Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Sedimentology of a freshwater tidal system, Pitt River-Pitt Lake, British Columbia Ashley, Gail Mowry 1977

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Notice for Google Chrome users:
If you are having trouble viewing or searching the PDF with Google Chrome, please download it here instead.

Item Metadata

Download

Media
831-UBC_1977_A1 A83.pdf [ 28.2MB ]
Metadata
JSON: 831-1.0052852.json
JSON-LD: 831-1.0052852-ld.json
RDF/XML (Pretty): 831-1.0052852-rdf.xml
RDF/JSON: 831-1.0052852-rdf.json
Turtle: 831-1.0052852-turtle.txt
N-Triples: 831-1.0052852-rdf-ntriples.txt
Original Record: 831-1.0052852-source.json
Full Text
831-1.0052852-fulltext.txt
Citation
831-1.0052852.ris

Full Text

SEDIMENTOLOGY OF A FRESHWATER TIDAL SYSTEM, PITT RIVER - PITT LAKE, BRITISH COLUMBIA by GAIL MOWRY ASHLEY B.Sc.j U n i v e r s i t y of Massachusetts, 19^3 M . S c , U n i v e r s i t y of Massachusetts, 1972 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY' -cn THE FACULTY OF GRADUATE STUDIES Department of G e o l o g i c a l Sciences We accept t h i s t h e s i s as conforming to the re q u i r e d standard THE UNIVERSITY OF BRITISH COLUMBIA J u l y , 1977 © G a i l Mowry Ashley,'1977 In presenting th is thes is in p a r t i a l fu l f i lment o f the requirements for an advanced degree at the Un ivers i ty of B r i t i s h Columbia, I agree that the L ibrary sha l l make it f ree ly ava i lab le for reference and study. I fur ther agree that permission for extensive copying of th is thes is for scho la r ly purposes may be granted by the Head of my Department or by his representat ives . It is understood that copying or pub l i ca t ion of th is thes is fo r f inanc ia l gain sha l l not be allowed without my wri t ten permission. Department of Geological Sciences The Univers i ty of B r i t i s h Columbia 2075 Wesbrook P l a c e Vancouver, Canada V6T 1W5 Date July 14, 1977 Supervisor: Prof. W.H.Mathews i i . ABSTRACT P i t t R i v e r , 30 km i n l a n d from. Vancouver, B r i t i s h Columbia at the southern margin of the Coast Mountains, l i n k s Fraser River estuary and P i t t Lake.'. S a l t water seldom extends to w i t h i n 10 km of Fraser. - P i t t confluence; ne v e r t h e l e s s , t i d e s modulate Fraser flow and cause P i t t R i v e r to f l u c t u a t e 2 m and P i t t Lake as much as 1.2 m. There i s an upstream movement of sediment,in P i t t R iver from Fraser R i v e r , evidenced by i d e n t i c a l mineralogy of P i t t R iver and Fraser River sediments, a decrease i n g r a i n s i z e from the Fraser to P i t t Lake, and a predominance of fl o o d - o r i e n t e d bedforms i n the r i v e r channel. A d e l t a of 2 12 km area has accumulated at the lower (draining).end of the l ake. The purposes of the study were t o : (1) examine aspects of the hydrodynamics of P i t t River and P i t t Lake as a t i d a l system; (2) evaluate the e f f e c t of b i d i r e c t i o n a l flow on r i v e r and d e l t a morphology; (3) determine processes of sediment movement i n the r i v e r and of-sediment d i s p e r s a l on the d e l t a ; and (4) estimate present sedimentation r a t e on the d e l t a . Water Survey of Canada stage data from 3 l o c a t i o n s i n the system, used i n conjunction w i t h v e l o c i t y measurements ( p r o f i l e s and tethered meter), r e v e a l e d large seasonal and t i d a l v a r i a t i o n s i n discharge. C a l c u l a t i o n s i n d i c a t e that f l o o d b a s a l shear s t r e s s peaks e a r l y i n the fl o w , whereas ebb currents have a lower basal, shear s t r e s s which peaks l a t e i n the flow. Thus, sediment moves f a r t h e r forward on a f l o o d flow than i t moves back on the succeeding ebb. Studies of the r i v e r channel using hydrographic charts revealed r e g u l a r meanders ( = 6100. m) and evenly spaced r i f f l e s and pools which are scaled to the strongest flow (winter f l o o d c u r r e n t , Q eK Meander point bars are a c c r e t i n g on the "upstream" side i n d i c a t i n g d e p o s i t i o n by the f l o o d - o r i e n t e d flow. The three dimensional geometry of the l a r g e - s c a l e bedforms which cover the sandy thalweg of both r i v e r and d e l t a channel was determined by echo sounding and side-scan sonar. Three d i s t i n c t s i z e s (height/spacing = 0.8 m/10-15m; 1.5m/25-30 m; 3 m/50-60 m) of l a r g e - s c a l e bedforms (sand waves) were found; t h e i r • l i n e a r - r e l a t i o n s h i p of height'vs. spacing (X D) on l o g - . • log p l o t suggests a common genesis.. The s i z e appears to be r e l a t e d to channel geometry, not to depth of flow. Largest forms are found i n reaches which shallow i n the d i r e c t i o n of water movement and smallest forms occur on r e l a t i v e l y f l a t topography. The f o l l o w i n g t e n t a t i v e r e l a t i o n s h i p i s suggested f o r sandy meandering r i v e r s : \ „ / ^ T ~ . = Q . M a e P i t t d e l t a morphology was studi e d w i t h a e r i a l photos and depth soundings. I t s shape i s considered an e x c e l l e n t i v example of sediment d i f f u s i o n and d e p o s i t i o n from a simple j e t i n t o a low energy l a c u s t r i n e environment. A n a l y s i s of 190 sediment samples from r i v e r , d e l t a , and lake bottom shows the sediment to be polymodal. G r a p h i c a l p a r t i t i o n i n g of the cumulative p r o b a b i l i t y p l o t s reveals that sediments are composed of up to 4 log-normal d i s t r i b u t i o n s . Each d i s t r i b u t i o n i s i n t e r p r e t e d as a population r e l a t e d to a process of sediment t r a n s p o r t . Five subenvironments i n the P i t t system are c h a r a c t e r i z e d by unique combinations . of these "process" populations. Cores i n the d e l t a topsets and lake bottom sediments r e v e a l s i l t and c l a y rhythmites, i n t e r p r e t e d as varves. The coarse l a y e r s are deposited during winter when discharge of Fraser River i s low and t i d a l l y induced discharge i n P i t t system i s high. The f i n e l a y e r s are deposited during s p r i n g r u n - o f f when a d d i t i o n a l f i n e s are added to the lake 137 from the P i t t b a s i n . Cs dating of sediments shows that as much as 1.8 cm/yr are accumulating i n the a c t i v e + 3 porti o n s of the d e l t a with an estimated 150 - 20 X 10 tonnes deposited annually. V TABLE OF CONTENTS Page ABSTRACT 1 1 TABLE OF CONTENTS V LIST OF TABLES v i i i . LIST OF FIGURES x LIST OF APPENDICES x i v ACKNOWLEDGEMENTS xv PART I : INTRODUCTION 1 GEOLOGIC HISTORY ••• 6 GEOMORPHOLOGY 9 SEDIMENTS 40 FLOW AND SEDIMENT TRANSPORT . . 45 Tides 45 Streamflow 64 Sediment t r a n s p o r t 88 Bedload 89 Suspended sediment 103 BED CONFIGURATIONS 108 Observations I n t e r p r e t a t i o n 117 Bedform s c a l i n g 117 R e l a t i o n s h i p of meander wavelength to bedform spacing 121 SUMMARY AND CONCLUSIONS 13 0 REFERENCES CITED 133 v i Page PART I I : INTRODUCTION 141 GEOLOGIC HISTORY 147 GEOMORPHOLOGY 151 Delta 151 Bed c o n f i g u r a t i o n s i n the channel 164 HYDRAULICS 165 Tides 165 V e l o c i t y i n channel 171 SEDIMENTS 183 S t r a t i g r a p h y , d e l t a and lake b o t t o m 183 137 J 1Cesium dating 189 Method 191 Results 191 Grain s i z e a n a l y s i s 198 Ana l y s i s of polymodal sediments 199 In t r o d u c t i o n 200 S t a t i s t i c a l method •;• 204 SEDIMENTOLOGICAL PROCESSES 217 Sediment mixing 217 2 <j> i n f l e c t i o n 217 5 <}> • i n f l e c t i o n 218 8.5 <j> i n f l e c t i o n 220 Conclusion 221 Grain s i z e d i s t r i b u t i o n 221 Sediment d i s p e r s a l and accumulation 224 v i i Page CONCLUSIONS 223 REFERENCES CITED 230 APPENDICES 235 v i i i PART I LIST OF TABLES TABLE Page I Comparison of mineralogy f o r Fraser R i v e r and P i t t R iver sediments. 43 I I Estimated l a g time f o r high stage and low stage of t i d e to t r a v e l from S t r a i t of Georgia to various points i n P i t t system. 58 I I I C a l c u l a t i o n s demonstrating t o t a l discharge passing through r i v e r i s equal to volume added to or subtracted from the lake. 60 IV Summary of peak mean v e l o c i t i e s measured i n p r o f i l e s . 65 V Summary of v e l o c i t y data measured with tethered meter (March, 1976). 81 VI C o r r e l a t i o n between t i d a l range i n S t r a i t of Georgia and maximum mean v e l o c i t i e s recorded at s i t e IA. 84 V I I R e l a t i o n of maximum mean v e l o c i t i e s 84 i n P i t t system to Fraser discharge, under s i m i l a r t i d a l ranges. V I I I C r i t i c a l shear s t r e s s c a l c u l a t i o n s (from S h i e l d s ' graph) f o r various g r a i n s i z e s found i n P i t t r i v e r channel sediment. 91 IX C a l c u l a t i o n s of V s, Ac and VA C at P i t t - F r a s e r confluence f o r August 11, 1975. 95 X Suspended sediment measurements (5 hr period) during f l o o d i n g t i d e . 107 XI C r i t e r i a f o r s e l e c t i o n of Q , ' A., and A-. n„_ e i vi rs L2.o i x PART I I LIST OP TABLES TABLES Page Summary of lake stage f l u c t u a t i o n s i n P i t t Lake. 169 I I Estimated seasonal and t i d a l discharges i n P i t t system. 169 I I I P r o p o r t i o n of time devoted to flow at various magnitudes ( f l o o d and ebb). 180 IV Summary of maximum and average v e l o c i t i e s f o r "continuous" v e l o c i t y measurements taken i n lake channel one meter o f f bottom. 181 V Summary of modal s t a t i s t i c s . 216 VI P i t t R iver data a p p l i e d to Middleton's (1976) shear v e l o c i t y - f a l l v e l o c i t y r e l a t i o n s h i p . 219 X PART I LIST OF FIGURES FIGURE Page 1. Location map of the P i t t t i d a l system. 3 2. A e r i a l photo of lower P i t t v a l l e y with l o c a t i o n s ' of important geographic fe a t u r e s . 11 3. Maps of P i t t R iver with f l o o d flow p a t t e r n , l o c a t i o n of v e l o c i t y measurement s i t e s , and mean g r a i n s i z e d i s t r i b u t i o n . 15 4. L o n g i t u d i n a l p r o f i l e of thalweg. 17 5. A e r i a l photo of mid-channel bar, point bar, and meander sc a r s . 21 6. S t r a t i g r a p h i c cross s e c t i o n at the bridges. 23 7. Leopold and Wolman (I9 60) p l o t of X and r . M 27 M 8. Summary of the h y d r a u l i c geometry of P i t t R i v e r 31 9. Water slope c a l c u l a t i o n s . 35 10. Leopold and Wolman (L957 ) slope-discharge p l o t . 37 11. T i d a l curve f o r S t r a i t of Georgia. 47 12. T i d a l theory. 49 13. R e l a t i o n of dE/dl;., v e l o c i t y , and slope i n P i t t R i v e r . 53 14. Stage-time p l o t s f o r 4 stage r e c o r d i n g s t a t i o n s . 57 15- Bargraph of dE/dT ( P i t t Lake); f l o o d vs. ebb. 63 16. Comparison of time devoted to f l o o d and ebb flow at l o c a t i o n s i n P i t t R i v e r . 67 17. V e l o c i t y p r o f i l e s ; l o g depth vs. v e l o c i t y , 71 x i FIGURE Page 18. Time-velocity curve f o r complete t i d a l c y c l e 75 19- Turbulence generated by f l o o d o r i e n t e d bedforms 77 20. Examples from "continuous" v e l o c i t y measurements (one meter from bottom). 83 21. P a t t e r n of f l o o d and ebb flow at Fraser - P i t t confluence. 87 22. 3 t i m e - v e l o c i t y curves showing f l o o d dominated flow. 99 23. Model f o r sediment transport i n f l o o d d i r e c t i o n . 105 24. Bedform types found i n P i t t R iver drawn to n a t u r a l s c a l e . 113 25. Depth soundings. 115 26. S t a b i l i t y f i e l d f o r r i p p l e s , bars, and dunes (Cosetto, 1974). 123 27. A M / A B oc Q e i 2 ? x i i PART I I LIST OF FIGURES FIGURES Page 1. L o c a t i o n map of P i t t t i d a l system. 143 2. A e r i a l photo of lower P i t t v a l l e y w i t h l o c a t i o n s of important physiographic 145 f e a t u r e s . 3- Map of important geomorphic features of P i t t Lake and l o c a t i o n s of channel cross s e c t i o n s and s i t e s of cores taken f o r cesium d a t i n g . 153 4. A e r i a l photos of channel margin, levees and end of d e l t a d i s t r i b u t a r y . 155,156 5. D e l t a channel cross s e c t i o n s . 159 6. L o n g i t u d i n a l p r o f i l e of d e l t a channel and depth sounding showing sand waves. 161 7. Stage-time p l o t s f o r 4 stage recording s t a t i o n s . 167 8. Patterns of f l o o d and ebb flow on d e l t a . 173 9. Time-velocity p l o t of f l o o d "flow take at lake o u t l e t . 177 10. Examples from "continuous" v e l o c i t y measurements i n d e l t a channel (one meter from bottom). 179 11. Map of mean g r a i n s i z e d i s t r i b u t i o n . 185 12. Diagram and photos of d e l t a f o r e s e t sediments. 187 13- 6.3 cm diameter core from a c t i v e d e l t a f r o n t . 193 14. Diagram of Ge(Li) d e t e c t o r . 195 x i i d FIGURES Page 137 15. R e l a t i o n of Cs concentration with depth (time). 197 16. Summary of the range of g r a i n s i z e s covered by the f i v e s i z i n g techniques used i n t h i s study. The percentage of each process population occuring w i t h each environment i s presented. 203 17. Map of d e p o s i t i o n a l environments w i t h i n the P i t t system. 207 18. I d e a l bimodal and t r i m o d a l p r o b a b i l i t y curve ( S i n c l a i r , 1976).. 209 19. Polymodal cumulative p r o b a b i l i t y curves. 211 20. Schematic diagram of process populations. 215 x i v L I S T O F A P P E N D I C E S P a g e A p p e n d i x 1 B e d f o r m s p a c i n g 235 A p p e n d i x 2 V e l o c i t y p r o f i l e d a t a 238 A p p e n d i x 3 G r a i n s i z e a n a l y s e s 251 A p p e n d i x 4 B e d l o a d c a l c u l a t i o n s 402 XV ACKNOWLEDGEMENTS; Much a p p r e c i a t i o n i s extended to. W.H. Mathews f o r guidance and encouragement during a l l phases of t h i s study.. My ideas were formulated, i n p a r t , through conversations with I . J . Duncan, M. Church, W.C. Barnes, W.H. Mathews, CH. Pharo, and A. Tamburi. I am g r a t e f u l to C H . Pharo (Inland Waters D i r e c t o r a t e ) for use of the Sedigraph 2 0 0 0 , use of g r a i n s i z e s t a t i s t i c s program, unpublished P i t t Lake bathymetry, and clay mineralogy of the P i t t Lake sediments; to L.E. Moritz- ( T r i - u n i v e r s i t y 1^7 Meson F a c i l i t y , U.B.C.) f o r J I C s a n a l y s i s ; to P.A. Peach (Brock U n i v e r s i t y ) f o r running the Quantimet 720 analyses; to J.C. Boothroyd and T. Donlon (Univ. of Rhode Island) f o r processing sand samples through the Rapid Sediment Analyzer; to D. Swan (G.S.C.) f o r use of g r a i n s i z e s t a t i s t i c s program; to M. Church f o r help i n developing s e v e r a l computer programs and use of the Raytheon # 719 depth sounder; to R. Hebda (Univ. of Waterloo) f o r macrophyte i d e n t i f i c a t i o n ; to Jon J o l l e y , Inc., S e a t t l e , Wash, f o r use of the K l e i n side-scan sonar; to J.C. Boothroyd and H." Van Der Meulen f o r help i n the f i e l d ; to R. Mac.donald and D. Reimer f o r t e c h n i c a l a s s i s t a n c e ; to D. • Dobson '(Water- -'Survey of Canada) f o r . l i b e r a l use of stage records and to R. Bruun ( C i v i l Engineering, U.B.C.) f o r d r a f t i n g . xv i E a r l i e r versions of the t h e s i s were reviewed by W.H. Mathews, J.D. M i l l i m a n , M. Church, W.C. Barnes, R.E. Kucera, CH. Pharo, and.I.J. Duncan. Many of the U.B.C. graduate students aided i n the f i e l d and a p p r e c i a t i o n i s expressed f o r the se r v i c e s and research f a c i l i t i e s provided by the Department of G e o l o g i c a l Sciences at the U n i v e r s i t y of B r i t i s h Columbia. S.C. Ashley a s s i s t e d i n the f i e l d and was i n v a l u a b l e i n data r e d u c t i o n and pr o v i d i n g moral support f o r the d u r a t i o n of the study. N a t i o n a l Research Council of Canada Grant A-1107 (Prof. W.H.'Mathews) provided support f o r both f i e l d work and p r e p a r a t i o n of the manuscript. 1 PART ONE: INTRODUCTION P i t t R i v e r (North) - P i t t Lake - P i t t River (South) system i s s i t u a t e d i n a g l a c i a l l y scoured v a l l e y w i t h i n the Coast Mountains, B r i t i s h Columbia, approximately 30 km i n l a n d from the port of Vancouver ( F i g . 1). The v a l l e y of the P i t t , 70 km i n len g t h , opens abruptly i n t o the Fraser lowland. P i t t R i v e r (North) drains 816 km i n c l u d i n g s e v e r a l mountain g l a c i e r s and provides a mean discharge of 80 cu m/sec to the la k e . P i t t R iver (North) i s not inc l u d e d i n t h i s study and the term P i t t R iver w i l l h e r e a f t e r r e f e r to P i t t R iver (South) which j o i n s P i t t Lake to the Fraser R i v e r . P i t t River and P i t t Lake are t i d a l , being connected to the ocean ( S t r a i t of Georgia) by lower Fraser R i v e r . Although water l e v e l s i n the P i t t system respond to the t i d e s , s a l t water seldom extends c l o s e r than 10 km downstream 'of the F r a s e r - P i t t confluence. R i s i n g water ( f l o o d t i d e ) i n the S t r a i t , r e t a r d s flow of the Fraser and r a i s e s i t s e l e v a t i o n , or stage l e v e l , p r o g r e s s i v e l y eastward u n t i l the water l e v e l at the F r a s e r - P i t t confluence i s higher than i n P i t t R i v e r . Flow i n the P i t t then reverses and water d i v e r t e d from the Fraser flows northward up P i t t R iver i n t o P i t t Lake. 2 FIGURE 1. L o c a t i o n map o f P i t t R i v e r -P i t t L a k e s y s t e m . 4 As the water e l e v a t i o n f a l l s (ebb t i d e ) i n the S t r a i t , Fraser R i v e r flow i s a c c e l e r a t e d . The surface e l e v a t i o n i s lowered progressively, eastward u n t i l the l e v e l at the F r a s e r - P i t t confluence i s lower than that of the P i t t R i v e r . Flow then reverses i n the P i t t system and drains toward the sea. He r e a f t e r , flow northward away from the ocean and toward P i t t Lake i s r e f e r r e d to as f l o o d ; flow r e t u r n i n g to the Fraser R i v e r and ocean i s ebb. The Fraser River estuary, P i t t R i v e r , and P i t t Lake a l l e x h i b i t a time-stage asymmetry. That i s , water e l e v a t i o n s r i s e more q u i c k l y during f l o o d t i d e than l e v e l s f a l l on the ebb. This produces a v e l o c i t y i n e q u a l i t y such that the f l o o d u s u a l l y has the highest average peak v e l o c i t i e s . Although P i t t River i s subjected to c o n t i n u a l l y r e v e r s i n g flow i t has few e s t u a r i n e c h a r a c t e r i s t i c s . Shallow e s t u a r i e s o f t e n have a branching system of t i d a l channels whose numbers Increase i n an up-estuary d i r e c t i o n . Also they commonly have separate channels f o r f l o o d and ebb flow ( P r i t c h a r d , 1967). The P i t t has only a s i n g l e channel f o r both flow d i r e c t i o n s . At l e a s t two aspects of the P i t t system may account f o r the d i s t i n c t lack of estuarine c h a r a c t e r i s t i c s . (1) A shallow estuary whose depth would normally decrease up estuary has been replaced by a conduit ( P i t t River) and a r e s e r v o i r ( P i t t Lake). This r e s e r v o i r 5 w i t h large storage capacity allows f l o o d t i d e water to flow through P i t t R iver with no more impedance than i n a normal r i v e r channel. (2) P i t t b a s i n drainage con t r i b u t e s a discharge which v a r i e s from %% to 50% of the t o t a l volume of water moving through the system and thus i s not always dominated by t i d a l flow. P i t t R i v e r i s a t i d a l channel that can be thought of as a simple water course subjected to two d i f f e r e n t u n i d i r e c t i o n a l flows w i t h the stronger flow ( f l o o d ) having the greater e f f e c t i n shaping i t s morphology. There i s an apparent upstream movement of sediment i n P i t t River from. Fraser River to P i t t Lake. This i s evidenced' by a predominance of f l o o d - o r i e n t e d bedforms i n the r i v e r channel and a decrease i n g r a i n s i z e from the Fraser to the la k e . A lar g e area of sediment (12 km ) i s accumulating at the lower end of the la k e . The purposes of t h i s study are to examine the hydrodynamics of the P i t t as a t i d a l r i v e r and to evaluate the e f f e c t of b i -d i r e c t i o n a l flow on both sediment movement and the develop-ment of the present day channel morphology. 6 GEOLOGIC HISTORY During the P l e i s t o c e n e Epoch, repeated g l a c i a t i o n s aided by pre- and i n t e r - g l a c i a l stream- a c t i v i t y , have deeply eroded v a l l e y s o r i e n t e d along a north-west and north-east o r i e n t e d j o i n t p a t t e r n occuring i n the Coast Mountains (Peacock, 1935)- F o l l o w i n g the most recent d e g l a c i a t i o n (15,000 - 11,000 B.P.) the melting i c e l e f t numerous elongate lakes i n i n t e r i o r v a l l e y s and a c o a s t l i n e dominated by f i o r d s . However, i n e a r l y p o s t g l a c i a l times the l o c a t i o n of the shore f l u c t u a t e d as a r e s u l t of complex i n t e r a c t i o n of e u s t a t i c s e a l e v e l changes and c r u s t a l rebound (Mathews et a l . , 1970). During t h i s p eriod of i n s t a b i l i t y , ocean waters flooded past the mouth of P i t t V a l l e y , as evidenced by marine s h e l l s (12,690 * 190 B.P.; 15959, Mathewes, 1973) c o l l e c t e d at an e l e v a t i o n of 107 m on the east side of P i t t v a l l e y . Glaciomarine sediment (up to 275 meters t h i c k ) was deposited i n the v a l l e y during t h i s p o s t - g l a c i a l p e riod. I s o s t a t i c u p l i f t began around 13,000 B.P. and was e s s e n t i a l l y complete by 8,000 B.P. (Mathews, et_ a l . , 1970). Fraser R i v e r , s u p p l i e d by abundant g l a c i a l sediment, r a p i d l y constructed a d e l t a westward and by 8,290 - 140 B.P. (G.S.C. 229, Dyck et a l . , 1965) " P i t t F i o r d " was sealed o f f at i t s southern end by t h i s d e l t a . I t i s l i k e l y that a short t i d a l channel maintained a connection between the 7 f i o r d and Fraser estuary. T i d a l currents f l o w i n g through t h i s channel must have c a r r i e d sediment from Fraser R i v e r i n t o the f i o r d , b u i l d i n g a f l o o d t i d a l d e l t a which continued to grow northward as the Fraser d e l t a progressed westward. By 4 , 6 4 5 - 9 5 B.P. ( 1 7 0 4 7 ; Mathews, 1 9 7 6 , pers. comm.) the leading edge of the P i t t d e l t a stood at l e a s t 2 0 km north of Fraser R i v e r near the present o u t l e t of P i t t Lake ( F i g . 1 ). At some time during t h i s p eriod " P i t t F i o r d " was f l u s h e d of s a l i n e water and became P i t t Lake. No s a l t water remains i n the l a k e ; not even i n deepest basin ( 1 5 0 m). As the sea-land r e l a t i o n s h i p has been much the same as at present since 5 , 5 0 0 B. P. •' (Mathews et_ a l . , 1 9 7 0 ) , i t i s probable that P i t t Lake has been i n existence f o r at l e a s t s i x thousand years. During the l a s t 4 , 7 0 0 years, P i t t t i d a l d e l t a has advanced up to 6 km f a r t h e r i n t o P i t t Lake at an average r a t e of 1 . 2 8 m.yr. - 1. However, t h i s sedimentation r a t e has most l i k e l y decreased e x p o n e n t i a l l y , s t a r t i n g at meters per year and ta p e r i n g o f f to the present r a t e of approximately a centimeter per year (Ashley, 1 9 7 7 ) . P i t t R i v e r p r e s e n t l y flows along the western edge of the v a l l e y and there i s no geomorphic evidence on the f l o o d p l a i n to suggest that the channel has migrated e x t e n s i v e l y during i t s development. Dikes b u i l t along 85% of the r i v e r s h o r e l i n e during the l a s t 50 years are f o r f l o o d prevention rather than to prevent bank e r o s i o n and 8 appear to have no e f f e c t on c o n t r o l l i n g r i v e r processes . On the other hand two b r i d g e s , and the log storage areas constructed along most of the r i v e r bank's, i s l a n d s , and mid-channel shoals l o c a l l y e f f e c t e r o s i o n and sedimentation. 9 GEOMORPHOLOGY The P i t t R iver f l o o d p l a i n occupies the complete width (ranging from 5-10 km) of the lower P i t t V a l l e y and 17.2 km of i t s length from the banks of Fraser R i v e r to the o u t l e t of P i t t Lake ( F i g . 2 ) . ' The P i t t R i v e r channel (20.7 km) i s only s l i g h t l y longer than i t s f l o o d p l a i n , r e s u l t i n g i n a low s i n u o s i t y (Schumm, 1963) of 1.2. The f l o o d p l a i n surface Is of low r e l i e f , l e s s than 3 meters above mean sea l e v e l (M.S.L.), and appears to be graded to the Fraser R i v e r f l o o d -p l a i n l o c a t e d to the south and west. Bedrock knobs protrude through the p l a i n , i n d i c a t i n g that the bedrock surface i s one of moderately high r e l i e f . Boreholes (Geol. Survey of Canada^unpublished data) through the P i t t sediments r e v e a l a monotonous sequence (up to 275 m t h i c k ) of s i l t and c l a y with o c c a s i o n a l t h i n u n i t s of sand. S a l t water i s commonly found below 25 m. The upper p o r t i o n of the s i l t s was l i k e l y deposited i n Fraser d e l t a and " P i t t F i o r d " d e l t a i n t h e i r e a r l y stages. These sediments grade up i n t o more recent P i t t R i v e r f l o o d p l a i n deposits which probably contain minor amounts of Fraser overbank m a t e r i a l . The d e t a i l e d study of the P i t t channel geomorphology was based on l a r g e - s c a l e bathymetric charts (Dept. P u b l i c Works, 1966, unpublished data) which were v e r i f i e d i n the 10 F I G U R E 2. A e r i a l p h o t o o f l o w e r P i t t L a k e a n d P i t t R i v e r f l o o d p l a i n . 12 ! no page 12 13 f i e l d by depth soundings (Raytheon, model #DE-1190; Furuno, model #F-850 Mark I I s e r i e s ) and sidescan sonar recordings ( K l e i n , model #400). A e r i a l photographs ( s c a l e , 1:15,840 and 1:31,680) were used f o r i n t e r p r e t a t i o n of p l a n i m e t r i c features of both channel and f l o o d p l a i n . The morphology of P i t t R i v e r channel c o n s i s t s of se v e r a l s l i g h t l y curved reaches and one major s-shaped bend ( F i g . 3 ) . The l o c a t i o n and shape of t h i s bend appears to be mainly due to bedrock c o n t r o l but may be aided by t r i b u t a r i e s e n t e r i n g the r i v e r at the po i n t s of maximum curvature. Bankful channel width (wO v a r i e s from 250 m to 900 m with an o v e r a l l average of 600 m. The l o n g i t u d i n a l p r o f i l e ( P i g . 4) shows great v a r i a b i l i t y i n depth with the deepest s e c t i o n s at the bridges and meander bends. Consequently c r o s s - s e c t i o n a l area i s a l s o v a r i a b l e , ranging from 2390 m2 to 4831 m2 with a mean of 3251 m2. Depth (d) v a r i e s from 8 m to 24.4 m, and mean depth i s 12.1 m g i v i n g P i t t River a f a i r l y low width/depth r a t i o of 50. P i s k ( 1 9 5 D and Schumm ( i 9 6 0 ) noted that r i v e r s with f i n e grained bank m a t e r i a l s would be expected to be narrow and deep, as w e l l as slow to migrate. The f l o o d p l a i n geomorphology re v e a l s no evidence of extensive r i v e r channel m i g r a t i o n from i t s present s i t e on the west side of P i t t V a l l e y . Since the Fraser D e l t a was prograding westward and u l t i m a t e base l e v e l f o r the 1 4 FIGURE 3 A . Flow p a t t e r n of f l o o d o r i e n t e d currents. Flow l i n e s drawn perpendicular to c r e s t s of large s c a l e two-dimensional bed c o n f i g u r a t i o n s (15 - 60 m i n spacing, 1 - 3 in i n height) . FIGURE 3B. Mean g r a i n s i z e ( i n mm) d i s t r i b u t i o n map and l o c a t i o n of current measurement s i t e s . 16 FIGURE 4. L o n g i t u d i n a l p r o f i l e along thalweg of P i t t R i v e r . DEPTH IN METERS CO OJ ro _ 0 o o o 1 i i i •FRASER RIVER BRIDGES STURGEON SLOUGH DELTAC ro 7s QUARRY I POINT ADDINGTON QUARRY II LAKE OUTLET < H 3 > m X CO o x m o H > o m I— o o q —I ; u <= < 2 m > r~ 33 o T l rn Z.-T 18 no page 18 19 former " P i t t F i o r d " (the ocean) was a l s o to the west, the e a r l y t i d a l channel was. l i k e l y p o s i t i o n e d on the v a l l e y ' s west side. As sediment g r a d u a l l y f i l l e d i n the f i o r d and the channel lengthened i t would tend to remain on the west. In a d d i t i o n , Alouette R i v e r ( F i g . 2 ) , the main t r i b u t a r y of P i t t R i v e r , flows westward and would r e i n f o r c e t h i s tendancy. Not only has the general l o c a t i o n of the P i t t channel ••" apparently been s t a b l e , but even l o c a l l y there have been few major channel changes. F i g . 3 shows three displacements which i n t o t a l have not had an appreciable e f f e c t i n changing channel length. The two northern ones appear to have a s i m i l a r o r i g i n . I t i s proposed that the s h i f t s occurred by b i f u r c a t i o n of the channel w i t h the growth of a mid-channel bar. The less-used channel on the i n s i d e of the bend was subsequently abandoned and another mid-channel bar would grow, again b i f u r c a t i n g the channel ( F i g . 5). The three channel s h i f t s occur i n opposing d i r e c t i o n s so that the middle one counteracts the d i r e c t i o n of s h i f t of the other two. The southernmost channel displacement at the bridges appears to have occurredrin small increments with no bar development. Bore-hole i n f o r m a t i o n ( P e t e r s , 1973) shows that the r i v e r i s constrained here i n i t s eastward movement by a deposit of o r g a n i c - r i c h clayey s i l t s ( F i g . 6). Thus the bridges are located at the narrowest s e c t i o n of r i v e r where the channel i s being forced against r e s i s t a n t bank m a t e r i a l . 2-0 FIGURE 5. A e r i a l photo near Addington P o i n t . Note meander scar and d i v e r g i n g flow p a t t e r n across i s l a n d . Point bar i s a c c r e t i n g on upstream side of meander. 21 22 FIGURE 6 . S t r a t i g r a p h i c cross s e c t i o n at the bridges. zz E o •NT 24 no page 24 25 I t i s apparent from Figure. 3A that the meandering p a t t e r n of the r i v e r channel Is. d i r e c t l y r e l a t e d to the meandering p a t t e r n of the thalweg t r a c e . Both have an average wavelength (x^) of 6100 m and an average radius of curvature ( r ) of 1675 m (excluding the bedrock c o n t r o l l e d meander, F i g . 5)- Pools l o c a t e d at meander bends and r i f f l e s at cross-over l o c a t i o n s of the thalweg are both spaced approximately 3000 m apart or f i v e times channel width. A cross s e c t i o n at a pool shows a deep asymmetric channel ( F i g . 3A-EF) whereas r i f f l e s ( F i g . SA-LE) are shallower and u s u a l l y more symmetric. A s e c t i o n at the bridges ( F i g . 3A-AB) shows a deep symmetric channel which r e s u l t s from the confined flow and scour around bridge p i l i n g s . Leopold and Wolman (i960) s t r e s s e d the concept that meanders form to lengthen the channel i n order to minimize the time r a t e of energy expenditure. Also that a w e l l developed pool and r i f f l e sequence allows approximately equal expenditure of energy along succeeding reaches of a r i v e r . More s p e c i f i c a l l y they found that there i s a d e f i n i t e r e l a t i o n s h i p i n r i v e r s between discharge, width, and radius of curvature. Figure 7 i l l u s t r a t e s a good agreement between t h e i r f i n d i n g s and c h a r a c t e r i s t i c s of the P i t t R i v e r . Figure 8 summarizes the planform geometry of P i t t R i v e r . S e v e r a l prominant bedrock outcrops, i n a d d i t i o n to 2,6 FIGURE 7• Location of P i t t h y d r a u l i c parameter values on Leopold and Wolman's (i960) p l o t of vs. W and vs. r ^ . A M values ranged from 4300 to 8000 m. Ajyj values (excluding the bedrock-controlled meander ranged from 1400 - 2100 m. v - 2 7 LEOPOLD and WOLMAN ( I960) PITT RIVER A. = 10.9 W 1 0 1 A = 9.3 W 1 0 1 - - -A-? r^,.9ft „ y, -» r „ 98 rm/w= 2 - 3 rm/w= 2.75 i PITT DATA i i Channel w id th , fee t Mean radius of c u r v a t u r e , fee t A B ° Meanders of rivers and in flumes * Meanders of Gulf S t r e a m • Meanders on glacier ice • 28 the f i n e - g r a i n e d bank m a t e r i a l , present p h y s i c a l c o n s t r a i n t s to channel m i g r a t i o n . E i t h e r point bars, mid-channel s h o a l s , or mid-channel bars ( i s l a n d s ) have- developed on the i n s i d e of each meander bend. A study was undertaken of the s i d e -scan sonar and depth soundings recorded i n a l l areas of the r i v e r to determine the p a t t e r n of flow i n the channel and the o r i g i n of the mid-channel bars. Although d e t a i l s of t h i s study w i l l be covered i n the s e c t i o n on bed c o n f i g u r a t i o n , r e s u l t s of some aspects are shown i n Figure 3A. For t h i s diagram the o r i e n t a t i o n of l a r g e scale two-dimensional bed c o n f i g u r a t i o n s (15 - 60 m i n spacing, 1 - 3 i n height) were noted and flow l i n e s drawn perpendicualr to c r e s t s . Using t h i s i n f o r m a t i o n along w i t h the topo-graphy of channel bottom the flow p a t t e r n was constructed. In general i t appears to f i t the converging-diverging flow model of de L e l i a v s k y (1894) t a k i n g i n t o c o n s i d e r a t i o n the e f f e c t of the bridges and bedrock outcrops on flow p a t t e r n . The p a t t e r n i s drawn f o r the f l o o d d i r e c t i o n because the m a j o r i t y of the i n f o r m a t i o n a v a i l a b l e i s f o r f l o o d - o r i e n t e d flow. Over 65% of the bed c o n f i g u r a t i o n s on sounding records taken during a l l seasons and during both f l o o d and ebb flows were f l o o d o r i e n t e d . The small amount of a v a i l a b l e i n f o r m a t i o n i n d i c a t e s that ebb flow p a t t e r n meanders . w i t h approximately the same wavelength as the f l o o d and that i t crosses the channel at the same l o c a t i o n s ( r i f f l e s ) . However, the p o s i t i o n of maximum curvature of the ebb flow opposes the po s i t o n of maximum" curvature of the f l o o d ( i . e . , occurs on the opposite side of r i v e r ) . In general each mid-channel'bar ( I s l a n d or shoal) extends from the r i f f l e area to the point opposite (and u s u a l l y beyond) the deepest p o r t i o n of the thalweg at the meander bend. The bars appear to be r e l a t e d to r i f f l e formation. I t i s i n t e r p r e t e d that they form by d e p o s i t i o n during d i v e r g i n g flow ( F i g . 5) and thus seem to be a p h y s i c a l extension of the r i f f l e . However, since they form on the i n s i d e of the meander bend they a l s o occupy the p o s i t i o n of the point bar even though, they are separated from the i n s i d e bank. Thus, at each bend i n the thalweg there i s e i t h e r a point bar or a mid-channel bar ( F i g . 8). I t was not determined i n t h i s study why point bars are found at some bends and mid-channel bars at others. I t should be noted, however, that point bars occur at bends of maximum curvature. In a normal r i v e r point bar deposits accrete on the downstream side of the bar and the deepest area of pools occurs on the downstream end of meander bends. Based on t h i s premise, one may deduce that Point Addington ( F i g . 5) i s being constructed by flood-dominated flows and channel topography i n d i c a t e s that the f l o o d -o r i e n t e d current i s the channel-forming flow w i t h l i t t l e m o d i f i c a t i o n o c c u r r i n g on the ebb. 30 FIGURE 8. Diagrammatic sketch of h y d r a u l i c geometry P i t t R i v e r . A = 3 2 5 G s q . m Q WINTER-FLOOD= 2 4 0 0 cu.m/sec. ( 85 ,000 cu.ft . /sec.) W = 6I0 m 0 W I N T E R - E B B = 2 0 8 0 c u . m / s e c . ( 7 3 , 5 0 0 c u . f t . / s e c . ) d = R=l2. lm Q F R E S H E T - F L O O D = l800cu.m/sec. (64,500 cu.ft./sec.) A=6IOOm 0 F R E S H E T - E B B = 9 5 0 c u . m / s e c . ( 3 3 , 5 0 0 cu . f t . /sec . ) w / d = 5 0 S WINTER FLOOD = + .000053 CHANNEL L E N G T H " l 9 - 8 K m S WINTER E B B = - . 0 0 0 0 3 2 S F R E S H E T FLOOD = +.000018 SINUOSITY 1.20 S FRESHET E B B = - . 0 0 0 0 1 6 <gg? BEDROCK THALWEG TRACE /325^ POINT BAR = = = = = CHANNEL SCAR <S!D> ISLAND ^ SHIFT DIRECTION <Z> SKOAL 32 The i n t e r r e l a t i o n s h i p of h y d r a u l i c v a r i a b l e s such as discharge (Q), v e l o c i t y ( V ) , depth (d),. bankful width (W), r e s i s t a n c e ( n ) , and water slope (S^) has long been recognized. However, the nature (dependent or independent) of the v a r i a b l e s depends upon the h y d r a u l i c s e t t i n g and the time scale under c o n s i d e r a t i o n . In the P i t t t i d a l system, Q and S w are independent on both a short—and long-term bas i s while V, d, W, and n are dependent under both time s c a l e s . Q, S^, d, W and V can a l l be measured and t o t a l r e s i s t a n c e can be determined from a Manning-type equation d2/3 s l / 2 A (n = —-—-, ; d* (mean flow depth) = = 7 . Leopold and V 2 W Maddock (1953) s p e c i f i e d a l l f i v e v a r i a b l e s as power fun c t i o n s of discharge. In P i t t R i v e r both water slope and discharge reverse d i r e c t i o n r e g u l a r l y and vary between opposite maxima. Although, during the f r e s h e t when P i t t basin discharge i s h i g h , o c c a s i o n a l l y t i d a l l y induced backwater occurs without r e v e r s a l i n flow d i r e c t i o n . Because of v a r i a b l e slope and discharge, i t i s problematic which values should be used to represent the P i t t as a h y d r a u l i c system. Both f l o o d and ebb slopes w i t h i n the P i t t can be c a l c u l a t e d from simultaneous stage e l e v a t i o n s as a mean over the distance between the stage recording s t a t i o n s ( F i g . 1). Maximum p o s s i b l e slope on any f l o o d or ebb of a t i d a l c y c l e would be determined by the d i f f e r e n c e i n e l e v a t i o n between the rec o r d i n g s t a t i o n s 33 ( F i g . 9). Discharge on any t i d a l c y c l e i s determined from a product of v e l o c i t y at .4 depth (measured from the bed) times an average cross s e c t i o n a l area (A). The a c t u a l values were probably s l i g h t l y l e s s , as the data point on Fraser River i s 4 km downstream from the F r a s e r - P i t t confluence. A l s o , the maximum (or minimum) e l e v a t i o n s i n P i t t Lake and Fraser R i v e r d i d not occur simultaneously. The flow i s non-uniform and at any point i n time the water slope i s v a r i a b l e along the system. Flow i s also unsteady and the water slope v a r i e s w i t h time at any p o i n t . To avoid t h i s problem of v a r i a b l e s l o p e , maximum slope values are chosen to c h a r a c t e r i z e each flow d i r e c t i o n and be used as a base f o r comparing f l o o d and ebb flows. The maximum water slope values f o r both f r e s h e t and winter measured during t h i s study are p l o t t e d on Leopold and Wolman's (1957) slope-discharge diagram ( F i g . 10.) . These authors intended the diagram only as a means of separating braided and meandering steams, but i t can be used to i l l u s t r a t e the range of slope-discharge values that are found i n a sampling of r i v e r s . The P i t t data f a l l s w i t h i n the meandering regime; however, i t i s the maximum 3 -1 slope-discharge f o r the winter (2400 m .sec ) that i s c l o s e s t to the general s c a t t e r of r i v e r p o i n t s . This i m p l i e s that i t i s the winter discharge not the fre s h e t o —1 (2080 m .sec ) which i s most e f f e c t i v e i n d e f i n i n g the channel geometry. 34 r FIGURE 9- T i d a l range i n S t r a i t of Georgia, Fraser R i v e r , P i t t R i v e r , and P i t t Lake on four r e p r e s e n t a t i v e days i n D e c , Mar., June, and Sept. Maximum mean water slope (ebb or fl o o d ) p o s s i b l e on a given day was c a l c u l a t e d from the d i f f e r e n c e i n e l e v a t i o n between Fraser River and P i t t Lake. FLOOD EBB .: \ V-' PITT LAKE FRASER RIVER RIVER DEC. 25,1972 1 STRAIT OF GEORGIA SLOPE FLOOD = +.000053 SLOPE EBB * -.000032 2 0 Km F k 0 0 L ° T EBB PITT RIVER PITT LAKE FRASER RIVER JUNE 17,1973 SLOPE (FLOOD) » +.000018 SLOPE (EBB) • -.000016 SJ^iT.0F • 2 0 Km GEORGIA 5' to CE UJ t 3i 5 U J CD H 2 2H < 9 ,. FLOOD EBB . PITT RIVER PITT LAKE FRASER RIVER MARCH 21 1973 SLOPE FLOOD" +.000034 SGEORGIA i S L 0 P E E B B = " 000026 Co ur i 2 0 Km CO UJ UJ 3 3-U J z < cr _ J 2-< Q FLOOD EBB T PITT RIVER PITT LAKE STRAIT OF GEORGIA ; FR/iSER RIVER SEPT. 9 1973 SLOPE (FLOOD)" + .000037 SLOPE (EBB) • -.000024 3.6, FIGURE 10. P i t t parameters plotted, on Leopold and Wolman's (1957) slope-discharge diagram. P i t t values p l o t with other meandering r i v e r s , but winter values occur c l o s e s t to the general s c a t t e r of p o i n t s . This implies the winter flow i s the channel-forming discharge. .00001 = .000005 t t l i l g AFTER LEOPOLD AND WOLMAN (1964) V MEANDERING 1 0 0 'OOO 10,000 100,000 1,000,000" BANK DISCHARGE IN CUBIC F E E T PER SECOND 3 8 ; I t i s important to note that f l o o d water slopes are higher than corresponding ebb water slopes ( F i g . 9 ) , and that winter water slopes are s i g n i f i c a n t l y higher than those of the f r e s h e t . As water slope i s the most important d r i v i n g force i n a h y d r a u l i c system, i t i s i n t e r p r e t e d that the P i t t system i s dominated by winter f l o o d flows. Although the flow i n P i t t R iver i s s i m i l a r to that i n an estuary ( b i d i r e c t i o n a l ) , the p h y s i c a l s e t t i n g i s s i g n i f -i c a n t l y d i f f e r e n t from that of most e s t u a r i e s . P i t t R i v e r i s a conduit c a r r y i n g water between the Fraser River and a r e s e r v o i r ( P i t t Lake) of large c a p a c i t y . Because the r e s e r v o i r provides a very large storage c a p a c i t y , flow through the r i v e r i s s i m i l a r to other open channel flows. Energy Is d i s s i p a t e d f a i r l y evenly along the channel as evidence by the r e g u l a r meanders and w e l l developed pool and r i f f l e sequence. However, other c h a r a c t e r i s t i c s of the P i t t are d e f i n i t e l y e s t u a r i n e ; f o r example, slope and discharge are determined by a complex i n t e r a c t i o n of the t i d a l range i n the S t r a i t of Georgia, discharge of the Fraser R i v e r , and discharge from the P i t t ' drainage system. In c o n c l u s i o n , despite i t s b i d i r e c t i o n a l flow the geomorphology of the P i t t River has mainly r i v e r i n e c h a r a c t e r i s t i c s , r a t h e r than e s t u a r i n e . The e f f e c t i v e discharge (Q ) or channel-forming discharge (bankful discharge) appears to be the winter peak f l o o d flow. The 39 r e g u l a r meanders, the w e l l developed .pool and r i f f l e sequence, and h i s t o r y of channel s t a b i l i t y a l l imply that'the processes a c t i n g i n the r i v e r are i n " q u a s i - e q u i l i b r i u m " w i t h i t s r e v e r s i n g flow and c o n t i n u a l l y changing discharge. The f o l l o w i n g observation made by K e l l e r and Melhorn (1973) o r i g i n a l l y intended f o r u n i d i r e c t i o n a l r i v e r s , a p p l i e s e q u a l l y w e l l to t i d a l P i t t R i v e r : " i t appears that i t i s n e i t h e r processes i n a l l u v i a l stream channels which e n t i r e l y c o n t r o l channel form, nor form which e n t i r e l y c o n t r o l s process. Rather form and process evolve together i n harmony as feedback mechanisms inherent to open systems approaching dynamic e q u i l i b r i u m " . 40 SEDIMENTS Channel bottom sediments of the P i t t R i v e r were sampled and analyzed f o r grain, size- d i s t r i b u t i o n and mineralogy i n order to compare them to Fraser R i v e r sediments and a s c e r t a i n that the Fraser was'their source. Mean g r a i n s i z e of bottom sediments i n the Fraser near P i t t R i v e r was determined to be 0.42 mm (1.25 <j>) (Tywoniuk and S t i c h l i n g , 1973) wit h a range from 1.4l mm (-0.5 $') to 0.044 mm (4.5 a > ' ) . This study found a mean g r a i n s i z e of 0.35 mm (1.35 ^ ) i n bed m a t e r i a l d i r e c t l y o f f P i t t River mouth. Cores d r i l l e d at the bridges ( F i g . 6) and other cores taken by the D.P.W. at kilometers 2 and 8 ( F i g . 3A) i n d i c a t e that the channel i s i n c i s e d i n t o s i l t and cl a y (probably o l d e r Fraser and P i t t R i v e r f l o o d p l a i n d e p o s i t s ) . The channel i s f l o o r e d with a r e l a t i v e l y t h i n blanket (5 - 15 m) of sand. A t o t a l of 38 P i t t R i v e r samples were c o l l e c t e d with a Dietz-Lafond grab sampler. Sandy samples from the thalweg were analyzed i n a R.S.A. (Rapid Sediment Analyzer) s e t t l i n g tube of 12.7 cm diameter. S i l t y samples were s i z e d by a combination of sieve (0.5 $ i n t e v a l - f o l l o w i n g the method of F o l k , 1968) and Sedigraph (model 5000, O l i v i e r et a l . , 1970/71) techniques. A f a i r l y simple p a t t e r n of g r a i n 41 s i z e d i s t r i b u t i o n emerged from the study. A steady decrease i n mean g r a i n s i z e of sediments occurs i n the thalweg from 0.37 mm (1.43 <[>) at P i t t - F r a s e r confluence to 0.25 mm (2 <f>) at the. entrance to the Lake ( F i g . 3B). A d i s r u p t i o n of t h i s trend occurs o f f the mouth of Widgeon Slough where s l i g h t l y coarser m a t e r i a l (mean g r a i n s i z e =0.-34 mm (.1.42. f) ) i s debouched i n t o the f i n e r grained sediments of P i t t R i v e r , 0.26 mm ( l . 9 4 '•<(>), r e s u l t i n g i n an intermediate s i z e of 0.29 mm (1.78 d>) . In a d d i t i o n to the l o n g i t u d i n a l decrease i n s i z e there i s a l a t e r a l decrease from thalweg to r i v e r banks. For example at kilometer 19 mean g r a i n s i z e i n the thalweg i s 0.26 mm (1.96 4>) and decreases to 0.086 mm (3-6 .<j0 and 0.0625 mm (4.0 .<(>) at the i n s i d e of the meander. Areas of c o n s i s t e n t l y low v e l o c i t y such as the l o c a t i o n upstream and landward of the bridge abutment have comparatively f i n e sediments (0.031 mm (5 * j - 0 . 0156 mm ( 6 «j>) ). In general sediments are w e l l s o r t e d , w i t h 90% of a given sample occuring w i t h i n 2 <J> i n t e r v a l s . However, s e t t l i n g tube s i z i n g techniques are I n s e n s i t i v e to the small concentrations that occur i n d i s t r i b u t i o n t a i l s thus samples may not a c t u a l l y be quite as w e l l sorted as the analyses i n d i c a t e . The mineralogy of Fraser R i v e r has been examined by MacKintosh and Gardner, ( 1 9 6 6 ) ; G a r r i s o n et a l . , ( 1 9 6 9 ) ; and P h a r O j ( 1 9 7 2 ) . The source m a t e r i a l i s heterogeneous 42 (mostly P l e i s t o c e n e deposits occupying the Fraser drainage b a s i n ) . A comparison of Fraser River mineralogy with the P i t t system i s shown i n Table I. Mineralogies and proportions of minerals i n the two r i v e r s are. e s s e n t i a l l y i d e n t i c a l with a few minor exceptions. P r o p o r t i o n of v o l c a n i c rock f r a g -ments decrease while p r o p o r t i o n of f r e s h hornblende and p l a g i o c l a s e increase from Fraser River to P i t t Lake. Widgeon slough has s i m i l a r mineralogy to Fraser and P i t t Rivers but d i f f e r e n t p r o p o r t i o n s : quartz (45%) w i t h no q u a r t z i t e or c h e r t , f e l d s p a r (37%';' 30% p l a g i o c l a s e and 7% K-spar.), higher pyroxene (7%) and lower rock fragments ( 2 % ) . Amphibole i s mainly green hornblende and g e n e r a l l y f r e s h . Thus, Widgeon Slough possesses a d i s t i n c t mineralogy c h a r a c t e r i z e d by abundent f r e s h p l a g i o c l a s e , f r e s h green hornblende and no chert. Because the volume of m a t e r i a l c o n t r i b u t e d by the slough i s small i n comparison with that c o n t r i b u t e d by P i t t R i v e r , Widgeon Slough minerals soon become d i l u t e d . Attempts to t r a c e the d i r e c t i o n of sediment movement from Widgeon Slough were unsu c c e s s f u l . In c o n c l u s i o n , Fraser River sediments are confirmed as. source m a t e r i a l f o r the P i t t R i v e r based on (1) e s s e n t i a l l y i d e n t i c a l m i n e r a l o g i e s , and (2) a gradual decrease i n g r a i n s i z e ( w i t h i n the thalweg) from the P i t t - F r a s e r confluence up P i t t R iver to P i t t Lake. TABLE I Summary of mineralogy of Fraser R i v e r , P i t t R i v e r , P i t t Lake, and Widgeon Slough. LOCATION " - . . GRAIN SIZE > 2 y <2 y t h i s study Garrison et a l ( 1 9 6 9 ) Pharo(1973) Pharo(1973) • FRASER - RIYER quartz 10% chert 35% met.rock f r a g . 