Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Geology and genesis of the wolverine polymetallic volcanic rock-hosted massive sulphide (VHMS) deposit,… Bradshaw, Geoffrey David 2003

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Notice for Google Chrome users:
If you are having trouble viewing or searching the PDF with Google Chrome, please download it here instead.

Item Metadata

Download

Media
831-ubc_2003-0195.pdf [ 9.21MB ]
Metadata
JSON: 831-1.0052630.json
JSON-LD: 831-1.0052630-ld.json
RDF/XML (Pretty): 831-1.0052630-rdf.xml
RDF/JSON: 831-1.0052630-rdf.json
Turtle: 831-1.0052630-turtle.txt
N-Triples: 831-1.0052630-rdf-ntriples.txt
Original Record: 831-1.0052630-source.json
Full Text
831-1.0052630-fulltext.txt
Citation
831-1.0052630.ris

Full Text

GEOLOGY AND GENESIS OF THE WOLVERINE POLYMETALLIC VOLCANIC ROCK-HOSTED MASSIVE SULPHIDE (VHMS) DEPOSIT, FINLAYSON LAKE DISTRICT, YUKON, CANADA by GEOFFREY DAVID BRADSHAW B . S c , The University of British Co lumb ia , 1996 A T H E S I S S U B M I T T E D IN P A R T I A L F U L F I L L M E N T O F T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F M A S T E R O F S C I E N C E In T H E F A C U L T Y O F G R A D U A T E S T U D I E S (Department of Earth and O c e a n Sc iences) W e accept this t h e s i s ^ s conforming tojt^e required standard T H E U N I V E R S I T Y O F BRIT ISH C O L U M B I A Apri l 2003 © G e o f f r e y D a v i d B r a d s h a w , 2003 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of bQ^T, <wd O(CCM) SCW\)C€ The University of British Columbia Vancouver, Canada Date DE-6 (2/88) Abstract T h e Wo lve r i ne polymetal l ic m a s s i v e su lph ide depos i t (6 ,237,000 tonnes grad ing 1 2 . 7 % z inc , 1.3% copper , 1.6% lead, 370.9 g/t s i lver and 1.8 g/t gold) is located in the F in layson L a k e district (FLD) of sou theas te rn Y u k o n Territory, C a n a d a . Its d iscovery .in 1995 contr ibuted to the largest s tak ing rush in the history of Y u k o n and provided the impetus for scient i f ic research in this poorly s tud ied part of the Y u k o n T a n a n a terrane. T h e depos i t o c c u r s in a highly de fo rmed, but coherent , st rat igraphic s u c c e s s i o n of ear ly M iss i ss ipp ian to early P e r m i a n metavo lcan ic and metased imentary rocks . Reg iona l geo log ic mapp ing and l i thogeochemica l s tud ies are cons is tent with its format ion on the margin of an evolv ing ens ia l i c back -a rc o c e a n bas in , be tween the Y u k o n - T a n a n a terrane and the ancest ra l North A m e r i c a n craton. Loca l strat igraphy cons is t s of four major units including (from oldest to youngest) : (1) quartz- and fe ldspar-phyr ic vo lcan ic las t ic rhyolite, c a r b o n a c e o u s argillite and rhyolite porphyry; (2) in terbedded argill ite, aphyr ic rhyolite and magnet i te-carbonate-pyr i te exhal i te; (3) f ragmenta l rhyolite; and (4) in terbedded c a r b o n a c e o u s argill ite, g reywacke , basal t and rhyolite. Su lph ide mineral izat ion occu rs at the "Wolver ine hor izon", wh ich is located at the contact between Unit 1 and Unit 2, and marks a signif icant c h a n g e in the charac ter of the vo l can i sm be tween the footwall and the hanging wal l of the deposi t . T h e footwall cons is ts of a s e q u e n c e of c a r b o n a c e o u s sha le , quar tz-and fe ldspar-phyr ic vo lcan ic las t ic rhyolite, and minor fe ldspar-phyr ic rhyolite si l ls, w h e r e a s the hanging wal l cons is t s of intercalated aphyr ic rhyolite, c a r b o n a c e o u s sha le , and carbonate-pyr i te exhal i te. T w o separa te Z n - P b - A g m a s s i v e su lph ide l enses , s i tuated at the s a m e strat igraphic hor izon, c o m p r i s e mos t of the Wo lve r i ne deposi t . They are laterally connec ted by s t ra tabound, s e m i - m a s s i v e rep lacement -s ty le , Z n -P b - A g mineral izat ion. Copper - r i ch mineral izat ion common l y rep laces the Z n - P b - A g mineral izat ion at the base of the l e n s e s and in the footwall rep lacement z o n e s indicating that pr imary meta l and minera l zonat ion are p reserved . Mult iple z o n e s of su lph ide str inger ve ins and reg ions of con fo rmab le chlor i te-ser ic i te -carbonate alteration are deve loped within pe rmeab le vo lcan ic las t ic rocks of the footwal l . B a r i u m -rich phengi t ic m ica , biotite, Mg-r ich chlorite, and sideri te are assoc ia ted preferential ly with m a s s i v e su lph ide mineral izat ion. T h e Z n - P b - A g m a s s i v e su lph ide l enses fo rmed at 264 ± 33°C, b a s e d on the arsenopyr i te geo thermometer . T h e su lph ide str inger z o n e s fo rmed at slightly h igher tempera tures (mean = 282 ± 7°C) ii based , on es t imates der ived f rom the compos i t ion of assoc ia ted hydrothermal chlori te. La te -s tage quartz-chalcopyr i te-pyr i te ve ins fo rmed at tempera tures between 265°and.353°C (mean = 3 0 2 ± 22°C), b a s e d on fluid inc lus ion microthermometry . Minera l iz ing f luids are low salinity (2.1-8.5 wt.% N a C l equiv. ; m e a n = 6.0), two -phase , a q u e o u s solut ions with high l iquid-to-vapor ratios. E v i d e n c e of fluid boi l ing or p h a s e separat ion is absent . Minera l izat ion is es t imated to have formed at a m in imum water depth of - 1 0 4 8 meters b a s e d on the ave rage salinity and temperatures of homogen iza t ion . In-situ 8 3 4 S va lues of su lph ide minera ls f rom m a s s i v e su lph ide l enses and su lph ide str inger ve ins d isplay a p ronounced b imoda l distribution with m o d e s of 0.8 % 0 and 12.0 %o. T h e lighter 5 3 4 S va lues are near the top of the l enses , w h e r e a s the heav ier va lues c o m e f rom the underly ing str inger ve ins. T h e 5 3 4 S va lues and ex is tence of two distinct populat ions, sugges t that sulfur w a s der ived by a combinat ion of b iogenic and inorganic reduct ion of seawa te r su lpha te within a partly c l o s e d , anox ic bas in . Minera l izat ion fo rmed through a combina t ion of seaf loor hydrothermal vent ing f rom multiple su lph ide m o u n d s and sub-sea f loo r rep lacement p r o c e s s e s . T h e reduced nature of the ambient bottom water in the bas in likely contr ibuted to the preservat ion of the su lph ide m o u n d s . T h e geo log ic sett ing, sty les of mineral izat ion, and phys i co -chemica l condi t ions of the mineral iz ing f luids all sugges t that the Wo lve r i ne deposi t fo rmed in a geo log ica l env i ronment transi t ional be tween that wh ich hosts c l a s s i c b imodal vo lcan ic rock-hosted m a s s i v e su lph ide depos i ts and that wh ich hosts sed imentary exhalat ive m a s s i v e su lph ide depos i ts . T h e genet ic mode l d e v e l o p e d for the Wo lve r i ne deposi t in this study will benefit explorat ion in the F in layson L a k e district by providing spec i f i c detai ls on the geo log ica l sett ing and local depos i t iona l env i ronment n e c e s s a r y for the format ion and preservat ion of t hese unusua l polymetal l ic depos i ts . Table of Contents Abstract " Table of Contents iv List of Tables viii List of Figures • ' x Foreword x " Acknowledgements x » Chapter 1 - General Introduction 1 Methodology 1 Geological Mapping 2 Petrographic and Mineralogical Studies 2 Fluid Inclusion Studies ! 3 Sulphur Isotope Studies 3 Thesis Presentation 3 References •• 5 Chapter 2 - Geology of the Wolverine polymetallic volcanic-hosted massive sulphide deposit, Finlayson Lake district, Yukon Territory, Canada 7 Abstract 8 Introduction 9 Exploration History 1 ° Regional Geology 11 Deposit Geology 1 2 Metamorphism And Structure ?2 Stratigraphy 13 iv Mineralization 17 Massive Stratiform Sulphides 78 Semi-massive Replacement Sulphides 78 Sulphide Stringer Veins 79 Sulphide Textures 20 Mineral and Metal Zonation 21 Hydrothermal Alteration 22 Discussion 24 Future Work 25 Acknowledgments 25 References 27 Figure Captions 31 Chapter 3 - Genesis of the Wolverine deposit, Finlayson Lake region, Yukon: transitional volcanic-hosted massive sulfide (VHMS) and Sedimentary Exhalative (SEDEX) mineralization in an ancient continental margin setting 47 Abstract 48 Introduction • 50 Geologic Setting 5 0 Regional geology 50 Metamorphism and structure •' 57 Deposit stratigraphy 52 Mineralization 54 Mineralization styles and textures 54 Mineral-metal zonation and deposit architecture 57 Hydrothermal Alteration 58 Alteration styles 59 Composition of hydrothermal alteration minerals 60 Hydrothermal alteration and its relationship to massive sulfide mineralization 62 v Temperature Estimates of Mineralization 63 Arsenopyrite thermometry 63 Chlorite thermometry 64 Fluid Inclusions 65 Fluid inclusion petrography 66 Fluid inclusion microthermometry 66 Interpretation of fluid inclusion data 67 Water depth estimate 68 Sulfur Isotopes 69 Methodology 70 Results 7 0 Interpretation of sulfur isotope data 77 Genesis of the Wolverine Deposit 73 Depositional environment • 73 Physico-chemical conditions of sulfide deposition 74 Conclus ions 76 Acknowledgments 7 8 References 79 Appendix - Descriptions of samples used for arsenopyrite and chlorite geothermometry 91 Figure Captions 9 3 Chapter 4 - Conc lus ions and implications for exploration 125 References 1 2 8 Appendix A - Sample List 1 2 9 Appendix B - Geochemistry 1 3 3 Analytical Procedures • 1 3 4 Geochemical analyses of low sulphide samples 144 Geochemical analyses of high sulphide samples 159 v i Appendix C - Mineral composit ions Appendix D - Fluid inclusion data List of Tables Chapter 3 Table 1. C h e m i c a l compos i t i ons of representat ive s a m p l e s of sul f ide mineral izat ion f rom the-Wolver ine depos i t 118 Table 2. Represen ta t i ve electron microprobe ana l yses of ga lena , tetrahedrite and sphaler i te f rom the Wo lve r i ne depos i t 119 Table 3. Represen ta t i ve electron microprobe ana l yses of muscov i te , biotite, calc i te, anker i te and sideri te f rom the Wo lve r i ne depos i t 120 Table 4 . E lec t ron m ic roprobe a n a l y s e s of arsenopyr i te from the Wo lve r i ne deposi t , with es t imates of format ion temperature 121 Table 5. E lect ron mic roprobe ana l yses of chlorite f rom the Wo lve r i ne depos i t with es t imates of format ion temperature 122 Table 6. M ic ro thermomet r i c da ta from type I (primary) fluid inc lus ions in q tz -py-ccp str inger ve ins f rom the Wo l ve r i ne depos i t 123 Table 7. Su l fur isotope data for in-situ ana l yses of sul f ide minera ls f rom the Wo lve r i ne depos i t 124 viii List of Figures Chapter 2 Figure 