UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Geochemical dispersion over massive sulphides within the zone of continuous permafrost, Bathurst Norsemines,… Miller, John Kevin 1978

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1979_A6_7 M45.pdf [ 20.21MB ]
Metadata
JSON: 831-1.0052704.json
JSON-LD: 831-1.0052704-ld.json
RDF/XML (Pretty): 831-1.0052704-rdf.xml
RDF/JSON: 831-1.0052704-rdf.json
Turtle: 831-1.0052704-turtle.txt
N-Triples: 831-1.0052704-rdf-ntriples.txt
Original Record: 831-1.0052704-source.json
Full Text
831-1.0052704-fulltext.txt
Citation
831-1.0052704.ris

Full Text

GEOCHEMICAL WITHIN BATHURST  DISPERSION  THE  ZONE  OF  NORSEMINES,  OVER  MASSIVE  CONTINUOUS  DISTRICT  OF  SULPHIDES  PERMAFROST,  MACKENZIE,  N.W.T.  by JOHN B.Sc,  A  THESIS  KEVIN  University  SUBMITTED  THE  MILLER of  Akron  IN. PARTIAL  REQUIREMENTS  FOR  MASTER  OF  THE  1974  FULFILLMENT DEGREE  OF  SCIENCE  i n  THE  FACULTY  (Department  We  accept to  THE  OF  of  this the  GRADUATE  Geological  thesis  required^  as  STUDIES Sciences)  conforming  standard  UNIVERSITY OF BRITISH December, 1978 0 J o h n Kevin M i l l e r , 1978  COLUMBIA  OF  In p r e s e n t i n g  this  thesis  an advanced degree at the L i b r a r y s h a l l I  f u r t h e r agree  for  scholarly  by h i s of  written  thesis  make i t f r e e l y a v a i l a b l e  t h a t permission  for  the requirements  Columbia,  I agree  r e f e r e n c e and  f o r e x t e n s i v e copying o f  this  It  for financial  i s understood that gain s h a l l  G e o l o g i c a l Sciences  The U n i v e r s i t y o f B r i t i s h  2075 Wesbrook Place Vancouver, Canada V6T 1W5  December 7,  1978  Columbia  not  for  that  study. thesis  purposes may be granted by the Head of my Department  permission.  Department of  Date  fulfilment of  the U n i v e r s i t y of B r i t i s h  representatives.  this  in p a r t i a l  or  copying o r p u b l i c a t i o n  be allowed without my  ABSTRACT  A geochemical survey was undertaken massive s u l p h i d e s at Anne-Cleaver  i n the v i c i n i t y of  and Camp Lakes to assess  secondary geochemical d i s p e r s i o n w i t h i n the zone of continuous permafrost.  Samples were c o l l e c t e d at s e v e r a l  w i t h i n the a c t i v e l a y e r together with snow-melt r u n o f f , pit  and lake waters and For  each element  depths seepage,  sediments.  (Ag, Cd, Cu, Fe, Mn,  Pb and Zn) geo-  chemical p a t t e r n s are s i m i l a r i n a l l t h r e e s o i l 0 to 14 and 14 t o 25 inch depths); does not appear to be c r i t i c a l .  layers  (L-F-H  t h e r e f o r e , sample depth Ag, Fe and Pb  display  s i m i l a r , w e l l developed p a t t e r n s and, except f o r Fe, possess high geochemical c o n t r a s t .  Conversely, Cd, Cu and Zn p a t -  t e r n s are p o o r l y developed and have low c o n t r a s t , in mineral s o i l .  particularly  In areas of low pH, high l e v e l s of Ag,  Fe  and Pb can be found w h i l e Cu and Zn v a l u e s are low and o f t e n form negative anomalies. to  High Zn l e v e l s are u s u a l l y c o n f i n e d  areas of r e l a t i v e l y high pH. Relative to t o t a l patterns, p a r t i a l extraction  and 1.0M  HC1)  patterns provide l i t t l e  (0.05M EDTA  additional information;  however, low p a r t i a l to t o t a l r a t i o p a t t e r n s are w e l l oped, which suggests c l a s t i c Because Pb i s immobile,  dispersion. i t can be used as a model f o r  g l a c i a l d i s p e r s i o n of s u l p h i d e s .  D i s p e r s i o n of Pb i s i n  narrow t h i n zones of s u l p h i d e - r i c h t i l l angles 1000  devel-  which r i s e at low  to 2000 f e e t down i c e from the source.  (<2°)  Anomalous  metal c o n c e n t r a t i o n s and gossan are d e t e c t a b l e i n excess of  iii.  4000 f e e t down i c e . Cu and Zn, although d i s p e r s e d i n i t i a l l y  the same as Pb,  have subsequently been s u b j e c t e d t o e x t e n s i v e hydromorphic d i s p e r s i o n as a r e s u l t of i n t e n s i v e o x i d a t i o n and l e a c h i n g i n the a c i d i c , w a t e r - r i c h s o i l s of the a c t i v e l a y e r . sequently, high l e v e l s of Cu and, i n p a r t i c u l a r ,  ConZn with high  geochemical c o n t r a s t are found i n the surrounding waters and sediments. R e l a t i v e t o Cu and Zn, Pb i s much more r e s t r i c t e d and l e s s concentrated i n sediments and waters.  T h i s i s because Cu and  Zn enter the lake l a r g e l y as d i s s o l v e d s p e c i e s w h i l e Pb e n t e r s as a sorbed c o n s t i t u e n t on c l a y - s i z e d p a r t i c u l a t e matter. High Cu-Pb-Zn l e v e l s i n sediments and waters are r e s t r i c t e d to l a k e s l y i n g down drainage from m i n e r a l i z a t i o n and/or down i c e i n areas of m e t a l - r i c h t i l l .  Within i n d i v i d u a l  lakes,  sediments d i s p l a y e r r a t i c metal l e v e l s with f l u c t u a t i o n s 2^10x.  often  Conversely, lake waters are homogeneous but possess  more l i m i t e d d i s p e r s i o n h a l o s r e l a t i v e t o c e n t e r - l a k e sediments. Pb i s more l i k e l y than Cu and Zn t o l o c a t e m i n e r a l i z a t i o n i n a l l sample media;  however, i n waters, Cu and Zn are more  e a s i l y d e t e c t e d and o f f e r a much l a r g e r t a r g e t than Pb. The e f f e c t s of permafrost on geochemical d i s p e r s i o n are minimal.  Hydromorphic and c l a s t i c d i s p e r s i o n p a t t e r n s are  w e l l developed, perhaps b e t t e r developed than i n temperate climates.  Significant  i n h i b i t i n g or c o m p l i c a t i n g f a c t o r s ,  with regard t o geochemical d i s p e r s i o n are not present.  iv.  TABLE  OF  CONTENTS  TITLE PAGE  i  ABSTRACT  i i  TABLE OF CONTENTS  . .  iv  LIST OF TABLES  ix  LIST OF FIGURES  xiii  LIST OF PLATES  xxix  ACKNOWLEDGEMENTS  xxxi  CHAPTER 1:  INTRODUCTION TO EXPLORATION GEOCHEMISTRY IN PERMAFROST TERRAINS  I  THESIS OBJECTIVES  II  PERMAFROST, PERIGLACIAL PHENOMENA AND  1 1  GEOCHEMICAL DISPERSION  2  A.  Permafrost and the P e r i g l a c i a l Environment  B.  C l i m a t i c Influences  C.  Geochemical D i s p e r s i o n  ....  2 10  i n Permafrost  Terrains  11  1.  I o n i c and hydromorphic d i s p e r s i o n  11  2.  Mechanical d i s p e r s i o n  17  i.  Glacial  17  ii.  Periglacial  19  3.  H i s t o r y of geochemical e x p l o r a t i o n w i t h i n the zone of continuous permafrost  CHAPTER 2: I  DESCRIPTION OF THE STUDY AREA  LOCATION AND ACCESS  22 30 30  V .  II  CLIMATE, TOPOGRAPHY AND DRAINAGE  30  III  GENERAL GLACIAL HISTORY AND SURFICIAL GEOLOGY  33  A.  Bathurst  33  B.  G l a c i a l Geology of Camp Lake  Inlet  39  IV  SOILS  V  VEGETATION AND WILDLIFE  48  VI  GENERAL GEOLOGY OF THE PROPERTY  48  A.  I n t r o d u c t i o n and E x p l o r a t i o n H i s t o r y  48  B.  Regional  50  C.  D e t a i l e d Geology of Camp Lake  CHAPTER 3:  .  43  Geology  53  SAMPLE COLLECTION, PREPARATION AND ANALYSIS  :  56  I  GENERAL INTRODUCTION  56  II  SOIL  56  A.  C o l l e c t i o n and P r e p a r a t i o n  56  B.  Decomposition  60  1.  Nitric-perchloric digestion ( t o t a l attack)  2. III  P a r t i a l e x t r a c t i o n procedures  SEDIMENTS:  60  COLLECTION, PREPARATION AND  DIGESTION IV  60  61  WATER  62  A.  C o l l e c t i o n and P r e s e r v a t i o n  62  B.  F i e l d Analysis  63  V  ATOMIC ABSORPTION SPECTROPHOTOMETRY  64  VI  MISCELLANEOUS ANALYTICAL TECHNIQUES  66  A.  Size Fraction Analysis  66  B.  Heavy M i n e r a l  66  Separates  vi.  VII  C.  Conductivity  D.  Loss on I g n i t i o n  67  ANALYTICAL PRECISION  67  CHAPTER 4:  and pH  66  PRESENTATION OF ANALYTICAL DATA  75  I  INTRODUCTION TO DATA PRESENTATION  75  II  SOILS  77  A.  Probability Plots  77  B.  N i t r i c - p e r c h l o r i c Extraction Patterns  87  C.  P a r t i a l E x t r a c t i o n s and R a t i o s  95  D. III  1.  Introduction  95  2.  1.0M h y d r o c h l o r i c a c i d  98  3.  0. 05M EDTA  98  4.  P a r t i a l t o t o t a l metal r a t i o s  100  5.  T o t a l to t o t a l metal r a t i o s  101  C o n d u c t i v i t y and pH  SOIL PITS:  101  GEOCHEMICAL PROFILES  A.  Introduction  B.  Metal, pH, C o n d u c t i v i t y  102 and S i z e F r a c t i o n  Distributions  103  C.  Heavy M i n e r a l  Separates  D.  D i s t r i b u t i o n of Elements between S i z e Fractions  IV  102  105  106  WATERS  109  A.  Introduction  109  B.  R e g i o n a l Data:  Lake and Stream Waters  112  1.  Streams  112  2.  Lakes  113  vii.  C.  L o c a l Data:  Surface-seepage, P i t and  Snow-melt Runoff  V  1.  Surface-seepage and p i t waters  120  2.  Snow-melt r u n o f f  120  SEDIMENTS  125  A.  Introduction  125  B.  S u r f i c i a l Lake Sediments  127  C.  Lake Sediment Cores  136  D.  Stream Sediments  138  CHAPTER 5:  DISCUSSION AND SUMMARY OF GEOCHEMICAL DISPERSION AT BATHURST NORSEMINES  I  II  III  IV  120  248  SOILS ,  248  A.  G l a c i a l D i s p e r s i o n Model  248  B.  Post-glacial Dispersion  256  WATERS AND SEDIMENTS  264  A.  Surface-seepage, P i t and Snow-melt Runoff ...  264  B.  Stream Waters and Sediments  267  C.  Lake Waters  268  D.  Lake Sediments  274  FINAL DISCUSSION AND SUMMARY  279  A.  Element D i s p e r s i o n  279  B.  Application to Exploration  285  1.  Regional  285  2.  Detailed  288  CONCLUSIONS  BIBLIOGRAPHY  291 294  viii.  APPENDIX A:  GEOCHEMICAL DATA FOR SOIL PITS 14, 17, 49, 52, 109, 113 AND 198 FROM.THE CAMP. . LAKE AREA  APPENDIX B:  APPENDIX C:  309  GEOCHEMICAL DATA FOR THE ANNE-CLEAVER LAKES AREA  322  PLATES 1 TO 18  364  ix.  LIST  OF  TABLES  TABLE NUMBER 1  C l i m a t i c data from Bathurst Norsemines and Contwoyto Lake,  100 m i l e s t o the  southwest 2  32  Summary of sampling at Camp and Anne-Cleaver Lakes  3  57  Operating c o n d i t i o n s f o r the Techtron AA4 and Perkin-Elmer 303 atomic a b s o r p t i o n spectrophotometers  4  65  P r e c i s i o n estimates at the 95 percent conf i d e n c e l e v e l f o r p a i r e d s o i l samples and r e p l i c a t e standard rock analyses by atomic a b s o r p t i o n spectrophotometry  5  r  ..  68  P r e c i s i o n estimates at the 95 percent conf i d e n c e l e v e l f o r p a i r e d sediment  samples  analyzed by atomic a b s o r p t i o n spectrophotometry 6  69  Comparison of Zn c o n c e n t r a t i o n s (ppb) i n samples c o l l e c t e d from Camp Lake i n J u l y 1974 and 1975 and from Anne Lake i n 1974 ....  7  71  Comparison of Zn and Cu c o n c e n t r a t i o n s (ppb) i n lake waters as a f u n c t i o n of time and a n a l y t i c a l technique  72  X  8  Parameters of p a r t i t i o n e d lognormal Cu, Fe,  .9  Mn, Pb and Zn p o p u l a t i o n s  Metal content of s o i l  79  at Camp Lake  (minus 80-mesh f r a c t i o n HN0 /HC10 3  4  digestion) 10  82  Average c o n t r a s t f o r Ag, Cd, Cu, Fe, Mn, Pb and Zn i n each of the three s o i l  11  12  layers  ...  90  (gleyed) c o n d i t i o n s at s i t e s 279 and 280 ..  93  D i s t r i b u t i o n of elements under swampy  Comparison of t o t a l and p a r t i a l a t t a c k s on Layer 1 minus 80-mesh f r a c t i o n  13  97  Comparison of the average c o n t r a s t f o r t o t a l , 1.0M HC1 and 0.05M EDTA e x t r a c t a b l e Cu, Fe, Pb and Zn i n Layer 1  14  99  R e l a t i v e c o n c e n t r a t i o n s of HN0 /HC10 , 1.0M 3  4  HC1 and 1.0M hydroxylamine-hydrochloride/ a c e t i c a c i d e x t r a c t a b l e Mn (minus 80-mesh) i n r e l a t i o n t o s o i l drainage 15  D i s s o l v e d Zn (ppb) i n e x i t and entrance streams of Camp Lake, 1975  16  110  114  Comparison of metal, c o n d u c t i v i t y and pH v a l u e s i n water samples c o l l e c t e d from the same s i t e s on J u l y 9, and 30, 1974 (modified from Cameron and B a l l a n t y n e , 1975)  17  115  Geochemistry of Camp, Banana, Anne and T u r t l e Lake Waters  116  .  xi.  18  V a r i a t i o n with r e s p e c t t o time i n the composition of s u r f a c e lake waters i n the  v i c i n i t y of the Yava ( A g r i c o l a  Lake)  prospect, 40 m i l e s south of Bathurst Norsemines 19  117  Water composition of Camp, Banana and Lower Sunken Lakes sampled d u r i n g J u l y , 1974  20  Comparison  118  of Cu, Zn, Fe, Mn, S 0 , pH and 4  c o n d u c t i v i t y v a l u e s i n water from s u r f a c e seepages and s o i l p i t s 21  Comparison  121  of the geochemistry of snow-melt  r u n o f f with seepage-pit waters at Camp Lake 22  Comparison  .  122  of Zn, Cu, c o n d u c t i v i t y and pH  v a l u e s i n snow-melt r u n o f f with s u r f a c e seepage and p i t waters c o l l e c t e d at the same sample s i t e 23  123  Major and minor element composition of nearshore lake sediments from a 1250 square m i l e r e g i o n c e n t e r e d on Camp Lake  24  128  Cu, Pb, Zn, Fe, Mn and o r g a n i c carbon content of near-shore lake sediments from the Bathurst Norsemines  25  Comparison  region  129  of the geochemistry of r e g i o n a l  near-shore lake sediments with l a k e - c e n t e r sediments from the Bathurst Norsemines property  130  xii.  26  Metal content of lake sediments sampled with a mud snapper at Bathurst Norsemines  27  .. 131  Cu, Pb and Zn r a t i o s i n sediments and soils  28  132  Metal content of stream sediments adjacent to m i n e r a l i z e d zones at Camp Lake  140  29  S o l u b i l i t i e s of Cu, Pb and Zn s u l p h a t e s ......  30  Comparison of Cu and Zn c o n c e n t r a t i o n s and  257  Zn/Cu r a t i o s i n sampling media at Camp Lake 31  266  Comparison of Cu and Zn d i s p e r s i o n i n lake waters near the Main and East Cleaver Lake Zones and at the A g r i c o l a Lake prospect  Bl  Metal content of s o i l at Anne-Cleaver Lakes (minus 80-mesh f r a c t i o n , HN0 /HC10 3  4  digestion) B2  .... 272  323  Metal content of stream sediments adjacent to m i n e r a l i z e d zones at Anne Lake  324  xiii.  LIST  OF  FIGURES  FIGURE NUMBER  1  D i s t r i b u t i o n of permafrost  2  I d e a l i z e d c r o s s s e c t i o n of permafrost the A r c t i c  3  i n Canada  .. from  I s l a n d s to northern A l b e r t a  I d e a l i z e d diagram  5  depicting a possible  mode of o r i g i n f o r c i r c l e s  (from  Shilts,  1973a) 4  7  Block diagram  of c i r c l e s showing t y p i c a l com-  ponents and their, s p a t i a l (from S h i l t s , 5  relationships  1973a)  8  R e l a t i o n s h i p between f r o s t creep,  solifluction  and r e t r o g r a d e movement (adapted from  Price,  1972) 6  9  General r e l a t i o n s h i p between weathering  pro-  cesses and g e o c h e m i c a l . d i s p e r s i o n 7  Metal i o n m i g r a t i o n i n permafrost  12  terrains:  e f f e c t s of seasonal changes 8  Schematic  13  r e p r e s e n t a t i o n of the e f f e c t of  water bodies on permafrost 9  3  P r o f i l e s of geochemical disturbed t i l l ,  16  dispersion in:  B) i n c i r c l e s ,  and  A) C)  unsoli-  f l u c t i o n lobe with c o n s i d e r a b l e displacement.  20  xiv.  10  D i s p e r s i o n of z i n c i n lake sediments and waters from the A g r i c o l a Lake massive s u l p h i d e prospect Ballantyne,  11  (from Cameron and  1975)  L o c a t i o n of study  26  areas  and massive  s u l p h i d e bodies 12  I n f e r r e d drainage  31 paths based on a i r p h o t o  interpretations,  f i e l d observations  and a  comparison of lake e l e v a t i o n s ( c f . Cameron and B a l l a n t y n e , 13  1975)  Measurements o f g e n e r a l i z e d g l a c i a l d i r e c t i o n s i n the Bathurst (from Blake,  14  34  Inlet  region  1963)  36  D i s t r i b u t i o n of 32 measurements of g l a c i a l d i r e c t i o n movements at Bathurst  15  flow  Generalized  Norsemines .  s u r f i c i a l geology and e n v i r o n -  ment map  41  16  G e n e r a l i z e d s o i l map  17  Regional  18  S i m p l i f i e d g e o l o g i c map of Camp Lake  19  Camp Lake:  45  geology map of the study  area  P r e c i s i o n conformation for  at the 90th  54  58  percentile  an a r b i t r a r i l y chosen p r e c i s i o n of +_ 20%  ( a f t e r Thompson and Howarth, 1973) 21  51  l o c a t i o n of s o i l g r i d , s o i l p i t ,  stream water and sediment sampling s i t e s ... 20  37  74  Log p r o b a b i l i t y p l o t of Cu, -80 mesh fraction,  t o t a l attack  141  XV .  22  Log p r o b a b i l i t y p l o t of Fe, -80 mesh fraction,  23  143  t o t a l attack  144  Log p r o b a b i l i t y p l o t of Zn, -80 mesh fraction,  26  t o t a l attack  Log p r o b a b i l i t y p l o t of Pb, -80 mesh fraction,  25  142  Log p r o b a b i l i t y p l o t of Mn, -80 mesh fraction,  24  t o t a l attack  Camp Lake:  t o t a l attack Ag content  145  of the L-F-H  h o r i z o n , -80 mesh, t o t a l a t t a c k 27  Camp Lake:  Ag content  of Layer  1 soils,  -80 mesh, t o t a l a t t a c k 28  Camp Lake:  Ag content  147  of Layer  2 soils,  -80 mesh, t o t a l a t t a c k 29  Camp Lake:  Cd content  148  of the L-F-H  h o r i z o n , -80 mesh, t o t a l a t t a c k 30  Camp Lake:  Cu content  Camp Lake: soils,  32  33  Cu content  Fe content  Camp Lake:  Fe  content  152  of the L-F-H  h o r i z o n , -80 mesh, t o t a l a t t a c k 34  151  (ppm) of Layer 2  -80 mesh, t o t a l a t t a c k  Camp Lake:  150  (ppm) of Layer 1  -80 mesh, t o t a l a t t a c k  Camp Lake: soils,  Cu content  149  (ppm) of the L-F-H  h o r i z o n , -80 mesh, t o t a l a t t a c k 31  146  153  of Layer 1  s o i l s , -80 mesh, t o t a l attack  154  xvi.  35  Camp Lake: soils,  36  Fe content of Layer 2  -80 mesh, t o t a l a t t a c k  Gamp Lake:  Mn content (ppm) of the L-F-H  h o r i z o n , -80 mesh, t o t a l 37  Camp Lake:  Camp Lake:  attack  156  Mn content of Layer 1 s o i l s ,  -80 mesh, t o t a l 38  155  attack  157  Mn content of Layer 2 s o i l s ,  -80 mesh, t o t a l a t t a c k . 39  Camp Lake:  158  Pb content (ppm) of the L-F-H  h o r i z o n , -80 mesh, t o t a l a t t a c k 40  Camp Lake: soils,  41  42  Pb content (ppm) of Layer 1  -80 mesh, t o t a l a t t a c k  Camp Lake: soils,  -80 mesh, t o t a l  Camp Lake:  Camp Lake: soils,  44  attack  soils, 45  162  Zn content (ppm) of Layer 1 163  Zn content (ppm) of Layer 2  -80 mesh, t o t a l a t t a c k  Camp Lake:  161  Zn content (ppm) of the L-F-H  -80 mesh, t o t a l a t t a c k  Camp Lake:  160  Pb content (ppm) of Layer 2  h o r i z o n , -80 mesh, t o t a l a t t a c k 43  159  164  estimated percentage of  v i s i b l e surface iron staining  165  46  Camp Lake:  pH of the L-F-H h o r i z o n  166  47  Camp Lake:  pH of Layer 1 s o i l s  167  48  Camp Lake:  pH of Layer 2 s o i l s  168  49  Camp Lake:  c o n d u c t i v i t y of Layer 1 s o i l s  .... 169  xv i i .  50  ' Camp Lake: soils,  51  Cu content (ppm) of Layer 1  1.0M HC1 ext., -80 mesh  Camp Lake:  Cu content (ppm) of Layer 1  s o i l s , 0.05M EDTA ext., -80 mesh 52  Camp Lake:  Camp Lake:  Camp Lake: soils,  55  Pb content  Camp Lake: soils,  57  Camp Lake: ext.  59  ext. 60  ext. 61  ext.  S  179  r a t i o of 1.0M HC1 ext. t o t o t a l  Fe ( F e ^ ) i n Layer 1 s o i l s  Camp Lake:  178  r a t i o of 0.05M EDTA ext. t o t o t a l  Cu (Cu-g^) i n Layer 1 s o i l s  Camp Lake:  177  r a t i o of 1.0M HC1 ext. t o t o t a l  Cu (CUpj^) i n Layer 1 s o i l s  Camp Lake:  176  Zn content of Layer 1 s o i l s ,  0.05M EDTA ext., -80 mesh 58  175  Zn content (ppm) of Layer 1  1.0M HC1 ext., -80 mesh  Camp Lake:  174  Pb content of Layer 1 s o i l s ,  0.05M EDTA ext., -80 mesh 56  173  (ppm) of Layer 1  1.0M HC1 ext., -80 mesh  Camp Lake:  172  Fe content of Layer 1 s o i l s ,  0.05M EDTA ext., -80 mesh 54  171  Fe content of Layer 1 s o i l s ,  1.0M HC1 ext., -80 mesh 53  -170  180  r a t i o of 1.0M HC1 ext. t o t o t a l  Pb ( P b „ ) i n Layer 1 s o i l s t  181  riK  62  Camp Lake: ext.  63  Pb (Pb.™) i n Layer 1 s o i l s  Camp Lake: ext.  r a t i o of 0.05M EDTA ext. t o t o t a l 182  r a t i o of 1.0M HC1 ext. t o t o t a l  Zn ( Z n ) i n Layer 1 s o i l s W R  183  xviii.  64  Camp Lake: ext. Zn (  65  Camp Lake:  r a t i o of 0.05M EDTA ext. t o t o t a l Z n E  j^)  i  Layer  n  1 soils  r a t i o of t o t a l ext. Pb t o Cu i n  the L-F-H s o i l h o r i z o n 66  Camp Lake: Layer  67  185  r a t i o of t o t a l ext. Pb t o Cu i n  1 soils  Camp Lake:  186  r a t i o of t o t a l ext. Pb t o Zn i n  the L-F-H h o r i z o n 68  Camp Lake: Layer  69  187  r a t i o of t o t a l ext. Pb t o Zn i n  1 soils  Camp Lake:  188  l o c a t i o n map and s i t e numbers of  soil pits 70  Camp Lake:  189 s o i l p i t 11, metal  distribution  with depth, -80 mesh, t o t a l a t t a c k 71  Camp Lake:  s o i l p i t 11, metal  Camp Lake:  heavy m i n e r a l s , pH and  conductivity Camp Lake:  192  s o i l p i t 17, metal  distribution  with depth, -80 mesh, t o t a l a t t a c k 74  Camp Lake:  s o i l p i t 17, metal  Camp Lake;  193  distribution  with depth, -80 mesh, t o t a l a t t a c k 75  191  s o i l p i t 11, d i s t r i b u t i o n of  size fractions,  73  190  distribution  with depth, -80 mesh, t o t a l a t t a c k 72  ,184  194'  s o i l p i t 17, d i s t r i b u t i o n of  size fractions, conductivity  heavy m i n e r a l s , pH and 195  xix.  76  Camp Lake:  s o i l p i t 20, metal  distribution  with depth, -80 mesh, t o t a l a t t a c k 77  Camp Lake:  s o i l p i t 20, metal  distribution  with depth, -80 mesh, t o t a l a t t a c k 78  Camp Lake: fractions,  soil,pit  Camp Lake:  heavy m i n e r a l s , pH and 19'8  s o i l p i t 107, metal  distribution  with depth, -80 mesh, t o t a l a t t a c k 80  Camp Lake:  s o i l p i t 197, metal  Camp Lake:  heavy m i n e r a l s , pH and  conductivity Camp Lake:  201  s o i l p i t 121, metal  distribution  with depth, -80 mesh, t o t a l a t t a c k 83  Camp Lake:  s o i l p i t 121, metal  Camp Lake:  heavy m i n e r a l s , pH and  conductivity Camp Lake:  204  s o i l p i t 123, metal  distribution  with depth, -80 mesh, t o t a l a t t a c k 86  Camp Lake:  s o i l p i t 123, metal  Camp Lake:  205  distribution  with depth, -80 mesh, t o t a l a t t a c k 87  203  s o i l p i t 121, d i s t r i b u t i o n of  size fractions,  85  202  distribution  with depth, -80 mesh, t o t a l a t t a c k 84  200  s o i l p i t 107, d i s t r i b u t i o n of  size fractions,  82  199  distribution  with depth, -80 mesh, t o t a l a t t a c k 81  197  20, d i s t r i b u t i o n of s i z e  conductivity 79  196  206  s o i l p i t 123, d i s t r i b u t i o n of  size fractions, conductivity  heavy m i n e r a l s , pH and 207  XX .  88  Camp Lake:  s o i l p i t 125, metal  distribution  with depth, -80 mesh, t o t a l attack 89  Camp Lake:  s o i l p i t 125, metal  208  distribution  with depth, -80 mesh, t o t a l a t t a c k 90  Camp Lake:  209  s o i l p i t 125, d i s t r i b u t i o n of  size fractions,  heavy m i n e r a l s  pH and  conductivity 91  Camp Lake:  210  s o i l p i t number 11, d i s t r i b u t i o n  of metal between s i z e f r a c t i o n s  at 22  inches depth, 1.0M HC1 and HN0 /HC10 3  4  attacks 92  Camp Lake:  211 s o i l p i t number 11, d i s t r i b u t i o n  of metal between s i z e f r a c t i o n s  at 42  inches depth, 1.0M HC1 and HN0 /HC10 3  4  attacks 93  Camp Lake:  212 s o i l p i t number 20, d i s t r i b u t i o n  of metal between s i z e f r a c t i o n s  at 22  inches depth, 1.0M HC1 and HNOg/ HC10  4  attacks 94  Camp Lake:  213 s o i l p i t number 20, d i s t r i b u t i o n  of metal between s i z e f r a c t i o n s  at 40  inches depth, 1.0M HC1 and HN0 /HC10 3  4  attacks 95  Camp Lake:  214 s o i l p i t number 107, d i s t r i b u t i o n  of metal between s i z e f r a c t i o n s  at 14  inches depth, NHgOH•HCl/CHgCOOH and HN0 / 3  HC10. a t t a c k s  215  xx i .  96  Camp Lake:  s o i l p i t number 123, d i s t r i b u t i o n  of metal between s i z e f r a c t i o n s ;at 44 inches depth, NH 0H'HC1/CH C00H and HNOg/ 2  HC10 97  4  3  attacks  Camp Lake:  216  Cu and Zn content of s u r f a c e -  seepage and p i t waters (1974) 98  Camp Lake: runoff  99  217  Cu and Zn content of snow-melt  (1975)  Camp Lake:  218  contoured map of the Cu content  (ppb) i n snow-melt r u n o f f 100  Camp Lake:  219  contoured map of the Zn content  (ppb) i n snow-melt r u n o f f 101  220  Cu and Zn content (ppb) i n lake waters from the Bathurst Norsemines Area (modified from Cameron and B a l l a n t y n e , 1975)  102  Camp Lake:  location,  221  sample number, water  depth and metal content of sediments c o l l e c t e d with a mud snapper 103  Banana Lake:  location,  222  sample number, water  depth and metal content of sediments c o l l e c t e d with a mud snapper 104  Lower and Upper Sunken Lakes:  223 location,  sample number, water depth and metal content of sediments c o l l e c t e d with a mud snapper ... 224 105  Anne Lake:  location,  sample number, water  depth and metal content of sediments c o l l e c t e d with a mud snapper  225  xx i i .  106  T u r t l e Lake: depth  l o c a t i o n , sample number, water  and metal  content of sediments  c o l l e c t e d with a mud snapper 107  Camp Lake:  226  l o c a t i o n , sample number and  water depth of sediment cores 108  Camp Lake: metal  109  227  core 1417, s t r a t i g r a p h y and  content with depth  Camp Lake:  core 1418, s t r a t i g r a p h y ,  228 metal  content and L.O.I, w i t h depth 110  Camp Lake:  core 1419, s t r a t i g r a p h y ,  229 metal  content and L.O.I, with depth 111  Camp Lake: metal  112  core 1420, s t r a t i g r a p h y  230 and  content with depth  Camp Lake:  core 1421, s t r a t i g r a p h y ,  231 metal  content and L.O.I, with depth 113  Camp Lake:  core 1422, s t r a t i g r a p h y ,  232 metal  content and L.O.I, with depth 114  Camp Lake:  core 1423, s t r a t i g r a p h y ,  233 metal  content and L.O.I, with depth 115  Camp Lake:  core 1424, s t r a t i g r a p h y ,  234 metal  content and L.O.I, with depth 116  Camp Lake: metal  117  235  core 1425, s t r a t i g r a p h y and  content with depth  Camp Lake:  core 1426,  stratigraphy,  236 metal  content and L.O.I, with depth 118  Camp Lake:  core 1427, s t r a t i g r a p h y ,  content and L.O.I, with depth  237 metal 238  xx i i i .  119  Camp Lake:  core 1428, s t r a t i g r a p h y ,  metal  content and L.O.I, with depth 120  Camp Lake:  239  core 1429, s t r a t i g r a p h y and  metal content with depth 121  Camp Lake: metal  122  240  core 1430, s t r a t i g r a p h y and  content with depth  Banana Lake:  241  l o c a t i o n , sample number and  water depth of sediment cores 123  Banana Lake:  242  core 1645, s t r a t i g r a p h y ,  metal  content and L.O.I, with depth 124  Banana Lake:  243  core 1646, s t r a t i g r a p h y ,  metal  content and- L.O.I, with depth 125  Banana Lake:  244  core 1647, s t r a t i g r a p h y ,  metal  content and L.O.I, with depth 126  Banana Lake:  245  core 1648, s t r a t i g r a p h y and  metal content with depth 127  246  I d e a l i z e d s t r a t i g r a p h i c and geochemical  model  of c e n t e r - l a k e sediments at Bathurst Norsemines 128  247  Cross s e c t i o n of g l a c i a l  d e p o s i t s showing  s h e e t - l i k e zones of high copper  concen-.  t r a t i o n s extending i n a down-ice d i r e c t i o n from the Jameland and Kamkotia mines (taken from Skinner, GSC Open F i l e Report 129  116)  249  Cross s e c t i o n of deep s o i l Pb (ppm) geochemistry, over a disseminated occurrence  galena  i n the R e p u b l i c of I r e l a n d  250  xx i v .  130  Variation  (>10%) of Pb content between Layer  1 and 2......... . 131  I d e a l i z e d g l a c i a l d i s p e r s i o n model f o r Pb (and  Al  ... 252  other elements) at Camp Lake  Camp Lake:  s o i l p i t 14, metal  distribution  with depth, -80 mesh, t o t a l a t t a c k A2  Camp Lake:  s o i l p i t 14, metal  Camp Lake:  s o i l p i t 49, metal  Camp Lake:  s o i l p i t 49, metal  Camp Lake:  s o i l p i t 52, metal  Camp Lake:  s o i l p i t 52,  metal  Camp Lake:  s o i l p i t 109, metal  Camp Lake:  s o i l p i t 109, metal  Camp Lake: , s o i l p i t 113, metal  Camp Lake:  s o i l p i t 113, metal  Camp Lake:  s o i l p i t 198, metal  318  distribution  with depth, -80 mesh, t o t a l a t t a c k All  317  distribution  with depth, -80 mesh, t o t a l a t t a c k A10  316  distribution  with depth, -80 mesh, t o t a l a t t a c k A9  315  distribution  with depth, -80 mesh, t o t a l a t t a c k A8  314  distribution  with depth, -80 mesh, t o t a l a t t a c k A7  313  distribution  with depth, -80 mesh, t o t a l a t t a c k A6  312  distribution  with depth, -80 mesh, t o t a l a t t a c k A5  311  distribution  with depth, -80 mesh, t o t a l a t t a c k A4  310  distribution  with depth, -80 mesh, t o t a l a t t a c k A3  254  319  distribution  with depth, -80 mesh, t o t a l a t t a c k  320  XXV .  A12  Camp Lake:  s o i l p i t 198,  metal  distribution  with depth, -80 mesh, t o t a l a t t a c k . Bl  Anne-Cleaver Lakes:  l o c a t i o n of s o i l  soil.', p i t and stream sediment  321 grid,  sample  sites B2  325  Anne-Cleaver Lakes:  Ag content of the L-F-H  h o r i z o n and Layer 1 s o i l s , -80 mesh, t o t a l attack B3  326  Anne-Cleaver Lakes:  Cd content of the L-F-H  h o r i z o n , -80 mesh, t o t a l a t t a c k B4  Anne-Cleaver Lakes: soils,  B5  B6  Cd content of Layer 1  -80 mesh, t o t a l a t t a c k  Anne-Cleaver Lakes: L-F-H  327  328  Cu content (ppm) of the  h o r i z o n , -80 mesh, t o t a l a t t a c k  Anne-Cleaver Lakes:  329  Cu content (ppm) of  Layer 1 s o i l s , -80 mesh, t o t a l a t t a c k B7  Anne-Cleaver Lakes: soils,  B8  330  Cu content of Layer 1  1.0M HC1 ext., -80 mesh  Anne-Cleaver Lakes:  331  Cu content (ppm) of  Layer 1 s o i l s , 0.05M EDTA ext., -80 mesh ... B9  Anne-Cleaver Lakes:  r a t i o of 1.0M HC1 e x t .  to t o t a l ext. Cu ( C u ™ ) i n Layer 1 s o i l s B10  Anne-Cleaver Lakes: to t o t a l ext. Cu  ...  Anne-Cleaver Lakes:  333  r a t i o of 0.05M EDTA (C ER) U  ^  n  Layer 1  soils Bll  332  334 estimated percentage of  v i s i b l e surface iron staining  335  xx v i .  B12  Anne-Cleaver Lakes:  Fe content of the L-F-H  h o r i z o n , -80 mesh, t o t a l a t t a c k B13  Anne-Cleaver Lakes: soils,  B14  B15  Fe content of Layer 1  -80 mesh, t o t a l a t t a c k  Anne-Cleaver Lakes: soils,  336  337  Fe content of Layer 1  1.0M HC1 ext., -80 mesh  Anne-Cleaver Lakes:  338  Fe content of Layer 1  s o i l s , 0.05M EDTA ext., -80 mesh B16  Anne-Cleaver Lakes:  339  r a t i o of 1.0M HC1 ext.  to t o t a l e x t . Fe ( F e ™ ) i n Layer 1 s o i l s .... 340 lift B17  Anne-Cleaver Lakes:  Mn content of the L-F-H  :horizon, -80 mesh, t o t a l a t t a c k B18  Anne-Cleaver Lakes: soils,  B19  B20  Mn content of Layer 1  -80 mesh, t o t a l a t t a c k . . .  Anne-Cleaver Lakes: L-F-H  341  342  Pb content (ppm) of the  h o r i z o n , -80 mesh, t o t a l a t t a c k  Anne-Cleaver Lakes:  343  Pb content (ppm) of Layer  1 s o i l s , -80 mesh, t o t a l a t t a c k B21  Anne-Cleaver Lakes: soils,  B22  B23  Pb content of Layer 1  1.0M HC1 ext. , -80 mesh  Anne-Cleaver Lakes: soils,  344  345  Pb content of Layer 1  0.05M EDTA ext., -80 mesh  Anne-Cleaver Lakes:  346  r a t i o of 1.0M HC1 e x t .  to t o t a l ext. Pb (Pkj^) i - Layer 1 s o i l s .... 347 n  B24  Anne-Cleaver Lakes:  r a t i o of 0.05M EDTA e x t .  to t o t a l ext. Pb ( P b „ ) i n Layer 1 s o i l s p  .... 348  xxvii.  B25  Anne-Cleaver Lakes: L-F-H  B26  Zn content (ppm) of the  h o r i z o n , -80 mesh, t o t a l a t t a c k  Anne-Cleaver Lakes:  Zn content (ppm) of Layer  1 s o i l s , -80 mesh, t o t a l a t t a c k B27  Anne-Cleaver Lakes:  350  Zn content (ppm) of Layer  1 s o i l s , 1.0M HC1 ext., -80 mesh B28  Anne-Cleaver Lakes: soils,  B29  Anne-Cleaver Lakes:  352  r a t i o of 1.0M HC1 e x t . . t o  t o t a l ext. Zn ( Z n ™ ) i n Layer 1 s o i l s B30  351  Zn content of Layer 1  0.05M EDTA ext., -80 mesh  Anne-Cleaver Lakes:  349  353  r a t i o of 0.05M EDTA e x t .  to t o t a l ext. Zn ( Z n ^ ) i n Layer 1 s o i l s .... 354 B31  Anne-Cleaver Lakes:  pH of the L-F-H  horizon B32  355  Anne-Cleaver Lakes:  pH of the Layer 1  soils B33  Anne Lake:  356 s o i l p i t 431, metal  distribution  with depth, -80 mesh, t o t a l a t t a c k B34  Anne Lake:  s o i l p i t 431, metal  distribution  with depth, -80 mesh, t o t a l attack B35  Anne Lake:  s o i l p i t 433,  metal  Anne Lake:  s o i l p i t 433, metal  Anne Lake:  s o i l p i t 452, metal  359  distribution  . with depth, -80 mesh, t o t a l a t t a c k B37  358  distribution  with depth, -80 mesh, t o t a l a t t a c k B36  357  360  distribution  with depth, -80 mesh, t o t a l a t t a c k  361  xxviii.  B38  Anne-Cleaver Lakes: d i s s o l v e d Cu and Zn i n seepage, p i t and stream waters  B39  Anne-Cleaver Lakes:  (ppb)  (1974) ....  d i s s o l v e d Cu and Zn  362  (ppb)  i n snow-melt, pond and stream waters (1975)  363  xx i x .  LIST  OF  PLATES  PLATE NUMBER 1  Unsorted  c i r c l e with v e g e t a t i o n - i r e e  center 2  365  Photo taken l o o k i n g up s l o p e at a 4 t o 5 f o o t wide unsorted c i r c l e  365  3  A 1975 photo of a 1974 s o i l s i t e  (14)  366  4  I n a c t i v e vegetated c i r c l e  5  View from 3000 f e e t of the Bathurst Norsemines  366  r e g i o n showing the great abundance of lakes and 6  low r e l i e f of the area  T y p i c a l s o i l sampling  site  profile 7  Typical s o i l  sampling  site  367  (69) and s o i l  (<2 inch) L-F-H h o r i z o n ... 368  P o o r l y d r a i n e d but ungleyed site  9  (131) and s o i l ••••  p r o f i l e with t h i n 8  367  soil  sampling  (32) with t h i n L-F-H h o r i z o n  Soil site  (323) at Anne-Cleaver  10  Anne-Cleaver  11  Camp Lake from  Lakes Area  Lakes Area from 300 f e e t  368 .... 369 369  500 f e e t l o o k i n g northeast  i n e a r l y June 1975  370  12  Sediment core 1419  370  13  Sediment core 1424  371  14  Sediment core 1427  371  XXX .  15  "(In pocket).  C o l o r G.S.C. a i r photograph  of the Camp Lake Area 16  (In pocket).  C o n t i n u a t i o n of P l a t e 15  17  (In pocket).  Color G.S.C. a i r photograph  of the Anne-Cleaver 18  ( I n pocket).  372 372  Lakes Area  372  C o n t i n u a t i o n of P l a t e 17  372  xxx i . ACKNOWLEDGEMENTS The to  author  i s indebted to many i n d i v i d u a l s who  this thesis.  A s s i s t a n c e i n the f i e l d was  Mike Waskett-Myers i n 1974 cial  and Mr.  thanks are extended to Mr.  contributed  provided by  Mr.  Barry Hogan i n 1975.  Paul W i l t o n , Ms.  Spe-  Barbara  Mioduszewska and Mr. Frank Ferguson of Cominco L i m i t e d f o r ass i s t a n c e i n the f i e l d  and f o r subsequent d i s c u s s i o n s and  con-  f i d e n t i a l m a t e r i a l s which g r e a t l y aided i n t e r p r e t a t i o n of geochemical r e s u l t s .  S p e c i a l thanks i s a l s o o f f e r e d to  E.M.  Cameron of the G e o l o g i c a l Survey of Canada f o r b r i e f d i s c u s s i o n s of f i e l d in  1974  and  data at Bathurst Norsemines and A g r i c o l a Lake  1975.  A n a l y t i c a l determinations were made by the author, Waskett-Myers and Mr. p r e p a r a t i o n was  A.S.  Dhillon.  A s s i s t a n c e with  g i v e n by Miss G e r a l d i n e Desmond who  f u l l y typed the t e x t .  examination  s t r u c t i v e c r i t i c i s m of p r e l i m i n a r y d r a f t s . s u p e r v i s e d t h i s study,  author  Dr. W.K.  conFletcher,  working c o n d i t i o n s .  provided generous funding and  logistical  f o r t h i s study and to Dresser M i n e r a l s I n t e r n a t i o n a l  Incorporated who manuscript.  supported  and Career  p r e p a r a t i o n and r e p r o d u c t i o n of the  P a r t i a l a s s i s t a n c e f o r summer f i e l d work  a l s o s u p p l i e d by the B.C. '74  and  C.I.  i s h i g h l y indebted to management and s t a f f of  Cominco L i m i t e d who support  also s k i l -  i s o f f e r e d many thanks f o r h i s time  and p a t i e n c e under d i f f i c u l t The  thesis  S p e c i a l thanks are extended to Dr.  Godwin and A.J. S i n c l a i r f o r c r i t i c a l  who  Mr.  Government as part of t h e i r  '75 programs.  was Career  1.  CHAPTER INTRODUCTION  TO  IN  I  1  EXPLORATION  PERMAFROST  GEOCHEMISTRY  TERRAINS  THESIS OBJECTIVES Geochemical  i n v e s t i g a t i o n s of metal d i s p e r s i o n i n s o i l ,  water and sediment were conducted over and adjacent to v o l canogenic massive s u l p h i d e d e p o s i t s at Bathurst Norsemines i n the D i s t r i c t of Mackenzie, the  N.W.T.  zone of continuous permafrost.  The area l i e s Particular  within  attention  has been g i v e n t o : 1)  D e f i n i n g s p a t i a l d i s t r i b u t i o n s of t r a c e in s o i l ,  sediment  and water and t h e i r  s h i p to m i n e r a l i z e d 2)  elements  relation-  zones.  A s s e s s i n g the s i g n i f i c a n c e of g l a c i a l - p e r i g l a c i a l phenomena upon d i s p e r s i o n p a t t e r n s and i o n m o b i l i t y .  3)  Determining the most a p p r o p r i a t e sampling medium and method i n terms of e x p l o r a t i o n .  4)  D e f i n i n g the mode of metal occurrence w i t h i n the v a r i o u s sample media.  5)  I d e n t i f i c a t i o n and c h a r a c t e r i z a t i o n of geochemical anomalies u s i n g v a r i o u s p a r t i a l e x t r a c t i o n s and statistical  In  methods.  the course of t h i s study, more than 1400  water and 100 sediment  samples  were c o l l e c t e d .  soil,  200  Over 24,000  a n a l y t i c a l d e t e r m i n a t i o n s were conducted on these samples i n an e f f o r t to achieve the above o b j e c t i v e s .  2.  II  PERMAFROST, PERIGLACIAL PHENOMENA AND GEOCHEMICAL DISPERSION A.  Permafrost  and the P e r i g l a c i a l Environment  Before d i s c u s s i n g geochemical methods which might be u t i l i z e d w i t h i n permafrost t e r r a i n i t i s u s e f u l to d e f i n e some terms and examine those c h a r a c t e r i s t i c s of permafrost and p e r i g l a c i a l processes which can a f f e c t metal d i s p e r s i o n and consequently the a p p l i c a t i o n of geochemical mineral exploration.  techniques i n  Permafrost, permanently  f r o z e n ground,  i s d e f i n e d s o l e l y on the b a s i s of temperature Kupsch, 1974).  It i s s o i l ,  o c c u r r i n g at v a r i a b l e depths i n which a temperature  s u b s o i l or even  (Brown and bedrock  i n a r c t i c to s u b a r c t i c r e g i o n s  of l e s s than 0°C has e x i s t e d  con-  t i n u o u s l y f o r at l e a s t two years. Depending upon the c o n t i n u i t y of the f r o z e n l a y e r , permafrost  i s classified  as e i t h e r continuous or d i s c o n t i n u o u s  (Brown, 1970) and together these two types or zones u n d e r l i e n e a r l y h a l f the land mass of Canada ( F i g . 1 ) . tinuous zone, permafrost  In the con-  i s normally found everywhere at  depth, v a r y i n g i n t h i c k n e s s from 180 to 280 f e e t at i t s southern boundary to i n excess of 1500 f e e t i n the extreme north.  In the d i s c o n t i n u o u s zone, as the name i m p l i e s ,  large  areas of unfrozen ground or t a l i k s are found at v a r i o u s depths. T a l i k s a l s o occur w i t h i n the continuous zone but are r e s t r i c t e d to areas beneath  l a k e s and r i v e r s which do not completely  f r e e z e i n the winter.  4.  The a c t i v e l a y e r i s the zone above permafrost which f r e e z e s and thaws a n n u a l l y .  I t i s d i r e c t l y u n d e r l a i n by  permafrost except i n the d i s c o n t i n u o u s zone where i t may be separated from permafrost by an i n t e r v e n i n g t a l i k 1972;  F i g . 2).  It i s r e l a t i v e l y thin,  the f a r n o r t h but i n c r e a s e s to about  1.5  to 4.0  12 f e e t near  southern boundary of d i s c o n t i n u o u s permafrost.  (Price,  feet, in the  In Canada,  the a c t i v e l a y e r t y p i c a l l y c o n s i s t s of an a c i d i c , c o l d , and rocky t i l l .  S o i l p r o f i l e development i s minimal  and  G l e y s o l i c and R e g o s o l i c s o i l s dominate ( P r i c e , 1972; 1970;  T a r n o c a i , 1977).  Furthermore,  substantial  wet,  Brown  frost  a c t i o n , e s p e c i a l l y c r y o t u r b a t i o n , has m e c h a n i c a l l y d i f f e r e n t i a t e d the upper p o r t i o n s of the a c t i v e l a y e r i n t o s o r t e d and non-sorted f e a t u r e s c h a r a c t e r i s t i c of p a t t e r n e d ground (e.g. all  . c i r c l e s , nets and s t r i p e s ; soil  sampling  Washburn, 1972).  Almost  i n a r c t i c Canada i s done i n the a c t i v e  l a y e r , t h e r e f o r e , i t s e f f e c t i v e use as a sampling medium n e c e s s i t a t e s an understanding of p e r i g l a c i a l p r o c e s s e s . Although there are many types of p e r i g l a c i a l phenomena (Washburn, 1956, geochemistry  the most r e l e v a n t to e x p l o r a t i o n  are c i r c l e s , s o r t e d and non-sorted, and  f l u c t i o n lobes. boils,  1972)  soli-  C i r c l e s are known by many names (e.g.  mud  f r o s t b o i l s , f r o s t s c a r s , tundra c r a t e r s , m e d a l l i o n  patches, e t c . ) .  They are d i a p i r i c s t r u c t u r e s , 1.0  f e e t i n diameter, which are thought  to be produced  to by  8.0  P t i o l u l . . N.W.T. |7i°N)  .  M o r m o n W . l l i , N.W.T. (65°N1  Hoy Jilv.r, N.W.T. (6l°N)  w  ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^  ^ ^ S c o l l . r . d  "X//yVyyv/X/%  Pofch.1  F.w M . l . n  f^^A^^^^^A^^^^^AA^^^^^^^^^S^^^^^^^^^^^^^^  Unfroi.n  ///////////////M  Thick  Ground  (Tolik|  ^^^^  Conlinuoul P.rmofroll Zon.  D11 c o n l i n u o u i P.rmofroit Zont  1  —1  j U <  Figure  2.  I d e a l i z e d c r o s s s e c t i o n o f permafrost from the Arctic  Islands t o northern  Alberta.  Note that  the a c t i v e l a y e r i s deepest i n the s u b a r c t i c (e.g. Hay R i v e r , north  61°N) and decreases i n depth  and south of t h i s zone.  A l s o note that  the a c t i v e l a y e r can be separated by an i n t e r v e n i n g t a l i k  from permafrost  (adapted from P r i c e ,  1972).  6.  d i f f e r e n t i a l freeze-thaw (Corte, 1962)  and/or p r e s s u r e s  by h y d r o s t a t i c -or c r y o s t a t i c c o n d i t i o n s ( S h i l t s , Generally, Bathurst was  1973a, F i g . 3).  they are r e s t r i c t e d to low angle s l o p e s and,  Norsemines, heaving and  observed to occur  e x t r u s i o n of s i l t y  observations  at  material  e a r l y i n the summer when the a c t i v e  l a y e r i s most s a t u r a t e d with water ( P l a t e s 1 to 3 ) .  it  caused  Following  i n the Mackenzie d e l t a , by Mackay and MacKay (1976)  i s suggested that h y d r o s t a t i c r a t h e r than c r y o s t a t i c  processes tion  are a more l i k e l y mechanism of f r o s t b o i l  genera-  ( F i g . 4). S o l i f l u c t i o n or g e l i f l u c t i o n  i s the slow (one  to  two  inches per y e a r ) , v i s c o u s , down-slope movement of waterlogged s o i l and other unsorted  and  saturated s u r f i c i a l  ( P r i c e , 1972;  and  Corte,  Highashi  creep and mass movement may solifluction by higher  1971).  material  Although  soil  be important components of  ( F i g . 5), the s o l i f l u c t i o n process  i s distinguished  s o i l moisture, d i f f e r e n t i a l s o i l movement, which  o f t e n produces l o b a t e s t r u c t u r e s , and  a more r e s t r i c t e d  period  of a c t i v i t y , g e n e r a l l y i n e a r l y summer when water i s most available.  Solifluction  i s best developed on slopes of 5  to 25 degrees where i t g e n e r a l l y manifests lobes, one  large  hundred to s e v e r a l hundred, f e e t i n s t r i k e and  to four f e e t i n height, which may lated pattern. two  i t s e l f as  coalesce  forming a  S o l i f l u c t i o n can a l s o occur  or three degrees, but  two  crenu-  on slopes of  i s g e n e r a l l y more s u b t l e and  re-  only  A s sediment flows from crest.permalrost table is lowered producing more unfrozen sediment; relief on till s u r l a c e s is quickly reduced  Organic growth and  Figure  3.  I d e a l i z e d diagram d e p i c t i n g a p o s s i b l e mode of o r i g i n f o r circles  (from S h i l t s ,  1973a).  H u m u s , plant a n d animal d e b r i s , s t o n e s , d w a r f and shrubs  trees  Haid,sandy c a r a p a c e ; w e a k s u b - horizontal  w * '  layering  *  &If$&'  Thin(5-15cm)Bhorizon; * 7 r only d e v e l o p e d n e a r p e r i p h e r y o l active ^ c ^ & ^ L j| *pCm, I/T-TJ ) . i i - - r>)r<""  >/' K/t£' '  A  " °  V* '<>?iii ,ff  J  :  . . . . „ , ,  >  *  *  > C??> ^ .  Jm^JS  ^y > ' T,  r,>  .swT* *  J».  *  ^ ,  *  1  D  ^\\^\  O  g  Permanently  cm  ^ J$JJ'°  frozen  o  40-  120H  160-  40  F i g u r e 4.  80  120  160  200  240  280  320  360  -400cm  Block diagram o f c i r c l e s showing t y p i c a l spatial  r e l a t i o n s h i p s (from S h i l t s ,  components and t h e i r  1973a). 00  9.  FROST CREEP  Figure  5.  FROST CREEP A N D  R e l a t i o n s h i p between f r o s t  SOIIFLUCTION  creep,  and r e t r o g r a d e movement (adapted 1972).  solifluction from P r i c e ,  10.  stricted-.  On  s l o p e s g r e a t e r than 25 degrees water i s  q u i c k l y l o s t as r u n o f f which c a r r i e s away the f i n e r Because f i n e s o i l and high moisture  contents  soil.  facilitate  s o l i f l u c t i o n development, the l o s s of both f i n e s and  water  s e v e r e l y l i m i t s s o l i f l u c t i o n development on such s l o p e s .  B.  