement by a d e p o s i t of organic-rich clayey s i l t s  ( F i g . 6).  Thus the b r i d g e s are  l o c a t e d at the narrowest s e c t i o n o f r i v e r where the channel i s b e i n g f o r c e d a g a i n s t r e s i s t a n t bank m a t e r i a l .  2-0  FIGURE 5.  A e r i a l photo near A d d i n g t o n P o i n t .  Note  meander s c a r and d i v e r g i n g f l o w p a t t e r n across i s l a n d .  P o i n t bar i s a c c r e t i n g on  upstream s i d e of meander.  21  22  FIGURE 6.  Stratigraphic  c r o s s s e c t i o n at the b r i d g e s .  zz  E  o  •NT  24  no page 24  25  I t i s apparent from Figure. 3A t h a t the meandering p a t t e r n of the r i v e r channel Is. d i r e c t l y r e l a t e d to the meandering p a t t e r n o f the thalweg average wavelength (x^) o f 6100 o f c u r v a t u r e ( r ) o f 1675  m and an average r a d i u s  P o o l s l o c a t e d a t meander  a t c r o s s - o v e r l o c a t i o n s of the  are b o t h spaced a p p r o x i m a t e l y channel w i d t h .  Both have an  m ( e x c l u d i n g the bedrock  c o n t r o l l e d meander, F i g . 5 ) bends and r i f f l e s  trace.  3000 m a p a r t or f i v e  times  A c r o s s s e c t i o n a t a p o o l shows a deep  asymmetric channel  ( F i g . 3A-EF) whereas r i f f l e s  LE) are s h a l l o w e r and u s u a l l y more symmetric. at  thalweg  ( F i g . SAA section  the b r i d g e s ( F i g . 3A-AB) shows a deep symmetric  channel  which r e s u l t s from the c o n f i n e d f l o w and scour around bridge  pilings. Leopold and Wolman ( i 9 6 0 ) s t r e s s e d the concept t h a t  meanders form t o l e n g t h e n the channel  i n order to  the time r a t e of energy e x p e n d i t u r e .  Also that a w e l l  developed  p o o l and r i f f l e sequence a l l o w s  equal expenditure a river.  minimize  approximately  of energy a l o n g s u c c e e d i n g  reaches o f  More s p e c i f i c a l l y they found t h a t t h e r e i s a  d e f i n i t e r e l a t i o n s h i p i n r i v e r s between d i s c h a r g e , w i d t h , and r a d i u s of c u r v a t u r e .  F i g u r e 7 i l l u s t r a t e s a good  agreement between t h e i r f i n d i n g s and c h a r a c t e r i s t i c s of the P i t t R i v e r . F i g u r e 8 summarizes the p l a n f o r m geometry of P i t t River.  S e v e r a l prominant bedrock o u t c r o p s , i n a d d i t i o n to  2,6  FIGURE 7•  L o c a t i o n of P i t t h y d r a u l i c parameter v a l u e s on Leopold and Wolman's ( i 9 6 0 ) p l o t o f W and  vs. r ^ . A  M  v a l u e s ranged from  4300 t o 8000 m. Ajyj v a l u e s ( e x c l u d i n g t h e b e d r o c k - c o n t r o l l e d meander ranged from 1400 - 2100 m.  vs.  v  -27  LEOPOLD and WOLMAN ( I 9 6 0 ) PITT RIVER  A. = -  r  10.9 W  - -A-?  1 0 1  A=  9.3 W  „  y, -» r „  r^,.9ft  m/w= 2 - 3  r  1 0 1  98  m/w= 2 . 7 5  i  i i  PITT DATA  Channel w i d t h , f e e t Mean radius of c u r v a t u r e , f e e t A B ° Meanders of rivers and in flumes * Meanders of Gulf S t r e a m • Meanders on glacier ice •  28  the f i n e - g r a i n e d bank m a t e r i a l , p r e s e n t to channel m i g r a t i o n .  physical constraints  E i t h e r point bars, mid-channel s h o a l s ,  or mid-channel b a r s ( i s l a n d s ) have- developed on the i n s i d e of each meander bend.  A study was  u n d e r t a k e n o f the s i d e -  scan sonar and depth soundings r e c o r d e d  i n a l l areas of  the r i v e r to determine the p a t t e r n of f l o w i n the and the o r i g i n of the mid-channel b a r s .  Although d e t a i l s  of t h i s study w i l l be covered i n the s e c t i o n on c o n f i g u r a t i o n , r e s u l t s o f some a s p e c t s 3A.  channel  bed  are shown i n F i g u r e  For t h i s diagram the o r i e n t a t i o n of l a r g e s c a l e  dimensional  bed  c o n f i g u r a t i o n s (15 - 60 m i n s p a c i n g ,  i n h e i g h t ) were noted and to c r e s t s .  two-  Using  f l o w l i n e s drawn  1-3  perpendicualr  t h i s i n f o r m a t i o n a l o n g w i t h the topo-  graphy of c h a n n e l bottom the f l o w p a t t e r n was In g e n e r a l i t appears to f i t the  constructed.  converging-diverging  f l o w model of de L e l i a v s k y (1894) t a k i n g i n t o c o n s i d e r a t i o n the e f f e c t of the b r i d g e s pattern.  The  and bedrock outcrops  on  flow  p a t t e r n i s drawn f o r the f l o o d d i r e c t i o n  because the m a j o r i t y of the i n f o r m a t i o n a v a i l a b l e i s f o r flood-oriented flow.  Over 65% of the bed  configurations  on sounding r e c o r d s t a k e n d u r i n g a l l seasons and d u r i n g both f l o o d and ebb  f l o w s were f l o o d o r i e n t e d .  The  of a v a i l a b l e i n f o r m a t i o n i n d i c a t e s t h a t ebb meanders . w i t h a p p r o x i m a t e l y f l o o d and  s m a l l amount  flow pattern  the same wavelength as  the  t h a t i t c r o s s e s the channel at the same l o c a t i o n s  (riffles).  However, t h e p o s i t i o n o f maximum c u r v a t u r e o f  the ebb f l o w opposes the p o s i t o n o f maximum" c u r v a t u r e o f the f l o o d ( i . e . , o c c u r s on t h e o p p o s i t e s i d e o f r i v e r ) . In g e n e r a l each mid-channel'bar  (Island or shoal)  extends from t h e r i f f l e a r e a t o t h e p o i n t o p p o s i t e (and u s u a l l y beyond) t h e deepest p o r t i o n o f t h e thalweg a t the meander bend. formation.  The bars appear t o be r e l a t e d t o r i f f l e  I t i s i n t e r p r e t e d t h a t they form by d e p o s i t i o n  d u r i n g d i v e r g i n g f l o w ( F i g . 5) and thus seem t o be a p h y s i c a l extension of the r i f f l e .  However, s i n c e they form  on t h e i n s i d e o f t h e meander bend they a l s o occupy the p o s i t i o n o f t h e p o i n t b a r even though, they are s e p a r a t e d from the i n s i d e bank.  Thus, a t each bend i n t h e thalweg  t h e r e i s e i t h e r a p o i n t b a r o r a mid-channel b a r ( F i g . 8 ) . I t was not determined i n t h i s study why p o i n t b a r s are found a t some bends  and mid-channel bars a t o t h e r s . I t  s h o u l d be n o t e d , however, t h a t p o i n t b a r s occur a t bends of maximum c u r v a t u r e .  I n a normal r i v e r p o i n t b a r d e p o s i t s  a c c r e t e on t h e downstream s i d e o f t h e b a r and t h e deepest a r e a o f p o o l s o c c u r s on t h e downstream end o f meander bends.  Based on t h i s p r e m i s e , one may deduce t h a t P o i n t  Addington ( F i g . 5) i s b e i n g c o n s t r u c t e d by f l o o d - d o m i n a t e d f l o w s and channel topography  i n d i c a t e s that the f l o o d -  o r i e n t e d current i s the channel-forming flow w i t h l i t t l e m o d i f i c a t i o n o c c u r r i n g on t h e ebb.  30  FIGURE 8.  Diagrammatic s k e t c h of h y d r a u l i c Pitt  River.  geometry  A = 325Gsq.m  Q  W I N T E R - F L O O D = 2 4 0 0 cu.m/sec. ( 8 5 , 0 0 0 c u . f t . / s e c . )  W = 6I0 m  0  WINTER-EBB  d = R=l2.lm  Q  F R E S H E T - F L O O D = l 8 0 0 c u . m / s e c . ( 6 4 , 5 0 0 cu.ft./sec.)  A=6IOOm  0  F R E S H E T - E B B = 950cu.m/sec.( 3 3 , 5 0 0 cu.ft./sec.)  S  WINTER FLOOD = + . 0 0 0 0 5 3  S  WINTER E B B  S  F R E S H E T FLOOD = +.000018  S  FRESHET E B B  w  /d=50  CHANNEL LENGTH SINUOSITY  "  l  9  -  8  K  = 2080cu.m/sec.(73,500cu.ft./sec.)  = -.000032  m  1.20  <gg?  BEDROCK  /325^  POINT BAR  <S!D>  ISLAND  <Z>  SKOAL  = -.000016  = = = = = ^  THALWEG  TRACE  CHANNEL  SCAR  SHIFT DIRECTION  32  The  i n t e r r e l a t i o n s h i p o f h y d r a u l i c v a r i a b l e s such as  discharge  ( Q ) , v e l o c i t y ( V ) , depth (d),. b a n k f u l w i d t h (W),  r e s i s t a n c e ( n ) , and water s l o p e (S^) has l o n g been recognized.  However, the n a t u r e  (dependent o r independent)  o f t h e v a r i a b l e s depends upon t h e h y d r a u l i c s e t t i n g and the time s c a l e under c o n s i d e r a t i o n . system, Q and S  w  I n the P i t t  tidal  a r e independent on b o t h a s h o r t — a n d  long-  term b a s i s w h i l e V, d, W, and n a r e dependent under both time s c a l e s .  Q, S^, d, W and V can a l l be measured and t o t a l  r e s i s t a n c e can be determined from a Manning-type 2/3 l / 2 (n = —-—-, V d  s  2  A  ; d* (mean f l o w depth) = = 7 . W  equation  Leopold and  Maddock (1953) s p e c i f i e d a l l f i v e v a r i a b l e s as power f u n c t i o n s of d i s c h a r g e . I n P i t t R i v e r both water s l o p e and d i s c h a r g e  reverse  d i r e c t i o n r e g u l a r l y and vary between o p p o s i t e maxima.  Although,  d u r i n g the f r e s h e t when P i t t b a s i n d i s c h a r g e i s h i g h , o c c a s i o n a l l y t i d a l l y induced backwater occurs w i t h o u t r e v e r s a l i n flow d i r e c t i o n .  Because o f v a r i a b l e s l o p e and d i s c h a r g e ,  i t i s p r o b l e m a t i c which v a l u e s s h o u l d be used t o r e p r e s e n t the P i t t as a h y d r a u l i c system.  Both f l o o d and ebb s l o p e s  w i t h i n t h e P i t t can be c a l c u l a t e d from simultaneous  stage  e l e v a t i o n s as a mean over the d i s t a n c e between t h e stage r e c o r d i n g s t a t i o n s ( F i g . 1 ) . Maximum p o s s i b l e s l o p e on any f l o o d or ebb o f a t i d a l c y c l e would be determined by the d i f f e r e n c e i n e l e v a t i o n between t h e r e c o r d i n g s t a t i o n s  33  (Fig.  9 ) . Discharge  product  on any t i d a l c y c l e i s determined from a  o f v e l o c i t y a t .4 depth (measured from the bed)  times an average c r o s s s e c t i o n a l a r e a ( A ) . were p r o b a b l y  slightly  The a c t u a l v a l u e s  l e s s , as t h e data p o i n t on F r a s e r  R i v e r i s 4 km downstream from t h e F r a s e r - P i t t  confluence.  A l s o , t h e maximum (or minimum) e l e v a t i o n s i n P i t t Lake and F r a s e r R i v e r d i d not occur s i m u l t a n e o u s l y .  The f l o w i s  non-uniform and a t any p o i n t i n time t h e water s l o p e i s v a r i a b l e a l o n g t h e system.  Flow i s a l s o unsteady and t h e  water s l o p e v a r i e s w i t h time a t any p o i n t .  To a v o i d t h i s  problem o f v a r i a b l e s l o p e , maximum s l o p e v a l u e s are chosen to  c h a r a c t e r i z e each f l o w d i r e c t i o n and be used as a base  for  comparing f l o o d and ebb f l o w s . The maximum water s l o p e v a l u e s f o r both f r e s h e t  and w i n t e r measured d u r i n g t h i s study a r e p l o t t e d on Leopold 10.) .  and Wolman's (1957) s l o p e - d i s c h a r g e diagram ( F i g .  These authors  i n t e n d e d t h e diagram o n l y as a means  of s e p a r a t i n g b r a i d e d and meandering steams, but i t can be used t o i l l u s t r a t e  the range of s l o p e - d i s c h a r g e v a l u e s t h a t  are found i n a sampling  of r i v e r s .  The P i t t d a t a f a l l s  w i t h i n t h e meandering regime; however, i t i s t h e maximum 3  -1  s l o p e - d i s c h a r g e f o r t h e w i n t e r (2400 m .sec ) t h a t i s c l o s e s t to the general s c a t t e r of r i v e r p o i n t s . This i m p l i e s t h a t i t i s t h e w i n t e r d i s c h a r g e not t h e f r e s h e t o  —1  (2080 m .sec ) which i s most e f f e c t i v e i n d e f i n i n g t h e channel  geometry.  34  FIGURE 9-  r  T i d a l range i n S t r a i t of G e o r g i a , F r a s e r R i v e r , P i t t R i v e r , and P i t t Lake on f o u r r e p r e s e n t a t i v e days i n D e c , Mar., June, and Sept.  Maximum mean water s l o p e (ebb  or f l o o d ) p o s s i b l e on a g i v e n day was c a l c u l a t e d from t h e d i f f e r e n c e i n e l e v a t i o n between F r a s e r R i v e r and P i t t Lake.  FLOOD  5' EBB .  :  \  V-' ,. FLOOD EBB .  to PITT LAKE  CE UJ  t  3i  5 FRASER RIVER  RIVER  PITT RIVER  UJ CD H  2 DEC. 25,1972  1  STRAIT OF GEORGIA  FRASER RIVER  2H  < 9  MARCH 21 1973  SLOPE FLOOD = +.000053  SLOPE FLOOD" +.000034  * -.000032  SLOPE EBB  S  GEORGIA  i  S  2 0 Km  F  k  0  0  L ° T  PITT LAKE  L  0  P  i  E  E  B  B  =  Co  " 000026  ur  2 0 Km  EBB  PITT RIVER  PITT LAKE FLOOD  FRASER RIVER  CO  EBB  UJ  T  UJ  3  3-  UJ  z <  PITT RIVER  cr  JUNE 17,1973  _J  < Q  2-  ;  J^iT. GEORGIA  S  0F  • 20 Km  • -.000016  FR/iSER  RIVER  SLOPE (FLOOD) » +.000018 SLOPE (EBB)  PITT LAKE  SEPT. 9 1973  SLOPE (FLOOD)" + .000037 STRAIT OF GEORGIA  SLOPE (EBB)  • -.000024  3.6,  FIGURE 10.  P i t t parameters p l o t t e d , on Leopold and Wolman's (1957) s l o p e - d i s c h a r g e diagram.  Pitt  values  p l o t w i t h o t h e r meandering r i v e r s , but w i n t e r v a l u e s occur c l o s e s t t o the g e n e r a l s c a t t e r of p o i n t s .  This implies the winter flow i s  the c h a n n e l - f o r m i n g  discharge.  g  A F T E R LEOPOLD  AND  WOLMAN V  (1964)  MEANDERING  .00001 = .000005 t t l i l 1 0 0  'OOO BANK DISCHARGE  10,000 IN CUBIC  100,000 FEET  P E R SECOND  1,000,000"  38  I t i s important  ;  t o note t h a t f l o o d water s l o p e s  h i g h e r than c o r r e s p o n d i n g  are  ebb water s l o p e s ( F i g . 9 ) , and  t h a t w i n t e r water s l o p e s are s i g n i f i c a n t l y h i g h e r  than  those of the f r e s h e t .  important  As water s l o p e i s the most  d r i v i n g f o r c e i n a h y d r a u l i c system, i t i s i n t e r p r e t e d t h a t the P i t t system i s dominated by w i n t e r f l o o d f l o w s . Although  the f l o w i n P i t t R i v e r i s s i m i l a r t o t h a t i n an  e s t u a r y ( b i d i r e c t i o n a l ) , the p h y s i c a l s e t t i n g i s s i g n i f i c a n t l y d i f f e r e n t from t h a t of most e s t u a r i e s .  P i t t River  i s a c o n d u i t c a r r y i n g water between the F r a s e r R i v e r a r e s e r v o i r ( P i t t Lake) of l a r g e c a p a c i t y .  and  Because the  r e s e r v o i r p r o v i d e s a very l a r g e s t o r a g e c a p a c i t y , f l o w through  the r i v e r i s s i m i l a r t o o t h e r open channel  flows.  Energy I s d i s s i p a t e d f a i r l y e v e n l y a l o n g the channel evidence by the r e g u l a r meanders and w e l l developed and r i f f l e sequence.  as pool  However, o t h e r c h a r a c t e r i s t i c s of the  P i t t are d e f i n i t e l y e s t u a r i n e ; f o r example, s l o p e  and  d i s c h a r g e are determined by a complex i n t e r a c t i o n of the t i d a l range i n the S t r a i t o f G e o r g i a , d i s c h a r g e o f the F r a s e r R i v e r , and d i s c h a r g e from the P i t t ' d r a i n a g e  system.  In c o n c l u s i o n , d e s p i t e i t s b i d i r e c t i o n a l f l o w the geomorphology of the P i t t R i v e r has m a i n l y c h a r a c t e r i s t i c s , r a t h e r than e s t u a r i n e . discharge  (Q ) or c h a n n e l - f o r m i n g  riverine  The  discharge  effective (bankful  d i s c h a r g e ) appears t o be the w i n t e r peak f l o o d f l o w .  The  39  r e g u l a r meanders, the w e l l developed .pool and r i f f l e  sequence,  and h i s t o r y of c h a n n e l s t a b i l i t y a l l imply t h a t ' t h e p r o c e s s e s a c t i n g i n the r i v e r are i n " q u a s i - e q u i l i b r i u m " w i t h i t s r e v e r s i n g f l o w and c o n t i n u a l l y changing d i s c h a r g e . f o l l o w i n g o b s e r v a t i o n made by K e l l e r and Melhorn  The  (1973)  o r i g i n a l l y intended f o r u n i d i r e c t i o n a l r i v e r s , applies e q u a l l y w e l l t o t i d a l P i t t R i v e r : " i t appears t h a t i t i s n e i t h e r p r o c e s s e s i n a l l u v i a l stream channels which c o n t r o l c h a n n e l form, nor form which e n t i r e l y process.  entirely  controls  R a t h e r form and p r o c e s s e v o l v e t o g e t h e r i n harmony  as feedback mechanisms i n h e r e n t t o open systems a p p r o a c h i n g dynamic e q u i l i b r i u m " .  40  SEDIMENTS  Channel bottom sediments o f t h e P i t t R i v e r were sampled and a n a l y z e d f o r grain, size- d i s t r i b u t i o n and mineralogy  i n o r d e r t o compare them t o F r a s e r R i v e r  sediments and a s c e r t a i n t h a t t h e F r a s e r w a s ' t h e i r  source.  Mean g r a i n s i z e o f bottom sediments i n the F r a s e r near P i t t R i v e r was determined t o be 0.42 mm (1.25 <j>) (Tywoniuk and S t i c h l i n g , 1973) w i t h a range from 1 . 4 l mm (-0.5 $') t o 0.044 mm (4.5 a>'). T h i s study found a mean g r a i n s i z e o f 0.35 mm (1.35 ^) i n bed m a t e r i a l d i r e c t l y off  P i t t R i v e r mouth. Cores d r i l l e d a t the b r i d g e s ( F i g . 6) and o t h e r  cores  taken by t h e D.P.W. a t k i l o m e t e r s 2 and 8 ( F i g . 3A) i n d i c a t e t h a t t h e channel i s i n c i s e d i n t o s i l t and c l a y ( p r o b a b l y o l d e r F r a s e r and P i t t R i v e r f l o o d p l a i n d e p o s i t s ) . channel  The  i s f l o o r e d w i t h a r e l a t i v e l y t h i n b l a n k e t (5 - 15 m)  of sand. A t o t a l o f 38 P i t t R i v e r samples were c o l l e c t e d w i t h a D i e t z - L a f o n d grab sampler. were a n a l y z e d  i n a R.S.A. (Rapid Sediment A n a l y z e r )  tube o f 12.7 cm diameter. combination  Sandy samples from t h e thalweg settling  S i l t y samples were s i z e d by a  o f s i e v e (0.5 $ i n t e v a l - f o l l o w i n g t h e method  of F o l k , 1968) and Sedigraph 1970/71) t e c h n i q u e s .  (model 5000, O l i v i e r et a l . ,  A f a i r l y simple p a t t e r n o f g r a i n  41  s i z e d i s t r i b u t i o n emerged from the s t u d y . A steady decrease i n mean g r a i n s i z e of sediments o c c u r s i n the t h a l w e g from 0.37 mm c o n f l u e n c e t o 0.25 mm ( F i g . 3B).  (1.43 <[>) at P i t t - F r a s e r  (2 <f>) at the. entrance t o the Lake  A d i s r u p t i o n o f t h i s t r e n d o c c u r s o f f the mouth  of Widgeon Slough where s l i g h t l y c o a r s e r m a t e r i a l (mean g r a i n s i z e =0.-34 mm  (.1.42. f) ) i s debouched i n t o the f i n e r  g r a i n e d sediments of P i t t R i v e r , 0.26 mm i n an i n t e r m e d i a t e s i z e o f 0.29 mm  ( l . 9 4 '•<(>), r e s u l t i n g  (1.78 d>) .  In a d d i t i o n  t o the l o n g i t u d i n a l decrease i n s i z e t h e r e i s a l a t e r a l decrease from thalweg t o r i v e r banks.  F o r example a t  k i l o m e t e r 19 mean g r a i n s i z e i n the thalweg i s 0.26 (1.96  4>) and  d e c r e a s e s t o 0.086 mm  (3-6 .<j0 and  (4.0 .<(>) at the i n s i d e of the meander.  mm  0.0625  mm  Areas of c o n s i s t e n t l y  low v e l o c i t y such as the l o c a t i o n upstream and landward of the b r i d g e abutment have c o m p a r a t i v e l y f i n e sediments ( 0 . 0 3 1 mm (5 * j - 0 . 0156 mm  ( 6 «j>) ).  I n g e n e r a l sediments are w e l l s o r t e d , w i t h 90% o f a g i v e n sample o c c u r i n g w i t h i n 2 <J> i n t e r v a l s .  However,  s e t t l i n g tube s i z i n g t e c h n i q u e s are I n s e n s i t i v e to the s m a l l c o n c e n t r a t i o n s t h a t o c c u r i n d i s t r i b u t i o n t a i l s thus may  samples  not a c t u a l l y be q u i t e as w e l l s o r t e d as the a n a l y s e s  indicate. The m i n e r a l o g y o f F r a s e r R i v e r has been examined by MacKintosh and Gardner, ( 1 9 6 6 ) ; G a r r i s o n e t a l . , and  PharOj  (1972).  (1969);  The source m a t e r i a l i s heterogeneous  42  (mostly P l e i s t o c e n e d e p o s i t s occupying basin).  the F r a s e r  A comparison of F r a s e r R i v e r mineralogy  P i t t system i s shown i n Table I . of m i n e r a l s  drainage with  M i n e r a l o g i e s and  the  proportions  i n the two r i v e r s are. e s s e n t i a l l y i d e n t i c a l w i t h  a few minor e x c e p t i o n s .  P r o p o r t i o n of v o l c a n i c r o c k  ments decrease w h i l e p r o p o r t i o n o f f r e s h hornblende  fragand  p l a g i o c l a s e i n c r e a s e from F r a s e r R i v e r t o P i t t Lake. Widgeon slough has  s i m i l a r mineralogy  P i t t R i v e r s but d i f f e r e n t p r o p o r t i o n s :  to Fraser  quartz  (45%)  and with  no q u a r t z i t e or c h e r t , f e l d s p a r (37%';' 30% p l a g i o c l a s e and 7% K-spar.), h i g h e r pyroxene (7%) and (2%). fresh.  Amphibole i s m a i n l y  lower r o c k  fragments  green hornblende and g e n e r a l l y  Thus, Widgeon Slough possesses a d i s t i n c t  mineralogy  c h a r a c t e r i z e d by abundent f r e s h p l a g i o c l a s e , f r e s h green hornblende and no c h e r t .  Because the volume of m a t e r i a l  c o n t r i b u t e d by the slough i s s m a l l i n comparison w i t h t h a t c o n t r i b u t e d by P i t t R i v e r , Widgeon Slough m i n e r a l s soon become d i l u t e d .  Attempts t o t r a c e the d i r e c t i o n of  sediment movement from Widgeon Slough were u n s u c c e s s f u l . In c o n c l u s i o n , F r a s e r R i v e r sediments are as. source m a t e r i a l f o r the P i t t R i v e r based on e s s e n t i a l l y i d e n t i c a l m i n e r a l o g i e s , and  (2) a  confirmed (1)  gradual  decrease i n g r a i n s i z e ( w i t h i n the thalweg) from the P i t t - F r a s e r confluence  up P i t t R i v e r t o P i t t  Lake.  TABLE I  Summary o f mineralogy  o f F r a s e r R i v e r , P i t t R i v e r , P i t t Lake, and Widgeon S l o u g h . " - . . GRAIN SIZE  this  • FRASER - RIYER  this study  study  quartz chert met.rock f r a g . vole.rock frag. feldspar others hornblende Pitt  PITT SYSTEM  <2 y  >2y  LOCATION  G a r r i s o n et a l ( 1 9 6 9 ) P h a r o ( 1 9 7 3 ) 10% 35% 15% 20% 11% 07% 02%  40% 11% 45% 04%  quartz feldspar amphibole mica garnet  Widgeon Slough  River  quartz chert met.rock f r a g . vole.rock frag. feldspar hornblende opaque mica  quartzite, quartz, chert feldspar r o c k fragments other  20% 30% 20% 06% 13% 04% 04% 03%  quartz plagioclase K-spar hornblende mica(biotite) others  45% 30% 07% 07% 05% 06%  Pharo(1973) chlorite montmorillonite illite quartz, feldspar, amphibole  P i t t Lake (Pharo, pers.comm) chlorite montmorillonite illite quartz, feldspar, amphibole, c u p r i t e (trace)  44  no page 44  45  FLOW AND SEDIMENT TRANSPORT  Tides The t i d e i n the S t r a i t o f G e o r g i a i s the main d r i v i n g f o r c e b e h i n d the hydrodynamics  of t h e P i t t system.  The t i d e  i s mixed, m a i n l y d i u r n a l , w i t h a range o f 3 - 5 meters.  In  a d d i t i o n t o t h e mixed n a t u r e ( d i u r n a l i n e q u a l i t y ) o f the t i d e , l u n a r c y c l i c v a r i a t i o n s a l s o o c c u r ( F i g . 1 1 ) . The d i f f e r e n c e i n h e i g h t (H) between s u c c e s s i v e h i g h waters i s u s u a l l y l e s s than the h e i g h t d i f f e r e n c e between s u c c e s s i v e low w a t e r s . I n t h e o r y ( B o w d i t c h , 1962), t i d e s can be thought o f as a symmetric water wave w i t h a l o n g wavelength (20 ,000 km) and s h o r t a m p l i t u d e (30 cm).  I n a deep ocean t h i s wave  form ( F i g . 12) would t r a v e l from e a s t t o west as t h e e a r t h s p i n s on i t s a x i s .  The wave form ( c r e s t t o c r e s t ) t a k e s  12 hours and 25 minutes t o pass a s t a t i o n a r y r e f e r e n c e p o i n t ; i . e . , one h i g h t i d e t o t h e n e x t .  Although the  wave form moves f o r w a r d t h e water m o t i o n i s up and down. I n s h a l l o w i n g water a p p r o a c h i n g l a n d , f r i c t i o n a l drag t r a n s l a t e s t h i s v e r t i c a l motion i n t o h o r i z o n t a l motion; i . e . , a p r o g r e s s i v e wave.  Drag r e t a r d s f l o w i n the lower  p o r t i o n o f t h e wave and, as the water l e v e l r i s e s ,  faster  moving water near t h e wave c r e s t b e g i n s -to o v e r t a k e t h e  46  FIGURE 1 1 .  A r e p r e s e n t a t i v e t i d a l curve (month) f o r S t r a i t of G e o r g i a .  POINT ATKINSON, BRITISH COLUMBIA  48  FIGURE 12.  T i d a l t h e o r y : (A) Wave form over  infinitely  deep ocean; (B) Wave form w i t h bottom friction;  (C) dH/dT i s h i g h e s t a t b e g i n n i n g  of f l o o d , but slows down near h i g h w a t e r ; (D) dH/dT i s l o w e s t a t b e g i n n i n g o f ebb and i n c r e a s e s toward low water; (F) Maximum v e l o c i t i e s occur a t end o f ebb and b e g i n n i n g of  flood.  A A T I D E W A V E  C£ E  FORM:  FLOOD  *=l2hr. 25min.  < HIGH WATER  no page 50  51  more s l o w l y moving water a t the wave f r o n t . wave form i s thus developed ( P i g . 12B.) . accentuated w i t h i n  An  asymmetric  The asymmetry i s  the c o n f i n e s of. the. e s t u a r i n e channel by  i n c r e a s e d drag caused by boundary ( w a l l ) , e f f e c t s . s e c t i o n a l area a v a i l a b l e  Cross  f o r water t r a n s f e r i s reduced, thus  a l t e r i n g form o f p r o g r e s s i v e wave.  Ignoring t i d a l  backwater  e f f e c t s , s t a g e - t i m e asymmetry i n c r e a s e s w h i l e magnitude o f s t a g e f l u c t u a t i o n s , as w e l l as p r o p o r t i o n of time devoted t o f l o o d decreases (Ippen and Harleman, 1966).  Slope (dH/dT)  of the f l o o d t i d e wave f r o n t i s g r a p h i c a l l y  shown w i t h time  l i n e s ( t ^ - t(-) i n F i g u r e 12C.  On the ebb, water  levels  drop s l o w l y a t f i r s t but become f a s t e r w i t h time as the water s l o p e becomes g r e a t e r ( F i g . 12D).  A  stationary  o b s e r v e r would see the e n t i r e p a s s i n g t i d a l wave as a rapidly rising,  then s l o w l y f a l l i n g water l e v e l .  An i d e a l -  i z e d dH/dT p l o t o f P i t t R i v e r i s shown i n F i g u r e 12E where p e r i o d s of f a s t e s t f l o w (which c o r r e s p o n d t o times of s t e e p e s t water s l o p e ) a r e e n c i r c l e d .  The r e l a t i o n s h i p i n  time between s t a g e l e v e l , water s l o p e , and v e l o c i t y depth measured from base of f l o w ) i s i l l u s t r a t e d  (.4  i n Figure  13The t i d a l wave form i s dampened as i t p r o g r e s s e s i n l a n d from t h e S t r a i t o f G e o r g i a up F r a s e r and P i t t R i v e r s and i n t o P i t t Lake.  The t i d a l range i s decreased  and the shape of t h e stage l e v e l curve i s m o d i f i e d .  Other  t h i n g s b e i n g e q u a l , the g r e a t e r t h e magnitude o f the t i d e  52  FIGURE 13.  S t a g e , dH/dT, and v e l o c i t y a r e asymmetric waves but s l i g h t l y out of phase.  TIME (HOURS)  54  no page 54  55  i n t h e S t r a i t , t h e g r e a t e r t h e water l e v e l f l u c t u a t i o n s i n t h e P i t t system. for  F i g u r e '14. d e p i c t s . 24-hour dH/dT curves  the S t r a i t of Georgia  (Point Atkinson), Fraser  River  ( P o r t Mann B r i d g e ) , P i t t R i v e r ( a t t h e b r i d g e s ) , and P i t t Lake ( s o u t h e r n  end).  The f o u r s i t e s a r e l o c a t i o n s o f  c o n t i n u o u s l y r e c o r d i n g stage meters ( F i g . 1) data,Water Survey o f Canada). 14A)  and mixed, m a i n l y  (unpublished  Both the s e m i - d i u r n a l ( F i g .  d i u r n a l ( F i g . l 4 B ) t i d a l curves i n  the S t r a i t a r e c l o s e l y mimicked"'at the' o t h e r t h r e e l o c a t i o n s , but w i t h a c o n s i d e r a b l e time l a g ( a p p r o x i m a t e l y  5 h r and  15 min) between h i g h water i n t h e S t r a i t and h i g h water i n P i t t Lake.  I t takes  even l o n g e r  the low w a t e r impulse' t o p r o g r e s s lake.  (6 h r and 20 min) f o r from t h e S t r a i t t o t h e  The approximate time l a g s t h a t can be expected f o r  the' t h r e e i n l a n d s t a t i o n s a r e summarized i n Table I I . I n a d d i t i o n t o the t i d a l l y  induced  o s c i l l a t i o n s In  water l e v e l o f F r a s e r e s t u a r y and P i t t systems, t h e a b s o l u t e l e v e l o f these o s c i l l a t i o n s changes s e a s o n a l l y w i t h a • maximum d u r i n g F r a s e r R i v e r f r e s h e t r u n - o f f (May, June, and J u l y ) and a minimum d u r i n g the w i n t e r (Dec., J a n . , and Feb.).  D i s c h a r g e c o n t r i b u t e d t o P i t t system from  R i v e r (North) and s m a l l streams s u r r o u n d i n g  Pitt  the lake  v a r i e s from 210 m / s e c ( f r e s h e t ) t o 30 m / s e c ( w i n t e r ) . The  r e s u l t i s t h a t d u r i n g t h e f r e s h e t more t h a n 50% o f  water moving t h r o u g h the P i t t system i s c o n t r i b u t e d by  56  FIGURE 14.  R e l a t i o n s h i p o f stage v s . time f o r f o u r l o c a t i o n s ( S t r a i t of Georgia, Fraser  River,  P i t t R i v e r , and P i t t Lake) f o r t h r e e r e p r e s e n t a t i v e days i n (A) f a l l (C) f r e s h e t • ( s p r i n g r u n - o f f ) .  (B) w i n t e r  57  TABLE I I  E s t i m a t i o n s of the d e l a y f o r low-low water and h i g h - h i g h water to p r o g r e s s from S t r a i t of G e o r g i a t o l o c a t i o n s w i t h i n the study  STA(IE High-high Water ( F l o o d Peak) Low-low Water (Ebb Peak)  STRAIT OF GEORGIA  PORT MANN : BRIDGE FRASER R. 2 hr  PITT .: RIVER 3 hr 15 m  Freshet  0  Winter  0  1 h r 10 m  2 hr 30 m  Freshet  0  3 hr  4 hr 30 m  Winter  0  3 hr  4 h r 15 m  PITT LAKE 15 h r 30 m 5 h  15 m  15 h r 30 m 6 h  20 m  area.  59  b a s i n drainage  c o n t r a s t i n g w i t h o n l y 5% d u r i n g -the w i n t e r .  Thus, t h e r e i s an o r d e r o f magnitude d i f f e r e n c e between w i n t e r and f r e s h e t c o n d i t i o n s . I n t h e w i n t e r ( F i g . 14B) when d i s c h a r g e o f F r a s e r and P i t t systems i s l o w , the t i d a l effect i s great.  I n c o n t r a s t d u r i n g f r e s h e t when  r u n o f f i s h i g h , t i d a l e f f e c t i s minor ( F i g . l 4 C ) .  Stage  f l u c t u a t i o n s i n F r a s e r and P i t t a r e i r r e g u l a r and o u t of-phase.  On t h i s , p a r t i c u l a r day (June 28, 1973) f l o w d i d  not r e v e r s e i n P i t t The  system.  p r o g r e s s i v e n a t u r e o f t h e t i d a l wave form i n  the P i t t system i s r e f l e c t e d by t h e f i l l i n g the r e s e r v o i r ( P i t t L a k e ) .  and emptying o f  T h i s can be demonstrated by  showing t h a t the volume o f water moving through during a t i d a l cycle i s approximately l o s t o r g a i n e d by t h e l a k e .  the r i v e r  e q u a l t o the volume  The t o t a l volume moved  through  the r i v e r was c a l c u l a t e d as t h e a r e a under t h e t i m e d i s c h a r g e curve.  Discharge  determined from a product  curve f o r a t i d a l c y c l e was  o f mean v e l o c i t y measured a t 2  l a k e o u t l e t and c r o s s - s e c t i o n a l a r e a (4100 m ) a t o u t l e t . T o t a l volume moved through  r i v e r compares f a v o r a b l y w i t h  'the volume a c t u a l l y added t o the l a k e c a l c u l a t e d from the r e l a t i o n : ( l a k e stage h e i g h t change,AH) X ( l a k e a r e a , A) + (volume c o n t r i b u t e d from d r a i n a g e Q) B  (Table I I I ) .  area d u r i n g f l o o d f l o w ,  The same was t r u e f o r ebb f l o w s .  d i s c h a r g e p a s s i n g through  Total  the r i v e r i s comparable t o the  60  TABLE I I I C a l c u l a t i o n s d e m o n s t r a t i n g t o t a l d i s c h a r g e passing through the r i v e r is. approximately e q u a l t o volume • added./, or ' s u b t r a c t e d from the l a k e .  FLOOD  EBB  August 13, 1975 - S i t e (4)  May 9, 1975 - S i t e (2)  A = 4100 m  A = 2875 m  2  Flow D u r a t i o n = 4.5 h r s . 3 (Lake B a s i n ) Q  = 113 m .sec  B  Lake A  L  6  XAH= +.22 V0L= 12.2 xm 10  m  m  L  = 55 x 1 0  6  m  2  X A H = -.63 V0L= - 34.3m x 1 0  3  6  m  3  River  t o t a l ' Q = 11.4 x 1 0  VOL '.  -1  (Lake B a s i n ) Q_ = 184 m .sec  A  2  River  B  Flow D u r a t i o n = 8.5 h r s . 3  Lake  = 55 x 1 0  + Q  -1  2  = 1.6 x 1 0  6  m  6  = 13.0 x 1 0  m  6  3  - Q  3  m  t o t a l Q = - 40 x 1 0  3  B  VOL. .  m  6  = - 4.3 x 1 0  m  6  = - 35.8 x 1 0  3  6  3  m  3  61  volume (AHA)  t h a t l e f t the l a k e p l u s volume s u p p l i e d by  d r a i n a g e b a s i n d u r i n g the time of ebb  the  flow.  V i s u a l l y , ~ a l l curves appear asymmetric w i t h  steepest  s l o p e s o c c u r r i n g on f l o o d t i d e , i m p l y i n g t h a t d i s c h a r g e thus v e l o c i t y i s h i g h e r on f l o o d . was  A s t a t i s t i c a l analysis  u n d e r t a k e n on the f r e q u e n c y of dH/dT v a l u e s  Lake f o r w i n t e r months (Nov. t i d a l effect i s greatest.  and  24, 1972  of  Pitt  - A p r i l 30, 1973)  A s l i g h t adjustment was  when  made'to  account f o r the e f f e c t of water volume c o n t r i b u t e d to the l a k e by the P i t t watershed.  Watershed d i s c h a r g e  would be  dammed d u r i n g f l o o d f l o w i n c r e a s i n g apparent" r a t e of l a k e stage r i s e , . , , I t s c o n t i n u o u s f l o w i n t o - the l a k e d u r i n g f l o w would: reduce' apparent: r a t e .of l a k e stage: f a l l .  ebb  However,  w a t e r s h e d / d i s c h a r g e i s : s m a l l , ( 5%) compared: t o t i d a l l y i n d u c e d discharge  c o n t r i b u t e d by P i t t R i v e r , and i t s e f f e c t i s con-  s i d e r e d minor.  I t can be seen from the bar graph ( P i g .  t h a t the b u l k of v a l u e s f o r b o t h f l o o d and ebb dH/dT of .007  f t / m i n (.213  cm/min).  l i e below a  Note t h a t 5-7%  v a l u e s are above t h i s s l o p e compared w i t h 2.5%  15)  of f l o o d  of ebb  values.  Thus over a 5-month p e r i o d f l o o d f l o w s r e a c h h i g h e r dH/dT values  i n d i c a t i n g h i g h e r peak v e l o c i t i e s t h a n ebb  This f l o o d - d o m i n a t e d t r e n d i s confirmed measurements p r e s e n t e d  by the  flows.  velocity  i n the"following section.  6 2  FIGURE 15.  Bargraph i l l u s t r a t i n g  frequency p r e c e n t o f  dH/dT v a l u e s o f P i t t Lake ( r e f l e c t i n g r a t e of i n f i l l i n g ) over a 6-month p e r i o d .  Highest  dH/dT v a l u e s occur on f l o o d f l o w s i n d i c a t i n g a h i g h e r v e l o c i t y than on t h e ebb.  63  10  h-  SLOPE S T E E P N E S S , dH/dT (ft./min.)  64  Streamflow V e l o c i t y i s one  of the more important  parameters used  t o c h a r a c t e r i z e f l o w and a necessary, v a r i a b l e f o r any sediment t r a n s p o r t p r e d i c t i o n . ' U n f o r t u n a t e l y ,  velocity  i n the P i t t R i v e r i s v a r i a b l e i n d i r e c t i o n and magnitude, both d a i l y and s e a s o n a l l y .  I t was  considered  important  t o determine the range of v e l o c i t i e s t h a t c o u l d be to o c c u r ' d u r i n g  expected  any y e a r , i n p a r t i c u l a r , the maximum  v e l o c i t i e s and t h e i r d u r a t i o n .  Two  d i f f e r e n t methods of  c u r r e n t measurements were used: ( 1 ) r e a d i n g s  t a k e n at  7-5-  minute i n t e r v a l s , one meter from bottom, f o r 36 days; (2) c u r r e n t p r o f i l e s t a k e n at 30-minute i n t e r v a l s f o r f l o o d or ebb  cycles.  both r i v e r and  P o r t i o n s of 50 days of v e l o c i t y data i n l a k e c h a n n e l were taken i n hopes of o b t a i n i n g  a r e p r e s e n t a t i v e s a m p l i n g of the broad spectrum of f l o w c o n d i t i o n s e x i s t i n g i n the P i t t  system.  Peak mean v e l o c i t i e s measured at f o u r s i t e s ( P i g . 3B) are summarized i n Table IV and show t h a t f l o o d f l o w s i n g e n e r a l , s t r o n g e r than ebb.  are,  This i s t r u e , i n p a r t i c u l a r ,  when the hydrodynamic c o n t r o l c o n d i t i o n s ( t i d a l range i n the S t r a i t and F r a s e r d i s c h a r g e ) and ebb  flows being  compared.  are the same f o r the f l o o d  E s t u a r i e s w i t h dominant  f l o o d v e l o c i t i e s are common (Wright  et_ a l . , 1973;  and Howard, 197^; Boggs and J o n e s , 1976) may  be c o n s i d e r e d  water discharge  Visher  and, i n f a c t ,  the r u l e f o r e s t u a r i e s w i t h low f r e s h  (Meade, 1 9 6 9 ) .  I n a l l cases t o t a l  TABLE IV  Summary o f peak mean v e l o c i t i e s determined from p r o f i l e measurements; mean i s at . 4d, measured from bed.  • Date  Site  Flood  Ebb  Date  Site  Flood  March 11, 1975  (3)  52  40  August 6, 1975  (4)  March 13, 1975  (3)  64  42  August 11, 1975  (IB)  59  May 9, 1975  (2)  56  August 13, 1975  (4)  34  May 21, 1975  (2)  40  Sept. 4, 1975  (IB)  June 12, 1975  (4)  50  Oct. 8, 1975  (2)  64  June 2 4 , 1975  (4)  47  Feb. 20, 1976  (2)  70  J u l y 9, 1975  (4)  33  Ebb 57 44  62 38  66  FIGURE 16.  Magnitude  of v e l o c i t y and the r a t i o of f l o o d  t o ebb d u r a t i o n to  lake.  decreases from c o n f l u e n c e  - 68  d i s c h a r g e i s g r e a t e r on ebb than f l o o d because o f the volume added by t h e r i v e r .  I n r e c o n c i l i n g t h i s apparent c o n t r a -  d i c t i o n V i s h e r and Howard (1974) noted h i g h e r f l o o d v e l o c i t i e s a t base o f f l o w and higher, ebb. v e l o c i t i e s a t s u r f a c e , whereas Meade (.1969), W r i g h t e t a l .  (1973), and t h i s study  have found t h a t f l o o d c u r r e n t s have a h i g h e r v e l o c i t y , but f l o w f o r a s h o r t e r p e r i o d o f time than the c o r r e s p o n d i n g ebb.  I n the P i t t system, the p r o p o r t i o n o f time devoted t o  f l o o d and ebb f l o w s changes p r o g r e s s i v e l y from r i v e r c o n f l u e n c e t o the l a k e ( F i g . 16) w i t h more and more time b e i n g devoted t o ebb and l e s s t o f l o o d . Current p r o f i l e s  were made from a boat anchored a t  one p o s i t i o n i n t h e thalweg d u r i n g ebb and f l o o d f l o w s and under f r e s h e t (May - J u l y ) and " w i n t e r " (August - A p r i l ) conditions.  Each p r o f i l e c o n s i s t e d o f 8 p o i n t s (10 cm from  bottom, 30 em from.bottom, one meter from•bottom, 0.2d, 0 . 4d (mean), 0.6d, 0.8d, and surface)-.-" magnitude  The measurements ( b o t h  and d i r e c t i o n ) at each depth were based on r e a d i n g s  averaged over a two-minute 15 t o 20 m i n u t e s .  p e r i o d , thus each p r o f i l e  A d i g i t a l counter i n t e g r a t i n g  spans  electrical  p u l s e s over a 10-second p e r i o d was used t o average v e l o c i t y f l u c t u a t i o n s caused by m i c r o - and macrotufbulence ( M a t t h e s , 1947) .  *Hydro P r o d u c t s , Savonius R o t o r w i t h a d i r e c t r e a d o u t f o r c u r r e n t speed (model #460A) and d i r e c t i o n (model #465A).  69  P r o f i l e s r e v e a l t h a t c u r r e n t d i r e c t i o n changes g r a d u a l l y from s u r f a c e to base o f f l o w . flow d i r e c t i o n i s dominantly of 30°.  The  change i n  t o the l e f t and i n the  order  Ludwick's (197*0 d a t a shows a s i m i l a r t r e n d , but  he makes no comment as t o the cause.  Unfortunately,  the  c u r r e n t measurement s i t e s i n the P i t t were too few i n number t o e v a l u a t e p r o p e r l y whether t h i s d e f l e c t i o n was due  t o the e f f e c t of l o c a l channel morphology or some o t h e r  factor. Semi-log p l o t s of v e l o c i t y d a t a f o r e n t i r e f l o w depth (boundary l a y e r ) r e v e a l t h a t most p r o f i l e s are composed of two d i s t i n c t zones. between 2 m and  The  break between the zones  4 m above the bottom ( F i g . 17).  occurs Within  each zone the p r o f i l e g e n e r a l l y shows a l o g a r i t h m i c v a r i a t i o n of v e l o c i t y w i t h depth ( d , d i s t a n c e above the b e d ) , however the s l o p e zone.  The  (d.V/dlog  ) is higher  d  upper  s l o p e steepness changes d u r i n g a c c e l e r a t i o n and  d e c e l e r a t i o n of b o t h f l o o d and ebb  oriented flows.  s c a l e bedforms (1 - 3 m i n h e i g h t ) cover the bottom and  i n  Large-  channel  i t i s p o s s i b l e t h a t t h e i r presence i s i n s t r u -  m e n t a l i n the development of the two  zones.  Considerably  more d a t a i s needed t o determine how  f l o w s t r u c t u r e changes  d u r i n g a t i d a l c y c l e and t o a s c e r t a i n the r e l a t i o n s h i p between bedforms and the presence of f l o w zones.  70  FIGURE 17.  V e l o c i t y p r o f i l e s t a k e n at A. S i t e 2 B. S i t e 3. Flow i s d i v i d e d i n t o two d i s t i n c t zones. V e l o c i t y varies l o g a r i t h m i c a l l y with depth, but  at d i f f e r e n t rates  i n each zone.  Division  between the zones i s a t 2 - 4 m from bed. Flow s t r u c t u r e may be r e l a t e d t o bedforms (1 - 3 m i n h e i g h t ) p r e s e n t on c h a n n e l bottom.  OCT. 8 , 1975 depth = 12.2 m  TSME  40  30  20  10  0  10  20  30  40  50  60  70  60  70  MARCH 11,1975  40  30  <4»  20  10  0  EBB  10  20  FLOOD C M / S E C  30  40  ^  50  72  no page 72  73  A r i t h m e t i c d e p t h - v e l o c i t y p l o t s , i n d i c a t e t h a t the shape of " t y p i c a l " f l o o d and ebb. curves, are  distinctly  d i f f e r e n t f o r a g i v e n mean v e l o c i t y ( F i g . l 8 A ) .  