Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Model ages and applied whole rock geochemistry of Ag-Pb-Zn veins, Keno Hill - Galena Hill Mining Camp,… Tessari, Oscar Jose 1979

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1979_A6_7 T48.pdf [ 8.32MB ]
Metadata
JSON: 831-1.0052837.json
JSON-LD: 831-1.0052837-ld.json
RDF/XML (Pretty): 831-1.0052837-rdf.xml
RDF/JSON: 831-1.0052837-rdf.json
Turtle: 831-1.0052837-turtle.txt
N-Triples: 831-1.0052837-rdf-ntriples.txt
Original Record: 831-1.0052837-source.json
Full Text
831-1.0052837-fulltext.txt
Citation
831-1.0052837.ris

Full Text

MODEL AGES AND APPLIED WHOLE ROCK GEOCHEMISTRY OF Ag-Pb-Zn VEINS, KENO HILL - GALENA HILL MINING CAMP, YUKON TERRITORY by OSCAR JOSE TESSARI B . S c , Universidade de Sao Paulo, 1971 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE 9 IN ' THE FACULTY OF GRADUATE STUDIES ( Department of Geological Sciences) We accept t h i s t h e s i s as conforming to the required standard , THE UNIVERSITY OF BRITISH COLUMBIA September, 1979 © copyright O.J.Tessari, 1979 In presenting th i s thes is in pa r t i a l fu l f i lment of the requirements for an advanced degree at the Univers i ty of B r i t i s h Columbia, I agree that the L ibrary shal l make it f ree ly ava i l ab le for reference and study. I fur ther agree that permission for extensive copying of th is thesis for scho lar ly purposes may be granted by the Head of my Department or by his representat ives. It is understood that copying or pub l i ca t ion of this thes is fo r f i nanc ia l gain sha l l not be allowed without my written permission. Department of GC*Ot~Q <S>y  The Univers i ty of B r i t i s h Columbia 2075 Wesbrook P l a c e Vancouver, Canada V6T 1W5 FRONTISPIECE: Aereal view of the southwestern end of Galena H i l l showing the townsite of Elsa (centre) and the Husky mine shaft (far r i g h t below main road). Looking southeast. i ABSTRACT A de t a i l e d methodology has been devised and tested for e s t a b l i s h i n g metal zoning patterns i n and about oreshoots w i t h i n the plane of Ag-Pb-Zn veins of the Keno H i l l - Galena H i l l mining camp, Yukon T e r r i t o r y , using whole rock v e i n geochemistry of run-6f-mine samples. These i d e a l metal d i s t r i b u t i o n patterns are e a s i l y i n t e r p r e t a b l e i n more c l a s s i c a l zoning terms as mineral d i s t r i b u t i o n patterns. To e s t a b l i s h a zoning model samples that span a wide range of grades are rearranged i n order of decreasing s i l v e r contents. The r e s u l t i n g "rearranged" p r o f i l e s for other elements are then evaluated r e l a t i v e to s i l v e r . .Computer-based curve f i t t i n g methods are useful means of g e n e r a l i z i n g « these "rearranged" metal p r o f i l e s . The foregoing procedure has been used to develop a general model for the Keno H i l l - Galena H i l l camp based on a n a l y t i c a l r e s u l t s from 3 main deposits (Keno, Husky, No Cash) including 6 veins. E s s e n t i a l character of the model i s embodied i n analyses of Ag, Pb, Zn, and Ca and the Zn/Ag r a t i o . A d d i t ional but i n cases ambiguous d e t a i l i s added to the model by Hg, and Co and/or Ni analyses. These elements allow vein mineralogy to be monitored i n a quantitative manner and provide a p r a c t i c a l zoning model that can be used as an exploration , tool i n evaluating underground workings for proximity to oreshoots i n the more than 60 deposits known i n the camp. A companion study involving whole rock K-Ar age determinations of small stockwork zones adjacent to Ag-Pb-Zn veins indicated an age of m i n e r a l i z a t i o n of about 87±2 Ma. for the Ag-Pb-Zn veins. i i TABLE OF CONTENTS ABSTRACT i LIST OF TABLES v LIST OF FIGURES v i ACKNOWLEDGEMENTS i x CHAPTER I : INTRODUCTION 1 CHAPTER I I : AGE OF Ag-Pb-Zn MINERALIZATION - " KENO-GALENA. HILLS AREA, YUKON TERRITORY 4 Abs t r a c t 4 I n t r o d u c t i o n 4 Sampling and a n a l y t i c a l r e s u l t s 6 Di s c u s s i o n 7 Acknowledgements 11 References 12 Appendix (sample d e s c r i p t i o n s ) 14 CHAPTER I I I : VEIN GEOCHEMISTRY, AN EXPLORATION TOOL IN THE KENO HILL CAMP, YUKON TERRITORY 16 Abst r a c t 16 I n t r o d u c t i o n 16 Procedure 19 Res u l t s and q u a l i t y of data 21 S t a t i s t i c a l a n a l y s i s of data 25 Development of a metal d i s t r i b u t i o n model 30 Metal r a t i o s 36 M i n e r a l zoning 39 i i i T e s t i n g the i d e a l oreshoot model 41 Keno 4-18-05-Stope 41 Keno 7-18-S-Drift 43 Keno 2-4-S-Drift 44 P r a c t i c a l ..applications''6f model 46 Conclusions 47 Acknowledgements 51 References 52 CHAPTER IV: METAL AND MINERAL ZONING MODELS AND THEIR PRACTICAL IMPORTANCE - KENO HILL-GALENA HILL CAMP, YUKON TERRITORY 53 Abs t r a c t 53 I n t r o d u c t i o n 53 Sampling and a n a l y t i c a l procedures 55 Re s u l t s and p r e c i s i o n 56 Husky metal and mineral zoning model 57 D e s c r i p t i o n of Husky deposit 57 Results and s t a t i s t i c a l a n a l y s i s 57 I d e a l oreshoot model 65 .Independent.traverses : 4-1-226-Raise 71 2- 2-N-*'A" - D r i f t 71 3- 1-208-Raise 71 No Cash metal and mineral zoning model 75 D e s c r i p t i o n of No Cash deposit 75 Re s u l t s and s t a t i s t i c a l a n a l y s i s 76 iv Ideal oreshoot model 80 Independent traverses: 5-66-S-Drift (a) 83 5-66-S-Drift (b) 83 2-67-115-Stope 83 Discussion and summary 87 Acknowledgements 91 References 92 CHAPTER V: CONCLUSIONS 93 REFERENCES 97 APPENDIX A: LOCATIONS OF SAMPLING TRAVERSES 99 APPENDIX B: LISTINGS OF ANALYTICAL DATA AND RELATIVE LOCATIONS FOR SAMPLES 101 V LIST OF TABLES CHAPTER I I TABLE I : A n a l y t i c a l data and model ages, Keno H i l l - G a l e n a H i l l area. CHAPTER I I I I: C o e f f i c i e n t s f o r l i n e a r equation g i v i n g a n a l y t i c a l p r e c i s i o n as a f u n c t i o n of composition. 24 I I : R e l a t i v e standard a n a l y t i c a l e r r o r s 24 I I I : Means and standard d e v i a t i o n s determined g r a p h i c a l l y f o r p a r t i t i o n e d metal p o p u l a t i o n s , Keno deposit 27 IV: C o r r e l a t i o n matrix - Keno #18 v e i n CHAPTER IV 28 I : Constants to estimate mean p r e c i s i o n f o r No Cash analyses as a f u n c t i o n of conc e n t r a t i o n 53 I I : Means and standard d e v i a t i o n s determined g r a p h i c a l l y f o r p a r t i t i o n e d metal po p u l a t i o n s , Husky deposit 52 I I I : C o r r e l a t i o n m a t r i x - Husky #1 v e i n 53 IV: Means and standard d e v i a t i o n s determined g r a p h i c a l l y f o r p a r t i t i o n e d metal po p u l a t i o n s , No Cash deposit 77 V: C o r r e l a t i o n matrix - No Cash #67 v e i n 78 v i LIST OF FIGURES CHAPTER I I FIGURE 1: Histogram of K-Ar model ages f o r g r a n i t i c r o c k s , v e i n stockworks and country rock, Keno H i l l area. Ages corrected f o r new decay constants ( c f . Armstrong,. 1978) 5 CHAPTER I I I 1: L o c a t i o n of Keno H i l l Camp 17 2: Flow diagram f o r Keno No. 18 v e i n geochemistry p r o j e c t 20 3: P r e c i s i o n p l o t t e d as a percentage of mean concentra-t i o n , , as determined by the method of Thompson and Howarth (1978) 23 4: P r o b a b i l i t y graph f o r 72 Ag values from the Keno No.'. 18 v e i n 26 5: L i n e diagram showing groupings of data based on h i g h i n t r a group c o r r e l a t i o n s 29 6: Selected p l o t s of a n a l y t i c a l data versus sample l o c a t i o n 31 7: Examples of cubic s p l i n e f u n c t i o n s f i t t e d to raw data 33 8: Summary of s p l i n e f u n c t i o n curves f i t t e d to raw data 34 9: I d e a l oreshoot and surrounding haloes i l l u s t r a t e d by Ag, Zn and Ca 35 10: R a t i o p r o f i l e s across and outward from an i d e a l o r e -shoot 38 11: S i m p l i f i e d i d e a l m i n e r a l o g i c a l zoning assuming anisotropy 40 12: Three independent t e s t s of the i d e a l oreshoot model 4 2 13: Contoured assay values f o r a part of Keno No. 18 v e i n 45 v i i FIGURE 14: Some of the vaguaries of i n t e r p r e t a t i o n that a r i s e i n p r a c t i c a l a p p l i c a t i o n s of the i d e a l metal zoning model 48 CHAPTER IV P r e c i s i o n as a f u n c t i o n of concentration f o r the p r i n c i p a l elements used i n developing No Cash i d e a l zoning model 59 Lognormal p r o b a b i l i t y p l o t f o r Husky Ag : data p a r t i t i o n e d i n t o upper and lower populations 61 C o r r e l a t i o n diagram based on 35 samples used as a b a s i s f o r developing an '!ideal zoning model f o r Husky deposit O r i g i n a l p r o f i l e s f o r Ag, Pb, Zn and Ca along part of the 400 l e v e l d r i f t , Husky deposit Element p r o f i l e s based on rearrangement of samples i n order of decreasing Ag content, Husky deposit 11: C o r r e l a t i o n diagram based on the 37 No Cash samples used to develop an i d e a l zoning model 12: Some examples of rearranged metal and r a t i o d i s t r i -b u t i o n p r o f i l e s f o r No Cash deposit showing g e n e r a l -i z e d curves f i t t e d to r e a l data p o i n t s 13: Summary of smoothed p r o f i l e s i l l u s t r a t i n g metal d i s t r i b u t i o n patterns f o r No Cash deposit 64 66 68 6: A d d i t i o n a l rearranged element p r o f i l e s , Husky deposit ^9 7: Rearranged p r o f i l e s of s e l e c t e d r a t i o s , Husky deposit 70 8: Real p r o f i l e s from a sampling t r a v e r s e i n the 4-1-226 -Raise, Husky mine 72 9: Real p r o f i l e s f o r a t r a v e r s e along the 2-2-N-"A"-D r i f t , Husky mine 73 10: Real p r o f i l e s f o r a tr a v e r s e i n the 3-1-208-Raise, Husky mine 74 79 81 82 14: Selected metal p r o f i l e s f o r a t r a v e r s e along part of the 5-66-S-Drift (sample s u i t e . " a " ) , No Cash deposit 8 ^ v i i i FIGURE 15: Selected metal p r o f i l e s f o r a t r a v e r s e along the 5-66-S-Drift (sample s u i t e " b " ) , No Cash deposit 85 16: Selected metal p r o f i l e s f o r a t r a v e r s e i n the 2-67-115-Stope, No Cash deposit 86 ix ACKNOWLEDGEMENTS I would l ike to sincerely thank Dr. A . J . S inc la ir , in his capacity as thesis supervisor, for continuous guidance, advice and forbearance. I am indebted to Dr. H.R. Wynne-Edwards, former Head of the Department of Geological Sciences, for accepting me as a graduate student in this department. Special thanks go to Dr. C . I . Godwin and Dr. Ivor E l l i o t t for many useful discussions and c r i t i c a l comments. The cooperation and encouragement of personnel of United Keno H i l l Mines has made this project possible. In part icular, I wish to thank the following: R.E. Van Tasse l l , exploration manager; G. Dundas, mine manager; G. Partridge, chief mine geologist; J . Franzen, project geologist; and L . Carlyle and D. Morris, mine geologists. A l l these people gave freely of their time in discussions and aid with the sampling program. The friendly; environment they provided resulted in an enjoyable and productive summer of f i e ld work as well as engendering enthusiasm for the subsequent laboratory work. The entire funds for this project were supplied by United Keno H i l l Mines Limited. Analytical work was done with the assistance of Mr. Norman Stacey, Dept. of Geological Sciences and Mr. Peter Kemp, Dept. of Mineral Engineering, both of whom contributed substantially to attaining acceptable precision to analytical results . Those analyses done by Min-En Laboratories, North Vancouver, were essential to the project and were kindly provided at substantially below commercial rates by Mr. John Borakso. J . E . Harakal supplied analyses for K-Ar model ages. Throughout the study Mr. Asger Bentzen provided continuing advice and help in connection with data handling problems using the U.B.C. computing f a c i l i t i e s . His assistance speeded the completion of the project. Mr. Norman Stacey and Mr. Gordon Hodge draughted those figures that were not machine-drawn. Jan Homenuk typed those parts of the thesis that were submitted for publication and her efficiency is greatly appreciated. Without the f inancial assistance and consent of Minerapoes Bras i -le iras Reunidas S/A the writer would have been unable to undertake the:entire program of graduate studies at the University of Br i t i sh Columbia, of which this thesis forms only a part. Special thanks go to two marvelous people of that company: Dr. Bernardo;,C. Litzinger and Dr. Orlando Amaral for faith., and continuous encouragement. F ina l ly , I wish to thank my wife Claudia, a remarkable lady, for her patience and understanding through the past two years and for typing much of this thesis. 1 CHAPTER I INTRODUCTION Keno H i l l - Galena H i l l Ag-Pb-Zn d i s t r i c t is in the northern part o of Yukon Territory, centered approximately on longitude 135 20 W and latitude 63° 56' N. The camp is about 17 miles (27.4 km) long in an east-west direction, 1 to 3 miles (1.6 to 4.8 km) wide, and contains more than 60 known vein deposits. The main rock units in the area are the Lower Schist formation, the Central Quartzite formation and the Upper Schist formation of uncertain age (McTaggart, 1960; Tempelman-Kluit, 1970; Blusson, 1978). Most deposits are in the Central Quartzite formation. For many years the country rock to vein deposits was thought to be of Precambrian .age (Green and Roddick, 1962; Bostock, 1947) but more recently controversy has centered on whether they are Paleozoic (Blusson, 1978) or Mesozoic (Tempelman-Kluit^ 1970),. Certainly, the entire sequence has been metamorphosed regionally during the Cretaceous and is cut by a variety of scattered "granitic" plutons also of Cretaceous age. Silver-bearing veins are superimposed on this regional metamorphism but have been offset by later faulting and local ly are intensely: deformed. S i lver -r ich veins were discovered in the Keno H i l l area in 1906 by stampeders motivated original ly by the Klondike gold rush of 1898. Production from high grade silver-bearing veins commenced in 1913 and has been continuous since that date. As is the case in many vein camps, producers in the Keno Hill-Galena H i l l mining d i s t r i c t were 2 faced w i t h the common problem of maintaining adequate ore reserves to guarantee a reasonable l i f e expectancy to mining o p e r a t i o n s ; commonly, there were considerably l e s s than 3 years of reserves. In recent years t h i s problem of adequate reserves has become acute and new approaches to e x p l o r a t i o n were f e l t necessary. A group c o n s i s t i n g of I.L. E l l i o t t , R.E. Van T a s s e l l , and A.J. S i n c l a i r formed the general concept of examining the p o t e n t i a l of "whole rock" v e i n geochemistry as one means of approaching the p r a c t i c a l problem of r e - e v a l u a t i n g o l d workings i n the camp f o r a d d i t i o n a l m i neral p o t e n t i a l . I t was on t h i s general arrangement and w i t h the f i n a n c i a l support of United Keno H i l l Mines L t d . that the present study was undertaken. The main purpose of t h i s work i s to develop v e i n geochemistry i n t o an e x p l o r a t i o n t o o l i n the Keno H i l l - G a l e n a H i l l mining camp. A d e t a i l e d sampling program designed w i t h the a i d of Dr. A.J. S i n c l a i r was undertaken by the author during the summer of 1978. The thorough cooperation of the mine s t a f f r e s u l t e d i n an e f f i c i e n t sampling program and introduced the author to the general geology of the camp and c h a r a c t e r i s t i c s of the Ag-Pb-Zn v e i n s . In a d d i t i o n , the p r a c t i c a l problems r e l a t i n g to e x p l o r a t i o n and development of ore reserves were made evident. More than 400 samples from three major mineral deposits were subsequently analyzed by the w r i t e r , to produce approximately 5800 a n a l y t i c a l determinations. During the course of t h i s d e t a i l e d sampling program s e v e r a l stockwork zones of small sulphide-bearing veins i n massive q u a r t z i t e were observed adjacent to major v e i n d e p o s i t s . In s e v e r a l cases these 3 stockwork zones were not sheared, f r a c t u r e d nor separated from the adjacent v e i n by f a u l t s ; hence, the zones seemed to provide an opportunity to determine the absolute age of m i n e r a l i z a t i o n . The deposits do not have obvious a l t e r a t i o n zones i n adjacent w a l l r o c k s nor do the v e i n s themselves cont a i n minerals that could be dated r a d i o m e t r i c a l l y . The stockwork, however, c o n s i s t e d of a s u f f i c i e n t l y c l o s e l y spaced network of v e i n l e t s that the i n t e r v e n i n g w a l l r o c k may have been r e - s e t during m i n e r a l i z a t i o n . Thus, an extensive s u i t e of samples was taken i n an e f f o r t to determine an absolute age of m i n e r a l i z a t i o n , a problem that p r e v i o u s l y has eluded s o l u t i o n . In the f o l l o w i n g chapters the r e s u l t s of these two s t u d i e s are summarized i n three papers as f o l l o w s that have been submitted f o r p u b l i c a t i o n i n s c i e n t i f i c j o u r n a l s : Chapter I I deals w i t h K-Ar whole rock d a t i n g of stockwork zones arid massive:country rock; Chapter I I I i s concerned w i t h a d e t a i l e d development of the use of v e i n geochemistry as an e x p l o r a t i o n t o o l i n a s i n g l e v e i n deposit i n the camp; and Chapter IV i s concerned w i t h extending the use of v e i n geochemistry to the e v a l u a t i o n of the more than 60 known v e i n deposits i n the Keno H i l l - Galena H i l l mining d i s t r i c t . 4 CHAPTER I I AGE OF Ag-Pb-Zn MINERALIZATION  KENO-GALENA HILLS AREA, YUKON TERRITORY ABSTRACT Whole rock K-Ar model ages of Keno H i l l q u a r t z i t e from small stockwork zones adjacent to Ag-Pb-Zn v e i n s (Husky and Keno deposits) i n d i c a t e that m i n e r a l i z a t i o n occurred at about 87 t 2 Ma. Country rocks more d i s t a n t from veins and stockwork zones have potassium - argon model ages that are s l i g h t l y but s i g n i f i c a n t l y o l d e r , i n d i c a t i n g that m i n e r a l i z a t i o n postdated the main phase of Late Cretaceous r e g i o n a l metamorphism. INTRODUCTION A l a t e Cretaceous or younger age f o r v e i n f a u l t s i n the Keno-Galena H i l l s , area, Yukon, has been recognized as a p o s s i b i l i t y s i n c e Boyle (1965) described m i n e r a l i z e d f r a c t u r e s c r o s s c u t t i n g apophyses of the Dublin Gulch g r a n i t i c stock w i t h a Cretaceous K-Ar model age of 106 Ma (Leech et a l , 1963). Subsequently, a number of apparently r e l a t e d i n t r u s i o n s have been dated (Wanless et a l , 1966, 67, 71, 73), and give potassium argon model ages c o r r e c t e d f o r new decay constants (Armstrong, 1978) that range p r i n c i p a l l y from 81 to 109 Ma ( f i g u r e 1 ) . Country rocks have been assumed to be of Precambrian age u n t i l recent i n d i c a t i o n s that they might be e i t h e r Mesozoic (Tempelman-Kluit, 1970) or P a l e o z o i c (Blusson, 1978). 78 82 86 90 94 98 102 106 110 K - A r M O D E L A G E S 114 118 122 T T T + + + + + + 4 + + + -\ G.S.C. GRANITIC ROCKS U.B.C. WALLROCK G.S.C. WALLROCK U.B.C. VEIN STOCKWORK Fig. 1: Histogram of K-Ar model ages f o r g r a n i t i c rocks, v e i n stockworks and country rock, Keno H i l l area. Ages corrected f o r new decay constants ( c f . Armstrong, 1978). 