C l i m a t i c Influences  Since permafrost  i s a f u n c t i o n of c l i m a t i c c o n d i t i o n s ,  s y s t e m a t i c c l i m a t i c changes over many years or hundreds of years w i l l cause permafrost  and  active layer thicknesses  to f l u c t u a t e (Gold and Lachenbruch, 1973; 1965);  Bryson et a l . ,  however, such e f f e c t s i n terms of geochemical d i s -  p e r s i o n , have not been r e p o r t e d .  It i s  suggested,  t h e r e f o r e , that long term o s c i l l a t i o n s of the mean annual a i r temperature (M.A.A.T.) allow r e l a t i v e l y unweathered permafrost  m a t e r i a l to be s u b j e c t e d p e r i o d i c a l l y  i n t e n s e chemical  and p h y s i c a l weathering  of the present a c t i v e l a y e r and, sufficient,  characteristic  i f cryoturbation i s  i n c o r p o r a t i o n of former permafrost  i n t o the upper p o r t i o n of the a c t i v e l a y e r may Furthermore, an i n c r e a s e i n the M.A.A.T. may p e r i o d s of thaw and more i n t e n s e chemical activity;  conversely, a decrease  to i n h i b i t d i s p e r s i o n processes.  to  and  material occur.  result  i n longer  biological  i n the M.A.A.T. i s thought Such long term  f l u c t u a t i o n s are thought to be recorded  climatic  i n lake sediments as  v a r i a t i o n s i n sediment t e x t u r e , t r a c e element  composition  and o r g a n i c matter content ( c f . Karrow and Anderson  1975),  which are s u b j e c t s c o n s i d e r e d i n Chapters 4 and 5, S e c t i o n s V and II r e s p e c t i v e l y .  C.  Geochemical D i s p e r s i o n i n Permafrost T e r r a i n s 1.  I o n i c and hydromorphic  dispersion  Although the same b a s i c weathering and d i s p e r s i o n processes ( b i o l o g i c a l ,  chemical and p h y s i c a l ) operate i n the  permafrost regime, as i n the temperate  zone ( F i g . 6), the  s e v e r i t y of the c l i m a t e and the presence of permafrost impose t h e i r own  p e c u l i a r r e s t r i c t i o n s on geochemical  For example, u n t i l r e c e n t l y permafrost was almost impermeable.  (Anderson, 1967:  c o n s i d e r e d to be  Consequently, groundwater  except i n the shallow a c t i v e l a y e r , was t u a l l y non-existent.  dispersion.  movement,  thought to be  vir-  However, as r e c e n t s t u d i e s have shown  Murmann, 1973) water and i o n movement w i t h -  i n permafrost can occur through d i f f u s i o n a l processes ( F i g . 7 ) . Ion d i f f u s i o n r a t e s i n permafrost were p r e c o n c e i v e d to be s i m i l a r to s o l i d s t a t e d i f f u s i o n r a t e s . rates for frozen s o i l s _3 10  (-3°  However, d i f f u s i o n  to -15°C) were found to range  cm to 5 cm per day, which  from  i s o n l y about a f a c t o r of 10  l e s s than the same s o i l s at 25°C and s u b s t a n t i a l l y higher, by s e v e r a l o r d e r s of magnitude, than s o l i d s t a t e r a t e s (Anderson and Morgenstern,  1973).  diffusion  Furthermore,  i f the  t o r t u o s i t y of the m i g r a t i o n path i s c o n s i d e r e d , the r a t e s are only s l i g h t l y  l e s s than those i n an aqueous s o l u t i o n .  C l i m a t e *—•> G e o l o g y , WEATHERING CONTROLS Biology  TYPES  + Geomorphology  OF  WEATHERING  Biological  Physical  ^Mineralization^  "V, DISPERSION  Biogenic  PATTERNS  ,  ,  Hydromorphic  Clastic  diffusion  plants j plant  DISPERSING  material  surface  water  ground  glacial  T SPECIFIC  1.  living  DISPERSION  it  MECHANISMS  tall  when  returned  absorb dead,  l metal  dispersion movement.  by  animol  surface  runoff.  2.  lake  dispersion  groundwater flow  turnover  woter gravity  flow or  and  T  1. c o n t i n e n t a l 2.  alpine  <  1. c r y o f u r b a l i o n 2.  tolifluction  3. f r o i t  ^ —  I, 2.  ndlmtnti  I. t o l l  creep  mudflowi  creep  etc.  by wind.  spring  F i g u r e 6.  1. Ionic  streams and  dispersion. 2.  2.  d i s p e r s i o n in  lakes,  to the o r g a n i c  with s l i g h t  Ionic  wind  periglacial  T  plants  matol;  gravity  water  Ice  T  animals  AGENTS  water  water  General r e l a t i o n s h i p between weathering processes and geochemical  dispersion.  I. a e o l l a n  lands  13.  SUMMER : dry  (3)  FALL '. rains  (4)  777 . /  Rami 5 rloce  .un  u  build-up  of  metal  \  Flu.h  p  4  I  I  Snow  If  Soil  ?  thaw  melt  run  ond run  * So i l «  SPRING : thaw F i g u r e 7.  J; - , F . o . . n  oil  4  V  (2)  Metal i o n m i g r a t i o n of seasonal  Lo'.% * r n  u  S o It1 o gain •  oil  *  PERMAFROST  n o l f  I  collect  » o i U °  Fro i en  u  PERMAFROST  PERMAFROST  Snow  >  oil  (1)  "  Ice  \ Ccurn^lt  U_4 _ r  PERMAFROST  „„'","*„,  WINTER : freeze  i n permafrost t e r r a i n s :  changes.  The b a s i c process  effects  by which  ions move from permafrost upwards i s probably diffusion in solution. in  ionic  There i s s u f f i c i e n t moisture  permafrost to allow c a p i l l a r y - t y p e m i g r a t i o n to  occur. soil  In the winter metal ions move towards the  s u r f a c e i n response to v a r i o u s  Carbonate and sulphate  c r u s t s are formed and some  metal moves i n t o the o v e r l y i n g snow. continues  gradients. This  process  u n t i l s p r i n g when there i s m e l t i n g and  metal ions are f l u s h e d out i n a p u l s e of e a r l y runoff,  which may take s e v e r a l weeks.  In summer  s u r f a c e r u n o f f has ceased, but c a p i l l a r y a c t i o n continues  to supply m e t a l - r i c h waters to the s o i l  s u r f a c e where the water evaporates l e a v i n g behind s o l u b l e metal complexes i f there i s l i t t l e rain. in  In the f a l l ,  summer  r a i n i s more frequent r e s u l t i n g  a f l u s h r u n o f f which may be as i n t e n s e as the  s p r i n g pulse under c e r t a i n c o n d i t i o n s (from and A l l a n , 1973) .  Jonasson  14.  D i f f u s i o n r a t e s of t h i s magnitude can only be accounted f o r by the e x i s t e n c e of continuous, t h i n f i l m s of  liquid  water, 3 to 18 angstroms t h i c k , surrounding the s o i l i c l e s (Anderson  and Hoekstra,  1965).  (1972) and Tyutyunov (1960, 1961)  part-  U g o l i n i and Anderson  have shown that  these  t h i n f i l m s of water are s a l i n e and probably allow important chemical r e a c t i o n s to occur.  Consequently,  permafrost  may  not be as much of a b a r r i e r to t r a c e element movement nor as e f f e c t i v e i n l i m i t i n g chemical weathering Furthermore,  as once  thought.  many l a b o r a t o r y and a few f i e l d s t u d i e s have  shown that ions may  move i n response  to v a r i o u s g r a d i e n t s  and that weathering w i t h i n permafrost does occur. the presence of massive  However,  i c e (e.g i c e l e n s e s , l a y e r s and  wedges), which can occupy as much as 80 percent of permafrost by volume, can d r a s t i c a l l y and-unpredictably reduce ion movement (MacKay, p e r s . comm.). r e l a t i v e importance  F i e l d s t u d i e s , a s s e s s i n g the  of i o n i c d i f f u s i o n w i t h i n permafrost with  r e s p e c t to m i g r a t i o n of elements  from s u l p h i d e ore bodies have  not been r e p o r t e d except i n r e l a t i v e l y j o u r n a l s (e.g. Shvartsev and L u f k i n ,  i n a c e s s i b l e Russian  1966).  Although permafrost g e n e r a l l y i s c o n s i d e r e d as a n o r t h ward t h i c k e n i n g  relatively  impermeable wedge, i t s d i s t r i b u t i o n -  because of the l a r g e numbers of l a k e s on the n o r t h e r n S h i e l d -resembles  Canadian  a w e l l p e r f o r a t e d and dented s i e v e .  i s because lakes g r e a t e r than about  s i x f e e t deep do not  This com-  15.  p l e t e l y f r e e z e i n the winter and, s i n c e water i s most dense at  approximately 4°C, the deeper water bodies remain at or  near t h i s temperature year around.  Consequently, w e l l  developed t a l i k s , occur beneath l a r g e r l a k e s and (Fig.  8).  result  rivers  The presence of l a r g e numbers of t a l i k s might  i n i n t e r c o n n e c t e d networks of thawed ground  groundwaters  to c i r c u l a t e and exchange  allowing  or dispense metals  and other ions i n t o o v e r l y i n g sediments and waters as p o s t u l a t e d by Alla,n (1971). At  B a t h u r s t Norsemines  the presence of very t h i c k (>1600  f e e t ) permafrost ( T a y l o r and Judge, 1974) e f f e c t i v e l y p r e vents lake induced t a l i k s from p e n e t r a t i n g permafrost, except where l a k e s exceed 4500 f e e t cause the t i l l  i n diameter.  Furthermore, be-  i s r e l a t i v e l y t h i n , g e n e r a l l y l e s s than 50  f e e t on the n o r t h e r n S h i e l d , bedrock p e r m e a b i l i t y i s the c r i t ical  f a c t o r i n terms of i o n and deep groundwater movement.  Unless the bedrock i s permeable, the  i . e . f a u l t e d or f r a c t u r e d ;  presence of t a l i k s i s i r r e l e v a n t . If  i o n i c d i f f u s i o n through permafrost i s d i s c o u n t e d as a  major f a c t o r of metal d i s p e r s i o n , hydromorphic d i s p e r s i o n of metals w i t h i n the overburden i s r e s t r i c t e d to the shallow active layer.  Furthermore, i t seems l i k e l y that t h i s  which i s u s u a l l y water s a t u r a t e d and c o n s t a n t l y  layer  -reworked by  c r y o t u r b a t i o n , i s a zone of comparatively i n t e n s e chemical activity.  S u l p h i d e m i n e r a l s e n t e r i n g the a c t i v e l a y e r from  }  F i g u r e 8.  Schematic r e p r e s e n t a t i o n of the permafrost.  e f f e c t of water bodies  on  Note the double convex shape of the lake  induced  talik.(g).  Also note that the bottom of  closely  f o l l o w s s u r f a c e topography ( a f t e r P r i c e ,  permafrost 1972).  t—  1  17.  outcrop or sub-outcrop  would be expected  to decompose  a l l o w i n g t h e i r s o l u b l e and mobile products to be t r a n s p o r t e d i n t o the network of streams and l a k e s which covers an average of 15 to 30 percent of the northern Canadian S h i e l d .  The  p o s s i b l e r o l e of g l a c i a l and p e r i g l a c i a l processes i n b r i n g ing t r a c e elements and m i n e r a l i z e d rock fragments i n t o the upper p o r t i o n s of the a c t i v e l a y e r i s c o n s i d e r e d i n the next  section.  2.  Mechanical d i s p e r s i o n i)  Glacial  The whole of the northern Canadian S h i e l d has been subj e c t e d to at l e a s t one episode of c o n t i n e n t a l g l a c i a t i o n . It seems l i k e l y ,  t h e r e f o r e , that p r i o r to onset of present  p e r i g l a c i a l conditions, c h a r a c t e r i s t i c c l a s t i c d i s p e r s i o n patt e r n s developed bedrock.  as a r e s u l t of g l a c i a l c o r r o s i o n of m i n e r a l i z e d  Normally  t h i s r e s u l t s i n f i n g e r or fan-shaped  geo-  chemical or boulder i n d i c a t o r t r a i n s extending down i c e s e v e r a l m i l e s from the source  These i n d i c a t o r t r a i n s have been  widely used f o r p r o s p e c t i n g i n both Finno-Scandia S h i l t s (1973a, b, c, 1974a, 1976) the Kaminak r e g i o n of the N.W.T. the s i n g l e most important  and Canada.  has d e s c r i b e d examples from Consequently,  glaciation is  d i s p e r s i v e process i n the  permafrost  environment of the Bear and Slave S t r u c t u r a l P r o v i n c e s . Without g l a c i a t i o n , whereby f r e s h rock i s comminuted and widel y d i s p e r s e d , chemical a c t i v i t y and subsequent hydromorphic  18.  d i s p e r s i o n would not be as i n t e n s e nor as widespread. At  Bathurst  I n l e t the i c e - s h e e t scoured bedrock and  r e l a t i v e l y thin t i l l  left  d e p o s i t s , g e n e r a l l y thought to be of  l o c a l provenance, and moderate exposures ( C r a i g , 1960).  to abundant  f r e s h bedrock  L o c a l l y , the t i l l  has been  and/or l a r g e l y removed r e s u l t i n g i n esker, kame and  reworked  outwash  d e p o s i t s with a s s o c i a t e d f e a t u r e s (e.g. esker scour c h a n n e l s ) . Eskers are common'throughout g l a c i a t e d r e g i o n s , but are p a r t i c u l a r l y n o t i c e a b l e i n the continuous permafrost zone. Although they may eskers are b u i l t  appear continuous over many m i l e s , most i n short o v e r l a p p i n g segments  from streams  extending from tens or hundreds of f e e t to perhaps a few m i l e s back from the i c e margin (Howarth, 1971).  Consequently,.  they d r a i n r e l a t i v e l y r e s t r i c t e d areas and, u n l i k e streams and r i v e r s whose sediment has been d e r i v e d from a l l of t h e i r upstream drainage b a s i n , esker m a t e r i a l can only have been d e r i v e d from as f a r upstream as the head of the short segment a s s o c i a t e d with i t s formation and, t h e r e f o r e , i s of very r e s t r i c t e d provenance.  This, combined with t h e i r low 2  density  (1 l i n e a r m i l e per 10  square m i l e s around Bathurst  Norsemines), makes them g e n e r a l l y u n s u i t a b l e geochemical sampling medium f o r e x p l o r a t i o n purposes, although they have been used i n other areas ( S h i l t s , and L a S a l l e ,  1971).  1973a;  Gachau-Hereillat  ii) In  Periglacial  terms of e x p l o r a t i o n the two most important  peri-  g l a c i a l processes and f e a t u r e s of the permafrost zones are c i r c l e s and s o l i f l u c t i o n lobes.  C i r c l e s , s o r t e d and non-  s o r t e d , are u b i q u i t o u s i n the continuous permafrost and are thought  zone  t o b r i n g t o the s u r f a c e , through c r y o -  t u r b a t i o n , s o i l which i s very s i m i l a r i n t r a c e metal tent t o that at the base of the a c t i v e l a y e r 1968;  A l l a n and Hornbrook, 1970, 1971;  Furthermore,  con-  (Pitul'ko,  Shilts,  1973a).  because c i r c l e s are o f t e n c l o s e l y spaced,  impinging on one another t o form nets, the churning  even  motion  a s c r i b e d to t h e i r development tends t o homogenize the a c t i v e l a y e r and d i s r u p t s o i l p r o f i l e development. even though chemical a c t i v i t y and hydromorphic  As a r e s u l t , d i s p e r s i o n are  s u b s t a n t i a l , there i s l i t t l e v i s u a l r e p r e s e n t a t i o n of these a c t i v i t i e s i n terms of s o i l p r o f i l e development.  This  c o n t r a s t s with u n d i s t u r b e d tundra where e l u v i a t i o n and i l l u v i a t i o n may make sampling (Fig.  9).  depth a s i g n i f i c a n t  A d d i t i o n a l l y , c i r c l e s are thought  a g r e a t e r percentage  factor  to contain  of f i n e r s o i l m a t e r i a l r e l a t i v e to  l e s s d i s t u r b e d tundra because of p h y s i c a l s o r t i n g by v a r i o u s f r o s t processes ( c f . Corte, 1962). f r o s t processes r e s u l t  When a c t i v e ,  these  i n c i r c l e s being f r e e of v e g e t a t i o n ,  thereby p r e s e n t i n g an e a s i l y and r e a d i l y a v a i l a b l e sample of m i n e r a l s o i l . of  Consequently,  where p o s s i b l e ,  c i r c l e s has g e n e r a l l y been recommended.  sampling  20.  A 10  F i g u r e 9.  B 20  30  10  C 20  30  3  6  9  P r o f i l e s of geochemical d i s p e r s i o n i n : A) and  undisturbed C)  till,  solifluction  s i d e r a b l e displacement.  B)  in circles,  lobe with  S c a l e of  concentration i s a r b i t r a r y . from P i t u l ' k o (1968).  con-  Modified  21.  Solifluction of  processes are u s u a l l y observed on s l o p e s  5 to 25 degrees as l a r g e l o b a t e s t r u c t u r e s , the noses of  which are o u t l i n e d by abundant g r a s s e s , l a r g e shrubs and bushes. of  Where present, s o l i f l u c t i o n  i s generally  thought  as a hindrance i n geochemical data i n t e r p r e t a t i o n ,  particularly  at the d e t a i l e d stage, because  it differentially  d i s p l a c e s and fragmentizes s o i l  (Levinson, 1974). surficial soil, 600 f e e t :  i n many i n s t a n c e s  I t may  displace s o i l ,  anomalies  particularly  c o n s i d e r a b l e d i s t a n c e s down s l o p e (up to  Pitul'ko,  1968)  and consequently, anomalous s o i l  commonly o v e r l i e s non-anomalous s o i l and barren bedrock (Fig.  9c).  T h e r e f o r e , metal t r e n d s with depth should be  considered where s o l i f l u c t i o n or other forms of down-slope movement are thought to be p r e s e n t . solifluction  Conversely, because  d i s p l a c e s geochemical anomalies, i t may  be  thought of as a d i s p e r s a l mechanism and t h e r e f o r e a p o s s i b l e aid,  i n s t e a d of  a hindrance, by e n l a r g i n g  geochemical  anomalies.  However, although common i n the  environment,  at Bathurst Norsemines s o l i f l u c t i o n i s  n o t i c e a b l e i n only a few r e s t r i c t e d i n excess of 10 degrees. appear to s i g n i f i c a n t l y of  periglacial  areas where s l o p e s are  Consequently, s o l i f l u c t i o n d i s r u p t or a i d the  s o i l geochemical anomalies i n t h i s area.  Yava Lake, 40 m i l e s southeast of Bathurst  does not  development L i k e w i s e , at Norsemines,  Cameron (,1977a) found s o l i f l u c t i o n processes to be of minor  importance with s o i l displacement g e n e r a l l y l e s s than  30  feet.  3.  H i s t o r y of geochemical .exploration w i t h i n the zone of continuous permafrost  Few  papers have been p u b l i s h e d on the a p p l i c a t i o n of  geochemical methods w i t h i n the zone of continuous permafrost. Although many mining companies have made geochemical surveys, the i n f o r m a t i o n d e r i v e d from these p r o j e c t s i s l a r g e l y i n c o n f i d e n t i a l company r e p o r t s .  held  Only s i n c e 1970 have  p u b l i s h e d r e p o r t s i n the West become a v a i l a b l e ( A l l a n and Hornbrook,  1970).  U n t i l that time, the o n l y a v a i l a b l e  l i t e r a t u r e was by Russian s c i e n t i s t s (Ivanov, 1966; 1964;  P i t u l ' k o , 1968).  and Hornbrook's  Canadian  Kozhara  l i t e r a t u r e since Allan  1970 paper t o t a l s l e s s than 20 a r t i c l e s *  c o v e r i n g a wide v a r i e t y of sampling programs and techniques utilized  i n the N.W.T.  Most l i t e r a t u r e has been concerned p r i m a r i l y with the f e a s i b i l i t y of geochemical methods and with p r o v i d i n g a data base f o r f u t u r e programs.  Although i n t e n s e p h y s i c a l  weathering has been documented and widely accepted f o r some time ( P r i c e ,  1972;  Tricart,  1970) chemical weathering and  i o n i c m o b i l i t y , were thought u n t i l r e c e n t l y , to be s e v e r e l y limited.  However, Kozhara  (1964) assessed the r e l a t i v e  importance of chemical weathering by comparing  ion runoff  between r i v e r s f l o w i n g w i t h i n areas u n d e r l a i n by permafrost and those w i t h i n a more temperate  climate.  The  resulting  v a l u e s from r i v e r s w i t h i n the permafrost zone were f u l l y commensurate with known f i g u r e s f o r the Volga and Dnepr r i v e r s i n temperate  c e n t r a l Russia.  S h i l t s (1973a, 1974b) and Cameron 0-977a, b) a l s o lieve  chemical weathering  t o be i n t e n s e .  be-  From h i s observa-  t i o n s i n the Northwest T e r r i t o r i e s , S h i l t s concluded  that  w i t h i n the a c t i v e l a y e r l a b i l e m i n e r a l s (e.g. s u l p h i d e s and carbonates) are completely destroyed and weathering  products  such as i r o n and manganese oxides, along with c l a y s , are moved v i a c r y o t u r b a t i o n towards the s o i l s u r f a c e .  These weather-  ing products are subsequently d e p o s i t e d along drainage  paths  v i a snow-melt r u n o f f or heavy r a i n s . The r e a l i z a t i o n that chemical weathering  i s intensive  and that movement of i o n s v i a drainage paths does occur has l e d to s u c c e s s f u l a p p l i c a t i o n of hydrogeochemical i n a r c t i c Canada (Cameron and B a l l a n t y n e , 1975; and i n the U.S.S.R., where hydrogeochemistry  methods  Allan,  i s used  1974b)  ex-  t e n s i v e l y i n e x p l o r a t i o n programs (Shvartsev, 1971). A l l a n (1971), sediments,  i n a p i o n e e r i n g study of lake waters  found a d e n s i t y of one sediment  square m i l e s s u f f i c i e n t over a 1500  sample per  and  10  square m i l e r e g i o n i n  the Coppermine R i v e r area, N.W.T., to d e l i n e a t e areas of copper m i n e r a l i z a t i o n a s s o c i a t e d with f a u l t e d  basaltic  24.  flows.  However, the p o s s i b i l i t y e x i s t s that the p a t t e r n s  A l l a n obtained may r e f l e c t mechanical r a t h e r than chemical d i s p e r s i o n processes because near-shore sediments, where the water depth was g e n e r a l l y l e s s than f i v e f e e t , were collected.  N e v e r t h e l e s s , most of A l l a n ' s sediments were  composed of s i l t  and were not l o c a t e d near any obvious  i n f l o w i n g or o u t f l o w i n g streams.  Consequently, the  geochemical p a t t e r n s are thought t o r e f l e c t a s i g n i f i c a n t degree of chemical weathering and hydromorphic  dispersion.  F u r t h e r evidence of t h i s i s p r o v i d e d by a s t r o n g p o s i t i v e c o r r e l a t i o n between the copper content of anomalous lake waters and sediments. Cameron et a l . (1974b),  i n an e x t e n s i v e i n v e s t i g a t i o n  i n the e a s t e r n Slave P r o v i n c e , a l s o found near-shore lake sediments at a d e n s i t y of one sample per 10 square m i l e s e f f e c t i v e i n d e l i n e a t i n g areas c o n t a i n i n g massive s u l p h i d e occurrences.  However, Cameron i n follow-up s t u d i e s  in  1975 and 1976 (Cameron, 1977a, b ) , found c e n t e r - l a k e sediments a b e t t e r sampling medium than near-shore sediments.  A  companion study by Cameron and B a l l a n t y n e (1975) of the same r e g i o n u t i l i z i n g  lake waters showed t h i s medium t o a l s o  be u s e f u l i n d e t e c t i n g massive s u l p h i d e o c c u r r e n c e s .  Results  from these s t u d i e s showing the r e l a t i o n s h i p of Zh i n : l a k e waters, near-shore and c e n t e r - l a k e sediments as a f u n c t i o n of pH and d i s t a n c e from the A g r i c o l a Lake massive s u l p h i d e  25.  prospect are shown i n F i g u r e 10.  Boyle et a l . (1971) a l s o  found lake-water sampling f o r the mobile elements Cu,  Zn  and N i , an e f f e c t i v e r e g i o n a l reconnaissance method i n the Kaminak Lake r e g i o n , N.W.T. Hydrogeochemistry t o o l because o f :  has been c r i t i z e d  as an e x p l o r a t i o n  1) temporal v a r i a t i o n i n water chemistry,  2) d i s s o l v e d metal c o n c e n t r a t i o n s are o f t e n near the d e t e c t i o n l i m i t of most a n a l y t i c a l methods, and  3)  samples  are bulky and p r e - a n a l y t i c a l treatment i n c l u d i n g  filtering,  a c i d i f y i n g and c o n c e n t r a t i o n of t r a c e metals i s o f t e n r e q u i r e d (Hoffman,  p e r s . comm.;  Cameron and B a l l a n t y n e , 1975).  However, many of these drawbacks appear to be  insignificant  when hydrogeochemical methods are used f o r l o c a t i n g v o l canogenic massive s u l p h i d e s w i t h i n the continuous permaf r o s t zone.  In p a r t i c u l a r , temporal v a r i a t i o n s i n l a k e -  water chemistry and p r e - a n a l y t i c a l treatment such as filtering  and a c i d i f y i n g appear to have l i t t l e  the o v e r a l l r e s u l t s as emphasized (1975) and Cameron (1977b). t r a c e element  effect  by Cameron and B a l l a n t y n e  The o v e r a l l homogeniety of  l e v e l s i n lake waters,•compared  to the marked  v a r i a t i o n that can occur w i t h i n sediments i n a lake, that lake waters may  on  suggests  be a very u s e f u l medium -for r e g i o n a l  reconnaissance surveys. With r e s p e c t to other reconnaissance sampling media, S h i l t s (1973a,  1974a) has advocated the use of the c l a y - s i z e  26.  F i g u r e 10.  D i s p e r s i o n of z i n c i n lake sediments and waters from the A g r i c o l a Lake massive s u l p h i d e (from Cameron and B a l l a n t y n e ,  1975).  prospect  fraction  (<2y)  i n s o i l reconnaissance surveys.  recommendation was  based on the need to reduce  This erratic  r e s u l t s caused by v a r i a b l e q u a n t i t i e s of f i n e sand silt  i n the minus 80-mesh f r a c t i o n .  and  Use of the r e l a t i v e l y  homogeneous c l a y - s i z e f r a c t i o n takes advantage  of the  a b i l i t y of c l a y s and a s s o c i a t e d c o l l o i d s to scavenge metals.  trace  However, s e p a r a t i o n of the minus-2v f r a c t i o n i s  tremendously  time consuming and expensive and,  therefore,  u n s u i t e d f o r r a p i d p r o c e s s i n g of l a r g e numbers of samples.  geochemical  Although S h i l t s found eskers to be a b e t t e r  sampling medium than t i l l  ( c i r c l e s ) , because  of the ease of  sampling, c o n s i s t e n c y of sampling and higher c o n t r a s t , i t was  concluded t h a t because  d i s t r i b u t i o n they may  e s k e r s have l i m i t e d and  erratic  only be s u i t a b l e f o r broad reconnaissance  However, to be e f f e c t i v e even f o r broad reconnaissance they would have to be sampled at very s h o r t i n t e r v a l s because  of  t h e i r segmented c h a r a c t e r . Allan  (1973) a l s o compared t i l l  and esker sampling, along  with stream sediments, over the Ragland d e p o s i t , Ungava, Quebec and found them a l l to be u s e f u l media, although esker sampling was ore  bodies.  the l e a s t s a t i s f a c t o r y i n o u t l i n i n g the Ni-Cu Till  ( i n t e r v a l s of 200 sediment cisely.  sampling, at r e l a t i v e l y high d e n s i t i e s  f t . ) i n anomalous areas o u t l i n e d by  stream  or esker surveys, d e f i n e d areas of i n t e r e s t more p r e S i m i l a r r e s u l t s were obtained at Coppermine R i v e r ,  28.  N.W.T. where i t was. found that Cu m i n e r a l i z a t i o n c o u l d  be  d e f i n e d best r e g i o n a l l y by lake water,  s e m i - r e g i o n a l l y by  stream sediments and i n d e t a i l by t i l l  ( c i r c l e ) sampling on  a 200 x 100 foot g r i d  (Allan,  1971).  Cameron and Durham (1975) and Cameron (1977a) a l s o found c i r c l e sampling very e f f e c t i v e i n o u t l i n i n g the A g r i c o l a  Lake  Cu-Pb-Zn p r o s p e c t , 40 m i l e s southeast of B a t h u r s t Norsemines. ice  Although geochemical p a t t e r n s are 'smeared' down  f o r more than 1000  f e e t , Pb anomalies ( u n l i k e Cu  and, i n p a r t i c u l a r , Zn) are w e l l developed with v a l u e s over 5000 ppm 15 to 3 0  c o n t r a s t i n g s h a r p l y with non-anomalous l e v e l s of ppm.  A l l a n and Hornbrook's the  (1970,  1971)  f i n d i n g s concerning  importance of c i r c l e sampling, on a d e t a i l e d  low those of P i t u l ' k o (1969), i n t h a t , i f samples at the to  scale,  fol-  are taken  the same depth from c i r c l e s and from u n d i s t u r b e d t i l l , former w i l l u s u a l l y e x h i b i t higher geochemical c o n t r a s t  due  the e f f e c t s of c r y o t u r b a t i o n . One  important aspect of e x p l o r a t i o n geochemistry  which  appears t o have been n e g l e c t e d almost t o t a l l y i n s t u d i e s of geochemical d i s p e r s i o n w i t h i n the zone of continuous permafrost  i s the use of p a r t i a l e x t r a c t i o n s to i d e n t i f y  c h a r a c t e r i z e geochemical anomalies. importance of hydromorphic surprising.  Consequently,  and  In view of the probable  dispersion this i s particularly in this thesis several  extraction  procedures have been i n v e s t i g a t e d i n order to p r o v i d e  i n f o r m a t i o n on both d i s p e r s i o n processes, and as a means improving  anomaly c o n t r a s t .  30.  CHAPTER DESCRIPTION  I  LOCATION AND  OF  THE  2 STUDY  AREA  ACCESS  The Bathurst Norsemines p r o p e r t y i s i n the D i s t r i c t of Mackenzie, N.W.T. ( F i g . 11), at approximately l a t i t u d e and No  108°25' west l o n g i t u d e (NTS  c o o r d i n a t e s 76/F-16).  t r a i l s or roads l e a d to the area and access i s by  craft  air-  from Y e l l o w k n i f e , the main supply center 300 a i r  m i l e s to the southwest. mid  65°55' north  Break up of the i c e occurs i n  to l a t e June and makes access to the p r o p e r t y  at t h i s  difficult  time.  F i e l d s t u d i e s were c e n t e r e d on Camp Lake, over the or Main Zone, and at Anne-Cleaver Lakes along the h o r i z o n " w i t h i n a l a r g e b l o c k of c l a i m s h e l d by Norsemines. to geochemical  Bathurst  d i s p e r s i o n at Camp Lake (Main Zone).  Data  Lakes are included,however, i n Appendix B.  CLIMATE, TOPOGRAPHY AND Due  "mineral  However, d i s c u s s i o n w i l l be c o n f i n e d l a r g e l y  f o r Anne-eieaver  II  A  DRAINAGE  to i t s remoteness, c l i m a t i c data are l a c k i n g ;  a weather s t a t i o n i s maintained  however,  at Contwoyto Lake, approx-  imately 100 m i l e s to the southwest.  Table 1 summarizes  c l i m a t i c data from t h i s s t a t i o n (Penny, pers. comm. Vancouver C l i m a t o l o g y O f f i c e ) and  supplementary sources.  T h i s area,  1 0 8 ° Jto'  -l65°sy'  108°  F i g u r e 11.  L o c a t i o n of study  s°'  areas  CO  and massive s u l p h i d e  bodies,  32.  Table 1.  Climatic data  1  from B a t h u r s t Norsemines  and Cont-  woyto Lake, 100 m i l e s "to the southwest.  Metric  English  Mean annual a i r temperature (M.A.A.T.)  -12.5°C  10.3°F  Mean annual ground temperature  - 7.1°C  19.0°F  January mean a i r temperature  -31.0°C  -23.9°F  9.0°C  48.2°F  J u l y mean a i r temperature T o t a l mean annual p r e c i p i t a t i o n  27.6 cm  10.8 i n . 5.7 i n .  a)  rain  14.5 cm  b)  snow  131.0 cm  51.2 i n .  Average number of days of p r e c i p i t a t i o n per year Active layer thickness (estimate) Permafrost t h i c k n e s s  2  130  130  1.5 m  4.9 f t .  500.0 m  1640.0 f t  1:  Based on o b s e r v a t i o n s made between the years 1959 t o 1970. Data s u p p l i e d by Penny, Vancouver C l i m a t o l o g y O f f i c e , Canada.  2:  Data from Bathurst Norsemines p r o p e r t y , courtesy of the Department of Energy, Mines and Resources, Ottawa, Canada.  33.  because of low p r e c i p i t a t i o n may  (10 to 11 inches per y e a r ) ,  be considered to be an a r c t i c d e s e r t with very t h i c k  permafrost  (>1600 f e e t ) .  D e s p i t e low p r e c i p i t a t i o n , the combination temperature relief  of  low  over much of the year with subdued topographic  (50 to 200  f e e t ) has r e s u l t e d i n water being r e t a i n e d  i n numerous l a k e s , ponds and swamps which comprise percent of the s u r f a c e area ( P l a t e 5 ) .  The  some 30  remaining  s u r f a c e c o n s i s t s of g e n t l y r o l l i n g boulder strewn  hills  and  o  flat, to  r e l a t i v e l y b o u l d e r - f r e e , lowlands ranging from  1500  feet elevation.  Well developed  because of the subdued topography  streams are r a r e  and most of the lakes and  ponds have no v i s i b l e outflows or i n f l o w s . s i b l e drainage paths may  1300  However, pos-  be i n f e r r e d from a comparison of  lake e l e v a t i o n s ( F i g . 12, c f . Cameron and B a l l a n t y n e , 1975).  Ill  GENERAL GLACIAL HISTORY AND A.  Bathurst  SURFICIAL GEOLOGY  Inlet  Evidence of P l e i s t o c e n e g l a c i a t i o n i s w e l l documented ( C r a i g , 1960;  Blake, 1963;  Tremblay, 1971).  Numerous  e r r a t i c s , eskers, kames, outwash d e p o s i t s , drumlins bedrock s t r i a e occur throughout  the r e g i o n .  and  However i t  i s u n c l e a r whether there were m u l t i p l e g l a c i a t i o n s (Blake, 1963;  Tremblay, 1971)  or a s i n g l e g l a c i a l event  (Craig  1960)  massive  sulphide  esker, d a s h e d stream, dashed lake  drainage,  lake  elevations  bodies  where where  discontinuous inferred-intermit tent.  inferred are  In  and  actual  feet  Loke  F i g u r e 12.  I n f e r r e d drainage and  1300  paths based tin airphoto i n t e r p r e t a t i o n s , f i e l d  observations  a comparison of lake e l e v a t i o n s ( c f . Cameron and Ballantyne, 1975).  at Bathurst I n l e t .  N e v e r t h e l e s s , C r a i g and Blake  (op. c i t . )  have both e s t a b l i s h e d that i c e movements i n the r e g i o n were bimodal  (Fig.. 13).  T h i s d i s c o n t i n u i t y i n the flow p a t t e r n  i s b e l i e v e d by Blake to have r e s u l t e d from a f u n n e l i n g e f f e c t , and consequently more r a p i d flow, through  the Bathurst  Trench r e l a t i v e to the l e s s a c t i v e or stagnant p l a t e a u (Tremblay,  op. c i t . ) .  i c e of the  This resulted in north-  w e s t e r l y i c e movement w i t h i n the Trench and  west-southwesterly  movement west of the Trench.  because the  Consequently,  study area l i e s along the Trench-plateau margin, an area of  g l a c i a l flow t r a n s i t i o n , measurement of s t r i a e w i t h i n  the study area show a bimodal  distribution  ( F i g . 14)  con-  s i s t e n t with the p r i n c i p a l r e g i o n a l trends e s t a b l i s h e d by both Blake and C r a i g (op.  cit.).  As the i c e r e t r e a t e d eastward g l a c i a l sediments were d e p o s i t e d . thin,  6 to 25 f e e t , except  the t i l l  cover i s g e n e r a l l y  i s probably a lodgement or b a s a l t i l l  Most of d e p o s i t with  ( S c o t t , 1976).  i s g e n e r a l l y compact, bouldery and d i f f i c u l t  with hand t o o l s . approximately to  Till  i n bedrock v a l l e y s .  only minor amounts of a b l a t i o n t i l l till  from the Bathurst r e g i o n ,  Boulders and cobbles, which  20 to 40 percent of the t i l l ,  are  The to penetrate  comprise subangular  subrounded, with the e x c e p t i o n of e r r a t i c s , which are  g e n e r a l l y rounded to w e l l rounded. Eskers, prominent f e a t u r e s of the r e g i o n , occur at 8  36.  B a t h u r s t N o r s e m i n e s Camp  F i g u r e 13.  Measurements of g e n e r a l i z e d g l a c i a l d i r e c t i o n s i n the Bathurst (from Blake, 1963).  flow  Inlet region  37.  38.  to  15 m i l e i n t e r v a l s and g e n e r a l l y p a r a l l e l the g l a c i a l  flow d i r e c t i o n .  They are f a i r l y  m i l e s and i n some cases extend an unbroken c h a i n .  continuous  over s e v e r a l  i n excess of 25 m i l e s i n  Karnes, d e l t a s , outwash d e p o s i t s and  scoured bedrock s u r f a c e s are a s s o c i a t e d with eskers and/or present day drainage paths.  Drumlins are a l s o common  f e a t u r e s of the Bathurst r e g i o n , while end moraines are not r e c o g n i z e d .  Since the development of end moraines i s  most l i k e l y during pauses or s l i g h t readvances i n the o v e r a l l course of i c e r e c e s s i o n , t h e i r absence i s a t t r i b u t e d to a r e l a t i v e l y uniform  and r a p i d r e t r e a t of  the i c e mass. Two other common f e a t u r e s of the area a r e the presence of  w e l l exposed bedrock and b l o c k f i e l d s  A l s o noted  (felsenmeer).  i s the occurrence of boulder f i e l d s and/or  t r a i n s which can be d i s t i n g u i s h e d from b l o c k f i e l d s by a l e s s e r degree of a n g u l a r i t y and a more d i r e c t  relationship  with g l a c i a l q u a r r y i n g , i . e . boulder f i e l d s a r e l a r g e l y g l a c i a l l y d e r i v e d whereas b l o c k f i e l d s are l a r g e l y the r e s u l t of i n s i t u f r o s t weathering rock.  of the u n d e r l y i n g bed-  In g e n e r a l b l o c k f i e l d s occur on r e l a t i v e l y  flat  ground and are w e l l d e f i n e d even though they may be i r r e g u l a r i n plan. B l o c k f i e l d s c o n s i s t of angular to subangular 1.5 to 7.0 f e e t i n diameter  blocks  with v i r t u a l l y no matrix of  39.  f i n e r s o i l or rock.  B l o c k f i e l d s may cover l a r g e areas or  be r e l a t i v e l y r e s t r i c t e d to a .few thousand square f e e t . Since b l o c k f i e l d s g e n e r a l l y a r i s e from i n s i t u weathering by f r o s t r i v i n g and heaving of the u n d e r l y i n g bedrock,, a w e l l j o i n t e d or f r a c t u r e d bedrock s u r f a c e where water may accumulate and f r e e z e i s most conducive to t h e i r development.  A l t e r n a t i v e l y , because some b l o c k f i e l d s  contain  e r r a t i c s and/or rounded b o u l d e r s , they are thought by some ( B i r d , ^.1967) to hav^e r e s u l t e d from the washing out of f i n e s from a b o u l d e r - r i c h t i l l . Norsemines  However, at B a t h u r s t  the b l o c k f i e l d s , based on l i t h o l o g y ,  geochemical  p a t t e r n s and l a c k of nearby g l a i c o f l u v i a l d e p o s i t s , are b e l i e v e d to have r e s u l t e d from i n s i t u f r o s t heaving and, to  a l e s s e r extent, g l a c i a l q u a r r y i n g from very nearby  bedrock p r o j e c t i o n s .  B.  G l a c i a l Geology of Camp Lake  S e v e r a l u n i t s of g l a c i a l sediments have been d e f i n e d with t i l l ,  esker, esker d e l t a , kames and outwash d e p o s i t s  most e a s i l y i d e n t i f i e d .  However, f o r convenience, g l a c i o -  f l u v i a l d e p o s i t s (e.g. esker, kames, e t c . ) have been combined ( F i g . 15). the  G l a c i o f l u v i a l d e p o s i t s occupy much of  area around the southeast corner of Camp Lake.  Although the esker complex c o n t i n u e s f o r many m i l e s east and west of Camp Lake, i t i s p a r t i c u l a r l y w e l l developed  40.  over a one m i l e l e n g t h southeast of Camp Lake ( P l a t e 16). Based on the o r i e n t a t i o n of the esker d e l t a , the i n t e r n a l s t r u c t u r e of the esker sediments t r e n c h e s ) , a e r i a l photographs, h i s t o r y of the area, sediment  (observed i n p i t s and  and the g e n e r a l g l a c i a l t r a n s p o r t w i t h i n the esker  i s judged t o have been dominantly westward.  Associated  with these u n d i f f e r e n t i a t e d g l a c i o f l u v i a l d e p o s i t s , part i c u l a r l y southwest  of Camp Lake, i s an area, 2000 t o 6000  f e e t wide, of scoured bedrock waters  produced  by g l a c i a l  melt-  during i c e r e c e s s i o n ( P l a t e s 15 and 16).  Two w e l l d e f i n e d areas of boulder accumulations were mapped n o r t h of Camp Lake ( F i g . 15).  The one c l o s e s t t o  the lake i s c i g a r shaped, o r i e n t e d east-west  and l i e s  between the two (?) g l a c i a l flow d i r e c t i o n s ( F i g . 14). It c o n t a i n s numerous s u l p h i d e - b e a r i n g b o u l d e r s , which are s i m i l a r t o and down i c e from m i n e r a l i z e d outcrops west of the Banana-Camp stream  (B-C stream).  A s t r o n g Pb  anomaly ( F i g . 40) a s s o c i a t e d with t h i s boulder  accumulation  can a l s o be t r a c e d to m i n e r a l i z e d outcrops west of B-C stream.  Consequently,  t h i s boulder accumulation  i s likely  to have been l a r g e l y g l a c i a l l y d e r i v e d ( v i a g l a c i a l c o r r o s i o n ) from these outcrops and/or nearby  sub-outcrops  and i s t h e r e f o r e termed a boulder f i e l d or t r a i n . The other boulder accumulation  l i e s s e v e r a l hundred  f e e t to the n o r t h , i s more i r r e g u l a r and c o n t a i n s o n l y a very few s u l p h i d e - b e a r i n g b o u l d e r s (between s i t e numbers  42.  60 and 76, see F i g . 19). flow d i r e c t i o n  Although  i t parallels a glacial  (WNW), and i s down i c e from m i n e r a l i z e d out-  crops, t h i s boulder accumulation probably o r i g i n a t e d i n l a r g e part'; by f r o s t heave because most of the b o u l d e r s are angular and appear t o be of l o c a l o r i g i n . geochemical  p a t t e r n s c r o s s c u t t h i s boulder  Furthermore, accumulation  suggesting t h a t , f o r the most p a r t , i t has not been d e r i v e d from m i n e r a l i z e d bedrock  l o c a t e d up i c e but has i n s t e a d  been d e r i v e d from the u n d e r l y i n g non-mineralized rock. Consequently a  t h i s boulder accumulation  i s c o n s i d e r e d t o be  blockfield. S u l p h i d e - b e a r i n g boulders were a l s o noted near  sampling  s i t e numbers 13, 14, 17, 19 and 64.  soil  Associated  with these boulders are s t r o n g , w e l l developed Pb anomalies ( F i g . 40) which can be t r a c e d t o m i n e r a l i z e d outcrops near B-C  stream.  Based on geochemical  p a t t e r n s , i t i s sug-  gested that these s u l p h i d e - b e a r i n g b o u l d e r s were a l l d e r i v e d from the v i c i n i t y of m i n e r a l i z e d outcrops adjacent to B-C stream. On the b a s i s of f i e l d o b s e r v a t i o n s and diamond holes the t i l l averages  a t Camp Lake i s boulder and cobble r i c h and  10 t o 20 f e e t t h i c k .  There may be some  t i o n b e t w e e n ^ t i l l t h i c k n e s s and the percentage Thinner t i l l  drill  correla-  of b o u l d e r s .  i s g e n e r a l l y more boulder r i c h because of the  ease with which f r o s t heaving of b l o c k s from u n d e r l y i n g bedrock  can occur;  thicker t i l l  (10 t o 15 f e e t ) reduces  the e f f e c t i v e n e s s of f r o s t heave by l i m i t i n g the annual temperature it  range i n the u n d e r l y i n g bedrock  p h y s i c a l l y more d i f f i c u l t  and by making  t o heave.  A l a r g e area (600 x 1000 f e e t ) of r e l a t i v e l y boulder f r e e , but t h i n Lake.  (< 3 f e e t t h i c k ) t i l l  lies  east of Camp  A lower content of f i n e s and patches of g l a c i o -  f l u v i a l m a t e r i a l down s l o p e suggests that t h i s t i l l may have been reworked or winnowed by g l a c i a l melt When examined i n p i t s ,  the t i l l  waters.  shows a g r a d i t i o n a l  change i n t e x t u r e beginning at approximately 18 t o 22 inches depth.  Below t h i s depth t h e t i l l  i s generally  more cobble r i c h and consequently harder t o p e n e t r a t e with hand t o o l s .  F l u c t u a t i o n s i n t r a c e metal content and  s i z e f r a c t i o n sometimes c o r r e l a t e with the observed t e x t u r a l change.  P o s s i b l e e x p l a n a t i o n s f o r these  observed  f l u c t u a t i o n s and c o r r e l a t i o n s a r e c o n s i d e r e d i n Chapters 4 and 5.  IV  SOILS S o i l s have developed on t i l l  and g l a c i o f l u v i a l m a t e r i a l  c h a r a c t e r i z e d by boulder and cobble r i c h loamy sands and sandy loams, imperfect t o very poor drainage and s t r o n g t o very s t r o n g l y a c i d i c c o n d i t i o n s with pH's averaging 4.7 to  5.6.  T y p i c a l s o i l p r o f i l e s a r e shown i n P l a t e s 6 t o 9.  At each s o i l sampling s i t e , v i s u a l s o i l  characteristics  were noted and the p r o f i l e was examined and c l a s s i f i e d t o  44.  a s u b l e v e l of the s o i l c l a s s i f i c a t i o n system of the Canadian Department of A g r i c u l t u r e (1970).  The  soils  were g e n e r a l l y porous, due to v o i d s c r e a t e d by m e l t i n g ice, 5/3  and brown to yellowish-brown to 5/6).  3/3)  O c c a s i o n a l l y they are dark brown  where the s o i l  i s c o a r s e r or grey to dark  where the s o i l s are g l e y e d . below e i g h t inches but were to  (Munsell c o l o r  (10YR grey  P l a n t r o o t s seldom o c c u r r e d l o c a l l y noted at depths up  20 inches. B r u n i s o l i c , R e g o s o l i c and G l e y s o l i c s o i l  occur but only the l a s t two The  10YR  are widespread  orders  ( F i g . 16).  highest degree of s o i l development i s represented by  the B r u n i s o l s , subgroups O r t h i c D y s t r i c and Degraded D y s t r i c , which are r e s t r i c t e d to w e l l d r a i n e d coarse t e x tured esker or outwash m a t e r i a l .  Because t h i s parent  m a t e r i a l covers l e s s than two percent of the land s u r f a c e , B r u n i s o l s are the l e a s t common s o i l type.  I t i s thought  that these B r u n i s o l s are s i m i l a r to Hornbrook and A l l a n ' s (1970) " A r c t i c Brown S o i l " d e s c r i b e d at Coppermine R i v e r , N . W. T . Elsewhere,  on s i t e s with imperfect to poor  drainage or i n areas of t h i n t i l l ,  Regosols  internal  (Orthic,  and to a l e s s e r extent L i t h i c ) are the most abundant order comprising approximately sampled.  70 percent of the  G l e y s o l s (Rego and C r y i c subgroups),  Dystric, soil  soils the next  Gleysols Brunlsols Gleyed Hi  [ilijl •  Rego  Regosols and  Cryic  Lithlc  and  Orfhic  Dysfrlc  minor  Gleyed  mineralized  F i g u r e 16.  • Gleysols  Orthic  •  Regosols  Regosols  with  • "  ._  Regosols . outcrop  Generalized  soil  map.  46.  most abundant order, occur on low s i t e s or low g r a d i e n t streams, topographic at b r e a k s - i n - s l o p e .  adjacent  t o lakes  depressions, and  These s o i l s g e n e r a l l y have a t h i c k e r  o r g a n i c l a y e r or mat (L-F-H and Ah h o r i z o n s ) than the Regosols and are more water s a t u r a t e d with f r e e water commonly o c c u r r i n g w i t h i n 4 to 10 inches of the s o i l face.  