The  shape  of a v e l o c i t y - d e p t h p l o t depends m a i n l y on e x t e n t of drag imposed on the f l o w .  For a g i v e n depth, the g r e a t e r the  drag the g r e a t e r the t u r b u l e n c e , w h i c h , i n t u r n produces a more g r a d u a l v e l o c i t y p r o f i l e toward'the bed. on channel bottom are p r e d o m i n a n t l y  Bedforms -  f l o o d o r i e n t e d and  form r e s i s t a n c e (drag c o e f f i c i e n t ) would be expected change between f l o o d and ebb.  the  to  The s l o p e angle of the  exposed .bedform s u r f a c e ( s t o s s s i d e ) p r e s e n t e d t o ebb f l o w i s g r e a t e r than s l o p e angle of the s u r f a c e ( l e e s i d e ) opposing  f l o o d - o r i e n t e d f l o w s ( F i g . 19)-  Thus, i t i s  i n t e r p r e t e d t h a t more drag occurs on the ebb r e s u l t i n g i n a more g r a d u a l v e l o c i t y p r o f i l e toward Znamenskaya (1967) has attempted  the bed.  Although  t o r e l a t e bedform geometry  and f l o w r e s i s t a n c e , few q u a n t i t a t i v e d a t a are a v a i l a b l e f o r the types of l a r g e - s c a l e bedforms found i n the  Pitt  River. V e l o c i t y measurements t a k e n near the confluence  ( F i g . 3, s i t e IB) ( F i g . 18B) are  t y p i c a l of most p r o f i l e s measured.  Pitt-Fraser considered  These t i m e - v e l o c i t y  curves were drawn by eye t o average s c a t t e r which p r e sumably i s due t o low-frequency  velocity  fluctuations.  P l o t s of mean, v e l o c i t y , v e l o c i t y one meter from bottom  and  74  FIGURE l8A'.  Diagrammatic comparison of " t y p i c a l " f l o o d and ebb c u r r e n t p r o f i l e s .  FIGURE 18B.  V e l o c i t y v s . time p l o t o f d a t a t a k e n August  11, 1975 a t c u r r e n t measurement  s i t e IB ( F i g . 3B) . sec i l l u s t r a t e s  L i n e drawn a t 3'2 cm/  amount o f f l o o d  time  above c r i t i c a l v e l o c i t y i s g r e a t e r than t h a t of ebb. from  bottom.  Bottom a c t u a l l y i s 10 cm  76  FIGURE 19-  Diagrammatic comparison between  f l o o d and ebb  f l o w s o f t u r b u l e n c e c r e a t e d by the f l o o d oriented flows.  77  78  10 cm from bottom a l l e x h i b i t s i m i l a r shapes.  The d i f f e r e n c e  between f l o o d and ebb mean v e l o c i t y peaks i s 7 cm/sec, howe v e r , t h e d i f f e r e n c e a t one meter from bottom i s substantially  greater  (17 cm/sec). . V i s h e r and Howard (197*0 noted  a 20 cm/sec d i f f e r e n c e a t one meter . i n Altahama  Estuary,  whereas, K l e i n (1970) found o n l y 6 cm/sec d i f f e r e n c e a t one meter from bottom i n t h e p o r t i o n o f t h e Midas c h a r a c t e r i z e d by f l o o d - o r i e n t e d sand waves.  Basin  I t s h o u l d be  noted t h a t , i n t h e P i t t , I f an ebb o r f l o o d f l o w were o f equal strength  ( e q u a l mean v e l o c i t i e s ) t h e v e l o c i t y near  the base and thus b a s a l shear s t r e s s and sediment entrainment p o t e n t i a l would be g r e a t e r  f o r the f l o o d .  This  i s a consequence o f the b a s i c d i f f e r e n c e between t h e f l o o d and  ebb p r o f i l e s ( F i g . 18A). At f i r s t g l a n c e t h i s  inter-  p r e t a t i o n may appear t o c o n t r a d i c t t h e o r y which assumes that turbulence  i n t e n s i t y and shear i n c r e a s e  together.  However, t h e p o r t i o n o f t o t a l f l o w r e s i s t a n c e borne by form r e s i s t a n c e o r t h a t u t i l i z e d on t h e g r a i n s between ebb and f l o o d .  differs  On ebb, a g r e a t e r p o r t i o n o f t h e  r e s i s t a n c e i s borne by form r e s i s t a n c e  ( E i n s t e i n and  B a r b a r o s s a , 1952) because o f i n c r e a s e d  drag ( F i g . 1 9 ) .  The  opposite  i s t r u e of the f l o o d where a g r e a t e r  portion  o f r e s i s t a n c e i s a v a i l a b l e f o r shear a t g r a i n l e v e l .  It is  o n l y t h a t p o r t i o n o f t o t a l r e s i s t a n c e i m p a r t e d on t h e g r a i n which may l e a d t o sediment e n t r a i n m e n t .  79  , The  c o n t i n u o u s l y r e c o r d e d v e l o c i t y , measurements were  t a k e n by a p o s i t i v e l y  buoyant meter.. ( G e n e r a l O c e a n i c s , I n c .  f i l m r e c o r d i n g c u r r e n t meter (model #2010) ), 7-which was anchored  t o the channel bottom ( F i g . 3B, s i t e IA) but  to sway w i t h changing c u r r e n t s .  The meter r e c o r d e d on  movie f i l m i n s t a n t a n e o u s r e a d i n g s of magnitude and of f l o w (one meter o f f bottom) at 7-5-minute The meter was p l a c e d at s i t e s occasions.  Due  direction  intervals.  IA through 5 on a t o t a l of 1  t o equipment f a i l u r e o n l y two r e a d a b l e r e c o r d s  were o b t a i n e d : a 1 7 d a y r e c o r d i n the r i v e r o f ' s i t e  IA  _  (March, 1976)  and a 19-day r e c o r d at s i t e 5 i n the l a k e  channel ( A s h l e y , 1 9 7 7 ) .  P o r t i o n s of the r i v e r r e c o r d are  shown i n F i g u r e 20 and Table V g i v e s a comparison  of the  p r o p o r t i o n of time devoted t o ebb and f l o o d f l o w . o n l y was  Not  a l o n g e r p e r i o d o f t o t a l time (56%) devoted  ebb f l o w t h a n t o f l o o d  ( 4 4 % ) , but more time was  ebb at any g i v e n v e l o c i t y  level.  Ages and W o l l a r d , 1976)  The  to  devoted  to  Since a l l other aspects  of t h i s study and o t h e r s ( J o h n s t o n , 1922;  these apparent  free  Morton, 1949.;  point to a flood-dominated  system  anomalous d a t a r e q u i r e e x a m i n a t i o n .  a r e a o f the F r a s e r - P i t t c o n f l u e n c e i s l i k e l y  to be dominated-by the hydrodynamics o f the F r a s e r r a t h e r than the P i t t . velocities  M i l l l m a n (1977) has noted t h a t ebb  i n F r a s e r R i v e r are r e l a t e d t o t i d a l range.  Thus,  a n a l y s i s was made of d a t a from s i t e IA and P i t t Lake c h a n n e l  80  ( s i t e 5) t o determine i f a s i m i l a r r e l a t i o n s h i p e x i s t e d .  A  s t r o n g c o r r e l a t i o n ( r =0.866). was found i n IA d a t a between t i d a l range i n t h e S t r a i t o f Georgia  and peak ebb v e l o c i t y  ( P i g . 20, Table V I ) and a poor ( r =0.06k)  correlation  between peak f l o o d v e l o c i t y and t i d a l range.  Peak v e l o c i t i e s  were based on an average o f h i g h e s t v e l o c i t i e s over a 30minute p e r i o d .  On the o t h e r hand, the l a k e channel  data  show a m o d e r a t e l y good c o r r e l a t i o n ( r =0.631) between peak f l o o d v e l o c i t y and a poor one ( r = 0.266) f o r peak ebb velocity.  A n e g a t i v e c o r r e l a t i o n e x i s t s between F r a s e r  R i v e r d i s c h a r g e and peak v e l o c i t i e s a t b o t h s i t e s under both f l o o d and ebb f l o w s .  Thus, i t i s concluded  that  data  from s i t e IA are s t r o n g l y i n f l u e n c e d by F r a s e r R i v e r conditions.  To r e i n f o r c e t h i s c o n c l u s i o n a s i m i l a r but  more d e t a i l e d comparison was made o f s i t e IB (100 m upstream from s i t e IA) and s i t e 5 a g a i n s t s i t e IA a l l under approximately  e q u a l t i d a l ranges (Table V I I ) .  S i t e s IB  and 5 both show a s l i g h t f l o o d dominance i n t e r p r e t e d as r e p r e s e n t i n g P i t t c o n d i t i o n s w h i l e s i t e IA demonstrates a s t r o n g ebb dominance c o n s i d e r e d t y p i c a l o f the F r a s e r R i v e r . An a d d i t i o n a l f a c t o r c o n c e r n i n g  s i t e IA d a t a i s t h a t  the meter s i t e may have b i a s e d measurements taken such t h a t most o f the ebb d i s c h a r g e was r e c o r d e d , but o n l y a p o r t i o n o f the f l o o d .  P o s i t i o n of flow l i n e s w i t h respect t o the  c u r r e n t meter, determined by v e l o c i t y measurements w i t h t h e  TABLE V  Summary of " c o n t i n u o u s " v e l o c i t y d a t a (March 16 - 3 1 , 1 9 7 6 ) ; 770 t o t a l hours of measurement <at s i t e IA.  EBB Time g r e a t e r t h a n ;  Hours  FLOOD  Hr s ( c urn) Cum.%  Hours  Hrs(cum)  Cum. %  80 cm/sec  15  15  2..0  1  1  70 cm/sec  20  36  4.6  2  3  • 35  60 cm/sec  21  57  7.3  11  14  1.7  50 cm/sec  76  133  17. 2  55  68  8.8  40 cm/sec  109  242  31.4  79  147  19.0  30 cm/sec  72  314  40.8  92  239  31.0  20 cm/sec  43  357  46.0  34  273  35-0  10 cm/sec  40  397  51.0  39  312  40.5  0 cm/sec  35  432  56.O  26  338  44.0  82  FIGURE 20A.  Computer p l o t of v e l o c i t y d a t a from s i t e IA ( F i g . 3B).  Each d a t a p o i n t r e p r e s e n t s  an i n s t a n t a n e o u s r e c o r d i n g o f v e l o c i t y t a k e n a t 7-5-minute i n t e r v a l s , one meter o f f bottom.  March 17 - 18, 1976; mixed,  mainly d i u r n a l  FIGURE 20B.  tides.  A s t r o n g c o r r e l a t i o n e x i s t s between the t i d a l range i n S t r a i t o f G e o r g i a and maximum ebb v e l o c i t y i n c u r r e n t measurements t a k e n a t s i t e IA (March 16 - 31, 1976) ( F i g . 3B).  This i m p l i e s data represents  F r a s e r R i v e r h y d r a u l i c s and not P i t t  River.  83  TABLE V I  R e l a t i o n s h i p between t i d a l range ( S t r a i t ) and peak v e l o c i t i e s _ a t t a i n e d i n P i t t system; F r a s e r d i s c h a r g e and v e l o c i t i e s a t t a i n e d I n P i t t system.  T i d a l range ( S t r a i t ) v s . peak v e l . Flood Ebb  F r a s e r Q v s . peak v e l . Ebb Flood  Site  Date  IA  3/16/764/1/76  +0.866  + 0 .064  -0 .116  -0 .59  5  4/16/765/4/76  +0.266  +o .631  -0 .38  -0.165  TABLE V I I  Meter site  Comparison o f maximum mean v e l o c i t i e s r e a c h e d i n P i t t system under s i m i l a r t i d a l ranges but d i f f e r i n g F r a s e r d i s c h a r g e .  Date  T i d a l range (in Strait)  Fraser discharge  Max. mean flood v e l .  Max. mean ebb v e l .  Reference  IA  3/24/76  2.8 m  1020 cu m/sec  62 cm/sec  82  F i g . 17  IB  8/11/75  2.9 m  3285 cu m/sec  62 cm/sec  56  F i g . 18  5  4/28/76  2.8 m  3060 cu m/sec  54 cm/sec  38  Ashley,(1977)  85  Savonius r o t o r c u r r e n t meter and drogue o b s e r v a t i o n s s i g n i f i c a n t l y d i f f e r e n t f o r ebb 21B).  ( P i g . 21A)  and f l o o d ( F i g .  F l o o d c u r r e n t s d i v e r g e and spread out a c r o s s  P i t t R i v e r entrance w h i l e ebb  are  the  c u r r e n t s converge and  are  c o n c e n t r a t e d near the west bank d i r e c t l y over meter s i t e . Thus, i t i s concluded  t h a t the f l o w p a t t e r n can be more  complex l o c a l l y t h a n the s i m p l e one p r e s e n t e d i n F i g u r e 3A.  I n a d d i t i o n no one  s i t e by i t s e l f s h o u l d be  expected  to e x h i b i t average f l o w c o n d i t i o n s f o r the e n t i r e r i v e r . Both f l o o d and ebb The  t i m e - v e l o c i t y p l o t s are asymmetric.  asymmetry becomes more pronounced from c o n f l u e n c e  to  l a k e i n c o n j u n c t i o n w i t h a g r a d u a l decrease i n the magnitude of peak v e l o c i t i e s  ( F i g . 16).  i n f l o o d and l a t e i n ebb  Peak v e l o c i t i e s occur e a r l y  ( F i g . 12E; F i g . 13) w i t h reasons  f o r t h i s i l l u s t r a t e d i n F i g u r e 12.  The  net r e s u l t of the  t i m i n g of peak f l o w s i s t h a t the time b e f o r e and  after  "low water s l a c k " c o n t a i n s p e r i o d s of h i g h v e l o c i t i e s on both f l o o d and ebb.  I n c o n t r a s t , time near " h i g h water  s l a c k " has p e r i o d s of r e l a t i v e l y low v e l o c i t i e s .  This  phenomenon i s f a i r l y common i n e s t u a r i e s (Postma, but not n e c e s s a r i l y c h a r a c t e r i s t i c of a l l .  The  1967)  fact that  stage and v e l o c i t y c y c l e s are out of phase p l a y s an important  p a r t i n the mechanism of sediment t r a n s p o r t  the P i t t R i v e r .  T h i s mechanism w i l l be o u t l i n e d i n the  f o l l o w i n g s e c t i o n on sediment t r a n s p o r t .  up  86  FIGURE 21.  Flow p a t t e r n of f l o o d (A) and ebb Pitt-Fraser  confluence.  (B) at  LB  88  I n summary, v e l o c i t y d a t a c o l l e c t e d i n t h i s study i n d i c a t e s t h a t f l o o d f l o w s g e n e r a l l y e x h i b i t h i g h e r mean v e l o c i t i e s but f o r s h o r t e r d u r a t i o n s  than ebb  flows.  The  s u p e r i o r i t y of f l o o d c u r r e n t s r e s u l t s from the asymmetry of the t i d a l  cycle:  i . e . , the f l o o d stage r i s e s f a s t e r  than the ebb  stage f a l l s .  Thus,, the unequal f l o w i s a  c o n t r o l imposed upon the system. introduced  However, sediment i s  at the downstream end and  upstream as f l o o d - o r i e n t e d bedforms. forms a l t e r s the v e l o c i t y of ebb  i s transported The  geometry of  c u r r e n t s and  the  apparently  reduces t h e i r c a p a b i l i t y of e n t r a i n i n g sediment i n comparison to f l o o d c u r r e n t s .  I t i s i n f e r r e d t h e n , t h a t the f l o o d -  dominated n a t u r e of the P i t t R i v e r i s m a i n t a i n e d by  a  type of feedback mechanism.  Sediment t r a n s p o r t The mainly by  study of m o b i l e bed h y d r a u l i c s , has  advanced  l a b o r a t o r y flume s t u d i e s based on w e l l e s t a b l i s h e d  f l u i d mechanics p r i n c i p l e s .  Unfortunately,  applications  of s m a l l - s c a l e l a b o r a t o r y models to the l a r g e - s c a l e r e a l i t y of sediment t r a n s p o r t i n r i v e r s has had success.  One  of the major problems i s t h a t the e q u i l i b r i u m  s t a t e of the r i v e r i s d i f f i c u l t s h o r t and  only l i m i t e d  long-term b a s i s .  t o determine on both a'  Thus, i n examining b e h a v i o r of  n a t u r a l streams i t i s i m p o r t a n t to d i f f e r e n t i a t e between short-term  ( h o u r l y ) and  long-term ( y e a r l y ) i n t e r a c t i o n of  89  c h a n n e l and d i s c h a r g e .  This i s p a r t i c u l a r l y important i n  P i t t R i v e r , where b i d i r e c t i o n a l , , u n s t e a d y , and s e a s o n a l f l o w v a r i a t i o n s are the norm.  The f o l l o w i n g  section  i n v e s t i g a t e s the s h o r t - t e r m ( t i d a l c y c l e ) i n t e r a c t i o n o f water and sediment by examining c o n d i t i o n s of sediment entrainment and l o n g - t e r m ( s e a s o n a l ) i n t e r a c t i o n by e s t i m a t i n g t o t a l volume of sediment moved through the system i n a year.  Bed  load  The most c h a l l e n g i n g q u e s t i o n r e l a t e d t o the t i d a l P i t t system i s how  net water f l o w can be out of P i t t  Lake  w h i l e n e t sediment movement i s i n the o p p o s i t e d i r e c t i o n . Meade (1969); W r i g h t et a l . , (1972); and Wright e t a l . , (1973) have a l l noted a s i m i l a r landward t r a n s p o r t of sediment i n o t h e r e s t u a r i e s , e x p l a i n i n g i t i n terms of s a l t wedges.  The P i t t f r e s h w a t e r system c l e a r l y  requires  a model which i s not based on the d e n s i t y d i f f e r e n c e between f r e s h and s a l t w a t e r .  The s t e e p e r water s l o p e s  and h i g h e r v e l o c i t i e s g e n e r a t e d on the f l o o d t i d e have been documented i n p r e v i o u s s e c t i o n s and appear t o p r o v i d e a d r i v i n g f o r c e f o r landward sediment t r a n s p o r t .  Sediment  i s c o n t i n u o u s l y s u p p l i e d t o the lower P i t t R i v e r by i t s source ( F r a s e r R i v e r ) .  At the same time the g r a d a t i o n a l  change i n t h e hydrodynamics  of the P i t t from the F r a s e r  c o n f l u e n c e t o P i t t Lake ( F i g . 16) may  e x p l a i n the s y s t e m a t i c  90  decrease observed i n mean g r a i n s i z e up.the r i v e r .  To  e v a l u a t e q u a n t i t a t i v e l y t h e s e e f f e c t s c a l c u l a t i o n s have been c a r r i e d out on the shear v e l o c i t i e s n e c e s s a r y t o entrain  sediments.  C r i t i c a l shear s t r e s s n e c e s s a r y f o r sediment e n t r a i n m e n t , under v a r i o u s t e m p e r a t u r e s , was determined from S h i e l d s ' diagram as m o d i f i e d by B r i g g s and M i d d l e t o n (1965).  The l a r g e s t g r a i n s found near  Pitt-Fraser  c o n f l u e n c e (and a l s o i n e n t i r e r i v e r ) a r e 0.59 mm  (O.76'<)>.),  w i t h mean g r a i n s i z e b e i n g 0.37 mm ( 1 . 4 3 <}> ) , 0.2 8 mm ( 1 . 83 <}>.)', and 0.25 mm (2.0 <}>. ) at c o n f l u e n c e , m i d - r i v e r , and l a k e outlet, respectively.  Table VJEE summarizes shear  stress,  c a l c u l a t e d f o r w i n t e r ( 5 ° C ) , s p r i n g and autumn ( 1 0 ° C ) , and summer (15°C) c o n d i t i o n s .  X n e c e s s a r y t o move t h e l a r g e s t Q  g r a i n s i n w i n t e r i s 3-14 dyne-cm/sec o r a shear v e l o c i t y V  s  o f 1.77 c m / s e c , whereas V  g r a i n s i z e (0.25 mm) a t l a k e  s  o f I.36 cm/sec w i l l move mean  outlet.  To e s t i m a t e t h e e x t e n t o f sediment  t r a n s p o r t on t h e  f l o o d and ebb i t i s n e c e s s a r y t o determine f l o w c o n d i t i o n s under which t h e c r i t i c a l shear v e l o c i t y i s r e a c h e d and t h e i r duration.  Charnock ( 1 9 5 9 ) , S t e r n b e r g ( 1 9 6 6 ) , and Nece and  Smith (1970) have a l l measured c u r r e n t v e l o c i t y w i t h i n 2 meters  profiles  o f t h e bottom i n areas o f f u l l y -.turbulent  t i d a l c u r r e n t s and v e r i f i e d t h a t t h e p r o f i l e near an h y d r a u l i c a l l y rough bed can be r e p r e s e n t e d by t h e l o g a r i t h mic f l o w law.  S t e r n b e r g ( 1 9 6 8 ) found 85% of h i s t i d a l  91  TABLE ¥111  Grain Size  C r i t i c a l shear s t r e s s v a l u e s determined from S h i e l d s (1936) graph.  mm  Temperature  °C  Dynes-cm/sec o  V  x  cm/sec  T  .59  • 37  .28  • 25  5  3.14  1.77  10  3.10  1.76  15  3.05  1.74  5  3-51  1.58  10  2.33  1.52  15  2.15  1. 46  5  2 .26  1. 50  10  2 .08  1.44  15  1.94  1.39  5  2.18  1.47  10  2.06  1.43  15  1.85  1.36  92  channels had l o g a r i t h m i c v e l o c i t y the  profiles.  T h i s suggests  v a l i d i t y o f a p p l y i n g t h e von Karman-Prandtl law o f t h e  wall:  2.3  V  v,  *  K  =  /  n L  O  O  G  x  / (  o  2  „  N  )  where K i s von Karman's c o n s t a n t , assumed t o be 0.4, V i s velocity  a t d e p t h , d (measured from b e d ) , and Z  q  i s some  measure o f h e i g h t of roughness elements a t t h e boundary (i.e., grain size).  Knowing Z  q  t o be s m a l l i n comparison  to d, t h e e q u a t i o n can be r e w r i t t e n :  V V  =  Because i t i s a s t r a i g h t  5  >  7  log d l o g z,  5  (3)  line d  V d l o g d. + logz 5-75  where 1. s l o p e o f l i n e =  2. i n t e r c e p t  3. V  4  = z  _5a p  d V d log d  (4)  93  T o t a l depth of f l o w ranged from 9 m i n the r i v e r t o 42 m at the l a k e o u t l e t , however o n l y the bottom (2 - 4) meters p l o t t e d c o n s i s t e n t l y as a s t r a i g h t l i n e on a semil o g p l o t of v e l o c i t y v s . l o g depth ( F i g . 1 7 ) .  B a s a l shear  v e l o c i t y , V , was determined u s i n g e q u a t i o n (4) on the s  bottom 4 meters of each v e l o c i t y p r o f i l e for. a t o t a l of 130 p r o f i l e s on the 14 d i f f e r e n t days l i s t e d i n T a b l e IV. Measurements used were u s u a l l y 10 cm, 30 cm, 100 cm, 200  cm,  and 400 cm above bottom.. U n f o r t u n a t e l y , v e l o c i t y p r o f i l e measurements were t a k e n s e q u e n t i a l l y w i t h one meter and not w i t h an a r r a y of s e v e r a l . Thus, r e s u l t i n g shear s t r e s s c a l c u l a t i o n s are o n l y an approxi m a t i o n of c o n d i t i o n s at bed.  For more p r e c i s e measurements  a c u r r e n t meter a r r a y or P r e s t o n Tube ( d e v i c e f o r measuring Reynolds S t r e s s d i r e c t l y ) s h o u l d be used.  Nece and Smith  (1970) have demonstrated t h a t both methods produce results. who  comparable  An a d d i t i o n a l problem i s r e v e a l e d by Dyer  (1972)  found t h a t the r e l a t i o n s h i p of bed c o n f i g u r a t i o n and  p o s i t i o n of p r o f i l e i s i m p o r t a n t .  He found t h a t  friction  v e l o c i t y can d i f f e r by as much as a f a c t o r of two  depending  upon l o c a t i o n of the p r o f i l e s r e l a t i v e t o bedform  morphology.  H i g h e s t shear s t r e s s o c c u r s near the bedform c r e s t , l o w e s t In the t r o u g h . bedforms  However, i t i s i m p o r t a n t t o note t h a t the  i n Dyer's study had a wavelength of 200 m and a  h e i g h t of I m compared w i t h the 15 - 60 m and 1 - 3: i n the  94  Pitt.  Thus, t h e u n c e r t a i n t y i n t h e l o c a t i o n o f c u r r e n t  p r o f i l e s r e l a t i v e t o bedforms may be l e s s c r i t i c a l i n P i t t R i v e r than Dyer's d a t a suggest.  Despite, these  problems,  the c o n s i s t e n c y o f t h e d a t a and t h e q u a l i t a t i v e agreement i n t h e r e l a t i o n between T and V w i t h both Ludwick's (1974) o and Gordon's (1975) s t u d i e s support data.  the v a l i d i t y of the  V*, T , and T V (stream power) c a l c u l a t i o n s f o r one * o o  day's d a t a ( F i g . 18) a r e summarized i n Table I X . I t i s important  t o note t h a t shear s t r e s s changes p r o p o r t i o n a l l y  w i t h i n c r e a s e i n mean v e l o c i t y . d e c e l e r a t i n g f l o w , as T rapidly. for  q  T h i s i s not t r u e w i t h  remains h i g h then drops o f f  More s p e c i f i c a l l y , shear s t r e s s i s u s u a l l y h i g h e r  t h e same mean v e l o c i t y on d e c e l e r a t i n g f l o w than f o r  accelerating flow.  Shear s t r e s s was not seen t o i n c r e a s e  a f t e r peak mean v e l o c i t y .  McCave (1973) and Gordon (1975)  have both noted a s i m i l a r " h y s t e r e s i s " i n t h e r e l a t i o n s h i p o f shear s t r e s s and mean v e l o c i t y .  K a c h e l and S t e r n b e r g  n o t i c e d an i n c r e a s e i n bed l o a d t r a n s p o r t as r i p p l e s decelerating flow.  (1971)  during  Gordon (1975) suggested t h a t the i n c r e a s e  of shear on d e c e l e r a t i n g f l o w occurs when l o n g i t u d i n a l p r e s s u r e g r a d i e n t changes from f a v o r a b l e t o adverse w i t h change o f stage.  Because o f t h e h y s t e r e t i c r e l a t i o n s h i p  found i n P i t t R i v e r , p r e d i c t i o n s o f sediment entrainment u s i n g mean v e l o c i t y as an i n d i c a t i o n of f r i c t i o n v e l o c i t y w i l l be  minima.  EBB  FLOOD  J -Cr  -Cr  U J  U J  U J  O  O  U )  o  o  o o  ro  r—  ro  IV)  v_n  M  I—  CT\  co vo  ro  1  u i  (V)  U )  ro  oc o  1  o  U J C A  cc  IV) U )  h-  1 1 1  1  H  o  UI  -Cr  ro —j  I— o  -Cr  u i vo  - o ro  -Er  -Cr  ro vn  —-]  vo  1  M co OA  ro  M O  O  ! j 1  1 1  1 1 1  o o  H u i  hO  O  U J  O  O  O  o  rj OA  r—' CA  cc  U )  UI vo  O  ro oc  - J  1  h-"  r— CA  OA  co  H  C A  O —]  M  ro  ro  -Cr  IV)  vo  OA ro  —~]  u i  1  1  g  t—  1  U )  o  O  <!  h- 1  o era  U )  Ct,  r—1 UI  O  P. UI  C A  1-3  r—1  M  oo  <! *  U J  ro  M —a  U )  CO  oo  CD  lo |S  o  < I U J  -Cr  U I  ro  -Cr  UI -Cr  -Cr O  ro ui  o  u i  -Cr -Cr  U l VO  UI  CA  —J  UI UI  o  U J  -Cr  Cfl CD O  r—1  H  ro  ro  VO  o OA  M vo  U J  CO  U J  o  M M  —]  -Cr  o  o  UI  o  CA UI  VO  -Cr  M  UI - J  CO  vo  —J  OO  1  CA  1 1  H  r—1  ro  H  UI  cr CA  H ro  M o  O  OA  —J  UI  OA -O  UI  ro  VO co  -Cr  \ o  UI  j 1 1 1  o  C O  oo  CA  oo  H1  -<]  o  UI  oo  -Cr  vo  —]  UI ro  vo  -Cr  <!l  CD  I  s; CD  ire F  lCD  S6  H  P CD  96  no page 96  97  Due t o t h e n o n l i n e a r r e l a t i o n s h i p between mean v e l o c i t y and shear s t r e s s , t h e i r product stream power (* V) f o l l o w s Q  an i n t e r m e d i a t e t r e n d .  Stream power i s c o n s i d e r e d a b e t t e r  i n d i c a t i o n o f t h e a b i l i t y o f t h e f l o w t o move sediment e i t h e r of the f a c t o r s i n d i v i d u a l l y B a g n o l d , 1963).  (Simons  than  et_ a l . , 1 9 6 5 ;  Note i n Table IX ( f o r Aug. 1 1 , 1975 data)  t h a t stream power v a l u e s f o r f l o o d averaged 88.7 dynes-(cm/sec)  2  (time-weighted)  w h i l e ebb averaged 76.8 dynes-(cm/sec)  2  i n d i c a t i n g a f l o o d dominance. U s i n g t h e l o g a r i t h m i c v e l o c i t y law i t was determined t h a t a mean v e l o c i t y (.4d) o f a t l e a s t 32 cm/sec ( i . e . dV/cflog d = 10)  was needed t o c r e a t e t h e V  s  = 1.77 cm/sec  n e c e s s a r y t o move the l a r g e s t P i t t sediment  (0.59 mm).  though h i g h e s t mean v e l o c i t i e s o c c u r on the f l o o d  Even  critical  v e l o c i t y (32 cm/sec) i s m a i n t a i n e d f o r a l o n g e r p e r i o d o f time d u r i n g t h e ebb ( P i g . 22A,B).  As a l l o t h e r a s p e c t s o f  the P i t t i n d i c a t e a f l o o d - d o m i n a t e d system, i t i s concluded t h a t t h e d i f f e r e n c e i n peak f l o w v e l o c i t i e s r a t h e r than a c t u a l time above c r i t i c a l v e l o c i t y i s t h e more i m p o r t a n t f a c t o r i n d e t e r m i n i n g d i r e c t i o n of n e t sediment  transport.  I t i s s u s p e c t e d t h a t t h e c o n t r a s t between peak v e l o c i t i e s o c c u r i n g on f l o o d and ebb would be even more a c c e n t u a t e d d u r i n g w i n t e r months (Dec. - Mar.). of V  s  The h i g h e s t v a l u e s  determined i n t h i s s t u d y , over 6.0 cm/sec, were  r e c o r d e d on March 1 3 , 1975 and February 2 0 , 1976.  No V  %  98  FIGURE 22.  Comparison of time d u r a t i o n of f l o o d ebb  c u r r e n t s above the p r e d i c t e d  velocity  (32 cm/sec) f o r P i t t  and  critical  River.  99  100  over 3-0 cm/sec was determined from f r e s h e t p r o f i l e s and most were l e s s t h a n the needed c r i t i c a l f r i c t i o n v e l o c i t y o f 1.77 cm/sec.  F i g u r e 16 shows a decrease i n maximum v e l o c i t i e s  from c o n f l u e n c e t o l a k e .  S i n c e magnitude of shear s t r e s s  v a r i e s w i t h mean v e l o c i t y i t i s i n t e r p r e t e d t h a t shear s t r e s s or sediment  entrainment p o t e n t i a l would a l s o d e c r e a s e .  This  c o n t e n t i o n i s s u p p o r t e d by t h e decrease- i n mean g r a i n s i z e of  channel bottom m a t e r i a l from t h e F r a s e r t o P i t t 137 On t h e b a s i s o f '  Cs d a t i n g o f sediment  Lake.  cores from  P i t t Lake ( A s h l e y , 1977) i t has been e s t i m a t e d t h a t 150 20 x 10  tonnes o f sediment  (1% o f F r a s e r ' s t o t a l l o a d ) a r e  a c c u m u l a t i n g a n n u a l l y i n t h e lower h a l f o f t h e l a k e .  Grain  s i z e a n a l y s i s of t h i s sediment r e v e a l s t h a t a p p r o x i m a t e l y 50% of t h i s m a t e r i a l (75,000 tonnes p e r y e a r ) i s g r e a t e r than 0.31 mm (5 .<(>') and thus p r o b a b l y moves as bed l o a d et a l . , 1950).  (Einstein  An attempt was made t o c a l c u l a t e bedload  t r a n s p o r t i n P i t t R i v e r u s i n g t h e f o l l o w i n g s i m p l e form o f E i n s t e i n ' s (1950) a n a l y t i c a l e q u a t i o n : =  f (T)  '  Y =  —  p  —  Sw Rn '  $ = —-  rs  —£ H  p -p gD ^3 s  (5) K 0 )  y  The more complex form o f t h i s e q u a t i o n i s based on t h e p r o b a b i l i t y o f g r a i n s moving under g i v e n h y d r a u l i c  conditions  and has been s u b s t a n t i a t e d r e a s o n a b l y w e l l by l a b o r a t o r y and f i e l d s t u d i e s ( T o f f a l e t i , 1969; K a c h e l and S t e r n b e r g ,  101  1971;  Garg e t . a l . , 1971; E i n s t e i n and A b d e l - A a l ,  1972).  C a l c u l a t i o n s were done at. :three c r o s s . ' s e c t i o n s  along  r i v e r ( c o n f l u e n c e , m i d - r i v e r , and near l a k e o u t l e t ) . c a l c u l a t i o n s were i n t e n d e d  o n l y as an a p p r o x i m a t i o n  b e d l o a d movement and the r e s u l t s a r e probably w i t h i n an order  The of  correct to  of magnitude o f the a c t u a l v a l u e s .  A  r e p r e s e n t a t i v e g r a i n s i z e (Dg^ bed m a t e r i a l ) was used and no c o r r e c t i o n was made f o r form r e s i s t a n c e . C a l c u l a t i o n s f o r the t i d a l P i t t River also n e c e s s i t a t e comparing t r a n s p o r t r a t e s u p r i v e r under f l o o d and downstream under ebb.  At any c r o s s s e c t i o n , t h e o n l y parameter v a r y i n g  between ebb and f l o o d i s water s l o p e .  Since slope v a r i e s  both w i t h time and d i s t a n c e , s e a s o n a l l y and d u r i n g both f l o o d and ebb, a maximum v a l u e was determined f o r v a r i o u s  seasons  and f l o w d i r e c t i o n s ( F i g . 9 ) . A maximum v a l u e i s c o n s i s t e n t and s e r v e s as the means o f o b j e c t i v e comparison o f t h e v a r i e d sets of c o n d i t i o n s .  I n a d d i t i o n maximum t r a n s p o r t  would be expected t o o c c u r near times o f maximum s l o p e . R e s u l t i n g c a l c u l a t i o n s (Appendix) show a net f l o o d - o r i e n t e d t r a n s p o r t w i t h volumes o f t h e o r d e r o f magnitude (75,000 tonnes) p r e d i c t e d from a c c u m u l a t i n g  l a k e sediments.  In c o n c l u s i o n , bedload estimations the v e l o c i t y d a t a ; transport capacity.  ;  tend t o support  i , . e . , t h a t f l o o d f l o w s have a g r e a t e r However more f i e l d d a t a , i n p a r t i c u l a r  d i r e c t b e d l o a d measurements, are needed t o s u b s t a n t i a t e unequivocally.  this  102  Even though t h e system appears to: .be. f l o o d dominated, ebb  f l o w can s t i l l e n t r a i n and move sediment i n t h e o p p o s i t e  direction.  But because o f the out-of-phase r e l a t i o n s h i p  between s t a g e and v e l o c i t y o f f l o w ( F i g . 13) and the f a c t t h a t a lower v e l o c i t y i s r e q u i r e d  to transport  a grain  than  e n t r a i n i t , movement i n t h e f l o o d d i r e c t i o n i s f a v o r e d . F i g u r e 23 i n c o r p o r a t e s ment f i n d i n g s  the h y d r a u l i c  and sediment  entrain-  o f t h i s study i n t o a model f o r net u p r i v e r  movement. C r i t i c a l shear s t r e s s sec)  ( i . e . , mean v e l o c i t y o f 32 cm/  i s reached e a r l y i n a f l o o d c y c l e because o f v e l o c i t y  curve asymmetry and i t s t e m p o r a l r e l a t i o n s h i p w i t h changes.  V i n c r e a s e s r a p i d l y and d e c l i n e s  h i g h water i s r e a c h e d . slowly  In contrast,  until  on the ebb, V i n c r e a s e s  u n t i l i t reaches a peak l a t e i n t h e c y c l e , and then  decreases q u i c k l y t o low water.  Once a g r a i n i s e n t r a i n e d  i t can be c a r r i e d a l o n g by a c u r r e n t velocity. and  slowly  stage  lower t h a n t h e c r i t i c a l  Because c r i t i c a l v e l o c i t y o c c u r s e a r l y i n f l o o d  l a t e i n ebb t h e r e i s more time f o l l o w i n g c r i t i c a l  i n f l o o d then i n ebb. transport proportion  flow  Thus t h e l i k e l i h o o d o f a d d i t i o n a l  under f l o o d f l o w i s i n c r e a s e d .  Although the  o f t o t a l f l o o d time t h a t i s above c r i t i c a l  appears t o be l e s s t h a n the p r o p o r t i o n  o f ebb t i m e , h i g h e r  v e l o c i t i e s a r e reached d u r i n g t h e f l o o d . d u r i n g a g i v e n time p e r i o d  velocity  G r a i n s move f a r t h e r  on f l o o d than they do i n t h e  103  o p p o s i t e d i r e c t i o n on t h e ebb.  The r e s u l t o f t h e o s c i l l a t i n g  sediment movement r e s u l t s i n a n e t u p r l v e r movement ( a f t e r Postma, 1967).  Suspended Sediment 1  The  suspended sediment content  o f F r a s e r R i v e r water  f l u c t u a t e s s e a s o n a l l y and ranges from an average o f 62 mg/1 d u r i n g w i n t e r (lows a r e 1 mg/1) t o a mean over 320 during freshet (Johnston, for  1967-1969  1922).  mg/1  Water Survey o f Canada  a t P o r t Mann B r i d g e found annual means 93>  105 and 73 mg/1 r e s p e c t i v e l y , r a n g i n g from a w i n t e r low o f 18 mg/1 t o f r e s h e t h i g h o f 286  mg/1.  M i l l i m a n (1977) measured  .a y e a r l y mean o f 135 mg/1 a t P o r t Mann B r i d g e 4 km seaward of P i t t R i v e r .  Near bottom v a r i a t i o n s from 10 t o 1500 mg/1  o c c u r r e d and M i l l i m a n observed t h a t t h i s f l u c t u a t i o n i s due t o an i n c r e a s e i n sand content discharge  associated with increase i n  and v a r i a t i o n s i n t i d a l f l o w and t h a t t h e s i l t and  c l a y content remains e s s e n t i a l l y c o n s t a n t year round.  By  comparison, P i t t R i v e r water has v e r y low suspended sediment (5 mg/1) as i t d r a i n s o n l y P i t t Lake and a few s l u g g i s h streams. When p a r t of t h e F r a s e r R i v e r i s d i v e r t e d i n t o t h e P i t t system d u r i n g f l o o d t i d e s t h e t u r b i d w a t e r s  first  appear t o move as a coherent body w i t h a sharp l i n e d i v i d i n g muddy F r a s e r from r e l a t i v e l y c l e a r P i t t - w a t e r .  104  FIGURE 23.  Model f o r movement o f sediment up P i t t ( a f t e r Postma, 1959).  River  105  D  I  S  T  A  N  C  E  106  W i t h i n h a l f an hour m i x i n g becomes obvious  i n the surface  water and t h e c o n t a c t becomes p r o g r e s s i v e l y more d i f f u s e w i t h time.  The p r o g r e s s i o n o f t h e F r a s e r plume can be  f o l l o w e d up t h e P i t t R i v e r v i s u a l l y , by o b s e r v i n g water o r by r e p e a t e d  suspended sediment sampling.  t a b u l a t e s r e s u l t s of s u r f a c e and .near bottom (at  surface  2 km s p a c i n g ) d u r i n g a 4-hour p e r i o d .  Table X  sediment"sampling  Suspended sediment  moved a t 1.6 km/hr or 44 cm/sec or . a p p r o x i m a t e l y the average v e l o c i t y of the f l o w i t s e l f .  However, s i n c e t h e  r i v e r i s 20.7 km l o n g i t would t a k e over 12 hours f o r F r a s e r R i v e r water t o r e a c h t h e l a k e .  Flood flows are  seldom l o n g e r than 8 hours; t h u s , suspended sediment p r o b a b l y never reaches the l a k e on one t i d a l c y c l e , b u t would move i n s m a l l increments  over s e v e r a l t i d a l c y c l e s .  Areas o f low v e l o c i t y near l o g s t o r a g e booms which l i n e the r i v e r banks and mid-channel i s l a n d s might p r o v i d e a s e t t l i n g s i t e f o r some o f the suspended l o a d , but i t i s suspected  t h a t t h e b u l k o f i t r e t u r n s t o t h e F r a s e r on  the ebb f l o w .  Taking the y e a r l y mean of 100 mg/1,  22,000 tonnes of suspended sediment e n t e r s P i t t R i v e r on the f l o o d .  However, l e s s than 0.5% of t h i s i s r e q u i r e d t o  remain i n P i t t R i v e r a f t e r each f l o o d and e v e n t u a l l y r e a c h the l a k e t o account f o r the. e s t i m a t e d 75,000 tonnes o f suspended m a t e r i a l (<-0.31 mm) lake .  accumulating  y e a r l y i n the  TABLE X  TIME  P i t t R i v e r suspended sediment measurements. S t a t i o n s (1) - (5) at.2-km i n t e r v a l s .  PITT RIVER  FRASER RIVER  (2) 15.29 15.23-  (3) 8.29 13.98  (4)  (5)  7.94 13.21  9.64  1.25-2.0 HR  32.85 38.59  33.82 31.23  17.54 14 .13  12.90  3-253-75 HR  24.87  24.70  27.25 34.98  8.76  (1) 0-.75 HR  31.06  36.25  29 .27  36.93  INTERFACE ADVANCES 1.6 KM/HR (44 CM/SEC)  (6)  3.86  108  BED CONFIGURATIONS  Observations A l l o b s e r v a t i o n s o f t h e c o n f i g u r a t i o n o f the channel bottom were made r e m o t e l y by depth sounders and a s i d e - s c a n sonar.  The p r e c i s i o n o f t h e depth sounding r e c o r d s i s w i t h i n  30 cm ( v e r t i c a l ) and a p p r o x i m a t e l y 15 m ( h o r i z o n t a l ) .  The  r e c o r d s have a v e r t i c a l e x a g g e r a t i o n o f between 1:10 and 1:15. S i d e - s c a n sonar r e c o r d s can be r e a d t o w i t h i n 1 m v e r t i c a l l y and 15 m h o r i z o n t a l l y . r e c o r d s i s 1:3.  V e r t i c a l exaggeration of side-scan  A d i s t o r t i o n o f t h e t r u e bedform shape o c c u r s  on some depth sounding r e c o r d s due t o o r i e n t a t i o n o f s l o p e s o f v a r y i n g steepness r e l a t i v e t o d i r e c t i o n o f boat  motion.  However, as o n l y the gross form ( l e n g t h and h e i g h t ) and p r o p o r t i o n o f l e n g t h of s t o s s and l e e s i d e s o f t h e bedforms were b e i n g examined from t h e depth soundings  the d i s t o r t i o n  was not c o n s i d e r e d i m p o r t a n t . The depth sounding program was i n i t i a t e d as p a r t o f the i n v e s t i g a t i o n o f b e d l o a d t r a n s p o r t .  Repeated  soundings  were t a k e n a l o n g a l l reaches o f t h e r i v e r , c o n c e n t r a t i n g i n t h e thalweg.  Most runs were c a r r i e d out between t h e  months o f May and September w i t h a l e s s e r number i n t h e w i n t e r t o d e t e c t s e a s o n a l changes.  Because a b e w i l d e r i n g  v a r i e t y o f bedform shapes and s i z e s was r e v e a l e d d u r i n g t h e 18-month s u r v e y , t h e s i d e - s c a n sonar was used f o r a two-day  109  p e r i o d (June 1,2, 1975) t o a i d i n the i n t e r p r e t a t i o n of. the forms by d e t e r m i n i n g t h e i r 3 - d l m e n s i o n a l geometry. The l a r g e range of s i z e s and shapes of bedforms  found  i n the c h a n n e l p r e s e n t e d a problem of bedform t e r m i n o l o g y . The c l a s s i f i c a t i o n of l a r g e - s c a l e a l l u v i a l bedforms  is in  a s t a t e of c o n f u s i o n r e f l e c t i n g a g e n e r a l l a c k of unders t a n d i n g of t h e i r g e n e s i s .  The most r e c e n t r e v i e w of  bedform t e r m i n o l o g y (Task F o r c e , 1966) I s based on an attempt t o e x t r a p o l a t e b e d f o r m - h y d r a u l i c r e l a t i o n s h i p s developed i n flume s t u d i e s such as t h a t of Simons et_ al. , (1965) t o the n a t u r a l environment.  U n f o r t u n a t e l y , the range o f c o n d i t i o n s  found i n r i v e r s i s not e a s i l y r e p r o d u c e d i n f l u m e s . a d d i t i o n , the l a r g e - s c a l e , l o w - a m p l i t u d e bedforms  In  found i n  s h a l l o w m a r i n e , e s t u a r i n e , and r i v e r i n e environments have no e q u i v a l e n t forms i n the flume, r e s u l t s of Simons et_ a l . , (1965).  These l a r g e bedforms have been termed g i a n t  r i p p l e s , sand r i d g e s , dunes, sand waves, super r i p p l e s , t r a n s v e r s e b a r s , sand dunes, and l a r g e s c a l e r i p p l e s by various authors.  C l e a r l y , f o r the present, a v i a b l e  bedform c l a s s i f i c a t i o n s h o u l d be independent of g e n e t i c assumptions and based only on d e s c r i p t i v e  morphology.  A d e t a i l e d study of the 3 - d i m e n s i o n a l geometry bedforms  of  i n P i t t c h a n n e l was made from t h e sounding r e c o r d s .  U s i n g p l a n geometry, form h e i g h t and s p a c i n g , and form o r i e n t a t i o n w i t h r e s p e c t t o f l o o d or ebb f l o w d i r e c t i o n , a  110  c l a s s i f i c a t i o n of bedform shapes found i n P i t t R i v e r  was  ;  developed ( F i g u r e 24) . On the b a s i s of h e i g h t / s p a c i n g p r o p o r t i o n s , two major groups of forms can be  discerned:  s m a l l forms ( s p a c i n g 5 m, h t / s p a c i n g r a t i o =  1/10)  e q u i v a l e n t to "dunes" of Simons e t a l . ,  (1965), and  forms ( s p a c i n g 10 - 60 m, h t / s p a c i n g r a t i o = e q u i v a l e n t t o "sand waves" of Harms et a l . i n the l a r g e forms do not r e p r e s e n t d i s c r e t e groups (10 - 15 m, 25 - 30m,  large  1/20)  (1975).  Spacings  a continuum but o c c u r i n 50 - 60m) w i t h few  bedforms of 15 - 25 m and 30 - 50 m observed.  The  dominant  form i s 25 - 30 m i n l e n g t h , composing 70% of the t o t a l .  The  s m a l l e r forms (10 - 15 m) make up 25% and the l a r g e forms (50  - 60 m) about 5%. Dunes ( h e i g h t / s p a c i n g = 0.3m/2 - 3m)  are 3-dimensional  w i t h s i n o u s c r e s t s and are found on the backs of the l a r g e 2 - d i m e n s i o n a l s t r a i g h t - c r e s t e d sandwaves. i n two b a s i c shapes.  Sandwaves occur  Type one, c h a r a c t e r i z e d by a rounded  s t o s s s i d e ( u s u a l l y c o v e r e d w i t h dunes) and f a i r l y steep l e e s l o p e ( F i g . 24A,C) o c c u r s i n t r a i n s at only a few s i t e s (E and F o f F i g . 3A).  T h i s form r e f e r r e d t o as a "hump-  back" sand wave ( F i g . 25D, f l o o d forms; F i g . 25F, ebb  forms)  i s i d e n t i c a l t o ones found i n F r a s e r R i v e r ( F i g . 24B; F i g . 25A) developed under u n i d i r e c t i o n a l f l o w .  The second type  ( F i g . 