Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Thermal maturation of the Western Canadian Sedimentary Basin in the Rocky Mountain foothills and plains… England, Timothy David John 1984

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1984_A6_7 E55.pdf [ 9.19MB ]
Metadata
JSON: 831-1.0052833.json
JSON-LD: 831-1.0052833-ld.json
RDF/XML (Pretty): 831-1.0052833-rdf.xml
RDF/JSON: 831-1.0052833-rdf.json
Turtle: 831-1.0052833-turtle.txt
N-Triples: 831-1.0052833-rdf-ntriples.txt
Original Record: 831-1.0052833-source.json
Full Text
831-1.0052833-fulltext.txt
Citation
831-1.0052833.ris

Full Text

THERMAL MATURATION OF THE WESTERN CANADIAN SEDIMENTARY BASIN IN THE ROCKY MOUNTAIN FOOTHILLS AND PLAINS OF ALBERTA SOUTH OF THE RED DEER RIVER By TIMOTHY DAVID JOHN B.Sc,  The U n i v e r s i t y  ENGLAND  of B r i t i s h  C o l u m b i a , 1980  A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE Department o f G e o l o g i c a l We  STUDIES Sciences  a c c e p t t h i s t h e s i s as conforming to t h e r e q u i r e d s t a n d a r d  THE UNIVERSITY OF BRITISH COLUMBIA September 1984 ©Timothy  D. J . E n g l a n d ,  1984  '6  In p r e s e n t i n g  this thesis in partial  r e q u i r e m e n t s f o r an  f u l f i l m e n t of  advanced degree a t the  the  University  o f B r i t i s h Columbia, I agree t h a t  the L i b r a r y s h a l l make  it  and  f r e e l y a v a i l a b l e f o r reference  study.  I  further  agree t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s f o r s c h o l a r l y purposes may department o r by understood that  be  h i s o r her  g r a n t e d by  representatives.  s h a l l not  be  *  GEOLOGICAL  SCIENCES  The U n i v e r s i t y o f B r i t i s h 1956- Main. Mall. Vancouver,. Canada V6T 1Y3 OCTOBER  12,  my  It is  a l l o w e d w i t h o u t my  permission..  *.  the head o f  c o p y i n g o r p u b l i c a t i o n of t h i s t h e s i s  f o r f i n a n c i a l gain  Department o f  thesis  1984  Columbia  written  i i ABSTRACT V i t r i n i t e r e f l e c t a n c e was m e a s u r e d f o r o v e r 600 s a m p l e s o f c o a l and c o a l y p a r t i c l e s f r o m J u r a s s i c t o P a l e o c e n e s t r a t a i n the Foreland Basin of southern A l b e r t a , south of t h e Red Deer R i v e r , t o e s t a b l i s h a r e g i o n a l base o f m a t u r i t y d a t a f o r m o d e l i n g t h e r m a l h i s t o r y . The r e l a t i o n s h i p b e t w e e n random and maximum r e f l e c t a n c e f o r c o a l s i n t h e s t u d y a r e a is: %RoR = 0.938 x %RoMax + .00112. M a t u r i t y o f c o a l i n s t r a t a o f t h e same age g e n e r a l l y i n c r e a s e s f r o m e a s t t o w e s t a c r o s s t h e P l a i n s ; however, s i g n i f i c a n t v a r i a t i o n i n m a t u r i t y i s apparent i n the P l a i n s , p o s s i b l y as a r e s u l t o f varying geothermal g r a d i e n t s . M a t u r i t y i n c r e a s e s from south to n o r t h i n the D i s t u r b e d B e l t i n the study a r e a . C o a l i f i c a t i o n gradients i n the a x i s of the Basin are e x c e e d i n g l y l o w , a v e r a g i n g 0.07 l o g %RoR/km, a m a n i f e s t a t i o n of v e r y low p a l e o g e o t h e r m a l g r a d i e n t s r e s u l t i n g from r a p i d sediment d e p o s i t i o n i n the Paleogene. Time-averaged paleo-geothermal g r a d i e n t s f o r the deepest part of the Basin r a n g e f r o m 7.5 t o 15 d e g . C./km b a s e d on m e a s u r e d c o a l i f i c a t i o n g r a d i e n t s . The t h i c k n e s s o f e r o d e d T e r t i a r y s e c t i o n i n t h e a x i s o f t h e B a s i n i s e s t i m a t e d t o range from 5 t o 9 km w i t h an a v e r a g e v a l u e o f a b o u t 6 t o 7 km. T i m e - t e m p e r a t u r e m o d e l i n g u s i n g an i n t e g r a l f o r m o f t h e L o p a t i n e q u a t i o n shows t h a t f o r most o f t h e J u r a - C r e t a c e o u s wedge, t h e l e v e l o f m a t u r i t y r e q u i r e d f o r h y d r o c a r b o n g e n e r a t i o n was n o t a t t a i n e d u n t i l t h e l a t e E o c e n e . Syn- to post-orogenic maturation of s t r a t a i n the P l a i n s i s a r e s u l t o f B a s i n l o a d i n g by o v e r t h r u s t s h e e t s o r m o l a s s e . I n t h e D i s t u r b e d B e l t , a s i g n i f i c a n t component o f m a t u r a t i o n r e s u l t e d from o v e r t h r u s t i n g , as e v i d e n t from m a t u r i t y p r o f i l e s o f deep w e l l s . A m o d e l d e s c r i b i n g t h e e f f e c t o f o v e r t h r u s t i n g on m a t u r i t y o f f o o t w a l l s t r a t a shows t h a t p a l e o - g e o t h e r m a l g r a d i e n t s i n t h e D i s t u r b e d B e l t have been l o w , l e s s t h a n 20 d e g . C./km, s i n c e J u r a s s i c , and t h a t t h r u s t s h e e t t h i c k n e s s was p r o b a b l y 5 km o r l e s s i n t h e W a t e r t o n , Highwood R i v e r ( F o o t h i l l s ) , and J u m p i n g Pound a r e a s , and g r e a t e r t h a n 5 km i n t h e Highwood R i v e r ( F r o n t R a n g e s ) , and B u r n t T i m b e r C r e e k a r e a s .  iii TABLE  OF  CONTENTS  Page ABSTRACT  i i  LIST  OF  TABLES  v  LIST  OF  FIGURES  vi  ACKNOWLEDGEMENT  x  INTRODUCTION  1  THEORY  6  Thermal M a t u r i t y Time-temperature Vitrinite  Indices Models  6 8 9  P R E V I O U S WORK  11  METHODS  14  C o l l e c t i o n of Samples Determination of V i t r i n i t e Reflectance Random v e r s u s Maximum R e f l e c t a n c e Thermal H i s t o r y Modeling RESULTS  AND  DISCUSSION  R e f l e c t a n c e Data P l a i n s Data F o o t h i l l s Data Problems Using W e l l - c u t t i n g s H o s t Rock I n f l u e n c e Stratigraphic Considerations C o a l Rank V a r i a t i o n Coalification Gradients T i m e - t e m p e r a t u r e M o d e l i n g and Geothermal Gradients Geothermal Gradient V a r i a t i o n s Importance of Groundwater Flow Hydrocarbon Maturation Thickness of Eroded S e c t i o n A l t e r n a t i v e C a l c u l a t i o n of Thickness of Eroded S e c t i o n Geomorphologic evidence f o r erosion D e n u d a t i o n and S e d i m e n t a t i o n R a t e C o n s t r a i n t s Overthrusting Problems Thrust Modeling  14 15 16 17 21 21 21 23 46 47 48 50 58 62 66 68 69 71 74 75 78 83 87  iv Page CONCLUSIONS  94  REFERENCES CITED  99  APPENDIX  109  L i s t o f W e l l s Sampled W e l l Sample Data S h e e t s F i e l d Sample Data S h e e t s  112 115 158  V LIST  OF  TABLES  Page Table  I.  Table I I .  Table I I I .  Random r e f l e c t a n c e r e f l e c t a n c e data  data  Reflectance-depth data from t h e study area Coalification gradients in southern A l b e r t a  versus  maximum 18  f o r 28  wells 25  from  28  wells 26  Table  IV.  %RoR  field  Table  V.  %RoR  core  Table  VI.  Paleogeothermal gradients calculated from time-temperature modeling  66  Denudation r a t e s measured sediment sampling  80  Table VII.  Table  VIII.  27  data  29  data  by  Sedimentation r a t e s measured from C r e t a c e o u s and P a l e o c e n e strata well p e n e t r a t i o n s i n the a x i s of the Basin  81  R e f l e c t a n c e - d e p t h d a t a f o r 28 w e l l s from t h e s t u d y a r e a based on a l i n e a r c o a l i f i c a t i o n gradient best f i t  110  APPENDIX Table  Table  IX.  X.  Mean a n n u a l s u r f a c e t e m p e r a t u r e s i n southern A l b e r t a (Environment Canada,  1982)  111  V I  LIST  OF  FIGURES Page  Figure  1.  I n d e x map the study  Figure  2.  Mean random reflectance  Figure  Figure  Figure  Figure  Figure  Figure  Figure  Figure  Figure  Figure  Figure  Figure  Figure  3.  4.  5.  6.  7.  8.  9.  10.  11.  12.  13.  14.  15.  showing area versus  the location of  mean  maximum  19  Reflectance-depth profile N a n t o n 6-32-15-29W4  f o r Esso  Reflectance-depth 10-36-11-28W4  f o r Esso  profile  Sundance 32 Windpump 32  Reflectance-depth profile M u d d y L a k e 8-8-10-27W4  f o r Esso  Reflectance-depth profile C l a r e s h o l m 6-16-12-27W4  f o r Esso  Reflectance-depth profile Muddy L a k e 10-24-10-27W4  f o r Esso  Reflectance-depth profile H i g h w o o d 6-36-17-1W5  f o r Esso  Reflectance-depth profile N a n t o n 8-4-16-29W4  f o r Esso  Reflectance-depth profile C a y l e y 11-10-17-1W5  f o r Esso  Sundance 32 Sundance  32 Sundance  33 Sundance 33 Sundance 33 Sundance 33  Reflectance-depth p r o f i l e f o r Texaco e t a l . M a z e p p a 10-7-20-27W4  34  Reflectance-depth profile A l d e r s o n 10-4-16-10W4  f o r Texaco 34  Reflectance-depth profile E n c h a n t 6-6-13-15W4  f o r Texaco  Reflectance-depth profile L i t t l e Bow 8-32-14-18W4  f o r Texaco  Reflectance-depth K i m 2-18-8-25W4  f o r Gulf  profile  34  34  35  VI 1  Page Figure  Figure  Figure  Figure  Figure  Figure  Figure  Figure  Figure  Figure  Figure  Figure  Figure  Figure  Figure  Figure  Figure  16.  17.  18.  19.  20.  21.  22.  23.  24.  25.  26.  27.  28.  29.  30.  31.  32.  Reflectance-depth profile P e i g a n 6-8-8-27W4  f o r Gulf  Reflectance-depth profile P e i g a n 3-27-6-28W4  f o r Gulf  Reflectance-depth profile e t a l . B l o o d 3-22-7-24W4  f o r Gulf  Reflectance-depth profile W e s t B l o o d 3-32-7-24W4  f o r Gulf  35  35  35  36  Reflectance-depth p r o f i l e f o r Esso S u n d a n c e N a n t o n 10-25-15-29W4  36  Reflectance-depth profile C o n n e m a r a 8-14-16-27W4  36  f o r Esso  Reflectance-depth p r o f i l e f o r Esso S u n d a n c e O x l e y 8-3-13-28W4  36  Reflectance-depth profile O x l e y 6-11-14-29W4  f o r Esso 37  Reflectance-depth profile P a r k l a n d 8-11-15-28W4  f o r Esso 37  Reflectance-depth p r o f i l e f o r Esso S u n d a n c e N a n t o n 6-2-16-29W4  37  R e f l e c t a n c e - d e p t h p r o f i l e f o r Esso S u n d a n c e C l a r e s h o l m 6-6-13-26W4  37  Reflectance-depth p r o f i l e f o r Esso S u n d a n c e L y n d o n 13-16-12-28W4  38  Reflectance-depth profile f o r Shell J u m p i n g P o u n d W. 13-4-26-6W5  38  Reflectance-depth M i d d l e p a s s a-94-L  39  profile 82-G-l  for Shell  Reflectance-depth profile 42 W a t e r t o n 8-20-4-1W5  for Shell  Reflectance-depth profile Waterton 7-24-5-3W5  for Shell  Reflectance-depth profile Home W a t e r t o n 6-3-6-3W5  for Shell  39  40  40  viii Page F i g u r e 33.  F i g u r e 34.  F i g u r e 35.  Reflectance-depth p r o f i l e Home Sheep 8-30-18-3W5  for Shell  Reflectance-depth p r o f i l e G e t t y S u l l i v a n 7-7-17-4W5  for Shell  41  41  Reflectance-depth p r o f i l e f o r Shell 8 P a n t h e r R i v e r 7-8-29-10W5  42  Reflectance-depth p r o f i l e f o r Shell H u n t e r V a l l e y 11-32-28-8W5  42  Reflectance-depth p r o f i l e f o r cuttings and c o r e s a m p l e s from w e l l s i n t o w n s h i p s 10 t o 22 i n t h e a x i s o f t h e B a s i n  43  Reflectance-depth p r o f i l e f o r cuttings s a m p l e s from w e l l s i n t o w n s h i p s 10 t o 22 i n the a x i s o f t h e B a s i n  44  Reflectance-depth p r o f i l e f o r cuttings s a m p l e s from w e l l s i n t o w n s h i p s 6 t o 8 i n the a x i s o f t h e B a s i n  45  F i g u r e 40.  Relative  49  F i g u r e 41.  I s o r e f l e c t a n c e map o f t h e s u r f a c e of southern A l b e r t a P l a i n s  51  Reflectance of southern  52  F i g u r e 36.  F i g u r e 37.  F i g u r e 38.  F i g u r e 39.  F i g u r e 41A.  F i g u r e 42.  F i g u r e 43.  F i g u r e 44.  F i g u r e 45.  F i g u r e 46.  F i g u r e 47.  ages o f s t r a t a  i n southern A l b e r t a  data f o r the s u r f a c e Alberta Disturbed Belt  Reflectance-depth p r o f i l e c o a l s ( H a c q u e b a r d , 1977)  f o r Mannville  Reflectance-depth p r o f i l e c o a l s ( t h i s study)  f o r Mannville  55  Composite r e f l e c t a n c e - d e p t h for Mannville coals Coalification Alberta  gradient  56 profile 57  map o f s o u t h e r n 59  Dependence o f c o a l i f i c a t i o n g r a d i e n t s on g e o t h e r m a l g r a d i e n t p r e s e n t d u r i n g deep b u r i a l  63  T i m e - t e m p e r a t u r e model Muddy Lake 8-8-10-27W4  64  f o r Esso  Sundance  I X  Page F i g u r e 48. F i g u r e 49. F i g u r e 50. F i g u r e 51. Figure  52.  F i g u r e 53. F i g u r e 54.  T i m e - t e m p e r a t u r e model f o r E s s o Connemara 8-14-16-27W4  64  T i m e - t e m p e r a t u r e model f o r T e x a c o A l d e r s o n 10-44-16-10W4  65  T i m e - t e m p e r a t u r e model f o r S h e l l M i d d l e p a s s a-94-L 8 2 - G - l  65  Map o f t h e d e p t h t o t h e o i l window i n southern Alberta  70  The g e n e r a t i o n o f h i g h e r t e m p e r a t u r e s i n f o o t w a l l s t r a t a as a r e s u l t o f overthrusting  89  Time-temperature simulation  90  model  for overthrust  Comparison o f observed c o a l i f i c a t i o n g r a d i e n t t o g r a d i e n t o b t a i n e d from t h e overthrust simulation  91  x ACKNOWLEDGEMENT  It  i s with  acknowledges  appreciation  the mentorship  to  completion  of this  by  the following  appreciation: Barnes,  (Esso  University  Resources  valuable  Cranston  programming. Sullivan.  Creaney  polishing,  b y M. G i v e n  (Esso),  a n d M.  f o rconductive  Smith  (Department  L.  Columbia).  A. F a u l k n e r  acknowledged financially and  drafted  well  heat  of Geological  sincere  by a U n i v e r s i t y  NSERC g r a n t  (67-7337)  a n d M.  Lerand  Research  (Gulf),  D r . S.  element  by D r . J . L.  and s u p p o r t  from  of the project i s project  Grant  t o D r . R. M.  industry  University of  assistance  This  at  The f i n i t e  was p r o v i d e d  Sciences,  thanks.  B.  i n microcomputer  samples  D r . M.  the duration  and  appreciation the  (Texaco) .  The v a l u a b l e  field  preparation,  b y G. H o d g e  transport  Creaney  acknowledges the  England  with  D r . M.  a n d D r . S.  in collecting  cuttings  (Shell),  with  Geological  in pellet  a n d M.  Coppold  throughout  with  The author  acknowledges  to c o l l e c t  model  British  were  The a u t h o r  laboratories  Columbia),  B. B u t t e r w o r t h  Figures  granted  Ltd.).  of  inception  of the thesis  C. B a r n e s ,  (Department  of B r i t i s h  from  reviews  D r . W.  o f C. J . E n g l a n d  samples,  in pellet  Valuable  Bustin,  the author  Bustin  a r e acknowledged  Murray  Canada  assistance  laboratory  access  scientists  D r . R. M.  that  o f D r . R. M.  project.  a n d D r . J . W.  Sciences,  and r e s p e c t  from  Bustin.  was  supported  Imperial O i l  1 INTRODUCTION  The  burial  important  history  in evaluating  sedimentary  basins.  hydrocarbon  generation  deformation  of strata  importance. organic  The  relative  (Deroo  source  objectives of this  Basin,  distribution Cretaceous thrusting thermal burial  of levels  rocks;  history  maturity  strata,  b)  on o r g a n i c  history  part  i n order  data  was  Sedimentary  to:  the d e t a i l s  maturity  the e f f e c t  core,  maturation  the  areal  for Jurassic of  and  Laramide calculate  In order  to model  a regional  established f o r southern  incorporating field,  of the  Canadian  ( i f a n y ) ; and c)  i n the Basin,  and  resolved. the  determine  f o r the Basin.  were  Cretaceous  has not been  a)  Basin,  hydrocarbons  although  of organic  of strata  paramount  of the Western  maturity  structural  a r e to document  determine  models  i s of  i n Late  rocks  thesis  i n the southern  Sedimentary  that  of of  to the l a t e s t  migration  et. a l _ . , 1 9 7 7 ) ,  rocks i s  potential  Canadian  suggests  source  the timing  i n the basin,  data  for different  history  of  In p a r t i c u l a r ,  and u n d e r w e n t  Tertiary timing  the petroleum  In the Western  maturity  generated  of hydrocarbon  the  framework  Alberta  and w e l l - c u t t i n g s  samples. In part  southern  of a vast  square  foreland basin  kilometres  Columbia.  Alberta, Jurassic  in Alberta  The p r e s e n t  form  that  to Paleocene  strata  extends  one  over  and n o r t h e a s t e r n of the Basin  are  million  British  reflects  in part  2 the  deformation  Laramide erosion  orogeny,  American  which  now  of cubic rest  deeply  Tertiary  reservoirs.  maturity  The  timing  required  Levels undisturbed southern  Foothills  the v i t r i n i t e  strata  maturity.  maceral,  i n basins  around  are  common  can  also  be  "coaly"  i n Paleocene, found  and  c a n be  readily  i n many i t s  sedimentary The  applied in  and c a r b o n a c e o u s and J u r a s s i c  and Upper  this  measurement  for  in  1980;  the degree  ( B o s t i c k , 1979).  Cretaceous  in Triassic  dispersal  of maturity  particles  In  and  of the reasons  the world  i n the  and W h i t e ,  of c o l l e c t i o n  levels  documented.  to indicate  and i t s wide  r e f l e c t a n c e method  because  used  the  i n the  studies  and McMechan, 1984).  a r e some  use i n a s s e s s i n g  Alberta  Basin  (Hacquebard  1977; K a r s t  The ease  on  of  occupying  Foreland  Plains  r e f l e c t a n c e was  lithofacies,  vitrinite  for strata  from  vitrinite  and  generation.  however,  1982; K a l k r e u t h  of  the l e v e l  i s available  Kalkreuth,  from  dependent  previously  1974; H a c q u e b a r d ,  thermal  was  n o t been  Alberta  North  generated  P l a i n s have  Donaldson,  of  and  Phanerozoic  attained  maturity  the  and  Cretaceous  migration  f o r hydrocarbon  and C e n t r a l  different  the Late  portion of the Alberta  data  o f rock  p e r i p h e r a l to  numerous  rocks  during  uplift  Hydrocarbons  of this  source  of organic  Alberta  Maturation  popular  kilometres  during into  of the Basin  post-orogenic  i n basins  buried  migrated  the o r i g i n a l  study,  side  c o n t i n e n t a l margins.  formations  when  and i n p a r t  of millions  sediment,  Early  of the western  Paleozoic  matter  rocks, rocks.  and  3 The  first  introduction discussion  section  to  of  background  as  used  study,  of  the  thesis  includes  timing the  and  of  temperature increase  duration  southern  of  the  Alberta  The  study  effect  of  Montana-Alberta  border,  and  from Board  were  outcrop, core Core  (75%)  remainder The Plains.  Esso, were  from field In  c o r e , and  the 239  west  and  collected and  Plains,  the  data  set  models,  effects  part which  on  and  of  maturity  there  follows  thermal  Red  a  maturity of  well Gulf, from  Deer  the  cuttings  south  to  British  Over  six-hundred  measurement  Resources cuttings  the  The  industry  majority  rock,  of  the  strata. Foothills  set consists  samples  1983  Conservation  Cretaceous  into  in  (at four  Texaco).  pre-Jurassic  data  River  the  1).  is divisible  well  to  Energy  Shell,  Jurassic area  the from  (Figure  (at the  second  of m a t u r i t y of  because  for vitrinite  Laboratory),  laboratories: samples  border  collected  the  methods  strata. from  samples  a  gradients,  the  thrusting  of  The  (the l e v e l of  Basin,  vitrinite  history  Finally,  extends  border  of  thermal  area  Columbia-Alberta  data.  heating,  Foothills  Saskatchewan-Alberta  91  of  of  presentation  paleogeothermal  summation  an  i n the  use  a discussion  i s non-retrograde).  discussion  the  and  the  a  maturation  is a  comprises work  empirical  section,  hydrocarbon  organic matter  of of  eroded  index,  the  consists  of  thesis  t h e o r y on  a maturity  calculations  thicknesses  this  previous reflectance  reflectance i n the  of  from  25  of  and  24  wells.  the  field, In  4 the well  Foothills, cuttings  the  data  samples  set consists  from  9  wells.  of  35  field,  and  211  INDEX  MAP  •! 140  Figure 1.  w  1  10°  W  Index map showing the l o c a t i o n of the study area i n southern A l b e r t a . This study area i s divided i n t o the Disturbed Belt and the P l a i n s .  6 THEORY  Thermal  Background available number were  i n f o r m a t i o n on t h e r m a l  from  many  different  are referred  to below.  initially  assess  Maturity Indices  levels  maturation  restricted  have  expanded  of organic materials  spores,  bitumen,  1975).  Important  organic  matter  and s p e c i f i c publications  changes  correlation  include  papers  (1969),  Bostick  Boucot  (1975),  (1974), Stach  (1977),  Epstein  (1979),  and B u s t i n  Alteration changes  there  carbon  Gutjahr  1982),  Deroo  i s a darkening  relative  dependent  dependent  a  pollen, (Staplin,  the c o r r e l a t i o n studies,  of  a n d how  exploration,  (1966),  Staplin  Gray  Cassou  and  et  e t a l . (1977),  i n response  on t h e t y p e  i n the colour  to  a l . Bostick  temperature  of organic  progressively  increases,  of kerogen ( i n  due t o an i n c r e a s e  t o oxygen  changes  thermal  e t a_l. (1983).  of organic matter  light)  studies  to include  e t a l . (1974),  In g e n e r a l , as temperature  transmitted  then,  t o o i l and g a s  et. a _ l . ( 1 9 7 5 ,  e t a l . (1977),  i s primarily  matter.  history  a small  i n order to  of coal  describing  (1956),  Tissot  Since  macerals  c a n be d i r e c t e d  only  as conodonts,  to thermal  by K a r w e i l  rank  i n scope  such  indices i s  maturation  coal  of organic maturity.  studies  o f which  Thermal  to using  variety  this  sources  maturity  i n t h e amount o f  and h y d r o g e n .  Temperature  of various organic materials  have  been  7 compiled  by Heroux  There being  appears  altered  low  ranks  The  popular  that  rank  e_t a _ l . ( 1 9 7 9 ) . t o be l i t t l e  i n response  (Hacquebard opinion  organic  material  1977).  In a d d i t i o n  maturation, that  significance  experiments Coal increases (Hilt,  White  with  with  (1915).  easily  all  rock  that  that  time  rock  f o r 10 Ma  (Karweil, plays  documented  a  may  has s u s t a i n e d  a  1956).  The  i n the maturation  by  laboratory  e_t a _ l . , 1 9 7 7 ) . since  increasing  depth  of burial  A general increased  increase depth  then,  indices  and m e t a l s  t h e methods,  (Burgess,  on o r g a n i c  o f 100 d e g . C.  known  Since  was  local  F o r example,  have  measurable  hydrocarbon  zones  control  f o r 20 Ma  has been  geologists  i n shear  important.  d e g . C.  (Epstein  1983).  on o r g a n i c a l t e r a t i o n  to temperature  of the role  1873).  maturity  altered  m a t u r i t y as a  organic matter  1970; B u s t i n ,  at very  not pressure, i s the reason f o r  i s also  o f 80  matter  except  by p r e s s u r e and t h a t  a temperature  t h e same  temperature  of  o f a symposium  being  time  sustains  attain  and D o n a l d s o n ,  increase,  for organic  to p r e s s u r e changes  i s not a f f e c t e d  temperature  evidence  of burial  attempts  most  useful,  direct,  wide  variety  of sediments  was  have  Law  r e c o g n i z e d by made  will  to  find  aidin  ( S t a c h et. a _ l . , 1 9 8 2 ) .  reflectance  and  rank  of organic  been  of maturity that  measurement  coal  - Hilt's  in level  exploration  vitrinite  1873 t h a t  has proven  of levels  rocks.  Of  t o be t h e  of maturity f o r a  8 Time-temperature  Hydrocarbon and  time,  because time  maturation  and t e m p e r a t u r e  considered duration  i s a product  and c a n be s t u d i e d  coalification  Models  between  rank,  on o r g a n i c m a t u r a t i o n and C a s t a n o ,  1980;  Middleton, Fundamental  with  every  Temperature  that  to these models  (1980) c o r r e l a t e d parameters allows given  Lopatin's  thermal  i s t h e dependence o f r a t e d e s c r i b e d by  alteration  i s based  reaction  rates  an e a s i l y  of thermal  time-temperature  to a v i t r i n i t e  models c a l c u l a t e  vitrinite  Waples  maturation  computed model  The T T I v a l u e  reflectance  reflectance  reflectance  double  that  m a t u r i t y t o be made f o r any  conditions.  M i d d l e t o n , 1982; B u s t i n ,  on t h e  L o p a t i n d e v i s e d a Time  L o p a t i n ' s method w i t h o t h e r  and d e v e l o p e d  vitrinite  have  1971; B o s t i c k ,  (TTI) a s t h e m a t u r i t y p a r a m e t e r .  a prediction  If  authors  1979; W a p l e s ,  (1971) model  can be c o n v e r t e d  1979;  (Lopatin,  w h i c h was f i r s t  10 d e g . C. i n c r e a s e . Index  t e m p e r a t u r e , and  1982).  i n 1889.  observation  (1956)  o f time and  1974; B u n t e b a r t h ,  c o n s t a n t s on t e m p e r a t u r e , Arrhenius  depend on  Karweil  Since then, s e v e r a l  mathematically described the influence  Hood  reflectance  g e n e s i s both  ( S t a c h e_t aJ.., 1 9 8 2 ) .  of coal i f i c a t i o n .  1973;  paleotemperature  using v i t r i n i t e  and h y d r o c a r b o n  the r e l a t i o n s h i p  temperature  of  value.  directly  calculated Other  (Buntebarth,  .1984). v a l u e s a r e known, t h e n b a s i n  d e v e l o p m e n t and maximum p a l e o t e m p e r a t u r e s  c a n be c a l c u l a t e d  9 using  time-temperature models.  process of b a s i n reflectance basin.  values  This  predicted has  Recent  ( 1 9 8 3 ) , and  shed  1983;  Bennet  1977),  Provinces  Falvey  (Hacquebard  1984),  northeastern  Charlotte  Basin  (Kalreuth  and  (Bustin,  on t h e  (Lopatin,  (1977), B o s t i c k  M i d d l e t o n and  Issler,  light  within  a  timing  1971;  Bostick,  1980).  (Yorath  Goff  In Canada,  established  and D o n a l d s o n ,  (Bustin  and  include  e t a l . (1978),  central Alberta Arctic  publications  (1983).  t i m e - t e m p e r a t u r e m o d e l s have been Atlantic  i f the  understood, then  time-temperature modeling  and  hand,  for horizons  of hydrocarbon genesis  Waples,  Shibaoko  can be  the o t h e r  i s well  type of modeling  complexities 1973;  development  On  Plains  f o r the 1970;  (Hacquebard,  e_t a l _ . , 1 9 7 7 ) ,  Queen  Hyndman, 1 9 8 3 ) , w e s t e r n  McMechan, 1 9 8 4 ) ,  and  northern  Keen,  Bowser  Alberta Basin  1984).  Vitrinite  Three groups of macerals are recognized material  of c o a l :  inertinite originate The  (Stach  vitrinite,  exinite  et. a_l • , 1 9 7 5 ) .  from c e l l u l o s e ,  tannin  p r o c e s s i s a slow p r o g r e s s i v e  material groups  t o form humic  form h u m i n s .  gelification  t o form h u m i n i t e  lignin  oxidation  a c i d s , which  Humification  (liptinite),  Vitrinite and  by  organic and  i s known to of c e l l o f the  walls. plant  l o s s of f u n c t i o n a l  i s in turn  (Stach  i n the  followed  e_t a _ l . , 1 9 8 2 ) .  by Lignins  and  humins a r e n o t "compounds" i n t h e u s u a l  humification can  and g e l i f i c a t i o n  be d e s c r i b e d  by a s i n g l e  are not s i n g l e rate  Measurement o f r e f l e c t a n c e under  a microscope  with  means o f d e t e r m i n i n g 1974).  rank  of polished  from  e x a m p l e , h a s a random r e f l e c t a n c e 0.15% the  (pers.  comm. B u s t i n ,  zero maturity  reflectance-rank Teichmueller  reflectance  level  classification  a peat  This  that  Bostick,  bed f o r  i n o i l (RoR) o f  for this  i s taken  grains  precise  i s considered study.  t o be The  f r o m M c C a r t n e y and  (1972):  <0.50%RoR  = Subbituminous  coal  0.50-1.12%RoR  = High-volatile  bituminous  1.12-1.51%RoR  = Medium-volatile  1.51-1.92%RoR  = Low-volatile  1.92-2.50%RoR  = Semi-anthracite  >2.50%RoR  According constitute  a  1960;  measured  1984).  vitrinite  provides  (Koetter,  Immature woody m a t e r i a l ,  processes  equation.  a photometer  coal  s e n s e , and  = Anthracite  to B o s t i c k  ideal  material  coal  bituminous  bituminous  coal  coal  coal  coal  (1979, p . 