1. Locat ion m a p of the Y u k o n - T a n a n a Te r rane and the Wo lve r i ne depos i t 34 Figure 2. Reg iona l geo log ica l m a p of the F in layson L a k e district 35 Figure 3. Reg iona l strat igraphic co lumn for the F in layson L a k e district 36 Figure 4. Loca l geo logy of the Wo lve r i ne depos i t 37 Figure 5. G e n e r a l i z e d strat igraphic co lumn for the Wo lve r ine depos i t 38 Figure 6. G e o l o g i c a l c ross -sec t ion 1 6 2 5 0 E through the Lynx zone of the Wo lve r i ne depos i t 39 Figure 7. G e o l o g i c a l c ross -sec t ion 1 6 7 0 0 E through the Wo lve r ine z o n e of the Wo lve r i ne depos i t 40 Figure 8. Pho tog raphs of host- rock l i thologies 41 Figure 9. Con tou rs of true th ickness of m a s s i v e su lph ide mineral izat ion 42 Figure 10. Pho tog raphs of m a s s i v e su lph ide mineral izat ion 43 Figure 11. Distr ibut ion of str inger ve ins and rep lacement-s ty le mineral izat ion 44 Figure 12. Latera l metal zon ing at the Wo lve r i ne depos i t 4 5 Figure 13. Pho tog raphs of sty les of hydrothermal alteration 46 Chapter 3 Figure 14. Locat ion m a p of the Y u k o n - T a n a n a Ter rane and the Wo lve r i ne depos i t 98 Figure 15. Reg iona l strat igraphic co lumn for the F in layson L a k e district 99 Figure 16. G e o l o g y of the Wo lve r ine deposi t a rea 100 Figure 17. Pho tog raphs of host- rock l i thologies 101 Figure 18. Distr ibution of mineral izat ion sty les 102 Figure 19. Pho tog raphs of mineral izat ion styles 103 Figure 20. Latera l metal zon ing in the Wo lve r i ne depos i t 104 Figure 21. Pho tom ic rog raphs of su lph ide mineral izat ion 105 Figure 22. H is togram of sphaler i te compos i t i ons 106 Figure 23. Pho tog raphs of hydrothermal alteration styles 107 Figure 24. Distr ibution of hydrothermal alteration sty les 108 ix Figure 25. Hydrothermal alteration mineral compos i t i ons 109 Figure 26. Pho tog raphs of arsenopyr i te and chlori te gra ins 110 Figure 27. H i s tog rams of temperatures from arsenopyr i te and chlori te thermometry 111 Figure 28. Pho tog raphs of fluid inc lus ions in hydrothermal quartz 112 Figure 29. H i s tog rams of data f rom fluid inclusion micro thermometry 113 Figure 30. Pho tom ic rog raphs of laser ablat ion craters f rom in-situ su lphur isotope ana lys is 114 Figure 31. H is togram of data from in-situ su lphur isotope ana lys is 115 Figure 32. Tec ton i c mode l for the format ion of the Wo lve r i ne depos i t 116 Figure 33. S c h e m a t i c c ross -sec t ion of the Wo lve r i ne depos i t 117 F o r e w o r d Th i s thes is is compr i sed of two papers that were produced at the Universi ty of Brit ish C o l u m b i a but in conjunct ion with resea rche rs in university, government , and industry. T h e pu rpose of this foreword is to properly a c k n o w l e d g e the contr ibut ions of severa l co l laborators. T h e pape r that c o m p r i s e s C h a p t e r 2 w a s pub l ished in Y u k o n Explorat ion and G e o l o g y a n d w a s co-au thored by J a n Pete r and S u z a n n e Pa rad i s (Geo log ica l Survey of C a n a d a ) , Terry T u c k e r (Expatr iate R e s o u r c e s Ltd.), and S t e v e R o w i n s (Universi ty of Bri t ish Co lumb ia ) . T h e s e authors contr ibuted to the field work on wh ich this paper is b a s e d , and were involved in the deve lopment of the i deas p resen ted . Dr. 's R o w i n s a n d Pe te r contr ibuted editorially. T h e paper that c o m p r i s e s Chap te r 3 w a s prepared for subm iss i on to E c o n o m i c Geo logy , and w a s co-au thored by S t e v e Row ins , J a n Peter , a n d B r u c e Tay lo r (Geo log ica l Su rvey of C a n a d a ) . T h e s e authors p layed an editorial role and he lped to deve lop and s h a p e the ideas in the paper. Dr . 's R o w i n s and Pete r prov ided gu idance a n d superv is ion in all a s p e c t s of the paper. Dr. Tay lo r did the su lphur isotope a n a l y s e s and prov ided gu idance in their interpretation. xi Acknowledgements Throughout this research at the Universi ty of Brit ish C o l u m b i a , and dur ing the many months (years?) spent in Y u k o n ' s F in layson L a k e district, many people have contr ibuted their ideas , knowledge, and support . Firstly, I wou ld like to ex tend my gratitude to my superv isor S teve R o w i n s for a l lowing m e the opportunity to do this resea rch at U B C , and for support , pat ience, good adv ice and s e n s e of humor throughout the cou rse of the project. J a n Pe te r is espec ia l ly thanked for his invo lvement and suppor t in all a s p e c t s of this thes is , and I could not have a s k e d for a better superv isor and mentor. A t the Universi ty of Brit ish C o l u m b i a , Kel ly R u s s e l l and J i m Mor tensen are thanked for re-introducing m e to the wor ld of sc i ence , for a c a d e m i c inspirat ion, and for serv ing on my commi t tee . Mat i R a u d s e p p and E l i sabet ta Pan i are thanked for their invaluable ass i s t ance in acqui r ing m u c h of the analyt ical data in this thes is . S teve P ie rcey and Lawrence Win te r are thanked for n u m e r o u s d i scuss ions , both a c a d e m i c a n d otherwise, that w e had dur ing my stay at U B C . T h a n k s to fe l low graduate s tudents S i m o n H a y n e s , Scot t Hef fernan, S teve Israel and S teve Q u a n e for their adv ice and f r iendship, and to the many other co l l eagues and f r iends who have m a d e U B C an en joyable p lace to s p e n d the last two years . I have had the privi lege of work ing with severa l sc ient is ts f rom the Geo log i ca l Su rvey of C a n a d a and other gove rnmen t su rveys during the cou rse of this project. I wou ld l ike to thank S u z a n n e P a r a d i s for her ideas and adv i ce in the early s tages of this thesis , and B ruce Tay lor for the su lphur isotope a n a l y s e s and for the " c rash -cou rse " in stable isotope geochemis t ry . T h a n k s to Don Murphy f rom the Y u k o n G e o l o g y P r o g r a m and J o a n n e Ne l son f rom the Brit ish C o l u m b i a Geo log i ca l Survey for shar ing their ideas and insights. Final ly, many co l l eagues in industry have had a great inf luence on the ideas con ta ined within this thes is . I wou ld espec ia l l y like to thank Terry T u c k e r for the original opportunity to work on the Wo lve r i ne deposi t , and for shar ing m u c h of his knowledge of the geo logy of the F in layson lake region during the yea rs w e have worked together. I would a lso like to take this opportunity to thank industry co l l eagues Dav id Terry, A n d r e w Turner, Pe te r Thurs ton , Dav id G a l e , R o b D u n c a n , and Pete r Ho lbek, w h o have all been involved with the Wo lve r ine depos i t at var ious t imes and have, albeit indirectly, contr ibuted their i deas and know ledge to this thesis. xii Chapter 1 - General Introduction T h e Wo l ve r i ne polymetal l ic ( Z n - P b - C u - A g - A u ) m a s s i v e su lph ide depos i t is located in the F in layson lake district (FLD) of southeastern Y u k o n Territory, C a n a d a . Its d iscovery in 1995 contr ibuted to the largest s tak ing rush in the history of Y u k o n and provided the impetus for scient i f ic r esea rch in this poorly s tud ied part of the Y u k o n T a n a n a terrane (YTT) . R e c e n t r esea rch by Murphy (1998), P ie r cey et a l . (2001), and Hunt (2002) has focused on the regional geo log ica l sett ing, petrology, geochemis t ry and isotopic s tud ies of the F L D rocks. Th i s thes is is the first detai led study of the geo log ica l , g e o c h e m i c a l and isotopic charac ter is t ics of one of the m a s s i v e su lph ide depos i ts in the district. Deta i led depos i t s tud ies s u c h a s this a re n e c e s s a r y to construct genet ic depos i t mode ls , wh ich may be used to predict the locat ion of s imi lar depos i t s in the F L D and e l sewhere in the wor ld. T h e Wo lve r i ne depos i t has e levated metal content c o m p a r e d to many other vo lcan ic - rock hosted m a s s i v e su lph ide ( V H M S ) depos i ts (e.g. Frankl in , 1993) and is the only V H M S depos i t of this type d i scove red to date within the early to middle M iss i ss ipp ian vo lcan ic and sed imentary rocks of the Wo lve r i ne s u c c e s s i o n of the F L D . T h e spat ia l and tempora l assoc ia t ion with, abundant sed imentary rocks sugges ts that the Wo lve r i ne depos i t may be a transit ional or "hybrid" variant be tween the typical Z n - P b - C u V H M S depos i t s (Lydon, 1984) and sed imentary exhalat ive depos i t s (Gus ta f son a n d Wi l l i ams , 1981, Lydon et a l . , 2000) . T h e interpreted intracontinental back -a rc sett ing for the Wo lve r i ne depos i t (P ie rcey et a l . , 2001) is s imi lar to that of the prolific Bathurst depos i ts of N e w Brunswick , C a n a d a (Lentz, 1999) and the depos i ts currently forming in the O k i n a w a T rough , J a p a n (Ha lbach et a l . , 1993). Methodology Integrated minera l deposi t s tud ies c o m b i n e detai led geo log ica l mapp ing with laboratory techn iques that may inc lude: (1) geochrono logy, (2) geochemis t ry , (3) minera logy and minera l chemist ry , (4) s tab le a n d rad iogen ic isotope ana lys is ( common ly sulphur, lead, ca rbon and oxygen) a n d (5) fluid inclusion microthermometry . In this study, the Wo lve r ine deposi t w a s invest igated us ing a combina t ion of geo log ica l mapp ing , petrography and minera l chemistry , fluid inc lus ion microthermometry , and in-situ 1 sulphur isotope ana lys is . T h e s e part icular methods were c h o s e n b e c a u s e : (1) they were d e e m e d most useful for the construct ion of the genet ic mode l g iven the current state of know ledge of the Wo lve r i ne depos i t geology; and (2) they util ized wor ld -c lass facil i t ies that were ava i lab le to the author at the Universi ty of Brit ish C o l u m b i a ( U B C ) and at the Geo log i ca l Survey of C a n a d a ( G S C ) . Geological Mapping Detai led geo log ica l mapp ing of the Wo lve r i ne strat igraphy in outcrop and drill co re w a s done initially by the author dur ing the s u m m e r s of 1996 and 1997. More c o m p r e h e n s i v e mapp ing and samp l ing for this thes is study w a s done in the s u m m e r s of 2000 and 2001 with the aid of Dr. S t e p h e n R o w i n s of U B C and Drs . J a n Pete r and S u z a n n e Pa rad i s of the G S C . Mos t of the strat igraphy in the a rea of the depos i t (and throughout the success ion ) w a s wel l known by the author by the s u m m e r of 2000 , and detai led field work during 2000 and 2001 largely f ocused on : (1) def ining and del ineat ing mineral izat ion sty les; (2) def in ing and del ineat ing hydrothermal alteration sty les assoc ia ted with mineral izat ion; and (3) col lect ing s a m p l e s speci f ica l ly for petrographic, minera log ica l , su lphur isotope, and fluid inc lus ion s tud ies. T h e s e data c o m p r i s e the pr imary bas is for construct ion of the genet ic depos i t mode l . Petrographic and Mineralogical Studies Sixty- two s a m p l e s of rock co l lected from the Wo lve r ine depos i t were submi t ted for po l ished thin sec t ions in order that the types of hydrothermal alteration and different sty les of su lph ide mineral izat ion cou ld be s tud ied. A combinat ion of opt ical mineralogy, scann ing electron m ic roscopy , and e lectron mic roprobe a n a l y s e s were used to determine: (1) the minera logy and nature of the vo lcan ic and sed imentary host rocks ; (2) the mineralogy, mineral chemist ry and textures of the different s ty les of m a s s i v e su lph ide mineral izat ion; and (3) the minera logy and mineral chemist ry of hydrothermal ly al tered vo l can ic - rocks assoc ia ted with su lph ide mineral izat ion. T h e quali tat ive and quantitat ive data der ived from these s tud ies we re crit ical in identifying and character iz ing many geo log ica l features unique to the Wo lve r i ne deposi t . 