24D-H) has u n i f o r m l y s l o p i n g s t o s s and l e e s i d e s . However, the a n g l e of s l o p e and p r o p o r t i o n of l e n g t h of s i d e s v a r i e s c o n t i n u o u s l y from f l o o d - o r i e n t e d forms  (60%  Ill  of t o t a l ) through, e b b - m o d i f i e d f l o o d forms and  fairly  s y m m e t r i c a l shapes (25%)of  (15%).  e b b - o r i e n t e d types  Bedforms o c c u r a l o n g the e n t i r e sandy thalweg F r a s e r R i v e r ( F i g . 25A) t o the lake, o u t l e t  from  ( F i g . 25G) .  The thalweg i s a p p r o x i m a t e l y 100 - 150 m wide and bedforms usually  cover the e n t i r e a r e a .  Sand wave c r e s t s  are  p e r p e n d i c u a l r t o the o r i e n t a t i o n of the thalweg and the superimposed crests.  dunes have c r e s t s p a r a l l e l t o the sand wave  Dunes a l s o occur i n sandy channel areas o f f the  thalweg and on sandy s h o a l s s u r r o u n d i n g the i s l a n d s . contrast,  In  s i d e - s c a n r e c o r d s and v i s u a l o b s e r v a t i o n  i n d i c a t e t h a t r i p p l e s are t y p i c a l of f i n e r g r a i n e d  (silty)  areas. A g e n e r a l r e l a t i o n s h i p between both bedform s i z e and type and topography was found i n the P i t t R i v e r .  The  l a r g e s t forms are found at the base of ramps ( a r e a s of r a p i d s h o a l i n g , w i t h s l o p e s - 1°) and the s m a l l e s t forms are found on r e l a t i v e l y f l a t topography.  For example, sand  waves (4.5 m/60m) o c c u r on the ramp at the c o n s t r i c t e d areanear a bedrock o u t c r o p at km 15 ( F i g . 3A).  The  channel  s h a l l o w s from 21 m toward the s h o a l t o 10 m at the n o r t h end of the wave t r a i n . (Fig.  The r e a c h n o r t h of Addington P o i n t  2) i s deep (24 m) but r e l a t i v e l y f l a t .  here are 1 m/30  Sand waves  m), i d e n t i c a l w i t h the average s i z e found  i n o t h e r p a r t s of the r i v e r at o n l y 5 m depth.  Several trains  of s m a l l sandwaves (.8 m/10-15m) o c c u r on f l a t s h o a l s  112  FIGURE 24.  Bedform shapes found i n P i t t R i v e r to true s c a l e .  drawn  113  FLOOD  EBB  HUMPBACK  EBB HUMPBACK {Fro»er River)  FLOOD  HUMPBACK  114  FIGURE 25-  Depth sounding  profiles:  (A) F r a s e r - P i t t c o n f l u e n c e ; F r a s e r has ebb forms, P i t t  floodforms.  (B) F l o o d - o r i e n t e d sandwaves w i t h some ebb m o d i f i e d c r e s t s (km 3). (C) F l o o d - o r i e n t e d s m a l l s c a l e sandwaves (10 - 15 m s p a c i n g )  (km 8 ) .  (D) F l o o d "humpback" forms and dunes on f l a t topography (km 9 ) . (E) Ebb  "humpback" forms south o f P o i n t  Addington  (E on F i g . 3A).  (F) F l o o d - o r i e n t e d , symmetric and  ebb-  m o d i f i e d , and e b b - o r i e n t e d sand waves t h a t o c c u r on l a r g e mounds i n c h a n n e l . (G) Bedforms at P i t t Lake o u t l e t .  115  August  i 0  It, 1974  i p 50  lOOmeters June  50  25,1975  lOOmeters May 22, 1975  -I0r -15 -20 • I  I  0  50  l  lOOmeters May  22,1975  -5r -10 -15 0  50  lOOmeters June 25,  1975  -10 -15 20 O  50  lOOmeters  May 22, 1975  -5r-10 -15 20 lOOmeters July  18,1974  116  surrounding  the i s l a n d s .  I n most reaches l a r g e l o n g i t u d i n a l "mounds" occur w i t h a wavelength of 3 km \ ) and  (one h a l f the meander w a v e l e n g t h ,  are thus presumably r e l a t e d t o the meander sequence.  E l e v a t i o n d i f f e r e n c e from c r e s t t o t r o u g h of the mounds i s 7 - 8 m.  These major channel f e a t u r e s are l o c a t e d on i n s i d e  bends of midchannel i s l a n d s or at r i f f l e s and p r e s e n t a ramp of s h a l l o w i n g Flood-oriented  channel t o both f l o o d and  ebb  oriented  currents.  sand ..waves are found on the downstream s i d e of  these ramps, s y m m e t r i c a l forms on the s h a l l o w  top, and  ebb-  o r i e n t e d forms on the upstream' s i d e ( F i g . 2.5F) • Repeated soundings over a p e r i o d of months i n d i c a t e d a r e o r g a n i z a t i o n of d i f f e r e n t s c a l e s of sand waves. example, i t appeared t h a t s e v e r a l (10 - 15m)  For  forms merged  t o . c r e a t e a 30 m or 60 m bedform o r , i n v e r s e l y , a l a r g e form would be r e p l a c e d by s m a l l e r ones.  S i m i l a r jumps i n s c a l e  of bedforms have been noted i n o t h e r r i v e r s by  Pretious  and B l e n c h (1951) i n F r a s e r R i v e r , Znamenskaya (1963) i n Polometi  River  (U.S.S.R.) and N e i l l (1969) i n Red  R i v e r ( A l b e r t a , Canada). i s not  The  n a t u r e of the  c l e a r ; however, i n t e r m e d i a t e  t r a n s i e n t i f they e x i s t at a l l .  Deer  transformation  s i z e forms are  A l t h o u g h the e x a c t f l o w  c o n d i t i o n s which might have caused " r e g r o u p i n g "  i n the  P i t t c o u l d not be d e t e r m i n e d , the changes o c c u r r e d w i t h i n the f l o o d - o r i e n t e d forms d u r i n g w i n t e r  flows  on the downstream s i d e of the "mounds" (2 km,  6 km  mainly and and  117  and 12 km:  F i g . 3).  Repeated  depth soundings, over a t i d a l c y c l e p r o v i d e d  e v i d e n c e of bedform m o d i f i c a t i o n .  F l o o d - o r i e n t e d forms  developed e b b - m o d i f i e d c r e s t s ( F i g . . 24F; F i g . 25F) d u r i n g s t r o n g ebb f l o w s (mean v e l o c i t y of 50 - 60 cm/sec).  A  complete change from f l o o d - o r i e n t e d t o e b b - o r i e n t e d form or  from e b b - t o - f l o o d was not  observed..  Interpretation Bedform S c a l i n g Because P i t t R i v e r has b i d i r e c t i o n a l f l o w , the s t a t e of e q u i l i b r i u m of t h e bedforms becomes an i m p o r t a n t f a c t o r . U n i d i r e c t i o n a l r i v e r s commonly e x p e r i e n c e an annual h i g h d i s c h a r g e event ( s p r i n g f l o o d ) l a s t i n g s e v e r a l days or weeks.  Bedforms have been observed t o have a d e l a y e d  response t o the i n c r e a s i n g or d e c r e a s i n g d i s c h a r g e , and t h i s d e l a y has been termed  "lag".  I n t i d a l f l o w s the  d i s c h a r g e f l u c t u a t i o n s have a time s c a l e of h o u r s , a p p a r e n t l y i n s u f f i c i e n t f o r one event t o have a s i g n i f i c a n t e f f e c t on l a r g e bedforms (Ludwick, 1974).  Thus a l a g  phenomenon would be d i f f i c u l t t o measure i n the environment.  tidal  I n the P i t t , geometry of each bedform  r e p r e s e n t s the summation of the m o d i f i c a t i o n s of both flow d i r e c t i o n s .  S i n c e soundings over an l8-month  period  determined t h a t the m a j o r i t y of bedform types ( F i g . 24) remained  c o n s t a n t throughout the y e a r , the forms  are  118  i n t e r p r e t e d t o be i n q u a s i - e q u i l i b r i u m w i t h the b i d i r e c t i o n a l flow.  Thus, bedform  shape m a i n t a i n s the i m p r i n t of the  dominant f l o w c o n d i t i o n s at that' s i t e . (Fig.  24AJC)  channel.  The humpback forms  are found i n f a i r l y p r o t e c t e d areas of the  As they appear t o be a f f e c t e d by o n l y one  current  d i r e c t i o n humpback forms are c o n s i d e r e d t o be an e q u i l i b r i u m form.  I n g e n e r a l , the s i z e and shape of the sand  waves appears t o be r e l a t e d t o channel geometry to depth as was  suggested by  and J a c k s o n (1976B). e  and Whetten and F u l l a m  Allen .  Coleman  and not  (1968),-Yalin  (1969, Brahmaputra  (1967, Columbia  (1974 ) , River)  R i v e r ) b o t h found  no c o r r e l a t i o n between s c a l e of bedforms and d e p t h , i n agreement w i t h the d a t a from the P i t t . Bed c o n f i g u r a t i o n s i n the P i t t  are d i f f i c u l t  to  i n t e r p r e t because of the m u l t i p l i c i t y of forms and the f a c t t h a t they appear t o r e f l e c t the average h y d r a u l i c c o n d i t i o n s . Most r e s e a r c h on sand waves has been done i n s h a l l o w marine and e s t u a r i n e environments.  Characteristics  of f l o w i n these i n f i n i t e l y  distinctly  wide areas are  d i f f e r e n t from those i n c h a n n e l i z e d f l o w where boundary  c o n d i t i o n s are important.  lateral-  A l t h o u g h the  Pitt  River i s t i d a l , i t i s c l e a r l y s i m i l a r to u n i d i r e c t i o n a l r i v e r s i n b o t h channel morphology  and bed  configuration.  S i g n i f i c a n t l y , analysis reveals systematic relationships between the v a r i o u s bedform groups and channel parameters.  119  P l o t t i n g the average h e i g h t and s p a c i n g of sand waves on a l o g a r i t h m i c s c a l e r e s u l t s i n a l i n e a r r e l a t i o n s h i p .  As  these sand waves form a t l e a s t 3 d i s t i n c t g r o u p s , t h i s l i n e a r r e l a t i o n s h i p appears s i g n i f i c a n t and suggests a common mode of g e n e s i s .  A s i m i l a r p l o t of e s t u a r i n e sand-  waves (Boothroyd and Hubbard,  1975; F i g - 3) shows a s c a t t e r  of v a l u e s but does suggest a d i s t i n c t i o n between s u b t i d a l , or deeper water forms, and i n t e r t i d a l , or more s h a l l o w water forms.  The P i t t v a l u e s f a l l w i t h i n the f i e l d o f the  deep water sand waves on Boothroyd and Hubbard's p l o t .  Dunes  from the P i t t p l o t i n the m i d d l e of the m e g a r i p p l e f i e l d on the same diagram and are assumed t o be the same form. T h e o r e t i c a l models f o r the g e n e s i s of dunes and sandwaves are i n a s t a t e of f l u x .  Dune f o r m a t i o n i s thought  by some t o be r e l a t e d t o l a r g e s c a l e t u r b u l e n c e ( V e l i k o n o v and M i k h a i l o v a , 19.50; Znamenskaya, 1963).  The  regular  s p a c i n g of dunes appears t o be a d i r e c t f u n c t i o n of the s c a l e of the l a r g e s t t u r b u l e n t eddies (Znamenskaya, 1963; G r i s h a n i n , 1972; J a c k s o n , 1975). a s s o c i a t e d s l i p f a c e development  Flow s e p a r a t i o n and provide a l t e r n a t i n g areas  of e r o s i o n and d e p o s i t i o n c r i t i c a l t o sediment e n t r a i n m e n t and t r a n s p o r t .  A d e t a i l e d model of dune  g e n e s i s has been  p r e s e n t e d by O o s t e l l o (1974). A l t h o u g h c o n s i d e r a b l e p r o g r e s s has been made i n unders t a n d i n g the mechanics of dune f o r m a t i o n , none of the t h e o -  120  r e t i c a l models proposed  (.Kennedy, 1969; S m i t h , 1970)  predict  the e x i s t e n c e of sand waves. Recent flume s t u d i e s ( P r a t t and S m i t h , 1 9 7 2 ; P r a t t , 1973; C o s t e l l o , 1974) r e v e a l bedforms i n t e r m e d i a t e between r i p p l e s and dunes.  The flume bedforms were c a l l e d  " i n t e r m e d i a t e f l a t t e n e d dunes" by P r a t t and " b a r s " by C o s t e l l o , who  equates them w i t h sand waves.  Costello  adapted k i n e m a t i c wave t h e o r y t o e x p l a i n the g e n e s i s of these forms.  A l t h o u g h s h a l l o w water ( i 3m) t r a n s v e r s e b a r s ( S m i t h ,  1 9 7 1 ; Jackson,1976A) may  be a d e q u a t e l y e x p l a i n e d by  "shock  wave" a g g r a d a t i o n of sediment, s e v e r a l c h a r a c t e r i s t i c s of deep water sand waves i n r i v e r channels a r e not w i t h C o s t e l l o ' s model.  consistent  F o r example, the r e g u l a r geometry  and s p a c i n g of sand wave t r a i n s i n . P i t t and o t h e r r i v e r s ( P r e t i o u s and B l e n c h , 1 9 5 1 ; Whetten and F u l l a m , 1969; Carey and K e l l e r , 1957) c o n f l i c t w i t h C o s t e l l o ' s t h a t sand waves "are randomly  conclusion  g e n e r a t e d and ( t h a t ) t h i s  randomness c a r r i e s over i n t o t h e i r s p a c i n g and h e i g h t " . The o c c u r r e n c e of dunes i n apparent e q u i l i b r i u m w i t h sand waves a t v e l o c i t i e s c o n s i d e r a b l y lower than p r e d i c t e d by C o s t e l l o ' s d e p t h - v e l o c i t y diagram  ( F i g . 26) has been  documented i n a number of s t u d i e s ( P r e t i o u s and B l e n c h , 1951; Coleman, 1969; N e i l l , 1969; S i n g h and Kumar, 1974; and many o t h e r s ) .  J a c k s o n (1976A) has p r e s e n t e d e v i d e n c e  t h a t dunes and sand waves not o n l y o c c u r t o g e t h e r but a l s o m i g r a t e under e s s e n t i a l l y s t e a d y f l o w c o n d i t i o n s .  121  I t i s u n f o r t u n a t e t h a t these l a r g e - s c a l e forms,  characteristic  o f sandy r i v e r s , , e s t u a r i e s , and marine s h o a l s , are so p o o r l y understood.  R e l a t i o n s h i p df/ meander w a v e l e n g t h t o bedform s p a c i n g S y n t h e s i s of q u a n t i t a t i v e d a t a f o r r i v e r s by L e o p o l d and Wolman (1957) r e v e a l e d a s y s t e m a t i c r e l a t i o n between v a r i o u s parameters o f channel geometry and b a n k f u l d i s c h a r g e or e f f e c t i v e c h a n n e l - f o r m i n g d i s c h a r g e , Q . demonstrated  t h a t meander wavelength  to flow i s p r o p o r t i o n a l to Q X.. M eccQ  g  U^)  roughness  or r e s i s t a n c e  a c c o r d i n g t o the r e l a t i o n  ; however, the l o og - l o g<=> pr- l o t of A  considerable scatter.  They  v s .M Q e shows  T h i s s c a t t e r i s not s u r p r i s i n g as bed  and sediment t r a n s p o r t , a l s o i m p o r t a n t a s p e c t s  of r e s i s t a n c e , a r e not i n c l u d e d .  L e o p o l d et_ a l .  (1964)  suggested t h a t channel geometry i s c o n t r o l l e d by continuous d i s s i p a t i o n of energy by the r i v e r a l o n g i t s c o u r s e .  In  a d d i t i o n , they showed t h a t t o t a l r e s i s t a n c e ( t h e Manning n c o e f f i c i e n t ) i s a l s o a s i m p l e f u n c t i o n of Q (n =  aQ ). b  S i n c e form r e s i s t a n c e i s an i m p o r t a n t p a r t o f t o t a l r e s i s t a n c e , i t i s r e a s o n a b l e t o expect channel c o n f i g u r a t i o n (bed roughness)  as w e l l as  t o be s c a l e d t o f l o w .  Bedform s p a c i n g , X^, i s known t o i n c r e a s e w i t h i n c r e a s i n g Q  g  ( u s u a l l y w i t h some time l a g ) through f l o o d  ( P r e t i o u s and B l e n c h , 1951; Carey and K e l l e r , A l l e n , 1976A; 1976B).  events 1957;  Thus, i t i s r e a s o n a b l e t o expect a  122  FIGURE 26.  D e p t h - v e l o c i t y diagram of the t h r e e lower f l o w regime beforms e x t r a p o l a t e d t o depths found i n P i t t River (after Costello,  1974).  123  1  I  l„.l  I J J J  0.5 VELOCITY  1  I 2 (m/sec.)  1  1—1  5  124  particular An jyi  that  from  D  have  available reveal  was  to  obtain  In  made  data  Table  XI...  concerned  neither  A  -A  is  related  (Fig. in  their  correlation scale the  of  a  Qe  tentative forming the  A'  L  It  i t s e l f  is  units)  thus,  the  factors  the  to  two flow.  scale  of  discharge, i.e., bedform  The  to  flow  ation  shown  in  to  and is  the  in of  P i t t ,  energy  scaled  to  input, (A  A  is  that  discharge  in  apparent  for  lag  certainly following  Q  ,  ) .  related  the on  this  or to  when  between  A^  channelA ^  equilibrium  and  with  necessary. and A  further  comparison:  and  a  suggested:  effective  requires  be  following  that  effects  rat  inter-  Based  the  emphasize the  the  appears  rivers  to  but be  meandering  refers  ,  to  27  to  Q  seem  There  interrelationship  the  form  directly  Figure  size  which  few  the  i n  accounting  apparent  response  shown  important  relationship  discharge,  is  by  Qg,  as  problem  including  of  c r i t e r i a  Compilation  English  is  the  wavelength  using  sandy  data  JD  findings  for •  dominant  that  serious  e n e r g y - d i s s i p a t i n g - , mechanisms  preliminary  /A  with  channel  bedform  rivers  response  between  relationship A  27);  both  most  sandy  li  arithmetic.plot  Qg .  comparable  discharge.  or  given  D a t a are m e a g e r ,  the  v  (on  a  rivers  with  the  bankful  from  .for  meandering  ascertaining  with  that  AM  However,  in  equilibrium  to  been  roughness.  d i f f i c u l t y  addition  sandy  are o u t l i n e d  studies bed  in  attempt  and A  ^..j  A  in  examin-  Congaree  125  TABLE XI  PARAMETERS  Q  X  A  e  C r i t e r i a o f parameters used i n bedform-mearider..-scaling. - .. .  CRITERIA  E f f e c t i v e discharge (channel-forming d i s c h a r g e o r b a n k f u l d i s c h a r g e ) not maximum o r mean annual d i s c h a r g e . That f l o w which determines t h e X^.  M  Meander wave l e n g t h ( t w i c e d i s t a n c e between p o o l s ; i n p a r t i c u l a r t h e " h y d r a u l i c " meander, which may n o t n e c e s s a r i l y be t h e same as t h e r i v e r meander.  B  Bedform w a v e l e n g t h , average o r dominant s i z e ; t h a t appears t o be i n e q u i l i b r i u m w i t h Q . Not t h e l a r g e s t wavelength or range o f l e n g t h s present. Xg>5.m, u s u a l l y >10m. L a r g e - s c a l e beforms a r e commonly r e f e r r e d t o as sand waves, t r a n s v e r s e b a r s , l a r g e dunes, o r super r i p p l e s .  a  126  FIGURE 27.  P l o t of " r e s i s t a n c e  factors  x  M  and • x ^ g a i n s t  f l o w f a c t o r Q shows a s y s t e m a t i c r e l a t i o n s h i p i n g  sandy r i v e r s .  T h i s suggests t h a t bedform s p a c i n g  can be determined knowing b a n k f u l l and  meander w a v e l e n g t h .  discharge  127  no page $27  128  R i v e r , South C a r o l i n a (Levey, 1975) the same d i s c h a r g e as Red waves which are t w i c e spacing  approximately  Deer R i v e r ( N e i l l , 1969)  as l a r g e .  i s a l s o doubled.  which has  has  S i g n i f i c a n t l y , the meander  A d d i t i o n a l data: would be  necessary  t o f i r m l y e s t a b l i s h the e m p i r i c a l r e l a t i o n shown i n 27-  sand  Figure  However, the i m p l i c a t i o n I s t h a t meander wavelength i s  not d i r e c t l y s c a l e d t o discharge,' i n agreement w i t h Schumm's (1971) o b s e r v a t i o n constant Q .  that X  can- v a r y t e n f o l d a t  A l t h o u g h the u n d e r l y i n g  v a r i a t i o n s i n s c a l e of meanders and  reasons  for. the  sand wave l e n g t h  are  u n c l e a r , i t i s i n t e r e s t i n g t o note t h a t the Congaree  has  c o a r s e r bed m a t e r i a l (mean g r a i n s i z e , 0.59 s i n u o s i t y (s = 1.75) size,  mm;  .37  than the Red  s = 1.11).  mm)  Deer R i v e r  and  (mean g r a i n  Thus, g r a i n s i z e may  be a  f a c t o r i n p r e d i c t i n g the meander wavelength and spacing  for a given bankful  higher  key  bedform  discharge.  I n c o n c l u s i o n , t h e r e appear t o be s e v e r a l s c a l e s s e d i m e n t - f l o w i n t e r a c t i o n , a l l a f u n c t i o n of energy pation.  On a l o c a l l e v e l , s m a l l - s c a l e t u r b u l e n c e  o r d e r of a few  cm)  and  dissi-  (on  the  grains i n t e r a c t , r e s u l t i n g i n  sediment entrainment and turbulence  of  transportation.  Large-scale  (on the o r d e r of m e t e r s ) , a p p a r e n t l y  related  to s c a l e of f l o w , I n t e r a c t s w i t h the bed, m o l d i n g i t i n t o a v a r i e t y of c o n f i g u r a t i o n s .  F i n a l l y , i n t e r a c t i o n occurs  on a r e g i o n a l s c a l e (on the o r d e r of kilometers)'.-.where  129  s i z e o f major c h a n n e l f e a t u r e s such as meanders, p o i n t  bars,  r i f f l e s , and m i d - c h a n n e l b a r s a r e determined by s c a l e of flow.  Data from P i t t R i v e r c l e a r l y show a r e g u l a r c h a n n e l  p a t t e r n w i t h a l t e r n a t i n g p o o l s , r i f f l e s , and i s l a n d s . f a i r l y regular spacing  o f sand waves (7Q%-with  25 - 30 m), and t h e i n f e r r e d common 'genesis d i s c r e t e sand wave s i z e s imply  The  length of of the three  a governing h y d r a u l i c c o n t r o l .  D i s c h a r g e ( f l o w ) and not d e p t h , w i d t h , o r t o be t h e c o n t r o l l i n g mechanism.  v e l o c i t y alone appears  130  SUMMARY AND CONCLUSIONS  D e s p i t e t h e t i d a l i n f l u e n c e o f P i t t . R i v e r , i t has few estuarine c h a r a c t e r i s t i c s . connection  This i s r e l a t e d to i t s  t o P i t t Lake, which a c t s as a l a r g e r e s e r v o i r ,  thus a l l o w i n g b i d i r e c t i o n a l f l o w through P i t t R i v e r t o occur w i t h no more impedance than t h a t o f a normal r i v e r . mineralogy  o f t h e channel  Fraser R i v e r mineralogy  sands i s e s s e n t i a l l y i d e n t i c a l t o  confirming the F r a s e r as provenance 1  of P i t t R i v e r sediments. system; a l t h o u g h  The  The r i v e r i s a f l o o d dominated  flow duration i s s h o r t e r , f l o o d flows  have s l i g h l y h i g h e r peak v e l o c i t i e s than the ebb. f l o o d f l o w has h i g h e r b a s a l shear s t r e s s , g r e a t e r  Thus, flow  power and a s s o c i a t e d h i g h e r sediment entrainment p o t e n t i a l . Water s l o p e s a r e s t e e p e r on f l o o d i n g t.ide d u r i n g both w i n t e r and  freshet.  The s t e e p e r water s l o p e p r o v i d e s t h e major  d r i v i n g f o r c e t o move sediment ( i n f l o o d d i r e c t i o n ) toward P i t t Lake even though the net d i s c h a r g e opposite d i r e c t i o n .  of water i s i n the  R e f l e c t i n g t h i s d i r e c t i o n of t r a n s p o r t ,  mean g r a i n s i z e o f bed m a t e r i a l decreases from 0.37 mm a t the F r a s e r - P i t t c o n f l u e n c e 137 P i t t Lake.  t o 0.25 mm a t t h e entrance t o  Cs d a t i n g o f l a k e sediment i n d i c a t e s a +  3  t o t a l of 150 - 20 x 1 0  J  tonnes i s a c c u m u l a t i n g  annually  I n the d e l t a a t t h e lower end o f t h e - l a k e . The amplitude,  thalweg bed I s covered w i t h l a r g e - s c a l e , lowand s t r a i g h t - c r e s t e d bedforms h e r e i n termed  131  sand waves. modified  60%  are f l o o d o r i e n t e d , 25%  f l o o d forms, and  15%  symmetric or  a r e ebb o r i e n t e d .  ebb-  The  majority  have s m a l l e r bedforms (dunes) on t h e i r s t o s s s i d e s . d i s t i n c t sizes (height/spacing 25  - 30 m;  3 m/  the r i v e r and and  50  - 60  m)  = 0.8  m/1.0  - 15  m;  1.5  m/  of sand waves were found i n  the l i n e a r r e l a t i o n s h i p between l o g  log spacing  Three  suggests a common genesis'.  of the v a r i o u s sand wave types and  The  height  position  s i z e s appears t o  be  r e l a t e d t o c h a n n e l geometry and not depth of f l o w .  The  l a r g e s t forms, as w e l l as the f l o o d - o r i e n t e d forms, occur on the downstream s i d e of ramps ( s l o p e of - 1°) s m a l l e s t sand waves on r e l a t i v e l y f l a t The  i n t e r a c t i o n of f l o w and  and  the  topography.  channel a l l u v i u m o c c u r s  on a t l e a s t t h r e e d i s t i n c t s c a l e s , a l l r e l a t e d to energy d i s s i p a t i o n by the moving f l u i d . scale turbulence  F i r s t , g r a i n s and  small-  (on the o r d e r of centimeters) i n t e r a c t  r e s u l t i n g i n sediment entrainment and t r a n s p o r t .  The  second l e v e l o f i n t e r a c t i o n of f l o w w i t h sediment produces a v a r i e t y of c o n f i g u r a t i o n s of bed roughness ( r i p p l e s , dunes, and  sand waves) on the s c a l e of meters.  on a r e g i o n a l s c a l e ( o r d e r of k i l o m e t e r s ) channel c o n f i g u r a t i o n of evenly bars.  The  l a r g e r two  Third, interaction creates  the  spaced p o o l s , r i f f l e s  and  s c a l e s of sediment-water i n t e r a c t i o n  appear t o be p r o p o r t i o n a l t o channel f o r m i n g d i s c h a r g e , (peak w i n t e r f l o o d t i d e f l o w s ) .  Q  g  132  In c o n c l u s i o n ,  P i t t R i v e r I s i n a s t a t e of q u a s i -  e q u i l i b r i u m w i t h b i d i r e c t i o n a l and s e a s o n a l changes i n discharge.  The c h a n n e l has not m i g r a t e d s i g n i f i c a n t l y i n  the p a s t s e v e r a l thousand y e a r s .  The  c o n f i g u r a t i o n of  the channel bottom and magnitude o f sediment  flux  to be c o n s i s t e n t  Both these  observations  from one year t o the n e x t .  appears  i n d i c a t e r e l a t i v e s t a b i l i t y and a b a l a n c e of  h y d r a u l i c and f - r i c t i o n a l f o r c e s i n t h i s u n u s u a l d e p o s i t i o n a l system.  133  REFERENCES. CITED  A l l e n , J.R.L., 1976a, C o m p u t a t i o n a l models f o r dune t i m e - l a g : G e n e r a l i d e a s , d i f f i c u l t i e s , and e a r l y r e s u l t s : Sed. Geology, v. 15, no. 1, p. l-53« , 1976B., Time l a g of dunes i n unsteady f l o w : an a n a l y s i s of Nasners d a t a from R. Wesen Germany: Sed. Geology, v. 15, no. 6, p. 309-316 , 1968, The n a t u r e and o r i g i n o f bedform h i e r a r c h i e s : S e d i m e n t o l o g y , v. 10, p. 161-182. Annambhotla, V.S.S., S a y r e , W.W., and L i v e s e y , R.H., 1972, S t a t i s t i c a l p r o p e r t i e s of M i s s o u r i R i v e r bedforms: P r o c . Am. Soc. C i v i l E n g i n e e r s , Waterways, H a r b o r s , and C o a s t a l E n g i n e e r i n g D i v . , p. 489-510. A s h l e y , G.M., 1977, S e d i m e n t a t i o n on a t i d a l l a k e d e l t a , P i t t Lake, B r i t i s h Columbia: P a r t I I ( u n p u b l i s h e d PhD t h e s i s ) , U n i v . of B r i t i s h Columbia, Vancouver, B.C. Ages, A. and Woolard, A., 1976, The t i d e s i n the F r a s e r E s t u a r y : P a c i f i c Marine S c i e n c e Rept. 76-5: Inst. Ocean S c i . P a t r i c i a Bay, V i c t o r i a , B.C. B a g n o l d , R.A., 1963, Mechanics of marine s e d i m e n t a t i o n i n H i l l , M.N. ( e d . ) , The Sea: New Y o r k , John W i l e y & Sons, I n c . , v. 3, p. 507-528. Boggs, S. J r . , and J o n e s , C.A., 1976, S e a s o n a l r e v e r s a l of f l o o d - t i d e dominant sediment t r a n s p o r t i n a s m a l l Oregon e s t u a r y : G e o l . Soc. America B u l l . , v. 87, p. 419-426. B o o t h r o y d , J.C., and Hubbard, D.K., 1975, Genesis of bedforms i n m e s o t i d a l e s t u a r i e s : In C r o n i n , L.E. ( e d . ) , E s t u a r i n e R e s e a r c h : Academic P r e s s , N.Y., v. 2, p. 217B o w d l t c h , N., 1962, American P r a c t i c a l N a v i g a t o r , Hydrograph O f f i c e , pub. no. 9, U.S. Gov. P r i n t i n g O f f i c e , Washington, D.C. B r i g g s , L . I . , and M i d d l e t o n , G.V., 1965, H y d r o m e c h a n i c a l p r i n c i p l e s of sediment s t r u c t u r e f o r m a t i o n : S.E.P.M., Spec. Pub. 12, p. 5 - l 6 .  134  Carey, W.C., and K e l l e r , M.D., 1957, S y s t e m a t i c changes i n t h e beds o f a l l u v i a l r i v e r s : P r o c . Am. Soc. C i v i l E n g i n e e r s , J . H y d r a u l i c s D i v . , v. 83, P r o c . Paper 1331, 24 p. Charnock, H., 1959, T i d a l f r i c t i o n from c u r r e n t s near t h e sea bed: Geophys. J o u r . Roy. A s t r o n . S o c , v. 2,  p. 215-221.  Coleman, J.M., 1969, Brahmaputra R i v e r ; channel p r o c e s s e s and s e d i m e n t a t i o n : Sed:. Geology, v. 3, p. 129-  239.  C o s t e l l o , W.R., 1974, Development o f bed c o n f i g u r a t i o n s i n coarse sands: p. 120, Rept. 74-1, E a r t h and P l a n e t a r y S c i e n c e s Dept., M.I.T., Cambridge, Mass. Department of P u b l i c Works, Vancouver, B r i t i s h Columbia, ( u n p u b l i s h e d core d a t a ; b a t h y m e t r i c c h a r t s o f P i t t system). Dyck, W., F y l e s , J.G., and B l a k e , W. J r . , 1965, G.S.C. Radiocarbon Dates IV: R a d i o c a r b o n , v. 7, p. 24-46. Dyer, K.R., 1970, C u r r e n t v e l o c i t y p r o f i l e s i n a t i d a l c h a n n e l : Geophys. J o u r . Roy. A s t o n . S o c , v. 22,  .p. 153-161.  E i n s t e i n , H.A., 1950, The bed-load f u n c t i o n f o r sediment t r a n s p o r t a t i o n i n open channel f l o w : U.S. Dept. o f A g r i c u l t u r e Tech. B u l l . , no. 1026. , and A b d e l - A a l , F.M., 1972, E i n s t e i n b e d - l o a d f u n c t i o n a t h i g h s e d i m e n t a t i o n r a t e s , Am. S o c C i v i l E n g i n e e r s P r o c (HY1), p. 137-151. , and B a r b a r o s s a , N.L., 1952, R i v e r channel roughness: Am. Soc. C i v i l E n g i n e e r s T r a n s . , v. 117, p. 1121-1146. F i s k , H.N., 1951, M i s s i s s i p p i R i v e r v a l l e y g e o l o g y , r e l a t i o n to r i v e r regime: Am. Soc. C i v i l Engineers P r o c . , v. 77, no. 80, 16 p. F o l k , R.L., 1968, P e t r o l o g y of Sedimentary Texas, H e m p h i l l s , A u s t i n , Texas.  Rocks: U n i v . o f  135  Garg, S.P., A g r a w a l , A.K., and S i n g h , P.R., 1971, Bedload t r a n s p o r t a t i o n i n a l l u v i a l channels: Am. Soc. C i v i l E n g i n e e r s P r o c . ( H Y 5 ) , p. 653— 664.  G a r r i s o n , R.E., L u t e r n a u e r , J . L . , G r i l l , E.V., Macdonald, R.D., and Murray, J.W., 1 9 6 9 , E a r l y d i a g e n e t i c c e m e n t a t i o n of r e c e n t sands, F r a s e r R i v e r D e l t a , B.C.: S e d i m e n t o l o g y , v. 1 2 , p. 27-46. G e o l o g i c a l Survey o f Canada, Vancouver, B r i t i s h ( u n p u b l i s h e d water w e l l r e c o r d s ) .  Columbia-  Gordon, C M . , 1975, Sediment e n t r a i n m e n t and s u s p e n s i o n i n a t u r b u l e n t t i d a l f l o w : Marine Geology, v. l b , m 57 - m 64. G r i s h a n i n , K.V., 1 9 7 2 , S t a b i l i t y o f r i v e r channels and k i n e m a t i c waves: Trans. S t a t e H y d r o l . I n s t . , no. 1 9 0 , 7  P 37-47.  Harms, J.C., S o u t h a r d , J.B., S p e a r i n g , D.R.., and W a l k e r , R.G. , 1 9 7 5 , D e p o s i t i o n a l environments as i n t e r p r e t e d from p r i m a r y s e d i m e n t a r y s t r u c t u r e s and s t r a t i f i c a t i o n sequences: S.E.P.M. S h o r t Course No. 2, T u l s a , Oklahoma. Ippen, A.T., and Harleman, D.R.F., 1 9 6 6 , T i d a l dynamics i n e s t u a r i e s , i n Ippen, A.T. ( e d . ) , E s t u a r y and C o a s t l i n e Hydrodynamics: New Y o r k , M c G r a w - H i l l ,  p. 493-545.  J a c k s o n , R.G., 1975 , V e l o c i t y - b e d f b r m - t e x t u r e p a t t e r n o f meander bends i n t h e l o w e r Wabash R i v e r o f I l l i n o i s and I n d i a n a : G e o l . Soc. America B u l l , v. b6, no. 11, p. 1511-1522. 1976A, Large s c a l e r i p p l e s o f t h e lower Wabash R i v e r : S e d i m e n t o l o g y , v. 23, p. 593-623. , 1976B, S e d i m e n t o l o g i c a l and f l u i d - d y n a m i c . " i m p l i c a t i o n s o f t h e t u r b u l e n t bursting-phenomenon i n g e o p h y s i c a l f l o w s : J . F l u i d ' Mech. , v. 77, tu 531-560. J o h n s t o n , W.A., 1 9 2 2 , The c h a r a c t e r o f t h e s t r a t i f i c a t i o n of the sediments i n t h e r e c e n t d e l t a o f F r a s e r R i v e r , B r i t i s h Columbia: J o u r . G e o l . ' / v . 30, p. 115-129-  136  K a c h e l , N.B., and S t e r n b e r g , R.W., 1971, The t r a n s p o r t of b e d l o a d as r i p p l e s d u r i n g an ebb c u r r e n t : Marine Geology, v. 10, p. 229-244. K e l l e r , E.A., and M e l h o r n , W.N., 1973, Bedforms and f l u v i a l p r o c e s s e s i n a l l u v i a l stream c h a n n e l s : i n Morisawa, M., ( e d . ) , F l u v i a l Geomorphology, pub. i n Geomorpholy S.U.N.Y. Binghamton, Binghamton, N.Y. Kennedy, J . F . , 1969, The f o r m a t i o n o f sediment r i p p l e s , dunes and a n t i d u n e s : i n Annual Review o f F l u i d Mechanics, 1969: p. 147-168. K l e i n , G. de V., 1970, D e p o s i t i o n a l and d i s p e r s a l dynamics of i n t e r t i d a l sand b a r s : J o u r . Sed. P e t r o l o g y , v. 40, p. 1095-1127. de L e l i a v s k y , N., 1894, C u r r e n t s i n streams and t h e f o r m a t i o n of stream beds: S i x t h I n t e r n a t . Cong, on I n t e r n a l . N a v i g a t i o n , The Hague. L e o p o l d , L.B., and Maddock, T. J r . , 1953, H y d r a u l i c geometry of stream channels and some p h y s i o g r a p h i c i m p l i c a t i o n s : U.S.G.S. P r o f . Paper 252, p. 31. , and Wolman, M.G., 1957, R i v e r c h a n n e l p a t t e r n s ; b r a i d e d meandering and s t r a i g h t : U.S.G.S. P r o f . Paper 282-B. , and , I960, R i v e r Meanders: G e o l . Soc. America B u l l . , v. 71, p. 769-794. , . , and M i l l e r , J . P . , 1964, F l u v i a l p r o c e s s e s i n Geomorphology: W.H. Freeman and Co., San F r a n c i s c o , 522 p. Levey, R.A., 1975, C h a r a c t e r i s t i c s o f c o a r s e - g r a i n e d p o i n t b a r s , upper Congaree R i v e r , South C a r o l i n a i n Hayes-, M.,& Karia,-T. ( eds . ), T e r r i g e n o u s C l a s t i c D e p o s i t i o n a l Environments: C o a s t a l Res. D i v . U n i v . S.C., Columbia, S.C. Ludwick, J . C , 1974, T i d a l c u r r e n t s and z i g - z a g sand s h o a l s i n : a wide e s t u a r y e n t r a n c e : G e o l . Soc. America B u l l , v. 85, p. 717-726.  137  M a c K i n t o s h , E.E., and Gardner, E.H., 1966, M i n e r a l o g i c a l and c h e m i c a l s t u d y o f lower F r a s e r R i v e r a l l u v i u m sediments: Canadian J o u r . S o i l S c i . , v. 4 6 , p. 37-46. Matthes, G.H., 1947, M a c r o t u r b u l e n c e i n n a t u r a l stream f l o w : Am. Geophys. Union T r a n s . , v. 28, p. 255-262. Mathewes, R., 1973, A p a l y n o l o g i c a l study o f p o s t g l a c i a l v e g e t a t i o n changes i n t h e U n i v e r s i t y Research F o r e s t , southwestern B r i t i s h Columbia: Canadian J o u r , o f Botany, v. 51, no. 11, p. 2085-2103. Mathews, W.H., F y l e s , J.G., and Nasmith, H.W., 1970, Postg l a c i a l c r u s t a l movements i n southwestern B r i t i s h Columbia and a d j a c e n t Washington S t a t e : Canadian J o u r , of E a r t h S c i . , v. 7, no. 2, p. 690-702. McCave, I.N., 1973, Some b o u n d a r y - l a y e r c h a r a c t e r i s t i c s o f t i d a l c u r r e n t s b e a r i n g sand i n s u s p e n s i o n : Mem. Soc. Roy. S c i . , 6th S e r i e s , L i e g e , v. 6, p. 107-126. Meade, R.H., 1969, Landward t r a n s p o r t o f bottom sediments i n e s t u a r i e s o f the A t l a n t i c c o a s t a l p l a i n : Jour. Sed. P e t r o l o g y , v. 39, p . 222-234. M i l l i m a n , J.D., 1977, S e d i m e n t a t i o n i n t h e F r a s e r R i v e r and i t s e s t u a r y (manuscript i n p r e p a r a t i o n ) . Morton, K.W., 1949, H i s t o r y o f improvements, 1871-1948, F r a s e r R i v e r system p r o v i n c e o f B r i t i s h Columbia: P u b l i c Works o f Canada, mimeo r e p t . , 66 p. Nece, R.E., and S m i t h , J.D., 1970, Boundary shear s t r e s s i n r i v e r s and e s t u a r i e s : P r o c . Am. Soc. C i v i l E n g i n e e r s , v. 96, W.W.2, p. 335-357. N e i l l , C.R., 1969, Bedforms i n t h e lower Red Deer R i v e r , A l b e r t a : J o u r . H y d r o l . , v. 7, p. 58-85O l i v i e r , J.P., H i c k e n , G.K., O r r , C. J r . , 1970/71, Automatic p a r t i c l e s i z e a n a l y s i s i n s u b s i e v e range: Pow. Techn o l o g y , v. 4, p. 257-263. Peacock, M.A., 1935, F i o r d - Land o f B r i t i s h Columbia: G e o l . Soc. America B u l l . , v. 4 6 , p. 633-696. P e t e r s , N., 1973, The P l e i s t o c e n e geology and the geot e c h n i c a l a s p e c t s o f t h e proposed P i t t R i v e r B r i d g e , P o r t C o q u i t l a m , B.C.: (B.A.Sc. t h e s i s ) , U.B.C., Vancouver, B r i t i s h Columbia.  138  Pharo, C.H., 1972, Sediments S t r a i t of G e o r g i a , B.C.: Vancouver, B.C., 2 90 p.  of the c e n t r a l and s o u t h e r n (Ph.D. d i s s e r t a t i o n ) U.B.C.,  Postma, H., 1967, Sediment t r a n s p o r t and s e d i m e n t a t i o n i n the e s t u a r i n e environment: In L a u f f , G.H. ( e d . ) , E s t u a r i e s : Am.  A s s o c . Adv.  S c i . , pub.  83, p.  158-179-  P r a t t , C.J., 1 9 7 3 j Bagnold approach and bed-form development: P r o c . Am. Soc. C i v i l E n g i n e e r s , J . H y d r a u l . D i v . , v.  99,  p.  121-137-  P r a t t , C.J.,:-.and S m i t h , K.V.H., 1972, R i p p l e and dune phases i n a n a r r o w l y graded sand: P r o c . Am. Soc. C i v i l E n g i n e e r s , J . H y d r a u l . D i v . , v. 98, p. 859-874. P r e t i o u s , E.S., and B l e n c h , T., 1951, F i n a l r e p o r t on s p e c i a l o b s e r v a t i o n s of bed movement I n lower F r a s e r R i v e r at Badner Reach d u r i n g 1950 freshet:. N.R.C. (Canada), Vancouver, B r i t i s h Columbia, 12 p. P r i t c h a r d , D.W., 1967, E s t u a r i n e c i r c u l a t i o n p a t t e r n s : Am. Soc. C i v i l E n g i n e e r s P r o c , v. 8 l , no. 717, 11 PSchumm, S.A., i 9 6 0 , The shape of a l l u v i a l channels i n r e l a t i o n to sediment t y p e s : U.S.G.S. P r o f . Paper 352  B.  , 1963, S i n u o s i t y of a l l u v i a l r i v e r s of the Great P l a i n s : G e o l . Soc. America B u l l . , v. 74,  p.  1089-1100.  Simons, D.B., R i c h a r d s o n , E.V., and N o r d i n , C . F . J r . , 1965, Sedimentary s t r u c t u r e s g e n e r a t e d by f l o w i n a l l u v i a l c h a n n e l s : i n P r i m a r y sedimentary s t r u c t u r e s and t h e i r h y d r o d y n a m i c i n t e r p r e t a t i o n : Spec. Pub. 12, p. 34-52. S i n g h , I.B., and Kumav, S., 1974, Mega-.and g i a n t r i p p l e s i n the Ganga, Yamuna, and Son R i v e r s , U t t a r P r a d e s h , I n d i a : Sed. Geology, v. .12, p. 53-66. S m i t h , J.D., 1970, S t a b i l i t y of a sand bed s u b j e c t e d t o a shear f l o w of low froude no.: J o u r . Geophys. Res., v.  75,  no.  30,  p.  5928-5939.  S m i t h , N.D., 1971, T r a n s v e r s e bars and b r a i d i n g i n the l o w e r P l a t t e R i v e r , Nebraska: G e o l . Soc. America B u l l . , v. 82, p.  3407-3420.  139  S t e r n b e r g , R.W., 1966, Boundary l a y e r o b s e r v a t i o n s i n a t i d a l c u r r e n t : J . G e o p h y s i c a l R e s e a r c h , v. 71, p. 2175 -2178. , 1968, F r i c t i o n f a c t o r s i n t i d a l s c h a n n e l s w i t h d i f f e r i n g bed r o u g h n e s s : M a r i n e Geology, v. 6, no. 3, p. 243-260. Sundborg, A., 1956, The R i v e r Kar:alven, a study o f f l u v i a l p r o c e s s e s : Geog. A n n a l e r , v. 38, p. 127-315. Task F o r c e on Bedforms.; i n A l l u v i a l C h a n n e l s , 1966, Nomenclature f o r bedforms i n a l l u v i a l c h a n n e l s : P r o c . Am. Soc. C i v i l E n g i n e e r s , J . H y d r a u l i c s D i v . 92, (HY3), p. 51-64. T o f f a l e t i , F.B., 1969, D e f i n i t i v e computations of sand d i s c h a r g e i n r i v e r s : Am. Soc. C i v i l E n g i n e e r s P r o c . (HY1), p. 225-248. Tywoniuk, N., and S t i c h l i n g , W., ( 1 9 7 3 ) S e d i m e n t a t i o n phenomenon o f the F r a s e r R i v e r : I n t e r . Assoc. Hy. Res., I n t e r . Symposium on R i v e r M e c h a n i c s , Bankok, T h a i l a n d , A69-1-13. s  V e l i k d n o v , M.A., and M i k h a i l o v a , N.A., 1950, The e f f e c t of l a r g e - s c a l e t u r b u l e n c e on p u l s a t i o n s o f suspended sediment c o n c e n t r a t i o n : Izm, Akad., Na'vk. SSSR. S e r . Geogr. G e o f i z . , 4, p. 421-424. V i s h e r , G.S., and Howard, J.D., 1974, Dynamic r e l a t i o n s h i p between h y d r a u l i c s and s e d i m e n t a t i o n i n the Altahama E s t u a r y : J o u r . Sedimentary P e t . , v. 44, p. 502-521. .Water Survey o f Canada, Dept. of E n v i r o n m e n t , Vancouver, ( u n p u b l i s h e d stage r e c o r d i n g d a t a ) .  B.C.,  Whetten, J.T., and F u l l a m , T . J . , 1967 Columbia R i v e r bedforms: I n t . A s s o c . H y d r a u l . Res.-, 12th Cong. P r o c , F o r t C o l l i n s , p. 107-114. 3  W r i g h t , L.D., Coleman, J.M., and Thorn, B.G., 1972, R i v e r d e l t a morphology: Wave c l i m a t e and the r o l e o f the subaqueous.:; p r o f i l e : S c i e n c e , v. 176, p. 282-284. , , and , 1973, P r o c e s s e s of c h a n n e l development i n a h i g h - t i d e - r a n g e environment: Cambridge G u l f - O r d R i v e r D e l t a Western A u s t r a l i a : J o u r . Geology, v. 8 l , p. 15-41.  140  Y a l i n , M.S., 1974, On the f o r m a t i o n of dunes and meanders: I n t . Assoc. o f H y d r a u l i c R e s e a r c h , c 13,p.-l-8. Znamenskaya, N.S., 1963, E x p e r i m e n t a l study of the dune movement o f sediment: Trans. S t a t e H y d r o l o g i c I n s t . , no. 108, p. 89-114. , , The a n a l y s e s and e s t i m a t i o n o f energy l o s s : Proc. I n t . Assoc. H y d r a u l i c R e s e a r c h , 12th Cong. P r o c , P o r t C o l l i n s .  141  PART TWO:  INTRODUCTION  P i t t R i v e r (North) - P i t t Lake. - P i t t R i v e r (South) system i s s i t u a t e d i n a g l a c i a l l y Coast Mountains o f B r i t i s h  scoured v a l l e y w i t h i n t h e  Columbia a p p r o x i m a t e l y 30 km  i n l a n d from t h e p o r t o f Vancouver  (Pig.. 1 ) .  The v a l l e y  of the P i t t , 70 km i n l e n g t h opens a b r u p t l y i n t o F r a s e r lowland.  P i t t R i v e r (North) d r a i n s 816 km  including  s e v e r a l mountain g l a c i e r s and p r o v i d e s a mean d i s c h a r g e o f 3  —1  80 m .sec  to the lake.  