17) , v i t r i n i t e f o r maturation  analysis  grains because:  " i t 1) i s v i r g i n when d e p o s i t e d w i t h t h e s e d i m e n t , 2) m a t u r e s r e g u l a r l y , 3) i s n o t s u b j e c t t o r e t r o g r a d e a l t e r a t i o n , 4) r e s i s t s r e a c t i o n w i t h a d j a c e n t f l u i d s and s o l i d s , 5) i s n o t s i g n i f i c a n t l y a f f e c t e d by p r e s s u r e , 6) o c c u r s w i d e l y i n r o c k s o f d i v e r s e l i t h o l o g y and f a c i e s , 7) i s d i s t i n g u i s h a b l e f r o m p r e - a l t e r e d and r e d e p o s i t e d m a t e r i a l , 8) c a n be a n a l y z e d s e p a r a t e l y , 9) p e r s i s t s t h r o u g h a b r o a d r a n g e  11 o f c a t a g e n e s i s a n d m e t a m o r p h i s m , a n d 10) h a s p r o p e r t i e s t h a t c a n be a n a l y z e d t h r o u g h o u t t h e a l t e r a t i o n r a n g e b y a r e l a t i v e l y inexpensive technique."  P R E V I O U S WORK  Previous the  Western  general  general  coal  coal and  the  Chrismas steadily  semi-anthracite  in  of  coals  are  an  are  and  Kootenay  coals  showed  t o be  i n accordance  burial  and  rank  Foothills Campbell's  be  variation was  and  found  and  Basin  Inner with  was  in Alberta by  by  The  towards  Alberta,  the  and  rank  These  east  Belt,  Front  coal  Belt.  from  into  and  described  Disturbed rank  high  Alberta  Foothills  Foothills  to  which  west they  pre-orogenic depth  of  Laramide o r o g e n e s i s .  coal  mines  Campbell  supports a general  noted  a_l. (1972).  to west  (1974)  by  The  Saskatchewan,  i n the  the  the  local  Ranges.  in western  in coal  influenced  documented  data  in  i n the  increase  Mountain  Coal  east  et  in eastern  Donaldson  Rocky  to  Front  in  documented  Plains  the  Steiner  found  the  not  and  i s found found  have  i n the  from  are  coals  observed  Basin  maturity  medium-volatile, low-volatile  Hacquebard  variation authors  lignite  organic  across  and  increases  and  of  Foothills  (1970)  bituminous  Ranges.  Sedimentary  coals  Foothills,  level  distribution  Mountains;  volatile  the  i n the  rank  sub-bituminous  on  in reflectance  i n rank  rank  Rocky  Canadian  variation  variation  Latour  studies  i n the  (1964,  east-west  Plains  and  1966). rank  increase  12 with  local  Norris Coal  variations  (1971) d e s c r i b e d  B a s i n , which are  c o a l s on  strike  described Alberta  an  burial  semi-anthracites  south.  i n c r e a s e of  central  t h e westward of the  Pearson  rank  Grieve  from  east  noted  an  during  t h a t the  Bluesky-Gething  Columbia.  Karst  then  The  variation  i n rank t o  of b u r i a l  of  Tertiary  the  and  then  and  implication  British  the  during  Karst  and  (1982) and  a  significant  parallel  rank o f  to s o u t h w e s t  the  the  across  increase  i n depth and  west o f  (1980) a l s o n o t e d  southeastern  (1982).  the  observed  the the  area p r e v i o u s l y  to  been f u r t h e r documented by Kalkreuth  to  in northeastern  Upper C r e t a c e o u s  White  These  (1980) d e s c r i b e d  L o c a l c o a l rank v a r i a t i o n  F r o n t Ranges from has  i n c r e a s i n g depth  i n depth of b u r i a l  and  from  Hacquebard  not  westward  the  southern  Fernie Basin.  attribute  gradual  a decrease  gas-prone.  Columbia  Kalkreuth  to  f o r o i l p r e s e r v a t i o n west o f an  t o be  Foothills  samples  core  in coal  northeast  authors  1977)  on  White  a decrease  from  strata  molasse depocentre.  (1975,  age  in  are  the Western Canadian Sedimentary B a s i n British  similar  o f K o o t e n a y Group  of the  lines  Cascade  Tertiary.  coalification  isorank  strata  the  (1979) have documented  Ridge.  i n c r e a s e and  the  Plains.  t o west  i n rank  Crowsnest c o a l f i e l d  at M o r r i s s e y  thought  than  P l a i n s of A l b e r t a .  Mannville  and  i n the  authors  first  rank  and  from  Hacquebard  increase  amount o f p o s t - o r o g e n i c  strata  Foothills  of a higher  to t h e  i n the  attributed  coals  the  f o r M a n n v i l l e Group c o a l s based  boreholes  of  i n both  Bustin  in  the  northeastern Cameron (1983)  and  13 described thrust and  the  absence  faults  in  concluded  from  that  thrusting  (1984)  the  outlined  Front  Ranges  of  White  (1980)  found  any  From  previously  east  sediments, that  different erosion  content  erosion  that  Cenozoic.  The  equilibrium Front  Ranges  strata  these  of  moisture  used  surface place  the  to  been  for from  removed  the  coals the  the  coals  Plains  to  By  coals  to  since  amount  measure  the  from 2%  of  of  amount  Plains  to  in  Several  in  the  35%  in  comparing  from  that  used  equilibrium  east  rocks.  (1977)  decrease  in  amount  the  Alberta  and  Alberta  Tertiary.  to  and  Karst  decrease  determine  et. a _ l . , 1 9 7 2 ) .  that  of  to  Foothills  i t i s apparent  the  to  McMechan  bearing  consider  eastern  established  the  coal  history  on  and  similarly  Hacquebard  percentages  determined  and  resulted  Mississippian  in  to  Foothills,  heating  subsequent  during  Cretaceous in  rank  work,  place.  taken  (Steiner  have  and  burial  been  near  Upper  must  coal  of  adjacent  and  Kalreuth  i n Mesozoic  eroded  taken of  frictional  important  have  maturity  Mountains  Alberta  west  the  been  has  gradients  Hacquebard  using  published  moisture  equilibrium depth  has  has  to  of  maturation  increase  i t is  methods  that  moisture  of  an  Rocky no  west-central  from  levels  Laramide.  thermal  rank  section  or  the  strata  reconstruction  Basin  of  little  the  Cretaceous  high  Southern  during  Lower  coal  of  the these  moisture  vs.  Europe,  west  900  maximum  to  3000  burial  m  of  coals. Another  Tertiary  estimate  section  was  of  the  thickness  calculated  by  of  the  Nurkowski  eroded (1984).  He  had  14 noted  that  different the  rank  equilibrium coal  rank  in Alberta  d i v i s i o n s on  overburden  versus  moisture  the  r e l a t i o n s h i p between  for  Alberta  content,  he  derived  graph  the  range  of  study  by  Magara  relationship  to  estimate  of  of  Nurkowski's  A  m  graph  of  eroded  1500  moisture  section  (1976) the  Alberta. missing  i s 900  used  a  amount  Magara  section  to  shale of  1900  removed  his  burial  m.  compaction  calculated  using  a  adjusting  depth  for  about  (1977)  By  and  thicknesses  area,  Europe.  to  value  By  Hinton  in  correlates  calorific  coals.  the  than  Hacquebard's  equilibrium  the  content  overburden  that  there  in was  method.  METHODS  Collection  A  total  samples clean  were  coal  available Coal  was  for  outcrop, from  sampled  partings,  core  southern  from  coal  excavating.  seams,  examination were  Samples  hand  and at  and  Alberta. seams.  Samples  coalified  the  picked  well  E.R.C.B. from  cuttings In  This  obtained  branches  cuttings  field,  often  were  core  the  in  core  laboratory. samples  at  a  set  laboratories.  Several samples.  600  considerable  particles  industry  over  collected  vitrain  required from  of  of  In  precautions the  field  an  were  taken  effort  was  to  ensure  made  to  valid  take  clean,  of  15 unoxidized this  was  samples;  not  sandstone compared  always  and to  however, possible.  conglomerate  coaly  seams.  This  is attributed  size.  Most  of  particles attempt The  were  to  taken  reduce  presence  of  of  measuring  the  is  only  chances  their  be  micropores,  of  c e n t r e s of  since  and  from  oxidized coal  particle  sampled  for  1979  in  oxidized be  coaly an  samples.  recognized by  the  microfissures  1980).  samples,  larger  more  recognized  Bustin,  coal  sampled  finer  generally  can  absent  adjacent  obtaining  can  a l . , 1975;  on  When  care  was  g r a i n s because  taken  to  oxidation  centripetal.  Determination  Pellet very  mesh  by  Organic  (U.S.  and  carbonates  Vitrinite  shale and  sieved  thermo-plastic  HF  Coal,  pestle  Standard,  concentrate  carbonaceous  the  procedure.  mortar  sieve  of  preparation for this  expensive  ground  of  from  to  of  coal  reflectance the  often  wells drilled  rinds,  (Stach et  particles  well-cuttings  Oxidized coal  dark  seams were  are  sampled  and  oxidized  vitrinite  measure  Coaly  mainly  from  the  microscopically. occurrence  cores  coal  outcrops  particles  the  where  was or  to  sample  fine  or  was  was  enough  to  placed  with  with at  simple  HCl  the  an  although  concentrate, pass  -250  through  to  of  bottom  a  crushed  remove  Approximately equal  was 60  micrometres).  pretreatment  silicates.  mixed  a  organic  approximately  sandstone  powder,  study  d e r i v e d by  remove  Reflectance  volume of  a  of  small  1  cc  16 hydraulic of  and then  thermo-plastic  piston to  piston,  then  pellet  taken them  cooled  was  then  vitrinite Leitz  analysis  against  a standard.  method,  as opposed  method Ting  (1978)),  2) s m a l l e r  particles  centering  hours  of microscope  hours  would  same  random  %RoR  analyzed each  have  time  been  random using  data  normally  reflectance  readings.  Each  (%RoR) (%RoMax)  1) t h e m e t h o d i s i s not required; because  For t h i s  f o r %RoMax  study  accurate over  200  at least  readings  statistically s e t were  made  distributed.  was e s t a b l i s h e d b y  sample  data  s e t was  on a m i c r o c o m p u t e r . to evaluate  a  methods, see  r e q u i r e d , whereas  required  used  calibrated  of these  c a n be m e a s u r e d  were  study,  reflectance  o f the stage  i s not required.  method  reflectance  advantages:  storing  of the  data s e t . Mean  fifty  description  as r o t a t i o n  stage  random  was  helium.  o u t ) was m e a s u r e d  t o t h e mean maximum  has s e v e r a l  inasmuch  For this  up  The  Care  by  the photometer  T h e mean  ( f o ra detailed  quicker and  with  removal.  i s the standard  of coal.  The  o x i d a t i o n by  and f l u s h e d  (polarizer  MPV2 m i c r o s c o p e ,  from  15 c c  pressures  f o r microscopy.  microscopy  reflectance  base.  t o 50 d e g . C. b e f o r e  i n a d e s i c c a t o r evacuated  petrographic  approximately  t o 1 0 5 d e g . C. u n d e r  polished  light  with  the sample  to protect polished p e l l e t s  Reflected for  t o form  was c l o s e d , h e a t e d  30 M P a ,  coal  powder  covered  whether  averaging s t o r e d and  Histograms of the data  was  600  17 Random v e r s u s  Both  random  Maximum  and maximum  Reflectance  r e f l e c t a n c e measurements  were made o f twenty-two c o a l s , o v e r 1.82 %RoMax, i n o r d e r  t h e r a n g e o f 0.42 t o  to e s t a b l i s h  the c o r r e l a t i o n  %RoMax and %RoR i n t h e c o a l s t u d i e d linear  relationship  described  was found  by t h e f o l l o w i n g  %RoMax =  (by  linear  in o i l  (Table  between  I, Figure  2).  A  between %RoR and %RoMax and i s  equation:  (%RoR - 0.00112) / 0.938  r e g r e s s i o n , r 2 = . 9 9 7 ) . The r e l a t i o n s h i p  between  %RoR and %RoMax h a s been documented by D a v i s  (1978) and T i n g  (1978).  Davis  is a  standard  d e v i a t i o n f o r %RoR d e t e r m i n a t i o n s  however savings. standard  this  reports that  short-coming  In t h i s  study  i s more t h a n  using  an  this  than  offset  when r e a d i n g  larger  f o r %RoMax,  by t h e t i m e difference in  maximum  o r random  (Table I ) .  Thermal  In  there  t h e r e was no a p p a r e n t  deviations obtained  reflectance  i n general  study  integral  History  the thermal form  Modeling  history  of the Lopatin  TTI o  of strata equation:  was  modeled  18  RoR v s . RoHa>; . D A T A **#********•#****#*•*****##****«*«••##  Table I .  SAHPLE#  RoMAX DEV. Q RoR  TE83-040 TE83-056 TES3-058 TES3-066 TEB3-095B TE83-103 TE83-112 TE83-543 TEB3-608 TE83-613 TEB3-628 TE83-631 TE83-671 TE33-673 TE83-676 TE83-6S7 TE33-699 TE83-705 TE83-708 TE83-712 TE83-715 TE83-733  1.52 1.23 1.35 1.59 0.62 0.49 1.82 0. 74 0.50 1.04 0. 64 0. 66 0. 42 0.48 0.94 0.5B 0.95 0.83 1.00 0. 70 1. 14 0. 75  . 07 . 10 3 .08 .13 . 03 n .03 3 .22 4 . 06 i . 03 3 .06 . 03 1 .05 .02 .02 3 . 07 2 . 03 2 •-> . 12 2. .05 .05 .04 .06 T .04 4 "?  1.41 1.11 1.23 1.55 0.59 0. 46 1.75 0.69 0. 48 0. 94 0. 62 0. 60 0.41 0.47 0.88 0.57 0. S3 0. 80 0. 95 0. 67 1. 07 0.69  DEV. Q . 08 . 12 . 09 . 10 . 03 .04 . 19 .05 . 03 .09 . 03 . 04 .02 .02 .05 .02 .06 . 05 . 06 . 05 .07 .04  2  3 ^>  3 •7  4 n  4 4 3 2 2 4 ^>  2  • = 5  4  Random r e f l e c t a n c e d a t a v e r s u s maximum r e f l e c t a n c e d a t a . Dev. i s s t a n d a r d d e v i a t i o n . Q i s a quality r a t i n g o f how w e l l t h e data f i t s a normal d i s t r i b u t i o n ( 4 = e x c e l l e n t f i t , 3=reasonable f i t , 2=poor f i t , l=no f i t ) .  I  19  %RoR vs. %RoMax Correlation for Southern Alberta Coals 2.0 -1  0  .2  A  .6  .8  1.0  1.2  1.4  1.6  1.8  % RoMax  F i g u r e 2.  Mean random v e r s u s mean maximum reflectance describes a straight l i n e where: %RoR = A x %RoMax + B  2.0  20 where  temperature  millions  of  numerically  (T)  years by  i s i n deg.  (McKenzie,  summing  one  C.  and  1981).  deg.  C.  time  The of  (t)  is in  e q u a t i o n was  the  horizons'  solved  thermal  hi story. Confidence how  well  model both  burial  is closely the In  on  the  age order  and  utilizing  history  a  equation  (see  thick  of  to  determine  the  sheet  "autochthonous" geothermal  with  time  was  temperature  transfer  flow  were  23  and  and  a  thermal  and  0 . 5 8 6 W/m  thrust  a  program  The  mW/sq.m, a  conductivity deg.  C.  models  of  f o r the  decline  20%  surface  the  no  each  a  vary  thrusting in  the  modeled  transient  W/m  block  with to  2%  effects  of  km  to  having  a  the  variation until  groundwater heat  of  20  deg.  C.  f o r the  flows C , solid  thermal  depth  with  the  5  considers  basement  deg.  at  5  time-steps model  The  a  adjacent  gradient  The  assume  fluid.  to  at  were  temperature  2.50  i s assumed  of  Initially  successive  reached.  conductivity from  1983).  geothermal  surface  because  temperature  on  The  known.  effects  fault  on  advection-dispersion  conduction only; The  well  based  modeled,  through was  of  part  Basin  instantaneously  was  gradient.  considered. 46  of  Chapman,  block  monitored  by  time  implaced  equilibrium  heat  possible  with  element  and  are  most  i s known.  Alberta  strata  two-dimensional  Smith  same  wall  f o r the  horizon  i n the  thickness  the  thrust  for a  and  finite  to  depends  constrained  hanging  solution  of  model  maturation, variations  footwall  km  i n the  a  base.  porosity  21  RESULTS  AND  DISCUSSION  Reflectance  The (%RoR), (N),  mean the  and  V.  found are  standard  for  i n the  marked  histograms Sciences  to  a  reflectance  the  appendix.  (Dev.),  normal  for  outcrop The  the  the  at  the  University  data  set  follows.  samples  coal Core.  from  average  IV).  from  These  from  Three  core  and  data,  from  samples  in tables  figures. of  British  IV  are bars  The  622  Geological  Columbia.  range  from  to  0.39  with  calorific  are  presented  the  Plains  from  consists  southwest  combined of  area  Maastrichtian  northeast  1964)  data  of  Plains  and  conversion  (Campbell,  Subsurface  samples.  0.51%RoR  are  A  Data  i n the  Campanian  increasing  obtained  mines  control  (Q),  confidence  Department  from  readings  w e l l - c u t t i n g s data  Ninety-five percent  available  of  data  are  (Table  values  core  i n the  samples  Basin  number  f o r w e l l - c u t t i n g s data  Surface  0.60%RoR,  and  the  Plains  Outcrop.  measurements  distribution  outcrop  statistics  Library of  random  deviation  a l l of  Similar  summary  fifty  similarity  presented and  of  Data  the  in  23  strata. to across  the  reflectance values  from  figure  41.  comprises Fish  of  Scale  91  core  Zone,  and  22 Second  White  Speckled  average  0.46%RoR  samples  from  Shale,  and range  the upper  lower  from  part  Upper  0.38  Cretaceous  t o 0.50%RoR.  of the preserved  Cretaceous  average  0.58%RoR  and range  increasing  towards  the axis  of the Basin.  samples  from  the Mannville  from  0.40%RoR  part  of the Basin.  rock  average  0.79%RoR  east  t o west  towards  core  samples  from  and  i n the northeast  1.60%RoR.  a map Well  Seventeen  the axis  cuttings.  data  of which  Two-hundred  and t h i r t y - n i n e  159  from  samples rock;  from  Lower  and 1 sample  Reflectance-depth figures  coalification  Paleocene  log%RoR/km  in  clastic  t o 0.18  Basin.  were  were  further  from 2  v a l u e s o f 0.95 into  sampled  figure  45,  i n the  i n the axis samples  of the Basin.  were  and P a l e o c e n e  rock;  5 samples  Mississippian  profiles  Jurassic  i n the Basin.  Cretaceous  from  yielded  cuttings  Cretaceous  southwest  t o 1.13%RoR A  range  f o r these  measured:  rocks;  from  74  Jurassic  rock. wells  are presented i n  3 t o 27.  The  0.04  Upper  from  i s incorporated  gradients  and  i n the  of the Basin. rock  core  0.61%RoR  0.41  core  t o 0.75%RoR,  Sixty  samples  from  Twenty-five wells  the majority  samples  core  Mississippian  The c o r e  average  Nine  Lower  0.36  t o 0.95%RoR  and range  of coal i f i c a t i o n  Plains,  Group  from  strata,  gradients  wedge  log%RoR/km  are consistently with  f o r t h e 22 w e l l s  Coalification  f o r the J u r a s s i c  an a v e r a g e sampled  gradients  l o g r e f l e c t a n c e , % R o R , p e r km  low, r a n g i n g equal  from  after  from  t o 0.07  the axis  are expressed depth,  to  as  of the difference  Shibaoka  and  23 Bennett  (1977).  Also,  as  of table  I I i n terms  part  cycle%RoR data  coalification  o f m/log%RoR  ( e . g . 0.1% t o 1 . 0 % ) .  available  presented  i n the Basin,  in units  the gradients  o f %RoR/100 m  In the F o o t h i l l s ,  outcrops average  to  Eight  0.81%RoR.  field  Blairmore  Group  1.07%RoR;  a n d 17 s a m p l e s  Jurassic to  Kootenay  1.99%RoR.  reflectance 41A  of  data  (1983)  rock,  Upper  pre-Jurassic from wells  data  Sub-surface data  from  rock.  An  68  Upper  rock  increase samples  Cretaceous  9 deep  samples  Jurassic  from  0.79 t o  from  IV).  from  rock  consists  - 36  Lower  was  samples  Cretaceous  a n d 32 s a m p l e s  from  observed  the southern  wells  from  (1974).  wells  in maturity  Figure  sample  and v a l u e s  from  0.72  vitrinite  f o r the F o o t h i l l s  from  0.50  Cretaceous  (Table  and D o n a l d s o n  to the northern F o o t h i l l s from  i n the  this  and  from  and range  study  the well-cuttings  samples  1.21%RoR  derived  rock,  been  outcrop assigned to  surface  Cretaceous  75 s a m p l e s  from  these  samples  other  Campanian  Lower  and range  increase  and Hacquebard  cuttings.  from  collected  from  have  and range  a l l the F o o t h i l l s  211 w e l l - c u t t i n g s  from  samples  from  from  0.75%RoR  average  i s apparent  reflectance  Well  Group  with  Data  0.96%RoR  A northward  incorporates  Bustin  average  per log  i n table I I I .  9 samples  Maastrichtian  are presented  (metres  For comparison  Foothills  Outcrop.  gradients  Foothills  i n the f i e l d  i n the southern  area: wells  24 ranged to  from  0.56  1.57%RoR;  ranged  from  t o 0.82%RoR  c u t t i n g s samples 0.68  t o 1.21%RoR  southern  and n o r t h e r n  cuttings  samples  and  t o 1.91%RoR  1.03  samples  and  t o 2.06%RoR  profiles  for  wells  from  from  gradients  Lower  a n d 0.70  0.67  0.67  Cretaceous  rock  i n the  south rock  i n the  south  Reflectance-depth in figures  are generally higher  the a x i s  rock  and p r e - J u r a s s i c t o 1.73%RoR  0.80  f o r the  Jurassic  t o 1.21%RoR  are presented here  wells,  t o 1.60%RoR  respectively;  i n the north.  wells  penetrating  from  i n the northern  i n the north;  ranged  f o r these  Coalification  wells  ranged  cuttings 1.31  and  of the Basin  28 t o 3 6 . than  those  (Table I I I ) .  25  R o R  -  D E P T H  WELL LOCATION N a-94-L  -A  82-6-1  13-4-26-6W5 7-8-29-10W4 6-32-15-29W4 10-36-11-28W4 8-8-10-27W4 6-16-12-27W4 10-24-10-27W4 6-36-17-1W5  21 11 9 11 16 14 14 5  S T A T I S T I C S  B  -C0RR.  Ri . 15 RoF  5895  2636  . 87  .45  1751  3536 1102 8706 7781 7460 7977  1907 565  .94 .84  .54 .51  1376 399  4421 3522 3474 3683 10485 5526 10404 5234  .96 .93 .93  3116 2355 2355 2487  .92  .51 .45 .46 .46 .53 . 50  .67 .94  3953 3673  8-4-16-29W4 11-10-17-1W5 10-25-15-291*14 8-14-16-27W4 8-3-13-28W4  12 10  11456 5862 12733 6696  .86 . 74  .51 .53  4144 4786  13 15 9  .76  .54  11 9 11  .93 .85 .77  .52 .47 .50 . 26 .52  5727 2349  6-11-14-29W4 8-11-15-28W4 6-2-16-29W4  14684 6367 6631 9514 3940 10855  6 - 6 - i 3-26W4 13-16-12-28W4 10-7-20-27W4  9 14 11 4  7930 3304 3097 4774 1009 5685  .90 .87  2102 3347 418 4057  6945 3610 .98 .52 2568 11714 5418 .62 .46 3661 T O 8472 4433 . / i. .52 3162 10771 4260 .99 .40 2644 10-4-16-10W4 6-6-13-15W4 4187 1228 .97 .29 600 4 .79 9025 4056 .45 2702 8-32-14-iaW4 2-18-8-25W4 5 4209 600 . 14 .42 -31 9 13029 6089 6-8-8-27W4 .91 . 47 4135 c 3-27-6-28W4 14992 6465 .75 .43 4216 ij T 3-22-7-24W4 .49 5667 16875 8199 .82 3-32-7-24W4 3 11.000 5001 1.0 . 45 3352 *#*#«********##»***#**#**#***•••*•##*•«**  Table I I .  R e f l e c t a n c e - d e p t h d a t a f o r 28 w e l l s  from t h e study a r e a .  N=the number o f %RoR d a t a p o i n t s . By l i n e a r r e g r e s s i o n , the d a t a i s d e s c r i b e d by DEPTH = A ( l o g ( % R o R x l 0 0 ) ) - B , w i t h a c o r r e l a t i o n c o e f f i c i e n t = CORR. R l = s u r f a c e e x t r a p o l a t i o n o f %RoR. 0.15 %RoR e l e v a t i o n i n metres A.S.L. t o 0.15 %RoR by e x t r a p o l a t i n g t h e g r a d i e n t . GG=geothermal g r a d i e n t c a l c u l a t e d from bottom h o l e temperature r e a d i n g taken a f t e r t hours a f t e r c i r c u l a t i o n . **=B.H.T. from nearby w e l l s .  C O A L  I F  I C A T I O N  LOCATION a-94-L B2-G-1 13-4-26-6W5 7-3-29-10W5 3-27-6-28W4  3-22-7-24W4 3-32-7-24W4 2-18-8-25W4 6-8-8-27W4 8-8-10-27W4 10-24-10-27W4 10-36-11-2BW4 6-16-12-27W4 13-16-12-2SW4 6-6-13-15W4 6-6-13-26W4 8-3-13-28W4 8-32-14-18W4 6-i 1-14-29W4 8-11-15-28W4 10-25-15-29W4 6-32-15-29W4 10-4-16-10W4 S-14-16-27W4 6-2-16-29W4 8-4-16-29W4 11-10-17-1W5 6-36-17-1W5 10-7-20-27W4  m/1ogRoR 10541 8968 3707 21684 22534 15447 5714 19013 12221 15998 12501 13365 16973 4927 11295 11596 11536 16288 7095 22755 15636 11203 10675 17573 18933 20513 17259 11711  G R A D I E N T S  1oqRoR/kfl) %RoR/ .095 . 112 .270 . 046 .044 . 065 .175 .053 .082 . 062 . 080 . 075 .059 .203 . 088 . 086 . 087 .061 . 141 .044 .064 .091 . 094 .057 . 053 . 049 .058 .085  .017 .023 . 091 .007 . 006 . 009 .024 .008 .013 . 010 .013 .013 . 008 .024 .014 .015 .011 .010 .025 .007 . 010 .009 .016 . 009 . 009 . 008 .010 .012  Table I I I . C o a l i f i c a t i o n gradients from 28 w e l l s i n southern A l b e r t a .  F I E L D  LOCATION 9- 18-24-6W5  R E F L E C T A N C E  SAMPLE*  !FH/GP LITHO. RoR DEV. N Q RANK  TE83 -008 TE83 -019 9- 3-15-22W4 TE83 -020 8- 36-15-23W4 TE83 -021 8- 14-17-17W4 TE83 -022F _ 13-17-17W4 TE83 -023B 6- 14-29-23W4 TES3 -024 23-29-21W4 TE83 -025 9- 13-29-21W4 TE83 -026 6- 1-29-20H4 TE83 -027 12 -14-28-19W4 TE83 -028 11 -8-8-4W5 TE83 -030 8- 3-8-4W5 TE83 -032 15 -20-7-3W5 TES3 -033 TE83 -034 15-7-3W5 :l 1-7-22-3W5 TE83 -038A 1- 34-22-4W5 TE83 -039 B- 15-22-6H5 TE83 -04 OA 8- 23-21-5W5 TE83 -041 16 -27-19-4W5 TES3 -046 12 -8-20-2W5 TE83 -049F 1- 32-16-5W5 TE83 -055F 4- 33-16-5W5 TE83 -056A 1- 1-17-5W5 TE83 -058 6- i6-7-4W5 TE83 -062 15 -31-6-3W5 TE83 -063 6- 4-6-2W5 TES3 -064 12 -29-18-7W5 TES3 -066 5- 21-16-5W5 TE83 -067 7- 26-14-5W5 TE83 -070 14 -17-12-4W5 TE83 -072F 7- 30-12-4W5 TE83 -073 T _ 2-13-4W5 TE83 -075 TE83 -076F 2-13-4W5 "7 — TE83 -077F 35-I1-4W5 ?- 14-11-4W5 TE83 -079 4- 8-11-3W5 TE83 -080 16 -30-9-2W5 TE83 -088 14 -26-4-28W4 TE83 -095B TE83 -098 10 -30-6-5W5  8- 36-14-22W4  ^\ —  D A T A  UBRZ LEDH LEDH LEDH UJDR UJDR UHSC MHSC MHSC LHSC LHSC KTNY BLRH LBLR BLRM BL YR BL YR KTNY BLYR BLYR BLYR BLRM MSTM KTNY KTNY KTNY KTNY LUST BLRM LBLR KTNY KTNY KTNY BLRM KTNY BLRM KTNY BLYR BLYR KTNY  COASH COAL COAL COAL COAL COAL COAL COAL COAL COAL COAL COAL COAL COAL CRBSS COAL COAL COAL COAL COAL COAL CRBSH COAL COAL COAL COAL COAL COAL COAL COASH COASS COAL COAL COAL COAL COACG COAL COAL COAL COAL  77 48 „ 46 a 54 47 52 56 46 „ 48 49 i 39 72 79 1 .06 88 77 58 1 .41 71 81 67 „ 95 1 . 11 i. 1 .25 88 92 72 1 .55 1 . 06 „ 95 99 i . 62 , 90 i .07 l . 02 „ 93 i .05 50 59 i . 06 a  B  .04 50 . 06 50 . 05 50 . 05 50 . 03 50 .06 50 .05 55 . 03 51 . 04 51 .03 52 .02 52 .07 . 07 50 .05 50 .09 55 . 03 53 .05 50 .08 50 . 09 55 . 06 50 . 06 50 .13 50 . 12 50 .07 50 .05 50 .06 50 . 05 50 . 10 50 . 05 50 .06 51 .04 57 .35 50 . 06 50 .23 17 . 07 50 . 06 50 .05 50 .04 50 . 03 50 .04 50  *#**#*##**#**#*##***#****•*#***#*##*****  T a b l e IV.  %RoR f i e l d d a t a . ( C a p t i o n c o n t i n u e d on f o l l o w i n g page.)  4 HVLB T SUBB 2 SUBB T HVLB 2 SUBB •"J J. HVLB O HVLB 3 SUBB 4 SUBB n SUBB iSUBB 4 HVLB 4 HVLB ? HVLB HVLB 2 HVLB 1 HVLB MVLB HVLB n HVLB X. HVLB HVLB 3 HVLB 7 MVLB 4 HVLB *> +. HVLB 3 HVLB HVLB 4 HVLB 3 HVLB HVLB 1 LVLB 4 HVLB 1 HVLB 3 HVLB 2 HVLB 2 HVLB 4 HVLB HVLB T HVLB (  28  F I E L D  R E F L E C T A N C E  LOCATION  SAMPLES  15 - 2 2 - 3 3 - 2 2 W 4 1- 9 - 3 1 - 2 1 W 4 9- 6-28-18W4 1- 1 9 - 2 9 - 1 3 W 4 4- 33-20-11W4 16 - 1 0 - 1 3 - 9 W 4 16 - 1 0 - 1 3 - 9 W 4  T E 8 3 - 100 T E 8 3 - 101 T E B 3 - 102 T E 8 3 - 103A T E 8 3 - 104 T E 8 3 - 105U T E 8 3 - 105L  11 - 5 - 1 3 - 6 W 4 10 - 2 7 - 2 - 1 2 W 4 6- 35-2-12W4  MJDR T E 8 3 - 1.06 T E 8 3 - 109 A HJDR TE83- H O MJDR  COAL COAL COAL  5- 18-10-16W4 11 - 3 1 - 9 - 2 3 W 4  T E 8 3 - 112A T E 8 3 - 115  JDTR  BCOAL  1.75  LSTH  COAL  a  60  1- 3 3 - 4 - 2 2 W 4 5- 3-4-27W4 6-32-6W5 4- 30-29-10W5 4-24-7W5 ~ _ 10-25-9W5  T E 8 3 - 116 T E 8 3 - 117 T E 8 3 - 124 T E 8 3 - 132 T E 8 3 - 135 T E 8 3 - 139F  LSTM L3TM UBRZ KTNY KTIMY EXSH  CRBSH COAL CRBSH COAL CRBSH CRBSH  n  59  FH/GP LITHQ. UHSC MHSC LHSC LEDM  COAL COAL COAL COAL UJDR COAL L J D R COASH L J D R COASH  a  a  N Q RANK  RoR  DEV.  55 54  .05 .04 .08 .04 . 06 . 06 . 07  52 57 50 50 52 54  .04 .11 .05  54 47 54  55 46 46 45 51 49 52 49  60 , 59 1,5i a  D A T A  55  3 HVLB n HVLB 2 HVLB 3 SUBB SUBB 3 SUBB 2 HVLB 2 SUBB HVLB JL  3 SUBB  . 19 5 0 . 0 4 50 .07 .06 . 04 . 06  1 . 79 . 2 1 1.56 .04 1- 2 9 - 2 4 - 1 0 W 5 T E 8 3 - 140 KTNY C O A L 1.99 .09 #*******#****•#••*#***#**##**##****#***^  5 0 •!> 50 T 5 0 "T 50 n 50 3 1 50 4  LVLB HVLB HVLB HVLB HVLB LVLB LVLB LVLB SEMA  T a b l e IV ( c o n t . ) . LITHO. = r o c k type where COASH = c o a l y s h a l e , CRBSS = carbonaceous sandstone, COASS = c o a l y sandstone, COACG = c o a l y conglomerate, and BCOAL = burnt c o a l . FM/GP = Formation/Group names where UBRZ = Upper Brazeau, LEDM = Lower Edmonton, UJDR = Upper J u d i t h R i v e r , MJDR = M i d d l e J u d i t h R i v e r , LJDR = Lower J u d i t h R i v e r , UHSC = Upper Horseshoe Canyon, MHSC = M i d d l e Horseshoe Canyon, LHSC = Lower Horseshoe Canyon, BLYR = B e l l y R i v e r , BLRM = B l a i r m o r e , LBLR = Lower B l a i r m o r e , KTNY = Kooteney, MSTM = M i s t Mountain, EXSH = Exshaw. SUBB = subbituminous. HVLB = h i g h v o l a t i l e b i t u m i n o u s . LVLB = low v o l a t i l e b i t u m i n o u s . MVLB = medium v o l a t i l e b i t u m i n o u s .  