2 Fluid Inclusion Studies Micro thermomet r i c ana lys is of fluid inc lus ions w a s done by the author at the Universi ty of Brit ish C o l u m b i a under the superv is ion of Dr. S tephen Row ins . Data were co l lec ted f rom approx imate ly o n e -hundred fluid inc lus ions t rapped in four s a m p l e s of hydrothermal quartz f rom m a s s i v e su lph ide and underly ing su lph ide str inger mineral izat ion. T h e identif ication of rare pr imary fluid inc lus ions assoc ia ted with su lph ide minera l izat ion prov ided constra in ts on the phys i co -chemica l cond i t ions (p ressure -temperature-compos i t ion) of the mineral iz ing f luids. Sulphur Isotope Studies Fif teen s a m p l e s of rock contain ing different su lph ide minera ls and represent ing different sty les of su lph ide mineral izat ion present at the Wo lve r i ne depos i t were se lec ted for in-situ su lphur isotope ana lys is . A n a l y s e s we re done in the S tab le Isotope Laboratory at the Geo log i ca l Su rvey of C a n a d a under the superv is ion of Dr. B r u c e Taylor . M e a s u r e m e n t s were done us ing an in-situ laser ablat ion techn ique. T h e main object ive of this study w a s to determine the source(s) of su lphur in the minera l iz ing f luids. S e a w a t e r w a s found to be the dominant sou rce of sulphur. Th i s f inding is typical of most V H M S depos i ts , and these data provide ev idence that ambient basin condi t ions (i.e. relatively reducing) were important in the format ion and preservat ion of the m a s s i v e su lph ide l enses that compr i se the Wo lve r i ne deposi t . Thesis Presentation T h e resul ts of this research are presented as two separa te papers . T h e first paper s u m m a r i z e s the geo log ica l sett ing and sal ient field character is t ics of the Wo lve r i ne V H M S depos i t b a s e d upon detai led field s tud ies in the s u m m e r s of 1996, 1997, and 2000. Th i s study d raws heavi ly on d i amond drill hole logs, p lan m a p s , c r o s s - s e c t i o n s and reports f rom Expatr ia te R e s o u r c e s Limited. Th i s paper w a s pub l ished in Y u k o n Explorat ion and G e o l o g y (2000) and e m p h a s i z e s the major host l ithology, the types and sty les of minera l izat ion, and the related hydrothermal alterat ion. In the s e c o n d paper , a c o n c i s e descr ip t ion of the host rock lithology is fo l lowed by a comp le te descr ipt ion of the archi tecture of the m a s s i v e su lph ide 3 deposi t , and detai led resul ts f rom minera log ica l , fluid inc lus ion, and su lphur isotope s tud ies. T h e s e c o m b i n e d geo log ica l and g e o c h e m i c a l data are used to der ive a mode l for the g e n e s i s of the Wo lve r i ne deposi t . Th is paper has been prepared for subm iss i on to Economic Geology. C o m p l e t e compi la t ions of g e o c h e m i c a l , minera log ica l , fluid inclusion and su lphur isotope data are inc luded a s a p p e n d i c e s to this thes is . T h e presentat ion of this research a s two separa te papers a l lows for the t imely publ icat ion of results. S o m e minor repetit ion of information is unavo idab le by this presentat ion format, but it is hoped that any i nconven ience to rev iewers of this thes is is min imal and is justif ied by the benef i ts of rapid publ icat ion in peer - rev iewed g e o s c i e n c e journals . 4 References Frank l in , J . M . , 1993, V o l c a n i c - a s s o c i a t e d m a s s i v e su lph ide depos i ts , in: K i r kham R.V. , S inc la i r , W . D . , Thorpe , R.I. and Duke , J . M . , (eds.), Minera l deposi t mode l ing : Geo log i ca l Assoc ia t i on of C a n a d a , S p e c i a l P a p e r 40 , p. 315-334 . G u s t a f s o n , L .B. and Wi l l i ams , N., 1981, Sed imen t -hos ted stratiform depos i ts of copper , lead, and z inc. E c o n o m i c G e o l o g y 7 5 t h Ann iversary V o l u m e , p. 139-178. H a l b a c h , P., P race jus , B., Mar ten, A . , 1993, G e o l o g y and minera logy of m a s s i v e su lph ide o res f rom the central O k i n a w a T rough , J a p a n , E c o n o m i c Geo logy , v. 88, p. 2210 -2225 . Hunt, J . A . , 2002 , V o l c a n i c - a s s o c i a t e d m a s s i v e su lph ide ( V M S ) mineral izat ion in the Y u k o n - T a n a n a Ter rane and coeva l strata of the North A m e r i c a n miogeoc l ine , in the Y u k o n and ad jacent a reas . Explorat ion and Geo log i ca l S e r v i c e s Div is ion, Y u k o n Reg ion , Indian and Northern Affa i rs C a n a d a , Bulletin 12, 107 p. Lentz , D . R V 1999, Petro logy, geochemis t ry , and oxygen isotope interpretation of fe ls ic vo lcan ic rocks host ing the B runsw ick 6 and 12 m a s s i v e su lph ide depos i ts (Brunswick belt), Bathurst mining c a m p , N e w Brunswick , C a n a d a . E c o n o m i c Geo logy , v. 94. p. 57-86. Lydon, J . W . , 1984, V o l c a n i c hosted m a s s i v e su lph ide depos i ts . Part 1: A descr ip t ive mode l . G e o s c i e n c e C a n a d a , vol . 11, p. 195-202. Lydon , J . W . , 2000 , A synops i s of the current understanding of the geo log ica l env i ronment of the Sul l ivan deposi t : in Lydon , J . W . , Hoy, T., S lack , J . F . , and Knapp , M .E . , (eds.), T h e geo log ica l env i ronment of the Sul l ivan deposi t , Brit ish C o l u m b i a , Geo log i ca l Assoc ia t i on of C a n a d a , Minera l Depos i t s Div is ion, S p e c i a l Publ icat ion No . 1, p. 12-31. 5 Murphy, D .C . , 1998, Strat igraphic f ramework for syngenet ic mineral occu r rences , Y u k o n - T a n a n a Ter rane south of F in layson Lake : A p rogress report, in: Y u k o n Explorat ion and G e o l o g y 1997, C F . Roo ts and D. S . E m o n d (eds.) , Explorat ion and Geo log i ca l S e r v i c e s Div is ion, Y u k o n , Indian and Northern Af fa i rs C a n a d a , p. 51-58. P ie rcey , S . J . , Pa rad i s , S . , Murphy, D .C . , Mor tensen , J . K . , 2001 . G e o c h e m i s t r y and pa leotecton ic sett ing of fe ls ic vo lcan ic rocks in the F in layson L a k e vo lcan ic -hos ted m a s s i v e su lph ide district, Y u k o n , C a n a d a . E c o n o m i c Geo logy , v. 96, p. 1877-1905. 6 Chapter 2 - Geology of the Wolverine polymetallic volcanic-hosted massive sulphide deposit, Finlayson Lake district, Yukon Territory, Canada Geof f rey D. B radshaw, S tephen M. R o w i n s Department of Earth and Ocean Sciences, The University of British Columbia 6339 Stores Road, Vancouver, British Columbia V6T 1Z4 Canada J a n M. Pe te r Mineral Resources Division, Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario, K1A 0E8 S u z a n n e Pa rad i s Mineral Resources Division, Geological Survey of Canada, 9860 West Saanich Road, Sidney, British Columbia, V8L 4B2 Terry L T u c k e r Expatriate Resources Ltd., Suite 701-475 Howe Street, Vancouver, British Columbia, V6C 2B3 Bradshaw , G . D . , Tucke r , T .L . , Peter , J . M . , Pa rad is , S . and Row ins , S . M . , 2 0 0 1 . G e o l o g y of the Wo lve r i ne polymetal l ic vo lcan ic hosted m a s s i v e su lph ide deposi t , F in layson L a k e district, Y u k o n Territory, C a n a d a . In: Y u k o n Explorat ion and G e o l o g y 2 0 0 1 , D.S. E m o n d and L .H. W e s t o n (eds.), Exp lorat ion and Geo log i ca l S e r v i c e s Div is ion, Y u k o n , Indian and Northern Affa i rs C a n a d a , p. 269-287 . 1 G e o l o g i c a l Su rvey of C a n a d a Contr ibut ion #2000205 7 Abstract T h e Wo lve r i ne polymetal l ic vo lcan ic -hos ted m a s s i v e su lph ide depos i t o c c u r s in a highly de fo rmed but coheren t strat igraphic s u c c e s s i o n of ear ly M iss i ss ipp ian to early P e r m i a n metavo lcan ic and metased imenta ry rocks of the Y u k o n - T a n a n a Ter rane . T h e deposi t is part of the emerg ing F in layson L a k e vo lcan ic -hos ted m a s s i v e su lph ide district and conta ins a geo log ica l resource of 6 ,237 ,000 tonnes grading 1 2 . 7 % z inc , 1.3% copper , 1.6% lead, 370.9 g/t s i lver and 1.8 g/t go ld. Loca l strat igraphy cons is t s of four major units including (from oldest to youngest) : (1) quartz- and fe ldspar-phyr ic vo lcan ic las t ic , c a r b o n a c e o u s sed imentary and porphyrit ic intrusive rocks ; (2) in terbedded argillite, aphyr ic rhyolite and magnet i te-carbonate-pyr i te exhal i te; (3) f ragmenta l rhyolite; and (4) in terbedded c a r b o n a c e o u s argillite, g reywacke , basal t and rhyolite. T h e mineral izat ion cons is ts of pyrite and sphaler i te, with l esse r pyrrhotite, chalcopyr i te , ga lena , tetrahedrite-tennanti te and arsenopyr i te. Mineral izat ion occu rs a s m a s s i v e strati form, m a s s i v e rep lacement and su lph ide str inger ve ins. Su lph ides are typically m a s s i v e , f ine-gra ined, layered and locally b recc ia ted . Sty les of hydrothermal alteration identified in the host rocks inc lude prox imal si l ici f ication and more distal chlori t ization, serici t izat ion and , in p laces , carbonat izat ion. Future resea rch will be f ocused on identifying the sal ient phys i co -chemica l contro ls on the mineral izat ion p r o c e s s and their impl icat ions for vo lcan ic -hos ted m a s s i v e su lph ide explorat ion in the district and e l sewhere . 