A prominant s i l l ,  5 km from n o r t h -  e r n end of l a k e , a l l o w s o n l y c l a y - s i z e d sediment t o be c a r r i e d t o t h e lower end o f t h e l a k e . P i t t R i v e r (South) and P i t t Lake are t i d a l , b e i n g connected t o t h e ocean ( S t r a i t River.  o f G e o r g i a ) by lower F r a s e r  A l t h o u g h water l e v e l s i n t h e P i t t system respond  to the t i d e s , s a l t water seldom extends c l o s e r than 10 km downstream o f t h e F r a s e r - P i t t c o n f l u e n c e . ( f l o o d t i d e ) I n the S t r a i t  R i s i n g water  r e t a r d s flow of the Fraser  and r a i s e s i t s e l e v a t i o n p r o g r e s s i v e l y eastward u n t i l t h e water l e v e l a t t h e F r a s e r - P i t t c o n f l u e n c e i s h i g h e r than i n P i t t River (South).  Flow i n the P i t t then r e v e r s e s and  water d i v e r t e d from t h e F r a s e r f l o w s northward up P i t t R i v e r (South) i n t o P i t t Lake. (ebb t i d e ) i n the S t r a i t ,  As t h e water e l e v a t i o n f a l l s  Fraser River flow i s a c c e l e r a t e d .  142  FIGURE 1.  L o c a t i o n map  of P i t t t i d a l  system.  144  FIGURE 2.  A e r i a l photo showing the main p h y s i o g r a p h i c f e a t u r e s of the lower P i t t system. bedrock h i g h i s o u t l i n e d  w i t h dashed  I t s e x t e n t i s based on i s o l a t e d  The lines.  bedrock  knobs t h a t p r o t r u d e through the f l o o d  plain.  146  The  s u r f a c e e l e v a t i o n i s lowered, p r o g r e s s i v e l y eastward  u n t i l the l e v e l at the F r a s e r - P i t t c o n f l u e n c e t h a n t h a t of P i t t R i v e r (South).  i s less  Flow then r e v e r s e s  the P i t t system and d r a i n s toward the sea.  The  in  elevation  and magnitude of water l e v e l o s c i l l a t i o n s i n the  Pitt  system are a f u n c t i o n of the complex i n t e r a c t i o n of basin drainage,  Pitt  F r a s e r R i v e r discharge^ and the t i d a l  prism.  Upstream movement of sediment i n P i t t R i v e r from F r a s e r R i v e r toward P i t t Lake i s i n d i c a t e d by:  (1) a p r e -  dominance of f l o o d - o r i e n t e d bedforms i n the r i v e r and,  channel;  (2) a decrease i n g r a i n s i z e from the F r a s e r t o the  lake.  In a d d i t i o n , v e l o c i t y and s t a g e measurements  demonstrate t h a t f l o o d ' f l o w s have h i g h e r peak v e l o c i t i e s and  t h a t f l o o d f l o w s p e r s i s t f o r a s h o r t e r time p e r i o d than  ebb  flows. A l a r g e t i d a l d e l t a w i t h a surface area  of  2  12 km , has accumulated at the d i s t a l l a k e ( F i g . 2).  ( d r a i n i n g ) end  of  the  Because of the u n u s u a l p o s i t i o n o f the d e l t a  t h e r e has been s p e c u l a t i o n on whether i t i s a c t i v e l y growing or a r e l i c t f e a t u r e from e a r l i e r p o s t - g l a c i a l time. p u r p o s e s ' o f the p r e s e n t  study  The  are t w o f o l d : f i r s t , to determine  i f the d e l t a i s a c t i v e and t o e s t i m a t e  the present  sedimen-  t a t i o n r a t e ; and  second, t o examine the h y d r a u l i c s of  l a k e channel and  to evaluate  the  the e f f e c t of b i d i r e c t i o n a l  f l o w on sediment d i s p e r s a l and d e l t a morphology.  147  GEOLOGIC HISTORY  The  P i t t t i d a l d e l t a appears t o r e p r e s e n t a s i t u a t i o n  i n which t h e p a s t i s t h e key t o t h e p r e s e n t .  An u n d e r s t a n d -  i n g o f t h e h i s t o r i c a l development o f t h e d e l t a p r o v i d e s an i m p o r t a n t i n s i g h t i n t o t h e n a t u r e o f the c u r r e n t l y  acting  processes. D u r i n g the P l e i s t o c e n e  Epoch r e p e a t e d  glaciations  a i d e d by p r e - and i n t e r - g l a c i a l stream a c t i v i t y have eroded deeply t h e v a l l e y s a l o n g a n o r t h w e s t and n o r t h e a s t j o i n t pattern 1935).  occuringin  t h e Coast Mountains  F o l l o w i n g the most r e c e n t d e g l a c i a t i o n  oriented  (Peacock, (15,000 -  11,000 B.P.) t h e m e l t i n g i c e l e f t numerous e l o n g a t e l a k e s i n i n t e r i o r v a l l e y s and a c o a s t l i n e dominated by f i o r d s . However, i n e a r l y p o s t g l a c i a l time t h e e x a c t l o c a t i o n o f the.shore f l u c t u a t e d  as a r e s u l t o f a complex i n t e r a c t i o n  of e u s t a t i c sea l e v e l changes and c r u s t a l rebound (Mathews et a l . , 1 9 7 0 ) .  D u r i n g the p e r i o d  of i n s t a b i l i t y ,  ocean  waters f l o o d e d p a s t the mouth o f P i t t V a l l e y , as i s e v i d e n c e d by marine s h e l l s (12,690 - 190 B.P.; 1-5959, Mathewes, 1973) c o l l e c t e d a t an e l e v a t i o n valley.  o f 107 m on t h e e a s t s i d e of P i t t  I s o s t a t i c u p l i f t o f the F r a s e r l o w l a n d began  around 13,000 B.P. and was e s s e n t i a l l y complete by 8,000 B.P.  (Mathews e_t al_. , 1970).  Fraser River,  supplied  with  abundant g l a c i a l sediment, r a p i d l y c o n s t r u c t e d a d e l t a  148  westward and by 8,290 - 140 B.P. 1965)  (G. S. C. 2 2.9, Dyck et al. ,  " P i t t F i o r d " was i s o l a t e d from the sea a t i t s s o u t h e r n  end by t h i s d e l t a . maintained estuary.  I t i s l i k e l y t h a t a short t i d a l  channel  a c o n n e c t i o n between ..the. f i o r d and the F r a s e r T i d a l c u r r e n t s f l o w i n g through t h i s channel must  have c a r r i e d sediment from F r a s e r R i v e r i n t o the  fiord,  b u i l d i n g a f l o o d t i d a l d e l t a w h i c h c o n t i n u e d t o grow n o r t h ward as F r a s e r d e l t a p r o g r e s s e d B.P.  (1-7047; Mathews, 1972  westward.  By 4,645 - 95  p e r s . comm.) the l e a d i n g edge  of P i t t d e l t a s t o o d a t l e a s t 20 km n o r t h -of F r a s e r R i v e r near the p r e s e n t o u t l e t o f P i t t Lake ( F i g . 1 ) .  The dated  m a t e r i a l was a l o g found i n d e l t a t o p s e t s 10 m n o r t h o f the channel and b u r i e d under 60 cm o f sediment.  At some  time d u r i n g t h i s p e r i o d " P i t t F i o r d " was f l u s h e d o f s a l i n e water and became P i t t Lake; a t p r e s e n t i s found anywhere i n l a k e .  time no s a l t water  As the s e a - l a n d r e l a t i o n s h i p  has been much the same as a t p r e s e n t  s i n c e 5,500 B.P.  (Mathews e_t a l . , 1970), i t i s p o s s i b l e t h a t P i t t Lake has been i n e x i s t e n c e f o r approximately.6000 y e a r s . The boundary between P i t t R i v e r f l o o d p l a i n and P i t t Lake t i d a l d e l t a has been a t r a n s i t i o n a l one throughout , t h e i r development. , At p r e s e n t , d i k e s and d i t c h e s have c r e a t e d two e n t i t i e s , b u t the d i v i s i o n i s a r t i f i c i a l . - H i s t o r i c a l l y , water f l o w and s e d i m e n t a t i o n have been a continuum from r i v e r t o l a k e .  149  On t h e b a s i s o f a e r i a l photo, i n t e r p r e t a t i o n 1 : 1 5 , 8 4 0 ; . 1 : 3 1 , 6 8 0 ) . of the P i t t . River  (scale  flood p l a i n , i t  appears t h a t t h e r i v e r has been c o n s i s t e n t l y on i t s west side  ( F i g . 2 ) . I t i s s u s p e c t e d t h a t a bedrock  ridge  connects the i s o l a t e d h i l l s on t h e f l o o d p l a i n t o t h e r i d g e b o r d e r i n g P i t t Lake's southwest shore and has p r e v e n t e d t h e r i v e r from f l o w i n g  d i r e c t l y i n t o the lake.  T h i s r i d g e may have s e p a r a t e d lobes o f i c e d i s g o r g i n g Widgeon and P i t t V a l l e y s  d u r i n g the P l e i s t o c e n e .  from  The  bedrock a l s o d e f l e c t s both f l o o d and ebb f l o w s a t A d d i n g t o n P o i n t , a sharp meander bend. The  t r i a n g u l a r area d i r e c t l y south of the lake  ( F i g . 2)  i s abandoned d e l t a s u r f a c e and l i e s at. a p p r o x i m a t e l y t h e same e l e v a t i o n as d e l t a t o p s e t s i n t h e l a k e .  However, the  a r e a i s s l i g h t l y lower than the s u r r o u n d i n g f l o o d p l a i n and  d i k i n g i n t h e 1920's on the e a s t , s o u t h , and west b o r d e r s  and  a dike' p l a c e d on t h e n o r t h s i d e  sealed  (1959) have permanently  t h e l o c a t i o n from f u r t h e r c l a s t i c  sedimentation.  D u r i n g t h e l a s t 4,700 years t h e d e l t a f r o n t has advanced from t h e p r e s e n t l a k e o u t l e t a p p r o x i m a t e l y 6 km n o r t h i n t o P i t t Lake a t t h e average r a t e o f 1.28 m/yr. However, w i t h t h e change from p a r a g l a c i a l t o n o n g l a c i a l conditions 1973)-  sediment s u p p l y would decrease (Ryder and Church,  I n a d d i t i o n , containment o f F r a s e r R i v e r w i t h i n the  l a s t c e n t u r y may a l s o have been i m p o r t a n t i n a l t e r i n g sediment supply t o t h e P i t t system.  Thus t h i s p r o g r a d a t i o n  150  r a t e most l i k e l y has decreased  exponentially,  s t a r t i n g at  meters p e r year and d e c r e a s i n g to: t h e p r o b a b l e p r e s e n t of c e n t i m e t e r s per y e a r .  A map. produced by R i c h a r d s  rate  (i860)  shows the' d e l t a w i t h t h e same g e n e r a l c o n f i g u r a t i o n as p r e s e n t , but a c c u r a t e d e l t a growth, r a t e c a l c u l a t i o n s f o r the l a s t 118 years c o u l d not be made from i t .  151  GEOMORPHOLOGY.  Delta The  present  d e l t a s u r f a c e covers  12 '.sq. km. (5.8 km  l o n g and 2.2. km wide) and c o n t a i n s a s i n g l e d i s t r i b u t a r y channel w i t h a r i g h t - a n g l e bend ( F i g . 3 ) . ,Minor e r o s i o n i n the form o f a s c a l l o p e d channel margin occurs near t h e bend ( F i g . 4 A ) ; however a study 19^0  indicates l i t t l e  o f a e r i a l photos d a t i n g back t o  change i n 35 y e a r s . . The channel i s  i n c i s e d i n t h e r e a c h between t h e l a k e e n t r a n c e and t h e bend, w i t h n e a r l y v e r t i c a l channel banks i n some p l a c e s  (Fig. 5).  However, t h e channel banks g r a d u a l l y change, from steep t o g e n t l e s l o p e s toward t h e end o f t h e delta. --(Fig-... .••§*) " i n conjunction with a gradual d e l t a surface i s highest -4 s l o p e s down (6.0 x 10 break.  s h a l l o w i n g o f t h e channel.  The  at i t s s o u t h e r n margin and 0  ) toward t h e t o p s e t / f o r e s e t  slope  D u r i n g low water i n P i t t l a k e t h e southernmost  k i l o m e t e r o f d e l t a i s exposed and minor s o u t h e r l y d r a i n i n g channels i n a d e n d r i t i c p a t t e r n a r e eroded i n t o t h e t o p s e t s . ( F i g . 3; F i g . 4A) by water d r a i n i n g from t h e d e l t a s u r f a c e i n t o t h e channel d u r i n g ebb f l o w .  The d r a i n a g e channels a r e  2 - 3 m wide and 1 m deep a t t h e i r w i d e s t  cross s e c t i o n .  Levees b o r d e r b o t h s i d e s o f t h e major d e l t a c h a n n e l ( F i g . 4B) and a few minor f l o o d e x i t grooves are eroded d i a g o n a l l y through the levees  (about 1 km from end) marking  152  FIGURE 3.  Geomorphology of P i t t t i d a l d e l t a w i t h l a k e bathymetry. i n t e r v a l i s 10 m.  Depth contour  A topographic  "high"  on t h e l a k e bottom connects i s l a n d s and the bedrock r i d g e b o r d e r i n g west s i d e of l a k e .  the south-  This "high" i s  c o i n c i d e n t w i t h t h e 70 m depth contour and 6<f> mean g r a i n s i z e contour ( F i g . 11) and i s used as an a r b i t r a r y d i v i s i o n between d e l t a f o r e s e t s and bottomsets - l a k e bottom. (A-K)  Cross s e c t i o n  l o c a t i o n s of Figure 5 are i l l u s t r a t e d . 137 Cores used f o r Cs d a t i n g shown by *.  153  154  FIGURE 4. A.Oblique a e r i a l photo l o o k i n g east a t r i g h t - a n g l e bend. channels  Note ebb d r a i n a g e  and s c a l l o p e d margin of t o p s e t s .  Wind-generated waves cover water s u r f a c e . B. West s i d e of d e l t a t o p s e t s .  Levees can  be seen b o r d e r i n g t o p s e t margin i n the foreground.  Boat wake (30 m) f o r s c a l e .  C. Vlew l o o k i n g e a s t a c r o s s end of d e l t a . Channel i n c e n t e r (bordered by l e v e e s ) l e a d s t o a p o i n t e d fan-shaped d e p o s i t on d e l t a f o r e s e t s j u s t l e f t of the photograph .  155  157  c r e v a s s e s p l a y s where sediment is. c a r r i e d up out o f the channel onto the .delta s u r f ace -».(Fig. 3 ) . A l o n g i t u d i n a l p r o f i l e a l o n g the thalweg  ( P i g . 6)  shows the l a k e entrance and r i g h t - a n g l e bend t o be extremely deep . \30 m) whereas the r e a c h between the deeps i s more s h a l l o w (10 m) and thus p r o b a b l y is. an a r e a of (temporary)  deposition.  The s e c t i o n of. channel from bend  t o d e l t a f r o n t i s a ramp which s h a l l o w s from 30 m t o 4 m i n a g e n t l e s l o p e of 0.3°  t o 0.05°.  The thalweg appears  t o have one p a r t i a l meander which i s s i m i l a r i n l e n g t h (A = M  600 m) to. meanders of P i t t R i v e r (South)  ( A s h l e y , 1977).  The channel bottom p r o j e c t s as a wedge-shaped tongue ( f l a n k e d by l e v e e s ) i n t o the l a k e ( P i g . 3; F i g - 4C)  pointing  n o r t h e a s t i n the d i r e c t i o n of d e l t a - f r o n t p r o g r a d a t i o n ( e a s t s i d e of i s l a n d ) . The d e l t a t o p s e t s u r f a c e i s f l a t and d e v o i d o f any major t o p o g r a p h i c f e a t u r e s w i t h the e x c e p t i o n of the d r a i n a g e channels and the l e v e e s .  ebb  O c c a s i o n a l scour h o l e s  (0.5 m deep) on the s u r f a c e r e v e a l a h o r i z o n t a l l y s t r a t i f i e d , h i g h l y c o h e s i v e sediment.  The o c c u r r e n c e  n e a r l y v e r t i c a l banks b o r d e r i n g the d e l t a channel this conclusion.  of  supports  The b i n d i n g agent i s thought t o be o r g a n i c  i n n a t u r e as l i t t l e  c l a y i s p r e s e n t i n the  sediment.  I s o e t e s e c h i n o s p o r a dur. ( q u i l l w o r t ) , i s u b i q u i t o u s on the delta surface.  Roots of t h i s p l a n t are t h i n , w h i t e ,  158  FIGURE 5.  Cross s e c t i o n s drawn from depth sounding p r o f i l e s ( 8 X v e r t i c a l exaggeration). l o c a t i o n s shown on F i g u r e 3.  Profile  A general  s h a l l o w i n g of the c h a n n e l and change of channel bank s l o p e s from almost v e r t i c a l t o g e n t l y d i p p i n g o c c u r s a l o n g the d e l t a from o u t l e t t o the end.  160  FIGURE 6.  A.  P r o f i l e o f thalweg of d e l t a c h a n n e l . Deep areas occur a t o u t l e t and r i g h t angle bend.  Large sand waves (L.S.W.)  are found i n areas o f s h a l l o w i n g c h a n n e l . S m a l l sand waves a r e found t o w i t h i n 3 km o f the end of the d e l t a .  The  l o c a t i o n o f depth soundings taken i n B. i s i n d i c a t e d , b y arrow. B.  Depth sounding of s m a l l sand waves i n d e l t a channel:  note f l o o d  orientation.  S p a c i n g i s 8 m; h e i g h t i s 30 cm.  A.  -  0  L A R G E SAND WAVES / SMALL I I i SAND WAVES  L A R G E SAND WAVES SMALL SAND WAVES  UJ  Q 30 LAKE OUTLET  DE LTA FORESET  RIGHT-ANGLE BEND I kilometer  l O U  !  —  -  162  t h r e a d l i k e f i l a m e n t s which do not. decompose r e a d i l y : they were found i n a l l s u r f a c e samples. t h i s macrophyte sediment.  I t i s "interpreted that  i s an i m p o r t a n t agent i n b i n d i n g the  Other Macrophytes  (Scirpus.. v a l i d u s V a h l . ,  M y r i o p h y l l u m h i p p u r o l d e s N u t t . , and Potamogeton p o p u l a t e the f l a t s . micro-organisms.  Other p o s s i b i l i t i e s • f o r . c e m e n t a t i o n are  B l u e - g r e e n a l g a e were, found to be r a r e  whereas diatoms a r e r e l a t i v e l y by the diatoms may the  sp.) a l s o  abundant.  Mucus produced  a c t as a temporary b i n d i n g agent f o r  d e l t a sediments.  Unio clams, spaced 1 m a p a r t , occur  on almost the e n t i r e s u r f a c e and appear t o ' f e e d at the sediment/water:  i n t e r f a c e , causing l i t t l e noticeable b i o -  t u r b a t i o n i n the u n d e r l y i n g sediments. The f o r e s e t s l o p e - ( F i g . 3) was examined by depth sounding.  The c o n t a c t between t o p s e t s and f o r e s e t s i s a  sharp break i n s l o p e and I s o u t l i n e d i n the f i g u r e .  The  f o r e s e t / b o t t o m s e t c o n t a c t i s a g r a d a t i o n a l change i n s l o p e from 4° - 1° t o an e s s e n t i a l l y h o r i z o n t a l s u r f a c e and i s p o s i t i o n e d a r b i t r a r i l y at the bedrock r i d g e ( F i g . 3 ) . T h i s r i d g e l i n e approximates the 70 m depth c o n t o u r and i s a l s o c o i n c i d e n t w i t h the mean g r a i n s i z e contour o f  -60.  D e l t a f o r e s e t s range i n s l o p e from 1° - 2° near the e a s t shore t o 4° - 6 ° at the end of the main channel and the " s i d e - s e t s " b o r d e r i n g the w e s t e r n embayment have a s l o p e of 10° - 20°.  I n g e n e r a l , the e n t i r e f o r e s e t - b o t t o m s e t  s l o p e i s g e n t l e r to. the e a s t s i d e of Goose I s l a n d than t o  163  the west and the g e n e r a l shape o f the d e l t a i n d i c a t e s t h a t s e d i m e n t a t i o n has o c c u r r e d c o n s i s t e n t l y on the e a s t s i d e o f the l a k e .  The  f o r e s e t s are g e n e r a l l y smooth w i t h a  g e n t l e concave upward p r o f i l e . ( F i g . 3) was  Only one slump f e a t u r e  noted on the e n t i r e fo.re.set apron, i n d i c a t i n g  a r e l a t i v e l y stable slope.  The  slump has- a r e l i e f of about  3 meters and o c c u r s j u s t west of the" f a n ( F i g . 4C) at the end o f the d i s t r i b u t a r y c h a n n e l . the l a k e (Mathews, u n p u b l i s h e d  created  S e i s m i c d a t a from  d a t a , 1976.) i n d i c a t e s t h a t  a t o p o g r a p h i c h i g h ( F i g . 3) e x i s t s between the bedrock r i d g e ( b o r d e r i n g the southwest s i d e of l a k e ) and Goose I s l a n d e s s e n t i a l l y s p l i t t i n g the' lower end of the l a k e i n t o two  basins.  Based on i t s geomorphology, the P i t t d e l t a can  best  be d e s c r i b e d as a s i n g l e t a l o n of a b i r d f o o t d e l t a which has been welded t o the e a s t e r n l a k e shore.  A depositional  model f o r the b i r d f o o t d e l t a i n c l u d e s p r o g r a d a t i o n of the d i s t r i b u t a r y channel I960).  i n t o r e l a t i v e l y deep water ( S c r u t o n ,  Sediment i s conveyed a l o n g the d e l t a channel  and  i s brought out p e r i o d i c a l l y and d e p o s i t e d on the d e l t a 'surface as l e v e e s .  Along each s i d e of the major  channel  are i n t e r d i s t r i b u t a r y troughs which s l o w l y f i l l with' f i n e g r a i n e d sediment.  As the d i s t r i b u t a r y channel  extends  i n t o s t a n d i n g w a t e r , i t broadens, becomes more s h a l l o w and g r a d u a l l y l o o s e s i t s i d e n t i t y (JReineck and S i n g h , 1975).  164  The P i t t appears t o f i t t h i s g e n e r a l model. dominated by f l u v i a l p r o c e s s e s ;  I t i s clearly  The. d e p o s i t i o n a l  environment  i s one o f very low energy and l i t t l e r e w o r k i n g o f the fluvlatile  sediments o c c u r s by waves or t i d a l  currents.  Bed c o n f i g u r a t i o n ' s i n t h e channel I n c o n j u n c t i o n w i t h t h e study o f P i t t d e l t a geomorphology an examination'was channel bottom.  made o f t h e bed c o n f i g u r a t i o n o f t h e d e l t a  Soundings were made over an lb-month  under b o t h ebb and f l o o d f l o w s .  period,  U s i n g depth sounding r e c o r d s  (Raytheon,, model #DE-119), s i d e - s c a n sonar r e c o r d s ( K l e i n , model #2000), and v i s u a l o b s e r v a t i o n by d i v e r s , two bedform types were found; r i p p l e s / s p a c i n g r a t i o = 1:10; s p a c i n g and sand waves ( s p a c i n g r a t i o = 1:30, s p a c i n g are  60cm)  5m). R i p p l e s  u b i q u i t o u s on t h e sandy s u b s t r a t e o f t h e channel bottom,  as w e l l as on t h e sandy d e l t a t o p s e t s .  S m a l l sand waves  (10 - 15 m s p a c i n g and 0.15 - 0.3m h i g h ) a r e found i n t h e a r e a between t h e o u t l e t and the r i g h t - a n g l e bend and on a p o r t i o n of t h e ramp n o r t h o f t h i s bend ( F i g . 6 ) . L a r g e r sand waves (25 m s p a c i n g and 0.7 m h i g h ) o c c u r o n l y i n reaches o f r a p i d l y s h a l l o w i n g depth ( F i g . 6A). A l l bedforms were found t o be f l o o d - o r i e n t e d , w h i c h i s i n t e r p r e t e d as r e f l e c t i n g t h e dominant f l o w c o n d i t i o n s and d i r e c t i o n of net sediment t r a n s p o r t (see A s h l e y , 1977).  165  HYDRAULICS  Tides • The main d r i v i n g f o r c e b e h i n d t h e hydrodynamics o f P i t t Lake i s the t i d e .  The mixed, m a i n l y d i u r n a l t i d e i n  the S t r a i t o f G e o r g i a produces one o r two t i d a l c y c l e s a day I n t h e l a k e , depending upon the n a t u r e o f the t i d a l curve.  Water l e v e l ( s t a g e ) d a t a used ( F i g . 7) a r e  u n p u b l i s h e d r e c o r d s o f the Water Survey o f Canada.  Minor  f e a t u r e s such as s m a l l stage f l u c t u a t i o n s and q u i c k s h o r t changes i n f l o w d i r e c t i o n are damped between the ocean and l a k e and are n o t expressed  i n lake stage.  When f l o w  c o n d i t i o n s p e r s i s t f o r s e v e r a l hours (symmetric t i d e s i n the S t r a i t ) ,  diurnal  d i u r n a l l a k e stage curves a r e  produced ( F i g . 7A). On the o t h e r hand, h i g h l y asymmetric t i d a l c u r v e s , such as shown i n F i g u r e 7B, produce o n l y one complete c y c l e a day.  During w i n t e r , a delay"of 5 hr :  15 min. occurs between h i g h t i d e i n t h e S t r a i t and h i g h t i d e i n t h e l a k e , w h i l e a 6 h r . 20 min. d e l a y occurs f o r passage of low t i d e from S t r a i t t o l a k e .  D u r i n g the f r e s h e t when  the c o n t r i b u t i o n o f P i t t b a s i n drainage i s h i g h , i t takes 15 h r 30 min f o r e i t h e r h i g h o r low t i d e t o pass from t h e S t r a i t t o the l a k e .  Lake s t a g e ' l e v e l f l u c t u a t i o n s v a r i e d  from 0.27 m t o 1.16' m w i t h i n a t i d a l c y c l e , d u r i n g the  166  FIGURE 7-  Time stage curves f o r S t r a i t o f G e o r g i a F r a s e r R i v e r - - - -, P i t t R i v e r  , and  P i t t Lake A. S e m i - d i u r n a l t i d e i n t h e S t r a i t  creates  s e m i - d i u r n a l f l u c t u a t i o n s i n P i t t Lake. B. The e f f e c t of mixed, m a i n l y  diurnal tide  i n the S t r a i t i s damp.ed by t h e "time .it-< reaches the l a k e c a u s i n g o n l y one f l u c t u a t i o n i n lake l e v e l .  167  168  year  (1973) o f stage d a t a examined i n d e t a i l .  Table I g i v e s  maximum, minimum, and'mean ranges f o r f o u r r e p r e s e n t a t i v e months. In a d d i t i o n t o t i d a l l y Induced o s c i l l a t i o n s i n water l e v e l i n P i t t Lake, t h e a b s o l u t e l e v e l o f these  ^oscillations  changes s e a s o n a l l y w i t h a maximum d u r i n g f r e s h e t r u n o f f (May  - J u l y ) and a minimum d u r i n g w i n t e r (Dec. - F e b . ) .  Discharge  (Q) c o n t r i b u t e d t o P i t t system from P i t t  (North) and s m a l l streams s u r r o u n d i n g  River  t h e l a k e v a r i e s from  3 s e c . ( f r e s h e t ) t o 30 m / 3 s e c . ( w i n t e r ) (Water Survey 210 m / of Canada, 1966).  The r e s u l t i s t h a t d u r i n g t h e f r e s h e t  more t h a n 50% o f water moving through t h e P i t t Lake P i t t R i v e r (South) system i s c o n t r i b u t e d by b a s i n  drainage  c o n t r a s t i n g w i t h only 5% d u r i n g t h e w i n t e r . The magnitude o f d i s c h a r g e f l o w i n g through P i t t  River  (South) ( A s h l e y , 1977) and i n t o P i t t Lake i s d i r e c t l y r e l a t e d t o the magnitude o f t h e t i d a l range i n t h e S t r a i t , i f F r a s e r and P i t t b a s i n d i s c h a r g e a r e c o n s t a n t . discharges  With h i g h  i n t h e F r a s e r and P i t t d u r i n g the f r e s h e t t h e  t i d a l e f f e c t i n P i t t Lake i s s m a l l ; however, when  discharges  of F r a s e r and P i t t systems a r e low ( w i n t e r ) , t h e t i d a l e f f e c t i s great.  Peak f l o w s e s t i m a t e d  f o r both seasons  and both f l o w d i r e c t i o n s a r e compared i n Table I I . were made u s i n g l a k e a r e a , l a k e stage c u r v e s ,  Estimates  velocity  measurements a t l a k e o u t l e t , and c r o s s c s e c t i o n a l a r e a - o f lake o u t l e t .  Thus, t h e r e a r e not o n l y pronounced  seasonal  169  TABLE I  Range o f l a k e stage l e v e l s  MEAN  MAXIMUM  MONTH March  ( 1 9 7 3 )  MINIMUM  1.04  . 7 3  .67  June  .67  .45  .27  Sept.  .82  .64  .42  Dec.  .  TABLE I I  SEASON  -l  -i £  i n meters.  1.04  E s t i m a t e d peak d i s c h a r g e s f o r P i t t  , . . FLOOD m3 s ec- 1 J  3  EBB m s e c J  WINTER  2400  2080  FRESHET  1800  950  -1  system.  170  /  d i f f e r e n c e s , w i t h w i n t e r h a v i n g the h i g h e s t (2400 m .sec  discharge  ) but a l s o during, e i t h e r season the l a r g e s t  f l o o d d i s c h a r g e i s g r e a t e r t h a n the l a r g e s t ebb The  discharge.  g r e a t e r d i f f e r e n c e ' i n discharge, between f l o o d and ebb  f r e s h e t (Table I I ) compared to. f l o o d and. -ebb d i s c h a r g e w i n t e r , i s due  of  of  t o the i n c r e a s e i n volume of water moving  through the F r a s e r - P i t t systems ( d u r i n g the f r e s h e t ) .  Water  added by streams d r a i n i n g i n t o P i t t Lake r a i s e s the e l e v a t i o n of the l a k e s u r f a c e as much as- 3 m.  The  e l e v a t i o n of F r a s e r  River, i s a l s o i n c r e a s e d and the net e f f e c t i s a decrease i n the water s l o p e of the upstream f l o w ( f l o o d ) i n t o the The  r a i s e d l a k e e l e v a t i o n a l s o accentuates  the  time-stage  asymmetry of the t i d a l c y c l e and thus changes the of time devoted t o f l o o d ( l e s s e r ) and ebb The  ebb  Pitt.  proportion  flow ( g r e a t e r ) .  c u r r e n t flows f o r a l o n g e r p e r i o d of time (65% -  75% of t o t a l ) a t a lower d i s c h a r g e which produces a  lower  ebb water s l o p e compared t o the w i n t e r . Flow p a t t e r n over the d e l t a i s s i g n i f i c a n t l y on f l o o d and ebb. mainly 8A).  different  .Flow e n t e r i n g the l a k e from the r i v e r i s  c o n f i n e d w i t h i n the deep d i s t r i b u t a r y channel ( F i g . The  f l o w i s then d e f l e c t e d northward at the east s i d e  o f l a k e c a u s i n g c o n s i d e r a b l e scour  (35 m deep).  Continuing  along the d e l t a , f l o o d c u r r e n t s g e n e r a l l y remain c o n f i n e d i n the channel spread  to w i t h i n 1.5  - 1 km from the end where they  out a c r o s s the t o p s e t s .  Some "over bank" f l o w  occurs a l o n g the l e n g t h of the d i s t r i b u t a r y as  evidenced  171  by the l e v e e s . (Fig. 8 ) • B;  Ebb f l o w has a much more d i f f u s e p a t t e r n  D u r i n g the b e g i n n i n g o f the. ebb, water d r a i n s  o f f the t o p s e t s i n t o the c h a n n e l t a k i n g the s h o r t e s t , most direct route.  At lower ebb s t a g e , f l o w ..becomes more  c h a n n e l i z e d and i s c o n f i n e d i n the. d i s t r i b u t a r y .  V e l o c i t y i n channel A study of v e l o c i t y was u n d e r t a k e n at the l a k e o u t l e t and i n the d e l t a c h a n n e l to.determine' the f l o w c o n d i t i o n s t h a t would l i k e l y e n t r a i n and t r a n s p o r t channel bed m a t e r i a l . Two d i f f e r e n t methods of c u r r e n t measurement were used: (1) f o u r days of c u r r e n t p r o f i l e s , t a k e n a t 30-minute  intervals  over a f l o o d or ebb c y c l e , (2) r e a d i n g s t a k e n at • 7•5-minute i n t e r v a l s , w i t h a t e t h e r e d meter, one meter from bottom (19 d a y s ) . C u r r e n t p r o f i l e s (Hydro P r o d u c t s , I n c . Savonius R o t o r w i t h a d i r e c t readout f o r c u r r e n t speed (model #460A) and d i r e c t i o n (model #465A) ) were made 'from a boat anchored at the l a k e o u t l e t .  Each p r o f i l e i n c l u d e d measurements at  7 depths (d) (10 cm from bottom, one meter from bottom, 0.2d,  0.4d  (mean)', 0. 6d, 0.8d, and s u r f a c e ) .  ments (both magnitude  The measure-  and d i r e c t i o n ) at each depth were  based on r e a d i n g s averaged over a two-minute p e r i o d , thus each p r o f i l e spans 15 t o 20 m i n u t e s .  A d i g i t a l counter  i n t e g r a t i n g e l e c t r i c a l p u l s e s over a 10-second p e r i o d  was  172  FIGURE 8.  T i d a l flow p a t t e r n . A. F l o o d : f l o w i s c h a n n e l i z e d u n t i l 2 km from end where i t spreads over i n overbank f l o w .  topsets  Flow p a t t e r n i n t o  l a k e appears t o be t h a t of a s i m p l e j e t o r i e n t e d t o the n o r t h e a s t , i . e ., e a s t of Goose I s l a n d . B. Ebb:  f l o w d r a i n s o f f t o p s e t s by s h o r t e s t  r o u t e t o d e l t a channel then a l o n g to o u t l e t .  channel  173  174  used t o average v e l o c i t y f l u c t u a t i o n s , caused by m i c r o and m a c r o t u r b u l e n c e (Matthes, .1947).  Mean v e l o c i t y and  v e l o c i t y a t 10 cm from bottom for. one complete f l o o d (June 24, 1975) a r e shown i n F i g . 9-  cycle  Peak mean v e l o c i t y  (.47 cm/sec) o c c u r s e a r l y i n the f l o o d c y c l e .  In contrast,  ebb examples r e v e a l e d t h a t peak v e l o c i t y , o c c u r s l a t e i n t h e cycle.  This time-velocity  asymmetry was. found t o be  c h a r a c t e r i s t i c o f v e l o c i t y curves f r o m ' P i t t  River  as w e l l  ( A s h l e y , 1977). C r i t i c a l shear s t r e s s n e c e s s a r y f o r sediment  entrain-  ment a t the l a k e o u t l e t and i n the channel near the o u t l e t was determined from S h i e l d s '  diagram as m o d i f i e d from  B r i g g s and M i d d l e t o n (1965).  A f r i c t i o n v e l o c i t y , V , of K  1.47 cm/sec i s n e c e s s a r y t o move sediment 0.25 mm) a t t h e o u t l e t w h i l e V to move m a t e r i a l  %  (mean g r a i n s i z e =  = 1.54 cm/sec i s r e q u i r e d  (mean g r a i n s i z e = 0.32 mm) i n the  southern d e l t a channel. The l o g v e l o c i t y law ( P r a n d t l - V o n Karman e q u a t i o n ) (Inman, 196 3) was used on the l a k e p r o f i l e d a t a (June, J u l y , and August) t o c a l c u l a t e t h e b a s a l  shear s t r e s s .  Results  showed t h a t a c r i t i c a l shear ( f r i c t i o n ) v e l o c i t y 1.47 cm/sec was seldom reached i n t h e o u t l e t d u r i n g t h i s time  period.  Time s e r i e s measurements were t a k e n t o determine I f t h i s were t r u e for, o t h e r seasons and f o r t h e l a k e channel as w e l l .  175  The  c o n t i n u o u s l y r e c o r d e d .velocity, measurements were  made by a p o s i t i v e l y buoyant meter ( G e n e r a l O c e a n i c s , I n c . F i l m R e c o r d i n g c u r r e n t meter (model #20.10). ) anchored t o the channel bottom but f r e e t o sway with, changing c u r r e n t s . The meter was l o c a t e d i n t h e m i d d l e o f the d e l t a a p p r o x i m a t e l y 1 km from t h e l a k e o u t l e t  channel  and r e c o r d e d on f i l m  i n s t a n t a n e o u s r e a d i n g s o f magnitude and d i r e c t i o n o f f l o w (one meter o f f bottom) a t 7-5-minute i n t e r v a l s . was  The meter  p l a c e d i n channel on s e v e r a l o c c a s i o n s , but o n l y one  r e c o r d ( A p r i l 15 - May 4, 1976) was r e a d a b l e .  Portions  of t h i s r e c o r d a r e shown i n F i g u r e 10; Table I I I summarizes the p r o p o r t i o n o f t o t a l time devoted t o ebb (60%) and f l o o d flow (40%).  I t i s i m p o r t a n t t o note t h a t a l t h o u g h t o t a l  time o f ebb f l o w i s l o n g e r than f l o o d , v e l o c i t i e s a r e s i g n i f i c a n t l y lower.  F o r i n s t a n c e , about 1% o f ebb time  f l o w i s g r e a t e r than 40 cm/sec i n c o n t r a s t t o 13% o f time under f l o o d f l o w . A n a l y s i s o f t h e 19 days o f d a t a found t h a t peak v e l o c i t y and average v e l o c i t y were h i g h e r on f l o o d t h a n on ebb (Table I V ) . velocity flood.  flows  I t i s i n f e r r e d from t h i s t h a t mean  (0.4d measured from bed) i s a l s o h i g h e r on the I n b o t h r i v e r and l a k e d a t a the mean v e l o c i t y o f  a p r o f i l e was found t o e q u a l o r exceed (see Appendix).  the v e l o c i t y at 1 m  The use o f t h e l o g v e l o c i t y law on P i t t  R i v e r v e l o c i t y p r o f i l e d a t a ( A s h l e y , 1977) demonstrated  176  FIGURE 9-  P r o f i l e d a t a from l a k e o u t l e t , June 2 4 , Mean v e l o c i t y o f 47 cm/sec.  (0.4  1975.  depth) reaches maximum  T i m e - v e l o c i t y i s asymmetric,  i . e . , peak i s reached e a r l y , then decreases gradually.  178  FIGURE 10.  Computer p l o t of " c o n t i n u o u s l y " r e c o r d e d v e l o c i t y d a t a from southern d e l t a channel. Instantaneous  Each X r e p r e s e n t s an v e l o c i t y (magnitude and  d i r e c t i o n ) measurement intervals. from bottom.  Measurements are one meter Note f l o o d v e l o c i t i e s  are h i g h e r than ebb. 1976;  at 7 ^ - m i n u t e  A. A p r i l  B. A p r i l 26-27, 1976.  16-18, Data of  e n t i r e r e c o r d i s summarized i n Tables I I I and IV.  A  179  TABLE I I I  Summary o f v e l o c i t y measurements ( a t one meter above bed) i n l a k e channel A p r i l 15 - May 4, 1976: the p r o p o r t i o n o f time devoted t o f l o o d and ebb at 10 c m / s e c ' i n t e r v a l s o f v e l o c i t y . EBB  VELOCITY (cm/sec) V e l . 80  Data P t s .  Hrs . '  0  Cum Hrs .  % Total  Data P t s .  0  0  0  3  FLOOD Cum Hrs . Hrs .  % Total  0.75  0.75  0.08 0.47  70 V e l . 60 V e l . 50  0  0  0  0  14  3.50  4.25  0  0  0  0  29  7-25  11.50  1.  2  0,50  o :so  0.05  166  41.50  53.00  5.90  V e l . 40  45  11.25  11.75  1.30  244  61.00  114 .00  12.75  30  602  150.50  72.75 186.75  20.80  764  183  45.75  232.50  26.00  V e l . 10  555  273  68.25  300.75  33.50  Vel. 0  175  43.75  18.10 39.50 55.00 60.00  291  V e l . 20  162.25 353.25 492.00 535.75  230  57.5  358.25  40. 00  535.75  535.75  60.00  358.25  358.25  40.00  Vel.  Vel.  TOTAL  2143  •  191.00 138.75  1433  30  TABLE IV  Date 'April,  1976) 15 16 17 18  Summary o f v e l o c i t y measurements (one meter o f f bottom i n l a k e channel) ( A p r i l 15 - 30, 1976); v e l o c i t y i n cm/sec.  Max. flood vel.  Ave. flood vel.  55.5  35.0  41.0  27.0 3 39 1.0 5 40. 0 . 13.0  71.0 42. 0 67-0 22.0 68.0  40.5  68.0  10.0 40. 0  20  15-0  10.0  21  61.0  42.5  22  61.0  38.0  19  16.0  Max. ebb vel.  30.5  40.0  27.0 38.0 27.0 41. 0 19.0 4 25 3. .0 0 42.0  28.5 36.0 31.0 33.0  Ave. ebb vel.  20 30 20 31 18 30 17 28 16 28 22 .28  23 23  Date (April,  1976) 23 24  25 2.6 27 28 29 30  Max. flood vel.  Ave. flood vel.  15.0 45.0 52.0  10 .0  51.0 34.0 47.5 51.0 42 .5 59.0 38.0 54.0 33.0 55.0 30.0 59.0  32.0 21.0 31-0 30.0 29.5 33-0 26. 0 32.0 23.5 35-0 22.0 37-0  24.0  38.O  37-5  14.0  : Max. ebb vel.  Ave . ebb vel.  31.0 32.0 32.0  22.0 22.0  28.0  38.0 29.0 38.0 29.0 38.5 26.0  38.0 27.5 39.0 26.5  36.5  26.5  22.5  2 7 . On  22.5 28.5 20.5 29.5 20. 0 .29.0 19-0 29- 0 20. 0 28.0  182  t h a t mean v e l o c i t y o f 32 cm/sec was necessary c r i t i c a l velocity  ( V = 1.77) a t base of f l o w . %  to obtain a I t follows  t h a t a, s l i g h t l y lower mean v e l o c i t y .(•approximately would be n e c e s s a r y  to create the V  sediment i n the d e l t a channel.  30 cm/sec)  = 1.54 needed t o e n t r a i n  %  When mean v e l o c i t y i s a t  30 cm/sec, v e l o c i t y a t one meter from bottom i s between 25 and 28 cm/sec.  I t can be seen i n Table IV t h a t more f l o o d  time (20.8%) i s above 30 cm/sec compared t o t o t a l ebb time (18.1%).  However, t h e p r o p o r t i o n changes d r a s t i c a l l y a t  v e l o c i t y o f 20 cm/sec; f l o o d , 26%, ebb.' 39-5%.  Thus, i t appears  t h a t t h e r e i s more time devoted t o ebb. f l o w above c r i t i c a l - v e l o c i t y t h a n t o f l o o d , even t h o u g h are o f g r e a t e r magnitude.  I n a s i m i l a r f i n d i n g i n the  r i v e r d a t a , i t was concluded study  t h a t as most' aspects  i n d i c a t e ' a. f l o o d - d o m i n a t e d 1  are more i m p o r t a n t  the f l o o d v e l o c i t i e s  system t h e h i g h e r  of,the velocities  i n i n f l u e n c i n g the d i r e c t i o n o f net  t r a n s p o r t than t o t a l time above c r i t i c a l  velocity.  I n c o n c l u s i o n , a.'.complex i n t e r a c t i o n o f the t i d a l p r i s m and v a r y i n g d i s c h a r g e o f F r a s e r R i v e r and P i t t r e s u l t s i n a flood-dominated  system.  Highest  peak  basin  discharges  and r e l a t e d b a s a l shear s t r e s s e s occur..during f l o o d ( w i n t e r ) flows.  Thus, net sediment t r a n s p o r t would occur d u r i n g the  winter.  The g r e a t e r e f f i c i e n c y f o r e n t r a i n i n g and moving  sediment.under f l o o d f l o w s u p p o r t s  the c o n c l u s i o n s based  ^ on the morphology o f the d e l t a , t h a t i t i s p r e s e n t l y a c t i v e and being c o n s t r u c t e d ' under f l o o d c o n d i t i o n s by F r a s e r d e r i v e d sediments.  183  SEDIMENTS  Stratigraphy•of  d e l t a and l a k e bottom  Sediments o f P i t t t i d a l d e l t a can .be. grouped i n t o t h r e e g e n e r a l e n v i r o n m e n t s : t o p s e t , f o r e s e t , and bottoms e t - l a k e bottom.  The t o p s e t beds c o n s i s t o f f i n e sand  to coarse s i l t and a r e h o r i z o n t a l l y l a m i n a t e d . foresets  The  c o n s i s t o f s i l t and c l a y l a y e r s , some o f which  are r h y t h m i c a l l y  l a y e r e d , whereas the b o t t o m s e t - l a k e bottom  beds a r e l a m i n a t e d c l a y s .  Of t h e 160 samples i n t h e  study a r e a , 60 were grab samples on d e l t a t o p s e t s and i n the d e l t a channel and 100 were cores (3.5 cm i n d i a m e t e r ) t a k e n from d e l t a f o r e s e t s (Figure  11).  and b o t t o m s e t - l a k e  bottom  Cores ranged' from..24 cm t o 53 cm i n l e n g t h .  Topset beds c o n s i s t o f a monotonous s e c t i o n o f l a m i n a t e d s i l t s and sands. graded beds were noted.  On the o t h e r hand, t h e f o r e s e t  beds were found t o c o n t a i n The  No c r o s s beds and o n l y a few  a v a r i e t y of bedding  structures.  n a t u r e of' t h e l a y e r i n g ranges from w e l l developed  r h y t h m i c s i l t and c l a y l a y e r s t o s t r i n g y and d i s c o n t i n u o u s clay laminations ( F i g . 12). I n the rhythmites, s i l t are t h i c k e r t h a n c l a y , b u t t h e a b s o l u t e t h i c k n e s s i n d i v i d u a l layers varies with distance l a y e r s range i n t h i c k n e s s  layers  of the  from t h e d e l t a .  Silt  from 1.3 cm a t t h e d i s t r i b u t a r y  184  FIGURE 11.  Mean g r a i n s i z e d i s t r i b u t i o n map. i s 0.5 0.  Grain s i z e  C.I.  distribution  r e f l e c t s the f l o o d flow p a t t e r n ( F i g . 8A).  The p a t t e r n i s a good example  of s e d i m e n t a t i o n by d i f f u s i o n from a simple j e t with l i t t l e ,  i f any, r e w o r k i n g  by waves or t i d a l c u r r e n t s .  185  186  FIGURE 12.  Diagramatlc  sketch of stratigraphy-  showing change from r e g u l a r r h y t h m i t e s through a few t r a n s i t i o n a l  couplets  I n t o t h i n l y bedded sediments  (30  laminations). A. 3-5 cm diam. c o r e . Top o f s t r a t i g r a p h i c s e c t i o n showing a sharp decrease i n s e d i m e n t a t i o n r a t e from ( B ) .  B. 3«5 cm. diam. c o r e .  Rhythmites a r e  i n t e r p r e t e d as varves d e p o s i t e d by the f o l l o w i n g mechanism: s i l t  deposited  d u r i n g w i n t e r when t i d a l e f f e c t i s g r e a t and c l a y d u r i n g the f r e s h e t when t i d a l e f f e c t i s minimal.  Note l a r g e v e s i c l e s  formed d u r i n g escape o f gas (methane?).  187  188  mouth t o 0.016  cm, 2 km n o r t h o f the' mouth.  Clay layers  seldom are t h i c k e r than 0.016: cm near the d e l t a and to an average t h i c k n e s s of 0.008 cm i n the l a k e sediments beyond Goose I s l a n d . evidence t h a t gas  thin  bottom  A l l . cores showed  (methane?) had escaped a f t e r s a m p l i n g .  