6 I s o t o p i c d a t i n g of the Ag-Pb-Zn deposits has been hampered by the absence of datable v e i n or a l t e r a t i o n m i n e r a l s . However, during the summer of 1978 w h i l e i n v o l v e d i n a sampling program f o r a study of v e i n geochemistry i n the camp, we observed s e v e r a l cases of v e i n stockworks c u t t i n g impure q u a r t z i t e s i n small zones adjacent to veins and extending s e v e r a l f e e t i n t o a d j o i n i n g w a l l r o c k s . I n d i v i d u a l v e i n l e t s i n the stockworks c o n t a i n s i d e r i t e , p y r i t e , quartz, galena and s p h a l e r i t e . These s m a l l stockwork zones were not separated from veins by shear zones as i s commonly the case at v e i n margins i n the camp. Several of these s i t e s were sampled w i t h the hope that they contained s u f f i c i e n t potassium to provide whole rock K-Ar model ages. In a d d i t i o n , a number of samples of r e g i o n a l l y metamorphosed country rock-were taken tens to hundreds of metres from known v e i n s . This sampling program was designed to t e s t the hypothesis that r e s e t t i n g of model ages i n m i n e r a l i z e d stockworks would be uniform and would -date Ag-Pb-Zn m i n e r a l i z a t i o n ; and, secondly, t h i s uniform age would be younger than the general metamorphic ages p r e v a i l i n g throughout the Keno H i l l Q u a r t z i t e . In general, veins cut g r a n i t i c rocks that are post-kinematic. Only samples of massive q u a r t z i t e were chosen f o r d a t i n g purposes i n order to preclude superimposed weathering e f f e c t s common i n most near s u r f a c e rocks i n the area. Schistose rocks were avoided because of the l i k e l i h o o d they might have s u f f e r e d a l t e r a t i o n from p o s t - m i n e r a l i z a t i o n , m e t e o r i c waters. SAMPLING AND ANALYTICAL RESULTS Samples were c o l l e c t e d from more than twenty s i t e s i n and near 7 five separate mines (Husky, Keno, No Cash, Elsa, Ruby). A l l samples were examined closely in the laboratory and some were rejected for isotopic dating because of indications of weathering. A few of the remaining samples were omitted from our study because their geological position relative to veins was uncertain due to nearby shearing and fault ing. The remaining samples were analyzed for K — only six had high enough contents to be suitable for K-Ar analysis. Of these six, one has too large an atmospheric argon content to be used. Analytical results and calculated model ages for the remaining five samples are given in Table I . DISCUSSION Two samples from quartzite containing vein stockwork zones provide model ages that are indistinguishable s ta t i s t i ca l l y with an average model age of 87.0 ± 2 Ma (one standard deviation). This age represents an estimate of the age of mineralization in the Keno H i l l -Galena H i l l camp. Three specimens of wallrock not in a stockwork environment and well removed from known veins, give model ages ranging from 91 Ma to 103 Ma. These older ages indicate a pre-mineralization event. The data are consistent with a pervasive Late Cretaceous regional metamor^ phism that clearly pre-dated Ag-Pb-^Zn mineralization in the area. For example, Poole concludes that "metamorphism and deformation giving rise to the schist probably occurred during a single episode in the Mesozoic, and was followed by intrusion of Cretaceous granites". It TABLE 1 ANALYTICAL DATA AND MODEL AGES, KENO HILL - GALENA HILL AREA, YUKON SAMPLE A 4°RAD d A40RAD d APPARENT 6 f IDENTIFICATION TYPE MINE %K + a c 40 A TOTAL (10~5cc STP/g) AGE (m.y.) TIME 3-I-S-DR S HUSKY .1295 + .0078 .11 4.403 85.1 + 5.1 Upper Cret. 7-9-N-DR S KENO .2555 + .0064 .41 9.072 88.9 + 3.0 Upper Cret. 4-37-S-DR Q RUBY .1380 + .0014 .30 5.621 102.0 + 4.0 Lower Cret. 4-19-195-XC Q ELSA .1750 + .0041 .33 6.317 91.1 + 3.2 Upper Cret. 700-XC Q KENO .1250 + .0035 .43 5.127 103.0 +5.0 Lower Cret. a. Identification numbers define locations relative to individual mines b. S = quartzite from stockworks; Q = quartzite from wallrock c. d. Standard deviation of duplicate analyses 40 "A RAD." indicates radiogenic argon Constants used i n model age calculations (Steiger and Jager, 1977) A .581 x 10 1°y~ 1 = 4.96 x 10~ 1 0y _ : L 3 40 -4 K /K = 1.167 x 10 f. Time designation after Armstrong (1978) g. A l l analyses done i n the Geochronology Laboratory, Department of Geological Sciences. 9 i s also c l e a r from geological studies, (e.g. Boyle, 1965) that Late Cretaceous g r a n i t i c stocks northeast of Keno H i l l post-date • the l o c a l pervasive regional metamorphism. Poole ( i n Wanless et a l , 1966) reports three K-Ar ages of country rocks from the general region surrounding Keno H i l l and found decreasing model ages with presumed increasingly older s t r a t i g r a p h i c p o s i t i o n . Our data are i n part contrary to the apparent order found by Poole and i t seems l i k e l y that the dated rocks a l l simply represent v a r i a b l e Cretaceous thermal regimes re l a t e d to metamorphism and/or min e r a l i z a t i o n . Poole also noted that g r a n i t i c intrusions appear to have a bimodal age d i s t r i b u t i o n but: interpreted this to be more apparent than r e a l and assumed a s i n g l e episode of g r a n i t i c i n t r u s i o n . The dispersion of ages of g r a n i t i c intrusions ( f i g u r e 1) suggests that i n t r u s i o n occurred i n t e r m i t t e n t l y over a period of at l e a s t 20 Ma. Our personal bias i s that v e i n m i n e r a l i z a t i o n i s most l i k e l y r e l a t e d to a c i r c u l a t i n g hydrothermal system driven by thermal energy from g r a n i t i c i n t r u s i o n (c f . Taylor, 1974). According to t h i s hypothesis, igneous i n t r u s i o n and m i n e r a l i z a t i o n are e s s e n t i a l l y contemporaneous although the thermal high centred on an i n t r u s i o n p e r s i s t s long a f t e r consolidation of the i n t r u s i o n . This suggestion i s consistent with the general o r i g i n hypothesized by Boyle (1965) that vein matter was derived from the enclosing units, but we would favour an o r i g i n of metals from s t r a t a , located below the s i t e of deposition, s t r a t a which were subjected to r e l a t i v e l y high temperatures. These suggestions are compatible with the proposal by Blusson (1978) regarding the presence of a metal-rich source bed for the Ag-Pb-Zn vein deposits. An im p l i c a t i o n of th postulated o r i g i n is: that vein: m i n e r a l i z a t i o n at d i f f e r e n t : l o c a l i t i e s ( i . e . r e l a t e d to d i f f e r e n t i n t r u s i v e masses) can be s i g n i f i c a n t l y d i f f e r e n t i n age. 11 ACKNOWLEDGEMENTS This work was supported by United Keno H i l l Mines Ltd. and the Federal Department of Energy, Mines and Resources. C r i t i c a l comments by Dr. C. I. Godwin have improved the manuscript. 12 REFERENCES Armstrong, R . L . , 1978, Pre-Cenozoic Phanerozolc time scale — computer f i l e of c r i t i c a l dates, and consequences of new and in-progress decay-constant revisions; Am. Assoc. Petroleum Geol . , Studies in Geology No. 6 - Contributions to the geologic time scale, edited by G.V. Cohee, M.F. Glaessver and H.D. Hedberg, pp. 73-91. Blusson, S . L . , 1978, Regional geologic setting of lead-zinc deposits in Selwyn Basin, Yukon; Current Res., Part A, Geol. Surv. Canada, Paper 78-1A, pp. 77-80. Boyle, R.W., 1965, Geology, geochemistry and or ig in of the lead-zinc-s i lver deposits of the Keno Hil l-Galena H i l l area, Yukon Territory; Geol. Surv. Canada, B u l l . 111. Green, L . H . , 1972, Geology of Nash Creek, Larsen Creek and Dawson map-areas, Yukon Territory; Geol. Surv. Canada, Mem. 364. Green, L . H . and Roddick, J . A . , 1962, Dawson, Larsen Creek and Nash Creek map-areas, Yukon Territory; Geol. Surv. Canada, Paper 62-7. Leech, G . B . , Lawdon, J . A . , Stockwell, C . H . , and Wanless, R . K . , 1963, Age Determinations and Geological Studies — K-Ar Isotopic Ages, Report 4; Geol. Surv. Canada, Paper 63-17, pp. 51-53. Poole, W.H., 1965, Mount Haldane (105M/13) and Dublin Gulch (106D/4) map-areas, in report of A c t i v i t i e s , F i e l d , 1964, compiled by S .E. Jenness; Geol. Surv. Canada, Paper 65-1, pp. 32-35. Steiger, R . H . , and Jager, E . , 1977, Subcommission on geochronolpgy: Conversion on the use of decay constants in geo- and cosmochronology; Earth Planet. Sc i . Letters, v. 36, pp. 359-362. Taylor J r . , H .P . , 1974, The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition; Econ. Geol . , V. 69, pp. 843-883. Tempelman-Kluit, D . J . , 1970, Stratigraphy and structure of the Keno H i l l quartzite in Tombstone River-Upper Klondike River map- areas; Geol. Surv. Canada, B u l l . 180. 13 Wanless, R.K., Stevens, R.D. , Lachance, G.R. , and Edmonds, C M . , 1966, K-Ar Isotopic Ages, Report 7; Geol. Sury. Canada, Paper 66-17, pp. 44-48. Wanless, R.K., Stevens, R.D. , Lachance, G.R. , and Edmonds, C M . , 1967, K-Ar Isotopic Ages, Report 8; Geol. Surv. Canada, Paper 67-2A, pp. 54-55. Wanless, R.K., Stevens, R.D. , Lachance, G.R. , and Delabio, R . N . , 1971, Age Determinations and Geological Studies — K-Ar Isotopic Ages, Report 10; Geol. Surv. Canada, Paper 71-2, pp. 28-29. Wanless, R.K., Stevens, R.D. , Lachance, G.R. , and Delabio, R .N . , 1973, Age Determinations and Geological Studies — K-Ar Isotopic Ages, Report 11; Geol. Surv. Canada, Paper 73-2, p.. 27. 14 APPENDIX SAMPLE DESCRIPTIONS KENO 7-9-N-Dr: Fine-grained, grey, massive quartzite containing several early quartz: .veinlets with minor s ider i te . Veinlets are cut by mica fo l ia t ion . The rock is essentially a quartz mosaic with small amounts of muscovite (3%), carbonate (2%), pyrite (1%) and minor amounts of tourmaline and b io t i t e . Muscovite has a paral le l alignment. Adjacent to Keno No. 18 vein. HUSKY 3-1-S-DR: Fine-grained, grey, massive quartzite cut by numerous sulphide-bearing quartz veinlets up to 5 mm wide. Pyrite is most abundant sulphide but both galena and sphalerite are also present. The rock is mainly a fine mosaic of quartz with muscovite (2%) and minor tourmaline. Muscovite flakes are crudely aligned and cut by sulphide-bearing veins. From stockwork zone adjacent to Husky vein. RUBY 4-37-S-DR: Fine-grained, grey, massive quartzite with vague fo l ia t ion . Cut by early quartz veins up to 5 mm thick. In one end of sample these early veins are cut by a single pyrite-s ideri te veinlet . Rock is largely quartz with muscovite (.3%), and traces of disseminated pyrite , anhedral tourmaline, and b io t i t e . Muscovite is pronouncedly foliated whereas b iot i te is not. From wallrock near Ruby vein separated from i t by a fault . 15 ELSA 4-19-125-XC: Fine-grained, grey, foliated quartzite. Essentially a mosaic of elongated quartz grains with muscovite (1%) and traces of disseminat-ed pyrite , anhedral tourmaline and sphene. Remote from a l l known sulphide-bearing veins. KENO 700-XC: Fine-grained, grey, massive quartzite. Principal ly anhedral quartz with minor disseminated carbonate (3%), muscovite (2%) and traces of sphene, tourmaline and disseminated pyrite . Remote from a l l known sulphide-bearing veins. 16 CHAPTER I I I VEIN GEOCHEMISTRY, AN EXPLORATION TOOL. IN THE KENO HILL CAMP, YUKON TERRITORY ABSTRACT Seventy-two samples taken across the width of the Keno No. 18 v e i n at an average i n t e r v a l of 9 f e e t (3m) and encompassing s e v e r a l s i l v e r oreshoots and barren zones were analyzed f o r twenty-three elements. These samples were rearranged i n order of decreasing s i l v e r values as a means of e v a l u a t i n g metal zonation p a t t e r n s r e l a t i v e to an i d e a l ore- shoot . This i d e a l i z e d zonation model i s compared w i t h four independent sets of data and found to apply throughout the deposit f o r oreshoots from 20 to 300 feet (6 to 91m) i n diameter. These r e s u l t s i n d i c a t e that r o u t i n e mine sampling procedures, w i t h samples analyzed f o r Pb, Zn, Ag,:Ca, Hg,>..andoCo provide an adequate b a s i s f o r use of the i d e a l oreshoot concept as an e x p l o r a t i o n t o o l . The approach appears u s e f u l i n J ( l ) . r e e v a l u a t i n g ends of, e x i s t i n g underground workings and t h e i r p o s s i b l e p r o x i m i t y to undiscovered ore-shoots, and (2) monitoring new workings. The methodology simply e n t a i l s c o n s t r u c t i o n of p r o f i l e s f o r Ag, Pb, Zn, Ca, Hg, Co, Zn/Ag and Co/Ag and comparison^of these w i t h patterns expected according to the i d e a l model. INTRODUCTION The Keno H i l l Area i n c e n t r a l Yukon (Figure 1) has produced s i l v e r -lead ore from veins continuously since 1913 de s p i t e p e r e n n i a l d i f f i c u l t -17 < CO < Q < < < if) < _l 1 N I Dawson Keno Hill 7 • Mayo v % YUKON TERRITORY V I 1 Whitehorse # Watson Lake V ' I Sr r O U V 3 t A B \ ^ X B R I T I S H C 0 L F i g . 1: L o c a t i o n of Keno H i l l Camp 18 i e s i n maintaining extensive reserves. Up to 1978, production had t o t a l l e d approximately 180 m i l l i o n ounces of s i l v e r , 450 m i l l i o n pounds of l e a d , 330 m i l l i o n pounds of z i n c , and 4 m i l l i o n pounds of cadmium. T r a d i t i o n a l l y , operation has been based on very few years of documented ore reserves. Consequently, e x p l o r a t i o n personnel c o n s t a n t l y are subject to pressure to l o c a t e new sources of reserves, l l n the Keno H i l l area t h i s s i t u a t i o n , common to many v e i n camps, has been met by the many t r a d i t i o n a l approaches i n v o l v i n g the day to day problems of f o l l o w i n g i n d i v i d u a l v e i n s i n underground workings to l o c a t e new oreshoots, s o l v i n g s t r u c t u r a l problems to l o c a t e o f f s e t segments of v e i n s , normal e x p l o r a t o r y diamond d r i l l i n g , and so on. In a d d i t i o n , the e x p l o r a t i o n s t a f f of the major operating company i n the area (United Keno H i l l Mines Ltd.) has been extremely progressive i n the development of novel approaches such as m o d i f i c a t i o n s of overburden d r i l l i n g equipment to produce a machine capable of p e n e t r a t i n g not only overburden, but rock as w e l l , and use of t h i s equipment i n a c a r e f u l l y designed g r i d d r i l l i n g program to t e s t f o r extensions of known v e i n s t r u c t u r e s (Van T a s s e l l , 1969). Multi-element geochemical a n a l y s i s of ten-foot samples was an i n t e g r a l part of t h i s overburden d r i l l i n g program. Continued pressure to develop a d d i t i o n a l reserves has l e d to the study reported here. The purpose of t h i s work i s to i n v e s t i g a t e the e x p l o r a t i o n p o t e n t i a l of metal d i s t r i b u t i o n patterns w i t h i n the plane of a v e i n . S p e c i f i c a l l y , i f r e g u l a r patterns e x i s t , they might provide a b a s i s f o r a geochemical sampling program to re-evaluate some of the underground workings i n the 60 or so v e i n deposits i n the camp. S i m p l i s t i c a l l y we are l o o k i n g to the p o s s i b i l i t y of d e s c r i b i n g some form of metal haloes about ore deposits and developing a p r a c t i c a l procedure 19 for their use as an exploration tool . The Keno No. 18 deposit with which we are concerned is a tabular "breccia vein" with local sheeted zones, that strikes 070°and dips 60° to 70° to the southeast. Country rock is mainly a thick-bedded quartzite with interbeds of graphitic schist and phyl l i te . Principal ore minerals are galena, sphalerite and freibergite with lesser amounts of pyrite and arsenopyrite. Quartz and s iderite are the main gangue minerals. PROCEDURE The general organization of our project is shown as a flow diagram in figure 2. An intensive sampling campaign was undertaken in two stages to provide material for geochemical analysis. Constraints were (1) sample spacing should be detailed i n i t i a l l y , to provide a sound estimate of optimum routine sample spacing; (2) our concern is with metal, variations in the plane of a vein, consequently, individual samples are to be taken across the width of the vein; and (3) the actual procedure of taking samples should be as routine as possible relative to mine sampling procedures. The f i r s t part of the study reported here is essentially an orientation survey to develop a general approach to the problem for the d i s t r i c t . A total of 72 samples were taken using normal mine sampling methods, that i s , a col lect ion of a horizontal l ine of closely spaced chips at chest level across a vein face at intervals as a dr i f t advances. In a few cases some such samples were missed and were taken later in the same manner but from the backs of the workings. These i n i t i a l samples were taken along the 400 level d r i f t of the Keno #18 vein within a 20 I V . I. SAMPLING I I , I SAMPLE PREPARATION (Including Duplicates) I I CHEMICAL ANALYSIS I COMPUTER FILE (Chemical Results, Width of Vein, Sample Location) PRECISION V I 3 COMPUTER PLOTS V I I , I PROBABILITY PLOTS REARRANGED COMPUTER FILE (Decreasing S i l ve r ) X I I X I . I RATIOS I COMPUTER PLOTS X I I CURVE FITTING xiv. y INTERPRETATION X V . I CONCLUSIONS V I I CORRELATION MATRIX I X . I DIAGRAM OF LINEAR CORRELATION F i g . 2: Flow diagram f o r Keno No. 18 v e i n geochemistry p r o j e c t . 21 section of the vein traversing several small oreshoots as well as non ore grade material. In this section average vein width was 4.67 feet (1.42m) with a standard deviation of 1.92 feet (0.59m). Sample size averaged about 2.5 kilograms. These samples were submitted to the assay laboratory of the Department of Mineral Engineering, University of Br i t i sh Columbia, and assayed for lead, zinc and s i lver by standard atomic absorption assay methods. The same samples were analyzed by routine geochemical methods for a total of 22 elements as follows: U.B.C. Dept. of Geological Sciences - Pb, Zn, Cu, Cd, Ca, Mg, Fe, N i , Mn, and Co; Min-En Laboratories, Vancouver - Sb, B i , Hg, Sr, Se, As, Mo, V, B, F, Ba and Sn. The analytical procedure for UBC analyses involved dissolution of samples in 0.5 M perchloric acid followed by various dilutions as required, and eventual analysis using atomic absorption spectrophotometry. Background corrections• were made for Pb, Cd, Co, and Ni . Comparable procedure was used for many of the Min-En Laboratories analyses except for Se (chemical analysis) , F (specific ion meter), and Sn (colorimetric method.). RESULTS AND QUALITY OF DATA The very large data array of analytical values w i l l not be repeated here, although much of the data w i l l be summarized in appropriate graphical form in a later section. Some appreciation of quality of data we generated is provided in two ways. F ir s t both lead and zinc were analyzed by two different procedures, one a routine assay method designed mainly for dealing with relat ively high values, and secondly by a geochemically oriented method designed particularly for relat ively low abundances. In an abundance range of overlap by the two procedures we are able to compare results by the two methods. An analysis of 22 paired data i n d i c a t e d that no systematic d i f f e r e n c e s e x i s t between r e s u l t s from the two a n a l y t i c a l methods, e i t h e r f o r l e a d or z i n c . We conclude that the procedures have the same accuracy. A set of 10 d u p l i c a t e samples showed that p r e c i s i o n were adequate i n both cases. For the bulk of our work we evaluated p r e c i s i o n i n a ri g o r o u s manner. A t o t a l of 36 samples were analyzed i n d u p l i c a t e f o r many elements. These paired a n a l y t i c a l values were t r e a t e d as described by Thompson and Howarth (1978) to take i n t o account v a r i a t i o n s i n p r e c i s i o n as a<\function of element concentration. 2S P = -;r- x 100 c C where P £ i s p r e c i s i o n as a percent C i s co n c e n t r a t i o n , and S = S + K,C c o l In t h i s l a t t e r expression S q i s the e r r o r (standard d e v i a t i o n ) at zero concentration and i s a constant both of which are obtained by simple r e g r e s s i o n from the d u p l i c a t e a n a l y s i s data. Median values of absolute d i f f e r e n c e s f o r short '.concentration ranges .are m u l t i p l i e d by 1.048 and regressed on conc e n t r a t i o n . The y - i n t e r c e p t then gives S Q and the constant i s the slope of r e g r e s s i o n l i n e . Concentration ranges were wide enough f o r s i x elements, to f o l l o w the foregoing procedure f o r e v a l u a t i n g p r e c i s i o n . The r e s u l t s are shown g r a p h i c a l l y i n f i g u r e 3 and are summarized i n t a b l e I . For many other elements the concentration range and/or d i s t r i b u -t i o n of data were such that the Thompson-Howarth approach could not be F i g . 3: P r e c i s i o n p l o t t e d as a percentage of mean concentration, as determined by the method of Thompson and Howarth (1978). See Table I . K3 OJ 24 used. In these cases we simply show the qua l i t y of analysis as a mean r e l a t i v e error as summarized i n Table I I . Preliminary a n a l y t i c a l data indicated that many of the elements we analyzed for would not be useful for our purpose and they are not reported or considered further. TABLE I COEFFICIENTS* FOR LINEAR EQUATION GIVING ANALYTICAL ' PRECISION AS A FUNCTION OF COMPOSITION** Element S o 1 Pb (%) 0.0866 0.0186 Zn (%) 0.0042 0.0056 Cd (ppm) 2.1625 0.0274 Mn (ppm) 0.0017 0.0630 Cu (ppm) 0.9409. 0.0363 Ca (%) 0.0074 0.0110 P = 2 S Q / C + 2K^ where C i s concentration i n ap_ c propriate units Based on 36 sets of duplicate analyses. TABLE II RELATIVE STANDARD ANALYTICAL ERRORS Element N S X s/x(%) Fe (.