Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Assessing natural attenuation of petroleum hydrocarbons using reactive transport modelling with aqueous.. 2006

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
ubc_2006-0613.pdf [ 12.67MB ]
ubc_2006-0613.pdf
Metadata
JSON: 1.0052716.json
JSON-LD: 1.0052716+ld.json
RDF/XML (Pretty): 1.0052716.xml
RDF/JSON: 1.0052716+rdf.json
Turtle: 1.0052716+rdf-turtle.txt
N-Triples: 1.0052716+rdf-ntriples.txt
Citation
1.0052716.ris

Full Text

ASSESSING N A T U R A L ATTENUATION OF P E T R O L E U M H Y D R O C A R B O N S USING R E A C T I V E TRANSPORT M O D E L L I N G WITH AQUEOUS A N D SOLID PHASE D A T A by Chad William Petersmeyer B.Sc , The University of Victoria, 2001 A THESIS SUBMITTED IN PARTIAL F U L F I L L M E N T OF THE REQUIREMENTS FOR THE DEGREE OF M A S T E R OF SCIENCE in THE F A C U L T Y OF G R A D U A T E STUDIES (Geological Sciences) THE UNIVERSITY OF BRITISH C O L U M B I A May 2006 © Chad William Petersmeyer, 2006 A B S T R A C T Degradation of petroleum hydrocarbon contamination in groundwater was investigated at a site located in southeast Alberta, Canada. Condensate had been introduced into the unconfmed aquifer approximately thirty years prior to the collection of aqueous data. The existing dataset consisted of five recent sampling events of moderate spatial resolution, spanning a timeframe of about one year. This study was undertaken to identify and quantify the dominant processes controlling natural attenuation at the site and to determine the value of supplementing a typical industry dataset with solid-phase data. To achieve these objectives, cores were collected and another round of water sampling was conducted in October 2004. Sequential iron and sulphide extractions were carried out on core intervals to quantify mineral dissolution and precipitation as a result of microbially-mediated degradation and S E M imaging was utilized to qualitatively assess the presence of relevant mineral phases. Reactive transport modelling was used as a data interpretation tool to simulate geochemical processes and a comparison was made between the degradation rates estimated using only the aqueous data and after including the solid-phase data. Sulphate and iron reduction were discovered to be the dominant processes contributing to biodegradation at the site, although iron and sulphate trends were not useful for determining historical electron acceptor utilization rates. Degradation rates estimated from dissolved B T E X concentrations were up to two orders of magnitude lower than those determined when integrating major ion chemistry with the solid-phase data. Using trends in B T E X concentrations, the maximum reaction rate for sulphate reduction and iron-oxide reductive dissolution were estimated to be 1.23 x 10"12 mol L ' V 1 and 2.89 x 10"12 mol L" 1 s'\ respectively. When integrating major ion chemistry with the solid-phase data, these rates were found to be 1.19 x 10"10 mol L ' V 1 and 2.34 x 10"10 mol L"1 s"1 and it was found that the two processes accounted for 78% and 21% of contaminant degradation, respectively, equivalent to a total mass of seven tonnes of hydrocarbons (as BTEX) degraded at the site. The differences between these estimates are likely due to source depletion and shrinking of the plume, which cannot be observed using aqueous data only. n T A B L E OF CONTENTS ABSTRACT i i T A B L E OF CONTENTS _______ iii LIST OF TABLES v LIST OF FIGURES __v i i ACKNOWLEDGEMENTS x 1 INTRODUCTION 1 1.1 Background _ 1 1.2 Objectives and Research Questions ; 3 1.3 Problem Definition 4 2 SITE DESCRIPTION 6 2.1 Location 6 2.2 Site History 7 2.3 Local Geology and Hydrogeology 7 2.4 Hydrochemistry and Contaminant Composition 9 2.5 Existing Data Set and Conceptual Model 10 3 METHODOLOGY 18 3.1 Aqueous Geochemistry Characterization 18 3.1.1 Field Sampling • 18 3.1.2 Analytical Program 19 3.2 Solid Phase Characterization 21 3.2.1 Background : 21 3.2.2 Field Sampling 21 3.2.3 Analytical Program ' 24 3.3 Data Integration and Simulation 29 4 RESULTS AND DISCUSSION 35 4.1 Aqueous Geochemistry Characterization , 35 4.2 Solid Phase Characterization 42 4.2.1 Sulphide Extractions 42 4.2.2 Iron Extractions 45 4.2.3 Microbeam Methods 48 ii i 4.3 Data Interpretation 51 4.4 Data Integration and Simulation : 52 SUMMARY AND CONCLUSIONS 64 REFERENCES 68 APPENDICES 74 7.1 Appendix A: Laboratory Data Sheets 74 7.2 Appendix B: Sulphide Extraction Procedures 190 7.3 Appendix C : Iron Extraction Procedures 207 7.4 Appendix D: Aqueous Data 220 7.5 Appendix E : Solid Phase Data___ 260 7.6 Appendix F: Range Estimates for Degradation Rates Determined from Extraction Data 269 7.7 Appendix G : Intermediate Simulation Results 271 iv LIST OF TABLES Table 3.1. Summary of Aqueous Chemistry Sampling Protocol 20 Table 3.2. Summary of Sediment Core Sampling Intervals 22 Table 3.3. Summary of Standard Recoveries for Iron Extractions 28 Table 3.4. Hydrogeological data used in the simulations 33 Table 3.5. Hydrochemical data used in Simulation A 34 Table 4.1. Summary of sulphide extraction data in relation to observed black staining layer 42 Table 4.2. Summary of iron extraction data in relation to observed black staining layer 47 Table 4.3. Reaction parameters used in the simulations 54 Table 4.4. Dissolution/precipitation rates used in the simulations 55 Table 4.5. Maximum actual reaction rates, normalized to EA, from model simulations 56 Table 4.6. Maximum actual dissolution/precipitation rates from model simulations 57 Table 4.7. Hydrochemical data used in Simulation AS 59 Table 4.8. Comparison of maximum rates of E A consumption and B T E X degradation for sulphate and iron reduction from various data sources 63 Table 7.1. TRS Results ; : 202 Table 7.2. TRS Iodometric Titration of Samples with Potassium Iodate 204 Table 7.3. A V S Results 205 Table 7.4. A V S Iodometric Titration of Samples with Potassium Iodate 206 Table 7.5. Dilution Factors 213 Table 7.6. Deionized Water Iron Extraction Data 214 Table 7.7. 0.5N H C l Iron Extraction Data 216 Table 7.8. 5N H C l Iron Extraction Data , 218 Table 7.9. Results of Duplicates Analyses for Dissolved Petroleum Hydrocarbons 220 Table 7.10. Piezometer Installation Details, Datum/Groundwater Surface Elevations And Hydraulic Conductivities 221 Table 7.11. Aqueous Data: Field Measured Parameters 230 Table 7.12. Aqueous Data: Indicator Parameter Concentrations 232 Table 7.13. Solid Phase Data: Sulphide Extraction Results 261 v Table 7.14. Solid Phase Data: D l Water Iron Extraction Results 263 Table 7.15. Solid Phase Data: 0.5N H C l Iron Extraction Results 265 Table 7.16. Solid Phase Data: 5N H C l Iron Extraction Results 267 Table 7.17. Summary of maximum lateral distances from source to sampling locations and number of samples located in the zone of black staining for each core location . 269 Table 7.18. Summary of data used for the estimation of the bounds on degradation rate determinations based on extraction data 270 vi LIST OF FIGURES Figure 2.1 Location of study area. Figure 2.2. Groundwater elevations in meters above sea level (masl) for (a) July 21, 2003, (b) October 27, 2003, (c) November 19, 2003, (d) June 9, 2004, and (e) February 3, 2004. 8 Figure 2.3. Plan view of area of study showing (a) the location of monitoring wells and cross sections A - A ' and B - B ' , and (b) historical B T E X concentrations (mg L"1) for June 2004. 10 Figure 2.4. Cross sections (a) A - A ' , and (b) B - B ' showing the location of monitoring wells in relation to the water table elevation measured in October 2004. ______ 11 Figure 2.5. Cross sections A - A ' and B - B ' showing the distribution of B T E X concentrations (mg L" 1) in (a) July 2003, (b) October 2003, (c) February 2004, and (d) June 2004. 12 Figure 2.6. Cross sections A - A ' and B - B ' showing the distribution of dissolved iron concentrations (mg L" 1) in (a) July 2003, (b) October 2003, (c) February 2004, and (d) June 2004. 14 Figure 2.7. Cross sections A - A ' and B - B ' showing the distribution of sulphate concentrations (mg L" 1) in (a) July 2003, (b) October 2003, (c) February 2004, and (d) June 2004. . 15 Figure 2.8. Cross sections (a) A - A ' , and (b) B - B ' showing the distribution of black soil staining in relation to the water table elevation measured in October 2004. 17 Figure 3.1. Plan view of area of study showing borehole locations. 23 Figure 3.2. Cross sections (a) A - A ' , and (b) B - B ' showing the location of boreholes and core sampling locations. 23 Figure 3.3. Sulphide digestion apparatus. 25 Figure 3.4. Two dimensional domain showing flow and transport boundaries, initial conditions, and discretization parameters for Simulation A . 32 Figure 4.1. Groundwater elevations in masl for October 18, 2004. 35 Figure 4.2. Field-measured parameters (a) pH, (b) EC (uS cm"1), (c) Eh (mV), (d) DO (mg L" 1), and (e) lab-measured alkalinity (mg L"1) along transects A - A ' and B - B ' for vn October 18, 2004. Contouring was not performed if dataset too sparse or no visible trends were present. 36 Figure 4.3. Selected parameters (a) B T E X , (b) manganese, (c) iron, (d) sulphate, and (e) calcium in mg L" 1 along transects A - A ' and B - B ' for October 18, 2004. Contouring was not performed if dataset too sparse or no visible trends were present. 38 Figure 4.4. Sulphide extraction results for (a) TRS, (b) A V S , and (c) Pyrite/S° in mg kg"1 along transects A - A ' and B - B ' , in relation to soil staining and October 2004 water table. ; 43 Figure 4.5. Iron extraction results for (a) Dl-extractable Fe(II), (b) 0.5N HCl-extractable Fe(II), (c) Dl-extractable Fe(III), and (d) 0.5N HCl-extractable Fe(III) in mg kg"1 along transects A - A ' and B - B ' , in relation to soil staining and October 2004 water table. _ _ 46 Figure 4.6. Images of iron oxide minerals obtained with S E M (a) secondary electron (SE) image of iron oxide grain from S10 2.95-3.05 m, and (b) backscattered electron (BSE) image of ilmenite (FeTi0 3) grain from S10 2.95-3.05 m. 49 Figure 4.7. Images of sulphate minerals obtained with S E M (a) SE image of barite from S36 2.18-2.28 m, (b) SE image of BaS0 4 coating on feldspar grain from S10 2.95- 3.05 m, and (c) BSE image of barite from S34 1.93-2.03 m. 50 Figure 4.8. Images of ferroan calcite ((Fe,Ca)C03) minerals obtained with S E M (a) BSE image of from S34 1.93-2.03 m, and (b) BSE image from S34 1.93-2.03 m. 51 Figure 4.9. Observed (left) and results from Simulation A (right) (a) CeH 6*, (b) sulphate, (c) iron in mg L" 1 , (d) Fe(III), and (e) S2" in mg kg"1 for October 2004. 53 Figure 4.10. Two dimensional domain showing flow and transport boundaries, initial conditions, and discretization parameters for the Simulation AS. 61 Figure 4.11. Observed (left) and results from Simulation AS (right) (a) C 0 H D * , (b) sulphate, (c) iron in mg L" 1 , (d) Fe(III), and (e) S2" in mg kg"1 for October 2004. _ 62 Figure 7.1. Flowchart for Preparing Jones Reductor.^ 191 Figure 7.2. Flowchart for Reducing Chromic Chloride. 192 Figure 7.3. Flowchart for A V S , HC1-S, acid soluble Org-S, and S04-S Extractions. _ 193 Figure 7.4. Flowchart for TRS and residual Org-S Extractions. ' 194 Figure 7.5. Flowchart for Iodometric Titrations. 196 viii Figure 7.6. Observed (left) and results for Simulation A with recharge (right) (a) C 6 H 6 * , (b) sulphate, (c) iron in mg L" 1 , (d) Fe(III), and (e) S2" in mg kg"1 for October 2004. 272 Figure 7.7. Observed (left) and results for Simulation AS without transient,inflow chemistry (right) (a) C 6 H 6 * , (b) sulphate, (c) iron in mg L" 1 , (d) Fe(III), and (e) S2" in mg kg"1 for October 2004. ' 273 ix ACKNOWLEDGEMENTS This work was the result of a compilation of efforts and assistance from many people. I am very grateful to have chosen, and been chosen by, U l i Mayer to supervise this research. Uli 's tireless efforts and extensive knowledge were a constant inspiration to me. I was also fortunate to have conducted my studies alongside James Armstrong, who presented me with this opportunity and always made time to discuss my progress. M y fellow graduate students also provided advice, friendship, and distraction whenever these things were needed. Most of all I would like to acknowledge and thank my family for their part. M y mother, whose experience in dealing with me and with her own graduate research, was an invaluable resource. M y father's positive attitude and determined work ethic and my sister's own diligence encouraged me to find such traits in myself. Finally, my wife Niki provided me with unparalleled support and endless companionship throughout this endeavour. x 1 INTRODUCTION 1.1 Background Contamination of groundwater by B T E X compounds is a common occurrence that will persist along with human reliance on petroleum as an energy source. Several different remedial strategies have been developed to mitigate dissolved hydrocarbon contamination in groundwater. Some of these methods include: pump-and-treat, air sparging, bioventing, enhanced bioremediation, and monitored natural attenuation (US EPA, 2004). Due to concerns over the universal effectiveness, applicability, and cost of the more intrusive techniques, monitored natural attenuation (MNA) has gained favour as an alternative for groundwater cleanup (NRC, 1994). M N A of contaminants in groundwater is a term used to describe the collective effect of natural transport and reaction processes that lead to contaminant concentration reduction. These processes include sorption, dispersion, dilution, volatilization, and degradation. The latter is generally the most significant process contributing to contaminant degradation (Wiedemeier et al., 1999). As scientific methods for evaluating and quantifying natural attenuation develop, M N A becomes an increasingly exploited remedial strategy for mitigating dissolved hydrocarbon contamination in groundwater. The presence of organic contaminants in groundwater results in complex biogeochemical interactions in the subsurface. The most prevalent of these are associated with the transfer of electrons from the introduced organic phase to the various inorganic species existing in the pore water and the porous medium. These oxidation-reduction (redox) reactions are facilitated by microbes and arise from the thermodynamic disequilibrium between the reduced organic, and oxidized inorganic compounds. Redox reactions result in chemical changes of the groundwater, minerals contained in the sediment, and to the organics themselves. In most instances, microbially-facilitated redox reactions . effectively break down organic matter to smaller carbon-chain products and ultimately to carbon dioxide or methane. As a result of its role in the breakdown of organic matter, 1 redox reactions can be considered to be significant to the attenuation of organic contaminants in groundwater. In a subsurface environment, transport and flow processes affect electron acceptor and donor (EA and ED) availability and thus understanding the combined effect of these processes in a natural environment is paramount in assessing redox reactions. Quantifying these reactions, however, is fundamental in utilizing M N A as a remedial tool for contaminated groundwater systems (National Research Council, 2000). Protocols for monitoring natural attenuation have been established (National Research Council, 2000; Wiedemeier et al., 1999; A S T M , 2004) and M N A has been usefully applied at many sites (e.g., Kao and Prosser, 2001; Khan and Husain, 2003, Lee and Lee, 2003). Typically these investigations focus on concentration changes of aqueous-phase indicator species, such as depletion of contaminant concentrations or electron acceptors, over time and space. In addition, evidence for the occurrence of biodegradation is often shown by using trends in dissolved inorganic species that are byproducts of microbially- mediated breakdown of organic contaminants (Christensen et al., 2000). Less frequent is the use of solid-phase characterization to supplement groundwater chemistry, even though diagenetic solid-phase data can provide useful information on the integrated effects of historic processes. Depending on the dominant EAs, redox reaction products from biodegradation may precipitate out of solution and accumulate in the aquifer in significant quantities. In addition, mineral oxides often constitute a large fraction of the oxidation potential in a groundwater system, thus considering only an aqueous dataset may result in an inaccurate assessment of the aquifer's biodegradation capacity. As a result, it may be beneficial to integrate data from the solid-phase with that of the aqueous-phase to provide an improved interpretation of the contribution of biodegradation to natural attenuation (NA). Recent research has shown that computer models can be useful tools for keeping track of the interactions between transport and reaction processes (e.g., Hunter et al., 1998; Brun and Engesgaard, 2002). One of these numerical models is MIN3P (Mayer et al., 2002), a 2 flexible groundwater flow and multicomponent reactive transport code, which was previously used to investigate N A of organic contaminants in aquifers (Mayer et al., 2001; 2002). In these studies, the reactive transport simulations investigated microbially- mediated biodegradation of hydrocarbons by multiple electron acceptors-. The inorganic reactions considered included hydrolysis, aqueous complexation, dissolution of primary minerals and light non-aqueous-phase liquids (LNAPL), formation of secondary mineral phases, and ion exchange. The Consortium for Research on Natural Attenuation (CORONA) is a research group operating on funding from several stakeholders and regulators in the Canadian upstream oil and gas industry. The group was formed to investigate the appropriate application of monitored natural attenuation as a plume management strategy for contaminant situations associated with the industry and encourage M N A as a remedial option. A study area, known as CORONA Site 3, has been selected to test a suite of research questions related to natural attenuation. A dataset, primarily composed of hydrogeological and aqueous geochemical data, has been compiled from groundwater monitoring conducted by Komex International Ltd. (Komex) on behalf of the plant owner, and by C O R O N A as part of a research initiative focused on data collection and analysis techniques related to M N A . Although this existing dataset provided insight into the occurrence of N A at the site, it proved insufficient to quantitatively assess the processes controlling natural attenuation of the contaminant plume emanating from the study site. Neither solid-phase characterization of the aquifer sediments within and in the vicinity of the contaminant plume was performed, nor was reactive transport modelling used to interpret the data. 1.2 Objectives and Research Questions The focus of this study is to further investigate and quantify natural attenuation processes at CORONA Site 3 by supplementing the standard industry dataset comprised of aqueous chemistry with solid-phase characterization. In addition, multicomponent reactive transport modelling will be used to integrate the available data and to test and improve 3 the site-specific conceptual model. Specifically, this study considers the following research questions: • What are the controlling processes of N A at CORONA Site 3? • What is the value of supplementing aqueous data with solid-phase data in assessing NA? • What can be gained from using multicomponent reactive transport modelling as a data interpretation tool? • Using this integrated approach, is it possible to provide a quantitative assessment of N A both for the present and historically? It is anticipated that this work will contribute to the development of approaches for the quantitative assessment of M N A for hydrocarbon contaminants in groundwater. 1.3 Problem Definition Often a typical industry dataset does not contain the spatial and temporal resolution in aqueous data to adequately identify the processes controlling natural attenuation and to quantify the rates of these processes. For example, in the absence of an abundance of historical aqueous data spanning the lifetime of dissolved-phase contamination, trends in indicator species may imply that biodegradation using that species as an E A has occurred but they do not indicate when and where it occurred. In addition, aqueous concentrations of sulphate and iron (and their reduced by-products) are often used as indicator species for microbial anaerobic respiration (Wiedemeier et al., 1999) by sulphate reduction and reductive iron oxide dissolution; however, aqueous concentrations are affected by a number of heterogeneous reactions including adsorption and mineral dissolution and precipitation, which can limit the usefulness of these indicator species. Specifically, iron oxides and sulphates may be abundant in the aquifer and the by-products of iron and sulphate reduction commonly precipitate as iron sulphide minerals (Appelo and Postma, 2005; Kennedy, 2004; Morse and Rickard, 2004) and potentially iron carbonate phases such as siderite or iron containing calcium carbonates (Tuccillo et al., 1999). In addition, Fe(II) has the tendency to adsorb onto mineral surfaces (Watson, 2005). As a result, 4 quantifying the breakdown of organic matter by microbially-mediated iron and sulphate reduction may be misinterpreted if only aqueous data is considered. In particular, as dissolved ferrous iron is an indicator species for the reductive dissolution of ferric iron, this process would be underestimated if aqueous ferrous iron concentrations decreased due to loss to the solid phase. Similarly, sulphate is an indicator species for sulphate reduction and depleted concentrations may be attributable to this process, however, gypsum dissolution would increase aqueous sulphate concentrations and lead to underestimating sulphate as an electron acceptor. The historical evolution of the rate and occurrence of chemical reactions are also not well described solely by aqueous datasets, which provide "snap-shots" in time, particularly if temporal and spatial resolution is poor. In addition to being too sparse to properly describe certain chemical processes, a typical industry dataset is often insufficient to constrain a reactive transport model for use in assessing natural attenuation. The overall result of using a sparse dataset comprised solely of aqueous data may be a reduced understanding of site-specific processes that contribute to natural attenuation and a limited potential to quantify the attenuation process. 5 2 SITE DESCRIPTION 2.1 Location The study area is located at an active straddle extraction plant in southeast Alberta, Canada (Figure 2.1). Figure 2.1 Location of study area. Straddle extraction plants are named for their situation along a pipeline. These plants produce light petroleum gases (LPG) by chemically and physically removing usable components of raw natural gas, such as ethane, propane, butane,; and pentane. After L P G extraction, refined dry natural gas (methane) continues along the downstream end of the pipeline. 6 2.2 Site History Condensate has been periodically used for fire training at this site since the 1970s. Condensate is composed of light-end, semi-liquid, petroleum hydrocarbons, which are present as gas in their original state in the reservoir and as liquid under atmospheric conditions. Up until recently, the condensate was placed in an unlined pit and ignited before being extinguished with water. Although fire training is still conducted in a similar manner at this location, the fire-training pit is now lined. 2.3 Local Geology and Hydrogeology The lithology at the site is composed of aeolian-deposited loess sediments comprised of laminated, or finely bedded, silt and fine sand. From field observations, this unit is known to be approximately 8 m thick and underlain by a gradational contact to varved silt (8-10 m).and then glaciolacustrine clays. Slug tests were performed by Komex during installation of the monitoring wells and the hydraulic conductivity of the loess unit was determined to vary from 1.6 x 10"7 to 2.9 x 10"6 m s"1. The local hydraulic gradient (i) was determined to be approximately 0.015 from water-table elevations collected from July 2003 to February 2004 (Figure 2.2 (a) through (e)). Average annual precipitation at the site is in range of 300 mm year"1 based on nearby Environment Canada monitoring stations (http://www.climate.weatheroffice.ec.gc.ca/climate normals/index e.html) and the regional vegetation consists mainly of native grasses. Based on the arid climate, local recharge is estimated to be on the order of 3 to 10 mm year"1. This range is consistent with the values summarized by Hayashi and van der Kamp (1998) for recharge rates in various prairie aquifers. A seasonal fluctuation in measured groundwater elevations is evident as the water-table appears lowest in the winter (February 2004) and highest in the early summer (July 2003 and June 2004), with intermediate elevations in the fall (October and November 2003). This pattern is consistent with local weather patterns generally producing increased recharge from snow-melt in the spring and arid summer 7 Figure 2.2. Groundwater elevations in meters above sea level (masl) for (a) July 21, 2003, (b) October 27, 2003, (c) November 19, 2003, (d) June 9, 2004, and (e) February 3, 2004. 8 conditions. Assuming a porosity of 0.3 (n) and using Darcy's Law with the range of available hydraulic conductivities, a gradient of 0.015 corresponds to a flow velocity (v) in the range of 0.3 to 4.5 metres year"1. The flow direction is consistently toward the northwest. 2.4 Hydrochemistry and Contaminant Composition Fire training was initiated approximately 30 years ago and observed soil staining in recovered cores along the flowpath outward from the source zone indicate the maximum plume extent to be approximately 190 metres. These data suggest that average flow velocities are at least 6 metres year"1, which is higher than predicted with the range of hydraulic conductivities and the observed hydraulic gradient (see Section 2.3). This may be explained by N A P L migration from the fire training area or by enhanced recharge during episodes of fire training which temporarily increases the local gradient and enhances plume migration. The dissolved-phase organic plume consists largely of light- end (C3-C10) petroleum hydrocarbons, the bulk of which is composed of benzene, toluene, ethylbenzene, and total xylenes (BTEX). Aqueous data for other hydrocarbon fractions is sparse; however, Gieg et al. (1999) reported that condensate is comprised of 96% w/w C 5 - C 1 5 compounds, including 18% w/w B T E X . Cross-gradient piezometers 03-P-07, 03-P-08, and 86-7B were utilized for background chemistry in the absence of proximal upgradient wells. Inorganic chemistry in the shallow groundwater reflects the arid environmental conditions and relatively low groundwater velocities. Most notably, groundwater mineralization (as indicated by Total Dissolved Solids (TDS)) is high in local background wells, varying from 2,360 to 6,820 mg L" 1 TDS. Locally, sulphate is variable both temporally and spatially even in wells which appear to represent pristine aquifer conditions. Sulphate concentrations in local background wells generally vary between 1,200 to 4,180 mg L" 1 . Background dissolved iron varies from 0.1 at 03-P-08 to 7.89 mg L" 1 at 03-P-07, field-measured pH varies from 9 6.92 to 7.65, DO ranges from 0.4 to 1.3 mg L" 1 , and alkalinity (calculated from lab- measured total alkalinity as CaCOs) ranges from 392-736 mg L" 1 . Historically redox conditions have not been measured at background wells. 2.5 Existing Data Set and Conceptual Model The mass of hydrocarbon introduced to the groundwater due to condensate spillage and the total free-phase L N A P L remaining in the source area are unknown. In 2003, multi- level monitoring wells were installed at the research site as part of the CORONA program. Eleven groundwater monitoring wells were installed in the form of multilevel sampling wells and piezometers focusing on the plume downgradient from the source zone (Figure 2.3). Including multilevel sampling ports, a total of twenty-nine monitoring Figure 2.3. Plan view of area of study showing (a) the location of monitoring wells and cross sections A- A ' and B - B ' , and (b) historical B T E X concentrations (mg L" 1) for June 2004. points exist for the purpose of delineating and monitoring the dissolved condensate plume. Over a time period of eleven months, these wells were sampled by CORONA on 5 occasions between installation and fieldwork conducted for this thesis in October 2004. As a result, a database of aqueous chemistry and water table elevations was compiled. In 10 fulfilment of regulatory requirements, twenty years of regional groundwater monitoring data from areas surrounding the CORONA research site are available. Cross sections of the monitoring network are shown in Figure 2.4. Figure 2.4. Cross sections (a) A - A \ and (b) B - B ' showing the location of monitoring wells in relation to the water table elevation measured in October 2004. Existing aqueous data from the study area provide insight into the current composition and extent of the contaminant plume. In addition to the distribution of organic contaminants, the concentration distributions of inorganic redox indicator species have been determined. Current B T E X concentrations are shown in Figure 2.3(b) in plan view and Figure 2.5(a) to (d) in cross sections. The plume appears to grow seasonally over the summer and shrink again in the winter. This process may be related to water table and recharge fluctuations, although this hypothesis is inconclusive due to limited historical data 11 (a) A A ' B S C A L E (m) BTEX (mg/L) Jul 03 (b) A A ' (c) A (d) A A ' SCALE (m) 10.518 -47 0 50 j i i i I 1 1 • * I 0.08 0.0021 100 _ l 0.005 .0.0016 100 _l_ -_i l i_ -2 BTEX (mg/L) Oct 03 0 S C A L E 9.57 — j 3.79 ~ (m) 2 Jos \ 3.09 -y \ 4 11.7 ? \>.0330 \ 0 W 1 0.005 •0.0032 • • 3 . . . 50 100 i _ l 1 1 1 1 1 1 L B ..*» „ B ' -2 BTEX ( m g / L ) Feb 04 ' — — 0 n/m . 129 SCALE (m) 2 3.94 y TTo.5 \ 0.05 b i V? 7.13 \ 0.005\ 4 - *0.1418 10.0066 -47 0 50 . . . 1 . . . . 1 . 100 150 , , , 1 , , , , 1 . , -2 BTEX (mg/L) Feb 04 0 S C A L E n/a —ji ? < • 1.86- "s? .1.85.?-, (m) 2 \ 0.005 Xy 2.6 -7 1 \ X 4 - 8.7 / \ -0.0016 Vo477 \ 0.0117 0 I 50 100 B >B' -2 - o • — * BTEX (mg/L) Jun 04 0 S C A L E (m) 2 7.96 1.95 \ Jos \ ) o . 0 5 ^ } \ 3.77 - / I \ _yooo5 \ 4 4.35 "I Voi78 X0.08 •0.0016 0 , . I 50 100 i I i i • • I • i Figure 2.5. Cross sections A - A ' and B - B ' showing the distribution of B T E X concentrations (mg L " ) in (a) July 2003, (b) October 2003, (c) February 2004, and (d) June 2004. available. Observed B T E X concentrations throughout the domain are well below the benzene solubility limit of 1,770 mg L"' (CRC, 2004), suggesting a distant and/or depleted source. In the absence of a downgradient well where no B T E X values are measured, the maximum extent of B T E X along the flowpath can be estimated based on the 0.05 mg L" 1 contour. This is a reasonable cutoff concentration since it routinely falls within the maximum extent of the monitored lateral flow domain and it constitutes 1% of 12 the maximum contour interval, making it reasonable for mass balance calculations. An estimate of the attenuation of the B T E X plume can be made (assuming constant temporal source concentrations, which may not be valid for this site) by comparing the maximum extent of the contaminant plume with an estimate of the maximum extent of a conservative species. Based on the 0.05 mg L" 1 cutoff concentration, the maximum extent of the B T E X plume is approximately 100 metres from the edge of the source area. In the absence of a conservative species introduced in the plume, the minimum extent of conservative flow is assumed to be the extent of the soil staining, although the extent of staining is likely less than the maximum migration of a conservative species. Measured dissolved oxygen (DO) at the site varies from 0.2 mg L" 1 within the plume at well 93-P-34 to background conditions of up to 1.3 mg L" 1 . Nitrate is generally not detected in wells within the B T E X plume and is generally present in very low concentrations in the background wells (less than 1.5 uM). Dissolved manganese concentrations within the plume vary from 0.041 to 6.62 mg L" 1 and from 0.706 to 3.53 mg L" 1 in background wells. Manganese concentrations do not have a distinct trend along the flowpath within the plume. Figures 2.6(a) to (d) and 2.7(a) to (d) show the distribution of dissolved iron and sulphate, respectively along the flowpath (transect A - A ' ) and perpendicular to the flowpath (transect (B-B'). Dissolved iron varies considerably over time; however, there is a general trend toward increasing concentrations both temporally and along the flowpath. Iron concentrations tend to peak at well 03-P-10, located approximately 120 m downgradient from the source area and then decrease at 03-P-6, approximately 150 m downgradient, near the end of the existing B T E X plume. Sulphate depletion is evident within the dissolved B T E X plume and extending up to 50 m further downgradient from the existing plume. Oxygen reduction, or aerobic respiration, is not thought to be significant in the dissolved B T E X plume as measured DO within the plume is very low. Aerobic respiration is likely to occur only in the source zone and near the fringes of the plume, where mixing between plume water and background water occurs (Mayer et al., 2001), however, DO values measured in background wells are less than 10% of the solubility of oxygen. For these 13 (a) A -2 0 0.13 SCALE n/m (m) 2 5.13 18.9 4 -47 Iron (mg/L) Jul 03 (b) A (c) A (d) A A ' A ' A ' A ' B . * S C A L E (m) Iron (mg/L) Jul 03 1 \ s0.1 '0.09 50 _ L _ 100 _J I S C A L E (m) Iron (mg/L) Oct 03 50 _l B .A- -2 e - « — .fir- Iron (mg/L) Feb 04 —« 1 0 SCALE (m) 2 h . ! ! , •t.UO J ; 2 D 4 13.5 X2.1 -47 0 50 . . . . I . 100 150 . . . I . . . . I . . 0.01 >B' -2 Iron (mg/L) Feb 04 0 S C A L E n/a - — j 11.1 .1* (m) 8.66 — . 31.1  my h i14 \ ^10)7) \ 2 L , \ 4 47.8 144 1̂3.5 \ 0.12 0 . . I . , . 50 . I . . , 100 . 1 . . , B ' -2 Iron (mg/L) Jun 04 0 S C A L E (m) 2 51.1 - 12 S 22.7 ? 7 4 T̂4 J \ 51.9 - > . Ik 1 \ 4 7.94 7.27 \, \ 0.12 i 1— 0 I . . . 50 . 1 . . . 100 . i . . Figure 2.6. Cross sections A - A ' and B - B ' showing the distribution of dissolved iron concentrations (mg L" ') in (a) July 2003, (b) October 2003, (c) February 2004, and (d) June 2004. reasons, and due to low measured DO values within the plume core, oxygen reduction is not considered to be a dominant terminal electron-accepting process (TEAP). In addition, there is no evidence for the use of nitrate as a TEAP due to low concentrations measured throughout the aquifer. Manganese reduction is likely also an insignificant process contributing to biodegradation as there is no observed trend in dissolved / manganese concentrations or values within the plume that are significantly elevated 14 (a) A A ' (b) A' A ' S C A L E (m) »B' Sulphate (mg/L) Jul 03 8.6 89.3 107 . 1 - V ' VI 600 ) 80o) l L — - L _ / » 1 0 0 0 5 0 _ l _ 100 _ l I u B S C A L E (m) Sulphate (mg/L) Oct 03 B.3 ^ ^ 1 9 4 1 200 327 4ooy 6007803, .1000 '93.8 0 5 0 _ l 1 • • • * • • • 100 _ J S C A L E (m) , * B ' Sulphate (mg/L) Feb 04 4 6 l f - 200 1000 5 0 _ l B sit_ S C A L E (m) Sulphate (mg/L) Jun 04 0.7 0.7 200 290 400 i 600, 1000 IS2 100 _J ' • I 1 u Figure 2.7. Cross sections A - A ' and B - B ' showing the distribution of sulphate concentrations (mg L" ) in (a) July 2003, (b) October 2003, (c) February 2004, and (d) June 2004. above background. Based on high background concentrations and relative depletion within the plume, sulphate reduction appears to be a significant T E A P facilitating biodegradation at the site. The amount of sulphate depletion may indicate that substantial organic degradation could have occurred in the past, or may be occurring upgradient, although the present B T E X distribution does not appear to support these rates. Sulphate generally appears to increase along the flowpath, however, values at individual wells 15 show considerable variability over time. Although iron concentrations are also quite variable both temporally and spatially, enrichment of dissolved ferrous iron within the plume is evident and indicates that iron reduction is likely also occurring. The cause of the temporal fluctuations in iron concentrations is unknown; however, it may be related to the seasonal changes in the B T E X concentrations or to the rates of degradation and mineral precipitation. Methane has not been routinely analyzed for at the site and therefore the relative contribution of methanogenesis to anaerobic degradation is not known. Considering the presence of sulphate throughout the plume, it is unlikely that methanogenic degradation significantly contributes to B T E X attenuation at the present time. Soil staining is shown in Figure 2.8. It is observed to be shaped roughly like a wedge, radiating out approximately 60 m toward the east and at least 40 m to the west, tapering out downgradient. This staining is thought to be associated with the deposition of iron sulphide minerals as a result of aqueous ferrous iron and sulphide produced from iron oxide and sulphate reduction. In comparing Figure 2.5 with Figure 2.8, it is apparent that the black soil staining extends beyond the existing B T E X plume. This may provide evidence that either the B T E X plume is shrinking or that reaction products which cause the staining have migrated downgradient from the existing extent of the plume. Although the existing dataset implies that B T E X attenuation has occurred, no quantitative assessment can be made on the total mass of B T E X degradation or if, and to what extent, the plume is shrinking. In addition, it is not possible to quantify the historic rates of iron and sulphate reduction processes and their individual contributions to hydrocarbon attenuation. 16 (b) SCALE (m) —e- 50 _i i i— 100 I Figure 2.8. Cross sections (a) A - A ' , and (b) B - B ' showing the distribution of black soil staining in relation to the water table elevation measured in October 2004. 17 3 M E T H O D O L O G Y 3.1 Aqueous Geochemistry Characterization 3.1.1 Field Sampling On October 19 and 20, 2004 the following piezometers and multi-level monitoring wells were sampled: piezometers 93-P-34 and 93-P-35 and their associated multilevel (ML), multiwell (MW), and direct-push (DP) series wells, as well as piezometers 03-P-5, 03-P- 6, 03-P-7, 03-P-8, 03-P-9, and 03-P-10. Field sampling activities included the measurement of groundwater levels, the total depth of well, and the apparent L N A P L thickness of piezometers (including both M W and P- series wells). Following water table measurements the wells were purged using Waterra tubing with foot valves for piezometers and peristaltic pumps for monitoring wells (ML and DP-series wells). At least three well volumes were removed prior to sample collection or, where well recovery rates were slow, until no more groundwater could be extracted. No-purge, low-flow sampling was conducted on monitoring wells where well recovery rates were known to be very slow. After well recovery, ex-situ and in-situ measurements of field parameters were made. These included electrical conductivity (EC, Hanna Instruments model HI 9033 meter, HI 76302W probe, calibrated with standard 1,413 uS cm"1 @ 25 °C KC1 solution), pH, and temperature (Hanna Instruments HI 9024 digital pH/temperature meter, HI 1230 probe, calibrated with pH 4,7, and 10 buffer solutions). Field EC, pH, and temperature measurements were taken only at select wells, during the October 2004 sampling event due to faulty equipment. Colorimetric measurements of sulphide (Chemets K-9510 vacuvials) and dissolved iron (Chemets K - 6010 vacuvials) were also conducted at select locations. These measurements were made only at select wells due to the limited availability of vacuvials. In-situ measurements of DO and redox potential (EH) were conducted at all piezometers. DO was measured using an OxyGuard Handy M K I I DO meter equipped with a silver cathode and a zinc anode 18 downhole probe. The DO probe was calibrated in air and included a correction for altitude. E H was measured using an OxyGuard Handy E H meter with an Ag, AgCl(s) downhole electrode, referenced with YSI3682 Zobell solution and/or Hanna HI7020 redox solution. Once field parameters were completed, water samples were collected in pre-cleaned containers provided by the laboratory for each specific analyte. The samples were stored in a cooler packed with ice, and transported to the laboratory within two days of sample collection. There is reduced confidence in the results of field analyses of pH and sulphide by ex-situ measurement for M W and P-series wells, where Waterra tubing and foot valves were used for sampling. 3.1.2 Analytical Program Groundwater samples were sent to Maxxam (Maxxam) Analytics, Inc. in Calgary, A B on October 21, 2004 for the analyses shown in Table 3.1. A chemically unpreserved sample in a 500 mL polyethylene bottle and a separate 250 mL polyethylene bottle preserved with 0.5 mL chloroform (for nitrate and nitrite) were collected for analysis of routine potability parameters (including major anions and cations). For the analysis of dissolved Fe and Mn, a sample was collected in a 250 mL polyethylene bottle, microfiltered in the field (passed through a 0.45 jum filter), and preserved with 5 mL 20% HNO3. For hydrocarbon analyses, a water sample was collected in two 80 mL clear glass vials with Teflon caps, sampled with zero headspace and chemically preserved with 0.2 g ascorbic acid and 0.5 mL 1:1 HCl for analysis of BTEX, and petroleum hydrocarbon fraction 1 (PHC F l ) (C6 - C10) content and a 1 L sample was collected in an amber glass bottle without chemical preservatives for analysis of PHC F2 (C10 - Ci6) (selected wells). Laboratory data sheets for the October 2004 water sampling event are located in Appendix A. 19 Table 3.1. Summary of Aqueous Chemistry Sampling Protocol Location Routine Potability Dissolved Iron and Manganese B T E X / P H C F l a PHC F 2 b 03-P-05 X X X X 03-P-06 X X X X 03-P-07 X X X X 03-P-08 X X X X 03-P-09 X X X X 03-P-10 X X X X 34-ML1 - -DRY- - 34-ML5 X X X 34-ML6 X X X 34-ML7 X X X 34-MW1 X X X X 34-MW2 X X X X 93-P-34 X X X X 34-DPI - -DRY- - 34-DP2 X X X 34-DP3 X X X 35-ML1 X X 35-ML2 X X X 35-ML3 X X X 35-ML7 X X X 35-MW1 X X X X 35-MW2 X X X X 93-P-35 X X X X 35-DPI X X X 35-DP2 X X X 35-DP3 X X X a Petroleum hydrocarbon fraction 1 (C 6 - Cm) bPetroleum hydrocarbon fraction 2 (Cio - C^) 20 3.2 Solid Phase Characterization 3.2.1 Background To supplement the aqueous phase data for this study, sediment sampling was conducted. On October 18 and 19, 2004, six boreholes were advanced to a depth of 5.3 meters, next to existing piezometers 93-P-34, 93-P-35, 03-P-6, and 03-P-10 within the plume, and piezometers 03-P-8 and 93-P-36, which were presumed at the time to represent background conditions throughout the depth of the core. Vertically representative samples were obtained at each borehole throughout the unsaturated zone and the saturated zone. For boreholes located within the aqueous hydrocarbon plume, this included core samples above, within, and below the plume. The cores obtained were analyzed at the University of British Columbia (UBC) using mineralogical extraction techniques and microbeam analyses. Total reduced sulphide (TRS) extraction analyses were performed on all core samples obtained and acid volatile sulphide (AVS) analyses were performed on all core samples with elevated TRS values (i.e. within the observed black staining) as well as on select core intervals outside this zone. Sequential iron extractions, for determination of ferrous and ferric iron mineral phases, were performed on all core samples. Microbeam analyses were conducted on three core samples: two from within the black staining, selected to represent mineralogical conditions within the plume, and one from outside this zone representing background mineralogy. 3.2.2 Field Sampling A 76 mm (3 inch) diameter split-spoon sampling device was used to obtain soil samples from within a 200 mm (8 inch) diameter hollow-stemmed auger. The 1.22 meter (48 inch) long samples were collected in acetate sleeves which were used to line the split- spoon. For this study, thirty-five sediment samples were collected from the six boreholes 21 as is shown in Table 3.2. To ensure that contact with atmospheric oxygen was Table 3.2. Summary of Sediment Core Sampling Intervals Core ID Interval (m) Core ID Interval (m) Core ID Interval (m) S-6 1.42-1.52 S-10 1.42-1.52 S-35 1.42-1.52 2.18-2.28 2.18-2.28 2.18-2.28 2.95-3.05 2.95-3.05 2.95-3.05 3.61-3.71 3.50-3.60 3.71-3.81 4.37-4.47 4.22-4.32 4.47-4.57 5.13-5.23 4.98-5.08 S-8 1.17-1.27 S-34 1.22-1.42 S-36 1.42-1.52 1.93-2.03 1.93-2.03 2.18-2.28 2.69-2.79 2.95-3.05 2.95-3.05 3.45-3.55 3.45-3.55 3.71-3.81 4.22-4.32 4.22-4.32 4.47-4.57 4.98-5.08 4.98-5.08 5.23-5.33 minimized, the acetate-lined core was partitioned and both ends of the interval were capped with sealable plastic wrap before being placed in a 500 mL, wide-mouth, masonry jar. The jar was then purged with argon gas and capped again with plastic wrap overlain by the masonry lid. The samples were placed in ice-packed coolers during storage and shipping and were placed in a freezer, at approximately -15 °C, upon arrival at U B C . Approximately four days elapsed between sample collection and freezer storage; however, coolers were stored outside in subzero temperatures for this duration. Figures 3.1 and 3.2 show the location of boreholes in plan view and the sample collection locations within each borehole in cross-section, respectively. 22 Figure 3.1. Plan view of area of study showing borehole locations. (a) A A ' - — ? 0 _ ? - Soil Staining '5-34122-142 •S-34 193-2.03 • 'S-10 142-152 —L&J0218-2.2B 'S-6 142-152 'S-6 2.18-2J8 V 'S-36 142-152 SCALE (m) 2 .. 'S-34 2.95-3.05 'S-10i»30S-—JSr.6.2.95-3.05 'S-36 2.18-2.28 '5-34 3,45-*^—' 'S-34 4.22-432 'S-34 4.9S-5.08 •S-10 4.22-4.32 •S-10 4.98-5.08 —^S-63JU .̂71 'S-6 437-4.47 'S-6S.13-5.23 'S-36 295-3.05 •S-36 3.71-3.81 •S-36 4.47-457 4 'S-36 5.23-5.33 -47 i i i i 0 1 . , . . 50 1 . 100 I . . . 150 , I . . (b) B -2 O h SCALE (m) 'S-35142-152 B' 50 100 Figure 3.2. Cross sections (a) A - A ' , and (b) B - B ' showing the location of boreholes and core sampling locations. 23 3.2.3 Analytical Program 3.2.3.1 Sulphide Extractions Based on extraction methodology, sulphide minerals are generally divided into two groups: A V S and TRS. The former distinction refers largely to monosulphide minerals and dissolved sulphide species that form H 2 S when treated with hydrochloric acid (Morse and Rickard, 2004), while the latter group includes both A V S as well as the remainder of disulphide minerals (Herbert et al., 2000). The subtraction of A V S from TRS approximates the concentration of pyrite and elemental sulphur (S°). The extracted sulphide phases are operationally defined, i.e. defined based on the manner in which they were extracted. Sulphide extraction techniques were taken from Herbert et al. (2000), where sulphur species not measured within the TRS or A V S fractions are broken down into additional fractions, based on their presence at certain sequential extraction stages. The first fraction defined by Herbert et al. (2000) is called acid soluble Org-S, which refers to acid-soluble, low molecular weight organic sulphur compounds, while the second (HC1-S) represents total sulphur in the above acid soluble Org-S fraction, in addition to the sulphur in HCl-soluble minerals, pore water, and surface complexes (Herbert et al., 2000). HC1-S was determined from a sample of the extract from the A V S extraction, which was filtered, sent to ALS Canada Ltd. (ALS) in Vancouver, B C , and analyzed for total sulphur along with a select suite of metals by inductively-coupled plasma atomic absorption spectroscopy (ICP-AES). These metals included: Aluminum (Al), Barium (Ba), Calcium (Ca), Iron (Fe), Magnesium (Mg), Manganese (Mn), and Sulphur (S). Relatively high detection limits resulted for S, A l , and Ba, which was due to matrix interference effects from the high concentration of chloride in the extract solution. The sulphur present at this stage represents HC1-S, while the other metals also originate from pore water, surface complexes, and less crystalline mineral phases, which are soluble in the extraction solution. Barium chloride (BaCl2) was added to another sample of the extract to precipitate sulphate as BaS04. The sample 24 was then re-filtered to remove BaSC>4 and analyzed for S, which represents the fraction acid-soluble Org-S. The difference between the sulphur measured in acid-soluble Org-S and HC1-S is the total sulphur in sulphate species (SO4-S). The final fraction defined by Herbert et al. (2000) is residual Org-S, which corresponds to the total sulphur which is not accessible by the extraction procedure for A V S and TRS. Residual Org-S was determined from residual sediment left over from the TRS extraction, which was sent to ALS for measurement by L E C O furnace. In this method, approximately O.lg of the sediment is combusted to SO2 and total sulphur is detected by infrared spectroscopy. Sulphide was extracted and trapped in a digestion apparatus similar to that described in Canfield et al. (1996) as shown in Figure 3.3. Figure 3.3. Sulphide digestion apparatus. 