Houbolt and Jonker (1968) found gas " p o c k e t s " were u b i q u i t o u s i n Lake Geneva sediments.  Cores, cut open  soon a f t e r s a m p l i n g , have c o n t i n u o u s l a y e r i n g w i t h s c a t t e r e d gas v e s i c l e s ( F i g . 12).  Cores which were  s t o r e d a l l o w i n g gas t o escape s l o w l y , have s t r e a k y , uneven and d i s c o n t i n u o u s l a y e r s w i t h no  vesicles.  The b e s t - d e v e l o p e d r h y t h m i c l a y e r i n g was cores t o the west of the main d e l t a l o b e . of the l a y e r s was (or  :  found i n  The t h i c k n e s s  found t o decrease a b r u p t l y a t about 10  cm  a p p r o x i m a t e l y 30 l a m i n a t i o n s ) from the top of the  sediment  s e c t i o n ( F i g . 12).  C o u p l e t s below the 10  cm  l e v e l are about 1 cm t h i c k whereas those above are only 0.2  cm t h i c k .  The decrease (80%) i n t h i c k n e s s occurs  g r a d u a l l y over 4 - 6  c o u p l e t s and suggests a sharp  decrease i n sediment r e a c h i n g the s i t e .  T h i s can be  i n t e r p r e t e d as a s h i f t i n l o c u s of s e d i m e n t a t i o n from the west to e a s t s i d e o f Goose I s l a n d .  Another  interpretation  i s t h a t s e d i m e n t a t i o n has decreased over a l l the l a k e , but w i t h o u t r h y t h m i c l a y e r i n g the change i s not e v i d e n t . S i n c e the' c o n f i g u r a t i o n of the d e l t a has been c o n s t a n t  189  s i n c e a t l e a s t i860 ( R i c h a r d s , i860),, the l a t t e r is  favored. The  Johnston was  explanation  rhythmic  (1922)  l a y e r i n g was  p r e v i o u s l y noted by  i n h i s work on P i t t Lake.  His i n t e r p r e t a t i o n  t h a t the a l t e r n a t i n g l a m i n a t i o n s were t i d a l i n o r i g i n .  I t appears more l i k e l y t h a t they are a n n u a l l a y e r s ( v a r v e s ) . The  coarse  l a y e r ( s i l t and  f i n e sand) i s brought i n as  bed-  l o a d and suspended l o a d d u r i n g w i n t e r (November - March) when discharges  of F r a s e r and P i t t systems.are low and thus  e f f e c t i s great.  The  f i n e l a y e r (mainly c l a y ) Is  d u r i n g the r e s t of the year. s u p p l i e d t o the l a k e m a i n l y J u l y ) and  continues  tidal  deposited  Presumably c l a y (94)  is  d u r i n g s p r i n g r u n - o f f (May  -  t o s e t t l e d u r i n g summer and f a l l .  volume of sediment r e p r e s e n t e d  The  i n an average c o u p l e t f o r  the e n t i r e f o r e s e t - b o t t o m s e t - l a k e  bottom area shown  F i g u r e 3 was  - 20  c a l c u l a t e d t o be 150.  x 101  In  tonnes.  C a l c u l a t i o n s were based on average t h i c k n e s s of l a y e r s near tops; o f cores and t h e i r approximate a r e a l d i s t r i b u t i o n . 137 Cesium d a t i n g An unexpected " s p i n - o f f " of atmospheric n u c l e a r (1952  testing  - 1972)  i s the subsequent use of r a d i o a c t i v e i s o t o p e s 137 r e l e a s e d d u r i n g the t e s t s (such as Cs) f o r d a t i n g of r e c e n t sediments ( P e n n i n g t o n , 137 Ritchie, ing  1975).  1973;  Robblns and E d g l n g t o n ,  Cesium was  and d i s s e m i n a t e d  1975;  c r e a t e d d u r i n g the n u c l e a r  throughout the w o r l d by a i r c u r r e n t s  test-  190  and r a i n f a l l .  I n f r e s h w a t e r , Cs. i s p r e f e r e n t i a l l y  adsorbed,  or " f i x e d " , onto the micaceous ( I l l i t e ) . component of the sediment ( F r a n c i s and B r i n k l e y , 1976), presumably t r a p p e d along g r a i n ( p h y l l o s i l i c a t e minerals)' boundaries.  Once i n  I37  contact,  Cs i s f i r m l y a t t a c h e d s o . t h a t f u r t h e r movement  by n a t u r a l c h e m i c a l p r o c e s s e s Tamura, 1964).  i s l i m i t e d .'(Davis, 1963;  137 Thus, the v a r i a t i o n i n Cs  content  p r e s e n t i n the s t r a t i g r a p h i c column can be compared w i t h the 137 local  Cs a c t i v i t y r e c o r d ( u s u a l l y measured i n r a i n f a l l or  i n m i l k ) to determine In  s e d i m e n t a t i o n -rate.  o r d e r to determine  the p r e s e n t annual  r a t e on the P i t t t i d a l d e l t a , 11 l a r g e diameter  sedimentation (6.3  cm)  cores were t a k e n on the d e l t a t o p s e t s and f o r e s e t s ( F i g . 31 Fig. was  13).  A  K u l l e n b e r g g r a v i t y c o r e r ( w e i g h i n g 130  dropped from an anchored r a f t .  kg)  Core l e n g t h s ranged from  15 cm t o 85 cm and t h r e e cores w i t h u n d i s t u r b e d bedding chosen f o r d a t i n g (samples # 3, # 8, and # 11).  were  Mean g r a i n  s i z e v a r i a t i o n of the cores i s l i m i t e d , r a n g i n g from coarse 137 s i l t t o v e r y f i n e sand (50 - 70y). As Cs i s a s s o c i a t e d w i t h micas or i l l i t e s and as these m i n e r a l s most o f t e n occur 137 m  the f i n e r f r a c t i o n s , t o t a l  expected t o vary w i t h g r a i n s i z e .  Cs content would be Thus the homogeneous  g r a i n s i z e of the P i t t samples made them p a r t i c u l a r l y 137 a p p r o p r i a t e f o r d a t i n g by the Cs d a t i n g t e c h n i q u e .  191  Method Cores were s p l i t h o r i z o n t a l l y a l o n g bedding p l a n e s i n t o 1.5 cm t h i c k s l i c e s .  The samples were t h e n d r i e d ,  d i s a g g r e g a t e d by hand and p l a c e d , i n p l a s t i c v i a l s .  Each  137 sample was a n a l y z e d f o r  Cs u s i n g a s t a n d a r d d e t e c t o r  f o r gamma r a y s p e c t r o s c o p y ( G e ( L i ) d e t e c t o r ) c o u p l e d t o 1024-channel p u l s e h e i g h t a n a l y z e r system ( F i g . 1 4 ) .  The  gamma r a y energy o f each i s o t o p e i s unique and t h e d e t e c t o r c o n v e r t s gamma r a d i a t i o n t o a p u l s e p r o p o r t i o n a l , t o t h e energy, o f r a y .  T h i s method a s s u r e s c l e a r s e p a r a t i o n o f t h e  661 KeV energy o f  1 3 7  C s from those o f .  2 0 8  T i ( 5 8 3 KeV) and  214  B i (609'KeV).  Each sample was counted f o r 800 m i n u t e s ,  r e s u l t i n g i n a d e t e c t i o n t h r e s h o l d o f 0.1 p i c o c u r i e s p e r gram o f sediment. Results An e x c e p t i o n a l l y good r e c o r d ( F i g . 15) was found i n core # 3 c o l l e c t e d o f f the mouth o f t h e d i s t r i b u t a r y  channel  i n 50 m o f water ( F i g . 3 ) . Average r a t e o f sediment a c c u m u l a t i o n a t t h i s s i t e from 1954 t o 1972 was 1.8 cm/yr (no c o r r e c t i o n was made f o r c o m p a c t i o n ) .  The f l u c t u a t i o n  137 in  Cs c o n t e n t i s c o n s i s t e n t w i t h t h a t measured i n Vancouver  ( m i l k ) ( G . G r i f f i t h s , p e r s . comm. ). Lake s t r a t i g r a p h y Lake Windermere, England ( P e n n i n g t o n , 1973) and f a l l o u t  from  192  FIGURE 13.  Photo of core # 3 ( F i g . 3) which 137 dated by  J  Cs.  was  Note t h a t a l t h o u g h the  s t r a t i f i c a t i o n i s not r h y t h m i c , i t i s undisturbed.  Core diameter i s 6.3  cm.  193  194  FIGURE 14.  Diagram of the system  i n v o l v i n g gamma r a y 137  s p e c t r o s c o p y used m  Cs d a t i n g .  Samples  were a n a l y z e d w i t h a G e ( L i ) d e t e c t o r coupled t o 1024  channels of a p u l s e h e i g h t  system.  HIGH VOLTAGE POWER SUPPLY  SPECTROSCOPY AMPLIFIER  1024 CHANNEL ADC  COMPUTER Ge(Li) DETECTOR  PREAMPLIFIER  196  FIGURE 15.  P l o t of  J ,  C s d a t i n g r e s u l t s from core # 3  from P i t t Lake d e l t a f o r e s e t s .  Cesium  c o n c e n t r a t i o n p e r u n i t mass p l o t t e d  against  time (depth) r e s u l t s i n a graph s i m i l a r t o 137  the e s t i m a t e d annual f l u x o f  Cs t o  s u r f a c e of Lake M i c h i g a n (Robbins and E d g i n g t o n , 1975) shown i n t h e i n s e t .  197  -  co h-  £  60  50  <  on  1963  PITT L A K E SEDIMENTS  LAKE MICHIGAN  hGQ Q:  < 40 co co < h-  30+ 1959  1956  n U  I I 1 I I  IO CD CD  I 1 | I I ||  TIME ( Y E A R S )  O  CD CD  j, to to  CD  198  r e c o r d e d i n T a l l a h a t c h i e R i v e r watershed showed a s i m i l a r r e c o r d .  (Ritchie,  A l l show a minor peak i n  1973) 1959  137 and a major one i n 1963  w i t h the  o f f t o low l e v e l s t h e r e a f t e r .  Cs c o n c e n t r a t i o n d r o p p i n g  Core § 11  showed h i g h l e v e l s  137 of  Cs e q u a l t o core § 3 on the d e l t a f r o n t , but i n a  compressed r e c o r d i n d i c a t i n g a slow s e d i m e n t a t i o n r a t e o f 3 mm/yr.  The  source of t h i s cesium i s p r o b a b l y s l o p e wash  from the nearby  shore.  However, core •# 8 ( F i g . 3)  contained  137 no e x c e s s i v e the l a s t 25  Cs, i n d i c a t i n g no d e p o s i t i o n o c c u r r e d d u r i n g years at t h a t s i t e on the d e l t a .  The above r e c o r d s are c o n s i d e r e d i n d i s p u t a b l e evidence f o r r e c e n t d e p o s i t i o n and slow, but r e g u l a r s e d i m e n t a t i o n on the d e l t a .  In a d d i t i o n , the d i f f e r e n c e i n r e c o r d s  from  the t h r e e s i t e s g i v e s f u r t h e r i n f o r m a t i o n on the p a t t e r n of p r e s e n t day d e p o s i t i o n which i s examined i n the f o l l o w i n g section. Grain size  analysis  A study o f the g r a i n s i z e d i s t r i b u t i o n of P i t t Lake sediments  was  c a r r i e d out i n o r d e r t o g a i n i n s i g h t  the n a t u r e of sedimentary  into  p r o c e s s e s a c t i v e on the d e l t a  and l a k e bottom.  Sediment samples were c o l l e c t e d w i t h a  Dietz-LaFond;grab  sampler  190  and a P h l e g e r c o r e r .  A t o t a l of  samples were a n a l y z e d by one or more of the f o l l o w i n g  a n a l y t i c a l methods.  199  (1)  R a p i d Sediment A n a l y z e r (R.S.A.) - s e t t l i n g tube w i t h a u t o m a t i c r e c o r d i n g of weight accumulated v e r s u s time (Woods Hole S e t t l i n g Tube, U n i v . of R . I . ) .  (2)  S i e v i n g - s t a n d a r d s i e v i n g procedure ( F o l k ,  1968)  u s i n g s i e v e s w i t h 0.5 $ i n t e r v a l . . (3)  Quantimet  720 - image a n a l y z i n g computer  ( P e r r i e and  Peach, 1973), Brock U n i v e r s i t y . (4)  S e d i g r a p h 5000 ( M i c r o m e t r i c s , I n c . ) - p a r t i c l e  size  a n a l y z e r which measures the c o n c e n t r a t i o n of p a r t i c l e s r e m a i n i n g suspended as a f u n c t i o n of s e t t l i n g time u s i n g a f i n e l y c o l l l m a t e d beam of x - r a y s ( O l i v i e r , et al., (5)  1970/71).  Hydrometer of s o i l s  - s t a n d a r d method f o r g r a i n s i z e a n a l y s i s  (A.S.T.M. D422-63).  The range of s i z e s over which t h e s e methods were used i n t h i s study i s shown i n F i g u r e 16. 0.54>  Weight p e r c e n t f o r each  c l a s s was used t o compute s t a t i s t i c a l  parameters  ( u s i n g method of moments) and c u m u l a t i v e p r o b a b i l i t y  plots.  A n a l y s i s of polymodal sediments I t became e v i d e n t d u r i n g the e a r l y stages of g r a i n s i z e a n a l y s i s t h a t the sediments were polymodal.  Bargraphs  and c u m u l a t i v e curves (see Appendix) r e v e a l e d • c o m p l i c a t e d d i s t r i b u t i o n s w i t h g r a i n s i z e s 2 <j>, 4.5 the  <f>, and 8.5 $ b e i n g  areas of the d i s t r i b u t i o n s which c o n s i s t e n t l y showed  200  irregularities.  Attempts were made, t o r e s i z e some sediments by-  methods (.Fig. 16). t h a t would a n a l y z e a c r o s s "problem" a r e a s w i t h a s i n g l e method.  The  4.5 cj) s i z e which i s .-.near-the normal  break-between m e c h a n i c a l ' ( s i e v e ) •• and" s e t t l i n g ' (hydrometer or p i p e t t e ) - s i z i n g t e c h n i q u e s - needed p a r t i c u l a r , a t t e n t i o n  and  was examined"by . t w 6 - a d d i t i o n a l r m e t h o d s . As the i n t e r p r e t a t i o n o f polymodal sediments i s a controversial  subject, a brief introduction  t o the problem  w i l l p r o v i d e a background on which t o p r e s e n t t h e r e s u l t s of t h i s s t u d y .  Introduction D u r i n g the l a s t two decades t h e r e have been s i g n i f i c a n t advances i n e n v i r o n m e n t a l i n t e r p r e t a t i o n o f g r a i n analysis.  Syndowski  size  (1957) attempted t o r e l a t e a p a r t i c u l a r  c u m u l a t i v e l o g p r o b a b i l i t y curve shape t o a s p e c i f i c environment. quantified  At the same time F o l k and Ward  curve i n t e r p r e t a t i o n by u t i l i z i n g  (1957) statistical  parameters t o c h a r a c t e r i z e t h e curve and b i v a r i a t e p l o t s of s t a t i s t i c a l measures t o d i s t i n g u i s h - e n v i r o n m e n t s . most sediments are p o l y m o d a l , curve shape and measures (such as skewness r e l a t i v e magnitude  and k u r t o s i s )  statistical  s i m p l y r e f l e c t the  and s e p a r a t i o n o f modes.  problem was r e c o g n i z e d e a r l y  Because  Although t h i s  ( F o l k and R o b l e s , 1964), the  use of s t a t i s t i c a l parameters on polymodal sediments has  201  persisted  (Duane, 1964; M a r t i n s , 1965; Friedman, 1967;  M o i o l a and W e i s e r ,  1968).  An a l t e r n a t i v e  approach t o t h e problem i s t o s e p a r a t e  the c o n s t i t u e n t p o p u l a t i o n s (modes) and t o r e l a t e these t o sedimentary p r o c e s s e s and u l t i m a t e l y , t o an environment o f deposition.  V i s h e r • (1969) and M i d d l e t o n (1976) have b o t h  s e p a r a t e d s u b p o p u l a t i o n s a t breaks between f i t t e d l i n e segments of c u m u l a t i v e p r o b a b i l i t y p l o t s .  straight  However,  t h i s method makes t h e u n l i k e l y a s s u m p t i o n ' t h a t a l l the s u b p o p u l a t i o n s are t r u n c a t e d d i s t r i b u t i o n s . and Spencer  (1963) have s e p a r a t e d o v e r l a p p i n g modes by  p a r t i t i o n i n g cumulative p r o b a b i l i t y graphical  F u l l e r (1962)  method o f H a r d i n g (1949).  curves f o l l o w i n g t h e This technique i s  s i m p l e and shows t h e most promise i n b e i n g a b l e t o break the sum i n t o m e a n i n g f u l p a r t s w i t h o u t t h e t e d i o u s i n v o l v e d i n t h e n u m e r i c a l methods ( C l a r k ,  calculations  1976).  Any attempts t o r e l a t e g r a i n s i z e d i s t r i b u t i o n s t o s p e c i f i c sedimentary environments  s h o u l d be based on a c l e a r  u n d e r s t a n d i n g o f t h e polymodal d i s t r i b u t i o n , i n p a r t i c u l a r , the s i z e d i s t r i b u t i o n and p r o p o r t i o n s o f t h e i n d i v i d u a l subpopulations.  The p r o p o r t i o n s o f modes between  environments  s h o u l d r e f l e c t d i f f e r e n t sediment t r a n s p o r t p r o c e s s e s o r a t l e a s t v a r y i n g i n t e n s i t y o f these p r o c e s s e s . e f f e c t of v a r i a b i l i t y  (grain s i z e , mineralogy, etc.) of  the sediment "source m a t e r i a l interpretation.  Secondly, the  should- be c o n s i d e r e d i n t h e  202  FIGURE 16. The range o f g r a i n s i z e s covered by the f i v e s i z i n g t e c h n i q u e s used i n t h i s study.  The percentage o f each mode f o r  each environment i s summarized.  'n' i s  the- number of samples used i n each summary.  20 250  •5 0 700 p  u  I i  50 37ji  B  8-5 0 3u  i  I  PERIODIC SUSPENSION  TRACTION  120 •24 p  D  SUSPENSION  RSA•QUANTIMET 720i  70% i)  HYDROMETER •SIEVE  1  RIVER  (2)  •SEDIGRAPH30%  n=  CHANNEL 63 %  ;  1  50%  (3)  32 %  1  ACTIVE  45%  .  i  LAKE  (4) (5)  5%  9%  1  9%  n = l3 n = 49  DELTA  1  12%  n=30  40%  n=27  TOPSETS  55%  LAKE  1  FORESETS 47%  INACTIVE  n=3l  CHANNEL 46%  i  5%  1  TOPSETS  41%  DELTA 41 %  DELTA  BOTTOM  204  F i v e environments i n the P i t t system have been d e l i n e a t e d on the b a s i s of the morphology i n t e r p r e t a t i o n and-bathymetry  as. determined by a i r photo ( F i g . 1-7.).  River channel, lake  channel, i n a c t i v e d e l t a topsets , a c t i v e topsets , d e l t a  front,  and l a k e bottom can each be c h a r a c t e r i z e d by water d e p t h , f l o w type ( u n i d i r e c t i o n a l or b i d i r e c t i o n a l ) , average v e l o c i t y , and presence o f macrophytes. The a n a l y s i s of polymodal sediments i s based on 190 samples (160 s t a t i o n s ) c o l l e c t e d from the f i v e environments. The purpose of t h i s s t u d y i s t o p a r t i t i o n r e p r e s e n t a t i v e samples u s i n g H a r d i n g ' s (19^9) method and-to i n t e r p r e t the s i g n i f i c a n c e o f the r e s u l t a n t s u b p o p u l a t i o n s i n terms of h y d r a u l i c c o n d i t i o n s of s e d i m e n t a t i o n .  S t a t i s t i c a l method There a r e t h r e e b a s i c approaches t o p a r t i t i o n i n g polymodal p r o b a b i l i t y c u r v e s : a n a l y t i c a l , n u m e r i c a l , and g r a p h i c a l ( C l a r k , " 197-6) .  The a n a l y t i c a l method i s not  p r a c t i c a l f o r sediments a s , a t p r e s e n t , t h e r e are no s o l u t i o n s f o r a case w i t h t h r e e components.  A numerical  method f o r t r i m o d a l p o p u l a t i o n s has r e c e n t l y become a v a i l a b l e ( C l a r k , 1970 i n C l a r k , 1976); however, the procedure i s r e l a t i v e l y complex and access t o an "on l i n e " facility  i s desirable.  computing  G e n e r a l l y , the n u m e r i c a l method  i n v o l v e s an i t e r a t i v e scheme where i n i t i a l e s t i m a t e s of the  205  component parameters  are. improved., a c c o r d i n g t o l e a s t  squares  criteria. Harding's  (1949) g r a p h i c a l method, which has been  e x t e n s i v e l y used i n e x p l o r a t i o n g e o c h e m i s t r y , has been r e v i e w e d by S i n c l a i r (1974, 1976).  I t provides a straightforward  approach t o p a r t i t i o n i n g d i s t r i b u t i o n s w i t h up t o f o u r modes; however, the t e c h n i q u e i s s u b j e c t i v e and may not always y i e l d a unique s o l u t i o n f o r ' t h e curve b e i n g a n a l y z e d . B r i e f l y , Harding's method assumes t h a t s u b p o p u l a t i o n s (A,B,C,) composing a t r i m o d a l curve have lognormal d i s t r i b u t i o n s . P o s i t i v e i n f l e c t i o n p o i n t s on the curve i n d i c a t e , t h e  approximate  p r o p o r t i o n s o f , o r the f r a c t i o n ( f ) o f , the t o t a l m i x t u r e t h a t each mode comprises the modal m i x t u r e P  ( F i g . 18). M  The c u m u l a t i v e p r o b a b i l i t y o f  a t any p o i n t on the curve i s e q u a l t o  the sum of the p r o d u c t s of the f r a c t i o n , f ^  B  ^  of each  component i n t h e m i x t u r e and the c u m u l a t i v e p r o b a b i l i t y o f each component, P  fl  R  P M r  „.  = P f + P f + P f A A B B C C r  (1)  K ± 1  U s i n g the p o i n t on the curve PL22A a t 6 I ( F i g . 19F) as an example: P  M  =  (98.7%) (.24) + (42%) (. 46) .+ :(1%)C3)  P  M  =  43.01%  206  FIGURE 17.  Map of d e p o s i t i o n a l environments w i t h the P i t t  system.  207  208  FIGURE 18. Bimodal and t r i m o d a l c u m u l a t i v e  probability  p l o t s are c o n s t r u c t e d from e q u a l p r o p o r t i o n s of two and t h r e e ( r e s p e c t i v e l y ) populations VI - I) .  lognormal  ( a f t e r S i n c l a i r , 1976, F i g .  209  GRAIN  SIZE  210  FIGURE 19.  A polymodal c u m u l a t i v e p r o b a b i l i t y  curve  from each o f the f i v e environments i s shown w i t h t h e l o g n o r m a l s u b p o p u l a t i o n s d e r i v e d by p a r t i t i o n i n g from the c u r v e . Examples from b o t h the l a k e c h a n n e l and the d e l t a f r o n t a r e shown f o r environment (3)-  Arrows mark i n f l e c t i o n p o i n t s on the  curves and a r e assumed t o be p o i n t s o f modal o v e r l a p .  T T  3  212  no page 212  213  A sampling  of cumulative  probability  p l o t s from t h e P i t t  system ( F i g . 19) shows p o s i t i v e l y skewed curves w i t h  irregu-  l a r i t i e s a t 2 <f> , 5 <r , and 8.5 <J> • • T h e i r shape i s , i n g e n e r a l , s i m i l a r t o t h a t o f the curve t i o n s o f t h r e e lognormal 18).  c o n s t r u c t e d from e q u a l  populations  propor-  ( S i n c l a i r , 1976) ( F i g .  Thus,' an e f f o r t was made t o p a r t i t i o n a number o f curves  into subpopulations.  Almost a l l modest d e f i n e a s t r a i g h t  line  on a r i t h m e t i c p r o b a b i l i t y paper i n f e r r i n g t h a t each mode has a lognormal  distribution.  Note i n F i g u r e 16 t h e p r o g r e s s i v e  changes from environment (1) through- (5) i n t h e p r o p o r t i o n of modes.  A and B p r o p o r t i o n s decrease w i t h a  i n c r e a s e i n C.i.and D.  corresponding  The f i v e environments were o r i g i n a l l y  d e f i n e d on morphology, but a r e s u b s t a n t i a t e d by t h e g r a i n s i z e d i s t r i b u t i o n study as each shows unique p r o p o r t i o n s o f the f o u r modes.  Twenty p r o b a b i l i t y p l o t s were  partitioned  and the average o f t h e medians (M^) and the average o f the s t a n d a r d d e v i a t i o n s (°) o f each i n d i v i d u a l mode a r e summarized i n Table V.  The f o u r modes and t h e i n f l e c t i o n  p o i n t s where they o v e r l a p a r e shown s c h e m a t i c a l l y i n F i g u r e 20.  214  FIGURE 20.  A schematic  diagram showing s t a n d a r d  d e v i a t i o n and median of t h e f o u r modes. Arrows mark modal o v e r l a p and a r e coincident w i t h the i n f l e c t i o n points on curves  ( F i g . 18)'. Modal p r o p o r t i o n s  for this particular A -  7%;  B =  33%,  example a r e :  C =  50%,  and D = 10%.  SAMPLE A = 7% B = 3 3 % o- = 0.6<£ C =50% cr = \ .3cp D = 1 0 % cr = 1 . 5<p  6 GRAIN  8 SIZE (cp)  10  12  14  216  TABLE V  Mode  Summary of modal s t a t i s t i c s .  Avg.  M  D  o* Avg.  Range o f M  D  A  1.2 ij>  B  3.8<D  0.6 4>  3.3*  C  5.8 *  1.3 *  5.2 cf) — 6.3 *  D  10. 3 <j)  1.5 cf>  8.6 cp  - 4.4 (j.  - 10.9 •  217  SEDIMENTOLOGICAL PROCESSES  Sediment m i x i n g G r a i n s i z e a n a l y s i s and subsequent p a r t i t i o n i n g o f the c u m u l a t i v e p r o b a b i l i t y curves r e v e a l e d f o u r d i s t i n c t p o p u l a t i o n s t h a t were e i t h e r mixed p r i o r t o d e p o s i t i o n , or d u r i n g d e p o s i t i o n . "unmixing"  The t e c h n i q u e  of p a r t i t i o n i n g allows  and p r o v i d e s an o p p o r t u n i t y t o examine each  p o p u l a t i o n by i t s e l f i n o r d e r t o g a i n f u r t h e r I n s i g h t i n t o their  origin. 2 <i>  inflection  Most P i t t R i v e r sediments show an i n f l e c t i o n near 2 c)),. However Rapid Sediment A n a l y z e r r e s u l t s a r e i n s e n s i t i v e t o small concentrations ( i n the t a i l s of d i s t r i b u t i o n  curves)  and r e s u l t i n g p l o t s were n o t a p p r o p r i a t e f o r p a r t i t i o n i n g . Few g r a i n s c o a r s e r than' 2 <f> l a k e environments.  a r e found w i t h i n t h e d e l t a o r  Thus, t h e 2 <i>  inflection i s interpreted  to r e p r e s e n t t h e d i v i s i o n between the c o a r s e r g r a i n s i z e s c a r r i e d mainly by t r a c t i o n ( p o p u l a t i o n A) and f i n e - g r a i n e d m a t e r i a l ( p o p u l a t i o n B) moved m a i n l y by p e r i o d i c o r i n t e r m i t t e n t suspension.  E i n s t e i n e_t a l . (1940) r e c o g n i z e d  a s i m i l a r boundary a t 1.5 <r and F u l l e r (1961) i n t e r p r e t e d a curve i r r e g u l a r i t y a t 2<f as t h e g r a i n s i z e which g r a i n s •affected-by Impact Law and Stokes  Law.  separates  A r e c e n t ''  218  paper by M i d d l e t o n  (1976)  r e l a t e s the g r a i n s i z e at the  t r a c t i o n - i n t e r m i t t a n t s u s p e n s i o n t r u n c a t i o n p o i n t on cumulative  p r o b a b i l i t y plots, to the hydraulics of flow.  He t h e o r i z e d t h a t • the shear v e l o c i t y , o f flow,. V , s h o u l d be x  g r e a t e r t h a n o r e q u a l t o the f a l l v e l o c i t y o f t h e -. g r a i n , t o , a t t h e t r u n c a t i o n p o i n t d e s c r i b e d above. was  This  idea  s u b s t a n t i a t e d w i t h d a t a from P i t t - R i v e r (Table V I ) .  5 $ inflection T h i s i n f l e c t i o n p o i n t c o u l d b e i n t e r p r e t e d as o v e r l a p p i n g modes r e s u l t i n g from: ( 1 ) two d i s t i n c t p r o c e s s e s ' s u s p e n s i o n ( p o p u l a t i o n B) and continuous s u s p e n s i o n C); o r ( 2 ) a s i n g l e • p r o c e s s , s u s p e n s i o n ,  periodic (population  o p e r a t i n g under t h e  d i s t i n c t l y d i f f e r e n t summer and w i n t e r h y d r a u l i c c o n d i t i o n s e x i s t i n g i n the P i t t  system.  Flume s t u d i e s o f s u s p e n s i o n t r a n s p o r t (Sengupta, 1 9 7 5 ) are t e c h n i c a l l y d i f f i c u l t and have been l i m i t e d i n scope. Sengupta's r e s u l t s a r e ambiguous i n t h a t , depending on f l o w c o n d i t i o n s , e i t h e r a s i n g l e mode o r a b i m o d a l g r a i n s i z e d i s t r i b u t i o n was found i n t h e suspended m a t e r i a l .  Attempts  a t g r a i n . s i z e a n a l y s i s o f n a t u r a l suspended p o p u l a t i o n s a r e hindered  by t h e problems o f low c o n c e n t r a t i o n s  necessitating  very l a r g e samples. A v a i l a b l e d a t a ( V i s h e r and Howard, 1 9 7 4 ) suggests t h a t n a t u r a l suspended m a t e r i a l i s polymodal.  Milliman (pers.  comm. 1 9 7 6 ) noted i n h i s work on suspended sediments o f  219  TABLE VI  i U  A  =  P i t t d a t a a p p l i e d t o M i d d l e t o n ' s (1976) shear v e l o c i t y - s e t t l i n g v e l o c i t y r e l a t i o n ship .  U . . = shear v e l o c i t y  gds  {  .(DuBoys Formula)  1 3'"cm/sec 6.2 cm/sec  (Middleton's criteria)  <  CJ  = settling  g  = a c c e l e r a t i o n of gravity  s  = slope  d  = depth  1  velocity  2 g =' 980 cm/sec s = .000053 (max:., f l o o d s l o p e ) d = 963 cm (ave. depth) to o f 2$ (.2 5 mm) - 3 cm/sec to determined from B l a t t e i ' \ a l . (19 72 , F i g 3-12) ::  R e f e r e n c e : B l a t t , H.; M i d d l e t o n , G,; and Murray, R. 1972, O r i g i n o f Sedimentary Rocks: P r e n t i c e H a l l , I n c . , Englewood C l i f f s , New J e r s e y .  220  F r a s e r R i v e r t h a t t h e f i n e s i l t and clay, c o n c e n t r a t i o n remained f a i r l y c o n s t a n t discharge. suspension silt  This, f i n e m a t e r i a l can be r e f e r r e d t o as o r wash l o a d .  concentrations  velocity.  throughout t h e y e a r i r r e s p e c t i v e o f continuous  He also, found t h a t sand and coarse  f l u c t u a t e d d i r e c t l y w i t h change i n  Data p u b l i s h e d a n n u a l l y ; b y  t h e Water Survey o f  Canada g i v e s g r a i n s i z e d i s t r i b u t i o n o f t h e suspended sediment i n whole <)> c l a s s i n t e r v a l s .  A n a l y s i s was c a r r i e d out t o 9 if  only and thus t h e r e i s not enough d e t a i l t o determine b i modality.'  Evidence p r e s e n t e d  i n ' t h i s study o f the P i t t  system  shows a c o n s i s t e n t change i n the p r o p o r t i o n o f p o p u l a t i o n s B and C w i t h sedimentary environment.  T h i s change i s best  e x p l a i n e d by (1) above, the e x i s t e n c e ..of two d i s t i n c t suspension  processes  ( p e r i o d i c and c o n t i n u o u s ) .  Field  s t u d i e s c l e a r l y documenting the e x i s t e n c e o f two processes  suspension  a r e r a r e and the problem r e q u i r e s f u r t h e r s t u d y .  8.5 ^ i n f l e c t i o n T h i s i n f l e c t i o n p o i n t occurs near t h e s i l t - c l a y boundary and i s p r o b a b l y  a g r a i n shape e f f e c t .  Silt  grains  are more or l e s s equant i n shape whereas c l a y s i z e p a r t i c l e s tend t o be more p l a t e y and may s e t t l e more s l o w l y than expected by..Stokes Law.  Pharo (.1972) found a s i m i l a r  curve  i n f l e c t i o n i n - p l o t s of g r a i n s i z e d i s t r i b u t i o n s of S t r a i t of Georgia  sediment.  221  Flocculation  i s n o t thought, t o be. s i g n i f i c a n t as  water i s f r e s h and c l a y s i z e m i n e r a l s a r e p r e d o m i n a n t l y chlorite.  I t i s s u s p e c t e d t h a t a l l g r a i n s f i n e r than 5 <j>  are c a r r i e d m a i n l y by suspension., however t h e mechanisms creating  t h e two p o p u l a t i o n s need-further, e x a m i n a t i o n .  Conclusions Cumulative p r o b a b i l i t y  curves o f g r a i n s i z e d a t a from  the P i t t system can be p a r t i t i o n e d p l o t as s t r a i g h t  i n t o , s u b p o p u l a t i o n s which  l i n e s on l o g n o r m a l p r o b a b i l i t y paper.  lognormal d i s t r i b u t i o n s a r e i n t e r p r e t e d  These  as p o p u l a t i o n s  produced by d i f f e r e n t methods o f sediment " t r a n s p o r t i n t h e r i v e r , d e l t a , and l a k e environments: 2 4> ), p e r i o d i c silt  s u s p e n s i o n (2 <f> -"5  t r a c t i o n mode (0.5 4> , continuous suspension,  (5 <i> - 8.5 4>), and c o n t i n u o u s s u s p e n s i o n , c l a y  (8.5 $ -  14 <(>).  Each environment  within  the system i s composed o f a  unique c o m b i n a t i o n o f p r o p o r t i o n s o f t h e modes. of sediment  As t h e source  ( F r a s e r R i v e r ) i s t h e same f o r a l l environments  the d i f f e r e n c e  i n t h e p r o p o r t i o n s o f modes between  environments  i s a r e f l e c t i o n o f t h e r e l a t i v e importance o f v a r i o u s p r o c e s s e s a c t i n g w i t h i n each  environment.  Grain size d i s t r i b u t i o n F i g u r e 11 d e p i c t s w i t h s i z e contours ( C . I . = 0.5  the  a e r i a l d i s t r i b u t i o n o f mean g r a i n s i z e o f each grab sample  222  and sample from t h e top of. each fine  (5-5  '.core.  Mean g r a i n s i z e i s  i n the deep areas, of the channel at the o u t l e t  and r i g h t - a n g l e bend, w i t h c o a r s e r (2 4>. - 4 <j)) m a t e r i a l i n between.  The r e s t of the channel d i s t r i b u t a r y out t o the  d e l t a tongue i s coarse s i l t w i t h a mean g r a i n s i z e of 5 $ (.03  mm). In g e n e r a l , mean g r a i n s i z e contours f o l l o w the  c h a n n e l , d i v e r g i n g near the end, mimicking the f l o o d f l o w p a t t e r n ( F i g . 8A).  The one e x c e p t i o n to. t h i s  the t r i a n g l e of c o a r s e r sediment  generality,  i n the m i d d l e of the  s o u t h e r n t o p s e t s , i s p r o b a b l y a r e s u l t o f removal of some f i n e s d u r i n g ebb f l o w .  Ebb d r a i n a g e channels on the s o u t h e r n  margin of t h i s a r e a ( F i g . 3; F i g . 4A) i n d i c a t e t h a t ebb-' o r i e n t e d f l o w has a pronounced e f f e c t on t h i s p o r t i o n of the d e l t a .  The c o a r s e s t sediment, w i t h a mean g r a i n s i z e  o f 0.044 mm  (4.5  <l») to 0.075 mm. (3.7  <f>), i s found at  the n o r t h e r n top end o f the d e l t a t o p s e t s i m m e d i a t e l y a d j a c e n t t o the c h a n n e l .  As t h i s m a t e r i a l i s s l i g h t l y c o a r s e r  than t h a t i n the channel from which i t o r i g i n a t e d , winnowing i s s u s p e c t e d . Subsamples- were t a k e n from t o p , the m i d d l e , and bottom o f 15 cores .from t h e f o r e s e t s and bottomsets  to  determine  any v e r t i c a l , change i n g r a i n s i z e w i t h i n the couple hundred y e a r s of s e d i m e n t a t i o n present..  Cores w i t h i n 0.5 km  of  the end of the d i s t r i b u t a r y channel show I n c r e a s i n g g r a i n s i z e from bottom t o top of c o r e .  Cores 0.5 km t o 7 km  223  ( f a r t h e s t . removed sample) away from the' channel show a s l i g h t upward decrease than 0.5(f).).  The  i n grain size (generally less  i m p l i c a t i o n from t h e s e changes i n g r a i n  s i z e s t r a t l g r a p h i c a l l y i s t h a t the d e l t a -is p r o g r a d i n g , b u t . at  a l e s s e r r a t e than i n the p a s t . -  On the d e l t a f oresets'and bottomsets , mean g r a i n s i z e becomes f i n e r away from the end of the. d i s t r i b u t a r y and the contour p a t t e r n i n d i c a t e s s e d i m e n t a t i o n m a i n l y t o the e a s t s i d e of G o o s e - I s l a n d .  The  channel  occurs  distribution  p a t t e r n d e p i c t e d i n F i g u r e 11 i s a r e a s o n a b l y good example of s e d i m e n t a t i o n by d i f f u s i o n -from a s i m p l e j e t w i t h l i t t l e i f any r e w o r k i n g by waves a n d • t i d a l c u r r e n t s . ;  The  a p p l i c a t i o n o f the t h e o r y of submerged f r e e j e t s  t o d e l t a f o r m a t i o n has been s t r o n g l y i n f l u e n c e d by the work of Bates  (1953).  He b e l i e v e d t h a t the. d i f f u s i o n p a t t e r n  depends on the r e l a t i v e d e n s i t i e s of* the two f l u i d s and s t a t i o n a r y b o d i e s of w a t e r ) .  (moving  However, one of the major  l i m i t a t i o n s of B a t e s ' t h e o r y i s the assumption t h a t t h e r e are no boundary e f f e c t s .  C l e a r l y , the b a s i c assumptions  f o r any t h e o r e t i c a l model" of sediment d i f f u s i o n by j e t f l o w ( d e l t a f o r m a t i o n ) should d i r e c t l y r e f l e c t the c o m p l e x i t i e s o f the n a t u r a l environment a n d n o t an i d e a l -  situation.  A r e c e n t l a b o r a t o r y and computer model study by Ramsayer (197^-). i n c o r p o r a t e d the. e f f e c t of l a t e r a l and b a s a l shear on jet' -flow under steady, u n i f o r m f l o w . m o r p h o l o g i c a l f e a t u r e s 'such as l e v e e s and  He' e x p l a i n s  distributary  224  bars found at a d e l t a d i s t r i b u t a r y mouth by a model which p r e d i c t s the d i s t r i b u t i o n of. e f f e c t i v e bed shear  stress.  Time dependent runs u s i n g f i n e sand produced a sediment d i s t r i b u t i o n p a t t e r n s t r i k i n g l y s i m i l a r , t o t h a t of the Pitt  ( P i g . 11).  Thus, the P i t t  appears., t o f i t the g e n e r a l  model of d e p o s i t i o n ' from a j e t . , However:, one  f e a t u r e of  the model t h a t i s m i s s i n g i n the- P i t t , , i s the  distributary  mouth b a r .  J o p l i n g ( I 9 6 0 ) , suggests  t h a t i f the  frontal  s l o p e over which the f l o w expands i s l e s s t h a n 10°,  the f l o w  w i l l not s e p a r a t e from the boundary at a l l (assuming the f l o w i s homopycnal) • and thus d e p o s i t i o n ' I n the form of a bar would not o c c u r .  This seems t o e x p l a i n the l a c k of  bar development on'the P i t t d e l t a as the f o r e s e t s l o p e i s l e s s than 4° and the system-possesses homopycnal f l o w f o r most o f the y e a r . In  c o n c l u s i o n , the a r e a l d i s t r i b u t i o n of mean g r a i n  s i z e s u b s t a n t i a t e s the i n t e r p r e t a t i o n t h a t ' f l o o d f l o w i s the dominant c u r r e n t i n moving sediment a c r o s s the d e l t a . Sediment i s then d i s p e r s e d by j e t f l o w o r i e n t e d i n a n o r t h e a s t d i r e c t i o n i n t o the l a k e .  Sediment d i s p e r s a l arid'accumulation The o b s e r v a t i o n s of d e l t a morphology, the presence o f bedforms i n the' channel, and t h e d i s t r i b u t i o n ( p a t t e r n ) o f g r a i n s i z e enable the processes, i n v o l v e d i n sediment d i s p e r s a l to be d e l i n e a t e d .  225  The  s i n g l e d i s t r i b u t a r y , .channel, f l a n k e d by  levees,  which l e a d s t o a fan-shaped d e l t a f o r e s e t i n d i c a t e s t h a t the channel i s the avenue f o r sediment movement.  The  fact  t h a t the channel i s d e e p l y i n c i s e d a l o n g the s o u t h e r n m a r g i n and  t h a t the carbon-dated m a t e r i a l  (4.645  -  B.P.)  95  from the  s o u t h e r n topsets'was b u r i e d by only 60 err of sediment suggests t h a t the f l o w i s c h a n n e l i z e d  i n t h i s r e a c h and  little  sediment i s brought up onto the d e l t a s u r f a c e . d a t a and  Velocity  o r i e n t a t i o n of l a r g e - s c a l e bedforms r e f l e c t  dominance of the f l o o d • c u r r e n t moving, through the  the  channel.  North of the r i g h t - a n g l e bend' the d i s t r i b u t a r y s h a l l o w s and  c h a n n e l banks become l e s s s t e e p .  sand waves (10 the f i r s t 2 -  Small f l o o d - o r i e n t e d  m i n s p a c i n g ) are found i n the channel f o r 3 km where, f l o w i s m o r e - o r - l e s s  However, i n the l a s t 3 km, c h a n n e l bottom and f l o w t o s p i l l and  confined.  o n l y r i p p l e s are found on  the  channel bank s l o p e s are low enough f o r spread over the t o p s e t s .  d i s t r i b u t i o n r e f l e c t s t h i s p a t t e r n ' of f l o w .  Mean g r a i n s i z e Once sediment  i s on the d e l t a s u r f a c e i t i s winnowed and moved by wavedriven currents  i n a d d i t i o n t o the t i d a l c u r r e n t s .  Large  waves and s w e l l s were observed t o o c c u r f r e q u e n t l y i n the l a k e , p a r t i c u l a r l y d u r i n g the w i n t e r months, s h i f t i n g sediment i n t h e form o f r i p p l e s - .  O r i e n t a t i o n of these  r i p p l e s , which cover the o u t e r t o p s e t s , r e f l e c t s  the  226  d i r e c t i o n of currents at the time.  Wind-generated c u r r e n t s  were observed t o i n c o r p o r a t e and c a r r y sediment i n t o the l a k e as a plume. No attempt was made t o study mechanics o f sediment d i s p e r s a l from the end o f d i s t r i b u t a r y out i n t o t h e l a k e . However, as medium s i l t  i s found as f a r out as 5 km, some  type o f d e n s i t y f l o w mechanism i s p r o b a b l e f o r a t l e a s t p a r t o f the y e a r . : S t r a t i g r . a p h i c d a t a presented' p r e v i o u s l y s u g g e s t s ' t h a t + 3 a t o t a l volume o f (150 - 20 X 10 tonnes) o f sediment i s a c c u m u l a t i n g a n n u a l l y i n t h e s o u t h e r n h a l f of" P i t t ' Lake. 137 Cs d a t i n g has c o n f i r m e d t h e e x i s t e n c e o f a steady sediment f l u x s i n c e a t l e a s t 1954.  50% o f t h e annual  sediment a c c u m u l a t i o n i s c o a r s e r than 5 $ and thus p r o b a b l y moves i n the form o f b e d l o a d and p e r i o d i c s u s p e n s i o n . volume (75 x 10  tonnes)  This  i s on the same o r d e r o f magnitude  as t h e annual sediment f l u x c a l c u l a t e d f o r the P i t t R i v e r (South)" by A s h l e y (1977).  I t i s s u s p e c t e d t h a t the o t h e r  50% c o n s i s t s o f : (1) m a t e r i a l t h a t i s c o n t i n u a l l y r e e n t r a i n e d at p o i n t s a l o n g t h e r i v e r and d e l t a channels by f l o o d f l o w s and e v e n t u a l l y a r r i v e s a t the l a k e ; and (2) f i n e s i l t and 137 c l a y t h a t i s washed i n from the P i t t watershed.  1  Cs  d a t i n g s u b s t a n t i a t e s , ' f i r s t , the i n t e r p r e t a t i o n o f t h e f o r e s e t r h y t h m i t e s as annual c o u p l e t s ( v a r v e s ) second,.. minor.  and,  t h a t the s e d i m e n t a t i o n r a t e on d e l t a t o p s e t s i s  22 7  The p o s s i b i l i t y  o f a sharp decrease i n s e d i m e n t a t i o n  r a t e a p p r o x i m a t e l y 30 y e a r s ago i s suggested by t h e s t r a t i g r a p h y ( P i g . 1 2 ) . Most cores, t a k e n away from t h e a c t i v e d e l t a channel show a decrease i n g r a i n s i z e u p s e c t i o n i n d i c a t i n g a s l i g h t waning i n d e l t a growth r a t e .  Although  d e f i n i t i v e e v i d e n c e I s lacking,.-..this apparent decrease i n sedimentation r a t e i s i n t r i g u i h g L y c o i n c i d e n t w i t h the i n i tiation  o f l a r g e - s c a l e d r e d g i n g i n lower- F r a s e r R i v e r .  This  d r e d g i n g p r o b a b l y has had the e f f e c t o f i n c r e a s i n g the c r o s s - s e c t i o n a l a r e a o f F r a s e r e s t u a r y and thus d e c r e a s i n g t h e magnitude Gand thus competency) o f t i d a l l y currents i n P i t t  River.  induced  228  CONCLUSIONS  The  P i t t t i d a l d e l t a i s p r e s e n t l y b u i l d i n g i n t o the  lower end of P i t t l a k e .  I t s unusual p o s i t i o n can be  r e a d i l y e x p l a i n e d i n terms of t i d a l dynamics.  Unequal  v e l o c i t i e s o f t i d a l c u r r e n t s ( f l o o d i s g r e a t e r ) have caused landward t r a n s p o r t o f sediment up P i t t R i v e r (South) from t h e F r a s e r and i n t o t h e l a k e .  A complex i n t e r a c t i o n  of F r a s e r d i s c h a r g e , P i t t b a s i n d r a i n a g e , and t h e t i d a l p r i s m c r e a t e s unequal t i d a l flow.on  a s e a s o n a l basis.;-  ( w i n t e r has s t r o n g e s t f l o w s ) . Both t h e geomorphology and g r a i n s i z e r e f l e c t the dominant f l o o d f l o w p a t t e r n .  