%) 38 .859 4.253 20.20 Ni(ppm) 32 4.01 27.87 14.39 Mg (%) 38 .051 .212 24.06 Co (ppm) 22 16.93 30.42 55.65 Ag oz/T 8 2.620 27.603 9.49 Pb (%) 9 .211 6.447 3.27 Zn (%) 9 .070 .677 10.34 Hg(ppb) 20 348.92 1299.38 26.85 25 STATISTICAL ANALYSIS OF DATA Histograms and p r o b a b i l i t y graphs of a l l v a r i a b l e s were examined. In general, a l l v a r i a b l e s were found to be d i s t r i b u t e d lognormally or could be i n t e r p r e t e d as mixtures of lognormal populations. An example i s shown i n f i g u r e 4 where the l o g p r o b a b i l i t y p l o t f o r Ag data has been p a r t i t i o n e d i n t o two populations which can be d i s t i n g u i s h e d r e l a t i v e l y e f f i c i e n t l y w i t h a threshold of 9 oz Ag/ton ( S i n c l a i r , 1976). These two populations correspond c l o s e l y to ore and waste. This i n t e r p r e t a t i o n has some p r a c t i c a l s i g n i f i c a n c e i n e x p l o r a t i o n of the Keno No. 18 v e i n - values below 9 oz Ag/ton can occur anywhere i n a v e i n and l i k e l y do not i n d i c a t e a nearby oreshoot, whereas values above 9 oz Ag/ton i n d i c a t e increased l i k e l i h o o d of a nearby oreshoot. Comparable c o n c l u -sions can be reached f o r s e v e r a l other elements as summarized i n Table I I I . A m a t r i x of l i n e a r c o r r e l a t i o n c o e f f i c i e n t s i s given i n Table IV. In t h i s m a t r i x , elements have been arranged i n 5 groups w i t h i n which there i s s u b s t a n t i a l i n t r a - c o r r e l a t i o n but between which r e l a t i v e l y l i t t l e c o r r e l a t i o n e x i s t s f o r the most part ( f i g u r e 5 ) . These groupings can be i n t e r p r e t e d i n terms of known mineralogy of the ores. Group I corresponds to galena - f r e i b e r g i t e w i t h other s i l v e r m i n e r a l s ; Group I I i s s p h a l e r i t e ; Group I I I i s p y r i t e and s i d e r i t e ; Group IV r e l a t e s to c a l c i t e or dolomite; and Group V i s tourmaline, b a r i t e and r u t i l e . In a d d i t i o n , the element a r s e n i c i s present p r i n c i p a l l y as a r s e n o p y r i t e . 26 2 5 10 2 0 4 0 6 0 8 0 9 0 C U M U L A T I V E P E R C E N T F i g . 4: P r o b a b i l i t y graph f o r 72 Ag values from the Keno No. 18 v e i n . Two populations are evident separated by a th r e s h o l d of about 9 oz Ag/ton. See Table I I I . Black dots are raw data, open c i r c l e s are p a r t i t i o n i n g p o i n t s . TABLE III MEANS AND STANDARD DEVIATIONS DETERMINED GRAPHICALLY FOR PARTITIONED METAL POPULATIONS Element Cone. No. of A Population B Population Threshold(s) Name Unit Values % b b+sx b-s^ % b b+sx b-s-^  Fe % 72 60 7.2 13.5 3.7 29 11 2.0 0.60 2.8 0.86 1.4 0.40 4% Mn % 72 35 2.1 4.2 1.0 40 25 0.50 0.047 0.68 0.122 0.36 0.018 0.95% Ni ppm 71 45 . 24.0 35.0 16.5 45 10 10.2 3.4 13.0 4.8 8.2 2.4 17.0 ppm Ag oz/ ton 72 13 36.0 82.0 16.0 87 0.40 1.50 0.11 9.0 oz/ton Pb % 69 13 14.2 33.0 6.2 87 0.185 0.750 0.045 3.4 and 2.5% Zn % 69 20 , 1 . 8 - 3.2 1.1 80 0.23 0.58 0.09 1.5 and 0.6% Cu ppm 72 25 217.0 565.0 82.0 75 11.4 32.1 3.9 100 and 30 ppm Cd ppm 72 100 48.0 105.7 15.0 Co ppm 72 100 31.0 54.0 17.3 b = antilog of mean of log transformed data b+s^  = antilog of mean plus one std. dev. of log transformed data b-s = antilog of mean minus one std. dev. of log transformed data TABLE IV CORRELATION MATRIX - KENO 018 VEIN Group Ag Pb Bl Sb Cu Zn Cd Hg Ca Sr Mg F e Mn Ml F B V B a Pb .985 Bi .550 .555 I Sb .764 .774 .328 Cu .438 .316 .433 .422 Zn -.011 -.068 .031 .322 .539 II Cd .165 .087 .072 .324 .579 .868 Hg .086 .026 .074 .511 .533 .811 .673 - Ca -.092 -.081 -.052 -.078 -.134 .046 -.100 -.114 I l l Sr -.114 -.101 .014 -.060 -.106 .142 -.018 -.056 .665 Mg .034 .026 -.085 .077 -.030 .056 .022 -.104 .240 .623 Fe -.050 -.098 -.121 -.063 .197 .271 .374 .104 -.063 .217 .460 IV Mn .091 .066 -.030 -.032 .163 .254 .334 -.090 -.083 -.081 .249 .484 Ni -.214 -.237 -.102 -.222 .062 .187 -.001 -.054 .247 ,363 .321 .445 .425 F -.183 -.185 -.160 -.194 -.063 .157 -.009 .057 .008 .395 .031 .255 -.019 .443 v B -.269 -.268 -.155 -.355 -.148 .055 -.007 -.104 .012 .230 -.161 .126 .167 .414 .688 V .020 -.034 .004 -.070 .198 .244 .100 .270 -.124 .215 -.063 .208 .076 .284 .703 .443 Ba -.226 -.205 -.134 -.275 -.211 .057 -.077 -.044 .031 .355 -.119 .077 .036 .396 .854 .752 .559 As -.078 -.078 -.068 .071 -.070 -.020 -.011 -.004 .195 .501 .721 .445 -.158 .161 -.022 -.246 -.154 -.220 For N = 33 and a = 0.05 the c r i t i c a l value of r i s 0.339. 29 F i g . 5: Line diagram showing groupings of data based on high i n t r a group c o r r e l a t i o n s . C o r r e l a t i o n c o e f f i c i e n t s are reproduced i n Table IV. 30 DEVELOPMENT OF A METAL DISTRIBUTION MODEL Several of the variables studied are plotted as profiles in figure 6. Some indication of the inter element correlations of Table IV are apparent in the distribution patterns for s i lver and lead. However, there are two serious problems with the data as i l lus trated . F i r s t l y , sample spacing is wide relative to the width of Ag-rich zones. Average sample spacing is 8.9 feet (2.7m) compared with an average width of about 25 feet (7.4m) for s i l v e r - r i c h zones. Obviously, geochemical haloes are l ike ly to be observed only sporadically with these sampling conditions and even i f intersected their gradational or abrupt nature would not be apparent. Secondly, the vein is cut by numerous minor faults and at least one major break with an apparent s tr ike - s l ip movement of several tens of feet so that many sample pairs are no longer separated by the same distance as they were or ig ina l ly . Some other approach to reviewing data is required to overcome these problems. We have chosen to develop the concept of an idealized ore shoot by rearranging samples in order of decreasing s i lver content, because in this remote mining camp high s i lver values are essential in defining ore. Once sample sequence is determined based on decreasing s i lver values>the corresponding distributions of other elements can he-investigated to search for well defined patterns and how these patterns relate to the ideal ore shoot. In order to plot profiles of these idealized distributions we assume an equal spacing of rearranged samples. It is important to realize that this rearrangement has resulted in loss of a distance scale and only relative positions are significant.-Hi 31 o.o 80.0 160.0 240.0 320.0 400.0 DISTHNCE/FT T '—r 480.0 560.0 640.0 720.0 F i g . 6: Selected p l o t s of a n a l y t i c a l data versus sample l o c a t i o n . High s i l v e r values i n d i c a t e small oreshoots from 20 to 50 fe e t (6-15m) across. 32 Some s e l e c t e d p r o f i l e s based on re-arranged sample order are i l l u s t r a t e d i n f i g u r e 7. In each case a c t u a l data p o i n t s are shown as are smooth curves d e s c r i b i n g the g e n e r a l i z e d d i s t r i b u t i o n p a t t e r n s . We used a cubic s p l i n e f u n c t i o n curve f i t t i n g procedure (Reinsch, 1967) as a standardized method of smoothing data. This technique has the advantage that d i f f e r e n t segments of a p r o f i l e w i t h d i f f e r e n t l e v e l s of v a r i a b i l i t y can be f i l t e r e d e a s i l y w i t h d i f f e r e n t smoothing c r i t e r i a . The contents of f i g u r e 7 have been chosen s p e c i f i c a l l y to provide one example from each of the f i v e p r i n c i p a l element groups recognized i n the c o r r e l a t i o n study reported e a r l i e r . Smooth curves f o r most elements f o r which we analyzed are reproduced i n f i g u r e 8 and emphasize (1) the extreme consistency of g e n e r a l i z e d d i s t r i b u t i o n patterns f o r elements w i t h i n a given group, and (2) the d r a s t i c a l l y d i f f e r e n t d i s t r i b u t i o n patterns that e x i s t from one group to another. One of the more i n t e r e s t i n g p a t t e r n s i s shown by mercury ( f i g u r e 7) which has 3 l e v e l s of c o n c e n t r a t i o n , arranged i n an o r d e r l y f a s h i o n such that the average concentration of each l e v e l decreases outward from the margin of a s i l v e r h i g h. Such patterns may have p o t e n t i a l i n p r o v i d i n g both d i r e c t i o n and sense to geochemical zonal d i s t r i b u t i o n s i n terms of l o c a t i n g s i l v e r - r i c h t a r g e t s . The model i s i l l u s t r a t e d i n f i g u r e s 8 and 9. The highest s i l v e r values can be thought of as o r i g i n a t i n g at the center of an oreshoot w i t h decreasing values extending outward, away from the ore. The methodology used i n o b t a i n i n g the diagram assumed symmetry of element d i s t r i b u t i o n r e l a t i v e to the oreshoot e.g. low s i l v e r samples on both sides of the s i l v e r high are now p l o t t e d e n t i r e l y on one side of 33 F i g . 7: Examples of cubic spline functions f i t t e d to raw data. Examples are given f or each of the main c o r r e l a t i o n groups of elements (See Table IV). F i g . 8: Summary of spline function curves f i t t e d to raw data. The tremendous s i m i l a r i t y i n s p a t i a l d i s t r i b u t i o n within each group i s apparent, as i s the d i s s i m i l a r i t y of one group to another. F i g . 9: Ideal oreshoot and surrounding haloes i l l u s t r a t e d by Ag, Zn and Ca. 36 the s i l v e r h i g h. Consequently, only h a l f the i d e a l model i s shown and a m i r r o r image can be imagined. I f we assume an i s o t r o p i c i d e a l model the same p a t t e r n can be thought of as extending outward i n a l l d i r e c t i o n s w i t h i n the plane of the v e i n , to produce a c o n c e n t r i c c i r c u l a r p a t t e r n of element d i s t r i b u t i o n . I f anisotropy e x i s t e d the i d e a l model would be p i c t u r e d as a s e r i e s of c o n c e n t r i c e l l i p s e s . Our i d e a l model can now be thought of as a p p l i c a b l e over a wide range of sc a l e s and as subsequent a p p l i c a t i o n s w i l l demonstrate, i t i s p o s s i b l e to superimpose r e a l i s t i c s c a l e s on the model or p a r t s of the model by using r e a l data. Metal Ratios We have examined a l l p o s s i b l e r a t i o s of element p a i r s to i n v e s t i g a t e p o s s i b l e zonal d i s t r i b u t i o n patterns i n and about o r e -shoots. Many r a t i o s show only e r r a t i c v a r i a t i o n s but some appear to show systematic d i s t r i b u t i o n .patterns. We had a n t i c i p a t e d that a r a t i o i n v o l v i n g elements from two c o r r e l a t i o n groups ( c f . Table I V ) , M^ /M_. (where M^ i s a metal from group i and M^. a metal from group j ) w i t h h i g h intra-group c o r r e l a t i o n s and low inter-group c o r r e l a t i o n s might show the most u s e f u l patterns i n p r a c t i c e . However, a l l such r a t i o s d i d not show c o n s i s t e n t s p a t i a l d i s t r i b u t i o n p a t t e r n s . For example, Hg/Pb has an e r r a t i c d i s t r i b u t i o n probably due to the poor a n a l y t i c a l p r e c i s i o n f o r both elements, whereas other metals from the same element c o r r e l a t i o n groups show more d e f i n i t e d i s t r i b u t i o n p a t t e r n s . Of the f o r t y - f o u r r a t i o s examined i n d e t a i l ( i . e . f o r model data and a l l t e s t data) we found that Zn/Ag, Zn/Cu, Pb/Ag, Cu/Ag, Co/Pb, Ba/Hg, Ni/Hg, Mn/Hg, Zn/Pb and Fe/Hg showed the same s p a t i a l d i s t r i b u t i o n p a t t e r n 37 with low values i n and adjacent to an oreshoot and high values more remote from the oreshoot. This pattern i s i l l u s t r a t e d i n f i g u r e 10 for Zn/Ag, the r a t i o we consider most useful from a p r a c t i c a l point of view because i t uses two elements that are assayed for ro u t i n e l y and with reasonable p r e c i s i o n . Ratios involving Co also appear to be useful i n studying zonation of metals r e l a t i v e to an oreshoot. A l l r a t i o s involving Co i n the numerator increase with increasing distance from an oreshoot. The Co/Pb r a t i o referred to above has a pattern comparable to many other element p a i r s . The Co/Ag r a t i o appears to be even more useful i n that the r i s e to high values i s more gradational so that the r a t i o may be useful as a d i r e c t i o n a l guide to oreshoots ( f i g u r e 10). Haloes of high metal r a t i o s such as Zn/Ag (f i g u r e 10) encompass the carbonate halo referred to previously but extend further outward from the i d e a l oreshoot than does the carbonate zone. We have noted that Zn content of the vein increases with increasing carbonate'content. The outer part of the high Zn/Ag zone coincides with high Co values as indicated by the Co/Ag r a t i o i n f i g u r e 10 and i s interpreted by us as a p y r i t e - r i c h zone. The halo of high r a t i o values therefore can be explained i n terms of vein mineralogy. Ratios are useful i n emphasizing s p a t i a l d i s t r i b u t i o n patterns. We have chosen to express various r a t i o s i n such a way that haloes about i d e a l oreshoots are emphasized. The reason for this i s because i n an exploration a p p l i c a t i o n of the i d e a l oreshoot concept we are concerned i n general with recognition of the presence of an oreshoot some distance from the ore. Thus, i t i s i n the halo of an oreshoot where i t i s most convenient to work i n whole numbers that can 38 SAMPLE NUMBER Fig . 10: Ratio profiles across and outward from an ideal oreshoot: Zn/Ag (above) and Co/Ag (below). 39 vary, s u b s t a n t i a l l y , rather than with f r a c t i o n s . MINERAL ZONING These chemical d i s t r i b u t i o n patterns can be transformed r e l a t i v e l y e a s i l y into mineral zones to construct an i d e a l zoned ore shoot. For example, lead i s e n t i r e l y i n the form of galena, and zinc i s present e n t i r e l y i n s p h a l e r i t e . Consequently we develop the concept of a central galena core surrounded by a s p h a l e r i t e halo. S i m i l a r l y , c oinciding highs of the calcium, strontium, and magnesium d i s t r i b u t i o n s are almost c e r t a i n l y the product of a carbonate zone that forms a fri n g e s u b s t a n t i a l l y removed from both the ore zone; and s p h a l e r i t e halo. To carry this further, coincidence of an i r o n , n i c k e l and cobalt peaks represent a p y r i t e zone. This kind of reasoning leads to a f a i r l y concise i f hypothetical i d e a l ore shoot; that i s , a c e n t r a l galena zone r i c h i n s i l v e r ( f r e i b e r g i t e plus other s i l v e r minerals), surrounded by a s p h a l e r i t e zone, i n turn surrounded by a carbonate ( c a l c i t e or dolomite) zone. This i s shown schematically i n fi g u r e 11. If chemical abundances can be converted to mineralogy why i s i t necessary to do the a d d i t i o n a l chemistry? Obviously there i s l i t t l e need to analyze for the twenty-three elements we attempted once the model i s established. Some elements are not abundant enough to show any systematic d i s t r i b u t i o n pattern. Other elements show a tremendously high v a r i a b i l i t y which masks any underlying systematic d i s t r i b u t i o n pattern. Others do not add appreciable new information. A l l run of mine samples w i l l be analyzed routinely f or lead, zinc and s i l v e r , these being the economically important metals. These metals o F i g . 11: S i m p l i f i e d i d e a l mineralogical zoning assuming anisotropy. Not to scale. 41 are very e f f e c t i v e i n providing us. with a general ' insight to the d i s -t r i b u t i o n patterns of galena, s p h a l e r i t e and s i l v e r - b e a r i n g minerals (mainly t e t r a h e d r i t e ) . In addition, for purposes of applying the i d e a l model developed here we recommend analyzing samples for mercury and calcium at the very l e a s t , and perhaps cobalt. TESTING THE IDEAL ORESHOOT MODEL Phase two of this study involved a sampling program designed to test the representativeness of the i d e a l model developed previously. A t o t a l of 6 suites of samples were taken along various workings i n the Keno No. 18 vein. Each s u i t e consisted of a minimum of 10 samples taken from working faces or r i b s with normal mine sampling procedure described e a r l i e r . Sample spacing varied somewhat depending on l o c a l circumstances but was generally about 6 to 20 feet (2 to 6m). Suites were taken to provide samples from Ag-Pb zones, Zn zones and carbonate zones so that element d i s t r i b u t i o n s could be compared with those expected according to the model. In general, a l l suites corroborate the model. Three examples w i l l be described b r i e f l y to i l l u s t r a t e the r e s u l t s . We have chosen somewhat d i f f e r e n t elements to i l l u s t r a t e each of the cases. In general, however, element groups I, II and IV are represented, these being the groups that we found most useful i n applying the model. Keno 4-18-05-Stope Three representative element p r o f i l e s ( s i l v e r , cadmium and calcium) f o r a h o r i z o n t a l l i n e of samples i n Keno 4-18-05 stope are shown i n figure 12, upper l e f t . These p r o f i l e s are e a s i l y interpreted as DISTANCE (FEET) DISTANCE (FEET) F i g . 12: Three independent t e s t s of the i d e a l oreshoot model. Upper l e f t : 4-18-05-Stope, lower l e f t : 7-18-S-Drift, r i g h t : 2-4-S-Drift. K3 43 indicating an oreshoot on the l e f t , and a sphalerite halo (cadmium) on the right , that overlaps the margin of the oreshoot. Calcium increases from low values on the l e f t to higher values on the right and is consistent with the suggestion that a fringing carbonate zone exists further to the r ight . These three distribution patterns are paralleled by other members of the corresponding element groups and a l l are consistent with the ideal model. However, i t i s apparent that local var iab i l i ty is substantially greater than in the ideal model. Note that the s i lver and cadmium profiles can be used to provide a scale for the galena-freibergite, and sphalerite zones. The galena-freibergite zone is about 100 feet (30m) and the sphalerite zone about 40 feet (12m). In this regard i t is interesting to note that the model was developed from data across oreshoots about 20-30 feet (6-9m) wide but seems to apply well to oreshoots three to five times that s ize. Keno 7-18-S-Drift These test data (figure 12, lower left) i l lus tra te some of the ambiguities in interpretation that result in dealing with real data. The samples were collected along a dr i f t so as to purposely avoid high s i lver values and to test another part of the ideal model. Calcium values increase errat ica l ly to the right and the right-hand portion of the prof i le is taken to represent a carbonate zone. High mercury on the l e f t of the diagram represents the sphalerite zone. These two trends indicate that a s i l v e r - r i c h zone could exist to the le f t of the prof i le although other interpretations might apply. For example, i f sampling further to the l e f t indicated low s i lver but increasing zinc and/or carbonate, then application of the model would 44 suggest a high s i lver zone above or below the d r i f t . Keno 2-4-S-Drift This sampling prof i le (figure 12,right) represents an extremely carbonate-rich part of the Keno No. 4 vein. Calcium decreases from right to l e f t ; zinc and s i lver both show local (one sample) highs that we feel represent local sampling var iab i l i ty within the carbonate zone. Mercury is shown separately for c lar i ty and has s ignif icantly higher values on the l e f t compared with the r ight . As indicated earl ier such a pattern for mercury suggests that both the main zinc zone ; and the s i lver- lead zone are further to the l e f t . Note that such an interpre-tation is consistent with the ideal model and provides a very, specific sense to exploration. We have examined ratios for a l l the test cases cited here and results are consistently in agreement with the patterns developed for the model data; consequently, none are shown. As a further test of our model we have examined existing assay data for a large part of the Keno No. 18 vein as compiled by Mr. J . Franzen of United Keno H i l l Mines L t d . , and kindly made available to us. Sample locations and machine-contoured data are i l lustrated in figure 13 where the coincidence of Ag, Pb and Ag/Zn highs is apparent. The extremely close correspondance of Ag and Pb is in agreement with both our model and the high correlation noted between these elements (cf. Table IV). The Ag/Zn ratio also decreases markedly outward which is in accord with our outward increase in Zn/Ag ra t io . These results suggest that the model we have developed applies over a wide 1 1 1 1 1 1 200 300 400 500 600 700 CONTROL POINTS " 5 7 0 0 3 AASA A * A I & A - 5 5 0 0 AA5A&ansasa««A*SA S A M M UAMA aa^aMMft A } \\ If A A A A A AA A A A l i Al&AAUAAA - 5 4 0 0 I I i i i -i -300 400 500 600 70 0 8 0 0 Pb J " 3 - | 5700 -,,s ,-I±J S° " \ _ 5600 --A r~\ ^ — T 1 "^=^-X5i r J 5 5 0 0 -^ ^ l J^^l) 5400 -- 5 7 0 0 Ag - 5 6 0 0 » - 5 5 0 0 ^^V-^, ^ —^_J^ \ i (^l 200 300 400 500 600 700 i i i i i i Ag/Zn a so 5700 -A<v» ( \__ " W ^ . >v r \ —- ^ 5 6 0 0 • " I100 Jj^y / ^ 5500 -" " V * JJ/ 5 4 0 0 -300 400 500 600 700 800 _ __ i I I I J 1 F i g . 