8 Introduction T h e d iscovery of the Wo lve r i ne polymetal l ic vo lcan ic -hos ted m a s s i v e su lph ide ( V H M S ) depos i t in 1995 w a s one of the most exci t ing events on the C a n a d i a n explorat ion s c e n e in the mid -1990 's . Its d iscovery , together with that of severa l other b a s e metal depos i ts and mineral o c c u r r e n c e s of potential e c o n o m i c s ign i f i cance (e.g., Fyre Lake , Ice, G P 4 F , K u d z Z e Kayah) hera lded the e m e r g e n c e of the F in layson L a k e a rea in Y u k o n as a potentially signif icant V H M S district. A s of 1998, the Wo lve r i ne deposi t conta ins a h igh-grade geo log ica l resource of 6 ,237,000 tonnes contain ing 12 .66% z inc , 1 .33% copper , 1.55% lead, 370.9 g/t s i lver and 1.76 g/t go ld. R e c e n t drill ing in 2000 modest ly e x p a n d e d this geo log ica l resource and the depos i t rema ins open at depth. Explorat ion efforts in and around the Wo lve r i ne depos i t by joint-venture partners Expatr iate R e s o u r c e s Limited (Expatr iate) and A tna R e s o u r c e s Limited (Atna) cont inue, with the ult imate a im of expand ing the exist ing resource and def ining new a r e a s of V H M S potential. T h e d iscovery of s ignif icant V H M S mineral izat ion in the F in layson L a k e district has prov ided the impetus to better unders tand the tectonic and geo log ica l history of the a rea . Reg iona l geo log ica l mapp ing by the Y u k o n G e o l o g y P rog ram w a s initiated in 1996 and results are s u m m a r i z e d in Murphy and T i m m e r m a n (1997), Murphy (1998), and Murphy and P ie rcey (1999a,b,c) . Tec ton i c and meta l logen ic s tud ies conduc ted under the a u s p i c e s of the Geo log i ca l Survey of C a n a d a ' s ( G S C ) Nat ional Mapp ing program ( N A T M A P ) were initiated in 1999 (Thompson et a l . , 2000) . Mo re recently, another G S C project to study the character izat ion and genes i s of V H M S depos i ts in the district w a s initiated. T h e present study fo rms part of this last project. In this contr ibution w e briefly review the explorat ion history of the Wo lve r i ne d iscovery , and update and expand upon the geo log ica l sett ing and field character is t ics of the Wo lve r i ne V H M S depos i t a s out l ined in T u c k e r et al . (1997). In particular, w e focus on the major host lithology, the types and sty les of mineral izat ion present , and the related hydrothermal alterat ion. Pre l iminary interpretat ions of the tectonic sett ing and m o d e of e m p l a c e m e n t are p resented . 9 Exploration History D u e to its geograph ic isolat ion, the meta l logenic potential of the a rea host ing the Wo lve r i ne depos i t w a s virtually unknown until the 1970 's and early 1980 's , when explorat ion by the F in layson Joint Ven tu re explorat ion synd icate (a consor t ium m a n a g e d by Archer , Ca th ro & A s s o c i a t e s (1981) Limited) identif ied numerous , st rong, mul t i -e lement g e o c h e m i c a l anoma l i es in so i ls over a g o s s a n o u s a rea devo id of vegetat ion ( termed the "Fet ish showing") . T w o smal l -d iameter co re ho les were dri l led in 1974 to test this g e o c h e m i c a l anomaly , and both intersected low-grade copper - and z inc -su lph ide mineral izat ion up-dip of the present Wo lve r i ne deposi t . Desp i te this d iscovery of b a s e metal minera l izat ion, the c la ims were a l lowed to lapse . Equity Eng ineer ing Limited (Equity) s h o w e d renewed interest in the a rea in 1993 after conc lud ing that the region held p romise for host ing V H M S - s t y l e mineral izat ion b a s e d on favourab le strat igraphy and the p r e s e n c e of surf ic ial g e o c h e m i c a l anoma l ies . O n behalf of A tna , Equity s taked c la ims over the deposi t a rea and carr ied out a field explorat ion program, which cons is ted of geo log ica l mapp ing , prospect ing , and rock/soi l samp l ing . In 1995, W e s t m i n R e s o u r c e s Limited (Westmin) opt ioned the property f rom A tna and undertook a v igorous explorat ion program des igned to eva luate the mineral potential of favourab le vo lcan ic strat igraphy, wh ich had a str ike- length in e x c e s s of 10 km. Explorat ion activity cons i s ted of detai led geo log ica l mapp ing and sys temat ic grid soi l samp l ing . Th i s f ieldwork led to the identif ication of severa l addi t ional mul t i -e lement g e o c h e m i c a l anoma l ies . T h e st rongest of these w a s in the a rea of the original Fet ish show ing , wh ich w a s subsequent ly r enamed the "Wolver ine zone" . A d iamond-dr i l l ing program by W e s t m i n in A u g u s t 1995 intersected m a s s i v e su lph ide mineral izat ion in the Wo lve r i ne z o n e in the first hole. T h e first fol low-up drill hole, comp le ted in early S e p t e m b e r of 1995, intersected 8.4 m of m a s s i v e su lph ide grading 7.63 g/t go ld, 1358.3 g/t si lver, 0 . 56% copper , 3 . 4 5 % lead and 1 4 . 2 2 % z inc . T h e d iscovery meri ted ex tens ive drill ing in the fall of 1995 and in the fol lowing s u m m e r s of 1996 and 1997. After the 1997 program, 71 drill ho les had in tersected the mineral izat ion and W e s t m i n ca lcu la ted a resource of 6 ,237,000 tonnes grading 12 .66% z inc , 1.33% copper , 1.55% lead, 370.9 g/t si lver and 1.76 g/t gold (Tucker et a l . , 1997). T h e depos i t w a s def ined over a str ike length of approx imate ly 750 m and rema ined open down-d ip to the northeast where it c r o s s e d onto c la ims owned by C o m i n c o Limited (Cominco) . 10 In 1996, W e s t m i n carr ied out metal lurgical testing on the Wo lve r i ne su lph ide minera l izat ion. Resu l t s in late 1997 conf i rmed the p resence of unusual ly high levels of se len ium (average of 1035 ppm S e , Expatr ia te R e s o u r c e s , 2000 , unpubl ished data), a deleter ious contaminant , wh ich cou ld signif icantly impact the saleabi l i ty of the minera l concent ra tes . Further invest igat ions of the p rob lem, however , were terminated by the takeover of W e s t m i n by Bol iden Limited (Bol iden) in early 1998. Fo l lowing the takeover , Expatr iate conc luded a letter of ag reemen t to pu rchase Bo l iden 's interests in the Wo l ve r i ne Pro ject and by J u n e 1999, a new Wo lve r i ne Joint Ven tu re (Expatr iate and Atna) a n n o u n c e d that it w a s beginning an evaluat ion of al ternat ive metal lurgical me thods for p rocess ing the su lph ides . In M a r c h 2000 , Expatr iate reached an ag reemen t with C o m i n c o to pu rchase C o m i n c o ' s F in layson L a k e a s s e t s including the W O L c la ims immediate ly adjoining the Wo lve r i ne deposi t . Meta l lurg ica l s tud ies demons t ra ted that b lending the ore from the Wo lve r i ne deposi t with that f rom the newly acqu i red K u d z Z e K a y a h depos i t wou ld reduce the se len ium content in the ore to an accep tab le level . Dril l ing p rograms by Expatr iate in July, Augus t , and Oc tobe r 2000 e x p a n d e d the exist ing resource and further def ined the known mineral izat ion on the Wo lve r ine property. R e g i o n a l G e o l o g y T h e Y u k o n T a n a n a Ter rane (YTT) is an ex tens ive , e longate, au toch thonous terrane, wh ich under l ies m u c h of Y u k o n and A l a s k a and is one of the innermost ter ranes of the C a n a d i a n Cord i l le ra (F ig. 1). T h e Y T T is bounded to the northeast by rocks of the North A m e r i c a n cont inental marg in and to the southwest by rocks of St ik in ia and S l ide Mounta in ter ranes. Th is comp lex , he te rogeneous terrane of per icratonic origin is interpreted to be a Late Devon ian to Ear ly J u r a s s i c compos i t e a rc s e q u e n c e under la in by p re -Devon ian sed imentary rocks of cont inental affinity (Mor tensen, 1992). T h e rocks wh ich host the Wo lve r i ne depos i t are bounded to the northeast by the F in layson L a k e fault z o n e and to the southwest by the Tint ina Fault, a long which approx imate ly 4 5 0 km of dextral offset (e.g., Mo r tensen , 1992) has separa ted this z o n e f rom the main portion of the Y T T (Fig. 1). T h e fol lowing s u m m a r y of the regional geo log ica l sett ing of the Wo lve r i ne depos i t c o m e s mainly f rom the work of Murphy (1998), and Murphy and P ie rcey (1999a,b). Murphy (1998) p laced the Fyre Lake , K u d z Z e K a y a h and Wo lve r i ne V H M S depos i ts in a highly de fo rmed but coheren t strat igraphic s u c c e s s i o n of early M iss i ss ipp ian to early P e r m i a n m e t a m o r p h o s e d plutonic, vo lcan ic , and sed imenta ry rocks (Fig. 2). 11 A n angu lar unconformity sepa ra tes a lower s e q u e n c e of po lydeformed fe ls ic and maf ic me tavo lcan ic rocks, c a r b o n a c e o u s metac las t ic rocks , marb le and granit ic or thogneiss ( termed the " G r a s s L a k e s success i on " ) f rom a younger s e q u e n c e cons is t ing primari ly of c a r b o n a c e o u s metac las t i c rocks and quartz- and fe ldspar-phyr ic fe ls ic metavo lcan ic rocks (termed the "Wolver ine s u c c e s s i o n " ; F ig . 