distribution  Basically  flow  i s c h a n n e l i z e d as i t e n t e r s the l a k e and remains i n the channel u n t i l i t s bank s l o p e s are s h a l l o w enough t o a l l o w +  o v e r f l o w onto d e l t a t o p s e t s .  Annually  3  150 - 20 X 10  tonnes  of sediment (1% o f F r a s e r ' s t o t a l l o a d ; Mathews et_ a l . , 1970)  a r e b e i n g d e p o s i t e d as varved  couplets.  The g r e a t e s t  t h i c k n e s s i s on d e l t a f o r e s e t s i n t h e v i c i n i t y of t h e main c h a n n e l , w i t h the b e s t developed adjacent t o the d e l t a lobe. unusual  stratigraphy occurring  These varved  couplets are  i n t h a t the c o a r s e r s i l t y l a y e r forms d u r i n g the  w i n t e r and the c l a y l a y e r d u r i n g t h e summer, r e f l e c t i n g s e a s o n a l changes i n t h e s t r e n g t h o f t i d a l c u r r e n t s .  229  The present-day d e l t a has been c o n s t r u c t e d d u r i n g t h e last  6000 y e a r s a t an average r a t e o f 1.28 m .  yr~^~;  however,  d e l t a growth would be expected t o have deer eased e x p o n e n t i a l l y . 137 Cs d a t i n g and v a r v e chronology suggest t h a t t h e p r e s e n t growth r a t e i s on the o r d e r o f c e n t i m e t e r s p e r y e a r .  A  s l i g h t decrease i n mean g r a i n s i z e u p s e c t i o n i n cores ( r e p r e s e n t i n g a c o u p l e hundred y e a r s s e d i m e n t a t i o n ) a l s o suggests a waning d e l t a growth.  Varve s t r a t i g r a p h y has  r e v e a l e d a, sharp decrease i n s e d i m e n t a t i o n r a t e 30 years before present.  T h i s decrease may be a response t o l a r g e -  s c a l e d r e d g i n g i n t h e lower F r a s e r e s t u a r y . D e s p i t e b i d i r e c t i o n a l f l o w and d a i l y and s e a s o n a l f l u c t u a t i o n s i n l a k e s t a g e , the d e l t a has a s i m p l e c o n s t r u c t i o n a l morphology. i n c h a n n e l , and sediment by f l o o d c o n d i t i o n s .  The morphology, t h e sand waves  d i s p e r s a l p a t t e r n a r e dominated  Weaker ebb c u r r e n t s make o n l y minor 3  m o d i f i c a t i o n s d e s p i t e t h e average d i s c h a r g e o f 1700 m which d r a i n s d a i l y from the l a k e .  . sec  -1  2 3 0  REFERENCES CITED A s h l e y , G.M., 1977, Sedimentology o f a t i d a l r i v e r , P i t t R i v e r , B.C.: (Ph.D. t h e s i s ) ,. U n i v . o f B.C., Vancouver, B.C., Canada. A.S.T.M., 1963, S t a n d a r d method f o r g r a i n s i z e a n a l y s i s o f s o i l s : A.S.T.M. D422-63B a t e s , C . C , 1953,  R a t i o n a l theory of d e l t a formation:  Am. Assoc. P e t . G e o l o g i s t s , v.  37, no. 9, p. 2119-2162.  B r i g g s , L . I . and M i d d l e t o n , G.V., 1965, Hydromechanical p r i n c i p l e s o f sediment s t r u c t u r e f o r m a t i o n : S.E.P.M., Spec. Pub. 12, p. 5-16. C l a r k , I . , 1970, IONA, a program f o r the r e s u l u t i o n o f a m i x t u r e o f t h r e e normal d i s t r i b u t i o n s by t h e method o f maximum l i k e l i h o o d : u n p u b l i s h e d m a n u s c r i p t , Reading, " 12p. C l a r k , M.W.,  1976,  S t a t i s t i c a l a n a l y s i s of multimodal  d i s t r i b u t i o n s : J o u r . Math. Geology, v.'8, p. 267-282. D a v i s , J . J . , 1963, Cesium and i t s r e l a t i o n s h i p t o p o t a s s i u m i n e c o l o g y : In S c h u l t z , V., and Klements, A.W. J r \ , ( e d s . ) , R a d i o e c o l o g y Rei-nhold New .York-, p. 539-556. Duane, D.B., 1964, S i g n i f i c a n c e o f skewness i n r e c e n t s e d i m e n t s , Western P a m i l i c o Sound, N.C.: J o u r . Sed. P e t r o l o g y , v. 34, p. 864-874. Dyck, W., F y l e s , J.G., and B l a k e , W. J r . , 1965, G e o l . S u r . Canada R a d i o c a r b o n Dates IV: R a d i o c a r b o n , v. 7, p. 24-46. E i n s t e i n , H.A., Anderson, A.G., and Johnson, J.W., 1940, A d i s t i n c t i o n between b e d - l o a d and suspended l o a d i n n a t u r a l streams: Am. Geophys. Union T r a n s . , p. 628633. F o l k , R.F., 1968, P e t r o l o g y o f Sedimentary Rocks: U n i v . o f Texas, H e m p h i l l s , A u s t i n , Texas. .'  _, and Rob l e s , R. , 1964, Carbonate sands o f I s l a P e r e x , A l a c r a n Reef Complex: J o u r . Geology, v. 72,  p. 255-292.  231  F o l k , R.F. and Ward, W.C., 1957, B r a z o s R i v e r b a r , a s t u d y i n t h e s i g n i f i c a n c e o f g r a i n - s i z e parameters: J o u r . Sed. P e t r o l o g y , v. 27, p.. 3-26. F r a n c i s , C .W. , aaad " B r i n k l e y , F.S.>, 197.6, P r e f e r e n t i a l a d s o r p t i o n of 137cs t o micaceous m i n e r a l s i n contaminated f r e s h water sediment: N a t u r e , v.- 26.0,. p.. 511-513Friedman, G.M., 1967, Dynamic p r o c e s s e s and s t a t i s t i c a l parameters compared f o r s i z e frequency d i s t r i b u t i o n s of beach and r i v e r sands.: J o u r . Sed. P e t r o l o g y , v. 37,  p. 327-354.  F u l l e r , A.O., 1961, S i z e d i s t r i b u t i o n c h a r a c t e r i s t i c s o f s h a l l o w marine sands from Cape'of Good Hope, South A f r i c a : J o u r . Sed. P e t r o l o g y , v. 31, P- 256-261. , 1962, S y s t e m a t i c f r a c t i o n a t i o n o f sand i n t h e s h a l l o w marine and beach environment o f f t h e South A f r i c a n c o a s t : J o u r . Sed. P e t r o l o g y , v. 32, p. 602-  606.  H a r d i n g , J . P . , 1949, The use o f p r o b a b i l i t y paper f o r t h e g r a p h i c a l a n a l y s i s o f polymodal frequency d i s t r i b u t i o n s : J o u r . Marine B i o l . Assoc. U.K., v. 28, p. l4l. H o u b o l t , J.J.H.C. and J o n k e r , J.B.M., 1968, Recent sediments i n the e a s t e r n p a r t o f t h e Lake o f Geneve (Lac Leman): G e o l . Mijnbouw, v. 47, p. 131-148. Inman, D.L., 1963, i n Shephard, F.P. ( e d . ) , Submarine : Harper^and Row, New Y o r k , N.Y., 557p.  Geology,  J o h n s t o n , W.A., 1922, The c h a r a c t e r o f the s t r a t i f i c a t i o n of t h e sediments i n t h e r e c e n t d e l t a o f F r a s e r R i v e r , B r i t i s h Columbia, Canada: J o u r . Geology, v. 30,  no. 2, p. 115-129. J o p l i n g , A.V., i960, An e x p e r i m e n t a l study  on the mechanics o f b e d d i n g : (Ph.D. t h e s i s ) H a r v a r d U n i v e r s i t y , Cambridge, Massachusetts.  M a r t i n s , L.R., 1965, S i g n i f i c a n c e o f skewness and k u r t o s i s i n e n v i r o n m e n t a l i n t e r p r e t a t i o n : J o u r . Sed. P e t r o l o g y ,  v. 35, p. 778-770.  Mathewes, R., 1973, A p a l y n o l o g i c a l study o f p o s t g l a c i a l v e g e t a t i o n changes i n the U n i v e r s i t y Research F o r e s t , s o u t h w e s t e r n B r i t i s h Columbia: Canadian J o u r , o f Botany, v. 51, no. 11, p. 2085-2103-  232  Mathews,. W.H., F y l e s , J.G., and Nasmith, H.W., 1970, P o s t g l a c i a l ' c r u s t a l movements i n s o u t h w e s t e r n B r i t i s h Columbia and a d j a c e n t Washington S t a t e : Canadian J o u r , of E a r t h S c i . , v. 7, no. 2,. p. 690-70 2. M a t t h e s , G.H., 1947, Macroturbulen.ee I n n a t u r a l stream f l o w : Am. Geophys. Union Trans . , y. 28, p. 255-262. M i d d l e t o n , G.V., 1976, H y d r a u l i c i n t e r p r e t a t i o n o f sand s i z e d i s t r i b u t i o n : J o u r . Geology, v. 84,-p. 405-426. M i l l i m a n , J.D., 1977, S e d i m e n t a t i o n i n t h e F r a s e r R i v e r and i t s estuary: manuscript i n p r e p a r a t i o n . M o i o l a , R.J. and W e i s e r , D., 1968, T e x t u r a l parameters: an e v a l u a t i o n : J o u r . Sed. P e t r o l o g y , v. 38, p. 45-53. O l i v i e r , J.P., H i c k e n , G.K., and O r r , C. J r . , 1970/71, Automatic p a r t i c l e s i z e a n a l y s i s i n s u b s i e v e range: Pow. Technology, v. 4, p. 257-263Peacock, M.A., 1935, F i o r d - l a n d o f B r i t i s h Columbia: G e o l . Soc. America B u l l . , v. 46, p. 633-696. P e n n i n g t o n , W., Cambray, R.S., F i s h e r , E.M., 1973, O b s e r v a t i o n s on l a k e sediments u s i n g f a l l o u t 137cs as a t r a c e r : N a t u r e , v. 242, p. 324-326. P e r r i e , L.A.- and Peach, P.A., 1973, G e l a t i n coated m i c r o s c o p e s l i d e s i n sedimentary s i z e a n a l y s i s : J o u r . Sed. P e t r o l o g y , v. 43, p. 1174-1175. Pharo, C.H., 1972, Sediments o f t h e c e n t r a l and s o u t h e r n S t r a i t o f G e o r g i a , B r i t i s h Columbia: Ph.D. t h e s i s , Univ. o f B r i t i s h Columbia, Vancouver, B.C. Canada, 290 p. Ramsayer, G.R., 1975, E x p e r i m e n t a l and t h e o r e t i c a l study of d e l t a i c s e d i m e n t a t i o n : (Ph.D. t h e s i s ) , t h e U n i v . o f R o c h e s t e r , R o c h e s t e r , New York. R e i n e c k , H.E. and S i n g h , I.B., 1975, D e p o s i t i o n Sedimentary Environments: S p r i n g e r - V e r l a g , New Y o r k , 438 p. R i c h a r d s , G.H., i860, F r a s e r R i v e r and B u r r a r d I n l e t : B r i t i s h A d m i r a l t y C h a r t , 1922. R i t c h i e , J . C , McHenry, J.R., and G i l l , A . C , 1973, D a t i n g r e c e n t r e s e r v o i r sediments: Limnology and Oceanography, v. 18, p. 254-263.  233  R i t c h i e , J.C., Hawks, P.H., and McHenry ,• J .R. , 1975, D e p o s i t i o n r a t e s i n v a l l e y s : .determined u s i n g f a l l o u t Cesium-137: Geol. Soc. America B u l l . , v. 86, p. 1128-  1130 .  Robbins., J.A. and E d g i n g t o n , D.N., 1975, D e t e r m i n a t i o n o f r e c e n t s e d i m e n t a t i o n r a t e s i n Lake M i c h i g a n u s i n g Pb-210 and Cs-137: Geochim. Cosmo. Chem. A c t a ,  p. 285-304.  Ryder, J.M. and Church, M., 1972, P a r a g l a c i a l s e d i m e n t a t i o n : c o n s i d e r a t i o n o f f l u v i a l processes, c o n d i t i o n e d by g l a c i a t i o n : G e o l . Soc. America B u l l . , v. 83, p. 3059-  3072.  S c r u t o n , P.C., I960, D e l t a b u i l d i n g and t h e d e l t a i c sequence: i n Shepard, F.P. , P h l e g e r , F.B., A n d e l , T.H. (eds'.), Recent Sediments, northwest G u l f o f Mexico, Am. Assoc. Petroleum G e o l o g i s t , Tulsa., Oklahoma. Sengupta, S., 1975, S i z e - s o r t i n g d u r i n g s u s p e n s i o n t r a n s p o r t a t i o n - l o g n o r m a l i t y and o t h e r c h a r a c t e r i s t i c s : Sedimentology, v. 22., p. 257-273. S i n c l a i r , A . J . , 1974, S e l e c t i o n o f t h r e s h o l d v a l u e s i n geochemical d a t a u s i n g p r o b a b i l i t y graphs: J o u r . Geochemical E x p l o r . , v . 3, p. 12.9-149. , 1976, A p p l i c a t i o n s o f p r o b a b i l i t y graphs i n m i n e r a l e x p l o r a t i o n : Assoc. o f E x p l o r . Geochemists, Spec. v o l . no. 4., 95p. Spencer, D.W., 1963, The i n t e r p r e t a t i o n o f g r a i n s i z e d i s t r i b u t i o n o f curves o f c l a s t i c sediments: J o u r . Sed. P e t r o l o g y , v. 33, 180-190. Syndowski, K.H., 1957, D i e s y n o p t i s c h e method des KornkurvenV e r g l e i s c h e s z u r Ausdeutung f o s s i l e r s e d i m e n t a t i o n s raume: G e o l . J a h r b . , v. 73, p-. 235-275. Tamura, T., 1964, S e l e c t i v e s o r p t i o n r e a c t i o n o f cesium m i n e r a l s o i l : N u c l e a r S a f e t y , v. 5, p. 262-268.  with  V i s h e r , G.S., 1969, G r a i n s i z e d i s t r i b u t i o n s and d e p o s i t i o n a l p r o c e s s e s : J o u r . Sed. P e t r o l o g y , v. 39, p. 1074-1106. and Howard, J.D., 1974, Dynamic r e l a t i o n s h i p between h y d r a u l i c s and s e d i m e n t a t i o n i n t h e Altamaha E s t u a r y : J o u r . Sed. P e t r o l o g y , v. 44, p. 502-521.  234  Water Survey o f Canada, 1966, Vancouver, B r i t i s h u n p u b l i s h e d stage and d i s c h a r g e r e c o r d s .  Columbia:  235  APPENDIX:: i .  ( L U ) UO  rjf  CO  1 H913  H 10  —«—  O  Log s p a c i n g - l o g h e i g h t p l o t o f sand waves found i n P i t t R i v e r .  236 P i t t River  - Location of bedforms  (Height/Spacing) = (3m/50m)  lin/25m l-2m/35m 1.2n/30n!)  2m/50m__J  1 km  DATA USED IN THE MEANDER WAVELENGTH RELATIONSHIP Riverj j  B j (in feet)(in feet) A  750 43,000  Bea.-veri-W  Columbia (dammed;) Congaree  X  M  7  A  B  10 175 67 .'; 641  Q  BEDFORM WAVELENGTH SCALING  Sinuosity  e  5,500 400,000  74 632  i  Red Deer  13,120 47,500 4,692 7,000 20,000 5,800  Wabash  22,500  Fraser Klaralver Missouri Pitt  88 ; 149 .94 "•' 505 126 37 40 175 98 203 176 33 82 273 ;  17,650 435,000 23,000 33,340  85,000 40,000  70,575  133 660 152 182 291 200 266  1.3  Grain Size  Reference  sand  :  Whetten and _ E u l l a m , 197  sand •  1.75 ". ••/ 0 . 5 9 _  1.2 1.11 -  Neill,1973 6  mm  Levey,  197.5  coarse sand sand  P r e t i o u s ..and B l e n c h , 1951 Sundboi?g, 1956  sand  ftnnambhotla e t . a l . 1972 T h i s study  0.34 mm . 0.37 mm sand  Neill,  1973  J a c k s o n , ]_gyp;  i  References under P a r t I except f o r : N e i l l , C , 1973, Observations on r i v e r channel p r o c e s s e s i n A l b e r t a : I n F l u v i a l p r o c e s s e s and s e d i m e n t a t i o n , P r o c . o f Hydrology Smposium, U n i v . o f A l b e r t a , Edmonton, A l b e r t a .  238  APPENDIX 2 VELOCITY PROFILE DATA March 11,1975 s i t e (3) depth 8.8-9.7 m'. time - 1400 - 1830 depth (m) v e l . (cm/sec) 1400  0 2.00 4.00 6.00 7.00  35 38 37 38  8.90  24 33  8.25  1430 *K  e D D  1500 ebb  0.00  2  -  0  0  4.00 6.00 7.00 8.25 8.80 0 2.00 4.00 6.00 7.00  8.25  1530 ebb  35 29  3300 29 30  27 24 26 24 24 21 20 19  8.80  17  0 2.00 4.00 6.00 7.00  14 15 15 12 13 08 05  8.25 8.80  Turn from ebb t o f l o o d 1600 0 08 flood 2.00 05 4.00 12 6.00 03 7.00 09 8.00 12 8.90 05  1630  flood  0 2.00 4.00 6.00 8.00 9.00  20 20 20 20 20 15 12  March 11, 1975 ( c o n t ) depth (m) 1700 0 f l o o d 2.00 4.00 6.00 8.00 9.00 9.30  1730  flood 0 2.00 4.00 6.00 8.00 9.00 9.50 1800 ±? ,, 2.00 4.00 6.00 8.00 9.00 9.50 0  UU  f  l  o  o  d  1830 0  f l o o d 2.00 4.00 6.00 8.00 9.00 9.50  v e l . (cm/sec) 41 40 37 37 34  27 24  50 47 43 40 34 29  27 5 8  58 55  50  49 41 34  58 58 55 44  43 40 38  March 13, 1975 s i t e (3) depth 8.8 - 9.2 m time - 730 - 1400  730  0  f l o o d 2.00 4.00 6.00 8.00 8.60 9.20  70 64 64  61 58 42 40  '239  March 1 3 , 1 9 7 5 ( c o n t ) depth (m) v e l . (cm/sec) 800  flood  0  2.00  4.00 6.00 8.00 8.60 9.20 830  flood  0  2.00  0  56  8.60  2.00  9.20  0  4  6.00 8.00 9.00  flood  2.00 6 ' 0 0 o -  0  0  8.00 9.20 1000  flood  1030  flood  56 58 56 44 30 26  4.00  930  70  70  9.20  6.00 8.00  flood  69 58 50 30 26  66 55 43 37 30  4.00  900  73  67  0  2.00  I'  37  6.00  32  8.00  28  Q.40  11  4.00 6.00 8.00 9.00  9.40  21  20  18 17 17 12 06  Turn from f l o o d t o ebb  07  4.00 6.00 8.00 9.00 9.50  1130 , flood ~  0  4 > 0 Q  8.00 9.00  -v 1 2 0 0  0  flood 2 . 0 0 4.00 6.00 7.00 8.00 9.00 1230  0  flood 2 . 0 0 4.00  24 2 1  21 20 20 34  35 34 30 37 30 27  41 43 40 43  7.00  41  8.40 02.00  flood 4 . 0 0 6.00 7.00  8.40 9.00  1400  06 06 07 06 05  6.00  9.00 1300  .  2 3  2.00 6.00  fg 37  05  0  flood 2 . 0 0  M Vi  35  2.00  1100  40  4.00  0  March 1 3 , 1 9 7 5 ( c o n t ) depth (m) v e l . (cm/sec)  0 2. 4. 6. 7.  37 28 44 44  44  43 43 38 34  41 00  43 43 37  00  40  00 00  8.40 8.80  38 30  240.  May 9, 1975 s i t e (2) depth 11 -11.6 m time - 900 -1730 depth (m)  900 ebb  0 2.00 4.00 6.00  8.00  : 10.00 11.60  2.00  93° e b b  10  4.00 6.00 8.00 10.00 11.60 ?° 2.00. 4.00 6.00 8.00 10.00 11.60  e b b  1030  0  6.00 8.00 10.00 11.50 2.00 ebb 6.00 8.00 10.00 11.50 1130 0 ebb 2.00 4.00 6.00 8.00 10.00 4  depth (m)  v e l . (cm/sec)  27 ' 26 22. 19 19 18 12 46  39 33 31 26 24  51 51 50 39 33 26  1200 ebb  1230 ebb  1300 ebb  7 7  2.oo  -"r^  May 9, 1975  >  0  0  11.40  57 51 51 41 33 49 49 45 31 28 57 64 59 59 51 41 36  4 9  1330 ebb  1400 ™ L  ebb  1430  ebb  (cont)  v e l . (cm/sec)  0 59 4 00 59 6.00 54 8.00 54 10.00 49 11.40 . 30 0 59 2.00 62 4.00 54 6.00 59 '8.00 51 10.00 44 11.30 26 0 54 '2.00 62 4.00 77 6.00 57 7.00 -54 8.00 4f 10.00 46 11.3026 0 51 2.00 64 4.00 57 6.00 57 8.00 54 10.00 41 11.20 36 2 .00 59 _ 6.00 51 8.00 49 10.00 44 11.20 41 0 57 2.00 59 4.00 57 6.00 54 8.00 51 10.00 51 11.10 46 2 > 0 Q  6 2  #  0  4  5 4  0 0  5  4  241.  May 9, 1975 ^  depth  (m)  0 2.00 4.00 6.00  1 R n n  e b b  8.00  10.00  1530 ebb  11.10  0 2.00 4.00 6.00  8.00  10.00  11.10  1600 ebb  39 28 36(turbulent) 39  8.00  10.00  1700 ebb  59 54 51 51 49 45 51 51 51 51 46 46 45  8.00  10.00  ebb  54  51  11.10 0 2.00 4.00 6.00  11.10  0 2.00 4.00 6.00  8.00  10.00 11.00  ebb t o f l o o d a t  49 46 44  4l 40 41  39 36 24 21 21 18 18 18 21 10  1715  May 21, 1975 s i t e (2) depth 9.1 m and 10.9 m -;ime - 1500 - 1900 -  J °° 1 (  5 n  f  l  0  n n  0  d  0  2.00  4.00 6.00  8.00  9.10  May  v e l . (cm/sec)  0 2.00 4.00  6.0O  1630  (cont)  08  08 09= 08 08 04  depth  (m)  4 > 0 0  02 03 03 02 02  Q 3  6.00  8.00  9.10 iCnn f  l  0  0 0  10  4.00 6.00  d  09  8.00  8.80 2.00 0  1630  flood  Ve  4.00 6.00  10.00 10 2. .9 00 0 flood  4 > 0 Q  6.00  8.00  1730  10.00 10.90 0 2.00 4.00 6.00  flood  8  0  0  f l o o d  8.00 10.00 10.90 2 00 4.'00 6.00  8.00  10.00 10.90  iP^n f  l  o  o  0  d  2.00 4.00 6.00 -§.00  10.00 10.90  09 05 04 31 31 T ?25 25 25 17 1 97  l o c a t l o n  8.00  1  (cont)  v e l . (cm/sec)  0 2.00  1 R q n u  f l o o, d  .21,1975  3 3  f  9  39 31 26 23 42 44 41 40 40  32 26 11 41 40 38 35 2 8 33 36 40  35 33 27 23  242  a  May 21, 1975 depth (m)  0 2 00 flood 4 00 6 00 8.00 10 .00 10.90 1930 0 2.00 flood 4.00 6.00 8.00 10 .00 10 .90 2000 0 2 00 flood 4. 00 0 6. 0 ,8.00 1900  (cont)'  v e l . (cm/sec) "28"  31 28 28 28 26 23  21 22 19 21 19 17 14  10 .9.  12 12 09 08 06 05 05  0 2 .00 ebb 4. 00 6.00 8.00 9.10 11.00 1220 1230 0 ebb 2.00 4.00 6.00 8.00 9 .10 11.00 12. 20  26 36 36 35 39 31 21 10 31 3 9 42 35 32 26 21 15  i o :oo  t u r n from f l o o d t o ebb 20 45 June 12, 1975 s i t e (4) depth 11 - 12.2 m time - 1200 -2030  1200  r  June 12, 1975 depth (m)  0 2.00 4.00 ebb 6.00 8.00 9.10 11.00 12 .20 o 0 1330 2 0 0 4 0 ebb 6 00 8.00 9 .10 11.00 12.20 0 1400 2 .00 ebb 4 .00 6.00 8.00 9 .10 11.00 12.20 1430 0 2,00 ebb 4,00 6,00 8.00 9 .10 11.00 12.20 1500 0 ebb 2 .00 4 .00 6.00 8.00 1300  9 i mo  11.00 0.20 1600 12 2 00 ebb 4 00 6 00 8.00 9 .10 11.00 12.20  (cont)  vel.  (cm/sec)  IF 44 46 41  28 32 26 18 T5 41 46 •46 41  39 28 23  ~4ir  49 49 46 45 37 31 26 "4T" 49 46 51 46 42  28 24  ~W  46  51 50 46 39 30 26 51 57 51 51 49 49 39 28  243  June 12, depth (m) ^3°  ebb  2 .00 6.00 8.00  4 > Q 0  9.10  1975  v e l . (cm/sec)  v  flood °  4 6  x  49(turbulent)  28 2 8 44 51 49 49 46  p  9.io  36  s l l  1.00 1800 1-°;  40  32  ebb  4 5  00  4 > 0 0  6.00 8.00 9.10 11.00 1830 0 ebb 2.00 4.00 6.00 8.00 9.10 11.00 1900 0 ebb 2.00 4.00 6.00 8.00 9.10 11.00 2000 0 ebb 2.00 4.00 6.00 8.00 9.10 11.00  730 .,0  51 49 51  11.00 1515 12 0.00 ebb 2.00 4.00 6.00 8.00  June 24, 1975 s i t e (4) depth 42 m I.-?.' time 700 -1230 depth (m) v e l . (cm/sec)  (cont)  800  moved  46 41  39 22 36 41' 39 45 44 30 15 ^ n  \l  |r 1/d  \ \^ ^ 13 13 17 15 12 12 08  Ebb t o f l o o d a t 2040  -  ? ^  s  h t l  flOOd o  n  y  830  flood  Q00 you flood  18 24 30 36 42 0 6  12  18 24 30 36 42 6  42  0  ' 15" .14 .12  12. ..12/ . :  11 • 20 ' ov  . 27 ,24 .24 ;  • 2020 42  43 40 36 33 25  47  ^  6  18 24 30 36 420 930 6 f l o o d .12 18 24 30 36 1 2  42  flood  .4 ^ "•-  4 2  18 24 30 36  0  I  1000  ,.- @4^;-  1 2  18 24 30 36 42  47 38 36 35 240 5 44  4 1 |  45 46  47 43 34 29 44  I* 4 5  44 43 43 33 25  244  June 24, 1975 ( c o n t ) depth (m) flood  1 2  18 24 30 36 1100. flood  42 0 6 12  18 24 30 36  42 1130 0 flood 6 12 18 24  30 36  42 1200 0 flood 6 12  18 24 30 36  42 0 flood 6 12  1230  -*  J u l y 9, 1975 s i t e (4) d e p t h 2 8 . 5 - 31 m ; time  v e l . cm/sec) ^ 35 34 31 25 22 40 35 35 28  depth (m) 1030 ebb e  19 19 13 33 31  1145 • ebb  30  24 20 21  17 12 27 24 21 20 12 11 11 05  tr' 1 5  11 u u  0  2 8  5  3 0  10  31 31 28 31 10  31 0  2 9  5  3 0  28  15 20 25  27  29 27 13  31 P  35  32  2  27  20 25  2 5 2 9  31  28  17 35 35  3±  1215 ebb  0 5  0  10  30  15 20 25 310 1245 5 ebb 10 15 20 25 1315 ebb ;  27  26 26  34 17 34 37 29 29  28 10  31 0  3 8  5  37  1 Q  15 20 25  • 31  o^^0  ( v e l . cm/sec)  15 20 25  1100 ebb  1 ( n  2 8  •  31 32 24 16  245  J u l y 9 , 1975 depth (m)  (cont)  August 6, 1 9 7 5 ( c o n t )  v e l . (cm/sec)  depth (m)  1130 ebb euu  J 1 Q  3 0  15 20 25  1430 KK ebb  30 0  5  1 Q  15 20  25 30  nr-nr-  ebb  5  e b b  0 5  10 15 20 25 29  1545  ebb ebb  0 5  o  30 33 30  Tj m ao  12 ? 40 ^  | M H  ^ c  3  3  32 29 27 13 42  -P  1200  15 20 25  29  ebb  1100 KK  ebb  r  31 1300 ebb  09  0 2.0 '4.0 6.0 7-6 8.0 0  2.0  4 > ( J  6.0 7.6 8.0  35 32  31 27 33 26  6.0 7.6 8.0  28  26 15  :  3 6  2 0 _Q  33 3 2  6.0 7.0 7.6 8.0  2 8  21 21  ^  0  4  3 9  18  3 3  . .  0  3 8  1 ( )  31 28 26 23 33  2.0  33  16  33 33  0  KK  4 0  33 28  32 28 26 26 ,  6.0 7.6 8.0  1230  ebb  33 33  4.0'-  ebb  13 30 " ebb  August 6 , 1 9 7 5 s i t e ( I B ) depth 8 - 10 m time - 1030 -1815 IO3.O  0 2.0 4.0 6.0 7.6 8.0 0 2.0  ebb  J  v e l . (cm/sec)  33 46 39  27  0  39  2.0 4.0 6.0 7.0 7.6 8.0  1400  0  IKK  2.0 4.0  35  33 46 46 33 28  40 6 2 . 55 t u r b u l e n t K  6 - 0  7^0 7.6 8.0  3 3  f  33  46  31 29  2  28 28  31  ebb  2 , 0  4.0 6.0 7.0 7.6 8.0  6 5  '  59 49  36 22 17  n  246  August 6, 1975  August 6, 1975 ( c o n t ) depth (m) 1530 ebb  1615 ebb  v e l . (cm/sec)  0 2.0 4.0 6.0 7-0 7.6 8.0 0 2.0 4.0 6.0 8.0 9.0  9.7  10.0  Turned from ebb t o .645 0 1.700 2.0 'lood 4.0 6.0 7.0 7.6 8.0 0 1715 flood 2.0 4.0 6.0 7.0 7.6 8.0 0 1745 2.0 flood 4.0 6.0 7.0 7.6 8.0 0 1800 f l o o d 2.0 4.0 6.0 7.0 7.6 8.0  depth (m)  "6T 60  1815  flood  57  47 35 28 21  W  41  35 moved 33 i t i o n 19 09 07 07  pos-  flood  12  l^moved position  12 14 15 24 18 12  46 49 46  56 47 33 "6T 62 68 65 66 61 56  v e l . (cm/sec)  75 71 72 73 71 69 52  August 11, 1975 s i t e ( I B ) depth 6.68m time - 930 -l600 930 0 29 flood 2.0 32 4.0 34 5.6 37 6.0 27 6.6 25 53 0 1000 56 2.0 flood 5 5 4,  Q 9  10 07 12 14  0 2.0 4.0 6.0 7.0 7.6 8.0  (cont)  1030  5, 6, 6, 0  1115 flood  2.0 4.0 5.0 6.0 0 2.0 4.0 5.0 6.0 0 2,  1200 flood  8.5 0 2.  flood  1100  55  47 28  "5B"  61 61 51 36 T5 65 57 37 26  4 6 7 8.0  59 59 59 54 46  4 6. 7  ^5 45 47 40 35  8.0 8.2  33  26 18  247 -  August 11, 1975 depth (m)  1300  flood  0 2, 0 4.0 6.0 7.0 8.0  v e l . (cm/sec) 11  20 16  at  7.Q 50 0 49 ebb 2.0 43 4.0 31 6.0 12 6.5 14 7.5 59 0 1500 55 ebb 2, 54 4 37 5 22 6 20 6 0 58 1530 2 56 ebb 4: 44 36 5 6 25 6.3 23 55 0 1600 2.0 55 ebb 42 4,05.5 39 6.0 26 21 6.5 August 13, 1975 s i t e (4) depth 25 - 32 m time - 1030 -15-30 "3T 1030 0 36 ebb 6.0 34 12.0 28 18.0 10 24.0 01 25:5  1430  August 13, depth (m) 1100 ebb  09 06 03 03 03  Turned from f l o o d t o ebb 1315 q 27 1400 2 : 0 32 ebb. 30 4.0  6.0  (cont)  0 6 12 18 24.5 25.5.  1975  (cont)  v e l . (cm/sec)  29 19 19 18 04 03  Turn from ebb t o f l o o d at -1115 . T4~ 0 1200 19 6.0 flood 19 12 .0 17 18.0 17 24 .0 19 29.5  30.5  0 1230 6 f l o o d : .12 18 24 30 31 32, 0 1330 6 f l o o d 12 18 24 30 31. 12,  1400 flood  1530 ^lood  06 '31 30 28 30 29 28 24 22  To  36 35 31 30 27 24  19 32 29 27 19 16 11  6 6  T3  0 6  "26~ 13 12  12 18 24 30 31 12 18  24 29 '30*  09 07 03 -02  248  September 4 1975 depth 33 - 39 f t time - 1030 -1715  site  3  (IA)  depth . ( f t ) ; v e l . (cm/sec) ******  1030  ebb  0  30  :6  : 12: « 18 ' 24 30 33 1100 340 ebb 6 12 18 24 30 33 34 113° ° ebb 18 24 30 33 34 1230 g  64 64  62 59 57 53 362 5 62 60 59 55 50 28 25 % 63 60 57 53 32  6  1 2  ebb  eoo  1330 ebb  6i|  II 6?  1 2  18 24 30 35 36  1 2  18 24 30 33 340 6 12 18 24 30  36  60 60'  45 " 46  21  5  g  57 54 54 38 1557 59  l  57  l 5  £  47 27  September 4, 1975 depth (m)  v e l . (cm/sec)  ^11  0 6 12 18 24 30 35 1500 360 ebb 6 12 18 24 30 35 36 0 1530 6 12 18 24 30 33 36 1600 ° ebb  ebb  J  18 24 30 35 Turned 36 ebb 1615 1700  to  5690 52 52 53 51 43 193 4 50 50 44 45 30 18 17 39 40 37 32 28 18 13 12 29 25 15 13 12 10 f l o o d10at  - Very t u r b u l e n t  ™ f l o o d J6 18 24 30 34  (cont)  I"^ 53 37 40 33  249  October 8, 1975 depth 12- 13 m depth., (m)  0 2.0 flood 4.0 6.0 8.0 10.0 11.0 12.0 1215 02.0 flood 4.0 6.0 8.0 10.0 11.2 12.0 12. 2 1300 0 1100  flood  2.0 4.0 6.0 8.0 10.0 11.6 12.0 12.6  1345 • 0 ' flood 4.0 6.0 8.0 10.0 11.6 12.0 12.6  s i t e (2)time 1100  v e l . (cm/sec)  ebb  0 2.0 4.0 6.0 8.0 10 .0 11.0 12.0  1700!  October 8, 1975 depth (m)  70 68: .67 60 62 53 52 "So" 65 64 58 55 52 45 36 30 58 56 54 53 4.7 39  0 2.0 4.0 ebb 6.0 8.0 10.0 11.2 12.0 12.2 1700 0 2.0 ebb 4.0 6.0 8.0 10.0 11.0 12.0 12.1  19 "3F 31 27 21 10 0.9 09 07  4.0 6.0 8.0 10 .0 12 .0 13.0 1100 0 f l o o d 2.0 4.0 6.0 8.0 10.0 12.0 13.0  70  24 24  Turn from f l o o d to ebb a t  1430 1530  r  -  21 2 0 24 27 27 26 23 12  v e l . (cm/sec)  36 39 38 36 32 30 21 21 15 3 7 41 31 31 31 26 26 20 16  1600  November 5, 1975  site  depth 13 m time 945 - 9045 f l o o d 2.0  (cont  1100 46 40  36 43 35 25 23 14 32 23 22 15 16 20 06 06  (2)  250  February 20, 1976 depth = 13 m time - 900 1430 depth (m)  900 -  flood  1145 flood  0 2 .0 5 .2 7.0 9.0 11 .0 12 .0 12 .8 13 .0 0 2.0 4.0 6.0 8.0 10.0 12.0  site  (2)  v e l . (cm/sec)  72 51 64 64 64  59 51 36 21 59 5957 51 51 4i 28  0  t1330u r n e d . f r o m f l o o d t o ebb at 0 21 1400 21 2. 0 ebb 4. 0 26 28 68. 00 33 10 0 31 12 0 10 0 33 1430 0 2 51 ebb 54 4 0 68 00 49 4159 10 0 12 .0 10  252  Sediments s i z e d w i t h R.S.A. CRapid Sediment A n a l y z e r )  .•Cum. %  *  P i t t River(North)#4  0.0 4.00 12. 80 23. 20  0.64  0.75 1.00 1.25 1.50 1.75 2.00 2.12  40.00  54.40  74. 00 100.00  PLC #6  1.0 1.5 1.75 2.00 2.25 2.50 3.00 3.50  Cum. %  #10 0.43 0.0 0.50 2.99 0.75 13.79 1.00 26.44 1. 25 52.29 1.50 65.57 1.75 86.21 1.86 100.00 PRSC  PRSC #11  0.0 0.97 1.00 1.25 8.50 1.50 16.00 36.9 1.75 2.00 60.0 78.. 0 2.25 83.0 2. 47 4.00 89.6 PRC PRSC #8 1. 26 1.50 0.56 0.0 0.75 7.08 • 1.75 2 .00 1.00 16.81 2.25 1.25 25. 66 : 1.50 46. 90 2.40 1.75 62.83 PRC 2.00 84.07 : 1.26 2.18 100.00 1.50 1.75 2 .00 2.25 2.50 i 2.53 4.35  -I  0.0 1.02 8.77 21.54 32.62 47-60 84.31 100.00 #12 0.0 13.70 26. 03 42.81 83.56 100.00 #58 0.0 8.31 10.00 19.14 61.06 93.19 100.00 PRC #59 0.0 1.50 6.74 1.75 24.35 2,00 50,77 2.18 100.00  Cum.%  •  #60 1.18 0.0 1. 25 2.08 1.50 12 .47 1.75 21.30 2.00 34.29 2.25 65. 45 2. 50 91.95 2.53 100.00 PRC  PRC #62  0.51 0.75 1.00 1.25 1.50 1.75 1.89  0.0 9.79 22.68 36.08 51.55 71.13 100.00 PRC #63 0. 83 0 .0 1. 00 4 .37 1. 25 10 .92 1. 50 25 .14 1. 75 3 2.51 2. 00 45 • 90 2 .25 77 .56 2. 47 100 .00 PRC #66  0 5.3 0.75 1.00 1.25 1.50 1.75 1.84  0.0 8.42 15.17 35.39 58.99 79.21 100.00 PRC #67  0 .73 0 .0 0. 75 9 .52 1. 00 10 .08 1. 25 19 .76 36 .82 1. 50 1. 75 50 .39 2. 00 73 .64 2. 13 100 .00  253  PRC  0. 51 0.75 1.00 1.25 1.50 1. 60 PRC  0.47 0.50 1.00 1.25 1.50 1-75 1.78 r\  r-7 j —  V • / 0  PRC  0.47 0.50 0.75 1.00 1.25 1.50 1.75 1.88  FRC  0. 56 0.75 1.00 1.25 1.50 1.75 1.78 PRC  0.97 1.00 1.25 1.50 1.75 2. 00 2.18  #68 0.0 15.38 32.31 5 2.31 84.62 100.00 #69 0.0 1.12 6.74 24.72  26.40  39.33 62.92 100.00 #70 0.0 0.51 10.71 21.43 35-71 55.10 82.34 100.00 #71 0.0 1.25 12.50 27.06 42 .50 68.75 100.00 #72 0.0 1.94 11.63 28.68 42.63 65.50 100.00  Cum.%  Cum. %  Cum, PRC 0 .64 0 .75 1 .00 1 .25 1 .50 1 .75 .00 2 2 .12 PRC  0.97 1.00 1.25 1.50 1.75 2.00 2.06  #73 0 .0  4 .00 12 .80 22 .40 44 .00 58.40 77.60 100 .00  #74  0.0 1.65 14.50 35.00 54 .00 77.50 100.00 PRC #75 0.65 0.0 0.75 5.35 1.00 14.29 1.25 25.89 1.50 44 .20 1.75 61.61 2 .00 80.58 2.06 100.00 PRC #76 ' 0.57 0.0 0.75 3-02 1.00 : 15.09 1.25 24.90 1.50 40.75 1.75 53-58 2.00 .71.69 2.12 ' 100.00 PRC #77 0.89 0.0 1.00 6.32 1.25 20.00 1.50 42.11 1.75 60.53 2.00 86.32 2.06 100.00 :  PRC 0 . 84 1. 00 1. 25 1. 50 1. 75 2. 00 2. 12 PRC 1.39 1.50 1.75 2.00 2.25 2.50 2.73 PRC 0.62 0.75 1.0.0 1.25 1 .'50 1.75 2.00 2.25 2 .50 2.75 2.80  #79 0. 0 8. 06 : 17. 74 35- 08 4 9 . 60 6 9 . 76 1 0 0 . 00 #80 0.0 3-85 10.77 22.12 45.00 73.08 100.00 #81 0.0 0.74 5.18 8.52 14.81 21.11 30.37 48.89 65.93 94.81 TOO.00  1 .;  254  Cum. % PRC  24 25 50 75 00 25 50 56  #83  9-15  17-39 28.61 55.84 86.96 100.-00  PRC 64 75 00 25 50 75 89  #84  PRC 12 25 50 75 00  #85  25 39  PRC  0.0 5.56 17-78 31.11 55.56 74.44 100.00  PRC 77 00 25  50 75  .0.0 25  26  0.00 5.53  1 8. 4 6 29.54 44.62 8 0 . 62 100.00 #86  9 0 00 25 50 75 00 12  0.0 0.68  0.0 5-58 17.20 37.21 53-49  76.28  100.00 #87  0.0 2.86 8.57 17.14  2 7 .14 60.07  97-14 100.00  Cum. % PRC # 89 0.83 0.0 1.00 51..76 99 1.25 2 9 . 99 1.50 4 2 . 1.75 6l 2.00 5 9 . 86 2.18 100.00  Widgeon  0.43 0.50 0.75 1 . 00 • 152.05 1. 1.75 2.00 2.18  S.90  0.0 1.38 8.62 16.21 23.10 39.66 53.45 68.97 100.00  Widgeon S . 9 1 0 . 19 0. 0 0. 1 . 49 0 . 50 7 . 20 0 . 75 1 6 . 00 1 . 00 2 5 . 20 1. 3 4 . 80 1 . 50 5 2 . 00 1 . 75 6 6 . 40 2 . 00 8 6 . 00 2. 9 0 . 00 2 . 28 1 0 0 . 00  25  25  25  0. 0. 1. 1. 1. 1.  P L C #92 73 0. 0 1 . 16 75 00 8 . 91 25 1 9 . 37 50 3 4 . 49 4 8 . 84 75 00 7 3 . 64 11 100.  2. 2.  00  Cum.# PRC #94 2 .40 2 .50 2 .75 3 .00 3 .25 3 :50 4 .00 PLC 1 1 1 1 2 2 2  .18  .25 .50 -75  nn  .25 .47  00 30 00 00  0 . 1 . 00 11; 25. 39. 5 4 . 00 7 2 . 00 #96 0 .0 2 . 10 1 4 . 97 2 5 . 75 4 0 . In n 7 6 . 05 1 0 0 . 00  255 PITT LAKE - SEDIMENT SAMPLE LOCATIONS  Depth Contours 5 m 3 m  I km  256 LOG - PROBABILITY GRAPH OF GRAIN-SIZE DISTRIBUTION -6  64  -5  32  -4  -3  -1  -2  0  16  3  0.5  2  PUl VALUE  3  4  5  6  7  JO  I I 12 13  0.25 0.1250.0530.0310.DISO.0080.0040.002 MILLIMETERS  LOG - PROBABILITY GRAPH OF GRAIN-SIZE DISTRIBUTION PHJ VRLUE -6  -5  32  -4  16  -3  -2  _1  8  -1  1  2  3  1  1 "n T  4  5  6  10  7  L_  -}  4  0  2  1  '-T-' -T-"Tr' 1  0.5 0.25 0.1250.0630.0310.0160.0080. MILLIMETERS  T-  11  12  13  14  ZD  /  LOG - PROBABILITY GRAPH OF GRAIN-SIZE DISTRIBUTION a  - 6 - 5 - 4 - 3 - 2 - 1 0  64  is  e  2  0.5  PHI VRLUE 3  0.25 G.125G.0530.0310.0150.C0QO.G040.002 MILLIMETERS  LOG - PROBABILITY GRAPH OF GRAIN-SIZE DISTRIBUTION -6  -5 '  -4 1  -3  — : —  1  -2  -1  0  '  "  1  1 1  P-145  64  16  2 _  i  PHI VRLUE 3 A _  5  6  ~r-—*-j—  0.5  7  '  10  1.11,11,1.,,.  0.25 0.1250.0530.0310.0160.0080.0040.002 MILLIMETERS  U  12  I  13  14  258 LOG - PROBABILITY GRAPH OF GRAIN-SIZE DISTRIBUTION -G  -5  -4  -3  - 2 - 1  I  0  1  -J  2  PHI VRLUE  l  3  A  I  !_  S  0  7  B  9  -r —T'  T-  -  0.5  0.25 0.1250.0530.0310.0160.COaO.0040.002 MILLIMETERS  LOG - PROBABILITY GRAPH OF GRAIN-SIZE DISTRIBUTION PHI VRLUE -G  -5  -4  -3  -2  -1  0  1  0.5  2  3  4  5  6  7  q  9  0.25 0.1250.0530.031 0.0150.0030.0040.002 * MILLIMETERS  10  II  12  13  ;4  259  LOG -5  P R O B A B I L I T Y GRAPH OF G R A I N - S I Z E  -5  32  -4  - 3 -2  DISTRIBUTION  PHI vro.UE  r  l  16  -i 1-—-r0.25 0 . 1 2 5 0 . 0 5 3 0 . 0 3 1 0 . 0 1 5 0 . 0 0 8 0 . 0 0 4 0 . 0 0 2 H1LLIHETER5  0.5  LOG - P R O B A B I L I T Y GRAPH OF G R A I N - S I Z E  DISTRIBUTION  -S  4  PHI VALUE  -5  -4  -3 -2  —*•  1  -1  1—  0  I  1  •  2  •  3 •  i  _  5  6  7  8  9  0.25 0 . 1 2 5 0 . 0 6 3 0 . 0 3 1 0.0150.OOBO.0040.002 H1LLIHETER5  CHART  MO  ifin  10 11  12 1 3  14  '***  0.0  WFT_ kT  OPV WT  "io'ob.oooo '• " 100.0000  PEPCE ?|TAGE COMPC SI T I ON GRAVE _. SAW  SILT CLAY MUO S / M  Q  "  SALT_  o.b  65 12 23 35 29  MOMENT P-"C!MENT FOLK P-f-Olf. I [.:•',/.--J  J3k GA_N IC o. o  0.0  0.0  TABie OT STAT I ST 1CAL  ^ 0  22. 63. 14. 77. 0.  3.6200 100.0000  MEAN "5.79256 5. 77423 5.62766 5.62721 5. 572 7(5 5.57227  P-lWAf: K'.UMf-ElN P-KPUM. FOLK ITPAfiSFOPMEO) P-FCILK tTRANSFORMED)  DATA IN P MI  MM  FKALTIDN  PHi  O.'2'5Ob0a  2T000 2.498 0-125000 3 . 0 0 0 , 0.Coo 000 3. 506 0.062500 4 . 0 0 0 0.044000 4 . 506 0. 03 I 000' " 5 . 01 2 0. 1 77000  0T3'^7j-Co  DTsTjr  WT.1GMS )  UMCOR  COP  6T530  6.330 0 . 040  0 . 040 0 . 100 0 . 150 0.200 0 . 173 D".3'.'l  cr.T?:5  , p.lOp 0.150 0.200 0 . 173 0 . 341  'TUT;  6 . 002 6. 506 7.002  0 . 714 C~"OT"  0 . 714 0.057 0 . 514  ",'.005500  /.DUl>  0.200  U.i'OU  8. 002 8.533 D. jJ)SU5.QQ 9....P4Q 0.0013 h'J 5.5C1 0.000960 9.995 0.000690 10.501 0 . 0 0 0 4 9 0 "10.995 " " 0.00CO61 1 4 . 0 0 0 TOTALS 0.003900 0.002700  0.  514  wT . P C T .  COR  J.'j'iS 7.347 4.591  L INt AR EXTRA P.  PSOBAblILITY  MM .  5. 0 10.0 16.0 25.0 50.0 75.0 '"" iS4."0 90.0 95.0  SAMPLE  WEIGHT LOSS JUE TO HANDLING ' GRAVEL CCRREC I I ON FACTOR " ' SIZES ELIMINATED KO.Olt) TRASK SORTING COE FFK IEiNT USING PR" DBA6IL I TV EXTKAf>. MEAN CUB t 0 DEVIATION USING PR06ABLITY FXTRAP.  PERCSNTIIES  IS  OF BARGRAPHS  C. 01 5600 0.01 1000  0.007830  UNI  STO DFV SKi: V.NESS KURTOSIS 2 .43440" " "0. 5 09 19 3.44447 2.31737 0 .36838 2. 97328 2.41173 0.00397 1.30856 2.38469 0.01222 1.29174 2 . 2 C 4 1 7 - 0 . 074 70 0. 96075 2. 19479 - 0 . 0 7 5 0 9 0. 93552 2.00530 ~-0 .134'b7 " 0 . 2 0 7 3 5 " ' * 1.996 74 - 0 . 1 3 3 8 7 0. 20680 0.566S3 0 . 56365  OAT A FOR CQNSTN Slit  MU I S TUP, E _ ~0".0~" (&-A»SJ 0.0 (PCT WET K I |  MUITIMOOAL  "0. 0. 0. 0. 0. 0. "0. 0. 0.  29265 18966 096P2 05 2 59 01874 00805 00456 00206 00073  0.0 1.000 NONE 2.555  PHi UNITS 1. 772 76 2. 39E53 3. 36F61 4.24898 5. 73743 6. 95614 7. 7 7695 8.92047 10. 41642  MM.  0.26576 0 . 16923 0.09622 0.05236 0.01S75 O.OOS08 0.0C459 0.00207 0.00074  AND CUM. CURVES  WT.PCf"  CUMUL.  MID PH 11L IN LAP.)  PHI  MM  WTO'PhTTPKUST}  PHI  MTJDT  MM  9 . 116 9 . 116 " 1.751" 0."2 97 0 7 " i . 9 2 6 " " 0 . 2 63 l"8 1" 1. 105 10. 221 2. 249 0 . 2 1036 2.2 54 0 . 2 0960 0 2 ,762 12.983 2. 749 _.0«J^eX5_JLt-7U0 O.Xiafcg 0 . 4 . 144 1 / . 12 7 3. 253 0.i04"ib 3.2o5 0.10404 0 5.525 22.^52 3.753 0.07416 3.764 0.07363 1 4 . 775 27.427 4.253 0. 05244 4 . 260 0 . 05221 _ __0_ 9 . 43 2 """"3 6. 85 9 4 . 75 9 0 . 0 36 93 ' 4 . 76 7" " C . 0 3 „ 73 " 1 "" r~VX—^Tfol,——ZTTZhTZ 572T'I 0.0"2u5"S 19. 732 60.537 5 . 754 0 . 0 1 8 5 3 5 . 754 0. 0 1U53 1_* 1. 577 6 2 . 1 15 6.254 0. 013 10- 6 . 254 U.OUU 0 14. 207 76.322 6.754 0.00926 6.741 0.00935 1  T~  5.H25  C l . 1)4/  / . 2 54 _  0 . U Ut> 5 5 _ ' . i 4 4  l'.-QW->9  0 . 143 b.145" " 3 . 946 8 5 . 793" 7 . 7 5 4 0.00463" 7.744 0.00466 0.086 0.086 2.369 38.162 8 . 2 6 8 0 . 0 0 3 2 5 8 . 2 5 9 0 . 0 0 5 2 6 Q..UH6 0. 086 2.3u7 90.529 3. 78b 0.0022 7 8.776 0.00223 0 .05 7 0.057 1 . 579 52. 10 ft 9 . 2 7 0 0 . 001 o2 9.2 <• 3 0 . 0 01 6 3 0.057 0.057 1.579 93.UBO 9.748 0.00116 9.737 0.00117 0.057 0.057 1 .577 95.264 10.248 U.00082 10.234 0.0OJ83 0.057 " 0 . 0 5 7 " 1. 5 7 9 ' " 9 6 . 8 43 10. 748 0. 00058 1 0 . 7 2 8 0.00J59 0.114 0.114 3 . 1 5 7 100.000 12.497 0.00017 11.464 0.00U35 3.620 3 . 6 2 0 100.0  U  O"  0  0 0"""~ 1 0 " 0" 0  FXTRAP.  PHI UNITS " ~ 1 . 9 1 18 i 2.40i S0 3.3774 S 4.25^41 5 . 7 3 70 8 6.95100 7". 76 707 8 . 9 1 0 10 10.40793  UET WT  OF Y WT  "lOCO.'OOOO' "' 4.8o00~ 100.0001 100.0000  PE.-.CENTAGE C0-.P0S1 TIO.M "GPAV5L SANO  SILT CIA* MUD S/M  O'.'O 34.63  53.4 7 11.90 65.37 0.53  TABLE  **•'  0. 0  0.0  PI**  OF  SALT  ORGANIC  "6.0 ' 0.0  STATTST'ICAL  OAT'ATN  Kf AN...^ STO OEV 2 .50875 "MOMENT 5.22997 P-'WENT . 5 , 21929- " 2 . 4 2 3 5 4 2.42763 FOLK 5.04375 P-FQLK 5.05297 2.40780 INMAN 4.59458 2 . 28677 P-IM^AN 5.00e84_ 2.26414 KPuH'Elri"" ' ' " 2. 42 101 P-KFUM. 2.41223 FOLK (TRANSFORMED) P-FOLK (TRANSFORMED)  WEIGHT LOSS J U F 10 HANDLING " GRAVEL CORRECT I CN FACTOR SIZES ELIMINATED K O . O l ' i ) TRASK SORTING COEFFICIENT USING PROBABILITY F.XTRAP. MEAN CU8E0 DEVIATION USING PROBABLITY E XT R A P •  MOISTURE  "O.O" CO  0.0 0.0  P Hi"  (GRAMS)  (PCT WET WT)  "TEia'rNTlTf?  UN I T S  KUP.T0S1 S 3 .88768' 1.01353 3.48396 0.52001 1. 06205 0.11248 0.11B81 1.03965 - 0 . 06450 0. 85328 -0.05847 0.85939 -0.47415 " 0 . 2 6 1 6 5 -0.47733 0.26105 0.51523 SP-EWNE S S  MULT j,100AL" SAMPLE  L IN'ErpTT>TTKA-p-7 MM .  5.0 10.0 16. 0 25.0 50.0 75. 0 "84.0 90.0 95.0  "0.22834 0. 1 7632 0 . 15 306  "onrrrr 0.02832 0.01267 " 0.00643 0.00232 0.00064  FRACTION PHI  WT.IGKS)  UNCOR  COP  MM. 0.22101 0.17O04 0. 14920 T . 12 195 0.02034 0.01276 "0.00647" 0.00233 0.00065  PHI UNITS 2. 1 3076 2. 50374 2. 70782 3. 03374 5.14208 6. 3021 1 7.28135 8.74946 10. 60678  0. 51448  Wl.PCT . COR  WT.PCT . CUMUL .  MID P H K L I N E A R ) PHI MM  MID P HI ( PK O B . ) PHI MM  MOOE  0 .0. 263 79 0.29707 1.923 3.279 1.751 0. 160 """"3 ."279" 0. 160 0 . 20->03 0 2.300 9. 836 0.21036 2.249 6.557 0.320 0.320 O.L7700O 2.4";e 0.143 07 1* 2. 785 24. 590 2. 749 0. 148 75 14.754 0. 720 0.720 0.125000 3.000 0.6Jt..6oo—TTStt iJTTuO' CT7TTO CTTTB—TtTTTTS—3T75T—0. 1 0458—TTZoTS 0.10,3E~ 'TO. 73 8' 0.07.2500 4.000 0 . 190 0 . 190 3.893 34.631 3. 753 0.07416 3. 756 0.07..01 0.044000 4.506 0.400 0.400 8 . 197 '-2. 828 4.203 0.05244 4. 257 0.05230 " 0 . Q'i 1 COO"" "5^0 12" 0. 1 B O " " " " 6 . 1 8 0 " i. !.><•> « . 3 16 " 4. 759 0.03693 4. 760 0.03^91 5.257 0.02^14 3 . 0 2 6 12 5.259 0.022000 5.506 0. 644 0.644 1 3. 2U0 3 9 . 7 2 2 5. 74 7 0.01353 0.0 l i ) 6 1 70.287 3.754 C.015600 6.0C2 0.51O 0.51o 10.565 ""0.38 7 254 "DTolTfO 6 . 7 4 4 ~"0"T0T3T9~~ 0 . 3TT7 ~7oTZ 1 cr 0.011000 6.5C6 0 .00)31 7,. 7 4 7 0 . 0 0 9 2 6 75 -O.-UJ 0. )07"OO 7.0 02 B2. 172 6 rrur 63. 4 73 T72~34~ T T . 0 00 3 3 7.24o 0 . U 635 9 0.005500 7.506 o. l o T 0.004 63 7.747. 6 . 0 3-1 66 0.129 C 8 . 1 1 5 7. 754 0 . 0035.JU ' 8 .002 " 0.129'" 2 . 6 4 1 0 .00325 0 . 0 0 3 26 8. 262 8 . 268 0. 064 89.43 6 0.002700 8.533 0.064 1.321 0.002 27 _8.7B_0__ _0. .0,02 2^7 8. 787. 0. 06 4 0.001900 9.040 50.756 0. 06 4 1.321 204 0 . 0 0 1 6 2 0. OOi 63 9 2 . 0 7 7 9 . 2 7 0 1. 32 1 0.064 0. 07.4 0 . 00 1 3>'0 9 . 5 0 1 0.001 1L> 9 . 73 9 0.00117 93.3 98 9. 74!) 1.321 0. 064 0.000580 0.064 9.95 5 0.00JP3 9 4 . 7 1 7 1 0 . 2 4 8 0.000H2 1 0 . 2 3 7 1.320 0 . 064 0.00065U 10.501 0. 064 0. 000 58 10.734 0. 0033 9 5 o . 0 3 8 1 0. 74 8 1.321 0.330490 16.995' "0.064 "0. 064 0.0004 I 1 1 . 2 3 7 0.00341 57.339 11.259 1.321 0 . 064 0.064 0.000340 11.522 -O^OCUZu„l.an...17iO2 . 6 4 1 . 0 . 129, 0.129 O.OOOOtl 14. 000-. 4.680 4.880 100.0 TOTALS "0.2 50000 • 2 . 0 0 0  0.3 1.000 NONE 3.104 3.091 16.003 13.096  n^o"S'ian'rrrY~r7Trrir--  DATA FOR CONSTN OF BAR GR A P HS AND CUM. CURVES SIZE MM  '"  «'*«"  ****  PHI UNITS 2.17783 2.50598 2. 74470 3.03560 5 . 14124 6 . 29211 " 7 . 2 7298 R. 74343 10.59768  *"*»*  0.0  WET WT _ DPV WT _ _SALT_ "lOOO.OOOO" 6 . 3 3 0 0 """' 0.0" "" 100.0000 100.0000 0.0  PERCENTAGE CUMPOSITICN GRAVEL SAND SILT CLAY MUO S/M  TABLE  OF STATISTICAL  ORGANIC "" " O . O " " ' " 0.0  OA TA  PERCENTILES  0.0  26.97 53. fa3 9.20 6 3 . 03 0.59  P-FCLK 4.73492 INMAN 4.05614 P-INKAN 4. 87347_ "'KFUME FI N " " 1 . 6 P-KRUM. FOLK (TRANSFORMED) P-FOLK (TRANSFORMED)  1.92434 1.62699 1.6074B 1 0 0 4 1 .59916  0.40346 0 . 24532 0.25858 0.18463 0.18154  1.4 0 4 3 T " 1.30008 1.30047 0.22709 0.22619 0.58527 0 . 58403  • i  *>*"  WEIGHT LOSS DUE TO H A N 0 L 1 N G _ _ 0 . 0 GRAVEL CORRECTION FACTOR ' " """ I• OOO S U E S ELIMINATED K O . O I S . ) NONE TRASK SORTING CPcFFf.CIFNT 2.124 USING P R O I i A t m i T v F.XTRAP. 2.113 MEAN CUBED DEVIATION 19.303 USING PRORABLITY F X T R A P . IS.238  MOISTURE " 0 . 0 " (GRAMS F ~ 0.0 (PCT WET WT1  IN PHI UNITS  '*"MULt I MODAL ~SAMPLE  5.0 10.0 16.0  -2-5TO"50. 75. 84. 90. 95.  0 0 0" 0 0  PRUBA&LlLlTY  LINEAR F X T R A P . MM. "'6. 15332 0.12387 0.10664  "UTtreTOT0.04553 0.018P6 0.01118 0.00449 0.00086  PHI UNITS_ 2.70542" 3.01307 3. 22915 3. 55482 4.45700 5. 7263 8_ 6. 4 8313 7. 79884 10. 18982  MM. "0.14483 C . 12344 0.1C3 9 5 0 . 0 84 79 0.0455 1 0.01899 0.01120 0.00452 0 . 0 0 0 86  EXTRAP.  PHI  UNITS_  2.78750 "  3.01810 3.2o599 3.3599 I 4.45780 5.71878 '"""6. 4 8096'"" 7.79026 10.16350  G  DATA FOR CONSTN OF BARGRAPHS AND CUM. CURVES SIZF MM  FRACTION FH1  0.250000 2.000 0 . 177000 2.498 0.12 5000 3.030 "a.uclkLiUli " ' 3 . 5 1 6 ' 0.062500 4.000 _0.044000 4.506 OjOJJCOO" 5.01? 0.022000 5. 5 f t _0. 01 5600 6. 002 O.'ulToOO o'.5C6 0.-1O7°.:-!.-| 7.002 _C.005500 7.506 0 . 0 0 3 9 0 0 " 8." 002 0.002700 8.533 0.001,900 9 . 04C 0.001380 9.5C1 C.0C0980 9.995 0 . 0 0 0 6 5 0 1 0 . 501 0.000490 10.995 0 . 0 0 0 3 4 0 11.522 0.00006 1 1 4 . 0 0 0  C7  TOTALS  WT. (GMS) UNCOR C OR  1  WT.PCT. COR  WT.PCT. CUMUL.  MID P H I ( L I N E A R ! PHI MM  KID P H I l P R C B . l PHI MM  "MTTJE  6731 6 "0.316" 1.75 1 0.29707 1.894 0.26915 0.020 . 0 . 020 1. 422 2.249 0.21036 2.333 0.19845 0.090 0. 090 1.738 7. 899 2.749 0 . 14875 2.827 0.14394 0.530 0 . 500 9.637 " 3 T 7 5 3 T57TCT433- T 7 7 B 9 - T77TTJ77T" U.B90' WtT r.04B 3 . 7 6 5 0 3 6 . 9 6 7 0 . 0 7 4 1 6 0 .07553 3. 753 0.840 0. 84 0 13.270 4.2 57 C.05232_ 1*_ 5 1 . 4 0 7 Jt_. 2 5 3 0.05244 0.914 0. 91j^ _14 .4 40 r 0 "416 "5 7.9 78" 4 . 759" " 0 . 0 3 6 9 3 " " 4 . 7 5 8 " 0 . 0 3 o 9 6 0.416 6.571 0.02^2 8 T .U73 13.7HO 71.706 0.0^612 l!7j •j. 259 5 . 25 0 .457 457_ _ 7 . 223 _7_8.9 89 _5.754_ 0 .013 5 3_ _5_. 744_ O.OlfiftS 5"."2 5 i " 8 4. 2 4 2" " 0 . 0 1 3 10 6."333 6 iii 6."2 3 4 6 .24 3 2.626 Sc.868 0 . 00926 0.166 0. 166 6. 754 6 . 747 , 0-0Q7 3H 0.125 0.125 1.9/0_ O U . U i B 7.254 0.00655 7.247 O.OOL.58 0 . 125 0 . 125 1 . 970 "" 9 0 . 808 7.754 0.00463 7.746 0.03.66 0.083 0.0E3 1.313 92.121 8.268 0.00325 8.260 0.00326 0 . 342 0.042 0.O56 92. 777 8 . 786 0.00227 8 . 782 0.00227 0.063 0 . 0 8 3 1 . 3 1 4 9 4 . 0 9 1 9 . 2 7 0 0 . 0 0 1 6 2 9 . 2 6 1 0 . O O l 6 3 1 C.042 0.042 0.656 94.747 9.748 0.00116 9.742 0.00117 0 0 . 042 _0.042 0.656 95.404 10.248 0.00082 10.241 0.003P3 -0_ 0.042'"" ' 0 . 0 4 2 " 0 . 6 5 7 9 6 . 0 6 1 10. 748 0. 00058 10. 740 0.00358 I 0.042 0.042 0.656 96.717 11.259 0.00041 11.249 0.00341 0 0.208 0.208 3.283 100.000 12.761 0.00014 11.908 0.00326 0 -  O  6.330  6.330  100.0  or  SIEVE,  Pril  SH. PIP.,  SEDIGRAPH  SAMPLE WT.=  4.8300  P C T . CUMPCT..  1.50 0 . 21 2.00  0.21 0.41  2.50  0.62  __ 1.65 3.50 3.10 _ _" _ " 53 .^3 1 3 _ _ _ "' 4.00  *  4  »»*  6.41  5.00  26.47 18. 