13: Contoured assay values f o r a part of Keno No*. 18 v e i n . Upper l e f t : c o n t r o l points are t r i a n g l e s . Lower l e f t : Ag i n oz/short ton. Upper r i g h t : Pb i n percent. Lower r i g h t : Ag/Zn r a t i o w i t h Ag i n oz/short ton and Zn i n percent. 46 range of scales: the oreshoot i n figure 13 i s roughly 300 feet (91m) i n diameter. PRACTICAL APPLICATIONS OF MODEL P r a c t i c a l a p p l i c a t i o n of a model as an exploration tool i s based on accepting i t as a working hypothesis and recognizing that such i d e a l i t y i s u n l i k e l y to be obtained i n any s i n g l e r e a l v e i n segment. With r e a l data we are faced with having to deal with l o c a l v a r i a b i l i -ty, a feature that was removed i n part i n developing the concept of the i d e a l zonation. In addition, we must consider scale, our i d e a l model must be appropriately scaled f or comparison with each data set. Both of these features introduce s u b j e c t i v i t y into the process of comparing r e a l data with a model. We a n t i c i p a t e that the model can be applied i n two s i t u a t i o n s using standard mine sampling procedure. ( i ) Resampling of ends of d r i f t s and raises at i n t e r v a l s of 5-10' over a distance of about 100 feet ( i . e . no l e s s than 10 samples). ( i i ) Routine sampling of new d r i f t s and raises a f t e r each round. Such applications lead to some ambiguity i n i n t e r p r e t a t i o n . Apart from vaguaries of scale and sampling v a r i a b i l i t y there may be uncertainties i n geometry as i l l u s t r a t e d i n figure 12. These geometric ambiguities a r i s e from the f a c t that i n general applications we have a one-dimensional sampling l i n e that must be interpreted i n terms of two-dimensional metal d i s t r i b u t i o n patterns. 47 One of the principal problems imposed on interpretation is that of scale of the geometry we are dealing with - how large is the o r e -shoot that gives r ise to a particular halo? We have investigated this problem in a cursory way only insofar as our own test data are concerned. We have in several cases pointed out the range of scales over which the model seems to apply. Some concept of an average oreshoot is desirable because i t not only provides a feeling for size but also shape or anisotropy. Figure 14 i l lustrates three general interpretations that might apply in the case of a suite of samples taken near the end of a dr i f t and indicating that the dr i f t is within a halo of an oreshoot. Optimum exploration procedure might be (i) extend the d r i f t at least by the diameter of an average oreshoot, in order to take the upper interpretation ( f ig . 14) into account, ( i i ) drive a crosscut and then diamond d r i l l so as to intersect a possible oreshoot above or below the d r i f t . Awareness of the average geometry (shape and elongation) of an oreshoot would help in assigning pr ior i t i es to alternatives (i) and ( i i ) . CONCLUSIONS Our efforts have been directed towards examining element d i s tr ibu-tion patterns within the plane of the Keno No. 18 vein and deriving from this a working zonation model for practical applications in re-evaluating old underground workings and evaluating new workings. A rather well-defined ideal model for element distributions in and about an oreshoot has been established and is easily transferable into F i g . 14: Some of the vaguaries of i n t e r p r e t a t i o n that a r i s e i n p r a c t i c a l a p p l i c a t i o n s of the i d e a l metal zoning model. 49 a simple ideal mineral zonation model with a galena-freibergite core, a sphalerite fringe, a carbonate halo and a gradually increasing pyrite content outward from the oreshoot. A variety of elements can be used to define these zones. Si lver , lead and zinc are most significant because of their economic importance and the fact that a l l samples are assayed for these three elements routinely at the mine s i te . In addition, we found that calcium and mercury and possibly cobalt potentially provide additional information about element and mineral distribution patterns in the plane of the vein, particularly in parts away from oreshoots. In some cases, these elements may provide directional information, part icularly mercury abundances and the Co/Ag rat io . Calcium is part icularly useful. We consistently recognize the presence of a carbonate (not including siderite) halo about ore-shoots and analysis for Ca is the most rapid and routine approach to monitoring trends of carbonate abundances. Cobalt appears to correlate with pyrite and serves as a, means of r.monitor ing.lrelative-abundances of, pyrite . The presence of abundant siderite precludes the use of iron in defining pyrite zones. The procedures used involved quality control in obtaining analytical data but with emphasis on u t i l i z i n g normal mine sampling procedure. Ideal metal distribution models were obtained by reordering samples on .: the basis of decreasing s i lver values, replotting profi les of ordered data and f i t t ing smooth mathematical curves to individual metal -profiles. This method removes some of the subjectivity in establishing such conceptual models. Our study indicates that a spline function is a useful means of curve-fitt ing to show trends in metal prof i les , mainly 50 because i t i s r e l a t i v e l y easy to use d i f f e r e n t f i t t i n g c r i t e r i a f o r each part of a p r o f i l e with a p a r t i c u l a r range of v a r i a b i l i t y . In addition, a variety, of elements were present i n too low abundance ranges r e l a t i v e to a n a l y t i c a l p r e c i s i o n and/or l o c a l sampling error to provide useful i n s i g h t into systematic metal d i s t r i b u t i o n patterns, v i z . Mo, V, Sn, Se, F, B and Ba. 51 ACKNOWLEDGEMENTS This project was undertaken in the summer of 1978 with the f inancial support of United Keno H i l l Mines Ltd. and was conceived or ig inal ly in cooperation with Dr. Ivor E l l i o t t , Chief Geochemist of Falconbridge Nickel Mines and Mr. R. Van Tassel l , Exploration Manager, United Keno H i l l Mines Ltd . We are grateful to many at the mine s i te who cooperated so enthusiastically, including Mr. George Dundas, Mine Manager, Mr. George Partridge, Mine Geologist and Staff Geologists, L . Carlyle and D. Morris. Mr. J . Franzen, Project Geologist, United Keno H i l l Mines L t d . , contributed part of the early sampling program, and provided assay data for figure 13. Advice on analytical methods was given by Stanya Horsky. Mr. Peter Kemp, Assayer, Dept. of Mineral Engineering, U.B.C. kindly provided assays for Ag, Pb and Zn. We appreciate the assistance of a l l these people. 52 REFERENCES Reinsch, C.H., 1967. Smoothing by s p l i n e f u n c t i o n s . Numer. Mathv 10: 177-183. S i n c l a i r , A.J., 1976. A p p l i c a t i o n s of p r o b a b i l i t y graphs i n m i n e r a l e x p l o r a t i o n . Assoc. Explor. Geochemists, Spec. V o l . No. 4, 95 p% Thompson, M., and Howarth, R.J., 1978. A new approach to the e s t i m a t i o n of a n a l y t i c a l p r e c i s i o n . J . Geochem. E x p l o r . , 9: 23-30. Van T a s s e l l , R.E'..-, ,1969. E x p l o r a t i o n by overburden d r i l l i n g at Keno H i l l Mines L i m i t e d . Quarterly of the Colorado School of Mines -I n t e r n a t i o n a l E x p l o r a t i o n Symposium, 64: (1) 457-478. 53 CHAPTER IV METAL AND MINERAL ZONING MODELS AND THEIR PRACTICAL IMPORTANCE  KENO HILL-GALENA HILL CAMP. YUKON TERRITORY, CANADA ABSTRACT A methodology Is described and t e s t e d f o r e s t a b l i s h i n g an i d e a l i z e d metal zonation model l a t e r a l l y w i t h i n the plane of Ag-Pb-Zn veins i n the Keno H i l l - G a l e n a H i l l camp, Yukon T e r r i t o r y , Canada. I d e a l metal d i s t r i b u t i o n patterns are e a s i l y i n t e r p r e t a b l e i n terms of a more c l a s s i c a l m i n eral zoning model. The procedure i n v o l v e s rearranging samples that span a wide range of grades i n order of decreasing s i l v e r . The rearranged p r o f i l e s f o r other elements can now be evaluated r e l a t i v e to s i l v e r . This procedure has been used to develop models f o r 3 deposits (Keno, Husky, No Cash) and independent t e s t s of these models i n a t o t a l of 6 v e i n s . A u n i f i e d metal and mineral zonation model i s defined that can be used as an e x p l o r a t i o n t o o l i n e v a l u a t i n g .: v underground workings f o r p r o x i m i t y to oreshoots i n the more than 60 deposits known i n the camp. INTRODUCTION In a recent paper ( S i n c l a i r and T e s s a r i , i n press) the w r i t e r s o u t l i n e d the use of v e i n geochemistry i n d e f i n i n g metal d i s t r i b u t i o n patterns w i t h i n the plane of a v e i n f o r the Keno No. 18 and Keno No. 4 s i l v e r - l e a d - z i n c v eins i n the Keno H i l l area, Yukon T e r r i t o r y , Canada. In b r i e f , we found that as few as t h i r t y - t h r e e r e p r e s e n t a t i v e samples spanning the general range of ore grades could be rearranged i n order of decreasing s i l v e r contents to develop the concept of i d e a l i z e d metal and mineral d i s t r i b u t i o n p a t t e r n s . For the Keno No. 4 and No. 18 54 veins, "rearranged profiles" for s i lver , lead, zinc and calcium were adequate to define an idealized zonation model although cobalt and mercury were also of use. These ideal patterns were shown to apply to oreshoots on a variety of scales from about 20 to 300 feet (6 to 91m) in diameter by four independent tests in the Keno No. 4 and No. 18 veins. The great advantage of the ideal oreshoot zonation model is that i t was developed using standard mine sampling procedures and takes advantage of three elements assayed for routinely at the minesite (Ag, Pb and Zn) as well as three additional metals that are part icular-ly useful in defining haloes to oreshoots, and, perhaps indicating proximity to oreshoots. Consequently, the ideal model can be used as a standard against which to compare and interpret real prof i les . In this way i t may be possible to evaluate the ends of existing dr i f t s and raises with regard to nearby as yet undiscovered oreshoots. In addition, the model can serve as a basis for monitoring profi les of assay data from new underground workings. Our detailed study of assay data for the Keno No. 18 vein permitted development of the ideal oreshoot concept as i t applies to one vein. In addition, one of our sets of test data indicated that the same model applies to the nearby Keno No. 4 vein. There are more than 60 Ag-Pb-Zn veins recognized in the Keno-Galena H i l l s area (Boyle, 1965) with var iab i l i ty in their dominant mineralogical species. For example, Keno No. 18 vein is re lat ively Zn-rich (sphalerite) compared with many other veins in the camp. In addition, Ag minerals are closely associated with galena. We have examined two other areas 55 i n the camp, the Husky and No Cash v e i n d e p o s i t s as a means of checking f o r more widespread a p p l i c a b i l i t y of the i d e a l oreshoot concept throughout the camp. The Keno H i l l - G a l e n a H i l l Mining Camp i s about 17 m i l e s (27.4'km) long i n an east-west d i r e c t i o n and from 1 to 3 m i l e s (1.6 to 4.8 km) wide. The 3 deposits w i t h which we are concerned are l o c a t e d on a l i n e roughly p a r a l l e l to the elongation of the camp w i t h Husky on the west, Keno on the east and No Cash i n the middle. Husky i s near the western end of the camp and i s about 9 m i l e s (14.7 km) west of Keno. No Cash i s about 6.6 m i l e s (10.6 km) west of Keno. Husky i s a p a r t i c u l a r l y s i l v e r - r i c h deposit c h a r a c t e r i z e d by the presence of abundant ruby s i l v e r i n a d d i t i o n to f r e i b e r g i t e . These Ag minerals occur w i t h or without abundant galena. No Cash i s r e l a t i v e l y high i n Zn r e l a t i v e to Husky, arid Ag minerals (mainly f r e i b e r g i t e ) are not a s s o c i a t e d w i t h galena. SAMPLING AND ANALYTICAL PROCEDURES Samples were taken according to normal mine sampling procedure which i n new workings i n v o l v e s a h o r i z o n t a l l i n e of chips taken across the width of a v e i n on each new working face. Consequently, sample spacing i s commonly about 6 or 7 f e e t (about 2m) except where a face f o r some reason i s not sampled. In o l d workings a s i m i l a r l i n e of chips c o n s t i t u t e s a sample but the chips are taken e i t h e r from the backs of r i b s , and because of d i f f i c u l t y of access sample spacing i s more v a r i a b l e than where new workings are sampled. In the examples to be discussed l a t e r sample (vein) widths average about 3 f e e t (lm) and sample weights average about 2.5 kg. 56 Samples were crushed, p u l v e r i z e d and s p l i t to about a 0.2 gram f r a c t i o n that was analyzed at the minesite by r o u t i n e assay methods (atomic absorption spectrophotometry) f o r Ag, Pb::.and Zn. Those w i t h high Ag assays (more than 125 oz Ag/ton) were checked by f i r e assay. Pulps from these samples were analyzed at the U n i v e r s i t y of B r i t i s h Columbia by r o u t i n e atomic absorption methods f o r Pb, Zn, Cd, Co, Mn, Fe, Cu, N i , Ca and Mg. Some of these same samples were analyzed f o r Hg, Au, Ba, Sn and F by Min-En L a b o r a t o r i e s , North Vancouver. A t o t a l of 98 samples were c o l l e c t e d i n the Husky Mine and subsequently analyzed. An a d d i t i o n a l 81 samples were analyzed from the No Cash deposit. Of these, 35 Husky samples and 37 No Cash samples served as a b a s i s f o r development of the two models, the remaining samples represent independent t e s t s of the models developed. RESULTS AND PRECISION The t o t a l data arrays generated by our study w i l l not be reproduced here. Many of the data, however, w i l l appear i n p r o f i l e s r e l a t e d to the d i s c u s s i o n that f o l l o w s . An e v a l u a t i o n of p r e c i s i o n f o r Husky analyses appears i n an e a r l i e r paper ( S i n c l a i r and T e s s a r i , i n press) that a l s o deals w i t h data f o r Keno No. 18 deposit. T h i r t y - s i x d u p l i c a t e samples from these two deposits were analyzed by the method of Thompson and Howarth (1978). To evaluate p r e c i s i o n of No Cash a n a l y t i c a l r e s u l t s we had 35 samples analyzed i n d u p l i c a t e f o r many but not a l l of the elements we studied. (The h i g h cost of analyses precluded d u p l i c a t e analyses i n 57 some cases ). P r e c i s i o n has been estimated using the method of Thompson and Howarth (1978) where an adequate range and spread of values e x i s t e d . These r e s u l t s are summarized i n Table I and are shown g r a p h i c a l l y i n f i g u r e 1. HUSKY METAL AND MINERAL ZONING MODEL  D e s c r i p t i o n of Husky Deposit Husky deposit c o n s i s t s of the No. 1 and No. 2 v e i n s of apparently s i m i l a r m i n e r a l o g i c a l character. The No. 1 v e i n s t r i k e s 040°f!and dips 60° to 70° to the southeast. Vein thickness i s h i g h l y v a r i a b l e but commonly i s from 2 to 5 f e e t (0.6 to 1.6m). The main ore minerals are f r e i b e r g i t e , ruby s i l v e r , galena, s p h a l e r i t e , p y r i t e and l e s s common c h a l c o p y r i t e . Gangue i s s i d e r i t e and quartz. Country rock i s almost e n t i r e l y thick.bedded, f i n e - g r a i n e d q u a r t z i t e w i t h l o c a l t h i n s c h i s t o s e l a y e r s . Age of the country rock i s u n c e r t a i n but i t was metamorphosed r e g i o n a l l y during the Cretaceous. Vein m i n e r a l i z a t i o n i n the Keno-Galena H i l l s camp has been dated r a d i o m e t r i c a l l y at about 85 Ma ( S i n c l a i r , T e s s a r i and Harakal, i n p r e s s ) . The Husky No. 2 v e i n i s s u b p a r a l l e l to the No. 1 v e i n and dips 55° to 65° southwesterly. The two v e i n s i n t e r s e c t i n the southwestern part of the workings. Results and S t a t i s t i c a l A n a l y s i s A t o t a l of 35 samples were used as a b a s i s f o r developing a zoning model, and a d d i t i o n a l samples were used as independent"tests of the model. The multi-element array of a n a l y t i c a l data f o r 35 samples was 58 TABLE I CONSTANTS TO ESTIMATE MEAN PRECISION FOR NO CASH ANALYSES AS A FUNCTION OF CONCENTRATION* Element. So K Ag 0.02535 0.02836 Pb 0.01983 0.02992 Zn 0.05813 0.01864 Cu 1.20080 0.01907 Sb 7.18540 0.05448 Fe 0.01346 0.02846 Mn 0.00979 . 0.02411 Ca 0.02912 0.00583 Mg 0.00701 0.05038 Cd 3.97213 0.01677 Sr 0.82195 0.05492 N i 4.20468 0.11518 *..Pc = (2 Sc/C) x 100 where Sc = So + KC Pc i s p r e c i s i o n at conc e n t r a t i o n C as percent; C i s concentration i n appropriate u n i t s ; So i s standard d e v i a t i o n at "zero" c o n c e n t r a t i o n ; Sc i s standard d e v i a t i o n at concentration C; and K i s a constant ( a f t e r Thompson and Howarth, 1978). F i g . 1: P r e c i s i o n as a f u n c t i o n of concentration f o r the p r i n c i p a l elements used i n developing No Cash i d e a l zoning model. Based on the method of Thompson and Howarth (1978). 60 examined s t a t i s t i c a l l y , mainly as l o g p r o b a b i l i t y p l o t s and as a c o r r e l a t i o n matrix. P r o b a b i l i t y graphs were constructed by cumulating i n d i v i d u a l values because of the small data s e t s . A l l elements appeared to be d i s t r i b u t e d lognormally or as combinations of lognormal populations. An example i s shown i n f i g u r e 2 f o r Ag. The graph has been i n t e r p r e t e d as bimodal and p a r t i t i o n e d as described by S i n c l a i r (1974) i n t o two populations that overlap somewhat but which can be separated reasonably w e l l w i t h a threshold of about 18 oz Ag/ton. A p o s s i b l e lower,population i n the range 1 to'3 oz Ag/ton hasibeen ignored f o r .our purposes. This approach to p a r t i t i o n i n g and s e l e c t i o n of thresholds i s u s e f u l because i t permits r e c o g n i t i o n of values that probably c h a r a c t e r i z e a high grade oreshoot (greater than 18 oz Ag/ton). Many other elements show a comparable p a t t e r n , and a summary of t h e i r p a r t i t i o n e d populations and thresholds i s given i n Table I I . These same data were used to develop a simple c o r r e l a t i o n matrix reproduced i n Table I I I and summarized i n a c o r r e l a t i o n diagram ( f i g u r e 3). Examination of t h i s matrix shows that elements form groups w i t h i n which there i s a high l e v e l of c o r r e l a t i o n and between which c o r r e l a t i o n i s r e l a t i v e l y low. These i n d i v i d u a l groups of elements can be t r a n s l a t e d r e a d i l y i n t o mineralogy as f o l l o w s : Group Element M i n e r a l 1 2 Pb,,Ag, Au, Sn,Cu Zn,Cd,Hg Galena, f r e i b e r g i t e (and other s u l p h o s a l t s ) S p h a l e r i t e 3 Fe, N i P y r i t e C a l c i t e , dolomite and s i d e r i t e 4 Ca,Mg',Mn The d e t a i l e d co r r e l a t i o n s d i f f e r s l i g h t l y from those found f o r the 61 300 100-cc O X to < N o T 1 r 30 40 50 60 70 10 15 20 CUMULATIVE PERCENT 80 85 90 F i g . 