15% vole.rock f r a g . 20% fe l d s p a r 11% others 07% hornblende 02% q u a r t z i t e , quartz, chert 40% fe l d s p a r 11% rock fragments 45% other 04% quartz f e l d s p a r amphibole mica garnet c h l o r i t e m o n t m o r i l l o n i t e i l l i t e q u artz, f e l d s p a r , amphibole P i t t River Widgeon Slough P i t t Lake (Pharo, pers.comm) PITT SYSTEM t h i s study quartz 20% chert 30% met.rock f r a g . 20% vole.rock f r a g . 06% fe l d s p a r 13% hornblende 04% opaque 04% mica 03% quartz 45% p l a g i o c l a s e 30% K-spar 07% hornblende 07% m i c a ( b i o t i t e ) 05% others 06% c h l o r i t e m o n t m o r i l l o n i t e i l l i t e q u artz, f e l d s p a r , amphibole, c u p r i t e (tra c e ) 44 no page 44 45 FLOW AND SEDIMENT TRANSPORT Tides The t i d e i n the S t r a i t of Georgia i s the main d r i v i n g f o r c e behind the hydrodynamics of the P i t t system. The t i d e i s mixed, mainly d i u r n a l , w i t h a range of 3 - 5 meters. In a d d i t i o n to the mixed nature ( d i u r n a l i n e q u a l i t y ) of the t i d e , lunar c y c l i c v a r i a t i o n s also occur ( F i g . 11). The d i f f e r e n c e i n height (H) between successive high waters i s u s u a l l y l e s s than the height d i f f e r e n c e between successive low waters. In theory (Bowditch, 1962), t i d e s can be thought of as a symmetric water wave with a long wavelength (20 ,000 km) and short amplitude (30 cm). In a deep ocean t h i s wave form ( F i g . 12) would t r a v e l from east to west as the earth spins on i t s a x i s . The wave form ( c r e s t to c r e s t ) takes 12 hours and 25 minutes to pass a s t a t i o n a r y reference p o i n t ; i . e . , one high t i d e to the next. Although the wave form moves forward the water motion i s up and down. In shallowing water approaching land, f r i c t i o n a l drag t r a n s l a t e s t h i s v e r t i c a l motion i n t o h o r i z o n t a l motion; i . e . , a progressive wave. Drag r e t a r d s flow i n the lower p o r t i o n of the wave and, as the water l e v e l r i s e s , f a s t e r moving water near the wave cr e s t begins -to overtake the 4 6 FIGURE 1 1 . A r e p r e s e n t a t i v e t i d a l curve (month) f o r S t r a i t of Georgia. POINT ATKINSON, BRITISH COLUMBIA 48 FIGURE 12. T i d a l theory: (A) Wave form over i n f i n i t e l y deep ocean; (B) Wave form with bottom f r i c t i o n ; (C) dH/dT i s highest at beginning of f l o o d , but slows down near high water; (D) dH/dT i s lowest at beginning of ebb and increases toward low water; (F) Maximum v e l o c i t i e s occur at end of ebb and beginning of f l o o d . A A T I D E W A V E FORM: *=l2hr. 25min. C£ FLOOD < E HIGH WATER no page 50 51 more slowly moving water at the wave f r o n t . An asymmetric wave form i s thus developed ( P i g . 12B.) . The asymmetry i s accentuated w i t h i n the confines of. the. estuarine channel by increased drag caused by boundary (wall), e f f e c t s . Cross s e c t i o n a l area a v a i l a b l e f o r water t r a n s f e r i s reduced, thus a l t e r i n g form of progressive wave. Ignoring t i d a l backwater e f f e c t s , stage-time asymmetry increases while magnitude of stage f l u c t u a t i o n s , as w e l l as p r o p o r t i o n of time devoted to f l o o d decreases (Ippen and Harleman, 1966). Slope (dH/dT) of the f l o o d t i d e wave f r o n t i s g r a p h i c a l l y shown with time l i n e s ( t ^ - t(-) i n Figure 12C. On the ebb, water l e v e l s drop slowly at f i r s t but become f a s t e r with time as the water slope becomes greater ( F i g . 12D). A s t a t i o n a r y observer would see the e n t i r e passing t i d a l wave as a r a p i d l y r i s i n g , then slowly f a l l i n g water l e v e l . An i d e a l -i z e d dH/dT p l o t of P i t t R i v e r i s shown i n Figure 12E where periods of f a s t e s t flow (which correspond to times of steepest water slope) are e n c i r c l e d . The r e l a t i o n s h i p i n time between stage l e v e l , water slope, and v e l o c i t y (.4 depth measured from base of flow) i s i l l u s t r a t e d i n Figure 13-The t i d a l wave form i s dampened as i t progresses i n l a n d from the S t r a i t of Georgia up Fraser and P i t t R ivers and i n t o P i t t Lake. The t i d a l range i s decreased and the shape of the stage l e v e l curve i s modified. Other things being equal, the greater the magnitude of the t i d e 52 FIGURE 13. Stage, dH/dT, and v e l o c i t y are asymmetric waves but s l i g h t l y out of phase. TIME (HOURS) 54 no page 54 55 i n the S t r a i t , the greater the water l e v e l f l u c t u a t i o n s i n the P i t t system. Figure '14. depicts. 24-hour dH/dT curves f o r the S t r a i t of Georgia (Point A t k i n s o n ) , Fraser R i v e r (Port Mann B r i d g e ) , P i t t River (at the b r i d g e s ) , and P i t t Lake (southern end). The four s i t e s are l o c a t i o n s of continuously r e c o r d i n g stage meters ( F i g . 1) (unpublished data,Water Survey of Canada). Both the semi-diurnal ( F i g . 14A) and mixed, mainly d i u r n a l ( F i g . l4B) t i d a l curves i n the S t r a i t are c l o s e l y mimicked"'at the' other three l o c a t i o n s , but with a considerable time l a g (approximately 5 hr and 15 min) between high water i n the S t r a i t and high water i n P i t t Lake. I t takes even longer (6 hr and 20 min) f o r the low water impulse' to progress from the S t r a i t to the lake. The approximate time lags that can be expected f o r the' three i n l a n d s t a t i o n s are summarized i n Table I I . In a d d i t i o n to the t i d a l l y induced o s c i l l a t i o n s In water l e v e l of Fraser estuary and P i t t systems, the absolute l e v e l of these o s c i l l a t i o n s changes seasonally with a • maximum during Fraser River freshet r u n - o f f (May, June, and J u l y ) and a minimum during the winter (Dec., Jan., and Feb.). Discharge co n t r i b u t e d to P i t t system from P i t t R i ver (North) and small streams surrounding the lake v a r i e s from 210 m /sec ( f r e s h e t ) to 30 m /sec ( w i n t e r ) . The r e s u l t i s that during the freshet more than 50% of water moving through the P i t t system i s co n t r i b u t e d by 56 FIGURE 14. R e l a t i o n s h i p of stage vs. time f o r four l o c a t i o n s ( S t r a i t of Georgia, Fraser R i v e r , P i t t R i v e r , and P i t t Lake) f o r three r e p r e s e n t a t i v e days i n (A) f a l l (B) winter (C) fr e s h e t •(spring r u n - o f f ) . 57 TABLE I I Estimations of the delay f o r low-low water and high-high water to progress from S t r a i t of Georgia to l o c a t i o n s w i t h i n the study area. STA( IE STRAIT OF GEORGIA PORT MANN : BRIDGE FRASER R. PITT .: RIVER PITT LAKE High-high Water (Flood Peak) Freshet 0 2 hr 3 hr 15 m 15 hr 30 m Winter 0 1 hr 10 m 2 hr 30 m 5 h 15 m Low-low Water (Ebb Peak) Freshet 0 3 hr 4 hr 30 m 15 hr 30 m Winter 0 3 hr 4 hr 15 m 6 h 20 m 59 b a s i n drainage c o n t r a s t i n g with only 5% during -the winter. Thus, there i s an order of magnitude d i f f e r e n c e between winter and fr e s h e t c o n d i t i o n s . In the winter ( F i g . 14B) when discharge of Fraser and P i t t systems i s low, the t i d a l e f f e c t i s great. In contrast during f r e s h e t when runoff i s hig h , t i d a l e f f e c t i s minor ( F i g . l 4 C ) . Stage f l u c t u a t i o n s i n Fraser and P i t t are i r r e g u l a r and out-of-phase. On t h i s , p a r t i c u l a r day (June 28, 1973) flow d i d not reverse i n P i t t system. The progressive nature of the t i d a l wave form i n the P i t t system i s r e f l e c t e d by the f i l l i n g and emptying of the r e s e r v o i r ( P i t t Lake). This can be demonstrated by showing that the volume of water moving through the r i v e r during a t i d a l c ycle i s approximately equal to the volume l o s t or gained by the la k e . The t o t a l volume moved through the r i v e r was c a l c u l a t e d as the area under the time-discharge curve. Discharge curve f o r a t i d a l c y c l e was determined from a product of mean v e l o c i t y measured at 2 lake o u t l e t and c r o s s - s e c t i o n a l area (4100 m ) at o u t l e t . T o t a l volume moved through r i v e r compares favorably with 'the volume a c t u a l l y added to the lake c a l c u l a t e d from the r e l a t i o n : (lake stage height change,AH) X ( l a k e area, A) + (volume c o n t r i b u t e d from drainage area during f l o o d flow, Q B) (Table I I I ) . The same was true f o r ebb flows. T o t a l discharge passing through the r i v e r i s comparable to the 6 0 TABLE I I I C a l c u l a t i o n s demonstrating t o t a l discharge passing through the r i v e r is. approximately equal to volume • added./, or ' subtracted from the la k e . FLOOD EBB August 13, 1975 - S i t e (4) A = 4100 m2 Flow Duration = 4.5 hrs. 3 -1 (Lake Basin) QB = 113 m .sec Lake A L = 55 x 10 6 m2 X A H = +.22 m May 9, 1975 - S i t e (2) A = 2875 m2 Flow Duration = 8.5 h r s . 3 -1 (Lake Basin) Q_ = 184 m .sec Lake A L = 55 x 10 6 m2 X A H = -.63 m V0L= 12.2 x 10 m3 River t o t a l ' Q = 11.4 x 10 6 m3 + Q B = 1.6 x 10 6 m3 V0L= - 34.3 x 10 6 m3 River t o t a l Q = - 40 x 10 6 m3 - QB = - 4.3 x 10 6 m3 VOL '. = 13.0 x 10 6 m3 VOL. . = - 35.8 x 10 6 m3 61 volume (AHA) that l e f t the lake plus volume s u p p l i e d by the drainage basin during the time of ebb flow. V i s u a l l y , ~ a l l curves appear asymmetric w i t h steepest slopes o c c u r r i n g on f l o o d t i d e , implying that discharge and thus v e l o c i t y i s higher on f l o o d . A s t a t i s t i c a l a n a l y s i s was undertaken on the frequency of dH/dT values of P i t t Lake f o r winter months (Nov. 24, 1972 - A p r i l 30, 1973) when t i d a l e f f e c t i s g r e a t e s t . A s l i g h t adjustment was made'to account f o r the e f f e c t of water volume co n t r i b u t e d to the lake by the P i t t watershed. Watershed discharge would be dammed during f l o o d flow i n c r e a s i n g apparent" r a t e of lake stage r i s e , . , , I t s continuous flow i n t o - the lake during ebb flow would: reduce' apparent: r a t e .of lake stage: f a l l . However, watershed/discharge i s : s m a l l , ( 5%) compared: to t i d a l l y induced discharge c o n t r i b u t e d by P i t t River, and i t s e f f e c t i s con-sid e r e d minor. I t can be seen from the bar graph ( P i g . 15) that the bulk of values f o r both f l o o d and ebb l i e below a dH/dT of .007 f t / m i n (.213 cm/min). Note that 5-7% of f l o o d values are above t h i s slope compared w i t h 2.5% of ebb values. Thus over a 5-month per i o d f l o o d flows reach higher dH/dT values i n d i c a t i n g higher peak v e l o c i t i e s than ebb flows. This flood-dominated trend i s confirmed by the v e l o c i t y measurements presented i n t h e " f o l l o w i n g s e c t i o n . 6 2 FIGURE 15. Bargraph i l l u s t r a t i n g frequency precent of dH/dT values of P i t t Lake ( r e f l e c t i n g r a t e of i n f i l l i n g ) over a 6-month pe r i o d . Highest dH/dT values occur on f l o o d flows i n d i c a t i n g a higher v e l o c i t y than on the ebb. 63 1 0 h -SLOPE STEEPNESS, dH/dT (ft./min.) 64 Streamflow V e l o c i t y i s one of the more important parameters used to c h a r a c t e r i z e flow and a necessary, v a r i a b l e f o r any sediment transport p r e d i c t i o n . 'Unfortunately, v e l o c i t y i n the P i t t R i v e r i s v a r i a b l e i n d i r e c t i o n and magnitude, both d a i l y and s e a s o n a l l y . I t was considered important to determine the range of v e l o c i t i e s that could be expected to occur'during any year, i n p a r t i c u l a r , the maximum v e l o c i t i e s and t h e i r d u r a t i o n . Two d i f f e r e n t methods of current measurements were used: (1) readings taken at 7-5-minute i n t e r v a l s , one meter from bottom, f o r 36 days; (2) current p r o f i l e s taken at 30-minute i n t e r v a l s f o r f l o o d or ebb c y c l e s . P o r t i o n s of 50 days of v e l o c i t y data i n both r i v e r and lake channel were taken i n hopes of o b t a i n i n g a r e p r e s e n t a t i v e sampling of the broad spectrum of flow c o n d i t i o n s e x i s t i n g i n the P i t t system. Peak mean v e l o c i t i e s measured at four s i t e s ( P i g . 3B) are summarized i n Table IV and show that f l o o d flows are, i n g eneral, stronger than ebb. This i s t r u e , i n p a r t i c u l a r , when the hydrodynamic c o n t r o l c o n d i t i o n s ( t i d a l range i n the S t r a i t and Fraser discharge) are the same f o r the f l o o d and ebb flows being compared. E s t u a r i e s with dominant f l o o d v e l o c i t i e s are common (Wright et_ a l . , 1973; Visher and Howard, 197^; Boggs and Jones, 1976) and, i n f a c t , may be considered the r u l e f o r e s t u a r i e s with low f r e s h water discharge (Meade, 1969). In a l l cases t o t a l TABLE IV Summary of peak mean v e l o c i t i e s determined from p r o f i l e measurements; mean i s at . 4d, measured from bed. • Date S i t e Flood Ebb Date S i t e Flood Ebb March 11, 1975 (3) 52 40 August 6, 1975 (4) 57 March 13, 1975 (3) 64 42 August 11, 1975 (IB) 59 44 May 9, 1975 (2) 56 August 13, 1975 (4) 34 May 21, 1975 (2) 40 Sept. 4, 1975 (IB) 62 June 12, 1975 (4) 50 Oct. 8, 1975 (2) 64 38 June 2 4 , 1975 (4) 47 Feb. 20, 1976 (2) 70 J u l y 9, 1975 (4) 33 66 FIGURE 16. Magnitude of v e l o c i t y and the r a t i o of f l o o d to ebb du r a t i o n decreases from confluence to lake. - 68 discharge i s greater on ebb than f l o o d because of the volume added by the r i v e r . In r e c o n c i l i n g t h i s apparent contra-d i c t i o n V i s h e r and Howard (1974) noted higher f l o o d v e l o c -i t i e s at base of flow and higher, ebb. v e l o c i t i e s at s u r f a c e , whereas Meade (.1969), Wright et a l . (1973), and t h i s study have found that f l o o d currents have a higher v e l o c i t y , but flow f o r a sho r t e r p e r i o d of time than the corresponding ebb. In the P i t t system, the pr o p o r t i o n of time devoted to f l o o d and ebb flows changes p r o g r e s s i v e l y from r i v e r confluence to the lake ( F i g . 16) wi t h more and more time being devoted to ebb and l e s s to f l o o d . Current p r o f i l e s were made from a boat anchored at one p o s i t i o n i n the thalweg during ebb and f l o o d flows and under f r e s h e t (May - Ju l y ) and "winter" (August - A p r i l ) c o n d i t i o n s . Each p r o f i l e c o n s i s t e d of 8 points (10 cm from bottom, 30 em from.bottom, one meter from•bottom, 0.2d, 0 . 4d (mean), 0.6d, 0.8d, and surface)-.-" The measurements (both magnitude and d i r e c t i o n ) at each depth were based on readings averaged over a two-minute p e r i o d , thus each p r o f i l e spans 15 to 20 minutes. A d i g i t a l counter i n t e g r a t i n g e l e c t r i c a l pulses over a 10-second period was used to average v e l o c i t y f l u c t u a t i o n s caused by micro- and macrotufbulence (Matthes, 1947) . *Hydro Products, Savonius Rotor w i t h a d i r e c t readout f o r current speed (model #460A) and d i r e c t i o n (model #465A). 69 P r o f i l e s r e v e a l that current d i r e c t i o n changes g r a d u a l l y from surface to base of flow. The change i n flow d i r e c t i o n i s dominantly to the l e f t and i n the order of 30°. Ludwick's (197*0 data shows a s i m i l a r t rend, but he makes no comment as to the cause. Unfortunately, the current measurement s i t e s i n the P i t t were too few i n number to evaluate properly whether t h i s d e f l e c t i o n was due to the e f f e c t of l o c a l channel morphology or some other f a c t o r . Semi-log p l o t s of v e l o c i t y data f o r e n t i r e flow depth (boundary l a y e r ) r e v e a l that most p r o f i l e s are composed of two d i s t i n c t zones. The break between the zones occurs between 2 m and 4 m above the bottom ( F i g . 17). W i t h i n each zone the p r o f i l e g e n e r a l l y shows a l o g a r i t h m i c v a r i a t i o n of v e l o c i t y w i t h depth (d, distance above the bed), however the slope (d.V/dlog d ) is higher i n upper zone. The slope steepness changes during a c c e l e r a t i o n and d e c e l e r a t i o n of both f l o o d and ebb o r i e n t e d flows. Large-s c a l e bedforms (1 - 3 m i n height) cover the channel bottom and i t i s p o s s i b l e that t h e i r presence i s i n s t r u -mental i n the development of the two zones. Considerably more data i s needed to determine how flow s t r u c t u r e changes during a t i d a l cycle and to a s c e r t a i n the r e l a t i o n s h i p between bedforms and the presence of flow zones. 70 FIGURE 17. V e l o c i t y p r o f i l e s taken at A. S i t e 2 B. S i t e 3. Flow i s d i v i d e d i n t o two d i s t i n c t zones. V e l o c i t y v a r i e s l o g a r i t h m i c a l l y w i t h depth, but at d i f f e r e n t rates i n each zone. D i v i s i o n between the zones i s at 2 - 4 m from bed. Flow s t r u c t u r e may be r e l a t e d to bedforms (1 - 3 m i n height) present on channel bottom. OCT. 8 , 1975 depth = 12.2 m TSME 40 30 2 0 10 0 10 20 30 40 50 60 70 MARCH 11,1975 40 30 20 10 0 10 20 30 40 50 60 70 < 4 » E B B FLOOD ^ C M / S E C 72 no page 72 73 A r i t h m e t i c d e p t h - v e l o c i t y plots, i n d i c a t e that the shape of " t y p i c a l " f l o o d and ebb. curves, are d i s t i n c t l y d i f f e r e n t f o r a given mean v e l o c i t y ( F i g . l 8 A ) . The shape of a v e l o c i t y - d e p t h p l o t depends mainly on extent of drag imposed on the flow. For a given depth, the greater the drag the greater the turbulence, which,in turn produces a more gradual v e l o c i t y p r o f i l e toward'the bed. Bedforms -on channel bottom are predominantly f l o o d o r i e n t e d and the form r e s i s t a n c e (drag c o e f f i c i e n t ) would be expected to change between f l o o d and ebb. The slope angle of the exposed .bedform surface (stoss side) presented to ebb flow i s greater than slope angle of the surface ( l e e side) opposing f l o o d - o r i e n t e d flows ( F i g . 19)- Thus, i t i s i n t e r p r e t e d that more drag occurs on the ebb r e s u l t i n g i n a more gradual v e l o c i t y p r o f i l e toward the bed. Although Znamenskaya (1967) has attempted to r e l a t e bedform geometry and flow r e s i s t a n c e , few q u a n t i t a t i v e data are a v a i l a b l e f o r the types of l a r g e - s c a l e bedforms found i n the P i t t R i v e r . V e l o c i t y measurements taken near the P i t t - F r a s e r confluence ( F i g . 3, s i t e IB) ( F i g . 18B) are considered t y p i c a l of most p r o f i l e s measured. These t i m e - v e l o c i t y curves were drawn by eye to average s c a t t e r which pre-sumably i s due to low-frequency v e l o c i t y f l u c t u a t i o n s . P l o t s of mean, v e l o c i t y , v e l o c i t y one meter from bottom and 74 FIGURE l8A'. Diagrammatic comparison of " t y p i c a l " f l o o d and ebb current p r o f i l e s . FIGURE 18B. V e l o c i t y vs. time p l o t of data taken August 11, 1975 at current measurement s i t e IB ( F i g . 3B) . Line drawn at 3'2 cm/ sec i l l u s t r a t e s amount of f l o o d time above c r i t i c a l v e l o c i t y i s greater than that of ebb. Bottom a c t u a l l y i s 10 cm from bottom. 76 FIGURE 19- Diagrammatic comparison between f l o o d and ebb flows of turbulence created by the f l o o d -o r i e n t e d flows. 77 78 10 cm from bottom a l l e x h i b i t s i m i l a r shapes. The d i f f e r e n c e between f l o o d and ebb mean v e l o c i t y peaks i s 7 cm/sec, how-ever, the d i f f e r e n c e at one meter from bottom i s substant-i a l l y greater (17 cm/sec). . Visher and Howard (197*0 noted a 20 cm/sec d i f f e r e n c e at one meter .in Altahama Estuary, whereas, K l e i n (1970) found only 6 cm/sec d i f f e r e n c e at one meter from bottom i n the p o r t i o n of the Midas Basin c h a r a c t e r i z e d by f l o o d - o r i e n t e d sand waves. I t should be noted t h a t , i n the P i t t , I f an ebb or f l o o d flow were of equal strength (equal mean v e l o c i t i e s ) the v e l o c i t y near the base and thus basal shear s t r e s s and sediment entrainment p o t e n t i a l would be greater f o r the f l o o d . This i s a consequence of the ba s i c d i f f e r e n c e between the f l o o d and ebb p r o f i l e s ( F i g . 18A). At f i r s t glance t h i s i n t e r -p r e t a t i o n may appear to c o n t r a d i c t theory which assumes that turbulence i n t e n s i t y and shear increase together. However, the p o r t i o n of t o t a l flow r e s i s t a n c e borne by form r e s i s t a n c e or that u t i l i z e d on the grains d i f f e r s between ebb and f l o o d . On ebb, a greater p o r t i o n of the r e s i s t a n c e i s borne by form r e s i s t a n c e ( E i n s t e i n and Barbarossa, 1952) because of increased drag ( F i g . 19). The opposite i s true of the f l o o d where a greater p o r t i o n of r e s i s t a n c e i s a v a i l a b l e f o r shear at g r a i n l e v e l . I t i s only that p o r t i o n of t o t a l r e s i s t a n c e imparted on the g r a i n which may lead to sediment entrainment. 79 , The continuously recorded v e l o c i t y , measurements were taken by a p o s i t i v e l y buoyant meter.. (General Oceanics, Inc. f i l m r e c o r d i n g current meter (model #2010) ), 7-which was anchored to the channel bottom ( F i g . 3B, s i t e IA) but f r e e to sway with changing c u r r e n t s . The meter recorded on movie f i l m instantaneous readings of magnitude and d i r e c t i o n of flow (one meter o f f bottom) at 7-5-minute i n t e r v a l s . The meter was placed at s i t e s IA through 5 on a t o t a l of 1 occasions. Due to equipment f a i l u r e only two readable records were obtained: a 17 _day record i n the r i v e r o f ' s i t e IA (March, 1976) and a 19-day record at s i t e 5 i n the lake channel (Ashley, 1977). Portions of the r i v e r record are shown i n Figure 20 and Table V gives a comparison of the proportion of time devoted to ebb and f l o o d flow. Not only was a longer p e r i o d of t o t a l time (56%) devoted to ebb flow than to f l o o d (44%), but more time was devoted to ebb at any given v e l o c i t y l e v e l . Since a l l other aspects of t h i s study and others (Johnston, 1922; Morton, 1949.; Ages and W o l l a r d , 1976) point to a flood-dominated system these apparent anomalous data r e q u i r e examination. The area of the F r a s e r - P i t t confluence i s l i k e l y to be dominated-by the hydrodynamics of the Fraser r a t h e r than the P i t t . M i l l l m a n (1977) has noted that ebb v e l o c i t i e s i n Fraser River are r e l a t e d to t i d a l range. Thus, a n a l y s i s was made of data from s i t e IA and P i t t Lake channel 80 ( s i t e 5) to determine i f a s i m i l a r r e l a t i o n s h i p e x i s t e d . A strong c o r r e l a t i o n ( r =0.866). was found i n IA data between t i d a l range i n the S t r a i t of Georgia and peak ebb v e l o c i t y ( P i g . 20, Table VI) and a poor ( r =0.06k) c o r r e l a t i o n between peak f l o o d v e l o c i t y and t i d a l range. Peak v e l o c i t i e s were based on an average of highest v e l o c i t i e s over a 30-minute p e r i o d . On the other hand, the lake channel data show a moderately good c o r r e l a t i o n ( r =0.631) between peak f l o o d v e l o c i t y and a poor one ( r = 0.266) f o r peak ebb v e l o c i t y . A negative c o r r e l a t i o n e x i s t s between Fraser River discharge and peak v e l o c i t i e s at both s i t e s under both f l o o d and ebb flows. Thus, i t i s concluded that data from s i t e IA are s t r o n g l y i n f l u e n c e d by Fraser River c o n d i t i o n s . To r e i n f o r c e t h i s c onclusion a s i m i l a r but more d e t a i l e d comparison was made of s i t e IB (100 m upstream from s i t e IA) and s i t e 5 against s i t e IA a l l under approximately equal t i d a l ranges (Table V I I ) . S i t e s IB and 5 both show a s l i g h t f l o o d dominance i n t e r p r e t e d as repre s e n t i n g P i t t c o nditions while s i t e IA demonstrates a strong ebb dominance considered t y p i c a l of the Fraser R i v e r . An a d d i t i o n a l f a c t o r concerning s i t e IA data i s that the meter s i t e may have biased measurements taken such that most of the ebb discharge was recorded, but only a p o r t i o n of the f l o o d . P o s i t i o n of flow l i n e s w i t h respect to the current meter, determined by v e l o c i t y measurements with the TABLE V Summary of "continuous" v e l o c i t y data (March 16 -770 t o t a l hours of measurement <at s i t e IA. 31, 1976); Time greater than; EBB FLOOD Hours Hr s ( c urn) Cum.% Hours Hrs(cum) Cum. % 80 cm/sec 15 15 2..0 1 1 70 cm/sec 20 36 4.6 2 3 • 35 60 cm/sec 21 57 7.3 11 14 1.7 50 cm/sec 76 133 17. 2 55 68 8.8 40 cm/sec 109 242 31.4 79 147 19.0 30 cm/sec 72 314 40.8 92 239 31.0 20 cm/sec 43 357 46.0 34 273 35-0 10 cm/sec 40 397 51.0 39 312 40.5 0 cm/sec 35 432 56.O 26 338 44.0 82 FIGURE 20A. Computer p l o t of v e l o c i t y data from s i t e IA ( F i g . 3B). Each data point represents an instantaneous r e c o r d i n g of v e l o c i t y taken at 7-5-minute i n t e r v a l s , one meter o f f bottom. March 17 - 18, 1976; mixed, mainly d i u r n a l t i d e s . FIGURE 20B. A strong c o r r e l a t i o n e x i s t s between the t i d a l range i n S t r a i t of Georgia and maximum ebb v e l o c i t y i n current measurements taken at s i t e IA (March 16 - 31, 1976) ( F i g . 3B). This i m p l i e s data represents Fraser River h y d r a u l i c s and not P i t t R i v e r . 83 TABLE VI R e l a t i o n s h i p between t i d a l range ( S t r a i t ) and peak v e l o c i t i e s _ a t t a i n e d i n P i t t system; Fraser discharge and v e l o c i t i e s a t t a i n e d In P i t t system. S i t e Date T i d a l range ( S t r a i t ) vs. peak v e l . Fraser Q vs. peak v e l . Ebb Flood Ebb Flood IA 3/16/76-4/1/76 +0.866 + 0 .064 -0 .116 -0 .59 5 4/16/76-5/4/76 +0.266 +o .631 -0 .38 -0.165 TABLE V I I Comparison of maximum mean v e l o c i t i e s reached i n P i t t system under s i m i l a r t i d a l ranges but d i f f e r i n g Fraser discharge. Meter s i t e Date T i d a l range ( i n S t r a i t ) Fraser discharge Max. mean f l o o d v e l . Max. mean ebb v e l . Reference IA 3/24/76 2.8 m 1020 cu m/sec 62 cm/sec 82 F i g . 17 IB 8/11/75 2.9 m 3285 cu m/sec 62 cm/sec 56 F i g . 18 5 4/28/76 2.8 m 3060 cu m/sec 54 cm/sec 38 Ashley,(1977) 85 Savonius r o t o r current meter and drogue observations are s i g n i f i c a n t l y d i f f e r e n t f o r ebb ( P i g . 21A) and f l o o d ( F i g . 21B). Flood currents diverge and spread out across the P i t t R iver entrance while ebb currents converge and are concentrated near the west bank d i r e c t l y over meter s i t e . Thus, i t i s concluded that the flow p a t t e r n can be more complex l o c a l l y than the simple one presented i n Figure 3A. In a d d i t i o n no one s i t e by i t s e l f should be expected to e x h i b i t average flow c o n d i t i o n s f o r the e n t i r e r i v e r . Both f l o o d and ebb t i m e - v e l o c i t y p l o t s are asymmetric. The asymmetry becomes more pronounced from confluence to lake i n conjunction w i t h a gradual decrease i n the magnitude of peak v e l o c i t i e s ( F i g . 16). Peak v e l o c i t i e s occur e a r l y i n f l o o d and l a t e i n ebb ( F i g . 12E; F i g . 13) with reasons f o r t h i s i l l u s t r a t e d i n Figure 12. The net r e s u l t of the timing of peak flows i s that the time before and a f t e r "low water s l a c k " contains periods of high v e l o c i t i e s on both f l o o d and ebb. In c o n t r a s t , time near "high water s l a c k " has periods of r e l a t i v e l y low v e l o c i t i e s . This phenomenon i s f a i r l y common i n e s t u a r i e s (Postma, 1967) but not n e c e s s a r i l y c h a r a c t e r i s t i c of a l l . The f a c t that stage and v e l o c i t y cycles are out of phase plays an important part i n the mechanism of sediment t r a n s p o r t up the P i t t R i v e r . This mechanism w i l l be o u t l i n e d i n the f o l l o w i n g s e c t i o n on sediment t r a n s p o r t . 86 FIGURE 21. Flow p a t t e r n of f l o o d (A) and ebb (B) at P i t t - F r a s e r confluence. LB 88 In summary, v e l o c i t y data c o l l e c t e d i n t h i s study i n d i c a t e s that f l o o d flows g e n e r a l l y e x h i b i t higher mean v e l o c i t i e s but f o r s h o r t e r durations than ebb flows. The s u p e r i o r i t y of f l o o d currents r e s u l t s from the asymmetry of the t i d a l c y c l e : i . e . , the f l o o d stage r i s e s f a s t e r than the ebb stage f a l l s . Thus,, the unequal flow i s a c o n t r o l imposed upon the system. However, sediment i s introduced at the downstream end and i s transported upstream as f l o o d - o r i e n t e d bedforms. The geometry of the forms alters the v e l o c i t y of ebb currents and apparently reduces t h e i r c a p a b i l i t y of e n t r a i n i n g sediment i n comparison to f l o o d c u r r e n t s . I t i s i n f e r r e d then, that the f l o o d -dominated nature of the P i t t R iver i s maintained by a type of feedback mechanism. Sediment tra n s p o r t The study of mobile bed h y d r a u l i c s , has advanced mainly by l a b o r a t o r y flume studies based on w e l l e s t a b l i s h e d f l u i d mechanics p r i n c i p l e s . Unfortunately, a p p l i c a t i o n s of s m a l l - s c a l e l a b o r a t o r y models to the l a r g e - s c a l e r e a l i t y of sediment t r a n s p o r t i n r i v e r s has had only l i m i t e d success. One of the major problems i s that the e q u i l i b r i u m s t a t e of the r i v e r i s d i f f i c u l t to determine on both a' short and long-term b a s i s . Thus, i n examining behavior of n a t u r a l streams i t i s important to d i f f e r e n t i a t e between short-term (hourly) and long-term ( y e a r l y ) i n t e r a c t i o n of 89 channel and discharge. This i s p a r t i c u l a r l y important i n P i t t R i v e r , where b i d i r e c t i o n a l , , unsteady, and seasonal flow v a r i a t i o n s are the norm. The f o l l o w i n g s e c t i o n i n v e s t i g a t e s the short-term ( t i d a l cycle) i n t e r a c t i o n of water and sediment by examining c o n d i t i o n s of sediment entrainment and long-term (seasonal) i n t e r a c t i o n by est i m a t i n g t o t a l volume of sediment moved through the system i n a year. Bed load The most c h a l l e n g i n g question r e l a t e d to the t i d a l P i t t system i s how net water flow can be out of P i t t Lake wh i l e net sediment movement i s i n the opposite d i r e c t i o n . Meade (1969); Wright et a l . , (1972); and Wright et a l . , (1973) have a l l noted a s i m i l a r landward t r a n s p o r t of sediment i n other e s t u a r i e s , e x p l a i n i n g i t i n terms of s a l t wedges. The P i t t freshwater system c l e a r l y r e q u i r e s a model which i s not based on the density d i f f e r e n c e between f r e s h and s a l t water. The steeper water slopes and higher v e l o c i t i e s generated on the f l o o d t i d e have been documented i n previous s e c t i o n s and appear to provide a d r i v i n g force f o r landward sediment t r a n s p o r t . Sediment i s continuously s u p p l i e d to the lower P i t t R i v e r by i t s source (Fraser R i v e r ) . At the same time the g r a d a t i o n a l change i n the hydrodynamics of the P i t t from the Fraser confluence to P i t t Lake ( F i g . 16) may e x p l a i n the systematic 90 decrease observed i n mean g r a i n s i z e up.the r i v e r . To evaluate q u a n t i t a t i v e l y these e f f e c t s c a l c u l a t i o n s have been c a r r i e d out on the shear v e l o c i t i e s necessary to e n t r a i n sediments. C r i t i c a l shear s t r e s s necessary f o r sediment entrainment, under various temperatures, was determined from S h i e l d s ' diagram as modified by Briggs and Middleton (1965). The l a r g e s t grains found near P i t t - F r a s e r confluence (and also i n e n t i r e r i v e r ) are 0.59 mm (O.76'<)>.), w i t h mean g r a i n s i z e being 0.37 mm (1.43 <}> ), 0.2 8 mm ( 1 . 83 <}>.)', and 0.25 mm (2.0 <}>. ) at confluence, m i d - r i v e r , and lake o u t l e t , r e s p e c t i v e l y . Table VJEE summarizes shear s t r e s s , c a l c u l a t e d f o r winter (5°C), sp r i n g and autumn (10°C), and summer (15°C) c o n d i t i o n s . XQ necessary to move the l a r g e s t grains i n winter i s 3-14 dyne-cm/sec or a shear v e l o c i t y V s of 1.77 cm/sec, whereas V s of I.36 cm/sec w i l l move mean g r a i n s i z e (0.25 mm) at lake o u t l e t . To estimate the extent of sediment transport on the f l o o d and ebb i t i s necessary to determine flow c o n d i t i o n s under which the c r i t i c a l shear v e l o c i t y i s reached and t h e i r d u r a t i o n . Charnock ( 1 9 5 9 ) , Sternberg (1966), and Nece and Smith (1970) have a l l measured current v e l o c i t y p r o f i l e s w i t h i n 2 meters of the bottom i n areas of f u l l y -.turbulent t i d a l currents and v e r i f i e d that the p r o f i l e near an h y d r a u l i c a l l y rough bed can be represented by the l o g a r i t h -mic flow law. Sternberg (1968) found 85% of h i s t i d a l 91 TABLE ¥111 C r i t i c a l shear s t r e s s values determined from Shields (1936) graph. Grain Size mm Temperature °C Dynes-cm/sec To V x cm/sec 5 3.14 1.77 .59 10 3.10 1.76 15 3.05 1.74 5 3-51 1.58 • 37 10 2.33 1.52 15 2.15 1. 46 5 2 .26 1. 50 .28 10 2 .08 1.44 15 1.94 1.39 5 2.18 1.47 • 25 10 2.06 1.43 15 1.85 1.36 92 channels had l o g a r i t h m i c v e l o c i t y p r o f i l e s . This suggests the v a l i d i t y of applying the von Karman-Prandtl law of the w a l l : V 2.3 n / O x / „ N v , = K L O G ( 2 ) * o where K i s von Karman's constant, assumed to be 0.4, V i s v e l o c i t y at depth, d (measured from bed), and Z q i s some measure of height of roughness elements at the boundary ( i . e . , g r a i n s i z e ) . Knowing Z q to be small i n comparison to d, the equation can be r e w r i t t e n : V = 5 > 7 5 l o g d V log z, (3) Because i t i s a s t r a i g h t l i n e d V d log d. 5 - 7 5 + log z (4) where 1. slope of l i n e = d V d log d 2. i n t e r c e p t = z 3. V 4 _5a p 93 T o t a l depth of flow ranged from 9 m i n the r i v e r to 42 m at the lake o u t l e t , however only the bottom (2 - 4) meters p l o t t e d c o n s i s t e n t l y as a s t r a i g h t l i n e on a semi-lo g p l o t of v e l o c i t y vs. l o g depth ( F i g . 17). B a s a l shear v e l o c i t y , V s , was determined using equation (4) on the bottom 4 meters of each v e l o c i t y p r o f i l e for. a t o t a l of 130 p r o f i l e s on the 14 d i f f e r e n t days l i s t e d i n Table IV. Measurements used were u s u a l l y 10 cm, 30 cm, 100 cm, 200 cm, and 400 cm above bottom.. U n f o r t u n a t e l y , v e l o c i t y p r o f i l e measurements were taken s e q u e n t i a l l y w i t h one meter and not with an array of s e v e r a l . Thus, r e s u l t i n g shear s t r e s s c a l c u l a t i o n s are only an approx-imation of c o n d i t i o n s at bed. For more p r e c i s e measurements a current meter array or Preston Tube (device f o r measuring Reynolds Stress d i r e c t l y ) should be used. Nece and Smith (1970) have demonstrated that both methods produce comparable r e s u l t s . An a d d i t i o n a l problem i s revealed by Dyer (1972) who found that the r e l a t i o n s h i p of bed c o n f i g u r a t i o n and p o s i t i o n of p r o f i l e i s important. He found that f r i c t i o n v e l o c i t y can d i f f e r by as much as a f a c t o r of two depending upon l o c a t i o n of the p r o f i l e s r e l a t i v e to bedform morphology. Highest shear s t r e s s occurs near the bedform c r e s t , lowest In the trough. However, i t i s important to note that the bedforms i n Dyer's study had a wavelength of 200 m and a height of I m compared w i t h the 15 - 60 m and 1 - 3: i n the 94 P i t t . Thus, the un c e r t a i n t y i n the l o c a t i o n of current p r o f i l e s r e l a t i v e to bedforms may be l e s s c r i t i c a l i n P i t t R i ver than Dyer's data suggest. Despite, these problems, the consistency of the data and the q u a l i t a t i v e agreement i n the r e l a t i o n between T and V wit h both Ludwick's (1974) o and Gordon's (1975) s t u d i e s support the v a l i d i t y of the data. V*, T , and T V (stream power) c a l c u l a t i o n s f o r one * o o day's data ( F i g . 18) are summarized i n Table IX. I t i s important to note that shear s t r e s s changes p r o p o r t i o n a l l y w i t h increase i n mean v e l o c i t y . This i s not true with d e c e l e r a t i n g flow, as T q remains high then drops o f f r a p i d l y . More s p e c i f i c a l l y , shear s t r e s s i s u s u a l l y higher f o r the same mean v e l o c i t y on d e c e l e r a t i n g flow than f o r a c c e l e r a t i n g flow. Shear s t r e s s was not seen to increase a f t e r peak mean v e l o c i t y . McCave (1973) and Gordon (1975) have both noted a s i m i l a r " h y s t e r e s i s " i n the r e l a t i o n s h i p of shear s t r e s s and mean v e l o c i t y . Kachel and Sternberg (1971) n o t i c e d an increase i n bed load t r a n s p o r t as r i p p l e s during d e c e l e r a t i n g flow. Gordon (1975) suggested that the increase of shear on d e c e l e r a t i n g flow occurs when l o n g i t u d i n a l pressure gradient changes from favorable to adverse with change of stage. Because of the h y s t e r e t i c r e l a t i o n s h i p found i n P i t t R i v e r , p r e d i c t i o n s of sediment entrainment using mean v e l o c i t y as an i n d i c a t i o n of f r i c t i o n v e l o c i t y w i l l be minima. EBB FLOOD J h-1 r—1 1-3 -Cr -Cr U J U J IV) h-1 1 M r o M O O g U J O U ) o U ) H 1 O o H O U J O U ) t—1 O o o o o U I 1 O o u i O O o o r—1 r o IV) r o r o I—1 ! j h-" r—1 r j r—' h-1 v_n M I—1 -Cr —j o 1 C A 1 U I C A O A C A c c U ) CT\ c o r o u i - o 1 OA c o O U I O r o - J u i v o o -Cr v o r o 1 H C A —] v o O o c U ) (V) U ) U J -Er -Cr M 1 M r o r o -Cr IV) U J r o o c C A r o —-] c o 1 r—1 O A —~] M U ) r o o c c v n v o O A 1 U I u i v o r o o o — a o o P. <! o era Ct, <! * CO lo CD |S o U J U I -Cr ro -Cr U I -Cr -Cr O ro u i o u i -Cr -Cr U l V O U I — J C A U I U I U J -Cr < I o Cfl CD O r—1 H r o r o 1 H r—1 r o H H 1 C A V O V O o M U J 1 O OA O A c r -<] U I U I -Cr M OA v o C A 1 — J U I - O U I C A o o -Cr j H M U I C O v o M C O U J 1 V O r o o v o U I - J o M —] -Cr 1 U I r o c o —] r o — J OO o o U I o 1 -Cr \ o U I o v o -Cr o C A oo C O oo CD I s; CD ire F lCD <! l H P CD S6 96 no page 96 97 Due to the nonlinear r e l a t i o n s h i p between mean v e l o c i t y and shear s t r e s s , t h e i r product stream power (*QV) f o l l o w s an intermediate trend. Stream power i s considered a b e t t e r i n d i c a t i o n of the a b i l i t y of the flow to move sediment than e i t h e r of the f a c t o r s i n d i v i d u a l l y (Simons et_ a l . , 1965; Bagnold, 1963). Note i n Table IX ( f o r Aug. 11, 1975 data) that stream power values f o r f l o o d averaged (time-weighted) 2 2 88.7 dynes-(cm/sec) while ebb averaged 76.8 dynes-(cm/sec) i n d i c a t i n g a f l o o d dominance. Using the l o g a r i t h m i c v e l o c i t y law i t was determined that a mean v e l o c i t y (.4d) of at l e a s t 32 cm/sec ( i . e . dV/cflog d = 10) was needed to create the V s = 1.77 cm/sec necessary to move the l a r g e s t P i t t sediment (0.59 mm). Even though highest mean v e l o c i t i e s occur on the f l o o d c r i t i c a l v e l o c i t y (32 cm/sec) i s maintained f o r a longer p e r i o d of time during the ebb ( P i g . 22A,B). As a l l other aspects of the P i t t i n d i c a t e a flood-dominated system, i t i s concluded that the d i f f e r e n c e i n peak flow v e l o c i t i e s r a t h e r than a c t u a l time above c r i t i c a l v e l o c i t y i s the more important f a c t o r i n determining d i r e c t i o n of net sediment t r a n s p o r t . I t i s suspected that the contrast between peak v e l o c i t i e s occuring on f l o o d and ebb would be even more accentuated during winter months (Dec. - Mar.). The highest values of V s determined i n t h i s study, over 6.0 cm/sec, were recorded on March 13, 1975 and February 20, 1976. No V % 98 FIGURE 22. Comparison of time du r a t i o n of f l o o d and ebb currents above the p r e d i c t e d c r i t i c a l v e l o c i t y (32 cm/sec) f o r P i t t R i v e r . 99 100 over 3-0 cm/sec was determined from f r e s h e t p r o f i l e s and most were l e s s than the needed c r i t i c a l f r i c t i o n v e l o c i t y of 1.77 cm/sec. Figure 16 shows a decrease i n maximum v e l o c i t i e s from confluence to lake. Since magnitude of shear s t r e s s v a r i e s w i t h mean v e l o c i t y i t i s i n t e r p r e t e d that shear s t r e s s or sediment entrainment p o t e n t i a l would also decrease. This contention i s supported by the decrease- i n mean g r a i n s i z e of channel bottom m a t e r i a l from the Fraser to P i t t Lake. 137 On the basis of ' Cs dating of sediment cores from P i t t Lake (Ashley, 1977) i t has been estimated that 150 -20 x 10 tonnes of sediment (1% of Fraser's t o t a l load) are accumulating annually i n the lower h a l f of the la k e . Grain s i z e a n a l y s i s of t h i s sediment r e v e a l s that approximately 50% of t h i s m a t e r i a l (75,000 tonnes per year) i s greater than 0.31 mm (5 .<(>') and thus probably moves as bed load ( E i n s t e i n et a l . , 1950). An attempt was made to c a l c u l a t e bedload tra n s p o r t i n P i t t R iver using the f o l l o w i n g simple form of E i n s t e i n ' s (1950) a n a l y t i c a l equation: = f (T) Y = — — $ = —- — £ (5) ' p S R ' r p -p ^3 K 0 ) w n s H s y gD The more complex form of t h i s equation i s based on the p r o b a b i l i t y of grains moving under given h y d r a u l i c c o n d i t i o n s and has been s u b s t a n t i a t e d reasonably w e l l by la b o r a t o r y and f i e l d s t u d i e s ( T o f f a l e t i , 1969; Kachel and Sternberg, 101 1971; Garg et . a l . , 1971; E i n s t e i n and Abdel-Aal, 1972). C a l c u l a t i o n s were done at. :three cross.'sections along r i v e r (confluence, m i d - r i v e r , and near lake o u t l e t ) . The c a l c u l a t i o n s were intended only as an approximation of bedload movement and the r e s u l t s are probably c o r r e c t to w i t h i n an order of magnitude of the a c t u a l values. A re p r e s e n t a t i v e g r a i n s i z e (Dg^ bed m a t e r i a l ) was used and no c o r r e c t i o n was made f o r form r e s i s t a n c e . C a l c u l a t i o n s f o r the t i d a l P i t t R i v e r a l s o n e c e s s i t a t e comparing tra n s p o r t r a t e s u p r i v e r under f l o o d and downstream under ebb. At any cross s e c t i o n , the only parameter va r y i n g between ebb and f l o o d i s water slope. Since slope v a r i e s both with time and d i s t a n c e , seasonally and during both f l o o d and ebb, a maximum value was determined f o r various seasons and flow d i r e c t i o n s ( F i g . 9). A maximum value i s con s i s t e n t and serves as the means of o b j e c t i v e comparison of the v a r i e d sets of c o n d i t i o n s . In a d d i t i o n maximum tran s p o r t would be expected to occur near times of maximum slope. R e s u l t i n g c a l c u l a t i o n s (Appendix) show a net f l o o d - o r i e n t e d t r a n s p o r t w i t h volumes of the order of magnitude (75,000 tonnes) p r e d i c t e d from accumulating lake sediments. In c o n c l u s i o n , bedload estimations tend to support the v e l o c i t y data; ; i , . e . , that f l o o d flows have a greater transport c a p a c i t y . However more f i e l d data, i n p a r t i c u l a r d i r e c t bedload measurements, are needed to su b s t a n t i a t e t h i s u nequivocally. 102 Even though the system appears to: .be. f l o o d dominated, ebb flow can s t i l l e n t r a i n and move sediment i n the opposite d i r e c t i o n . But because of the out-of-phase r e l a t i o n s h i p between stage and v e l o c i t y of flow ( F i g . 13) and the f a c t that a lower v e l o c i t y i s re q u i r e d to tr a n s p o r t a g r a i n than e n t r a i n i t , movement i n the f l o o d d i r e c t i o n i s favored. Figure 23 incorporates the h y d r a u l i c and sediment e n t r a i n -ment f i n d i n g s of t h i s study i n t o a model f o r net u p r i v e r movement. C r i t i c a l shear s t r e s s ( i . e . , mean v e l o c i t y of 32 cm/ sec) i s reached e a r l y i n a f l o o d c y c l e because of v e l o c i t y curve asymmetry and i t s temporal r e l a t i o n s h i p with stage changes. V increases r a p i d l y and d e c l i n e s slowly u n t i l high water i s reached. In c o n t r a s t , on the ebb, V increases slo w l y u n t i l i t reaches a peak l a t e i n the c y c l e , and then decreases q u i c k l y to low water. Once a g r a i n i s entrained i t can be c a r r i e d along by a current lower than the c r i t i c a l v e l o c i t y . Because c r i t i c a l v e l o c i t y occurs e a r l y i n f l o o d and l a t e i n ebb there i s more time f o l l o w i n g c r i t i c a l flow i n f l o o d then i n ebb. Thus the l i k e l i h o o d of a d d i t i o n a l t r a n s p o r t under f l o o d flow i s increased. Although the pr o p o r t i o n of t o t a l f l o o d time that i s above c r i t i c a l v e l o c i t y appears to be l e s s than the pr o p o r t i o n of ebb time, higher v e l o c i t i e s are reached during the f l o o d . Grains move f a r t h e r during a given time pe r i o d on f l o o d than they do i n the 103 opposite d i r e c t i o n on the ebb. The r e s u l t of the o s c i l l a t i n g sediment movement r e s u l t s i n a net u p r l v e r movement ( a f t e r Postma, 1967). Suspended1 Sediment The suspended sediment content of Fraser River water f l u c t u a t e s s e a s o n a l l y and ranges from an average of 62 mg/1 during winter (lows are 1 mg/1) to a mean over 320 mg/1 during f r e s h e t (Johnston, 1922). Water Survey of Canada f o r 1967-1969 at Port Mann Bridge found annual means 93> 105 and 73 mg/1 r e s p e c t i v e l y , ranging from a winter low of 18 mg/1 to fre s h e t high of 286 mg/1. M i l l i m a n (1977) measured .a y e a r l y mean of 135 mg/1 at Port Mann Bridge 4 km seaward of P i t t R i v e r . Near bottom v a r i a t i o n s from 10 to 1500 mg/1 occurred and M i l l i m a n observed that t h i s f l u c t u a t i o n i s due to an increase i n sand content associated w i t h increase i n discharge and v a r i a t i o n s i n t i d a l flow and that the s i l t and clay content remains e s s e n t i a l l y constant year round. By comparison, P i t t R i v e r water has very low suspended sediment (5 mg/1) as i t drains only P i t t Lake and a few s l u g g i s h streams. When part of the Fraser River i s d i v e r t e d i n t o the P i t t system during f l o o d t i d e s the t u r b i d waters f i r s t appear to move as a coherent body with a sharp l i n e d i v i d i n g muddy Fraser from r e l a t i v e l y c l e a r P i t t - w a t e r . 