Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Genesis and zoning of silver-gold veins in the Beaverdell area, South-Central British Columbia Watson, Patricia Helen Wanless 1981

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1981_A6_7 W38.pdf [ 14.26MB ]
Metadata
JSON: 831-1.0052672.json
JSON-LD: 831-1.0052672-ld.json
RDF/XML (Pretty): 831-1.0052672-rdf.xml
RDF/JSON: 831-1.0052672-rdf.json
Turtle: 831-1.0052672-turtle.txt
N-Triples: 831-1.0052672-rdf-ntriples.txt
Original Record: 831-1.0052672-source.json
Full Text
831-1.0052672-fulltext.txt
Citation
831-1.0052672.ris

Full Text

GENESIS AND ZONING OF SILVER - GOLD VEINS IN THE BEAVERDELL AREA, SOUTH-CENTRAL BRITISH COLUMBIA by PATRICIA HELEN WANLESS WATSON B.Sc.(Hons.) Queen's University, 1976 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE i n THE FACULTY OF GRADUATE STUDIES (Department of Geological Sciences) We accept t h i s thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA A p r i l , 1981 <T) P a t r i c i a Helen Wanless Watson I n p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f t h e r e q u i r e m e n t s f o r an advanced degree a t t h e U n i v e r s i t y o f B r i t i s h C o l u m b i a , I agr e e t h a t t h e L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y . I f u r t h e r a gree t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y p u r p o s e s may be g r a n t e d by t h e head o f my department o r by h i s o r h e r r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l n o t be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . Department o f &E6-.0&\CP>^ S . ^ H c e s The U n i v e r s i t y o f B r i t i s h C o l u m b i a 2075 Wesbrook P l a c e Vancouver, Canada V6T 1W5 DE-6 (2/79) Ii Abstract The Beaverdell s i l v e r , gold, lead, zinc..vein camp i s located approxi-mately 88 km south of Kelowna, i n south-central B r i t i s h Columbia at 49.43° north l a t i t u d e and 119.06° west longtitude. The camp has been a s i l v e r producer since the turn:..of thei.century and some gold was produced i n the early part of the century. This thesis examines the deposits i n the regional area and examines, i n d e t a i l , zoning i n the Lass vein system on Wallace Mountain, and represents the f i r s t comprehensive study of zoning and genesis of the veins. Galena-lead isotopes are examined within the regional s e t t i n g of the deposits. F l u i d i n c l u s i o n , sulphur isotope, mineralographic and major and minor element zonation studies y i e l d d e f i n i -t i v e information about the genesis of the deposits. Granodiorite of the Westkettle b a t h o l i t h , probably J u r a s s i c , underlies much of the area and has been Intruded by stocks of T e r t i a r y quartz mon-zonite, such as the Beaverdell stock. Remnants of pendants and/or screens of Wallace Formation metamorphosed volcanic and sedimentary rocks, believed to be Permian, are contained i n the granodiorite. S i l v e r m i n e r a l i z a t i o n occurs in::the Beaverdell mines on Wallace Mountain mainly within the West-k e t t l e b a t h o l i t h . Numerous showing and old workings of s i l v e r and/or gold m i n e r a l i z a t i o n are found throughout the surrounding region. The gold-bearing veins at Carmi contain a d i f f e r e n t mineral assemblage than the si l v e r - b e a r i n g veins on Wallace Mountain. Galena-lead analyses of samples c o l l e c t e d throughout the region f a l l 206 20A 207 20A into two d i s t i n c t c l u s t e r s on the Pb/ Pb versus Pb/ Pb and ^ ^ P b / 2 ^ P b versus 2 ^ P b / 2 ^ P b diagrams. The f i r s t group i s represented by the Carmi gold veins and the second by the Beaverdell s i l v e r veins. Models for the generation of lead i n these deposits used Permian (0.27 Ga), Jura s s i c (0.15 Ga) or T e r t i a r y (0.05 Ga) ages of mine r a l i z a t i o n on the basis i i i of geological and K-Ar data. The model that i s believed to be the best approximation of the system that formed these deposits assumes that the two groups of deposits formed at d i f f e r e n t times, under markedly d i f f e r e n t ge o l o g i c a l conditions. The parameters of t h i s model indi c a t e that: 1. the Carmi-type, gold-bearing vein m i n e r a l i z a t i o n i s probably J u r a s s i c and formed as a r e s u l t of the i n t r u s i o n of the Westkettle b a t h o l i t h , with the metamorphosed Wallace Formation as the probable lead source; 2. the Beaverdell-type,Silver-bearing vein m i n e r a l i z a t i o n i s probably T e r t i a r y and can be linked g e n e t i c a l l y to intrusions of that age, such as the Beaverdell stock; 3. ore f l u i d flow d i r e c t i o n f o r the solutions that formed the Beaverdell-type m i n e r a l i z a t i o n was outward through the Westkettle b a t h o l i t h , away . from the Beaverdell stock. Within the Lass vein system on Wallace Mountain, a d i s t i n c t i v e , depth related, east-west zonation pattern i n Au, Ag, Pb and Zn can be defined. Many of the other 11 elements analysed (Cu, Fe, Mn, Cd, Ca, Mg, Co, Ni, Hg, As, Sb) also show t h i s pattern. Two zones are defined. The deeper portions of the orebody (at the east end of the vein system) contain high gold values, low s i l v e r values, and moderate to high zinc and lead values. High s i l v e r values, accompanied by moderate lead and zinc values, are found at a higher elevation i n the system, i n the western part of the vein system. Veins i n the lower section have a greater average thickness than those i n the western, upper section, andijgenerally contain l e s s gangue material. F l u i d i n c l u s i o n s i n sphalerite and quartz samples from the Lass vein system can be divided into three groups based on':their homogenization temperatures. These are: Group 1: primary i n c l u s i o n (with and without CC^), formed between 260°C and 310°C, from solutions with an average of 13 equivalent weight percent i v NaCl; Group 2: pseudosecondary inclusions formed between 230°C and 260°C, with s a l i n i t i e s from 0.6 to 14 equivalent weight percent NaCl; Group 3: pseudosecondary and secondary inclusions formed between 180°C and 220°C, from solutions containing 0.4 to 14 equivalent weight percent NaCl. Arithmetic means of s a l i n i t i e s for pseudosecondary, and secondary inclusions are, respectively, 8 and 6 equivalent weight percent NaCl. Sulphur isotope thermometers calculated for sphalerite-galena pairs (268°C to 320°C) are i n close agreement with temperatures of homogenization of primary f l u i d i n c l u -sions. Seven stages of mineral paragensis can be recognized i n the Lass vein system. T h e r f i r s t three stages (pyrite, arsenopyrite and dark sphalerite) are associated with the higher temperature, higher s a l i n i t y , CC^-bearing, primary inclusions. Pseudosecondary and secondary inclusions appear to be related to stages 4 to 6, which consist of galena, paler sphalerite, s i l v e r minerals and la t e quartz. Estimated depths of formation, based on a system under hydrostatic pressure, f a l l into two groupings. The minimum estimated depths of formal tion for primary, group 1 inclusions average 720 m, while depths calculated for groups 2 and 3 overlap i n range, with-averages of'370 m and 175 m. The.model.-develbped to explain the formation of th i s orebody accounts for the major and minor element zonation i n the vein, the decreasing temperature, s a l i n i t y and pressure (depth), and the loss of CO2 from the ore-forming f l u i d . The model explains two s p a t i a l l y d i s t i n c t areas of mineralization represented by: 1. a zone of high temperature, high s a l i n i t y , .arid" moderate pressure below a t h r o t t l i n g point; and 2. a lower temperature, low s a l i n i t y area caused by ground water mixing on the lower pressure side of the t h r o t t l i n g point. CO^ i s present i n the system below the t h r o t t l i n g point, but i s not found i n any i n c l u s i o n s i n Groups 2 and 3, on the lower tempera-ture side of the t h r o t t l i n g point. The a s s o c i a t i o n of CC^ with gold deposition, suggests that gold would be expected i n those areas where CO^ i s present i n some of the i n c l u s i o n s . The d e f i n i t i o n of these two zones i s c r i t i c a l for exploration. High s i l v e r values would not be expected to reappear further at depth to the east of the present workings, because t h i s type of m i n e r a l i z a t i o n would only occur above the t h r o t t l e point. Gold m i n e r a l i z a t i o n can be expected to continue for some time at depth i f t h i s model holds true. The abrupt change from the gold to the s i l v e r zone represents the t h r o t t l e point i n t h i s model, and i s highly v i s i b l e i n the major and minor element d i s t r i b u t i o n patterns for the Lass vein system. Several d i f f e r e n t a n a l y t i c a l procedures have been shown to d i f f e r e n t i a t e between the two types of vein m i n e r a l i z a t i o n i n the Beaverdell area. The use of these methods for exploration and development would allow the deter-mination of key parameters concerning m i n e r a l i z a t i o n p r i o r to extensive development of a showing or property. The l e v e l within the hydrothermal system, and therefore the type of ore expected can be determined by f l u i d i n c l u s i o n studies for the younger, T e r t i a r y veins. The age of v e i n m i n e r a l i -zation, and therefore, the type of m i n e r a l i z a t i o n , also can be predicted by the use of galena-lead isotope r a t i o s . v i TABLE OF CONTENTS PAGE ABSTRACT i i TABLE OF CONTENTS v i LIST OF FIGURES v i i i LIST OF TABLES x i LIST OF PLATES x i i i ACKNOWLEDGEMENTS > x i v CHAPTER 1: INTRODUCTION 1 CHAPTER 2: GENERAL GEOLOGY AND GENESIS OF SILVER AND GOLD 4 VEINS IN THE BEAVERDELL AREA, SOUTH-CENTRAL B.C. Abstract 4 Introduction 6 General Geology and K-Ar Determinations s 6 Mi n e r a l i z a t i o n 10 Galena-Lead Isotope Analysis 11 - model 1 17 - model 2 20 - model 3 21 Conclusions 24 References 26 CHAPTER 3: SILVER -+GOLD ZONATION IN THE LASS VEIN SYSTEM, 30 BEAVERDELL, SOUTH-CENTRAL B.C. Abstract 30 Introduction 31 Geology of the Vein 31 v i i PAGE Data C o l l e c t i o n , Analysis and Presentation 34 Interpretation of S t a t i s t i c s 37 Discussion of Zonation Patterns 43 Conclusions 60 References 74 CHAPTER 4: GENESIS AND CONDITIONS OF FORMATION OF THE LASS VEIN 7 7 SYSTEM, BEAVERDELL, SOUTH-CENTRAL B.C. Abstract 77 Introduction 78 Mineralogy "jgO A n a l y t i c a l Procedures 31 F l u i d Inclusions 83 Sulphur Isotopes 91 Discussion 93 Conclusions 98 References 102 CHAPTER 5: CONCLUSIONS AND IMPLICATIONS TO EXPLORATION 107 APPENDIX A: SAMPLE LOCATIONS, AND DATA 11 2 APPENDIX B: SAMPLE PREPARATION, ANALYSIS AND PRECISION 125 APPENDIX C: ADDITIONAL ZONING PATTERNS 1 3 1 Part 1 131 Part 2 138 REFERENCES 152 V l l l LIST OF FIGURES FIGURE PAGE 2-1 REGI0NAL GEOLOGY WITH LOCATIONS OF K-AR AND GALENA-LEAD 7 ISOTOPE SAMPLES, BEAVERDELL AREA, SOUTH-CENTRAL B.C. 2-2 2 0 6 P B / 2 0 4 P B VERSUS 2 0 7 P B / 2 0 4 P B AND 2 0 6 P B / 2 0 4 P B VERSUS 2 0 8 P B / 2 0 4 P B FOR SAMPLES FROM THE BEAVERDELL AREA, 15 SOUTH-CENTRAL B.C. 2-3 GROUPS A AND B FROM FIGURE 2-2 WITH PARAMETERS OF MODELS 19 1 AND 2. 2- 4 GENETIC MODEL FOR FORMATION OF VEINS IN THE BEAVERDELL 23 AREA, SOUTH-CENTRAL B.C. 3- 1 REGIONAL GEOLOGY WITH LOCATIONS OF MAJOR MINES IN THE 32 BEAVERDELL MINE AREA, SOUTH-CENTRAL B.C. 3-2 SAMPLE LOCATIONS OF THE COMPOSITE PLAN VIEW OF THE UPPER 35 AND LOWER LASS VEIN SYSTEM, BEAVERDELL AREA, SOUTH-CENTRAL B.C. 3-3 RECONSTRUCTED PLAN VIEW OF THE LASS VEIN SYSTEM, BEAVERDELL 38 MINE AREA, SOUTH-CENTRAL B.C. 3-4 RECONSTRUCTED PLAN AND 'SECTION' PLOT OF THE LASS VEIN 44 SYSTEM, BEAVERDELL MINE AREA, SOUTH-CENTRAL B.C. ZINC 3-5 RECONSTRUCTED PLAN ANDJ'SECTION' PLOT OF THE LASS VEIN SYSTEM, 45 BEAVERDELL MINE AREA, SOUTH-CENTRAL B.C. LEAD 3-6 RECONSTRUCTED PLAN AND 'SECTION' PLOT OF THE LASS VEIN STSYEM, 46 BEAVERDELL MINE AREA, SOUTH-CENTRAL B.C. SILVER 3-7 RECONSTRUCTED PLAN AND 'SECTION' PLOT OF THE LASS VEIN SYSTEM, 48 BEAVERDELL MINE AREA, SOUTH-CENTRAL B.C. GOLD l x FIGURE PAGE 3-8 REG0NSTRUCTED PLAN OF THE LASS VEIN SYSTEM, BEAVERDELL 49 MINE AREA, SOUTH-CENTRAL B.C. WITH HIGHEST 50;-VALUES FOR ZN AND PB. 3-9 RECONSTRUCTED PLAN OF THE LASS VEIN SYSTEM, BEAVERDELL SO MINE AREA, SOUTH-CENTRAL B.C. WITH HIGHEST 50 VALUES FOR AG AND AU. 3-10 PLOT OF ARITHMETIC MEANS AND STANDARD ERRORS OF THE MEAN 54 FOR AU, AG, ZN, PB, AFTER DIVISIONSOF THE LASS VEIN SYSTEM :. INTO TWO AND FOUR SECTIONS AS SHOWN ON FIGURES 3-4 to 3-7. 3x11 PLOT OF ARITHMETIC MEANS FOR 14 ELEMENTS, AFTER DIVISION OF 57 THE LASS VEIN SYSTEM INTO * SECTIONS. 3-12. RECONSTRUCTED PLAN AND 'SECTION' PLOT OF THE LASS VEIN 61 SYSTEM, BEAVERDELL MINE AREA, SOUTH-CENTRAL B.C. AU/AG 3- 13 MODEL OF THE LASS VEIN SYSTEM, BEAVERDELL MINE AREA, 64 SOUTH*CENTRAL B.C. 4- 1 REGIONAL GEOLOGY WITH LOCATIONS OF MAJOR MINES IN THE 79 BEAVERDELL MINE AREA, SOUTH-CENTRAL B.C. 4-2 RECONSTRUCTED PLAN OF THE LASS VEIN SYSTEM, BEAVERDELL 82 MINE AREA, SOUTH-CENTRAL B.C. WITH LOCATIONS OF SAMPLES USED IN FLUID INCLUSION AND SULPHUR ISOTOPE STUDIES 4-3 HISTOGRAMS OF HOMOGENIZATION TEMPERATURES FOR FLUID INCLUSIONS 8 6 IN SAMPLES FROM THE LASS VEIN SYSTEM, BEAVERDELL MINE AREA, SOUTH-CENTRAL B.C. 4-4 HISTOGRAMS OF LAST MELTING TEMPERATURES FOR FLUID INCLUSIONS 87 IN SAMPLES FROM THE LASS VEIN SYSTEM, BEAVERDELL MINE AREA, .SOUTH-CENTRAL B.C. i x FIGURE PAGE 4-5 GRAPH OF LAST MELTING TEMPERATURE VERSUS HOMOGENIZATION 89 - TEMPERATURE FOR FLUID INCLUSIONS IN SAMPLES FROM THE LASS VEIN SYSTEM, BEAVERDELL MINE AREA, SOUTH-CENTRAL B.C. 4-6 MODEL FOR THE FORMATION OF THE LASS VEIN SYSTEM, BEAVERDELL 99 AREA, SOUTH-CENTRAL B.C. A- l REGIONAL GEOLOGY AND LOCATION OF SAMPLES FROM OUTSIDE ^ap-pe^k-efe-THE LASS MINES IN THE BEAVERDELL MINE.AREA, SOUTH-CENTRAL B.C. A-2 COMPOSITE PLAN VIEW OF THE UPPER AND LOWER LASS VEIN SYSTEM, map-pio.cke-t Co||ec!t'fcWi> BEAVERDELL AREA, SOUTH-CENTRAL B.C. RECONSTRUCTED PLAN AND SECTION' PLOT ON THE LASS VEIN SYSTEM, BEAVERDELL MINE AREA, SOUTH-CENTRAL B.C. C-l IRON 139 C-2 CADMIUM 140 C-3 MERCURY 141 C-4 ANTIMONY 142 C-5 MANGANESE , 144 C-6 ARSENIC 14 5 C-7 COPPER 14 6 C-8 CALCIUM 147 C-9 MAGNESIUM 148 C-10 COBALT 150 C - l l NICKEL 151 x i LIST OF TABLES TABLE PAGE 2-1 POTASSIUM-ARGON ANALYTICAL DATA, BEAVERDELL AREA, 8 SOUTH-CENTRAL B.C. 2-2 LEAD ISOTOPE ANALYSES ON GALENA IN THE BEAVERDELL AREA, 12 SOUTH-CENTRAL B.C. 2-3 EQUATIONS AND CONSTANTS USED IN DETERMINING GALENA rLEAD 13 ISOTOPE MODEL FOR THE BEAVERDELL AREA, B.C. 206 , 2 0 4 2-4 CORRELATION BETWEEN GROUP B GALENA-HEAD U D P B / PB RATIOS 16 AND APPARENT SURFACE DISTANCE FROM THE BEAVERDELL STOCK 2- 5 ESTIMATION OFu FOR GROUPS A AND B, STARTING ON STACEY AND 18 KRAMERSr (1975) GROWTH CURVE AT t-=1.5 Ga,; 3- 1 MEANS AND STANDARD DEVIATIONS DETERMINED GRAPHICALLY FOR 39 PARTITIONED ELEMENT POPULATIONS IN GRANODIORITE-HOSTED VEIN MATERIAL IN THE LASS VEIN SYSTEM, BEAVERDELL MINE AREA, .SOUTH-CENTRAL B.C. 3-2 GROUPING OF ELEMENTS BY POPULATION 40 3-3 CORRELATIONf-MATRIX FOR GRANODIORITE-HOSTED VEIN MATERIAL 42 FROM THE LASS VEIN SYSTEM, BEAVERDELL MINE AREA, SOUTH-CENTRAL B.C. 3-4 DISTRIBUTION 0KMHEX5.O HIGHEST VALUES OF AU, AG, PB AND ZN 51 IN THE LASS VEIN SYSTEM, BEAVERDELL MINE AREA, SOUTH-CENTRAL B.C. 3-5 RESULTS OF t-TESTS AND F-TESTS ON THE EAST AND WEST SECTIONS 53 OF THE LASS VEIN SYSTEM, BEAVERDELL MINE AREA, SOUTH-CENTRAL B.C. 3-6 CORRELATION MATRICES FOR THE TWO SECTIONS OF THE LASS VEIN 55 SYSTEM, BEAVERDELL MINE AREA, SOUTH-CENTRAL B.C. x i i TABLE PAGE 3- 7 LIST OF DATA USED IN THIS STUDY 65 4- 1 FLUID INCLUSION DATA FOR QUARTZ AND SPHALERITE FROM THE 84 -85 BEAVERDELL MINE, SOUTH-CENTRAL B.C. 4-2 SULPHUR ISOTOPE ANALYSES, LASS VEIN SYSTEM, BEAVERDELL 92 MINE AREA, SOUTH-CENTRAL B.C. 4-3 SULPHUR ISOTOPE THERMOMETERS AND FLUID INCLUSION HOMOGENIZATION 94 TEMPERATURES FOR SAMPLES FROM THE LASS VEIN SYSTEM, BEAVERDELL MINE^AREA, SOUTH-CENTRAL B.C. A - l SUMMARY OF ANALYTICAL AND HAND SAMPLE DATA COLLECTED FOR THIS 112 STUDY B-l COEFFICIENTS FOR LINEAR EQUATIONS, GIVING ANALYTICAL 128 PRECISION AS A FUNCTION OF COMPOSITION B-2 RELATIVE STANDARD ANALYTICAL ERRORS FOR DUPLICATE 130 ANALYSES C-l MEAN DETERMINED GRAPHICALLY FOR PARTITIONED ELEMENT 133 POPULATIONS FOR THE FOUR DATA SETS: ALL, VEIN, WESTKETTLE, WALLACE C-2 CORRELATION MATRIX FOR SAMPLES FROM WALLACE, LASS VEIN 134 SYSTEM, BEAVERDELL MINE AREA, SOUTH-CENTRAL B.C. C-3 CORRELATION MATRICES OF MINERAL PERCENTAGES FOR WALLACE 136 AND WESTKETTLE: DATA SETS, LASS VEIN SYSTEM, BEAVERDELL MINE AREA, SOUTH-CENTRAL B.C. C-4 MEANS AND STANDARD DEVIATIONS FOR WEST AND EAST ZONES OF THE 137 LASS VEIN SYSTEM, AMCANA, CARMI AND WALLACE, BEAVERDELL AREA SOUTH-CENTRAL B.C. x i i i LIST OF PLATES PHOTOGRAPHS OF FLUID INCLUSIONS IN QUARTZ AND SPHALERITE FROM THE LASS VEIN SYSTEM, BEAVERDELL MINE AREA, SOUTH-CENTRAL B.C. xiv ACKNOWLEDGEMENTS I would l i k e to thank Dr. C.I. Godwin for the many hours he spent planning and discussing t h i s project with me, and for suggesting the project and arranging f i n a n c i a l support. I would also l i k e to thank Dr. A.J. S i n c l a i r and Dr. K. Fletcher f o r t h e i r help at a l l stages of t h i s research. F i n a n c i a l support was generously provided by Teck Corporation Ltd. I would e s p e c i a l l y l i k e to thank Mr. W. Bergey for his i n t e r e s t i n the project, and Mr. B. Goetting and a l l the personnel at the Beaverdell Mine, who aided me i n my i n i t i a l sampling and understanding of the veins. Shen Kun ca r r i e d out most of the f l u i d i n c l u s i o n temperature study, and I am very g r a t e f u l f o r h i s precise and meticulous work. Mr. B. Ryan carried out the lead isotope analyses, and Mr. B. Cranston prepared the polished t h i n sections f o r the f l u i d i n c l u s i o n study. Many people i n the department helped i n t h i s project, including Ms. L. Achtemichuk and Mr. D. McPhail. Mr. A. Bentzen provided continuous 1comput er couns e l l i n g ' . Dr. P.A. Christopher provided information on the Beaverdell area from his f i e l d work, including unpublished K-Ar data. Mr. G. Leafy and Dr. A. Soregaroli also supplied K-Ar data f o r use i n t h i s study. I would also l i k e to thank Mr. R.E. Van T a s s e l l , of United Keno H i l l Mines Ltd., Whitehorse, f o r the use of t h e i r l i b r a r y and d r a f t i n g f a c i l i t i e s i n Whitehorse. 1 CHAPTER 1 INTRODUCTION The Beaverdell s i l v e r , lead, zinc (gold) vein camp (Figure 2-1) i s located i n south-central B r i t i s h Columbia (49.43° N and 119.06° W) , approximately 88 km south of Kelowna. Granodiorite of the Westkettle b a t h o l i t h , believed to be Jur a s s i c i n age, underlies much of the area. It has been intruded by small quartz monzonite stocks, such as the Beaverdell stock, dated by K-Ar methods as Te r t i a r y . The Westkettle intrusion:icontairis.-remnants :of pendants and/or screens of metamorphosed volcanic and sedimentary rocks of the Wallace Formation, which are probably Permian. The f i r s t important claims i n the Beaverdell mining area were staked on Wallace Mountain i n 1896, and the area has been i n production since 1900. Work was ca r r i e d out i n t e r m i t t e n t l y u n t i l 1913, when the K e t t l e River R a i l -way was completed to Beaverdell. Production from 1900 to 1975 was approximately 33 m i l l i o n ounces of s i l v e r , 24 m i l l i o n pounds of lead, 28 m i l l i o n pounds of zinc , and minor gold, cadmium and copper (Christopher, 1975). The major producing mines on Wallace Mountain (Figure 3-1), from west to east, were: Wellington, S a l l y and Rob Roy, Beaver, B e l l , Upper (Highland) Lass and Lower Lass, with numerous other small workings throughout the area. The i n d i v i d u a l mines slowly amalgamated, and by 1946 L e i t c h Gold Mines Ltd. co n t r o l l e d Highland B e l l (Highland Lass, B e l l and Beaver) and S a l l y . U n t i l 1950, when a 50 t.p.d. m i l l was b u i l t , the ore was hand sorted, ei t h e r underground or on surface. In 1954, the eastern continuation of the Highland Lass mine, known as the Lower Lass, was discovered, downfaulted approximately 800 feet. At t h i s time, the m i l l was expanded to about 2 100 t.p.d. Teck Corporation Ltd. took over L e i t c h Gold Mines Ltd., i n 1970, and at present mining i s concentrated i n the Upper and Lower Lass mines. Teck Corporation Ltd. i s presently the only operator i n the area. The f i r s t g eological reports on the Beaverdell region were by L. Reinecke (1910, 1915) f o r the Geological Survey, Canada Department of Mines. Data on the area, however, f i r s t appeared i n B r i t i s h Columbia Department of Mines Annual Reports i n 1897 and a d d i t i o n a l information i s found i n most Annual Reports since t h i s date. M i n e r a l i z a t i o n at Beaverdell was examined by H.E. McKinstry (1928), with emphasis on the s i l v e r - b e a r i n g minerals. C E . Cairnes (1937) published a preliminary report on the mineral deposits of the K e t t l e River region. A.B. Staples and H.V. Warren (1946) described the s i l v e r m i n e r a l i z a t i o n i n d e t a i l and W.H. White (1949) reported on the camp i n the Annual Report of the B.C. Minister of Mines. D.F. Kidd and O.S. Perry (1957) summarized the s t r u c t u r a l c h a r a c t e r i s t i c s of the camp, and H.W. L i t t l e (1957 and 1961) published preliminary maps (1 i n = 4 mi) of the K e t t l e River, east and west halves. P.A. Christopher (1975, 1976) described the s i l v e r , molybdenum and uranium properties i n the Beaverdell area for the B.C. Department of Mines and Petroleum Resources. Several graduate theses have been written on the immediately surrounding areas. G. Leary (1967) studied the Tuzo Creek molybdenum property, and J.M. Kenyon (1978) studied the Carmi molybdenum - uranium property (southwest and north-west of Beaverdell, r e s p e c t i v e l y ) . A regional compilation study of the area to the south of Beaverdell (Boundary D i s t r i c t ) was c a r r i e d out by G.R. Peat-f i e l d (1978). Although the presence of a s i l v e r - gold zonation i n the Lass vein system has been known for several years (Goetting, personal communication, 1979), t h i s i s the f i r s t comprehensive study of major and minor element 3 d i s t r i b u t i o n s i n samples of vein material. Complete data l i s t i n g s and sample locations are included i n Appendix A. A t o t a l of 262 samples were c o l l e c t e d from Wallace Mountain and the surrounding area during May to J u l y , 1979, and analysed by A.A.S. for 15 elements (Zn, Pb, Cu, Fe, Mn, Cd, Ca, Mg, Co, Ni, Au, Ag, Hg, As and Sb). D e t a i l s of sample preparation and analysis are given i n Appendix B. The assay values for these samples, most of which were of vein material, provided a data base from which to examine zonation patterns i n the mine. The r e s u l t s of t h i s study are presented as a s e r i e s of r e l a t e d papers, i n Chapters 2, 3 and 4. These are: Chapter 2: General Geology and Genesis of S i l v e r and Gold Veins i n the Beaverdell Area, South-Central B.C. (Watson, Godwin and Christopher, i n preparation) Chapter 3: Silver-Gold Zonation i n the Lass Vein System, Beaverdell, South-Central B.C. (Watson and Godwin, i n preparation) Chapter 4: Genesis and Conditions of Formation of the Lass Vein System, Beaverdell, South-Central B.C. (Watson, Shen Kun and Godwin, i n preparation) Chapter 2 examines the regional geologic s e t t i n g of the mine area, and discusses the possible ages of m i n e r a l i z a t i o n on the basis of K-Ar and galena-lead isotope data. Chapter 3 examines the zoning patterns i n the Lass vein system, where hosted by Westkettle granodiorite, of Au, Ag, Zn and Pb. Chapter 4 develops a genetic model for the Lass vein system, on the basis of f l u i d i n c l u s i o n and sulphur isotope studies, and petrographic work. The s i g n i f i c a n c e of these r e s u l t s to mineral exploration i n the area i s discussed i n each chapter and b r i e f l y summarized i n the conclusions. 4 CHAPTER 2 GENERAL GEOLOGY AND GENESIS OF SILVER AND GOLD VEINS  IN THE BEAVERDELL AREA, SOUTH^-CENTRAL B.C. Abstract The Beaverdell s i l v e r , lead, zinc vein camp i s i n south-central B r i t i s h Columbia at 49.43° north l a t i t u d e and 119.06° west longitude. Granodiorite of the Westkettle b a t h o l i t h , believed to be J u r a s s i c i n age, underlies much of the area, and has been intruded by stocks of T e r t i a r y quartz monzonite such as the Beaverdell stock. Remnants of pendants and/or screens of Wallace Formation metamorphosed volcanic and sedimentary rocks (probably Permian i n age) are contained i n the granodiorite. S i l v e r vein m i n e r a l i z a t i o n , characterized by the Beaverdell deposits on Wallace Mountain, are mainly within the Westkettle b a t h o l i t h . Gold m i n e r a l i z a t i o n , characterized by the Carmi mine, i s commonly found near the contact of Westkettle granodiorite and Wallace Formation. 206 20A 207 2OA Plots of the galena-lead analyses on Pb/ Pb versus Pb/ Pb and 2 ^ P b / 2 ^ 4 P b versus 2^ 8Pb/ 2^ 4Pb diagrams f a l l i nto two d i s t i n c t c l u s t e r s , c a l l e d Group A and Group B. Group A includes Carmi gold m i n e r a l i z a t i o n and Group B includes Beaverdell s i l v e r m i n e r a l i z a t i o n . Three models can be proposed f o r the generation of the lead i n these deposits, given that the p o t e n t i a l ages of m i n e r a l i z a t i o n are Permian (0.27 Ga), J u r a s s i c (0.15 Ga) and T e r t i a r y (0.05 Ga). These models are: 1. Group A and Group B deposits formed at d i f f e r e n t times from a s i m i l a r source, and l i e on a common growth curve; 5 2. Group A and Group B deposits formed at approximately the same time, from distinctly d i f f e r e n t sources; and 3. Group A and Group B deposits formed at d i f f e r e n t times, under markedly d i f f e r e n t geological conditions. Model 1 can be discounted on geological grounds and model 2 also seems to contradict g e o l o g i c a l evidence. Model 3 i s proposed to be the best approximation of the system that formed these deposits i n the Beaverdell area. The parameters of t h i s model in d i c a t e that: 1. Group A vein m i n e r a l i z a t i o n i s probably J u r a s s i c i n age and formed as a r e s u l t of the i n t r u s i o n of the Westkettle b a t h o l i t h ; 2. Lead for Group A veins probably was derived -from the metamorphosed Permian Wallace Formation; 3. Group B vein m i n e r a l i z a t i o n i s probably T e r t i a r y i n age; 4. Group B lead i s g e n e t i c a l l y linked to the T e r t i a r y i n t r u s i o n s such as the Beaverdell stock; and 5. Ore f l u i d flow d i r e c t i o n for Group B lead solutions, based on increasing 206 2 OA Pb/ Pb r a t i o s , was outward through the Westkettle b a t h o l i t h , away fromtthe Beaverdell stock. 6 Introduction The Beaverdell s i l v e r , lead, zinc vein camp (Figure 2-1) i s i n the southern part of the Omineca C r y s t a l l i n e Belt i n south-central B r i t i s h Columbia at 49.43° north l a t i t u d e and 119.06° west longitude. This paper describes the general geology, ages of the associated i n t r u s i v e rocks based on K-Ar analyses, and the age and genesis of the veins based on galena-lead isotope analyses. Lead isotope analyses are interpreted within the constraints imposed by the geology and K-Ar data. Samples for K-Ar analyses were c o l l e c t e d by P.A. Christopher and A.E. Soregaroli, as part of a regional mapping program by P.A. Christopher for the B r i t i s h Columbia M i n i s t r y of Energy, Mines and Petroleum Resources during 1975 and 1976. Galena samples for lead isotope studies were c o l l e c t e d by P.H. Watson i n 1979. Sample locations are indicated on Figure 2-1. General Geology and K-Ar Age Determinations Geology of the Beaverdell area has been described by Reinecke (1915), L i t t l e (1957, 1961) and Christopher (1975, 1976). The following summary of t h e i r work, shown i n Figure 2-1, i s important i n evaluating the genesis of vein deposits i n the camp. Granodiorite of the Westkettle b a t h o l i t h underlies much of the area (Figure 2-1). This b a t h o l i t h has been intruded by stocks of quartz monzonite, such as the Beaverdell stock, and contains remnants of pendants and/or screens of metamorphosed Wallace Formation. Oligocene Curry Creek t u f f s and conglomerates, and basic Miocene flows of the Nipple Mountain Series, unconformably o v e r l i e a l l the older units (above). Wallace Formation, believed by L i t t l e (1961) and P e a t f i e l d (1978) to be c o r r e l a t i v e with the Permian part of the Anarchist Group, i s the oldest unit known i n the area. It consists of metamorphosed andesitic t u f f s and 7 iNAIMO* ' A N C O U V H O P E • P R E R I p - o w , , * P E N T I C T O N J s T U t ' Y 1 N C E ' T O N * ^ " R t - j BC | y V. ^"4 2° 120'' 118° USA IX s» •x. ii9°io.w-*:<x VOLCANIC ROCKS I - -lli—4-BEAVERDELL AND RELATED STOCKS WESTKETTLE BATHOLITH WALLACE FORMATION fix. ^ >>4 * * «T: 0 1 2 Smiles f kilometres Figure 2-1: Regional Geology with Locations of K-Ar and Galena-Lead Isotope Samples, Beaverdell Area, South-Central B.C. Stars i n d i c a t e K-Ar sample l o c a t i o n s , and squares and dots i n d i c a t e lead samples, as i n Figure 2-2. TABLE 2-1 Potassium-Argon A n a l y t i c a l Data} Beaverdell Area, South-Central B.C. S a m p l e D e s c r i p t i o n L a t . u L o n g . 0 M a t " l 7 * ° _ A r * 2 ! _ . _ , £ * £ A p p a r e n t N u n , o e r ( H o c k T y p e ) N o r t h W e s t D a t e d %K t S* * » A r T o t ( T o * ~ c c S T P / g f A g e ( H a ) * T i m e I d a h o #1 3 e u v e r d e l l - I d a h o d y k e 4 9 . 4 3 1 1 9 . 0 5 WR 3 . 4 5 ± 0 . 0 6 0 . 7 6 9 0 . 6 0 9 5 U . 6 ± 1 . 5 T e r t i a r y ( g u a r t z l a t i t e ) ' K e l - #1 • B e a v o r d e l l - W e l l i n g t j n D 4 9 . 4 2 1 1 9 . 0 7 W8 3 . 0 2 2 . t 0 . 0 0 3 0 . 9 0 0 0 . 7 4 0 6 1 . 9 ± 2 . 2 T e r t i a r y ( a n d e s i t e ) S V A 7 4 - 9 C a r m i Mo L y s 4 9 . 5 2 1 1 9 . 1 7 B I 7 . 4 2 ± 0 . 0 4 0 . 8 3 5 1 . 6 3 2 5 5 . 7 ± 1 . 9 T e r t i a r y - 5 . 1 ( g u a r t z p o r p h y r y ) S V A 7 4 - 9 C a r m i H o l y * 4 9 . 5 2 1 1 9 . 1 7 S U 8 . 5 6 ± 0 . 0 3 0 . 8 7 2 • 1 . 9 1 0 5 6 . 5 t 2 . 0 T e r t i a r y - 5 . 3 ; 4 ; u ( b r e c c i a ) S V A 7 4 - 9 C a r m i i l o l y s 4 9 . 5 2 1 1 9 . 1 7 B I 7 . 6 3 ± 0 . 0 3 0 . 7 6 1 1 . 6 4 8 5 4 . 8 ± 1 . 9 T e r t i a r y - 5 . 4 : 9 . 1 ( q u a r t z m o n z o n i t e p o r . ) S V A / 4 - 9 C a r m i H o l y * 4 9 . 5 2 1 1 9 . 1 7 i l U 8 . 6 4 i 0 . 0 3 0 . 8 2 7 1 . 9 5 4 5 7 . 3 ± 2 . 0 . T e r t i a r y - 5 . 4 : 5 . 1 ( g u u r t z m o n z o n i t e p o r . ) E u g e n e A E u g e n e C r e e k s t o c k 4 9 . 4 7 1 1 9 . 1 6 B I 7 . 6 2 ± 0 . 0 9 0 . 8 8 0 1 . 6 3 8 5 4 . 5 ± 1 - 9 T e r t i a r y ( q u a r t z m j n z o n i t e p a r . ) X - 4 0 0 6 1 4 T u z o C r e e k c t o c k - . I O G H P 4 9 . 3 8 1 1 9 . 1 5 B I — — 4 9 . 5 ± 2 * T e r t i a r y ( g u a r t z m o n z o n i t e p o r . ) 1 . A i l a n a l y s e s , e x c e p t " 6 " b e l o w , d o n e f o r t h e B . C . H . E . M . P . H . i n t h e G e o c h r o n o l o g y L a b o r a t o r y , D e p a r t m e n t o f G e o i o g i c a l S c i e n c e s , T h e U n i v e r s i t y o f B r i t i s h C o l u m b i a . 2 . " S " i s d e v i a t i o n o f m e a n o f d u p l i c a t e a n a l y s e s , o r o n e s t a n d a r d d e v i a t i o n o f t r i p l i c a t e o r m o r e a n a l y s e s . 3 . " A r * " i n d i c a t e s r a d i o g e n i c a r g o n . 4 . e x c e p t f o r " b " b e l o w , c o n s t a n t s u s e d ( a f t e r S t e i g e r a n d J a g e r , 1 9 7 7 ) a r e ; y\e = 0 . 5 8 1 x 1 0 _ l - y r " 1 , 4 . 9 6 2 x 1 0 - » ° y r - i , « ° K / K = 1 . 1 6 7 x 1 0 ~ « . 5 . S a m p l e p r o v i d e d b y A . E . S o r o g a r o l i . 6 . A n . » 1 y s i a b y G e o c h r o n L a b o r a t o r i e s I n c . C o n s t a n t s u s e d i n c a l c u l a t i o n a r e n o t k n o w n . D a t a p r o v i d e d b y G . N . L o a r y . 7 . W3 = w h o l e r o c k , B I = D i o t i t e , f lU = m u s c o v i t e . 