25 Select samples were run in duplicate.and mackinawite standards of 13.5, 100, and 1,000 mg kg"1, 1,000 and 1,200 mg kg"1 standards of Na 2 S-9H 2 0, and a 1,000 mg kg"1 standard of FeS 2, were prepared to test the recovery of the A V S extraction procedure. Mackinawite standards of 10, 100, and 1,000 mg kg"1 were used in the TRS extraction. A V S and TRS were analyzed by iodometric titration as described by Clesceri et al. (1998). Percent recovery for the mackinawite standards of 13.5, 100, and 1,000 mg kg"1 in the A V S extraction were 77%, 81%, and 61% respectively, while the 1,000 mg kg"1 and 1,200 mg kg"1 Na 2 S-9H 2 0 standards resulted in 85% and 93% recoveries. Only 6% of the Pyrite (FeS2) standard was recovered for the A V S extraction. For the TRS extraction, 82% and 89% of the 10 and 100 mg kg"1 mackinawite standards were recovered and, of the triplicate 1,000 mg kg"1 mackinawite standards that were prepared, 73%, 73%, and 76% recoveries were observed. The precision of iodometric titration, using starch as an indicator, is 2 x 10"5 M I 2 (Bassett, 1978). This corresponds to a sulphide concentration in the sediment of ±6 mg kg"1 (based on a 3 g sample in 30 mL of trapping solution). Data sheets for laboratory-determined sulphide fractions are compiled in Appendix A and laboratory procedures for the sulphide extractions, including flowcharts showing the procedural definitions for the various sulphide fractions (as defined by Herbert et al. (2000)) are compiled in Appendix B. 3.2.3.2 Iron Extractions Iron extractions were also carried out on soil samples obtained from the boreholes. The sequential extraction procedure involved a deionized (DI) water extraction, a 0.5N H C l extraction, and a 5N H C l extraction. Laboratory procedures for the iron extractions are summarized in Appendix B. The DI water extraction was conducted over a period of 15 minutes (Kennedy et al., 2004), the 0.5N H C l extraction was 3 days (Tuccillo et al., 1999), and the 5N H C l extraction was 21 days (Heron et al., 1994). A sequential 26 extraction technique was used over a parallel technique largely because this study is concerned with the total iron concentrations involved in the biochemical reactions taking place. By using a sequential technique with progressively more aggressive extractants a running total of iron is obtained and, although operationally defined, iron measured at each stage of the extraction can be attributed to a certain mineralogical mode of occurrence. Parallel reaction methods lack the selectivity to distinguish between detrital and authigenic mineral forms (Tessier et al., 1979; Tessier and Campbell, 1988) and overlap between the iron measured in two different parallel extractions makes this technique less suitable to meet the objectives of this study. The DI water extraction was designed for determining loosely bound iron and dissolved porewater iron. The 0.5N H C l extraction was used to determine microbially available and recently precipitated iron concentrations (FeS, Fe(OH)3 ( a)). The 5N H C l extraction was used to dissolve the more crystalline iron oxides and oxy-hydroxides such as: ferrihydrite (Fe(OH)3), lepidocrocite (y-FeOOH), akageneite (P-FeOOH), goethite (a- FeOOH), hematite (Fe20 3), and magnetite (Fe304) as well as the reduced phases F e C 0 3 and FeS2 (Heron et al., 1994). A l l iron extractions were run in duplicate and 100 mg kg"1 standards of mackinawite and goethite were prepared to test the efficiency of the extraction procedures. Extracted iron was analyzed using the FerroZine method. This method, which was first introduced by Stookey (1970), is widely used, practical, and economical (Gibbs, 1976). The analytical method is based on the principle of spectrophotometric absorbance. FerroZine reagent forms a stable, coloured complex with ferrous iron. This complex has a maximum optical absorbance at a wavelength of 562 nm and obeys the Beer-Lambert Law, producing a linear relationship between absorbance and complex concentration up to 4 mg L" 1 Fe 2 + (Gibbs, 1978). Iron speciation can be easily determined by adding an agent for reducing ferric iron to ferrous iron. Laboratory procedures for the detection of ferrous iron by the FerroZine method are compiled in Appendix C. Table 3.3 summarizes the results of standard recoveries for iron extractions. Unfortunately, due to an unknown source of ferric iron, anomalously high total iron values were measured in the standards for the 5N H C l iron extraction. Although some iron contamination was also observed for standards in the other extractions, measured 27 Table 3.3. Summary of Standard Recoveries for Iron Extractions Standard Iron Species Prepared Fe concentration ( m g l / 1 ) Average Fe measured in D l extraction (mg kg"1) Average Fe Average Fe measured in measured in 0.5N HCl 5N H C l extraction (mg extraction (mg kg"1) kg"') Recovery FeS F e z + 100 0 119 0 119 Fe 3 + 0 16 13 - - FeOOH Fe z + 0 7 44 0 - F e j + 100 15 19 187 221 recoveries fell within the estimated precisions for the given methods. The measured FeOOH standard concentration of 187 mg kg"1 for ferric iron in the 5N H C l , compared to an expected concentration of around 66 mg kg"1, was found to fall within the range of precision for this extraction (see below). In contrast, the measured FeS standard concentration of 215 mg kg"1 exceeded the range of precision for this extraction and, as a result, the measured concentrations for Fe(III) from this extraction are thought to be unreliable. As the resulting extracted ferric iron concentrations are, however, generally much larger than the measured ferric iron in the standards (approximately 6,000 mg kg"1), there is still comparative value in these numbers. The estimated detection limit (EDL) using the FerroZine method is 0.003 mg L" 1 and the precision is ±0.01 mg L" 1 from the Hach DR/2010 Spectrophotometer Procedures Manual. The EDLs and precision vary for each iron extraction with the dilution factor used. For dilution factors of approximately 130 for Fe(II) and Fe(III) in the D l extraction, this corresponds to an E D L of approximately 0.39 mg L" 1 and a precision of ±1.3 mg L" 1 . Using a 15 mL extractant volume and sample mass of approximately 1.5 g, the E D L for the D l extraction is approximately 4 mg kg"1 with a precision of ±13 mg kg"1. By the same calculations, the EDLs for the 0.5N H C l extraction are approximately 4 mg kg"1 and 14 mg kg"1 (for higher dilution values) with precisions of ±13 mg kg"1 and ±45 mg kg"1. For the 5N H C l extraction the E D L is approximately 38 mg kg"1 with a precision of ±125 mg kg"1. 28 3.2.3.3 Microbeam Methods Scanning electron microscopy (SEM) analyses were carried out on sediment core samples S-10 2.95-3.05 m and S-34 1.93-2.03 m, which are located within the plume and black staining, and S-36 2.18-2.28 m which is located outside these areas. The instrument used was a Philips XL-30 Scanning Electron Microscope. The intent of S E M analyses was to gather qualitative information about the morphology, occurrence, and general abundance of diagenetic mineral phases at various points within the study area. In conjunction with S E M , energy-dispersion spectrometry (EDS) was utilized to identify minerals. A l l sample handling and specimen preparation was conducted in a glove box in a low- oxygen atmosphere except for carbon-coating, which was carried out in a vacuum. The glove box was flushed seven times with ultra-high purity nitrogen gas to produce an environment estimated to contain less than 0.2 % oxygen. This value was based on previous evacuations where it was determined by gas chromatography that subsequent gas 'flushings' decreased the percentage of oxygen by a factor of two each time. Specimens were prepared from the sample cores by removing approximately 1-2 g of sediment, drying the sediment for approximately 10 hours at room temperature (-21 °C), and mounting on aluminum S E M stubs with carbon adhesive tabs. The specimens were carbon coated prior to analysis to eliminate electric charging and to minimize damage to grain surfaces from the electron beam. 3.3 Data Integration and Simulation MIN3P was utilized to simulate the reactive transport processes occurring at the site. Modelling was conducted to integrate hydrogeologic and geochemical information into a unified site-specific conceptual model. Data considered include degradation of B T E X coupled with aerobic respiration, iron oxide reductive dissolution, and sulphate reduction. 29 Dissolution and precipitation of calcite and mackinawite were also considered in all of the simulations. A scenario named Simulation A , calibrated to the existing aqueous dataset, was considered in addition to a scenario designated Simulation A S , which was calibrated to both the aqueous and the solid-phase dataset. Simulations were conducted for a two-dimensional, fully saturated domain and run for 30 years, which is the approximate period of time that the actual contaminants have been naturally degrading. For simplicity, the B T E X plume was represented in the simulations using benzene as a surrogate electron donor. Benzene oxidation half reaction C6H6 + 18H20 -» 6CO3" + 42H + + 30e~ (1) Toluene oxidation half reaction C1H8 + 2\HzO -» !CO]~ + 50H+ + 36e' (2) Ethylbenzene and xylenes oxidation half reaction CSH10 + 24H20 - » 8C032~ + 58H + + 42e~ (3) Total benzene equivalent hydrocarbon concentration [C6H6 *] = [C6H6 ] + | [C 7 Hs] +1 [Cg Hl0 ] (4) The distribution, occurrence, and trends for toluene, ethylbenzene, and total xylenes were similar to that for benzene. Ethylbenzene concentrations tended to be higher than benzene and toluene concentrations and total xylene concentrations tended to be the highest of the B T E X parameters by an order of magnitude. Based on the low concentrations observed for higher end hydrocarbons (C10-C16) from the few scans available, it appears that B T E X parameters represent the bulk of the electron donors present in the aqueous phase. Mass balances for mineral and aqueous species provided in the simulations were used to determine the relative contribution of the individual electron acceptors to the degradation of B T E X . The corresponding redox reactions, using benzene as an electron donor, can be written as follows: Aerobic Respiration 30 C6H6 + 7.50 2 + 3H20 -» 6C0 3 2" +12// + (5) Iron Reduction C6H6 + 30Fe(OH)3 + 48 / / + -> 30Fe 2 + + 12H20 + 6CO2' (6) Sulphate Reduction C 6 / / 6 + 3.75S042" + 3/ / 2 0 -> 3.15HS' + 6C02' + 8.25//+ (7) A Monod, or Michaelis-Menten, formulation was used for degradation kinetics including aerobic respiration (5), reductive dissolution of ferrihydrite (6), and sulphate reduction (7). 1kU) i = l,N deg This equation describes the absolute reaction rate (/?f e 8) in relation to the degrading species (i) and the given electron accepting species (j). The first term is the maximum utilization rate (k?eg), the second term is the Monod expression, and the third term is for inhibition. The K constants are half-saturation and inhibition constants, and T£U) refers to the total aqueous concentration of the given component (j) after Mayer et al. (2001). Inhibition of iron and sulphate reduction in the presence of oxygen was included in the model; however, inhibition of sulphate reduction due to the presence of iron oxide was not considered as it was assumed that these processes may occur concomitantly. This phenomenon is known to be thermodynamically feasible as described by Postma and Jakobsen (1996). Aqueous sulphate may be maintained by gypsum dissolution if it is present in the solid phase: CaSOA • 2H20 -» C a 2 + + SO\~ + 2H20 (8) Degradation of organic matter will tend to increase dissolved inorganic carbon (DIC; equations 5, 6, and 7) and may cause the precipitation of calcite, ferroan calcite, and/or siderite: Ca2+ + CO]' <-» CaC03 (9) xFe2+ + yCa2+ + CO2' -» FexCa C03 (10) 31 Fe2+ + CO]' -» FeC03 (11) The reaction products HS" and Fe(II) from sulphate (equation 7) and ferric iron reduction (equation 6) will tend to precipitate as FeS(am) or mackinawite: Fe2+ + HS~ —> FeS + H+ (12) Dissolution-precipitation reactions are quantified using the following rate expression: = -k. 1 _ . M P - K min J (13) The domain dimensions and boundary conditions for flow and transport in Simulation A are shown in Figure 3.4. Inflow Boundary Flow: h= 10 m ° Transport: Cauchy C = Cu w C = C L oo Upper Boundary Flow: no flow Transport: Neumann C = Cii 50 i i i i 100 ISO Lower Boundary Flow: no flow Transport: Neumann Outflow Boundary t 5 Flow: h= 7.82 m Transport: Neumann 10 150 Figure 3.4. Two dimensional domain showing flow and transport boundaries, initial conditions, and discretization parameters for Simulation A. The model inflow boundary was placed at 93-P-34 and the behaviour of aqueous site data including: dissolved hydrocarbon concentrations and major redox active species (C_, Fe 2 + , and SO42") were investigated in the modelling. Flow parameters for the simulations, summarized in Table 3.4, were taken directly from data collected at the site. Simulation 32 Table 3.4. Hydrogeological data used in the simulations Parameter Value Effective porosity 0.3a - Hydraulic conductivity 2.5 x l(V 6 b - l m s Hydraulic gradient 0.015c - Longitudinal dispersivity 10 d m Transverse vertical dispersivity 0.0025d m a Based on volumetric moisture contents from saturated core samples b Estimate based on slug tests c Determined from October 2004 measured water table elevations d Calibrated to reproduce observed chemistry distribution A was calibrated to reproduce the aqueous concentrations of B T E X , Fe 2 + , SO42", and 0 2 . A porosity of 0.3 was assumed. Table 3.5 shows the dissolved-phase parameters used in Simulation A. Background concentrations were taken entirely from measured values at 03-P-07 and 03-P-08 in October 2004 as noted in table except for higher background sulphate concentrations, taken from 86-7B, which were used for Simulation A B . Concentrations from wells outside the plume were used to specify the composition of the background water and 93- P-34 and the associated M W , M L , and DP wells were used to specify the composition of BTEX-containing inflow water. Both pore waters showed supersaturated conditions with respect to calcite and have been equilibrated with calcite to provide a consistent initial condition in relation to this mineral. Background conditions were estimated from two different wells to better represent these observed equilibrium conditions. 33 Table 3.5. Hydrochemical data used in Simulation A Parameter Background Inflow (moles L 1 unless otherwise noted)6 pH 6.67d 7.27d 0 2 (as p0 2 ) 0.06" 0.01 f N 0 3 " 5 x i c r 8 f 5 x 10" 8f SO4 2" 1.3 x 10"2a 1.3 x 10"3 HS" 1 x 10-1 0 f 1.5 x 10"4i HCO3- 1.1 x 10"2d 2.0 x 10"2 Fe 2 + 1 . 8 x l 0 6 b ' h 1 .3x l0 ' 4 h Fe 3 + 1.0 x 10"7f 1.0 x 10"7f C a 2 + 7.1 x 10"3d 5.3 x 10"4d N 2 (aq) 1.0 x 10" 7g 1.0 x 10"7s N a + 9.6 x 10"3a 9.1 x 10"3 M g 2 + 3.9 x 10"3a 5.0 x 10 - 3 CgH 6 1 x 10-1 0 f 1 x 10'4 a From 03-P-07 b From 03-P-08 A. c From 86-7B d Equilibrated with respect to calcite e From 93-P-34 and associated M W , M L , and DP wells f Below detection limits 8 Not analyzed h From total aqueous iron concentrations ' Averaged from previous sampling dates 34 4 R E S U L T S A N D DISCUSSION 4.1 Aqueous Geochemistry Characterization Shallow water-table elevations measured at select CORONA wells and corresponding gradients are consistent with previous measurements shown in Figure 2.2. Figure 4.1 displays the water-table elevations and contours for the October 2004 sampling event. The local gradient was determined to be 0.011 with a general flow direction toward the northwest. Water table elevations were consistently about 10-20 cm higher than elevations in October 2003. Measurements of temperature, pH, EC, sulphide, iron, E H , and DO were also made in the field. Figure 4.2 shows the results of select field-measured parameters along transects A - A ' and B - B ' . pH values from the previous sampling event (June 2004) are shown in Figure 4.2 where measurements were not made in October 2004. pH ranged from 6.74 for June 2004 at 03-P-05 to 7.76 at 34-ML6 (not shown in figure). Groundwater temperatures ranged from 5.7 at 34-DP2 to 10.1 °C at 03-P-08. This range is similar to Figure 4.1. Groundwater elevations in masl for October 18,2004. 35 (a) A A ' o h SCALE (m) 7.33 21- 7.13- 7.36- 4 h pH Oct 04 (• indicates Jun 04) -47 _ l _ 50 _1 '7.11- '6.96- 100 _ l (b) A A ' 50 _ L _ _ i i l * 1 * (d) A A ' -2 0 SCALE (m) 2 4 n/m ^ 0.4 0.6 00 (mg/L) Oct 04 \ "V ~ ~ _ S 7 -47 . . . . Wm S.5 Wm 14 9 50 100 150 . . . . i . . . . i . . . . i . . (e) A A ' B -2 0 S C A L E (m) pH Oct 04 (* indicates Jun 04) n / m d H | _ 6.93- 7.11- ' M2- 50 6.95- 100 j i • • I B „ * S C A L E (m) >B' EC (uS/cm) Oct 04 n/m jy| a 3 1647 1790 n/m 0 J i i _ n/m 50 _ l n/m 100 _ J S C A L E (m) Eh (mV) Oct 04 -36 n/m fl ] 1 t— •162 0 J i u . 50 _ l 100 _ l -2 0 _ n/m S C A L E n/m (m) 0.4 2 0.5 n/m 4 - DO (mg/LI Oct 04 50 _ l 100 _ l I L V S C A L E (m) Lab Alkalinity (mg/L) Oct 04 640 566 ^ - » 2 C 795 681 700 500 D '412 _ i i i— 50 _ l 100 _ J Figure 4.2. Field-measured parameters (a) pH, (b) E C (|iS cm"1), (c) Eh (mV), (d) DO (mg L" 1), and (e) lab-measured alkalinity (mg L" 1) along transects A - A ' and B - B ' for October 18, 2004. Contouring was not performed if dataset too sparse or no visible trends were present. 36 values from previous CORONA sampling events for these wells in the fall of 2003. It is interesting to note that despite these relatively low groundwater temperatures, degradation is occurring at the site. EC values ranged from 1,215 at 35-MW2 to 3,370 LIS cm"1 at 34-ML7 (not shown in figure). EC did not appear to follow any spatial trends and also varied little from previous sampling events. The range of EC values is consistent with background values, inferred from measured field ECs at piezometers 03- P-07 and 03-P-08 in June 2004, of 2,810 and 3,420 uS cm"1 respectively. Sulphide concentrations measured in DP and M L wells ranged from 0 at 34-DP3 and 35-ML2 to 0.7 mg L" 1 at 34- MW1. Iron values were not measured in the field at any DP and M L wells. Field-measured iron at 34-MW1 and 34-MW2 was 2.5 mg L" 1 and 4.5 mg L" 1 . Field measured sulphide, iron and temperature are not shown in Figure 4.2. Downhole DO and E H readings were made at all accessible M W and P-series wells (i.e. wells with sufficiently large diameter to fit probes). DO readings ranged from 0.4 mg L" 1 , within the dissolved B T E X plume at 34-MW2 and 35-MW2, to 3.0 mg L 1 measured at 03-P-08. DO increased from the plume core outward both along the flowpath and perpendicular to it. At some wells (e.g. 03-P-10) DO was present where considerable dissolved iron was also measured, suggesting the accuracy and reliability of these measurements may be reduced. E H values ranged from -99 mV at 34-MW1 to +162 mV at 03-P-08 and follow the general distribution of DO. E H values for iron and sulphate reduction half reactions obtained from Stumm and Morgan (1996) indicate that both iron and sulphate reduction occur within this range. Measured DO and E H values for the October 2004 sampling event are largely consistent with values from previous sampling events. Alkalinity measurements were not made in the field. Laboratory determined alkalinities (corrected from values reported as alkalinity as CaCOs) varied from 393 mg L" 1 at 35-ML7 (not shown in figure) to 1,107 mg L" 1 at 34-MW1 and appear to be elevated near the plume core at 34-MW1 and 34-DP3, which may result from an increase in DIC from the breakdown of organic contamination. B T E X , manganese, iron, sulphate, and calcium values along transects A - A ' and B - B ' are shown in Figure 4.3. B T E X concentrations from October 2004 sampling ranged from 37 (a) A A ' (b) A ^2" A ' (c) A A ' (d) A -2 0 0.2 SCALE 887 (m) 2 80.3 5.4 4 -47 A ' B -2 BTEX (mg/L) Oct 04 •——V" 0 _ 6.61 r IL—p- M[ SCALE 0.106 . L_Jb ) —> (m) 2 2.21 f/ \ 0.05 \ ' 4.98 "I \ -A 0.005 \ 4 - U220 Vl106 Voo14 -47 0 50 . . . 1 . . . . I . 100 150 1 . . . . 1 , B ' -2 BTEX (mg/L) Oct 04 0 SCALE (m) 2 - 8.00 ,~HK N' 2.18 V 3 2-07 ••Rf f J0.5 \ 0.005 4.03 y / I \ 0.05 V 4 - 4.74'4 • Vo325 Vl106 \ 0.0117 0 , 1 50 100 . I . . . . 1 . , iJJL. •>B' -2 0 SCALE (m) Mn (mg/L) Oct 04 1,1 0.649 « 1.93 2.19 2.3 '0.814 _ j i i '0.794 50 _l 100 _ l B ,B' -2 Iron (mg/L) Oct 04 0 SCALE (m) 49.1 12.2 29.3 \ 4 78.3 72.7 \ " 0̂.59 ^14.7 \ 0.1 1 — 0 i 50 . 1 . . . 100 , I , . iJJL. 0 h -0.1 SCALE (m) >B' Sulphate (mg/L) Oct 04 0.5 0.5 6°°/800, 1000 721 50 _l 100 B „ * JJJL. -2 0 SCALE (m) >B' Calcium (mg/L) Oct 04 97.4 - Figure 4.3. Selected parameters (a) B T E X , (b) manganese, (c) iron, (d) sulphate, and (e) calcium in mg L" along transects A - A ' and B - B ' for October 18, 2004. Contouring was not performed if dataset too sparse or no visible trends were present. 38 non-detect at background well 03-P-07 (not shown in figure) to 8.00 mg L" 1 at 35-DPI. The B T E X concentrations and distribution were largely consistent with previous sampling dates. B T E X values generally decreased with depth and distance outward from the plume core. Manganese ranged from 0.041 mg L" 1 at 34-DP2 to 3.96 mg L" 1 at 03-P- 09 (not shown in figure). Manganese concentrations did not appear to follow any spatial trends. Dissolved iron ranged from 0.1 mg L" 1 in background well 03-P-08 to 78.3 mg L" 1 in 35-MW1. Laboratory measured dissolved iron at 34-MW1 and 34-MW2 was 3.16 mg L" 1 and 5.05 mg L" 1 , which are similar to that measured in the field by the colorimetric technique. The increasing temporal trend in iron concentrations was consistent with previous sampling dates as measured iron concentrations in October 2004 tended to be higher than those measured in the past. In addition, iron values along the flowpath tended to be elevated near 03-P-10 and the highest values were found around 93-P-35 as with past sampling events. From previous sampling events, it is evident that iron values vary both temporally and spatially. Ranges for this parameter for the October 2004 sampling event also reflected this variability. Sulphate values ranged from non- detect at 35-DPI to 1,450 mg L" 1 at 03-P-08. The sulphate distribution was similar to that in the past, showing depletion near the plume core and increasing concentrations outward. Despite regional fluctuations, the distribution of sulphate concentrations appears to change little over the timeframe of investigation, which is not surprising considering the groundwater velocity is low and the current distribution of B T E X indicates low rates of sulphate reduction at the present time. Calcium values ranged from 20.2 mg L" 1 at 34-DP2 to 485 mg L" 1 at 03-P-05 and generally increased from the core of the plume outward. This pattern may provide evidence for calcite precipitation due to the production of bicarbonate from the breakdown of organic matter. Other cations magnesium, potassium, and sodium are not shown in Figure 4.3 as their values were generally low and there was no observable trend in concentrations (although magnesium values were slightly depleted at 93-P-35, possibly as a result of an Mg-containing mineral phase precipitating). The ranges in their values were 13.7 mg L" 1 at 35-ML3 to 224 mg L" 1 at 34-ML7 (for magnesium), 1.3 mg L" 1 at 34-DP2 to 13 mg L" 1 at 34-ML7 (for potassium), and 60.3 mg L" 1 at 03-P-06 to 610 mg L" 1 at 35-ML3 (for sodium). Bicarbonate values ranged from 584 mg L" 1 at 35-ML7 to 1650 mg L" 1 at 34-MW1 and 39 chloride values ranged from 23.3 mg L" 1 at 34-DP2 to 76.1 mg L" 1 at 03-P-07. Neither anions showed any distinct spatial trends in concentrations and values were generally consistent with previous sampling events. Nitrate values were generally below the detection limit of 0.003 mg L" 1 . The highest detectable concentration for nitrate was a value of 0.044 mg L" 1 at 35-DP3. Chemical speciation calculations were performed using PHREEQC (Parkhurst and Appelo, 1999) with the major anion and cation chemistry to determine the saturation indices (SI) for relevant minerals including: gypsum, siderite, calcite, and aragonite. Gypsum was undersaturated at all wells within the plume (SI ranged from -0.20 to -5.0) and slightly undersaturated (SI was -0.23 and -0.31) in background wells 03-P-07 and 03- P-08, respectively. Siderite Sis ranged from -0.15 to +2.7 in plume wells and were +1.0 and -1.1 in the background wells. Calcite and aragonite were supersaturated in the two background wells with values of +0.61 and +0.31, and +0.16 and +0.70, respectively. Carbonate mineral Sis within the plume wells ranged from -0.21 for aragonite at 35-ML3 to +1.2 for calcite at 34-ML7; however, porewater was supersaturated with respect to both calcium carbonate minerals at the majority of locations. The aqueous data can be used to estimate a hydrocarbon degradation rate based on the observed distribution of B T E X . A similar estimation using ferrous iron and sulphate as indicator species for biodegradation cannot be adequately conducted for the given dataset. This is due to the fact that secondary reactions remove Fe(II) from solution and, although relative sulphate depletion may suggest higher rates than those estimated using B T E X distributions, increasing concentrations along the flow path suggest a more complicated mechanism controlling sulphate distributions. Consequently, rate determinations using these species would be inconclusive. Using the maximum B T E X concentration of 8 mg L" 1 observed in October 2004, B T E X degrades to 0.0014 mg L" 1 (observed at 03-P-06) over approximately 100 m along the flowpath. Assuming a flow velocity of 4 m year"1, and neglecting adsorption, this corresponds to a 25 year time span. The resulting degradation rate, based on aqueous hydrocarbon data, is estimated to be: 40 LH20- 25 years 78113.4 mg C6H6 7.8.84x10*5 7.9986 mg C6H6 1 mol C6H6 25 years = 1.30x10 _13 moles C6H6 L H20 • s This estimated rate for degradation is very low as it is based on the current distribution of measured B T E X concentrations, which are relatively low values compared to the solubility of benzene. It is recognized, that B T E X may not represent all of the dissolved constituents of condensate contributing to the reduction capacity of the groundwater and that making an estimate of condensate degradation based solely on B T E X trends may be questionable; however, a more complete breakdown of dissolved petroleum hydrocarbons is largely absent from the existing dataset. Where higher end hydrocarbon scans have been performed (for PHC F2 these values ranged from non-detect at 03-P-05 to 2.5 mg L" 1 at 93-P-35), the concentrations have been generally much lower than those for B T E X . The rate estimate based on the present distribution of B T E X is not well constrained because the assumption is made that initial inflowing B T E X concentrations were the same as those observed at the present-day. Upper and lower bounds on this estimate depend largely on the range in groundwater velocity and the range in concentration for B T E X initially present. The range in velocity from measured flow parameters was estimated to be 0.3 to 4.5 meters year"1; however, a more reasonable estimate of 4 to 6 meters year"1 can be made from the distribution of dissolved species and the extent of the soil staining (Sections 2.3 and 2.4). Thus, a lower bound on the rate of 1.70 x 10"15 moles L H2O" 1 s"1 is made from the lowest observable concentration of 0.106 mg L" 1 at 93-P-34 (the most proximal well to the source area) in October 2004 and the value at 03-P-06 with the fastest flow velocity in this range. Similarly, using the slowest flow velocity and a benzene solubility of 1,770 mg L" 1 (the maximum concentration that would be observed if the source zone extended as far as 93-P-34 and free phase was initially present at this spot), the upper bound is determined to be 4.49 x 10"11 moles L H2O" 1 s"1. The results of water level measurements, field parameters, and aqueous laboratory analyses for the October 2004 sampling event are compiled in Appendix D in Tables 7.10, 7.11, and 7.12. Included with these data are measurements obtained from previous CORONA investigations. 41 4.2 Solid Phase Characterization 4.2.1 Sulphide Extractions Table 4.1 summarizes these results for A V S , Pyrite/S°, and TRS sulphide fractions in relation to the black staining observed in sediment cores. Table 4.1. Summary of sulphide extraction data in relation to observed black staining layer Location in relation to Staining A V S (mg kg"1) Pyrite/S° (mg kg"1) TRS (mg kg"1) Inside Range 13-836 0-883 15-1719 Inside Average 162a 225 506 a Inside Standard Deviation 237 327 573 Outside Range 6-15 5-10 11-23 Outside Average 9 b 7 16c Outside Standard Deviation 2 2 3 a calculated from 13 samples b calculated from 11 samples 0 calculated from 24 samples Sulphide values in the A V S extraction varied from 6 to 836 mg kg"1, and TRS extraction values for sulphide ranged from 11 to 1,719 mg kg"1, resulting in Pyrite/S° (TRS-AVS) values ranging from 0 to 883 mg kg"1 (Figure 4.4). These ranges were consistent with Chromium Reducible Sulfur (CRS) values measured at the site, by similar extraction techniques to those used for TRS, from sections of the same cores (Van Stempvoort personal communication, 2006) and at a core obtained upgradient from 93-P-34 (Van Stempvoort et al., 2006). The CRS values obtained during these studies ranged from 5.2 to 1,340 mg kg"1, with an average of 290 mg kg"1, in the zone of staining and 12 mg kg"1 (range of 3 to 22.7 mg kg"1) outside. Sulphur values for the HC1-S and acid soluble Org- S fractions were all below the ICP-AES method detection limit of 500 mg L" 1 42 (a) A a SCALE (m) A ' Soil Staining Total Reduced S(mg/kg) 50 _l B B ' iJJL. -2 0 S C A L E lm\ 7 Total Reduced S (mg/kg) 18' s ° ' 823. 13. 12. 1*7 2 - 14*. 15. — H -19' 13' 1 22. 15. 4 - 0 1 . 50 100 B -2 Acid Volatile Sulphide (mg/kg) 0 S C A L E ? 32. fe n o . — 2 1 3 * . 8' — m - . I i • 4 - 0 5 0 100 1 . . B B ' -2 Pyrite/S" (mg/kg) 0 S C A L E {m\ ? 18' 653' —It— 0-n 2 7. 9 ' ; 4 0 50 . . , l , , . 100 , 1 . . Figure 4.4. Sulphide extraction results for (a) TRS, (b) A V S , and (c) Pyrite/S° in mg kg" along transects A - A ' and B - B ' , in relation to soil staining and October 2004 water table. (corresponding to detection limits of -10,000 mg kg"1 for HC1-S and -3,333 mg kg"1 for acid soluble Org-S, based on a 3 g sediment sample and 60 mL and 20 mL respective sample sizes). In addition, all sulphide values for the residual Org-S fraction were below, or near the method detection limit of 100 mg kg"1. As acid soluble Org-S and HC1-S consist entirely of sulphur species inaccessible by the A V S extraction (largely sulphate r species: gypsum, porewater SO42", thiols, and SO4 esters (Herbert, 2000)) a generalization on the abundance of these species cannot be made due to the high detection limits for acid soluble Org-S and HC1-S. In contrast, total S concentrations below detection limit for residual Org-S are to be expected as it is assumed that there are few sources of sulphur present at this stage in the extraction. 43 Both A V S and Pyrite/S° within the black stained zone are significantly elevated above background values. Since A V S generally represents monosulphides (i.e. FeS(am) and mackinawite) and TRS is the sum of monosulphides and disulphides (including pyrite and elemental sulphur) (Herbert et al., 2000), this suggests that both monosulphides and disulphides have accumulated as a result of microbially-mediated sulphate reduction. This phenomenon is well known since mackinawite is metastable with respect to pyrite in sedimentary environments and over time pyrite will tend to replace mackinawite as the dominant phase (Morse and Rickard, 2004). For the remaining suite of metals analyzed from the 6N H C l , A V S extractant, A l and Ba concentrations were also below the method detection limits of 200 mg L" 1 and 10 mg L" 1 (corresponding to solid phase concentrations of -4,000 mg kg"1 and -200 mg kg"1 based on the same sample sizes used for HC1-S). Ca concentrations ranged from 11,329 mg kg" 1 at S-34 1.93-2.03 m to 34,947 mg kg"1 at S-6 3.61-3.71 m, Mg concentrations ranged from 3,492 mg kg"1 at S-34 1.22-1.42 m to 12,750 mg kg"1 for the duplicate sample at S- 10 3.50-3.60 m. The source for these values of Ca and Mg is likely from pore water, surface complexes, and mineral phases which are soluble in the extraction solution including: calcite, dolomite, and possibly gypsum. There does not appear to be a distinct spatial trend in these extracted species although values are generally lower in the unsaturated zone. Mn values ranged from 158 mg kg"1 at S-6 2.95-3.05 m to 602 mg kg"1 at S-35 4.47-4.57 m. Total Fe concentrations from the A V S extractant varied from 5,223 mg kg"1 at S-34 1.93-2.03 m to 16,291 mg kg"1 at S-36 3.71-3.81 m. Total Fe values analyzed by ICP-AES from the 90 minute 6N H C l extraction (for AVS) were consistently about 20% lower than the sum of ferrous and ferric iron from the 15 minute DI, 3 day 0.5N HCl , and 21 day 5N H C l iron extractions independently analyzed by the FerroZine technique (Table 7.14, 7.15, and 7.16 in Appendix E). This is to be expected as the extraction time for A V S is much shorter. The RPDs for duplicate HC1-S analyses did not exceed 8% (Table 7.13 in Appendix E). Duplicate analyses for the A V S extraction were run on S-8 2.69-2.79 m, S-10 3.50-3.60 m, and S-36 2.95-3.05 m, resulting in RPDs of 0%, 97%, and 70%. TRS duplicate 44 analysis on S-6 3.61-3.71 m resulted in a RPD of 21%, and 3% on S-34 2.95-3.05 m. Highly variable, and elevated, RPDs for sulphide extractions may result from duplicates being run on separate samples from the same location of the core (i.e. not a split from the same dried and homogenized sub-sample, but a different sub-sample) and may be an indication of small scale heterogeneity in precipitated sulphides not well represented in the 2-3 g sample sizes. The data from sulphide extractions are tabulated in Table 7.13 in Appendix E. From the average observed TRS accumulation of 490 mg kg"1, assuming a porosity and a dry density of the sediment to be 0.3 and 1,700 kg m"1 and an average residence time of 10 years for the plume in the zone of black staining, the rate of benzene degradation using sulphate as the E A , can be estimated as: 490 mg S2~ 1 mol S2~ 1700 kg dry sed. 1 m3 bulk aquifer 1 mol S042~ X ~ X ~ X X ~ kg dry sed. 32060 mg S 1 m bulk aquifer 300 L H20 1 mol S ~ y lmolC6H6 ^ 1 ^ I years = 1 3 3 y A O - " m o l e s C6H6 3.15molS02' lOyears 3 .15xl0 7 . s ' LH2Os The upper and lower bounds on this estimate are 0 moles L H2O" 1 s"1 and 3.99 x 10"10 moles L H2O" 1 s"1. A lower bound of 0 moles L H2O" 1 s"1 results from the standard deviation exceeding the mean value, which demonstrates the large heterogeneity of the samples. If the largest outlying value of 1,719 mg kg"1 at S-6 3.61-3.71 m is excluded from the determination of standard deviation, the standard deviation is 462 mg kg"1, and the lower and upper bounds become 2.88 x 10"12 and 3.57 x 10"10 moles L H2O" 1 s"1. The calculations for the bounds estimate are summarized in Appendix F. 4.2.2 Iron Extractions Iron (II) concentrations ranged from <3 to 18 mg kg"1 for the DI water extraction (Figure 4.5), from 15 to 6,118 mg kg"1 for the 0.5N HCl extraction, and from 0 to 2,783 for the 5N H C l extraction. Iron (III) values ranged from 0 to 71 mg kg"1 for the DI water extraction, from 0 to 3,336 mg kg"1 for the 0.5N H C l extraction, and from 2,852 to 12,119 mg kg"1 for the 5N H C l extraction. Table 4.2 summarizes these results for ferrous and 45 (a) A SCALE (m) Dl Extractable Fe ? ,9. (mg/kg) A ' 150 _ l (d) A SCALE (m) - Soil Staining ^0 ' 0.5N HCI-Extractable Fe(lll) (mg/kg) •JiMl 2215' 2056' 2014' A ' 2009' 23B4' 150 _ l B V * V * •2 0 S C A L E (m) 2 ? Dl Extractable Fe(ll) (mg/kg) 10. t l • = 0' 0' (K7 —0"' " W 0. 9 ' 12' 4' 0' 4 0 . 1 . . 50 • • 100 I , . B B ' -2 0 S C A L E (m) 2 ? 0.5N HCI-Extractable Fe I _ ' 3 1 S )(mg/kg) •373 •289 J479 - '194 - 2 « 4 '621 '1608 '1561 •325 '280 4 - 0 . 1 50 , . 1 . 100 B B' Dl Extractable Fe(lll) (mg/kg) 18' 14' 7j- 11. ~ T ie*- 16' 44' 18' 50 - J L _ 13' 12 • 100 _ l B B ' -2 0 S C A L E (m) 0.5N HCl-ExtracFable Fe(lll) (mg/kg) 1862' 221S —W)»4-301' 724 31* —my 2766. 2816 303ft 2102' 1508' nvtr -I56T' 3274. 2543' 50 100 _ l Figure 4.5. Iron extraction results for (a) Dl-extractable Fe(II), (b) 0.5N HCl-extractable Fe(II), (c) DI- extractable Fe(III), and (d) 0.5N HCl-extractable Fe(III) in mg kg"1 along transects A - A ' and B - B ' , in relation to soil staining and October 2004 water table. ferric iron in relation to the black staining observed in sediment cores. A l l of the iron extractions were run in duplicate. For the D l iron extraction, RPD values ranged from 0% to 67%, with an average of 29% for ferrous iron and from 0 to 126%, with an average of 24% for ferric iron. Fe(II) RPD values ranged from 0 to 62% (average 46 Table 4.2. Summary of iron extraction data in relation to observed black staining layer Iron Location in relation Range from D l Range from 0.5N H C l Range from 5N H C l Species to Staining extraction (mg kg ') extraction (mg kg ') extraction (mg kg l ) Inside Range 0-14 1548-6118 0-2457 Inside Average3 7 3519 753 Fe (II) Inside Standard Deviation Outside Range 4 0-18 1330 15-1692 729 0-3245 Outside Averageb 5 440 941 Outside Standard Deviation 5 313 764 Inside Range 7-19 0-1791 3167-13493 Inside Average3 11 652 5350 Fe (III) Inside Standard Deviation Outside Range 3 0-71 586 1505-3336 2542 3247-13358 Outside Averageb 14 2349 7116 Outside Standard Deviation 9 491 2492 a calculated from 22 samples b calculated from 48 samples 11%) and Fe (III) ranged from 0 to 132% (average 20%) for the 0.5N H C l extraction. For the 5N HCl extraction, RPD for Fe(II) values ranged from 0 to 131% (average 26%) and RPD for Fe(III) values ranged from 0 to 54% (average 9%). Poor precisions at higher dilutions may explain anomalous standard recoveries, especially for the more concentrated extractions. From Table 4.2, it is apparent that 0.5N HCl-extracted ferrous iron values are elevated within the black stained layer and ferric iron values for this extraction are depleted in the same zone. This trend is not observed for either iron species in the D l or the 5N H C l iron extraction. It was expected that the most dramatic differences in iron speciation would occur within the 0.5N HCl-extractable fraction as it represents less crystalline iron phases than the 5N H C l extractable iron (Heron et al., 1994) and the D l extraction is expected to 47 represent only loosely bound and iron present in the porewater. It is unknown why a trend is not observed in this latter fraction, however, it is likely due to low measured concentrations compared to the relatively poor precision in the method. These results provide support that 0.5N HCl-extractable iron phases generally represent the bulk of bioavailable iron (Lovely and Phillips, 1987). The data from iron extractions are tabulated in Tables 7.14, 7.15, and 7.16 in Appendix E. The rate of B T E X degradation, using ferric iron as the E A , can be estimated from both ferric iron depletion (1,697 mg kg"1), as wells as ferrous iron enrichment (3,079 mg kg"1), within the black stained layer: Ferric Iron Depletion 1697 mg Fe3+ ^ 1 mol Fe3+ 1700 kg dry sed. ^ 1 m3 bulk aquifer kg dry sed. 55847 mg Fe3+ 1 m3 bulk aquifer 300 L HzO x 1 mol C6H6 ^ 1 ^ 1 years = l o 2 „ 1 Q - n m o l e s C6He 30 mol Fe3+ 10 years 3.15 x l O 7 s ' LH2Os Ferrous Iron Enrichment 3079 mg Fe2+ ^ 1 mol Fe2+ 1700 kg dry sed. 1 m3 bulk aquifer kg dry sed. 55847 mg Fe2+ 1 m3 bulk aquifer 300 L H20 x 1 mol C6H6 ^ 1 ^ 1 years = g 3 1 ; < 1 Q - n moles C6H6 30molFe2+ 10 years 3 . 1 5 x l 0 7 s ' LH2Os The lower and upper bounds on the estimates for the rates of B T E X degradation from ferric iron depletion and ferrous iron enrichment are 5.12 x 10"12 moles L H2O" 1 s"1 to 7.45 x 10"11 moles L H2O" 1 s"1 and 1.19 x 10"11 moles L H 2 0" ' s"1 to 1.27 x 10"10 moles L H2O" 1 s"1, respectively. The determination of these bounds is summarized in Appendix F. 4.2.3 Microbeam Methods Figure 4.6 shows images of iron oxides obtained with the S E M . These images were taken from a small sample of the core S10 2.95-3.05 m, which is located within the black stained layer. The exact composition of the iron oxides represented could not be determined. 48 Figure 4.6. Images of iron oxide minerals obtained with S E M (a) secondary electron (SE) image of iron oxide grain from S10 2.95-3.05 m, and (b) backscattered electron (BSE) image of ilmenite (FeTi0 3) grain from S10 2.95-3.05 m. Figure 4.7 shows S E M images of sulphate minerals observed in all three core sections, located both outside the plume (S-36 2.18-2.28 m) and inside (S-10 2.95-3.05 m and S-34 1.93-2.03 m). Barite (BaSCu) was the only sulphate-containing mineral observed in the samples using S E M . Gypsum was not seen in any of the three core samples. The absence of gypsum from the two samples located within the plume may be explained by gypsum dissolution as a result of sulphate reduction, which is thought to be occurring in this area. Over time, and depending on the amount of gypsum initially present, dissolution could lead to the complete depletion of the mineral. It was anticipated that S36 2.18-2.28 m, which is located outside of the present plume may contain gypsum, however, as the core location is downgradient from the plume, it is unknown if gypsum dissolution, as a result of sulphate depletion, has occurred in this area. Figure 4.8 shows images of ferrous iron minerals observed with the SEM. Ferrous iron- bearing carbonate minerals, such as ferroan calcite, were observed in the core samples from within the plume. This was inferred as the large grains observed in Figure 4.8(a) and (b) produced EDS histograms containing high peaks for calcium and iron. As expected, no ferroan calcite was observed in the core sample located outside the plume. Small amounts of FeS minerals were found by EDS, appearing as coatings on larger 49 Figure 4.7. Images of sulphate minerals obtained with S E M (a) SE image of barite from S36 2.18-2.28 m, (b) SE image of B a S 0 4 coating on feldspar grain from S10 2.95-3.05 m, and (c) BSE image of barite from S34 1.93-2.03 m. grains in the two samples from within the plume; however, they could not be adequately imaged due to their small size. The presence of these minerals containing reduced forms of iron and sulphur in this zone support the idea that the mineral phase is a significant sink for reduced iron and sulphide within the plume. 50 Figure 4.8. Images of ferroan calcite ((Fe,Ca)C03) minerals obtained with S E M (a) BSE image of from S34 1.93-2.03 m, and (b) BSE image from S34 1.93-2.03 m. 4.3 Data Interpretation 13 1-1 A hydrocarbon degradation rate of 1.30 x 10" moles L H 2 0" s" was estimated based on the aqueous distribution of B T E X . From the solid phase data, a B T E X degradation rate by sulphate reduction of 7.33 x 10"u moles L H2O"1 s"1 was estimated based on TRS extraction data, and B T E X degradation rates by iron reduction of 1.82 x 10"11 moles L H z O 1 s"1 and 3.31 x 10"11 moles L H2O"1 s"1 were estimated based on ferric iron depletion and ferrous iron enrichment, respectively, observed in the 0.5N H C l iron extraction results. The range of the total B T E X degradation rate from the sum of these processes is 9.15 x 10"11 to 1.06 x 10"10 moles L H2O"1 s"1. From this comparison it is apparent that hydrocarbon degradation rates determined from the aqueous B T E X distribution are over two orders of magnitude lower than degradation rates predicted from the extraction data. As a result, the accumulation of ferrous iron minerals, the depletion of ferric iron minerals, and the reduction of sulphate, cannot be accounted for by the present distribution of B T E X . This discrepancy may be explained by historically higher concentrations of dissolved hydrocarbons entering the system from the source area, the past presence of L N A P L some distance along the flowpath, higher flow rates, and/or the presence of other electron donors. 51 Increasing ED availability and the rate for sulphate reduction, however, would inevitably lead to sulphate deficiency, based on the present distribution of the electron acceptor in the observed aqueous data. In addition, if sulphate is only present in the porewater (i.e. no mineralogical source), then sulphate reduction would be a mixing-controlled process and, thus, downstream from the source area could only occur where plume water can mix with sulphate-rich background water. Mechanisms for providing a sufficient amount of sulphate and facilitating mixing with the ED to support the higher sulphate reduction rate predicted by TRS accumulations include: higher flowrates, higher initial sulphate concentrations flowing through the source area, the initial presence of gypsum in the aquifer, recharge of sulphate-rich water, and/or water table fluctuations to enhance vertical mixing. In contrast to sulphate, there is a large source of ferric iron present in the mineral phase and solid phase data from Fe(III) depletion indicates that reductive iron dissolution is occurring at a rate consistent in magnitude to that for Fe(II) precipitation. As a result, higher iron reduction rates would not bring about ferric iron deficiency. 4.4 Data Integration and Simulation Reactive transport modelling was used to evaluate the present conceptual model of the site. Simulation A was developed and calibrated exclusively to the aqueous dataset. The simulated results from this scenario resulted in a good agreement with the observed aqueous concentrations of the major redox-active species (Figure 4.9). Inflowing B T E X was specified at 8 mg L" 1 , based on the highest concentrations observed during the October 2004 sampling event. Simulated B T E X concentrations showed a similar distribution to the observed concentrations (Figure 4.9(a)). The incoming sulphate concentration was specified to be 96 mg L" 1 , which was calibrated to the observed data and is generally consistent with the variable concentrations observed at 93-P-34 (Figure 4.9(b)). A background sulphate concentration of 1,250 mg L" 1 was specified based on concentrations observed at the background well 03-P-07. Sulphate increased near the leading edge of the plume where dispersive mixing with sulphate-rich background water is greatest. 52 (a) A w if* -2 9.2 0 SCALE 0.15 (m) 2 3.1 7.00 4 - -47 (b) A A ' Sulphate Img/L) Oct 04 0 SCALE 0.2 887 . I ; \ 700 ) (m) 80.3 ^y 5.4 ' 4 r——^ \ V60^'?800 2 ~A — \ 400 50 I i • • • 221 v329 100 .1000 150 _ J (c) A A ' (d) A o SCALE (m) _ 0.5N HCl-Extractable Fe(lll) (mg/kg) ~~2i6i ! 2215' 2056' S i * - — ~ wat 2014. A ' 2816. 3038' -*>-.-...~.tv.? 1664. 2916. 3281. 2438. 2360' 240ft 100 1! (e) A SCALE (m) \ Total Reduced S(mg/kg) \t Soil Staining ^ — = : = ! = » a - 5 » _ tt ' 725 • 823 ̂ "" ^*Srr - — -M2_! A ' 20 22 19 • 13 • - r m — 16 • 18 . 15 • 15 • 16 . 16 . 23 . 50 _ 1 _ 150 150 150 150 150 Figure 4.9. Observed (left) and results from Simulation A (right) (a) C 6 H 6 * , (b) sulphate, (c) iron in mg L" ', (d) Fe(III), and (e) S2" in mg kg"1 for October 2004. 53 Effective maximum reaction rates were calibrated to reproduce the observed distribution of chemical species. Tables 4.3 and 4.4 summarize the reaction parameters used in the simulations. Table 4.3. Reaction parameters used in the simulations Electron Acceptor Units Fe(OH) 3 SO4 2" o 2 Maximum effective reaction rate constant Simulation A (ki)b mol L " V 2.25 x ICT 1 3 a ' c 4.35 x 10"12c 1.00 x 1 0 1 0 d Maximum effective reaction rate constant Simulation AS (kj)b mol L/'s" 1 2.4 x 10"1 2 a' c 3.4 x 10"U c 1.00 x 10-' 0 d Half-saturation constants (Ki/) Fe(OH) 3 S0 4 2 " mol L" 1 mol L" 1 - 1 x i t r 3 c - mol L" 1 5 x 10"4e 5 x 10"4e 5 x 10"4e o 2 mol L" 1 - - 3 x 10"6f Inhibition constants (Ky1) o 2 mol L" 1 3 x 10"5f 3 x 10"5f - Fe(OH) 3 mol L" 1 - - - S0 4 2 " mol L" - - - a L = L of bulk sediment b normalized to electron donor c calibrated d estimated to fall within range of literature values reported in Mayer et al. (2001) e estimated to be approximately 1.5 times the value for C H 2 0 from MacQuarrie and Sudicky (2001) f From Mayer etal. (2001) The half-saturation coefficients (K s) used in the simulations were consistent with the values used by Mayer et al. (2001), with the exception of the coefficient used for sulphate. The Ks value of 1 x 10"3 mol L" 1 for sulphate was specified to be an order of magnitude higher than that used by Mayer et al. (2001) after Boudreau and Westrich(1984). The half-saturation coefficients for benzene in all degradation reactions were 5 x 10"4 mol L" 1 , compared to 3.3 x 10"4 mol L" 1 for C H 2 0 by MacQuarrie and Sudicky (2001). Incoming benzene concentrations (1 x 10"4M) were always lower than 54 Table 4.4. Dissolution/precipitation rates used in the simulations Solid Phase Units Maximum effective reaction rate constant (kj) Simulation A Simulation AS Mackinawite mol L " ' V 1.5 x 10"" 2 x 10"'5 Fe(OH) 3 mol L" l as"' 6.74 x 10"'2 7.2 x 10"" Gypsum mol U ' Y ' - 1.6 x 10"" Calcite mol L ' V 1 x 10"'° 1 x 10"'° Siderite mol"' L 2 H 2 0 - 1 x 10"2b L"' bulk s"' a L = L of bulk sediment b 2nd-order rate expression the benzene K s , resulting in reaction rates approaching l s t-order kinetics throughout the simulation. In addition, incoming sulphate concentrations (1 x 10" 3M) are equal to the K s for sulphate reduction and background concentrations (1.3 x 10" M) were over an order of magnitude higher. As a result, reaction kinetics for sulphate reduction approach higher orders near the inflow boundary and depend less on the K s for sulphate near the fringes of the plume where sulphate is abundant. Aqueous ferrous iron concentrations are controlled by the difference between the rate of reductive dissolution of ferrihydrite and the precipitation of mackinawite, which is controlled by the production of sulphide by i sulphate reduction. Iron concentrations increase near the inflow boundary where sulphate reduction is slowed due to low sulphate inflow. Near the fringes of the plume, where mixing with background water is greatest, the rate of sulphate reduction is slightly faster relative to reductive iron dissolution, resulting in a higher precipitation rate for mackinawite and lower iron concentrations (Figure 4.9(c)). In Simulation A, K s values generally exceeded the respective species concentrations resulting in maximum reaction rates that were always considerably less than the maximum effective rate constants. As a result, the actual (i.e. absolute) maximum reaction rates, obtained from the model output, are compared to literature values for this scenario. Table 4.5 summarizes the maximum actual reaction rates normalized to the E A for both scenarios. 55 Table 4.5. Maximum actual reaction rates, normalized to E A , from model simulations Reaction Units Maximum actual reaction rate (Rj) Simulation A Simulation AS Aerobic Respiration mol L"'s"' 2.91 x 10 1 2 1.77 x 10"" Sulphate Reduction mol L ' s 1 1.23 x 10"12 1.19 x 10"10 Iron Oxide Reduction mol L " V 2.89 x Iff 1 2 2.34 x ICT10 The maximum actual sulphate reduction rate, normalized to sulphate, that was obtained 12 1 1 for Simulation A was 1.23 x 10" mol L" s" . This value was considerably lower than literature values for porous aquatic sediments, reported and calculated by Mayer et al. (2001). For comparison, Mayer et al. (2001) had a calibrated effective rate constant of 4.03 x 10"1 2mol L ' V 1 for phenol oxidation, however, this rate was found to be slower than the compiled literature values, which was thought to be attributable to toxicity effects from high contaminant concentrations as phenol concentrations were present in concentrations of g L" 1 . A much faster rate of 2.9 x 10"9mol L ' V 1 for sulphate reduction in porous aquatic sediments was found by Roychoudhury et al. (1998). The calibrated rate for iron oxide dissolution, was also found to be over an order of magnitude slower than other sites. This could be attributed to the fact that the effective reductive dissolution rate for iron oxide is quite variable and is strongly controlled by the stability of the oxide (Postma and Jakobsen, 1996). It is possible that a more stable form of iron oxide is present within the aquifer at this site. The calibrated rate of ferrihydrite dissolution of 2.89 x 10"12 mol L ' V 1 (8.67 x 10"13 mol L" 1 bulk s"1) can be compared to the rate for Fe(II) production by reductive goethite dissolution by Mayer et al. (2001) of 7.53 x 10"12 mol L ' V 1 and the range calculated by Mayer et al. (2001) after Ludvigsen et al. (1998) of 1.5 x 10"10 - 5.8 x 10"10 mol L" 1 s"1. The maximum effective rate constant for aerobic respiration was specified to fall within the range of accepted values. The actual maximum reaction rate is considerably slower than this value although the rate of aerobic respiration had little effect on the shape of the inorganic and organic parameter plots. 