C O R E  R E F L E C T A N C E  LOCATION  SAMPLES  7- 25-2-24W4 2-1-21.W4  TE83'-505  10 -2-1-16H4  s- 4-5-4W4  6- 26-4-18W4 6- 20-5-5W4 5- 13-5-5W4 14 -33-6-13W4 7- 24-6-17W4 14 -5-6-5W4 6-21-5-25W4 11 -30-7-14W4 16 -1-7-14W4 6-24-5-7W4 11 -2-34-20W4 6- 28-26-1W5 5- 14-28-4W5 6- 19-29-1W5 7_ 28-25-4W5 4- 29-8-20W4 9- 9-8-23W4 8- l l - 9 - 1 8 W 4 14 -11-9-21W4 5- 6-8-15W4 6- 29-8-26W4 8- 1-10-11W4 16 -23-10-16W4 14 - 2 0 - 7 - i 4^4 12 -35-10-16W4 7 -28-10-27W4 28-10-27W4 16 -23-10-28W4 10 -4-11-16W4 10 -4-11-16W4 1- 12-10-26W4 8- 8-10-27W4  /—  8- 8-10-27W4 n 2-11-16W4 14 -35-10-16W4 16 -14-11-13W4  T a b l e V.  TE83 -501 TE83 -507 TEB3 -521 c n £T TE83 TE83 -531 TE83 -540 TE83 -541B TE83 -543 TE83 -547 TES3 -549 e r r  FM.  DEPTH  MNVL  1358 996 MNVL 723 MNVL 1145 BOW I 719  SSPK  MNVL 1035 MNVL 1170 MNVL 925 MNVL 953 MNVL 1057 MNVL 2051  RoR  D A T A  DEV.  N Q RANK  .75  . 03 50 HVLB . 02 50 ,jl HVLB . 75 . 03 50 HVLB .46 .02 50 2 SUBB .52 .05 50 1i. HVLB .54 .03 50 2 HVLB .62 .06 50 1 HVLB C ~7 . J O .06 50 2 HVLB .69 . 05 50 HVLB .51 .05 50 3 HVLB .51  . 66 .05 50 1 HVLB  TE83 J J J TES3 -559 TE83 -566  MNVL 954 MNVL 915 MNVL 916  .54 .04 21 1 HVLB .48 . 04 50 nX. SUBB .44 .03 50 X. SUBB .36 .06 50 2 SUBB 1.60 .33 41 2 LVLB . 67 .09 50 HVLB  TE83 -570 TE83 -585 TE83 -588  VKNS 1219 ELKN 2507 VKNG 2640  TE83 -593 TE83 -595 TE83 -603 TE83 -607 TE83 -608 TES3 -610 TE83 -612 TE83 -613 TE83 -621 TE83 -626 TE83 -628 TE83 -631 TE83 -666 TE83 -669 TE83 -671 TE83 -672 TE83 -673 TES3 -674 TE83 -676 TE83 -677 TE83 -682 TE83 -683 TES3 -684  VKNS 2124 . 75 RCCK 3036 1.13 BOWI 864 .62 JURA 1763 . 38 MNVL 1020 . 46 BOWI 899 .55 MNVL 980 .53 JURA 2401 .95 MNVL 912 .68 MNVL 937 .62 MNVL 944 .57 MNVL 950 .60 SWFT 2481 .61 MNVL 2473 .95 SSPK 2365 .33 MNVL 971 .55 MNVL 986 .47 EXSH t- \J x. t .95 MNVL 2524 .88 MNVL 2544 . 80 MNVL 961 . 66 MNVL 949 . 51 .63 MNVL 891  . 10 . 24 . 06 . 03 .02 .05 .05 .06 . 05 .05 . 03 . 04 .04 .06 .02 .04 .02 . 04 .05 .08 .05 . 03 .04  50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50  2  1 3 2 2  HVLB MVLB HVLB SUBB SUBB HVLB  2 HVLB HVLB HVLB HVLB 1 i. HVLB 4 HVLB ~) HVLB X. 3 HVLB 2 SUBB HVLB SUBB r> i~ HVLB n AC HVLB /\ HVLB n *. HVLB 7, HVLB 2 HVLB  %RoR c o r e d a t a . MNVL = M a n n v i l l e , SSPK = Second White Speckled Shale, BOWI = Bow I s l a n d , VKNG = V i k i n g , ELKN = E l k t o n , RCCK = Rock Creek, JURA = J u r a s s i c , SWFT = S w i f t , EXSH = Exshaw, FSCZ = F i s h S c a l e Zone.  C O R E  R E F L E C T A N C E  LOCATION  SAMPLE*  FM.  DEPTH  RDR  31-11-12W4 i i -18-9-16W4  TE83 -686 TE83 -687 TE83 -689 TE83 -690 TE83 -691 TE83 -692 TE83 -693  JURA MNVL JURA MNVL MNVL MNVL  900 975 915 964 943 949  .41 .56 .46  cr iJ  32-11-12W4 6-2-11-16W4 7_ 25-I0-17W4 7- 25-10-17W4  i - 31-11-13W4 13 -16-12-28W4 TE83 -694 13 -16-12-28W4 TE83 -695 6- 16-12-27W4 TE83 -696F TE83 -697 6-24-14-27W4 TE83 -693 8- 11-11-27W4 6- 16-12-27W4 6- 16-12-27W4 4- 29-15-20W4 10 -15-15-22W4 6-29-15-26W4 4- i2-15-27W4  TE83 -704 TE83 -705 TE83 -706 TE83 -707 TE83 -708 20-17-21W4 TE83 -709 TE33 -711 13 -14-17-2W5 i TE83 -712 34-20-20W4 i n TE83 -713 33-21-2W5 TES3 -714 4- 17-20-28W4 TE83 -715 2- 33-21-2W5 TE83 -717 6- 18-11-22W4 8- 14-16-27W4 ' TE83 -718 - 1-13-18W4 TE83 -723 TE83 -726 1-6-13-17W4 16 -16-13-22W4 TE83 _ 7 T 7 TE83 -728 6-4-13-21W4 6- 6-13-26W4 14 -19-18-19W4 14 -31-18-19014 6- 29-18-20W4 10 -13-18-16W4 6- 12-22-5W4  TE83 -729 TE83 -730 TE83 -731 TE83 -733 TE83 -734 TES3 -735  DEV. N  .04 . 02 .03 .52 .03 .62 .04 . 60 .04  Q  .57 . 05 50 £. .63 .03 50 2 . 69 .05 50 4 . 69 .08 50  JURA 2157 SWFT 2389  .75  JURA MNVL MNVL MNVL JURA MNVL JURA MNVL JURA MNVL JURA BOWI JURA MNVL MNVL MNVL MNVL MNVL MNVL  .74 .83 .75 .64 . 74 .84  .09 79 . 05 50 i . 06 50 50 50 50 50  . 06 . 05 .09 . 07  2172 . 75 .05 2457 .81 .04 2451 . 76 .04 1428 .58 . 0 3 2513 .95 .06 1352 . 63 . 03 3102 . 73 . 03 1327 .67 .05 2768 1.12 . 07 2208 .55 . 06 2779 1.13 • o u 1171 .59 . 03 2237 . 92 . 05 1066 . 54 . 04 1033 .51 . 02 1435 .64 .04 1359 .68 .06  2148 1329 MNVL 1375 MNVL 1389 MNVL 1087 MNVL 770  RANK  50 1 SUBB 50 HVLB 50 0 SUBB 50 HVLB 50 •"} HVLB 50 2 HVLB  JURA 906 SWFT 2820 SWFT 2823 MNVL 2364  TES3 -699 MNVL 2381 TE83 -7 OOF MNVL 2412 TE83 -701 MNVL 1293 TE83 -702 MNVL 1284 SWFT 2047 TE33 -703  6- 17-15-27W4 6- 24-15-28W4 12 -22-16-22W4 8- 11-15-28W4  D A T A  HVLB HVLB HVLB HVLB HVLB HVLB  JL  HVLB  7,  HVLB HVLB HVLB HVLB  50 1 HVLB  50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 .83 .05 50 .47 .04 51 .62 . 03 50 .69 . 04 50 .40 . 04 50 .45 .02 50  HVLB 3 HVLB HVLB n i. HVLB 7, HVLB n HVLB X. •-\ s. HVLB 4 HVLB 2 HVLB 2 HVLB 2 HVLB HVLB -Is HVLB 3 HVLB 7 HVLB 2 HVLB 4 HVLB 1 SUBB 2 HVLB 4 HVLB 4 SUBB 4 SUBB  \J  ••ft*************************************************  Table V (cont.).  C O R E  R E F L E C T A N C E  LOCATION  SAMPLES  FM.  10-29-22 -171-14 6-i 3-27- 14W4 10-12-22 -1SW4 i 1 - 9 - 2 2 - 25W4 11-9-22- 25W4 10-2-26- 12W4 16-31-26 -13W4 10-5-26- 18W4 6-10-26- 17W4 6-1-26-19W4 6-25-26- 23W4  TE83- 737 T E 8 3 - 738 TE83- 739 T E 8 3 - 740 TE83- 741 T E 8 3 - 743 TES3- 744 T E 8 3 - 745 TE83- 746 T E 8 3 - 747 T E 8 3 - 748  MNVL 1181 FSCZ 921 MNVL 1158 VKNG 1452 VKNG 1457 MNVL 1024 MNVL 1110 MNVL 1403 MNVL 1259 MNVL. 1386 MNVL 1504  Table V (cont.).  D A T A  DEPTH RoR  DEV. N Q RANK  . 46 .05 50 . 50 .04 50 . 03 50 • ij63 .04 50 . .56 .05 50 . 60 .04 50 .45 .04 50 .59 .02 50 .62 .04 50 .59 .02 50 .68 .05 50  A.  SUBB  4 4 3 .j  3 4  3  HVLB HVLB HVLB HVLB HVLB SUBB HVLB HVLB HVLB HVLB  REFLECTANCE  REFLECTANCE 0.2  i  0  0.3 0.4 I  I  0.6 0.8 1.0 I  ,  I  I  I  I  I  1.5 2.0  I I I I  0.2  0.3 0.4  0.6  0.3 1.0 J  I  1.5 2.0  I  r2 =  -  2 -  <  BEARPAW  X I—  -PAKOWKI -  a.  m  I.J i  Q  C a v i n g s /.  (  a*  ESSO SUNDANCE NANTON 6-32-15-29W4  #209  F i g u r e 3.  REFLECTANCE  -r  ESSO WINDPUMP  10-36-1 1-28W4 #212  F i g u r e 4.  REFLECTANCE  2  rCL LU Q  ESSO SUNDANCE MUDDY LAKE 8-8-10-27W4. #213  F i g u r e 5. F i g u r e s 3 to 27.  ESSO SUNDANCE CLARESH0LM 6-16-12-27W4 #21  F i g u r e 6.  R e f l e c t a n c e - d e p t h p r o f i l e s f o r P l a i n s w e l l s . Dots a r e c u t t i n g s sample p o i n t s , squares a r e c o r e sample p o i n t s w i t h 95% c o n f i d e n c e l e v e l e r r o r b a r s .  0.2  0.3 0.4  0.6 I . I  0.8 1.0 I  33  REFLECTANCE  REFLECTANCE 0.2  1.5 2.0 ' I  0.3 0.4 _J l _  0.6  0.8 1.0 I  J  r  I  2 =  I  I  1.5 2.0  I  92  - o -JUDITH  • PAKOWKI  RIVER  E I rO. ID O  Cavings  ESSO SUNDANCE HIGHWOOD" 6-36-17-1W5  ESSO SUNDANCE MUDDY LAKE 10-24- 10-27W4 #21!i  F i g u r e 7.  Figure  #216  8.  REFLECTANCE  REFLECTANCE  a. Lit Q  ESSO SUNDANCE NANTON 8-4-16-29W4 #217  Figure  9.  ESSO SUNDANCE CAYLEY 11-10-17-1W5 #218  F i g u r e 10.  34 REFLECTANCE 0.2  0.3 0.4  0.6  TEXACO et al. MAZEPPA  0.8 1.0  REFLECTANCE 1.5 2.0  10-7-20-27W4 #220  0.2  0.3 0.4  TEXACO ALDERSON  F i g u r e 11.  0.3 0.4  0.6  0.8 1.0  TEXACO ENCHANT 6-6-13-15W4  F i g u r e 13.  0.8 1.0  1.5 2.0  10-4-16-10W4- #221  F i g u r e 12.  REFLECTANCE 0.2  0.6  REFLECTANCE 1.5 2.0  #222  °-  2  °-  3  °-  4  0.6  0.8 1.0  1.5 2.0  35 REFLECTANCE  REFLECTANCE 0.6  2-  3-  GULF K I M 2-18-8-25W4  #224  Figure 15.  GULF PEIGAN 3-27-6-28W4 #226  Figure 17.  GULF PEIGAN 6-8-8-27W4  Figure 16.  #225  36  GULF WEST BLOOD  3-32-7-24W4  ESSO SUNDANCE NANTON  #228  10-25-1 5-29W4 #229  F i g u r e 20.  F i g u r e 19.  REFLECTANCE  REFLECTANCE 0.2 -)  0.3  0.4  I  I  0.6 L,  I  0.8 1.0 I  l  l  I  I II  1.5 2.0 II  1-  I  t-  a  Q.  Ui  LU  a  a  ESSO CONNEMARA 3-14-16-27W4 #230  F i g u r e 21.  ESSO SUNDANCE OXLEY 3-3-13-28W4  F i g u r e 22.  #23T  37 REFLECTANCE  REFLECTANCE  0.2  0.3  0.4  I  I  0.6  0.8 1.0  I I I  1.5 2.0 I  1-  E  XL  I  r-  Q.  Q.  LU Q  LU Q  3 - -•  ESSO OXLEY  6-1 1-I4-29W4  #232  ESSO PARKLAND  F i g u r e 24.  F i g u r e 23. REFLECTANCE 0.3 0.4  0.2  I  I  REFLECTANCE  0.8 1.0 I  8-1 1 - 1 5-28W4 #233  I  I  II  1.5 2.0  0.2  I I I  0.6 0.8 1.0 1.5 2.0 _J I I I I I I I I .  - B E A R P A W  E  •  B E A R P A W  •  P A K O W K I  -  P A K O W K I  2 -5 CL LU Q  CL. LU Q  - 2  ESSO SUNDANCE NANTON 6-2-16-29W4' #234  F i g u r e 25.  ESSO SUNDANCE CLARESHOLM' 6-6-13-26W4  F i g u r e 26.  #235  REFLECTANCE  REFLECTANCE 0.2  0.3  0.4  0.6  0.8  1.0  0.2  0.3  0.4  I  0.6  I  0.8  1.0  1.5  2.0  I I I I I I II  II  E X ID_ LU Q  X I— 0-  LU Q  4 ESSO SUNDANCE  LYNDON  13-16-12-28W4  Figure 2 7 . F i g u r e s 28 to 36.  #236  S H E L L J U M P I N G P O U N D W.  13-4-26-6W5  Figure 28.  Reflectance-depth p r o f i l e s f o r Disturbed B e l t w e l l s . Dashed l i n e s a r e f a u l t s . Solid l i n e s are formation contacts.  #211  REFLECTANCE  0.2  0.3  0.4  0.6 J  L_J  REFLECTANCE  0.8 1.0 II  I  1.5  I l I l I  2.0  0.2 _l  0.3 I  0.4 _!  0.6 I  I  0.8 1.0 I  I  I  I  1.5  2.0  I I I l I  Pe  K  — \ A  J J K  «  K  K  £  K  •  I  \—  £L LU Q  J M M  0  SHELL MIDDLEPASS  a-94-L 82-G-1  F i g u r e 29.  #200  SHELL 42 WATERTON Figure  8-20-4-1W5 30.  #201  I  REFLECTANCE  REFLECTANCE 0.2  0.3 0.4 J  I  0.6 0.8 1.0 I J  1.5 2.0 I I I IIII I  0.2 _]  0.3 0.4 I I  0.6 0.8 1.0 1.5 2.0 I I I I I II I I I I ILEL LK  M M  E  E FAULTED ZONE  x  H Q_ LU Q  M  M  1  X  M  LU Q  O  \— D-  : J :  M  5-  6 SHELL WATERTON  7-24-5-3W5 #202  Figure 31.  SHELL HOME WATERTON  6-3-6-3W5 #203  Figure 32.  REFLECTANCE  REFLECTANCE 0.2  _J  0.3 _ _ J  0.4 I  0.6 I  0.8 1.0  L_J  I  I I  1.5  2.0  I I I I I  0.2  _J  0.3  0.4  I  I  I  0.6 I  0.8 1.0 I I I I  I  II  1.5 2.0 I UK  I  UK  LK  LK UK LK  M  2M  E  MISSISSIPPIAN  XL  I  M  3 -  M  0_  UJ Q M M  5-  AUTOCHTHONOUS  SHELL HOME SHEEP 8-30-18-3W5 F i g u r e 33.  #204  S H E L L G E T T Y SULLIVAN F i g u r e 34.  7-7-17-4W5  #205  REFLECTANCE  REFLECTANCE 0.2  0.3  0.4  0.6  0.8 1.0  1.5 2.0  0.2 _J  0.3  0.4  I  I  I  0.6 0.8 1.0 1.5 2.0 I J I I I IIIII UK  UK LK LK  M  LK M  6  _ i  SHELL 8 PANTHER RIVER 7-8-29-10W5 #206 F i g u r e 35.  SHELL HUNTER VALLEY  1 1-32-28-8W5 #207  F i g u r e 36.  REFLECTANCE 0.2  £  0.3  0.4  0.6  0.8  1.0  1.5  2.0  —  J  DEPTH =-10689 F i g u r e 37.  x Io g  i Q  (%RoR  x 100)  +  17876  C u t t i n g s and core samples %RoR v e r s u s depth d a t a f o r w e l l s i n townships 10 to 22 i n t h e a x i s o f the b a s i n . The o i l window i s 1200 to 4400 m f o r the J u r a s s i c to Paleocene wedge.  F i g u r e 38.  A l l c u t t i n g s samples %RoR v e r s u s depth d a t a f o r w e l l s i n townships 10 to 22 i n the a x i s of t h e b a s i n .  45  REFLECTANCE 0.2  DEPTH  F i g u r e 39.  0.3  = -17921  0.4  x log  0.6  1 0  0.8  (%RoR  1.0  1.5  2.0  x 100) + 2 9 9 2 8  C u t t i n g s samples %RoR v e r s u s depth d a t a f o r w e l l s i n townships 6 to 8 i n t h e a x i s o f t h e b a s i n . Rocks s u f f i c i e n t l y mature to g e n e r a t e hydrocarbons are n o t reached u n t i l 2070 m.  46 Problems  Only Basin from  a small  were  alternative may  First, the  which  may  general  well  increase  however,  duration  using  drying  from  these  heating  cuttings  responses  on g e o p h y s i c a l  the  seams  small  cuttings (for  this  cuttings the  depths  problem 209  study, sample  and 235  higher  up  vials  were  by c a v i n g s  (Figures  i n the hole  caused  fluids,  are o f such low enough  problem  depths used  or  logs  yielded  written  run).  with  In short  3 and 2 7 ) , where has contaminated  they of  particles coal  b u t some o f  carbonaceous logs  on t h e w e l l  any a d j u s t m e n t  Inherent  as i s e v i d e n t  a l l of  that  of the coaly  without  by  is correlation  r u n on t h e w e l l , that  considered.  the r e s o l u t i o n of the well  the actual  to geophysical  caused  logs  than  be  c a n be c o r r e l a t e d  and p a r t i n g s  are thinner  must  Two  o f the sample.  Many  taken  shallowest  a t the surface,  involved  depth.  the  by f r i c t i o n  events  The second  was  Samples  rocks.  o r by t h e d r i l l i n g  to proper well  below  of the cuttings  i n the  studies the cuttings.  cuttings  cuttings  drilled  of the core  of host  the reflectance  not s i g n i f i c a n t .  sampled  well  or the temperatures  cuttings  most  i s well  a variety  drilling  during  wells  of the well  of the well  b i tduring  of a l l the wells  f o r samples  f o r most  problems  Well-cuttings  For reflectance  and from  heating  heating  are  source  point,  potential  In these  horizon.  be o b t a i n e d  sample  percentage  cored.  a single  Using  then  f o r example  spalling cuttings  of  of  i s the in wells  rock  samples  from  47 greater when  depths.  these  values  samples  (always  identified rounded the  where  of  in  cuttings  gradients  attest  cavings  few  possible, for  core  cuttings  the by  samples  were  type  has  Empirical  Foster,  as  by  that to  reflectances  30%  coal  has  lower p.  lower a  than  54),  flux,  coaly  the  good  than  from  that  sandstone  of  material would  closed  aquifers  thermal  in  the  experience  system because effect  possible  the  the  to  uniform  wells  sampled.  cavings  influence  1982) in  three  Where sampled  problems.  possible open lower  fracture millions  seams. to  that  may  Given  be  up  that  times  and  Haenel,  for  a  given  1974, heat  (permeable  However,  years  than  coals  porosity.  not  and  suggested  thirteen  temperature  probably  (Bostick  sandstones  system  of  on  have  (Kappelmeyer  of  are  compared  same w e l l  measurements  seam).  conductivity  size,  Influence  (the  of  the  associated  conductivity  type  of  that  were larger  wells  from  material  thermal  equilibrating in  coaly  coal  most  Kalkreuth,  i t is theoretically  sandstone) in  of  rock  the  i f any,  levels. cited  for  taken  coalification 1975,  Cavings  is  abnormal  Nevertheless,  evaluate  little,  in  generally  for  Rock  phenomenon  result  different  obtained'  Host  Rock  they  sample.  to  latter  their  problems  in order  the  Plains).  sometimes  coalification to  of  measured  possible  and  the  effect  are  lower  edges,  bulk  The  often  After  these  the  coal are  the  differences  significant.  In  a  48 section the  composed  Cretaceous  contrasts  of  thin  rocks  cannot  of  have  sandstones Alberta,  affected  Stratigraphic  The in  ages  figure  Kootenay  of  40. and  Paleozoic  the  The  oldest  carbonates Plains,  thickness  a  as  result  Pre-Cretaceous  absent  over  the  the  Overlying  boundary  (E.R.C.B., one  Jurassic  In  the  The no  the  level  1978).  The  the  Foothills  where  present,  Upper  Cretaceous  and  of  the  upper  Island  rocks  than  to  The  a  to  base  older  Plains,  compared  been  event  and  the Late  part  of  the  113  Lower  to  below  by  area. to  the  is most  of  97.5  Ma,  Cretaceous  strata.  Cretaceous-Upper the  Fish  Cretaceous  Scale  unconformity  may  u n c o n f o r m i t i e s noted  Mountains,  the  l i e stratigraphically boundary.  and  in  are  assigned  Barremian,  Viking  boundary  other  strata  stage,  reduced  and  M a n n v i l l e Group  Albian  Lower just  are  the  represented  study  Bow  i s at  have  on  In  the  (1964).  the  units  area.  of  i s assigned  In  unconformably  study  erosional  Jurassic  northeastern portion  the  the  the  the  Ma)  to  includes  an  in  presented  117  estimated  Singh  rest  to  are  to  Group.  by  of  studied  belong  Jurassic  of  as  conductivity  (135  Mannville  Group  were  which  unconformity  the  be  thermal  shales  Considerations  rocks  i n most  silty  rank.  that  F e r n i e Groups  southwestern  the  rocks  and  Crowsnest at  or  Zone be  a  minor  in figure  40.  Volcanics,  near  the  Lower  to  AGES OF STRATA IN SOUTHERN A L B E R T A PLAINS  FOOTHILLS  • AGE(Ma)  MILK RIVER rr o rr  WAPIABI  LLI CL CL Z>  CARDIUM BLACKSTONE CROWSNEST  F i g u r e 40.  ALBERTA GROUP  COLORADO SHALE  CARDIUM BLACKSTONE SECOND WHITE SPECKS FISH SCALE ZONE  R e l a t i v e ages of s t r a t a i n s o u t h e r n A l b e r t a . Sources: N o r r i s (1964), Singh (1964), M e l l o n (1967), C a r r i g y (1971), Gordy ££. a l . (1977), E.R.C.B. (1978), and Walker (1982).  50 Lower  Upper  Cretaceous  upwards,  predominantly  from  to  100  74  Ma.  River-Paskapoo Ma  (Walker,  well  into  changed  from  alluvial are  now  the  removed  only  a  few  vestiges  conglomerates  scale,  on  unconformity  likely  similar  Himalayas the the  (up  Eocene  to  Tertiary  deposits and  the  fining  range  the  in  age  Belly  Basin  at  about  74  probably continued of  alluvial  from  of  the  cycle  plain  and  Paleogene  where  deposits  they  were  present  i n the  form  younger  peneplains  of such  Hills.  pre-Neogene  from  of  alluvial  are  resting  that  character to  completely  marginal  Strait,  deltaic  almost  i n the  derived  and  into  the  thick  The  place  paralic  Cypress  massive  although  series  units  deposition  Enormously  quartzite at  flooded  Molasse  a  sediments  fan.  deposited;  as  first  assemblage  Eocene  are  silty-shale  The  1982).  strata  North  event  America  under  similar  to  the  represents erosion  to current  erosion  1 mm/yr).  The  sediment  in Alberta  now  rests  continent  such  B e a u f o r t Sea  deposits  on  i n the  as  taking  the  (5 km),  Gulf  of  a  in basins Lower  Hudson  Mexico  (5 t o  15  km) .  Coal  Local  rank  variation  differences  i n the  apparent  more  41,  41A).  as  The  Rank  and  Variation  paleo-geothermal  southern Alberta  coal  pattern  rank  data  i s not  a  Basin  becomes simple  are  gradient becoming  available one.  (Figure  In g e n e r a l  the  52°  FIELD REFLECTANCE DATA (%RoR) A FIELD SAMPLE • FROM PUBLISHED COAL DATA • FROM WELL GRADIENT s  ISOREFLECTANCE CONTOURS  y — INFERRED ISOREFLECTANCE CONTOURS — 51  LEGEND MAP UNIT  STAGE Oligocene  M2  PA  Paleocene  Ml  Maastrichtian  C4 C3 Campanian C2  Cl PERIOD/EPOCH UK  Upper Cretaceous in the Disturbed Belt  LK  Lower Cretaceous, Jurassic and Triassic  PZ  Paleozoic and Older  Figure  41.  I s o r e f l e c t a n c e map  of  surface  of  southern A l b e r t a  Plains.  116  52«  a  FIELD R E F L E C T A N C E D A T A (%RoR) A  PUBLISHED  DATA  •  FIELD  SAMPLE  •  FROM  WELL  GRADIENT  LEGEND MAP UNIT  AGE (Ma)  STAGE Oligocene  M2  PA  Paleocene  M1  Maastrichtian  h30 60 64 65 70  C4 72 C3  Campanian  74  C2 78 C1  PERIOD / EPOCH UK  Upper Cretaceous in the Disturbed Belt  LK  Lower Cretaceous, Jurassic and Triassic  PZ  Paleozoic and Older  -80•65  7$'  -  0.96 - 1.00\A \\ 1.00  - 1.07jO)\  100 135  50km  114°  F i g u r e 41A.  %RoR  data f o r southern A l b e r t a Disturbed B e l t .  reflectance across age  of surface  the Plains  southeast  the  Sweetgrass  spacing  Arch.  a)  Disturbed the change  contours Belt.  presence The  increase  paleo-heat surface Basin  flow  coal  of  sediment  is  wholly  than  expected of those  from  a general  Steiner  et. a _ l . ( 1 9 7 2 )  values  catalogues  of coal  simple  pattern of i s o c a l o r i f i c  strike  of the Basin  Calgary.  increased The  i n the Paleogene.  This  as w i l l a  low  be d i s c u s s e d  r e g i o n a l map  later.  of  gross  i n Campbell's  (1964,  Deviation  a  mines.  on  to  amount  contours  are apparent  east  the l a r g e  analyses  of Alberta coal  of:  of the  presented  from  of  part  considering  there  effect  region.  a m a n i f e s t a t i o n of the extremely gradients  the  northwestward  i n the deepest  rocks  area,  interpreted  Canmore  - Calgary  values  contour  of the s t r i k e  the  to interpreted  i n t h e Canmore  around  to s l i g h t l y  a n d ; b)  high  In  from  of Calgary  confirms  i n response  loading  paleo-geothermal  calorific  also  broaden  a combined  of the Basin  flow  units.  of the study  i s probably  south  of the  steeply dipping  to the east  of Calgary,  reflectance  a r e lower  1966)  just  north  data  i n rank  .60%RoR  the i s o r e f l e c t a n c e  t h e more  deflect  This  of a paleo-heat  Foothills  to  are generally  the contours  t h e west  i n the s t r i k e  north-south,  .35  Cretaceous  In the northwest  southeast-northwest of  To  area  mirroring  units.  isoreflectance the  o f t h e Upper  of the study  i s less,  Cretaceous  from  Isoreflectance contours  to the s t r i k e  the  increases  in Alberta generally irrespective  of the rock.  parallel  coals  this  parallel map:  a  from  to the large  54 reentrant deg.  W.;  in a  Pass The  the  to  Canmore  hotspot 1971)  graph same  the  central  the  42  age.  examine  first-order  relationship Mannville can  be  Formation  attributed  samples  indicate Mannville rank  linear  coal  for  that  the  rank  an  Belt  Alberta  present  coal  113  the calorific  from  Crowsnest  Disturbed  as  a  Belt.  paleo-thermal (Norris,  axis.  The  i n the  east  to  increase  are  r e f l e c t a n c e of  is attributed  is  for coals  of  1975, using  1977). a  equation  for  log  that  In  scale  for  best  i s :  steady  study  Basin  is available  x  100)  -  7698  r2=-.972).  increase west  across  in depth  of  shown  in  the  coal  over to  the  varying  m  The  i n the  r e f l e c t a n c e measurements  this  N.,  in  depth  rank  is plotted  varies considerably  variation  increase  variation  regression,  from to  the  (log%RoMax  a  over  (Hacquebard,  data  5068  contours  semi-anthracites  versus  Plains  describes  Mannville core  =  deg.  Formation.  relationship  depth  (by  of  coal  parameter  50  recognized  Mannville  Hacquebard's  this  of  been  Mountain  at  Disturbed  part  occurrence  Alberta  contour  lateral  the  long  Upper  maturation  describes  has  Mist to  of  r e f l e c t a n c e data  the  figure  a marked  central  the  way  BTU/lb  isocalorific  strike  area  i n the  of  and  the  with  One to  Arch;  along area  10,000  widening  Sweetgrass value  the  rank  the  of  Basin  the which  burial. obtained  figure found  Basin. depths  43. in  They the  This of  from  isodepth  burial  as  55  REFLECTANCE 0.2  0.3  DEPTH = 5068  F i g u r e 42.  0.4  x log  0.6  1 Q  0.8  1.0  ( % R o M a x * x 100)  1.5  -  2.0  7698  M a n n v i l l e c o a l %RoR v e r s u s depth data from Hacquebard (1977). A l l data from c o r e samples.  56  -REFLECTANCE 0.2  0.3  0.4  0.6  '018 1.0  1.5  2.0  1  4J DEPTH = -4310  F i g u r e 43.  x log  l 0  (%RoR  x  B a s i n wide M a n n v i l l e c o a l %RoR A l l data from c o r e samples.  100)  +  6303  v e r s u s depth d a t a .  57  REFLECTANCE 0.2  -0.3  DEPTH = -4779  F i g u r e 44.  0.4  x log  0.6  1 Q  0.8  (%RoR  1.0  x  100)  1.5  +  2.0  7104  M a n n v i l l e c o a l %RoR v e r s u s depth d a t a : 34 c o r e samples from Hacquebard (1977) and 60 c o r e samples from t h i s study.  58  previously will  be A  discussed  discussed composite  presented  in  converted  to%RoR  a  general  change this be  in  =  graph  of  44.  -4779  Basin.  borehole  with  (see  both  values.  The  x  of  lateral  a  as  compared  and  Front  higher A 45. of  Alberta  and  and  Ranges  map  of  data  data  (1964), were  those  base  from  for  this  Hacquebard  from  southern and  from  core  be  as  was  (1981)).  for  for  and  m  coal  rank  a  that  that  could  s e c t i o n or  a  Gradients  wells  in  low  the  which  1974)  axis  (0.07  sections  Alberta  and  7104  gradient  Jessop  Plains  to  is  emphasized  sampling  in  the  are  6  (see  data  Bustin  surface  from  (1983). profiles  sample  the  Foothills to  Table  incorporates also  of  log%RoR/km)  i s presented  reflectance-depth  sample  +  Mannville  gradients  study,  (1977),  100)  i t should  Donaldson,  the  x  extremely  coalification  calculated also  are  data  data  from  reported  of  (Hacquebard  The the  to  gradients  Basin  Mannville  coalification  obtained  Majorowicz  Coalification  of  (%RoR  Coalification  southern  gradients  relationship:  However,  that  sets  logl0  r e l a t i o n s h i p i s not  compared  geothermal  Hacquebard's%RoMax  expression  the  varying  later.  figure  depth  is  and  the  17  times  III). as  figure  majority  Campbell The of  gradients 28  wells,  reflectance  116°  52"  COALIFICATION GRADIENTS A WELL GRADIENT %RoR •  FROM CORE-SURFACE  C.I.  .05 log %RoR/km  LEGEND MAP UNIT  STAGE Oligocene  |M2  PA  Paleocene  M1  Maastrichtian  AGE (Ma) 30 60 64 65 70  C4 72 C3 Campanian  74  C2 78 C1 -80-j PERIOD/EPOCH  UK  Upper Cretaceous in the Disturbed Belt  LK  Lower Cretaceous, Jurassic and Triassic  PZ  Paleozoic and Older  65-| 100 135  Figure 45. Map of c o a l i f i c a t i o n gradients i n southern A l b e r t a .  cn  pairs. west,  A  general  north,  and  Extremely deepest  part  Paleogene. the  of  probably of  1984). Arch  of  areas  rapidly),  with  and  (Majorowicz  Porcupine  the  the  moving  The  Hills,  Ridge,  and  coalification  anomalies  between  Arch,  at  also  and  the  from  day  the  reflected  in  1981;  Wintering at  other  Canmore  confluence the  a  to  a  the  high map  Basin  correlation  (AAPG,  by  Hitchon  1976) (1984,  anomalies  at  northeast  of  are  over and  Milk  a l l reflected  geothermal  Bow  carried  1984).  gradient  coalification  as  more  the  Alberta  the  partly  of  Calgary, of  time  Sweetgrass  parts  localities,  to  the  heat  has  High  during  Hitchon,  reached  gradient  Hills,  gradients.  over  Belt  of  Hitchon,  geothermal  spot".  effect  deeper  southern  the  (temperature  the  map  in  indicating  1981;  Basin  the  there  gradients  the  the  a  Disturbed  section  geothermal  low  the  in  north  Jessop,  of  gradient  for  the  deposits  the  likely  increase  from  exist  "paleo-hot  in  and  axis  also  Jessop,  reproduced  to  to  Basin.  sedimentation  geothermal  underlying  present  6b).  increase  Paleogene  the  figure  River  of  coalification  is  of  gradients  possibly  and  the  i s most  increase  higher  The  which  rates  of  i s observed  gradients  This  (Majorowicz  east  groundwater  with  of  thinner  axis  Canmore-Calgary  gradients  burial  equilibrium  by  the  Coalification  and  result  Basin.  extreme  because  maximum  the  gradients  of  Coalification  of  in gradient  coalification  the  The  presence  east  low  of  manifestation  increase  gradient  the  Sweetgrass  Oldman  gradient  in  data.  Rivers The  are one  61 to  one c o r r e s p o n d e n c e  anomalies the  to the c o a l i f i c a t i o n  geothermal  coalification of  depth  was v e r y  strata  coal i f i c a t i o n The  The G i p p s l a n d - t y p e gradient  and Bennet  the  Basin,  Gippsland  gradients  and V e n t u r a  km/Ma)  evidently  rates  of major  observed  today.  may b e d e r i v e d  been  74 Ma  to very  Tertiary  Basins there  t o c a . 44 Ma  coalification Elsewhere coalification  Similarly  have  been  3 Ma. rapid  low c o a l i f i c a t i o n  as h i g h  In A l b e r t a  from  theLos  from  there has  be d i s c u s s e d  and s u b s i d e n c e later.  because  The low  this. Ranges  by H a c q u e b a r d and  0.07 t o 0 . 2 0 % R o M a x / 1 0 0  different  in coalification  a s 1.82 mm/yr  sedimentation  as w i l l  authors,  significantly  times i n  b y B o s t i c k e_t a _ l . ( 1 9 7 8 ) .  gradients calculated  to these  relatively  s u b s i d e n c e and  reported  and F r o n t  According  difference  been  i n the F o o t h i l l s  vary  by a  or Cretaceous  support  (1974)  and B e n n e t t  rapid  g r a d i e n t s observed  Donaldson  later.  i n southern  i s characterized  Australia.  extremely  to  from t h e  be d i s c u s s e d  o f Shibaoka  Maps  ( 0 . 