104 FIGURE 23. Model f o r movement of sediment up P i t t R iver ( a f t e r Postma, 1959). 105 D I S T A N C E 106 Within h a l f an hour mixing becomes obvious i n the surface water and the contact becomes p r o g r e s s i v e l y more d i f f u s e with time. The progression of the Fraser plume can be followed up the P i t t River v i s u a l l y , by observing surface water or by repeated suspended sediment sampling. Table X tabulates r e s u l t s of surface and .near bottom sediment"sampling (at 2 km spacing) during a 4-hour pe r i o d . Suspended sediment moved at 1.6 km/hr or 44 cm/sec or . approximately the average v e l o c i t y of the flow i t s e l f . However, since the r i v e r i s 20.7 km long i t would take over 12 hours f o r Fraser River water to reach the l a k e . Flood flows are seldom longer than 8 hours; thus, suspended sediment probably never reaches the lake on one t i d a l c y c l e , but would move i n small increments over s e v e r a l t i d a l c y c l e s . Areas of low v e l o c i t y near l o g storage booms which l i n e the r i v e r banks and mid-channel i s l a n d s might provide a s e t t l i n g s i t e f o r some of the suspended load, but i t i s suspected that the bulk of i t returns to the Fraser on the ebb flow. Taking the y e a r l y mean of 100 mg/1, 22,000 tonnes of suspended sediment enters P i t t River on the f l o o d . However, l e s s than 0.5% of t h i s i s r e q u i r e d to remain i n P i t t R i v e r a f t e r each f l o o d and e v e n t u a l l y reach the lake to account f o r the. estimated 75,000 tonnes of suspended m a t e r i a l (<-0.31 mm) accumulating y e a r l y i n the lake . TABLE X P i t t R i v e r suspended sediment measurements. St a t i o n s (1) - (5) at.2-km i n t e r v a l s . TIME FRASER RIVER PITT RIVER (1) (2) (3) (4) (5) (6) 31.06 15.29 8.29 7.94 9.64 0-.75 HR 36.25 15.23- 13.98 13.21 1.25--2.0 HR 32.85 38.59 33.82 31.23 17.54 14 .13 12.90 3-25- 24.87 24.70 27.25 8.76 3.86 3-75 HR 29 .27 36.93 34.98 INTERFACE ADVANCES 1.6 KM/HR (44 CM/SEC) 108 BED CONFIGURATIONS Observations A l l observations of the c o n f i g u r a t i o n of the channel bottom were made remotely by depth sounders and a side-scan sonar. The p r e c i s i o n of the depth sounding records i s w i t h i n 30 cm ( v e r t i c a l ) and approximately 15 m ( h o r i z o n t a l ) . The records have a v e r t i c a l exaggeration of between 1:10 and 1:15. Side-scan sonar records can be read to w i t h i n 1 m v e r t i c a l l y and 15 m h o r i z o n t a l l y . V e r t i c a l exaggeration of side-scan records i s 1:3. A d i s t o r t i o n of the true bedform shape occurs on some depth sounding records due to o r i e n t a t i o n of slopes of v a r y i n g steepness r e l a t i v e to d i r e c t i o n of boat motion. However, as only the gross form (length and height) and pro p o r t i o n of length of stoss and lee sides of the bedforms were being examined from the depth soundings the d i s t o r t i o n was not considered important. The depth sounding program was i n i t i a t e d as part of the i n v e s t i g a t i o n of bedload t r a n s p o r t . Repeated soundings were taken along a l l reaches of the r i v e r , concentrating i n the thalweg. Most runs were c a r r i e d out between the months of May and September w i t h a l e s s e r number i n the winter to detect seasonal changes. Because a bewild e r i n g v a r i e t y of bedform shapes and s i z e s was revealed during the 18-month survey, the side-scan sonar was used f o r a two-day 109 per i o d (June 1,2, 1975) to a i d i n the i n t e r p r e t a t i o n of. the forms by determining t h e i r 3-dlmensional geometry. The la r g e range of s i z e s and shapes of bedforms found i n the channel presented a problem of bedform terminology. The c l a s s i f i c a t i o n of l a r g e - s c a l e a l l u v i a l bedforms i s i n a s t a t e of confusion r e f l e c t i n g a general lack of under-standing of t h e i r genesis. The most recent review of bedform terminology (Task Force, 1966) Is based on an attempt to e x t r a p o l a t e bedform-hydraulic r e l a t i o n s h i p s developed i n flume studies such as that of Simons et_ al. , (1965) to the n a t u r a l environment. Unfortunately, the range of conditions found i n r i v e r s i s not e a s i l y reproduced i n flumes. In a d d i t i o n , the l a r g e - s c a l e , low-amplitude bedforms found i n shallow marine, e s t u a r i n e , and r i v e r i n e environments have no equivalent forms i n the flume, r e s u l t s of Simons et_ a l . , (1965). These large bedforms have been termed giant r i p p l e s , sand r i d g e s , dunes, sand waves, super r i p p l e s , t ransverse b a r s , sand dunes, and la r g e scale r i p p l e s by various authors. C l e a r l y , f o r the present, a v i a b l e bedform c l a s s i f i c a t i o n should be independent of genetic assumptions and based only on d e s c r i p t i v e morphology. A d e t a i l e d study of the 3-dimensional geometry of bedforms i n P i t t channel was made from the sounding records. Using p l a n geometry, form height and spacing, and form o r i e n t a t i o n w i t h respect to f l o o d or ebb flow d i r e c t i o n , a 110 c l a s s i f i c a t i o n of bedform shapes ; found i n P i t t R iver was developed (Figure 24) . On the bas i s of height/spacing proportions, two major groups of forms can be discerned: small forms (spacing 5 m, ht/spacing r a t i o = 1/10) equivalent to "dunes" of Simons et a l . , (1965), and large forms (spacing 10 - 60 m, ht/spacing r a t i o = 1/20) equivalent to "sand waves" of Harms et a l . (1975). Spacings i n the la r g e forms do not represent a continuum but occur i n d i s c r e t e groups (10 - 15 m, 25 - 30m, 50 - 60m) with few bedforms of 15 - 25 m and 30 - 50 m observed. The dominant form i s 25 - 30 m i n l e n g t h , composing 70% of the t o t a l . The smaller forms (10 - 15 m) make up 25% and the large forms (50 - 60 m) about 5%. Dunes (height/spacing = 0.3m/2 - 3m) are 3-dimensional with sinous c r e s t s and are found on the backs of the large 2-dimensional s t r a i g h t - c r e s t e d sandwaves. Sandwaves occur i n two b a s i c shapes. Type one, c h a r a c t e r i z e d by a rounded stoss side ( u s u a l l y covered with dunes) and f a i r l y steep lee slope ( F i g . 24A,C) occurs i n t r a i n s at only a few s i t e s (E and F of F i g . 3A). This form r e f e r r e d to as a "hump-back" sand wave ( F i g . 25D, f l o o d forms; F i g . 25F, ebb forms) i s i d e n t i c a l to ones found i n Fraser River ( F i g . 24B; F i g . 25A) developed under u n i d i r e c t i o n a l flow. The second type ( F i g . 24D-H) has uniformly s l o p i n g stoss and lee s i d e s . However, the angle of slope and p r o p o r t i o n of length of sides v a r i e s continuously from f l o o d - o r i e n t e d forms (60% I l l of t o t a l ) through, ebb-modified f l o o d forms and f a i r l y symmetrical shapes (25%)of ebb-oriented types (15%). Bedforms occur along the e n t i r e sandy thalweg from Fraser River ( F i g . 25A) to the lake, o u t l e t ( F i g . 25G) . The thalweg i s approximately 100 - 150 m wide and bedforms u s u a l l y cover the e n t i r e area. Sand wave c r e s t s are perpendicualr to the o r i e n t a t i o n of the thalweg and the superimposed dunes have crests p a r a l l e l to the sand wave c r e s t s . Dunes al s o occur i n sandy channel areas o f f the thalweg and on sandy shoals surrounding the i s l a n d s . In c o n t r a s t , side-scan records and v i s u a l observation i n d i c a t e that r i p p l e s are t y p i c a l of f i n e r grained ( s i l t y ) areas. A general r e l a t i o n s h i p between both bedform s i z e and type and topography was found i n the P i t t R i v e r . The l a r g e s t forms are found at the base of ramps (areas of r a p i d s h o a l i n g , w i t h slopes - 1°) and the smallest forms are found on r e l a t i v e l y f l a t topography. For example, sand waves (4.5 m/60m) occur on the ramp at the c o n s t r i c t e d area-near a bedrock outcrop at km 15 ( F i g . 3A). The channel shallows from 21 m toward the shoal to 10 m at the north end of the wave t r a i n . The reach north of Addington Point ( F i g . 2) i s deep (24 m) but r e l a t i v e l y f l a t . Sand waves here are 1 m/30 m), i d e n t i c a l with the average s i z e found i n other parts of the r i v e r at only 5 m depth. Several t r a i n s of s m a ll sandwaves (.8 m/10-15m) occur on f l a t shoals 112 FIGURE 24. Bedform shapes found i n P i t t River drawn to t r u e s c a l e . 113 FLOOD E B B H U M P B A C K E B B H U M P B A C K { F r o » e r R i v e r ) F L O O D H U M P B A C K 114 FIGURE 25- Depth sounding p r o f i l e s : (A) F r a s e r - P i t t confluence; Fraser has ebb forms, P i t t floodforms. (B) F l o o d - o r i e n t e d sandwaves wi t h some ebb modified c r e s t s (km 3). (C) Flood-oriented small scale sandwaves (10 - 15 m spacing) (km 8). (D) Flood "humpback" forms and dunes on f l a t topography (km 9). (E) Ebb "humpback" forms south of Point Addington (E on F i g . 3A). (F) F l o o d - o r i e n t e d , symmetric and ebb-m o d i f i e d , and ebb-oriented sand waves that occur on large mounds i n channel. (G) Bedforms at P i t t Lake o u t l e t . 115 i i p 0 50 lOOmeters August It, 1974 50 lOOmeters June 25,1975 May 22, 1975 -I0r -15 --20 • - 5 r -10 --15 --10 --15 -20 --5r--10 --15 -20 -I I l 0 50 lOOmeters 0 50 lOOmeters O 50 lOOmeters May 22,1975 June 25, 1975 May 22, 1975 lOOmeters July 18,1974 116 surrounding the i s l a n d s . In most reaches large l o n g i t u d i n a l "mounds" occur with a wavelength of 3 km (one h a l f the meander wavelength, \ ) and are thus presumably r e l a t e d to the meander sequence. E l e v a t i o n d i f f e r e n c e from c r e s t to trough of the mounds i s 7 - 8 m. These major channel features are l o c a t e d on i n s i d e bends of midchannel i s l a n d s or at r i f f l e s and present a ramp of shallowing channel to both f l o o d and ebb o r i e n t e d c u r r e n t s . Flood-oriented sand ..waves are found on the downstream side of these ramps, symmetrical forms on the shallow top, and ebb-o r i e n t e d forms on the upstream' side ( F i g . 2.5F) • Repeated soundings over a p e r i o d of months i n d i c a t e d a r e o r g a n i z a t i o n of d i f f e r e n t scales of sand waves. For example, i t appeared that s e v e r a l (10 - 15m) forms merged to.create a 30 m or 60 m bedform o r , i n v e r s e l y , a large form would be replaced by smaller ones. S i m i l a r jumps i n s c a l e of bedforms have been noted i n other r i v e r s by P r e t i o u s and Blench (1951) i n Fraser R i v e r , Znamenskaya (1963) i n Polometi River (U.S.S.R.) and N e i l l (1969) i n Red Deer River ( A l b e r t a , Canada). The nature of the transformation i s not c l e a r ; however, intermediate s i z e forms are t r a n s i e n t i f they e x i s t at a l l . Although the exact flow conditions which might have caused "regrouping" i n the P i t t could not be determined, the changes occurred mainly w i t h i n the f l o o d - o r i e n t e d forms during winter flows and on the downstream side of the "mounds" (2 km, 6 km and 117 and 12 km: F i g . 3). Repeated depth soundings, over a t i d a l cycle provided evidence of bedform m o d i f i c a t i o n . F l o o d - o r i e n t e d forms developed ebb-modified c r e s t s (Fig.. 24F; F i g . 25F) during strong ebb flows (mean v e l o c i t y of 50 - 60 cm/sec). A complete change from f l o o d - o r i e n t e d to ebb-oriented form or from ebb-to-flood was not observed.. I n t e r p r e t a t i o n Bedform S c a l i n g Because P i t t River has b i d i r e c t i o n a l flow, the s t a t e of e q u i l i b r i u m of the bedforms becomes an important f a c t o r . U n i d i r e c t i o n a l r i v e r s commonly experience an annual high discharge event ( s p r i n g flood) l a s t i n g s e v e r a l days or weeks. Bedforms have been observed to have a delayed response to the i n c r e a s i n g or decreasing discharge, and t h i s delay has been termed " l a g " . In t i d a l flows the discharge f l u c t u a t i o n s have a time scale of hours, apparently i n s u f f i c i e n t f o r one event to have a s i g n i f i c a n t e f f e c t on la r g e bedforms (Ludwick, 1974). Thus a l a g phenomenon would be d i f f i c u l t to measure i n the t i d a l environment. In the P i t t , geometry of each bedform represents the summation of the m o d i f i c a t i o n s of both flow d i r e c t i o n s . Since soundings over an l8-month period determined that the m a j o r i t y of bedform types ( F i g . 24) remained constant throughout the year, the forms are 118 i n t e r p r e t e d to be i n q u a s i - e q u i l i b r i u m w i t h the b i d i r e c t i o n a l flow. Thus, bedform shape maintains the i m p r i n t of the dominant flow co n d i t i o n s at that' s i t e . The humpback forms ( F i g . 24AJC) are found i n f a i r l y protected areas of the channel. As they appear to be a f f e c t e d by only one current d i r e c t i o n humpback forms are considered to be an e q u i l -ibrium form. In g e n e r a l , the s i z e and shape of the sand waves appears to be r e l a t e d to channel geometry and not to depth as was suggested by A l l e n . (1968),-Yalin (1974 ) , and J a c k s o n e (1976B). Coleman (1969, Brahmaputra River) and Whetten and Fullam (1967, Columbia River) both found no c o r r e l a t i o n between sc a l e of bedforms and depth, i n agreement with the data from the P i t t . Bed c o n f i g u r a t i o n s i n the P i t t are d i f f i c u l t to i n t e r p r e t because of the m u l t i p l i c i t y of forms and the f a c t that they appear to r e f l e c t the average h y d r a u l i c conditions. Most research on sand waves has been done i n shallow marine and estuarine environments. C h a r a c t e r i s t i c s of flow i n these i n f i n i t e l y wide areas are d i s t i n c t l y d i f f e r e n t from those i n channelized flow where l a t e r a l -boundary c o n d i t i o n s are important. Although the P i t t R iver i s t i d a l , i t i s c l e a r l y s i m i l a r to u n i d i r e c t i o n a l r i v e r s i n both channel morphology and bed c o n f i g u r a t i o n . S i g n i f i c a n t l y , a n a l y s i s r e v e a l s systematic r e l a t i o n s h i p s between the various bedform groups and channel parameters. 119 P l o t t i n g the average height and spacing of sand waves on a l o g a r i t h m i c scale r e s u l t s i n a l i n e a r r e l a t i o n s h i p . As these sand waves form at l e a s t 3 d i s t i n c t groups, t h i s l i n e a r r e l a t i o n s h i p appears s i g n i f i c a n t and suggests a common mode of genesis. A s i m i l a r p l o t of estuarine sand-waves (Boothroyd and Hubbard, 1975; F i g - 3) shows a s c a t t e r of values but does suggest a d i s t i n c t i o n between s u b t i d a l , or deeper water forms, and i n t e r t i d a l , or more shallow water forms. The P i t t values f a l l w i t h i n the f i e l d of the deep water sand waves on Boothroyd and Hubbard's p l o t . Dunes from the P i t t p l o t i n the middle of the megaripple f i e l d on the same diagram and are assumed to be the same form. T h e o r e t i c a l models f o r the genesis of dunes and sand-waves are i n a state of f l u x . Dune formation i s thought by some to be r e l a t e d to large s c a l e turbulence (Velikonov and M i k h a i l o v a , 19.50; Znamenskaya, 1963). The r e g u l a r spacing of dunes appears to be a d i r e c t f u n c t i o n of the sc a l e of the l a r g e s t t u r b u l e n t eddies (Znamenskaya, 1963; G r i s h a n i n , 1972; Jackson, 1975). Flow separation and associated s l i p f a c e development provide a l t e r n a t i n g areas of erosion and d e p o s i t i o n c r i t i c a l to sediment entrainment and t r a n s p o r t . A d e t a i l e d model of dune genesis has been presented by O o s t e l l o (1974). Although considerable progress has been made i n under-standing the mechanics of dune formation, none of the theo-120 r e t i c a l models proposed (.Kennedy, 1969; Smith, 1970) p r e d i c t the existence of sand waves. Recent flume studies ( P r a t t and Smith, 1972; P r a t t , 1973; C o s t e l l o , 1974) r e v e a l bedforms intermediate between r i p p l e s and dunes. The flume bedforms were c a l l e d "intermediate f l a t t e n e d dunes" by P r a t t and "bars" by C o s t e l l o , who equates them w i t h sand waves. C o s t e l l o adapted kinematic wave theory to e x p l a i n the genesis of these forms. Although shallow water ( i 3m) transverse bars (Smith, 1971; Jackson,1976A) may be adequately explained by "shock wave" aggradation of sediment, s e v e r a l c h a r a c t e r i s t i c s of deep water sand waves i n r i v e r channels are not c o n s i s t e n t with C o s t e l l o ' s model. For example, the r e g u l a r geometry and spacing of sand wave t r a i n s i n . P i t t and other r i v e r s ( P retious and Blench, 1951; Whetten and Fullam, 1969; Carey and K e l l e r , 1957) c o n f l i c t w i t h C o s t e l l o ' s conclusion that sand waves "are randomly generated and ( t h a t ) t h i s randomness c a r r i e s over i n t o t h e i r spacing and height". The occurrence of dunes i n apparent e q u i l i b r i u m w i t h sand waves at v e l o c i t i e s considerably lower than p r e d i c t e d by C o s t e l l o ' s d e p t h - v e l o c i t y diagram ( F i g . 26) has been documented i n a number of studies (Pretious and Blench, 1951; Coleman, 1969; N e i l l , 1969; Singh and Kumar, 1974; and many o t h e r s ) . Jackson (1976A) has presented evidence that dunes and sand waves not only occur together but a l s o migrate under e s s e n t i a l l y steady flow c o n d i t i o n s . 121 I t i s unfortunate that these l a r g e - s c a l e forms, c h a r a c t e r i s t i c of sandy r i v e r s , , e s t u a r i e s , and marine s h o a l s , are so poorly understood. R e l a t i o n s h i p df/ meander wavelength to bedform spacing Synthesis of q u a n t i t a t i v e data f o r r i v e r s by Leopold -and Wolman (1957) revealed a systematic r e l a t i o n between various parameters of channel geometry and bankful discharge or e f f e c t i v e channel-forming discharge, Q . They demonstrated that meander wavelength U^) or r e s i s t a n c e to flow i s p r o p o r t i o n a l to Qg according to the r e l a t i o n X.. ccQ ; however, the l o g - l o g p l o t of A vs. Q shows M e o <=> r- M e considerable s c a t t e r . This s c a t t e r i s not s u r p r i s i n g as bed roughness and sediment t r a n s p o r t , a l s o important aspects of r e s i s t a n c e , are not included. Leopold et_ a l . (1964) suggested that channel geometry i s c o n t r o l l e d by continuous d i s s i p a t i o n of energy by the r i v e r along i t s course. In a d d i t i o n , they showed that t o t a l r e s i s t a n c e (the Manning n c o e f f i c i e n t ) i s a l s o a simple f u n c t i o n of Q (n = aQ b). Since form r e s i s t a n c e i s an important part of t o t a l r e s i s t a n c e , i t i s reasonable to expect channel c o n f i g u r a t i o n (bed roughness) as w e l l as to be s c a l e d to flow. Bedform spacing, X^, i s known to increase with i n c r e a s i n g Qg ( u s u a l l y with some time lag) through f l o o d events ( P r e t i o u s and Blench, 1951; Carey and K e l l e r , 1957; A l l e n , 1976A; 1976B). Thus, i t i s reasonable to expect a 122 FIGURE 26. Depth-velocity diagram of the three lower flow regime beforms e x t r a p o l a t e d to depths found i n P i t t R i v e r ( a f t e r C o s t e l l o , 1974). 123 1 I l „ . l I J J J 1 1 1—1 0.5 I 2 5 V E L O C I T Y ( m / s e c . ) 124 p a r t i c u l a r A i n a d d i t i o n t o A M . f o r a g i v e n Q g . A n a t t e m p t w a s m a d e t o o b t a i n c o m p a r a b l e d a t a o f Q g , ^ . . j a n d A f r o m s a n d y m e a n d e r i n g r i v e r s w i t h t h e c r i t e r i a jyi D t h a t a r e o u t l i n e d I n T a b l e X I . . . D a t a a r e m e a g e r , a s f e w s t u d i e s h a v e b e e n c o n c e r n e d w i t h b o t h c h a n n e l f o r m a n d b e d r o u g h n e s s . H o w e v e r , t h e m o s t s e r i o u s p r o b l e m i s t h e d i f f i c u l t y i n a s c e r t a i n i n g t h e b e d f o r m w a v e l e n g t h i n e q u i l i b r i u m w i t h b a n k f u l d i s c h a r g e . C o m p i l a t i o n o f a v a i l a b l e d a t a f r o m s a n d y r i v e r s i n c l u d i n g t h e P i t t , r e v e a l t h a t n e i t h e r A' o r L b y i t s e l f i s d i r e c t l y s c a l e d l vi JD ( o n a r i t h m e t i c . p l o t u s i n g E n g l i s h u n i t s ) t o Q , b u t t h e r a t A -A i s ( F i g . 27); t h u s , t h e t w o f a c t o r s s e e m t o b e i n t e r -r e l a t e d i n t h e i r r e s p o n s e t o f l o w . T h e r e a p p e a r s t o b e a c o r r e l a t i o n b e t w e e n t h e s c a l e o f e n e r g y i n p u t , Q , a n d t h e s c a l e o f e n e r g y - d i s s i p a t i n g - , m e c h a n i s m s (A A ) . B a s e d o n t h e p r e l i m i n a r y f i n d i n g s s h o w n i n F i g u r e 27 t h e f o l l o w i n g r e l a t i o n s h i p f o r s a n d y m e a n d e r i n g r i v e r s i s s u g g e s t e d : A /A a Q e • I t i s i m p o r t a n t t o e m p h a s i z e t h a t t h i s t e n t a t i v e r e l a t i o n s h i p r e f e r s t o t h e e f f e c t i v e o r c h a n n e l -f o r m i n g d i s c h a r g e , i . e . , t h a t d i s c h a r g e r e l a t e d t o A ^ a n d t h e d o m i n a n t b e d f o r m s i z e i n a p p a r e n t e q u i l i b r i u m w i t h t h a t d i s c h a r g e , a c c o u n t i n g f o r l a g e f f e c t s w h e n n e c e s s a r y . T h e a p p a r e n t i n t e r r e l a t i o n s h i p b e t w e e n A ^ a n d A i n r e s p o n s e t o f l o w w h i c h c e r t a i n l y r e q u i r e s f u r t h e r e x a m i n -a t i o n i s s h o w n i n t h e f o l l o w i n g c o m p a r i s o n : C o n g a r e e 125 TABLE XI C r i t e r i a of parameters used i n bedform-mearider..--s c a l i n g . PARAMETERS - .. . CRITERIA Qe E f f e c t i v e discharge (channel-forming discharge or bankful discharge) not maximum or mean annual discharge. That flow which determines the X^. XM Meander wave length (twice distance between pools; i n p a r t i c u l a r the " h y d r a u l i c " meander, which may not n e c e s s a r i l y be the same as the r i v e r meander. A B Bedform wavelength, average or dominant s i z e ; that appears to be i n e q u i l i b r i u m w i t h Q . Not the l a r g e s t wavelength or range of lengths present. Xg>5.m, u s u a l l y >10m. Large-scale beforms are commonly r e f e r r e d to as sand waves, transverse b a r s , large dunes, or super r i p p l e s . a 126 FIGURE 27. P l o t of " r e s i s t a n c e f a c t o r s x M and • x ^ g a i n s t flow f a c t o r Qg shows a systematic r e l a t i o n s h i p i n sandy r i v e r s . This suggests that bedform spacing can be determined knowing b a n k f u l l discharge and meander wavelength. 127 no page $27 128 R i v e r , South C a r o l i n a (Levey, 1975) which has approximately the same discharge as Red Deer R i v e r ( N e i l l , 1969) has sand waves which are twice as l a r g e . S i g n i f i c a n t l y , the meander spacing i s a l s o doubled. A d d i t i o n a l data: would be necessary to f i r m l y e s t a b l i s h the e m p i r i c a l r e l a t i o n shown i n Figure 27- However, the i m p l i c a t i o n Is that meander wavelength i s not d i r e c t l y scaled to discharge,' i n agreement with Schumm's (1971) observation that X can- vary t e n f o l d at constant Q . Although the underlying reasons for. the v a r i a t i o n s i n scale of meanders and sand wave length are unclear, i t i s i n t e r e s t i n g to note that the Congaree has coarser bed m a t e r i a l (mean g r a i n s i z e , 0.59 mm) and higher s i n u o s i t y (s = 1.75) than the Red Deer River (mean g r a i n s i z e , .37 mm; s = 1.11). Thus, g r a i n s i z e may be a key f a c t o r i n p r e d i c t i n g the meander wavelength and bedform spacing f o r a given bankful discharge. In c o n c l u s i o n , there appear to be s e v e r a l scales of sediment-flow i n t e r a c t i o n , a l l a f u n c t i o n of energy d i s s i -p a t i o n . On a l o c a l l e v e l , s m a l l - s c a l e turbulence (on the order of a few cm) and grains i n t e r a c t , r e s u l t i n g i n sediment entrainment and t r a n s p o r t a t i o n . Large-scale turbulence (on the order of meters), apparently r e l a t e d to s c a l e of flow, I n t e r a c t s with the bed, molding i t i n t o a v a r i e t y of c o n f i g u r a t i o n s . F i n a l l y , i n t e r a c t i o n occurs on a r e g i o n a l s c a l e (on the order of kilometers)'.-.where 129 s i z e of major channel features such as meanders, poin t bars, r i f f l e s , and mid-channel bars are determined by scale of flow. Data from P i t t R i v e r c l e a r l y show a r e g u l a r channel p a t t e r n with a l t e r n a t i n g pools, r i f f l e s , and i s l a n d s . The f a i r l y r e g u l a r spacing of sand waves (7Q%-with length of 25 - 30 m), and the i n f e r r e d common 'genesis of the three d i s c r e t e sand wave s i z e s imply a governing h y d r a u l i c c o n t r o l . Discharge (flow) and not depth, width,or v e l o c i t y alone appears to be the c o n t r o l l i n g mechanism. 130 SUMMARY AND CONCLUSIONS Despite the t i d a l i n f l u e n c e of P i t t . R i v e r , i t has few estuarine c h a r a c t e r i s t i c s . This i s r e l a t e d to i t s connection to P i t t Lake, which acts as a large r e s e r v o i r , thus a l l o w i n g b i d i r e c t i o n a l flow through P i t t R i v e r to occur with no more impedance than that of a normal r i v e r . The mineralogy of the channel sands i s e s s e n t i a l l y i d e n t i c a l to Fraser River mineralogy confirming 1 the Fraser as provenance of P i t t R iver sediments. The r i v e r i s a f l o o d dominated system; although flow d u r a t i o n i s s h o r t e r , f l o o d flows have s l i g h l y higher peak v e l o c i t i e s than the ebb. Thus, f l o o d flow has higher b a s a l shear s t r e s s , greater flow power and ass o c i a t e d higher sediment entrainment p o t e n t i a l . Water slopes are steeper on f l o o d i n g t.ide during both winter and f r e s h e t . The steeper water slope provides the major d r i v i n g f o r c e to move sediment ( i n f l o o d d i r e c t i o n ) toward P i t t Lake even though the net discharge of water i s i n the opposite d i r e c t i o n . R e f l e c t i n g t h i s d i r e c t i o n of t r a n s p o r t , mean g r a i n s i z e of bed m a t e r i a l decreases from 0.37 mm at the F r a s e r - P i t t confluence to 0.25 mm at the entrance to 137 P i t t Lake. Cs dating of lake sediment i n d i c a t e s a + 3 t o t a l of 150 - 20 x 10 J tonnes i s accumulating annually In the d e l t a at the lower end of the-lake. The thalweg bed Is covered w i t h l a r g e - s c a l e , low-amplitude, and s t r a i g h t - c r e s t e d bedforms h e r e i n termed 131 sand waves. 60% are f l o o d o r i e n t e d , 25% symmetric or ebb-modified f l o o d forms, and 15% are ebb o r i e n t e d . The m a j o r i t y have smaller bedforms (dunes) on t h e i r stoss s i d e s . Three d i s t i n c t s i z e s (height/spacing = 0.8 m/1.0 - 15 m; 1.5 m/ 25 - 30 m; 3 m/ 50 - 60 m) of sand waves were found i n the r i v e r and the l i n e a r r e l a t i o n s h i p between l o g height and log spacing suggests a common genesis'. The p o s i t i o n of the various sand wave types and s i z e s appears to be r e l a t e d to channel geometry and not depth of flow. The l a r g e s t forms, as w e l l as the f l o o d - o r i e n t e d forms, occur on the downstream side of ramps (slope of - 1°) and the smallest sand waves on r e l a t i v e l y f l a t topography. The i n t e r a c t i o n of flow and channel al l u v i u m occurs on at l e a s t three d i s t i n c t s c a l e s , a l l r e l a t e d to energy d i s s i p a t i o n by the moving f l u i d . F i r s t , grains and s m a l l -scale turbulence (on the order of centimeters) i n t e r a c t r e s u l t i n g i n sediment entrainment and t r a n s p o r t . The second l e v e l of i n t e r a c t i o n of flow with sediment produces a v a r i e t y of c o n f i g u r a t i o n s of bed roughness ( r i p p l e s , dunes, and sand waves) on the scale of meters. T h i r d , i n t e r a c t i o n on a r e g i o n a l scale (order of kilometers) creates the channel c o n f i g u r a t i o n of evenly spaced po o l s , r i f f l e s and bars. The l a r g e r two scales of sediment-water i n t e r a c t i o n appear to be p r o p o r t i o n a l to channel forming discharge, Qg (peak winter f l o o d t i d e f l o w s ) . 132 In c o n c l u s i o n , P i t t River I s i n a state of q u a s i -e q u i l i b r i u m w i t h b i d i r e c t i o n a l and seasonal changes i n discharge. The channel has not migrated s i g n i f i c a n t l y i n the past s e v e r a l thousand years. The c o n f i g u r a t i o n of the channel bottom and magnitude of sediment f l u x appears to be c o n s i s t e n t from one year to the next. Both these observations i n d i c a t e r e l a t i v e s t a b i l i t y and a balance of h y d r a u l i c and f - r i c t i o n a l f o r c e s i n t h i s unusual d e p o s i t i o n a l system. 133 REFERENCES. CITED A l l e n , J.R.L., 1976a, Computational models f o r dune time - l a g : General i d e a s , d i f f i c u l t i e s , and e a r l y r e s u l t s : Sed. Geology, v. 15, no. 1, p. l-53« , 1976B., Time l a g of dunes i n unsteady flow: an a n a l y s i s of Nasners data from R. Wesen Germany: Sed. Geology, v. 15, no. 6, p. 309-316 , 1968, The nature and o r i g i n of bedform h i e r a r c h i e s : Sedimentology, v. 10, p. 161-182. Annambhotla, V.S.S., Sayre, W.W., and Li v e s e y , R.H., 1972, S t a t i s t i c a l p r o p e r t i e s of M i s s o u r i River bedforms: Proc. Am. Soc. C i v i l Engineers, Waterways, Harbors, and Coastal Engineering Div., p. 489-510. Ashley, G.M., 1977, Sedimentation on a t i d a l lake d e l t a , P i t t Lake, B r i t i s h Columbia: Part I I (unpublished PhD t h e s i s ) , Univ. of B r i t i s h Columbia, Vancouver, B.C. Ages, A. and Woolard, A., 1976, The t i d e s i n the Fraser Estuary: P a c i f i c Marine Science Rept. 76-5: I n s t . Ocean S c i . P a t r i c i a Bay, V i c t o r i a , B.C. Bagnold, R.A., 1963, Mechanics of marine sedimentation i n H i l l , M.N. (ed.), The Sea: New York, John Wiley & Sons, Inc., v. 3, p. 507-528. Boggs, S. J r . , and Jones, C.A., 1976, Seasonal r e v e r s a l of f l o o d - t i d e dominant sediment t r a n s p o r t i n a small Oregon estuary: Geol. Soc. America B u l l . , v. 87, p. 419-426. Boothroyd, J.C., and Hubbard, D.K., 1975, Genesis of bedforms i n mesotidal e s t u a r i e s : In Cronin, L.E. (ed.), Estuarine Research: Academic Press, N.Y., v. 2, p. 217-Bowdltch, N., 1962, American P r a c t i c a l Navigator, Hydro-graph O f f i c e , pub. no. 9, U.S. Gov. P r i n t i n g O f f i c e , Washington, D.C. B r i g g s , L . I . , and Middleton, G.V., 1965, Hydromechanical p r i n c i p l e s of sediment s t r u c t u r e formation: S.E.P.M., Spec. Pub. 12, p. 5-l6. 134 Carey, W.C., and K e l l e r , M.D., 1957, Systematic changes i n the beds of a l l u v i a l r i v e r s : Proc. Am. Soc. C i v i l Engineers, J . Hydraulics Div., v. 83, Proc. Paper 1331, 24 p. Charnock, H., 1959, T i d a l f r i c t i o n from currents near the sea bed: Geophys. Jour. Roy. Astron. S o c , v. 2, p. 215-221. Coleman, J.M., 1969, Brahmaputra R i v e r ; channel processes and sedimentation: Sed:. Geology, v. 3, p. 129-239. C o s t e l l o , W.R., 1974, Development of bed c o n f i g u r a t i o n s i n coarse sands: p. 120, Rept. 74-1, Earth and Planetary Sciences Dept., M.I.T., Cambridge, Mass. Department of P u b l i c Works, Vancouver, B r i t i s h Columbia, (unpublished core data; bathymetric charts of P i t t system). Dyck, W., F y l e s , J.G., and Blake, W. J r . , 1965, G.S.C. Radiocarbon Dates IV: Radiocarbon, v. 7, p. 24-46. Dyer, K.R., 1970, Current v e l o c i t y p r o f i l e s i n a t i d a l channel: Geophys. Jour. Roy. Aston. S o c , v. 22, .p. 153-161. E i n s t e i n , H.A., 1950, The bed-load f u n c t i o n f o r sediment t r a n s p o r t a t i o n i n open channel flow: U.S. Dept. of A g r i c u l t u r e Tech. B u l l . , no. 1026. , and Abdel-Aal, F.M., 1972, E i n s t e i n bed-load f u n c t i o n at high sedimentation r a t e s , Am. S o c C i v i l Engineers P r o c (HY1), p. 137-151. , and Barbarossa, N.L., 1952, River channel roughness: Am. Soc. C i v i l Engineers Trans., v. 117, p. 1121-1146. F i s k , H.N., 1951, M i s s i s s i p p i River v a l l e y geology, r e l a t i o n to r i v e r regime: Am. Soc. C i v i l Engineers Proc., v. 77, no. 80, 16 p. Fo l k , R.L., 1968, Petrology of Sedimentary Rocks: Univ. of Texas, Hemphills, A u s t i n , Texas. 135 Garg, S.P., Agrawal, A.K., and Singh, P.R., 1971, Bedload t r a n s p o r t a t i o n i n a l l u v i a l channels: Am. Soc. C i v i l Engineers Proc. (HY5), p. 653— 664. G a r r i s o n , R.E., Luternauer, J.L., G r i l l , E.V., Macdonald, R.D., and Murray, J.W., 1969, E a r l y d i a g e n e t i c cementation of recent sands, Fraser River D e l t a , B.C.: Sedimentology, v. 12, p. 27-46. G e o l o g i c a l Survey of Canada, Vancouver, B r i t i s h Columbia-(unpublished water w e l l r e c o r d s ) . Gordon, CM., 1975, Sediment entrainment and suspension i n a tu r b u l e n t t i d a l flow: Marine Geology, v. l b , m 57 - m 64. G r i s h a n i n , K.V., 1972, S t a b i l i t y of r i v e r channels and kinematic waves: Trans.7 State Hydrol. I n s t . , no. 190, P 37-47. Harms, J.C., Southard, J.B., Spearing, D.R.., and Walker, R.G. , 1975, D e p o s i t i o n a l environments as i n t e r p r e t e d from primary sedimentary s t r u c t u r e s and s t r a t i f i c a t i o n sequences: S.E.P.M. Short Course No. 2, T u l s a , Oklahoma. Ippen, A.T., and Harleman, D.R.F., 1966, T i d a l dynamics i n e s t u a r i e s , i n Ippen, A.T. (ed.), Estuary and C o a s t l i n e Hydrodynamics: New York, McGraw-Hill, p. 493-545. Jackson, R.G., 1975 , Velocity-bedfbrm-texture p a t t e r n of meander bends i n the lower Wabash River of I l l i n o i s and Indiana: Geol. Soc. America B u l l , v. b6, no. 11, p. 1511-1522. 1976A, Large s c a l e r i p p l e s of the lower Wabash R i v e r : Sedimentology, v. 23, p. 593-623. , 1976B, Sedimentological and fluid-dynamic ."implications of the turb u l e n t bursting-phenomenon i n geophysical flows: J . Fl u i d ' Mech. , v. 77, tu 531-560. Johnston, W.A., 1922, The character of the s t r a t i f i c a t i o n of the sediments i n the recent d e l t a of Fraser R i v e r , B r i t i s h Columbia: Jour. Geol.'/v. 30, p. 115-129-136 Kachel, N.B., and Sternberg, R.W., 1971, The tran s p o r t of bedload as r i p p l e s during an ebb current: Marine Geology, v. 10, p. 229-244. K e l l e r , E.A., and Melhorn, W.N., 1973, Bedforms and f l u v i a l processes i n a l l u v i a l stream channels: i n Morisawa, M., (ed.), F l u v i a l Geomorphology, pub. i n Geomorpholy S.U.N.Y. Binghamton, Binghamton, N.Y. Kennedy, J.F., 1969, The formation of sediment r i p p l e s , dunes and antidunes: i n Annual Review of F l u i d Mechanics, 1969: p. 147-168. K l e i n , G. de V., 1970, D e p o s i t i o n a l and d i s p e r s a l dynamics of i n t e r t i d a l sand bars: Jour. Sed. Petrology, v. 40, p. 1095-1127. de L e l i a v s k y , N., 1894, Currents i n streams and the formation of stream beds: S i x t h I n t e r n a t . Cong, on I n t e r n a l . N avigation, The Hague. Leopold, L.B., and Maddock, T. J r . , 1953, Hydraulic geometry of stream channels and some physiographic i m p l i c a t i o n s : U.S.G.S. Prof. Paper 252, p. 31. , and Wolman, M.G., 1957, Riv e r channel p a t t e r n s ; braided meandering and s t r a i g h t : U.S.G.S. Prof. Paper 282-B. , and , I960, River Meanders: Geol. Soc. America B u l l . , v. 71, p. 769-794. , . , and M i l l e r , J.P., 1964, F l u v i a l processes i n Geomorphology: W.H. Freeman and Co., San F r a n c i s c o , 522 p. Levey, R.A., 1975, C h a r a c t e r i s t i c s of coarse-grained point bars, upper Congaree R i v e r , South C a r o l i n a i n Hayes-, M.,& Karia,-T. ( eds . ), Terrigenous C l a s t i c D e p o s i t i o n a l Environments: Coastal Res. Div. Univ. S.C., Columbia, S.C. Ludwick, J . C , 1974, T i d a l currents and zig-zag sand shoals in: a wide estuary entrance: Geol. Soc. America B u l l , v. 85, p. 717-726. 137 MacKintosh, E.E., and Gardner, E.H., 1966, M i n e r a l o g i c a l and chemical study of lower Fraser River a l l u v i u m sediments: Canadian Jour. S o i l S c i . , v. 4 6 , p. 37-46. Matthes, G.H., 1947, Macroturbulence i n n a t u r a l stream flow: Am. Geophys. Union Trans., v. 28, p. 255-262. Mathewes, R., 1973, A p a l y n o l o g i c a l study of p o s t g l a c i a l v e g e t a t i o n changes i n the U n i v e r s i t y Research F o r e s t , southwestern B r i t i s h Columbia: Canadian Jour, of Botany, v. 51, no. 11, p. 2085-2103. Mathews, W.H., F y l e s , J.G., and Nasmith, H.W., 1970, Post-g l a c i a l c r u s t a l movements i n southwestern B r i t i s h Columbia and adjacent Washington S t a t e : Canadian Jour, of Earth S c i . , v. 7, no. 2, p. 690-702. McCave, I.N., 1973, Some boundary-layer c h a r a c t e r i s t i c s of t i d a l currents bearing sand i n suspension: Mem. Soc. Roy. S c i . , 6th S e r i e s , L i e g e , v. 6, p. 107-126. Meade, R.H., 1969, Landward tra n s p o r t of bottom sediments i n e s t u a r i e s of the A t l a n t i c c o a s t a l p l a i n : Jour. Sed. Petrology, v. 39, p. 222-234. M i l l i m a n , J.D., 1977, Sedimentation i n the Fraser R i v e r and i t s estuary (manuscript i n p r e p a r a t i o n ) . Morton, K.W., 1949, H i s t o r y of improvements, 1871-1948, Fraser River system province of B r i t i s h Columbia: P u b l i c Works of Canada, mimeo r e p t . , 66 p. Nece, R.E., and Smith, J.D., 1970, Boundary shear s t r e s s i n r i v e r s and e s t u a r i e s : Proc. Am. Soc. C i v i l Engineers, v. 96, W.W.2, p. 335-357. N e i l l , C.R., 1969, Bedforms i n the lower Red Deer R i v e r , A l b e r t a : Jour. Hydrol., v. 7, p. 58-85-O l i v i e r , J.P., Hicken, G.K., Orr, C. J r . , 1970/71, Automatic p a r t i c l e s i z e a n a l y s i s i n subsieve range: Pow. Tech-nology, v. 4, p. 257-263. Peacock, M.A., 1935, F i o r d - Land of B r i t i s h Columbia: Geol. Soc. America B u l l . , v. 4 6 , p. 633-696. P e t e r s , N., 1973, The Plei s t o c e n e geology and the geo-t e c h n i c a l aspects of the proposed P i t t R iver B r i d g e , Port Coquitlam, B.C.: (B.A.Sc. t h e s i s ) , U.B.C., Vancouver, B r i t i s h Columbia. 138 Pharo, C.H., 1972, Sediments of the c e n t r a l and southern S t r a i t of Georgia, B.C.: (Ph.D. d i s s e r t a t i o n ) U.B.C., Vancouver, B.C., 2 90 p. Postma, H., 1967, Sediment tra n s p o r t and sedimentation i n the estuarine environment: In L a u f f , G.H. (ed.), E s t u a r i e s : Am. Assoc. Adv. S c i . , pub. 83, p. 158-179-P r a t t , C.J., 1973j Bagnold approach and bed-form development: Proc. Am. Soc. C i v i l Engineers, J . Hydraul. Div., v. 99, p. 121-137-P r a t t , C.J.,:-.and Smith, K.V.H., 1972, Ripple and dune phases i n a narrowly graded sand: Proc. Am. Soc. C i v i l Engineers, J . Hydraul. Div., v. 98, p. 859-874. P r e t i o u s , E.S., and Blench, T., 1951, F i n a l report on s p e c i a l observations of bed movement In lower Fraser R i v e r at Badner Reach during 1950 freshet:. N.R.C. (Canada), Vancouver, B r i t i s h Columbia, 12 p. P r i t c h a r d , D.W., 1967, Estuarine c i r c u l a t i o n p a t t e r n s : Am. Soc. C i v i l Engineers P r o c , v. 8 l , no. 717, 11 P-Schumm, S.A., i960, The shape of a l l u v i a l channels i n r e l a t i o n to sediment types: U.S.G.S. Prof. Paper 352 B. , 1963, S i n u o s i t y of a l l u v i a l r i v e r s of the Great P l a i n s : Geol. Soc. America B u l l . , v. 74, p. 1089-1100. Simons, D.B., Richardson, E.V., and Nordin, C.F.Jr., 1965, Sedimentary s t r u c t u r e s generated by flow i n a l l u v i a l channels: i n Primary sedimentary s t r u c t u r e s and t h e i r h y d r o d y n a m i c i n t e r p r e t a t i o n : Spec. Pub. 12, p. 34-52. Singh, I.B., and Kumav, S., 1974, Mega-.and g i a n t r i p p l e s i n the Ganga, Yamuna, and Son R i v e r s , U t t a r Pradesh, I n d i a : Sed. Geology, v. .12, p. 53-66. Smith, J.D., 1970, S t a b i l i t y of a sand bed subjected to a shear flow of low froude no.: Jour. Geophys. Res., v. 75, no. 30, p. 5928-5939. Smith, N.D., 1971, Transverse bars and b r a i d i n g i n the lower P l a t t e R i v e r , Nebraska: Geol. Soc. America B u l l . , v. 82, p. 3407-3420. 139 Sternberg, R.W., 1966, Boundary l a y e r observations i n a t i d a l c urrent: J . Geophysical Research, v. 71, p. 2175 -2178. , 1968, F r i c t i o n f a c t o r s i n t i d a l s channels with d i f f e r i n g bed roughness: Marine Geology, v. 6, no. 3, p. 243-260. Sundborg, A., 1956, The River Kar:alven, a study of f l u v i a l processes: Geog. Annaler, v. 38, p. 127-315. Task Force on Bedforms.; i n A l l u v i a l Channels, 1966, Nomenclature f o r bedforms i n a l l u v i a l channels: Proc. Am. Soc. C i v i l Engineers, J . Hydraulics Div. 92, (HY3), p. 51-64. T o f f a l e t i , F.B., 1969, D e f i n i t i v e computations of sand discharge i n r i v e r s : Am. Soc. C i v i l Engineers Proc. (HY1), p. 225-248. Tywoniuk, N., and S t i c h l i n g , W., (1973) s Sedimentation phenomenon of the Fraser R i v e r : I n t e r . Assoc. Hy. Res., I n t e r . Symposium on River Mechanics, Bankok, Thailand, A69-1-13. Velikdnov, M.A., and M i k h a i l o v a , N.A., 1950, The e f f e c t of l a r g e - s c a l e turbulence on p u l s a t i o n s of suspended sediment concentration: Izm, Akad., Na'vk. SSSR. Ser. Geogr. G e o f i z . , 4, p. 421-424. V i s h e r , G.S., and Howard, J.D., 1974, Dynamic r e l a t i o n s h i p between h y d r a u l i c s and sedimentation i n the Altahama Estuary: Jour. Sedimentary Pet., v. 44, p. 502-521. .Water Survey of Canada, Dept. of Environment, Vancouver, B.C., (unpublished stage r e c o r d i n g data). Whetten, J.T., and Fullam, T.J., 1967 3 Columbia Ri v e r bed-forms: I n t . Assoc. Hydraul. Res.-, 12th Cong. P r o c , Fort C o l l i n s , p. 107-114. Wright, L.D., Coleman, J.M., and Thorn, B.G., 1972, River d e l t a morphology: Wave climate and the r o l e of the subaqueous.:; p r o f i l e : Science, v. 176, p. 282-284. , , and , 1973, Processes of channel development i n a high-tide-range environment: Cambridge Gulf-Ord R i v e r D e l t a Western A u s t r a l i a : Jour. Geology, v. 8 l , p. 15-41. 140 Y a l i n , M.S., 1974, On the formation of dunes and meanders: In t . Assoc. of Hydraulic Research, c 13,p.-l-8. Znamenskaya, N.S., 1963, Experimental study of the dune movement of sediment: Trans. State Hydrologic I n s t . , no. 108, p. 89-114. , , The analyses and es t i m a t i o n of energy l o s s : Proc. I n t . Assoc. Hydraulic Research, 12th Cong. P r o c , Port C o l l i n s . 141 PART TWO: INTRODUCTION P i t t River (North) - P i t t Lake. - P i t t R iver (South) system i s s i t u a t e d i n a g l a c i a l l y scoured v a l l e y w i t h i n the Coast Mountains of B r i t i s h Columbia approximately 30 km i n l a n d from the port of Vancouver (Pig.. 1). The v a l l e y of the P i t t , 70 km i n length opens abruptly i n t o Fraser lowland. P i t t River (North) drains 816 km i n c l u d i n g s e v e r a l mountain g l a c i e r s and provides a mean discharge of 3 —1 80 m .sec to the lake. A prominant s i l l , 5 km from north-ern end of l a k e , allows only c l a y - s i z e d sediment to be c a r r i e d to the lower end of the lake. P i t t R iver (South) and P i t t Lake are t i d a l , being connected to the ocean ( S t r a i t of Georgia) by lower Fraser R i v e r . Although water l e v e l s i n the P i t t system respond to the t i d e s , s a l t water seldom extends c l o s e r than 10 km downstream of the Fraser - P i t t confluence. R i s i n g water ( f l o o d t i d e ) In the S t r a i t r etards flow of the Fraser and r a i s e s i t s e l e v a t i o n p r o g r e s s i v e l y eastward u n t i l the water l e v e l at the F r a s e r - P i t t confluence i s higher than i n P i t t River (South). Flow i n the P i t t then reverses and water d i v e r t e d from the Fraser flows northward up P i t t River (South) i n t o P i t t Lake. As the water e l e v a t i o n f a l l s (ebb t i d e ) i n the S t r a i t , Fraser River flow i s a c c e l e r a t e d . 142 FIGURE 1. Location map of P i t t t i d a l system. 144 FIGURE 2. A e r i a l photo showing the main physiographic features of the lower P i t t system. The bedrock high i s o u t l i n e d with dashed l i n e s . I t s extent i s based on i s o l a t e d bedrock knobs that protrude through the f l o o d p l a i n . 146 The surface e l e v a t i o n i s lowered, p r o g r e s s i v e l y eastward u n t i l the l e v e l at the Fraser - P i t t confluence i s l e s s than that of P i t t R iver (South). Flow then reverses i n the P i t t system and drains toward the sea. The e l e v a t i o n and magnitude of water l e v e l o s c i l l a t i o n s i n the P i t t system are a f u n c t i o n of the complex i n t e r a c t i o n of P i t t b a s i n drainage, Fraser R i v e r discharge^ and the t i d a l prism. Upstream movement of sediment i n P i t t R iver from Fraser River toward P i t t Lake i s i n d i c a t e d by: (1) a pre-dominance of f l o o d - o r i e n t e d bedforms i n the r i v e r channel; and, (2) a decrease i n g r a i n s i z e from the Fraser to the lake. In a d d i t i o n , v e l o c i t y and stage measurements demonstrate that f l o o d ' f l o w s have higher peak v e l o c i t i e s and that f l o o d flows p e r s i s t f o r a s h o r t e r time pe r i o d than ebb flows. A large t i d a l d e l t a w i t h a surface area of 2 12 km , has accumulated at the d i s t a l ( d r aining) end of the lake ( F i g . 2). Because of the unusual p o s i t i o n of the d e l t a there has been s p e c u l a t i o n on whether i t i s a c t i v e l y growing or a r e l i c t feature from e a r l i e r p o s t - g l a c i a l time. The purposes'of the present study are twofold: f i r s t , to determine i f the d e l t a i s a c t i v e and to estimate the present sedimen-t a t i o n r a t e ; and second, to examine the h y d r a u l i c s of the lake channel and to evaluate the e f f e c t of b i d i r e c t i o n a l flow on sediment d i s p e r s a l and d e l t a morphology. 