14  5.50  44.61 14.32 58.94 .  T^Z 1U.S0  *,»»»*,»»».  6.50 "5.73  69.44 " 75.17  5.73  60790  7.00 7.50  .-..»»*----  4.77 8.00 •""'  *»» S5.68  i.82 6.50  *V* 89.50  U91  ~9To5  »*  9T741 1.91  **  9.50  9 3.32  10.00  55.23  i5  _  4.77 '_*> T I T o o T o o T o o MEAN S T . D E V . SKEWIESS KUPT0S1S  0.05  1.73  PERCENTILES  0.27  0.26  KRUMHE IN + PETT UGHNt 19 38) MUNENT MEASURES FOR SIZE RANGE 2 . 0 TO 10.0 PHI  0.36  1 .37  FOLK GRAPHIC S T A T I S T I C A L E ULK_ A NO HARD. 195/  MEDIAN (f^)  STH  3.79  75TH  PER  CENT  GRAVEL  0.0  SANO  /6.41JSILT  —  GRAVEL  •• SANO  6.41  16TH  6.99  SILT/lSILTtCLAYI  84TH  4.63  2 5T H  7.82  (79.63) 1 7 9 . 2 6 )  ••  84.69PCT  PARAMETERS  95TH  4.95 9.94  ^ CL A Y (^13.96 y  -,-)  GRAV » SAN J/S I LT+C" LA Y  **** Pin-  WE T * T "1000.0000 100.0000  '««•  0.0  0.0  18  ****  DRY WT ' 3.5400 100.0000  SALT 0.0 0.0  ORGANIC 6.0 0.0  WEIGHT LOSS DUE 10 HANDLING GRAVEL CORRECT ION FACTOR SIZES. ELIMINATED ( < 0 . 0 1 * l TRASK SORTING C O c F F E C I E N T U S I N G P R O i U h U I TY ExTKAP. MEAN CUBEC D E V I A T I O N  MO ISTURE 0.0' (GRAMS ) 0.0 (PCT WET WT1  U S I N G  PERCENTAGE COMPCSITION  TABLE  OF S T A T I S T I C A L  . 0.0 10.73 6'/. 21 20.06 89.27 0.12 ._ _ _  DATA  PER CENT IL ES  IN PHI UNITS  src CEV SKfcWNESS_ KUR10SIS 3.75640 MCMFNT 2 . 3 3 2 6 3 " ~ 1 . 0 0 816 ~Qb.40609J P-MCMENT 0.91829 3.25227 2.21769 FOLK 6.43950 0.43590 1.31216 2.26371 P-FOLK. 6.44436 2.25597 0.43669 1.31b97 IHMAN 6.77205 2.17206 0.45931 0.78923 P-IfiMAN _ 2.16068 0.46496 0.79554_ K f r . , , N - — 1 . 7 9 8 2 9 ' *"G."37225 *~'0.2u021 P-KPUM. 1.785e9 0.37558 0.19929 FOLK. (TRANSFORMED) 0 . 56750 P-FULK (TRANSFORMED) 0.56877 ^  GRAVEL SAND SILT CLAY MUO S/M_  —  -  »  6.77924  DATA SIZE MM  FRACTION PHI  FOR CQNSTN OF BARGRAPHS WT.(GMS) UNCOR COR  WT.PCT. COR  5. 0 10.0 16. 0 25.0 50.0 75.0 "84.0 90. 0 95.0  3.540  3.540 100.0  P R O B A BL I T Y  LINEAR MM. 0". 08 893 0.06534 0.04123 U . 03 2 74 0.01827 0.00609 "0.00203 0.00098 0.00041  1 3 . 5 5 8  E X T R A P .  EXTRAP.  4 . 9 3 2 6 0 7 744  1 0 . 0 1 5  P"uJ0AeL IL ITY F X T K A P ,  PHI LN 1 TS_ 3. 491 1 5 3.93581 4.55598 5.  0.0__ 1. 000~ NONE 2.320 2. 3 0 6  0  7. 3 6 0 4 9  ~ 8.9441 f " 9.99655 I 1. 2 6 3 8 1  MM. "0.08869' 0.06474 0.04071 0.05247 0.01827 O . O O o l l_ 0.00204" 0.00093 0.00041  PHI U M T S _ ""3.49505" 3.94914 4. ;>! 856 4 . 94.4 7 "3"" 5. _  7 7 4 6 0  7. 3 5 5 6 5 "9.93992 9 . 9 9 6 1 5 1 1 . 2 5 4 2 3  AND CUM. CURVES  WT.PCT. CUMUL.  MID P H I ( L I N E A R ) PHI MM  '*OT2"5CCrOO " I T O O O "6T0TO OTOl'O 0.282 "0.28*2 1.751 0.177C00 2.49E 0.020 0.020 0.565 0.647 2.249 .0.125000 3.HOC 0.050 0.050 1.412 2.260 2.749 0. C'icOOj 3. 506 0 . 100 0 . 10U 2. 62 5 a. o « 5 J.253 0.062500 4.000 0 . 200 0.200 5.650 1 0.734 3. 753 0. 0 4 4 0 0 0 ^ 4 . 5 0 6 0.097 0.097 2.733 13.4o8 4.253 "6".'631 00'0 " 5 . 0 1 2 0.4f 4 0.~484 "13". 662 " " 2 7. I 3 0 " ' 4 . 75 9 0.022000 5.506 0.548 0.54b 15.4B4. 42.6T4 57259 0.015600 6.002 0.484 0.484 13. 664 56. 2 7 8 5_._7 54 0.01100U 6.506 0 . 355 0 . 355 10.0^0 66.298 6.25"4 C. 007800 7.002 0 . 193 0 . 1 93 5.465 71.7o3 6.754 0.00550C 7. 506 0 . 161 0 . 161 4. 555 76.3 18 7.254 0.303900 8 . 0 0 2 " 0 . 129 0 . 129 " ' 3 . 643' 7 9 . 5 6 1 7.754 O.0O2700 8.533 0.064 0.064 1.822 81.783 H.268 Q.01190U 9.040 0.097 0.097 2. 733 64. 516 6.786 0 . 001360 9 . 5 01 0. 09 7 0.09 / 2. 732 8 / . 2 4 7 9 . 270 C. 000960 9 . 995 0.097 0.097 2 . 733 89.980 9.748 0.000690 10.501 0.097 0.097 2.733 92.713 10.248 0.000490 10.995 0 . 0 6 5 "" 0 . 0 6 5 1 . 8 2 2 9 4 . 5 3 5 10.74B 0.000340 11.522 0.032 0.032 0.911 95.446 11.259 C.000061 1 4 . 0 0 0 0 . 161 0 . 161 4.554 100.000 12.761  -..-.-LQIALS.  **** M J L T I MOO'AL~~S"AM>UE"""«»«*"  MID P H I l P r i O E . ) PHI MM  0.29707 i . 8 91"" 0.21036 2.307 0.14875 2.800 0 . 10488 3.294 0.0741O 3 . 788 0 . 0 52 4 4 _ 4 . 263_ 0 . 036 93 4 . 7 65 0.02oI2 5.269 0 . 0 1 353 5 . 7 55 0*701310" 6.25*0 U.U0926 6. 750 0.00655 7.249 0.00463 7. 748 0.00325 8.264 0 . 0 0 2 2 7 8. 780 0.00162 9.2o3 0 . 0 0 1 16 9 . 737 0.00082 10.233 0 . 0 0 0 6 8 1 0 . 734 0.00041 11.249 0 . 0 0 0 14. 1 1 . B99  MODE  ' 0" 2 69 55 ~ 0 0.20205 0 0.14357 0 0 . IJ19 4 "" V 0. 07242 1 0 . 0 52 0 8 0_ 0 . 0 3o 2 7 " ~ 0 0.02i~9"3 0 . 0 16 52 0 Cf. 0 1 j (~~ 0~ O.OO-J-W 0 0 . 0 Ou 5 8 ~ ~~~ 0.00465 " ' 0 0.0O>25 0 C.00228 1 0.00163 0 0 . 0 0 1 17 1 0.00J83 0 0 . 0 0 0 5 9 0 0.00041 0 0.00026 0  1  SIEVE,  PITTi g  PHI  2.50  SAMPLE WT.=  4.0100  P C T . CUMPCT.  "TTso 2.00  S H . P I P . , SEDIGRAPH  0.25  0.25_  "0.25  3.30 3.50  0.50  0 . 25  0.75  3.50  *<•*  4.24  6.49  4.00  " *»*•*'*  10.74  *******  iiii  " 4 7 5 0 11.72 2 0 . 6 5 ********** 5". 00 3 2.3F. 15. 3 3 - . » * * » * . - » * » » « » » • 5.50 47.70 f****** 11.72  -T700 6.50 7.00 "7750  8.00  59T43  7.21  *******  66.64 4:"5i"~ 71.15 4.51  *•-"<•  2.70  78.36  2 770  8.50 -9700 .  9.50  81 . 0 7 .61  84.67  1.80  66.48  10.00 10750 11.00 _ 11.50 12.00  *****  75.66  68.28 1-30  90.08  l.SO 1.80 "  91.89 53.69  1 .80  95.49 4.51 • oo__ 10_0.00_  MEAN "TT 7  ST.DEV. )  2708  SKEWNESS  K.URTOSIS  OTSO  KRUMBE I M + PETT 1 JOHN ( 1 93 6)  5741  MONENT MEASURES  TtfOC STATIST I C~AL 1PARAMETERS FOP. S IGRA Z E PHIC RANGE 2 . 0 TO 2 . 0 PHI POLK AN C WARD,1957  PERCENTILES  MEDIAN  5.60  5TH  3.56  16TH  4.27  25TH  4.69  n PITT20  SIEVF, 5H. P I P . , SEDIGRAPH  SAMPLE WT.=  3.2600  r. 5  Pril  PCT.  CUMPCT.  <  1.30 0.31 2.0u 2.50  " 6 . 92'  o  0. 31 1.23 *  1.23 3.00 3.50 4.00  2.46  2.46  **  4.92  "3.69  8.60  3.73 4.50 5.00  _  5.50  12.33  ***********  11.19 2 3 . 52  15. US  if if it  13. 99 6.00  ************** 53.3 7  9. 3 3  6 . 50 7.00 7.50 6. 00  *********  6 2 . 69 6.53  ******* 69.22  4 . 66  *****  73.89  ****  3. 73 77.62  ****  3 i 73 61.35  B . 50  ***  2.80 9.00  8 4 . 15  *K*  2 . 80  9.5a  66 .94  ***  2.80 89.74  10.30  ue7 13.30 11.00  *r  91 .61  1.57  »*  93 . 4 7  **  1.87 11.50  95.34 0.93  *  12.30 1 2 . 00  96.27 3.73  MEAN V  (  "  * * * * * * * * * * *  3 9 . 38  ST.OtV.  b . f j j  6.51  PERCENTILES  **#*  100.00  2  .01  2 .27  SKEWNESS  KUPTOSIS  0 . 37  0.20  KRUMBF I N » P E T T IJOHNt 1938) MuNt NT MEASURES FOR SI2E RANGE 2 . 0 TO 1 2 . 0 PHI  42  1.57  FOLK GRAPHIC STATISTICAL PARAMETERS FOLK AND WARD,1957  ~~6~:  MEDIAN  5.88  5 TH  3.51  1 6TH  4.1.6  251 H  5.05  "'  SIEVE, SH. P I P . , SEDIGRAPH  PITT21A  PHI  SAMPLE WT.=  5.1100  P C T . CUMPCT.  1.50 0.20 2.00  _O  ,Z0  0.59  2 . 50  0. 76 1.17  Z.T>  3.50_  4.70  4.51" 4.00  9.00 4 . o4  "TTSO  13.64  1 1 . 14 5.00 ' " "17.64 5.50  24.79 42.43  if  TToo  sTTrT  12.07 6.50  69.36  "  >****#"*  7.43 7.00  7 6 . 79 6 . 50 63.29  TTiO  3.71  8.00  ""2. 79"  8.50.  87.00 89.79  2.79 9.00  1.86  9.50  92.57 94.43  1.86 10.00  96.29 3^71  12.00  100.00  _ME AN  ST . D E V .  5.87  1.4 9  0.20  0.25  KRUMBF. IN + PFTT 1 JOHN 1 I 93 8) MOMENT MEASURES FOR S U E . RANGE 2 . 0 TU 1 0 . 0 PHI  5.99  1 .67  0.25  1.42  FOLK GRAPHIC STATISTICAL FOLK AN C WARp, 1 957  PERCENTILES  PER  SKFWNE SS> K U P I G M S  CENT  GRAVEL  MEDIAN  SAND  GRAVEL  «• SANU  5.75  9.00  5TH  3.54  75TH  6.88  9.00  SILT  S I L T / I S I L T + CLAY)  L6T-H  4.61  84TH 78.28  85.7.1PCT  7.60  ( 78.00)  PARAMETERS _ 25TH 95TH  CLAY  5.01 9.65  12.72  GRAV*-SAND/S ILT + CLAY  I  13.001  O } SIEVE,  PITT21B PHI  4.0j  1.67  3.5900  ** 1.67  """2.75"  5.79  5.00  *«**:**********  10. 62  6.50  5.79  7. 00  9. 50  3 . 86 3.86  11.00  ***** ****** *•**  76.84  4 . 83  to  *****  81 . 6 6  "4783'  10.50  ********  72 . 5 8  3 . 86  9.00  **»-*»  67.19  5.79  8 . 50  ***********  48.05  62.36  4 . 83  8.00  *************  38.24  54.64  7. 72  7 . 50  ******  25.69  12.55  6.00  **  6 . 39 12.13  13.51  5. 50  \  ***  4 .46  1 .93  4 . 50  10. 00  SAMPLE WT•  P C T . CUMPCT.  3.00 3.50  S H . P I P . , SEDIGRAPH  oo  *****  86.49  ****  50.35  ****  94.21 I .93  11.50  3 . 86  1 2 . 00  ** 9 6 . 14  ****  100.00  MEAN  ST.DEV.  SKEWNESS  KUP.TOSIS  1  5b j 7 . 16  1 .59  0 . 22  -0.74  2.22  0. 34  1.23  PERCENTILES  PER CENT  MEDIAN  GR AVEL  0.0  6.60  SAND  K.PUMRE INfPETTI JOHN ( 193 8) MONENT MEASURES FOR S I Z E RANGE 3 . 5 TO 1 1 . 5 PHI FOLK GRAPHIC S T A T I S T I C A L FOLK AND WARD,1957 5TH  4.14  75TH  8. 76  4.46  SILT  16TH  5.14  84TH 63.46  (  9.74 62.73)  PARAMETERS  2 5TH 95TH CLAY  5.4 7 11.20 32.08  (  32.81)  L  A  GRAVEL • SAND  SILT/ISILTtCLAY)  65.66PCT  GRAV+SAND/SILT*CLAY  0.05  n  ;  PITT22A PHI  SIEVE,  S H . P I P . , SEDIGRAPH  SAMPLE  WT.-  4.0000  P C T . CUMPCT. 0.25  2.00 2.50  "0.75 1 . 50  3.00  _0'2? ""' 1.00  '  6  6.75  4.00  * *  2.50  3.25  .3.50  ""»"  7  5  * * *  _  _ * * » * *»"* "  12.50  7.95  4.50  ********  20.45 5,30  _5.00  ***** "5.76  12.37  5.50  7.95  6.00  •»»»*» *•**•*» ********  46.09  7.07  6.50  '  38.13  *******  5 3 . 16  5 . 30 " 7.00  fe.19  7.50  5,30  8.00  "6.19 8.50  6.19  9.O0  4.42  4.42  10.00 9.50  2. 65  10. 50 11.00 12.00  2 . 65  ~3 .54  MEAN  t v  58.46  *****  _fc?-95 " 76.14  '*"*»"*  W  ******  82.32  » * + *'  ****  91 . 16 66.74  ***  93 .81  *»*  '  ****  100 . 0 0  ST.DEV.  -  t t  ******  64.65  96 . 4 6  i  SKEWNESS KUPTOSIS  _!^L_6._45  ' . 2 . 12 "  0.1_1  -0.90  6.56  2.35  0.19  1.24  PERCENT i L E S  MEDIAN  6.28  KKUMBEIN*PETT1 JOHN( 19381 MUNENT MEASURES FOR SIZE RANGE "2.6 TOlT.o'PHI FOLK  5TH 75TH  GRAPHIC STATISTICAL FOLK AND WARD,1957  3.38 8.41  16TH4.22 84TH  9.19  PARAMETERS  " 25TH  4.93  95T H 10.72  SIEVE,  PITT22B PCT.  PHI  2  -  0  0.25  0  2. 50  ~ o.si 1.01  3.00 ,  3.50 4.00  2.02 "4.04 4.66  4.50 5.00 5.50  PIP.,  SEDIGRAPH  SAMPLE WT.=  3.9600  CUMPCT. *  1.50  >  SH.  5.59 14.50  6.50 7.00 7.50 8.00 8.50 9.00 9 . 50 10.00 10.50 _1_1_. oo _ 11.30 12.00 MEAN  6. 52 7.45 5. 59 4.66 4.66 4.66 4.66 3.72 3. 72 3. 72 0.93 3.72  PERCENTILES  Q  0. 25 0 . 76  Q  *  1 . 77  **  _3.75  ***».  7.83  *****  12.48  v..  *i * * * *  18.07  r>  ***************  3 2 . 97  *************  40.00  *******  52.52  C  *•»»***  55.97  c  ******  65.55  *****  70.21  *****  74.86  -  *****  75.52  *****  84.17  *** *  87 . 9 0  ****  91 .62  » ***  95.34  *  96. 20  ** * *  100.00  S T . OfcV.  0.87  n  SKEWNESS  2.07  0 . 15  -0.65  2.27  0. 32  1.28  MEDIAN  r.  KURTCSIS  6.31  KRUMREINtPETTIJOHNI1938) MUNENT MEASURES 1 1.5 PHI FOR SI2E PANGE 2.0 TO  O  FOLK GRAPHIC STATISTICAL FOLK ANC WARD,1957  o  5TH  3.65  16TH  4.81  PARAMETERS  25TH  5.23  *  : 75TH  8.51  84TH  9.48  9 5 T H  10.95  .  o  o  n  SIEVf,  PITT22C PHI 2 . 50 3.00 3.50  S H . P I P . , SEDIGRAPH  SAMPLE WT.=  4.0000  P C T . CUMPCT• 0.25  0.25  0 . 75  1.00  1. 75  r-  ***** ********  ************ ********* 7.00  53.32  7.73  7.50_  tl  "5. 34 8.00 "8. 50 9.00 9.50  10.00 10.50 11.00 12.00  6.81 6.81 '4786 4 . 86  2.92 2.92 3.89  MEAN  <•/ r  -i'2  66.93 73 . 74 80.55  **»»*  50.27 93. 19 96.11 100.00  ST.OFV.  1.98  PERCENTILES  PEP. CENT  *****"  35.41  6 . 98/1.70  7. 14  o  * ******  «fWNFSS^UPT£SI_S_ 0.15  -0.73  0.26  1.16  MEDIAN  GRAVEL  0.0  6.81  SANO  KRUMBEINtPFTT1 JOHN( 1938) MONENT MEASURES FOR SIZE RANGE 3 . 0 TU 1 1 . 0 PHI FOLK GRAPHIC S T A T I S T I C A L FOLK AND WARD,1957 5TH  4.53  75TH  8.59  2.74  SILT  16TH  5.26  84TH 64.21  9.35  I 64.191  PARAMETERS  25TH 95TH CLAY  5.61 10.81 33.04  I  33.071 C-  GRAVEL  •  SANO  2.74  S1LT/{SILT«-CLAY1  66.00PCT  GRAV*-SANJ/S 1 LT +-C LA Y  0.03  n  P  1  7  T  2  3  SIEVE,  A  PHI  SH. PIP.,  SEOI GRAPH  SAMPLE WT.=  2.3600  P C T . CUMFCT.  3 . 50 1.56 4.00  1.56 0. 58  4.50  2.54 3.94  5.00  6.48 5.91  ******  _ 5.50  12.39_ 10.63  ft******"*"**"*"  6.00  23.22  ii. 86  6. 50  *********  3 2 . 08  6.89 7.00  ******* 38.97 "" 45.86  6.89  7.50  ~"  *******  7.88  ****  8.00  5 3 . 73 6.89  *******  8.50  60.62 5.91"  ******  9.00  66.53 6.89  *******  9.50  73.42 4.92  10.00  *****  _ZJL-J^ 3.94  * " 82.28  10.50 4.92  11.00  .""*»»"* «*»**  8 7.20  5.91 11.50 3 .94 12.00  93.11 " 97.C5  »*•>••.  2.55 12.00 MEAN  -  *»» 100.00  ST.DEV.  8.03 ...  KURTOSIS  2.10  0.10  -0.98  2.30  0.16  1.15  KRUMBEIN*P=TTIJOHN(I938) MONENT MEASURES FOR SIZE RANGE 4 . 0 TO 1 2 . 0 PHI FOLK GRAPHIC STATISTICAL F\0LK__A_N0_WARD, 1957  -  PERCENTILES  PER CENT  GRAVEL  SKDWNESS  •  MEDIAN  GRAVEL  SAND  0.0  1.56  7.76  SAND  5TH  4.61  16TH  75TH  9.66'  1.56  SILT  S I LT/(SILT+CLAY)  5.67  84TH 1 0 . 6 7 52.63  53.00PCT  ( 52.17)  PARAMETERS  25TH 95TH CLAY  6.10 11.74 45.81  GRAV+SAND/SILT+CLAY  (  46.27)  PITT23B PHI  PCT.  3.50  CUMPCT.  2.15  4.0O__  **  1.96  4.50  2.15  "  2.54  5.00  **  4.11  »«*  7.05  6.85 ******* _ 13.90 6.85' " " * ( . * * * * * 20.75 6.81 ..*»*«*** 2 9 . 5 5  _5.50__ 6.00 6.50  4.89  *****  7.0Q_  34.44 "4.89  7.30  * * * * * 3  6 .85  8.03  9.34 * * * * * * *  4 6 . 1 8  7.33  * * * * * * * *  8.50  54.01  6.85  9.00  5.87  9.50  1 0 . 50 11.00  .*.*>*  66.73  4.69 _ 71.6_2 5.87 ' "" "" 7 7 . 50 4.89 82.39  1 0 . 00_  *******  60.86  *  ***** _ -"****"**" *****  6.35 11.50  ******* 69.24  "4.e9 12.00 12.00 MEAN ^  /  *****  94.13 5.87 1 0 0 . 0 0  8 . 03  ******  ST .Ofc V._ SKEWNE SS KUfUOSJ"_S_ :  8.34  PERCENTILES  2.21  0.00  -1.07  2.46  0.04  1.13  MEDIAN  6.24  KRUMBEIN*PETTIJOHNI 1938) FOR  SIZE  "OIK  5 TH  CENT  GRAVEL  0.0  SANO  2.15  4.0  TO  GRAPHIC STATISTICAL  FOLK  4.65  75TH 1 0 . 2 9 PER  RANGE  SILT  AND WARD,1957 16TH  5.65  84TH 11.12 43.99  I 44.03)  MUNE NT MEASURES  12.0  PHI  PARAMETERS  25TH 95TH CLAY  6.24 12.00 53.et  I  53.82)  PITT23 C PHI >  SEOIGRAPH PCT.  ANALYSIS  CUMPCT.  4.00 0.0  4.50  0.0 "woo  5.00  *  1.00 1.00  *  5.50  2.00 3.00  ***  6.00  5.00 " 6 . 00  6.50  ******  1 1.00 9.00  .  7. 00  *********  1 2.00  7.50  20.00 ************  32.00  1 3 . 00 8. 00  *************  45.00 11.00  ***********  6•50  56.00 5.00  »*»**»***  9 . 00  65.00 8. 00  9.50  ********  73.00  7.03 10. 00  5.00  10.50  ******* 80.00 ***** 85.00  4 . 00  11.00  ****  69.00  4.00 11.50  *»** 93.00  4.00  **»* 97.00  12.00 3.00 12 . 0 0 MEAN _i^/8'  *** 100.00  3  ST.DEV. 6)  8.47  SKEWNFSS  KUPTU5IS  1.62  0.14  -0.55  1 . 78  0.21  1.18  PERCENTILES  MEDIAN  8.23  KF UMISE IN + PE TT I JOHN I 1 93 8) MONFNT MEASURES FOR SI2E RANGE 4 . 5 TO 1 2 . 0 PHI FOLK GRAPHIC STATISTICAL FOLK AND WARD,1957  5TH  6.00  75TH  .....PEI PN T _ E  .  GRAVEL  0.00 0 . 00  SAND  GRAVEL  » SAND  LABELS  SHEPAKO - C L A Y E Y SILT  0.0.  16TH  9.64 .SILT  SILT/(SILT*CLAY)  .—_  ...0.0 56.00PCT  .  FOL K IGMS )-MUO  6.78  84TH 10.40 ( 56.001  PARAMETERS  25TH 95TH CLAY  7.21 11.75 0.0  GRA V *S AND/S I L T* CL A Y  1 SCSI-MUD  (  44.00). 0.00  1  SIEVE, SH. P I P . , SEOIGRAPH  P IT T 24A PHI  1.82  4.00  2."95  4.50  2.95  5.00  5.89  5.50  4.91  6.00  7.00  6.84 6.87  7.50 8. JO 3. 50 9.00 9.30 10.00 10.50 1 1.00 11.50 12.00 12.50 12.00  U  1.62  ***  4.77 7.71 13.60 18.51 27.35  34.22 7.85 • 42.07 c. 84 5 0.91 4.91 55.82 7.85" 63.67 6.87 70.55 5.89 76.44 3.93 " " 80.36 4.91 3.93 3.93 3.93  MEAN ,y S  3.8500  PCT. CUMPCT.  3.50  6.50  SAMPLE WT.=  ****  83.31 88.22 92.15 96.07 100.00  ST.OEV. SKEWNESS KUPTOSIS  8.03  s 2.21  0.07  -0.84  e. 25  2.52  0.15  1.31  PERCENTILES  MEDIAN .  PEP CENT  GRAVEL  7.95 —  0.0  KRUMBEIN+PETTIJ OH Hi 15 38 1 MONENT MEASURES FOR SIZE RANGE 4.0 TO 12.5 PHI FOLK GRAPHIC" STATIST ICA~L "PARAMETERS" FOLK AMD WARD,1957 5TH  4.54  -- 75TH  SANO  1.P.2  16TH  5.74  «J.88'~ * 8 4 T H I T . 0 7  SILT  49.42 I 49.09)  25TH ' 95TH  CLAY  6.37 12.36  48.76 I 49.09)  SIEVE,  PITT246 PHI  1.06  4.00  4.02  5.94  5.00  5.96  7.92  5.50  17.R8  6.93  6.00  24.60  8.91  6.50  3f.(,5^  0.91  7.50  47.56  6.53  3.00  6.93  9.00  3.96  JO.00 -10.50  -4'. 95 2.97  11.00  3.96 " 3756  12.00  4.95  MEAN  *******  _i;l_;*l  6.93  9.50  *..*.**  54.49  6.93  8.50  *********  33.71  4.95  J.00_  ~* * * * *"*#~  68.34 75.26 79.22  -  84.17 67.14  91.10  ***V"  95.05 100.00  ST.DEV.  SKEWNESS  KURTOSIS  7.65  2 . 10  0.11  -0.91  7. 85  2 .40  0 . 13  1.25  PERCENTILES  PER. CENT  r.RAVFI  3.7900  1.06  2.97  4.50  12.00  SAMPLE WT.=  P C T . CUMPCT.  3 . 50  11.50  S H . P I P . , SEDIGRAPH  •  MEDIAN  GRAVEL  SAND  0.0  1.06  7.68  SAND  KRUKISEINfPETTIJOHNI1938) MONFNT MEASURES FOR S I Z E RANGE 4 . 0 TO 12.0 PHI FOLK  5TH  GRAPHIC S T A T I S T I C A L FOLK AND WARD,1957  4.58  75TH  9.48  1.06  SILT  SI L T / ( S I LT+CLA Y)  16TH  5.38  84TH 53.43  54.00PCT  10.48  I 53.43)  PARAMETERS  25TH 95TH CLAY  6.01 11.? 45.51  GR AVtSAND/S I LT + CLAY  (  45.51)  0.01  f  >  SIEVE,  PITT24C PCT.  PHI  S H . P I P . , SEDI GRAPH  SAMPLE WT.=  3.0400  D  CUMPCT. <  3.50  > —  0.66 i  0.66  4 . 00  "N  _  0.99 0.99  5.00 5  ,  i  1  1 .65  t.50  ...  o  2.64  3.97  0  4.97 6.00  **** 6.62  ^  i  '' i  v  *****  1 1 .58 8 .94  6.50  *********  20.53  6.55  ******* 27.48  7. 00  ....  ...  !  \  "8.94 7.50  36.42 10.93 47.35  b. JO  ********  7.95 9.00 9.50 10.00 10.50 II.00 11. 50 12.00 12.50 12.00  c  55.30  8.50  r . 9 5 " . * . - « » . - » * 63.24 . 9 5 70.20 *******  6  5.96  ******  76.16 3.97 - • - • • 8 0 . 13 2.93 8 3 . 11 4.97 88.06 3.97 92.05 3.97 96.03 3.97 1 CO.00  MEAN  ST.OLV.  V'B.2ey a.50  PERCENTILES  !  *****  i  *.«.* \  **** ****  ©i  SKEWNESS KUKTOSIS  C- 1  2.00  0.12  -0.67  2.28  0.20  1 .28  MEDIAN "  ct  ***»  8.17  ' '  ! K.PuMftE i N t P C T I l J U H N n v S f l l MUNtNT MEASURES FOR SIZE RANGE 4 . 0 TO 1 2 . 5 PHI FOLK GRAPHIC STATISTICAL PARAMETERS FOLK ANO WARD,1957  5TH  5.30  751H  9.90  16TH  6.25  64TH 11.09  25TH 95TH  :  .\1  6.82  L,  i  :  12.37  o ! w  PER CENT  GRAVEL  0.0  SAND  0.66  SILT  46.80  ( 46.65)  CLAY  52.55  (  52.65)  1  PI TT25A  Phi  S1EVF,  S H . P I P . , SEDIGRAPH  SAMPLE WT.=  3.6400  P C T . CUMPCT.  3.30 0.55 4.00__  0.55 0.99  4.50  1.54 0.99  5.00  6.00  2.54  1 .49  5.50  4.5 3  "0. 59"  6.50  4.97  5*. 52  *****  10.49  5.57 _• 7. 00 _ I 6.46 12 .93 7.50 25.39 10.94* ii.OO 40.33 9.95 8 . 50 _ _ 50.J7_ 9.95 9.00 60.22 6.96 .5.50 67.18 5.97 10.00 73.15 6.56 io.50 eo.ii 4.97 11.00 65.08 6.96 11. 50 92.04 6.96 12.00 99.01 0.99 12.00 100.00 MEAN 8.62  ST.DEV. J  8. 78  ****** " * * * * * * * *****"*" ***********  **** ****** ********** *******  ****** *******  ******* *******  SKFWNESS_J<URTJ;SI S  1.82  -0.02  -0.55  1 . 89  0 . 15  1.14  PERCENTILES  MEDIAN  8.49  KP.UMBE 1 N*PETT I JOHN! I 53 8) MONENT MEASURES FOR SIZE RANGE 4 . 0 TO 1 2 . 0 PHI FOLK GRAPHIC STATISTICAL FOLK AN0 WARD,1957 5TH  5.74  16TH  75TH 1 0 . 13 PER CENT  GRAVEL  GRAVE L <• SAND  0.0  0.55  SAND  0.55  SILT  SILT/IS1LTtCLAY)  6.96  84 TH 1 0 . 8 9 39.78  40.00PCT  ( 39.78)  PARAMETERS  25TH  7.33  95TH 11.71 CLAY  59.67  GRAV+SANO/SILT+CLAY  (  59.67)  0.01  PITT25B PHI  •  0. 0  4.50  0.0  "0.0  5.00  0.0  2. 00  5.50 6.00  ANALYSIS  PCT. CUMCCT.  4.00  6.50  SEOIGRAPH  1 .00 '"3.00  "TTOO  8. 00  2.00 3.00 6.00  14.00 11.00 7.50 25.00 ""13.00 8.00 36.00 12.00 8.50 50.00 " 6.00 9.00 5o.00 7*. 0 0 ~ " 9.50 63.00 7.00 10.00 70.00 6.00 10.50_ 76.CO 8.00" 11.00 64.CO 6.00 11.50 90.00 8.00 12.00 98.00 2.00 12.00 100.00 MEAN  <1 LD  *»«.*****  f '  ST.DEV. SKEW-JESS KURTOSIS I . 72  8. 86  1.81  KRUMBEIN + PETTIJGHN(193 81 MONENT MEASURES^ "FOR' SIZE'RANGE "4.5 T b " 1 2 . 0 P H I "  -0.97  0.24  1.02  FOLK GRAPHIC STATISTICAL PARAMETERS evar2i'ND"T7iR"rjTi"'5"57  P E R C E N TI L E S  M F DTAN"  "8 . 5 0  "  *5'T"H 75TH  P6K CENT  GRAVEL  GRAVEL * SAND  0.00 0.00  SAND  0.0  33 10.42 SILJ_  SILT/ISILT+CLAY)  16TH7.09 84TH 11.00 0.0 SO.OCPCT  1 50.001  2 5TH 95TH CLAY  7.5 0 11.81 0.0  GRAVSANO/SILT»CLA Y  _(_ 50.001 0.00 !  LABELS SHEPAPO -CLAYEY SILT FOLK!GMS1-MUD  ISCSl-MUD  O  PITT25C PHI f  6.50  7.50 £.00 8.50 9.00 9. 50 10.00 10.50 11.00 11.50 12.00 12.00.  3.84  1.93* 5.55  ****** *********  20.69  T l " , 90' 12.89  5.82 11. 77  8.92  10.90  *  2.85  0.99  00  *  1.86  0.99  ,_5.50  ************  32.59  *************  45.48  ***********  56.28 " 8 ."52" 65.30 7.53 73. 23 6.94 _eo. 17 4. 96 85. 13 3.97 89. 10 3.97 93 . 06 3.97 97.C3 2.57 100.00  MEAN  ********* ******** ******* ***** **»* **** **** ***  ST.DEV. SKEW'NESS KURTGSIS  (o. 3 8.4 4  I . 70  0.03  -0.22  1 .81  0. 19  1.22  PERCENTILES  PEP; CE NT  <  0.87  ~~"*0.99""  5.00  7 .00  4.6200  *  0.87  4.00  6.  SAMPLE WT.  PCT. CUMPCT.  3.50  4.50  SIEVE, SH. P I P . , SEDIGRAPH  MED IAN  GRAVEL  GRAVEL + SANO  0.0  0.87  8.21  SANO  K RUMME I Nl-PETT I JOHN! 1 93 8) MON EN T MEASURES FOR SIZE RANGE 4.0 TO 12.0 PHI FOLK GRAPHIC STATISTICAL PARAME1 ERS FOLK AND WARD,1957  5TH  5.79  16TH  75TH  9.63  0.87  SILT  SILT/(SILT+CLAYl  6.74  84TH 10.39 44.42 I 44.611  2 5TH 7.1fl 95TH 11.74 CLAY  54.71 ( 54. 52 )  45.00PCT GRAV*SANO/SILTtCLAY  0.01  PITT26A PHi  PCT. CUMPCT,  4.00 4.50  1.00 "0.6  5.00  5.00  5.00  6.50  8.00  3.00  2 .00  6.00  7.50  1 .00  2.00  5. 50  7.00  I. 00  —  10.00  5.00  15.00  10.00 "ii.oo" 11.00  25.00 36.00  8.50 47.CO 10.00 9.00 5 7.00_ " ~ 6 7 0 0 ~ " 9.50 65.00 5.00 70. 00 10. JO 75. CO  10.50 11.00 11.50  80.00 2.00 82.00 9.00 12._00__ _ J91.00 ' 5.00" 12.50 56.00 4.00 12.00 100.00 MEAN 8. CO  ST.DEV._ SKEWNFSS KURTOSIS  )  l.K'i  2.11  9. 10  PERCENTILES  0.08 0.24  MEDIAN  KRUMBEIN • PF TT1 JOHN( 19 38) MONF NT ME A SUR FOP SIZE RANGE 4.5 TO 12.5 PHI  -0.67  FOLK GRAPHIC STATISTICAL FOLK AND.WARD, 1957  1.18  8.65  5TH  6.00  75TH 10.50 PER CENT  GRAVEL  0.00  SANO  1.00  SILT  16TH  7.05  • B4TH 11.61 0.0  I 46.00)  PARAMETERS _ 25TH  7.50  95TH 12.40 CLAY  0.0  (  : S ED I GRAPH ANALYSIS  PITT26& PHI  >  4.00 _4.50_ 5.00 5. 50 6.00 6.50 7.00  PCT.  1.00  1.00  *  2.00  3.00  ***  8.00  7. 00  *****  13.00  *******  20. 00  ********  8.00 __7._50 _ 28.00 11.00 39.00 8.00 11.00 30.00 8.50 10.00 9.00 60.00 6.00" 9.50 66.00 3.00 10. OJ 74. 00 6.00 10.50 80.00 3 . 60 85.00 11.00 5.00 11. 50 90.00 5.00 95.00 12.00 5.00 12.00 100.00  f  a.48  o  ***  5. 00  3.00 5.00  *********** *********** ***-******* ****** *** ***** ******  -  !  NO  T  ! i  oo NO  ***** ***** ***** *****  ST.DEV. SKEWNFSS KUF.TCISIS  s  8.70  1.79  - 0 .01  -0.63  2.03  0. 11  1.25  PERCENTILES  MEDIAN  8.50  KP.UMBEIN*PETT|J0HN11938I MUNENT MEASURES FOR SIZE RANGE 4.5 TO 12.0 PHI FOLK GRAPHIC STATISTICAL FOLK AND WAHJ,195 7 5TH  5.50  16TH  70TH 10.08  PEP. CENT  V  *  1 .00  MEAN  B  CUMPCT.  GRAVEL  GRAVEL » SANO  0.00 1.00  SANO  1.00  SILT  SlLT/lSILTtCLAYI  LABELS SHJPARD -SILTY CLAY  FOLK!GMS)-MUD  6.71  841H 10.90 0.0  49.45PCT  1 49.00)  PARAMETERS  25TH  7.31  95TH 12.00 CLAY  0.0  GRAV*SAND/SILT*CLAY  ISCSl-MUD  i 50.00) 0.01  O  1.  PITT26C P C T . CU-'PCT.  Pni  1.00  4.50  3.JO  3. 00 ~  3.50  6.~0'J  ; .oo  6.00  9.00  6.00  6.50  15.',' j  9.00  7..JJ  1 1 .00  7.0"  12.00  6.30  1_J._00  "1  9 . JO  P.00 4.00  9.5'j  OJ  'lo..'o  o.OO  10. 50 11.  1.00  2.00  3.3j  b.  SE 01 GRAPH ANALYSIS  i .00  JJ  ""V . ..'./  3 5.CJ  I«» * * * * *  '.7.0.') 5 7. J'J t;5.'JJ 73.00 75.03 c5.CO 90.J."  ,00  11. i i  4 .00  12. JO  ''6.00 1 0 0 . CO  S T . O I ' v. ::KI:.I.Z '.5 K O I - ' U S I I  i<:  .70  0.01  -0.65  K r UMP.E 1 N + PL TT i JOhNI 1 936 I MUNENT FOR SIZE RANI,,: ; . j U) 11.5 PHI  1.20  PEPCC'.'I 1 LES  hi 0 IAN  8.15  ' FOLK "GR'APHIC STATISTICAL FOLK ADO „ , ' . k O , 1957 5TH  ~"75Th pc"- cc'.i  c**/.vEL  Ok ,* v L  .  LASiiLS  :i'EPAI-U  S'A'.O  O.OO SANI, i.OO  -CLAY'Y  I.OO  5.33 5.67 SILT  SIL 7 / t S I L T t f l A Y I SILT  lULKIGI'.S t-mjO  .16TH  b.'U,  84 IH 1 0 . 4 2 ' O.O 56.571'Cl  I 56.~oo)  MEASURES  P Ak AMET LRS~  25TH  7.05  95TH "'CLAY  11.42""  ""' o . o  GR Ay "• SAN 0/S" IL T *C L A Y ( SCS 1-MUI)  t 43.001 "b.6l  PITT27A  PHI  SEDIGRAPH  ANALYSIS  P C T . CUMPCT.  4.00 0.0 4.50  0. 0 2.00  5.00  2.00 3.00  5.50  5.00 4.00  *>* ft  6.00  9.00 " »»*»'»»'"  6.00 6.50  15.00 7. 00  7.00  22.00 9.00  7.50  31.00_ I I . 00" 8.00 • 42.00 0.00 6.50 50.00 9.00 _9._00_ _ 59.00_ 8.00" 9.50 67.00 5. 00 10.00  * * * »~* * *~* * * *  ftftft ft ft ft ft ft ftftftftft »ft*ftV.ft"ft * ftftftft-*  72.00 6.00  10.50_  78.00 5.00  11.00  83.00 5. 0 0  11 . 5 0  88". CO 6.00  12.00  94.00 6.00  12.00  100.00  MEAN  ST.DEV.  SKEWNESS  JU85  0.05.  f 8 . 44  KUPTOSIS -p.63  l.)  PERCENTILES  KEDTAN  8 . 5"6"  KK U KH E I N • PC TT 1 J U H N U 9 3 8 ) MCINENT MEASURES FOP. SIZE RANGE 4 . 5 T n " 1 2 . 0 Phi  n  F O I K GRAPHIC F O L K A NO  5 T I' 75TH  .PER. C E N T  GPAVFL  SAND  .0.00... SAND  GRAVEL  *  0^00  LABELS  SHEPAP.D -CLAYEY  0.0  5.50  SILT  16TH  10.25  S I L T .  S I L T / ( S I L T + C L AY )  FOLK IGMS) -MUD  STATISTICA L WARD,1957  6 . 5 7 ~ "25TH  84 TH  0.0  50..00PCT  PAR AMI! TC KS  11.10  95TH  ( . 5 0 . 0 0 )__.CLA Y  7 . 17' " " 12.00  . 0 . 0 _.(_S0.0pl  GRAV+-SAND/SILT+-CLAY  (SCSI-MUD  Q.QQ  PITT27B  SEOIGP.APH ANAL YSI S  PHI 4. OO _4 . 5 0  PCT. CUMPCT. 0.0  0.0  3.00  ***  5.00 5.50 .6.00 6.50 7.00  3.00 *-00 5.00 6.00  9.00 9.00  8.00 8.50  9.00 8.00  -19-50 11.00  *** * * * * w *"  18.00 25.00 3-"00_  *********"  52.00 ^.U-00_.  9  10.00  7.00 12.00  43.00  - --"?. 9.50  ****  5.00 6.00 6.00 5.00 5.00  11.50  ***** *  65.00 71.00 77.00_ 82.00 87.00  6.00 12.00  93.00 -  *****  5.00 12.50 12.00  98.00 2.00  100.00  MEAN ___SJ.DEV..^..SKJWNESSjUftJTOS^I^ 2.07  0.06  2.27  0. 13  PERCENTILES  MEDIAN  -0.96  KPUMSEIN'tPETTIJCHNl 1938) MONENT MEASURES EUR SIZE PANC-6 4.5 TU 12.5 PHI  1.20  8.39  POLK GRAPHIC STATISTICAL PARAMETERS FOLK AND WARD,1957 5TH  5.25  16TH  75TH 10.33 PER CENT  GRAVEL  GRAVEL  • SANO  0.00  SANO  0.0  SILT  SI1T/ISIIT*("IAV1  6.33  84TH 11.20 0.0  i ; j . n n D T T  ( 52.00)  25TH  7.00  95TH 12.20 CLAY  0.0  r.DAU.CAMn/cn T . n  M  I 48.001  * * A  -*»*  >.ET VT 1000.jiGC 99.5959  DF Y WT 5 . 7300 " loo.oooo  SALT 0.0 o.o  ORGANIC 0.0 o.o  MO ISTURE 0 . 0 (GRAMS) 0 . 0 (PCT WET  *  MU L T1 MODAL  SAMPLE  WEIGHT LOSS DUE TO HANDLING GRAVEL CORRECT 10;M F/CTQR SIZES ELIMINATED (<J.D1"S) TSASK SORTING C O E F F I C I E N T  WTI  "T"T I"N*G"" P K ' o T ^ T r r r T - ' ' F x T RAP. MEAN CUrlED DEVIATION USING PROBABLITY E X T R A P .  TAB! t OF S T A T I S T I C A L  •'.Pi. 0.0  47.b2  SA-'O SILT  4  4.19  7.5 5 32.1 r. 0. 52  TEAN  MUM!  !  o-Mr ; ! t.Ltp-Fr I 1 NM/: P-I.V  IN PHI UNITS  T ^ T D CEV SKEGNESS  PERCENTILES  ,.51920  1.77215  .52651 .73757 .74 52 9  1 74455 1 63537 1 6 159 1 1.71703" 1.68565  -K'- [  0.4/828  0.49838 0.40016 0.41257 0.37345 0.38824  ( U-ANSFCRMED) - F l ' L K (TRANSFORMED)  "JATfi  -  - -  ACTI CM P HI  c . 2 5 L 0 L O " 2 . GOO - ' o .177 COO 2 . 4 53 •J . I.' 5 300 3 . OOO C .01 : C ,j 0 3. 5 Co 4 . 50 0 c . 04i. OO-.' 4 . 3 06 .0"' 1 oo;; 3. 012" .iii i j.'J 5 • 5 96 c . 0 1 0 ') 6 . 02 6 . 5f.6 c . 0 11OLO i. . c. y-iOij 7. 0 02 .005 300 7. 506 •}. 0 0': 9 5 j f:. J02 .OC'700 I;. 5 Q c .01>V0O c j'.O . ) ' l 3I.V 5 . j 11 t; . 0 0 ! 9 bo 5. 9 5 5 0 .0'',;,', 50 1 0. 5 01 fj . 0 L L 4 5 C 1 0. 9 95 u. 0 0 0 0 . , ! 14. 0 00 T T i B  -  MM.  KUKTUSIS  FOLK  M  LINEAR  0.0^ 1.000 NONE 2.233  2.200 11.488 9.866  PROBABLILITY  EXTRAP. PHI U M T S _  MM.  _  EXTRAP.  PHI U M T S  6 7 6 2.0 "79E34 •c I. .. 77 22: 475 4 14 . 9- 0> 6 i 7. 6 9 61 .9 4 0 2 83 "1 1 8 . 45 . 07 45 57 215050..005 . 3 "00 . 3 1 .3911 49 7 l5 5 2 2. 9 2 722 2 2 . 60.,14373 0.12826 2.9o2: 4  :-.""-1J :•.P  DA VA  * **  1.11145  1 . 1 1090 0. 9 1726 U. 90392 C~. 2 5 666 0.2 5o31 0.52639 0.52627  lo. 0 25.0 50.0 75.0 8470" 90.0 95.0  0 .11 67 5  0.10179 0 . 35 905 0.02041 " 0.01203" 0. 0 35 89 0.00199  ;  3. O v o 4 9  ~.lZ*i-J 3.3313 i 4.0805i> 3.60701 6V3692 0 7.402C4 8.96cS 5  0.11428 0.05935 0.05909 0.02052 "0701210" 0.00591 0.00200  3.?9o32 4.OE136 5. o 1 *. 3 1 6. 3 7 724 " 7. 40 COO 8. 97333  FOR CONSTN OF oARGRAPHS- AND CUM. CURVES WT. I GMS 1 UNCOS COR 0.0? 0 0 . 040 0. 60C 1.320 0 . 7c. 0 0.773 0. 02 0 0.671 0.427 0 . 244 ••). 183 U . 122 0.09 2 I'J. 09 2 0. 05 1 0 . JO 1 0 . 06 1 0.06 1 0.031 0.06 1 5 . 73 0  .PCT. COR  WT.PCT CUMUL.  MID PHI (LINEAR) MID PHI ( PR 3 ri.) PHI MM PHI ••IM  0.345 0.29707 1 . 0 96 " 0.2 68 7 7 1. 751 *~"0. 02 0" 0 . 34 9 0.65P 1. 04 7 2. 249 0.21036 2.507 0.2 02 09 0. 04 0 0.600 10.47 I 11.518 2 . 749 0. 148 75 2 . 8 30 0. 1 3o 71 1.520 23. 03 7 J S . 5 3 5 3."7 53 u . 1 Dt S3 3 . 2 5 2 0.102 130. 76 0 13 .264 4 / . 1: 1 9 3. 733 0. 074 16 3. / 5U C.O/j 5 2 13.491 4.253 0.05244 4.251 0.05253 0. 773 6 1.310 0. 020 0 . 3 53 6 1. o i 4 . 739 0 . 0 36 9 3" 4 . 7 5 9 0.03o"4 0.671 11. / 15 73.3// 3. 235 0.02612 5.230 0.J2o 2 8 0. 427 7.4 55 BO. 03? 3. 754 0.01853 5 . 743 0.0 1 J d 7 0 . 244 4. 25 9 83.091 h.254 0.01310 t .2 44 0 . 0 13 1 9 3.155 8 8.2 o6 6.754 0 .00926 0 . 744 0.009 3 3 0.183 """~7OT"""55" " U . 122 2. 12"! 50. 41 5" ~ / . ; : 5 4 / . 2 45" " U . , J L ' o 5 5 0. 092 1. 59P. 9 2 . 0 1 3 7. 754 0.00463 7. /46 0. 0 0 4 6 0 0.09 2 1 . 55ii 9 3 . 6 1 1 6 . ? 6 a 0.00325 8 . ?56 0. 0 05 2 7 0. 051 1. 597 93.^0:i b. /B6 0. 002 2 7 B. C72 0.00225 9 0 . 2 1 :• 0 . 06 1 l.U',5 9.2/0 0. O O l 6 2 9 . 2 59 " C . 0 01.7. i 0.06 1 1 . Oo5 97.33 0 9. 74 3 0.00116 9 . 731 0.00116 O.Ool I . 06 5 98. 40.-: 1 J . 2 4 8 0.00082 1 0 . 2 2 1 0.OOJ 84 0. 031 0.533 9 o . 9 3 3 1 0 . 7 4 8 0.00033 1 0 . 7 2 6 " O.00J59 0. C61 1 . 06 5 100.000 1 2 . 4 9 7 0.00017 1 1 . 3 2 1 0. 00J3-. 5 . 730 100.0  MODE 0 0 r0 1 1 0 0 0 0 0 1 0 y 0 0 0 0  -  —  K e«* 'o L M MODAL SAMPLE « ftftftft »* ^v»:*#^W *•ftftwftft*:ftv x:ftftftftftft£ft»  0.0  I 000. 100.  1 JG.0,00  7 A :'.  C E-iv< 3 i j I 1 I f'N ,--f.-J- L SA.'.O : ILT •-LAY *!U j 5/« r  0. 0 0.0  c .(jooo  1  ORGANIC. 0. 0  o. o  MO I STUB E 0". 0 I GRAMS) 0. 0 (PCT WET W T I  SI/.T 1 ST I CAI. DATA IN Pril UNI1  LINEAR  PERCENTILES  SIO CFV SKEWMESS KURTuSIS .---/'FA': M'n'.'. -t'T ""(' 4 ."»><;; i i > 1.0R91 6 1.70917 6 .""5 2 7 70 P---1 I A T ^-rv-K'Jl(.4 1.70458 1. 314U0 4.59443 F CL 1 . 50984 0.39850 1.13/15 4.65156 4 . 67.250 1 .57862 0.41214 1.13851 P - i LK ! !•.'•' 4 . 804 58 1.486P8 0.30955 0.9 0071 P-: 4.02I4O 1 .45 783 0.32615 0.52342 *.F 'J • f Ei ,. 0.25607 "0.24474 1.48233 ?-< 1.46957 0.25695 0.2'<042 ( I-ANSFfi?. MEDI FCL 0.53643 0.53672 i,LK ITI-A'iSFCFMEOJ  6. 0 i8. L i 34. 7 5 6. 6 ^ o l . 7 2 0. 6 2  WEIGH1 LOSS DUE i f HANDLING GRAVEL CORRECTION FACTOR SIZES ELIMINATED K 0 . G 1 J I TRASK SORTING C (>- 1= F t C I E NT USTNT, i V o f H l U L I T ? — P X T R A P . MEAN CU3EQ DE V I A1 I !JN USING PR DBA BLIT V C X TR A P .  v  ;  •.  ExUf.P.  PROt'ABL I L i l Y  MM. PHI UNITS 0 . l'.s 4 3 3 " " 2. O'.ol 6 0. 11450 3. 12657 0. 10026 3.31811 0. Oo 248 3.34987 0.04922 4.24471 0.02059 5.60169 0.01276 " 6 . 29136 0.00672 7. 2 1628 C.00267 G. 3H640  ~ 5 ""6 10.0 16. 0 23.0 50.0 75.0 34.0 90. 0 95.0  0.0 "l.OOO NONE 2.001 1.985 11.522 6. 500  MM. 6. 1 30 42 0 . 1 1062 0.05715 0 . 0 (.184 0.04917 0.02069 0.01287 0.00679 0. 00267  EX 1 - x->.  PH! ut.l IS 2 . 93 ;. 3. 176-34 3 . 3 c .'• c- 2 i . 6 1 . -, 7 4.34595 5.59-.:.'/ 6 "2 7-2 5 7.201;'. 5 8. 5*.;. 3 0  DATA FOR CONSTN OF BARGrtAPHS AND C U M . CURVES s: if •  •  . i 7 7.//0  i 0. G. l .  rl-.AC 7 I ON *>HI  WT. ( G « ) COP UNCO R  WT .PCT . COS  WT.PC1 CUMUt.  MID P H I ( L I N E A R ) PHI MM  6.030"" " 0 . 0 3 0 6 . ' 5 G 0 0 J ''. . 00*6 ™ 0 . 5 1 7"'"'075 1 7 1 . 7 5 1 " o . ; 7 7 0'. J 2 . 4 9 F 0.03J 0.030 0.317 1. 0 J 4 2.249 0. 1 "-' 5 0 0 J .";. 000 0. 25 0 0.290 5.000 6.03 4 2.7 49 o. ~ f L j a . ico 0. 9 2 J 0. 520 15. <>o2 21.1:57 3.2 53 " c . •'25: 5 4.00 0 0.950 0. 950 16.i79 3 8 .,' 7 (. 3. 753 0 . '.4<>;.J '. . 5 C6 0.95 9 0 . 999 17.221 55.4 5 7 4 . 2 5 3 -' 1 0 j... 3 . li 1 7 C. 2i:0 0. 2 flu 4 . 112 3 6 0. : . ' „ 4. 739 0. 76 7 13.227 7 3~. 3'. 7 5 . 2 5 9 ~J . .-TIT*.' • J 5 . 3 CO ""3TT&7 0. '. 1 57. ' . . 00? 0 . 4 3 rt 0.438 7.5 5 9 IU.|.,|. 5.754 0 . 0 1 10 O-J 6. 5 CG 0.29 2 0.292 5. 039 86.144 6. 254 o. : u 7 ; .i 7. G02 0 • 14 6 0 . 146 2 . 3 1'/ UO . 6 6 3 6.754 u . . . 0 5 5 ...... 7. 5 06 0 . 1 8 3 •" o.rtn 3. 1 5 51.H12 " 7 . 2 5 4 0 . -• "- 9 • 0 i: . 002 0.073 0.07:5 1. 2 39 9 3. 0 72 7. 754 o. o 7 0.533 0.110 0.110 9 4 . 5 . . 1 0. 260 I.i,'.0 - i c 'J ' . . L40 0. 07 3 0. 073 1.23 9 5o.2 21 8. 7 86 c . "• ".13''',' o . i O T " 0 . 0 3 7 •-o-.-cTT 0 . (> 3 '•> 5 o . . : 5 1 9 . 2 7 0 o. c L L C 1 1 4 . UOO 0 . 1 i. 3 0 . 133 3 . 1 4 5 10J.OGU 11.751 n r A i. 5. 800 5 . 8 0 0 100.0 .. ,20500 o300')C Tn'i.'fi  M I I) P H I ( P:\ n H . ) Mtine PHI "M  0.29707 1 903" . 0.2 1036 2. 2B6 0 . 143 75 2. d32 0.10488 3 • 307 0 . 0 74 16 3. 7 69 u. 255 0.05244 0.03693 4 . 75 7 0 . 0 2 o 12 5. 249 0.01853 74 3 6 . 242 0.01310 6 . 746 0.00926 0T0'uc,55" 239 7 . 746 0. 00463 r.. 25 1 0.00325 0.00227 8 . 772 0. (161 62 9 . 0 . 0 0 0 29 l u . 2 03  r.  6. 26 7 4 5  0.20-.-19  0 . 14J48 3.1U1 6 7'"" 0 . 0 7^3 7 0.052 3O O.O-..'" 7 0.02o3 0 0 . 0 lot. U 0.01J?2 0.00/32 0. 0^ 62 I 0.00-, Oo 0.00., I'll 0.002 29 0.0017,3 0.OCu 0 3  11,?.  .,  0 0 0  •  —  0 1* 0 1 0 0 0 1 "• 0 ~~ 1 0 . 0 0 . _  f  "\  Pl*+  31A  b.o  0  o o  .  o  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **** **** *** MULTIMODAL SAMPLE - « * ***** **** * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  0  D  /  \  WET WT iooo.oooo 130.0000  DRY WT SALT '.. 5 2 0 0 b . O 100. 0000 0.0  '• -  PERCENT AGE 31 TION  COM.-  GRAVEL' SANU SILT CLAY MUD S/M  "0.0 '90.93 7.06 2.01 9.07 10.02_  TABLE  OE  WEIGHT LOSS DUE TO HANDLING MOISTURE " G R A V E L CORRECT ION TAG TOR (GRAMS) 0.0 SIZFS ELIMINATED K C . O U I 0.0 (PCT WET WT) TRASK SORTING COEFFICIENT USING PROBABILITY EXTRAP. MEAN CUBED DEVIATION USING PR0HABL1TY E X T R A P . -  ORGANIC ' "0. 0 * 0.0  -  S T A T I S T I C A L DATA  IN  PHi  UNITS  PERCENTILES  STO DE V SKEWNESS KURTOSIS "" MOMENT C^.434')\^X .24395 4 . 2 1 9 0 82 4 . 6 4 8 6 3 " P-MOMENT 3.47)7390 1 .19926 4.26338 24.361 1 1 F PL K 3. 21 71 9 0.70759 0.3472 7 1. 8 7 16 2 3.24268 0.65056 0.44671 P-FCLK 2.05233 3.23773 0.62439 0 . 11 751 IMMAN 1.60293 3.27983 0.44446 0.24938 P- I NM. AN 2. 1800 1 0.47682-0.01089 KRUMBEIN 0.23993 P-K RUM . 0.23615 0.41615 0. 03200 FOLK (TRANSFORMED) 0.65176 0.67239 P-FC1K (TRANSFORMED)  '  .-MEAN-,  DATA SIZE MM  FRACTION PHI  0.250000 0. 1 77000 0.125000 0 • uc 000 0. 06? 500 _0. 044000 0.03 10"0b " "(3.022500 _0._0_1 5600_ " 0". I) H "bub 0.007800 0.006 500 " 0 . 0 0 3 9 00" 0.302 7 0 J 0.001 3 60 C.0C0560 0.000690 ' 0.00049b 0.000340 0.000061  TOTAL S  2 .000 2.458 3. 000  -3T5T6-  FOR CONSTN OF 6ARGPAPHS WT.(GMS) UNCDR COP 0. 020 0.030 1 . 570  1.34™  4. 000 0.650 4 . 5 06 0.052 6 . 6 ! 2" ""0.06 9" 0.065 5. 5 Ct 0. 04 3_ 6 . _0C2_ "0 . " o i o "6. 5 C6 7.002 0.026 0.017 6. "002" 0. 017 3.533 0.01 7 5 . 040 0. 00 9 . 01 3 9.50 1 .009 9 . 5 96 10.501 .009 10.995 11.522 0.009 14.000 0. 01 7  4.520  5. 0 10.0 16. 0 25. 0 50. 0 75. 0 34.0 90. 0 95.0  0. 442 0. 6 6 4 34. 735  TOW =  T~J-  4.530 100.0  b. 0. 0. 0. 0. 0. 0. 0. 0.  EXTRAP. PHI 2. 2. 2. 2. 3. 3. 3. 3. 5.  PROBABL I L I T Y MM.. b . 15758 0 . 14757 0. 140 11 0 . 132 24 0. 11118 0 . 0P942 b.O7566" 0 . 06445 0. 02221  UNITS 5"5442 62666 71334 6433 7 1/611 48707 76212 96808 49407  AND CUM. CURVES  WT.PCT. WT.PCT. COR CUMUL.  MID P H I ( L I N E A R ) PHI MM  0.442 1. 751 1.106 2. 249 35.841 2.749 "7oT5"5 9~ -3TZ-5T 650 14. 90.929 3. 763 052 1 . 9 2.075 4. 253 4.75 9 069 1". 3 81 9 3 . 6 03" 433 r. <)5. Jj7J~ 146 5.754 95.990 043 0. 955_ o'3b b . 668 "5o"."6 6'Ti"" '"6". 23 4" 97.231 6. 76 4 026 0. 573 5 / . 6 1 3 "772"54~ run— rr. TET" 3b2' 9 7. 995 7. 754 017 0 363 5 8.377 8.268 ,017 0, 1 90 98.668 8. 766 , 009 0 9 .270 C13 287 98.854 005 9. 748 191 99.04 6 009 190 5 9 . 2 3 6 1 0. 248 009 " 191" 9 9 . 4 2 7 10. 748 009 191 99.6 1 8 11.259 C17 382 1 0 0 . 0 0 0 1 2 . 7 6 1 02 0 030 570  LINEAR MM. 1702 3 16192 15240 13933 1 1064 089 18 07370 06390 02219  0.0 1.000 NONE 1.253 1.216 B.121 7.353  =  MID PHI  1 .900 2.298 2.861 "5T74T0.074 16 3.716 0.05244 4.247 0.03693 ' 4 . / 4 9 "  0.29707 0.2 1036 0.14875  pHiiP.icB.)  wwr  MM 0.26794 0.2033 7 0.13766  0 0 0  0 . 0 7u 1 1 0 . 052 6 7 0.03/20  0  TJ-.TC577"  o . o2o 3 5.744 0.01;>66 0.01853 " " 0 . 0 1 3 1 0" ""6". 24 5""" O . O T J T T 0 . 0 0933 0.00926 6.745 "TITO C6 5 5" "0T3Ca5"9~ 0.00463 0.C0.66 ' 7.746 0.00325 0.005 2 7 8.256 0.00?>7 0.002 28 B. 7 79 O.QOi.63 0.001O2 9.259 0.001 1 7 0.00116 9 . 73 0 0.00JR3 0.00082 10.236 0 . 0 0 0 59 0.00063 10.732 0.00341 0.00041 11.235 0.00014 12.034 0.00324  1  —cr0  EXTRAP.  PHI  UNITS  C a66534 2. 76052  2. !>J5J5 2 . 91 873 3 . 16696 3 . 46324 3 • 7243 1" " 3.95575 5 . 45277  + **** *** ' ****  0.0  P i * - * 31B  WET WT 1666". "Boob  OPY WT 3".'8 2bo  100.0001  100.0000  MO I S T U R E "0.0" (GRAMS ) (PCT WET 0. 0  _ORGANIC_ 0.0 0.0  0.0 0.0  ****** K J L T 1 MCOAL"  WEIGHT LOSS DUE 10 HANDLING GRAVEL'CORRECTION FACTOR" S U E S ELIMINATED ( < 0 . 0 1 ' « l TRASK SORTING COEFFICIENT  WT)  USING P R O D A B I L I T Y EXIRAP. M E A N CUilEO D E V I A T I O N U S I N G PRO RA OL I T Y E X T R A P .  PERCENTAGE COMPOSITION  TABLE OF S T A T I S T I C A L  DATA  IN PHI UNITS  PERCENTILES  LINEAR MM.  5. 0 10. 0 CLAY MUD S/M  10.40 62.30 0.61  0 . 15901 0 . 1 3 9 15 _ C K 1 18 4 6 O.b'94'54""" 0.04637 0.01776 0.00825 0.00363 0. 00062  lo.O  P-f-CLK INMAN  4.81427" 4.99939  P-1NM AN  5.00561  kPUMt E I M " P-KPIJM. FOLK (TRANSFORMED) P-FOLK (TRANSFORMED)  2715129 1.92183 1.91213 1. 7 8 4 7 2 " 1.76719  0.4373 7 0.29598 0.30021 0. 18014" 0.18163  1.35515 1.08180 1.0o275 0.2289c 0.22997 0.57647  25.0 50.0 75.0 84.0" 90. 0 95.0  +*  0.0 l"."000 NONE 2.305 2.  266  21.826 18.351  PROP.ABLILITY  ExTRAP.  MM. 0 . 14629' 0.13270 0.11716  PHI LNITS 2.6-.3S8 2. 84526 3.07756  ~ " 3 7 V0"63T" 4 . 43 05 7 5 . 81540 6 . 92122 10677 1 0 , 64733  ""0"7Q""""3"?0""" 0 .04634 0.01767 "0.00827' 0.00364 0.00063  0.57540  •  SAMPUE'""'"**'*"  EXTRAP.  PHI U M T S 2. 75345 2.91371 3.0934 8 ""3.42035 4.43158 5.80o05_ "6.91774 8. 10060 10.64193  c • 00 LD  DATA SIZE MM  FRACTION PHI  0 . 250COO 0.1770J0 0 . 1 25000  0. OBlTI  0 . 0 6; 500 0.044000 '0.031000 0.022000 0.016600 0 . 0 1 1000 0. •".C7BO0 0.006 500 0.003 900' 0.002 700 0.OC1900 0.0013GO 0. 00C960 0.000690 "0. 000490 0.000340 0.000240  0.000061 TOTALS  FOP CONSTN OF BARGP.APHS  UNCOR  WT.lGMS) COR  WT.PCT. COR  2. OOC 2.49E 3 . OOC  0. 010 0.040 0.480  0.010 0 . 040 0. 480  0 . 262 1. 0 4 7 12.565  4 . 000 4. 506 5.012 " 5. 5 06 6 . 002 6 . 5 C6 7.002  0.335 0 . 360  6.530 0. 3B0 0. 553 0.21o  13. 574 9 .94 8  0.533 0.216  0.471 0.297 0.149 0 . 099  0.471 0 . 29 7  0 . 149 0 . C9 9  7.566 "8.002 8.533 5 . 0 40  6.095 6 .099 0 . 074 0.050  0. 099 0 . 099 0.074 0 . 05 0  9.501  0 . 02 5 0 . 025 0.025 " 0 . 02 3 ' 0 . 025 0.025  0. 62b  9.995 10.501 1 0 . 9 9 6 "' 11. 522 12. 026  14.000  0 . 124 3.820  0. 025 0 . 0 2 5_ "0. 025 0.023 0. 026  14.469 "5.651  12.331 7. 788 3. 894 2.556 2.596 "2.59 7 1 .946 1. 2 9 8 ' 0.64<J 0.649 0.648_ "0.649 0.649 0 .649  AND CUM. CURVES  WT.PCT. CUMUL.  MID P H I ( L I N E A R ) PHI MM  0.26991 0 . 19590 0. 14875 0.12 JOO "0.1 T4 3S • D .T033? " 3 T Z 7 T -rrrrvr 0. 074 ia 3. 753 3 . 761 0. 073 77 3 7.696 0.05244 4. 253 4.256 0 .052 33 5 2.165 0.03693 4. 759 4.758 0.03u96 57.616 4.62o2 55.252 5.259 0.02612 70.147 0 . 0 1865 5. 734 0 . 0 1 8 3 3 5. 7 i 5 7 7. 935 6.247 0 . 0 1 3 10 0 . 0 1.. 1 7 6. 254 6 1.629 0.00926 6 . 74 8 0.00^30 6 4.424 6. 754 "CT71T5"""5T" 11 I. UtL 0 "772T4" ~3.0 ubTT~ 0 . 00-.66 " 7 . 754 7 . 74 5 "69.6 17 0. 00463 0.00327 B.268 8.257 91.563 0.00325 8. 786 P. 778 0.00228 92.861 0.00227 Si.511 9. 2 ro" 0 . 6 6 1 6 2 9.266 0.05162 9. 743 0.00117 0.00116 9 4 . 160 9. 748 O.OOJ83 94.608 10. 248 0. 00082 1 0 . 2 4 2 "95.437" 1 0 . 7 4 8 0.00058 10.741 0.00058 9o.106 1 1 . 2 5 5 0.00041 11.250 O.0OJ41 96.755 1 1 . 7 7 3 0. 0 0 0 2 9 1 1 . 7 6 4 0.00029 0.262 1.309 13.674  0.124 3.245 100.000 3.820 100.0  1.75 1 2.249 2 . 74 9  MID PHI I PR08. ) PHI MM  0.29707 0.2  1036  1.839 2 . 3 30 2.847  1  13.012  0.00012 12.332  0.00019  MODE  ft *ftft PITT  0  32  >  WET WT  looo.ooQo 100.0000  PERCENTAGE  COMPOSITION GRAVEL SANO SILT CLAY  MUD S/M  0.0 2 7.64 55.37 16.99 72.36 0.38  6."6 '  d  o. o""  DPY WT "' 4.4500" 100.0000  TABLE  SALT 0.0 0.0  ORGANIC 0.0 0. 0  OF S T A T I S T I C A L  DATA  IN PHI UNITS  "PERCENTILES  A'JLf* ^ J-  r  b  0.54754  (TRANSFORMED)  P-FOLK  MM  F R A C T I C N \  0.250000 0.1770C0 0. 125000 0.OPPCjO 0.06?500 _ 0 . 0 4 4 0 00 "0.021000" 0. 0'<7 0 0 0 0.015600 C. 01 1 000 0.007000 _0.003500 0.002 500" 0.002700 0. OC-1900 0.001 3U-J O.OOC980 0.000690 0. 00G44U' 0.000340 0.000061  r  TOTALS  P H I  2.000 2.458 3.000 3.306 4. 000 4 . 506 5.012" 5. 3 66 6 . 002 6. 5 CG 7. 002 7. 506 S. 002 3. 533 9.04 0  5.501  9.99 5 10.501 10.555 11.522 14.000  0. 0. 0. 0. 0. 0. 0. 0. 0.  CTNEA"P.  F X U A P .  PROL-ABL ILITY  MM. 1 1548 09546 0000 1 06625 03083 01009 00331 00131 00056  PHI UNITS 3. I 142 2 "' 3.38501 3. 62539 3.91592 5.01934 6.52036 8. 23751 9. 57623 10. 8 043 5  MM. 0 . 1 1DP6 0.09297 0.07935 O.Oc.559 0 . 03 0S4 0 . 0 1090 " 0.003 33 0.00131 0.00056  EXTRAP.  P H ! UNITS 3.17312 3.42713 3. 65 36 3 3.530-. 7 5.01521 6.51579 "8.23154" 9.57CS4 10.79C72  0.54663  (TRANSFORMED!  OATA FOR CONS T N OF BARGRAPHS S U E  5. 0 1 0.0 1 o. 0 2 5.0 50.0 75.0 84. 0 90.0 95.0  <  0.0 1.000 NONE 2.46o 2.45 3 1 8. 073 15.011  WEIGHT LOSS DUE TO HANDLING GRAVEL CORRECT I ON FACTOR S U E S . F-L IMI NATtD K 0 . 0 1 X ) TRASK SORTING C O t F F t C l E N T USING r-ROI'-AlU I I TV EXTRAP. MEAN CUBED DEVIAI I ON USING PROBABLITY E X T R A P .  MOISTURE "(GRAMS) 0.0 (PCT WET WTI 0.0  ^ — MEAN—, STD DEV SKEWNESS KUP.TOSIS ""I'CMrt.T • " ( / 5 . 6 2 304- > "2 .4 1 74 5 "I. 2 753 3" 3. 9 3 355 " P-MOM EN T ^~5T6"C:987 2.32965 1. 16720 3.50748 FOLK 5.62675 2 .31 720 0.43063 1. 210 12 P-FOLK 5.63546 2.29B16 0.45967 1.20571 I MMAN 5.93345 2.30406 0.39674 0.66882 35 H P-1MCAN l > __ 0 . 4 0 4 0 2 0.66472 "KPUMKETN" " """ 1.92521 0 . 19ii 79 0. 21047 P-KFUM. 1.91802 0.20592 0.21073 FOLK  ftftftft  *** MULTIMODAL SAMPLE »»* ftftftft ftft«» ftftftftftftftftftftftftftftftftftftftftftftftftftft***  o"~  WT.(GMS) UNCQR  CCR  0.010 0. 020 0. 10 0  0.010 0.020 0. 100  "o-.Tnr  W'T.PCT  .  AND CUM. CURVES  WT.PCT.  COR  CUMUL.  " 0.225" 0. 674 2.521  "0.225 0.449 2.247  12.lib  •1.213  0.00 9 C . 099 0 . 066 0 . 066 0.131  2 7.7,40 0. 6 9 0 1'. 506 47. 255 0.873 19.615 0. 113 "" 2 . 5 3 6 " " 4 9 . 7 9 1 63.002 0.551 ' T 3 T 7 9 1 70.465 7.303 0. 