0 8 t o 0.15 l o g % R o / k m ) w h i c h  early  i n the last  that  the time  i n the J u r a s s i c  o f 0.002%Ro/100 m have  Sedimentation  been  level  attribute  since  not  to that  i n the Plains,  sedimentation  from  similar  i s the Gippsland-type  Shibaoka  (1.82  g r a d i e n t map s u g g e s t s  g r a d i e n t map a s w i l l  reflectance  Angeles  gradient  d e p t h - r e f l e c t a n c e p a t t e r n observed  (1977). low  geothermal  gradient pattern during  t o any r e f l e c t a n c e  Paleocene  Alberta  of present  t h e depth  f o r the areas  m.  o f b u r i a l has studied, the  gradients i s primarily  a  result  62 of  different  gradients  paleo-geothermal  o f 0.02%RoMax/100  Jura-Cretaceous northeastern gradients  rocks  gradients.  m have  i n the Rocky  British  Columbia  Cretaceous  north  o f Grande  strata Cache,  reported f o r  Creek  area  (Kalkreuth,  o f 0.07 t o 0 . 1 7 % R o M a x / 1 0 0  Lower  been  Coalification  Alberta  1982),  m occur  i n the Foothills  of whereas  i n J u r a s s i c and  and F r o n t  (Kalkreuth  Ranges  and McMechan,  1984).  for to  Time-temperature  Modeling  Time-temperature  models,  the southern 50.  It i s possible,  calculate had  Alberta  the time  to exist For  Alberta,  during  coalification  the  paleogeothermal  The  coalification  burial. the  residing The burial  hand,  i s demonstrated  Lake  using  8-8-10-27W4  section  of the reflectance by t h e depth  that  history. in  during  i s independent  model, to  gradient  are directly  in effect  47  southern a result  of  coal i f i c a t i o n .  o f t h e amount o f e s t a b l i s h e d , on of burial  and t h e  gradient.  independence  calculated  coalification  equation,  in figures  a time-temperature  gradients  i s governed  geothermal  are presented  to Paleocene  gradient  Gradients  on t h e L o p a t i n  paleogeothermal  gradient  The m a g n i t u d e  other  using  a rock's  the Jurassic  based  Basin  averaged  and G e o t h e r m a l  of coal ification i n f i g u r e 46.  the b u r i a l (Figure  gradient Gradients  h i s t o r y f o r Esso  47).  Note  that  t o amount o f have  Sundance  f o r t h e same  been Muddy  63  REFLECTANCE  0.2  0.3  0.4  0.6  0.8 1.0  1.5  2.0  3.0° C/100m 2.0° C/100m 1.0° C/100m MEASURED  F i g u r e 46.  Dependence of c o a l i f i c a t i o n g r a d i e n t on geothermal g r a d i e n t p r e s e n t d u r i n g deep burial. The amount of b u r i a l does not change the c o a l i f i c a t i o n g r a d i e n t .  64  TIME (Ma) '150 !  I  100 I  I  I  I  I  I  I  WILLOW CREEK JUDITH RIVER B A S E LOWER MANNVILLE^  50 I  l_  Figure  V  47.  Esso Sundance Muddy Lake well. Note t h a t the Lower M a n n v i l l e d i d not enter the o i l window u n t i l deep Paleogene b u r i a l .  LU  cr >01L  Calculated  'Measured  Willow C r e e k  0.49%RoR  Judith R i v e r - B a s e  0.67%RoR  0.67%RoR  Fish S c a l e B a s e  0.76%RoR  0.76%RoR  .Lower Mannville  0.84%RoR  O.SI'itRoR  •8-8-10-27W4  WINDOW  0.50%RoR  #213  Figure  JUDITH R LOWER MANNVILLE  48.  Esso Connemara w e l l . Note t h a t the Lower M a n n v i l l e d i d not enter the o i l window u n t i l deep Paleogene b u r i a l .  - UJ  rr I<  rr  Calculated Paskapoo Judith River Lower  Base  Mannville  Measured  0.51%RoR  0.54%RoR  0.72%RoR  0.70%RoR  0.88%RoR  0.87%RoR  8-14-16-27W4 #230  F i g u r e s 47 to 50.  Time-temperature models. A l l models i n c l u d e d e c r e a s i n g s u r f a c e temperature and i n c r e a s i n g geothermal g r a d i e n t s i n c e the O l i g o c e n e .  65  TIME (Ma) 150 J  .100  L _  J  I  I  I  I  JUDITH RIVER • FISH SCALE BASE LOWER MANNVILLE  F i g u r e 49.  N  Texaco A l d e r s o n w e l l . These s t r a t a have never e n t e r e d t h e o i l window.  Calculated  Measured  Judith River  0.39%RoR  Fish S c a l e .Zone  0.47%RoR  0.46%RoR  Lower  0.48%RoR  0.48%RoR  Mannville  10-4-16-10W4  #221  0.40%RoR  66 geothermal different be  gradient, depths  applied  to  different  by  gradient  then  that  generated  Time-averaged above  manner  the  Coalification  g r a d i e n t s are  geothermal  calculated  paleogeothermal for a  Such  gradients in order  g r a d i e n t s match. i s the  gradients for  equal.  time-temperature  geothermal until  are  gradients.  the  gradient  coal i f i c a t i o n  burial  observed  paleogeothermal calculated  of  the  number  of  may  calculate  gradients method  using  compared  to  observed  the  paleogeothermal  gradient  used  (curve  gradients, wells,  to  principle  modeling  The  line  a  are  i n the  model  fitting). calculated  presented  in  in  the  table  VI.  Well  No.  Paleogeothermal Gradient (deg. C . / 1 0 0 m)  P r e s e n t Day Geothermal Gradient From W e l l Regional  200  1.4  1.70  <2.2  213  1.24  2.02  <1.8  221  1.3  3.16  <2.5  230  1.42  2.38  <2.2  Table VI. Paleogeothermal time-temperature modeling. A.A.P.G. (1976).  Geothermal  Paleo-geothermal  gradients calculated from R e g i o n a l g r a d i e n t s are from  Gradient  Variations  gradients increase,  in a  manner  the  67 similar axis The  to the c o a l i f i c a t i o n  of the Basin lowest  the highest  paleogeothermal gradients southern values, C./km the  do.  The p r e s e n t  1976).  paleogeothermal Hitchon result from  (1984)  probably  caused  geothermal because  basement  (Ammosov,  variation.  flow  Aside  variations  there  in this  Ridge  from  flow  15  heat  and heat  flow  Regional  basement  to assess  to geothermal  i n areas  t o be t h e extending  were  reasons f o r  to another are  flow,  Alberta  study.  gradients  the thermal  from  nearby heat  flow  (Majorowicz  and  the importance  of  gradient  proximity to intrusions,  i n heat  than  tothe  Other  one a r e a  f o r southern  variation  by a low  a region  River  i n basement  1979).  of the axis of  day anomaly  over  from  1981) so i t i s d i f f i c u l t heat  18 t o 36 d e g .  portion  phenomenon.  of the rocks,  range i n  f o r the extreme  The low p a l e o g e o t h e r m a l  are not available  Jessop,  local  to the Milk  of differences  intrusions  gradient  to t h e v e r y low  recharge  b y t h e same  The  gradients less  present  gradients varying  conductivities  data  Hills  Hills.  this  a r e 7.5 d e g .  i s characterized  g r a d i e n t s measured  water  and t o t h e west.  as present day  between  with  corresponds  of meteoric  Sweetgrass  ranges  Alberta  believes  Porcupine  a s much  day geothermal  g r a d i e n t anomaly,  C./km, w h i c h  4 5 ) , from the  a r e 30 d e g . C./km.  The southernmost  i n southern  geothermal  to the north  i s 11 t o 40 d e g . C./km  and on t h e a v e r a g e  (AAPG,  (Figure  gradients calculated  gradients vary  Alberta  Basin  deg.  to the east,  paleogeothermal  C./km, w h e r e a s  gradients  however, t h e  o f t h e same  68 geological between lower  character  the  the  thermal  thermal  gradient  are  primarily  conductivities  conductivity,  (Kappelmeyer  and  Haenel,  strata,  however,  differences  small.  Thermal  therefore,  are  not  geothermal  g r a d i e n t or  Jura-Cretaceous  expected  (1984), carried upon  by  the  Nurkowski moving  organic  regime  downward  movement  lateral  the  Basin,  upward  Eocene flow 1981;  i n the  time.  regime  Hitchon,  Paleozoic appears  to  be  pattern  i n the  flow  to  -  and  the  types;  the For  temperature  thermal  variations  the  the conductivity  contrasts,  generated  and  significant  in  the  has  had  strata  been  downward that  a  i n the  i n the the  Hitchon  heat effect  Western  recharge  central  flow areas  portion  in effect  since at  least  however,  the  orogeny  (Majorowicz  i n the  and  the  and  flow  in  younger present  Jessop,  at  in  of  areas  controls  (Majorowicz  that  significant  groundwater flow  (1981),  discharge  Laramide  reversed  Jessop  c u r r e n t groundwater  water  i n the  Flow  documented  through  Upward  agent  Basin  of  has  the  probably 1984).  rocks  have  The  flow  east  Prior was  gross  have  of  Basin.  mountains,  edge  rock  higher  Groundwater  (1984),  the  Basin  the  1974).  Majorowicz  maturation  Sedimentary  and  of  groundwater  Canadian -  differences  wedge.  s t u d i e s by  and  to  conductivity  maturity  Importance  Recent  to  of  the  Jura-Cretaceous are  due  the  Jessop, the strata heat  1981).  flow  69 Long al.,  range  1977)  i s probably a  hydrodynamics threshold reached  because  until  early  caused  Arch) the  from  by  which  planes the  are  surface  (Lam  et  areas local  as  thereby  the  temperature the  for hydrocarbon  flow  Arch,  not Local  regime  have  Sweetgrass  thereby decreasing or  bring local  where  heated  fault water  geothermal  during  establishment  a  of  thickness  a of  of low  of  part  maturity  Paleogene.  48).  that  now  maturity of  of  the  study  i s dependent The  The  regional  that  the area on  not  effect  gradient.  gradient  lies  axis  coalification  coalification  coalification  strata  level  Plains  low  i n the  g e n e r a t i o n was  gradient  the  later.  discussed  i t i s apparent  paleo-geothermal  age;  the  as  Jura-Cretaceous section  47,  of  Basin  to  gradient  Maturation  (Figures  the  the  areas  the  Eocene  The  of  was  c o n d u i t s which  in southern Alberta,  effects  current  e_t  a l . , 1982).  For  until  the  ( H i t c h o n , 1984),  increasing  (Deroo  hydrocarbons  River  recharge  Basin  of  groundwater  (Peace  Hydrocarbon  Basin  part  time  regional  gradient  active  result  large  Tertiary  high  geothermal  direct  to g e n e r a t e  the  a c t as  m i g r a t i o n i n the  for a  temperature  perturbations been  hydrocarbon  i n the  i s the  of  the  the  threshold  attained of  a  has  very been  One  of  the the  great  o i l window.  J u r a - C r e t a c e o u s wedge is generally the  low  depth  of  maturity pattern  in  independent burial is  during  illustrated  116"  5 2 '  DEPTH TO THE OIL WINDOW (%RoR •• 0.81) A /  CONTROL POINTS ISODEPTH CONT.JRS IN KM  LEGEND MAP UNIT  STAGE Oligocene  M2  PA  Paleocene  Ml  Maastrichtian  C4 C3 C2  Campanlan  Cl PERIOD / EPOCH UK  U p p e r C r e t a c e o u s In the Disturbed Belt  LK  Lower Cretaceous, J u r a s s i c and Triassic  PZ  Paleozoic and  F i g u r e 51.  Older  Depth t o the o i l window.  71 with was  a  map  of  depth  constructed  surface which  area  =  0.61  (Waples,  at  window  about  1980).  50.5  i n the  area  in  the  area  where  south  axis the  of  to  interpreted  thicker  lower  depth  the  a  of  to  the  the  of  higher  in  this  area  (Figure  to  directly  surface  to  intersection  of  the  km  2  Also,  in  to  There  is  of  i s a marked  and  study  This (also  associated  decrease  the  an  south-central  i n t e r p r e t e d to over  the  f i l l  the  the  to  km.  Tertiary section)  in  regions  pattern.  over  study  the o i l  Basin,  southwest  the o i l  the  2  and  at  of  to  to  deep  depths  gradients  of  Eroded  the  be  in  a  result  Sweetgrass  Arch  the  zero  0.15%RoR  Section  depth  thickness  coalification  0.15%RoR,  1  map  45).  calculate the  the  is  reflectance versus  extrapolating  to  this  depth  across depth  The  gradient  limit  However,  thicker  there  Thickness  a  the  the  Tertiary  which  west  Belt.  in  51).  the  lower  east  in  follow  day  paleogeothermal  Using  km  gradients.  study  to  the  i s at  eroded  o i l window  area  1  Basin  present  paleogeothermal  portion  not  o i l window  corresponds  east  Disturbed do  the  in  than  level  .65),  km  less  surface  calculating  latitude,  2  (Figure  coalification  N.  from  to  the  and  From  deg.  area,  and  maps  (%RoMax =  decreases  north  o i l window  overlaying  central  the  the  isoreflectance  %RoR  window  by  to  of  graph, eroded  gradient  maturity line  with  i t is possible  above  level. the  section the  by  present  The  gradient  occurs  72 at  a height  thickness  above  the present  o f removed  gradient.  are  presented  in table  and  three The  12.9  km  There  gradients 0.15%RoR  of  the inherent  sets,  wells  0.094  log%RoR/km  removed For  the wells  the  average  For plotted result lower  i s calculated  i n the axis  the larger  average  attributed  38  wells.  To  to caving  individual f o r the  smooth  an a v e r a g e part  data  data  with  o f some  is  the  o f 5.3  of the  and t h e  km o f  Basin. 6 t o 8, zero  r2=.73). data  figure  alone 37.  i s the c a l c u l a t i o n  gradient.  was  obtained  i n Townships  (N=25,  data  of the Basin  Using  log%RoR/km, km  o u t some  gradient  r2=0.71.  f o r comparison  coalification  An  reflectance-depth  i n the axis  is  i n the  due t o s m a l l  s e t , the c u t t i n g s  cuttings  thickness  the average  of the Basin  i s 8.85  data  using  i n part  from  for this  i s 0.056  extrapolation  in figure  spaced  extrapolation,  gradient  of only  and  i s 5.9 t o  variation  The a v e r a g e  t o 20  f o r N=192,  0.15%RoR  section  maturity  37 a n d 3 9 . 10  The a v e r a g e  and s c a t t e r  and c o r e  the Plains  f o r 91% of the w e l l s  b y up t o 16%.  variation,  i n Townships  log-linear  vary  from  overburden  significant  closely  township  on f i g u r e s  uniform  position calculations  o f removed  of the Basin.  from  to the  Belt.  extrapolation  a l l the cuttings  plotted for  the Disturbed  e x t r a p o l a t i o n may  i n t h e same  i s equal  II f o r a l l the wells  i s , however,  obtained  a  T h e 0.15%RoR  in thickness  i n the axis  km.  wells  from  by l o g - l i n e a r  sampled 8.7  range  which  s e c t i o n , assuming  coalification  wells  surface  The e f f e c t samples.  may  were A of a be  73 Other have  studies  predicted  disparity modeled  i n the Basin,  a much  thinner  i s attributed  burial  history  based  o f t h e same  rocks  o f d i f f e r e n t age.  age r a t h e r  than  When  however,  constrained  by t h e g e o t h e r m a l  affects  the lower  coalification  gradients  other  in their  authors  removed  section  The  evolution  Beaumont km  Paleogene, thicknesses (1982)  amounts  gradients  flexure  (1981).  of loading  that  post-orogenically Cenozoic  in this  model i s  because  best  t h e range here.  sufficient  n o t used  support based  of  of the Basin  has  by  proposes during  7  the  sediment  Beaumont  elapsed  of erosion  of the  on  model  Furthermore,  by t h e  a model  proposed  of Paleogene  by t h e m o d e l .  by  documented  fitting  time  also  measured  strata  part  the  of the section  Basin  f o r up t o 10 km  as proposed  is  Plains.  study  Foreland  Beaumont's  within  variation in  o f rocks  of the lithosphere  determined  believe  of eroded  only  variation in  b o r e h o l e s were  f o r the c e n t r a l  well  part  This  studies  calculations of thicknesses  of the Alberta  visco-elastic  rank  used,  Vertically  from  section.  the thermal  gradient  i n southern Alberta  massive  coalification  study,  previously,  former  vertical  t o the upper  section.  that  a sequence  as i n t h i s  applied  Tertiary  on l a t e r a l  considered,  model  eroded  to the fact  rocks  thermal  as d i s c u s s e d  f o r the  et.  a l .  74 Alternative  If and  t h e Paleogene  their  never heat  attained  flux.  wedge:  gradients  i n the Beaufort  Reflectance-depth  at  this  Fig.  3; p e r s .  less  f o r sediments  Angeles  Basin  In  also  study,  with  coalification representative  less  assumption  closely  coalification approximate  Estimates  than  o f eroded  little  are estimated S. C r e a n e y ,  t o be  1984).  i n the Arctic  (Bustin  i n a well  non-exponential (Bostick  that  never  the gradient  log-linear  section i s i n the eroded  thermal  equilibrium, assuming  0.35%RoR,  may m o r e  i n the eroded assuming  6).  h a s been  case,  section,  Los  increase i n  section  gradient  In t h i s  g r a d i e n t below  i n the  t h e measured  reached  i s false.  1977,  et. a l . , 1 9 7 8 , F i g .  i n the preserved  Paleogene  e_t a _ l .  depth  A reflectance-depth  2 Ma  of the c o a l i f i c a t i o n  then  linear  1984).  the assumption  I f the strata  t h e basement  (paleogeothermal  wells  0.35%RoMax  may  equilibrated  t h e t h i c k n e s s o f eroded  gradient  they  increase of maturity with  low rank  section. this  comm.,  f o r some  shows t h i s  at very  this  calculated  wedge  comm. B u s t i n ,  profile  reflectance  Tertiary  m)(pers.  than  with  gradients exhibit depth  profiles  short,  quickly  i n the Beaufort, f o r  with  non-exponential  reflectances  wedge  t o be a n o n - t h e r m a l l y  l o w a s 1 d e g . C./100  exhibit  clastic  i n maturity  Section  were d e p o s i t e d v e r y  equilibrium  coalification  (linear)  o f Eroded  deposited very  a thermal  i s thought  increase  once  The T e r t i a r y  measured  of Thickness  sediments  r e s i d e n c e time  have  example,  as  Calculation  section. an  a  75 exponential and  a  than  coalification  linear those  gradient  presented  gradient  below in  0.35%  table  Geomorphologic  Five deepest this  to  nine  part  study  of  is considerably  suggested.  The  amount  of  however,  c o n s i s t e n t with  southern  Alberta  numerous  gently  remnant Alden, in  and  peneplains 1924;  some  boulder  areas  are  elevated  of of  Crawford  Plateau,  Radnor  Hills  surface,  surrounding resistant by  This  over  plains,  capping  numerous  boulders  River  km  is direct  20  cm  section  surfaces Thorn,  the  predicted  in  are  1922;  These  Cochrane  600 best  here  m  and  in diameter a  the  (Alden,  1924).  In  Cypress  Plateau, The above  known.  Hills,  Hand  Cypress the The  contains  as  erosion  dated  quartzite  (Mackenzie,  major  to  l i e in  is Oligocene,  bones,  plateaus  to  the  long  of  Mackenzie,  q u a r t z i t e pebble  Mountains  the  be  i s thought  and  are  i n t e r p r e t e d to  1939).  of  In  there  1918;  1939).  evidence  as  from  previously  (Warren,  conglomerate  than  lower  erosion  Montana,  peneplains  fossil  26%  geomorphology.  origin  i s perhaps  vertebrate  greater  deposit  130  0.35%RoR  section predicted i s ,  Plateau,  Ridge  than  sheets  Rocky  these  about  Basin  Warren,  by  the  examples  Milk  and  whose  Alberta,  and  removed Tertiary  capped  rocks  Hills  greater  1929;  conglomerates,  Belt/Purcell  Alberta  (Collier  Williams,  for  removed  northeastern  dipping  are  than  II.  of  southern  greater  RoR,  evidence  kilometres  the  at  1922) event  . in  76 Late  Eocene  deposits  or Early  of Eocene  Saskatchewan, age  (Warren,  Eocene  Oligocene  age  i n the Alberta  the Swift 1939).  uplift  Current  There  Pliocene  Pleistocene,  exist  a n d Thorn,  (Collier  cyclic  uplift  peneplain event  erosional events of  may  Hills  the F l a x v i l l e  for  then  erosion  by  the Cypress  the  present  The  origin  Cypress  surface:  there  of the river  Hills  that  conglomerate  successive in elevation  using  the  180 m o f  event;  erosion  Pliocene  a n d c a . 90 m  to Recent  has been Hills.  event.  end o f t h e C y p r e s s  of r e l i e f  supplied  height (Lawson,  the cobbles  l a y at least  240 km  In  c a . 460 m o f This  i s a t i t s maximum  600 t o 750 m  t o an  Miocene-Early  end o f t h e C y p r e s s  peneplain  down  erosive  to Miocene-Early  from  30 t o 4 0 % a t t h e w e s t  to  end o f t h e C y p r e s s  Pleistocene  the Oligocene,  at the east  increases where  since  o f an  (1918),  Pleistocene  Pliocene-Early  attest  that the  of the  attribute  (Oligocene  Pliocene-Early  the Late  total  surface,  ages  which  differences  the east  c a . 180 m o f e r o s i o n  the Late  surface  a n d Thorn  between  event  and R e c e n t  phase  the magnitude by p r e s e n t  and t h e F l a x v i l l e  Pliocene), to  then  f o r Late  Late  1924),  the f i n a l  Eocene  of  I f i t i s assumed  Collier  difference  Gravel),  the topographic  be e s t i m a t e d  the peneplains.  elevation  to  baseline,  peneplains  1918; A l d e n ,  represent  beveled  i s of  therefore  Pleistocene,  and e r o s i o n .  surfaces  which  Other  a r e no  but i n central  conglomerate  (Flaxville  Pliocene-Early  There  Plains  i s evidence  and e r o s i o n .  Miocene-Early  at the l a t e s t .  estimate Hills, above 1925).  of the  to the west.  77 Alden  (1924)  peneplain surface  The  would  mountains, m  near  been  river  and  greater  510  m  that  uplift;  was  below  states the in  m  that  approximation  time,  since  from  the  30  there  the  km  has  erosion  been can  words,  i n the p l a i n s ,  than  i s 2770  Alden m  of  the  3 km  estimated  accommodated  370  1924).  km  the mountains  i n the west  770  m  of  and  to  Hills,  has  rock  to  Cypress  today.  layer  due  would  removed  the o r i g i n a l  there  the  Alden's  attributed  rock  west  contends that,  Using  m  plain  Lawson  is lighter  been  more  in  uplift  Lawson s 1  rock  i n the  mountains  since  Oligocene  Oligocene.  450  to  at  of Cypress  be  1500  from  estimated. eroded  over  m  i t i s extrapolated compensating  be  (Alden,  (1925)  west  Rocky  and  erosion  east  been  the  Lawson  the  i n the east  from  therefore,  from  of  where  km  i s evidence,  removed up  240  i n other  than  the mountains  There  at  450  the  would  Alberta  Hills  gradient,  of  Alden's estimate.  this  since  mountains  proper  m  than  of  peneplain  Oligocene  the Cypress  river  the highest  differential:  established  isostatic 512  since  readjustment,  suggests  that  a minimum  in southern  t o 750  gradient  Lawson  using  the mountains.  isostatic  have  River  been  600  extrapolating  a l l but  of erosion has  by  extrapolated  the B e l l y  therefore  to  overtop  The  amount  1500  that,  to the west,  Mountains. above  showed  by  to west Plains.  In  removed.  t o 1500  of  from  m  of  the mountains  Near  thickness erosion  m  that  strata there  the mountains eroded  section  Oligocene  to  have may  then, can  be  present.  20  been  have to  30%  78 The time,  average  f o reast  rate  of denudation  Cypress  Hills  the Mountains  .050 mm/yr  over  0.100 mm/yr.  These  for .025  rates  southern mm/yr  Alberta  f o rc e n t r a l  Prairies,  greater  1972).  than  Karakoram,  greater  and  European  and  rates  Alps  annual  suggested 1977), been  .60 mm/yr  denudation  data  rate  intensely  local  rates  glaciated  recorded Rates a r e  Himalaya  and  based  and J a e g e r ,  (Slaymaker  are as high  sampling,  f o r the Alps  (Clark  f o r areas  mountains  on sediment  f o r the Canadian  t o be .060 t o . 0 7 5 mm/yr  although  e_t a l . ,  River  f o r the Alaskan  1972) based  .011 t o  and c e n t r a l  higher.  f o rthe Greater  flow  1974),  however,  0.4 t o 1.0 mm/yr  and h e a t  measured  f o r the Mackenzie  c a n b e much  (Hewitt,  a r e between  geochronologic A mean  than  with  perhaps  (Holl ingshead  f o rthe northern  rates  1.00 mm/yr  well  (McPherson,  In the Mountains  denudation  f o r the area  o f .001 t o .025 mm/yr  Basin  a n d .050 t o .120 mm/yr  (Slaymaker, regional  basins  Alberta  1 9 7 3 ) , . 0 0 3 t o .040 mm/yr  compare  sampling)  river  Oligocene  and i n t h e M o u n t a i n s  rates  (by sediment  since  i s .015 mm/yr,  near  erosion  then,  that  1969).  Cordillera i s and McPherson,  have  recently  a s .500 mm/yr  (Young,  1974) .  Denudation  The the  span  beginning  burial  and S e d i m e n t a t i o n  o f time  between  occurred,  Constraints  t h e end o f t h e P a l e o c e n e  o f t h e O l i g o c e n e , when  and u p l i f t  Rate  i s 30 Ma.  the episode There  on  and  o f deep  a r e 60 Ma  79 sandstones  preserved  conglomerates Uplift  Region,  uplift  (Norris  Using missing  section  may b e made  acceptable  using  (Table  of uplift?  estimated  f o r the preserved  Ft.  McCleod  area,  sedimentation  Minimum  duration  of sedimentation.  they  are not corrected  youngest range  strata  this  0.75  section i s  strata  Paleocene  near  r a t e s may be  - Claresholm  older  -  minimum  based  a r e minimum  f o rcompaction,  be  and t h e  River-Paskapoo  .12 t o .15 mm/yr These  could  the axis of the  of the Basin,  assemblage o n a 14 Ma  rates  because  and t h e age o f t h e than  60 Ma.  Using  a  c o r r e c t i o n s o f 30 t o 5 0 % , t h e  r a t e was p r o b a b l y  range  Eocene  i n t h e Nanton  may b e s l i g h t l y  o f compaction  sedimentation Using  from  day e r o s i o n  o f between  sedimentation  f o rthe Belly  1982) range  which the  of i t s probable  A range  Late  For wells  (Walker,  during  estimates  strata  i n the axis  rates  a s 53 Ma.  i s how much  beginning  VIII).  Kishenehn  rates.  i n t h e 15 Ma b e t w e e n  (Table  River  evidence f o r  and p r e s e n t  VII).  deposited  Basin  b y 48 Ma h a s b e e n  o f time  f o rthe missing  question  to the east.  to Oligocene  as e a r l y  terrain,  a n d 30 Ma  In the Flathead  was e r o d e d  denudation  converse  Belt  1972) p r o v i d e s  beginning  15 km t h i c k n e s s  peneplains  o f t h e Eocene  f o r mountainous  The  (1975).  15 Ma a s t h e l e n g t h  Eocene  thickness  on remnant  and B a l l y ,  and e r o s i o n  of the Basin,  Crystalline  by G a b r i e l s e  the presence  Formation  and  preserved  i n t h e Omineca  documented  rates  i n the axis  between  of sedimentation  rates,  .16 t o .22 mm/yr. the thickness of  80 the  missing  2400  uncompacted  a n d 3300  Erosion Rate (mm/yr)  Paleogene  section  ranged  m.  Area  Recorded  Calculated t h i c k n e s s over 15 Ma. (m)  '  1.0  between  G r e a t e r H i m a l a y a and Karakoran ( H e w i t t , 1972)  .60  A l a s k a n M o u n t a i n s and European Alps (Hewitt,  15,000  9,000 1972)  .50  Glacierized Cordillera (Young, 1974)  7,500  .10  Oligocene to Present rate f o r the Mountains ( t h i s study)  1,500  .07  Canadian C o r d i l l e r a average r a t e (Slaymaker and M c P h e r s o n , 1977)  1,050  .05  Near Mountain r a t e - 0 1 i g o c e n e to p r e s e n t ( t h i s study)  750  T a b l e V I I . D e n u d a t i o n r a t e s m e a s u r e d by s e d i m e n t sampling. E s t i m a t e s o f t h e amount o f e r o s i o n t h a t c o u l d t a k e p l a c e i n 15 Ma, u s i n g t h e s e r a t e s , a r e p r e s e n t e d i n c o l u m n t h r e e .  In  summary,  Alberta 15  km  f o r t h e main  the missing  thick  present)  a n d 2.4  calculated thickness  using  t o 3.3  o f eroded  km  end  of Cypress  of the Basin  i n southern  section  i s estimated  t o be  denudation  by u s i n g  1.5  Eocene  axis  f o r t h e same  km  rates  using  the preserved section area  Hills.  (modern  record.  of Oligocene  decreasing  The  and O l i g o c e n e  sedimentation rock  thickness  .75 t o  rates The  to present  t o .45 km  to  age i s  at the east  o f the eroded  Tertiary  S E D I M E N T A T I O N  WELL  LOCATION  6-36-17-1W5 iI-10-17-1W5 B-4-16-29W4 6-32-15-29W4 3-27-6-28W4 6-U-14-29W4  R A T E S  Belly River - Paskapoo  Lower -Upper  CrstaceouE  Lower Cretaceous  H(ffl)  dS  H<m)  H(ffl)  dS  1714  .122 . 138 . 135 .148 .152 . 148  688  .026  325  .019  669 669 680 651 675  . 026 .026 . 026 .025 . 026  346 337 339 453 330  . 020 .020 .020 .027 .019  1927 18B9 2072 2125 2080  dS  *****•*******«*•****#**«**#**#***#*•*####*•**#«*«*  Table VIII.  S e d i m e n t a t i o n r a t e s measured from C r e t a c e o u s and P a l e o c e n e s t r a t a w e l l p e n e t r a t i o n s i n t h e a x i s of the B a s i n . H = t h i c k n e s s of s e c t i o n , dS = average s e d i m e n t a t i o n r a t e (mm/yr) e s t i m a t e d by d i v i d i n g H by the d i f f e r e n c e i n age between the top and bottom of the s e c t i o n  82 section rates,  Ma,  then  l i e between  or  3.9  to  From  the  above  4.8  i t is possible  thickness on  may  of  section  for  the  thickness  of  rates  can  km  from  Subtracting  1.5  for  erosion  that  7.3  km  i s the  has  range  deposited  and  of  time  in  is  range  approximately  River-Paskapoo The assumes from  above that  the  of  was  to  overthrusting.  