Permafrost  often l i e s r e l a t i v e l y  sur-  c l o s e t o the  s u r f a c e beneath G l e y s o l s because of the good  insulation  provided by the w e l l developed L-F-H and Ah h o r i z o n s . fact,  In  the a c t i v e l a y e r may be only one to two f e e t t h i c k  where o r g a n i c cover  i s heavy, whereas, an average of four  to s i x f e e t i s common elsewhere. Most of the study area i s a f f e c t e d by e x t e n s i v e t u r b a t i o n , manifested non-sorted,  as numerous c i r c l e s ,  s o r t e d and  which are abundant enough to impinge on one  another, forming  polygons and nets.  Many of the c i r c l e s  are a c t i v e as noted by v e g e t a t i o n - f r e e c e n t e r s , and  cryo-  heaving  ( P l a t e s 1 to 3 ) ;  extrusion  whereas, others are so i n - -  a c t i v e as to be almost i n d i s t i n g u i s h a b l e from l e s s d i s t u r b e d tundra.  I n a c t i v e or dormant c i r c l e s have a low, doughnut-  shaped mound of v e g e t a t i o n with a t h i c k Ah h o r i z o n and a central,  s l i g h t l y depressed, vegetated  area ( P l a t e 4>.  these two types of c i r c l e s a r e common, most c i r c l e s , of c r y o t u r b a t i o n a c t i v i t y ,  l i e between these  Although i n terms  extremes.  Except  i n the very i r o n s t a i n e d gossan  the B-C stream,  zone west of  s o l i f l u c t i o n processes are not n o t i c e a b l e .  The g e n e r a l l a c k of s o l i f l u c t i o n i s probably to  attributable  the very g e n t l e s l o p e s (2 t o 5 degrees) and the bouldery  nature of the t i l l  ( P l a t e s 10 and 16).  Where s o l i f l u c t i o n  does occur i t i s i n r e l a t i v e l y b o u l d e r - f r e e t i l l unvegetated  s l o p e s , both f a c t o r s apparently r e l a t a b l e t o  the presence of l a r g e amounts of weathering concomitant of  and on  low s o i l pH's.  s u l p h i d e s and  The r e l a t i v e l y f i n e r g r a i n  sizi  these s o i l s and the l a c k o f s t a b i l i z i n g v e g e t a t i o n prob-  ably a i d s s o l i f l u c t i o n processes i n these areas. In  areas of i n t e n s e i r o n s t a i n i n g a s s o c i a t e d with  mineralization, oxidizing sulphides, p a r t i c u l a r l y g i v e r i s e to extremely  low pH v a l u e s (<_4.5).  g r a i n s and rock fragments ic  pyrite.  Mineral  are s e v e r e l y a t t a c k e d by the a c i d  groundwater and coated by i r o n oxides and hydroxides ob-  t a i n e d from the decomposition  of p y r i t e .  This results  i n the e n t i r e s o i l p r o f i l e appearing b r i g h t orange (Munsell c o l o r 10YR 5/8).  Consequently,  f i l e development i s obscured. i n t e n s e chemical weathering  any d e t a i l e d s o i l Furthermore,  pro-  because t h i s  results i n a f i n e r s o i l texture  through r e d u c t i o n of s o i l p a r t i c l e s i z e and chemical p r e c i p i t a t i o n of metal oxides (e.g. F e ) , these areas appear t o be much more s u s c e p t i b l e t o c r y o t u r b a t i o n .  T h i s i n t u r n probably a c c e l e r a t e s the weathering Low s o i l  pH and a c t i v e c r y o t u r b a t i o n  vegetation  and t h i s together  also  process.  inhibit  with the exothermic nature  of s u l p h i d e o x i d a t i o n , may r e s u l t  i n a thicker active  layer.  V  VEGETATION AND WILDLIFE The  region  i s w e l l north of the t r e e l i n e and has a  t y p i c a l a r c t i c tundra f l o r a .  Dwarf willow and b i r c h and  l i c h e n s cover much of the area.  Grasses are dominant on  wetter s i t e s and on the more exposed h i l l s where drainage i s good. W i l d l i f e i n c l u d e s barren  land g r i z z l e s ,  wolverines,  musk oxen, ground s q u i r r e l s , weasels, foxes and a r c t i c hares.  In the summer, thousands of c a r i b o u  b i r d s pass through the area on t h e i r annual  VI  and many migration.  GENERAL GEOLOGY OF THE PROPERTY A.  Introduction  and E x p l o r a t i o n  History  Because of a c t i v e e x p l o r a t i o n by s e v e r a l companies i n areas adjacent  to the Bathurst  Norsemines p r o p e r t y  the d e t a i l e d geology of the area Cominco Limited;  much of  i s h e l d as c o n f i d e n t i a l by  t h e r e f o r e , only a g e n e r a l  p i c t u r e of the  49.  geology w i l l be presented  here.  Most of the data i n  t h i s s e c t i o n has been obtained  from p u b l i s h e d  by M a c N e i l l  and from  (1973, 1974,  1976)  reports  personal  communications with s e v e r a l Cominco employees, most notably B. Mioduszewska and P. Wilton whose a s s i s t a n c e proved i n v a l u a b l e . The  e x p l o r a t i o n h i s t o r y of the Bathurst  property began i n 1962  with reconnaissance  Norsemines  s c a l e mapping  of the area by the G e o l o g i c a l Survey of Canada ( F r a s e r , 1964).  In 1965  Rio T i n t o E x p l o r a t i o n Company L i m i t e d  presumably a t t r a c t e d by the obvious gossans of the i n s p e c t e d the Main Zone at Camp Lake. r e v e a l e d disseminated s i l i c e o u s zones but  copper m i n e r a l s  i n t e r e s t was  further investigation. and  1967,  Corporation,  Yukon L i m i t e d .  and p y r i t e i n  i n s u f f i c i e n t to warrant  c a r r i e d out  i n 1968  These companies merged i n 1969  Norsemines L i m i t e d . , present  claims.  G e o l o g i c a l work that year surveys,  by  and  1966  Bathurst  Norsemines L i m i t e d . , and  Bathurst  electromagnetic  trenching  Following claim staking i n  l i m i t e d work was  I n l e t Mining  Limited  area,  Atlin  to form  owners of the  901  i n v o l v e d more mapping,  13 shallow  drill  holes  t o t a l l i n g 2900 f e e t . Cominco L i m i t e d optioned  the property  i n 1970  and  since  that time a l l e x p l o r a t i o n work has been c a r r i e d out by them. Work has  included helicopter-borne electromagnetic  and  50.  magnetometer surveys, ground e l e c t r o m a g n e t i c and surveys and geochemical  sampling.  gravity  Diamond d r i l l i n g ,  s i s t i n g of 93 holes t o t a l l i n g 40,106 f e e t , has  con-  indicated  three major ore bodies, the East C l e a v e r Lake, Boot Lake and Main or "A"  Zones.  P u b l i s h e d data (MacNeil op. c i t . )  g i v e a combined t o t a l of over 13 m i l l i o n tons of ore averaging approximately  0.40%  7.0  oz./ton Au.  oz./ton Ag and  0.07  Cu,  1.2%  Pb,  7.5%  Zn,  In a d d i t i o n ,  e q u i v a l e n t tonnage of s u b s t a n t i a l l y lower grade ore been i n d i c a t e d .  Furthermore,  at two  other  an has  locations,  F i n g e r Lake and Jo Zone ( F i g . 17), i n t e r s e c t i o n s of s u l p h i d e s have a l s o been  B.  encountered.  Regional Geology  A s i m p l i f i e d p i c t u r e of the somewhat complex r e g i o n a l geology, zones,  with l o c a t i o n of ore bodies and s i g n i f i c a n t m i n e r a l i z e d  i s shown i n F i g u r e 17.  The Bathurst Norsemines  p r o p e r t y i s u n d e r l a i n by a broad,  northwest  t r e n d i n g assemblage  of metasedimentary and metavolcanic rocks, assumed to be Archean ( F r i t h and H i l l , . 1975) k n i f e Group.  and belonging to the  These rocks have been s u b j e c t e d to t h r e e , or  p o s s i b l y f o u r , phases of deformation proached  Yellow-  and metamorphism which  ap-  upper amphibolite f a c i e s grade but l a t e r r e t r o g r a d e d  (Wilton, pers. comm.).  These rocks form a b e l t up to 12  Banana  65  /A  0  G<2  A  >  Linear Lake  QflBol Comp  «5  4  Loke^^  . Thigh  Main or A  Laki  ZontN  m LH  2  Rhyollte pyroelatlicii  S  Ooclte/Andeille  1 S | Gornetlferoue Epsl Cleaver "Lake Zone  6»  R e g i o n a l geology, map  Flying Horie Lake  4  1300 I 400  LI] 0 H 0 SCALE  1300 ft.  —S 400m.  flows  and  Greywockei  1,6 • Jo  and pyroclaitlci ruffs  cole-elllcatei  amphlbotlI• (mttomorphoiod ond  tiltstonet; derived  r—| Melaiomatlc alterations by granite L Z J ("hybrid rock") ^ , , „ < s  r i k  d  lp  ^  intrusions  of the study area (map compiled by Cominco  Iron Cm.)  lehlltl  lArMoeiWe lulphlde ~ Possible fault Hjrdrothermal alteration Inferred geologic conlocl  Felsic  Zone  Rhyollte agglomerate  Calcareous and arglllaceoui rhyollte (contains the "mlnerol horlion") Carbonates  C.0  F i g u r e 17.  Lower Sunken Lake  geologists).  W l 0 t l e n  booMet  52.  m i l e s wide and 25 m i l e s long which occurs as an i n l i e r s y n c l i n a l remnant i n g r a n i t i c t e r r a i n . b e l t are s t e e p l y overturned,  or  Rocks w i t h i n the  d i p 50 to 70 degrees to the  southwest, and plunge to the southeast.  Within the  map  area ( F i g . 17) the surrounding g r a n i t i c rocks appear to be contemporaneous or s l i g h t l y younger, as shown by an  ex-  t e n s i v e zone of " h y b r i d r o c k s " formed from v o l c a n i c and sedimentary  rocks which have undergone metasomatic a l t e r a t i o n  during emplacement of the g r a n i t e . the Hackett  A large fault  system,  R i v e r F a u l t , l i e s s e v e r a l m i l e s south of the  ore bodies, p a r a l l e l i n g the a x i a l t r a c e of the s y n c l i n o r i u m ( s y n c l i n a l remnant). Ore bodies and m i n e r a l i z e d zones developed  within a  t h i c k sequence of a n d e s i t e s and r h y o l i t e s ( f l o w s , t u f f s and b r e c c i a s ) which were d e p o s i t e d , o f t e n e x p l o s i v e l y , i n an e u g e o s y n c l i n a l environment.  M i n e r a l i z a t i o n occurred  d u r i n g the l a t e or waning stages of r h y o l i t i c  volcanism  i n c o n j u n c t i o n with f u m a r o l i c a c t i v i t y centered on Main and Jo Zones.  the  At the same time a wide v a r i e t y of  mixed rock types were forming  including argillaceous t u f f i t e s ,  c h e r t s , greywackes, i r o n s t o n e s , and t u f f a c e o u s limestones. T h i s assemblage i m p l i e s the presence  of more quiescent con-  d i t i o n s with chemical p r e c i p i t a t e s and, e p i c l a s t i c rocks becoming dominant.  to some extent,  T h i s group of rocks  i s q u i t e v a r i a b l e , depending upon p r o x i m i t y t o a vent, i n composition,  t h i c k n e s s and extent.  P a r t of t h i s assemblage,  comprising r h y o l i t e t u f f s , c a l c a r e o u s t u f f i t e and l i m e stone i s known as the "mineral h o r i z o n " and i s the host f o r the ore bodies. O v e r l y i n g t h i s r e l a t i v e l y t h i n assemblage i s e i t h e r a t h i c k (5000 f e e t ) , mainly e p i c l a s t i c ,  sequence of metamorphosed  a r g i l l i t e s , greywackes, s i l t s t o n e s and impure  sandstones  ( t u r b i d i t e s ? ) with minor t u f f bands (Main, Jo and Boot Lake Zones), or a s e r i e s of a n d e s i t e - d a c i t e flows f o l l o w e d by carbonate u n i t s (Anne Lake "mineral h o r i z o n " and East C l e a v e r Lake Zone).  T h i s o v e r a l l sequence of rocks combined with  the a s s o c i a t i o n of m i n e r a l i z e d zones with a l a t e stage, and o f t e n e x p l o s i v e phase, of submarine volcanism i s c o n s i s t e n t with the c l a s s i f i c a t i o n of these d e p o s i t s as v o l c a n o g e n i c (cf.  F r y e r and Hutchinson,  C.  1976;  Sangster,  1972).  D e t a i l e d Geology of Camp Lake  The geology  at Camp Lake i s thought  continuous sequence proceeding marine volcanism, through  t o form p a r t of a  from moderate r h y o l i t i c  sub-  an episode of e x p l o s i v e c y c l i c  andesite-dacite to r h y o l i t e  activity,  to a much more  quiescent p e r i o d i n v o l v i n g intermixed v o l c a n i c and sedimentary phases.  Regional metamorphism has deformed the rocks p r o -  ducing a s t e e p l y d i p p i n g , (approximately 60 degrees) l a r g e , c l o s e d and moderately  southeast plunging s y n c l i n e ( F i g .  18).  1 ,0 ?  1LA Rhyolite  pyroclastifjs  La Andeslte flows and tuffs Hydrothermal IMinerol  '  alteration  horlion (rhyolite tuffs, •  jcalcoreous tuffite  and  Argil I ite s, graphitic [i^jGreywackes/Siltstones  mineralized  F i g u r e 18.  limestone and  sulphidic  ond derived  schists  outcrop  S i m p l i f i e d g e o l o g i c map of Camp Lake.  In  terms of e x p l o r a t i o n geochemistry, the most im-  p o r t a n t f e a t u r e s are the m i n e r a l i z e d outcrops and the t r a c e of the  the "mineral h o r i z o n " which marks the boundary  between  u n d e r l y i n g v o l c a n i c rocks and the o v e r l y i n g sedimentary  rocks.  D i r e c t l y beneath the "mineral h o r i z o n " i s an i r -  r e g u l a r l a y e r of a n d e s i t e t u f f agglomerate  ( m i l l rock of  Sangster, 1972) which i s g e n e r a l l y a few hundred f e e t or l e s s t h i c k and extends f o r approximately 3000 f e e t along s t r i k e . The upper p a r t of the agglomerate, and the lower p a r t of the  "mineral h o r i z o n " , has experienced moderate hydrothermal  a l t e r a t i o n and s i l i c i f i c a t i o n . the  Within t h i s a l t e r a t i o n  i d e n t i f i c a t i o n of agglomerate i s d i f f i c u l t .  zone  Contained  i n the a l t e r a t i o n zone and c r o s s c u t t i n g the v o l c a n i c s , are s e v e r a l s l i g h t l y sinuous c o n d u i t p i p e s where i n t e n s e hydrothermal a l t e r a t i o n It  ( l e a c h i n g ) and s i l i c i f i c a t i o n  has o c c u r r e d .  i s thought that the m a j o r i t y of the m i n e r a l i z i n g  ascended through these p i p e - l i k e zones. t e r a t i o n zone and the agglomerate tuff.  fluids  Beneath the a l -  l i e s a quartz-eye r h y o l i t e  Above the "mineral h o r i z o n " i s a 5000 f o o t  thick  sequence of metamorphosed sedimentary rocks, p o s s i b l y turbidities,  the lower 150 to 200 f e e t of which are g r a p h i t i c  and s u l p h i d i c p o s s i b l y as a r e s u l t of l a t e stage vent emanations.  56.  CHAPTER SAMPLE  I  COLLECTION,  3  PREPARATION  AND  ANALYSIS  GENERAL INTRODUCTION Samples were c o l l e c t e d i n the summers of 1974  and  Table 2 summarizes the types and numbers of samples S o i l sample l o c a t i o n was and compass.  collected.  c o n t r o l l e d through the use of c h a i n  Lake water and sediment  samples were l o c a t e d  on d e t a i l e d maps at 1 inch to 200 f e e t . water and sediment  1975.  A regional  survey had been planned but was  lake  not  implimented due to d i f f i c u l t i e s with the h e l i c o p t e r .  II  SOIL A.  C o l l e c t i o n and P r e p a r a t i o n  S o i l samples  were c o l l e c t e d by hand d i g g i n g to a depth  of 15 to 40 i n c h e s .  Sampling depth was  l i m i t e d by stones  and cobbles and by slumping of the p i t w a l l s at r e l a t i v e l y shallow depths i n the wet soil profile, recorded; pit.  soil.  At each s t a t i o n the s i t e ,  and the parent m a t e r i a l and v e g e t a t i o n were  channel samples were taken from one face of the  L o c a t i o n , s i t e number and sample type are shown i n  F i g u r e s 19 and B l . I n i t i a l l y an attempt was made to sample s o i l h o r i z o n s but, except f o r the shallow ( g e n e r a l l y l e s s than three i n c h e s ) o r g a n i c - r i c h s u r f a c e h o r i z o n (L-F-H), t h i s was  not p o s s i b l e  57.  T a b l e 2.  Summary of sampling at Camp and Anne-Cleaver Lakes  Number of Samples Medium  (1)  Camp Lake  Soil L-F-H h o r i z o n  271  139  280  152  157  49  10  3  300  52  22  16  Snow-melt r u n o f f  63  15  Pit  13  2  Lake  21  12  Stream  19  10  Lake bottom  50  25  Lake suspended  16  4  6  14  0-14  i n . (0^10 i n . ) l a y e r 1  14-25  i n . (10-20 i n . ) l a y e r  >25 i n . (>20 i n . ) depths Pit (2)  profiles  Waters Surface  (3)  seepage  seepage  Sediments  Stream  1:  Anne-Cleaver Lakes  ( ) designates sampling i n t e r v a l s at Anne-Cleaver Lakes.  98  F i g u r e 19.  Camp Lake:  location  of s o i l g r i d , s o i l p i t , stream water  and sediment sampling s i t e s .  99  100  101  102  103  59.  because of poor s o i l p r o f i l e development. for  routine mineral s o i l  i n t e r v a l s were chosen  Consequently,  sampling s e v e r a l a r b i t r a r y  depth  (0 to 14 i n c h , 14 to 25 i n c h , 25 to 36  i n c h and 36 to 45 i n c h ) .  However, except f o r s o i l  profile  s t u d i e s , the lower d e n s i t y d i s t r i b u t i o n of >25 inch depth samples  over the s o i l g r i d does not a l l o w e f f e c t i v e c o n t o u r i n g  of metal v a l u e s . at  Table 2 summarizes geochemical  Camp and Anne-Cleaver  sampling  Lakes.  D e t a i l e d s o i l p r o f i l e i n f o r m a t i o n was obtained from the  e x c a v a t i o n of 16 deep p i t s ( u s u a l l y  Digging was l i m i t e d by s o i l In  >50 inches depth).  flowage and o c c a s i o n a l l y b o u l d e r s .  no case was permafrost a l i m i t i n g f a c t o r .  The f r o s t  t a b l e , however, was encountered at s e v e r a l s i t e s e a r l y i n the  season but thawing was r a p i d and t h i s b a r r i e r , a f t e r a  few days exposure, q u i c k l y receded. to  Attempts were made  excavate deep p i t s and c r o s s - s e c t i o n sample a c t i v e  c i r c l e s but t h i s proved i m p o s s i b l e due to c o n t i n u o u s l y flowing s o i l . because  1  a l s o proved  ineffective  stones e i t h e r prevented p e n e t r a t i o n or plugged the  sampling tube. of  A Copco S o i l Sampler  Consequently, most p i t s were s i t e d i n areas  r e l a t i v e l y undisturbed t i l l  or i n dormant  circles.  A l l samples were p l a c e d i n high wet s t r e n g t h K r a f t envelopes and d r i e d at ambient  1:  paper  temperatures f o r two or more  The Copco S o i l Sampler i s a g a s o l i n e d r i v e n p e r c u s s i o n sampler which d r i v e s a one i n c h diameter r o d and sample tube i n t o the s o i l .  60.  days before  s h i p p i n g t o the Department of G e o l o g i c a l  U n i v e r s i t y of B r i t i s h Columbia.  Sciences,  Samples were then d i s -  aggregated with the a i d of a rubber m a l l e t and a p o r t i o n was s i e v e d through an 80-mesh nylon screen  (177 m i c r o n s ) .  The minus 80-mesh m a t e r i a l , u s u a l l y amounting to 10 t o 20 g, and the p l u s 80-mesh f r a c t i o n s were s t o r e d B.  separately.  Decomposition 1.  N i t r i c - p e r c h l o r i c d i g e s t i o n ( t o t a l attack)  0.5 g of minus 80-mesh m a t e r i a l was t r a n s f e r r e d t o a t e s t tube, 2 ml of a 4:1 mixture of n i t r i c - p e r c h l o r i c added and then evaporated to dryness overnight bath.  acids  on a hot a i r  The r e s i d u e was r e d i s s o l v e d i n 2.5 ml of warm 6 M  h y d r o c h l o r i c a c i d , d i l u t e d with d i s t i l l e d water to 10 ml, and  analyzed  by atomic a b s o r p t i o n  spectrophotometry u s i n g  standards prepared i n 1.5. M h y d r o c h l o r i c a c i d . necessary a d d i t i o n a l d i l u t i o n s were made with  Where 1.5 M  hydro-  c h l o r i c a c i d u s i n g an automatic d i l u t o r . 2.  P a r t i a l e x t r a c t i o n procedures  P a r t i a l a t t a c k s u s i n g c o l d 1.0 M hydroxylamine hydroc h l o r i d e a c e t i c a c i d , 1.0M  h y d r o c h l o r i c a c i d and  0.05M  EDTA (ethylenediamine. t e t r a a c e t a t e ) were c a r r i e d out on  various size f r a c t i o n s . cedure was  as f o l l o w s :  a t e s t tube and  10.0  T h i s mixture was  analyzed  a 0.5  ml  of one  mechanically  the s o l u t i o n s allowed being  For each p a r t i a l attack the g sample was  t r a n s f e r r e d to  of the three reagents added. shaken f o r 14 hours and  to s e t t l e f o r at l e a s t a day  by atomic a b s o r p t i o n  Standards were prepared i n 1.5  pro-  then  before  spectrophotometry.  M h y d r o c h l o r i c a c i d f o r the  1.0  M h y d r o c h l o r i c a c i d and  0.05M EDTA e x t r a c t i o n s , and  in  1.0  M hydroxylamine h y d r o c h l o r i d e - a c e t i c a c i d f o r the 1.0  M  hydroxylamine h y d r o c h l o r i d e - a c e t i c a c i d attack.  Ill  SEDIMENTS:  COLLECTION, PREPARATION AND  DIGESTION  Samples of the upper zero to four inches of sediment were c o l l e c t e d from T u r t l e , Anne, Banana, Camp, Upper Lower Sunken Lakes u s i n g a mud  snapper . 1  and  Additional  samples were c o l l e c t e d from Camp and Banana Lakes u s i n g modified  Phleger  c o r i n g device which r e t r i e v e d short  to twelve inch cores.  a  four  T h i s device causes some compaction  of the sediment.  Sample l o c a t i o n s are shown i n F i g u r e s  to 107  Immediately upon r e t r i e v a l the cores were  and  122. .  102  s e a l e d i n s i d e t h e i r p l a s t i c l i n e r s so t h a t , on a r r i v a l at the U n i v e r s i t y of B r i t i s h Columbia, s e v e r a l weeks l a t e r ,  1:  Manufactured by Kahl S c i e n t i f i c  Instruments,  California.  62.  the cores were s t i l l moist and f r e s h i n appearance.  After  removal from t h e i r l i n e r s the cores were s p l i t lengthwise and d i v i d e d i n t o short homogeneous segments on the b a s i s of v i s u a l s e d i m e n t o l o g i c a l and chemical c h a r a c t e r i s t i c s . Segments were p l a c e d i n paper c o i n envelopes and d r i e d i n an oven at 80°C f o r one t o two days b e f o r e d i s a g g r e g a t i n g with the a i d of a mortar and p e s t l e .  Due t o the f i n e  nature ( s i l t - c l a y g r a i n s i z e ) of the cores s i e v i n g to minus 80-mesh was unnecessary i n most cases. Stream sediments (Figs.. 19 and B l ) were c o l l e c t e d from s e v e r a l square f e e t of stream bed as near mid-stream as p o s s i b l e t a k i n g care t o avoid bank and c o l l u v i a l m a t e r i a l . A f t e r d r y i n g at ambient  temperatures, stream sediment p r e -  treatment was s i m i l a r t o that d e s c r i b e d f o r s o i l s  (page 60)  except that a p o r c e l a i n mortar and p e s t l e were r e q u i r e d f o r complete d i s a g g r e g a t i o n .  IV  WATER A.  C o l l e c t i o n and P r e s e r v a t i o n  Near-surface water samples were c o l l e c t e d c l o s e t o the c e n t e r s of streams ( F i g s . 19, B38 and B39) and at the s u r f a c e , halfway t o the bottom and near the bottom of l a k e s at s e v e r a l l o c a t i o n s w i t h i n the l a k e . B38) were sampled wherever  Surface seepages  ( F i g s . 97 and  encountered along the s o i l  grids;  g e n e r a l l y they were small p o o l s i n t o p o g r a p h i c d e p r e s s i o n s  or b r e a k s - i n - s l o p e , melted i n June.  or s m a l l r i v u l e t s found a f t e r th'e snow  In mid  sampled from ice-water with undefined  to two  was  pools and s m a l l temporary streams  channelways ( F i g s . 98 and B39).  p o s s i b l e , water was one  to l a t e June, snow-melt r u n o f f  Where  a l s o c o l l e c t e d from s o i l - g r i d  days a f t e r e x c a v a t i o n . ( F i g s . 97 and  sites  B38).  A l l water samples, except f o r lake water samples which were c o l l e c t e d using a Van liter  polyethylene  Dorn Sampler  jugs, were c o l l e c t e d  and  1  four  i n 500 ml a c i d  washed, d i s t i l l e d water r i n s e d p o l y e t h y l e n e b o t t l e s . Samples taken during the day were f i l t e r e d each using Sartorius f i l t e r s  and 0.45y m i l l i p o r e membranes.  Passage of water through the f i l t e r was pressure  from a s m a l l n i t r o g e n tank.  the f i l t r a t e was a c i d and placed for  A 250 ml p o r t i o n of  i n an a c i d washed 250 ml p o l y e t h y l e n e b o t t l e  spectrophotometry, without Field  a c c e l e r a t e d by  a c i d i f i e d with 2 ml of 6 M h y d r o c h l o r i c  subsequent a n a l y s i s .  B.  A n a l y s i s was ,by atomic  Analysis  c h l o r i d e (both by t i t r a t i o n ) and sulphate u s i n g Hach k i t s .  1:  absorption  pre-concentration.  A l i q u o t s of f i l t e r e d water were analyzed  2510  evening  C o n d u c t i v i t y was  (by t u r b i d i t y )  measured u s i n g a Hach  C o n d u c t i v i t y Meter.  Kahl S c i e n t i f i c  Instruments,  for alkalinity,  California.  64.  BDH U n i v e r s a l L i q u i d I n d i c a t o r on u n f i l t e r e d waters  V  was used to measure pH  at the s i t e of c o l l e c t i o n where p o s s i b l e .  ATOMIC ABSORPTION SPECTROPHOTOMETRY The theory and i n t e r f e r e n c e problems a s s o c i a t e d with  atomic a b s o r p t i o n spectrophotometry are adequately d i s c u s s e d elsewhere  as an a n a l y t i c a l  (Abbey, 1967;  and Feldman, 1970; F l e t c h e r , 1970). atomic a b s o r p t i o n spectrophotometer  tool  Christian  A t e c h t r o n AA4 was used f o r Ca, Cu,  Fe, Mg, Mn and Zn d e t e r m i n a t i o n s , and a Perkin-Elmer 303, equipped with a deuterium  continuum lamp f o r background  c o r r e c t i o n , was used f o r d e t e r m i n a t i o n s of Ag, Cd, and Pb. Samples were analyzed i n batches of 24; i n c l u d e d a U.B.C. standard rock.sample, and a d u p l i c a t e sample.  Chemical  each batch  an a n a l y t i c a l  blank,  i n t e r f e r e n c e s i n the  d e t e r m i n a t i o n of Ca and Mg i n s o i l were reduced by a d d i t i o n of a lanthanum oxide s o l u t i o n as a r e l e a s i n g agent and Feldman, 1970, pp. 237-258).  (Christian  T h i s procedure was not  taken with water samples and these r e s u l t s , t h e r e f o r e , are not a b s o l u t e . Fletcher  Instrumental procedures as d e s c r i b e d by  (1971) were f o l l o w e d and are presented i n Table 3.  65.  Table 3.  Operating c o n d i t i o n s f o r the Techtron AA4 and P e r k i n Elmer 303 atomic a b s o r p t i o n spectrophotometers.  PElement T ^ ^ .  Current , (ma)  Fuel Gauge  Air Pressure  Slit Width  Wavelength (A )  Ag  6  4.0  5.0  1 mm  3280  10  3.5  20.0  lOOy  4227  6  4.0  5.0  1 mm  2288  Cu  3  2.5  20.0  50y  3248  Fe  5  2.5  20.0  50y  3720  Mg  4  3.5  20.0  100u  2852  Mn  10  2.5  20.0  100u  2795  14  4.0  5.0  1 mm  2175  6  2.3  20. 0  lOOy  2139  1  Ca Cd  Pb Zn  1:  1  1  x  0  Elements determined on the Perkin-Elmer 303, a i r and f u e l flow r a t e s are based on a r b i t r a r y s c a l e s f o r a l l elements.  66.  VI  MISCELLANEOUS ANALYTICAL TECHNIQUES A.  Size Fraction Analysis  Approximately  65 g of disaggregated  in a set of s t a i n l e s s s t e e l s i e v e s (U.S. 40,  80 and  270)  1  and  dry s o i l was  placed  Standard  10,  No.  shaken on a rotap f o r f i v e minutes.  R e s u l t s are expressed  i n weight ..percent  of the minus  10-  mesh f r a c t i o n .  B.  Heavy M i n e r a l  Separates  Heavy m i n e r a l s were separated  from 1 g samples of minus -  80-plus 270-mesh m a t e r i a l u s i n g bromoform, s p e c i f i c g r a v i t y 2.89.  Each sample was  shaken with bromoform and allowed  s e t t l e f o r 10 minutes before the heavy f r a c t i o n was off.  T h i s procedure was  repeated  two  to  drained  to three times  rinsing  the s i d e s of the f u n n e l f r e e of m i n e r a l g r a i n s a f t e r each shaking.  R e s u l t s are expressed  i n m i l l i g r a m s per gram.  Trace element a n a l y s i s of heavy m i n e r a l separates the same procedure as used f o r s o i l  followed  samples u s i n g a  4:1  nitricr-perchloric acid digestion.  C.  C o n d u c t i v i t y and  Sample pH was  pH  determined by p l a c i n g 5 g p e b b l e - f r e e  samples, i n t o paper cups and adding  25 ml of d i s t i l l e d  1:  0.177  M e t r i c mesh s i z e s of 2.0,  0.42,  and  water.  0.053mm r e s p e c t i v e l y .  67.  The r e s u l t i n g s l u r r i e s v/ere s t i r r e d three to four times over a one hour p e r i o d , b e f o r e measuring pH with an Orion .404 pH meter.  E l e c t r o d e s were o c c a s i o n a l l y  calibrated  u s i n g b u f f e r e d s o l u t i o n s of pH 4.0 and 9.0. C o n d u c t i v i t y measurements, u s i n g a Hach 2510 cond u c t i v i t y meter, were made on the same s l u r r i e s a f t e r add i t i o n of a f u r t h e r 25 ml of d i s t i l l e d water.  The s l u r r i e s  were s t i r r e d and allowed to s e t t l e f o r one-half hour b e f o r e a final stirring  at the time of measurement.  sented as microhms per square  Values are p r e -  centimeter with a 1:10 s o i l to  water mixture.  D.  Loss on I g n i t i o n  Loss on i g n i t i o n  (L.O.I.) was used to estimate o r g a n i c  content of 60 lake sediment samples.  Approximately  l g (0.6  to 1.5g) samples were weighed i n c r u c i b l e s and p l a c e d i n a m u f f l e furnace.  The temperature  was g r a d u a l l y r a i s e d over an  hour to 500°C, h e l d at t h i s temperature by a 3 to 5 hour c o o l down. and the percentage  VII  weight l o s s  f o r three hours,  followed  The c r u c i b l e s were then reweighed recorded.  ANALYTICAL PRECISION A n a l y t i c a l c o n t r o l and p r e c i s i o n was maintained with an  a n a l y t i c a l blank and a U.B.C. standard rock sample.  Precision  was estimated by a n a l y s i s of p a i r e d samples and by r e p l i c a t e  68.  Table 4.  Precision  estimates at the 95  percent  confidence  l e v e l f o r p a i r e d s o i l samples and r e p l i c a t e rock analyses by atomic a b s o r p t i o n  Element  Average ^ Concentration  1.04  Ag Ca Cd  (d.l.)  2  514 (5240) 0.96  (d.l.)  Cu  125.(22)  Fe  2.51% (1.53%) 1.04% (0.52%) 350 (262)  Mg Mn Pb Zn  283  (d.l.)  230 (14)  No. of P a i r e d Samples  spectrophotometry.  Precision  (+_%)  69 15 (16) 21 10 (17) 20"(23)  42 10 (7) 42v (40) 42 (40) 42 (40) 10 (7) 42 (41) 42 (41) 42 (41)  v  v  18 (25). 5 (7) 13 19 (17)  1:  C o n c e n t r a t i o n i n p a r t s per m i l l i o n (ppm) u n l e s s noted.  2:  () r e s u l t s f o r the U.B.C. standard  d.l.:  standard  otherwise  rock.  S i g n i f i e s c o n c e n t r a t i o n l e v e l s below the d e t e c t i o n limit.  69.  Table 5.  P r e c i s i o n estimates at the 95.percent  confidence  l e v e l f o r p a i r e d sediment samples analyzed by atomic absorption  E l m nt e  1:  e  n  spectrophotometry.  Average Concentration  1  No. of P a i r e d Samples  Precision  Ag  0.52  8  23.4  Cd  5.90  8  1.7  Cu  1130.0  8  6.4  Fe  4.2%  8  6.1  Mn  5055.0  8  17.5  Pb  187.0  8  4.2  Zn  1466.0  8  6.2  C o n c e n t r a t i o n i n p a r t s per m i l l i o n noted.  (ppm) u n l e s s  (+7' —°'  otherwise  70.  a n a l y s i s of the U.B.C. standard rock.  P r e c i s i o n on  samples at the 95 percent confidence l e v e l was IBM  360/67 computer according to a procedure  Garrett  (1969) and programed by Fox  these  computed on  outlined  (1971).  an  by  Results for  p a i r e d samples and r e p l i c a t e analyses are presented i n Tables 4 and 5 r e s p e c t i v e l y .  Except  f o r Zn, p r e c i s i o n v a l u e s f o r  the standard rock are very c l o s e t o , but c o n s i s t e n t l y  poorer  than, those determined  Un-  f o r the p a i r e d s o i l samples.  f o r t u n a t e l y , p r e c i s i o n v a l u e s f o r Ag,  Cd, and Pb f o r the  standard rock are not a v a i l a b l e because c o n c e n t r a t i o n s of these elements l i e below the d e t e c t i o n l i m i t . Comparison of Tables 4 and 5 shows that p r e c i s i o n f o r sediments i s b e t t e r than f o r s o i l s ,  except  f o r Mn.  T h i s most l i k e l y r e f l e c t s the s m a l l e r g r a i n s i z e of the sediments and the g r e a t e r ease and completeness of the d i g e s t i o n r e l a t i v e to the s o i l s .  In the case of Mn,  p r e c i s i o n w i t h i n the sediments may  be caused by manganese's  irregular distribution  ( B o l v i k e n and S i n d i n g - L a r s e n ,  p. 295) where v a l u e s range from 300  1973,  to i n excess of 80,000  D u p l i c a t e water samples were not c o l l e c t e d and p r e c i s i o n cannot  poor  t h e r e f o r e be estimated;  ppm.  analytical  however, m u l t i p l e  samples taken from Camp Lake at d i f f e r e n t times show a r e markable s i m i l a r i t y  (Table 6).  Cameron and B a l l a n t y n e (1975)  and Cameron (X977b) a l s o r e p o r t l i t t l e  to moderate v a r i a t i o n  i n metal content with time i n samples they c o l l e c t e d analyzed.  Furthermore,  and  metal c o n c e n t r a t i o n s i n lake waters  Table 6.  Comparison of Zn c o n c e n t r a t i o n s (ppb) i n samples c o l l e c t e d from Camp Lake i n J u l y 1974 and 1975 and from Anne Lake.in 1974.  Camp Lake 1974  Anne Lake 1975  1974  74  65  33  69  74  37  72  71  37  74  71  37  74  71  46  71 X=72  68 X=70  Copper was below the d e t e c t i o n l i m i t (-15 ppb) i n a l l samples.  Table 7.  Comparison  of Zn and Cu c o n c e n t r a t i o n s (ppb)  lake waters as a f u n c t i o n of time and  in  analytical  technique.  Zn Lake  A  B  Cu-  A  C  A  B  69  <15  9  <15  4 <10  <15  2  <15  3  Camp Banana  3  3  72 <10  71  Anne  38  44  <15  6  Lower Sunken  28  30  <15  2  63 404 63 355  <15 <15  8 27  16  <15  3  118 166  <15  5  Upper F l y i n g Sunken Horse Turtle  11  3  Cleaver  1:  Detection l i m i t s :  t h i s study 15 ppb Cu, 10 ppb Zn;  Cameron  et. a l . (1975) 1 ppb f o r Cu and Zn. 2:  3:  A:  Data from t h i s study,  B:  Data from Cameron e t . a l . , 1975  C:  Data from t h i s study,  Average of more than one  1974. 1975. sample.  (collected  i n 1974).  73.  c o l l e c t e d by t h i s author i n 1974 and 1975 are s i m i l a r , even though a d i f f e r e n t  a n a l y t i c a l technique was used,  t o values  r e p o r t e d by Cameron and B a l l a n t y n e (1975). as shown i n Table 7. Because of the low number of p a i r e d samples f o r each type of p a r t i a l e x t r a c t i o n and s i z e f r a c t i o n analyzed, was assessed u s i n g a g r a p h i c a l method developed and Howarth (1973) and shown i n F i g u r e 20. 90 percent confidence l e v e l , except c l o s e l y conforms to an a r b i t r a r i l y +20 percent.  precision  by Thompson  P r e c i s i o n at the  f o r low l e v e l s of Pb, chosen p r e c i s i o n l i m i t of  In a d d i t i o n , data f o r d u p l i c a t e samples sub-  j e c t e d to s i z e f r a c t i o n a n a l y s i s , L.O.I, and heavy m i n e r a l s e p a r a t i o n s shows that a n a l y t i c a l p r e c i s i o n of these three p r o cedures  i s w i t h i n +10 percent of the o r i g i n a l v a l u e .  Results  are t h e r e f o r e c o n s i d e r e d more than adequate f o r the purposes of t h i s  thesis.  F i g u r e 20.  Precision  conformation at the 90th p e r c e n t i l e  f o r an a r b i t r a r i l y chosen p r e c i s i o n of + 20% ( a f t e r Thompson and Howarth, 1973). paired  Data are  samples of v a r i o u s s i z e f r a c t i o n s , sub-  j e c t e d to s e v e r a l  partial  attacks.  CHAPTER PRESENTATION  I  OF  4  ANALYTICAL  DATA  INTRODUCTION TO DATA PRESENTATION Due  to the volume of geochemical  data i n the form of  f i g u r e s f o r Chapter 4 i t has become necessary to assemble these f i g u r e s at the end of the chapter.  The v a r i o u s  t a b l e s remain w i t h i n the t e x t as i n p r e v i o u s chapters. Geochemical three s o i l  data f o r the s o i l g r i d are d i v i d e d  layers:  an e a s i l y i d e n t i f i a b l e  s o i l h o r i z o n (L-F-H) and two soil  into  organic-rich  a r b i t r a r i l y chosen m i n e r a l  l a y e r s (0 to 14 inch and 14 t o 25 inch;  hereafter  r e f e r r e d t o as Layer 1 and Layer 2 r e s p e c t i v e l y ) . of  Each  the three l a y e r s i s presented as s e v e r a l s i n g l e element  contour maps prepared from computer p l o t s .  Contour  inter-  v a l s were s e l e c t e d on the b a s i s of computer d e r i v e d l o g normalized histograms  and/or p r o b a b i l i t y p l o t s prepared  histograms f o l l o w i n g the methods of L e p e l t i e r Sinclair  (1976).  (1969) and  In some cases (e.g. Fe and Cu)  i n t e r v a l s vary between s o i l  from  contour  l a y e r s as a r e s u l t of f l u c t u a t i n g  metal v a l u e s with depth and/or because the most p r e c i s e intervals,  i n terms of p a t t e r n development, were sought.  For the contoured geochemical maps, t h r e s h o l d s ( i . e . anomalous vs background) are not shown because the m a j o r i t y of  the data f o r many of the elements  can be c o n s i d e r e d  76.  anomalous on a r e g i o n a l s c a l e , although not r e a d i l y i n t h i s study.  apparent  Because of the s c a l e of t h i s study, l o c a l  t h r e s h o l d s (more h i g h l y anomalous c o n c e n t r a t i o n s ) are more important and are d i s c u s s e d i n somewhat l i m i t e d  detail.  Nevertheless, t h i s author p r e f e r s to emphasize p a t t e r n development r a t h e r than chemical anomalies  'high numbers' when r e l a t i n g geo-  to a bedrock  source.  T h i s i s based  on  the knowledge that i n g l a c i a t e d areas n e a r - s u r f a c e s o i l geochemical  anomalies may  be d i s p l a c e d down i c e c o n s i d e r a b l e  d i s t a n c e s r e s u l t i n g i n h i g h l y anomalous v a l u e s o v e r l y i n g barren bedrock w h i l e l e s s anomalous, p o s s i b l y background, values o v e r l i e m i n e r a l i z a t i o n . ment i s of prime  T h e r e f o r e , p a t t e r n develop-  importance.  The deep s o i l p i t data (multi-element graphs, f r a c t i o n s , pH,  size  c o n d u c t i v i t y , p a r t i a l a t t a c k s and heavy  m i n e r a l a n a l y s i s ) are c o n s i d e r e d i n S e c t i o n I I I and, for  s e v e r a l s e l e c t e d examples, the remainder  has been r e l e g a t e d to Appendix A.  except  of the data  T h i s i s due p a r t l y to  the volume of data and i t ' s complexity which prevents making anything but broad g e n e r a l i z a t i o n s .  A discussion  of  5.  a l l the s o i l data can be found i n Chapter  D i s p e r s i o n i n v a r i o u s water types (stream, l a k e , seepage, snow-melt r u n o f f , e t c . ) as w e l l as lake and stream was  also investigated.  sediments,  Metal c o n c e n t r a t i o n s i n these media  r e v e a l s i g n i f i c a n t hydromorphic  dispersion for several  elements with Cu and, p a r t i c u l a r l y , Zn the most n o t a b l e .  P r e s e n t a t i o n of metal c o n c e n t r a t i o n s and p a t t e r n s i n waters and sediments are considered i n S e c t i o n s IV and V r e s p e c t i v e ly.  A g e n e r a l d i s c u s s i o n of geochemical d i s p e r s i o n with  respect to s o i l , water and sediment forms the b a s i s of Chapter  II  5.  SOILS A.  Probability Plots  P r o b a b i l i t y p l o t s f o r Cu, Fe, Mn, with a l l three s o i l  o r i g i n a l l y each s o i l  presented  layer  was  Superimposing the three s o i l l a y e r s  f a c i l i t a t e s i d e n t i f i c a t i o n of d i f f e r e n c e s and between the s o i l  Zn are  l a y e r s p l o t t e d on the same diagram  ( F i g s . 21 to 25), although plotted separately.  Pb and  layers.  Due  to i n s u f f i c i e n t  p r o b a b i l i t y p l o t s f o r Ag and Cd were not  similarities data,  attempted.  Examination of the p l o t s r e a d i l y r e v e a l s that the  dis-  t r i b u t i o n of metal v a l u e s f o r most elements over most of c o n c e n t r a t i o n range c l o s e l y approximates a lognormal tribution;  however, there are s i g n i f i c a n t departures  a lognormal  approximation,  and,  departure  from  Zn.  For Fe and  Mn,  Mn  from l o g n o r m a l i t y occurs at high c o n c e n t r a t i o n s ;  whereas, f o r Cu, Pb and low  dis-  e s p e c i a l l y i n the case of Fe,  to a l e s s e r extent, Cu, Pb and  the  concentrations.  Zn i t occurs only at low to very  78.  Except  f o r Mn  i s minimal.  ( F i g . 23), v a r i a t i o n between s o i l l a y e r s  In many cases one  l i n e or a smooth curve c o u l d  be f i t t e d to the data p o i n t s to e a s i l y represent a l l three soil  l a y e r s over most of the c o n c e n t r a t i o n range (e.g. Fe,  Fig.  24). In the case of Fe there i s v i r t u a l l y no  between s o i l  layers;  variation  n e v e r t h e l e s s , there i s a d i s t i n c t b i -  modal d i s t r i b u t i o n present which i s c l e a r l y r e l a t a b l e to mineralization of S i n c l a i r  (Figs..33 to 35).  F o l l o w i n g the method  (1976) p a r t i t i o n i n g of e i t h e r of the t h r e e Fe  p l o t s r e v e a l s two d i s t i n c t p o p u l a t i o n s with a w e l l d e f i n e d i n f l e c t i o n p o i n t (optimum p o p u l a t i o n s e p a r a t i o n ) at -1.8 Fe  ( F i g . 22).  P o p u l a t i o n A (anomalous) comprises  percent  25 to 35  (  percent of the data with p o p u l a t i o n B (background) the remainder.  Parameters of p a r t i t i o n e d p o p u l a t i o n s A and B  are given i n Table  8.  The use of =1.8  percent Fe as a t h r e s h o l d (or 2 percent  i n the case of m i n e r a l s o i l Layers 1 and 2) proved most e f f e c t i v e i n o u t l i n i n g anomalous Fe c o n c e n t r a t i o n s :33 t o  ;  35).  were found while lower  (Figs.  The use of higher t h r e s h o l d v a l u e s (e.g. to unduly  3%)  r e s t r i c t the extent of the anomaly,  t h r e s h o l d values (e.g. 1.5%)  y i e l d e d nebulous,  spotty patterns. It was  r e c o g n i z e d at the outset of t h i s t h e s i s that the  s o i l g r i d s were s t r o n g l y b i a s e d with r e s p e c t to  geochemical  anomalies r e s u l t i n g i n 30 to over 90 percent of the samples  79.  Table 8.  Parameters  of p a r t i t i o n e d  lognormal Cu, Fe, Mn,  Pb and Zn p o p u l a t i o n s .  Population  Proportion  N  a  X  X+lc  X-la  Cu(ppm) Layer 1 A  90  244  64(1.81)  0.46  185  23  B  10  37  10.5(1.02)  0.13  14  8  Cu(ppm) Layer 2 A  80  125  98(1.99)  0.47  290  33  B  20  32  16(1.20)  0.14*  22  11.5  % Fe  1  A  =32  226  2.1(0.32)  0.43  5.8  . 0.8  B  -68  482  1.1(0.04)  0.14  1.5  0.8  Mn(ppm) L-F-H A  38  103  98(1.99)  0.49  300  32  B  55  149  89(1.95)  0.07  103  76  C  7  19  27(1.43)  0.24  47  15.5  Mn(ppm) Layer 1 A  3.5  10  380(2.58)  0.24  660  220  B  96.5  271  120(2.08)  0.18  182  82  Cont/. . . .  80.  Population  Proportion  N  2  X  —3  a  4  — • X+lcr  — X-la  Pb(ppm) L-F-H A  8.9  198  42(1.62)  0.56  155  11.5  B  11  25  4.8(0.68)  0.08  6.0  4.0  Pb(ppm) Layer 1 A  60  118  100(2.0)  0.86  730  14  B  40  78  5.8(0.76)  0.23  9.7  3.4  Pb(ppm) Layer 2 A  60  68  38(1.58)  0.94  330  4.4  B  40  45  5.8(0.76)  0.23  9.7  3.4  Zn(ppm) Layer 1 A  -95.5  268  68(1.83)  0.35  150  30  B  =4.5  13  22.5(1.35)  0.13  30  16.5  1:  The Fe p r o b a b i l i t y p l o t s f o r the t h r e e s o i l l a y e r s have been combined and t r e a t e d as one because of t h e i r c l o s e resemblance.  2:  N = t o t a l number of samples i n each p o p u l a t i o n .  3:  X = geometric mean f o l l o w e d by log-^X i n (  4:  a = standard d e v i a t i o n i n base 10 l o g o r i t h m s .  ).  c o n t a i n i n g at l e a s t one metal i n anomalous c o n c e n t r a t i o n s . Consequently, had two  standard  the  'standard  procedure' of the mean p l u s  d e v i a t i o n s ( c f . Hawkes and Webb, 1962)  chosen to d e f i n e t h r e s h o l d s have been reduced to a few  (e.g. 5.7%  Fe), anomalies would  small patches which -  p i n p o i n t i n g m i n e r a l i z e d outcrops  and  been  float  although  - would have  g r e a t l y reduced the amount of i n f o r m a t i o n a v a i l a b l e (e.g. g l a c i a l smearing of F e - r i c h t i l l would have been mostly hidden w i t h i n the background p o p u l a t i o n ) . P r o b a b i l i t y p l o t s f o r Mn complex than f o r Fe, t r i b u t i o n present  2.  are somewhat more  i n that, a w e l l developed t r i m o d a l  i n the L-F-H  modal d i s t r i b u t i o n i n Layer Layer  ( F i g . 23)  becomes a w e l l developed b i -  1 and  a unimodal d i s t r i b u t i o n i n  Coupled with t h i s i s a d i s t i n c t d i f f e r e n c e i n the  d i s t r i b u t i o n of Mn  between the m i n e r a l  soil  (Layers 1 and  have almost i d e n t i c a l p l o t s ) and the o r g a n i c - r i c h s o i l horizon).  soil  2  (L-F-H  T h i s d i f f e r e n c e i s c h a r a c t e r i z e d by a r e l a t i v e l y  lower average c o n c e n t r a t i o n and wider range (steeper of Mn  dis-  v a l u e s i n the L-F-H  h o r i z o n r e l a t i v e to the  slope)  mineral  (Table 9). P a r t i t i o n i n g of the t r i m o d a l and bimodal Mn  p l o t s (L-F-H and Layer  probability  1 r e s p e c t i v e l y ) Into t h e i r r e s p e c t i v e  p o p u l a t i o n groupings (see Table 8 f o r p o p u l a t i o n r e v e a l s that i n the L-F-H  parameters)  h o r i z o n , p o p u l a t i o n A (anomalous)  i s a s s o c i a t e d with areas that are, f o r the most p a r t , swampy (compare F i g s . 15 -and 36) or at the-base of s l o p e s ( i . e . near  Table 9.  Metal c o n t e n t  1  of s o i l at Camp Lake (minus 80-mesh f r a c t i o n HNOg/  HC10 d i g e s t i o n ) 4  Soil  Layer  Ag  1  Cd  Cu  %Fe  Mn  Pb  Zn  A  d-34  d-7.2  4-3720  0.3-25  14-3567  d-3088  9-682  B  1.7C.44)  1.2(.35)  61(.58)  1.37(.31)  89(.33)  36(.61)  71(.36)  C  185  143  0  0  0  47  0  Layer 1  A  d-99  d-1.3  6-990  0.6-24  14-638  d-4600  14-422  0-14 i n ,  B  1.9(.61)  0.3( .30)  53(.50)  1.53(.24)  125(.19)  23(.71)  65(.30)  N=281  C  217  247  0  0  0  85  0  Layer 2  A  d-27  d-0.9  8-1021  0.3-20  66-473  d-4225  17-500  14-25 i n .  B  2.6(.52)  0.5(.34)  67(.50)  1.65(.28)  129(,18)  35(.82)  66(.28)  N=157  C  110  133  0  0  0  44  0  L-F-H N=270  2  A:  Range.  