2: Lognormal p r o b a b i l i t y p l o t f o r Husky Ag data p a r t i t i o n e d i n t o upper and lower populations ( s t r a i g h t l i n e s ) . Black dots are o r i g i n a l data; open c i r c l e s are p a r t i t i o n i n g p o i n t s using a method o u t l i n e d by S i n c l a i r (1974). TABLE I I MEANS AND STANDARD DEVIATIONS DETERMINED GRAPHICALLY FOR PARTITIONED METAL POPULATIONS Elem. Unit... A Po p u l a t i o n B Population Threshold(s) % b b+s1 b-s^ % b b+s 1 b-s^ Ag oz/T 35 50.0 96.0 25.5 65 4.3 7.9 2.8 18 oz Ag/ton Pb % 35 5.00 10.50 2.35 65 .18 .45 .07 1.10% Zn % 65 .06 .13 .03 35 .011 .021 .006 .04 and .015% Cu ppm 30 2,200 6,400 760 70 45 127 16 390 and 250 ppm Au ppb 30 1,800 4,200 740 70 115 240 62 410 and 300 ppb Mn % 55 3.10 6.30 1.55 45 .215 .450 .104 1.0 and .72% Ca % 55 .29 .46 .19 45 .054 .094 .032 .115 and .045% Mg % 55 .24 .52 .10 45 .021 .047 .009 .165 and .123% Fe % 84 8.2 11.7 5.8 16 .86 1.08 .70 2.5% Hg PPb 73 550 1,450 210 27 29 45 18 75 ppb Sn ppm 20 90 180 45 80 12 29 5 72 and 22 ppm Cd ppm 25 50 94 26 75 7 16 3 48 and 13 ppm N i ppm 8.7 41 68 22 13 7 10 5 14 ppm Ba ppm 20 12,000 22,000 6,400 80 320 960 105 3,200 ppm F ppm 100 94 155 57 A l l graphs based on 35 values accumulated i n d i v i d u a l l y , b = a n t i l o g of mean of l o g transformed data. b+s^ = a n t i l o g of mean plu s one s t d . dev. of l o g transformed data. b-s 1 = a n t i l o g of mean minus one s t d . dev. of l o g transformed data. TABLE I I I CORRELATION MATRIX - HUSKY #1 VEIN Group Elem. Ag Cu Au Sn Pb Zn Cd Hg N i Mn Ca Mg Fe Ba Co Ag Cu .537 I Au .477 .861 Sn .307 .403 .490 Pb .370 .565 .464 .328 Zn .601 .304 .265 .188 .368 I I Cd .144 .181 .276 .039 .069 .397 Hg .061 .273 .278 -.171 -.042 .142 .398 I I I N i .033 .149 .046 .269 .182 .186 .175 .313 Mn .257 -.242 -.089 -.017 -.099 .203 -.032 -.146 -.253 IV Ca .082 -.256 -.136. -.009 -.263 .027 -.139 -.323 -.283 .718 Mg .072 -.223 -.135 -.127 -.233 -.085 -.161 -.181 -.381 .760 .838 Fe .252 -.359 -.465 : .316 .199 .330 .326 .416 .356 .385 .130 .156 Ba .060 -.013 ^r.057 .219 .206 .180 -.061 -.326 -.218 -.008 -.110 .085 -.134 Co -.154 -1128 -.116 .064 -.161 -.069 -.061 -.008 .095 -.028 .150 .042 .049 .100 F -.341 -.290 -.371 -.269 -.305 -.232 -.014 -.015 .013 -.236 -.185 -.199 .264 -.222 .134 For N =.35 and a = 0.05 the c r i t i c a l value of r i s 0.329. ON 64 Fig.3: Correlation diagram based on 35 samples used as a basis for developing an i d e a l zoning model for Husky deposit. 65 Keno No. 18 deposit but the general mineral groupings are comparable. Group I elements differ s l ight ly from those in a comparable group from our Keno No. 18 study. The main difference is the inclusion of Sn in this group, probably in sol id solution in freibergite. In addition, note the presence of gold in this group, an association we had not recognized previously because we had not analyzed earl ier samples for gold. Group II elements are not as dist inct from Group I as we found for Keno No. 18 vein. This arises in part from the fact that the part of the Husky deposit that we use to establish our model is re lat ively low in sphalerite. In addition, sphalerite in Husky is more intimately associated with galena than is the case at Keno No. 18 vein. Group III elements do not include Co as was the case with Keno No. 18 data. Group IV elements indicate carbonate (calcite and dolomite) in both Husky and Keno No. 18 veins. Ideal Oreshoot Model Profi les for Ag, Pb, Zn and Ca along part of the 400 level d r i f t are shown in figure 4 to i l lus trate some of the metal profiles of those elements for which we analyzed. The Ag prof i le has the further advantage that i t provides dimensions of the two small oreshoots traversed by our l ine of samples. To offset the high local var iab i l i t y shown in most prof i les , samples were rearranged in order of decreasing s i lver values and resulting profi les for a l l elements were examined relative to the standard Ag prof i l e . The process of rearranging involves eo.o 100.0 DISTANCE/FT 120.0 140.0 160.0 180.0 i r eo.o loo.o OISTRNCE/FT 160.0 160.0 F i g . 4: O r i g i n a l p r o f i l e s f o r Ag, Pb, Zn and Ca along p a r t of the 400 l e v e l d r i f t , Husky deposit. These data are the b a s i s of an i d e a l i z e d zoning model f o r Husky deposit. ON 67 a l o s s of s c a l e ; hence, to construct these "rearranged" p r o f i l e s we assume equal distances.between samples. Furthermore, i n order to show general trends we used a cubic s p l i n e f u n c t i o n c u r v e - f i t t i n g procedure as described by Lee (1978). Some examples, shown i n f i g u r e 5, i l l u s t r a t e each of the p r i n c i p a l metal groups defined by our c o r r e l a t i o n study and show both r e a l data p o i n t s and the ge n e r a l i z e d continuous patterns obtained by c u r v e - f i t t i n g . In summary, the i d e a l zoning model i l l u s t r a t e d i n f i g u r e s 5 and 6 incorporates the f o l l o w i n g f e a t u r e s : (1) a c e n t r a l A g - r i c h core; (2) w e l l defined Au, Sn and Gu highs associated w i t h the Ag h i g h ; (3) an e r r a t i c Pb high centred on the Ag high; (4) a Hg p r o f i l e w i t h two peaks, one that c o i n c i d e s w i t h an ore-shoot and another w e l l removed from the oreshoot to form a hal o . Considered i n r e l a t i o n to the Keno model there appears to be no evidence of a carbonate halo i n the Husky model. We a t t r i b u t e t h i s to the very low carbonate content of the s e c t i o n of the v e i n used to develop a model. In t e s t s to be discussed i n a l a t e r s e c t i o n , p a r t s of veins w i t h a high Ca content do show evidence of a carbonate h a l o . In a d d i t i o n , a combination of high Hg, high Pb and low Ag appears u s e f u l i n r e c o g n i z i n g metal zonation c h a r a c t e r i s t i c of a v e i n about an oreshoot. In a d d i t i o n to i n d i v i d u a l element d i s t r i b u t i o n patterns we have examined a l l p o s s i b l e r a t i o s a few of which are shown i n f i g u r e 7. N i almost c e r t a i n l y c o r r e l a t e s w i t h p y r i t e . Consequently, r a t i o s i n v o l v i n g N i i n the numerator and Group I elements (Ag, Cu) i n the denominator emphasize the opposing d i s t r i b u t i o n patterns and show 68 F i g . 5: Element p r o f i l e s based on rearrangement of samples i n order of decreasing Ag content from l e f t to r i g h t . A uniform sample i n t e r v a l has been assumed. The smooth curves are computer-derived generalizations of the metal d i s t r i b u t i o n patterns. F i g . 7: Rearranged p r o f i l e s of selected r a t i o s . 71 i n c r e a s i n g values w i t h i n c r e a s i n g distance from the oreshoot. Hg and Group I elements show s i m i l a r p a t t e r n s . Perhaps more u s e f u l from a p r a c t i c a l point of view i s that comparable f r i n g i n g highs are shown by the Zn/Ag r a t i o (see f i g u r e 5) - both Zn and Ag are assayed f o r r o u t i n e l y . To evaluate the general v a l i d i t y of the Husky metal d i s t r i b u t i o n model three independent sampling p r o f i l e s have been analyzed. These w i l l be discussed i n d i v i d u a l l y . 4-1-226-Raise: Ten samples were taken over a distance of 45 fee t (15m) across a small oreshoot o u t l i n e d by the Ag p r o f i l e of f i g u r e 8. The a d d i t i o n a l p r o f i l e s of f i g u r e 8 r„ show that Pb and Zn c l o s e l y f o l l o w the Ag d i s t r i b u t i o n , and that Ca and the Zn/Ag r a t i o are highest on the f r i n g e s of the oreshoot. These r e s u l t s are i n complete accord w i t h the general model enunciated e a r l i e r . 2-2-N-"A" - D r i f t : This p r o f i l e was taken at the edge of an oreshoot to evaluate the nature of metal haloes, i f any. The edge of the oreshoot i s w e l l defined by Ag and Pb ( f i g u r e 9). Zn forms a f r i n g e to the main Pb-Zn high. Both Ca and the Zn/Ag r a t i o show a pronounced halo that i s removed from ore by more than 20 fee t (6m). These r e s u l t s are i n cl o s e agreement w i t h the model. 3-1-208-Raise: This p r o f i l e crosses the edge of an oreshoot as shown by the Ag 73 F i g 9: Real p r o f i l e s for a traverse along the 2-2-N-"A"-Drift, Husky mine. To be compared with model.of figure 5. 74 F i g . 10: Real p r o f i l e s f o r a tr a v e r s e i n the 3-1-208-Raise, Eusky mine. To be compared w i t h model of f i g u r e 5. 75 p r o f i l e of f i g u r e 10. The Pb p r o f i l e shows a second peak s l i g h t l y removed from the oreshoot, as i s the case w i t h the model. Two peaks are a l s o evident i n the Zn p r o f i l e , again i n agreement w i t h the model (as i l l u s t r a t e d by the Hg p r o f i l e of f i g u r e 5). A very low Ca content precludes any systematic p a t t e r n appearing i n the Ca p r o f i l e but a pronounced halo i s evident i n the Zn/Ag r a t i o p r o f i l e . These r e s u l t s agree remarkably w e l l w i t h the i d e a l model. Taken as a whole the three t e s t s provide " u s e f u l conf irmation..of the model e s t a b l i s h e d independently f o r the Husky deposit. Pb and Ag normally o u t l i n e oreshoots; Zn e i t h e r occurs w i t h Pb and Ag or forms a f r i n g e to a Pb-and.Ag-rich zone. The Zn/Ag r a t i o c o n s i s t e n t l y i d e n t i f i e s a halo remote from the oreshoot. Ca does not have a w e l l defined p a t t e r n i f the o v e r a l l abundance i s low ( l e s s than about 0.3% Ca); otherwise, i t shows high values i n a halo that c o i n c i d e s more-or-l e s s w i t h the high Zn/Ag r a t i o s . NO CASH METAL AND MINERAL ZONING MODEL D e s c r i p t i o n of No Cash deposit The No Cash no. 67 v e i n s t r i k e s from 045° to 070° and dips 60° to 85° to the southeast. Width i s v a r i a b l e but averages about 5 f e e t (1.6m) i n the area we sampled! Country rock c o n s i s t s mainly of t h i c k -bedded q u a r t z i t e w i t h interbeds of g r a p h i t i c s c h i s t , thin-bedded q u a r t z i t e and p h y l l i t e . Ore minerals are galena, f r e i b e r g i t e , s p h a l e r i t e , p y r i t e and minor amounts of ar s e n o p y r i t e and c h a l c o p y r i t e . P r i n c i p a l gangue minerals are white quartz and s i d e r i t e . The No.66 v e i n i s 76 comparable to No. 67 i n terms of mineralogy. The two v e i n s are sub-p a r a l l e l and the 66 v e i n i s about 150 f e e t (46m) northwest of the 67 v e i n . R e s ults and S t a t i s t i c a l A n a l y s i s A t o t a l of 81 samples were taken and analyzed, 37 of which were to provide r e s u l t s to develop a zoning model f o r the d e p o s i t , the remainder of the samples representing independent t e s t s of the v a l i d i t y of the model elsewhere i n the deposi t . Samples were analyzed at UBC f o r many elements as described f o r the Husky deposit w i t h the exception that No Cash samples were not analyzed f o r Au, Sn, Hg or F but were analyzed f o r Sb and Sr. The 37 samples used to e s t a b l i s h a zoning model were evaluated i n some d e t a i l . The l o g p r o b a b i l i t y p l o t of each element was examined and a l l metals were found to be approximated c l o s e l y by lognormal d e n s i t y d i s t r i b u t i o n s or combinations of two or more lognormal d e n s i t y d i s t r i b u t i o n s . These r e s u l t s are comparable to those obtained f o r the Husky deposit as i l l u s t r a t e d i n f i g u r e 2. A summary of s t a t i s t i c s of some important p a r t i t i o n e d populations i s given i n Table IV. A c o r r e l a t i o n matrix f o r No Cash a n a l y t i c a l data i s reproduced i n Table V where elements are arranged i n groups w i t h i n which there i s a high degree of c o r r e l a t i o n and between which there i s l i t t l e s i g n i f i c a n t c o r r e l a t i o n s . These groups correspond c l o s e l y to s i m i l a r groupings found f o r Keno and Husky deposits ( c f . Table I I I ) . A c o r r e l a t i o n diagram f o r No Cash data ( f i g u r e 11) should be compared w i t h the TABLE IV MEANS AND STANDARD DEVIATIONS DETERMINED GRAPHICALLY FOR PARTITIONED METAL POPULATIONS Elem. Unit': 'A Population- B Population Threshold(s) % b b+s 1 b-s^ % b b+s 1 b " S l Ag oz/T 20 32.0 96.0 11.0 80 1.65 4.40 .62 7.0 oz Ag/ton Cu ppm 15 860 1,450 520 85 35 74 18 250 ppm Fe % 25 10.5 14.5 7.6 75 4.2 5.7 3.1 7.0% Mn % 60 2.5 5.0 1.4 40 .42 .69 .25 .80% Zn % 85 3.0 8.8 1.0 15 .17 .27 .10 .40% Ca % 81 .72 1.80 .28 19 .05 .11 .03 .25 and .11% Cd ppm 85 440 1,080 160 15 21 37 12 60 ppm Pb % 100 .93 4.40 .20 Mg % 100 .21 .52 .08 N i ppm 100 16 30 9 A l l graphs based on 37 values accumulated i n d i v i d u a l l y , b = a n t i l o g of mean of l o g transformed data. b+s^ = a n t i l o g of mean plus one s t d . dev. of l o g transformed data. b-s 1 = a n t i l o g of mean minus one s t d . dev. of l o g transformed data. TABLE V CORRELATION MATRIX - NO CASH #67 VEIN Group Elem. Ag Cu Sb Pb Zn Cd Fe Mn Co Mg Ca Sr N i Ag I-A Cu . .946 Sb .990 .924 I-B Pb .252 .034 .231 I I Zn -.014 .129 -.058 .072 Cd .014 .150 -.028 .099 .997 Fe .425 .386 .343 .025 -.082 -.072 I I I Mn .332 .286 .351 -.054 -.285 -.274 .878 Co .017 .026 .022 -.138 -.176 -.184 .698 .789 Mg .193 .140 .215 -.077 -.275 -.270 .733 .857 .644 IV Ca -.206 -.212 -.193 -.177 -.038 -.051 -.003 .002 -.018 .271 Sr -.236 -.238 -.223 -.117 -.085 -.096 -.006 -.001 -.022 .365 .794 N i .038 .039 .030 .088 .208 .193 .135 -.136 -.089 -.049 -.138 .060 Ba .042 .142 .007 -.126 .174 .154 .122 -.018 .057 -.135 -.189 -.092 .212 For N = 37 and a =0.05 the c r i t i c a l value of r i s 0.320. F i g . 11: C o r r e l a t i o n diagram based on the 37 No Cash samples used to develop an i d e a l zoning model. 80 comparable diagram f o r Husky ( f i g u r e 3). The s i m i l a r i t y of the two diagrams i s apparent but two d i f f e r e n c e s stand out. Group I I I i n c l u d e s arsen o p y r i t e at No Cash, i n a d d i t i o n to p y r i t e and s i d e r i t e , and the s u l p h o s a l t group I-A i s not c l o s e l y c o r r e l a t e d w i t h galena as i s the case f o r both Keno and Husky d e p o s i t s . I d e a l Oreshoot Model O r i g i n a l data were rearranged i n order of decreasing Ag content \ because l o c a l sampling v a r i a b i l i t y combined w i t h the small dimensions of oreshoots crossed by the sampling t r a v e r s e made i n t e r p r e t a t i o n d i f f i c u l t . The rearranged p r o f i l e s were smoothed by the same curve f i t t i n g procedure used f o r Husky data. Several examples are shown i n f i g u r e 12. A summary of smoothed p r o f i l e s f o r No Cash data i s given i n f i g u r e 13. From f i g u r e s 12 and 13 i t i s p o s s i b l e to summarize the general character of an i d e a l oreshoot as f o l l o w s : (1) a Ag-high ( f r e i b e r g i t e ) forms the centre of the oreshoot; (2) the s i l v e r high i s surrounded by a broad zone high i n Pb (galena); (3) a v a r i a b l e Zn high ( s p h a l e r i t e zone) overlaps the e n t i r e Pb zone and extends outward to form a Zn rich-Pb poor f r i n g e to the oreshoot; (4) a carbonate zone s l i g h t l y overlaps the outer f r i n g e of the s p h a l e r i t e zone and extends f u r t h e r outward from the oreshoot. This zone can be monitored by the Ca p r o f i l e . We examined a l l p o s s i b l e r a t i o s from our a n a l y t i c a l data. The most i n t e r e s t i n g were Ca/Ag, Ca/Pb, Ca/Cu, Cu/Ag and .Zn/Ag a l l of which showed a general increase outward from the centre of the i d e a l oreshoot. These are i l l u s t r a t e d by the Zn/Ag r a t i o i n f i g u r e 12. ' 81 4 F i g . 12: Some examples of rearranged metal and r a t i o d i s t r i b u t i o n p r o f i l e s f o r No Cash deposit showing g e n e r a l i z e d curves f i t t e d to r e a l data p o i n t s . c o \ ro c si < O N a N o ^ < o \ o co q o o CO U) to o O 1 0 IO o CO CN CN JO r : «o " co CD to to ° . 6 <N CN JO o o o o d d o ' d S A M P L E NUMBER F i g . 13: Summary of smoothed p r o f i l e s (rearranged) i l l u s t r a t i n g metal d i s t r i b u t i o n patterns from the centre ( l e f t ) of an oreshoot outward (to the r i g h t ) f o r No Cash d e p o s i t . 00 83 An e v a l u a t i o n of the model i n d i c a t e d above was undertaken by a n a l y t i c a l data f o r three independent t r a v e r s e s , two of which were taken from the 66 v e i n and one of which was taken i n the 67 v e i n . 5-66-S-Drift ( a ) : Ag and Pb correspond c l o s e l y , although because of the small s i z e of the Ag high traversed t h i s may be more apparent than r e a l ( f i g u r e 14). The Zn high i s much broader and overlaps the Ag-Pb high i n accord w i t h the model. The Zn/Ag r a t i o a l s o shows a high on the Pb-poor s i d e of the Zn high. A l l foregoing features correspond w e l l w i t h the i d e a l model e s t a b l i s h e d f o r the No Cash No. 67 v e i n although the Ca p r o f i l e does not agree w e l l . 5-66-S-Drift (b): This sample s u i t e was taken between two small oreshoots ( f i g u r e 15), as shown by the two Ag highs at i t s e x t r e m i t i e s . The Pb p r o f i l e c o i n c i d e s w i t h the Ag p r o f i l e on the l e f t but the Pb high i s broader than the Ag high on the r i g h t . S i m i l a r l y two pronounced Zn highs occur on the i n s i d e f r i n g e s of two Pb highs and a pronounced Ca high occurs i n the centre of the p r o f i l e . A l l these r e s u l t s are e n t i r e l y c o n s i s t e n t w i t h the model; however, the Zn/Ag values are somewhat e r r a t i c a l l y h i g h i n the c e n t r a l p a r t of the p r o f i l e where the model would f o r e c a s t them to be c o n s i s t e n t l y high. 2-67-115-Stope: A Ag peak defines the centre of t h i s oreshoot f r i n g e d by c o i n c i d e n t Pb and Zn highs ( f i g u r e 16). The Ca content i s very low ( l e s s than 0.3% 84 Ag 0.0 1S.0 SO.B C a DISTKKCE (FEET) OJSTRMX IFEET) I 1 1 1 1 1 1 1 o.a w.o <e.o SIJ M.f ».i te.» nj OISTFWCE IFEET) Pb «.i o.i i8.o ja.t x . o « . o DISTlWCE tFtk?) Zn/Ag n.i m.» « j Zn V T '»•• , " B,stdcE IFEST! 60.1 1D.I 90.8 F i g . 14: Selected metal p r o f i l e s f o r a tr a v e r s e along p a r t of the 5-66-S-Drift (sample s u i t e " a " ) , No Cash deposi t . To be compared w i t h the i d e a l model of f i g u r e 12. 15: Selected metal p r o f i l e s f o r a tr a v e r s e along the 5-66-S-Drift (sample s u i t e " b " ) , No Cash deposi t . To be compared w i t h the i d e a l model of f i g u r e 12. 86 an F i g . 16: Selected metal p r o f i l e s f o r a t r a v e r s e i n the 2-67-115-Stope, No Cash deposit. To be compared w i t h the i d e a l model of f i g u r e 12. 87 Ca) and the inherent sampling v a r i a b i l i t y i s so l a r g e that no systematic d i s t r i b u t i o n p a t t e r n can be seen. S i m i l a r l y , the Zn/Ag r a t i o i s low across the e n t i r e p r o f i l e but presumably would be higher beyond both ends of the p r o f i l e . These three independent sample s u i t e s are i n broad agreement w i t h the zoning model evolved f o r the No Cash No. 67 deposit as w e l l as the models obtained f o r the Husky and Keno d e p o s i t s . DISCUSSION AND SUMMARY Rearrangement of samples i n order of decreasing Ag content permits e v a l u a t i o n of other element d i s t r i b u t i o n p a t t e r n s i n the rearranged order. In the case of three mines i n c l u d i n g 6 v e i n s i n the Keno H i l l -Galena H i l l area, Yukon, the procedure proves a u s e f u l means of e s t a b l i s h i n g standard zonal p a t t e r n s f o r metals and minerals against which r e a l p r o f i l e s can be compared. In p a r t i c u l a r Ag and Pb highs c o i n c i d e w i t h oreshoots, Zn v a r i e s somewhat but highs e i t h e r c o i n c i d e w i t h an oreshoot or form a f r i n g e that p a r t l y overlaps the oreshoot. Carbonate (dolomite and/or c a l c i t e ) highs seem to form a halo somewhat removed from both the oreshoot and f r i n g i n g z i n c h i gh. This carbonate "high" can be monitored by a n a l y z i n g samples f o r Ca. Many r a t i o s were examined i n e v a l u a t i n g our a n a l y t i c a l r e s u l t s . The most c o n s i s t e n t and u s e f u l appears to be the Zn/Ag r a t i o which shows a sharp incre a s e which c o i n c i d e s roughly w i t h the carbonate high. P y r i t e i s high i n a zone surrounding oreshoots but can be present throughout a v e i n . E i t h e r Co and/or N i can be used w i t h v a r i a b l e 88 success to monitor relative pyrite abundances. The Co/Ag ratio also has potential in this regard. Hg is also an important element because, although largely related to zinc (and therefore sphalerite), i t shows three levels of abundance, including a group of intermediate values on the non-ore side of the zinc fringe that does not correlate with zinc. The apparent regular arrangement of this middle level of Hg (shown best in the Keno Model) indicates that Hg data might provide additional insight into proximity to oreshoots wherever this intermediate range of values is encountered. Further evaluation of the exploration potential of Hg is required. One important outcome of this work has been to show that a number of elements show more-or-less the same distribution patterns as might be expected from a knowledge of geochemical associations. We have defined these correlated groups rather precisely for the Keno, Husky and No Cash deposits and find them more-or-less comparable in a l l cases. From a pract ical point of view,in most cases i t is unnecessary to analyze more than one or two elements from each of the correlated groups we have defined. Thus, we find that the crux of the zonation model for the Keno H i l l - Galena H i l l camp can be defined with 4 elements: Ag, Pb, Zn and Ca. Additional elements such as Hg and Co appear to be of some pract ical potential but require further evaluation. Note that of the 4 principal elements we require, . 