9 lavas, basic in t r u s i o n s (such as hornblende d i o r i t e p o r p h y r i e s , ^ o l i v i n e gabbro and hornblendite), hornfels and a minor amount of limestone. Reinecke (1915) estimated that 95 percent of the Formation was of igneous o r i g i n . The contact between Wallace Formation and Westkettle granodiorite i n the Beaverdell mine area i s sinuous, trending north with gentle dips to the east. Westkettle i n t r u s i v e rocks contain both b i o t i t e and hornblende .and are generally even grained. Their compositions range from granodiorite to quartz d i o r i t e . K-Ar analyses of t h i s unit were not attempted because of the u n i v e r s a l c h l o r i t i z a t i o n of mafic minerals near the Beaverdell and Carmi mine areas (Christopher, personal communication, 1981). L i t t l e (1961), •however, correlated the Westkettle i n t r u s i v e rocks with those of the Nelson b a t h o l i t h . A n i n ^ p o i n t Rb-Sr iisochron on the Nelson b a t h o l i t h near Nelson, B.C. gave 150±9 Ma (Duncan and P a r r i s h , 1978). K-Ar analyses by Nyugen et a l . (1968) on Nelson rocks i n the Slocan area yielded ages-of about 160 Ma. Thus, the J u r a s s i c (ca. 150 Ma) age of the Nelson b a t h o l i t h i s the best estimate of the age of the Westkettle b a t h o l i t h at t h i s time. The Beaverdell stock i s a highly c h l o r i t i z e d , u n f o l i a t e d , p o r p h y r i t i c 2 quartz monzonite, approximately 1.6 by 2.4 km . Several s i m i l a r , but l e s s a l t e r e d stocks are found elsewhere i n the area (Figure 2-1). The unit i s c h a r a c t e r i s t i c a l l y coarsely p o r p h y r i t i c , with d i s t i n c t i v e pink orthoclase phenocrysts up to 7.6 cm i n length. K-Ar analyses were not p o s s i b l e on the highly a l t e r e d Beaverdell stock, but b i o t i t e K-Ar determinations on two s i m i l a r stocks west of Beaverdell (Figure 2-1 and Table 2-1) give ages of 54v4+1.9 Ma and 49.5+2 Ma. A ser i e s of dykes, ranging i n composition from quartz l a t i t e and quartz monzonite porphyries, to hornblende andesite porphyries, are found throughout the area. In the Beaverdell mine area, fine-grained, dark brown andesite 10 dykes, l o c a l l y c a l l e d Wellington-type, are believed to be pre-mineralization (White, 1949). One of these was dated by the K-Ar method at 61.6+2.2 Ma (Table 2-1). Idaho-type, quartz l a t i t e dykes are thought to be syn-:or post-mineralization (White, 1949). One of these gave a K-Ar age of 50.6+1.5 Ma (Table 2-1). Information from age and geometrical r e l a t i o n s h i p s of the dykes and the veins suggest that the bulk of the mine r a l i z a t i o n was formed around 50 Ma, at about the same time as the Beaverdell stock. M i n e r a l i z a t i o n Two types of vein m i n e r a l i z a t i o n have been i d e n t i f i e d i n t h i s area. These are the s i l v e r - r i c h Beaverdell type, and the gold - r i c h Carmi type. Beaverdell-type s i l v e r deposits on Wallace Mountain are found i n a 3 km by 0.8 km b e l t , r e f e r r e d to as the Beaverdell mine area (Figure 2-1), mainly within the Westkettle b a t h q l i t h . The b a t h o l i t h i s intruded by the Beaverdell stock i n the west, and o v e r l a i n by Wallace Formation i n the east. M i n e r a l i z a t i o n l o c a l l y extends f o r short distances i n t o the Wallace Formation. The veins are mineralized f i s s u r e s , formed along east-trending f a u l t s i n the west endv of. the mine-area, and along northeast-trending f a u l t s i n the east. The main m e t a l l i c minerals are galena, s p h a l e r i t e and p y r i t e , with l e s s e r amounts of arsenopyrite, t e t r a h e d r i t e , p y r a r g y r i t e , chalcopyrite, polybasite, acanthite, native s i l v e r and p y r r h o t i t e (Staples and Warren, 1946; Watson, Shen Kun and Godwin, i n preparation and Chapter 4). The gangue minerals i n the veins are mainly quartz, with rare small concentra-tions of c a l c i t e and f l u o r i t e . Gold-bearing Carmi type veins are t y p i f i e d by those found at Carmi, approximately 7 km north of Beaverdell (Figure 2-1). These veins contain much less sulphide than those on Wallace Mountain. Sphalerite, p y r i t e and 11 minor amounts of galena are found i n a gangue of quartz. Assay values in d i c a t e that the contents of major and minor elements are generally d i f f e r e n t i n Beaverdell, compared to Carmi, veins; there are, however, some s i m i l a r i t i e s between the Carmi veins and those segments of Beaverdell veins hosted i n Wallace Formation rocks (Appendix C). The gold-type veins are commonly found near the contact of the Westkettle granodiorite with Wallace Formation, as at Carmi, where some of the adits and shafts are co l l a r e d i n rocksiof Wallace Formation. Galena-Lead Isotope Analysis Lead isotope analyses frequently help i n the i n t e r p r e t a t i o n of ages of miner a l i z a t i o n and i n understanding the geochemistry of possible sources of lead i n metalliferous deposits. In the following discussion an attempt i s made to specify both the times and geochemical source c h a r a c t e r i s t i c s r e l a t e d to the generation of deposits i n the Beaverdell area (Figure 2-1). Lead isotope analyses are given i n Table 2-2. Table 2-3 i s a summary of the basic equations and constants used i n t h i s study. I t should be noted that Equations 1 to 6 a l l incorporate two ages, t^ and t^. Thus, these equations are most useful i f one time can be determined from independent data. The K-Ar and geological information, to which reference has been made, suggest the following constraints on possible ages of mi n e r a l i z a t i o n : 1. Stratiform m i n e r a l i z a t i o n i n the Wallace Formation, i f found, would probably be Permian (ca. 0.27^Ga), from c o r r e l a t i o n s with the Anarchist Group suggested by P e a t f i e l d (1978). 2. Textural and compositional s i m i l a r i t i e s of the Westkettle and Nelson bat h o l i t h s suggest the two are equivalent, i n which case an age of 0.15 Ga i s indicated. TABLE 2-2 Lead Isotope Analyses 1 on Galena from Mineral Deposits In the Beaverdell Area, South-Central B.C. Sample Number D e p o s i t Name Map L a t . Name N o r t h Long . " Lead I s o t o p e D a t a ( R e l a t i v e IS E r r o r as %) w e s t J t ^ P b / i ^ P b J f 0 7 p b / ^ p b P b / ^ ^ P b Remarks B e a v e r d e l l A r e a G r o u p A : W79BH-020 W79CR-004 W79EU-002 3 0 4 1 9 - 0 0 8 B l a c k s m i t h C a r m i Dump Eugene C r e e k B e a v e r C l a i m Number o f d e p o s i t s (n) - 4 Number o f a n a l y s e s = 4 G r o u p B: W79BR-005 W79DO-003 W79HG-002 W79IIG-003 W79HG-004 W79HG-006 W79HG-007 W79HG-AVG W79NB-007 W79NB-017 W79NB-AVG W79PU-001 W79ZS-001 L 3 1 2 6 , 2 0 9 9 D o l l a r : C r a n b e r r y H i g h l a n d L a s s H i g h l a n d L a s s H i g h l a n d L a s s H i g h l a n d L a s s H i g h l a n d L a s s H i g h l a n d L a s s ( 5 ) New B e a v e r New B e a v e r New Beaver (2) P u e b l o F r a c t i o n S a l l y S h a f t BH 49 .43 1 1 9 . 0 6 18 .662 (. 09) 1 5 . 600 ( . 1 0 ) 38 .653 ( . 0 9 ) CR 49 .49 1 1 9 . 1 2 18 . 6 5 5 (• 09) 1 5 . 591 ( .10) 38 . 4 3 8 ( . 0 6 ) EU 49 .39 119 . 1 1 18 .657 (• 08) 1 5 . 595 ( . 0 6 ) 38 . 9 1 5 ( . 0 8 ) 419 49 .43 1 1 9 . 0 5 18 .583 (• 06) 1 5 . 603 ( .04) 38 . 4 1 2 ( . 0 8 ) a r i t h . a v e r a g e = [18 .639 (. 08) ] [15 . 597 ( - 0 8 ) ) [38 .604 ( . 0 8 ) ] s t d . e r r o r i nean =S -n A 0 . 0 1 9 0 . 003 0 . 1 1 7 ---BR 49 .47 1 1 9 . 0 6 18 .978 (• 11) 1 5 . 602 ( . 0 7 ) 38 .652 ( . 0 6 ) DO 49 . 4 5 1 1 9 . 1 2 19 .002 (• 08) 1 5 . 661 ( .09) 38 . 7 8 7 ( .10) HG 49 .43 1 1 9 . 0 6 19 .015 (• 15) 1 5 . 648 ( . 0 6 ) 38 .849 ( . 0 7 ) HG 49 .43 1 1 9 . 0 6 19 .015 (• 09) 1 5 . 651 ( .09) 38 .609 ( .10) HG 49 .43 1 1 9 . 0 6 19 . 0 0 1 (• 02) 1 5 . 648 ( .08) 38 . 8 2 9 ( . 0 9 ) HG 49 .43 1 1 9 . 0 6 19 .027 (• 09) 1 5 . 628 ( .08) 38 .676 ( .08) HG 49 .43 1 1 9 . 0 6 19 . 0 7 1 (. 05) 1 5 . 660 ( . 0 5 ) 38 .856 ( . 0 4 ) HG 49 .43 1 1 9 . 0 6 [19 .026 (. 08) ] [ 1 5 . 647 ( .07) ] 138 .764 ( . 0 8 ) ] NB 49 .43 1 1 9 . 0 6 18 .993 (. 05) 1 5 . 596 ( . 0 5 ) 38 . 7 0 3 ( . 0 7 ) NB 49 .43 1 1 9 . 0 6 18 .973 (• 09) 1 5 . 574 ( .08) 38 . 7 2 3 ( . 1 0 ) NB 49 .43 1 1 9 . 0 6 [18 .983 (• 07) ] [ 1 5 . 585 ( . 0 6 ) ] [38 .713 ( . 0 8 ) ] PU 49 .43 1 1 9 . 0 6 18 . 9 8 1 (• 01) 1 5 . 639 ( .11) 38 . 7 4 2 ( . 0 6 ) ZS 49 .43 1 1 9 . 0 7 18 .969 (• 03) 1 5 . 618 ( . 0 4 ) 38 . 6 9 5 ( . 0 5 ) Number o f d e p o s i t s (n) = 6 Number o f a n a l y s e s = 11 W79IIG-005 H i g h l a n d L a s s a r i t h . a v e r a g e = s t d . e r r o r mean =S- n •tt HG 4 9 . 4 3 1 1 9 . 0 6 [18 .990 ( . 0 6 ) ] 0 .008 1 9 . 3 8 3 ( .12) [ 1 5 . 6 2 5 ( . 0 7 ) ] 0 . 0 1 2 1 5 . 6 1 3 ( .15) [ 3 8 . 7 2 6 ( . 0 7 ) ] 0 . 0 2 0 3 8 . 5 1 4 ( .15) 1. A l l analyses done by B.D. Ryan, Geology B r i t i s h Columbia. 2. W79-005 analysis i s poor and Is not used - Geophysics Lead Isotope Laboratory, The University of in this analysis. ho Samp. 3 5 6 1 B - 1 Samp. 2 9 0 2 - 2 Samp. 2 9 1 2 - 8 Samp. 3 0 1 7 - 4 Samp. 3 0 1 7 - 2 Poor a n a l y s i s 13 Table 2-3 Equations and Constants used i n Determining Galena-Lead Isotope Model for the Beaverdell Area, B.C. Equation 1: Equation 2: Equation 3: r * ? t J -tx • ft.7 p b1 W Pb ' a c * PW % -Pb 1; 2.ot-Pb_ -*0*1 Phi — i s . ^ LO Ce - <s ; Equation 4: * 207-206 ( — j ^ * ^ * . ^ .C^ k/1"^  Equation 5: m 2 08-206 " '* (Tfci. * X y ~ ~ Equation 6: w = yk 6 - e  238TI,204B, Equation 7: y = U/ Pb 232 204 Equation 8: o> = Th/ Pb Equation 9: ? 3 / U / 2 3 5 U - « 137.88 A1=0.155125 x 10~ 9 (Jaffey et a l . , 1971). A2=0.98485 x 1 0 - 9 (Jaffey et a l . , 1971). A3=0.049475 x 1 0 - 9 (LeRoux and GlendeTvin, 1963). t ^ i s f i r s t , older age at s t a r t of argument in equation. t 2 i s second, younger age at end of argument in equation. tt207-206 r • i . 206^,204^ 207„, ,204„ mori-, i s slope of isochron on Pb/ Pb vs. Pb/ Pb graph. 206^.204^ 208„, ,204„, nior>o o n e 1 S slope of isochron on Pb/ Pb vs. Pb/ Pb graph. Z U o — Z U o y and;;.u in d i c a t e geochemical environment of the lead source. 14 3. A number of quartz monzonlte stocks i n the area (Figure 2-1) y i e l d T e r t i a r y K-Ar ages. The Beaverdell stock, equivalent i n texture and composition to these nearby stocks, i s c l e a r l y also of t h i s age. M i n e r a l i z a t i o n i n the Beaverdell mine area has been related to t h i s age by T e r t i a r y dykes. A number of i n v e s t i g a t o r s (Reinecke, 1915; McKinstry, 1928) have also suggested that the Beaverdell stock was the "mineralizer". Thus, T e r t i a r y (ca. 0.05 Ga) m i n e r a l i z a t i o n of veins i s a p o s s i b i l i t y . In summary, three p o t e n t i a l ages of m i n e r a l i z a t i o n (0.27, 0.15 and 0.05 Ga) must be considered on g e o l o g i c a l and i s o t o p i c evidence. 206 20A P l o t s of the galena-lead isotope analyses i n Table 2-2 on the Pb/ Pb 207™ ,204D. , 206o, .204™ 208_ ,204,,, , versus Pb/ Pb and the Pb/ Pb versus Pb/ Pb graphs of Fxgure 2-2 show two d i s t i n c t c l u s t e r s l a b e l l e d Group A and Group B. Group A includes the Carmi gold vein deposit. This and other comparable deposits occur e i t h e r within the Wallace Formation or i n the Westkettle granodiorite i n close proximity with the Wallace Formation. Group B includes s i l v e r vein deposits i n the Beaverdell mine area which are contained mainly i n Westkettle granodiorite. A genetic r e l a t i o n s h i p of Group B deposits to the 206 20A Beaverdell stock i s suggested by the very regular increase i n Pb/ Pb r a t i o s f or these samples, outward from the Beaverdell stock. The c o r r e l a t i o n c o e f f i c i e n t s f or distance versus isotope r a t i o (Table-2-4) are s t a t i s t i c a l l y highly s i g n i f i c a n t , e s p e c i a l l y considering that the large amount of movement along post-mineralization f a u l t i n g has not been taken into account. Consequently, i t appears l i k e l y that Group B deposits are T e r t i a r y (0.05 Ga). Lead isotope data, i n themselves, do not provide completely unambiguous in t e r p r e t a t i o n s . Three s p e c i f i c models are possible i n terms of modern genetic concepts and l o c a l g e o l o g i c a l constraints. These are: Table 2-4 Correlation between Group B Galena-Lead Pb/ Pb Ratios and Apparent Surface Distance' from the Beaverdell Stock, Beaverdell, B.C. Sample Number Deposit Name Pb/ Pb Distance from Stock (Map Name) (feet) W79ZS-001 Sally Shaft (ZS) 18.969 - a,b 1600 - a,b W79PU-001 Pueblo Fraction (PU) 118.981 - a,b 2900 - a,b W79NB-007 New Beaver (NB) 18.993 - b 3600 - b W79NB-017 New Beaver (NB) 18.973 - b 3600 - b W79NB-AVG New Beaver (NB) 18.983 - a 3600 - a W79HG-002 Highland Lass (HG) 19.015 - b 4300 - b W79HG-003 Highland Lass (HG) 19.015 - b 5000 - b W79HG-004 Highland Lass (HG) 19.001 - b 6200 - b W79HG-006 Highland Lass (HG) 19.027 - b 5800 - b W79HG-007 Highland Lass (HG) 19.071 - b 6000 --b W79HG-AVG Highland Lass (HG) 19.026 - a 5460 - b Correlation Coefficient (r) Number of Analyses (n) Significance r=0.9551 n=4 (a values) s i g n i f i c a n t at the 2 percent l e v e l r = 0 - 7 7 1 4 n=9 (b values) s i g n i f i c a n t at the 2 percent l e v e l 1. Isotope r a t i o s from Table 2-2. ~ ~ ~ ~ ~ 2. Distances are from detailed maps of the mine area. Approximate locations are on Figure 2-1, 17 Model 1: Group A and Group B deposits formed a d i f f e r e n t times from a s i m i l a r source and l i e on a common growth curve; Model 2: Group A and Group B deposits.formed at the same time but the environments that produced the lead were chemically d i s t i n c t ; and Model 3: Lead from the Wallace Formation was extracted to form Group A veins i n response to the i n t r u s i o n of the J u r a s s i c Westkettle granodiorite, and Group B veins were formed i n the T e r t i a r y as a r e s u l t of quartz monzonite i n t r u s i o n s such as the Beaverdell stock. Model 1 - The f i r s t model, i n which Groups A and B are assumed to have formed at d i f f e r e n t times and p l o t on the same growth curve, requires assumpti-ons to be made for basement or source age ( t ^ ) , and lead isotope r a t i o s at that time. Assuming that t n i s about 1.5 Ga that lead r a t i o s at t, f a l l on 1 and 1 the average c r u s t a l growth curve defined by Stacey and Kramers (1975), l ry and OJ for combinations of possible m i n e r a l i z a t i o n ages (t^) for the two groups can be calculated (Table 2-5) from Equations 1 to 3 (Table 2-3). With these averaged values of y and u the change i n lead isotope r a t i o s from Group A to Group B can be predicted for p a i r s of g e o l o g i c a l l y possible ages. Figure 2-3 shows that only one p a i r of ages (point 2) provides a reasonable 206 20A 207 20A i n t e r p r e t a t i o n of the lead data on the Pb/ Pb versus Pb/ Pb graph; namely, that Group A leads are Permian (ca. 0.27 Ga) and that Group B leads are T e r t i a r y (ca. 0.05 Ga). Several problems e x i s t with the foregoing i n t e r p r e t a t i o n . Clusters of Groups A and B on the 2 ^ P b / 2 ^ P b versus 2 ^ P b / 2 ^ P b graph i n Figure 2-3 cannot be linked l o g i c a l l y because the model requires that lead i n Group A be Permian i n model age, yet crosscut the Jurassic? Westkettle b a t h o l i t h . Such an i n t e r p r e t a t i o n requires a stage of Permian mi n e r a l i z a t i o n f o r which there i s no evidence, as w e l l as n e c e s s i t a t i n g m o b i l i z a t i o n of t h i s same lead without appreciable contamination, an u n l i k e l y event. 18 Table 2-5 Estimation of u for Groups A and B\ Starting on Stacey and Kramers (1975) Growth Curve at t^=l .5 Ga Group C l C2 avg u) A 1.5 0.15 9.672 40.396 A 1.5 0.27 10.341 44.207 B 1.5 0.05 10.473 39.338 B 1.5 0.15 11.007 42.149 Average u and OJ Values for Geologically Reasonable Age Pairs f o r Groups A and B Group A Group B y avg avg 2 Point on fcl H Figure 2-3 0.27 0.15 10.67 43.18 1 0.27 0.05 10.41 41.77 2 0.15 0.05 10.07 39.87 3 1. y and co calculated from Equations 1 to 3; t^ i s assumed to be 1.5 Ga and r a t i o s at that time are taken from Stacey and Kramers(1975) growth curve. 2. Point i s calculated by assuming growth from Group A i n the s p e c i f i e d y and u for the given pair of ages t^ and t ^ . The point calculated should coincide with Group B. 18.5 1 9 . 0 18.5 19.0 206Pb/204Pb Figure 2-3: Groups A and B from Figure 2-2 with parameters of Models 1 and 2. Points 1,2 and 3 (Table 2-5) are plotted in c i r c l e s . Lines with notated slopes are defined by Model 2. 20 Model 2 - The second model assumes that m i n e r a l i z a t i o n of Groups A and B deposits occurred at about the same time, during the T e r t i a r y (ca. 0.05 Ga), as a r e s u l t of i n t r u s i o n of quartz monzonite bodies such as the Beaverdell stock. In t h i s case, the slope of the l i n e between Groups A and B on the 206™ ,204™ 207™ ,204™ , ,_. _ . _ _ , , Pb/ Pb versus Pb/ Pb graph (Figure 2-3) can be interpreted by Equation 4 (Table 2-3). This equation can be used to c a l c u l a t e an apparent basement or source age ( t ^ ) , given that the mine r a l i z a t i o n i s T e r t i a r y ( i . e . t2=0.05 Ga). This model predicts that the basement or source age i s about 1.2 Ga. Assuming that the i n i t i a l composition at time t^ l i e s on Stacey and Kramers' growth curve (1975), i s o t o p i c r a t i o s at time t^ can be estimated, and u, CJ, and k can be calculated from Equations 1,2,3 and 6. Group A i s characterized by: u=8.5, co=38.0 and k=4.5, and Group B by: u=10.4, w=40.1 and k=3.9. For t h i s model, the slope (m, Equation 4) was estimated for the l i n e between the average of Group A and the average of Group B, but the large standard errors associated with the estimations of these means ( p a r t i c u l a r l y 207 2 OA Pb/ Pb f o r Group B) make the r e s u l t s based on the slope q u a l i t a t i v e at best. Nevertheless, the i n t e r p r e t a t i o n of model two i s i n agreement both with the general geological constraints and av a i l a b l e i s o t o p i c data. If model two i s cor r e c t , environments of lead growth can be estimated as follows. Values of k from 5 to 6 would be expected for low-calcium granites (Faure, 1977) , and might be expected f o r lead from the T e r t i a r y quartz monzonite. Since the calculated k values are lower, the basic to intermediate terrane of the Wallace Formation i s the more l i k e l y source for the lead for both groups. For Group A, u equals 8.5 and i s lower than the c r u s t a l average of about 9.7 (Stacey and Kramers, 1975), i n d i c a t i n g that the lead i n Group A deposits could have been derived from the more p r i m i t i v e Wallace Formation. Lead i n Group B has a markedly higher u of 10.4, and, 21 as shown above, becomes in c r e a s i n g l y more radiogenic away from the Beaverdell stock. This systematic v a r i a t i o n i n i s o t o p i c composition suggests that the higher y for Group B i s due to p r e f e r e n t i a l leaching of highly radiogenic lead from the Westkettle granodiorite by ore f l u i d s traversing the grano-d i o r i t e . Consequently, the lead isotope data according to t h i s model define an important component of ore f l u i d flow d i r e c t i o n at the present l e v e l of erosion. Several problems with model two are evident. Foremost of these i s that i f a l l the m i n e r a l i z a t i o n formed at one time, then a continuum of points along the l i n e , rather than two d i s t i n c t c l u s t e r s , would be expected. Also, a zonation from gold at depth to s i l v e r at higher elevations has been well documented for the Highland Lass system at Beaverdell (Watson and Godwin, i n preparation and Chapter 3). In the proposed model for t h i s system, gold mi n e r a l i z a t i o n was deposited i n an e a r l i e r stage at higher temperatures, p r i o r to the deposition of s i l v e r m i n e r a l i z a t i o n from cooler solutions (Watson, Shen Kun and Godwin, i n preparation and Chapter 4). If t h i s pattern applies r e g i o n a l l y , and i f gold m i n e r a l i z a t i o n at Carmi and Beaverdell i s contemporaneous, then Group B veins should be c l o s e r to the heat source of the Beaverdell stock, rather than further away, as appears to be the case i n the Beaverdell mine area ( i . e . Group A, Blacksmith and Beaver Claim samples, with respect to Group B, Highland Lass veins, Figure 2-1). Model 3 - The t h i r d model assumes that Group A lead-bearing veins formed i n response to the J u r a s s i c (ca. 0.15 Ga) Westkettle granodiorite i n t r u s i o n s . Group B lead formed separately i n the T e r t i a r y (ca. 0.05 Ga). In t h i s case, the galena-lead formed at t^=0.15 Ga was representative of c r u s t a l lead (presumably from the Wallace Formation) at that time. Since the i n i t i a l and f i n a l times (t^ and t^) and i s o t o p i c r a t i o s are known, y, CJ and k can be calculated from Equations 1, 2, 3 and 6 (Table 2-3). For t h i s model, 22 these values are: y-30 (averaged from Equations 1 and 3) , co=25 and k=0.85. The model can be tested further by using Equations 4 and 5 to c a l c u l a t e the slope of s t r a i g h t l i n e s between Groups A and B, where t^=0.15 Ga, t2 =0.05 Ga and k=0.85.\ Resulting l i n e s are plotted on Figure 2-3. Both l i n e s f a l l within the standard error of the mean of the more scattered c l u s t e r , i f the l i n e i s forced through the center of the t i g h t e r c l u s t e r . Model three provides the best explanation of the lead isotope data, within the constraints of g e o l o g i c a l and K-Ar data. The most important feature of the t h i r d model i s that the marked differences between Group A and Group B are expected, because two d i f f e r e n t mineralizing episodes are represented. The t i g h t Group A c l u s t e r i s evidence for the d e r i v a t i o n of t h i s lead from the Wallace Formation, as i t would be expected to have been homogenized, with respect to uranium, by the regional metamorphism that predated the i n t r u s i o n of the Westkettle b a t h o l i t h . Values of u, for obtaining Group B r a t i o s from Group A o r i g i n a l l y , are high. High u values, however, are commonly encountered i n vein deposits (Godwin et a l . , 1981, and i n press) and are to be expected i n cases where solutions became contaminated by flowing through rocks containing r e a d i l y leachable radiogenic lead (such as the lead i n the outer zones of z i r c o n g r a i n s ) . The amount of leachable lead that enters the ore f l u i d depends i n part on the volume of Westkettle granodiorite traversed by the f l u i d . Such as addition of radiogenic lead would also give r i s e to the distance-isotope zonation (noted for the 206 20A Beaverdell mine area, Table 2-4) that i s s i m i l a r i n scale to Pb/ Pb contours drawn i n the Slocan C i t y and Sandon camps by LeCouteur (1973). A generalized genetic model for formation of the veins i n the Beaverdell area, based on model 3, i s shown schematically:"in Figure 2-4. The following sequence of events i s i n f e r r e d . Group A veins were formed at higher tempera-tures and pressures i n response to heat from the mesozonal (Buddington, 1959) ' T T .'I' 4 " r " ~ + + + + + + + + + + + + + + + + + + + +' 1+ + + + + + + + + + + + + + I + + + + + + + 4 4 4 4 4 4 4 4 I4 4 + + + + 4 4 + + + + + + + ~r H- + + + + + + + 4 4 4 4 4 4 4 4 I f 4 4 - 4 4 4 4 4 + + + + +•+ + + ff + + + + + + + + + + + + + +• + + + /4 4 4 4 4 4 4 4 4 + \ V + + + + + + + +.+ A* + + + + + + + + + + + 4 4 4 4 4 4 4 4 4 1 4 4 4 4 4 4 4 4 4 4 4 (4 4 4 4 4 4 4 4 4 4 +Oi + T B f c 4 V f e f i D E t L % \ + + y 4 4 4 4 4 4 4 4 4 4 H # T 4 + + + + + + + + + + + + \+ + + + + V-4 4 4 4 4 % . 4 \4 4 4 4 4 + 4 4 4 + 4 4 + 4 4 4 ' 4 4 4 + 4 ' 4 4 + + + + WALLACE FORMATION (metamorphosed terrane) T -r T -r - r %j$ofp1Wti'tjfe.+ + 4 4 '4 4 4 4 4 v 4quartz Lirtoti^QfiJtf^+++++ WESTKETTLE BATHOLITH (granodiorite) F i g u r e 2-4: Genetic Model f o r Formation of Veins i n the B e a v e r d e l l Area, S o u t h - C e n t r a l B.C. Veins formed at two times by c o n v e c t i v e f l u i d s as represented by g o l d - r i c h Carmi-type ( s o l i d l i n e s marked A) and s i l v e r - r i c h B e a v e r d e l l - t y p e (dashed l i n e s marked B). 24 Jurassic Westkettle b a t h o l i t h . Heat from the b a t h o l i t h moved solutions through the Wallace Formation. These solutions formed the veins e i t h e r i n the Wallace Formation or i n the outer margin of the Westkettle b a t h o l i t h , which became b r i t t l e and "fractured as i t cooled. The terrane underwent erosion so that by T e r t i a r y time, i n t r u s i o n s were at a higher l e v e l i n the crust. These epizonal (Buddington, 1959) T e r t i a r y p o r p h y r i t i c i n t r u s i o n s , such as the Beaverdell stock, set up a second hydrothermal convection system that caused v e i n deposition i n the fractured Westkettle granodiorite as solutions moved away from the stock. Temperature and pressure conditions leading to the deposition of these Group B (dominantly s i l v e r - r i c h ) veins would probably be quite d i f f e r e n t from those associated with Group A deposits. This might explain differences i n mineralogy and major and minor element content between the two groups, i f the comparisons between the Carmi (Group A) and Highland Lass (Group B) veins i s generally v a l i d . Conclusions Geological and K-Ar data provide the constraints necessary for a c r i t i c a l examination of various models for the evolution of galena-lead isotope r a t i o s i n the Beaverdell region. Three models, which assume presently i n d i -cated age constraints, are proposed for the development of the two d i s t i n c t 206 20A 207 20A concentrations of deposits as seen on Pb/ Pb versus Pb/ Pb and 206.. ,204p, 208^,204^ . ^ Pb/ Pb versus Pb/ Pb p l o t s . These models are: 1. Group A and Group B deposits formed at d i f f e r e n t times from a s i m i l a r source and l i e on a common growth curve; 2. Group A and Group B deposits formed about the same time, from d i s t i n c t l y d i f f e r e n t sources; and 25 3. Group A and Group B deposits formed at d i f f e r e n t times under markedly d i f f e r e n t conditions. Model 1 can be discarded on the basis of geological evidence. Model 2 cannot be t o t a l l y discounted but appears to be l e s s probable than Model 3. The most f e a s i b l e i n t e r p r e t a t i o n , 1-Iodel 3, seems to be that veins i n the d i s t r i c t formed at two d i s t i n c t times, under markedly d i f f e r e n t geological conditions. The parameters of t h i s model indi c a t e that: 1. Group A vein m i n e r a l i z a t i o n i s probably J u r a s s i c i n age and formed as a r e s u l t of the i n t r u s i o n of the Westkettle b a t h o l i t h . 2. Lead for Group A veins probably was derived from the metamorphosed Permian Wallace Formation. 3. Group B vein m i n e r a l i z a t i o n i s probably T e r t i a r y i n age. 4. Group B lead i s g e n e t i c a l l y linked to the T e r t i a r y i n t r u s i o n s , such as the Beaverdell stock. 5. Ore f l u i d flow d i r e c t i o n for Group B lead solutions, based on increasing 206 2 OA Pb/ Pb r a t i o s , i s outward through the Westkettle b a t h o l i t h , away from the Beaverdell stock. The differences between the two vein catagories could be s i g n i f i c a n t to exploration. H i s t o r i c a l l y , Group B veins have been of greater economic s i g n i f i c a n c e , although Reinecke (1915) and l a t e r i n v e s t i g a t o r s thought that;: Carmi ores represented a lower extension of the veins on Wallace Mountain. The presence of two d i s t i n c t groups, rather than a continuum between the two groups, appears to i n d i c a t e that t h i s i s not the case, and the d i s t i n c t i o n between the two types of m i n e r a l i z a t i o n canrreadily be made by galena-lead isotope analyses. 26 REFERENCES Barnes, H.L. (ed.) 1967. Geochemistry of hydrothermal ore deposits; Holt, Rinehart and Winston Inc., New York, 670 p. Barnes, H.L. (ed.) 1979. Geochemistry of hydrothermal ore deposits, second e d i t i o n ; John Wiley and Sons Inc., New York, 798 p. Boyle, R.W. 1968. The geochemistry of s i l v e r and i t s deposits; Geol. Survey of Canada, B u l l e t i n 160, 264 p. Boyle, R.W. 1979. The geochemistry of gold and i t s deposits; Geol. Survey of Canada, B u l l e t i n 280, 584 p. Buddington, A.F. 1959. Granite emplacement with s p e c i a l reference to North America; B u l l . Geol. Soc. Amer., Vol. 70, pp. 671-747. Cairnes, C.E. 1937. Preliminary report: mineral deposits of the west ha l f of the K e t t l e River area, B.C.; Geol. Survey of Canada, Paper 37-21. Christopher, P.A. 1975. Carmi-Beaverdell area ('82E/6,11); i n Geological Field-work, B.C. Min. Mines and Petroleum Res., pp. 27-31. Christopher, P.A. 1975. Highland B e l l (Beaverdell) 'mine; '(82E/6E) ;• i n -Geology: .in Bi. C.,-iB .C Min. Mines, and Petroleum Res., pp. G30-G33. Duncan, I.J., and P a r r i s h , R.R. 1979. Geochronology and Sr Isotope geochemistry of the Nelson b a t h o l i t h : A post-tectonic i n t r u s i v e complex i n southeast B r i t i s h Columbia; Geol. Soc. Amer. Abstracts with Programs, Vol. 11, No. 3, p. 76. Faure, G. 1977. P r i n c i p l e s of isotope geology; John Wiley and Sons Inc., New York, 464 p. Godwin, C.I., S i n c l a i r , A.J., and Ryan, B.D. 1981. Lead isotope models for the genesis of carbonate-hosted Zn-Pb, shale-hosted Ba-Zn-Pb, and silver-rich'.deposits i n the northern Canadian C o r d i l l e r a ; Symposium 27 Volume of mineral deposits of the P a c i f i c Northwest, U.S. Geol. Survey, Open F i l e Report, i n press. Hedley, M.S., and Watson, K.de P. 1945. Lode gold deposits, c e n t r a l southern B r i t i s h Columbia; B.C. Dept. of Mines, B u l l . 20, part 3, pp. 16-17. Helgeson, H.C., and Garrels, R.M. 1968. Hydrothermal transport and deposition of gold; Econ. Geol., V o l . 63, pp. 622-635. Heyl, A.V. 1969. Some aspects of genesis of z i n c - l e a d - b a r i t e - f l u o r i t e deposits i n the M i s s i s s i p p i V alley, U.S.A.; Trans. I.M.M. Section B, Vol. 78, pp. B148-B160. Heyl, A.V., Landis, G.P., and Zartman, R.E. 1974. Evidence for the o r i g i n of M i s s i s s i p p i V a l l e y type mineral deposits, a review; Econ. Geol., Vol. 69, pp..' 992-1006. Jaff e y , A.H., Flynn, K.F., Glendenin, L.E., Bentley, W.C., and E s s l i n g , A.M. 1971. P r e c i s i o n measurement of the h a l f - l i v e s and s p e c i f i c a c t i v i t i e s of U235 and U238; Phys. Rev., C, Vol. 4, pp. 1889-1906. Kenyon, J.M. 1978. Mo and U m i n e r a l i z a t i o n with s p e c i a l reference to a Mo-(U); deposit at Carmi, B.C.; unpublished M.Sc. t h e s i s , Dept. of Geology, Un i v e r s i t y of Alberta. Kidd, D.F., and Perry, O.S. 1957. Beaverdell camp, B.C.; i n S t r u c t u r a l geology of Canadian ore deposits, C.I.M. Congress Volume, pp. 136-141. Leary, G. 1967. Petrology and structure of the Tuzo Creek molybdenite prospect near Penticton, B r i t i s h Columbia;unpublished M.Sc. t h e s i s , Dept. of Geological Sciences, U n i v e r s i t y of B r i t i s h Columbia. LeCouteur, P.C. 1973. A study of lead isotopes from mineral deposits i n s^outh-eastern B r i t i s h Columbia and i n the A n v i l Range, Yukon T e r r i t o r y ; unpublished Ph.D. t h e s i s , Dept. of Geological Sciences, U n i v e r s i t y of B r i t i s h Columbia. 28 LeRoux, L.J., and Glendenin, L.E. 1963. H a l f - l i f e of Thorium-232. Proc. N a t l . Conf. on Nuclear Energy, P r e t o r i a , A p r i l . L i t t l e , H.-.W. 1957. Geology of K e t t l e River, east h a l f (82E), B.C.; Geol. Survey of Canada, map 6-1957. L i t t l e , H.W. 1961. Geology of K e t t l e River, west ha l f (82E), B.C.; Geol. Survey of Canada, map 15-1961. McKinstry, H.E. 1928. S i l v e r m i n e r a l i z a t i o n at Beaverdell, B.C.; Econ. Geol., Vol. 23, pp. 434-441. Nguyen, K.K., S i n c l a i r , A.J., and Libby, W.G. 1968. Age of the northern part of the Nelson b a t h o l i t h ; Can. Jour. Earth Sciences; Vol. 5, pp. 955-957. P e a t f i e l d , G.R. 1978. Geologic h i s t o r y and metallogeny of the 'Boundary D i s t r i c t ' , southern B r i t i s h Columbia and northern Washington; unpublished Ph.D. t h e s i s , Dept. of Geological Sciences, Queen's Univ e r s i t y . Reinecke, L. 1910. Beaverdell D i s t r i c t , West Fork of K e t t l e River, B r i t i s h Columbia; Summary Report of the Geol. Survey Branch, Dept. of Mines, Canada, pp. 118-122. Reinecke, L. 1915. Ore deposits of the Beaverdell map area; Canada Dept. of Mines, Geological Survey, Memoir 79, 178 p. Stacey, J.S., and Kramers, J.D. 1975. Approximation of t e r r e s t r i a l lead isotope evolution by a two-stage model; Earth and Planet. Science L e t t e r s , Vol. 26, pp. 207-221. Staples, A.B., and Warren, H.V. 1946. Minerals from the Highland-Bell s i l v e r "mine,: Beaverdell, iBi.C.;,University, .of/.TorontojGeological Series No. 50, pp. 27-33. 29 Staples, A.B., and Warren, H.V. 1946. Mineralogy of the ores of the Highland-B e l l mine; Western Miner, May 1946 (pp. 38-43) and June 1946 (pp. 54-58). \' Verzosa, R.S., and Goetting, B. 1972. Geology and h i s t o r y of the Highland B e l l mine, Beaverdell, B.C.; paper presented at the f a l l meeting of C.I.M. i n Prince George, B.C. White, D.E. 1980. Active geothermal systems and rel a t e d ore deposits; preprint version 1/26/80. White, W.H. 1949. Beaverdell, 49° 119° SE; Min. of Mines of B r i t i s h Columbia, Annual Report, pp. 138-148. 30 CHAPTER 3 SILVER - GOLD ZONATION IN THE LASS VEIN  SYSTEM, BEAVERDELL, SOUTH-CENTRAL, B.C. Abstract The Beaverdell s i l v e r , lead, zinc (gold) v e i n camp i s situated i n south-central B r i t i s h Columbia at 49.43° north l a t i t u d e and 119.06° west longitude. The camp has been a s i l v e r producer since the turn of the century. In the Lass v e i n system, s i l v e r occurs near the surface i n the west end of the v e i n system, and gold i s known to occur at depth i n the east end of the vein. This i s the f i r s t comprehensive study 'of major and minor element d i s t r i b u t i o n s i n the vein system. A data base of 209 granodiorite-hosted v e i n samples analysed for 15 elements (Zn, Pb, Cu, Fe, Mn, Cd, Ga, Mg,Co, Ni, Au, Ag, Hg, As and Sb) allows the d e f i n i t i o n of a d i s t i n c t i v e , depth r e l a t e d , east-west zoning pattern i n t h i s v e i n system. Deeper portions of the ore body (the east end of the system) contain high Au values, low Ag values, and^moderate to high Zn and Pb values. Fe and Cd values are also higher at depth. High Ag values, accompanied by moderate Zn and Pb values, are concentrated i n the upper, west end of the mine (along with Hg), where veins are generally thinner and contain a larger percentage of gangue material. Cu, As, Ca and Mg values are approximately the same throughout the system. The means for Mn and Sb are not d i s t i n g u i s h a b l e between the east and west portions of the mine, but t h e i r standard deviations are s t a t i s t i c a l l y d i f f e r e n t . It i s believed that Au m i n e r a l i z a t i o n formed deeper i n the vein system, below a t h r o t t l e point, and that Ag m i n e r a l i z a t i o n formed at higher elevations, from solutions that were cooler and l e s s s a l i n e because of mixing with ground water on the low pressure side of a t h r o t t l e point. 31 The l i n e of demarkation between the two zones defines the t h r o t t l e point. The presence of only two zones i n the system indicates that high Ag values would not be expected to reappear further to the east of the present workings, but that high Au vailues.'