B: C:  Geometric mean f o l l o w e d by standard d e v i a t i o n (a) i n base 10 logs i n ( )• Number of samples below the d e t e c t i o n l i m i t , omitted from c a l c u l a t i o n s of X and  d:  Detection l i m i t :  1:  Metal content i n ppm u n l e s s noted otherwise.  2:  N = t o t a l number of samples.  3:  For Ag N = 262 L-F-H;  273 Layer 1 and 139 Layer 2.  4:  For Cd N = 258 L-F-H;  269 Layer 1 and 145 Layer 2.  Ag =0.4 ppm;  Cd =0.3 ppm;  Pb - 4 . 0 ppm  a  83.  Camp Lake).  In e i t h e r case, pH i s r e l a t i v e l y high  F i g s . 46 and 36).  (compare  Although Eh was not measured, i t i s  assumed to be high  ( o x i d i z i n g ) because the u n d e r l y i n g  near  s u r f a c e m i n e r a l s o i l does not appear t o be gleyed. Conversely, L-F-H  p o p u l a t i o n C, which i s c o n f i n e d t o the  h o r i z o n , i s composed of very low Mn values  (X = 27 ppm)  which are a s s o c i a t e d with very a c i d i c c o n d i t i o n s and/or swampy areas where Eh i s reducing s o i l i s strongly gleyed)..  ( i . e . underlying  In a few cases p o p u l a t i o n C i s  a s s o c i a t e d with areas of r e l a t i v e l y good i n t e r n a l (i.e.  mineral  B r u n i s o l s , compare F i g s . 36 and 16).  drainage  Although  there  i s a wide range i n Eh/pH c o n d i t i o n s under which p o p u l a t i o n C type v a l u e s can be found, these c o n d i t i o n s are such that Mn would be mobile and hence r e l a t i v e l y depleted  i n r e l a t i o n to  other areas w i t h i n the L-F-H h o r i z o n . As expected, p o p u l a t i o n B occurs where environmental c o n d i t i o n s are more normal, that i s , Eh/pH i s n e i t h e r r e l a t i v e l y high nor low and i n t e r n a l s o i l drainage  i s average.  Consequently, p o p u l a t i o n B comprises the l a r g e s t percentage of the data.  In the s u r f i c i a l s o i l , the percentage of  p o p u l a t i o n A r e l a t i v e to p o p u l a t i o n B s h a r p l y decreases with depth (pop.  A =38% L-F-H;  2, whose p l o t not  =3.5% Layer 1 ) such that i n Layer  i s v i r t u a l l y a straight  l i n e , population A i s  recognized. As p r e v i o u s l y mentioned, the s o i l g r i d s are s t r o n g l y  b i a s e d towards geochemical anomalies r e v e a l e d i n an e a r l i e r  84.  s o i l survey by Cominco L i m i t e d . .  Consequently,, the m a j o r i t y of  s o i l samples c o n t a i n r e l a t i v e l y anomalous c o n c e n t r a t i o n s of Cu, Pb and  Zn d e r i v e d from m i n e r a l i z e d bedrock.  As a  r e s u l t , Cu, Pb and Zn are best approximated (at 95%  confidence  l e v e l ) over most of the c o n c e n t r a t i o n range by s i n g l e l o g normal p o p u l a t i o n s composed of anomalous v a l u e s .  However,  the s o i l g r i d a l s o c o n t a i n s a small to moderate percentage of  samples (10 to 20% f o r Cu and Zn and  11 to 40% f o r  Pb)  with metal c o n c e n t r a t i o n s r e p r e s e n t a t i v e of background. The  combination  sources  of Cu,  (massive  Fe, Pb and  Zn from two  s u l p h i d e s and non-mineralized  distinct bedrock) r e s u l t s  i n p r o b a b i l i t y p l o t s which are d i s t i n c t l y bimodal. The  degree of b i m o d a l i t y and the ease with which  t i o n s may  be separated  popula-  c o r r e l a t e s with metal m o b i l i t y .  example, h i g h l y mobile Zn e x h i b i t s the most l i n e a r  For  probability  p l o t s of the three elements (Cu, Pb and Zn) and shows the l e a s t tendency towards b i m o d a l i t y ;  whereas, Pb,  the  mobile of the three elements, d i s p l a y s the highest towards b i m o d a l i t y and mobile Cu,  as expected,  both l i n e a r i t y and  i s a l s o the l e a s t l i n e a r . l i e s between Pb and  least  tendency Moderately  Zn i n terms of  bimodality.  In the case of Pb,  r e l a t i v e l y w e l l developed  anomalous  (A) and background (B) p o p u l a t i o n s can be d e f i n e d with i n f l e c t i o n p o i n t s at the 60th and 89th cumulative p e r c e n t i l e s (Layers 1 + 2  and L-F-H  respectively).  However, much of the  background p o p u l a t i o n (B) l i e s near the a n a l y t i c a l d e t e c t i o n  85.  limit.  Furthermore, Pb v a l u e s recorded  been omitted sequently, The as  Con-  p o p u l a t i o n B i s not as p r e c i s e l y d e f i n e d as  r e l a t i v e importance of o m i t t i n g the Pb data was  assessed by:  A.  recorded  1) i n c l u s i o n of the data r e -  as zero, r e c a l c u l a t i n g percentages and r e c o n s t r u c t i n g  p r o b a b i l i t y p l o t s and e x i s t and  2) assuming that zero ppm  Pb d i d not  that the samples a c t u a l l y c o n t a i n 1 to 3 ppm  likely possibility of 1 to 3 ppm 2 ppm  have  from c a l c u l a t i o n s and subsequent p l o t s .  'zero ppm'  corded  as zero ppm  (Hawkes and Webb, 1962,  were then assigned  and so on), cumulative  (with 3 ppm  Values  emphasized over  R e s u l t s f o r the l a t t e r  1 i n F i g u r e 24.  In g e n e r a l , the  e a s i e r p o p u l a t i o n s e p a r a t i o n due imposed by the 1 ppm  values recorded to  as zero ppm  to the inherent  boundary.  are  latter  assumption r e s u l t s i n a b e t t e r d e f i n e d i n f l e c t i o n point  limit'  a  percentages r e c a l c u l a t e d and  p r o b a b i l i t y p l o t s reconstructed. shown f o r Layer  p. 367).  Pb,  and  'bottom  I n c l u s i o n of the  Pb  r e s u l t s i n a p l o t which i s s i m i l a r  the o r i g i n a l p l o t but with p o p u l a t i o n B no b e t t e r d e f i n e d  than i n the o r i g i n a l Pb v a l u e s  plot.  i n p o p u l a t i o n B are c h a r a c t e r i z e d by  p r o b a b i l i t y p l o t as l e s s than 9 ppm l e s s than 22 ppm thresholds  i n mineral  soil  ( F i g . 24).  (rounded to the nearest  the Pb s o i l g r i d data  i n the L-F-H  contour  tween p o p u l a t i o n s .  Likewise,  horizon  Applying  and  these  ten f o r convenience) to  ( F i g s . 39 to 41) r e v e a l  e r a l s o i l the 20 ppm  the  that i n the min-  provides excellent separation the 10 ppm  contour  f o r Pb  be-  i n the  86.  L-F-H  h o r i z o n p r o v i d e s good p o p u l a t i o n s e p a r a t i o n ,  although  20 ppm may be a b e t t e r c h o i c e . For Cu and Zn ( F i g s . 21 and 25) the presence of bimodal d i s t r i b u t i o n s are developed best  i n the m i n e r a l  Cu d i s p l a y i n g l e s s o v e r l a p between p o p u l a t i o n s  soil  with  than Zn.  Although there i s a bimodal tendency i n the L-F-H h o r i z o n , the high degree of o v e r l a p and the r e l a t i v e l y small percentage (<6%) of data belonging  to p o p u l a t i o n  s e p a r a t i o n i s not warranted. be assumed t o roughly  (B) are such that  P o p u l a t i o n B i n Layer  1 can  approximate p o p u l a t i o n B f o r the L-F-H  h o r i z o n based on the c l o s e s i m i l a r i t y between the L-F-H h o r i z o n and Layer  1 p r o b a b i l i t y p l o t s f o r Cu and Zn at low  metal c o n c e n t r a t i o n s .  As with Pb, the upper l i m i t of  p o p u l a t i o n B f o r Cu and Zn c l o s e l y approximates the i n i t i a l contour to  i n t e r v a l f o r the s o i l g r i d geochemical maps ( F i g s . 30  32 and 42 t o 44) which i n t u r n approximates the r e g i o n a l  threshold. In F i g u r e 25,only p o p u l a t i o n B f o r Zn (Layer 1) i s shown because p o p u l a t i o n A l i e s very c l o s e t o the p r o b a b i l i t y p l o t f o r the t o t a l data and Layer  2).  (as does p o p u l a t i o n A f o r the L-F-H  A s i m i l a r s i t u a t i o n e x i s t s f o r Cu whereby  p o p u l a t i o n A (Layer 1 and L-F-H h o r i z o n ) c l o s e l y f o l l o w s the t r e n d shown by the p r o b a b i l i t y p l o t s f o r the r e s p e c t i v e t o t a l data and are not, therefore, presented. In summary, p r o b a b i l i t y p l o t s f o r Cu, Fe, Mn, Pb and Zn were found t o be u s e f u l i n s e l e c t i n g contour  i n t e r v a l s and  r e l a t i n g / d e f i n i n g grouped sources and/or causes.  c o n c e n t r a t i o n s with p o s s i b l e They a l s o aided, with regards t o  t h r e s h o l d s , i n s u b s t a n t i a t i n g what may have been otherwise a s u b j e c t i v e d e c i s i o n , e s p e c i a l l y where bimodal  distributions  are present but not r e a d i l y r e c o g n i z a b l e i n histogram  B.  form.  N i t r i c - p e r c h l o r i c Extraction Patterns  Except east of Camp Lake, where a north-south o r i e n t a t i o n can sometimes be seen to 44), geochemical  (e.g. Cu, F i g s . 30 and 31;  Zn F i g s . 42  p a t t e r n s - c o i n c i d i n g with the g e n e r a l  s t r i k e of the geology and outcrops of f o o t w a l l disseminated mineralization The  ( F i g . 18) - d i s p l a y a g e n e r a l east-west  trend.  former t r e n d , which might r e s u l t from l i n e b i a s , i s com-  p l i c a t e d by the presence of a veneer of g l a c i o f l u v i a l sediments.  Anomalous geochemical  p a t t e r n s are best  developed  north of Camp Lake where they c o i n c i d e with the g e n e r a l d i r e c t i o n ( s ) of g l a c i a t i o n  ( F i g . 14) and the gossan  zone  ( F i g . 45). The most s t r i k i n g geochemical  p a t t e r n s are shown by Pb  i n Layers 1 and 2 where v a l u e s i n c r e a s e from l e s s than 20 ppm along the g r i d p e r i p h e r y t o over 1000 ppm c l o s e r t o m i n e r a l i z e d zones ( F i g s . 18 and.39 t o 41).  In the L-F-H h o r i z o n ,  m i n e r a l i z e d outcrops are adjacent t o and contained w i t h i n the 20 ppm contour. ward broadening  The 80 ppm contour i s d i v i d e d i n t o two westzones, which are open at the western  grid  88.  limit,  and separated by an east-west  t r e n d i n g b e l t of  lower v a l u e s (<80 ppm) near the g r i d center.  The southern  b e l t c l o s e s s h a r p l y around m i n e r a l i z e d outcrop east of B-C stream while the northern b e l t c l o s e s 200 t o 300 f e e t west of m i n e r a l i z e d outcrop near Banana Lake.  R e l a t i v e t o the  southern anomaly, the northern anomaly i s broader,  longer  and more i r r e g u l a r . The narrow b e l t of low (40 t o 70 ppm) Pb v a l u e s noted i n the L-F-H h o r i z o n has broadened i n Layer 1, e f f e c t i v e l y s e p a r a t i n g and p r o v i d i n g b e t t e r d e f i n i t i o n of the two e a s t west t o west-northwest t r e n d i n g anomalies the 100 ppm contour.  as now d e f i n e d by  I t should be noted that  broadening  of t h i s b e l t of low Pb v a l u e s i s not a f u n c t i o n of the change i n contour i n t e r v a l from 80 to 100 ppm because Pb v a l u e s almost belt.  i n v a r i a b l y l i e below 70 ppm w i t h i n t h i s  In a d d i t i o n , there i s a f i n g e r - l i k e zone of high  (_>100 ppm) Pb with a southwest o r i e n t a t i o n a s s o c i a t e d with the northern Pb anomaly which i s best developed  i n Layer 1  ( F i g . 40). Both of the Pb anomalies  (_>100 ppm) i n Layer 1 l i e on  the outer f l a n k s of the "mineral h o r i z o n " (Figs . 40 and 18) :  and can be r e l a t e d ( p a r t i c u l a r l y the southern anomaly) t o m i n e r a l i z e d outcrop adjacent t o the B-C stream.  However,  f o r the northern Pb anomaly the r e l a t i o n s h i p t o m i n e r a l i z e d outcrop i s best d e f i n e d i n Layer 2 ( F i g .  41).  R e l a t i v e t o the L-F-H h o r i z o n , Layer  1 e x h i b i t s the  same g e n e r a l Pb p a t t e r n s but with h i g h e r c o n t r a s t (Table 10) and b e t t e r anomaly d e f i n i t i o n .  T h i s t r e n d continues i n  Layer 2 where the northern Pb anomaly i s best d e f i n e d , showing high c o n t r a s t and a c l e a r a s s o c i a t i o n with m i n e r a l i z e d outcrop west of Banana Lake.  However, d e f i n i t i o n of the  southern Pb anomaly i n Layer 2 i s u n c l e a r because samples were not c o l l e c t e d at key s i t e s . 1  It can n e v e r t h e l e s s ,  g e n e r a l l y be concluded t h a t , r e l a t i v e t o the southern Pb anomaly, the northern anomaly i s s i g n i f i c a n t l y b e t t e r developed with higher c o n t r a s t and e x t e n s i v e , but narrow down i c e d i s persion. developed  Consequently, gossan  the presence  of a s t r o n g , w e l l  a s s o c i a t e d with the northern anomalous  zone i s expected. Comparing Ag ( F i g s . 26 t o 28) and Fe ( F i g s . 33 t o 35 ) d i s t r i b u t i o n s i n the three s o i l l a y e r s with the r e l e v a n t Pb p a t t e r n s r e v e a l s that these two elements d i s p l a y good c o r r e l a t i o n . w i t h Pb.  Although Fe i s not g e n e r a l l y con-  s i d e r e d t o be an immobile element, i t s behavior and g e n e r a l c o r r e l a t i o n with immobile elements (Ag and Pb) r a t h e r than mobile it  elements (Cu, Mn and Zn) at Camp Lake suggests that  can be considered r e l a t i v e l y  immobile.  three elements d i s p l a y w e l l developed, northern anomalies gossan  1:  zone.  At depth, a l l  westward  broadening  which are c l e a r l y a s s o c i a t e d with the  Ag and Pb v a l u e s w i t h i n the northern anomalous  S i t e numbers 8, 9, 10, 46, 48, 64, 106, 120 and 174.  Table 10.  Average c o n t r a s t  f o r Ag, Cd, Cu, Fe, Mn,  each of the three s o i l  layers.  S o i l Layer  Ag  Cd  L-F-H  7.5  5.0  14 . 1  4.1  Layer 1  16.7  4.1  10 . 1  Layer 2  11. 2  6.3  9. 8  1:  Pb and Zn i n  Cu  Fe  Mn  Pb  Zn  4., 5  16. 8  5.2  3.1.  2,.4  26. 2  3.9  3.5  2..3  44. 0  3.7  Contrast i s d e f i n e d here as X + 2a •=- X. S t a t i s t i c s based on N = 270 (L-F-H); 281 (Layer 1) and 156 (Layer 2) except f o r Ag and Cd where N = 77, 56 and 29 f o r Ag, and 115, 22 and 13 f o r Cd respectively.  zone i n c r e a s e down i c e (westward) with the highest o c c u r r i n g approximately crop.  Conversely,  values  1500 f e e t west of m i n e r a l i z e d  i n the southern  out-  anomalous zone Ag, Fe  and Pb p a t t e r n s appear t o decrease i n s i z e and i n t e n s i t y with respect t o depth. In c o n t r a s t t o Pb, Ag and Fe d i s t r i b u t i o n s i n the m i n e r a l soil,  p a t t e r n s of the r e l a t i v e l y mobile elements Cu and Zn  are not as d i r e c t l y r e l a t a b l e t o m i n e r a l i z e d (see F i g s . 30 to 32 and 42 to 44). for  outcrop  In g e n e r a l ,  Cu and, i n p a r t i c u l a r , Zn are r e l a t i v e l y  patterns  i r r e g u l a r and  d i f f u s e with c o n t r a s t between anomalous zones and p e r i p h e r a l background areas markedly lower than f o r Pb (Table 10). Nevertheless,  i n the L-F-H h o r i z o n Cu ( F i g . 30) can be  s u c c e s s f u l l y r e l a t e d t o m i n e r a l i z e d outcrop; p a t t e r n s - although  developed best  however, Zn  i n the L-F-H h o r i z o n -  remain nebulous even though c o n t r a s t i s higher r e l a t i v e t o the m i n e r a l  soil  (Table 10).  Although Cu and Zn p a t t e r n s are s i m i l a r i n some r e s p e c t s , there are c e r t a i n f e a t u r e s which make the Cu p a t t e r n s unique. They are: (<_60  1) a w e l l developed east-west zone of low Cu v a l u e s  ppm) which becomes b e t t e r d e f i n e d with depth and 2) a  strong north-south  b e l t of high Cu values  the northwest corner of Camp Lake.  (_>200 ppm) near  The l a t t e r t r e n d , which  i s absent from the L-F-H h o r i z o n but w e l l developed i n Layer 2, a b r u p t l y t r u n c a t e s the east-west zone of low Cu v a l u e s ( F i g s . 31 and 32).  R e l a t i v e t o the L-F-H h o r i z o n and Layer  92.  1, Cu p a t t e r n s i n Layer 2 are c h a r a c t e r i z e d by abrupt and w e l l d e f i n e d boundaries,  although t h i s i s not r e f l e c t e d  i n c o n t r a s t as d e f i n e d i n Table 10. In the L-F-H h o r i z o n , two areas of high (->200 ppm) Cu values can be seen ( F i g . 30).  The area northwest of B-C  stream  i s c l o s e l y a s s o c i a t e d with s e v e r a l m i n e r a l i z e d out-  crops;  while the second area, centered on the B-C stream  i s c l o s e l y a s s o c i a t e d with the d i s t r i b u t i o n of g l e y e d ( c f . F i g s . 30 and 16). with depth,  soils  Both areas become more r e s t r i c t e d  p a r t i c u l a r l y the area centered on B-C stream and,  f o r t h i s area, i t appears f o r t u i t o u s that m i n e r a l i z a t i o n i s o u t l i n e d because Cu appears t o be r e f l e c t i n g  environmental  c o n d i t i o n s (such as Eh and pH) r a t h e r than the u n d e r l y i n g mineralization.  T h i s i s w e l l documented at s i t e s 279 and  280 which provide an example of hydromorphic  accumulation  of Cu, Fe and, t o a l e s s e r extent, Zn i n n e a r - s u r f a c e swampy or gleyed s o i l s  (Table 11).  morphic accumulation  F u r t h e r evidence of hydro-  can be found  i n the area j u s t  southeast  of Banana Lake where a l a r g e area of anomalous Fe. (>_1.8%) i n the L-F-H  h o r i z o n is- absent Although  from Layers 1 and 2 (FigS7.3:3  Cu and Fe are h i g h l y concentrated  h o r i z o n r e l a t i v e t o the m i n e r a l s o i l the most mobile  t o 35).  i n the L-F-H  (Table 11), Zn and Mn -  elements of the group - d i s p l a y a low degree  of hydromorphic c o n c e n t r a t i o n .  T h i s rspresumably due;to . t h e i r  higher m o b i l i t y which r e s u l t s i n r a p i d f l u s h i n g of Zn and Mn from the a c i d i c s o i l s .  As a r e s u l t , c o n t r a s t i s r e l a t i v e l y  Table 11.  Distribution  of elements under swampy (gleyed)  c o n d i t i o n s at s i t e s 279 and 280.  S i t e 279 Element  S i t e 280  L-F-H  Layer 1  •— Layer 2  L-F-H  Layer 1  Layer 2  Cu  2976  126  115  546  47  62  Zn  84  35  37  73  29  32  Fe%  25.1  1.1  1.1  1.6  1.3  1.6  Pb  82  d.l.  d.l.  d.l.  d.l.  Mn  51  101  116  105  86  A l l v a l u e s i n ppm except where noted. d.l.  = sample with c o n c e n t r a t i o n below d e t e c t i o n l i m i t .  d.l. 103  94.  low and the h i g h e s t c o n c e n t r a t i o n s of these two are u s u a l l y found where pH's therefore, less intense.  elements  are more moderate and l e a c h i n g ,  Adjacent  to m i n e r a l i z e d outcrop  Zn v a l u e s commonly approximate background (<J50 ppm) three s o i l  i n the  l a y e r s and only r a r e l y do they exceed 200  ppm.  T h i s i s i n c o n t r a s t to the average grade of Zn m i n e r a l i z a t i o n (=7.5%) when compared with geochemical  v a l u e s f o r Cu  and,  i n p a r t i c u l a r , Pb and the average ore grade of these elements (0.4% and  1.5%  respectively).  Comparison of the Cu p a t t e r n s with Ag, Fe, Pb and p a t t e r n s , as w e l l as the g e o l o g i c map similarities.  b e l t s of high metal  a narrow to moderately values. with one  ( F i g . 18) r e v e a l s many  For example, Ag, Fe and Pb p a t t e r n s d i s p l a y ,  i n at l e a s t one of the t h r e e s o i l east-west  pH  l a y e r s , two w e l l  developed  c o n c e n t r a t i o n s separated  wide zone of low,  near-background  These zones of low v a l u e s correspond very another.  Consequently,  by  closely  i t i s not s u r p r i s i n g that  the zone of low Cu v a l u e s a l s o c l o s e l y corresponds  with  Ag, Fe and Pb zones of low c o n c e n t r a t i o n , a l l of which d i r e c t l y o v e r l i e the sub-outcrop However, u n l i k e Ag, Fe and Pb, developed of  east-west  of the "mineral h o r i z o n " .  Cu does not d i s p l a y w e l l  b e l t s of high v a l u e s .  high Cu c o n c e n t r a t i o n s (>_200 ppm)  areas  occur as s p o r a d i c  patches which are, i n some cases, d i f f i c u l t to m i n e r a l i z e d outcrop.  Instead,  Nevertheless,  to r e l a t e ! d i r e c t l y  i t can be seen that  95.  i n a l l cases high Cu v a l u e s l i e e i t h e r down i c e or down slope of m i n e r a l i z e d  outcrops.  Cd p a t t e r n s are p o o r l y developed, due  i n part to  low  contrast  (Table. 10), but mainly because c o n c e n t r a t i o n s  very low  (<3  mineral  ppm)  soil,  i n the L-F-H  horizon  ( F i g . 29)  and,  r a r e l y above the d e t e c t i o n l i m i t .  are i n the  There i s  some c o r r e l a t i o n between d e t e c t a b l e c o n c e n t r a t i o n s of Cd high Zn v a l u e s Mn  i n the L-F-H  horizon  (compare F i g s . 29 and  p a t t e r n s d i s p l a y low c o n t r a s t (Table 10)  p o o r l y developed, p a r t i c u l a r l y i n the m i n e r a l horizon  and  soil  In the L-F-H  (_>200 ppm)  are somewhat r e l a t e d to high l e v e l s of Zn  C.  values (_>200  Ratios  Introduction  P a r t i a l e x t r a c t i o n s of Cu, 1.0M  37  and e a s t e r n shore of Camp Lake.  P a r t i a l E x t r a c t i o n s and 1.  ( F i g . 36) high Mn  42).  are  (Figs.  and 38).  near the northwest corner  and  h y d r o c h l o r i c a c i d and  Fe, Pb  0.05M EDTA  and  Zn u t i l i z i n g c o l d  (ethylenediamine  t e t r a a c e t a t e ) on the minus 80-mesh f r a c t i o n of Layer  1 were  undertaken to t r y t o :  2)  1) improve anomaly c o n t r a s t ,  dis-  t i n g u i s h mechanical ( g l a c i a l ) d i s p e r s i o n t r a i n s from hydromorphic anomalies and occurrence.  3) c h a r a c t e r i z e the mode of metal  In g e n e r a l , EDTA removes a l l l o o s e l y bonded  metal adsorbed on o r g a n i c matter, c o l l o i d a l phases and p a r t i c l e s or other m i n e r a l s with  large surface  areas.  clay  ppm)  96.  l.OM  HC1,  a s l i g h t l y stronger e x t r a c t a n t , removes metal  a s s o c i a t e d with a l l of the above phases p l u s metal a s s o c i a t e d with a c i d  s o l u b l e secondary m i n e r a l s  Fe and Mn  oxides.  These two are two  reagents  and,to a l a r g e extent,  were chosen p r i m a r i l y because they  of the most commonly employed p a r t i a l e x t r a c t a n t s ,  although  v a r i o u s other p a r t i a l e x t r a c t a n t s may  effective  i n s e l e c t i v e l y removing metal a s s o c i a t e d with  v a r i o u s sample phases (e.g. o r g a n i c , Mn etc.).  be more  The  adequately  and A l l e n ,  oxides,  theory and use of many p a r t i a l e x t r a c t a n t s are  d e s c r i b e d elsewhere ( E l l i s  and Hughes, 1967; Bradshaw et  oxides, Fe  Chao, 1972;  a l . , 1974;  et  a l . , 1967;  Chester  Maynard and F l e t c h e r ,  Gatehouse et  a l . , 1977;  1973;  Peachy  1977).  Most of the s o i l  g r i d l y i n g east of Camp Lake was  cluded from these procedures due  to the presence of  ex-  glacio-  f l u v i a l m a t e r i a l c h a r a c t e r i z e d by low t o t a l metal v a l u e s . In a d d i t i o n , the two  westernmost g r i d l i n e s were not i n -  cluded because they were added to the g r i d as f o l l o w up, after  i n i t i a l s t u d i e s were completed.  h y d r o c h l o r i c a c i d e x t r a c t i o n was  As expected, the  l.OM  found to remove more metal  than the 0.05M EDTA attack with both e x t r a c t i o n s removing a g r e a t e r percentage of Pb f o l l o w e d by Cu, to t o t a l v a l u e s  (Table  12).  Zn and Fe  relative  97.  Table 12. Comparison of t o t a l and p a r t i a l a t t a c k s on Layer 1, minus 80-mesh  , , .,1 ractant N  Total  fraction.  Average Metal Content Cu  Fe%  Pb  Zn  Camp  Lake  168  60  1. 51  24  1.0M HC1  168  39  0. 48  18  0.05M EDTA  166  14  0. 06  55  4  % T o t a l Metal E x t r a c t e d Cu  Fe  Pb  Zn  32  72 . 2  33 .7  82 .8  59 .5  6  27 .4  4 .8  38 .9  11 .4  59 5  Anne  Lake  Total  135  79  2. 34  76  184  1.0M HC1  135  38 : 0. 61  31  76  51 . 0 29 . 2 75 . 1 47 .3  0.05M EDTA  127  11  24  10  17 .2  0. 04  2. 2  43 .5  6. 2  1:  N = t o t a l number of samples.  2:  Geometric means (samples below d e t e c t i o n l i m i t omitted from c a l c u l a t i o n ) , i n ppm except where noted.  3:  Average percent e x t r a c t e d based-on geometric.mean of p a r t i a l to t o t a l r a t i o s .  4:  1 t o 4 HN0 /HC10  5:  Only  3  4  attack.  40 of 168 samples were above the d e t e c t i o n  limit.  98.  2.  l.OM h y d r o c h l o r i c a c i d  H y d r o c h l o r i c a c i d e x t r a c t a b l e p a t t e r n s of the r e l a t i v e l y immobile elements Fe and Pb (Fe„ and Pb^) very c l o s e l y r e semble t h e i r r e s p e c t i v e t o t a l p a t t e r n s N  54 with 34 and 40), although (Table 13).  (compare Figs. 52 and  c o n t r a s t i s somewhat lower  For the more mobile elements the h y d r o c h l o r i c  a c i d a t t a c k provided more u s e f u l i n f o r m a t i o n . of Zn, s l i g h t l y northern  In the case  improved c o n t r a s t (Table 13) has allowed a  Zn^ anomaly (_>50 ppm), which extends westwards from  the northernmost m i n e r a l i z e d outcrops,  t o be c l e a r l y  defined  r e l a t i v e t o the t o t a l Zn ( Z n ) p a t t e r n (compare F i g s . 56 and T  43).  The highest  Zn^ values d i s p l a y a negative  correlation  with zones of i n t e n s e Fe s t a i n i n g ( F i g . 45) and low (<4.4) pH ( F i g . 47).  T h i s r e l a t i o n s h i p i s not w e l l developed i n  the Zn,p p a t t e r n s .  Conversely,  f o r Cu^ ( F i g . 50) there i s  n e i t h e r a negative or p o s i t i v e c o r r e l a t i o n with areas of i n tense Fe s t a i n i n g and low pH presumably because Cu i s not as mobile as Zn, nor as immobile as Pb. occur  The highest Cu^ v a l u e s  towards the outer p o r t i o n of the g r i d  t i o n with weakly (Cu) m i n e r a l i z e d outcrop pyroclastics  3.  i n close associaof a l t e r e d f o o t w a l l  ( F i g . 18) or along the north shore of Camp Lake.  0.05M EDTA  Except f o r the p o o r l y developed Fe (Fe„) p a t t e r n (Fig. 53), EDTA e x t r a c t a b l e p a t t e r n s  ( F i g s . 51, 55 and 57) are s i m i l a r  Table  13. Comparison of the average c o n t r a s t  1  f o r t o t a l , l.OM  HC1 and 0.05M EDTA e x t r a c t a b l e Cu, Fe, Pb and Zn i n Layer 1.  Extractant  N  2  Cu  Camp Total  Fe  Pb  Zn  Lake  . 168  8.5  3.4  32.5  3.6  l.OM HC1  168  7.6  2.4  29.6  . 4 . 6  0.05M EDTA  166  6.6  4.0  13.8  4.4  ;  Anne Lake Total  125  6.5  3.0  33.1  6.3  l.OM HC1  135  5.2  2.5  13.4  7.4  0.05M EDTA  127  5.2  4.6  9.2  7.2  1:  Contrast  2:  N = total  i s d e f i n e d here as X + 2 cr -f X. number of samples.  100.  to h y d r o c h l o r i c a c i d e x t r a c t a b l e p a t t e r n s ;  even though con-  t r a s t and the percentage of metal e x t r a c t e d i s c o n s i s t e n t l y lower  ( T a b l e s 12 and 13).  Although 0.05M EDTA removes a  higher percentage of Pb than Cu, Fe, or Zn, c o n t r a s t i s markedly reduced r e s u l t i n g i n a s i g n i f i c a n t l y Pb„ p a t t e r n r e l a t i v e to Pb„ and Pb .  O c c a s i o n a l high Pb  TT  hi  I  v a l u e s (_>100 ppm)  n  less informative  .  are obtained with 0.05M EDTA but  their  s c a t t e r e d d i s t r i b u t i o n . e f f e c t i v e l y prevents c o n t o u r i n g . 4.  P a r t i a l to t o t a l metal  ratios  P a r t i a l to t o t a l metal r a t i o s ( M e ™ or M e ™ ) HR ER  were d e t e r -  v  mined by r a t i o i n g p a r t i a l metal v a l u e s with the corresponding t o t a l metal value f o r each sample i n Layer 1. (0.01  to 1.00)  puter.  were p l o t t e d and histograms prepared by com-  Where e i t h e r Me^, n  detection l i m i t , A p l o t of F e ™  Ratios  Me  r  hi  or Me™ v a l u e s are below the 1  the undefined r a t i o s have been omitted.  r a t i o s r e s u l t e d i n very low u n i n t e r p r e t a b l e  hiix  values and hence i s not presented here. Examination of M e ™ p l o t s ( F i g s . 58, 60,.61  and  63)  lift  r e v e a l s t h a t , with the exception of Pb, w e l l developed  pat-  t e r n s r e l a t a b l e to m i n e r a l i z e d outcrops and c o n s i s t e n t with p r e v i o u s l y e s t a b l i s h e d g l a c i a l d i r e c t i o n ( s ) are c h a r a c t e r i z e d by the lower r a t i o v a l u e s .  Although Cu, Fe, Pb and Zn are  p r i m a r i l y d i s p e r s e d i n a west t o northwest  direction,  are i n d i c a t i o n s , p a r t i c u l a r l y i n the m i n e r a l s o i l , anomalies  there  f o r some  ( p o s i t i v e or n e g a t i v e ) to be o r i e n t e d i n a  southwest  101.  to west-southwest d i r e c t i o n  (e.g. F i g s . 34,  41 and  P a r t i a l to t o t a l r a t i o s r e v e a l the west-southwest  50). orienta-  t i o n of anomalies more o f t e n than e i t h e r t o t a l or p a r t i a l e x t r a c t i o n data.  Possible explanations f o r t h i s  are c o n s i d e r e d i n Chapter  5..  5.  T o t a l to t o t a l metal  R a t i o s of Me f o r the L-F-H  T  occurrence  ratios  v a l u e s (Pb to Zn and Pb to Cu) were p l o t t e d  and Layer 1 ( F i g s . 65  to  68).  somewhat nebulous Pb/Cu p a t t e r n i n the L-F-H p a t t e r n s are w e l l d e f i n e d and possess  Except  for a  h o r i z o n , these  l i n e a r east-west  to  west-northwest trends with e x c e l l e n t c o r r e l a t i o n to g l a c i a l d i r e c t i o n ( s ) , the assumed d i s p e r s i v e mode, and the s o u r c e ( s ) of geochemically anomalous Cu, Pb. and Zn at Camp Lake. In g e n e r a l , r a t i o s decrease towards the outer g r i d margin r e f l e c t i n g the sharper decrease Cu and  D.  i n Pb v a l u e s r e l a t i v e to  Zn.  C o n d u c t i v i t y and  Except  pH  f o r s e v e r a l s m a l l areas of d i s c o n n e c t e d 2  high v a l u e s (>100  yohms/cm ) centered on the B-C  stream i n  Layer 1,. c o n d u c t i v i t y p a t t e r n s are p o o r l y developed Outside the B-C  stream  relatively  ( F i g . 49).  area, c o n d u c t i v i t y v a l u e s are randomly  d i s t r i b u t e d with v a l u e s u s u a l l y d i s p l a y i n g a narrow range of 70 t o 85 yohms/cm  at 0 to 14 i n c h depths.  Conductivity  102.  values  i n the L-F-H  h o r i z o n and  random d i s t r i b u t i o n and  i n Layer  consequently  2 approximate a  are not  U n l i k e c o n d u c t i v i t y , pH p a t t e r n s  presented.  (Figs. 46 to :  48)  are w e l l developed, p a r t i c u l a r l y i n the deeper m i n e r a l  soil  and are reasoned to become b e t t e r d e f i n e d with depth. developed zones of low pH Layer  Ill  and <4.3  i n Layer  1 and  2 r e s p e c t i v e l y ) are s p a t i a l l y r e l a t e d to both the gossan  zone and the northern Pb, and  (<5.0  Well  Fe and Ag anomalies i n Layers  1  2.  SOIL PITS: A.  GEOCHEMICAL PROFILES  Introduction  D e t a i l e d i n f o r m a t i o n on metal d i s t r i b u t i o n with to depth was  provided by d i g g i n g 13 deep p i t s  Lake, see Appendix B) ranging  ( p l u s 3 at Anne  i n depth from 32 to 54  with samples c o l l e c t e d every two  inches.  The  ( F i g . 69) were chosen to provide reasonable  anomaly sources  inches  p i t locations  c r o s s s e c t i o n s of  geochemical anomalies, i n c l u d i n g 'background' areas, d i s t a l and proximal  respect  at both  l o c a l i t i e s with respect to the proposed  ( i . e . mineralized outcrops).  Seven of  the  13 p i t s were s e l e c t e d f o r more d e t a i l e d s t u d i e s i n v o l v i n g s i z e f r a c t i o n a n a l y s i s ( p l u s p a r t i a l and t o t a l a t t a c k s on s i z e f r a c t i o n s ) as w e l l as p a r t i a l mineral  separates,  pH and  conductivity.  d e t a i l e d p i t s are presented the remaining  : total ratios,  A.  heavy  Data f o r the  i n F i g u r e s 70 to 90.  p i t s are i n Appendix  various  seven  Data f o r  103 .  B.  M e t a l , pH, C o n d u c t i v i t y and S i z e F r a c t i o n Distributions  In g e n e r a l , metal v a l u e s are constant or i n c r e a s e with depth, except i n areas adjacent t o m i n e r a l i z e d outcrops where post g l a c i a l weathering processes have e n r i c h e d the upper p o r t i o n of the s o i l 86).  (e.g. p i t s i t e s 121 and 123, F i g s . 83  and  With these e x c e p t i o n s , metal v a l u e f l u c t u a t i o n with  r e s p e c t to depth i s moderate (2 to 5x) f o r a l l elements  except  Pb which, w i t h i n a few inches, can i n c r e a s e or decrease d r a m a t i c a l l y (up t o lOx).  Most metals, with the p o s s i b l e  exception of Ca, d i s p l a y a p o s i t i v e c o r r e l a t i o n with each other and Fe i s more sympathetic with Cu, Pb and Zn than i s Mn.  Good c o r r e l a t i o n e x i s t s between pH,  conductivity  and  metal l e v e l s (e.g. F i g s . 74 and 75) and i t i s p u z z l i n g t h e r e fore, t h a t , except i n the most i n t e n s e gossan zones,  con-  d u c t i v i t y measurements over the s o i l g r i d produce o n l y vague and d i f f u s e p a t t e r n s . Percent s i l t - c l a y  show l i t t l e  metal v a l u e s (compare Fig..86 field,  i f any c o r r e l a t i o n to  with 87).  However, i n the  percentage and a n g u l a r i t y of pebbles and cobbles i n -  creases with depth;  t h i s change g e n e r a l l y beginning at 18 to  20 i n c h e s depth, a p p a r e n t l y corresponds t o a commonly encountered a b b e r a t i o n or break i n metal trends f o r some of the pits  (e.g. F i g s . 71 and 80). Examination of metal p r o f i l e s at p i t s 121,  123 and  y i e l d s some i n s i g h t upon the d i s t r i b u t i o n of t r a c e  125  elements  104.  as a f f e c t e d by g l a c i a l and post g l a c i a l weathering  processes.  P i t s 121 and 123 are down slope from m i n e r a l i z e d f o o t w a l l and "mineral h o r i z o n " outcrops approximately  350 and 150 f e e t  r e s p e c t i v e l y , while p i t 125 i s 60 f e e t up slope from the same outcrops.  The t i l l  t h i c k n e s s i s t h i n t o moderate (5 t o  10 f e e t ) with the p i t s p e n e t r a t i n g 3.6 t o 4.3 f e e t i n t o i t . Because pH's are low (2.6 to 4.0) only the r e l a t i v e l y immobile  element Pb w i l l be considered, as Cu and Zn have been  l a r g e l y removed i n s o l u t i o n . At p i t 121 ( F i g . 83) t h e r e i s a s l i g h t enrichment of Pb (40 t o 70 ppm) at 0 t o 6 inches depth o v e r l y i n g r e l a t i v e l y low  (<20 ppm) values c h a r a c t e r i s t i c of background.  Closer  to the outcrop, at p i t 123 ( F i g . 86), the s u r f a c e enrichment of Pb i n c r e a s e s t o 100 t o 700 ppm and extends to a depth of 26 inches where Pb c o n c e n t r a t i o n s drop s h a r p l y t o moderate but h i g h l y e r r a t i c - l e v e l s of 10 t o 60 ppm b e f o r e tending t o i n c r e a s e (?) near the p i t bottom.  Conversely up s l o p e of the  outcrop at p i t 125 one f i n d s low l e v e l s of Pb i n the upper s o i l o v e r l y i n g s h a r p l y i n c r e a s i n g c o n c e n t r a t i o n s i n the deeper s o i l  ( F i g . 89).  Although  these s i t e s l i e d i r e c t l y over the p r o j e c t i o n  of the massive s u l p h i d e sub-outcrop ( F i g . 18), there i s l i t t l e i n d i c a t i o n of u n d e r l y i n g m i n e r a l i z a t i o n i n the s o i l .  For  example, at 50 inches depth Pb c o n c e n t r a t i o n s are only 20 t o 40 ppm i n p i t s 121 and 123 and 60 t o 80 ppm i n p i t 125 - only s l i g h t l y anomalous.  However, p i t s 123 and 125 d i s p l a y i n -  105.  c r e a s i n g Pb v a l u e s with depth, beneath the s u r f a c e  enrichment,  and t h i s i s perhaps a weak i n d i c a t i o n of the concealed m i n e r a l i z a t i o n below ( c f . Hawkes and Webb, 1962). Proceeding down i c e approximately 107  f e e t to s i t e s  and "109 - ( F i g s . 80 and A8. r e s p e c t i v e l y ) one f i n d s very  high v a l u e s (>400 ppm) in  300  the e n t i r e depth of p i t 107  p i t 109 high Pb c o n c e n t r a t i o n s (>100  ppm)  while  do not begin  to appear u n t i l a depth of 20 inches i s obtained at which p o i n t Pb v a l u e s s h a r p l y i n c r e a s e . values  ih  The o v e r a l l higher Pb  pit.107 versus 109 r e f l e c t s the g l a c i a l l y i n  l i n e p o s i t i o n of  p i t - 107 with m i n e r a l i z e d outcrops east of  B-C  p i t 109  stream while  i s situated  'outside' the main  mechanical  d i s p e r s i o n path.  However, m i n e r a l i z a t i o n i s  moderately  r e f l e c t e d i n the upper 20 inches of s o i l  in pit  109 but, i t i s not u n t i l depths g r e a t e r than t h i s are sampled that the u n d e r l y i n g m i n e r a l i z a t i o n i s s t r o n g l y r e f l e c t e d . Based on the Pb p a t t e r n s ( F i g s . 39 t o 41) p i t 121  i s c l o s e to  but not g l a c i a l l y i n l i n e with the same m i n e r a l i z e d outcrop as p i t 107 pit,  and consequently Pb v a l u e s are low throughout  although there i s a s l i g h t tendency  i n c r e a s e as the p i t bottom i s approached.  the  f o r Pb v a l u e s to S p e c u l a t i o n on  these trends and the manner i n which g l a c i a l d i s p e r s i o n o c c u r r e d are d i s c u s s e d i n Chapter  C.  Heavy M i n e r a l  5.  Separates  Over 60 heavy m i n e r a l separates u t i l i z i n g bromoform (S.G.  2.89)  were made and examined under a b i n o c u l a r m i c r o -  106.  scope.  Of these, ten samples were s e l e c t e d and p o l i s h e d  t h i n s e c t i o n s prepared.  Examination  of the p o l i s h e d s e c -  t i o n s with a r e f l e c t i n g microscope r e v e a l e d t h a t , apart from o c c a s i o n a l g r a i n s of p y r i t e , no other s u l p h i d e s c o u l d be detected.  Limonite commonly coats m i n e r a l g r a i n s and  c a s i o n a l r e d d i s h hematite  c o a t i n g s were a l s o noted.  ocA  few  g r a i n s were found which c o n s i s t e d of w h i t i s h to reddish-brown e n c r u s t i n g l a y e r s of some u n i d e n t i f i e d secondary Consequently,  except  near weathering  s u l p h i d e s are completely  (?) m i n e r a l ( s ) .  m i n e r a l i z e d outcrops,  destroyed w i t h i n the a c t i v e  by i n t e n s i v e p o s t - g l a c i a l weathering  (cf. Shilts,  layer  1972  and  Cameron and Durham, 1975). C o r r e l a t i o n of percent heavy m i n e r a l s with Cu, Pb and  Zn  values i s e r r a t i c because bromoform i s not s u l p h i d e s e l e c t i v e . Many m i n e r a l s common to the area such as amphiboles, micas and garnets have s p e c i f i c g r a v i t i e s g r e a t e r than  2.89.  However, i n some cases, p a r t i c u l a r l y i n areas adjacent to m i n e r a l i z e d outcrops, high c o n c e n t r a t i o n s of heavy m i n e r a l s can be r e l a t e d to high l e v e l s of Fe i n the form of p y r i t e  and  pyri?hot ite;which :;are r e l a t i v e l y more s t a b l e i n the s u r f a c e environment than Cu, Pb or Zn s u l p h i d e s .  D.  D i s t r i b u t i o n of Elements between S i z e F r a c t i o n s  The  d i s t r i b u t i o n of Ag,  size fractions 1:  U.S.  1  Cu, Fe, Mn,  Pb and Zn between  with respect to depth was  standard mesh s i z e -10+40; -40+80;  examined f o r seven -80+270 and -270  mesh.  107.  pits  s e l e c t e d t o represent  environmental c o n d i t i o n s .  a wide range i n metal v a l u e s and Based on previous  s o i l p i t data  ( P a r t s B and C t h i s S e c t i o n ) , four t o f i v e samples were s e l e c t e d from each p i t and s i e v e d i n t o f o u r s i z e f r a c t i o n s as d e s c r i b e d  i n Chapter 3 S e c t i o n VI.  ing the two c o a r s e s t were as d e s c r i b e d  After finely  grind-  s i z e f r a c t i o n s , d i g e s t i o n and a n a l y s i s  i n Chapter 3.  Two p a r t i a l e x t r a c t a n t s ,  l.OM HC1 and l.OM NH 0H;HC1/ 2  CHgCOOH, were u t i l i z e d on s e l e c t e d unground samples.  Be-  cause s i z e f r a c t i o n s were not ground f o r the p a r t i a l ext r a c t i o n s , t i g h t l y bonded and/or metal as s u l p h i d e i s unaffected two  coarsest  by these a t t a c k s .  inclusions  Whereas, by g r i n d i n g the  f r a c t i o n s of the samples subjected  t o the  attack, v i r t u a l l y a l l p o s s i b l e metal i s r e l e a s e d .  total  An a s s e s s -  ment of the r e l a t i v e importance of Fe/Mn oxide scavenging r e l a t i v e t o metal t i g h t l y bonded and/or as s u l p h i d e i s then p o s s i b l e .  T y p i c a l t o t a l and p a r t i a l  metal d i s t r i b u t i o n s as w e l l as p a r t i a l covering 96.  a wide range of values  V a r i a t i o n with respect  inclusions  extractable  to t o t a l r a t i o s  are shown i n F i g u r e s  91 t o  t o depth i n the d i s t r i b u t i o n  of metal between s i z e f r a c t i o n s with regards t o p a r t i a l and t o t a l a t t a c k s was not n o t i c e a b l e . In g e n e r a l ,  a l l elements-display  t o t a l metal values  i n c r e a s e as the s i z e f r a c t i o n decreases with the sharpest  2:  P i t numbers 11, 14, 20, 107, 121, 123 and.125.  which in-  108.  crease  o c c u r r i n g between minus 80+270 and minus 270-mesh  fractions.  In many cases - p a r t i c u l a r l y f o r Mn  - a double  peak i n metal v a l u e s i s evident (e.g. Fe and Pb F i g . 91; Cu,  Zn and Mn F i g . 96).  The h i g h e s t metal v a l u e s are n e a r l y  always a s s o c i a t e d with the f i n e s t  s o i l f r a c t i o n while a  second peak commonly occurs i n the c o a r s e r f r a c t i o n s (-10+40 or -40+80 mesh).  The  f i n e sand f r a c t i o n  (-80+270-mesh)  o f t e n c o n t a i n s the lowest metal v a l u e s . Examination  of the p a r t i a l e x t r a c t i o n and p a r t i a l to  t o t a l r a t i o data r e v e a l s that i n most cases v a l u e s c o n s i s t e n t l y decrease or tend to remain constant with i n c r e a s i n g fraction.  However, i n a few  size  i n s t a n c e s the v a l u e s d i s p l a y  an  i n c r e a s e towards the coarser f r a c t i o n s . D i f f e r e n c e s i n ground and unground t o t a l metal  values  were examined by s e l e c t i n g 50 samples and g r i n d i n g a l l f o u r size fractions.  Except  f o r the two  coarse f r a c t i o n s (-10+40  and -40+80), there i s no d i f f e r e n c e i n metal v a l u e s between ground and unground samples.  Values f o r the ground minus  10+40 mesh f r a c t i o n are g e n e r a l l y 10 to 20 percent higher than the corresponding unground f r a c t i o n with Fe and Mn ing the l a r g e s t  increases.  show-  The minus 40+80-mesh f r a c t i o n  d i s p l a y s a s i m i l a r t r e n d but with a r e l a t i v e i n c r e a s e i n metal  l e v e l s of l e s s than 10 percent i n the ground versus the  unground sample. T r i a l studies u t i l i z i n g  l.OM  hydroxylamine-hydrochloride /  a c e t i c a c i d , which s e l e c t i v e l y d i s s o l v e s amorphous Fe/Mn oxide  109.  c o a t i n g s and a s s o c i a t e d t r a c e elements (Chester and Hughes, 1967;  Chao, 1972), are shown i n F i g u r e s 95 and 96.  highest l.OM, h y d r o x y l a m i n e - h y d r o c h l o r i d e / a c e t i c  a c i d ex-  t r a c t a b l e Cu, Pb and Zn v a l u e s , as with HN0 /HC10 3  l.OM HC1 e x t r a c t i o n s , are i n the f i n e s t s i z e  The  4  and  fraction.  However, t h e r e i s v i r t u a l l y no c o r r e l a t i o n between percent e x t r a c t a b l e Fe and Mn with Cu, Pb and Zn.  Nevertheless,  Cu and Zn o f t e n d i s p l a y a secondary peak i n the c o a r s e r  size  f r a c t i o n s which, although u n r e l a t e d t o amorphous Fe and Mn oxides, may be r e l a t a b l e t o c r y s t a l l i n e Fe and Mn oxides. R e l a t i v e t o t o t a l v a l u e s , the percentage of l.OM h y d r o x y l amine-hydrochloride/acetic 7%) suggesting  that Fe i s g e n e r a l l y not present  as amorphous oxides. of v a l u e s  a c i d e x t r a c t a b l e Fe i s low (1 t o  Conversely,  i n the s o i l  Mn d i s p l a y s a wide range  (<1 t o 35%) with the percentage of l.OM h y d r o x y l -  amine-hydrochloride/acetic  a c i d e x t r a c t a b l e Mn r e l a t e d t o  pH/Eh c o n d i t i o n s (Table 14).  In g e n e r a l , Eh appears t o be  more important  where pH's are extremely  than pH, except  low  (<3.5), i n which case, the percentage of l.OM hydroxylamineh y d r o c h l o r i d e / a c e t i c a c i d e x t r a c t a b l e Mn r a r e l y exceeds three percent  IV  (e.g. F i g . 96;  pH i s l e s s than 3.0).  WATERS A.  Introduction  Water data may be d i v i d e d i n t o r e g i o n a l data and l o c a l  110.  Table 14.  R e l a t i v e c o n c e n t r a t i o n s of HN0 /HC10 , l.OM HC1 3  4  and l.OM h y d r o x y l a m i n e - h y d r o c h l o r i d e / a c e t i c a c i d e x t r a c t a b l e Mn (minus 80-mesh) i n r e l a t i o n to s o i l  drainage.  Mn(ppm) Sample Number  Depth (inches)  pH  A  20  1096  4  5.4  252  109  79  43  31  20  1105  22  5.0  269  102  71  38  26  20  1112  36  4.4  218  84  54  39  25  20  1481  40  4.2  121  34  24  28  20  20  1484  46  4.2  128  46  24  36  19  107  1212  8  4.3  215  170  1.6  79  0.7  107  1215  14  4.3  129  N. A.  1.6  N.A.  1.2  107  1222  28  4.2  384  N.A.  4.2  N.A.  1. 1  107  1226  36  4.3  203  174  2.1  Bite  1  B  2  3  c  4  D  5  86  E  6  1.0  1:  S i t e 20 i s r e l a t i v e l y w e l l d r a i n e d ( o x i d i z i n g ) while s i t e 107 i s near B-C Stream and Camp Lake and i s p o o r l y d r a i n e d (reducing).  2:  A = HN0 /HC10 .  3:  B = l.OM HC1.  4:  C = NH 0H.HC1/CH C00H.  5:  D'= % extract.l.OM HC1 (B^-A).  6:  E = % e x t r a c t . NH 0H-HC1/CH C00H  3  2  4  3  2  N.A. = Not a v a i l a b l e .  3  (C^-A).  111.  data, depending  on the s c a l e of e x p l o r a t i o n , sample d e n s i t y  and the area r e p r e s e n t e d by the sample.  