3 are already analyzed for routinely at the minesite because of their economic importance. These few chemical analyses provide sufficient data to monitor mineral distribution patterns that otherwise would be d i f f i c u l t or awkward to quantify. This work has shown that chemical analytical 89 data can be used to monitor metal zonation i n underground workings i n the Keno H i l l - Galena H i l l area (1) f o r oreshoots from 20 to 300 f e e t (6 to 91m) i n diameter, (2) f o r deposits of v a r i a b l e dominant mineralo4-g i e s , and (3) using r o u t i n e mine sampling procedures. The i d e a l model forms a standard w i t h which normal p r o f i l e s can be compared. In t h i s way the model has d i r e c t economic a p p l i c a t i o n as a means of e v a l u a t i n g ends of underground workings i n the more than 60 known v e i n s i n the camp, and as a method of monitoring a l l new workings i n the plane of a v e i n . Our r e s u l t s show that 10 samples taken over a distance of 50 to 100 fee t provide a reasonable b a s i s f o r i n t e r p r e t a t i o n of r e s u l t i n g metal p r o f i l e s i n terms of our i d e a l zoning concept. P r o b a b i l i t y graph a n a l y s i s of each v a r i a b l e i s a u s e f u l mean's of determining thresholds that e f f e c t i v e l y d i s t i n g u i s h between low and high populations. The threshold f o r Ag, f o r example, separates an oreshoot from adjacent "background" v e i n m a t e r i a l . In the case of Ca the t h r e s h o l d permits r e c o g n i t i o n of high values i n a halo r e l a t i v e to low values i n and near the oreshoot. Thresholds can be determined f o r a l l other elements whose d e n s i t y d i s t r i b u t i o n s c o n s i s t of two or more lognormal p o p u l a t i o n s , and these thresholds used as a p r a c t i c a l c r i t e r i o n f o r r e c o g n i z i n g the passage from high to low values (or v i c e versa) along a sampling t r a v e r s e . Wherever the character (grade, mineralogy, etc) of a deposit d i f f e r s d r a s t i c a l l y from that f o r which thresholds were determined i t would seem adv i s a b l e to e s t a b l i s h l o c a l t h r e s h o l d s . P r a c t i c a l a p p l i c a t i o n s i n v o l v e comparisons of r e a l p r o f i l e s w i t h those of the i d e a l model. There are s e v e r a l problems that impart 90 considerable s u b j e c t i v i t y i n p r a c t i c a l a p p l i c a t i o n s . These have been referred to by S i n c l a i r and Te s s a r i ( i n press) and include scale, isotropy or anisotropy (geometric) and the ambiguities of attempting a 2-dimensional i n t e r p r e t a t i o n (plane of a vein) based on 1-dimensional data (sample p r o f i l e along a d r i f t or r a i s e ) . We used a mathematical curve f i t t i n g procedure, a cubic spline function, to generalize our models although i t should be apparent that such a procedure i s far from e s s e n t i a l to the use of the i d e a l zonation concept. The advantage of the spline function, however, i s that i t allows smoothing of d i f f e r e n t l e v e l s of v a r i a b i l i t y f o r d i f f e r e n t parts of a metal p r o f i l e and i s a reproducible procedure for generalizing a model. 91 ACKNOWLEDGEMENTS This study evolved in discussions with Dr. Ivor E l l i o t t , Chief Geochemist, Falconbridge Nickel Mines L t d . , and Mr. R .E . Van Tasse l l , Exploration Manager, United Keno H i l l Mines Ltd . Funding was obtained from United Keno H i l l Mines Ltd. We appreciate the cooperation of many people at the Minesite in Elsa , Yukon, including Mr. George Dundas, Mine Manager; Mr. George Partridge, Chief Geologist; Mr. Jeff Franzen, Project Geologist and Mine geologists Dave Morris and Larry Carlyle . Mr. Asger Bentzen provided extensive assistance in obtaining computer output. Peter Kemp aided with the chemical analyses. 92 REFERENCES Boyle, R.W.: Geology, geochemistry, and o r i g i n of the s i l v e r - l e a d - z i n c deposits of the Keno H i l l - Galena H i l l area, Yukon T e r r i t o r y . B u l l . Geol. Surv. Canada 111, 302 pp (1965). Lee, CM.: Curve f i t t i n g techniques. Computing Centre, The U n i v e r s i t y of B r i t i s h Columbia 44.2, 61-66 (1978). S i n c l a i r , A.J.: S e l e c t i o n of threshold values i n geochemical data using p r o b a b i l i t y graphs. J . Geochem. E x p l o r . 3_, 129-149 (1974). S i n c l a i r , A.J., T e s s a r i , O.J.: Vein geochemistry, an e x p l o r a t i o n t o o l i n the Keno H i l l Camp, Yukon T e r r i t o r y , Canada ( i n p r e s s ) . S i n c l a i r , A.J., T e s s a r i , O.J., Harakal, J.E.: Age of Ag-Pb-Zn m i n e r a l i z a t i o n - Keno - Galena H i l l s area, Yukon T e r r i t o r y ( i n p r e s s ) . Thompson, M., Howarth, R.J.: A new approach to the e s t i m a t i o n of a n a l y t i c a l p r e c i s i o n . J . Geochem. Expl o r . 9_, 23-30 (1978). 93 CHAPTER V CONCLUSIONS A new approach to developing metal and mineral zoning models for individual veins in the Keno H i l l - Galena H i l l mining camp has been developed and tested successfully. The procedure involves collecting a series of samples that span the normal range of ore and waste grades, rearranging these samples in order of decreasing s i l ver , and evaluating the "rearranged" profi les of other metals relative to decreasing s i l ver . Of the more than twenty elements analyzed for, as few as four (Ag, Pb, Zn land Ca) are adequate to show the essential character of a zoning model in the plane of a vein and two or three others (e.g. Hg and Co and/ or Ni) appear to have some potential in further defining a model. The general features of the Keno H i l l - Galena H i l l model were determined i n i t i a l l y from rearranged metal profi les that were f a i r l y easily transformed into mineral distribution patterns as follows: freibergite ( i ruby si lver) and galena highs coincide with oreshoots although in rare cases s i lver minerals are concentrated more centrally than is galena. Sphalerite concentrates \as".a::fringe .that generally overlaps the galena zone and rarely is more-or-less coincident with galena zones. Calcite and/or dolomite concentrate in a halo about an oreshoot but commonly removed from the oreshoot by as much as few tens of feet. In some cases siderite i s associated with thIs:.calcite-dolomite high but more generally siderite occurs somewhat irregularly throughout a vein. Pyrite also occurs errat ica l ly distributed on a scale of 10 to 94 20 feet (3 to 6m) but on a larger scale shows an increase outward from an oreshoot. This i d e a l model developed from data f o r three d i f f e r e n t deposits (Keno, Husky and No Cash) was tested by comparison with nine independent sampling traverses of ten samples each from s i x veins i n the camp and was shown to apply acceptably i n a l l cases-?. Consequently, the writer expects that the model, perhaps with minor modifications l o c a l l y , w i l l be applicable throughout the camp. Because the mineral zonation model seems to apply generally to the camp, there i s p o t e n t i a l for using the model as a p r a c t i c a l exploration t o o l . In t h i s connection, i t i s important to r e c a l l that the mineral zoning can be monitored s u c c e s s f u l l y by chemical analysis of run-of-mine samples for Ag, Pb, Zn and Ca. The f i r s t three metals are analysed for r o u t i n e l y at the mine and only Ca need to be added i n order that the carbonate zone can be monitored. Tests have shown that p o s i t i o n r e l a t i v e to an oreshoot can be reasonably well defined i f a n a l y t i c a l data for the four preceding elements are a v a i l a b l e f o r ten samples with sample spacing of about 5 to 6 feet (about 1.5 to 1.8m). Consequently, i t i s possible to re-evaluate proximity to oreshoots of a l l accessible o l d workings i n the plane of a vein, f o r the more "than 60 veinadeposits known i n the camp. Some a d d i t i o n a l d e t a i l e d and/or s p e c i f i c conclusions of our study are as follows: (1) . Hg analyses seem to provide a d d i t i o n a l zoning information about a zoning model but more analyses are required. (2) Many elements have d i s t r i b u t i o n patterns comparable to one of Ag, Pb, Zn and Ca. For example: Sb compare w i t h Ag; Au and Sn compare w i t h Pb; Hg and Cd compare w i t h Zn; and Sr and Mg compare w i t h Ca. These are e a s i l y i d e n t i f i e d by determining c o r r e l a t i o n c o e f f i c i e n t s and examining p l o t t e d metal p r o f i l e s . Many elements had such wide l o c a l v a r i a b i l i t y that no systematic patterns were apparent (e.g. B, As, Ba, V, F, Mo). Despite t h i s l a c k of systematic d i s t r i b u t i o n patterns on the sc a l e of our i n v e s t i g a t i o n , some such metals showed high c o r r e l a t i o n s (e.g. B, Ba, F and V). Of the many ratiossexamined, Zn/Ag c o n s i s t e n t l y shows high values as a halo about oreshoots. The high more-or-less c o i n c i d e s w i t h the carbonate high. P r a c t i c a l a p p l i c a t i o n of the model i s done by comparing r e a l metal p r o f i l e s f o r about 10 samples taken over a length of 50 to 100 feet (15 to 30m), w i t h patterns expected by the model. The p r i n c i p a l sources of u n c e r t a i n t y are: (a) the ambiguity of a 1-dimensional sample t r a v e r s e r e l a t i v e to a 2-dimensional r e a l i t y (plane of v e i n ) ; (b) p o s s i b l e geometric anisotropy of an oreshoot; and (c) determination of s c a l e on which the i n t e r p r e t a t i o n i s to be made. P r o b a b i l i t y graph a n a l y s i s of a n a l y t i c a l data f o r each metal used i n e s t a b l i s h i n g a model i s a u s e f u l means of s p e c i f y i n g thresholds that separate "high" and "low" pop u l a t i o n s . Such thresholds are u s e f u l i n i n t e r p r e t a t i o n of r e a l p r o f i l e s by i d e n t i f y i n g those samples that represent haloes f o r example, 96 or "oreshoots"':'themselves. (7) Development of a generalized model i s f a c i l i t a t e d by computer analysis of chemical data. In p a r t i c u l a r , some type of curve f i t t i n g procedure i s useful to remove some of the s u b j e c t i v i t y inherent i n manual methods. A companion study concerned with K-Ar dating of mi n e r a l i z a t i o n of Ag-Pb-Zn veins i n the Keno H i l l - Galena H i l l camp was based on the hypothesis that mineralization i n stockwork areas w i l l have re-set the radioactive clock i n the adjoining host rock. Results were not e n t i r e l y conclusive but there i s now reasonably convincing evidence that Ag-Pb-Zn m i n e r a l i z a t i o n occurred about 87 Ma ago. This age i s younger than most of the ages determined for the metamorphosed host rock and i t seems l i k e l y that m i n e r a l i z a t i o n i s rela t e d to c i r c u l a t i n g hot water systems that derived t h e i r energy from the Late Cretaceous g r a n i t i c intrusions i n the area. Such a model i s consistent with the general proposal by Boyle (1965) that metals are derived from the host rock, although the writer prefers a metal source below the present s i t e of the deposits. These r e s u l t s are also compatible with the suggestion by Blusson (1978) that metals are derived from shaly rocks. 97 REFERENCES Armstrong, R.L., 1978, Pre-Cenozoic Phanerozoic time s c a l e — computer f i l e of c r i t i c a l dates and consequences of new and in-progress decay-constant r e v i s i o n s . Am. Assoc. Petroleum Geol., Studies i n Geology No. 6 - C o n t r i b u t i o n s ' ; t o the geologic time s c a l e : e d i t e d by G.V. Cohee, M.F. Glaessver and H.D. Hedberg, pp. 73-^91. Blusson, S.L., 1978, Regional geologic s e t t i n g of l e a d - z i n c deposits i n Selwyn B a s i n , Yukon; Current Res., Part A: Geol. Surv. Canada, Paper 78-1A, pp. 77-80. Bostock, H.S., 1947, Mayo, Yukon T e r r i t o r y : Geol. Surv. Canada, Map 890 A. Boyle, R.W., 1965, Geology, geochemistry and o r i g i n of the l e a d - z i n c -s i l v e r d e posits of the Keno H i l l - G a l e n a H i l l area, Yukon T e r r i t o r y : Geol. Surv. Canada, B u l l . I l l , 302 pp. Green, L.H., 1972, Geology of Nash Creek, Larsen Creek and Dawson map-areas, Yukon T e r r i t o r y : Geol.Surv. Canada, Mem. 364. Green, L.H.,and Roddick, J.A., 1962, Dawson, Larsen Creek, and Nash Creek map-areas, Yukon T e r r i t o r y : Geol. Surv. Canada, Paper 62-7. Lee, CM., 1978, Curve f i t t i n g techniques: Computing Centre, The U n i v e r s i t y of B r i t i s h Columbia, 44.2, pp. 61-66. Leech, G.B., Lawdon, J.A., S t o c k w e l l , C.H., and Wanless, R.K., 1963, Age Determinations and G e o l o g i c a l Studies — K-Ar I s o t o p i c Ages, Report 4: Geol. Surv. Canada, Paper 63-17, pp. 51-53. McTaggart, ,.K.C. , 1960, The geology of Keno and Galena H i l l s , Yukon T e r r i t o r y : Geol. Surv. Canada, Bull'. 58. ', Poole, W.H., 1965, Mount Haldane (105M/13) and Dublin Gulch (106D/4) map-areas, i n r e p o r t of A c t i v i t i e s , F i e l d , 1964, compiled by S.E. Jenness: Geol. Surv. Canada, Paper 65-1, pp. 32-35. Reinsch, C.H., 1967, Smoothing by s p l i n e f u n c t i o n s : Numer. Math. 10, pp. 177-183. S i n c l a i r , A.J., 1974, S e l e c t i o n of threshold values i n geochemical data using p r o b a b i l i t y graphs: J . Geochem. Expl o r . 3, pp. 129-149. S i n c l a i r , A.J., 1976, A p p l i c a t i o n s of p r o b a b i l i t y graphs i n m i n e r a l e x p l o r a t i o n : Assoc. Explor. Geochemists, Spec. V o l . No. 4, 95 pp. 98 S i n c l a i r , - A.J., T e s s a r i , O.J., Vein geochemistry, an e x p l o r a t i o n t o o l i n the Keno H i l l Camp, Yukon T e r r i t o r y , Canada ( i n p r e s s ) . S i n c l a i r , A.J., T e s s a r i , O.J., Harakal, J.E., Age of Ag-Pb-Zn m i n e r a l i z a t i o n - Keno-Galena H i l l s area, Yukon T e r r i t o r y ( i n p r e s s ) . S t e i g e r , R.H., and Jager, E., 1977, Subcommission on geochronology: Conversion on the use of decay constants i n geo- and cosmochronology: Earth P l a n e t . S c i . L e t t e r s , V o l . 36, pp. 359-362. Taylor J r . , H.P., 1974, The a p p l i c a t i o n s o f oxygen and hydrogen isotope s t u d i e s to problems of hydrothermal a l t e r a t i o n and ore d e p o s i t i o n : Econ. Geol., V o l . 69, pp. 843-883. Tempelman-Kluit, D.J., 1970, S t r a t i g r a p h y and s t r u c t u r e of the Keno H i l l q u a r t z i t e i n Tombstone River-Upper Klondike R i v e r map-areas: Geol. Surv. Canada, B u l l . 180. Thompson, M., and Howarth, R.J., 1978, A new approach to the e s t i m a t i o n of a n a l y t i c a l p r e c i s i o n : J . Geochem. Ex p l o r . V o l . 9, pp. 23-30. Van T a s s e l l , R.E., 1969, E x p l o r a t i o n by overburden d r i l l i n g at Keno H i l l Mines L i m i t e d : Quarterly of the Colorado School of Mines -I n t e r n a t i o n a l E x p l o r a t i o n Symposium, 64, ( 1 ) , pp. 457-478. Wanless, R.K. , Stevens, R.D., Lachance, G.R.,.and Edmonds, CM., 1966, K-Ar I s o t o p i c Ages, Report 7: Geol. Surv. Canada, Paper 66-17, pp. 44-48. Wanless, R.K. , Stevens, R.D., Lachance, G.R. , and Edmonds, CM., 1967, K-Ar I s o t o p i c Ages, Report 8: Geol. Surv. Canada, Paper 67-2A, pp. 54-55. Wanless, R.K., Stevens, R.D., Lachance, G.R., and De l a b i o , R.N., 1971, Age Determinations and G e o l o g i c a l Studies — K-Ar I s o t o p i c Ages, Report 10: Geol. Surv. Canada, Paper 71-2, pp. 28-29. Wanless, R.K., Stevens, R.D., Lachance, G.R., and De l a b i o , R.N., 1973, Age Determinations and G e o l o g i c a l Studies — K-Ar I s o t o p i c Ages, Report 11: Geol. Surv. Canada, Paper 73-2, pp. 27. 99 APPENDIX A LOCATIONS OF SAMPLING TRAVERSES A l l sampling t r a v e r s e s used as a b a s i s f o r t h i s whole rock v e i n geochemistry p r o j e c t are l o c a t e d r e l a t i v e to survey s t a t i o n s i n the various mines. In a l l cases, a s i n g l e sample at the b e g i n n i n g i o f the sampling t r a v e r s e i s l o c a t e d p r e c i s e l y and the d i r e c t i o n along the v e i n to other samples i s i n d i c a t e d . The p o s i t i o n s of other samples i n a t r a v e r s e are i n d i c a t e d by r e l a t i v e p o s i t i o n s that are included i n data l i s t i n g s i n Appendix B. Note that such a l o c a t i o n d e f i n i t i o n does mot and cannot apply to l i s t i n g s based on rearrangement of samples i n order of decreasing s i l v e r v a lues. The f o l l o w i n g l o c a t i o n s of sampling t r a v e r s e s are i n the same order as data l i s t i n g s i n Appendix B. KENO MINE KENO MODEL - F i r s t sample (#19636) c o l l e c t e d 20 f e e t north of s t a t i o n 2021. Traverse l i n e extends northeastwards. 4-18-05-STP - Taken on l i f t #30. F i r s t sample (#14668) c o l l e c t e d 18 f e e t south of r a i s e . Sampling t r a v e r s e extends southwest-wards . 7-18-S-DR - F i r s t sample (#6640) c o l l e c t e d on the r i b of the 700 XC where the 7-18-S-DR begins. Sampling t r a v e r s e extends.'south-westwards . 2-4-S-DR - F i r s t sample (#15663) c o l l e c t e d 15 feet from the r i b of the 200 XC. Sampling t r a v e r s e extends southwestwards. 100 HUSKY MINE HUSKY MODEL - F i r s t sample (#5765) collected 28 feet south of station 59 (Tick faul t ) . Traverse l ine extends southwest-wards . 4-1-226-RSE - F i r s t sample (#680) collected 6 feet above back of Sub Drif t South. Sampling traverse extends ver t i ca l ly upwards. 2- 2-N-"A"^DR- F irs t sample (#660) collected 18 feet south of station 2165. The fourth sample (#663) coincides with station 2165. This suite of samples was collected from south to north. 3- 1-208-RSE - F ir s t sample (#690) taken at botton of raise. Sampling traverse extends vert ica l ly upwards. NO CASH MINE NO CASH MODEL - F i r s t sample (#7230) collected 17 feet south of station 3011. Sampling traverse extends southwestwards. 5-66-S-DR (a) - F ir s t sample (#924) collected 3 feet south of station 500";D. Sampling traverse extends southwestwards. 5-66-S-DR (b) - F ir s t sample (#2130) taken 45 feet south of station 500 J . Sampling traverse extends southwestwards. 2-67-115-STP - Taken on l i f t #6. F ir s t sample (#938) collected 6 feet south of raise. Sampling traverse extends south-westwards. 101 APPENDIX B LISTINGS OF ANALYTICAL DATA AND  RELATIVE LOCATIONS FOR SAMPLES Listings are in the same order as are detailed locations in Appendix A. In addition to '.'real order" l i s t ings of data for suites used in zoning model development these same data are reproduced, for convenience, in order of decreasing s i lver contents. 102 KGNO-MODEL (OR IG INAL F I L E ) I D . DIS. 19636 0.0 19643 6.000 70716 12.800 19703 19.000 19 721 32.000 19727 43.000 19733 49.5 00 1973 5 55.500 19738 61.500 19747 68.000 19751 73.000 19758 8 0.0 00 19766 86.000 19773 92.000 19775 97.500 19786 104.000 1225 108.000 19794 114.000 6354 120.500 6358 126.500 6364 133.000 6369 144.000 6447 171.000 6458 183.500 6463 190.000 6470 19 8.000 6484 211.000 18954 224.500 18759 231*000 8965 238.500 18968 245.000 864 258.000 6503 268.000 6507 278.000 6511 285.000 6518 290.000 6520 303.000 6525 310.000 6531 317.000 6533 324.500 6540 329.000 6548 336.000 6552 342.500 6560 354.500 6568 369.000 19788 375.000 66020 381.200 6606 38 7.000 6611 393.500 6622 400.000 6624 406.500 6629 412.000 6633 418.500 A G P B 0.100 0.160 0.100 0.040 3.000 0.640 0.500 0.240 12. 75 0 1.000 1.700 0.700 0.550 0.190 8.000 1.700 0.300 0.120 0.500 0.200 0.0 0.070 0.0 0.030 0.0 0.030 0.800 0.300 1.000 0.110 0.833 0.2 80 0.450 0.240 0.500 0.170 0.0 0.030 0.0 0.030 0. 0 0. 040 0.750 0.490 17.000 6.950 2.200 0.680 0.450 0.250 0.65 0 0.440 52.500 21.900 37.500 15.100 1.600 1.600 0.0 0.040 0.300 0.060 0.0 0.090 2.200 1.650 0.0 0.0 0.0 0.0 0.0 0.100 0.100 0.100 0.600 0.340 0.0 0.020 0.375 0.140 0.0 0.070 0.400 0.160 0.0 0.040 0.100 0.100 0. 