unknown.  limit  of  sheet  but  the  If  east  of  thrust  Disturbed  also  0.3  rate as  can  presently  the  sole  of  that  given  erode  this  30  the  study  based  60  sheets Belt, fault  the  this axis  0.5  to  for  has  have  span  This the  of  rate  Belly  sedimentation  the  the  not  to  Ma. this  for  4.4  must  mm/yr.  that  some o f  easternmost  only  since  the  Disturbed  east  rate  outbuilding  high-level  extended then  30  molasse  to  present  section  previously.  Paleogene  far  eroded  that  and  rates  argued  of  and  Oligocene,  calculated  adjacent  their  the  the  Ma  and  i s due  How  in  Paleogene.  of  discussed  be  for  section  erosion  loading It  the  since  between  the  areas  is  rates.  calculated  section  for  place  c a l c u l a t i o n of  mountains.  km  thickness  and  assemblage  a l l the  extended  in  denudation  paleo-sedimentation  made  between  twice  8.8  thickness  in  sheets  calculated  of  the  loading due  using  subsequently  eroded  be  eroded  sedimentation a  km  i t i s apparent and  to  taken  Therefore lies  5.9  approximation  paleo-erosion  16.5  gradients.  range  an  to  sedimentation  deposit  the  Basin,  been  to  From study  using  arguments,  removed  coalification  the  km  2.3  Belt  thrust position  of  the  eastern  has  the  thrust  been  removed  by  83 erosion.  Overthrusting  The and of  arguments  Mountains  been  the  footwall  sheet  shown  field  Pearson  been and  a  presented  by  (1979)  Basin.  (1974)  showed  that  Mountains  and  According  to  on  Belly River  depth Fernie areas  of  burial  where  actually  Rocky  hot  clay  and  in  strata  Montana  Hower  Disturbed  (1979).  and  maturation Donaldson  overthrusting  had  footwall  strata  southern  Alberta  authors  coal  rank  strata.  the  available  in  rank  Bustin  Mountains,  In  of at  (1983) no  on  data  coals the  of  the  surface  reflectance  the  and  of  more  has  general  in  mineral  maturity  in  It  Turcotte,  Laramide  of  result  overthrust  Hacquebard  of  Also,  a  post-thrusting  i s dependent  increases  exposures. southern  the  by  and  strata  map-area,  a  increase  of  document  as  temperature  Angevine  Hoffman  Foothills  authors.  northern  Conversely,  Foothills these  in  the  several  increased  plates  effect  1974;  in  maturity  by  effected  documentation  Fernie  and  be  Turcotte,  the  maturing  higher  outlined  thrust  Grieve  a  strata  considerable  i n d i c a t i v e of  beneath  has  against  been  s t r a t a can  Also,  buried Belt  that  and  assemblages  and  attained  have  (Oxburgh  1983).  in  having  overthrusting  has  for  Problems  British the  little Rocky  Columbia.  Mist  Mountain  the  pre-orogenic  east  half  shows the  only  same  eastern  documented increase  of  the three  age  strata  thrust that in  for  thermal  the  84 maturity during  can  concluded a  attributed  overthrusting.  reflectance  as  be  of  result Data  the  of  from  this  occurred  models  demonstrate  attained also in  be  the  until shown  Plains  levels  the of  the  In  other  were  buried  significantly  almost  the  however, to  pre-Laramide  It  syn-  the  depth  this  to  the  wells.  If  then  in the  of  shows  and  range  of  Deep  deep  expected  took  maturity Basin)  of  the  should  be  wedge were  only  strata  It  a  single  strata  event,  i n the  can  strata  Devonian  higher  the  not  Devonian  Paleogene much  of  in  place.  records  i f the  before  burial  time-temperature  maturity  burial  words,  of  that  The  organic  Front  Jurassic  west,  Ranges  of  strata  seemingly  burial  heating  examination  thrusting  faults  than  their i t i s .  Plains  is  in  the  are  southern  progressively  accordance  (Hacquebard  Rocky  and  with  their  Donaldson,  study).  through  the  vitrinite  post-orogenic.  and  i s p o s s i b l e to  post-orogenic  friction  Jura-Cretaceous  deep  maturation  Foothills  more m a t u r e  and  maturity  organic  Mountains,  1974,  of  entirely  In  of  level  event.  Therefore,  the  post-Laramide  burial  level  are  Paleogene.  for  deep  current  thrust  clearly  the  that  (east  to  the  by  metamorphism.  during  that  caused  measured  obtained  thesis  significant  heating  adjacent  values  burial  strata  Plains,  Bustin  samples  that  to  level  test for  of of  the  the  strata  hypothesis i n the  maturity  organic  pre-  Disturbed  profiles  maturity  p r o g r e s s i v e l y deeper  of  was  repeats  from  or Belt deep  attained of  the  before  same  age  85 of  strata  hanging west  should  wall  were  increased  was  levels  of  section to  however  the  rocks west  same  0.91  age  also  the  1.03%RoR.  Jurassic  an  the  sample  quality,  and  the  caving.  then  level  Waterton  6-3,  level  maturity  the  depth  of  the  the  I f the  in  sections  of  of  from  maturity  upper  burial  there  to displays  an  Blairmore  repeat is  originally  to  than  0.85  accepted  further rocks  i s evidence  to  of  the  for  well. in Shell  third  the  0.78  premise  from  repeat  with  Waterton  i s of  poor  fifth  repeat  the  Lower  Cretaceous  when  repeated.  repetitions  0.93  The to  i s probably  In  does Shell  samples 0.79,  Home  with  0.87,  an  not  g e n e r a l l y decrease  Fernie 1.02,  7-24  depth.  the  depth.  1.06,  expected  fifth  deeper  first  in maturity  with are  m  increase  Jurassic  be  and  from  1000  repetitions  Furthermore,  in  the  hand  repeated  third  were  in this  sample  increase  in  repeat.  section  to  to  might  six  Also,  0.70%RoR  footwall,  heating  are  repeat  depth  a  age  increase  greater  at  i n the  increasing  slight  wall  and  other  respect  second,  hanging  However,  of  there  of  the  the  was  sections.  sixth  from  because  of o v e r t h r u s t i n g ,  same  fifth  demonstrate  Exshaw  with  i n the  post-orogenic The  result  first,  very  to  increases  .92%RoR  that  a  I f on  the  repeat  The  show  to  of  Waterton  strata.  0.81%RoR, increase  42  a  maturity  deeper  Shell  repetitions  buried.  strata  mature  pre-thrusting position  a t t a i n e d as  progressively  Jurassic  whose  deeply  non-overthrusted  In  progressively less  strata  more  maturation  be  and  in  86 0.67%RoR. data  In the S h e l l  quality  increased  i s poor  maturity  Mississippian In from  Middlepass  below  were  Home  1.10-1.13,  Sheep  t o 1.20-1.21,  to  The Lower  1.16%RoR.  Lower  Well.  F o r each  1.52-1.74, In  Upper from  m,  8 Panther  River  Valley  with  from  from  Below  show  three  1.03-1.12  increase  increase  no  this,  consistent  i n maturity  i n the Shell  Getty  the Jurassic  1.62-1.63,  Sullivan ranges  1.53-1.62,  well  there  42 W a t e r t o n ,  8-30.  River,  m,  strata  a t 4062-4280  Shell  m.  ranges  In the S h e l l  increase i n  increased  Hunter  Sullivan  maturity i n  age o c c u r s  Waterton  Shell  Lower and  repetitions.  o f t h e same  Getty  appreciable  Cretaceous  i s no s i g n i f i c a n t  Furthermore  and S h e l l  i s no  1.23-1.46%RoR a t  out of the 8 wells,  wells:  Shell  The Lower  f o r the Jurassic  deeper  there  f o rthe Jurassic,  a t 1643-1984  and 1.38-1.55%RoR  summary,  well  depth  progressively  Panther  data  increases  through  repeat.  sections  repetitions.  a t depth  Sheep  Cretaceous  samples  1.52-1.59,  Hunter  i n maturity  1984-2318  Home  the f i r s t  and 1.69-1.73%RoR.  1.21-1.44%RoR  In  repetitions  1.46-1.63,  Cretaceous  maturity  no s a m p l e s o f  increase  and F e r n i e  of the repeat  the Shell  increase  samples  i s no s i g n i f i c a n t  Jurassic  respectively  reflectance  t o 1.31-1.35%RoR  i n the f i r s t  Cretaceous  There six  below  Cretaceous  t o 0.70 t o 1.46%RoR  through  however,  8-30 t h e U p p e r  The Kootenay  pattern.  the  repetition.  Shell  however.  m;  measured  repetitions.  0.94  3370  well,  i n three  7-24, and S h e l l Valley,  exhibit  a  Shell  8  generally  87 equal  level  repetitions.  of m a t u r i t y through For these w e l l s ,  p r o g r e s s i v e l y deeper  fault  s i g n i f i c a n t maturity increase  as a r e s u l t o f o v e r t h r u s t i n g must have o c c u r r e d b e c a u s e t h e deeper s t r a t a were l e s s d e e p l y b u r i e d p r e - t h r u s t i n g . two  w e l l s , S h e l l Middlepass  and S h e l l  Home W a t e r t o n 6-3,  d i s p l a y d e c r e a s i n g m a t u r i t y w i t h p r o g r e s s i v e l y deeper repeats.  T h i s does n o t argue a g a i n s t  fault  post-orogenic  maturation but post-orogenic maturation l o c a t i o n s was n o t s u f f i c i e n t  Only  ( i f any) i n t h e s e  to o v e r p r i n t the pre-orogenic  levels of maturity.  Thrust  To d e t e r m i n e  Modeling  t h e e f f e c t o f o v e r t h r u s t i n g on t h e  maturation of footwall  s t r a t a , a model was d e s i g n e d t o  simulate overthrusting.  Initially  a 5 km b l o c k i s  i n s t a n t a n e o u s l y e m p l a c e d on 5 km o f a u t o c h t h o n o u s t h e two b l o c k s a r e a l l o w e d t o r e a c h t h e r m a l e a c h o t h e r and w i t h b a s e m e n t h e a t allochthonous block i s r a p i d l y uplift  and c o n c o m i t a n t  at a geothermal case  solution  temperature  f l u x , and t h e n t h e  The f i r s t  rapid  c a s e was m o d e l e d  A f i n i t e - e l e m e n t p r o g r a m b a s e d on  to the two-dimensional  advection-dispersion equation c o n s i d e r i n g heat  with  g r a d i e n t o f 2.0 d e g . C./100m, and t h e s e c o n d  a t 4.0 d e g . C./100m.  a transient  equilibrium  removed t o s i m u l a t e  erosion.  strata,  ( S m i t h and Chapman, 1983) ,  t r a n s f e r by c o n d u c t i o n o n l y , c a l c u l a t e d t h e  changes a f t e r  the t h r u s t i n g  event  (the output of  88 the  program  provided  hangingwall  and  overthrusting  a  detailed  footwall  event).  strata  in  the  footwall  thickness  of  the  surface  from  the  hangingwall  heat  after  Progressively  generated  of  thermal  strata to  as  the  a  the  for  both  simulated  higher  basement by  history  temperatures  r e s u l t of section  doubling  and  footwall  are the  conduction  strata  (Figure  52) . The  temperatures  overthrusting as  high  they  as  were The  model  is  from  on  basal  between  overthrust.  adjust  hangingwall  temperature  of  changes by  the  40  consistent  a  ages  65  121 and  the to  the  Ma,  when  with  the  65  by  the  C./km  C./km  by were  model  from  and  Ma.  entire  models  of  span  years,  114  C.  model in  a  the  sequence  basal sedimentation  minor  the  The  strata  the  A  Ma  footwall deg.  overthrusting  53).  strata  conditions:  72  the  Normal  60  million  to  deg.  deg.  (Figure  River,  At  changes  20  20  strata  time-temperature  footwall  Ma.  new  40  thicknesses  until  youngest  from  the  Blairmore.  first  rock the  60  of  provided  Belly  Ma  footwall  C./km.  and  i s basal  in  method  The  to  the  complete  TTI  well.  from  In  deg.  in  in  gradient  history  for  rock  a  whereas  189  Blairmore  occurs  attained  as  data  occurs  thrust)  C,  using  Middlepass  rapidly  with  incorporated  burial  rate  deg.  temperature  hangingwall  the  block  high  model  based  Shell  358 as  was  history  a  generated  uplift  entire  section  is  temperatures  the  temperature  to"66 rock  deg.  C.;  (closest  section  developed  and  to  Equilibrium  the  the  the  is  is uplifted for  of  at  Plains.  a  89  Figure  52.  G e n e r a t i o n of h i g h e r temperatures i n f o o t w a l l s t r a t a as a r e s u l t of o v e r t h r u s t i n g a t t=0. At t=20.5 Ma, temperature e q u i l i b r i u m i s a t t a i n e d .  90  TIME (Ma) 100  O o UJ CC  60  80  A  A  B  C  a c  D  0 H  H PRE-  THRUSTING  100 -  POSTTHRUSTINQ  120 Hangingwall  Strata: H = +0.31km  140  Footwall  Strata:  Belly River A = - 0 . 3 1 k m 160  0.79  0.78  Wapiabi B = -0.94km  0.97  Upper Blairmore C = - 1 . 5 6 k m  1.19  B a s a l Blairmore D = - 2 . 1 9 k m  1.44  * D e p t h s r e f e r to d i s t a n c e from thrust fault.  180  Figure 53.  Time-temperature model f o r overthrust simulation.  91  REFLECTANCE 0.2  SHELL  Figure 54.  0.3  0.4  MIDDLEPASS  0.6  0.8  1.0  a-94-L82-G-1  1.5  #200  Comparison of observed c o a l i f i c a t i o n gradient to gradient obtained from overthrust simulation.  2.0  92 The  calculated  results  in figure  is  steeply  less  terms  o f %RoR  results  54.  increase  geothermal  than  d e g . C./100  2.0  geothermal  gradient  calculated  t o be  the  Shell  been  C./100 since  m.  is the  2.0  of time.  also  sheet  gradient C./100  either  m.  calculated  The  the B e l l y  Nowhere  modeled  on t h e b a s i s  of  the J u r a s s i c  this  high  and more  gradient  have  largely  5 km  to Basal  ranging  Blairmore  i s there  for a  always deg.  by  If  higher then  from  the  thrusted  geothermal near  3.0  footwall  i n any o f t h e J u r a s s i c  level  level.  1.4  not d e t a i l e d  evidence  time  short  coalification  probably  m model,  has  a t any  o r had a m,  the  higher  of overthrusting, than  normal  1.4  the measured  generated  from  likely  only  footwall  d e g . C./100  area  was  existed  than  of maturation  i n the study  maturation  m  that  The  was  strata  d e g . C./100  River  less  f o r t h e same  since  2.0  was  coalification  gradient  was  the  i n the model.  It follows  thinner  levels  used  50).  i t must  4.0  that  in  m  d e g . C./100  than  means  (Figure  as a r e s u l t  less  during  d e g . C./100 well,  gradient  coalification  the gradient  s u b s t a n t i a l l y higher  was  This  during  The c a l c u l a t e d  coalification  coalification  depth.  I f the geothermal  temperatures  for  1.4  the J u r a s s i c  period  m,  burial  than  with  to the measured  the c a l c u l a t e d g r a d i e n t  in effect  geothermal  less  than  gradient  Middlepass  sedimentation resident  The measured  dipping  resident  a r e compared  here,  t o 7.0%RoR strata.  of levels to  deg.  of  Paleocene  rocks. Comparison  of the c a l c u l a t e d  coalification  gradient  93 from  the o v e r t h r u s t  Foothills assumed the  wells  that  yields  thrust  footwall  wells  coalification  attained  42 W a t e r t o n ,  gradients  model;  were  6-3  the  t o p and t h e c o a l i f i c a t i o n  the  overthrust  and  the thickness  5 km.  Using  conclusions to  been  Sheep: deg.  C./100  slightly  m);  slightly  than  comparing  higher  hangingwall  sheet;  c) S h e l l  5 km  thrust  geothermal thrust  hangingwall  thrust  sheet.  sheet;  gradient sheet;  o f 2.0  gradient  is  d e g . C./100  higher  b) S h e l l  geothermal Pound  gradient Hunter  been  m  about  gradient;  model  Home  than  2.0  Getty gradient; West:  (<2.0 d e g . Valley:  d e g . C./100  a n d e) S h e l l  geothermal  at  to that i n  a) S h e l l  Jumping  d) S h e l l  km.  the following  slightly  geothermal  5  the overthrust  slightly  hangingwall  m and  i s steeper  t o have  to the north:  gradient  than  than  2.0  as above,  i s reasonable;  thrust  less  i s similar  thrust  thicker  higher  thicker  wells  less  hangingwall  gradient  5 km  lower  hangingwall  much  m;  thicker  C./100  Foothills  from  a paleogeothermal  Sullivan: much  principles  have  d e g . C./100  sheet  with  three  Waterton)  were  greater  i f i ti s  wells,  the hangingwall  of the overthrust  c a n be drawn  the other  level  Therefore  t h e same  2.0  sheets  slightly  area  local  equilibrium  of maturity  than  the c o a l i f i c a t i o n  model.  t o have  thermal  therefore,  less  For  assumed  information,  a n d 7-24  and l e v e l s  of the overthrust  Waterton,  to the other  Of t h e W a t e r t o n  gradients  thicknesses  54)  the following  i n the o v e r t h r u s t  geothermal  (Figure  plates  strata.  (Middlepass,  those  model  m;  8 Panther slightly  River:  94 CONCLUSIONS  1)  Random  vitrinite  assessing  levels  significantly In  this  0.15  t o 2%RoR  obvious  of  t h e mean  mean  of maturity  faster  study,  No  reflectance  to sedimentary  t h e maximum  22 s a m p l e s w e r e using  random  i n c r e a s e was o f 50  coals  a n d maximum  between  i n the A l b e r t a  r2=.997,  random  (.938  x %RoMax)  the range o f  south  to north  i n the Disturbed  recorded  maximum  deviation  measurements  versus the  The  reflectance for  +  .00112  support  these  of organic  maturity  Belt  Cretaceous,  were  Lower  respectively;  were  Surface  i s observed  i n the study  i n the south  rock  reflectances  respectively.  Plains  Levels  f o r Upper  and p r e - J u r a s s i c  recorded  2.06%RoR  of organic  reflectances  a n d 1.73%RoR  Jurassic,  methods.  N=22.  in level  1.45,  Iti s  Basin i s :  increase  Maximum  of  method.  reflectance  a n d maximum  2) A n  3)  over  i n the standard  random-reflectance  %RoR=  the  strata.  reflectance  examined  observed  method  o f 50 m a x i m u m - r e f l e c t a n c e m e a s u r e m e n t s .  relationship  for  than  i s a reliable  area.  0.82, 1.21, Cretaceous,  i n the north,  1.57, 1.60, 1.91, and  isoreflectance  contours i n  observations.  maturity  from  in strata  o f t h e same a g e  display west in  a first-order  across  variation  the Basin  the Mannville  logl0  in maturity  in Alberta.  Group  Lateral  c a n be e x p r e s s e d  %RoR x 100 =  (depth  significant  second-order  maturity  i s apparent  i n the Basin,  geothermal  by  groundwater  4)  Coalification Alberta  %RoR/km.  These  gradients  direct reduced  5)  gradients gradients  i n adjacent  mm/yr)  section, average  likely  o f eroded  coalification  heat  o f about  of very  rapid  Coalification  gradients  gradients or  loading  i n these  represents to current  In the a x i s  to range  apply  from  6 t o 7 km.  as a  areas.  erosion  erosion  on a  (up t o 1  of the Basin, the  s e c t i o n , assuming  measured  low  sediment  paleo-geothermal  similar  gradients  from  0.07 l o g  of the Basin  Tertiary  i s estimated value  of  of the Basin i n  low, averaging  resulting  unconformity  i n the Himalayas.  thickness  of  to the axis  sediment  The pre-Neogene scale,  redistribution  are a manifestation  regions  of higher  Paleogene  massive  in levels of  p o s s i b l y as a r e s u l t  i n the axis  i n the Paleogene.  result  increase  by t h e r e l a t i o n s h i p :  variation  and/or  are exceedingly  paleo-geothermal  increase  maturity  flow.  southern  deposition  gradients  east to  - 7104 m)/ -4779 m  However,  varying  from  that the  to the eroded  5 t o 9 km, w i t h Paleogene  an  sedimentation  and  erosion  rates  are  estimated  mm/yr, w e l l  within  known  rates.  amount  of  The  predicted Foreland  by  Basin  lithosphere (Beaumont, thermal  the  due  to  1981).  equilibrium  thickness  of  Paleogene  best  based  eroded  ranges  fitting on  to  l i e between  of  s e d i m e n t a t i o n and  erosion  model  of  visco-elastic  thrust  sheet  If the  missing  with  the  section  and  0.3  supports the  molasse  of  be  0.5  erosion amount of  the  the  loading  d i d not  preserved section, may  the  evolution  flexure  section  and  reach  the  approximately  26%  too  high.  6)  Time-averaged  part  of  the  measured  Basin  increase  in southern  independent  of  the  existing  the  strata  deep  7)  to  from  the  25  deg.  amount  geothermal  were  7.5  gradients to  gradients.  Alberta.  15  deg.  The  C./km  adjacent  burial,  gradient  and  during  in this  f o r the C./km  deepest based  on  paleo-geothermal  Coalification of  coalified,  case  to  the  gradients wholly  the  are  dependent  time  during  Deep  in  on  which  Paleogene  burial.  Time-temperature  most  of  the  required the  range  coal i f i c a t i o n  gradients Basin  paleo-geothermal  were  Paleogene  i n the  J u r a - C r e t a c e o u s wedge,  for hydrocarbon  deepest  strata  modeling  Basin the  during  the  buried  to  significant  burial,  then  any  level  g e n e r a t i o n was  burial  their  late  levels  shows  not  Eocene.  of  depth  that  for  of maturity attained If  until  pre-Jurassic  prior  to  deep  maturity should  be  97 much  higher  Paleogene in  the  8)  event  was  maturation  loading  almost Belt,  they  by  entirely the  Jurassic  the  Therefore,  only  syn-  effect  of  coals.  deep  generally  not  s i g n i f i c a n t  strata  to  it  burial  r e l i c t  the  sheets  is  argued  event  Plains or  that  that  of  In is  and  in  of  many  maturation  a  the  occurred  the  of  i s ,  Disturbed  apparent  cases  must  result that  the  maturation  repetitions  decrease,  is  molasse;  maturation because  fault  component  in  post-orogenic.  However,  deeper  do  of  overthrust  successively  by  are.  Basin.  The  Basin  than  in  levels same  of strata  increase,  have  been  a  induced  overthrusting.  9)  A  f i n i t e  calculated  element  the  change  and  hangingwall  The  thermal  maturation result  of  blocks  that based  geothermal of  the  Jurassic. exhibit than  footwall  strata.  geothermal on  2.0  in  was  Only  The  C./100  of  results in  the  deep  gradients m during  model  the  of  Foothills that  imply  that  through  model  Ranges low  on  the  temperatures  assumes  the  been  footwall  effect  established  Front  have  for  overthrusting.  increased  is  transport  time  of  simulation  gradient  the  to  heat  with  simulation  strata  The  of  c o a l i f i c a t i o n deg.  a  examined,  two  conductive  required  gradients  areas  for  temperature  overthrusting.  equilibrium two  of  strata  history of  model  wells  If  an the  F o o t h i l l s , the  examined  gradients  c o a l i f i c a t i o n .  a  indicate  and  since  as  a l l  greater the  98 coalification higher sheet  i n the  temperatures thicknesses  Waterton  area,  River  i n the  sheet  thickness  area  area  i n the  (Burnt  generated  must  have  i n the S h e l l  F o o t h i l l s ) , and  (Highwood  greater  hangingwall  was  much  by  been  a  5 km  or  greater  Shell  Hunter  8-30  Ranges), and  thrust  area  (Highwood  Pound  West  Getty  and  Shell  then  of  i n the  i n the S h e l l  Valley  area).  result  less  i n the Jumping  i n the Front  Creek  was  overthrusting,  Home S h e e p  River  Timber  strata  area;  Sullivan  slightly  8 Panther  River  99 REFERENCES  CITED  A l d e n , W. C., 1 9 2 4 , P h y s i o g r a p h i c development of the Northern Great Plains: B u l l e t i n of the Geological Society of A m e r i c a , v . 35, p . 385-424. A m e r i c a n A s s o c i a t i o n o f P e t r o l e u m G e o l o g i s t s , 1976, G e o t h e r m a l G r a d i e n t Map o f N o r t h A m e r i c a , 1:5,000,000: A m e r i c a n A s s o c i a t i o n o f P e t r o l e u m G e o l o g i s t s and U n i t e d States Geological Survey. A n g e v i n e , C. L., a n d D. L. T u r c o t t e , 1 9 8 3 , O i l g e n e r a t i o n i n overthrust belts: American A s s o c i a t i o n of Petroleum G e o l o g i s t s B u l l e t i n , v . 6 7 , n o . 2, p . 2 3 5 - 2 4 1 . A t m o s p h e r i c E n v i r o n m e n t S e r v i c e , 1982, C a n a d i a n C l i m a t e N o r m a l s , V o l u m e 2, T e m p e r a t u r e 1 9 5 1 - 1 9 8 0 : Climate Program, E n v i r o n m e n t Canada, p. 83-86.  Canadian  B a l l y , A . W., G o r d y , P. L., a n d G. A . S t e w a r t , 1 9 6 6 , S t r u c t u r e , s e i s m i c d a t a , and o r o g e n i c evolution of Southern Canadian Rocky Mountains: B u l l e t i n of Canadian Petroleum Geology, v. 1 4 , n o . 3, p . 3 3 7 - 3 8 1 . B e a u m o n t , C., 1 9 8 1 , F o r e l a n d b a s i n s : Geophysical Journal of the Royal Astronomical S o c i e t y , v . 6 5 , n o . 2, p . 2 9 1 - 3 2 9 . B e a u m o n t , C., K e e n , C. E . , a n d R. B o u t i l i e r , 1982, A c o m p a r i s o n o f f o r e l a n d and r i f t m a r g i n s e d i m e n t a r y basins: P h i l o s o p h i c a l T r a n s a c t i o n s of the Royal S o c i e t y of London, v. 305, p. 295-317. B o s t i c k , N. H., 1 9 7 3 , T i m e a s a f a c t o r i n t h e r m a l m e t a m o r p h i s m of p h y t o c l a s t s (coaly p a r t i c l e s ) : Congresse Internationale Stratigraphie Geologie C a r b o n i f e r e , 7 t h , K r e f e l d , 1971, C o m p t e R e n d u , v . 2, p . 1 8 3 - 1 9 3 . B o s t i c k , N. H., 1 9 7 4 , P h y t o c l a s t s a s i n d i c a t o r s o f t h e r m a l m e t a m o r p h i s m , F r a n c i s c a n A s s e m b l a g e and G r e a t V a l l e y Sequence (upper M e s o z o i c ) , California: Geological Society o f A m e r i c a , S p e c i a l P a p e r 153, p . 1-17. B o s t i c k , N. H., 1 9 7 9 , M i c r o s c o p i c m e a s u r e m e n t o f t h e l e v e l o f catagenesis of s o l i d organic matter i n sedimentary rocks to a i d e x p l o r a t i o n f o r p e t r o l e u m and t o d e t e r m i n e f o r m e r b u r i a l temperatures - a review: S o c i e t y of Economic P a l e o n t o l o g i s t s and M i n e r a l o g i s t s S p e c i a l P u b l i c a t i o n No. 26, p . 1 7 - 4 3 . B o s t i c k , N. H., C a s h m a n , S. M., M c C u l l o h , T . H., a n d C. T. W a d d e l l , 1978, G r a d i e n t s o f v i t r i n i t e r e f l e c t a n c e and p r e s e n t t e m p e r a t u r e i n t h e Los A n g e l e s and V e n t u r a Basins,  100 California: i n O l t z , D. F. ( e d . ) , Symposium i n Geochemistry: Low temperature metamorphism of kerogen clay minerals, S o c i e t y of Economic P a l e o n t o l o g i s t s and M i n e r a l o g i s t s P a c i f i c S e c t i o n , p. 65-96.  and  B u n t e b a r t h , G., 1979, The d e g r e e o f m e t a m o r p h i s m o f organic m a t t e r i n s e d i m e n t a r y r o c k s as a p a l e o - g e o t h e r m o m e t e r , a p p l i e d to the Upper Rhine Graben: P a l e o g e o p h y s i c s , v. p. 83-91. B u r g e s s , J . D . , 1977, H i s t o r i c a l r e v i e w and m e t h o d s o f determining thermal a l t e r a t i o n of organic m a t e r i a l s : B u r g e s s , J . D. ( e d . ) , O r g a n i c M a t u r a t i o n Symposium, P a l y n o l o g y , v . 1, p . 1.  117,  in  B u s t i n , R. M., 1980, O x i d a t i o n c h a r a c t e r i s t i c s o f some s h e a r e d c o a l seams o f t h e M i s t M o u n t a i n F o r m a t i o n , southeastern Canadian C o r d i l l e r a : in Current Research, Part B, G e o l o g i c a l S u r v e y o f C a n a d a , P a p e r 8 0 - 1 B , p . 2 4 9 - 2 5 4 . B u s t i n , R. M., 1983, Heating during thrust Rocky Mountains: f r i c t i o n or f i c t i o n : 95, p . 3 0 9 - 3 2 8 .  f a u l t i n g i n the Tectonophysics,  v.  B u s t i n , R. M., 1984, C o a l i f i c a t i o n l e v e l s and their s i g n i f i c a n c e i n the Groundhog C o a l f i e l d , north c e n t r a l B r i t i s h Columbia: C o a l G e o l o g y , v . 4, p . 2 1 - 4 4 . B u s t i n , R. M., H i l l s , L . V., a n d P. R. G u n t h e r , 1977, I m p l i c a t i o n s o f c o a l i f i c a t i o n l e v e l s , E u r e k a Sound Formation, northeastern A r c t i c Canada: Canadian Journal E a r t h S c i e n c e , v . 1 4 , n o . 7, p . 1 5 8 8 - 1 5 9 7 .  of  B u s t i n , R. M., C a m e r o n , A. R., G r i e v e , D . A., and W. D . K a l k r e u t h , 1983, Coal petrology, its principles, m e t h o d s and a p p l i c a t i o n s : G e o l o g i c a l A s s o c i a t i o n of Canada S h o r t C o u r s e N o t e s , v . 