Samples from l a k e s  and streams represent l a r g e drainage or catchment measuring samples  a few tenths t o s e v e r a l square m i l e s ;  of seepage,  whereas,  p i t or snow-melt r u n o f f u s u a l l y r e p r e s e n t  areas of l e s s than a few hundred the  basins  square f e e t .  Samples from  l a t t e r t h r e e water types are more c l o s e l y r e l a t e d to  metal and pH v a l u e s i n s o i l s than lake or stream waters and consequently p r o v i d e a l i n k between s o i l ,  lake and stream  water data. V a r i o u s water types were sampled 1974 the  over the summers of  and 1975 ( T a b l e 2) with a twofold purpose:  1) t o assess  r e l a t i v e importance of chemical weathering and hydro-  morphic d i s p e r s i o n under permafrost c o n d i t i o n s and  2) t o  determine the u s e f u l n e s s of hydrogeochemical methods at r e g i o n a l and d e t a i l e d l e v e l s of e x p l o r a t i o n . I n i t i a l l y l a k e , stream, surface-seepage and p i t waters were sampled  i n J u l y , 1974;  however, the u s e f u l n e s s of the  l a t t e r two media was l i m i t e d by a v a i l a b i l i t y . water sampling i n 1975 was i n i t i a t e d e a r l i e r (June) to take advantage  Consequently, i n the summer  of abundant s u r f a c e water  v i d e d by m e l t i n g snow and thawing s o i l  - pro-  ( P l a t e 11) - and t o  monitor temporal v a r i a t i o n s and examine the ' f l u s h i n g of  effect'  snow-melt r u n o f f as p o s t u l a t e d by Jonasson and A l l a n  and v a r i o u s Soviet s c i e n t i s t s .  (1973)  Although the use of snow as  a sample medium has been employed with success (Jonasson and  112.  A l l a n , 1973), t r a c e element and sampling depth c r i t i c a l ;  c o n c e n t r a t i o n s are g e n e r a l l y low t h e r e f o r e , the u s e f u l n e s s of  snow-melt r u n o f f , c o l l e c t e d w i t h i n 15 t o 100 f e e t of m e l t i n g snowbanks, was i n doubt. Because sampling of lake and stream waters i s g e n e r a l l y considered t o be a reconnaissance r a t h e r than a d e t a i l e d of  form  e x p l o r a t i o n geochemistry, data from the Anne-Cleaver  Lakes area are i n c l u d e d t o augment the data from the Camp Lake area.  R e g i o n a l data from Cameron and B a l l a n t y n e (1975) have  been added t o f a c i l i t a t e a more complete understanding of the r e g i o n a l lake water geochemistry and t o expand examination of v a r i a t i o n with r e s p e c t t o time and a n a l y t i c a l technique i n the  a n a l y s i s of lake waters.  A s i m i l a r approach has been  taken with lake sediments as d e t a i l e d i n S e c t i o n V.  B.  R e g i o n a l Data: 1.  Streams  E v a l u a t i o n of t r a c e element  l e v e l s i n streams i s d i f -  f i c u l t because streams are r e l a t i v e l y few and c h a r a c t e r i s t i c a l l y d i s p l a y i n t e r m i t t a n t flows due t o low topographic r e l i e f and low amounts of p r e c i p i t a t i o n  (<12 i n c h e s / y e a r ) .  In g e n e r a l ,  stream flow i s s u b s t a n t i a l i n e a r l y t o mid June but t h e r e a f t e r , most of the snow has melted and flow r a t e s are d r a s t i c a l l y reduced u n t i l f a l l r a i n s s l i g h t l y  i n c r e a s e flow.  Except f o r a segment of the main drainage system  at Camp Lake,  113 .  beginning at B-C  stream  and ending n e a r l y two m i l e s down  drainage, data on streams are Seasonal v a r i a t i o n  minimal.  of d i s s o l v e d metals  i n t o and out of Camp Lake were monitored Upper Sunken Lake streams. sistent  The  at B-C  and Camp-  i n f l o w i n g stream  i n c r e a s e i n Zn v a l u e s from e a r l y  J u l y while the e x i t stream  i n waters f l o w i n g  shows  a  con-  June t o the end of  (Camp-Upper Sunken Lake stream)  d i s p l a y s c o n c e n t r a t i o n s which r i s e to a maximum i n m i d - l a t e June and subsequently  decrease  and l e v e l o f f (?) (Table 15).  F a r t h e r down drainage the stream  c r o s s e s the "mineral  h o r i z o n " j u s t below Upper Sunken Lake and Zn v a l u e s i n c r e a s e s l i g h t l y t o 90 ppb farther 1500  then decrease t o 85 ppb one-half m i l e  down stream  to 3700 ppb)  (Table 15).,  L i m i t e d data f o r Ca  tend to show a negative c o r r e l a t i o n  Zn while Mg  (range 800  t o 1100  correlation  with Zn.  Fe i s r a r e l y  but Mn 2.  i s u s u a l l y 12 to 25  ppb)  tend to show a  (range with  positive  d e t e c t a b l e ( d . l . =5  ppb)  ppb.  Lakes  Regional lake water data/have l a r g e l y been taken Cameron and B a l l a n t y n e (1975).  Where o v e r l a p of  from  sampling  o c c u r r e d between t h i s author and Cameron, a comparison of data has been p r o v i d e d (Tables 7 and 16).  Because the r e -  s u l t s obtained by Cameron and t h i s author are similar  ( c o n s i d e r i n g the d i f f e r e n t  remarkably  c o l l e c t i o n , preparation  and a n a l y t i c a l t e c h n i q u e s ) , a d i r e c t  comparison of data i s  114.  Table 15.  D i s s o l v e d Zn (ppb) i n e x i t and entrance streams of Camp Lake, 1975.  Date Sampled  June  7  Exit  1  Camp Lake Entrance  85 ( 9 0 ) ( 8 5 ) 2  91 130.  6  4  65  10  J u l y 27  55  29  J u l y 30  58  55  June 13 July  1:  Upper Sunken Lake Exit  3  10 ppb and 15 ppb Cu detected at Camp Lake e x i t and Sunken Lake e x i t r e s p e c t i v e l y , a l l other samples were below the d . l . of =10 ppb f o r Cu. Value i n ( ) obtained 1000 f e e t down stream from Upper Sunken Lake. Value i n ( ) obtained 4200 f e e t down stream from Upper Sunken Lake.  i  115.  Table 16.  Comparison of metal, c o n d u c t i v i t y  and pH v a l u e s  i n water samples c o l l e c t e d from the same s i t e s on J u l y 9, and 30, 1974 (modified from Cameron and B a l l a n t y n e , 1975).  Location  Zn  Cu  1  pH  1  Cond.  1  9(9)  7. 0(6 • 8)  31(31)  30(28)  2(2)  7. 0(6 • 8)  25(25)  Boot Lake  13(9)  1(1)  Thigh Lake  10(7)  3(2)  7.3(7 • 1) 7. 4(7 .5)  7(1)  1(1) 2(3)  -  Camp Lake  71(66)  Lower Sunken L.  Upper Banana L. Banana Lake  2  •<1(3)  1:  Zn and Cu v a l u e s i n ppb;  2:  Data i n (  Note:  7. 3(7 • 2)  27(27)  7. 2(7 .0)  conductivity  i n yohms/cm . 2  ) are from samples c o l l e c t e d on J u l y 30, 1974.  Mn and Fe were r a r e l y d e t e c t e d ( d . l . = 8 ppb and 5 ppb respectively).  Table 17.  Geochemistry of Camp, Banana, Anne and T u r t l e Lake Waters.  , Lake T  Depth Date „ , , ( f t . ) Sampled  ^ Ca  ppb ., — r j Mg Mn  N  f  f  „ s r — pH Zn ^  ^ ^1 Cond.  Camp  1  7/8/74  1472  801  8  74  7.0  27  Camp  15  7/8/74  1472  923  12  69  7 .0  28  Camp  35  7/8/74  1472  777  12  72  6.9  27  Camp  1  7/15/74  1472  801  d. 1. 774  7. 0  28  Camp  25  7/15/74  1515  801  d. 1. 74  7. 0  28  Camp  50  7/15/74  1472  801  d.l.  71  7. 0  28  Camp  1  7/5/75  3105  868  d. 1.  65  6.8  28  Camp  10  7/5/75  3105  834  d. 1. 68  6.8  30  Camp  20  7/5/75  2277  851  'd. 1. 74  6.7  28  Camp  1  7/5/75  3105  842  d. 1. 71  6.8  29  Camp  10  7/5/75  2173  918  d. 1. 71  6.8  27  Camp  25  7/5/75  3105  809  17  71  6.8  30  Camp  45  7/5/75  2691  776  50  65  6.8  29  Banana  1  7/28/74  1626  715  12  d. 1. 7. 0  26  Banana  30  7/28/74  2042  715  d. 1. d . l . 7.0  26  Anne  1  7/29/74  6752  1635  d.l.  37  7.0  76  Anne  15  7/29/74  6752  1609  d. 1. 37  7. 0  77  Turtle  1  8/4/74  7280  1297  12  10  7,0  65  Turtle  43  8/4/74  7197  1272  8  13  7. 0  66  Turtle  1  8/4/74  7155  1297  12  10  7. 0  65  Turtle  54  8/4/74  7322  1297  12  11  7. 0  65  1:  yohms/cm . 2  d . l . = c o n c e n t r a t i o n below the d e t e c t i o n l i m i t . 8 ppb f o r Mn and 7 ppb f o r Zn.  d.l. =  Table 18.  V a r i a t i o n with r e s p e c t to time i n the composition of s u r f a c e lake waters i n the v i c i n i t y of the Yava ( A g r i c o l a Lake) prospect, 40 m i l e s - s o u t h of Bathurst Norsemines.  740009  Sajsple Number Data B & n p l e d  sio  1/7/74  7.10  (ppm)  2  Al  (ppm)  ?a Hn  742472 23/7/74  n.d.  750203 30/6/75  2.68 n.d.  S h o r e r e e f Lake a & n p l  E a s t T o o i h o r t Lake samples  Yava Lake Sample •  752750  740025  742486  750210  752767  742491  750175  752783  IB/7/75  2/7/74  23/7/74  30/6/75  18/7/75  23/7/74  30/6/75  18/7/75  3.61  2.97  n.d.  0.20  n.d. n.d.  1.12  1.29  n.d.  0.35  0.25  n.d.  n.d.  n.d. .  n.d.  n.d.  1.75  n.d.  (ppb)  74.00  162.00  70.00  56.00  36.00  29.00  5.00  <3.00  < 3.00  < 3.00  (ppb)  76.00  71.00  69.00  91.00  36.00  27.00  30.00  34 .00  4 .00  <3.00  O.00  24 .00  29 .00  8.00  11.00  • 13.00  14 .00  5.00  7.00  15.00  4.00  Nl  (ppb)  20.00  26.00  Cu  (ppb)  39.00  59.00-  64.00  '90.00  7.00  11.00  9.00  13.00  2.00  2.00  1.00  Pb  (ppb)  15.00  18.00  10.00  11.00  1.00  1.00  2.50  2.50  1.00  <1.00  < 1.00  Zn  (ppb)  179.00  186.00  125.00  19 5.00  32.00  34.00  25.00  30.00,  2.00  2.00  <1.00  Ca  (ppm)  2.50  3.17  2.32  3.40  1.80  1.84  0.86  1.96  0.97  0.BO  1.07  Mg  (ppoi) •  1.42  1.30  1.33  1.53  0.94  0.92  0.45  0.89  0.49  0.40  0.47  Na  (ppm)  1.00  1.08  0.76  1.10  0.60  0.66  0.38  0.75  0.48  0.38  0.63  (ppa)  0.5S  0.52  0.40  0.71  0.48  0.41  0.30  0.50  0.22  0.26  0.22  (ppm)  40.60  41.10  26.50  37.50  14.00  12.20  11.00  3.00  3.40  (ppm)  0.30  2.40  2.10  3.30  0.22  0.10  40.10  0.10  0.10  40.10  n.d.  22.80  26.00  • n.d.  n.d.  n.d.  n.d.  n.d.  n.d.  n.d. •  n.d.  n.d.  n.d.  n.d.  .n.d.  0.50  1.90  1.30  2.30  1.80  104.00  127.00  31.00  41.00  30.00  34.00  19.50  14.40  14.80  4.70  4.90  5.00  6.10  6.60  6.70  K °4 Cl S  Acidity  as CaCO^  (ppm)  A l k a l i n i t y a t ICO^ (PP<») Specific  26.5 n.d.  10.10 '  3.50  <0A0  conductance 112.00  ( uohms)  3.50  pH  141.00 • 3.80  3.90  3.9  n.d. • n o t d e t e r m i n e d . Note:  •  correlation  o f low pH and h i g h l e v e l s o f Cu, Pb and Zn.  4.5  118.  Table 19.  Water composition of Camp, Banana and Lower Sunken Lakes sampled  d u r i n g J u l y , 1974.  Banana  Si0  Camp  Lower Sunken  1.73  ppm 2 Fe ppb 2 Mn ppb Ca ppm  2. 81  2.51  2.63  Mg ppm  0. 77  0. 80  0. 81  0.49  0.40  0.52  0. 47  0.47  0.47  2. 8.0  5. 00  6.70  C l ppm  0. 20  0.60  0.60  PH  7. 20  7.00  7.00  o  Na ppm K  1  ppm  SO. ppm  1  2  Cond. 2 (yohms/cm )  <5 . <8  27(16)  3  • <5.  ...< 5  <8  W8  30(18)  3  :  30(18)  3  1:  Data from Cameron and B a l l a n t y n e (1975), samples c o l l e c t e d J u l y , 1974.  2:  Data c o l l e c t e d by t h i s author J u l y , 1974.  3:  Data i n ( ) equals d i s s o l v e d s o l i d s content i n ppm u s i n g the r e l a t i o n of s p e c i f i c conductance x 0.60 = d i s s o l v e d s o l i d c o n c e n t r a t i o n i n ppm (from L i v i n g s t o n , 1973).  119.  possible.  Geochemical data f o r Camp, Banana and Lower  Sunken Lakes are g i v e n i n Tables 16, 17 and 19 and F i g u r e 101. L i m i t e d data f o r the lakes i n and adjacent t o the Anne-Cleaver Lakes study area are presented  i n Table 17 and F i g u r e 101.  Based on data from the 1974 and 1975 f i e l d  seasons and  Cameron's 1974 data (Cameron and B a l l a n t y n e , 1975) l a k e waters i n the Bathurst Norsemines r e g i o n can be c o n s i d e r e d homogeneous ( w i t h i n i n d i v i d u a l l a k e s ) , of near n e u t r a l pH and e x h i b i t  little  seasonal v a r i a t i o n  (Tables 16 t o 18).  Lake waters are e x t r a o r d i n a r i l y c l e a r , with v i s i b i l i t y i n excess of 25 f e e t , and extremely  pure ( t o t a l d i s s o l v e d  solids  <20 ppm) r e l a t i v e to most North American f r e s h waters (Livingston,  1973).  Examination  of F i g u r e 101 ( a l s o F i g . 17, note t r a c e of  "mineral h o r i z o n " ) r e v e a l s that at both study areas anomalous c o n c e n t r a t i o n s of Zn (j>10 ppb) and Cu (_>2 ppb) are g e n e r a l l y r e s t r i c t e d t o lakes that l i e down i c e and/or down drainage from m i n e r a l i z a t i o n .  The highest Cu and Zn v a l u e s are found  i n those lakes that l i e c l o s e s t t o but are d i r e c t l y down ice/down drainage from m i n e r a l i z a t i o n . g r e s s i v e l y decrease  Zn and Cu v a l u e s pro-  down ice/down drainage from m i n e r a l i z a t i o n  with Cu v a l u e s appearing to decrease more r a p i d l y to  Zn (Table 31;  F i g . 101).  more i m p o r t a n t l y up drainage,  relative  Lakes that l i e up i c e , or (e.g. Banana Lake) c o n t a i n ex-  c e e d i n g l y low Cu and Zn v a l u e s ( F i g . 101).  Pb and Ag were  not d e t e c t e d i n any lake waters while Mn and Fe were r a r e l y detected.  120.  C.  L o c a l Data:  Surface-seepage, P i t and  Snow-melt Runoff 1.  Surface-seepage and p i t waters  Surface-seepage and p i t water data have been combined because of t h e i r s i m i l a r i t i e s and s c a r c i t y over the s o i l ( F i g . 97).  Although broad areas of i n t e r e s t have been out-  l i n e d , sample d e n s i t y i s i n s u f f i c i e n t f o r d e t a i l e d pretation.  grid  inter-  N e v e r t h e l e s s , Cu appears to form a s l i g h t l y more  r e s t r i c t e d p a t t e r n r e l a t i v e to Zn.  The h i g h e s t Cu and Zn  v a l u e s are c o n f i n e d to the area north of Camp Lake and east of B-C  stream i n the v i c i n i t y of the gossan zone, low  and water pH's in s o i l s .  soil  and anomalous c o n c e n t r a t i o n s of Cu, Pb and Zn  R e l a t i v e t o Cu and Zn l e v e l s i n s o i l s ,  surface-  seepage and p i t waters g e n e r a l l y have much h i g h e r c o n t r a s t . Although the data are l i m i t e d , comparison v a l u e s i n surface-seepage with complimentary  of Cu and Zn  p i t waters  (Table 20) shows that Zn v a l u e s are c o n s i s t e n t l y h i g h e r f o r surface-seepage waters w h i l e Cu l e v e l s i n these waters are approximately equal to those i n p i t waters. the p i t and seepage data, Mn  Based on a l l  and Fe v a l u e s are g e n e r a l l y  higher i n p i t waters. 2.  Snow-melt r u n o f f  The sampling of snow-melt r u n o f f r e s u l t e d i n more comp l e t e coverage of the study area and, except f o r Fe, metal v a l u e s and c o n d u c t i v i t y measurements are c o n s i d e r a b l y  lower  Table 20.  Comparison of Cu, Zn, Fe, Mn, S 0 , pH and c o n d u c t i v i t y values i n water from 4  surface-seepages  Zn (ppb) Surface P i t  and s o i l  Cu (ppb) Surface P i t  pits.  Fe (ppb) Surface P i t  15  39  3600  3000  2400  1800  192  660  610  550  700  <5  66  358  218  18  15  <5  277  252  68  <12  20  <5  1:  Mn (ppb) Surface P i t  S u r f a c e - p i t Ave. SO. pH Cond.  4  2459  2971  160  4.0  485  52  79  117  35  4.4  70  <5  49  111  47  5.0  130  <5  96  33  <35  5.3  40  Because v a l u e s f o r these three parameters are s i m i l a r f o r both water types have been combined and averaged. S 0 i s i n ppm and c o n d u c t i v i t y i s i n microhms/cm . 4  2  they  122.  Table 21.  Comparison of the geochemistry of snow-melt runo f f with seepage-pit waters at Camp Lake.  Cu (ppb)  Zn (ppb)  pH  Conductivity (yohms/cm ) 2  S0  4  (ppm)  Mn (ppb)  Fe (ppb)  N  1  Water Type  Range of Values  Mean Cone.  Snow-melt  <10-2500  27  207  Seepage-pit  <10-2400  21  265  Snow-melt  <7-70307  63  296  Seepage-pit  <7-3600  32  460  Snow-melt  <4.0-6.7  66  5.5  Seepage-pit  <4.0-7.0  32  5.5  Snow-melt  6-2750  66  44°  Seepage-pit  18-490  32  104  Snow-melt  <35-275  10  87  Seepage-pit  <35-230  15  73  Snow-melt  <8-2288  53  43  Seepage-pit  <8-2971  30  68'  Snow-melt  <5-43107  56  108'  Seepage-pit  <5-82  12  21  2  1:  N = number of samples above d e t e c t i o n l i m i t ; the t o t a l number •• equals 66 and 32 f o r snow-melt and seepage-pit waters r e s p e c t i v e l y .  2:  Except f o r pH, where v a l u e s l e s s than 4.0 were taken as 3.0, v a l u e s below the d e t e c t i o n l i m i t s ( d . l . ) were not used i n c a l c u l a t i o n of a r i t h m e t i c means.  3:  Two extremely high v a l u e s of 2750 and 1710 microhms/cm excluded i n c a l c u l a t i o n of the mean.  4:  The f o l l o w i n g extremely high metal v a l u e s (ppb) were omitted from c a l c u l a t i o n of a r i t h m e t i c means: Zn, snowmelt 70307, 32520; Mn, seepage-pit 2971, 2459; Mn, snow-melt, 2204, 2288; Fe, snow-melt, 1839, 1349, 32107.  were  123.  Table 22.  Comparison of Zn, Cu, c o n d u c t i v i t y and pH v a l u e s i n snow-melt r u n o f f with surface-seepage  and  p i t waters c o l l e c t e d at the same sample s i t e .  Site Number  Pit/surface-seepage" Cu Cond. pH Zn  Snow-melt r u n o f f pH Cu Cond. Zn 1  85  5. 8  35  d.l.  20  6. 0  d.l.  34  6. 0  10  d.l.  11  5. 3  114  d.l.  135  5. 5  65  d. 1.  45  5. 5  66  358  18  140  5. 0  16  d.l.  15  5. 0  66  (218)  (15)  (HO)  (5. 0)  16  d.l.  15  5. 0  72  314  9,1 .  57  5. 7  162  d.l.  32  6. 0  76  13  ; d.l.  31  6. 0  14  20  15  5. 8  112  (1188)  (1818)  (315)  (<4 .0)  586  399  144  4. 0  115  33  15  6. 0  31  90  10  5. 5  125  (525)  (1667)  (127)  (<4 .0)  34  130  14  5. 5  126  465  191  45  5. 5  25  50  14  5. 8  128  140  76  24  5. 8  98  60  14  5. 8  9  124  d.l.  44  23  55  2  ; 130  Zn and Cu v a l u e s i n ppb, c o n d u c t i v i t y i n microhms;/cm v a l u e s i n ( ) are p i t waters, a l l other v a l u e s are from surface-seepage waters. 2  d . l . denotes c o n c e n t r a t i o n below the d e t e c t i o n l i m i t of =10 ppb.  124.  r e l a t i v e to s u r f a c e - s e e p a g e / p i t r e s u l t s In  (Tables 21 and  contrast, pH and sulphate l e v e l s remain r e l a t i v e l y  changed on the average percentage  of samples above the d e t e c t i o n l i m i t of 35 ppm  waters.  is  surface-seepage/  N e v e r t h e l e s s , Cu and Zn c o n c e n t r a t i o n s are  r e l a t i v e l y high with e x c e l l e n t geochemical developed  un-  (Table 21), although f o r sulphate the  only 15 percent compared to 45 percent f o r pit  22).  p a t t e r n s ( F i g s . 98 to  L i k e the surface-seepage  c o n t r a s t and w e l l  100).  and p i t waters,  the h i g h e s t  Cu and Zn v a l u e s occur i n the v i c i n i t y of m i n e r a l i z e d f o o t w a l l outcrops near B-C the gossan,  low  stream where the most i n t e n s e p a r t of  (<4.0) s o i l  and water pH's  and negative to  low Cu and Zn s o i l anomalies  can be found  43 to 47).  Zn i s more widely d i s p e r s e d ,  R e l a t i v e to Cu,  has higher geochemical west b e l t s of high (>40  ( F i g s . 31, 32  c o n t r a s t and forms two ppb)  values.  and  narrow e a s t -  High Cu v a l u e s  dis-  p l a y a c l e a r a s s o c i a t i o n with a l t e r e d , weakly Cu m i n e r a l i z e d f o o t w a l l v o l c a n i c s with the very high Cu v a l u e s (>100  ppb)  encompassing the most n o r t h e r l y Cu m i n e r a l i z e d outcrops. High Cu and Zn l e v e l s i n snow-melt r u n o f f c o i n c i d e with high Cu and Zn v a l u e s i n s o i l s and o u t l i n e , with  extremely  high v a l u e s , those areas where Cu and Zn l e v e l s i n s o i l be c h a r a c t e r i z e d as negative anomalies pH's  due to low  can  soil  (<4.0). R e l a t i v e to the p o o r l y developed,  low c o n t r a s t Cu  and  Zn p a t t e r n s i n the s o i l , Cu and Zn p a t t e r n s i n snow-melt  125.  r u n o f f are v e r y w e l l developed w i t h c o n t r a s t v a l u e s of 40'to 100 compared t o v a l u e s of 4 t o 14 f o r the s o i l s .  V  SEDIMENTS A.  Introduction  Two d i s t i n c t types of sediment are found i n lakes of the  B a t h u r s t Norsemines Area:  those of the immediate  near  shore (<_10 f e e t of water) and those found i n deeper water. In g e n e r a l , near-shore sediments c o n s i s t of sand and s i l t with s u b o r d i n a t e amounts of pebbles and c l a y w h i l e l a k e center sediments are more homogeneous, c o n s i s t i n g almost ent i r e l y of s i l t - a n d c l a y - s i z e p a r t i c l e s with 12 t o 28 percent o r g a n i c matter ( c f . Cameron,. 1977c). Near-shore sediments were not sampled  i n t h i s study  because c l o s e examination of these sediments r e v e a l s that they c l o s e l y resemble t i l l  and are a f f e c t e d by many of the  f r o s t processes o p e r a t i n g i n t i l l .  In addition, these s e d i -  ments may be s i g n i f i c a n t l y a f f e c t e d by mechanical processes which can r e s u l t dispersion  i n h i g h l y v a r i a b l e and l i m i t e d geochemical  trains.  Examples of p a t t e r n e d ground f e a t u r e s such as c i r c l e s and s t r i p e s i n near-shore sediments can be seen upon c l o s e i n s p e c t i o n of P l a t e s 16 and 17.  C i r c l e s are r e s t r i c t e d t o  very near-shore sediments w h i l e s t r i p e s form i n s l i g h t l y deeper water where s l o p e s are h i g h e r .  S h i l t s and Dean (1975)  126.  have adequately d i s c u s s e d the f o r m a t i o n of many of these sub-aqueous  features.  Lake-center sediments were chosen because they a r e : 1) l e s s a f f e c t e d by f r o s t processes and mechanical d i s p e r s i o n , 2) are more homogeneous and dispersion train.  3) p r o v i d e a l a r g e anomalous  In a d d i t i o n , l a k e - c e n t e r sampling had not  been p r e v i o u s l y r e p o r t e d f o r l a k e s w i t h i n the zone of continuous permafrost. A mud snapper was used t o c o l l e c t  57 s u r f i c i a l  lake  sediment samples from Camp, Banana, Upper Sunken, Lower Sunken, Anne and T u r t l e Lakes. were made t o :  C o l l e c t i o n of s u r f i c i a l  sediments  1) e s t a b l i s h the d i s t r i b u t i o n of Ag, Cd, Cu,  Fe, Mn, Pb and Zn c o n c e n t r a t i o n s across the deeper p o r t i o n s of l a k e s , and  2) assess f a c t o r s c o n t r o l l i n g metal d i s t r i b u t i o n  3) examine geochemical d i s p e r s i o n i n lake sediments  r e l a t i v e t o lake waters and s o i l s w i t h regards t o the a p p l i c a b i l i t y of l a k e - c e n t e r sediments t o m i n e r a l e x p l o r a t i o n . D e t a i l e d s t u d i e s on metal d i s t r i b u t i o n s w i t h i n sediments as a f u n c t i o n of t e x t u r e , depth w i t h i n the sediment and Eh ( s t u d i e s which are not p o s s i b l e on s u r f i c i a l sediment) were provided by 18 core samples from Camp and Banana Lakes. Regional data, u n f o r t u n a t e l y , could not be obtained; t h e r e f o r e , r e g i o n a l data from Cameron and Durham (1974) and A l l a n et  a l . (1973) have been i n c l u d e d f o r comparison pur-  poses because most of the data c o l l e c t e d by t h i s author from the aforementioned lakes suggests that v i r t u a l l y a l l  these lakes are h i g h l y anomalous i n Cu, Pb and Because streams  are few with i n t e r m i t t a n t and  d e f i n e d flow, only a few sediment (Table 2);  B.  Zn.  samples were  ill-  collected  t h e r e f o r e , these data are only b r i e f l y d i s c u s s e d .  S u r f i c i a l Lake Sediments  Although r e g i o n a l background data were not obtained, Cameron and Durham (1974) have r e p o r t e d r e g i o n a l data f o r near-shore sediments tude and 60°30'  from the r e g i o n (106° to 110° west  to 66° north l a t i t u d e ) ,  marized i n Tables 23 and  p a r t of which i s sum-  24.  Comparison of r e g i o n a l near-shore, l a k e - c e n t e r sediment levels  i n sediment  near-shore sediments  geochemistry  l o c a l near-shore  (Table 25) shows that  g e n e r a l l y c o n t a i n higher v a l u e s with b e t t e r c o n t r a s t  may  pp.  197  and 328).  be i n f l u e n c e d s i g n i f i c a n t l y consequently, may  Near-shore  by mechanical  dis-  not present as wide  a t a r g e t as l a k e - c e n t e r or b r e a k - i n - s l o p e sampling  (Hoffman,  Comparison of these two sample types i n terms of  their  chemical and t e x t u r a l components i s g e n e r a l l y not  valid  as near-shore sediments  i n t r a c e metals r e l a t i v e (>18%  metal  and l a k e - c e n t e r samples but that l a k e - c e n t e r  p e r s i o n processes and,  1976).  and  can l o c a l l y be extremely high i n both  (Table 25 and c f . Hoffman, 1976 sediment  longi-  are t y p i c a l l y  impoverished  to more f i n e l y d i v i d e d , o r g a n i c r i c h  carbon) l a k e - c e n t e r sediments.  Furthermore,  Cameron's  Table 23.  Major and minor element  composition of near-shore  lake sediments from a 1250 square m i l e r e g i o n centered on Camp L a k e . 1  Semi-regional  2  Camp Lake  X  S  G  X  Si0 %  73.5  7.5  73.2  69.1  A1 0 %  11.0  2.0  10. 8  12. 1  2. 67  1.36  2.37  3.0  1. 25  0. 55  1.15  1.70  Ca0%  0. 99  0.36  0. 91  1. 10  Na 0%  2. 22  0.67  2. 14  2.00  K 0%  1. 87  0. 55  1. 81  1.70  Ti0 %  0.37  0.11  0.35  0. 50  Mn0%  0. 042  0.016  0. 039  0.03  Ba%  0. 035  0.013  0.033  0. 04  2  2  3  2°3 Mg0% F e  %  2  2  2  Zn ppm  71.3  71. 5  50.5  1419.0  Cu ppm  34. 1  32. 5  24.7  624.0  Pb ppm  29.3  95. 1  11.9  140.0  Ni ppm  24. 0  27.4  16.8  32.0  Co ppm  9.2  11. 6  6.3  11. 0  Ag ppm  0.60  1. 16  0.30  0. 90  Hg ppb  19.7  11.7  17.4  48.0  3  1:  Data from A l l a n et a l . (1973a), minus-250 mesh f r a c t i o n ; X, a r i t h m e t i c mean; S, standard d e v i a t i o n ; G, geometric mean.  2:  S t a t i s t i c s computed from 28 near-shore lake sediments.  3:  Average of three near-shore samples taken from 3 t o 8 f e e t of water,  129.  Table 24.  Cu, Pb, Zn, Fe, Mn and o r g a n i c carbon content of near-shore lake sediments from the Bathurst Norsemines r e g i o n .  1  Cu  Pb  Zn  Fe%  Mn  Organic Carbon%  A r i t h . mean  24  13  -  2,.3  104  4.0  Geom. mean  20  13  32  2.2  89  2.0  Std.  20  3.0  26  0.78  66  4.3  1:  dev.  Data from GSC maps 10 t o 13 - 1972, Sheet, 3; s t a t i s t i c s based on 1349 near-shore lake sediments c o l l e c t e d i n 3 t o 8 f e e t of water; one sample per lake from an area of 12,500 m i . 2  Table 25.  Comparison  of the geochemistry of r e g i o n a l near-shore lake sediments  with l a k e - c e n t e r sediments from the Bathurst Norsemines  property.  A r i t h . Mean C o n c e n t r a t i o n s Cu  Pb  Zn  Fe%  5(20)  148(795)  N.A.(133)  255(1064)  N. A. (2 • 4)  Banana  2(9)  16(659)  15(24)  90(1008)  1..6(2. 2)  Lower Sunken  K D  12(59)  N.A.(3)  27(175)  N. A . ( l • 2)  Lake  N  Camp  2  Mn  LOI%  N.A.(1043) <1(20) 64(86) N.A.(114)  N.A.(19) N.A.(7) <1(N.A.)  Joe  1  11  11  16  1.8  64  Bat  1  64  N.A.  89  N.A  N.A.  N.A.  Boot  1  25  N.A.  36  N.A  N.A.  N.A. "  Thigh  1  29  N.A.  86  N.A  N.A.  N.A.  Anne  1(16)  656(1543)  N.A.(88)  875(3071)  N. A. (2 .2)  2(9)  80(468)  19(16)  125(1572)  2 .5(2. 3)  Turtle  N.A.(279) N.A.(16) 163(1076)  3(10)  1:  Near-shore sediment data from Cameron and Durham (1974) GSC Paper 74-27. Data i n ( ) are f o r l a k e - c e n t e r sediments from t h i s study. Geochemical data i n ppm u n l e s s otherwise noted. Cameron and Durham's data are from the minus 250-mesh fraction-; t h i s study minus 80-mesh f r a c t i o n . N.A. = not a v a i l a b l e .  2:  Number of samples.  Table 26.  Metal content of lake sediments sampled with a mud snapper at Bathurst Norsemines.  N  Lake  Pb  Cu 1 Mean  Range  Mean  1  Metal Content ppm Zn Range  Mean  1  Mn  Fe %  Range  Mean  1  Range  Mean  1.3-13,. 1 1043  19  795  154-2260  133  9-302  1064  226-6264  2.4  Up. Sunken  2  260  241-282  33  31-34  429  419-438  1-7  Lo. Sunken  1  59  Banana  9  659  29-1995  24  5-60  1008  74-2321  2.2  0.8-3. 9  181  Anne  16  1543  380-3439  88  25-147  3071  1415-5232  2.2  1.7-2. 8  279  9  468  291-757  16  9-28  1572  597-2984  2.3  1.5-12 .4  1076  Camp  Turtle  3  2  1.7-1. 7  Range  126-4300 231-242  237 114  1.2  175  1  2  89-295 154-1800  2  2  150-26188  1:  A r i t h m e t i c mean.  2:  The f o l l o w i n g v a l u e s were excluded i n c a l c u l a t i o n of X: Fe: Camp Lake, 13.1% and 12.3% T u r t l e Lake, 12.4%. Mn (ppm): Anne Lake, 1800, 1260; T u r t l e Lake, 12269, 26188.  132.  Table 27.  Cu, Pb  and Zn r a t i o s  Medium  i n sediments  1  and s o i l s ,  Ratios Zn:Pb  Cu:Pb  1  Zn:Cu  Camp Lake Area 2.3  2 S8  1.22  Camp Lake seds.  6.0  8.0  1.34  Upper Sunken L. seds.  8.1  13.0  1.65  Banana L. seds.  27.0  42.0  1.52  Lower Sunken L. seds.  20.0  58.3  2.97  1.8  2.3  2.16  Anne Lake seds.  17.5  34.9  1.99  T u r t l e Lake seds.  29.0  98.3  3.36  Cu:Cu  Pb:Pb  Zn:Zn  Camp Lake  15.0  5.8  16.4  Anne Lake  18.8  1.2  17.4  Camp Lake S o i l s  (0-14")  Anne Lake Area Anne Lake s o i l s (0-10")  p Sediment:Soil R a t i o s  1:  T o t a l a t t a c k ( n i t r i c - p e r c h l o r i c ) , -80 mesh f r a c t i o n .  2:  Based on geometric means f o r sediment and s o i l data (Tables 9, 26 and.Bl).  (Layer 1)  133.  data are f o r minus 250-mesh m a t e r i a l while t h i s study used the minus 80-mesh f r a c t i o n .  N e v e r t h e l e s s , because no  other d a t a are a v a i l a b l e , t h i s comparison i s presented guide to r e g i o n a l and  l o c a l metal  as a  c o n c e n t r a t i o n s of the  area.  Sediments from Camp, Banana, Upper Sunken, Anne and T u r t l e Lakes o b v i o u s l y c o n t a i n s t r o n g l y anomalous l e v e l s of Cu and Zn, while Lower Sunken Lake c o n t a i n s s l i g h t l y c o n c e n t r a t i o n s of Cu and moderately to 106;  Tables 24 and 25).  distinct,  abrupt  anomalous  high Zn l e v e l s ( F i g s .  102  Pb v a l u e s , however, show a  and l i m i t e d d i s t r i b u t i o n as shown by Cu/Pb  and Zn/Pb r a t i o s and mean c o n c e n t r a t i o n s (Tables 25 to 27). V a r i a t i o n of Cu, Pb,  Zn, Fe and Mn  c o n c e n t r a t i o n s across  the lake bottom i s c o n s i d e r a b l e , e s p e c i a l l y f o r Fe and  Mn  (Table 26).  im-  Although  amorphous Fe and Mn  portant r o l e s i n scavenging Pb from lake and stream  1976)  Zn and,  to a l e s s e r  waters ( H o r s n a i l et  G a r r e t t and Hornbrook, 1976; Chao and Theobald,  Cu,  oxides p l a y  extent,  a l . , 1969;  Coker and N i c h o l ,  1975;  they do not appear to be  important  f a c t o r s i n l o c a l i z a t i o n of Cu, Pb or Zn i n lake sediments sampled i n t h i s study.  T h i s i s p a r t i c u l a r l y w e l l docu-  mented by lake sediment core data ( F i g s . 108 A l l a n et and Mn  to  126).  a l . (1973) a l s o r e p o r t e d poor c o r r e l a t i o n s f o r Fe  with Cu, Pb and Zn i n near-shore  l a k e sediments from  the Bathurst r e g i o n . With the exception of the e a s t e r n shore, Camp Lake c o n t a i n s s i g n i f i c a n t l y higher Pb c o n c e n t r a t i o n s than Banana  134.  Lake.  Passing from Camp i n t o Upper Sunken and then Lower  Sunken Lakes, there i s a marked decrease  i n Pb v a l u e s with  the lowest v a l u e s o c c u r r i n g i n Lower Sunken Lake. Within Camp Lake, the highest metal v a l u e s are g e n e r a l l y found towards the north t o northwest end of the lake, i . e . c l o s e s t the ore zone.  In samples nearest the e a s t e r n  shore,  where sample depths are the s h a l l o w e s t , Pb l e v e l s are approximately 10 t o 30 times  lower  than elsewhere while Cu and Zn  values remain high. A s i m i l a r s i t u a t i o n e x i s t s at Anne and T u r t l e Lakes ( F i g s . 105 and 106;  Tables 25 and 26).  Zn-Pb-Cu m i n e r a l i z a t i o n can be found  Although  significant  along the "mineral  h o r i z o n " south of Anne Lake ( F i g s . 17, B6, B20 and B26), Lake i s w e l l removed from m i n e r a l i z a t i o n and m e t a l - r i c h  Turtle till;  however, T u r t l e Lake r e c e i v e s drainage from Anne Lake whose waters are h i g h l y anomalous i n Cu and Zn ( F i g s . 12 and 101). Cu, Pb and Zn v a l u e s are h i g h l y anomalous i n Anne Lake s e d i ments;  whereas, down drainage  v a l u e s are,lower and,  except  i n T u r t l e Lake Zn, Cu and Pb  by f a c t o r s of 2, 3.3 and 5.5 r e s p e c t i v e l y  f o r very low l e v e l s of Pb, the values can s t i l l be  considered h i g h l y anomalous (compare Tables 24 and 25). Within Anne Lake the higher Pb v a l u e s , as at Camp Lake, are g e n e r a l l y r e s t r i c t e d t o those samples taken from depths exceeding  20 f e e t ;  however, the deepest  sample (376)  t a i n s the lowest Cu, Pb and Zn v a l u e s but highest L.O.I.  con-  percent  In a d d i t i o n , the higher Pb v a l u e s a l s o r e l a t e t o the  135.  point  where the "mineral h o r i z o n " enters Anne Lake (com-  pare F i g s . 17 and  105).  At T u r t l e Lake, the h i g h e s t Cu and Zn v a l u e s are  found  i n samples taken from shallow to i n t e r m e d i a t e depths (=10  to 30 f e e t ) .  Samples c o l l e c t e d from the deeper  t i o n s of T u r t l e Lake c o n t a i n somewhat lower v a l u e s . versely, collection water) may  of samples from too near shore  also result  intermediate  1976).  p.  338;  P o s s i b l e e x p l a n a t i o n s f o r v a r i a t i o n of metal  content with water depth are considered i n Chapter Although  l i k e lake waters,  and,  un-  comparison of metal v a l u e s w i t h i n lake  sediments shows that Cu,  Zn and Pb l e v e l s can f l u c t u a t e  an order of magnitude w i t h i n a given l a k e . any  5.  lake sediments from t h i s study c o n t a i n s t r o n g -  l y anomalous values they a l s o c o n t a i n low values  almost  (<_ 8 f e e t  to 35 f e e t ) or near the b r e a k - i n - s l o p e of the  lake b a s i n appears optimal ( c f . Hoffman, 1976, Winter,  Con-  i n o v e r a l l lower metal values (Table 25).  Therefore, c o l l e c t i o n of sediment samples from depths (=15  por-  over  Nevertheless,  sample s i t e chosen w i t h i n these two  l a k e s would  be anomalous on a r e g i o n a l s c a l e . Ag and Cd v a l u e s are low i n a l l l a k e s and not presented  in figures.  highest v a l u e s (range <1  t h e r e f o r e , are  Camp and Anne Lakes c o n t a i n the to 15 ppm  Ag and 5 to 50 ppm  Cd)  while adjacent l a k e s (e.g. Banana and T u r t l e ) c o n t a i n much lower Ag  (<_1 ppm)  and Cd  (2 to 15 ppm)  values.  Ag v a l u e s tend to c o r r e l a t e with high Zn and Pb respectively.  High Cd values  and  136.  C.  Lake Sediment Cores  Short (4 to 12 inch) cores were c o l l e c t e d from Camp and Banana Lakes as part of a follow-up study on metal d i s t r i b u t i o n w i t h i n lake sediments ( F i g s . 107 t o 127).  In  g e n e r a l , sediment cores c o n s i s t of a b a s a l (?) l a y e r of sandsilt-clay  or dense compact s i l t - c l a y ,  of unknown t h i c k n e s s ,  which o c c a s i o n a l l y c o n t a i n s pebbles.  D e p o s i t e d on t h i s i s  a one to two inch t h i c k , s o f t s i l t - c l a y which sometimes cont a i n s a f r i a b l e , w h i t i s h , s i l t y m a t e r i a l (marl?). s e v e r a l cores, p l a n t f i b e r s were noted i n a t h i n zone near the contact of these l a y e r s .  In  (1 to 2 i n c h )  Above the marl an  organic, watery sediment (>70 percent H^O  by weight) begins  to g r a d u a l l y appear over a one to two inch zone;  however,  i n some cases,the contact i s k n i f e sharp.. In g e n e r a l , the upper one to three inches.of a core are  u s u a l l y b r i g h t orange and b l a c k due to o x i d a t i o n of Fe  and Mn,  w h i l e lower p o r t i o n s of the core range from tan to a  medium or dark grey depending on o r g a n i c content and Eh. Fe and Mn nodules i n c r e a s e i n s i z e , numbers and d e f i n i t i o n towards the sediment-water i n t e r f a c e where they o f t e n form a nodule l a y e r one to three centimeters t h i c k . Fe and Mn nodules are abundant  Although  at the s u r f a c e and the s e d i -  ment i s b r i g h t l y c o l o r e d , o r g a n i c content remains unchanged r e l a t i v e to the u n d e r l y i n g medium grey watery sediment (algal gyttja).  I n t e r s p e r s e d w i t h i n the g y t t j a are t h i n  137.  (1 t o 3 mm), (Fig.  c l o s e l y spaced sharp t o d i f f u s e b l a c k bands  118 and P l a t e 13) and d i f f u s e i r r e g u l a r Fe and Mn  nodules.  F i g u r e 127 i s an i d e a l i z e d r e p r e s e n t a t i o n of the  sedimentary  s t r a t i g r a p h y which i s remarkably  s i m i l a r to  sediment cores d e s c r i b e d by Karrow and Anderson (1975) from L o u i s e Lake, O n t a r i o , except that the sedimentation r a t e i s approximately  20 times l e s s at Camp Lake.  Cu, Fe, Mn, Pb and Zn c o n c e n t r a t i o n s vary almost as much with depth as they do over the sediment s u r f a c e . V a r i a t i o n s exceeding  an order of magnitude are not unusual,  e s p e c i a l l y f o r Mn ( F i g s .  109, 119 and 120).  Rapid changes  i n metal v a l u e s (up t o 20x) over the l e n g t h of a core are l a r g e l y the r e s u l t of changes i n sediment t e x t u r e (e.g. F i g s . 110  and 118).  Within i n d i v i d u a l sediment types (e.g.  gyttja, s i l t - c l a y  etc.) v a r i a t i o n i s s i g n i f i c a n t l y  ( F i g s . 109 and 113). the widest larly  R e l a t i v e t o Cu and Zn, Pb d i s p l a y s  range of v a l u e s with r e s p e c t to depth,  particu-  i n cores that penetrate the dense s a n d - s i l t - c l a y  where metal v a l u e s are i n v a r i a b l y much lower 120).  lower  layer  ( F i g s . 118 and  N e v e r t h e l e s s , Cu and Zn v a l u e s , although lower i n  the s a n d - s i l t - c l a y (except Cu i n core 1645, F i g . 123), a r e still  r e l a t i v e l y high (500 t o 1200 ppm). Cu, Pb, Zn and L.O.I, v a l u e s u s u a l l y remain somewhat con-  stant with r e s p e c t t o depth or i n c r e a s e t o a maximum d e c l i n e towards the bottom of the core.  and then  Conversely, Fe.and,  i n p a r t i c u l a r , Mn i n c r e a s e - o f t e n d r a m a t i c a l l y - towards the  138.  sediment-water i n t e r f a c e ( F i g s . 109, Consequently,  113,  119  and  123).  a negative c o r r e l a t i o n between Fe/Mn l e v e l s  and base metals  i s w e l l developed  however, i n a few  ( F i g s . 112,  115  i n s t a n c e s there i s a gross  r e l a t i o n s h i p ( F i g s . 110  and  and  124);  sympathetic  117).  In g e n e r a l , Cu and Zn trends c l o s e l y p a r a l l e l one other while Pb t r e n d s , although s i m i l a r to Cu and  Zn,  o f t e n d i s p l a y somewhat divergent trends ( F i g s . 115 Percent o r g a n i c matter those of Pb,  an-  and  (L.O:l.) trends are somewhat  120).  like  i n t h a t , w h i l e s i m i l a r t o Cu and Zn t r e n d s ,  L.O.I, trends commonly f l u c t u a t e independently of Cu and particularly  Zn,  i n Banana Lake where negative c o r r e l a t i o n s are ••  common ( F i g s . 123 t o  125).  Sediment cores 1424  and 1427  ( F i g s . 115  and 118)  s t r o n g l y e n r i c h e d i n Cu and Zn and a n a l y s i s of a one  are to three  m i l l i m e t e r b l a c k band at the o x i d a t i o n / r e d u c t i o n i n t e r f a c e i n core 1427 Cu and 1.3  ( P l a t e 14) i n d i c a t e s a minimum of  percent Zn.  These Cu and Zn peaks c o n t a i n c o r -  r e s p o n d i n g l y low to moderate l e v e l s of Fe, Mn, In some sediment cores (e.g. core 1423, double  layer  be seen. it  2.2.percent  ( r e p e t i t i o n ) or sudden s h i f t  Ag and  Pb.  F i g . 114)  i n Fe content  A s i m i l a r p a t t e r n i s d i s p l a y e d by Zn,  a can  although  i s the i n v e r s e of Fe. D.  Stream Sediments  Stream sediments were not c o l l e c t e d i n s u f f i c i e n t q u a n t i t y  139.  or over a l a r g e enough area f o r d e t a i l e d  interpretation.  N e v e r t h e l e s s , data are o f f e r e d (Table 28) as a guide to metal v a l u e s i n stream Zone.  In B-C  t i o n s (161,  sediments adjacent to and d r a i n i n g the Main  stream, p a r t i c u l a r l y the lower  and middle  159), h i g h l y anomalous Cu values occur,  Pb and Zn l e v e l s , although  anomalous, are lower  por-  while  presumably  because of the high immobility of Pb and the high m o b i l i t y of Zn.  At s i t e 105,  approximately 4000 f e e t down drainage  from m i n e r a l i z e d zones a h i g h l y anomalous v a l u e of 233 Zn i s recorded; moderate.  whereas, Cu and Pb values are low to  ppm  140 .  Table 28.  Metal content  of stream sediments  adjacent  to m i n e r a l i z e d zones at Camp Lake.  ^ Number S i  e  A T  Location  Cu  Pb  Zn  Fe%  Mn  163  Banana L. e x i t  120  7  162  1.3  96  161  Mid B-C stream  1113  37  45  4. 5  376  159  Camp L. entrance  850  103  373  3 .4  1282  Camp L. e x i t  71  12  120  1. 0  121  173  800 f t . south U.S.L.  119  19  130  1. 5  142  105  4000 f t . south U.S.L.  120  35  233  1. 5  120  167  Hi Lake e x i t  131  35  71  2. 4  686  165  2  1:  T o t a l a t t a c k , minus 80-mesh. where noted.  A l l v a l u e s i n ppm except  2:  E x c e p t i o n a l l y coarse sediment which c o n t a i n e d l i t t l e or c l a y r e l a t i v e t o the other samples.  silt  141.  05  I  2  5  10  20  30  40  50  PROBABILITY  F i g u r e 21.  60  70  80  90  95  98  99  99.5  (cum. % )  Log p r o b a b i l i t y p l o t of Cu, -80 mesh f r a c t i o n , t o t a l a t t a c k . Black data.  dots r e p r e s e n t  original  Open c i r c l e s are c o n s t r u c t i o n points,  used i n o b t a i n i n g p a r t i t i o n e d p o p u l a t i o n s shown as s t r a i g h t dotted  lines.  142.  IRON  1  J  $  F i g u r e 22.  5  f5  £5  Xo  50  PROBABILITY  60  70  80  90  95  98  99  99.5  (cum. % )  Log p r o b a b i l i t y p l o t of Fe, -80 mesh f r a c t i o n , t o t a l attack. P a r t i t i o n e d populations the L-F-H h o r i z o n . background  a r e from  P o p u l a t i o n B approximates  f o r a l l three s o i l layers. Population  A i s one p o s s i b l e i n t e r p r e t a t i o n o f the L-F-H horizon.  A l t e r n a t i v e l y an anomalous p o p u l a t i o n  ( > pop. B) and a d e p l e t e d population  ( n e g a t i v e l y anomalous)  (. < pop. B) may be p r e s e n t ,  21 f o r e x p l a n a t i o n o f symbols.  see F i g .  143.  1000  100  F i g u r e 23.  Log p r o b a b i l i t y p l o t of Mn, t o t a l a t t a c k . See symbols.  -80 mesh f r a c t i o n ,  F i g . 21 f o r e x p l a n a t i o n  of  144.  LEAD  H  -L-F-  N = 223  •Lbyer Layer  1 0 0 0  N = 196 2  N =  3  recalculated wiith zjeros assumed to lie 3 p p m . Open c i r c l e s ^ equal recalculated bointsj.  Pobulajion  A  (Lay£r2)  ppulaiion  A LayeN)  Population  A  inflection  (L-F|  pointq  layers , 2 ) lection1  2 0  .  3 0  4 0  5 0  P R O B A B I L I T Y  F i g u r e 24.  6 0 ( c u m .  7 0  8 0  9 0  9 5  9 8  9 9  9 9 . 5  % )  Log p r o b a b i l i t y p l o t of Pb, -80 mesh f r a c t i o n , t o t a l a t t a c k . See F i g . 21 f o r e x p l a n a t i o n o f symbols.  145.  1000  10  1  '  I  '  '  •  I  !  I  20  30  40  50  60  70  80  90  95  PROBABILITY  F i g u r e 25.  1  98  '  99  995  (cum. % )  Log p r o b a b i l i t y p l o t of Zn, -80 mesh f r a c t i o n , t o t a l attack. symbols.  See F i g . 21 f o r e x p l a n a t i o n o f  F i g u r e 26.  Camp Lake:  Ag  content  of the L-F-H  h o r i z o n , -80 mesh, t o t a l  attack.  F i g u r e 27.  Camp Lake:  Ag content of Layer 1 s o i l s ,  -80 mesh, t o t a l  attack.  F i g u r e 28.  Camp Lake:  Ag content of Layer- 2 s o i l s ,  -80 mesh, t o t a l  attack.  F i g u r e 29.  Camp Lake:  Cd content  of the L-F-H  h o r i z o n , -80 mesh, t o t a l  attack.  F i g u r e 30.  Camp Lake:  Cu content  (ppm)  of the L-F-H  h o r i z o n , -80 mesh, t o t a l  attack.  F i g u r e 31.  Camp Lake:  Cu content (ppm)  of Layer 1 s o i l s ,  -80. mesh, t o t a l  attack.  F i g u r e 32.  Camp Lake:  Cu content (ppm)  of Layer 2 s o i l s ,  -80.mesh, t o t a l  attack.  F i g u r e 33.  Camp Lake:  Fe content  of the L-F-H  h o r i z o n , - 80 mesh, t o t a l  attack.  F i g u r e 34.  Camp Lake:  Fe content of Layer 1 s o i l s ,  -80 mesh, t o t a l  attack.  F i g u r e 35.  Camp Lake:  Fe content of Layer 2 s o i l s ,  -80 mesh, t o t a l  attack.  F i g u r e 36.  Camp Lake:  Mn  content  (ppm)  of- the L-F-H  h o r i z o n , -80 mesh, t o t a l  attack  F i g u r e 37.  Camp Lake:  Mn  content of Layer 1 s o i l s ,  -80 mesh, t o t a l  attack.  F i g u r e 38.  Camp Lake:  Mn content of Layer 2 s o i l s ,  -80 mesh, t o t a l  attack.  F i g u r e 39.  Camp Lake:  Pb content  (ppm)  of the L-F-H  h o r i z o n , -80 mesh, t o t a l  attack.  F i g u r e 40.  Camp Lake:  Pb content (ppm)  of Layer 1 s o i l s ,  -80 mesh, t o t a l  attack.  F i g u r e 41.  Camp Lake:  Pb content  (ppm)  of Layer 2 s o i l s ,  -80 mesh, t o t a l  attack.  F i g u r e 42.  Camp Lake:  Zn content  (ppm)  of the L-F-H  h o r i z o n , -80 mesh, t o t a l  attack  F i g u r e 43.  Camp Lake:  Zn content (ppm)  of Layer 1 s o i l s , -80 mesh, t o t a l  attack.  F i g u r e 44.  Camp Lake:  Zn content (ppm)  of Layer 2 s o i l s ,  -80 mesh, t o t a l  attack.  Figure 4 5 .  Camp Lake:  estimated  percentage of v i s i b l e s u r f a c e i r o n  staining.  166.  F i g u r e 47.  Camp Lake:  pH of Layer 1 s o i l s .  F i g u r e 48.  Camp Lake:  pH of Layer 2 s o i l s .  F i g u r e 49.  Camp Lake:  c o n d u c t i v i t y of Layer 1 s o i l s .  F i g u r e 50.  Camp Lake:  Cu content  (ppm)  of Layer 1 s o i l s ,  1.0M  HC1  ext., -80 mesh.  F i g u r e 51.  Camp Lake:  Cu content (ppm) of .Layer 1 s o i l s ,  0.05M EDTA ext., -80 mesh.  F i g u r e 53.  Camp Lake:  Fe content of Layer 1 s o i l s , 0.05M EDTA ext., -80 mesh.  F i g u r e 54.  Camp Lake:  Pb content  (ppm)  of Layer 1 s o i l s ,  1.OM  HC1  ext., -80 mesh.  