147 GEOLOGIC HISTORY The P i t t t i d a l d e l t a appears to represent a s i t u a t i o n i n which the past i s the key to the present. An understand-ing of the h i s t o r i c a l development of the d e l t a provides an important i n s i g h t i n t o the nature of the c u r r e n t l y a c t i n g processes. During the Pl e i s t o c e n e Epoch repeated g l a c i a t i o n s aided by pre- and i n t e r - g l a c i a l stream a c t i v i t y have eroded deeply the v a l l e y s along a northwest and northeast o r i e n t e d j o i n t p a t t e r n o c c u r i n g i n the Coast Mountains (Peacock, 1935). Fol l o w i n g the most recent d e g l a c i a t i o n (15,000 -11,000 B.P.) the melting i c e l e f t numerous elongate lakes i n i n t e r i o r v a l l e y s and a c o a s t l i n e dominated by f i o r d s . However, i n e a r l y p o s t g l a c i a l time the exact l o c a t i o n of the.shore f l u c t u a t e d as a r e s u l t of a complex i n t e r a c t i o n of e u s t a t i c sea l e v e l changes and c r u s t a l rebound (Mathews et a l . , 1 9 7 0 ) . During the period of i n s t a b i l i t y , ocean waters flooded past the mouth of P i t t V a l l e y , as i s evidenced by marine s h e l l s (12,690 - 190 B.P.; 1-5959, Mathewes, 1973) c o l l e c t e d at an e l e v a t i o n of 107 m on the east side of P i t t v a l l e y . I s o s t a t i c u p l i f t of the Fraser lowland began around 13,000 B.P. and was e s s e n t i a l l y complete by 8,000 B.P. (Mathews e_t al_. , 1970). Fraser R i v e r , s u p p l i e d w i t h abundant g l a c i a l sediment, r a p i d l y constructed a d e l t a 148 westward and by 8,290 - 140 B.P. (G. S. C. 2 2.9, Dyck et al. , 1965) " P i t t F i o r d " was i s o l a t e d from the sea at i t s southern end by t h i s d e l t a . I t i s l i k e l y t h a t a short t i d a l channel maintained a connection between ..the. f i o r d and the Fraser estuary. T i d a l currents f l o w i n g through t h i s channel must have c a r r i e d sediment from Fraser River i n t o the f i o r d , b u i l d i n g a f l o o d t i d a l d e l t a which continued to grow n o r t h -ward as Fraser d e l t a progressed westward. By 4,645 - 95 B.P. (1-7047; Mathews, 1972 pers. comm.) the l e a d i n g edge of P i t t d e l t a stood at l e a s t 20 km north -of Fraser River near the present o u t l e t of P i t t Lake ( F i g . 1). The dated m a t e r i a l was a log found i n d e l t a topsets 10 m north of the channel and bu r i e d under 60 cm of sediment. At some time during t h i s p eriod " P i t t F i o r d " was flushed of s a l i n e water and became P i t t Lake; at present time no s a l t water i s found anywhere i n lake. As the sea-land r e l a t i o n s h i p has been much the same as at present since 5,500 B.P. (Mathews e_t a l . , 1970), i t i s p o s s i b l e that P i t t Lake has been i n existence f o r approximately.6000 years. The boundary between P i t t River f l o o d p l a i n and P i t t Lake t i d a l d e l t a has been a t r a n s i t i o n a l one throughout , t h e i r development. , At present, dikes and ditches have created two e n t i t i e s , but the d i v i s i o n i s a r t i f i c i a l . - H i s t o r i c a l l y , water flow and sedimentation have been a continuum from r i v e r to la k e . 149 On the b a s i s of a e r i a l photo, i n t e r p r e t a t i o n (scale 1:15 , 8 4 0 ; . 1:31 , 6 8 0 ) . of the P i t t . R i v e r f l o o d p l a i n , i t appears that the r i v e r has been c o n s i s t e n t l y on i t s west side ( F i g . 2). I t i s suspected that a bedrock ridge connects the i s o l a t e d h i l l s on the f l o o d p l a i n to the ridge bordering P i t t Lake's southwest shore and has prevented the r i v e r from f l o w i n g d i r e c t l y i n t o the lake. This r i d g e may have separated lobes of i c e disgo r g i n g from Widgeon and P i t t V a l l e y s during the P l e i s t o c e n e . The bedrock a l s o d e f l e c t s both f l o o d and ebb flows at Addington P o i n t , a sharp meander bend. The t r i a n g u l a r area d i r e c t l y south of the lake ( F i g . 2) i s abandoned d e l t a surface and l i e s at. approximately the same e l e v a t i o n as d e l t a topsets i n the lake. However, the area i s s l i g h t l y lower than the surrounding f l o o d p l a i n and d i k i n g i n the 1920's on the east, south, and west borders and a dike' placed on the north side (1959) have permanently sealed the l o c a t i o n from f u r t h e r c l a s t i c sedimentation. During the l a s t 4,700 years the d e l t a f r o n t has advanced from the present lake o u t l e t approximately 6 km north i n t o P i t t Lake at the average r a t e of 1.28 m/yr. However, with the change from p a r a g l a c i a l to n o n g l a c i a l conditions sediment supply would decrease (Ryder and Church, 1973)- In a d d i t i o n , containment of Fraser River w i t h i n the l a s t century may a l s o have been important i n a l t e r i n g sediment supply to the P i t t system. Thus t h i s progradation 150 r a t e most l i k e l y has decreased e x p o n e n t i a l l y , s t a r t i n g at meters per year and decreasing to: the probable present rate of centimeters per year. A map. produced by Richards (i860) shows the' d e l t a w i t h the same general c o n f i g u r a t i o n as present, but accurate d e l t a growth, r a t e c a l c u l a t i o n s f o r the l a s t 118 years could not be made from i t . 151 GEOMORPHOLOGY. Delta The present d e l t a surface covers 12 '.sq. km. (5.8 km long and 2.2. km wide) and contains a s i n g l e d i s t r i b u t a r y channel w i t h a r i g h t - a n g l e bend ( F i g . 3). ,Minor eros i o n i n the form of a sc a l l o p e d channel margin occurs near the bend ( F i g . 4A); however a study of a e r i a l photos dating back t o 19^0 i n d i c a t e s l i t t l e change i n 35 years. . The channel i s i n c i s e d i n the reach between the lake entrance and the bend, with n e a r l y v e r t i c a l channel banks i n some places ( F i g . 5). However, the channel banks g r a d u a l l y change, from steep to gentle slopes toward the end of the delta. --(Fig-... .••§*) "in conjunction with a gradual shallowing of the channel. The d e l t a surface i s highest at i t s southern margin and -4 0 slopes down (6.0 x 10 ) toward the to p s e t / f o r e s e t slope break. During low water i n P i t t lake the southernmost kilometer of d e l t a i s exposed and minor southerly d r a i n i n g channels i n a d e n d r i t i c p a t t e r n are eroded i n t o the topsets . ( F i g . 3; F i g . 4A) by water d r a i n i n g from the d e l t a surface i n t o the channel during ebb flow. The drainage channels are 2 - 3 m wide and 1 m deep at t h e i r widest cross s e c t i o n . Levees border both sides of the major d e l t a channel ( F i g . 4B) and a few minor f l o o d e x i t grooves are eroded d i a g o n a l l y through the levees (about 1 km from end) marking 152 FIGURE 3. Geomorphology of P i t t t i d a l d e l t a with lake bathymetry. Depth contour i n t e r v a l i s 10 m. A topographic "high" on the lake bottom connects i s l a n d s and the bedrock ri d g e bordering the south-west side of lake. This "high" i s co i n c i d e n t w i t h the 70 m depth contour and 6<f> mean g r a i n s i z e contour ( F i g . 11) and i s used as an a r b i t r a r y d i v i s i o n between d e l t a f o r e s e t s and bottomsets - lake bottom. Cross s e c t i o n (A-K) l o c a t i o n s of Figure 5 are i l l u s t r a t e d . 137 Cores used f o r Cs dating shown by *. 153 154 FIGURE 4. A.Oblique a e r i a l photo looking east at r i g h t - a n g l e bend. Note ebb drainage channels and s c a l l o p e d margin of topsets. Wind-generated waves cover water surface. B. West side of d e l t a topsets. Levees can be seen bordering topset margin i n the foreground. Boat wake (30 m) f o r s c a l e . C. Vlew l o o k i n g east across end of d e l t a . Channel i n center (bordered by levees) leads to a pointed fan-shaped deposit on d e l t a f o r e s e t s j u s t l e f t of the photo-graph . 155 157 crevasse splays where sediment is. c a r r i e d up out of the channel onto the .delta surf ace -».(Fig. 3). A l o n g i t u d i n a l p r o f i l e along the thalweg ( P i g . 6) shows the lake entrance and r i g h t - a n g l e bend to be extremely deep . \30 m) whereas the reach between the deeps i s more shallow (10 m) and thus probably is. an area of (temporary) d e p o s i t i o n . The s e c t i o n of. channel from bend to d e l t a f r o n t i s a ramp which shallows from 30 m to 4 m i n a gentle slope of 0.3° to 0.05°. The thalweg appears to have one p a r t i a l meander which i s s i m i l a r i n length (A M= 600 m) to. meanders of P i t t R iver (South) (Ashley, 1977). The channel bottom p r o j e c t s as a wedge-shaped tongue (flanked by levees) i n t o the lake ( P i g . 3; F i g - 4C) p o i n t i n g northeast i n the d i r e c t i o n of d e l t a - f r o n t progradation (east side of i s l a n d ) . The d e l t a topset surface i s f l a t and devoid of any major topographic features with the exception of the ebb drainage channels and the levees. Occasional scour holes (0.5 m deep) on the surface r e v e a l a h o r i z o n t a l l y s t r a t i f i e d , h i g h l y cohesive sediment. The occurrence of nearly v e r t i c a l banks bordering the d e l t a channel supports t h i s conclusion. The binding agent i s thought to be organic i n nature as l i t t l e clay i s present i n the sediment. Isoetes echinospora dur. ( q u i l l w o r t ) , i s ubiquitous on the d e l t a surface. Roots of t h i s plant are t h i n , white, 158 FIGURE 5. Cross s e c t i o n s drawn from depth sounding p r o f i l e s ( 8 X v e r t i c a l exaggeration). P r o f i l e l o c a t i o n s shown on Figure 3. A general shallowing of the channel and change of channel bank slopes from almost v e r t i c a l to gently dipping occurs along the d e l t a from o u t l e t to the end. 160 FIGURE 6. A. P r o f i l e of thalweg of d e l t a channel. Deep areas occur at o u t l e t and r i g h t -angle bend. Large sand waves (L.S.W.) are found i n areas of shallowing channel. Small sand waves are found to w i t h i n 3 km of the end of the d e l t a . The l o c a t i o n of depth soundings taken i n B. i s indicated,by arrow. B. Depth sounding of small sand waves i n d e l t a channel: note f l o o d o r i e n t a t i o n . Spacing i s 8 m; height i s 30 cm. A . - 0 L A R G E SAND WAVES / SMALL I I i SAND WAVES UJ Q 30 L A K E OUTLET LARGE SAND WAVES SMALL SAND WAVES RIGHT-ANGLE BEND I k i lometer DE LTA FORESET l O U ! — -162 t h r e a d l i k e f i l a m e n t s which do not. decompose r e a d i l y : they were found i n a l l surface samples. I t i s "interpreted that t h i s macrophyte i s an important agent i n binding the sediment. Other Macrophytes (Scirpus.. v a l i d u s V a h l . , Myriophyllum hippuroldes Nutt., and Potamogeton sp.) a l s o populate the f l a t s . Other p o s s i b i l i t i e s • for.cementation are micro-organisms. Blue-green algae were, found to be rare whereas diatoms are r e l a t i v e l y abundant. Mucus produced by the diatoms may act as a temporary binding agent f o r the d e l t a sediments. Unio clams, spaced 1 m apart, occur on almost the e n t i r e surface and appear to'feed at the sediment/water: i n t e r f a c e , causing l i t t l e n o t i c e a b l e b i o -t u r b a t i o n i n the underlying sediments. The f o r e s e t s l o p e - ( F i g . 3) was examined by depth sounding. The contact between topsets and f o r e s e t s i s a sharp break i n slope and Is o u t l i n e d i n the f i g u r e . The foreset/bottomset contact i s a g r a d a t i o n a l change i n slope from 4° - 1° to an e s s e n t i a l l y h o r i z o n t a l surface and i s p o s i t i o n e d a r b i t r a r i l y at the bedrock ridge ( F i g . 3). This r i d g e l i n e approximates the 70 m depth contour and i s also c o i n c i d e n t with the mean g r a i n s i z e contour of - 6 0 . D e l t a f o r e s e t s range i n slope from 1° - 2° near the east shore to 4° - 6 ° at the end of the main channel and the " s i d e - s e t s " bordering the western embayment have a slope of 10° - 20°. In gene r a l , the e n t i r e foreset-bottomset slope i s g e n t l e r to. the east side of Goose I s l a n d than to 163 the west and the general shape of the d e l t a i n d i c a t e s that sedimentation has occurred c o n s i s t e n t l y on the east side of the lake. The f o r e s e t s are g e n e r a l l y smooth with a gentle concave upward p r o f i l e . Only one slump feature ( F i g . 3) was noted on the e n t i r e fo.re.set apron, i n d i c a t i n g a r e l a t i v e l y s t a b l e slope. The slump has- a r e l i e f of about 3 meters and occurs j u s t west of the" fan ( F i g . 4C) created at the end of the d i s t r i b u t a r y channel. Seismic data from the lake (Mathews, unpublished data, 1976.) i n d i c a t e s that a topographic high ( F i g . 3) e x i s t s between the bedrock rid g e (bordering the southwest side of lake) and Goose I s l a n d e s s e n t i a l l y s p l i t t i n g the' lower end of the lake i n t o two basins. Based on i t s geomorphology, the P i t t d e l t a can best be described as a s i n g l e t a l o n of a b i r d f o o t d e l t a which has been welded to the eastern lake shore. A d e p o s i t i o n a l model f o r the b i r d f o o t d e l t a includes progradation of the d i s t r i b u t a r y channel i n t o r e l a t i v e l y deep water (Scruton, I960). Sediment i s conveyed along the d e l t a channel and i s brought out p e r i o d i c a l l y and deposited on the d e l t a 'surface as levees. Along each side of the major channel are i n t e r d i s t r i b u t a r y troughs which slowly f i l l with' f i n e -grained sediment. As the d i s t r i b u t a r y channel extends i n t o standing water, i t broadens, becomes more shallow and g r a d u a l l y looses i t s i d e n t i t y (JReineck and Singh, 1975). 164 The P i t t appears to f i t t h i s general model. I t i s c l e a r l y dominated by f l u v i a l processes ; The. d e p o s i t i o n a l environment i s one of very low energy and l i t t l e reworking of the f l u v l a t i l e sediments occurs by waves or t i d a l c u r r e n t s . Bed configuration's i n the channel In conjunction with the study of P i t t d e l t a geomorphology an examination'was made of the bed c o n f i g u r a t i o n of the d e l t a channel bottom. Soundings were made over an lb-month p e r i o d , under both ebb and f l o o d flows. Using depth sounding records (Raytheon,, model #DE-119), side-scan sonar records ( K l e i n , model #2000), and v i s u a l observation by d i v e r s , two bedform types were found; r i p p l e s / s p a c i n g r a t i o = 1:10; spacing 60cm) and sand waves (spacing r a t i o = 1:30, spacing 5m). Ripples are ubiquitous on the sandy substrate of the channel bottom, as w e l l as on the sandy d e l t a topsets. Small sand waves (10 - 15 m spacing and 0.15 - 0.3m high) are found i n the area between the o u t l e t and the r i g h t - a n g l e bend and on a p o r t i o n of the ramp north of t h i s bend ( F i g . 6). Larger sand waves (25 m spacing and 0.7 m high) occur only i n reaches of r a p i d l y shallowing depth ( F i g . 6A). A l l bedforms were found to be f l o o d - o r i e n t e d , which i s i n t e r p r e t e d as r e f l e c t i n g the dominant flow co n d i t i o n s and d i r e c t i o n of net sediment tr a n s p o r t (see Ashley, 1977). 165 HYDRAULICS Tides • The main d r i v i n g force behind the hydrodynamics of P i t t Lake i s the t i d e . The mixed, mainly d i u r n a l t i d e i n the S t r a i t of Georgia produces one or two t i d a l cycles a day In the l a k e , depending upon the nature of the t i d a l curve. Water l e v e l (stage) data used ( F i g . 7) are unpublished records of the Water Survey of Canada. Minor features such as small stage f l u c t u a t i o n s and quick short changes i n flow d i r e c t i o n are damped between the ocean and lake and are not expressed i n lake stage. When flow conditions p e r s i s t f o r s e v e r a l hours (symmetric d i u r n a l t i d e s i n the S t r a i t ) , d i u r n a l lake stage curves are produced ( F i g . 7A). On the other hand, h i g h l y asymmetric t i d a l curves, such as shown i n Figure 7B, produce only one complete cycle a day. During w i n t e r , a delay"of 5 hr : 15 min. occurs between high t i d e i n the S t r a i t and high t i d e i n the l a k e , while a 6 hr. 20 min. delay occurs f o r passage of low t i d e from S t r a i t to l a k e . During the fr e s h e t when the c o n t r i b u t i o n of P i t t b a s i n drainage i s h i g h , i t takes 15 hr 30 min f o r e i t h e r high or low t i d e to pass from the S t r a i t to the lake. Lake s t a g e ' l e v e l f l u c t u a t i o n s v a r i e d from 0.27 m to 1.16' m w i t h i n a t i d a l c y c l e , during the 166 FIGURE 7- Time stage curves f o r S t r a i t of Georgia Fraser River - - - -, P i t t R iver , and P i t t Lake A. Semi-diurnal t i d e i n the S t r a i t creates semi-diurnal f l u c t u a t i o n s i n P i t t Lake. B. The e f f e c t of mixed, mainly d i u r n a l t i d e i n the S t r a i t i s damp.ed by the "time .it-< reaches the lake causing only one f l u c t u -a t i o n i n lake l e v e l . 167 168 year (1973) of stage data examined i n d e t a i l . Table I gives maximum, minimum, and'mean ranges f o r four r e p r e s e n t a t i v e months. In a d d i t i o n to t i d a l l y Induced o s c i l l a t i o n s i n water l e v e l i n P i t t Lake, the absolute l e v e l of these ^ o s c i l l a t i o n s changes seasonally with a maximum during freshet run o f f (May - J u l y ) and a minimum during w i n t e r (Dec. - F e b . ) . Discharge (Q) co n t r i b u t e d to P i t t system from P i t t R i v e r (North) and small streams surrounding the lake v a r i e s from 3 3 210 m/sec. ( f r e s h e t ) to 30 m/sec. (winter) (Water Survey of Canada, 1966). The r e s u l t i s that during the fre s h e t more than 50% of water moving through the P i t t Lake -P i t t R i v e r (South) system i s co n t r i b u t e d by ba s i n drainage c o n t r a s t i n g w i t h only 5% during the winter. The magnitude of discharge f l o w i n g through P i t t R iver (South) (Ashley, 1977) and i n t o P i t t Lake i s d i r e c t l y r e l a t e d to the magnitude of the t i d a l range i n the S t r a i t , i f Fraser and P i t t b a s i n discharge are constant. With high discharges i n the Fraser and P i t t during the fre s h e t the t i d a l e f f e c t i n P i t t Lake i s s m a l l ; however, when discharges of Fraser and P i t t systems are low ( w i n t e r ) , the t i d a l e f f e c t i s great. Peak flows estimated f o r both seasons and both flow d i r e c t i o n s are compared i n Table I I . Estimates were made using lake area, lake stage curves, v e l o c i t y measurements at lake o u t l e t , and c r o s s c s e c t i o n a l area-of lake o u t l e t . Thus, there are not only pronounced seasonal 169 TABLE I Range of lake stage l e v e l s ( 1 9 7 3 ) i n meters. MONTH MAXIMUM MEAN MINIMUM March 1 . 0 4 . 7 3 . 6 7 June . 6 7 . 4 5 . 2 7 Sept. . 8 2 . 6 4 . 4 2 Dec. . - l -i £ 1 . 0 4 TABLE I I Estimated peak discharges f o r P i t t system. SEASON 3 , - 1 . . FLOOD mJ sec 3 - 1 EBB mJ sec WINTER FRESHET 2 4 0 0 1 8 0 0 2 0 8 0 9 5 0 170 / d i f f e r e n c e s , with winter having the highest discharge (2400 m .sec ) but also during, e i t h e r season the l a r g e s t f l o o d discharge i s greater than the l a r g e s t ebb discharge. The greater difference' i n discharge, between f l o o d and ebb of f r e s h e t (Table I I ) compared to. f l o o d and. -ebb discharge of w i n t e r , i s due to the increase i n volume of water moving through the F r a s e r - P i t t systems (during the f r e s h e t ) . Water added by streams d r a i n i n g i n t o P i t t Lake r a i s e s the e l e v a t i o n of the lake surface as much as- 3 m. The e l e v a t i o n of Fraser River, i s a l s o increased and the net e f f e c t i s a decrease i n the water slope of the upstream flow (flood) i n t o the P i t t . The r a i s e d lake e l e v a t i o n a l s o accentuates the time-stage asymmetry of the t i d a l cycle and thus changes the p r o p o r t i o n of time devoted to f l o o d ( l e s s e r ) and ebb flow ( g r e a t e r ) . The ebb current flows f o r a longer p e r i o d of time (65% -75% of t o t a l ) at a lower discharge which produces a lower ebb water slope compared to the w i n t e r . Flow p a t t e r n over the d e l t a i s s i g n i f i c a n t l y d i f f e r e n t on f l o o d and ebb. .Flow e n t e r i n g the lake from the r i v e r i s mainly confined w i t h i n the deep d i s t r i b u t a r y channel ( F i g . 8A). The flow i s then d e f l e c t e d northward at the east side of lake causing considerable scour (35 m deep). Continuing along the d e l t a , f l o o d currents g e n e r a l l y remain confined i n the channel to w i t h i n 1.5 - 1 km from the end where they spread out across the t o p s e t s . Some "over bank" flow occurs along the length of the d i s t r i b u t a r y as evidenced 171 by the levees. Ebb flow has a much more d i f f u s e p a t t e r n ( F i g . 8B;) • During the beginning of the. ebb, water drains o f f the topsets i n t o the channel t a k i n g the s h o r t e s t , most d i r e c t route. At lower ebb stage, f l o w ..becomes more channelized and i s confined i n the. d i s t r i b u t a r y . V e l o c i t y i n channel A study of v e l o c i t y was undertaken at the lake o u t l e t and i n the d e l t a channel to.determine' the flow conditions that would l i k e l y e n t r a i n and t r a n s p o r t channel bed m a t e r i a l . Two d i f f e r e n t methods of current measurement were used: (1) four days of current p r o f i l e s , taken at 30-minute i n t e r v a l s over a f l o o d or ebb c y c l e , (2) readings taken at • 7•5-minute i n t e r v a l s , w i t h a tethered meter, one meter from bottom (19 days). Current p r o f i l e s (Hydro Products, Inc. Savonius Rotor wi t h a d i r e c t readout f o r current speed (model #460A) and d i r e c t i o n (model #465A) ) were made 'from a boat anchored at the lake o u t l e t . Each p r o f i l e i n c l u d e d measurements at 7 depths (d) (10 cm from bottom, one meter from bottom, 0.2d, 0.4d (mean)', 0. 6d, 0.8d, and s u r f a c e ) . The measure-ments (both magnitude and d i r e c t i o n ) at each depth were based on readings averaged over a two-minute p e r i o d , thus each p r o f i l e spans 15 to 20 minutes. A d i g i t a l counter i n t e g r a t i n g e l e c t r i c a l pulses over a 10-second period was 172 FIGURE 8. T i d a l flow p a t t e r n . A. Flood: flow i s channelized u n t i l 2 km from end where i t spreads over topsets i n overbank flow. Flow p a t t e r n i n t o lake appears to be that of a simple j e t or i e n t e d to the northeast, i . e ., east of Goose I s l a n d . B. Ebb: flow drains o f f topsets by shortest route to d e l t a channel then along channel to o u t l e t . 173 174 used to average v e l o c i t y f l u c t u a t i o n s , caused by micro-and macroturbulence (Matthes, .1947). Mean v e l o c i t y and v e l o c i t y at 10 cm from bottom for. one complete f l o o d c y c l e (June 24, 1975) are shown i n F i g . 9- Peak mean v e l o c i t y (.47 cm/sec) occurs e a r l y i n the f l o o d c y c l e . In c o n t r a s t , ebb examples revealed that peak v e l o c i t y , occurs l a t e i n the c y c l e . This t i m e - v e l o c i t y asymmetry was. found to be c h a r a c t e r i s t i c of v e l o c i t y curves f r o m ' P i t t R i v e r as w e l l (Ashley, 1977). C r i t i c a l shear s t r e s s necessary f o r sediment e n t r a i n -ment at the lake o u t l e t and i n the channel near the o u t l e t was determined from S h i e l d s ' diagram as modified from Briggs and Middleton (1965). A f r i c t i o n v e l o c i t y , V K, of 1.47 cm/sec i s necessary to move sediment (mean g r a i n s i z e = 0.25 mm) at the o u t l e t while V % = 1.54 cm/sec i s r e q u i r e d to move m a t e r i a l (mean g r a i n s i z e = 0.32 mm) i n the southern d e l t a channel. The l o g v e l o c i t y law (Prandtl-Von Karman equation) (Inman, 196 3) was used on the lake p r o f i l e data (June, J u l y , and August) to c a l c u l a t e the basa l shear s t r e s s . Results showed that a c r i t i c a l shear ( f r i c t i o n ) v e l o c i t y 1.47 cm/sec was seldom reached i n the o u t l e t during t h i s time pe r i o d . Time s e r i e s measurements were taken to determine I f t h i s were true for, other seasons and f o r the lake channel as w e l l . 175 The continuously recorded .velocity, measurements were made by a p o s i t i v e l y buoyant meter (General Oceanics, Inc. F i l m Recording current meter (model #20.10). ) anchored to the channel bottom but free to sway with, changing c u r r e n t s . The meter was l o c a t e d i n the middle of the d e l t a channel approximately 1 km from the lake o u t l e t and recorded on f i l m instantaneous readings of magnitude and d i r e c t i o n of flow (one meter o f f bottom) at 7-5-minute i n t e r v a l s . The meter was placed i n channel on s e v e r a l occasions, but only one record ( A p r i l 15 - May 4, 1976) was readable. Portions of t h i s record are shown i n Figure 10; Table I I I summarizes the p r o p o r t i o n of t o t a l time devoted to ebb (60%) and f l o o d flow (40%). I t i s important to note that although t o t a l time of ebb flow i s longer than f l o o d , v e l o c i t i e s are s i g n i f i c a n t l y lower. For i n s t a n c e , about 1% of ebb time flow i s greater than 40 cm/sec i n contrast to 13% of time under f l o o d flow. An a l y s i s of the 19 days of data found that peak v e l o c i t y and average v e l o c i t y were higher on f l o o d flows than on ebb (Table IV). I t i s i n f e r r e d from t h i s that mean v e l o c i t y (0.4d measured from bed) i s al s o higher on the f l o o d . In both r i v e r and lake data the mean v e l o c i t y of a p r o f i l e was found to equal or exceed the v e l o c i t y at 1 m (see Appendix). The use of the l o g v e l o c i t y law on P i t t R i ver v e l o c i t y p r o f i l e data (Ashley, 1977) demonstrated 176 FIGURE 9- P r o f i l e data from lake o u t l e t , June 2 4 , 1 9 7 5 . Mean v e l o c i t y ( 0 . 4 depth) reaches maximum of 47 cm/sec. Time-velocity i s asymmetric, i . e . , peak i s reached e a r l y , then decreases g r a d u a l l y . 178 FIGURE 10. Computer p l o t of "continuously" recorded v e l o c i t y data from southern d e l t a channel. Each X represents an Instantaneous v e l o c i t y (magnitude and d i r e c t i o n ) measurement at 7^-minute i n t e r v a l s . Measurements are one meter from bottom. Note f l o o d v e l o c i t i e s are higher than ebb. A. A p r i l 16-18, 1976; B. A p r i l 26-27, 1976. Data of e n t i r e record i s summarized i n Tables I I I and IV. A 179 TABLE I I I Summary of v e l o c i t y measurements (at one meter above bed) i n lake channel A p r i l 15 - May 4, 1976: the proportion of time devoted to f l o o d and ebb at 10 cm/sec'intervals of v e l o c i t y . EBB FLOOD VELOCITY (cm/sec) Data Pts. Hrs . Cum Hrs . % T o t a l Data P t s . Hrs . Cum Hrs . % T o t a l V e l . 80 0 ' 0 0 0 3 0.75 0.75 0.08 Vel. 70 0 0 0 0 14 3.50 4.25 0.47 Vel. 60 0 0 0 0 29 7-25 11.50 1. 30 V e l . 50 2 0,50 o :so 0.05 166 41.50 53.00 5.90 V e l . 40 45 11.25 11.75 1.30 244 61.00 114 .00 12.75 V e l . 30 602 150.50 162.25 18.10 291 72.75 186.75 20.80 V e l . 20 764 • 191.00 353.25 39.50 183 45.75 232.50 26.00 V e l . 10 555 138.75 492.00 55.00 273 68.25 300.75 33.50 V e l . 0 175 43.75 535.75 60.00 230 57.5 358.25 40. 00 TOTAL 2143 535.75 535.75 60.00 1433 358.25 358.25 40.00 TABLE IV Summary of v e l o c i t y measurements (one meter o f f bottom i n lake channel) ( A p r i l 15 - 30, 1976); v e l o c i t y i n cm/sec. Date ' A p r i l , 1976) Max. f l o o d v e l . Ave. f l o o d v e l . Max. ebb v e l . Ave. ebb v e l . Date ( A p r i l , 1976) Max. f l o o d v e l . Ave. f l o o d v e l . : Max. ebb v e l . Ave . ebb v e l . 15 55.5 35.0 23 15.0 45.0 10 .0 38.O 31.0 32.0 22.0 22.0 16 41.0 71.0 27.0 39-0 30.5 40.0 20 30 24 52.0 24.0 37-5 14.0 32.0 28.0 26.5 22.5 17 42. 0 67-0 31.5 40. 0 . 27.0 38.0 20 31 25 51.0 34.0 32.0 21.0 38.0 2 7 . On 18 22.0 68.0 13.0 40.5 27.0 41. 0 18 30 2.6 47.5 51.0 31-0 30.0 29.0 38.0 22.5 28.5 19 16.0 68.0 10.0 40. 0 19.0 45.0 17 28 27 42 .5 59.0 29.5 33-0 29.0 38.5 20.5 29.5 20 15-0 10.0 23.0 42.0 16 28 28 38.0 54.0 26. 0 32.0 26.0 38.0 20. 0 .29.0 21 61.0 42.5 28.5 36.0 22 . 2 8 29 33.0 55.0 23.5 35-0 27.5 39.0 19-0 29- 0 22 61.0 38.0 31.0 33.0 23 23 30 30.0 59.0 22.0 37-0 26.5 36.5 20. 0 28.0 182 that mean v e l o c i t y of 32 cm/sec was necessary to obta i n a c r i t i c a l v e l o c i t y ( V % = 1.77) at base of flow. I t fo l l o w s that a, s l i g h t l y lower mean v e l o c i t y .(•approximately 30 cm/sec) would be necessary to create the V % = 1.54 needed to e n t r a i n sediment i n the d e l t a channel. When mean v e l o c i t y i s at 30 cm/sec, v e l o c i t y at one meter from bottom i s between 25 and 28 cm/sec. I t can be seen i n Table IV that more f l o o d time (20.8%) i s above 30 cm/sec compared to t o t a l ebb time (18.1%). However, the p r o p o r t i o n changes d r a s t i c a l l y at v e l o c i t y of 20 cm/sec; flood, 26%, ebb.' 39-5%. Thus, i t appears that there i s more time devoted to ebb. flow above c r i t i c a l - v e l o c i t y than to f l o o d , even though the f l o o d v e l o c i t i e s are of greater magnitude. In a s i m i l a r f i n d i n g i n the r i v e r data, i t was concluded that as most' aspects of,the study i n d i c a t e ' a.1 flood-dominated system the higher v e l o c i t i e s are more important i n i n f l u e n c i n g the d i r e c t i o n of net trans p o r t than t o t a l time above c r i t i c a l v e l o c i t y . In c o n c l u s i o n , a.'.complex i n t e r a c t i o n of the t i d a l prism and varying discharge of Fraser River and P i t t b a s i n r e s u l t s i n a flood-dominated system. Highest peak discharges and r e l a t e d b a s a l shear stresses occur..during f l o o d (winter) flows. Thus, net sediment transport would occur during the wint e r . The greater e f f i c i e n c y f o r e n t r a i n i n g and moving sediment.under f l o o d flow supports the conclusions based ^ on the morphology of the d e l t a , that i t i s p r e s e n t l y a c t i v e and being constructed' under f l o o d conditions by Fraser derived sediments. 183 SEDIMENTS St r a t i g r a p h y • o f d e l t a and lake bottom Sediments of P i t t t i d a l d e l t a can .be. grouped i n t o three general environments: topset , f o r e s e t , and bottom-s e t - l a k e bottom. The topset beds c o n s i s t of f i n e sand to coarse s i l t and are h o r i z o n t a l l y laminated. The for e s e t s c o n s i s t of s i l t and clay l a y e r s , some of which are r h y t h m i c a l l y l a y e r e d , whereas the bottomset-lake bottom beds are laminated c l a y s . Of the 160 samples i n the study area, 60 were grab samples on d e l t a topsets and i n the d e l t a channel and 100 were cores (3.5 cm i n diameter) taken from d e l t a f o r e s e t s and bottomset-lake bottom (Figure 11). Cores ranged' from..24 cm to 53 cm i n length. Topset beds c o n s i s t of a monotonous s e c t i o n of laminated s i l t s and sands. No cross beds and only a few graded beds were noted. On the other hand, the for e s e t beds were found to contain a v a r i e t y of bedding s t r u c t u r e s . The nature of' the l a y e r i n g ranges from w e l l developed rhythmic s i l t and c l a y l a y e r s to s t r i n g y and discontinuous clay laminations ( F i g . 12). In the rhythmites, s i l t l a y e r s are t h i c k e r than c l a y , but the absolute thickness of the i n d i v i d u a l l a y e r s v a r i e s w i t h distance from the d e l t a . S i l t l a y e r s range i n thickness from 1.3 cm at the d i s t r i b u t a r y 184 FIGURE 11. Mean g r a i n s i z e d i s t r i b u t i o n map. C.I. i s 0.5 0. Grain s i z e d i s t r i b u t i o n r e f l e c t s the f l o o d flow p a t t e r n ( F i g . 8A). The patte r n i s a good example of sedimentation by d i f f u s i o n from a simple j e t with l i t t l e , i f any, reworking by waves or t i d a l c u r r e n t s . 185 186 FIGURE 12. Diagramatlc sketch of stratigraphy-showing change from r e g u l a r rhythmites through a few t r a n s i t i o n a l couplets Into t h i n l y bedded sediments (30 l a m i n a t i o n s ) . A. 3-5 cm diam. core. Top of s t r a t i g r a p h i c s e c t i o n showing a sharp decrease i n sedimentation r a t e from (B). B. 3«5 cm. diam. core. Rhythmites are i n t e r p r e t e d as varves deposited by the f o l l o w i n g mechanism: s i l t deposited during winter when t i d a l e f f e c t i s great and c l a y during the f r e s h e t when t i d a l e f f e c t i s minimal. Note large v e s i c l e s formed during escape of gas (methane?). 187 188 mouth to 0.016 cm, 2 km north of the' mouth. Clay l a y e r s seldom are t h i c k e r than 0.016: cm near the d e l t a and t h i n to an average thickness of 0.008 cm i n the lake bottom sediments beyond Goose I s l a n d . A l l . cores showed evidence that gas (methane?) had escaped a f t e r sampling. Houbolt and Jonker (1968) found gas "pockets" were ubiquitous i n Lake Geneva sediments. Cores, cut open soon a f t e r sampling, have continuous l a y e r i n g with s c a t t e r e d gas v e s i c l e s ( F i g . 12). Cores which were st o r e d a l l o w i n g gas to escape s l o w l y , have streaky, uneven and discontinuous l a y e r s with no v e s i c l e s . The best-developed rhythmic l a y e r i n g was found i n cores to the west of the main d e l t a l o b e. : The thickness of the l a y e r s was found to decrease abruptly at about 10 cm (or approximately 30 laminations) from the top of the sediment s e c t i o n ( F i g . 12). Couplets below the 10 cm l e v e l are about 1 cm t h i c k whereas those above are only 0.2 cm t h i c k . The decrease (80%) i n thickness occurs g r a d u a l l y over 4 - 6 couplets and suggests a sharp decrease i n sediment reaching the s i t e . This can be i n t e r p r e t e d as a s h i f t i n locus of sedimentation from the west to east side of Goose I s l a n d . Another i n t e r p r e t a t i o n i s that sedimentation has decreased over a l l the l a k e , but without rhythmic l a y e r i n g the change i s not evident. Since the' c o n f i g u r a t i o n of the d e l t a has been constant 189 since at l e a s t i860 (Richards, i860),, the l a t t e r e x planation i s favored. The rhythmic l a y e r i n g was p r e v i o u s l y noted by Johnston (1922) i n h i s work on P i t t Lake. His i n t e r p r e t a t i o n was that the a l t e r n a t i n g laminations were t i d a l i n o r i g i n . I t appears more l i k e l y that they are annual l a y e r s (varves). The coarse l a y e r ( s i l t and f i n e sand) i s brought i n as bed-load and suspended load during winter (November - March) when discharges of Fraser and P i t t systems.are low and thus t i d a l e f f e c t i s great. The f i n e l a y e r (mainly clay) Is deposited during the r e s t of the year. Presumably clay (94) i s sup p l i e d to the lake mainly during s p r i n g r u n - o f f (May -J u l y ) and continues to s e t t l e during summer and f a l l . The volume of sediment represented i n an average couplet f o r the e n t i r e foreset-bottomset-lake bottom area shown In Figure 3 was c a l c u l a t e d to be 150. - 20 x 10-1 tonnes. C a l c u l a t i o n s were based on average thickness of l a y e r s near tops; o f cores and t h e i r approximate a r e a l d i s t r i b u t i o n . 137 Cesium dating An unexpected " s p i n - o f f " of atmospheric nuclear t e s t i n g (1952 - 1972) i s the subsequent use of r a d i o a c t i v e isotopes 137 r e l e a s e d during the t e s t s (such as Cs) f o r dating of recent sediments (Pennington, 1973; Robblns and Edglngton, 1975; 137 R i t c h i e , 1975). Cesium was created during the nuclear t e s t -i n g and disseminated throughout the world by a i r currents 190 and r a i n f a l l . In f r e s h water, Cs. i s p r e f e r e n t i a l l y adsorbed, or " f i x e d " , onto the micaceous ( I l l i t e ) . component of the sediment (Francis and B r i n k l e y , 1976), presumably trapped along g r a i n ( p h y l l o s i l i c a t e minerals)' boundaries. Once i n I 3 7 contact, Cs i s f i r m l y attached so.that f u r t h e r movement by n a t u r a l chemical processes i s l i m i t e d .'(Davis, 1963; 137 Tamura, 1964). Thus, the v a r i a t i o n i n - Cs content present i n the s t r a t i g r a p h i c column can be compared w i t h the 137 l o c a l Cs a c t i v i t y record ( u s u a l l y measured i n r a i n f a l l or i n m ilk) to determine sedimentation -rate. In order to determine the present annual sedimentation r a t e on the P i t t t i d a l d e l t a , 11 large diameter (6.3 cm) cores were taken on the d e l t a topsets and f o r e s e t s ( F i g . 31 F i g . 13). A Kullenberg g r a v i t y corer (weighing 130 kg) was dropped from an anchored r a f t . Core lengths ranged from 15 cm to 85 cm and three cores with undisturbed bedding were chosen f o r dating (samples # 3, # 8, and # 11). Mean g r a i n s i z e v a r i a t i o n of the cores i s l i m i t e d , ranging from coarse 137 s i l t to very f i n e sand (50 - 70y). As Cs i s a s s o c i a t e d with micas or i l l i t e s and as these minerals most often occur 137 m the f i n e r f r a c t i o n s , t o t a l Cs content would be expected to vary with g r a i n s i z e . Thus the homogeneous g r a i n s i z e of the P i t t samples made them p a r t i c u l a r l y 137 appropriate f o r d a t i n g by the Cs dating technique. 191 Method Cores were s p l i t h o r i z o n t a l l y along bedding planes i n t o 1.5 cm t h i c k s l i c e s . The samples were then d r i e d , disaggregated by hand and placed, i n p l a s t i c v i a l s . Each 137 sample was analyzed f o r Cs using a standard detector f o r gamma ray spectroscopy (Ge(Li) detector) coupled to 1024-channel pulse height analyzer system ( F i g . 14). The gamma ray energy of each isotope i s unique and the detector converts gamma r a d i a t i o n to a pulse p r o p o r t i o n a l , to the energy, of ray. This method assures c l e a r s eparation of the 661 KeV energy of 1 3 7 C s from those o f . 2 0 8 T i ( 5 8 3 KeV) and 214 B i (609'KeV). Each sample was counted f o r 800 minutes, r e s u l t i n g i n a d e t e c t i o n t h r e s h o l d of 0.1 p i c o c u r i e s per gram of sediment. Results An e x c e p t i o n a l l y good record ( F i g . 15) was found i n core # 3 c o l l e c t e d o f f the mouth of the d i s t r i b u t a r y channel i n 50 m of water ( F i g . 3). Average r a t e of sediment accumulation at t h i s s i t e from 1954 to 1972 was 1.8 cm/yr (no c o r r e c t i o n was made f o r compaction). The f l u c t u a t i o n 137 i n Cs content i s c o n s i s t e n t w i t h that measured i n Vancouver (milk) ( G . G r i f f i t h s , pers. comm. ). Lake s t r a t i g r a p h y from Lake Windermere, England (Pennington, 1973) and f a l l o u t 192 FIGURE 13. Photo of core # 3 ( F i g . 3) which was 137 dated by J Cs. Note that although the s t r a t i f i c a t i o n i s not rhythmic, i t i s undisturbed. Core diameter i s 6.3 cm. 193 194 FIGURE 14. Diagram of the system i n v o l v i n g gamma ray 137 spectroscopy used m Cs d a t i n g . Samples were analyzed with a Ge(Li) detector coupled to 1024 channels of a pulse height system. Ge(Li) PREAMPLIFIER DETECTOR HIGH VOLTAGE POWER SUPPLY SPECTROSCOPY AMPLIFIER 1024 CHANNEL A D C COMPUTER 196 FIGURE 15. P l o t of J , C s dating r e s u l t s from core # 3 from P i t t Lake d e l t a f o r e s e t s . Cesium concentration per u n i t mass p l o t t e d against time (depth) r e s u l t s i n a graph s i m i l a r to 137 the estimated annual f l u x of Cs to surface of Lake Michigan (Robbins and Edgington, 1975) shown i n t h e i n s e t . 197 - 6 0 co h-£ 50 < on h-GQ Q : < 4 0 co co < h- 30+ 1963 P I T T L A K E S E D I M E N T S IO CD CD L A K E MICHIGAN 1959 1956 U n I I 1 I I I 1 | I I | | j, O CD CD to to CD T I M E ( Y E A R S ) 198 recorded i n T a l l a h a t c h i e R i v e r watershed ( R i t c h i e , 1973) showed a s i m i l a r record. A l l show a minor peak i n 1959 137 and a major one i n 1963 with the Cs concentration dropping o f f to low l e v e l s t h e r e a f t e r . Core § 11 showed high l e v e l s 137 of Cs equal to core § 3 on the d e l t a f r o n t , but i n a compressed record i n d i c a t i n g a slow sedimentation r a t e of 3 mm/yr. The source of t h i s cesium i s probably slope wash from the nearby shore. However, core •# 8 ( F i g . 3) contained 137 no excessive Cs, i n d i c a t i n g no d e p o s i t i o n occurred during the l a s t 25 years at that s i t e on the d e l t a . The above records are considered i n d i s p u t a b l e evidence f o r recent d e p o s i t i o n and slow, but r e g u l a r sedimentation on the d e l t a . In a d d i t i o n , the d i f f e r e n c e i n records from the three s i t e s gives f u r t h e r i n f o r m a t i o n on the p a t t e r n of present day d e p o s i t i o n which i s examined i n the f o l l o w i n g s e c t i o n . Grain s i z e a n a l y s i s A study of the g r a i n s i z e d i s t r i b u t i o n of P i t t Lake sediments was c a r r i e d out i n order to gain i n s i g h t i n t o the nature of sedimentary processes a c t i v e on the d e l t a and lake bottom. Sediment samples were c o l l e c t e d w i t h a Dietz-LaFond;grab sampler and a Phleger corer. A t o t a l of 190 samples were analyzed by one or more of the f o l l o w i n g a n a l y t i c a l methods. 199 (1) Rapid Sediment Analyzer (R.S.A.) - s e t t l i n g tube wi t h automatic re c o r d i n g of weight accumulated versus time (Woods Hole S e t t l i n g Tube, Univ. of R . I . ) . (2) S i e v i n g - standard s i e v i n g procedure ( F o l k , 1968) using sieves w i t h 0.5 $ i n t e r v a l . . (3) Quantimet 720 - image an a l y z i n g computer ( P e r r i e and Peach, 1973), Brock University.-(4) Sedigraph 5000 (Micrometrics, Inc.) - p a r t i c l e s i z e analyzer which measures the concentration of p a r t i c l e s remaining suspended as a f u n c t i o n of s e t t l i n g time using a f i n e l y c o l l l m a t e d beam of x-rays ( O l i v i e r , et a l . , 1970/71). (5) Hydrometer - standard method f o r g r a i n s i z e a n a l y s i s of s o i l s (A.S.T.M. D422-63). The range of s i z e s over which these methods were used i n t h i s study i s shown i n Figure 16. Weight percent f o r each 0.54> c l a s s was used to compute s t a t i s t i c a l parameters (using method of moments) and cumulative p r o b a b i l i t y p l o t s . A n a l y s i s of polymodal sediments I t became evident during the e a r l y stages of g r a i n s i z e a n a l y s i s that the sediments were polymodal. Bargraphs and cumulative curves (see Appendix) revealed•complicated d i s t r i b u t i o n s with g r a i n s i z e s 2 <j>, 4.5 <f>, and 8.5 $ being the areas of the d i s t r i b u t i o n s which c o n s i s t e n t l y showed 200 i r r e g u l a r i t i e s . Attempts were made, to r e s i z e some sediments by-methods (.Fig. 16). that would analyze across "problem" areas w i t h a s i n g l e method. The 4.5 cj) s i z e which i s .-.near-the normal break-between mechanical' (sieve) • and" s e t t l i n g ' (hydrometer or p i p e t t e ) - s i z i n g techniques - needed p a r t i c u l a r , a t t e n t i o n and was examined"by . t w 6 - a d d i t i o n a l r m e t h o d s . As the i n t e r p r e t a t i o n of polymodal sediments i s a c o n t r o v e r s i a l s u b j e c t , a b r i e f i n t r o d u c t i o n to the problem w i l l provide a background on which to present the r e s u l t s of t h i s study. I n t r o d u c t i o n During the l a s t two decades there have been s i g n i f i c a n t advances i n environmental i n t e r p r e t a t i o n of g r a i n s i z e a n a l y s i s . Syndowski (1957) attempted to r e l a t e a p a r t i c u l a r cumulative log p r o b a b i l i t y curve shape to a s p e c i f i c environment. At the same time Folk and Ward (1957) q u a n t i f i e d curve i n t e r p r e t a t i o n by u t i l i z i n g s t a t i s t i c a l parameters to c h a r a c t e r i z e the curve and b i v a r i a t e p l o t s of s t a t i s t i c a l measures to distinguish-environments. Because most sediments are polymodal, curve shape and s t a t i s t i c a l measures (such as skewness and k u r t o s i s ) simply r e f l e c t the r e l a t i v e magnitude and separation of modes. Although t h i s problem was recognized e a r l y (Folk and Robles, 1964), the use of s t a t i s t i c a l parameters on polymodal sediments has 201 p e r s i s t e d (Duane, 1964; M a r t i n s , 1965; Friedman, 1967; Moiola and Weiser, 1968). An a l t e r n a t i v e approach to the problem i s to separate the c o n s t i t u e n t populations (modes) and to r e l a t e these to sedimentary processes and ult i m a t e l y , t o an environment of de p o s i t i o n . V i s h e r • (1969) and Middleton (1976) have both separated subpopulations at breaks between f i t t e d s t r a i g h t l i n e segments of cumulative p r o b a b i l i t y p l o t s . However, t h i s method makes the u n l i k e l y assumption'that a l l the subpopulations are truncated d i s t r i b u t i o n s . F u l l e r (1962) and Spencer (1963) have separated overlapping modes by p a r t i t i o n i n g cumulative p r o b a b i l i t y curves f o l l o w i n g the g r a p h i c a l method of Harding (1949). This technique i s simple and shows the most promise i n being able to break the sum i n t o meaningful parts without the tedious c a l c u l a t i o n s i n v o l v e d i n the numerical methods ( C l a r k , 1976). Any attempts to r e l a t e g r a i n s i z e d i s t r i b u t i o n s to s p e c i f i c sedimentary environments should be based on a c l e a r understanding of the polymodal d i s t r i b u t i o n , i n p a r t i c u l a r , the s i z e d i s t r i b u t i o n and proportions of the i n d i v i d u a l sub-populations. The proportions of modes between environments should r e f l e c t d i f f e r e n t sediment tr a n s p o r t processes or at l e a s t v a r y i n g i n t e n s i t y of these processes. Secondly, the e f f e c t of v a r i a b i l i t y ( g r a i n s i z e , mineralogy, etc.) of the sediment "source m a t e r i a l should- be considered i n the i n t e r p r e t a t i o n . 202 FIGURE 16. The range of g r a i n s i z e s covered by the f i v e s i z i n g techniques used i n t h i s study. The percentage of each mode f o r each environment i s summarized. 'n' i s the- number of samples used i n each summary. •5 0 700 p 2 0 250 u I i B 5 0 37ji i I 8-5 0 3u TRACTION PERIODIC SUSPENSION SUSPENSION D 120 •24 p RSA-i ) •QUANTIMET 720-HYDROMETER i •SIEVE •SEDIGRAPH-70% 1 30% RIVER CHANNEL n= (2) (3) (4) (5) 5% 55% LAKE BOTTOM 40% 63 % ; 1 ACTIVE 32 % 1 DELTA TOPSETS 5 % n=3l 50% 1 LAKE 41% 1 CHANNEL 9% n = l3 45% . i DELTA 46% 1 FORESETS 9% n = 49 41 % i INACTIVE 47% 1 DELTA TOPSETS 12% n=30 n=27 204 F i v e environments i n the P i t t system have been d e l i n e a t e d on the b a s i s of the morphology as. determined by a i r photo i n t e r p r e t a t i o n and-bathymetry ( F i g . 