3). It is the lower s e q u e n c e that hosts the K u d z Z e K a y a h , Fyre Lake , and G P 4 F depos i ts . A poss ib le s e c o n d unconformity sepa ra tes the Wo lve r i ne s u c c e s s i o n f rom the overlying C a m p b e l l R a n g e s u c c e s s i o n , the latter of wh ich is c o m p o s e d primarily of m a s s i v e metabasa l t (Fig. 3). In the immedia te vicinity of the Wo lve r i ne deposi t , three units are m a p p e d (note that a l though all rocks are m e t a m o r p h o s e d , the prefix "meta" is omitted from all rock n a m e s for pu rposes of simplicity). T h e s e units are (from oldest to youngest) : Unit 5 - a s e q u e n c e of c a r b o n a c e o u s phyllite, sands tone , cong lomera te , muscov i te -quar tz phyllite, and quar tz- and fe ldspar-phyr ic porphyry; Unit 6 - in terbedded c a r b o n a c e o u s phyllite and s i l i ceous rock; and Unit 7 - c a r b o n a c e o u s phyllite, g reywacke , pale green argillite, gritty sands tone , chert and diamict i te. T h e Wo lve r i ne depos i t l ies at the contact be tween Units 5 and 6 (Fig. 3). T h e depos i t stratigraphy, wh ich is desc r ibed in the subsequen t sec t ion , inc ludes the uppermos t part of Unit 5, Unit 6, and the lowermost part of Unit 7. Deposit Geology T h e strat igraphic s e q u e n c e host ing the depos i t will be hereafter referred to a s the 'Wo lver ine strat igraphy'. T h e Wo lve r i ne strat igraphy is def ined in this paper a s those rocks 4 0 0 m a b o v e and 70 m below the m a s s i v e su lph ide mineral izat ion for wh ich there are suff icient da ta f rom drill co re to es tab l ish conf ident ly a coherent strat igraphy that is cons is tent throughout the entire a rea of the deposi t . T h e l i thologies forming the immedia te hos t - rocks to the deposi t are further subd iv ided below. T h e sur face geo logy of the Wo lve r i ne depos i t a rea is i l lustrated in F igure 4. Metamorphism And Structure R o c k s in the vicinity of the Wo lve r i ne depos i t have been m e t a m o r p h o s e d to midd le- or upper-g reensch is t g rade b a s e d on a defining metamorph ic mineral a s s e m b l a g e of chlori te, actinoli te, albite, titanite, ca rbona te and , locally, biotite. A s ingle major deformat ional event has overpr inted mos t pr imary 12 vo lcan ic and sed imenta ry features in the rocks . Th i s deformat ional event is recorded a s a prominent S T fol iation, wh ich t rends northwest and d ips gently to the northeast. Th is fabr ic i s ' a curv ip lanar p ressu re -solut ion foliation that is def ined by mil l imetre- to cen t imet re -sca le s e a m s of f ine m i c a c e o u s minera ls that d isplay i nc reased spac ing in the more s i l i ceous units (e.g., Murphy, 1998). Fo lds in the vicinity of the depos i t are general ly southwest verg ing, tight, and 'S' s h a p e d when v iewed to the northwest a long the fold axes . T h e s e folds range from dri l l -core to outcrop s c a l e and likely are related to similar ly s h a p e d k i lomet re-sca le folds m a p p e d in the G r a s s L a k e s s u c c e s s i o n by Murphy (1997). T h e sou thwest ve rgence indicates that the Wo lve r ine deposi t is on the wes te rn l imb of an open , upright, structure (D .C . Murphy, pers. c o m m . , 2000) . T h e relative lack of fold h inges and over turned l imbs permits the correlat ion of units, s o m e only one metre in th ickness , between drill ho les on the s a m e c r o s s -sect ion (i.e., on the s c a l e of about one half ki lometre). Corre lat ion between ad jacent drill c o r e s in certain c ross -sec t i ons ind icates s o m e c h a n g e s in th ickness , and/or structural repetit ion of units near fold h inges. In rare c a s e s , whe re pr imary compos i t iona l layering is visible, the intersect ion of the S T fol iation with bedd ing ( S 0 ) fo rms a l ineation that paral le ls the orientation of the fold h inges. T h e compos i t iona l layering and S T foliation essent ia l ly are paral lel excep t near the vicinity of fold h inges. Layer-para l le l (i.e., paral lel to foliation) shear ing has resulted in ex tens ive gouge z o n e s in the more duct i le rocks (e.g., argillite) and intense fracturing in the more brittle rocks (e.g., rhyolite). Faul t ing is present to s o m e deg ree throughout the entire Wo lve r i ne stratigraphy, a l though signi f icant offset (>1 m) has not been identif ied in the c ross -sec t i ons . Roo t l ess folds are present locally. Mos t faults in the Wo lve r i ne strat igraphy are attributed to the s a m e major deformat ional event. Stratigraphy Desp i te g reensch is t grade me tamorph i sm and a high degree of deformat ion, it is poss ib le to recogn ize vo lcan ic , vo lcan ic las t ic and sed imentary protoliths at Wo lve r ine . In this paper, the Wo lve r i ne strat igraphy has been div ided into four s u c c e s s i v e units, e a c h of wh ich cons is ts of seve ra l different l i thologies. T h e units are desc r ibed below (from oldest to youngest) and i l lustrated in f igures 5, 6, 7 and 8a-d . Importantly, exhalat ive l i thologies, wh ich inc lude m a s s i v e su lph ides , are restr icted to Unit 2. T h e 13 Wolve r i ne strat igraphy appea rs to be upright and not over turned, such a s at the K u d z Z e K a y a h depos i t (e.g., Schu l t ze , 1996). Unit 1 - Footwall Volcaniclastic, Carbonaceous Sedimentary and Porphyritic Intrusive Rocks: Unit 1 is c o m p o s e d of the fol lowing l i thologies: (1) Green to grey quartz- and feldspar-crystal-bearing rhyolite volcaniclastic rock with variable amounts of interbedded carbonaceous argillite. F la t tened, f ine- to coa rse -g ra ined f ragments of rhyolite a re abundant in this l ithology, wh ich a lso conta ins up to severa l vo lume percent (vol.%) K- fe ldspar and quartz crysta ls a l though either, or both, may be absent . P o t a s s i u m fe ldspar crysta ls are subhedra l to euhedra l in s h a p e and range f rom 1 to 5 m m in d iameter, w h e r e a s similar ly s i zed greyish blue quartz ' eyes ' have rounded out l ines. T h e relative a b u n d a n c e s of fe ldspar crysta ls , quartz e y e s and rhyolite f ragments in this lithology vary signif icantly throughout the deposi t . (2) B lack to grey, f ine-gra ined, c a r b o n a c e o u s , tu f faceous argillite. Th i s rock c o m m o n l y conta ins severa l v o l . % grey tuff a s layers or c las ts , and up to severa l v o l . % rounded blue quartz e y e s ranging up to 1 m m in d iameter . T h i s footwall argillite is s imi lar to the c a r b o n a c e o u s argillite in the hanging wal l but is local ly d is t inguished by a slightly coa rse r grain s ize , lighter colour, and the p r e s e n c e of quartz e y e s in the former. (3) Grey , weak ly fol iated, K- fe ldspar-phyr ic rhyolite porphyry (Fig. 9a). Th i s intrusive lithology conta ins 5 to 10 v o l . % K- fe ldspar phenocrys ts up to 5 to 10 m m in d iameter , in a grey, aphani t ic , s i l i ceous g r o u n d m a s s . G r e y quartz e y e s are rare. T h e m a s s i v e su lph ide lens typically l ies immediate ly above or, in s o m e a r e a s , within the fe ls ic vo lcan ic las t ic rocks , wh ich range f rom 1 to 60 m in width. T h e 30 - to 50-m-th ick c a r b o n a c e o u s argillite in the footwall ma rks the b a s e of the vo lcano-sed imenta ry s e q u e n c e , wh ich hosts the mineral izat ion. T h e 6-to 15-m-thick K- fe ldspar-phyr ic porphyr ies occu r at an ave rage d is tance of 20 m be low the b a s e of the m a s s i v e su lph ide hor izon and are interpreted to be intrusive si l ls. T h e porphyry con ta ins su lph ide ve ins in at least one drill hole, wh ich sugges ts e m p l a c e m e n t w a s prior to mineral izat ion. P ie rcey et a l . (2000b) desc r i be the nature and occu r rence of this lithology in more detai l . 14 Unit 2 - Interbedded Argillite, Rhyolite and Magnetite-Carbonate-Pyrite Exhalites: Unit 2 is c o m p o s e d of the fol lowing l i thologies: (1) Grey , m a s s i v e to f low-banded, aphani t ic to very f ine-gra ined, aphyr ic rhyolite. Th i s rock is c o m p o s e d of alternating d o m a i n s of aphani t ic rhyolite with sub-mi l l imetre to cent imetre- th ick m i c a c e o u s part ings or iented paral lel to the dominant S i fol iation. T h e rhyolite doma ins c o m m o n l y conta in minute K- fe ldspar (?) microl i tes. (2) B lack , finely laminated, c a r b o n a c e o u s argillite. Th i s rock common l y conta ins seve ra l v o l . % grey tuff layers or c las ts . A strongly s i l i ceous variant conta ins abundant f lattened and s h e a r e d ve ins of quartz and pyrite. (3) G r e y to black, magnet i te -predominant exhal i te (iron format ion; F ig . 8b). Th i s rock con ta ins 5 to 60 v o l . % d i ssemina ted to m a s s i v e layered magnet i te with l esse r carbonate , chlorite, quartz, and seric i te. T h e layering is interpreted to be a primary feature and where present, is def ined by mi l l imet re-sca le monominera l i c bands of magnet i te in terbedded with layers of mixed s i l icates and ca rbona tes . (4) G r e y to white, carbonate-predominant exhal i te (Fig. 8c). Th is exhal i te conta ins up to 90 v o l . % patchy to m a s s i v e f ine carbonate (calcite > anker i te > siderite) with lesser magnet i te, chlori te and pyrite. T h e s e rocks only rarely exhibit f ine laminat ions; field relat ions sugges t that the layers have responded in a ducti le m a n n e r to deformat ion and primary sed imentary textures are now t ransposed . (5) F ine-gra ined , polymetal l ic, m a s s i v e su lph ides . T h e types and sty les of mineral izat ion present in Unit 2 are desc r ibed separate ly in the fol lowing sect ion. T h e immedia te host- rock s e q u e n c e to the m a s s i v e su lph ide mineral izat ion ranges f rom 85 to 160 m in th i ckness and inc ludes four distinct exhalat ive l i thologies (not all of wh ich are present in e a c h drill hole). T h e uppermos t two are common l y magnet i te -predominant exhal i te, the middle is a ca rbona te -15 predominant exhal i te, and the lowermost is a pyr i te-predominant exhal i te (mass i ve su lph ide) . T h e th i ckness of the individual exhal i tes ranges f rom less than 1 m up to 10 m. T h e magnet i te-r ich exhal i tes are laterally ex tens ive with str ike- lengths in e x c e s s of 12 km. Al l exhal i tes are separa ted by m ixed s e q u e n c e s of in terbedded argillite and rhyolite, wh ich are common l y in terbedded on the s c a l e of a cent imetre. T h e th i ckness of individual rhyolite and argillite hor izons is ext remely var iab le at the s c a l e of the deposi t . Both m a s s i v e rhyolite and c a r b o n a c e o u s argillite may attain widths of up to 30 m. S o m e m a s s i v e rhyolite intervals have a f ine-grained b a s e , wh ich g rades upward into fe ldspar microl i te-bear ing rhyolite and subsequen t l y into a rhyolite b recc ia (a f low-top brecc ia?) . Col lect ively, t hese features sugges t e m p l a c e m e n t a s f lows. Unit 3 - Fragmental Rhyolite: Unit 3 is c o m p o s e d of the fol lowing l i thologies: (1) G r e y f ragmenta l rhyolite (Fig. 8d). Th is rock is charac ter ized by wispy, sub-mi l l imetre, dark g reen to black, a n a s t o m o s i n g m i c a c e o u s bands , wh ich separa te cent imet re-s ized fe ls ic aphani t ic vo lcan ic rock f ragments . T h e s e f ragments are sub-angu la r to sub - rounded , irregularly s h a p e d and p o s s e s s ragged boundar ies . A var iant of this unit has a dist inctive g reen ish hue and conta ins 1 to 2 v o l . % d i ssemina ted magnet i te, wh ich may be a product of w e a k semi -con fo rmab le (?) chlorit ic al terat ion. (2) G r e y to b lack f ragmenta l rhyolite and black c a r b o n a c e o u s argillite. Rhyol i te f ragments (50 to 90 vol.