F i g u r e 55.  Camp Lake:  Pb content.of Layer 1 s o i l s ,  0.05M-EDTA ext., -80" mesh.  F i g u r e 56.  Camp Lake:  Zn content (ppm)  of Layer 1 s o i l s ,  l.OM  HC1  ext., -80 mesh.  F i g u r e 57.  Camp Lake:  Zn content of Layer 1 s o i l s ,  0.05M EDTA ext., -80 mesh.  F i g u r e 60.  Camp Lake:  r a t i o of 1.0M  HC1 ext. to t o t a l ext. Fe (Fe„ ) i n Layer 1 s o i l s . R  F i g u r e 62.  Camp Lake:  r a t i o of 0.05M EDTA ext. to t o t a l ext. Pb (Pt> ) i n Layer 1 s o i l s . ER  F i g u r e 63.  Camp Lake:  r a t i o of 1.OM  HC1 ext. to t o t a l ext. Zn ( Z n ) i n Layer.1 s o i l H R  F i g u r e 64.  Camp Lake:  r a t i o of 0.05M EDTA ext. to t o t a l ext. Zn (Zn„ ) i n Layer 1 s o i l s . R  F i g u r e 65.  Camp Lake:  r a t i o of t o t a l ext. Pb to Cu i n the L-F-H  soil  horizon.  F i g u r e 66.  Camp Lake:  r a t i o of t o t a l ext.  Pb  to Cu  i n Layer 1 s o i l s .  F i g u r e 67.  Camp Lake:  r a t i o of t o t a l ext. Pb to Zn i n the L-F-H  soil  horizon.  F i g u r e 68.  Camp Lake:  r a t i o of  t o t a l ext.  Pb  to Zn  i n Layer 1 s o i l s .  F i g u r e 69.  Camp Lake:  l o c a t i o n map  and  s i t e numbers of s o i l  pits.  100  10  PPM L-F-H  0  :  V  \  '•  \  V  I  1 ii  V  II  •  10  li  h i\  •  :'.  20  Ca  horizon  f *  '•  l  4  /  40 -  /  2  / /  /(  /'  i  1 \  \  J j  / * 1 1  xio~  / 1  /1 ( i \  Mg  2  Mn  ii  li ii If  m  xio- _  /  /} • • .t  s 30  Fe  ;  1/  •  .  i  i •/  •  N C H  6000  1000  /  j  \ \  (  i  / /  50 F i g u r e 70.  Camp Lake:  s o i l p i t 11, metal d i s t r i b u t i o n  with depth, -80 mesh, t o t a l  attack  F i g u r e 71.  Camp Lake:  s o i l p i t 11, metal d i s t r i b u t i o n with depth, -80 mesh, t o t a l  attack.  SIZE 10  FRACTION 20  30  WT.  40  HEAVY  %  50  20  MINERALS 30  40  LEGEND  (mg/gm) 50  60  70  size  fraction  80 + 270 -270 heavy  minerals  (S.G. _>2.89)  conductivity  PH  20  F i g u r e 72,  Camp Lake:  r  60 80 100 CONDUCT IVITY (yohms/cm ) s o i l p i t 11, d i s t r i b u t i o n of s i z e f r a c t i o n s , heavy m i n e r a l s ,  pH and c o n d u c t i v i t y  40  2  F i g u r e 73.  Camp Lake: s o i l p i t 17, m e t a l d i s t r i b u t i o n w i t h depth, -80 mesh, t o t a l  attack  SIZE  FRACTION  •  WT.  %  HEAVY  1  1  20  MINERALS  i  40  i  (mg/gm)  LEGEND  i  »  60 80 100 CONDUCTIVITY (uohms/cm ) 2  F i g u r e 75.  Camp Lake: s o i l p i t 17, d i s t r i b u t i o n of s i z e f r a c t i o n s , heavy pH and c o n d u c t i v i t y .  minerals,  100  10  PPM  6000  1000 V.L-F-H h o r i z o n  0  Ca Fe  I  /  lOh  /  Mg  ..  _ x  io-^_  xio .., -2  Mn  (  V  l  20  N C H S  30  40  50 F i g u r e 76.  Camp Lake:  s o i l p i t 20, metal d i s t r i b u t i o n  with depth, -80 mesh, t o t a l  attack  SIZE  FRACTION  WT. %  HEAVY  MINERALS  LEGEND  (mg/gm)  CONDUCT I VITY(yohms/cm ) s o i l p i t 20, d i s t r i b u t i o n of s i z e f r a c t i o n s , heavy m i n e r a l s , 2  F i g u r e 78.  Camp Lake:  pH and c o n d u c t i v i t y .  co  10  100  PPM  1000 L-F-H  0  S  horizon  Ca  .  Fe  xio- _  Mg  xicr ..  2  2  Mn  10 h  l N C H  6000  20  30h  40  50 F i g u r e 79.  Camp Lake:  s o i l p i t 107,  metal d i s t r i b u t i o n  with depth, -80 mesh, t o t a l  attack.  SIZE 10  FRACTION 20  30  40  WT.  %  50  HEAVY 20  MINERALS 30  40  LEGEND  (mg/gm) 50  60  70  size  fraction  •80 + 270 -270 heavy  minerals  (S.G. >2.89)  conductivity  PH  20  40  60 80 100 CONDUCTIVITY (yohms/cm ) Camp Lake: s o i l p i t 107, d i s t r i b u t i o n of s i z e f r a c t i o n s , heavy m i n e r a l s , pH and c o n d u c t i v i t y . 2  F i g u r e 81,  F i g u r e 82.  Camp Lake:  s o i l p i t 121, metal d i s t r i b u t i o n  with depth, -80 mesh, t o t a l  attack.  F i g u r e 83.  Camp Lake:  s o i l p i t 121, metal d i s t r i b u t i o n  with depth, -80 mesh , t o t a l  attack.  SIZE 10  FRACTION 20  30  40  WT.  %  50  HEAVY 20  MINERALS 30  40  LEGEND  (mg/gm) 50  60  70  size  fraction  •80 + 270 -270 heavy minerals (S..G.. >2.89) conductivity—  PH  PH 100  F i g u r e 84  Camp Lake:  200  5  6 300  400  s o i l p i t 121, d i s t r i b u tCONDUCTIVITY i o n of s i z e f r a(yohms/cm c t i o n s , )heavy  pH and c o n d u c t i v i t y .  to o  500 J  minerals,  F i g u r e 85.  Camp Lake:  s o i l p i t 123, metal  d i s t r i b u t ion with depth, -80 mesh, t o t a l a t t  F i g u r e 86.  Camp Lake:  s o i l p i t 123, metal d i s t r i b u t i o n  with depth, -80 mesh, t o t a l  attack.  SIZE  FRACTION  WT. %  HEAVY  i  400  MINERALS  1  500  1  (mg/gm)  LEGEND  1  >  600 700 800 CONDUCTIVITY (yohms/cm ) s o i l p i t 123, d i s t r i b u t i o n of s i z e f r a c t i o n s , heavy m i n e r a l s , J  Figure  87.  Camp Lake:  pH and conductivity..  F i g u r e 88.  Camp Lake:  s o i l p i t 125, metal d i s t r i b u t i o n  with depth, -80 mesh, t o t a l  attack.  SIZE  10  FRACTION  20  30  40  WT.  %  50  HEAVY  20  MINERALS  30  40  LEGEND  (mg/gm)  50  60  70  size  fraction  •80 + 270 -270  heavy minerals (S.G. 22.89) conductivity —  PH  200 F i g u r e 90.  300 400 CONDUCT IV lTY^ohms/cm  500 2  Camp Lake: s o i l p i t 125, d i s t r i b u t i o n of s i z e f r a c t i o n s , pH and c o n d u c t i v i t y .  )  heavy m i n e r a l s ,  to i—' o  o:  O.O  .HN03/HCI0 ext. 4  .I.OM  HCI ext. 10.0  1000-  Y-5.0  5 0 0 - K  % Fe  PPM  1.0 100-  h-  5 0 - \  0.5  0.1 10  \ - 0 . 0 5  iT"  0.050  I O.IO  |  270  I  80 U.S.  F i g u r e 91.  Camp Lake:  i  millimeters  1 ' 0.20  \0.50  groin  size  Stondord  1.0  40  r  I 0  mesh  s o i l p i t number 11, d i s t r i b u t i o n of  m e t a l between s i z e f r a c t i o n s 1.0M HCI and HN0 /HC10 3  4  at 22 inches depth,  attacks.  212. l.o  0.8H  -  0.6  -  OA  CL  0.2  b cc  0.0  . H N O , / H C I 0 4 ext. .l.OM  HCI  ext. 10.0  1000-  5.0  500H  % Fe  PPM  1.0 10  0-  50  — 0.5  —\  0.1 10  [ - 0 . 0 5 5 - i  n 0.050  I  '  i 0.10  270  [  Camp Lake:  |  size  80 U.S.  F i g u r e 92.  I millimeters  0.20 I groin  I . O  0.-5O 1  10  40 Slondord  mesh  s o i l p i t number 11, d i s t r i b u t i o n o f  m e t a l between s i z e f r a c t i o n s l.OM HCI and HN0 /HC10 3  4  at 42 i n c h e s depth,  attacks.  213. 1.0  c o o  0.8-A  0.6  Q-  0.2  b  rr 0.0  .HN03/HCI0  4  J.OM  ext.  HCI  ext.  10.0 1000-  r-5.0  5 0 0 - \  %.Fe  PPM  1.0 100-  —  50H  0.5  •O.I  /0  •0.05  0.050  0 . 1 0  I 2 7 0  Camp Lake:  \0.50  I grain 8 0 U.S.  F i g u r e 93  millimeters  ~\ 1 0.20  1.0  siie  Standard  2 0  I 0  4 0 mesh  s o i l p i t number 20, d i s t r i b u t i o n o f  m e t a l between s i z e f r a c t i o n s 1.0M HCI and HN0 /HC10 3  4  at 22 i n c h e s depth,  attacks.  214.  a  1.0  o °  0 . 8  X  LU 0 . 6 A  -Pb-  o r0.4  -Cu°-  0.2-  6  cr  0.0  .HN03/HCI04 .I.OM  HCI  ext.  ext. 10.0  1000-  5 0 0 - \  X-5.0  % Fe  PPM  1.0 100-  h-  50  Z n  0.5  +  - Mn—  0.1  10  [ - 0 . 0 5  5 H  —n—•—i 0.050  rI  0.10  |  I  270  Camp Lake:  \0.5O  groin  size  80 U.S.  F i g u r e 94.  millimeters  0.20  mesh  s o i l p i t number 20, d i s t r i b u t i o n of  metal between s i z e f r a c t i o n s l.OM  r  I 0  40 Standard  I.O  HCI and HN0 /HC10 3  4  at 40 inches depth,  attacks.  215. c  10  o • o  2  0.8  X 0.6A o  OAA o  a  0.2  *  0.0  .HN0 /HCI0 3  4  ext.  .NH,0HHCI/CH,C00H  ext. VO.O  1000-  h-5.0  5 0 0 - \  %  PPM  Fe  Mn,Zn p p m p a r t i a l ext. only -  too-  50  —  H t  0.5  •Cu —  0.1  10  '  5H H  0.050  I  Camp Lake:  0.05  J  i  0.10  I  millimeters  0.20  | 2 7 0  F i g u r e 95.  1.0  1.0  \0.50  I grain size 8 0 4.0 U.S. S t o n d c r d mssh  I  0  s o i l p i t number 107, d i s t r i b u t i o n of  metal between s i z e f r a c t i o n s  at 14 inches depth,  NH 0H.HC1/CH C00H and HN0 / HC10 :  2  20  3  3  4  attacks.  216. 1.0  o o 2  0.8-i  0.6-\  OA  0.2  -Cu-  cc  0.0  .HN0 /HCI0 3  ext.  4  _NH 0H HCI/CH3COOH 2  ext. 10.0  1000-  [-5.0  5 0 0 -  % Fe  PPM  1.0  100-  \ -  50  0.5  0.1  10  •0.05  5H Tf 0.050  I  millimel O.IO  8 0 U.S.  Camp Lake:  1.0  \0.50  I groin  2 7 0  F i g u r e 96.  ers  0.20  size  Stondard  10  4 0 mesh  s o i l p i t number 123, d i s t r i b u t i o n of  metal between s i z e f r a c t i o n s  at 44 inches depth,  NH 0H.HC1/CH C00H and HN0 /HC10 2  20  3  3  4  attacks.  F i g u r e .97.  Camp Lake:  Cu and Zn content of surface-seepage and p i t waters  (1974).  F i g u r e 98.  Camp Lake:  Cu and Zn content of snow-melt runoff  (1975).  F i g u r e 99.  Camp Lake:  contoured map  of the Cu content (ppb) i n snow-melt r u n o f f .  F i g u r e 100.  Camp Lake:  contoured map  of the Zn content (ppb) i n snow-melt r u n o f f .  108'30"  —r— Massive sulphide bodies. Drainage direction Water sample site I  \  W 10) 7.3 pH <1 Zn 1 Cu  Banona  W113 7.4 pH 23 Zn 2 Cu  W 102 7.4 pH 8 Zn  1  Banana Cu  W 103 7.3 pH 7 Zn 1 Cu  Cathy WHO 7.6 pH 44 Zn 6 Cu  65'55'  W 111 7.2 pH 46 Zn 8 Cu  l65*55'  Cleaver  CD  F i g u r e 101  Cu and Zn content  W 124 7.3 pH 186 Zn 6 Cu  W 114 7.3 pH 13 Zn 1 Cu  (ppb) i n lake waters from the bathurst iNorsemmes ****  ( m o d i f i e d from Cameron and B a l l a n t y n e ,  1975).  bo to  222.  Depth ( f t . ) Fe% Mn (ppm)  Figure  102.  Camp Lake:  l o c a t i o n , sample number, water  depth and metal content of sediments with a mud  snapper.  collected  223.  F i g u r e 103.  Banana Lake:  l o c a t i o n , sample number, water  depth and metal content of sediments with a mud  snapper.  collected  224.  F i g u r e 104.  Lower and Upper Sunken Lakes:  location,  sample  number,, water depth in- ( ). and metal content of sediments c o l l e c t e d with a mud  snapper.  Sample Depth ( f t . ) Fe% Mn (ppm)  F i g u r e 105,  Anne Lake:  l o c a t i o n , sample number, water depth and metal content  of sediments c o l l e c t e d with a mud  snapper.  to to  226.  F i g u r e 106.  T u r t l e Lake:  l o c a t i o n , sample number, water  depth and metal content of sediments with a mud  snapper.  collected  2 0 DESCRIPTION Oh  1.0% 100  L.0.1. PPM  10% 000  0000  Med. g r e y s i l t - c l a y / g y t t j a , abundant 1mm Fe/Mn nodules  Cu Fe xio  Black-grey s i l t - c l a y / | gyttja, i n d i s t i n c t 3-5mm b l k . bands. Few Fe/Mn n o d u l e s . Above ave. water c o n t e n t .  Mn Pb _ Zn L.O./..  1 \  \ \  \  Tan-grey s i l t - c l a y w i t h a few Fe/Mn nodules  Grey-tan s i l t - c l a y , r a r e Fe/Mn n o d u l e s .  4  ft  ii ; L  F i g u r e 108.  Camp Lake:  core 1417, s t r a t i g r a p h y and metal content with depth,  2 0 DESCRIPTION  1.0% 100  L.0.1. PPM  10% 000  F e - s t a i n e d dk. g r e y s i l t / g y t t j a , abundant| l-2mm Fe/Mn nodules.  0000  Cu  _  Fe xio'  Dark g r e y s i l t / g y t t j a , moderate Fe/Mn n o d u l e s , f a i n t l-4mm b l a c k banfls.  Mn _ Pb Zn _ L.O.L _  Dark grey s i l t / g y t t j a | f a i n t l-4mm b l a c k bands, few moderate Fe/Mn n o d u l e s .  As above. V  ii I  As above.  /  As above. Small q u a n t i t y I t . a t base, a few p l a n t one 5mm p e b b l e . Not analyzed As above  F i g u r e 109.  Camp Lake:  core 1418, s t r a t i g r a p h y , metal content and L.0.1. w i t h  depth  2 0 DESCRIPTION  1.0% 100  L.O.I. PPM  10% 000  Med-dark g r e y g y t t j a , h i g h H^O c o n t e n t .  As  above.  0000  Cu _ Fe *io' Mn _ Pb _. Zn _ L.0./._  Light-med. g r e y s i l t grading into s i l t , t h f i n e sand w i t h depth P l a n t f i b e r s between  5.2-6.5 i n c h e s . Dark-med. g r e y 8mja^' s i l t layer ^.-^ a t base. S  /  /  L i g h t t a n mediup f i n e sand.  Note:  see P l a t e 12  F i g u r e 110.  Camp Lake:  core 1419, s t r a t i g r a p h y , metal  content and L.0.1. with  depth  2 0 DESCRIPTION  1.0%  100  Oh  B r i g h t orange and blafck Fe/Mn nodules l-2mm. S i l t y f i n e sand.  2h  Medium grey s i l t y fin> sand. O v e r a l l lowmoderate H^O c o n t e n t .  L.0.1. PPM  10% 000  0000  Cu Fe xio Mn Pb Zn L.O.I..  L i g h t grey s i l t - c l a y Plant fibers a t 4 . 5 5 i n c h e s , abundant fibers at6 - 7 inches with white maj^T" (?) betweeh the two layers.'  F i g u r e 111.  Camp Lake:  core 1420, s t r a t i g r a p h y and metal  content with  depth.  20 0 I t  2 3  DESCRIPTION  1.0% 100  L.0.1. PPM  10% 000  0000  Med-fine sand s i z e Fe/Mn nodules i n med grey s i l t / g y t t j a , b r i orange a t base, sharp contact with section below. Med-dark g r e y s i w i t h d i f f u s e l-3mm b l a c k bands every 0.5 t o 1.5cm.  4 5 6h 7  As above b u t w i t h f i b e r s over t h e l a s t inch.  8 9 10 II  Tan, f r i a b l e clay-mar with plant f i b e r s .  F i g u r e 112.  Camp Lake:  core 1421, s t r a t i g r a p h y , metal  content and L.0.1. with  depth  20 0  DESCRIPTION  1.0% 100  L.0.1. PPM  10% 000  10000  Dark-med. g r e y gyttja), abundant l-2mm Fe/Mn nodules a t t o p . l-2m]m c l o s e l y spaced b l a c k bands common.  Cu  _  Fe *io~ Mn __ 35J000  Dark-grey g y t t j a , many l-2mm b l a c k bandjs  As above b u t w i t h b l a b k bands becoming d i f f u s  Y  I: i: i:  1  Pb Zn _ L.0.1. _  A  I i  /  { As above.  F i g u r e 113.  Camp Lake:  core 1422, s t r a t i g r a p h y , metal content and L.O.I, w i t h  depth  20 0  1.0%  DESCRIPTION  L.0.1.  10% 000  PPM  100  0000  Med. g r e y s i l t / g y t t j a w i t h 1mm Fe/Mn nodules. Fe-rich at surface.  2  F e - r i c h zone o f s i l t / | gyttja.  3  Med. dark g r e y s i l t / g y t t j a , sharp contact| w i t h u n d e r l y i n g F e - ri b h zone.  4  /  /  Cu Fe xio' Mn Pb Zn L.0.1. _  V /  <  5| !  6h  F e - r i c h zone w i t h 3mm| bands r i c h i n Fe a t top and i n m i d d l e . Dark g r e y  / /  silt/gyttja!  Note: double l a y e r or r e p e t i t i o n o f sequence.  F i g u r e 114.  Camp Lake:  core 1423, s t r a t i g r a p h y , metal content and L.0.1. with  depth  20  1.0%  DESCRIPTION  100  L.O.I. PPM  10% 000  10000  Cu __  Very b r i g h t orange-red becoming, yellow-orange near base, a few Mn nodules, m o s t l y s i l t - | clay. Yellow-brown  Fe xio' Mn _  silt-clay  Pb Zn _ L.O.I. _  Medium g r e y f i n e sand s i l t w i t h l-2mm b l a c k bands e v e r y l-2cm.  7500 As above b u t b l a c k bands more common.  Note:  see P l a t e 13  F i g u r e 115.  Camp Lake:  core 1424, s t r a t i g r a p h y , metal content and L.0.1. with  depth  20 0  DESCRIPTION  1.0% 100  Medium dark g r e y s i l t ) c l a y , abundant Mn nodules. Fe nodules l e s s abundant. Some nodules 3-4mm.  3 4 5h  L.0.1. PPM  10% 000  0000  Cu Fe xio Mn Pb _ Zn L.0.1..  Medium g r e y s i l t - c l a y | Minor Fe s t a i n i n g a t 5-6 i n c h e s , b l a c k 1- 2mm bands common.  6 7 8 9 10 11  F i g u r e 116.  Camp Lake:  core 1425, s t r a t i g r a p h y and metal content with depth.  1.0%  0 0  DESCRIPTION  100  Light-medium g r e y fin|e sand/silt.  I  2  S i l t / f i n e sand w i t h lmm Fe/Mn n o d u l e s .  3  Tan f i n e s a n d / s i l t , s i l a c e o u s looking P l a n t f i b e r s common between 4-5 i n c h e s 1  4  L.O.I. PPM  1 0 % 0 0 0  0 0 0 0  Cu Fe xio' Mn  _  Pb Zn  _  1  L.O./.-  5 ^•'f/Lght g r e y m . g r a i n e d sand, 80% L g t z . ; i O % Feldspar", "10  6 7 10 8  I  Tan f i n e sand w i t h a few p l a n t f i b e r s .  •i  10  9 10  V  F i g u r e 117.  Camp Lake:  core 1426, s t r a t i g r a p h y , metal content and L.0.1. w i t h  depth  20 Oh  1.0% 100  DESCRIPTION  L.0.1. PPM  10% 000  0000  Cu  Tan f i n e sand, becoming f i n e r w i t h depth. A few Fe and some r a r e Mn n o d u l e s .  Fe xio' Mn  2 3  22400  5  V e r y sharp F e - r i c h bljc (reducing?) band^ \  6  Medium-dark gyttja.  grey ^ \  7  \  Dark g r e y g y t t j a ' with p l a n t f i b e r s / between 9-10 i n c h e s , v e r y dark 8-9 inches.  8 9 10  Med-fine j  II  _  Pb Zn _ L.0.1.  Silt-gyttja, heavily Fe-oxide c o l o r e d .  4  _  with  r •Note:  LF i g u r e  sand  plant_fibersT\ see P l a t e 14.  118.  \  Camp Lake:  core 1427, s t r a t i g r a p h y , metal  content and L.0.1. w i t h  depth  20  DESCRIPTION  1.0% 100  L.0.1. PPM  10% 000  0000  Dark g r e y s i l t - g y t t j a j w i t h many 1mm Mn n o d u l e s , l-2mm b l a c k bands common.  Fe x/o- . 2  1$ 700  2  s  3 4  As above.  Cu  s  I  Mn Pb Zn L.OJ.  5  X  6 7  As above b u t w i t h few-•'3r Fe/Mn n o d u l e s . Nodul becoming d i f f u s e w i t h depth.  8 9  10  II  to  F i g u r e 119.  Camp Lake:  core 1428, s t r a t i g r a p h y , metal content and L.O.I, with  depth.  CO CO  2  0  0Y  DESCRIPTION  1.0% 100  L.O. I. PPM  10% 000  0000  Cu Fe xio Mn Pb Zn L.O./..  Fine-medium sand, Fe stained. Fe/Mn n o d u l common a t base.  Medium-dark g r e y f i n e sand.  Grey-brown  silt  silt.  /  Blk.-grey c l a y - s i l t / with p l a n t f i b e r s / between 8-9 inches. /  10 L i g h t t a n dense c l a y .  F i g u r e 120.  Camp Lake:  core 1429, s t r a t i g r a p h y and metal  content with  depth.  20 Oh  DESCRIPTION  1.0% 100  L.0.1. PPM  10% 1000  0000  Cu  Mixture, s i l t - s a n d c l a y t o 1 i n c h ) high|ly Fe s t a i n e d . 1.5-3.0 i n c h e s medium Fe stailned fine sand-silt.  I  f 7  Fe xio  y' Tan fine-med. varv]2 d s a n d - s i l t , one 8mm aebble  y  Mn Pb Zn L.0.1.  Dense c l a y - s i l t .  8 9 10  F i g u r e 121.  Camp Lake:  core 1430, s t r a t i g r a p h y and metal content with  depth,  1.0%  20 Oh  2  100  DESCRIPTION  0-0.5 i n c h , 2-5mm Mn modules u n d e r l a i n by b l k . banfr 0.5-0.75 Medium-dark g r e y s i l t g y t t j a , Mn n o d u l e s common.  4  inch.  78000  /  1 Cu Fe  Mn  xio'  2  __  \  \  7  As above ^but Mn nodul 0 S becoming \nore d i f f u s \  \ \  9 0  11  0000  \'. As above.  6  8  10% 000  Pb Zn . L.OJ._..  3  5  L.O.I. PPM  \ \  \  L i g h t g_re^ S-'fleTise c l a y .  Figure  123.  Banana Lake: core 1645, s t r a t i g r a p h y , metal content and L.0.1. with depth  20 0 I  1.0%  DESCRIPTION  L.O. I. PPM  100  F i n e sand g r a d i n g i n t o g y t t j a near base. Yellowbrown a t t o p ? . g r e y - y e l l o w a t base. No v i s i b l e Fe/Mn n o d u l e s .  4  0000  1 Cu Fe  Mn  2 3  10% 000  xio'  2  __  Pb Zn L.O.I. _...  \Med.-dark grey s i l b \ g y t t j a , a few l-2m|n 'diffuse b l k . bands Sharp c o n t a c t a t bhse.  I •  5  Med.-dark g r e y s i l t - g y t t jfa, •^-2mm d i f f u s e b l k . bands/ •^ommon.  6h 7 8  \  I /  As above b u t b l k . bands becoming 2-4 mm t h i c k .  9  1mm o f h a r d l i g h t g r e y c l a y a t base. Not analyzed.  F i g u r e 124.  Banana Lake:  core 1646,  s t r a t i g r a p h y , metal content and L.0.1. with  depth  1.0%  2 0 0  2 3 4 5  DESCRIPTION  100  L.0.1. PPM  Med. g r e y s i l t - g y t t j a w i t h f a i n t 3-5mm dark bands. No Fe/Mn nodules seen.  10 As above but Fe-stained.  10% 1000  0000  Cu Fe  xio~  Mn  __  2  Pb Zn L.O.I.  slightly|  12 Med. grey s i l t - g y t t j a \! w i t h a few 3-6mm d i f f \ d a r k g r e y bands.  \ 6  \  \ 7  \  As above  8 9 10 11  F i g u r e 125.  Banana Lake:  core 1647,  s t r a t i g r a p h y , metal content and L.0.1. with  depth  2 0  oh  1.0%  DESCRIPTION  L.O.I. PPM  100  10% 000  0000  Med. g r e y s i l t - g y t t j a with f a i n t F e - s t a i n at top. No Fe/Mn nodule|s  Cu Fe xio Mn  2 3  I I  6  Med. grey c l a y b y t t j a / w i t h f a i n t dark / / layers. C l a y be coming/ f i r m e r near base and lighter colored. /  i  7 /  9  L.O.I.  Dark grey-med. g r e y a|t base s ^ l t - g y t t j a . Pronouilced 2mm b l k . b^nd at topj  51  I  10  Whitish-grey dense c l a y .  hard,  10  F i g u r e 126.  -  Zn  \  4  8  Pb  ^4ed. grey s i l t - g y t t j a j ^sharp c o n t a c t w i t h s e c t i o n below.  Banana Lake:  core 1648,  s t r a t i g r a p h y and metal content with  depth.  247.  R e l o five  Concentrations  OO abundonf^,0 ^ o Fe/Mn o o 0 ^nodules 0  O. O  "o '° 0  oronge-red  o sill-cloy o O  o  silt-clay and gyttja o med./dk. grey  CO LU  5*H  i - silt—cloyIt.'greyT  10-4 "plant r"**marl ? v  12-  fibers^  1  sdnd/s'i It/clay -..'some' pebbles P (t ill)":' •:  F i g u r e 127.  Idealized stratigraphic  and geochemical model of  c e n t e r - l a k e sediments at Bathurst  Norsemines.  248.  CHAPTER GENERAL GEOCHEMICAL  I  DISCUSSION DISPERSION  5 AND  AT  SUMMARY  BATHURST  OF NORSEMINES  SOILS A.  G l a c i a l D i s p e r s i o n Model  Skinner  (1972) at the Jameland Mine, O n t a r i o ,  found that  the d i s p e r s i v e mode of g l a c i e r s , e s p e c i a l l y w i t h i n a m i l e two  of an anomaly source,  i s o f t e n as t h i n i m b r i c a t e d  l i k e zones or wedges which r i s e from bedrock to the sheet  surface  ( F i g . 128).  these zones vary  The  a t t i t u d e and  i n complex ways, but  sheettill  thickness  through overburden d r i l l i n g  Quebec, G a r r e t t to bedrock and  l y spaced i n t e r v a l s , t h a t . . . " t h e r e anomalous zone escalades the anomalous Cu and however, as one  sampling at r e g u l a r -  i s a l s o evidence that Close to the  Zn are found at the base of the  w i t h i n the t i l l .  ore,  till;  This  galena  r e v e a l e d extensive  feature  i s w e l l known i n Quaternary geology".  Recent s t u d i e s by t h i s author i n the Republic  t h i n sheets  the  proceeds down i c e , the anomaly appears to  known as o v e r r i d i n g and  on disseminated  till.  (1971) found,  w i t h i n the t i l l .  r i s e at a g r a d i e n t of 1 to 100 is  of  they o f t e n appear to  correspond to r e l i c shear ( t h r u s t ) planes w i t h i n the At the Louvem Deposit,  or  occurrences  Ireland  i n sandstone have a l s o  down i c e d i s p e r s i o n of Pb  or zones ( F i g . 129).  of  as low  In more g e n e r a l  Moran (1971) and White (1971) a l s o noted the r a t h e r  angle, terms, ubiquitous  F i g u r e 128.  Cross s e c t i o n of g l a c i a l d e p o s i t s showing s h e e t - l i k e zones of high copper c o n c e n t r a t i o n s extending  i n a down-ice d i r e c t i o n from the  Jameland and Kamkotia mines (taken from Skinner, GSC Open F i l e Report  116).  to  CO  {^ J5^L0^60oJ/l95  ^25o\650^85^I75\^0^85^35__3  i  J t & ^ ^ T S O  *'  ISO  \  ^  270  /  NO  5  26cT\  ^^2B5  90_J50__  110  HORIZONTAL SCALE Llmsitont  Sanditont  F i g u r e 129.  400  0  122  virtlcal  Cross s e c t i o n of deep s o i l Pb (ppm) geochemistry, occurrence i n the R e p u b l i c of I r e l a n d .  0  •xoggerollon  BOO  It.  2 4 4 m.  27x  over a disseminated  G l a c i a t i o n was from north to south.  A and C = n e a r - s u r f a c e zones of decreasing Pb v a l u e s with depth; of i n c r e a s i n g v a l u e s with depth.. I n t e r n a t i o n a l Inc.  galena  B = zone  Data courtesy of Dresser M i n e r a l s  Compare with F i g u r e s 130 and 131.  CO i—\  251.  occurrence of " t r a n s p o r t a t i o n a l s t a c k i n g " w i t h i n s i n g l e sheets and have e x t e n s i v e l y e l a b o r a t e d on such  till  glacio-  tectonic structures in d r i f t . A s i m i l a r mechanism appears Camp Lake.  t o have been o p e r a t i v e at  Thus, c o n s i d e r i n g d i s p e r s i o n of Pb (which has  been l e a s t a f f e c t e d by p o s t - g l a c i a l weathering i z e d outcrops near B-C stream) i t i s apparent  from m i n e r a l -  that:  1) the  highest n e a r - s u r f a c e v a l u e s ( o u t s i d e of those adjacent t o the outcrops and r e l a t e d t o present-day weathering) _>1500 f e e t down i c e ;  occur at  and 2) comparing Layers 1 and 2 the  100 ppm contour plunges up i c e towards the source.  In con-  t r a s t i f simple g l a c i a l c o r r o s i o n and t r a n s p o r t were the dominant mode of anomaly formation, then one might expect Pb v a l u e s i n the n e a r - s u r f a c e t i l l  t o i n c r e a s e towards the  source but, i n t h i s case they decrease!  I t i s only i n  areas d i r e c t l y adjacent t o m i n e r a l i z e d outcrops that Pb values again i n c r e a s e and t h i s i s s o l e l y a r e s u l t of p o s t g l a c i a l weathering  (Chapter 4, S e c t i o n I I I B ) .  Based on the s o i l g r i d and p i t data, p a r t i c u l a r l y f o r Pb,  and the v a r i a t i o n of Pb between s o i l  o v e r a l l geochemical reflect  l a y e r s ( F i g . 130) the  p a t t e r n s at Camp Lake are thought t o  a d i s p e r s i v e mode c o n s i s t e n t with g l a c i o - t e c t o n i c  processes.  That i s , geochemical  d i s p e r s i o n at Camp Lake  o r i g i n a t e d p r i m a r i l y from the two c l o s e l y spaced m i n e r a l i z e d outcrops west of B-C stream  and, t o a l e s s e r extent, the  m i n e r a l i z e d outcrop j u s t east of B-C stream near s i t e 198.  F i g u r e 130.  V a r i a t i o n (>10%) of Pb content data.  L i n e A-B  between Layers  1 and  2.  denotes c r o s s s e c t i o n shown i n F i g u r e  Note grouping 131.  of  253;  D i s p e r s i o n was down i c e i n r a t h e r narrow r i b b o n - l i k e or f a n type t r a i n s which g r a d u a l l y rose at low t o very low angles (1 : 100) from the bedrock s u r f a c e r e s u l t i n g thin  in relatively  (1 t o 3 f e e t ) narrow zones of h i g h l y anomalous  surrounded  by an envelope  of l e s s anomalous t i l l .  till However,  because of p o s s i b l e bedrock i r r e g u l a r i t i e s , which may r e s u l t in  t r a n s p o s i n g anomalous t i l l  same t i l l  sheet  t o higher l e v e l s w i t h i n the  ( c f . G a r r e t t , 1971), the a b i l i t y to r e c o g -  n i z e g l a c i a l t h r u s t i n g as such,  as opposed t o gradual  mixing and a s s i m i l a t i o n i s d i f f i c u l t  at best.  Nevertheless,  t h i s probably has occurred as evidenced by d i s t i n c t layering of  mechanical  geochemical  ( F i g s . 71, 72, 77 and 78) and p o s s i b l e r e p e t i t i o n  h i g h l y anomalous (_>1000 ppm) patches  (Fig.  V a r i a t i o n of Pb content between s o i l  40).  l a y e r s may be r e -  l a t e d , i d e a l l y , t o the g l a c i a l d i s p e r s i o n model f o r Camp Lake (Fig.  131).  However, i n areas immediately  adjacent t o  m i n e r a l i z e d outcrops, there i s a g e n e r a l decrease with r e s p e c t t o depth, post g l a c i a l weathering surface s o i l .  i n Pb v a l u e s  e s p e c i a l l y down s l o p e , because of processes which have e n r i c h e d the  Down i c e , there i s an area of low t o moderate  Pb v a l u e s which are g e n e r a l l y constant with depth.  This i s  f o l l o w e d f u r t h e r down i c e by a zone of moderate t o high Pb v a l u e s , which o f t e n i n c r e a s e s s u b s t a n t i a l l y with depth, as the anomalous to h i g h l y anomalous p o r t i o n s of the i n d i c a t o r t r a i n are i n t e r c e p t e d .  Pb values continue t o d i s p l a y i n -  c r e a s i n g v a l u e s with respect to depth u n t i l the most i n t e n s e  '^highly  anomalous  anomalous  Pb  Pb  Layer  F i g u r e 131.  contour I  • sample in Pb  site, with  no change depth  0  200 61  vertical  600feet I 8 3 meters exaggeration  I7x  I d e a l i z e d g l a c i a l d i s p e r s i o n model f o r Pb (and other elements) at Camp Lake. G l a c i a t i o n was from r i g h t t o l e f t . 40, 128 and 129.  Pb v a l u e s i n ppm.  Compare with F i g u r e s CO  255.  p o r t i o n of the anomaly i s reached,  beyond which an  t r a n s i t i o n to d e c r e a s i n g v a l u e s occurs. sition of  abrupt  T h i s abrupt  tran-  i s a r e f l e c t i o n of the r e l a t i v e l y t h i n zone or l a y e r  h i g h l y anomalous t i l l , as seen at depth i n s o i l  17 and 20  ( F i g s . 74 and 77 r e s p e c t i v e l y ) , and  pits  in similar  s i t u a t i o n s at the Jameland Mine, O n t a r i o and the Louvem Deposit,  Quebec.  Enveloping  the h i g h l y anomalous zone i s a  s l i g h t l y t h i c k e r zone of l e s s anomalous t i l l  which grades  l a t e r a l l y over tens of f e e t to perhaps a few hundred f e e t i n to  till  c o n t a i n i n g background c o n c e n t r a t i o n s of Pb.  Con-  sequently, only a r e l a t i v e l y short l a t e r a l d i s t a n c e of a hundred f e e t i s r e q u i r e d to proceed  from i n c r e a s i n g to  few  de-  c r e a s i n g Pb v a l u e s with r e s p e c t to depth as shown i n F i g u r e 130. may  For shallower t h i c k n e s s e s of t i l l be l a t e r a l l y shortened  the southern for  the above sequence  and/or v a r i o u s trends absent  Pb anomaly, F i g s . 40,  g r e a t e r t h i c k n e s s e s of t i l l  41 and 129).  there may  (e.g.  Conversely,  be l i t t l e  near-  s u r f a c e expression of concealed m i n e r a l i z a t i o n • ( c f . G a r r e t t , 1971). Due  to the high secondary geochemical m o b i l i t y of Cu  i n p a r t i c u l a r , Zn  i t i s more d i f f i c u l t  to r e l a t e p a t t e r n s f o r  these elements to a c l a s t i c g l a c i a l d i s p e r s i o n model. t h e l e s s , as d i s c u s s e d l a t e r , these two  and,  i t can reasonably  Never-  be assumed that  elements were d i s p e r s e d i n a manner s i m i l a r , i f not  i d e n t i c a l , to Pb but have undergone subsequent s u b s t a n t i a l hydromorphic r e d i s t r i b u t i o n due  to high s o l u b i l i t i e s of  256.  secondary weathering products (Table 29).  B.  Post-glacial  Dispersion  Geochemical r e s u l t s f o r Camp Lake were f i r s t tically  statis-  analyzed by means of histograms and p r o b a b i l i t y p l o t s ,  as presented and d i s c u s s e d i n Chapter 4, S e c t i o n 11 A'. bimodal d i s t r i b u t i o n s ,  The  c h a r a c t e r i s t i c of most elements, have  been p a r t i t i o n e d i n t o two groups with p o p u l a t i o n A r e l a t a b l e to  s u l p h i d e m i n e r a l i z a t i o n and p o p u l a t i o n B g e n e r a l l y  s i s t e n t with l o c a l background  concentrations.  con-  The degree of  b i m o d a l i t y and the ease with which these two p o p u l a t i o n s (A  and B) can be d i s t i n g u i s h e d i s r e l a t e d to metal m o b i l i t y ,  that i s , f o r immobile  elements  (Ag,.Pb and, to a l e s s e r  ex-  t e n t , Fe) t h e r e i s a g r e a t e r d i f f e r e n c e between population, parameters of A and B than t h e r e i s f o r mobile (Cu, Mn  elements  and Zn).  The l a c k of r e l a t i v e l y l a r g e parameter  differences  tween p o p u l a t i o n s A and B f o r mobile elements v e r s u s elements  i s probably a r e s u l t of i n t e n s i v e  weathering.  be-  immobile  post-glacial  E x t e n s i v e l e a c h i n g and r e d i s t r i b u t i o n of the  more mobile elements has tended to smooth out or homogenize the  d i f f e r e n c e s between p o p u l a t i o n s .  p a t t e r n s may was  initially  element  be s a i d t o be analogous to a photograph w e l l developed with high c o n t r a s t  p o s t - g l a c i a l p a t t e r n ) but which, developing  The mobile  which  (initial  a f t e r continued exposure to  ( p o s t - g l a c i a l weathering) has faded and l o s t much  Table 29.  S o l u b i l i t i e s of Cu, Pb and Zn s u l p h a t e s .  Sulphate  ZnS0  4  CuS0  4  S o l u b i l i t y g/lOOml H 0, 9  =90 14-32  PbS0„  Data from Weast, R.C.,  < 0.005  1976.  0 C  258.  of i t s sharpness and c o n t r a s t . Based on geology  tions)  ( F i g s . 17 and 18) and g l a c i a l  direc-  ( F i g . 14), as d i s c u s s e d i n preceding sections, geo-  chemical p a t t e r n s f o r Ag, Fe and Pb are c o n s i d e r e d the r e s u l t of g l a c i a l c o r r o s i o n and down-ice d i s p e r s i o n from the v i c i n i t y of the t h r e e m i n e r a l i z e d outcrops l y i n g c l o s e s t t o B-C stream. The p a t t e r n s d i s p l a y two d i s t i n c t p e n c i l to fan-shaped anoma l i e s extending west t o northwest northernmost  from these sources.  The  anomaly extends over 2500 f e e t from j u s t west of  B-C stream t o w e l l beyond the western g r i d l i m i t ;  however,  the l i m i t of d i s p e r s i o n may be on the order of 4500 t o 5500 f e e t based on the d i s t r i b u t i o n of gossan  ( P l a t e 15).  Lateral  mechanical d i s p e r s i o n i s g e n e r a l l y moderate with only a 3x to 6x i n c r e a s e at the western  end of the g r i d over the e s t i -  mated width (=150 f e e t ) at the source. with evidence from a i r photos o b s e r v a t i o n s of c i r c l e s solifluction,  This i s consistent  ( P l a t e s 15 and 16) and f i e l d  ( P l a t e 2) that movement of s o i l s by  s o i l creep, e t c . i s r e l a t i v e l y minor and  g e n e r a l l y does not exceed a few tens of f e e t . In g e n e r a l , the northern anomaly i s c h a r a c t e r i z e d by high metal v a l u e s w i t h i n s u r f i c i a l s o i l m i n e r a l i z e d outcrops.  i n close proximity to  This r e f l e c t s p o s t - g l a c i a l  and t r a n s p o r t of m i n e r a l i z e d fragments sheet wash and s o l i f l u c t i o n . ;  weathering  from these outcrops by  Down: i c e , metal v a l u e s i n Layer  1 decrease away from these outcrops f o l l o w e d by a s u b s t a n t i a l increase s t i l l  f u r t h e r down i c e b e f o r e g r a d u a l l y d i m i n i s h i n g  259.  to background l e v e l s with i s o l a t e d nebulous patches of high v a l u e s .  P a r t l y as a r e s u l t of more l i m i t e d  post-glacial  m o d i f i c a t i o n , anomalous trends and c o n t r a s t are b e t t e r p r e served i n Layer 2 and i t i s apparent  t h a t , as d e s c r i b e d i n the  g l a c i a l model, the anomaly plunges up i c e towards i t s source. A s i m i l a r s i t u a t i o n e x i s t s f o r the southern Ag, Fe Pb anomaly;  however, t h i s anomaly i s s h o r t e r (1500  to  f e e t ) not as s t r o n g l y anomalous nor as w e l l developed more n o r t h e r l y anomaly. (-e.-g. Pb i n the L-F-H  feet  1800 as the  N e v e r t h e l e s s , i n some i n s t a n c e s  h o r i z o n ) anomalous v a l u e s (^80  tend beyond the western  and  grid  limit,  ppm)  a d i s t a n c e exceeding  ex2800  ( F i g . 39). The o v e r a l l l a c k of development of the southern anomaly,  r e l a t i v e to the northern anomaly, i s thought  to be a r e s u l t  of l e s s e x t e n s i v e c o r r o s i o n and down-ice d i s p e r s i o n of m i n e r a l i z e d rock brought  about by the r e l a t i v e p o s i t i o n s of  the two p r i n c i p a l p o i n t sources. crops east of B-C  stream  The s u l p h i d e - b e a r i n g out-  l i e on a g e n t l y westward f a c i n g  slope and are not as prominent as the outcrops j u s t west of B-C  stream which l i e on a south t o east f a c i n g s l o p e .  Con-  sequently, because the former outcrops are t o p o g r a p h i c a l l y l e s s prominent and l i e on a slope which s l o p e s i n the p r i n c i p a l d i r e c t i o n of g l a c i a l flow, they.were somewhat prot e c t e d from g l a c i a l  corrosion.  Although Ag, Cu, Fe, Pb and Zn were a l l presumably d i s persed i n the same manner by g l a c i a t i o n , subsequent  inten-  260.  s i v e p o s t - g l a c i a l weathering has r e s u l t e d i n Zn, and to a l e s s e r extent, Cu p a t t e r n s becoming i r r e g u l a r and nebulous due to hydromorphic d i s p e r s i o n .  Both Cu and Zn are d e p l e t e d  i n s o i l s r e l a t i v e t o the grade o i s u l p h i d e m i n e r a l i z a t i o n (0.4% Cu;  7.5% Zn) and u n l i k e the immobile elements  c o n t r a s t decreases with depth.  their  Although mobile element  p a t t e r n s are l e s s w e l l developed r e l a t i v e t o immobile  element  p a t t e r n s , they are best d e f i n e d and r e l a t e d t o m i n e r a l i z a t i o n i n the L-F-H h o r i z o n .  T h i s tendency suggests that  scaveng-  ing a s s o c i a t e d with o r g a n i c matter has occurred, e s p e c i a l l y f o r Cu.  The s i g n i f i c a n c e of the c a p i l l a r y - a c t i o n mechanism  ( F i g . 7) i s unknown but most l i k e l y  c o n t r i b u t e s mobile metals  i n some degree t o the L-F-H h o r i z o n and p l a y s some r o l e i n e s t a b l i s h i n g decreasing contrast l e v e l s with respect to depth (Table 10). In the case of Zn, geochemical p a t t e r n s are very p o o r l y developed.  C o n t r a s t i s low (Table 10) and i n some areas  of low pH v a l u e s (and h i g h Pb c o n t e n t s ) v e r y low Zn l e v e l s (<_50 ppm) form n e g a t i v e anomalies as a r e s u l t of i n t e n s e leaching.  Higher Zn c o n c e n t r a t i o n s (^200 ppm) occur i n the  western p o r t i o n of the g r i d where pH i s l e s s a c i d i c ; where, however, does  Zn show evidence of s i g n i f i c a n t  no near-  s u r f a c e hydromorphic accumulation. A s i m i l a r s i t u a t i o n e x i s t s f o r Cu.  However, u n l i k e  Zn, the s l i g h t l y lower m o b i l i t y of Cu and i t s g r e a t e r  affinity  f o r o r g a n i c matter has r e s u l t e d i n Cu being scavenged by the  261.  L-F-H  h o r i z o n of swampy or gleyed s o i l s  and 39).  The u n d e r l y i n g m i n e r a l s o i l  (compare F i g s . 16 contains r e l a t i v e l y  lower values (compare F i g s . 31 and 32 with 30) due t o lower pH and Eh.  In a d d i t i o n , some zones of low Cu c o n c e n t r a t i o n s  near B-C stream, l i k e those of Zn, are a s s o c i a t e d with of  areas  low pH r e s u l t i n g i n negative anomalies (compare F i g s . 31  and 32 with 48).  Comparison of Cu ( p a r t i c u l a r l y i n the L-F-H  h o r i z o n ) and Pb p a t t e r n s shows that s p o r a d i c high Cu concent r a t i o n s (_>200 ppm) o f t e n c o i n c i d e with areas of high Pb v a l u e s and that these patches connected  some time a f t e r d e g l a c i a t i o n but b e f o r e  t i o n by chemical weathering. evidence,  of high Cu may have once been redistribu-  Furthermore, t h e r e i s some  from a comparison of C u  R  and P b  R  p a t t e r n s , that  high Cu c o n c e n t r a t i o n s g e n e r a l l y l i e t o the north of high Pb v a l u e s and are a s s o c i a t e d with f o o t w a l l rocks while Pb v a l u e s are s p a t i a l l y r e l a t e d t o the "mineral .horizon" ( F i g . 18). • T h i s suggests  that the lower p a r t of the f o o t w a l l i s r e l a t i v e l y  d e p l e t e d i n Pb i n r e l a t i o n to Cu as documented i n numerous s t u d i e s of v o l c a n o g e n i c massive s u l p h i d e s (Sangster, 1972; Lambert and Sato, The  1974).  l a r g e north-south  zone of high (_>200 ppm) Cu i n the  m i n e r a l s o i l may be e x p l a i n e d as a case of hydromorphic t r a n sport and p r e c i p i t a t i o n .  Examination  of a i r photos  that Cu i s t r a n s p o r t e d i n s o l u t i o n along a s l i g h t  suggests  depression  from an area of low (<_4.5) pH and high (>T000 ppm) Pb v a l u e s towards Camp Lake (compare F i g . 32 with 41 and 48).  Unfort-  262.  unately,  pH and p a r t i a l e x t r a c t i o n data are not  available  f o r t h i s area.  Nevertheless,  e x t r a p o l a t i o n of pH  suggests that pH  i n c r e a s e s towards the lake and p r e c i p i t a t i o n  of Cu could t h e r e f o r e be expected.  T h i s would e x p l a i n  narrowness, i n t e n s i t y , o r i e n t a t i o n and (with the higher  Cu values  In a d d i t i o n , the highest found adjacent  p a r t i a l Pb/Cu  the  overlap  d i s p l a c e d down slope) of t h i s zone.  Cu values  to t h i s zone ( F i g .  i n Camp Lake sediments  are  102).  It i s g e n e r a l l y thought (Hawkes and 151)  data  Webb, 1963;  pp.  150-  that the degree of secondary m o b i l i t y i s r e f l e c t e d by  p a r t i a l a t t a c k s with the more mobile elements g e n e r a l l y the e a s i e s t to e x t r a c t .  Consequently mobile elements  generally  have the highest  relatively  immobile elements are c h a r a c t e r i z e d by  p a r t i a l to t o t a l r a t i o s , w h i l e  centages of r e a d i l y e x t r a c t a b l e metal. the opposite  trend i s found (Tables  lower p e r -  At Bathurst  10 and  Norsemines  12).  Examination of the p a r t i a l e x t r a c t i o n data (Chapter Section  IIC) r e a d i l y r e v e a l s that the percentage of  metal e x t r a c t e d by  l.OM  being  HCI  and,  4,  trace  to a l e s s e r extent,  0.05M  EDTA, i s d i r e c t l y r e l a t a b l e to the degree of secondary m o b i l i t y / solubility sequently  (Table 29)  and  hence c o n t r a s t  the m o b i l i t y order  r e l a t e d to c o n t r a s t  and  EDTA e x t r a c t a b l e metal. element with the highest  (Table  10).  Con-  (Zn>Cu>Ag>Pb) i s i n v e r s e l y  the percentage of l.OM Although Pb contrast,  HCI  and 0.05M  i s the most immobile  i t i s a l s o the most  easily  263 .  and r e a d i l y e x t r a c t a b l e element;  whereas Zn, the most  mobile element has the lowest c o n t r a s t , and r e l a t i v e t o t o t a l v a l u e s , i s most d i f f i c u l t  to extract.  T o t a l and p a r t i a l e x t r a c t i o n data f o r d i f f e r e n t f r a c t i o n s are u s u a l l y c h a r a c t e r i z e d by a g e n e r a l i n metal v a l u e s from the f i n e to coarse s i z e  size  decrease  fractions  with a s l i g h t peak i n the c o a r s e r f r a c t i o n s (-10+40 or -40+80 mesh) and lowest v a l u e s i n the f i n e sand (-80+270 mesh);;:  The secondary  fractions  peak i n the coarse  i s l a r g e l y c o n f i n e d t o t o t a l data p l o t s ,  fractions  i n c r e a s e s with  g r i n d i n g and i s only o c c a s i o n a l l y present i n the p a r t i a l e x t r a c t i o n data.  I t i s t h e r e f o r e suggested  that t h i s  peak i s l a r g e l y r e l a t e d t o s u l p h i d e i n c l u s i o n s and/or t i c e bound metal  and that Fe/Mn oxide c o a t i n g s are of  r e l a t i v e l y minor importance or  Zn.  lat-  i n terms of scavenging  Cu, Pb  Cameron (1977a) has d e s c r i b e d a s i m i l a r  situation. It would t h e r e f o r e appear that under the extremely a c i d i c s o i l c o n d i t i o n s c h a r a c t e r i s t i c of the anomalous zone, r e t e n t i o n of Cu and Zn i n s o i l s by secondary i s not important. the s o i l ,  Fe and Mn m i n e r a l s  Both Cu and Zn are e x t e n s i v e l y leached  from  l e a c h i n g being most e f f e c t i v e c l o s e to m i n e r a l i z e d  outcrop where pH v a l u e s are lowest. Zn anomalies.  Any remaining  T h i s r e s u l t s i n negative  Zn at these s o i l s i t e s i s  264.  h e l d i n n o n - l a b i l e l a t t i c e p o s i t i o n s which are l e a s t to r e f l e c t the presence of s u l p h i d e s and which are s o l u b i l i z e d by p a r t i a l e x t r a c t i o n s . probably mineral  likely  not  In c o n t r a s t , Pb which  remains i n the s o i l s as an i n s o l u b l e secondary ( a n g l e s i t e / p l u m b o j a r o s i t e ? ) can be brought  s o l u t i o n by r e l a t i v e l y m i l d e x t r a c t i o n s (l.OM  Pb  into  c o l d HCI  or  0.05M EDTA).  II  WATERS A.  AND  SEDIMENTS  Surface-seepage, P i t and Snow-melt Runoff  A n a l y s i s of surface-seepage,  p i t and snow-melt waters  r e v e a l s the q u a n t i t y and r e l a t i v e p r o p o r t i o n s metals being  leached from s o i l s ;  between metal v a l u e s sediments.  thereby  i n s o i l s with those  ( m o b i l i t y ) of  providing a link i n lake waters  T h i s f a c i l i t a t e s a b e t t e r understanding  of chemi-  c a l weathering and the manner i n which lake water and anomalies are generated and  clastic soil  Water data f o r surface-seepage,  anomalies  p i t and  readily reveal  high l e v e l s of Zn with l e s s e r  of Cu.  not detected  Pb was  from l e s s than 10 ppb  i n any  to over 70 ppm  sample.  and  soil  Fig. 9 8 ) .  and water pH's  destroyed.  concentrations Values range  (Zn) with the  higher  values.  Zn values occur where s o i l  are lowest  sediment  snow-melt r u n o f f  v a l u e s g e n e r a l l y confined to areas of high s o i l However, the highest Cu and  and  (e.g. near B-C  For example,, down slope of m i n e r a l i z e d  values  stream, outcrops  265.  near B-C stream low Zn and Cu (<^50 ppm and £20 ppm r e s p e c t i v e l y ) are present i n gossanous  soils.  These low v a l u e s  are a s s o c i a t e d with high l e v e l s of Cu and Zn i n seepage/pit water and snow-melt r u n o f f .  T h i s suggests that  of Cu and Zn from these areas i s w e l l advanced f l u s h i n g of Cu and Zn from s o i l s under  leaching  and that  extremely a c i d i c  d i t i o n s i s r e s p o n s i b l e f o r negative s o i l geochemical The apparent Zn enrichment p i t waters  con-  anomalies.  i n surface-seepage waters over  (Table 20) may be the r e s u l t of e v a p o r a t i v e con-  centration.  Although Cu i s a l s o concentrated by t h i s p r o -  cess, i t s . lower m o b i l i t y and higher degree of s u s c e p t i b i l i t y to scavenging g e n e r a l l y negates the e f f e c t s of e v a p o r a t i v e concentrat i o n . Examination of Zn/Cu r a t i o s f o r s o i l , pit,  sediment,  seepage/  snow-melt and lake waters r e v e a l s s i m i l a r r a t i o s f o r a l l  media except Camp Lake water  (Table 30).  The Zn/Cu r a t i o  f o r combined seepage/pit and snow-melt waters i s approximately 1.5  t o 1.6 which compares with a r a t i o of 1.12 i n s o i l s , 8.0  i n lake waters and 1.3 i n sediments.  T h i s suggests t h a t ,  r e l a t i v e t o Cu, Zn i s being removed from s o i l s at a s l i g h t l y higher r a t e and i n g r e a t e r q u a n t i t i e s .  Upon e n t e r i n g Camp  Lake, Cu i s p r e c i p i t a t e d or scavenged f a s t e r than Zn r e s u l t i n g i n an i n c r e a s e of the Zn/Cu r a t i o t o 8.0. ent  lake sediment  follows:  The p r e s -  Zn/Cu r a t i o of 1.3 can be e x p l a i n e d as  Cu and Zn input from groundwater  and snow-melt r u n o f f  roughly averages 230 ppb and 350 ppb r e s p e c t i v e l y .  