1-7.). R i v e r channel, lake channel, i n a c t i v e d e l t a topsets , a c t i v e t o p s e t s , d e l t a f r o n t , and lake bottom can each be c h a r a c t e r i z e d by water depth, flow type ( u n i d i r e c t i o n a l or b i d i r e c t i o n a l ) , average v e l o c i t y , and presence of macrophytes. The a n a l y s i s of polymodal sediments i s based on 190 samples (160 s t a t i o n s ) c o l l e c t e d from the f i v e environments. The purpose of t h i s study i s to p a r t i t i o n r e p r e s e n t a t i v e samples using Harding's (19^9) method and-to i n t e r p r e t the s i g n i f i c a n c e of the r e s u l t a n t subpopulations i n terms of h y d r a u l i c c o n d i t i o n s of sedimentation. S t a t i s t i c a l method There are three b a s i c approaches to p a r t i t i o n i n g polymodal p r o b a b i l i t y curves: a n a l y t i c a l , numerical, and g r a p h i c a l (Clark," 197-6) . The a n a l y t i c a l method i s not p r a c t i c a l f o r sediments as, at present, there are no s o l u t i o n s f o r a case with three components. A numerical method f o r t r i m o d a l populations has r e c e n t l y become a v a i l a b l e ( C l a r k , 1970 i n C l a r k , 1976); however, the procedure i s r e l a t i v e l y complex and access to an "on l i n e " computing f a c i l i t y i s d e s i r a b l e . G e n e r a l l y , the numerical method in v o l v e s an i t e r a t i v e scheme where i n i t i a l estimates of the 205 component parameters are. improved., according to l e a s t squares c r i t e r i a . Harding's (1949) g r a p h i c a l method, which has been e x t e n s i v e l y used i n e x p l o r a t i o n geochemistry, has been reviewed by S i n c l a i r (1974, 1976). I t provides a s t r a i g h t f o r w a r d approach to p a r t i t i o n i n g d i s t r i b u t i o n s with up to four modes; however, the technique i s s u b j e c t i v e and may not always y i e l d a unique s o l u t i o n f o r ' t h e curve being analyzed. B r i e f l y , Harding's method assumes t h a t subpopulations (A,B,C,) composing a t r i m o d a l curve have lognormal d i s t r i b u t i o n s . P o s i t i v e i n f l e c t i o n points on the curve i n d i c a t e , t h e approximate proportions of, or the f r a c t i o n ( f ) o f , the t o t a l mixture that each mode comprises ( F i g . 18). The cumulative p r o b a b i l i t y of the modal mixture P M at any point on the curve i s equal to the sum of the products of the f r a c t i o n , f ^ B ^ of each component i n the mixture and the cumulative p r o b a b i l i t y of each component, Pfl R „. P = P f + P f + P f (1) rM A A B B rC C K ± 1 Using the point on the curve PL22A at 6 I ( F i g . 19F) as an example: P M = (98.7%) (.24) + (42%) (. 46) .+ :(1%)C3) P M = 43.01% 206 FIGURE 17. Map of d e p o s i t i o n a l environments with the P i t t system. 207 2 0 8 FIGURE 18. Bimodal and t r i m o d a l cumulative p r o b a b i l i t y p l o t s are constructed from equal proportions of two and three ( r e s p e c t i v e l y ) lognormal populations ( a f t e r S i n c l a i r , 1976, F i g . VI - I) . 209 G R A I N S I Z E 2 1 0 FIGURE 19. A polymodal cumulative p r o b a b i l i t y curve from each of the f i v e environments i s shown with the lognormal subpopulations derived by p a r t i t i o n i n g from the curve. Examples from both the lake channel and the d e l t a f r o n t are shown f o r environment (3)- Arrows mark i n f l e c t i o n points on the curves and are assumed to be points of modal overlap. T T 3 212 no page 212 213 A sampling of cumulative p r o b a b i l i t y p l o t s from the P i t t system ( F i g . 19) shows p o s i t i v e l y skewed curves with i r r e g u -l a r i t i e s at 2 <f> , 5 <r , and 8.5 <J> • • Their shape i s , i n ge n e r a l , s i m i l a r to that of the curve constructed from equal propor-t i o n s of three lognormal populations ( S i n c l a i r , 1976) ( F i g . 18). Thus,' an e f f o r t was made to p a r t i t i o n a number of curves i n t o subpopulations. Almost a l l modest define a s t r a i g h t l i n e on a r i t h m e t i c p r o b a b i l i t y paper i n f e r r i n g that each mode has a lognormal d i s t r i b u t i o n . Note i n Figure 16 the progressive changes from environment (1) through- (5) i n the p r o p o r t i o n of modes. A and B proportions decrease w i t h a corresponding increase i n C.i.and D. The f i v e environments were o r i g i n a l l y defined on morphology, but are su b s t a n t i a t e d by the g r a i n -s i z e d i s t r i b u t i o n study as each shows unique proportions of the four modes. Twenty p r o b a b i l i t y p l o t s were p a r t i t i o n e d and the average of the medians (M^) and the average of the standard d e v i a t i o n s (°) of each i n d i v i d u a l mode are summarized i n Table V. The four modes and the i n f l e c t i o n points where they overlap are shown sc h e m a t i c a l l y i n Figure 20. 214 FIGURE 20. A schematic diagram showing standard d e v i a t i o n and median of the four modes. Arrows mark modal overlap and are coincident w i t h the i n f l e c t i o n points on curves ( F i g . 18)'. Modal proportions f o r t h i s p a r t i c u l a r example are: A - 7%; B = 33%, C = 50%, and D = 10%. 6 8 10 GRAIN SIZE (cp) SAMPLE A = 7% B = 33% o- = 0.6<£ C =50% cr = \ .3cp D = 10% cr = 1 . 5<p 12 14 216 TABLE V Summary of modal s t a t i s t i c s . Mode Avg. M D o* Avg. Range of M D A 1.2 ij> B 3.8<D 0.6 4> 3.3* - 4.4 (j. C 5.8 * 1.3 * 5.2 cf) — 6.3 * D 10. 3 <j) 1.5 cf> 8.6 cp - 10.9 • 217 SEDIMENTOLOGICAL PROCESSES Sediment mixing Grain s i z e a n a l y s i s and subsequent p a r t i t i o n i n g of the cumulative p r o b a b i l i t y curves revealed four d i s t i n c t populations that were e i t h e r mixed p r i o r to d e p o s i t i o n , or during d e p o s i t i o n . The technique of p a r t i t i o n i n g allows "unmixing" and provides an opportunity to examine each pop u l a t i o n by i t s e l f i n order to gain f u r t h e r I n s i g h t i n t o t h e i r o r i g i n . 2 <i> i n f l e c t i o n Most P i t t R i v e r sediments show an i n f l e c t i o n near 2 c)),. However Rapid Sediment Analyzer r e s u l t s are i n s e n s i t i v e to small concentrations ( i n the t a i l s of d i s t r i b u t i o n curves) and r e s u l t i n g p l o t s were not appropriate f o r p a r t i t i o n i n g . Few grains coarser than' 2 <f> are found w i t h i n the d e l t a or lake environments. Thus, the 2 <i> i n f l e c t i o n i s i n t e r p r e t e d to represent the d i v i s i o n between the coarser g r a i n s i z e s c a r r i e d mainly by t r a c t i o n (population A) and f i n e - g r a i n e d m a t e r i a l ( p o p u l a t i o n B) moved mainly by p e r i o d i c or i n t e r m i t t e n t suspension. E i n s t e i n e_t a l . (1940) recognized a s i m i l a r boundary at 1.5 <r and F u l l e r (1961) i n t e r p r e t e d a curve i r r e g u l a r i t y at 2<f as the g r a i n s i z e which separates grains •affected-by Impact Law and Stokes Law. A recent '  218 paper by Middleton ( 1 9 7 6 ) r e l a t e s the g r a i n s i z e at the t r a c t i o n - i n t e r m i t t a n t suspension t r u n c a t i o n point on cumulative p r o b a b i l i t y plots, to the h y d r a u l i c s of flow. He t h e o r i z e d that • the shear v e l o c i t y , of flow,. V x, should be greater than or equal to the f a l l v e l o c i t y of the -. gra i n , t o , at the t r u n c a t i o n point described above. This idea was s u b s t a n t i a t e d w i t h data from P i t t - R i v e r (Table V I ) . 5 $ i n f l e c t i o n This i n f l e c t i o n point could be i n t e r p r e t e d as overlapping modes r e s u l t i n g from: ( 1 ) two d i s t i n c t processes'- p e r i o d i c suspension (population B) and continuous suspension (population C); or ( 2 ) a s i n g l e • p r o c e s s , suspension, operating under the d i s t i n c t l y d i f f e r e n t summer and winter h y d r a u l i c conditions e x i s t i n g i n the P i t t system. Flume studi e s of suspension transport (Sengupta, 1 9 7 5 ) are t e c h n i c a l l y d i f f i c u l t and have been l i m i t e d i n scope. Sengupta's r e s u l t s are ambiguous i n t h a t , depending on flow c o n d i t i o n s , e i t h e r a s i n g l e mode or a bimodal g r a i n s i z e d i s t r i b u t i o n was found i n the suspended m a t e r i a l . Attempts at g r a i n . s i z e a n a l y s i s of n a t u r a l suspended populations are hindered by the problems of low concentrations n e c e s s i t a t i n g very l a r g e samples. A v a i l a b l e data (Visher and Howard, 1 9 7 4 ) suggests that n a t u r a l suspended m a t e r i a l i s polymodal. M i l l i m a n (pers. comm. 1 9 7 6 ) noted i n h i s work on suspended sediments of 219 TABLE VI P i t t data a p p l i e d to Middleton's (1976) shear v e l o c i t y - s e t t l i n g v e l o c i t y r e l a t i o n -ship . i U A = gds .(DuBoys Formula) (Middleton's 1 c r i t e r i a ) 3'"cm/sec 6.2 cm/sec < 1 U . . { = shear v e l o c i t y CJ = s e t t l i n g v e l o c i t y g = a c c e l e r a t i o n of g r a v i t y s = slope d = depth 2 g =' 980 cm/sec s = .000053 (max:., f l o o d slope) d ::= 963 cm (ave. depth) to of 2$ (.2 5 mm) - 3 cm/sec to determined from B l a t t e i ' \ a l . (19 72 , F i g 3-12) Reference: B l a t t , H.; Middleton, G,; and Murray, R. 1972, O r i g i n of Sedimentary Rocks: P r e n t i c e H a l l , Inc., Englewood C l i f f s , New Jersey. 220 Fraser River that the f i n e s i l t and clay, concentration remained f a i r l y constant throughout the year i r r e s p e c t i v e of discharge. This, f i n e m a t e r i a l can be r e f e r r e d to as continuous suspension or wash load. He also, found that sand and coarse s i l t concentrations f l u c t u a t e d d i r e c t l y w i t h change i n v e l o c i t y . Data published annually;by the Water Survey of Canada gives g r a i n s i z e d i s t r i b u t i o n of the suspended sediment i n whole <)> c l a s s i n t e r v a l s . A n a l y s i s was c a r r i e d out t o 9 if only and thus there i s not enough d e t a i l to determine b i -modality.' Evidence presented in ' t h i s study of the P i t t system shows a c o n s i s t e n t change i n the p r o p o r t i o n of populations B and C with sedimentary environment. This change i s best explained by (1) above, the existence ..of two d i s t i n c t suspension processes ( p e r i o d i c and continuous). F i e l d s t u d i e s c l e a r l y documenting the existence of two suspension processes are ra r e and the problem requires f u r t h e r study. 8.5 ^ i n f l e c t i o n This i n f l e c t i o n point occurs near the s i l t - c l a y boundary and i s probably a g r a i n shape e f f e c t . S i l t g r a i n s are more or l e s s equant i n shape whereas clay s i z e p a r t i c l e s tend to be more p l a t e y and may s e t t l e more slowly than expected by..Stokes Law. Pharo (.1972) found a s i m i l a r curve i n f l e c t i o n i n - p l o t s of g r a i n s i z e d i s t r i b u t i o n s of S t r a i t of Georgia sediment. 221 F l o c c u l a t i o n i s not thought, to be. s i g n i f i c a n t as water i s f r e s h and cla y s i z e minerals are predominantly c h l o r i t e . I t i s suspected that a l l grains f i n e r than 5 <j> are c a r r i e d mainly by suspension., however the mechanisms c r e a t i n g the two populations need-further, examination. Conclusions Cumulative p r o b a b i l i t y curves of g r a i n s i z e data from the P i t t system can be p a r t i t i o n e d into,subpopulations which p l o t as s t r a i g h t l i n e s on lognormal p r o b a b i l i t y paper. These lognormal d i s t r i b u t i o n s are i n t e r p r e t e d as populations produced by d i f f e r e n t methods of sediment "transport i n the r i v e r , d e l t a , and lake environments: t r a c t i o n mode (0.5 4> -2 4> ), p e r i o d i c suspension (2 <f> -"5 , continuous suspension, s i l t (5 <i> - 8.5 4>), and continuous suspension, c l a y (8.5 $ -14 <(>). Each environment w i t h i n the system i s composed of a unique combination of proportions of the modes. As the source of sediment (Fraser R i v e r ) i s the same f o r a l l environments the d i f f e r e n c e i n the proportions of modes between environments i s a r e f l e c t i o n of the r e l a t i v e importance of various processes a c t i n g w i t h i n each environment. Grain s i z e d i s t r i b u t i o n Figure 11 depicts w i t h s i z e contours (C.I. = 0.5 the a e r i a l d i s t r i b u t i o n of mean g r a i n s i z e of each grab sample 222 and sample from the top of. each '.core. Mean g r a i n s i z e i s f i n e (5-5 i n the deep areas, of the channel at the o u t l e t and r i g h t - a n g l e bend, w i t h coarser (2 4>. - 4 <j)) m a t e r i a l i n between. The r e s t of the channel d i s t r i b u t a r y out to the d e l t a tongue i s coarse s i l t w i t h a mean g r a i n s i z e of 5 $ (.03 mm). In g e n e r a l , mean g r a i n s i z e contours f o l l o w the channel, d i v e r g i n g near the end, mimicking the f l o o d flow p a t t e r n ( F i g . 8A). The one exception to. t h i s g e n e r a l i t y , the t r i a n g l e of coarser sediment i n the middle of the southern t o p s e t s , i s probably a r e s u l t of removal of some f i n e s during ebb flow. Ebb drainage channels on the southern margin of t h i s area ( F i g . 3; F i g . 4A) i n d i c a t e that ebb-' o r i e n t e d flow has a pronounced e f f e c t on t h i s p o r t i o n of the d e l t a . The coarsest sediment, w i t h a mean g r a i n s i z e of 0.044 mm (4.5 <l») to 0.075 mm. (3.7 <f>), i s found at the northern top end of the d e l t a topsets immediately adjacent to the channel. As t h i s m a t e r i a l i s s l i g h t l y coarser than that i n the channel from which i t o r i g i n a t e d , winnowing i s suspected. Subsamples- were taken from top, the middle, and bottom of 15 cores .from the f o r e s e t s and bottomsets to determine any v e r t i c a l , change i n g r a i n s i z e w i t h i n the couple hundred years of sedimentation present.. Cores w i t h i n 0.5 km of the end of the d i s t r i b u t a r y channel show Increasing g r a i n s i z e from bottom to top of core. Cores 0.5 km to 7 km 223 ( f a r t h e s t . removed sample) away from the' channel show a s l i g h t upward decrease i n g r a i n s i z e ( g e n e r a l l y l e s s than 0.5(f).). The i m p l i c a t i o n from these changes i n g r a i n s i z e s t r a t l g r a p h i c a l l y i s that the d e l t a -is prograding, b u t . a t a l e s s e r - r a t e than i n the past. On the d e l t a f oresets'and bottomsets , mean g r a i n s i z e becomes f i n e r away from the end of the. d i s t r i b u t a r y channel and the contour p a t t e r n i n d i c a t e s sedimentation occurs mainly to the east side of Goose-Island. The d i s t r i b u t i o n p a t t e r n depicted i n Figure 11 i s a reasonably good example of sedimentation by d i f f u s i o n -from a simple j e t with l i t t l e i f any reworking by waves ; a n d • t i d a l c u r r e n t s . The a p p l i c a t i o n of the theory of submerged f r e e j e t s to d e l t a formation has been s t r o n g l y i n f l u e n c e d by the work of Bates (1953). He b e l i e v e d that the. d i f f u s i o n p a t t e r n depends on the r e l a t i v e d e n s i t i e s of* the two f l u i d s (moving and s t a t i o n a r y bodies of water). However, one of the major l i m i t a t i o n s of Bates' theory i s the assumption that there are no boundary e f f e c t s . C l e a r l y , the b a s i c assumptions f o r any t h e o r e t i c a l model" of sediment d i f f u s i o n by j e t flow ( d e l t a formation) should d i r e c t l y r e f l e c t the complexities of the n a t u r a l environment and -not an i d e a l s i t u a t i o n . A recent l a b o r a t o r y and computer model study by Ramsayer (197^-). incorporated the. e f f e c t of l a t e r a l and b a s a l shear on jet' -flow under steady, uniform flow. He' explains morphological features 'such as levees and d i s t r i b u t a r y 224 bars found at a d e l t a d i s t r i b u t a r y mouth by a model which p r e d i c t s the d i s t r i b u t i o n of. e f f e c t i v e bed shear s t r e s s . Time dependent runs using f i n e sand produced a sediment d i s t r i b u t i o n p a t t e r n s t r i k i n g l y s i m i l a r , to that of the P i t t ( P i g . 11). Thus, the P i t t appears., to f i t the general model of deposition' from a j e t . , However:, one feature of the model that i s missing i n the- P i t t , , i s the d i s t r i b u t a r y mouth bar. J o p l i n g (I960), suggests that i f the f r o n t a l slope over which the flow expands i s l e s s than 10°, the flow w i l l not separate from the boundary at a l l (assuming the flow i s homopycnal) • and thus d e p o s i t i o n ' I n the form of a bar would not occur. This seems to e x p l a i n the l a c k of bar development on'the P i t t d e l t a as the f o r e s e t slope i s l e s s than 4° and the system-possesses homopycnal flow f o r most of the year. In c o n c l u s i o n , the a r e a l d i s t r i b u t i o n of mean g r a i n s i z e s u b s t a n t i a t e s the i n t e r p r e t a t i o n t h a t ' f l o o d flow i s the dominant current i n moving sediment across the d e l t a . Sediment i s then dispersed by j e t flow o r i e n t e d i n a north-east d i r e c t i o n i n t o the l a k e . Sediment d i s p e r s a l arid'accumulation The observations of d e l t a morphology, the presence of bedforms i n the' channel, and the d i s t r i b u t i o n (pattern) of g r a i n s i z e enable the processes, i n v o l v e d i n sediment d i s p e r s a l to be d e l i n e a t e d . 225 The s i n g l e d i s t r i b u t a r y , .channel, flanked by levees, which leads to a fan-shaped d e l t a f o r e s e t i n d i c a t e s that the channel i s the avenue f o r sediment movement. The f a c t that the channel i s deeply i n c i s e d along the southern margin and that the carbon-dated m a t e r i a l ( 4 . 6 4 5 - 95 B.P.) from the southern topsets'was b u r i e d by only 60 err of sediment suggests that the flow i s channelized i n t h i s reach and l i t t l e sediment i s brought up onto the d e l t a surface. V e l o c i t y data and o r i e n t a t i o n of l a r g e - s c a l e bedforms r e f l e c t the dominance of the f l o o d • current moving, through the channel. North of the r i g h t - a n g l e bend' the d i s t r i b u t a r y shallows and channel banks become l e s s steep. Small f l o o d - o r i e n t e d sand waves (10 m i n spacing) are found i n the channel f o r the f i r s t 2 - 3 km where, flow i s more-or-less confined. However, i n the l a s t 3 km, only r i p p l e s are found on the channel bottom and channel bank slopes are low enough f o r flow to s p i l l and spread over the t o p s e t s . Mean g r a i n s i z e d i s t r i b u t i o n r e f l e c t s t h i s pattern' of flow. Once sediment i s on the d e l t a surface i t i s winnowed and moved by wave-dr i v e n currents i n a d d i t i o n to the t i d a l c u r r e n t s . Large waves and swells were observed to occur f r e q u e n t l y i n the l a k e , p a r t i c u l a r l y during the winter months, s h i f t i n g sediment i n the form of ripples-. O r i e n t a t i o n of these r i p p l e s , which cover the outer t o p s e t s , r e f l e c t s the 226 d i r e c t i o n of currents at the time. Wind-generated currents were observed to incorporate and carry sediment i n t o the lake as a plume. No attempt was made to study mechanics of sediment d i s p e r s a l from the end of d i s t r i b u t a r y out i n t o the la k e . However, as medium s i l t i s found as f a r out as 5 km, some type of density flow mechanism i s probable f o r at l e a s t part of the year. : Stratigr.aphic data presented' p r e v i o u s l y suggests'that + 3 a t o t a l volume of (150 - 20 X 10 tonnes) of sediment i s accumulating annually i n the southern h a l f of" P i t t ' Lake. 137 Cs dating has confirmed the existence of a steady sediment f l u x s ince at l e a s t 1954. 50% of the annual sediment accumulation i s coarser than 5 $ and thus probably moves i n the form of bedload and p e r i o d i c suspension. This volume (75 x 10 tonnes) i s on the same order of magnitude as the annual sediment f l u x c a l c u l a t e d f o r the P i t t River (South)" by Ashley (1977). I t i s suspected that the other 50% c o n s i s t s of: (1) m a t e r i a l that i s c o n t i n u a l l y r e e n t r a i n e d at points along the r i v e r and d e l t a channels by f l o o d flows and e v e n t u a l l y a r r i v e s a t the l a k e ; and (2) f i n e s i l t and 137 cl a y that i s washed i n from the P i t t watershed. 1Cs dating substantiates,' f i r s t , the i n t e r p r e t a t i o n of the for e s e t rhythmites as annual couplets (varves) and, second,.. that the sedimentation r a t e on d e l t a topsets i s minor. 22 7 The p o s s i b i l i t y of a sharp decrease i n sedimentation ra t e approximately 30 years ago i s suggested by the s t r a t i g r a p h y ( P i g . 12). Most cores, taken away from the a c t i v e d e l t a channel show a decrease i n g r a i n s i z e upsection i n d i -c a t i n g a s l i g h t waning i n d e l t a growth r a t e . Although d e f i n i t i v e evidence Is lacking,.-..this apparent decrease i n sedimentation r a t e i s i n t r i g u i h g L y c o i n c i d e n t w i t h the i n i -t i a t i o n of l a r g e - s c a l e dredging i n lower- Fraser R i v e r . This dredging probably has had the e f f e c t of i n c r e a s i n g the c r o s s - s e c t i o n a l area of Fraser estuary and thus decreasing the magnitude Gand thus competency) of t i d a l l y induced currents i n P i t t R i v e r . 228 CONCLUSIONS The P i t t t i d a l d e l t a i s p r e s e n t l y b u i l d i n g i n t o the lower end of P i t t l a k e. I t s unusual p o s i t i o n can be r e a d i l y explained i n terms of t i d a l dynamics. Unequal v e l o c i t i e s of t i d a l currents ( f l o o d i s greater) have caused landward t r a n s p o r t of sediment up P i t t River (South) from the Fraser and i n t o the la k e . A complex i n t e r a c t i o n of Fraser discharge, P i t t b a s i n drainage, and the t i d a l prism creates unequal t i d a l flow.on a seasonal basis.;-(winter has strongest f l o w s ) . Both the geomorphology and g r a i n s i z e d i s t r i b u t i o n r e f l e c t the dominant f l o o d flow p a t t e r n . B a s i c a l l y flow i s channelized as i t enters the lake and remains i n the channel u n t i l i t s bank slopes are shallow enough to allow + 3 overflow onto d e l t a t o p s e t s . Annually 150 - 20 X 10 tonnes of sediment (1% of Fraser's t o t a l l oad; Mathews et_ a l . , 1970) are being deposited as varved couplets. The greatest thickness i s on d e l t a f o r e s e t s i n the v i c i n i t y of the main channel, with the best developed s t r a t i g r a p h y o c c u r r i n g adjacent to the d e l t a lobe. These varved couplets are unusual i n that the coarser s i l t y l a y e r forms during the winter and the clay l a y e r during the summer, r e f l e c t i n g seasonal changes i n the strength of t i d a l c u r r e n t s . 229 The present-day d e l t a has been constructed during the l a s t 6000 years at an average r a t e of 1.28 m . yr~^~; however, d e l t a growth would be expected to have deer eased e x p o n e n t i a l l y . 137 Cs dating and varve chronology suggest that the present growth r a t e i s on the order of centimeters per year. A s l i g h t decrease i n mean g r a i n s i z e upsection i n cores (representing a couple hundred years sedimentation) a l s o suggests a waning d e l t a growth. Varve s t r a t i g r a p h y has revealed a, sharp decrease i n sedimentation rate 30 years before present. This decrease may be a response to l a r g e -scale dredging i n the lower Fraser estuary. Despite b i d i r e c t i o n a l flow and d a i l y and seasonal f l u c t u a t i o n s i n lake stage, the d e l t a has a simple c o n s t r u c t i o n a l morphology. The morphology, the sand waves i n channel, and sediment d i s p e r s a l p a t t e r n are dominated by f l o o d c o n d i t i o n s . Weaker ebb currents make only minor 3 -1 m o d i f i c a t i o n s despite the average discharge of 1700 m . sec which drains d a i l y from the lake. 2 3 0 REFERENCES CITED Ashley, G.M., 1977, Sedimentology of a t i d a l r i v e r , P i t t R i v e r , B.C.: (Ph.D. t h e s i s ) ,. Univ. of B.C., Vancouver, B.C., Canada. A.S.T.M., 1963, Standard method f o r g r a i n s i z e a n a l y s i s of s o i l s : A.S.T.M. D422-63-Bates, C.C, 1953, R a t i o n a l theory of d e l t a formation: Am. Assoc. Pet. G e o l o g i s t s , v. 37, no. 9, p. 2119-2162. B r i g g s , L . I . and Middleton, G.V., 1965, Hydromechanical p r i n c i p l e s of sediment s t r u c t u r e formation: S.E.P.M., Spec. Pub. 12, p. 5-16. Cl a r k , I . , 1970, IONA, a program f o r the r e s u l u t i o n of a mixture of three normal d i s t r i b u t i o n s by the method of maximum l i k e l i h o o d : unpublished manuscript, Reading, " 12p. Cla r k , M.W., 1976, S t a t i s t i c a l a n a l y s i s of multimodal d i s t r i b u t i o n s : Jour. Math. Geology, v.'8, p. 267-282. Davis, J . J . , 1963, Cesium and i t s r e l a t i o n s h i p to potassium i n ecology: In S c h u l t z , V., and Klements, A.W. J r \ , (eds.), Radioecology Rei-nhold New .York-, p. 539-556. Duane, D.B., 1964, S i g n i f i c a n c e of skewness i n recent sediments, Western Pamilico Sound, N.C.: Jour. Sed. Petrology, v. 34, p. 864-874. Dyck, W., F y l e s , J.G., and Blake, W. J r . , 1965, Geol. Sur. Canada Radiocarbon Dates IV: Radiocarbon, v. 7, p. 24-46. E i n s t e i n , H.A., Anderson, A.G., and Johnson, J.W., 1940, A d i s t i n c t i o n between bed-load and suspended load i n n a t u r a l streams: Am. Geophys. Union Trans., p. 628-633. F o l k , R.F., 1968, Petrology of Sedimentary Rocks: Univ. of Texas, Hemphills, A u s t i n , Texas. .' _, and Rob l e s , R. , 1964, Carbonate sands of I s l a Perex, Alacran Reef Complex: Jour. Geology, v. 72, p. 255-292. 231 F o l k , R.F. and Ward, W.C., 1957, Brazos River bar, a study i n the s i g n i f i c a n c e of g r a i n - s i z e parameters: Jour. Sed. Petrology, v. 27, p.. 3-26. F r a n c i s , C .W. , aaad "Brinkley , F.S.>, 197.6, P r e f e r e n t i a l adsorption of 137cs to micaceous minerals i n contaminated f r e s h water sediment: Nature, v.- 26.0,. p.. 511-513-Friedman, G.M., 1967, Dynamic processes and s t a t i s t i c a l parameters compared f o r s i z e frequency d i s t r i b u t i o n s of beach and r i v e r sands.: Jour. Sed. Petrology, v. 37, p. 327-354. F u l l e r , A.O., 1961, S i z e d i s t r i b u t i o n c h a r a c t e r i s t i c s of shallow marine sands from Cape'of Good Hope, South A f r i c a : Jour. Sed. Petrology, v. 31, P- 256-261. , 1962, Systematic f r a c t i o n a t i o n of sand i n the shallow marine and beach environment o f f the South A f r i c a n coast: Jour. Sed. Petrology, v. 32, p. 602-606. Harding, J.P., 1949, The use of p r o b a b i l i t y paper f o r the g r a p h i c a l a n a l y s i s of polymodal frequency d i s t r i b u t i o n s : Jour. Marine B i o l . Assoc. U.K., v. 28, p. l4l. Houbolt, J.J.H.C. and Jonker, J.B.M., 1968, Recent sediments i n the eastern part of the Lake of Geneve (Lac Leman): Geol. Mijnbouw, v. 47, p. 131-148. Inman, D.L., 1963, i n Shephard, F.P. (ed.), Submarine Geology, : Harper^and Row, New York, N.Y., 557p. Johnston, W.A., 1922, The character of the s t r a t i f i c a t i o n of the sediments i n the recent d e l t a of Fraser R i v e r , B r i t i s h Columbia, Canada: Jour. Geology, v. 30, no. 2, p. 115-129. J o p l i n g , A.V., i960, An experimental study on the mechanics of bedding: (Ph.D. t h e s i s ) Harvard U n i v e r s i t y , Cambridge, Massachusetts. M a r t i n s , L.R., 1965, S i g n i f i c a n c e of skewness and k u r t o s i s i n environmental i n t e r p r e t a t i o n : Jour. Sed. Petrology, v. 35, p. 778-770. Mathewes, R., 1973, A p a l y n o l o g i c a l study of p o s t g l a c i a l v egetation changes i n the U n i v e r s i t y Research F o r e s t , southwestern B r i t i s h Columbia: Canadian Jour, of Botany, v. 51, no. 11, p. 2085-2103-2 3 2 Mathews,. W.H., F y l e s , J.G., and Nasmith, H.W., 1970, Post-g l a c i a l ' c r u s t a l movements i n southwestern B r i t i s h Columbia and adjacent Washington State: Canadian Jour, of Earth S c i . , v. 7, no. 2,. p. 690-70 2. Matthes, G.H., 1947, Macroturbulen.ee In n a t u r a l stream flow: Am. Geophys. Union Trans . , y. 28, p. 255-262. Middleton, G.V., 1976, Hydraulic i n t e r p r e t a t i o n of sand s i z e d i s t r i b u t i o n : Jour. Geology, v. 84,-p. 405-426. M i l l i m a n , J.D., 1977, Sedimentation i n the Fraser River and i t s estuary: manuscript i n pr e p a r a t i o n . Moiola, R.J. and Weiser, D., 1968, T e x t u r a l parameters: an ev a l u a t i o n : Jour. Sed. Petrology, v. 38, p. 45-53. O l i v i e r , J.P., Hicken, G.K., and Orr, C. J r . , 1970/71, Automatic p a r t i c l e s i z e a n a l y s i s i n subsieve range: Pow. Technology, v. 4, p. 257-263-Peacock, M.A., 1935, F i o r d - l a n d of B r i t i s h Columbia: Geol. Soc. America B u l l . , v. 46, p. 633-696. Pennington, W., Cambray, R.S., F i s h e r , E.M., 1973, Observations on lake sediments using f a l l o u t 137cs as a t r a c e r : Nature, v. 242, p. 324-326. P e r r i e , L.A.- and Peach, P.A., 1973, G e l a t i n coated microscope s l i d e s i n sedimentary s i z e a n a l y s i s : Jour. Sed. Petrology, v. 43, p. 1174-1175. Pharo, C.H., 1972, Sediments of the c e n t r a l and southern S t r a i t of Georgia, B r i t i s h Columbia: Ph.D. t h e s i s , Univ. of B r i t i s h Columbia, Vancouver, B.C. Canada, 290 p. Ramsayer, G.R., 1975, Experimental and t h e o r e t i c a l study of d e l t a i c sedimentation: (Ph.D. t h e s i s ) , the Univ. of Rochester, Rochester, New York. Reineck, H.E. and Singh, I.B., 1975, Deposition Sedimentary Environments: S p r i n g e r - V e r l a g , New York, 438 p. Richards, G.H., i860, Fraser River and Burrard I n l e t : B r i t i s h Admiralty Chart, 1922. R i t c h i e , J . C , McHenry, J.R., and G i l l , A.C, 1973, Dating recent r e s e r v o i r sediments: Limnology and Oceano-graphy, v. 18, p. 254-263. 233 R i t c h i e , J.C., Hawks, P.H., and McHenry ,• J .R. , 1975, Deposition rates i n valleys: .determined using f a l l o u t Cesium-137: Geol. Soc. America B u l l . , v. 86, p. 1128-1130 . Robbins., J.A. and Edgington, D.N., 1975, Determination of recent sedimentation rates i n Lake Michigan using Pb-210 and Cs-137: Geochim. Cosmo. Chem. Acta, p. 285-304. Ryder, J.M. and Church, M., 1972, P a r a g l a c i a l sedimentation: c o n s i d e r a t i o n of f l u v i a l processes, conditioned by g l a c i a t i o n : Geol. Soc. America B u l l . , v. 83, p. 3059-3072. Scruton, P.C., I960, D e l t a b u i l d i n g and the d e l t a i c sequence: i n Shepard, F.P. , Phleger, F.B., Andel, T.H. (eds'.), Recent Sediments, northwest Gulf of Mexico, Am. Assoc. Petroleum G e o l o g i s t , Tulsa., Oklahoma. Sengupta, S., 1975, S i z e - s o r t i n g during suspension t r a n s -p o r t a t i o n - l o g n o r m a l i t y and other c h a r a c t e r i s t i c s : Sedimentology, v. 22., p. 257-273. S i n c l a i r , A.J., 1974, S e l e c t i o n of th r e s h o l d values i n geochemical data using p r o b a b i l i t y graphs: Jour. Geochemical E x p l o r . , v . 3, p. 12.9-149. , 1976, A p p l i c a t i o n s of p r o b a b i l i t y graphs i n mineral e x p l o r a t i o n : Assoc. of Explor. Geochemists, Spec. v o l . no. 4., 95p. Spencer, D.W., 1963, The i n t e r p r e t a t i o n of g r a i n s i z e d i s t r i b u t i o n of curves of c l a s t i c sediments: Jour. Sed. Petrology, v. 33, 180-190. Syndowski, K.H., 1957, Die synoptische method des Kornkurven-Vergleisches zur Ausdeutung f o s s i l e r sedimentations raume: Geol. Jahrb., v. 73, p-. 235-275. Tamura, T., 1964, S e l e c t i v e s o r p t i o n r e a c t i o n of cesium w i t h mineral s o i l : Nuclear S a f e t y , v. 5, p. 262-268. V i s h e r , G.S., 1969, Grain s i z e d i s t r i b u t i o n s and d e p o s i t i o n a l processes: Jour. Sed. Pet r o l o g y , v. 39, p. 1074-1106. and Howard, J.D., 1974, Dynamic r e l a t i o n s h i p between h y d r a u l i c s and sedimentation i n the Altamaha Estuary: Jour. Sed. Petrology, v. 44, p. 502-521. 234 Water Survey of Canada, 1966, Vancouver, B r i t i s h Columbia: unpublished stage and discharge records. 2 3 5 APPENDIX:: i . ( L U ) 1 H913 H UO rjf CO —«— 10 O Log spacing-log height p l o t of sand waves found i n P i t t R i v e r . 236 Pitt River - Location of bedforms (Height/Spacing) = (3m/50m) lin/25m l-2m/35m 1.2n/30n!) 2m/50m__J 1 km DATA USED IN THE MEANDER WAVELENGTH -RELATIONSHIP BEDFORM WAVELENGTH SCALING Riverj ( i n feet) AB j ( i n f eet) XM 7 AB Q e S i n u o s i t y Grain Size Reference j Bea.-veri-W 750 10 175 5,500 74 1.3 sand : Neill,1973 Columbia (dammed;) 43,000 67 .'; i 6 4 1 400,000 632 • sand Whetten and _Eullam, 1967 Congaree 13,120 88 ; ; 149 17,650 133 1.75 ". •/ 0 . 5 9 mm Levey, 197.5 Fraser K l a r a l v e r 47,500 4,692 .94 "•' 37 505 126 435,000 23,000 660 152 _ coarse sand sand Pretious ..and Blench, 1951 Sundboi?g, 1956 M i s s o u r i P i t t 7,000 20,000 40 98 175 203 33,340 85,000 182 291 1.2 sand 0.34 mm ftnnambhotla e t . a l . 1972 This study Red Deer 5,800 33 176 40,000 200 1.11 . 0.37 mm N e i l l , 1973 Wabash 22,500 82 273 70,575 266 - sand Jackson, ]_gyp; i References under Part I except f o r : N e i l l , C , 1973, Observations on r i v e r channel processes i n A l b e r t a : In F l u v i a l processes and sedimentation, Proc. of Hydrology Smposium, Univ. of A l b e r t a , Edmonton, A l b e r t a . 238 APPENDIX 2 VELOCITY PROFILE DATA March 11,1975 s i t e (3) depth 8.8-9.7 m'. time - 1400 - 1830 March 11, 1975 (cont) depth (m) v e l . (cm/sec) depth (m) v e l . (cm/sec) 1400 0 35 2.00 38 4.00 37 6.00 38 7.00 3 5 8.25 29 8.90 24 1700 0 41 f l o o d 2.00 40 4.00 37 6.00 37 8.00 34 9.00 27 9.30 24 1430 0.00 33 * K 2 - 0 0 30 e D D 4.00 30 6.00 29 7.00 30 8.25 27 8.80 24 1730 f l o o d 0 50 2.00 47 4.00 43 6.00 40 8.00 34 9.00 29 9.50 27 1500 0 26 ebb 2.00 24 4.00 24 6.00 21 7.00 20 8.25 19 8.80 17 1800 0 5 8 ±? U U,, 2.00 58 f l o o d 4.00 55 6.00 50 8.00 49 9.00 41 9.50 34 1530 ebb 0 14 2.00 15 4.00 15 6.00 12 7.00 13 8.25 08 8.80 05 1830 0 58 f l o o d 2.00 58 4.00 55 6.00 44 8.00 43 9.00 40 9.50 38 Turn from ebb to f l o o d March 13, 1975 s i t e (3) depth 8.8 - 9.2 m time - 730 - 1400 1600 0 08 f l o o d 2.00 05 4.00 12 6.00 03 7.00 09 8.00 12 8.90 05 730 0 70 f l o o d 2.00 64 4.00 64 6.00 61 8.00 58 8.60 42 9.20 40 1630 0 20 f l o o d 2.00 20 4.00 20 6.00 20 8.00 20 9.00 15 12 '239 March 1 3 , 1 9 7 5 (cont) March 1 3 , 1 9 7 5 (cont) depth (m) v e l . (cm/sec) depth (m) v e l . (cm/sec) 8 0 0 0 7 3 f l o o d 2 . 0 0 6 7 4 . 0 0 6 9 6 . 0 0 5 8 8 . 0 0 5 0 8 . 6 0 3 0 9 . 2 0 2 6 1 1 0 0 0 0 5 f l o o d 2 . 0 0 0 7 4 . 0 0 0 6 6 . 0 0 . 0 6 8 . 0 0 0 7 9 . 0 0 0 6 9 . 5 0 0 5 8 3 0 0 7 0 f l o o d 2 . 0 0 7 0 4 . 0 0 6 6 6 . 0 0 5 5 8 . 0 0 4 3 8 . 6 0 3 7 9 . 2 0 3 0 1130 0 2 3 ~ , 2 . 0 0 24 f l o o d 4 > 0 Q 2 1 6 . 0 0 2 1 8 . 0 0 2 0 9 . 0 0 2 0 -v 1 2 0 0 0 3 4 f l o o d 2 . 0 0 3 5 4 . 0 0 3 4 6 . 0 0 3 0 7 . 0 0 3 7 8 . 0 0 3 0 9 . 0 0 2 7 9 0 0 0 5 6 f l o o d 2 . 0 0 5 6 4 . 0 0 5 8 6 . 0 0 5 6 8 . 0 0 4 4 9 . 0 0 3 0 9 . 2 0 2 6 1 2 3 0 0 41 f l o o d 2 . 0 0 4 3 4 . 0 0 40 6 . 0 0 4 3 7 . 0 0 41 8.40 3 7 9 . 0 0 2 8 9 3 0 0 4 f l o o d 2 . 0 0 I' 6 ' 0 0 M o - 0 0 40 8 . 0 0 Vi 9 . 2 0 f g 1 0 0 0 0 3 7 f l o o d 2 . 0 0 3 7 4 . 0 0 3 5 6 . 0 0 3 2 8 . 0 0 2 8 Q.40 1 1 0 - 4 4 1 3 0 0 2 . 0 0 4 4 f l o o d 4 . 0 0 4 4 6 . 0 0 4 3 7 . 0 0 4 3 8.40 3 8 9 . 0 0 3 4 1 0 3 0 0 2 1 f l o o d 2 . 0 0 2 0 4 . 0 0 1 8 6 . 0 0 1 7 8 . 0 0 1 7 9 . 0 0 1 2 9.40 0 6 1400 0 41 2 . 0 0 4 3 4 . 0 0 4 3 6 . 0 0 3 7 7 . 0 0 40 8.40 3 8 8 . 8 0 3 0 Turn from f l o o d to ebb 240. May 9, 1975 s i t e (2) depth 11 -11.6 m time - 900 -1730 May 9, 1975 (cont) depth (m) v e l . (cm/sec) depth (m) v e l . (cm/sec) 900 0 27 ' ebb 2.00 26 4.00 22. 6.00 19 8.00 19 : 10.00 18 11.60 12 0 59 1200 2 > 0 Q 6 2 ebb 4 #00 59 6.00 54 8.00 54 10.00 49 11.40 . 30 0 59 1230 2.00 62 ebb 4.00 54 6.00 59 '8.00 51 10.00 44 11.30 26 93° 2.00 46 e b b 4.00 39 6.00 33 8.00 31 10.00 26 11.60 24 0 54 1300 '2.00 62 ebb 4.00 77 6.00 57 7.00 -54 8.00 4f 10.00 46 11.3026 10?° 2.00. 51 e b b 4.00 51 6.00 50 8.00 39 10.00 33 11.60 26 1030 0 7 7 - " r ^ 2.oo 57 6.00 51 8.00 51 10.00 41 11.50 33 0 51 1330 2.00 64 ebb 4.00 57 6.00 57 8.00 54 10.00 41 11.20 36 2.00 49 ebb 4 > 0 0 4 9 6.00 49 8.00 45 10.00 31 11.50 28 1400 0 5 4  L™ 2.00 59 ebb 4 _ 0 0 5 4 6.00 51 8.00 49 10.00 44 11.20 41 1130 0 57 ebb 2.00 64 4.00 59 6.00 59 8.00 51 10.00 41 11.40 36 1430 0 57 ebb 2.00 59 4.00 57 6.00 54 8.00 51 10.00 51 11.10 46 241. May 9, 1975 (cont) May .21,1975 (cont) ^ depth (m) v e l . (cm/sec) depth (m) v e l . (cm/sec) 1 R n n 0 54 2.00 59 e b b 4.00 54 6.00 51 8.00 51 10.00 49 11.10 45 1 R q n 0 02 u , 2.00 03 f l o o d 4 > 0 0 Q 3 6.00 03 8.00 02 9.10 02 iCnn 0 10 f l 0 0 d 4.00 09 6.00 09 8.00 05 8.80 04 1530 0 51 ebb 2.00 51 4.00 51 6.00 51 8.00 46 10.00 46 11.10 45 0 31 1630 2.00 31 T V e ?-f l o o d 4.00 25 l o c a t l o n 6.00 25 8.00 25 10.00 17 10.90 17 1600 0 51 ebb 2.00 49 4.00 46 6.0O 44 8.00 39 10.00 28 11.10 36(turbulent) 2.00 339 f l o o d 4 > 0 Q f9 6.00 39 8.00 31 10.00 26 10.90 23 1630 0 39 ebb 2.00 4 l 4.00 40 6.00 41 8.00 39 10.00 36 11.10 24 1730 0 42 1700 0 21 ebb 2.00 21 4.00 18 6.00 18 8.00 18 10.00 21 11.00 10 f l o o d 2.00 44 4.00 41 6.00 40 8.00 40 10.00 32 10.90 26 1 8 0 0 2 00 11 f l o o d 4.'00 41 6.00 40 8.00 38 10.00 35 10.90 28 ebb to f l o o d at 1715 May 21, 1975 s i t e (2) depth 9.1 m and 10.9 m -;ime - 1500 - 1900 iP^n 0 33 1 (- n n 0 08 Jn5°° 2.00 08 f l 0 0 d 4.00 09= 6.00 08 8.00 08 9.10 04 2.00 36 f l o o d 4.00 40 6.00 35 -§.00 33 10.00 27 10.90 23 242 a May 21, 1975 (cont)' June 12, 1975 (cont) depth (m) v e l . (cm/sec) depth (m) v e l . (cm/sec) "28" 31 28 28 28 26 23 I F 44 46 41 28 32 26 18 1900 f l o o d 0 2 4 6 00 00 00 1300 ebb 8.00 10 .00 10.90 1930 f l o o d 0 2.00 4.00 6.00 8.00 10 .00 10 .90 21 22 19 21 19 17 14 0 2.00 4.00 6.00 8.00 9.10 11.00 12 .20 1330 ebb o 2 4 6 00 00 00 2000 f l o o d 0 2 4. 6 . 00 00 00 ,8.00 i o :oo 10 .9. 12 12 09 08 06 05 05 8.00 9 .10 11.00 12.20 1400 ebb tu r n from f l o o d to ebb 20 45 June 12, 1975 s i t e (4) depth 11 - 12.2 m time - 1200 -2030 0 2 .00 4 .00 6.00 8.00 9 .10 11.00 12.20 1430 ebb 1200 ebb 1230 ebb 0 2.00 4. 00 6.00 8.00 9.10 11.00 12 r20 26 36 36 35 39 31 21 10 0 31 2.00 39 4.00 42 6.00 35 8.00 32 9 .10 26 11.00 21 12. 20 15 0 2, 4, 6, 00 00 00 8.00 9 .10 11.00 12.20 1500 ebb 0 2 .00 4 .00 6.00 8.00 9 i mo 11.00 12.20 1600 ebb 0 2 4 6 00 00 00 8.00 9 .10 11.00 12.20 T5 41 46 •46 41 39 28 23 ~4ir 49 49 46 45 37 31 26 "4T" 49 46 51 46 42 28 24 ~W 46 51 50 46 39 30 26 51 57 51 51 49 49 39 28 2 4 3 June 12, 1975 (cont) June 24, 1975 s i t e (4) depth 42 m I.-?.' time 700 -1230 depth (m) v e l . (cm/sec) depth (m) v e l . (cm/sec) ^ 3 ° 2 .00 51 ebb 4 > Q 0 4 6 6.00 49 8.00 51 9.10 49(turbulent) 11.00 28 12.00 28 0 - @4 -730 . v, ,. ^; f l o o d x ° .4 ^  "•-18 ' 15" 24 .14 30 .12 36 12. 42 :..12/ 1515 0 44ebb 2.00 51 4.00 49 6.00 49 m o v e d-8.00 46 p ? ^ o n 9.io 36 s l l s h t l y 11.00 32 0 o v . 800 6 11 • flOOd 12 20 ' 18 . 27 24 ,24; 30 .24 36 • 20-42 20 1800 -°;00 4 0 ebb 4 > 0 0 4 5 6.00 46 8.00 41 9.10 39 11.00 22 830 6 4 2 f l o o d 42 18 43 24 40 30 36 36 33 42 25 1830 0 36 ebb 2.00 41' 4.00 39 6.00 45 8.00 44 9.10 30 11.00 15 Q00 0 4 7 you 6 ^ f l o o d 1 2 4 1 | 18 47 24 38 30 36 36 35 42 25 1900 0 n^ ebb 2.00 | r 4.00 \l 6.00 1/ 8.00 \d 9.10 \^ 11.00 ^ 0 40930 6 44 f l o o d .12 45 18 46 24 47 30 43 36 34 42 29 2000 0 13 ebb 2.00 13 4.00 17 6.00 15 8.00 12 9.10 12 11.00 08 0 44 1000 I I* f l o o d 1 2 4 5 18 44 24 43 30 43 36 33 42 25 Ebb to f l o o d at 2040 244 June 24, 1975 (cont) J u l y 9, 1975 s i t e (4) 1 ( n o -depth28.5 - 31 m ; time ^^0 depth (m) v e l . cm/sec) depth (m) ( v e l . cm/sec) f l o o d 1 2 ^ 18 35 24 34 30 31 36 25 42 22 1030 0 2 8 ebb 5 3 0 e 10 31 15 31 20 28 25 31 31 10 1100 0 2 9 ebb 5 3 0 15 28 20 29 25 27 31 13 1100. 0 40 f l o o d 6 35 12 35 18 28 24 27 30 19 36 19 42 13 1145 P 35 • ebb 2 32 27 20 2 5 25 2 9 31 2 8 3± 17 1130 0 33 f l o o d 6 31 12 30 18 24 24 20 30 21 36 17 42 12 1215 0 35 5 35 ebb 0 10 30 15 27 20 26 25 26 31 17 1200 0 27 f l o o d 6 24 12 21 18 20 24 12 30 11 36 11 42 05 0 341245 5 34 ebb 10 37 15 29 20 29 25 28 31 10 1230 0 f l o o d 6 tr' 12 1 5 -* 11 1315 0 3 8 5 37 ebb 1 Q 2 8 15 • 31 ; 20 32 25 24 • 31 16 u u 245 J u l y 9 , 1975 (cont) August 6, 1 9 7 5 (cont) depth (m) v e l . (cm/sec) depth (m) v e l . (cm/sec) ebb J J uu 1 Q 3 0 15 30 20 33 25 o 30 1130 0 33 ebb 2 . 0 3 3 4 . 0 32 6 . 0 28 7 . 6 26 8 . 0 26 , 30 Tj 12 0 33 1 2 0 0 2 . 0 33 ebb 4.0'- 31 6 . 0 28 7 . 6 26 8 . 0 23 1 4 3 0 0 m 3 ? K K 5 o 40 ebb 1 Q a 3^ 15 | 32 20 M H 29 25 ^ c 27 30 13 1 2 3 0 0 3 3 K K 2 . 0 33 ebb r. 0. ^ 6 . 0 28 7 . 6 26 8 . 0 1 5 n r - n r - 0 - P 42 ebb 5 5 4 0  e b b 10 3 3 15 31 20 33 2 5 28 29 16 1 3 0 0 0 : 3 6 2 0 33 e b b 4 _ Q 3 2 6 . 0 33 7 . 0 46 7 . 6 39 8 . 0 27 1 5 4 5 0 3 9 ebb 5 3 8 e b b 1 ( ) 2 8 15 18 20 21 25 2 1 29 09 1330 0 3 9 " 2 . 0 35 ebb 4 . 0 33 6 . 0 46 7 . 0 46 7 . 6 33 8 . 0 28 August 6 , 1 9 7 5 s i t e (IB) depth 8 - 10 m time - 1030 -1815 0 35 IO3.O 2 . 0 32 ebb ' 4 . 0 31 6 . 0 27 7 - 6 33 8 . 0 26 1 4 0 0 0 I K K 2 . 0 40 4 . 0 62 K.n  6 - 0 55 t u r b u l e n t 7^0 4 6 7 . 6 31 8 . 0 29 1 1 0 0 0 3 3 K K 2 . 0 33 ebb 4 > ( J f2 6 . 0 28 7 . 6 28 8 . 0 31 ebb 2 , 0 6 5 4 . 0 ' 59 6 . 0 49 7 . 0 36 7 . 6 22 8 . 0 17 246 August 6, 1975 (cont) August 6, 1975 (cont) depth (m) v e l . (cm/sec) depth (m) v e l . (cm/sec) "6T 60 57 47 35 28 21 1530 ebb 0 2.0 4.0 6.0 7-0 7.6 8.0 1815 f l o o d 0 2.0 4.0 6.0 7.0 7.6 8.0 75 71 72 73 71 69 52 1615 ebb 0 2.0 4.0 6.0 8.0 9.0 9.7 10.0 W 41 35 33 19 09 07 07 moved pos-i t i o n August 11, 1975 s i t e (IB) depth 6.6- 8m time - 930 -l600  930 f l o o d Turned .645 1.700 'lood from ebb to f l o o d 0 2.0 4.0 6.0 7.0 7.6 8.0 12 l^moved pos-Q 9 i t i o n 10 07 12 1000 f l o o d 1030 f l o o d 1715 f l o o d 0 2.0 4.0 6.0 7.0 7.6 8.0 14 12 14 15 24 18 12 1100 1745 f l o o d 0 2.0 4.0 6.0 7.0 7.6 8.0 46 49 46 56 47 33 1115 f l o o d 1800 f l o o d 0 2.0 4.0 6.0 7.0 7.6 8.0 "6T 62 68 65 66 61 56 1200 f l o o d 0 2.0 4.0 5.6 6.0 6.6 0 2.0 4, 5, 6, 6, 0 2.0 4.0 5.0 6.0 0 2.0 4.0 5.0 6.0 0 2, 4 6 7 8.0 8.5 0 2 . 4 6. 7 8.0 8.2 29 32 34 37 27 25 53 56 55 55 47 28 "5B" 61 61 51 36 T5 65 57 37 26 59 59 59 54 46 33 ^5 45 47 40 35 26 18 247 -August 11, 1975 (cont) August 13, 1975 (cont) depth (m) v e l . (cm/sec) depth (m) v e l . (cm/sec) 1300 f l o o d 0 2, 0 4.0 6.0 7.0 8.0 11 09 06 03 03 03 1100 ebb 0 6 12 18 24.5 25.5. 29 19 19 18 04 03 Turned from f l o o d to ebb at 1315 1400 ebb. q 2:0 4.0 6.0 7.Q 27 32 30 20 16 1430 ebb 0 2.0 4.0 6.0 6.5 7.5 50 49 43 31 12 14 1500 ebb 0 2, 4 5 6 6 59 55 54 37 22 20 1530 ebb 0 2 4: 5 6 6.3 58 56 44 36 25 23 1600 ebb 0 2.0 4,0-5.5 6.0 6.5 55 55 42 39 26 21 August 13, 1975 s i t e (4) depth 25 - 32 m time - 1030 -15-30 1030 ebb 0 6.0 12.0 18.0 24.0 25:5 "3T 36 34 28 10 01 Turn -1115 . from ebb to f l o o d at 1200 f l o o d 0 6.0 12 .0 18.0 24 .0 29.5 30.5 1230 flood: 0 6 .12 18 24 30 31 32, 1330 f l o o d 1400 f l o o d 0 6 12 18 24 30 31. 1 2 , 6 6 12 18 24 30 31 1530 ^lood 0 6 12 18 24 29 '30* T4~ 19 19 17 17 19 06 '31 30 28 30 29 28 24 22 To 36 35 31 30 27 24 19 T3 32 29 27 19 16 11 "26~ 13 12 09 07 03 -02 2 4 8 September 43 1975 s i t e (IA) depth 33 - 39 f t time - 1030 -1715 September 4, 1975 (cont) depth . ( f t ) ; v e l . (cm/sec) ****** depth (m) v e l . (cm/sec) 1030 0 30 ebb :6 64 : 12: « 64 18 ' 62 24 59 30 57 33 53 34 35 ^11 0 59 e b b 6 60 12 52 18 52 24 53 30 51 35 43 36 13 1100 0 62 ebb 6 62 12 60 18 59 24 55 30 50 33 28 34 25 1500 0 49 ebb 6 50 12 50 18 44 24 45 30 30 35 18 36 17 113° °6 % ebb 1 2 6 i | 18 63 24 60 30 57 33 53 34 32 0 39 1530 6 40 12 37 18 32 24 28 30 18 33 13 36 12 1230 g II ebb 1 2 6? 18 60 24 60' 30 45 " 35 46 36 21 1600 ° 29 ebb J 25 18 15 24 13 30 12 35 10 36 10 eoo 1 2 5 g 18 57 24 54 30 54 33 38 34 15 Turned ebb to f l o o d at 1615 1700 - Very tu r b u l e n t ™ 6 I" f l o o d J ^ 18 53 24 37 30 40 34 33 1330 0 57ebb 6 59 12 5 7 18 l l5 24 £ 3 0 47 36 2 7 249 October 8, 1975 s i t e (2)- r depth 12- 13 m time 1100 - 1700! October 8, 1975 (cont depth., (m) v e l . (cm/sec) depth (m) v e l . (cm/sec) 1100 f l o o d 0 2.0 4.0 6.0 8.0 10.0 11.0 12.0 1215 f l o o d 0 2.0 4.0 6.0 8.0 10.0 11.2 12.0 12. 2 1300 f l o o d 0 2.0 4.0 6.0 8.0 10.0 11.6 12.0 12.6 1345 f l o o d • 0 ' 4.0 6.0 8.0 10.0 11.6 12.0 12.6 70 70 68: .67 60 62 53 52 "So" 65 64 58 55 52 45 36 30 58 56 54 53 4.7 39 24 24 19 "3F 31 27 21 10 0.9 09 07 Turn from f l o o d 1430 to ebb at 1530 ebb 0 21 2.0 20 4.0 24 6.0 27 8.0 27 10 .0 26 11.0 23 12.0 12 1600 ebb 1700 ebb 0 36 2.0 39 4.0 38 6.0 36 8.0 32 10.0 30 11.2 21 12.0 21 12.2 15 0 37 2.0 41 4.0 31 6.0 31 8.0 31 10.0 26 11.0 26 12.0 20 12.1 16 November 5, 1975 s i t e (2) depth 13 m time - 945 - 1100 945 f l o o d 1100 f l o o d 0 46 2.0 40 4.0 36 6.0 43 8.0 35 10 .0 25 12 .0 23 13.0 14 0 32 2.0 23 4.0 22 6.0 15 8.0 16 10.0 20 12.0 06 13.0 06 250 February 20, 1976 s i t e (2) depth = 13 m time - 900 - 1430 depth (m) v e l . (cm/sec) 900 -f l o o d 0 2 .0 5 .2 7 .0 9 .0 11 .0 12 .0 12 .8 13 .0 72 51 64 64 64 59 51 36 21 1145 0 f l o o d 2.0 4.0 6.0 8.0 59 59-57 51 51 10.0 4 i 12.0 28 0 turned.from f l o o d to ebb at 1330-0 21 1400 2. 0 21 ebb 4. 0 26 6 0 28 8. 0 33 10 0 31 12 0 10 1430 ebb 0 2 4 0 0 33 51 54 6 0 49 8 0 49 10 0 15 12 .0 10 252 Sediments s i z e d with R.S.A. CRapid Sediment Analyzer) * .•Cum. % Cum. % • Cum.% P i t t River(North)#4 PRSC #10 PRC #60 0.64 0.0 0.43 0.0 1.18 0.0 0.75 4.00 0.50 2.99 1. 25 2.08 1.00 12. 80 0.75 13.79 1.50 12 .47 1.25 23. 20 1.00 26.44 1.75 21.30 1.50 40.00 1. 25 52.29 2.00 34.29 1.75 54.40 1.50 65.57 2.25 65. 45 2.00 74. 00 1.75 86.21 2. 50 91.95 2.12 100.00 1.86 100.00 2.53 100.00 PLC #6 PRSC #11 PRC #62 1.0 0.0 1.5 4.35 1.75 8.50 2.00 16.00 2.25 36.9 2.50 60.0 3.00 78.. 0 3.50 83.0 4.00 89.6 PRSC #8 0.56 0.0 0.75 7.08 • 1.00 16.81 1.25 25. 66 : 1.50 46. 90 1.75 62.83 2.00 84.07 2.18 100.00 -I i 0.97 0.0 1.00 1.02 1.25 8.77 1.50 21.54 1.75 32.62 2.00 47-60 2.25 84.31 2. 47 100.00 PRC #12 1. 26 0.0 1.50 13.70 1.75 26. 03 2 .00 42.81 2.25 83.56 2.40 100.00 PRC #58 : 1.26 0.0 1.50 8.31 1.75 10.00 2 .00 19.14 2.25 61.06 2.50 93.19 2.53 100.00 PRC #59 0 .51 0. 0 0 .75 9. 79 1 .00 22. 68 1 .25 36. 08 1 .50 51. 55 1 .75 71. 13 1 .89 100. 00 PRC #63 0. 83 0 .0 1. 00 4 .37 1. 25 10 .92 1. 50 25 .14 1. 75 32 .51 2. 00 45 • 90 2 . 25 77 .56 2. 47 100 .00 PRC #66 0 . 53 0. 0 0. 75 8. 42 1. 00 15. 17 1. 25 35. 39 1. 50 58. 99 1. 75 79. 21 1. 84 100. 00 0.0 PRC #67 1.50 6.74 1.75 24.35 2,00 50,77 2.18 100.00 0 . 73 0 .0 0. 75 9 .52 1. 00 10 .08 1. 25 19 .76 1. 50 36 .82 1. 75 50 .39 2. 00 73 .64 2. 13 100 .00 253 Cum, PRC #68 0. 51 0.0 0.75 15.38 1.00 32.31 1.25 52.31 1.50 84.62 1. 60 100.00 PRC #69 0.47 0.0 0.50 1.12 r\ r-7 j — V • / 0 6.74 1.00 24.72 1.25 26.40 1.50 39.33 1-75 62.92 1.78 100.00 PRC #70 0.47 0.0 0.50 0.51 0.75 10.71 1.00 21.43 1.25 35-71 1.50 55.10 1.75 82.34 1.88 100.00 FRC #71 0. 56 0.0 0.75 1.25 1.00 12.50 1.25 27.06 1.50 42 .50 1.75 68.75 1.78 100.00 PRC #72 0.97 0.0 1.00 1.94 1.25 11.63 1.50 28.68 1.75 42.63 2. 00 65.50 2.18 100.00 Cum. % PRC #73 0 .64 0 .0 0 .75 4 .00 1 .00 12 .80 1 .25 22 .40 1 .50 44 .00 1 .75 58 .40 2 .00 77 .60 2 .12 100 .00 PRC #74 Cum.% 0.97 0.0 1.00 1.65 1.25 14.50 1.50 35.00 1.75 54 .00 2.00 77.50 2.06 100.00 PRC #75 0.65 0.0 0.75 5.35 1.00 14.29 1.25 25.89 1.50 44 .20 1.75 61.61 2 .00 80.58 2.06 100.00 PRC #76 : ' 0.57 0.0 0.75 3-02 1.00 : 15.09 1.25 24.90 1.50 40.75 1.75 53-58 2.00 .71.69 2.12 ' 100.00 PRC #77 0.89 0.0 1.00 6.32 1.25 20.00 1.50 42.11 1.75 60.53 2.00 86.32 2.06 100.00 PRC #79 0. 84 0 . 0 1. 00 8. 06 1. 25 : 17. 74 1. 50 35- 08 1. 75 49. 60 2. 00 69. 76 2. 12 100. 00 PRC #80 1.39 0 . 