03 0 0.120 123.200 26.600 34.500 4.350 1.950 0.515 3.000 0.660 0.85 0 0.2 80 0.0 0.050 1.200 0.300 0.500 0.2 50 ZN CD 0.220 17.374 0.600 46.722 1.700 117.308 0.060 26.453 1.875 301.535 0.360 115.245 0.375 45.192 0.780 129.611 0.090 16.753 0.170 27.819 0.720 85.032 0.570 84.382 0.600 71.520 0.400 38.201 0.680 48.582 1.660 269.316 0.460 58.278 0.560 119.980 0.080 28.904 0.240 30.531 0.380 48.478 0.615 144.621 0.200 95.124 2.300 332.961 0.160 42.832 0.380 77.593 0.240 93.812 0.480 97.966 2.400 479.326 0.160 63.316 0.0 6.435 0.780 52.782 2.450 197.160 0.0 3.188 0.0 10.708 0.130 15.035 0.120 10.641 0.420 47.388 0.080 10.226 0.310 47.346 0.240 10.306 0.220 22.152 0.140 5.580 0.240 24.152 0.160 25.096 0.675 139.781 1.500 305.247 0.155 25.579 1.100 70.364 0.840 75.535 0.360 41.806 0.200 20.691 0.130 26.344 103 74904 440.000 6496 445.000 19783 452.000 6500 457.000 7004 465.000 7030 470.000 7035 477.000 18974 492.000 18257 532.000 18277 538.000 18300 561.000 6601 574.000 18355 580.000 18364 585.000 18387 597.000 6795 637.000 6804 643.000 0.0 0.040 0.0 0.0 0.0 0.020 0.0 0.320 0.0 0.020 23.500 11.400 10.500 3.100 2.500 1.700 68.000 25.200 0.300 0.230 4.800 1.150 1.600 0.850 1.50-0 1.050 50.400 28.800 1.200 1.400 2.000 0.520 0.650 0.040 0.180 26.086 0.160 14.62 3 0.020 10.790 0.240 20.702 0.070 17.454 0.070 18.944 0.140 12.892 0.040 11.997 2.400 295.357 0.360 69.452 9.500 1386.546 1.200 141.702 0.920 119.624 0.425 61.950 0.020 3.384 10.050 1076.283 1.200 122.007 KENO-MODEL {ORIGINAL FILE) 104 CO 72.084 15.433 46.996 48.768 56.39% 18.630 14.802 15.162 33. 295 48.768 73.02 8 2 5.292 27.445 26.367 25.715 33.801 61.838 33.938 83.720 48.768 49.968 36.777 24.010 12.133 31.802 28.165 6.013 17.692 46.554 3 2. 157 30.318 17.692 31.792 53.804 148.705 3 5.475 26.831 21. 196 95.374 49.807 25.937 34.245 27.101 20.248 22.420 11.810 22.089 22.120 50.101 33.435 16.994 18.094 6 0.939 MN 0.058 0.587 0.515 0.017 2.080 0.026 0.368 0.122 0.638 0.653 2.907 3.240 3.240 2. 964 1.712 1.483 0.042 0.360 0.072 1.938 0.169 2.767 0.507 1.817 0.007 0.358 1.642 0.831 1.331 0.114 0.038 0.566 0.119 0 . 0 1 1 0.016 1.132 0.370 0. 821 0.126 0.285 1.198 0.653 0. 297 0.231 0.426 1.317 0.603 0.322 1.575 0.936 0.476 0.217 0.067 FE 1.436 15.364 6.339 6. 339 10.126 1 1 . 5 9 2 4.070 12.00 5 1 1 . 9 1 6 9.088 1 1 . 1 0 8 6.916 10.607 7.3 83 10.722 5.053 2.740 10.911 1.884 10.154 2.991 1 1 . 1 3 0 4.110 15.166 3.963 3.645 5.578 4.215 7.518 0. 73 8 0.163 2.474 1.598 0.460 0.149 4.453 1.835 4.674 0. 471 5.934 3.474 3.621 1. 879 1.649 2.658 3. 941 5.047 10.287 11.669 2.474 2.150 4.811 5.386 CU 17.143 20.922 92.571 18. 286 419.048 3 2.630 63.80 2 174.276 36.247 2 5.905 5.333 12.082 15.636 25.941 270.684 124.029 32.131 11.956 3.736 5.3 33 17.768 24.897 58.284 104.566 10.088 10.305 90.415 292.931 6.476 4. 264 5.5 62 5.191 157.068 2.242 1.890 3.736 6.725 19.282 2.286 7.286 2.989 7.099 2.225 11.495 4.820 1800.000 479.733 15.574 16.762 10.382 15.636 25.214 18.667 NI 7.675 29.639 3 2.951 5.506 19.406 11.627 11.563 12.221 11.016 14.593 39.787 32.650 28.960 26.225 35.441 13.510 3 2.302 7.601 8.921 18.474 8.730 8.218 13.711 11.008 7.806 3.929 10.738 4.582 5.273 4.305 2 6.237 6.959 3.017 1.814 11.6 31 20.179 19.143 2.435 13.625 2 2.759 16.350 19.447 24.059 24.990 12.372 10.935 34.797 10.800 18.838 25.621 20.364 4.274 CA 12.929 7690. 824 135.758 0.0 42.02 0 3.721 18.605 7.442 22.311 16.162 38.788 130.677 50.996 63.745 96.744 38.647 1352.657 30.918 23.188 25.859 35. 060 8 1 . 1 5 9 19.324 18.605 15.459 6.375 23.188 40.930 9.697 35.060 52.093 24186.063 19.124 19.324 123.672 54.106 65.701 16744.184 48.485 6 02.391 2125.604 714.976 498.605 7. 442 9488.379 156.279 12.749 349.768 420.202 7 367.445 325.100 78.140 25.859 105 36.401 48.048 71.379 57.293 39.727 17.012 10.698 29.249 31.404 33.938 66.937 22.537 14.388 9.635 63.551 12.663 65.544 0.286 0.165 0. 071 0.041 0.044 4,926 6.148 0.193 4.967 0.877 0.549 0.790 7.789 5.187 0.531 0.527 0.168 1.610 0.925 1.410 2.048 0.981 15.070 19.611 0.757 18.065 2.495 1.582 2.251 19.393 14.56 3 1.695 2.243 0.712 3.736 2.843 12.246 44.952 6.396 287.682 233.6 04 37.668 600.000 7.846 198.095 47.449 11.371 149.612 4.820 70.361 29.714 1 8.259 16.132 24.757 40.133 8.939 8. 527 13.413 7.241 1 7. 791 7.909 8.921 15.400 13.521 30.483 8.676 28.960 10.4 86 46.377 172.112 792.271 148.687 12.749 57.971 446.512 73.307 22.626 46.377 643.233 10 2 80.195 86.056 2716.282 163.721 30131.500 30121.250 106 KENO-MODEL (ORIGINAL FILE) MG HG BA F MO SR 37.011 13777.770 140.0 75.0 145 .0 3. 0 140.0 543.772 2000.0 625.0 590 .0 4. 0 70.0 21.352 610.0 75.0 48 .0 2. 0 10.0 2391.459 2600.0 25. 0 37 .0 2. 0 20.0 11.252 1000.0 25.0 42 .0 < 3. 0 20.0 45.007 250.0 125.0 110 .0 2. 0 30.0 33.755 1400.0 125.0 116 .0 3. 0 30.0 80.483 290.0 300.0 273 .0 •5 c . 0 50.0 446.975 95.0 200.0 168 .0 3. 0 30.0 3245.552 50.0 125. 0 120 .0 1. 0 20.0 1971.831 10.0 100.0 3 .0 1. 0 20.0 619.718 55.0 325.0 173 .0 1. 0 20.0 1931.590 445.570 180.0 200.0 185 .0 2. 0 20.0 755.555 260.0 150. 0 105 .0 4. 0 50.0 426.667 555.0 75.0 42 .0 3. 0 30.0 288.889 555.0 475.0 273 .0 4. 0 60.0 26.667 40.0 50. 0 53 .0 1. 0 10.0 1879.004 35.0 125.0 48 .0 4. 0 20.0 56.338 70.0 425.0 262 .0 1. 0 40.0 3288.889 460.0 400. 0 218 .0 3. 0 60.0 229.630 660.0 25.0 61 .0 1. 0 20.0 310.549 2100.0 100.0 42 .0 3. 0 20.0 81.481 380.0 375.0 198 .0 1. 0 20. 0 56.338 585 .0 325.0 189 .0 2. 0 30.0 2592.592 290.0 100. 0 48 .0 3. 0 20.0 146.273 565.0 75.0 20 .0 1. 0 40.0 661.922 24.145 36.006 40.0 75.0 8 .0 1. 0 20. 0 506.329 155 .0 250.0 115 .0 3. 0 110.0 19.316 4000.0 100. 0 31 .0 2. 0 30.0 8.889 130.0 25.0 3 .0 1. 0 20.0 22.222 10.0 25.0 3 .0 1. 0 10.0 565.926 105.0 200.0 37 .0 2. 0 40.0 333.333 75.0 375.0 61 .0 2. 0 50.0 760.619 133.808 93.360 5007.406 2044.444 117,018 0.0 603.094 119.269 83.702 137.271 2035.587 760.619 313.883 56.259 0.0 274.074 160.966 4918.516 395.729 9.658 1955.556 3375.527 144.869 3 743.773 585.185 2234.875 3185.184 2156.942 675.106 303.797 4796.781 2960.854 108 KENO-MODEL C ORIGINAL F I L E ) 8 SE AS V SB 81 15.0 5.0 312000.0 3.0 285.0 1.0 344.0 10.0 2550.0 28.0 170.0 10.0 36.0 15 .0 8400.0 6.0 28.0 5.0 59.0 20.0 6000. 0 10.0 360.0 1.0 32.0 25.0 210000.0 3.0 350.0 10. 0 235.0 2.0 8800.0 4.0 55 . 0 1.0 192.0 15.0 45 000. 0 10.0 385.0 5.0 178.0 8.0 1450.0 15.0 20.0 1.0 165.0 10.0 2200.0 6.0 50.0 5.0 180.0 15.0 1150.0 5.0 35.0 5.0 171.0 15.0 1200.0 7.0 30.0 10.0 240. 0 20.0 1100.0 4.0 30.0 5.0 120.0 20.0 2500.0 6.0 170.0 10.0 180.0 20.0 3 000. 0 3.0 210.0 25.0 154.0 15.0 900.0 2.0 55.0 10.0 293.0 10.0 6 300.0 8.0 95.0 30.0 54.0 5.0 380.0 3.0 1.0 1.0 34.0 5.0 570.0 5.0 1.0 15.0 105.0 2.0 2000.0 4.0 25.0 15.0 218.0 1.0 630.0 11.0 2.0 1.0 33.0 50.0 4150.0 3.0 760.0 45.0 25.0 35.0 6600.0 5.0 120.0 40.0 177.0 40.0 1900.0 3.0 25.0 15. 0 348.0 30.0 2480.0 4.0 50.0 40.0 24.0 10.0 21. 0 5.0 1600.0 45.0 52.0 5.0 600.0 7.0 735.0 1130.0 2.0 5.0 78.0 3.0 1.0 20.0 167.0 2.0 370.0 4.0 30 .0 10.0 12.0 10.0 , 1 750. 0 4.0 1400.0 130.0 10.0 5.0 111.0 6.0 1.0 1.0 5.0 5.0 5.0 5.0 1.0 1.0 176.0 15.0 . 300.0 7.0 3.0 10.0 150.0 15.0 350 . 0 8.0 1.0 5.0 109 KENO-MOD I D . AG PB 6484 52.500 21.900 18954 37.500 15.100 6447 17.000 6.950 19721 12.750 1.000 19735 8.000 1.700 70716 3.000 0.640 6503 2.200 1.650 6458 2.200 0.680 19727 1.700 0.700 19775 1.000 0.110 19786 0.833 0.280 1973 8 0.800 0.120 6369 0.750 0.490 6470 0.650 0.440 19733 0.550 0.190 19703 0.500 0. 240 19747 0.500 0.200 19794 0.500 0.17 0 6463 0.450 0.250 1225 0.450 0.240 18968 0.300 0.060 6520 0.100 0.100 19643 0.100 0.040 6518 0.0 0. 100 864 0.0 0.090 19751 0.0 0.070 6364 0.0 0.040 19766 0.0 0.03 0 19758 0.0 0. 03 0 6358 0.0 0.030 6354 0.0 0.030 6507 0.0 0.0 6511 0.0 0.0 EL <4-18-N-0RI B l SB CU 45.000 1600.000 90.415 1130.000 735.000 292.931 45.000 760.000 58.284 1.000 360.000 419.048 5.000 385.000 174.276 10.000 170.000 92.571 130.000 1400.000 157.068 40.000 120-000 104.566 10.000 350.000 32.630 10.000 170.000 270.684 25.000 210.000 124. 029 1.000 20.000 36.247 1.000 2.000 24.897 40.000 50.000 10.305 1.000 5 5.000 63.802 5.000 2 8.000 18.286 5.000 50.000 25.905 30.000 95.000 11.956 15.000 25.000 10.088 10.000 55.000 32.131 20.000 1.000 5.562 5.000 1.000 6.725 1.000 285.000 20.922 10.000 3.000 3.736 10.000 30.000 5.191 5.000 35.000 5.333 15.000 25.000 17.768 5.000 30.000 15.636 10.000 30.000 12.082 15.000 1.000 5.333 1.000 1.000 3.736 1.000 1.000 2.242 1.000 1.000 1. 890 110 KENO-MODEL (4-18-N-DR) ZN 0.240 0.480 0.200 1.875 0.780 1.700 2.450 2.300 0.360 0.680 1.660 0. 090 0.615 0.380 0.375 0.060 0.170 0.560 0. 160 0.460 0.0 0.120 0.600 0.130 0.780 0.720 0.380 0.600 0.570 0.240 0.080 0.0 0.0 CD 93.812 97.966 95.124 301.535 129.611 117.308 197.160 332.961 115.245 48.582 269.316 16.753 144.621 77.593 45.192 26.453 27.819 119.980 42.832 58.278 6.435 10.641 46.722 15.035 52.782 85.032 48.478 71.520 84.382 30.531 28.904 3.188 10.708 HG 290.000 565. 000 66 0.000 2600.000 1400.000 2000.000 4300.000 2100.000 1000.000 180.000 260.000 290.000 460.00 0 585.000 250.000 610.000 95.000 555. 000 380.000 555.000 40.000 75.000 140. 000 105.000 155.000 5 0.000 70.000 55.000 10.000 35.000 40.000 130.000 10.000 CA 23.188 40.930 19.324 42.0 20 7. 442 13 5.758 19.124 18.605 3.721 96.744 38.647 22.311 81.159 6.375 18.605 0.0 16.162 30.918 15.459 1352.657 5 2.093 65.701 7690.824 54.106 24136.063 38.788 35.060 50.996 130.677 25.859 23.188 19.324 123.672 SR 20.000 40.000 20.000 20.000 3 0.000 70.000 30.000 20.000 20.000 20-000 50.000 50.000 60.000 30.000 30.000 10.000 30.000 60.000 2 0.000 30.000 2 0.000 50.000 140.000 40.000 110.000 20.000 40.000 20.000 2 0.000 20.000 10.000 20.000 10.000 MG 2 592.592 146.273 229.63 0 2391.459 33.755 543.772 19.316 310.549 11.252 445.570 755.555 80.483 3288.889 56.338 45.007 21.352 446.975 288.889 81.481 426.667 36.006 333.333 13777.770 565.926 506.329 3245.552 56.33 8 619.718 1971.831 1879.004 26.667 8. 889 22.222 I l l KENO-MODEL (4-18-N-DR) FE MN NI • F B V 5.578 1.642 3.929 48.000 24.000 5.000 4.215 0.831 10. 73 8 20.000 52.000 7.000 4.110 0.507 8.218 61.000 33.000 3.000 10.126 2.080 19.406 37.000 59.000 10.000 12.005 0.122 12. 221 116.000 192.000 10.000 6.339 0.515 32.951 590.000 344.000 28.000 1.598 0.119 6.95 9 31.000 12.000 4.000 15.166 1.817 13.711 42.000 25.000 5.000 11.592 0.026 11.627 42.000 32.000 3.000 10.722 1.712 3 5.441 18 5.000 120.000 6.000 5.053 1.483 0.0 105.000 180.000 3.000 11.916 0.638 11.016 273.000 178.000 15.000 11.130 2.767 8.73 0 218.000 21 8.000 11.000 3 . 645 0.358 7.806 189.000 34 8.000 4.000 4.070 0.368 11.563 110.000 235.000 4.000 6.339 0.017 5.506 48.000 36.000 6.000 9.088 0.653 14.593 168.000 165.000 6.000 10.911 0.360 32.302 273.000 293.000 8.000 3.963 0.007 11.008 198.000 177.000 3.000 2.740 0.042 13.510 42.000 154.000 2.000 0.163 0.038 4.30 5 8.000 2.000 3.000 1. 835 0.370 20.179 61.000 150.000 8. 000 15.364 0.587 2 9.63 9 145.000 15.000 3.000 4.453 1.132 11.631 37.000 176.000 7.000 2.474 0.566 26.237 115.000 167.000 4.000 11.108 2.907 3 9.787 120.000 180.000 5.000 2.991 0.169 18.474 262.000 105.000 4. 000 10.607 3.240 28.960 173.000 240.000 4.000 6.916 3.240 32.650 3.000 171-000 7.000 10.154 1.938 8.921 48.000 34.000 5.000 1,884 0.072 7.601 53.000 54.000 3.000 0.460 . 0.011 3.017 3.000 10.000 6.000 0.149 0.016 1.814 3.000 5.000 5.000 K E N O - M O D E L ( 4 - 1 8 - N - D R ) BA AS 100.000 21.000 75.000 600.000 25.000 4150.000 25.000 6000.000 125.000 45000.000 625.000 2550.000 100.000 1750.000 100.000 6600.000 25.000210000.000 200.000 2500.000 150.000 3000.000 300.000 1450.000 400.000 630.000 325.000 2480.000 125.000 8800.000 75.000 8400.000 200.000 2200.000 475.000 6300.000 375.000 1900.000 75.000 900.000 75.000 78.000 375.000 350.000 75.000312000.000 200.000 300.000 250.000 370.000 125.000 1150.000 425.000 2000.000 325.000 1100.000 100.000 1200.000 125.000 570.000 50.000 380.000 25.000 111.000 25.000 5.000 M O S E C O 3.000 10.000 6. 013 1.000 5.000 17.692 1.000 50.000 24.010 2.000 20.000 56.394 3.000 15.000 15.162 4.000 10.000 46.996 2.000 10.000 31.792 3.000 35.000 12.133 3. 000 25.000 18.63 0 2.000 20.000 25.715 4.000 20.000 33.801 2.000 8.000 33.295 3.000 1.000 36.777 2.000 30.000 28.165 2.000 2.000 14.802 2.000 15.000 48.768 3.000 10.000 48.768 4.000 10.000 3 3.938 1.000 40.000 31.802 3.000 15.000 61.838 1.000 5.000 30.318 2.000 15.000 26.831 3.000 5.000 15.433 2.000 15.000 35.475 3. 000 2.000 17.692 1.000 15.000 73.028 1.000 2.000 49.968 1.000 20.000 2 7.445 1.000 15.000 25.292 4.000 5.000 48.768 1.000 5.000 83.720 1.000 5.000 53.804 1.000 5.000 148.705 113 4-18 10. OIS. W I . 14668 0.0 12.000 14680 29.000 10.000 15665 53.000 10.800 15684 60.000 7.900 97 3 65.000 8.400 15557 74.000 9.600 988 79.000 7.200 99 8 8 7.000 6.000 48127 92.000 5.500 48134 98.000 7.000 48139 103.000 7.500 CO CO MN 63.00 0 43.000 0.070 79.000 1.000 0.145 92 .000 57.000 0.027 51.000 1.000 0.017 121.000 I. 000 0.016 137.000 78.000 0.055 229.000 17.000 0.203 105.000 1.000 0.455 41.000 I. 000 0.585 137.00 0 169.000 0.688 79.000 1.000 0,599 CA MG 0.007 0.008 0.004 0.005 0.012 0.012 0.012 0.003 0.016 0.017 0.012 0.014 0.006 0.017 0.011 0.040 0.020 0.010 0.020 0.013 0.019 0.005 05-STP AG PB ZN 39.500 22.616 0.299 152.600 38.389 0. 253 68.100 26.173 0. 168 46.000 36.855 0. 107 108.600 43.878 0.141 109.400 27.160 0.254 96.800 26.946 0.288 58.600 13.037 0. 314 10.900 3.654 0.366 44.800 10.121 0.307 29.600 7.490 0.562 FE CU NI 4.220 652.000 1.000 4. 060 1388.000 1.000 2.946 527.000 1.000 1.238 250.000 34.000 1.410 1078.000 40.000 3.017 508.000 85.000 4.190 1039.000 53.000 3.798 1108.000 30.000 2.812 441.000 103.000 2.454 604.000 16.000 1.412 282.000 12.000 114 7-18-S-DR ID. DIS. WI . AG PB ZN 6640 0.0 3.800 0.100 0.245 0.213 6639 35.000 2 .400 15.800 0.046 10.583 15673 52.000 4.100 4.500 0.045 2.899 15683 60.000 3.000 0. 100 0.03 9 1. 928 15687 65.000 6.400 0.500 0.027 1.328 15696 78.000 7.600 0.100 0.223 1.262 15551 85.000 3.800 3. 500 0.280 1.099 15554 116.000 5.000 0.100 0.180 0.240 2144 132.000 11.000 0. 100 0.052 1.399 15565 145.000 9.000 0.400 0.140 0. 379 15740 155.000 8.000 0. 100 0.078 2.957 15569 169.000 5. 100 0.500 0.050 2.757 15741 184.000 6.500 0. 100 0.067 0.442 15576 19 5.000 8.000 0. 100 0.049 0.491 1557 8 201.000 4.000 1.300 0.131 0.461 48133 207.000 5.200 0.900 0.045 0. 685 115 7-18-S-DR CD CO MN FE CU NI 25.300 12.300 0.410 1.790 10.100 34.000 1202.700 6.900 1.380 5.330 740.900 5 5.000 374.900 9.100 0.870 3,830 212.000 31.200 613.400 9.200 0.800 2.550 10.700 27.600 164.100 16.100 0.730 2.450 17.600 45.600 30.200 9.900 1.110 3.290 6.400 15.800 128.500 8.000 2.090 5.400 43.400 29.200 25.600 6.300 2.300 4.810 27.100 25.000 161.200 4.200 1. 140 2.450 14.300 2 0.700 46.200 7.100 0.860 2.430 21 .300 16.300 338.200 14.100 1.240 3.550 23.200 21.200 2 76. 700 10.400 1.140 2.610 30.200 22.000 35.700 12. 100 2.390 5. 890 16.800 44.000 51.700 4.400 1.580 4.800 2 4,300 92.700 51.200 15.100 1.490 3.740 572.600 38.600 85.600 4.000 1 .440 4.040 11.400 30.000 116 7-18-S-DR CA MG HG 0.250 0.292 110. 0.310 0.255 8000. 0.33 7 0 . 142 2239. 1 .130 0.195 885. 3.614 0.201 570. 0.667 0.146 450. 0.684 0.322 547. 8.002 0.442 106. 10.10 i 0.281 584. 4.767 0.216 198. 1.389 0.32 3 1440. 1.439 0.257 850. 9.63 0 0.468 323. 9.058 0.338 149. 3.022 0.256 130. 17.059 0.450 212. 117 •10. DIS . 15663 0.0 15664 12.000 15688 38.000 15698 45.000 15553 52.000 99 7 59.000 15556 66.000 15564 74.000 2146 82.000 15566 89.000 15744 94.000 15575 102.000 15580 109.000 48132 117.000 15582 L33.000 2-4-S-DR WI . AG 0.500 0.600 0.500 0. 100 0.500 0.500 1.200 1.200 1.800 8.000 0.500 0.100 1.000 0.100 1.400 0.100 0.500 0. 100 1 .000 0.300 0.600 0.100 0.300 0.100 0.500 0.600 0.300 0. 100 0.400 0. 100 PB ZN 0.107 0.070 0.197 0.008 0.029 0. 195 0.104 0.049 0.009 0.014 0.034 0.009 0.053 0.084 0.138 0.015 0.025 0.020 0.062 0.016 0.020 0.018 0.049 0.0 27 0.042 0.025 0.021 0.009 0.076 0.039 118 2-4-S CO CO M N 6.500 34.400 0.220 1.100 8.700 0.035 28.400 0.200 0. 96 0 7.000 9.400 0.410 1.400 0.200 0.070 0.400 8.800 1.240 12.000 1.900 0.200 2.300 0.200 0.310 2.500 0. 200 0.150 1.800 11.600 0. 540 2.200 5.600 0.120 0.900 19.800 0.120 2.600 16.600 0 .440 0. 100 4.200 0.240 4.100 12.200 0.690 OR FE CU NI 9.860 18 3.900 76.700 1.285 29.850 19.550 3. 500 15.100 12.500 1.810 18.000 9.500 0.390 57.600 13.100 4.220 14.100 2. 100 1. 140 23.200 16.000 1.380 19.100 13.000 0.600 17.700 9. 300 2. 570 15.950 6.650 14.270 15.300 17. 600 0.940 19.100 7.700 1.800 45.200 14.600 1.870 10.000 10.500 2.690 16.700 6.700 119 2-4-S-DR C A M G H G 6.499 1.333 88. 3.134 0. 845 166. 9.697 2.341 78. 6.783 0.897 105. 0.242 0.027 170. 13.185 2 .756 105. 5.166 0.452 140. 5.046 0. 801 200. 6. 774 0.640 60. 9.007 1. 864 52. 7.860 2. L82 105. 5.724 0.966 37. 6.607 0. 673 62. 7,794 1.870 63. 12.681 1 .667 24. 120 H U S K Y -•MODEL (ORIGINAL FILE) D . OIS. WI . AG PB ZN 5765 0.0 2.200 2.200 0.680 0. 055 5782 9.000 1.100 1.400 0.120 0. 081 5785 13.000 2.400 3.600 0.078 0.031 5790 24.500 2.400 6.500 3.990 0.140 5795 28.500 3.800 23.000 11.218 0.056 5808 31.000 3.900 44.900 4.060 0.041 5812 35.000 4.500 52.200 4.877 0.06 7 5820 40.000 4.200 84.500 10.639 0. 108 5824 43.500 3.200 55.500 0. 517 0.141 5828 46.500 2.500 59.000 0.186 0.057 5834 50.500 2.200 23.000 0-118 0.033 5841 56.000 2.800 16.000 0.365 0.089 5 845 59.500 2.200 4.200 0.226 0.04 2 5849 63.000 2. 600 28. 500 1.111 0.02 5 5850 65.500 1.500 5.000 7.055 0.044 5857 70.000 1.100 3.200 0.407 0.046 5868 74.000 1.600 3.000 0. 189 0. 031 5875 78.000 3.500 3.000 0.514 0. G17 5883 82.000 0.900 7.700 1.679 0.012 5890 85.500 1.100 5.600 2. 233 0.013 5 897 8 9.0 00 2.400 22.000 0.188 0.014 5913 93.000 3.900 3. 700 0.168 0.015 5919 98.000 4.000 9.000 0.742 0. 018 5923 102.500 5.000 16.700 0.659 0.012 5928 106.500 3.000 3.900 0.092 0. 006 5933 111.500 2.800 88.200 6.343 0.071 5938 117. 500 1.700 9.800 0.245 0.083 5945 122.500 1.500 172.600 2. 36 2 0. 212 5952 12 8.000 1.200 26.600 7.561 0.144 5966 133.500 3.400 1.600 0.225 0.098 5975 139.500 3.800 5.000 0.034 0.003 5978 143. 50 0 7.500 3.400 0.020 0.007 5984 148.500 7.300 " 8.100 0.017 0.017 5*5 86 15 3.0 00 7.300 1.400 0.034 0. 005 5994 159.500 3.3 00 0.200 0.019 0.002 121 HUSKY-MODEL (OR IG INAL F I L E ) CD CO MN FE CU NI 79.100 0. 200 0.142 7.278 47,500 63.500 11.600 0.200 0.737 5.712 38.800 92.300 30.500 0.200 0.195 6.538 100.200 24.400 47.000 19.3 00 1.862 7.171 288.100 44.100 20.800 0.200 0.268 7.885 1420.100 66.400 13.100 0. 200 2.372 12.245 3856.600 14.700 10.700 0.200 2.880 7.978 1558.500 46.900 40.400 0.200 0.150 10.388 9166.801 50.500 48.700 14.000 0.217 12.300 5285.602 37.300 75.500 20.300 6.20 6 12.181 382.900 21.700 5.300 0.200 4.433 10.960 150.000 9.200 219.100 0.200 1.333 12.654 834.900 54.900 14.600 0.200 4.52 9 12.116 74.800 0.200 11.400 0.200 0.095 10.322 1959.400 91.600 8.500 17.900 2.808 10.323 396.800 37.200 7.900 35.200 1.099 16.545 57.900 77.700 15.700 0. 200 1.104 5. 659 51.500 21.300 5. 100 0.200 0.197 4.711 27.700 62.900 0.100 0.200 4.048 9.395 36.500 48.500 3.300 0.200 0. 813 6.494 110.500 26.300 0.100 16.800 0.724 5.999 516.400 27.500 6. 300 0. 200 2.226 7.703 41.300 40.100 9.400 0.200 3.045 6.231 86.100 25.100 3.500 0.200 3.272 5.616 107.400 36.500 2. 900 0.200 5.606 7.166 38.300 6.600 13.700 0.200 0.357 10.182 5669.602 42.200 13.300 20.700 4.659 12.097 173.800 62.000 30.100 0.200 5. 294 6.491 387.500 33.600 23.300 0.200 2.403 6.293 303.300 24.700 8. 200 34.400 0.247 0.785 9.000 17.500 4.000 0.200 0.307 1.032 5. 200 7.100 0.100 0.200 0.751 0.951 12.400 25.400 8. 100 0.200 0. 109 0.918 11.900 0.200 3.200 11.500 0.057 0.713 10. 000 28. 200 0.100 22.200 0.051 0.549 15.000 13.700 122 HUSKY-MODEL (ORIGINAL FILE) CA MG HG 0. 034 0.010 3000.000 0.180 0.032 520. 000 0.063 0.010 1640.000 0.3 37 0, 103 195. 000 0.062 0.013 190.000 0.182 0.051 360.000 0.038 0.009 535. 000 0.018 0.006 1590.000 0.043 0.0.11 2260.000 0.461 0.729 1930.000 0.356 0.487 165.000 0.089 0.024 1 07 0.000 0.333 0.359 475.000 0.073 0,019 640.000 0.175 0.043 500. 000 0.165 0.087 805.000 0.155 0.110 430.000 0,034 0.008 1195.000 0.360 0.394 500.000 0. G88 0.070 75.000 0.094 0.033 540.000 0.161 0.054 790.000 0.304 0.23 2 465.000 0.377 0.427 60.000 0.458 0.487 10.000 0.270 0.222 140.000 0.367 0.234 37.000 0.339 0.182 60.000 0.034 0.214 75.000 0.046 0.029 20.000 0.041 0.045 3 5.000 0.089 0.103 26.000 0.185 0.080 15.000 0.214 0.181 23.000 0.421 0.269 24.000 125 165 350 275 132 5 1600 950 3850 32 00 1350 200 1575 245 495 190 110 230 65 125 100 60 120 510 190 40 3175 675 225 170 35 10 20 25 25 105 AU .000 .000 .000 .000 .000 .000 .000 .OOC .000 .000 .000 .000 .OOC .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .0 00 .000 .000 .OOC .000 .000 .000 .000 .000 .000 BA 175.000 300.000 800.000 175.000 200.000 125.000 175.000 150.000 150.000 250.000 225.000 200.000 100.000 300.000 275.000 550.000 300.000 175.000 325.000 325.000 400.000 475.000 132 5.000 9250.000 1125.000 13500.000 8250.000 2500.000 30000.000 18000.000 2450.000 7750.000 2600.000 575.000 925.000 SN 8.000 14.000 16.000 24.000 9 0.000 96.000 55.000 26.000 40.000 5.000 2 3.000 27.000 4.000 70.000 5.000 7.000 10.000 5.000 18.000 4.000 75.000 8.000 8.000 5.000 4.000 140.000 16 0. 000 28.000 32.000 26.000 5,000 9.000 6.000 14.000 17. 000 123 HUSKY-MODEL ( O R I G I N A L F I L E ) F 50.000 219.000 173.000 72.000 86.000 12.000 78.000 69.000 104.000 72.000 85.000 126.000 78.000 110.000 121.000 240.000 142.000 59.000 110.000 197.000 161.000 62.000 97.000 150.000 59.000 38.000 97.000 62.000 50.000 62.000 168.000 121.000 97.000 104.000 59.000 124 HUSKY-MODEL (4-1-S-DR) D. S.« WI. AG PB ZN 5945 1 1.500 172.600 2.362 0.212 5933 2 2 . 800 88.200 6.343 0. 071 5820 3 4.200 84.500 10.639 0. 108 5£28 4 2.500 59.000 0.186 0.057 5824 5 3.200 55.500 0.517 0. 141 5612 6 4.500 52.200 4. 