.would be expected to continue i n t h i s d i r e c t i o n . A d d i t i o n a l high grade Ag m i n e r a l i z a t i o n can be expected only i n the upper, i . e . west part of the system which i s located above the t h r o t t l e point. Introduction The Beaverdell s i l v e r , lead, zinc (gold) vein camp (Figure 3-1) i s i n the southern part of the Omineca C r y s t a l l i n e Belt i n south-central B r i t i s h Columbia (49.43° north l a t i t u d e and 119.06° west longitude). The camp has been a s i l v e r producer since the turn of the century. In recent years some gold has been reported i n the eastern, and deeper, end of the Lass vein system (Lower Lass mine; Goetting, personal communication, 1979). This study was i n i t i a t e d to examine the d i s t r i b u t i o n of major and minor elements i n the Upper (Highland) Lass and Lower Lass v e i n system and to describe the zoning patterns, with emphasis on the economically important gold and s i l v e r . The area i s underlain by granodiorite of the Westkettle b a t h o l i t h , which has been intruded by the Beaverdell quartz monzonite stock (Figure . , 3-1). The granodiorite contains remnant pendants and/or screens of metamorphosed volcanic and sedimentary rocks of the Wallace Formation. A more d e t a i l e d summary of the geology can be found i n Watson, Godwin and Christopher, i n preparation, and i n Chapter 2. Geology of the Vein M i n e r a l i z a t i o n i s found i n a northeast-trending 3 km by 0.8 km b e l t , r e f e r r e d to as the Beaverdell mine area, on the west slope of Wallace 32 Figure 3-1: Regional Geology with Locations of Major Mines i n the Beaverdell Mine Area, South-Central B.C. 33 Mountain (Figure 3-1). From west to east, the major producing mines were: Wellington, S a l l y , B e l l , Highland Lass (Upper Lass) and Lower Lass (Figure 3-1). The Upper and Lower Lass mines are presently being operated by Teck Corporation Ltd., and the samples c o l l e c t e d f or t h i s study are from these and, .related .workings . Most of the veins are hosted i n the Westkettle granodiorite. Some mine r a l i z a t i o n i s also found i n the older, Wallace Formation rocks, which o v e r l i e the b a t h o l i t h at the eastern end of the mine area. However, structures tend to h o r s e t a i l and disperse i n the gn e i s s i c Wallace Formation (Goetting, personal communication, 1979). No m i n e r a l i z a t i o n has been found i n the younger Beaverdell stock, which has intruded the b a t h o l i t h at the western end of the complexly faulted mine area. P r o p y l i t i c a l t e r a t i o n i s found i n the w a l l rock up to 25 feet from the veins (Verzosa, personal communication, 1979). Thin sections of the a l t e r e d granodiorite contain amphiboles almost e n t i r e l y converted to c h l o r i t e , and feldspars converted to a mixture of cl a y minerals and c a l c i t e . The veins are mineralized f i s s u r e s formed along east-trending f a u l t s i n the western part of the mine area, and along northeast-trending f a u l t s i n the eastern portion of the system (part of B e l l , Upper Lass and Lower Lass). Veins range from a few inches to several feet i n width, but average 12 inches (White, 1949). The veins are r a r e l y continuous i n any d i r e c t i o n for more than a few tens of feet without o f f s e t , although some oreshoots show only minor o f f s e t over h o r i z o n t a l distances up to 500 feet (White, 1949). The extensive f a u l t i n g has been c l a s s i f i e d by White (1949). The most important type of post-ore f a u l t i n g i s at a high angle and normal. A seri e s of widely spaced, north to northeast s t r i k i n g , southeast dipping f a u l t s d i v i d e the mineralized system into large blocks, often with several hundred feet of v e r t i c a l displacement between them. The West Terminal Fault, 34 separating the B e l l and Lass mines, and the East Terminal Fault, separating the Upperand Lower Lass mines, are of t h i s type (Figures 3-1 and 3-2). The veins are chopped into small segments by northeast s t r i k i n g c l o s e l y spaced normal f a u l t s , which f l a t t e n the dip of the vein from 50° to 34° (White, 1949). These f a u l t s dip to the northwest, and generally show only a few feet of displacement. Major m e t a l l i c minerals i n the veins are galena, s p h a l e r i t e and p y r i t e , with lesser amounts of arsenopyrite, t e t r a h e d r i t e , p y r a r g y r i t e , chalco-p y r i t e , polybasite, acanthite, native s i l v e r and p y r r h o t i t e (Reinecke, 1915; Staples and Warren, 1946; Watson,et a l . , i n preparation and Chapter 4). The gangue material i s mainly quartz, with some^alteeeduwallrrock fragments included i n the v e i n . Small concentrations of c a l c i t e and f l u o r i t e are occasionally found as gangue. Some supergene s i l v e r m i n e r a l i z a t i o n i s found, c h i e f l y as native s i l v e r wires and plates. However, most of the m i n e r a l i z a t i o n i s of hypogene o r i g i n (McKinstry, 1928; Staples and Warren, 1946). Supergene material i s not considered i n t h i s study. Data C o l l e c t i o n , Analysis and Presentation Bulk chip and hand samples of v e i n material were c o l l e c t e d from 209 locations within the granodiorite i n the Lass system (Figure 3-2). For t h i s study, a d d i t i o n a l samples (hosted i n Wallace Formation or of non-v e i n material) which would tend to complicate zoning patterns have not been considered (see Appendix C for t h i s data). A systematic sample spacing was not possible due to the geometry of the vein. Instead, vein material was chip sampled as systematically as possible, wherever i t was exposed and a c c e s s i b l e i n the workings. For t h i s reason, samples from mined-out areas were often taken from the edges of oreshoots, rather than from working faces. LO Figure 3-2: Sample Locations on the Composite Plan View of the Upper and Lower Lass Vein System, Beaverdell Area, South-Central B.C. Mine d r i f t s , stopes and the West and East Terminal Faults are located. (See also Appendix A Figure A-2.) 36 Samples were analysed by atomic absorption spectrophotometry (A.A.S.) at The Uni v e r s i t y of B r i t i s h Columbia, for Zn, Pb, Fe, Cu, Cd, Ag, Ca, Mg, Mn, Co and Ni (Appendix B). Au, As, Hg, and Sb were analysed for by MIN-EN Laboratories Ltd., North Vancouver, B.C. Results are l i s t e d i n Table 3-7. Duplicate analyses . of samples were evaluated using the method of Thompson and Howarth (1977) i f possible (Appendix B). The following values are i n d i c a t i v e of the precisions for each element, at average concentrations determined i n t h i s study: 1. between 5 and 10 percent: Cu, Cd, Sb, As, Mn; 2. between 10 and 20 percent: Zn, Pb, Ca, Mg; 3. between 20 and 30 percent: Ag; and 4. between .40 and 45 percent: Au. Pr e c i s i o n for elements estimated as the mean r e l a t i v e error (Appendix B) rather than as a function of concentration as i n the Thompson-Howarth method are: Ni, 10 percent; Fe, 35 percent; Co, 38 percent and Hg, 120 percent. The true s p a t i a l r e l a t i o n s h i p between samples at the time of emplace-ment cannot be seen using mine plan view because of the degree of post-ore f a u l t i n g which has taken place on Wallace Mountain. Therefore, an attempt was made to reconstruct the v e i n into the si n g l e , o r i g i n a l plane by removing the movement along major f a u l t s . Since most mining has been c a r r i e d out on fault-bounded segments of the vein, the ore encountered along a d r i f t may represent a serie s of p a r a l l e l veins, or progressively lower sections of the same vein. Within the fault-bounded, major sections, therefore, i t i s assumed that successive samples represent a general con-ti n u a t i o n of the major vein system, down dip. This reconstructed plane may be several hundred feet thick i n some areas, because not a l l movement has been removed and because m i n e r a l i z a t i o n probably occurs as a serie s of sub-p a r a l l e l veins i n some areas. For the purpose of t h i s study, however, ..." 37 t h i s plane i s considered to represent a s i n g l e vein, or a series of veins for which an o v e r a l l zoning pattern can be examined. Figures 3-2 arid 3-3 show the sample locations on the composite plan of the workings, and on the reconstructed plan which w i l l be used for a l l subsequent i n t e r p r e t a t i o n s . This reconstructed plan view i s elongate down the dip of the vein. Changes i n element content and mineralogy down the dip of the vein can be examined by projecting a l l points onto an east-west l i n e (approximately down dip ) , and p l o t t i n g value versus distance along t h i s l i n e . These pl o t s w i l l be referred to as section p l o t s . Interpretation of S t a t i s t i c s Histograms show that a l l elements have lognormal d i s t r i b u t i o n s . Ni and Co are often not present i n detectable quantities and generally w i l l not be considered further. Poor reproduceability for Hg analyses (above and Appendix B) makes t h e i r use suspect, but Hg w i l l be discussed because of i t s importance i n many ore-forming environments. Using lognormal p r o b a b i l i t y p l o t s , each element can be p a r t i t i o n e d into populations using the procedure outlined i n S i n c l a i r (1976). Three populations can be defined for Ag and Pb, and one for Hg.and Ca. A l l other elements can be p a r t i t i o n e d into two populations. The means, standard deviations and population proportions are l i s t e d i n Table 3-1. Elements can be grouped together based on the r e l a t i v e proportions of anomalous population (A) and background populations (B and B') (Table 3-2). The lower two Ag populations .'.show a s p l i t s i m i l a r to Zn and Cd, while the most anomalous population i s proportionately s i m i l a r to Cu and As. This suggests that the most anomalous Ag values may be associated with Cu and As minerals such as sulphosalts, while the moderately anomalous concentrations of Ag are associated with base metal minerals such as galena and s p h a l e r i t e . N N.B. . RT. t •> .1* • 300#0 2912 i & • . *• •c»»3104 •850 & • \ •• * | • ^2902 • 93561 • 3016-4 • • • * ..2918 o 2901-1 0 ft 1000 Figure 3-3: Reconstructed Plan View of the Lass Vein System, Beaverdell Mine Area, South-Central B.C. with selected sample and d r i f t locations. 39. TABLE 3-1 Means and Standard Deviations Determined Graphically''' for P a r t i t i o n e d Element o Populations i n Granodiorite-Hosted Vein Material i n the Lass Vein System, J Beaverdell Mine Area, South-Central B.C. Element Population A Population B % - b b+s b-s % b b+s b-s Zn % 55 3.76 9.12 1.40 45 0.38 1.40 0.11 Cd ppm 55 457 1288 178 45 43 234 10 Cu ppm 70 513 1202 195 30 76 126 45 Sb ppm 10 1318 2138 794 90 79 162 38 Pb % 38 3.00 4.30 2.09 37 25 0.54 0.12 1.02 0.35 0.29 0.05 Fe % 60 8.99 13.49 5.94 40 3.72 6.84 2.20 Ag ppm 67 427 457 269 18 15 105 34 174 135 68 8 Au ppb 90 646 2239 191 10. 15 51 4 As % 72 1.20 1.70 0.86 28 0.13 0.24 0.07< Mn ppm 30 5012 10233 2570 70 1202 2291 617 Mg % 70 0.25 0.45 0.14 30 0.08 0.12 0.05 Hg ppb 100 20 124 3 Ca ppm 100 1143 14962 87 Co ppm 4 100 1.75 9.90 0.31 1. Partitioned into populations on logarithmic p r o b a b i l i t y p l o t s , using the procedures of S i n c l a i r (1976). 2. There are 209 samples i n t h i s group. 3. b i s a n t i l o g of nean of logtransformed data; b+s i s a n t i l o g of mean plus one standard deviation of logtransformed data; b-s i s a n t i l o g of mean minus one standard deviation of logtransformed data. 4. 24% of the Co values were below the a n a l y t i c a l detection l i m i t . \ 40 TABLE 3-2 Grouping of Elements by Population Proportions Population A Population B Elements (%) (%J 10 90 Sb 30 70 Mn 37 63 Pb(A/BB') 55 45 Zn, Cd, Ag(B/B') 60 40 Fe, Pb(B/B') 67 33 Ag(A/BB 1) 70 30 Cu, Mg 72 28 As 90 10 Au 100 Hg, Ca, Co 1. The means and standard deviations of these populations are shown i n Table 3-1. 2. Values are determined by p a r t i t i o n i n g the elements on logarithmic p r o b a b i l i t y p l o t s ; values r e f e r to Populations A and B, unless i n -dicated i n the element ( column; B and B' are the two background populations determined f o r Pb and Ag, and the proportions shown are either f o r population A versus B+B' or f o r population B versus B'; 41 Au does not have population proportions s i m i l a r to any other elements (Table 3-2). I t i s p o s s i b l e that the 10 percent background population represents a bottom truncation of the data due to the detection l i m i t s of the a n a l y t i c a l equipment used ( S i n c l a i r , 1976), rather than a second population, and that only one population of Au i s present. Correlations are generally only applicable to s i n g l e population v a r i a b l e s . The large amount of overlap (estimated.30 to 70 percent) among populations for most of the elements, however, allows the use of c o r r e l a t i o n s to show approximate r e l a t i o n s h i p s . A c o r r e l a t i o n matrix of logtransformed data (Table 3-3) shows strong c o r r e l a t i o n s at the 0.1 s i g n i f i c a n c e l e v e l between the elements: Zn, Pb, Fe, Cu, Cd, Ag, Au and Sb. Most of these elements also c o r r e l a t e with e i t h e r As and/or Hg. The gangue elements: Mn, Mg and Ca, show strong c o r r e l a t i o n s with each other. Ca shows negative correlations; with Ag and As, while Mg c o r r e l a t e s negatively with Cu, Sb, As and Au. Ranked on strength of c o r r e l a t i o n , Ag c o r r e l a t e s with: Pb, Zn, Cu, Fe, Sb, Au, Cd and As. For Au, the strongly correlated elements are, i n order: Fe, Pb, Zn, Cu, Cd, Sb, As and Ag. This suggests that Ag i s associated with galena and s p h a l e r i t e , and to a l e s s e r extent, with Sb sulphosalts. Au c o r r e l a t e s most strongly with Fe minerals, followed by the major sulphides, galena and s p h a l e r i t e . Au i s probably found i n a s s o c i a t i o n with p y r i t e and/ or chalcopyrite, but As and Sb minerals, while s i g n i f i c a n t , appear to be le s s important. Correlations f o r the three i n d i c a t o r elements, Hg, As and Sb, are: 1. Hg c o r r e l a t e s with Sb, Cu, Zn, Pb and Cd; 2. As correlates with Sb, Au, Fe, Ag and Pb; 3. Sb correlates with Fe, Pb, Cu, Zn, Au, Hg, As, Cd and Ag. From t h i s , i t appears that Sb i s by f a r the most important of these three TABLE 3-3 Correlation Matrix for Granodiorite-Hosted Vein Material from the Lass Vein System, Beaverdell Mine Area, South-Central British Columbia - C O R R E L A T I O N ZN CD cu SB PB F E AG AU AS HG MN CA MG CO TH - C O R R E L A T I O N CA MG CO TH MATRIX ZN 1 .OOOO O .8O86 0.74G3 0 . 4 9 7 2 0 . 7 5 6 7 0 . 6 1 9 5 0 5 0 4 0 2 9 9 0 2 2 1 0 5 4 7 0 1 2 0 0 4 7 2 1026 0 1 9 6 0 5 0 6 MATRIX CA 1.OOOO O . 5 1 8 3 O . 0 0 5 4 - O . 2 3 3 6 -O. O. O. O. -O. O. -O. - 0 . O. CD CU 1. .0000 0. .6175 1 .0000 0. ,4023 0 .6023 0. 6 3 1 0 0, . 7 267 0. ,5170 0, .5879 0. 0 1 0 6 0 .0178 0. ,0300 0. .0592 0. 0 3 3 3 0, .0690 0. 0 3 8 9 0, ,0007 0. 0 3 6 8 -0 1959 0. 0 1 7 4 0, .0094 -0. 0 6 9 2 -0, . 2 0 9 9 -0 . 0 0 9 0 -0 . .0094 0. 0 2 8 3 0. 0 8 9 3 MG CO 1 .0000 O . 3052 1 .0000 -0 . 3 527 -0 . 2 2 9 5 SB TH 1.OOOO PB FE AG AU AS HG MN 1. .0000 0. .6228 1 .0000 0. 6 8 7 5 0. .7283 1 .0000 0. 0271 0. .0602 0 . 1464 1 . .0000 0. .0479 N 0. ,0314 0 .0230 -0. .0259 1 . OOOO 0. 0 0 8 3 0, , 1299 0. .0729 0 . 2 8 9 9 -0 .0057 1 .0000 0. 0 5 0 7 -0. ,007 1 -0. . 0 0 0 3 -0. .1975 - -0 .0040 -0 .0882 1 .0000 0. 1614 -0. .0176 -0. .0426 -0. .0174 -0, .0552 0 .0819 O. . 1077 1 . OOOO 0. 1356. 0. 0591 -0, .0616 -0. .0052 0, .0124 0, .0507 0. .0429 O. 4 2 7 5 0. 3254 -0. 0 7 8 2 -0. 1 123 ' -o. .0472 -0, .0560 0. .0613 0, .0794 0. 7 6 6 3 0. 1760 -0. 0 3 3 0 0. .0121 -0. .0157 -0. ,044 1 0. .0519 -0, ,0360 0. 1513 0. 1393 0. 0 0 0 4 0. .0545 0. .0329 0. ,0695 -0. .0785 0. , 1206 -0. 3 2 8 8 N=209 Values are significant at the 1% level, i f greater than 0.176 and significant at the 0.1% level i f greater than 0.223; a l l data are logtransformed except for TH (thickness). i n d i c a t o r elements. Because much of the c o r r e l a t i o n matrix simply shows the a f f i n i t y of a l l the sulphides for each other, some c o r r e l a t i o n s would be expected even i f the minerals they represent were not contemporaneous. Sb, however, seems to c o r r e l a t e with a l l the ore-forming elements, and to have been a more s i g n i f i c a n t element than As i n the vein-forming solutions during the period of ore deposition. Arsenopyrite appears to have formed at an e a r l i e r stage i n the paragenetic sequence for these veins than other ore minerals such as galena and s p h a l e r i t e (Watson eft a l . , i n preparation and Chapter 4). Detailed studies of the mineralogy (Staples and Warren, 1946; McKinstry, 1928) have shown that pyrargyrite and t e t r a h e d r i t e (Sb minerals) are the common form of t h e i r respective s o l i d solutions s e r i e s i n t h i s vein system. Discussion.of Zonation Patterns In order to see the s p a t i a l r e l a t i o n s h i p s among populations, the assay values (Table 3-7) were computer-plotted on reconstructed plan views, using d i f f e r e n t symbols for background and anomalous values. Figures 3-4a to 3-7a show the plans of the four economically s i g n i f i c a n t elements, Zn, Pb, Ag, and Au. Other elements are shown i n Appendix C. Elongate northeast-trending pods of anomalous values, representing ore-shoots, can be outlined on many of the plan p l o t s . Zn (Figure 3-4a) shows a s e r i e s of such pods, extending en echelon down the dip of the vein. They are generally about twice as long abng s t r i k e as down dip. Several pods are d i s t i n g u i s h a b l e i n the western part of the mine, while most values i n the east are anomalous, apparently forming one continuous oreshoot. The pods, or patches, of high grade material on the Pb plan (Figure 3-5a) are smaller than those for Zn. These pods can be seen i n the west, and a more extensive area of anomalous values i s found i n the eastern part of t h i s plan view. S i l v e r does not occur i n d i s t i n c t pods, but Figure 3-6a shows that most of the central-western portion of the mine contains anomalous values. The 10 per-44 N SOO* 1500'H LU O IOOO'H 500'H 4 0 H 3 0 H 5* c NI 2 0 H io H 1 0 0 0 ' ^ . 1 1 p—- T7350. 2000 3000 DISTANCE Figure 3 -4 : Reconstructed Plan and Section Plot of the Lass-Vein System, Beaverdell Mine Area, South-Central B.C. Zinc analyses are separated into background and anomalous populations as noted i n the legend. Long dashed l i n e marks the boundary between the Ag and Au r i c h sections of the mine, and short dashed lines indicate divisions for calculations of 4-way means. 45 N \ 1500'H LJ o 2 ^ lOOO-o 500-A 4 * " l 1000' 2000' DISTANCE 3000' 8 H JO 0_ 4 H 1 2000' DISTANCE 1000' 3000' Figure 3-5: Reconstructed Plan and 'Section' Plot of the Lass Vein System, Beaverdell Mine Area, South-Central B.C. Lead analyses are separated into background and anomalous populations as noted in the legend. Long dashed l i n e marks the boundary between the Ag and Au r i c h sections of the mine, and short dashed lines indicate divisions for calculations of 4-way means. 46 N I500H <• 190 LU O z to o 500'H ~* ' 2000" DISTANCE 3000 800-E Q.600-o. O>400-< jr Ma a 1000' 1 — ' 1 ; 2000 DISTANCE Figure 3-6: Reconstructed Plan and 'Section' Plot of the Lass Vein System, Beaverdell Mine Area, South-Central B.C. Silver analyses are separated into background and anomalous populations as noted in the legend. Long dashed l i n e marks the boundary between the Ag and Au r i c h sections of the mine, and short dashed lines indicate the divisions for calculations of 4-way means. 47 cent of the values which form the background population for Au l i e mainly i n . the western part of the mine (Figure 3-7a). To examine the differences i n values between d i f f e r e n t segments of the mine more c l e a r l y , the highest 50 values (approximately one quarter of the sample points) for each of these four elements were selected and have been plotted i n plan view (Figures 3-8 and 3-9). Very strong d i s t i n c t i o n s between values i n the east and west portions of the mine now emerge. Twenty-seven of the highest 50 Zn values are found i n the east end of the vein system (Figure 3-8a). The Pb plot (Figure 3-8b) shows that the lower, east end of the mine contains 7 of the highest 10,vahd..l9 of the highest 30 Pb values. Thirty-three of the highest Au values also l i e i n the eastern part of the mine (Figure 3-9b). Ag, on the other hand, i s more anomalous i n the western, upper part of the system. Only three of the highest 30 Ag values are found i n the east end of the mine (Figure 3-9a). The summary Table 3-4 shows that 8 l e v e l contains the largest portion of these high Ag values. Figures 3-7a and 3-9b, and Table 3-4, show that the most anomalous Au values are i n the lower, eastern end of the vein system, with moderate values i n the 9 l e v e l and New Beaver workings (Figure 3-2 and Appendix Figure A-2). Geometrically, Au i s found i n the deepest part of the system, and i n small sections along the "mining" footwall of the v e i n system. These other l o c a -tions occur i n workings at the lowest elevation mined, i n that section of the vein. S i l v e r (Figures 3-6a and 3-9a, and Table 3-4) seems to be most concentrated c e n t r a l l y between the footwall and the hangingwall (with more anomalous values i n 8 l e v e l , than i n 7 or 9 l e v e l s ) , and at higher elevations i n :the system. A north-trending d i v i d i n g l i n e between high Ag, moderate Pb and Zn, i n the west, and low Ag, high Au and moderate to high Pb and Zn, i n the east, can be drawn on Figures 3-4a to 3-7a somewhere near the c e n t r a l part of the mine. This l i n e does not coincide with the East Terminal Fault but l i e s about 400 48 N "boo* -1500'-LU O z ^ lOOOHa CO » t « »•*•»"• # « * & 500-< 60.0 I 3000' 2000' DISTANCE 16 xlO H Q. I2xl0"-| 3 < 8x10-•4XI0H IOOO' 2000' DISTANCE —1—; 3000' Figure 3-7: Reconstructed Plan and 'Section' Plot of the Lass Vein System, Beaverdell Mine Area, South-Central B.C. Gold analyses are separated into background and anomalous populations as noted i n the legend. Long dashed l i n e marks the boundary between the Ag and Au r i c h sections of the mine, and short dashed lines indicate the divis i o n s for calculations of 4-way means. 49 1500-LU O •z. <Cl000'-"co 50 OH Z n •V i © " - 9: • --v. G 0 ~ A T 7 1000' A*. JP soo» I5O0'-LU O <J|000-to O i r 2000 3000 ' DISTANCE P b .«EV •7 #- 7 1000' 2000' DISTANCE Figure 3-8: Reconstructed Plans of the Lass Vein System, Beaverdell Mine Area, South-Central B.C. The highest 50 analyses for Zn (top) and Pb(bottom) are plotted, using the following symbols: • f i r s t 10; A second 10; • t h i r d 10; V fourth 10;and O f i f t h 10. 50 N Ag I 5 0 0 H LU O z p looo -CO Q 5CO'H 0—f zy 5 -© IOOO1 © I 1 T — 2000/ DISTANCE 3 0 0 0 " N I 5 0 0 H LU O •z. ft 1000-t— CO 500H Au © *7 $*B" « 0 . 0 © ' \7 0 1000' 2 0 0 0 ' DISTANCE 3 0 0 0 Figure 3-9: Reconstructed Plans of the Lass Vein System, Beaverdell Mine Area, South-Central B.C. The highest 50 analyses for Ag (top) and Au(bottom) are plotted, using the following symbols: • f i r s t 10; A second 10; • third 10; V fourth 10; and o f i f t h 10. 51 TABLE 3-4 Di s t r i b u t i o n of the Highest 50 Values of Au, Ag, Pb and Zn i n the Lass Vein System (Grouped by Location Level), Beaverdell Mine Area, South-Central B.C. Level 0-10 11-20 21-30 31-40 41-50 1 1-10 11-20 21-30 31-40 41-50 1 Au Ag 2900 7 6 6 8 4 3000 1 1 3100 9 &3561 ,4 1 1 1 8 2 7 2 1 1 5 & 6 1 4 1 rest 2 3 3 2 1 1 2 2 2 1 6 2 1 3 1 3 2 4 1 1 2 3 1 2 Pb Zn 2900 6 5 3 2 2 3000 1 2 3100 2 3 1 9 &3561 1 2 2 8 1 1 2 7 5 5 & 6 5 4 1 1 rest 1 1 1 2 2 7 3 5 4 2 2 2 1 3 1 2 1 3 1 1 1 1 1 ' 2 1 1 2 1 2 1. The top 50 values for each element were ranged as 1 to 50. These ranges indicate the ranked values for each sample. Although t h i s does not take into account displacement between samples on the same l e v e l due to f a u l t i n g , i t gives an approximation of the d i s t r i b u t i o n of high values throughout the various l e v e l s . 52 feet to the east of i t on the reconstructed plan. This d i v i d i n g l i n e can be located more p r e c i s e l y by inspection of the section p l o t s f o r element values versus down dip distance (Figures 3-4b to 3-7b). The d i v i s i o n i s e s p e c i a l l y c l e a r for Ag and Au (Figures 3-6b and 3-7b) but can also be seen f o r most other elements examined (Figures 3-4b, 3-5b, and Appendix Figures C-l to C - l l ) . It i s located to the east of samples taken i n the 3104, 2902, 2904 and 3000 stopes (Figures 3-2 and 3-3) within the Lower Lass mine. Because of the di f f e r e n c e i n the number of samples on eit h e r side of t h i s d i v i d i n g l i n e (N=159 to the west, and N=42 to the east), t - t e s t s and F-tests were performed to determine i f , indeed, the two populations are s i g n i f i c a n t l y d i f f e r e n t (Table 3-5). The following elements have s i g n i f i -cantly d i f f e r e n t geometric means ( t - t e s t ) and variances (F-test) i n the two parts of the mine: Au, Zn, Pb, Cd and Hg. Vein thickness also has s i g n i f i -cantly d i f f e r e n t means and variances on either side of the d i v i d i n g l i n e (arithmetic mean for vein thickness). The geometric means for Ag, Fe and Co are d i f f e r e n t i n the two portions of the mine but t h e i r variances are not. Au, Zn, Pb, Fe, Cd and vein thickness means are higher i n the eastern part of the mine while Ag and Hg means are higher i n the west. The geo-metric means for Mn and Sb are s t a t i s t i c a l l y the same, but t h e i r variances are not the same i n each part of the mine, i n d i c a t i n g that t h e i r populations also change somewhat i n character at the d i v i d i n g l i n e . Cu, As, Ca and Mg have approximately the same means and variances throughout the vein system. Figure 3-10 i l l u s t r a t e s the change i n population means of the four major economic elements for the two segments of the vein. The two sections of the vein represent the background and anomalous populations f o r many of the elements. C o r r e l a t i o n matrices f o r these two sections are l i s t e d i n Table 3-6, and can be compared with Table 3-3, the matrix for the combined data. The d i f f e r e n c e s between the c o r r e l a t i o n matrices f o r samples on eit h e r side of the d i v i d i n g l i n e center on the elements Ag, Fe and Sb, and to a le s s e r 53 TABLE 3-5 1 1 Results of t - t e s t s and F-tests on the East and West Sections of the Lass Vein System, Beaverdell Mine Area, South-Central B.C. MEAN STANDARD DEVIATION  Element West East Change 2 S i g n i f . J West East S i g n i f . 3 Zone Zone to D i f f e r . D i f f e r . East Au(ppb) 764 3163 inc yes 965 3717 yes Zn(%) 3.07 5.34 inc yes 4.56 6.91 yes Pb(%) 1.27 2.34 inc yes 1.35 1.99 yes Cd(ppm) v343 640 inc yes 463 722 yes Hg(ppb) 89 28 dec yes 153 55 yes Th(in) 4.62 6,71 inc yes 3.47 4.66 yes Ag(ppm) 291 208 dec yes;- 154 131 no Fe(%) 5.75 8.72 inc yes 3.61 4.33 no. CoXppm) 4 5 inc yes 4 5 no Mn(ppm) 2714 2127 no 3770 2141 yes Sb(ppm) 308 209 no 757 294 yes Cu(ppm) 518 726 no 643 671 no As(%) 0.88 0.88 no 0.51 0.47 no Ca(ppm) 6064 5980 no 13605 11102 no Mg(%) 0.24 0.22 no 0.20 0.16 no 1. Tests were run using standard programs, at': the U.B.C. Computing Centre. 2. Changes i n the Mean recorded as increasing (inc) or decreasing (dec) from west to east. 3. Considered s i g n i f i c a n t i f calculated t p r o b a b i l i t y i s less than 0.05. 54 8 6 H 4-4 2 H 0 4 0 0 * 1 E Q . 2 0 0 H Q . N l A g 3 5 0 0 H 2 5 0 0 « - Q a a 1500H 5 0 0 -A-V Au / ' 1 I - i 1 r - T T -DISTANCE i . . . . . . 0 1 0 0 0 ' 2 0 0 0 ' 3 0 0 0 ' Figure 3-10: Plot of Arithmetic Means and Standard Errors of the Mean for Au, Ag, Pb and Zn, after Division of the Lass Vein System into Two and Four Sections, as Shown on Figures 3-4 to 3-7. TABLE 3-6 Correlations Matrices for the Two Section of the Lass Vein System, Beaverdell, South-Central B.C. - C O R R E L A T I O N MATRIX ZN CD CU SB PB FE AG ZN 1 .OOOO CD 0 .8032 1 .0000 CU 0 . 7 0 4 4 0 .5871 1 .0000 SB 0 .5310 0 .4 107 0 .6134 1 .0000 PB 0 . 7 6 4 9 0 .6222 0 .7229 0 .6227 1 .0000 F E o. .6547 0 .5316 0 .6013 0, .731 1 0 . 7372 1 .0000 AG 0. .0333 0 .0550 0 . 1 147 0, .0472 0. . 1468 0, . 1262 1 .0000 AU 0. . 2 4 3 9 0. . 1689 0 .3040 0. . 1779 0. .3190 0. . 3434 -0 .1181 AS 0. .0327 0. .0426 0. .0858 0. .0089 0, . 1630 0. . 1000 0 . 3734 HG 0. .0692 0. .0481 0, .0047 0. .0561 -0, ,0035 0. .0090 -o . 2 4 8 5 MN 0. .0600 0. . 1 198 -0, .1215 -0. . 1496 0. .0801 -0. .0253 -o. .0589 CA 0. 0 7 2 0 0, ,0498 0. ,0447 -0. 1226 0. ,071 1 -0. 0 8 6 5 -o. .0353 MG - 0 . 0 7 5 0 -0. .0410 -0. 1729 -0. 3 2 8 5 -0. 0271 -0. 1225 -0. .0830 CO - 0 . 0 7 0 1 -0. 0 5 5 3 -o. 0401 -0. 2354 -0 . 0 9 2 0 -0. 1115 -o. .0615 T H -o. 0 0 7 1 - 0 . .0269 0. 0 4 4 7 0. 1822 -0. 0 5 0 2 0. 0 9 5 4 0. ,0640 AU West Zone N=159 AS HG - C O R R E L A T I O N MATRIX CA CA 1.0000 MG 0 . 5 2 9 7 CO 0.004 4 TH - 0 . 2 8 6 2 1 . OOOO 0 . 0 5 4 5 0 . 0 4 8 1 - 0 . 0 6 8 7 0 . 0 3 2 2 - 0 . 0 1 2 9 -O.1239 0 . 0 6 4 2 1 . OOOO - 0 . 0 9 0 8 0 . 0 9 5 3 0 . 0 6 1 3 0 . 0 7 0 0 0.0651 - 0 . 0 8 5 6 1 . OOOO 0. 1249 0 . 0 5 10 0 . 0 8 9 8 - 0 . 0 3 5 4 O. 1598 - C O R R E L A T I O N ZN CD CU SB PB F E AG AU AS HG MN CA MG CO T H - C O R R E L A T I O N CA MG CO T H MATRIX ZN 1.OOOO 0 . 9 5 0 1 0 . 8 2 8 2 O . 3 0 0 9 0 . 6 4 0 5 0 . 4 3 2 0 - 0 . 3 7 2 4 - 0 . 0 2 1 0 0 . 0 0 2 6 0.0 - 0 . 1 7 3 7 1579 1591 0 . 0 8 4 3 0 . 0 4 9 7 MATRIX CA 1.OOOO 0 . 6 6 5 5 - 0 . 0 8 1 7 - 0 . 3 0 1 6 -0. -O. MG 1 . OOOO 0. 3393 -O.3637 CD 1 . OOOO 0.8231 .3278 .6175 . 3926 .3693 -0.0250 -0.0656 0.0 -0.2506 -0.2247 -0.2074 0 . 1 5 2 5 O.0556 MG 1.OOOO .0.1296 -0.2903 0. 0. 0. -0. CO 1 .0000 -0.2599 CU 1 . OOOO 0.5341 0 . 6 2 0 7 0 . 4 6 7 3 - 0 . 2 9 5 0 0 . 0 4 9 9 0.1041 0.0 - 0 . 3 6 9 4 - 0 . 3 0 7 7 -0 . 2 9 67 0 . 0 8 7 7 0.0494 CO 1 . OOOO -0.2745 TH 1.OOOO SB PB FE AG AU AS HG TH 1.OOOO MN 1 . OOOO 0 . 4 4 4 5 0 . 7 7 3 9 O .1678 -0 . 3 2 3 2 MN 1. oooo East Zone 0. 6 5 0 7 1 . oooo N=42 0. 5 8 0 5 0. 6 5 0 7 1 . OOOO -0. 0 6 5 4 -0, ,2360 0. .1251 1 . OOOO -0. 1705 -0. ,0367 -0. .0816 -0 . 0 5 9 9 1.oooo 0. ,4661 0, ,3346 0, ,4242 0. 1705 - 0.0351 1 . OOOO 0. ,0 0. .0 0. 0 0. ,0 0.0 0. 0 1 , , OOOO OOOO -0, ,2421 -0, .1207. 0, ,0399 0. ,14 17 -0 . 0 9 6 1 0. 0 5 7 9 0, ,0 1 . -0 .2750 -0 .0261 -0. .0417 0. , 1 156 - 0 . 0 3 4 0 -0. , 2 8 4 9 0, .0 0. .6399 -0, . 2 9 4 6 -0 .1561 -0 .0371 0. .0663 - 0 . 1 1 6 2 -0. , 2444 O .0 0. .8008 0, . 1522 0 . 1310 0 .3115 0. .0757 - 0 . 1 5 1 8 0. , 1087 0 .0 0 . 1675 -0 .0640 -0 .1114 -0 . 3 207 -0. .0890 0 . 0 5 6 3 -0. , 1330 0, .0 -0. .3122 Correlations i n West Zone (top) are s i g n i f i c a n t at the 1% l e v e l i f greater than 0.206. Correlations i n the East Zone (bottom) are s i g n i f i c a n t at the 1% l e v e l i f greater than 0.402. 56 extent, As and Hg. Ag cor r e l a t e s with Zn, Cd, Cu and Fe only i n the west end of the mine. In the east, Ag correlates with Pb, Au, Sb and As only. (Ag and As do not c o r r e l a t e i n the west".) Au cor r e l a t e s with As only i n the west (the low Au part of the mine) and with Hg only i n the east. The lack of c o r r e l a t i o n s for many of the elements with Fe and Sb, as well as with Ag, suggests that these three elements are mi n e r a l o g i c a l l y r e l a t e d and that that mineralogy i s not found i n the east end of the system. For example, t h i s could be accounted f o r by a greater abundance of suphosalts, and therefore high Ag, i n the western, upper sections of the vein system. Vi s u a l inspection of Figures 3-4 to 3-7 indicates only one d i s t i n c t change i n population values for the four major elements (Zn, Pb, Ag and Au). Each of these two segments was s p l i t into two equal sections (based on distance down the d i p ) , and the four means calculated, to see i f smaller subdivisions i n the zoning pattern were present. These means are plotted on Figure 3-10, along with the means from the two subdivisions of the vein. The patterns exhibited by the four means are consistent with only two zones i n the mine. The mean Zn value i s observed to increase constantly to the east,while Pb increases and then l e v e l s o f f . Ag shows a f a i r l y consistent mean value i n the western segment of the vein, which decreases sharply i n the east. Au i s constant, increases r a p i d l y , and then l e v e l s o f f again. Thus, three of the four elements show l e v e l sections and sharp changes, i n d i c a t i n g that the values within each of the two major sections are s i m i l a r , but that major changes occur between the two sections. I t appears that the two-way s p l i t approximately 400 feet east of the East Terminal Fault repre-sents the best approximation of element zonation i n the vein system. An a d d i t i o n a l d i v i s i o n into 8 sections shows very e r r a t i c trends i n mean values (Figure 3-11). This i s useful i n grouping r e l a t e d elements, however. Mean values of Cd, Cu and Zn behave i n an almost i d e n t i c a l manner, as do Pb and As, and Ag and Sb. Mn, Ca and Mg form another group, and Fe and Au show 57 1 0 % ' 5% 1% 5000 ppm-100 ppm-50 ppm-10 ppm-5 ppm-1 ppm S v ,As \ \ - — ^„ \ v y / Au V N \ 1 1 r 0 1000' 2000 ' 3 0 0 0 ' Figure 3-11: P l o t of the Arithmetic Means for 14 Elements, a f t e r D i v i s i o n of the Lass Vein System into 8 Sections. :Distance i s distance down dip, means are arithmetic. 