%) are general ly cen t imet re -s ized , ovoid, and f lattened into the plane of fol iation. Th i s l ithology is s imi lar to the f ragmenta l rhyolite desc r ibed above but may be d is t inguished f rom it by its greater proport ion of argill ite. Th is unit occu rs a b o v e the minera l ized s e q u e n c e and its base is ma rked general ly by the p r e s e n c e of the uppermos t exhal i te. T h e th i ckness of this unit is fairly constant throughout the deposi t , averag ing about 80 m. Unit 4 - Interbedded Carbonaceous Argillite and Greywacke, with lesser Basalt and Rhyolite: Unit 4 is c o m p o s e d of the fol lowing l i thologies: 16 (1) M e d i u m g reen , mass i ve , f ine-grained basal t with biotite and minor epidote on part ings. T h e s e rocks are interpreted a s f lows where m a s s i v e and h o m o g e n e o u s . They are likely vo lcan ic las t ic in origin whe re in terbedded and layered with c a r b o n a c e o u s sed imentary rocks . (2) Interbedded b lack c a r b o n a c e o u s argillite and grey to black, med ium-gra ined g reywacke . T h e s e rocks contain minor beds of fe ls ic vo lcanic last ic rocks that are s imi lar in a p p e a r a n c e to the f ragmenta l rhyolite of Unit 3 desc r i bed above . Th i s uppermos t s e q u e n c e probably represents the transit ion from the Wo lve r i ne strat igraphy to the overly ing basal t ic f lows and vo lcan ic las t ic rocks of the C a m p b e l l R a n g e s u c c e s s i o n . T h e upper limit to this unit is unknown, but its th i ckness is at least 200 m. T h e basal ts and the c a r b o n a c e o u s sed imentary rocks are most ly in terbedded on a cent imet re-sca le , a l though individual m a s s i v e basal t ( f lows?) and c a r b o n a c e o u s sed imentary s e q u e n c e s can reach up to 40 m and 30 m in th ickness , respect ively. T h e base of this unit is def ined by the first occu r rence of green basal t ic vo lcan ic las t ic rock. Mineralization M a s s i v e su lph ide mineral izat ion occu rs most common l y at or near the contact be tween units 1 and 2, whe re the transit ion from interbedded, mass i ve , aphyr ic rhyolite and c a r b o n a c e o u s argillite to more coarse ly gra ined and quartz- and K-fe ldspar-phyr ic rhyolitic vo lcan ic las t ic rock is located. T h e immedia te hanging wal l to the m a s s i v e su lph ide is typically black, graphit ic argillite of unit 2. O n the bas is of style and mineralogy, the su lph ide mineral izat ion at Wo lve r i ne has been div ided into three predominant types: (1) m a s s i v e strati form, (2) s e m i - m a s s i v e rep lacement , and (3) su lph ide str inger ve ins . The.distr ibut ion of the mineral izat ion is i l lustrated in F igure 9, wh ich contours the sur face project ion of the true th i ckness of the m a s s i v e su lph ide intersect ion in e a c h drill hole. T h e true widths of the su lph ide mineral izat ion shown in F igure 9 represent a combinat ion of m a s s i v e strati form ( including mult iple l e n s e s if present) , s e m i - m a s s i v e rep lacement , and su lph ide str inger ve ins . 17 Massive Stratiform Sulphides M o s t of the mineral izat ion occu rs in tabular, h o m o g e n e o u s m a s s i v e su lph ide l enses c o m p o s e d of pyrite and sphaler i te with l esse r amoun ts of pyrrhotite, chalcopyr i te, ga lena , tetrahedri te-tennanti te and arsenopyr i te . Other t race minera ls identified in prev ious s tud ies inc lude marcas i te , native gold and native si lver (Expatr iate R e s o u r c e s , unpubl ished data , 1996). Menegh in i te ( P b i 3 C u S b 7 S 1 3 ) is the predominant lead sul fosal t minera l . It is distr ibuted locally together with lesser bournoni te ( P b C u S b S 3 ) , boulanger i te ( P b 5 S b 4 S n ) , and miargyri te ( A g 2 S S b 2 S 3 ; Expatr iate R e s o u r c e s , unpub l ished data, 1996): C o m m o n gangue minera ls are quartz, calc i te, dolomite, anker i te, sideri te, chlori te and ser ic i te. T h e s e minera ls occu r interstitial to the su lph ide minera ls and common l y form either very f ine-gra ined m a s s e s or irregular b lebs. G a n g u e minera ls typically compr i se less than 5 v o l . % of the minera l ized z o n e s . T h e two l ens - l i ke ' a reas where the accumula t ion of m a s s i v e su lph ides is th ickest are te rmed the Wo lve r i ne z o n e and the Lynx z o n e (Fig. 9). T h e s e z o n e s are separa ted from one another by an a rea of non-strat i form, s e m i - m a s s i v e rep lacement su lph ide mineral izat ion and su lphide-st r inger vein minera l izat ion, wh ich occu rs at or near the s a m e strat igraphic hor izon as the m a s s i v e su lph ide l enses . Th i s a rea is te rmed the H u m p zone . T h e su lph ide l enses range in th i ckness from less than 1 m near the f r inges of the depos i t to 9.8 m in the Wo lve r i ne zone . In s o m e locali t ies, such a s in the th ickest sec t ions of the Lynx z o n e , there are mult iple su lph ide l enses separa ted by up to 8 m of argillite or rhyolite. T h e s e mult iple l enses may represent dist inct exhalat ive hor izons (i.e., s tacked su lph ide lenses) , or may be the result of structural repetit ion due to folding or structural d i smembermen t . E x a m p l e s of the strati form m a s s i v e su lph ide mineral izat ion, and the different textures they exhibit are d i s c u s s e d be low and s h o w n in F igures 10a-d . Semi-massive Replacement Sulphides Figure 11 is a plan v iew of the depos i t il lustrating the distribution of the su lph ide str inger vein and s e m i - m a s s i v e rep lacement- type su lph ide mineral izat ion. R e p l a c e m e n t z o n e s are those a r e a s of mineral izat ion where su lph ide minera ls have partly to complete ly rep laced host rocks . Th i s has resul ted in d iscrete, f ine-gra ined, s e m i - m a s s i v e su lph ide z o n e s ranging in th ickness f rom seve ra l cent imet res up to 18 one metre. Rep lacemen t - t ype mineral izat ion is most c o m m o n in the H u m p z o n e , but it a l so fo rms in the immedia te footwall to the stratiform m a s s i v e su lph ide lenses in the Wo lve r i ne and Lynx z o n e s . He re it is assoc ia ted with strongly chlor i t ized and/or carbonat ized rhyolite and argillite. Rep lacemen t - t ype mineral izat ion general ly su r rounds and occu rs a b o v e and outboard of the str inger vein mineral izat ion. Sphaler i te is the most c o m m o n rep lacement su lph ide minera l and it occu rs a s either m a s s i v e layers or irregular b lebs and d issemina t ions together with subord ina te pyrite. S e m i -m a s s i v e pyrite and sphaler i te rep lacement- type mineral izat ion hosted by chlor i t ized and carbonat i zed rhyolite and argill ite in the H u m p z o n e reaches up to 13 m in th ickness . S e m i - m a s s i v e pyrite and sphaler i te rep lacement - type mineral izat ion in the footwall of the stratiform m a s s i v e su lph ide in the Wo lve r i ne z o n e ranges f rom 6 to 8 m in th ickness . Cha lcopyr i te common l y fo rms sma l l , s e m i - m a s s i v e rep lacement z o n e s in the immedia te footwall to the sphaler i te-r ich m a s s i v e strati form su lph ide mineral izat ion. Cha lcopyr i te rep lacement z o n e s typically have wel l -def ined upper and lower boundar ies , are on the order of 30 c m thick, contain 60 to 80 v o l . % m a s s i v e to interstitial chalcopyr i te with minor pyrrhotite, and are assoc ia ted with intense and pervas ive chlorit ic alteration of the host rocks . Sulphide Stringer Veins Su lph ide str inger vein z o n e s are strongly deve loped in severa l a reas of the deposi t . St r inger vein mineral izat ion is deve loped most strongly beneath , and intermixed with, m a s s i v e rep lacement - type su lph ide minera l izat ion in the H u m p z o n e and in the immedia te footwall to the th ickest strati form and s e m i - m a s s i v e rep lacement -s ty le mineral izat ion in the Wo lve r i ne zone . We l l -m ine ra l i zed z o n e s of this type compr i se 5 to 10 vol % of the rock and cons is t of randomly or iented, 2 - to 3 -cm-wide ve ins of quartz, pyrite and sphaler i te. A n enve lope of si l icif ication common l y sur rounds individual ve ins . T h e s e a r e a s of strong vein deve lopmen t are interpreted as up-f low condui ts or pathways for hydrothermal f luids that precipi tated the over ly ing m a s s i v e stratiform sulph ide mineral izat ion. Thus , su lph ide str inger ve ins are tentatively identif ied a s the ' feeder z o n e s ' to m a s s i v e su lph ide mineral izat ion. W h e r e wel l deve loped , s u c h a s in the Wo lve r i ne z o n e , s t r inger vein mineral izat ion ranges in th ickness f rom 1 to 4 m. W e a k l y deve loped str inger vein mineral izat ion is much more w idesp read , however , and it cons is ts of 5- to 10 -mm-w ide quar tz-19 su lph ide ve ins that lack signif icant alteration enve lopes . In the Wo lve r ine z o n e , weak ly deve loped quartz-chalcopyr i te str inger ve ins extend approx imate ly 10 m into the chlor i t ized footwall . Sulphide Textures Strat i form su lph ide l enses are general ly f ine gra ined and h o m o g e n e o u s , a l though mi l l imetre- to cen t imet re -sca le layering is locally c o m m o n . Pyrite is the pr incipal su lph ide minera l throughout the depos i t a n d it typical ly o c c u r s a s very f ine-gra ined, anhedra l m a s s e s . Pyri te a l so fo rms m o r e coa rse l y g ra ined porphyroblasts ( termed "buckshot" pyrite), wh ich are set in a matrix of f iner gra ined pyrite and/or sphaler i te (Fig. 10a). Abundan t , f ine-gra ined, reddish brown (i.e., iron-rich) sphaler i te fo rms del icate, wispy, sub -mil l imetre- to cen t imet re -sca le layers. T h e s e layers are largely respons ib le for the bedded a p p e a r a n c e of the m a s s i v e su lph ide mineral izat ion (Fig. 10b). In most p laces , layers are paral lel to the ST fol iation and are likely a result of deformat ion, al though there are primary sed imentary features p reserved in p laces . S o m e sphaler i te a lso occu rs a s very smal l gra ins interstitial to m a s s i v e pyrite. G a l e n a , tetrahedrite-tennantite, and arsenopyr i te are all c o m m o n su lph ide minera ls in the m a s s i v e su lph ide l enses , a l though they are difficult to dist inguish f rom one another in hand s p e c i m e n . They typically o c c u r together as f ine-grained, anhedra l aggrega tes within sphaler i te-r ich layers. Tetrahedr i te-tennantite a lso o c c u r s as