3, 273 p. C a m e r o n , A. R., 1972, P e t r o g r a p h y of K o o t e n a y c o a l s i n the U p p e r E l k R i v e r and C r o w s n e s t a r e a s , B r i t i s h C o l u m b i a and Alberta: P r o c e e d i n g s of the 1st G e o l o g i c a l C o n f e r e n c e on Western Canadian c o a l , Research C o u n c i l of A l b e r t a , I n f o r m a t i o n S e r i e s 60, p . 3 1 - 4 5 . C a m e r o n , A. R., a n d W . R. K a l k r e u t h , 1982, Petrological c h a r a c t e r i s t i c s of J u r a s s i c - C r e t a c e o u s c o a l s i n the F o o t h i l l s and R o c k y M o u n t a i n s o f W e s t e r n C a n a d a : i n Utah G e o l o g y and M i n i n g S u r v e y B u l l e t i n 118, proceedings of the 5 t h ROMOCO s y m p o s i u m 1 9 8 2 , p. 163-167. Campbell, J . Alberta 140 p.  D . , 1964, Catalogue of c o a l mines of Plains: Research C o u n c i l of A l b e r t a  the Report  64-3,  101  C a m p b e l l , J . D., 1966, C o a l m i n e s and c o a l l e a s e s , A l b e r t a R o c k y M o u n t a i n s and F o o t h i l l s : Research C o u n c i l of A l b e r t a R e p o r t 6 6 - 5 , 55 p . C a r r i g y , M. A., 1 9 7 1 , L i t h o s t r a t i g r a p h y o f t h e U p p e r m o s t C r e t a c e o u s (Lance) and P a l e o c e n e s t r a t a o f t h e A l b e r t a Plains: R e s e a r c h C o u n c i l o f A l b e r t a , B u l l e t i n 2 7 , 161  p.  C a s s o u , A., C o n n a n , J . , a n d B. P o r t h a u l t , 1 9 7 7 , Relations between m a t u r a t i o n o f o r g a n i c m a t t e r and g e o t h e r m a l effect, as e x e m p l i f i e d i n C a n a d i a n e a s t c o a s t o f f s h o r e w e l l s : B u l l e t i n o f C a n a d i a n P e t r o l e u m G e o l o g y , v . 25, p. 174-194. C l a r k , S. P., a n d E . J a e g e r , 1 9 6 9 , D e n u d a t i o n f r o m g e o c h r o n o l o g i c and h e a t f l o w d a t a : S c i e n c e , v . 267, p. 1143-1160.  rate i n the A l p s American J o u r n a l  of  C o h e n , C. R., 1981, T i m e and T e m p e r a t u r e in petroleum formation: a p p l i c a t i o n o f L o p a t i n ' s method to p e t r o l e u m e x p l o r a t i o n : discussion: American A s s o c i a t i o n of Petroleum G e o l o g i s t s B u l l e t i n , v . 65, p. 1 6 4 7 - 1 6 4 8 . C o l l i e r A. J . , a n d W. T. Thorn, J r . , 1 9 1 8 , T h e Flaxville G r a v e l and i t s r e l a t i o n t o o t h e r t e r r a c e g r a v e l s o f t h e northern Great Plains: United States G e o l o g i c a l Survey P r o f e s s i o n a l P a p e r 108, p. 179-184. D a h l s t r o m , C. D. A . , 1 9 7 0 , S t r u c t u r a l g e o l o g y i n t h e e a s t e r n margin o f the Canadian Rocky Mountains: B u l l e t i n of C a n a d i a n P e t r o l e u m G e o l o g y , v . 1 8 , n o . 3, p . 3 3 2 - 4 0 6 . D a v i s , A., 1 9 7 8 , T h e r e f l e c t a n c e o f c o a l : in Karr, C , Jr. ( e d . ) , A n a l y t i c a l m e t h o d s f o r c o a l and c o a l p r o d u c t s : A c a d e m i c P r e s s , New Y o r k , v . 1, p . 2 7 - 8 1 . D e r o o , G., P o w e l l , T. G., T i s s o t , B., a n d R. G. M c C r o s s a n , 1977, The o r i g i n and m i g r a t i o n o f p e t r o l e u m i n t h e W e s t e r n Canadian Sedimentary Basin, A l b e r t a : Geological Survey of C a n a d a B u l l e t i n 2 6 2 , 200 p . D o u g l a s , R. J . W., G a b r i e l s e , H., W h e e l e r , J . 0., S t o t t , D. a n d H. R. B e l y e a , 1 9 7 0 , G e o l o g y o f W e s t e r n C a n a d a : in D o u g l a s , R. J . W. ( e d . ) , G e o l o g y and E c o n o m i c M i n e r a l s Canada: G e o l o g i c a l Survey o f Canada, Economic Geology R e p o r t No. 1, p . 3 6 5 - 4 8 8 . E n e r g y R e s o u r c e s C o n s e r v a t i o n B o a r d , 1978, T a b l e Alberta: ERCB, E d m o n t o n , A l b e r t a , 1 p . E p s t e i n , A. colour United  of  F., of  Formations,  G., E p s t e i n , J . B., a n d L . D. H a r r i s , 1 9 7 7 , Conodont a l t e r a t i o n - an i n d e x t o o r g a n i c m e t a m o r p h i s m : S t a t e s G e o l o g i c a l S u r v e y P r o f e s s i o n a l P a p e r 995, 27  102 P. G a b r i e l s e , H., 1975, G e o l o g y o f F o r t Grahame B r i t i s h Columbia: G e o l o g i c a l Survey of  E - l / 2 map-area, Canada, Paper 75-33.  G i b s o n , D. W., 1979, The M o r i s s e y and M i s t Mountain Formations. Newly d e f i n e d l i t h o s t r a t i g r a p h i c u n i t s o f the J u r a - C r e t a c e o u s K o o t e n a y G r o u p , A l b e r t a and British Columbia: B u l l e t i n o f C a n a d i a n P e t r o l e u m G e o l o g y , v. 27, n o . 2, p . 1 8 3 - 2 0 8 . G i b s o n , D. W., 1983, S t r a t i g r a p h y , s e d i m e n t o l o g y and d e p o s i t i o n a l environments of the coal-bearing J u r a s s i c - C r e t a c e o u s K o o t e n a y G r o u p , A l b e r t a and Columbia: G e o l o g i c a l Survey of Canada B u l l e t i n Goff,  British 3 5 7 , 59  p.  J . C., 1 9 8 3 , H y d r o c a r b o n g e n e r a t i o n a n d m i g r a t i o n f r o m J u r a s s i c s o u r c e r o c k s i n t h e E . S h e t l a n d B a s i n and V i k i n g Graben of the n o r t h e r n N o r t h Sea: J o u r n a l of the G e o l o g i c a l S o c i e t y o f L o n d o n , v . 140, p. 445-474.  G o r d y , P. L . , F r e y , F . R., a n d D. K. N o r r i s , 1 9 7 7 , Geological g u i d e f o r t h e CSPG 1977 W a t e r t o n - G l a c i e r P a r k Field Conference: Canadian Society of Petroleum G e o l o g i s t s , C a l g a r y , A l b e r t a , 93 p . G r a h a m , P. S., G u n t h e r , P.R., a n d D. W. G i b s o n , 1977, G e o l o g i c a l i n v e s t i g a t i o n s of the c o a l - b e a r i n g Kootenay F o r m a t i o n i n t h e s u b s u r f a c e o f t h e U p p e r E l k V a l l e y , B. G e o l o g i c a l S u r v e y of Canada Paper 77-1B, p. 203-210. Gray,  C.:  J . , a n d A. J . B o u c o t , 1 9 7 5 , C o l o r c h a n g e s i n p o l l e n and s p o r e s : a r e v i e w : G e o l o g i c a l Society of America B u l l e t i n , v . 86, p . 1 0 1 9 - 1 0 1 3 .  G u t j a h r , C. C. M., 1966, C a r b o n i z a t i o n m e a s u r e m e n t s o f p o l l e n g r a i n s and s p o r e s and t h e i r a p p l i c a t i o n : Leidse G e o l o g i s c h e M e d e d e l i n g e n , v . 38, p . 1-29. H a c q u e b a r d , P. A . , 1 9 7 5 , C o r r e l a t i o n b e t w e e n c o a l rank, p a l e o t e m p e r a t u r e , and p e t r o l e u m o c c u r r e n c e i n A l b e r t a : G e o l o g i c a l S u r v e y o f C a n a d a P a p e r 7 5 - 1 , p a r t B, p . 5-9. H a c q u e b a r d , P. A., 1 9 7 7 , R a n k o f c o a l a s a n i n d e x o f o r g a n i c m e t a m o r p h i s m f o r o i l and g a s i n A l b e r t a : i n Deroo, G., P o w e l l , T. G., T i s s o t , B., a n d R. G. M c C r o s s a n ( e d s . ) , The O r i g i n and M i g r a t i o n o f P e t r o l e u m i n t h e W e s t e r n Canadian Sedimentary Basin, Alberta: G e o l o g i c a l Survey of Canada B u l l e t i n 262, p . 11-22. H a c q u e b a r d , P. A . , a n d J . R. D o n a l d s o n , 1 9 7 0 , C o a l m e t a m o r p h i s m and h y d r o c a r b o n p o t e n t i a l i n t h e u p p e r P a l e o z o i c o f t h e A t l a n t i c p r o v i n c e s , Canada: Canadian Journal of Earth  103 Science,  v.  7,  p.  1139-1163.  H a c q u e b a r d , P. A., a n d J . R. D o n a l d s o n , 1 9 7 4 , Rank s t u d i e s o f c o a l s i n t h e R o c k y M o u n t a i n s and I n n e r F o o t h i l l s Belt, Canada: G e o l o g i c a l S o c i e t y of America, S p e c i a l Paper 153, p. 75-94. H e r o u x , Y., C h a g n o n , A., a n d R. B e r t r a n d , 1 9 7 9 , Compilation and c o r r e l a t i o n o f m a j o r t h e r m a l m a t u r a t i o n indicators: American A s s o c i a t i o n of Petroleum G e o l o g i s t s B u l l e t i n , v. 63, p. 2 1 2 8 - 2 1 4 4 . H e w i t t , K., 1972, The m o u n t a i n e n v i r o n m e n t and geomorphic processes: i n S l a y m a k e r , H. 0., a n d H. J . McPherson (eds.), Mountain Geomorphology: Geomorphological Processes i n the Canadian C o r d i l l e r a : B.C. Geographical S e r i e s , n o . 14, 274 p . 1 7 - 3 4 . Hilt,  C, 1873, Die Beziehungen z w i s c h e n d e r Z u s a m m e n s e t z u n g und d e n technischen E i g e n s c h a f t e n der S t e i n k o h l e : Z e i t s c h r i f t Ver. Deutscher I n g e n . B a n d 1 7 , H t . 4, p . 1 9 4 - 2 0 2  H i t c h o n , B., 1984, Geothermal hydrocarbon occurrences, A s s o c i a t i o n of Petroleum 713-743.  g r a d i e n t s , hydrodynamics and A l b e r t a , Canada: American G e o l o g i s t s B u l l e t i n , v . 68, p.  H o f f m a n , J . , and J . Hower, 1979, C l a y m i n e r a l a s s e m b l a g e s as low grade metamorphic geothermometers: a p p l i c a t i o n to the t h r u s t f a u l t e d D i s t u r b e d B e l t o f M o n t a n a , U.S.A.: Society o f E c o n o m i c P a l e o n t o l o g i s t s and M i n e r a l o g i s t s S p e c i a l P u b l i c a t i o n No. 26, p . 5 5 - 7 9 . H o l l i n g s h e a d , A. B., Y a r e m k o , E . K., a n d C. R. N e i l l , 1973, Sedimentation i n Glenmore R e s e r v o i r , Calgary, Alta.: C a n a d i a n G e o t e c h n i c a l J o u r n a l , v . 10, p . 1 0 9 - 1 1 9 . Hood,  A., a n d J . R. C a s t a n o , 1 9 7 4 , Organic metamorphism; i t s r e l a t i o n s h i p to petroleum g e n e r a t i o n and a p p l i c a t i o n t o s t u d i e s of a u t h i g e n i c minerals: United Nations, Economic C o m m i s s i o n f o r A s i a and F a r E a s t , C o m m i t t e e f o r C o o r d i n a t i o n of J o i n t P r o s p e c t i n g f o r M i n e r a l Resources i n A s i a n Offshore A r e a s , T e c h n i c a l B u l l e t i n , v . 8, p . 8 5 - 1 1 8 .  Hood,  A., G u t j a h r , C. C. M., a n d R. L . H e a c o c k , 1 9 7 5 , Organic m e t a m o r p h i s m and t h e g e n e r a t i o n o f p e t r o l e u m : American A s s o c i a t i o n o f P e t r o l e u m G e o l o g i s t s B u l l e t i n , v . 59, n o . p. 986-996.  6,  I s s l e r , D. R., 1984, C a l c u l a t i o n of organic maturation levels for offshore eastern Canada-implications for general a p p l i c a t i o n of L o p a t i n ' s method: Canadian J o u r n a l of Earth  104 Science,  v.  21,  p.  477-488.  K a l k r e u t h , W. D., 1982, Rank and p e t r o g r a p h i c c o m p o s i t i o n of s e l e c t e d J u r a s s i c - L o w e r Cretaceous c o a l s of B r i t i s h Columbia, Canada: B u l l e t i n of Canadian Petroleum Geology, v . 3 0 , n o . 2, p . 1 1 2 - 1 3 9 . K a l k r e u t h , W. D., a n d M. E . M c M e c h a n , 1 9 8 4 , R e g i o n a l p a t t e r n of t h e r m a l m a t u r a t i o n as d e t e r m i n e d from c o a l rank studies, R o c k y M o u n t a i n F o o t h i l l s and F r o n t R a n g e s n o r t h o f G r a n d e Cache, A l b e r t a - i m p l i c a t i o n s f o r petroleum exploration: B u l l e t i n o f C a n a d i a n P e t r o l e u m G e o l o g y , v . 32, n o . 3, p . 249-271. K a p p e l m e y e r , G., a n d R. H a e n e l , reference to a p p l i c a t i o n : 238 p. Karr,  C , coal  Jr., (editor), products, Vol.  1974, G e o t h e r m i c s w i t h s p e c i a l G e o e x p l o r a t i o n M o n o g r a p h s , No.  1978, A n a l y t i c a l m e t h o d s f o r c o a l 1: A c a d e m i c P r e s s , New Y o r k , 580  4,  and p.  K a r s t , R. H., a n d G. V . W h i t e , 1 9 8 0 , C o a l r a n k d i s t r i b u t i o n w i t h i n the Bluesky - Gething stratigraphic horizon of n o r t h e a s t e r n B r i t i s h Columbia: in British C o l u m b i a M i n i s t r y o f M i n e s and P e t r o l e u m Resources, G e o l o g i c a l F i e l d w o r k 1979, P a p e r 1980-1, p. 103-107. K a r w e i l , J . , 1 9 5 6 , D i e M e t a m o r p h o s e d e r K o h l e n vom Standpunkt d i e p h y s i k a l i s c h e n Chemie: Deutsch Geologische G e s e l l s c h a f t Z e i t s c h r i f t , v . 107, p. 132-139. Keen,  C. E . , 1 9 8 3 , S a l t d i a p i r s a n d t h e r m a l Basin: B u l l e t i n of Canadian Petroleum 2, p . 1 0 1 - 1 0 8 .  maturity: Scotian G e o l o g y , v . 31, No.  K o e t t e r , K., 1960, D i e m i k r o s k o p i s c h e r e f l e x i o n s m e s s u n g m i t dem p h o t o m u l t i p l i e r u n d i h r a n w e n d u n g a u f d i e kohlenuntersuchung: B r e n n s t o f f C h e m i e , v . 41, p. 2 6 3 - 2 7 2 . Kuyl,  0. S., a n d R. J . H. P a t i j n , 1 9 6 1 , C o a l i f i c a t i o n i n r e l a t i o n t o d e p t h o f b u r i a l and g e o t h e r m a l gradient: Heerlen, Netherlands: Compte Rendu 4 t h C a r b o n i f e r o u s C o n g r e s s e 1 9 5 8 , v . 2, p . 3 5 7 - 3 6 5 .  Lam,  H. L . , J o n e s , F . W., a n d C. L a m b e r t , 1 9 8 2 , Geothermal g r a d i e n t s i n the H i n t o n area of w e s t - c e n t r a l A l b e r t a : C a n a d i a n J o u r n a l o f E a r t h S c i e n c e , v . 19, p . 7 5 5 - 7 6 6 .  L a t o u r , B. A., a n d C h r i s m a s , L . P., 1 9 7 0 , P r e l i m i n a r y e s t i m a t e of measured c o a l r e s o u r c e s i n c l u d i n g assessment of i n d i c a t e d and i n f e r r e d r e s o u r c e s i n W e s t e r n C a n a d a : Geological Survey o f C a n a d a P a p e r 7 0 - 5 8 , 14 p .  105 Lawson, A. C., 1925, The C y p r e s s P l a i n : U n i v e r s i t y of C a l i f o r n i a P u b l i c a t i o n s i n G e o l o g i c a l S c i e n c e s , v. 6, p. 153-158.  15,  no.  L o p a t i n , N. V., 1971, T e m p e r a t u r e and g e o l o g i c age as f a c t o r s in c o a l i f i c a t i o n (in Russian): Akad. Nauk SSSR I z v . S e r . G e o l . , no. 3, p. 95-106, E n g l i s h t r a n s l a t i o n by B o s t i c k , N. H., I l l i n o i s G e o l o g i c a l S u r v e y , 1972. M a g a r a , K., 1976, T h i c k n e s s o f removed s e d i m e n t a r y r o c k s , p a l e o p o r e p r e s s u r e , and p a l e o t e m p e r a t u r e , southwestern part o f W e s t e r n Canada B a s i n : American A s s o c i a t i o n of Petroleum G e o l o g i s t s B u l l e t i n , v. 60, p. 554-565. M a c K e n z i e , J . D., 1922, The h i s t o r i c a l and s t r u c t u r a l g e o l o g y of t h e s o u t h e r n m o s t Rocky M o u n t a i n s o f Canada: Royal S o c i e t y o f Canada T r a n s a c t i o n s , 3d s e r . , v . 16, s e c . 5, p. 97-132. M a j o r o w i c z , J . A., and A. M. J e s s o p , 1981, R e g i o n a l h e a t p a t t e r n s i n the Western C a n a d i a n Sedimentary B a s i n : T e c t o n o p h y s i c s , v . 74, p. 209-238.  flow  M c C a r t n e y , J . T., and M. T e i c h m u l l e r , 1972, Classification of c o a l s a c c o r d i n g t o d e g r e e o f c o a l i f i c a t i o n by r e f l e c t a n c e of t h e v i t r i n i t e component: F u e l , v . 51, p. 64-68. M c K e n z i e , D. P., 1978, Some remarks on of s e d i m e n t a r y b a s i n s : E a r t h and v. 40, p. 25-32.  the d e v e l o p m e n t Planetary Science  Letters,  M c K e n z i e , D. P., 1981, The v a r i a t i o n o f t e m p e r a t u r e w i t h t i m e and h y d r o c a r b o n m a t u r a t i o n i n s e d i m e n t a r y b a s i n s formed by extension: E a r t h and P l a n e t a r y S c i e n c e L e t t e r s , v. 55, p. 87-98. McLean, J . R., 1982, L i t h o s t r a t i g r a p h y o f the Lower Cretaceous c o a l - b e a r i n g sequence, F o o t h i l l s of A l b e r t a : G e o l o g i c a l S u r v e y o f Canada Paper 80-29, 46 p. M c P h e r s o n , H. J . , 1975, S e d i m e n t y i e l d s from i n t e r m e d i a t e s i z e d stream b a s i n s i n southern A l b e r t a : Journal of H y d r o l o g y , v . 25, p. 243-257. M e l l o n , G. B., 1967, S t r a t i g r a p h y and p e t r o l o g y o f t h e Lower C r e t a c e o u s B l a i r m o r e and M a n n v i l l e G r o u p s , A l b e r t a F o o t h i l l s and P l a i n s : R e s e a r c h C o u n c i l o f A l b e r t a B u l l e t i n 2.1, 270 p. M i d d l e t o n , M. F., 1982, T e c t o n i c h i s t o r y from v i t r i n i t e reflectance: G e o p h y s i c a l J o u r n a l o f the Royal Astronomical S o c i e t y , v . 68, p. 121-132. Middleton,  M.  F.,  and  D.  A.  Falvey,  1983,  Maturation  modeling  106 i n Otway B a s i n , A u s t r a l i a : American A s s o c i a t i o n P e t r o l e u m G e o l o g i s t s , v . 6 7 , No. 2, p . 2 7 1 - 2 7 9 .  of  N o r r i s , D. K., 1964, The Lower C r e t a c e o u s o f t h e S o u t h e a s t e r n Canadian C o r d i l l e r a : B u l l e t i n of Canadian Petroleum G e o l o g y , v . 12, p . 5 1 2 - 5 3 5 . N o r r i s , D. K., 1971, The g e o l o g y and c o a l p o t e n t i a l o f t h e Cascade Coal B a s i n : i n A g u i d e to the geology of the E a s t e r n C o r d i l l e r a along the Trans-Canada Highway between C a l g a r y and R e v e l s t o k e : A l b e r t a Society of Petroleum G e o l o g y , C a n a d i a n E x p l o r a t i o n F r o n t i e r s Symposium, p. 25-39. N o r r i s , D. K., a n d A. W. B a l l y , 1 9 7 2 , Coal, o i l , g a s and i n d u s t r i a l m i n e r a l d e p o s i t s o f t h e I n t e r i o r P l a i n s , F o o t h i l l s , and R o c k y M o u n t a i n s o f A l b e r t a and B r i t i s h Columbia: 24th I n t e r n a t i o n a l G e o l o g i c Congress, Guidebook, F i e l d E x c u r s i o n A 2 5 - C 2 5 , 106 p . N u r k o w s k i , J . R., 1984, C o a l q u a l i t y , c o a l rank v a r i a t i o n and i t s r e l a t i o n to r e c o n s t r u c t e d o v e r b u r d e n , Upper C r e t a c e o u s and T e r t i a r y P l a i n s c o a l s , A l b e r t a , C a n a d a : American A s s o c i a t i o n o f P e t r o l e u m G e o l o g i s t s B u l l e t i n , v . 6 8 , n o . 3, p. 285-295. O x b u r g h , E . R., a n d D. L . T u r c o t t e , 1 9 7 4 , T h e r m a l gradients and r e g i o n a l m e t a m o r p h i s m i n o v e r t h r u s t t e r r a i n s w i t h s p e c i a l r e f e r e n c e to the e a s t e r n A l p s : Schweizer M i n e r a l o g i s c h e u n d P e t r o g r a p i s c h e M i t t e i l u n g e n , v . 54, 641-662.  p.  P e a r s o n , D. E . , a n d D. A. G r i e v e , 1 9 7 9 , C r o w s n e s t coalfield: i n B r i t i s h C o l u m b i a M i n i s t r y o f M i n e s and P e t r o l e u m R e s o u r c e s , G e o l o g i c a l F i e l d w o r k , 1978, P a p e r 1979-1, p . 61-65. Singh, C , 1964, M i c r o f l o r a o f t h e Group, e a s t - c e n t r a l A l b e r t a : B u l l e t i n 15, 238 p .  Lower C r e t a c e o u s M a n n v i l l e Research C o u n c i l of A l b e r t a ,  S h i b a o k a , M., a n d A. J . R. B e n n e t t , 1 9 7 7 , P a t t e r n s o f d i a g e n e s i s i n some A u s t r a l i a n s e d i m e n t a r y b a s i n s : Australian Petroleum Exploration Association Journal 17, p. 5 8 - 6 3 .  17,  v.  S l a y m a k e r , H. 0., 1972, S e d i m e n t y i e l d and s e d i m e n t control in the Canadian C o r d i l l e r a : i n S l a y m a k e r , 0., a n d H. J . McPherson (eds.), Mountain Geomorphology: Geomorphological p r o c e s s e s i n the Canadian C o r d i l l e r a : British Columbia G e o g r a p h i c a l S e r i e s , no. 14, p . 2 3 5 - 2 4 5 . S l a y m a k e r , 0. a n d H. J . M c P h e r s o n , 1 9 7 7 , An o v e r v i e w o f geomorphic processes i n the Canadian Cordillera:  107 Zeitschrift 169-186.  fuer  Geomorphologie  N.  F. , v .  21,  no.  2,  p.  S m i t h , L . , a n d D. S. C h a p m a n , 1 9 8 3 , On the thermal e f f e c t s of groundwater flow: regional scale systems: J o u r n a l o f G e o p h y s i c a l R e s e a r c h , v . 88, p. 593-608. S t a c h , E . , M a c k o w s k y , M.-TH., T e i c h m u l l e r , M., T a y l o r , G. H., C h a n d r a , D., a n d R. T e i c h m u l l e r , 1 9 7 5 , Stach's textbook of coal petrology: B e r l i n and S t u t t g a r t , G e b r u d e r Borntraeger, s e c o n d e d i t i o n , 428 p. S t a p l i n , F. L., 1969, Sedimentary organic matter, organic m e t a m o r p h i s m , and o i l and g a s o c c u r r e n c e : B u l l e t i n of C a n a d i a n P e t r o l e u m G e o l o g y , v . 17, p . 4 7 - 6 6 . S t a p l i n , F. L., 1975, I n t e r p r e t a t i o n of from c o l o u r of p a r t i c u l a t e o r g a n i c P a l y n o l o g y , v . 1, p . 4 7 - 6 6 .  thermal history matter - a review:  S t e i n e r , J . , W i l l i a m s , G. D., a n d G. J . D i c k i e , 1 9 7 2 , Coal d e p o s i t s of the A l b e r t a P l a i n s : in P r o c e e d i n g s of the 1st G e o l o g i c a l C o n f e r e n c e on W e s t e r n C a n a d i a n c o a l , R e s e a r c h C o u n c i l o f A l b e r t a , I n f o r m a t i o n S e r i e s , v . 60, p . 8 5 - 9 6 . Ting,  F . T. C , 1978, Petrographic techniques in coal analysis: i n K a r r , C., J r . ( e d . ) , A n a l y t i c a l M e t h o d s f o r C o a l a n d C o a l P r o d u c t s , A c a d e m i c P r e s s , New Y o r k , v . 1, p . 3-26.  T i s s o t , B., D u r a n d , B., E s p i t a l i e , J . , a n d A. C o m b a z , 1974, I n f l u e n c e o f n a t u r e and d i a g e n e s i s o f o r g a n i c m a t t e r i n formation of petroleum: American A s s o c i a t i o n of Petroleum G e o l o g i s t s B u l l e t i n , v . 58, p . 4 9 9 - 5 0 6 . van  K r e v e l e n , D. W., and J . S c h u y e r , 1957, Coal science, aspects of c o a l c o n s t i t u t i o n : E l s e v i e r , New Y o r k , 352 ( p a r t i c u l a r l y T a b l e 1 on p. 26).  p.,  W a l k e r , R. G., 1982, C l a s t i c u n i t s of the F r o n t Ranges, F o o t h i l l s a n d P l a i n s i n t h e a r e a b e t w e e n F i e l d , B. C. a n d Drumheller, Alberta: F i e l d G u i d e b o o k , E x c u r s i o n 21A, Eleventh Congress o f t h e I n t e r n a t i o n a l A s s o c i a t i o n o f S e d i m e n t o l o g i s t s , 160 p. W a p l e s , D. W., 1980, T i m e and T e m p e r a t u r e i n P e t r o l e u m Formation: A p p l i c a t i o n of L o p a t i n ' s Method to P e t r o l e u m Exploration: American A s s o c i a t i o n of Petroleum G e o l o g i s t s B u l l e t i n , v . 64, n o . 6, p . 9 1 6 - 9 2 6 . W a r r e n , P. S., 1939, The F l a x v i l l e P l a i n i n A l b e r t a : R o y a l C a n a d i a n I n s t i t u t e T r a n s a c t i o n s , v . 22, p t . 341-349.  2,  p.  108  W h i t e , D., 1 9 1 5 , Some r e l a t i o n s i n o r i g i n b e t w e e n c o a l and p e t r o l e u m ; W a s h i n g t o n A c a d e m i c J o u r n a l , v . 5, p . 189-212.  Scientific  W i l l i a m s , M. Y., 1 9 2 9 , T h e p h y s i o g r a p h y o f t h e s o u t h w e s t e r n P l a i n s of Canada: Transactions of the Royal Society of C a n a d a , 3 r d . s e r i e s , v . 2 3 , s e c t . 4, p . 6 1 - 7 9 . Y o r a t h , C. J . , a n d R. D. H y n d m a n , 1 9 8 3 , h i s t o r y o f Queen C h a r l o t t e B a s i n : S c i e n c e , v . 20, p . 1 3 5 - 1 5 9 . Y o u n g , A., 1 9 7 4 , T h e r a t e o f a n d R. S. W a t e r s ( e d s ) ,  S u b s i d e n c e and t h e r m a l Canadian Journal of Earth  slope retreat: i n B r o w n , E . H., P r o g r e s s i n G e o m o r p h o l o g y , p. 65-78.  109  APPENDIX  R o R  WELL  —  D E P T H  LOCATION N  a - 9 4 - L 8 2 - 6 - 1 X. 13-4-26-6W5 21 7-8-29-10W5 6-32-15-29W4 10-36-11-28W4 8-8-10-27W4 6-16-12-27W4 10-24-10-27W4 6-36-17-1W5 8-4-16-29W4  II-10-17-1W5 10-25-15-29W4 8-14-16-27W4 8-3-13-28W4 6-11-14-29W4 8-11-15-28W4 6-2-16-29W4 6-6-13-26W4 13-16-12-28W4 10-7-20-27W4 10-4-16-10W4 6-6-13-1.5W4 8-32-14-18W4 2-1B-8-25W4 6-8-8-27W4 3-27-6-28W4 3-22-7-24W4 3-32-7-24W4  Table  IX.  -A  B  10541 8968  S T A T I S T I C S  -C0RR.  .85 .75 2598 .96 .55 8800 .93 .49 6418 . 95 . 5 0 6387 . 70 . 50 7016 .94 .54 8875 .92 .53 9490 . 87 . 5 4 1 0 4 9 9 . 74 . 5 4 1 1 4 9 5  3707  6958  15636 12501 12221  27190 21120 20760 22734 27689  12  18933 20513 O <-> -7  ET ET  15 9  10675 11596  11 9  16288 7095 17573  11 9  11295 14 1 6 9 7 3 11 1 1 7 1 1 4 11203 4927 4 11536  9 5  5714 19013 21684 22534 15447  RoR G G .  .87 . 94 . 6 5  11  10 13  .15  17900 16234  9 11 16 14 14 5  13365 15998 17259  Ri  29789 32766 35621 39632 18506 19833 28166 11323 30504 19557 23568 20170 17923 7505 19168 8234 32072 36037 38146 25869  Reflectance-depth data a r e a based on a l i n e a r best fit.  5502 5687  . 76 . 5 5 12871 .93 .54 5951 .85 .51 6195 . 76 . 5 4 9009 .92 .39 2976 .87 .54 9836 .97 .54 6273 .62 .48 8606 .71 .53 6396 .99 .40 4747 . 98 . 33 1710 .79 .46 5600 .42 .28 1513 .91 .49 9711 . 75 . 4 6 1 0 5 3 3 . 82 . 4 9 11645 1.0 . 4 7 7702  1. 7 0 1. 74 1. 6 9 1. 6 8 2. 02 i . 86 i . 86 i . 96 2. 07 i . 83 1. 9 4 2. 38 n 10 i . 89 2 . 11 2 . 13 78 80 14 16 2 . 94 i 76 i.. 1. 8 5 i . 98 l . 92 2. 00 3. 03 1. 1. 2. 3.  t 15. 0** 7. 0 9. 0** 7 1 / .  12. 5 cr 9. J 7. 0 1. 5 9 . jl.1 8. 0 "7 0 } w  7. 0 12. 0 9. 5 7. 3  10. 0  — 10. 2 4. 5 6. 0  -  12. 12. 14. 5. 12.  0  0 5 5 5  f o r 28 w e l l s f r o m t h e study coalification gradient  S U R F A C E T E M P E R A T U R E »#*******************##*****•*****#*******  LOCATION  MEAN ANNUAL SURFACE TEMP.(C)  2.9 Anthracite Banff 2.5 Beaver Mines 4.0 3.7 Brooks 3.6 Calgary 5.0 Ci aresholm Coaldale 5.2 Coleman 3.2 3.9 Cowley 3.6 Dr unthel 1 e r 1.4 E l b o w R.S. Highwood R.S. 1.9 L e t h b r i dge 5.3 4.1 Manyberr i es 5.2 Taber *#****#**#**********#*#****#***#*******#**  T a b l e X.  Mean annual s u r f a c e temperatures i n s o u t h e r n A l b e r t a (Environment Canada, 1982).  Wells  Esso  Sundance  sampled  Nanton  6-32-15-29W4  Esso  Sundance  Muddy  Sundance  (213)  10-24-10-27W4  Esso  Sundance  Sundance  Nanton (217)  Nanton  10-25-15-29W4  Esso  Sundance  8-3-13-28W4  Esso  (229)  Sundance  6-6-13-26W4  Resources  (231)  Esso  Claresholm (235)  Windpump  Sundance  6-16-12-27W4  Esso  Sundance  6-36-17-1W5  Esso  Sundance  11-10-17-1W5  Esso  Claresholm (214)  Highwood (216)  Cayley (218)  (230)  Oxley  6-11-14-29W4  Sundance  6-2-16-29W4  Esso  (215)  Connemara  8-14-16-27W4  Esso (233)  Canada L t d .  10-36-11-28W4  Esso  Oxley  Parkland  8-11-15-28W4  Esso  Lake (215)  8-4-16-29W4  Esso  Lake  Muddy  Esso  Esso  (209)  8-8-10-27W4  Esso  from  Sundance  13-16-12-28W4  (232)  Nanton (234)  Lyndon (236)  113 Well  Texaco  sampled  et al.  from Texaco  Texaco  6-6-13-15W4  b-94-L  Shell  sampled  Shell  Shell  19 U n i t  13-4-26-6W5  Shell  River  (211)  Waterton  Getty  Hunter  11-32-28-8W5  (206)  Jumpingpound  Home  (201)  7-7-17-4W5  (204)  8 Panther  7-8-29-10W5  Shell  Shell  Sheep  West  (223)  42 W a t e r t o n  6-3-S-3W5  (202)  8-30-18-3W5  Bow  Resources I n c .  8-20-4-1W5  Waterton  Home  Canada  Shell (200)  7-24-5-3W5  Shell  from S h e l l  Middlepass 82-G-l  Little  (221)  8-32-14-18W4  (222)  Wells  Alderson  10-4-16-10W4  (220)  Texaco  Shell  Resources I n c .  Texaco  Mazeppa  10-7-20-27W4  Canada  (203)  Sullivan (205)  Valley (207)  114  Wells  Gulf  sampled  (224)  West  Canada  (226)  Blood  3-32-7-24W4  (228)  Resources I n c .  Peigan  6-8-8-27W4  Gulf  Peigan  3-27-6-28W4  Gulf  Gulf  Gulf  Kim  2-18-8-25W4  Gulf  from  (225)  e t al_. Blood  3-22-7-24W4  (227)  115 WELL  SAMPLE  DATA  SHEET  NAME: S h e l l M i d d l e p a s s b-94-L LOCATION: a-94-L 82-G-l SAMPLE  TYPE:  SAMPLE! TE83-200 TE83-200 TE83-200 TE83-200 TE83-200 TE83-200 TE83-200 TE83-200 TE83-200 TE83-200 TE83-200 TE83-200 TE83-200 TE83-200 TE83-200 TE83-200 TE83-200 TE83-200 TE83-200 TE83-200 TE83-200 TE83-200 TE83-200 TE83-200 TE83-200 TE83-200 TE83-200 TE83-200 TE83-200 TE83-200 TE83-200 TE83-200 TE83-200  -03A -04A -05 -06 -07 -08 -09 -10 -11 -12 -13F -14 -15 -17R -19F -20F -21R -22 -23 -24 -25 -26F -27 -29 -30 -31R -32R -34 -36R -37 -38 -39R -40  FORMATION  Cuttings DEPTHS(m) 0740 0765 0865 0980 1060 1150 1280 1345 1455 1555 1640 1755 1840 2230 2480 2525 2545 2605 2665 2765 2825 2990 3110 3370 3445 3545 3735 4305 4570 4735 4840 5015 5220  REFLECTANCE ROR=0. 