58 some s i m i l a r i t i e s , e s p e c i a l l y i n the east end of the mine. Hg does not follow the same pattern as any other elements but t h i s may be a r e s u l t of the poor p r e c i s i o n of the analyses. The thickness of the vein, and the amount of gangue i n the v e i n (amount of quartz and waste rock, estimated from hand samples, Table 3-7) also vary between the two segments of the v e i n system. The veins sampled were s i g n i -f i c a n t l y thicker i n the eastern part of the mine (average of 7 inches) than i n the west (average of 5 inches, Table 3-5). I t i s u n l i k e l y that the d i f f e r e n c e i s a r e s u l t of sampling e r r o r s . Samples c o l l e c t e d from the ends of oreshoots would be thinner than those c o l l e c t e d at working faces, but more samples were taken from a c t i v e stopes i n the western parts of the mine than i n the eastern end. Since the mining i n the west part of the v e i n system covers a larger v e r t i c a l distance (Figure 3-2) and the system i s funnel-shaped, widening to the west (Verzosa, personal communication, 1979), i t i s reason-able to i n f e r that the veins are generally thicker i n the east, and that narrower, possibly m u l t i p l e veins and s t r i n g e r zones occur i n the western part of the mine. Amount of gangue i s higher i n the western portion of the system. This may be due, i n part, to a sampling error from more waste rock being incorpor-ated into the hand sample where smaller, s t r i n g e r veins are being sampled. However, estimates of quartz, wall rock and suphides i n hand samples i n d i c a t e that increase i n gangue i s a r e a l increase i n the amount of quartz i n the western, upper part of the v e i n system and that there i s a larger percentage of sulphides i n the east end of the v e i n system. The four major elements (Zn, Pb, Ag and Au) can be i n d i v i d u a l l y examined with respect to gangue and thickness, as w e l l as d i s t r i b u t i o n down the dip of the v e i n . The section p l o t for Ag (Figure 3-6b) shows that a l l Ag values greater than the mean of the anomalous population (427 ppm) are located i n the west. There are no strong trends between Ag value and amount of gangue, 59 or vein thickness, but i n the east, most anomalous values are from samples containing l e s s than 60 percent gangue, and i n the west most background values are from samples with greater than 70 percent gangue. Most of the background population for Au i s found i n the western section of the mine. The two highly anomalous zones i n the eastern part of the mine contain values up to almost'0.5 ounces per ton (16.5 ppm). Moderately anomalous values are found i n New Beaver, 4, 9 and 2900 l e v e l s . Comparing Au values with thickness, most anomalous values are found i n veins from 4 to 8 inches wide. However, anomalous values are found i n samples covering the entire range of thicknesses. The larges t concentration of low Au values i s i n veins between 1 and 8 inches thick. The highest Au values are found i n neither the widest nor the narrowest veins. A s i m i l a r sort of one-way cor-r e l a t i o n i s seen between the amount of gangue and Au values. Low Au values are found i n samples with large amounts of gangue (greater than 90 percent gangue for almost a l l of population B), and the highest Au values are from samples with a low percentage of gangue. Most anomalous samples contain l e s s than 40 percent gangue but many of the moderately anomalous values are from samples with up to 85 percent gangue. There-are also samples with both low Au and low gangue. The Zn section plot (Figure 3-4b) shows three high regions, with a trend increasing towards the east end of the mine. Values for samples from 7 l e v e l are generally lower than those from 8 and 9 l e v e l s . As a r u l e , narrow veins contain values from the lower part of population A, and from population B. Veins 1 to 2 inches wide are generally not highly anomalous i n Zn, and neither are the widest veins. The best Zn values are found i n sections of the v e i n where i t i s 3 to 8 inches thick, and occasionally wider. Most samples containing l e s s than 40 percent gangue are located i n anomalously Zn-r i c h zones, and a l l but one anomalous sample contained l e s s than 60 percent gangue, showing that Zn correlates well with low gangue sections of the vein. 60 Pb values increase slowly towards the east end of the mine, with the highest values i n the 2912 and 2911 workings (Figure 3-5). Values are lower i n the western part of the mine and i n the 2955 stope area. Ratios of Au to Ag dramatically show the differences i n these two element values between the eastern and western sections of the vein system. A l l of the highest 50 values of the r a t i o Ag/Au l i e i n the western part of the mine. Seventeen of the highest 20 values of the inverse r a t i o , Au/Ag are found i n the eastern part of the mine. Plan and section p l o t s of the Au/Ag r a t i o are shown i n Figure 3-12. Conclusions The presence of Ag-Au zonation i n the Lass vein system has been known to e x i s t for several years (Goetting, personal communication, 1979'; Christopher, 1975). This study has examined the major and minor element d i s t r i b u t i o n patterns i n samples of v e i n material hosted i n the Westkettle granodiorite, from the Lass vein system. The vein system was reconstructed into a s i n g l e plane (by removing the movement along major post-ore f a u l t s ) to f a c i l i t a t e the examination of o r i g i n a l element zoning. F i f t e e n elements have been studied (Zn, Pb, Cu, Fe, Mn, Cd, Ca, Mg, Co, Ni, Au, Ag, Hg, As and Sb), a l l of which can be p a r t i t i o n e d into 1, 2, or 3 lognormally d i s t r i b u t e d popula-tion s . The c o r r e l a t i o n matrix of elements indicates that Ag associations with galena, s p h a l e r i t e and Sb sulphosalts, and Au associations with p y r i t e and chalcopyrite would be expected. The four major economic elements,. Zn, Pb, Ag and Au, have been considered i n d e t a i l . Plan views often show a s e r i e s of oreshoots, elongate along s t r i k e , en echelon down the dip, i n the upper part of the v e i n system. The presence of h o r i z o n t a l , rather than v e r t i c a l , orebodies i s i n t e r e s t i n g because mineral deposition seems to be r e l a t e d to elevation, that i s , changes i n temperature or vein configuration ( d i r e c t i o n and dimension) at 61 1500-lu o z < CO1000-o . £# £ A 4 £ a * i ~ i ^ • £ £ 4 * ^ i j ? - "Sp.* si * * £ a 4} i 4 # 500 H 1000' 2000' DISTANCE 3000' 200H E O L ^•150-x» IOO-o. a . 50-. .At / " T 1 1 2000' DISTANCE Figure 3-12: Reconstructed Plan and 'Section' Plot of the Lass Vein System, South-Central B.C. Au/Ag values are separated into two populations, above and below a ratio of 5. Long dashed l i n e marks the boundary between the Ag and Au r i c h sections of the mine. 1000 3000' 62 s p e c i f i c elevations. Two zones of d i s t i n c t i v e m i n e r a l i z a t i o n can be outlined i n the Lass vein system, based on the d i s t r i b u t i o n s of elements i n samples of vein material. The boundary between these two zones.trends north and l i e s within the Lower Lass Mine, about 400 feet to the east of the East Terminal Fault. The upper, western portion of the vein system i s characterized by: 1. high Ag values; 2. moderate Zn and Pb values; 3. more gangue material than the east end; 4. thinner veins than i n the east end; 5. multiple veins and s t r i n g e r zones. The lower, east end of the vein system, by contrast, contains high Au values, moderate to high Zn and Pb values, and low Ag values. The elements Cu, Ca, Mg and As show consistent values throughout the mine. Au values are concentrated at depth i n the system, and i n several small locat i o n s along the footwall of the system. Ag values are highest i n the higher parts of the system, c e n t r a l l y between the foot- and hanging-walls. This implies that Ag m i n e r a l i z a t i o n formed a f t e r Au m i n e r a l i z a t i o n . Using information from a model based on the r e s u l t s of a f l u i d i n c l u s i o n study, (Watson, ShenjCun and Godwin, i n preparation and Chapter 4), the Au m i n e r a l i -zation can be r e l a t e d to solutions of higher temperature, higher s a l i n i t y and higher pressure. The model postulates that ground water mixing occurred above a t h r o t t l i n g point, and that t h i s resulted i n the development of the lower temperature, lower s a l i n i t y and lower pressure solutions that deposited Ag m i n e r a l i z a t i o n . A model for element zonation i n t h i s system, based on the f l u i d i n c l u s i o n model, i s shown i n Figure 3-13. This model accounts f o r : 1. the presence of only two zones (above and below the t h r o t t l e p o i n t ) ; and 2. the v a r i a t i o n s i n thickness, gangue and mineralogy (temperature, 63 pressure and s a l i n i t y changes). Deposition of Cu, Ca, Mg and As was apparently not affected by the changes occurring i n the ore f l u i d s . Au s o l u b i l i t i e s , however, are greatly affected by these v a r i a t i o n s (Watson, Shen'Xun and Godwin, i n preparation, and Chapter 4), and so the deposition of Au would decrease a f t e r the solutions had passed the t h r o t t l e point. This model suggests that high Au values would be expected to continue at depth (to the east). Ag values would probably also continue to the east at t h e i r moderate to low values, as reported for the eastern section of the mine where Ag m i n e r a l i z a t i o n has f i l l e d the centers of veins a f t e r the deposition of the Au m i n e r a l i z a t i o n . Additional area of high Ag values would not be expected to the east of the present workings and at depth i n the system. High Ag values w i l l only be found i n those areas that were above the t h r o t t l e point ( i n the western part of the mine). This model i s based, of course, on the unfaulted geometry of the vein. Exploration for a d d i t i o n a l m i n e r a l i z a t i o n on Wallace Mountain must also take into consideration the present, faulted configuration of the v e i n system and the possible presence of more than one vein system i n the Beaverdell mine area. 64 W E S T E N D O F L A S S S Y S T E M - M U L T I P L E A g - R I C H V E I N S - A V E R A G E T H I C K N E S S : 5" T = 1 8 0 - 2 6 0 ° C D E P T H P H = 9 0 - 4 5 0 m Ag:291ppm Au:764ppb Zn :3 .07% Pb :1 .27% V E I N Z O N E O F G R O U N D W A T E R M I X I N G > o E A S T E N D O F L A S S S Y S T E M S T A G E 4 - 6 M I N E R A L I Z A T I O N S T A G E 1-3 M I N E R A L I Z A T I O N Ag:208ppm Au:3163ppb Zn:5.34% Pb:2.34% - A u - R I C H V E I N S - A V E R A G E T H I C K N E S S : 7' T= 2 6 0 - 3 1 0 ° C P L = 5 1 0 - 9 6 0 m W A L L A C E V F O R M A T I O N W E S T K E T T L E I N T R U S I O N Figure 3-13: Model of the Lass Vein System, Beaverdell Area, South-Central B.C. The vein i s divided into an upper, s i l v e r - r i c h part and a lower, gold-rich part. Average values for key elements are noted on each part of the model. 65 TABLE 3-7 L i s t of Data Used i n t h i s Study The following pages l i s t the r e s u l t s f o r A.A.S. analyses and estimates of mineralogical content, f o r 209 samples of granodiorite-hosted v e i n material from the Lass Vein System. SamplewNumbers are as shown on Figure 3-2. TE indicates a code used to sort the data. A l l data i n t h i s set of samples i s coded as type 9. Assay values are given i n the units indicated. TH r e f e r s to the thickness of the vein where sampled. The following are reported as percentages?,and estimated from hand samples: QZ=quartz RX=waste rock GG= t o t a l amount of gangue= QZ+RX GA=galena SL=sphalerite PY=pyrite AP=arsenopyrite CP=chalcopyrite RS=ruby s i l v e r (pyrargyrite) PO=pyrrhotite SAMPLE TP ZN% PBX CU PPM FE% MN PPM CD PPM CA PPM BSTH-1 9 0 . 099 O. 021 35 . 4 . 028 8986 . 14 . 193 SFCE-7 9 1 . 650 0 . 205 343. 2 . 222 1057 . 173. 1640 BSTH-2 9 0 . 068 0 . 025 36. 4 . 328 6902 . 0. 9697 H C - 2 9 0 . 744 0 . 168 97 . 2 . 630 4323. 79. 5360 JSON-1 9 0 . 347 0 . 122 67 . 2. 248 2514. 41 . 18663 HC-1 9 2. 996 1 . 001 726. 4 . 188 10690. 339. 6694 B S T H - 3 9 8. ,346 0 . 460 306. 3. 111 6313. 1070. 298 • SFCE-6 9 0. ,044 0 . 045 46. 1 . ,030 1398. 0 . 36730 NB-2 9 0. .275 0. 330 100. 3. ,046 10076. 35. 4430 NB-3 9 1 . .750 0. 483 218. 2 . , 134 2044. 198. 6005 NB-9 9 0. , 380 1. 137 325. 3. ,715 1213. 48. 3535 NB-7 9 2. , 157 3. ,674 955. 14. ,492 609. 270. 802 NB-8 9 4 . 485 4 . ,056 2577 . 12. ,883 563. 593. 2436 NB-6 9 1 . ,589 0. ,539 244. 2. ,608 1664. 18. 3074 NB-4 9 6. , 564 2. ,457 1 175. 10. ,844 973. 817 . 2250 NB-5 9 6. ,359 3 . 090 1423. 8. ,064 954 . 790. 2853 NB-1 9 0. ,930 0. 560 166. 2. ,542 1492 . 111. 22009 401-14 9 1 . ,625 4. 1 10 1 158 . 9. ,680 5324. 194 . 22430 P T - 2 9 0. . 167 0. ,041 42. 3. ,289 2031 . 10. 3693 401-13 9 5 . 323 1 . ,056 940. 5. ,035 2051 . 690. 863 P T - 3 9 0. ,887 0. ,032 1686. 0. ,956 255. 293 . 7598 P T - 5 9 0. .048 0. . 136 70. 0. .845 754 . 0 . 10607 401-12 9 2. .087 0. ,404 226. 3 . 834 2855. 266. 900 739- 1 9 0. .080 0. . 163 295. 2. .840 1634 . 0 . 7838 500-1 9 0. .422 0. . 172 104 . 3 .728 1317 . 47 . 139 P T - 1 9 0 .083 0. . 103 56. 1 . .763 869. 0 . 16021 P T - 4 9 0 .020 o . 102 27. 5 .051 17699. 0. 27273 4 0 1 - 1 0 9 0 .402 0 .257 82 . 3 .282 1 140. 50. 67 401-11 9 0 .496 2, .036 756. 4 . 153 1392 . 44 . 417 1O0-1 9 0 .635 0. . 324 96 . 2 .505 7853. 82. 10051 401-8 9 6 .641 4, .290 688. 5 .040 331 1 . 860. 252 401-9 9 1 . 157 0 .216 3 13. 2 .831 4569. 153. 1927 100-2 9 0 .868 5, .557 623. 6 .884 3043 . 146. 1019 735-3 9 7 .319 3, .303 626 . 8 .432 5069 . 926. 3402 400-4 9 0 .953 0 . 122 133. 3 .051 7901 . 1 15. 3355 400-5 9 1 . 159 0 .381 157. 3 .654 3596. 143. 266 401-6 9 0 .030 0 .036 4301 . 2 .265 400. 13. 47 890-1 9 5 .346 2, .908 613. 10 .312 1801 . 685. 238 401-7 9 1 . 195 2 . 151 213. 5 .310 7041 . 148. 645 600-1 9 3 .527 2 .443 3372. 8 .521 5986. 487. 1343 739-2 9 7 .375 0 .667 1242. 5 .260 1024. 1030. 280 735-1 9 1 .982 3 .890 1080. 8 . 130 1505. 1224 . 4841 839-1 9 0 .650 0 .284 110. 3 .743 1 124. 77. 1766 400-2 9 2 .955 1 . 159 511. 3 .449 13091. 347. 1404 837-2 9 3 .235 0 . 171 372. 3 .205 4037. 419. 10284 735-4 9 3 .621 4 .604 301 . 4 .261 3080. 470. 10243 400-3 9 4 .437 2 .549 437. 8 .784 32605. 666. 1140 735-2 9 0 . 161 0 . 104 64. 1 .886 2570. 31 . 3833 100-5 9 1 .531 0 .312 127. 6 .726 2958. 167. 1182 837-3 9 0 . 050 0 .058 40. 1 .457 984. 0 . 20797 100-3 9 9 .834 4 .230 1720. 9 .490 7140. 1454. 6125 MG% CO PPM NI PPM AU PPB AG PPM HG PPB A sr. SB PPM 0. 224 1 . 0. 260. 36. 50 . 1 . 350 75 . 0 . 226 4 . 0 . 610. 346. 100. 0 . 1 12 35. 0 . 5 1 9 54 . 0 . 5. 15 . 25. 0 . 032 45. 0 .281 4 . 0 . 70. 146 . 10. 1. 020 60. 0 .613 8. 0 . 15. 83. 25 . 0. 058 25. 0 . 260 0 . O. 100. 298. 50 . 1. 320 380. 0 . 175 5 . 0. 155. 198. 405. 1. 190 80 . 0 .098 0 . 0 . 25. 37. 10. 0. 100 30. 0 .461 0 . 0 . 1 10. 302. 480. 1. 090 1 10. 0 .254 4. 0. 160. 290. 50 . 0. 550 50. O. 241 3 . 0 . 440. 342 . 25. 0. 920 230. 0. 105 0 . 0 . 1300. 372. 1 10. 0. 260 1000. 0. 109 0 . 0 . 475. 443 . 62 . 0. 500 5650. 0 .331 6. 0 . 325. 383 . 18. 0. .234 25. 0. 105 0 . 0 . 5050. 329. 170. 0. . 170 150. 0 . 150 3. 0 . 5400. 290. 90 . 0. , 152 130. 0 . 226 0 . 0 . 125. 388. 50 . 0. ,096 65 . 0 .557 5. 0 . 4250. 493. - 200. 1. ,090 170. 0 . 308 8. 1 1 . 25. 14 . 18 . 0. ,200 50. 0. 175 5 . 0 . 800. 351 . 6. 1. .210 1 10. 0 .082 12 . 0 . 10. 15. 50 . 0. ,015 30. 0. 149 9 . 0 . 15. 72. 270. 0. ,027 20. 0.221 6 . 0 . 350. 291 . 6 . 0. , 700 70. 0 .687 25 . 8 . 10. 332. 18. 0. 072 50. 0. 150 2 . 0. 710. 296 . 18. 1. ,310 60 . 0 .527 3. 0 . 10. 16. 30. 0. .064 40 . 0 .651 0 . 0 . 580. 23 . 120. 1, .390 120. 0 . 132 0 . 4. 690. 473. 2. 1, .360 160. 0. 223 4 . 0 . 400. 372 . 2. 0 .680 100. 0 .505 4 . 0 . 25. 168. 780. 0 .910 80 . 0 . 176 5 . 0 . 580. 319. 18. 1, .090 155. 0 .324 6 . 0 . 65. 91 . 2. 0. . 106 40. 0 .258 4 . 0 . 1000. 328. 910. 1 . 140 150. 0 .355 5. 0 . 235. 324 . 140. 0 .950 185. 0 .257 0 . 0 . 120. 126. 30. 1 . 1 10 30. 0 .228 6. 0 . 185. 354. 18. 0 .910 45. 0 .048 7 . 0 . 35. 381 . 2. 0 .084 55. 0. 192 4. 0. 360. 529. 180. 0 .220 120. 0 .245 7 . 0. 180. 466. 10. 1 .300 160. 0 . 2 1 0 3. 0 . 1700.. 360. 90 . 1 .410 1550. 0 .066 4. 0 . 250. 319. 405. 0 .960 360. 0 . 177 5. 0 . 230. 286. 240. 0 .550 205. 0 .429 5. 0 . 190. 290. 2. 0 . 140 45 . 0 .303 4. 0 . 140. 236. 240. 0 .970 70. 0 .429 7. 0 . 85. 144. 62 . 0 .260 30. 0 .271 4 . 0 . 520. 454 . 62 . 0 . 144 90 . 0 .546 3. 0 . 440. 275. 80. 1 .300 190. 0 . 192 4. 0 . 75. 0 . 25. 0 .840 35. 0 .275 6. 0 . 360. 316. . 40 . 1 .390 175. 0 .075 0 . 0 . 75. 77. 60 . 0 .840 40. 0 .254 3. 0 . 585. 334. 120. 1 .340 1100. 100-4 9 19 .244 3 .289 1885 . 12 .971 3021 . 241 1 . 2 4 3 . 0 .227 0. 0. 565 . 2 3 3 . 6 7 0 . 1 . 170 1450. 8 3 7 - 1 9 3 .839 0 .751 438 . 4 .757 1693. 464 . 1 1 9 1 . 0 . 140 3 . 0. 7 4 0 . 467 . 100. 0 .880 6 5 . 8 3 7 - 4 9 0 . 162 0 . 101 6 3 . 2 .522 1558. 17. 807 . 0 .228 5. 0. 4 0 . 41 . 4 0 . 0 .256 3 5 . 8 5 0 - 4 9 0 . 288 0 . 186 41 . 4 . 190 1712. 32 . 1814 . 0 .195 4 . 0. 4 3 0 . 158. 10. 1 .660 6 5 . 4 0 0 - 1 9 2 . 244 0 .345 180. 4 .266 3 9 1 8 . 2 5 3 . 2 1 9 4 2 . 0 .252 0. 0. 4 2 0 . 372 . 10. 1 . 190 8 0 . 8 3 7 - 7 9 6 . 387 2 .798 571 . 14 .934 7 2 7 . 806 . 4 7 9 . 0 . 124 0. 0. 1700. 3 4 5 . 2 0 0 . 0 .510 2 0 5 . 8 3 7 - 6 9 3 . 3 6 5 1 .390 4 1 2 . 8 .610 1495. 352 . 79 . 0 . 223 4. 0. 6 9 0 . 4 8 5 . 5 0 . 1 .200 125. 8 3 7 - 5 9 3 .913 1 .586 494 . 4 .939 7 4 6 0 . 4 7 9 . 8 7 1 9 . 0 .776 7. 0. 5 5 0 . 261 . 9 0 . 0 .880 4 0 . 7 4 2 - 1 9 0 . 2 9 0 0 .052 4 5 . 4 .665 7 7 3 7 . 41 . 9 0 5 4 2 . 0 .740 2. 0. 2 0 . 28 . 18. 0 .056 8 5 . 4 0 1 - 1 9 0 .715 0 . 2 4 0 133. 1 . 343 7 3 8 . 103 . 3 3 4 5 . 0 . 148 2. 0. 5 0 . 7 0 . 6. 0 .046 10. 3 8 0 2 - 4 9 2 . 342 0 .652 3 6 6 . 8 .674 1073. 2 7 3 . 1600. 0 . 181 5. 0. 1300. 2 1 2 . 12 . 0 .790 7 5 . 7.44-3 9 9 . 2 5 6 1 .958 1 5 2 5 . 10 .744 6 7 6 . 1238. 6 7 2 . 0 .055 0. 0. 1850. 4 2 5 . 1 10. 1 .380 2 4 5 0 . 7 4 4 - 2 9 0 .722 0 .471 3 2 5 . 4 . 106 651 1 . 105. 2 8 1 6 9 . 0 .427 6. 0. 2 4 0 . 153. 2 5 . 1 .290 1 10. 3 5 6 1 A - 1 9 1 .710 1 .040 237 . 5 . 140 4 6 4 3 . 197. 7 5 0 6 . 0 .625 6. 0. 5 0 0 . 3 6 6 . 2. 0 .890 8 5 . 7 4 4 - 1 9 0 .472 0 . 3 6 3 102 . 2 .948 2 0 4 0 . 57 . 1269. 0 . 264 4 . 0. 2 8 0 . 197. 18. 1 .200 7 5 . 3 5 6 1 B - 2 9 3 .859 3 .327 7 1 9 . 9 .748 4 2 6 7 . 4 7 0 . 3 0 7 5 4 . 0 .343 6. 0. 3 3 0 0 . 2 2 4 . 9 5 0 . 0 . 144 9 0 . 3 5 6 1 B - 1 9 7 .312 1 . 3 99 9 2 3 . 7 .840 9 1 3 8 . 874 . 2 9 0 1 4 . 0 .714 7 . 0. 3 4 0 0 . 4 2 0 . 6. 0 . 178 8 0 . 6 0 0 - 2 9 0 .830 0 .160 87 . 3 .283 2 1 8 6 . 102. 3 9 9 9 2 . 0 .299 8. 0. 4 3 0 . 4 5 . 18. 1 .280 9 0 . 8 5 0 - 1 9 4 . 161 1 , .939 651 . 3 .696 1721 . 431 . 3 0 5 0 . 0 .084 2. 0. 5 0 0 . 5 1 0 . 120. 1 .480 3 7 5 . 3 8 0 2 - 3 9 0. .933 0, ,713 156. 7 .795 4 1 5 7 . 126. 1071 . 0, .376 9. 0. 1400. 2 5 5 . 2. 0 .880 7 5 . 8 5 0 - 6 9 18 . 244 0, .606 877 . 8 . 248 1716. 2 1 1 5 . 2 5 3 . 0, .072 7. 0. 3 6 0 . 507 . 2 7 0 . 0 .500 9 5 0 . 3 8 0 2 - 2 9 2 , . 398 2. .542 5 2 5 . 9 .853 1513. 238 . 3 5 3 . 0, .297 3. 0. 2 5 0 0 . 2 6 8 . 2. 0 .340 8 5 . 8 5 0 - 7 9 2 . 2 6 0 1 . 682 309 . 6 .377 4 0 0 . 2 6 5 . 0. 0, .037 4 . 0. 9 7 0 . 5 7 0 . 9 0 . 1, .580 4 6 5 . 7 1 8 - 1 9 3. .777 0. ,665 4 0 3 . 3 . 765 1345. 4 9 8 . 4 1 7 . 0. .073 3. 0. 3 5 0 . 5 3 0 . 18. 1 . 150 6 5 . 8 5 0 - 3 9 1 . 1 14 0. , 137 139. 3 .320 5 6 2 . 128. 0. 0. .060 3. 0. 5 6 0 . 357 . 18. 1, .580 5 0 . 8 5 0 - 5 9 13 . ,703 4 . ,774 1010. 8 .519 6 7 9 . 1708. 6 1 2 . 0. .069 0. 2 . 5 3 0 . 5 6 8 . 2 6 0 . 1, .010 1200. 3 8 0 2 - 1 9 1 . ,014 1 . 517 2 5 6 . 9 .317 1500. 136 . 148 . 0. 195 8. 0. 3 2 0 0 . 387 . 2 . 1, .450 105 . 7 4 2 - 2 9 1 . ,600 0. ,546 195. 6 .522 1238. 186. 6 3 0 . 0. 298 3. 0. 8 2 0 . 144 . 3 0 . 0, , 7 9 0 105. 4 0 1 - 5 9 0. ,814 0. .370 193 . 4. .582 1741 . 8 7 . 5 7 7 2 . 0. 184 0. 0. 3 7 0 . 313 . 2. 1. ,330 1 10. 7 4 2 - 4 9 0. 611 0. 2 1 0 146 . 3 . 322 8 2 9 . 7 9 . 120. 0. 064 0. 5. 7 3 0 . 7 6 . 2 5 . 1. , 3 6 0 8 5 . 7 1 8 - 2 9 2 . 113 1. ,990 292 . 5 . 190 727 . 94 . 100. 0. 0 9 7 0. 0. 7 2 0 . 4 6 6 . 5 0 . 1. .320 6 3 0 . 7 3 1 - 2 9 0. 0 8 2 0. 0 9 3 5 0 3 . 2. .616 9 2 3 . 14 . 4 0 2 8 . 0. 1 15 31 . 13. 3 5 . 7 3 . 5 0 . 0. 128 3 5 . 8 5 0 - 2 9 2. 4 5 6 1. 5 7 9 3 5 6 . 2. ,863 1578. 3 2 3 . 3 4 7 8 . 0. 0 7 8 0. 0. 2 3 0 . 3 1 2 . 9 0 . 1. 2 6 0 6 0 . 4 0 2 - 1 9 0. 0 6 4 0. 0 5 9 8 0 . 2. .283 1 124 . 8 . 837 . 0. 0 8 5 4 . 0. 135. 65 . 2. 1. 2 6 0 5 5 . 7 3 1 - 1 9 0. 0 9 3 0. 1 14 3 5 2 . 2. , 174 1417. 2 5 . 1 2 9 1 3 . 0. 667 12. 0. 5 0 . 8 2 . 5 0 . 0. 0 5 2 18. 7 4 2 - 3 9 0. 196 0. 106 164. 3. 190 1032. 3 9 . 9 9 4 . 0. 152 0. 0. 2 8 0 . 130. 5 0 . 0. 178 5 5 . 7 2 0 - 2 9 0. 3 2 0 0. 170 1 17. 3. 327 2 4 8 8 . 4 2 . 1818. 0. 288 5. 0. 185. 4 4 8 . 4 0 . 1. 2 8 0 5 5 . 3 8 0 0 - 1 9 0. 681 0. 324 144 . 2. 787 6 1 3 5 . 8 0 . 3 9 9 9 6 . 0. 827 7. 0. 9 0 . 6 5 . 3 0 . 0. 7 9 0 5 0 . 8 2 9 - 1 9 0. 0 8 3 0. 091 4 0 . 3. 064 6 7 2 . 17 . 2 7 3 8 . 0. 084 0. 0. 2 8 0 . 123. 4 0 . 1. 2 8 0 6 5 . 9 0 0 - 1 3 9 5. 6 2 8 2. 146 5 8 9 . 6. 782 1885. 6 9 3 . 1543. 0. 169 3. 0. 1050. 4 3 0 . 2 7 0 . 1. 3 8 0 2 4 0 . 7 2 0 - 1 9 0. 8 7 0 4 . 6 9 0 6 7 8 . 10. 1 16 651 . 126. 106. 0. 0 8 6 0. 0. 1750. 3 4 7 . 8 0 . 1. 3 9 0 2 1 0 0 . 9 0 0 - 1 2 9 2. 591 1 . 172 167. 3. 142 885 . 6 3 . 2 5 6 . 0. 0 7 2 0. 0. 1050. 4 5 2 . 100. 1. 3 5 0 110. 9 0 0 - 1 6 9 1 . 0 2 4 3. 753 6 1 7 . 7. 9 0 5 3 5 8 . 141 . 4 1 3 . 0. 0 4 4 3. 0. 2 0 0 0 . 2 9 7 . 140. . 1. 3 9 0 4 9 5 . 9 0 0 - 1 7 9 1 . 3 9 4 0. 8 4 3 1748. 6. 0 9 0 1018. 107. 2 4 5 . 0. 256 5. 0. 3 4 0 0 . 561 . 140. 1. 3 6 0 1050. 9 0 0 - 1 0 9 0. 7 9 0 0. 3 7 3 166. 4. 366 821 . 84 . 1066. 0. 074 0. 5. 1020. 3 2 9 . 1 10. 1. 3 6 0 130. 9 0 0 - 1 1 9 2. 9 0 2 1 . 2 8 0 4 7 6 . 3. 6 7 8 8 0 8 . 2 4 8 . 3077 . 0. 0 7 0 . 0. 0. 8 4 0 . 504 . 195. 1. 3 5 0 2 1 5 . 7 3 1 - 3 9 1 . 9 5 8 0. 7 2 0 2 0 7 . 6. 857 1772. 2 1 7 . 6 5 0 . 0. 306 3. 0. 4 5 0 . 276 . 6 2 . 1. 3 9 0 9 5 . 8 2 5 - 1 9 3. 0 1 0 2. 2 8 0 354 . 8. 5 6 0 1 170. 3 7 0 . 692 . 0. 138 3. 0. 7 5 0 . 5 3 6 . 1 10. 1. 3 4 0 1350. 8 2 5 - 2 9 0. 170 0. 0 9 2 5 5 . 2. 366 5 0 5 . 12. 3 5 8 9 . 0. 0 7 3 2. 9. 3 2 0 . 3 6 . 2 5 . 1. 3 1 0 6 0 . 8 2 9 - 2 9 0. 2 7 4 0. 0 7 6 6 9 . 4 . 375 1000. 21 . 0. 0. 152 5. 0. 3 9 0 . 151 . 5 0 . 1. 3 8 0 9 0 . 7 0 0 - 1 9 0. 5 0 6 1 . 3 1 5 3 1 5 . 7 . 284 2 7 0 4 . 61 . 8 3 6 . 0. 391 5. 1 1 . 4 6 0 . 5 0 7 . 2. 0. 120 115. 7 1 6 - 1 9 3. 4 7 6 0. 3 0 3 362 . 4 . 8 9 3 1183. 4 3 5 . 183. 0. 190 8. 5. 3 8 0 . 4 9 3 . 8 0 . 1. 5 4 0 8 0 . 9 0 0 - 1 5 9 4. 9 1 9 2. 0 5 7 1028 . 8 . 9 0 7 1331 . 6 3 3 . 9 4 . 0. 172 0. 0. 3 2 0 0 . 3 3 0 . 110. O. 7 8 0 9 5 . 9 0 0 - 1 4 9 3. 0 0 3 0. 749 343 . 2 . 578 2446 . 373 . 1432. 0. 177 5 . 0. 160. 180. 5 0 . 1 . 110 35. 9 0 0 - 8 9 3. 0 9 4 2. 2 4 0 1277 . 4 . 8 7 0 4 0 2 2 . 374 . 5 3 4 0 . 0. 541 10. 6. 1200. 4 8 6 . 2 4 0 . 0. 104 70. 9 0 0 - 9 9 3 . 7 5 2 2. 924 531 . 4 . 303 4 3 2 3 . 477 . 2 1 0 0 3 . 0. 367 7 . 7 . 3 9 0 . 344 . 180. 0. 114 80. 9 0 0 - 7 9 1 . 7 4 3 0. 357 223 . 4 . 9 4 2 2566 . 241 . 5 7 4 9 . 0. 292 6 . 0. 3 6 0 . 261 . 8 0 . 0. 8 0 0 6 5 7 0 0 - 3 9 7 . 9 2 6 1 . 2 6 8 2264 . 19. 2 1 0 2 9 4 . 1 106. 6 6 5 . 0. 044 2 . 0. 1200. 5 5 0 . 3 0 0 . 0. 3 4 5 4 9 5 0 8 7 0 - 2 9 0. 1 16 0. 0 8 7 77 . 2 . 507 169. 13. 0. 0. 0 2 9 3 . 0. 2 8 0 . 6 8 . 2 . 1 . 4 7 0 30. 7 0 0 - 2 9 0. 0 2 6 0. 0 5 5 65 . 2. 9 4 8 4 2 8 . 0. 38. 0. 041 3. 10. 150. 9 9 . 2. 1 . 4 6 0 45. 8 7 0 - 1 9 0. 0 4 6 0. 0 7 8 54 . 2. 208 4 8 0 . 0. 0. 0. 0 3 9 4 . 0. 140. 6 0 . 2. 1 . 4 4 0 3 0 8 1 2 - 1 9 2. 4 4 4 0. 9 8 8 534 . 3. 814 9 7 6 . 302 . 2 6 3 7 . 0. 145 2. 0. 1700. 3 4 6 . 6 2 . 0. 146 5 0 7 0 1 - 1 9 0. 5 0 8 0. 163 84 . 2 . 0 2 2 3 8 4 3 . 52 . 2 4 1 6 9 . 0. 644 8. 0. 2 5 . 2 5 8 . 2. 0. 0 9 8 5 0 8 0 9 - 4 9 3. 8 1 2 1 . 0 5 5 456 . 7 . 327 1009. 4 8 3 . 186. 0. 144 4. 0. 8 2 0 . 403 . 100. 1 . 3 8 0 165 8 7 0 - 3 9 0. .078 0 .028 21 . 3 . 134 478 . 2 2 . 0. 0. .04 2 0. 0. 4 2 0 . 13. 2. 1 . 5 6 0 45 9 0 0 - 6 9 0. 9 4 9 0 .386 2 6 0 . 1 . 798 1506. 126. 8 5 2 6 . 0. .291 4 . 0. 170. 188 . 195. 0. 084 3 0 9 0 0 - 3 9 1 . ,733 1 .591 804 . 3 .843 1928. 2 4 3 . 8 8 2 . 0. .320 5. 0. 1600. 364 . 6. 0. 126 5 0 9 0 0 - 4 9 0. .517 0 .441 150. 9 .442 9 7 7 . 73. 2 5 2 . 0 .073 9. 9. 1400. 3 4 7 . 3 0 0 . 1 . 3 9 0 150 8 0 9 - 3 9 2. . 1 14 2 .408 6 6 2 . 4 .816 1613 . 2 6 9 . 0. 0. . 142 8. 0. 5 0 0 . 7 0 7 . 110. 1 . 3 2 0 8 0 0 7 0 8 - 2 9 8 . 258 0 .405 2 8 8 . 8 .623 1317 . 981 . 2 6 0 . 0, . 140 8. 0. 7 0 . 5 8 8 . 2 4 0 . 1 . 6 2 0 1 10 8 0 9 - 1 9 0. .200 0 .420 272 . 6 .246 1426. 21 . 3 6 9 3 . 0 . 138 4 . 0. 1000. 4 1 5 . 5 0 . 1 . 190 100 8 1 2 - 2 9 0. .367 0 . 120 5 0 . 3 . 140 924 . 53 . 301 . 0. .083 0. 0. 150. 84. 4 0 . 0. 8 6 0 45 8 0 9 - 2 9 1, .492 1 .589 601 . 8 .293 2 2 8 9 . 170. 4 6 3 . 0. .317 8. 0. 1050. 371 . 100. 0. 8 8 0 1 10 9 0 0 - 5 9 0. .431 0 .286 155. 3 .087 1666. 2 8 . 7 3 . 0. . 188 4 . 0. 4 3 0 . 3 6 9 . 6 2 . 0. 9 1 0 4 5 9 0 0 - 1 9 4 . 805 0 .428 2 9 3 . 2 . 105 942 . 5 9 9 . 2 2 8 6 . 0 .069 1 . 0. 2 3 0 . 3 2 3 . 10. 0. 2 1 0 2 0 8 0 8 - 1 9 0. .616 0 .487 177. 4 .365 1969. . 5 0 . 5 4 8 . 0 . 198 3. 0. 6 8 0 . 4 2 5 . 6 2 . 1. 3 6 0 75 7 0 8 - 3 9 0. .825 0 .510 131 . 4 .922 12797. 5 9 . 4 1 3 6 . 0 .588 10. 0. 5 . 2 3 6 . 2. 1. .410 8 0 9 0 0 - 2 9 5. .508 2 .395 752 . 3 .897 1050. 637 . 844 1 . 0 . 121 0. 0. 2 5 0 0 . 4 2 3 . 18. 0. , 194 4 0 7 0 9 - 1 9 0 .058 O .030 61 . 3 .315 7 2 5 . 0. 48 . 0 .081 3 . 0. 5 0 0 . 6 6 . 2 . 1. 5 8 0 4 5 7 0 8 - 1 9 0 . 173 0 . 242 96 . 4 .685 1830. 23 . 6 9 0 . 0 . 183 10. 0. 180. 3 1 5 . 2. 1. ,510 7 0 7 0 8 - 4 9 O, .646 0 .982 2 1 0 . 6 .613 9 8 5 . 58 . 4 3 5 9 . 0 . 238 6 . 0. 5 0 0 . 2 5 5 . 2 . 0. .260 6 5 2 9 0 0 - 2 9 0. .720 0 . 7 9 5 601 . 4 .631 1451 . 9 0 . 162. 0 .322 5. 0. 7 5 0 . 482 . 6. 0. ,980 75 2 9 0 1 - 1 9 0 .970 5 .350 2 9 0 . 7 .679 1928 . 143. 1 120. 0 .214 0. 0. 1 100. 375 . 2. 0. ,680 9 0 2 9 0 1 - 4 9 0. .493 0 .318 71 . 2 .971 2 8 4 6 . 7 0 . 102. 0 .217 10. 0. 130. 146. 2 . 0. ,670 35 3 0 0 1 - 6 9 '1 , .001 0 .292 167 . 3 .422 938 . 87 . 7 0 8 2 . 0 .412 6. 0. 2 9 0 . 4 0 0 . 8 . 0. ,850 35 7 3 7 - 1 9 0 . 170 0 .080 4 0 . 2 .077 7161 . 17. 10175. 0 . 207 0. 0. 2 0 0 . 24. 4 0 . 1. , 3 2 0 55 3 0 0 0 - 4 9 0 .476 0 . 132 8 6 . 1 .918 1 155. 6 0 . 2 4 1 6 . 0 .081 0. 0. 5 0 . 81 . 10. 0. .970 25 3 0 0 1 - 5 9 4 .281 0 .378 2 6 5 . 6 .854 794 . 5 4 0 . 7 7 7 . 0 .054 0. 0. 6 0 0 . 3 6 6 . 18. 1, ,250 9 0 3 0 0 1 - 7 9 5, ,231 1 .586 731 . 7.036 7 1 1 . 6 5 0 . 9 0 . 0 .085 0. 0. 1000. 3 0 4 . 2 5 . 0. , 2 3 0 65 3 0 0 1 - 3 9 0 . 164 0 .660 5 0 . 3 .008 1520. 15. 1009. 0.083 9. 0. 2 6 0 . 1 18. 6. 0, ,860 3 0 3 0 0 1 - 4 9 1 . 7 8 9 1 .730 6 1 6 . 4 .933 1206. 2 3 0 . 4 3 7 . 0 .078 0. 0. 3 1 0 0 . 3 4 5 . 18. 1. ,260 95 3 1 0 4 - 9 9 4 .533 2 .819 1006. 18 .831 6 0 6 . 6 0 0 . 6 1 0 . 0 . 140 0. 0. 7 9 0 . 307 . 6. 1. , 160 3 6 5 3 1 0 4 - 7 9 0 . 301 0 .227 83 . 1 .609 8 2 3 . 3 8 . 5 0 9 9 . 0 .267 4 . 0. 5. 1 10. 2. 0. .096 35 3 1 0 4 - 1 0 9 0 .702 0 .314 2 5 7 . 4 .450 6 1 7 . 3 2 . 1012. 0 .098 0. 0. 3 1 0 . 244 . 2. 1. .340 75 3 0 0 1 - 2 9 0 .963 1 .052 207 . 5 .300 1261 . 121 . 7 2 0 2 . 0 . 154 5. 0. 110. 3 1 7 . 2 0 . 0. 9 4 0 165 2 9 0 1 - 5 9 0 .063 0 .038 6 4 . 1 .292 4 5 2 . 0. 1087 1 . 0 .382 4 . 10. 5. 2 8 . 2. 0. .020 15 3 1 0 4 - 8 9 2 .360 3 .527 4 7 2 . 9 .224 7 1 3 . 3 0 5 . 2 4 2 5 . 0 . 0 9 9 3. 0. 3 3 0 . 3 5 6 . 6. 0. .780 165 2 9 0 0 - 1 9 7 . 171 O .771 1171. 5 . 120 2 7 4 3 . 8 6 2 . 9 7 6 2 . 0 .410 0. 0. 3 0 0 0 . 3 6 2 . 6. 0. , 120 6 0 3 1 0 4 - 6 9 0 .731 0 .595 2 3 5 . 4 .783 854 . 8 6 . 481 . 0 . 107 5 . 0. 150. 3 3 9 . 10. 1. 4 2 0 160 2 9 0 2 - 2 9 27 .271 1 .767 4 2 7 . 1 1 .024 1087. 2 7 3 . 1405. 0 . 169 5. 0. 2 7 0 0 . 5 0 8 . 2. 1. .340 140 3 1 0 4 - 5 9 2 .517 2 .816 8 0 0 . 11 .887 1801 . 3 2 0 . 142. 0 . 186 4 . 0. 8 2 0 . 3 1 5 . 2 5 . 0. .272 145 2 9 0 2 - 5 9 0 .362 2 .258 1113. 1 1 .735 1235. 4 9 . 2 0 0 . 0 . 138 0. 0. 1800. 197. 2. 1. .340 190 3 1 0 4 - 1 - 1 9 11 .723 3 .955 2 5 1 7 . 1 1 .521 8 5 8 . 1330. 5 8 2 . 0 .039 0. 0. 7 0 0 . 2 8 8 . 2 4 0 . 1. .220 3 6 0 0 2 9 0 2 - 1 9 27 .522 1 .870 347 . 12 .355 1196. 349 . 7 1 0 . 0 . 236 5. 0. 2 2 0 0 . 4 1 3 . 2. 1. .370 135 - 2902 -3 9 6 .693 0 .669 367. 1 1 .841 1077 . 829. 945. 0 . 188 10. 0. 1600. 354. 6. 1 .360 145 3104 -3 9 12 .301 2 .771 2291 . 15 .742 787 . 1453 . 1086. 0 .046 0. 0. 800. 295. 340. 1 .370 2550 3104-1 9 14 .625 3 .731 1036. 9 .411 1786. 1831 . 6851 . 0 . 179 5. 0. 480. 265. 40. 1 .240 165 3104-4 9 16 .902 3 . 248 1624 . 10 .099 490. 2317 . 631 . 0 .028 1 . 0 . 380. 317 . 480. 1 . 190 1650 2902-4 9 0 . 399 0 . 120 54 . 1 .994 8646. 59. 9225. 0 .570 6. 0. 5. 40. 2. 0 .066 20 3104-2 9 14 . 1 19 4 .111 1644. 12 .840 597 . 1662. 126. 0 .049 5. 0. 450. 306. 200. 0 .980 1200 2903-1 9 1 .925 O .654 174 . 3 .084 8490. 248. 8865. 0 .546 0. 0. 95 . 97 . 2. O .700 50 3010-1 9 1 .229 0 .562 133. 9 .440 3244. 137 . 1420. 0 .241 8 . 0. 280. 255. 10. 1 .260 100 3000-1 9 O .269 O . 185 108 . 3 .446 16830. 29. 109895. 0 .773 0. O. 280. 233 . 6. O . 102 90 3000 -3 9 6 . 253 2 .093 254. 12 .871 1 188. 483. 516. 0 . 185 18 . 0. 1450. 353 . 25. 1 .270 155 2904-1 9 0 .253 0 .532 56. 3 .276 6357 . 28. 46467. 1 .117 5. 0. 270. 324 . 2. 1 .060 65 2904-2 9 2 .298 0 .494 215. 4 . 196 5369. 251 . 28208. 0 .872 8 . 0 . 600. 487 . 2. 0 . 124 60 2955-3 9 2 .429 0 . 1 16 296 . 5 .003 2147 . 264 . 1422. 0 . 167 6 . 0 . 620. 349. 30. 0 . 780 95 2955-2 9 2 . 341 1 .867 193 . 6 . 197 1359. 285. 930. 0 .201 13. 0. 560. 309 . 25. 1 .240 135 2955-1 9 1 .422 2 .083 187 . 7 .047 1552. 142. 2030. 0 .076 5. 0. 1 100. 279. 6. 0 .970 85 3016-4 9 0 .289 0 .665 44 . 3 .058 8251 . 40. 60733. 0 .460 3. 0 . 900. 45. 10. 1 .340 80 2910 -8 9 0 .442 0 .610 65 . 8 . 146 823. 61 . 247. 0 .061 6. 0. 1250. 244 . 2. 1 .340 90 2905 -3 9 0 .284 0 .304 77. 3 .04 1 9390. 10. 37580. 0 .434 2 . 0 . 150. 95 . 2. 0 .850 40 2910-6 9 1 . .692 2 .959 991 . 16 .882 3233. 224. 10832. 0. .410 3 . 0 . 1800. 304 . 2. 0. .920 1350 2910-7 9 0. .722 2. . 209 975. 14 .492 2138. 101 . 870. 0. .347 8. 0 . 950. 384. 2. 1. .040 1400 2905-2 9 2 . 875 3. .997 376. 9 .511 2040. 399. 71 10. 0. ,300 6 . 0 . 1400. 347. 2. 1. ,040 125 '2906-5 9 3. .439 4 . 610 512 . 9 .908 398. 482. 152 . 0. .057 8. 0. 4200. 410. 50. 1. .400 315 2906-4 9 3. ,248 2. .701 2367 . 16, .732 779. 435. 1184. 0. , 140 4. 0. 16000. 323. 25. 1. 360 355 2905-1 9 35 . , 521 4 . 629 983 . 13, .625 1788. 442. 8616. 0. .227 0. 0. 9000. 350. 2. 0. .760 1 10 2906 -2 9 13. , 124 2 . .271 1035 . 16. ,545 821 . 1710. 3138. 0. 075 3. 0. 2450. 325. 70. 0. 320 330, 2906 -3 9 0. ,442 0. .378 215. 13. .873 1049. 54 . 4857. 0. 145 5. 0. 1000. 226 . 2. 0. ,970 90, 291.1-6 9 4. 967 0. .709 2047 . 1 . .348 238. 652 . 128. 0. 026 0. 0. 9100. 284. 40. 1. , 130 350, 2910-4 9 0. 186 0. . 161 96 . 6 . 097 2006. 12. 4402. 0. 303 5. 5. 1450. 44. 2. 1. ,200 55, 2915-1 9 4 . 499 2. 997 758 . 6 . 505 1365. 552 . 7593. 0. 812 6 . 0 . 2300. 388 . 2. 0. , 112 90, 2910-5 9 1 . 358 3. 539 491 . 14 . 758 439. 181 . 1680. 0. 079 0. 0. 5300. 235. 6. 0. ,860 160, 2910-2 9 9. 452 3 . 581 530. 12 . 400 7588. 1368 . 24143. 0. 540 4 . 0. 4200. 253. 40. o. 224 75. 2911-4 9 2 . ,570 5. .583 221 . 10. .115 4237. 396 . 5623. 0. 423 4 . 0 . 690. 360. 10. 1. 150 190. 2918-1 9 3. .033 6 . , 324 716. 8 . ,431 858. 379. 1 180. 0. 088 0 . 0. 1500. 325. 30. 1. 330 210. 2910-1 9 15. , 165 5. .313 750. 6. ,949 852 . 2065. 5283. 0. 194 8 . 0 . 3850. 310. 270. o . 296 165. 2914-1 9 0. 603 2. ,997 196. 12. ,609 2799. 97. 3126. 0. 105 10. 0. 2000. 294 . 2. 1. 340 525. 2912 -17 9 3. 525 0. 195 419. 6 . ,059 2113. 449. 617. 0. 375 2. 0. 2200. 83 . 6 . 0 . 236 60. 2912 -18 9 0. 207 0. 232 89 . 8. 391 3920. 23. 4133. 0. 285 6. 0. 1000. 65. 2. 1. 330 85. 291 1-2 9 10. 249 6. 903 1876. 6. 658 667. 1603. 162. 0. 089 18. 0. 3100. 306. 220. 1. 160 460. 2911-1 9 12. 728 3. 648 2504 . 14 . 120 799. 1736. 1111. 0. 092 10. 0. 16500. 151 . 70. 1. 390 1 10. 2912-16 9 2 . 498 0. 829 243. 7 . 019 651 1 . 322. 351 1 . 0. 364 0. 0. 800. 109. 2. 1. 330 65. 2912-15 9 0 . 487 0 . 142 164 . 3. 368 1 108. 73 . 675. 0. 147 4 . 11. 1 10. 34 . 2. 1. 230 40. 2912-14 9 9. 728 3. 524 734. 15. 313 655. 1453. 477. 0. 070 3. 0. 2100. 284. 18. 1. 090 290. 2912-13 9 0 . 134 0 . 020 40. 0. 937 534. 39. 15698. 0. 235 0. 0 . 30. 0. 2. 0. 01 1 15. 2912-12 9 2. 859 0 . 295 701 . 8. 719 1666. 368. 190. 0. 178 9 . 0. 3000. 30. 2. 1. 340 80. 2912-11 9 12. 947 5. 054 1862. 7. 798 1781 . 1814. 2504. 0. 248 5. 0. 3000. 321. 10. 1. 130 120. 2912 -9 9 10. 274 2 . 998 1023. 10. 764 2597. 1696 . 7496. 0. 220 5. 0. 7000. 212. 10. 1. 030 90. 2912 -10 9 14 . 804 0 . 362 1664 . 7. 556 1096. 2157 . 813. 0. 090 13. 0. 2100. 59. 1 10. 0. 220 75. 2916 -9 9 0. 343 0 . 308 201 . 2. 556 1661 . 41 . 4504 . 0. 192 2 . 0 . 360. 14 . 2. 0 . 160 25. 2916-8 9 0 . 532 0 . 258 85. 3. 350 1642. 72. 481 . 0. 246 4 . 0 . 90. 7. 4. 0 . 098 30. 2912-8 9 1 . 684 4. 938 975. 9. 263 196. 264. 916. 0. 035 3. 0. 3600. 293. 2. 1. 050 490. 2916 -7 9 9. 825 3. 517 1525. 9. 645 1268. 1509. 4864. 0. 161 19. 0. 1700. 122. 40. 0 . 084 125. 2912-6 9 1 . 592 0 . 775 538 . 5 . 042 933. 188 . 1754. 0. 104 1 . 4 . 7100. 32. 2. 0. 490 40. 2912 -5 9 2. 317 0 . 891 390. 8 . 946 1338. 288 . 1792 . 0. 194 13 . 12 . 3800. 51 . 2. 1. 350 95 . 2912-4 9 17. 334 2. 840 1369. 7 . 319 2730. 2457 . 6633. 0. 244 15. 0. 3500. 112. 30. 0 . 188 75. SAMPLE X Y TH OZ RX GG GA SL PY AP BSTH-1 0.0 0.0 3 35 54 89 1 10 S F C E - 7 O.O 0.0 67 25 92 2 6 B S T H - 2 0.0 0.0 3 4 0 30 70 30 HC-2 0.0 0.0 4 75 15 9 0 2 3 5 JSON-1 0.0 0.0 1 76 15 91 5 4 HC-1 0.0 0.0 4 20 55 75 2 10 7 6 B S T H - 3 0.0 0.0 3 50 15 65 15 10 10 S F C E - 6 0.0 0.0 6 99 99 1 NB-2 0 . 6 6 9 22.964 8 4 0 51 91 4 5 NB-3 1 .924 2 7 . 9 4 5 2 65 2 1 86 1 6 3 4 NB-9 2 .850 2 8 . 6 9 5 1 55 23 78 2 2 10 8 NB-7 3 .466 2 8 . 5 6 3 4 38 25 63 10 2 20 3 NB-8 3 . 5 8 0 28. 4 2 7 6 8 10 18 22 10 4 0 2 NB-6 3 . 9 0 9 2 8 . 9 8 8 1 55 40 95 1 5 NB-4 4 .043 28.652 4 31 3 0 61 10 12 13 4 NB-5 4.064 28.874 8 67 20 87 2 7 3 1 NB- 1 4 . 8 2 6 2 9 . 5 2 7 18 74 20 94 1 2 3 4 0 1 - 1 4 6. 146 2 1 . 7 6 3 3 45 20 65 6 25 4 P T - 2 7 . 2 9 9 2 8 . 4 8 4 1 6 0 33 93 7 4 0 1 - 1 3 7 . 753 2 3 . 9 6 8 3 65 25 90 1 1 3 5 P T - 3 9.098 3 3 . 5 5 6 12 49 45 94 2 P T - 5 9 . 177 32.121 7 99 99 1 4 0 1 - 1 2 9.761 2 4 . 2 6 5 3 68 25 93 2 3 2 7 3 9 - 1 9 . 773 18.963 1 83 10 33 1 6 5 0 0 - 1 9.914 2 3 . 4 0 7 5 58 15 73 5 10 12 P T - 1 9.987 3 1 . 0 2 8 4 5 0 48 98 1 1 P T - 4 9.994 32.821 7 63 25 88 1 1 10 4 0 1 - 1 0 1 0 . 1 7 7 2 4 . 7 8 8 12 7 0 70 3 5 22 4 0 1 - 1 1 1 0 . 4 6 9 24. 148 2 45 35 80 5 10 5 1 0 0 - 1 1 0 . 7 0 0 3 2 . 1 9 8 4 64 ' 30 94 2 4 4 0 1 - 8 1 0 . 7 7 0 2 5 . 4 2 2 2 35 30 65 5 15 10 5 4 0 1 - 9 10.888 25.514 1 97 97 1 1 1 100-2 1 0 . 9 4 5 3 2 . 1 3 0 1 24 4 0 64 15 1 15 5 7 3 5 - 3 1 2 . 4 0 5 15.081 3 4 0 4 0 8 22 3 0 4 0 0 - 4 1 2 . 4 3 9 2 0 . 6 7 5 15 85 5 90 2 3 5 4 0 0 - 5 1 2 . 6 4 6 2 1 . 0 1 5 2 6 0 15 75 12 5 8 4 0 1 - 6 1 2 . 6 6 2 2 5 . 1 8 6 5 7 0 20 9 0 1 5 8 9 0 - 1 1 2 . 7 3 6 1 6 . 2 8 0 1 3 0 40 7 0 3 12 15 4 0 1 - 7 1 2 . 9 1 0 2 5 . 4 4 8 2 4 0 2 0 6 0 8 5 15 12 6 0 0 - 1 1 3 . 1 1 5 21 .450 8 4 0 3 0 70 2 8 15 7 3 9 - 2 1 3 . 3 7 0 19.195 2 8 0 5 85 5 4 4 2 7 3 5 - 1 1 3 . 3 7 6 17.042 1 37 20 57 8 2 0 15 8 3 9 - 1 1 4 . 1 1 3 13.809 8 92 92 8 4 0 0 - 2 1 4 . 2 2 6 2 0 . 7 2 4 6 4 0 42 82 3 4 3 . 8 8 3 7 - 2 14.241 17.346 1 5 0 4 0 9 0 1 4 5 7 3 5 - 4 1 4 . 3 7 3 16.340 3 8 0 7 87 3 4 5 1 4 0 0 - 3 14.481 2 0 . 6 8 6 " 5 20 55 75 5 15 3 7 3 5 - 2 1 4 . 4 9 8 13.964 3 84 5 89 1 10 1 0 0 - 5 1 4 . 5 9 0 3 3 . 1 3 6 6 17 50 67 2 7 10 14 8 3 7 - 3 1 4 . 6 6 2 17.382 3 75 2 0 95 1 1 3 100-3 1 4 . 6 7 9 3 2 . 3 6 5 5 4 0 4 0 16 19 2 0 5 100-4 14 . 7 39 31 .872 18 25 15 4 0 4 25 25 3 8 3 7 - 1 14 .760 16 . 784 1 59 20 79 10 10 1 8 3 7 - 4 15 .246 17 . 224 5 8 0 13 93 1 5 1 8 5 0 - 4 15 . 4 4 0 13 .785 3 85 85 15 4 0 0 - 1 15 .883 21 .301 2 10 77 87 3 8 2 8 3 7 - 7 15 .966 16 . 155 12 55 55 15 25 5 8 3 7 - 6 16 .017 16 .362 5 6 0 6 0 3 25 7 5 8 3 7 - 5 16 .017 16 . 74 1 1 35 50 85 3 5 4 3 7 4 2 - 1 16 .465 17 .328 1 4 0 57 97 3 4 0 1 - 1 16 .481 32 .748 3 4 0 42 82 2 8 4 4 3 8 0 2 - 4 16 .900 43 .323 6 65 20 85 2 10 3 7 4 4 - 3 17 .288 18 .751 8 37 15 52 12 13 15 5 7 4 4 - 2 17 . 383 18 . 564 1 65 25 9 0 1 4 5 3 5 6 1 A - 1 17 .415 7 .092 1 20 50 7 0 3 7 20 7 4 4 - 1 17 . 4 9 3 18 .954 2 5 0 40 9 0 2 8 3 5 6 1 B - 2 17 .660 5 . 573 3 35 20 55 2 15 25 2 3 5 6 1 B - 1 17 .687 5 . 759 4 25 30 55- 5 15 20 2 6 0 0 - 2 17 . 7 6 8 21 .372 2 45 4 0 85 2 8 5 8 5 0 - 1 17 . 804 13 .601 3 6 0 6 0 5 5 25 5 3 8 0 2 - 3 17 .847 43 .210 1 5 89 94 5 1 8 5 0 - 6 18 .577 15 .053 5 15 15 30 10 35 25 3 8 0 2 - 2 18 .716 43 . 157 3 25 40 6 5 10 25 8 5 0 - 7 18 . 7 29 15 .768 14 63 63 4 8 10 15 7 18-1 18 .958 16 .766 5 55 15 7 0 8 10 12 8 5 0 - 3 19 . 107 13 .988 7 85 85 5 10 8 5 0 - 5 19 . 262 15 .223 7 25 25 18 42 15 3 8 0 2 - 1 19 . 262 42 .975 4 4 0 37 77 20 3 7 4 2 - 2 19 . 274 18 .917 8 7 0 7 0 15 15 4 0 1 - 5 19 .353 31 .504 4 85 8 93 1 3 3 7 4 2 - 4 19 .405 19 . 152 4 55 25 8 0 1 5 4 10 7 18-2 19 . 494 16, .950 5 50 15 65 15 15 7 3 1 - 2 19 .625 21 . .956 10 65 25 9 0 10 8 5 0 - 2 19 , .674 13, , 593 4 75 8 83 5 3 6 3 4 0 2 - 1 19 . 8 8 8 31 . .560 3 6 0 20 8 0 8 12 7 3 1 - 1 20. .046 22. 