56 Table 4.6 summarizes the maximum actual dissolution and precipitation rates used in the simulations. Mineral dissolution and precipitation rates for the Simulation A were Table 4.6. Maximum actual dissolution/precipitation rates from model simulations Solid Phase Units Maximum actual reaction rate (Rj) Simulation A Simulation AS Mackinawite mol L"' as"' 8.18 x 10"12 3.82 x 10"" Fe(OH) 3 mol L ' V 1 Table 4.5 Table 4.5 Gypsum mol L" l as"' - 1.6 x 10"" Calcite mol L / ' Y 1 1.18 x 10"'2 5.68 x 10"" Siderite mol L" 1 V 1 - 3.64 x 10'" a L = L of bulk sediment generally consistent with literature values. The maximum actual precipitation rate, of 12 1 1 8.18 x 10" mol L" bulk s" for mackinawite was slightly higher than the value used by Hunter et al. (1998) of 1.9 x 10" 1 2 mol dnfV1, and that found by Van Cappellen and Wang (1995) of 1.3 x 10" 1 3 mol dm" 3 s, and slightly lower than that of Matsunaga et al. 11 -3 1 (1993) of 1.0 x 10" mol dm" s" . These rates, however, are irrelevant because the rate- determining step for mackinawite formation in the current simulation is defined by the rate of sulphate reduction. For mass balance estimates, the total contaminant mass input was determined based on the approximate width of the plume being 75 m near the inflow boundary at 93-P-34. Based on this assumption, a total hydrocarbon mass of 34 kg was degraded in the Simulation A . Based on equations (5), (6), and (7), aerobic respiration was responsible for 11%, sulphate reduction accounted for 71%, and iron reduction provided 18% of the total degraded mass. Over the simulation time of 30 years, 84% of the contaminant mass that was assumed to have entered the system was degraded in this scenario. Once a reasonable fit between the simulated and observed aqueous data was obtained, accumulated sulphide and ferrous iron and depleted ferric iron were compared to the extraction data (as T R S and as measured Fe(II) and Fe(III) from the 0.5N H C l 57 extraction). As anticipated, simulated ferrous iron and sulphide and depleted ferric iron are considerably lower (by at least two orders of magnitude) than those obtained from extraction data (Figure 4.9(d) and (e)). The observed average TRS accumulation within the plume is 490 mg kg"1 in the zone of black staining compared to a simulated average of approximately 2 mg kg"1 for the upper 2.5 m, and the first 100 m, of the model domain. Similarly, based on 0.5N H C l iron extraction data, Fe(III) was depleted by 1,697 mg kg"1 in the black stained zone. The average simulated value for ferrihydrite depletion in the upper 2.5 m, and the first 100 m, of the model domain was 10 mg kg"1. These results suggest that the conceptual model used for Simulation A is incomplete. Based on these findings, a revised conceptual model of the site was developed that attempts to integrate the extraction data with the existing aqueous dataset. The mismatch between observed and simulated iron oxide depletion and ferrous iron and sulphide accumulation imply much higher rates of hydrocarbon degradation by iron and sulphate reduction; however, current observed B T E X inputs are much too low to facilitate these rates. Consequently, hydrocarbon source concentrations in the past are expected to have been much higher, suggesting the depletion of soluble contamination upgradient from 93- P-34. This concept of a stable or shrinking plume is probable, based on the relative present distribution of aqueous B T E X and ferrous iron and sulphide minerals. In addition to ED deficiencies, current observed aqueous sulphate concentrations are too low to account for the accumulation of sulphides obtained through the extractions. A conceptual model that possibly can explain these discrepancies includes increased hydrocarbon loadings in the past (higher initial inflow concentrations of BTEX) combined with increased sulphate availability (increased sulphate inflow concentrations and a mineralogical source of sulphate) and enhanced mixing of sulphate and B T E X (recharge). This conceptual model has been implemented in Simulation AS and two additional (intermediate) scenarios are presented (Appendix G) to demonstrate the stepwise process used to arrive at the results presented here. The first of these intermediate scenarios involved Simulation A with recharge and the second integrated higher iron and sulphate reduction rates with higher initial B T E X concentrations and included gypsum as an additional source of sulphate as well as higher background sulphate concentrations. The 58 initial presence of gypsum in the aquifer is not an unreasonable assumption as the calculated saturation indices for gypsum were close to 0. Simulation AS included the changes used in the intermediate scenarios as well as transient inflow boundary conditions to simulate decreasing source concentrations. Simulation AS used the same parameters as Simulation A but included higher initial inflow and background concentrations of sulphate and higher inflow concentrations of B T E X (at a solubility value of 2.3 x 10"2 M). Recharge along the length of the domain was also included in Simulation AS, as it was thought to better reproduce site conditions. Table 4.7 shows the dissolved-phase parameters used in Simulation AS. Table 4.7. Hydrochemical data used in Simulation AS Inflow (moles L" 1 unless otherwise noted)6 Parameter B ackground/Recharge pH S0 4 2" HCCV C a 2 + C^Hfi 6.68° 3.1 x lO' 2* 1.2 x l f J 2 a 8.1 x 10"3b same as Simulation A 7.35 variable same as Simulation A 8.0 x 10 - 4 variable a From 03-P-07 b From 03-P-08 c From 86-7B d Equilibrated with respect to calcite e From 93-P-34 and associated M W , M L , and DP wells Parameters that are omitted from this table are the same as those used in Simulation A. A transient transport boundary condition was placed at the inflow boundary where B T E X and sulphate concentrations decreased with time to simulate a depleting source zone with respect to hydrocarbons and upgradient aqueous sulphate and gypsum consumption in the source zone. After 15 years the B T E X concentration was decreased to 1.7 x 10" M , after 20 years it was decreased to 1.5 x 10"3 Mand sulphate was decreased to 5 x 10"3 M , and after 29 years inflowing B T E X was decreased to 4 x 10"4 M . Siderite was included in 59 Simulation AS to account for ferrous iron accumulation observed in the 0.5N H C l extraction above that assumed to be bound to TRS. To better fit the dissolved iron distribution in this scenario, siderite precipitation was considered according to the following second-order rate expression: Rsid=KJFe2+][COl-] (14) Although expression 14 does not contain any thermodynamic constraints, no significant siderite precipitation occurred for undersaturated conditions. Rates for degradation, redox reaction, and mineral dissolution and precipitation were determined through calibration of the model to the mineralogical and aqueous data and compared to rates obtained through other studies at other sites. Since ferrous iron and sulphides are elevated in the solid-phase up to a distance of over 150 m along the flowpath, and a non- retarded flow velocity of approximately 4 m year"1 over a time span of 30 years predicts the maximum plume length to be 120 m, it is likely that the original source area extended beyond 93-P-34 or that the flow velocity is/was faster than that estimated. To approximate the initial presence of L N A P L near the inflow boundary, a benzene concentration at solubility was assumed to be present throughout the first 50 m and the upper 1 m of the flow domain in Simulation AS. This assumption is supported by hydrocarbon sheen observed at 93-P-34 and 93-P-35 during sampling events. In addition, seasonal water table fluctuations of up to ±0.5 m observed during recent sampling events suggest a i m deep zone of mixing, where B T E X and sulphate are initially present, is a reasonable assumption. Recharge and seasonal water table fluctuations likely play a significant role in facilitating plume fringe mixing between B T E X and sulphate. In addition, recharge water may supplement the aquifer with sulphate from the vadose zone. Figure 4.10 shows the domain dimensions and boundary conditions for Simulation AS. Using the revised conceptual model, it was possible to reproduce both observed dissolved concentrations and extraction data (Figure 4.11). The distributions and values of simulated B T E X , sulphate, and iron were similar to those observed (Figure 4.11(a) to (e). In contrast to Simulation A, both the simulated Fe(III) depletion (compare with observed average Fe(III) values of 652 mg kg"1 in the zone of soil staining) and sulphide 60 Recharge Boundary Flow: q= 5 mm/year Transport: Cauchy C = Ci2 | o C = Cu w 50 Inflow Boundary Flow: h= 10 m Transport: Cauchy C = C L 09 fc5 Outflow Boundary Flow: h= 7.82 m Transport: Neumann C = Cn 0 50 100 -F10 150 150 Lower Boundary Flow: no flow Transport: Neumann Figure 4.10. Two dimensional domain showing flow and transport boundaries, initial conditions, and discretization parameters for the Simulation AS. accumulation (compare with 506 mg kg" 1 in the zone of soil staining) agree well with the extraction data. In addition, average siderite accumulations in the plume of approximately 1,350 mg kg" 1 (not shown) compared reasonably well to the difference between average Fe(II) accumulations from the 0.5N H C l extraction (3,079 mg kg"1) and average T R S concentrations (assumed to be sulphides bound with ferrous iron, giving a T R S accumulation of 854 mg kg" 1 in terms of Fe(II)), which was 2,225 mg kg-'FeOLI) (4,616 mg kg" 1 siderite). The remaining ferrous iron may be present as ferroan calcite or ion-exchangeable iron, which were not considered in the simulations. The calibrated maximum effective reaction rates for sulphate and iron reduction (1.19 x 10" 1 0 mol L " 1 s"1 and 2.34 x 10" 1 0 mol L" 1 s"1, respectively, normalized to the E A and 3.18 x 10"1 1 mol L" 1 s" 1 and 7.80 x 10" 1 2 mol L" 1 s"1, normalized to the E D ) were two orders of magnitude higher than those obtained in Simulation A and are consistent with literature rates. The maximum effective rate constant for aerobic respiration (1 x 10" 1 0 mol L ' V 1 ) was the same as that used for Simulation A , and was specified to fall within the range of observed literature values. Again, the rate of aerobic respiration is a mixing controlled process, and the maximum simulated rate is almost an order of magnitude slower. In Simulation 61 (*) A 5 ^ A ' (b) A A ' SCALE (m) . Sulphate (mg/L) Oct 04 0.2 887 80.3 5.4 47 i i i ^ i > " — — J " • S7 - ^ 200 ) \ 400 y^°->eoo '202 0 J i i _ .1000 50 100 150 1 • • 1 * I I 1 1 (c) A A ' (d) A A ' -2 0 SCALE 0.5N HCl-Extractable Fe(lll) (mg/kg) -**|8L__ 2215' 2056' - Soil Staining ™ " - ^ ^ ^ ^ H i f e s ^ 2 0 t t " 174 • 724' " ' • s f c n ; — . __v' 1833. (m) 2 2009- 2384' 2816' 3038' 2916' 2438' 7 1664* 3281. 2360' 4 2408. -47 0 50 , , l . . 100 150 (e) A A ' O p Soil Staining **" SCALE (m) , Total Reduced S (mg/kg) 1 L _ L _ _ 18 • 14 • 14 • 15 • Bjsr 50 100 I • 1 • 1 I • • 0 2 4 : 6 : >1000 50 100 Figure 4.11. Observed (left) and results from Simulation AS (right) (a) C 6 H 6 * , (b) sulphate, (c) iron in mg L" 1 , (d) Fe(III), and (e) S2" in mg kg"1 for October 2004. 150 150 150 62 AS, the maximum reaction rates approached the maximum effective rate constants because sulphate and B T E X concentrations greatly exceeded their respective K s values for much of this scenario, resulting in reaction rates that approached zero-order kinetics. As with Simulation A, mass balance estimates were made using model outputs from Simulation AS, again assuming that the width of the source area near the inflow boundary is approximately 75 m. An estimated 7 tonnes of hydrocarbons as B T E X was degraded in Simulation AS. Of this total mass degraded, sulphate reduction was responsible for 78%, iron reduction was responsible for 21%, and aerobic respiration accounted for less than 1%. Table 4.8 summarizes the maximum reaction rates for sulphate reduction, iron oxide reductive dissolution, and benzene degradation by these two processes in relation to the sources for these data. Table 4.8. Comparison of maximum rates of E A consumption and B T E X degradation for sulphate and iron reduction from various data sources Sulphate reduction (moles L" s") Iron oxide reduction (moles L" s") Data Source normalized to normalized to E A E D E A E D Aqueous B T E X 4.88 x 10"1J 1.30 x 10"13 3.90 x 10" u 1.30 x 10"13 Simulation A 1.23 x 10"IZ 3.27 x 10"13 2.89 x 10"12 9.62 x 10"14 Fe (III) E x t r a c t i o n s 2.75 x 10"10 7.33 x 10' 1 1 5.46 x 10"1U 1.82 x 10"" Fe (II) 9.93 x 10"'u 3.31 x 1 0 " Simulation AS 1.19 x 10 1 U 3.18 x 1 0 " 2.34 x 10"1U 7.80 x 10"" As expected, the rates for the Simulation A are generally consistent with those estimated from the aqueous distribution of B T E X (Section 4.1). In addition, the determined rates for Simulation AS are similar to the zero-order rates (for CeH 6 degradation and E A reduction) calculated from observed sulphide accumulations (7.33 x ICT11 mol L" 1 s"1 and 2.75 x 10"10 mol L" 1 s"1), ferric iron depletions (1.82 x 10"11 mol L" 1 s"1 and 5.46 x 10"10 mol L ' 1 s"1), and ferrous iron accumulations (3.31 x 10"11 mol L" 1 s"1 and 9.93 x ICT10 mol L" 1 s"1) (Sections 4.2.1 and 4.2.2). 63 5 S U M M A R Y A N D C O N C L U S I O N S Degradation of petroleum hydrocarbons at C O R O N A Site 3 was investigated based on pre-existing data and after supplementing the dataset with additional aqueous-phase and solid-phase data obtained in this study. The existing dataset for the site was comprised of dissolved-phase hydrochemical data from four recent sampling events spanning twelve months and hydrogeological data in the form of water level measurements and slug tests from the individual piezometers. During this study, additional pore water samples were collected from the existing wells in conjunction with sediment coring and sampling conducted near select wells to supplement the aqueous data. Water samples were analyzed for dissolved species relevant to the study and a variety of solid-phase analyses were undertaken on sections from the core samples. These sediment analyses included sulphide extractions, iron extractions, and S E M imaging. Mass balance calculations, based on redox reaction stoichiometrics and dissolved B T E X distributions, were compared to those calculated from the distribution of the diagenetic and dissolved primary minerals from select mineral extractions. The difference between these two estimates for biodegradation suggested that historical estimates of rates at this site cannot be accurately determined using only the present distribution of dissolved parameters. Reactive solute transport modelling was also applied to the dataset to determine degradation rates, and qualitatively assess the applicability of modelling a typical industry dataset. The two different scenarios were investigated in the modelling to keep track of the various reaction and transport processes occurring at the site including microbially-mediated degradation of dissolved hydrocarbons by multiple electron acceptors, secondary mineral precipitation, and primary mineral dissolution. The results from model simulations confirmed mass balance calculations and provided possibilities for revisions to the existing conceptual model of the site. Due to the lack of historical aqueous chemical data existing for the site, solid-phase chemistry was essential in constraining the model. This study set out to establish the processes controlling N A at this site and the value of supplementing aqueous data with solid-phase data in assessing N A . From the 64 distribution of iron and sulphate in the porewater and the considerable accumulation of ferrous iron and sulphide in the solid phase, ferric iron and sulphate reduction were determined to be the dominant T E A P s at the site. In the results of Simulation A S , these processes contribute respectively to 21% and 78% of total hydrocarbon degradation. It is likely that these processes occur concomitantly as high concentrations of sulphide and iron are not measured in the porewater and the distribution of sulphide and ferrous iron minerals is fairly consistent within the sediment staining. It is evident from this work that it may be insufficient to appropriately evaluate biodegradation based only on the aqueous distribution of dissolved species, without a temporal resolution in data spanning the lifetime of the plume. In contrast, depending on the dominant T E A P s contributing to biodegradation, actual historical rates can be inferred by integrating solid-phase data with aqueous data. The discrepancy between the degradation rates obtained in this study implies that the contribution of biodegradation to M N A is greatly underestimated when considering only the existing aqueous dataset. The importance of considering solid- phases may be especially significant at C O R O N A Site 3 where sulphate reduction and iron-oxide reductive dissolution appear to have played such a large role in facilitating hydrocarbon breakdown. In contrast to this site, i f the dominant T E A P s were aerobic respiration, denitrification, or methanogenesis, the rate of biodegradation may be sufficiently determined without the use of mineralogical data; however, the relative importance of sulphate and iron oxide reduction would still not be known without a comprehensive aqueous dataset or the inclusion of solid-phase data. Other objectives of this study were to determine the value of using multicomponent reactive transport modelling as a data interpretation tool and qualitatively assess the applicability of modelling with a typical industry dataset to evaluate N A processes. Using multicomponent reactive transport modelling as a data interpretation tool in this study provided a method for integrating heterogeneous datasets, and enabled the exploration of various conceptual models. The spatial and temporal resolution in aqueous data at C O R O N A Site 3 is considered typical of most industrial sites with the scale of petroleum hydrocarbon contamination of groundwater observed. Since Simulation A is constrained entirely by the original aqueous dataset, it is apparent that this information 65 alone is insufficient to determine historical degradation rates at this site. To better approximate these rates, it would be important to collect aqueous data with a higher spatial and temporal resolution and/or collect both aqueous and solid phase data (particularly if iron and sulphate reduction are found to significantly contribute to hydrocarbon biodegradation). Due to the high cost and considerable time required; however, mineralogical extractions are rarely utilized in environmental industrial applications and, in many cases, it may be infeasible to collect aqueous data spanning the lifetime of contamination. Through integration of the solid and aqueous-phase data, reactive transport modelling has been useful in revealing inconsistencies in the conceptual model and was especially valuable in pointing out the need for a multi-phased approach to M N A . With an integrated approach to data interpretation, a quantitative assessment of N A can be made both for the present and historically. The information from the integrated datasets suggested that historically higher rates of degradation have occurred at this site and, thus, that dissolved hydrocarbon concentrations were likely much higher in the past. It is, therefore, probable that the soluble contaminant initially present in the source zone has been depleted and that the dissolved plume is retreating. The concept of a shrinking plume appears to be supported by the relative present distribution of B T E X and the footprint of accumulated secondary minerals. This information is significant as it suggests that future plume growth is unlikely and that there is little chance for downgradient contamination due to B T E X . It would not be possible to make this comparison using the existing aqueous dataset alone. The high background sulphate concentrations at CORONA Site 3 provide a significant potential for oxidation, making the site somewhat unique. At other sites, it has been observed that other destructive processes such as methanogenic degradation play a larger role in contributing to N A as electron acceptors such as iron and sulphate are less plentiful and become depleted. Although it has not been quantified, there is likely a substantial capacity for future degradation at this site as the sources of sulphate and ferric iron have not yet been depleted. 66 The value of supplementing aqueous data with solid phase data is that mineralogy tells a different story about total hydrocarbon degradation. In particular, maximum sulphate and iron reduction rates were determined to be 1.19 x 10" 1 0 mol L / V 1 and 2.34 x 10" 1 0 mol L" 1 s"1, respectively when integrating the solid-phase dataset. These rates were an order of magnitude larger than those of 1.23 x 10" 1 2 mol I / Y 1 and 2.89 x 10" 1 2 mol L " 1 s"1, respectively, determined using only the aqueous dataset. Predicting the history of the contaminant plume using these latter values would produce erroneous results. 67 6 R E F E R E N C E S Appelo, C. A . J., and D. Postma, Geochemistry, groundwater and pollution 2na edition, A. A . Balkema, Rotterdam, 2005. American Society for Testing and Materials (ASTM), Standard Guide for Remediation of Ground Water by Natural Attenuation at Petroleum Release Sites, E1943-98, 2004. Bassett, J., R. C. Denney, G. H . Jeffery, and J. Mendham, editors, Vogel's Testbook of Quantitative Inorganic Analysis Including Elementary Instrumental Analysis, 4th edition, Longman, London, 1978. Berner, R.A., Iron sulfides in Pleistocene deep Black Sea sediments and their paleooceanographic significance. In: The Black Sea-Geology, Chemistry and Biology, Am. Assoc. Pet. Geol, 20, 524-531, 1974. Berner, R.A., Distribution and diagenesis of sulphur in some sediments from the Gulf of California, Mar. Geol, 1, 117-140, 1964. Boudreau, B. P., and J. T. Westrich, The dependence of bacterial sulfate reduction on sulfate concentration in marine sediments. Geochim. Cosmochim. Acta, 48(12), 2503-2516, 1984. Brun, A. , and P. Engesgaard, Modelling of transport and biogeochemical processes in pollution plumes: literature review and model development, f. Hydrol., 256 (3-4), 211-227,2002. Canfield, D. E., R. Raiswell, J. T. Westrich, C. M . Reaves, and R. A . Berner, The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales, Chem. Geol., 54, 149-155, 1986. 68 Christensen, T. H. , P. L . Bjerg, S. A . Banwart, R. Jakobsen, G. Heron and H-J. Albrechtsen, Characterization of redox conditions in groundwater contaminant plumes, / . Cont. Hydrol, 45(3-4), 165-241, 2000. Clesceri, L . S., A . E. Greenberg, and A. D. Eaton, editors, Standard Methods for the Examination of Water and Wastewater, 20th edition. American Public Health Association, American Water Works Association, and Water Environment Federation, Washington, D C , 1998. CRC Handbook of Chemistry and Physics, CRC Press L L C , 2004. Curtis, G. P., Comparison of approaches for simulating reactive solute transport involving organic degradation reactions by multiple terminal electron acceptors, Computers and Geosciences, 29(3), 319-329, 2002. Gibbs, C. R., Characterization and application of FerroZine iron reagent as a ferrous iron indicator, Anal. Chem., 48(8), 1197-1201, 1976. Gibbs, M . M . , A simple method for the rapid determination of iron in natural waters, Water Res. 13, 295-297, 1979. Geig, L . M . , R. V. Kolhatkar, M . J. Mclnerney, R. S. Tanner, S. H . Harris Jr., K . L . Sublette, and J. M . Suflita, Intrinsic bioremediation of petroleum hydrocarbons in a gas condensate-contaminated aquifer, Environ. Sci. Technol. 33(15), 2550-2560, 1999. Herbert, R. B. J., S. G. Benner, and D. W. Blowes, Solid phase iron-sulfur geochemistry of a reactive barrier for treatment of mine drainage, Appl. Geochem. 15(9), 1331- 1343, 2000. 69 Heron, G., C. Crouzet, A . C. M . Bourg, and T . H . Christensen, Speciation of Fe(II) and Fe(III) in contaminated aquifer sediments using chemical extraction techniques, Environ. Sci. Technol. 28(9), 1698-1705, 1994. Hunter, K. S., Y . Wang, and P. Van Cappellen, Kinetic modeling of microbially-driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry, J. Hydrol, 209(1-4), 53-80, 1998. Kao, C. M . , and J. Prosser, Evaluation of natural attenuation rate at a gasoline spill site, J. Hazardous Materials, 82(3), 275-289, 2001. Kennedy, L. , J. W. Everett, and J. Gonzales, Aqueous and mineral intrinsic bioremediation assessment: natural attenuation, J. Environ. Engineering, 130(9), 942-950, 2004. Kennedy, L. , J. W. Everett, K. J. Ware, R. Parsons, and V. Green, Iron and sulphur analysis methods for natural attenuation assessments, Biorem. J.,2(3&4), 259- 276, 1998. Khan, F. I., and T. Husain, Evaluation of petroleum hydrocarbon contaminated site for natural attenuation using ' R B M N A ' methodology, Environ. Modelling and Software, 18(2), 179-194, 2003. Kolthoff, I. M . , and E. B. Sandell, Textbook of Quantitative Inorganic Analysis, The Macmillan Company, New York, 1963. Lee, J-Y., and K - K . Lee, Viability of natural attenuation in a petroleum-contaminated shallow sandy aquifer, Environ. Polution, 126 (2), 201-212, 2003. Lovely, D. R., and E. P. Phillips, Rapid assay for microbially reducible ferric iron in aquatic sediments, App. Environ. Microbiol, 53 (7), 1536-1540, 1987. 70 Ludvigsen, L. , H . -J. Albrechtsen, G. Heron, P. L . Bjerg, and T. H . Christensen, Anaerobic microbial redox processes in a landfill leachate contaminated aquifer (Grindsted, Denmark), / . Cont. Hydrol, 33(3-4), 273-291, 1998. MacQuarrie, K. T. B., and E. A . Sudicky, Multicomponent simulation of wastewater- derived nitrogen and carbon in shallow unconfined aquifers I. Model formulation and performance, / . Cont. Hydrol, 47(1), 53-84, 2001. Matsunaga, T., G. Karametaxas, H . R. von Gunten, and P. C. Lichtner, Redox chemistry of iron and manganese minerals in river-recharged aquifers: a model interpretation of a column experiment, Geochim. Cosmochim. Acta, 57(8), 1691- 1704,1993. Mayer, K. U. , E. O. Frind, and D. W. Blowes, A numerical model for the investigation of reactive transport in variably saturated media using a generalized formulation for kinetically controlled reactions, Water Resour. Res. 38(9), 1174-1194, 2002. Mayer, K . U . , S. G. Benner, E. O. Frind, S. F. Thornton, and D. L . Lerner, Reactive transport modeling of processes controlling the distribution and natural attenuation of phenolic compounds in a deep sandstone aquifer, J. Cont. Hydrol, 53(3-4), 341-368, 2001. Morse, J. H . and D. Rickard, Chemical dynamics of sedimentary acid volatile sulphide, Environ. Sci. Technol. 38(7), 131A-136A, 2004. National Research Council, Natural Attenuation for Groundwater Remediation, Natl. Acad. Press, Washington, D . C , 2000. National Research Council, Alternatives for ground water cleanup, Natl. Acad. Press, Washington, D . C , 1994. 71 Parkhurst, D. L. , and C. A. J. Appelo, Users guide to PHREEQC (version 2)-A computer program for speciation, batch reaction, one-dimensional transport, and inverse geochemical calculations, Technical Report Water-Resources Investigations, 99- 4259, 1999. Postma, D., Jakobsen, R., 1996. Redox zonation: equilibrium constrains on the Fe(III)/S04-reduction interface, Geochim. Cosmochim. Acta, 60, 3169-3175. Roychoudhury, A . N . , Viollier, E., and Van Cappellen, P., A plug flow-through reactor for studying biogeochemical reaction in undisturbed aquatic sediments. Applied Geochem. 13(2), 269-280, 1998. Stookey, L . L. , Ferrozine-a new spectrophotometric reagent for iron, Anal. Chem., 42(7), 779-781, 1970. Stumm, W., and J. J. Morgan, Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, John Wiley and Sons,- New York, 1996. Tessier, A. , and P. G. C. Campbell, Comments on the testing of the accuracy of an extraction procedure for determining the partitioning of trace metals in sediments, Anal. Chem., 60(14), 1475-1476, 1988. Tessier, A. , P. G. C. Campbell, and M . Bisson, Sequential extraction procedure for the speciation of particulate trace metals, Anal. Chem., 51(7), 844-851, 1979. Tucillo, M . E., I. M . Cozzarelli, and J. S. Herman, Iron reduction in the sediments of a hydrocarbon-contaminated aquifer, Applied Geochem., 14(5), 655-667, 1999. U.S. Environmental Protection Agency, How to evaluate alternative cleanup technologies for underground storage tank sites: a guide for corrective action 72 plan reviewers, EPA 510-R-04-002, Washington, D . C : Office of Solid Waste and Emergency Response, 2004. Van Cappellen, P., and Y. Wang, Metal cycling in surface sediments: modeling the interplay of transport and reaction. In: Allen, H.E. (Eds.), Metal Contaminated Aquatic Sediments., Ann Arbor Press, Chelsea, MI, pp. 21-64, 1995. Van Stempvoort, D. R., J. Armstrong, and B. Mayer, Injection of sulphate to enhance bioremediation of gas condensate in cold groundwater, Manuscript submitted to J. Cont. Hydrol, 2006. Watson, I. A. , S. E. Oswald, S. A. Banwart, R. S. Crouch, and S. F. Thornton, Modeling the dynamics of fermentation and respiratory processes in a groundwater plume of phenolic contaminants interpreted from laboratory- to field-scale, Environ. Sci. Technol. 39(22), 8829-8839, 2005. Wiedemeier, T. H. , H. S. Rifai, C. J. Newell, and J. T. Wilson, Natural Attenuation of Fuels and Chlorinated Solvents in the Subsurface, John Wiley and Sons, New York, 1999. 73 7 A P P E N D I C E S 7.1 Appendix A: Laboratory Data Sheets Maxxam and A L S have laboratories accredited by the Standards Council of Canada and use up to date methods for analyses, based on industry-accepted methods. The data sheets show the methods used for each parameter analysis technique which was employed to obtain the values given. In addition, the quality control procedures used by the laboratories are demonstrated in the data sheets. 74 Ma)0(a inn KOMEX INTERNATIONAL LIMITED Y / A n . l y t l « » I n c #100,4500 - 16 AVE. N.W. CALGARY, AB CANADA T3B 0M6 Attention: JAMES ARMSTRONG Report Date: 2004/10/29 Your P.O. '#: A02123 Your Project #: C50030601, MNA MONITORING Site: SITE 3 ANALYTICAL REPORT MAXXAM JOB #: A425456 Received: 2004/10/21,12:05 Sample Matrix: Water # Samples Received: 25 Analyses Quantity Date Extracted Date Analyzed Laboratory Method Analytical Method Alkalinity, carbonate and bicarbonate 23 N/A 2004/10/22 CAL SOP-0071.EDM Titration SOP-0027 BTEX and purgeables (C6-C10-BTEX) (MSD) 25 N/A 2004/10/22 CAL SOP# 0048 GC/MS-PUR Chloride (IC) 23 '.• N/A 2004/10/22 CAL SOP# 0089 Conductivity 23 N/A 2004/10/22 CAL SOP-0073, CAL Electrode SOP-0071.EDM SOP-0029 Hardness 23 N/A 2004/10/22 CAL WI# 000013 Ion Balance 23 N/A 2004/10/22 CAL WI#0013 Nitrate + Nitrite-N (calculated) . 23 2004/10/22 2004/10/22 CAL WI#0013 Nitrogen, (Nitrite, Nitrate) by IC 18 N/A 2004/10/22 CAL SOP# 0090, IC Nitrogen, (Nitrite, Nitrate) by IC 5 N/A 2004/10/25 CAL SOW 0090, IC pH (Alkalinity titrator) 23 N/A 2004/10/22 CAL SOP-0071, EDM Titrator SOP-0028, EDM SOP-0166 Metals by ICP, Major cations, Fe and Mn 24 N/A 2004/10/25 CALSOP#0068,EDM ICP SOP#0025 Sulphate (S04) 21 N/A 2004/10/25 CAL SOP# 0089 IC Sulphate (S04) 2 N/A 2004/10/26 CAL SOW 0089 IC Total Dissolved Solids (Calculated) 23 N/A 2004/10/22 CAL SOP-0086, EDM SOP-0037 Calculation . Extractable Hydrocarbons (CI0-C16) 12 2004/10/23 2004/10/23 CAL SOP# 0066 CCME MAXXAM Analytics Inc. AZMINA MERALI Manager - Inorganics AM/ns encl. Total cover pages: 1 Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 75 M a A X a I T l K0MEX INTERNATIONAL LIMITED f ^ / V n . i y t i c . ir.c Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site R e f e r e n c e : SITE 3 Sample Description Sample Date & Time Sampled By Sample Type Sample Received Date Sample Station Code : 03-P-05 2004/10/20 13:30 JA Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672759 CA4254S6 Water 2004/10/29 P A R A M E T E R D E S C R I P T I O N R E S U L T S Units Q A / Q C M D L R D L m e q / L Ba tch Calculated Parameters H a r d n e s s ( C a C 0 3 ) 1700 m g / L 618152 0.5 1 Ion B a l a n c e 1.02 N /A 618156 0.01 0.02 Misc. Inorganics Conductivity 2920 u S / c m 619784 1 2 p H 7.60 N /A 619791 0.01 0.02 Total D i s s o l v e d So l ids 2350 m g / L 618183 10 2 0 Anions Alkalinity ( P P a s C a C 0 3 ) <0.5 m g / L 619777 0.5 1 Alkalinity (Total a s C a C 0 3 ) 691 m g / L 619777 0.5 1 Bicarbonate ( H C 0 3 ) 8 4 3 m g / L 619777 0.5 1 13.820 Carbona te ( C 0 3 ) <0.5 m g / L 619777 0.5 1 D isso lved Chlor ide (Cl) 32.4 m g / L 618340 0.1 0.2 0 .913 D isso lved Su lpha te ( S 0 4 ) 1170 m g / L 619572 0.1 0.2 24 .375 Hydroxide (OH) <0.5 m g / L 619777 0.5 1 Nutrients D i s s o l v e d Nitrate (N) <0.003 m g / L 618693 0 .003 0.006 D i s s o l v e d Nitrite (N) <0.003 m g / L 618693 0 .003 0.006 Nitrate plus Nitrite (N) <0.003 m q / L 618173 0 .003 0.006 N/A = Not Applicable MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. Ca lgary: 2021 - 4Tst A v e n u e N . E . T 2 E 6 P 2 Te lephone(403 ) 291-3077 F A X ( 4 0 3 ) 291-9468 This document is in electronic format, hard copy is available on request. 76 M Si yCyCSi m KOMEX INTERNATIONAL LIMITED f ^ A n . i y t i c . m c Attention: JAMES ARMSTRONG " Cl ient Project #:C50030601, MNA MONITORING P.O. #: A02123 Site R e f e r e n c e : SITE 3 Sample Description Sample Date & Time : Sampled By Sample Type Sample Received Date Sample Station Code : 03-P-05 2004/10/20 13:30 JA Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672759 CA425456 Water 2004/10/29 Elements by Atomic Spectroscopy P A R A M E T E R D E S C R I P T I O N R E S U L T S Units Q A / Q C B a t c h M D L R D L m e q / L C a t i o n s D isso lved C a l c i u m (Ca) 4 8 5 m g / L 619571 0.3 0.6 24 .202 D isso lved M a g n e s i u m (Mg) 127 m g / L 619571 0.2 0.4 10.410 D isso lved P o t a s s i u m (K) 4 .7 m g / L 619571 0.3 0.6 0 .120 D isso lved S o d i u m (Na) 109 m g / L 619571 0.5 1 4.741 D isso lved Iron (Fe) 7.91 m g / L 619571 0.01 0.02 0.283 D isso lved M a n a a n e s e (Mn) 1.89 m q / L 619571 0.004 0.008 0 .069 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. ' Calgary : 2021 - 41st A v e n u e N . E . T 2 E 6 P 2 Te lephone(403 ) 291 -3077 F A X ( 4 0 3 ) 291-9468 This document is in electronic format, hard copy is available on request. 77 M Si yCyL <Zi m KOMEX INTERNATIONAL LIMITED f S*n.\yuz* Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 03-P-05 Maxxam Sample Number : 672759 2004/10/20 13:30 Maxxam Job Number CA425456 JA Sample Access Grab Sample Matrix Water 2004/10/21 Report Date : 2004/10/29 Petroleum Hydrocarbons (CCME Tier 1) PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L Ext. Pet. Hydrocarbon F2 (C10-C16 Hydrocarbons) <0.1 mq/L 618067 0.1 0.2 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. Extractable Hydrocarbons (C10-C16) - SAMPLE CONTAINED SEDIMENT " Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 Th|s document is in electronic format, hard copy is available on request. Sample Description Sample Date & Time : Sampled By Sample Type Sample Received Date Sample Station Code : 78 \ Ma XX a m KOMEX INTERNATIONAL LIMITED Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #:A02123 Site Reference: SITE 3 Sample Description Sample Date & Time Sampled By Sample Type Sample Received Date Sample Station Code : 03-P-05 2004/10/20 13:30 JA Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672759 CA425456 Water 2004/10/29 Volatile Organics by GC-MS PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L IVOLATILES Purgeable Benzene (0.0007) mg/L Purgeable Toluene <0.0004 mg/L Purgeable Ethylbenzene 0.0104 mg/L Purgeable Xylenes (Total) 0.0136 mg/L Purgeable F1 (C06-C10) - BTEX 0 J mg/L 617950 0.0004 0.0008 617950 0.0004 0.0008 617950 0.0004 0.0008 617950 0.0008 0.002 617950 0.1 0.2 Surrogate Recoveries (%): D8-TQLUENE (sur.): 97 Control Limits: 88-110 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) () = Result < RDL and is subject to reduced levels of confidence Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 79 M a ) ( X 3 i T l KOMEX INTERNATIONAL LIMITED / / A n a l y t i c * m c Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #:A02123 Site Reference: SITE 3 Sample Description Sample Date & Time Sampled By Sample Type Sample Received Date Sample Station Code : 03-P-06 2004/10/20 JA Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672763 CA425456 Water 2004/10/29 PARAMETER DESCRIPTION RESULTS Units QA/QC MDL RDL meq/L Batch Calculated Parameters Hardness (CaC03) 930 mg/L 618152 0.5 1 Ion Balance 1.03 N/A 618156 0.01 0.02 Misc. Inorganics Conductivity 1730 uS/cm 619784 1 2 pH 7.73 N/A 619791 0.01 0.02 Total Dissolved Solids 1140 mg/L 618183 10 20 Anions Alkalinity (PP as CaC03) <0.5 mg/L 619777 0.5 1 Alkalinity (Total as CaC03) 619 mg/L 619777 0.5 1 Bicarbonate (HC03) 755 mg/L 619777 0.5 1 12.377 Carbonate (C03) <0.5 mg/L 619777 0.5 1 Dissolved Chloride (Cl) 54.3 mg/L 618340 0.1 0.2 1.530 Dissolved Sulphate (S04) 329 mg/L 619572 0.1 0.2 6.854 Hydroxide (OH) <0.5 mg/L 619777 0.5 1 Nutrients Dissolved Nitrate (N) <0.003 mg/L 618693 0.003 0.006 Dissolved Nitrite (N) <0.003 mg/L 618693 0.003 0.006 Nitrate plus Nitrite (N) <0.003 mq/L 618173 0.003 0.006 N/A = Not Applicable MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surroqate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 80 M a X X 3 ITI KOMEX INTERNATIONAL LIMITED f ^ A n . i y t i c » Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description Sample Date & Time Sampled By Sample Type Sample Received Date Sample Station Code : 03-P-06 2004/10/20 JA Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672763 CA425456 Water 2004/10/29 Elements by Atomic Spectroscopy PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L Cations Dissolved Calcium (Ca) 237 mg/L 619571 0.3 0.6 11.826 Dissolved Magnesium (Mg) 82.3 mg/L 619571 0.2 0.4 6.746 Dissolved Potassium (K) 5.3 mg/L 619571 0.3 0.6 0.136 Dissolved Sodium (Na) 60.3 mg/L 619571 0.5 1 2.623 Dissolved Iron (Fe) 1.88 mg/L 619571 0.01 0.02 0.067 Dissolved Manganese (Mn) 1.82 mq/L 619571 0.004 0.008 0.066 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample: RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 81 M a / A 3 m KOMEX INTERNATIONAL LIMITED (y^ri.iytic. m c Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #:A02123 Site Reference: SITE 3 Sample Description 03-P-06 Sample Date & Time : 2004/10/20 Sampled By JA SampleType Grab Sample Received Date 2004/10/21 Sample Station Code : Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672763 CA4254S6 Water 2004/10/29 Petroleum Hydrocarbons (CCME Tier 1) PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L Ext. Pet. Hydrocarbon F2 (C10-C16 Hydrocarbons) <0.1 mq/L 618067 0.1 0.2 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. Extractable Hydrocarbons (C10-C16) - SAMPLE CONTAINED SEDIMENT ; • ' Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 82 M Si yCyt Si m KOMEX INTERNATIONAL LIMITED ( / A „ . i » t i t » mc Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O.#: A02123 Site Reference: SITE 3 Sample Description 03-P-06 Sample Date & Time : 2004/10/20 Sampled By JA Sample Type Grab Sample Received Date 2004/10/21 Sample Station Code : Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672763 CA425456 Water 2004/10/29 Volatile Organics by GC-MS PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L [VOLATILES Purgeable Benzene <0.0004 mg/L Purgeable Toluene <0.0004 mg/L Purgeable Ethylbenzene (0.0006) mg/L Purgeable Xylenes (Total) (0.0008) mg/L Purgeable F1 (C06-C10) - BTEX <0J mg/L 617950 617950 617950 617950 617950 0.0004 0.0004 0.0004 0.0008 0.1 0.0008 0.0008 0.0008 0.002 0.2 Surrogate Recoveries (%): P8-TOLUENE (sur): 109 Control Limits: 88-110 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) () = Result < RDL and is subject to reduced levels of confidence Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 83 M a X x 3 ITI KOMEX INTERNATIONAL LIMITED ' / / » » . p » t i t . i . . Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #:A02123 Site Reference: SITE 3 Sample Description 03-P-07 Sample Date & Time : 2004/10/20 10:15 Sampled By JA Sample Type Grab Sample Received Date 2004/10/21 Sample Station Code : Maxxam Sample Number : 672764 Maxxam Job Number CA425456 Sample Access Sample Matrix Water Report Date : 2004/10/29 PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L Calculated Parameters Hardness (CaC03) 1400 mg/L 618152 0.5 1 Ion Balance 0.98 N/A 618156 0.01 0.02 Misc. Inorganics Conductivity 3110 uS/cm 619784 1 2 pH 7.73 N/A 619791 0.01 0.02 Total Dissolved Solids 2400 mg/L 618183 10 20 Anions Alkalinity (PP as CaC03) <0.5 mg/L 619777 0.5 1 Alkalinity (Total as CaC03) 616 mg/L 619777 0.5 1 12.328 Bicarbonate (HC03) 752 mg/L 619777 0.5 1 Canoonate (C03) <0.5 mg/L 619777 0.5 1 Dissolved Chloride (Cl) 76.1 mg/L 618340 0.1 0.2 2.144 Dissolved Sulphate (S04) 1200 mg/L 619572 0.1 0.2 25.000 Hydroxide (OH) <0.5 mg/L 619777 0.5 1 Nutrients Dissolved Nitrate (N) <0.003 mg/L 618693 0.003 0.006 Dissolved Nitrite (N) <0.003 mg/L 618693 0.003 0.006 Nitrate plus Nitrite (NV <0.003 ma/L 618173 0.003 0.006 N/A = Not Applicable |MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. • Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 Th|s document is in electronic format, hard copy is available on request. 84 M a yCyia m KOMEX INTERNATIONAL LIMITED OVn.iyticS mc Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #:A02123 Site Reference: SITE 3 Sample Description Sample Date & Time Sampled By Sample Type Sample Received Date Sample Station Code : 03-P-07 2004/10/20 10:15 JA Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672764 CA425456 Water 2004/10/29 Elements by Atomic Spectroscopy PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L Cations Dissolved Calcium (Ca) Dissolved Magnesium (Mg) Dissolved Potassium (K) Dissolved Sodium (Na) Dissolved Iron (Fe) Dissolved Manganese (Mn) 414 mg/L 619571 0.3 0.6 20.659 93.9 mg/L 619571 0.2 0.4 7.697 12.7 mg/L 619571 0.3 0.6 0.325 221 mg/L 619571 0.5 1 9.613 7.89 mg/L 619571 0.01 0.02 0.283 2.70 mg/L 619571 0.004 0.008 0.098 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. ' Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 85 M a yfyla m A n a l y t i c s Inc KOMEX INTERNATIONAL LIMITED Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description Sample Date & Time Sampled By Sample Type Sample Received Date 2004/10/21 Sample Station Code : 03-P-07 2004/10/20 10:15 JA Grab Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix : Report Date 672764 CA425456 Water 2004/10/29 Petroleum Hydrocarbons (CCME Tier 1 ) PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L Ext. Pet. Hydrocarbon F2 (C10-C16 Hydrocarbons) <0.1 ma/L 618067 0.1 0.2 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 86 M a ) O C a m KOMEX INTERNATIONAL LIMITED OVn.iytic. mc Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description 03-P-07 Sample Date & Time : 2004/10/20 10:15 Sampled By JA SampleType Grab Sample Received Date 2004/10/21 Sample Station Code : Maxxam Sample Number : 672764 Maxxam Job Number CA425456 Sample Access Sample Matrix : Water Report Date : 2004/10/29 Volatile Organics by GC-MS PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L IVOLATILES Purgeable Benzene <0.0004 mg/L Purgeable Toluene <0.0004 mg/L Purgeable Ethylbenzene <0.0004 mg/L Purgeable Xylenes (Total) <0.0008 mg/L Purgeable F1 (C06-C10) - BTEX <0J mg/L 617950 617950 617950 617950 617950 0.0004 0.0004 0.0004 0.0008 0.1 0.0008 0.0008 0.0008 0.002 0.2 Surrogate Recoveries (%): D8-TOLUENE (sur.): 109 Control Limits: 88-110 MDL = Method Detection Limit - Calculated on the basis of the instalment detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. , Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 87 M a X X 3 n i KOMEX INTERNATIONAL LIMITED f ^ / A n . i y t i ^ m c Attention: JAMES ARMSTRONG " Client Project #:C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description 03-P-08 Sample Date & Time : 2004/10/20 10:50 Sampled By JA SampleType Grab Sample Received Date 2004/10/21 Sample Station Code : Maxxam Sample Number : 672765 Maxxam Job Number CA425456 Sample Access Sample Matrix Water Report Date 2004/10/29 PARAMETER DESCRIPTION RESULTS Units QA/QC MDL RDL meq/L Batch Calculated Parameters Hardness (CaC03) 1500 mg/L 618152 0.5 1 Ion Balance 1.01 N/A 618156 0.01 0.02 Misc. inorganics Conductivity 3800 uS/cm 619784 1 2 pH 7.56 N/A 619791 0.01 0.02 Total Dissolved Solids 2980 mg/L 618183 10 20 Anions Alkalinity (PP as CaC03) <0.5 mg/L 619777 0.5 1 Alkalinity (Total as CaC03) 840 mg/L 619777 0.5 1 Bicarbonate (HC03) 1030 mg/L 619777 0.5 : 1 16.885 Carbonate (C03) <0.5 mg/L 619777 0.5 1 Dissolved Chloride (Cl) 74.5 mg/L 618340 0.1 0.2 2.099 Dissolved Sulphate (S04) 1450 mg/L 619572 0.1 0.2 30.208 Hydroxide (OH) <0.5 mg/L 619777 0.5 1 Nutrients Dissolved Nitrate (N) <0.003 mg/L 618693 0.003 0.006 Dissolved Nitrite (N) <0.003 mg/L 618693 0.003 0.006 Nitrate plus Nitrite (N) <0.003 mq/L 618173 0.003 0.006 N/A = Not Applicable MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surroqate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 Th|s document is in electronic format, hard copy is available on request. 88 M a )0<<Zi m KOMEX INTERNATIONAL LIMITED 0%!n.iytic5 m.: Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description Sample Date & Time : Sampled By Sample Type Sample Received Date Sample Station Code : 03-P-08 2004/10/20 10:50 JA Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672765 CA425456 Water 2004/10/29 Elements by Atomic Spectroscopy PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L Cations Dissolved Calcium (Ca) 324 mg/L 619571 0.3 0.6 16.168 Dissolved Magnesium (Mg) 167 mg/L 619571 0.2 0.4 13.689 Dissolved Potassium (K) 7.9 mg/L 619571 0.3 0.6 0.202 Dissolved Sodium (Na) 446 mg/L 619571 0.5 1 19.400 Dissolved Iron (Fe) 0.10 mg/L 619571 0.61 0.02 0.004 Dissolved Manganese (Mn) 2.08 md/L 619571 0.004 0.008 0.076 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample: [RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. \ Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 89 M a yCyia m KOMEX INTERNATIONAL LIMITED f > / A n . i y t i c 5 m c Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #:A02123 Site Reference: SITE 3 Sample Description Sample Date & Time Sampled By Sample Type Sample Received Date 2004/10/21 Sample Station Code : 03-P-08 2004/10/20 10:50 JA Grab Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672765 CA425456 Water 2004/10/29 Petroleum Hydrocarbons (CCME Tier 1 ) PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L Ext. Pet. Hydrocarbon F2 (C10-C16 Hydrocarbons) <0.1 m g / L 618067 0.1 0.2 [MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. . Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 90 MaXj(am KOMEX INTERNATIONAL LIMITED f ^ V n . i y t i c * mc Attention: JAMES ARMSTRONG • . ' . Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description Sample Date & Time Sampled By Sample Type Sample Received Date Sample Station Code : 03-P-08 2004/10/20 10:50 JA Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672765 CA425456 Water 2004/10/29 Volatile Organics by GC-MS PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L (VOLATILES Purgeable Benzene <0.0004 mg/L Purgeable Toluene <0.0004 mg/L Purgeable Ethylbenzene 0.0016 mg/L Purgeable Xylenes (Total) 0.0101 mg/L Purgeable F1 (C06-C10) - BTEX <0J mg/L 617950 617950 617950 617950 617950 0.0004 0.0004 0.0004 0.0008 0.1 0.0008 0.0008 0.0008 0.002 0.2 Surrogate Recoveries (%): D8-TOLUENE (sur.): 100 Control Limits: 88-110 |MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 91 M a yCyi a m KOMEX INTERNATIONAL LIMITED f / A n . i y t i c 3 m c Attention: JAMES ARMSTRONG " Client Project #:C50030601, MNA MONITORING P.O. #:A02123 Site Reference: SITE 3 Sample Description Sample Date & Time Sampled By Sample Type Sample Received Date Sample Station Code : 03-P-09 2004/10/20 13:00 JA Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672766 CA4254S6 Water 2004/10/29 PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L Calculated Parameters Hardness (CaC03) 1400 mg/L 618152 0.5 1 Ion Balance 0.91 N/A 618156 0.01 0.02 Misc. Inorganics Conductivity 2780 uS/cm 619784 1 2 PH 7.46 N/A . 619791 0.01 0.02 Total Dissolved Solids 1990 mg/L 618183 10 20 Anions Alkalinity (PP as CaC03) <0.5 mg/L 619777 0.5 1 Alkalinity (Total as CaC03) 1030 mg/L 619777 0.5 1 20.656 Bicarbonate (HC03) 1260 mg/L 619777 0.5 1 Carbonate (C03) <0.5 mg/L 619777 0.5 1 Dissolved Chloride (Cl) 33.7 mg/L 618340 0.1 0.2 0.949 Dissolved Sulphate (S04) 727 mg/L 619572 0.1 0.2 15.146 Hydroxide (OH) <0.5 mg/L 619777 0.5 1 Nutrients Dissolved Nitrate (N) <0.003 mg/L 618693 0.003 0.006 Dissolved Nitrite (N) <0.003 mg/L 618693 0.003 0.006 Nitrate plus Nitrite (N) <0.003 ma/L 618173 0.003 0.006 N/A = Not Applicable MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 Th|s document is in electronic format, hard copy is available on request. 92 IVI a yCyia m KOMEX INTERNATIONAL LIMITED I ^ V r , . i y t i c 5 i n c Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O.#:A02123 Site Reference: SITE 3 Sample Description Sample Date & Time Sampled By Sample Type Sample Received Date Sample Station Code : 03-P-09 2004/10/20 13:00 JA Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672766 CA425456 Water 2004/10/29 Elements by Atomic Spectroscopy PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L Cations Dissolved Calcium (Ca) 348 mg/L 621100 0.3 0.6 17.365 Dissolved Magnesium (Mg) 130 mg/L 621100 0.2 0.4 10.656 Dissolved Potassium (K) 4.7 mg/L 621100 0.3 0.6 0.120 Dissolved Sodium (Na) 107 mg/L 621100 0.5 1 4.654 Dissolved Iron (Fe) 14.3 mg/L 621100 0.01 0.02 0.512 Dissolved Manganese (Mn) 3.96 mq/L 621100 0.004 0.008 0.144 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 93 M St yCyt St m KOMEX INTERNATIONAL LIMITED I >/Vn . iytic5 mc Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #:A02123 Site Reference: SITE 3 Sample Description Sample Date & Time Sampled By Sample Type Sample Received Date 2004/10/21 Sample Station Code : 03-P-09 2004/10/20 13:00 JA Grab Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672766 CA4254S6 Water 2004/10/29 Petroleum Hydrocarbons (CCME Tier 1 ) PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L Ext. Pet. Hydrocarbon F2 (C10-C16 Hydrocarbons) <0.1 mq/L 618067 0.1 0.2 |MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. . Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 94 M St )OC Si m KOMEX INTERNATIONAL LIMITED f / A n , i y t i „ i „ c Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description 03-P-09 Sample Date & Time : 2004/10/20 13:00 Sampled By JA Sample Type : Grab Sample Received Date 2004/10/21 Sample Station Code : Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672766 CA425456 Water 2004/10/29 Volatile Organics by GC-MS PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L IVOLATILES Purgeable Benzene <0.0004 mg/L Purgeable Toluene <0.0004 mg/L Purgeable Ethylbenzene 0.0011 mg/L Purgeable Xylenes (Total) <0.0008 mg/L Purgeable F1 (C06-C10) - BTEX <0.1 mg/L 617950 0.0004 0.0008 617950 0.0004 0.0008 617950 0.0004 0.0008 617950 0.0008 0.002 617950 0.1 0.2 Surrogate Recoveries (%): D8-TOLUENE (sur.): 110 Control Limits: 88 -110 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. |RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 95 MaXXarn KOMEX INTERNATIONAL LIMITED • O 'Vn . iy t i c . me Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description 03-P-10 Sample Date & Time : 2004/10/20 12:30 Sampled By JA SampleType Grab Sample Received Date 2004/10/21 Sample Station Code : Maxxam Sample Number : 672767 Maxxam Job Number CA425456 Sample Access Sample Matrix Water Report Date : 2004/10/29 PARAMETER DESCRIPTION RESULTS Units QA/QC MDL RDL meq/L Batch Calculated Parameters Hardness (CaC03) 880 mg/L 618152 0.5 1 Ion Balance 0.98 N/A 618156 0.01 0.02 Misc. Inorganics Conductivity 1950 uS/cm 619784 1 2 pH 7.76 N/A 619791 0.01 0.02 Total Dissolved Solids 1210 mg/L 618183 10 20 Anions Alkalinity (PP as CaC03) <0.5 mg/L 619778 0.5 1 Alkalinity (Total as CaC03) 882 mg/L 619778 0.5 1 Bicarbonate (HC03) 1080 mg/L 619778 0.5 1 17.705 Carbonate (C03) <0.5 mg/L 619778 0.5 1 Dissolved Chloride (Cl) 55.5 mg/L 618340 0.1 0.2 1.563 Dissolved Sulphate (S04) 221 mg/L 619572 0.1 0.2 4.604 Hydroxide (OH) <0.5 mg/L 619778 0.5 1 Nutrients Dissolved Nitrate (N) <0.003 mg/L 618693 0.003 0.006 Dissolved Nitrite (N) <0.003 mg/L 618693 0.003 0.006 Nitrate plus Nitrite (N) <0.003 mq/L 618173 0.003 0.006 N/A = Not Applicable MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 96 M a A X a i T l KOMEX INTERNATIONAL LIMITED O V n . i y t i " "><= Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description Sample Date & Time Sampled By Sample Type Sample Received Date Sample Station Code : 03-P-10 2004/10/20 12:30 JA Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672767 CA425456 Water 2004/10/29 Elements by Atomic Spectroscopy PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L Cations Dissolved Calcium (Ca) 142 mg/L 619571 0.3 0.6 7.086 Dissolved Magnesium (Mg) 127 mg/L 619571 0.2 0.4 10.410 Dissolved Potassium (K) 3.2 mg/L 619571 0.3 0.6 0.082 Dissolved Sodium (Na) 118 mg/L 619571 0.5 1 5.133 Dissolved Iron (Fe) 14.7 mg/L . 619571 0.01 0.02 0.527 Dissolved Manganese (Mn) 0.794 mg/L 619571 0:004 0.008 0.029 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample: RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 97 M a yCyi a m KOMEX INTERNATIONAL LIMITED f ^ A n . i y t i c . m c Attention: JAMES ARMSTRONG * Client Project #:C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description Sample Date & Time Sampled By Sample Type Sample Received Date 2004/10/21 Sample Station Code : 03-P-10 2004/10/20 12:30 JA Grab Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672767 CA425456 Water 2004/10/29 Petroleum Hydrocarbons (CCME Tier 1 ) PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L Ext. Pet. Hydrocarbon F2 (C10-C16 Hydrocarbons) <0.1 mq/L 618067 0.1 0.2 |MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL). Results are not corrected for surrogate or moisture values unless otherwise stated: . Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 98 M a A X a m KOMEX INTERNATIONAL LIMITED I y / V n . i y t i c . mc Attention: JAMES ARMSTRONG * Client Project #:C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description 03-P-10 Sample Date & Time : 2004/10/20 12:30 Sampled By JA SampleType Grab Sample Received Date 2004/10/21 Sample Station Code : Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672767 CA425456 Water 2004/10/29 Volatile Organics by GC-MS PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L IVOLATILES Purgeable Benzene (0.0006) mg/L Purgeable Toluene <0.0004 mg/L Purgeable Ethylbenzene 0.0881 mg/L Purgeable Xylenes (Total) 0.0219 mg/L Purgeable F1 (C06-C10) - BTEX 0 2 mg/L 617950 617950 617950 617950 617950 0.0004 0.0004 0.0004 0.0008 0.1 0.0008 0.0008 0.0008 0.002 0.2 Surrogate Recoveries (%): D8-TOLUENE (sur.): 97 Control Limits: 88 -110 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) () = Result < RDL and is subject to reduced levels of confidence Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 99 M a X A 3 m KOMEX INTERNATIONAL LIMITED ( x ^ A n . i y t i c , i „ c Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description Sample Date & Time : Sampled By : Sample Type Sample Received Date Sample Station Code : 34-ML6 2004/10/20 8:30 JA Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672768 CA425456 Water 2004/10/29 PARAMETER DESCRIPTION RESULTS Units QA/QC MDL RDL meq/L Batch Calculated Parameters Hardness (CaC03) 630 mg/L 618152 0.5 1 Ion Balance 1.01 N/A 618156 0.01 0.02 Misc. Inorganics Conductivity 1870 uS/cm 619784 1 2 pH 8.14 N/A 619791 0.01 0.02 Total Dissolved Solids 1090 mg/L 618183 10 20 Anions Alkalinity (PP as CaC03) <0.5 mg/L 619778 0.5 1 Alkalinity (Total as CaC03) 1040 mg/L 619778 0.5 1 Bicarbonate (HC03) 1270 mg/L 619778 0.5 1 20.820 Carbonate (C03) <0.5 mg/L 619778 0.5 1 Dissolved Chloride (Cl) 58.4 mg/L 618340 0.1 0.2 1.645 Dissolved Sulphate (S04) 0.5 mg/L 619572 0.1 0.2 0.010 Hydroxide (OH) <0.5 mg/L 619778 0.5 1 Nutrients Dissolved Nitrate (N) <0.003 mg/L 618693 0.003 0.006 Dissolved Nitrite (N) <0.003 mg/L 618693 0.003 0.006 Nitrate plus Nitrite (N) <0.003 mq/L 618173 0.003 0.006 N/A = Not Applicable MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 100 M a ) O C 3 I I T I KOMEX INTERNATIONAL LIMITED f / A n . i v t i c m c Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description 34-ML6 Sample Date & Time : 2004/10/20 8:30 Sampled By J A SampleType Grab Sample Received Date 2004/10/21 Sample Station Code : Maxxam Sample Number : 672768 Maxxam Job Number CA425456 Sample Access Sample Matrix Water Report Date : 2004/10/29 Elements by Atomic Spectroscopy PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L Cations Dissolved Calcium (Ca) 46.7 mg/L 619571 0.3 0.6 2.330 Dissolved Magnesium (Mg) 125 mg/L 619571 0.2 0.4 10.246 Dissolved Potassium (K) 2.6 mg/L 619571 0.3 0.6 0.066 Dissolved Sodium (Na) 225 mg/L 619571 0.5 1 9.787 Dissolved Iron (Fe) 7.50 mg/L . 619571 0.01 0.02 0.269 Dissolved Manganese (Mn) 0.516 mg/L 619571 0.004 0.008 0.019 |MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample: RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. \ Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 101 M a X X a m KOMEX INTERNATIONAL LIMITED f / A " » i y t i c s m c Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description Sample Date & Time Sampled By Sample Type Sample Received Date Sample Station Code : 34-ML6 2004/10/20 8:30 JA Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672768 CA425456 Water 2004/10/29 Volatile Organics by GC-MS PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L VOLATILES Purgeable Benzene 0.004 mg/L 617950 0.002 0.004 Purgeable Toluene (0.003) mg/L 617950 0.002 0.004 Purgeable Ethylbenzene 0.316 mg/L 617950 0.002 0.004 Purgeable m & p-Xylene 1.50 mg/L 617950 0.004 0.008 Purgeable o-Xylene 0.142 mg/L 617950 0.002 0.004 Purgeable Xylenes (Total) 1.64 mg/L 617950 0.004 0.008 Purqeable F1 (C06-C10) - BTEX 2.7 mq/L 617950 0.1 0.2 Surrogate Recoveries (%): D8-TOLUENE (sur.): 108 Control Limits: 88-110 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) () = Result < RDL and is subject to reduced levels of confidence Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 Th|s document is in electronic format, hard copy is available on request. 102 M a X x a i T I KOMEX INTERNATIONAL LIMITED r / A n . , y t i . 5 i r . c Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #:A02123 Site Reference: SITE 3 Sample Description Sample Date & Time Sampled By Sample Type Sample Received Date Sample Station Code : 34-ML5 2004/10/20 8:30 JA Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672769 CA425456 Water 2004/10/29 PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L Calculated Parameters Hardness (CaC03) 1100 mg/L 618152 0.5 1 Ion Balance 1.00 N/A 618156 0.01 0.02 Misc. Inorganics Conductivity 2690 uS/cm 622829 1 2 pH 7.79 N/A 622862 0.01 0.02 Total Dissolved Solids 1840 mg/L 618183 10 20 Anions Alkalinity (PP as CaC03) <0.5 mg/L 622854 0.5 1 Alkalinity (Total as CaC03) 1100 mg/L 622854 0.5 1 22.131 Bicarbonate (HC03) 1350 mg/L 622854 0.5 1 Carbonate (C03) <0.5 mg/L 622854 0.5 1 Dissolved Chloride (Cl) 59.0 mg/L 620614 0.1 0.2 1.662 Dissolved Sulphate (S04) 509 mg/L 621491 0.1 0.2 10.604 Hydroxide (OH) <0.5 mg/L 622854 0.5 1 Nutrients Dissolved Nitrate (N) <0.003 mg/L 618693 0.003 0.006 Dissolved Nitrite (N) <0.003 mg/L 618693 0.003 0.006 Nitrate plus Nitrite (N) <0.003 ma/L 618173 0.003 0.006 N/A = Not Applicable MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 103 M a )OC a m KOMEX INTERNATIONAL LIMITED f / A ^ a i y t i c s i r , c Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description Sample Date & Time Sampled By Sample Type Sample Received Date Sample Station Code : 34-ML5 2004/10/20 8:30 JA Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672769 CA425456 Water 2004/10/29 Elements by Atomic Spectroscopy PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L Cations Dissolved Calcium (Ca) 158 mg/L 621713 0.3 0.6 7.884 Dissolved Magnesium (Mg) 181 mg/L 621713 0.2 0.4 14.836 Dissolved Potassium (K) 5.8 mg/L 621713 0.3 0.6 0.148 Dissolved Sodium (Na) 261 mg/L 621713 0.5 1 11.353 Dissolved Iron (Fe) 4.71 mg/L 621713 0.01 0.02 0.169 Dissolved Manganese (Mn) 2.60 mq/L 621713 0.004 0.008 0.095 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 104 Ma XX a m ' f ^ ^ A n a l y t l c s t n c KOMEX INTERNATIONAL LIMITED Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description Sample Date & Time Sampled By Sample Type Sample Received Date Sample Station Code : 34-ML5 2004/10/20 8:30 JA Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672769 CA425456 Water 2004/10/29 Volatile Organics by GC-MS PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L VOLATILES Purgeable Benzene 0.0017 mg/L 617950 0.0004 0.0008 Purgeable Toluene 0.0016 mg/L 617950 0.0004 0.0008 Purgeable Ethylbenzene 0.0590 mg/L 617950 0.0004 0.0008 Purgeable m & p-Xylene 0.196 mg/L 617950 0.0008 0.002 Purgeable o-Xylene 0.0023 mg/L 617950 0.0004 0.0008 Purgeable Xylenes (Total) 0.198 mg/L 617950 0.0008 0.002 Purqeable F1 (C06-C10) - BTEX (0.1) mq/L 617950 0.1 0.2 Surrogate Recoveries (%): D8-TOLUENE (sur.): 105 Control Limits: 88 -110 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) () = Result < RDL and is subject to reduced levels of confidence Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document Is in electronic format, hard copy is available on request. 105 MaX)(am KOMEX INTERNATIONAL LIMITED I^/An.pytic* m e Attention: JAMES ARMSTRONG " Client Project #:C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description Sample Date & Time : Sampled By Sample Type Sample Received Date Sample Station Code : 34-ML7 2004/10/20 9:00 JA Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672770 CA425456 Water 2004/10/29 PARAMETER DESCRIPTION RESULTS Units QA/QC MDL RDL meq/L Batch Calculated Parameters Hardness (CaC03) 1600 mg/L 618152 0.5 1 Ion Balance 0.99 N/A 618156 0.01 0.02 Misc. Inorganics Conductivity 3500 uS/cm 619784 1 2 pH 7.78 N/A 619791 0.01 0.02 Total Dissolved Solids 2670 mg/L 618183 10 20 Anions Alkalinity (PP as CaC03) <0.5 mg/L 619778 0.5 1 Alkalinity (Total as CaC03) 996 mg/L 619778 0.5 1 Bicarbonate (HC03) 1220 mg/L 619778 0.5 1 20.000 Carbonate (C03) <0.5 mg/L 619778 0.5 1 Dissolved Chloride (Cl) 61.0 mg/L 618340 0.1 0.2 1.718 Dissolved Sulphate (S04) 1190 mg/L 619572 0.1 0.2 24.792 Hydroxide (OH) <0.5 mg/L 619778 0.5 1 Nutrients Dissolved Nitrate (N) 0.022 mg/L 618693 0.003 0.006 0.002 Dissolved Nitrite (N) <0.003 mg/L 618693 0.003 0.006 Nitrate plus Nitrite (N) 0.022 mq/L 618173 0.003 0.006 N/A = Not Applicable MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 106 M a X X a r n KOMEX INTERNATIONAL LIMITED / ^ / V n . i y t i c = inc Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description Sample Date & Time Sampled By Sample Type Sample Received Date Sample Station Code : 34-ML7 2004/10/20 9:00 JA Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672770 CA425456 Water 2004/10/29 Elements by Atomic Spectroscopy PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L Cations Dissolved Calcium (Ca) 280 mg/L 619573 0.3 0.6 13.972 Dissolved Magnesium (Mg) 224 mg/L 619573 0.2 0.4 18.361 Dissolved Potassium (K) 13.0 mg/L 619573 0.3 0.6 0.332 Dissolved Sodium (Na) 300 mg/L 619573 0.5 1 13.049 Dissolved Iron (Fe) 5.69 mg/L 619573 0.01 0.02 0.204 Dissolved Manganese (Mn) 3.08 mg/L 619573 0.004 0.008 0.112 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. ' ; Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 107 IVI a > O C St m KOMEX INTERNATIONAL LIMITED r / A n » i y t i « i « Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description Sample Date & Time Sampled By Sample Type Sample Received Date Sample Station Code : 34-ML7 2004/10/20 9:00 JA Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672770 CA425456 Water 2004/10/29 Volatile Organics by GC-MS PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L VOLATILES Purgeable Benzene 0.0008 mg/L 617950 0.0004 0.0008 Purgeable Toluene 0.0009 mg/L 617950 0.0004 0.0008 Purgeable Ethylbenzene 0.0296 mg/L 617950 0.0004 0.0008 Purgeable m & p-Xylene 0.0575 mg/L 617950 0.0008 0.002 Purgeable o-Xylene (0.0007) mg/L 617950 0.0004 0.0008 Purgeable Xylenes (Total) 0.0582 mg/L 617950 0.0008 0.002 Purqeable F1 (C06-C10) - BTEX <0.1 ma/L 617950 0.1 0.2 Surrogate Recoveries (%): D8-TOLUENE (sur.): 109 Control Limits: 88-110 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) () = Result < RDL and is subject to reduced levels of confidence Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 108 M Si X X a nn KOMEX INTERNATIONAL LIMITED 0^".'v<'" mc Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description Sample Date & Time : Sampled By : Sample Type Sample Received Date Sample Station Code : 34-MW1 2004/10/19 14:45 JA Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672771 CA425456 Water 2004/10/29 PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L Calculated Parameters Hardness (CaC03) 690 mg/L 618152 0.5 1 Ion Balance 0.88 N/A 618156 0.01 0.02 Misc. Inorganics Conductivity 2450 uS/cm 619784 1 2 pH 7.87 N/A 619791 0.01 0.02 Total Dissolved Solids 1440 mg/L 618183 10 20 Anions Alkalinity (PP as CaC03) <0.5 mg/L 619778 0.5 1 Alkalinity (Total as CaC03) 1350 mg/L 619778 0.5 1 Bicarbonate (HC03) 1650 mg/L 619778 0.5 1 27:049 Carbonate (C03) <0.5 mg/L 619778 0.5 1 Dissolved Chloride (Cl) 58.6 mg/L 618340 0.1 0.2 1.651 Dissolved Sulphate (S04) 80.3 mg/L 619572 0.1 0.2 1.673 Hydroxide (OH) <0.5 mg/L 619778 0.5 1 Nutrients Dissolved Nitrate (N) <0.003 mg/L 618693 0.003 0.006 Dissolved Nitrite (N) <0:003 mg/L 618693 0.003 0.006 Nitrate plus Nitrite (N) <0.003 ma/L 618173 0.003 0.006 N/A = Not Applicable MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. Ion Balance - Anion-Cation balance is lower than our normal limits: major ions checked, possibly due to matrix. • Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291 :9468 This document is in electronic format, hard copy is available on request. 109 M a yCyLa m KOMEX INTERNATIONAL LIMITED O V n . i y t i . ; . ir.c Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description Sample Date & Time Sampled By Sample Type Sample Received Date Sample Station Code : 34-MW1 2004/10/19 14:45 JA Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672771 CA425456 Water 2004/10/29 Elements by Atomic Spectroscopy PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L Cations Dissolved Calcium (Ca) 54.7 mg/L 619573 0.3 0.6 2.730 Dissolved Magnesium (Mg) 134 mg/L 619573 0.2 0.4 10.984 Dissolved Potassium (K) 3.1 mg/L 619573 . 0.3 0.6 0.079 Dissolved Sodium (Na) 294 mg/L 619573 0.5 1 12.788 Dissolved Iron (Fe) 3.16 mg/L 619573 0.01 0.02 0.113 Dissolved Manganese (Mn) 1.32 mg/L 619573 0.004 0.008 0.048 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. ; -_ Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 110 M a X X a m KOMEX INTERNATIONAL LIMITED • f / C i , i , t k » Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description Sample Date & Time Sampled By Sample Type Sample Received Date 2004/10/21 Sample Station Code : 34-MW1 2004/10/19 14:45 JA Grab Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672771 CA425456 Water 2004/10/29 Petroleum Hydrocarbons (CCME Tier 1 ) PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L Ext. Pet. Hydrocarbon F2 (C10-C16 Hvdrocarbons) (0.1) mq/L 618067 0.1 0.2 MDL '= Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) 0 = Result < RDL and is subject to reduced levels of confidence Results are not corrected for surrogate or moisture values unless otherwise stated. Extractable Hydrocarbons (C10-C16) - SAMPLE CONTAINED SEDIMENT . ; ' Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. I l l M a X A a m KOMEX INTERNATIONAL LIMITED f / A n . i y t i c s m c Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description Sample Date & Time Sampled By Sample Type Sample Received Date 2004/10/21 Sample Station Code : 34-MW1 2004/10/19 14:45 JA Grab Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672771 CA425456 Water 2004/10/29 Volatile Organics by GC-MS PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L VOLATILES Purgeable Benzene <0.004 mg/L 617950 0.004 0.008 Purgeable Toluene <0.004 mg/L 617950 0.004 0.008 Purgeable Ethylbenzene 0.671 mg/L 617950 0.004 0.008 Purgeable Xylenes (Total) 1.54 mg/L 617950 0.007 0.014 Purqeable F1 (C06-C10) - BTEX 6.3 mq/L 617950 0.1 0.2 Surrogate Recoveries (%): D8-TOLUENE (sur.): 104 Control Limits: 88-110 | M D L = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x M D L ) Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 112 KOMEX INTERNATIONAL LIMITED Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Maxxam Sample Number : 672772 Maxxam Job Number CA425456 Sample Access Sample Matrix Water Report Date : 2004/10/29 PARAMETER DESCRIPTION RESULTS Units QA/QC MDL RDL meq/L Batch Calculated Parameters Hardness (CaC03) 1300 mg/L 618152 0.5 1 Ion Balance 0.90 N/A 618156 0.01 0.02 Misc. Inorganics Conductivity 3130 uS/cm 619784 1 2 pH 7.86 N/A 619792 0.01 0.02 Total Dissolved Solids 2220 mg/L 618183 10 20 Anions Alkalinity (PP as CaC03) <0.5 mg/L 619778 0.5 1 Alkalinity (Total as CaC03) 1040 mg/L 619778 0.5 1 Bicarbonate (HC03) 1270 mg/L 619778 0.5 1 20.820 Carbonate (C03) <0.5 mg/L 619778 0.5 1 Dissolved Chloride (Cl) 58.8 mg/L 618340 0.1 0.2 1.656 Dissolved Sulphate (S04) 887 mg/L 619572 0.1 0.2 18.479 Hydroxide (OH) <0.5 mg/L 619778 0.5 1 Nutrients Dissolved Nitrate (N) <0.003 mg/L 618693 0.003 0.006 Dissolved Nitrite (N) <0.003 mg/L 618693 0.003 0.006 Nitrate plus Nitrite (N) <0.003 mq/L 618173 0.003 0.006 N/A = Not Applicable MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. M..axo?:a m A n a l y t i c s Inc Sample Description 34-MW2 Sample Date & Time : 2004/10/19 15:15 Sampled By JA Sample Type Grab Sample Received Date 2004/10/21 Sample Station Code : 113 IVI a ) O C a m KOMEX INTERNATIONAL LIMITED Y y / V n . i y t i ^ ir.c Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description 34-MW2 Sample Date & Time : 2004/10/19 15:15 Sampled By JA Sample Type Grab Sample Received Date 2004/10/21 Sample Station Code : Maxxam Sample Number : 672772 Maxxam Job Number CA425456 Sample Access : Sample Matrix Water Report Date 2004/10/29 Elements by Atomic Spectroscopy PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L Cations Dissolved Calcium (Ca) 185 mg/L 621100 0.3 0.6 9.232 Dissolved Magnesium (Mg) 193 mg/L 619573 0.2 0.4 15.820 Dissolved Potassium (K) 6.1 mg/L 619573 0.3 0.6 0.156 Dissolved Sodium (Na) 256 . mg/L 619573 0.5 1 11.135 Dissolved Iron (Fe) 5.05 mg/L 619573 0.01 0.02 0.181 Dissolved Manaanese (Mn) 1.53 mq/L 619573 0.004 0.008 0.056 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surroqate or moisture values unless otherwise stated. Calgary: 2021 - 41 st Avenue N.E. T2E 6P2 Telephone(403) 291 -3077 FAX(403) 291 -9468 This document is in electronic format, hard copy is available on request. 114 Maxo/a m A n a l y t i c s I n c KOMEX INTERNATIONAL LIMITED Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description Sample Date & Time Sampled By Sample Type Sample Received Date 2004/10/21 Sample Station Code : 34-MW2 2004/10/19 15:15 JA Grab Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672772 CA425456 Water 2004/10/29 Petroleum Hydrocarbons (CCME Tier 1) PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L Ext. Pet. Hydrocarbon F2 (C10-C16 Hydrocarbons) <0.1 mg/L 618067 0.1 0.2 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. ; Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 115 M a X x a m KOMEX INTERNATIONAL LIMITED I V M , I » , I „ I„C Attention: JAMES ARMSTRONG " Cl ient Project #: C50030601, MNA MONITORING P.O. #: A02123 Site R e f e r e n c e : S I T E 3 Sample Description Sample Date & Time Sampled By Sample Type Sample Received Date Sample Station Code : 34-MW2 2004/10/19 15:15 JA Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672772 CA425456 Water 2004/10/29 Volatile Organics by GC-MS P A R A M E T E R D E S C R I P T I O N R E S U L T S Units Q A / Q C Batch MDL RDL m e q / L IVOLATILES Purgeab le B e n z e n e <0.0004 m g / L P u r g e a b l e T o l u e n e <0.0004 m g / L P u r g e a b l e E t h y l b e n z e n e 0 .0309 m g / L P u r g e a b l e X y l e n e s (Total) 0 .0754 m g / L P u r g e a b l e F1 ( C 0 6 - C 1 0 ) - B T E X 0 2 m q / L 617950 6 1 7 9 5 0 617950 617950 617950 0.0004 0.0004 0 .0004 0.0008 0.1 0 .0008 0.0008 0.0008 0.002 0.2 Surrogate R e c o v e r i e s (%): D 8 - T O L U E N E (sur.): 108 Control Limits: 8 8 - 1 1 0 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary : 2021 - 41st A v e n u e N . E . T 2 E 6 P 2 Te lephone(403 ) 291-3077 F A X ( 4 0 3 ) 291-9468 This document is in electronic format, hard copy is available on request. 116 M a yCyist m KOMEX INTERNATIONAL LIMITED I^/AH.lytic, ir.c Attention: JAMES ARMSTRONG * Client Project #:C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description 93-P-34 Sample Date & Time : 2004/10/19 16:00 Sampled By JA Sample Type Grab Sample Received Date 2004/10/21 Sample Station Code : Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672773 CA425456 Water 2004/10/29 PARAMETER OESCRIPTION RESULTS Units QA/QC MDL RDL meq/L Batch Calculated Parameters Hardness (CaC03) 580 mg/L 618152 0.5 1 Ion Balance 0.97 N/A 618156 0.01 0.02 Misc. Inorganics Conductivity 1800 uS/cm 619784 1 2 pH 8.03 N/A 619792 0.01 0.02 Total Dissolved Solids 1030 mg/L 618183 10 20 Anions Alkalinity (PP as CaC03) <0.5 mg/L 619778 0.5 1 Alkalinity (Total as CaC03) 1010 mg/L 619778 0.5 1 Bicarbonate (HC03) 1230 mg/L 619778 0.5 1 20:164 Carbonate (C03) <0.5 mg/L 619778 0.5 1 Dissolved Chloride (Cl) 46.9 mg/L 618340 0.1 0.2 1.321 Dissolved Sulphate (S04) 5.4 mg/L 619575 0.1 0.2 0.113 Hydroxide (OH) <0.5 mg/L 619778 0.5 1 Nutrients Dissolved Nitrate (N) <0.003 mg/L 618693 0.003 0.006 Dissolved Nitrite (N) <0.003 mg/L 618693 0.003 0.006 Nitrate plus Nitrite (N) <0.003 ma/L 618173 0.003 0.006 N/A = Not Applicable MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surroaate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 117 IVI a XXa m KOMEX INTERNATIONAL LIMITED f>>C.iytic5 Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description Sample Date & Time Sampled By Sample Type Sample Received Date Sample Station Code : 93-P-34 2004/10/19 16:00 JA Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672773 CA425456 Water 2004/10/29 Elements by Atomic Spectroscopy PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L Cations Dissolved Calcium (Ca) 31.7 mg/L 619573 0.3 0.6 1.582 Dissolved Magnesium (Mg) 122 mg/L 619573 ! 0.2 0.4 10.000 Dissolved Potassium (K) 1.9 mg/L 619573 0.3 0.6 0.049 Dissolved Sodium (Na) 209 mg/L 619573 0.5 1 9.091 Dissolved Iron (Fe) 6.62 mg/L 619573 0.01 0.02 0.237 Dissolved Manganese (Mn) 0.186 mq/L 619573 0.004 0.008 0.007 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surroqate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 118 IVI Si X X S t m KOMEX INTERNATIONAL LIMITED i/Wn.iytics mc Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description Sample Date & Time Sampled By Sample Type Sample Received Date 2004/10/21 Sample Station Code : 93-P-34 2004/10/19 16:00 JA Grab Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672773 CA425456 Water 2004/10/29 Petroleum Hydrocarbons (CCME Tier 1 ) PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L Ext. Pet. Hydrocarbon F2 (C10-C16 Hydrocarbons) 0.4 m q / L 618067 0.1 0.2 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. ; Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 119 IV/I a X X a m KOMEX INTERNATIONAL LIMITED f ^ A n a i y t i c , m c Attention: JAMES ARMSTRONG * Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description : Sample Date & Time : Sampled By Sample Type Sample Received Date Sample Station Code : 93-P-34 2004/10/19 16:00 JA Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672773 CA425456 Water 2004/10/29 Volatile Organics by GC-MS PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L VOLATILES Purgeable Benzene (0.010) mg/L 617950 0.006 0.012 Purgeable Toluene (0.010) mg/L 617950 0.006 0.012 Purgeable Ethylbenzene 0.706 mg/L 617950 0.006 0.012 Purgeable Xylenes (Total) 4.25 mg/L 617950 0.01 0.02 Purqeable F1 (C06-C10) - BTEX 3.3 mq/L 617950 0.1 0.2 Surrogate Recoveries (%): D8-TOLUENE (sur.): 106 Control Limits: 88 -110 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) |() = Result < RDL and is subject to reduced levels of confidence Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 120 MaXXam KOMEX INTERNATIONAL LIMITED 7 / A n . p y t i c * i n c Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description 34-DP2 Sample Date & Time : 2004/10/20 8:00 Sampled By JA SampleType Grab Sample Received Date 2004/10/21 Sample Station Code : Maxxam Sample Number : 672774 Maxxam Job Number CA425456 Sample Access Sample Matrix Water Report Date : 2004/10/29 PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L Calculated Parameters Hardness (CaC03) Ion Balance Misc. Inorganics Conductivity pH Total Dissolved Solids Anions Alkalinity (PP as CaC03) Alkalinity (Total as CaC03) Bicarbonate (HC03) Carbonate (C03) Dissolved Chloride (Cl) Dissolved Sulphate (S04) Hydroxide (OH) Nutrients Dissolved Nitrate (N) Dissolved Nitrite (N) Nitrate plus Nitrite (N) 480 mg/L 618153 0.5 1 0.99 N/A 618156 0.01 0.02 1500 uS/cm 619784 1 2 8.15 N/A 619792 0.01 0.02 849 mg/L 618183 10 20 <0.5 mg/L 619778 0.5 1 859 mg/L 619778 0.5 1 1050 mg/L 619778 0.5 1 17.213 <0.5 mg/L 619778 0.5 1 23.3 mg/L 618340 0.1 0.2 0.656 0.2 mg/L 619575 0.1 0.2 0.004 <0.5 mq/L 619778 0:5 1 <0.003 mg/L 618693 0.003 0.006 <0.003 mg/L 618693 0.003 0.006 <0.003 mq/L 618173 0.003 0.006 N/A = Not Applicable MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. ; Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 121 IV. a X A 3 m KOMEX INTERNATIONAL LIMITED / / ^ n » ' v ' i « '">= Attention: JAMES ARMSTRONG " Client Project #: C50030601, MNA MONITORING P.O. #:A02123 Site Reference: SITE 3 Sample Description Sample Date & Time Sampled By Sample Type Sample Received Date Sample Station Code : 34-DP2 2004/10/20 8:00 JA Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672774 CA425456 Water 2004/10/29 Elements by Atomic Spectroscopy PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L Cations Dissolved Calcium (Ca) 20.2 mg/L 619573 0.3 0.6 1.008 Dissolved Magnesium (Mg) 104 mg/L 619573 0.2 0.4 8.525 Dissolved Potassium (K) 1.3 mg/L 619573 0.3 0.6 0.033 Dissolved Sodium (Na) 184 mg/L 619573 0.5 1 8.003 Dissolved Iron (Fe) 1.20 mg/L 619573 0.01 0.02 0.043 Dissolved Manganese (Mn) 0.041 mq/L 619573 0.004 0.008 0.001 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. |RDL = Reliable Detection Limit (2 x MDL) [Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 122 IVI a ) O v a m KOMEX INTERNATIONAL LIMITED f ^ V r , » . y t k 5 mc Attention: JAMES ARMSTRONG * Client Project #:C50030601, MNA MONITORING P.O. #:A02123 Site Reference: SITE 3 Sample Description 34-DP2 Sample Date & Time : 2004/10/20 8:00 Sampled By JA Sample Type Grab Sample Received Date 2004/10/21 Sample Station Code : Maxxam Sample Number : 672774 Maxxam Job Number CA425456 Sample Access : Sample Matrix Water Report Date : 2004/10/29 Volatile Organics by GC-MS PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L VOLATILES • , . Purgeable Benzene (0.04) mg/L 617950 0.04 0.08 Purgeable Toluene 0.16 mg/L 617950 0.04 0.08 Purgeable Ethylbenzene 0.70 mg/L 617950 0.04 0.08 Purgeable m & p-Xylene 4.83 mg/L 617950 0.07 0.14 Purgeable o-Xylene 0.88 mg/L 617950 0.04 0.08 Purgeable Xylenes (Total) 5.71 mg/L 617950 0.07 0.14 Purqeable F1 (C06-C10) - BTEX 2.0 ma/L 617950 0.2 0.4 Surrogate Recoveries (%): D8-TOLUENE (sur.): 96 Control Limits: 88-110 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) () = Result < RDL and is subject to reduced levels of confidence Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 123 | \ / | a X Y g m KOMEX INTERNATIONAL LIMITED r / A n . p y t i c , m c Attention: JAMES ARMSTRONG " Client Project #:C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description Sample Date & Time Sampled By Sample Type Sample Received Date Sample Station Code : 34-DP3 2004/10/19 15:30 JA Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672775 CA425456 Water 2004/10/29 PARAMETER DESCRIPTION RESULTS Units QA/QC MDL RDL meq/L Batch Calculated Parameters Hardness (CaC03) 990 mg/L 618153 0.5 1 Ion Balance 0.97 N/A 618156 0.01 0.02 Misc. Inorganics Conductivity 2560 uS/cm 619784 1 2 oH 8.07 N/A 619792 0.01 0.02 Total Dissolved Solids 1610 mg/L 618183 10 20 Anions Alkalinity (PP as CaC03) <0.5 mg/L 619778 0.5 1 Alkalinity (Total as CaC03) 1320 mg/L 619778 0.5 1 Bicarbonate (HC03) 1610 mg/L 619778 0.5 1 26.393 Carbonate (C03) <0.5 mg/L 619778 0.5 1 Dissolved Chloride (Cl) 64.6 mg/L 618340 0.1 0.2 1.820 Dissolved Sulphate (S04) 202 mg/L 619572 0.1 0.2 4.208 Hydroxide (OH) <0.5 mg/L 619778 0.5 1 Nutrients Dissolved Nitrate (N) <0.003 mg/L 618693 0.003 0.006 Dissolved Nitrite (N) <0.003 mg/L 618693 0.003 0.006 Nitrate plus Nitrite (N) <0.003 mq/L 618173 0.003 0.006 N/A = Not Applicable MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 124 M a yCyi a m KOMEX INTERNATIONAL LIMITED / > / A n . i y t i « m c Attention: JAMES ARMSTRONG * Client Project #:C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description Sample Date & Time Sampled By Sample Type Sample Received Date Sample Station Code : 34-DP3 2004/10/19 15:30 JA Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672775 CA425456 Water 2004/10/29 Elements by Atomic Spectroscopy PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L Cations Dissolved Calcium (Ca) 117 mg/L 619573 0.3 0.6 5.838 Dissolved Magnesium (Mg) 170 mg/L 619573 0.2 0.4 13.934 Dissolved Potassium (K) 4.3 mg/L 619573 0.3 0.6 0.110 Dissolved Sodium (Na) 259 mg/L 619573 0.5 1 11.266 Dissolved Iron (Fe) 4.40 mg/L 619573 0.01 0.02 0.158 Dissolved Manganese (Mn) 0.786 mg/L 619573 0.004 0.008 0.029 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 125 \\/\ g yCyt 3 m KOMEX INTERNATIONAL LIMITED / / A n . i y t i ^ i c e Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description Sample Date & Time Sampled By Sample Type Sample Received Date Sample Station Code : 34-DP3 2004/10/19 15:30 JA Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672775 CA425456 Water 2004/10/29 Volatile Organics by GC-MS PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L V O L A T I L E S Purgeable Benzene 0.0020 mg/L 617950 0.0004 0.0008 Purgeable Toluene 0.0030 mg/L 617950 0.0004 0.0008 Purgeable Ethylbenzene 0.0836 mg/L 617950 0.0004 0.0008 Purgeable m & p-Xylene 0.127 mg/L 617950 0.0008 0.002 Purgeable o-Xylene 0.0035 mg/L 617950 0.0004 0.0008 Purgeable Xylenes (Total) 0.130 mg/L 617950 0.0008 0.002 Purqeable F1 (C06-C10) - BTEX 0.4 mq/L 617950 0.1 0.2 Surrogate Recoveries (%): D8-TOLUENE (sur.): 98 Control Limits: 88-110 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 Th|s document is in electronic format, hard copy is available on request. 126 M a X x a m KOMEX INTERNATIONAL LIMITED • V/CI,!,.!,, i „ c Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description 35-ML2 Sample Date & Time : 2004/10/20 13:00 Sampled By JA Sample Type Grab Sample Received Date 2004/10/21 Sample Station Code : Maxxam Sample Number : 672777 Maxxam Job Number CA425456 Sample Access Sample Matrix Water Report Date 2004/10/29 PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L Calculated Parameters Hardness (CaC03) 450 mg/L 618153 0.5 1 Ion Balance 0.99 N/A 618156 0.01 0.02 Misc. Inorganics Conductivity 1340 uS/cm 619784 1 2 pH 8.02 N/A 619792 0.01 0.02 Total Dissolved Solids 764 mg/L 618183 10 20 Anions Alkalinity (PP as CaC03) <0.5 mg/L 619778 0.5 1 Alkalinity (Total as CaC03) 706 mg/L 619778 0.5 1 14.131 Bicarbonate (HC03) 862 mg/L 619778 0.5 1 Carbonate (C03) <0.5 mg/L 619778 0.5 1 Dissolved Chloride (Cl) 42.5 mg/L 618340 0.1 0.2 1.197 Dissolved Sulphate (S04) 4.6 mg/L 619572 0.1 0.2 0.096 Hydroxide (OH) <0.5 mg/L 619778 0.5 1 Nutrients Dissolved Nitrate (N) 0.024 mg/L 618693 0.003 0.006 0.002 Dissolved Nitrite (N) <0.003 mg/L 618693 0.003 0.006 Nitrate plus Nitrite (N) 0.024 ma/L 618173 0.003 0.006 N/A = Not Applicable |MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. ; ; Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 127 IVI a ) O C a m KOMEX INTERNATIONAL LIMITED f / A n . i y t i c s Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description Sample Date & Time Sampled By Sample Type Sample Received Date Sample Station Code : 35-ML2 2004/10/20 13:00 JA Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672777 CA425456 Water 2004/10/29 Elements by Atomic Spectroscopy PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L Cations Dissolved Calcium (Ca) 84.0 mg/L 619573 0.3 0.6 4.192 Dissolved Magnesium (Mg) 57.2 mg/L 619573 0.2 0.4 4.689 Dissolved Potassium (K) 3.1 mg/L 619573 0.3 0.6 0.079 Dissolved Sodium (Na) 138 mg/L 619573 0.5 1 6.003 Dissolved Iron (Fe) 9.35 mg/L 619573 0.01 0.02 0.335 Dissolved Manqanese (Mn) 0.929 mq/L 619573 0.004 0.008 0.034 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 128 M a XXSi m KOMEX INTERNATIONAL LIMITED f ^ ^ V n . i y t i c , mc Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description 35-ML2 Sample Date & Time : 2004/10/20 13:00 Sampled By JA SampleType Grab Sample Received Date 2004/10/21 Sample Station Code : Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672777 CA425456 Water 2004/10/29 Volatile Organics by GC-MS PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L VOLATILES Purgeable Benzene 0.0407 mg/L 617950 0.0004 0.0008 Purgeable Toluene 0.0025 mg/L 617950 0.0004 0.0008 Purgeable Ethylbenzene 0.0737 mg/L 617950 0.0004 0.0008 Purgeable m & p-Xylene 0.464 mg/L 617950 0.0008 0.002 Purgeable o-Xylene 0.0746 mg/L 617950 0.0004 0.0008 Purgeable Xylenes (Total) 0.539 mg/L 617950 0.0008 0.002 Purqeable F1 (C06-C10) - BTEX 0.6 mq/L 617950 0.1 0.2 Surrogate Recoveries (%): D8-TOLUENE (sur.): 110 Control Limits: 88 -110 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 129 M a X X a m KOMEX INTERNATIONAL LIMITED O C n . i y t i c * m c Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description Sample Date & Time : Sampled By SampleType Sample Received Date Sample Station Code : 35-ML3 2004/10/20 13:30 JA Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672778 CA425456 Water 2004/10/29 PARAMETER DESCRIPTION RESULTS Units QA/QC MDL RDL meq/L Batch Calculated Parameters Hardness (CaC03) 160 mg/L 618153 0.5 1 ion Balance 1.08 N/A 618156 0.01 0.02 Misc. Inorganics Conductivity 2550 uS/cm 619784 1 2 pH 8.21 N/A 619792 0.01 0.02 Total Dissolved Solids 1740 mg/L 618183 10 20 Anions Alkalinity (PP as CaC03) <0.5 mg/L 619778 0.5 1 Alkalinity (Total as CaC03) 667 mg/L 619778 0.5 1 Bicarbonate (HC03) 814 mg/L 619778 0.5 1 13.344 Carbonate (C03) <0.5 mg/L 619778 0.5 1 Dissolved Chloride (Cl) 30.8 mg/L 618340 0.1 0.2 0.868 Dissolved Sulphate (S04) 642 mg/L 619575 0.1 0.2 13.375 Hydroxide (OH) <0.5 mg/L 619778 0.5 1 Nutrients Dissolved Nitrate (N) 0.018 mg/L 618693 0.003 0.006 0.001 Dissolved Nitrite (N) <0.003 mg/L 618693 0.003 0.006 Nitrate plus Nitrite (N) 0.018 mq/L 618173 0.003 0.006 N/A = Not Applicable MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 130 Ml a A X S i I m KOMEX INTERNATIONAL LIMITED f yoTn . i y . i c . ir.c Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #:A02123 Site Reference: SITE 3 Sample Description 35-ML3 Sample Date & Time : 2004/10/20 13:30 Sampled By JA Sample Type Grab Sample Received Date 2004/10/21 Sample Station Code : Maxxam Sample Number : 672778 Maxxam Job Number CA425456 Sample Access Sample Matrix Water Report Date : . 2004/10/29 Elements by Atomic Spectroscopy PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L Cations Dissolved Calcium (Caj 41.2 mg/L 619573 0.3 0.6 2.056 Dissolved Magnesium (Mg) 13.7 mg/L 619573 0.2 0.4 1.123 Dissolved Potassium (K) 5.1 mg/L 619573 0.3 0.6 0.130 Dissolved Sodium (Na) 610 mg/L 619573 0.5 1 26.533 Dissolved Iron (Fe) 0.88 mg/L 619573 0.01 0.02 0.032 Dissolved Manganese (Mn) 0.613 mq/L 619573 0.004 0.008 0.022 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 131 IVI a )OC a m KOMEX INTERNATIONAL LIMITED • fS*n,\-,t\** m e Attention: JAMES ARMSTRONG Client Pr ject #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description Sample Date & Time Sampled By Sample Type Sample Received Date Sample Station Code : 35-ML3 2004/10/20 13:30 JA Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672778 CA425456 Water 2004/10/29 Volatile Organics by GC-MS PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L VOLATILES Purgeable Benzene 0.0107 mg/L 617950 0.0004 0.0008 Purgeable Toluene 0.0016 mg/L 617950 0.0004 0.0008 Purgeable Ethylbenzene 0.0135 mg/L 617950 0.0004 0.0008 Purgeable m & p-Xylene 0.0881 mg/L 617950 0.0008 0.002 Purgeable o-Xylene 0.0100 mg/L 617950 0.0004 0.0008 Purgeable Xylenes (Total) 0.0981 mg/L 617950 0.0008 0.002 Purgeable F1 (C06-C10) - BTEX <0.1 mg/L 617950 0.1 0.2 |Surrogate Recoveries (%): ID8-TOLUENE (sur.): 109 Control Limits: 88-110 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 132 MaXj?.a m *m'^r A n a l y t i c s I n c KOMEX INTERNATIONAL LIMITED Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #:A02123 Site Reference: SITE 3 Sample Description 35-ML7 Sample Date & Time : 2004/10/20 14:30 Sampled By JA SampleType Grab Sample Received Date 2004/10/21 Sample Station Code : Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672780 CA425456 Water 2004/10/29 PARAMETER DESCRIPTION RESULTS Units QA/QC MDL RDL meq/L Batch Calculated Parameters Hardness (CaC03) 490 mg/L 618153 0.5 1 Ion Balance 0.97 N/A 618156 0.01 0.02 Misc. Inorganics Conductivity 1980 uS/cm 619784 1 2 pH 7.88 N/A 619792 0.01 0.02 Total Dissolved Solids 1360 mg/L 618183 10 20 Anions Alkalinity (PP as CaC03) <0.5 mg/L 619778 0.5 1 Alkalinity (Total as CaC03) 479 mg/L 619778 0.5 1 Bicarbonate (HC03) 584 mg/L 619778 0.5 1 9.574 Carbonate (C03) <0.5 mg/L 619778 0.5 1 Dissolved Chloride (Cl) 28.2 mg/L 618340 0.1 0.2 0.794 Dissolved Sulphate (S04) 586 mg/L 619575 0.1 0.2 12.208 Hydroxide (OH) <0.5 mg/L 619778 0.5 1 Nutrients Dissolved Nitrate (N) 0.014 mg/L 618693 0.003 0.006 0.001 Dissolved Nitrite (N) <0.003 mg/L 618693 0.003 0.006 Nitrate plus Nitrite (N) 0.014 mq/L 618173 0.003 0.006 N/A = Not Applicable MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. ; Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 133 M a XX a iTl KOMEX INTERNATIONAL LIMITED f ^ / V n . p y . i c s me Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #:A02123 Site Reference: SITE 3 Sample Description Sample Date & Time Sampled By Sample Type Sample Received Date Sample Station Code : 35-ML7 2004/10/20 14:30 JA Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672780 CA425456 Water 2004/10/29 Elements by Atomic Spectroscopy PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L Cations Dissolved Calcium (Ca) 129 mg/L 619573 0.3 0.6 6.437 Dissolved Magnesium (Mg) 40.3 mg/L 619573 0.2 0.4 3.303 Dissolved Potassium (K) 5.3 mg/L 619573 0.3 0.6 0.136 Dissolved Sodium (Na) 271 mg/L 619573 0.5 1 11.788 Dissolved Iron (Fe) 7.00 mg/L 619573 0.01 0.02 0.251 Dissolved Manganese (Mn) 3.55 mg/L 619573: 0.004 0.008 0.129 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. [RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. ; Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 134 Ml a yCyi am KOMEX INTERNATIONAL LIMITED (y\n.i»tic» m c Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description 35-ML7 Sample Date & Time : 2004/10/20 14:30 Sampled By JA Sample Type Grab Sample Received Date 2004/10/21 Sample Station Code : Maxxam Sample Number : 672780 Maxxam Job Number CA425456 Sample Access Sample Matrix Water Report Date : 2004/10/29 Volatile Organics by GC-MS PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L VOLATILES Purgeable Benzene 0.0070 mg/L 617950 0.0004 0.0008 Purgeable Toluene 0.0012 mg/L 617950 0.0004 0.0008 Purgeable Ethylbenzene 0.0100 mg/L 617950 0.0004 0.0008 Purgeable m & p-Xylene 0.0263 mg/L 617950 0.0008 0.002 Purgeable o-Xylene 0.0027 mg/L 617950 0.0004 0.0008 Purgeable Xylenes (Total) 0.0290 mg/L 617950 0.0008 0.002 Purqeable F1 (C06-C10) - BTEX <0.1 mq/L 617950 0.1 0.2 Surrogate Recoveries (%): D8-TOLUENE (sur.): 109 Control Limits: 88 -110 | M D L = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. R D L = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 135 M a yCyt a m KOMEX INTERNATIONAL LIMITED 0 ^ ! n . p y t i « mc Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description 35-MW1 Sample Date & Time : 2004/10/20 11:30 Sampled By JA SampleType Grab Sample Received Date 2004/10/21 Sample Station Code : Maxxam Sample Number : 672782 Maxxam Job Number : CA425456 Sample Access Sample Matrix Water Report Date : 2004/10/29 PARAMETER DESCRIPTION RESULTS Units QA/QC MDL RDL meq/L Batch Calculated Parameters Hardness (CaC03) 620 mg/L 618153 0.5 1 Ion Balance 0.99 N/A 618157 0.01 0.02 Misc. Inorganics Conductivity 2020 uS/cm 619784 1 2 PH 7.58 N/A 619792 0.01 0.02 Total Dissolved Solids 1040 mg/L 618183 10 20 Anions Alkalinity (PP as CaC03) <0.5 mg/L 619778 0.5 1 Alkalinity (Total as CaC03) 970 mg/L 619778 0.5 1 Bicarbonate (HC03) 1180 mg/L 619778 0.5 1 19.344 Carbonate (C03) <0.5 mg/L 619778 0.5 1 Dissolved Chloride (Cl) 51.5 mg/L 618340 0.1 0.2 1.451 Dissolved Sulphate (S04) 0.5 mg/L 620573 0.1 0.2 0.010 Hydroxide (OH) <0.5 mg/L 619778 0.5 1 Nutrients Dissolved Nitrate (N) 0.010 mg/L 618693 0.003 0.006 0.001 Dissolved Nitrite (N) <0.003 mg/L 618693 0.003 0.006 Nitrate plus Nitrite (N) 0.010 mq/L 618173 0.003 0.006 N/A = Not Applicable MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. .. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrorjate or moisture values unless otherwise stated. Calgary: 2021 - 4Tst Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 Th|s document is in electronic format, hard copy is available on request. 136 MaXO('arn KOMEX INTERNATIONAL LIMITED f y ^ A n . p y t i c , m c Attention: JAMES ARMSTRONG * Client Project #: C50030601, MNA MONITORING P.O. #:A02123 Site Reference: SITE 3 Sample Description Sample Date & Time : Sampled By Sample Type Sample Received Date Sample Station Code : 35-MW1 2004/10/20 11:30 JA Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672782 CA425456 Water 2004/10/29 Elements by Atomic Spectroscopy PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L Cations Dissolved Calcium (Ca) 131 mg/L 619573 0.3 0.6 6.537 Dissolved Magnesium (Mg) 69.8 mg/L 619573 0.2 0.4 5.721 Dissolved Potassium (K) 2.8 mg/L 619573 0.3 0.6 0.072 Dissolved Sodium (Na) 125 mg/L 619573 0.5 1 5.437 Dissolved Iron (Fe) 78.3 mg/L 619573 0.01 0.02 2.804 Dissolved Manganese (Mn) 2.19 mg/L 619573 0.004 0.008 0.080 |MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 137 . f / A n . i y t i . . m c Attention: JAMES ARMSTRONG * Client Project #:C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description Sample Date & Time Sampled By Sample Type Sample Received Date 2004/10/21 Sample Station Code 35-MW1 2004/10/20 11:30 JA Grab Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672782 CA425456 Water 2004/10/29 Petroleum Hydrocarbons (CCME Tier 1) PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L Ext. Pet. Hydrocarbon F2 (C10-C16 Hydrocarbons) 1.1 mg/L 618067 0.1 0.2 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) . . Results are not corrected for surrogate or moisture values unless otherwise stated. : Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 138 M a X>C a m KOMEX INTERNATIONAL LIMITED 7 / A n . i y t i c 5 m e Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description Sample Date & Time Sampled By Sample Type Sample Received Date Sample Station Code : 35-MW1 2004/10/20 11:30 JA Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672782 CA425456 Water 2004/10/29 Volatile Organics by GC-MS PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L VOLATILES Purgeable Benzene 0.087 mg/L 617950 0.006 0.012 Purgeable Toluene 0.198 mg/L 617950 0.006 0.012 Purgeable Ethylbenzene 0.188 mg/L 617950 0.006 0.012 Purgeable Xylenes (Total) 3.56 mg/L 617950 0.01 0.02 Purqeable F1 (C06-C10) - BTEX 2.7 mq/L 617950 0.1 0.2 Surrogate Recoveries (%): D8-TOLUENE (sur.): 109 Control Limits: 88 -110 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 139 IVI a X y v a m KOMEX INTERNATIONAL LIMITED f / A n a i y t i c , m c Attention: JAMES ARMSTRONG * Client Project #:C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description 35-MW2 Sample Date & Time : 2004/10/20 12:30 Sampled By JA Sample Type Grab Sample Received Date 2004/10/21 Sample Station Code : Maxxam Sample Number : 672783 Maxxam Job Number : CA425456 Sample Access : Sample Matrix Water Report Date 2004/10/29 PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L Calculated Parameters. Hardness (CaC03) 410 mg/L 618153 0.5 1 Ion Balance 1.03 N/A 618157 0.01 0.02 Misc. Inorganics Conductivity 1280 uS/cm 619784 1 2 pH 7.67 N/A 619792 0.01 0.02 Total Dissolved Solids 738 mg/L 618183 10 20 Anions Alkalinity (PP as CaC03) <0.5 mg/L 619778 0.5 1 Alkalinity (Total as CaC03) 649 mg/L 619778 0.5 1 Bicarbonate (HC03) 792 mg/L 619778 0.5 1 12.984 Carbonate (C03) <0.5 mg/L 619778 0.5 1 Dissolved Chloride (Cl) 51.5 . mg/L 618340 0.1 0.2 1.451 Dissolved Sulphate (S04) 1.5 mg/L 619575 0.1 0.2 0.031 Hydroxide (OH) <0.5 mg/L 619778 0.5 1 . Nutrients Dissolved Nitrate (N) <0.02 mg/L 619628 0.02 0.04 Dissolved Nitrite (N) <0.02 mg/L 619628 0.02 0.04 Nitrate plus Nitrite (N) <0.003 mg/L 618173 0.003 0.006 N/A = Not Applicable MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. Nitrogen, (Nitrite, Nitrate) by IC - DETECTION LIMITS RAISED DUE TO DILUTION Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 Th|s document is in electronic format, hard copy is available on request. 140 IVI SI yCyt S\im KOMEX INTERNATIONAL LIMITED f _X%Tnaiytic5 i n c Attention: JAMES ARMSTRONG . • ' Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description Sample Date & Time Sampled By Sample Type Sample Received Date Sample Station Code : 35-MW2 2004/10/20 12:30 JA Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672783 CA425456 Water 2004/10/29 Elements by Atomic Spectroscopy PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L C a t i o n s Dissolved Calcium (Ca) 85.5 mg/L 619573 0.3 0.6 4.266 Dissolved Magnesium (Mg) 46.9 mg/L 619573 0.2 0.4 3.844 Dissolved Potassium (K) 2.5 mg/L 619573 0.3 0.6 0.064 Dissolved Sodium (Na) 129 mg/L 619573 0.5 1 5.611 Dissolved Iron (Fe) 29.3 mg/L . 619573 0.01 0.02 1.049 Dissolved Manqanese (Mn) 1.93 mq/L 619573 0.004 0.008 0.070 |MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. ' \ Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 141 M a X X a m KOMEX INTERNATIONAL LIMITED ' . ^ A n . i y . i c * m c Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description 35-MW2 Sample Date & Time : 2004/10/20 12:30 Sampled By JA Sample Type Grab Sample Received Date 2004/10/21 Sample Station Code : Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672783 CA425456 Water 2004/10/29 Petroleum Hydrocarbons (CCME Tier 1 ) PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L Ext. Pet. Hydrocarbon F2 (C10-C16 Hydrocarbons) 0.3 mg/L 618067 0.1 0.2 |MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) . Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 142 M a yCyiaim KOMEX INTERNATIONAL LIMITED • f ^ V n . i y t i c . mc Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description 35-MW2 Sample Date & Time : 2004/10/20 12:30 Sampled By JA Sample Type Grab Sample Received Date 2004/10/21 Sample Station Code : Maxxam Sample Number : 672783 Maxxam Job Number CA425456 Sample Access Sample Matrix Water Report Date. : 2004/10/29 Volatile Organics by GC-MS PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L VOLATILES Purgeable Benzene 0.128 mg/L 617950 0.004 0.008 Purgeable Toluene <0.004 mg/L 617950 0.004 0.008 Purgeable Ethylbenzene 0.170 mg/L 617950 0.004 0.008 Purgeable Xylenes (Total) 1.77 mg/L 617950 0.007 0.014 Purqeable F1 (C06-C10) - BTEX 7.0 mq/L 617950 0.1 0.2 Surrogate Recoveries (%): D8-TOLUENE (sur.): 108 Control Limits: 88 -110 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 143 Ml a X X 3 m KOMEX INTERNATIONAL LIMITED 0^>"a |v<i« Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #:A02123 Site Reference: SITE 3 Sample Description Sample Date & Time Sampled By Sample Type Sample Received Date Sample Station Code : 93-P-35 2004/10/20 9:30 JA Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672784 CA425456 Water 2004/10/29 PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L Calculated Parameters Hardness (CaC03) 650 mg/L 618153 0.5 1 Ion Balance 1.21 N/A 618157 0.01 0.02 Misc. Inorganics Conductivity 1620 uS/cm 619784 1 2 pH 7.30 N/A 619792 0.01 0.02 Total Dissolved Solids 983 mg/L 618183 10 20 Anions Alkalinity (PP as CaC03) <0.5 mg/L 619778 0.5 1 Alkalinity (Total as CaC03) 830 mg/L 619778 0.5 1 Bicarbonate (HC03) 1010 mg/L 619778 0.5 1 16.557 Carbonate (C03) <0.5 mg/L 619778 0.5 1 Dissolved Chloride (Cl) 46.2 mg/L 618340 0.1 0:2 1.301 Dissolved Sulphate (S04) 0.5 mg/L 620573 0.1 0.2 0.010 Hydroxide (OH) <0.5 mg/L 619778 0.5 1 Nutrients Dissolved Nitrate (N) 0.023 mg/L 619628 0.003 0.006 0.002 Dissolved Nitrite (N) 0.043 mg/L 619628 0.003 0.006 Nitrate plus Nitrite (N) 0.066 mq/L 618173 0.003 0.006 N/A = Not Applicable MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. Ion Balance - Anion-Cation balance is higher than our normal limits; major ions checked, possibly due to matrix. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 144 M a X X a m KOMEX INTERNATIONAL LIMITED r > V n . i y t i c » me Attention: JAMES ARMSTRONG " Client Project #: C50030601, MNA MONITORING P.O. #:A02123 Site Reference: SITE 3 Sample Description Sample Date & Time Sampled By Sample Type Sample Received Date Sample Station Code : 93-P-35 2004/10/20 9:30 JA Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672784 CA425456 Water 2004/10/29 Elements by Atomic Spectroscopy PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L Cations Dissolved Calcium (Ca) 164 mg/L 621100 0.3 0.6 8.184 Dissolved Magnesium (Mg) 58.5 mg/L 621100 0.2 0.4 4.795 Dissolved Potassium (K) 2.2 mg/L 621100 0.3 0.6 0.056 Dissolved Sodium (Na) 138 mg/L 621100 0.5 1 6.003 Dissolved Iron (Fe) 72.7 mg/L 621100 0.01 0.02 2.604 Dissolved Manganese (Mn) 2.30 mg/L 621100 0.004 0.008 0.084 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. ' Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 145 Ma xxa m A n a l y t i c s Inc KOMEX INTERNATIONAL LIMITED Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #:A02123 Site Reference: SITE 3 Sample Description 93-P-35 Sample Date & Time : 2004/10/20 9:30 Sampled By : JA Sample Type Grab Sample Received Date 2004/10/21 Sample Station Code : Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672784 CA425456 Water 2004/10/29 Petroleum Hydrocarbons (CCME Tier 1) PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L Ext. Pet. Hydrocarbon F2 (C10-C16 Hydrocarbons) 2.5 mq/L 618067 0.1 0.2 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL). Results are not corrected for surrogate or moisture values unless otherwise stated. Extractable Hydrocarbons (C10-C16) - SAMPLE CONTAINED SEDIMENT • - Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 Th|s document is in electronic format, hard copy is available on request. 146 M a Xxa m KOMEX INTERNATIONAL LIMITED ( m < : Attention: JAMES ARMSTRONG ' Client Project #:C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description Sample Date & Time Sampled By Sample Type Sample Received Date Sample Station Code : 93-P-35 2004/10/20 9:30 JA Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672784 CA425456 Water 2004/10/29 Volatile Organics by GC-MS PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L VOLATILES Purgeable Benzene 0.111 mg/L 617950 0.009 0.02 Purgeable Toluene 0.115 mg/L 617950 0.009 0.02 Purgeable Ethylbenzene 0.202 mg/L 617950 0.009 0.02 Purgeable Xylenes (Total) 4.31 mg/L 617950 0.02 0.04 Purqeable F1 (C06-C10) - BTEX 2.4 mq/L 617950 0.1 0.2 Surrogate Recoveries (%): D8-TOLUENE (sur.): 110 Control Limits: 88 -110 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 147 M a X ) v a m KOMEX INTERNATIONAL LIMITED ( / A H . l y t i c , m c Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description 35-DP1 Sample Date & Time : 2004/10/20 10:30 Sampled By JA SampleType Grab Sample Received Date 2004/10/21 Sample Station Code : Maxxam Sample Number : 672787 Maxxam Job Number CA425456 , Sample Access Sample Matrix Water Report Date : 2004/10/29 PARAMETER DESCRIPTION RESULTS Units QA/QC MDL RDL meq/L Batch Calculated Parameters Hardness (CaC03) 470 mg/L 618153 0.5 1 Ion Balance 0.98 N/A 618157 0.01 0.02 Misc. Inorganics Conductivity 1640 uS/cm 619784 1 2 pH 7.99 N/A 619792 0.01 0.02 Total Dissolved Solids 857 mg/L 618184 10 20 Anions Alkalinity (PP as CaC03) <0.5 mg/L 619778 0.5 1 Alkalinity (Total as CaC03) 781 mg/L 619778 0.5 1 Bicarbonate (HC03) 952 mg/L 619778 0.5 1 15.607 Carbonate (C03) <0.5 mg/L 619778 0.5 1 Dissolved Chloride (Cl) 55.2 mg/L 618340 0.1 0.2 1.555 Dissolved Sulphate (S04) <0.1 mg/L 619575 0.1 0.2 Hydroxide (OH) <0.5 mg/L 619778 0.5 1 Nutrients Dissolved Nitrate (N) <0.003 mg/L 619628 0.003 0.006 Dissolved Nitrite (N) <0.003 mg/L 619628 0.003 0.006 Nitrate plus Nitrite (N) <0.003 mq/L 618173 0.003 0.006 N/A = Not Applicable MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 148 M a X X a i T I KOMEX INTERNATIONAL LIMITED I / A I , , , , , ! . , , „ C Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description : Sample Date & Time : Sampled By Sample Type Sample Received Date Sample Station Code : 35-DP1 2004/10/20 10:30 JA Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672787 CA425456 Water 2004/10/29 Elements by Atomic Spectroscopy [PARAMETER DESCRIPTION RESULTS Units QA/QC MDL RDL meq/L Batch Cations Dissolved Calcium (Ca) Dissolved Magnesium (Mg) Dissolved Potassium (K) Dissolved Sodium (Na) Dissolved Iron (Fe) Dissolved Manganese (Mn) 97.4 mg/L 619573 0.3 0.6 4.860 54.3 mg/L 619573 0.2 0.4 4.451 1.6 mg/L 619573 0.3 0.6 0.041 130 mg/L 619573 0.5 1 5.655 49.1 mg/L 619573 0.01 0.02 1.759 1.10 mq/L 619573 0.004 0.008 0.040 | M D L = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. ; Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 149 M a X)va m KOMEX INTERNATIONAL LIMITED ( / A H . l y t i c , m c Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description Sample Date & Time Sampled By Sample Type Sample Received Date Sample Station Code : 35-DP1 2004/10/20 10:30 JA Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672787 CA425456 Water 2004/10/29 Volatile Organics by GC-MS PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L VOLATILES Purgeable Benzene 0.12 mg/L 617950 0.04 0.08 Purgeable Toluene 0.60 mg/L 617950 0.04 0.08 Purgeable Ethylbenzene 0.36 mg/L 617950 0.04 0.08 Purgeable m & p-Xylene 5.33 mg/L 617950 0.07 0.14 Purgeable o-Xylene 1.59 mg/L 617950 0.04 0.08 Purgeable Xylenes (Total) 6.92 mg/L 617950 0.07 0.14 PurqeableFI (C06-C10) - BTEX 1.6 mo/L 617950 0.2 0.4 Surrogate Recoveries (%): D8-TOLUENE (sur.): 108 Control Limits: 88-110 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 150 IVI a ) O C a m KOMEX INTERNATIONAL LIMITED ^ / A n a l y t i c s i n c Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description Sample Date & Time : Sampled By Sample Type Sample Received Date Sample Station Code : 35-DP2 2004/10/20 10:30 JA Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672788 CA425456 Water 2004/10/29 PARAMETER DESCRIPTION RESULTS Units QA/QC MDL RDL meq/L Batch Calculated Parameters Hardness (CaC03) 420 mg/L 618153 0.5 1 Ion Balance 0.94 N/A 618157 0.01 0.02 Misc. Inorganics Conductivity 1340 uS/cm 619886 1 2 pH 7.97 N/A 619792 0.01 0.02 Total Dissolved Solids 751 mg/L 618184 10 20 Anions Alkalinity (PP as CaC03) <0.5 mg/L 619778 0.5 1 Alkalinity (Total as CaC03) 690 mg/L 619778 0.5 1 13.787 Bicarbonate (HC03) 841 mg/L 619778 0.5 1 Carbonate (C03) <0.5 mg/L 619778 0.5 1 Dissolved Chloride (Cl) 46.1 mg/L 618340 0.1 0.2 1.299 Dissolved Sulphate (S04) 15.8 mg/L 619575 0.1 0.2 0.329 Hydroxide (OH) <0.5 mg/L 619778 0.5 1 Nutrients Dissolved Nitrate (N) <0.003 mg/L 619628 0.003 0.006 Dissolved Nitrite (N) <0.003 mg/L 619628 0.003 0.006 Nitrate plus Nitrite (N) <0.003 mq/L 618173 0.003 0.006 N/A = Not Applicable MDL = Method Detection Limit • Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surroaate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 151 M a X x a r n KOMEX INTERNATIONAL LIMITED 0^"">"vtl" Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #:A02123 Site Reference: SITE 3 Sample Description 35-DP2 Sample Date & Time : 2004/10/20 10:30 Sampled By JA Sample Type Grab Sample Received Date 2004/10/21 Sample Station Code : Maxxam Sample Number : 672788 Maxxam Job Number CA425456 Sample Access Sample Matrix Water Report Date : 2004/10/29 Elements by Atomic Spectroscopy PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L Cations Dissolved Calcium (Ca) 75.7 mg/L 619573 0.3 0.6 3.777 Dissolved Magnesium (Mg) 55.7 mg/L 619573 0.2 0.4 4.566 Dissolved Potassium (K) 2.2 mg/L 619573 0.3 0.6 0.056 Dissolved Sodium (Na) 129 mg/L 619573 0.5 1 5.611 Dissolved Iron (Fe) 12.2 mg/L 619573 0.01 0.02 0.437 Dissolved Manqanese (Mn) 0.649 mq/L 619573 0.004 0.008 0.024 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 152 M a X*X a m KOMEX INTERNATIONAL LIMITED f / A n . p y t i « m c Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description 35-DP2 Sample Date & Time : 2004/10/20 10:30 Sampled By JA Sample Type : Grab Sample Received Date 2004/10/21 Sample Station Code : Maxxam Sample Number : 672788 Maxxam Job Number CA425456 Sample Access Sample Matrix : Water Report Date : 2004/10/29 Volatile Organics by GC-MS PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L VOLATILES Purgeable Benzene 0.078 mg/L 617950 0.004 0.008 Purgeable Toluene 0.013 mg/L 617950 0.004 0.008 Purgeable Ethylbenzene 0.260 mg/L 617950 0.004 0.008 Purgeable m & p-Xylene 1.48 mg/L 617950 0.007 0.014 Purgeable o-Xylene 0.345 mg/L 617950 0.004 0.008 Purgeable Xylenes (Total) 1.83 mg/L 617950 0.007 0.014 Purqeable F1 (C06-C10) - BTEX 0.7 mq/L 617950 0.1 0.2 Surrogate Recoveries (%): D8-TOLUENE (sur.): 110 Control Limits: 88-110 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 153 | \ / | g X X 3 m KOMEX INTERNATIONAL LIMITED f^A""*"" m c Attention: JAMES ARMSTRONG * Client Project #:C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description 35-DP3 Sample Date & Time : 2004/10/20 11:00 Sampled By JA SampleType Grab Sample Received Date 2004/10/21 Sample Station Code : Maxxam Sample Number : 672789 Maxxam Job Number CA425456 Sample Access : Sample Matrix Water Report Date 2004/10/29 PARAMETER DESCRIPTION RESULTS Units QA/QC MDL RDL meq/L Batch Calculated Parameters Hardness (CaC03) 650 mg/L 618153 0.5 1 Ion Balance 0.97 N/A 618157 0.01 0.02 Misc. Inorganics Conductivity 1510 uS/cm 619886 1 2 pH 8.03 N/A 619792 0.01 0.02 Total Dissolved Solids 985 mg/L 618184 10 20 Anions Alkalinity (PP as CaC03) <0.5 mg/L 619778 0.5 1 Alkalinity (Total as CaC03) 503 mg/L 619778 0.5 1 Bicarbonate (HC03) 614 mg/L 619778 0.5 1 10.066 Carbonate (C03) <0.5 mg/L 619778 0.5 1 Dissolved Chloride (Cl) 28.2 mg/L 618340 0.1 0.2 0.794 Dissolved Sulphate (S04) 331 mg/L 619575 0.1 0.2 6.896 Hydroxide (OH) <0.5 mg/L 619778 0.5 1 Nutrients Dissolved Nitrate (N) 0.044 mg/L 619628 0.003 0.006 0.003 Dissolved Nitrite (N) <0.003 mg/L 619628 0.003 0.006 Nitrate plus Nitrite (N) 0.044 mq/L 618173 0.003 0.006 N/A = Not Applicable MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 154 |VI a X X e l n f l KOMEX INTERNATIONAL LIMITED f / A " « i v t ' " "•<= Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #:A02123 Site Reference: SITE 3 Sample Description Sample Date & Time Sampled By Sample Type Sample Received Date Sample Station Code : 35-DP3 2004/10/20 11:00 JA .. Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672789 CA425456 Water 2004/10/29 Elements by Atomic Spectroscopy PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L Cations Dissolved Calcium (Caj 163 mg/L 619573 0.3 0.6 8.134 Dissolved Magnesium (Mg) 59.7 mg/L 619573 0.2 0.4 4.893 Dissolved Potassium (K) 5.0 mg/L 619573 0.3 0.6 0.128 Dissolved Sodium (Na) 94.7 mg/L 619573 0.5 1 4.119 Dissolved Iron (Fe) 0.59 mg/L 619573 0.01 0.02 0.021 Dissolved Manqanese (Mn) 0.814 mq/L 619573 0.004 0.008 0.030 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. ' Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 155 Ma A X a i T l KOMEX INTERNATIONAL LIMITED f y " A n . i y t i « m c Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description Sample Date & Time Sampled By Sample Type Sample Received Date Sample Station Code : 35-DP3 2004/10/20 11:00 JA Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672789 CA425456 Water 2004/10/29 Volatile Organics by GC-MS PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L VOLATILES Purgeable Benzene 0.0011 mg/L 617950 0.0004 0.0008 Purgeable Toluene 0.0026 mg/L 617950 0.0004 0.0008 Purgeable Ethylbenzene 0.0035 mg/L 617950 0.0004 0.0008 Purgeable m & p-Xylene 0.0198 mg/L 617950 0.0008 0.002 Purgeable o-Xylene 0.0055 mg/L 617950 0.0004 0.0008 Purgeable Xylenes (Total) 0.0253 mg/L 617950 0.0008 0.002 Purqeable F1 (C06-C10) - BTEX <0.1 mq/L 617950 0.1 0.2 Surrogate Recoveries (%): D8-TOLUENE (sur.): 107 Control Limits: 88-110 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. jRDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on reguest. 156 Ml a y C % a m KOMEX INTERNATIONAL LIMITED f / * " " ^ ' ' " '»« Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description 03-P-06A Sample Date & Time : 2004/10/20 15:00 Sampled By JA SampleType Grab Sample Received Date 2004/10/21 Sample Station Code : Maxxam Sample Number : 672799 Maxxam Job Number CA425456 Sample Access Sample Matrix Water Report Date : 2004/10/29 Volatile Organics by GC-MS PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L VOLATILES •, Purgeable Benzene <0.0004 mg/L 617950 0.0004 0.0008 Purgeable Toluene <0.0004 mg/L 617950 0.0004 0.0008 Purgeable Ethylbenzene (0.0006) mg/L 617950 0.0004 0.0008 Purgeable m & p-Xylene <0.0008 mg/L 617950 0.0008 0.002 Purgeable o-Xylene <0.0004 mg/L 617950 0.0004 0.0008 Purgeable Xylenes (Total) <0.0008 mg/L 617950 0.0008 0.002 Purqeable F1 (C06-C10) - BTEX <0.1 mg/L 617950 0.1 0.2 Surrogate Recoveries (%): D8-TOLUENE (sur.): 110 Control Limits: 88 -110 |MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) |() = Result < RDL and is subject to reduced levels of confidence Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 157 M a X X a ITI KOMEX INTERNATIONAL LIMITED I ^ A n a l y t i c * mc Attention: JAMES ARMSTRONG * Client Project #:C50030601, MNA MONITORING P.O. #:A02123 Site Reference: SITE 3 Sample Description Sample Date & Time Sampled By SampleType Sample Received Date Sample Station Code : 35-ML1 2004/10/20 16:00 JA Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672829 CA425456 Water 2004/10/29 Elements by Atomic Spectroscopy PARAMETER DESCRIPTION RESULTS Units QA/QC MDL RDL meq/L Batch Cations Dissolved Iron (Fe) 32.0 mg/L 619573 0.01 0.02 1.146 Dissolved Manganese (Mn) 3.84 mg/L 619573 0.004 0.008 0.140 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. \ ; Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 158 IVI a y(y(.c\ m KOMEX INTERNATIONAL LIMITED f ^ A n » i y t i c 3 m E Attention: JAMES ARMSTRONG ' Client Project #:C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Sample Description Sample Date & Time : Sampled By SampleType Sample Received Date Sample Station Code : 35-ML1 2004/10/20 16:00 JA Grab 2004/10/21 Maxxam Sample Number Maxxam Job Number Sample Access Sample Matrix Report Date 672829 CA425456 Water 2004/10/29 Volatile Organics by GC-MS PARAMETER DESCRIPTION RESULTS Units QA/QC Batch MDL RDL meq/L VOLATILES •, Purgeable Benzene 0.180 mg/L 617950 0.006 0.012 Purgeable Toluene <0.006 mg/L 617950 0.006 0.012 Purgeable Ethylbenzene 0.484 mg/L 617950 0.006 0.012 Purgeable m & p-Xylene 2.21 mg/L 617950 0.01 0.02 Purgeable o-Xylene 1.17 mg/L 617950 0.006 0.012 Purgeable Xylenes (Total) 3.37 mg/L 617950 0.01 0.02 Purqeable F1 (C06-C10) - BTEX 6.6 ma/L 617950 0.1 0.2 Surrogate Recoveries (%): D8-TOLUENE (sur.): 93 Control Limits: 88-110 MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. RDL = Reliable Detection Limit (2 x MDL) Results are not corrected for surrogate or moisture values unless otherwise stated. Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 159 M a XX a m KOMEX INTERNATIONAL LIMITED r > / ^ n . i y t i c » m c Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Quality Assurance Report Maxxam Job Number: CA425456 QA/QC Batch Num Init QC Type Parameter Date Analyzed vvvv/mm/dd Value Recovery Units QC Limits 617950 SMC Calibration Check Purgeable Benzene 2004/10/22 108 % 85-115 Purgeable toluene 2004/10/22 99 % 85-115 Purgeable Ethylbenzene 2004/10/22 99 % 85-115 Purgeable m & p-Xylene 2004/10/22 104 % 85-115 Purgeable o-Xylene 2004/10/22 99 % 85-115 SPIKE Purgeable Benzene 2004/10/22 88 % . 75-125 Purgeable Toluene 2004/10/22 94 % 75-125 Purgeable Ethylbenzene 2004/10/22 79 % 75-125 Purgeable m & p-Xylene 2004/10/22 79 % 75-125 Purgeable o-Xylene 2004/10/22 78 % 75-125 BLANK Purgeable D8-TOLUENE (sur.) 2004/10/22 110 % 88-110 Purgeable Benzene 2004/10/22 <0.0004 mg/L Purgeable Toluene 2004/10/22 <0.0004 mg/L Purgeable Ethylbenzene 2004/10/22 <0.0004 mg/L Purgeable m & p-Xylene 2004/10/22 <0.0008 mg/L Purgeable o-Xylene 2004/10/22 <0.0004 mg/L Purgeable Xylenes (Total) 2004/10/22 <0.0008 mg/L Purgeable F1 (C06-C10) - BTEX 2004/10/22 <0.1 mg/L 618067 LP1 Calibration Check F2 (C10-C16 Hydrocarbons) 2004/10/23 90 % 85-115 BLANK F2 (C10-C16 Hydrocarbons) 2004/10/23 <0.1 mg/L 618340 CC Calibration Check Dissolved Chloride (Cl) 2004/10/22 99 % 93-108 MATRIX SPIKE Dissolved Chloride (Cl) 2004/10/22 98 % 90-108 BLANK Dissolved Chloride (Cl) 2004/10/22 <0.1 mg/L RPD Dissolved Chloride (Cl) 2004/10/22 1.6 % 20 618693 MP1 Calibration Check Dissolved Nitrate (N) 2004/10/22 102 . % 92-111 Dissolved Nitrite (N) 2004/10/22 101 % 91-110 MATRIX SPIKE Dissolved Nitrate (N) 2004/10/22 94 % 81-121 Dissolved Nitrite (N) 2004/10/22 , 98 . % 87-117 BLANK Dissolved Nitrate (N) 2004/10/22 <0.003 mg/L Dissolved Nitrite (N) 2004/10/22 <0.003 mg/L RPD. Dissolved Nitrate (N) 2004/10/22 NC % N/A Dissolved Nitrite (N) 2004/10/22 NC % N/A 619571 ED Calibration Check Dissolved Calcium (Ca) 2004/10/25 100 % 89-110 Dissolved Magnesium (Mg) 2004/10/25 101 % 91-106 Dissolved Potassium (K) 2004/10/25 102 % 90-113 Dissolved Sodium (Na) 2004/10/25 104 % 92-114 Dissolved Iron (Fe) 2004/10/25 109 . % 87-113 Dissolved Manganese (Mn) 2004/10/25 105 % . 92-110 MATRIX SPIKE Dissolved Calcium (Ca) 2004/10/25 101 % 80-120 Dissolved Magnesium (Mg) 2004/10/25 104 % . 80-120 Dissolved Potassium (K) 2004/10/25 106 % 80-120 Dissolved Sodium (Na) 2004/10/25 109 % 80-120 Dissolved Iron (Fe) 2004/10/25 105 % 80-120 Dissolved Manganese (Mn) 2004/10/25 106 % 80-120 BLANK Dissolved Calcium (Ca) 2004/10/25 <0.3 mg/L Dissolved Magnesium (Mg) 2004/10/25 <0.2 mg/L Dissolved Potassium (K) 2004/10/25 <0.3 mg/L Dissolved Sodium (Na) 2004/10/25 <0.5 mg/L Dissolved Iron (Fe) 2004/10/25 <0.01 mg/L Dissolved Manganese (Mn) 2004/10/25 <0.004 mg/L RPD Dissolved Calcium (Ca) 2004/10/25 0.8 % N/A Dissolved Magnesium (Mg) 2004/10/25 0.3 % N/A Dissolved Potassium (K) 2004/10/25 2.6 % N/A Dissolved Sodium (Na) 2004/10/25 3.2 . % N/A Dissolved Iron (Fe) 2004/10/25 NC % N/A Dissolved Manganese (Mn) 2004/10/25 NC % N/A Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. 160 KOMEX INTERNATIONAL LIMITED Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #:A02123 Site Reference: SITE 3 Quality Assurance Report (Continued) Maxxam Job Number: CA425456 QA/QC Batch Num init QC Type Parameter Date Analyzed wvv/mm/dd Value Recovery Units QC Limits 619572 AC1 Calibration Check Dissolved Sulphate (S04) 2004/10/25 98 % 95- 109 MATRIX SPIKE Dissolved Sulphate (S04) 2004/10/25 98 % 95- 105 BLANK Dissolved Sulphate (S04) 2004/10/25 <0.1 mg/L RPD Dissolved Sulphate (S04) 2004/10/25 2.8 % N/A 619573 ED Calibration Check Dissolved Calcium (Ca) 2004/10/25 98 % 89- 110 Dissolved Magnesium (Mg) 2004/10/25 103 % 91- 106 Dissolved Potassium (K) 2004/10/25 108 % 90- 113 Dissolved Sodium (Na) 2004/10/25 109 % 92- 114 Dissolved Iron (Fe) 2004/10/25 106 % 87- 113 Dissolved Manganese (Mn) 2004/10/25 102 % 92- 110 MATRIX SPIKE Dissolved Calcium (Ca) 2004/10/25 104 % 80- 120 Dissolved Magnesium (Mg) 2004/10/25 106 % 80- 120 Dissolved Potassium (K) 2004/10/25 101 % 80- 120 Dissolved Sodium (Na) ' 2004/10/25 101 % 80- 120 Dissolved Iron (Fe) 2004/10/25 i 107 % 80 120 Dissolved Manganese (Mn) 2004/10/25 106 % 80 120 BLANK Dissolved Calcium (Ca) 2004/10/25 <0.3 mg/L Dissolved Magnesium (Mg) 2004/10/25 <0.2 mg/L Dissolved Potassium (K) 2004/10/25 <0.3 mg/L Dissolved Sodium (Na) 2004/10/25 <0.5 mg/L Dissolved Iron (Fe) 2004/10/25 <0.01 mg/L Dissolved Manganese (Mn) . 2004/10/25 <0.004 mg/L 619575 AC1 Calibration Check Dissolved Sulphate (S04) 2004/10/25 99 % 95 109 MATRIX SPIKE Dissolved Sulphate (S04) 2004/10/25 100 % 95 105 BLANK Dissolved Sulphate (S04) 2004/10/25 <0.1 mg/L RPD Dissolved Sulphate (S04) 2004/10/25 0.3 % N/A 619628 MP1 Calibration Check Dissolved Nitrate (N) 2004/10/25 102 % 92 111 Dissolved Nitrite (N) 2004/10/25 100 % 91 110 MATRIX SPIKE Dissolved Nitrate (N) 2004/10/25 97 % 81 121 Dissolved Nitrite (N) 2004/10/25 96 %. 87 117 BLANK Dissolved Nitrate (N) 2004/10/25 <0.003 mg/L Dissolved Nitrite (N) 2004/10/25 <0.003 mg/L RPD Dissolved Nitrate (N) 2004/10/25 4.7 % N/A Dissolved Nitrite (N) 2004/10/25 NC % N/A 619777 MGC Calibration Check Alkalinity (Total as CaC03) 2004/10/22 101 % 92 -106 RPD Alkalinity (PP as CaC03) 2004/10/22 NC % N/A Alkalinity (Total as CaC03) 2004/10/22 0.7 % N/A Bicarbonate (HC03) 2004/10/22 0.7 % . N/A Carbonate (C03) 2004/10/22 NC % . N/A Hydroxide (OH) 2004/10/22 NC % N/A 619778 MGC Calibration Check Alkalinity (Total as CaC03) 2004/10/22 101 % 92 -106 RPD Alkalinity (PP as CaC03) 2004/10/22 NC % N/A Alkalinity (Total as CaC03) 2004/10/22 0.1 % N/A Bicarbonate (HC03) 2004/10/22 0.1 % N/A Carbonate (C03) 2004/10/22 NC % N/A Hydroxide (OH) 2004/10/22 NC % N/A 619784 MGC Calibration Check Conductivity 2004/10/22 101 % 92 -110 SPIKE Conductivity 2004/10/22 98 % 90 -104 BLANK Conductivity 2004/10/22 <1 uS/cm RPD Conductivity 2004/10/22 0 % N/A 619791 MGC Calibration Check pH 2004/10/22 100 % 99 -101 RPD PH 2004/10/22 0.4 % N/A 619792 MGC Calibration Check pH 2004/10/22 100 % 99 -101 RPD pH 2004/10/22 0.7 % N/A 619886 MGC Calibration Check Conductivity 2004/10/22 99 % 92 -110 SPIKE Conductivity 2004/10/22 97 % 90 -104 Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. a m a l y t i c s Inc 161 M a x / a m f -^F A n a l y t i c s Inc Quality Assurance Report (Continued) Maxxam Job Number: CA425456 QA/QC Batch Num Init QCTvoe Parameter Date Analyzed vvvv/mm/dd Value Recovery Units QC Limits 619886 MGC BLANK Conductivity 2004/10/22 <1 uS/cm N/A. RPD Conductivity 2004/10/22 0.07 % 620573 AC1 Calibration Check Dissolved Sulphate (S04) 2004/10/26 97 % 95-109 MATRIX SPIKE Dissolved Sulphate (S04) 2004/10/26 97 % 95-105 BLANK Dissolved Sulphate (S04) 2004/10/26 0.1, DL=0.1 mg/L RPD Dissolved Sulphate (S04) 2004/10/26 0.05 % . . . N/A 620614 CC Calibration Check Dissolved Chloride (Cl) 2004/10/26 100 % 93-108 MATRIX SPIKE Dissolved Chloride (Cl) 2004/10/26 100 % 90-108 BLANK Dissolved Chloride (Cl) 2004/10/26 <0.1 mg/L RPD Dissolved Chloride (Cl) 2004/10/26 2.4 % 20 621100 ED Calibration Check Dissolved Calcium (Ca) 2004/10/26 101 % 89-110 Dissolved Magnesium (Mg) 2004/10/26 100 % 91-106 Dissolved Potassium (K) 2004/10/26 99 % 90-113 Dissolved Sodium (Na) 2004/10/26 102 % 92-114 Dissolved Iron (Fe) 2004/10/26 105 • % 87-113 Dissolved Manganese (Mn) 2004/10/26 103 % 92-110 BLANK Dissolved Calcium (Ca) . 2004/10/26 <0.3 . mg/L Dissolved Magnesium (Mg) .. 2004/10/26 . <0.2 mg/L Dissolved Potassium (K) 2004/10/26 ' <0.3 mg/L Dissolved Sodium (Na) 2004/10/26 <0.5 mg/L Dissolved Iron (Fe) 2004/10/26 <0.01 mg/L Dissolved Manganese (Mn) 2004/10/26 <0.004 mg/L 621491 AC1 Calibration Check Dissolved Sulphate (S04) 2004/10/27 98 % 95-109 MATRIX SPIKE Dissolved Sulphate (S04) 2004/10/27 98 % 95-105 BLANK Dissolved Sulphate (S04) 2004/10/27 <0.1 mg/L. RPD Dissolved Sulphate (S04) 2004/10/27 0.5 % N/A 621713 SW Calibration Check Dissolved Calcium (Ca) 2004/10/27 100 % 89-110 Dissolved Magnesium (Mg) 2004/10/27 , 98 . % 91-106 Dissolved Potassium (K) 2004/10/27 97 % 90-113 Dissolved Sodium (Na) 2004/10/27 : 99 % 92-114 Dissolved Iron (Fe) 2004/10/27 103 % 87-113 Dissolved Manganese (Mn) 2004/10/27 103 % 92-110 MATRIX SPIKE Dissolved Calcium (Ca) 2004/10/27 101 % 80-120 Dissolved Magnesium (Mg) 2004/10/27 102 % 80-120 Dissolved Potassium (K) 2004/10/27 103 % 80-120 Dissolved Sodium (Na) 2004/10/27 106 % 80-120 Dissolved Iron (Fe) 2004/10/27 109 % 80-120 Dissolved Manganese (Mn) 2004/10/27. 107 % 80-120 BLANK Dissolved Calcium (Ca) 2004/10/27 <0.3 mg/L Dissolved Magnesium (Mg) 2004/10/27 <0.2 mg/L Dissolved Potassium (K) 2004/10/27 <0.3 mg/L Dissolved Sodium (Na) 2004/10/27 <0.5 mg/L Dissolved Iron (Fe) 2004/10/27 <0.01 mg/L Dissolved Manganese (Mn) 2004/10/27 <0.004 mg/L RPD Dissolved Calcium (Ca) 2004/10/27 1.3 % N/A Dissolved Magnesium (Mg) 2004/10/27 2.4 % N/A Dissolved Potassium (K) 2004/10/27 4.5 % N/A Dissolved Sodium (Na) 2004/10/27 4.7 % N/A Dissolved Iron (Fe) 2004/10/27 NC % N/A Dissolved Manganese (Mn) 2004/10/27 NC % N/A 622829 TT Calibration Check Conductivity 2004/10/28 99 % 92-110 SPIKE Conductivity 2004/10/28 99 % 90-104 BLANK Conductivity 2004/10/28 <1. uS/cm RPD Conductivity 2004/10/28 1.4 % N/A 622854 MGC Calibration Check Alkalinity (Total as CaC03) 2004/10/28 101 % 92-106 RPD Alkalinity (PP as CaC03) 2004/10/28 NC % N/A Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468 This document is in electronic format, hard copy is available on request. KOMEX INTERNATIONAL LIMITED Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 162 M..ax5?a m KOMEX INTERNATIONAL LIMITED Attention: JAMES ARMSTRONG Client Project #: C50030601, MNA MONITORING P.O. #: A02123 Site Reference: SITE 3 Quality Assurance Report (Continued) Maxxam Job Number: CA425456 Q A / Q C Batch Num Init Q C Type Parameter Date Analyzed w w / m m / d d Value Recovery Units Q C Limits I 622854 M G C R P D 622862 M G C Calibration Check R P D Alkalinity (Total as C a C 0 3 ) Bicarbonate (HC03) Carbonate (C03) Hydroxide (OH) PH _fiH : 2004/10/28 2004/10/28 2004/10/28 2004/10/28 2004/10/28 2004/10/28 0.6 0.6 NC NC 100 % % % % % % N/A N/A N/A N/A 99-101 N/A I |N/A = Not Applicable NC = Non-calculable jRPD = Relative Percent Difference Ca lgary : 2021 - 41st A v e n u e N . E . T 2 E 6 P 2 Te lephone(403 ) 291 -3077 F A X ( 4 0 3 ) 291-9468 This document is in electronic format, hard copy is available on request. 163 A L S E n u i r o n m e n t a l CHEMICAL ANALYSIS REPORT Date: ALS File No. Report On: Report To: Attention: Received: May 27, 2005 V7235 UBC Hydrogeology Water Analysis Komex International Ltd. Suite 100 4500- 16th Avenue NW Calgary, AB T3B 0M6 Mr. James Armstrong April 21, 2005 ALS ENVIRONMENTAL per: Can Dang, B.Sc. - Project Chemist Andre Langlais, M.Sc. - Project Chemist cc: Chad Petersmeyer UBC - Earth and Ocean Sciences. ALS CANADA LTD. 1968 Triumph Street. Vancouver, BC Canada VSL1K5 Phono: 6M-253-«16« Fax. 6C4-25M700 Website: wwv.alMnviro com A Campbell Brothers Limited Company 164 File No. V7235 RESULTS OF ANALYSIS - Water Sample ID Sample Date Sample Time ALS ID S6 7'2- 7'6 ASOS 05-04-13 10:30 1 Total Metals Sulphur T-S <500 Results are expressed as milligrams per litre except where noted. < = Less than the detection limit indicated. Page 2 of 6 A Campbell Brothers Limited Company 165 File No. V7235 RESULTS OF ANALYSIS - Water Sample ID S10 13' 10-14'2 ASOS Sample Date 05-04-14 Sample Time 15:10 ALS ID 10 Total Metals Sulphur T-S <500 Results are expressed as milligrams per litre except where noted. < = Less than the detection limit indicated. Page 3 of 6 A Campbell Brothers Limited Company 166 File No. V7235 RESULTS OF ANALYSIS - Water Sample ID S36 9'8- 10' ASOS Sample Date 05-04-12 Sample Time 15:00 ALSID 20 Total Metals Sulphur T-S <500 Results are expressed as milligrams per litre except where noted. < = Less than the detection limit indicated. Page 4 of 6 A Campbell Brothers Limited Company 167 File No. V7235 RESULTS OF ANALYSIS - Water Sample ID Sample Date Sample Time ALSID Dup ill Acid sol Org-S 05-04-18 11:10 30 Total Metals Sulphur. T-S <500 Results are expressed as milligrams per litre except where noted. < = Less than the detection limit indicated. Page 5 of 6 A CampbeH Brokers Limited Company 168 File No. V7235 Appendix 1 - METHODOLOGY Outlines of the methodologies utilized for the analysis of the samples submitted are as follows Sulphur in Water This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" 20th Edition 1998 published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves analysis of the acidified sample by inductively coupled plasma - optical emission spectrophotometry (EPA Method 601 OB) or inductively coupled plasma - mass spectrometry (EPA Method 6020). Method Limitation: This method will not give total sulphur results for all samples. Sulphide or other volatile forms of sulphur that may be present in submitted samples, is often lost during the sampling, preservation and analysis process. The data reported as total and/or dissolved sulphur represents all non-volatile forms of sulphur present in a particular sample. Recommended Holding Time: Sample: 6 months Reference: EPA For more detail see ALS Environmental "Collection & Sampling Guide" Results contained within this report relate only to the samples as submitted. This Chemical Analysis Report shall only be reproduced in full, except with the written approval of ALS Environmental. End of Report Page 6 of 6 A CampbeS Brothers Limited Company 169 O ALS Enuironmental excellence in analytical testing A L S ] 198* Triumph St/eel. Vanccwer.BC Canada V5L 1K5 Tel: 604-253-4188 Toll Free: 1-800-665-0243 Fax:604-253-6700 #2 -21 Highfield Circle SE, Calgary, AB Canada T2G 5N6 Tel: 403-214-5431 Toll Free: 1-866-722-6231 Fax:403-214-5430 #2 - 8820 100th Street, Fort St John, BC Canada V1J 3W9 Tel: 250-785-8281 Fax: 250-785-8286 www.alsenviro.com SEND REPORT TO: CHAIN OF C U S T O D Y F O R M PAGE OF kxDMPANY: ADDRESS: [CITY: TEL: UBC Hydrogeology 6339 Stores Rd 'Vancouver 604-822-2764 PROJECT NAME AND NO.: lOUOTE NO.: REPORT FORMAT: BC 1604-822-6080 Site 3 Sulphide Extractions PONO. • H A R D C O P Y • E M A I L - A D D R E S S : • F A X • E X C E L 0 P D F POSTAL CODE: |V6T 1Z4 CONTACT: SAMPLER: ALS CONTACT: Chad Petersmeyej Chad Petersmeye Can Dana I cpetersm(S)eos.ubc.na SAMPLE IDENTIFICATION S6 7 ,2"-7'6" acid so! Org-S S6 9"8"-10'acid sol Org-S S6 11 ,8"-12 ,2" acid sol Org-S S6 W-U'S" acid soi Org-S S8 8"10"-9,2" acid sol Org-S S8 11'4"-11'8" acid sol Org-S S10 7 ,2"-7 ,6" acid sol Org-S |TURN AROUND REQUIRED: SEND INVOICE TO: INVOICE FORMAT: 0 O T H E R : .csvand.dbf DATE / TIME COLLECTED YYYY-MM-OD 2005-04-13 2005-04-11 2005-04-11 2005-O4-15 2005-04-12 2005-04-16 TIME 10:30 13:30 10:30 17:20 12:45 12:15 2005-04-13 15:05 MATRIX sol'n/liquid sol'n/liquid sol'n/liquid sol'n/liquid sol'n/liquid sol'n/liquid sol'n/liquid © R O U T I N E [ANALYSIS REQUESTED: ORUSH SPECIFY DATE: ( surcharge m a y apply ) • S A M E A S R E P O R T • D I F F E R E N T F R O M R E P O R T (provide details below) • H A R D C O P Y B P D F Q F A X SPECJAIJINSTRUCTIONS: " Matrix is solution of 6N HCl +15% SnCI2." See attached for Invoice info RELINQUISHED BY: Chad Petersmeyer RELINQUISHED BY: DATE: T I M E DATE: TIME: NOTES (sample specific comments, due dates, etc.) IRECEIVED BY: RECEIVED.BY: Cooler Seal Intact? Yes No ^N7A" FOR LAB U S E ONLY DATE: TIME: DATE: TIME: Sample Temperature: **/ °C Frozen?: Yes C o o l i n g M e t h o d ? dfTcepaclcs G.rauALITYflX>_OOCUMENTS/l0 AUTHORIZI-n/fnRMS/«i , A L S Environmental Oii£) excellence in analytical testing 1988 Triumph Street, Vancouver. BC Canada V5L1KS Tel: 604-2514188 Toll Free: 1-800-665-0243 Fax:604-253-6700 #2-21 HigrifleldarcleSE.CalBaiy.AB Canada T2G5N6 Tel: 403-214-5431 Toll Free: 1-866-722-6231 Fax:403-214-5430 #2 - 8820 100th Street. Fort St John, BC Canada V1J 3W9 Tel: 250-785-8281 Fax: 250-785-8286 SEND REPORT TO: CHAIN O F C U S T O D Y F O R M www.alsenviro.com PAGE 2 OF 4 ADDRESS: CITY: I COMPANY: TEL: UBC Hydrogeology 6339 Stores Rd Vancouver 604-822-2764 [PROJECT NAME AND NO.: I Q U O T E NO.: REPORT FORMAT: PROV: FAX: I604-822-6080 Site 3 Sulphide Extractions PO NO.: • H A R D C O P Y • E M A I L - A D D R E S S : • FAX E E X C E L (TJPDF POSTAL CODE: V6T 1Z4 CONTACT: SAMPLER: ALS CONTACT: Chad Petersmeye Chad Petersmevel Can Dang cpetersm<5)eos.ubc.ca SAMPLE IDENTIFICATION SI0 9!8NldVaSdSbliprg-S , 2005^04-11 S10 11'6"-12' acid sol Org-S !S10 13'10"-14"2" acid sol Org-S 206^04-14;: : 8344^-5'acid sol Org-S S34 6'4"-6'8" acid sol Org-S S34 9 '8M0'ac id sol OrgrS S34 11'4"-11/8" acid sol Org-S E O T H E R : .csvand.dbf DATE / TIME COLLECTED Y Y Y Y - M M - D D 2005-04-13 2005-04-15' 2005-04-14 2005-04-14 2005-04-14 TIME 18:00 17:25 15:10 | sol'n/liquid 12:55 10:25 17:40 12:45 MATRIX sol'n/liquid sol'n/liquid sol'n/liquid I sol'n/liquid sol'n/liquid sol'n/liquid lANALYSIS REQUESTED: NOTES (sample specTic comments, due dates, etc.) S34 aad sol Org-S 2005-04-11 15:50 sorn/liquld TURNAROUND REQUIRED: SEND INVOICE TO: INVOICE FORMAT: ® R O U T I N E ORUSH SPECIFY DATE: (surcharge may apply) RELINQUISHED BY: DATE: • SAME AS REPORT 0 DIFFERENT FROM REPORT (provide details below) , •HARDCOPY BPDF DFAX Chad Petersmeyer TIME: RELINQUISHED BY: DATE: SPECIAL INSTRUCTIONS: "Matrix is solution of 6N HCl + 15% SnCI2." See attached for Invoice info TIME; RECEIVED BY: RECEIVED BYfr f Cooler Seal Intact? [ Yes _Jto StGh FOR LAB U S E ONLY DATE TIME: DATE TIME; |Sample Temperature: W °C Frozen? _Yes _ N o Cooling Method? _jeepad(s Ice _None C(Y1PV OO-l vi ej A L S Enuiranmental < A L ^ excellence in analytical testing 1988 Triumph Street, Vancouver, BC Canada V5L 1K5 Tel: 604-25*4188 Toll Free: 1-800-665-0243 Fax:604-253-6700 #2 -21 Hfghfield Circle SE, Calgary, AB Canada T2G5N6 Tel: 403-214-5431 Toll Free: 1-866-722-6231 Fax:403-214-5430 #2-8820 100th Street, Fort St John, BC Canada V1J 3W9 Tel: 250-785-8281 Fax:250-785-8286 www.alsenvlro.com SEND REPORT TO: CHAIN O F C U S T O D Y F O R M PAGE OF [COMPANY UBC Hydrogeology | ADDRESS: CITY: T E L : [6339 Stores Rd Vancouver 1604-622-2764 I PROJECT NAME AND NO.: IQUOTE NO.: REPORT FORMAT: PROV: FAX: BC 1604-822-6080 Site 3 Sulphide Extractions PONO. • HARDCOPY • EMAIL-ADDRESS: • FAX • EXCEL 0PDF POSTAL CODE: V6T 1Z4 CONTACT: SAMPLER: ALS CONTACT: Chad Petersmeve Chad Petersmeyej Can Dang cpetersm(aeos.ubc.ca SAMPLE IDENTIFICATION S35 7,2"-7'6" acid sol Org-S S35 9'8"-10* acid sol Org-S S35 12,2"-12,6" acid sol Org-S 0OTHER: .csvand.dbl DATE / TIME COLLECTED YYYY-MM-DD 2005-04-15 2005-04-13 2005-04-12 TIME 15:00 12:45 17:20 MATRIX sol'n/liquid sol'n/liquid sol'n/liquid lANALYSIS REQUESTED: NOTES (sample specific comments, due dates, etc.) S35 14'8"-15' acid sol Org-S 2005-04-12 10:25 sol'n/liquid S36 9'8"-10' acid sol Org-S 2005-04-12 15:00 sol'n/liquid S36 12'2"-12'6" acid sol Org-S 2005-04̂ 15 10:30 sol'n/liquid'- TURN AROUND REQUIRED: SEND INVOICE TO: INVOICE FORMAT: ©ROUTINE ORUSH SPECIFY DATE: (surcharge may apply) • SAME AS REPORT 0 DIFFERENT FROM REPORT (provide details below) .•HARDCOPY HPDF OFAX SPECIAL INSTRUCTIONS: "Matrix is solution of 6N HCl + 15% SnCI2." See attached for invoice info RELINQUISHED BY: DATE: Chad Petersmeyer TIME: RELINQUISHED BY: TIME: RECEIVED BY: RECEIVED BY: Cooler Seal Intact? Yes No -'fl/A FOR LAB USE ONLY DATE: TIME DATE: TIME: In. Sample Temperature: ^ °C Frozen? Yes No Coojing Method? lcepacte__ giwuALirY/oo.rxxjUMErfrs/io^AuTHORizEttFORWs/ALSEvc c H t m a m v mem on-.««, A L S Environmental ( A L S 1 excellence in analytical testing SEND REPORT TO: 1988 Triumph Street, Vancouver, BC Canada V5L 1K5 Tat: 604-253-4188 Toll Free: 1-800-665-0243 Fax:604-253-6700 #2 -21 Hlghfteld Circle SE. Calgary, AB Canada T2G5N6 Tel: 403-214-5431 Toll Free: 1-866-722-6231 Fax:403-214-5430 #2 - 8820 100th Street Fort St John, BC Canada V1J 3W9 Tel: 250-785-8281 Fax: 250-785-8286 CHAIN OF CUSTODY FORM PAGE www.alsonvlro.com 4 OF 4 COMPANY: UBC Hydrogeology IADDRESS: CITY: TEL: '6339 Stores Rd Vancouver j604-622-2764 I P R O J E C T N A M E A N D NO.: Q U O T E NO.: REPORT FORMAT: Std III Na2S9H20 acid sol Org-S PROV: BC FAX 604-822-6080 Site 3 Sulphide Extractions PONO.: • H A R D C O P Y 0 EMAIL - A D D R E S S : • FAX • E X C E L 0PDF POSTAL CODE: V6T 1Z4 CONTACT: SAMPLER: A L S C O N T A C T : Chad Petersmeye [Chad Petersmeyel [Can Dang cpetersm@eos.ubc.ca SAMPLE IDENTIFICATION Std I acid sol Org-S Std II acid sol Org-S Std III Dup I FeS acid sol Org-S 2005-04-07 2005-04-08 0OTHER: .csvand.dbf DATE / TIME COLLECTED YYYY-MM-DD 2005-04-06 2005-04-07 TIME 12:50 17:40 1325 12:25 sol'n/liquid MATRIX sol'n/liquid sol'n/liquid | sol'n/liquid lANALYSIS REQUESTED: NOTES (sample specie comments, due dates, etc.) Std III Na2S9H20 Dup III acid sol Ord 2005-04-09* 14:40 sol'n/liquid Std III FeS2 acid sol Org-S 2005-04-18 14:15 sol'n/liquid Dup I acid sol Org-S 2005-04-16 14:40 sol'n/liquid Dup II acid sol Org-S 2005-04-16 17:05 solTi/liquid Dup 111 acid sol Org-S 2005-04-18 11:10 sol'n/liquid TURN AROUND REQUIRED: SEND INVOICE TO: INVOICE FORMAT: ® ROUTINE ORUSH S P E C I F Y DATE: (surcharge may apply) I RELINQUISHED B Y : DATE: • S A M E AS REPORT • D I F F E R E N T F R O M R E P O R T (provide • x B H A R D C O P Y BPDF Q F A X Chad Petersmeyer TIME: details below} RELINQUISHED 8Y: DATE: SPECIALMNSTRUCTIONS: •Matrix is solution of 6N HCl + 15% SnCI2." See attached for Invoice info TIME: R E C E I V E D B Y : RECEIVED BY: Cooler Seal Intact? Yes No FOR LAB USE ONLY DATE: DATE: TIME Sample temperature: °c Frozen? Yes No Coding Method? _k» None eycKMLrr™_ooc^ENTsmj\uTHOfiiZEETOra E C 0 P R B M ^ R A L S Environmental CHEMICAL ANALYSIS REPORT Date: ALS File No. Report On: Report To: Attention: Received: May 27, 2005 V7236 UBC Hydrogeology Water Analysis Komex International Ltd. Suite 100 4500-16th Avenue NW Calgary, AB T3B 0M6 Mr. James Armstrong April 21, 2005 ALS ENVIRONMENTAL per: Can Dang, B.Sc. - Project Chemist Andre Langlais, M.Sc. - Project Chemist cc: Chad Petersmeyer UBC - Earth and Ocean Sciences. ALS CANADA LTD. 196a Triumph Street. Vancouver. BC Canada VSL1K5 Phone: 604-25M184 Fax: 6M-2SK700 Website: www.alsenviro.ODm A CampbaH Brothers Limited Company 174 FifeNo.V7236 RESULTS OF ANALYSIS • Water Sample ID S6 7'2- S6 9'8- S6 11'8- S614'4- S8 8'10- 7'6 10' 12'2 14'8 9*2 HCI-S HCI-S HCI-S HCI-S HCI-S Sample Date 05-04-13 05-04-11 05-04-11 05-04-15 05-04-12 Sample Time 10:30 13:30 10:30 17:20 12:45 ALS ID 1 2 3 4 5 Total Metals Aluminum T-AI <200 Barium T-Ba <10 Calcium T-Ca 765 Iron T-Fe 319 Magnesium T-Mg 270 Manganese T-Mn 10.7 Sulphur T-S <500 <200 <200 <200 <200 <10 <10 <10 <10 766 1260 1130 942 260 372 358 270 260 450 450 370 5.9 12.0 7.6 8.3 <500 <500 <500 <500 Results are expressed as milligrams per litre except where noted. < = Less than the detection limit Indicated. Page 2 of 10 A Campbell Brothers LknUed Company 175 File No. V7236 RESULTS OF ANALYSIS - Water Sample ID Sample Date Sample Time ALS ID (ALS S811'4- S10 7"2- S10 9'8- S10 S10 13' .11 "8 7'6 10' 11'6-12' 10-14'2 HCI-S HCI-S HCI-S HCI-S HCI-S 05-04-16 05-04-13 05-04-11 05-04-13 05-04-14 12:15 15:05 18:00 17:25 15:10 6 7 8 9 10 Total Metals Aluminum Barium Calcium Iron Magnesium Manganese Sulphur T-AI <200 <200 <200 <200 <200 T-Ba <10 <10 <10 <10 <10 T-Ca 1120 715 927 1110 1080 T-Fe 281 237 296 411 444 T-Mg 440 240 340 470 430 T-Mn 8.6 14.5 15.2 10.7 6.7 T-S <500 <500 <500 <500 <500 Results are expressed as milligrams per litre except where noted. < = Less than the detection limit indicated. Page 3 of 10 A Campbell Brothers Untried Company 176 File No. V7236 RESULTS OF ANALYSIS - Water Sample ID Sample Date Sample Time ALS ID (ALS S34 S34 6'4- S34 9'8- S341V4 S3413' 4'-5" 6'8 10' -11'8 10-14'2 HCI-S HCI-S HCI-S HCI-S HCI-S 05-04-15 04-04-14 05-04-14 05-04-14 05-04-11 12:55 10:25 17:40 12:45 15:50 11 12 13 14 15 Total Metals Aluminum T-AI Barium T-Ba Calcium T-Ca Iron T-Fe Magnesium T-Mg Manganese T-Mn Sulphur T-S <200 <200 <200 <200 <200 <10 <10 <10 <10 <10 555 436 848 795 862 385 201 261 267 279 140 240 360 330 340 19.1 6.2 8.9 8.2 8.3 <500 <500 <500 <500 <500 Results are expressed as milligrams per litre except where noted. < = Less than the detection limit indicated. Page 4 of 10 A CampbaB Brothers Limited Company 111 Fi leNo.V7236 RESULTS OF ANALYSIS - Water Sample ID Sample Date Sample Time ALS ID (ALS S35 7'2- S35 9'8- S35 12'2 S35 14'8 S36 9'8 7'6 10' -12'6 -15' -10' HCI-S HCI-S HCI-S HCI-S HCI-S 05-04-15 05-04-13 05-04-12 05-04-12 05-04-12 15:00 12:45 17:20 10:25 15:00 16 17 18 19 20 Total Metals Aluminum T-AI Barium T-Ba Calcium T-Ca Iron T-Fe Magnesium T-Mg Manganese T-Mn Sulphur T-S <200 <200 <200 <200 <200 <10 <10 <10 <10 <10 695 1120 758 1060 991 219 332 257 378 299 210 450 260 440 350 7.9 8.3 12.3 23.0 9.2 <500 <500 <500 <500 <500 Results are expressed as milligrams per litre except where noted. < = Less than the detection limit indicated. Page 5 of 10 A Campbell arei/wra Limited Company 178 File No. V7236 RESULTS OF ANALYSIS - Water Sample 10 Sample Date Sample Time ALS ID ( A L S ; S36 12'2 Std I Std II Std3 Dup Std III -12'6 I FeS Na2SSH20 HCI-S HCI-S HCI-S HCI-S HCI-S 05-04-15 05-04-06 05-04-07 05-04-07 05-04-08 10:30 12:50 17:40 13:25 12:25 21 22 23 24 25 Total Metals Aluminum T-AI Barium T-Ba Calcium T-Ca Iron T-Fe Magnesium T-Mg Manganese Sulphur T-Mn T-S <200 <200 <200 <200 <200 <10 12 12 <10 12 872 <50 <50 <50 <50 546 <30 <30 62 <30 330 <100 <100 <100 <100 10.2 <5.0 <5.0 <5.0 <5.0 <500 - - . Results are expressed as milligrams per litre except where noted. < = Less than the detection limit indicated. Page 6 of 10 A Campbell Brothers Limited Company 179 File No. V7236 RESULTS OF ANALYSIS - Water Sample ID Sample Date Sample Time ALS ID Std III Std III Dup I Dup II Dup III Na2S9H20 FeS2 HCI-S HCI-S HCI-S Dup III HCI-S 05-04-09 05-04-18 05-04-16 05-04-16 05-04-18 14:40 14:15 14:40 17:05 11:10 26 27 28 29 30 Total Metals Aluminum T-AJ <200 <200 <200 <200 <200 Barium T-Ba 10 11 <10 <10 <10 Calcium T-Ca <50 <50 1120 940 935 Iron T-Fe OO <30 415 279 281 Magnesium T-Mg <100 <100 480 360 330 Manganese T-Mn <5.0 <5.0 11.5 8.2 8.8 Sulphur T-S - - <500 <500 <500 Results are expressed as milligrams per litre except where noted. < = Less than the detection limit indicated. Page 7 of 10 A Compb&t Broilws Limited Company 180 File No. V7236 Appendix 1 - QUALITY CONTROL - Replicates Water S3413' S3413' S3612'2 S3612'2 10-14'2 10-14'2 -12'6 -12'6 HCI-S HCI-S HCI-S HCI-S 05-04-11 QC# 05-04-15 QC# 15:50 437838 10:30 437839 Total Metals Aluminum T-AI <200 <200 <200 <200 Barium T-Ba <10 <10 <10 <10 Calcium T-Ca 862 847 872 870 Iron T-Fe 279 271 546 555 Manganese T-Mn 8.3 8.4 10.2 10.3 Sulphur T-S <500 <500 <500 <500 Results are expressed as milligrams per litre except where noted. < = Less than the detection limit indicated. Page 8 of 10 A Campbell Brothers Utnkad Company 181 FileNo.V7236 Appendix 1 - QUALITY CONTROL - Replicates Water Std II HCI-S 05-04-07 17:40 Std II HCI-S QC# 437840 Total Metals Aluminum Barium Calcium Iron Manganese T-AI T-Ba T-Ca T-Fe T-Mn <200 12 <50 <30 <5.0 <200 11 <50 <30 <5.0 Results are expressed as milligrams per litre except where noted. < = Less than the detection limit indicated. Page 9 of 10 A CampbuH Brothers Limited Company 182 File No. V7236 Appendix 2 - METHODOLOGY Outlines of the methodologies utilized for the analysis of the samples submitted are as follows Metals in Water This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" 20th Edition 1998 published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotplate or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by atomic absorption/emission spectrophotometry (EPA Method 7000 series), inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B), and/or inductively coupled plasma - mass spectrometry (EPA Method 6020). Recommended Holding Time: Sample: 6 months Reference: EPA For more detail see: ALS "Collection & Sampling Guide" Sulphur in Water This analysis is carried out using procedures adapted from "Standard Methods for the Examination, of Water and Wastewater" 20th Edition 1998 published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves analysis of the acidified sample by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B) or inductively coupled plasma - mass spectrometry (EPA Method 6020). Method Limitation: This method will not give total sulphur results for all samples. Sulphide or other volatile forms of sulphur that may be present in submitted samples, is often lost during the sampling, preservation and analysis process. The data reported as total and/or dissolved sulphur represents all non-volatile forms of sulphur present in a particular sample. Recommended Holding Time: Sample: 6 months Reference: EPA For more detail see ALS Environmental "Collection & Sampling Guide" Results contained within this report relate only to the samples as submitted. This Chemical Analysis Report shall only be reproduced in full, except with the written approval of ALS Environmental. End of Report Page 10 of 10 A Campbell Brothers Limited Company 183 ALS Enuironmental <>L.=O excellence in analytical testing 1988 Triumph Street. Vancouver, BC Canada V5L1K5 Tel: 604-253-4188 Toll Free: 1-800-665-0243 Fax: 604-253^700 #2 -21 Hlghfleld arcle SE, Calgary, AB Canada T2G 5N6 Tel: 403-214-5431 Toll Free: 1-866-722-6231 Fax: 403-214-5430 #2 - 8820 100th Street, Fort St John, BC Canada V1J 3W9 Tel: 250-785-8281 Fax:250-785-8286 SEND REPORT TO: CHAIN OF CUSTODY FORM www.alsenviro.com P A G E 1 O F 4 C O M P A N Y UBC Hydrogeology ANALYSIS REQUESTED: A D D R E S S : 6339 Stores Rd U J ? • > C I T Y : Vancouver P R O V : BC P O S T A L C O D E : V6T1Z4 <, >>'- T E L : 604-822-2764 F A X : 604-822-6080 C O N T A C T : Chad Petersmeve n to P R O J E C T NAME Al YD NO.: Site 3 Sulphide Extractions S A M P L E R : Chad Petersmeye CD • C O Q U O T E NO.: P O N O . : A L S C O N T A C T : Can Dang A l, M n,  M g,  C a,  F e,  D C D A D T Cr\t1*M Jk T. 0 H A R D C O P Y • E M A I L - A D D R E S S : • F A X H E X C E L Q P D F coetersmlSeos >.ubc.ca A l, M n,  M g,  C a,  F e,  i^i_r w r \ i r v 0OTHER: .csvand.dbf A l, M n,  M g,  C a,  F e,  S A M P L E I D E N T I F I C A T I O N D A T E / T I M E C O L L E C T E D A l, M n,  M g,  C a,  F e,  N O T E S (sample specific comments, due dates, etc.) Y Y Y Y - M M - D D T I M E M A T R I X A l, M n,  M g,  C a,  F e,  | FO R  L A B  U S E  O N LY  | FO R  L A B  U S E  O N LY  S6 T2"-T6" HCI-S 2005-04-13 10:30 sol'n/liquid X | FO R  L A B  U S E  O N LY  S6 &ST-W HCI-S 2005-04-11 13:30 sol'n/liquid X | FO R  L A B  U S E  O N LY  S6 11'8"-12'2" HCI-S 2005-04-11 10:30 sol'n/liquid X | FO R  L A B  U S E  O N LY  S6 t4 '4>14 , 8 i HCI-S 2005-04-15 17:20 , sol'n/liquid X | FO R  L A B  U S E  O N LY  | FO R  L A B  U S E  O N LY  S8 8'10"-9'2" HCI-S 200504-12 12:45 sol'n/liquid X | FO R  L A B  U S E  O N LY  S811'4"-11*8* HCI-S 2005-04-16 12:15 sol'n/liquid X | FO R  L A B  U S E  O N LY  — . | FO R  L A B  U S E  O N LY  SWT 2"-7 ,6" HCI-S 2005-04-13 15:05 sol'n/liquid x TURNAROUND R E Q U I R E D : © R O U T I N E O R U S H S P E C I F Y D A T E : (surcharge may apply) R E L I N Q U I S H E D BY: D A T E : R E C E I V E D BY: D A T E : Chad Petersmeyer T I M E : T I M E : SEND INVOICE TO: • S A M E AS R E P O R T H D I F F E R E N T F R O M R E P O R T (provide details below) • H A R D C O P Y 0PDF D F A X R E L I N Q U I S H E D B Y : D A T E : R E C E I V E D Byr) D A T E : INVOICE F O R M A T : T I M E : • l • I T I M E : "Matrix is solution of 6N HCl + 15% SnCI2." See attached for invoice info FO R LAB USE.ONLY Cooler Seal Intact? Yes Nd _^fffA Sample Temperature: *~f °C Frozen? Yes No' Cooling Method? -Jcepacks lea Nona Gr/QUAUTv™_OC«JMENTS/10_AUTHC>RL^^ c r n „ ^ v , „ A L S Environmental Ovts> excellence in analytical testing 1988 Triumph Street, Vancouver, BC Canada V5L 1K5 Tel: 604-253-4188 Toll Free: 1-800-665-0243 Fax: 604-253^700 #2-21 HlghBeld Circle SE, Calgary, AB Canada T2G5N6 Tel: 403-214-5431 Toll Free: 1-866-722-6231 Fax:403-214-5430 #2 - 8820100th Street, Fort St John; BC Canada VIJ 3W9 Tel: 250-785-8281 Fax: 250-785-8286 SEND REPORT TO: CHAIN OF CUSTODY FORM www.alssnviro.com PAGE COMPANY: [ADDRESS: 6339 Stores Rd CITY: TEL: UBC Hydrogeology 'Vancouver 604-822-2764 [PROJECT NAME AND NO.: QUOTE NO.: I REPORT FORMAT: PROV: F A X : BC 1604-822-6080 Site 3 Sulphide Extractions PONO. • HARDCOPY • EMAIL - ADDRESS: • F A X 0EXCEL 0PDF POSTAL CODE: V6T 1Z4 CONTACT: SAMPLER: ALS CONTACT Chad Petersmeye Chad Petersmey. lean Dang cpetersm@eos.ubc.ca 0 OTHER: .csv and .dbf SAMPLE IDENTIFICATION DATE/TIME COLLECTED YYYY-MM-DD TIME MATRIX lANALYSIS REQUESTED: NOTES (sample spedllc comments, due dates, etc.) S10 9'8"-10' HCI-S 2005-04^11 18:00 sol'n/liquid S1011'6"-12'HCI-S 2005-04-13 17:25 sol'n/liquid S10 13'10"-14'2" HCI-S; 2005-04-14 15:10 sol'n/liquid' S34 4'-5" HCI-S 2005-04-15 12:55 sol'n/liquid S34 6'4"-6'8" HCI-S 2005-04-14 10:25 sol'n/liquid S34 9'8"-10' HGI-S 2005-04-14. 17:40 sol'n/liquid S34 11'4"-11'8" HCI-S 2005-04-14 12:45 sol'n/liquid S3413'10"-14'2" HCI-S 2005-O4-11- 15:50 sol'n/liquid TURNAROUND REQUIRED: SEND INVOICE TO: INVOICE FORMAT: ® R O U T I N E ORUSH SPECIFY DATE: (surcharge may apply) RELINQUISHED BY: DATE: RECEIVED BY: • SAME AS REPORT • DIFFERENT FROM REPORT (provide details below) • H A R D C O P Y • PDF • F A X SPECIAL INSTRUCTIONS: "Matrix Is solution of 6N HCl + 15% SnCI2.** See attached for invoice info L Chad Petersmeyer TIME:! RELINQUISHED BY: DATE: RECEIVED BT: TIME: DATE: TIME: O A T E : R ) [Cooler Seal Intact? Yes .No F O R L A B U S E O N L Y Sample Temperalura: **/ °C Frozen? Yes No TIME:|/~3"3-^ Cooling Method? _fce None CJQUAUTY/O0_DOCUMENTS/10_AUTHORIZECWFORM3/At SFVT. CHwr«TTW . ALS Enulronmental excellence in analytical testing SEND REPORT TO: A L S 1988 Triumph Street, Vancouver, BC Canada V5L 1K5 Tel: 604-253-4188 Toll Free: 1-800-665-0243 Fax:604-253-6700 #2 -21 Highfleld Circle SE, Calgary, AB Canada T2G5N6 Tel: 403-214-5431 Toll Free: 1-866-722-6231 Fax:403-214-5430 #2 - 8820 100th Street, Fort St John. BC Canada V1J 3W9 Tel: 250-785-8281 Fax: 250-785-8286 CHAIN O F C U S T O D Y F O R M www.alsenviro.com COMPANY: ADDRESS: CITY: TEL: UBC Hydrogeology 6339 Stores Rd Vancouver 604-822-2764 PROJECT NAME AND NO.: QUOTE NO.: REPORT FORMAT: PROV: BC 604-822-6060 Site 3 Sulphide Extractions PONO.: POSTAL CODE: CONTACT: SAMPLER: ALS CONTACT: V6T 1Z4 Chad Petersmeye Chad Petersmeyel • H A R D C O P Y • E M A I L - A D D R E S S : • F A X • E X C E L 0 P D F Can Dang cpetersm@eos.ubc.ca 0 OTHER: .csvand.dbf SAMPLE IDENTIFICATION DATE /.TIME COLLECTED YYYY-MM-DD TIME MATRIX ANALYSIS REQUESTED: NOTES (sample specific comments, due dates, etc.) S35 7'2"-7'6" HCI-S 2005-04-15 15:00 sol'n/liquid S35 ffBNlO' HChS> 2005-04-13 12:45 sbPii/liqUid : S35 12'2"-12'6" HCI-S 2005-04-12 17:20 sol'n/liquid S35 14 '8M5' HCI^S 2005-04-12 10:25 sol'n/liquid S36 9'8"-10' HCI-S 2005-04-12 15:00 sol'n/liquid S36 12*2"-12'6" HCI-S 2005-04^15 10:30 sol'n/liquid TURN AROUND REQUIRED: SEND INVOICE TO: INVOICE FORMAT: ® R O U T I N E O RUSH SPECIFY DATE: (surcharge may apply) RELINQUISHED BY: DATE: • S A M E A S R E P O R T • D I F F E R E N T F R O M R E P O R T (provide details below) • H A R D C O P Y E P D F D F A X Chad Petersmeyer TIME: RELINQUISHED BY: SPECIAL INS miicTIONS: Matrix is solution of 6N HCl +15% SnCE.** See attached for invoice info TIME: RECEIVED BY: RECEIVED EyYfl ICooler Seal Intact? Yes . NO -«fM FOR LAB USE ONLY DATE: DATE: T I M E : Lk±2l SampleTemperature: Frozen? Yes Nrf Cooling Method? Ldcepacks _ fce _None GJt*AUTV(00_DO<XIMENTS/IOj^UTHORIZEDTOr»IS/ALSEVC_CHNCSTDV ECOPY RG3.XLS 1988 Triumph Street, Vancouver, BC Canada V5L1K5 Tet: 604-253-4188 Toll Free: 1-800-665-0243 Fax:604-253-6700 #2 -21 Highfielrj Circle SE, Calgary, AB Canada T2G 5N6 Tel: 403-214-5431 Toll Free: 1-866-722-6231 Fax:403-214-5430 #2 - 8820 100th Street, Fort St John, BC Canada V1J 3W9 Tel: 250-785-8281 Fax: 250-7B5-8286 www.alsenvlro.com CHAIN OF CUSTODY FORM P A G E 4 O F 4 SEND REPORT TO: COMPANY: UBC Hydrogeology ANALYSIS REQUESTED: ADDRESS: 6339 Stores Rd A l, M n,  M g.  C a,  F e,  B a,  S  b y A E S  crrY: Vancouver PROV: BC POSTAL CODE: \ /6T 1Z4 A l, M n,  M g.  C a,  F e,  B a,  S  b y A E S  TEL: 604-622-2764 FAX: (304-822-6060 CONTACT: ( Dhad Petersmeye A l, M n,  M g.  C a,  F e,  B a,  S  b y A E S  PROJECT NAME AND NO.: Site 3 Sulphide Extractions SAMPLER: ( Jhad Petersmeye A l, M n,  M g.  C a,  F e,  B a,  S  b y A E S  QUOTE NO.: PO NO.: ALS CONTACT: ( Jan Dang A l, M n,  M g.  C a,  F e,  B a,  S  b y A E S  • HARDCOPY 0 EMAIL - ADDRESS: • FAX 0 EXCEL 0PDF cpetersm(65eos.ubc.ca A l, M n,  M g.  C a,  F e,  B a,  S  b y A E S  REPORT F C JRMAT: 0OTHER: .csvand.dbf A l, M n,  M g.  C a,  F e,  B a,  S  b y A E S  SAMPLE IDENTIFICATION DATE / TIME COLLECTED MATRIX A l, M n,  M g.  C a,  F e,  B a,  S  b y A E S  NOTES (sample specific comments, due dates, etc.) YYYY-MM-DD TIME A l, M n,  M g.  C a,  F e,  B a,  S  b y A E S  FO R  L A B  U S E  O N LY  Std I HCI-S 2005-04-06 • 12:50 sol'n/liquid X FO R  L A B  U S E  O N LY  Std II HCI-S 2005-04-07 17:40 sorn/liquid X FO R  L A B  U S E  O N LY  Std III Dup 1 FeS HCI-S 2005-04-07 .- sol'n/liquid / W- FO R  L A B  U S E  O N LY  Std III Na2S9H20 HCI-S 2005-04-08 12:25 sol'n/liquid X FO R  L A B  U S E  O N LY  Std III Na2S9H20 Dup III HCI-S 2005-04-09 sol'n/liquid . X FO R  L A B  U S E  O N LY  Std III FeS2 HCI-S 2005-04-18 14:15 sol'n/liquid X FO R  L A B  U S E  O N LY  FO R  L A B  U S E  O N LY  Dup 1 HCI-S 2005-04-16 14:40 sol'n/liquid X FO R  L A B  U S E  O N LY  Dup II HCI-S 2005-04-16 17:P5K|S;: sol'n/liquid X FO R  L A B  U S E  O N LY  Dup II HCI-S 2005-04-18 11:10 sol'n/liquid X TURNAROUND REQUIRED: ® ROUTINE O R U S H SPECIFY DATE: (surcharge may apply) RELINQUISHED BY: DATE: RECE EIVED BY: DATE: Chad Petersmeyer TIME: TIME: SEND INVOICE TO: • SAME A S REPORT 0 DIFFERENT FROM REPORT (provide details below) ,, , . , .• HARDCOPY 0PDF D F A X RELINQUISHED BY: DATE: RECEIVED B?: DATE: INVOICE FORMAT: TIME: TIME: SPLCIAI; INS IRUCI IONS: "Matrix Is solution of 6N HCl + 15% SnCI2." See attached for invoice Info £ " • FOR LAB U S E C NLY Cooler Seal Intact? Yes No i^R/A Sample Temperature: _ ^ _ ° C Frozen? Yes No Cooljng Method? icepacks Its None ALS Enulronmental excellence in analytical testing 6^CRJALrTYOT_DCJCAJMENTS/10_AUTHORlZED/FORMS/Al̂ EVC_CHNCSTOY ECOPV R03.XLS A ALS Chem ex EXCELLENCE IN ANALYTICAL CHEMISTRY AL8 Canada Ltd. 212 Brooksbank Avenue North Vancouver BC W J 2C1 Phone: 604 984 0221 Fax: 604 084 0218 To: UNIVERSITY OF ALBERTA C/O JAMES ARMSTRONG - KOMEX INTERNATIONAL LTD. 100,4500-16 AVENUE CALGARY AB T3B 0M6 Page: 1 Finalized Date: 4-MAY-2005 Account: UNIALB CERTIFICATE VA05030358 Project: CORONA - Site 3 Sulphur P.O. No.: This report is for 39 Other samples submitted to our lab in Vancouver, BC, Canada on 29-APR-2005. The following have access to data associated with this certificate: JAMES ARMSTRONG I KEVIN BIGGAR | CHAD PETERSMEYER SAMPLE PREPARATION ALS CODE DESCRIPTION WEI-21 Received Sample Weight LOG-22 Sample login - Red w/o BarCode ALS CODE S - I R 0 8 ANALYTICAL PROCEDURES DESCRIPTION INSTRUMENT Total Sulphur (Leco) LECO To: UNIVERSITY OF ALBERTA ATTN: CHAD PETERSMEYER UBC HYDROGEOLOGY This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release. To: UNIVERSITY OF ALBERTA Page:2-A C/O JAMES ARMSTRONG - KOMEX Total # Pages: 2 (A) INTERNATIONAL LTD. Finalized Date: 4-MAY-2005 100,4500-16 AVENUE Account: UNIALB CALGARY ABT3B0M6 Project: CORONA - Site 3 Sulphur CERTIFICATE OF ANALYSIS VA05030358 Method WEIJ1 s-iFtoe Analyta RecvdWt. s Unltt *9 % Sample Description LOR 0.02 0.01 S6 4 8-5 0.02 0.02 S6 7 2-7 6 0.02 0.01 S6 9 8 1-10 0.02 0.01 S611 8-12 2 0.02 0.01 SS 14 4-14 8 0.O2 <0.01 S6 18 10-17 2 0.02 <0.01 SB 3 10-4 2 0.02 0.01 SS 8 4-6 8 0.02 0.01 S8 B 10-9 2 0.02 0.01 S8 11 4-11 8 0.02 0.01 SB 13 10-14 2 0.02 0.01 S8 16 4-16 8 0.02 0.01 S10 4 8-5 0.02 O.01 S107 2-7 8 0.02 0.01 S109B-10 0.02 0.01 S10 118-12 0.02 0.01 S10 13 10-14 2 0.02 0.01 S10 18 4-16 8 0.02 0.02 S34 4 -5 0.02 0.01 S34 6 4-6 8 0.02 <0.01 S34 9 8-10 0.02 0.01 S34 11 4-11 8 0.02 0.01 S34 13 10-14 2 0.02 0.01 SS4 16 4-16 8 0.02 0.01 S35 4 8-5 0.02 <0.01 S35 7 2-7 6 0.02 0.02 - S35 9 8-10 0.02 0.02 S35 12 2-12 6 0.02 0.01 S35 14 8-15 0.02 0.02 S36 4 8-5 0.02 0.01 S36 7 2-7 6 0.02 o.oi ' ~ — ; S36 9 8-10 0.02 0.01 S36 12 2-12 6 0.02 0.01 S3614 8-15 0.02 0.01 S3617 2-17 6 0.02 0.01 STD 11 0.02 0.09 STD 111 0.02 0.09 DUP 1 0.02 0.01 DUP 11 0.02 <0.01 Comments: Samples analyzed as received per client instruction. A L S C h e m e x EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Lid. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 884 0221 Fax: 604 984 0218 Appendix B: Sulphide Extraction Procedures Laboratory Procedures for Sulphide Extractions Prepared by: Chad W. Petersmeyer Department of Earth and Ocean Sciences University of British Columbia January 2005 190 Procedures for Sulphide Extractions, Jones Reduction, and Iodometric/Iodimetric Titrations Jones Reduction Procedure See Kolthoff and Sandell (1946), and figures below: Preparation of amalgamated zinc in a beaker: 300 mL 2% mercuric chloride + 1-2 mL of cone. Nitric acid + 300 g of 30-mesh pure granulated Zn. Stir thoroughly for 5-10 min. Decant soln from Zn and wash by decanting 2-3 times. Amalgamated Zn should have a bright, silvery lustre. Fill reductor tube with water. Add Zn slowely until column is completely packed. Wash with 500 mL Dl water using gentle suction. Leave reductor full of water. Figure 7.1. Flowchart for Preparing Jones Reductor. 191 The chromic chloride to be reduced should have a volume of about 100 mL. Wash out the reductor with 150-200 mL0 .5N HCl added in 30 mL portions. Attach a clean flask. Using gentle suction (<75 mL/min.) pass the chromic chloride throught the reductor. DO NOT allow the solution to fall below the top of the zinc column. Prepare every 2-3 days. Store in ground-glass stoppered bottle. When all of the chromic chloride solution has passed through the reductor: Wash the container with 3, 25 mL portions of 0.5 N HCl and then 3, 25 mL portions of distilled water. v j Figure 7.2. Flowchart for Reducing Chromic Chloride. Background A Jones Reductor consists of a column of amalgamated granulated zinc contained in a glass tube provided with a stopcock, through which the solution to be reduced may be withdrawn. A 1.0 M solution of chromic chloride, acidified to 0.5 N H C l (done by adding enough acid to make the solution the pH of 0.5 N HCl) is drawn under vacuum through the column changing the valence of solution from chromic (III) to chromous (II). This valence change corresponds to a colour change from green to blue. Dispose of mercuric chloride in glass or heavy plastic bottle with a tight fitting lid labelled 'Mercury Waste'. Sulphide Extractions Procedure 192 See Herbert et al. (2000), Canfield et al. (1986), and flowcharts below: Acid Volatile Sulphide (AVS) In glove box: Measure out mass of sample for AVS and thaw in weighboat. Set section aside to detennine water content. Replace core in freezer ASAP. In Canfield (1996) Digestion Apparatus prepare in glovebox, flush with N 2 : 2-3 g freshly thawed sample. Record mass. Canfield (1986) Digestion Apparatus: N 2 bubbled at rate of 2-3 bubbles/sec Trapping vessels: 30 mL 3% zinc acetate + 10% ammonium hydroxide . Syringe containing 60 mL 6N HCl containing 15% (w/v) SnCI3 Remove from glovebox, flush system with N 2, place in fumehood at room temp., attach N 2 line, syringe, and trapping vessel line. • Add contents of syringe. AVS Iodometric Titration" of contents of trapping vessel React for approx. 