0 1.50 3-85 1.75 10.77 2.00 22.12 2.25 45 .00 2.50 7 3 . 0 8 2.73 100.00 PRC #81 0.62 0 . 0 0.75 0 .74 1.0.0 5 .18 1.25 8.52 1 .'50 14 . 8 1 1.75 21.11 2.00 30.37 2.25 48.89 1 2 .50 6 5 . 9 3 . ; 2.75 9 4 . 8 1 2.80 TOO.00 254 C u m . % PRC #83 24 0 . 0 2 5 0 . 6 8 50 9-15 7 5 1 7 - 3 9 0 0 2 8 . 6 1 2 5 5 5 . 8 4 50 8 6 . 9 6 56 1 0 0 . - 0 0 PRC #84 64 0 . 0 7 5 5 . 5 6 0 0 1 7 - 7 8 25 3 1 . 1 1 5 0 5 5 . 5 6 75 7 4 . 4 4 89 1 0 0 . 0 0 PRC #85 1 2 0 . 0 0 2 5 5 . 5 3 50 18. 4 6 7 5 2 9 . 5 4 00 4 4 . 6 2 25 8 0 . 62 39 1 0 0 . 0 0 PRC #86 90 0 . 0 00 5 - 5 8 2 5 1 7 . 2 0 5 0 3 7 . 2 1 7 5 5 3 - 4 9 0 0 76.28 12 1 0 0 . 0 0 PRC #87 77 0 . 0 00 2 . 8 6 2 5 8 . 5 7 50 1 7 . 1 4 7 5 27 . 1 4 .0.0 6 0 . 0 7 2 5 9 7 - 1 4 26 1 0 0 . 0 0 C u m . % PRC #89 0. 83 0. 0 1. 00 1. 76 1. 25 5 . 99 1. 50 2 9 . 99 1. 75 4 2 . 6l 2. 00 5 9 . 86 2. 18 100. 00 W i d g e o n S . 9 0 0. 43 0. 0 0. 50 1. 38 0. 75 8. 62 1 . 00 16. 21 • 1. 25 23. 10 1. 5 0 39. 66 1. 75 53. 45 2. 00 68. 97 2. 18 100. 00 W i d g e o n S . 9 1 0 . 19 0 . 0 0 . 25 1 . 4 9 0 . 50 7 . 2 0 0 . 75 1 6 . 0 0 1 . 00 2 5 . 2 0 1 . 25 3 4 . 80 1 . 5 0 5 2 . 0 0 1 . 7 5 6 6 . 4 0 2 . 0 0 8 6 . 0 0 2 . 25 9 0 . 0 0 2 . 2 8 1 0 0 . 0 0 P L C #92 0 . 7 3 0 . 0 0 . 75 1 . 1 6 1 . 0 0 8 . 9 1 1 . 2 5 1 9 . 37 1 . 50 3 4 . 49 1 . 7 5 4 8 . 84 2. 00 7 3 . 6 4 2. 1 1 1 0 0 . 00 C u m . # PRC #94 2 . 4 0 0 . 00 2 . 5 0 1 . 0 0 2 . 7 5 1 1 ; 30 3 . 0 0 2 5 . 00 3 . 2 5 3 9 . 00 3 : 5 0 5 4 . 0 0 4 . 0 0 7 2 . 0 0 P L C #96 1 .18 0 . 0 1 . 2 5 2 . 1 0 1 . 5 0 1 4 . 9 7 1 - 7 5 2 5 . 7 5 2 nn 4 0 . In n 2 . 2 5 7 6 . 0 5 2 . 4 7 1 0 0 . 0 0 255 PITT LAKE - SEDIMENT SAMPLE LOCATIONS Depth Contours 5 m 3 m I km 256 LOG - PROBABILITY GRAPH OF GRAIN-SIZE DISTRIBUTION PUl VALUE - 6 - 5 - 4 - 3 - 2 -1 0 3 2 3 4 5 6 7 JO I I 12 13 64 32 16 0.5 0.25 0.1250.0530.0310.DISO.0080.0040.002 MILLIMETERS LOG - PROBABILITY GRAPH OF GRAIN-SIZE DISTRIBUTION PHJ VRLUE - 6 - 5 - 4 - 3 - 2 -1 0 1 2 3 4 5 6 7 _1 L_ 10 11 12 13 1 4 32 16 8 -} 1 1 "n T '-T-' -T-1 "Tr' T -4 2 1 0.5 0.25 0.1250.0630.0310.0160.0080. MILLIMETERS Z D / LOG - PROBABILITY GRAPH OF GRAIN-SIZE DISTRIBUTION PHI VRLUE - 6 - 5 - 4 - 3 - 2 - 1 0 a 2 3 6 4 i s e 0.5 0.25 G.125G.0530.0310.0150.C0QO.G040.002 MILLIMETERS LOG - PROBABILITY GRAPH OF GRAIN-SIZE DISTRIBUTION PHI VRLUE -6 -5 -4 -3 -2 -1 0 1 2 3 A 5 6 7 ' 1 — : — 1 ' " 1 1 _ i _ ' 10 U 12 13 14 64 P-145 16 1.11,11,1.,,. I ~r-—*-j— 0.5 0.25 0.1250.0530.0310.0160.0080.0040.002 MILLIMETERS 258 LOG - PROBABILITY GRAPH OF GRAIN-SIZE DISTRIBUTION PHI VRLUE -G - 5 - 4 -3 - 2 - 1 0 1 2 3 A S 0 7 B 9 10 II 12 13 ; 4 - J I l I ! _ - r - — T ' T-0.5 0.25 0.1250.0530.0310.0160.COaO.0040.002 MILLIMETERS LOG - PROBABILITY GRAPH OF GRAIN-SIZE DISTRIBUTION PHI VRLUE -G - 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5 6 7 q 9 0.5 0.25 0.1250.0530.031 0.0150.0030.0040.002 * MILLIMETERS 259 LOG - P R O B A B I L I T Y GRAPH OF G R A I N - S I Z E DISTRIBUTION PHI vro.UE -5 -5 -4 -3 -2 rl 32 16 -i 1 -—-r-0.5 0.25 0.1250.0530.0310.0150.0080.0040.002 H1LLIHETER5 LOG - P R O B A B I L I T Y GRAPH OF G R A I N - S I Z E D I S T R I B U T I O N PHI VALUE -S -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 —*• 1 1— I • • • i _ 14 0.25 0.1250.0630.031 0.0150.OOBO.0040.002 H1LLIHETER5 C H A R T M O i f i n 0.0 '*** MUITIMOOAL SAMPLE WFT_ kT OPV WT SALT_ "io'ob.oooo '• " 3 . 6 2 0 0 " o.b 1 0 0 . 0 0 0 0 1 0 0 . 0 0 0 0 0.0 J3k GA_N IC MU I S TUP, E _ o. o ~0".0~" ( & - A » S J 0.0 0.0 (PCT WET KI| WEIGHT LOSS JUE TO HANDLING 0 .0 ' GRAVEL CCRREC I I ON FACTOR " ' 1 .000 SIZES ELIMINATED KO.Olt) NONE TRASK SORTING COE FFK IEiNT 2 . 5 5 5 USING PR" DBA6IL I TV EXTKAf>. J.'j ' iS MEAN CUB t 0 DEVIATION 7.347 USING PR06ABLITY FXTRAP. 4 .591 PEPCE ?|TAGE TABie OT STAT I ST 1CAL DATA IN P MI UNI I S PERCSNTIIES L INt AR EXTRA P. PSOBAblILITY FXTRAP. COMPC SI T I ON MEAN STO DFV SKi: V.NESS KURTOSIS MM . PHi UNITS M M . PHI UNITS GRAVE _. Q ^ 0 MOMENT "5 .79256 2 .43440" " "0. 5 09 19 3.44447 5. 0 "0 . 29265 1. 772 76 0.26576 " ~ 1 . 9 1 18 i S A W 22. 65 P-"C!MENT 5. 77423 2.31737 0 .36838 2. 97328 10.0 0 . 18966 2. 39E53 0. 16923 2 . 4 0 i S 0 SILT 63 . 1 2 FOLK 5.62766 2.41173 0.00397 1.30856 16 .0 0 . 096P2 3. 36F61 0.09622 3.3774 S CLAY 14. 2 3 P-f-Olf. 5.62721 2.38469 0.01222 1.29174 25.0 0. 05 2 59 4.24898 0.05236 4.25^41 MUO 77. 35 I [.:•',/.--J 5. 572 7(5 2.2C417 - 0 . 074 70 0. 96075 50.0 0. 01874 5. 73743 0.01S75 5.73 70 8 S / M 0. 29 P - l W A f : 5.57227 2. 19479 -0 .07509 0. 93552 75.0 0. 00805 6. 95614 O.OOS08 6.95100 K'.UMf-ElN 2.00530 ~-0 .134'b7 "0 .20735" ' * '"" iS4."0 "0. 00456 7. 7 7695 0.0C459 7". 76 707 P-KPUM. 1.996 74 -0 .13387 0. 20680 90 .0 0. 00206 8.92047 0.00207 8.910 10 FOLK ITPAfiSFOPMEO) 0.566S3 95 .0 0. 00073 10. 41642 0.00074 10.40793 P-FCILK tTRANSFORMED) 0. 56365 OAT A FOR CQNSTN OF BARGRAPHS AND CUM. CURVES S l i t F K A L T I D N WT.1GMS ) wT . P C T . WT.PCf" MID PH 11L IN LAP.) WTO'PhTTPKUST} MTJDT MM PHi UMCOR COP COR CUMUL. PHI MM PHI MM O.'2'5Ob0a 2T000 6T530 6 .330 9 . 116 9 . 116 " 1.751" 0."2 97 0 7 " i . 926" " 0 . 2 63 l"8 1 " 0. 1 77000 2.498 0 . 040 0. 040 1. 105 10. 221 2. 249 0. 2 1036 2.2 54 0 .2 0960 0 0-125000 3.000 0 . 100 , p.lOp 2 ,762 12.983 2. 749 _.0«J^eX5_JLt-7U0 O.Xiafcg 0 . , 0.Coo 000 3. 506 0 . 150 0.150 4 . 144 1 / . 1 2 7 3. 253 0.i04"ib 3 .2o5 0 .10404 0 0.062500 4 .000 0.200 0.200 5.525 22.^52 3.753 0 .07416 3.764 0.07363 1 0.044000 4. 506 0 . 173 0 . 173 4 . 775 27.427 4.253 0. 05244 4 . 260 0. 05221 _ __0_ 0. 03 I 000' " 5 . 01 2 D".3'.'l 0 . 341 9. 43 2 """"3 6. 85 9 4 . 75 9 0 . 0 36 93 ' 4 . 76 7" " C . 0 3 „ 73 " 1 "" 0T3'^ 7j-Co DTsTjr cr.T?:5 'TUT; r~VX—^Tfol,——ZTTZhTZ 5 7 2 T ' I 0 . 0"2u5 "S T~ C. 01 5600 6 . 002 0 . 714 0 . 714 19. 732 60.537 5. 754 0.01853 5 . 754 0. 0 1U53 1_* 0 .01 1000 6. 506 C~"OT" 0 .057 1. 577 62. 1 15 6.254 0. 013 10- 6. 254 U.OUU 0 0.007830 7.002 0 . 514 0 . 514 14. 207 76.322 6.754 0 .00926 6.741 0 .00935 1 " , ' . 0 0 5 5 0 0 /.DUl> 0 . 2 0 0 U . i ' O U 5 . H 2 5 C l . 1 ) 4 / / . 2 5 4 _ 0 . U Ut> 5 5 _ ' . i 4 4 l'.-QW->9 U 0 .003900 8. 002 0 . 143 b.145" " 3 . 946 85. 793" 7.754 0 .00463" 7.744 0.00466 O" 0 .002700 8.533 0 .086 0 . 086 2.369 38.162 8.268 0 .00325 8.259 0.00526 0 D. jJ)SU5.QQ 9....P4Q Q..UH6 0. 086 2.3u7 90.529 3. 78b 0.0022 7 8.776 0.00223 0 0.0013 h'J 5.5C1 0 .05 7 0 .057 1 . 579 52. 10 ft 9 .270 0 . 001 o2 9.2 <• 3 0 . 0 01 6 3 0"""~ 0.000960 9.995 0 .057 0 .057 1.579 9 3 . U B O 9 .748 0 .00116 9.737 0 .00117 1 0.000690 10.501 0 . 057 0 .057 1 .577 95.264 10.248 U.00082 10.234 0 .0OJ83 0 0 .000490 "10.995 " " 0 .057 "0 . 057 " 1. 5 79 ' " 96.8 43 10. 748 0. 00058 10.728 0 . 00 J59 " 0 " 0.00CO61 14 .000 0 . 1 1 4 0 .114 3 . 157 100 .000 12.497 0 .00017 11.464 0 .00U35 0 TOTALS 3 . 6 2 0 3 . 6 2 0 100.0 P I * * 0.0 0. 0 * * • ' MULT j,100AL" SAMPLE « ' * « " **** UET WT OF Y WT SALT ORGANIC MOISTURE "lOCO.'OOOO' "' 4.8o00~ "6.0 ' "O.O" 0.0 ( G R A M S ) 100.0001 100.0000 0.0 C O 0.0 (PCT WET WT) WEIGHT LOSS JUF 10 HANDLING 0 .3 " GRAVEL CORRECT I CN FACTOR '" 1.000 SIZES ELIMINATED K O . O l ' i ) NONE TRASK SORTING COEFFICIENT 3.104 USING PROBABILITY F.XTRAP. 3.091 MEAN CU8E0 DEVIATION 16.003 USING PROBABLITY E XT RAP• 13.096 PE.-.CENTAGE C0-.P0S1 TIO.M "GPAV5L O'.'O S A N O 34 .63 SILT 53.4 7 T A B L E O F S T A T T S T ' I C A L O A T ' A T N P Hi" UN IT S "TEia'rNTlTf? L IN'ErpTT>TTKA-p-7 "MOMENT P - ' W E N T FOLK Kf AN...^  5.22997 . 5 , 21929-5.04375 STO OEV 2 .50875 "2 .42354 2.42763 SP-EWNE S S 1.01353 0.52001 0.11248 KUP.T0S1 S 3 .88768' 3.48396 1. 06205 C I A * 11 .90 P-FQLK 5.05297 2.40780 0.11B81 1.03965 MUD 65 .37 INMAN 4.59458 2. 28677 - 0 . 06450 0. 85328 S/M 0 .53 P-IM^AN 5.00e84_ 2.26414 -0.05847 0.85939 K P u H ' E l r i " " ' - ' " 2. 42 101 -0 .47415 " 0 . 2 6 1 6 5 P-KFUM. 2.41223 -0 .47733 0.26105 FOLK (TRANSFORMED) 0.51523 5 .0 10.0 16. 0 MM . "0 .22834 0. 1 7632 0 . 15 306 PHI UNITS 2. 1 3076 2. 50374 2. 70782 25 .0 50.0 75. 0 "84 .0 90 .0 95 .0 " o n r r r r 0.02832 0.01267 " 0.00643 0.00232 0.00064 3. 03374 5.14208 6. 3021 1 7.28135 8.74946 10. 60678 n ^ o " S ' i a n ' r r r Y ~ r 7 T r r i r - -MM. PHI UNITS 0.22101 2.17783 0 . 1 7 O 0 4 2.50598 0. 14920 2 . 74470 T . 12 195 0 .02034 0.01276 "0 .00647" 0.00233 0.00065 3.03560 5. 14124 6 . 29211 " 7 . 2 7298 R. 74343 10.59768 P-FOLK (TRANSFORMED) 0. 51448 DATA FOR CONSTN OF BAR GR A P HS AND CUM. CURVES SIZE FRACTION MM P H I W T . I G K S ) UNCOR COP "0.2 50000 • 2.000 O.L7700O 2.4";e 0.125000 3 .000 0. 160 0.320 0 .720 0. 160 0.320 0. 720 Wl.PCT . COR """"3 ."279" 6.557 14.754 W T . P C T . C U M U L . 3.279 9. 836 24. 590 'TO. 73 8' MID PHKLINEAR) PHI MM MID P HI ( PK OB. ) PHI MM MOOE 1.751 2 .249 2. 749 0.29707 0.21036 0. 148 75 1.923 2.300 2. 785 .0. 263 79 0 . 20->03 0.143 07 0 0 1* 0.6Jt..6oo—TTStt iJTTuO' CT7TTO CTTTB—TtTTTTS—3T75T—0. 1 0458—TTZoTS 0 . 10 ,3E~ 0.07.2500 4 .000 0 . 190 0. 190 3.893 34.631 3. 753 0.07416 3. 756 0.07..01 0.044000 4.506 0.400 0.400 8. 197 '-2. 828 4 .203 0.05244 4. 257 0.05230 "0 . Q'i 1 COO"" "5^0 12" 0. 1 BO""""6 . 1 8 0 " i. !.><•> « . 3 16 " 4. 759 0.03693 4. 760 0.03^91 0.022000 5.506 C.015600 6 .0C2 0. 644 0.51O 0.644 0.51o 1 3. 2U0 10.565 0.011000 6.5C6 0. )07"OO 7.0 02 0.005500 7.506 0 . 0035.JU ' 8 .002 " 0.002700 8.533 0.001900 9.040 0 . 3TT7 0.129 0. 064 0. 06 4 " " 0 . 3 8 7 - O . - U J o. loT 0.129'" 0 .064 0. 06 4 rrur 2 . 6 4 1 1.321 1.321 39.722 70.287 ~7oTZ 1 cr B2. 172 63. 4 73 5.259 3.754 6 254 75 C 8 . 1 1 5 89.43 6 50.756 T72~34~ 7. 754 8. 268 8. 787. 3.026 12 0.01353 "DTolTfO-0.00926 5.257 5. 74 7 0.02^14 0.0 l i ) 6 1 6 . 7 4 4 7,. 7 4 7 ~"0"T0T3T9~~ 0.00)31 0 . 00 1 3>'0 0.000580 0.00065U 0.330490 9.501 9.95 5 10.501 16 .995 ' 0.000340 11.522 O.OOOOtl 14. 000-. 0 .064 0. 064 0 . 064 "0 .064 0 . 064 .0. 129, 0. 07.4 0.064 0. 064 "0. 064 0.064 0.129 1. 32 1 1.321 1.320 1.321 1.321 2.64 1 92.077 93.3 98 94.717 5o.038 57.339 „l.an...17iO-9.270 9. 74!) 1 0.248 1 0. 74 8 11.259 TT. 0 00 3 3 0.004 63 0 .00325 _0. .0,02 2^ 7 0.00162 0.001 1L> 0.000H2 0. 000 58 0.0004 I 7.24o 7.747. 8. 262 _8.7B_0__ 204 9. 73 9 10.237 10.734 11.237 0 . U 635 9 6 .0 3-1 66 0.003 26 0.002 27 0. OOi 63 0.00117 0 .00JP3 0. 0033 9 0.00341 -O^OCUZu-T O T A L S 4.680 4.880 100.0 0.0 * " * » * '*"MULt I MODAL ~SAMPLE *>*" • i WET WT _ DPV WT _ _SALT_ ORGANIC MOISTURE "lOOO.OOOO" 6.3300 """' 0.0" "" "" " O . O " " ' " "0 .0 " (GRAMS F~ 100.0000 100.0000 0 .0 0 .0 0.0 (PCT WET WT1 WEIGHT LOSS DUE TO HAN0L1NG_ _ 0 . 0 GRAVEL CORRECTION FACTOR ' " """ I• OOO S U E S ELIMINATED KO.OIS . ) NONE TRASK SORTING CPcFFf.CIFNT 2.124 USING PROI iAtmiTv F.XTRAP. 2.113 MEAN CUBED DEVIATION 19.303 USING PRORABLITY FXTRAP. IS .238 PERCENTILES LINEAR FXTRAP. PRUBA & L l L l T Y E X T R A P . PERCENTAGE CUMPOSITICN TABLE OF STATISTICAL OA TA IN PHI UNITS GRAVEL SAND SILT 0.0 26.97 53. fa3 CLAY MUO S/M 9 .20 63. 03 0 .59 P-FCLK 4.73492 1.92434 0.40346 1.4 043T" INMAN 4.05614 1.62699 0 . 24532 1.30008 P-INKAN 4. 87347_ 1.6074B 0.25858 1.30047 "'KFUME FI N " " 1 . 6 1 0 0 4 0.18463 0.22709 P-KRUM. 1 .59916 0.18154 0.22619 FOLK (TRANSFORMED) 0.58527 5 . 0 10 .0 16 .0 -2-5TO"-50. 0 75. 0 84. 0" 90 . 0 95. 0 MM. "'6. 15332 0.12387 0.10664 "UTtreTOT-0.04553 0.018P6 0.01118 0.00449 0.00086 PHI UNITS_ 2 .70542" 3.01307 3. 22915 MM. "0 .14483 C. 12344 0.1C3 9 5 PHI UNITS_ 2 . 7 8 7 5 0 " 3.01810 3.2o599 3. 55482 4.45700 5. 7263 8_ 6. 4 8313 7. 79884 10. 18982 0.0 84 79 0.0455 1 0.01899 0.01120 0.00452 0.000 86 3.3599 I 4 .45780 5.71878 '"""6. 4 8096'"" 7 .79026 10.16350 G P-FOLK (TRANSFORMED) 0. 58403 DATA FOR CONSTN OF BARGRAPHS AND CUM. CURVES KID P H I l P R C B . l PHI MM "MTTJE SIZF FRACTION MM FH1 WT. UNCOR (GMS) C OR WT.PCT. COR WT.PCT. CUMUL. MID PHI(LINEAR! PHI MM 0.250000 2 .000 0.020 .0 . 0. 177000 2.498 0.090 0. 0.12 5000 3.030 0.530 0. "a.uclkLiUli " '3 .516 ' 1 U .B90' 0.062500 4.000 0.840 0. _0.044000 4.506 0.914 0. O j O J J C O O " 5.01? 0.416 020 090 500 WtT 84 0 91j^ "416 6731 6 1. 422 7. 899 r.04B 13.270 _14 .4 40 6.571 "0.316" 1.738 9.637 36.967 51.407 "5 7.9 78" 1.75 1 2 .249 2.749 " 3 T 7 5 3 -3. 753 Jt_. 2 5 3 4. 759" 0 .29707 0.21036 0 . 14875 T57TCT433-0.07416 0.05244 "0 .03693" 1.894 2 .333 2 .827 0.26915 0.19845 0.14394 T 7 7 B 9 -3.765 4.2 57 "4 .758" T77TTJ77T" 0.07553 C.05232_ 0.03o96 5 f t 002 .U73 .457 0.022000 5. _0. 01 5600 6. O . ' u l T o O O o'.5C6 6."333 6 0.-1O7°.:-!.-| 7.002 0.166 0. l!7j 457_ i i i 166 13.7HO _ 7 . 223 5"."2 5 i " 2.626 71.706 _7_8.9 89 8 4. 2 4 2" Sc .868 •j. 259 _5.754_ 6."2 3 4 6. 754 0.0^612 0 .013 5 3_ " 0 .013 10 0. 00926 5 . 2 5 O _5_. 744_ 6 .24 3 6. 747 0.02^2 8 O.OlfiftS , 0-0Q7 3H 0 1*_ r0 T 0 _C.005500 7.506 0.125 0.125 1.9/0_ O U . U i B 7.254 0.00655 7.247 O.OOL.58 0.003900 " 8." 002 0. 125 0 . 125 1 . 970 "" 90. 808 7.754 0.00463 7.746 0 . 0 3 . 6 6 0.002700 8.533 0.083 0.0E3 1.313 92.121 8.268 0.00325 8 .260 0.00326 0.001,900 9. 04C 0 . 342 0.042 0 . O 5 6 92. 777 8. 786 0.00227 8. 782 0.00227 0.001380 9.5C1 0.063 0 . 0 8 3 1 . 3 1 4 9 4 . 0 9 1 9 . 2 7 0 0 . 0 0 1 6 2 9 . 2 6 1 0 . O O l 6 3 1 C.0C0980 9.995 C.042 0.042 0.656 94 .747 9.748 0.00116 9.742 0.00117 0 0.000650 10. 501 0. 042 _0.042 0.656 95.404 10.248 0.00082 10.241 0.003P3 -0_ 0.000490 10.995 0.042'"" ' 0.042 " 0.657 96.061 10. 748 0. 00058 10. 740 0.00358 I 0.000340 11.522 0.042 0.042 0.656 96.717 11.259 0.00041 11.249 0.00341 0 0.00006 1 14.000 0.208 0.208 3.283 100.000 12.761 0.00014 11.908 0.00326 0 o r C7 TOTALS 6 .330 6 .330 100.0 S I E V E , S H . P I P . , SEDIGRAPH SAMPLE WT.= 4 .8300 Pril PCT. CUMPCT.. 1.50 0 . 21 2 .00 0.21 0.41 2.50 0.62 __ 1.65 * 4 3.50 3.10 "' " " 3 . 3 1 » » * 4 .00 6.41 _ _ _ 5 ^ 3 _ _ _ 5.00 26 .47 18. 14 5.50 44.61 14.32  T^Z 58.94 . 1U.S0 * , » » » * , » » » . 6.50 69.44 " 5 . 7 3 " . - . . » » * - - - -7.00 75.17 5.73 7.50 60790 4 . 7 7 *»» 8.00 S5.68 •""' i . 8 2 * V * 6.50 89 .50 U 9 1 » * ~9To5 9T741 1.91 * * 9.50 9 3.32 i 5 _ 10.00 55.23 4 . 7 7 '_*> T I T o o T o o T o o MEAN S T . D E V . SKEWIESS KUPT0S1S 0.27 0.26 KRUMHE IN + PETT UGHNt 19 38) MUNENT MEASURES FOR SIZE RANGE 2.0 TO 10.0 PHI 0 .05 1.73 0.36 1 .37 FOLK GRAPHIC STATISTICAL PARAMETERS E ULK_ A NO HARD. 195/ PERCENTILES MEDIAN (f^) STH 3.79 16TH 4.63 2 5T H 4 .95 75TH 6.99 84TH 7.82 95TH 9.94 PER CENT GRAVEL 0.0 SANO / 6 . 4 1 J S I L T (79.63) 1 79.26) ^ CL A Y (^13.96 y — •• -,-) GRAVEL •• SANO 6.41 SILT/lSILTtCLAYI 84.69PCT GRAV » SAN J/S I LT+C" LA Y Pin- 18 0.0 0 . 0 **** **** '««• MJLTI MOO'AL~~S"AM>UE"""«»«*" * * * * WE T *T DRY WT SALT ORGANIC MO ISTURE " 1 0 0 0 . 0 0 0 0 ' 3 .5400 0.0 6 . 0 0.0' (GRAMS ) 1 0 0 . 0 0 0 0 100.0000 0.0 0.0 0.0 (PCT WET WT1 WEIGHT LOSS DUE 10 HANDLING 0 . 0 _ _ GRAVEL CORRECT ION FACTOR 1. 000~ SIZES. ELIMINATED (<0 .01 * l NONE TRASK SORTING COcFFECIENT 2.320 U S I N G P R O i U h U I TY ExTKAP. 2. 3 0 6 M E A N CUBEC D E V I A T I O N 1 3 . 5 5 8 U S I N G P R O B A BL I T Y E X T R A P . 1 0 . 0 1 5 PERCENTAGE COMPCSITION TABLE OF STATISTICAL DATA IN PHI UNITS PER CENT IL ES LINEAR EXTRAP. P"uJ0AeL IL ITY F X T K A P , GRAVEL . 0.0 SAND 10.73 SILT 6'/. 21 MCMFNT P-MCMENT F O L K ^ — - » ~Qb.40609J 6.43950 src CEV 2.33263" 2.21769 2.26371 SKfcWNESS_ ~1 .00 816 0.91829 0.43590 KUR10SIS 3.75640 3.25227 1.31216 5. 0 10.0 16. 0 MM. PHI LN 1 TS_ 0". 08 893 3. 491 1 5 0.06534 3.93581 0.04123 4.55598 MM. "0 .08869 ' 0 .06474 0.04071 PHI U M T S _ " "3 .49505" 3.94914 4. ;>! 856 4 . 9 3 2 6 0 5. 7 7 4 4 0 7. 3 6 0 4 9 ~ 8.9441 f " 9.99655 I 1. 2 6 3 8 1 0.05247 0.01827 O.OOol l_ 0.00204" 0.00093 0.00041 4 . 94.4 7 "3"" 5 . 7 7 4 6 0 _ 7. 3 5 5 6 5 " 9 . 9 3 9 9 2 9 . 9 9 6 1 5 1 1 . 2 5 4 2 3 CLAY 20 . 0 6 P-FOLK. 6.44436 2 .25597 0 .43669 1.31b97 MUO 89.27 IHMAN 6.77205 2.17206 0 .45931 0 .78923 S/M_ 0 . 12 P-IfiMAN _ 6.77924 2 .16068 0.46496 0.79554_ ._ _ _ K f r . , , N - — 1 . 7 9 8 2 9 ' *"G."37225 *~'0.2u021 P-KPUM. 1.785e9 0.37558 0 . 19929 FOLK. (TRANSFORMED) 0. 56750 25.0 50 .0 75.0 "84.0 90. 0 95 .0 U. 03 2 74 0.01827 0.00609 "0.00203 0.00098 0.00041 P-FULK (TRANSFORMED) 0.56877 DATA FOR CQNSTN OF BARGRAPHS AND CUM. CURVES MID PHIlPr iOE. ) PHI MM M O D E SIZE FRACTION MM PHI WT.(GMS) UNCOR COR WT.PCT. COR WT.PCT. CUMUL. MID PHI(LINEAR) PHI MM '*OT2"5CCrOO " ITOOO "6T0TO OTOl'O 0.282 "0.28*2 1.751 0.29707 i . 8 91"" ' 0" 2 69 55 ~ 0 0.177C00 2 .49E 0.020 0 .020 0.565 0 .647 2.249 0.21036 2 .307 0.20205 0 .0.125000 3.HOC 0.050 0.050 1.412 2 .260 2.749 0.14875 2.800 0.14357 0 0. C'icOOj 3. 506 0. 100 0. 10U 2. 62 5 a. o « 5 J .253 0. 10488 3.294 0 . IJ19 4 "" V 0.062500 4 .000 0. 200 0.200 5 .650 1 0.734 3. 753 0.0741O 3. 788 0. 07242 1 0. 044000^ 4.506 0.097 0.097 2.733 13.4o8 4.253 0 . 0 52 44_ 4 . 263_ 0 . 0 52 0 8 0 _ "6".'631 00'0 "5 .012 0 . 4 f 4 0.~484 "13". 662 ""2 7. I 3 0 " '4 . 75 9 0 . 036 93 4. 7 65 0. 0 3o 2 7 " ~ 0 0.022000 5.506 0.548 0.54b 15.4B4. 42 .6T4 57259 0 .02oI2 5.269 0.02i~9"3 0.015600 6.002 0.484 0.484 13. 664 56. 2 7 8 5_._7 54 0.01 353 5. 7 55 0.0 16 52 0 0.01100U 6.506 0. 355 0. 355 10.0^0 6 6 . 2 9 8 6.25"4 0*701310" 6.25*0 Cf. 0 1 j (~~ 0~ C. 007800 7.002 0 . 193 0. 1 93 5.465 71.7o3 6.754 U.U0926 6. 750 O.OO-J-W 0 0.00550C 7. 506 0. 161 0 . 161 4. 555 76.3 18 7.254 0.00655 7.249 0 .0 Ou 5 8 ~ ~~~ 0.303900 8.002 " 0 . 129 0 . 129 " ' 3 . 643' 79.561 7.754 0.00463 7. 748 0.00465 " ' 0 O.0O2700 8.533 0.064 0 .064 1.822 81.783 H.268 0 .00325 8.264 0.0O>25 0 Q.01190U 9 .040 0.097 0.097 2. 733 64. 516 6.786 0.0022 7 8. 780 C.00228 1 0. 001360 9.5 01 0. 09 7 0 .09 / 2. 732 8 / .24 7 9 . 270 0.00162 9.2o3 0.00163 0 C. 000960 9. 995 0.097 0 .097 2 . 733 89.980 9.748 0.001 16 9 . 737 0.001 17 1 0.000690 10.501 0 .097 0 . 097 2.733 92 .713 10.248 0.00082 10.233 0 .00J83 0 0.000490 10.995 0.065 "" 0.065 1 . 8 2 2 9 4 . 5 3 5 10.74B 0.00068 10. 734 0 . 0 0 0 5 9 0 0.000340 11.522 0.032 0.032 0.911 95.446 11.259 0.00041 11.249 0.00041 0 C.000061 14.000 0. 161 0 . 161 4.554 100.000 12.761 0.000 14. 1 1 . B99 0.00026 0 - . . - . - L Q I A L S . 3.540 3.540 100.0 1 P I T T i g SIEVE, SH. P I P . , SEDIGRAPH SAMPLE WT.= 4 .0100 PHI PCT. CUMPCT. "TTso 0.25 2 . 0 0 0 . 2 5 _ " 0 . 2 5 2 .50 0 .50 0. 25 3 .30 0.75 3 .50 *<•* 3.50 4 .24 6 .49 " * » * • * ' * 4 .00 10.74 i i i i "4750 20.65 * * * * * * * ********** 11.72 5". 00 3 2.3F. 15. 3 3 - . » * * » * . - » * » » « » » • 5.50 47.70 11.72 f * * * * * * -T700 5 9 T 4 3 7.21 ******* 6.50 66.64 4:"5i"~ *•-"<• 7.00 71.15 4.51 ***** " 7 7 5 0 7 5 . 6 6 2 .70 8.00 78 .36 2 770 8.50 81 .07 .61 - 9 7 0 0 84.67 1.80 9 .50 66.48 . 10.00 68.28 1-30 10750 90.08 l . S O 11.00 _ 91.89 1.80 " 11.50 53 .69 1 .80  12.00 95.49 4 .51 • oo__ 10_0.00_ MEAN S T . D E V . SKEWNESS K.URTOSIS "TT7 ) 2708 OTSO 5741 KRUMBE I M + PETT 1 JOHN ( 1 93 6) MONENT MEASURES FOP. SIZE RANGE 2.0 TO 12.0 PHI TtfOC GRA PHIC STATIST I C~AL PARAMETERS POLK AN C WARD,1957 PERCENTILES MEDIAN 5.60 5TH 3.56 16TH 4.27 25TH 4 .69 n PITT20 SIEVF, 5H. PIP., SEDIGRAPH SAMPLE WT.= 3.2600 r 5. Pril PCT. CUMPCT. 1 .30 < 0.31 2 . 0 u 0. 31 "6. 92' 2 .50 1.23 1.23 * 3.00 2 .46 2 . 46 * * 3.50 4 . 92 " 3 . 6 9 4 . 00 8 .60 3 .73 4 . 50 12.33 11.19 * * * * * * * * * * * _ 5 . 00 23. 52 15. US if if it * * * * * * * * * * * " " ' 5.50 3 9 . 38 13. 99 ************** 6 . 00 53.3 7 9. 3 3 ********* 6. 50 62. 69 6 . 53 ******* 7.00 69.22 4. 66 ***** 7 .50 73.89 3. 73 **** 6. 00 77.62 3 i 73 **** B. 50 61.35 2.80 *** 9.00 84. 15 2. 80 *K* 9 . 5a 66 .94 2 .80 *** 10.30 89.74 ue7 * r 13 .30 91 .61 1 .57 »* 11 .00 93 .47 1.87 ** 11.50 95 .34 0 .93 * 12.30 96 .27 3.73 **#* 12. 00 100 .00 MEAN S T . O t V . SKEWNESS KUPTOSIS V ( b . f j j 2 .01 0. 37 0 .20 KRUMBF IN»PETT IJOHNt 1938) MuNt NT MEASURES FOR SI2E RANGE 2 . 0 TO 12 .0 PHI 6 .51 2 .27 ~~6~: 42 1.57 FOLK GRAPHIC STATISTICAL PARAMETERS -FOLK AND WARD,1957 o PERCENTILES MEDIAN 5.88 5 TH 3.51 1 6TH 4 .1 .6 251 H 5.05 PITT21A SIEVE, SH. PIP., SEDIGRAPH SAMPLE WT.= 5.1100 PHI PCT. CUMPCT. 1.50 0 .20 2 .00 _O,Z0 0.59 2 . 50 0. 76 1.17 Z.T> 3.50_ 4 .70 4 .51" 4 .00 9 .00 4. o4 "TTSO 13.64 11. 14 5.00 24 .79 ' " "17.64 5.50 42 .43 if T T o o s T T r T 12.07 6.50 69 .36 " 7 .43 7.00 76. 79 6 . 50 TTiO 63 .29 3.71 8.00 87 .00 >****#"* ""2. 79" 8 . 5 0 . 89.79 2 .79 9.00 92 .57 1.86 9 .50 94.43 1.86 10.00 96.29 3^71 12.00 100.00 _ME AN ST . DEV. SKFWNE SS> KUPIGM S 0.20 5.87 1.4 9 0.25 KRUMBF. IN + PFTT 1 JOHN 1 I 93 8) MOMENT MEASURES FOR S U E . RANGE 2.0 TU 10.0 PHI 5.99 1 .67 0.25 1.42 FOLK GRAPHIC STATISTICAL PARAMETERS FOLK AN C WARp, 1 957 _ PERCENTILES MEDIAN 5.75 5TH 3.54 L6T-H 4.61 25TH 5.01 75TH 6.88 84TH 7.60 95TH 9.65 PER CENT GRAVEL SAND 9.00 SILT 78.28 ( 78.00) CLAY 12.72 I 13.001 GRAVEL «• SANU 9.00 S I L T / I S I L T + CLAY) 85.7.1PCT GRAV*-SAND/S ILT + CLAY PITT21B S I E V E , SH. P I P . , SEDIGRAPH SAMPLE WT• 3.5900 PHI P C T . CUMPCT. O } 3.00 \ 1.67 ** 3.50 1.67 """2 .75" *** 4 . 0 j 4 .46 1 .93 * * 4 . 50 6 . 39 5 .79 ****** 5.00 12.13 13.51 *«**:********** 5. 50 25 .69 12.55 ************* 6.00 38.24 10. 62 *********** 6.50 48 .05 5 .79 **»-*» 7. 00 54.64 7. 72 ******** 7. 50 62.36 4 . 83 ***** 8.00 67 .19 5 .79 ****** 8. 50 72 .58 3 . 86 *•** 9.00 76.84 4 . 83 ***** 9. 50 81 .66 " 4 7 8 3 ' ***** 10. 00 86.49 3 . 86 **** 10.50 50 .35 3.86 **** 11.00 94.21 I .93 ** 11.50 96 . 14 3 . 86 **** 12. 00 100.00 MEAN S T . D E V . SKEWNESS KUP.TOSIS 1 5b j 1 .59 0 . 22 - 0 . 7 4 K.PUMRE INfPETTI JOHN ( 193 8) MONENT MEASURES FOR SIZE RANGE 3.5 TO 11.5 PHI 7. 16 2.22 0. 34 1.23 FOLK GRAPHIC STATISTICAL PARAMETERS FOLK AND WARD,1957 PERCENTILES MEDIAN 6.60 5TH 4 . 1 4 16TH 5.14 2 5TH 5.4 7 75TH 8. 76 84TH 9.74 95TH 11.20 PER CENT GR AVEL 0 .0 SAND 4 . 4 6 SILT 63 .46 ( 62.73) CLAY 32.08 ( 32.81) L A to oo GRAVEL • SAND S I L T / I S I L T t C L A Y ) 65.66PCT GRAV+SAND/SILT*CLAY 0 .05 n ; PITT22A S I E V E , SH. P I P . , SEDIGRAPH SAMPLE WT.- 4 .0000 PHI P C T . CUMPCT. 0 .25 2 .00 _ 0 ' 2 ? " 0 . 7 5 ""' " " » " 2 .50 1.00 1 . 50 * * 3 . 0 0 2 .50 3 .25 * * * .3 . 5 0 6 ' 7 5 _ _ 6 .75 * * » * * » " * " 4 .00 12.50 7 .95 * * * * * * * * 4 .50 20.45 5 ,30 * * * * * _ 5 . 0 0 " 5 . 7 6 12.37 ' • » » » * » * • * * • * » 5 .50 38.13 7.95 * * * * * * * * 6.00 46 .09 7.07 * * * * * * * 6.50 53 . 16 5. 30 " t v i t t -7.00 58 .46 fe.19 * * * * * * 7.50 64 .65 5 ,30 * * * * * 8 .00 _ f c ? - 9 5  "6 .19 " ' * " * » " * W 8.50 76.14 6 .19 * * * * * * 9.O0 82.32 4 .42 * * * * 9 .50 66.74 4.42 »* + *' 10.00 2. 91 65 . 16 *** 10. 50 93 .81 2 . 65 * » * 11.00 96 .46 ' ~3 . 54 **** 12.00 100 .00 MEAN S T . D E V . SKEWNESS KUPTOSIS _!^ L_6._45 ' . 2 . 12 0.1_1 - 0 . 9 0 KKUMBEIN*PETT1 JOHN( 19381 MUNENT MEASURES " FOR SIZE RANGE "2.6 T O l T . o ' P H I 6 .56 2 .35 0.19 1.24 FOLK GRAPHIC STATISTICAL PARAMETERS  FOLK AND WARD,1957 PERCENT i L E S MEDIAN 6.28 5TH 3.38 1 6 T H 4 . 2 2 " 25TH 4 .93 75TH 8.41 84TH 9.19 95T H 10.72 PITT22B SIEVE, SH. P IP . , SEDIGRAPH SAMPLE WT.= 3.9600 PHI PCT. CUMPCT. * n > 1.50 2 - 0 0 0.25 0. 25 Q 2. 50 ~ o . s i 1.01 0. 76 * Q 3.00 , 3.50 2.02 1 . 77 _ 3 . 7 5 ** 4.00 " 4 . 0 4 4 .66 7.83 ***». ***** v.. 4.50 5.00 5.59 12.48 18.07 * i * * * * r> 5.50 14.50 32. 97 *************** ************* 6.50 6. 52 40 .00 52.52 ******* C 7.00 7.45 5. 59 55.97 *•»»*** ****** c 7.50 8.00 4.66 65.55 70.21 ***** 8.50 4.66 4.66 74.86 ***** ***** -9.00 9. 50 4.66 75.52 84.17 ***** 10.00 3.72 3. 72 87 .90 *** * **** 10.50 _1_1_. oo _ 3. 72 91 .62 95.34 » *** 11.30 0.93 3.72 96. 20 * ** * * 12.00 100.00 MEAN ST. OfcV. SKEWNESS KURTCSIS r. 2.07 0. 15 -0 .65 KRUMREINtPETTIJOHNI1938) FOR SI2E PANGE 2.0 TO MUNENT MEASURES 1 1.5 PHI O 0.87 2.27 0. 32 1.28 FOLK GRAPHIC STATISTICAL FOLK ANC WARD,1957 PARAMETERS o PERCENTILES MEDIAN 6.31 5TH 3.65 16TH 4.81 25TH 5.23 * o : o . 7 5 T H 8 . 5 1 8 4 T H 9 . 4 8 9 5 T H 1 0 . 9 5 n PITT22C PHI PCT. CUMPCT• S I E V f , SH. P I P . , SEDIGRAPH SAMPLE WT.= 4 .0000 2. 50 0.25 3 .00 0 .25 0 . 75 3 .50 1 .00 1. 75 ***** ******** r-************ ********* 7.00 53.32 7.73 7.50_ t l-i'2 "5. 34 8.00 66 .93 6.81 * * * * * * * "8. 50 73 . 74 6.81 9 .00 80.55 o '4786 * * * * * " 9 .50 35.41 4 . 86 * * » » * 10.00 50.27 2.92 10.50 93. 19 2.92 11 . 00 96.11 3.89 12.00 100.00 MEAN S T . O F V . « f W N F S S ^ U P T £ S I _ S _ 1.70 0.15 - 0 . 7 3 <•/ r 6 . 98/ KRUMBEINtPFTT1 JOHN( 1938) MONENT MEASURES FOR SIZE RANGE 3 .0 TU 11.0 PHI 7. 14 1.98 0.26 1.16 FOLK GRAPHIC STATISTICAL PARAMETERS FOLK AND WARD,1957 PERCENTILES MEDIAN 6.81 5TH 4 .53 16TH 5.26 25TH 5.61 75TH 8.59 84TH 9.35 95TH 10.81 PEP. CENT GRAVEL 0 .0 SANO 2.74 SILT 64.21 I 64.191 CLAY 33.04 I 33.071 C-n GRAVEL • SANO 2.74 S 1 L T / { S I L T « - C L A Y 1 66.00PCT GRAV*-SANJ/S 1 LT +-C LA Y 0.03 P 1 7 T 2 3 A S IEVE, S H . P I P . , SEOI GRAPH SAMPLE WT.= 2.3600 PHI PCT. CUMFCT. 3 . 50 1.56 4 .00 1.56 0. 58 4 .50 2.54 3.94 5.00 6 .48 5.91 * * * * * * _ 5.50 1 2 . 3 9 _ 10.63 ft******"*"**"*" 6.00 23.22 ii. 86 ********* 6. 50 32. 08 6 .89 * * * * * * * 7 .00 38 .97 6 .89 "" ~" * * * * * * * 7.50 45 .86 7.88 * * * * 8 .00 53. 73 6 .89 * * * * * * * 8.50 60.62 5 .91" * * * * * * 9 .00 66 .53 6 .89 * * * * * * * 9 .50 73.42 4 .92 * * * * * 10.00 _ Z J L - J ^ 3.94 * " .""*»»"* 10 .50 82.28 4.92 « * » * * 11.00 8 7.20 5.91 11.50 93.11 3 .94 " »*•>••. 12.00 97 .C5 2.55 * » »  12.00 100.00 MEAN S T . D E V . SKDWNESS KURTOSIS 2 .10 0.10 - 0 . 9 8 KRUMBEIN*P=TTIJOHN(I938) MONENT MEASURES FOR SIZE RANGE 4.0 TO 12.0 PHI 8 .03 2 .30 0.16 1.15 FOLK GRAPHIC STATISTICAL PARAMETERS - . . . - F\0LK__A_N0_WARD, 1957 PERCENTILES MEDIAN 7.76 5TH 4.61 16TH 5.67 25TH 6.10 75TH 9 . 6 6 ' 84TH 10.67 95TH 11.74 PER CENT GRAVEL 0.0 SAND 1.56 SILT 52.63 ( 52.17) CLAY 45.81 ( 46 .27) GRAVEL • SAND 1.56 S I LT / (S ILT+CLAY) 53.00PCT GRAV+SAND/SILT+CLAY PITT23B PHI PCT. CUMPCT. ** 3.50 2.15 4.0O__ 2 . 1 5 1.96 " * * 4 .50 4.11 2.54 »«* 5.00 7.05 6.85 * * * * * * * _5.50__ _ 13.90 6 . 8 5 ' " " * ( . * * * * * 6.00 20.75 6.81 . . * » * « * * * 6 . 5 0 2 9 . 5 5 4 . 8 9 * * * * * 7 . 0 Q _ 3 4 . 4 4 " 4 . 8 9 * * * * * 7 . 3 0 3 9 . 3 4 6 . 8 5 * * * * * * * 8 . 0 3 4 6 . 1 8 7.33 * * * * * * * * 8 . 5 0 5 4 . 0 1 6.85 * * * * * * * 9.00 60.86 5.87 . * . * > * 9.50 66 .73 4 .69 * * * * * 10. 00_ _ 71.6_2 _ 5.87 ' "" "" * - "****"** " 10. 50 77. 50 4 .89 * * * * * 11 .00 82.39 6.35 * * * * * * * 11.50 69.24 "4.e9 ***** 12.00 94 .13 5.87 ****** 12 .00 100.00 MEAN ST .Ofc V._ SKEWNE SS KUfUOSJ"_S_ ^ / 8. 03 : 2.21 0.00 - 1 . 0 7 KRUMBEIN*PETTIJOHNI 1938) MUNE NT MEASURES FOR SIZE RANGE 4 .0 TO 12.0 PHI 8.34 2.46 0.04 1.13 "OIK GRAPHIC STATISTICAL PARAMETERS FOLK AND WARD,1957 PERCENTILES MEDIAN 6.24 5 TH 4.65 16TH 5.65 25TH 6.24 75TH 10.29 84TH 11.12 95TH 12.00 PER CENT GRAVEL 0.0 SANO 2.15 SILT 4 3 . 9 9 I 44.03) CLAY 53 . e t I 53.82) PITT23 C SEOIGRAPH ANALYSIS PHI > PCT. CUMPCT. 4 .00 0 .0 4 . 5 0 0 .0 " w o o * 5.00 1.00 1.00 * 5.50 2.00 3.00 *** 6.00 5 .00 " 6 . 00 ****** 6.50 1 1.00 9.00 ********* . 7. 00 20.00 1 2.00 ************ 7.50 32.00 13. 00 ************* 8. 00 45 .00 11 .00 *********** 6 • 5 0 56.00 5 .00 »*»**»*** 9 . 00 65 .00 8. 00 ******** 9.50 73.00 7.03 * * * * * * * 10. 00 80.00 5.00 ***** 10 .50 85 .00 4 . 00 **** 11.00 69 .00 4 .00 *»** 11 .50 93 .00 4 .00 **»* 12.00 97 .00 3 .00 *** 12 .00 100.00 MEAN S T . D E V . SKEWNFSS KUPTU5IS _ i ^ / 8 ' 3 6) 1.62 0.14 - 0 . 5 5 KF UMISE IN + PE TT I JOHN I 1 93 8) MONFNT MEASURES FOR SI2E RANGE 4 .5 TO 12.0 PHI 8.47 1 . 78 0.21 1.18 FOLK GRAPHIC STATISTICAL PARAMETERS FOLK AND WARD,1957 PERCENTILES MEDIAN 8.23 5TH 6.00 16TH 6.78 25TH 7.21 75TH 9.64 84TH 10.40 95TH 11.75 .....PEI PE NT_ GRAVEL 0.00 SAND 0.0. .SILT . . .0.0 ( 56.001 CLAY 0.0 ( 4 4 . 0 0 ) . GRAVEL » SAND 0 . 00 S I L T / ( S I L T * C L A Y ) 56.00PCT GRA V *S AND/S I L T* CL A Y 0.00 . . — _ . LABELS SHEPAKO -CLAYEY SILT FOL K IGMS )-MUO 1 SCSI-MUD 1 P IT T 24A SIEVE, SH. PIP., SEOIGRAPH SAMPLE WT.= 3.8500 PHI PCT. CUMPCT. 3.50 1.82 4.00 1.62 2."95 4.50 4.77 2.95 5.00 *** 7.71 5.89 5.50 13.60 4.91 6.00 18.51 6.84 6.50 27.35 6.87 7.00 34.22 7.85 7.50 • 42.07 c. 84 8. JO 5 0.91 4.91 3. 50 55.82 7.85" 9.00 63.67 6.87 9 . 3 0 70.55 5.89 10.00 76.44 3.93 " " 10.50 80.36 **** 1 1.00 83.31 4.91 11.50 88.22 3.93 12.00 92.15 3.93 12.50 96.07 3.93 12.00 100.00 MEAN ST.OEV. SKEWNESS KUPTOSIS ,y S 8.03 s 2.21 0.07 -0.84 KRUMBEIN+PETTIJ OH Hi 15 38 1 MONENT MEASURES U FOR SIZE RANGE 4.0 TO 12.5 PHI e. 25 2.52 0.15 1.31 FOLK GRAPHIC" STATIST ICA~L "PARAMETERS" FOLK AMD WARD,1957 PERCENTILES MEDIAN 7.95 5TH 4.54 16TH 5.74 25TH 6.37 . — -- 75TH «J.88'~ * 84THIT.07 ' 95TH 12.36 PEP CENT GRAVEL 0.0 SANO 1.P.2 SILT 49.42 I 49.09) CLAY 48.76 I 49.09) PITT246 S I E V E , S H . P I P . , SEDIGRAPH SAMPLE WT.= 3 .7900 PHI PCT. CUMPCT. 3. 50 1.06 4 .00 1.06 2 .97 4 .50 4 .02 5 .94 5 .00 5 .96 7.92 5 .50 17.R8 6.93 6 .00 24.60 8.91 ********* 6 .50 33 .71 4 .95 J.00_ 3f.(,5^ 0.91 7.50 47 .56 6 .53 *..*.** 3.00 54.49 6 .93 8.50 _ i ; l _ ; * l 6.93 9 .00 68.34 6 .93 ******* ~* * * * *"*#~ 9.50 75.26 3.96 J O . 0 0 79.22 -- -4'. 95 -10.50 84.17 2 .97 11.00 67.14 3.96 11.50 91 .10 " 3756 12.00 95 .05 4 .95 ***V" 12.00 100.00 MEAN S T . D E V . SKEWNESS KURTOSIS 7.65 2 . 10 0.11 - 0 . 9 1 KRUKISEINfPETTIJOHNI1938) MONFNT MEASURES FOR SIZE RANGE 4 .0 TO 12.0 PHI 7. 85 2 .40 0 . 13 1.25 FOLK GRAPHIC STATISTICAL PARAMETERS FOLK AND WARD,1957 PERCENTILES MEDIAN 7.68 5TH 4 .58 16TH 5.38 25TH 6.01 75TH 9.48 84TH 10.48 95TH 11.? PER. CENT GRAVEL 0.0 SAND 1.06 SILT 53.43 I 53.43) CLAY 45 .51 ( 45.51) r.RAVFI • SAND 1.06 SI L T / ( S I LT+CLA Y) 54.00PCT GR AVtSAND/S I LT + CLAY 0.01 i " N f PITT24C S IEVE, SH. P I P . , SEDI GRAPH SAMPLE WT.= 3.0400 > D PHI PCT. CUMPCT. < > — 3.50 4 . 00 0.66 0 . 6 6 _ o 1 t . 5 0 0.99 0.99 1 .65 5 .00 . . . 5 , i 0 3 . 9 7 2 . 6 4 **** 6 . 62 ^ i v'' i 6 . 0 0 4 . 9 7 8 .94 ***** 1 1 .58 ********* 6 . 5 0 7. 00 6 . 5 5 20 .53 ******* 27.48 . . . . . . . ! 7 .50 " 8 . 9 4 10.93 3 6 . 4 2 \ b. JO 8.50 7.95 47 .35 ******** 55 .30 c 9 . 0 0 r . 9 5 " . * . - « » . - » * 63.24 6 . 9 5 * * * * * * * 9 . 5 0 10.00 5 . 9 6 70.20 ****** 76.16 c t 10.50 3 . 97 2 . 93 - • - • • * * * » 80 . 13 ! I I .00 11. 50 4 .97 83 . 11 ***** 88.06 i 12.00 3.97 3 . 9 7 *.«.* 92.05 * * * * \ 12.50 12.00 3 . 9 7 96 . 0 3 **** 1 CO.00 © i MEAN S T . O L V . SKEWNESS KUKTOSIS ! C- 1 V ' B . 2 e y 2 .00 0 .12 - 0 . 6 7 K.PuMftE iNtPCTI l J U H N n v S f l l MUNtNT MEASURES FOR SIZE RANGE 4 . 0 TO 12.5 PHI : a .50 2 . 28 0.20 1 .28 FOLK GRAPHIC STATISTICAL PARAMETERS FOLK ANO WARD,1957 .\ PERCENTILES MEDIAN 8.17 5TH 5.30 16TH 6 . 2 5 25TH 6 .82 1 i L, : " ' ' 751H 9 .90 64TH 11.09 95TH 12.37 o ! w 1 PER CENT GRAVEL 0.0 SAND 0.66 SILT 46 .80 ( 46 .65) CLAY 52.55 ( 52.65) PI TT25A S1EVF, SH. P I P . , SEDIGRAPH SAMPLE WT.= 3.6400 Phi P C T . CUMPCT. 3 .30 0.55 4 .00__ 0.55 0.99 4 .50 1.54 0.99 5.00 5.50 6 .00 1 . 49 "0. 59" 4 .97 2.54 4 . 5 3 5*. 52 ***** 6.50 10.49 5.57 _• 7. 00 _ I 6 .46 12 .93 7.50 25 .39 10.94* ****** "******* *****"*" * * * * * * * * * * * ii.OO 40 .33 9 .95 8. 50 _ _ 50.J7_ 9 .95 9.00 60 .22 6 .96 **** ****** ********** ******* . 5 .50 67 .18 5.97 10.00 73.15 ****** 6.56 i o . 5 0 e o . i i 4.97 * * * * * * * 11 .00 65.08 6 .96 11. 50 92.04 ******* 6.96 12.00 99.01 0.99 ******* 12.00 100.00 MEAN S T . D E V . SKFWNESS_J<URTJ;SI S 8.62 J 1.82 - 0 . 0 2 - 0 . 5 5 KP.UMBE 1 N*PETT I JOHN! I 53 8) MONENT MEASURES FOR SIZE RANGE 4 .0 TO 12 .0 PHI 8. 78 1 . 89 0. 15 1.14 FOLK GRAPHIC STATISTICAL PARAMETERS FOLK AN0 WARD,1957 PERCENTILES MEDIAN 8.49 5TH 5.74 16TH 6.96 25TH 7.33 75TH 10. 13 84 TH 10.89 95TH 11.71 PER CENT GRAVEL 0.0 SAND 0.55 SILT 39.78 ( 39 .78) CLAY 59.67 ( 59 .67) GRAVE L <• SAND 0 .55 S I L T / I S 1 L T t C L A Y ) 40.00PCT GRAV+SANO/SILT+CLAY 0.01 PITT25B SEOIGRAPH ANALYSIS PHI PCT. CUMCCT. • 4.00 4.50 5.00 0. 0 "0.0 2. 00 0 . 0 0 . 0 5.50 2.00 1 .00 6.00 3.00 '"3.00 6.50 6.00 8. 00 "TTOO 14.00 11.00 7.50 25.00 ""13.00 8.00 36.00 12.00 8.50 50.00 " 6.00 9.00 5o.00 7*. 0 0 ~ " 9.50 63.00 7.00 <1 LD 10.00 70.00 6.00 10.50_ 76.CO 8.00" 11.00 64.CO 6.00 11.50 90.00 8.00 *»«.***** 12.00 98.00 2.00 12.00 100.00 MEAN ST.DEV. SKEW-JESS KURTOSIS f ' 8. 86 I . 72 1.81 - 0 . 9 7 KRUMBEIN + PETTIJGHN(193 81 MONENT MEASURES^ "FOR' SIZE'RANGE "4.5 Tb"12.0 PHI" 0.24 1.02 FOLK GRAPHIC STATISTICAL PARAMETERS evar2i'ND"T7iR"rjTi"'5"57 P E R C E N T I L E S M F D T A N " "8 . 5 0 " *5'T"H 33 75TH 10.42 1 6 T H 7 . 0 9 84TH 11.00 2 5TH 7.5 0 95TH 11.81 P6K CENT GRAVEL 0 . 0 0 SAND 0.0 SILJ_ 0.0 1 50.001 CLAY 0.0 _(_ 50.001 GRAVEL * SAND 0.00 SILT/ISILT+CLAY) SO.OCPCT GRAVSANO/SILT»CLA Y 0.00 LABELS SHEPAPO -CLAYEY SILT FOLK!GMS1-MUD ISCSl-MUD ! O PITT25C SIEVE, SH. PIP., SEDIGRAPH SAMPLE WT. 4.6200 PHI PCT. CUMPCT. f 3.50 4.00 0.87 0.87 * < 4.50 ~~"*0.99"" 0.99 1.86 * * 5.00 ,_5.50 0.99 2.85 3.84 6 . 00 1.93* 5.55 5.82 ****** 6.50 7 .00 8.92 11. 77 20.69 ********* 7.50 T l " , 90' 12.89 32.59 ************ ************* £.00 8.50 10.90 45.48 56.28 *********** 9.00 " 8 ."52" 7.53 65.30 ********* ******** 9. 50 10.00 6.94 73. 23 _eo. 17 ******* 10.50 4. 96 3.97 85. 13 ***** **»* 11.00 11.50 3.97 89. 10 93 . 06 **** 12.00 3.97 2.57 97.C3 **** *** 12.00. 100.00 MEAN ST.DEV. SKEW'NESS KURTGSIS (o. 3 I . 70 0. 03 -0.22 K RUMME I Nl-PETT I JOHN! 1 93 8) FOR SIZE RANGE 4.0 TO MON EN T MEASURES 12.0 PHI 8.4 4 1 .81 0. 19 1.22 FOLK GRAPHIC STATISTICAL FOLK AND WARD,1957 PARAME1 ERS PERCENTILES MED IAN 8.21 5TH 5.79 16TH 6.74 2 5TH 7.1fl 75TH 9.63 84TH 10.39 95TH 11.74 PEP; CE NT GRAVEL 0.0 SANO 0.87 SILT 44.42 I 44.611 CLAY 54.71 ( 54. 52 ) GRAVEL + SANO 0.87 SILT/(SILT+CLAYl 45.00PCT GRAV*SANO/SILTtCLAY 0.01 PITT26A PHi PCT. CUMPCT, 4.00 4.50 5.00 1.00 "0.6 — 2.00 I. 00 1 .00 5. 50 3.00 2 .00 6.00 5.00 5.00 6.50 10.00 5.00 7.00 15.00 10.00 7.50 25.00 " i i . o o " 8.00 36.00 11.00 8.50 47.CO 10.00 9.00 5 7.00_ " ~ 6 7 0 0 ~ " 9.50 65.00 5.00 10. JO 70. 00 75. CO 10.50 11.00 80.00 2.00 11.50 82.00 9.00 12._00__ _ J91.00 ' 5.00" 12.50 56.00 4.00 12.00 100.00 MEAN ST.DEV._ SKEWNFSS KURTOSIS 8. CO ) l.K'i 0.08 -0.67 9. 10 2.11 0.24 1.18 KRUMBEIN • PF TT1 JOHN( 19 38) MONF NT ME A SUR FOP SIZE RANGE 4.5 TO 12.5 PHI FOLK GRAPHIC STATISTICAL PARAMETERS FOLK AND.WARD, 1957 _ PERCENTILES MEDIAN 8.65 5TH 6.00 16TH 7.05 25TH 7.50 PER CENT GRAVEL 0.00 SANO 75TH 10.50 • B4TH 11.61 95TH 12.40 1.00 SILT 0.0 I 46.00) CLAY 0.0 ( PITT26& : S ED I GRAPH ANALYSIS PHI PCT. CUMPCT. > 4.00 _4.50_ 1 .00 1.00 * 5.00 1.00 2.00 3.00 * *** 5. 50 6.00 5. 00 3.00 8.00 *** 6.50 5.00 13.00 7. 00 ***** ******* 7.00 __7._50 _ 20. 00 8.00 28.00 ******** 8.00 11.00 39.00 11.00 *********** *********** 8.50 9.00 30.00 10.00 60.00 ***-******* 9.50 6.00" 66.00 3.00 ****** *** ***** 10. OJ 10.50 74. 00 6.00 80.00 ****** 11.00 3 . 60 85.00 5.00 ***** ***** 11. 50 12.00 90.00 5.00 95.00 ***** 12.00 5.00 100.00 ***** MEAN ST.DEV. SKEWNFSS KUF.TCISIS f a.48 s 1.79 -0. 01 -0.63 KP.UMBEIN*PETT|J0HN11938I MUNENT MEASURES FOR SIZE RANGE 4.5 TO 12.0 PHI 8.70 2.03 0. 11 1.25 FOLK GRAPHIC STATISTICAL PARAMETERS FOLK AND WAHJ,195 7 PERCENTILES MEDIAN 8.50 5TH 5.50 16TH 6.71 25TH 7.31 70TH 10.08 841H 10.90 95TH 12.00 PEP. CENT GRAVEL 0.00 SANO 1.00 SILT 0.0 1 49.00) CLAY 0.0 i 50.00) GRAVEL » SANO 1.00 SlLT/lSI L T t C L A Y I 49.45PCT GRAV*SAND/SILT*CLAY 0.01 B V o - ! N O ! - oo T i NO O 1. LABELS SHJPARD -SILTY CLAY FOLK!GMS)-MUD ISCSl-MUD PITT26C SE 01 GRAPH ANALYSIS Pni PCT. CU-'PCT. 1.00 4 . 5 0 1.00 2.00 3.3j 3.JO 3. 00 3.50 ~ 6.~0'J ; .oo 6.00 9 .00 6 .00 6.50 15.',' j 9 .00 7 . . J J ""V . ..'./ 1 1 .00 7 .0 " 3 5 . C J 12.00 6.30 '.7.0.') 1_J._00 b . "1 5 7. J'J P.00 9 . JO t;5.'JJ 4 .00 9.5'j 73.00 OJ I « » * * * * * ' l o . . ' o 75.03 o.OO 10. 50 c 5 . C O i .00 11. JJ 9 0 . J . " ,00 11. i i ' '6 .00 4 .00 12. JO 100. CO S T . O I' v. ::KI:.I.Z '.5 KOI - 'USI I i<: .70 0.01 - 0 . 6 5 K r UMP.E 1 N + PL TT i JOhNI 1 936 I MUNENT MEASURES FOR SIZE RANI,,: ; . j U) 11.5 PHI 1.20 ' FOLK "GR'APHIC STATISTICAL P Ak AMET LRS~ FOLK ADO „, ' .kO, 1957 PEPCC'.'I 1 LES hi 0 IAN 8.15 5TH 5.33 ~"75Th 5.67 .16TH b.'U, 25TH 7.05 84 IH 1 0 . 4 2 ' 95TH 11.42"" pc"- cc'.i c**/.vEL O.OO SANI, I.OO SILT O.O I 56.~oo) " 'CLAY ""' o.o t 43.001 Ok ,* v L . S'A'.O i .OO SIL 7 / t S I L T t f l A Y I 56.571'Cl GR Ay "• SAN 0/S" IL T *C L A Y " b . 6 l LASiiLS :i'EPAI-U - C L A Y ' Y SILT lULKIGI'.S t-mjO ( SCS 1-MUI) P I T T 2 7 A SEDIGRAPH ANALYSIS P H I P C T . C U M P C T . 4 . 0 0 4 . 5 0 0 . 0 0 . 0 2 . 0 0 5 . 0 0 2 . 0 0 3 . 0 0  5 . 5 0 5 . 0 0 4 . 0 0 6 . 0 0 9 . 0 0 6 . 0 0 6 . 5 0 1 5 . 0 0 7 . 0 0 2 2 . 0 0 *>* ft " » » * » ' » » ' " 7 . 0 0 9 . 0 0 7 . 5 0 3 1 . 0 0 _ I I . 00" 8 . 0 0 • 4 2 . 0 0 0 . 0 0 6 . 5 0 5 0 . 0 0 9 . 0 0 _ 9 . _ 0 0 _ _ 5 9 . 0 0 _ 8 . 0 0 " 9 . 5 0 6 7 . 0 0 5 . 0 0 * * * »~* * *~* * * * ftftft ft ft ft ft ft ftftftftft » ft * ft V. ft "ft * ft ft ft ft- * 1 0 . 0 0 7 2 . 0 0 6 . 0 0 1 0 . 5 0 _ 7 8 . 0 0 5 . 0 0 1 1 . 0 0 8 3 . 0 0 5 . 0 0 11 . 5 0 88". CO 6 . 0 0 1 2 . 0 0 9 4 . 0 0 6 . 0 0 1 2 . 0 0 1 0 0 . 0 0 M E A N S T . D E V . S K E W N E S S K U P T O S I S f 8 . 4 4 J U 8 5 0.05. -p.63 KK U KH E I N • PC TT 1JUHNU938) MCINENT MEASURES FOP. SIZE RANGE 4 . 5 T n " 1 2 . 0 Phi l . ) n FOIK G R A P H I C S T A T I S T I C F O L K A NO W A R D , 1 9 5 7 A L PAR AMI! TC KS P E R C E N T I L E S KEDTAN 8 . 5"6" 5T I' 5 . 5 0 1 6 T H 6 . 5 7 ~ " 2 5 T H 7 . 1 7 ' " " 7 5 T H 1 0 . 2 5 84 TH 1 1 . 1 0 9 5 T H 1 2 . 0 0 .PER. C E N T G P A V F L .0.00... SAND 0 . 0 S I L T . 0 . 0 ( . 5 0 . 0 0 ) _ _ . C L A Y . 0 . 0 _.(_S0.0pl G R A V E L * S A N D 0 ^ 0 0 S IL T / ( S I L T + CL AY ) 5 0 . . 0 0 P C T G R A V + - S A N D / S I L T + - C L A Y Q . Q Q LABELS SHEPAP.D -CLAYEY SILT FOLK IGMS) -MUD (SCSI-MUD PITT27B SEOIGP.APH ANAL YSI S PHI PCT. CUMPCT. 4. OO 0.0 _4 . 5 0 0.0 3.00 5.00 3.00 *-00 *** **** 5.50 7.00 5.00 .6.00 12.00 6.00 6.50 18.00 *** * * * * w * " 7.00 25.00 9.00 3-"00_ 9.00 8.00 43.00 9.00 *********" 8.50 52.00 8.00 - 9--"?. ^.U-00_. 5.00 9.50 65.00 6.00 ***** * 10.00 71.00 6.00 -19-50 77.00_ 5.00 11.00 82.00 5.00 11.50 87.00 6.00 12.00 93.00 -5.00 12.50 98.00 2.00  ***** 12.00 100.00 MEAN ___SJ.DEV..^..SKJWNESSjUftJTOS^I^ 2.07 0.06 -0.96 KPUMSEIN'tPETTIJCHNl 1938) MONENT MEASURES EUR SIZE PANC-6 4.5 TU 12.5 PHI 2.27 0. 13 1.20 POLK GRAPHIC STATISTICAL PARAMETERS FOLK AND WARD,1957 PERCENTILES MEDIAN 8.39 5TH 5.25 16TH 6.33 25TH 7.00 75TH 10.33 84TH 11.20 95TH 12.20 PER CENT GRAVEL 0.00 SANO 0.0 SILT 0.0 ( 52.00) CLAY 0.0 I 48.001 GRAVEL • SANO S I 1 T / I S I I T * ( " I A V 1 i ; j . n n D T T r . D A U . C A M n / c n T . n M >.ET VT DF Y WT SALT ORGANIC 1 0 0 0 . j i G C 5. 7300 " 0 .0 0 .0 9 9 . 5 9 5 9 loo .oooo o .o o .o MO ISTURE 0.0 (GRAMS) 0.0 (PCT WET WTI * * A * - * » * MU L T1 MODAL SAMPLE * * * WEIGHT LOSS DUE TO HANDLING 0.0^  GRAVEL CORRECT 10;M F/CTQR 1 . 0 0 0 SIZES ELIMINATED (<J.D1"S) NONE TSASK SORTING COEFFICIENT 2.233 "T"T I"N*G"" PK ' oT^Tr r rT - ' ' FxT RAP. 2.200 MEAN CUrlED DEVIATION 1 1 . 4 8 8 USING PROBABLITY EXTRAP. 9.866 • ' . P i . TAB! t OF STATISTICAL DA VA IN PHI UNITS SA-'O SILT 0 .0 4 7 . b 2 4 4 . 1 9 M U M ! ! o-Mr ; ! t.Lt-•c TEAN T ^ T D CEV SKEGNESS KUKTUSIS I . 7 2 7 4 4 - > i . 9 6 9 0 8 " 1 . 5 0 4 7 5 5 . 3 " 3 9 9 l . . 7 2 : 4 5 1 . 9 0 6 7 6 1 . 4 2 3 1 8 4 . 7 5 5 2 0 , . 5 1 9 2 0 1 . 7 7 2 1 5 0 . 4 / 8 2 8 1 . 1 1 1 4 5 PERCENTILES 5 .0 10.0 l o . 0 LINEAR EXTRAP. MM. PHI U M T S _ 0 . 1 5 5 2 2 2 . 6 6 7 6 0 " 0 . 1 3 1 4 7 2 . 9 2 7 2 2 0 . 1 1 6 7 5 3. O v o 4 9 PROBABLILITY EXTRAP. MM. _ PHI U M T S 0.,14373 2. 79E34 0.12826 2.9o2: ; 4 0.11428 ~ . l Z * i - J 7.5 5 32.1 r. 0. 52 p-Fr I 1 N M / : P - I . V :-.""-1J :••.-P -K'- [ F O L K .52651 1 .73757 1 .74 52 9 1 74455 63537 6 159 1 1.71703" 1.68565 0.49838 0.40016 0.41257 0.37345 0.38824 ( U-ANSFCRMED) 1 . 1 1090 0. 9 1726 U. 90392 C~. 2 5 666 0.2 5o31 0.52639 25.0 50.0 75.0 8470" 90 .0 95.0 0.10179 0. 35 905 0.02041 " 0.01203" 0. 0 35 89 0.00199 3.?9o32 4.OE136 5. o 1 *. 3 1 6. 3 7 724 " 7. 40 COO 8. 97333 0.05935 0.05909 0.02052 "0701210" 0.00591 0.00200 3.3313 i 4.0805i> 3.60701 6V3692 0 7.402C4 8.96cS 5 -F l ' LK (TRANSFORMED) 0.52627 "JATfi FOR CONSTN OF oARGRAPHS- AND CUM. CURVES ACTI CM WT. I GMS 1 . P C T . WT.PCT MID PHI (LINEAR) MID PHI ( PR 3 ri. ) MODE M P HI UNCOS COR COR CUMUL. PHI MM PHI ••IM - - - c .25L0LO " 2 . GOO -' 0.0? 0 *~"0. 02 0" 0. 34 9 0.345 1. 751 0.29707 1 . 0 96 " 0.2 68 7 7 0 - — o .177 COO 2. 4 53 0 . 0 4 0 0. 04 0 0.65P 1. 04 7 2. 249 0.21036 2 .507 0.2 02 09 •J . I.' 5 300 3 . OOO 0 . 6 0 C 0.600 10.47 I 11.518 2. 749 0. 148 75 2.8 30 0. 1 3o 71 0 C .01 : C ,j 0 3. 5 Co 1.320 1 .520 23. 03 7 J S . 5 3 5 3."7 53 u . 1 Dt S3 3.252 0.102 13- r -4 . 50 0 0 . 7c. 0 0. 76 0 13 .264 4 / . 1: 1 9 3. 733 0. 074 16 3. / 5U C . O / j 5 2 0 c . 04i. OO-.' 4 . 3 06 0 .773 0. 773 13.491 6 1.310 4.253 0.05244 4.251 0.05253 1 .0"' 1 oo;; 3. 012" 0. 02 0 0. 020 0.3 53 6 1. o i 4. 739 0 .0 36 9 3" 4 .759 0 .03o"4 .iii i j.'J 5 • 5 96 0.671 0.671 11. / 15 7 3 . 3 / / 3. 235 0.02612 5 .230 0.J2o 2 8 1 c . 0 1 0 ') 6. 02 0 .427 0. 427 7.4 55 BO. 03? 3. 754 0.01853 5 . 743 0.0 1 J d 7 0 c .0 11OLO 6 . 5f.6 0 . 244 0. 244 4. 25 9 83.091 h.254 0.01310 t .2 44 0 . 0 13 1 9 0 i. . c. y-iOij 7. 0 02 ••). 183 0.183 3.155 8 8.2 o6 6.754 0 .00926 0 . 744 0.009 3 3 0 .005 300 7. 506 U . 122 " U . 122 2. 12"! 50. 41 5" ~ / . ; :54 """~7OT"""55" / . 2 45" "U. ,JL'o55 0 •} . 0 0': 9 5 j f:. J02 0 .09 2 0. 092 1. 59P. 92 .0 1 3 7. 754 0.00463 7. /46 0. 0 0 4 6 0 0 .OC'700 I;. 5 Q I'J. 09 2 0.09 2 1 . 55ii 93.6 1 1 6 . ? 6 a 0.00325 8. ?56 0. 0 05 2 7 1 c .01>V0O c B j '.O 0. 05 1 0. 051 1. 597 93 .^0 : i b. /B6 0. 002 2 7 B. C72 0.00225 0 . ) ' l 3I.V 5 . j 11 0. JO 1 0. 06 1 l . U ' , 5 9 0 . 2 1 :• 9 . 2 / 0 0. O O l 6 2 9 .2 59 " C . 0 01.7. i y t; .00 ! 9 bo 5 . 9 5 5 0 . 06 1 0.06 1 1 . Oo5 97.33 0 9. 74 3 0.00116 9. 731 0.00116 0 0 .0'',;,', 50 1 0. 5 01 0 . 0 6 1 O . O o l I . 06 5 98. 40.-: 1 J .248 0.00082 10.221 0.OOJ 84 0 fj .0LL45C 1 0. 9 95 0.031 0. 031 0.533 9o.9 3 3 10.748 0.00033 10.726 " O.00J59 0 - u .0000.,! 14. 0 00 0 .06 1 0. C61 1 . 06 5 100.000 12.497 0.00017 11.321 0. 00J3-. 0 T T i 5 . 73 0 5 . 730 100.0 0 . 0 e « * K'o L M MODAL SAMPLE « ftftftft » * ^v»:*#^W *• ft ft w ft ft *: ft v x: ft ft ft ft ft ft £ ft » I 000. 100. c .(jooo 1 JG.0 ,00 0. 0 0 .0 ORGANIC. 0. 0 o . o MO I STUB E 0". 0 0. 0 I GRAMS) (PCT WET W T I WEIGH1 LOSS DUE i f HANDLING 0 .0 GRAVEL CORRECTION FACTOR " l . O O O SIZES ELIMINATED K 0 . G 1 J I NONE TRASK SORTING C (>- 1= Ft C I E NT 2.001 USTNT, iVofHlULIT?—PXTRAP. 1.985 MEAN CU3EQ DE V I A1 I !JN 11 .522 USING PR DBA BLIT V C X TR A P . 6. 500 C E-iv< 3 i j I 1 I f'N 7 A :'. 1 SI/.T 1 ST I CAI. DATA IN Pril UNI1 PERCENTILES LINEAR ExUf.P. PROt'ABL I L i l Y EX 1 - x->. .---/ 'FA': SIO CFV SKEWMESS KURTuSIS MM. PHI UNITS MM. PH! ut.l IS r,--f.-J- L 6. 0 M'n'.'. -t'T ""(' 4 ."»><;; i i > 1.0R91 6 1.70917 6 .""5 2 7 70 ~ 5 ""6 0 . l'.s 4 3 3 " " 2. O'.ol 6 6. 1 30 42 2 . 93 ;. SA.'.O i 8 . L i P---1 I A T v^-rv-K'Jl(.4 1.70458 1. 314U0 4.59443 10 .0 0. 11450 3. 12657 0. 1 1062 3. 176-34 : I L T 34. 7 5 F CL 4.65156 1 . 50984 0.39850 1.13/15 16. 0 0. 10026 3.31811 0.05715 3 . 3 c .'• c- 2 •-LAY 6. 6 ^ P - i LK 4. 67.250 1 .57862 0.41214 1.13851 23 .0 0. Oo 248 3.34987 0.0 (.184 i . 6 1 . -, 7 *!U j o l . 7 2 ! !•.'•' 4. 804 58 1.486P8 0.30955 0.9 0071 50 .0 0.04922 4.24471 0.04917 4.34595 5 / « 0. 6 2 P - : 4.02I4O 1 .45 783 0.32615 0.52342 75 .0 0.02059 5.60169 0.02069 5.59-.:.'/ *.F 'J • f Ei ,. ; 1.48233 0.25607 "0.24474 34.0 0.01276 " 6 . 29136 0.01287 6 "2 7-2 5 ?-< • . 1.46957 0.25695 0.2'<042 90. 0 0.00672 7. 2 1628 0.00679 7.201;'. 5 FCL ( I -ANSFfi?. MEDI 0.53643 95 .0 C.00267 G. 3H640 0. 00267 8. 5*.;. 3 0 i,LK ITI-A'iSFCFMEOJ 0.53672 DATA FOR CONSTN OF BARGrtAPHS AND CUM . CURVES s: if rl-.AC 7 I ON WT. ( G « ) WT .PCT . WT.PC1 MID P H I ( L I N E A R ) M I I) P H I ( P:\ n H . ) Mtine *>HI UNCO R COP COS CUMUt. PHI MM PHI "M • • 6 . ' 5 G 0 0 J ''. . 00*6 6 . 0 3 0 " " " 0 . 0 3 0 ™ 0 . 5 1 7 "'"'075 1 7 1 . 7 5 1 " 0.29707 1 . 903" 6. 26 7 4 5 0 • — o . ; 7 7 0'. J 2 . 4 9 F 0 . 0 3 J 0.030 0.317 1. 0 J 4 2 . 2 4 9 0.2 1036 2. 2B6 0.20- . -19 0 0. 1 "-' 5 0 0 J .";. 000 0. 25 0 0.290 5.000 6 . 0 3 4 2.7 49 0 . 143 75 2. d32 0. 14J48 0 o. ~ f L j a . i c o 0. 9 2 J 0. 520 15. <>o2 21.1:57 3.2 53 " 0.10488 3 • 307 3.1U1 6 7'"" c . • '25: 5 4 .00 0 0 .950 0. 950 16 . i 79 3 8 .,' 7 (. 3. 753 0 .0 74 16 3. 7 69 0.0 7^3 7 0 0 . '.4<>;.J '. . 5 C6 0 .95 9 0. 999 17.221 55.4 5 7 4.253 0.05244 u. 255 0.052 3O 1* -' 1 0 j... 3 . li 1 7 C. 2i:0 0. 2 flu 4 . 112 3 6 0. : . ' „ 4. 739 0.03693 4 . 75 7 O.O- . . ' " 7 0 ~J . • .-TIT*.' J 5 . 3 CO ""3TT&7 0. 76 7 13.227 7 3~. 3'. 7 5.259 0.02o 12 5. 249 0.02o3 0 1 0. '. 1 57. ' . . 00? 0 . 4 3 rt 0.438 7.5 5 9 I U . | . , | . 5.754 0.01853 74 3 0. 0 lot. U 0 0 . 0 1 10 O-J 6. 5 CG 0.29 2 0.292 5. 039 86.144 6. 254 0.01310 6 . 242 0 .01J ?2 0 o. : u 7 ; .i 7. G02 0 • 14 6 0. 146 2.3 1'/ UO . 6 6 3 6.754 0.00926 6 . 746 0 .00/32 0 u . . . 0 5 5 ...... 7. 5 06 0.18 3 •" o.rtn 3 . 1 5 51.H12 "7 .254 0T0'uc,55" r. 239 0 . 0 ^ 6 2 I 1 "• 0. -• "- 9 • 0 i: . 002 0.073 0.07:5 1. 2 39 9 3. 0 72 7. 754 0. 00463 7 . 746 0.00-, Oo 0 ~ ~ o. o 7 0.533 0.110 0.110 I . i , ' . 0 94.5. . 1 0. 260 0.00325 r.. 25 1 0.00., I'll 1 - i c 'J ' . . L40 0. 07 3 0. 073 1.23 9 5o.2 21 8. 7 86 0.00227 8. 772 0.002 29 0 . c . "• ".13''',' o . i O T " 0 .03 7 •-o-.-cTT 0 . (> 3 '•> 5 o . . : 5 1 9 .270 0. (161 62 9 . 11,?. 0.0017,3 0 o. c L L C 1 1 4. UOO 0 . 1 i. 3 0. 133 3.145 10J.OGU 11.751 0.000 29 l u . 2 03 0.OCu 0 3 0 i n r A i. - 5. 800 5 .800 100.0 .. . , . _ . i 7 7.//0 0 . ,20500 G. o300')C l . Tn'i.'fi f "\ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * P l * + 31A 0 b . o o o . o 0 * * * MULTIMODAL SAMPLE - « * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / WET WT i o o o . o o o o 130.0000 DRY WT SALT ' . . 5 2 0 0 b . O 100. 0000 0 .0 ORGANIC ' "0. 0 * 0 . 0 MOISTURE 0 .0 0 .0 (GRAMS) (PCT WET WT) \ WEIGHT LOSS DUE TO HANDLING 0 .0 " G R A V E L CORRECT ION TAG TOR 1.000 SIZFS ELIMINATED K C . O U I NONE TRASK SORTING COEFFICIENT 1.253 '• - - -USING PROBABILITY EXTRAP. MEAN CUBED DEVIATION USING PR0HABL1TY EXTRAP. 1.216 B.121 7.353 PERCENT AGE TABLE OE STATISTICAL DATA IN PHi UNITS PERCENTILES LINEAR EXTRAP. PROBABL ILITY EXTRAP. D COM.-GRAVEL' SANU SILT 31 TION .-MEAN-, STO DE V SKEWNESS " 0 . 0 "" MOMENT ' C^.434')\^X .24395 4.21908 '90 .93 P-MOMENT 3.47)7390 1 .19926 4.26338 7.06 F PL K 3. 21 71 9 0.70759 0.3472 7 KURTOSIS 24.64863 " 24.361 1 1 1. 8 7 16 2 5. 0 10 .0 16. 0 MM. PHI UNITS MM.. PHI UNITS b . 1702 3 2. 5"5442 b . 15758 C a 66534 0. 16192 2. 62666 0 . 14757 2. 76052 0. 15240 2. 71334 0. 140 11 2. !>J5J5 0. 13933 2. 6433 7 0 . 132 24 2. 91 873 0. 1 1064 3. 1/611 0. 11118 3 . 16696 0 . 089 18 3. 48707 0 . 0P942 3. 46324 0. 07370 3. 76212 b . O 7 5 6 6 " 3 • 7243 1" " 0 . 06390 3. 96808 0 . 06445 3.95575 0. 02219 5. 49407 0. 02221 5. 45277 CLAY 2.01 P-FCLK MUD 9 .07 IMMAN S/M 10.02_ P- I NM. AN KRUMBEIN P-K RUM . FOLK (TRANSFORMED) 3.24268 0.65056 0.44671 3.23773 0.62439 0. 11 751 3.27983 0.44446 0.24938 0 . 4 7 6 8 2 - 0 . 0 1 0 8 9 0.41615 0. 03200 2.05233 1.60293 2. 1800 1 0.23993 0.23615 0.65176 25. 0 50. 0 75. 0 34 .0 90. 0 95 .0 P-FC1K (TRANSFORMED) 0 . 6 7 2 3 9 DATA FOR CONSTN OF 6ARGPAPHS AND CUM. CURVES MID PHI(LINEAR) PHI MM MID p H i i P . i c B . ) wwr PHI MM SIZE FRACTION MM PHI WT.(GMS) UNCDR COP WT.PCT. WT.PCT. COR CUMUL. 0.250000 0. 1 77000 0.125000 0 • u c 0 0 0 0. 06? 500 _0. 044000 0.03 10"0b " 2 .000 2.458 3. 000 -3T5T6-4. 000 4 . 5 06 6 . 6 ! 2" 0. 020 0.030 1 . 570 1.34™ 0.650 0.052 ""0.06 9" 02 0 0. 030 0. 570 34. 650 14. 052 1 . 069 1". 442 664 735 TOW 3 81 146 0.442 1.106 35.841 "7oT5"5=9~= 90.929 9 2.075 93.6 03" 1. 751 2. 249 2 .749 -3TZ-5T 3. 763 4. 253 4.75 9 0 .29707 0.2 1036 0.14875 0.074 16 0.05244 0.03693 ' 1 .900 2.298 2.861 " 5 T 7 4 T -3.716 4 .247 4 . / 4 9 " 0 . 2 6 7 9 4 0 . 2 0 3 3 7 0 . 1 3 7 6 6 TJ-.TC577" 0 . 0 7u 1 1 0 . 052 6 7 0 . 0 3 / 2 0 "(3.022500 _0._0_1 5600_ " 0". I) H "bub 0.007800 0.006 500 "0.0039 00" 0.302 7 0 J 5. 5 Ct 6. _0C2_ "6. 5 C6 7.002 0.065 0. 04 3_ "0 . "o io 0.026 T~J- r. 043 0. o'3b b. 026 0. 6. "002" 3.533 5 . 040 0 .017 0. 017 0.01 7 0. 00 9 run—rr. 017 0 ,017 0, , 009 0 433 955_ 668 573 TET" 3b2' 363 1 90 <)5. Jj7J~ 95.990 "5o"."6 6'Ti"" 97.231 5 / . 613 9 7. 995 5 8 .377 98.668 5.754 '"6". 23 4" 6. 76 4 "772"54~ 7. 754 8.268 8. 766 0.01853 "0.0131 0" 0.00926 "TITO C6 5 5" 0 . 00463 0 . 00325 0 . 0 0?>7 5.744 ""6". 24 5""" 6 .745 7.746 8.256 B. 7 79 o. o2o 3 0.01;>66 " O . O T J T T 0 .0 0933 "0T3Ca5"9~ 0 . C 0 . 6 6 ' 0.005 2 7 0.002 28 0 0 0 0 1 —cr-0 0.001 3 60 C.0C0560 0.000690 ' 0.00049b 0.000340 0.000061 9.50 1 9.5 96 10.501 10.995 11.522 14.000 . 