077 5 4 0 57 97 2 7 4 2 - 3 2 0 . . 591 18 . 233 4 83 10 93 2 5 7 2 0 - 2 2 0 . 9 3 5 17. 603 3 45 45 9 0 2 3 5 3 8 0 0 - 1 21 . 0 8 7 27. 383 2 34 50 84 1 7 8 8 2 9 - 1 21 . 120 12. 1 1 1 8 85 85 5 10 9 0 0 - 1 3 21 . 127 10. 975 7 4 0 20 6 0 1 10 15 13 7 2 0 - 1 21 . 134 18. 0 6 0 6 70 7 0 12 15 9 0 0 - 1 2 21 . 2 3 8 10. 593 6 85 3 88 2 1 3 6 9 0 0 - 1 6 21 . 4 1 9 10. 962 8 65 65 5 1 14 15 9 0 0 - 1 7 21 . 4 2 9 10. 792 2 6 0 15 75 10 15 9 0 0 - 1 0 21 . 4 6 9 10. 679 8 65 5 7 0 5 5 10 10 9 0 0 - 1 1 21 . 4 8 0 10. 5 6 0 6 83 5 88 4 4 2 2 7 3 1 - 3 21 . 8 2 0 23 . 605 4 39 4 0 79 3 7 6 5 8 2 5 - 1 21 . 8 3 9 16 . 8 23 7 55 55 10 20 15 8 2 5 - 2 21 . 884 15. 436 5 79 5 84 1 5 10 8 2 9 - 2 2 2 . 5 0 2 13. 784 4 6 0 25 85 15 7 0 0 - 1 2 2 . 8 9 0 1 1 . 483 7 70 20 9 0 1 4 5 7 1 6 - 1 2 3 . 3 1 9 18. 682 4 7 0 18 88 5 4 3 9 0 0 - 1 5 23 .519 12 . 101 5 9 0 0 - 1 4 23 .931 11 .846 2 9 0 0 - 8 24 .407 12 .525 1 9 0 0 - 9 24 .420 12 . 273 2 9 0 0 - 7 25 . 168 1 1 .840 1 7 0 0 - 3 25 .267 16 . 156 8 8 7 0 - 2 25 .724 18 .288 21 7 0 0 - 2 25 .873 15 . 127 7 8 7 0 - 1 26 .011 18 .626 3 8 1 2 - 1 26 . 142 14 .396 6 7 0 1 - 1 26 . 223 31 .005 1 8 0 9 - 4 26 . 267 17 .267 3 8 7 0 - 3 26 .491 18 .844 4 9 0 0 - 6 26 .710 10 .928 2 9 0 0 - 3 26 .891 10 .423 3 9 0 0 - 4 27 . 294 10 .427 10 8 0 9 - 3 27 .416 19 . 145 2 7 0 8 - 2 27 . 465 21 . 287 5 8 0 9 - 1 27 .666 2 0 .473 5 8 1 2 - 2 27 . 697 14 .226 6 8 0 9 - 2 27 .767 2 0 . 352 5 9 0 0 - 5 27 .954 1 1 .082 4 9 0 0 - 1 28 .331 10 . 2 2 0 2 8 0 8 - 1 28 .510 15 .668 4 7 0 8 - 3 28 .662 22 .507 2 9 0 0 - 2 28 .689 10 .401 2 7 0 9 - 1 28 .846 17 .539 12 7 0 8 - 1 29 . 176 2 0 .655 2 7 0 8 - 4 29 .480 24 .687 3 2 9 0 0 - 2 29 .820 13 . 706 6 2 9 0 1 - 1 30. .052 7 . 063 5 2 9 0 1 - 4 30. . 104 1 1 . ,051 1 3 0 0 1 - 6 3 0 . 305 15. ,611 3 7 3 7 - 1 3 0 . 591 30. 887 7 3 0 0 0 - 4 3 0 . 795 2 0 . 136 4 3 0 0 1 - 5 3 0 . 9 6 0 16 . 821 3 3 0 0 1 - 7 31 . 7 9 0 16. 964 10 3 0 0 1 - 3 31 . 917 19. 827 1 3 0 0 1 - 4 32 . 4 8 3 19. 821 1 3 1 0 4 - 9 3 2 . 528 18. 762 3 3 1 0 4 - 7 32 . 798 19. 104 4 3 1 0 4 - 1 0 3 2 . 8 9 3 18. 776 3 3 0 0 1 - 2 33 . 0 5 0 17. 654 2 2 9 0 1 - 5 3 3 . 0 6 8 14 . 175 4 3 1 0 4 - 8 3 3 . 2 12 18 . 9 3 0 6 2 9 0 0 - 1 3 3 . 788 2 0 . 438 4 3 1 0 4 - 6 3 3 . 8 5 5 19. 0 6 9 4 2 9 0 2 - 2 34 . 6 5 3 12 . 917 4 3 1 0 4 - 5 34 . 7 2 0 18. 476 3 2 9 0 2 - 5 34 . 9 2 7 13. 2 9 0 4 3 1 0 4 - 1 - 1 34 . 9 5 7 18. 6 5 9 2 9 0 2 - 1 34 . 9 6 9 12 . 764 6 45 45 1 15 25 14 4 0 2 0 6 0 5 13 10 12 22 56 78 2 5 15 55 30 85 5 6 4 85 5 9 0 5 4 1 5 5 25 18 37 8 0 15 95 1 4 96 96 1 1 2 98 98 2 4 0 4 0 80 7 12 1 75 2 0 95 1 2 2 6 0 6 0 2 30 4 4 95 95 5 98 98 98 98 1 1 1 1 6 0 6 0 2 2 18 18 25 25 25 10 35 5 35 30 65 8 12 15 46 4 0 86 3 4 7 69 10 79 5 8 8 45 2 0 65 3 2 25 5 54 45 99 1 95 95 2 1 2 45 14 59 4 8 14 15 22 65 87 5 8 55 55 5 15 15 85 10 95 2 3 77 20 97 1 2 75 10 85 2 10 3 4 0 45 95 5 42 5 0 92 1 6 1 6 0 10 70 2 2 0 8 55 30 85 3 5 7 4 0 53 93 1 6 92 92 1 2 3 75 2 0 95 1 3 1 45 15 6 0 4 18 17 1 84 10 94 1 3 2 79 79 4 8 5 4 13 12 25 3 15 5 0 7 75 2 0 95 1 2 2 8 0 8 88 1 1 5 5 74 10 84 1 10 5 100 100 66 66 1 2 0 13 8 0 10 9 0 10 55 55 18 7 20 5 0 7 57 3 25 15 62 62 2 35 1 42 4 0 82 \' 10 7 3 0 3 0 10 15 4 0 3 0 6 0 9 0 6 4 2 9 0 2 - 3 35 .023 13 .860 3 3 0 10 4 0 10 35 15 3 1 0 4 - 3 35 .062 18 .793 4 5 30 35 5 25 30 5 3 1 0 4 - 1 35 .073 18 .961 7 3 0 20 5 0 5 15 2 0 10 3 1 0 4 - 4 35 .094 18 .538 4 10 10 2 4 0 44 2 2 9 0 2 - 4 35 .095 13 .648 3 90. 4 94 3 3 3 1 0 4 - 2 35 .244 18 .625 8 2 0 10 30 10 5 5 0 5 2 9 0 3 - 1 35 .469 14 . 135 1 84 1 85 4 6 5 3 0 1 0 - 1 35 .735 16 .007 8 44 25 69 1 15 15 3 0 0 0 - 1 36 .269 28 .200 1 95 95 2 1 3 0 0 0 - 3 36 .573 27 . 174 7 20 20 4 0 5 5 35 15 2 9 0 4 - 1 36 .972 7 .490 2 65 15 8 0 5 3 10 2 2 9 0 4 - 2 38 .822 9 .365 1 6 0 12 72 5 15 8 2 9 5 5 - 3 4 0 .458 10 .531 3 45 15 6 0 5 15 20 2 9 5 5 - 2 41 .392 9 .795 4 25 45 70 8 1 1 10 1 2 9 5 5 - 1 41 .993 13 . 180 7 67 2 0 87 5 8 3 0 1 6 - 4 42 . 728 22 .658 2 6 0 20 8 0 5 15 2 9 1 0 - 8 43 .404 13 .665 18 81 81 4 5 2 9 0 5 - 3 44 . 7 4 8 17 .964 3 95 95 1 2 2 2 9 1 0 - 6 46 .549 15 .683 4 3 0 30 10 5 55 2 9 1 0 - 7 46 .793 15 . 733 3 8 0 8 0 1 19 2 9 0 5 - 2 47 .624 21 .517 4 25 2 0 45 5 8 42 2 9 0 6 - 5 4 9 .827 19 .963 4 4 0 4 0 15 8 35 2 2 9 0 6 - 4 5 0 . 247 19 .778 6 15 15 15 25 40 5 2 9 0 5 - 1 5 0 .907 27 .657 8 15 15 25 25 35 2 9 0 6 - 2 51 , .662 20 .829 5 5 <6 3 0 30 35 2 9 0 6 - 3 51 , .939 2 0 .845 5 57 57 3 5 20 15 2 9 1 1 - 6 52 .421 19 .569 26 5 5 2 0 5 70 2 9 1 0 - 4 54. . 136 15 .327 8 3 0 25 55 25 20 2 9 1 5 - 1 54. .666 19 .798 25 15 4 0 4 16 4 0 2 9 1 0 - 5 56. .254 25 .040 8 5 0 50 5 20 15 10 2 9 1 0 - 2 56. .709 13. .841 6 3 0 30 15 30 20 5 291 1-4 57 . .510 18. .208 12 20 5 0 70 15 5 8 2 2 9 1 8 - 1 58 . .018 14 . 070 5 2 0 18 38 4 0 20 2 2 9 1 0 - 1 5 8 . 6 4 8 12. .962 6 25 25 15 30 30 2 9 1 4 - 1 58 . 684 17. .468 4 20 20 4 0 30 2 0 10 2 9 1 2 - 1 7 6 2 . 8 7 2 16 . 891 18 45 49 94 5 1 2 9 1 2 - 1 8 64 . 1 1 1 16. 456 5 4 0 2 0 6 0 30 10 2 9 1 1 - 2 6 6 . 8 3 0 21 . 239 5 25 25 15 25 27 8 291 1-1 6 7 . 3 9 5 21 . 0 6 0 5 5 5 84 8 3 2 9 1 2 - 1 6 67 . 4 6 6 17. 369 2 42 4 0 82 3 5 10 2 9 1 2 - 1 5 68 . 9 0 3 17. 51 1 6 6 0 15 75 10 15 2 9 1 2 - 1 4 6 9 . 2 5 5 17. 4 9 0 5 10 15 25 3 0 20 25 2 9 1 2 - 1 3 7 0 . 4 5 6 17 . 266 8 3 0 7 0 100 2 9 1 2 - 1 2 7 0 . 7 6 5 17. 191 3 3 0 20 50 5 15 15 15 2 9 1 2 - 1 1 72 . 7 9 0 21 . 118 5 15 15 30 25 25 2 0 2 9 1 2 - 9 7 3 . 183 21 . 54 1 6 1 1 25 36 8 25 3 0 1 2 9 1 2 - 10 7 3 . 4 3 7 21 . 909 3 5 0 16 66 1 3 0 3 2 9 1 6 - 9 7 3 . 6 6 5 21 . 417 7 3 0 63 93 1 1 5 2 9 1 6 - 8 73 . 8 0 8 21 . 387 7 87 87 1 12 2 9 1 2 - 8 74 . 5 1 3 2 3 . 583 6 3 7 _ 15 52 25 1 20 2 2 9 1 6 - 7 7 5 . 772 21 . 0 1 9 7 2 0 35 55 10 15 20 2 9 1 2 - 6 76 . 617 2 6 . 535 8 73 73 1 1 15 10 2 9 1 2 - 5 76 . 8 0 3 2 6 . 728 6 6 0 6 0 5 10 25 2 9 1 2 - 4 76 . 861 27 . 239 12 10 10 15 4 0 20 74 REFERENCES Barnes, H.L. (ed.) 1967. Geochemistry of hydrothermal ore deposits; Holt, Rinehart and Winston Inc., New York, 670 p. Barnes, H.L. (ed.) 1979. Geochemistry of hydrothermal ore deposits, second e d i t i o n ; John Wiley and Sons Inc., New York, 798 p. Boyle, R.W. 1968. The geochemistry of s i l v e r and i t s deposits; Geol. Survey of Canada, B u l l e t i n 160, 264 p. Boyle, R.W. 1979. The geochemistry of gold and i t s deposits; Geol. Survey of Canada, B u l l e t i n 280, 584 p. Boyle, R.W., and Jonasson, I.R. 1973. The geochemistry of arsenic and i t s use as an i n d i c a t o r element i n geochemical prospecting; Jour. Geochem. Expl., Vol. 2, pp. 251 - 296. Cairnes, C.E. 1937. Preliminary report: mineral deposits of the west ha l f of the K e t t l e River area, B.C.; Geol. Survey of Canada, Paper 37-21 Christopher, P.A. 1975. Highland B e l l (Beaverdell) mine (82E/6E); i n Geology i n B.C., B.C. Min. Mines and Petroleum Res., pp. G30-G33. Christopher, P.A. 1975. Carmi-Beaverdell area (82E/6,11); i n Geological Fieldwork, B.C. Min. Mines and Petroleum Res., pp. 27-31. Christopher, P.A- 1976. Beaverdell area (82E/6E); i n Geological Fieldwork, B.C. Min. Mines and Petroleum Res., p. 15. Duncan, I.J., and P a r r i s h , R.R. 1979. Geochronology and Sr isotope geochem-i s t r y of the Nelson b a t h o l i t h : A post-tectonic i n t r u s i v e complex i n southeast B r i t i s h Columbia; Geol. Soc. Amer. Abstracts with Programs, Vol. 11, No. 3, p. 76. Gale, B. 1950? M i n e r a l i z a t i o n and paragenetic sequence at the Highland B e l l mine, Beaverdell, B. C.; Report submitted for geology course 409, Uni v e r s i t y of B r i t i s h Columbia (unpublished). Hedley, M.S., and Watson, K.DeP. 1945. Lode gold deposits, c e n t r a l southern B r i t i s h Columbia; B.C. Dept. of Mines, B u l l , 20, part 3, pp. 16-17. Helgeson, H.C., and Garrels, R.M. 1968. Hydrothermal transport and deposi-t i o n of gold; Econ. Geol., Vol. 63, pp. 622-635. Kenyon, J.M. 1978. Mo and U m i n e r a l i z a t i o n with s p e c i a l reference to a Mo-(U) deposit at Carmi, B.C.; unpublished M.Sc. t h e s i s , Dept. of Geology, Un i v e r s i t y of Alberta. Kidd, D.F., and Perry, O.S. 1957. Beaverdell camp, B.C.; i n S t r u c t u r a l Geology of Canadian ore deposits, C.I.M. Congress Volume, pp. 136-141. Koch, G.S., J r . and Link, R.F. 1971. S t a t i s t i c a l analysis of geological data, Volumes I and I I ; John Wiley and Sons Inc., 375 p. and 438 p. 75 L e , C , and T e n i s c i , T. 1977. UBC TRP: Triangular regression package; Computing Centre, Univ. of B r i t i s h Columbia, 184 p. Leary, G. 1967. Petrology and structure of the Tuzo Creek molybdenite prospect near Penticton, B r i t i s h Columbia; unpublished M.Sc. t h e s i s , Dept. of Geological Sciences, U n i v e r s i t y of B r i t i s h Columbia. L i t t l e , H.W. 1957. Geology of K e t t l e River, east h a l f (82E), B.C.; Geol. Survey of Canada, map 6-1957. L i t t l e , H.W. 1961. Geology of K e t t l e River, west half (82E), B.C.; Geol. Survey of Canada, map 15-1961. McKinstry, H.E. 1928. S i l v e r m i n e r a l i z a t i o n at Beaverdell, B.C.; Econ. Geol. Vol. 23, pp. 434-441., McLaren, G.F. 1978. Minor elements i n s p h a l e r i t e and t h e i r implications for metallogenesis of carbonate-hosted zinc-lead deposits of the Yukon T e r r i t o r y and adjacent D i s t r i c t of MacKenzie; unpublished Mv.Sc. . th e s i s , Dept. of Geological Sciences, U n i v e r s i t y of B r i t i s h Columbia. M i l l e r , R.L., and Kahn, J.S. 1962. S t a t i s t i c a l a n alysis i n the geological sciences; John Wiley and Sons Inc., New York, 483 p. Murdoch, J . , and Barnes, J.A. 1973. S t a t i s t i c a l tables, second e d i t i o n ; MacMillan Press Ltd., England, 40 p. Nguyen, K.K., S i n c l a i r , A.J., and Libby, W.G. 1968. Age of the northern part of the Nelson Batholith; Can. Jour-. Earth Sciences; Vol. 5, pp. 955-957. P e a t f i e l d , G.R. 1978. Geologic h i s t o r y and metallogeny of the "Boundary D i s t r i c t " , southern B r i t i s h Columbia and northern Washington; unpublished Ph.D. t h e s i s , Dept. of Geological Sciences, Queen's University. Reinecke, L. 1910. Beaverdell D i s t r i c t , West Fork of K e t t l e River, B r i t i s h Columbia; Summary Report of the Geol. Survey Branch, Dept. of Mines, Canada, pp. 118-122. Reinecke, L. 1915. Ore deposits of the Beaverdell map area; Canada Dept. of Mines, Geological Survey, Memoir 79, 178 p. S i n c l a i r , A.J. 1976. Applications of p r o b a b i l i t y graphs i n mineral explora-t i o n ; Assoc. of Exploration Geochemists, Special Volume No. 4. Staples, A.B., and Warren, H.V. 1946. Minerals from'-.the Highland-Bell s i l v e r mine, Beaverdell, B.C.; University of Toronto Geological Series No. 50, pp. 27-33. Staples, A.B., and Warren, H.V. 1946. Mineralogy of the ores of the Highland-B e l l mine; Western Miner, May 1946 (pp. 38-43) and June 1946 (pp. 54-58). Te s s a r i , O.J. 1979. Model ages and applied whole rock geochemistry of Ag-Pb-Zn veins, Keno H i l l - Galena H i l l mining camp, Yukon T e r r i t o r y ; unpublished M.Sc. t h e s i s , Dept. of Geological Sciences, U n i v e r s i t y of B r i t i s h Columbia. Thompson, M. and Howarth, R.J. 1978. A new approach to the estimation of a n a l y t i c a l p r e c i s i o n ; Jour. Geochem. Expl., Vol. 9, pp. 23-30. Verzosa, R.S., and Goetting, B. 1972. Geology and h i s t o r y of the Highland B e l l mine, Beaverdell, B.C.; paper presented at the f a l l meeting of C.I.M. i n Prince George, B.C. White, D.E. 1980. Active geothermal systems and r e l a t e d ore deposits; preprint version 1/26/80. White, W.H. 1949. Beaverdell, 49° 119° SE; Min. of Mines of B r i t i s h Columbia, Annual Report, pp. 138 - 148. 77 CHAPTER 4 GENESIS AND CONDITIONS OF FORMATION OF THE  LASS VEIN SYSTEM, BEAVERDELL, SOUTH-CENTRAL B.C. Abstract The Beaverdell s i l v e r , lead, zinc (gold) vein camp i s located i n south-central B r i t i s h Columbia at 49.43° north l a t i t u d e and 119.06°west longitude. F l u i d i n c l u s i o n s i n quartz and sp h a l e r i t e samples from the Highland (Upper) Lass and Lower1 .Lass.mines can be divided into three/groups based on t h e i r homogenization temperatures. These are: 1. primary i n c l u s i o n s (with and without CO2) formed between 260°C and 310°C, from solutions with an average of 13 equivalent weight percent NaCl; 2. pseudosecondary i n c l u s i o n s formed between 230°C and 260°C; and 3. pseudosecondary and secondary i n c l u s i o n s formed between 180°C and 220°C. Mean s a l i n i t i e s of pseudosecondary and secondary i n c l u s i o n s are, re s p e c t i v e l y , 8 and 6 equivalent weight percent NaCl. The primary i n c l u s i o n homogenization temperatures are i n agreement with those temperatures of 34 o formation calculated from 6 S values for sphalerite-galena p a i r s (268 C to 320°C). Seven stages of mineral paragenesis can be recognized i n the Lass vein system. Primary i n c l u s i o n s are associated with the f i r s t three stages, which are characterized by p y r i t e , arsenopyrite and dark s p h a l e r i t e . Pseudo-secondary and secondary i n c l u s i o n s are r e l a t e d to stages 4 to 6, which are dominated by galena, paler s p h a l e r i t e , s i l v e r minerals and l a t e quartz. Stage 7 represents supergene m i n e r a l i z a t i o n , which has not been included i n 78 t h i s study. Gold deposition i s believed to be associated with the e a r l i e r , higher temperature, higher s a l i n i t y , CO^-bearing i n c l u s i o n s , while s i l v e r deposition i s rel a t e d to the cooler, l e s s s a l i n e f l u i d s . The model proposed for t h i s deposit i s that of ground water mixing above a point of t h r o t t l i n g . The t h r o t t l i n g accounts for the release of CO^ and for the differ e n c e i n depth estimates but not for the decrease i n temperature. Ground water mixing above the t h r o t t l i n g point probably reduced the temperature and s a l i n i t y of the mineralizing f l u i d . Introduction The Beaverdell s i l v e r , lead, zinc (gold) v e i n camp (Figure .4-1) is. i n the southern part of the Omineca C r y s t a l l i n e Belt i n south-central B r i t i s h Columbia at 49.43° north l a t i t u d e and 119.06° west longitude. The camp has been a s i l v e r producer since the turn of the century, and i n recent years some gold has been reported i n the eastern and deeper end of the Lass vein system (Goetting, personal communication, 1979). As part of a study of t h i s zoning pattern, based on major and minor element d i s t r i b u t i o n s i n vein samples (Watson and Godwin, i n preparation and Chapter 3), f l u i d i n c l u s i o n s and sulphur isotopes from selected samples were examined. Geology of the Beaverdell area has been described by Reinecke (1915), L i t t l e (1957, 1961) and Christopher (1975, 1976), and i s summarized i n Figure 4-1. Granodiorite of the Westkettle b a t h o l i t h , believed to be c o r r e l a t i v e with J u r a s s i c Nelson i n t r u s i o n s , underlies much of the area. This b a t h o l i t h has been intruded by small p o r p h y r i t i c quartz.:monzonite stocks, such as the Beaverdell stock, two of which have been dated by K-Ar methods as T e r t i a r y i n age (approximately 55 Ma) (Watson et a l . , i n preparation and Chapter 2). The Westkettle i n t r u s i o n contains remnant pendants and/or 79 Figure 4-1: Regional Geology with Locations of Major Mines in the Beaverdell Mine Area, South-Central B.C. 80 screens of Wallace Formation, which has been correlated by P e a t f i e l d (1978) with the Permian part of the Anarchist Group. Wallace Formation consists of metamorphosed an d e s i t i c t u f f s and lavas, accompanied by basic i n t r u s i o n s , hornfels, and minor amounts of limestone. Vein m i n e r a l i z a t i o n i s found i n a northeast-trending 3 km by 0.8 km b e l t , referred to as the Beaverdell mine area, on the west slope of Wallace Mountain (Figure 4-1). The veins are hosted mainly i n the Westkettle b a t h o l i t h . Although some veins also extend l o c a l l y into the Wallace Formation, they tend to h o r s e t a i l r a p i d l y i n t h i s unit (Goetting, personal communication, 1979). The veins are mineralized f i s s u r e s , formed along east-trending .: f a u l t s i n the western end of the Beaverdell mine area, and along northeast-trending f a u l t s i n the eastern part of the mine area. Mineralogy Quartz i s the main gangue mineral and i s occasionally accompanied by c a l c i t e and f l u o r i t e . The main m e t a l l i c minerals are galena, s p h a l e r i t e and p y r i t e , with l e s s e r amounts of arsenopyrite, t e t r a h e d r i t e , chalcopyrite, polybasite, acanthite, native s i l v e r and p y r r h o t i t e (Staples and Warren, 1946; Boyle, 1968). The veins generally exhibit well developed banding and a consistent paragenetic sequence. Many samples contain one or more of the following stages: Stage 1: An i n i t i a l deposition of quartz was followed by p y r i t e accompanied at times by minor amounts of sp h a l e r i t e ; Stage 2: The p y r i t e was brecciated, surrounded, and, i n places, extensively replaced by arsenopyrite; Stage 3: Very dark sp h a l e r i t e (at times opaque i n polished t h i n sections) formed next; t h i s s p h a l e r i t e often contains emulsion chalcopyrite 81 along regular c r y s t a l l o g r a p h i c grids; Stage 4: The main depositional stage of galena and sp h a l e r i t e followed; t h i s s p h a l e r i t e tends to be l i g h t e r i n colour and generally contains very l i t t l e chalcopyrite; Stage 5: S i l v e r minerals such as p y r a r g y r i t e , t e t r a h e d r i t e and polybasite were formed i n the most recent mineralizing stage and are c l o s e l y associated with galena. S i l v e r minerals sometimes replace galena or are exsolved along c r y s t a l l o g r a p h i c planes, suggesting that they were formed immediately a f t e r the formation of galena; Stage 6: The veins were f i l l e d i n with a l a t e r gangue, dominantly of quartz; Stage 7: Some supergene s i l v e r m i n e r a l i z a t i o n , t y p i f i e d by the presence of native s i l v e r wires and p l a t e s , was superimposed on the upper parts of the vein system. Supergene s i l v e r m i n e r a l i z a t i o n was excluded from t h i s study. Neverthe-l e s s , within the Upper and Lower Lass mines (at the east end of the Beaver-d e l l mine area), s i l v e r values decrease to the east with increasing depth, while gold values increase (Watson and Godwin, i n preparation and Chapter 3).' A n a l y t i c a l Procedures Samples for t h i s study were selected from a suite c o l l e c t e d i n the Upper (Highland) and Lower Lass mines at Beaverdell (Figure 4-2), based on t h e i r s p a t i a l d i s t r i b u t i o n throughout the vein, and on the q u a l i t y of the quartz and s p h a l e r i t e . Twelve doubly polished t h i n section of quartz and/or s p h a l e r i t e , approximately 0.1 mm thick, were prepared. Chips of these sections were examined by Shen Kun and P. Watson on a L e i t z Ortholux microscope, equipped with a Chaixmeca heating/freezing stage. \ N • 74 ~^"U • . • 809-4 | • 742-2 k ' • £ r • «*f?^3104-4 2912-4 2912-11 e *» • • 2911-1 • • • 0 o o 829-1 700-2 • 0 ft 1000 Figure 4-2: Reconstructed Plan View of the Lass Vein System, Beaverdell Mine Area, South-Central B.C. with Locations of Samples Used i n F l u i d Inclusion and Sulphur Isotope Studies. 83 Table 4-1 summarizes, .the information obtained from these samples. The values for s i m i l a r i n c l u s i o n s within each sample are summarized, and h i s t o -grams of homogenization and l a s t melting temperatures are shown i n Figures 4-3 and 4-4. Figures 4-3a and 4-4a are histograms of the summarized data (M=29 and M=25)"^ as presented i n Table 4-1, and Figures 4-3b and 4-4b are 2 histograms of a l l the data c o l l e c t e d (N=73 and N=70). Sulphur isotope samples of hand-picked galena, s p h a l e r i t e and p y r i t e from two locations i n the mine (Figure 4-2) were analyzed under the supervision of Dr. C. E. Rees at McMaster University, Hamilton, Ontario. These samples accompanied a s u i t e prepared by S. Campbell, and r e p l i c a t e data for the s u i t e are included i n her Ph.D. thesis ( i n preparation, U.B.C.) F l u i d Inclusions F l u i d i n c l u s i o n s i n both s p h a l e r i t e and quartz can be c l a s s i f i e d into three types: those believed to be of primary o r i g i n (PR), of pseudosecondary o r i g i n (PS), or of secondary o r i g i n (SE). Some primary inc l u s i o n s i n sp h a l e r i t e , and most primary i n c l u s i o n s i n quartz that were examined con-tained two immiscible l i q u i d phases, a s a l i n e l i q u i d phase and a l i q u i d CO2 phase, as well as a vapour bubble. One pseudosecondary i n c l u s i o n i n quartz contained aqeuous and vapour phases, and a yellowish substance believed to be a hydrocarbon because i t s o l i d i f i e d during freezing and changed shape contin-uously upon heating. Homogenization temperatures f a l l into three d i s t i n c t ranges, as do l a s t melting temperatures (Table 4-1). In some cases, chips from one sample contain various combinations of these. Because of the very small s i z e of many of these i n c l u s i o n s , and the opacity of some of the sp h a l e r i t e , more M i s the number of samples of grouped data, as l i s t e d i n Table 4-1. N i s the number of inclusions examined, before grouping into Table 4-1. TABLE 4-1 F l u i d I n c l u s i o n Data f o r Samples from the Lass Vein System, Beaverdell Mine Area, South-Central B.C Sample- flin- I n c l u s i o n D i n-jusi >n-5 Lu) Volume (!'.) L a s t . l e l t i i i t j T«mp.°:» Homogsniza t i o n Temp.oc* O r i g i n a l P h a s e s * NuuiLer e r a l ' T y p o 1 wi lth»lotn)th V/(V*L) -14to-8 - b t o 0 4 t a 160- 230 230-260 260-340 a n i C a a a e n t n 700-2 •JZ PS-NX 1.7x15 . 0 5 -0. 3 5 0 • — 244. 6« a.l, v. ± 0 . 0 5 0 ± 1 . 5 0 32 PS-111 lb.7x73.'1 5 -0.250- 215. io i\, v. Hy3 r o c i r b o n ? ±0.050 ± 4 . 3 0 7U2-2 Ql ' PS-NX 13. 3x21.3 10 • 70 279 . 7 0 aq, C 0 X ( 1 ) , v. QZ SE-IR 6.7x13.3 4 - 1. g o - 205 . 3 0 aq, v. to.fio ±6.6« 74'4-l SL PR-NX 10.0x20.0 20 -11 .3 0 — - 271.UO ar], v. ± 2 . 0 0 SL S^-NX 6.7x13.3 12 19 3 . 0 0 acj, v. ± 6 . 7 0 d09-4 SL PR-NX 8.0x13.3 17 -8. 3 0 — 284.2« a<], v. ± 1 1 . 0 0 SL PS-NX. 23.0x30.0 13 - 2 . 9 0 — 205.00 aq, v. QZ PR-NX 10.0x13.3 10 285.00 a ] , v. Minimum i n anathee i n c l u s i o n i s >260O. 329-1 QZ PR-NX 3.0x13.3 15 — 2 6 9 . 0 0 a^, C 0 X (1) , y. ± 0 . 8 0 QZ PS-IS 12.0x20.0 0 -4.0O — — 242. io i q , v. ± 1 . 5 0 ±1.00 B50-3 SL PR-NX 18.7x25. 0 10 -11 .00 - — 2 7 4 . 9 0 at], v. ±4. 40 030-5 QZ PR-NX 10.7x10.0 11 + 5 . 3 t o — 279 . 8 0 a?. CO i (I) , v. t 7 . 5 0 ±2. 10 3Z PS-NX 8.0x13.3 6 -4. 00 — 251. io 11, v. ± 1 . 5 0 SL PR-NX 10.0x19.3 9 - 11 . 6 3 0 - — 3 10.00 a i . v. ±1. 30 ±7. 00 ( Con't). SL PR-NX 13.3x22.2 10 ~ » 7 . 30. 304. 50 an, : o t ( l ) , v. SL • S K -1H 5.7x13.3 4 -4.00 217.30 aq, v. -±0. 10 ±1.3° 850-6 SL PS-NX 13.3x20. 0 9 -9.60 211.90 ac], v. ±0.3 0 SL S^-IH 10.0x13.3 5 -5.20 -~180O a'3, v. M i n i sua i n a n o t h s r i n c l u s i o n i s >1650. 29 12-4 SL SS-IR 13.3x26.7 4 -3.30 189.50 at], v. ±0.60 SL SB 20.0x33.3 5 -4. 2o aq, v. ±0.90 SL PS-NX 13.3x26.7 n -9.80 2020 a IJ , v . ±0.5° ±9.4 0 SL 6.7x15.0 5 199.30 aq, v. ±2.50 2912-11 SL ?S-i( X V4. 7x26. 7 10 . -10.00 — 24 1.30 aq, v . ±0. 70 ±7.20 QZ PR-NX 6.7x6.7 15 + 7. 30 - 30 5. 90 aq, CO (1) . v. ±15.00 O.Z PS-NX n -0.60 23 6.00 aq, v. 29 11 - 1 0.Z PR- N X 3.0x12.0 ~ 10 ~ T 7 . 0 o_ 27 8.0 0 aq, C 0 t (1) , v. ±1.80 3104-4 SL PR-NX not ~ 15 290. 10 aq, v. i ? a s u r c d ±1.00 SL Pli-NX 10.0x11.0 ~ 20 ~f7. 00- 29 0.8 0 aq, C O ^ f l ) , v. ±0.80 SI. PS-NX 10 -5.50 240. 90 aq, v. ±4.90 1. A l l sampler, analyse;! i n H i a a r a l D e p o s i t L a b o r a t o r y , D 2 o a r t a e n t of S a o l a g i c a l S c i e n c e s , The U n i v e r s i t y of B r i t i s h C o l u m bia- - • • ,—— 2. Ho:U m i n e r a l s or i n c l u s i o n s a r e a b b r e v i a t e d : QZ = q u a r t z ami SL = s p h a l e r i t e . 3. I n c l u s i o n t y p * s tixaaine-l i r e a b o r e v i d t e : ! : PR = p r i a a r y , PS = p s e u i o s ^ s o n d a r y , SE = s e c o n d a r y , NX ~ n e g a t i v e c r y s t a l , and I a = i r r o j u l a r 4. R a p a r t e J t e s p a r a t ' i r e s hav3 been c o r r e c t e d f o r i n s t r u m e n t :] l a v i a t i o n . R e l i a b i l i t y e x p r e s s e d as i s t a n d a r d e r r o r o f t h e aean. 5. Phases p r e s e n t a r e c o d e l : aq = "aqueoun s 3 l u t i o n , C3 (1) = = carb o n l i o x i l e l i q u i d , and v = vapour. TABLE 4-1 (con't.) 6r 150 170 190 210 230 250 270 290 310 330 3 5 0 HOMOGENIZATION TEMPERATURE(°C) Figure 4-3: Histograms of Homogenization Temperatures for Fluid Inclusions i n Samples from the Lass Vein System, Beaverdell Mine Area, South-Central B.C. Shaded areas represent inclusions in quartz; unpatterned areas represent inclusions in sphalerite. Top graph i s for grouped data as summarized in Table 4-1. Bottom graph i s for a l l data recorded. M 4H 2-i -12 -10 -8 GROUP 1 •6 -4 -2 0 GROUP 2&3 4 6 8 GROUP 1A LAST MELTING TEMPERATURE (°C) Figure 4-4: Histograms of Last Melting Temperatures f o r F l u i d Inclusions i n Samples from the Lass Vein System, Beaverdell Mine Area, South-Central B.C. Shaded areas represent i n c l u s i o n s i n quartz; unpatterned areas represent i n c l u s i o n s i n s p h a l e r i t e . Top graph i s f o r grouped data as summarized i n Table 4-1. Bottom graph i s for a l l data recorded. confidence can be placed i n homogenization temperature determinations. For t h i s reason, i n c l u s i o n s have been grouped on the basis of homogenization temperatures. Based on the summarized data i n Table 4-1, three groups have been i d e n t i f i e d (Figure 4-5): Group 1: high temperature, high s a l i n i t y , primary i n c l u s i o n s ; Group 2: moderate temperature, moderate s a l i n i t y , pseudosecondary i n c l u s i o n s and Group 3: moderate to low temperature, moderate s a l i n i t y , pseudosecondary and secondary i n c l u s i o n s . Group 1 i n c l u s i o n s (Figure 4-3) have homogenization temperatures greater than 260°C (260°C to 310°C). A l l these i n c l u s i o n s are primary, with V/V+L1 r a t i o s estimated to be from 9 to 20 percent (average 13 percent). A t y p i c a l i n c l u s i o n of t h i s type i s shown i n Plate 4-lc. These inc l u s i o n s average l l y by 16u and are found i n both quartz and sp h a l e r i t e . Last melting temper-atures f a l l into two ranges, -8°C to -14°C and +4°C to +8°C. The f i r s t group (Figure 4-5: Group 1) contains f l u i d s with an equivalent weight per-2 cent NaCl of 11.7 to 17.9 percent . The l a t t e r group (Figure 4-5: Group IA) consists of those i n c l u s i o n s which contain the two immiscible f l u i d s H^ O and CO2 (Plate 4-la and l b ) . The presence of CO^ i s indicated by the high l a s t melting temperature (+4°C to +8°C), due to the presence of nearly i n v i s i b l e c r y s t a l s of CO^ c l a t h r a t e . Furthermore, i n one sample (3104-4), the second l i q u i d was observed to merge into a si n g l e phase with the vapour around 29°C during warming. This measurement f a l l s within the range reported by C o l l i n s (1979) for homogenization of the CO^-rich l i q u i d and vapour phases. The small s i z e of i n c l u s i o n s generally prevented the precise determination of the V/V+L i s a v i s u a l estimate of the percentage of vapour i n the i n c l u s i o n , based on the area of the bubble; t h i s estimate i s very dependent on the shape of the i n c l u s i o n hosting the bubble (Fig. 12.7 i n Barnes, 1967). Calculated from formulae given i n Potter, 1978. 320 300 O UJ O O o I EQUIVALENT WEIGHT % NaCl 13-99 7-85 UJ 280 CC z> DC UJ 260 DJ 2 4 0 I— Z o f -< N 220 200 180 h 160 0 — i (7 850-5 \GR0UP Xo9-4 V. 744-1 t> 2912-11 IX) 8 50-5 850-5 j / G R O U P 1A .'03104-4 I l 2911-1 V/829-1 G R O U P 2 -jBSJJ-S #^912-11 • 829-1Y°0"2 K r$10°4-4 J 2912-11 0 SPHALERITE—PRIMARY O SPHALERITE— PSEUDOSECONDARY o SPHALERITE—SECONDARY • QUARTZ- PRIMARY • OUARTZ-PSEUDOSECONDARY • QUARTZ-SECONDARY 0 0 VO Tl -.700-2 850-6 8 5 0 - " >2912-4 809-4 \ u • \^ u2912-4 "1 • 742-2 y y v ^ G R O U P 3 850-6 5 -10 - 5 0 5 10 LAST MELTING TEMPERATURE (°C) Figure 4-5: Graph of Last Melting Temperature versus Homogenization Temperature for F l u i d Inclusions from the Lass Vein System, Beaverdell Mine Area, South-Central B.C. Inclusions are grouped on the basis of homogenization temperature. Equivalent weight percent NaCl i s also shown. a. 7 4 2 - 2 , pr imary inc lus ions in qua r t z , 3 - p h a s e b. 8 5 0 - 5 , pr imary inc lus ion in s p h a l e r i t e , 3 - p h a s e c. 8 5 0 - 6 , pr imary inc lus ions in s p h a l e r i t e , 2-phase d. 7 0 0 - 2 , p s e u d o s e c o n d a r y inc lus ion in quartz, 3-phase e. 8 5 0 - 6 , s e c o n d a r y inc lus ion in s p h a l e r i t e , 2-phase Plate 4-1: Photographs of F l u i d Inclusions i n Quartz and S p h a l e r i t e from the Lass Vein System, Beaverdell Mine Area, South-Central B.C. ' 91 l a s t melting temperature of i c e , and of the homogenization temperature of the CO^  - r i c h l i q u i d and vapour phases. Group 2 inclusions have homogenization temperatures between 230°C and 260°C. These are pseudosecondary inclusions i n quartz (plate 4-ld) and sphalerite, containing 5 to 10 percent estimated V/V+L (average 8 percent). The s a l i n i t i e s range from 0.6 to 14 equivalent weight percent NaCl. S a l i n i t i e s of inclusions i n quartz range from 0.6 to 6.5 equivalent weight percent NaCl, while s a l i n i t i e s of inclusions insphalerite range from 8.5 to 14 equivalent weight percent NaCl. Group 2 inclusions have a more irregular form, and a larger average size than primary, Group 1 inclusions. Group 3 inclusions have homogenization temperatures from 180°C to 220°C. These inclusions are both pseudosecondary and secondary (Plate 4-le), and are found i n both sphalerite and quartz. S a l i n i t i e s range from 0.4 to 14 equivalent weight percent NaCl. Quartz-hosted inclusions have low s a l i n i t i e s (from 0.4 to 3 equivalent weight percent NaCl) while sphalerite-hosted inclusions have higher s a l i n i t i e s (4 to 14 equivalent weight percent NaCl). The V/V+L rat i o s estimated for these inclusions range from 4 to 13 percent. Pseudosecondary inclusions (Groups 2 and 3) have average dimensions of 13y by 28p, while secondary inclusions average l l y by 19y. Secondary inclusions are generally found i n planar swarms as t i n y , tabular or irregular shapes. Secondary inclusions have average s a l i n i t i e s of 6 equivalent weight percent NaCl (range from 4 to 12 equivalent weight percent NaCl), while pseudosecondary inclusions are s l i g h t l y more saline (average 8 and range from 5 to 13 equivalent weight percent NaCl). Sulphur Isotopes Hand-picked galena, sphalerite and pyrite from.samples 850-5 and 2912-11 34 (Figure 4-2) were analyzed for 8 S. Table 4-2 shows the results of these 92 TABLE 4-2 Sulphur Isotope Analyses"*" of Samples from the Lass Vein System, Beaverdell Mine Area, South-Central B.C. .34 Sample Number Mineral Analysed O S o/oo 850-5 Galena -2.3 850-5 Sphalerite 0.0 850-5 Pyrite 0.4 2912-11 Galena -2.7 2912-11 Sphalerite -0.5 2912-11 Pyrite -0.6 1. Analyses done at McMaster University, Hamilton, Ontario, under the supervision of Dr. C.E. Rees. 93 analyses. Using the formulae for sulphur isotope thermometers i n Ohmoto and Rye (1979) (p. 518, i n Barnes, 1979), temperatures of formation were c a l c u -lated and are l i s t e d i n Table 4-3. The r e l i a b i l i t y of the c a l c u l a t i o n s involving p y r i t e are doubtful because the paragenetic sequence for these veins (as outlined above) indicates that p y r i t e may not be i n equilibrium with the other sulphides. The s p h a l e r i t e and galena, however, appear to have formed at the same stage i n the paragenetic sequence and can be considered to be i n equilibrium. The sphalerite-galena pair give a temperature of formation ranging from 267.7°C to 307.3°C for sample 850-5, and from 279.8°C to 320.3°C for sample 2912-11 (Table 4-3). These conform well with the determinations of homogenization temperatures from primary f l u i d i n c l u s i o n s . Discussion The three groups of i n c l u s i o n s , as determined by homogenization tempera-tures and l a s t melting temperatures, are not found i n s p a t i a l l y d i s t i n c t portions of the vein (Figures 4-2 and 4-5) and many samples contain f l u i d i n c l u s i o n s f a l l i n g into more than one group. However, i n several cases, i t i s possible to associate s p e c i f i c temperature data with i n d i v i d u a l stages of m i n e r a l i z a t i o n , as defined previously from mineral paragenesis. A sample of pyrite-dominated Stage 1 (Table 4-1: 2912-11, QZ PR) has a homo-genization temperature of 305°C. Several samples of the arsenopyrite-bearing Stage 2 (Table 4-1: 742-2, QZ PS; 829-1, QZ PR) give formation temp-eratures around 280°C. Dark sp h a l e r i t e , Stage 3,. homogenization temperatures (Table 4-1: 2911-1, 809-4, 850-3) are about 285°C - s i m i l a r to those of Stage 2. Sample 2911-2, the highest gold value found i n t h i s study, represents Stage 3 mi n e r a l i z a t i o n . Stages 4 and 5 have temperatures of homogenization that are d i s t i n c t l y lower. The paler s p h a l e r i t e of Stage 4 TABLE 4-3 Sulphur Isotope Thermometers and F l u i d Inclusion Homogenization Temperatures for Samples from the Lass Vein System, Beaverdell Mine Area, South-Central B.C. Sample Mineral Pair Calculated Temperature"'" F l u i d Inclusion (Primary, Group 1) Number (°C) Homogenization Tempreature (°C) 850-5 sph a l e r i t e -galena 267.7 - 307.2 p y r i t e -galena 317.3 - 366.0 302.9 - 317.0 (sphalerite) p y r i t e -s p h a l e r i t e 533.4 - 659.9 277.7 - 281.9 (quartz) 2912-11 sph a l e r i t e -galena 279.8 - 320.3 p y r i t e -galena 396.4 - 451.6 285.3 - 355.1 (quartz) p y r i t e -s phalerite 1339.8-1592.7 1. Calculated from formulae i n Table 10-2 from Ohmoto and Rye (1979) i n Barnes (1979). 2. Based on a l l data c o l l e c t e d (Figure 4-3b). 