56 ROR=0. 58 ROR=0. 61 ROR=0. 59 ROR=0. 66 ROR=0. 71 ROR=0. 70 ROR=0. 66 ROR=0. 71 ROR=0. 69 ROR=0. 70 ROR=0. 73 ROR=0. 74 ROR=0. 75 ROR=0. 86 ROR=0. 93 ROR=0. 95 R O R = l . 00 ROR=0. 95 ROR=0. 97 ROR=0. 96 ROR=0. 97 ROR=0. 96 R O R = l . 05 ROR=0. 94 ROR=0. 67 ROR=0. 96 ROR=0. 68 ROR=0. 76 ROR=0. 96 ROR=0. 90 ROR=0. 84 ROR=0. 99  N 50 50 46 20 50 15 23 21 20 17 22 14 50 44 50 50 50 38 50 51 29 50 25 9 5 8 9 15 4 8 4 6 50  TOPS(m)  KB Lewis Thrust Belly River Wapiabi Cardium Blackstone Crowsnest V o l c a n i c s Blairmore Cadomin  1623 0326 0326 0768 1464 1621 1660 1752 2427  S .05 . 06 .12 . 07 .11 .13 .16 .16 .12 .15 .11 .12 .11 . 09 .07 .07 .08 . 05 .09 .08 .'09 . 07 .08 .07 .12 . 09 .10 . 10 .08 . 06 .11 .16 .10  Q 3 2 2 1 2 1 2 1 2 2 2 1 3 2 4 1 3 2 3 2 2 2 2 2 1 1 1 1 1 1 1 2 2  116 Kootenay Passage Beds Fernie Shale Tr i a s s i c Permian Etherington Mt. Head Livingstone f/Jurassic f/Mississippian f/Jurassic Permian f/Jurassic Permian Ether ington Mt. Head Livingstone f/Etherington Mt. Head f/Jurassic Permian Ether ington f/Jurassic Permian Ether ington Mt. Head Livingstone Banff f/Permian Etherington Mt. Head f/Etherington Mt. Head T.D. SOURCE:  Shell  2462 2537 2605 2705 2751 2813 2901 3111 3275 3453 3483 3543 3557 3580 3608 3688 3878 4080 4151 4258 4295 4318 4378 4456 4475 4566 4734 4989 5029 5088 5175 5225 5275 5416 Canada R e s o u r c e s L t d .  117 WELL  SAMPLE  NAME: S h e l l 42 W a t e r t o n LOCATION: 8-20-4-1W5 SAMPLE  TYPE:  SAMPLE* TE83-201 TE83-201 TE83-201 TE83-201 TE83-201 TE83-201 TE83-201 TE83-201 TE83-201 TE83-201 TE83-201 TE83-201 TE83-201 TE83-201 TE83-201 TE83-201 TE83-201 TE83-201 TE83-201 TE83-201 TE83-201  -02 -03 -04 -05 -07 -08 -09 -10R -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23  FORMATION  DATA  SHEET  8-20-4-1  Cuttings DEPTHS(m) 0625 0910 1010 1110 1315 1410 1560 1705 1810 2040 2265 2325 2465 2680 2790 2805 2915 3025 3190 3325 3890  REFLECTANCE ROR=0. 70 ROR=0. 78 ROR=0. 79 ROR=0. 78 ROR=0. 80 ROR=0. 75 ROR=0. 71 ROR=0. 77 ROR=0. 81 ROR=0. 83 ROR=0. 68 ROR=0. 92 ROR=0. 85 ROR=0. 86 ROR=0. 91 ROR=0. 99 ROR=0. 93 ROR=0. 90 ROR=0. 96 R O R = l . 03 R O R = l . 36  N 9 50 50 29 36 50 50 52 50 50 50 50 50 50 50 50 50 50 17 47 38  S .16 .10 .13 .17 .08 .10 .07 .10 .07 .13 .09 .07 .11 .04 .12 .09 .11 .14 .14 . 11 .17  TOPS(m)  KB Precambrian f/Belly River Wapiabi Cardium Blackstone Blairmore Dalhousie Jurassic Kootenay Passage Beds f/Lower B l a i r m o r e Dalhousie Kootenay Passage Beds f/Kootenay Passage Beds f/Blairmore Lower B l a i r m o r e Dalhousie Kootenay  1687.2 0001 0100 0360.2 0466 0506.8 0600 0808 0832.5 0832.5 0983 1048 1063 1074 1191 1248 1251.6 1306 1380 1454 1474  Q 1 3 1 2 3 1 3 3 4 2 2 3 2 4 2 3 3 2 1 3 1  118 f/Blairmore Lower B l a i r m o r e Dalhousie Kootenay f/Wapiabi Cardium Blackstone Crowsnest Volcanics B l a i rmore f / B l a i rmore Lower B l a i r m o r e Dalhous i e Kootenay Passage Beds Missi ssippian Mt. Head Livingstone f/Livingstone Banff Exshaw Wabamun f/Exshaw Wabamun Calmar Southesk Ireton T.D. SOURCE:  Shell  1493 1687 1760.4 1799 1814 2086 2126.5 2312.6 2318 2625.5 2679.7 2727.7 2736.6 2810 3329.5 3329.5 3382.3 3593.6 3861.3 3888 3891.6 3938.7 3940.5 4196 4224.8 4242.6 4376  Canada Resources L t d .  119 WELL NAME: S h e l l Waterton LOCATION: 7-24-5-3W5 SAMPLE  TYPE:  SAMPLE! T E 8 3 - 2 0 2 -01 T E 8 3 - 2 0 2 -02 T E 8 3 - 2 0 2 -04 T E 8 3 - 2 0 2 -05 T E 8 3 - 2 0 2 -06 T E 8 3 - 2 0 2 -07 T E 8 3 - 2 0 2 -08 T E 8 3 - 2 0 2 -09 T E 8 3 - 2 0 2 -10 T E 8 3 - 2 0 2 -11 T E 8 3 - 2 0 2 -12 T E 8 3 - 2 0 2 -13 T E 8 3 - 2 0 2 '-14 T E 8 3 - 2 0 2 '-16 T E 8 3 - 2 0 2 -17 FORMATION  SAMPLE  DATA  SHEET  7-24-5-3  Cuttings DEPTHS(m) REFLECTANCE 0570 ROR=0. 80 0960 ROR=0. 82 1520 ROR=0. 84 1640 ROR=0. 87 1760 ROR=0. 86 1850-1860 R O R = l . 02 1950 ROR=0. 98 2100 R O R = l . 05 2190 R O R = l . 01 2310 R O R = l . 01 2440 R O R = l . 04 2470 R O R = l . 21 3080 R O R = l . 18 3795 R O R = l . 73 3900 R O R = l . 70  N S 46 .13 17 . 09 7 .07 18 .09 23 .11 13 .17 50 .07 50 .06 50 .07 50 ' . 09 35 . 22 12 .20 5 .08 51 .29 6 .23  TOPS(m)  KB Belly River Wapiabi Cardium Blackstone Lower C r e t a c e o u s Crowsnest V o l c a n i c s Blairmore Lower B l a i r m o r e Cadomin Jurassic Kootenay Passage Beds Fernie f/Blairmore Passage Beds Fernie Mt. Head f / M t . Head Lower Mt. Head Livingstone f / L o w e r Mt. Head f / M t . Head f / M t . Head f / M t . Head Lower Mt. Head f / M t . Head  1515.5 0015 0360 1117 1158 1251 1251 1378 1801 19.17 1936 1936 1978 2016 2117 2310 2344 2472 2485 2566 2653 2677 2713 2779 2841 2896 2947  Q 2 1 1 2 1 2 2 3 3 2 1 1 1 3 2  120 Lower Mt. Head f/Mt. Head Lower Mt. Head f/Mt. Head Lower Mt. Head f/Fernie Mt. Head Lower Mt. Head Livingstone Banff Exshaw Palliser f/Exshaw Palliser f/Fernie f/Mt. Head f/Fernie T.D. SOURCE:  Shell  2955 2997 3006 3041 3062 3070 3096 3152 3227 3620 3730 3739 3787 3800 3819 3821 3835 3910 Canada  Resources L t d .  121 WELL  SAMPLE  NAME: S h e l l Home W a t e r t o n LOCATION: 6-3-6-3W5 SAMPLE  TYPE:  SAMPLE* TE83-203 TE83-203 TE83-203 TE83-203 TE83-203 TE83-203 TE83-203 TE83-203 TE83-203 TE83-203 TE83-203 TE83-203 TE83-203 TE83-203 TE83-203 TE83-203 TE83-203 TE83-203 TE83-203  -01 -02 -03 -04 -05 -06 -07 -08 -09 -10 -11 -12 -13 -15 -16 -17 -20 -21 -22  FORMATION  DATA  SHEET  6-3-6-3  Cuttings DEPTHS(m) 0545 0665 0755 0895 1050 1150 1240 1345 1390 1465 1560 1625 1695 1810 1985 2660 3790 4515 4545  REFLECTANCE ROR=0. 68 ROR=0. 70 ROR=0. 87 ROR=0. 90 ROR=0. 97 R O R = l . 06 ROR=0. 93 R O R = l . 00 R O R = l . 04 R O R = l . 02 ROR=0. 79 ROR=0. 83 ROR=0. 87 R O R = l . 21 R O R = l . 21 R O R = l . 56 ROR=0. 67 R O R = l . 51 R O R = l . 56  N 54 54 50 55 50 55 10 58 50 54 50 13 11 40 11 17 10 50 51  S .11 .07 .07 . 11 .09 .18 .10 .09 .06 .15 .11 .11 .08 . 17 .25 .14 .10 . 19 .28  TOPS(m)  KB Kootenay f/Blairmore Kootenay f/Blairmore Cadomin Kootenay Passage Beds Fernie f/Fernie f/Kootenay Passage Beds Fernie f / P a s s a g e Beds Fernie Rock C r e e k Triassic Permian Etherington Mt. Head f/Etherington Mt. Head Lower Mt. Head  1352.8 0450 0505 0755 0792 0978 0993 1077 1113 1228 1336 1392 1443 1542 1554 1725 1814 1817 1817 1834 1878 1900 1945  Q 2 3 4 3 3 1 1 3 4 2 3 2 1 3 1 2 1 4 4  f / L o w e r Mt. Head Livingstone f/Livingstone f/Livingstone Banff f / M t . Head Lower Mt. Head Livingstone Banff Exshaw Palliser Calmar Ni sku Ireton Duvernay f/Fernie Mt. Head Lower Mt. Head Livingstone Banff Exshaw Palliser f/Palliser Calmar Nisku Ireton Duvernay T.D. SOURCE:  Shell  2008 2030 2092 2263 2561 2675 2772 2848 3230 3335 3340 3550 3561 3596 3599 3751 3822 3926 4007 4436 4556 4560 4670 4817 4824 4850 4852 4993  Canada Resources L t d .  123 WELL NAME: S h e l l Home S h e e p LOCATION: 8-30-18-3W5 SAMPLE  TYPE:  SAMPLE! TE83-204 TE83-204 TE83-204 TE83-204 TE83-204 TE83-204 TE83-204 TE83-204 TE83-204 TE83-204 TE83-204 TE83-204 TE83-204 TE83-204 TE83-204 TE83-204 TE83-204 TE83-204 TE83-204 TE83-204 TE83-204 TE83-204 TE83-204 TE83-204 TE83-204 TE83-204 TE83-204 TE83-204  -01 -02 -03 -05 -06 -07 -08 -10 -09 -11 -12 -13 -14 -15 -18 -19 -20 -21 -22 -23 -25 -27 -28 -29 -30 -32 -33 -34  FORMATION  SAMPLE  DATA  SHEET  8-30-18-3  Cuttings DEPTHS(m) REFLECTANCE 0425 R O R = l . 10 0525 R O R = l . 13 0665-0675 ROR=0. 94 0870 R O R = l . 20 0965 R O R = l . 21 1035 R O R = l . 13 1080 R O R = l . 46 1175 ROR=0. 70 1220 R O R = l . 19 1480 R O R = l . 35 1500 ROR=0. 84 1675 ROR=0. 82 1750 ROR=0. 93 1860 R O R = l . 07 1960 R O R = l . 03 1990 R O R = l . 12 2040 R O R = l . 11 2085 R O R = l . 30 2665 R O R = l . 11 2715 R O R = l . 31 2860 R O R = l . 35 3060 R O R = l . 33 3150 R O R = l . 33 3535 R O R = l . 16 3610 R O R = l . 22 4175 R O R = l . 33 4825 R O R = l . 38 4875 R O R = l . 35  N 52 42 55 46 50 50 49 10 51 51 50 12 23 50 50 50 50 20 52 38 52 51 51 50 52 50 6 27  S .14 .16 .14 . 22 .21 . 23 .16 .06 .21 .30 .06 .05 .09 .08 .07 . 07 .10 . 26 .16 . 28 .23 .22 . 22 .07 .21 . 23 .18 . 16  TOPS(m)  KB Blackstone Grit Blairmore f/Blackstone Grit Blairmore f/Blairmore Cadomin f/Blairmore Cadomin Kootenay f/Blairmore Cadomin  1367.9 0025 0627 0650 0767 1050 1068 1512 1653 1672 1703 1717 1718 1817  Q 3 3 2 2 2 2 3 2 2 2 4 2 1 2 2 1 3 3 2 2 3 2 1 4 2 1 1 2  Kootenay Passage Beds Fernie Mississippian Mt. Head Livingstone Pekisko Banff f/Wapiabi Cardium Blackstone Grit Blairmore f / B l a i rmore Cadomin Kootenay Passage Beds Fernie Mt. Head Turner V a l l e y Pekisko Banff Exshaw Palliser Calmar Nisku Ireton B e a v e r h i l l Lake Autochthonous Middle Cambrian Eldon T.D. SOURCE:  Shell  1846 2016 2058 2107 2132 2252 2407 2595 2672 2718 2825 3152 3165 3326 3485 3512 3547 3584 3633 3673 3856 3986 4167 4174 4415 4421 4473 4714 4771 4771 4907 4993 Canada Resources L t d .  125 WELL  SAMPLE  NAME: Shell Getty Sullivan LOCATION: 7-7-17-4W5 SAMPLE  TYPE:  SHEET  7-7-17-4  Cuttings  SAMPLE! DEPTHS(m) TE83-205 -01F 0470 TE83-205 -02F 0520 T E 8 3 - 2 0 5 -03 0565 T E 8 3 - 2 0 5 -04 0620 T E 8 3 - 2 0 5 -05 0665 T E 8 3 - 2 0 5 -06 0735 TE83-205 -07F 0885 T E 8 3 - 2 0 5 -08F 1015 T E 8 3 - 2 0 5 -09 1100 T E 8 3 - 2 0 5 -10F 1190 TE83-205 -11F 1260 T E 8 3 - 2 0 5 -12 1665 TE83-205 -13F 1715 T E 8 3 - 2 0 5 -14 1815 TE83-205 -15F 1870 T E 8 3 - 2 0 5 -16 1915 T E 8 3 - 2 0 5 -17 1950 T E 8 3 - 2 0 5 '- 1 8 F 2580 T E 8 3 - 2 0 5 -19 2635 T E 8 3 - 2 0 5 --20 2670 T E 8 3 - 2 0 5 '- 2 1 F 2715 3630 T E 8 3 - 2 0 5 --22 T E 8 3 - 2 0 5 -23 3670 T E 8 3 - 2 0 5 '-24 3710 FORMATION  DATA  REFLECTANCE R O R = l . 46 R O R = l . 48 R O R = l . 51 R O R = l . 57 R O R = l . 57 R O R = l . 60 R O R = l . 63 R O R = l . 55 R O R = l . 46 R O R = l . 62 R O R = l . 60 R O R = l . 59 R O R = l . 52 R O R = l . 63 R O R = l . 62 R O R = l . 53 R O R = l . 62 R O R = l . 59 R O R = l . 52 R O R = l . 60 R O R = l . 74 R O R = l . 73 R O R = l . 69 R O R = l . 70  N 50 50 50 50 50 54 50 50 54 64 77 50 22 52 35 35 35 23 48 55 38 52 13 17  S .07 .09 .09 . 11 .06 .18 .14 . 12 .21 .15 .15 .08 .16 .19 .13 .18 .22 . 22 .29 . 22 .26 .25 .18 .21  TOPS(m)  KB Cardium Blackstone fault Blairmore Cadomin Kootenay Passage Beds Fernie Rock C r e e k Mt. Head Livingstone Shunda f/Kootenay Passage Beds Fernie f/Kootenay Passage Beds  1697 0324.3 0347.2 0385 0667 0796 0830 1063 1130 1222 1263 1407 1577 1657 1672 1698 1730 1754  Q 4 3 3 3 4 2 2 2 2 3 2 3 2 3 3 3 2 1 1 3 2 2 2 2  126  Fernie Rock C r e e k f/Fernie Rock C r e e k Mt. Head Livingstone Pekisko Banff Exshaw f/Banff f/Kootenay Passage Beds Fernie Rock C r e e k Mt. Head Livingstone Pekisko f/Pekisko Banff f / M t . Head Livingstone f/Fernie Rock C r e e k Mt. Head Livingstone Pekisko Banff f/Mt. Head Livingstone T.D. SOURCE:  Shell  1801 1897 1907 1918 1953 2045 2223 2292 2581 2592 2624 2629 2667 2705 2725 2831 3012 3152 3238 3485 3577 3622 3690 3711 3793 3963 4046 4148 4207 4350 Canada  Resources L t d .  127 WELL  SAMPLE  NAME: S h e l l 8 Panther R i v e r LOCATION: 7-8-29-10W5 SAMPLE  TYPE:  SAMPLE* TE83-206 TE83-206 TE83-206 TE83-206 TE83-206 TE83-206 TE83-206 TE83-206 TE83-206 TE83-206 TE83-206 TE83-206 TE83-206 TE83-206 TE83-206 TE83-206 TE83-206 TE83-206 TE83-206  -01 -02 -03A -04 -05 -06 -07 -08 -09 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19  FORMATION  DATA  SHEET  7-8-29-10  Cuttings DEPTHS(m) 0580 0695 0805 0875 0995 1100 1175 1240 1305 1405 1600 2300 2405 2525 2715 2840 3450 4650 4945  REFLECTANCE R O R = l . 15 R O R = l . 26 R O R = l . 30 R O R = l . 22 R O R = l . 27 R O R = l . 70 R O R = l . 71 R O R = l . 70 R O R = l . 74 R O R = l . 59 R O R = l . 67 R O R = l . 91 R O R = l . 68 R O R = l . 73 R O R = l . 78 R O R = l . 69 R O R = l . 73 ROR=2. 06 R O R = l . 68  N 55 55 50 54 50 50 50 50 50 50 50 16 60 54 56 14 5 50 54  S .16 . 10 .13 .13 .09 .12 .14 . 12 .12 .10 .31 .13 .18 .16 .16 .27 .29 .22 .17  TOPS(m)  KB Dalhousie Kootenay Passage Beds Rock Creek Nordegg Mt. Head U. T u r n e r V a l l e y Memramcook Pekisko Banff f/Kootenay Passage Beds Fernie Rock Creek Nordegg Triassic Mt. Head U. T u r n e r V a l l e y M. T u r n e r V a l l e y L. T u r n e r V a l l e y Memramcook Pekisko  1846.1 0974 0994 1313 1587 1610 1725 1817 1910 1997 2076 2272 2373 2400 2844 2856 2889 2912 2991 3015 3030 3110 3176  Q 3 3 4 3 3 2 2 3 1 4 2 3 3 1 1 1 1 2 4  Banff Exshaw Wabamun Calmar Ireton Contact Rapids Cambrian Eldon f/Rock Creek Nordegg f/Cadomin Rock C r e e k Mt. Head Pekisko Banff T.D. SOURCE:  S h e l l Canada  3240 3427 3456 3715 3757 3911 4175 4306 4725 4745 4813 4911 4950 5134 5230 5315 Resources  Ltd.  129 WELL SAMPLE DATA SHEET NAME: S h e l l Hunter V a l l e y LOCATION: 11-32-28-8W5 SAMPLE TYPE:  Cuttings  SAMPLE* DEPTHS(m) TE83-207 -03 0730 TE83-207 -04 0780 TE83-207 -05 0890 TE83-207 -06 0905 TE83-207 -07 1080 TE83-207 -08 1185 TE83-207 -09 1275 TE83-207 -10 1375 TE83-207 -11 1585 TE83-207 -12 1665 TE83-207 -13 1765 TE83-207 -14 1880 TE83-207 -15 2050 TE83-207 -16 2150 TE83-207 -17 2330 TE83-207 -18 2230 TE83-207 -19 2350 TE83-207 -20 2440 TE83-207 -21 2550 TE83-207 -22 2590 TE83-207 -23 3125 TE83-207 -24 3680 TE33-207 -25 4070 TE83-207 -26 4125 TE83-207 -28 4250 TE83-207 -29 4330 TE83-207 -30 4540 TE83-207 -31 4840 TE83-207 -32 5395 TE83-207 -34 5600 FORMATION  11-32-28-8  REFLECTANCE ROR=l. 44 ROR=l. 47 ROR=l. 57 ROR=l. 57 ROR=l. 25 ROR=l. 38 ROR=l. 26 ROR=l. 39 ROR=l. 52 ROR=l. 38 ROR=l. 44 ROR=l. 21 ROR=l. 30 ROR=l. 23 ROR=l. 46 ROR=l. 31 ROR=l. 42 ROR=l. 48 ROR=l. 34 ROR=l. 55 ROR=l. 31 ROR=l. 64 ROR=l. 38 ROR=l. 48 ROR=l. 55 ROR=l. 54 ROR=l. 58 ROR=l. 46 ROR=l. 86 ROR=l. 50  N 50 50 50 62 52 26 54 51 44 50 50 56 50 56 50 58 56 54 55 51 50 37 14 11 53 52 54 7 10 9  S .14 .07 .08 .13 .28 . 20 .24 .21 .20 . 19 . 21 . 12 .14 . 10 .24 .11 .12 .13 .23 . 22 . 26 .21 .21 . 24 .19 . 21 . 21 .24 .18 . 17  TOPS(m)  KB Wapiabi Cardium f/Cardium Blackstone Blairmore Lower B l a i r m o r e f/Blairmore Lower B l a i r m o r e Cadomin Kootenay P a s s a g e Beds  1738.8 0911 1125 1244 1308 1643 1887 1984 2053 2290 2318 2473  Q 2 3 4 2 3 2 3 3 2 3 3 3 4 2 2 3 3 2 2 2 1 1 1 1 2 2 3 1 1 2  Fernie Rock C r e e k Nordegg Mt. Head Wileman Turner V a l l e y Shunda Pekisko Banff Exshaw Palliser Graminia Calmar Nisku Ireton Peechee Cairn B e a v e r h i l l Lake Yahatinda Cambr i a n f/Cambrian f/Lower B l a i r m o r e Cadomin Passage Beds Fernie Rock C r e e k No r d e g g Turner V a l l e y Shunda Peki sko Banff Exshaw Palliser f/Banff Exshaw Palliser f/Palliser Graminia Calmar Nisku Ireton M o u n t Hawk B e a v e r h i l l Lake T.D. SOURCE:  Shell  2519 2549 2567 2594 2612 2627 2740 2822 2896 3110 3118 3349 3381 3390 3436 3446 3498 3666 3751 3772 3865 4062. 4260 4280 4286 4310 4327 4355 4479 4515 4662 4896 4910 4929 4970 4982 5108 5259 5297 5310 5365 5421 5606 5620  Canada Resources L t d .  131 WELL  SAMPLE  NAME: S h e l l 19 U n i t J u m p i n g LOCATION: 13-4-26-6W5 SAMPLE  TYPE:  SAMPLE! TE83-211 TE83-211 TE83-211 TE83-211 TE83-211 TE83-211 TE83-211 TE83-211 TE83-211 TE83-211 TE83-211 TE83-211 TE83-211 TE83-211 TE83-211 TE83-211 TE83-211 TE83-211 TE83-211 TE83-211 TE83-211  -01 -03 -05 -0 6 -07 -09 -10 -12 -13 -14 -19 -20 -21 -22 -23 -24 -25 -26 -27R -28R -29R  FORMATION  Pound  SHEET West  13-4-26-6  Cuttings DEPTHS(m) 0435 0660 0895 0950 1090 1275 1375 1575 1680 1720 2360 2430 2470 2575 2660 2865 2905 3010 3100 3180 3260  REFLECTANCE ROR=0. 88 ROR=0. 80 ROR=0. 86 ROR=0. 94 ROR=0. 84 ROR=0. 85 R O R = l . 00 ROR=0. 93 ROR=0. 82 ROR=0. 89 R O R = l . 19 R O R = l . 14 R O R = l . 22 R O R = l . 25 R O R = l . 28 R O R = l . 28 R O R = l . 41 R O R = l . 40 R O R = l . 40 R O R = l . 47 R O R = l . 48  N 8 51 53 56 53 56 55 57 30 54 55 56 56 60 52 57 56 54 44 23 42  S .10 .07 .06 . 12 .13 . 09 .09 . 09 .09 .10 .11 .07 .12 .13 .12 . 13 . 22 .19 .23 .24 .25  TOPS(m)  KB Cardium Blackstone Blairmore Kootenay Passage Beds Nordegg Turner Valley Shunda Pekisko f/Pekisko Banff f/Turner Valley Shunda Pekisko T.D. SOURCE:  DATA  Shell  1199.1 1107 1578 2165 3062 3153 3235 3261.3 3352 3385 3486 3513.8 3561 3591.7 3621 3700 Canada  Resources L t d .  Q 1 2 2 3 2 3 2 2 2 4 3 3 2 3 2 3 1 3 2 2 2  132 WELL  SAMPLE  NAME: Esso Sundance Nanton LOCATION: 6-32-15-29W4 SAMPLE  TYPE:  SAMPLE* TE83-209 TE83-209 TE83-209 TE83-209 TE83-209 TE83-209 TE83-209 TE83-209 TE83-209 TE83-209 TE83-209 TE83-209 TE83-209 TE83-209 TE83-209 TE83-209 TE83-209 TE83-209  -01 -02 -03 -04 -0 5R -06 -07 -08 -09 -10 -11 -12 -13 -14R -15R -16 -17R -18  FORMATION  DATA  SHEET  6-32-15-29  Cuttings DEPTHS(m) REFLECTANCE 1605 ROR=0. 72 1720 ROR=0. 69 1755-1765 ROR=0. 74 1875 ROR=0. 71 1970 ROR=0. 73 2060 ROR=0. 73 2110 ROR=0. 68 2190 ROR=0. 72 2310 ROR=0. 71 2410 ROR=0. 71 2515 ROR=0. 69 2625 ROR=0. 69 2755 ROR=0. 74 2765 ROR=0. 72 2875 ROR=0. 71 2950 ROR=0. 84 3025 ROR=0. 87 3140 ROR=0. 85  N 60 56 59 55 51 56 55 56 54 54 58 52 56 50 50 56 51 51  S .06 .06 .04 . 09 .08 .07 .09 .08 .09 .06 .06 .11 .06 . 05 .06 .10 .12 .15  TOPS(m)  KB Bearpaw Judith River Pakowki Milk River Colorado Cardium Blackstone Second White Base o f F i s h Mannville Ostracod Jurassic Livingstone T.D.  Speckled Scales  Shale  1267.4 1552 1728 2072 2103 2212.5 2470 2486.5 2618 2752 2824 3052 3091 3159.5 3202  Q 3 4 3 3 2 2 3 3 4 4 2 2 2 2 2 2 1 2  133 WELL  S A M P L E DATA  SHEET  NAME: E s s o Windpump 10-36-11-28 LOCATION: 10-36-11-28W4 SAMPLE  TYPE:  SAMPLE! TE83-212 TE83-212 TE83-212 TE83-212 TE83-212 TE83-212 TE83-212 TE83-212 TE83-212 TE83-212 TE83-212  -01 -02R -03 -04 -05 -06R -09R -10R -11 -12R -13  FORMATION  Cuttings DEPTHS(m) REFLECTANCE 1160 ROR=0.60 1250 ROR=0.63 1380 ROR=0.63 1490 ROR=0.65 1590 ROR=0.68 1665 ROR=0.70 2170 ROR=0.70 2270 ROR=0.69 2380-2390 ROR=0.76 2455 ROR=0.76 2575 ROR=0.80  N 52 52 54 53 54 52 29 51 58 51 60  S .02 .05 .05 .08 .09 .05 .06 .07 .06 .07 .12  TOPS(m)  KB Bearpaw Judith River Pakowki Milk River Colorado Cardium Blackstone Second White Base o f F i s h Mannville Ostracod Jurassic Livingstone Elkton Banff Exshaw Wabamun T.D.  Speckled Scales  Shale  1014.2 1067 1300 1595 1620 1754 1978 2000 2121 2243 2315 2548 2558 2671 2746 2826 3081 3083 3215  Q 4 3 3 3 3 3 2 2 2 2 3  134 WELL  SAMPLE  NAME: E s s o S u n d a n c e Muddy LOCATION: 8-8-10-27W4 SAMPLE  TYPE:  Lake  DATA  8-8-10-27  Cuttings  SAMPLE* DEPTHS(m) REFLECTANCE TE83-213-02 0650 ROR=0. 58 TE83-213-03 0790 ROR=0. 58 TE83-213-04F 0900 ROR=0. 58 TE83-213-05R 1005 ROR=0. 63 TE83-213-06 1090 ROR=0. 62 TE83-213-07 1265 ROR=0. 64 TE83-213-08 1395 ROR=0. 66 TE83-213-09 1495 ROR=0. 69 TE83-213-10 1560 ROR=0. 66 TE83-213-11 1660 ROR=0. 70 TE83-213-12R 2165 ROR=0. 70 TE83-213-13R 2305- 2315 ROR=0. 74 TE83-213-14R 2470 ROR=0. 75 TE83-213-15R 2580 ROR=0. 77 SAMPLE  TYPE:  TE83-676 TE83-677 FORMATION  SHEET  N 53 22 54 52 54 55 57 54 61 54 34 33 51 53  S .09 .09 .07 .06 .06 .06 .06 .07 .09 .07 .07 .07 .06 .07  Q 1 2 3 4 2 4 4 4 3 3 2 1 1 2  50 50  .05 .08  2 3  Core 2524. 5 2543. 5  ROR=0. 88 ROR=0. 80  TOPS(m)  KB Bearpaw Judith River Pakowki Milk River Colorado Cardium Blackstone Second White Base o f F i s h Mannville Ostracod Jurassic Livingstone T.D.  Speckled Scales  Shale  0998.5 1013 1280 1585 1615 1746 1972 1998 2117 2216 2324 2564 2576 2691 2722  135 WELL  SAMPLE  NAME: Esso Sundance C l a r e s h o l m LOCATION: 6-16-12-27W4 SAMPLE  TYPE:  DATA  6-16-12-27  Cuttings  SAMPLE* DEPTHS(m) REFLECTANCE TE83-214-01R ROR=0. 60 0655 TE83-214-02R 0840 ROR=0. 61 TE83-214-03 0855 ROR=0. 66 TE83-214-04 1100 ROR=0. 70 TE83-214-06 1425 ROR=0. 65 TE83-214-07 1510 ROR=0. 65 TE83-214-08 2100- 2105 ROR=0. 69 ROR=0. 66 TE83-214-09R 2190 TE83-214-10R 2 2 4 0 ROR=0. 71 2235TE83-214-11 ROR=0. 69 2385 TE83-214-12 2395 ROR=0. 69 SAMPLE  TYPE:  TE83-696F TE83-699 TE83-700F FORMATION  SHEET  N 36 52 58 56 56 53 56 16 58 43 54  S .06 .07 .06 .07 .06 .07 .07 .09 .08 .09 .07  Q 2 2 4 3 4 4 4 1 1 3 3  50 50 50  . 08 .06 .06  3 2 3  Core 2363. 6 2381. 1 2412. 5  ROR=0. 69 ROR=0. 83 ROR=0. 75  TOPS(m)  KB Bearpaw Judith River Pakowki Milk River Colorado Cardium Blackstone Second White Speckled Base o f F i s h S c a l e s Mannville Ostracod Jurassic Rock C r e e k Mississippian T.D.  Shale  1012.6 0982 1147 1435 1461 1585 1808 1828 1950 2050 2142 2370 2380 2470 2481 2585  136 WELL  SAMPLE  NAME: E s s o S u n d a n c e Muddy LOCATION: 10-24-10-27W4 SAMPLE  TYPE:  Lake  DATA  10-24-10-27  Cuttings  SAMPLE* DEPTHS(m) REFLECTANCE TE83-215-01 0575-0580 ROR=0. 59 TE83-215-02 0715 ROR=0. 58 TE83-215-03 0755 ROR=0. 61 TE83-215-04 0810 ROR=0. 60 TE83-215-05 0910 ROR=0. 65 TE83-215-06R 1035-1040 ROR=0. 64 TE83-215-07 1205 ROR=0. 64 TE83-215-08 1360 ROR=0. 63 TE83-215-09 1450 ROR=0. 69 TE83-215-10 2010 ROR=0. 73 TE83-215-11 2115 ROR=0. 70 TE83-215-12 2215 ROR=0. 72 TE83-215-13 2250 ROR=0. 76 TE83-215-14R 2320 ROR=0. 72 FORMATION  SHEET  N 55 51 55 53 54 52 54 54 54 59 51 54 54 50  S .07 .04 .06 .05 .09 .07 .06 .06 .06 . 08 .06 .07 .07 .06  TOPS(m)  KB Bearpaw Judith River Pakowki Milk River Colorado C a r d ium BIackstone Second White Speckled Base o f F i s h S c a l e s Mannville Ostracod Jurassic Livingstone T.D.  Shale  0994 .4 0795 1055 1362 1393 1520 1739 1759 1882 1978 2082 2308 2320 2420 2455  Q 2 4 2 2 2 3 2 3 2 3 2 3 3 2  137 WELL  S A M P L E DATA  NAME: Esso Sundance Highwood LOCATION: 6-36-17-1W5 SAMPLE  TYPE:  6-36-17-1  Cuttings  SAMPLE* DEPTHS(m) REFLECTANCE TE83-216-01 1605 ROR=0.67 TE83-216-02 1695 ROR=0.67 TE83-216-03 2405-2410 ROR=0.72 TE83-216-04F 2470-2475 ROR=0.65 TE83-216-05 2555 ROR=0.77 TE83-216-06 2605 ROR=0.73 TE83-216-07R ROR=0.68 2675-2680 FORMATION  SHEET  N 52 53 53 95 56 54 22  S .07 .07 .13 . 07 .06 .10 .03  TOPS(m)  KB Judith River Pakowk i Milk River Colorado Cardium Blackstone Second White Base o f F i s h Mannville Ostracod Jurassic Livingstone T.D.  Speckled Scales  Shale  1150.6 1357 1714 1748 1840 2112 2133 2264 2402 2470 2671 2727 2775 2860  Q 3 2 2 4 3 3 2  138 WELL  SAMPLE  NAME: Esso Sundance Nanton LOCATION: 8-4-16-29W4 SAMPLE  TYPE:  SAMPLE! TE83 -217 TE83 -217 TE83 -217 TE83 -217 T E 8 3 -217 TE83 -217 T E 8 3 -217 T E 8 3 -217 T E 8 3 -217 TE83 -217 T E 8 3 -217 TE83 -217  -01 -02 -03 -04 -05 -0 6R -10 -11 -12 -13 -14 -15R  FORMATION  DATA  SHEET  8-4-16-29  Cuttings D E P T H S ( m ) 1R E F L E C T A N C E 1450 ROR=0. 66 1560 ROR=0. 68 1655 ROR=0. 67 1790-1800 ROR=0. 68 1875 ROR=0. 66 1990-1995 ROR=0. 70 2555-2560 ROR=0. 69 2610-2615 ROR=0. 71 2680-2685 ROR=0. 75 2730-2740 ROR=0. 77 2850 ROR=0. 77 2930-2935 ROR=0. 74  N 54 54 60 54 54 52 56 52 55 54 55 50  S .06 .07 .07 .09 .07 .06 . 04 .07 .08 .10 .11 . 09  TOPS(m)  KB Bearpaw Judith River Pakowki Milk River Cardium Blackstone Second White Base o f F i s h Mannville Ostracod Jurassic Rock Creek Livingstone T.D.  Speckled Scales  Shale  1177.2 1372 1550 1889 1917 2281 2296 2427 2558 2635 2846 2895 2942 2956 2979  Q 2 3 4 2 3 1 2 3 2 3 3 1  139 WELL  SAMPLE  NAME: Esso Sundance C a y l e y LOCATION: 11-10-17-1W5 SAMPLE  TYPE:  SAMPLE* TE83-218 TE83-218 TE83-218 TE83-218 TE83-218 TE83-218 TE83-218 TE83-218 TE83-218 TE83-218  -01 -02 -03 -04 -05 -06 -12 -13 -14 -15  FORMATION  DATA  SHEET  11-10-17-1  Cuttings D E P T H S ( m ) ]R E F L E C T A N C E 1360 ROR=0. 66 1480 ROR=0. 66 1575 ROR=0. 68 1690-1695 ROR=0. 70 1790-1795 ROR=0. 66 1930 ROR=0. 66 2625 ROR=0. 67 2660-2670 ROR=0. 71 2760 ROR=0. 75 2890-2895 ROR=0. 74  N 55 55 57 50 60 56 51 52 51 53  S .06 . 08 .08 .06 .07 .08 .06 .10 .08 .10  TOPS(m)  KB Bearpaw Judith River Pakowki Milk River Colorado Cardium Blackstone Second White Speckled Base o f F i s h S c a l e s Mannville Ostracod Jurassic Rock C r e e k Mississippian T.D.  Shale  1147.7 1370 1541 1927 1962 2058 2318 2339 2470 2596 2675 2887 2942 2988 2999 3085  Q 4 3 4 2 2 2 3 2 2 2  140  WELL SAMPLE DATA SHEET NAME: T e x a c o e t al. Mazeppa LOCATION: 10-7-20-27W4 SAMPLE TYPE:  10-7-20-27  Cuttings  SAMPLE* DEPTHS(m) 1REFLECTANCE TE83 -220 -01R 0274 -0283 ROR=0. 61 TE83 -220 -03R 0329 -0338 ROR=0. 56 TE83 -220 -13R 0640 -0649 ROR=0. 61 TE83 -220 -14 0668 -0677 ROR=0. 63 TE83 -220 -16 0732 -0741 ROR=0. 61 TE83 -220 -17 0759 -0768 ROR=0. 61 TE83 -220 -18 0796 -0805 ROR=0. 59 TE83 -220 -20R 0860 -0869 ROR=0. 61 TE83 -220 -22 0924 -0933 ROR=0. 62 TE83 -220 -27 1088' -1098 ROR=0. 64 TE83 -220 -30 1226 -1235 ROR=0. 65 FORMATION  N 50 16 50 56 54 55 53 50 56 56 54  S .09 .05 .07 .06 .07 .07 .03 .05 .07 .05 .06  TOPS(m)  K.B. Bearpaw Judith River Milk River Colorado Cardium Blackstone Second White S p e c k l e d Base o f F i s h S c a l e s Mannville Ostracod Mississippian Shunda Pekisko Banff Exshaw Wabamun T.D.  Shale  1068.6 0670 0875 1254 1344 1587.4 1607.5 1683 1802.3 1887 2121 2142.1 2200.7 2222.6 2387 2500 2511.2 2627.4  Q 1 2 2 3 2 2 4 3 3 3 3  141 WELL  SAMPLE  DATA  SHEET  NAME: Texaco Alderson 10-4-16-10 LOCATION: 10-4-16-10W4 SAMPLE  TYPE:  Cuttings  SAMPLE* DEPTHS(m) TE83-221-01 0184 TE83-221-02 0337 TE83-221-06R 0825 TE83-221-07 1001.5 FORMATION  REFLECTANCE ROR=0.42 ROR=0.42 ROR=0.47 ROR=0.49  N 60 52 50 55  S . 12 . 05 . 05 . 06  TOPS(m)  KB Lea Park Milk River Colorado Second White Speckled Base of F i s h S c a l e s Bow Island Mannville Sunburst Mississippian T.D.  Shale  0776. 3 0246. 6 0301. 8 0389. 8 0626. 4 0703. 2 0760. 8 0862. 6 0981. 5 0993. 9 1002. 8  Q 2 2 2 2  142 WELL  SAMPLE  DATA  SHEET  NAME: T e x a c o E n c h a n t 6-6-13-15 LOCATION: 6-6-13-15W4 SAMPLE  TYPE:  SAMPLE* TE83-222-01 TE83-222-02 TE83-222-03 FORMATION  Cuttings REFLECTANCE DEPTHS(m) 0811-0814 ROR=0.49 0930 ROR=0.51 0980 ROR=0.53  N 54 54 54  S . 06 . 07 . 06  TOPS (m)'  KB Lea Park Milk River Colorado Second White Base of F i s h Mannville T.D.  Speckled Scales  Shale  0790. 8 0204 0238 0341 0608. 5 0674 0844 0979  Q 2 3 2  143 WELL  SAMPLE  NAME: T e x a c o L i t t l e Bow LOCATION: 8-32-14-18W4 SAMPLE  TYPE:  SHEET  8-32-14-18  Cuttings  SAMPLE* DEPTHS(m) TE83-223-01 0777.5 TE83-223-02 0900 TE83-223-03R 1017.5 TE83-223-04 1117.5 FORMATION  DATA  REFLECTANCE ROR=0.54 ROR=0.56 ROR=0.55 ROR=0.57  N 54 51 51 54  S . 08 . 05 . 05 . 07  TOPS(m)  KB Pakowki Milk River Colorado Second White Base of F i s h Viking Mannville Ostracod Livingstone T.D.  Speckled Scales  Shale  0805. 4 0335 0353. 7 0447 0724 0809. 1 0832. 4 0960. 8 1090 1104 1129  Q 4 3 2 3  144 WELL  SAMPLE  DATA  SHEET  NAME: G u l f Kim 2-18-8-25 LOCATION: 2-18-8-25W4 SAMPLE  TYPE:  Cuttings  SAMPLE* DEPTHS(m) REFLECTANCE TE83-224-01 1700 ROR=0. 60 TE83-224-02 1800-1805 ROR=0. 62 TE83-224-03 1900 ROR=0. 57 ROR=0. 63 TE83-224-05 2105 TE83-224-07R 2288 ROR=0. 62 FORMATION  N 54 54 53 54 50  S . 09 . 08 . 09 . 08 . 06  TOPS(m)  KB Bearpaw Judith River Pakowki Milk River Colorado Cardium Blackstone Second White Base of F i s h Mannville Rierdon Liv ingstone Banff Exshaw Wabamun Arcs Grotto Pechee T.D.  Speckled Scales  Shale  1013. 2 0675 0912. 5 1240. 5 1265 1376 1616 1635 1755. 5 1848. 5 1967. 5 2186. 5 2294 2471 2664 2665 2806 2826. 5 2843 2867  Q 2 2 2 3 4  145 WELL  SAMPLE  DATA  SHEET  NAME: G u l f P e i g a n 6-8-8-27 LOCATION: 6-8-8-27W4 SAMPLE  TYPE:  Cuttings  SAMPLE* DEPTHS(m) TE83-225-02R 1355 TE83-225-04R 1525 TE83-225-06 1735 TE83-225-08R 1950 TE83-225-13 2475 TE83-225-14 2550 TE83-225-15 2695 TE83-225-16R 2775 3320 TE83-225-19 FORMATION  REFLECTANCE ROR=0. 57 ROR=0. 62 ROR=0. 59 ROR=0. 61 ROR=0. 67 ROR=0. 65 ROR=0. 70 ROR=0. 67 ROR=0. 69  N 50 51 53 50 54 55 59 51 51  S . 09 . 08 . 06 . 07 . 08 . 07 . 09 . 06 . 05  TOPS(m)  KB Bearpaw Judith River Pakowki Milk River Colorado Second White Speckled Base o f F i s h S c a l e s Mannville Ostracod Jurassic Livingstone Banff Exshaw Wabamun Arcs Grotto Peechee T.D.  Shale  0999. 9 1121 1358 1752 1783 1922 2313 2394. 6 2527 2737 2788 2935 3150 3318 3323 3463 3475 3498 3595  Q 3 3 2 2 3 2 3 3 2  146 WELL  SAMPLE  DATA  SHEET  NAME: Gulf Peigan 3-27-6-28 LOCATION: 3-27-6-28W4 SAMPLE  TYPE:  Cuttings  SAMPLE* DEPTHS(m) REFLECTANCE N 56 TE83-226-01 2600-2610 ROR=0.61 TE83-226-02 2765-2770 ROR=0.62 53 TE83-226-03 2885-2890 ROR=0.62 53 TE83-226-04R 2975 ROR=0.64 50 TE83-226-06 3215 ROR=0.63 43 FORMATION  S . 