90 min. Mixture may require stirring (?). Filter through 0.45 urn cellulose nitrate membrane. HCI-S ICP-AES filtered solution for Al, Ca, Fe, Mg, and S. 10 mL filtered extract (solution) 10 mL 10% BaCI2 Filter through 0.1 pm cellulose acetate membrane. acid soluble Org-S ICP-AES filtered solution forS. S0 4 -S equals HCI-S minus acid soluble Org-S. I Figure 7.3. Flowchart for A V S , HCI-S, acid soluble Org-S, and S04-S Extractions. Total Reduced S (TRS) 193 In Canfield (1986) Digestion Apparatus prepare in glovebox, flush with N 2: 1-2 g vacuum dried sample (Record mass) + 10 mL ethanol Remove from glovebox, flush system with N 2, place in fumehood on mantle, attach N z line, syringe, and trapping vessel line. Canfield (1986) Digestion Apparatus: N z bubbled at rate of 2-3 bubbles/sec Trapping vessels: 30 mL 3% zinc . acetate +10% ammonium hydroxide soln Syringe containing 40 mL 1M CrCl z (from Jones Reduction*) + 20 mL 12N HCl. Add contents of syringe and boil for approx. 60 min. Mixture may require stirring. TRS Iodometric Titration" of contents of trapping vessel CWeigh dried residue in digestion apparatus residual Org-S Analysis for Total S in LECO model 532 induction furnace Figure 7.4. Flowchart for TRS and residual Org-S Extractions. Background 6N H C l To make 500 mL of 6 N HCl : C V ^2V 2 ~~- ^-^2 ^^2 ^ ^1 C, C,=12N C 2=6N V2=500 mL Therefore Vi = 250 mL + 250 mL DI water. Note: A L W A Y S add acid to water. For 36.5-38% stock HCl : 0 3 6 5 x l M o f e 3 6 . 5 % / / a x 1 1 9 0 g = 1 L 9 y / / a 36.4609 g 194 0 . 3 8 x " " ° f e 3 8 % / / a x l l ^ l = 1 2 . W / / C / 36.4609 g 1 L 15 % (w/v) SnCL in 6 N H C l For 15 % (w/v) SnCl 2 (GFW = 189.596 g/mol), add 150 g for every litre of HCl . Store in ground-glass stoppered bottle. 1 M CrCb For 1 M C r C l 2 (GFW = 122.902 g/mol) acidified to 0.5N HCl , add 122.902 g for every litre of 0.5N HCl . Store in ground-glass stoppered bottle. 3 % zinc acetate f(CH^COC0 ?Zn 2 + ') and 10% N H £ O H To make 500 mL of solution from 22% stock zinc acetate and 50% N H 4 O H : N H 4 O H : C,V} = C2V2->VX = C,=50% C2=10% V2=500 mL Zn-acetate: C.V, =C,V2^K = QL\. C, C,=22% C2=3% V2=500 mL Therefore 100 mL of N H 4 O H and 68.2 mL of Zn-acetate + 331.8 mL of Nanopure water. Store in glass bottle with tight-fitting lid. Cover in aluminum foil. 10 % (w/v) BaCL For 10 % (w/v) B a C l 2 (GFW = 208.236 g/mol), add 100 g for every litre of deaired, D l water. 195 Dispose of contents of digestion flask by filtering out solids. Place solids in plastic-lined 20L pail, place liquids from digestion flask and from trapping vessel (after titration) in container labelled 'Heavy Metal Waste'. Iodometric Titratation Procedure See Clesceri et al. (1988), and flowchart below: 0.0250N Standard Iodine Solution Preparation: dissolve 20-25 g Kl in a little water 3.2 g iodine after iodine dissolved, dilute to 1000 mL and standardize against 0.0250N Na 2 S 2 0 3 using starch soln as indicator. In 500 mL flask: amount of iodine soln in excess of amount of sulphide present dist. Water (if necessary) to bring to 20 mL Pipet 200 mL of sample under the iodine solution in flask. I Add more iodine until colour remains Back titrate with N a 2 S 2 0 3 solution (unstable in the atmosphere), adding a few drops of starch soln as endpoint is approached and continuing until blue colour disappears. Return filter with precipitate to original bottle and add about 100 mL of water Calculation: 1 mL 0.0250N iodine soln reacts with 0.4 mg S2": mg S27kg = KA x F31l - ffC x Dll x (32.06 a/2 eai kg sample where: A = mL iodine soln; B = normality of iodine soln; C = mL Na 2S 203 soln; and, D = normality of N a 2 S 2 0 3 soln Figure 7.5. Flowchart for Iodometric Titrations. Background 196 Iodine liberation in acid: IO: + 5I~ + 6H+ <-> 3 / , + 3H20 (1) 1 mL of 0.0250N iodine soln reacts with 0.4 mg S2" as: ZnS + I2<^2H+ +2I~ +S (2) 0.0125 moles L 1 mole S2' 32060 mg . . o2_ 0.001 I x -x x ^ - = 0.4 mg S2 L 1 mole 12 1 mole S In reaction (2), S2" and I 2 is a 1:1 stoichiometric ratio, and excess I2 can be easily measured in solution by titration with sodium thiosulphate (Na2S 2 03) and starch as an indicator as: I2 + 2Na2S2 0 3 -> 2Nal + NaS406 (3) Iodine produces a blue colour when it forms a complex with starch solution. As a result, the absence of blue in the titration indicates reaction (3) has gone to completion. Once this occurs, the concentration of S2" in the original sample can be determined as: [(mL iodine sol x normality of iodine sol)] - [(mL Na2S203 sol x normality of Na2S203 sol)] x mg S2 I kg ^32.06 2 eq kg sample Where the mass of sample is weighed out prior to beginning A V S and TRS extractions. Add titrants using a 2 mL Gilmont® microburet. Iodine Solution Required 197 If the final concentration of TRS 2" is 25 umol/g, or 0.025 mol/kg (-1.2 mg S2" in a 1.5 g sediment sample): 0.025 moles S kg sed 2- x 1.5x10 3 kg sedx 1 moles I2 1 L 0.0250 TV I2 solution 1 moles S2- 0.0125 moles I2 - 3 mL 0.0250 I2 solution This works out to about 2 mL per mg of sulphide. For an assumed S2" concentration of 50 umol/g for AVS, the volume of I 2 solution required is 6 mL. To make 1 L of solution from 0.1 N stock Iodate/Iodine solution: Ci=0.1N C2=0.0250 N V2=1000 mL Therefore Vi = 250 mL of 0.1 N stock Iodate/Iodine solution. Make up the rest with 750 mL deionized/deaired water. Store in a glass jar, purge with nitrogen gas, and cover jar in aluminum foil. Sodium Thiosulphate Solution Required If 4 and 7 mL of I 2 solution is added (an excess of 1 mL) C V c, 1 L 0.0125 moles I2 x 2 moles Na2S203 x 1 mole I2 1 L 0.0250 N Na2S2Q3 solution 1000 mL x = 1 mL 0.02507V Na2S203 solution 0.02500 moles Na2S203 1 L To make 1 L of solution from solid anhydrous sodium thiosulphate: 198 158.1 \gNa2S203 / 0.0250 moles Na2S2Q3 - 3 9 5 N a S Q 1 moles Na2S203 1 L 0.0250 N Na2S203 solution ' 2 2 3 Add solid to -500 mL of recently boiled Dl/deired water. Add 1.5 mL of 6N, or 0.4g solid, NaOH. Add 3 drops of chloroform and dilute to 1 L with deionized/deaired water. Store in a glass jar, purge with nitrogen gas, and cover jar in aluminum foil. lodimetric Titratation Procedure See Herbert (personal communication, 2005) Background 10 mL of concentrated HCl is added, liberating H2S into the solution: ZnS(x) + 2HCI -> H2S + ZnCl\ This solution is then titrated with KIO3. The addition of'KI03 to the solution containing KI produces I 2, which is oxidized: KI03 + 5KI + 6HCI 6KCI + 312 However, I2 is rapidly reduced by H2S in the solution as: H2S^>S° +2H+ +2e~ I2 + 2e~ -> 2I~ H2S + I2^>S° +2HI 199 Sulphur in sample is calculated as: , 2- , , _ , ^ (mL KIOi X M KIOi )(3)(32.06 mg SI mmol H2S) mg S I kg (ppm) mg sample 1% Starch + 3% KI Solution Required To make 100 mL starch indicator solution, 1 g of starch is mixed with 50 mL D l water. Another 50 mL aliquot of D l water is boiled, and the starch solution is slowly added to this while stirring. After the starch solution has cooled, 3 g KI , and ~2 mL HgCl 2 for a preservative, are added while stirring well. Store in ground-glass stoppered bottle shielded from light. 0.01M Iodate Solution Required: To make 500 mL K I 0 3 GFW = 213.999 g/mole 213.999 g ^ / O , 0.01 moles KI03 n c m n , , , ™ , • - x - x0.5 L 0.01M KIO, solution mole KI03 1 L 0.01M KI03 solution = 1.070 gKI03 Therefore, add 1.070 g for every 500mL of Nanopure water. Sulphide Standards Background Mackinawite Sulphide Standard To prepare a 100 mg/kg sample of mackinawite* (FeS, GFW = 87.907 g/mol): 200 3 2 - ° 6 g ^ =0.3647 . 87.907 g FeS 0.01 g S x 1 8 F e S = 0.0274 g FeS + 99.9726 g SiO, 0.3647 g S *Alfa Aesar, Iron (II) sulfide (FeS), 99.9% (metals basis), Stock # 14024, Lot # D04M31, CAS # 1317-37-9. FeS? Sulphide Standard To prepare a 1000 mg/kg sample of FeS 2* (GFW = 119.967 g/mol): 6 4 1 2 * 5 =0.5345 119.967 g F e S 2 0.1 g Sx l g F e S i = 0.1871 g FeS + 99.8129 g Si02 0.5345 g 5 2 *Alfa Aesar, Iron sulfide (FeS2), 99.9% (metals basis), Stock # 12842, Lot'# F05G24, CAS # 12068-85-8. Na9S-9H9Q Sulphide Standard To prepare a 100 mg/kg sample of Na 2 S-9H 2 0 (GFW = 240.18 g/mol): 32.06 g 5 240.18 gNa2S-9H20 \gNa2S-9H20 = 0.1335 0.01 g S x 0.1335 g 5 = 0.0749 g Na2S -9H20 + 99.9251 g S/0 2 201 Data and Results Table 7.1. TRS Results Date Sample ID Mass of 0.01 M Calculated Residual sample K I 0 3 /mL TRS S 2" Mass /g /mg (from Table 2) concentration /mg S27kg March 22/05 S10 4'8"-5' 1634.3 0.030 17.66 1.45 S35 9'8"-10' 1960.2 0.102 50.05 1.67 S34 6'4"-6'8" 1869.1 0.090 46.31 1.71 S10 13'10"-14'2" 1655.8 0.032 18.59 1.32 Std III 1994.0 1.576 760.18 1.61 Std II 1995.1 0.184 88.70 1.89 Std I 1883.1 0.016 . 8.17 n/m March 23/05 S34 4'-5' 1882.8 0.022 11.24 1.75 March 24/05 S10 9'8"-10' 1973.9 1.690 823.47 1.73 S34 11'4"-11'8" 1930.4 1.610 802.16 1.66 S35 12'2"-12'6" 1792.2 0.270 144.90 1.63 March 28/05 S8 6'4"-6'8" 1921.7 0.024 12.01 1.65 S8 11'4"-11'8" 1634.2 0.042 24.72 1.37 S36 12'2"-12'6" 1560.9 0.026 16.02 1.29 S6 16'10"-17'2" 1634.8 0.030 17.65 1.38 March 29/05 S34 9'8"-10' 1883.9 1.420 724.96 1.65 Dup I 1962.1 1.436 703.91 1.71 S10 11'6"-12' 1973.6 0.191 93.08 1.56 March 30/05 S36 17'2"-17'6" 1556.3 0.038 23.48 1.15 S8 13'10"-14'2" 1953.9 0.044 21.66 1.59 S10 7'2"-7'6" 1944.7 0.036 17.80 1.71 S6 11'8"-12'2" 1939.0 3.466 1719.24 1.35 S34 16'4"-16'8" 1944.1 0.044 21.77 1.62 March 31/05 S6 4'8"-5' 1987.0 0.028 13.55 1.70 S35 14'8"-15' 1890.7 0.030 15.26 1.56 S34 13'10"-14'2" 1574.8 0.032 19.54 1.37 S8 8'10"-9'2" 1774.9 0.030 16.26 1.51 S6 14'4"-14'8" 1971.6 0.032 15.61 1.59 April 1/05 S36 14'8"-15' 1950.3 0.032 15.78 1.59 April 2/05 S36 4'8"-5' 1976.4 0.030 14.60 1.65 S6 7'2"-7'6" 1958.8 0.028 13.75 1.68 S8 16'4"-16'8" 1987.0 0.030 14.52 1.64 April 4/05 S35 7'2"-7'6" 1911.8 0.032 16.10 1,69 S8 3'10"-4'2" 1919.6 0.026 13.03 1.58 S10 16'4"-16'8" 1929.2 0.026 12.96 1.49 S36 7'2"-7'6" 1979.9 0.030 14.57 1.75 202 S36 9'8"-10' 1924.3 0.030 14.99 1.61 April 5/05 S35 4'8"-5' 1937.0 0.028 13.90 1.69 Dup II 1917.5 2.772 1390.41 1.47 S6 9'8"-10' 1941.9 0.072 35.66 1.67 203 Table 7.2. TRS Iodometric Titration of Samples with Potassium Iodate Sample ID Volume K I 0 3 /mL Initial Final A V S10 4'8"-5' 0.000 0.030 0.030 S35 9'8"-10' 0.038 0.140 0.102 S34 6'4"-6'8" 0.234 0.144 0.090 S10 13'10"-14'2" 0.236 0.268 0.032 Std III 0.000 1.576 . " 1.576 Std II 0.000 0.184 0.184 Std I 1.386 1.402 0.016 S34 4'-5' 0.270 0.292 0.022 S10 9'8"-10' 0.000 1.690 1.690 S34 11'4"-11'8" 0.382 1.992 1.610 S35 12'2"-12'6" 0.108 0.378 0.270 S8'6'4"-6'8" 0.000 0.024 0.024 S8 11'4"-11'8" 0.028 0.070 0.042 S36 12'2"-12'6" 0.072 0.098 0.026 S6 16'10"-17'2" 0.100 0.130 0.030 S34 9'8"-10' 0.000 1.420 1.420 Dup I 0.000 1.436 1.436 S10 11'6"-12' 1.401 1.592 0.191 S36 17'2"-17'6" 1.598 1.636 0.038 S8 13'10"-14'2" 1.640 1.684 0.044 S10 7'2"-7'6" 1.688 1.724 0.036 S6 11'8"-12'2" 0.000 3.466 3.466 S34 16'4"-16'8" 1.470 1.514 0.044 S6 4'8"-5' 1.516 1.544 0.028 S35 14'8"-15' 1.544 1.574 0.030 S34 13'10"-14'2" 1.576 1.608 0.032 S8 8'10"-9'2" 1.610 1.640 0.030 S6 14'4"-14'8" 1.642 1.674 0.032 S36 14'8"-15' 1.686 1.718 0.032 S36 4'8"-5' 0.500 0.530 0.030 S6 7'2"-7'6" 0.534 0.562 0.028 S8 16'4"-16'8" 0.562 0.592 0.030 S35 7'2"-7'6" 0.594 0.626 0.032 S8 3'10"-4'2" 0.626 0.652 0.026 S10 16'4"-16'8" 0.654 0.680 0.026 S36 7'2"-7'6" 0.680 0.710 0.030 S36 9'8"-10' 0.712 0.742 0.030 S35 4'8"-5' 0.746 0.774 0.028 Dup II 0.000 2.772 2.772 . S6 9'8"-10' 0.772 0.844 0.072 204 Table 7.3. A V S Results Date Sample ID Mass of sample /mg 0.01 M K I 0 3 / m L (from Table 4 ) Uncorrected A V S S2" concentration /mg S27kg Water Content f \ I m » J April 6/05 Std I 2953.0 0.032 10.42 0 April 7/05 Std III Dup I 2723.3 1.736 613.11 0 Std II 2932.6 0.248 81.34 0 April 8/05 Std III Na2S9H20 2942.3 3.416 1120.42 0 April 9/05 Std III Na2S Dup III 2835.6 2.492 845.23 0 April 11/05 S6 11'8"-12'2" 2746.0 1.880 658.48 0.2122 S6 9'8"-10' 2798.9 0.096 32.99 0.2018 S34 13'10"-14'2" 2901.3 0.036 11.93 0.1990 S10 9'8"-10' 2997.7 0.446 143.10 0.1607 April 12/05 S35 14'8"-15' 2834.9 0.020 6.79 •0.1917 S8 8'10"-9'2" 2835.5 0.022 7.46 0.1899 S36 9'8"-10' 2856.5 0.074 24.92 0.1919 S35 12'2"-12'6" 2876.7 0.330 110.33 0.1749 April 13/05 S6 7'2"-7'6" 2672.6 0.018 6.48 0.1737 S35 9'8"-10' 2916.2 0.080 26.39 0.1822 S10 7'2"-7'6" 2816.8 0.018 6.15 0.1790 S10 11'6"-12' 2868.8 0.264 88.51 0.2126 April 14/05 S34 6'4"-6'8" 2813.7 0.094 32.13 0.1793 S34 11'4"-11'8" 2843.5 1.078 364.63 0.2195 S10 13'10"-14'2" 2822.9 0.022 7.50 0.1959 S34 9'8"-10' 2837.8 0.406 137.60 0.1951 April 15/05 S36 12'2"-12'6" 2789.8 0.020 6.90 0.2792 . S34 4'-5' 2879.9 0.014 4.68 0.1648 S35 7'2"-7'6" 2545.2 0.016 6.05 0.0962 S6 14'4"-14'8" 2849.3 0.018 6.08 0.2158 April 16/05 S8 11'4"-11'8" 2866.9 0.032 10.74 0.1975 Dup I 2885.9 0.090 29.99 0.2248 Dup II 2890.8 0.022 7.32 0.1899 April 18/05 Dup III 2773.3 0.034 11.79 Std III FeS2 2896.2 0.186 61.77 • 0 205 Table 7.4. A V S Iodometric Titration of Samples with Potassium Iodate Sample ID Volume K I 0 3 /mL Initial Final A V Std I 0.846 0.878 0.032 Std III Dup I 0.000 1.736 1.736 Std II 0.000 0.248 0.248 Std III Na2S9H20 0.000 3.416 3.416 Std III Na2S Dup III 0.000 2.492 2.492 S6 11'8"-12'2" 0.000, 1.880 1.880 S6 9'8"-10' 0.000 0.096 0.096 S34 13'10"-14'2" 0.124 0.160 0.036 S10 9'8"-10' 0.184 0.630 0.446 S35 14'8"-15' 0.686 0.706 0.020 S8 8'10"-9'2" 0.746 0.768 0.022 S36 9'8"-10' 0.820 0.894 0.074 S35 12'2"-12'6" 0.946 1.276 0.330 S6 7'2"-7'6" 1.320 1.338 0.018 S35 9'8"-10' 1.378 1.458 0.080 S10 7'2"-7'6" 1.508 1.526 0.018 S10 11'6"-12' 1.560 1.824 0.264 . S34 6'4"-6'8" 0.000 0.094 0.094 S34 11'4"-11'8" 0.116 1.194 1.078 S10 13'10"-14'2" 1.234 1.256 0.022 S34 9'8"-10' 0.000 0.406 0.406 S36 12'2"-12'6" 0.448 0.468 0.020 S34 4'-5' 0.490 0.504 0.014 S35 7'2"-7'6" 0.532 0.548 0.016 S6 14'4"-14'8" 0.604 0.586 0.018 S8 11'4"-11'8" 0.642 0.674 0.032 Dup I 0.712 0.802 0.090 Dup II 0.830 0.852 0.022 Dup III 0.900 0.934 0.034 Std III FeS2 0.974 1.160 0.186 206 Appendix C: Iron Extraction Procedures Laboratory Procedures for Iron Extractions Prepared by: Chad W. Petersmeyer Department of Earth and Ocean Sciences University of British Columbia January 2005 207 Procedures for Iron Extractions Iron Extractions Procedure See Heron et al. (1994), Kennedy et al. (1998), Kennedy et al. (2004), Lovely and Phillips (1987), and Tuccillo et al. (1999). • Handle samples in glovebox, cut using bandsaw w/ tungsten blade, homogenize; • Weigh mass of empty centrifuge tube; • Weigh out 1-1.5 g wet sediment into serum bottles, run in duplicate; • Weigh mass of centrifuge tube + sediment; • Retain sediment in weigh dish for moisture content determination; • Add 15 mL (30 mL, Tuccillo et al. (1999), 15 mL, Kennedy et al. (1998), 10 mL, Heron et al. (1994)) extractant (Dist. Water, 0.5N HCl , 5N HCl) Eppendorf repeater pipette with 50 mL tip (5 mL per trigger); • Weigh mass of centrifuge tube + sediment + extractant; • Bring outside glovebox, place on shaker table; • Wait required extraction period at 20 °C (Dist. Water: 15 minutes Kennedy et al. (2004), 0.5N HCl : 3 days, Tuccillo et al. (1999), 5N HCL: 21 days, Heron et al. (1994)); • Centrifuge; • Return to glovebox filter through 0.45 um filter into polypropylene bottles. Cover bottles when not in use to prevent possible photovoltaic oxidation. Remove 0.2 mL of extractant using micropipette (w/ disposable tips) and place in vials filled with deaired Nanopure water (to required dilution) + 1 mL of 1:16 H N O 3 ; • Weigh mass of centrifuge tube + residue; • Analyze by Ferrozine method described below; • Determine Total Iron by addition of reducing agent, diluting, and reanalyzing. 208 Use Dl/deaired water for extractants. Run sequentially. Dilute samples and stock solution for analysis by Ferrozine Method (detection limits: 0 to 1.300 mg/L). Background The Dist. Water extraction was designed for the intent of determining loosely bound iron concentrations and dissolved porewater iron. The 0.5M HCl extraction is used to determine microbially available and recently precipitated iron concentrations (FeS, FeC03, Fe(OH)3(a)). The 5M HCl extraction is used to dissolve the more crystalline iron (oxyhyrdr) oxides such as: ferrihydrite (Fe(OH)3), lepidocrocite (y-FeOOH), akageneite (p-FeOOH), goethite (a-FeOOH), hematite (Fe 20 3), and magnetite (Fe 30 4). 0.5N H C l To make 1500 mL of 0.5 N HCl : Ci=12N C 2=0.5N V 2=1500mL Therefore Vi= 62.5 mL + 1437.5 mL deaired Nanopure water. Note: A L W A Y S add acid to water. 5N H C l To make 1500 mL of 5 N HCl : C V C\V\ =C2V2 ~+V\ C,=12N C 2=5N V2=1500 m L , C, 209 Therefore V|= 625 mL + 875 mL deaired Nanopure water. Note: A L W A Y S add acid to water. For 36.5-38% stock HCl : 36.4609 g XL 36.4609 g \L 1:16 HNCh To make 1L of 1:16 nitric acid, add 62.5 mL concentrated HNO3 to 937.5 mL deaired Nanopure water. Iron Detection Procedure See Stookey (1970) and Gibbs (1979). Adjust pH to 3-5 using sodium acetate. Ferrous Iron In a 25 mL glass vial: 2 mL of buffer solution (micropipette) followed by 1 mL of ferrozine (micropipette). Add 20 mL of diluted extract. Mix by shaking and then allow to sit for 2 minutes. Record absorbance within 2 minutes of adding ferrozine. Total Iron In a 25 mL glass vial: Add 20 mL of diluted extract followed by 1 mL of hydroxylamine hydrochloride (micropipette) and allow to react for 10 minutes after which 2 mL of buffer solution followed by 1 mL of ferrozine. Record absorbance within 2 minutes of adding ferrozine. 210 Background 100 mg/L Iron Stock Solution For 500 mL of solution, dissolve 0.35.11 g of ammonium ferrous sulphate ((NH4)2SO4FeSO46H20) (GFW = 392.13) in Nanopure water. 0.1 g Fe x 392.13 g (NH A)2SO,FeSO,6H2Q x Q 5 L _ L X 55.847 g Fe 0.3511 g (NH4)2S04FeS046H20 Acidify to pH<4 with HCl . Bring to 500 mL with Nanopure water. Sodium Acetate Buffer Solution Dissolve 236.15 g NaCH3C0O3H20 in 57.5 mL acetic acid. Add deaired Nanopure water to IL. Store in amber glass jar. 100 g/L Hvdroxvlamine Hydrochloride Solution (NH^OHHCD Dissolve 25 g hydroxylamine hydrochloride in 250 mL Nanopure water. 3 x 10"3 M Ferrozine Reagent Solution in 0.1 N H C l Dissolve 0.375 g ferrozine (3-(2-pyridl)-5,6-bis(4-phenyl-sulphonic acid)-l,2,4-triazine, GFW = 492.5) in 100 mL Nanopure water. Add 4.967 mL 5N H C l (sp. Gravity = 1.09). Dilute to 250 mL with Nanopure water. Iron Standards Background Goethite Iron Standard 211 To prepare a 100 mg/kg (0.01 g/100 g) sample of goethite* (a-FeOOH, GFW = 88.8529 g/mol): 55.847 gFe = Q ^ 88.8529 g FeOOH 0.01 g F e 3 + x * g FeOOH = Q 0 1 5 9 F e 0 0 H + 99.9341 g 5 i0 2 S 0.6285 g/V + ^ 2 *Alfa Aesar, Iron (III) hydroxide, alpha (a-FeO(OH)), Stock # 19496, Lot # H05M26, CAS # 20344-49-4. Mackinawite Iron Standard To prepare a 100 mg/kg sample of mackinawite* (FeS, GFW = 87.907 g/mol): 55 847 e g =0.6360 87.907 g FeS 0.01 g Fe2+ x £ ^ — = 0.0157 g i ^ S + 99.9843 g SiO, S 0.6360 g 7V + S S 2 *Alfa Aesar, Iron (II) sulfide (FeS), 99.9% (metals basis), Stock # 14024, Lot # D04M31, CAS # 1317-37-9. 212 Data and Results Table 7.5. Dilution Factors Extraction Sequence Sample Volume (mL) Nanopure Water Volume (mL) Total Reagents Volume (mL)* Dilution Factor D l Fe(II) 0.2 20 4 121 D l total Fe 0.2 20 5 126 0.5N Fe(II) 0.2 20 4 121 0.1 40 441 0.1 20 241 0.5N total Fe 0.1 40 5 451 5N Fe(II) 0.02 20 4 1201 5N total Fe 0.02 20 5 1251 *2 mL buffer, 1 mL Ferrozine, 1 mL HNO3, and 1 mL hydroxylamine hydrochloride (for determination of total Fe) 213 > Tab le 7.6 Deionized Water Iron Extraction Data II III IV V VI Vll VIII IX X XI Xll XIII XIV XV XVI XVII XVIII XIX XX XXI XXII XXIII XXIV Set# Core ID Sample ID Fe(ll) Fe (II) Fe (II) Tot. Fe Tot. Fe Tot. Fe Fe (III) Comments Mass of Mass of Mass of Mass of Amnt extr Mass of Amnt Fe (II) Fe (III) Moisture Fe (II) Fe (III) abs. diluted sample abs. diluted sample cone. Cent. tube + sample tube after added tube after Residual sample sample cone, by cone, by cone. cone. cone. cone. (mg/L) (X Tube sample (9)(XIV- extr added (mL)(XVI- extr Extractant cone. cone. dry dry (mg/L) (mg/L) (mg/L) (mg/L) Vll) Empty (g) (9) XIII) (9) XIV) removed (g) (mL) (XVIII- (mg/kg) (Vll (mg/kg) weight weight XIV) x XVII x (XI x XVII (mg/kg) (mg/kg) 1/XV) x1/XV) 1 S-6 S-6 4'8"-5' A 0.002 0.004 0.480 0.006 0.012 1.499 1.019 sets #1-8 preserved before dilution for Fe(ll) 14.6020 16.0269 1.4249 30.9631 14.9362 16.5563 0.5294 5.0302 10.6839 0.0948 5.5570 11.8029 2 S-6 4'8"-5' 8 0.002 0.004 0.480 0.006 0.012 1.499 1.019 14.6018 16.0024 1.4006 30.9356 14.9332 16.3465 0.3441 5.1164 10.8671 0.0948 5.6523 12.0052 3 S-6 7'2"-7'6" A 0.004 0.008 0.960 0.006 0.012 1.499 0.539 14.6005 16.0211 1.4206 30.9462 14.9251 16.3107 0.2896 10.0833 5.6666 0.1679 12.1173 6.8097 4 S-6 7'2"-7'6" B 0.003 " 0.006 0.720 0.006 0.012 1.499 0.779 14.7239 16.5755 1.8516 31.5097 14.9342 16.9056 0.3301 5.8057 6.2855 0.1679 6.9768 7.5534 5 S-6 9'8"-10'A 0.003 0.006 0.720 0.006 0.012 1.499 0.779 14.5334 16.1214 1.5880 31.0406 14.9192 16.3178 0.1964 6.7626 7.3215 0.1988 8.4403 9.1378 6 S-6 9'8"-10'B 0.003 0.006 0.720 0.006 0.012 1.499 0.779 14.7184 16.2142 1.4958 31.2454 15.0312 16.4296 0.2154 7.2333 7.8311 0.1988 9.0278 9.7739 7 S-6 11'8"-12'2" A 0.002 0.004 0.480 0.005 0.010 1.249 0.769 14.5867 15.7245 1.1378 30.6619 14.9374 16.0362 0.3117 6.2999 10.1007 0.2051 7.9258 12.7074 8 S-6 11'8"-12'2" B 0.003 0.006 0.720 0.005 0.010 . 1.249 0.529 14.6083 15.8724 1.2641 30.8229 14.9505 16.1643 0.2919 8.5132 6.2618 0.2051 10.7102 7.8778 9 S-6 14'4"-14'8" A 0.003 0.006 0.720 0.005 0.010 1.249 0.529 14.6189 15.7568 1.1379 30.6788 14.9220 15.8287 0.0719 9.4393 6.9430 0.2066 11.8975 8.7511 10 S-6 14'4"-14'8" B 0.003 0.006 0.720 0.005 0.010 1.249 0.529 14.6048 15.6103 1.0055 30.5348 14.9245 15.7102 0.0999 10.6840 7.8585 0.2066 13.4664 9.9050 11 S-6 16'10"-17'2" A 0.001 <0.003* <0.363 0.004 0.008 0.999 >0.636 sets #11 &13 maybe switched 14.5969 15.9717 1.3748 30.8743 14.9026 16.0073 0.0356 <3.9349 >6.8985 0.2389 <5.1697 >9.0633 12 S-6 16'10"-17'2" B 0.001 <0.003 <0.363 0.005 0.010 1.249 >0.886 *MDL based on HACH EDL , 14.6362 16.0272 1.3910 30.9093 14.8821 16.2405 0.2133 <3.8837 >9.4819 0.2389 <5.1024 > 12.4574 13 S-8 S-8 3'10"-4'2" A 0.001 <0.003 <0.363 0.006 0.012 1.499 >1.136 14.6000 15.7003 1.1003 30.6347 14.9344 15.9632 0.2629 <4.9270 > 15.420*4 0.1305 <5.6665 >17.7349 14 S-8 3'10"-4'2" B 0.001 <0.003 <0.363 0.017 0.034 4.247 >3.884 14.6096 15.7892 1.1796 30.7052 14.9160 15.9723 0.1831 <4.5901 >49.1190 0.1305 <5.2791 >56.4914 15 S-8 6'4"-6'8" A 0.001 <0.003 <0.363 0.004 0.008 0.999 >0.636 14.5765 16.3665 1.7900 31.3229 14.9564 16.6175 0.2510 <3.0331 >5.3175 0.1030 <3.3812 >5.9279 16 S-8 6'4"-6'8" B 0.001 <0.003 <0.363 0.005 0.010 1.249 >0.886 14.5823 16.3439 1.7616 31.3091 14.9652 16.6332 0.2893 <3.0838 >7.5290 0.1030 <3.4378 >8.3932 17 S-8 8'10"-9'2" A 0.001 <0.003 <0.363 0.004 0.008 0.999 >0.636 14.7077 15.9022 1.1945 30.8238 14.9216 15.9798 0.0776 <4.5346 >7.9499 0.1874 <5.5800 >9.7828 18 S-8 8'10"-9'2" B 0.001 <0.003 <0.363 0.005 0.010 1.249 , >0.886 14.5953 15.7151 1.1198 30.6346 14.9195 15.7791 0.0640 <4.8364 > 11.8079 0.1874 <5.9514 >14.5303 19 S-8 11'4"-11'8" A 0.001 <0.003 <0.363 0.005 0.010 1.249 >0.886 14.6067 15.7203 1.1136 30.6791 14.9588 15.7965 0.0762 <4.8761 >11.9049 0.1966 <6.0697 >14.8190 20 S-8 11'4--11'8- B 0.001 <0.003 <0.363 0.006 0.012 1.499 >1.136 14.6654 15.7540 1.0886 30.6525 14.8985 15.8249 0.0709 <4.9680 >15.5487 0.1966 <6.1840 >19.3547 21 S-8 13'10°-14'2' A 0.002 0.004 0.480 0.005 0.010 1.249 0.769 14.6147 15.8160 1.2013 30.7636 14.9476 15.9526 0.1366 5.9710 9.5733 0.2013 7.4759 11.9862 22 S-8 13'10"-14'2" B 0.001 <0.003 <0.363 0.005 0.010 1.249 >0.886 14.5907 15.7458 1.1551 30.6783 14.9325 15.8525 0.1067 <4.6927 >11.4570 0.2013 <5.8754 >14.3447 23 S-8 16'4"-16'8" A 0.001 <0.003 <0.363 0.005 0.010 1.249 >0.886 14.7446 16.0936 1.3490 31.0134 14.9198 16.2210 0.1274 <4.0147 >9.8019 0.1914 <4.9649 >12.1217 24 S-8 16'4"-16'8" B 0.001 <0.003 <0.363 0.004 0.008 0.999 >0.636 14.6751 15.7570 1.0819 30.6735 14.9165 15.8704 0.1134 <5.0048 >8.7743 0.1914 <6.1893 >10.8509 25 S-10 S-10 4'8"-5' A 0.001 <0.003 <0.363 0.006 0.012 1.499 >1.136 14.5857 15.8559 1.2702 30.8159 14.9600 16.2172 0.3613 <4.2753 > 13.3807 0.1101 <4.8041 >15.0357 26 S-10 4'8"-5' B 0.001 <0.003 <0.363 . 0.005 0.010 1.249 >0.886 14.6856 15.9081 1.2225 30.8062 14.8981 16.2885 0.3804 <4.4237 > 10.8004 0.1101 <4.9709 >12.1363 27 S-10 7'2"-7'6" A 0.001 <0.003 <0.363 0.005 0.010 1.249 >0.886 14.6496 16.0300 1.3804 '" 30.9626 14.9326 16.1619 0.1319 <3.9268 >9.5872 0.1850 <4.8184 > 11.7640 28 S-10 7'2"-7'6" B 0.003 0.006 0.720 0.009 0.018 2.249 1.529 14.6295 15.8369 1.2074 30.7568 14.9199 16.0570 0.2201 8.8947 18.8921 0.1850 10.9143 23.1817 29 S-10 9'8"-10' A 0.001 <0.003 <0.363 0.005 0.010 1.249 >0.886 14.6019 16.1079 1.5060 31.0379 14.9300 16.4800 0.3721 <3.5987 >8.7861 0.1680 <4.3254 > 10.5603 30 S-10 9'8"-10'B 0.002 0.004 0.480 0.005 0.010 1.249 0.769 14.6074 15.9282 1.3208 30.8426 14.9144 16.2182 0.2900 5.4187 8.6878 0.1680 6.5129 10.4422 31 S-10 11'6"-12' A 0.003 0.006 0.720 0.005 0.010 1.249 0.529 14.6438 15.9133 1.2695 30.8089 14.8956 16.1899 0.2766 8.4458 6.2122 0.1912 10.4431 7.6813 32 S-10 11'6"-12' B 0.002 0.004 0.480 0.005 0.010 1.249 0.769 14.5919 15.7606 1.1687 30.6466 14.8860 15.8951 0.1345 6.1123 9.7998 0.1912 7.5576 12.1172 33 S-10 13'10"-14'2" A 0.002 0.004 0.480 0.006 0.012 1.499 1.019 14.6212 15.7986 1.1774 30.7066 14.9080 15.9056 0.1070 ' 6.0761 12.9053 0.2019 7.6133 16.1705 34 S-10 13'10"-14'2" B 0.003 0.006 0.720 0.023 0.046 5.747 5.027 note purple colour for Tot. Fe 14.5919 15.9160 1.3241 30.8305 14.9145 16.0150 0.0990 8.1078 56.6209 0.2019 10.1592 70.9463 35 S-10 16'4"-16'8" A 0.002 0.004 0.480 0.006 0.012 1.499 1.019 14.6704 15.7086 1.0382 30.6267 14.9181 15.7987 0.0901 6.8954 14.6456 0.2499 9.1922 19.5240 36 S-10 16'4"-16'8" B 0.003 0.006 0.720 0.006 0.012 1.499 0.779 14.6018 15.6333 1.0315 30.5671 14.9338 15.7179 0.0846 10.4212 11.2825 0.2499 13.8925 15.0407 37 S-34 S-34 4'-5' A 0.002 0.004 0.480 0.005 0.010 1.249 0.769 14.5911 15.9570 1.3659 30.8586 14.9016 16.2677 0.3107 5.2353 8.3938 0.1569 6.2098 9.9562 38 S-34 4'-5' B 0.002 0.004 0.480 0.006 0.012 1.499 1.019 14.5393 15.9058 1.3665 30.8447 14.9389 16.1577 0.2519 5.2461 11.1425 0.1569 6.2226 13.2166 39 S-34 6'4"-6'8" A 0.003 0.006 0.720 0.006 0.012 1.499 0.779 14.5961 15.7529 1.1568 30.6535 14.9006 16.0201 0.2672 9.2718 10.0380 0.1662 11.1205 12.0396 40 S-34 6'4"-6'8" B 0.002 0.004 0.480 0.005 0.010 1.249 0.769 14.6544 15.9827 1.3283 30.9194 14.9367 16.1449 0.1622 5.3962 8.6517 0.1662 6.4721 10.3768 41 S-34 9'8"-10' A 0.002 0.004 0.480 0.006 0.012 1.499 1.019 14.6044 15.7354 1.1310 30.7118 14.9764 15.8645 0.1291 6.3544 13.4964 0.1881 7.8265 16.6233 42 S-34 9'8"-10' B 0.003 0.006 0.720 0.007 0.014 1.749 1.029 14.6553 16.1424 1.4871 31.0446 14.9022 16.2961 0.1537 7.2132 10.3131 0.1881 8.8843 12.7024 43 S-34 11'4"-11'8" A 0.002 0.004 0.480 0.005 0.010 1.249 0.769 14.6001 15.8164 1.2163 30.7522 14.9358 15.9159 0.0995 5.8927 9.4478 0.1941 7.3118 11.7231 44 S-34 11'4"-11'8" B 0.004 0.008 0.960 0.007 0.014 1.749 0.789 14.5802 15.8146 1.2344 30.6722 14.8576 15.8445 0.0299 11.5518 9.4992 0.1941 14.3338 11.7869 45 S-34 13'10"-14'2" A 0.003 0.006 0.720 0.006 0.012 1.499 0.779 14.5319 15.9338 1.4019 30.8346 14.9008 16.0774 0.1436 7.6509 8.2832 0.1918 9.4669 10.2493 46 S-34 13'10"-14'2" B 0.002 0.004 0.480 0.006 0.012 1.499 1.019 14.6199 15.7670 1.1471 30.6711 14.9041 15.8417 0.0747 6.2349 13.2428 0.1918 7.7148 16.3861 47 S-34 16'4"-16'8" A 0.002 0.004 0.480 0.006 0.012 1.499 1.019 • 14.6143 15.9233 1.3090 30.8605 14.9372 16.0078 0.0845 5.4759 11.6306 0.2128 6.9561 14.7745 48 S-34 16'4"-16'8" B 0.003 0.006 0.720 0.007 0.014 1.749 1.029 14.7000 15.9786 1.2786 30.9111 14.9325 16.0878 0.1092 8.4065 12.0192 0.2128 10.6788 15.2681 49 S-35 S-35 4'8"-5' A 0.003 0.006 0.720 0.009 0.018 2.249 1.529 14.7058 15.9201 1.2143 30.8304 14.9103 16.2361 0.3160 8.8385 18.7727 0.0685 9.4887 20.1536 50 S-35 4'8"-5' B 0.003 0.006 0.720 0.007 0.014 1.749 1.029 14.5898 15.6998 1.1100 30.6278 14.9280 16.0087 0.3089 9.6805 13.8407 0.0685 10.3926 14.8588 51 S-35 7'2"-7'6" A 0.006 0.012 1.440 0.005 0.010 1.249 -0.190 14.6521 15.9492 1.2971 30.8675 14.9183 16.3791 0.4299 16.5575 -2.1894 0.0786 17.9691 -2.3761 52 S-35 7'2"-7'6" B 0.003 0.006 0.720 0.006 0.012 1.499 0.779 14.5880 15.9022 1.3142 30.8579 14.9557 16.3802 0.4780 8.1915 8.8685 0.0786 8.8899 9.6246 53 S-35 9'8"-10' A 0.003 0.006 0.720 0.005 0.010 1.249 0.529 14.6048 16.0744 1.4696 31.0040 14.9296 16.2678 0.1934 7.3125 5.3786 0.1817 8.9359 6.5727 54 S-35 9'8"-10' B 0.003 0.006 0.720 0.005 0.010 1.249 0.529 14.6092 15.9302 1.3210 30.8693 14.9391 16.2117 0.2815 8.1403 5.9875 0.1817 9.9475 7.3167 55 S-35 12'2"-12'6" A 0.003 0.006 0.720 0.005 0.010 1.249 0.529 14.6781 16.0830 1.4049 31.0474 14.9644 16.2995 0.2165 7.6671 5.6394 0.1762 9.3073 6.8459 56 S-35 12'2"-12'6" B 0.003 0.006 0.720 0.005 0.010 1.249 0.529 14.6270 15.9532 1.3262 30.8985 14.9453 16.2022 0.2490 8.1117 5.9665 0.1762 9.8470 7.2428 57 S-35 14'8"-15' A 0.001 0.002 <0.363 0.006 0.012 1.499 >1.136 14.7042 15.9578 1.2536 30.8901 14.9323 16.0965 0.1387 <4.3239 >13.5328 0.1888 <5.3301 >16.6819 58 S-35 14'8"-15' B 0.000 0.000 <0.363 0.005 0.010 1.249 >0.886 14.5912 15.6781 1.0869 30.6230 14.9449 15.8166 0.1385 <4.9913 >12.1860 0.1888 <6.1527 > 15.0218 214 Table 7.6 Deionized Water Iron Extraction Data II /// IV V VI VII VIII IX X XI XII XIII XIV XV XVI XVII XVIII XIX XX XXI XXII XXIII XXIV Set# Core ID Sample ID • Fe(ll) Fe(ll) Fe (II) Tot. Fe Tot. Fe Tot. Fe Fe (III) Comments Mass of Mass of Mass of Mass of Amnt extr Mass of Amnt Fe(ll) Fe (III) Moisture Fe (II) Fe (III) abs. diluted sample abs. diluted sample cone. Cent. tube + sample tube after added tube after Residual sample sample cone, by cone, by cone. cone. cone. cone. (mg/L)(X Tube sample (g)(XIV- extr added (mL)(XVI- extr Extractant cone. cone. dry dry (mg/L) (mg/L) (mg/L) (mg/L) VII) Empty (g) (g) XIII) (9) XIV) removed (g) (mL) (XVIII- (mg/kg) (VII (mg/kg) weight weight XIV) x XVII x (XI x XVII (mg/kg) (mg/kg) 1/XV) x 1/XV) 59 S-36 S-36 4'8"-5' A 0.000 0.000 <0.363 0.005 0.010 1.249 >0.886 14.6217 16.0058 1.3841 30.9490 14.9432 16.4246 0.4188 <3.9191 >9.5683 0.0899 <4.3062 >10.5134 60 S-36 4'8"-5' B 0.002 0.004 0.480 0.005 0.010 1.249 0.769 14.5965 15.8344 1.2379 30.7275 14.8931 16.2268 0.3924 5.7733 9.2564 0.0899 6.3436 10.1707 61 S-36 7'2"-7'6" A 0.001 0.002 <0.363 0.004 0.008 0.999 >0.636 14.5937 15.7810 1.1873 30.7167 14.9357 15.8802 0.0992 <4.5664 >8.0057 0.1862 <5.6114 >9.8377 62 S-36 7'2"-7'6- B 0.004 0.008 0.960 0.006 0.012 1.499 0.539 14.5932 15.9680 1.3748 30.8476 14.8796 16.0844 0.1164 10.3874 5.8376 0.1862 12.7645 7.1734 63 S-36 9'8"-10' A 0.001 0.002 <0.363 0.004 0.008 0.999 >0.636 14.6328 15.7660 1.1332 30.6778 14.9118 15.9710 0.2050 <4.7767 >8.3745 0.1895 <5.8934 > 10.3323 64 S-36 9'8"-10' B 0.001 0.002 <0.363 0.004 0.008 0.999 >0.636 14.5439 15.9384 1.3945 30.8834 14.9450 '16.1295 0.1911 <3.8903 >6.8204 0.1895 <4.7998 >8.4149 65 S-36 12'2"-12'6" A 0.001 0.002 <0.363 0.005 0.010 1.249 >0.886 14.6136 15.8539 1.2403 30.7435 14.8896 15.9646 0.1107 <4.3578 > 10.6394 0.2212 <5.5952 >13.6606 66 S-36 12'2"-12'6" B 0.005 0.010 1.200 0.005 0.010 1.249 0.050 14.6292 16.0551 1.4259 31.0150 14.9599 16.1439 0.0888 12.5865 0.5201 0.2212 16.1608 0.6678 • 67 S-36 14'8"-15' A 0.001 0.002 <0.363 0.005 0.010 1.249 >0.886 14.5951 16.0294 1.4343 31.0000 14.9706 16.2623 0.2329 <3.7888 >9.2504 0.1981 <4.7246 >11.5349 68 S-36 14'8"-15' B 0.001 0.002 <0.363 0.004 0.008 0.999 >0.636 14.6063 15.9453 1.3390 30.8513 14.9060 16.1269 0.1816 <4.0410 >7.0846 0.1981 <5.0390 >8.8342 69 S-36 17'2"-17'6" A 0.002 0.004 0.480 0.005 0.010 1.249 0.769 14.6060 16.0656 1.4596 30.9879 14.9223 16.2386 0:1730 4.9060 7.8658 0.2084 6.1976 9.9366 70 S-36 17'2"-17'6" B 0.001 0.002 <0.363 0.005 0.010 1.249 >0.886 14.6456 15.6690 1.0234 30.6105 14.9415 15.7641 0.0951 <5.2998 >12.9392 0.2084 <6.6950 > 16.3457 71 FeS A 0.001 0.002 <0.363 0.005 0.010 1.249 >0.886 14.5919 16.0122 1.4203 30.9400 14.9278 16.6863 0.6741 <3.8152 >9.3148 0.0000 <3.8152 >9.3148 72 F e S B 0.001 0.002 <0.363 0.008 0.016 1.999 > 1.636 2 mL FZ added for Fe (II) 14.5993 15.6888 1.0895 ' 30.6521 14.9633 16.0086 0.3198 <4.9855 >22.4664 0.0000 <4.9855 >22.4664 73 FeOOH A 0.003 0.006 0.720 0.007 0.014 1.749 1.029 14.7198 15.8618 1.1420 30.8530 14.9912 16.3952 0.5334 9.4490 13.5098 0.0000 9.4490 13.5098 74 FeOOH B 0.002 0.004 0.480 0.008 0.016 1.999 1.519 14.6100 16.0474 1.4374 31.0277 14.9803 16.6973 0.6499 5.0011 15.8301 0.0000 5.0011 15.8301 2 1 5 Table 7.7 0.5N HCl Iron Extraction Data Date ;;; iv V. VI . VII VIII IX X XI XII XIII XIV XV XVI XVII XVIII XIX XX XXI XXII XXIII XXIV XXV Set # Core ID Sample ID Fe(ll) Fe(ll) Fe (II) Fe(ll) Tot. Fe Tot. Fe Tot. Fe Tot. Fe Fe (III) Comments Mass of Mass of Original Original Mass of Amnt Amnt extr Mass of tube Amnt Fe(ll) Fe (III) abs. diluted sample sample abs. diluted sample sample cone. Cent. tube + Mass of Mass of tube after Residual added after extr Residual sample sample cone. cone. cone. cone. cone. cone. (mg/L) Tube sample tube + sample extr added Dl (mL) (XIX- removed (g) Extractant cone. cone. (mg/L) (mg/L) corr. for (mg/L) (mg/L) corr. for (XII-VIII) Empty (g) (9) sample (9) (9) Extractant XVI-XX) (mL) (XXII- (mg/kg) (mg/kg) resid. resid. (9) (mL) XVII) (VIII x XXI (XIII x XXI (mg/L) (mg/L) x 1/XVIII) x 1/XVIII) 1 S-6 S-6 4'8"-5' A 0.063 0.125 15.116 15.099 0.217 0.430 194.065 194.012 178.913 Tot Fe diluted 0.1:45:1 14.6020 16.5563 16.0269 1.4249 31.5645 0.5294 14.4788 16.3044 0.2775 153.4258 1817.9850 2 S-6 4'8"-5' B 0.066 0.131 15.836 15.825 0.221 0.438 197.642 197.608 181.783 14.6018 16.3465 16.0024 1.4006 31.3570 0.3441 14.6664 16.2946 0.2922 165.7097 1903.5439 3 S-6 7'2"-7'6" A 0.093 0.184 22.314 22.296 0.215 0.426 192.276 192.247 169.952 14.6005 16.3107 16.0211 1.4206 31.3069 0.2896 14.7066 16.1832 0.1621 230.8123 1759.4078 4 S-6 7 ,2"-7 ,6" B 0.116 0.230 27.833 27.817 0.256 0.508 228.943 228.910 201.093 14.7239 16.9056 16.5755 1.8516 31.8944 0.3301 14.6587 16.7174 0.1419 220.2192 1592.0102 5 S-6 9'8"-10' A 0.285 0.565 249.227 249.217 0.331 0.656 296.016 295.997 46.779 Sets 5-8,29-32,39,40,42,43,53,54 14.5334 16.3178 16.1214 1.5880 31.3101 0.1964 14.7959 16.4614 0.3400 2322.0359 435.8585 6 S-6 g ^ - l O B 0.279 0.553 243.980 243.969 0.309 0.613 276.341 276.320 32.351 diluted 0.1:44.1 for Fe(ll) 14.7184 16.4296 16.2142 1.4958 31.4424 0.2154 14.7974 16.2854 0.0712 2413.5001 320.0317 7 S-6 11'8"-12'2" A 0.438 0.869 383.022 383.012 0.412 0.817 368.455 368.429 -14.583 otherwise diluted 0.2:24.2 14.5867 16.0362 15.7245 1.1378 30.7946 0.3117 14.4467 15.8938 0.1693 4863.1198 -185.1607 8 S-6 11'8"-12'2"B 0.459 0.910 401.386 401.372 0.423 0.839 378.293 378.268 -23.104 14.6083 16.1643 15.8724 1.2641 31.1969 0.2919 14.7407 16.0434 0.1710 4680.4096 -269.4125 9 S-6 14'4"-14'8" A 0.100 0.198 23.994 23.990 0.244 0.484 218.211 218.205 194.215 14.6189 15.8287 15.7568 1.1379 30.8455 0.0719 14.9449 15.9546 0.1978 315.0815 2550.7748 10 S-6 14'4"-14 , 8"B 0.129 0.256 30.952 30.947 0.191 0.379 170.813 170.805 139.858 14.6048 15.7102 15.6103 1.0055 30.7299 0.0999 14.9198 15.7516 0.1413 459.1979 2075.2347 11 S-6 16'10"-17'2" A 0.155 0.307 37.190 37.189 0.233 0.462 208.374 208.372 171.182 14.5969 16.0073 15.9717 1.3748 31.0623 0.0356 15.0194 16.0832 0.1115 406.2853 1870.1307 12 S-6 16'10"-17'2" B 0.148 0.293 35.511 35.505 0.233 0.462 208.374 • 208.356 172.851 14.6362 16.2405 16.0272 1.3910 31.2633 0.2133 14.8095 16.1713 0.1441 378.0144 1840.2831 13 S-8 S-8 3'10"-4'2" A 0.103 0.204 24.713 24.707 0.176 0.349 157.398 157.372 132.665 14.6000 15.9632 15.7003 1.1003 30.9875 0.2629 14.7614 15.9857 0.2854 331.4656 1779.8069 14 S-8 3'10"-4'2"B 0.105 0.208 25.193 25.189 0.195 0.387 174.390 174.338 149.150 14.6096 15.9723 15.7892 1.1796 30.9840 0.1831 14.8286 16.0425 0.2533 316.6465 1874.9395 15 S-8 6'4"-&a" A 0.132 0.262 31.672 31.666 0.218 0.432 194.959 194.943 163.277 14.5765 16.6175 •16.3665 1.7900 31.6721 0.2510 14.8036 16.5939 0.2274 261.8796 1350.3291 16 S-8 6'4"-6'8" B 0.127 0.252 30.472 30.465 0.215 0.426 192.276 192.252 161.787 14.5823 16.6332 16.3439 1.7616 31.6831 0.2893 14.7606 16.5267 0.1828 255.2686 1355.6311 17 S-8 8'10"-9'2" A 0.133 0.264 31.912 . 31.910 0.200 0.397 178.862 178.857 146.947 14.7077 15.9798 15.9022 1.1945 31.0166 0.0776 14.9592 16.0530 0.1508 399.6177 1840.2752 18 S-8 8'10"-9'2"B 0.118 0.234 28.313 28.311 0.179 0.355 160.081 160.076 131.765 14.5953 15.7791 15.7151 1.1198 30.7925 0.0640 14.9494 15.8425 0.1274 377.9532 1759.0711 19 S-8 11'4"-1V8" A 0.393 0.779 94.295 94.293 0.206 . 0.408 184.228 184.221 89.928 14.6067 15.7965 15.7203 1.1136 30.7925 0.0762 14.9198 15.8124 0.0921 1263.3225 1204.8392 20 S-8 11'4' ,-11 ,8" B 0.378 0.750 90.696 90.694 0.208 0.412' 186.016 186.009 95.315 14.6654 15.8249 15.7540 1.0886 30.8264 0.0709 14.9306 15.8316 0.0776 1243.9099 1307.2830 21 S-8 13'10"-14'2" A 0.086 0.171 20.635 20.630 0.254 0.504 227.154 227.143 206.513 14.6147 15.9526 15.8160 1.2013 31.0060 0.1366 14.9168 16.1507 0.3347 256.1695 2564.3156 22 S-8 13'10"-14'2' B 0.085 0.169 20.395 20.392 0.254 0.504 227.154 227.146 206.754 14.5907 15.8525 15.7458 1.1551 30.8452 0.1067 14.8860 16.0533 0.3075 262.7960 2664.4736 23 S-8 16'4"-16'8" A 0.087 0.173 20.874 20.871 0.237 0.470 211.951 211.941 191.069 14.7446 16.2210 16.0936 1.3490 31.2648 0.1274 14.9164 16.2960 0.2024 230.7830 2112.7243 24 S-8 16'4"-16'8" B 0.067 0.133 16.076 16.073 0.180 0.357 160.976 160.968 144.895 14.6751 15.8704 15.7570 1.0819 30.9167 0.1134 14.9329 15.9882 0.2312 221.8474 1999.9108 May 20,22,19/05 25 S-10 S-10 4'8"-5' A 0.107 0.212 25.673 25.664 0.218 0.432 194.959 194.923 169.259 14.5857 16.2172 15.8559 1.2702 31.2500 0.3613 14.6715 16.1579 0.3020 296.4388 1955.0315 26 S-10 4 '8" -5 'B 0.092 0.182 22.074 22.065 0.210 0.416 187.805 187.773 165.708 14.6856 16.2885 15.9081 1.2225 31.3313 0.3804 14.6624 16.2347 0.3266 264.6426 1987.4695 27 S-10 7'2"-7'6" A 0.084 0.167 20.155 20.151 0.211 • 0.418 188.699 188.688 168.537 14.6496 16.1619 16.0300 1.3804 31.1935 0.1319 14.8997 16.1153 0.0853 217.5102 1819.1444 28 S-10 7'2"-7'6"B 0.096 0.190 23.034 23.023 0.198 0.393 177.073 177.040 154.017 14.6295 16.0570 15.8369 1.2074 31.0984 0.2201 14.8213 15.9465 0.1096 282.6208 1890.6166 29 S-10 9'8"-10' A 0.293 0.581 256.222 256.214 0.347 0.688 310.325 310.294 54.081 14.6019 16.4800 16.1079 1.5060 31.5159 0.3721 14.6638 16.3105 0.2026 2494.7301 526.5802 30 S-10 9'8"-10 , B 0.270 0.535 236.109 236.100 0.332 0.658 296.911 296.886 60.786 14.6074 16.2182 15.9282 1.3208 31.2481 0.2900 14.7399 16.1576 0.2294 2634.8375 678.3642 31 S-10 11'6"-12'A 0.249 0.494 217.745 217.732 0.298 0.591 266.504 266.481 48.749 14.6438 16.1899 15.9133 1.2695 31.2187 0.2766 14.7522 16.2226 0.3093 2530.1521 566.4860 32 S-10 11'6"-12' B 0.203 0.403 177.519 177.515 0.295 0.585 263.821 263.810 86.295 14.5919 15.8951 15.7606 1.1687 30.9351 0.1345 14.9055 15.9377 0.1771 2264.0117 1100.5981 33 S-10 13'10"-14'2"A 0.163 0.323 39.110 39.106 0.239 0.474 213.740 213.729 174.623 14.6212 15.9056 15.7986 1.1774 30.9329 0.1070 14.9203 15.9965 0.1979 495.5638 2212.8643 34 S-10 13'10"-14'2" B 0.183 0.363 43.908 43.904 0.275 0.545 245.935 245.897 201.994 14.5919 16.0150 15.9160 1.3241 31.0699 0.0990 14.9559 16.3070 ' 0.3910 495.8981 2281.5458 35 S-10 16'4"-16 ,8" A 0.331 0.656 79.419 79.416 0.270 0.535 241.463 241.454 162.038 14.6704 15.7987 15.7086 1.0382 30.8352 0.0901 14.9464 16.1139 0.4053 1143.3106 2332.7773 36 S-10 16'4"-16'8" B 0.371 0.736 89.016 89.012 0.274 0.543 245.041 245.032 156.020 14.6018 15.7179 15.6333 1.0315 30.5078 0.0846 14.7053 16.0496 0.4163 1268.9803 2224.2530 37 S-34 S-34 4'-5' A 0.005 0.010 1.200 1.190 0.233 0.462 208.374 208.348 207.158 14.5911 16.2677 15.9570 1.3659 31.3312 0.3107 14.7528 16.3102 0.3532 12.8506 2237.4749 38 S-34 4'-5' B 0.006 0.012 1.440 1.432 0.235 0.466 210.163 210.138 208.706 14.5393 16.1577 15.9058 1.3665 31.2163 0.2519 14.8067 16.3375 0.4317 15.5120 2261.4315 39 S-34 6'4"-6'8" A 0.252 0.500 220.369 220.356 0.361 0.716 322.846 322.818 102.463 14.5961 16.0201 15.7529 1.1568 30.8104 0.2672 14.5231 16.0153 0.2624 2766.4676 1286.3718 40 S-34 6'4"-6'8" B 0.285 0.565 249.227 249.221 0.305 0.605 272.764 272.751 23.529 Set 41-74 diluted 0.1:24.1 for Fe(l i ; 14.6544 16.1449 15.9827 1.3283 31.2160 0.1622 14.9089 16.2618 0.2791 2797.2734 264.0939 41 S-34 9'8"-10' A 0.619 1.227 295.814 295.810 0.339 0.672 303.171 303.158 7.348 14.6044 15.8645 15.7354 1.1310 30.9175 0.1291 • 14.9239 15.9671 0.2317 3903.3043 96.9590 42 S-34 9'8"-10' B 0.413 0.819 361.160 361.153 0.425 0.843 380.081 380.063 18.911 14.6553 16.2961 16.1424 1.4871 31.0430 0.1537 14.5932 16.2804 0.1380 3544.0596 185.5729 43 S-34 11'4"-11'8"A 0.384 0.761 335.800 335.797 0.353 0.700 315.691 315.683 -20.114 14.6001 15.9159 15.8164 1.2163 30.9751 0.0995 14.9597 15.9228 0.1064 4130.0844 -247.3909 44 S-34 11 ,4 , ,-11'8" B 0.668 1.325 319.231 319.229 0.343 0.680 306.748 306.744 -12.484 14.5802 15.8445 15.8146 1.2344 30.9037 0.0299 15.0293 15.9157 0.1011 3886.7337 -152.0002 45 S-34 13'10"-14'2" A 0.113 0.224 54.002 53.995 0.231 0.458 206.585 206.571 152.576 14.5319 16.0774 15.9338 1.4019 31.1398 0.1436 14.9188 16.0971 0.1633 574.6034 1623.6936 46 S-34 13'10"-14'2" B 0.102 0.202 48.745 48.742 0.196 0.389 175.285 175.277 126.535 14.6199 15.8417 15.7670 1.1471 30.6331 0.0747 14.7167 15.8559 0.0889 625.3394 1623.3736 47 S-34 16'4"-16'8"A 0.064 0.127 30.585 30.582 0.215 0.426 192.276 192.268 161.686 14.6143 16.0078 15.9233 1.3090 31.0750 0.0845 14.9827 16.1237 0.2004 350.0421 1850.6409 48 S-34 16'4"-16'8" B 0.064 0.127 30.585 30.580 0.216 0.428 193.171 193.158 162.578 14.7000 16.0878 15.9786 1.2786 31.1529 0.1092 14.9559 16.0851 0.1065 357.6941 1901.6931 49 S-35 S-35 4'8 , ,-5' A 0.053 0.105 25.328 25.313 0.185 0.367 165.447 165.400 140.087 14.7058 16.2361 15.9201 1.2143 31.2801 0.3160 14.7280 16.2755 0.3554 307.0170 1699.0853 50 S-35 4'8"-5' B 0.052 0.103 24.850 24.835 0.177 0.351 158.293 158.257 133.421. 14.5898 16.0087 15.6998 1.1100 31.0434 0.3089 14.7258 16.0947 0.3949 329.4798 1770.0312 51 S-35 7'2"-7'6" A 0:110 0.218 52.568 52.527 0.222 0.440 198.537 198.501 145.974 14.6521 16.3791 15.9492 1.2971 31.4432 0.4299 14.6342 16.3526 0.4034 592.6206 1646.9156 52 S-35 7'2"-7'6" B 0.115 0.228 54.957 54.934 0.227 0.450 203.008 202.960 148.026 14.5880 16.3802 15.9022 1.3142 31.3789 0.4780 14.5207 16.3513 0.4491 606.9748 1635.5502 53 S-35 9'8"-10' A 0.354 0.702 309.566 309.556 0.391 0.775 349.675 349.659 40.102 14.6048 16.2678 16.0744 1.4696 31.3259 0.1934 14.8647 16.3078 0.2334 3131.0999 405.6261 54 S-35 9 '8"-10'B 0.342 0.678 299.072 299.059 0.343 0.680 306.748 306.725 7.666 14.6092 16.2117 15.9302 1.3210 31.2445 0.2815 14.7513 16.1666 0.2364 3339.5168 85.6052 55 S-35 12'2"-12'6" A 0.587 1.164 280.522 280.511 0.334 0.662 298.699 298.681 18.170 14.6781 16.2995 16.0830 1.4049 31.3236 0.2165 14.8076 16.3690 0.2860 2956.5783 191.5117 56 S-35 12'2"-12'6" B 0.562 1.114 268.574 268.562 0.333 0.660 297.805 297.784 29.222 14.6270 16.2022 15.9532 1.3262 31.2529 0.2490 14.8017 16.2420 0.2888 2997.4207 326.1448 57 S-35 I W - I S ' A 0.023 0.046 10.991 10.988 0.222 0.440 198.537 198.523 187.535 14.7042 16.0965 15.9578 1.2536 31.1245 0.1387 14.8893 16.1424 0.1846 130.5085 2227.3926 58 S-35 14 ,8"-15' 8 0.028 0.056 13.381 13.378 0.199 0.395 177.967 177.956 164.578 14.5912 15.8166 15.6781 1.0869 30.8780 0.1385 14.9229 15.8976 0.2195 183.6713 2259.6256 59 S-36 S-36 4'8"-5' A 0.057 0.113 27.240 27.229 0.205 0.407 183.333 183.298 156.068 14.6217 16.4246 16.0058 1.3841 31.2099 0.4188 14.3665 16.3740 0.3682 282.6327 1619.9393 216 Table 7.7 0.5N HCl Iron Extraction Data / ;/ III IV V VI Vll VIII IX X XI Xll XIII XIV XV XVI XVII XVIII XIX XX XXI XXII XXIII XXIV XXV Date Set # Core ID Sample ID Fe(ll) Fe(ll) Fe(ll) Fe(ll) Tot. Fe Tot. Fe Tot. Fe Tot. Fe Fe (III) Comments Mass of Mass of Original Original Mass of Amnt Amnt extr Mass of tube Amnt Fe (II) Fe (III) abs. diluted sample sample abs. diluted sample sample cone. Cent. tube + Mass of Mass of tube after Residual added after extr Residual sample sample cone. cone. cone. cone. cone. cone. (mg/L) Tube sample tube + sample extr added Dl (mL) (XIX- removed (g) Extractant cone. cone. (mg/L) (mg/L) corr. for (mg/L) (mg/L) corr. for (XII-VIII) Empty (g) (9) sample (g) (9) Extractant XVI-XX) (mL) (XXII- (mg/kg) (mg/kg) resid. resid. (9) (mL) XVII) (VIII x XXI (XIII x XXI (mg/L) (mg/L) x 1/XVIII) x 1/XVIII) 60 S-36 4'8"-5' B 0.052 0.103 24.850 24.838 0.190 0.377 169.919 169.886 145.048 14.5965 16.2268 15.8344 1.2379 31.2706 0.3924 14.6514 16.1920 0.3576 293.9721 1716.7471 61 S-36 7'2"-7'6" A 0.054 0.107 25.806 25.804 0.146 0.290 130.569 130.563 104.759 14.5937 15.8802 15.78.10 1.1873 30.9351 0.0992 14.9557 15.9157 0.1347 325.0333 1319.5838 62 S-36 7'2"-7'6" B 0.073 0.145 34.886 34.879 0.175 0.347 156.504 156.492 121.614 14.5932 16.0844 15.9680 1.3748 31.1306 0.1164 14.9298 16.0461 0.0781 378.7677 1320.6804 63 S-36 9'8"-10' A 0.214 0.424 102.268 102.264 0.238 0.472 212.846 212.832 110.568 14.6328 15.9710 15.7660 1.1332 31.0509 0.2050 14.8749 15.9614 0.1954 1342.3581 1451.3711 64 S-36 9'8"-10' B 0.272 0.539 129.986 129.982 0.276 0.547 246.829 246.817 116.835 • 14.5439 16.1295 15.9384 1.3945 31.1778 0.1911 14.8572 16.1851 0.2467 1384.8414 1244.7773 65 S-36 12'2"-12'6"A 0.053 0.105 25.328 25.326 0.269 0.533 240.569 240.560 215.234 14.6136 15.9646 15.8539 1.2403 31.0224 0.1107 14.9471 16.1018 0.2479 305.2027 2593.8324 66 S-36 12'2"-12'6" B 0.053 0.105 25.328 25.321 0.297 0.589 265.610 265.602 240.281 14.6292 16.1439 16.0551 1.4259 31.1712 0.0888 14.9385 16.1195 0.0644 265.2774 2517.3168 67 S-36 14'8"-15' A 0.025 0.050 11.947 11.942 0.215 0.426 192.276 192.257 180.315 14.5951 16.2623 16.0294 1.4343 31.3084 0.2329 14.8132 16.2555 0.2261 123.3311 1862.2665 68 S-36 14'8"-15' B 0.023 0.046 10.991 10.987 0.206 0.408 184.228 184.216 173.228 14.6063 16.1269 15.9453 1.3390 31.1670 0.1816 14.8585 16.0890 0.1437 121.9206 1922.2669 69 S-36 17'2"-17'6" A 0.123 0.244 58.780 58.775 0.250 0.496 223.577 223.563 164.788 14.6060 16.2386 16.0656 1.4596 31.2884 0.1730 14.8768 16.2519 0.1863 599.0569 1679.5812 70 S-36 17'2"-17'6" B 0.105 0.208 50.178 50.176 0.219 0.434 195.854 195.846 145.670 14.6456 15.7641 15.6690 1.0234 30.8407 0.0951 14.9815 15.8699 0.2009 734.5265 2132.4498 71 FeS A 0.020 0.040 9.558 9.542 0.012 0.024 10.732 10.676 1.134 14.5919 16.6863 16.0122 1.4203 31.7139 0.6741 14.3535 16.6328 0.6206 96.4262 11.4617 72 FeS B 0.022 0.044 10.514 10.506 0.013 0.026 11.626 11.584 1.078 14.5993 16.0086 15.6888 1.0895 31.0475 0.3198 14.7191 16.2605 0.5717 141.9338 14.5590 73 FeOOH A 0.005 0.010 2.389 2.364 0.004 0.008 3.577 3.515 1.151 14.7198 16.3952 15.8618 1.1420 31.4323 0.5334 14.5037 16.3894 0.5276 30.0224 14.6215 74 FeOOH B 0.012 0.024 5.735 5.714 0.009 0.018 8.049 7.962 2.248 14.6100 16.6973 16.0474 1.4374 31.7235 0.6499 14.3763 16.6587 0.6113 57.1484 22.4876 217 Table 7.8 5 N HCl Iron Extraction Data 1 // /;/ IV V VI Vll VIII IX X XI Xll XIII XIV XV XVI XVII XVIII XIX XX XXI XXII XXIII . XXIV XXV XXVI XXVII XXVIII Date Set # Core ID Sample ID Fe (11) Fe (11) Fe(ll) Fe(ll) Tot. Fe Tot. Fe Tot. Fe Tot. Fe Fe (III) Comments Mass of Mass of Original Original Mass of tube Amnt Amnt extr Mass of Amnt Fe (II) sample Fe (III) Moisture Fe (II) Fe (III) abs. diluted sample sample abs. diluted sample sample cone. Cent. Tube tube + Mass of Mass of after extr Residual added (mL) tube after Residual cone, (mg/kg) sample cone. cone, by cone, by cone. cone. cone. cone. cone. cone. (mg/L) Empty (g) sample (g) tube + sample added (g) 0.5N (XIX-XVI-XX) extr Extractant (VIII x XXI x (mg/kg) (XIII x dry weight dry weight (mg/L) (mg/L) corr. for resid. (mg/L) (mg/L) (mg/L) corr. for resid. (mg/L) (XII-VIII) sample (9) (9) Extractant (mL) removed (9) (mL) (XXII- XVII) 1/XVIII) XXI x 1/XVIII) (mg/kg) (mg/kg) 1 S-6 S -6 4 '8"-5 ' A 0.008 0.016 19.052 18.793 0.240 0.476 595.360 595.334 576.541 blank = 0.004, zeroed for Fe(tot) 14.6020 16.3044 16.0269 1.4249 32.4857 0.2775 15.9038 16.3571 0.3302 190.8764 5855.8281 0.0948 210.8677 6469 .1333 2 S -6 4'8"-5' B 0.016 0.032 38.104 37.818 0.228 0.452 565.592 565.565 527.746 14.6018 16.2946 16.0024 1.4006 32.4759 0.2922 15.8891 16.3150 0.3126 390 .4173 5448.1860 0 .0948 431.3073 6018 .7973 3 S -6 7'2"-7'6" A 0.020 0.040 47.630 47.407 0.216 0.428 535.824 535.809 488.402 14.6005 16.1832 . 16.0211 1.4206 32.3693 0.1621 16.0240 16.2286 0 .2075 486 .6113 5013.2336 0.1679 584.7717 6024 .5155 4 S -6 7'2"-7'6" B 0.033 0.065 78.590 78.346 0.291 0.577 721.874 721.861 643.515 14.7239 16.7174 16.5755 1.8516 32.8946 0.1419 16.0353 16.7603 0 .1848 617 .4305 5071.4227 0.1679 741.9801 6094 .4427 5 S -6 9*8"-10' A 0.028 0.056 66.683 61.449 0.170 0.337 421.713 421.682 360.233 14.5334 16.4614 16.1214 1.5880 32.6512 0.3400 15.8498 16.6365 0.5151 558.1184 3271.8882 0.1988 696.5804 4083 .6016 6 S -6 9'8"-10' B 0.020 0.040 47 .630 46.557 0.157 0.311 389.465 389.458 342.901 14.7184 16.2854 16.2142 1.4958 32.4689 0.0712 16.1123 16.3659 0 .1517 456 .3628 3361 .1987 0 .1988 569.5805 4195 .0690 7 S-6 i r 8 " - 1 2 , 2 " A 0.032 0.063 76.209 72.202 0.153 0.303 379.542 379.529 307.327 14.5867 15.8938 15.7245 1.1378 32.0797 0.1693 16.0166 15.9756 0.2511 924.9044 3936.8231 0.2051 1163.5970 4952 .8098 8 S -6 11 '8 " -12 '2 "B 0.038 0.075 90.498 86.261 0.167 0.331 414.271 414.258 327.997 14.6083 16.0434 15.8724 1.2641 32.2432 0.1710 16.0288 16.0570 0.1846 995 .3470 3784 .6977 0.2051 1252.2190 4761 .4250 9 S-6 14'4"-14'8" A 0.017 0.034 40.486 40.192 0.198 0.393 491.172 491.157 450.964 14.6189 15.9546 15.7568 1.1379 32.1339 0.1978 15.9815 15.9008 0 .1440 513.6B84 5763.6402 0.2066 647.4643 7264 .6216 10 S - 6 14 '4 " -14 '8 "B 0.013 0.026 30.960 30.690 0.161 0.319 399.387 399.376 368.687 14.6048 15.7516 15.6103 1.0055 31.9425 0.1413 16.0496 15.8053 0 .1950 445.7744 5355.2660 0.2066 561.8641 6749 .8976 11 S -6 16'10"-17'2" A 0.025 0.050 59.538 59.282 0.229 0.454 568.073 568.066 508.784 14.5969 16.0832 15.9717 1.3748 32.2567 0.1115 16.0620 16.1661 0.1944 630 .2622 5409 .2247 0 .2389 828.0447 7106 .6920 12 S-6 16 '10 " -17 , 2"B 0.022 0.044 52.393 52.077 0.244 0.484 605.283 605.271 553.195 14.6362 16.1713 16.0272 1.3910 32.3382 0.1441 16.0228 16.2362 0 .2090 545 .8808 5798.6988 0.2389 717.1835 7618 .3870 13 S-8 S-8 3'10"-4'2" A 0.018 0.036 42.867 42.432 0.174 0.345 431.636 431.609 389.178 14.6000. 15.9857 15.7003 1.1003 32.1689 0.2854 15.8978 15.9400 0 .2397 557.8992 5117.0019 0.1305 641.6360 5885 .0286 14 S - 8 3'10"-4'2" B 0.021 0.042 50.012 49.617 0.193 0.383 478.769 478.702 429.085 14.6096 16.0425 15.7892 1.1796 32.2135 0.2533 15.9177 16.0070 0.2178 609.2841 5269.0226 0.1305 700.7334 6059 .8665 15 S-8 6'4"-6'8" A 0.025 0.050 59.538 59.093 0.200 0.397 496.133 496.119 437.026 14.5765 16.5939 16.3665 1.7900 32.7725 0.2274 15.9512 16.6259 0.2594 479 .1995 3543.9647 0.1030 534.2092 3950 .7942 16 S-8 6f4"-ff8r B 0.019 0.038 45 .249 44.905 0.191 0.379 473.807 473.793 428.888 14.5823 16.5267 16.3439 1.7616 32.7098 0.1828 16.0003 16.5531 0.2092 371 .1535 3544.9214 0.1030 413.7601 3951 .8606 17 S - 8 8'10"-9'2" A 0.003 0.006 7.145 6.847 0.176 0.349 436.597 436.588 429.741 14.7077 16.0530 15.9022 1.1945 32.2345 0.1508 16.0307 16.0129 0 .1107 83 .6216 5248.2474 0.1874 102.9008 6458 .2463 18 S - 8 8 ' 10 " -9 ' 2 "B 0.003 0.006 7.145 6.922 0.154 0.305 382.023 382.013 375.091 Fe(ll) dilution may be off 14.5953 15.8425 15.7151 1.1198 32.0191 0.1274 16.0492 15.8196 0 .1045 90 .2733 4892 .0533 0.1874 111.0861 6019 .9306 19 S - 8 1 r4 " -11 '8 " A 0.004 0.008 9.526 8.989 0.148 0.293 367.139 367.131 358.143 14.6067 15.8124 15.7203 1.1136 31.9807 0.0921 16.0762 15.8942 0 .1739 118.0875 4704 .9119 0.1966 146.9927 5856.5691 20 S - 8 I I W I S ' B 0.003 0.006 7.145 6.709 0.152 0.301 377.061 377.054 370.345 14.6654 15.8316 15.7540 1.0886 32.0039 0.0776 16.0947 15.9812 0.2272 90 .2688 4982 .6697 0.1966 112.3645 6202 .3158 21 S-8 13'10"-14'2 H A 0.022 0.044 52.393 51.967 ' 0.282 0.559 699.548 699.522 647.555 14.6147 16.1507 15.8160 1.2013 32.3368 0.3347 15.8514 16.0370 0 .2210 623 .9976 7775.6091 0.2013 781.2690 9735 .3614 22 S-8 13 '10 " -14 '2 "B 0.015 0.030 35.723 35.336 0.253 0.502 627.609 627.585 592.249 14.5907 16.0533 15.7458 1.1551 32.2483 0.3075 15.8875 16.0226 0 .2768 442 .2717 7412.7940 0.2013 553.7412 9281 .1029 23 S - 8 16'4"-16'8" A 0.010 0.020 23.815 23.553 0.249 0.494 617.686 617.670 594.117 14.7446 16.2960 16.0936 1.3490 32.4395 0.2024 15.9411 16.3646 0 .2710 253.2811 6388 .8036 0.1914 313.2241 7900 .8173 24 S - 8 16'4"-16'8" B 0.003 0.006 7.145 6.915 0.203 0.403 503.575 503.561 496.646 14.6751 15.9882 15.7570 1.0819 32.1576 0.2312 15.9382 15.9460 0 .1890 92.6972 6657 .9529 0.1914 114.6355 8233.6651 25 S-10 S-10 4 , 8"-5 ' A 0.004 0.008 9.526 9.047 0.178 0:353 441.559 441.531 432.484 14.5857 16.1579 15.8559 1.2702 32.3371 0.3020 15.8772 16.2600 0.4041 102.9061 4919 .4097 0.1101 115.6342 5527 .8737 26 S -10 4'8"-5" B 0.002 0.004 4.763 4 .318 0.171 0.339 424.194 424.169 419.851 14.6856 16.2347 15.9081 1.2225 32.4265 0.3266 15.8652 16.3868 0 .4787 50.9917 4958 .3047 0.1101 57.2986 5571 .5795 27 S -10 7'2"-7'6" A 0.001 0.002 2.382 2.275 0.154 0.305 382.023 382.016 379.741 14.6496 16.1153 16.0300 1.3804 32.2948 0.0853 16.0942 16.2293 0 .1993 24 .1400 4028 .9609 0 .1850 29.6211 4943 .7635 28 S -10 7'2"-7'6" B 0.003 0.006 7.145 6.989 0.134 0.266 332.409 332.394 325.405 Sets 28-40, new F Z for Fe(tot) 14.6295 15.9465 15.8369 1.2074 32.1326 0.1096 16.0765 16.0132 0 .1763 84.6781 3942.8165 0 .1850 103.9049 4838 .0595 29 S -10 9'8"-10' A 0.017 0.034 40.486 37.276 0.148 0.293 367.139 367.123 329.847 14.6019 16.3105 16.1079 1.5060 32.4807 0.2026 15.9676 16.4152 0 .3073 359.6501 3182.5053 0 .1680 432.2757 3825 .1613 30 S -10 9'8"-10' B 0.011 0.022 26.197 22.850 0.162 0.321 401.868 401.850 379.000 14.6074 16.1576 15.9282 1.3208 32.3404 0.2294 15.9534 16.2771 0 .3489 251.1531 4165.7899 0 .1680 301.8695 5007 .0046 31 S -10 11'6"-12' A 0.019 0.038 45.249 41.086 0.243 0.482 602.802 602.778 561.692 14.6438 16.2226 15.9133 1.2695 32.3999 0.3093 15.8680 16.2843 0 .3710 467 .3278 6388.9481 0.1912 577.8380 7899.7601 32 S - 1 0 11'6"-12' B 0.015 0.030 35.723 33.779 0.249 0.494 617.686 617.672 583.893 14.5919 15.9377 15.7606 1.1687 32.1147 0.1771 15.9999 15.9484 0 .1878 420.8304 7274.2593 0.1912 520.3453 8994 .4232 33 S - 1 0 13 '10 " -14 '2 "A 0.012 0.024 28.578 28.100 0.248 0.492 615.205 615.187 587.087 14.6212 15 .9965. 