95 often contains inclusions, of pyrargyrite (Stage 5) and pseudosecondary in c l u s i o n s (Table 4-1: 2912-11, SL PS; 850-5, SL SE) which homogenize over the range of 200°C to 240°C. The pseudosecondary and secondary inc l u s i o n s of stages 4 to 6 represent a lower temperature (180°C to 240°C) environment, d i s t i n c t from, and superimposed on, the e a r l i e r stages. Some of these i n c l u s i o n s have high s a l i n i t i e s , but none contain CO^. The primary inc l u s i o n s i n s p h a l e r i t e and quartz (Groups 1 and IA) from Stage 3 m i n e r a l i z a t i o n have homogenization temperatures i n the range of 270°C to 310°C. These contain solutions of high s a l i n i t y , or else also contain CO^ l i q u i d . C o l l i n s (1978) showed that the temperature of fusion ( l a s t melting temperature) of the c l a t h r a t e compound could be used to c a l c u l a t e the s a l i n i t y of the f l u i d . Using t h i s method on the Beaverdell data y i e l d s a s a l i n i t y of 7 to 9 equivalent weight percent NaCl, s l i g h t l y lower than that calculated from l a s t melting temperature data for non-CO^-bearing primary inc l u s i o n s (11 to 18 equivalent weight percent NaCl). However, because of the small s i z e of the i n c l u s i o n s , and the great degree of d i f f i -c u l t y i n observing c l a t h r a t e compounds, i t i s believed that the l a s t melting temperature of the CO^ c l a t h r a t e i s approximate only. Thus, more confidence can be placed i n the l a s t melting temperature of i c e determined from non-CO^-bearing primary i n c l u s i o n s , and therefore s a l i n i t i e s calculated from t h i s data are believed to be more r e l i a b l e . The l a s t melting tempera-tures of the CO^ c l a t h r a t e do prove that CO^-rich phases are present i n the system. The change i n mean s a l i n i t i e s i n the f l u i d i n c l u s i o n groups, from 14.67 (- 0.69) to 6.18 (-2.03) and 7.03 (- 1.66) 1 document some of the differences between the primary (Stages 1 to 3, Groups 1 and IA) inc l u s i o n s and pseudosecondary and secondary (Stages 4 to 6, Groups 2 and 3) i n c l u s i o n s . Figures i n brackets are ± standard errors' of the means. 96 This decreas.e:in s a l i n i t y probably occurred when lower s a l i n i t y solutions mixed with the i n i t i a l f l u i d s , such as would occur when ground water mixed with the system. Pseudosecondary and secondary i n c l u s i o n s i n s p h a l e r i t e tend to contain a more s a l i n e s o l u t i o n than those i n quartz. The lower temperature inc l u s i o n s i n quartz gangue represent Stage 6, where ground water has become a larger component of the f l u i d . Using Figure 2 from Haas (1971) an estimate of depth of formation, based on homogenization temperature and s a l i n i t y , can be made by assuming that the system i s f r e e l y connected to the surface and on the b o i l i n g curve. Depth estimates range from 90 m to 960 m. When examined by groups, Group 1, primary i n c l u s i o n s (Stages 1 to 3) have an estimated depth of formation of 510 m to 960 m (average 720 m). Group 2, pseudosecondary i n c l u s i o n s were formed between 300 m and 450 m depth (average 370 m), and Group 3, pseudosecondary and secondary, i n c l u s i o n s were formed between 90 m and 350 m depth (average 175 m). These figures are based on a system open to the surface (under hydrostatic pressure) and on the b o i l i n g curve. However, the consistent V/V+L r a t i o s (Table 4-1) indi c a t e that b o i l i n g did not occur at the time of f i l l i n g of these i n c l u s i o n s , making these estimates the the minimum formation depths. The estimation of depth for Group 2 and 3 in c l u s i o n s l i e within the present day extent of m i n e r a l i z a t i o n below the surface. I t i s possible that the Group 1 i n c l u s i o n s formed at the greater depth, as calculated, or that they formed under the influence of l i t h o s t a t i c , rather than hydrostatic pressure (as used by Haas, 1971), at approximately the same depth as the Group 2 and 3 i n c l u s i o n s . Before developing a model for the formation of t h i s v e i n system, based on f l u i d i n c l u s i o n and paragenetic considerations, several important points should be summarized concerning gold. The s o l u b i l i t y of gold decreases r a p i d l y below approximately 250°C (Helgeson and Garrels, 1968). Gold can 97 be transported by ch l o r i d e complexes i n high s a l i n i t y solut ions (Helgeson and Garrels, 1968; Korobeinikov, 1974, i n Roedder, 1975). The presence of CCv, i n a system appears to be r e l a t e d to the deposition of gold (Kalyuzhnyi, 1975, i n Roedder, 1975). At Beaverdell, the higher temperature, more s a l i n e primary in c l u s i o n s sometimes contain CO^, and samples from the three paragenetic stages represented by these in c l u s i o n s sometimes contain high gold values. Since the CC^ i s no longer present i n the system at the time of formation of s i l v e r - r i c h Stages 4 and 5 m i n e r a l i z a t i o n , i t would be expected that the gold would be associated with the e a r l i e r , higher temperature and more s a l i n e m i n e r a l i z a t i o n of Stages 1 to 3. A model for t h i s deposit must account for v a r i a t i o n s i n : temperature, s a l i n i t y , estimated depth of formation, CC^ content, and s i l v e r and gold zonation (Chapter 3). If the primary in c l u s i o n s were formed under l i t h o -s t a t i c , rather than hydrostatic pressure, the disagreement between the estimated depth of formation among samples believed by geol o g i c a l evidence to be approximately contemporaneous (Watson, Godwin and Christopher, i n preparation and Chapter 2) can be explained using the t h r o t t l i n g model of Barton and Toulmin (1961). Below the t h r o t t l i n g point, pressures greater than hydrostatic would occur. Using the average depth estimates of 720 m from the primary i n c l u s i o n s , and figures i n Barton and Toulmin, the depth of formation of these i n c l u s i o n s , assuming l i t h o s t a t i c pressure, would be approximately 280 m. A depth of formation between 275 m and 375 m i s indicated by t h i s model with e a r l i e r i n c l u s i o n s formed below a t h r o t t l i n g point. In the temperature of formation range indicated f or these i n c l u s i o n s (310°C to 260°C for primary i n c l u s i o n s , and down to 180°C for pseudosecondary and secondary i n c l u s i o n s ) , the amount of cooling taking place during i r r e v e r s i b l e or r e v e r s i b l e adiabatic expansion would be n e g l i g i b l e (Barton ' 98 and Toulmin, 1961). T h r o t t l i n g at t h i s temperature would only a f f e c t the pressure of the system. However, cooling by ground water mixing often occurs on the low pressure side of a t h r o t t l i n g point (Toulmin and Clark, i n Barnes, 1967), so that lower s a l i n i t y and lower temperature f l u i d s , such as those involved i n the formation of Group 2 and Group 3 inc l u s i o n s would be expected above the t h r o t t l i n g point. The decrease i n s a l i n i t y and temperature at the t h r o t t l i n g point would also greatly a f f e c t the s o l u b i l i t y of gold, and CO^ does not appear to be present i n the system above the t h r o t t l i n g point. A decrease i n the amount of gold deposition would therefore be expected above the t h r o t t l e point. Although gold values do not c o r r e l a t e with vein thickness (Watson and Godwin, i n preparation and Chapter 3), the s t a t i s t i c a l l y s i g n i f i c a n t (Watson and Godwin, i n preparation, and Chapter 3, Table 3-5) decrease i n average v e i n thickness from 7 inches i n the g o l d - r i c h deeper zone i n the east to 5 inches i n the s i l v e r - r i c h zone i n the west, may be an i n d i -cation that t h r o t t l i n g has occurred. Narrower, l e s s consistent veins and st r i n g e r zones would be expected on the lower pressure side of a t h r o t t l i n g point, where a more e r r a t i c pressure regime e x i s t s . The proposed model for t h i s deposit i s shown i n Figure 4-6. T h r o t t l i n g of solutions at approximately 300°C and 15 percent s a l i n i t y was followed by the i n f l u x of lower s a l i n i t y , cooler ground water solutions on the low pressure side of the t h r o t t l i n g point. The amount of gold deposition decreased as a r e s u l t of the decrease i n temperature and s a l i n i t y . S i l v e r m i n e r a l i z a t i o n was formed from the lower temperature and lower s a l i n i t y solutions. Conclusions S i l v e r - gold zoning has been documented i n the Lass vein system 99 W E S T END O F L A S S S Y S T E M -MULTIPLE Ag-RICH VEINS - A V E R A G E THICKNESS: 5" T = 1 8 0 - 2 6 0 ° C DEPTH PH = 90-450m Z O N E O F G R O U N D W A T E R MIX ING VE IN E A S T E N D O F L A S S S Y S T E M STAGE 4-6 MINERALIZATION STAGE 1-3 MINERALIZATION -Au-RICH VEINS - A V E R A G E THICKNESS: 7" T= 260 -3 1 0 °C DEPTH P L =510 -960m W A L L A C E F O R M A T I O N W E S T K E T T L E I N T R U S I O N Figure 4-6: Model for the Formation of the Lass Vein System, Beaverdell Mine Area, South-Central B.C. Model i s based on temperature and pressure data from f l u i d inclusion studies, and parameters for above and below the throttl e point are shown. 100 (Watson and Godwin, in preparation and Chapter 3). This zoning is characterized by an abrupt change, at a specific boundary, in the distri-bution of silver, gold, and many other elements. This boundary between the silver- and gold-rich sections of the Lass vein system is believed to represent the throttle point. The paragenetic sequence observed in vein samples indicated that the gold mineralization was associated with the first three stages, -and therefore with a pyrite-sphalerite-(chalcopyrite)-arsenopyrite mineral assemblage. Element distributions (Watson and Godwin, in preparation and Chapter 3), however, indicate that gold does not correlate specifically with the presence of arsenopyrite. Fluid inclusion evidence gives an estimated temperature of formation 6 6 for the earlier stages of mineralization of 260 Cto 310 C. The higher temperature, more saline (15 percent) solutions, some of which contain CO^ , are believed to have been the source of the gold mineralization. Silver mineralization, associated with galena and sphalerite of later stages in the paragenetic sequence, formed at lower temperatures (180°C to 240°C), from less saline solutions. The model proposed for this system accounts for the changes in temperature and salinity by the mixing of original fluids with cooler and less saline ground water. This mixing is believed to have occurred above a throttling point, which would account for the discrepancy in estimated minimum depth of formation calculations between Group 1, 2, and 3 inclusions (720 m, 370 m, and 175 m respectively). Below the throttling point, lithostatic pressures would be dominant, while above this point (which may migrate in the system with time), hydrostatic pressures would be dominant. Gold would be deposited in minerals precipitated from the chloride-rich, relatively hot (>260°C) fluids. Silver deposition would occur above the throttling point, from lower temperature, lower salinity fluids. 101 Thi s model complies, w i t h the f l u i d i n c l u s i o n data as. presented i n t h i s paper. I t a l s o i s i n agreement w i t h su lphur i s o tope thermometer c a l c u l a t i o n s , minera logy, and observed paragenes is of the v e i n m a t e r i a l i n the Lass system. The geometry of the v e i n can be exp la i ned u s i ng t h i s model. The h i ghes t go ld va lue s are found at depth i n the Lass system, and i n s e ve r a l sma l l areas a long the f o o t w a l l of the v e i n system. The s i l v e r m i n e r a l i z a t i o n i s found h igher i n the system, where the ve in s a re g e n e r a l l y t h i nne r and more s t r i n g e r zones occur . More c on s i s t en t v e i n th i cknes ses would be expected below the t h r o t t l i n g po i n t where the f l u i d s would be under a g reate r and more c on s i s t en t pres sure. I t appears that t h i s model i s a reasonable approx imat ion to the hydrothermal system tha t was a c t i v e a t the time of fo rmat ion of the Lass v e i n system. Th i s model suggests that h igh go ld va lue s can be expected to cont inue at depth toward the east i n the Lass v e i n system. An i nc rea se i n s i l v e r va lues i n t h i s d i r e c t i o n would not be expected. Reg iona l e x p l o r a t i o n f o r go ld i n the area (F igure 4-1) might a l s o be guided by f l u i d i n c l u s i o n s t u d i e s . For example, v e i n m a t e r i a l c on t a i n i n g i n c l u s i o n s w i t h r e l a t i v e l y h i gh homogenization temperatures, sometimes c on t a i n i n g CO^ phases, cou ld have go ld p o t e n t i a l . Ve i n m a t e r i a l c o n t a i n i n g i n c l u s i o n s t ha t homogenize at a lower temperature and i n which (X^ phases are absent would have s i l v e r , r a the r than gold p o t e n t i a l . 102 REFERENCES Barnes, H.L. (ed.) 1967. Geochemistry of hydrothermal ore deposits; Holt, Rinehart and Winston Inc., New York, 670 p. Barnes, H.L. (ed.) 1979. Geochemistry of hydrothermal ore deposits, second e d i t i o n ; John Wiley and Sons Inc., New York, 798 p. Barton, P.B., J r . , and Toulmin, P. 1961. Some mechanisms for cooling hydro-thermal f l u i d s ; U.S. Geol. Survey, Prof. Paper 424-D, pp. 348-352. Bloom, M.S. 1979. Evidence for magmatic-hydrothermal processes from f l u i d i n c l u s i o n studies of stockwork molybdenum deposits; Ph.D. t h e s i s , i n preparation. Department of Geological Sciences, U n i v e r s i t y of B.C. Boyle, R.W. 1968. The geochemistry of s i l v e r and i t s deposits; Geol. Survey of Canada, B u l l e t i n 160, 264 p. Boyle, R.W. 1979. The geochemistry of gold and i t s deposits; Geol. Survey of Canada, B u l l e t i n 280, 584 p. Cairnes , C.E. 1937. Preliminary report: mineral deposits of the west ha l f of the K e t t l e River area, B.C., Geol. Survey of Canada, Paper 37-21. Campbell, S. 1981. Copper Lode Deposits and associated host rocks i n and near the Q u i l l Creek area, southwest Yoikon T e r r i t o r y ; Ph.D. t h e s i s , i n preparation. Department of Geological Sciences, University of B.C. Christopher, P.A. 1975. Highland B e l l (Beaverdell) mine (82E/6E); i n Geology i n B.C., B.C. Min. Mines and Petroleum Res., pp. G30-G33. Christopher , P.A. 1975. Carmi-Beaverdell area (82E/6,11); i n Geological Fieldwork,, B.C. Min. Mines and Petroleum Res., pp. 27-31. Christopher, P.A. 1976. Beaverdell area (82E/6E); i n Geological Fieldwork, B.C. Min. Mines and Petroleum Res., p. 15. 103 C o l l i n s , P.L.F. 1979. Gas hydrates i n C02~bearing f l u i d i n c l u s i o n s and the use of freezing data f o r estimation of s a l i n i t y ; Econ. Geol., Vol. 74, pp. 1435-1444. Duncan, I.J., and P a r r i s h , R.R. 1979. Geochronology and Sr isotope geochemistry of the Nelson b a t h o l i t h : A post-tectonic i n t r u s i v e complex i n southeast B r i t i s h Columbia; Geol. Soc. Amer. Abstracts with Programs, Vol. 11, No. 3, p. 76. Haas, J.L., J r . 1971. The e f f e c t of s a l i n i t y on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure; Econ. Geol., Vol. 66, pp. 940-946. Hedley, M.S., and Watson, K.de P. 1945. Lode gold deposits, c e n t r a l southern B r i t i s h Columbia; B.C. Dept. of Mines, B u l l . 20, part 3, pp. 16-17. Helgeson, H.C., and Garrels, R.M. 1968. Hydrothermal transport and deposition of gold; Econ. Geol., V o l . 63, pp. 622-635. Kalyuzhnyi, V.A. Davidenko, N.M., Zinchuk, I.N., Svoren', I.M., and Pisoyskiy, B.I. 1975. Role of C0 2"H 20 and CH^-^O f l u i d s i n forming of ores of gold at Chukotka; (abst.) i n F l u i d Inclusion Research, Vol. 8 (E. Roedder, editor) p. 82. Kenyon, J.M. 1978. Mo. and U min e r a l i z a t i o n with s p e c i a l reference to a Mo-(U) deposit at Carmi, B.C.; unpublished M.Sc. t h e s i s , Dept. of Geology, Uni v e r s i t y of Alberta. Kidd, D.F., and Perry, O.S. 1957. Beaverdell camp, B.C.,; i n St r u c t u r a l geology of Canadian ore deposits, C.I.M. Congress Volume, pp. 136-141. Korobeinikov, A.F. 1974. Geochemistry of hydrothermal solutions of gold-ore deposits according to g a s - l i q u i d i n c l u s i o n s i n minerals: (abst.) i n F l u i d Inclusion Research, Vol. 8 (E. Roedder, editor) p. 94. 104 Kidd, D.F., and Perry, O.S. 1957. Beaverdell camp, B.C.; i n S t r u c t u r a l geology of Canadian ore deposits, C.I.M. Congress Volume, pp. 136-141. Korobeinikov, A.F. 1974. Geochemistry of hydrothermal solutions of gold-ore deposits according to g a s - l i q u i d i n c l u s i o n s i n minerals: (abst.) i n F l u i d Inclusion Research, Vol. 8 (E. Roedder, editor) p. 94. Leary, G. 1967. Petrology and structure of the Tuzo Creek molybdenite prospect near Penticton, B r i t i s h Columbia; unpublished M.Sc. t h e s i s , Dept. of Geological Sciences, U n i v e r s i t y of B r i t i s h Columbia. L i t t l e , H.W. 1957. Geology of K e t t l e River, east h a l f (82E), B.C.; Geol. Survey of Canada, map 6-1957. L i t t l e , H.W. 1961. Geology of K e t t l e River, west ha l f (82E), B.C.; Geol. Survey of Canada, map 15-1961. McKinstry, H.E. 1928. S i l v e r m i n e r a l i z a t i o n at Beaverdell, B.C.; Econ. Geol. Vol. 23, pp. 434-441. Nguyen, K.K., S i n c l a i r , A.J., and Libby, W.G. 1968. Age of the northern part of the Nelson b a t h o l i t h ; Can. Jour. Earth Sciences; Vol. 5, pp. 955-957. Ohmoto, H., and Rye, R.E. 1979. Isotopes of Sulphur and Carbon; i n Geochemis of hydrothermal ore deposits, second e d i t i o n , H.L. Barnes, e d i t o r , pp. 509-521. P e a t f i e l d , G.R. 1978. Geologic h i s t o r y and metallogeny of the 'Boundary D i s t r i c t ' , southern B r i t i s h Columbia and northern Washington; unpublished Ph.D. t h e s i s , Dept. of Geological Sciences, Queen's U n i v e r s i t y ^ Potter, R.W., I I , Clynne, M.A., and Brown, D.L. 1978. Freezing point depression of aqueous sodium chloride solutions; Econ. Geol. Vol. 73, pp. 284-285. 105 Reinecke, L. 1910. Beaverdell D i s t r i c t , West Fork of Ke t t l e River, B r i t i s h Columbia; Summary Report of the Geol. Survey Branch, Dept. of Mines, Canada, pp. 118-122. Reinecke, L. 1915. Ore deposits of the Beaverdell map area; Canada Dept. of Mines, Geological Survey, Memoir 79, 178 p. Roedder, E. 1963. Studies of f l u i d i n c l u s i o n s I I : fre e z i n g data and t h e i r i n t e r p r e t a t i o n ; Econ. Geol., Vol. 58, pp. 167-211. Roedder, E. 1972. Data of geochemistry, chapter J J : composition of f l u i d i n c l u s i o n s , U.S. Geol. Survey, Prof. Paper 440 J J . Roedder, E. (ed.) 1975. F l u i d i n c l u s i o n research, Vol. 8, 227 p. Roedder, E. 1977. F l u i d i n c l u s i o n s as tools i n mineral exploration; Econ. Geol. Vol. 72, pp. 503-525. Roedder, E. 1979. F l u i d i n c l u s i o n s as samples of ore f l u i d s ; i n Geochemistry of hydrothermal ore deposits, second e d i t i o n , H.L. Barnes, e d i t o r , pp. 684-737. Staples, A.B., and Warren, H.V. 1946. Minerals from the Highland-Bell s i l v e r mine, Beaverdell, B.C.; U n i v e r s i t y of Toronto Geological Series No. 50, pp. 27-33. Staples, A.B., and Warren, H.V. 1946. Mineralogy of the ores of the Highland-B e l l mine; Western Miner, May 1946 (pp. 38-43) and June 1946 (pp. 54-58). Toulmin, P., and Clark, S.P., J r . 1967. Thermal aspects of ore formation; i n Geochemistry of hydrothermal ore deposits, H.L. Barnes, e d i t o r , pp. 437-464 Verzosa, R.S., and Goetting, B. 1972. Geology and h i s t o r y df the Highland B e l l mine, Beaverdell, B.C., paper presented at the f a l l meeting of C..I.M. i n Prince George, B.C. 106 White, D.E. 1980. Active geothermal systems and rel a t e d ore deposits; preprint version 1/26/80. White, W.H. 1949. Beaverdell, 49° 119° SE; Min. of Mines of B r i t i s h Columbia, Annual Report, pp. 138-148. 107 CHAPTER 5 CONCLUSIONS  AND IMPLICATIONS TO EXPLORATION The Beaverdell camp has been a known producer of s i l v e r , lead and zinc since the turn of the century. Several gold mines, such as Carmi, were worked i n t e r m i t t e n t l y i n the early part of the century, and i n recent years, minor amounts of gold have been produced from the Highland Lass vein system. With the increasing a c t i v i t y i n exploration for gold, t h i s traditionally^., silver-producing camp may also become important for i t s gold m i n e r a l i z a t i o n . This study attempts to define some parameters of the s i l v e r and gold m i n e r a l i z a t i o n which could be useful i n exploration programs for s i m i l a r deposits i n the area. Three rock units are associated with m i n e r a l i z a t i o n i n t h i s area. Much of the area i s underlain by granodiorite of the Westkettle b a t h o l i t h . This unit i s probably J u r a s s i c , based on c o r r e l a t i o n s with the Nelson b a t h o l i t h . Remnants of pendants and/or screens of Wallace Formation metamorphosed terrane are found within the b a t h o l i t h . The Wallace Formation i s mainly of igneous o r i g i n , and probably Permian. Quarts monzonite p o r p h y r i t i c stocks, which have been dated by K-Ar methods as T e r t i a r y , have intruded into the Westkettle granodiorite. One of these, the Beaverdell stock, i s located at the west end of the main zone of vein m i n e r a l i z a t i o n at Beaverdell. The Carmi gold veins are located about 7 km north of Beaverdell and early investigators such as Reinecke (1915) f e l t that the veins at Carmi could be a lower extension of the s i l v e r vein system on Wallace Mountain. Now, however, the i n t e r p r e t a t i o n of galena-lead isotopes suggests that t h i s may not be the case. Galena-lead isotope r a t i o s f or samples c o l l e c t e d i n the Beaverdell and surrounding area f a l l into two d i s t i n c t c l u s t e r s on the 108 206™ ,204_, 207_, ,204™ , 206_, ,204_, 208_, ,204_, . Pb/ Pb versus Pb/ Pb and Pb/ Pb versus Pb/ Pb graphs. One of these c l u s t e r s contains the Carmi gold deposit, while the other con^ tains the s i l v e r - r i c h Beaverdell veins. Although several i n t e r p r e t a t i o n s of t h i s data conform with the geological and K-Ar constraints of m i n e r a l i z a t i o n either i n the Permian (0.27 Ga, estimated age of the Wallace Formation), or i n the Jurassic (0.15 Ga, proposed age of the Westkettle b a t h o l i t h ) , or i n the T e r t i a r y (0.05 Ga, calculated age of the Beaverdell and rel a t e d stocks), one model seems most reasonable when studied i n d e t a i l . Based on t h i s model, the Carmi gold veins were formed i n the Ju r a s s i c , as a r e s u l t of the i n t r u s i o n of the Westkettle b a t h o l i t h . Lead for these veins probably came from the metamorphosed Permian Wallace Formation. The s i l v e r veins were formed i n the T e r t i a r y , as a r e s u l t of another hydrothermal convection system caused by the i n t r u s i o n of the Beaverdell and rel a t e d stocks. The lead i n these f l u i d s was supplemented by radiogenic lead leached from the Westkettle 206 20^ + granodiorite as the f l u i d s traversed the b a t h o l i t h . Pb/ Pb r a t i o s f o r t h i s group of samples increases with increasing distance away from the Beaverdell stock, suggesting a strong genetic r e l a t i o n s h i p between these veins and the T e r t i a r y stock. This model also indicates that the Carmi and Beaverdell veins are not g e n e t i c a l l y linked, so that one would not expect a continuum of deposits between the two types. An attempt was made to document the s i l v e r - gold zoning i n the Lass system i n d e t a i l . Samples of vein material hosted i n Westkettle granodiorite from the Lass system were assayed for 15 elements (Zn, Pb, Cu, Fe, Mn, Cd, Ca, Mg, Co, Ni, Au, Ag, Hg, As and Sb) and the r e s u l t s plotted on reconstruc-ted (major post-ore f a u l t i n g removed) plan views of the vein. Sections of metal values versus down dip d i r e c t i o n were also plotted since the main changes i n values seem to occur i n t h i s d i r e c t i o n . The trends of the four major economic elements, Zn, Pb, Au and Ag, were examined i n d e t a i l . Trends are s i m i l a r for many of the elements, and define two zones within the Lass 109 mines. The differences are distinct enough for many of the elements to draw a.north-trending boundary line at a specific location within the lower Lass mine, about 400 feet to the .east of the East Terminal Fault. To the west of this boundary, in the upper part of the vein system, silver values are high and lead and zinc values are moderate. To the east, in the deeper part of the mine, gold values are high, silver values are low and lead and zinc values are moderate to high. Veins in the lower, eastern zone are thicker (average 7 inches versus 5 inches) and contain less gangue material. It appears that narrow, multiple veins and stringer zones may be more common in the upper, western part of the system. More detailed information on the formation of'the Lass vein system was obtained by the examination of fl u i d inclusions and sulphur isotopes. Variations in temperature of homogenization and estimated salinity between primary, psuedosecondary and secondary inclusions in quartz and sphalerite can be correlated with various stages of vein paragenesis. Gold mineraliza-tion i s associated with the f i r s t three stages (pyrite, arsenopyrite and dark sphalerite). Inclusions associated with these stages formed between 260°C and 310°C, from solutions of approximately 13 equivalent weight percent NaCl. Some of these inclusions contain CO^-rich phases. Silver minerali-zation i s associated with galena and sphalerite of Stages 4 and 5, which formed between 180°C and 240°C, from less saline solutions. Based on homogenization temperatures and salinity estimates, depths of formation can be approximated based on hydrostatic pressure (Haas, 1971). The gold mineralization stages formed either at much greater depths than silver mineralization stages, or under lithostatic, rather than hydrostatic pressure. Geological evidence indicated that a l l the vein mineralization formed at approximately the same time, so the latter interpretation i s favoured. The proposed model for the Lass vein system must account for changes in 110 temperature, s a l i n i t y , estimated depth of formation, CO^ content, and s i l v e r -gold zonation. An i n f l u x of cooler, l e s s s a l i n e ground water s o l u t i o n into the system, on the low pressure side of a t h r o t t l i n g point i s proposed to account for these changes. The decreases i n temperature and s a l i n i t y can be r e a d i l y explained by the mixing part of the model. The change i n depth of formation estimates indicates that l i t h o s t a t i c , rather than hydrostatic pressure was dominant at the time when the primary i n c l u s i o n s were formed. At the temperatures indicated for these solutions, the changes occurring at the t h r o t t l i n g point would not a f f e c t the temperature of the solutions, but would r e s u l t i n a decrease i n the apparent pressure. CO^ phases would no longer be present i n the lower pressure regime above the t h r o t t l e point. Gold s o l u b i l i t i e s would decrease above the t h r o t t l e point, so that gold deposition would only be expected i n the higher temperature and higher s a l i n i t y regime below the t h r o t t l e point. The models which have been proposed to comply with the parameters of the deposits have s i g n i f i c a n t exploration value. On a regional scale, the d i f f -erences i n galena-lead isotope r a t i o s serve to d i s t i n g u i s h between the older, Jurassic gold-dominated m i n e r a l i z a t i o n and the younger T e r t i a r y s i l v e r m i n e r a l i z a t i o n which i s h i s t o r i c a l l y more s i g n i f i c a n t economically. From the lead isotope model, i t appears that the gold found at depth i n the Lass vein system i s not g e n e t i c a l l y linked to the other gold occurrences i n the area, so that two separate mi n e r a l i z i n g systems must be considered i n evaluation of other properties i n the area. Within the younger T e r t i a r y veins, f l u i d i n c l u s i o n temperature and s a l i n i t y data can be used to d i s t i n g u i s h between the lower temperature, high grade s i l v e r regions and the higher temperature g o l d - r i c h zones deeper i n the system. No f l u i d i n c l u s i o n data i s a v a i l a b l e at t h i s time on the older gold veins. Such information may provide a t h i r d d i s t i n c t i v e temperature and s a l i n i t y regime, so that a l l three m i n e r a l i z a t i o n types might be r e a d i l y d i f f e r e n t i a t e d by a f l u i d i n c l u s i o n study. However, at t h i s time galena-lead i s o t o p i c analyses provide an elegant means of d i s t i n g u i s h i n g between the two ages of vein m i n e r a l i z a t i o n , that can be applied to property evalua-tions during both the exploration and development stages. 1 1 2 APPENDIX A Sample Data and Locations Figure A - l (map pocket) shows locations of samples not taken i n the Lass workings. Figure A-2 (map pocket) shows locations of samples taken i n the Lass workings, The following pages (Table A-l) l i s t the data c o l l e c t e d . TABLE A - l L i s t of Data Results of A.A.S. analyses and estimated of hand sample mineralogy are l i s t e d . Sample numbers are shown on Figures A - l and A-2. TP indicated a code used to sort the data. 9 =? WESTKETTLE (veins on Wallace Mountain hosted i n Westkettle granodiorite). 7™= WALLACE ( veins on Wallace Mountain hosted i n Wallace Formation). A l l non-vein samples are uncoded on t h i s table. TH i s the thickness of the vein where sampled. Assay values are given i n the units indicated. The following are reported as percentages, and estimated from hand samples: QZ=quartz RX=waste rock GG=total amount of gangue=QZ+RX GA=galena SL=sphalerite RS=ruby s i l v e r (pyrargyrite) PY=pyrite PO=pyrrhotite AP=arsenopyrite CP=chalcopyrite SAMPLE T P ZN% PB"/. CU PPM F E % 2 9 0 0 - 1 9 7 . 171 0. 771 1 1 7 1 . 5. 120 2 9 0 0 - 2 9 0. 7 2 0 0. 795 601 . 4 . 631 2 9 0 1 - 1 9 0. 9 7 0 5. 3 5 0 2 9 0 . 7 . 6 7 9 2 9 0 1 - 2 0. 0 0. 0 0. 0. 0 2 9 0 1 - 3 0. 0 0. 0 0. 0. 0 2 9 0 1 - 4 9 0. 4 9 3 0. 318 71 . 2. 971 2 9 0 1 - 5 9 0. 0 6 3 0. 0 3 8 6 4 . 1 . 292 2 9 0 2 - 1 9 27 . 5 2 2 1 . 8 7 0 3 4 7 . 12. 3 5 5 2 9 0 2 - 2 9 27.. 271 1 . 767 4 2 7 . 11 . 0 2 4 2 9 0 2 - 3 9 6. 6 9 3 0. 6 6 9 3 6 7 . 1 1 . 841 2 9 0 2 - 4 9 0. 3 9 9 0. 120 5 4 . 1 . 9 9 4 2 9 0 2 - 5 9 0. 3 6 2 2. 258 1 1 1 3 . 1 1 . 7 3 5 2 9 0 3 - 1 9 1 . 9 2 5 0. 654 174 . 3. 0 8 4 2 9 0 4 - 1 9 0. 2 5 3 0. 532 5 6 . 3. 2 7 6 2 9 0 4 - 2 9 2 . 2 9 8 0. 494 2 1 5 . 4. 196 2 9 0 5 - 1 9 3 5 . .521 4 . 6 29 9 8 3 . 13. 6 2 5 2 9 0 5 - 2 9 2 . ,875 3. 997 3 7 6 . 9. 511 2 9 0 5 - 3 9 0. ,284 0. 304 7 7 . 3. ,04 1 2 9 0 6 - 1 7 6. ,040 2. 619 3 2 0 . 1 1 . .790 2 9 0 6 - 2 9 13 . , 124 2. 271 1 0 3 5 . 16. .545 2 9 0 6 - 3 9 0. .442 0. ,378 2 1 5 . 13, .873 2 9 0 6 - 4 9 3 .248 2. ,701 2 3 6 7 . 16, .732 2 9 0 6 - 5 9 3 . 439 4 . ,610 5 1 2 . 9 .908 2 9 1 0 - 1 9 15 . 165 5, .313 7 5 0 . 6, .949 2 9 1 0 - 2 9 9 .452 3, .581 5 3 0 . 12, .400 2 9 1 0 - 3 7 0 .567 0 .323 1 5 7 7 . 1 .510 2 9 1 0 - 4 9 0 . 186 0 . 161 9 6 . 6 .097 2 9 1 0 - 5 9 1 .358 3 .539 491 . 14 .758 2 9 1 0 - 6 9 1 .692 2 .959 991 . 16 .882 2 9 1 0 - 7 9 0 .722 2 .209 9 7 5 . 14 .492 2 9 1 0 - 8 9 0 .442 0 .610 6 5 . 8 . 146 291 1-1 9 12 .728 3 .648 2 5 0 4 . 14 . 120 29 1 1-2 9 10 .249 6 .903 1 8 7 6 . 6 .658 2 9 1 1 - 3 1 . 3 0 8 0 .349 144 . 4 . 170 2 9 1 1 - 4 9 2 .57 0 5 .583 221 . 10 .115 2 9 1 1 - 5 7 2 .799 3 .048 2 6 5 . 5 . 159 291 1-6 9 4 .967 0 .709 204 7. 1 .348 2 9 1 2 - 1 0 .035 0 . 0 2 8 4 2 . 3 .544 2 9 1 2 - 2 0 .071 0 .019 102. 2 .014 2 9 1 2 - 3 O .087 0 .042 51 . 1 . 188 2 9 1 2 - 4 9 17 .334 2 .840 1 3 6 9 . 7 .319 2 9 1 2 - 5 9 2 .317 0 .891 3 9 0 . 8 .946 2 9 1 2 - 6 9 1 .592 0 .775 5 3 8 . 5 .042 2 9 1 2 - 7 0 .469 0 .217 105. 2 .401 2 9 1 2 - 8 9 1 .684 4 .938 9 7 5 . .263 2 9 1 2 - 9 9 10 .274 2 .998 1 0 2 3 . 10 .764 2 9 1 2 - 1 0 9 14 .804 0 .362 1 6 6 4 . 7 .556 2 9 1 2 - 1 1 9 12 .947 5 .054 1 8 6 2 . 7 .798 2 9 1 2 - 1 2 9 2 .859 0 .295 7 0 1 . 8 .719 2 9 1 2 - 1 3 9 0. 134 0.020 4 0 . 0 .937 IN PPM CD PPM CA PPM MG'/. CO PPM 2 7 4 3 . 8 6 2 . 9 7 6 2 . 0. 4 1 0 0. 1451 . 9 0 . 162. 0. 322 5. 1928. 143. 1120. 0. 214 0. 0. 0. 0. 0. 0 0. 0. 0. 0. 0. 0 0. 2 8 4 6 . 7 0 . 102. 0. 217 10. 4 5 2 . 0. 1 0 8 7 1 . 0. 382 4 . 1 196. 3 4 9 . 7 1 0 . 0. 236 5. 1 0 8 7 . 2 7 3 . 1 4 0 5 . 0. 169 5. 1 0 7 7 . 8 2 9 . 9 4 5 . 0. 188 10. 8 6 4 6 . 5 9 . 9 2 2 5 . 0. 5 7 0 6 . 1 2 3 5 . 4 9 . 2 0 0 . 0. 138 0. 8 4 9 0 . 2 4 8 . 8 8 6 5 . 0. 546 0. 6 3 5 7 . 2 8 . 4 6 4 6 7 . 1 . 117 5. 5 3 6 9 . 251 . 2 8 2 0 8 . 0. 872 8. 1 7 8 8 . 4 4 2 . 8 6 1 6 . 0. 227 0. 2 0 4 0 . 3 9 9 . 7 1 1 0 . 0. 3 0 0 6. 9 3 9 0 . 10. 3 7 5 8 0 . 0. 434 2. 1857. 7 5 9 . 5 8 5 4 . 0. ,201 4 . 821 . 1710. 3 1 3 8 . 0. 0 7 5 3. 1 0 4 9 . 5 4 . 4 8 5 7 . 0. , 145 5. 7 7 9 . 4 3 5 . 1 184. 0. , 140 4 . 3 9 8 . 4 8 2 . 152. 0. .057 8. 8 5 2 . 2 0 6 5 . 5 2 8 3 . 0, . 194 8 . 7 5 8 8 . 1368. 24 143. 0, , 5 4 0 4 . 3 2 7 . 5 7 . 1 6 7 0 4 . 0 . 149 6. 2 0 0 6 . 12 . 4 4 0 2 . 0 .303 5. 4 3 9 . 181 . 1680. 0 .079 0. 3 2 3 3 . 2 2 4 . 1 0 8 3 2 . 0 .410 3. 2 1 3 8 . 101 . 8 7 0 . 0 .347 8 . 8 2 3 . 61 . 2 4 7 . 0 .061 6. 7 9 9 . 1736. 1 1 1 1 . 0 .092 10. 667 . 1 6 0 3 . 162 . 0 .089 18. 2 7 2 4 . 173. 1 2 2 9 . 0 .209 8 . 4 2 3 7 . 3 9 6 . 5 6 2 3 . 0 .423 4. 9 8 9 . 3 5 5 . 3 5 2 4 . 0 .372 3. 2 3 8 . 6 5 2 . 128. 0 .026 0. 8651 . 2 8 . 7 5 7 0 . 0 .773 8. 9 2 6 . 2 4 . 9 3 8 7 . 0 .554 12, 1 3 9 5 . 13. 4 1305. 0 .G24 4 . 2 7 3 0 . 2 4 5 7 . 6 6 3 3 . 0 .244 15. 1338 . 2 8 8 . 1792 . 0 . 194 13 . 9 3 3 . 188. 1754. 0 . 104 1 . 8 8 7 8 . 6 1 . 2 6 0 2 9 . 0 .871 7. 196. 2 6 4 . 9 1 6 . 0 .035 3. 2 5 9 7 . 1696. 7 4 9 6 . 0 .220 5. 1096. 2 1 5 7 . 8 1 3 . 0 .090 13. 1781 . 1814. 2 5 0 4 . 0 .248 5. 1666. 3 6 8 . 190. 0 . 178 9. 5 3 4 . 3 9 . 1 5 6 9 8 . 0 .235 0. PPM AU PPB AG PPM HG PPB A S % SB PPM 0. 3 0 O 0 . 3 6 2 . 6. 0. 120 6 0 . 0. 7 5 0 . 4 0 2 . 6. 0 . 9 8 0 7 5 . 0. 1 100. 3 7 5 . 2. 0 . 6 8 0 9 0 . 0. 0. 0. 0. 0 . 0 0. 0. 0. 0. 0. 0 . 0 0. 0. 130. 146. 2. O . 6 7 0 3 5 . 10. 5. 2 8 . 2. 0 . 0 2 0 15. 0. 2 2 0 0 . 4 13. 2. 1 .370 1 3 5 . 0. 2 7 0 0 . 5 0 8 . 2. 1 .340 1 4 0 . 0. 1 6 0 0 . 3 5 4 . 6. 1 .360 145. 0. 5. 4 0 . 2. 0 . 0 6 6 2 0 . 0. 1 8 0 0 . 1 9 7 . 2. 1 .340 1 9 0 . 0. 9 5 . 9 7 . 2. 0 . 7 0 0 5 0 . 0. 2 7 0 . 3 2 4 . 2. 1 .060 6 5 . 0. 6 0 0 . 4 8 7 . 2. 0. 124 6 0 . 0. 9 0 0 0 . 3 5 0 . 2. 0 . 7 6 0 ' 1 10. 0. 1 4 0 0 . 3 4 7 . 2. 1 .040 125. 0. 150. 9 5 . 2. 0 . 8 5 0 4 0 . 0. 3 6 0 0 . 5 1 0 . 5 0 . 1 .380 1 4 0 . 0. 2 4 5 0 . 3 2 5 . 7 0 . 0 . 3 2 0 3 3 0 . 0. 1 0 0 0 . 2 2 6 . 2 . 0 . 9 7 0 9 0 . 0. 1 6 0 0 0 . 3 2 3 . 2 5 . 1 .360 3 5 5 . 0. 4 2 0 0 . 4 10. 5 0 . 1 .400 3 1 5 . 0. 3 8 5 0 . 3 1 0 . 2 7 0 . 0 . 2 9 6 165. 0. 4 2 0 0 . 2 5 3 . 4 0 . 0 . 2 2 4 7 5 . 9. 2 5 . 2 3 . 2. 0 . 0 1 9 2 0 . 5. 1 4 5 0 . 