very f ine gra ins interstitial to pyrite, a l though this is difficult to identify due to the f ine-grained nature of the mineral izat ion. Cha lcopyr i te is rare within the strati form su lph ide l enses . It occu rs a lmos t exc lus ive ly a s remobi l ized med ium-gra ined m a s s e s on the e d g e s of large pa tches of quartz gangue or wal l - rock f ragments (Fig. 10c). B r e c c i a textures are p reserved on the eastern f lank of the Lynx zone , where they o c c u r both at the top of the m a s s i v e su lph ide lens and within it. B r e c c i a s are c o m p o s e d entirely of su lph ide minera ls and are c lass i f ied into two types: (1) matr ix-supported b recc ia with 3- to 5 -mm-d iamete r rounded c las ts of f ine-gra ined pyrite set in a matrix of similarly f ine-grained pyrite compr is ing 20 to 30 v o l . % of the rock; and (2) c las t -suppor ted , ' j igsaw' b recc ia with angu lar c las ts of pyrite and sphaler i te, ranging f rom one up to severa l cent imet res in d iameter, set in a matrix compr is ing 5 to 20 v o l . % of the rock (F ig. 10d). Both types of b recc ia are interpreted a s primary features assoc ia ted with the format ion of the m a s s i v e su lph ide on the s e a floor. The i r nature and distribution are the subject of further invest igat ion. 20 Mineral and Metal Zonation F igu res 12a -c il lustrate the lateral zon ing of copper , z inc , and lead, respect ive ly . T h e c o m b i n e d metal g rades used to genera te the contours represent, in most c a s e s , a combina t ion of m a s s i v e stratiform mineral izat ion and s e m i - m a s s i v e rep lacement /su lph ide str inger vein mineral izat ion (where the latter has signif icant grade) . T h e distribution of coppe r (Fig. 12a) is control led by chalcopyr i te , wh ich is located mainly in the central part of the depos i t in footwall str inger and rep lacement mineral izat ion. Conve rse l y , z inc and lead occu r in the greatest concentrat ion in the m a s s i v e stratiform su lph ides on the f r inges of the depos i t (e.g., F igs . 12b,c) outboard, and strat igraphical ly above , the su lph ide str inger vein and rep lacement z o n e s . Structural d i s m e m b e r m e n t and remobi l izat ion of su lph ides during deformat ion, however , likely have disrupted m u c h of the original metal and mineral zonat ion in the deposi t . Little zon ing is evident within the pyrite- and sphaler i te-dominant strati form m a s s i v e su lph ide lenses . Sphaler i te- r ich mineral izat ion with assoc ia ted ga lena and tetrahedri te-tennanti te occu rs throughout the su lph ide l enses in the Lynx and Wo lve r i ne z o n e s , as cent imetre- to metre-thick z o n e s of poor definit ion, wh ich alternate with pyr i te-dominant m a s s i v e su lph ides . In mos t p laces , the entire su lph ide interval con ta ins abundant sphaler i te, a l though distribution of the ext remely sphaler i te-r ich z o n e s is erratic. Cha lcopyr i te distr ibution is strongly z o n e d b e c a u s e it is the principal su lph ide minera l in m a s s i v e rep lacement - type and str inger vein-type mineral izat ion in the footwall . E l sewhe re , chalcopyr i te is only a very minor const i tuent of the overlying stratiform su lph ide lenses . Consequen t l y , a r e a s of the deposi t , wh ich lack su lph ide str inger vein or m a s s i v e rep lacement- type mineral izat ion do not conta in s igni fcant chalcopyr i te . A notable except ion occu rs in m a s s i v e stratiform su lph ide mineral izat ion forming the northwest portion of the Lynx zone . Here, a 1.3-m-thick z o n e of chalcopyr i te-r ich su lph ide mineral izat ion fo rms the b a s e of the m a s s i v e su lph ide lens. Th is a rea of e levated coppe r va lues is related spatial ly to an inferred north-northwest- trending growth fault, wh ich may have local ized the a s c e n t of mineral iz ing f luids. T h e locat ion of this fault is b a s e d on the ex t reme var iat ions in su lph ide th i ckness m a p p e d over short d is tances . Its posi t ion is i l lustrated in F igure 9. 21 Hydrothermal Alteration Hydrothermal ly al tered rocks are found predominant ly in the immedia te footwall to the m a s s i v e su lph ide mineral izat ion, where permeab le fe ls ic vo lcan ic las t ic rocks have been preferential ly a l tered. Four main sty les of hydrothermal alteration are intimately assoc ia ted with mineral izat ion at the Wo l ve r i ne depos i t (e.g., F igs . 13a-d). T h e alteration types, in order of dec reas ing a b u n d a n c e , are (1) ser ic i te, (2) chlorite, (3) s i l ica (quartz), and (4) carbonate . T h e main features of e a c h are d i s c u s s e d below. (1) Sericite Alteration (F ig. 13a) is charac ter ized by modera te to pervas ive deve lopmen t of ser ic i te in f ine-to coa rse -g ra ined fe ls ic vo lcan ic las t ic rocks . Ser ic i te alteration is s t ratabound and occu rs throughout the deposi t , both within, below, and lateral to (or outboard of) the zone of chlori te al terat ion, but occu rs most c o m m o n l y in the footwall to m a s s i v e su lph ide mineral izat ion. Ser ic i te-a l tered vo lcan ic las t ic rocks are intensely fol iated (likely due to a ductility contrast with ad jacent unaltered rocks?) and conta in 40 to 60 v o l . % ser ic i te. In the most strongly al tered z o n e s , all minera ls exc lud ing quartz are comple te ly rep laced . Ser ic i te alterat ion is the most ex tens ive and w idesp read alteration type, reach ing a th i ckness of 50 m where best deve loped in the H u m p and Wo lve r i ne z o n e s . The re is a gradua l d e c r e a s e in the intensity of ser ic i te alterat ion mov ing laterally away f rom these z o n e s . Ser ic i te alteration is local ly wel l deve loped in the Lynx z o n e , but not a s extensive ly a s e l sewhere , poss ib ly b e c a u s e there is more variat ion in the footwall l i thologies. Ser ic i te alteration is locally m a p p e d in rocks of the hanging wal l , espec ia l l y on the eastern fr inge of the depos i t where the stratiform m a s s i v e su lph ide mineral izat ion o c c u r s within rhyolitic vo lcan ic las t ic rocks of Unit 1. It shou ld be noted that it is difficult, in p laces , to d is t inguish hydrothermal ser ic i te alterat ion f rom that which formed in the fe ls ic rocks in r e s p o n s e to regional me tamorph i sm and deformat ion, part icularly where the former is only weak ly deve loped . The re may be a compos i t iona l d i f ference between ser ic i te forming the two types and this is under current invest igat ion. (2) Chlorite Alteration (F ig. 13b) is charac ter ized by the intense deve lopment of chlori te in f ine- to c o a r s e -gra ined, fe ls ic vo lcan ic las t ic rocks. T h e result is a dark g reen chlor i t ized rock with moderate ly to coarse ly f lattened fe ls ic vo lcan ic rock f ragments with, or without quartz and fe ldspar crysta ls . Chlor i te alterat ion is most strongly deve loped in the Wo lve r ine z o n e where it occu rs in the immedia te footwall to the m a s s i v e 22 su lph ide mineral izat ion and is up to 30 m thick. It is w idesp read in the H u m p z o n e , whe re it is assoc ia ted with ca rbona te alterat ion and m a s s i v e su lph ide rep lacement-s ty le mineral izat ion. In most local i t ies whe re chlori te alterat ion is present , there is a gradual transit ion in al terat ion-types f rom chlor i te-dominant to ser ic i te-dominant with increas ing d is tance f rom the m a s s i v e su lph ide lens. Th i s zonat ion c a n be asc r ibed -to the twin in f luences of dec reas ing heat and fluid f low in those a reas distal to the main zone(s ) of hydrothermal activity (e.g., Lydon, 1988). (3) Silica Alteration (F ig. 13c) is charac ter ized by the pervas ive deve lopment of f ine-gra ined quartz in rocks immediate ly ad jacent to quar t z -su lph ide (pyrite >sphalerite » c h a l c o p y r i t e ) ve ins . Th i s al terat ion-type is rare and may be conf ined to narrow z o n e s assoc ia ted with hydrothermal fluid condui ts . S i l i ca alteration is part icularly strong in drill hole W V - 9 7 - 8 1 , where it ex tends 5 m be low the m a s s i v e stratiform mineral izat ion (see locat ion on F ig . 10). Here , rhyolite tuff is intensely si l icif ied and conta ins 3 to 5 v o l . % quartz-pyr i te-sphaler i te ve ins ranging up to 3 c m in width. In most other local i t ies, su lph ide str inger ve ins are narrower and lack assoc ia ted s i l ica alteration. In Unit 2, c a r b o n a c e o u s argil l i tes in the hanging wal l are local ly strongly si l icif ied and contain narrow ve ins of quartz and pyrite. Pet rochemis t ry of the aphyr ic rhyolite in the hanging wal l indicates that they contain signif icantly higher S i 0 2 than that found in typical rhyolite ( S . J . P ie rcey , unpub l ished data, 2000). T h e s e poss ib le hanging wal l alteration p h e n o m e n a are currently under invest igat ion. (4) Carbonate Alteration (F ig. 13d) is charac ter ized by the deve lopment of varying amoun ts of white calc i te, o range-b rown anker i te and brown sideri te. Th is alterat ion-style is c o m m o n l y a s s o c i a t e d with chlorite al terat ion. C a r b o n a t e minera ls common l y occu r a s large porphyrob lasts ranging up to 2 c m in d iameter , wh ich may occupy 20 to 30 v o l . % of the rock. Th i s alteration-style o c c u r s with m a s s i v e su lph ide rep lacement and su lph ide str inger mineral izat ion both in the H u m p z o n e and in the immedia te footwall to the m a s s i v e su lph ide mineral izat ion in the Wo lve r i ne zone . Th is unique texture is intimately assoc ia ted with mineral izat ion, and may have formed by the precipitat ion of carbonate , wh ich w a s s c a v e n g e d f rom the underly ing sed imen ts by hydrothermal f luids. T h e exac t distribution of ca rbona te alterat ion is poorly unders tood at the present t ime, but widths of individual z o n e s rarely e x c e e d 2 m. 23 Discussion T h e field data presented in this paper, particularly the spat ial and tempora l assoc ia t ion of the su lph ide minera l izat ion with fe ls ic vo lcan ic rocks , demonst ra te that the Wo lve r i ne depos i t s h a r e s many features with the Ku roko depos i ts of the Hokuroku district, J a p a n (e.g., Ohmo to , 1996). T h e petrochemist ry of the fe ls ic vo lcan ic rocks in the Wo lve r i ne s u c c e s s i o n is cons is ten t with format ion in an ens ia l ic back -a r c bas in (P iercey, et a l . , 2000a) . T h e ens ia l