15.7986 1.1774 32.1725 0.1979 15.9781 16.0372 0.2386 347.0124 7250.1178 0 .2019 434.8083 9084 .4340 34 S -10 13'10"-14'2" B 0.015 0.030 35.723 34.661 0.265 0.525 657.377 657.238 622.576 14.5919 16.3070 15.9160 1.3241 32.4829 0.3910 15.7849 16.3544 0.4384 376.0184 6753 .9053 0 .2019 471.1529 8462 .6772 35 S - 1 0 16'4"-16'8" A 0.014 0.028 33.341 31.352 0.275 0.545 682.183 682.146 650.793 14.6704 16.1139 15.7086 1.0382 32.2967 0.4053 15.7775 16.1023 0 .3937 433.5774 8999.9841 0.2499 578.0018 11997.8723 36 S -10 16'4"-16"8" B 0.014 0.028 33.341 31.051 0.266 0.527 659.857 659.819 628.768 14.6018 16.0496 15.6333 1.0315 32.2298 0.4163 15.7639 16.0566 0 .4233 431.8281 8744.3202 0 .2499 575.6697 11657.0468 37 S-34 S-34 4' -5 ' A 0.000 0.000 0.000 0.000 0.268 0.531 664.819 664.791 664.791 14.5911 16.3102 15.9570 1.3659 32.4917 0.3532 15.8283 16.3680 0 .4110 0 .0000 7010.3884 0.1569 0.0000 8315 .3038 38 S -34 4'-5' B 0.000 0.000 0.000 . 0.000 0.270 0.535 669.780 669.740 669.740 14.5393 16.3375 15.9058 1.3665 32.5326 0.4317 15.7634 16.4097 0.5039 0 .0000 7030.5264 0.1569 0.0000 8339 .1903 39 S-34 6'4"-6'8" A 0.000 0.000 0.000 0.000 0.077 0.153 191.011 190.987 190.987 14.5961 16.0153 15.7529 1.1568 32.1810 0.2624 15.9033 16.0243 0.2714 0.0000 2389.3188 0.1662 0.0000 2865 .7426 40 S -34 6'4"-6'8" B 0.000 0.000 0.000 0.000 0.088 0.174 218.299 218.277 218.277 14.6544 16.2618 15.9827 1.3283 32.4404 0.2791 15.8995 16.2364 0 .2537 0 .0000 2377.5892 0.1662 0.0000 2851 .6742 41 S-34 9'8"-10' A 0.000 0.000 0.000 0.000 0.088 0.174 218.299 218.277 218.277 14.6044 15.9671 15.7354 1.1310 32.1578 0.2317 15.9590 16.0961 0 .3607 0 .0000 2802.8044 0.1881 0.0000 3452 .1519 42 S -34 9 ' 8 " - 1 0 ' B 0.000 0.000 0.000 0.000 0.116 0.230 287.757 287.742 287.742 14.6553 16.2804 16.1424 1.4871 32.4572 0.1380 16.0388 16.3706 0 .2282 0 .0000 2824.0794 0.1881 0.0000 3478 .3558 43 S -34 11'4"-11*8" A 0.003 0.006 7.145 4.936 0.098 0.194 243.105 243.097 238.161 14.6001 15.9228 15.8164 1.2163 32.1038 0.1064 16.0746 16.0700 0.2536 59.3686 2864.2492 0.1941 73.6664 3554 .0473 44 S -34 I I V - l l ' f T B 0.011 0.022 26.197 24.202 0.097 0.192 240.625 240.614 216.412 14.5802 15.9157 15.8146 1.2344 32.0972 0.1011 16.0804 16.0371 0 .2225 286 .9043 2565 .4448 0.1941 355.9996 3183 .2817 45 S-34 lyiO'-IW A 0.054 0.107 128.602 128.057 0.185 0.367 458.923 458.908 330.851 14.5319 16.0971 15.9338 1.4019 32.2810 0.1633 16.0206 16.1984 0.2646 1331.7015 3440.6111 0.1918 1647.7953 4257 .2773 46 S -34 13 , 10 " -14 ' 2 "B 0.055 0.109 130.984 130.716 0.145 0.288 359.697 359.688 228.973 14.6199 15.8559 15.7670 1.1471 32.0428 0.0889 16.0980 15.9703 0 .2033 1669.3224 2924 .1217 0.1918 2065.5541 3618 .1936 47 S -34 16'4"-16'8" A 0.083 0.165 197.666 197.287 0.193 0.383 478.769 478.750 281.463 14.6143 16.1237 15.9233 1.3090 32.2966 0.2004 15.9725 16.1931 0.2698 2190.6516 3125.3297 0.2128 2782.7986 3970.1261 48 S -34 -16 '4 " -16 ' 8 "B 0.072 0.143 171.469 171.268 0.194 0.385 481.249 481.238 309.970 14.7000 16.0851 15.9786 1.2786 32.2626 0.1065 16.0710 16.1281 0.1495 1958.9613 3545.4297 0.2128 2488.4810 4503 .7818 49 S-35 S - 3 5 4 '8"-5 ' A 0.065 0 129 154.799 154.242 0 157 0.311 389.465 389.415 235.173 14.7058 16 2755 15.9201 1.2143 32.4343 0.3554 15.8034 16.3646 0 .4445 1826.7016 2785.1866 0.0685 1961.0757 2990 .0679 50 S - 3 5 4 '8"-5 ' B 0.053 0 105 126.221 125.614 0 148 0.293 367.139 367.096 241.482 14.5898 16 0947 15.6998 1.1100 32.2736 0.3949 15.7840 16.1296 0 .4298 1625.4490 3124.7854 0.0685 1745.0188 3354 .6479 51 S - 3 5 7'2"-7'6" A 0.059 0 117 140.510 139.199 0 167 0.331 414.271 414.240 275.041 14.6521 16 3526 15.9492 1.2971 32.5336 0.4034 15.7776 16.3901 0 .4409 1540.7963 3044.4328 0.0786 1672.1640 3303 .9999 52 S - 3 5 7'2"-7'6" B 0.059 0 117 140.510 138.983 0 172 0.341 426.675 426.633 287.650 14.5880 16 3513 15.9022 1.3142 32.5221 0.4491 15.7217 16.3537 0 .4515 1513.0112 3131.4340 0.0786 1642.0099 3398 .4188 53 S - 3 5 9'8"-10' A 0.075 0 149 178.614 174.146 0 173 0.343 429.155 429.137 254.991 14.6048 16 3078 16.0744 1.4696 32.4809 0.2334 15.9397 16.3023 0 .2279 1718.8463 2516.7893 0 .1817 2100.4425 3075 .5346 54 S - 3 5 9'8"-10' B 0.065 0 129 154.799 150.429 0 150 0.297 372.100 372.082 221.653 14.6092 16 1666 15.9302 1.3210 32.3457 0.2364 15.9427 16.2725 0 .3423 1652.0820 2434.2979 0 .1817 2018.8561 2974 .7295 55 S - 3 5 12'2"-12'6" A 0.042 0 083 100.024 95.068 0 136 0.270 337.371 337.349 242.280 14.6781 16 3690 16.0830 1.4049 32.5594 0.2860 15.9044 16.3836 0.3006 979.3764 2495.9221 0.1762 1188.8880 3029 .8583 56 S - 3 5 12 '2 " -12 '6 "B 0.030 0 059 71.446 66.652 0 124 0.246 307.603 307.580 240.928 14.6270 16 2420 15.9532 1.3262 32.4242 0.2888 15.8934 16.1965 0 .2433 726.8836 2627.4614 0.1762 882.3811 3189 .5370 57 S - 3 5 14'8"-15' A 0.032 0 063 76.209 76.083 0 225 0.446 558.150 558.133 482.050 14.7042 16 1424 15.9578 1.2536 32.3288 0.1846 16.0018 16.1495 0 .1917 883 .7722 5599.4186 0.1888 1089.4274 6902.4124 58 S - 3 5 14'8"-15' B 0.024 0 048 57.156 56.975 0 189 0.375 468.846 468.829 411.854 14.5912 15 8976 15.6781 1.0869 32.0543 0.2195 15.9372 15.9632 0.2851 760.2311 5495.5026 0.1888 937.1381 6774 .3150 59 S-36 S-36 4 '8"-5 ' A 0.029 0 058 69.064 68.444 0 207 0.410 513.498 513.469 445.025 14.6217 16 3740 16.0058 1.3841 32.5567 0.3682 15.8145 16.4921 0 .4863 711.6501 4627 .1547 0.0899 781.9405 5084 .1837 60 S -36 4'8"-5• B 0.023 0 046 54.775 54.225 0 184 0.365 456.443 456.415 402.190 14.5965 16 1920 15.8344 1.2379 32.3611 0.3576 15.8115 16.2846 0.4502 630 .2766 4674.7648 0.0899 692.5297 5136 .4963 61 S -36 7'2"-7'6" A 0.017 0 034 40.486 40.271 0 0 9 9 0.196 245.586 245.578 205.307 14.5937 15 9157 15.7810 1.1873 32.1037 0.1347 16.0533 15.8828 0 .1018 495 .4943 2526.0856 0 .1862 608.8843 3104 .1607 62 S -36 7 '2" -76" B 0.018 0 036 42.867 42.699 0 118 0.234 292.719 292.711 250.012 14.5932 16 0461 15.9680 1.3748 32.2201 0.0781 16.0959 16.0896 0.1216 454.9186 2663.6604 0.1862 559.0232 3273 .2184 63 S -36 9 '8 U -10 ' A 0.023 0 046 54.775 53.540 0 199 0.395 493.653 493.641 440.101 14.6328 15 9614 15.7660 1.1332 32.1413 0.1954 15.9845 16.0117 0 .2457 687.2444 5649.1862 0.1895 847.9086 6969 .8555 64 S -36 9 , 8"-10 ' B 0.029 0 058 69.064 67.082 0 408 0.809 1012.112 1012.097 945.015 14.5439 16 1851 15.9384 1.3945 32.3604 0.2467 15.9286 16.1990 0.2606 697.2741 9822 .8883 0 .1895 860.2832 12119.2875 65 S -36 12'2"-12'6" A 0.037 0 073 88.116 87.728 0 262 0.520 649.935 649.915 562.187 14.6136 16 1018 15.8539 1.2403 32.2843 0.2479 15.9346 16.1185 0.2646 1025.6402 6572 .5937 0.2212 1316.8932 8439 .0259 66 S -36 12 '2 ' -12 '6" B 0.040 0 079 95.261 95.160 0 323 0.640 801.255 801.250 706.090 14.6292 16 1195 16.0551 1.4259 32.3036 0.0644 16.1197 16.0543 -0 .0008 978 .9569 7263.8940 0.2212 1256.9532 9326.6361 67 S -36 14'8"-15' A 0.031 0 061 73.827 73.660 0 263 0.522 652.415 652.398 578.738 14.5951 16 2555 16.0294 1.4343 32.4497 0.2261 15.9681 16.2337 0 .2043 746 .2563 5863.2210 0.1981 930.5572 7311 .2446 218 Table 7.8 5N HCl Iron Extraction Data II ;// IV V VI VII VIII IX X XI XII XIII XIV XV . XVI XVII XVIII XIX XX XXI XXII XXIII XXIV XXV XXVI XXVII XXVIII Set# Core ID Sample ID Fe(ll) Fe(ll) Fe(ll) Fe (II) Tot. Fe Tot. Fe Tot. Fe Tot. Fe Fe (III) Comments Mass of Mass of Original Original Mass of tube Amnt Amnt extr Mass of Amnt Fe (II) sample Fe (III) Moisture Fe(ll) Fe (III) abs. diluted sample sample abs. diluted sample sample cone. Cent. Tube tube + Mass of Mass of after extr Residual added (mL) tube after Residual cone, (mg/kg) sample cone. cone, by cone, by cone. cone. cone. cone. cone. cone. (mg/L) Empty (g) sample (g) tube + sample added (g) 0.5N (XIX-XVI-XX) extr Extractant (VIII x XXI x (mg/kg) (XIII x dry weight dry weight (mg/L) (mg/L) corr. for (mg/L) (mg/L) corr. for (XII-VIII) sample (g) Extractant removed (mL) (XXII- 1/XVIII) XXI x 1/XVIII) (mg/kg) (mg/kg) resid. resid. (g) (mL) (g) XVII) (mg/L) (mg/L) 68 S-36 14'8--15' B 0.029 0.058 69.064 68.966 0.245 0.486 607.763 607.754 538.788 14.6063 16.0890 15.9453 1.3390 32.2744 0.1437 16.0417 16.1600 0.2147 751.8811 5873.9337 0.1981 937.5711 7324.6030 69 S-36 17'2"-17'6" A 0 .038 0.075 90.498 89.821 0.284 0.563 704.509 704.495 614.674 14.6060 16.2519 16.0656 1.4596 32.4282 0.1863 15.9900 16.2227 0.1571 895.4322 6127.7481 0.2084 1131.1689 7740.9747 70 S-36 i r 2 - - 17 ' 6 " B 0.026 0.052 61.919 61.296 0.199 0.395 493 .653 493.637 432.341 14.6456 15.8699 15.6690 1.0234 32.0464 0.2009 15.9756 15.8872 0.2182 870.7380 6141.5690 0.2084 1099.9736 7758.4343 71 FeS A 0.000 0.000 0.000 0.000 0.007 0.014 17.365 17.317 17.317 14.5919 16.6328 16.0122 1.4203 32.8111 0.6206 15.5577 16.5280 0.5158 0.0000 172.6128 0 .0000 0.0000 172.6128 72 FeS B 0.000 0.000 0.000 0.000 0.008 0.016 19.845 19.775 19.775 14.5993 16.2605 15.6888 1.0895 32.4455 0.5717 15.6133 16.0536 0.3648 0.0000 257.8810 0 .0000 0.0000 257.8810 73 FeOOH A 0.000 0.000 0.000 0.000 0.005 0.010 12.403 12.346 12.346 14.7198 16.3894 15.8618 1.1420 32.5750 0.5276 15.6580 16.2355 0.3737 0.0000 154.0455 0 .0000 0.0000 154.0455 74 FeOOH B 0 .000 0.000 0.000 0.000 0.009 0.018 22.326 22.250 22.250 blank = 0.004, zeroed for Fe(tot) 14.6100 16.6587 16.0474 1.4374 32.8364 0.6113 15.5664 16.5324 0.4850 0.0000 219.2760 0 .0000 0.0000 219.2760 219 7.4 Appendix D: Aqueous Data A duplicate sample (unknown to the laboratory) was obtained at 03-P-06 and analyzed for B T E X and PHC F l . The results of the two analyses are compared in Table 7.9. Table 7.9. Results of Duplicates Analyses for Dissolved Petroleum Hydrocarbons Benzene (mg/L) Toluene (mg/L) Ethylbenzene (mg/L) Xylene-total (mg/L) PHC F l / B T E X (mg/L) 03-P-06 O.0004 O.0004 (0.0006) (0.0008) O . l Duplicate <0.0004 <0.0004 (0.0006) O.0012 O . l RPD (%) - - 0 - - Notes: < - indicates value is less than the method detection limit specified () - indicates result is less than twice the method detection limit and is subject to reduced levels of confidence The Relative Percent Difference (RPD) between duplicate samples can be obtained as follows: \X, — X-, I RPD= 1 2 1 xlOO I X ) Although all of the parameters analyzed for 03-P-06 and its duplicate were below method detection limits and therefore cannot be compared by RPD, the degree of precision can be qualitatively evaluated by the general reproducibility of the results shown. 220 Table 7.10 Piezometer Installation Details, Datum/Groundwater Surface Elevations And Hydraulic Conductivities Monitoring Ground Stick-Up Datum Depth Depth Interval Date Time Depth To Depth To Apparent Groundwater Hydraulic Lithology Station Elevation PVC Pipe Elevation of Piezo of Sand Water Below Product Condensate Surface Conductivity (top of PVC (below (below ground) Datum Below Datum Thickness Elevation casing) ground) (masl) (m) (masl) (m) (m) (d-m-y) (hh:mm) (m) (m) (m) (masl) (m/s) E03-IW1 729.45 0.72 730.17 2.75 1.70 - 2.75 07-JUI-2003 — 1.53 728.64 N/M Silt 21-Jul-2003 — 2.45 — — 727.73 23-Oct-2003 — 2.70 — — 727.47 27-Oct-2003 — 2.75 — — 727.43 19-NOV-2003 — 2.79 — — 727.39 10-Jan-2004 — 3.06 — — 727.11 03-Feb-2004 — 3.15 — — 727.03 18-Oct-2004 — 2.59 — — 727.58 E03-MW1 729.46 0.65 730.11 2.34 1.58-2.34 t o t o 07-Jul-2003 21-Jul-2003 27-Oct-2003 19-Nov-2003 10-Jan-2004 03-Feb-2004 18-Oct-2004 2.03 2.39 2.70 2.73 >2.99 >2.99 2.55 728.08 727.72 727.42 727.38 <727.12 <727.12 727.56 N/M Silt E03-MW2 729.52 0.60 730.12 2.36 1.60 - 2.36 07-Jul-2003 21-Jul-2003 27-Oct-2003 10-Jan-2004 03-Feb-2004 18-Oct-2004 2.02 2.39 2.68 >2.96 >2.96 2.56 728.10 727.73 727.44 <727.16 <727.16 727.57 N/M Silt E03-MW3 729.46 0.65 730.11 2.33 1.57-2.33 07-Jul-2003 — 2.10 — — 728.02 N/M Silt 21-JUI-2003 — 2.39 — — 727.72 27-Oct-2003 — 2.68 — — 727.43 10-Jan-2004 — >2.98 — — <727.13 03-Feb-2004 — >2.98 — — <727.13 18-Oct-2004 — 2.56 — — 727.55 E03-MW4 729.41 0.65 730.06 3.75 2.99-3.75 07-Jul-2003 — 2.07 — — 728.00 N/M Silt 21-JUI-2003 — 2.33 — — 727.73 27-Oct-2003 — 2.63 — — 727.44 10-Jan-2004 — 2.97 — — 727.10 03-Feb-2004 — 3.06 — — 727.00 18-Oct-2004 — 2.50 — — 727.57 Table 7.10 Piezometer Installation Details, Datum/Groundwater Surface Elevations And Hydraulic Conductivities Monitoring Ground Stick-Up Station Elevation PVC Pipe (masl) JJBL Datum Elevation (top of PVC casing) (masl) Depth of Piezo (below ground) Depth Interval of Sand (below ground) (ml Date Time Depth To Water Below Datum Depth To Product Below Datum Apparent Condensate Thickness (d-m-y) (hh:mm) (m) (m) (m) (masl) 07-JUI-2003 2.07 728.02 21-Jul-2003 ... 2.36 ... ... 727.72 27-OCI-2003 ... 2.65 ... ... 727.43 10-Jan-2004 ... >2.98 ... ... <727.10 03-Feb-2004 ... >2.98 ... ... <727.10 18-OCI-2004 ... 2.52 ... ... 727.56 07-Jul-2003 ... 2.09 ... ... 728.00 21-JUI-2003 ... 2.36 ... ... 727.72 27-Oct-2003 ... 2.61 ... ... 727.48 10-Jan-2004 ... >2.98 ... ... <727.10 03-Feb-2004 ... >2.98 ... — <727.10 18-Oct-2004 ... 2.51 ... ... 727.57 03-Oct-1996 ... 3.10 ... 727.27 24-NOV-1998 ... 3.18 ... ... 727.19 06-NOV-1999 ... 2.97 ... ... 727.40 15-Jun-2000 ... 3.05 ... ... 727.32 02-Nov-2000 14:28 3.26 ... ... 727.11 17-Jul-2002 16:20 2.98 ... ... 727.39 26-Aug-2002 15:50 2.90 ... ... 727.48 27-Aug-2002 10:35 2.89 ... ... 727.48 05-Jun-2003 11:30 2.85 ... ... 727.52 25-Jun-2003 ... 2.32 ... ... 728.05 25-Jun-2003 17:20 2.33 ... ... 728.04 21-Jul-2003 ... 2.76 ... ... 727.62 23-Oct-2003 ... 3.00 ... ... 727.37 27-Oct-2003 ... 3.04 ... ... 727.33 19-Nov-2003 ... 3.07 ... ... 727.30 03-Feb-2004 ... 3.40 ... ... 726.98 08-Jun-2004 14:45 2.86 ... ... 727.52 18-Aug-2004 ... 2.75 ... ... 727.62 18-Oct-2004 ... 2.88 ... ... 727.49 24-Nov-1998 ... 3.28 ... ... 727.33 02-Nov-2000 16:08 3.88 ... ... 726.73 Groundwater Hydraulic Lithology Surface Conductivity Elevation (m/s) E03-MW5 729.46 0.62 730.08 2.36 1.60 - 2.36 E03-MW6 729.48 0.60 730.08 2.38 1.62-2.38 93-P-34 729.48 0.89 730.37 5.20 2.00 - 5.20 93-P-35 729.71 0.90 730.61 5.30 2.20 - 5.30 N/M Silt N/M Silt N/M Silt N/M Silty sand Table 7.10 Piezometer Installation Details, Datum/Groundwater Surface Elevations And Hydraulic Conductivities Monitoring Station Ground Elevation (masl) Stick-Up PVC Pipe Datum Elevation (top of PVC casing) (masl) Depth of Piezo (below ground) Depth Interval of Sand (below ground) M Date Time Depth To Depth To Apparent Groundwati Water Below Product Condensate Surface Datum Below Datum Thickness Elevation (d-m-y) (hh:mm) (m) (m) (m) (masl) 23-May-2002 10:10 4.05 — — 726.56 17-Jul-2002 16:15 3.73 . . . . . . 726.95 27-Aug-2002 09:05 3.70 . . . . . . 726.98 27-Aug-2002 16:20 3.86 . . . . . . 726.82 05-Jun-2003 12:50 3.49 . . . . . . 727.19 25-Jun-2003 . . . 3.45 . . . . . . 727.23 25-Jun-2003 17:45 3.44 . . . . . . 727.17 21-Jul-2003 . . . 3.40 . . . . . . 727.28 23-Oct-2003 . . . 3.66 . . . . . . 726.95 27-Oct-2003 . . . 3.69 . . . . . . 726.93 19-Nov-2003 . . . 3.69 . . . . . . 726.92 03-Feb-2004 . . . 3.86 . . . . . . 726.75 09-Jun-2004 12:30 3.54 . . . . . . 727.07 18-Aug-2004 . . . 3.54 . . . . . . 727.08 18-Oct-2004 . . . 3.55 . . . . . . 727.07 03-Oct-1996 . . . 4.22 . . . . . . 725.40 24-Nov-1998 . . . 3.93 . . . . . . 725.69 16-Jun-2000 . . . 3.45 . . . . . . 726.17 02-Nov-2000 . . . Dry . . . . . . N/M 23-Oct-2001 . . . Dry . . . . . . N/M 23-May-2002 . . . Dry . . . . . . N/M 17-Jul-2002 15:25 3.57 . . . . . . 726.05 12-NOV-2002 13:55 3.37 . . . . . . 726.25 23-Jun-2003 12:45 2.97 . . . . . . 726.65 25-Jun-2003 . . . 2.97 . . . . . . 726.65 21-Jul-2003 . . . 3.22 . . . . . . 726.40 23-Oct-2003 . . . 3.76 . . . . . . 725.86 10-Jun-2004 10:24 3.15 . . . . . . 726.47 06-Oct-2004 13:20 3.35 . . . . . . 726.27 18-Oct-2004 . . . 3.34 . . . . . . 726.28 07-JUI-2003 . . . 2.37 . . . . . . 727.83 21-Jul-2003 . . . 2.57 . . . . . . 727.62 27-Oct-2003 . . . 2.86 . . . . . . 727.34 10-Jan-2004 . . . 3.14 . . . . . . 727.06 04-Feb-2004 — 3.22 — . . . 726.97 Hydraulic Conductivity (m/s) Lithology t o I O 93-P-36 728.78 0.85 729.62 N/M 34-MW1 729.47 0.72 730.19 4.61 1.52-4.61 N/M N/M Silt Piezometer Installation Details, Table 7.10 Datum/Groundwater Surface Elevations And Hydraulic Conductivities Monitoring Station Ground Elevation (masl) Stick-Up PVC Pipe JSSL Datum Elevation (top of PVC casing) (masl) Depth of Piezo (below ground) Depth Interval of Sand (below ground) (ml Date Time (d-m-y) (hh:mm) Depth To Water Below Datum (ml Depth To Product Below Datum (ml Apparent Condensate Thickness (ml Groundwater Surface Elevation (masl) Hydraulic Conductivity (m/s) Lithology 08-Jun-2004 18-Aug-2004 18-OCI-2004 14:24 2.68 2.56 2.71 727.51 727.63 727.49 34-MW2 729.50 0.74 730.24 4.64 1.52-4.64 4*. 34-DP1 729.52 0.57 730.09 2.00 1.24 - 2.00 07- JUI-2003 21-Jul-2003 27-Oct-2003 19-Nov-2003 03-Feb-2004 08- Jun-2004 18-Aug-2004 18- Oct-2004 07- Jul-2003 21-Jul-2003 27-Oct-2003 19- Nov-2003 03-Feb-2004 08- Jun-2004 18-Oct-2004 15:00 2.43 2.63 2.91 2.95 3.27 2.75 2.62 2.76 2.26 2.35 >2.57 >2.57 >2.57 >2.57 2.56 727.82 727.61 727.33 727.30 726.97 727.50 727.63 727.48 727.83 727.75 <727.52 <727.52 <727.52 <727.52 727.53 2.0E-6 Silt N/M Silt 34-DP2 729.51 0.62 730.13 3.00 2.24 - 3.00 07- Jul-2003 21-Jul-2003 27-Oct-2003 19-Nov-2003 03-Feb-2004 08- Jun-2004 18-Oct-2004 14:04 2.30 2.50 2.78 2.83 3.15 2.60 2.64 727.84 727.63 727.35 727.31 726.98 727.54 727.49 1.9E-6 Silt 34-DP3 729.46 0.58 730.04 4.00 3.24 - 4.00 07- Jul-2003 21-Jul-2003 27-Oct-2003 19-Nov-2003 03-Feb-2004 08- Jun-2004 18-Oct-2004 14:30 2.22 2.42 2.71 3.39 3.07 2.51 2.56 727.83 727.62 727.34 726.66 726.97 727.53 727.48 1.1 E-6 Silt Table 7.10 Piezometer Installation Details, Datum/Groundwater Surface Elevations And Hydraulic Conductivities Monitoring Station Ground Elevation (masl) Stick-Up PVC Pipe JmL Datum Elevation (top of PVC casing) (masl) Depth of Piezo (below ground) (m) Depth Interval of Sand (below ground) (ml Date Time (d-m-y) (hh:mm) Depth To Water Below Datum (ml Depth To Product Below Datum (ml Apparent Condensate Thickness (ml Groundwater Surface Elevation (masl) Hydraulic Conductivity (m/s) Lithology 34-ML1 729.45 0.72 730.17 1.86 1.45-2.08 07- JUI-2003 21-Jul-2003 27-OCI-2003 03-Feb-2004 08- Jun-2004 18-Oct-2004 2.56 2.38 >2.58 >2.58 2.44 2.46 727.62 727.80 <727.59 <727.59 727.73 727.72 N/M Silt 34-ML2 N/M N/M N/M N/M 07- Jul-2003 21-Jul-2003 08- Jun-2004 2.56 2.38 2.47 N/M N/M N/M N/M Silt to LA 34-ML3 N/M N/M N/M N/M 34-ML4 N/M N/M N/M N/M 07- Jul-2003 21-JUI-2003 08- Jun-2004 07- Jul-2003 21-Jul-2003 03-Feb-2004 08- Jun-2004 2.56 2.38 2.46 2.56 2.38 3.27 2.45 N/M N/M N/M N/M N/M N/M N/M N/M N/M Silt Silt 34-ML5 729.45 0.72 730.17 3.83 3.50-4.10 07- Jul-2003 21-Jul-2003 27-Oct-2003 03-Feb-2004 08- Jun-2004 18-Oct-2004 15:00 2.56 2.38 2.64 3.00 2.44 2.48 727.62 727.80 727.53 727.17 727.74 727.69 N/M Silt 34-ML6 729.45 0.72 730.17 2.83 2.59-3.10 07- Jul-2003 21-JUI-2003 27-Oct-2003 03-Feb-2004 08- Jun-2004 18-Oct-2004 15:20 2.56 2.38 2.64 3.00 2.44 2.50 727.62 727.80 727.53 727.18 727.73 727.68 N/M Silt 34-ML7 729.45 0.72 730.17 4.57 4.47 - 4.60 07-Jul-2003 21-JUI-2003 27-Oct-2003 2.56 2.38 2.64 727.62 727.80 727.53 N/M Silt Table 7.10 Piezometer Installation Details, Datum/Groundwater Surface Elevations And Hydraulic Conductivities Monitoring Station Ground Elevation (masl) Stick-Up PVC Pipe JmL Datum Elevation (top of PVC casing) (masl) Depth of Piezo (below ground) Depth Interval of Sand (below ground) (ml Date Time (d-m-y) (hh:mm) Depth To Water Below Datum (ml Depth To Apparent Groundwater Hydraulic Product Condensate Surface Conductivity Below Datum Thickness Elevation Lithology JmL JmL (masl) (m/s) 03-Feb-2004 08-Jun-2004 18-Oct-2004 3.00 2.46 2.48 727'.17 727.72 727.69 35-MW1 729.58 0.79 730.37 5.33 2.23 - 5.28 07-Jul-2003 21-Jul-2003 27-Oci-2003 10-Jan-2004 03-Feb-2004 09-Jun-2004 18-Oct-2004 13:00 3.18 3.15 3.46 3.57 N/M 2.92 3.31 727.19 727.22 726.92 726.81 N/M 727.46 727.07 N/M Sand, sill t o t o ON 35-MW2 729.57 0.74 730.31 5.33 2.24 - 5.35 07-Jul-2003 21-Jul-2003 27-Oct-2003 03-Feb-2004 09-Jun-2004 18-Oct-2004 12:15 3.05 3.08 3.38 3.56 3.22 3.23 727.26 727.23 726.94 726.75 727.09 727.09 N/M Sand, silt 35-DP1 729.57 0.61 730.18 2.91 2.15-2.91 07-Jul-2003 21 -Jul-2003 27-Oct-2003 19-NOV-2003 03-Feb-2004 09-Jun-2004 18-Aug-2004 18-Oct-2004 11:00 2.97 2.95 3.25 3.27 3.43 3.11 2.40 3.12 727.22 727.23 726.93 726.91 726.75 727.07 727.79 727.07 N/M Sand, silt 35-DP2 729.59 0.53 730.12 4.01 3.25 - 4.01 07-Jul-2003 21-Jul-2003 23-Oct-2003 19-Nov-2003 03-Feb-2004 09-Jun-2004 18-Aug-2004 18-Oct-2004 12:00 2.89 2.89 3.20 3.21 3.37 3.05 2.50 3.05 727.23 727.23 726.92 726.92 726.75 727.07 727.62 727.07 2.6E-6 Sand, silt Table 7.10 Piezometer Installation Details, Datum/Groundwater Surface Elevations And Hydraulic Conductivities Monitoring Station Ground Elevation (masl) Stick-Up PVC Pipe JmL Datum Elevation (top of PVC casing) (masl) Depth of Piezo (below ground) Depth Interval of Sand (below ground) (ml Date Time (d-m-y) (hh:mm) Depth To Water Below Datum C") Depth To Product Below Datum (ml Apparent Condensate Thickness (ml Groundwater Surface Elevation (masl) Hydraulic Conductivity (m/s) Lithology 35-DP3 729.59 0.77 730.36 4.99 4.23 - 4.99 07-Jul-2003 21-Jul-2003 27-Oct-2003 19-Nov-2003 03-Feb-2004 09-Jun-2004 18-Aug-2004 18-Oct-2004 13:15 3.36 3.15 3.45 3.47 3.63 3.31 2.42 3.32 727.00 727.21 726.91 726.89 726.73 727.05 727.94 727.05 5.3E-8 Silt to to 35-ML1 729.61 0.37 35-ML2 729.61 0.37 729.98 3.09 2.59 - 3.30 729.98 4.07 3.70 - 4.30 21-Jul-2003 27-Oct-2003 03-Feb-2004 09-Jun-2004 18-Oct-2004 21-Jul-2003 27-Oct-2003 03-Feb-2004 09-Jun-2004 18-Oct-2004 08:30 08:00 2.78 3.06 3.23 2.91 2.90 2.78 3.06 3.24 2.90 2.92 727.20 726.93 726.75 727.08 727.08 727.20 726.92 726.75 727.08 727.07 N/M N/M 35-ML3 729.61 0.37 729.98 5.07 4.71 -5.16 21-Jul-2003 27-Oct-2003 03-Feb-2004 09-Jun-2004 18-Oct-2004 09:30 2.76 3.06 3.24 2.90 2.92 727.22 726.92 726.74 727.08 727.07 N/M 35-ML4 N/M N/M N/M N/M 21-Jul-2003 03-Feb-2004 2.77 3.63 N/M N/M N/M 35-ML5 N/M N/M N/M N/M 21-Jul-2003 03-Feb-2004 2.77 3.63 N/M N/M N/M 35-ML6 N/M N/M N/M N/M 21-Jul-2003 03-Feb-2004 2.77 3.56 N/M N/M N/M 35-ML7 729.61 0.37 729.98 6.21 5.87 - 6.21 21 -Jul-2003 2.77 727.21 N/M Table 7.10 Piezometer Installation Details, Datum/Groundwater Surface Elevations And Hydraulic Conductivities Monitoring Station Ground Elevation (masl) Stick-Up PVC Pipe JmL Datum Elevation (top of PVC casing) (masl) Depth of Piezo (below ground) Depth Interval of Sand (below ground) (ml Date Time (d-m-y) (hh:mm) Depth To Water Below Datum Depth To Product Below Datum (ml Apparent Condensate Thickness (ml Groundwater Surface Elevation (masl) Hydraulic Conductivity Lithology 27-Oct-2003 03-Feb-2004 09-Jun-2004 18-Oct-2004 10:00 3.06 3.27 2.92 2.93 726.92 726.71 727.06 727.05 03-P-05 729.33 0.77 730.10 4.68 1.52-4.68 to to CO 03-P-06 729.56 0.75 730.31 4.65 1.52 - 4.65 07-Jul-2003 21-Jul-2003 27-Oct-2003 19-NOV-2003 03-Feb-2004 09-Jun-2004 18- Oct-2004 07-Jul-2003 21-Jul-2003 27-Oct-2003 19- Nov-2003 06-Feb-2004 09-Jun-2004 18-Oct-2004 09:40 10:00 3.19 3.29 3.69 3.68 3.83 3.39 3.48 3.55 3.55 3.89 3.88 4.00 3.69 3.71 726.92 726.81 726.42 726.42 726.27 726.72 726.63 726.77 726.76 726.42 726.43 726.31 726.62 726.60 1.4E-6 Silty sand, silt 2.9E-6 Silty sand, silt 03-P-07 729.48 0.77 730.25 4.34 1.22-4.34 07-Jul-2003 21-Jul-2003 27-Oct-2003 19-NOV-2003 03-Feb-2004 09-Jun-2004 18-Oct-2004 10:20 2.86 2.93 3.25 3.21 3.50 3.11 3.11 727.39 727.33 727.01 727.04 726.75 727.14 727.15 1.1E-6 Silty sand, silt 03-P-08 729.62 0.72 730.34 4.90 1.66 - 4.90 07-Jul-2003 21-Jul-2003 27-Oct-2003 19-NOV-2003 03-Feb-2004 09-Jun-2004 18-Oct-2004 11:20 3.49 3.47 3.80 3.81 3.96 3.66 3.64 726.86 726.87 726.54 726.53 726.38 726.68 726.70 3.8E-7 Silty sand, silt Table 7.10 Piezometer Installation Details, Datum/Groundwater Surface Elevations And Hydraulic Conductivities Monitoring Ground Stick-Up Datum Depth Depth Interval Date Time Depth To Depth To Apparent Groundwater Hydraulic Lithology Station Elevation PVC Pipe Elevation of Piezo of Sand Water Below Product Condensate Surface Conductivity (top of PVC (below (below ground) Datum Below Datum Thickness Elevation casing) ground) (masl) (m) (masl) (m) (m) (d-m-y) (hh:mm) (m) (m) (m) (masl) (m/s) 03-P-09 728.68 0.79 729.47 4.27 1.07 - 4.27 07-Jul-2003 . . . 2.81 726.67 4.1E-7 Silt 21-Jul-2003 . . . 3.05 . . . — 726.42 27-Oct-2003 . . . 3.45 . . . . . . 726.03 19-Nov-2003 . . . 3.41 . . . . . . 726.06 03-Feb-2004 . . . 3.60 . . . — 725.87 09-Jun-2004 11:40 3.65 . . . — 725.82 18-Oct-2004 — 3.16 . . . . . . 726.32 03-P-10 729.48 0.74 730.22 4.65 1.45 - 4.65 07-Jul-2003 — 3.01 . . . . . . 727.21 2.5E-7 Silty sand, silt 21 -Jul-2003 . . . 3.06 — — 727.16 27-Oct-2003 . . . 3.36 . . . — 726.86 19-Nov-2003 . . . 3.37 . . . . . . 726.85 03-Feb-2004 . . . 3.54 . . . . . . 726.68 09-Jun-2004 10:50 3.26 — . . . 726.96 18-Oct-2004 . . . 3.23 . . . . . . 727.00 NOTES: 1. Data may be entered to the nearest mm, but are reported above to the nearest cm. Apparent rounding errors may occasionally occur in calculated fields (e.g., Groundwater Surface Elevation). 2. Where free product is present, Groundwater Surface Elevation is calculated as Groundwater Surface = Datum Elevation - Depth to Water + Product Specific Density * Product Thickness. 3. N/M - Denotes not measured. Table 7.11 Aqueous Data: Field Measured Parameters Monitoring Date Time Temp Electrical pH Eh DO Comments Station Conductivity (d-m-y) (hh:mm) (°C) (uS/cm) (unit) (mV) (mg/L) 93-P-34 24-NOV-1998 9.2 2,140 7.41 . . . 06-NOV-1999 10.3 2,210 7.39 . . . — . 15-Jun-2000 8.4 1,890 . . . . . . . . . H/C sheen and odour, pH probe malfunction 02-NOV-2000 14:28 10.9 2,150 7.02 . . . . . . 17-JUI-2002 16:20 . . . . . . . . . . . . . . . Not sampled 26-Aug-2002 15:50 12.1 . . . 6.92 . . . . . . Black, hydrocarbon sheen 27-Aug-2002 10:35 14.0 — 7.32 . . . . . . 05-Jun-2003 11:30 . . . . . . . . . -125 0.2 Sheen 25-Jun-2003 17:20 8.9 3,530 7.49 . . . . . . Strong hydrocarbon odour/sheen 08-Jun-2004 14:45 8.6 1,840 7.36 . . . 0.2 Hydrocarbon odour/sheen, black precipitates (Post-Purge) 19-OC1-2004 16:00 7.7 1,735 7.35 . . . . . . Sulphide: <0.1 20-Oct-2004 9.3 . . . . . . -57 0.6 93-P-34C1 18-Aug-2004 11.8 1,560 . . . -120 0.4 Low Flow Purge Sampling 93-P-3S 24-NOV-1998 11.3 1,623 6.98 02-NOV-2000 16:08 10.2 1,209 6.57 . . . . . . Strong H/C sheen and odour 23-May-2002 10:10 7.0 1,330 6.88 . . . . . . Some H/C sheen and odour 17-JUI-2002 16:15 . . . . . . . . . . . . . . . Not sampled 27-Aug-2002 09:05 14.2 . . . 6.55 . . . . . . Hydrocarbon odour 27-Aug-2002 16:20 13.3 . . . 7.08 . . . . . . Hydrocarbon sheen 05-Jun-2003 12:50 . . . . . . . . . -132 0.3 25-Jun-2003 17:45 10.0 1,030 7.34 . . . — Strong hydrocarbon odour 09-Jun-2004 12:30 8.5 1,836 7.11 . . . . . . Pulled sampler- was submerged (Post-Purge) 20-Oct-2004 09:30 . . . 1,790 . . . . . . . . . Sediment present. Hydrocarbon film 93-P-36 24-NOV-1998 10.1 1,587 6.74 06-NOV-1999 13.4 1,013 7.19 . . . . . . Well plugged with sediment 16-Jun-2000 9.6 1,578 . . . . . . . . . pH probe malfunction 02-NOV-2000 . . . . . . . . . . . . . . . Dry@ 3.70m 23-Oct-2001 . . . . . . . . . . . . . . . Dry @ 3.70m 23-May-2002 . . . . . . . . . . . . . . . Dry @ 3.70m 17-JUI-2002 15:25 . . . — . . . . . . . . . Not sampled 12-NOV-2002 13:55 6.1 1,704 7.33 . . . . . . Silty 23-Jun-2003 12:45 7.6 2,340 7.30 . . . . . . 23-Oct-2003 . . . . . . . . . . . . . . . Insufficient water for field params 10-Jun-2004 10:24 7.5 1,555 7.25 . . . . . . 06-Oct-2004 13:20 9.0 1,679 7.09 . . . . . . 20-OCI-2004 9.7 . . . . . . 137 1.4 34-MW1 08-Jun-2004 14:24 8.3 2,400 7.13 Hydrocarbon odour, black precipitate (Post-Purge) 19-Oct-2004 14:45 8.6 2,320 7.27 . . . . . . Sulphide: 0.7 Iron: 2.5 Black staining 20-Oct-2004 9.0 . . . . . . -99 0.5 34-MW1-LF1 18-Aug-2004 12.8 1,660 . . . -100 0.8 Low Flow Purge Sampling 34-MW2 08-Jun-2004 15:00 8.4 3,020 7.15 Hydrocarbon odour, black precipitate (Post-Purge) 19-Oct-2004 15:45 9.1 2,660 7.33 . . . . . . Sulphide: 0.3 Iron: 4.5 Hydrocarbon odour 20-Oct-2004 9.1 . . . . . . -52 0.4 34-MW2-LF1 18-Aug-2004 15.5 1,040 . . . -150 1.0 Low Flow Purge Sampling 34-DP1 08-Jun-2004 . . . . . . . . . . . . . . . Dry© 2.475 34-DP2 08-Jun-2004 14:04 14.8 1,363 7.36 — 20-Oct-2004 07:30 5.7 1,361 7.62 . . . . . . Clear. Hydrocarbon odour 34-DP3 08-Jun-2004 14:30 10.7 2,450 7.45 20-Oct-2004 07:30 8.1 2,410 7.48 . . . . . . Sulphide: 0 Clear 34-ML5 08-Jun-2004 8.4 2,680 7.16 20-Oct-2004 08:30 6.9 2,620 7.13 . . . . . . Sulphide: 0.2 Black precipitate 34-ML6 08-Jun-2004 11.9 2,680 7.76 — 20-Oct-2004 08:30 . . . 1,738 . . . . . . . . . Clear. Slight hydrocarbon odour 34-ML7 20-Oct-2004 09:00 . . . 3,370 . . . . . . . . . Sulphide: 0.25 Clear 35-MW1 09-Jun-2004 13:00 8.7 1,453 6.93 Black precipitates. Hydrocarbon odour 20-OCI-2004 11:30 9.5 1,647 . . . -38 0.5 Sulphide: 0 Black sediment, hydrocarbon odou 230 Monitoring Station Date <d-m-y) Table 7.11 Aqueous Data: Field Measured Parameters Time Temp Electrical pH Eh DO (hh:mm) (°C) Electrical pH Conductivity (US/cm) (unit) (mV) (mg/L) Comments 35-MW2 35-DP1 35-DP2 35-DP3 (Post-Purge) 35-ML1 35-ML2 35-ML3 35-ML7 03-P-05 (Post-Purge) 03-P-06 (Post-Purge) 03-P-07 03-P-08 (Post-Purge) 03-P-09 (Post-Purge) 03-P-10 (Post-Purge) 09-Jun-2004 20-Oct-2004 09-Jun-2004 20-OCI-2004 09-Jun-2004 20-Oct-2004 09-Jun-2004 20-OCI-2004 09-Jun-2004 09-Jun-2004 09-Jun-2004 20-Oct-2004 09-Jun-2004 08- Jun-2004 09- Jun-2004 20-Oct-2004 20-Oct-2004 08- Jun-2004 09- Jun-2004 20-Oct-2004 20-Oct-2004 08- Jun-2004 09- Jun-2004 20-Oct-2004 08- Jun-2004 09- Jun-2004 20-Oct-2004 20-Oct-2004 08- Jun-2004 09- Jun-2004 20-Oct-2004 20-Oct-2004 08- Jun-2004 09- Jun-2004 20-Oct-2004 20-Oct-2004 12:15 12:30 11:00 10:30 12:00 10:30 13:15 11:00 08:30 08:00 09:30 13:30 10:00 09:40 13:30 10:00 10:20 11:20 11:40 13:00 10:50 12:30 9.5 9.6 11.3 11.4 11.1 9.8 10.8 5.9 7.3 9.0 6.1 7.2 9.1 7.6 7.1 9.4 7.1 7.6 10.1 5.2 6.9 9.3 7.1 7.4 9.1 1,150 7.10 1,215 — -18 0.4 1,204 7.27 1,220 1,475 1,650 2,490 2,710 1,562 1,660 2,810 3,420 2,730 2;800 1,687 7.12 1,347 6.87 1,314 7.09 2,420 7.45 7.27 6.74 6.96 7.23 6.95 6.97 7.11 2.0 32 0.5 0.4 72 0.6 0.4 32 0.9 1.3 162 1.1 3.0 0.7 36 2.7 0.3 -18 0.5 1.5 Black sediment, hydrocarbon odour Insufficient water for field parameters Clear. Potential iron sediment Clear. Slight hydrocarbon odour Clear, no odour/sheen Clear Sulphide: 0 Clear Sulphide: 0.2 Clear Clear. Potential hydrocarbon odour Black sediment Sulphide: <0.1 Sulphide: 0 NOTES: 1. Electrical conductivity values standardized to 25°C. 231 Table 7.12 Aqueous Data: Indicator Parameter Concentrations o o to to um :D  ie si um :D  ss iu m :D  jm :D  C at io ns  bo na te  an  a te  id e: D  id e: D  ia te :D  A ni on s al an ce  al an ce  %  ca lc ul at ed  ar d as  C a(  Ik . as  C aC l Ik  a s Ca C<  Monitoring O UJ 0 i-cn ca •0 n n 0 0 0. n 0 m O <A X < < Station Date X a n O m £ O o_ 0 . to 1- m CD O . c 0 3 IL 3 V) 0 1— c 0 c 0 O O a H 0 r- Q. Q. 0 1— (d-m-y) (us/cm) (units) (mgA.) (mgA.) (mgA.) (mgA.) (meq/L) (mg/L) (mgA.) (mgA.) (mgA.) (mgA.) (meqA.) (balance) (%) (mgA.) (mgA.) (mgA.) (mgA.) (mg/L) 93-P-34 29-Oct-93 ... ... 104 296 110 1,980 03-Oct-96 ... ... ... ... ... ... ... ... ... ... ... — ... ... — — ... ... — 23-Nov-98 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 05-Nov-99 ... ... ... ... ... ... ... — ... ... ... ... — ... — — ... ... ... ... 15-Jun-00 ... 7.5 ... ... ... ... ... ... ... 50.5 ... 1.6 ... ... ... 29 1,180 — ... ... 02-Nov-OO ... ... ... ... ... ... ... ... ... ... ... ... ... ... — — ... ... ... ... 17-Jul-02 2,650 7.49 57.7 226 1.6 246 32.2 1,860 <0.5 9.8 ... 0.5 30.8 1.05 ... ... 1,500 1,100 <0.5 1,520 (Pre-Purge) 26-Aug-02 2,330 7.33 44.4 178 1.5 254 ... 1,780 <0.5 83.6 ... 1.1 ... 0.89 ... ... 1,480 850 <0.5 1,460 (Post-Purge) 26-Aug-02 2,390 7.71 52.6 185 2.6 248 ... 1,800 <0.5 81.1 ... 53.9 ... 0.87 ... ... 1,520 890 <0.5 1,470 (Post-Recovery) 27-Aug-02 2,180 7.55 40.7 181 2.9 253 — 1,690 <0.5 89.7 ... 12.7 ... 0.92 — ... 1,410 850 <0.5 1,380 21-Feb-03 1,940 7.79 39.8 168 2 240 ... 1,340 <0.5 83.4 ... 1.8 ... 1.08 ... ... 1,210 790 <0.5 1,100 (Pre-Purge) 05-Jun-03 2,160 7.73 35.3 139 1.7 232 23.3 1,520 <0.5 65 ... 4.1 26.8 0.87 — ... 1,240 660 <0.5 1,240 (Post-Purge) 05-Jun-03 2,010 7.86 28.8 123 0.7 215 21 1,420 <0.5 58.3 ... 0.3 24.8 0.84 ... ... 1,130 580 <0.5 1,160 (Post-Recovery) 05-Jun-03 2,030 7.95 39.4 138 1.2 234 23.5 1,440 <0.5 59.5 ... 4.3 25.3 0.93 ... ... 1,190 660 <0.5 1,180 25-Jun-03 3,410 7.6 53.1 213 2.8 477 ... 1,820 <5 153 ... 477 ... ... 93 ... 2,270 1,010 ... 1,490 23-Jul-03 2,770 7.57 58.5 194 3 430 ... 1,950 <0.5 104 ... 103 ... 1.02 ... ... 1,870 940 <0.5 1,600 28-Oct-03 2,010 7.76 39.1 155 2.1 262 — 1,520 <0.5 59.1 ... 1.2 ... 1.01 ... ... 1,290 740 <0.5 1,250 04-Feb-04 1,760 7.84 37.5 151 1.8 220 23.9 1,470 <0.5 70.8 ... 9.2 26.3 0.91 ... ... 1,210 710 <0.5 1,200 08-Jun-04 1,910 7.84 31.8 132 1.2 223 ... 1,440 <0.5 42.5 ... 9.6 ... 0.91 ... ... 1,160 620 <0.5 1,180 09-Jul-04 1,700 8.26 33.4 127 1.5 208 ... 1,320 <0.5 35.3 ... 12.6 ... 0.94 ... ... 1,070 610 <0.5 1,080 (Post-Purge) 09-Jul-04 1,880 8.05 47.9 135 1.7 222 ... 1,440 <0.5 42.5 ... 73.2 ... 0.9 ... ... 1,240 680 <0.5 1,180 18-Aug-04 2,130 7.88 53.9 156 2.3 241 ... 1,380 <0.5 55.3 ... 100 ... 1.01 — ... 1,300 780 <0.5 1,130 19-Oct-04 1,800 8.03 31.7 122 1.9 209 ... 1,230 <0.5 46.9 ... 5.4 — 0.97 — — 1,030 580 <0.5 1,010 93-P-34A1 09-Jun-04 1,860 7.89 39.7 159 1.4 244 ... 1,390 <0.5 37 — 31.5 1.06 — 1,200 750 <0.5 1,140 09-Jul-04 1,930 8.18 45.4 . 143 1.7 227 — 1,430 <0.5 43.7 — 92.6 — 0.91 — — 1,260 700 <0.5 1,170 93-P-34A2 09-Jul-04 1,950 8.22 52 150 1.8 228 - 1,430 <0.5 43.8 - 106 - 0.93 ... 1,300 750 <0.5 1,180 93-P-34B1 09-Jun-04 1,880 7.9 37.4 157 1.4 245 1,400 <0.5 38.9 26.6 1.04 ... 1,200 740 <0.5 1,150 09-Jul-04 1,960 8 53.6 149 1.8 228 — 1,470 <0.5 44.1 — 99.7 — 0.92 ... ... 1,310 750 <0.5 1,200 93-P-34B2 09-Jun-04 1,860 8 38 152 1.4 232 1,390 <0.5 37.5 ... 24.5 1.01 1,170 720 <0.5 1,140 09-Jul-04 1,970 8.02 54 149 1.8 229 — 1,470 <0.5 42.3 — 99 — 0.92 ... — 1,310 750 <0.5 1,210 Table 7.12 Aqueous Data: Indicator Parameter Concentrations o E o E Q E Q E Monitoring Station Date o O Q Ot a o cn r> o O O n O O O <s n in O O n w in •o « a n X < < o a. o 1- a. I - (d-m-y) (us/cm) (units) (mgA.) (mgA.) (mgn.) (mgn.) (meq/L) (mgA.) (mgA.) (mgA.) (mg/L) (mg/L) (meqA.) (balance) (%) (mgA.) (mg/L) (mgn.) (mgA.) (mgn.) 93-P-34B3 09-Jun-04 1,910 7.98 43.8 160 1.5 243 . . . 1,420 <0.5 39.5 38.1 1.04 1,230 770 <0.5 1,160 93-P-34C1 09-Jun-04 1,950 8 43.2 161 1.6 242 1,440 <0.5 41.1 51.9 1.01 1,250 770 <0.5 1,180 09-Jul-04 1,950 8.03 54.2 149 1.9 231 . . . 1,480 <0.5 43.9 87.4 . . . 0.93 1,300 750 <0.5 1,210 18-Aug-04 2,170 7.82 52.9 156 2.2 254 . . . 1,410 <0.5 52.4 99.6 . . . 1.01 1,320 780 <0.5 1,160 (Duplicate) 18-Aug-04 2,170 7.84 49.2 149 2 248 . . . 1,410 <0.5 50.6 98.1 . . . 0.96 1,290 740 <0.5 1,160 93-P-34C2 09-Jun-04 1,910 7.95 41.1 157 1.6 239 1,410 <0.5 38.5 34.2 1.02 1,210 750 <0.5 1,160 09-Jul-04 1,940 8.01 54 149 1.9 229 . . . 1,460 <0.5 44.5 98.3 . . . 0.93 1,300 750 <0.5 . 1,200 93-P-34C3 09-Jun-04 1,940 7.98 40.8 161 2.2 241 . . . 1,420 <0.5 39.9 40.8 . . . 1.03 1,230 770 <0.5 1,160 •P-34 POST PURGE NEW BAILER 09-Jul-04 1,900 8.06 48.6 149 1.9 231 . . . 1,440 <0.5 44.1 80.3 . . . 0.94 1,270 740 <0.5 1,180 93-P-35 23-N0V-98 . . . . . . . . . . . . 05-NOV-99 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 02-Nov-OO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . — . . . . . . . . . . . . 23-May-02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . — . . . . . . . . . . . . 17-Jul-02 1,270 7.2 74.3 53.7 2 141 14.3 780 <0.5 54.9 0.7 14.4 1 748 410 <0.5 639 (Post-Purge) 27-Aug-02 1,180 7.23 73.6 53.8 2.7 134 . . . 792 <0.5 52.9 2.3 . . . 0.96 734 410 <0.5 649 (Post-Recovery) 27-Aug-02 1,150 7.3 63.4 49.3 2.8 139 . . . 757 <0.5 53 6.3 . . . 0.95 708 360 <0.5 621 21-Feb-03 1,310 7.25 85.6 59.6 1.7 132 . . . 853 <0.5 57.8 . 1.5 . . . 0.96 798 460 <0.5 699 11-Mar-03 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . — . . . . . . . . . . . . 25-Jun-03 1,430 7.1 107 75.9 2.3 136 . . . 986 <5 60.7 2.4 . . . 98 869 580 . . . 808 23-Jul-03 1,640 7.55 174 63.4 1.6 111 . . . 932 <0.5 55.6 37.5 . . . 1.07 961 700 <0.5 764 28-Oct-03 1,910 7.78 185 82.9 3.4 137 . . . 1,250 <0.5 78.3 0.8 . . . 1.08 1,170 800 <0.5 1,030 04-Feb-04 1,180 7.19 110 56.3 1.8 126 17.3 862 <0.5 54.5 3 15.7 1.1 825 510 <0.5 706 09-Jun-04 2,760 7.44 176 70.8 2.6 134 . . . 1,720 <0.5 56 0.7 . . . 0.75 1,340 730 <0.5 1,410 18-Aug-04 1,860 7.06 186 70.5 2.3 143 . . . 1,190 <0.5 56.6 0.3 . . . 1.15 1,130 760 <0.5 973 27-Aug-02 1,270 6.95 76.9 57.5 2.2 146 . . . 875 <0.5 56.9 0.7 . . . 0.94 812 430 <0.5 717 05-Jun-03 1,580 7.17 109 60 1.6 135 16.3 1,020 <0.5 56.2 0.7 18.3 0.89 907 520 <0.5 834 20-Oct-04 1,620 7.3 164 58.5 2.2 138 . . . 1,010 <0.5 46.2 0.5 . . . 1.21 983 650 <0.5 830 93-P-35C1 18-Aug-04 1,280 7.43 88.2 47 1.7 139 . . . 773 <0.5 57 0.2 . . . 1.09 748 410 <0.5 633 to LO LO Table 7.12 Aqueous Data: Indicator Parameter Concentrations o o t o 4*. Monitoring' o L J lc iu m :D  gn es iu m :D  ta ss iu m :D  a £ p ta l C at io ns  :a rb on at e rb on at e lo ri de :D  or id e: D  lp ha te :D  ia l A ni on s B al an ce  B al an ce  %  o S -c al cu la te d : H ar d as  C al  A lk . as  C aC i A lk  a s C aC l Station Date X Q . n O n S o OL o in o i- at n O c O tL in o h- G O c o O Q Q i- T ot  0. To t (d-m-y) (us/cm) (units) (mgn.) (mgn.) (mgn.) (mgn.) (meqA.) (mgn.) (mgn.) (mgn.) (mgn.) (mgn.) (meqA.) (balance) (%) (mgn.) (mgn.) (mgn.) (mgn.) (mgn.) 34-MW1 21-Jul-03 829 8.02 63.8 183 3.9 359 ... 469 <0.5 93.5 171 2.44 1,120 910 <0.5 385 27-Oct-03 2,770 7.75 111 219 4.9 327 ... 1,840 <0.5 69 ... 379 ... 0.96 ... ... 2,030 1,200 <0.5 1,510 04-Feb-04 2,150 7.54 104 185 3 253 31.7 1,850 <0.5 62.5 ... 108 34.4 0.92 ... ... 1,630 1,000 <0.5 1,520 08-Jun-04 2,590 7.7 76.9 191 2.7 287 ... 1,880 <0.5 73.5 ... 99.9 ... 0.92 ... ... 1,660 980 <0.5 1,540 18-Aug-04 2,440 7.89 53.5 149 2.9 323 ... 1,660 <0.5 82.8 ... 52 ... 0.96 ... ... 1,480 750 <0.5 1,360 19-Oct-04 2,450 7.87 54.7 134 3.1 294 ... 1,650 <0.5 58.6 ... 80.3 ... 0.88 ... ... 1,440 690 <0.5 1,350 34-MW1B 19-NOV-03 1,930 7.32 58 144 2.6 238 ... 1,340 <0.5 65.1 93.2 0.98 1,270 740 <0.5 1,100 04-Feb-04 1,540 7.8 59.1 142 2.3 211 24 1,240 <0.5 57.1 ... 25.2 22.4 1.07 ... ... 1,110 730 <0.5 1,010 34-MW1C 19-NOV-03 2,270 7.4 71.4 183 3.1 286 — 1,700 <0.5 76.3 96.3 0.98 1,560 930 <0.5 1,390 04-Feb-04 2,110 7.89 95.5 198 3.2 279 33.4 1,910 <0.5 69.7 ... 27.6 33.9 0.99 ... ... 1,620 1,100 <0.5 1,570 34-MW1-LF1 18-Aug-04 2,310 7.87 61.2 162 2.5 274 ... 1,500 <0.5 56.8 ... 111 ... 1.01 ... ... 1,410 820 <0.5 1,230 34-MW2 29-Oct-03 2,410 7.94 88 193 4.4 254 ... 1,670 <0.5 63.6 224 0.94 1,650 1,000 <0.5 1,370 03-Feb-04 2,270 7.58 124 201 3.8 254 34 1,500 <0.5 55.8 ... 556 37.7 0.9 ... ... 1,940 1,100 <0.5 1,230 04-Feb-04 2,220 7.56 118 191 4 243 32.4 1,580 <0.5 50.7 ... 399 35.6 0.91 ... ... 1,790 1,100 <0.5 1,290 08-Jun-04 3,050 7.79 246 230 6.4 260 ... 1,440 <0.5 62.3 ... 835 ... 1.01 ... ... 2,360 1,600 <0.5 1,180 18-Aug-04 2,340 7.99 122 176 4 230 ... 1,300 <0.5 54.2 ... 299 ... 1.06 ... ... 1,530 1,000 <0.5 1,070 19-Oct-04 3,130 7.86 185 193 6.1 256 ... 1,270 <0.5 58.8 ... 887 ... 0.9 ... ... 2,220 1,300 <0.5 1,040 34-MW2A 22-Jul-03 2,660 7.88 76.8 186 5 378 ... 1,790 <0.5 105 ... 140 ... 1.02 ... ... 1,780 960 <0.5 1,460 34-MW2C 23-Jul-03 2,590 7.91 77.3 187 4.5 293 ... 1,750 <0.5 87.4 166 0.93 1,680 960 <0.5 1,440 29-OC1-03 2,340 7.96 97.4 213 4.2 290 ... 1,620 <0.5 61.3 ... 205 ... 1.02 ... ... 1,640 1,100 <0.5 1,330 34-MW2-LF1 18-Aug-04 2,140 7.93 61.6 141 2.4 222 ... 1,330 <0.5 48.4 105 ... 0.96 ... ... 1,240 730 <0.5 1,090 34-DP2 22-Jul-03 1,960 7.8 35 155 1.4 230 ... 1,410 <0.5 63.8 1.3 0.98 1,180 730 <0.5 1,160 27-Oct-03 1,680 8.15 28.4 137 2.2 218 ... 1,360 <0.5 20.4 ... 1 ... 0.98 ... ... 1,080 630 <0.5 1,110 03-Feb-04 1,560 7.93 34 131 1.2 211 21.9 1,310 <0.5 25.2 — ' . 1.2 22.3 0.98 ... ... 1,050 630 <0.5 1,080 08-Jun-04 1,520 8.23 23.2 113 1 197 ... 1,180 <0.5 18.6 ... 2.2 ... 0.97 ... ... 941 520 <0.5 965 20-Oct-04 1,500 8.15 20.2 104 1.3 184 ... 1,050 <0.5 23.3 ... 0.2 ... 0.99 ... ... 849 480 <0.5 859 Table 7.12 Aqueous Data: Indicator Parameter Concentrations o o to O o u 3? "D & CO O U C8 O CO Monitoring o lc iu m :D  gn es iu m  ta ss iu m :!  di um :D  ta l C at io n :a rb on at e rb on at e lo ri de :D  or id e: D  lp ha te :D  ia l A ni on ! B al an ce  B al an ce  o 5- ca lc ul a H ar d as  A lk . as  C  A lk  a s C  Station Date X Q. n O CO s o Q. o in o S CO O o 3 u_ . 3 V) o 1- c o c o O Q Q H To t 0. 0 . To t (d-m-y) (us/cm) (units) (mgn.) (mgn.) (mgn.) (meq/L) (mgn.) (mgn.) (mgn.) (mgn.) (mgn.) (meq/L) (balance) (%) (mgn.) (mgn.) (mgn.) (mgn.) (mgn.) 34-DP3 22-JUI-03 2,850 8.02 155 241 5.5 288 ... 1,740 <0.5 64.7 503 ... 0.99 2,110 1,400 <0.5 1,420 29-Oct-03 2,720 8.04 138 236 4.9 278 ... 1,800 <0.5 58.3 ... 429 ... 0.97 ... ... 2,040 1,300 <0.5 1,480 03-Feb-04 2,360 7.78 161 213 4.3 262 37.3 1,720 <0.5 55 ... 400 38 0.98 ... ... 1,950 1,300 <0.5 1,410 08-Jun-04 2,590 8.14 127 190 4 251 ... 1,700 <0.5 64.6 ... 293 ... 0.93 ... ... 1,770 1,100 ... 1,390 19-Oct-04 2,560 8.07 117 170 4.3 259 . . . 1,610 <0.5 64.6 ... 202 ... 0.97 ... ... 1,610 990 <0.5 1,320 34-HP-2 08-Jun-04 1,740 8.43 31 132 5.7 222 ... 1,240 47.3 28.7 ... 6.5 ... 0.97 ... . . . 1,080 620 39.4 1,090 34-HP-3 08-Jun-04 2,500 7.95 136 189 9.7 238 ... 1,410 <0.5 68.6 ... 420 ... 0.97 ... ... 1,760 1,100 <0.5 1,160 34-ML1 23-Jul-03 2,290 7.98 85.9 52 5.2 494 ... 904 <0.5 69.4 ... 524 ... 1.09 ... - 1,680 430 <0.5 741 34-MLS 23-Jul-03 3,140 7.63 232 213 8.4 280 ... 1,380 <0.5 70.3 1,030 0.9 2,520 1,500 <0.5 1,130 27-Oct-03 2,870 7.77 227 207 8 295 — 1,520 <0.5 53.8 ... 648 ... 1.04 ... ... 2,200 1,400 <0.5 1,250 03-Feb-04 2,360 7.4 206 191 6.2 288 39 1,670 <0.5 57.6 ... 450 38.4 1.02 ... ... 2,040 1,300 <0.5 1,370 08-Jun-04 2,820 7.82 174 181 5.7 271 ... 1,590 <0.5 60.3 ... 540 ... 0.92 ... ... 2,020 1,200 <0.5 1,300 20-Oct-04 2,690 7.79 158 181 5.8 261 — 1,350 . <0.5 59 — 509 — 1 — — 1,840 1,100 <0.5 1,100 34-ML6 23-Jul-03 2,750 7.83 97.5 224 6.1 341 . . . 1,580 <0.5 94.9 427 1.02 1,970 1,200 <0.5 1,290 28-Oct-03 2,380 8 69.7 184 3.9 281 . . . 1,800 <0.5 113 ... 3.1 ... 0.95 ... ... 1,550 930 <0.5 1,470 03-Feb-04 1,990 7.98 73.6 171 2.8 269 29.7 1,700 <0.5 92.3 ... (0.1) 30.5 0.98 ... ... 1,450 890 <0.5 1,390 08-Jun-04 2,090 8.15 53.5 141 2.3 240 ... 1,550 <0.5 72.1 ... 0.7 ... 0.91 ... ... 1,280 710 <0.5 1,270 20-Oct-04 1,870 8.14 46.7 125 2.6 225 — 1,270 <0.5 58.4 — 0.5 — 1.01 ... — 1,090 630 <0.5 1,040 34-ML7 23-Jul-03 3,590 7.63 364 304 29.2 374 ... 1,200 <0.5 84.6 1,590 1.09 3,340 2,200 <0.5 981 28-Oct-03 3,460 7.82 329 248 20.9 337 ... 1,400 <0.5 67.9 ... 1,280 ... 1.01 ... ... 2,970 1,800 <0.5 1,150 03-Feb-04 2,910 7.46 331 237 15.6 361 52.2 1,410 <0.5 65.8 ... 1,250 50.9 1.03 ... ... 2,960 1,800 <0.5 1,150 08-Jun-04 3,430 7.89 296 234 12.8 301 — 1,390 <0.5 64.4 . . . 1,160 ... 0.98 ... ... 2,760 1,700 <0.5 1,140 20-Oct-04 3,500 7.78 280 224 13 300 — 1,220 <0.5 61 — 1,190 — . 0.99 — — 2,670 1,600 <0.5 996 35-MW1 23-Jul-03 1,490 7.17 126 57.8 4.5 131 ... 889 <0.5 45.8 107 0.93 929 550 <0.5 728 28-Oct-03 1,730 7.9 141 72 3.6 139 ... 1,150 <0.5 46.1 ... 0.9 . . . 1.03 ... . . . 1,020 650 <0.5 944 04-Feb-04 1,180 7.25 92.8 51.3 2.6 119 15.2 820 <0.5 45.2 ... 0.5 14.7 1.04 ... ... 748 440 <0.5 672 09-Jun-04 1,470 7.08 110 65.2 2.7 122 ... 1,000 <0.5 48 ... 0.7 . . . 1.02 ... ... 894 540 <0.5 820 20-Oct-04 2,020 7.58 131 69.8 2.8 125 . . . 1,180 <0.5 51.5 — 0.5 — 0.99 ... ... 1,040 620 <0.5 970 Table 7.12 Aqueous Data: Indicator Parameter Concentrations Monitoring Station Q E o Q o c < Date O O O O Q a o o < a. O u (d-m-y) (us/cm) (units) (mgn.) (mgA.) (mgA.) (mgn.) (meqn.) (mgA.) (mgn.) (mgA.) (mgA.) (mgA.) (meqA.) (balance) (%) (mgn.) (mgA.) (mgA.) (mgA.) (mgA., 3S-MW2 28-Oct-03 1,210 7.8 75.6 45.7 3.1 144 772 <0.5 47.6 19.4 0.99 728 380 <0.5 633 03-Feb-04 1,030 7.46 59.9 42.8 2.3 141 13.3 679 <0.5 52.5 1.4 12.6 1.05 650 330 <0.5 557 04-Feb-04 1,030 7.33 70.6 44.9 2.7 127 13.1 708 <0.5 47.2 9.1 13.1 1 660 360 <0.5 581 09-Jun-04 1,130 7.32 70.5 46.6 2 130 . . . 727 <0.5 50.7 6.5 . . . 1.03 687 370 <0.5 596 (Duplicate) 09-Jun-04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-Oct-04 1,280 7.67 85.5 46.9 2.5 129 . . . 792 <0.5 51.5 1.5 . . . 1.03 738 410 <0.5 649 35-MW2A 23-Jul-03 1,080 7.64 58.1 37.2 3.3 152 . . . 575 <0.5 36.3 89.3 . . . 1.03 661 300 <0.5 471 35-MW2C 23-Jul-03 1,130 7.67 66 38.5 3.4 147 . . . 595 <0.5 37.7 100 — 1 688 320 <0.5 487 28-Oct-03 1,170 7.79 87 45.5 2.9 147 . . . 756 <0.5 44.8 17.3 . . . 1.06 726. 400 <0.5 620 t o OS 35-DP1 23-Jul-03 1,350 7.36 112 60.2 2.1 117 . . . 885 <0.5 52 3.4 . . . 0.98 816 530 <0.5 726 28-Oct-03 1,300 7.86 85.6 48 1.6 99.6 . . . 812 <0.5 53.7 3.5 . . . 0.94 730 410 <0.5 666 09-Jun-04 1,440 7.63 107 60.3 1.6 126 . . . 880 <0.5 56.2 3.9 . . . 1.1 840 520 <0.5 721 20-Oct-04 1,640 7.99 97.4 54.3 1.6 130 . . . 952 <0.5 55.2 <0.1 . . . 0.98 857 470 <0.5 781 35-DP2 23-Jul-03 1,130 7.81 71.3 57.1 2.1 131 703 <0.5 47.9 8.6 — 1.08 678 410 <0.5 576 28-Oct-03 1,160 7.9 65.2 51.9 2.2 134 . . . 770 <0.5 44.4 8.3 . . . 0.98 697 380 <0.5 631 03-Feb-04 1,040 7.71 61.2 48.5 1.9 132 13.2 728 <0.5 48.8 4.6 13.4 0.99 667 350 <0.5 597 09-Jun-04 1,250 7.84 81.6 61.5 2.1 129 . . . 838 <0.5 46.1 10.1 . . . 1 755 460 <0.5 687 20-Oct-04 1,340 7.97 75.7 55.7 2.2 129 . . . 841 <0.5 46.1 15.8 . . . 0.94 751 ' 420 <0.5 690 35-DP3 23-Jul-03 1,410 7.92 168 62.7 6.1 99.3 601 <0.5 31.3 323 1.03 988 680 <0.5 493 28-Oct-03 1,410 7.97 133 60.9 4.8 96.1 . . . 617 <0.5 27.2 327 . . . 0.91 ' 956 580 <0.5 505 03-Feb-04 1,260 7.74 145 57.7 5 92.3 16.2 635 <0.5 29.1 278 17 0.95 922 600 <0.5 520 09-Jun-04 1,410 7.96 142 58.4 4.1 100 . . . 656 <0.5 28.4 290 . . . 0.94 949 600 <0.5 537 20-Oct-04 1,510 8.03 163 59.7 5 94.7 . . . 614 <0.5 28.2 331 . . . 0.97 985 650 <0.5 503 35-HP-1 08-Jun-04 1,230 8.06 51.7 38.1 2.1 128 . . . 712 <0.5 51.5 3.2 . . . 0.86 625 290 <0.5 583 35-HP-2 08-Jun-04 1,450 8.13 98.4 78.2 4.5 136 . . . 981 <0.5 40.3 28.9 . . . 0.98 870 570 <0.5 804 35-HP-3 08-Jun-04 2,120 8.02 149 80 8.7 113 — 556 <0.5 30.3 — 466 — 0.97 1,120 700 <0.5 455 Table 7.12 Aqueous Data: Indicator Parameter Concentrations Monitoring Station Q E a £ Q E o O O <A a O o X o o o o (d-m-y) (us/cm) (units) (mgA.) (mgA.) (mgA.) (mgA.) (meqA.) (mgA.) (mgA.) (mgA.) (mgA.) (mgA.) (meqA.) (balance) (%) (mgA.) (mgA.) (mgA.) (mg/L) (mgA.) 35-ML1 23-Jul-03 1,320 7.72 95.7 40.1 3.6 151 760 <0.5 52.3 71.9 0.96 794 400 <0.5 623 28-Oct-03 1,500 7.78 116 58.2 3.2 169 . . . 1,070 <0.5 54.4 1.1 . . . 0.98 950 530 <0.5 873 04-Feb-04 1,490 7.9 136 66.9 3 173 20.9 1,140 <0.5 60.5 1.4 20.4 1.03 1,030 610 <0.5 932 09-Jun-04 1,370 7.73 92 49.8 2.4 140 . . . 908 <0.5 59.4 0.7 . . . 0.96 826 430 <0.5 744 20-Oct-04 — . . . . . . . . . . . . . . . . . . . . . — . . . . . . . . . . . . - 35-ML2 23-Jul-03 1,630 7.95 59.8 40.3 3.2 260 . . . 867 <0.5 25.1 172 0.95 995 320 <0.5 711 28-Oct-03 1,330 7.94 66.4 48.4 3.3 200 — 919 <0.5 41.1 16.6 . . . 0.99 837 360 <0.5 753 04-Feb-04 1,200 7.7 74.2 51.3 3.1 187 16.5 876 <0.5 42.7 7 15.7 1.05 807 400 <0.5 718 09-Jun-04 1,310 7.95 74.5 53.5 2.9 165 . . . 895 <0.5 42.6 6.4 . . . . 0.98 796 410 <0.5 734 20-Oct-04 1,340 8.02 84 57.2 3.1 138 . . . 862 <0.5 42.5 4.6 . . . 0.99 764 450 <0.5 706 35-ML3 23-Jul-03 3,510 8.08 96.1 30.6 6.4 778 . . . 657 <0.5 46.6 1,360 1 2,690 370 <0.5 539 29-Oct-03 3,280 8.16 57.7 20.4 6.4 722 . . . 845 <0.5 35.6 1,140 . . . 0.93 2,400 230 <0.5 692 04-Feb-04 2,670 7.92 48 15.1 5.1 717 35 887 <0.5 34.9 946 35.2 0.99 2,210 180 <0.5 727 09-Jun-04 2,780 8.21 62.4 19.5 5.2 557 . . . 894 <0.5 32.7 571 . . . 1.06 1,690 240 <0.5 733 20-Oct-04 2,550 8.21 41.2 13.7 5.1 610 . . . 814 <0.5 30.8 --- 642 . . . 1.08 1,740 160 <0.5 667 35-ML7 23-Jul-03 1,460 7.73 111 43 4.6 164 . . . 634 <0.5 44.2 276 0.94 958 450 <0.5 520 29-Oct-03 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . — . . . — . . . — 29-Oct-03 1,480 7.85 116 49.5 5.5 168 . . . 902 <0.5 48.4 112 . . . 0.95 951 490 <0.5 739 04-Feb-04 1,520 7.45 133 51.6 4.3 199 19.9 924 <0.5 45.4 209 20.8 0.96 1,110 540 <0.5 757 09-Jun-04 1,850 8.11 126 47.7 5.8 235 — 727 <0.5 35.4 457 . . . 0.92 1,270 510 <0.5 596 20-Oct-04 1,980 7.88 129 40.3 5.3 271 . . . 584 <0.5 28.2 586 . . . 0.97 1,360 490 <0.5 479 03-P-05 22-Jul-03 1,910 7.25 292 108 5.2 90.8 1,080 <0.5 39.2 305 1.1 1,380 1,200 <0.5 881 28-Oct-03 2,620 7.5 541 153 4 112 . . . 884 <0.5 37.6 1,300 . . . 1.06 2,610 2,000 <0.5 724 04-Feb-04 2,590 7.33 591 156 5 124 48.3 887 <0.5 35.4 1,490 46.5 1.04 2,850 2,100 <0.5 727 09-Jun-04 2,730 7.5 495 118 4.5 106 . . . 877 <0.5 34.8 1,290 . . . 0.93 2,490 1,700 <0.5 718 20-Oct-04 2,920 7.6 485 127 4.7 109 . . . 843 <0.5 32.4 1,170 . . . 1.02 2,350 1,700. <0.5 691 03-P-06 22-Jul-03 1,520 7.69 209 69.8 4.6 54.1 . . . 750 <0.5 50.9 292 0.94 1,050 810 <0.5 615 28-Oct-03 1,690 7.64 259 80.9 3.4 58 . . . 909 <0.5 48.9 290 — 1 1,200 980 <0.5 745 04-Feb-04 1,560 7.47 274 81.2 3.6 60.7 23.2 871 <0.5 49.8 319 22.3 1.04 1,220 1,000 <0.5 714 Table 7.12 Aqueous Data: Indicator Parameter Concentrations Monitoring Station Q Q E Q E o u o c < o o • (A Q « O eo O O CO O U n in O a (A •a CO co X < o 0. t - CL o o 09-Jun-04 1,620 7.65 234 80.1 4.5 59.2 . . . 794 <0.5 59.7 334 0.97 1,170 910 <0.5 651 20-Oct-04 1,730 7.73 237 82.3 5.3 60.3 . . . 755 <0.5 54.3 329 . . . 1.03 1,140 930 <0.5 619 03-P-06A 20-Oct-04 — . . . — — — — — — — — — - - . . . 03-P-07 22-Jul-03 2,790 7.68 458 92.8 13.7 192 . . . 583 <0.5 68 1,420 0.96 2,530 1,500 <0.5 478 28-Oct-03 2,770 7.7 400 95.2 11.8 208 . . . 654 <0.5 66.4 1,250 . . . 0.96 2,360 1,400 <0.5 536 04-Feb-04 2,480 7.64 432 106 13.6 252 41.5 685 <0.5 77.6 1,290 40.2 1.03 2,510 1,500 <0.5 561 09-Jun-04 2,930 7.67 443 104 12.7 234 . . . 726 <0.5 75.1 1,350 . . . 0.98 2,590 1,500 <0.5 595 20-Oct-04 3,110 7.73 414 93.9 12.7 221 — 752 <0.5 76.1 1,200 . . . 0.98 2,400 1,400 <0.5 616 03-P-08 22-Jul-03 3,230 7.6 351 162 10.9 277 . . . 1,050 <0.5 79.6 1,320 0.92 2,720 1,500 <0.5 862 28-Oct-03 3,320 7.61 334 169 8.7 441 . . . 1,100 <0.5 69.9 1,320 . . . 1.05 2,890 1,500 <0.5 897 04-Feb-04 2,900 7.4 346 178 8 405 49.8 1,050 <0.5 73.2 1,410 48.6 1.03 2,940 1,600 <0.5 860 09-Jun-04 3,530 7.55 335 181 7.8 416 . . . 1,050 <0.5 73.2 1,700 . . . 0.91 3,230 1,600 <0.5 860 20-Oct-04 3,800 7.56 324 167 7.9 446 — 1,030 <0.5 74.5 1,450 — 1.01 2,980 1,500 <0.5 840 03-P-09 22-Jul-03 2,620 7.47 345 162 9.9 104 . . . 1,420 <0.5 36.3 691 0.92 2,050 1,500 <0.5 1,160 28-Oct-03 2,720 7.63 444 188 6 113 — 1,340 <0.5 32.6 868 . . . 1.05 2,330 1,900 <0.5 1,100 04-Feb-04 2,620 7.24 542 174 4.9 106 46.3 1,390 <0.5 36.5 1,150 47.7 0.97 2,710 2,100 <0.5 1,140 09-Jun-04 2,790 7.41 398 163 5.5 144 . . . 1,230 <0.5 36 899 — 1 2,270 1,700 <0.5 1,010 20-Oct-04 2,780 7.46 348 130 4.7 107 — 1,260 <0.5 33.7 727 — 0.91 1,990 1,400 <0.5 1,030 03-P-10 22-Jul-03 1,690 7.81 147 99.3 6.5 119 — 863 <0.5 52.5 285 0.97 1,140 770 <0.5 708 28-Oct-03 1,590 7.85 140 99.8 3.7 119 — 1,060 <0.5 49.7 93.8 . . . 1 1,040 760 <0.5 866 04-Feb-04 1,460 7.47 113 96.6 2.5 114 19.1 1,060 <0.5 56.3 72.9 20.4 0.93 989 680 <0.5 867 (Duplicate) 04-Feb-04 — . . . . . . . . . . . . . . . . . . . . . . . . . . . — . . . . . . . . . . . . . . . 09-Jun-04 1,750 7.82 152 118 3.7 126 — 1,070 <0.5 57.7 152 . . . 1.04 1,150 870 <0.5 880 20-Oct-04 1,950 7.76 142 127 3.2 118 — 1,080 <0.5 55.5 221 — 0.98 1,210 880 <0.5 882 to. oo NOTES: 1. — in detail data row(s) denotes parameter not analyzed. Table 7.12 Aqueous Data: Indicator Parameter Concentrations Monitoring Station Date <d-m-y> x (mg/L) (mgA.) (mg/L) (mg/L) B en ze ne  To lu en e E th yl be nz en e X yl en e- m & p X yl en e- o X yl en es -t ot al  Su m  B TE X  (mgA.) (mgA.) (mgA.) (mgA.) (mgA.) (mgA.) (mgA.) 0.4391 1.909 0.02598 ... ... 12.92 <0.15 0.6 <0.15 7.8 <0.15 (7.80 - 7.95) 0.09 0.1 <0.03 4.55 0.44 4.99 0.1 0.49 1.9 — ... 17 0.042 0.34 1.1 ... ... 