44 . 2 . 1 .200 5 5 . 0. 5 3 0 0 . 2 3 5 . 6. 0 . 8 6 0 1 6 0 . 0. ,1800. 3 0 4 . 2. 0 . 9 2 0 1 3 5 0 . O. 9 5 0 . 3 8 4 . 2. 1 .040 1 4 0 0 . 0. 1 2 5 0 . 2 4 4 . 2. 1 .340 9 0 . 0. 1 6 5 0 0 . 151 . 7 0 . 1 .390 110. 0. 3 1 0 0 . 3 0 6 . 2 2 0 . 1 . 160 4 6 0 . 0. lOOO. 3 7 . 3 0 . 1 .310 8 0 . 0. 6 9 0 . 3 6 0 . 10. - 1 . 150 190. 0. 1 2 5 0 . 3 4 6 . 2 2 . 1 .300 100. 0. 9 1 0 0 . 2 8 4 . 4 0 . 1 . 130 3 5 0 -0. 1 2 0 . 0. 4. 1 .020 5 0 . 0. 2 5 . 6. 2. 0 . 0 1 8 2 0 . 0. 150. 0. 6. 0 . 0 2 5 3 0 . 0. 3 5 0 0 . 112. 3 0 . 0. 188 7 5 . 12 . 3 8 0 0 . 51 . 2. 1 .350 9 5 . 4. 7 1 0 0 . 3 2 . 2. 0 . 4 9 0 4 0 . 0. 2 0 0 . 1 1. 6. 0.21 4 3 5 . 0. 3 6 0 0 . 2 9 3 . 2. 1 .050 4 9 0 . 0. 7 0 0 0 . 2 1 2 . 10. 1 .030 9 0 . 0. 2 1 0 0 . 5 9 . 110. 0 . 2 2 0 7 5 . 0. 3 0 0 0 . 3 2 1 . 10. 1 . 130 1 2 0 . 0. 3 0 0 0 . 3 0 . 2. 1.340 8 0 . 0. 3 0 . 0. 2. 0.011 15. 2912-14 9 9 .728 3 .524 734. 15 .313 655. 1453. 477. 0 .070 3. 0. 2100. 284. 18. 1 , .090 290. 2912-15 9 0 .487 0 . 142 164. 3 .368 1 108. 73. 675. 0 . 147 4. 11 . 110. 34 . 2. 1; .230 ;40. 2912-16 9 2 .498 0 .829 243. 7 .019 651 1 . 322. 351 1 . 0 .364 0. 0. 800. 109 . 2. 1 . 330 65. 2912-17 9 3 .525 0 . 195 419. 6 .059 2113. 449. 617. 0 .375 2. 0. 2200. 83 . 6. 0, .236 60. 2912-18 9 0 .207 0 .232 89. 8 .391 3920. 23. 4133. 0 .285 6. 0. 1000. 65. 2. 1, .330 85. 2912-19 0 .358 0 . 183 45. 2 .833 3000. 80. 216. 0 .209 5. O. 1 10. 14 . 6. 0 .790 30. 2914-1 9 0 .603 2 .997 196. 12 .609 2799. 97. 3126. 0 . 105 10. 0. 2000. 294. 2. 1, .340 525. 2915-1 9 4 ,499 2 .997 758. 6 .505 1365. 552. 7593. 0, .812 6. 0. 2300. 388. 2. 0. .112 90. 2916-1 O .252 0 . 126 1073. 14 .288 375. B. 4340. 0. .703 128. 66. 95. 0. 2. 0. .052 95. 2916-2 0. .0 0 .0 0. 0 .0 0. 0. 0. 0. .0 0. 0. 0. 0. 0. 0. .0 0. 2916-3 0. .036 0 .010 12. 0 .506 296. 0. 16454. 0, . 155 5. 0. 35. 0. 2. 0. .031 15. 2916-4 O. .095 0 .021 33. 0 .986 519. 0. 56324 . 0. .387 0. 0. 20. 14 . 2. 0. ,054 40. 2916-5 0, .0 0 .0 0. 0 .0 0. 0. 0. 0, .0 0. 0. 0. 0. 0. 0. ,0 0. 2916-6 0. .0 0 .0 0. 0 .0 0. 0. 0. 0. .0 0. 0. 0. 0. 0. 0. 0 0. 2916-7 9 9 .825 3 .517 1525. 9 .645 1268. 1509. 4864 . 0. . 161 19. 0. 1700. 122. 40. 0. ,084 125. 2916-8 9 0. .532 0 .258 85. 3 .350 1642. 72. 48 1 . 0. 246 4 . 0. 90. 7 . 4 . 0. 098 •30. 2916-9 9 0 .343 0 .308 201 . 2 .556 1661 . 4 1 . 4504 . 0. , 192 2 . 0. 360. 14. 2. 0. , 160 25. 2918-1 9 3. .033 6 .324 716. 8 .431 858 . 379. 1 180. 0. ,088 0. 0. 1500. 325. 30. 1. 330 210., 2955-1 9 1 . 422 2. ,083 187. 7, .047 1552. 142 . 2030. 0. ,076 5. 0. 1 100. 279. 6. 0. ,970 85. 2955-2 9 2 . , 34 1 1 , .867 193. 6 . 197 1359 . 285. 930. 0. ,201 13. 0. 560. 309. 25. 1. ,240 135. 2955-3 9 2 . 429 0. . 1 16 296 . 5. .003 2147 . 264 . 1422 . 0. . 167 6 . 0. 620. 349. 30. 0. ,780 95. 3000-1 9 0. 269 O. . 185 108. 3 .446 16830. 29. 109895, 0. ,773 0. 0. 280. 233. 6. 0. , 102 90. 3000-2 0. 0 0. ,0 0. 0 .0 0. 0. 0. 0. .0 0. 0. 0. 0. 0. 0. ,0 0. 3000-3 9 6. 253 2. .093 254 . 12, .871 1 188 . 483. 516. 0. 185 18 . 0. 1450. 353. 25. 1. 270 155. 3000-4 9 0. .476 0. , 132 86. 1 , .918 1 155. 60. 2416. 0. 081 0. 0. 50. 81 . 10. 0. 970 25. 3001-1 O. . 147 0. . 134 54 . 2. .325 3931 . 0. 27088. 0. ,885 8 . 0. 5. 88 . 6. 0. 102 50. 3001-2 9 0. .963 1 , .052 207. 5 .300 1261 . 121 . 7202 . 0. 154 5. 0. 1 10. 317. 20. 0. 940 165. 3001-3 9 0. . 164 6. .660 50. 3 .008 1520. 15. 1009 . 0. 083 9. 0. 260. 118. 6. 0. 860 30. 3001-4 9 1 . 789 1 , .730 616 . 4 , .933 1206. 230. 437 . 0. 078 0. 0. 3100. 345. 18. 1. 260 95. 3001-5 9 4 . 281 0. .378 265. 6. .854 794 . 540. 777. 0. 054 0. 0. 600. 366. 18. 1. 250 90. 3001-6 9 1 . 001 0, .292 167 . 3 .422 938 . 87 . 7082. 0. ,4 12 6.. 0. 290. 400. 8 . 0. 850 35. 3001-7 9 5. .291 1 . .586 731 . 7. .036 711. 650. 90. 0. 085 0. 0. 1000. 304. 25. 0. 230 65. 3010-1 9 1 , ,229 0, .562 133. 9 .440 3244 . 137. 1420. 0. 241 8. 0. 280. 255. 10. 1. 260 100. 3014-1 7 0. , 152 0, .041 40. 1 , .703 2659. 19. 18521. 0. 282 34 . 0. 5. 37 . 2. 0. 068 20. 3016-1 7 46. ,779 0.215 3569. 6. .569 228. 946. 1026. 0. 162 21 . 24 . 40. 42 . 6. 0. 740 60. 3016-2 0. ,257 0. .479 135. 8. .890 602. 40. 7530. 0. 282 6. 6. 1500. 381 . 8. 1. 370 120. 3016-3 7 4 . 692 3. .933 473. 7. .506 1843. 763. 6554 . 0. 262 0. 0. 1520. 302. 18. 1. 280 115. 3016-4 9 0. 289 0. ,665 44. 3. .058 8251 . 40. 60733. 0. 460 3. 0. 900. 45. 10. .1. 340 80. 3016-5 7 0. 465 0. ,249 154. • 1. ,960 3078. 67. 19493. 0. 226 0. 0. 980. 376. 18. 0. 240 30. 3016-6 7 0. 058 0. ,267 198 . 4. ,652 1960. 13. 5324. 0. 069 0. 0. 1300. 256. 6. 1. 370 85. 3017-1 7 2. 018 0. ,064 99. 4. ,947 5785. 243. 1952. 0. 316 12. 8. 140. 22. 10. 1. 350 70. 3017-2 7 0. 791 0. ,799 207 . 4 . ,822 5165. 92. 1 139. 0. 648 16 . 17 . 5. 363. 2. 0. 980 65. 3017-3 7 0. 469 0. ,421 154. 7. ,660 3166. 65. 1765. 0. 292 8. 0. 1150. 217. 2. 1. 380 100. 3017-4 7 2 . 930 2 . ,251 440. 5, ,903 2814 . 396. 2508. 0. 834 10. 14 . 1000. 380. 18. 1. 320 245. 3017-5 7 0. 070 3. 024 1 135. 12. ,640 3460. 968. 4143. 0. 259 9. 0. 1800. 347. 25. 1. 370 175. 3017-6 7 1 . 193 2. 332 500. 7. 326 3531 . 168. 3635. 1. 015 10. 13. 1750. 317. 10. 1. 060 90. 3017-7 0. 0 0. 0 0. 0. 0 0. 0. 0. 0. 0 0. 0. 0. 0. 0. 0. 0 0. 3017-0 7 0. 044 0.023 208. 3. 237 588 . 0. 26835. 1. 997 19. 16. 10. 13. 2. 0. 144 20. 3017-9 0. 066 0. 101 159. 2. 051 464 . 15. 4578. 0. 389 13. O. 10. 45. 2. 0. 254 20. 3020-1 7 1 . 246' 0. 959 317. 3. 503 1899. 145. 1432. 0. 555 9. 0. 200. 221 . 2. 1. 310 100. 3020-2 7 6. 529 2. 459 751 . 18. 243 869. 845. 2922. 0. 073 0. 0. 8800. 318. 2. 1. 420 230. 3020-3 7 14 . 975 3. 456 1607. 1 1 . 260 903. 1956. 4357. 0. 038 8. 0. 5400. 325. 440. 0. 140 650. 3020-4 0 .0 0 .0 0. 0 .0 0. 0. 0. 0 .0 0. 0. 0. 0. 0. 0 .0 0. 3020-5 7 0 .033 0 .036 74 . 1 1 .001 4715. 0. 2630. 0 .406 49. 68. 150. 50. 2. O .258 75. 3020-6 7 0 .704 0 .210 174 . 10 . 304 1254 . 83. 653. 0 .224 14 . 12. 1450. 76. 2. 1 .440 95. 3020-7 7 2 . 148 1 .84 1 360. 4 .717 7018 . 269. 11166. 0 .746 5. 19. 550. 356. 2. 1 . 120 100. 3020-8 7 1 . 161 1 .071 281 . 3 .854 2874. 153. 2297. 0 .831 13. 0. 200. 93. 2. O.940 45. 3020-9 7 O .872 0 .235 223. 8 .376 2 101 . 1 17. 515. 0 . 336 12 . O. 1250. 106. 2. 1 .420 1 10. 3020-10 7 0 . 165 0 . 159 304. 6 .763 833. 25. 2099. 0 . 132 1 . 0. 580. 149. 2. 1 .380 75. 3020-11 7 1 . 125 0 .297 148. 4 .428 10425. 138 . 2573. 0 .740 1 1 . 13. 270. 266. 18. 1 .200 65. 3032-1 7 1 .038 0 .692 157. 5 .952 14 10. 144 . 9635. 0 .490 9. 0. 880. 368. 2. 1 .430 80. 3104-1-1 9 11 .723 3 .955 2517. 1 1 .521 858. 1330. 582. 0 .039 0. 0. 700. 288. 240. 1 .220 3600. 3104-1 9 14 .625 3 .731 1036. 9 .411 1786. 183 1 . 6851 . 0 . 179 5. 0. 480. 265. 40. . 1 .240 165. 3104-2 9 14 . 119 4 .111 1644. 12 .840 597. 1662. 126. 0 .049 5. 0. 450. 306. 200. O .980 1200. 3104-3 9 12 .301 2 .771 2291 . 15 .742 787. 1453. 1086. 0 .046 0. 0. 800. 295. 340. 1 .370 2550. 3104-4 9 16 .902 3 .248 1624. 10 .099 490. 2317. 631. 0 .028 1 . 0. 380. 317. 480. 1 . 190 1650. 3104-5 9 2 .517 2 .816 800. 1 1 .887 1801 . 320. 142. 0 . 186 4 . 0. 820. 315. 25. 0 .272 145. 3104-6 9 0 .731 0 .595 235. 4 .783 854. 86. 481 . 0 . 107 5. 0. 150. 339. 10. 1 .420- 160. 3104-7 9 0 .301 0 .227 83. 1 .609 823 . 38. 5099. 0 .267 4 . 0. 5. 110. 2. 0 .096 35. 3104-8 9 2 .360 3 .527 472. 9 .224 713. 305. 2425. 0 .099 3. 6. 330. 356. 6. 0 .780 165. 3104-9 9 •4 .533 2 .819 1006. 18 .831 606. 600. 610. 0 . 140 0. 0. 790. 307. 6. 1 . 160 365. 3104-10 9 0 .702 0 .314 257 . 4 .450 617. 32. 1012. 0 .098 0. 0. 310. 244. 2. 1 .340 75. 3561A-1 9 1 .710 1 .040 237. 5 . 140 4643. 197. 7506. 0 .625 6. 0. 500. 366. 2. 0 .890 85. 3561B-1 9 7 .312 1 .399 923. 7 .840 9138 . 874 . 29014. 0. .714 7. 0. 3400. 420. 6. 0 . 178 80. 3561B-2 9 3 .859 3 .327 719. 9 . 748 4267. 470. 30754. 0. .343 6. 0. 3300. 224 . 950. 0 . 144 90. 900- 1 9 4 .805 0 .428 293. 2 . 105 942 . 599. 2286. 0. ,069 1 . 0. 230. 323 . 10. 0 .210 20. 900-2 9 5 .508 2 .395 752. 3 .897 1050. 637. 844 1 . 0. , 121 0. 0. 2500. 423. 18. 0, . 194 40. 900-3 9 1 , .733 1 , .591 804 . 3, .843 1928 . 243. 882. 0. 320 5. 0. 1600. 364 . 6. 0 . 126 50. 900-4 9 0. .517 0, .44 1 150. 9, .442 977. 73. 252. 0. ,073 9. 9. 140O. 347. 300. 1, .390 150. 900-5 9 0. .431 0. .286 155. 3. .087 1666 . 28. 73. 0. 188 4 . 0. 430. 369. 62. 0. .910 45. 900-6 9 o. .949 O. .386 260. 1 . .798 1506 . 126. 8526 . 0. 291 4 . 0. 170. 188. 195. 0. ,084 30. 900-7 9 1. ,743 0. .357 223 . 4 , .942 2566. 241 . 5749. 0. 292 6. 0. 360. 261 . 80. 0. ,800 65. 900-8 9 3. ,094 2 . ,240 1277 . 4 . 870 4022 . 374 . 5340. 0. 54 1 10. 6. 1200. 486 . 240. 0. , 104 70. 900-9 9 3. 752 2. ,924 531 . 4 . , 303 4323. 477. 21003. 0. 367 7. 7. 390. 344 . 180. 0, . 1 14 80. 900-10 9 0. 790 0. 373 166 . 4 . 366 82 1 . 84 . 1066. 0. 074 0. 5 . 1020. 329. 1 10. 1. ,360 130. 900-11 9 2. 902 1 . 280 476. 3. 678 808 . 248. 3077 . 0. 070 0. 0. 840. 504 . 195. 1. 350 215. 900-12 9 2. 591 1 . 172 167. 3. '142 885. 63. 256. 0. 072 0. 0. 1050. 452. 100. 1. ,350 1 10. 900-13 9 5. 628 2. 146 589. 6. 782 1885. 693 . 1543. 0. 169 3. 0. 1050. 430. 270'. 1. 380 240. 900-14 9 3.003 0. 749 343. 2. 578 2446. 373. 1432 . 0. 177 5. 0. 160. 180. 50. 1. 110 35. 900-15 9 4. 919 2. 057 1028. 8.907 1331 . 633. 94. 0. 172 0. 0. 3200. 330. 110. 0. 780 95. 900-16 9 1 . 024 3. 753 617. 7. 905 358. 141 . 413. 0. 044 3. 0. 2000. 297. 140. 1. 390 495. 900-17 9 1 . 394 0. 843 1748. 6. 090 1018. 107. 245. 0. 256 5. 0. 3400. 561 . 140. 1. 360 1050. 808-1 9 0. 616 0. 487 177. 4. 365 1969. 50. 548. 0. 198 3. 0. 680. 425. 62. 1. 360 75. 809- 1 9 0. 200 0. 420 272. 6. 246 1426. 21 . 3693 . 0. 138 4. 0. 1000. 415. 50. 1. 190 100. 809-2 9 1 . 492 1 . 589 601 . 8. 293 2289. 170. 463. 0. 317 8. 0. 1050. 371 . 100. 0. 880 110. 809-3 9 2 . 1 14 2 . 408 662. 4 . 816 1613. 269. 0. 0. 142 8. 0. 500. 707. 1 10. 1. 320 800. 809-4 9 3. 812 1 . 055 456. 7. 327 1009. 483. 186. 0. 144 4. 0. 820. 403. 100. 1. 380 165. 812-1 9 2. 444 0. 988 534. 3. 814 976. 302. 2637. 0. 145 2. 0. 1700. 346. 62. 0. 146 50. 812-2 9 0: 367 0. 120 50. 3. 140 924. 53. 301 . 0. 083 0. 0. 150. 84. 40. 0. 860 45. 825-1 9 3 . 010 2. 280 354 . 8. 560 1 170. 370. 692 . 0. 138 3. 0. 750. 536. 1 10. 1. 340 1350. 825-2 9 0. 170 0. 092 55. 2. 366 505. 12. 3589. 0. 073 2. 9. 320. 36. 25. 1. 310 60. 829-1 9 O. 083 0. 091 40. 3. 064 672. 17 . 2738 . 0. 084 0. 0. 280. 123. 40. 1. 280 65. 829-2 9 0. 274 0. 076 69. 4 . 375 1000. 2 1 . 0. 0. 152 5. 0. 390. 151 . 50. 1. 380 90. 837-1 9 3. 839 0. 751 438 . 4 . 757 1693. 464. 1191. 0. 140 3. 0. 740. 467. 100. 0. 880 65. 8 3 7 - 2 9 3 .235 0 .171 3 7 2 . 3 .205 4 0 3 7 . 4 1 9 . 10284 8 3 7 - 3 9 0 .050 0 .058 4 0 . 1 .457 9 8 4 . 0. 2 0 7 9 7 8 3 7 - 4 9 0 . 162 0. 101 6 3 . 2 . 5 2 2 1558. 17. 8 0 7 8 3 7 - 5 9 3 .913 1 .586 4 9 4 . 4 .939 7 4 6 0 . 4 7 9 . 8 7 1 9 8 3 7 - 6 9 3 .365 1 .390 4 1 2 . 8 .610 1495. 3 5 2 . 79 8 3 7 - 7 9 6 .387 2 .798 57 1 . 14 .934 7 2 7 . 8 0 6 . 4 7 9 8 3 7 - 8 0 .0 0 .0 0. 0 .0 0. 0. 0 8 3 9 - 1 9 0 . 6 5 0 0 .284 1 10. 3 .743 1 124 . 7 7 . 1766 8 5 0 - 1 9 4 . 161 1 .939 6 5 1 . 3 .696 1721 . 431 . 3 0 5 0 8 5 0 - 2 9 2 .456 1 .579 3 5 6 . 2 . 8 6 3 1578. 3 2 3 . 3 4 7 8 8 5 0 - 3 9 1 . 1 14 0 . 137 139 . 3 .320 5 6 2 . 128. 0 8 5 0 - 4 9 0 . 2 8 8 0 . 186 4 1 . 4 . 190 1712. 3 2 . 1814 8 6 0 - 5 9 13 .703 4 .774 1 0 1 0 . 8 .519 6 7 9 . 1708. 6 1 2 8 5 0 - 6 9 18 .244 . 0 .606 8 7 7 . 8 .248 171G. 2 1 1 5 . 253 8 5 0 - 7 9 2 . 2 6 0 1 .682 3 0 9 . 6 . 3 7 7 4 0 0 . 2 6 5 . 0 8 7 0 - 1 9 0 .046 0 . 0 7 8 5 4 . 2 .208 4 8 0 . 0. 0 8 7 0 - 2 9 0 . 1 16 0 .087 7 7 . 2 . 507 169. 13 . 0 8 7 0 - 3 9 0 .078 O .028 21 . 3 . 134 478 . 2 2 . 0 8 9 0 - 1 9 5 .346 2 .908 6 1 3 . 10 .312 1801 . 6 8 5 . 238 3 8 0 0 - 1 9 0 .681 0 .324 144 . 2 .787 6 1 3 5 . 8 0 . 3 9 9 9 6 3 8 0 2 - 1 9 1 .014 1 .517 2 5 6 . 9 .317 1500. 136. 148 3 8 0 2 - 2 9 2 .398 2 .542 5 2 5 . 9 .853 1513. 2 3 8 . 3 5 3 3 8 0 2 - 3 9 0 .933 0 .713 156. 7 .795 4 1 5 7 . 126 . 1071 3 8 0 2 - 4 9 2 .342 0 . 6 5 2 3 6 6 . 8 .674 1073. 2 7 3 . 1600 7 0 0 - 1 9 •0 .506 1 .315 3 1 5 . 7 .284 2704 . ' 61 . 8 3 6 7 0 0 - 2 9 0 .026 0 .055 6 5 . 2 .948 4 2 8 . 0. 38 7 0 0 - 3 9 7 .926 1 . 268 2 2 6 4 . 19 .210 294 . 1 106. 6 6 5 . 7 0 1 - 1 9 0 .508 O. . 163 84 . 2 .022 3 8 4 3 . 52 . 2 4 1 6 9 . 7 0 8 - 1 9 0. . 173 0. .242 9 6 . 4 .685 1830. 2 3 . 6 9 0 . 7 0 8 - 2 9 8 , .258 0. .405 2 8 8 . 8 .623 1317. 981 . 2 6 0 . 7 0 8 - 3 9 0. .825 0. ,510 131 . 4 .922 1 2 7 9 7 . 5 9 . 4 136 . 7 0 8 - 4 9 0. .646 0. .982 2 10. 6. .613 9 8 5 . 5 8 . 4 3 5 9 . 7 0 9 - 1 9 0. .058 0. ,030 61 . 3 . 315 725 . 0. 48 . 7 1 6 - 1 9 3. .476 0. .303 3 6 2 . 4 , .893 1 183. 4 3 5 . 183 . 7 18-1 9 3. .777 0. 6 6 5 4 0 3 . 3. .765 1345. 4 9 8 . 4 17. 7 1 8 - 2 9 2. 113 1. 9 9 0 2 9 2 . 5. , 190 7 2 7 . 9 4 . 100. 7 2 0 - 1 9 0. 8 7 0 4 . 6 9 0 6 7 8 . 10. .116 651 . 126. 106 . 7 2 0 - 2 9 0. 3 2 0 0. 170 1 17. 3. 3 2 7 2 4 8 8 . 4 2 . 1818. 7 3 1 - 1 9 0. 0 9 3 0. 1 14 3 5 2 . 2. 174 14 17. 2 5 . 1 2 9 1 3 . 7 3 1 - 2 9 0. 0 8 2 0. 0 9 3 5 0 3 . 2. 6 1 6 9 2 3 . 14. 4 0 2 8 . 7 3 1 - 3 9 1 . 9 5 8 0. 7 2 0 2 0 7 . 6 . 8 5 7 1772 . 2 1 7 . 6 5 0 . 7 3 5 - 1 9 1 . 9 8 2 3. 8 9 0 1 0 8 0 . 8. 130 1505. 1224. 484 1 . 7 3 5 - 2 9 0. 161 0. 104 6 4 . 1 . 8 8 6 2 5 7 0 . 31 . 3 8 3 3 . 7 3 5 - 3 9 7. 3 1 9 3. 3 0 3 6 2 6 . 8. 432 5 0 6 9 . 9 2 6 . 3 4 0 2 . 7 3 5 - 4 9 3. 6 2 1 4. 6 0 4 301 . 4 . 261 3 0 8 0 . 4 7 0 . 1 0 2 4 3 . 7 3 7 - 1 9 0. 170 0. 0 8 0 4 0 . 2 . 0 7 7 7161 . 17. 1 0 1 7 5 . 7 3 9 - 1 9 0. 0 8 0 0. 163 2 9 5 . 2. 8 4 0 1634 . 0. 7 8 3 8 . 7 3 9 - 2 9 7. 3 7 5 0. 6 6 7 1 2 4 2 . 5. 2 6 0 1024 . 1030. 2 8 0 . 7 4 2 - 1 9 0. 2 9 0 0. 0 5 2 4 5 . 4 . 6 6 5 7 7 37 . 41 . 9 0 5 4 2 . 7 4 2 - 2 9 1 . 6 0 0 0. 5 4 6 195. 6. 522 1238. 186. 6 3 0 . 7 4 2 - 3 9 0. 196 0. 106 164 . 3. 190 1032. 3 9 . 9 9 4 . 7 4 2 - 4 9 0. 61 1 0. 2 1 0 146. 3. 3 2 2 8 2 9 . 7 9 . 120. 0 . 4 2 9 7 . 0. 8 5 . 144 . 6 2 . O . 2 6 0 3 0 . 0 . 0 7 5 0. 0. 7 5 . 7 7 . 6 0 . 0 . 8 4 0 4 0 . 0 .228 5. 0. 4 0 . 41 . 4 0 . 0 . 2 5 6 3 5 . 0 . 7 7 6 7 . 0. 5 5 0 . 261 . 9 0 . 0 . 8 8 0 4 0 . 0 . 2 2 3 4 . 0. 6 9 0 . 4 8 5 . 5 0 . 1 .200 125. 0. 124 0. 0. 1700. 3 4 5 . 2 0 0 . 0 . 5 1 0 2 0 5 . 0.0 0. 0. 0. 0. 0. 0 . 0 0. 0 . 4 2 9 5. 0. 190. 2 9 0 . 2. 0. 140 4 5 . 0.084 2 . 0. 5 0 0 . 5 1 0 . 120. 1 .480 3 7 5 . 0 .078 0. 0. 2 3 0 . 3 1 2 . 9 0 . 1 .260 6 0 . 0 . 0 6 0 3. 0. 5 6 0 . 357 . 18. 1 .580 5 0 . 0. 195 4 . 0. 4 3 0 . 158. 10. 1 .660 6 5 . 0 . 0 6 9 0. 2. 5 3 0 . 568 . 2 6 0 . 1 . 0 1 0 1 2 0 0 . 0 . 0 7 2 7. 0. 3 6 0 . 5 0 7 . 2 7 0 . 0 . 5 0 0 9 5 0 . 0 . 0 3 7 4 . 0. 9 7 0 . 5 7 0 . 9 0 . 1 . 5 8 0 4 6 5 . 0 . 0 3 9 4 . 0. 140. 6 0 . 2. 1 . 4 4 0 3 0 . 0 . 0 2 9 3. 0. 2 8 0 . 6 8 . 2 . 1 . 4 7 0 3 0 . 0 . 0 4 2 0. 0. 4 2 0 . 13 . 2. 1 .560 4 5 . 0 192 4 . 0. 3 6 0 . 5 2 9 . 180. 0 . 2 2 0 120. 0 . 8 2 7 7. 0. 9 0 . 6 5 . 3 0 . 0 . 7 9 0 5 0 . 0. 195 8 . 0. 3 2 0 0 . 387 . 2. 1 .450 105. 0 . 2 9 7 3. 0. 2 5 0 0 . 268 . 2. 0 . 3 4 0 8 5 . 0 . 3 7 6 9. 0. 1400. 2 5 5 . 2. 0 . 8 8 0 7 5 . 0.181 5. 0. 1300. 2 1 2 . 12. 0 . 7 9 0 7 5 . 0.391 5. 1 1 . 4 6 0 . 507 . 2 . 0. 120 115. 0.04 1 3. 10. 150. 9 9 . 2. 1 .460 4 5 . 0.044 2. 0. 1200. 5 5 0 . 3 0 0 . 0. 3 4 5 4 9 5 0 . 0 . 6 4 4 8. O. 2 5 . 258 . 2. 0 . 0 9 8 5 0 . 0. 183 10. 0. 180. 3 1 5 . 2 . 1 .510 7 0 . 0. 140 8. 0. 7 0 . 588 . 2 4 0 . 1 . 6 2 0 1 10. 0 . 5 8 8 10. 0. 5. 2 3 6 . 2 . 1 . 4 1 0 8 0 . 0. 238 6. 0. 5 0 0 . 2 5 5 . 2 . 0 . 2 6 0 6 5 . 0.08 1 3. 0. 5 0 0 . 6 6 . 2. 1 . 5 8 0 4 5 . 0. 190 8 . 5. 3 8 0 . 4 9 3 . 8 0 . 1 . 5 4 0 8 0 . 0 . 0 7 3 3 . 0. 3 5 0 . 5 3 0 . 18 . 1 . 150 6 5 . 0 . 0 9 7 0. 0. 7 2 0 . 466 . 5 0 . 1 . 3 2 0 6 3 0 . 0 . 0 8 6 0. 0. 1750. 347 . 8 0 . 1 . 3 9 0 2 1 0 O . 0 . 2 8 8 5. . 0. 185. 448 . 4 0 . 1 . 2 8 0 5 5 . 0 . 6 6 7 12. 0. 5 0 . 82 . 5 0 . 0 . 0 5 2 18. 0. 1 15 31 . 13. 3 5 . 7 3 . 5 0 . 0. 128 3 5 . 0 . 3 0 6 3. 0. 4 5 0 . 2 7 6 . 6 2 . 1 . 3 9 0 9 5 . 0. 177 5. 0. 2 3 0 . 2 8 6 . 2 4 0 . 0. 5 5 0 2 0 5 . 0. 192 4. 0. 7 5 . 0. 2 5 . 0 . 8 4 0 3 5 . 0 . 3 5 5 5. 0. 2 3 5 . 3 2 4 . 140. 0 . 9 5 0 185. 0.271 4 . 0. 5 2 0 . 454 . 6 2 . 0. 144 9 0 . 0 . 2 0 7 0. 0. 2 0 0 . 24. 4 0 . 1 .320 5 5 . 0 . 6 8 7 2 5 . 8. 10. 3 3 2 . 18. 0 . 0 7 2 5 0 . 0 . 0 6 6 4 . 0. 2 5 0 . 3 1 9 . 4 0 5 . 0 . 9 6 0 3 6 0 . 0 . 7 4 0 2. 0. 2 0 . 2 8 . 18. 0 . 0 5 6 8 5 . 0 . 2 9 8 3. 0. 8 2 0 . 144. 3 0 . 0 . 7 9 0 1 0 5 . 0. 152 0. 0. 2 8 0 . 130. 5 0 . 0. 178 5 5 . 0.064 0. 5. 7 3 0 . 7 6 . 2 5 . 1 . 3 6 0 8 5 . 744-1 9 0 .472 0 .363 102. 2 .948 2040. 57 . 1269 744 -2 9 0 .722 0 .471 325 . 4 . 106 651 1 . 105. 28169 7 4 4 - 3 9 9 .256 1 .958 1525. 10 .744 676. 1238. 672 6 0 0 - 1 9 3 .527 2 .443 3372 . 8 .521 5986. 487. 1343 6 0 0 - 2 9 0 .830 0 . 160 8 7 . 3 .283 2186. 102. 39992 500-1 9 0 .422 0 . 172 104. 3 .728 1317. 47 . 139 4 0 0 - 1 9 2 . 244 0 .345 180. 4 .266 3918. 253. 21942 4.00-2 9 2 .955 1 . 159 511. 3 .449 13091. 347. . 1404 4 0 0 - 3 9 4 .437 2 .549 437 . 8 .784 32605. 666. 1 140 400 -4 9 0 .953 0 . 122 133. 3 .051 7901 . 115. 3355 4 0 0 - 5 9 1 . 159 0 .381 157. 3 .654 3596. 143. 266 401-1 9 0 .715 0 .240 133. 1 .343 738. 103 . 3345 4 0 1 - 2 0 .059 0 .066 73 . 1 .697 535. 12. 12396 4 0 1 - 3 7 0 .015 0 .0 71 . 1 .533 426. 0 . 25490 4 0 1 - 4 0 .017 0 .007 276. 3 .406 504 . 0 . 2648 4 0 1 - 5 9 o .814 0 . 370 193 . 4 .582 174 1 . 87 . 5772 4 0 1 - 6 9 0 .030 0 .036 4301 . 2 .2G5 400. 13. 47 4 0 1 - 7 9 1 . 195 2 . 151 213 . 5 .310 704 1 . 148. 645 4 0 1 - 8 9 6 .641 4 .290 688 . 5 .040 331 1 . 860. 252 4 0 1 - 9 9 1 . 157 0 .216 313 . 2 .831 4569. 153 . 1927 4 0 1 - 1 0 9 0 .402 0 .257 82 . 3 .282 1 140. 50. 67 401-11 9 0 .496 2 .036 756. 4 . 153 1392. 44. 4 17 401 -12 9 2 .087 O . 404 226. 3 .834 2855. 266. 900 4 0 1 - 1 3 9 5 .323 1 .056 940 . 5 .035 2051 . 690. 863 401 -14 9 1 .625 4 . 1 10 1 158 . 9 . 680 5324 . 194 . 22430 402-1 9 0. 064 0. .059 80 . 2. .283 1124. 8. 837 . 100-1 9 0. 635 0. .324 96 . 2, .505 7853. 82 . 10051. 100-2 9 0. 868 5. .557 623 . 6. .884 3043. 146. 1019. 100-3 9 9. 834 4. ,230 1720. 9. 490 7140. 1454 . 6125. 100-4 9 19. 244 3. 289 1885. 12. ,971 3021 . 241 1 . 243. 100-5 9 1 . 531 0. 312 127. 6. 726 2958. 167. 1 182 . PT-1 9 0 . 083 0 . 103 56 . 1 . 763 869 . 0 . 16021. P T - 2 9 0 . 167 0 . 041 42. 3. 289 2031 . 10. 3693. • P T - 3 9 " 0 . 887 0 . 032 1686. 0. 956 255. 293. 7598 . PT -4 9 0 . 020 0 . 102 27 . 5. 051 17699. 0. 27273. P T - 5 9 0 . 048 0 . 136 70 . 0. 845 754. 0. 10607. NB-1 9 0 . 930 0 . 560 166. 2. 542 1492. 111. 22009. NB-2 9 0 . 275 0 . 330 100. 3. 046 10076. 35. 4430. NB-3 9 1. 750 0 . 483 218. 2. 134 2044 . 198. 6005. NB-4 9 6. 564 2. 457 1 175. 10. 844 973. 817. 2250. NB-5 9 6. 359 3. 090 1423. 8. 064 954 . 790. 2853. N8-6 9 1 . 589 0 . 539 244 . 2. 608 1664 . 18 . 3074 . NB-7 9 2 . 157 3. 674 955. 14 . 492 609. 270. 802. NB-8 9 4 . 485 4 . 056 2577 . 12 . 883 563 . 593. 2436. NB-9 9 0 . 380 1 . 137 325. 3. 715 1213. 48. 3535. BSTH-1 9 0 . 099 0 . 02 1 35. 4 . 028 8986. 14 . 193. BSTH-2 9 0 . 068 0 . 025 36 . 4 . 328 6902. 0. 9697. BSTH-3 9 8. 346 0 . 460 306 . 3. 1 1 1 6313. 1070. 298. USON- 1 9 0 . 347 0 . 122 6 7 . 2. 248 2514. 4 1 . 18663. SFCE-1 0 . 135 0 . 015 101 . 3. 197 1 187 . 20. 37327. SFCE -2 0 . 082 0 . 301 62 . 2 . 471 276. 22. 204. S F C E - 3 0 . 0 0 . 0 0 . 0 . 0 0 . 0 . 0 . 0.2G4 4 . 0 . 280. 197. 18. 1 .200 75 0 .427 6. 0 . 240 . 153. 25 . 1 .290 1 10 0 .055 0 . 0 . 1850. 425 . 1 10. 1 .380 24 50 0. 210 3. 0 . 1700. 360. 9 0 . 1.410 1550 0 .299 8. 0 . 430, 4 5 . 18. 1 .280 90 0 .150 2. 0 . 710. 296. 18. 1 .310 60 0 .252 0. 0 . 420 . 372. 10. 1 . 190 80 0. 303 4. 0 . 140. 236 . 240 . 0 . 9 7 0 70 0 .546 3. 0 . 440 . 275 . 8 0 . 1 .300 190 0 .257 0. 0. 120. 126. 30. 1 . 1 10 30 0 .228 6. 0 . 185. 354. 18. 0 . 9 1 0 45 0. 148 2. 0 . 50. 7 0 . 6. 0 .046 10 0.952 9. 13. 5. 50 . 10. 0 .052 5 0.851 7 . 2 0 . 10. 3 5 . 2. 0 .012 30 1 .887 19. 32 . 10. 0 . 2. 0 .019 35 0 . 184 0. 0 . 370. 313 . 2. 1.330 1 10 0.048 7 . 0 . 35. 381 . 2. 0 .084 55 0 .245 7. 0 . 180. 466. 10. 1 .300 160 0 . 176 5. 0 . 580. 319 . 18. 1 .090 155 0. 324 6. 0 . 65. 91 . 2 . 0 . 106 40 0. 132 0 . 4 . 690. 473 . 2 . 1 .360 160 0 .223 4 . 0 . 400 . 372. 2. 0 . 6 8 0 100 0. 22 1 6. 0 . 350. 291 . 6. 0 . 7 0 0 70 0. 175 5. 0 . 800 . 351 . 6. 1 .210 1 10 - 7 5 . 0 . 4250. 493 . 200. 1 .090 170 0 .085 4 . 0. 135. 6 5 . 2. 1 . 260 5 5 . 0 .505 4 . 0 . 25. 168. 780. 0 . 9 1 0 8 0 . 0 .258 4. 0. 1000. 328. 910. 1 . 140 150. 0.254 3. 0 . 585. 334 . 120. 1 .340 1 100. 0 .227 0 . 0 . 565 . 233 . 670. 1 . 170 1450. 0 .275 6 . 0 . 360. 316. 4 0 . 1 .390 175. 0.527 3. 0 . 10. 16. 30 . 0.064 4 0 . 0.308 8. 11. 25. 14. 18. 0 . 2 0 0 50 . 0.082 12. 0. 10. 15. 50 . 0 .015 30 . 0.651 0 . 0 . 580. 23 . 120. 1 .390 120. 0. 149 9. 0 . 15. 72 . 270. 0 . 0 2 7 2 0 . 0 .226 0 . 0 . 125. 388. 50 . 0 .096 6 5 . 0.461 0 . 0 . 1 10. 302 . 480. 1 .090 110. 0 . 254 4 . 0 . 160. 290. 50 . 0 . 5 5 0 50 . 0 . 105 0 . 0. 5050. 329 . 170. 0 . 170 150. 0 . 150 3. 0. 5400. 290. 90 . 0 . 152 130. 0.331 6 . 0 . 325. 383 . 18. 0 .234 25 . 0 . 105 0 . 0. 1300. 372 . 1 10. 0 . 2 6 0 1000. 0 . 109 0 . 0 . 475 . 443 . 62 . 0 . 5 0 0 5650. 0.241 3. 0 . 440 . 342. 25. 0.920 230. 0 . 224 1 . 0 . 260. 36 . 50. 1.350 7 5 . 0 .519 54. 0. 5. 15. 25 . 0.032 45 . 0 . 175 5. 0 . 155. 198. 405 . 1. 190 80 . 0 .613 8 . 0 . 15. 83 . 25. 0 .058 25 . 0.311 16. 19. 10. 9 . 30 . 0 .044 4 0 . 0.021 0. 0 . 715 . 352. 30. 1.090 50 . 0 . 0 0 . 0. 0. 0. 0. 0.0 0 . S F C E - 4 O. o 0. ,0 0. 0. ,0 0. 0. 0 S F C E - 5 0. o 0. 0 0. 0. ,0 0. 0. 0 S F C E - G 9 0. .044 0. ,045 4 6 . 1 . 030 1398. 0. 3 6 7 3 0 S F C E - 7 9 1. 6 5 0 0. ,205 343 . 2. ,222 1057 . 173. 1640 S F C E - 8 0. ,0 0. ,0 0. 0, .0 0. 0. 0 H C-1 9 2. 9 9 6 1 . ,001 7 2 6 . 4 , . 188 1 0 6 9 0 . 3 3 9 . 6 6 9 4 H C - 2 9 O. .744 0. . 168 9 7 . 2 , .630 4 3 2 3 . 7 9 . 5 3 6 0 H C - 3 7 0. 2 1 0 1 . ,006 2 1 0 . 2 .496 501 . 2 7 . 0 AM-1 0. .054 0. . 115 291 . 3 .418 149. 6. 374 AM-2 0. ,065 0. .092 6 5 . 1 , .756 6 3 . 5. 389 AM-4 0. .024 0, .015 2 2 2 . 4 .312 1 10. 0. 72 AM-5 0. .732 0 .094 1076. 19 .931 8 5 . 0. 188 AM-6 0, .042 0 .058 9 3 . 2 .646 1 8 6 4 7 . 0. 474 AM-7 0 .085 0 . 156 101 . 3 .442 7 9 . 10. 112 AM-8 0 .015 0 .024 191 . 2 .547 7 2 . 0. 253 C I - 1 0 . 144 0 .463 2291 . 0 .936 4 7 9 . 4 0 . 0 C I - 2 0 .014 0 .001 1 18. 1 .607 7 1 0 . 3 . 0 0. 0 0. 0. 0. 0. 0. 0.0 0 0. .0 0. 0. O. 0. 0. 0 . 0 0 0. .098 0. 0. 2 5 . 3 7 . 10. 0. 100 3 0 0. .226 4 . 0. 6 10. 3 4 6 . 100. 0. 112 35 0. .0 0. 0. 0. 0. 0. 0 . 0 0 0. .260 0. 0. 100. 2 9 8 . 5 0 . 1 .320 3 8 0 0. .281 4. 0. 7 0 . 1 4 6 . 10. 1 .020 6 0 0. .025 4 . 0. 2 0 . 3 0 3 . 10. 1 .010 65 0 .241 2 8 . 0. 5 3 0 . 4 2 . 10. 0 . 0 6 0 5 0 0. .085 5. 0. 7 4 0 0 . 4 6 . 10. 0. 122 25 0 .364 12. 0. 1 10. 1 1 . 6. 0 . 2 1 0 3 0 0, . 199 2 8 . 0. 195. 9 8 . 10. 0 . 0 5 8 105 0 .688 0. 0. 10. 5 0 . 18. 0 . 0 1 4 35 0 .097 3 3 . 0. 1 8 5 0 . 14 . 2. 1 . 190 45 0 .246 2 4 . 0. 9 5 . 0. 18. 0 . 0 1 1 2 0 0 .0 0. 0. 5 6 0 0 . 18. 8. 0 . 0 1 2 4 0 0 .0 0. 0. 5 5 . 6. 6. 0 . 0 2 3 15 < SAMPLE TP OZ RX GG GA SL PY AP 2 9 0 0 - 1 4 8 0 10 9 0 10 2 9 0 0 - 2 6 4 0 45 95 5 2 9 0 1 - 1 5 42 5 0 92 1 6 1 2 9 0 1 - 2 99 99 1 2 9 0 1 - 3 100 100 2 9 0 1 - 4 1 6 0 10 7 0 2 20 8 2 9 0 1 - 5 4 100 100 2 9 0 2 - 1 6 3 0 6 0 9 0 6 4 2 9 0 2 - 2 4 5 0 7 57 3 25 15 2 9 0 2 - 3 3 3 0 10 4 0 10 35 15 2 9 0 2 - 4 3 9 0 4 94 3 3 2 9 0 2 - 5 4 42 4 0 82 1 10 7 2 9 0 3 - 1 1 84 1 85 4 6 5 2 9 0 4 - 1 2 65 15 8 0 5 3 10 2 2 9 0 4 - 2 1 6 0 12 72 5 15 8 2 9 0 5 - 1 8 15 15 25 25 35 2 9 0 5 - 2 4 25 20 45 5 8 42 2 9 0 5 - 3 3 95 95 1 2 2 290G-1 7 10 10 5 15 55 15 2 9 0 6 - 2 5 5 5 3 0 30 35 2 9 0 6 - 3 5 57 57 3 5 2 0 15 2 9 0 6 - 4 6 15 15 15 25 4 0 5 2 9 0 6 - 5 4 4 0 4 0 15 8 35 2 2 9 1 0 - 1 6 25 25 15 3 0 3 0 2 9 1 0 - 2 6 30 3 0 15 30 2 0 5 2 9 1 0 - 3 5 95 95 5 2 9 1 0 - 4 8 3 0 25 55 25 2 0 2 9 1 0 - 5 8 5 0 5 0 5 2 0 15 10 2 9 1 0 - 6 4 3 0 30 10 5 55 2 9 1 0 - 7 3 8 0 8 0 1 19 2 9 1 0 - 8 18 81 81 4 5 291 1-1 5 5 5 84 8 3 291 1-2 5 25 25 15 25 27 8 291 1-3 24 25 6 5 9 0 3 5 2 291 1-4 12 2 0 5 0 7 0 15 5 8 2 2 9 1 1 - 5 18 15 5 0 65 10 15 10 291 1-6 26 5 y 5 2 0 5 7 0 2 9 1 2 - 1 5 6 0 10 7 0 10 5 10 2 9 1 2 - 2 12 71 71 25 2 9 1 2 - 3 12 97, 97 3 2 9 1 2 - 4 12 10 10 15 4 0 20 2 9 1 2 - 5 6 6 0 6 0 5 10 25 2 9 1 2 - 6 8 73 73 1 1 15 10 2 9 1 2 - 7 9 5 95 2 3 2 9 1 2 - 8 6 37 15 52 25 1 2 0 2 2 9 1 2 - 9 6 11 25 36 8 25 30 1 2 9 1 2 - 10 3 5 0 16 66 1 3 0 3 2 9 1 2 - 1 1 5 15 15 3 0 25 25 20 2 9 1 2 - 1 2 3 3 0 2 0 5 0 5 15 15 15 2 9 1 2 - 1 3 8 3 0 7 0 100 2 9 1 2 - 1 4 5 10 15 25 3 0 2 0 25 2 9 1 2 - 1 5 6 6 0 15 75 10 15 2 9 1 2 - 1 6 2 42 4 0 82 3 5 10 2 9 1 2 - 1 7 18 45 49 94 5 1 2 9 1 2 - 1 8 5 4 0 2 0 6 0 30 10 2 9 1 2 - 1 9 25 90 3 93 2 5 2 9 1 4 - 1 4 20 2 0 40 3 0 20 10 2 9 1 5 - 1 25 15 4 0 4 16 4 0 2 9 1 6 - 1 2 5 9 3 98 2 9 1 6 - 2 99 99 1 2 9 1 6 - 3 100 100 2 9 1 6 - 4 6 94 5 99 1 2 9 1 6 - 5 99 99 1 2 9 1 6 - 6 9 9 99 1 2 9 1 6 - 7 7 20 35 55 10 15 20 2 9 1 6 - 8 7 87 87 1 12 2 9 1 6 - 9 7 30 63 93 1 1 5 2 9 1 8 - 1 5 20 18 38 4 0 2 0 2 2 9 5 5 - 1 7 67 2 0 87 5 8 2 9 5 5 - 2 4 25 45 70 8 1 1 10 1 2 9 5 5 - 3 3 45 15 6 0 5 15 20 3 0 0 0 - 1 1 9 5 95 2 1 3 0 0 0 - 2 12 100 100 3 0 0 0 - 3 7 20 2 0 40 5 5 35 15 3 0 0 0 - 4 4 92 92 1 ft 2 3 3 0 0 1 - 1 2 9 9 99 1 3 0 0 1 - 2 2 74 10 84 1 10 5 3 0 0 1 - 3 1 84 10 94 1 3 2 3 0 0 1 - 4 1 79 79 4 8 5 4 3 0 0 1 - 5 3 75 2 0 95 1 3 1 3 0 0 1 - 6 3 55 3 0 85 3 5 7 3 0 0 1 - 7 10 45 15 6 0 4 18 17 1 3 0 1 0 - 1 8 44 25 69 1 15 15 3 0 1 4 - 1 1 95 5 100 3 0 1 6 - 1 1 77 10 87 5 8 3 0 1 6 - 2 7 75 75 1 12 12 3 0 1 6 - 3 2 47 15 62 3 5 20 10 3 0 1 6 - 4 2 6 0 2 0 8 0 5 15 3 0 1 6 - 5 2 75 2 0 95 5 3 0 1 6 - 6 10 20 6 0 8 0 5 15 3 0 1 7 - 1 12 40 44 84 1 15 3 0 1 7 - 2 17 10 6 0 70 10 5 15 3 0 1 7 - 3 48 10 ,50 6 0 5 10 25 3 0 1 7 - 4 13 10 15 25 5 8 55 7 3 0 1 7 - 5 4 10 25 35 5 10 15 35 3 0 1 7 - 6 22 75 75 5 6 12 2 3 0 1 7 - 7 100 100 3 0 1 7 - 8 27 92 92 3 0 1 7 - 9 3 9 5 95 5 3 0 2 0 - 1 12 45 25 7 0 2 3 5 15 3 0 2 0 - 2 15 15 15 30 25 15 3 0 2 0 - 3 4 0 4 0 35 25 3 0 2 0 - 4 15 35 5 0 45 5 3 0 2 0 - 5 6 53 53 45 2 3 0 2 0 - 6 35 25 6 0 20 2 0 3 0 2 0 - 7 18 12 10 22 16 14 48 3 0 2 0 - 8 14 5 0 50 10 8 32 3 0 2 0 - 9 18 3 0 25 55 2 20 23 3 0 2 0 - 1 0 3 78 2 8 0 15 5 3 0 2 0 - 1 1 36 45 42 87 1 2 10 3 0 3 2 - 1 2 40 3 0 70 5 15 10 3 1 0 4 - 1 - 1 3 0 3 0 10 15 4 0 3 1 0 4 - 1 7 3D 2 0 50 5 15 20 10 3 1 0 4 - 2 8 2 0 10 3 0 10 5 5 0 5 3 1 0 4 - 3 4 5 3 0 35 5 25 3 0 5 3 1 0 4 - 4 4 10 10 2 40 44 2 3 1 0 4 - 5 3 62 62 2 35 1 3 1 0 4 - 6 4 55 55 18 - 7 2 0 3 1 0 4 - 7 4 75 2 0 95 1 2 2 3 1 0 4 - 8 6 66 66 1 20 13 3 1 0 4 - 9 3 13 12 25 3 15 50 7 3 1 0 4 - 10 3 8 0 8 88 1 1 5 5 3 5 6 1 A - 1 1 20 5 0 70 3 7 20 3 5 6 1 B - 1 4 25 3 0 55 5 15 2 0 2 3 5 6 1 B - 2 3 35 2 0 55 2 15 25 2 9 0 0 - 1 2 95 95 2 1 2 9 0 0 - 2 2 55 55 5 15 15 9 0 0 - 3 3 98 98 1 1 9 0 0 - 4 10 6 0 6 0 2 2 18 18 9 0 0 - 5 4 54 45 99 1 9 0 0 - 6 2 98 98 1 1 9 0 0 - 7 1 85 5 9 0 5 4 1 9 0 0 - 8 1 22 56 78 2 5 15 9 0 0 - 9 2 55 3 0 85 5 6 4 9 0 0 - 1 0 8 65 5 70 5 5 10 10 9 0 0 - 1 1 6 83 5 88 4 4 2 2 9 0 0 - 1 2 6 85 3 88 2 1 3 6 9 0 0 - 1 3 7 40 20 6 0 1 10 15 13 9 0 0 - 1 4 2 4 0 2 0 6 0 5 13 10 12 9 0 0 - 1 5 5 45 45 1 15 25 14 9 0 0 - 1 6 8 65 65 5 1 14 15 9 0 0 - 1 7 2 6 0 15 75 10 15 8 0 8 - 1 4 45 14 59 4 8 14 15 8 0 9 - 1 5 46 4 0 86 3 4 7 8 0 9 - 2 5 45 20 65 3 2 25 5 8 0 9 - 3 2 25 25 25 10 35 5 8 0 9 - 4 3 6 0 60 2 30 4 4 8 1 2 - 1 6 4 0 4 0 80 7 12 1 8 1 2 - 2 6 69 10 79 5 8 8 8 2 5 - 1 7 • 55 55 10 2 0 15 8 2 5 - 2 5 79 5 84 1 5 10 8 2 9 - 1 8 85 85 5 10 8 2 9 - 2 4 6 0 25 85 15 8 3 7 - 1 1 59 20 79 10 10 1 8 3 7 - 2 1 5 0 4 0 9 0 1 4 5 8 3 7 - 3 3 75 2 0 95 1 1 3 8 3 7 - 4 5 80 13 93 1 5 1 8 3 7 - 5 1 35 5 0 85 3 5 4 3 8 3 7 - 6 5 6 0 6 0 3 25 7 5 8 3 7 - 7 12 55 55 15 25 5 8 3 7 - 8 10 10 2 0 3 0 40 8 3 9 - 1 8 92 92 8 8 5 0 - 1 3 60 6 0 5 5 25 5 8 5 0 - 2 4 75 8 83 5 3 6 3 8 5 0 - 3 7 85 85 5 10 8 5 0 - 4 3 85 85 15 8 5 0 - 5 7 25 25 18 42 15 8 5 0 - 6 5 15 15 3 0 10 35 25 8 5 0 - 7 14 63 63 4 8 10 15 8 7 0 - 1 3 98 98 2 8 7 0 - 2 21 80 15 95 1 4 8 7 0 - 3 4 95 95 5 8 9 0 - 1 1 30 4 0 7 0 3 12 15 3 8 0 0 - 1 2 34 5 0 84 1 7 8 3 8 0 2 - 1 4 4 0 37 77 20 3 3 8 0 2 - 2 3 25 4 0 65 10 25 3 8 0 2 - 3 1 5 89 94 5 1 3 8 0 2 - 4 6 65 2 0 85 2 10 3 7 0 0 - 1 7 70 2 0 9 0 1 4 5 7 0 0 - 2 7 96 96 1 1 2 7 0 0 - 3 8 5 5 25 18 37 7 0 1 - 1 1 75 2 0 95 1 2 2 7 0 8 - 1 2 77 2 0 97 1 2 7 0 8 - 2 5 35 3 0 65 8 12 15 7 0 8 - 3 2 22 65 87 5 8 7 0 8 - 4 3 75 10 85 2 10 3 7 0 9 - 1 12 85 10 95 2 3 7 1 6 - 1 4 7 0 18 88 5 4 3 7 1 8 - 1 5 55 15 70 8 10 12 7 1 8 - 2 5 5 0 15 65 15 15 7 2 0 - 1 6 70 7 0 12 15 7 2 0 - 2 3 45 45 9 0 2 3 5 7 3 1 - 1 5 4 0 57 97 2 7 3 1 - 2 10 65 25 9 0 10 7 3 1 - 3 4 39 4 0 79 3 7 6 5 7 3 5 - 1 1 37 2 0 57 8 2 0 15 7 3 5 - 2 3 84 5 89 1 10 7 3 5 - 3 3 4 0 4 0 8 22 3 0 7 3 5 - 4 3 8 0 7 87 3 4 5 1 7 3 7 - 1 7 4 0 53 93 1 6 7 3 9 - 1 . 1 83 10 93 1 6 7 3 9 - 2 2 8 0 5 85 5 4 4 2 7 4 2 - 1 1 4 0 57 97 3 7 4 2 - 2 8 7 0 7 0 15 15 7 4 2 - 3 4 83 10 93 2 5 7 4 2 - 4 4 55 25 8 0 1 5 4 10 7 4 4 - 1 2 5 0 4 0 9 0 2 8 7 4 4 - 2 1 65 25 9 0 1 4 5 7 4 4 - 3 8 37 15 52 12 13 15 5 6 0 0 - 1 8 4 0 3 0 70 2 8 15 6 0 0 - 2 2 45 4 0 85 2 8 5 5 0 0 - 1 5 58 15 73 5 10 12 4 0 0 - 1 2 10 77 87 3 8 2 4 0 0 - 2 6 4 0 42 82 3 4 3 8 4 0 0 - 3 5 20 55 75 5 15 3 4 0 0 - 4 15 85 5 9 0 2 3 5 4 0 0 - 5 2 6 0 15 75 12 5 8 4 0 1 - 1 3 4 0 42 82 2 8 4 4 4 0 1 - 2 93 93 5 2 4 0 1 - 3 1 5 0 45 v 95 5 4 0 1 - 4 94 94 6 4 0 1 - 5 4 85 8 93 1 3 3 4 0 1 - 6 5 70 2 0 9 0 1 5 4 0 1 - 7 2 40 2 0 6 0 8 5 15 12 4 0 1 - 8 2 35 3 0 65 5 15 10 5 4 0 1 - 9 1 97 97 1 1 1 4 0 1 - 1 0 12 70 7 0 3 5 22 4 0 1 - 1 1 2 45 35 80 5 10 5 4 0 1 - 1 2 3 68 25 93 2 3 2 4 0 1 - 1 3 3 65 25 9 0 1 1 3 5 4 0 1 - 1 4 3 45 2 0 65 6 » 25 4 4 0 2 - 1 3 60 2 0 8 0 8 12 100-1 4 64 3 0 94 2 4 100-2 1 24 4 0 64 15 1 15 5 100-3 5 4 0 40 16 19 20 5 100-4 18 25 15 4 0 4 25 25 3 1 0 0 - 5 6 17 5 0 67 2 7 10 .14 P T - 1 4 5 0 48 98 1 1 P T - 2 1 6 0 33 93 7 P T - 3 12 49 45 94 2 10 P T - 4 7 63 25 88 1 1 P T - 5 7 99 99 1 NB-1 18 74 2 0 94 1 2 3 NB-2 8 40 51 91 4 5 NB-3 2 65 21 86 1 6 3 4 NB-4 4 31 3 0 61 10 12 13 4 NB-5 8 67 2 0 87 2 7 3 1 NB-6 1 55 4 0 95 1 5 NB-7 4 38 25 63 10 2 20 3 NB-8 6 8 10 18 22 10 4 0 2 NB-9 1 55 23 78 2 2 10 8 BSTH-1 3 35 54 89 1 10 B S T H - 2 3 40 3 0 7 0 30 10 B S T H - 3 3 50 15 65 15 10 J S 0 N - 1 1 76 15 91 5 4 S F C E - 1 99 99 1 S F C E - 2 92 92 8 S F C E - 3 8 6 86 8 2 3 1 S F C E - 4 79 79 2 0 124 co io in pj CM •»- ID r - c i o CN r -O CN — r o c o c M O i n o i D P ^ O e o c o o i n i n c n e o i n c o c n o ^ c n c D o o o o i D c n o o r o o o c D ro in in o in in o cs o in — ro O oo oo o in in oo <p co a i cn i -O) ID O in to t - o rg I- io o in co in co co — co oo co n T CM in m i o i ^ c o ' - c M r o ' - c M ' f l - i n i p t ^ c O ' - C N 1 i > i i i i i i i u u i u i i J O U O E S S J J I S H M U O U U I I K < < < < < < O U u. u. u. u. in in lfl u i APPENDIX B SAMPLE PREPARATION, ANALYSIS AND PRECISION Two to three pound bulk chip samples and hand samples were c o l l e c t e d of vein material and host rock. Chip sampling, "rather than channel sampling, was used, so that future comparisons between t h i s data, and samples c o l l e c t e d by mine personnel, usually c o l l e c t e d as chip samples, w i l l be possible. The chip samples were processed through jaw, gyratory and coarse cone crushers, then s p l i t and pulverized i n a plate m i l l , using the f a c i l i t i e s of the processing l a b o r a t o r i e s of the Department of Mineral Engineering, U n i v e r s i t y of B r i t i s h Columbia. The m i l l e d samples were r o l l e d and sampled as necessary and transferred to p l a s t i c v i a l s . Occasionally, duplicate v i a l s were f i l l e d , and these samples analyzed as separate samples. P e r i o d i c a l l y , samples of quartz sand were pulverized to provide an i n d i c a t i o n of any contamination r e s u l t i n g from grinding. Samples were analyzed for Zn, Pb, Cu, Fe, Mn, Cd, Ca, Mg, Co, Ni and Ag at the Department of Geological Sciences, U n i v e r s i t y of B r i t i s h Columbia, using a Perkins-Elmer Atomic Absorption Spectrophotometer (A.A.S.) Model 303 with background c o r r e c t i o n . Au, Hg, As and Sb analyses were done by MIN-EN Laboratories Ltd., North Vancouver, B. C. Au and Sb were digested i n aqua regia and analyzed by A.A.S.; As was determined by spectrophotometric analysis of acid digestions; and Hg values were obtained using flameless an a l y s i s on acid digestions. The procedure for the i n i t i a l d i g e s t i o n c a r r i e d out at U.B.C, and used for the analysis of Zn, Pb, Cu, Fe, Mn, Cd, Ca, and Mg, i s outlined below. 1. Weigh 1.0000 gm of pulverized sample into a 500 ml volumetric f l a s k . 2. Moisten sample with a small quantity of d i s t i l l e d water. 3. Add 10 ml HCl and warm gently on a sand bath u n t i l no vigorous r e a c t i o n takes place, and H 9S i s no longer detectable. 1 2 6 4. Add 20 ml 1 H N C y l H610 . ( 5. Heat u n t i l a l l the HNO^ has been removed and the s o l u t i o n i s pale yellow. 6. Cool to room temperature. 7. D i l u t e to exactly 500 ml,with d i s t i l l e d water. 8. Mix well and trans f e r approximately 100 ml to a clean storage b o t t l e . A second d i g e s t i o n was c a r r i e d out to provide more concentrated solutions for the analysis of Ag, Co and N i . The procedure was as follows: 1. Weight 0.500 gm of sample and place i n a test tube. 2. Add 2 ml 4 HN0„:1 HC10.. 3 4 3. Take to dryness overnight on an a i r bath. 4. Cool and add 2.5 ml 6m HCL. 5. Warm gently for a few minutes to d i s s o l v e residue. 6. Dilute to 10 ml with d i s t i l l e d water. 7. Agitate and leave to s e t t l e . 