07 . 09 . 08 . 07 . 09  TOPS(m)  KB Bearpaw Judith River Pakowki Milk River Colorado Second White Base o f F i s h Mannville Ostracod Rierdon Mount Head Liv ingstone Banff Exshaw Wabamun Arcs Grotto T.D.  Speckled Scales  Shale  1145. 4 1520 1731 2125 2148 2305 2696 2776 2912 3125 3229 3350 3394 3560 3756 3758 3932. 5 3960 3977  Q 2 3 3 3 3  147 WELL  SAMPLE  NAME: Gulf et a l . Blood LOCATION: 3-22-7-24W4 SAMPLE  TYPE:  SAMPLE* TE83-227-01 TE83-227-03 TE83-227-06 FORMATION  DATA  SHEET  3-22-7-24  Cuttings DEPTHS(m) 1420 1620 1895  REFLECTANCE ROR=0.57 ROR=0.59 ROR=0.59  N 53 52 53  S . 09 . 06 . 06  TOPS(m)  KB Bearpaw Judith River Pakowki Milk River Second White Speckled Base o f F i s h Scales Mannville Ostracod Rierdon Mississippian Banff Exshaw Wabamun Arcs Grotto Peechee T.D.  Shale  1017 0404 0620 0968 0996 1468 1553 1680 1897 1930 2008. 2174 2363 2364 2509. 2531. 2545. 2575  5  5 5 5  Q 2 2 3  148 WELL NAME: G u l f West B l o o d LOCATION: 3-32-7-24W4 SAMPLE  TYPE:  SAMPLE* TE83-228-02 TE83-228-03 TE83-228-04 FORMATION  SAMPLE  DATA  SHEET  3-32-7-24  Cuttings DEPTHS(m) 1600 1705 1820  REFLECTANCE ROR=0.60 ROR=0.61 ROR=0.62  N 57 59 56  S . 07 . 10 . 12  TOPS(m)  KB Judith River Pakowki Milk River Colorado Second White Speckled Shale Base o f F i s h Scales Mannville Ostracod Rierdon Mississippian Banff Exshaw Wabamun Arcs T.D.  0964. 6 0597 0968 0988 1162 1470 1558. 5 1678 1901 1920 2007 2176 2376 2378 2508 2524. 4  Q 2 2 2  149 WELL  SAMPLE  NAME: Esso Sundance Nanton LOCATION: 10-25-15-29W4 SAMPLE  TYPE:  SAMPLE* TE83-229 TE83-229 TE83-229 TE83-229 TE83-229 TE83-229 TE83-229 TE83-229 TE83-229 TE83-229 TE83-229 TE83-229 TE83-229  -01 -02 -03 -04R -05 -06R -10R -11 -12 -18 -19R -20 -21  FORMATION  DATA  SHEET  10-25-15-29  Cuttings D E P T H S ( m ) 1R E F L E C T A N C E 1130 ROR=0. 62 1140 ROR=0. 64 1240 ROR=0. 64 1370 ROR=0. 64 1380 ROR=0. 65 1455 ROR=0. 63 1580 ROR=0. 66 1710 ROR=0. 69 1805 ROR=0. 67 2 4 7 0 -•2475 ROR=0. 69 2 5 7 0 -•2575 ROR=0. 65 2630- 2635 ROR=0. 73 2 7 0 0 -•2705 ROR=0. 69  N 54 54 55 56 54 50 52 55 54 54 51 52 60  S .07 .05 .06 . 08 .08 .07 .06 . 08 .07 .09 .06 .08 .08  TOPS(m)  KB Bearpaw Judith River Pakowki Milk River Colorado Cardium Blackstone Second White Speckled Base o f F i s h S c a l e s Mannville Ostracod Jurassic Rock C r e e k Mississippian T.D.  Shale  1102.3 1180 1377 1714 1743.5 1858 2115 2136 2263 2402 2480 2697 2733 2787 2800 2827  Q 2 2 3 2 2 2 2 3 4 3 3 3 2  150 WELL  SAMPLE  DATA  SHEET  NAME: Esso Connemara 8-14-16-27 LOCATION: 8-14-16-27W4 SAMPLE  TYPE:  Cuttings  SAMPLE* DEPTHS(m) REFLECTANCE TE83-230-01 0 3 8 5 -•0395 ROR=0. 58 TE83-230-02R 0450 ROR=0. 59 TE83-230-03 0600 ROR=0. 60 TE83-230-04 0685 ROR=0. 67 TE83-230-05 0740 ROR=0. 68 TE83-230-06 0745 ROR=0. 70 TE83-230-07 0775 ROR=0. 66 TE83-230-08 0975 ROR=0. 67 TE83-230-09R 1085 ROR=0. 64 TE83-230-10 1 1 6 0 - 1170 ROR=0. 68 TE83-230-11 1270 ROR=0. 71 TE83-230-17R 1970- 1975 ROR=0. 79 TE83-230-18R 2 0 8 0 -•2090 ROR=0. 79 TE83-230-19 2180 ROR=0. 83 SAMPLE  TYPE:  TE83-718 FORMATION  N 38 55 60 53 54 52 56 56 42 56 56 52 54 56  S .06 .06 .08 . 06 .06 .06 . 04 .07 .02 . 06 .07 .09 .07 . 10  Q 3 2 3 3 3 2 3 2 2 3 2 3 3 3  50  . 05  3  Core 2236. 9  ROR=0. 92  TOPS(m)  KB Bearpaw Judith River Pakowki Milk River Colorado Cardium Blackstone Second White Base o f F i s h Mannville Ostracod Jurassic Livingstone T.D.  Speckled Scales  Shale  1023.4 0800 0987 1296 1328 1424 1693 1709 1780 1918 1986 2190 2219 2269 2827  151 WELL  SAMPLE DATA  NAME: Esso Sundance Oxley LOCATION: 8-3-13-28W4 SAMPLE  TYPE:  SAMPLE* TE83-231 TE83-231 TE83-231 TE83-231 TE83-231 TE83-231 TE83-231 TE83-231 TE83-231  -1 -2R -3 -4 -5R -7 -8R -16 -18  FORMATION  SHEET  8-3-13-28  Cuttings DEPTHS(m) 1025 1105 1200 1300 1460 1625 1700 2465 2625  REFLECTANCE ROR=0.68 ROR=0.68 ROR=0.68 ROR=0.69 ROR=0.65 ROR=0.69 ROR=0.66 ROR=0.78 ROR=0.88  N 54 54 57 56 40 54 52 54 38  S .06 .05 .06 . 06 .09 .06 .08 .06 .15  TOPS(m)  KB Bearpaw Judith River Pakowki Milk River Colorado Cardium Blackstone Second White Speckled Base o f F i s h S c a l e s Mannville Ostracod Jurassic Mississippian T.D.  Shale  1057.9 1135 1293 1638 1666 1787 2018 2036 2158 2278 2345 2573.5 2608 2693.5 2735  Q 2 2 3 3 2 3 3 4 1  152 WELL  S A M P L E DATA  SHEET  NAME: Esso Oxley 6-11-14-29 LOCATION: 6-11-14-29W4 SAMPLE  TYPE:  SAMPLE* TE83-232 TE83-232 TE83-232 TE83-232 TE83-232 TE83-232 TE83-232 TE83-232 TE83-232 TE83-232 TE83-232  -01 -02 -03 -04 -05 -06 -07R -08R -0 9R -15 -16  FORMATION  Cuttings DEPTHS(m) 1505 1560 1675 1775 1880 1980 2085 2140 2310 3025 3095  REFLECTANCE ROR=0.71 ROR=0.73 ROR=0.67 ROR=0.68 ROR=0.72 ROR=0.69 ROR=0.70 ROR=0.73 ROR=0.73 ROR=0.75 ROR=0.83  N 54 54 56 52 54 54 52 52 53 54 56  S .06 .07 .07 .07 .09 .09 .07 .08 .06 .11 .10  TOPS(m)  KB Bearpaw Judith River Pakowki Milk River Colorado Cardium Blackstone Second White Speckled Base o f F i s h S c a l e s Mannville Ostracod Jurassic Mississippian T.D.  Shale  1328.2 1549 1730 2080 2108 2231 2475 2495 2618 2755 2819 3045 3085 3173 3264.9  Q 2 2 3 2 2 3 4 3 2 3 3  153 WELL  SAMPLE  DATA  SHEET  NAME: Esso Parkland 8-11-15-28 LOCATION: 8-11-15-28W4 SAMPLE  TYPE:  Cuttings  SAMPLE* DEPTHS(m) TE83-233-02R 1250 TE83-233-03R 1335 TE83-233-04 1430 TE83-233-05 1550 TE83-233-06 1675 TE83-233-09R 1960 TE83-233-12R 2215 TE83-233-14R 2400 SAMPLE  TYPE:  TE83-708 FORMATION  REFLECTANCE ROR=0.65 ROR=0.63 ROR=0.62 ROR=0.65 ROR=0.67 ROR=0.74 ROR=0.72 ROR=0.82  N 50 51 51 51 52 51 58 52  S .07 .06 .07 .07 .07 .09 .08 .08  50  . 06  Core 2513.2  ROR=0.96  TOPS(m)  KB Bearpaw Judith River Pakowki Milk River Colorado Cardium Blackstone Second White Speckled Base o f F i s h S c a l e s Mannville Ostracod Jurassic Mississippian T.D.  Shale  1105.6 1026 1200 1568 1595 1711 1938 1954 2075 2206 2275 2492 2513 2578 2650  Q 2 3 2 2 3 3 2 2  154 WELL  SAMPLE  NAME: Esso Sundance Nanton LOCATION: 6-2-16-29W4 SAMPLE  TYPE:  SHEET  6-2-16-29  Cuttings  SAMPLE* DEPTHS(m) TE83-234-01 1425 TE83-234-02R 1455 TE83-234-03 1525 TE83-234-04 1620 TE83-234-05 1755 TE83-234-06 1850 TE83-234-07R 1970 TE83-234-08R 2045 TE83-234-10R 2230 TE83-234-11R 2355 TE83-234-12 2495 FORMATION  DATA  REFLECTANCE ROR=0. 68 ROR=0. 66 ROR=0. 67 ROR=0. 69 ROR=0. 66 ROR=0. 71 ROR=0. 70 ROR=0. 71 ROR=0. 71 ROR=0. 72 ROR=0. 76  N 52 52 56 54 63 54 51 52 52 52 57  S . 07 . 07 . 07 . 07 . 07 . 07 . 07 . 07 . 06 . 04 . 09  TOPS  KB Bearpaw Judith River Pakowki Milk River Colorado Cardium Blackstone Second White Speckled Base o f F i s h S c a l e s Mannville Ostracod Jurassic Rock C r e e k Livingstone T.D.  Shale  1106. 6 1250 1435 1766 1798 1908. 5 2154 2169 2299 2432 2519 2719. 5 2762 2809 2819 2900  Q 3 3 3 2 3 2 3 3 2 4 3  155 WELL  SAMPLE  NAME: Esso Sundance C l a r e s h o l m LOCATION: 6-6-13-26W4 SAMPLE  TYPE:  TYPE:  TE83-729 FORMATION  SHEET  6-6-13-26  Cuttings  SAMPLE* DEPTHS(m) TE83-235-01 0425 0600 TE83-235-03 TE83-235-04 0700 TE83-235-05 0810 TE83-235-06 0915 TE83-235-07 1030 TE83-235-08R 1125 1220 TE83-235-09 TE83-235-10 1305 1400 TE83-235-11 TE83-235-12R 1510 TE83-235-13R 1625 TE83-235-14 1730 TE83-235-15R 1870 TE83-235-16R 1940 TE83-235-17 2035 TE83-235-18R 2180 SAMPLE  DATA  REFLECTANCE ROR = 0. 59 ROR =0. 61 ROR = 0. 64 ROR =0. 65 ROR = 0. 62 ROR: =0. 66 ROR = 0. 69 ROR =0. 68 ROR = 0. 64 ROR =0. 65 ROR = 0. 67 ROR =0. 66 ROR = 0. 64 ROR =0. 72 ROR = 0. 75 ROR: =0. 72 ROR: = 0. 73  N 52 55 54 54 54 54 51 52 53 59 51 51 55 50 52 55 51  S . 08 . 07 . 05 . 09 . 05 . 07 . 06 . 08 . 08 . 07 . 07 . 06 . 06 . 06 . 08 . 12 . 07  Q 4 3 2 3 3 2 3 3 3 1 3 2 3 3 3 3 3  50  . 05  4  Core 2148.5  ROR: =0. 83  TOPS(m)  KB Bearpaw Judith River Pakowki Milk River Colorado Cardium Blackstone Second White Speckled Base of F i s h S c a l e s Mannv i 1 l e Ostracod Jurassic Rock C r e e k Livingstone T.D.  Shale  1029 0755 0960 1242 1272 1398 1610 1636 1750 1875 1948 2166 2187 2254 2259 2300  156 WELL  SAMPLE  NAME: Esso Sundance Lyndon LOCATION: 13-16-12-28W4 SAMPLE  TYPE:  TYPE:  TE83-694 TE83-695 FORMATION  SHEET  13-16-12-28  Cuttings  SAMPLE* DEPTHS(m) TE83-236-08 1080 TE83-236-09R 1255 TE83-236-10R 1280 TE83-236-11 1415 TE83-236-12R 1490 TE83-236-13R 1630 TE83-236-15 1845 TE83-236-17 2060 TE83-236-18 2155 TE83-236-22 2560 2602 TE83-236-23R TE83-236-28R 2910 SAMPLE  DATA  REFLECTANCE ROR=0. 60 ROR=0. 66 ROR=0. 61 ROR=0. 58 ROR=0. 64 ROR=0. 61 ROR=0. 58 ROR=0. 63 ROR=0. 65 ROR=0. 65 ROR=0. 64 ROR=0. 68  N 54 50 50 53 51 50 51 55 55 63 50 52  S .05 .05 .05 .07 .06 .07 .06 . 08 .08 .07 .08 .09  Q 3 4 2 1 2 3 2 3 3 3 2 2  50 50  .03 .05  2 4  Core 2820.5 2828  ROR=0. 63 ROR=0. 69  TOPS(m)  KB Bearpaw Judith River Pakowki Milk River Colorado Cardium Blackstone Second White Speckled Base o f F i s h S c a l e s Mannville Ostracod Jurassic Mississippian T.D.  Shale  1142.3 1342 1484 1831 1858 1988 2219 2238 2365 2475 2562 2792 2812 2912 2943  157 FIELD  SAMPLE DATA  SHEET  Sample*: TE83-008 Location: 9-18-24-5W5 Map s h e e t : Calgary Location description: S i b b a l d F l a t r o a d , 600 m e a s t o f Bateman C r e e k . Lithotype: coaly shale. Stratigraphic position: approximately at the contact o f t h e u p p e r a n d l o w e r p a r t o f t h e B r a z e a u Fm. Reflectance: RoR=0.77  Sample*: TE83-019 Location: 8-36-14-22W4 Map s h e e t : Gleichen Location description: south side of Travers Reservoir on w e s t s i d e o f c o u l e e b e l o w o l d m i n e . Lithotype: coal. Stratigraphic position: l o w e r p a r t o f t h e E d m o n t o n Gp. Reflectance: RoR=0.48  Sample*: TE83-020 Location: 9-3-15-22W4 Map s h e e t : Gleichen Location description: i n L i t t l e Bow p r o v i n c i a l p a r k , 0.7 km w e s t o f t h e p u m p h o u s e a l o n g t h e l a k e s h o r e . Lithotype: coal. Stratigraphic position: l o w e r p a r t o f t h e Edmonton Gp. Reflectance: RoR=0.46  Sample*: TE83-021 Location: 8-36-15-23W4 Map s h e e t : Gleichen Location description: sample o b t a i n e d from l o c a l f a r m e r ' s basement, s u p p o s e d l y f r o m F o n t a n a ' s Long Coulee Mine. Lithotype: coal. Stratigraphic position: lower p a r t o f t h e Edmonton Reflectance: RoR=0.54  Gp.  158 FIELD  SAMPLE DATA  SHEET  Sample*: TE83-022F Location: 8-14-17-17W4 Map s h e e t : Gleichen Location description: surface s a m p l e f r o m c o a l dump a t Bow C i t y c o a l mine. Lithotype: coal. Stratigraphic position: upper p a r t o f t h e J u d i t h River Fm. Reflectance: RoR=0.47  Sample*: TE83-023B Location: 3-13-17-17W4 Map s h e e t : Gleichen Location description: l o w e r c o a l seam i n t h e s o u t h r i v e r b a n k o f t h e Bow R i v e r , 1 km w e s t o f t h e b r i d g e a t Bow C i t y . Lithotype: coal. Stratigraphic position: upper p a r t o f t h e J u d i t h River Fm. Reflectance: RoR=0.52  Sample!: TE83-024 Location: 6-14-29-23W4 Map s h e e t : Drumheller Location description: s a m p l e f r o m C a r b o n s e a m (!11) f r o m M r . A. F o x ' s m i n e (!53 o f C a m p b e l l ( 1 9 6 4 ) ) i n t h e town o f C a r b o n . Lithotype: coal. Stratigraphic position: upper p a r t o f t h e Horseshoe Canyon Fm. Reflectance: RoR=0.56  Sample!: TE83-025 Location: 3-23-29-21W4 Map s h e e t : Drumheller Location description: s a m p l e f r o m u p p e r s e a m !8 i n K n e e h i l l s C r e e k s e c t i o n , o n n o r t h s i d e o f c r e e k 500 m west o f white b r i d g e . Lithotype: coal. Stratigraphic position: middle part of the Horseshoe Canyon Fm. Reflectance: RoR=0.46  159 FIELD SAMPLE DATA SHEET Sample*: TE83-026 Location: 9-13-29-21W4 Map s h e e t : Drumheller Location description: 1.6 km e a s t o f K n e e h i l l s C r e e k s e c t i o n , p r o b a b l y seam #7 on s o u t h s i d e o f r o a d . Lithotype: coal. Stratigraphic position: middle p a r t of the Horseshoe Canyon Fm. Reflectance: RoR=0.48 Sample*: TE83-027 Location: 6-1-29-20W4 Map s h e e t : Drumheller Locetion description: sample from o u t c r o p o f seam #4 south of the school i n east Drumheller. Lithotype: coal. Stratigraphic position: lower p a r t o f the Horseshoe Canyon Fm. Reflectance: RoR=0.49 Sample*: TE83-028 Location: 12-14-28-19W4 Map s h e e t : Drumheller Location description: sample from seam #1 o u t c r o p , e a s t s i d e o f Highway #849, 0.6 km n o r t h o f Highway #10, e a s t o f C a m b r i a Red Deer R i v e r C r o s s i n g . Lithotype: coal. Stratigraphic position: lower p a r t o f the Horseshoe Canyon Fm. Reflectance: RoR=0.39 Sample#: TE83-030 Location: 11-8-8-4W5 Map s h e e t : Fernie Location description: Highway #3 r o a d c u t on west o u t s k i r t s o f Coleman. Lithotype: weathered coal u n d e r l y i n g sandstone Stratigraphic position: K o o t e n a y Gp. Reflectance: RoR=0.72  F I E L D SAMPLE DATA SHEET  160  S a m p l e * : TE83-032 Location: 8-3-8-4W5 Map s h e e t : Fernie Location description: o u t c r o p on r o a d c u t on new segment o f H i g h w a y #3 t h r o u g h B l a i r m o r e . Approximately 400 m u p s t r e a m f r o m o l d b r i d g e NNW o f t o w n . Lithotype: c o a l i n cross-bedded sandstone. Stratigraphic position: B l a i r m o r e Gp. Reflectance: RoR=0.79 Sample*: TE83-033 Location: 15-20-7-3W5 Map s h e e t : Fernie Location description: r o a d c u t on n o r t h s i d e o f H i g h w a y #3, n o r t h o f bend i n C r o w s n e s t R i v e r . Lithotype: coal. Stratigraphic position: b a s e o f B l a i r m o r e Gp. Reflectance: RoR=1.06 S a m p l e * : TE83-034 Location: 3-15-7-3W5 Map s h e e t : Fernie Location description: s a m p l e t a k e n f r o m r o a d c u t on n o r t h s i d e o f Highway #3. Lithotype: carbonaceous sandstone. Stratigraphic position: B l a i r m o r e Gp. Reflectance: RoR=0.88 S a m p l e * : TE83-038A Location: 11-7-22-3W5 Map s h e e t : Kananaskis Lakes Location description: o u t c r o p on n o r t h s i d e o f F i s h C r e e k , 100 m d o w n s t r e a m f r o m b r i d g e . Lithotype: t h i n c o a l seam, w e a t h e r e d , i n f a u l t zone Stratigraphic position: B e l l y R i v e r Fm. Reflectance: RoR=0.77  161 FIELD  SAMPLE DATA  SHEET  Sample*: TE83-039 Location: 1-34-22-4W5 Map s h e e t : Kananaskis Lakes Location description: H i g h w a y #922 r o a d c u t , s o u t h s i d e , west s i d e o f P r i d d i s Creek v a l l e y Lithotype: c o a l s e a m > 0.6 m t h i c k Stratigraphic position: B e l l y R i v e r Fm. Reflectance: RoR=0.58  Sample*: TE83-040 Location: 8-15-22-6W5 Map s h e e t : Kananaskis Lakes Location description: o u t c r o p on west s i d e o f road e a s t o f E l b o w F a l l s b y 1.9 km. Lithotype: sheared c o a l . Stratigraphic position: K o o t e n a y Gp. Reflectance: RoR=1.41 R o M a x = 1 . 5 2  Sample*: TE83-041 Location: 8-23-21-5W5 Map s h e e t : Kananaskis Lakes Location description: road c u t on n o r t h s i d e o f M c C l e a n C r e e k - Q u i r k C r e e k r o a d , 400 m w e s t o f c a m p s i t e on Q u i r k C r e e k . Lithotype: weathered c o a l . Stratigraphic position: p r o b a b l y B e l l y R i v e r Fm. Reflectance: RoR=0.71  Sample*: TE83-046 Location: 16-27-19-4W5 Map s h e e t : Kananaskis Lakes Location description: road c u t on n o r t h s i d e o f H i g h w a y #546, i m m e d i a t e l y w e s t o f P r o v i n c i a l Forest gate. Lithotype: coal. Stratigraphic position: B e l l y R i v e r Fm. Reflectance: RoR=0.81  162 FIELD  SAMPLE DATA  SHEET  Sample*: TE83-049F Location: 12-8-20-2W5 Map s h e e t : Kananaskis Lakes Location description: o u t c r o p on t h e n o r t h s i d e o f H i g h w a y #7 b e t w e e n T u r n e r V a l l e y a n d B l a c k D i a m o n d . Lithotype: c o a l s e a m > 0.5 m t h i c k Stratigraphic position: B e l l y R i v e r Fm. Reflectance: RoR=0.67  Sample*: TE83-055F Location: 1-32-16-5W5 Map s h e e t : Kananaskis Lakes Location description: road c u t on n o r t h s i d e o f H i g h w a y # 5 4 1 , 4 0 0 m e a s t o f #941/#541 j u n c t i o n . Lithotype: coaly shale. Stratigraphic position: B l a i r m o r e Gp. Reflectance: RoR=0.94  Sample*: TE83-056A Location: 4-33-16-5W5 Map s h e e t : Kananaskis Lakes Location description: r o a d c u t on n o r t h s i d e o f Highway #541, 900 m e a s t o f #941/#541 j u n c t i o n . Lithotype: coal. Stratigraphic position: b a s e o f M i s t M o u n t a i n Fm. Reflectance: R o R = l . l l RoMax=1.23  Sample*: TE83-058 Location: 1-1-17-5W5 Map s h e e t : Lakes Location description: road c u t on n o r t h Highway #541. Lithotype: c o a l from a t h i c k seam. Stratigraphic position: K o o t e n a y Gp. Reflectance: RoR=1.25  Kananaskis side of  163 FIELD  SAMPLE  DATA  SHEET  Sample*: TE83-062 Location: 6-16-7-4W5 Map s h e e t : Fernie. • Location description: road c u t on t h e e a s t s i d e o f s e c o n d a r y road on e a s t s i d e o f W i l l o u g h b y Ridge over the Coleman F a u l t . Lithotype: w e a t h e r e d c o a l seam. Stratigraphic position: K o o t e n a y Gp. Reflectance: RoR=0.88  Sample*: TE83-063 Location: 15-31-6-3W5 Map s h e e t : Fernie. Location description: o u t c r o p a t e n t r a n c e t o Adanac M i n e on B y r o n C r e e k r o a d . Lithotype: coal. Stratigraphic position: K o o t e n a y Gp. Reflectance: RoR=0.92  Sample*: TE83-064 Location: 6-4-6-2W5 Map s h e e t : Fernie. Location description: creek c u t on n o r t h s i d e o f H i g h w a y #774, 1.5 km w e s t o f B e a v e r m i n e s . Lithotype: coal. Stratigraphic position: K o o t e n a y Gp. Reflectance: RoR=0.72  Sample*: TE83-066A Location: 12-29-18-7W5 Map s h e e t : Kananaskis Lakes Location description: h i l l e a s t o f H i g h w a y #940 2 km s o u t h o f Highwood Pass. Mist Mountain s t r a t i g r a p h i c section of Gibson (1983). Lithotype: c o a l from a r e c e s s i v e seam. Stratigraphic position: 30 m f r o m t h e b a s e o f t h e M i s t M o u n t a i n Fm. Reflectance: RoR=1.55 RoMax=1.59  164  F I E L D SAMPLE DATA SHEET Sample*: TE83-067 Location: 5-21-16-5W5 Map s h e e t : Kananaskis Lakes. Location description: river cut at intersection of B a r i l C r e e k and Highway #940, n o r t h w e s t s i d e . Lithotype: t h i n w e a t h e r e d c o a l seam o r l e n s e s . Stratigraphic position: B l a i r m o r e Gp. Reflectance: RoR=1.06 Sample#: TE83-070 Location: 7-26-14-5W5 Map s h e e t : Kananaskis Lakes. Location description: r o a d c u t on H i g h w a y #940. Lithotype: coaly shale. Stratigraphic position: b a s e o f B l a i r m o r e Gp. Reflectance: RoR=0.95 Sample*: TE83-072F Location: 14-17-12-4W5 Map s h e e t : Location description: r o a d c u t on n o r t h R i v e r road. Lithotype: coaly lenses i n sandstone. Stratigraphic position: K o o t e n a y Gp. Reflectance: RoR=0.99  Fernie. s i d e o f Oldman  Sample*: TE83-073 Location: 7-30-12-4W5 Map s h e e t : Fernie. Location description: s m a l l o u t c r o p on n o r t h s i d e o f Oldman R i v e r r o a d . Lithotype: weathered c o a l . Stratigraphic position: K o o t e n a y Gp. Reflectance: RoR=1.62  165 FIELD  SAMPLE DATA  SHEET  Sample*: TE83-075 Location: 3-2-13-4W5 Map s h e e t : Fernie. Location description: r o a d c u t on e a s t s i d e o f Oldman R i v e r road immediately north o f a c a t t l e g u a r d . Lithotype: w e a t h e r e d c o a l seam. Stratigraphic position: K o o t e n a y Gp. Reflectance: RoR=0.90  Sample*: TE83-076F Location: 3-2-13-4W5 Map s h e e t : Fernie. Location description: r i v e r c u t s o u t h o f Oldman R i v e r r o a d , i m m e d i a t e l y b e l o w Oldman R i v e r Falls. Lithotype: sheared coal lenses. Stratigraphic position: approximately a t the contact between t h e K o o t e n a y and B l a i r m o r e Gps. Reflectance: RoR=1.07  Sample*: TE83-077F Location: 3-35-11-4W5 Map s h e e t : Location description: r i v e r c u t on s o u t h Oldman R i v e r west o f c a m p s i t e . Lithotype: t h i c k c o a l seam. Stratigraphic position: K o o t e n a y Gp. Reflectance: RoR=1.02  Fernie. side of  Sample*: TE83-079 Location: 2-14-11-4W5 Map s h e e t : Fernie. Location description: road c u t on n o r t h s i d e o f Dutch Creek. Lithotype: coal lenses i n conglomerate. Stratigraphic position: B l a i r m o r e Gp. Reflectance: RoR=0.93  166 FIELD  SAMPLE  DATA S H E E T  Sample*: TE83-080 Location: 4-8-11-3W5 Map s h e e t : Fernie. Location description: new r o a d c u t o n w e s t s i d e o f H i g h w a y #940, 1.4 km n o r t h o f L i v i n g s t o n e Ranger Station. Lithotype: coal. Stratigraphic position: K o o t e n a y Gp. Reflectance: RoR=1.05  Sample*: TE83-088 Location: 16-30-9-2W5 Map s h e e t : Fernie. Location description: r o a d c u t e a s t o f Todd C r e e k by 2.5 km. Lithotype: t h i n c o a l seams. Stratigraphic position: B e l l y R i v e r Fm. Reflectance: RoR=0.50  Sample*: TE83-095B Location: 14-26-4-28W4 Map s h e e t : Lethbridge. Location description: c l i f f - f o r m i n g o u t c r o p s below W a t e r t o n R e s e r v o i r on t h e n o r t h s i d e o f t h e r i v e r . Lithotype: t h i n c o a l seams i n banded shales. Stratigraphic position: p o s s i b l y B e l l y R i v e r Fm. Reflectance: RoR=0.59  Sample*: TE83-098 Location: a-4-B 82-G/10 Map s h e e t : Fernie. Location description: mine t a i l i n g s o f C o r b i n C o a l Mine. Lithotype: coal rubble. Stratigraphic position: K o o t e n a y Gp. Reflectance: RoR=1.06  167 FIELD  SAMPLE DATA  SHEET  Sample*: TE83-100 Location: 15-22-33-22W4 Map s h e e t : Drumheller Location description: s a m p l e f r o m s e a m #12 f r o m T o l m a n Bridge section (73-37 o f G i b s o n (1977)) on n o r t h w e s t side of bridge. Lithotype: coal. Stratigraphic position: uppermost p a r t o f Horseshoe C a n y o n Fm. Reflectance: RoR=0.55  Sample#: TE83-101 Location: 1-9-31-21W4 Map s h e e t : Drumheller Location description: sample from M o r r i n B r i d g e section ( 7 3 - 3 0 o f G i b s o n ( 1 9 7 7 ) ) 1.6 km s o u t h o f H i g h w a y #27 o n s o u t h s i d e o f r o a d . Lithotype: coal. Stratigraphic position: middle part of Horseshoe C a n y o n Fm. Reflectance: RoR=0.54  Sample*: TE83-102 Location: 9-6-28-18W4 Map s h e e t : Drumheller Location description: o u t c r o p o f w e a t h e r e d s e a m #2, 1 km w e s t o f L e h i g h . Lithotype: coal. Stratigraphic position: lower part o f Horseshoe Canyon Fm. Reflectance: RoR=0.55  Sample*: TE83-103A Location: 1-19-29-13W4 Map s h e e t : Oyen Location description: Sample from M a n a l t a ' s Montgomery m i n e e a s t o f H i g h w a y #36 b y 7.3 km. Lithotype: coal. Stratigraphic position: l o w e r p a r t o f t h e Edmonton Gp. Reflectance: RoR=0.46 RoMax=0.49  168 F I E L D SAMPLE DATA SHEET Sample*: TE83-104 Location: 4-33-20-11W4 Map s h e e t : M e d i c i n e Hat Location description: sample from c a r b o n a c e o u s zone i n c h o c o l a t e brown w e a t h e r i n g s a n d s t o n e o u t c r o p 100 m south of the southern perimeter of Dinosaur P r o v i n c i a l Park. Lithotype: coaly shale. S t r a t i g r a p h i c p o s i t i o n : upper p a r t o f t h e J u d i t h R i v e r Fm. Reflectance: RoR=0.46 Sample*: TE83-105U Location: 16-10-13-9W4 Map S h e e t : M e d i c i n e Hat Location description: sample from an upper c a r b o n a c e o u s zone i n upper p a r t o f n o r t h bank o f S o u t h S a s k a t c h e w a n R i v e r 17 km s o u t h o f S u f f i e l d . Lithotype: coaly shale. Stratigraphic position: lower p a r t o f t h e J u d i t h R i v e r Fm. Reflectance: RoR=0.45 Sample*: TE83-105L Location: 16-10-13-9W4 Map s h e e t : M e d i c i n e Hat Location description: sample from a l o w e r c a r b o n a c e o u s zone i n upper p a r t o f n o r t h bank o f S o u t h Saskatchewan R i v e r 17 km s o u t h o f S u f f i e l d . Lithotype: sulphurous coaly shale. Stratigraphic position: lower p a r t o f t h e J u d i t h R i v e r Fm. Reflectance: RoR=0.51 Sample*: TE83-106 Location: 11-5-13-6W4 Map s h e e t : M e d i c i n e Hat Location description: sample from l o w e r p a r t o f s t e e p s l o p e on n o r t h s i d e o f S o u t h S a s k a t c h e w a n R i v e r s o u t h of R e d c l i f f . Lithotype: c o a l from s h a l e y seam. S t r a t i g r a p h i c p o s i t i o n : middle part of the J u d i t h R i v e r Fm. Reflectance: RoR=0.49  169 FIELD  SAMPLE DATA  SHEET  Sample*: TE83-109A Location: 10-27-2-12W4 Map s h e e t : Foremost Location description: from exposure o f c o a l a t Lucky S t r i k e Mine p i t . Lithotype: coal. Stratigraphic position: middle part of the Judith R i v e r Fm. Reflectance: RoR=0.52 Sample*: TE83-110 Location: 6-35-2-12W4 Map s h e e t : Foremost Location description: sample from exposure a t K i p p e n Mine p i t . Lithotype: coal. Stratigraphic position: middle part of Judith River Fm. Reflectance: RoR=0.49  Sample*: TE83-112A Location: 5-18-10-16W4 Map s h e e t : Lethbridge Location description: sample from o u t c r o p on s o u t h s i d e o f H i g h w a y #864, 0.7 km n o r t h o f b r i d g e o v e r t h e Oldman R i v e r n o r t h o f T a b e r . Lithotype: d i s t i n c t l y burnt coal outcrop. Stratigraphic position: J u d i t h R i v e r Fm. Reflectance: RoR=1.75 RoMax=1.82  Sample*: TE83-115 Location: 11-31-9-23W4 Map s h e e t : Lethbridge Location description: o u t c r o p on s o u t h bank o f t h e O l d m a n R i v e r ( u n i t 6 o n p . 45 o f L e r a n d (1983)). Lithotype: t h i n coal fragments i n s i l t y sandstone. Stratigraphic position: b a s a l S t . M a r y R i v e r Fm. Reflectance: RoR=0.60  170 FIELD  SAMPLE DATA  SHEET  Sample*: TE83-116 Location: 1-33-4-22W4 Map s h e e t : Lethbridge Location description: c a r b o n a c e o u s zone i n upper p a r t of t h e west c l i f f o f J e n s e n R e s e r v o i r ( p . 23 o f L e r a n d (1983)). Lithotype: carbonaceous shale. Stratigraphic position: b a s a l S t . M a r y R i v e r Fm. d i r e c t l y o v e r l y i n g B l o o d R e s e r v e Fm. Reflectance: RoR=0.59  Sample*: TE83-117 Location: 5-3-4-27W4 Map s h e e t : Lethbridge Location description: outcrop of coal at top of unit 12 ( p . 51 o f L e r a n d ( 1 9 8 3 ) ) o n e a s t b a n k o f t h e B e l l y River at M e r r i l l ranch. Lithotype: coal. Stratigraphic position: a t b a s e o f S t . M a r y R i v e r Fm. Reflectance: RoR=0.60  Sample*: TE83-124 Location: 3-6-32-6-5W5 Map s h e e t : Calgary. Location description: road c u t on n o r t h s i d e o f Highway # , 23 km w e s t o f S u n d r e o n n o r t h s i d e o f R e d Deer R i v e r . Lithotype: carbonaceous shale. Stratigraphic position: u p p e r p a r t o f t h e B r a z e a u Fm. Reflectance: RoR=0.59  Sample*: TE83-132 Location: 4-30-29-10W5 Map s h e e t : Calgary. Location description: r i v e r c u t on s o u t h s i d e o f N o r t h Burnt Timber Creek a t Panther culmination. Lithotype: coal. Stratigraphic position: K o o t e n a y Gp. Reflectance: RoR=1.51  171 FIELD  SAMPLE DATA  SHEET  Sample*: TE83-135 Location: 2-4-24-7W5 Map s h e e t : Kananaskis Lakes. Location description: road c u t n o r t h o f Jumpingpound C r e e k , 6.3 km s o u t h o f S i b b a l d F l a t s b r i d g e . Lithotype: carbonaceous shale. Stratigraphic position: K o o t e n a y Gp. Reflectance: RoR=1.79  Sample*: TE83-139F Location: 2-10-25-9W5 Map s h e e t : Calgary. Location description: t y p e s e c t i o n o f t h e E x s h a w Fm. on J u r a C r e e k . Lithotype: carbonaceous shale. Stratigraphic position: E x s h a w Fm. Reflectance: RoR=1.56  Sample*: TE83-140 Location: 1-29-24-10W5 Map s h e e t : Calgary.. Location description: o l d t a i l i n g s p i l e from abandoned c o a l m i n e e a s t o f C a n m o r e o n s o u t h s i d e o f Bow R i v e r . Lithotype: coal. Stratigraphic position: K o o t e n a y Gp. Reflectance: RoR=1.99  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0052833/manifest

Comment

Related Items