329 7 4.056 4.430 0.19/ 3 . 652 78. 588 0. 164 00.602 2.215 0.099 2. 216 8 3.010 0.059 2.215 65.233 0.099 2 . 2 1 6 87.448 0.099 2.313 0.095 US.663 2.215 0.099 91.078 2.216 0 . 099 94.093 1.4 76' " 9 3 . 5 70 0 . 066 1 .476 0 . 066 97.046 2. 934 1 0 0 . 0 0 0 0.131  4.450  4.450 100.0  0 . 7.50 0.873 "0.113"  T  0.329 0 . 19 0.164 0.09 9 0. 095 0.099 0. 09 V  0. <}'}••}  1  MID P H I ( L I N E A R ) PHI MM 1. 751 2.249 2.74 9 3. 75 3 4. 253 4 . 75 9 5. 259 5. 754 6 . 254 6. 754 7.254 7.754 8.26 8 0.786 I.it Si 9 . 748 10.248 10. 74 8 11.239 12.76 1  MID PHI I PROS.) PHI MM  29707 1.886 2 10 36 2.308 14P 75 2.822 TCT41T6~ " . 3 1 6 0 74 1 6 3 . 7 0 3 05244 4.264 03693 4 . 759 ,02612 5.2 56 0 18 5 3 5. 749 6.240 .01310 6 . 749 ,009 26 7.250 00655 7.750 00463 P .2ol 00325 8.779 ,00227 -T5TT6-2- 5 . 2 6 2 5 . 737 00116 00082 1 0 . 2 3 3 00058 1 0 . 7 3 4 00041 1 1 . 2 3 7 00014 1 1 . 9 1 1  0. 2 70 5 7" 0.20200 0 . 14140  -TT7TTU7T0 . 0 72 6 2 0. 05205 0.03o93 0 . 0 2.. 18 0.01060 0.01 J T f 0.00)30 0 . 0 Oo 5 7 0 .0 Ot 6 5 0 . 0 0., 2 0 0 . 0 0 2 ?o 0 . 0 0 i <- j 0.00117 0.0CO8 3 O.00J59 0.00^41 0.00026  MOD!  0 0 0  -rr(i  i»  '0  1  * * *  0.0  • ir. T • T 10 00 . O J O J 10 0 . J . 0 0  o. c  •OT-.Y ,.T 4 . L 700 1 00. 0 300  *** *•**+•  SALT 0.0 0.0  ORGANIC 0. 0  OISTURE 0.0 (GRAMS) 0.0 (PCT V. C T WT)  0.0  —  —  PL »..-.:.•IT AGE P. j1TIOM  TA •'.If  cr-  5 T ATI ST I CAL OAT A IM P h i  COM  G3A7- L 3 A'i 311. i CLAY  y.uo S/"4 •  "0. 30. 54. 10. 69 . 0.  <T"0  5.2f : 5^tT •l-l: T P- '.' H" —Sr27.P26 5 . 1 ! 2 05 [: f 1 " P- = ' L / 5.11207 I: •' 1.1. 5.24355 P- i N." 5.242E6 K- OX!; !.' I 't F- <?l. f< LK (T PALS FOPVE-P) 21K ITnANSFCRMED) v\  -4 .6 1 0 16 i 3  DATA FOR CONSTN FRACTI CM "HI  0. 2500 30" 0.177CO0 0. i 250 )u  wT.(GMS) UNCOR COR 0.010 0. UIO 0. 14 0  TT  UM! I S  PERCENTILES  OF BARGRAPHS WT.PCT. COR  WEIGHT LOSS DUE TO r-ANDLING GRAVEL CORRECT I 0* FACTOR S U E S ELIMINATE! - . KO.Jlil TRASK SORTING C C - L - F F I C IE NT US INC, PK0BAB1 L I T V U I • A P . MEAN CUBED DEVI AT I (?,\ USING PR0BABLI1Y L'xi ••:.'.;•.  —  STD CEV SKE WNESS KURT OS IS 2.09413 1. 56290 " 5 . 5 8 7 3 1 1.97827 1 • 38154 4.G&799 1 .38 1 19 u. 3478r, 1.26/72 1.87162 u . 3522 J 1. 26566 1 .7 32 53 0. 22o39 0.53315 1.73 125 __0. 22E3B 0.51755 1 .60411 0 . 04234 0 . 22769"" 1.58730 0.05127 0.22651 0.55503  ft  5".'0 10.0 16.0 23.0 5 0. 0 75. 0 64 . 0 90.0 95. 0  LINEAK MM. 0 . 1 1956 0 . 10 381 0 . 08 769 0. 07141 0 . 03 4 72 0. 01592 0 . 00794 0. 00384 0. 00115  EXTRAP. PHI UN I T S 3. 0641 3 3. 26803 3. 5 1 1-, 1 3.F07E1 <t. 6462 3 5.97336 6. 97648 8.0235; 5. 7 6266  AND CUM. CURVES  WT.PCT. CUMUL.  MID Prtl(LINEAR) PHI MM  * « r.  H ^ O D A L "SAMPLE "  MID PHI ( P ^ O B . I PHI MM  * -*  0. 0 1.0 30 NONE 2.118 2 . 1.: 14.333 10.6'?o  _  — .  PRrtilArLIl ITY E X 1 .--.'.P. M M .  0. 1 1590  0.099 2 3 0.08/62 0.0704 3 0.03471 •0.01554 '0.00753 0.00385 0.001lo  PHI C M TS " 3. 10900 3 .333 1 4 3 . 51 26 1 3. 3 3 3 3 3 4 . 8-, 3-. 3 5. 9 7118 6. 9/ 3 1 1 8. 0 i I S 4 9 . 74C.33  to LO  ***«  WET WT 10 0 0 . 0000 100.0000  PERCENTAGE COMPOS ITI ON GRAVEL SAND SILT CLAY KUO S/M  V  • I  ~^__-'^"**  »** MULT I MODAL "SAMPLF "" ' * * * " **** »*•* * +* » * * + * * * » » * * * * * * * • « + * » « * * * ' * *  35  0. 0  3 3 . IC 54.66 12.16 6 6 . 84 0.50  DPY WT "" 2 . 8600 100.0000  SALT 0.0 0.0  ORGANIC 0.0 0.0  TABLE OF STATISTICAL JAE+*-=r-s 'MOMENT C5.2bJ2ht*^ p-MCKFNT ^725327 FCLK 5.1C405 P-FOLK 5.11484 1NMAN 5.25069 p- I NM AN 5._3_0685 "KFUMP.'EIN ., " P-KRUM.' * FOLK (TRANSFORMED) P-FOLK (TRANSFORMED)  DATA  WEIGHT LOSS DUE TO HANDLING GRAVEL CORRECTION FAC10R SIZES ELIMINATED K 0 . 0 1 S ) TRASK SORTING COEEFfCIFNT USING PROBABILITY EXTRAP. MEAN CUBED DEVIATION USING PROBABLITY E X T R A P .  MOISTURE 0.0 (GRAMS) 0.0 (PCT WET WT)  IN P n i UNITS  STD DEVSKEWNESS KURTOSIS 2 . 19625 "" "1'." 3 86 7 0 " " 4 . 7 2 7 1 T 2.05477 1. 18032 3. 75626 2.02668 0.38567 1. 1908 1_ 1.19193 0.39 620 2.00770 0. 79108 0.2 6802 1.94359 1.91872 _01300_2 1_ _0.80304 0 7221 3 9 " 177749*' 0.14322 0.22208 0.14860 1. 76226 0.54355 0.54376  PERCENTlLES 5.0 10.0 16.0 25.0 50.0 75. 0 "84". 0' 90.0 95.0  LINEAR MM. 0.13101 0. 11305 0 . 0 9 8 27 0.07624 0 . 0 3 7 6 O  0.01486 " 0.00664 0.00266 0.00105  0.0 1.000 NONE 2.294 2.281"" 14.c90 10.240  EXIRAP.  PftCBAP-LlHTY  PHI UNITS_ • 2. 53224" 3. 1 4491 3. 34 71 0 3.67603 4.73089 6.07219 ' 7. 2 342 8" P. 55661 5. 65451  _  0.12768" 0. 10697 0 . 0 9 5 51 0.07749 0.03766 0.01490 0". 00668 0.00266 0.00106  DATA FOR CONSTN OF BARGRAPHS AND CUM. CURVES SIZE MM  0.25OO0C  FRACTICN PHI  2.000 C.25COOC 2.456 0 . 177000 3.000 3. 125000 C.Oobbji!. 4. 000 0.062500 0.044 000 4. 5 06 0.03lOoO 5.012" 0.32200 0 5. 5 06 0.016600 6 . 0C2 0 . 3 11000 . 6 06 0.307P33 .002 7. 506^ _O.OG550u_ 6 . 0 0 3 900 6. 002 8. 533 0.002700 0.001 900 9.040 0.50136.3 5 . 6 C1 0.0C096O 5.955 0.000690_10 J L 5_01 " 0.300061 14.000" TOTALS 0.010000  WT.IGMSI  UNCOR  COR  WT .PCT . W T . P C T . COR CUMUL.  MID PHI(LINEAR) PHI MM  MID P H l ( PriCB.) PHI MM  0 . 26955 0 . 259 "0.010 0 . 2 0* 8 9 0.259 0.010 0. 1 3624 5.18 1 0.200 O.lOi.01 -uT5"T3~ "15. J2o 0.07j42 0.480 12. 4 35 0.480 0.052 23 0. 54 5 14.103 0 . 54 5 _0.ICL3O 0.237 6. 146 ' 0.23 7 0.02o21 12.826 0.496 0 . 49 5 0.01863 8 . 102 0.313 0.313 -0TDIT1"! 4 . 726 0 . 172" 0 . 182 0 . 0 0 9 ? ! . . 3.376 0 . 130 0.133 0.00o55_ 3.377 0. 130 C. I30 0.00-.65 0.07 8 " "2. 025" " 6 . 0 7 8" 0 . 0 05 2 6 2.026 0.076 0 . 07 8 0.00229 2.701 0.104 0.104 1.350 ••3.052 0.052 9.1.524—9. 270—o.00142 9.2e7I O.OOi 0 . 0 0 1 163 7 0 .001 16 9 . 736 9 5 . 2 75 9.74 8 1.351 0.062 0.062 0 . 0 0 0 8 2 J O . 2 3 1 _0^0DO 83_ 96.624 10.248 1.350 0.052 A' 0 . 0 0 0 4 7 0. 00021 U . 0 4 4 3."3"76 1 0 0 . 0 0 0 1 2 . 2 5 1 0.130 0 . 1 3 0" 3.860 100.0 3.860 0.010 0. 010 0 . 209  -  MM.  MODE  -r>"" o i  fXTRAp.  PHI UN1TS_ 2.96714" 3 . 15799 3.36613 3.66991 4.7306 3 6.0o696 "7. 22557" 8.55420 9.8.6617  K)  ****ft#*ft***»ftft**ft#l)t#**t;Aft*ft«ft  P1 + * 36  0.0  WET WT 1000. OCUO 100.0001  PERCENTAGE COMPOSITION GRAVE L SAND SILT CLAY MUD S/M  ****  0. 0  OPY WT 3.9100' 100.0000  *» * *  SALT 0.0 ' 0.0  TABLE OF STATISTICAL  0.0 20.46 59.85 19.69 79.54 0.26  ^KEAN—^  C  ORGANIC 0.0 0.0  DATA S TD  MOISTURE 0.0 (GRAMS) "" " " " 0.0 (PCT WCT WT)  IN PHI UNITS CFV_SKCWNESS  6.04513J) 2.5701 1 1 .22959 3.9528 1 * 6^03790" 2 2 .. 5 42 96 82 32 0 1. .6891B 5.96001 0 . 416822 292T* 3 1.24683 5 ..95107 2 .. 454515 0.4 1. 80875' 24959 6 22810 2 2833 0 . 3 41997 224 0. P-1NKAN _ 6.24095 2.41228 0.34939 0.60588 K R U X b f c I N 2 . 1 3 4 1 5 ~ 0 " . 2162 5" " 0 . 22452 ~ P-KPUM. 2.12137 0.22163 0.22352 FOLK (TRANSFORMED) 0. 55547 P-FOLK (TRANSFORMED) 0.55493 P-FOLK F1NMAN OL K.  DATA FOR CONSTN OF bARGRAPHS SIZE FRACTION MM PHI  WT.ICMS) UNCOR COP.  0.250000 0.010 2.000 0.177CO0 0.020 2.498 0.125000 0.060 3.0C0 0 . 230 0. 03(2000 3. 5 Co 0.430 0.062500 4 . 000 0.520 0.044 000 4 . 506 "b ."03 1000'" ' 5 . 0*1 2" ""6. 185" . 307T 0 . 322u'j J 0.013600 6 . CC2 0.417 0.011000 6. 506 0.289 C.007800 7.002 0 . 128 0.005500 7. 50 6 0. 160 0.002900 6.002 0 . 064 0.002700 0 . 128 8 . 533 0.001900 0 . 064 5.040 0.001380 5.501 0 . 123 0.000960 9.995 0.064 0.000650^ 1 0. 5C1_ 0.064_ " 0.000456 1C.595 6 . 064" 0.000340 11.522 0.032 0 . 0 0 0 2 4 0 12.025 0.032  0.000170 0.000061 —IQ.T.ALS ..  12.522 14.000  0.032 0.160 .3.910  0.010 0.020 0. 060 6.2fto 0.430 0.5 2 0_ 6. 1H3 "OTSTT 0.417 0 . 2R9 ..P. 126 . 0 . 160 0.064 0 . 1 26 0 . 06 4 0 . 128 0.064 0 . 0 6j4 0.06H 0.032 0.032  WT.PCT. COR  5.0 10. 0 1 6. 0 25.0 50. 0 75.0 " 84. 0"' 90. 0 95.0  ClNFAh ExT.-\AP. MM. "6. 10952 0.08654 0 . 0 7 1B0 0.05545 0.02373 0.007,53 0.00248 0.00101 0.00025  WT.PCT. CUMUL.  MID PHI (LINEAR) PHI MM  PHI UN I TS 3. 1 9077 " 3. 53044 3. 799 7 / * t . 1 72 72 5. 39703 7. 05383 8. 6 5 6 i 2 '"' 9, 54670 1 1. 97526  MID PHI(PK 0 8 . ) PHI MM  0.25c 1. 751 0.29707 1 889 0. 767 2. 249 0.21336 2 307 2.302 2 . 74 9 0.14875 2 3 06 9.462 T. 0.10483 20.460 3. 753 0.07416 785 33.767 4. 253 0.05244 269 759 38. 500 " 4. _0_. 0 369 3_ 7G2_ T47Tol~ 5 3 . 2 6 1 26 1 0.*02 6 12 259 10.660 751 0.01853 63.521 754 71.201 7. 380 0.013 10 6. 248 .254 _2..-2Ji(3_ -14,^.8.1 6,.JL5Jt_ -0^030.9.2,6 6., JL5JL. 4. 1 00 7 8. o 8 0 7. 2 54 0 . 0 0 6 53 7. 248 1. 639 80. 320 7. 754 0.00463 7. 751 3 . 260 03.O00 8. 268 0.00325 8. 26 0 1.641 83. 24 1 8. 766 0.00227 8. 782 3.28J 68.521 77760.00162 5, 270 1 .639 90.160 741 0.00116 9 74 6 1_.64 1_ 9 1. 601 10, 248 239 0.00082 *"l . 6 3 9 9 3 . 4 4 0 "10. 74 8 " 6 . 0 0 0 5 8 737 0.820 9 4 . 2 6 0 11. 259 252 0.00041 0 . 821 9 5 . 0 8 1 1 1 . 773 0. 00029 11, 766  "ZTT  0.032 0.320 95.900 12.273 0.160 4.100 100.000 13.261 3.910 U O . O  TPT  0.00020 0.00010  12.264 12.749  0.27J01 0.29203 0 . 14301 e.lOj'130. 0725 7 0.05187 0.03O86 O.02o07 0.01357 0.01315  .0.0 1.000" NONE 2.714 2.693 20.675 18.217  MM. ""6. 1 043 9" 0.08609 0.07038 0.05467 0.02371 0.00754 "0.00248 0.00102 0.00025  MODE  0 1 0 * 1* 0  -OjJlSiiiSL O.OOJ'38  0.00»64 0.003?o 0 . 0 02 2 7 0. 001 o3 O.OGi17 0 . 0 00 P 3 0.00J59 0.00041 0.00029  0.00020 0.0OJ15  * **~  ****  THorUaLlLlTY  AND CUM. CURVES  6. 256  0.512 1.535 7. 161 10.997 13.307 4.733  SAMPL E  I  WEIGHT LOSS DUC T rt HANDLING GRAVEL CORRECTION ,FACTOR SIZES ELIMINATED K O . O l ' t ) TRASK SORTING COEFFECIENT USING PROBABILITY EXTRAP. MEAN CUBED OFVIATION USING PROBABLITY E X T R A P .  PERCENTILES KURTOSIS  ****  MU L T 1 MOD AL  0~ 0  EXTRAP.  PHI U M T S 3.25969 3.53795 3.32368 4.18784 5.39813 7.05169 3.6532 3 9.94418 11.57245  Pi** 3 7  *** * ***  WETWT _  JiRY  10 30.0000  PERCENTAGE COMPOSITIGN  CLA MUD S/M  IT  0.0 2 0 . 70 69.66 9.73 79.30 0. 26  WT  4.5900  100.0000  100.0000  SALT  ORGANIC.  "" o'.'o  "6.0"  0.0  MOISTURE  0.0  TABLE OF STATISTICAL  DATA  b.b" 0.0  PERCENTILES  Kf-AN , - S T O DEV SKEWNESS KURTOSIS MOMENT £ ^ " ~ 5 . 6 7f'41 l'.H0636 1. 12940 4.8323 1 P-MOMENT 5T5C~(SS 1 .7219 7 0 . 9 2 7 7 7 3 .85024 F CL K 5^44714 1.71080 0 . 19269 1.04429 P-FOLK 5.45497 1.68749 0.20393 1.03/ 72 5.50452 1.68492 0.10215 INMAN 0.70067 5.51552 _U6_6 187 0. 10929 0 . 7 008 7_ P-IflMAN KPUMPE1N 0 . 2 5/42 1.66605 -6700072 P-K RUM. 0.25743 1.65384 0.00290 FOLK (TRANSFORMED) 0.51063 P - r C K (TRANSFORMED) 0.50926  D  * * *~ ****  WEIGHT LOSS DUE TO HANDLING 0.0 GRAVEL CORRECTION F A C T O R 1 . 0 0 0 SIZES ELIMINATED K 0 . 0 1 S ) NONE TRASK SORTING COtr F F EC I ENT 2.100 USING PKOBABILI IV EXTRAP. 27T7.8 MEAN CUBED DEVIATION 6.667 USING PROBABLITY EXTRAP. 4.737  (GRAMS) (PCT WET WT)  IN PHI UNITS  KUL TIMODAL SAMPLE; '  6. 0 1 0. 0 16. 0 25. 0 50.0 75.0 "84.0 " 90.0 95. 0  L 1 NEAP ETYR A p. MM. 0. 10 30 6 0.08309 0.07082 0. 05414 0.02482 0.01139 0.00685" 0.00402 0.00194  P R I ' B A D L I I ITY  PHI UNITS 3. 2 / 64 8 3. 5861 7 3.81969 4. 2071 l T 5. 33239 6.45626 7.18544 ' 7. 95788 9. 0 094 9  MM . .09799 .05151 .06917 T53364 024 79 01141 "00691" 00403 00195  EXTSAP  -  PHI UNI TS 3.35118 3 . 61651 3.85365 4.2204^ 5.33386 6.45313 "7. 17 73 8" 7.95340 9.00443  DATA FOR CONSTN OF 6ARGRAPHS AND CUM. CURVES SIZE FRACTION MM PHI 0.250000 0.177CC0 0.126000 6.  LotOUO  0.06 2 500 0.044000 0.531000 O.O220OU O.3156C0 0 . 0 1 ! 0.30  0. 250000  2.000 2.458 3 .OOC  0.005500 0.003900 0.002700 0. 001 900 6.uCI3S0" 0.0C09O0 0.000690_ "0.000061 TOTAL 5 0.010000  4. 000 4.506 "6.01 2" . 5 06 . 002 6. 6 06 _L.Ji02_ /.506 8. 002 0. 633 9.040 6TT 9 . 99 5 1 0 . 5 01 "14". 0 0 6""  WT.(GMS I  UMCOR  COR  O.OiO 0. 020 0.040  C. 077.  MID PHI(LINEAR) PHI MM 0.29707 0.21036 0.14875  "TTzirs—Tjn'Tj^TEr  0 . 59C _0 . 48 3 0. 26 0 '  0. 03 7 0.037 0.074 4.590  WT.PCT. CUMUL.  1. 751 2.249 .749  "TTZST"  0 . 223 6". 149 0 . 11 1 0 . 111  WT.PCT, COR  0 . 223 6.149 0. 1 1 1 0 . 11 1  ~7777t  0. 03 / 0. 03 7 "0".b"74" 4.590  20.697 3.753 U.07416 3 1.2 17 4.25 3 0 . 0 52 44 36.861 4.769 0 . 0 36 93 5 7.112 5.255 0.02612 66.441 5. 754 0. 0 18 53 /5.72J 6. 254 U.013TT3 JL2.- 1 9 7 6. 754 0.00926 _ 4 . 656 87.062 7.254 0. 00655 3. 25 7 9 C. 2 9 0 7 . 75 4 U . 004 63 2.427 9 2 . 71 7 8.268 0. 00326 2.428 96.146 6.766 0.00227 7o4 CJ7.7 0—0.00162 TTrp 956. 7 . 672 9 . 748 0.001 16 0 . 6 0 6 9 6. 381 _ 1 0 . 248_ _ 0 . 0 0 0 82_ _ _ 0 . 609_ UJ.uOO 1 2 . 2 5 1 " 0 . 6 6 0 2 1 1.619 100.0 .  MID  PHI  PH I ( P a O B . )  MTJTJC  MM  f.'dSS" "6.27071 " 2.308 0.20200 2.794 0.14417 ~.33" " O'.'O " ' 4 " 5 " 3.793 0.07215 4 . 267 0.051S6 4 . /63 0.03063 5.26 1 0.02o07 6. 748 0. 01660 672"4"o 0. J 1 j 1 7 6.743 0.00934. 7.241 0 . 00^61 7 . 74 2"" 0 . 00 . 6 / """ 6.253 C.0C28 6. 766 0. 002 30 f,. 2r.2 P . O O i 64 9 . 733 0.001 1 7 1 0.2 26 0. 000 8 3_ 11.063 "6".' 00046 "  0" 0 0  0~~ 0_ 0 o" 0 1  0  PITT38  SIEVE,  PHI  PC T .  1.50  2.50  4.50 5.00 6.50 6.00 6.50 7 .00 7•50 3.00 5.50  2.C6  4 . 75  * <• * *  18.15 11.24 8.64 5. 15 5.19 4.32 3.4 3 .46  9.0J  * It *  *  14.4?  8.64 15.56  *****  6.81  7.61  4.00  , * T  *  2i.C7  .-********  38.63  ******************"  66.78  v**  6i.02  ***»-***ir*  76.66  * * * * *  6 1 . L5 * * w*  *  o 7.C3  ****  51.36 6 ~ 54.SI  u-  98.27 1.75  12. 00  *« 100.00  MEAN  ST.DEV.  5.4 8  SKEwNESS  • 1.44  KURTOSIS  0.15  -0.21  0.22  PERCENTILES  MEDIAN  KRUM3EINFPETT IJGTINl 193 8) FCR S U E RANGE . 2 . 0 TO  T.'22" " "fOLK  5.31  5TH 75TH  PER  CENT  •  0.79  1.27  3.60  6.3100  0.48  0.32  3.00  SAMPLE WT.  CUM PCT.  0 . 45  2.00  S H . P I P . , SEDIGRAPH  i.t'AVl L  GRAVEL  •  SANG  LABELS  SHEPABQ  0.0  14.42 -SILT  SANO  14.42  MOMENT MEASURES 9 . 0 Pril  GRAPHIC SI A IIS r ICAL FOLK AND WARD,1957  3.31  16TH  6 , 4 0 " SILT  JILT/(SILTtCLAY)  4.09  25TH  84Th " 7.21 ' "  77.26 89.90PCT  FOLK (CMS l-SANOY MUD  (  76. 63)  PARAMETERS  4.56  55TH CLAY  GRAV + SAND/SILT +  3.53 6.32  I  li.6-.l~  C L A Y 0 . 1 7  ( SCS l-SANOY  SILT  SUVEf  P ITT39 PHI 3.00 3.50 4.00 4.50  10.00 10.50 11.00 11.50 12.00  SAMPLE WT.*  4.8000  PCT. CUMPCT. 0.42  0.42  1.67  2.08  JL.96  4.04  2.94  5.00 6.98 " 7 . 8 3 " 5.50 14.61 6.81 6.00 23. 63 10.77 6.50 34.40 6.85 7.00 41.25 .65 7.50 4 6.10 7.83 8.00 _ 55.54 ' 4.90 6.50 60.83 2.94 9.00 63.77 11.75 9.50  SH. P I P . , SE 01 GRAPH  4.93 4.90 4.90 4.90 4.90  MEAN  ***********  15.bZ_  8G.42 85.31  *****  SO.21  »»***"  95.10 100.00  ST.DEV. SKEWNESS KUPTOSIS.  (^l.blS 7. 85  2.01  0.06 -1.01  2.23  0. 14  PERCENTILES  PER CENT  **********  MEDIAN  GRAVEL  Ann  0.0  ?-ns  KPUMBEINt-PFTTIJOHNl1938) MOMENT MEASURES FOP SIZE RANGE 3.5 TO 11.5 PHI FOLK GRAPHIC STATISTICAL PARAMETERS FOLK AND WAKD,1957  1.17  7.62  SANO  5TH  4.66  75TH  9.48  2.08  SILT  5 11 T/I S IL Ttf.i AY I  16TH  5.57  84TH 10.37 54.17 I 53.85)  55.00PCT  25TH  6.06  95TH 11.49 CLAY  43.75 I 44.061  GRAV + SAND/SILT + CLAY  0.02  PITT40A P.HI  4.50  SAMPLE WT.=  3.4200  PCT. CUMPCT.  3.50 4.00_  SIEVE, SH. P I P . , SEDIGRAPH  1.17  1.17  'l."98  5.00  5.93  5.50 " 6 . 5 2 6.00 4.94 ""bTSO 4.94 7.00 6.92 7.50 8.00  3.15  2 .55  6.92  8.50  7.91 9. R  9.00 9.50  * "  •»  6.11 ******  12.04 _ " . " " ******* 18.96 ***** 23790^ ***** 28.64 ~ ' ******* 35.76 * * * . » 4 *  42.63 50.59 3  "  '  * * * * * * * * * *  60.4 7  5.93  66.40  5.93  10.00 10. 50 11.00  6.92 5.r,  11.50 12.00 T2T00  ******  5;53"  ****** *.*•«,*  85. 13  ******  3  1.93 6.92  _MtAy_  72.33 " " 78. 26  91.11  >*  93.03  *******  IOITTOD  ST.PEV. SKEMIESS KURTOSIS  -^fl7l7"^  2.05  -0.06  -0.96  8.39  2.37  -0.03  1.19  j  PERCENTILES  MEDIAN  8.46  KR UMB E IN+P E TT I J OHN{ 1938) MOMENT MEASURES FOR SI2E RANGE 4.0 TO 12.0 PHI FOLK GRAPHIC STATISTICAL PARAMETERS FOLK AND WARD,1957 5 TH  4.81  75TH 10.23 PER CENT  GRAVEL  0.0  SANO  1.17  SILT  16TH  5.79  84TH 10.92 41.73 I 41.51)  25TH  6.61  95TH 12.00 CLAY  57.10 I 57.321  SEDIGRAPH ANALYSIS  PITT408 PHI 4.  go  4.50 5.00 5. 50 6.00 6.50 7.00 7.50 8.00 8.50 5.00 9.50 10.00 10. 50 11.00 11.50 12.00 12.00  PCT. CUMPCT. 0.0 '  0.0  2.00 6. 00  9. 00  11 .00  ******  a . 00  10.00  9.00  **  2.00  **********  18 .00  "~** * * * * * * *  27.00  **ft***ft**  36.00  .ftftftftK**** ********  6.00 13.00  4.00  2.00 2.00 1.00 5.00  MEAN  ******  61 .00  r * * * * * * * * * *  *********  83.00 87.00 50.00  ft* **  92.00 94. CO 55.00 100.00  ST.DEV. SKEWNESS KURTOSIS •  7.68 / 1.64 N  7. 74  1.95  0. 14  -0.67  0.16  1.32  "PERCENTILE'S " "MEDIAN  7.69"  KP.UMfiE IN »PE TT I JOHN I 193 8 » MOMENT MEASURES FOR SIZE R A N G E 4 . 5 TO 12.0 PHI FOLK GRAPHIC STATISTICAL FOLK AND WARD,1957  5Tl' 3 . ' 2 5 1 6 T H 75TH  PE R_c ENT_ _GRAVEL GRAVEL * SAND  I A C C I C  ctiCDicn  0_. 00 COO  -riAvpv  SANO  0.0  9.06 SILT.  SI L T / ( S II. TftCL A Y I  C U T  pniK(r,MSl-M[jn  84TH 0.0  PARAMETERS  5.90  251H 6.39  9.63  95TH 12.00  <_61 .00)  61.00PCT  CLAY  0 ._0  i_3±. 0 0 )  GRAVES AN O/SILT+CLAY  (SCSI-MUD  0.00  0.0  P i t * 41  '*T*  0. 0  WET WT _ _„DRY WT _ SALT lOCO.0000 ' ' 5 . 1 6 3 0 " " " O.C 100.0000 100.0000 0.0  PEPCENTAGE C0KP0S1 T i UN "GRAVEL SAND SILT  CLAY MUO S/H  0. 0 23.15 61.65 10.17 71.61 0.39  ORGANIC MOISTURE 0 . 0 6 . 0 {GRAMS i 0.0 0.0 (PCT WET WT)  TABLE OF STATISTICAL  P-FOLK 5.19261 INMAN 5.25513 P-INMAN _5.26164^ ""k R U MB E I N " " " ' " " 1 P-KRUM. FOLK (TRANSFORMED) P-FOLK (TRANSFORMED)  DATA  IN P H i UNITS  1.66668 0.28770 1.32852 1.65981 0.11987 1.09276 1 .64723 0.12535 1. 06965 . 58 65 7 - 0 . 0 91 0 3 0 . 2 2 6 1 0 " 1 . 5 7 3 L 4 - 0 . 0 8 3 11 0.22882 0.57069 0.57064  vjLT.MoOAL  SiMi'L:  WEIGHT LOSS DUE 10 HANDLING GRAVEL CORRECT ION FACTOR SIZES ELIMINATED ( < 0 . 0 1 * ) TRASK SORTING C OE F F EC 1 ENT USING PROBABILITY EXTRAP. MEAN CUBED DEVIATION USING PROHABLITY EXTRAP.  PFRCENTILES  50. 75. 64, 90.  LINTAR  EXTRAP.  MM. 6 . 11645 0 . 09841 0 . 03274 0 . 06725 0 . 03006 0.01524 0 . 00829 "" 0 . 00360 0. 00094  'WT. ( GMS) UNCOR COR  0.010 0.2 50000 2 .CCD 0.020 0.177000 2. 498 0 . 120 0 . 125000 . 000 -0.54C 0.088000 ~STSTi"6 0 . 770 4. COO 0.062 500 0.678 __0. 044000 _4. 506 Q.'C2 1 666"" 5." 6 1 2" 0 . 174 0.922000 5 . 5 06 0 . 864 0. 01 5600 6.002 0 . 46 8 0.011000 6. 506 0.301 0. 507800 7.002 0.225 0.006500 _7. 5 06 0.113 "~G. 003 9 0 0 " 8 . 0 0 2" 6.150 0.002700 6.533 0. 113 0.001900 9.040 0. 075 0.001380 9.501 0.038 0.000960 9.995 0. 033 0.0006 90 10.501 0 . 033 0 . 0 0 0 4 5 0 ' 10.595" "6. 338 " 0.030340 11.522 0 . 038 0.000240 12. 025 0.038  WT.PCT. W T . P C T . CUR CUMUL.  MID P'HKLINEARI PHI MM  MID P H K PROS. ) PHI MM  1.751 0.29707 1.882 ' 0.010 0.193 0. 193 2.249 0. 020 0.386 0. 579 0.21036 2.308 2. 749 0 . 120 2.317 2. 896 0. 148 76 2.828 "TJT54D- TOTTTZS—IT; 'T2TJ- "3TZ53" ~ir."ro4""ETB~ 3.780 0.770 0.07416 14.865 28. i es 3 . 7 5 3 4.263 4.253 0.878 0.05244 16.948 45. 133 " 0 . 1 7 4 ' 3. 36 3 " 4 8. 4 96" "4.755 0.03693" 4.755" 0.02612 0 . 864 5.259 6.254 16.684 65. 161 0.01853 0.488 9.431 74. 6 1.1 5.754 5 . 745 •745"" ororrrcr 80 414 0. 301 5 . 805 6.254 . 744 84 7t,7 0 . 225 4. 352 6 . 764 0.00926 2.177 7. 264 0.00655 7.248 0.113 86, 943 0 . 0 0 4 6 3 ' 7.74 3 7. 754 0. 15 0 2 . 9 0 2" 89. 64 5 0.00325 8.266 6. 26 8 0.113 2 . 176 92 , 02 0 0.00227 8. 777 8. 736 0.076 1.461 93. 4 71 0.038 726 54. 197 9. 270 0.00162 9.265 0.038 .725 54, 922 9. 748 0.00116 9 . 741 0. 038 726 63. 648 1 0 . 2 4 8 0.00082 10.240 0.036 72 5" "96 , 373 10. 74 6 0.00038 10.739 0.03 8 726 97. 099 1 1 . 2 5 9 0.00041 1 1 . 2 4 6 0.033 72 5 57. 823 1 1 . 7 7 3 0.00029 11.758  0.27128 0.20197 0.14J80  TTTTT 0.07278 0.05208 6".0 3u9 2 0.02o20 0 . 0 1664 O.OIJITT 0.007 3 3 O.OOJSB  0.00^67" C . 0 03 2 7 0.00228 0.0016 3 0.00117 0.00063 0.00359 ' 0.00J41 0.00329  0.0 l.OOO" NONE 2.101 2 . 0B8 15.544 13.367  PROBABILITY  PHI UNI TS 3. 1 021 9 """ 3. 34505 3, 55532 89420 5. 0561O 6. 03606 6 . 51493 8. 04015 10. 04936  MM. 0.11171" 0 .09456 0.08lo5 0.06651 0.0300S 0.01526 "0760832" 0 . 0 0 3 81 . 0.00055  DATA FOR CONSTN OF BARGRAPHS AND CUM. CURVES SIZE FRACTION MM PHI  »*** «•»  MODE  EXTRA*  PHI UNI TS " 3 . lo221 3 . 35656 3 . 61441 3 . 91016 5 . 05516 6 . 03592 6.5086 6 8.03720 10. 0464 7  PITT45  SIEVE, SH. P I P . , SEDIGRAPH  Pn!  5.0400  PCT. CUMPCT.  3. OJ  1.59  3.50  3.57  4. J0  1.55  »•<»»  5.1c  6.77  10.64  6. 30 _  >/'/ <- *ft* ft • ' "* >•»»/'*** * * " * * ** " f t * * * ***** w  ftftftftftftftftftftftftftftft* ( **-ftft»ftft**ft  67. 10  7. 74 7. 3-0  7.30 8.30 6.50 9.00 9.36 10. 00  >•»»»»" 74.64  5.81 6 3.65 4. 84 83.48 3.57 65.36 1 . 54 0.57 0.97 0.57  11.00 12.00  » ,»» >  91.25  52.26 43.23  10.3>.  54.15  0.97 4 . S4  55.1 o 100.00  ST.OEV.  •E-tt 5.99  _I-4_7  "•• 1.84  ffct-CLIlT U t S  PER CENT  S*Ew«ESS  KUFTCSIS  C.43  _0.79__  "  6.11  • SAr.r  u:i>'::-, - C U T  1 .36  T.<JU ~  0.0_ 3.16  KPUMbE 1 N»PE TT UfJHN < 193b ) MON E NT MjEA SUR E S_  SIZE RANGE' 3.5 TO " 1 l.'d PHI  " ' " F O R  0.38  >.l UIAK  GRAVEL  , ^  "TT 5u~~ TT.54 1 0.64 5. . . 2 2.55 17.42 5.3 0 40.00 16.45 6 . J 'J 5 6.43  GKAVl  SAMPLE WT.=  rGLK  GRAPHIC STATISTICAL  FOLK AND WARD,1957  5IH 3.96  SAND  75TH  7.01  5.16  SILT  16TH 4.69 04IH  80.44 I 80.32)  M L T / I S I L K T L A Y ) B4.65PCJ  FOI K l r.w; l - M l i r i  7 .85  PARAMETERS  2 51:11 5.07 95TH 10.92 CLAY  14.40_( 14.52 )  GR AVft SAN 0/5 I L. T»C LAY  (SCSI-SILT  0.03  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * #***  P l * + 42  W% *  * V * *  MULTIMODAL  SAMPLE  **** **** *******V***********#ft***&lftft*ft WET WT _ DRY WT " l O O O . 3000 " " 6 . 3 1 0 0 100.0000 lOO.OOuO  PERCENTAGE COMPUSI TI ON GRAVEL SAND _S_ILJ_ CLAY HUD S/M  2 9.64 66.05 4.22 70.36 0.42  T/-HLF  SALJL "0". 0 0.0  0.0  OF STATISTICAL  OA f A  W3ISTURE_ 0.6 I GRAMS") 0.0 (PCT WET WT)  IN" PHI  UNITS*  SIZE MM  FRACTION PHI  0.250000 0.I770G0 0.125000  2. 000 2. 448 3. 000 J . J c 'j -j u 3.T7J7J 0 . 0 6 2 500 4 COO 0.044000 4 , 5 06_ "6. 031 000 ' "5 "012 0.022000 5. 3 06 0.015600 6. 002 0.011000 6. 5 06 0. 007600 7. 002 ~~zriv?Pttj—r. 5u6 O.OC29'JO a . 002 0.302700 6. 0 . 0 0 ! 5 00 04 0 O.OOOOoi 14. •oUo" TOTALS C. C4 0000 0.060000 0. 760300 1.020000  0  FOR CONSTN OF BARGRAFHS WT.lGMS) UNCOR CCP 0.030 0.030 0 . 1_30  6.030 0.030 _0.130  WT.PCT. COR  WEIGHT LOSS DUE TO HANDLING GRAVEL CORRECT ION FACTOR SIZES ELIMINATED K O . O U ) TRASK SORTING COEFFICIENT U S I NG PROBABILITY ExTRAPT" MEAN CUBED DEVIATION USING PROBABLITY E X T R A P .  PERCENTILES  J i E - A N - ^ . ^ S T D DEV SKEWNE SS KURTCSI S MOMENT ' 5 .006 1 9 ^ 1 .6C26B" 1.727 19 7.36736 -4-r-C 6"7 0*3 1.46659 P-MCMENT 4 . 6 7062 1.16629 4 . 6 4 3 6 0 1.38834 1.02392 FOLK 0. 2 671 9 P-FIHK 4.64389 1.36578 0.29655 1. 02547 INMAN 4.94371 1.34068 0.22401 0.7o732 P-I NM AN 4.54436 1.31822 _0._228 65_ 0 . J 6 9 0 6 KRUPBE IN 1.40501 6 . 1 7 6 6 3 " 6 . 27529"" P-KRUM. 0.17548 0.27329 1.38074 FOLK (TRANSFORMED) 0.50591 P-FOLK (TRANSFORMED) 0.50o29  DATA  0.2500CW 0.177000 0.125000 0.088000  ORGAN IC_ 0.6  3. 0 10.0 16.0 23.0 50.0 75.0 84.0 90.0 95. 0  " " ^ O B A B L T L T T Y TXTSTTPT"  PHI UN I T S 3. 1 04 1 6 •j 36o0 5 3. O0304 3. 8 6 504 4. 64239 5. 76181 28 439 "* 6. 81106 7. 84298  MM. 0 . 11181 0. 094 06 0 . Of 0 5 " 0 . Oc7o2 0 . 04002 0. o i e s B ' " " 0 . 01302 ' 0 . 00900 0 . 0044 1  AN0 CUM. CURVES  WT.PCT. CUMUL.  MID PHI (LI NEAP} PHI MM  0.4 Z5 1.751 0.951 2.249 3.011 2. 749 • 1 2 . 6 7 6 " 3 .•2 53" 1.070 1.070 16.95 7 29.635 3. 753 1. 122_ 1. 122 17.788 47.424 4.253 " 0 . 5 5 9 " 0 . 5 5 9 " * 9 . 4 96" 5 6 . 9 2 0 " 4. 759 0 . 86 I 70.562 0. 861 13.642 5.259 0 . 544 79.178 5. 754 0.544 8.616 0 . 544 0 . 54 4 6.616 6.234 B / . 794 0 . 22 7 0. 227 3. 590 6. 754 51.384 o . 136 OTTTS 2.154 "9 31.53 6 " 7 . 2 5 4 0.136 0.136 2.154 7.734 95.692 0.045 0.045 0.718 8. 268 96.410 0 . 04 5 0 . 04 5 0 . 7 19 8 . 7UG 3 7.128 0 . 131 0 . 1 81" " " 2 . 8 /2 106. 666 1 .1. 526 6 . 3 1 0 1 0 0 . 0 6.310 0.475" 0.475 2. 060  L I NEAR tXl.<AI>: MM . 0 . 11 6 29 0 . 09699 0 . 0:1230 0. 06663 0 . 04001 0 . 01843 0 . 01 2 83 " 0. 00891 0. 00436  0.29707 0.21036 0 . 1 4 8 75  MID P H M P k C l B . ) PHI MM  1.901 2.286 2.808 "o.iC'Vas - 3 . 3 1 b 3 .784 0.074 16 4.26 2 0. 05244 0.03693 " 4.758 0.02612 5.251 0. 01853 5. 743 "OTOTTIO 672Tr 0.00926 6.735 v).00653 "7.241 O.0O463 7. 73 5 0.00325 8.236 0.002 2 7 B. 773 .0002 9.820  0.26771 0.20.57 0 . 14^ P2 0.07^62 0.05212 0.03695 0.02o26 0. 01667 0.0U3TT 0.00936 0 . OOi 70 0.00327 0 . 0 02 2 8 O.OOl 1 1  0.0 ""* 1.000 NONE 1.930 1.908 3.225 3.847  MCDE  PHI UNI TS 3 . leOb 7 3 . 41033 2.. 62 614 3 . Bic-4-. 6425c 4 75044 6 • 26256 6 . 75568 7 . 82469  a  Pin-  0.0  43  WET WT_ "1000.0000 100.0000  PERCENTAGE CUMPUSIT ION "GRAVEL" SANO SILT CLAY  MUO S/M  ft*** ***  O.o 45.6 3 47.18 — 7.3 1 54.5 0 0.33  ftftft*  ORGANIC 0. 0 0.0  SALT 0.0 0.0  TABLE OF STATISTICAL  DATA  PERCENTILES  IN PHI UN 1 I 5  DATA FOR CONSTN UF 3ARGRAPHS FRACTION PHI  "oV2 5(306"o 0.177000 0. 1250uO  n  0. 062 500 0.044000 "0.031000  ..jfllilio-  0.000580 0.03069_0 "0.6*00061 TOTALS  WT.IGMS) UNCOR COR  WEIGHT LOSS DUE TO HANDLING GRAVEL CORRECTION FACTOR SIZES ELIMINATED K O . O l i ) TRASK SORTING COc FFE C I E NT USING P R O P A B l L l l Y E X l K A P . MEAN CURED DEVIATION USING PROBASLITY E X T R A ? . .  MOISTURE. " 0. 0 " I GRAMS) 0.0 (PCT WET WT)  C F T f T ^ ^ S T n REV SKEWNESS KURTOSIS 5 . 5 6 •> 5 1 ,7 7 5 5 8 . ^ 2 . 0 5 55 2 1. 513 77 "MOMENT 4.485B5 1.54277 1. 3 1380 P-MOPFNT 1.08376 1.34208 0.42579 FOLK 1.08696 T7T2703 0. 43688 P-FOLK 0. 8664 / 1.72868 0.33346 I NM AN 0 .B4ol1 U 7 2 4 5 5 _0._33 76 7_ P-INMAN "i . 8*0430" "0. 3*2736 "6.26332" K.'RUMf. EIN" 0.26408 1.77B38 0.33590 P-K^UM. 0.52056 FOLK (TRANSFORMED) 0.52083 -FOLK (TRANSFORMED)  . Jc~  **»*_ * * *  i*«*  **************ftft***ft**ft*ft**«*  OPY KT 5 . 7600" 100.0000  SUE MM  MULTIMODAL SAMPLE  LINEAR  EXlKAP. PHI UNITS 2. 605 76 " " 2. 8005 8 3. 02223  3.0 10. 0 16.0 25.0 50. 0 7 5.0 64 . 0 * 90.0 95.0  3. 280i6  4. 17100 5.7l627_ 6. 4 7539 7. 42578 9.06283  AND CUM. CURVES  WT.PCT. WT.PCT. COR CUMUL.  ~MTD PHI IL IN FAT) PHI MM  PHI  MM  0.0 1.000 NONE 2.3. 2.298 13.147 _ .9."4  ps.OsABl ILITV E X l k A P . 0 . 15460 0 . 13o44 0.12235 0 . 10112 0 .03354 0 . 01915 _ "6". 01122 0 . 0 0 5 64 0.00187  PHI U M T S 2.69336 2 . 6 7 36 1 3.02809 3.30581 4.17031 5.70662 "6*4771*9 7.41914 9.06076  PITT44  SIEVF, SH. P I P . , SEDI&RAPH  PHI  4.63 4.00 _ 4.63 ' 6.83 4.5011.56 1 1 .79 5.00 23.35 17.69 5.50_ 41.04 1 7 . 6 9 " 6.00 58.73 14". 74 6. 50 73.47 8.84 7.00_ 82.31 6.66 ~ 7.50 69.19 4.51 6.30 54.iO 1.97 6.50 96.07_ " 1.57 9.00 98.03 1.57 12. 00 IDO.OO MEAN V  WT.  4.4 900  PCT. CUMPCT.  3.50  C  SAMPLE  ST.DEV.  s.ez  )  *****  * . *****  *****  ******* *********** ' '*  * * * * * * * * * * * * * ** *~*~  *************** *********  ~V******" *.»**  o co  SKEWNESS  1.14  0.19  1.25  0.15  KUPTOSIS -0.21  KRUMBEIN+PETTIJOHNi1938) TOR SIZE RANGE 4.0 TO  -  5. 85  PERCENTILES  PER CENT  MEDIAN  GRAVEL  GRAVEL * SAND  0.0 4.68  LABELS SHEPARO - S I L T  MONENT MEASURES 5.0 PHI  FOLK GRAPHIC STATISTICAL PARAMETERS FOLK AND WARD,1957  5 .75  5TH  SAND  4.02  75TH  6.59  4.68  SILT  SILT/ISILT-tCLAY) FOLK(GMS)-MU0  16TH B4TH  4.69 7.12  89.74 ( 89.42) 93.81PCT  25TH 96IH CLAY  5.05  -  8.23 5.57 I  GRAV«-SAND/SILI>CLAY  5.90) 0.05  (SCSl-SILT  J  SIEVE,  PITT46 P.-i I I . o'J  0.37  _  4.00  2.20  2.3 8  4.58  4. 76  9.34  5. 44  14. 78  12.69  2 7.47  15. 04  3/. 3v  7.25 _  7.00 7. 50 o.3. 5.50 9.00 9_. 50 10. 0 0 10.3j  4 .  C 4 . _ 6 4  33  1,5.18  2. 72  71.90  2. 72  74.6 2  1.31  76.43  1. PI  7?.24  1.51  6.9  rtw*#*ft#»ft**ft#*#***  46.51  10.53  6.'JJ 6.3.,  0.52  1 .28  3.00  5.50  5.4600  0.37  0. 55  2.50  5.00  SAMPLE Vi T. =  P C T . CUMPCT.  2.0.)  i.50  S H . P I P . , SEDIGRAPH  S0._05  i  c 0• 96  0.91  fci.87  0.41  11.30 _ c2.77 17.23 12.03 100.CO "lu'i  ST.DEV.  "i.oJJ  1.62  7. 05  2.87  SKEh'-lESS KURTOSIS _0.44_  N1193 81 MONENT MEASURES KRUMEE 1M + FETTI JOHN 0 TcT 11.6 Ptil 2.  K10  FOR " S U E RANGE  PERCL'jT I Lr.5  C.57  MEDIAN  5.60  1.45  FOLK GRAPHIC STATISTICAL FOLK AND WARJ,1957 0,1 " 5TH 79TU  3.54 H - 11  16TH M4  4.55 1 11  I  1  PAP AMFTIRS  25Til . O7  4.90 III  11.71  ***************************** **** **** »*>* " ViuITI MOOAL SAMPLE »««~ **** **** *****************************  0.0  PI**  WET WT DRY WT LCOO.oaco ' 6.5400 100.0000 100.0000  PERCENTAGE COMPOSITION  TABLE  SALT o.o 0.0  ORGANIC 0.0 0.0  OF S T A T I S T I C A L  DATA  WEIGHT LOSS (f'UE TO H A N D L I N G GRAVEL CORRECTION FACTOR SIZES ELIMINATED K 0 . 0 1 ? ) TRASK SORTING C O E F F E C I F NT US rNG~PR0tlA6I L I T < F.WTZAP. MEAN CUBED D E V I A T I O N USING PROBABLITY EXTRAP.  MOISTURE "0.0(GRAMS) 0.0 (PCT WET WT)  IN PHI UNITS  PERCENTILE S  STf> DFV SKCWNESS KUP Tl'JS ! S MOMENT '2.33600 1.26679 4.59543 P-MCMENT 5.33456 2.21157 1.10204 3 . 9 1024 FCLK 5.16853 2. 15329 U.201N3 I. 34345 P-FOLK 5.17613 2.14207 0.21428 1.35303 INMAN 5.20367 1.90107 0.05545 1.08783 1.09943 P—INKAN 5 . 2 1 6 74 1 . 38531 _ 0 . 06303 "1.7930 1 - 0 . 13814 0. 20956' K 0 ' 1V I: E I H P-KRUM. 1.77617 - 0 . 1 3 5 7 7 0.20787 0.57328 FOLK (TRANSFORMED) P-FOLK (TRANSFORMED) 0.57502  GRAVEL"' ' 0 . 0 ' SAND 29.97 SILT 57.67 CLAY 12.16 MUD 70. 03 S/M 0.43  5. 0 1 0. 0 16.0 25.0 50.0 75.0 34. 0 50.C 95.0  HNUR MM . 0 . 16914 0. 124 10 0.10135 0.07436 0 . 0 2 9 19 0.01388 0.00727 0.00226 0.00069  tXTRAP. PHI 2. 3. 3. 3. 5. 6. 7. 8. 10.  _ 0 . 0 l.OOO" NONE 2.315 2. 296 16.174 11.921  "TTfOBAt'.L 1L ITY  UNITS 56368 0 1 04 1 30260 7453 0 05826 17094 104 74 78776 50187  MM. 0 . 16659 0.12363 0.0994 1 0.07370 0.02922 0.01398 0.00723 0.00227 0.00069  ExTRAP.  PHI 2. 3. 3. 3. 5. 6. 7.  UN I t S 58362 01356 3 3 043 7o223 09691 16006 1010 6 " £ • 78114 1 0 . 5G178  DATA FOR CCN'STN OF BARGRAPHS AND CUM. CURVES SIZE MM  FRACTION PHI  O.250000 0 . 177 000 0. !25000 1  i . ' j f f j j t l '  2.000 2.456 3. 0 0 0 3 . 3  UO  WT.IGMS) UNCOP. COR 0 . 160 0. 1 20 0. 36 0  16 0" 120 360  WT.PCT. COR 2.446 1.035 5.305  MID P H I ( L I N E A F ) PHI MM  MID PH I ( PR O B . I PHI MM  0.29707 9 21' 0.21036 277 0 . 143 75 788 HT3"9~~~ T~ 'OTffS" 64 v.0 5 . 766 3. 75 3 0.07416 3 766 96 9 844_ 12.901 0 . 0 52 44 4. 253 4 261 870 2 78 "4 ".2 50" 0 . 0 3 6 9 3" 4". 760 4 . 73 9 .073 3 3 16.436 63. , 513620" 3 . 2 5 9 0.02612 r. , 66 1 74 7 a . 3 / 3 7 2. 131 6. 754 0 . 0 16 3 3 8.375 561 6.254 0.01310 60. 70c 6.242 2 . 669 167 6. 754 0.00926 6.748 83. ~PT7J2 . 144 -"777174- 0 . 0 0"5 3 3 •TT2"4"8 8 7. , 140 2 . 144 7 . 74 7 7. 7 3 4 0 . 0 0 4 6 3 6 9 . 26 1 093 1.430 6.262 8.26 8 0 . 0 0325 9 0 . 710 6.78C ,09 3 1.42 9 8.786 0.00227 9.270 9 . 263 09 3 1. 429 0.001o2 92 , 1 3 9 9 . 74 8 0 . 0 0 1 1 o 09 3 1. 430 9 . 738 93 6 6 9 09 3 1 .429 0.000H2 10. 235 94 , 9 9 8 1 0 . 2 4 8 093 "1.43 0 " 9 6 . 42 "7 1 0 . 7 4 8 0.00058 10.73 1 234 3 . 5 7 3 1 0 0 ,000 1 2 . 4 9 7 0 . 0 0 0 17 1 1 . 4 6 0 5 4 0 100.0  TZT '. Oil  0.062500 4.000 0.044 000 4 . 5 06 0.64 0 " 0 . 0 ? 1 0 00" T. 0"l"2 " 0 . 844 5306 O.C2200O 1.0 75 0.278" 0.0!6600 6 .0 02 0.361 6. 3 C6 0 . O i l 000 0 . 561 7 . 002 0.007600 0. 137 ^ ) T 3 T o T " " 7 ' . — 7 J - "0". 140 3 . 0 02 0.003 900 0.140 8.533 0. J02700 0 . 093 9 . 04 0 0. 001900 0 . 09 3 0 . 0 0 1 3 6 0 T~~7T 1)77)93 0.000980 0 . 09 3 9.995 0 . 0 0 0 6 9 0 1 0 . 5 01 0 . 093 U. 3 1045 0 ' 1 0 . 9 6 3 0 . 093 0.000061 1 4 . 0 0 0 0.234 TOTAL S 6.540  WT.PCT. CUMU L . ,446 ,281 766  1.751 2.249 2.745  ToT  7  MODE""  0. 2 6-, 1 4 0, 2 0o?6 0. 1 4 , 7 7 Tcr;rr0. 0 7350 0. 052 16 0?.o91 0 2o 1 8 0!u62 0 .01J22 0 ,0 09 30 0" i"0 Oo 3 6 0 .00-.65 0 .00326 0 .002 28 ~r 001 63 0. 001 1 7 0, 0 0083 0. 00059 0, 00036 LS  i.  » * <. ^ ^ * > i -j, <. * * * > i * * v> * \  Pi*-* -*<j  ***  WET WT DRY WT 'IOCO.OOOO"' 6.330b  100.0000  S/M  0.0  TABLE OF STATISTICAL  PERCENTAGE 'COMPOSI TI ON GRAVEL SANO SILT CLAY HUD  100.0000  SALT _ o.o "  ORGANIC 0.0  0.0  PERCENTILES  _^T0 DEV SKEWNE SS KURTOSI S 1.47344 " 5 . 4 5 5 8 2 " 1.124 72 3.72803 FOLK 1.71206 0.43579 1.00115 4 . 3 93 08 P-FOLK 4.35878 1 .66648 0.44862 0.99818 4.65410 1.66872 0. 36137 0.73370 INMAM P-1 NM AN 4.602 57 1 .64729 0 . 3 / 1 1 2 0. 7 345 2 1 . 76657 0.37439 0.26894 KPUMBLIN P-KPUM. 1 .73799 • 0 . 3 8 3 3 5 0.2716 1 0.50029 FOLK (TR ANSFOFMED) P-FOLK (TRANSFORMED)  " V ' 4 . 5 8694^/ l .92786 "MOMENT o"~ 1 . 76433 P-'KJMENT V_45_5iff<r5  0. 50.2'. 43.72 6 . C4 4 5 . 76 1.01  SAMPLE  WEIGHT LOSS DUE TO HANDLING _ 0 . 0 GRAVEL CORRECTION FACTOR " 1.000 SIZES ELIMINATED ( < 0 . 0 m NONE TRASK SORTING C OE F F EC I E NT 2.275 USING P R O B A B l L n T T x i R A P . 2.255 MEAN CUBED OFVIATION 10.557 USING PROBABLITY EXTRAP. 6.177  MOISTURE 0.0 (GRAMS) 0.0 (PCT WET WT)  DATA IN PHI UNITS  MULT 1MOJAL  " 5 . 0 10.0 16. 0 26.0 5 0.0 75. 0 84.0 90. 0 95.0  LINEAR MM . " 0 . 168 12 0.15043 0.13164 0 . 11036 0.06289 0.02133 0.01302 0.00708 0.00303  PROBABLILITY EXTRAP.  EX TRAP". PHI 2. 2. 2. 3. 3. 5. 6. 7. 8.  MM. 0 . 16074 0 . 14 211 0 . 12693 0. 106 71 0 . 062PP 0 . 021 33 ' 0. 013i4 0 . 007 12 0. 003 06  LN I TS 57243 73266 92 53 7 1 7676 99106 6 6114 26262 14166 36522  DATA FOR CONSTN OF BARGRAPHS AND CUM. CURVES SIZE FRACTION MM FHI 0.260000 0. 177000 0. 1 2 6000 0. C6r 000 0. Of.,' 6 00 C.044000 ""0.031000"" 0 . 3 22000 C.01S600 0.01)000 0. 0 07P.00 O.JC55GL, 0.003906 0.002700 0.001900 •j. ) 0 U U 6 1  _0.250000 0 . 1 77000 ' 0.125000 0.068000  TOTALS 0 . 010300 "6.010)00" 0.240000 0.6100 00  2. 000 2. 458 3 . 000 i . 6064.000 4 . 506 6.012" 5. 506 6.002 6 . 6 06 7.302 7.6C6 8.002 6. 533 6. 040 14.000  WT , (GMS) UNCGR COP 0 . 050 0.120 0.99 0  n:TT-o~ 0 . 1130 0.673 "0". 250 0 . 604  0 . 446 0. 318 0. 19 1 0.127 0.159 0. 095 0. 127 0.159 6.330  WT.PCT. COP.  WT.PCT CUMUL.  MID P H I ( L I NEAR) PHI MM  0.29707 0. 790 1 ,751 2. 6 86 2 , 249 0 . 2 1 0 3 6 0. 14675 16. 325 2 749 •T.TTo" TT.T2"5"—T 7~~r 0 . 1 0 4 8 8 0 . 0 74 16 0. 830 13.112 60. 25 7 3 7 6 3 0.05244 0.673 10.626_ 60. 865 4 0.03693" " 0 . 2 5 0 " "" 3 . 94 9 ' "6 4. 614 " " 4 .253 ,759 74. 3 64 0.02612 0. 604 9 . 550 259 61. 402 0.01053 7.038 754 0.446 0.318 ,426 6. 254 0.01310 5.026 0 . 0 0 9 26 ,444 6. 0.191 754 3.016 0.127 2.011 91 . 435 7. 254 0.00635 0 . 169 2 . 6 13 93. 9 o 6 7. 754 O.OO'rUi 0 . 095 1.508 95. 4 76 8. 268 0.00325 0. 127 766 2.010 97. 4 87 0.00227 2.513 100.006 1 1.52o oTTfTJTJ fl.15'7" 6.330 100.0 0.050 0.120 0.590  0.790 1 . 896 15.640  -  MID P H K P R O B . ) PH I MM 1.909 2.311 2.829  "0 . 2 66 2 7  3.756 4.251 4 . 757 5.250 5. 743 6.241 6. 743 7.245 7. 738 6.252 8.756  0.0 7J')9 0 . 0 52 53 0 . 0 33 59 C.02o27 0.01367 "^751322 0.00V33 3 . 0 Co 5 9 O.OO-* 6 8 0.003 26 0.002 3 1  0.20i5 3 C. 14076  3.275 TJTTOTTT"  5 . 3 29  o. ooi l o  MODE  PH! U M TS 2. 65 720 2. 81467 2. 96327 3. 20142 3 . 99122 5 . 54 7 72 6 . 2498o 7. 13405 8 . 35173  v***• ;  ****  MO l TIM r. DA L' 'S'AVPI.3  * •« « *  P i n - 50  WET WT _ DRV W T 1000.OOuO 6.3500 100.0000 100.0000  PERCENTAGE COMPOS I TION GP.AJEL SANO SILT CLAY  HUD S/M  * *** * * •*  0.0  27.72 62. 78  5.5 0  72.28  0.28  TAHLF  _ SALT 0.0 0.0  ORGANIC 0.0 0.0  OF S T A T I S T I C A L  DATA  •PERCENTILES  IN P H I UNITS  VTO DF V SKEWNESS KURTOSIS 5 . 3 5 8 0 6 ^ 1 . 5 7 154 1. 24488 4 . 502M4 3_^3.5234 1 .78 16 1 0. 852 59 3 . 3 7179 5.23941 1.81696 0.17828 1.02439 1.02847 5. 24C3 9 1 . 80771 0. 18158 P-F( l.K 0.6/380 5.27653 1.8039 5 0.06173 It I'M 5.27B50 1.7544B 0.06372 J 3 . 6 7 4 3 3 P - I ; !KAM__ *0. 2596*3* 1 .78 56 5 - 0 . 0 6 0 5 ' 8 "RFU; 'BE I f T " 0.26126 1.77377 - 0 . 0 7 8 2 5 P-Kf UM. 0.50602 FOLK. ( T v. ANS FORMED) 0.50702 P-FOLK (TRANSFORMED)  DATA SIZE MM  FFACTION PHI  5.0 10.0 16.0 25.0 50. 0 75. 0 84. 0 90. 0 95. 0  FOR CONSTN OF EARGRAPHS AND CUM. WT .( CMS )" COR UNCOR  WT.PCT. COR  WT.PCT. CUMUL.  . .0.0 1.000 NONE 2.310 2.253 5.540 4.822  WEIGHT LOSS DUE TO H A N C L I N G GRAVEL CORRECTION FACTOR SIZES ELIMINATED K O . O U I TP.ASK SORTING C O E F F I C I E N T ' U S I N G PR06ASILITT EXTRAP. MEAN CUBED D E V I A T I O N U S I N G PROP-ARL ITY F X T R A P . _  MOISTURE 0.0 (GRAMS) 0.0 (PCT WET WT)  LINEAR. MM. 0 . 12192 0. 1062.5 0.09008 0. 06 608 0.02787 0.01276 "0.00739 0.00422 0.00185  EXUAP. PHI UNITS 3.03393 3. 2 3441 3. 4 7253 3. P7o5 7 5. 1 651 6 6.29260 7. 08047 7. 88725 9.07461  PSOtHbL I L I T Y MM. 0.1 1577 0.10170 0.08537 0.06752 0.02769 0 . 0 1284 0.00743 0.00424 0.00186  CURVES  MID PHI (LINEAR)" PHI MM  M ID PHI IPKCTB . I PHI MM  MOJT"  EXIkAP.  PHI UNITS " 3 . 01) 1 6 6 3 . 25 766 3.471402 3.8 88c1 5.16415 6.28320 7.07299' 7.86037 9.07078  SIEVE,  PIT T i l PHI 2.00 2.5 0 3.00 3.50 4.00 4.50 5.00 "  *  ,  "5 . 5 0" 6.00 6.50 7.00 7.60  0.20 0. 50 4.01 ^' 6.22  •  *  1.00  *«*»  5. 02  ftftft»ftft - ********** •iftftftftft**  4.44  ***** - ******  6 7.37  ft***  52.01  ST.D-V.  (^j^J 5.60  PER CENT  ***  * *** •  SKEViMESS  1.36 t.~5i  0 . 26 '  MEDIAN  GRAVEL  •" SAND  LABEL 5 SHE? API!  . —  ft*  0. 26  PERCENTILES  r  ftftftftftftft*  31.36  6.21  * * * * * * * *  *ft**ftft******  76.03  5.32  "  —  ftft*.ft„.**ft*ft**„**  3 6.53 1 3.64 12.43 5 5 . 6 2 63.04 7 .99 LZ-L^  < -  0.20  9 . 76 1 1 . 2 3 21.00 15.53  HEA.N  GRivlL  4.9500  —;  2.66 a.^n 94.67 • ~ 1.78 9.00 56.45 n.P9 9.50 5 7 . 34 2.66 12.00 100.00  -  SAMPLE WT.»  P C T . CUMPCT.  6.00  ~~  S H . P I P . , SEDIGRAPH  0.0  11 . 2 3 -SILT  KURTOSIS -0.03  KRUMBEIN+PETTIJ0HN11938) TOR S I Z E RANGE 2 . 5 TO  1.20  ~T6TK^RATHIC"TT ATist'icAL FOLK AND WARD,1957 .  5.35  5TH  "SANO'  3.50  75TH  6.44  11.23  SILT  S I L T / i SILT+ C L A Y j POLKIGMSI-SANDY  4.24  16TH 84TH 60.74  91.00PCT MUD  7.21  I 80.76)  MONENT MEASURES 9 . 5 PHI PARAMETERS  25TH 95TH CLAY  4.63 8.59 8.02 (  6.13  GRAVftSAND/S1Lf+CLAY (SCS)-SANDY  7.99)  SILT  r  SIEVE, SH. P I P . , SEDIGRAPH  PITT 52 Pril  4.50 5.00  5.1400  PCT. CUMPCT.  3.50 4.00  SAMPLE WT.»  7.01 "9.30 26. 04  7. 01  _  16.31 42.35  15.61  ft.*******  5.50  50.15 "'"6.51 "" 6.00 64.66 7. 44 6.50 72.10 4.65 7.00 76.75  »»*****'  4.65  7.5'J 3.00 6.50 9.00 9.50 10.00  2. 79 64.19  2.79  3. 72 1. 86 1.86  10.50 12.00  '*5K«:>>"  6 1.40  66.58 6 8.64 92.56 44.42 96.28  3.72  MEAN  100.00  ST.DEV. SKEkNFSS KURTOSIS  >.7$\)  1.62  0.56  0.44  KRUMBE1N + PETTIJCHN< 1933 I MONENT MEASURES FOR SI2E RANGE 4.0 TO 10.5 PHI  5.90  1.82  0.56  1.37  FOLK GRAPHIC STATISTICAL PARAMETERS FCLK_ANp . K .rl_957. WA  PERCENTILES  PEP. CENT  MEDIAN  GRAVEL  GP.AVEL » SAND  5.24  0.0 7.01  LABEL S SHEP AP 0 -S ILT  5TH  SAND  3.86  16TH 4.48  75TH  6.81  7.01  SILT  SILT/tSlLT+CLAYI F OL KIGMS) —MUD  D  84TH  7.97  76.92 ( 77.18 1 83.00PCT  25TH  4.67  95TH 10.16 CLAY  16.07 ( 15.811  GR AV • SAND/S I L T »CI. A Y  0.08  ( S C S I - S I L T " " " "  PITT53 PH:  PCT.  CUMPCT.  2.50  ft  0.80 0 . 80  3.00  jrftft  2.98 3.76  3.50  ft *ftftftft ftftft ftftftft  5.77 9.54  4.00 7,33  16.93  4 .50  *. .ftftftftftftftftftftftftftftftftftftftft  " 2 2 . 15 5.00  35.03  *ftftftftft•ftft*ftftftftft  1 4 . 77 5 2 . 65  5 . 50  ttftftftftft*  7.38 61.23  6.00 ~  ft ft ft ft ft ft ft  7.-38 66.62  6.50  ft x:ftft.4 ft  5.54 7 4 . 16  7. 00  ftftftftftft  5 . 54 7 5.69  7 . 50  ftftftft  3.69 £3.39  8 .00  ft J f t f t *  4.62 F8 . 0 0  8.50  ftftft  2.77 ;  9 0 . 77  9 . 00 '  *ift»  3.69 54.46  9.50  ftft  1.65 56.31  10.00  ftftftft  2.69 100.00  12.00 ME A •1  ST. DEV.  7 3 /  5 . 9t>  CENT  •  LABELS  S HE P A kO  SAND  - 0 . 2 5  0.45  MEDIAN  GRAVEL  GRAVE L  KURTOSIS  0 . 35  1 .82  PERCE N T I L E S  PER  SKEWNESS  1.6 3  0.0  ' 9.54 -CLAYEY  KR U M B C I N , P I . T I I J U H N I 1 53 11)  1.25  5.37  FOR  SIZE  FOLK  GRAPHIC F O L K AND  5TH  SAND  3.61  75TH  7.08  9.54  SILT  SILT/( SILTff.LAY) SILT  F O L K t GMS ) - M U D  RANGE  3.0  TO  STATISTICAL WARD,1957'  16TH  4.44  84TH  74.55  61.63PCT  (  3.07  73.84)  MON b N T 10.0  MEASURES  PHI  PARAMETERS  25TH 55TH  CLAY  4.68 9.65  15.90  GRAV + S A N D / S I L T + C L A Y (SCSI-SILT  (  16.61)  0.11  P1TT541 PHI  4 . 00 _  5.00 5.50  5.29  15.46 6.70  54.58  5.66  64.24  130.00  9.00 9.50  4. S T  MEAN  "  ST.DEV.  6.25  r-  CO  t-  '  *****  SKEHNESS  1.8 7  PEPCtriT ICES  KURTOSIS  0.34  -0.49  0.41  1.19  _KPUMBEIN*PETT IJCHN(1938) MONENT MEASURES "~ ~FOR""SI ZE "RANGE " 4 . 0 " T O 1 0 . 0 PHI FOLK  CENT  GRAVEL  GP.AVEL  <r SANO  LABEL S SHE P AP D  0.0_ 5.29  -SILT  GRAPHIC S T A T I S T I C A L FOLK AND WARO,195 7  ""5TH™3.9 7  L'D"IAN"""5."74 "  75TH  ...PEP  •  ***************  ^i.ee_  12.00  8.50  4.5500  13.02  10.00  7. 50 8.00  SAMPLE WT.=  30.41  5.80 . '70.04 5.80 7 5 . 64 4 . 83 ' 80.67 3.87 84.54 4.63 8 9 . 37 2.90 52.27 2.90 95.17  7.00_  S H . P I P . , SEDIGRAPH  5 . 25  7.73  17.40  6.00 50  SIEVE,  P C T . CUMPCT.  3.50  4.50  / /*  SANO  7.43  5_.2„?_SILT  S I L T / ( S ILT+CL AY) FOLK(GMS)-MUO  16TH  4.5 9  84TH 75.44 7 9 . 55PCT  8.43  { 7 5 . 38 1  PARAMETERS  25TH  4.84  95TH CLAY  9.97 19-27  GRAV+SANO/S I LTt- CLAY ( SCS  (  19.33) 0.06  l - S I L T  J u  1  SIEVE, SH. P I P . , SECiGRAPH  SAMPLE WT.»  4.(,900  PITT542'  2.90 12.00  100.00  MEAN  ST.DEV. SKEWNESS KURTOSIS  6. 07. _ y 1.53 fc  .'9  1.71  PERCENTILES  -PJR_glfJjGRAVEL  _^0_.3l  0.40  1.18  MEDIAN  GRAVEL  * SAND  .0.3fl  0.0  5.74  KP.UMBE I IN,PE TT IJUIINI I JOHN 1938) MONENT MEASURES KRUMBE N , P E TT FOR S I Z E KAV.;K 4.o r:; 1 0 . 0 P H ; ' " " FOLK GRAPHIC STATISTICAL FOLK AND WARD.1957 5TH  SAND  4112  16TH ~"4T67  75TH  7. 13  3.41  SILT  3.41  S1LT/1S1LTrCLAY)  LABELS 5HEPAP0 -SILT  FOLK(GMS)-MUO  H4TH  3.18  78.56 1 79.20) 82.00PCr  PARAMETERS  23TH~ 4793" —  95 TH CLAY  9.64 17.61 ( 17.39)  GRA V t SAN 0/S1LT»CLAY (SCS)-SILT  r  SIEVE,  PITT55 PHI f—  0.99 1. 99  3.00  3.48  3.50  5.56  4.O0  5.00  6.00 6.50 7.00 7.50 6.00 6.50 9.00 9.50 12.00  7. 01 12.26  19.43 it** * * * * * * * * * * *  « V*K(  r  w. M *  *****  ***** *** *** ****  0 . 18  -0.19  1.78  0. 28  1.34  SKEWNESS  MEDIAN  GRAVEL  Q  * * » ]* # * tf * *  1.53  CENT  J  6 . 46  (^5jbb_y  PERCENTILES  .._  12.42  31.69 19.27 . 50.96 10.51 6 1.47 3.76 70.22 7.01 77.23 5.25 82.48 4.38 86.86 3.50 50.37 2.63 52.99 2.63 95.62 4 . 36 100.00  5.60  ...  **  2.98  ST.DEV.  0.0  ""GRAVEL V SAND"" 1 2 . 4 2 " LABELS  •  *  0.99  MEAN  PER  4.0300  ,  2.50  5.50  SAMPLE WT.=  P C T . CUMPCT.  2. OO  4.30  S H . P I P . , SEDIGRAPH  KURTOSIS  5 .48  KRUHEE IN fPETTIJCHN( 1936) MONt NT MEASURES FOR SIZE RANGE 2 , 5 T (J S.S PHI FOLK GRAPHIC STATISTIC