8. Decant into sample b o t t l e . Standards were prepared for each element i n the appropriate acid solutions. Samples were run on the A.A.S. i n batches of 24, including blanks and duplicates, and c a l i b r a t e d against the standards. The data were input into a departmental computer program (AAPPM) to convert absorbance readings into ppm. Quality of Analyses A t o t a l of 20 blank samples were analysed. For a l l elements except Zn, these analyses were below the detection l i m i t of the equipment. Zn values were c o n s i s t e n t l y greater than zero (average value of 12 ppm). These values probably i n d i c a t e contamination within the reagent acids (Horsky, personal communication, 1979). This amount should be subtracted from a l l Zn r e s u l t s , to give a more accurate Zn concentration. However, because t h i s constant of contamination i s le s s than 0.0015 percent, and the lowest Zn values are greater than 0.01 percent the error c o r r e c t i o n w i l l have no e f f e c t of t h i s 127 i n t e r p r e t a t i o n of the data and so has been ignored. A l l quartz sand samples showed consistent values f o r each element, with no anomalously high values. This indicates that no major contamination occurred during grinding of the samples. A t o t a l of 77 duplicate analyses were made for the elements analyzed i n the f i r s t d i g e s t i o n at U.B.C. For Ag (second d i g e s t i o n ) , 92 duplicates were analyzed. Only a few duplicates were obtained for Ni and Co because of the very low values of these elements i n many of the samples (that i s , most samples analyzed i n duplicate for these elements contained undetected amounts of Co and N i ) . These duplicate samples include second digestions c a r r i e d out on the same powder, and digestions c a r r i e d out on those duplicate v i a l s prepared a f t e r m i l l i n g the sample. Thirty-two duplicate samples were included i n those analyzed by MIN-EN Laboratories Ltd. For most elements, the r e s u l t s of the duplicate analyses were ri g o r o u s l y examined, using the method of Thompson and Howarth (1977). In t h i s method, the v a r i a t i o n s i n p r e c i s i o n are calculated as a function of .'element concen-t r a t i o n , using the following formula; P = (2S /C) x 100 c c where P i s p r e c i s i o n as a percent, c C i s concentration, and S = S + K..C. c o l S i s the error (standard deviation) at zero concentration and o i s a constant, both, of which are obtained by simple regression from the duplicate data. > The data are grouped by small concentration ranges and the median of the absolute differences are regressed on concentration. The y-intercept of the regression gives S q and the slope i s K^ ~. The r e s u l t s of t h i s procedure are given i n Table B-I. For those elements whose concentration range, and/or d i s t r i b u t i o n and amount of data did not 128 TABLE B-I C o e f f i c i e n t s ^ f o r Linear Equations, Giving A n a l y t i c a l P r e c i s i o n as a .2 Function of Composition Element N S K a Approximate P r e c i s i o n at O 1 Q Average Concentration? Zn(%) 77 0.0030 0.0475 10% Pb (%) 77 0.0312 0.0592 16% Ca(%) 77 0.0115 0.0338 11% Mg(%) 77 0.0007 0.0545 11% As(%) 77 0.0256 0.0132 9% Cu(ppm) 77 7.74 0.0188 #6% Mn(ppm) 77 28.28 0.0138 5% Cd(ppm) 77 0.5116 0.0455 9% Sb(ppm) 77 9.28 0.0008 7% Ag(ppm) 92 1.68 0.1281 27% Au(ppb) 32 11.08 0.2021 42% 1. Based.of procedure of Thompson and Howarth (1978); P C=2S 0/C + 2K-j_, where C i s concentration i n appropriate units. 2. Based on N sets of duplicate analyses. 3. Concentration chosen to give i n d i c a t i o n of p r e c i s i o n i n range covered by analyses determined i n t h i s study. 129 allow the Thompson-Howarth method to be used, the q u a l i t y of the analyses was calculated using the square root of the mean square d i f f e r e n c e between H1 2 analyses (V S ). This information i s given i n Table B-2i-:' 130 TABLE B-2. Element N 2 S 3 X S./X (%) a Fe(%) 77 2.150 6.112 35.18 Hg(ppb) 32 138.87 106.83 129.99 Co(ppm) 47 2.47 7.19 38.37 Ni(ppm) 5 1.183 11.3 10.47 1. For those elements not evaluated by the Thompson-Howarth method (1978) 2. N i s the number of sets of duplicate analyses. j-^— 3. i s the square .root of the mean squared difference, \j 131 APPENDIX C ADDITIONAL ZONING PATTERNS The purpose of t h i s appendix i s to summarize a d d i t i o n a l information on element d i s t r i b u t i o n s not included i n the main body of the t h e s i s . Two aspects are discussed as follows: Part 1. element d i s t r i b u t i o n and comparison between Lass vein, and non-Lass vein samples; and Part 2. element zoning i n the Lass vein system for elements not included i n Chapter 3. Part 1 A t o t a l of 262 samples were c o l l e c t e d from various locations on Wallace Mountain, and from several showings i n the surrounding area. Only those samples of vein material hosted i n Westkettle granodiorite within the Lass system (209 samples) were considered i n Chapter 3. The remaining samples were not used because i t was f e l t that they might introduce extraneous factors into the zonation pattern. Twenty eight of the remaining samples were of vein material from the Lass system hosted i n Wallace Formation rocks. Of the other 25 samples, 2 were samples taken from the Carmi vein dump, approximately 7 km north of Beaverdell (Figure A - l ) , and 7 were from the Amcana camp, located i n the K e t t l e River v a l l e y , approximately 16 km east of Beaverdell. Both of these camps are Au rather than Ag camps, and were sampled to allow comparisons with the Au-rich samples from Beaverdell.". The remaining 16 samples were of non-vein ( i . e . host rock) material. The data has been grouped into four data sets. These are: 1. ALL (N=262) a l l the data c o l l e c t e d , Table A - l ; 2. VEIN (N=237) a l l vein material from the Lass vein system; 3. WESTKETTLE (N=209) a l l v e i n material from the Lass v e i n system that i s hosted i n the Westkettle granodiorite (Table 3-7); and 132 4. WALLACE (N=28) a l l vein material from the Lass vein system that i s hosted i n the Wallace Formation. The samples belonging to each group are coded i n d i v i d u a l l y i n Table A - l . Figures A - l and A-2 show the locations of a l l samples except Amcana. The differences between WESTKETTLE and WALLACE groups are shown i n Table C - l , where the r e s u l t s of the p a r t i t i o n i n g of logarithmic p r o b a b i l i t y p l o t s are tabulated. The following elements (populations i n brackets) have mean values in'WESTKETTLE which are greater than those i n WALLACE: Zn(A,B), Pb (A,B), Ag(A,B,B'), Fe(A,B), Cd(A,B), Hg(A,B), Sb(A), As(B), Mn and Cu. (Mn and Cu can only be compared as a si n g l e population, as only one popula-t i o n can be distinguished i n WALLACE.) Au(A), As(A), Mg(A,B), CA and Co have higher means i n WALLACE. Au(B), Sb(B) and Pb(B') are approximately the same i n both host rocks. These strong patterns suggest, that the differe n c e i n host rock type may have greatly influenced the composition of the vein. The higher Au, As and Co i n the WALLACE group, may indic a t e the source for some of the Au i n the main v e i n i n the east end of the Beaverdell mine area, where the mineralized b e l t i s c l o s e l y o v e r l a i n by Wallace Formation rocks. Other elements (Zn, Pb, Ag, Cd and Cu) do not appear to be d i r e c t l y linked to Wallace Formation rocks. C o r r e l a t i o n matrices also i l l u s t r a t e these d i f f e r e n c e s . Table C-2 i s the c o r r e l a t i o n matrix for WALLACE, which can be compared with Table 3-3, the c o r r e l a t i o n matrix for WESTKETTLE. The large number of multiple c o r r e l a t i o n s present i n the WESTKETTLE are not seen i n the WALLACE, and these are important i n i l l u s t r a t i n g the differences i n metal content between the two host rock u n i t s . At the 0.1 percent confidence l e v e l , the following c o r r e l a t i o n s occur i n WALLACE: Cd cor r e l a t e s with Zn and Pb; As cor r e l a t e s with Pb and Fe; Au correlates with Fe and Sb; and Sb also correlates', with Fe and Ag. It i s i n t e r e s t i n g that Au does not c o r r e l a t e with As at::this confidence l e v e l . This i s further evidence that the common Au-arsenopyrite a s s o c i a t i o n i s not important i n t h i s system. Because these 133 TABLE C - l Means Determined Graphically^ f o r P a r t i t i o n e d Element Populations i n the Four Data Sets; ALL, VEIN, WESTKETTLE, WALLACE, Beaverdell, South-Central B.C. Element 2 Population ALL iVEIN • ' WESTKETTLE WALLACE Zn % A 55 1.49 3.40 3.76 1.90 B 45 0.06 0.35 0.38 0.14 Cu ppm A 70 468 501 513 167 (only one populatic B 30 69 77 76 Fe % A 60 7.6 7.6 9.0 7.3 B 40 2.9 3.3 3.7 2.1 Cd ppm A 55 398 457 457 320 B 45 47 40 43 20 Sb ppm A 10 1413 1514 1318 407(10) B 90 74 78 79 81(81) I K 9) Ag ppm A 67 347 403 427 398 B 18 74 100 105 47 B' 15 15 23 34 11 Pb % A 38 2.79 2.99 3.00 2.51 . B 37 0.37 0.48 0.54 0.29 B' 25 0.08 0.14 0.12 0.09 Au ppb A 90 646 724 646 955 B 10 16 20 15 10 As %; A 70 1.2(65) 1.2(72) 1.2(72) 1.3(70) B .11(35) .13(28) .13(28) .11(30) Mn ppm A 5012(30) B 1429 1552 1202(70) 916 Ca ppm 1245 1265 1143 1358 Mg % A 70 0.29 0.26 0.25 0.47 B 30 0.08 0.09 0.08 0.11 Hg ppb 16 17 20 4 Co ppm 2.11 1.96 1.75 3.48 1. P a r t i t i o n e d into populations on logarithmic p r o b a b i l i t y p l o t s , using the methods of S i n c l a i r (1976). Means are geometric means. 2. Population proportions are shown; i f not a l l data sets p a r t i t i o n into the same r a t i o s , i n d i v i d u a l values are shown a f t e r each mean. TABLE C-2 Correlation Matrix for Samples from WALLACE, Lass Vein System, Beaverdell Mine Area, South-Central B.C. - C O R R E L A T I O N ZN CD cu SB PB F E AG AU AS HG MN CA MG CO TH - C O R R E L A T I O N CA MG CO TH MATRIX ZN 1.OOOO 0 . 7 7 1 3 0 . 5 8 7 9 0 . 5 0 6 9 0 . 5 8 1 8 3 8 8 7 1421 2 9 8 6 3 9 1 3 0 - 0 . 0 4 5 3 - 0 . 0 0 5 7 1867 0 7 9 0 0 . 0 6 0 4 MATRIX CA 1.OOOO 0 . 4 8 8 0 - 0 . 0 7 4 5 0 . 0 7 5 3 O. 0. O. 0. 0. -0. -O. CD 1 . OOOO 0. 5 2 1 6 0 . 5 3 2 3 0 . 7 4 5 0 0 . 3 4 9 6 1392 .31 10 .5621 .0 1647 - 0 . 1 1 0 9 -0.3386 -O.2087 0 . 0 1 4 9 MG 1 . OOOO 0. 4 1 1 6 0 . 4 2 32 CU SB PB FE 0. 0. 0. 0. 0. 1 .0000 0, .4 179 1 , .0000 0. .4698 0. ,5100 o. , 3 4 0 5 0. . 7914 0. .0081 0. 2 3 5 0 0. ,2603 0. 5758 0. 1016 0. 5317 0. 0 0. 0 o. 4141 O. 1S38 0. 0 0 2 8 -0. 1 140 0. 3141 -0. 3361 0. 1 127 -0. 1327 0. 1256 0. 1397 CO 1 . OOOO 0 . 2 4 5 6 TH 1.OOOO AG AU AS HG MN 1 .0000 0. .4819 1 . 0000 0 . 1372 -0. .0131 1 .0000 0 .2865 0. .6184 -0 . 1747 1 .0000 0. .6592 0. .6208 0 . 1322 0 . 2 7 2 2 1 . 0000 0. .0 0. .0 0. .0 0. .0 0. .0 1 .0000 0. .2679 0. 1868 0. ,1231 -0. .0923 0. 4 1 4 4 0. .0 1 . OOOO 0. 1855 0. 0 1 4 8 0. .0451 -o, .01 10 -o. . 2 9 3 3 0, .0 0. 1777 0. 2531 -0. 1865 0. 2004 -0. . 3 0 5 2 -0. 0 4 9 8 0 .0 0. 3 9 4 0 0. 1687 -0. 0 6 5 0 -0. 0 1 6 0 -0. . 1394 -0. . 1628 0. .0 0. 0 8 0 3 0. 1661 0. 1961 0. 0 5 9 6 0. 3 5 5 6 0. 2821 0. .0 0. 4 1 2 8 LO 4r> N=28 Values are s i g n i f i c a n t at the 1% l e v e l i f greater than 0.479. Values are s i g n i f i c a n t at the 0.1% l e v e l i f greater than 0.588. 135 c o r r e l a t i o n s are of logtransformed data, and because of the large number of undetected values for Ni, i t was not included i n the matrix. However, when non-logged values are correlated, a strong Ni-Co c o r r e l a t i o n i s seen, probably i n d i c a t i n g the influence of the volcanic component of the Wallace Formation on the vein composition. Co r r e l a t i o n matrices f o r the percentage estimates of quartz, waste rock, galena, sp h a l e r i t e , p y r i t e , and arsenopyrite for WESTKETTLE and WALLACE are shown i n Table C-3. At the one percent s i g n i f i c a n c e l e v e l , c o r r e l a t i o n s e x i s t between galena, s p h a l e r i t e , and p y r i t e i n the WESTKETTLE, but not with arsenopyrite. Quartz c o r r e l a t e s negatively with galena, s p h a l e r i t e and p y r i t e . At the one percent s i g n i f i c a n c e l e v e l , there are no c o r r e l a t i o n s i n WALLACE. The mean values for quartz and sph a l e r i t e are higher i n WESTKETTLE than i n WALLACE ( s l i g h t l y so for s p h a l e r i t e ) . Galena i s about the same i n both, and p y r i t e and arsenopyrite are much higher i n WALLACE. The samples from Carmi and Amcana can be compared with WALLACE, and the two segments of WESTKETTLE defined i n Chapter 3 (Table C-4). The average values of Ag, Zn, Pb, Fe, Cd, Hg, As and Sb are much lower i n Carmi and Amcana samples than i n either the west or east section of the Lass. Co values are greater than either Lass segments i n Amcana but l e s s i n Carmi, and Cu i s l e s s than Lass i n Amcana and greater i n Carmi. Both Carmi and Amcana contain l e s s Au than the eastern part of the Lass, but more than the western part. Amcana samples bear some resemblance- to WALLACE samples, with s i m i l a r averages f o r Cu, Fe, Mg and Sb. However, average values f o r Zn, Pb, Cd, Ca, Ag and As are higher i n WALLACE, while Mn, Co and Au are higher i n Amcana. Although Amcana and Carmi show some s i m i l a r i t i e s to mi n e r a l i z a t i o n i n the Lass system, the mi n e r a l i z a t i o n does not appear to be d i r e c t l y r e l a t e d . M i n e r a l i z a t i o n may have taken place at approximately the same time, but most s i m i l a r i t i e s can probably be at t r i b u t e d to the s i m i l a r i t y of the host rock present i n each case. Carmi i s hosted i n Westkettle granodiorite, close to '; 136 TABLE C-3 Cor r e l a t i o n Matrices of Mineral Percentages f o r WALLACE and WESTKETTLE Data Sets, Lass Vein System, Beaverdell Mine Area, South-Central B.C. QZ RX GA SL PY AP QZ 1.00 RX -.48 a.00 WALLACE N=28 GA-.57 -.03 1.00 s i g n i f i c a n t at 1% i f greater than 0.476 SL -.54 -.23 .73 1.00 PY -.43 -.04 .41 .34 1.00 AP -.47 -.04 -.03 .21 -.09 1.00 QZ RX GA SL PY AP QZ 1.00 RX -.45 1.00 WESTKETTLE N=209 GA -.55 -.21 1.00 s i g n i f i c a n t at 1% i f greater than 0.176 SL -.46 -.01 .38 1.00 PY -.47 -.18 .44 .26 , 1.00 AP -.06 -.13 -.04 -.02 .03 1.00 MEANS(%) WALLACE WESTKETTLE 40 36 29 6 i 6 6.6 MINERAL 51 QZ RX GA ?; 2 10.9 SL 1 9 13.2 PY 1 3 - 6 6.9 AP QZ=quartz RX=waste rock GA=galena SL=sphalerite PY=pyrite AP=arsenopyrite 137 TABLE C-4 Means < and Standard Deviations f o r West and East Zones of the Lass Vein System , Amcana, Carmi and WALLACE, Beaverdell Area,^South-Central B.C. Element Lass Amcana Carmi WALLACE West East Zn % 3.07 5.34 0.14 0.08 0.65 (4.56) (6.91) (0.09) (0.05) (6.7) Pb % 1.27 2.34 0.07 0.23 0.47 (1.35) (1.99) (0.02) (0.26) (4.97) Cu ppm 518 726 290 1204 167 (643) (671) (124) (768) (9.4) Fe % 5.75 8.72 4.00 1.27 4.07 (3.61) (4.33) (0.96) (0.24) (3.29) Mn ppm 2714 2127 2743 594 916 (3770) (2141) (2454) k (82) (14) Cd ppm 343 640 2.6 21 47 (463) (722) (1.2) (13) (21) Ca 6064 5980 265 — 1358 (13605) (11102) (53) (30) Mg % 0.24 G.22 0.27 — 0.28 (0.20) (0.16) (0.04) (2.76) Co ppm 3.8 5.3 12 0 3 (4.1) (4.76) (5) 0 (7) Au ppb 764 3163 1456 22828 184 (966) (3717) (944) (1960) (18) Ag ppm 291 208 37 11.6 ?91 (154) (131) (10.3) (4.2) (8) Hg ppb 89 28 10.6 ::. ,7? 4/ (153) (55) (2.0) (7) (5) As % 0.88 0.88 0.24 0.15 0.55 (0.51) (0.47) (0.15) (0.004) (3.99) Sb ppm 308 209 44 28 51 (757) (294) (10) (9) (6) Means are arithmetic means. There are : too few values for several of the groups to use logs. Number of samples are as : follows: West Lass - 159; East Lass - 42; Amcana - 7; Carmi - 2; WALLACE - 28. Standard Deviations are given i n brackets below each mean value. 138 the contact with the Wallace Formation, and Amcana i s reported to be l o c a -ted on the Wallace - Westkettle contact. Based on mineralogy and major and minor element d i s t r i b u t i o n s , Carmi does not appear to be a continuation of the same m i n e r a l i z a t i o n as i s found on Wallace Mountain, i n the Beaverdell mines. Part 2 Plan and section p l o t s of the four major elements (Zn, Pb, Ag, Au) are discussed i n Chapter 3. The remaining elements examined i n t h i s study are summarized here, s t a r t i n g with those elements w i t h - s t a t i s t i c a l l y d i f f e r e n t means in'ithe two zones of the mine. The Fe plan (Figure C-l) indicates that higher values occur i n the eastern part of the mine, with moderately high values i n four zones i n the western segment of the mine. On the section, most of the lower population i s located i n the west, with three areas of high values i n each end of the mine. Anomalous Cd values form a serie s of oval-shaped pods, some of which may interconnect, on the plan view (Figure C-2). There are four major regions of high values seen on the section p l o t , three of which coincide with the regions of high Zn. The plan view for Hg (Figure C-3) indicates that the highest concentra-tions of t h i s element are i n the west part of the mine, although a few moderately anomalous values also occur i n the east. The section p l o t i l l u s t r a t e s the e r r a t i c d i s t r i b u t i o n of Hg, with high values near the sur-face, i n the western end of the mine. The mean values f o r Sb In the two parts of the mine are not s t a t i s t i c a l l y d i f f e r e n t , according to the t - t e s t but the variances (F-test) are d i f f e r e n t (Table 3-5). A l l of the ten percent of the values which belong to the anomalous population are located i n the western part of the mine (Figure C-4). 139 N isooH UJ o CO o 500H S s i r . 0 1000 2000' 3000' DISTANCE Figure C - l : Reconstructed Plan and 'Section' Plot of the Lass Vein System, Beaverdell Mine Area;.South-Central B.C. Iron analyses are separated into background and anomalous populations as noted in the legend. Long dashed l i n e marks the boundary between the Ag and Au r i c h sections of the mine. 140 1500—| LU O Z < H-ioooH to .A* * 4~* A ^ i K » * 4 • < i 4 ^ 1 ? 4 .Vx « 117.t 2000' DISTANCE 5000' 8x10 H 1= Q . CL 6xl0"-| XJ o 4xlO'H 2x10 — I " 3000 1000' 2000' DISTANCE F i g u r e C -2: R e c o n s t r u c t e d P l a n and ' S e c t i o n ' P l o t o f the L a s s V e i n System, B e a v e r d e l l Mine A r e a , S o u t h - C e n t r a l B.C. Cadmium a n a l y s e s a r e s e p a r a t e d i n t o background and anomalous p o p u l a t i o n s as note d i n l e g e n d . Long dashed l i n e marks the boundary between the Ag and Au r i c h s e c t i o n s o f t h e mine. 141 N SOOn isoo'H LU O z < r-cn Q I0O01 5 0 0 H a * & « A « i I0001 2000' DISTANCE 3000 800-X3 Q. Q. 600H X 400-200-* a » " a x . i * ,.a.4 * * « , — 1 1 1 " r , — i 2000 DISTANCE Figure C -3 : Reconstructed Plan and 'Section' Plot of the Lass Vein System, Beaverdell Mine Area, South-Central B.C. Mercury analyses are separated into background and anomalous populations as noted in the legend. Long dashed l i n e marks the boundary between the Ag and Au r i c h sections of the mine. 1000 3000' 142 N soo« 1500'" UJ o z < I- ,, (/)t000 -| o 5 0 0 H « ^ 670 PP. A < 6T0 4 4 * • i - s . i 4^ 4 • i ' 2000' DISTANCE 8000H 1 C L C L 6000-CO 4000-2000H 1000 1 3000' 2000' DISTANCE Figure C -4 : Reconstructed Plan and 'Section' Plot of the Lass Vein System, Beaverdell Mine Area, South-Central B.C. Antimony analyses are separated into background and anomalous populations as noted i n the legend. Long dashed l i n e marks the boundary between the Ag and Au r i c h sections of the mine. 143 Mn also has s i m i l a r means, but d i f f e r e n t variances, between the two segments of the vein. The highest values are peripheral to the working areas, and i n two or three c e n t r a l l y located regions. High Mn values serve to define the low sulphide regions. On the section p l o t (Figure C-5), Mn values form a s e r i e s of peaks, gradually decreasing i n s i z e to the east. The following elements d i s p l a y s i m i l a r means and variances throughout the mine, i n d i c a t i n g that they are not influenced by the changing conditions believed to be occurring at the boundary plane shown on Figures C-l to C - l l . High As values are spread throughout the mine, and low values seem to be found peripheral to the mined areas (Figure C -6 ). The section p l o t for As shows the background and anomalous populations d i s t i n c t l y , but both of these populations are spread p r o p o r t i o n a l l y throughout the mine. High As values are found i n samples of the e n t i r e range of thicknesses. Low gangue samples generally contain high amounts of As, while samples with a large percentage of gangue may be high or low i n As. The highest As values are from samples with the larges t amounts of gangue. In some parts of the vein system, i t appears that As minerals are not n e c e s s a r i l y found i n conjunction with base metal sulphides, as can be seen by comparing the section p l o t for As with those for other elements. Cu (Figure C-7) occurs i n a series of s i x northeast-trending anomalous pods, three times as long as wide, spread across the plan of the mine. The highest values on the section p l o t are i n the western section of the mine, but moderately high values are found throughout the mine. Ca (Figure C-8) and Mg (Figure C-9) plans, l i k e that for Mn, define the low sulphide regions of the mine. Ca values are high i n two sections i n the west end of the mine, and two areas of moderately high Ca values are found i n the east. Anomalous Mg values are found over a large area i n the west, and form several peaks i n the c e n t r a l part of the mine as seen on the section p l o t . Mg values decrease towards the east. 144 N 1500'H o z < I—1000'-co soo'H 4*4} 4 * * i A** i 4 A .. » 4 4 ^ 4 ^ 4 A-SJl 4* A & 4 A * a 4 * 4 4 4 1000' 45 i*> —r~ 2 0 0 0 1 3 0 0 0 ' DISTANCE 8xlOH E CL CL 6x10• 4x10 • 2x10*-4* I O O O ' ^ ' 2 o o t f ^ 1 ^ o o ' , 0 0 0 DISTANCE F i g u r e C -5 : R e c o n s t r u c t e d P l a n and ' S e c t i o n ' P l o t of the L a s s V e i n System, B e a v e r d e l l Mine Area, S o u t h - C e n t r a l B.C. Manganese a n a l y s e s a r e s e p a r a t e d i n t o background and anomalous p o p u l a t i o n s as noted i n the l e g e n d . Long dashed l i n e marks the boundary between the Ag and Au r i c h s e c t i o n s o f the mine. 145 900» 1500'-L U O < O 0 C -to Q 5 0 0 H & » K300' 2 0 0 0 ' DISTANCE I.6H 1.2-« )1 CO < 0.8H 8 » 0.4-4 a « "3 iO' 2 0 0 0 ' DISTANCE — r ~ T 3 0 0 0 Figure C-6: Reconstructed Plan and 'Section' Plot of the Lass Vein System, Beaverdell Mine Area, South-Central B.C. Arsenic analyses are separated into background and anomalous populations as noted in the legend. Long dashed l i n e marks the boundary between the Ag and Au r i c h sections of the mine. 146 N • 1500-O CO 1000-5 0 0 H a'S-'-S1 * i a ^- -"4-* M > 130 A <150 1000" — 1 — 2000 DISTANCE 3000' 4x10-g 3x10-O. CL O 2x10-IxlOH a* » u a " * * » a a ., a * . • a «* a a $a a 1000' 2000" DISTANCE i 'lOCOw 3000' Figure C-7: Reconstructed Plan and 'Section' Plot of the Lass Vein System, Beaverdell Mine Area, South-Central B.C. Copper analyses are separated into background and anomalous populations as noted i n the legend. Long dashed l i n e marks the boundary between the Ag and Au r i c h sections of the mine. 147 N \ •iaaj A 4 => 4 * 6t « 4 4 . . » A * 4 *~a » \ « * 4 4 « , A J I » * - 4 pp** A -C 2500 44 '. « * -2000' DISTANCE Figure C-8: Reconstructed Plan and ' S e c t i o n ' Plot of the Lass Vein System, Beaverdell Mine Area, South-Central B.C. Calcium analyses are separated i n t o background and anomalous populations as noted i n the legend. Long dashed l i n e marks the boundary between the Ag and Au r i c h sections of the mine. 148 N I500H LU O SoooH CO 300H * * » * A .. » -"^ t " 4" «V * a £i A * » A A A * " 4 X " 8* K 3 0 C 2000 DISTANCE I 'iooo« 3 0 0 0 1.0-0.8-s -t £ - 6 J 0.4-0 2 H * * * x * x x "VKX" X - v X XX x * x x x * x x x x * - * « * < x . *> x j t i 6 *' 1 4 4 ? i f A 4*a A A 4 ^ 4 XX xx x*x |x T "T 3 0 0 0 ' 2000' DISTANCE Figure C - 9 : Reconstructed Plan and 'Section' Plot of the Lass Vein System, Beaverdell Mine Area, South-Central B.C. Magnesium analyses are separated into background and anomalous populations as noted in the legend. Long dashed l i n e marks the boundary between the Ag and Aii r i c h sections of the mine. 149 Co values do not show any d i s t i n c t i v e trends on the plan or section plots (Figure C-10). The Ni plan view (Figure C - l l ) shows only those samples which contained a detectable quantity of Ni. A comparison between the plan views and section plots i n Figures 3-4 to 3-7 and C-l to C - l l can be made. The patterns for gangue and sulphide minerals are d i s t i n c t i v e and generally show inverse relationships. A series of oreshoots can be defined for many of the elements, elongate along the st r i k e of the vein. Two zones, with different d i s t r i b u t i o n patterns for many of the elements i n each zone, can be defined. The elements described here tend to show similar trends to those considered i n Chapter 3, and very similar conclusions are applicable. 150 N I500H UJ O Z <I000'-I-a 500H 4 * 1000' " 2000' DISTANCE 3 0 0 0 40 H 30 H E C L Q . O20 O io H x*x 4 4 * 1000 k X X T 1 J — 2000 DISTANCE i -3000 Figure C-10: Reconstructed Plan and 'Section' Plot of the Lass Vein System, Beaverdell Mine Area, South-Central.B.C. Cobalt analyses are separated into background and anomalous populations as noted in the legend. Long dashed l i n e marks the boundary between the Ag and Au r i c h sections of the mine. 151 N I500H O z to 1000'-soo'H ><" 1000 n — 1 — 2000' DISTANCE 3000' 40 H 30 H E a. a . 20-10-1000' T7 2000' DISTANCE 3000' Figure C - l l : Reconstructed Flan and 'Section' Plot of the Lass Vein System, Beaverdell Mine Area, South-Central B.C. Only Nickel analyses greater than the a n a l y t i c a l detection l i m i t are shown on the plan. Long dashed l i n e marks the boundary between the Ag and Au r i c h sections of the mine. 152 REFERENCES Barnes, H.L. (ed.) 1967. Geochemistry of hydrothermal ore deposits; Holt, Rinehart and Winston Inc., New York, 670 p. Barnes, H.L. (ed.) 1979. Geochemistry of hydrothermal ore deposits, second e d i t i o n ; John Wiley and Sons Inc., New York, 798 p. Barton, P.B., J r . , and Toulmin, P. 1961. Some mechanisms for cooling hydro-thermal f l u i d s ; U.S. Geol. Survey, Prof. Paper 424-D, pp. 348-352. Bloom, M.S. 1979. Evidence for magmatic-hydrothermal processes from f l u i d i n c l u s i o n studies of stockwork molybdenum deposits; Ph.D. t h e s i s , i n preparation, Department of Geological Sciences, University of B r i t i s h Columbia. Boyle, R.W. 1968. The geochemistry of s i l v e r and i t s deposits; Geol. Survey of Canada, B u l l e t i n 160, 264 p. Boyle, R.W. 1979. The geochemistry of gold and i t s deposits; Geol. Survey of Canada, B u l l e t i n 280, 584 p. Boyle, R.W., and Jonasson, I.R. 1973. The geochemistry of arsenic and i t s use as an i n d i c a t o r element i n geochemical prospecting; Jour. Geochem. Expl., Vol.- 2, pp. 251-296. Buddington, A.F. 1959. Granite emplacement with s p e c i a l reference to North America; B u l l . Geol. Soc. Amer., Vol. 70, pp. 671-747.' Cairnes, C E . 1937. Preliminary report: mineral deposits of the west half of the K e t t l e River area, B.C.; Geol. Survey of CAnada, Paper 37-21. Campbell, S. 1981. Copper lode deposits and associated host rocks in and near the Q u i l l Creek area, southwest Yukon T e r r i t o r y ; Ph.D. t h e s i s , i n preparation, Department of Geological Sciences, University of B r i t i s h Columbia, j Christopher, P.A. 1975. Highland B e l l (Beaverdell) mine (82E/6E); i n Geology i n B.C., B.C. Min. Mines and Petroleum Re's., pp. G30-G33. Christopher, P.A. 1975. Carmi-Beaverdell area (82E/6,11); i n Geological Fieldwork, B.C. Min. Mines and Petroleum Res., pp. 27-31.' Christopher, P.A. 1976. Beaverdell area (82E/6E); i n Geological Fieldwork, B.C. Min. Mines and Petroleum Res., p.15. C o l l i n s , P.L.F. 1979. Gas hydrates i n Q^-bearing f l u i d i n c l u s i o n s and the use of freezing data for estimation of s a l i n i t y ; Econ. Geol., Vol. 74, pp. 1435-1444. 153 Duncan, I.J., and Parrish, R.R. 1979. Geochronology and Sr isotope geo-chemistry of the Nelson b a t h o l i t h : A post-tectonic i n t r u s i v e com-plex i n southeast B r i t i s h Columbia; Geol. Soc. Amer.. Abstracts with Programs, Vol. 11, No. 3, p. 76. Faure, G. 1977. P r i n c i p l e s of isotope geology; John Wiley and Sons Inc., New York, 464 p. Gale, B. 1950?. M i n e r a l i z a t i o n and paragenetic sequence at the Highland B e l l mine, Beaverdell, B.C.; Report submitted for geology course 409, University of B r i t i s h Columbia (unpublished). Godwin, C.I., S i n c l a i r , A.J., and Ryan, B.D. 1981. Lead isotope models for the genesis of carbonate-hosted Zn-Pb, shale-hosted Ba-Zn-Pb, and s i l v e r - r i c h deposits i n the northern Canadian c o r d i l l e r a ; Symposium volume of mineral deposits of the P a c i f i c Northwest, U.S. Geol. Survey, Open F i l e Report, i n press. Haas, J.L., J r . 1971. The e f f e c t of s a l i n i t y on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure; Econ. Geol., Vol. 66, pp. 940-94 6. Hedley, M.S., and Watson, K. de P. 1945. Lode gold deposits, c e n t r a l southern B r i t i s h Columbia; B.C. Dept. of Mines, B u l l . 20, part 3, pp. 16-17. Helgeson, H.C., and Garrels, R.M. 1968. Hydrothermal transport and deposition of gold; Econ. Geol., Vol. 63, pp. 622-635. Heyl, A.V. 1969. Some aspects of genesis of z i n c - l e a d - b a r i t e - f l u o r i t e deposits i n the M i s s i s s i p p i V alley, U.S.A.; Trans. I.M.M. Section B, Vol. 78, pp. B148-B160. Heyl, A.V., Landis, G.P., and Zartman, R.E. 1974. Evidence for the o r i g i n of M i s s i s s i p p i Valley type mineral deposits, a review; Econ. Geol., Vol. 69, pp. 992-1006. Jaffey, A.H., Flynn, K.F., Glendenin, L.E., Bentley, W.C, and E s s l i n g , A.M. 1971. P r e c i s i o n measurement of the h a l f - l i v e s and s p e c i f i c a c t i v i t i e s of U-235 and U-238; Phys. Rev.,.C, Vol. 4, pp. 1889-1906. Kalyuzhnyi, V.A., Davidenko, N.M., Zinchuk, I.N., Svoren', I.M., and Pisoyskiy, B.I. 1975. Role of CO2-H2O and CH4-H2O i n forming ores of gold at Chukotka; (abst.) i n F l u i d Inclusion ;Research, Vol. 8, (E. Roedder, e d i t o r ) , p. 82. Kenyon, J.M. 1978. Mo and U m i n e r a l i z a t i o n with s p e c i a l reference to a Mo-(U) deposit at Carmi, B.C.; unpublished M.Sc. t h e s i s , Dept. of Geology, University of Alberta. Kidd, D.F., and Perry, O.S. 1957. Beaverdell camp, B.C.; i n Structural geology of Canadian ore deposits, C.I.M. Congress Volume, pp. 136-141.' 154 Koch, G.S., J r . , and Link, R.F. 1971. S t a t i s t i c a l analysis of geological data, Volumes I and I I ; John Wiley and Sons Inc., 375 p. arid 438 p. Korobeinikov, A.F. 1974. Geochemistry of hydrothermal solutions of gold-ore deposits according to g a s - l i q u i d inclusions i n minerals; (abst.) i n F l u i d Inclusion Research, Vol. 8, (E. Roedder, e d i t o r ) , p. 94. Le, C., and T e n i s c i , T. 1977. U.B.C. TRP: Triangular regression package; Computing Centre, Univ'. of B r i t i s h Columbia, 184 p. Leary, G. 1967. Petrology and s t r u c t u r e of the Tuzo Creek molybdenite prospect near Penticton, B r i t i s h Columbia; unpublished M.Sc. t h e s i s , Dept. of Geological Sciences, University of B r i t i s h Columbia. LeCouteur, P.C. 1973. A study of lead isotopes from mineral deposits i n southeastern B r i t i s h Columbia and i n the A n v i l Range, Yukon T e r r i t o r y ; unpublished Ph.D. t h e s i s , Dept. of Geological Sciences, University of B r i t i s h Columbia. LeRoux, L.J., and Glendenin, L.L. 1963. H a l f - l i f e of Thorium-232; Proc. Natl. Conf. on Nuclear Energy, P r e t o r i a , A p r i l . L i t t l e , H.W. 1957. Geology of K e t t l e River, east half (82E), B.C.; Geol. Survey of Canada, map 6-1957. L i t t l e , H.W. 1957. Geology of K e t t l e River, west h a l f (82E), B.C.; Geol. Survey of Canada, map 15-1961. McKinstry, H.E. 1928. S i l v e r m i n e r a l i z a t i o n at Beaverdell, B.C.; Econ. Geol., Vol. 23, pp. 434-441. McLaren, G.F. 1978. Minor elements i n s p h a l e r i t e and t h e i r implications for metallogenesis of carbonate-hosted z i n c - l e a d deposits of the Yukon T e r r i t o r y and adjacent D i s t r i c t of MacKenzie; unpublished M.Sc. t h e s i s , Dept. of Geological Sciences, University of B r i t i s h Columbia. M i l l e r , R.L., and Kahn, J.S. 1962. S t a t i s t i c a l analysis i n the geological sciences; John Wiley and Sons Inc., New York, 483 p. Murdoch, J., and Barnes, J.A. 1973. S t a t i s t i c a l tables, second e d i t i o n ; MacMillan Press Lts., England, 40 p. Nguyen, K.K., S i n c l a i r , A.J., and Libby, W.G. 1968. Age of the northern part of the Nelson b a t h o l i t h ; Can. Jour. Earth Sciences, Vol. 5, pp. 955-957. Ohmoto, H., and Rye, R.E. 1979. Isotopes of Sulphur and Carbon; i n Geochemistry of hydrothermal are deposits, second e d i t i o n , H.L. Barnes, editor, pp. 509-521.. P e a t f i e l d , G.R. 1978. Geologic h i s t o r y and metallogeny of the 'Boundary D i s t r i c t ' , southern B r i t i s h Columbia and northern Washington; un-published Ph.D. t h e s i s , Dept. of'Geological Sciences, Queen's Univ. 155 Potter, R.W.,11. 1977. Pressure corrections for f l u i d - i n c l u s i o n homogenization temperatures based on the volumetric properties of the system NaCl-rUO; Jour. Research, U.S. Geol. Survey, Vol. 5, No. 5, pp. 603-607. Potter, R.W.,II, Clynne, M.A., and Brown, D.L. 1978. Freezing point de-pression of aqueous sodium c h l o r i d e solutions; Econ. Geol.,Vol. 73, pp. 284-285. Reinecke, L. 1910. Beaverdell D i s t r i c t , West Fork of K e t t l e River, B r i t i s h Columbia; Summary Report of the Geol. Survey Branch, Dept. of Mines, Canada, pp. 118-122. Reinecke, L. 1915. Ore deposits of the Beaverdell map area; Canada Dept. of Mines, Geological Survey, Memoir 79, 178 p. Roedder, E. 1963. Studies of f l u i d i nclusions I I : f r e e z i n f data and t h e i r i n t e r p r e t a t i o n ; Econ. Geol., Vol. 58, pp. 167-211. Roedder, E. 1972. Data of geochemistry, chapter J J : composition of f l u i d i n c l u s i o n s , U.S. Geol. Survey, Prof. Paper 440 J J . Roedder, E. (ed.) 1975. F l u i d i n c l u s i o n research, Vol. 8, 227 p. Roedder, E. 1977. F l u i d inclusions as tools i n mineral exploration; Econ. Geol., Vol. 72, pp. 503-525. Roedder, E. 1979. F l u i d inclusions as samples of ore f l u i d s ; i n Geochemistry of hydrothermal ore deposits, second e d i t i o n , H.L. Barnes, editor, pp. 684-737. S i n c l a i r , A.J. 1976. Applications of p r o b a b i l i t y graphs i n mineral ex-p l o r a t i o n ; Assoc. of Exploration Geochemists, Special Volume No. 4. Stacey, J.S., and Kramers, J.D. 1975. Approximation of t e r r e s t r i a l lead isotope evolution by a two-stage model; Earth and Planet. Science Let t e r s , Vol. 26, pp. 207-221. Staples, A.B., and Warren, H.V. 1946. Minerals from the Highland-Bell s i l v e r mine, Beaverdell, B.C.; University of Toronto Geological Series No. 50, pp. 27-33. Staples, A.B., and Warren, H.V. 1946. Mineralogy of the ores of the Highland-B e l l mine; Western Miner, May 1946 (pp. 38-43) and June 1946 (pp. 54-58). Tessari, O.J. 1979. Model ages and applied whole rock geochemistry of Ag-Pb-Zn veins, Keno H i l l - Galena H i l l mining camp, Yukon T e r r i t o r y ; unpublished M.Sc. t h e s i s , Dept. of Geological Sciences, University of B r i t i s h Columbia. Thompson, M., and Howarth, R.J. 1978. A new approach to the estimation of •- a n a l y t i c a l p r e c i s i o n ; Jour. Geochem. Expl., Vol. 9, pp. 23-30. 156 Toulmin, P., and Clark, S.P.,Jr. 1967. Thermal aspects of ore formation; i n Geochemistry of hydrothermal ore deposits, H.L. Barnes, editor, pp. 437-464. Verzosa, R.S., and Goetting, B. 1972.- Geology nad h i s t o r y of the Highland B e l l mine, Beaverdell, B.C.;paper presented at the f a l l meeting of C.I.M. i n Prince George, B.C. White, D.E. 1980. Active geothermal systems and re l a t e d ore deposits; preprint version 1/26/80. White, W.H. 1949. Beaverdell, 49°:119° SE; Min. of Mines of B r i t i s h Columbia, Annual Report, pp. 138-148. Information of the Beaverdell area can be found i n most summary and annual reports of the B.C. Minister of Mines, s t a r t i n g i n 1897. 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0052672/manifest

Comment

Related Items