01 3 .009 .009 0 .009 0. 01 7 C13 005 009 009 " 009 C17 287 191 190 191" 191 382 98.854 99.04 6 59 .236 99 .427 99 .6 1 8 100.000 9.270 9. 748 1 0. 248 10. 748 11 .259 12.761 0.001O2 0.00116 0 . 00082 0.00063 0.00041 0.00014 9 .259 9. 73 0 10.236 10.732 11.235 12.034 O . Q O i . 6 3 0 . 0 0 1 1 7 0 . 0 0 J R 3 0 . 0 0 0 59 0 . 0 0 3 4 1 0.00324 TOTAL S 4.520 4.530 100.0 Pi*-* 31B 0 . 0 + ****** + * * * * * * * * ' KJLT 1 MCOAL" S A M P U E ' " " ' " * * ' * " * * * * • WET WT OPY WT 1666". "Boob 3".'8 2bo 1 0 0 . 0 0 0 1 1 0 0 . 0 0 0 0 0 . 0 0 . 0 _ORGANIC_ 0.0 0.0 MO I S T U R E "0.0" 0 . 0 (GRAMS ) (PCT WET WT) WEIGHT LOSS DUE 10 HANDLING 0 .0 GRAVEL'CORRECTION FACTOR" l"."000 S U E S ELIMINATED ( < 0 . 0 1 ' « l NONE TRASK SORTING COEFFICIENT 2.305 USING P R O D A B I L I T Y E X I R A P . 2. 266 M E A N CUilEO D E V I A T I O N 21.826 U S I N G PRO RA OL I T Y E X T R A P . 18.351 PERCENTILES LINEAR ExTRAP. PROP.ABLILITY EXTRAP. PERCENTAGE COMPOSITION TABLE OF STATISTICAL DATA IN PHI UNITS 5. 0 1 0 . 0 l o . O CLAY MUD S/M 10.40 62.30 0.61 P-f-CLK 4 . 8 1 4 2 7 " INMAN 4 . 99939 P-1NM AN 5 . 0 0 5 6 1 kPUMt E I M " P-KPIJM. FOLK (TRANSFORMED) 2 7 1 5 1 2 9 1 . 9 2 1 8 3 1 . 9 1 2 1 3 1 . 7 8 4 7 2 " 1 . 7 6 7 1 9 0.4373 7 0.29598 0.30021 0. 18014" 0.18163 1.35515 1.08180 1.0o275 0.2289c 0.22997 0.57647 2 5 . 0 5 0 . 0 7 5 . 0 8 4 . 0 " 9 0 . 0 9 5 . 0 MM. 0 . 1 5 9 0 1 0 . 1 3 9 15 _ C K 1 18 46 O.b'94'54""" 0 . 0 4 6 3 7 0 . 0 1 7 7 6 0 . 0 0 8 2 5 0 . 0 0 3 6 3 0 . 0 0 0 6 2 PHI L N I T S 2 . 6 - . 3 S 8 2 . 8 4 5 2 6 3 . 0 7 7 5 6 ~ " 3 7 4 . 5 . 6 . MM. 0. 14629' 0 .13270 0 .11716 PHI U M T S 2. 75345 2.91371 3.0934 8 10, V0"63T" 43 05 7 81540 92122 10677 64733 ""0"7Q""""3"?0""" 0 . 0 4 6 3 4 0 . 0 1 7 6 7 " 0 . 0 0 8 2 7 ' 0 . 0 0 3 6 4 0 . 0 0 0 6 3 ""3.42035 4.43158 5.80o05_ "6.91774 8. 10060 10.64193 c • P-FOLK (TRANSFORMED) 0 . 5 7 5 4 0 DATA FOP CONSTN OF BARGP.APHS AND CUM. CURVES MID PHI(LINEAR) PHI MM MID PHI I PR08. ) PHI MM MODE 00 L D SIZE FRACTION MM PHI WT . l G M S ) U N C O R COR WT.PCT. COR WT.PCT. CUMUL. 0. 250COO 0.1770J0 0. 1 25000 0. OBlTI 0.0 6; 500 0.044000 '0 .031000 2. OOC 2.49E 3 . OOC 4. 000 4. 506 5.012 " 0 . 0 1 0 0 . 0 4 0 0 . 4 8 0 0 .335 0 . 3 6 0 0.533 0 . 2 1 6 0 . 0 1 0 0 . 0 4 0 0 . 4 8 0 6.530 0. 3B0 0. 553 0.21o 0 . 2 6 2 1 . 0 4 7 1 2 . 5 6 5 0 . 2 6 2 1 . 3 0 9 1 3 . 6 7 4 -rrrrvr 3 7.696 5 2.165 57.616 1 . 7 5 1 2 . 2 4 9 2 . 74 9 0 . 2 9 7 0 7 0 . 2 1 0 3 6 0 . 1 4 8 7 5 1 . 8 3 9 2 . 3 30 2 . 8 4 7 0.26991 0. 19590 0.12 JOO "0.1 T4 3S • 0. 074 ia 0.05244 0.03693 D.T033? 1 0. 073 77 0 .052 33 0.03u96 13. 574 9 . 9 4 8 1 4 . 4 6 9 " 5 . 6 5 1 3. 753 4. 253 4. 759 " 3 T Z 7 T 3. 761 4 .256 4.758 0.022000 0.016600 5. 5 06 6 . 002 0.471 0.297 0 . 4 7 1 0 . 29 7 12.331 7. 788 70.147 7 7. 935 5.259 5. 734 0 . 0 2 6 1 2 0 . 0 1 8 3 3 5.252 5. 7i5 4.62o2 5-0.0 1865 6 . 2 4 7 6. 74 8 0 . 0 1.. 1 7 0.00^30 0.0 1 1000 0. •".C7BO0 6. 5 C6 7.002 0.006 500 0.003 900' 0.002 700 0.OC1900 0 . 0 0 1 3 GO 0. 00C960 0.000690 "0. 000490 0.000340 0.000240 7 . 5 6 6 " 8 . 0 0 2 8 . 5 3 3 5 . 0 40 0.149 0 . 099 0. 149 0. C9 9 3. 894 2.556 6 1.629 6 4.424 6 . 0 9 5 6 . 0 9 9 0 . 0 7 4 0 . 0 5 0 0 . 0 9 9 0 . 0 9 9 0 . 0 7 4 0 . 05 0 2 . 5 9 6 " 2 . 5 9 7 1 . 9 4 6 1 . 2 9 8 11 I. UtL 0 "69 .6 17 91.563 92.861 6 . 2 5 4 6 . 7 5 4 0 . 0 1 3 10 0 . 0 0 9 2 6 "772T4" 7 . 7 5 4 B . 2 6 8 8 . 7 8 6 ~3.0 ubTT~ 0 . 0 0 4 6 3 0 . 0 0 3 2 5 0 . 0 0 2 2 7 "0.66162 0 . 0 0 1 1 6 0 . 0 0 0 8 2 0 . 0 0 0 5 8 0 . 0 0 0 4 1 0 . 0 0 0 2 9 7 . 74 5 8 . 2 5 7 P . 7 7 8 9.266 9 . 7 4 3 1 0 . 2 4 2 1 0 . 7 4 1 1 1 . 2 5 0 1 1 . 7 6 4 "CT71T5"""5T" 0 . 0 0 - . 6 6 " 0 . 0 0 3 2 7 0 . 0 0 2 2 8 0.05162 0 . 0 0 1 1 7 O . O O J 8 3 0 . 0 0 0 5 8 O . 0 O J 4 1 0 . 0 0 0 2 9 9.501 9 . 9 9 5 1 0 . 5 0 1 1 0 . 9 9 6 "' 1 1 . 5 2 2 1 2 . 0 2 6 0. 02 5 0. 025 0 .025 " 0 . 02 3 ' 0 . 025 0.025 0. 62b 0 . 0 2 5 0 . 0 2 5_ " 0 . 0 2 5 0 . 0 2 3 0 . 0 2 6 ' 0 .64<J 0 . 6 4 9 0 . 6 4 8 _ " 0 . 6 4 9 0 . 6 4 9 0 . 6 4 9 S i . 5 1 1 94. 160 94.608 "95.437" 9o.106 96.755 9. 2 ro 9 . 7 4 8 1 0 . 2 4 8 1 0 . 7 4 8 1 1 . 2 5 5 1 1 . 7 7 3 0 . 0 0 0 0 6 1 1 4 . 0 0 0 T O T A L S 0 . 124 3 . 8 2 0 0.124 3.245 100.000 13.012 3.820 100.0 0.00012 12.332 0.00019 ft * ft ft ftftftft PITT 32 0 o. o"" d 6."6 ' o"~ * * * MULTIMODAL SAMPLE » » * ftftftft ftft«» ftftftftftftftftftftftftftftftftftftftftftftftftftft*** < > WET WT DPY WT SALT ORGANIC MOISTURE WEIGHT LOSS DUE TO HANDLING 0 .0 looo.ooQo 100.0000 " ' 4 . 4 5 0 0 " 100.0000 0.0 0 .0 0 .0 0. 0 0 .0 0 .0 "(GRAMS) (PCT WET WTI GRAVEL CORRECT I ON FACTOR S U E S . F-L IMI NATtD K 0 . 0 1 X ) TRASK SORTING COtFFtClENT 1.000 NONE 2.46o USING r-ROI'-AlU I I TV EXTRAP. 2.45 3 MEAN CUBED DEVIAI I ON 1 8. 073 USING PROBABLITY EXTRAP. 15.011 PROL-ABL ILITY E X T R A P . PERCENTAGE COMPOSITION GRAVEL SANO SILT 0.0 2 7.64 55 .37 TABLE OF STATISTICAL DATA IN PHI UNITS ^ — MEAN—, STD DEV SKEWNESS KUP.TOSIS ""I'CMrt.T • " ( / 5 . 6 2 304->"2 .4 1 74 5 "I. 2 753 3" 3. 9 3 355 " P-MOM EN T ^~5T6"C:987 2.32965 1. 16720 3.50748 FOLK 5.62675 2 .31 720 0.43063 1. 210 12 " P E R C E N T I L E S CTNEA"P. F X U A P . CLAY MUD S/M 16.99 72.36 0.38 P - F O L K 5.63546 2.29B16 0.45967 1.20571 I MMAN 5.93345 2.30406 0.39674 0.66882 P-1MCAN A'JLf*35^ J- H lr>b__ 0.40402 0.66472 " K P U M K E T N " " """ 1.92521 0. 19ii 79 0. 21047 P - K F U M . 1.91802 0.20592 0.21073 F O L K ( T R A N S F O R M E D ) 0 .54754 5. 0 1 0 .0 1 o. 0 2 5.0 50.0 75.0 84. 0 90 .0 95 .0 MM. PHI UNITS MM. PH! UNITS 0 . 1 1548 3. I 142 2 "' 0 . 1 1DP6 3.17312 0. 09546 3.38501 0.09297 3.42713 0. 0000 1 3. 62539 0.07935 3. 65 36 3 0. 06625 3.91592 O.Oc.559 3.530-. 7 0. 03083 5.01934 0. 03 0S4 5.01521 0. 01009 6.52036 0 .0 1090 6 . 51579 0. 00331 8. 23751 " 0.003 33 " 8 . 2 3 1 5 4 " 0. 00131 9. 57623 0.00131 9.57CS4 0 . 00056 10. 8 043 5 0 .00056 10.79C72 P-FOLK (TRANSFORMED! 0.54663 OATA FOR CONS T N OF BARGRAPHS AND CUM. CURVES S U E F R A C T I C N MM \ P H I WT.(GMS) U N C Q R C C R W'T.PCT . W T . P C T . C O R C U M U L . MID P H I ( L IN E A R ) PHI MM MID PHI I PROS.) MOD! PHI MM 0.250000 0.1770C0 0. 125000 2.000 2.458 3.000 0.OPPCjO 0.06?500 _0.0440 00 "0.021000" 0. 0 '< 7 0 0 0 0.015600 3.306 4. 000 4. 506 5 .012" 0.010 0. 020 0. 10 0 "o-.Tnr 0. 7.50 0 .873 " 0 . 1 1 3 " 0 .010 0.020 0. 100 0. 6 9 0 0.873 0. 113 "0.225 0 .449 2.247 •1.213 506 19.615 "" 2 .536" 1'. 5. 3 66 6. 002 C. 01 1 000 0.007000 6. 5 CG 7. 002 0 .329 0 . 19 T 0.164 0.551 ' 0. 329 T3T791 7.303 " 0.225" 0. 674 2.521 12.lib 2 7.7,40 47. 255 "49.791 63.002 70.465 1. 751 2.249 2.74 9 3. 75 3 4. 253 4. 75 9 29707 2 10 36 14P 75 TCT41T6~ 0 74 1 6 05244 03693 1.886 2 .308 2.822 ".316 3.703 4.264 4. 759 0. 2 70 5 7" 0.20200 0 . 14140 -TT7TTU7T-0. 0 72 6 2 0. 05205 0.03o93 0 0 0 -rr-(i i» '0 5. 259 5. 754 ,02612 0 18 5 3 5.2 56 5. 749 0.0 2.. 18 0.01060 _0.003500 0.002 500" 0.002700 0. OC-1900 0.001 3U-J O.OOC980 0.000690 0. 00G44U' 0.000340 0.000061 7. 506 S. 002 3. 533 9.04 0 5.501 9.99 5 10.501 10.555 11.522 14.000 0 .09 9 0. 095 0 .099 0. 09 V 0. <}'}••} 0.00 9 C . 099 0 . 066 0 . 066 0.131 0 . 1 9 / 0. 164 0.099 0 .059 0.099 0.099 4.430 3. 652 7 4.056 78. 588 6. 254 6. 754 .01310 ,009 26 6 .240 6 . 749 0.01 J T f 0 .00)30 0.095 0.099 0. 099 0. 066 0. 066 0.131 2.215 2. 216 2.215 2.216 2.313 2.215 2.216 1.4 76' 1 .476 2. 934 00.602 8 3.010 65.233 87.448 1 US.663 91.078 94.093 " 93.5 70 97.046 100.000 7.254 7.754 8.26 8 0.786 I.it Si 9. 748 10.248 10. 74 8 11.239 12.76 1 00655 00463 00325 ,00227 7.250 7.750 P . 2 o l 8.779 0. 0 Oo 5 7 0 .0 Ot 6 5 0 .0 0., 2 0 0.002 ?o -T5TT6-2-00116 00082 00058 00041 00014 5.26 2 5 . 737 10.233 10.734 11.237 11.911 0 . 0 0 i <- j 0.00117 0.0CO8 3 O.00J59 0.00^41 0.00026 r TOTALS 4.450 4.450 100.0 1 0.0 o. c * * * ft * « r. * * * H^ODAL "SAMPLE " *•**+• * - * • ir. T • T •OT-.Y ,.T SALT ORGANIC OISTURE WEIGHT LOSS DUE TO r-ANDLING 0. 0 10 00 . O J O J 4 . L 700 0 .0 0. 0 0 .0 (GRAMS) GRAVEL CORRECT I 0* F A C T O R 1.0 30 10 0 . J . 0 0 1 00. 0 300 0.0 0.0 0.0 (PCT V. C T WT) S U E S ELIMINATE! -. K O . J l i l NONE TRASK SORTING C C - L - F F I C IE NT 2.118 US INC, PK0BAB1 L I TV U I • A P . 2 . 1 . : MEAN CUBED DEVI AT I (?,\ 14.333 — — — USING PR0BABLI1Y L'xi ••:.'.;•. 10.6'?o _ — . PL »..-.:. •IT AGE TA •'.If cr- 5 T ATI ST I CAL OAT A IM Phi UM! I S PERCENT ILES LINEAK EXTRAP. PRrtilArLIl ITY E X 1 .--.'.P. C O M P. j1TIOM <T"0 STD CEV SKE WNESS KURT OS IS MM. PHI UN I T S M M . PHI CM TS G3A7- L "0 . v\ • l- l : T 5.2f :5^tT 2.09413 1. 56290 "5.58731 5".'0 0. 1 1956 3. 0641 3 0. 1 1590 " 3. 10900 3 A'i 30. -4 P- '.' H" —Sr27.P26 1.97827 1 • 38154 4.G&799 10.0 0. 10 381 3. 26803 0.099 2 3 3 . 3 3 3 1 4 311. i 54. .6 [: f 1 " 5 . 1 ! 2 05 1 .38 1 19 u. 3478r, 1.26/72 16.0 0 . 08 769 3. 5 1 1-, 1 0 .08/62 3 . 51 26 1 CL A Y 10. 1 0 P- = ' L / 5.11207 1.87162 u. 3522 J 1. 26566 23 .0 0. 07141 3.F07E1 0.0704 3 3. 3 3 3 3 3 y.uo 6 9 . 16 I: •' 1.1. 5.24355 1 .7 32 53 0. 22o39 0.53315 5 0. 0 0. 03 4 72 <t . 6462 3 0.03471 4 . 8-, 3-. 3 S/"4 0. i 3 P- i N." 5.242E6 1.73 125 __0. 22E3B 0.51755 75. 0 0. 01592 5.97336 •0.01554 5 . 9 7118 • K- OX!; !.' I 't 1 .60411 0. 04234 0 . 22769"" 64 .0 0 . 00794 6. 97648 ' 0 .00753 6. 9/ 3 1 1 F- <?l. 1.58730 0.05127 0.22651 90.0 0. 00384 8 . 0 2 3 5 ; 0.00385 8 . 0 i I S 4 f< LK (T PALS FOPVE-P) 0.55503 95. 0 0. 00115 5. 7 6266 0 . 0 0 1 l o 9 . 74C.33 t o LO 21K ITnANSFCRMED) DATA FOR CONSTN OF BARGRAPHS AND CUM. CURVES FRACTI CM "HI 0. 2500 30" 0.177CO0 0. i 250 )u wT.(GMS) UNCOR COR 0.010 0. UIO 0. 14 0 TT WT.PCT. WT.PCT. COR CUMUL. MID Prtl(LINEAR) PHI MM MID PHI (P^OB. I PHI MM 35 ***« V ~^__-'^"** » * * MULT I MODAL "SAMPLF "" ' * * * " * * * * » * • * * + * » * * + * * * » » * * * * * * * • « + * » « * * * ' * * • I WET WT 10 00. 0000 100.0000 DPY WT SALT ORGANIC MOISTURE "" 2 . 8600 0 .0 0 .0 0 .0 (GRAMS) 100.0000 0 .0 0 .0 0.0 (PCT WET WT) WEIGHT LOSS DUE TO HANDLING 0 .0 GRAVEL CORRECTION FAC10R 1.000 SIZES ELIMINATED K 0 . 0 1 S ) NONE TRASK SORTING COEEFfCIFNT 2.294 USING PROBABILITY EXTRAP. 2.281"" MEAN CUBED DEVIATION 14.c90 USING PROBABLITY EXTRAP. 10.240 PERCENTAGE COMPOS ITI ON GRAVEL SAND SILT 0. 0 33. IC 54.66 TABLE OF STATISTICAL DATA IN Pni UNITS JAE+*-=r-s STD DEVSKEWNESS KURTOSIS 'MOMENT C5.2bJ2ht*^ 2 . 19625 "" "1'." 3 86 7 0 " " 4 . 7 2 7 1 T p-MCKFNT ^ 7 2 5 3 2 7 2.05477 1. 18032 3. 75626 FCLK 5.1C405 2.02668 0.38567 1. 1908 1_ PERCENTlLES LINEAR EXIRAP. PftCBAP-LlHTY fXTRAp. 5 .0 10.0 16.0 MM. 0.13101 0. 11305 0.098 27 CLAY KUO S/M 12.16 6 6 . 84 0.50 P-FOLK 5.11484 2.00770 1NMAN 5.25069 1.94359 p- I NM AN 5._3_0685 1.91872 "KFUMP.'EIN ., " 177749*' P-KRUM.' * 1. 76226 FOLK (TRANSFORMED) 0.39 620 0.2 6802 _01300_2 1_ 0.14322 0.14860 P-FOLK (TRANSFORMED) 1.19193 0. 79108 _0.80304 0 7221 39" 0.22208 0.54355 0.54376 25.0 50.0 75. 0 "84". 0' 90 .0 95.0 0.07624 0 . 0 3 7 6 O 0.01486 " 0.00664 0.00266 0.00105 PHI UNITS_ • 2. 53224" 3. 1 4491 3. 34 71 0 _ MM. 0.12768" 0. 10697 0.095 51 PHI UN1TS_ 2 .96714" 3. 15799 3.36613 3.67603 4 .73089 6.07219 ' 7. 2 342 8" P. 55661 5. 65451 0.07749 0.03766 0.01490 0". 00668 0.00266 0.00106 3.66991 4.7306 3 6.0o696 "7. 22557" 8.55420 9.8.6617 K) DATA FOR CONSTN OF BARGRAPHS AND CUM. CURVES SIZE FRACTICN MM PHI WT.IGMSI UNCOR COR C.25COOC 0. 177000 3. 125000 C.Oobbji!. 0.062500 0.044 000 0.03lOoO 2.000 2.456 3.000 4. 000 4. 5 06 5.012" 0.010 0. 010 0 . 209 0.480 0. 54 5 ' 0.23 7 "0 .010 0.010 0.200 -uT5"T3~ 0.480 0. 54 5 0 .237 WT .PCT . WT.PCT. COR CUMUL. 0 . 259 0 .259 5.18 1 "15. J2o MID PHI(LINEAR) PHI MM MID PHl( PriCB.) MODE PHI MM 12. 4 35 14.103 6. 146 0.32200 0 0.016600 5. 5 06 6. 0C2 0 . 49 5 0.313 0.3 11000 0.307P33 . 6 06 .002 0 . 182 0 .133 0.496 0 .313 0. 172" 0 . 130 12.826 8 . 102 4. 726 3.376 _O.OG550u_ 6.003 900 0.002700 0.001 900 0.50136.3 0.0C096O 7. 506^ 6. 002 C . I 3 0 "6 .07 8" 0. 07 8 0.25OO0C 8. 533 9 .040 0.104 5.6 C1 0.052 5.955 0.062 0.000690_10 JL5_01 0.052 " 0.300061 14.000" 0 .130 TOTALS 3.860 0.010000 0. 130 0 .07 8 " 0.076 0.104 ••3.052 0.062 A' 0.13 0" 3.377 "2 . 025" 2.026 2.701 1.350 1.351 1.350 0. 26955 0 . 2 0* 8 9 0. 1 3624 O. lOi .01 0 . 0 7 j 4 2 0.052 23 _0.ICL3O 0.02o21 0.01863 -0TDIT1"!-0 . 0 0 9 ? ! . . 0.00o55_ 0.00-.65 0 . 0 05 2 6 0 .00229 9.1 .524—9. 270—o .00142 9.2e7I O.OOi 63 95.2 75 9.74 8 96.624 10 .248 3."3"76 100.000 12 .251 0 .001 16 9 . 736 0.00082 J O . 231 0. 00021 U . 0 4 4 0.00117 _0^0DO 83_ 0.00047 3.860 100.0 -r>"" o i P1 + * 36 0.0 0. 0 ****ft#*ft***»ftft**ft#l)t#**t;Aft*ft«ft * * * * * * * * *» * * MU L T 1 MOD AL SAMPL E * **~ I **** WET WT OPY WT SALT ORGANIC MOISTURE 1000. OCUO 3 .9100 ' 0 .0 ' 0 .0 0 .0 (GRAMS) "" " " " 100.0001 100.0000 0 .0 0 .0 0 .0 (PCT WCT WT) WEIGHT LOSS DUC T rt HANDLING . 0 . 0 GRAVEL CORRECTION ,FACTOR 1.000" SIZES ELIMINATED K O . O l ' t ) NONE TRASK SORTING COEFFECIENT 2.714 USING PROBABILITY EXTRAP. 2.693 MEAN CUBED OFVIATION 20.675 USING PROBABLITY EXTRAP. 18.217 PERCENTAGE COMPOSITION GRAVE L 0 . 0 SAND 20.46 SILT 59.85 TABLE OF STATISTICAL DATA IN PHI UNITS C^KEAN—^ S TD CFV_SKCWNESS KURTOSIS 6.04513J) 2.5701 1 1 .22959 3.9528 1 * 6^03790" 2.49830 1. 16822 3.6891B F OL K. 5 .95107 2. 54515 0.4 1997 1. 24959 CLAY 19.69 P-FOLK 5.96001 2.52622 0.4292T* MUD 79.54 1NMAN 6.22810 2.42833 0.34224 S/M 0 .26 P-1NKAN _ 6.24095 2.41228 0.34939 K R U X b f c I N 2 . 1 3 4 1 5 ~ 0 " . 2162 5" P-KPUM. 2.12137 0.22163 FOLK (TRANSFORMED) P-FOLK (TRANSFORMED) 1.24683 0. 80875' 0.60588 "0. 22452 ~ 0.22352 0. 55547 0.55493 PERCENTILES ClNFAh ExT.-\AP. 5 .0 10. 0 1 6. 0 T H o r U a L l L l T Y EXTRAP. 25.0 50 . 0 75.0 " 84. 0"' 90. 0 95 .0 MM. PHI UN I TS MM. PHI U M T S "6. 10952 3. 1 9077 " ""6. 1 043 9" 3 .25969 0.08654 3. 53044 0.08609 3.53795 0.07 1B0 3. 799 7 / 0.07038 3.32368 0.05545 * t . 1 72 72 0.05467 4.18784 0.02373 5. 39703 0.02371 5.39813 0.007,53 7. 05383 0.00754 7.05169 0.00248 8. 6 56i2 '"' "0 .00248 3.6532 3 0.00101 9, 54670 0.00102 9 .94418 0.00025 1 1. 97526 0.00025 11.57245 DATA FOR CONSTN OF bARGRAPHS AND CUM. CURVES SIZE FRACTION MM PHI WT.ICMS) UNCOR COP. 0.250000 0.177CO0 0.125000 2.000 2.498 3.0C0 0.010 0.020 0.060 0.010 0.020 0. 060 0. 03(2000 0.062500 0.044 000 "b ."03 1000'" 3. 5 Co 4 . 000 4. 506 ' 5 . 0*1 2" 0. 322u'j J 0.013600 . 307T 6. CC2 0. 230 0.430 0.520 ""6. 185" 0.417 6.2fto 0.430 0.5 2 0_ 6. 1H3 WT.PCT. COR 6. 256 0.512 1.535 WT.PCT. CUMUL. 0 .25c 1. 0. 767 2. 2.302 2. MID PHI (LINEAR) PHI MM MID PHI(PK 0 8.) MODE PHI MM 0.011000 C.007800 6. 506 7.002 0.289 0. 128 0.005500 0.002900 0.002700 0.001900 7. 50 6 6.002 8. 533 5 .040 0. 160 0. 064 0. 128 0. 064 " O T S T T 0.417 0 . 2R9 . .P. 126 . 7. 161 10.997 13.307 4.733 T47Tol~ 10.660 9.462 T. 20.460 3. 33.767 4. 38. 500 " 4. 751 249 74 9 "ZTT 753 253 759 0.29707 1 0.21336 2 0.14875 2 889 307 3 06 53.26 1 63.521 259 754 0.10483 0.07416 0.05244 _0_. 0 369 3_ 0.*02 6 12 0.01853 TPT 785 269 7G2_ 26 1 751 0.27J01 0.29203 0. 14301 e . l O j ' 1 3 -0. 0725 7 0.05187 0.03O86 O.02o07 0 .01357 0 . 160 0.064 0 . 1 26 0. 06 4 7. 380 _2..-2Ji(3_ 0.001380 0.000960 0.000650^ " 0.000456 0.000340 0.000240 5.501 9.995 1 0. 5C1_ 1C.595 11.522 12.025 0 . 123 0.064 0.064_ 6. 064" 0.032 0.032 0. 128 0.064 0 .0 6j4 0.06H 0.032 0.032 4. 1 00 1. 639 3 . 260 1.641 3 .28J 1 .639 1_.64 1_ * " l .639 0.820 0. 821 71.201 -14,^.8.1 6, 7 8. o 8 0 7. 80. 320 7. 03.O00 8. 83. 24 1 8. .254 .JL5Jt_ 2 54 754 268 766 0.013 10 6. -0^030.9.2,6 6., 0.006 53 7. 0.00463 7. 0.00325 8. 0.00227 8. 68.521 90.160 9 1. 601 93.440 "10. 94 .260 11. 95.081 11. 5, 9 10, 270 74 6 248 74 8 259 773 0.00162 0.00116 0.00082 "6 .00058 0.00041 248 JL5JL. 248 751 26 0 782 0.01315 -OjJlSiiiSL O.OOJ ' 3 8 0 . 0 0 » 6 4 0 .003?o 0.0 02 2 7 0. 00029 11, 7776-741 239 737 252 766 0. 001 o3 O.OGi17 0 . 0 00 P 3 0 .00J59 0.00041 0.00029 0 1 0 * 1* 0 0.000170 12.522 0.032 0.032 0.320 95.900 12.273 0.00020 12.264 0.00020 0~ 0.000061 14.000 0 .160 0 .160 4 .100 100.000 13.261 0.00010 12.749 0.0OJ15 0 —IQ.T.ALS .. . 3 . 9 1 0 3.910 U O . O Pi** 3 7 * * * KUL TIMODAL SAMPLE; ' * * * ~ * * * * * * * * D WETWT _ JiRY WT SALT ORGANIC. MOISTURE 10 30.0000 4.5900 "" o'.'o " 6 . 0 " b . b " 100.0000 100.0000 0 .0 0 .0 0.0 (GRAMS) (PCT WET WT) WEIGHT LOSS DUE TO HANDLING 0.0 GRAVEL CORRECTION F A C T O R 1 . 0 0 0 SIZES ELIMINATED K 0 . 0 1 S ) NONE TRASK SORTING COtr F F EC I ENT 2.100 USING PKOBABILI IV EXTRAP. 27T7 .8 MEAN CUBED DEVIATION 6 .667 USING PROBABLITY EXTRAP. 4 .737 PERCENTAGE COMPOSITIGN 0 .0 20. 70 69 .66 CLA IT MUD S/M 9.73 79.30 0. 26 TABLE OF STATISTICAL DATA IN PHI UNITS Kf-AN , - STO DEV SKEWNESS KURTOSIS MOMENT £ ^ " ~ 5 . 6 7f'41 l ' .H0636 1. 12940 4.8323 1 P-MOMENT 5T5C~(SS 1 .7219 7 0 . 92777 3 .85024 F CL K 5^44714 1.71080 0. 19269 1.04429 PERCENTILES L 1 NEAP ETYR A p. PRI 'BADL I I ITY EXTSAP -6. 0 1 0 . 0 16. 0 P-FOLK INMAN P-IflMAN 5.45497 1.68749 0.20393 MM. 0. 10 30 6 0.08309 0.07082 PHI UNITS 3. 2 / 64 8 3. 5861 7 3.81969 MM . .09799 .05151 .06917 5.50452 5.51552 KPUMPE1N P-K RUM. FOLK (TRANSFORMED) 1.68492 0.10215 _U6_6 187 0. 10929 1.66605 -6700072 1.65384 0.00290 1.03/ 72 0.70067 0.7 008 7_ 0.2 5/42 0.25743 0.51063 P - r C K (TRANSFORMED) 25. 0 50.0 75.0 " 8 4 . 0 " 90 .0 95. 0 0. 05414 0.02482 0.01139 0.00685" 0.00402 0.00194 4. 2071 lT 5. 33239 6.45626 7.18544 ' 7. 95788 9. 0 094 9 0.50926 T53364 024 79 01141 "00691" 00403 00195 PHI UNI TS 3.35118 3 . 61651 3.85365 4.2204^ 5.33386 6.45313 "7. 17 73 8" 7.95340 9.00443 DATA FOR CONSTN OF 6ARGRAPHS AND CUM. CURVES SIZE FRACTION MM PHI W T . ( G M S I UMCOR COR WT.PCT, COR WT.PCT. CUMUL. MID PHI(LINEAR) PHI MM M I D PH I ( PaOB.) MTJTJC PHI M M 0.250000 0.177CC0 0.126000 2.000 2.458 3 .OOC 6 . LotOUO 0.06 2 500 0.044000 0.531000 4. 000 4.506 "6.01 2" O.OiO 0. 020 0.040 "TTZST" 0. 59C _0 . 48 3 0. 26 0 ' 1. 751 0.29707 f.'dSS" "6.27071 " 0" 2.249 0.21036 2 .308 0.20200 0 .749 0.14875 2.794 0.14417 0 20 .697 3 1.2 17 36.861 O.O220OU O.3156C0 "TTzirs—Tjn'Tj^TEr 3.753 U.07416 4.25 3 0 . 0 52 44 4.769 0.0 36 93 ~.33" 3.793 4 . 267 4 . /63 . 5 06 . 002 " O'.'O " '4"5" 0.07215 0.051S6 0.03063 0 .01 ! 0.30 6. 6 06 _L.Ji02_ 5 7.112 6 6 . 4 4 1 5.255 0.02612 5.26 1 0 .02o07 5. 754 0. 0 18 53 6. 748 0. 01660 / 5 . 7 2 J 6. 254 U.013TT3 672"4"o 0. J 1 j 1 7 0~~ JL2.- 1 9 7 6. 754 0.00926 6.743 0.00934. 0_ 0.005500 / .506 0 . 223 0 . 223 _ 4. 656 87.062 7.254 0. 00655 7.241 0. 00^61 0 0.003900 8. 002 6". 149 6 . 1 4 9 3. 25 7 9 C. 2 9 0 7 . 75 4 U . 004 63 7 . 74 2"" 0 . 00 . 6 / """ o" 0.002700 0. 633 0. 11 1 0. 1 1 1 2.427 92. 71 7 8.268 0. 00326 6.253 C . 0 C 2 8 0 0. 001 900 9.040 0 . 111 0 . 11 1 2.428 96.146 6.766 0.00227 6. 766 0. 002 30 1 0. 250000 6 .uCI3S0" 0.0C09O0 0.000690_ "0.000061 TOTAL 5 0.010000 6 T T 9 . 99 5 10 . 5 01 "14". 00 6"" C. 077. 0. 03 7 0 .037 0 .074 4 .590 ~ 7 7 7 7 t 0. 03 / 0. 03 7 "0".b"74" 4 .590 TTrp 0 . 6 0 6 _ _ 0 . 609_ 1.619 100.0 . 56. 7o4 CJ7.7 0—0.00162 f,. 2r.2 P . O O i 64 97. 672 9. 748 0.001 16 9 . 733 0 .001 1 7 9 6. 381 _ 1 0 . 248_ _ 0 . 000 82_ 1 0.2 26 0. 000 8 3_ UJ.uOO 12 . 2 5 1 " 0 . 6 6 0 2 1 11.063 "6".' 00046 " 0 PITT38 PHI PC T . CUM PCT. S I E V E , S H . P I P . , SEDIGRAPH SAMPLE WT. 6.3100 • 1.50 0 . 45 2 .00 0.48 0 .32 2 .50 0.79 1.27 3.00 2 .C6 4 . 75 3 .60 6.81 7.61 4 .00 14.4? 8.64 ***** * <• * * * It * * , * T * 4.50 2 i . C 7 15 .56 5.00 38.63 18 .15 6 .50 66.78 11.24 .-******** * * * * * * * * * * * * * * * * * * " v * * 6 .00 6 i . 0 2 8.64 6.50 76.66 5. 15 7 .00 6 1 . L5 5 .19 ***»-***ir* * * * * * * * w * * 7•50 o 7.C3 4.32 3.00 51.36 3 .4 6 ~ 5 .50 54 .SI 3 .46  **** u-9 . 0 J 98.27 1.75 * « 12. 00 100.00 MEAN S T . D E V . SKEwNESS KURTOSIS 5 . 4 8 • 1 .44 0 .15 -0 .21 KRUM3EINFPETT IJGTINl 193 8) MOMENT MEASURES FCR S U E RANGE . 2 .0 TO 9.0 Pril 0.22 T.'22" " "fOLK GRAPHIC SI A IIS r ICAL PARAMETERS FOLK AND WARD,1957 PERCENTILES MEDIAN 5.31 5TH 3.31 16TH 4 .09 25TH 4 .56 75TH 6 , 4 0 " 84Th " 7.21 ' " 55TH 3 .53 PER CENT i.t'AVl L 0 .0 SANO 14.42 SILT 77.26 ( 76. 63) CLAY 6.32 I l i . 6 - . l~ GRAVEL • SANG 14.42 LABELS SHEPABQ - S I L T J I L T / ( S I L T t C L A Y ) 89.90PCT GRAV + SAND/SILT + C L A Y 0 . 1 7 FOLK (CMS l-SANOY MUD ( SCS l-SANOY SILT P ITT39 SUVEf SH. PIP., SE 01 GRAPH SAMPLE WT.* 4.8000 PHI PCT. CUMPCT. 3.00 0.42 3.50 0.42 1.67 4.00 2.08 JL.96 4.50 4.04 2.94 5.00 6.98 " 7 . 8 3 " 5.50 14.61 6.81 6.00 23. 63 10.77 6.50 34.40 6.85 7.00 41.25 .65 ********** 7.50 4 6.10 7.83 8.00 _ 55.54 ' 4.90 6.50 60.83 2.94 9.00 63.77 11.75 9.50 15.bZ_ 4.93 10.00 8G.42 4.90 10.50 *********** 85.31 4.90 11.00 SO.21 4.90 11.50 95.10 4.90 ***** » » * * * " 12.00 100.00 MEAN ST.DEV. SKEWNESS KUPTOSIS. (^l.blS 2.01 0.06 -1.01 KPUMBEINt-PFTTIJOHNl1938) MOMENT MEASURES FOP SIZE RANGE 3.5 TO 11.5 PHI 7. 85 2.23 0. 14 1.17 FOLK GRAPHIC STATISTICAL PARAMETERS FOLK AND WAKD,1957 PERCENTILES MEDIAN 7.62 5TH 4.66 16TH 5.57 25TH 6.06 75TH 9.48 84TH 10.37 95TH 11.49 PER CENT GRAVEL 0.0 SANO 2.08 SILT 54.17 I 53.85) CLAY 43.75 I 44.061 A n n ? - n s 5 11 T/I S IL Ttf.i AY I 55.00PCT GRAV + SAND/SILT + CLAY 0.02 PITT40A SIEVE, SH. PIP., SEDIGRAPH SAMPLE WT.= 3.4200 P.HI PCT. CUMPCT. 3.50 1.17 * 4.00_ 1.17 'l."98 " •» 4.50 3.15 2 .55 5.00 6.11 5.93 ****** 5.50 12.04 _ " 6 . 5 2 " . " " ******* 6.00 18.96 4.94 ***** ""bTSO 23790^ 4.94 ***** 7.00 28.64 6.92 ~ ' ******* 7.50 35.76 6.92 * * * . » 4 * 8.00 42.63 7.91 8.50 50.59 9. R 3 " ' * * * * * * * * * * 9.00 60.4 7 5.93 9.50 66.40 5.93 ****** 10.00 72.33 5;53" " " ****** 10. 50 78. 26 6.92 *.*•«,* 11.00 85. 13 5.r,3 ****** 11.50 91.11  1.93 >* 12.00 93.03 6.92 ******* T 2 T 0 0 IOITTOD _MtAy_ ST.PEV. SKEMIESS KURTOSIS -^ fl7l7"^  2.05 -0.06 -0.96 KR UMB E IN+P E TT I J OHN{ 1938) MOMENT MEASURES j FOR SI2E RANGE 4.0 TO 12.0 PHI  8.39 2.37 -0.03 1.19 FOLK GRAPHIC STATISTICAL PARAMETERS FOLK AND WARD,1957 PERCENTILES MEDIAN 8.46 5 TH 4.81 16TH 5.79 25TH 6.61 75TH 10.23 84TH 10.92 95TH 12.00 PER CENT GRAVEL 0.0 SANO 1.17 SILT 41.73 I 41.51) CLAY 57.10 I 57.321 PITT408 SEDIGRAPH ANALYSIS PHI PCT. CUMPCT. 4. go 0.0 ' 4.50 0.0 2.00 5.00 2.00 6. 00 ** ****** 5. 50 6.00 6.50 a . 00 10.00 18 .00 9. 00 27.00 9.00 * * * * * * * * * * "~** * * * * * * * **ft***ft** 7.00 7.50 8.00 36.00 11 .00 6.00 .ftftftftK**** ******** ****** 8.50 5.00 9.50 61 .00 13.00 r * * * * * * * * * * ********* 83.00 4.00 10.00 10. 50 87.00 50.00 2.00 11.00 92.00 2.00 ft* ** 11.50 12.00 94. CO 1.00 55.00 5.00 12.00 100.00 MEAN ST.DEV. SKEWNESS KURTOSIS • 7.68 N / 1.64 0. 14 -0.67 KP.UMfiE IN »PE TT I JOHN I 193 8 » MOMENT MEASURES 7. 74 1.95 0.16 FOR SIZE RANGE4.5 TO 12.0 PHI 1.32 FOLK GRAPHIC STATISTICAL PARAMETERS FOLK AND WARD,1957 "PERCENTILE'S " "MEDIAN 7.69" 5Tl' 3 . ' 2 5 1 6 T H 5.90 251H 6.39 75TH 9.06 84TH 9.63 95TH 12.00 PE R_c ENT_ _GRAVEL 0_. 00 SANO 0 . 0 SILT. 0.0 <_61 .00) CLAY 0 ._0 i_3±. 0 0 ) GRAVEL * SAND COO SI L T / ( S II. T ft CL A Y I 61.00PCT GRAVES AN O/SILT+CLAY 0.00 I A C C I C c t i C D i c n -riAvpv C U T p n i K(r , M S l-M [ j n (SCSI-MUD P i t * 41 0.0 0. 0 »*** ' * T * v jLT .MoOAL S iMi 'L : « • » WET WT _ _„DRY WT _ SALT ORGANIC MOISTURE lOCO.0000 ' ' 5 . 1 6 3 0 " " " O.C 0 . 0 6 . 0 {GRAMS i 100.0000 100.0000 0.0 0 .0 0.0 (PCT WET WT) WEIGHT LOSS DUE 10 HANDLING 0 .0 GRAVEL CORRECT ION FACTOR l . O O O " SIZES ELIMINATED (<0.01*) NONE TRASK SORTING C OE F F EC 1 ENT 2.101 USING PROBABILITY EXTRAP. 2. 0B8 MEAN CUBED DEVIATION 15.544 USING PROHABLITY EXTRAP. 13.367 PEPCENTAGE C0KP0S1 T i UN "GRAVEL 0. 0 SAND 23.15 SILT 61.65 TABLE OF STATISTICAL DATA IN PHi UNITS PFRCENTILES LINTAR EXTRAP. P R O B A B I L I T Y EXTRA* MM. PHI UNI TS MM. PHI UNI TS 6 . 11645 3. 1 021 9 " "" 0 . 11171" " 3 . lo221 0. 09841 3. 34505 0 .09456 3. 35656 0 . 03274 3, 55532 0 . 0 8 l o 5 3 . 61441 0. 06725 89420 0.06651 3. 91016 0. 03006 5. 0561O 0.0300S 5. 05516 0.01524 6. 03606 0.01526 6 . 03592 0 . 00829 "" 6 . 51493 "0760832" 6.5086 6 0 . 00360 8. 04015 0.003 81 8. 03720 0. 00094 10. 04936 . 0.00055 10. 0464 7 CLAY MUO S/H 10.17 71.61 0 .39 P-FOLK 5.19261 1.66668 0.28770 1.32852 INMAN 5.25513 1.65981 0.11987 1.09276 P-INMAN _5.26164^ 1 .64723 0.12535 1. 06965 ""k R U MB E I N " " " ' " " 1 . 58 65 7 - 0.0 91 0 3 0 . 2 2 6 1 0 " P-KRUM. 1 .573L4 -0 .083 11 0.22882 FOLK (TRANSFORMED) 0.57069 50. 75. 64, 90. P-FOLK (TRANSFORMED) 0.57064 DATA FOR CONSTN OF BARGRAPHS AND CUM. CURVES MID PHK PROS. PHI MM ) MODE SIZE FRACTION MM PHI 'WT. UNCOR ( GMS) COR WT.PCT. CUR WT.PCT. CUMUL. MID P'HKLINEARI PHI MM 0.2 50000 0.177000 0 . 125000 2 .CCD 2. 498 . 000 0.088000 0.062 500 __0. 044000 Q.'C2 1 666"" ~STSTi"6 4. COO _4. 506 5." 6 1 2" 0.010 0.020 0. 120 0.010 0. 020 0 . 120 0.193 0. 0.386 0. 2 .317 2. 193 579 896 1.751 2 .249 2. 749 0.29707 0.21036 0. 148 76 1.882 ' 2 .308 2.828 0.27128 0.20197 0 .14J80 -0 .54C 0. 770 0.678 0. 174 "TJT54D-0.770 0.878 "0.174 TOTTTZS—IT; 14.865 28. 16.948 45. ' 3. 36 3 " 4 8. 'T2TJ-i es 133 4 96" "3TZ53" 3 .753 4.253 "4.755 ~ir."ro4""ETB~ 0.07416 0.05244 0.03693" TTTTT 3.780 4 .263 4 .755" 0.07278 0.05208 6".0 3u9 2 0.922000 0. 01 5600 5.5 06 6.002 0. 864 0 . 46 8 0. 864 0.488 16.684 9.431 65. 74. 161 6 1.1 5.259 5.754 0.02612 0.01853 ororrrcr 0.00926 6.254 5. 745 0.02o20 0.0 1664 •745"" . 744 O . O I J I T T 0.007 3 3 0.011000 0. 507800 6. 506 7.002 0.301 0.225 0. 301 0. 225 5. 805 4. 352 80 84 414 7t,7 6 .254 6. 764 0.006500 "~G. 003 9 00" 0.002700 0.001900 _7. 5 06 8.00 2" 6.533 9.040 0.113 6 . 150 0. 113 0. 075 0.113 0. 15 0 0 .113 0.076 2.177 2.90 2" 2. 176 1.461 86, 89. 92 , 93. 943 64 5 02 0 4 71 7. 264 7. 754 6. 26 8 8. 736 0.00655 0.00463 ' 0 .00325 0.00227 7.248 7.74 3 8 .266 8. 777 O . O O J S B 0.00^67" C . 0 03 2 7 0.00228 0.001380 0.000960 0.0006 90 0.000450' 0.030340 0.000240 9.501 9.995 10.501 10.595" 11.522 12. 025 0.038 0. 033 0. 033 "6. 338 " 0 . 038 0.038 0.038 0.038 0. 038 0.036 0.03 8 0 .033 726 .725 726 72 5" 726 72 5 54. 54, 63. "96 , 97. 57. 197 922 648 373 099 823 9. 270 9. 748 10.248 10. 74 6 11.259 11.773 0.00162 0.00116 0.00082 0.00038 0.00041 0.00029 9.265 9. 741 10.240 10.739 11.246 11.758 0.0016 3 0.00117 0.00063 0.00359 ' 0.00J41 0.00329 PITT45 SIEVE, SH. PIP., SEDIGRAPH SAMPLE WT.= 5.0400 , Pn! PCT. CUMPCT. ^ 3. OJ 1.59 3.50 1.55 3.57 »•<»» 4. J0 5 . 1 c 6.77 >/'/ <- * ft * ft "TT 5u~~ TT.54 1 0.64 • ' "* >•»»/'*** 5. . . 2 2.55 17.42 * * w" * * ** " f t * * * ***** 5.3 0 40.00 16.45 ftftftftftftftftftftftftftftft* 6 . J 'J 5 6 . 4 3 10.64 ( **-ftft»ftft**ft 6. 30 _ 6 7 . 1 0 7. 74 > • » » » » " 7. 3-0 7 4 . 6 4 5.81 » , » » >  7.30 6 3.65 4. 84 8.30 83.48 3.57 6.50 65.36 1 . 54 9.00 91.25 0.57 9 . 3 6 52 .26 0.97 10. 00 43.23 0 .57  10.3>. 54 .15 0.97 11.00 55.1 o 4 . S4 12 .00 100.00 •E-tt S T . O E V . S*Ew«ESS KUFTCSIS 5.99 _I-4_7 C.43 _0.79__ KPUMbE 1 N»PE TT UfJHN < 193b ) MON E NT MjEA SUR E S_ "•• " " ' " F O R SIZE RANGE' 3.5 TO " 1 l.'d PHI 6.11 1.84 0.38 1 .36 rGLK GRAPHIC STATISTICAL PARAMETERS  FOLK AND WARD,1957 ffct-CLIlT U t S >.l UIAK T.<JU ~ 5IH 3.96 16TH 4.69 2 51:11 5.07 75TH 7.01 04IH 7 .85 95TH 10.92 PER CENT GRAVEL 0.0_ SAND 5.16 SILT 80.44 I 80.32) CLAY 14.40_( 14.52 ) G K A V l • SAr.r 3.16 M L T / I S I L K T L A Y ) B4.65PCJ GR AVft SAN 0/5 I L. T»C LAY 0.03 u:i>'::-, - C U T FOI Kl r.w; l - M l i r i (SCSI-SILT P l * + 42 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * # * * * * V * * W% * **** **** MULTIMODAL SAMPLE * * * * * * * V * * * * * * * * * * * # f t * * * & l f t f t * f t WET WT _ DRY WT SALJL " l O O O . 3000 " " 6 . 3 1 0 0 "0". 0 100.0000 lOO.OOuO 0 .0 ORGAN IC_ W3ISTURE_ 0.6 0.6 I GRAMS") 0.0 0.0 (PCT WET WT) WEIGHT LOSS DUE TO HANDLING 0.0 GRAVEL CORRECT ION FACTOR ""* 1.000 SIZES ELIMINATED K O . O U ) NONE TRASK SORTING COEFFICIENT 1.930 U S I NG PROBABILITY ExTRAPT" 1.908 MEAN CUBED DEVIATION 3.225 USING PROBABLITY EXTRAP. 3.847 PERCENTAGE COMPUSI TI ON T/-HLF OF STATISTICAL OA f A IN" PHI UNITS* GRAVEL SAND _S_ILJ_ CLAY HUD S/M 2 9.64 66.05 MOMENT P-MCMENT FOLK J iE-AN-^.^STD DEV '5 .006 1 9 ^ 1 .6C26B" -4-r-C 6"7 0*3 1.46659 4.64360 1.38834 4.22 P-FIHK 70.36 INMAN 0.42 P-I NM AN KRUPBE IN P-KRUM. FOLK (TRANSFORMED) 4.64389 1.36578 4.94371 1.34068 4.54436 1.31822 1.40501 1.38074 SKEWNE SS 1.727 19 1.16629 0. 2 671 9 0.29655 0.22401 _0._228 65_ 6.17663 0.17548 KURTCSI S 7.36736 4.6 7062 1.02392 P-FOLK (TRANSFORMED) 1. 02547 0.7o732 0. J6906 "6. 27529"" 0 .27329 0.50591 PERCENTILES 3. 0 10.0 16.0 L I NEAR tXl.<AI>: " " ^ O B A B L T L T T Y TXTSTTPT" 23 .0 50.0 75.0 84 .0 90 .0 95. 0 MM . PHI UN I T S MM. PHI UNI TS 0 . 11 6 29 3. 1 04 1 6 0 . 11181 3. leOb 7 0. 09699 •j 36o0 5 0. 094 06 3 . 41033 0. 0:1230 3. O0304 0. Of 05" 2.. 62 614 0. 06663 3. 8 6 504 0. Oc7o2 3 . Bic-4-. 0. 04001 4. 64239 0 . 04002 4 a 6425c 0. 01843 5. 76181 0. o i e s B 75044 0. 01 2 83 " 28 439 "* ' " "0 . 01302 ' 6 • 26256 0. 00891 6. 81106 0. 00900 6 . 75568 0. 00436 7. 84298 0 . 0044 1 7. 82469 0.50o29 DATA FOR CONSTN OF BARGRAFHS AN0 CUM. CURVES SIZE FRACTION MM PHI WT.lGMS) UNCOR CCP WT.PCT. COR 0.250000 2. 0.I770G0 2. 0.125000 3. 000 448 000 J . J 0 c 'j -j u 3 0.062 500 4 0.044000 4 "6. 031 000 ' "5 .T7J7J COO , 5 06_ "012 0.030 6 .030 0.030 0.030 0 . 1_30 _0 .130 1.070 1.070 1. 122_ 1. 122 "0.55 9 " 0 . 5 5 9 " 0 .475" 0.475 2. 060 16.95 7 17.788 * 9.4 96" WT.PCT. CUMUL. 0.4 Z5 0.951 3.011 MID PHI (LI NEAP} PHI MM MID PHMPkClB.) PHI MM MCDE 0.022000 5. 0.015600 6. 3 06 002 0. 86 I 0 . 544 0. 861 0.544 13.642 8.616 0.011000 6. 0. 007600 7. ~~zriv?Pttj—r. O.OC29'JO a . 0.302700 6. 0 .00 !5 00 •12 .676" 29.635 47.424 56 .920" 70.562 79.178 1.751 2.249 2. 749 3 .•2 53" 3. 753 4.253 4. 759 0.29707 0.21036 0.148 75 "o.iC'Vas-0.074 16 0. 05244 0.03693 " 1.901 2.286 2.808 3.31b 3.784 4 .26 2 4.758 0.26771 0 . 2 0 . 5 7 0. 14^ P2 0.07^62 0.05212 0.03695 5.259 5. 754 5 06 002 0. 544 0. 22 7 0.02612 0. 01853 0. 54 4 0. 227 6.616 3. 590 5u6 002 0.2500CW 0.177000 0 .125000 0.088000 O.OOOOoi 14. TOTALS C. C4 0000 0.060000 0. 760300 1.020000 04 0 •oUo" o. 136 OTTTS 2.154 0.136 0.136 2.154 0.045 0.045 0.718 0. 04 5 0. 04 5 0 . 7 19 0 . 1 3 1 """ B / . 794 51.384 6.234 6. 754 "9 31.53 6 95.692 96.410 3 7.128 "7.254 7 . 7 3 4 8. 268 8. 7UG " O T O T T I O 0.00926 5.251 5. 743 0.02o26 0. 01667 6.310 0 . 1 81 2. 8 /2 106. 666 1.1. 526 6.310 100.0 v).00653 O.0O463 0.00325 0.002 2 7 .0002 672Tr 6.735 "7.241 7. 73 5 8.236 B . 7 7 3 0 . 0 U 3 T T 0.00936 0. OOi 70 0.00327 0.0 02 2 8 9 .820 O.OOl 1 1 P i n - 43 0 .0 WET WT_ OPY KT SALT "1000.0000 5. 7600" 0 .0 100.0000 100.0000 0 .0 ORGANIC 0. 0 0 .0 MOISTURE. " 0. 0 " I GRAMS) 0 .0 (PCT WET WT) ft*** * * » * _ * * * MULTIMODAL SAMPLE * * * ftftft* i*«* ************** ft ft***ft**ft*ft**«* WEIGHT LOSS DUE TO HANDLING 0 .0 GRAVEL CORRECTION FACTOR 1.000 SIZES ELIMINATED K O . O l i ) NONE TRASK SORTING COc FFE C I E NT 2 . 3 . USING P R O P A B l L l l Y E X l K A P . 2.298 MEAN CURED DEVIATION 13.147 USING PROBASLITY EXTRA?. . _ . 9 . " 4 PERCENTAGE CUMPUSIT ION "GRAVEL" SANO SILT O.o 45 .6 3 47 .18 CLAY MUO S/M TABLE OF STATISTICAL DATA IN PHI UN 1 I 5 C F T f T ^ ^ S T n REV SKEWNESS ,7 7558.^2.0 5 55 2 1. 513 77 PERCENTILES LINEAR E X l K A P . ps.OsABl ILITV EXlkAP. "MOMENT P-MOPFNT FOLK — 7.3 1 P-FOLK 54.5 0 I NM AN 0 .33 P-INMAN K.'RUMf. EIN" P-K^UM. FOLK (TRANSFORMED) 1.54277 1. 3 1380 1.34208 0.42579 KURTOSIS 5 . 5 6 •> 5 1 4.485B5 1.08376 3 .0 10. 0 16.0 T 7 T 2 7 0 3 0. 43688 1.72868 0.33346 U 7 2 4 5 5 _0._33 76 7_ "i . 8*0430" "0. 3*2736 1.77B38 0.33590 1.08696 0. 8664 / 0 .B4ol1 "6.26332" 0.26408 0.52056 -FOLK (TRANSFORMED) 0.52083 25 .0 50. 0 7 5.0 64 .0 * 90 .0 95 .0 PHI UNITS 2. 605 76 " " 2. 8005 8 3. 02223 3. 280i6 4. 17100 5 . 7 l 6 2 7 _ 6. 4 7539 7. 42578 9.06283 0 . 15460 0 . 13o44 0.12235 PHI U M T S 2.69336 2.67 36 1 3.02809 0 . 10112 0 .03354 0 . 01915 _ "6". 01122 0.005 64 0.00187 3.30581 4.17031 5.70662 "6*4771*9 7.41914 9.06076 DATA FOR CONSTN UF 3ARGRAPHS AND CUM. CURVES S U E FRACTION MM P H I "oV2 5(306"o 0.177000 0. 1250uO . Jc~ n 0. 062 500 0.044000 "0.031000 WT.IGMS) UNCOR COR WT.PCT. WT.PCT. COR CUMUL. ~MTD PHI IL IN FAT) PHI MM PHI MM ..jfllilio-0.000580 0.03069_0 "0.6*00061 TOTALS PITT44 PHI PCT. CUMPCT. SIEVF, SH. PIP., SEDI&RAPH SAMPLE WT. 4.4 900 3.50 4.63 4.00 _ 4.63 ' 6.83 4.50- 11.56 1 1 .79 ***** * . ***** ***** 5.00 23.35 17.69 5.50_ 41.04 1 7 . 6 9 " 6.00 58.73 14". 74 ******* *********** ' '* * * * * * * * * * * * * * ** *~*~ *************** ********* 6. 50 73.47 8.84 7.00_ 82.31 6.66 ~ ~V******" 7.50 69.19 4.51 *.»** 6.30 54.iO 1.97 6.50 96.07_ " 1.57 9.00 98.03 1.57 12. 00 IDO.OO MEAN ST.DEV. S K EW N E S S KUPTOSIS C s.ez ) 1.14 0.19 -0.21 KRUMBEIN+PETTIJOHNi1938) MONENT MEASURES V - TOR SIZE RANGE 4.0 TO 5.0 PHI 5. 85 1.25 0.15 FOLK GRAPHIC STATISTICAL PARAMETERS FOLK AND WARD,1957 PERCENTILES MEDIAN 5 .75 5TH 4.02 16TH 4.69 25TH 5.05 75TH 6.59 B4TH 7.12 96IH 8.23 -PER CENT GRAVEL 0.0 SAND 4.68 SILT 89.74 ( 89.42) CLAY 5.57 I 5.90) GRAVEL * SAND 4.68 SILT/ISILT-tCLAY) 93.81PCT GRAV«-SAND/SILI>CLAY 0.05 LABELS SHEPARO -SILT FOLK(GMS)-MU0 (SCSl-SILT J o c o PITT46 SIEVE, SH. P I P . , SEDIGRAPH SAMPLE Vi T. = 5.4600 P.-i I P C T . CUMPCT. I . o'J 0.37 2.0.) 0 .37 0. 55 2 .50 0.52 1 .28 3.00 2 .20 2.3 8 i . 5 0 _ 4 .58 4. 76 4 .00 9.34 5. 44 14. 78 1 2 . 69 5.00 2 7 .47 15. 04 5 .50 4 6 . 5 1 10.53 rtw*#*ft#»ft**ft#*#*** 6 . ' J J 3 / . 3 v 7.25 6.3. , _ C 4 . _ 6 4 4 . 33 7 . 0 0 1,5.18 2. 72 7. 50 71 .90 2. 72 o . 3 . 74.6 2 1.31 5.50 76.43 1. PI 9 .00 7? .24 1.51 9_. 50 S0._05 6.9 i 10. 0 0 c 0 • 9 6 0.91 1 0 . 3 j fci.87 0.41 11.30 _ c2 .77 17.23 12.03 100.CO "lu'i S T . D E V . SKEh'-lESS KURTOSIS "i.oJJ 1.62 _0.44_ K 1 0 KRUMEE 1M + FETTI JOHN FOR " S U E RANGE 2. 1193 81 MONENT MEASURES 0 TcT 11.6 Ptil 7. 05 2 .87 C.57 1.45 FOLK GRAPHIC STATISTICAL PAP AMFTIRS 0,1 " FOLK AND WARJ,1957PERCL'jT I Lr.5 MEDIAN 5 . 6 0 5 T H 3.54 7 9 T U H - 1 1 16TH 4 . 5 5 M 4 1 11 I 1 . O 7 25Til 4 .90 III 11.71 PI** 0.0 ***************************** **** **** »*>* " ViuITI MOOAL SAMPLE »««~ **** **** ***************************** WET WT DRY WT SALT ORGANIC LCOO.oaco ' 6.5400 o .o 0.0 100.0 0 0 0 100.0000 0.0 0.0 MOISTURE " 0 . 0 ( G R A M S ) 0.0 (PCT WET WT) WEIGHT LOSS (f'UE TO HANDLING _ 0 . 0 GRAVEL CORRECTION FACTOR l .OOO" S I Z E S EL IMINATED K 0 . 0 1 ? ) NONE TRASK SORTING COEFFECIF NT 2 . 3 1 5 US rNG~PR0tlA6I L I T < F.WTZAP. 2. 296 MEAN CUBED DEVIATION 16.174 USING PROBABLITY E X T R A P . 11.921 PERCENTAGE COMPOSITION GRAVEL"' ' 0 .0 ' SAND 2 9 . 9 7 S ILT 5 7 . 6 7 TABLE OF STATISTICAL DATA IN PHI UNITS CLAY MUD S/M MOMENT P-MCMENT FCLK 5.33456 5.16853 STf> DFV SKCWNESS '2 .33600 1.26679 2.21157 1.10204 2. 15329 U.201N3 KUP Tl'JS ! S 4.59543 3.9 1024 I. 34345 12.16 70. 03 0.43 P-FOLK INMAN P—INKAN 5.17613 5.20367 5 . 2 1 6 74 K 0 ' 1V I: E I H P-KRUM. FOLK (TRANSFORMED) 2.14207 0.21428 1.90107 0.05545 1 . 38531 _ 0 . 06303 "1.7930 1 - 0 . 13814 1.77617 -0 .13577 1.35303 1.08783 1.09943 0. 20956' 0.20787 0.57328 PERCENTILE S H N U R tXTRAP. 5. 0 1 0 . 0 16.0 "TTfOBAt'.L 1L ITY ExTRAP. 25 .0 50 .0 75.0 34. 0 5 0 . C 95.0 MM . PHI UNITS MM. PHI UN I tS 0 . 16914 2. 56368 0 . 16659 2 . 58362 0. 124 10 3. 0 1 04 1 0.12363 3. 01356 0.10135 3. 30260 0.0994 1 3 . 3 3 043 0.07436 3. 7453 0 0.07370 3. 7o223 0.029 19 5. 05826 0.02922 5. 09691 0.01388 6. 17094 0.01398 6 . 16006 0.00727 7. 104 74 0.00723 7 . 1010 6 " 0.00226 8. 78776 0.00227 £ • 78114 0.00069 10. 50187 0.00069 10. 5G178 P-FOLK (TRANSFORMED) 0 . 5 7 5 0 2 DATA FOR CCN'STN OF BARGRAPHS AND CUM. CURVES SIZE FRACTION MM PHI WT.IGMS) UNCOP. COR WT.PCT. COR WT.PCT. CUMU L . MID P H I ( L I N E A F ) PHI MM MID PH I ( PR OB. I MODE"" PHI MM O.250000 0 . 177 000 0 . ! 2 5 0 0 0 1 i . ' j f f j j t l ' 0.062500 0.044 000 "0.0? 1 0 00" 2 . 0 0 0 2 . 4 5 6 3. 000 3 . 3 U O 4.000 4.5 06 T. 0"l"2 " O.C2200O 0 . 0 ! 6 6 0 0 5 3 0 6 6 .0 02 0 . 160 0. 1 20 0. 36 0 '. Oil v. 0.64 0 0 . 844 0 .278" 16 0" 120 360 TZT 64 0844_ 2 78 2.446 1.035 5.305 H T 3 " 9 ~ ~ ~ 5. 766 12.901 "4 ".2 50" ,446 ,281 766 ToT 96 9 870 , 1 20" 1.751 2 .249 2.745 T~ 3. 75 3 4. 253 4. 73 9 0 .29707 0.21036 0 . 143 75 'OTffS" 0.07416 0 .0 52 44 0.0369 3" 9 21' 0. 2 7 7 0, 788 0. 766 0. 261 0. 2 6-, 1 4 2 0o?6 1 4 , 7 7 3 4 4". 760 T c r ; r r -0 7350 052 16 0?.o91 1.0 75 0 . 3 6 1 .073 , 66 1 1 6 . 4 3 6 a . 3 / 3 63. 7 2. 5 36 131 3 . 259 6. 754 0 . 0 2 6 1 2 0 . 0 16 3 3 7 r. 3 3 74 7 0 2o 1 8 0!u62 0 . O i l 000 0.007600 ^ ) T 3 T o T " 0.003 900 0. J02700 0. 001900 6. 3 C6 7. 002 " 7 ' . — 7 J -3. 0 02 8 . 5 3 3 9 . 04 0 0. 561 0. 137 561 167 8 . 3 7 5 2 . 669 60. 83. 70c 6.254 6. 754 0.001360 0.000980 0.000690 U. 3 1045 0 0.000061 TOTAL S T~~7T 9.995 10.5 01 '10.963 14.000 "0". 140 0 . 1 4 0 0 . 093 0 . 09 3 ~PT7J-, 140 093 ,09 3 2 . 144 2 . 144 1 .430 1.42 9 0 .01310 0.00926 8 7. 69 . 9 0 . 26 1 710 -"777174-7. 7 3 4 8.26 8 8.786 0.0 0"5 3 3 0.00463 0 .0 0325 0.00227 6.242 0 6.748 0 •TT2"4"8 0" 7 . 74 7 0 6 . 2 6 2 0 6 . 7 8 C 0 1)77)93 0 . 09 3 0 . 093 0 . 093 0 . 2 3 4 6 . 5 4 0 09 3 09 3 09 3 093 234 540 1. 429 1. 430 1 .429 "1.43 0 3.573 100.0 92 93 94 " 9 6 . 100 , 139 669 ,998 42 "7 ,000 9 .270 9. 74 8 10.248 10.748 12.49 7 0.001o2 0.0011o 0.000H2 0.00058 0.000 17 9 . 263 ~r 9 . 738 0. 10. 235 0, 10.73 1 0. 11.460 0, . 0 1J2 2 ,0 09 30 i"0 Oo 3 6 .00-.65 .00326 .002 28 001 63 001 1 7 0 0083 00059 00036 L S i. Pi*-* -*<j » * <. ^  ^  * i> -j, <. * * * i> * * v> * \ v*** * * * MULT 1MOJAL SAMPLE • ; WET WT DRY WT SALT _ ORGANIC 'IOCO.OOOO"' 6.330b o.o " 0.0 100.0000 100.0000 0.0 0.0 MOISTURE 0 .0 (GRAMS) 0.0 (PCT WET WT) WEIGHT LOSS DUE TO HANDLING _ 0 .0 GRAVEL CORRECTION FACTOR " 1.000 SIZES ELIMINATED (<0.0m NONE TRASK SORTING C OE F F EC I E NT 2.275 USING P R O B A B l L n T T x i R A P . 2 .255 MEAN CUBED OFVIATION 10.557 USING PROBABLITY EXTRAP. 6 .177 PERCENTILES LINEAR EX TRAP". PROBABLILITY EXTRAP. PERCENTAGE 'COMPOSI TI ON TABLE OF STATISTICAL DATA IN PHI UNITS _^T0 DEV SKEWNE SS KURTOSI S MM . PHI LN I TS MM. PH! U M TS GRAVEL 0. o"~ "MOMENT " V ' 4 .5 8694^ / l .92786 1.47344 " 5 .45582" " 5 . 0 "0 . 168 12 2. 57243 0. 16074 2. 65 720 SANO 50.2' . P-'KJMENT V_45_5iff<r5 1 . 76433 1.124 72 3.72803 10.0 0.15043 2. 73266 0 . 14 211 2. 81467 SILT 43 .72 FOLK 4.3 93 08 1.71206 0.43579 1.00115 16. 0 0.13164 2. 92 53 7 0 . 12693 2. 96327 CLAY 6 . C4 P-FOLK 4.35878 1 .66648 0.44862 0.99818 26.0 0. 11036 3. 1 7676 0. 106 71 3. 20142 HUD 45 . 76 INMAM 4.65410 1.66872 0. 36137 0.73370 5 0.0 0.06289 3. 99106 0 . 062PP 3. 99122 S/M 1.01 P-1 NM AN 4.602 57 1 .64729 0 .3 /112 0. 7 345 2 75. 0 0.02133 5. 6 6114 0 . 021 33 5 . 54 7 72 KPUMBLIN 1 . 76657 0.37439 0.26894 84.0 0.01302 6. 26262 ' 0 . 013i4 6. 2498o P-KPUM. 1 .73799 • 0.38335 0.2716 1 90. 0 0.00708 7. 14166 0 . 007 12 7. 13405 FOLK (TR ANSFOFMED) 0.50029 95 .0 0.00303 8. 36522 0. 003 06 8 . 35173 P-FOLK (TRANSFORMED) DATA FOR CONSTN OF BARGRAPHS AND CUM. CURVES MODE SIZE FRACTION MM F H I WT , UNCGR (GMS) COP WT.PCT. COP. WT.PCT CUMUL. MID PHI(LI NEAR) PHI MM MID P H K P R O B . ) PH I MM 0.260000 0. 177000 0. 1 2 6000 2. 000 2. 458 3 . 000 0. 050 0 .120 0.99 0 0 .050 0.120 0.590 0. C6r 000 0. Of.,' 6 00 C.044000 ""0.031000"" i . 606 -4.000 4. 506 6 .012" n:TT-o~ 0. 1130 0.673 "0". 250 •T.TTo" 0. 830 0.673 "0 .250 " 0.790 1 . 896 15.640 13.112 10.626_ "" 3 . 94 9 ' 0. 2. 16. TT. 60. 60. "6 4. 790 1 6 86 2 325 2 T2"5"—T 25 7 3 865 4 614 ""4 ,751 , 249 749 7~~r 7 6 3 .253 ,759 0.29707 0.21036 0. 14675 0.10488 0 .0 74 16 0 .05244 0 .03693" 1.909 2.311 2 .829 3.275 3.756 4.251 4. 757 "0 . 2 66 2 7 0 . 2 0 i 5 3 C. 14076 TJTTOTTT" 0.0 7J')9 0.0 52 53 0.0 33 59 0. 3 22000 C.01S600 5. 506 6.002 0. 604 0. 446 0. 604 0.446 9 . 550 7.038 74. 61. 3 64 402 259 754 0.02612 0.01053 5 .250 5. 743 C.02o27 0.01367 0.01)000 0. 0 07P.00 6.6 06 7.302 0. 318 0. 19 1 0.318 0.191 5.026 3.016 ,426 6. ,444 6. 254 754 0.01310 0.009 26 6.241 6. 743 "^751322 0.00V33 O.JC55GL, 0.003906 0.002700 0.001900 7.6C6 8.002 6. 533 6. 040 0 .127 0 .159 0. 095 0. 127 0.127 0 . 169 0. 095 0. 127 2.011 2 .6 13 1.508 2 .010 91 . 93. 95. 97. 435 7. 9 o 6 7. 4 76 8. 4 87 254 754 268 766 0.00635 O.OO'rUi 0.00325 0.00227 7.245 7. 738 6.252 8.756 3 . 0 Co 5 9 O.OO-* 6 8 0.003 26 0.002 3 1 _0.250000 0. 1 77000 ' 0 .125000 0.068000 • j . ) 0 U U 6 1 TOTALS 0. 010300 "6.010)00" 0.240000 0.6100 00 14.000 0 .159 6 .330 fl.15'7" 6.330 2.513 100.0 100.006 1 1.52o oTTfTJTJ- 5 .3 29 o. ooi l o P i n - 50 WET WT _ DRV W T _ SALT ORGANIC 1000.OOuO 6.3500 0.0 0.0 100.0000 100.0000 0.0 0.0 MOISTURE 0.0 (GRAMS) 0.0 (PCT WET WT) **** * *** MO l TIM r. DA L' 'S'AVPI.3 * * •* * •« « * WEIGHT LOSS DUE TO HANCLING . . 0 . 0 GRAVEL CORRECTION FACTOR 1.000 S I Z E S EL IMINATED K O . O U I NONE TP.ASK SORTING C O E F F I C I E N T 2.310 ' U S I N G P R 0 6 A S I L I T T E X T R A P . 2.253 MEAN CUBED DEVIATION 5.540 USING PROP-ARL ITY F X T R A P . _ 4.822 PERCENTAGE COMPOS I TION GP.AJEL SANO SILT 0.0 27.72 62. 78 CLAY HUD S/M 5.5 0 72.28 0.28 TAHLF OF STATISTICAL DATA IN PHI UNITS P-F( It I'M P - I ; "RFU; P-Kf FOLK. VTO DF V SKEWNESS KURTOSIS 5 . 3 5 8 0 6 ^ 1 . 5 7 154 1. 24488 4 . 502M4 3_^3.5234 1 .78 16 1 0. 852 59 3 .3 7179 5.23941 1.81696 0.17828 1.02439 l.K !KAM__ 'BE I f T " UM. ( T v. ANS FORMED) 5. 24C3 9 1 . 80771 0. 18158 5.27653 1.8039 5 0.06173 5.27B50 1.7544B 0.06372 1 .78 56 5 -0.0605'8 1.77377 -0.07825 P-FOLK (TRANSFORMED) 1.02847 0 .6/380 J3.67433 *0. 2596*3* 0.26126 0.50602 0.50702 •PERCENTILES LINEAR. E X U A P . PSOtHbL ILITY EXIkAP. 5.0 10.0 16.0 25 .0 50. 0 75. 0 84. 0 90. 0 95 . 0 MM. 0. 12192 0. 1062.5 0.09008 0. 06 608 0.02787 0.01276 "0.00739 0.00422 0.00185 PHI UNITS 3.03393 3. 2 3441 3. 4 7253 3. P7o5 7 5. 1 651 6 6 .29260 7. 08047 7. 88725 9.07461 MM. 0.1 1577 0.10170 0.08537 0.06752 0.02769 0.0 1284 0.00743 0.00424 0.00186 PHI UNITS " 3 . 01) 1 6 6 3. 25 766 3.471402 3.8 88c1 5.16415 6.28320 7 .07299 ' 7.86037 9.07078 DATA FOR CONSTN OF EARGRAPHS AND CUM. CURVES SIZE FFACTION MM PHI WT .( CMS )" UNCOR COR WT.PCT. WT.PCT. COR CUMUL. MID PHI (LINEAR)" PHI MM M ID PHI IPKCTB . I PHI MM MOJT" PIT T i l S I E V E , S H . P I P . , SEDIGRAPH SAMPLE WT.» 4 . 9 5 0 0 • PHI P C T . CUMPCT. — ; < 2.00 0 . 2 0 2 . 5 0 0 . 2 0 0. 50 3.00 1.00 4 .01 -* *«*» ^ ' 3 . 5 0 5. 02 6.22 4.00 1 1 . 2 3 ftftft»ftft 9 . 76 4 . 5 0 21.00 1 5 . 5 3 - ********** — " • i f t f t f t f t f t * * * * * * * * * * 5 . 0 0 3 6 . 5 3 1 3 . 6 4 5 . 5 0 5 5 . 6 2 ftft*.ft„.**ft*ft**„** " * " " 12 .43 6.00 6 3 . 0 4 7 .99 *ft**ftft****** ftftftftftftft* r , LZ-L^ 6 . 5 0 7 6 . 0 3 5 . 3 2 7 . 0 0 3 1 . 3 6 ***** 6 . 2 1 7 . 6 0 6 7 . 3 7 4.44 - ****** ft*** 6.00 5 2 . 0 1 2 .66 *** a.^n 9 4 . 6 7 . — r • ~ 1 . 7 8 9.00 5 6 . 4 5 n . P 9 ft* * 9 . 5 0 5 7 . 34 2 . 6 6 * * * 12.00 100.00 • HEA.N ST.D-V. SKEViMESS KURTOSIS (^j^J 1 . 3 6 0. 26 - 0 . 0 3 KRUMBEIN+PETTIJ0HN11938) MONENT MEASURES TOR S I Z E RANGE 2 . 5 TO 9 . 5 PHI ~ ~ - 5 . 6 0 t.~5i 0 . 26 ' 1.20 ~T6TK^RATHIC"TT AT i s t ' i cAL PARAMETERS FOLK AND WARD,1957 . P E R C E N T I L E S MEDIAN 5.35 5TH 3 . 5 0 16TH 4 . 24 25TH 4.63 75TH 6 .44 84TH 7 .21 95TH 8 . 5 9 PER CENT GRAVEL 0. 0 " S A N O ' 1 1 . 2 3 SILT 6 0 . 7 4 I 8 0 . 7 6 ) CLAY 8 . 0 2 ( 7 . 9 9 ) G R i v l L •" SAND 11 . 2 3 LABEL 5 SHE? API! - S I L T S IL T/i SILT+ C L A Y j 9 1 . 0 0 P C T GRAVftSAND/S1Lf+CLAY 6 .13 POLKIGMSI -SANDY MUD ( S C S ) - S A N D Y SILT PITT 52 SIEVE, SH. PIP., SEDIGRAPH SAMPLE WT.» 5.1400 Pril PCT. CUMPCT. 3.50 7.01 4.00 7. 01 _ "9.30 4.50 16.31 26. 04 5.00 42.35 15.61 ft.******* 5.50 50.15 "'"6.51 "" »»*****' 6.00 64.66 7. 44 6.50 72.10 4.65 7.00 76.75 4.65 '*5K«:>>" 7.5'J 6 1.40 2. 79 3.00 64.19 2.79 6.50 66.58 9.00 6 8.64 3. 72 9.50 92.56 1. 86 10.00 44.42 1.86 10.50 96.28 3.72 12.00 100.00 MEAN ST.DEV. SKEkNFSS KURTOSIS >.7$\) 1.62 0.56 0.44 KRUMBE1N + PETTIJCHN< 1933 I MONENT MEASURES FOR SI2E RANGE 4.0 TO 10.5 PHI 5.90 1.82 0.56 1.37 FOLK GRAPHIC STATISTICAL PARAMETERS FCLK_ANp . W AK D.rl_957. PERCENTILES MEDIAN 5.24 5TH 3.86 16TH 4.48 25TH 4.67 75TH 6.81 84TH 7.97 95TH 10.16 PEP. CENT GRAVEL 0.0 SAND 7.01 SILT 76.92 ( 77.18 1 CLAY 16.07 ( 15.811 GP.AVEL » SAND 7.01 SILT/tSlLT+CLAYI 83.00PCT GR AV • SAND/S I L T »CI. A Y 0.08 LABEL S SHEP AP 0 -S ILT F OL KIGMS) —MUD ( S C S I - S I L T " " " " PITT53 P H : P C T . C U M P C T . 2 . 5 0 3 . 0 0 0 . 8 0 0 . 80 ft 3 . 5 0 2 . 9 8 5 . 7 7 3 . 7 6 jr ft ft ft * ft ft ft ft 4 . 0 0 4 . 5 0 7 , 3 3 9 . 5 4 1 6 . 9 3 ftftft ftftftft 5 . 0 0 " 2 2 . 15 1 4 . 77 3 5 . 0 3 *. .ftftftftftftftftftftftftftftftftftftftft * ft ft ft ft ft • ft ft* ft ft ft ft ft 5 . 50 6 . 0 0 7 . 3 8 5 2 . 65 6 1 . 2 3 ttftftftftft* 6 . 5 0 ~ 7 . - 3 8 5 . 5 4 6 6 . 6 2 ft ft ft ft ft ft ft ft x: ft ft. 4 ft 7 . 0 0 7 . 50 5 . 54 7 4 . 16 7 5 . 6 9 ftftftftftft 8 . 0 0 3 . 6 9 4 . 6 2 £ 3 . 3 9 ftftftft ft Jftft* 8 . 5 0 ; 9 . 00 2 . 7 7 F8 . 0 0 9 0 . 77 ftftft 9 . 5 0 ' 3 . 6 9 1 . 6 5 5 4 . 4 6 *ift» ftft 1 0 . 0 0 1 2 . 0 0 2 . 6 9 5 6 . 3 1 1 0 0 . 0 0 ftftftft ME A •1 S T . D E V . SKEWNESS K U R T O S I S 7 3 / 1 . 6 3 0 . 35 - 0 . 2 5 KR U M B C I N , P I . T I I J U H N I 1 53 11) M O N b N T M E A S U R E S FOR S I Z E RANGE 3 . 0 TO 1 0 . 0 PHI 5 . 9t> 1 . 8 2 0 . 4 5 1 . 2 5 F O L K G R A P H I C S T A T I S T I C A L P A R A M E T E R S FOLK AND W A R D , 1 9 5 7 ' PERCE N T I L E S M E D I A N 5 . 3 7 5 T H 3 . 6 1 1 6 T H 4 . 4 4 2 5 T H 4 . 6 8 75TH 7 . 0 8 8 4 T H 3 . 0 7 5 5 T H 9 . 6 5 P E R C E N T G R A V E L 0 . 0 SAND 9 . 5 4 S I L T 7 4 . 5 5 ( 7 3 . 8 4 ) C L A Y 1 5 . 9 0 ( 1 6 . 6 1 ) G R A V E L • SAND ' 9 . 5 4 S I L T / ( S I L T f f . L A Y ) 6 1 . 6 3 P C T GRAV + SAND/S I L T + C L A Y 0 . 1 1 L A B E L S S HE P A kO - C L A Y E Y S I L T FOL K t GMS ) - M U D ( S C S I - S I L T P1TT541 / /* S I E V E , SH. P I P . , SEDIGRAPH SAMPLE WT.= 4 .5500 PHI P C T . CUMPCT. 3 .50 5 .29 4 . 00 _ 5 . 25 7.73 4 .50 13.02 17 .40 5 .00 30.41 15.46 5.50 ^i.ee_ 6.70 6 .00 54 .58 5.66 *************** 50 64 .24 5 .80 . 7 .00_ ' 70 .04 5 .80 7. 50 75. 64 4 . 83 8.00 ' 80 .67 3.87 8.50 84.54 4 .63 9.00 89 . 37 2 .90 9 .50 52 .27 2 .90 10.00 95 .17 4. ST " ' * * * * * 12.00 130.00 MEAN S T . D E V . SKEHNESS KURTOSIS 0.34 -0.49 _KPUMBEIN*PETT IJCHN(1938) MONENT MEASURES "~ ~FOR""SI ZE "RANGE " 4 . 0 " T O 10.0 PHI 6.25 1.8 7 0.41 1.19 FOLK GRAPHIC STATISTICAL PARAMETERS FOLK AND WARO,195 7 PEPCtriT ICES L'D"IAN"""5."74 " " " 5 T H ™ 3 . 9 7 75TH 7.43 16TH 4.5 9 84TH 8.43 25TH 4.84 95TH 9 .97 ...PEP CENT GP.AVEL 0.0_ SANO 5 _ . 2 „ ? _ S I L T 75.44 { 75. 38 1 CLAY 19-27 ( 19.33) GRAVEL <r SANO 5 .29 S I L T / ( S ILT+CL AY) 79. 55PCT GRAV+SANO/S I LTt- CLAY 0.06 LABEL S SHE P AP D - S I L T FOLK(GMS)-MUO ( S C S l - S I L T • r-J u C O t - 1 PITT542' SIEVE, SH. PIP., SECiGRAPH SAMPLE WT.» 4.(,900 2.90 12.00 100.00 MEAN ST.DEV. SKEWNESS KURTOSIS 6. 07. _ y 1.53 .0.3fl _ ^ 0 _ . 3 l KP.UMBE IN,PE TT I JOHN KRUMBE IN ,PE TT IJUIINI 1938) MONENT MEASURES FOR S I Z E KAV.;K 4.o r:; 10.0 P H ; ' " " fc.'9 1.71 0.40 1.18 FOLK GRAPHIC STATISTICAL PARAMETERS FOLK AND WARD.1957 PERCENTILES MEDIAN 5.74 5TH 4112 16TH ~"4T67 2 3 T H ~ — 4 7 9 3 " 75TH 7. 13 H4TH 3.18 95 TH 9.64 -PJR_glfJj- GRAVEL 0.0 SAND 3.41 SILT 78.56 1 79.20) CLAY 17.61 ( 17.39) GRAVEL * SAND 3.41 S1LT/1S1LTrCLAY) 8 2 . 0 0 P C r GRA VtSAN 0/S1LT»CLAY LABELS 5HEPAP0 -SILT FOLK(GMS)-MUO (SCS)-SILT r PITT55 S IEVE, SH. P I P . , SEDIGRAPH SAMPLE WT.= 4 .0300 • PHI P C T . CUMPCT. , ... .._ J f— 2. OO 0 .99 2 .50 0 .99 * 1. 99 3 .00 2.98 3 .48 ** 3.50 6. 46 5 .56 4 .O0 12.42 7. 01 4 . 3 0 19.43 12.26 5 .00 31 .69 19.27 5 .50 . 50.96 i t * * * * * * * * * * * * * Q 10.51 6 .00 6 1.47 3.76 * * » ]* # * tf * * r, 6 .50 70.22 7.01 7.00 77 .23 « V*K( w. M * 5.25 7.50 82.48 4 .38 ***** 6.00 86 .86 3.50 6.50 50 .37 ***** 2 .63 9 .00 52.99 2 .63 *** *** 9.50 95.62 4. 36 12.00 100.00 **** MEAN S T . D E V . SKEWNESS KURTOSIS (^5jbb_y 1.53 0. 18 -0.19 KRUHEE IN fPETTIJCHN( 1936) MONt NT MEASURES FOR SIZE RANGE 2,5 T (J S.S PHI 5 .60 1.78 0. 28 1.34 FOLK GRAPHIC STATISTICAL PARAMETERS FOLK AND WARDil9b7 PERCENTILES MEDIAN 5 .48 5TH 3.29 16TH 4.26 25TH 4 .73 75TH 6.34 64TH 7.67 95TH 9.38 PER CENT GRAVEL 0.0 SAND 12.42 SILT 79.5U ( 74.44) CLAY a .07. < 13.14) ""GRAVEL V SAND"" 12 .42" LABELS SHE PAP D -CLAYEY " S I L T / t S I L T*T, L A Y ) 85 .0 0 P C T G R AV +S AN U/ S 1 LT + CL AY 0 .14 SILT FOLKIGWSJ-SANHY MUD. (SCS)-SANDY SILT PITT56 SIEVE, SH. PIP., SEDI GRAPH SAMPLE WT.= 4.8900 PHI PCT. CUMPCT. 1. SO .. 2-.Q9 0.41 0.41 — S 2.50 0.61 2.04 * 1 .02 ** 3 . 30 3.50 11.45 3.07 ftftftftftftftftftftft 14.52 4.03 13.91 15.75 ,,,«,*,»**»»*** 28.43 4.50 5.00_ 19.33 44.17 63.50 5.50 14.31 9.30 ************** 77.81 ft*ftft«ft*ftt 6. 00 6.50_ 6.44 87.12 ****** 93.56 7.00 "3.5b 2.86 ftftft* 97. 