877 0.067 5808 7 3.900 44.900 4.060 0.041 5849 8 2.600 28.500 1.111 0.025 5952 9 1.200 26.600 7.561 0. 144 579 5 10 3.800 23.000 11.218 0.056 5834 11 2.200 23.000 0.118 0.033 5897 12 2.400 22.000 0.188 0.014 5923 13 5.000 16.700 0.659 0.012 5841 14 2.800 16.000 0.365 0.089 5^38 15 1.700 9.800 0.245 0.083 5919 16 4.000 9.000 0.742 0. 018 5984 17 7.300 8.100 0.0.17 0.017 5883 18 0.900 7.700 1.679 0.012 5790 19 2.400 6.500 3.990 0. 140 5890 20 1.100 5.600 2.233 0.013 5850 21 1.500 5.000 7.055 0. 044 5975 22 3. 800 5.000 0.034 0.003 5845 23 2.200 4.200 0.226 0.042 5928 24 3.000 3.900 0.092 0.006 5913 25 3.900 3.700 0.168 0. 015 5785 26 2.400 3.600 0.078 0.031 5978 27 7.500 3.400 0.020 0.007 58 57 28 1.100 3.200 0.407 0. 046 5875 29 3.500 3.000 0.514 0.017 5868 30 1.600 3.000 0.189 0.031 576 5 31 2.200 2.200 0.680 0.055 5966 32 3.400 1.600 0.225 0. 098 5782 33 1.100 1.400 0.120 0.081 5986 34 7.300 1.400 0.034 0.005 5994 35 8.300 0.200 0.019 0.002 125 HUSKY-MODEL 14-1-S-DR) c c CC MN CU NI 30. IOC 0.2 00 5.294 6.491 387.500 33.600 13.700 0.200 0.357 10.182 5669.602 42.200 40.40C 0.200 0.150 10.388 9166.801 50.500 75.500 20.300 6.206 12. 181 382.900 21.700 4 8.700 14.000 0.217 12.300 5285.602 37.300 10.700 0.200 2.880 7.978 1558.500 46.900 13.100 0.200 2.372 12.245 3856.600 14.700 11.400 0.200 0.095 10.322 1959.400 91.600 23.300 0.200 2.403 6.293 303.300 24.700 20.80C 0.200 0.268 7.885 1420.100 66.400 5.300 0.200 4.433 10.960 150.000 9.200 0. IOC 16.800 0.724 5.999 516.400 27.500 3.500 0.200 3.272 5.616 107.400 36.500 219.100 0.200 1.333 12.654 834.900 54.900 13.300 20.700 4.659 12.097 173.800 62.000 9.400 0.200 3.045 6.231 86.100 25.100 8.IOC 0.200 0. 109 0.918 11.900 0.200 0.100 0.200 4.048 9.395 36.500 48.500 47.C0C 19.300 1. 862 7.171 288.100 44.100 3.300 0.200 0.813 6.494 110.500 26.300 8.500 17.900 2.808 10.323 396.800 37.200 4.000 0.200 0.307 1.032 5. 200 7. 100 14.600 0.200 4.529 12.116 74.800 0 . 200 2.500 0.200 5.606 7. 166 38.300 6.600 6.300 0.200 2.226 7.703 41.300 40.100 3 0.50C 0.200 0.195 6.538 100.200 24.400 0.100 0.200 0.751 0.951 12.400 25.400 7.900 35.200 1.099 16.545 57.900 77.700 5.100 0.200 0.197 4.711 27.700 62.900 15.700 0.200 1.104 5.659 51.500 21.300 79.100 0.200 0. 142 7.278 47.500 63.500 8.200 34.400 0.247 0.785 9.000 17.500 11.600 0.200 0. 737 5.712 3 8.800 92.300 3.200 11.500 0.057 0.713 10.000 28.200 0. 100 22.200 0.051 0.549 15.000 13.700 126 HUSKY-MODEL (4-1-S-OR) CA MG HG AU BA SN 0.339 0.182 60.000 225.000 2500.000 28.000 0.270 0.222 140.000 3175.000 13500.000 140.000 0.018 0.006 1590.000 3850.OCO 150.000 26.000 0.461 0.729 193 0.000 1350.000 250.000 5.000 0.043 0.011 2260.000 3200.000 150.000 40.000 0.038 0.009 535.000 950.000 175.000 55.000 0.182 0.051 360.000 1600.000 125.000 96.000 0.073 0.019 640.000 495.000 300.000 70.000 0.03 4 0.214 75.000 170.000 30000.000 32.000 0.062 0.013 190.000 1325.000 200.000 90.000 0.356 0.487 165.000 200.000 225.000 23.000 C.C94 0*033 540.000 60.000 4 00.000 75.000 0.377 0.427 60.000 190.000 92 50.000 5.000 0.C89 0.024 1070.000 1575.000 200.000 27.000 0.367 0.234 37.000 675.000 8250.000 160.000 0.304 0. 232 465.000 510.000 1325.000 8.000 0.185 0.G80 15.000 2 5.000 2600.000 6.000 0.360 0.394 500.000 125.000 32 5.000 18.000 0.337 0.103 19 5.000 275.000 175.000 24.000 0.088 0.G70 75.000 100.000 325.000 4.000 0. 17 5 0.C43 5 00. 000 190.000 2 75.000 5.000 0.041 0.045 3 5.000 10.000 2450.000 5.000 0.333 0.359 475.000 245.000 100.000 4.000 0.458 0.487 10.000 40.000 1125.000 4.000 0.161 0.G54 790.000 120.000 475.000 8.000 0.063 0.010 1640.000 350.000 800.000 16.000 0.089 0.103 26.000 20.000 7750.000 9.000 C.165 0. C87 805.000 110.000 55 0.000 7.000 0.034 O.G08 1195.000 65.000 175.000 5.000 0. 155 0.110 43 0.000 230.000 300.000 10.000 0.034 0.010 3000.000 125.000 175.000 3.000 0.046 0,029 20.000 35.000 18000.000 26.000 0.180 0.032 520.000 165.000 800.000 14.000 0.214 0.181 2 3.000 25.000 575.000 14,000 0.421 0.269 24.000 105.000 92 5.000 17.000 127 HUSKY-MODEL (4-1-S-DR) F 62.000 38.COG 69.000 72.000 104.000 78.000 12.000 110.CCO 50.000 86.000 85.000 161.000 150.CCC 126.000 97.000 97.OCC 97.000 110.COO 72.000 197.000 121.OCC 168.000 7 8.000 59.000 62.000 173.000 121 .000 240.000 59.0CG 142.000 50.000 62.000 219.000 104.COG 59.000 128 4-1-226-RSE ID. DIS. W I . AG PB ZN 680 0.0 5.000 9.700 0. 477 0.038 68 1 5.000 4.000 60.000 6.75 7 0.013 68 2 10.000 5.500 110.200 10.738 0. 174 68 3 15.000 4.000 58.700 7.712 0.026 684 20.000 5.000 41.700 2.448 0.017 68 5 2 5.000 4.000 102.500 7.773 0.062 686 30.000 4.000 109.800 20.312 0. 181 687 3 5.000 4.000 6 5.200 13 . 72 7 0.061 688 40.000 4.500 46.700 5.863 0.035 689 45.000 4.500 4. 500 1.252 0.018 CD CO MN FE CU NI 10.200 0.200 1.977 8. 865 224.300 44.700 9.000 0.200 1.793 3.224 553.200 2L.800 40.50 0 11.800 1.900 4.038 2912.900 15.400 17.600 0.200 1.775 3.619 771.000 0. 200 13.000 0.200 0.331 1.495 853.400 13.200 35.100 72.600 0.888 7. 158 2351.600 45.100 94.400 0.200 0.477 2.159 1117.700 13.900 54.100 56.900 0.421 2.860 682.700 14.700 21.70 0 0. 200 0.180 4.674 628.400 17.200 3.500 0.200 1.730 2. 762 71.800 31.200 CA MG 0.236 0.241 0.217 0.227 0. 156 0.239 0.147 0.221 0.052 0.045 0.134 0. 104 0.07 3 0.070 0.074 0. 057 0.048 0.028 0. 189 0.370 129 2-2-N-"A"-9R ID. DIS . WI . AG PB ZM 660 0.0 1.000 359. 400 50. 468 5.316 661 6.000 1.000 73.700 0.782 0. 539 662 12.000 3. 500 93.400 30.763 2.813 663 18.000 3.000 5.200 1.141 15. 043 664 24.000 2.000 1 .500 0.078 0.907 665 30.000 2. 000 0.100 0.074 0.101 666 36.000 2.500 10.700 0.734 0. 574 667 42.000 3.500 0.100 0.432 2. 102 668 48.000 2.000 0.100 0.375 1.236 669 54.000 1.500 0.100 0.114 1.548 CD CO MN FE CU NI 826.000 0.200 0.067 0.628 1119.100 33.700 84.500 0.200 1. 172 4. 1 2 6 2347.800 56.300 495.000 0.200 0. 534 1.937 1202.300 0.200 2183.200 0.200 2.521 3.856 61.100 19.300 125.100 0.200 4. 846 5.43 5 61.300 13.300 15.200 0.200 0.150 0.584 11.500 37.400 79.700 0. 200 3.668 5.324 79.200 2 0.90 0 295.300 0.200 4.420 5.342 12. 200 17. 700 173.200 0.200 0.280 0.8 14 17.800 0.200 200.343 0.200 0.461 1.067 1 6.400 14.200 CA MG 0.044 0. O i l 0.210 0.169 0. 094 0.066 0.251 0.314 0.215 0.535 0. 039 0.03 0 0.447 0.569 0.496 0.6 24 0.483 0.088 0.576 0.170 130 3-1-208-RSE ID. DI S. WI. AG PB ZN 690 0.0 7.000 119.000 12.771 0.025 691 6. 000 5.000 50.000 0.226 0.009 692 12.000 5.000 72.500 4.611 0.226 693 18.000 3.500 11.200 0. 101 0.050 69 4 24.COO 3.000 12.800 0.110 0. 007 695 30.000 5.500 10.000 4.693 0.009 696 36.000 4.500 0. 100 3.247 0.004 69 7 42.000 6.000 2.400 0.026 0. 060 69 8 48.000 4.500 1.900 0.036 0.143 69 9 54.000 4.000 1.200 0.032 0.097 CD CC MN FE CU NI 23,900 0.200 0.256 3.942 1701,400 12.800 2.600 0.200 2. 892 6. 809 844.700 44 .500 16.400 0.200 3.208 7.341 1963,400 32.000 3 0. 200 0.200 1.439 4.827 431 .600 35.300 3.20 0 0.200 1.599 3. 259 340.000 48.100 6.300 0. 200 0.993 2 .457 112.600 16.300 3.200 0.200 0.842 1.663 22.800 11.500 5.40 0 0.200 0.490 1.002 146.000 5. 800 7.400 0.200 1.825 2. 879 1545.900 18.100 0. 100 0.200 2.078 3. 289 2 9.000 19.300 CA MG 0.05 5 0.013 0.212 0. 190 0.228 0.379 0. 14 2 0. 115 0.179 0. 125 0.164 0. G90 0.115 0.093 0.08 8 0.051 0. 189 0.224 0.195 0.227 131 NO CASH - MODEL (ORIGINAL FILE 1 D. DIS. WI . AG PB ZN 7230 0.0 7.000 0.100 0.080 0.990 4349 6.000 1 0.700 2.000 1.980 3.550 4364 13.500 9.900 1.500 0.880 1.150 4372 18.500 10.500 1.500 0.3 80 2.200 4382 29.000 9.600 5.000 2.250 2.400 4385 35.000 10.600 2.000 0.250 6.400 4390 42.000 9.300 0.100 0.080 0.900 4396 49.000 7.000 2. 500 1.400 6. 250 4400 55.000 6.100 0.680 0.380 1.200 4404 61.000 7.400 1.200 1.200 2.200 4411 67.000 8.300 5.500 2. 250 3.700 4416 73.000 7.200 19.500 11.950 5.650 4417 87.000 2. 100 5. 500 3.950 6.850 4425 96.000 4.500 2.800 0.390 5.43 0 4429 102.000 5.300 0.700 0.660 0.820 4434 104.500 3.300 1. 500 2.400 1. 050 4431 108.500 1.000 0.750 0.600 0.400 4438 117.000 4.700 51.000 1.150 1.500 4441 124.000 2.300 2.000 2. 200 7.300 4446 130.000 1.300 13.500 14.980 3.880 4448 135.500 1. 100 5.000 5.200 3.350 4451 147.000 1.800 4.000 0.450 0. 890 4453 154.500 1.600 2.500 2.650 7.650 4460 173.000 2.400 0.3 30 0. 040 1.650 4465 179.500 7.100 8.250 10.100 2.650 4862 185.500 9.100 0.800 0.530 3.500 2052 191.500 3.000 3.750 1.3 50 14.950 2055 196.000 2.600 7.000 4.450 3.330 1128 234.500 5. 500 1. 500 0.410 0.090 2066 246.500 3.200 29.250 2.100 12.200 2073 255. 500 4.5 00 0.730 0.200 2.150 2080 262.500 9.700 11.500 0.490 13.930 2 065 268.500 4.500 45.000 6.200 2.600 2089 272.500 12.100 90.000 3.050 0.230 2093 278.000 8.000 0.950 0. 160 0.11 0 2096 284.000 3.000 0.150 0.030 0.160 2100 290.000 2.700 1.500 0.150 0.130 132 NO CASH - MODEL (ORIGINAL F I L E ) CD CO MN FE CU NI 124.000 13.000 4. 300 9.200 12.000 18.000 470.000 1.000 2.530 5.080 27.000 9.000 180.000 1.0 00 1.100 3.250 25.000 24.000 287.000 1.000 3.100 8.300 45.000 2 5.00 0 320.000 1 .000 2.300 5.600 35.000 12.000 850.OCO 1.000 0. 210 2.600 95.000 8.000 119.000 1.000 2.100 6.080 18.000 25.000 792.000 1.000 0.370 3.400 80.000 20.000 185.000 1.000 0.190 2.330 1 7. 000 12.000 287.000 1.000 1.800 4.380 43.000 11.000 520.000 l.OCO 0.600 4.600 170.000 20.000 800.000 1.000 5.000 11.100 75.000 30.000 860.000 1.000 0.500 6.350 65.000 10.000 690.000 19.000 0. 920 10.200 138.000 38.000 96.000 1.000 0.690 2.400 15.000 25.000 135.000 1.000 1.300 4.600 20.000 20.000 14.000 1.000 0.470 4.450 1 8.000 48.000 225.000 8.000 4.600 12.200 970.000 24.000 987.000 1.000 2.900 6.500 15.000 35.000 501.000 1.000 0.250 3.980 39.000 15.000 475.000 1.000 0.340 3.400 12.000 20.000 38.000 1.000 0.650 2.350 73.000 9.000 1000.000 1.000 0.400 3.300 65.000 30.000 225.000 1.000 1.600 3.650 30.000 8.000 393.000 1.000 1.500 5.130 40. 000 25.000 415.000 1.000 0.600 3.600 30.000 12.000 1675.000 1.000 0.140 6.130 98.000 30.000 498.000 1.000 0.100 4.550 40.000 15.000 3.000 70.000 14.200 17.630 25.000 7.000 1500.000 1.000 1.020 4.950 738.000 35.000 313.000 1.000 1.700 3.330 5 0.000 8.000 1850.OCO 1.000 1.550 5.150 585.000 7.000 425.000 1.000 2.400 4.650 655.000 3.000 100.000 8.000 7.700 13.600 1500.000 20.000 30.000 1.000 3.750 7.150 30.000 7.000 20.000 1.000 4.800 9.3 00 4.000 15.000 16.000 1.000 0.500 2.050 35.000 5.000 NO CASH - MODEL (ORIGINAL FILE) CA MG SB SR BA 3.3 00 0.600 10.000 70.000 1.000 2.150 0.510 48. 000 2 8.000 1.000 1.600 0.250 10.000 15.000 1.000 2.300 0.550 10.000 27.000 1.000 1.200 0.350 130.000 11.000 1.000 0.510 0.150 10.000 3.000 1.000 C. 750 0.330 1 0. 000 12.000 1.000 1 .800 0.150 10.000 10.000 1.000 0.500 0.070 10.000 4.000 1.000 C.880 0.250 10.000 9.00G 1.000 0.320 0.120 140.000 4.000 1.000 0.370 0. 430 560.000 3.000 1.000 0.750 0.100 140.000 13.000 1.000 0.400 0.160 78.000 11.000 11.000 0.930 0.150 10.000 8.000 1.000 0.750 0.350 10.000 19.000 1.000 0.240 0.070 10.000 5.000 1.000 0.880 0.450 1300.000 8.000 1.000 0.610 0.550 10.000 26.000 1.000 0.570 0. 210 260.000 16.000 1.000 0.130 0.080 160.000 1.000 1.000 1 . 200 0.3 80 50.000 16.000 1.000 1.300 0.450 80.000 32.000 1.000 3.550 0.250 10.000 45.000 1.000 0.190 0.150 253.000 7.000 1.000 0.070 0.070 10.000 1.000 1.000 0.020 0.020 95.000 1.000 1.000 0.010 0.010 200. 000 1.000 1.000 0.500 1.080 10.000 1.000 1.000 0.060 0.060 640.000 4.000 13.000 0.090 0.130 10.000 2.000 1.000 0.040 0.140 250.000 1.000 1.000 0.070 0.180 1300.000 1.000 1.000 0.350 0.650 3000.000 1.000 1.000 0.340 0.300 10.000 7.000 13.000 0.310 0.400 10.000 1.000 1.000 0.290 0.040 10.000 2.000 1.000 134 NC-MODEL (3-67-S-DR) [ D. 01 S . WI. AG PB ZN 2 089 272.500 12.100 90.000 3.050 0.230 4438 117.000 4.700 51.000 1.150 I. 500 2085 268.500 4.500 45.000 6.200 2.600 20 6 6 246.500 3.200 29 . 2 50 2.100 12.200 4416 73.000 7.200 19.500 11.950 5.650 4446 130.000 1.300 13. 500 14.980 3.880 2080 262.500 9.700 11.500 0.490 13.930 4465 179.500 7. 100 8.250 10.100 2 .650 2055 196.000 2.600 7.000 4.45 0 3. 330 441 7 87.000 2.100 5 .500 3.950 6.850 4411 6 7.000 8.300 5. 500 2. 250 3.700 444 8 135.500 1.100 5.000 5.200 3.350 438 2 29.000 9.600 5.000 2.250 2. 400 4451 147.000 1 .800 4.000 0.450 0. 890 2052 191.500 3.000 3.750 1.350 14.950 4425 96.000 4.500 2.800 0.390 5.430 4453 154.500 1.600 2.500 2.650 7 . 65 0 4396 49.000 7.000 2. 500 1.400 6.250 4441 124.000 2.300 2.000 2.200 7. 300 4349 6. GOO 10.700 2. 000 1.980 3. 550 4385 35.000 10.600 2.000 0.250 6.400 443 4 104.500 3.300 1.500 2.400 1 .050 4364 13.500 9.900 1.500 0.880 I. 150 1128 234.500 5.500 1.500 0.410 0.090 437 2 18.500 10.500 1. 500 0.380 2. 200 2100 290.000 2.700 i .500 0.150 0. 130 440 4 61.GOO 7.400 1.200 1.2 00 2. 200 2093 2 78.000 8.000 0.9 50 0.160 0. 110 4862 185.500 9. 100 0. 800 0.53 0 3.500 443 1 108.500 1.000 0.750 0.600 0.400 2073 255.500 4.500 0.730 0.200 2 .150 4429 102.000 5.300 0. 700 0.660 0. 820 4400 55.000 6.100 0.680 0.380 1.200 446 0 173.000 2 .400 0.330 0. 040 1.650 2096 2 84.000 3.000 0.150 0.030 0. 160 4390 42.GOO 9.300 0. 100 0.080 0. 900 7230 0.0 7.000 0. 100 0.080 0.990 135 NC-MODEL (3-67-S-DR) CD CO MN FE CU NI 100.000 8.000 7.700 13.600 1500.000 20.000 225.000 8.000 4.600 12.200 970.000 24.000 425. GOO 1.000 2.400 4.650 655.000 3.000 1500.000 1 . GOO 1.020 4.950 73 8.000 3 5. 000 800.000 1 . 000 5.000 11.100 75.000 30.000 501.000 1.000 0.250 3.980 39. 000 15.000 18 50.000 i.boo 1.550 5. 150 585.000 7. 000 3 93.00 0 1.000 1.500 5. 130 40.000 2 5 .000 498.000 1 .000 0 . 100 4.550 4 0.000 15.000 860.000 I. 000 0.500 6.350 65.000 10.000 520.000 1.000 0.600 4. 600 170.000 20.000 415.000 1.000 0 . 340 3 .400 12.000 20.000 320.000 i.COO 2.300 5.600 35.000 12.000 38.000 1 .000 0.650 2.350 73.000 9.000 1875.000 1 .000 0. 140 6. 130 98.000 30 .000 690.000 19.000 0.920 10 . 200 13 8.000 38.000 100G.000 1. 000 0.400 3.300 65.000 3 0.000 792.000 1 .000 0.370 3.400 80.000 20.000 987.000 1. 000 2.900 6.500 15.000 35.000 470.000 1.000 2.53 0 5.080 27.000 9. 000 850.OOG 1 .000 0.210 2.600 95.000 8.000 135.000 1.000 1.300 4.600 20.000 20.000 180.000 1 .000 i.100 3.250 2 5.000 24.000 3.000 70.000 14.200 17.630 25.000 7.000 287.000 1.000 3.100 8.300 45.000 25.000 16.00 0 1. 000 0.500 2 .050 35.000 5.000 287.000 1.000 1.800 4.3 80 43.000 11.000 30.000 1.000 3.750 7.150 30.000 7.000 415.000 1.000 0.600 3. 600 3 0.000 12.000 14.000 1 .000 0.470 4.450 18.000 48.000 3 13.000 1.000 1.700 3. 330 50.000 8 .000 96.000 1.000 0.690 2.400 15.000 25.000 185.000 1.000 0.190 2.330 17.000 12.000 225.000 1.000 1.600 3.650 30.000 8. 000 2 0.000 1.000 4.800 9.300 4.000 15.000 119.000 l.GGO 2.100 6. 080 18.000 25.000 124.000 13.000 4.300 9.200 12.000 18.000 NC-MODEL (3-67-S-DR) C A MG SB SR 8 A 0.350 0.650 3000.000 1.000 1 .000 0.880 0.450 1300.000 8.000 1.000 0.070 0. 180 1300.000 1 .000 1 . 0 0 0 0.060 0. G6 0 640.000 4. 000 13.000 0.370 0.430 560.000 3.000 1 .000 0.5 70 0.210 260.000 16.000 1. 000 0.040 0.140 250.000 1 . 0 0 0 1.000 0. L90 0. 150 253.000 7. 000 1.000 0.010 0.010 200.000 1.000 1.000 0.750 0. 100 140.000 13.000 1.000 0.32 0 0.120 140.000 4.000 1.000 0.13G 0. 080 160.000 1 .000 1.000 1.200 0.350 13 0.000 11.000 1.000 1.200 0.380 50.000 16.000 1 . 0 0 0 0.020 0.020 95.000 I.000 1 .000 0.40 0 0.160 78.000 11.000 11.000 1.300 0.450 80.000 32.000 1.000 1 .800 0.150 10.000 10.000 1.000 0.610 0.550 1 0.000 26.000 I.000 2. 150 0.510 48.000 28.000 1.000 0.510 0.150 10.000 3.000 1.000 0.750 0.35 0 1 0.000 19.000 1.000 1.60 0 0.250 10.000 15.000 1.000 0.500 1.080 10.000 I. 000 1 .000 2.300 0.550 10.000 2 7.000 1.000 C.290 0. 040 10.000 2 .000 1.000 0.880 0.250 . 10.000 9.000 1.000 0,340 0.300 10.000 7.000 13.000 0.070 0.070 10.000 1.000 1. 000 0.24 0 0.070 10.000 5.000 1.000 0.090 0.130 10.000 2.000 1 .000 0.930 0.150 10.000 8.000 1.000 0.500 0.070 10.000 4.000 1.000 3.550 0.250 10.000 45.000 1.000 0.310 0. 400 10.000 1 .000 1.000 0.7 50 0. 33 0 10.000 12.000 1. 000 3.300 0.600 10.000 70.000 1.000 ro o o I- 1 U) Ul • ' ' * • • • • • • » • * o ui ca U J CO - J Ul - J . o o o o o Ul Ul o o Ul o o o o o o o o o o o o o o o o o o o o o o o • • • • • • • • « • • 3 : UJ ro o 1-* INJ f-1 o CD o U J Ul Ul o CO Ul Ul o t h U J o o o o o o o o o o o I-* 1— l-» o o o o o o o o o o o • • • • • 4 • • • • • C/l o o o o o o o o o o o •33 o o o o o o o o o o o o o o o o o o o o o o Ul Ui K-* ro Ir* -f- -si U J Ul ro Ul o ro u) o Ul o U J • • • • • • • • • • • to o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o •4> •ft o r- 1 f t-» »-• 4 . • • . 4 • 4 t . • CD O O O O O O O O O O O J> o o o o o o o o o o o O O O O O O O O O O O t- 1 ro »-* o o Ul o o Ul INJ o vO • * • • * • • • • • • o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o >-* l ~ * • * • * * • • • • • • o o o o o o o o o o o o o o o o o o d o o o o o o o o o o o o o o o t-* o o o o o CO o IN) ro cr -si -«l Ul U J IN) Ul Ul o o o o CO o o o o o o o o o o o o o o o ro IN) ro I - 1 ro M • • 4 • • • • • • • • C h Ul -»> U J U J IN) Ul o o o o o Ul o o u> o o o o o o o o o o o o 0* CO Ul - J o 4> o vO • • • 4 • • » • • • • o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o ro 4> t-« o o o ro ro ro ro o Ul Ul • • « • • • 4 • • * • o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o -a -o vO sO • UJ OJ OJ Ul OJ IN) ro ro ro ro IN) J h u» ro I-* o xO CO C h Ul Ul U) U) ro 1-* a o 00 ro cr o CO ro C h o • * * • • • • • • • • o o o o o o o o o o o • o o o o o o o o o o o o o o o o o o o o ro UJ OJ OJ 4> 4> OJ UJ • • • 4 • • 4 m • • <• 1—4 Ul o Ul Ul Ul o o Ul o o o Ul o o o o o o o o o o o 1 o o o o o o o o o o o C h C h l <n 1 CT o o o o o o o o o ro o :o « • • • • * • • • • • > o o o ro ro o o o Ul IN) a —» Ul Ul Ul Ul Ul Ul Ul Ul o Ul o o o o o o o o o o o o o o o o o o o o o OJ o • • • • «J • • • • • • "0 o 4^  -F- o o IN) I- 1 03 Ul o ro o o Ul Ul Ul o C h o o o o o o o o o o o o o o o o o o o o o o • • • • • • 4 • • • • o o o 1-" ro OJ I-* OJ Ul Ul +x UJ Ch o Ul iNJ Ul Ch o Ul o o o o o o o o o o o 138 5-66-S-DR (B) A G PB ZN ID. 2130 2131 2133 2137 2147 2151 399 4501 4506 2157 CD 235.000 473.000 243.000 1513.000 380.000 493.000 331.000 9.000 1126.000 171.000 CA 0.500 0.310 0.420 0.250 0. 970 1.680 1.850 1. 390 0.170 0.900 DIS. 0.0 6.000 11.000 19.000 28. 000 34.000 40.000 46. 000 5 2.0 00 60.000 CQ 3.0.000 24.000 11.000 34.000 3.000 34.000 1.000 3.000 26.000 28.000 M G 0.3 90 0.220 0.240 0.340 0.420 0.350 0.190 0. 230 0.270 0.520 WI. 7.000 7.600 8. 800 9.000 14.000 16.100 11.000 9.3 00 4.000 4.600 MN 4.050 2. 420 2.650 4.310 5.570 3.890 2.010 1.660 3.050 4.700 SB 140.000 200.000 1 0. 000 24.000 6.1.000 562.000 129.000 3 0.000 34.000 772.000 25.000 18.500 7.610 1.720 7.860 5.1 50 7.880 3.850 4.500 36.800 7.500 4.780 4.870 8.260 8.350 6.530 4.060 3.540 6.380 8.840 SR. 8.000 7.000 5.000 2.000 8.000 2 9.000 4.000 12.000 7.000 13.000 2.0 50 2.140 0.280 0. 160 1.090 1. 400 1.550 2.460 3. 270 7.170 30.000 89.000 27.000 157.000 162. 000 440.000 141.000 42.000 91.000 385. 000 BA 1.000 1.000 1.000 1.000 1.000 1.000 1.000 13.000 13.000 17.000 2. 000 4.050 2.150 11.690 2.890 4.140 2. 600 0.320 8.200 1.610 5.000 5.000 7. 000 14.00 0 3. 000 11.000 2.000 7. 00 0 9.000 23.000 FE CU NI o o o o o o o o o o * • • t • • • • • • o o o o o o o o o o ru > o o o o o J-4 o uJ ru o Ul Ul Ul Ul o o o o o o o o o o o o o o o t • • • • • • • • • s. o o o o o o 4 - 4 o OJ o t~4 t-4 ru oJ 1—' Ul CO o o Ul Ul o o CO o o o o 4> Ul M *o o UJ •*> Ul CO cr- o o CO 1— o o o o o o o CO o Ul Ul • • • • • i • • • • o o o o o o o o o o co o o o o o o o o o o o o o o o o o o o o 4> 4 - 4 o 4 - 4 ru • • • • • • « • • • o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o t/1 4> o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o CD ru OJ OJ o -si ru i—* ru i—• r-4 o OJ ru Ul o CO OJ f Ul o OJ o o OJ CO vO • • • • • • • • • • o r u ru ru tu ru ro ru o o o o o o o o o o o o »-• i-> 1~» <o vO • o o o o o o o o o o ro ru ru ru ru ( - • OJ OJ UJ o o o o o o o o o o CO Ul -P-UJ -s| Ul O "sj co Ul -p- 4» OJ OJ ru r-4 o r> 4 - 4 1-4 t-4 co ru o o co M o o 6—1 • • • • • 4) • t » • o • » • • V • 4 • • • VI o o o o o o o o o o o o o o o o o o o o o 4) o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o 1-4 o J> 4> 4* o o o o o r-4 • t • • 4) « • • • • o r-4 I — 1 r u o •r- o 4> z Ul o o o o o o Ul OJ o Ul OJ ro ru o <o ru Ul o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o —J I OJ ru co t-4 t-4 1-4 ro OJ Ul 1-4 o 4> UJ CO co H * o -4 Ul ru 4 - 4 I • • < 4) • • • • • • Tl • 4 • • • • • • • • > GO sO ru UJ o CO OJ h-4 4 - 4 ro m o o o Ul Ul Ul o o o Ul CT H o o o Ul o Ul o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o UJ OJ OJ OJ 4 - 4 ru ( - 4 OJ OJ i—4 4> UJ 1-* Ul 4> }~»4 Ul s0 ru l _ Ul o Ul Ul o o Ul o Ul o i-4 vO OJ 4!* OJ o o o • 4) 4 • • * * 4) • • o • t • • 4) • 4 4> • * o o o o o o o o o o G co s0 t-4 OJ OJ fSJ o OJ co o o o o o o o o o o Ul Ul o o o o vO o cr- Ul o o o o o o o o o o o o o o o o o o o o (U ru (U ru CO OJ OJ ru r> ru ru vO ru ro OJ r-4 ro o M • • • * • • • • • 4) • 4 • • • • * • • 4 f S J OO o o o o o o o o o o r-4 Ul o Ul OJ Ul OJ o z sD o o o o o o o o o o o o o o Ul Ul o Ul o o o o o o o o o o o o o o o o o o o o o o 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0052837/manifest

Comment

Related Items