7.5 0.02 0.04 0.46 3.37 0.3 3.67 (0.03) 0.06 0.52 3.6 0.33 3.93 <0.04 0.08 1.04 6.48 0.63 7.11 <0.04 0.09 0.77 5.38 0.53 5.91 0.052 0.21 0.66 ... ... 4.24 0.077 0.4 0.87 ... ... 5.09 0.03 0.16 0.81 ... ... 5.68 <0.04 0.15 0.79 ... ... 9.6 <0.04 <0.04 0.49 ... ... 6.6 7.1 0.038 0.054 0.459 3.95 0.254 4.2 4.8 <0.04 (0.07) 0.79 ... ... 6.27 7.13 0.021 0.035 0.566 ... ... 4.18 4.80 (0.013) 0.026 0.879 5.41 0.596 6.01 6.93 (0.013) 0.029 0.682 4.41 0.474 4.88 5.60 (0.010) (0.014) 0.558 3.28 0.176 3.46 4.04 (0.010) (0.010) 0.706 ... ... 4.25 4.98 (0.012) 0.035 0.481 ... 3.41 (0.009) 0.015 0.533 2.3 0.319 2.62 0.014 0.022 0.647 2.69 0.388 3.08 (0.014) 0.036 0.517 ... ... 3.63 0.014 0.023 0.625 2.77 0.386 3.16 (0.017) 0.043 0.627 ... . . . 4.25 0.014 0.025 0.627 2.78 0.393 3.17 o o o o o X o u o X o X IO LO SO 93-P-34 (Pre-Purge) (Post-Purge) (Post-Recovery) (Pre-Purge) (Post-Purge) (Post-Recovery) (Post-Purge) 93-P-34A1 93-P-34A2 93-P-34B1 93-P-34B2 29-Oct-93 03- Oct-96 23-NOV-98 05-NOV-99 15-Jun-00 02-Nov-OO 17- Jul-02 26-Aug-02 26- Aug-02 27- Aug-02 21-Feb-03 05-Jun-03 05-Jun-03 05-Jun-03 25-Jun-03 23-Jul-03 28- Oct-03 04- Feb-04 08- Jun-04 09- Jul-04 09-Jul-04 18- Aug-04 19- Oct-04 09-Jun-04 09-Jul-04 09-Jun-04 09-Jul-04 <0.5 <0.003 0.051 0.051 . . . <0.5 0.017 0.028 0.011 . . . <0.5 <0.003 (0.005) (0.005) . . . <0.5 <0.003 0.007 0.007 . . . <0.5 <0.02 <0.003 <0.02 . . . <0.5 <0.02 0.18 0.18 3.3 <0.5 <0.003 (0.003) (0.003) <0.01 <0.5 <0.003 (0.003) (0.003) 2.2 <5 <0.05 0.06 0.06 7.28 <0.5 <0.003 (0.005) (0.005) <0.01 <0.5 <0.02 <0.003 <0.02 . . . <0.5 <0.003 <0.003 <0.003 . . . <0.5 (0.005) (0.005) <0.003 . . . <0.5 <0.003 0.026 0.026 . . . <0.5 <0.003 <0.003 <0.003 . . . <0.5 <0.003 (0.004) (0.004) . . . <0.5 <0.003 <0.003 <0.003 . . . <0.5 <0.003 <0.003 <0.003 <0.5 <0.003 <0.003 <0.003 . . . <0.5 <0.003 <0.003 <0.003 . . . <0.5 <0.003 <0.003 <0.003 <0.5 <0.003 <0.003 <0.003 . . . <0.5 <0.003 <0.003 <0.003 . . . <0.5 <0.003 <0.003 <0.003 . . . 11.8 5.6 9.3 34 9.4 5.2 2.2 0.7 3.2 2.7 0.4 3.3 0.9 3 0.9 3.4 1.3 3.5 5.1 11 5.2 6.3 7.2 12.8 10.1 1.5 0.4 Table 7.12 Aqueous Data: Indicator Parameter Concentrations Monitoring Station Date m E 3 in o CD o o x a. o CO o o o o co O O m O (d-m-y) (mgA.) (mgA.) (mgA.) (mgn.) (mgn.) (mgn.) (mgn.) (mgn.) (mgA.) (mgn.) (mgA.) (mgn.) (mgn.) (mgA.) (mgA.) (mgn.) (mgn.) (mg/L) 93-P-34B3 09-Jun-04 <0.5 <0.003 <0.003 <0.003 (0.016) 0.04 0.565 3.87 1 93-P-34C1 09-Jun-04 <0.5 <0.003 <0.003 <0.003 0.018 0.043 0.613 4.18 2.1 . . . . . . 09-Jul-04 <0.5 <0.003 <0.003 <0.003 . . . 0.015 0.025 0.614 2.75 0.391 3.14 . . . 3.8 — — 18-Aug-04 <0.5 <0.003 0.011 0.011 . . . <0.009 (0.016) 0.5 3.02 0.216 3.24 . . . 0.4 . . . . . . (Duplicate) 18-Aug-04 <0.5 <0.003 <0.003 <0.003 . . . (0.009) 0.018 0.454 2.73 0.196 2.93 — 0.3 . . . — 93-P-34C2 09-Jun-04 <0.5 <0.003 <0.003 <0.003 . . . 0.023 0.054 0.751 4.63 2.8 —. . . . 09-Jul-04 <0.5 <0.003 <0.003 <0.003 — 0.016 0.028 0.654 3.13 0.425 3.56 . . . 3.5 . . . — 93-P-34C3 09-Jun-04 <0.5 <0.003 <0.003 <0.003 . . . 0.022 0.053 0.782 - - 4.78 . . . 3.1 . . . . . . 93-P-34 POST PURGE NEW BAILER 09-Jul-04 <0.5 <0.003 <0.003 <0.003 - (0.013) 0.028 0.9 5.04 0.601 5.64 . . . 3.9 - - 93-P-35 23-NOV-98 . . . . . . . . . 0.24 0.81 <0.04 7.04 1.85 8.89 12.6 05-Nov-99 . . . . . . . . . . . . . . . 0.17 0.3 <0.0005 . . . . . . 7.6 . . . . . . . . . — 02-Nov-OO . . . . . . . _ . . . . . . 0.091 0.48 0.57 . . . . . . 7 . . . . . . — . . . . . . 23-May-02 . . . . . . . . . . . . . . . 0.066 0.43 0.2 . . . . . . 3.8 9.4 4.9 25 50 . . . 17-Jul-02 <0.5 0.018 0.132 0.114 . . . 0.16 0.79 0.18 4.27 1.13 5.4 . . . . . . . . . . . . 9.1 (Post-Purge) 27-Aug-02 <0.5 0.085 0.091 0.006 . . . 0.23 1.1 0.52 5.26 1.39 6.65 . . . . . . . . . . . . 12.6 (Post-Recovery) 27-Aug-02 <0.5 0.035 0.035 <0.003 . . . 0.27 1.79 0.98 10.7 2.44 13.1 . . . . . . . . . . . . 31.1 21-Feb-03 <0.5 <0.02 <0.003 <0.02 . . . . . . . . . . . . . . . . . . . . . . . . . . . — . . . 11-Mar-03 . . . . . . . . . . . . . . . 0.23 1.63 1.08 . . . . . . 16.9 . . . 2.9 . . . . . . — 25-Jun-03 <5 <0.05 0.09 0.09 5.19 0.17 1.4 0.079 . . . . . . 12 14 <0.1 . . . . . . 23-JUI-03 <0.5 <0.003 <0.003 <0.003 <0.01 0.11 0.47 0.52 . . . . . . 7.55 8.65 . . . 8.4 — . . . 28-Oct-03 <0.5 <0.02 0.02 (0.02) . . . 0.12 0.55 0.68 8.01 2.25 10.3 11.7 . . . 75.5 . . . — 04-Feb-04 <0.5 0.016 0.019 (0.003) . . . 0.19 0.5 0.53 . . . . . . 7.5 8.7 . . . 2.9 . . . . . . 10.8 09-Jun-04 <0.5 0.027 0.027 <0.003 . . . 0.107 0.197 0.22 2.85 0.982 3.83 4.35 . . . 1.1 . . . . . . 5.7 18-Aug-04 <0.5 0.023 0.023 <0.003 . . . 0.09 0.14 0.39 4.37 1.11 5.48 6.10 . . . 1.5 . . . . . . 27-Aug-02 <0.5 0.025 0.038 0.013 . . . 0.14 0.75 0.4 5.22 1.48 6.7 ' 8.0 . . . . . . . . . . . . 13.7 05-Jun-03 <0.5 <0.02 <0.003 <0.02 <0.01 0.15 0.63 0.27 . . . . . . 4.1 5.2 . . . 10.9 23 . . . — 20-Oct-04 <0.5 0.043 0.066 0.023 — 0.111 0.115 0.202 . . . . . . 4.31 4.74 . . . 2.4 2.5 — 93-P-35C1 18-Aug-04 <0.5 <0.003 <0.003 <0.003 . . . 0.2 0.1 0.48 4.78 1.2 5.98 . . . 0.9 . . . . . . — to O Table 7.12 Aqueous Data: Indicator Parameter Concentrations 0} "D z CO z CO cu N C «a E a o X UJ O o O ,1 ,1 o o Monitoring dr ox l CO ca OJ )2 +N ( 01 CD CO Ip hi d nz en  lu en e ly lb e le ne - le ne -i le ne s H m E C F 1 Li_ o CN U. o H (C 1 o X H (C 3 H (C 3 Station Date >i X O z c-» z O Z 3 in m o i - UJ >. X >. X >. X 3 in X 0. X 0. X Q. UJ i - 0. r— 0. 0. i - (d-m-y) (mgA.) (mgA.) (mgA.) (mgA.) (mgA.) (mgA.) (mgA.) (mgA.) (mgA.) (mgA.) (mgA.) (mgA.) (mgA.) (mgA.) (mgA.) (mgA.) (mgA.) (mgA.) (mgA.) 34-MW1 21-Jul-03 <0.5 0.28 0.505 0.225 <0.01 <0.03 0.14 0.47 5.57 6.18 3.2 27-Oct-03 <0.5 <0.003 <0.003 <0.003 . . . 0.014 <0.007 0.564 3.89 (0.007) 3.9 4.5 . . . 4.9 . . . 04-Feb-04 <0.5 (0.003) 0.01 0.007 . . . <0.02 <0.02 0.56 . . . . . . 3.38 3.94 . . . 1.7 . . . 4.8 08-Jun-04 <0.5 0.008 0.008 <0.003 . . . (0.011) <0.006 0.426 . . . . . . 2.6 3.0 . . . 0.7 . . . 18-Aug-04 <0.5 <0.003 <0.003 <0.003 . . . (0.010) (0.013) 0.398 2.35 0.021 2.37 2.79 . . . 0.3 . . . . . . — 19-Oct-04 <0.5 <0.003 <0.003 <0.003 — <0.004 <0.004 0.671 — — 1.54 2.21 — 6.3 (0.1) . . . . . . . . . . . . to 4 ^ 34-MW1B 34-MW1C 34-MW2A 34-MW2C 34-MW2-LF1 34-DP2 19-Nov-03 04-Feb-04 19-NOV-03 04-Feb-04 <0.5 <0.5 <0.5 <0.5 0.031 0.115 0.084 <0.003 (0.005) (0.005) 0.013 0.021 <0.003 0.008 22-Jul-03 <0.5 23-JUI-03 29-Oct-03 <0.5 <0.5 0.26 <0.003 (0.004) 22-Jul-03 27-Oct-03 03-Feb-04 08-Jun-04 20-Oct-04 <0.5 <0.5 <0.5 <0.5 <0.5 0.01 <0.003 0.007 <0.003 <0.003 0.008 0.008 34-MW1-LF1 18-Aug-04 <0. .5 <0. .003 (0.004) (0.004) 34-MW2 29-CM-03 <0. .5 <0. .003 <0.003 <0.003 03-Feb-04 <0. .5 <0. .003 <0.003 <0.003 04-Feb-04 <0. .5 <0. .003 (0.005) (0.005) 08-Jun-04 <0. .5 <0. .003 <0.003 <0.003 18-Aug-04 <0. .5 <0. .003 0.01 0.01 19-Oct-04 <0. .5 <0. .003 <0.003 <0.003 0.59 <0.003 0.017 <0.003 0.013 18-Aug-04 <0.5 <0.003 <0.003 <0.003 0.015 <0.003 0.007 (0.003) <0.003 (0.005) <0.003 <0.003 (0.003) <0.003 <0.01 <0.01 (0.007) <0.006 0.155 0.008 <0.004 0.322 (0.012) <0.009 0.444 (0.010) <0.009 0.638 (0.008) 0.014 0.381 (0.006) 0.022 0.75 0.004 <0.002 0.213 (0.003) <0.002 0.281 0.0012 (0.0006) 0.0982 (0.007) 0.017 0.42 <0.0004 <0.0004 0.0309 <0.03 0.08 0.58 <0.03 (0.05) 0.59 0.003 0.003 0.403 (0.009) 0.024 0.532 (0.05) 0.26 0.75 0.029 0.2 0.577 <0.2 (0.3) 0.6 0.037 0.184 0.535 (0.04) 0.16 0.7 2.36 1.9 1.44 3.23 3.81 4.83 1.81 2.26 0.066 4.29 4.19 0.14 0.255 0.116 0.281 0.758 0.788 0.88 2.5 3.86 0.771 1.01 0.262 2.02 0.0754 5.56 4.94 1.51 6.09 4.31 4.6 5.71 4.64 0.988 1.29 0.362 2.46 0.106 7.15 5.12 0.9 5.4 6.61 0.9 1.1 1.7 1.8 0.2 8.6 0.8 2.6 (0.1) 0.4 0.2 3.1 3.6 7.6 0.4 3 0.8 2 1.9 2 3.3 5.8 1.6 3.5 <0.1 9 7.4 Table 7.12 Aqueous Data: Indicator Parameter Concentrations t o z in o _ O o o o •D CB o> o. <o CO A U O z cn i - i z N C s a *- X UJ O O o o o Monitoring dr ox i Ui n CN >2 +N ( in « en Ip hl d n z e n i lu en e ly lb e le n e- i le n e- i le ne s 1- m E LL o LZ o CN U . o H (C 1 H (C 1 H (C 3 H (C 3 Station Date >• X O z cj z O Z 3 CO 0) m o i - UJ > X >. X >. X 3 in X CL X a . X a. UJ l - a . Q. 1- a. i - (d-m-y) (mgn.) (mgn.) (mgn.) (mgn.) (mgn.) (mgn.) (mgn.) (mgn.) (mgn.) (mgn.) (mgn.) (mgn.) (mgA.) (mgn.) (mgn.) (mgn.) (mgA.) (mgn.) (mgA.) 34-DP3 22-Jul-03 <0.5 0.011 0.084 0.073 <0.01 <0.002 <0.002 0.181 0.323 0.504 0.5 29-Oct-03 <0.5 <0.003 <0.003 <0.003 . . . <0.0006 0.0025 0.187 0.264 0.0149 0.279 0.469 . . . 0.2 . . . . . . . . . . . . 03-Feb-04 <0.5 <0.003 <0.003 <0.003 — <0.002 <0.002 0.209 . . . . . . 0.108 0.317 . . . 0.3 . . . . . . . . . 0.6 . . . 08-Jun-04 <0.5 <0.003 0.007 0.007 . . . <0.001 0.004 0.211 0.289 0.014 0.303 0.518 . . . 0.3 . . . . . . . . . 0.9 19-Oct-04 <0.5 <0.003 <0.003 <0.003 . . . 0.002 0.003 0.0836 0.127 0.0035 0.131 0.220 . . . 0.4 . . . . . . . . . . . . 34-HP-2 08-Jun-04 <0.5 <0.02 0.075 0.075 . . . <0.02 0.25 0.47 3.43 0.68 4.11 . . . 4.7 . . . . . . . . . 10.1 . . . 34-HP-3 08-Jun-04 <0.5 <0.02 <0.003 <0.02 . . . <0.0009 0.0053 0.0061 0.032 0.0068 0.0388 . . . 0.2 . . . . . . . . . 0.3 . . . 34-ML1 23-Jul-03 <0.5 0.268 0.276 0.008 <0.01 <0.02 0.07 0.36 3.4 2.1 . . . . . . 34-ML6 34-ML7 35-MW1 23-JUI-03 <0.5 0.025 0.035 0.01 <0.01 <0.006 (0.011) 0.053 . . . . . . 0.47 -. 0.3 27-Oct-03 <0.5 <0.003 <0.003 <0.003 . . . 0.0018 <0.0004 0.107 0.173 (0.0005) 0.174 -. 0.9 - 03-Feb-04 <0.5 <0.003 <0.003 <0.003 . . . (0.001) <0.001 0.078 . . . . . . 0.144 -. 0.8 0.9 08-Jun-04 <0.5 <0.003 <0.003 <0.003 . . . (0.0005) <0.0004 0.0315 . . . . . . 0.0677 -. <0.1 20-Oct-04 <0.5 <0.003 <0.003 <0.003 . . . 0.0017 0.0016 0.059 0.196 0.0023 0.198 -• (0-1) 23-Jul-03 <0.5 <0.003 <0.003 <0.003 <0.01 <0.009 0.018 0.097 0.81 . . 0.6 28-Oct-03 <0.5 <0.003 <0.003 <0.003 . . . (0.005) <0.003 0.355 1.9 0.067 1.97 -. 1 03-Feb-04 <0.5 <0.003 0.007 0.007 . . . 0.005 <0.002 0.238 . . . . . . 1.19 -. 0.3 1.6 08-Jun-04 <0.5 <0.003 0.047 0.047 . . . (0.004) <0.004 0.264 . . . . . . 1.26 .. 0.3 20-Oct-04 <0.5 <0.003 <0.003 <0.003 . . . 0.004 (0.003) 0.316 1.5 0.142 1.64 -• 2.7 23-Jul-03 <0.5 <0.003 <0.003 <0.003 <0.01 <0.002 0.006 0.025 0.226 . . 0.3 28-Oct-03 <0.5 <0.003 0.01 0.01 . . . 0.0019 0.0064 0.0238 0.135 0.0205 0.156 -. <0.1 03-Feb-04 <0.5 0.006 0.107 0.101 . . . 0.0017 <0.0004 0.0261 . . . . . . 0.119 -. <0.1 0.2 08-Jun-04 <0.5 <0.003 0.03 0.03 •— 0.0011 <0.0004 0.0249 — . . . 0.0611 .. <0.1 - 20-Oct-04 <0.5 <0.003 0.022 0.022 . . . 0.0008 0.0009 0.0296 0.0575 (0.0007) 0.0582 - <0.1 23-Jul-03 <0.5 <0.003 <0.003 <0.003 <0.01 0.14 0.87 0.32 8.35 9.68 3.6 - 28-Oct-03 <0.5 <0.003 <0.003 <0.003 . . . 0.1 0.057 0.196 2.48 0.258 2.74 3.09 5.7 04-Feb-04 <0.5 <0.003 <0.003 <0.003 - . . . 0.104 <0.009, 0.224 . . . . . . 2.27 2.60 0.6 2.9 09-Jun-04 <0.5 (0.005) (0.005) <0.003 . . . 0.127 0.136 0.28 2.62 0.613 3.23 3.77 1.1 5 20-Oct-04 <0.5 <0.003 0.01 0.01 . . . 0.087 0.198 0.188 . . . . . . 3.56 4.03 2.7 1.1 Table 7.12 Aqueous Data: Indicator Parameter Concentrations Monitoring £ c M c N c o a . e 3 > o > c i > cu E O O O x x i x Station Date x z z z c o m t - u j x x x w a o - a H K H H (d-m-y; (mg/L) (mg/L; (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mgA) (mg/L) (mgA.) (mc X UJ op o" O O o © CD O (C 6 LL LL CNJ o o o X X X a a. CL (mgA.) (mgA.) (mgA.) 35-MW2 28-Oct-03 <0.5 <0.003 <0.003 <0.003 . . . 0.128 <0.004 0.386 2.91 0.371 3.28 3.79 1.8 -03-Feb-04 <0.5 <0.003 (0.003) (0.003) . . . 0.135 <0.009 0.194 . . . . . . 2.26 2.59 1.4 3.4 04-Feb-04 <0.5 <0.003 (0.003) (0.003) — 0.108 <0.004 0.153 . . . . . . 1.59 1.85 1.1 2.7 0*9-Jun-04 <0.5 <0.003 <0.003 <0.003 . . . 0.146 <0.004 0.177 1.26 0.366 1.63 1.95 2.2 4.2 (Duplicate) 09-Jun-04 . . . . . . . . . . . . . . . 0.136 <0.004 0.164 1.19 0.345 1.54 1.84 3 4.9 20-0ct-04 <0.5 <0.02 <0.003 <0.02 — 0.128 <0.004 0.17 — — 1.77 2.07 7 0.3 35-MW2A 23-Jul-03 <0.5 0.041 0.049 0.008 <0.01 0.09 0.126 0.171 - - 3.38 3.77 2 35-MW2C 23-Jul-03 <0.5 0.011 0.011 <0.003 <0.01 0.085 0.112 0.185 3.29 3.67 2.1 — 28-Oct-03 <0.5 (0.003) 0.012 0.009 — 0.106 <0.004 0.26 2.15 0.177 2.33 2.70 0.6 35-DP1 23-Jul-03 <0.5 0.008 0.048 0.04 <0.01 0.13 0.93 0.29 5.92 7.27 2.8 28-Oct-03 <0.5 <0.003 <0.003 <0.003 . . . 0.15 1.19 0.48 5.92 1.83 7.75 9.57 1.2 -09-Jun-04 <0.5 <0.003 0.028 0.028 . . . 0.184 0.769 0.478 5 1.53 6.53 7.96 4.5 12.7 20-Oct-04 <0.5 <0.003 <0.003 <0.003 — 0.12 0.6 0.36 5.33 1.59 6.92 8.00 1.6 35-DP2 23-Jul-03 <0.5 <0.003 0.012 0.012 <0.01 0.22 0.16 0.62 5.17 6.17 2.6 28-Oct-03 <0.5 <0.003 0.009 0.009 . . . 0.089 <0.004 0.371 1.78 0.445 2.23 2.69 1 03-Feb-C4 <0.5 0.022 0.053 0.031 . . . 0.058 <0.004 0.323 . . . . . . 1.48 1.86 1.5 2.8 09-Jun-04 <0.5 <0.003, <0.003 <0.003 . . . 0.08 0.008 0.314 1.47 0.332 1.8 2.2 0.7 3 20-Oct-04 <0.5 <0.003 <0.003 <0.003 — 0.078 0.013 0.26 1.48 0.345 1.83 2.18 0.7 35-DP3 23-Jul-03 <0.5 0.022 0.231 0.209 <0.01 <0.0004 <0.0004 <0.0004 0.0066 0.0066 <0.1 28-Oct-03 <0.5 <0.003 0.012 0.012 . . . 0.001 0.0033 0.0032 0.0199 0.0056 0.0255 0.0330 <0.1 -03-Feb-04 <0.S <0.003 0.017 0.017 . . . <0.0004 <0.0004 <0.0004 . . . — <0.0008 0 <0.1 <0.1 09-Jun-04 <0.5 <0.003 <0.003 <0.003 . . . (0.0005) 0.001 0.0019 0.0114 0.003 0.0144 0.0178 <0.1 <0.1 20-Oct-04 <0.5 <0.003 0.044 0.044 . . . 0.0011 0.0026 0.0035 0.0198 0.0055 0.0253 0.0325 <0.1 35-HP-1 08-Jun-04 <0.5 <0.02 0.035 0.035 . . . 0.029 0.108 0.056 0.483 0.149 0.632 . . . 0.3 1.2 35-HP-2 08-Jun-04 <0.5 <0.02 <0.003 <0.02 - 0.0025 0.0096 0.0223 0.12 0.0352 0.155 . . . 0.2 0.4 35-HP-3 08-Jun-04 <0.5 0.03 0.14 0.11 . . . . . . Table 7.12 Aqueous Data: Indicator Parameter Concentrations n ° ID „, c x to § 01 2 = 2 « Monitoring -o O J CN n Q . £ 2 >. o> o S f= Station Date £ i i § 5 cS ,2 E £ £ 5" 5 (d-m-y) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) a re E o to i © 0)  aj >• X >« X >« X (mgA-) X UJ m <D o O 5 o O (C 6 <D O A CJ LL LL eg u. o CJ CJ X X X a. 0. a. (mgn.) (mgn.) CJ o X X 35-ML1 23-Jul-03 <0 .5 0.059 0.067 0.008 <0.01 0.142 0.559 0.249 . . . . . . 3.57 1.6 28-Oct-03 <0 .5 <0.003 0.006 0.006 . . . 0.141 (0.003) 0.292 2.16 0.648 2.81 0.8 04-Feb-04 <0 .5 0.008 0.036 0.028 . . . . . . . . . . . . . . . . . . . . . 09-Jun-04 <0 .5 <0.003 <0.003 <0.003 . . . 0.222 (0.009) 0.535 3.3 1.03 4.33 3.5 8. 20-Oct-04 . . . . . . . . . . . . . . . 0.18 <0.006 0.484 2.21 1.17 3.38 6.6 35-ML2 23-Jul-03 <0 .5 0.501 0.571 0.07 <0.01 0.0117 0.0052 0.0185 . . . 0.147 0.8 28-Oct-03 <0 .5 <0.003 (0.003) (0.003) . . . 0.0105 0.0015 0.0234 0.114 0.0173 0.131 3.5 04-Feb-04 <0 .5 <0.02 0.03 (0.03) . . . 0.035 0.002 0.042 . . . . . . 0.33 0.5 0. 09-Jun-04 <0 .5 <0.003 <0.003 <0.003 . . . 0.0276 0.0018 0.0369 0.299 0.0448 0.344 0.2 0.' 20-Oct-04 <0. .5 <0.003 0.024 0.024 . . . 0.0407 0.0025 0.0737 0.464 0.0746 0.539 0.6 - 35-ML3 23-JUI-03 <0. .5 6.33 10.9 4.57 <0.01 0.0044 0.0069 0.0036 0.0624 0.2 29-Oct-03 <0 .5 0.113 0.134 0.021 . . . 0.0058 0.0031 0.0157 0.0687 0.021 0.0897 0.4 04-Feb-04 <0. .5 <0.003 (0.004) (0.004) . . . 0.014 (0.001) 0.012 . . . . . . 0.101 <0.1 0.; 09-Jun-04 <0. .5 <0.003 <0.003 <0.003 . . . 0.0086 0.0038 0.0147 0.0655 0.0137 0.0792 <0.1 0.; 20-0ct-04 <0 .5 <0.003 0.018 0.018 . . . 0.0107 0.0016 0.0135 0.0881 0.01 0.0981 <0.1 35-ML7 23-Jul-03 <0. .5 0.107 0.166 0.059 <0.01 0.011 0.022 0.01 0.158 0.3 29-Oct-03 . . . . . . . . . . . . . . . 0.0701 0.0018 0.0336 0.11 0.0224 0.132 0.3 29-Oct-03 <0. .5 <0.003 (0.004) (0.004) . . . . . . . . . . . . . . . . . . . . . — _ 04-Feb-04 <0 .5 (0.005) 0.017 0.012 . . . 0.0306 <0.0004 0.015 . . . . . . 0.0359 <0.1 0.: 09-Jun-04 <0. .5 <0.003 0.008 0.008 . . . 0.017 0.0019 0.024 0.064 0.0103 0.0743 <0.1 0.: 20-Oct-04 <0. .5 <0.003 0.014 0.014 . . . 0.007 0.0012 0.01 0.0263 0.0027 0.029 <0.1 03-P-05 22-Jul-03 <0. .5 <0.003 0.044 0.044 <0.01 0.036 0.014 0.445 2.15 2.65 <0.1 28-Oct-03 <0. .5 <0.003 <0.003 <0.003 . . . 0.0141 <0.0006 0.184 0.375 0.006 0.381 0.579 16.6 _ 04-Feb-04 <0. .5 <0.003 0.007 0.007 . . . 0.0033 <0.0004 0.0271 . . . . . . 0.0845 0.1149 0.4 0. 09-Jun-04 <0. .5 <0.003 <0.003 <0.003 . . . (0.0007) <0.0004 0.01 . . . . . . 0.0177 0.03 (0.1) 20-Oct-04 <0. 5 <0.003 <0.003 <0.003 . . . (0.0007) <0.0004 0.0104 . . . . . . 0.0136 0.0247 0.3 <0.1 03-P-06 22-Jul-03 <0. .5 <0.003 (0.005) (0.005) <0.01 <0.0004 <0.0004 0.0036 0.008 0.012 0.5 28-Oct-03 <0. 5 <0.003 <0.003 <o!oo3 . . . <0.0004 <0.0004 0.0575 0.019 (0.0005) 0.0195 0.0770 2.6 _ 04-Feb-04 <0. 5 <0.003 (0.004) (0.004) . . . <0.0004 <0.0004 0.0049 . . . . . . 0.0017 0.0066 0.2 0. Table 7.12 Aqueous Data: Indicator Parameter Concentrations Monitoring Station Date <d-m-y> O z o z o> o> 0) c <D c X} N 3 >. o O IZ to t- LU (mgn.) (mgJL) (mgn.) <0.0004 <0.0004 (0.0005) <0.0004 <0.0004 (0.0006) <0.0004 <0.0004 (0.0006) • Q. n ° 9 X E o Ul LU <b a a m a) o o E >> X >• X >• X 3 Ul (mgA.) (mgn.) (mgA.) (mgA.) 0.0016 0.0021 ... ... (0.0008) 0.0014 <0.0008 <0.0004 <0.0012 0.0006 (J (D o o X CL O o o X a. o X o. o X a. t- o O O O (mgn.) (mgA.) (mg/L) (mgn.) (mgA.) (mgn.) (mg/L) 03-P-06A 03-P-07 t o Ut 09-Jun-04 20-Oct-04 20-Oct-04 <0.5 <0.5 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.1 <0.1 <0.1 <0.1 22-Jul-03 <0.5 0.007 0.029 0.022 <0.01 <0.0004 <0.0004 <0.0004 0.002 0.002 (0.1) . . . . . . 28-Oct-03 <0.5 <0.003 <0.003 <0.003 <0.0004 <0.0004 <0.0004 <0.0008 <0.0004 <0.0012 0 <0.1 . . . . . . 04-Feb-04 <0.5 <0.003 <0.003 <0.003 <0.0004 <0.0004 <0.0004 <0.0008 0 <0.1 — <0.1 09-Jun-04 <0.5 (0.005) 0.013 0.008 <0.0004 <0.0004 <0.0004 <0.0008 0 <0.1 . . . . . . 20-Oct-04 <0.5 <0.003 <0.003 <0.003 <0.0004 <0.0004 <0.0004 <0.0008 0 <0.1 <0.1 . . . 22-Jul-03 <0.5 (0.004) 0.104 0.1 <0.01 <0.0004 <0.0004 <0.0004 <0.0008 0 <0.1 . . . . . . 28-OC1-03 <0.5 <0.003 0.019 0.019 <0.0004 <0.0004 <0.0004 <0.0008 <0.0004 <0.0012 0 <0.1 . . . . . . 04-Feb-04 <0.5 <0.003 0.016 0.016 <0.0004 <0.0004 <0.0004 <0.0008 0 <0.1 . . . <0.1 09-Jun-04 <0.5 <0.003 0.07 0.07 <0.0004 <0.0004 <0.0004 <0.0008 0 <0.1 . . . . . . 20-Oct-04 <0.5 <0.003 <0.003 <0.003 <0.0004 <0.0004 0.0016 0.0101 0.0117 <0.1 <0.1 . . . 03-P-09 22-JUI-03 <0. 5 0.007 0.059 0.052 <0.01 <0.0004 <0. 0004 <0.0004 <0.0008 0 28-Oct-03 <0. 5 <0.003 <0.003 <0.003 0.001 <0. .0004 0.0022 <0.0008 <0.0004 <0.0012 0.0032 04-Feb-04 <0. .5 <0.003 (0.004) (0.004) (0.0005) <0. .0004 <0.0004 <0.0008 0.0005 09-Jun-04 <0. .5 <0.003 0.006 0.006 (0.0007) <0. 0004 0.0026 <0.0008 0.0033 20-Oct-04 <0. .5 <0.003 <0.003 <0.003 <0.0004 <0. 0004 0.0011 <0.0008 0.0011 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 03-P-10 22-Jul-03 <0.5 <0.003 (0.003) (0.003) <0.01 <0.0004 <0.0004 0.0158 0.0385 0.0543 0.5 . . . . . . 28-Oct-03 <0.5 <0.003 0.291 0.291 0.0008 <0.0004 0.122 0.0711 0.001 0.0721 0.1941 2.3 . . . . . . 04-Feb-04 <0.5 <0.003 (0.005) (0.005) (0.0007) <0.0004 0.0941 0.0477 0.1418 0.3 . . . 0.4 (Duplicate) 04-Feb-04 . . . . . . . . . . . . <0.001 <0.001 0.113 0.049 0.162 0.4 . . . 0.5 09-Jun-04 <0.5 <0.003 <0.003 <0.003 (0.0005) <0.0004 0.0608 0.02 0.08 (0.1) . . . . . . 20-Oct-04 <0.5 <0.003 <0.003 <0.003 (0.0006) <0.0004 0.0881 0.0219 0.1106 0.2 <0.1 NOTES: Table 7.12 Aqueous Data: Indicator Parameter Concentrations o" Q o u O CQ CO 0 in c O O O Q CO Monitoring X X X C O) c Station •ate a. i- 0. t- > 1- o 5 (d-m-y) (mgA.) (mg/L) (mgJL) (mgA.) (mgA.) 93-P-34 29-Oct-93 03-Oct-96 . . . . . . . . . . . . . . . 23-N0V-98 . . . . . . . . . . . . . . . 05-NOV-99 . . . . . . 25 . . . ... 15-Jun-00 . . . . . . . . . . . . . . . 02-Nov-OO . . . . . . 14 . . . . . . 17-Jul-02 ... ... . . . 42.3 0.41 (Pre-Purge) 26-Aug-02 . . . . . . . . . 40 0.305 (Post-Purge) 26-Aug-02 . . . ... . . . 6.64 0.126 (Post-Recovery) 27-Aug-02 . . . . . . . . . 4.41 0.109 21-Feb-03 . . . . . . . . . 14.7 0.094 (Pre-Purge) 05-Jun-03 . . . . . . . . . 16.2 0.16 (Post-Purge) 05-Jun-03 . . . . . . . . . 10.9 0.064 (Post-Recovery) 05-Jun-03 . . . . . . . . . 6.68 0.236 25-Jun-03 . . . . . . 0.48 0.11 23-Jul-03 ... . . . . . . 18.9 1.11 28-Oct-03 . . . . . . . . . 21.2 0.336 04-Feb-04 . . . . . . . . . 0.27 0.079 08-Jun-04 . . . . . . . . . 13.6 0.213 09-Jul-04 . . . . . . . . . 7.53 0.182 (Post-Purge) 09-Jul-04 . . . . . . . . . 8.1 0.483 18-Aug-04 . . . . . . — 9.57 0.615 19-Oct-04 . . . . . . . . . 6.62 0.186 93-P-34A1 09-Jun-04 . . . . . . . . . 5.59 0.24 09-Jul-04 . . . . . . . . . 6.3 0.436 93-P-34A2 09-Jul-04 . . . . . . . . . 7.79 0.44 93-P-34B1 09-Jun-04 . . . 6.91 0.185 09-Jul-04 . . . . . . . . . 8.1 0.502 93-P-34B2 09-Jun-04 ... . . . 4.2 0.18 09-Jul-04 . . . . . . ... 7.7 0.531 E (mgA.) (mgn.) m o «"9A-) (mgA.) (mgA.) to <0.00005 <0.0005 <0.0001 <0.0001 <0.00005 <0.00005 <0.00005 <0.0001 <0.00005 <0.00005 <0.0001 <0.00005 <0.0001 <0.00005 Table 7.12 Aqueous Data: Indicator Parameter Concentrations Monitoring Station Date (d-m-y) o x o X (mgA.) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) E £ •= •= Q . Q . Q CO RJ dl c c i- o o IV < < frngl) (roo/L) (~mg/L) < (mgA.) m <m9n-) m (man.) (m9n.) m (mgA.) m (man.) m (mgA.) o D 93-P-34B3 09-Jun-04 5.44 0.232 to -O 93-P-34C1 (Duplicate) 93-P-34C2 93-P-34C3 09-Jun-04 09-Jul-04 18-Aug-04 18-Aug-04 09-Jun-04 09-Jul-04 5.17 7.93 8.27 0.62 93-P-34 POST PURGE NEW BAILER 09-Jul-04 3.81 8.01 0.234 0.54 0.565 0.516 3.44 0.197 7.64 0.546 0.162 0.44 93-P-35 (Post-Purge) (Post-Recovery) 23-NOV-98 05-NOV-99 02-Nov-OO 23-May-02 17- Jul-02 27-Aug-02 27- Aug-02 21-Feb-03 11-Mar-03 25-Jun-03 23-Jul-03 28- Oct-03 04- Feb-04 09-Jun-04 18- Aug-04 27-Aug-02 05- Jun-03 20-Oct-04 14 26 10 35.6 24.3 20.6 39.2 7.94 55.8 65.6 47.8 53.8 82.5 40 42.4 72.7 1.18 0.915 0.833 1.62 1.25 3.04 3.81 1.81 2.38 2.54 1.72 2.18 2.3 <0.00006 <0.0006 <0.0001 <0.0001 <0.00006 <0.00006 <0.00006 <0.0001 <0.00006 <0.00006 <0.0001 <0.00006 <0.0001 <0.00006 93-P-35C1 18-Aug-04 34 1.28 Aqueous Data: Table 7.12 Indicator Parameter Concentrations CN* o • o O O CO CO in oi c O O o Q CO Monitoring r Z x C Ol c Station Date 0. i- 0. r- > r- o CO S (d-m-y) (mgA.) (mgO.) (mglL) (mgn.) (mgn.) 34-MW1 21-JUI-03 5.13 2.18 27-Oct-03 ... ... 10.1 3.59 04-Feb-04 ... . . . ... 3.32 2.46 08-Jun-04 ... ... ... 4.68 2.34 18-Aug-04 ... ... ... 4.01 1.53 19-Oct-04 ... ... ... 3.16 1.32 34-MW1B 19-Nov-03 5.4 2.33 04-Feb-04 . . . ... ... 2.23 1.59 34-MW1C 19-N0V-03 ... 5.72 2.47 04-Feb-04 ... — . . . 1.08 2.16 34-MW1-LF1 18-Aug-04 ... . . . 5.58 1.06 34-MW2 29-Oct-03 ... 3.82 1.48 03-Feb-04 ... . . . 4.65 1.61 04-Feb-04 ... ... ... 4.06 1.43 08-Jun-04 ... ... ... 6.82 , 2.69 18-Aug-04 . . . ... ... 4.61 1.13 19-Oct-04 ... . . . . . . 5.05 1.53 34-MW2A 22-Jul-03 ... ... 5.09 2.92 34-MW2C 23-Jul-03 3.53 1.87 29-Oct-03 ... ... . . . 2.61 1.87 34-MW2-LF1 18-Aug-04 ... ... ... 0.14 0.534 34-DP2 22-Jul-03 ... 0.13 0.129 27-Oct-03 . . . ... 3.29 0.056 03-Feb-04 ... ... ... 4.03 0.066 08-Jun-04 ... ... . . . 6.91 0.064 20-Oct-04 . . . ... 1.2 0.041 E Q (mgA.) (mgn.) < < C"an.) < «»9fl-) m <man-) to <man.) m m m (m9ft-) co <man.) o (mgA.) Q <m9A-) a (•"an.) to 00 Aqueous Data: Table 7.12 Indicator Parameter Concentrations Monitoring Station Date e\T o o O o en O 0 O LO o X X X 1- 1- i - \rngA.) (mgA.) (maA.) E 5 (d-m-y) (mgA.) g/L (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mgA.) (mg/L) a (mgA.) a (">3*-) to 34-DP3 22-JUI-03 0.11 0.931 29-Oct-03 4.37 0.644 03-Feb-04 6.45 0.977 08-Jun-04 4.37 0.78 19-Oct-04 4.4 0.786 34-HP-2 08-Jun-04 (0.01) 0.101 34-HP-3 08-Jun-04 (0.01) 0.349 34-ML1 23-Jul-03 0.05 0.463 34-ML5 23-JUI-03 0.58 3.33 27-Oct-03 7.66 4.3 03-Feb-04 7.62 3.76 08-Jun-04 5.95 3.1 20-Oct-04 4.71 2.6 34-ML6 23-JUI-03 0.31 2.14 28-Oct-03 7.31 1.33 03-Feb-04 5.02 1.08 08-Jun-04 5.77 0.682 20-Oct-04 7.5 0.516 34-ML7 23-Jul-03 2.02 3.98 28-Oct-03 1.4 4.46 03-Feb-04 1.57 4.65 08-Jun-04 6.44 3.64 20-Oct-04 5.69 3.08 35-MW1 23-Jul-03 15.4 • 4.37 28-Oct-03 49.4 4.51 04-Feb-04 31.1 2.12 09-Jun-04 51.9 2.23 20-Oct-04 78.3 2.19 Table 7.12 Aqueous Data: Indicator Parameter Concentrations 9 9 9 S o g t f g ? Sk * £ * = a «. 2. n c o i n c E o n u <o ra .0 o 01 c o o Monitoring i i i c g S K i g g S g S g S ' S g t l l Station Date h - H i - . = £ c o r ^ < < < m ca ID at m m U Q Q (d-m-y) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mgA.) (mg/L) (mg/L) (mg/L) (mg/L) to © 35-MW2 (Duplicate) 35-MW2A 35-MW2C 35-DP1 3S-DP2 35-DP3 35-HP-1 35-HP-2 35-HP-3 28-Oct-03 03- Feb-04 04- Feb-04 09-Jun-04 09-Jun-04 20-Oct-04 23-Jul-03 23-Jul-03 28-Oct-03 23-Jul-03 28-Oct-03 09-Jun-04 20-Oct-04 23-Jul-03 28-Oct-03 03-Feb-04 09-Jun-04 20-Oct-04 23-Jul-03 28-Oct-03 03-Feb-04 09-Jun-04 20-Oct-04 08-Jun-04 08-Jun-04 08-Jun-04 10.9 14.9 8.66 22.7 29.3 I. 51 6.37 32 37.8 51.1 49.1 13.1 II. 3 11.1 12 12.2 0.1 1.97 1.44 2.27 0.59 0.03 (0.01) <0.01 2.06 0.932 1.27 1.18 1.93 1.8 2.53 1.58 1.17 1.26 1.1 0.512 0.479 0.405 0.81 0.649 1.06 0.739 0.796 0.795 0.814 0.338 0.319 0.488 Table 7.12 Aqueous Data: Indicator Parameter Concentrations o o Monitoring I I I b t a t i o n D a t e » - r - r - . = 5 c o r ^ < < < to to co. co c o m o o o (d-m-y) (mg/L) (mgn.) (mg/L) (mg/L) (mgA.) (mgA.) (mgA.) (mg/L) (mgA.) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mgA.) 35-ML1 23-JUI-03 2.74 2.59 28-Oct-03 17.2 6.64 04-Feb-04 — 27.8 6.74 09-Jun-04 30.7 4.16 20-Oct-04 32 3.84 35-ML2 23-JUI-03 4.7 0.559 U\ 28-Oct-03 8.22 0.731 ^ 04-Feb-04 10.4 0.861 09-Jun-04 9.81 0.893 20-Oct-04 9.35 0.929 35-ML3 23-JUI-03 0.03 0.781 29-Oct-03 0.44 1.06 04-Feb-04 - : 2.43 0.888 09-Jun-04 1.94 0.902 20-Oct-04 0.88 0.613 35-ML7 23-JUI-03 0.95 2.14 29-Oct-03 29-Oct-03 5.25 3.13 04-Feb-04 5.56 4.65 09-Jun-04 4.05 3.66 20-Oct-04 7 3.55 03-P-05 22-Jul-03 5.9 3.73 28-Oct-03 19.3 3.55 04-Feb-04 9.93 1.7 09-Jun-04 5.18 1.44 20-Oct-04 — 7.91 1.89 03-P-06 22-Jul-03 — — — 0.08 0.355 28-Oct-03 5 4.42 04-Feb-04 2.1 3.34 Z9Z c- ti -n o d s s a a & 8 8 2 8 8 8 - 1 , -»• CO o ro o o ro ro o CD 4^ oo 6 I> 6 t- a § g- a E . o 6 6 6 o K K co w CO Ol CO 4> a § S- a E . O O O O ro - - P P 00 m 0 1 2 8 a § N | U O fv O CO Q Ki O) —»• CO 5 v J (D Nl ^ CO C D - - * CO ro ro o 9 o co O 6 ^ 005 8 8 8 8 8 8 8 8 P g TPH (C8-C12) 1. P P P 3 TPH (C3-C7) TVH ( C S - C 1 0 ) lron:D Manganese:D 3-Methylcholanthrene g 7,12-Dimethylbezn(a)anthracer to Acenaphthene |<j| Acenaphthylene |6 Anthracene P Benzo(a)-anthracene Jig Benzo(a)pyrene g Benzo(b&j)fluoranthene '~ Benzo(c)phenanthrene g Benzo(g,h,i)-perylene g Benzo(k)fluoranthene > c CD o c CO a 0) I - + 0) 3 a o" ^ -• o &> -1 CT "0 CD fi) -s| - T • 3 M CD 1-+ (D o O 3 O CD 3 l -K - T fi) I—H o' 3 CO I* p p Chrysene Dibenzo(a,e)-pyrene Dibenzo(a,h)-anthracene Aqueous Table 7.12 Data: Indicator Parameter Concentrations Monitoring JI Ji Ji ° ° ° a. § £ Station Date o 5 5 E LL £ z £ IX (d-m-y) (mgA.) (mg/L) (mg/L) (mg/L) (mgA.) (mg/L) (mgA.) (mg/L) (mgA.) 93-P-34 29-Oct-93 — — — — — 03- Oct-96 — — — — — 23 -NOV -98 — — — — — 05-Nov-99 — — — — — 15-Jun-OO 02-Nov-OO — — — — — 17- Jul-02 — — — — — (Pre-Purge) 26-Aug-02 (Post-Purge) 26-Aug-02 (Post-Recovery) 27-Aug-02 21-Feb-03 — — (Pre-Purge) 05-Jun-03 <0.0001 <0.0001 <0.0001 <0.00005 <0.00005 <0.0001 0.0452 0.00011 <0.00005 (Post-Purge) 05-Jun-03 (Post-Recovery) 05-Jun-03 25-Jun-03 23-Jul-03 — — — — — 28-Oct-03 — — — — — 04- Feb-04 — — — — — 08- Jun-04 09- Jul-04 — — — — — (Post-Purge) 09-Jul-04 — — — — — 18- Aug-04 — — — — — 19- Oct-04 — — — — — 93-P-34A1 93-P-34A2 93-P-34B1 93-P-34B2 09-Jun-04 09-Jul-04 09-Jul-04 09-Jun-04 09-Jul-04 09-Jun-04 09-Jul-04 Table 7.12 Aqueous Data: Indicator Parameter Concentrations Monitoring Station 93-P-34B3 (d-m-y) (mgA.) (mgA.) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 09-Jun-04 93-P-34C1 (Duplicate) 93-P-34C2 09-Jun-04 09-Jul-04 18-Aug-04 18-Aug-04 09-Jun-04 09-Jul-04 93-P-34C3 09-Jun-04 93-P-34 POST PURGE NEW BAILER 09-Jul-04 93-P-35 (Post-Purge) (Post-Recovery) 23-N0V-98 05-Nov-99 02-Nov-OO 23-May-02 17- Jul-02 27-Aug-02 27- Aug-02 21-Feb-03 11-Mar-03 25-Jun-03 23-Jul-03 28- Oct-03 04- Feb-04 09-Jun-04 18- Aug-04 27-Aug-02 05- Jun-03 20-Oct-04 <0.0001 <0.0001 <0.0001 <0.00006 <0.00006 <0.0001 0.0174 0.00048 (0.00007) 93-P-35C1 18-Aug-04 Aqueous Table 7.12 Data: Indicator Parameter Concentrations Monitoring Station Date Q O Q L L u . j= z a . CL (d-m-y) (mg/L) (mg/L) (mg/L) (mg/L) (mgA.) (mg/L) (mg/L) (mgA.) (mg/L) 34-MW1 21-Jul-03 27-Oct-03 04-Feb-04 08-Jun-04 18- Aug-04 19- Oct-04 (O 34-MW1B 19-NOV-03 <-A 04-Feb-04 LA 34-MW1C 19-NOV-03 04-Feb-04 34-MW1-LF1 18-Aug-04 34-MW2 29-Oct-03 03- Feb-04 04- Feb-04 08-Jun-04 18- Aug-04 19- Oct-04 34-MW2A 34-MW2C 34-MW2-LF1 34-DP2 22- JUI-03 23- Jul-03 29-Oct-03 18-Aug-04 22-Jul-03 27-Oct-03 03-Feb-04 08-Jun-04 20-Oct-04 Table 7.12 Aqueous Data: Indicator Parameter Concentrations Monitoring Station Date Q Q Q E QT (d-m-y) (mg/L) (mgA.) (mgA.) (mgA.) (mg/L) Pa*-> z Pan.) 0. Pan.) 34-DP3 22-JUI-03 29-Oct-03 03-Feb-04 08-Jun-04 19-Oct-04 to U i ON 34-HP-2 34-HP-3 34-ML1 34-ML5 08-Jun-04 08-Jun-04 23-Jul-03 23-Jul-03 27-Oct-03 03-Feb-04 08-Jun-04 20-Oct-04 34-ML6 23-Jul-03 28-Oct-03 03-Feb-04 08-Jun-04 20-Oct-04 34-ML7 23-Jul-03 28-Oct-03 03-Feb-04 08-Jun-04 20-Oct-04 35-MW1 23-Jul-03 28-Oct-03 04-Feb-04 09-Jun-04 20-Oct-04 Table 7.12 Aqueous Data: Indicator Parameter Concentrations Monitoring Station 35-MW2 (Duplicate) 35-MW2A 3S-MW2C 35-DP1 35-DP2 35-DP3 35-HP-1 35-HP-2 35-HP-3 Date 5 5 Q LL LL = z a. o. (d-m-y) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mgA.) (mg/L) 28-Oct-03 03- Feb-04 04- Feb-04 09-Jun-04 09-Jun-04 20-Oct-04 23-Jul-03 23-JUI-03 28-Oct-03 23-JUI-03 28-Oct-03 09-Jun-04 20-Oct-04 23-Jul-03 28-Oct-03 03-Feb-04 09-Jun-04 20-Oct-04 23-Jul-03 28-Oct-03 03-Feb-04 09-Jun-04 20-Oct-04 08-Jun-04 08-Jun-04 08-Jun-04 Table 7.12 Aqueous Data: Indicator Parameter Concentrations Monitoring Station Date <d-m-y) a o D (mg/L) (mgn.) (mgA.) (mg/L) (mg/L) £ z a. (mgA) (mgA) (mgA) o. <">9A> 35-ML1 23-Jul-03 28-Oct-03 04-Feb-04 09-Jun-04 20-Oct-04 to oo 35-ML2 23-JUI-03 28-Oct-03 04-Feb-04 09-Jun-04 20-Oct-04 23-Jul-03 29-Oct-03 04-Feb-04 09-Jun-04 20-Oct-04 23-Jul-03 29-Oct-03 29-Oct-03 04-Feb-04 09-Jun-04 20-Oct-04 03-P-05 22-JuI-03 28-Oct-03 04-Feb-04 09-Jun-04 20-Oct-04 03-P-06 22-JUI-03 28-Oct-03 04-Feb-04 Table 7.12 Aqueous Data: Indicator Parameter Concentrations Monitoring o o o i o o S •£ £ § Station Date 5 a 5 LI iZ £ Z £ CL" (d-m-y) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (man.) 09-Jun-O4 20-Oct-04 03-P-06A 20-Oct-04 03-P-07 22-Jul-03 28-Oct-03 04-Feb-04 09-Jun-04 U\ 20-Oct-04 03-P-08 22-Jul-03 28-Oct-03 04-Feb-04 09-Jun-04 20-Oct-04 03-P-09 22-Jul-03 28-Oct-03 04-Feb-04 09-Jun-04 20-Oct-04 03-P-10 (Duplicate) 22-Jul-03 28-Oct-03 04-Feb-04 04-Feb-04 09-Jun-04 20-Oct-04 NOTES: Appendix E: Solid Phase Data Solid Table 7.13 Phase Data: Sulphide Extraction Results Depth (Imperial) Depth Average Depth AVS TRS Pyrite/S0 (mg/kg) (mg/kg) Acid-Soluble Org-S (mg/kg) S04-S (mg/kg) Residual Org-S (mg/kg) 4'8"-5' 7'2--7'6- 9'6"-10' 11'8"-12'2-? Dup IV RPD 14'4"-14'8" 16'10"-17'2" 1.42-1.52 2.18-2.28 2.95-3.05 3.61-3.71 4.37-4.47 5.13-5.23 1.47 2.23 3.00 3.66 4.42 5.18 41 836 14 14 36 1719 1390 21 16 18 0 883 200 100 100 100 <100 <100 <100 3'10"-4'2" 6'4"-6'8" 8'10"-9'2" Dup II RPD 11'4"-1V8" 13'10"-14'2" 16'4"-16'8" 4'8"-5' 7 ,2"-7 ,6" 9'8"-10' 11'6"-12'7 Dup I RPD 13'10"-14'2" 16'4"-1B'B" 4'-5' (4'-4'8") 6'4"-6'8" W-W Dup V RPD 11'4"-11'8" 13'10"-14 ,2" 16'4"-16'8" 4'8"-5' 7'2"-7 ,6" 9'8"-10' 12'2"-12'6" 14'8"-15' 4'8"-5' 7'2 --7'6" 9'8"-10' Dup III RPD 12'2"-12'6" 14'8"-15' 17'2"-17'6" 1.17-1.27 1.93-2.03 2.69-2.79 3.45-3.55 4.22-4.32 4.98-5.08 1.42-1.52 2.18-2.28 2.95-3.05 3.50-3.60 4.22-4.32 4.98-5.08 1.22-1.42 1.93-2.03 2.95-3.05 3.45-3.55 4.22-4.32 4.98-5.08 1.42-1.52 2.18-2.28 2.95-3.05 3.71-3.81 4.47-4.57 1.42-1.52 2.18-2.28 2.95-3.05 3.71-3.81 4.47-4.57 5.23-5.33 1.22 1.98 2.74 3.50 4.27 5.03 1.47 2.23 3.00 3.55 4.27 5.03 1.32 1.98 3.00 3.50 4.27 5.03 1.47 2.23 3.00 3.76 4.52 1.47 2.23 3.00 3.76 4.52 5.28 2 13 7 170 112 39 467 15 7 32 134 31 15 70 .10 13 12 16 25 22 15 18 18 823 93 19 13 46 725 704 3 802 20 22 14 16 50 145 15 15 15 15 16 16 23 10 653 6 7 554 335 5 9 18 11 7 100 w 100 o 100 CD !i= CO X 100 m at ri 100 m at ri 100 o <100 CO Z> . "O 100 n CO 100 CD c 100 E O) E o de te ri 100 o o CO CO 200 A o 100 im it c c <100 im it CO 100 —i o 100 g 0 7 j 100 Q) 100 0 100 Q po <100 200 200 100 200 100 100 100 100 100 100 Standards ID Sid I Std II Std III Dup I FeS Std III Na2S9H20 Std III Na2S9H20 Dup III Std III FeS2 Concentration 13.50 100.00 1000.00 1200.00 1000.00 1000.00 Measured 10.42 81.34 613.11 1120.42 845.23 61.77 % Recovery 77.2 81.3 61.3 93.4 84.5 6.2 Std I Std II Std III Std III Dup I Std III (new) 10.00 100.00 1000.00 1000.00 1000.00 8.17 88.70 727.65 724.97 760.18 81.7 88.7 72.8 72.5 76.0 900 900 261 Table 7.13 Solid Phase Data: Sulphide Extraction Results HCI-S Core ID Depth (Imperial) Depth (m) Average Depth (m) Date Sampled (d/m/y) Time Sampled (hh:mm) Al (mg/kg) Ba (mg/kg) Ca (mg/kg) Fe (mg/kg) Mg (mg/kg) Mn (mg/kg) S (mg/kg) S-6 4,8"-5, 1.42-1.52 1.47 . . _ _ 7'2"-7'6" 2.18-2.28 2.23 13/04/2005 10:30 <5435 <272 20787 8668 7337 291 <13586 9'8"-10' 2.95-3.05 3.00 11/04/2005 13:30 <5371 <269 20572 6983 6983 158 <13428 11'8"-12'2"? 3.61-3.71 3.66 11/04/2005 10:30 <5547 <277 34947 10318 12481 333 <13868 14'4"-14'8" 4.37-4.47 4.42 15/04/2005 17:20 <5371 <269 30343 9613 12084 204 <13426 16'10"-17,2" 5.13-5.23 5.18 - - - - - - - - S-8 3'10"-4,2" 1.17-1.27 1.22 - - - - - - - - - 6'4"-6'8" 1.93-2.03 1.98 - - - - - - - - - 8'10"-9'2" 2.69-2.79 2.74 12/04/2005 12:45 <5224 <261 24606 7053 9665 217 <13060 Dup II 16/04/2005 17:05 <5224 <261 24553 7288 9403 214 <13060 RPD - - - - - - 0 3 3 1 - 11'4"-11'8" 3.45-3.55 3.50 16/04/2005 12:15 <5216 <261 29209 7328 11475 224 <13040 13,10"-14'2" 4.22-4.32 4.27 - - - - - - - - ' - 16'4"-16'8" 4.98-5.08 5.03 - - - - - - S-10 1.42-1.52 1.47 - - - - - 7'2"-7'6" 2.18-2.28 2.23 13/04/2005 15:05 <5189 <259 18551 6149 0227 376 <12972 9'8"-10' 2.95-3.05 3.00 11/04/2005 18:00 <4770 <238 22107 7059 8108 362 <11924 ir6"-12' 3.50-3.60 3.55 13/04/2005 17:25 <5312 <266 29483 10917 12484 284 <13281 Dup I 16/04/2005 14:40 <5312 <266 29749 11023 12750 308 <13281 RPD - - - - - - ' - 1 1 2 8 - 13'10"-14,2" 4.22-4.32 4.27 14/04/2005 15:10 <5287 <264 28548 11736 11366 177 <13216 16'4"-16'8" 4.98-5.08 5.03 - - - - - - - - - S-34 4'-ty (4'-4'8") 1.22-1.42 1.32 15/04/2005 12:55 <4989 <249 13844 9604 3492 476 <12472 6'4"-6'8" 1.93-2.03 1.98 14/04/2004 10:25 <5197 <260 11329 5223 6236 161 <12991 g w - i o 1 2.95-3.05 3.00 14/04/2005 17:40 <5254 <263 22275 6856 9456 234 <13134 1V4».1V8" 3.45-3.55 3.50 14/04/2005 12:45 <5407 <270 21493 . 7218 8922 222 <13517 13,10"-14'2" 4.22-4.32 4.27 11/04/2005 15:50 <5164 <258 22255 7203 8778 214 <12909 16"4"-16'8" 4.98-5.08 5.03 - - - - - - - - - S-35 4,8"-5' 1.42-1.52 1.47 - - - - - - - 7'2"-7'6" 2.18-2.28 2.23 15/04/2005 15:00 <5217 <261 18128 5712 5477 206 <13041 9'8"-10' 2.95-3.05 3.00 13/04/2005 12:45 <5032 <252 28178 8353 11321 209 <12579 3.71-3.81 3.76 12/04/2005 17:20 <5056 <253 19161 6497 6572 311 <12639 14•8"-15• 4.47-4.57 4.52 12/04/2005 10:25 <5237 <262 27755 9898 11521 602 <13092 S-36 4'8"-5' 1.42-1.52 1.47 - - - - - - - - - 7'2"-7'6" 2.18-2.28 2.23 - - - - - - - - - 9'8"-10' 2.95-3.05 3.00 12/04/2005 15:00 <5199 <260 25759 7772 9097 239 <12996 Dup III 18/04/2005 11:10 <5199 <260 24303 7304 8578 229 <12996 RPD - - - - - - 6 6 6 4 - 12'2"-12'6" 3.71-3.81 3.76 15/04/2005 10:30 <5968 <298 26018 16291 9846 304 <14919 i w - i s 1 4.47-4.57 4.52 - , - - - - - - - - 172"-17'6" 5.23-5.33 5.28 - - - - - - - - - Standards (mg/L) HCI-S ID Std I 06/04/2005 12:50 <200 12 <50 <30 <100 <5.0 Std II 07/04/2005 17:40 <200 12 <50 <30 <100 <5.0 Std II Dup I FeS 07/04/2005 13:25 <200 <10 <50 62 <100 <5.0 Std II Na2S9H20 08/04/2005 12:25 <200 12 <50 <30 <100 <5.0 Std II Na2S9H20 Dup III 09/04/2005 14:40 <200 10 <50 <30 <100 <5.0 Std II FeS2 18/04/2005 14:15 <200 11 <50 <30 <100 <5.0 262 Table 7.14 Solid Phase Data: Dl Water Iron Extraction Results Set # Core ID Sample ID Fe (II) Fe (II) Relative Ave Fe (II) Fe (III) Fe (III) Relative Ave Fe cone, by cone, by Percent cone, by cone, by cone, by Percent (III) cone. dry dry Difference dry dry dry Difference by dry weight weight (%) weight weight weight (%) weight (mg/kg) (mg/kg) R n i i n r i p r i (mg/kg) (mg/kg) (mg/kg) R n u n H A r i (mg/kg) 1 S-6 S-6 4'8"-5' A 6 6 12 12 2 S-6 4'8"-5' B 6 6 0.0 6 12 12 0.0 12 3 S-6 7'2"-7'6" A 12 12 7 7 4 S-6 7'2"-7'6" B 7 7 52.6 10 8 8 13.3 8 5 S-6 9'8"-10' A 8 8 9 9 6 S-6 9'8"-10' B 9 9 11.8 9 10 10 10.5 10 7 S-6 11'8"-12'2" A 8 8 13 13 8 S-6 11'8"-12'2" B 11 11 31.6 10 8 8 47.6 11 9 S-6 14'4"-14'8" A 12 12 9 9 10 S-6 14'4"-14'8" B 13 13 8.0 13 10 10 10.5 10 11 S-6 16'10"-17'2" A <5 0 >9 9 12 S-6 16'10"-17'2" B <5 0 - 0 >12 12 - 11 13 S-8 S-8 3'10"-4'2" A <6 0 >18 18 14 S-8 3'10"-4'2" B <5 0 - 0 >56 56 - 37 15 S-8 6'4"-6'8" A <3 0 >6 6 16 S-8 6'4"-6'8" B <3 0 - 0 >8 8 - 7 17 S-8 8'10"-9'2" A <6 0 >10 10 18 S-8 8'10"-9'2" B <6 0 - 0 >15 15 - 13 19 S-8 11'4"-11'8"A <6 0 >15 15 20 S-8 11'4"-11'8" B <6 0 -- 0 >19 19 - 17 21 S-8 13'10"-14'2"A 7 7 12 12 22 S-8 13'10"-14'2" B <6 0 - 4 >14 14 - 13 23 S-8 16'4"-16'8"A <5 0 >12 12 24 S-8 16'4"-16'8" B <6 0 - 0 >11 11 - 12 25 S-10 S-10 4'8"-5' A <5 0 >15 15 26 S-10 4'8"-5' B <5 0 - 0 >12 12 - 14 27 S-10 7'2"-7'6"A <5 0 >12 12 28 S-10 7'2"-7'6" B 11 11 - 6 23 23 - 18 29 S-10 9'8"-10'A <4 0 >11 11 30 S-10 9'8"-10' B 7 7 - 4 10 10 - 11 31 S-10 11'6"-12'A 10 10 8 8 32 S-10 11'6"-12' B 8 8 22.2 9 12 12 40.0 10 33 S-10 13'10"-14'2" A 8 8 16 16 34 S-10 13'10"-14'2" B 10 10 22.2 9 71 71 126.4 44 35 S-10 16'4"-16'8" A 9 9 20 20 36 S-10 16'4"-16'8" B 14 14 43.5 12 15 15 28.6 18 37 S-34 S-34 4'-5' A 6 6 10 10 38 S-34 4'-5' B 6 6 0.0 6 13 13 26.1 12 39 S-34 6'4"-6'8" A 11 11 12 12 40 S-34 6'4"-6'8" B 6 6 58.8 9 10 10 18.2 11 41 S-34 9'8"-10'A 8 8 17 17 42 S-34 g^'-IO' B 9 9 11.8 9 13 13 26.7 15 43 S-34 11'4"-11'8" A 7 7 12 12 44 S-34 11'4"-11'8"B 14 14 66.7 11 12 12 0.0 12 45 S-34 13'10"-14'2" A 9 9 10 10 46 S-34 13'10"-14'2" B 8 8 11.8 9 16 16 46.2 13 47 S-34 16'4"-16'8" A 7 7 15 15 48 S-34 16'4"-16'8" B 11 11 44.4 9 15 15 0.0 15 49 S-35 S-35 4'8"-5'A 9 9 20 20 50 S-35 4'8"-5' B 10 10 10.5 10 15 15 28.6 18 51 S-35 7'2"-7'6" A 18 18 -2 0 52 S-35 7'2"-7'6" B 9 9 66.7 14 10 10 - 5 53 S-35 9'8"-10'A 9 9 7 7 54 S-35 9'8"-10'B 10 10 10.5 10 7 7 0.0 7 263 Table 7.14 Solid Phase Data: Dl Water Iron Extraction Results 55 S-35 12'2"-12'6" A 9 9 7 7 56 S-35 12'2"-12'6" B 10 10 10.5 10 7 7 0.0 7 57 S-35 14'8"-15' A <5 0 >17 17 58 S-35 14'8"-15' B <6 0 -- 0 >15 15 - 16 59 S-36 S-36 4'8"-5' A <4 0 >11 11 60 S-36 4'8"-5' B 6 6 - 3 10 10 - 11 61 S-36 7'2"-7'6" A <6 0 >10 10 62 S-36 7'2"-7'6" B 13 13 - 7 7 7 -- 9 63 S-36 9'8"-10'A <6 0 >10 10 64 S-36 9'8"-10' B <5 0 - 0 >8 8 - 9 65 S-36 12'2"-12'6" A <6 0 =•14 14' 66 S-36 12'2"-12'6" B 16 16 - 8 1 1 - 8 67 S-36 14'8"-15' A <5 0 >12 12 68 S-36 14'8"-15' B <5 0 ~ 0 >9 9 - 11 69 S-36 17'2"-17'6" A 6 6 10 10 70 S-36 17'2"-17'6" B <7 0 -- 3 >16 16 -- 13 71 FeS A <4 0 >9 9 72 FeS B <5 0 - 0 >22 22 - 16 73 FeOOH A 9 9 14 •14 74 FeOOH B 5 5 57.1 7 16 16 13.3 15 AVERAGE 28.5 24.2 264 Table 7.15 Solid Phase Data: 0.5N HCl Iron Extraction Results Summary Date Set# Core ID Sample ID Fe (II) Fe (II) cone. Relative Ave Fe (II) Fe (III) Fe (III) Relative Ave Fe cone, by by dry . Percent cone, by cone, by cone, by Percent (III) cone. dry weight Difference dry dry dry weight Difference by dry weight (mg/kg) (%) weight weight (mg/kg) (%) weight (mg/kg) Rounded (mg/kg) (mg/kg) Rounded (mg/kg) 1 S-6 S-6 4'8"-5' A 169.4948 169 2008.39 2009 2 S-6 4'8"-5' B 183.0652 183 8.0 176 2102.91 2103 4.6 2056 3 S-6 7'2"-7'6" A 277.3723 277 2114.32 2114 4 S-6 7'2"-7'6" B 264.6424 265 4.4 271 1913.154 1913 10.0 2014 5 S-6 9'8"-10'A 2898.103 2898 543.9894 544 6 S-6 9'8"-10'B 3012.259 3012 3.9 2955 399.4275 399 30.8 472 7 S-6 ir8"-12'2"A 6118.158 6118 -232.946 0 8 S-6 11'8"-12'2" B 5888.296 5888 3.8 6003 -338.941 0 - 0 9 S-6 14'4"-14'8" A 397.1358 397 3215.054 3215 10 S-6 14'4"-14'8" B 578.7833 579 37.3 488 2615.672 2616 20.5 2916 11 S-6 16'10"-17'2"A 533.7816 534 2456.996 2457 12 S-6 16'10"-17'2"B 496.639 497 7.2 516 2417.782 2418 1.6 2438 13 S-8 S-8 3'10"-4'2"A 381.2163 381 2046.944 2047 14 S-8 3'10"-4'2" B 364.173 364 4.6 373 2156.355 2156 5.2 2102 15 S-8 6'4"-6'8" A 291.9421 292 1505.34 1505 16 S-8 6'4"-6'8" B 284.5721 285 2.4 289 1511.251 1511 0.4 1508 17 S-8 8'10"-9'2" A 491.7508 492 2264.556 2265 18 S-8 8'10"-9'2"B 465.0914 465 5.6 479 2164.63 2165 4.5 2215 19 S-8 11'4"-11'8" A 1572.556 1573 1499.757 1500 20 S-8 11'4"-11'8" B 1548.391 1548 1.6 1561 1627.277 1627 8.1 1564 21 S-8 13'10"-14'2" A 320.734 321 3210.622 3211 22 S-8 13'10"-14'2" B 329.0307 329 2.5 325 3336.023 3336 3.8 3274 23 S-8 16'4"-16'8"A 285.4015 285 2612.735 2613 24 S-8 16'4"-16'8"B 274.3512 274 3.9 280 2473.222 2473 5.5 2543 25 S-10 S-10 4'8"-5' A 333.1042 333 2196.842 2197 26 S-10 4'8"-5'B 297.3753 297 11.4 315 2233.292 2233 1.6 2215 27 S-10 7'2"-7'6"A 266.8973 267 2232.193 2232 28 S-10 7'2"-7'6"B 346.7918 347 26.1 307 2319.894 2320 3.9 2276 29 S-10 9'8"-10' A 2998.501 2999 632.9147 633 30 S-10 9'8"-10'B 3166.901 3167 5.4 3083 815.349 815 25.1 724 31 S-10 11'6"-12'A 3128.464 3128 700.4445 700 32 S-10 11'6"-12'B 2799.389 2799 11.1 2964 1360.86 1361 64.1 1031 33 S-10 13'10"-14'2" A 620.9439 621 2772.73 2773 34 S-10 13'10"-14'2"B 621.3628 621 0.0 621 2858788 2859 3.1 2816 35 S-10 16'4"-16'8" A 1524.147 1524 3109.824 3110 36 S-10 16'4"-16'8" B 1691.677 1692 10.4 1608 2965.15 2965 4.8 3038 37 S-34 S-34 4'-5' A 15.24263 15 2653.959 2654 38 S-34 4'-5' B 18.39941 18 18.2 17 2682.375 2682 1.0 2668 39 S-34 6'4"-6'8" A 3318.094 3318 1542.871 1543 40 S-34 6'4"-6'8" B 3355.042 3355 1.1 3337 316.7535 317 131.8 930 41 S-34 9'8"-10' A 4807.613 4808 119.4223 119 42 S-34 9'8"-10'B 4365.139 4365 9.7 4587 228.566 229 63.2 174 43 S-34 11'4"-11'8"A 5124.734 5125 -306.97 0 44 S-34 11'4"-11'8"B 4822.777 4823 6.1 4974 -188.606 0 - 0 45 S-34 13'10"-14'2"A 710.9917 711 2009.095 2009 46 . S-34 13'10"-14'2" B 773.7705 774 8.5 743 2008.699 2009 0.0 2009 47 S-34 16'4"-16'8" A 444.6607 445 2350.881 2351 48 S-34 16'4"-16'8"B 454.3811 454 2.0 450 2415.733 2416 2.7 2384 49 S-35 S-35 4'8"-5' A 329.6015 330 1824.072 1824 50 S-35 4'8"-5' B 353.7167 354 7.0 342 1900.237 1900 4.1 1862 51 S-35 7'2"-7'6" A 643.1472 643 1787.331 1787 52 S-35 7'2"-7'6" B 658.7253 659 2.5 651 1774.997 1775 0.7 1781 53 S-35 9'8"-10'A 3826.226 3826 495.678 496 54 S-35 9'8"-10' B 4080.913 4081 6.4 3954 104.6102 105 130.1 301 May 20,22,19/05 265 Table 7.15 Solid Phase Data: 0.5N HCl Iron Extraction Results Summary 55 S-35 12'2"-12'6"A 3589.06 3589 232.4805 232 56 S-35 12'2M2'6"B 3638.639 3639 1.4 '3614 395.9148 396 52.2 314 57 S-35 14'8"-15' A 160.878 161 2745.71 2746 58 S-35 14'8"-15' B 226.412 226 33.6 • 194 2785.444 2785 1.4 2766 59 S-36 S-36 4'8"-5' A 310.5487 311 1779.942 1780 60 S-36 4'8"-5' B 323.0081 323 3.8 317 1886.312 1886 5.8 1833 61 S-36 7'2"-7'6" A 399.4147 399 1621.56 1622 62 S-36 7'2"-7'6" B 465.4458 465 15.3 432 1622.908 1623 0.1 1623 63 S-36 9'8"-10'A 1656.175 1656 1790.673 1791 64 S-36 9'8"-10' B 1708.59 1709 3.2 1683 1535.782 1536 15.3 1664 65 S-36 12'2"-12'6" A 391.8717 392 3330.408 3330 66 S-36 12'2"-12'6"B 340.6088 341 : 13.9 • 367 3232.164 3232 3.0 3281 67 S-36 14'8"-15' A 153.7899 154 2322.185 2322 68 S-36 14'8"-15' B 152.031 152 1.3 153 2397.004 2397 3.2 2360 69 S-36 17'2"-17'6" A 756.7681 757 2121.758 2122 70 S-36 17'2"-17'6"B 927.9022 928 20.3 843 2693.851 2694 23.8 2408 71 FeS A 96.42625 96 11.46167 11 72 FeS B 141.9338 142 38.7 119 14.55898 15 30.8 13 73 FeOOH A 30.02237 30 14.62154 15 74 FeOOH B 57.14841 57 62.1 44 22.48763 22 37.8 19 AVERAGE 10.9 20.1 266 Table 7.16 Solid Phase Data: 5N HCl Iron Extraction Results Summary Set# Core ID Sample ID Fe (II) Fe (II) cone. Relative Ave Fe (II) Fe (III) Fe (III) Relative Ave Fe cone, by by dry Percent cone, by cone, by cone, by Percent (III) cone. dry weight Difference dry dry dry weight Difference by dry weight (mg/kg) (%) weight weight (mg/kg) (%) weight (mg/kg) Rounded (mg/kg) (mg/kg) Rounded (mg/kg) 1 S-6 S-6 4'8"-5' A 210.8677 211 6469.133 6469 2 S-6 4,8"-5' B 431.3073 431 68.7 321 6018.797 6019 7.2 6244 3 S-6 7'2"-7'6" A 584.7717 585 6024.516 6025 4 S-6 7'2',-7'6" B 741.9801 742 23.7 663 6094.443 6094 .1-2 6059 5 S-6 9'8"-10' A 696.5804 697 4083.602 4084 6 S-6 9'8"-10' B 569.5805 570 20.1 633 4195.069 4195 2.7 4139 7 S-6 11'8"-12'2"A 1163.597 1164 4952.81 4953 8 S-6 11'8"-12'2" B 1252.219 1252 7.3 1208 4761.425 4761 - 4857 9 S-6 14'4"-14'8" A 647.4643 647 7264.622 7265 10 S-6 14'4"-14'8" B 561.8641 . 562 14.2 605 6749.898 6750 7.3 7007 11 S-6 16'10"-17'2" A 828.0447 828 7106.692 7107 12 S-6 16'10"-17'2" B 717.1835 717 14.3 773 7618.387 7618 6.9 7363 13 S-8 S-8 3'10"-4'2"A 641.636 642 5885.029 5885 14 S-8 3'10"-4'2" B 700.7334 701 8.8 671 6059.867 6060 2.9 5972 15 S-8 6'4"-6'8" A 534.2092 534 3950.794 3951 16 S-8 6'4"-6'8" B 413.7601 414 25.4 474 3951.861 3952 0.0 3951 17 S-8 8'10"-9'2" A 102.9008 103 6458.246 6458 18 S-8 8'10"-9'2" B 111.0861 111 7.7 107 6019.931 6020 7.0 6239 19 S-8 11'4"-11'8" A 146.9927. 147 5856.569 5857 20 S-8 11'4"-11'8M B 112.3645 112 26.7 130 6202.316 6202 5.7 6029 21 S-8 13'10"-14'2"A 781.269 781 9735.361 9735 22 S-8 13'10"-14'2" B 553.7412 554 34.1 668 9281.103 9281 4.8 9508 23 S-8 16'4"-16'8" A 313.2241 313 7900.817 7901 24 S-8 16'4"-16'8" B 114.6355 115 92.8 214 8233.665 8234 4.1 8067 25 S-10 S-10 4'8"-5'A 115.6342 116 5527.874 5528 26 S-10 4'8"-5'B 57.29865 57 67.5 86 5571.579 5572 0.8 5550 27 S-10 7'2"-7'6"A 29.62114 30 4943.764 4944 28 S-10 7'2"-7'6" B 103.9049 104 111.3 67 4838.06 4838 2.2 4891 29 S-10 9'8"-10' A 432.2757 432 3825.161 3825 30 S-10 9'8"-10' B 301.8695 302 35.5 367 5007.005 5007 26.8 4416 31 S-10 11'6"-12' A 577.838' 578 7899.76 7900 32 S-10 11'6"-12' B 520.3453 520 10.5 549 8994.423 8994 13.0 8447 33 S-10 13'10"-14'2"A 434.8083 435 9084.434 9084 34 S-10 13'10"-14'2" B 471.1529 471 8.0 453 8462.677 8463 7.1 8774 35 S-10 16'4"-16'8" A 578.0018 578 11997.87 11998 36 S-10 16'4"-16'8" B 575.6697 576 0.4 577 11657.05 11657 2.9 11827 37 S-34 S-34 4'-5' A 0 0 8315.304 8315 38 S-34 4'-5' B 0 0 - 0 8339.19 8339 0.3 8327 39 S-34 6'4"-6'8" A 0 0 2865.743 2866 40 S-34 &4"-&S" B 0 0 - 0 2851.674 2852 0.5 2859 41 S-34 9'8"-10' A 0 0 3452.152 3452 42 S-34 9'8"-10' B 0 0 - 0 3478.356 3478 0.8 3465 43 S-34 11'4"-11'8" A 73.66638 74 3554.047 3554 44 S-34 11'4"-11'8" B 355.9996 356 131.4 , 215 3183.282 3183 - 3369 45 S-34 13'10"-14'2" A 1647.795 1648 4257.277 4257 46 S-34 13'10"-14'2" B 2065.554 2066 22.5 1857 3618.194 3618 16.2 3938 47 S-34 16'4"-16'8" A 2782.799 2783 3970.126 3970 48 S-34 16'4"-16'8" B 2488.481 2488 11.2 2636 4503.782 4504 12.6 4237 49 S-35 S-35 4'8"-5' A 1961.076 1961 2990.068 2990 50 S-35 4'8"-5' B 1745.019 1745 11.7 ' 1853 3354.648 3355 11.5 3172 51 S-35 7'2"-7'6" A 1672.164 1672 3304 3304 52 S-35 7,2"-7'6" B 1642.01 1642 1.8 1657 3398.419 3398 2.8 3351 53 S-35 9'8"-10' A 2100.443 2100 3075.535 3076 54 S-35 9'8"-10'B 2018.856 2019 4.0 2060 2974.73 2975 3.3 3025 267 Table 7.16 Solid Phase Data: 5N HCl Iron Extraction Results Summary 55 S-35 12'2"-12'6" A 1188.888 1189 3029.858 3030 56 S-35 12'2"-12'6" B 882.3811 882 29.6 1036 3189.537 3190 5.1 3110 57 S-35 14'8"-15' A 1089.427 1089 6902.412 6902 58 S-35 14'8"-15' B 937.1381 937 15.0 1013 6774.315 6774 1.9 6838 59 S-36 S-36 4'8"-5' A 781.9405 782 5084.184 5084 60 S-36 4'8"-5' B 692.5297 693 12.1 737 5136.496 5136 1.0 •• 5110 61 S-36 7'2"-7'6" A 608.8843 609 3104.161 3104 62 S-36 7'2"-7'6" B 559.0232 559 8.5 584 3273.218 3273 5.3 3189 63 S-36 9'8"-10' A 847.9086 848 6969.856 6970 64 S-36 9'8"-10' B 860.2832 860 1.4 854 12119.29 12119 54.0 9545 65 S-36 12'2"-12'6" A 1316.893 1317 8439.026 8439 66 S-36 12'2"-12'6" B 1256.953 1257 4.7 1287 9326.636 9327 10.0 8883 67 S-36 14'8"-15' A 930.5572 931 7311.245 7311 68 S-36 14'8"-15' B 937.5711 938 0.8 934 7324.603 7325 0.2 7318 69 S-36 17'2"-17'6" A 1131.169 1131 7740.975 7741 70 S-36 17'2"-17'6" B 1099.974 1100 2.8 1116 7758.434 7758 0.2 7750 71 FeS A 0 0 172.6128 173 72 FeS B 0 0 0 257.881 258 39.6 215 73 FeOOH A 0 0 154.0455 154 74 FeOOH B 0 0 0 219.276 219 34.9 187 AVERAGE 26.1 8.7 268 7.6 Appendix F: Range Estimates for Degradation Rates Determined from Extraction Data The average accumulation of sulphides and ferrous iron, and the average depletion of ferric iron, are based on extraction data from inside the zone of black staining compared to background data from outside this zone. Since the plume did not arrive at each of the locations within the zone of black staining at the same time, the average residence time of the plume in this zone can be estimated from the groundwater velocity and a weighted average lateral distance based on the maximum distance of the sample locations from the source zone. This can be estimated by: — 1 " — x = ~y\sixi , where x is the weighted average distance of sample locations, n is the total number of samples, X j is the maximum lateral distance from the source and s; is the number of samples at point i . Table 7.17 shows the maximum lateral distances and number of samples for each sampling location. Table 7.17. Summary of maximum lateral distances from source to sampling locations and number of samples located in the zone of black staining for each core location Core ID Maximum Number of Samples Lateral distance TRS 0.5N H C l Fe(II) 0.5N H C l Fe(III) to source (m) S-6 149 3 4 4 S-8 133 1 2 2 S-10 114 2 4 4 S-34 47 4 6 6 S-35 76 2 4 4 S-36 192 1 2 2 The weighted average maximum lateral distance of samples in the zone of black staining is determined to be 103 m for both T R S and 0.5N H C l extractable Fe(II)/Fe(III). Based on a flow velocity range of 4 to 6 m year"1 and 30 years lapsed since source introduction, 269 the average time for the plume to arrive is determined to range from 17 to 26 years. The resulting residence time, therefore, ranges from 4 to 13 years. Maximum and minimum bounds are estimated for the accumulation and depletion of TRS and 0.5N HCl-extractable Fe(II)/Fe(III) by adding and subtracting one standard of deviation (Tables 4.1 and 4.2) from the mean values from inside and outside the zone of black staining. Bounds for the rate estimates from extraction data are then estimated from the estimated maximum and minimum accumulation/depletion and the range in average residence time using the equations in Section 4.2.1 and 4.2.2. The approximation of these bounds assumes that the estimates for porosity, dry density, and the timing of the spill are well constrained. Table 7.18 summarizes the data used for determining these maximum and minimum rate estimates. Table 7.18. Summary of data used for the estimation of the bounds on degradation rate determinations based on extraction data Parameter TRS 0.5N H C l Fe(II) 0.5N H C l Fe(III) Ave C (mg kg"') plume 506±573 3519+1330 652±586 Ave C (mg kg"1) background 16±3 440±313 2349±491 Min AC (mg kg"1) 0 d 1436 620 Max AC (mg kg"1) 1066 4722 2774 Min rate (mol L/'s"1)1 1 0 d 1.19 x 1 0 " 5.12 x 10"12 Max rate (mol L"'s"') b 3.99 x 10"'° 1.27 x 10"10 7.45 x 10"" Ave rate (mol L/'s" 1) 0 7.33 x 10"" 3.31 x 10"" 1.82 x 10"" a Based on an average plume residence time of 13 years b Based on an average plume residence time of 4 years 0 Based on an average plume residence time of 10 years d Standard deviation exceeded mean, excluding the largest outlier this value is 2.88 x 10"12 mol L"'s' 270 7.7 Appendix G: Intermediate Simulation Results The first intermediate scenario used the same reaction parameters as the base case and the second used the alternative scenario parameters. Figures 7.6 and 7.7 show the results of these simulations compared to the observed dissolved parameter concentrations. 271 (a) A w **** -2 9.2 0 -SCALE 0.15 (m) 2 - 3.1 1.00 4 - -47 A ' (b) A SL. SCALE (m) . 0.2 881 80.3 5.4 Sulphate (mg/L) Oct 04 200 ) A ' 400 '600 800 202 —I I 1 I L— 50 '221 '329 100 -1000 150 _ l 1 L . (c) A A ' 150 150 150 150 150 Figure 7.6. Observed (left) and results for Simulation A with recharge (right) (a) C 6 H 6 * , (b) sulphate, (c) iron in mg L" 1 , (d) Fe(III), and (e) S2" in mg k g 1 for October 2004. 272 (a) A A ' -2 C«hV mg/LI Oct 04 *" 0 _ 9.2 , S C A L E 0.1S - — fl ST (m) 2 3., ^ fr 05 1 \ 0.05 \ 7.00 H \ \ 0.005 \ 4 U31 U1S U002 -47 i i i i i so 100 150 (b) A A ' -2 0.2 0 - S C A L E 881 (m) 2 80.3 5.4 4 4- i t Sulphate (mg/L) Oct 04 200 ) 400 '600 800 '221 '329 100 50 i i I i i i i I * • i • 1 • i_ . 1 0 0 0 150 (c) A S C A L E (m) A ' Iron (mg/LI Oct 04 4 - -47 14.7 M.B8 100 i • • i i i 150 _ l 1 L. (d) A 5 t r — S C A L E (m) 0.5N HCl-Extractable Felllll (mg/kg) — 2i6Bl 221S- 2056' 2014' A ' 2816' 3038' 1833. J62jb - f t - — . ™ ; ? 1664' 2916. 3281. 2438' 2360' 240ft 100 _ l 150 _ l (e) A S C A L E (m) V- Soil Staining Total Reduced S(mg/kg) 7 2 5 ^ S H ^ ^ ^ S t S ^ -882J — H — A ' 15 • 15_sr 20 22 19 < 13 . 1 7 U - — ~ " 7 15 16 • 1 ( « • 16 23 50 100 _ l 150 _ l 200, r 4 0 0 U 6 ° ° 800 >1000 50 100 Figure 7.7. Observed (left) and results for Simulation AS without transient inflow chemistry (ri; C 6 H 6 * , (b) sulphate, (c) iron in mg L" 1 , (d) Fe(III), and (e) S2" in mg kg' 1 for October 2004. 100 ht) (a) 150 150 150 150 150 273

Cite

Citation Scheme:

    

Usage Statistics

Country Views Downloads
United Kingdom 7 10
United States 5 0
City Views Downloads
Unknown 7 11
Wilmington 2 0
Mountain View 2 0
Ashburn 1 0

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}

Share

Share to:

Comment

Related Items