14 #»* 12.30 100.00 MEAN ST.DEV. SKEWNESS KURTOSIS ( 4 . o ? J 1.01 0.04 -0.47 KRUMBEINtPETTIJUHN( 1938) MONENT MEASURES FOR SIZE RANGE 2.0 TO 7.0 PHI 4.63 1.12 0.09 0.91 FOLK GRAPHIC STATISTICAL PARAMETERS FOLK AND WARD,1957 PERCENTILES MEDIAN 4.65 5TH 3.08 16TH 3.55 25TH 3.88 75TH 5.40 84TH 5.83 95TH 6.70 PER CENT GRAVEL 0.0 SAND 28.43 SILT 7.67 ( 71.67) CLAY 63.91 ( 0.0 ) GRAVEL f SAND 28 .43 SILT/I S IL1 t-CLAY) 100.00PCT GR A V fSANU/S 1 L T ,CLA Y 0.40 LABELS AR D -SANDY SILT FOLK(GMS1 - SANDY MUD (SCSI-SANDY SILT PITT57 SIEVE, SH. PIP., SEDIGRAPH SAMPLE WT.= 6.0000 > PHI PCT. CUMPCT. < 1.60 0. 17 2.00 0.17 0.17 2.50 3.17 0.33 *** 3.00 13.83 3.50 3. 50 ************** 17.33 15.17 4. 00 17.05 * * * * A « * * *. + * : * * + * 32.50 ****#************ 4.50 18.41 5.00 45.55 ****************** 67.55 15.00 5. 50 8.86 *******»:******* 82.55 6.00 4. 77 6.50 91.62 ***** 56.59 "3.'4 1 12.00 *»* 100.GO MEAN ST.DEV. SKEWNESS KURTOSIS ( 4.46 ) 0.92 0.02 -0.74 KRUMQEIN+PETTIJOHN(1938J MONENT MEASURES FOR SIZE RANGE 2.0 10 6.5 PHI 4. 51 1.02 0.05 0.84 FOLK GRAPHIC STATISTICAL PARAMETERS FOLK AND WARD,1957 PERCENTILES MEDIAN 4.61 5TH " 3 . 0 5 1 6 T H 3.45 25TH 3.75 75TH 5.23 84TH 5.56 95TH 6.33 PER CENT GRAVE L 0.0 SAND 32.50 SILT 15.42 ( 67.501 CLAY 52.C8 ( 0.0 1 GRAVEL » SAND 32.50 SILT/(SILT.CLAY) IO0.OQPCT GRAV*SAND/SILT+CLAY 0.48 LABEL S SHEPARD -SANDY SILT FOLKIGMS)-SANDY MUD (SCS)-SANOY SILT PITT641 SIEVE, SH. PIP., SEDIGRAPH SAMPLE WT. 6.0600 PHI PCT. CUMPCT. 1.50 6. 75 2.00 __ 8.75 0.99 2.50 9.74 2.64  ********* 3.00 12.39 5.62 _3.50__ _18.00 7.2 7 4.00 2 5.27 8.39 ******** 4.50 33.66 11.44 5.00 45.10 15.25 5.50 60.35 12.56  *************** 6. 00 6 • 5 0 7. JO 73.31 3. 39 ******** 61. 70 6.10 ****** 67.80 3.05 *»» **** 7.50 90.65 3. 81 J3.00 _ _54.66_ "0.76 " " " * 6.50 95.42 4 . 54 ***** 9.00 99.97 0.01 _9.50 _S9.58 6"".0"2 12.00 100.00 MEAN ST.DEV. SKEWNESS KURTOSIS 5. 06 1.74 -0.02 -0.24 KRUMBEIN»PETTIJOHN1 1938 I MONENT MEASURES 5. 06 1.82 -0. 07 1.41 FOR SIZE RANGE 2.0 TO 9.5 PHI FOLK GRAPHIC STATISTICAL PARAMETERS FOLK AND WARD,1957 PERCENTILES MEDIAN 5.16 5TH 1.79 16TH 3.32 25TH 3.98 75TH 6. 10 84TH 6.69 95TH 8.22 PER CENT GR AV t L 0.0 SANO 25.27 SILT 69.36.( 69.39) .CLAY 5.37 J 5.34) GRAVEL * SANO 25.27 SILT/(SILT•CLAY) 92.66PCT GRAV»SAN0/SILT,CLAY 0.34 LABELS SHE PAR D -SANDY SILT FOLK(GMSI-SANDY MUD (SCS)-SANDY SILT c PITT642 SIEVE, SH. P I P . , SEDIGRAPH SAMPLE WT.» 5.4800 \ E3 1 . . . — . . • 1 < PHI P C T . CUMPCT. < _ i >— 1. 50 6 .39 * * * * * * 2.00 6 . 3 9 . . 0.73 2 .30 7.12 * 2.01 3.00 5.13 3 .47 + * + c 3-50 ...12.60 . . .. • . . . . 6.58 4 .00 15.18 * * * * * * * — 7.42 4 .50 26 .60 14.84 5 .00 4 1 . 4 5 . 14.84 5.50 56.29 -* » . . * » • • • « • * * * * * * * * * v * * * * * * * * * * * * * * * * * * * * * * - — V i 11.55 6 .00 67.84 9 .07 « * * » » * * * * c \ 7.00 82.68 * . * . . * 5.77 7.50 88.45 3 .30 * * * 8.30 51.75 3 .30 8.50 55.C5 * * * * * " " j 1.65 9 .00 56 .70 0.82 * - 9.50 97 .53 0.82 10.00 58 .25 _ — . . — 1.63 — . — 12.00 100.00' - ,»- ,< f u t M M C C C V 1 "D T O C 1 ^ ——•—~ Mf _ M ST._)E\/. SKcbNtSb H O K l U i l l _ - « , 7 n - n . n i 0 .04 KRUMBEIN*PETTIJ0HN11938) MOMENT MEASURES 5.30 1.70 U . u i u . u f i i c _ A K | n p _ n i 0 b Q p H l _ _ _ 5 .39 1.84 0 0 3 n 9 FOLK GRAPHIC STATISTICAL PARAMETERS ,-F CLK AN0 WARD, 195.7 • - • • s M s T H 1.89 16TH 3. 76 25TH 4 .39 __ P E K L t N 1 I L t i nru 75TH 6.39 84TH 7.11 9STH U.49 c PEP CENT GRAVEL 0 .0 SAND 19.18 SILT 72.60 I 72.571 CLAY 8.22 i 6.251 o PITT6S SIEVE, SH. PIP., SEDIGRAPH SAMPLE WT.= 5.8100 PHI PCT. CUMPCT. 2.50 1.20 * 3.00_ 1.20 1.72 " 3.50 2.93 '3.27 *** 4.00 6.20 4.69 4. 50 _ 10. 89 9. "38 5.00 20.27 1 5. 01 ***** ******** « 5.50 35.28 15.01 6.00 50.2 8 1 1.26 6.50 6 1.64 8. 44 ******v.?****-*** * * » • * * * * * * * " " ' ******** ******** 7.00 66.53 7.50 7.50_ 77.49 _ 4. 6 9 ~ *»"»'** 8.00 6 2. 18 3.75 **** 6.50 65.93 2.61 *** 9. JO __ee.74 T.68 "" «* 9.50 90.62 1.88 ** 10.00 10. 50 1. 92.50 _55'37 l.tiS 11.00 96.25 3.75  ** **** 12.00 100.CO MEAN ST.DEV. SKEWNESS KUPTOSIS 1.67 0.33 0.3 C KRUMBEIN+PETTIJ0HNI1 93 8) MONENT MEASURES FOR SIZE RANGE 3.0 TO 11.0 PHI 6. 34 1.91 0.33 1.48 FOLK GRAPHIC STATISTICAL PARAMETERS FOLK AND WARD,1957 PERCENTILES MEDIAN 5.99 5TH 3.62 16TH 4.77 25TH 5.16 76TH 7.33 84TH 6.24 95TH 10.67 PER CENT GRAVE L 0.0 SANC 6.20 SILT 76.16 i 75.98) CLAY 17.64 t 17.62) GRAVEL • SAND 6.20 SILl/lSILT+CLAY) 81.00PCT GRAVrSAND/SILT+CLAY 0.07 - ! PITTS2 S I E V E , SH. P I P . , SEDIGRAPH SAMPLE WT.= 3.7300 > \ • ! \ PHI P C T . CUMPCT. i r ' r 3.50 0 .80 4 .00 0 .80 * < i 0.99 4.50 1.80 7.94 ^ ~ . _. . * . _ . . . . . . . . . . _. .. ******** ! 5.00 9 .73 16.86 S-50. ._ " . 6 0 * * f t * » w * * * * 4 * * * * * t t R I 17.86 6 .00 44 .45 14.88 * . * » J 7 * f t f t * * . » W * V * » * *************** c i 6.50 59 .23 8 .53 ?.°P 66 .26 8 .93 7. 50 77. 19 3.57 ********* **** 6.00 81.15 4 .96 _6._3P _ 66.11 ***** 3.97-9.00 90 . Co 2.98 **** *** 9.50 93 .06 2 .98 i ° - J 0 26 . 03 . *** r- : 3 . 97 12.00 100.00 **** MEAN S T . D E V . SKEWNESS KURTOSIS 6 .43 1.34 0.38 -0 .11 KRUMBEIN*PETTIJOHNi19381 MONENT MEASURES <t y FOR SI2E RANGE 4.0 TO 10.0 P H I 6.55 1.55 0.35 1.17 FOLK GRAPHIC STATISTICAL PARAMETERS FOLK AND WARD,1957 ^ i PERCENTILES MEDIAN 6.19 5TH 4 .70 16TH 5.15 25TH 5.45 75TH 7.38 84TH 8.29 95TH 9.83 G ! PER CENT GRAVEL 0.0 SAND 0.80 SILT 80.43 1 80.35) CLAY 18.77 I 16.85) f r & I GRAVEL «• SAND 0 . 60 SILT/ISILT+CLAY) 81.0CPCT GRAV+SAND/S1LT+CLAY 0.01 !' LABELS SHEPARD - S I L T FOLK(GMS1-MUD (SCSI-SILT - i s P I * * 951 C O 0.0 ************* Jc.*± klt-**** **** *** M J L t l MGOAL SAMPLE *«'»" ** * * * *** W E T WT_ _ D R Y WT S A L T O R G A N I C ^ 1 0 0 0 . 0 3 0 0 " 6 . 3 9 0 0 " ' 0 . 0 0 . C 1 0 0 . 3 0 0 0 1 3 0 . 0 0 0 0 0 . 0 0 . 0 M O I S T U R E 0.0 (GRAMS 1 0 . 0 ( P C T WET WT1 W E I G H T L O S S D U E T O H A N D L I N G _ 0 . 0 G R A V E L C O R R E C T I O N P A C T O R ' " 1 . 0 0 0 S I Z E S E L I M I N A T E D K G . 0 1 * ) N O N E T R A S K - S O R T I N G C O E F F E C I E N T " 2 . 2 4 2 U S I N G P R O B A B I L I T Y E x T R A P . 2 . 2 2 4 M E A N C U B E D D E V I A T I O N 9 . 3 8 0 U S I N G P R O B A B L I T Y E X T R A P . 5 . 3 7 2 P E R C E N T A G E T A B L E O F S T A T I S T I C A L D A T A I N P H I U N I T S P E R C E N T I L E S L I N FA R E X T R A P . P R O B A EL 1LITY E X T R A P . C O M P O S I T I O N M F t N S T D C E V S K E w N E S S K U R T O S I S MM . P H I U N I T S M M . P H I U M T S G R A V E L " " o . o ' ' " MOMENT "f " 4 . 749b 1 i.91004 1. 34607 5 .67j73 5 . 0 " " 0 . 17490 2.51538 0.17335 2. 52625 S A N O 39.12 P - M O M E N T " 4.72235 1.76 116 0.9f;339 3 .97031 10. 0 0 . 153 70 2.70181 0.14729 2 .71 .322 S I L T 55.33 F O L K 4.55532 1.71081 0.21660 1.00673 16.0 0. 13 162 2. 9 2553 0.12951 2.94691 C L A Y 5 . 5 4 P - F O L K 4 . 5 5 8 3 6 1 . 6 5 7 3 1 u . 2 1 6 6 5 1 . 0 1 1 4 6 2-J. 0 0 . 1 0 0 5 0 3 . 3 1 4 7 0 3 . 0 9 9 4 4 3 . 3 2 9 9 6 MUD 6 0 . 8 8 1 N M A N 4 . 6 1 4 6 1 1 . 6 P 9 0 8 0 . 1 0 5 3 1 0 . 6 9 2 4 5 5 0 . 0 0 . 0 4 6 17 4 . 4 3 6 7 4 0 . 0 4 c 1 5 4 , 4 3 7 4 7 S / M 0 . 6 4 P - I N M A N 4 . 6 1 8 6 1 1 . 6 6 9 9 0 0 . 1 0 8 5 9 0 . 7 C 4 1 8 7 5 . 0 0 . 0 1 9 9 9 5 . 6 4 4 5 3 0 . 0 2 0 1 1 5 . 6 3 6 1 6 K E U M 6 E I N 1 . " 7 2 5 8 0 ' " 0 . 0 4 2 6 8 " " 0 . 2 7 2 2 6 " " " 8 4 . 0 0 . 0 1 2 6 6 ' 6 . 3 0 5 6 9 " ' "'. 0 . 0 1 2 7 9 "" 6 . 2 8 6 7 0 P - K R U M . 1 . 7 0 6 3 0 0 . 0 4 5 5 9 0 . 2 7 3 5 8 9 0 . 0 0 . 0 0 7 9 2 6 . 9 8 0 6 1 0 . 0 C 7 5 3 6 . 9 7 6 0 3 F O L K ( T R A N S F O R M E D ) 0 . 5 0 1 4 3 9 5 . 0 0 . 0 0 3 3 2 P . 2 3 2 7 7 0 . 0 0 3 3 5 8 . 2 1 5 6 6 P - F O L K ( T R A N S F O R M E D ) 0 . 5 0 2 8 5 D A T A F O R C O N S T N O F B A R G F A P H S A N D C U M . C U R V E S SIZE FRACTION MM PHI W T . ( G M S ) UNCOR COR WT.PCT. WT.PCT. COR CUMUL. MIJ PHIILINEARI PHI MM MID P H K P R 0 8 . ) PHI MM MODE 0 . 2 5 0 0 0 0 3 . 1 7 7 3 0 0 0 . 1 2 5 0 0 0 2 . 0 0 0 2 . 4 9 8 3 . 0 0 0 o rrjT..T}Tj o u 0 . 0 6 2 5 0 0 0 . 0 4 4 0 0 0 " 0 . 0 3 1 0 0 0 ' 3. '50tr 4 . ooo J . .5 0 6 5 . 0 1 2 " 0 . 1 0 0 0 . 1 9 0 0 . 8 6 0 0. m 0 . 6 3 0 _ _ 0 . 8 0 6 _ 0" . "49" l 0 . 1 0 0 0 . 1 9 0 0 . 0 6 0 0 . 6 3 0 0 . 8 0 6 ' 0" . 4 9 1"' 1 . 5 6 5 2 . 9 7 3 1 3 . 4 5 9 9 . 8 5 9 J . 2 . 6 1 0 7 . 6 R 2 " 1 . 5 6 5 4 . 5 3 8 1 7 . 9 9 7 ~ ~ 3 . 2 6 4 3 9 . 1 2 4 5 1 . 7 3 3 5 9 . 4 1 5 1 . 7 5 1 2 . 2 4 9 2 . 7 4 9 3 . 5 5 3 3 . 7 5 3 4 . 2 5 3 4 . 75 9 0 . 2 9 7 0 7 0 . 2 1 0 3 6 0 . 1 4 8 7 5 0. 1 0 4 6 3 " 0 . 0 7 4 1 6 0 . 0 5 2 4 4 3 . 0 3 6 9 3 1 . 9 1 7 2 . 3 0 2 2 . 8 0 8 3 . 2 7 0 3 . 7 6 0 4 . 2 5 5 * . _ L 5 7_ 0 . 02 2 0 0 0 0 . 0 1 5 6 0 0 5 . 5 0 6 6 . 0 0 2 0 . 8 6 4 0 . 4 7 2 0 . 8 6 4 0 . 4 7 2 1 3 . 5 2 8 7 . 3 8 0 7 2 . 9 4 4 8 0 . 3 2 3 5 . 2 5 9 5 . 7 5 4 0 . 0 2 6 1 2 0 . 0 1 B 5 3 5 . 2 4 9 5 . 7 4 3 0 . 2 6 4 8 3 0 . 2 02 7 8 0 . 1 4 2 8 0 0 . 1 3 5 6 6 -0 . 0 7 5 8 1 C . 0 5 2 3 6 C . 0 3 u 9 « " 0 . 0 2 o 2 9 0 . 3 1 6 6 7 0 . 3 9 3 0 . 2 3 6 0 . 0 1 3 1 0 0 . 0 0 9 2 6 6.239 6 . 7 4 0 0 . 0 1 5 2 4 0 . 0 0 9 3 5 0 . 3 1 1 0 0 0 0 . 0 0 7 8 0 0 6 . 5 0 6 7 . 0 0 2 0 . 3 5 3 0 . 2 3 6 6 . 1 4 9 3 . 6 6 9 8 6 . 4 7 2 9 0 . 1 6 1 6 . 2 5 4 6 . 7 5 4 0 . 0 0 6 6 0 0 " C 0 C 3 9 0 0 " 0 . 0 0 2 7 0 0 0 . 0 0 1 9 0 0 _ 7 . 5 0 6 8 . 0 0 2 " 3 . 5 3 3 9 . 0 4 0 9 . 5 C 1 1 4 . 0 0 0 0 . 157__ 0 . 1 1 8 0 . 0 7 9 0 . 0 7 9 0 . 1 5 7 0 . 1 1 8 ' 0 . 0 7 5 0 . 0 7 9 2 . 4 6 0 " 1 . 6 4 4 1 . 2 3 0 1 . 2 3 0 _ 9 2 . 6 2 1 9 4 . 4 6 6 9 5 . 6 9 6 9 6 . 9 2 6 9 7 . 5 4 1 1 0 0 . 0 0 0 7 . 2 6 4 7 . 7 5 4 8 . 2 6 0 8 . 7 8 6 0 . 0 0 6 5 5 0 . 0 0 4 6 3 " 0 . 0 0 3 2 5 0 . 0 0 2 2 7 7 . 2 4 1 7 . 7 4 0 8 . 2 5 4 8 . 7 6 9 9.260 1 0 . 2 1 8 0 . 0 0 - 6 1 0 . 0 0 4 6 8 " 0 . 0 0 5 2 8 0 . 0 0 2 2 9 0 . 0 01c, 3 0 . 0 0 3 8 4 0 . 0 0 1 3 6 0 0 . 0 0 0 0 6 1 T O T A L S 0 . 0 3 9 0 . 1 5 7 6 . 3 9 0 0 . 0 3 9 0 . 1 5 7 6 . 3 9 0 0 . 6 1 6 2 . 4 5 9 1 0 0 . 0 9.270 1 1 . 7 5 1 0 . 0 0 1 6 2 0 . 0 0 0 2 9 Pl*» 952 0.0 0.0 i t s * » * * ' MULTIMODAL SAMPLE * * * * * « » * « * • • WET WT DRY WT SALT ORGANIC.. " l O O O ^ O O O O 5 . 7 9 0 0 " 0 .0 0 .0 100.0000 100.0000 0 .0 0 .0 MOISTURE '" "0.0 (GRAMS) 0 .0 IPCT WET WTI WEIGHT LOSS DUE TO HANDLING . 0.0 GRAVEL CORRECT1CW FACTOR 1.000 SIZFS ELIMINATED K O . O l t ) NONt TRASK SORTING COLFFLCIENT 2.426 USING PROBABILITY EXTRAP. 2.421 MEAN CUBED DEVIATION 17.675 USING PRORABLITY EXTRAP. 13.842 PERCENTAGE CUMPOSITION "GRAVEL 6.0""" SANO . 35.5R SILT 54 .00 TABLE UF STATISTICAL DATA IN PHI UNITS CLAY MUD S/M 10.42 64 .42 0.55 MOMENT P-MOMENT FOLK P-FOLK I NMA N P-INM AN MEAN "5". 1 5597 5. 13887 4.92506 S TD OEV 2.33109 2.22652 2. 15752 SKEW NESS 1. 35538 1.25406 0.29696 KURTUSIS 5.10602 4.44919 1.21406 KRUME EIN P-KRUM. FOLK [TRANSFORMED) 4.92643 2.14584 C.3-026 5.03339 2.01036 0.16166 5.03396 2.00710 J).lo222 "n893'78""" 0.04800" 1.88989 0.04869 1.21529 0 .89156 0 .8U469 "0.23891" 0 .24140 0 .54936 PERCENT 1LES LINEAR EXT,\AP. PROIiAHL ILITY EXTRAP. 5. 0 10. 0 16.0 M M . 0. 1/082 0. 14/31 0.12302 2 5 . 0 " 50. 0 75 .0 84 .0 ' 50. 0 95 .0 0.08975 0.03325 0.01525 "0. 00758 0.00361 0.00088 P-FOLK (TRANSFORMED) 0.54365 PHI UNITS 2.54 54 6 2. 7o310 3. 02303 47796 7083 9 03483 04375"" 11419 10. 15487 MM. 0 . 1 66 6 2 0 .14130 0.12269 0.08954 0.03325 0 . 0 15 2 7_ "0.00759" ' 0 .00363 0.OCSO88 PHI UNITS 2.58360 2.82316 3.02686 3.48 1 3 9 — 4 . 7083 7 6.03274 " 7.04 10 7""" 8. 10 767 10.14913 DATA FOR CONSTN OF BARGR APHS AND CUM. CURVES SIZF FRACTION MM PHI WT.IGMSI UNCOR CCR WT.PCT. WT.PCT. COR CUMUL. MID P H K L l N t A R ) P HI MM MID P H l l P R O E l . r PHI MM MODE 0. 263000 0.177000 0. 1 25000 2. COO 2.498 3 . 000 0. 080 0. 140 0.680 0.08 0 0. 140 0.680 1.38 2 2.418 11.744 ' 1.382 3.800 15.544 1.751 2.249 2.749 0 .29707 0.21036 0. 14875 D.OnPOOO 0 . 0 6 2 5 0 0 0 . 0 4 4 0 0 0 " 0 . 3 3 1 0 0 0 3.536 4. 000 4. 506 . "5 .012" 0 . 5P0 0.580 0. 764 0 . 178 0 . 0 2 2 0 0 0 0.015600 "O. 01 l'odd" ,0 . 007800 "5T507T 6.002_ "6 .606 7 .00 2 ~0. 86T" 0.452 "0 .3 39" 0. 1 68 0. 580 0.580 0. 764 "0 .178 -0TB6"7-0.452 ~0 . 33 9" 0. 1118 10.017 10.017 13.191 " 3.077 23.661 35.579 4 e. 769 51.846 3.25 3 3.753 4.253 4.759 "TV. 96 7 __7.808 '5. 857 3. 254 6 6 . 8 14 74.622 ~6U. 4 / a" 83.732 5.259 5. 754 "6 . 2 5 4" 6.754 0 . 0 0 5 5 0 0 " 0 . ' J U 3 9 0 0 0 . 0 0 2 7 0 0 0 . 0 0 1 9 0 0 7.606 i ! . 002 " 8. 633 5.040 0. 188 "0. 151 " 0. 113 0.075 0 . 188 0 . I 5 1 0.113 0 .076 3 . 2 5 3 " 2 . 6 0 3 1. 9 5 3 1 . 3 0 1 8 6 . 9 8 5 " | I 9 . 5 III) 9 1 . 3 4 1 9 2 . 8 4 2 7.254 7. 754 8.268 8. 766 0 . 1 04 8 U 0.07416 0.05244 _0.03693_ 0.026 12 0.01853_ "0". OliltO" 0 .00926 "1T."0065T" 0.00463 0.00325 0.00227 .516 0. .300 0 . .811 0 . 26.>05 20306 1 4253 7T2 DT 76 2 0 . 2 5 7 0 . 759 0. 105 54 0 73 70 052 29 0 3u93 ,253 0. 74 7 0 . .'2 4 5 sr." ,747 0 . TlUS—07 .74 5 0 . .25 7 0. ,778 0 0 26 2 2 01363_ "01JT9 00931 "00u5'9~ 0 0 4 6 6 OOJ 2 7 0 02 2 8 0.001360 U.000960 0.000690 0.000490 0.000340 0.000061 9. 501 9. 55 5 10.501 1C.995 11.522 14.000 0.075 0. 036 0.036 0.038 0. 038 0 . 188 0.075 0.036 0 . 03 8 0 .036 0.038 0. 188 1.301 0. 6'J 1 0.650 0.651 0. 650 3.254 94 .143 94. 79 4 95 . 445 " 96 .096 96.746 100.000 9.270 9. 74 8 10.248 10. 748 11.259 12.761 0. 0Clo2 0 . 0 LH 16 0. 00032 0.00058 0.00041 0.00014 9.261 74X 241 ,740 ,249 .508 ,"6 Si 63" ,00117 ,00083 ,00058 .00041 ,000 26 0 1 0' 1* 0 13 b o o - 0 " p 0 1 0 0 TOTALS 5 .790 5 .790 100.0 • ! n • P l r » 97 0.0 0.0 1000.0000 100.0000 J F V WT 6.0 ' ibo 100.0000 SALT_ b.b" 0.0 _0_RGAf\IC_ b.b" 0.0 M rj i s J U R E 0.0 0.0 (GRAMS! (PCT WET WT) ft*ft ******ftft* ftftft ************* ft * * ft ft ft tt ik ft * * * MUL 11 MODAL SAMPLE * * * " ftftft* * * * * ft:** ft * ft*:* ftftft ** ft ft ft *** ft ft* * * ft ft *** WEIGHT LOSS DUE TO HANDLING 0 .0 "GRAVEL CORRECTION FACTOR " 1. 000" SIZES ELIMINATED (<0.01%> NONE TRASK SORTING COE FFECIENT 1.743 D USING PROBABILITY EXTRAP. 1.732 MEAN CUBED DEVIATION 12.479 USING PROBABLITY EXTRAP. 7 .249 PERCENTAGE COMPOS IT ION TABLE OF STATISTICAL OAfA IN PHI DNTTS ""PTKC'ET7TTrE5 U fffEX trr>TTCTpT" ' T T r r ^ " A T T L ~ n r T T v— E X T R - J T ^ ; GRAVEL 0.0" SANO 45.26 SILT 49.61 MOMENT JJEAN'—s_ STD DEV "/4. 50460~\} .76C30' P—MOMENT 4 . 4 7 2 9 9 - 1 . 5 7 1 4 0 F CL K C L AY MUD S/H 5.13 54 .74 0 .83 FOLK (TRANSFORMED) P-FOLK (TRANSFORMED) SKEWNESS KURTOSIS 9. 36697 " 6.89688 1. 36292_ 1. "55 4 7 3 1. 30402 1. 30697_ 0.2 "40 8 2 0.239 59 0.57679 0.67632 MM . PHI U M T S MM. PHI UNITS 5.0' 0. 15035 2.73359 0.14137 ~ 2.82240 10. 0 0.12296 3. 02368 0.12202 3.03475 16.0 0.10948 3. 19) 19 0.10624 3. 2346 I 23 .0 0.09198 3. 44246 0.09104 " " " 3.45 73o 50 .0 0.05827 4.10102 0 .05840 4 .05797 75.0 0.03028 5. 04528 0.03036 5. 0-.I43 84. 0 0.02203 5. 50463 0.02203 5.50435 90 .0 0 .01225 6. 3 5145 • 0 .01234 6.34056 95 .0 0.003 74 8. 0638 1 0.00375 6.05863 DATA FOR CONSTN OF BARGRAPHS AN U CUM. CURVES SIZE FRACTION PHI W T . l GMS ) UNCOR COR WT.PCT. COR 0.250000 2".""bOO 07033" 0.177CC0 2.498 0.053 0.12 6000 3.COO 0.470 O~WF~~J—T35"6-0.062500 4 .000 J).044000 _4.506_ ' 0. 93 1 000 " 5'7n"]"?~ 0.022000 5.506 0.316600 6.002 0.011000 6.5C6 0.007 600 7.002 0.030 0.459 0 .050 0.832 0. 470 7. 620 l T 0 ' 5 T i 1. 080 1.428 ' 0. I" I 9 " - r : T 9 o ^ T r . T 3 r " 1.080 17.9 70 1.428 23. 766 "0.319" 5 .316" o! 24 0 ~0T5~83 9 .Z'<FT 0.240 5.992 WT.PCT. CUMUL. 0 . 4 9 9 1 . 3 3 1 9 . 1 5 1 4 5 . 2 5 8 6 9 . 0 2 4 7 4 . 3 3 9 ~ B " 4 T 0 T 3 -8 0 . 0 2 5 MID PHI(LINEAR) PHI MM 1.761 0.29737 2.249 0.21036 2.749 0. 14376 MID PHIIPR06.) MODE PHI MM 3.*763 o!o7416 4.253 0.06244 4 . 769 0 . 0 3 (> 9 3 "5T2T9" 1.902 2.301 2.635 •3T79-3-3.764 4.246 4. 75J OTO"25T2—ET2T2" 0.26756 0.20296 0. 14011 0.171 0. 103 0.005500 7.506 C.CC3500 " 6.002 0.002700 6.533 J,: t001900 9.040 0. 250000 0 .177000 0. 125000 0.001360 5.5C1 0.000061 14.000 TOTALS ' o . o i o o o b ' -0. 010330 0.110000 0. 103 "0 .034" 0. C69 0.034 0. 034 0. 171 6.010 0.171 2.651 _0 . 103 1.711 07T01 T7TVT 0. 034 " ' 0 .570 0.C69 1.141 0.034 0.571 5. 754 0.018 53 5.742 0. 101 6 3" 0.07562 0.05270 0. 03 7 CB "Ti"r0"5o4 3 0.01663 0 1* 0 0.034 TJT570-0.171 2.851 6.010 100.0 90.676 92.587 ~9"v."zw 94.868 96.008 96.679 100.000 . 254 , 754 0.01310 0.00926 -OT0rO~6"5"5~ •772T4-7.754 0.00463 8. 266 0.00325 8.766 0.00227 6.242 6. 74 5 "7T2"4T" 7.749 6.254 6. 7 78 9.^7a~ Jt>TUUl62 9 ' .262' 11.751 0.00029 10.209 C.01321 0.00533 "uTD'Oa 5T" 0.0 04 6 5 " 0.00^28 0.00228 0.00JP4 0 0 0 1 0 p i * * 9 6 o.o 0. 0 WET WT _ To oo .0060 100.oooo _DRY WT 6 . 7 7 0 0 " 1 0 0 . 0 0 0 0 _ S A L T 0 . 6 0.0 O R G A N I C _ M O I S T U R E 0 . 0 6 . 0 ( G R A M S ) 0 . 0 0 . 0 ( P C I WET WT) ***************************** **** **** »*» MuLTi M O D A L " S A M P L E «"** ftftftft **** ***************************** W E I G H T L O S S D U E T O H A N D L I N G 0.0 G R A V E L C O R R E C T I O N F A C T O R 1 . 0 0 0 S U E S E L I M I N A T E D U O . O l t ) N O N E T R A S K S O R T I N G C O E F F E C I E N T 1 • S O 1 U S I N G P R O B A U I L I K E X T R A P . 1 . 7 8 2 M E A N C U B E D D E V I A T I O N P . 6 0 S U S I N G P R O B A B L I T Y E X T R A P . * . . 1 2 ? . . P E R C E N T A G E C 0 M P 0 S 1 T I O N " G R A V E ' " L " 0 . 0 S A N O ' 1 9 . 0 6 S I L T 7 3 . 6 5 T A B L E O F S T A T I S T I C A L D A T A I N P H I U N I T S P E R C E N T I L E S L I N E A R E X T R A P . P R O B A B L I L I T Y F X T R A P . M O M E N T P - M O M E N TF O L K S T D D E V ^ 1 . 7 3 1 1 9 l 5 _ . 2 6 6 2 < t . 5 . 2 2 0 3 6 1 . 6 2 9 1 2 5 . 1 1 1 1 9 1 . 4 9 7 2 0 S K E W N E S S " 1 . 6 3 8 4 3 1 . 1 3 6 1 0 0 . 2 6 7 4 7 C L A Y MUD S/M 7 . 2 9 8 0 . 9 4 . 0 . 2 4 P - F O L K 5 . 1 1 8 6 9 I N M A N 5 . 1 P 8 5 5 P - I N M A M _ 5 . 1 9 9 4 _ 5 _ " K R U M B E I N P - K P . U M . F O L K ( T R A N S F O R M E D ) 1 . 4 7 6 0 7 1 . 3 4 0 9 4 1 ^ 3 2 8 0 6 " 1 . 2 5 7 5 2 " 1 . 2 3 4 7 4 0 . 2 6 0 4 30 . 1 7 3 0 9 0 . 1 8 2 4 4 " 0 . 0 4 8 7 9 0 . 0 6 2 6 3 K U R T 0 S 1 S 6 . 5 6 3 7 4 4 . 2 7 8 9 3 1 . 3 1 7 2 6 _ 1 7 7 3 1 . 0 3 4 5 5 1 . 0 1 7 8 0 0 . " " 2 2 4 1 2 " 0 . 2 2 1 5 1 0 . 5 6 8 4 6 M M . P H I U N I T S M M . P H ! UNITS " 3 . 6 " " 6 . 1 0 7 6 6 3 . 2 1 5 4 4 "" " 0 . 1 0 2 1 3 " 3 . 2 9 1 4 7 '""" 1 0 . 0 0 . 0 6 5 4 3 3 . 5 4 6 3 3 0 . 0 8 4 7 8 3 . 5 O 0 0 5 1 6 . 0 0 . 0 6 9 4 6 3 . 8 4 7 6 2 0 . 0 o 3 3 3 3 . 3 7 1 3 9 2 3 . 0 0 . 0 6 6 0 6 4 . 1 6 o 4 2 0 . 0 3 3 5 1 4 . 1 7 6 3 4 5 0 . 0 0 . 0 3 2 2 1 4 . 9 5 6 4 5 0 . 0 3 2 1 9 4 . 9 5 7 1 6 7 6 . 0 • 0 . 0 1 7 2 9 6 . 6 3 4 0 7 0 . 0 1 7 4 ? S . 6 4 3 2 4 " 8 4 . 6 " 0 . 0 1 0 8 2 ' " 6 . 5 2 9 4 9 " " 0 . 0 1 0 8 4 6 . 5 2 7 5 1 9 0 . 0 0 . 0 0 6 1 9 7 . 3 3 3 7 0 0 . 0 0 6 2 5 7 . 3 2 2 6 5 9 3 . 0 0 . 0 0 2 4 5 8 . 6 7 1 6 7 0 . 0 0 2 4 9 8 . 6 5 0 5 7 P - F O L K ( T R A N S F O R M E D ) 0 . 3 6 8 5 4 D A T A F O R C O N S T N O F B A R G R A P H S A N D C U M . C U R V E S S I Z E F R A C T I O N M M P H I W T . U N C O R 0 . 2 5 0 0 0 0 0 . 1 7 7 0 0 0 0 . 1 2 5 C 0 0 " " 0 . 0 3 8 0 0 0 0 . 0 6 2 5 0 0 0 . 0 4 4 0 0 0 " 0 . 0 3 1 0 0 0 " 2 . C O O 2 . 4 9 8 3 . 0 0 0 4 . 0 0 0 4 . 6 0 6 " 5 • 6 1 2 " 0.010 0.010 0.110 0 . 6 7 0 1 . 3 0 3 " 0 . 6 8 5 ( G M S ) C O P "0.616 0 . 0 1 0 0 . 1 1 0 0 . 6 7 0 1 . 3 0 3 0 . 8 8 9 " W T . P C T . COR 6. 1 4 8 0. 1 4 8 1 . 6 2 5 W T . P C T . CUMUL. 0 . 1 4 8 1 0 . 2 9 5 2 1 . 9 2 0 2 9 . 8 9 7 1 9 . 2 4 4 " 1 3 . 1 3 4 - " 9 . 1 5 8 3 1 5 . 0 3 5 3 3 8 . 2 9 8 4 5 1 . 4 3 3 " 4 MID P H I ( L i N E A R T " PH1 MM 7 5 1 0 . 2 9 7 0 7 2 4 9 0 . 2 1 0 3 6 , 7 4 9 0 . 1 4 8 7 5 T 3 3 " 0 . 1 0 4 8 8 , 7 5 3 0 . 0 7 4 1 6 , 2 5 3 0 . 0 5 2 4 4 , 7 5 9 0 . 0 3 6 9 3 rTTD P H K P R O B . ) MODE P H I MM 1 . 8 7 5 2 . 2 8 7 2 . 3 4 0 3 . 3 2 6 " 3 . 7 8 3 4 . 2 7 4 4 . 7 6 2 0 . 2 7 2 6 5 0 . 2 0 4 8 3 0 . 1 3 9 6 3 0.09v73 0 . 0 7 2 6 2 0 . 0 5 1 6 9 0 . 0 3 o 8 6 0 . 0 2 2 0 0 0 0 . 0 1 5 6 0 0 6 . 5 0 6 6 . 0 0 2 1 . 0 9 6 0. 7 1 2 1 . 0 9 6 1 6 . 1 8 9 0 . 7 1 2 1 0 . 6 2 3 0 . 0 1 1 0 0 0 0 . 0 0 7 8 0 9 6 . 6 0 6 7 . 0 0 2 0 . 3 8 4 0 . 2 7 4 0 . 3 6 4 0 . 2 7 4 5 . 6 6 6 4 . 0 4 7 67.622 5 78. 145 _5_ -83 .81 ' r 6 87.858 6 2 5 9 0 . 0 2 6 1 2 7 5 _ 4 _ _ O . J 3 1 8 5 3 _ " 2 5 4 " 3". OT3T3 , 7 5 4 0 . 0 0 9 2 6 5 . 2 5 3 5 . 7 4 2 " 6 T 2 4 T " 6 . 7 4 2 C 0 2 J 2 3 0 . 0 1 3 6 8 ""OToT5"2"r 0 . 0 0 9 3 4 0 1* b 1 0 0 . 0 0 5 5 0 0 7 . 5 0 0 _ 0 . 2 1 5 0 . 2 1 9 3 . 2 3 8 6 . 3 0 3 9 0 0 6 . 0 0 2 " O . U O 0 . 1 1 0 ' 1 . 6 1 9 O . 0 0 2 7 O 0 8 . 5 3 3 0 . 1 1 0 0 . 1 1 0 1 . 6 1 9 O . 0 0 1 5 0 0 5 . 0 4 C 0 . 1 6 4 0 . 1 6 4 2 . 4 2 8 0 . 2 5 0 0 0 C " 0 . 1 7 7 0 0 0 " 0 . 1 2 5 0 0 0 0 . 0 3 6 0 0 3 0 . 3 3 0 0 6 1 1 4 . 0 0 0 T O T A L S 0 . 0 2 0 3 3 0 " C . C 2 0 0 0 0 0 . 2 1 0 0 0 0 0 . 6 7 0 9 0 0 0 . 2 1 9 6 . 7 7 0 6.219 6 . 7 7 0 1 0 0 . 0 9 1 . 0 9 6 7 9 2 . 7 1 5 ' 7 , 9 4 . 3 3 4 8 9 6 . 7 6 2 8 " 1 0 0 . 0 0 0 1 1 2 6 4 0 . 0 0 6 5 5 7 6 4 0 . 0 0 4 6 3 , 2 6 8 0 . 0 0 3 2 5 . 7 6 6 0 . 0 0 2 2 7 rsTo - .•'00034 7 . 2 4 0 7 . 7 4 5 8 . 2 5 5 8 . 7 5 8 "9.312 0 . 0 0 o 6 1 0 . 0 0 * 6 6 " 0 . 0 0 3 2 7 0 . 0 0 2 3 1 'B .0011V * # * M U L T I M O D A L " S A M P L E * ' * * * * f <~i ! i - J | _ WET WT _ DRY WT SALT_ 1 0 0 0 . 0 0 0 0 5 . 4 3 0 0 " 0.6 1 0 0 . 0 0 0 0 . 1 0 0 . 0 0 0 0 0 . 0 _ 0 R G A N I _ C _ M O I S T U R E " " ' 0 . 0 " " " 0 . 0 I G R A M S ) 0 . 0 0 . 0 ( P C T W E T W T ) W E I G H T L O S S O U E T O H A N 0 L I N G _ _ _ 0 . 0 _ G R A V E L " C O R R E C T I O N F A C T O R " " 1 . 0 0 0 " S U E S E L I M I N A T E D K 0 . 0 1 * ) N O N E T R A S K S O R T I N G C O E F F E C I E N T 2 . 1 9 3 U S I N G P R O B A B I L I T Y E X T R A P . 2 . 1 71. M E A N C U B E D D E V I A T I O N 1 6 . 0 1 2 U S I N G P R O B A B L I T Y E X T R A P . 1 1 . 5 5 3 P E R C E N T A G E C O M P O S I T I O N " C R A V L ' L 0 . 0 S A N O 3 1 . 1 2 S I L T 5 3 . 2 1 T A B L E O F S T A T I S T I C A L D A T A I N P H I U N I T S PERCENTILE'S" LI \ t A ". EX~TXAT.- P R o a A b L l L I T Y EXTnAP." .-ME-AT*—. STD CEV . 3 30V...0>'2. 19 22 4 .-30534 2.0600 7 5.11276 1.52846 SKEwNESS 1 . 5 1 9 7 9 1 . 3 2 6 5 6 0 . 3 1 3 9 3 KURTOSI S 3.34212 4.44995 1 . 2&067 3 . 0 10. 0 16.0 CLAY MUD S/M 1 0 . 6 6 6 8 . 6 8 0 . 4 5 P - F O L K I N M A N P - I N M A N " K R T U M E E I ' N P - K R U M . F O L K ( T F . A N S F D F M F D ) 5 . 1 1 5 8 0 1 . 5 2 2 7 0 5 . 2 1 2 9 3 1 . 7 4 5 2 9 5 . 2 1 7 4 2 1 . 7 3 7 5 3 1 . 6 7 8 0 6 1 . 6 6 1 4 8 0.31674 0.17218 j3.J/7546_ 0.00 709 0.01518 1. 2 7 0 9 9 0 . 9 9 6 3 4 1.00 l_69_ 0 . 2 2 5 4 5 " 0 . 2 2 6 18 0 . 6 5 7 6 5 2 5 . 0 5 0 . 0 7 5 . 0 _ S4."~0 9 0 . 0 9 5 . 0 MM . PHI ONI TS MM. PHI U M T S 0. 1237>0 3. 0 lt,2 3 " 0 . l 2 2 o 3 3. 02 75 7 0.10721 3. 22142 0. 10293 3. 23023 0. 09039 3. 46764 0.08963 3. 47989 0.07245 3 • 78682 0.07143 3. 80o24 0.033 21 4. 9 1242 0.03320 4 . 91236 0.01507 6. 05220 0.01510 6. 04924 0.00804" 6 . 95822 0.00306 6 . 95495 0.00329 8. 24550 . 0.00331 8. 23 36 3 0.00099 9. 98463 0.00099 9 . 98357 P-FOLK (TRANSFORMED) 0 . 5 5 9 6 6 U) t o D A T A F O P . C O N S T N OF B A R G R A P H S A N D C U M . C U R V E S SIZE FRACTION M M PHI WT.l CMS) UNCOR COR WT.PCT. WT.PCT. COR CUMUL. MID PHI(LI NEAP) PHI MM MIO PHIIPROB.I MODE PHI MM " 0 7 2 5 0 0 0 0 0 . 1 7 7 C O O 0 . 1 2 5 O 0 C 2 . 000 2 . 4 5 8 3 . 000 0 .Off 000 0.062 SuO 0.044000 0.331000" 3 . 5 0 6 4 . 000 4 . 506 ~"5TO"l~2~" 0 . 0 2 0 0 . 0 2 0 0 . 2 1 0 0 . 6 7 3 0 . 7 7 0 _0_. 8 0 1 _ 0 . 2 7 8 0.0 2 2000 0.015600 5. 606 6.002 ~oT7rr 0 . 5 4 0 0 2 0 0 2 0 2 1 0 TTo~ 7 7 0 eoi_ 2 7 8 " TjT" 5 4 0 0 . 3 6 8 0 . 3 6 8 3 . 667 "12. 3 3 5-1 4 . 1 8 0 14.756 """5 "."124" 0.368 0.737 4. o04 6 .943" 1 . 7 5 1 2 . 2 4 9 2 . 7 4 9 3 1 . 1 2 3 4 5 . 8 8 1 5 1 . 0 0 6 3. {. 53 3 . 7 5 3 4 . 2 5 3 " 4 . 7 5 9 " " "ITT49-r 9.941 6 4 . 4 9 6 7 4 . 4 3 7 5.239 5. 754 0 . 2 5 7 0 7 0 . 2 1 0 3 6 0 . 1 4 3 7 5 0 . 1 0 4 8 6 0 . 0 7 4 1 6 0 . 0 6 2 4 4 J). 0 3 6 9 3 ^ 0 . " 0 2 6 1 2 0 . 0 1 8 3 3 " 1 . 8 9 7 2 . 2 8 7 2 . 8 3 6 "TTTTo-3 . 7 7 4 4 . 2 6 0 4 . 7 5 9 " 5 . 2 5 5 5 . 7 4 5 0. 2 63 5e 0 .20 *54 0 . 14009 0 . 100 63 0.0731 2 0 .0 5 i 1 8 _ 'O."03o92 0.01664 0.01 1,100 0.007600 6. 5 C6 7 . 0 0 2 0 . 3 0 8 0. 2 3 1 3 0u 231 6.6b0 4 . 26 1 8 0 . 1 1 6 84. 3 7 6 .234 . 754 0 . 0 1 3 1 0 0 . 0 0 9 2 6 6 . 2 ** 3 6 . 7 4 5 0.01518 C .00 *22 _ 0 1 0 0 _ 5 5 0 _ 0 _ C . C C 3 9 0 0 0 . 0 0 2 7 0 0 0 . 0 0 1 9 0 0 _ 7 . 5 0 6 _ 8 . 0 0 2 6 . 533 9 . 0 4 0 .116 0.""l54 0. 077 0.077 1 1 6 _ 15*4" 077 07 7 Z. 1 3 0_ " 2 . 8 4 1 " 1 . 4 2 0 1 . 4 2 1 6 6 . 5 0 8 O 0 . 3 4 9 9 0 . 7 6 5 9 2 . 1 9 0 7.254 7. 754 8. 268 8. 786 0 . 0 0 6 5 5 _ 0 . 0 0 4 6 3 0 . 0 0 3 2 5 0 . 0 0 2 2 7 7 . 2 4 8 " 7 . " 7 4 4 " e . 2 6 1 8 . 7 7 8 9 . 2 6 2 9 . 7 3 6 1 0 . 2 4 0 1 0 . 7 3 9 1 1 . 4 6 0 _ 0 . 0 0 6 5_8 0". 0 0 4 66""" 0 . 0 0 3 2 6 0 . 0 0 2 2 8 0.001360 • 0.000580 o.: o C6 5 o 0.000450' 0.000061 TOTALS 9 . 5 6 1 " 9.555 10.501 10.945 14.000 " T 5 T 0 T T 0 . 0 7 7 0 . 0 3 9 " 0 . 0 3 9 " 0 . 1 9 3 5 . 4 3 0 T J 7 T 0 7 7 0 3 9 0 3 9 193 430 T " 4 2 ' C " 1 . 4 2 0 0 . 7 1 0 0 . 7 1 C " 3 . 5 5 1 1 0 0 . 0 • 3 3 . 6 1 6 9 5 . 0 2 9 9 5 . 7 -39 " 9 6 . 4 4 9 1 0 0 . 0 0 0 5 . 2 7 0 9 . 7 4 8 1 0 . 2 4 8 1 0 . 7 4 8 1 2 . 4 9 7 0 . 0 0 1 6 2 0 . 0 0 1 1 6 0 . 0 0 0 3 2 0 . 0 0 0 5 8 0 . 0 0 0 1 7 0.00163 0.00117 0.00083 O.O0J59 0.00036 © I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *ftft# " » * * MJL T I MODAL SAMp'CC~ "»• *"" **** >ftftf. . ft ft ft ft ft ft ft * ft - f t * * a ft *ft ft P l f t r LOO WET WT OP.Y WT SALT. ORGANIC _ MOISTURE lOOO/dodo" A . 7200 0.0 0 .0 "" 0 .0 (GRAMS) 100.0000 100.0000 0 .0 0 .0 0 .0 (PCT WET WT) WEIGHT LOSS DUE TO HANDLING 0 .0 GRAVEL CORRECTION FACTOR 1.000 SIZES ELIMINATED K G . 0 1 * ) NONE TRASK•SORT ING COtFFCC11 NT 2.195 USING PROBABILITY EXTRAP. 2.182 MEAN CUBED DEVIATION 12.218 USING PROBABLITY EXTRAP. 7 .380 PERCENTAGE TABLE OF STAT ISTICAL DATA IN PHI UNITS PERCENTILES LINEAR EXTRAP. PROBABLILITY EXTRAP. . COMPOSI TI OM ,-MEAN T - N C 5 . 09805-^ STD DFV SKEWNESS KURTOSIS MM . PHI UNITS M M. PHI UNITS GRAVEL 0. 6" —MOMENT "2 .07450 1.36655 5.37042 5. 0 "0. 16576 2. 5 52 3 0' 0 : 161 ? i " ~ 2.63 301 S AN D 3 3. 05 P-MOMENT ^ 3 7 0 5 5 6 3 1.91164 1.05644 4.07106 10 .0 0. 13111 2.93116 0.12531 2.65103 SILT 58. 82 FOLK 4.90006 1.87253 0. 1878L 1.231.62 16. 0 0 . 10 662 3. 243 03 0 . 10 J 0 4 3.27 03 5 CLAY MUD S/M 6.12 66. 55 0.49 P-FOLK IN MAN P-1 NM AN KP OMR E1 N~"' P-KP.UM. FOLK (TRANSFORMED) 4.90657 1.65647 0.19445 4.52217 4.93166 1.67914 0.03951 1.66151 0.04565 1.-68018 -0.-062 79' 1.66723 -0 .05956 1.23268 1.03006 1.03721 "0. 2 4 69 9" 0.24529 0.55193 25.0 50.0 75. 0 -84.0" 90 .0 95 .0 0.03453 0.01643 0.01030 0.00537 0.00147 4 .P6683 5.92 716 6.6013 1 ' 7.54152 9.41031 0.03453 0.01649 ' 0.01036 0.0053S 0. 00148 4.85o01 5.92163_ "6.55336 7.53697 9.4C272 P-FOLK (TRANSFORMED) 0. 6521 1 DATA FOR CONSTN OF BARGF.APHS AND CUM. CURVES SIZE FRACTION WT. ( GMS 1 WT.PCT. WT.PCT. Ml D PHIILINEAR) MID PHI 1 PRCU. MODE MM PHI UNCOR COR CUR CUMUL . PHI MM PHI MM C.25COOO 2.000 0. 08 0 0.080 1 .695 " 1 . 6 9 6 1.761 6 .29707 i 918" " 6. 264 6 5""" 0 0.177000 2. 498 0. 090 0. 090 1.507 3.602 2.249 0.21036 2 288 0 . 2 0* 6 2 0 0.126000 3 .000 0. 350 0. 350 7.415 11.017 2. 749 0 . 148 75 2 301 0. 14350 0 0.068000 0.062500 0.944000 " 0 .03lOUO" 0.322000 0. 01 6600 i06 4 .0 00 4.5 06 "5.6 1 2" T r r o T -6 . 0 0 ? 0.450 0.550 0. 59 0 "6 . 304"" 0 .415 0.011000 0. 307 3 00 6. 6C6 7 .0C2 0. 319 0.223 0.4 50 0.550 0 . 590 0.'304_] "7JV734 C . 4 1 5_ 0. 319 0.223 1U.361 11.663 12 .49 2 " 6 .444" 15.564 8.79 I ~.""?o"2" 4. 734 33.061 4 6.54 2 51.966_ "6 7.54 0 76.332 .253 75 3 .26 3 ,J759 ;2 59~ .764 0.07416 0.05244 _0.jJ3 693 0~ 0 26r2" 0 .0 18 63 3.766 4. 269 4 .759 0.07343 0 .052 24 0.03o92 63 . 053 6 . 67.627 6. 254 754 0.506600 0.003900 0.C02700 0.001900 7. 306 8.002 e. 533 5.04C 0.250000 0.177000 0.301360 0.000580 0. 00006 TOTALS G.010000 0.010000 9.561 9. 995 14.000 0. 096 0.096 0. 032 0. 064 0.064 0. 064 0.160 4 . 720 0.096 0.096 0.032 0. 064 ••6.664 0. 064 0. 160 -"4".-720" 2.029 2. 029 0. 677 1. 353 i : 3 3 2 1.333 3. 381_ Tbo'.o' "89. 660 7. 91 .685 7. 92.562 8. 93.914 8. " 95 . 2 6 6 9, 96 .619 9. 100.000 11. 254 754 268 "786 ~~~T 74 8 997 0 .01310 0.00926 0 . 0 0635 -0.00463 0 .00325 0.00227 3.253 5. 745 "6"."2"4'2" 6. 74 1 0.00162 0.001 16 0.000 24 _7T2""46" 7.744 8.263 8.776 5 .259 9 . 731 10.6 17 0.02t>23 0.0136 6 OT0TT2T" 0 . 0J323 5_ "6T603 5"5 0 . 0 0 * 6 6 " 0.003 25 0.00228 1* 0 6.06lA3 C.00116 0.00364 PI»* 1 0 1 * * * * **** "* * * **** •;* + * * * * * » ft * • » * » * « * « * **** MULTIMODAL SAMPLE ** * **** ******** ******* ************** WEJ WT DRY WT _ _ S A L T _ ORGANIC lOOO.'OOOCT 4.84 0 0 C . 0 0 . 0 1 0 0 . 0 0 0 0 1 0 0 . 0 0 0 0 0 . 0 0 . 0 MOISTURE 0 . 0 ( G R A M S I 0 . 0 (PCT WET WTI WEIGHT LOSS DUE TO HANDLING _ „ 0 . 0 GRAVEL CORRECTION FACTOR " i . o o b " S U E S ELIMINATED K 0 . 0 1 S I NONE TRASK SORTING COtFFECIENT 2.126 USING PROBABILIT1 E X T R A P . 2 . 1 1 1 MEAN CUBED DEVIATION 10.645 USING PROBABLITY EXTRAP. 5.690 TABLF OF STATISTICAL DATA IN PHI UNITS P E R C E N T I L E S L I N E A R F X T R A P . PHI UNITS P R O R A f U I L I T Y E X T R A P . PHI U M T S PERCENTAGE COMPOSITION SKEWNESS KURTOSIS GRAVEL 0.0 MOMENT ( 5.52242 2 . 01606 1.32339 5.16020 6.0 0. 12375 3. 0144 3 0.12310 3 . 02204 SAND 21 .69 P-MOMENT ^ - 5 . 4 7 5 7 2 1 . 83 114 0.95931 3.76718 1 0. 0 0. 10 109 3. 3062 1 0.09316 3 . 34374 SILT 69 .49 FCLK 5.36578 1. 87543 0.23600 1.19936 16.0 0. 079 12 3. 65566 0.07319 3 . 67688 CLAY 8.31 P-FOLK 5.38751 1. 86673 0. 238-»2 1.20819 25. U 0. 05576 4. 16463 0.05632 4 . 17596 MUD 78.31 I NMAN 5.48106 1. 82120 0.15694 0.74626 50. 0 0. 0 27 29 6. 1 5 52 4 0.02731 5 . 19443 S/M 0.2 8 P-INMAN 5.48466 1. 30779 0 . 1 60 5 5 0 .757o l 75.0 0. 01234 6. 34061 0.01242 6 . 33160 KRUKHEIN 1. 6118 4 0V05 73F ' 6.23710 84.0 0. 00634 7. 30225 "0 "."006 3 8 ' ~ 7 . 29245 P-KRUM. 1. 59677 0.05935 0.23792 90. 0 0 . 00420 7. 89491 0 . 0 0 4 2 5 7 . 37866 FOLK (TRANSFORMED) 0 .54532 95.0 0 . 00150 9 . 38232 0.00150 9 . 37660 P-FOLK (TRANSFORMED) 0. 54714 DATA FOR CONSTN OF BARGRAPHS AND CUM. CURVES MID P H I ( L I N E A R ) P H I MM M I D P H K P K O B . ' M T J J T " P H I MM SIZE FRACTION MM PHI W T . ( G M S ) U N C O R C O P W T . P C T . COR W T . P C T . C U M U L . ""0. 2 50000 0.177000 0. 1250C0 2. OCO 2.49P 3.000 0. 010 0.010 0. 210 0. 010 0. 010 0.210 207 0. 207 0. .339 4. TZTa TT. ,264 21. ,166 31. 2 3 ' 4 4 • "9 8 1 60. ,588 65. 207 413 752 1.75 1 2 .249 2. 749 0.29707 0.2 1036 0.14875 1 .884 2 .287 2 .857 0.2 7096 0 . 2 C . 8 7 0. 1 360 1 0.104 38 0.07416 0.05244 0.03693" "o'.o 2612"" 0.018 53 3.301 3.7 IZ 4. 265 "4. 765" "6.2 68" 5. 748 0 . i ii 4 •> 0.07321 0.05200 "Jro"2tTl4 0.0 186 1 0.08>'OOU 0.062600 _0.044 00_0_ ' d.03"lbob 3.506 4.000 4. 506 3. 6 I 2 0.420 0.400 0.492 0 .351 0.022000 0.015600 6. 5 06 6.002 0 . 7 / 4 0.464 0.420 0.400 0 . 4 9 2 J 3 j j 5 9 F 0 .774 0.464 4 3 0 694 861 ObT_ 0 4 9 " 636 3.233 3.75 3 4 .253 "4. 75"9_ "5 .259 5.754 1 0 0_ JL" 0 0.01310 0 .009 26 6.244 6.74 7 0 . 0 1 a 1 9 0.00931 0.011000 0.007800 6.506 7.002 0 . 387 0. 193 0 .387 0 . 19 3 991 995 77. 81. 627 622 6.254 6.764 0.005500 0.002900" 0.OC27OO 0.001500 7. 5C6 "8.002" 8. 533 5. 04 C 0 . 193 0 . 2 7 1 " 0.077 0 . 0 7 / 0. 193 0.271 0.077 0 . 0 7 7 ^5 1" 1 996 8 5. ,593^ 9 1. :598 92, 5 5 8 5 4. 6 18 211 609 40 7 7. 254 7. 754 8.268 8. 766 0.00655 0.00463 0.00325 0.00227 7.244 7. 733 8. 257 8 .7 /4 0 . 0 0o6 0~ 0. 0C» 7 0" 0 . 0C327 0.00228 D.001 63 0 . 00117 0 . 0 0 J 6 4 0 . 2 5 0 0 0 C 0 . 1 7 7 0 0 0 0.001360 0.000980 0.000061 ""TOTAL S 0.020000 C.020030 5.501 5. 595 1 4 . 0 0 0 0. 039 0. 039 0 . 193 4. 340 " 0 . 0 3 9 0 . 0 3 9 0 . 1 9 3 " 4 . 8 4 0 0 0 3, 1 0 0 /99 95, 300 96, 995_100, , 0 " " 206 005 0 0 0 9.270 9 . 74 8 11.997 0. O 0 U 2 0 . 0 0 1 1 6 0 . 0 0 0 2 4 9 . 2 6 3 V . 7 3 5 1 0 . 6 1 0 P I * * 102 0 .0 _ WET WT _ DRY WT 1 0 0 0 . 0 0 0 0 " " 5.4100 100.0000 • 100.0000 S A L T _ O R G A N I C _M_0 I S T U R E o.o o .o 6 7 6 ( G K A M S I 0.0 0 .0 0 .0 I P C T W E T W T ) ********* **************** * «** **«* **** ' * # * M U L T I M O D A L S A M P L E * » * " " * * * * « * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * WEIGHT LOSS DUE TO HA NO LING 0.0 GRAVEL" CORRECTION FACTOR ' l . O J O " SIZES ELIMINATED K L ' . O I X ) NONE TRASK SORTING COEFFECIENT 2 .017 USING PR08A 6 ILITY EXTRAP. MEAN CUBED DEVI AT I UN 2. 002 12.BS1 U S ING PROBABLI T Y EXTRAP. 7.662 PERCENTAG TABLE OF STATISTICAL D A T A IN PHI UNITS PERCENTILES LI NEAR E X T R A P . P R O B A B I L I T Y EXTRAP. COMPOSITION ...-•MrArTNT" ) S T D CFV SKBWNFSS KURTOSIS M M . PHI UNI T S M M . PHI U M T S " G R A V E ' L " " " 0 .0 " M O M E N T ~(" 5. 08636^-'1.97381 1 .6 /607 " 6.3 7854 " 5 .6 0. 13293 2. 9112 7 '"" " 0 . 1 2 9 1 9 " 2.95247 SAND 30.31 P - M O M E M T V 5.04 693 1.79259 1.33018 4.76206 10. 0 0. 11369 3. 13614 0.109D6 3. 16889 SILT 61. 66 FOLK 4.84776 1.71079 0.26086 1.23865 16.0 0 . 09668 3. 34105 0.09590 3 . 3623 0 CLAY 7. 63 P-FOl K 4.86036 1.65333 0.27275 1.2433 1 25.0 0. 07360 3. 72170 " 0. 073 1 7 ""' 3. 7 33 7J MUD 65 .69 I N M A N 4.90792 1.56687 0.11519 0. 95312 50.0 0 . 03 7 75 4. 72 744 0.03776 4.72710 S / M 0.44 P-INM AN 4.92698 1.54468 0.12940 0.96766 75. U 0 . 01863 5. 7465C 0.01675 5.73706 KPUMEEIN 1.45985 0.00666 0.23910 64.0 0. 01124 ~" 6. 4 74 79 0.01127 6.47167 P-KPUM. 1.48397 0.00828 0.24001 90 .0 0. 00604 7. 37236 O.OOc.08 7.3o245 FOLK (TRANSFORMED) 0.55334 96 .0 0. 00191 9. 03133 0.00191 5.03099 P-FOLK (TRANSFORMED) 0.55427 D A T A F O R C O N S T N O F B A R GR A P H S A N D C U M . C U R V E S S I Z E F R A C T I O N MM P H I W T . ( G M S ) U N C O R C O R W T . P C T . C O R W T . P C T . C U M U L . " M I D P H I ( L I N E A R ) P H I MM MlO PH I ( PKLTBTT" PHI MM M O D E 0.250000 2. 0.177000 2. 0.125000 3. 000 498 COO U . 0 8 h 0 0 0 3. 0.062500 4. 0.044000 4, 0.031000 " 5. 506 000 506 012 " 0. 020 0 .02J 0.230 0. 810 0.510 0. 726 0 . 7 74" 0 . 0 2 0 0 . 0 2 0 0 . 2 6 0 0. 370" 0. 370 5 . 176 370 1. 739 2. 915 2. 751 249 749 0.29707 0.21036 0.14875 1.857 2 .287 2.844 "0.26656 C.2 C4 94 0. 139 31 0. 010 0.510 0 . 726 " 0.774 0. 022000 0.015600 TToir .002 14.972 9 .427 13.424 14.308 ' 0 . 7 3 1 " 0.365 T 3 T 7 3 T " 0.38 5 0.011000 6. 0. 007600 7. 5 06 002 _0. 0053 00 __7. 6 .032900" 6. 0.002700 _8. 0.001900 6". 506 002 " 5JJ3 04C 0 . 308 0. 192 _0. 154_ 0.07 7 0.077 0. -37 7 0.10436 0. 07416 0.05244 0.03693 "TJTIT20T2 -0.01853 3 . 3 0 6 3. 765 4.261 4 . 758 "572"3T" 5. 745 0.308 0. 192 0. 154 0 .077" 0.077 0.077 5.689 3.555 2. 845 " 1 .422" 1.422 1.421 ~e"47 07. i 5 6 911 234 754 0.01310 0.00926 _9 0 92 93 95 ^rsb r .178 7 .601 8 .022 0 .250000 0 . I 77030 0.901360 9. 0.0C0980 9. 0.300061 14. " TOTALS 0.04C000 0. 0400 30 501 995 000 0 . 0 3 6 0 . 0 3 8 0 . 192_ " 5 . 4 1 " C 0. 038 0. 038 jO . 192 5".410" 0.712 0. 711 3 .555. To o .o 95 96 1 00 7734 9 7 445 9 . 000 11. T5T" 754 ,268 786 6 . 743 T7TT 7 4 8 9 9 7 o . 00653 6.00463 0.00325 0.0022 7 0 . 0 0 1 6 2 0.00116 0.000 24 " 7 . 2 4 2 7.74 7 8 .257 8.774 O . l O i l l 0. 07355 0.052 1 7 _0.3 3o9 5 0.01865 0.01321 0.00933 r o 0 T T 0 0 1 0 9 . 2 & 3 9 . 739 10.614 •cT7o~6o~rr C.00-.66" 0.00327 0.30228 0.001 c3 0.00117 0. 00J64 • I C l. 0. G *******-************ ********** **** **** *+* MULTIMODAL SAMPLE * • * * " * * * * * * * * WET WT DRY WT SALT _ ORGANIC MOISTURE 1000.0000 ' " 5.2300 0 .0 0 .0 " 0 . 0 (GRAMS) 100.0000 100.0000 0 .0 0 .0 0.0 (PCT WET WT) WEIGHT LOSS OUE TO HANDLING 0.0 GRAVEL CORRECTION FACTOR 1.000 SIZES EL I MI NAT FD K O . O l t l NONE TRASK SORTING COEFFFCIENT 2.322 USING PROBABILITY EXTRAP. 2.303 MEAN CUBED DEVIATION 13.387 USING PROBABLITY EXTRAP. 6.913 PERCENTAGE COMPOSITION GRAVEL ". 0 .0 SAND 28.67 SILT 59.62 TABLE OF STATISTICAL DATA IN PHI UNIT'S - "TOXENTTTirS - TTNTA'R EXTKTP: CLAY HUD S/M 11.51 71.13 0.41 5. 0 1 0 .0 16.0 P-FOLK 5.23703 1.99569 0.24147 1.17304 INMAN 5.36103 1.91647 0.11869 0.81136 P-INMAN 5.36458 1.90377 0.12221_ 0.80532^ "KFUMBEIN ' ~ " l ."8b08a"-b . "0842"l " 0 . 22622 P-KRUM. 1.78288 -0 .08041 0.22600 FOLK (TRANSFORMED) 0.53925 25 .0 50 .0 76.0 84.0 90 .0 95.0 M M . 0. 13451 0. 1 1036 0.09185 "TJTDTOTS -0.02849 0.01301 "0.00645 0.00266 0.00109 PHI UNITS^ 2 .8 9417 3.17974 3. 44456 P R O B A B L I L I T Y F X T R A P . M M . PHI UNITS 0.13122 " 2.92494 O.lOc. 78 3. 22 72 5 0.09082 3.46080 3. H3338 5. 13318 6.26456 7. 2 7749" 8. 55334 9. 83695 P-FOLK (TRANSFORMED) 0.0694 4 0.02652 0.01309_ "6.0C649 0.00266 0.001 1 1 3.34 60 7 5 .13193 _6.2 549 6_ 7". 26 835 8.55226 5.81502 0.53682 DATA FOR CONSTN OF BAR GRAPHS AND CUM. CURVES SIZE FRACTICN MM PHI WT. UNCOR (GMS1 COR WT . P C T . COR Wl . P C T . CUMUL . MID PH I ( L INE AP. t PHI MM MI 0 PHI ( Pr<06. PHI MM MODE 0.2500UO 0.177000 0. 125000 0.086000 0.062500 0. 044000 "0.03 1000 ' 0.022000 0.015600 2.0G0 0. 2.458 C. 3.COO 0. 040 040 230 0.040 0. 040 0.230 0.766 0. 765 4 . 398 0 . 765 1. 530 5.527 1.751 2. 249 2. 749 3. 506 0 .29707" 0.21036 0. 14375 1.909 2 .286 2.615 0 .26o35 0.20505 0.14214 000 0 506 0_ 012 0 7j-0 .'506 . 002 ,600 630 ,653_ 244" .T.V27-483 0. 600 0. 600 0.656_ " 0 . 244 ~o-"S2"r 0.488 11.472 11.472 J.2.579 4. 663 "T5780T-9. 339 17.400 2 8.6 72 41.451 46.1 15" 3. 233 3. 753 4.253 4 .755 0. 1 04 88 0.07416 0.05244 0.03653 3.300 3.771 4.261 4. 760 61.922 71.261 5.259 5.754 0.011000 0.0C7 8 00 0.02612 0.01353 5. 256 5 .747 0.10152 0 . 0 7 j 2 7 0.052 14 0 . 0 3\> 90_ 0'. 0 2g>"l o 0.01561 ~0~~ 0 1 * 0 """ 1* 0 6.5C6 0. 7.002 0. 376 183 _0. 0035C0_ 6. "003900 0.002700 0.001900 . 506 " 6.6013""; 0.000960 0.000690 0.000061 TOTALS 0.010000  _7. 8 .002 6.533 9. 040 . l"3cT ,15 0 ,076 075 0.376 0. 138 7. 165 3.592 78.447 82.038 6.254 6. 754 0.013 10 0.00926 6.245 6. 747 0. 13o 0 . 150 0.073 0.073 3.563_ 2". 8 74 1 .437 1.437 r . H r 2. 156 0.718_ 3.593 100.0 86. 651 88.505 69.942 91.3 79 7.254 "7.754 8.268 8. 786 0 .00O35 0 .00463 0 .00323 0 .00227 7.245 7. 745 8. 26 1 8.779 0. 0 1 J 1 9 JL\£2i31 O.OOoST" 0 .0 0-. 66" C.003 26 0.00223 0.501 5. 5.995 0. 10.501 0. 14.COO " 0. TT! 113 0 58 166" 230 "oTTTT 0. 113 0.03 8 0. 166 5 .230 "9T7T3T 95.669 96.407 100.0 00 •5T2T6 -9 . 74 8 10.248 12.251 0.00162 0 . 0 0 1 l o 0.00082 0.00021 9 .253 9. 728 10.239 I 1.042 0.00163 0.00118 0.00083 C.0CO4 7 0.2 50000 * * tt****ic**%**«¥*«*»at«t*v * * O* * # « * >T**~T64 b" "" o . o ~d o"/d 6* ~ K U L T I M O D A L " S A M P I C " ' ' * * * ***************************** > WE T WT OR Y WT SALT ORGANIC MOISTURE WEIGHT LOSS DUE TO HANDLING 0.0 1 0 0 0 .0000 5.4300 0.0 " "0. 0 0.0 (GRAMS) GRAVEL CORRECT I G'J FACTOR 1.003" 100 .0000 100.0000 0.0 0.0 0.0 (PCT WET WT) S U E S ELIMINATED K O . O l * ) NONE TRASK SORTING COEFFECIENT 1.953 USING PROBABILITY EXTRAP. 1.9 36 • MEAN CUBED DEVIATION 10.132 USING PR08ABLITY EXTRAP. 4. 540 • PERCE NT AGE TABLE OF STATISTICAL DATA IN Phi UNI TS PERCENTILES LINEAR EXTRAP. PROBABLILITY EXTRAP. COMPOSITION UNI TS S TD DEV SKEWNESS KURTOSIS MM . PHI UNITS MM. PHI GRAVE L " - o.o' 'MOMENT ( 4.5894 y 1 .80668 1. 71812 6 . 62580 " 6.0 0. 11947 3.0o624 0 .11558 3. 11305 SAND 33 . 52 P—MOM EN T ^ 4 . 9 1 .59 20 3 1. 22423 4. 29290 1 0. 0 0. 10447 3. 25667 0 .09961 3. 32748 SILT 60.3 7 FOLK 4.78555 1.52050 0. 40064 1. 10450 1 6. 0 0.08893 3.45122 0 .08633 3. 45654 CLAY 6 . 12 P-FOLK 4.78548 1.50650 0. 40603 1. 10872 25.0 0 .07405 3. 75445 0 . 07291 3 . 7778 1 MOO 6 6 . 43 I NMAM 4.9.4RP3 1 .45761 0. 33522 0. 75239 50. 0 0.04543 4. 4602 1 0 .04539 4 . 4ol43 S/M 0. 50 P-I Nf'AN 4.94751 1.46057 0. 33509 0 .77724 73. 0 0. 019 33 5. 6 53 3 6 0 .01943 3. 68373 K PU MB E IN 1.43620 0. 26371 0. 24844 84.0 6.01179 6.40644 3.011S6 6 . 39E08 P-KROM. 1 .41179 0. 26934 0. 24931 90.0 0.00699 7. 16100 0 .00704 7. 14587 F CLK (TRANSFORMED) 0. 52483 93. 0 0 .00319 8.29045 0 .00324 8. 2e907 P-FOLK (TRANSFORMED) 0. 52578 DATA FOR CCNSTM OF BAR GRAPHS A NO CUM. CURVES S U E FRACTION WT.IGMS) WT.PCT. WT.PCT MID PH M LINEAR) MID PHI(PROS.) MODE I'M PHI UNCOR COR CUR CUMUL. PHI MM PHI MM 0 .250000 2.000 0 . 010 0 . 010 0. 184 0. 1 84 ~ i . 751 0 . 2 9 / 3 7 1.881 0 .27151 0 0. 177000 2.498 0.010 0 . 010 0. 184 0 . 368 2. 249 0 .21036 2 .287 0 . 20485 0 0.125000 3.000 0.160 0 . 160 2.947 3.315 2. 749 0.14875 2 .851 0. 13865 0 TVosros'";-•"T"5b'6 " 6.716 0 . 710 13.0 76 16.390 3. 253 0.10468 3.323 0 . 09596 0 C. 062500 4.000 0.930 0 .930 17.127 33.518 3. 753 0 . 07416 3 .777 0.0 7297 0 C.044000 4. 5C6 0 . 985 0 . 985 18.134 31.652 4 . 253 0 . 05244 4 .259 0 .03224 I" • 0.031000 5.012 0. 378 0. 378" 6. 966 58.6 18 4. 759 0 .03693 4 .756 0 . 0369 / 0 * 0.0220O0 5.5C6 0. 737 0. 73 7 13.368 72.186 5. 259 0 . 02612 5 .250 0.02u28 1 0.015600 6 .002 0 . 405 0. 405 7 .462 79.648 5. 754 0 .01853 5.744 0.0 1366 0 0.311000 6. 5 06 0 . 2 9 5 0 . 256 5.427 85.076 6.254 0 . 01310 6.242 0 .01321 0 0.007800 7. 002 0 .221 0 .221 4.070 89.145 6. 764 0 .00926 6.741 0. 005 3 5 0 0.003500 7 .5 06 0 . 1 4 7 0 . 147 2.714 9 1. 8 39 7. 254 0 . 00655 7 .241 O.OOoo 1 0 0.003500 8. 002 0 . 1 1 0 " 0 . 110 " " 2.035 93.894 7. 754 0. 00463 7 .741 0.00-.6S " 0 0.002700 8.533 0 . 111 0 . I l l 2. 036 95. 930 8. 260 0 . 00325 8.246 0 . 00329 1 0.001900 9.04 0 0 .037 0 . 037 0.67e 96.o08 6.786 0. 00227 8 .77 7 0 .002 ?. 3 0 -o.oocfliT" TCOM 0.134 0 . 184 3.302 100.000 1 1 . 520 0 .00034 9 .810 .0 .00111 6 TOTALS 5.430 5.430 100.0 0. 2 50000 0. 020000 . . . . . . . . . . .. 0. I7700C 0. 0200 00 0. 12 5000 c . 150000 1 0. 088000 0. 810000 > PI** 115A * * * MU L T I MODAL SA~M~PLT « « " « ' " * * * * » « « » D o WET WT D R Y WT SALT 1000.0000 4. 2400 0 . 0 " 130.0000 100.0000 0 .0 ORGANIC MOISTURE_ _ 0. C ' " "O.O " "{GRAMS') 0.0 0.0 IPCT WET WT) WEIGHT LOSS DUE 10 HANDLING GRAVEL CORRECTION FACTOR S U E S ELIMINATED (<0.01*) _TRA_SK SORTING COgFFECIENT US'IN'G P R O B A B T L T T Y E X T R A P . MEAN CUBED DEVIATION JJSING PROBABLITY EXTRAP. 0. 0 i.ooo" NONE 1. 7 7 7 1. 7 6 9 1 1. 5 5 0 6 . 5 5 8 PERCENTAGE COMPOSIT ION GRAVEL 0 .0 SAND 47.64 SILT 4 7.54 TABLE OF STATISTICAL DATA "IN PHI UNTTS"" MOMENT P-KCMENT F OL K C L A Y MUD S/M 4.4 1 52.36 0.91 <5^58CjJj> 4T5ST06 4.3 708 5 P-FOLK I NMAN P-INMAN ' KPUMBEIN " P-KPUM. FOLK (TRANSFORM S T 0 C E V I . 72 858 1 .54303 1 .34299 4.36450 4.51655 4.53819 ID ) SKLWNESS 2.23617 1.79597 0.44121 1.32036 1.23626 1_. 2005 5 1 ."22 912"" 1.21924 KURTOSI S_ " 9. 26206 6.68905 1.18163 0.45855 0.35337 _0. 38303_ 6". 2 c o 6 l 0.26267 P-FOLK (TRANSFORMED) 1.18334 0. 93489 0.67932^ "6".'2 552 8 0.25903 0.541c3 p E R C E N rnrrs" n>TFATrTxTKTpT" 5 .0 1 0. 0 16.0 25.0 50. 0 75.0 64/0"' 90 .0 95.0 MM. "6". 129 19 0.11492 0.10293 0.0~8~73"9"" 0. 05915 0.02 767 "0 .01854" 0.01208 0.00469 PHI UNITS 2. 9 524 5 " 3. 12126 3. 26029 0.54199 3.61641 4. 07945 5. 17372 * 5. 75282" 6. 37125 7. 73652 P 4 0 8 A B L I I I I Y txTSAP. MM. "0 . 12735" 0.11042 0.09S92 0.06729 0.05920 0.02789_ "0/0187 3 0.01221 0.00472 PHI W I T S _ 2 .97308 ' 3.17887 3.33764 " 3.51S02— 4.07634 5_. l t 4 0 G . 5.73 674 6.35602 7.72562 DATA FOR CONSTN OF BARGRAPHS AND CUM. CURVES S U E MM FRACTION PHI W T . ( C M S ) UNCOR COR WT.PCT. WT.PCT. COR CUMUL. MID PHI(LIN EAR) PHI MM Mil) P H l l P R O B . ) WTJT PHI MM 0.250000 0.177000 0.125000 2.000 2 .458 3.000 0 . U 3 6 u 0 0 0.062500 __0. 0440C0_ 0.031000 0.015600 3.307T 4. OOC _4. 5C6_ 5.012 0.020" o; 0.020 0. 0.190 0. 5 . 5 OTP 6. 002 OTPTO" o . 9 e o o. 0.63 7 0. O.'39'l "0. Tjr39'7 o": C2"0 " 0. 020 0. 190 4. 0. 234 0.011000 0.007600 6. 506 7. 002 980 23, 637 15, "39 1 9, T , 5. 472 472 481 T 5 7 " 234 113 47 027 62, 223 " 71, "3'65—WV. 512 66. 472 1.751 543 2.249 425 2. 74 9 TUT 0.29707 0.2103b 0. 148 7 5 "STTsT—0.10483-642 3.753 0.07416 669 4.253 0.05244 892 4. 759 0. 03693 1.901 2.267 2.632 0.267 74 C.2 C4 9 7 0 . 14048 0 . 18 7 0. 0. 070 0. "2'CT 772 18 I 070 "572 59—0V0'2 6T2" 5.754 0 .01853 0 . U 0 3 3 0 O 0. 002900" 0.002700 0.0019 00 7.506_ 6.002 6. 533 9.04 0 0.070 0. 6 .04 7 " 0. 0.023 0. 0. 023 0. 409 653 51. 92, 182 635 6.254 6. 754 070 _ I. 047 " 1. 023 0. 023 0. 0. 013 1"0" 0 . 009 26 o53 94.488 7.254 0.00655 103 ""95. 591 7. 754 " 0.00463 551 96.142 8.268 0.00325 662 96.693 3.786 0.00227 0. 10351 0.0 73 44 0.05256 "0. 037 1 2 G71f2u~3"7"" 0.01671 "D.01^2? 6 . 7 4 5 _0 i 00933_ O . O O 0 6 I 0.00.67"" 0.00326 0.00228 H 3 ~ 1* 0 0" " 7.241 7. 743 8.260 8.778 0 . 2 5 0 0 0 0 0 . 1 7 7 0 0 0 0 . 1 2 5 0 0 0 0.001360 0.000061 TOTALS 0. 050000 """" 0.020000 0.190000 9.5C1 0.023 0.023 0.551 9 7.244 5.270 14.000 0 .117 0.117 2.756 100.000 11.751 4 .240 4.240 100.0 0.00162 9.262 0.00029 10.211 0 . 0 0 1 6 3 0 . 0 0 J 8 4 0 .0 **** * * * Mj LT 1MGDAL SAMPLE"" - » « • * * * * WET wl DRY »T SALT 1000.5300 6.2900 0 .0 l o O . j J G O 100. 0000 0 .0 .ORGANIC MOISTURE 0 .0 " 0.0 (GRAMS ) 0 .0 0 .0 (PCT WEI WT) WEIGHT LOSS OUE 10 HANOLING GRAVEL CORRECTION FACTOR " " ~ SIZES ELIMINATED K O . O U ) TRASK SORTING CCEF FECI ENT USING PROBABILITY FXTRAP. MEAN CU3E.) DEVIATION USING PRORABLITY EXTRAP. 0 . 0 1. 000 NONE 1.923 I .91 J 10.794 5.236 PERCENTAGE COMPOS! TI ON GRAVEL 0 .0 SAND 26.23 SILT 67.46 TABLf Or STATISTICAL DATA IN i ' n l UNITS CLAY 6 .26 ' r--Ff"l~K 5.C2698 MUD 73. 77 imt.!. 5.04721 . S/M_ 0.26 P-INMAN 5.05575 KPUMFUN P-iOL'M. FOLK (TRANSFORMED) "T6TC CEV SKEWNESS KURTUSIS .21379^/1 .36293 1.66949 6.79074 i64 1 .64495 i . 17674 4. 74734 5.C2099 1.59659 j.19652 1.25664 1 . 6""8 5 96 1.4 3 46F, 1 .42345 1.3 996 8 1.38665 0 . 2 u 1 8 A 0.05461 0.06063 u.07046 0.07277 P - F T L K (TRANSFORMED)"" 1.2o323 1.02242 1. 02676 G.24649 0.24788 0.55726 P ER C LT7T"ILTS CTNt A R EXTRAP." 55815 5. 0 10.0 16. 0_ 2 5.0" 50. u 75. 0 84 .0 90. G 95 .G MM . 0 . 12088 0.09999 0.08 176 0 .06455" 0.05194 0.01742 0.01119 0.00699 0.00216 PHI LN I TS 3. 04 64 0 3. 32778 3. 61263 3. 53T3T" 4. 96657 5. 84290 6 .48186 7. 16068 8. 65144 'BABLILITY EXTRAP. 1 1874 06o6 1 06064 Dt»423 03192 01755 01121 00705 0021 8 PHI UN!TS_ 3. 07415 3.37172 3.63230 3 . 9 c Oo 5 4 .96545 5 . 8 5 2 o 6 6 .4 7 92 0" 7. 14774 8.84409 DATA FOR CONSTN Or BARGRAPHS AND CUM. CURVES S I Z E F R A C T I O N MM P H I WT.(GMS) UNCOR COf WT.PCT. WT.PCT" COR CUMUL. MID P H I ( L I NEAR) P H I MM MID P H K P R O B . ) PHI MM MODE .751 0 . 2 5 , 0 7 1 .6C9 0'.26o2o" 249 0.21036 2 .267 0 .20/72 745 0. 14875 2. 6 14 0. 142 1 9 1 0 o .253 0.1 0488 3.306 0 . 101 1 1 0*" 753 0.07416 3. 779 0.07267 1 .253 0 .0 32 44 4.262 0.0 52 14 0 755 0. 0 51,93 4. 76 3 O.O'loHZ 0"' •ooiseo 0.7000c1 TOTALS 96.07(, 9. 27C 100.000 11.751 254 0 . 0 1 3 1 0 6 . 2 4 1 0.01322 754 0. 00926 6. 739 0.005 36 254 0.00655 7.239 '0 .00o62 754 0.0C463 " 7.744 0 .00467" 268 0 .00325 8. 26 1 0.005 2o 786 0.00227 S.778 0.00223 259 0.02612 5.252 0.02325 1* 755 0.0 1853 5. 743 0.0 1067 0 0.00162 9.262 0.00029 10.192 0.00165 0.00085 Pl*> 1 1 6 A 0 . 0 0 . 0 ftftft* S A t n * * * MUL t l MODAL SAMPLE ft«#~" ft*** vftft* 4* ft ftftft ftftft ftftft ftftft ft * * * * * * ftftft ft ftftft n I • f WET WT DRYWT SALT. ORGANIC MOISJURE. ~1066" .66o6 5.9300 "C .O" "O.O" " O . O (GRAMS) 99.9999 1 0 0 . 0 0 0 0 0 . 0 0 . 0 0 . 0 (PCT WET WT) WEIGHT LOSS DUE TO HANOLING 0 .0 "GRAVEL CORRECTION FACTOR T . O O O ' SIZES ELIMINATED K 0 . 0 1 X ) NONE TRASK SORTING COEFFLCIENT 1 . 848 USING PRObABILITY EXTRAP. 1 . 8 3 5 MEAN CUBED DEVIATION 1 0 . 8 1 7 USING PROBABLITY EXTRAP. 5 . 2 4 3 PERCENTAGE COMPOSI TION TABLE OF STATISTICAL DATA IN PHI UNITS P E R C E N T R E S L I N E A R E X T R A P . P R O B A B I L I T Y E X T R A P . 5. 156 7 3 ^ STD CEV SKEWNE SS KURTOSIS MM. PHI UNITS MM. PHI U M T S GRAVEL 0 .0 MOMENT >*• 1 . 80248 1.84723 7. 73735 " " " " 6 . 0 6 .11391 "' "3 . 1 3405 0. 1096 8" 3 . 18 65 7 SANO 25 .63 P-MC1MENT V. _5~-tO-5tH 1 .57916 1.33131 5.62828 10. 0 0. 08 99 2 3. 47326 0. 08923 3.46548 SILT 68.23 FOLK 4. 95639 1 .49148 0. 18272 1.30527 16.0 0.0 7 76b 3. 6 8 6 0 8 0. 075S3 3.72107 CLAY 6 . 14 P-FOLK 4.96211 1 .46694 0. 19179 I.3054 3 25 .0 0.06 340 3 . 9754 1 0. 063 2 I 3.56 37 5 MUD 74.3 7- I NMAN 4.96015 1.27347 0.00884 1.21497 50 .0 0.03233 4. 9438S 0. 03236 4.94971 S/M 0.34 P-INM AN 4 . 56820 1 . 24723 0.01491 1.2 3o6 0 75.0 0 .01857 5. 75073 0. 01877 5.73530 KPUM.HF1N 1". 31208" ""-0.083 81" " 0.27039 8 4 . 0 ' '"" 0.01329 6. 23361 0. 01346 6.21554 P-KRUM. 1.29744 -0 .09019 0.26996 90.0 0.00929 6. 75G71 0 . 00542 6.725O0 FOLK (TRANSFORMED) 0.56621 95. 0 0.00228 e. 77542 0 . 00229 6 . 767o8 P-FOLK (TRANSFORMED) 0 .56624 DATA FOR CCNSTN OF 6ARGRAPHS AND CUM. CURVES SIZE FRACTION MM PHI WT.(GMS) UNCOR COP. WT.PCT. W l . P C T . COR CUMUL. MIO PHI(LI NEAR) PHI MM MID PHK PRCd.) MOOE PHI MM 0.250000 2. 0.177000 2, JJi i . 2_P .00_ 3, 000 0. 496 0. 000 0. 070 030 080 0.OPf.OoO iQ.-'S62 500^ 4 5 06 0.344000 4 0.031000" 0. 022000 5"; 0.015600 6. 5 Co .012""' 440 .900 •