Dilution  Table 30.  Comparison of Cu and Zn c o n c e n t r a t i o n s and Zn/Cu r a t i o s i n sampling media at Camp Lake.  mean concentration(ppm) Sample Type  Cu  Zn  Zn/Cu  Soil  60  67  1. 12  Seepage/pit water  0.265  0.460  1. 73  Snow-melt water  0. 207  0. 296  1.42  Lake water  0.009  0.072  8.00  794  1064  1.34  Lake sediment  1:  Combined  averages f o r the L-F-H h o r i z o n , Layers 1 and 2.  267.  (which has no e f f e c t upon the r a t i o ) and p r e c i p i t a t i o n reduces the l e v e l of Cu and Zn i n Camp Lake t o the present 9 ppb and 72 ppb r e s p e c t i v e l y .  Consequently, 221 ppb of  Cu and 278 ppb of Zn have been l o s t , which r e s u l t s i n a c a l c u l a t e d Zn/Cu r a t i o of 1.26 f o r Camp Lake sediments which i s remarkably s i m i l a r t o the measured v a l u e of 1.34.  B.  Stream Waters and Sediments  The l a c k of a s i g n i f i c a n t number of streams i n the study area p r e c l u d e s e x t e n s i v e d e t a i l e d examination of stream waters and sediments.  Except f o r a segment  of the main drainage  system at Camp Lake, data on streams are minimal.  Because  sampling of B-C stream water was very c l o s e t o the edge of Camp Lake, the p r o g r e s s i v e r i s e of metal v a l u e s (Table 15) may r e f l e c t d i m i n i s h i n g d i s c h a r g e from Banana Lake r e s u l t i n g i n samples which c o n t a i n i n c r e a s i n g l y g r e a t e r p o r t i o n s of Camp Lake waters.  A l t e r n a t i v e l y , groundwaters from the area a d -  jacent t o the southernmost p o r t i o n of Banana Lake c o n t a i n high t o very high metal v a l u e s and may be i n c r e a s i n g l y important as s o i l s g r a d u a l l y thaw and groundwater flow i n c r e a s e s . The Zn peak recorded f o r the Camp Lake e x i t stream i n e a r l y June (Table 15) i s the r e s u l t of a l a r g e c o n t r i b u t i o n of anomalous snow-melt  r u n o f f (X = 100 t o 200 ppb Zn f o r the  Camp Lake b a s i n ) . D e t a i l e d measurements  of B-C stream water pH r e v e a l near  n e u t r a l pH's c l o s e t o Banana and Camp Lakes but s l i g h t l y  268.  a c i d i c to a c i d i c pH's of B-C  stream.  (5.5 t o 6.5)  near the c e n t r a l p o r t i o n  Water c l o s e s t to the stream banks i s more  a c i d i c than that i n mid stream, presumable because of the a d d i t i o n of low pH  ground/snow-melt waters.  The high l e v e l of Cu r e l a t i v e to Zn i n B-C  stream s e d i -  ment (Table 28) i s a r e f l e c t i o n of the m o b i l i t y d i f f e r e n c e between Cu and Zn.  Consequently, mixing of a c i d i c ,  metal-rich  ground/snow-melt waters with near n e u t r a l waters i n B-C  stream  r e s u l t s i n r a p i d l o s s of Cu and Fe ( s i t e 161) and a delayed l o s s of Mn  and Zn ( s i t e 159) r e s u l t i n g i n high l e v e l s of the  l a t t e r two elements being d i s p l a c e d down stream r e l a t i v e to Cu and Fe.  C.  Lake Waters  Lake water anomalies can be c l a s s i f i e d a c c o r d i n g manner i n which a lake r e c e i v e s metal as e i t h e r : put  ( i . e . m i n e r a l i z a t i o n i s at l e a s t  beneath lake waters) or b a s i n from:  2) i n d i r e c t  1) d i r e c t i n -  i n part exposed or concealed input v i a the lake drainage  A) m e t a l - r i c h groundwater  B) m e t a l - r i c h groundwater  to the  draining mineralization;  draining, metal-rich t i l l ,  and/or  C) i n f l o w from anomalous streams and/or other l a k e s .  As  might be expected, i n d i r e c t metal input i n t o a lake i s s i g n i f i c a n t l y more common than d i r e c t metal input because of the l a r g e r area from which i n d i r e c t  input can o r i g i n a t e  ( i . e . the drainage b a s i n ) and widespread g l a c i a l d i s p e r s i o n of m i n e r a l i z a t i o n .  Consequently, anomalous Zn and Cu con-  269.  c e n t r a t i o n s are r e s t r i c t e d t o those l a k e s that c o n t a i n m i n e r a l i z a t i o n or l i e down i c e and/or down drainage from m i n e r a l ization  ( F i g 101).  In a d d i t i o n t o c o n s i d e r i n g the manner by which metal may enter a l a k e , i t i s a l s o worthwhile degree of geochemical  examining  anomaly s i z e ,  c o n t r a s t and development with r e s p e c t  to drainage and g l a c i a l d i s p e r s i o n of m i n e r a l i z a t i o n .  Geo-  chemical data f o r the l a k e s adjacent t o the Main Zone p r o v i d e good examples o f the v a r i o u s metal input types and show the importance of drainage and g l a c i a l d i s p e r s i o n of m i n e r a l i z a t i o n in r e l a t i o n  t o anomaly formation.  Geochemical  anomalies w i t h i n Camp Lake, beneath which much  of the Main or "A" Zone m i n e r a l i z a t i o n l i e s , as Type 1;  can be c o n s i d e r e d  however, Camp Lake a l s o r e c e i v e s very  significant  amounts of groundwater d r a i n i n g both m i n e r a l i z a t i o n and h i g h l y anomalous t i l l  (Type 2B).  (Type 2A)  The l a t t e r two types are  probably more r e s p o n s i b l e f o r the formation of the l a k e water anomaly than i s the sub-aqueous p o s i t i o n of s u l p h i d e s . Because Camp Lake i s normally i c e covered u n t i l  late  June and the peak snow-melt r u n o f f occurs i n e a r l y t o mid June, metal r i c h snow-melt water flows onto the i c e covered lake and then t o the e x i t stream, which i s open e a r l y i n the season, without making contact with Camp Lake Waters.  As a  r e s u l t , water movement ( i . e . metal i n p u t ) i n t o Camp Lake from the drainage b a s i n as a whole i s minimal u n t i l the p r o t e c t i v e i c e cover begins t o break up.  Although break up of Camp  270.  Lake i c e i s only one t o two weeks a f t e r the peak snow-melt r u n o f f , the time necessary t o go from l i t t l e snow melt t o the m e l t i n g short  (1 t o 3 weeks).  t o maximum  of the l a s t few snowbanks i s very Therefore,  except f o r s m a l l ,  shallow  lakes which l o s e t h e i r i c e cover e a r l y i n the season, the homogeneity of lake waters i s preserved  from the i n i t i a l  snow-  melt " f l u s h i n g e f f e c t " ( F i g . 7) as p o s t u l a t e d by Jonasson and A l l a n (1973).  As , a r e s u l t ,  i n d i r e c t metal input i n t o Camp  Lake i s l a r g e l y l i m i t e d t o m e t a l - r i c h groundwater from the thawing a c t i v e l a y e r and, t o a l e s s e r extent,  the l a s t  remnant snowbanks. Although Banana Lake l i e s adjacent Zone m i n e r a l i z a t i o n , Cu and Zn values  t o the Main or "A"  are low because t h i s  lake l i e s up drainage and i s not i n the g l a c i a l d i s p e r s i o n path of m i n e r a l i z a t i o n . little  Consequently, Banana Lake r e c e i v e s  or no m e t a l - r i c h ground, stream or other  which could c r e a t e an anomaly.  Conversely,  lake waters  Bat and Cathy  Lakes are removed from both m i n e r a l i z a t i o n ( F i g . 17) and drainage from m i n e r a l i z a t i o n ( F i g . 12). and  Nevertheless,  Cu  - i n p a r t i c u l a r - Zn values w i t h i n these lake waters are  anomalous because these two lakes l i e down i c e from the Main or "A" Zone massive s u l p h i d e s .  As a r e s u l t , Cu and Zn s o i l  anomalies can be found w i t h i n t h e i r drainage b a s i n s t o p r o v i d e a source of m e t a l - r i c h groundwater ( i . e . Type 2B i n p u t ) . Because the s i t u a t i o n i s l a r g e l y analogous t o Camp Lake, i t is  not s u r p r i s i n g that Zn/Cu r a t i o s f o r these two lakes are  271.  n e a r l y i d e n t i c a l t o Camp Lake,even though Cu and Zn v a l u e s are three to f o u r times lower than i n Camp Lake (Table 31). Some drainage from s o i l s may a l s o be g i v i n g r i s e t o the s l i g h t l y high Zn v a l u e s i n the upper reaches of Banana Lake and the two s m a l l e r lakes f u r t h e r up drainage. Lower Sunken Lake i s p h y s i c a l l y separated by an esker from Upper Sunken Lake and the stream Sunken Lakes ( P l a t e 16). are comprised  connecting Camp and Upper  S o i l s southwest of Lower Sunken Lake  of medium t o coarse g l a c i o f l u v i a l d e p o s i t s charac-  t e r i z e d by low Cu and Zn v a l u e s .  Consequently,  drainage  from  the southwest c o u l d not be g i v i n g r i s e t o the h i g h l y anomalous Zn v a l u e s i n Lower Sunken Lake.  Instead, i t i s suggested  that seepage from Upper Sunken Lake and the stream  (both  h i g h l y anomalous i n Zn and Cu) along the northeast f l a n k of the esker i s e n t e r i n g Lower Sunken Lake through  the permeable  esker m a t e r i a l ( i . e . Type 2C i n p u t ) . A s i m i l a r s i t u a t i o n e x i s t s at the Anne-Cleaver Area.  Lakes  F l y i n g Horse and Cleaver Lakes l i e immediately  down  i c e of t h e East Cleaver Lake m i n e r a l i z a t i o n and c o n t a i n h i g h l y anomalous Cu and Zn c o n c e n t r a t i o n s .  I t i s suggested  that the very high Cu and Zn v a l u e s w i t h i n these two lakes are hydromorphically d e r i v e d from the surrounding h i g h l y anomalous t i l l  and, t o some extent, bedrock m i n e r a l i z a t i o n  v i a groundwater and, t o a l e s s e r extent, snow-melt r u n o f f ( F i g s . 17, 101, B6, B26, B38, B39 and Table 31).  Further  down i c e , and down drainage, Cu and Zn v a l u e s i n lake waters decrease towards background  levels.  Table 31.  Comparison of Cu and Zn d i s p e r s i o n i n lake waters near the Main and East Cleaver Lake Zones and at the A g r i c o l a Lake prospect.  ppb Lake  „  Zn  Cu  Zn/Cu '  Camp  pH *  Lake  D  . „ 3 urainage Position  n  Possible  a  M  e  t  a  l  _ 4 Sources  Area  1  1  1  7  3  1. 5  up  2AB  1  1  1  7  0  0. 7  up  2AB  71  9  8  7  0  0. 0  down  1,2ABC  63  8  8  7  0  1. 0  down  1,2ABC  30  2  15  7  1. 3  down  2 ABC  Cathy  28  3  9  7  2  1. 3  up  2 ABC  Bat  16  2  8  7  3  1. 0  "P  2 ABC  F i r s t  Banana  Banana Camp Upper  Sunken  Lower  Sunken  Anne-Cleaver Cleaver F l y i n g  Horse  0  Lakes  Area  166  5  33  7  6  0. 3  down  1.2AB  404  27  15  7  3  0. 9  down  2 ABC  Anne  45  6  7  7  4  1. 0  down  1,2ABC  T u r t l e  17  3  6  7  6  2. 2  down  2BC  13  2  6  7  6  3. 2  down  2BC  Wedge  7  1  7  7  7  3. 4  down  2BC  Selma  4  2  2  7  6  6  down  2BC  N.  T u r t l e  Agr  icola  Lake  0  Area*  W  472  186  59  3.2  .3  8  0 •4  down  2 ABC  W  471  176  56  3.2  3  9  0  8  down  2BC  W  485  28  5  3.1  4  8  1  2  down  2C  W  487  28  5  5.6  5  2  2  0  down  2C  V  11  2  5.5  5  7  2  3  down  2C  483  8  5  1.6  4  7  0  2  up  2B  W  482  13  4  3 . 2  6  0  0  3  up  2C  W  481  13  3  4.3  6  0  0  7  up  2C  W  490  W  47 5  18  9  2  3  7  0  7  down  2BC  W  480  8  2  4  6  1  1  8  down  2C  W  496  7  2  3.5  6  0  2  3  down  2C  W  494  8  2  4.0  6  0  2  4  down  2C  1:  See Cameron  2:  D  3:  Relative  =  distance  respect from 4:  and Lynch  (1975)  .to m a s s i v e  position  of  t o massive  f o r d e t a i l s .  sulphide  the lake  sulphides  (miles).  i n the drainage ( i . e .either  up  system o r down  with drainage  m i n e r a l i z a t i o n ) .  F o r explanation possible  source,  of symbols major  see text.  source(s)  are  Where  more  underlined.  than  one  273.  In lake waters, Cu c o n c e n t r a t i o n s and c o n t r a s t are lower and d i s p e r s i o n more r e s t r i c t e d r e l a t i v e to Zn ( F i g . 101 Table 31).  T h i s may  r e f l e c t the Cu-poor nature of m i n e r a l -  i z a t i o n or a l t e r n a t i v e l y , Cu r e l a t i v e to Zn.  and  The  the s l i g h t l y lower m o b i l i t y of latter p o s s i b i l i t y i s preferred  based on Cu and Zn sulphate s o l u b i l i t i e s (Table 29), s o i l geochemical p a t t e r n s , c o n t r a s t r a t i o s  (Table 10) and Cu and  c o n c e n t r a t i o n s and p a t t e r n s i n seepage/pit runoff  (Chapter  and  Zn  snow-melt  4, S e c t i o n IV).  The m o b i l i t y d i f f e r e n c e between Cu and Zn i n lake waters is particularly  evident on examination  of Zn/Cu r a t i o s ,  c e n t r a t i o n s and the d i s t a n c e down drainage (Table 31).  Zn/Cu r a t i o s  are  low  whereas, i n lakes c o n t a i n i n g anomalous c o n c e n t r a t i o n s  of Cu and Zn near or down drainage Upper Sunken or Camp Lake), higher  (j>8.0).  drainage esker  from m i n e r a l i z a t i o n  For example, i n lakes c o n t a i n i n g background  l e v e l s of Cu and Zn (e.g. Banana Lake), (<4);  con-  from the Main Zone (e.g.  Zn/Cu r a t i o s  are s i g n i f i c a n t l y  i n Lower Sunken Lake, which i s i n the same  as Upper Sunken Lake but  i s separated  from i t by  ( P l a t e 16), the Zn/Cu r a t i o i s approximately  Consequently, although  an  15.0.  Cu presents a s m a l l e r t a r g e t , i t i s  a l s o more l i k e l y to p i n p o i n t m i n e r a l i z a t i o n than  i s Zn.  Examination of Cu and Zn d i s p e r s i o n down drainage  from  the Cleaver Lake m i n e r a l i z e d zone ( F i g . 17) and at the A g r i c o l a Lake prospect,  a l s o shows that Zn i s more widely d i s p e r s e d  Cu, but with d i f f e r e n t  Zn/Cu r a t i o d i s t r i b u t i o n s  than  (Table 31).  274.  R e l a t i v e to Camp Lake, Cu  and, i n p a r t i c u l a r , Zn  levels in  the Anne-Cleaver drainage  system are higher and d i s p l a y  higher Zn/Cu r a t i o s i n p r o x i m i t y to m i n e r a l i z a t i o n .  Down  drainage from m i n e r a l i z a t i o n there i s a constant  decrease  i n r a t i o values as Zn i s more g r a d u a l l y  to background  l e v e l s r e l a t i v e to Cu.  Although  reduced  F l y i n g Horse Lake has  the  highest t o t a l Cu and Zn v a l u e s , Cleaver Lake has the highest Zn/Cu r a t i o and  l i e s c l o s e s t to the orebody.  at A g r i c o l a Lake, pH's  are much lower  Conversely,  (3.8 to 6.0)  and Zn/Cu  r a t i o s i n p r o x i m i t y to m i n e r a l i z a t i o n are c o r r e s p o n d i n g l y (2.0 to 3.0)  low  and i n c r e a s e only s l i g h t l y down drainage.  However, Cu i s more abundant i n the s o i l s and  i n the ore at  A g r i c o l a Lake r e l a t i v e to Bathurst Norsemines and t h i s play a r o l e i n lowering the Zn/Cu r a t i o s .  In g e n e r a l , the  lower the pH the higher the l e v e l s of Cu and Zn with l e v e l of Cu approaching  that of Zn ( i . e . lower  D.  Lake Sediments  The  d i s t r i b u t i o n of Cu,  may  the  Zn/Cu r a t i o s ) .  Pb and Zn i n s u r f i c i a l  lake s e d i -  ments r e v e a l s a wide range of values w i t h i n and between i n d i v i d u a l lakes.  With respect to the p o s i t i o n of m i n e r a l i z a t i o n ,  metal v a l u e s decrease down drainage from Camp Lake w i t h  Cu,  Pb and Zn f o l l o w i n g the observed m o b i l i t y order Zn>Cu>Pb (Tables 26 and 27).  Anomalous Zn c o n c e n t r a t i o n s have higher  c o n t r a s t and l a r g e r anomalous d i s p e r s i o n t r a i n s than Cu or, i n p a r t i c u l a r , Pb  ( c f . Cameron and Durham, 1974b).. However,  275.  high Pb v a l u e s are more l i k e l y to l o c a t e the source of an anomaly. R e l a t i v e to s o i l s , sediments c o n t a i n higher average conc e n t r a t i o n s of Pb and, i n p a r t i c u l a r , Cu and Zn (Tables 9, 26 and 27)  which cannot be explained by the r e l a t i v e l y  g r a i n s i z e of sediments v e r s u s s o i l s . .  Because  finer  extensive  f l u s h i n g of Cu and Zn from s o i l s o v e r l y i n g m i n e r a l i z e d has been demonstrated, i t can be concluded that l a r g e  zones scale  Cu and Zn anomalies i n lake sediments are l a r g e l y the r e s u l t of t h e i r hydromorphic  dispersion.  The r e l a t i o n s h i p of high Cu and Zn v a l u e s i n lake waters with high l e v e l s of Cu and Zn i n lake sediments i s r e a d i l y apparent (Tables 17 and 26, F i g . 101). relatively  A l s o , however,  low l e v e l s of Cu and Zn i n lake waters appear to  be able to g i v e r i s e to s i g n i f i c a n t  lake sediment anomalies  (e.g. Banana Lake) because sediments act as a s i n k or t r a p . Consequently, on a r e g i o n a l s c a l e lake sediment anomalies o f f e r a l a r g e r t a r g e t than lake water anomalies ( F i g . 10). Furthermore, the r e l a t i v e l y low r e l i e f  and low r a t e of s e d i -  mentation (1 to 3 inches/1000 y e a r s ) a i d s f o r m a t i o n of hydromorphic lake sediment anomalies by p r e v e n t i n g d i l u t i o n of anomalies with abundant  o r g a n i c and i n o r g a n i c d e t r i t u s .  Conversely, lake waters are more dynamic with metal coming i n ( v i a s o i l drainage) and being removed s i m u l t a n e o u s l y ( v i a p r e c i p i t a t i o n and outflow) •resulting i n a steady s t a t e  r  condition.  276.  Assuming F i g u r e 127 chemical  i s an adequate s t r a t i g r a p h i c / g e o -  model f o r near-center  lake sediments at  Bathurst  Norsemines, i t can g e n e r a l l y be concluded that Cu,  Pb  and  Zn  values  tend to i n c r e a s e with  depth i n sediment or remain con-  stant;  however, once the dense s a n d - s i l t - c l a y l a y e r i s pene-  t r a t e d , metal v a l u e s decrease s i g n i f i c a n t l y . Fe and Mn  values  Conversely,  i n c r e a s e - o f t e n d r a m a t i c a l l y - towards the  sediment-water i n t e r f a c e .  Percent  L.0.1. trends  and g e n e r a l l y d i s p l a y a narrow range of values  are mixed  w i t h i n a lake.  In terms of s t r a t i g r a p h y , the s a n d - s i l t - c l a y l a y e r i s b e l i e v e d to represent pebbles and  because i t c o n t a i n s  which g i v e r i s e to the o v e r l y i n g g y t t j a  soft, s i l t - c l a y deposits.  h a i r - l i k e plant f i b e r s f r i a b l e deposit  The  latter often  contains  (moss?) and o c c a s i o n a l l y a w h i t i s h ,  (marl?) which probably  g l a c i a t i o n and r e p r e s e n t s Karrow and  occasional  i s too dense to be the r e s u l t of normal l a k e s e d i -  mentation processes and  till  the f i r s t  Anderson, 1975).  formed soon a f t e r de-  t r u e lake sediment ( c f .  Deposited  above t h i s i s a  watery, o r g a n i c - r i c h (10 to 35% L.O.I.) ooze commonly c a l l e d g y t t j a or a l g a l g y t t j a .  G y t t j a i s composed of  silt-clay  p a r t i c l e s bound by o r g a n i c d e t r i t u s , commonly a l g a l remains and humic c o l l o i d s Fe and Mn lake sediments;  (Timperley  A l l a n , 1974).  nodules are commonly d i s p e r s e d  throughout  however, they are u s u a l l y concentrated  sediment-water i n t e r f a c e . Mn  and  as scavengers of Cu,  at  Although the importance of Fe  Zn and,  to a l e s s e r extent,  Pb  the and  i s well  277.  documented ( H o r s n a i l et a l . , 1969; Chao and Theobald, i n p a r t i c u l a r , Mn Pb and Zn. s m a l l e r and  1976;  Coker and N i c h o l ,  1975;  G a r r e t t and Hornbrook, 1976)  Fe  d i s p l a y a negative c o r r e l a t i o n with  In some cores Fe and Mn  and,  Cu,  nodules become fewer,  l e s s w e l l d e f i n e d with depth ( c f . Troup, 1969).  T h i s i s c o n s i s t e n t with c o n d i t i o n s below the upper one  to  inches of sediment changing  con-  from o x i d i z i n g to reducing  two  ditions . As a r e s u l t of r e d u c t i o n below the sediment s u r f a c e Mn and,  to a l e s s e r extent, Fe are m o b i l i z e d and probably move  towards the s u r f a c e where they, are r e p r e c i p i t a t e d , i n decreasing v a l u e s with depth and,  resulting  i n .some case, e x t r a -  o r d i n a r i l y high v a l u e s at the s u r f a c e .  Cu,  Zn and,  to some  extent, Pb v a l u e s d i s p l a y the o p p o s i t e t r e n d which  suggests  that they are e i t h e r enhanced or at l e a s t are l e s s  mobile  under reducing c o n d i t i o n s . Black bands which commonly occur i n g y t t j a and a l s o become more d i f f u s e with depth.  The  silt-clay,  absence of  these  bands i n the n e a r - s u r f a c e o x i d i z e d zones combined with  their  d i f f u s e ( d i s s o l u t i o n ? ) nature at g r e a t e r depths w i t h i n the sediment, suggests  that these bands are formed along  long term, s t a b l e o x i d a t i o n - r e d u c t i o n boundaries.  relatively T h e i r exact  nature i s unknown but they commonly c o n t a i n very high Cu and Zn c o n c e n t r a t i o n s , low Pb, moderate l e v e l s of Fe.  Ag and Mn  Although  concentrations  and  these bands are assumed  278.  to be reducing, hydrogen s u l p h i d e was smell.  Nevertheless,  not detected  s u l p h i d e s could be present  d e t e c t a b l e i n t h i s manner i f the Cu/Zn supply  by and  i s greater  than the g e n e r a t i o n of s u l p h i d e i o n ( c f . Timperley Allan,  not  and  1974).  Pb c o n c e n t r a t i o n s are too low i n a l l water types to account f o r high Pb v a l u e s i n lake sediments.  In a d d i t i o n ,  Pb trends w i t h i n lake sediments o f t e n d i v e r g e from those  of  Cu and Zn and, most importantly, Pb v a l u e s i n near-shore  sedi-  ments are very low while Cu and Zn v a l u e s remain high. of which suggests  a d i f f e r e n t mode of o r i g i n f o r the  of Pb anomalies' i n l a k e sediments. of Pb,  i t i s suggested  b a s i n sorbed  Because of the  All  formation immobility  that most of the Pb e n t e r s the lake  on f i n e c l a y - s i z e d p a r t i c u l a t e matter ( i . e .  c l a s t i c d i s p e r s i o n ) r a t h e r than as a d i s s o l v e d s p e c i e s ( c f . Hoffman, 1976).  Much of t h i s p a r t i c u l a t e matter i s dumped  i n t o lakes upon m e l t i n g of the i c e cover and through heavy r u n o f f f o l l o w i n g thunderstorms and m e l t i n g of remnant snowbanks.  Ice scour and wave a c t i o n would then prevent  t i o n of f i n e c l a y - s i z e d sediments i n high energy  deposi-  near-shore  environments. I n c r e a s i n g Cu and Zn v a l u e s with r e s p e c t to depth i n sediment cannot be a t t r i b u t e d to Fe, Mn richment. r e l a t e d to  Although  or o r g a n i c carbon  metal enhancement with depth may  en-  be  'aging' of o r g a n i c matter (whereby important  organic  279.  functional  groups are known t o i n c r e a s e with sediment  c f . Manskaya and Drozdova, likely.  1968 p. 243), t h i s does not seem  On the other hand, m e t a l - r i c h (Cu and Zn)  waters, emerging  depth  ground-  near the b r e a k - i n - s l o p e of the lake b a s i n and  f l o w i n g j u s t above or up through the compact s i l t - c l a y  layer,  could be enhancing metal l e v e l s i n the lower p o r t i o n s of the lake sediment  ( c f . Hoffman, 1976;  Winter, 1974).  This  would e x p l a i n . t h e presence of the highest metal v a l u e s o f t e n o c c u r r i n g near the bottom of lake sediments and at i n t e r m e d i a t e water depths, presumably where groundwaters  emerge.  Alter-  n a t i v e l y , the o v e r a l l decrease i n Cu, Pb and Zn v a l u e s , as the sediment-water  interface  i s approached, could be due to a con-  comitant decrease i n the supply of these metals at the source (i.e.  s o i l s surrounding Camp Lake) as a r e s u l t of  post-glacial  weathering.  Ill  FINAL DISCUSSION AND A.  Element  SUMMARY  Dispersion  It i s u n c l e a r whether t h e r e was more than one g l a c i a l episode i n the Bathurst Norsemines Area. and C r a i g  (1960) d i s c o v e r e d a s h i f t  northwest to southwest. indicators  However, Blake (1963)  in glacial direction  from  Measurements of g l a c i a l d i r e c t i o n  by t h i s author ( F i g . 14) r e v e a l a bimodal d i s -  t r i b u t i o n c o n s i s t e n t with those e s t a b l i s h e d by Blake (1963) ( F i g . 13).  Most of the g l a c i a l d i r e c t i o n  indicators  chemical p a t t e r n s are o r i e n t e d west-northwest  and geo-  to northwest.  280.  N e v e r t h e l e s s , there i s a tendency f o r some geochemical p a t t e r n s , p a r t i c u l a r l y p a r t i a l to t o t a l r a t i o patterns, to display southwest o r i e n t a t i o n of g l a c i a l d i r e c t i o n  a  p a r a l l e l t o the l e s s w e l l developed s e t indicators.  Based on immobile element (Ag, Pb and Fe) p a t t e r n s i n s o i l , g l a c i a l dispersion  of s u l p h i d e - r i c h  till  originated  from the three m i n e r a l i z e d outcrops l y i n g c l o s e s t stream.  t o B-C  Both boulder t r a i n s and more e x t e n s i v e micro-boulder  or geochemical i n d i c a t o r display  primarily  t r a i n s are present.  Ag, Pb and Fe  the best developed geochemical i n d i c a t o r  These occur i n each s o i l  layer  as two s u b p a r a l l e l ,  to fan-shaped p a t t e r n s with v a l u e s i n c r e a s i n g the west).  The more n o r t h e r l y  is easily related  narrow,finger  down i c e ( t o  t r a i n i s developed best and  t o the p a i r of m i n e r a l i z e d outcrops west  of B-C stream (e.g. more n o r t h e r l y  trains.  Figs.  27 and 41).  The g e n e r a l trend of the  t r a i n i s e a s i l y r e c o g n i z e d i n a i r photos as  gossan ( P l a t e 16). An  i d e a l i z e d Pb d i s p e r s i o n  chemical i n d i c a t o r  model f o r the northern geo-  t r a i n at Camp Lake i s shown i n F i g u r e 131.  T h i s model i s based on the d i s t r i b u t i o n of Pb i n Layers 1 and 2 and the t r e n d of Pb v a l u e s with r e s p e c t t o depth ( F i g s . 40, 41 and 130).  From t h i s , i t i s suggested that  dispersion  down i c e i n narrow, t h i n t r a i n s which g r a d u a l l y  rose at low t o  very low (<2°) angles from the b e d r o c k - t i l l i n t e r f a c e . these low angled t r a i n s are i n t e r c e p t e d  was  by s u r f a c e  soil  If  281.  sampling  then the highest v a l u e s may  w e l l occur at some d i s -  tance down i c e where the i n d i c a t o r t r a i n reaches At s l i g h t l y deeper sampling  the s u r f a c e .  depths the i n d i c a t o r t r a i n i s  i n t e r c e p t e d c l o s e r to the source and the anomaly appears to approach the source r e l a t i v e to the p a t t e r n i n the o v e r l y i n g soil  (compare F i g s . 40 and 41).  At s t i l l  g r e a t e r depth,  Pb values are c o n f i n e d to an area immediately c l o s e to the bedrock source  ( c f . F i g s . 128,  It i s presumed that Ag,  down i c e and  129  and  131).  Cu, Fe, Pb and Zn were a l l  g l a c i a l l y d i s p e r s e d i n the same manner; of  high  however, the absence  Cu and Zn p a t t e r n s s i m i l a r to and superimposed on those of  Ag, Fe and Pb i s the r e s u l t of e x t e n s i v e hydromorphic d i s persion.  Evidence  f o r t h i s i s provided by high l e v e l s of  Cu and Zn i n seepage, p i t , snow-melt and 98 and ing  101).  Leaching  lake waters ( F i g s .  97,  of Zn has been most complete, r e s u l t -  i n the formation of negative anomalies i n areas of high  Ag, Fe and Pb v a l u e s and low pH. Zn v a l u e s can be found where pH's  However, high (_>200  ppm)  i n the western p o r t i o n of the g r i d  are more moderate.  Nevertheless, r e l a t i v e to  the amount of Zn i n the ore (average grade 7.5%), there i s a severe d e p l e t i o n i n the s o i l . to  have been r e t a i n e d i n the s o i l  m i n e r a l and  as a s t a b l e  than the remaining  Zn.  appears  secondary  i s more r e a d i l y e x t r a c t e d by reagents  EDTA or d i l u t e HCI of  On the other hand, Pb  such  as  A m o b i l i t y order  Zn>Cu>Fe>Ag>Pb i s proposed. Hydromorphic s o i l anomalies are l a r g e l y c o n f i n e d to the  282.  L-F-H of  horizon.  These anomalies  intermediate m o b i l i t y  are r e s t r i c t e d t o elements  ( i . e . Cu and F e ) .  Zn, because of  i t s high m o b i l i t y , does not form hydromorphic s o i l In m i n e r a l s o i l , the only area of s i g n i f i c a n t s o i l anomalies  occurs i n the f a r western  anomalies.  hydromorphic  p o r t i o n of the  soil  g r i d as a very s t r i k i n g north-south zone of very high Cu ( F i g s . 31 and  32).  Because of the high m o b i l i t y of Cu and Zn, d e t a i l e d geochemical  p a t t e r n s f o r these two  f a c t o r y , r e l a t i v e to Pb, eralization.  elements are l e s s  soil  satis-  i n l o c a t i n g p o s s i b l e sources of min-  T h i s becomes most apparent  at depth  where Cu and Zn d i s p l a y low c o n t r a s t (Table 10) and p a t t e r n s are more d i f f i c u l t  (Layer  2)  geochemical  to r e l a t e to m i n e r a l i z e d sources  than immobile element p a t t e r n s ( F i g s . 30 to 32 and 42 to 44). Conversely, Pb s o i l geochemical  p a t t e r n s become b e t t e r d e f i n e d  and possess higher c o n t r a s t as sample depth 40 to 42, Table 10).  increases (Figs.  N e v e r t h e l e s s , broad areas of  interest  (with regards to sources of Cu and Zn m i n e r a l i z a t i o n ) are r e a d i l y o u t l i n e d , with wide d i s p e r s i o n and e x c e l l e n t geochemical c o n t r a s t , by d i s s o l v e d Cu and Zn i n seepage/pit, snow-melt waters ( F i g s . 97 to 100).  The h i g h e s t Cu and  v a l u e s i n these waters surround m i n e r a l i z e d outcrops d e l i n e a t e those areas c o n t a i n i n g the lowest pH's  Zn  and  and low,  i n many cases, negative Cu and Zn s o i l geochemical  and  or  anomalies  (compare F i g s . 99 and 100 with 30 to 32 and 42 t o 44). On a more r e g i o n a l s c a l e , Cu and Zn form widespread  lake  283.  water and c e n t e r l a k e sediment anomalies r e l a t a b l e to m i n e r a l r  ization  ( F i g s . 10 and 101 t o 106).  I n d i v i d u a l lakes d i s p l a y  homogeneous Cu and Zn v a l u e s i n water wide v a r i a t i o n  (up t o 15x) i n sediment  (Tables 16 and 17) but (Table 26), l a r g e l y  as a f u n c t i o n of t e x t u r e and Eh ( F i g s . 107 t o 127). Lake water anomalies are generated from drainage of m i n e r a l i z e d rock and/or m e t a l - r i c h t i l l .  Consequently, lake  water and, t o a l a r g e extent, lake sediment anomalies are conf i n e d t o lakes down drainage and/or down i c e from m i n e r a l i z a t i o n . Because m e t a l - r i c h t i l l may have been g l a c i a l l y d i s p e r s e d up drainage, some lake" anomalies are higher than the m i n e r a l i z e d sub-outcrop (e.g. Bat and Cathy Lakes, F i g s . 12 and 101). A good c o r r e l a t i o n e x i s t s between high Cu and Zn v a l u e s i n lake waters and sediments (Tables 17 and 26, F i g . 101); however, because sediments act as a s i n k or t r a p and sedimentation r a t e s are low (1 t o 3 inches/1000 y e a r s ) , r e l a t i v e l y low l e v e l s of Cu and Zn i n lake water can g i v e r i s e to s i g n i f i c a n t lake sediment anomalies (e.g. Banana Lake, compare F i g s . 101 and 103). Although Pb was not detected i n lake waters, i t forms  sig-  n i f i c a n t sediment anomalies which, u n l i k e those f o r Cu and Zn, are  r e s t r i c t e d t o lakes d i r e c t l y adjacent t o m i n e r a l i z a t i o n  and/or m e t a l - r i c h t i l l .  T h i s i s because Pb, with i t s high im-  m o b i l i t y , enters lakes as a sorbed c o n s t i t u e n t on c l a y - s i l t p a r t i c u l a t e matter while Cu and Zn enter l a r g e l y as d i s s o l v e d species.  As a r e s u l t , the highest Pb v a l u e s are found near  284.  the  shore c l o s e s t to m i n e r a l i z a t i o n but i n water  depths  g r e a t e r than 15 f e e t where wave a c t i o n and i c e scour do not  prevent or d i s r u p t accumulation of s i l t - c l a y  ( F i g s . 17 and 102 to 106).  sediments  Conversely, the h i g h e s t Cu and  Zn v a l u e s can be found anywhere w i t h i n the l a k e but to occur predominantly at i n t e r m e d i a t e depths  appear  ( F i g . 106).  Down drainage d i s p e r s i o n of Cu and Zn through a s e r i e s of  l a k e s i s e x t e n s i v e i n waters and sediments with anomalous  c o n c e n t r a t i o n s extending f a r t h e s t T h i s i s presumably  i n lake sediments  ( F i g . 10).  a r e s u l t of sediments a c t i n g as a t r a p  and  forming anomalies from low but anomalous l e v e l s of metals i n lake water.  R e l a t i v e to Cu, Zn d i s p l a y s higher v a l u e s and  wider d i s p e r s i o n i n both water  and sediments as a r e s u l t of  i t s higher m o b i l i t y as shown by Zn/Cu r a t i o s ( F i g . 101 Tables 27 and 29).  and  C o n t r i b u t i o n s of snow-melt r u n o f f , a l -  though p o t e n t i a l l y l a r g e , are r e s t r i c t e d f o r the l a r g e r l a k e s because of long l a s t i n g i c e cover which prevents mixing of snow-melt and lake waters. The use of water criticized variations;  as a sampling medium has o f t e n been  i n North America because o f :  2) temporal  3) metal c o n c e n t r a t i o n s near the d e t e c t i o n  of most a n a l y t i c a l techniques and acidifying,  1) bulk;  limit  4) pre-treatment such as  f i l t e r i n g , concentration etc. i s often  required.  However, s t u d i e s by t h i s author and Cameron and B a l l a n t y n e (1975) and Cameron (1977b) show that i n the Bathurst r e g i o n waters are s u r p r i s i n g l y f r e e of these c r i t i c i s m s .  Although  lake  285.  lake waters were n o t p r e - c o n c e n t r a t e d  before  analysis in this  study, t h i s procedure appears to be the only necessary with regards ease and  to r e g i o n a l sample programs.  step  Furthermore,  the  r a p i d i t y with which samples can be c o l l e c t e d argue  w e l l f o r the use of lake water as a r e g i o n a l or  semi-regional  e x p l o r a t i o n medium where d e p o s i t s c o n t a i n i n g at l e a s t  one  mobile element are sought. Lake sediments a l s o p r o v i d e  a good r e g i o n a l sample medium  but wide v a r i a t i o n w i t h i n lake sediments makes sample s i t e s e l e c t i o n more c r i t i c a l , m i l e s ) sample d e n s i t i e s . ployed  then one may  e s p e c i a l l y at low If low  (1 sample/10 sq.  sample d e n s i t i e s are  wish to c o l l e c t  two  samples per  lake.  This requires l i t t l e  a d d i t i o n a l e f f o r t , and  can then be assigned  p r i o r i t i e s based on the number of  anomalous samples and  elements and  em-  anomalies, i f any,  t h e i r r e l a t i v e degree of  geochemical c o n t r a s t .  B.  A p p l i c a t i o n to E x p l o r a t i o n 1.  The  Regional  a p p l i c a t i o n of geochemical e x p l o r a t i o n methods depend  upon the s t a t e of g e o l o g i c knowledge of the area and of m i n e r a l i z a t i o n sought.  the  type  Assuming the geology i s p o o r l y  understood then the area to be explored  can be l a r g e  and  sample d e n s i t i e s , w i l l probably be low (1 sample per 5 to 10 2 m i l e ). L o c a t i n g a m i n e r a l deposit at t h i s stage r e q u i r e s a  286.  c e r t a i n amount of luck and normally  the data are used to de-  f i n e s m a l l e r areas which appear f a v o r a b l e f o r m i n e r a l i z a t i o n . F o r t u n a t e l y , volcanogenic massive s u l p h i d e s o f t e n occur i n c l u s t e r s or b e l t s (Sangster, (Cu and Zn) and,  1972), c o n t a i n mobile elements  t h e r e f o r e , provide reasonably  geochemical t a r g e t s .  large  Consequently, lake sediments or waters  provide the best r e g i o n a l sample media because they are widespread  ( P l a t e 5), q u i c k l y and e a s i l y sampled and can  f u l l y represent  success-  the m i n e r a l p o t e n t i a l of l a r g e areas.  Stream sediments, although  o f t e n chosen i n other areas as a  r e g i o n a l sample medium, are a poor choice at Bathurst Norsemines because streams are scarce and p o o r l y d e f i n e d . The c u l t one.  choice between lake waters and sediments i s a d i f f i Lake waters have many advantages such as:  1) ease and speed of sampling;  2) h i g h l y homogeneous;  sample p r e p a r a t i o n i s r e q u i r e d and Disadvantages are few,  3)  no  4) r a p i d i t y of a n a l y s i s .  the most s e r i o u s being the  restriction  of a n a l y s i s to mobile elements and s m a l l e r anomalous halos r e l a t i v e to l a k e - c e n t e r sediments ( F i g . 1 0 ) .  These  are considered minor r e l a t i v e to the advantages.  disadvantages However, i f 2  the sample d e n s i t y i s g r e a t e r than 1 sample per 3 m i l e  , then  lake sediments ( p a r t i c u l a r l y l a k e - c e n t e r sediments) should  be  considered because of l a r g e r anomalous d i s p e r s i o n t r a i n s . If lake sediments are chosen one must decide at what depth of water to c o l l e c t samples. others  (Hoffman, 1976;  ference i n near-shore  As shown i n t h i s study  and  Cameron, 1977b) there i s a great (<15  f e e t of water) versus  dif-  lake-center  287.  sediments with regards s i z e and  contrast.  to composition,  t e x t u r e and  Although near-shore sediments are  e a s i e r to c o l l e c t , t h i s i s about t h e i r only In many cases, terned  advantage.  near-shore sediments d i s p l a y w e l l developed pat-  ground f e a t u r e s and  more than sub-aqueous s o i l s shallow  anomaly  consequently, appear to be ( P l a t e 16).  areas, wave a c t i o n and  i c e scour  Furthermore, i n prevent d e p o s i t i o n  of s i l t - c l a y m a t e r i a l by which Pb enters the lake.. the deepest p o r t i o n s of the lake should  nothing  However,  a l s o be avoided  they sometimes c o n t a i n somewhat lower v a l u e s , r e l a t i v e  as to  intermediate  depths (15 to 35 f e e t ) which are the p r e f e r r e d  sample s i t e s  ( c f . Hoffman, 1976).  The portant  d i s t a n c e of a lake from m i n e r a l i z a t i o n i s l e s s than i s the p o s i t i o n of the lake with regard  morphic and g l a c i a l d i s p e r s i o n of m i n e r a l i z a t i o n .  im-  to hydroWidespread  geochemical d i s p e r s i o n occurs when the s t r i k e of the geology, g l a c i a l d i s p e r s i o n and p o s t - g l a c i a l drainage do not  coincide.  T h i s r e s u l t s i n a high p r o b a b i l i t y that lake water anomalies w i l l be formed i n s e v e r a l lakes adjacent  to m i n e r a l i z a t i o n .  If m i n e r a l i z a t i o n , g l a c i a l d i s p e r s i o n of s u l p h i d e s are a l l r e s t r i c t e d to one w i t h i n that lake may  and  drainage  lake b a s i n , then anomalous values  be q u i t e high;  however, such an anomaly  can e a s i l y be missed because most r e g i o n a l : programs sample only a small to moderate percentage of lakes i n the area  reconnaissance  (Hoffman, 1976 , pp.. 325-326 ). Because of the wide range i n metal values w i t h i n  lake  288.  sediments, there i s a chance of r e t r i e v i n g a sample c o n t a i n i n g background metal l e v e l s , p a r t i c u l a r l y  i n lakes somewhat r e -  moved from m i n e r a l i z a t i o n , although i f sampled i n more d e t a i l anomalous values  could be obtained.  site selection i s c r i t i c a l  Consequently, sample  and more than one sample s i t e per  lake (Hoffman, 1976) or an i n c r e a s e i n sample d e n s i t y may be warranted f o r r e g i o n a l lake sediment surveys.  It i s  suggested that m u l t i p l e samples from d i f f e r e n t p a r t s of the lake be taken i f r e g i o n a l sampling i s at low d e n s i t i e s ( i . e .  2 one  lake sampled per 8 t o 10 m i l e s  ).  Anomalies can then  be c l a s s i f i e d i n t o a p r i o r i t y r a t i n g scheme based on the number of anomalous s a m p l e s , r e l a t i v e per  t o the t o t a l  collected  lake,and t h e i r r e l a t i v e degree of c o n t r a s t . 2.  Detailed  Assuming that a r e g i o n a l geochemical survey has l o c a t e d anomalous metal v a l u e s a d e t a i l e d survey and g e o l o g i c t i o n would be warranted.  At t h i s stage,  soils,  seepage waters,  snow-melt runoff or even lake waters could be used. may be p r e f e r r e d as an intermediate  evalua-  or s e m i - d e t a i l e d  The l a t t e r explora-  t i o n phase i f r e g i o n a l sampling was at very low d e n s i t i e s 2 (1 sample per 2.8 m i l e ). In t h i s case, a sample d e n s i t y of 2 at l e a s t 1 sample per m i l e  , combined with  i n s p e c t i o n , would be r e q u i r e d .  a rough g e o l o g i c  The g e o l o g i c e v a l u a t i o n would  c o n s i s t of sampling any gossan or m i n e r a l i z e d  f l o a t from the  area and roughly mapping the area t o determine i f the g e o l o g i c  289.  environment phides.  i s conducive to h o s t i n g stratabound massive  sul-  Should the area appear f a v o r a b l e d u r i n g g e o l o g i c  i n s p e c t i o n , t h e n s e v e r a l tens of s o i l samples v a l s (2.8OO f e e t ) should be  at wide i n t e r -  collected.  Follow-up work on areas that continue to produce geochemical anomalies, combined with f a v o r a b l e g e o l o g i c s e t t i n g s , would most c e r t a i n l y i n v o l v e d e t a i l e d s o i l g r i d sampling at i n t e r v a l s ranging from 50 to 400 f e e t .  Because the anomaly  source ( m i n e r a l i z a t i o n ) needs t o be p r e c i s e l y determined f o r drilling,  .immobile elements  (Ag, Fe and Pb) are p r e f e r r e d  be-  cause they are l e s s a f f e c t e d by p o s t - g l a c i a l weathering than mobile elements  (Cu and Zn).  type ( o r g a n i c - r i c h L^F-H the  Consequently, the optimum sample  h o r i z o n versus m i n e r a l s o i l ) and - i f  l a t t e r type i s chosen - sample depth must be e s t a b l i s h e d . Except f o r the L-F-H  horizon, v i s u a l l y recognizable s o i l  h o r i z o n s are r a r e l y present; soil  i s u s u a l l y at some a r b i t r a r y depth(s) (0 to 14 i n c h e s ,  14 t o 25 inches or deeper). p o o r l y developed i n a l l s o i l L-F-H  t h e r e f o r e , sampling of m i n e r a l  horizon;  Mobile element p a t t e r n s are l a y e r s but are best d e f i n e d i n the  whereas, immobile  element  than adequately developed i n a l l s o i l defined i n the deeper s o i l .  p a t t e r n s are more  l a y e r s , although best  D i f f e r e n c e s between the  soil  l a y e r s , however, are somewhat s u b j e c t i v e , e s p e c i a l l y f o r immobile elements.  As a r e s u l t , s e l e c t i o n of sample type and  depth, depends on many f a c t o r s b e s i d e s the degree of geochemical pattern  development.  290.  Because f i e l d  seasons are short and e x p l o r a t i o n expen-  s i v e , r a p i d and easy geochemical sampling, p r e p a r a t i o n and a n a l y s i s are p r e f e r r e d .  Sampling of permafrost where Cu,  Zn p a t t e r n s have remained  Pb,  r e l a t i v e l y u n a f f e c t e d by p o s t -  g l a c i a l chemical and p h y s i c a l weathering i s perhaps  ideal.  U n f o r t u n a t e l y , the time and cost of such sampling procedures excludes these methods.  , R e l a t i v e to m i n e r a l s o i l ,  and p r e p a r a t i o n of the L-F-H  sampling  h o r i z o n r e q u i r e s more time and  e f f o r t as l a r g e areas (tens of square f e e t ) may scavenged t o o b t a i n s u f f i c i e n t sample.  need t o be  Consequently,  un-  l e s s r e s o u r c e s are f r e e l y a v a i l a b l e , sampling of the shallow (0 to 14 inches depth) m i n e r a l s o i l  i s preferred.  Although t h i s study shows the minus 80-mesh f r a c t i o n to be more than adequate, may  the use of a f i n e r s o i l  be more advantageous  (cf. Shilts,  that d e c r e a s i n g the s i z e f r a c t i o n may variation;  1973a).  fraction, It i s suggested  w e l l decrease extraneous  thereby, e n a b l i n g geochemical anomalies to be  b e t t e r d e f i n e d and, f o r elements where the d e t e c t i o n i s an i n h i b i t i n g f a c t o r  limit  (e.g. Pb), attainment of b e t t e r p r e -  cision. In  a d d i t i o n , p a r t i a l and t o t a l e x t r a c t i o n s on v a r i o u s s i z e  f r a c t i o n s suggest  that anomalous metal c o n c e n t r a t i o n s i n coarse  f r a c t i o n s composed of r o c k / m i n e r a l fragments seem  likely.  As a r e s u l t , sampling and a n a l y t i c a l procedures based on t h i s p o s s i b i l i t y may elements  be u s e f u l i n r e l a t i n g / t r a c i n g h i g h l y mobile  (Cu and Zn), t o t h e i r bedrock source when 'standard'  291.  procedures ( i . e . adequate  t o t a l e x t r a c t i o n , minus 80-mesh) appear i n -  due t o i n t e n s e hydromorphic  The use of seepage and/or p o t e n t i a l l y quite e f f e c t i v e ,  dispersion.  snow-melt waters, although  has many disadvantages.  For  example, seepages occur at i n s u f f i c i e n t d e n s i t i e s f o r h i g h l y d e t a i l e d surveys.  Furthermore,  the a c t u a l source of m i n e r a l -  i z a t i o n r e v e a l e d by seepage anomalies can be some d i s t a n c e away.  Although snow-melt r u n o f f can very e f f e c t i v e l y out-  l i n e areas of Cu-Zn m i n e r a l i z a t i o n , timing the sample program i s c r i t i c a l short the  as the bulk of snow-melt r u n o f f occurs over  (<3 weeks) time p e r i o d s .  Most i m p o r t a n t l y , however, i s  r e s t r i c t i o n of a n a l y s i s to the more mobile elements and the  p o s s i b i l i t y of poor r e p r o d u c t i o n i n both media.  IV  CONCLUSIONS Geochemical  s t u d i e s at .Bathurst Norsemines r e v e a l  s i v e geochemical d i s p e r s i o n i n s o i l , runoff and lake waters and sediments. the  depth of s o i l  groundwater,  exten-  snow-melt  Except f o r l i m i t i n g  sampling t o -5 f e e t , t h e e f f e c t s of permafrost  on geochemical programs are minimal.  Hydromorphic  and c l a s t i c  d i s p e r s i o n p a t t e r n s are w e l l developed, perhaps b e t t e r oped than i n temperate  climates.  Significant  devel-  i n h i b i t i n g or  c o m p l i c a t i n g f a c t o r s , with regard t o geochemical d i s p e r s i o n , i n soil,  water and sediment In  are not p r e s e n t .  s o i l s , e x t e n s i v e w e l l developed g l a c i a l d i s p e r s i o n i s  evident i n a west-northwest  d i r e c t i o n away from m i n e r a l i z e d  292.  outcrops. 1000  The h i g h e s t metal v a l u e s occur approximately  to 2000 f e e t down i c e where geochemical  t r a i n s i n t e r c e p t the s o i l s u r f a c e .  indicator  E x t e n s i v e chemical  weathering has destroyed a l l t r a c e s of Ag, Cu, Pb and Zn  sul-  phides . Ag, Fe and Pb p a t t e r n s are w e l l developed and d i s p l a y a classic glacial  (mechanical) mode of g e n e s i s .  Anomalies f o r  these elements are p a r t i c u l a r l y w e l l d e f i n e d i n the deeper soil. the  Conversely, Cu and Zn p a t t e r n s are best developed i n  L-F-H  s o i l horizon.  Although these elements were  initial-  l y d i s p e r s e d the same as Ag, Fe and Pb, they have undergone wide s c a l e hydromorphic  dispersion.  Consequently,  geochemical  c o n t r a s t i s low and, i n some cases, they form negative anomalies, A m o b i l i t y order of Zn>Cu>Fe>Ag>Pb i s suggested. High l e v e l s of d i s s o l v e d Cu and, i n p a r t i c u l a r , Zn are found i n seepage,  p i t and snow-melt waters.  These media p r o -  v i d e the h i g h e s t geochemical c o n t r a s t and d e l i n e a t e Cu-Zn m i n e r a l i z a t i o n b e t t e r than s o i l  samples.  Because of e x t e n s i v e hydromorphic  d i s p e r s i o n , lake waters  and sediments p r o v i d e i d e a l r e g i o n a l sample media.  Within  i n d i v i d u a l lakes, waters are homogeneous while sediments are c h a r a c t e r i z e d by r a p i d changes i n t e x t u r e and metal content. D i s p e r s i o n h a l o s are somewhat l a r g e r  i n sediments than waters  with Zn p r o v i d i n g the l a r g e s t halo f o l l o w e d by Cu and  Pb.  Within sediments, Cu and Zn trends c l o s e l y p a r a l l e l one other.  Pb trends  an-  o f t e n d i v e r g e from those of Cu and Zn  293.  because Cu and Zn enter the lake l a r g e l y as d i s s o l v e d s p e c i e s while Pb enters as a sorbed  c o n s t i t u e n t on s i l t - c l a y  particles.  As a r e s u l t , high Pb values are r e s t r i c t e d to lakes immediatel y adjacent to m i n e r a l i z a t i o n and to water depths g r e a t e r than 15 f e e t because at shallower depths,  wave a c t i o n and  ice  particles.  scour prevent  are not important  d e p o s i t i o n of s i l t - c l a y scavengers  Mn and  Fe  of Cu, Pb and Zn i n lake sediments  and u s u a l l y d i s p l a y negative c o r r e l a t i o n s with these elements.  294. BIBLIOGRAPHY Abbey, S., 1967. A n a l y s i s of rocks and m i n e r a l s by atomic a b s o r p t i o n s p e c t r o s c o p y , P a r t 1, Determination of magnesium, l i t h i u m , z i n c and i r o n . GSC Paper, 67-37, A l l a n , R.J., 1971. Lake sediment: A medium f o r r e g i o n a l e x p l o r a t i o n of the Canadian S h i e l d . CIM B u l l . , V. 64, No. 714: 43-59. A l l a n , R.J., 1973. S u r f i c i a l d i s p e r s i o n of t r a c e metals i n a r c t i c Canada: A n i c k e l d e p o s i t , Raglan area, Cape SmithWakeham Bay B e l t , Ungrave (New Quebec) (35-H). GSC Paper 73-1B: 9-19. A l l a n , R.J., 1974a. Metal c o n t e n t s of lake sediment c o r e s from e s t a b l i s h e d mining a r e a s : An i n t e r f a c e of e x p l o r a t i o n and environmental geochemistry. GSC Paper 74-1B:. 43-49. A l l a n , R.J., 1974b. Trace metal d i s p e r s i o n i n an a r c t i c d e s e r t landscape: A Pb-Zn d e p o s i t on l i t t l e C o r n w a l l i s I s l a n d , D i s t r i c t of F r a n k l i n . GSC Paper 74-1B: 51-56. A l l a n , R.J., Cameron, E.M. and Durham, C.C., 1973a. Lake geochemistry - a low sample d e n s i t y technique f o r r e c o n n a i s s a n c e geochemical e x p l o r a t i o n and mapping of the Canadian S h i e l d . In: M.J. Jones ( E d i t o r ) , Geochemical E x p l o r a t i o n 1972., IMMPubl.: 131-160. A l l a n , R.J., Cameron, E.M. and Durham, C.C., 1973b. Reconnaissance geochemistry u s i n g lake sediments of a 36,000 square-mile area of the northwestern Canadian Shield. GSC Paper, 72-50. A l l a n , R.J., Cameron, E.M., Durham, C.C. and Lynch, J . J . , 1972a. Geochemical methods of e x p l o r a t i o n i n permafrost areas. GSC Paper, 72-1A: 62-68. A l l a n , R.J. and Crook, R.T., 1972b. Lake sediments from permafrost r e g i o n s : Zn, Cu, N i , Co and Pb content of the sub-2000 micron p a r t i c l e s i z e ranges. GSC Paper 72-1B: 31-37. A l l a n , R.J. and Hornbrook, E.H.W., 1970. Development of geochemical techniques i n permafrost t e r r a i n . Can. Min. J . 4, V. 91: 45-49.  295.  A l l a n , R.J. and Hornbrook, E.H.W., 1971. Exploration geochemistry e v a l u a t i o n study i n a r e g i o n o f c o n t i n u o u s permafrost, N.W.T.; Canada. CIM Spec. V o l . 11: 53-66. A l l a n , R.J., Lynch, J . J . and Lund, N.G., 1972c. R e g i o n a l geochemical e x p l o r a t i o n i n the Coppermine R i v e r area, D i s t r i c t o f Mackenzie: A f e a s i b i l i t y study i n p e r m a f r o s t terrain. GSC Paper, 71-33. A l l a n , R.J. and T i m p e r l e y , M.H., 1975. P r o s p e c t i n g by use of lake sediments i n a r e a s o f i n d u s t r i a l heavy metal contamination. In: M.J. Jones ( E d i t o r ) , P r o s p e c t i n g i n areas of g l a c i a t e d t e r r a i n 1975. IMM P u b l . : 87-111. Anderson, D.M. and Hoekstra, P., 1965. Migration of i n t e r l a m e l l a r water d u r i n g f r e e z i n g and thawing o f Wyoming bentonite. SSSAP, 29: 498-564. Anderson, D.M. and Morgenstern, N.R., 1973. Physics, c h e m i s t r y and mechanics o f f r o z e n ground: A review. I n : Permafrost, North American C o n t r i b . 2nd. I n t e r n . Conf. N a t l . Acad. S c i . , Washington, DC: 257-288. Andrews, J.T., 1966. C a i n o z o i c g l a c i a t i o n s and c r u s t a l movements o f the a r c t i c . GSC Paper, 66-26. B i r d , J.B., 1967. P h y s i o g r a p h y of A r c t i c Canada. Hopkins P r e s s , B a l t i m o r e , Md. : 336 pp.  John  Blake, W. , 1963. Notes on G l a c i a l Geology of the n o r t h e a s t D i s t r i c t o f Mackenzie, N.W.T. GSC Paper, 63-28. B o l v i k e n , B. and S i n d i n g - L a r s e n , R., 1973. T o t a l e r r o r and other c r i t e r i a i n the i n t e r p r e t a t i o n o f stream-sediment d a t a . In: M.J. Jones ( E d i t o r ) , Geochemical E x p l o r a t i o n 1972, IMM P u b l . : 285-295. Boyle, R.W., Hornbrook, E.H.W., A l l a n , R.J., Dyck, W. and Smith, A.Y., 1971. Hydrogeochemical methods - a p p l i c a t i o n i n the Canadian S h i e l d ; CIM B u l l , V. 64, No. 715: 60-71.  Boyle, R.W. and Gleeson, C.F., 1975. Keno H i l l Pb-Zn-Ag area, Yukon t e r r i t o r y . J . Geochem. E x p l o r . , 4: 78-82.  296.  Bradshaw, P.M.D., Thompson, I., Smee, B.W. and Larsson, J.O., 1974. The a p p l i c a t i o n of d i f f e r e n t a n a l y t i c a l ext r a c t i o n s and s o i l p r o f i l e sampling i n e x p l o r a t i o n geochemistry. J . Geochem. E x p l o r . , 3: 209-225. Brewer, M.C., 1958. The thermal regime of an a r c t i c lake. Trans. Amer. Geophys. Union, V. 39, No. 2: 278-284. Brown, R.J.E., 1970. Permafrost i n Canada. of Toronto P r e s s , Toronto: 23.4 pp.  University  Brown, R.J.E. and Kupsch, W.O., 1974. Permafrost Terminology, t e c h n i c a l memorandum No. I l l , NRCC (Ottawa) P u b l . , 14274: 62 pp. Brundin, N.H. and Bergstrom, J . , 1976. Regional p r o s p e c t i n g f o r ores based on heavy m i n e r a l s i n g l a c i a l t i l l . J. Geochem. E x p l o r . , 7: 1-19. Bryson, R.A., I r v i n g , W.N. and Larsen, J.A., 1965. Radiocarbon and s o i l evidence of former f o r e s t i n the southern Canadian tundra. S c i e n c e , V. 147: 46-48. C a c h a u - H e r r e i l l a t , F. and L a S a l l e , P., 1971. The u t i l i z a t i o n of eskers as a n c i e n t hydrographic networks f o r geochemical p r o s p e c t i n g i n g l a c i a t e d areas ( a b s t . ) Toronto IGES. p. 121. Cameron, E.M., 1975a. Geochemical methods of e x p l o r a t i o n f o r massive s u l p h i d e m i n e r a l i z a t i o n i n the Canadian S h i e l d : In Geochemical E x p l o r a t i o n , 1974, F i f t h I n t . Geochem. E x p l o r . Symp., Proc.: 21-49. Cameron, E.M., 1975b. I n t e g r a t e d s t u d i e s on m i n e r a l r e s o u r c e a p p r a i s a l i n the Beechey Lake b e l t of the Northern Shield. GSC Paper, 75-1A: 189-192. Cameron, E.M., 1977a. Geochemical s o i l s of a permafrost environment. 301-326.  dispersion in mineralized J . Geochem. E x p l o r . , 7:  297.  Cameron, E.M., 1977b. Geochemical d i s p e r s i o n i n lake waters and sediments from massive s u l p h i d e m i n e r a l i z a t i o n , A g r i c o l a Lake area, Northwest T e r r i t o r i e s . J . Geochem. E x p l o r ; 7; 327-348. Cameron, E.M. and B a l l a n t y n e , S.B., 1975. E x p e r i m e n t a l hydrogeochemical surveys of the High Lake and Hackett R i v e r areas, Northwest T e r r i t o r i e s . GSC Paper, 75-29.  Cameron, E.M. and Durham, C.C., 1974a. Follow-up i n v e s t i g a t i o n s on the B e a r - s l a v e geochemical o p e r a t i o n : GSC -Paper, 74-I.A: 53-60. 4  Cameron, E.M. and Durham, C.C., 1974b! Geochemical s t u d i e s on the e a s t e r n p a r t of the S l a v e P r o v i n c e , 1973. GSC Paper, 74-27, Cameron, E.M. and Durham, C.C., 1975. S o i l geochemistry of the A g r i c o l a Lake massive s u l p h i d e p r o s p e c t . GSC Paper, 75-1A: 199-202. Cameron, E.M. and Lynch, J . J . , 1975. Hydrogeochemical s t u d i e s i n the A g r i c o l a Lake area, 1974. GSC Paper, 75-1A: 2.03-208. Canada Department of A g r i c u l t u r e , 1970. The system of s o i l c l a s s i f i c a t i o n f o r Canada. Queens P r i n t e r , Ottawa, 249 pp. Chao, T.T., 1972. S e l e c t i v e d i s s o l u t i o n of manganese oxides from s o i l s and sediments with a c i d i f i e d h y d r o x y l amine^ h y d r o c h l o r i d e . SSSAP, 36: 764-768. Chao, T.T. and Theobald, P.K., J r . , 1976. The s i g n i f i c a n c e of secondary i r o n and manganese o x i d e s i n geochemical e x p l o r a t i o n . Econ. Geol.,V. 71, No. 8: 1560-1569. C h a r l i e r , R.H., 1969. The geographic d i s t r i b u t i o n of p o l a r d e s e r t s o i l s i n the n o r t h e r n hemisphere. GSA B u l l . V. 80: 1985-1996.  298.  Chester, R. and Hughes, M.J., 1967. A c h e m i c a l technique f o r the s e p a r a t i o n of ferro-manganese m i n e r a l s , carbonate m i n e r a l s and adsorbed t r a c e elements from p e l a g i c s e d i ments. Chem. G e o l . 2: 249-262. Chowdhury, A . N . and Bose, B.B., 1971. Role o f 'humus matter' i n the formation of geochemical anomalies. In: R.W. B o y l e and J . I . M c G e r r i g l e ( E d i t o r s ) , Geochemical E x p l o r a t i o n , CIM Spec. V o l . 11: 410-413.. Coker, W.B. and N i c h o l , I . , 1975. The r e l a t i o n o f lake sediment geochemistry to m i n e r a l i z a t i o n i n the northwest O n t a r i o r e g i o n o f the Canadian S h i e l d . Econ. Geol.V. 70, No. 1: 202-218. Corte, A.E., 1962. V e r t i c a l m i g r a t i o n o f p a r t i c l e s i n f r o n t o f t h e moving f r e e z i n g p l a n e . J o u r . G e o p h y s i c a l Res. V. 67, No. 3: 1085-1090. C r a i g , B.G., 1960. S u r f i c i a l geology of N o r t h - c e n t r a l D i s t r i c t of Mackenzie, N.W.T. GSC Paper, 60-18. D a l l ' a g l i o , M. and Tonani, F., 1973. Hydrogeochemical e x p l o r a t i o n f o r s u l p h i d e d e p o s i t s : C o r r e l a t i o n between s u l p h a t e and o t h e r c o n s t i t u e n t s . In: M.J. Jones ( E d i t o r ) , Geochemical E x p l o r a t i o n 1972, IMM P u b l . : 305-314. Davenport, P.H. and N i c h o l , I., 1973. Bedrock geochemistry as a g u i d e t o areas of base-metal p o t e n t i a l i n v o l c a n o sedimentary b e l t s of the Canadian S h i e l d . l : M.J. Jones ( E d i t o r ) , Geochemical E x p l o r a t i o n 1972., IMM P u b l . : 45-57. n  Day, J.H. and R i c e , H.M., 1964! The c h a r a c t e r i s t i c s of some p e r m a f r o s t s o i l s i n the Mackenzie V a l l e y , N..W.T. A r c t i c , V. 17 No. 4: 223-236. Dreimanis, A . , 1958. T r a c i n g o r e b o u l d e r s as a p r o s p e c t i n g method i n Canada. CIM B u l l ; V. 51: 73-80. E l l i s , A . J . , Tooms, J.S., Webb, J.S. and B i c k n e l l , J.V., 1967. A p p l i c a t i o n of s o l u t i o n experiments i n geochemical prospecting. Trans. Instn. Min. M e t a l l . ( S e c t . B: A p p l i e d E a r t h S c i e n c e ) , V. 76: 25-39. D i s c u s s i o n s V. 76: 216-217, V. 77: 136.  299. F l e t c h e r , W.K., 1970. Some a p p l i c a t i o n s of background c o r r e c t i o n to t r a c e metal a n a l y s i s of geochemical samples by a t o m i c - a b s o r p t i o n spectrophotometry. Econ. Geol V 65588-589. F l e t c h e r , W.K.,. 1971. Atomic a b s o r p t i o n methods. department, U n i v e r s i t y of B r i t i s h Columbia.  Geology  F o r t e s c u e , J.A.C., 1974. E x p l o r a t i o n geochemistry and the landscape. CIM B u l l . , V. 67, No. 751: 80-87. F o r t e s c u e , J.A.C. and Hornbrook, E.H.W., 1969. Progress r e p o r t on biogeochemical r e s e a r c h at t h e G e o l o g i c a l Survey of Canada 1963-1966. GSC Paper, 67-23. Fortescue, i n lower t i orebody i n 65-2, p a r t  J.A.C. and Hughes, O.L., 1965. Cu, Zn and Pb l l m a t e r i a l c o l l e c t e d near a massive s u l p h i d e the c l a y b e l t of northern O n t a r i o . GSC Paper, I I : 23-27.  F o s t e r , J.R., 1971. The r e d u c t i o n of m a t r i x e f f e c t s i n atomic a b s o r p t i o n a n a l y s i s and the e f f e c i e n c y of s e l e c t e d e x t r a c t i o n s on rock-forming m i n e r a l s . CIM Suec. V o l . 11: 554-560. F o s t e r , J.R., 1973. The e f f e c i e n c y of v a r i o u s d i g e s t i o n procedures on the e x t r a c t i o n of metals from rocks and rock-forming minerals. CIM B u l l . , V. 66, No. 736: 85-92.  F r a s e r , J.A., 1964. G e o l o g i c a l notes on the n o r t h - e a s t e r n d i s t r i c t of Mackenzie, Northwest T e r r i t o r i e s . GSC Paper 63-40. F r i t h , R.A., Fyson, W.K. and H i l l , J.D., 1977. The geology of the Hackett-'Back R i v e r greenstone b e l t - second p r e liminary report. GSC Paper, 77-1A: 415-423. F r i t h , R.A. and H i l l J.D., 1975. The geology of the Hackett-Back River greenstone b e l t - p r e l i m i n a r y account. GSC Paper, 75-1C: 367-370. F r y e r , B.J. and Hutchinson, R.W., metal d e p o s i t s on the sea f l o o r . 13: 126-135.  1976. G e n e r a t i o n of Can. J . E a r t h S c i .  300.  G a r r e l s , R.M. and C h r i s t , C.L., 1965. S o l u t i o n s , m i n e r a l s , and e q u i l i b r i a . Harper and Row, New York, N.Y.: 450 pp. G a r r e t t , R.G., 1969. The d e t e r m i n a t i o n o f sampling and a n a l y t i c a l e r r o r s i n e x p l o r a t i o n geochemistry. Econ. G e o l i . V . 64:. 568-569. G a r r e t t , R.G., 1971. The d i s p e r s i o n o f copper and z i n c i n g l a c i a l overburden a t the Louvem d e p o s i t , V a l d'or, Quebec. C I M Spec. V o l . 11: 156-158. G a r r e t t , R.G., 1973. The d e t e r m i n a t i o n o f sampling and a n a l y t i c a l e r r o r s i n e x p l o r a t i o n geochemistry - a r e p l y . Econ. Geol., V. 68 . 282-233. :  G a r r e t t , R.G. and Hornbrook, E.H.W., 1976. The r e l a t i o n s h i p between z i n c and o r g a n i c carbon i n c e n t e r - l a k e bottom sediments. J . Geochem. E x p l o r . , 5: 31-38. Gatehouse, S., R u s s e l l , D.W. and Van Moort, J.C., 1977. S e q u e n t i a l s o i l a n a l y s i s i n e x p l o r a t i o n geochemistry. J . Geochem. E x p l o r . , 8: 483-494. Gleeson, C F . and Hornbrook, E.H.W., 1975. Semiregional geochemical s t u d i e s demonstrating the e f f e c t i v e n e s s of t i l l sampling at depth. In: I.L. E l l i o t and W.K. F l e t c h e r ( E d i t o r s ) , Geochemical E x p l o r a t i o n 1974: 612-630. Gold, L.W. and Lachenbruch, A.H., 1973. Thermal C o n d i t i o n s i n Permafrost: A Review of North American L i t e r a t u r e . In: North American C o n t r i b u t i o n on Permafrost, second i n t e r n a t i o n a l conference: N a t i o n a l Academy of Sciences, Washington, D.C.:' 3-25. Govett, G.J.S., 1973. D i f f e r e n t i a l secondary d i s p e r s i o n i n t r a n s p o r t e d s o i l s and p o s t - m i n e r a l i z a t i o n r o c k s : An e l e c t r o c h e m i c a l i n t e r p r e t a t i o n . In: M.J. Jones ( E d i t o r ) , Geochemical E x p l o r a t i o n 1972, IMM P u b l . : 81-91. Govett, G.J.S., 1976. D e t e c t i o n of deeply b u r i e d and b l i n d s u l p h i d e d e p o s i t s by measurement o f H and c o n d u c t i v i t y o f c l o s e l y spaced s u r f a c e s o i l samples. J . Geochem. E x p l o r . , 6: 359-382.  Hawkes, H.E. and Webb, J.S.,1962. Geochemistry i n mineral exploration. Harper and Row, New York, N.Y. 415 pp. H i g a s h i , A. and C o r t e , A.E., 1971. S o l i f l u c t i o n : A model experiment. S c i e n c e , V. 171: 480-482. H i l l , D.E. and Tedrow, J.C.F., 19 61. formation i n the a r c t i c environment. V. 259: 84-101.  Weathering and s o i l JAmer. Jour;- of S c i .  Hoffman, S.J., 1976. M i n e r a l e x p l o r a t i o n of the Nechako P l a t e a u , C e n t r a l B r i t i s h Columbia, u s i n g lake sediment geochemistry. PhD. t h e s i s , U n i v e r s i t y of B r i t i s h Columbia: 347 pp. u n p u b l i s h e d . Holmes, R. and Tooms, J.S., 1973. D i s p e r s i o n from a submarine e x h a l a t i v e orebody. In: M.J. Jones ( E d i t o r ) , Geochemical E x p l o r a t i o n 1972, IMM Publ.: 193-202. H o r s n a i l , R.F., N i c h o l , I..and Webb, J.S., 1969. I n f l u e n c e of v a r i a t i o n s i n the secondary environment on metal d i s t r i b u t i o n i n d r a i n a g e sediments. Q u a r t e r l y Colo. Sch. Mines. V. 64, No. 1: 307-322. Hornbrook, E.H.W. and A l l a n , R.J., 1970. Geochemical e x p l o r a t i o n f e a s i b i l i t y study w i t h i n the zone of continuous permafrost, Coppermine Region, NWT. GSC Paper, 70-36. Howarth, R.J., 1971. E m p i r i c a l d i s c r i m i n a n t c l a s s i f i c a t i o n of r e g i o n a l stream-sediment geochemistry i n Devon and East C o r n w a l l : Trans. I n s t n . Min. M e t a l l . (Sect. B: A p p l i e d E a r t h S c i e n c e ) , V. 80: 142-149. Howarth, R.J., 1973. The p a t t e r n r e c o g n i t i o n problem i n a p p l i e d geochemistry. In: M.J. Jones ( E d i t o r ) , Geochemical E x p l o r a t i o n 1972, IMM P u b l . : 259-273. Ivanov, O.P., 1966. Major f a c t o r s i n the development of o x i d i z e d zones o f s u l f i d e d e p o s i t s under permafrost conditions. Geokhimiya, No. 9. James, P.A., 1970. The s o i l s of the Ranken I n l e t Keewatin, NWT, Canada A r c t i c and A l p i n e Research, V. 2: 293-302.  area,  302.  Johnston, G.H. and Brown, R.J.E., 1964. Some o b s e r v a t i o n s on p e r m a f r o s t d i s t r i b u t i o n a t a l a k e i n t h e Mackenzie D e l t a , NWT. A r c t i c , V. 17, No. 3: 163-175. Jonasson, I.R., 1976. D e t a i l e d hydrogeochemistry of two s m a l l l a k e s i n the G r e n v i l l e G e o l o g i c a l P r o v i n c e . GSC Paper, 76-13. Jonasson, I.R. and A l l a n , R.J., 1973. Snow: A sampling medium i n hydrogeochemical p r o s p e c t i n g i n temperate and permafrost r e g i o n s . In: M.J. Jones ( E d i t o r ) , Geochemical E x p l o r a t i o n 1972, IMM P u b l . : 161-178. Karrow P.F. and Anderson, T.W., 1975. P a l y n o l o g i c a l study o f l a k e sediment p r o f i l e s from south-western New Brunswick: D i s c u s s i o n . Can. J . E a r t h S c i . 12: 1808-1812. Kozhara, V.L., 1964. L i t h o c h e m i c a l and biogeochemical p r o s p e c t i n g i n permafrost landscapes ( i n R u s s i a n ) . GSC t r a n s l a t i o n No. 314, 1970: 15 pp. Lambert, I.B. and Sato, T., 1974. Kuruko and a s s o c i a t e d ore d e p o s i t s o f Japan. Econ. G e o l . V. 69: 1215-1236. Larsen, J.A., 1972. Observations o f w e l l - d e v e l o p e d podzols on t u n d r a and of p a t t e r n e d ground w i t h i n ' f o r e s t e d b o r e a l regions. A r c t i c , V. 25, No. 2: 152-154. Lee, H. 1971. M i n e r a l d i s c o v e r y i n t h e Canadian S h i e l d u s i n g t h e p h y s i c a l " aspects of o v e r b u r d e n . CIM, V. 64; No. 715: 32-36.  L e p e l t i e r , C. , 1969. A s i m p l i f i e d s t a t i s t i c a l treatm.ept of geochemical data by g r a p h i c a l r e p r e s e n t a t i o n . Econ. Geol. V. 64: 538-550. L e v i n s o n , A.A., 1974. I n t r o d u c t i o n t o e x p l o r a t i o n geochemistry. A p p l i e d P u b l i s h i n g L t d , Wilmette: 614 pp. L i v i n g s t o n , D., 1963. Chemical c o m p o s i t i o n o f r i v e r s and l a k e s : Data o f geochemistry. USGS P r o f . Paper, 440G. Lyons, J.B. and Midke, J.E., 1973. a p o r t i o n o f northernmost E l l e s m e r e No. 4. '  Holocene h i s t o r y of I s l a n d . A r c t i c , V. 26,  303. Mackay, J.R. and MacKay, D.K. 1976. - C r y o s t a t i c p r e s s u r e s i n non-sorted c i r c l e s (mud-hummocks), Inuvik, Northwest T e r r i t o r i e s . Can. J . E a r t h S c i . 13: 889-897. Mackereth, F.J.H., 1966. Some chemical o b s e r v a t i o n s on post g l a c i a l l a k e sediments. P h i l . T r a n s . Royal Soc. (B) V. 250: 165-213. M a c N e i l l , R.J., 1973. F a r north p r o p e r t y p r o m i s i n g . Western Miner, V. 46, No. 10: 88-96. M a c N e i l l , R.J., 1976. Twenty years of p e r s i s t e n c e at B a t h u r s t Norsemines i s p a y i n g o f f . Western Miner V No. 9: 28-33.  49  Mairov, N.P., 1966. On the s e l e c t i o n o f f r a c t i o n s from moraine d e p o s i t s f o r a n a l y s i s d u r i n g l i t h o g e o c h e m i c a l s u r v e r y i n g ( i n R u s s i a n ) . GSC t r a n s l a t i o n No. 390, 1971: 6 pp. Manskaya, S.M. and Drozdova, T.V., 1968. Geochemistry of o r g a n i c s u b s t a n c e s . Pergamon P r e s s , t r a n s l a t e d and e d i t e d by L. S h a p i r o and I.A. Breger: 347 pp. Maynard, D.E. and F l e t c h e r , W.K., 1973. Comparison o f t o t a l and p a r t i a l e x t r a c t a b l e copper i n anomalous and background peat samples. J . Geochem. E x p l o r . , 2: 19-24. Mehrtens, M.B., Tooms, J.S. and Troup, A.G., 1973. Some a s p e c t s of geochemical d i s p e r s i o n from base-metal m i n e r a l i z a t i o n w i t h i n g l a c i a t e d t e r r a i n i n Norway, North Wales and B r i t i s h Columbia, Canada. In: M.J. Jones ( E d i t o r ) , Geochemical E x p l o r a t i o n 1972, IMM P u b l . : 105-115. Moran, S.R., 1971. G ] a c i o t e c t o n i c s t r u c t u r e s i n d r i f t . In: T i l l : A Symposium (R.P. G o l d t h w a i t e , E d i t o r ) . Ohio S t a t e U n i v e r s i t y P r e s s : 127-148. Murmann, R.P., 1973. I o n i c m o b i l i t y i n permafrost: In Permafrost, North American c o n t r i b . 2nd. I n t e r n . Conf. Natl. Acad. S c i . , Washington, DC : 352-359. N i c h o l , H., 1976. C l i m a t i c v a r i a b i l i t y and r e c e n t c o o l i n g in n o r t h e r n Canada d u r i n g the p r e s e n t i n t e r g l a c i a l . GSA annual meeting, Denver, C o l o r a d o . GSA a b s t r a c t s , V. 8 No. 6: 1028. N i c h o l , I . , 1975. P r o m i s i n g f u t u r e i n s t o r e f o r l a k e sediment r e c o n n a i s s a n c e . The Northern Miner, March 6: 44-46.  304.  N i c h o l , I., Coker, W.B., Jackson, R.G. and K l a s s e n , R.A., 1975. R e l a t i o n of lake sediment c o m p o s i t i o n i n d i f f e r e n t l i m n o l o g i c a l environments i n Canada. In: M.J. Jones ( E d i t o r ) , P r o s p e c t i n g i n areas of g l a c i a t e d t e r r a i n 1975, IMM P u b l . , 112-125. Parslow, G.R., 1974. D e t e r m i n a t i o n of background and t h r e s h o l d i n e x p l o r a t i o n geochemistry. J . Geochem. E x p l o r . , 3: 319-336. Peachey, D. and A l l e n , B.P., 1977. An i n v e s t i g a t i o n i n t o the s e l e c t i v e d i s s o l u t i o n of s u l p h i d e phases from stream sediments and s o i l s . J . Geochem. E x p l o r . , 8: 571-577. P i t u l ' k o , V.M-. , 1968. F e a t u r e s of geochemical searches for r a r e - m e t a l d e p o s i t s i n permafrost areas ( i n R u s s i a n ) . G e o l o g i y a i Razvedka 1968, No. 11: 43-52, t r a n s l a t i o n i n I n t e r n . G e o l . Rev., V. 11: 1239-1246, CA 70-98653. P o r t e r , S.C. and Denton, G.H., 1967. Chronology of n e o g l a c i a t i o n i n the north American C o r d i l l e r a . Amer. Jour, of S c i . V. 265: 177-210. P r i c e , L.W., 1972. The p e r i g l a c i a l environment, permafrost, and man. A s s o c i a t i o n of American Geographers Resource Paper, No. 14, Washington, D.C.: 87 pp. R i d l e r , R.H. and S h i l t s , W.W., 1974. Exploration for Archean p o l y m e t a l l i c s u l p h i d e d e p o s i t s i n permafrost terrains: An i n t e g r a t e d g e o l o g i c a l / g e o c h e m i c a l technique; Kaminak Lake area, D i s t r i c t of Keewatin. GSC Paper 73-74. Rose, A.W., 1975. The mode of o c c u r r e n c e of t r a c e elements in s o i l s and stream sediments a p p l i e d t o geochemical exploration. In: W.K. F l e t c h e r and I.L. E l l i o t ( E d i t o r s ) , Geochemical E x p l o r a t i o n 1974, IMM P u b l . : 691-705. Sangster, D.F., 1972. Precambrian v o l c a n o g e n i c massive s u l p h i d e d e p o s i t s i n Canada: A review. GSC Paper 72-22. S c o t t , J.S., 1976. Geology of Canadian t i l l s . In: Glacial T i l l e d i t e d by R.F. Legett. Royal S o c i e t y of Canada, S p e c i a l P u b l i c a t i o n 12: 50-66. Sharp, R.P., 1960. Glaciers. U n i v e r s i t y of Oregon ( e l e v e n t h p r i n t i n g ) Eugene, Oregon: 78 pp.  books  305. S h i l t s , W.W., 1971. T i l l s t u d i e s and t h e i r a p p l i c a t i o n to r e g i o n a l d r i f t p r o s p e c t i n g . Can. Min. Jour., V. 92, No. 4: 45-49. S h i l t s , W.W., 1972. D r i f t p r o s p e c t i n g i n the Kaminak Lake area, D i s t r i c t of Keewatin. GSC Paper, 72-1A: 182-189. S h i l t s , W., 1973a. D r i f t p r o s p e c t i n g : Geochemistry of eskers and t i l l i n permanently f r o z e n t e r r a i n ; D i s t r i c t of Keewatin, Northwest t e r r i t o r i e s . GSC Paper, 72-45. S h i l t s , W.W., 1973b. T i l l i n d i c a t o r t r a i n formed by g l a c i a l t r a n s p o r t of n i c k e l and other u l t r a m a f i c components: A model f o r d r i f t p r o s p e c t i n g . GSC Paper, 73-1A: 213-218. S h i l t s , W.W., 1973c. G l a c i a l d i s p e r s a l of r o c k s , m i n e r a l s , and t r a c e elements i n Wisconsin t i l l , s o u t h - e a s t e r n Quebec, Canada. GSA Memoir, 136: 189-219. S h i l t s , W.W., 1974a. Z i n c - l e a d - s i l v e r - r i c h s u l p h i d e f l o a t and a s s o c i a t e d geochemical anomalies found d u r i n g d r i f t p r o s p e c t i n g s t u d i e s i n the S p i Lake area, south-east D i s t r i c t of Keewatin. GSC Open F i l e Report 190: 5 pp. S h i l t s , W.W., 1974b. P h y s i c a l and chemical p r o p e r t i e s of u n c o n s o l i d a t e d sediments i n permanently f r o z e n t e r r a i n , D i s t r i c t of Keewatin. GSC Paper, 74-1A: 229-235. S h i l t s , W.W., 1975. P r i n c i p l e s of geochemical e x p l o r a t i o n f o r s u l p h i d e d e p o s i t s u s i n g shallow samples of g l a c i a l drift. CIM B u l l . , V. 68, No. 757: 73-80. S h i l t s , W.W., 1976. G l a c i a l t i l l and m i n e r a l e x p l o r a t i o n . In: G l a c i a l T i l l ( e d i t e d by R.F. L e g g e t t ) . Royal S o c i e t y of Canada, S p e c i a l P u b l i c a t i o n 12: 205-224. S h i l t s , W.W., 1978. Nature and g e n e s i s of mud b o i l s , c e n t r a l Keewatin, Canada. Can. J . E a r t h S c i . , 15: 1053-1068. S h i l t s , W.W. and Dean, W.E., 1975. Permafrost f e a t u r e s under a r c t i c l a k e s , D i s t r i c t of Keewatin, Northwest T e r r i tories. Can. J . E a r t h S c i . , 12: 649-662. Shvartsev, S.L., 1965. Hydrogeochemical p r o s p e c t i n g i n northern marshy areas. I n t e r n a t i o n a l Geol. Review, V. 8, No. 10: 1151-1156.  306.  Shvartsev, S.L., 1971. Hydrogeochemical p r o s p e c t i n g f o r b l i n d ores i n permafrost. I n t e r n a t i o n a l Geol. Rev. V. 14, No. 10. S i n c l a i r , A.J., 1976. mineral exploration.  A p p l i c a t i o n s of p r o b a b i l i t y graphs i n Richmond P r i n t e r s , Richmond, B.C.: 95  pp.  Skinner, R.G., 1972. D r i f t p r o s p e c t i n g i n the A b i t i b i clay b e l t : Overburden d r i l l i n g program methods and c o s t . GSC Open F i l e Report No. 116: 27 pp. Stanton, R.E., 1966. Rapid methods of t r a c e a n a l y s i s f o r geochemical a p p l i c a t i o n . Edward Arnold L t d . , London: 88  pp.  S t i g z e l i u s , H., 1977. R e c o g n i t i o n of m i n e r a l i z e d areas by r e g i o n a l geochemistry survey of the t i l l - b l a n k e t i n northern Finland. J . Geochem. E x p l o r . , 8: 473-481. Szabo, N.L., Govett, G.J.S. and L a j t a i , E.Z., 1975. D i s p e r s i o n t r e n d s of elements and i n d i c a t o r pebbles i n g l a c i a l t i l l around Mt. P l e a s a n t , New Brunswick. Can. J . E a r t h S c i . , V. 12, No. 9: 1534-1536. Stremyakov, A.Ya., 1958. A p p l i c a t i o n of hydrogeochemical method of e x p l o r a t i o n of ore d e p o s i t s under permafrost conditions. Razved. i . Okhr. Nedr., V. 24, No. 3: 46-47. Taber S., 1929. F r o s t heaving. of Geology, V. 37, No. 5.  Reprinted  T a r n o c a i , C., 1977. S o i l s of N o r t h - c e n t r a l GSC Paper, 77-1A: 61-64.  from the  Journal  Keewatin.  T a y l o r , A.E. and Judge, A.S., 1974. Canadian geothermal data c o l l e c t i o n - Northern Wells, 1955 to February 1974. Geothermal S e r v i c e of Canada, Dept. of Energy, Mines and Resources, Ottawa: 1-142. Tedrow, J.C.F., 1966. Amer. Proc. V. 30, No.  Polar desert s o i l s . 3: 381-387.  Thompson, M. and Howarth, R.J., 1973. and c o n t r o l of p r e c i s i o n by d u p l i c a t e A n a l y s t . V. 98: 153-160.  S o i l S c i . Soc.  The r a p i d e s t i m a t i o n determinations.  307.  Timperley, M.H. and A l l a n , R.J., 1974. The formation d e t e c t i o n of metal d i s p e r s i o n halos i n o r g a n i c l a k e sediments. J . Geochem. E x p l o r . , 3: 167-190.  and  Tremblay, L.P., 1971. Geology of Beechey Lake map-area, D i s t r i c t of Mackenzie. GSC Memoir, 365: 56 pp. Tremblay, L.P., 1976. Geology of the Northern Contowoyto Lake area, D i s t r i c t of Mackenzie. GSC Memoir 381; 56 pp. T r i c a r t , J . , 1970. Geomorphology of c o l d M a c m i l l i a n & Co. L t d . , London.  environments.  Troup, A.G., 1969. Geochemical i n v e s t i g a t i o n s of f e r r o manganese c o n c e n t r a t i o n s from 3 Canadian l a k e s . M.Sc. t h e s i s McMaster U, Hamilton, Ont.: 82 pp. Tyutyunov, I.A., 1960. The processes l e a d i n g to a l t e r a t i o n and r e c o n s t r u c t i o n of s o i l s and r o c k s at negative temperatures. Izd-vu Acad. Nauk U.S.S.R., Moscow (in Russian). Tyutyunov, I.A., 1961. I n t r o d u c t i o n to the theory of the formation of c r y o g e n i c r o c k s . Izd-vu Acad. Nauk U.S.S.R., Moscow ( i n R u s s i a n ) . U g o l i r i i , F.C. and Anderson, D.W., 1973. Ionic migration and weathering i n f r o z e n a n t a r c t i c s o i l s . Soil Sci., V. 115, No. 6: 461-470. Wahl, H.J., 1965. Year-end r e p o r t , C o r n w a l l i s p r o j e c t . NWT. Dept. of Indian and Northern A f f a i r s . Washburn, A.L., 1956. C l a s s i f i c a t i o n of p a t t e r n e d ground and review of suggested o r i g i n s . GSA B u l l . , V: 67:' 823-866. Washburn, A.L., 1972. P e r i g l a c i a l processes ments. Edward A r n o l d L t d . , London: 320 pp.  and  environ-  Weast, R.C., 1976. ( E d i t o r ) . Handbook of Chemistry and p h y s i c s 56th e d i t i o n , 1975-1976. CRC P r e s s , C l e v e l a n d , Ohio.  308.  Whitney, P., 1975. R e l a t i o n s h i p o f manganese-iron o x i d e s and a s s o c i a t e d heavy m e t a l s t o g r a i n s i z e i n stream sediments. J . Geochem. • E x p l o r . , 4: 251-263. Winter, T., 1976. Numerical s i m u l a t i o n a n a l y s i s of the i n t e r a c t i o n of l a k e s and ground-water. USGS Prof.. Paper 1001. Zontov, N.S., 1959. The wurmian o x i d a t i o n zone i n the N o r i l s k Cu-Ni s u l p h i d e d e p o s i t s . D o k l . Acad. S c i . U.S.S.R., E a r t h S c i . Sect. 129: 1057-1059.  APPENDIX  GEOCHEMICAL  DATA  A  FOR  SOIL  14, 17, 49, 52, 109, 113 FROM  THE  CAMP  LAKE  PITS  AND AREA  198  10 0  100  PPM  1000 .L-F-H h o r i z o n  " " •. ,.  /  i \ \  \  ; ;  10  6000  \  \ \)  i  i  1 / 1 /  •  20  \  J / (  /  30  x icr  2  Mn  \  \ j  /  /  \  ')  i\  1  / ) 1/ u  40  Mg  _  \  1 C \ \i\  /  xicr*  l  /  1  Fe  j  i \ \ \ \ /  I f / / / 1  Ca  /  /  /  j  / \ /  i /  /  •  50  <( v  Figure A l .  Camp Lake:  S i  s o i l p i t 14, metal d i s t r i b u t i o n  with depth, -80 mesh, t o t a l  attack  F i g u r e A2.  Camp Lake:  s o i l p i t 14, metal d i s t r i b u t i o n with depth, -80 mesh, t o t a l  attack.  F i g u r e A3.  Camp Lake:  s o i l p i t 49, metal d i s t r i b u t i o n with depth, -80 mesh, t o t a l  attack  F i g u r e A4.  Camp Lake:  s o i l p i t 49, metal d i s t r i b u t i o n with depth, -80 mesh, t o t a l  attack.  100  10  1000  PPM  L-F-H  )  \  I N C H E  s  horizon  Ca Fe  \  10  6000  Mg  xio" .., 2  Mn  "1  20 /  30 \  40  \  \ )  50 F i g u r e A5.  Camp Lake:  s o i l p i t 52, metal d i s t r i b u t i o n with depth, -80 mesh, t o t a l  attack  F i g u r e A6.  Camp Lake:  s o i l p i t 52, metal d i s t r i b u t i o n with depth, -80 mesh, t o t a l  attack.  F i g u r e A7.  Camp Lake:  s o i l p i t 109, metal d i s t r i b u t i o n  with depth, -80 mesh, t o t a l a t t a c k .  £  F i g u r e A8.  Camp Lake:  s o i l p i t 109, metal d i s t r i b u t i o n  with depth, -80 mesh, t o t a l  attack.  F i g u r e A9.  Camp Lake:  s o i l p i t 113, metal d i s t r i b u t i o n  with depth, -80. mesh , t o t a l  attack.  Figure A l l .  Camp Lake:  s o i l p i t 198, metal d i s t r i b u t i o n  with depth, -80 mesh, t o t a l  attack.  0  100  000  PPM  0  6000  L-F-H  horizon  / \  I N C H E  S  Pb Zn ...  y  10  Cu _  20  30  40  50 F i g u r e A12.  Camp Lake:  s o i l p i t 198,  metal d i s t r i b u t i o n  with depth,  -80 mesh, t o t a l  attack. u  to  322.  APPENDIX  GEOCHEMICAL  DATA  FOR  THE  B  ANNE-CLEAVER  SOIL SNOW-MELT RUNOFF SEEPAGE-PIT WATERS STREAM WATERS STREAM SEDIMENTS  LAKES  AREA:  Table B l .  Metal content HC10,  Cu  A  N = 116  B C  (minus 80-mesh f r a c t i o n , HNC» / 3  digestion).  S o i l Layer  L-F-H  of s o i l at Anne-Cleaver Lakes  8-875 57(.44) O  Pb  Zn  Cd  Ag  Mn  Fe%  d-5640  21-2868  d-26.9  d-45.5  23-5648  0.3-6.4  76(.73)  160(.45)  2.4(.37)  2.1(.42)  234(.51)  1.7(.25)  22  0  63  79  0  0  Layer 1  A  12-1454  d-11665  42-3374  d-15.5  d-28.1  46-4425  1.1-14.2  0-10 i n .  B  82(.42)  76(.74)  177(.42)  1.5(.30)  2.4(.54)  241(.33)  2.4(.24)  N = 129  C  16  0  104  94  0  0  O  1:  Metal content i n ppm  2:  Data from the two easternmost g r i d l i n e s omitted.  A:  Range.  B:  Geometric mean f o l l o w e d by standard d e v i a t i o n i n base 10 logs i n (  C:  Number of samples below the d e t e c t i o n  d:  Detection  limit.  except where noted.  limit,  ).  Table B2.  Metal  content  of stream sediments adj acent  to m i n e r a l i z e d zones at Anne Lake.  S T  ^L2  ?™P]Lf  A  g  C u  F  e  %  M  n  p  b  Z n  Number  Number  1  791  3.8  396  6.9  2528  507  6532  2  800  2.0  735  6.1  511  211  8428  3  805  d.l.  319  3.4  437  11344  3528  4  911  d.l.  60  2.7  1030  35  510  1:  T o t a l attack, minus 80-mesh. except where noted.  A l l values  2:  See F i g u r e B l f o r sample s i t e l o c a t i o n s .  i n ppm  • 422 • 421 •42 0 • 419,  •4 oT 7  I/ ,/V  «400 »399  •34 4  •4 35 \^•lll »396 A«433 i •432 ..431 ^ / •430 / .429 / •428  '* #  •342 •3 41 • 3 40 •3 3 9  3 9 5  3  9  4  393 »3 9 2 •!„ * 3  #  3  9  9  •3 3 8 7  1  ^2> •336  G  426  • • • • •  540 539 538 537 536  • 535 • 5 34 ••533 • 532 • 531 • 530 • 529  • Soil grid  site  * Soil pit site Figure B l .  500  x Stream sediment  Anne-Cleaver Lakes: sample  site  I OOP feet  152 305 meters  l o c a t i o n of s o i l g r i d ,  SOJLI  p i t . and stream sediment  sites. CO  to cn  F i g u r e B2.  Anne-Cleaver total  Lakes:  Ag content of the L-F-H  h o r i z o n and Layer .1 s o i l s ,  -80 mesh,  attack. CO  F i g u r e B3.  Anne-Cleaver  Lakes:  Cd content  of the L-F-H  h o r i z o n , -80 mesh,, t o t a l  attack.  •>2  ppm  F i g u r e B4.  Anne-Cleaver  Lakes:  0  500  O  152  loop feet 305 meters  Cd content of Layer 1 s o i l s ,  -80 mesh, t o t a l  attack.  co  00  CO to  O  Anne-Cleaver Lakes:  Cu content (ppm)  '152  305 meters  of Layer 1 s o i l s , 0.05M EDTA ext.  F i g u r e B9.  Anne-Cleaver soils.  Lakes:  r a t i o of 1.0M  HCI ext. to t o t a l ext. Cu  ( C u ) i n Layer U D  F i g u r e BIO.  Anne-Cleaver Lakes: soils.  r a t i o of 0.05M EDTA ext. t o t o t a l ext. Cu (Cu__) i n Layer ER  Hi  20-40% 15S -3Q5meters  >40% Figure B l l .  Anne-Cleaver Lakes:  estimated percentage of v i s i b l e s u r f a c e i r o n  staini  ng,  CO  F i g u r e B12.  Anne-Cleaver Lakes:  Fe content  of the L-F-H  h o r i z o n , -80 mesh, t o t a l  attack. co CO  Anne-Cleaver Lakes:  Fe content of Layer 1 s o i l s ,  0.05M EDTA ext., -80 mesh.  0  500  IQOO feet  = S = S S S H  0  B19.  Anne-Cleaver Lakes: attack.  •. 152  -305 meters  Pb content (ppm) of the L-F-H  CLCAVER LAKE  h o r i z o n , -80 mesh, t o t a l  152 . '305 meters  F i g u r e B20.  Anne-Cleaver Lakes:  Pb content (ppm) of Layer 1 s o i l s ,  -80 mesh, t o t a l  attack. co  00  F i g u r e B25.  Anne-Cleaver Lakes: attack.  Zn content (ppm)  of the L-F-H  h o r i z o n , -80 mesh, t o t a l  CO  *>  CO  F i g u r e B27.  Anne-Cleaver Lakes:  500  1000 feet  •152  305 meters  Zn content (ppm) of Layer 1 s o i l s ,  CLCAVCR LAKE  1.0M  HCI ext., -80 mesh.  F i g u r e B28.  Anne-Cleaver Lakes:  Zn content of Layer 1 s o i l s ,  0.05M EDTA ext., -80 mesh.  CO  cn ISO  CO  cn co  10  100  PPM  1000  6000  L-F-H  10 h  horizon  1  Ca  _  Fe  xio-2  Mg  xio  - 2  Mn  20  30  40 h  50h 'igure B33.  Anne Lake:  s o i l p i t 431, metal d i s t r i b u t i o n  with depth, -80 mesh, t o t a l  attack  F i g u r e B34.  Anne Lake:  s o i l p i t 431, metal d i s t r i b u t i o n  with depth, -80 mesh, t o t a l  attack.  F i g u r e B35.  Anne Lake:  s o i l p i t 433, metal d i s t r i b u t i o n  with depth, -80 mesh, t o t a l  attack.  10  100  PPM  0  1000  6000  L-F-H  s  horizon  Cu _ Pb _. Zn ....  io h  • 20  N C H E S  30  40  50 F i g u r e B36.  Anne Lake:  s o i l p i t 433, metal d i s t r i b u t i o n  with depth, -80 mesh, t o t a l  attack.  F i g u r e B37.  Anne Lake:  s o i l p i t 452, metal d i s t r i b u t i o n  with depth, -80 mesh, t o t a l  attack.  ii  N  -/261 12/10  •A-/ 8 \ SAMPLE A  TYPE  Seepage  500  APit  •intermittent  OStream  . Cu/Zn  F i g u r e B38*.  stream  152  IQOO  feet  305 meters  Anne-Cleaver Lakes: (1974).  d i s s o l v e d Cu and Zn (ppb) i n seepage, p i t and stream wat e r s C o n c e n t r a t i o n s below the d e t e c t i o n l i m i t are designated as -. co to  •174/75, •176/16^.  ••  -/44 .•-/14  SAMPLE  TYPE  if. Pond  —»  OStream \2Snow-melt  runoff  F i g u r e B39.  intermittent •  stream  -/420  ~f-  \ \  500  1000 feet  152  505 meters  Cu/Zn  Anne-Cleaver Lakes: waters  mn  (1975).  d i s s o l v e d Cu and Zn (ppb) i n snow-melt, pond and stream  C o n c e n t r a t i o n s below the d e t e c t i o n l i m i t are designated as CO CO  APPENDIX  PLATES (PLATES  15  TO  1  C  TO 18  18 IN  POCKET)  Plate  1.  Unsorted c i r c l e with vegetation-free center. Note r e c e n t e x t r u s i o n o f t a n s i l t , crumpling/folding of s o i l and the large e n c i r c l i n g cobbles.  Plate  2.  P h o t o t a k e n l o o k i n g up s l o p e at a 4 t o 5 f o o t wide u n s o r t e d c i r c l e . N o t e s m a l l p a t c h of r e c e n t l y e x t r u d e d s i l t n e a r t o p of c i r c l e and s e v e r a l o l d e r t u r f and s t o n e r i m s or r i n g s a l o n g t h e d o w n - s l o p e s i d e w h i c h have f o r m e d as a r e s u l t o f d i s c o n t i n u o u s e x t r u s i o n and s o i l c r e e p .  co 5  I n a c t i v e , vegetated c i r c l e . Note 8 foot diameter stone r i n g and s l i g h t l y depressed center.  P l a t e 3.  A 1975 photo of a 1974 s o i l s i t e (14). Note t e n s i o n cracks and sagging i n hole combined with bulging and heaving above hole. CO 03  View from 3000 f e e t of the Bathurst Norsemines r e g i o n showing the great abundance of lakes and low r e l i e f of the area.  T y p i c a l s o i l sampling s i t e (131) and s o i l p r o f i l e . Note t h i n (J<1 inch) L-F-H h o r i z o n and l a c k of Ae and B horizons.  P l a t e 7.  T y p i c a l s o i l sampling s i t e (69) and s o i l p r o f i l e with t h i n (<2 inch) L-F-H horizon. Darker c o l o r s along s i d e s and bottom are due to wetness.  A n n e - C l e a v e r L a k e s A r e a from 300 f e e t . Diamond d r i l l i n f o r e g r o u n d on t h e E a s t C l e a v e r Lake Zone w i t h C l e a v e r and F l y i n g H o r s e L a k e s j u s t beyond f o l l o w e d by Anne Lake and, i n t h e f a r d i s t a n c e , T u r t l e Lake. Plate  9.  S o i l s i t e (323) a t A n n e - C l e a v e r Lakes Area. Note t h i n L-F-H h o r i z o n and abundant p l a n t r o o t s t o h o l e bottom (18 i n c h e s ) . D a r k c o l o r a t i o n due t o dampness and b u r i e d o r g a n i c m a t t e r .  P l a t e 11.  Camp Lake from 500 f e e t l o o k i n g northeast i n e a r l y June 1975. The snow cover i s r a p i d l y m e l t i n g but the i c e on Camp Lake exceeds s i x f e e t . The Cominco camp i s c l e a r l y v i s i b l e on the southwest shore and the nose of Banana Lake i s j u s t v i s i b l e i n the upper l e f t corner.  P l a t e 12.  Sediment core 1419. Note dark, high water and o r g a n i c r i c h upper p o r t i o n and s i l t y , grading down i n t o sandy, bottom port i o n ( c f . F i g . 110).  CO o  Sediment core 1424. Note b r i g h t orange ( o x i d i z e d ) upper p o r t i o n and numerous t h i n b l a c k bands which become d i f f u s e with depth (compare with F i g . 114).  P l a t e 14.  Sediment core 1427. Note 3mm b l a c k band at 11cm depth which c o n t a i n s very high Cu and Zn. T h i s band i s probably an o x i d a t i o n r e d u c t i o n boundary ( c f . F i g . 117).  w M  (In pocket). C o l o r G.S.C. a i r photograph of the Camp Lake Area. North i s towards the top and one inch i s approximately 1250 f e e t . A large area of gossan can be c l e a r l y seen t o extend i n a west-northwest d i r e c t i o n from west of Bat Lake to the B-C stream. Abundant esker and g l a c i o f l u v i a l d e p o s i t s with a s s o c i a t e d areas of scoured bedrock are c l e a r l y v i s i b l e i n the bottom of the photo. The Cominco Camp (12' x 18' t e n t s ) can be seen along the southwest shore of Camp Lake j u s t northwest of the esker d e l t a at the edge of the photo. Note abundant c i r c l e s , appearing a s j tan dots, between Camp and F i n g e r Lakes. Also, on the low angle s l o p e s north of Banana Lake s o i l s t r i p e s can be seen. These continue i n t o the shallow p o r t i o n s of the lake. (In p o c k e t ) . C o n t i n u a t i o n of P l a t e 15. Note gossan (from the Jo Zone) i n and adjacent t o the stream j u s t north of the w e l l developed esker which d i v i d e s Upper and Lower Sunken Lakes. A l s o note p a t t e r n e d ground f e a t u r e s ( c i r c l e s and s t r i p e s ) i n the shallow areas of Camp Lake and, to the n o r t h e a s t , L i n e a r and C i r c l e Lakes. A c a r i b o u t r a i l can be seen i n the middle o f t h e gossan between B-C stream and Bat Lake. (In pocket). C o l o r G.S.C. a i r photograph of the Anne-Cleaver Lakes Area. North i s towards the top and one i n c h i s approximately 1250 f e e t . Note c o n t i n u a t i o n (from the Camp Lake Area) of the esker with a s s o c i a t e d f e a t u r e s and the p r e s ence of c i r c l e s and s t r i p e s i n the shallow areas of T u r t l e and Anne Lakes. (In pocket). C o n t i n u a t i o n of P l a t e 17. Note gossan adjacent t o C l e a v e r and F l y i n g Horse Lakes ( i n center of photo) and j u s t south of t e n t s at Anne Lake.  P l a t e 15.  North t  P l a t e 16.  c-l  North t  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0052704/manifest

Comment

Related Items