ic back -a rc bas in sett ing and the c l o s e assoc ia t ion of the su lph ide mineral izat ion with b lack c a r b o n a c e o u s s h a l e s and fe ls ic vo lcan ic rocks p laces the Wo lve r i ne depos i t in a group of rather unique V H M S depos i ts , wh ich inc lude those of the Bathurst c a m p in N e w Brunsw ick (e.g., van Staa l et a l . , 1991; M c C u t c h e o n , 1992; Good fe l l ow and Peter , 1996). In order to gain a better understanding of the vo lcan ic env i ronment in wh ich the Wo lve r i ne depos i t w a s genera ted , further study of the nature and distribution of the host rocks is necessa ry . Pe t rograph ic s tud ies may be used to reveal whether the vo lcan ic las t ic rocks of Units 1 and 2, and the f ragmenta l rhyolite of Unit 3, are m a s s f low depos i ts (i.e., epic last ic) or pyroclast ic in origin. C h a n g e s in the th i ckness of these rocks over the entire depos i t may co r respond to the locat ion of a .vo lcan ic centre. T h e p r e s e n c e of graphit ic argillite in the immedia te hanging wal l , and ex tens ive c a r b o n a c e o u s argillite in the footwall , impl ies that s tarved, anox ic condi t ions may have prevai led at or near the t ime of su lph ide depos i t ion, and may have had a st rong inf luence on the mineral izat ion p rocess (e.g., E a s t o e and Gus t i n , 1996; Good fe l l ow and Peter , 1996, 1999). C h e m i c a l a n a l y s e s of the Wo lve r ine sha le will be used to invest igate this possibi l i ty. A c o n s p i c u o u s feature of the Wo lve r i ne m a s s i v e su lph ide mineral izat ion is the lack of a c l a s s i c ' car ro t -shape ' copper - r ich feeder zone , wh ich ex tends far be low the b a s e of the m a s s i v e su lph ide depos i t (e.g., Lydon , 1984). A l though this is likely due in part to the effects of post -minera l izaton deformat ion, the relatively large amoun t of s e m i - m a s s i v e rep lacement- type mineral izat ion is ev i dence that the footwall vo lcan ic las t ic rocks and sed imen ts were sufficiently pe rmeab le (unlithif ied?) to inhibit the format ion of f racture-control led fluid pathways. Rather , f luids select ively minera l ized and al tered chemica l l y and physical ly favourab le host- rock s e q u e n c e s . Th is sub-sea f loor rep lacement-s ty le of mineral izat ion is s imi lar to that of the R o s e b e r y deposi t , wh ich is hosted in the C a m b r i a n Mount R e a d "Vo l can i cs " of T a s m a n i a (e.g., G r e e n , e t a l . , 1981). 24 T o unders tand how the m a s s i v e stratiform su lph ide mineral izat ion fo rmed requi res further study of su lph ide textures and , in particular, identif ication of whether the layering in the su lph ides is pr imary (i.e., bedding) , or the result of remobi l izat ion and recrystal l izat ion assoc ia ted with later tec ton ism. Pre l iminary field ev i dence sugges t s that the layering may be pr imary in p laces , implying that the su lph ides likely were resed imented f rom the e d g e s of a su lph ide mound on the s e a floor. T h e p r e s e n c e of pr imary su lph ide b recc ia (F ig. 10d) prov ides further ev idence for the format ion and co l l apse of a su lph ide m o u n d on the ancient s e a floor (Lydon, 1988). Future Work R e s e a r c h on the Wo lve r ine deposi t is in its prel iminary s tages . Future resea rch inc ludes cont inued petrographic s tud ies of the su lph ide mineral izat ion, host rocks , and hydrothermal alteration in combinat ion with isotopic and g e o c h e m i c a l character izat ion of the mineral izat ion and the hydrothermal ly al tered and unal tered host rocks . T h e s e s tud ies will def ine further the tempora l and spat ia l nature of alteration and m a s s i v e su lph ide mineral izat ion. Acquis i t ion of such data will permit the quanti f icat ion of the phys i co -chemica l condi t ions of ore formation and p lace constra ints on mater ial t ransfer p r o c e s s e s a c c o m p a n y i n g hydrothermal alteration. T h e ult imate a im of the project is to p roduce a genet ic mode l for format ion of the Wo lve r i ne depos i t and deve lop explorat ion criteria that may be appl ied to the s e a r c h for further V H M S depos i ts in the F in layson L a k e district and e lsewhere . . Acknowledgments Th is contr ibut ion forms part of the sen ior author 's M . S c . thesis resea rch at the Universi ty of Brit ish C o l u m b i a . Fund ing is provided by the G S C through Project P A S 1017. Addi t ional f inancial a s s i s t a n c e c o m e s f rom N S E R C grant 2 2 R 8 0 4 6 6 to S tephen Row ins . T h e authors thank Expatr iate R e s o u r c e s Limited and A tna R e s o u r c e s Limited for free a c c e s s to Wo lve r ine drill co re and outcrop, and for providing geo log ica l data in the form of drill logs, maps , plan sect ions, and unpubl ished reports. S t e v e P iercey , Ian J o n a s s o n , Ju l ie Hunt, and D iane E m o n d are thanked for t imely rev iews of the manuscr ip t . K im Nguyen ( G S C ) is a l so thanked for the drafting of severa l of the f igures. Th is is G S C contr ibut ion n u m b e r 2 0 0 0 2 0 5 . 25 26 References Eas toe , C . J . and Gus t in , M . M . , 1996. V o l c a n i c hosted m a s s i v e sulf ide depos i ts and anox ia in the P h a n e r o z o i c o c e a n s . O r e G e o l o g y R e v i e w s , vol . 10, p. 179-197. Goodfe l low, W D . and Peter, J . M . , 1996. Su lphur isotope compos i t ion of the Brunsw ick No . 12 m a s s i v e su lph ide deposi t , Bathurst Mining C a m p , N e w Brunswick : Impl icat ions for ambien t env i ronment , su lphur sou rce , and ore genes i s . C a n a d i a n Journa l of Earth S c i e n c e s , vol . 33, p. 2 3 1 - 2 5 1 . Goodfe l low, W . D . and Peter, J . M . , 1999. Reply : Su lphur isotope compos i t ion of the Brunsw ick No . 12 m a s s i v e su lph ide deposi t , Bathurst Min ing C a m p , N e w Brunswick : Impl icat ions for ambien t env i ronment , su lphur sou rce , and ore genes i s . C a n a d i a n Journa l of Earth S c i e n c e s , vol . 36, p. 127-134. G r e e n , G . R . , S o l o m o n , M. and W a l s h e , J .L . , 1981. T h e format ion of the vo lcan ic -hos ted m a s s i v e su lph ide depos i t at Rosebe ry , T a s m a n i a . E c o n o m i c Geo logy , vol . 76, p. 304-338 . Lydon, J . W . , 1984. V o l c a n i c hosted m a s s i v e su lph ide deposi ts . Part 1: A descr ip t ive mode l . G e o s c i e n c e C a n a d a , vol . 11, p. 195-202. Lydon, J . W . , 1988. V o l c a n i c hosted m a s s i v e su lph ide depos i ts . Part 2: genet ic mode ls . G e o s c i e n c e C a n a d a , vol . 15, p. 43 -65 . M c C u t c h e o n , S . R . , 1992. Base -me ta l depos i ts of the Ba thurs t -Newcas t le district: Charac te r i s t i cs and deposi t ional mode ls . Explorat ion and Min ing Geo logy , vol . 1, p. 105-119. Mor tensen , J .K . , 1992. Pre- rmid-Mesozo ic tectonic evolut ion of the Y u k o n - T a n a n a Ter rane , Y u k o n and A l a s k a . Tec ton ics , vol . 11, p. 836-853 . 27 Murphy, D C , 1997. Pre l iminary geo log ica l m a p of G r a s s L a k e s a rea , Pel ly Mounta ins , sou theas te rn Y u k o n (105G/7) . Explorat ion and Geo log i ca l S e r v i c e s Div is ion, Y u k o n , Indian and Northern Affa i rs C a n a d a , O p e n Fi le 1997-3 , 1:50 000 sca le . Murphy, D .C . , 1998. Strat igraphic f ramework for syngenet ic mineral occu r rences , Y u k o n - T a n a n a Te r rane south of F in layson Lake : A progress report. In: Y u k o n Explorat ion and G e o l o g y 1997, C F . Roo ts and D. S . E m o n d (eds.) , Explorat ion and Geo log i ca l S e r v i c e s Div is ion, Y u k o n , Indian and Northern Affa i rs C a n a d a , p. 51-58 . Murphy, D . C and T i m m e r m a n , J . R . M . , 1997. Pre l iminary geo logy of the northeast third of G r a s s L a k e s m a p a rea (105G/7) , Pel ly Mounta ins , sou theas tern Y u k o n . In: Y u k o n Explorat ion and G e o l o g y 1996, Explorat ion and Geo log i ca l S e r v i c e s Div is ion, Y u k o n , Indian and Northern Affa i rs C a n a d a , p. 62 -73 . Murphy, D. C . and P iercey , S . J . , 1999a. F in layson Project: Geo log i ca l evolut ion of Y u k o n - T a n a n a Ter rane and its relat ionship to C a m p b e l l R a n g e belt, northern Wo lve r ine L a k e m a p a rea , sou theas te rn Y u k o n . In: Y u k o n Explorat ion and G e o l o g y 1998, C . F. Roo ts and D. S . E m o n d (eds.) , Explorat ion and Geo log i ca l S e r v i c e s Div is ion, Y u k o n , Indian and Northern Affairs C a n a d a , p. 47 -62 . Murphy, D .C . and P iercey , S . J . , 1999b. Geo log i ca l m a p of Wo lve r ine L a k e a rea (105G/8) , Pel ly Mounta ins , sou theas te rn Y u k o n . Explorat ion and Geo log i ca l S e r v i c e s Div is ion, Y u k o n , Depar tment of Indian and Nor thern Af fa i rs C a n a d a , O p e n F i le 1999-3 (1:50 000 sca le ) . Murphy, D . C . and P iercey , S . J . , 1999c. Geo log i ca l m a p of F in layson L a k e a rea , sou theas t quarter (105G/7 , 8 and parts of 1,2 and 9), sou theas tern Y u k o n . Explorat ion and Geo log i ca l S e r v i c e s Div is ion, Y u k o n , Indian and Northern Affa i rs C a n a d a , O p e n Fi le 1999-4 (1:100 000 sca le ) . Murphy, D . C . and P ie rcey , S . J . , 2000 . Syn-minera l iza t ion faults and their re-act ivat ion, F in layson L a k e m a s s i v e su lph ide belt, Y u k o n - T a n a n a Ter rane , southeastern Y u k o n . In: Y u k o n Explorat ion and G e o l o g y 28 1999, D .S . E m o n d and L .H. W e s t o n (eds.), Explorat ion and Geo log i ca l S e r v i c e s Div is ion, Y u k o n , Indian and Northern Af fa i rs C a n a d a , p. 55-66. Ohmo to , H., 1996. Format ion of vo lcan ic hosted m a s s i v e su lph ide depos i ts : T h e Ku roko perspect ive . O r e G e o l o g y R e v i e w s , vol . 10, p. 135-177. P ie rcey , S . J . and Murphy, D . C , 2000. Strat igraphy and regional impl icat ions of unst ra ined D e v o n o -M iss i ss ipp ian vo lcan ic rocks in the M o n e y C r e e k thrust sheet , Y u k o n - T a n a n a Ter rane , sou theas te rn Y u k o n . In: Y u k o n Explorat ion and G e o l o g y 1999, D.S. E m o n d and L .H. W e s t o n (eds.) , Explorat ion and Geo log i ca l S e r v i c e s Div is ion, Y u k o n , Indian and Northern Affairs C a n a d a , p. 67 -78 . P ie rcey , S . J . , Murphy, D . C , Mor tensen , J . K . and Parad is , S . , 2 0 0 0 a . Arc-ri f t ing and ens ia l ic back -a rc bas in m a g m a t i s m in the Northern C a n a d i a n Cord i l le ra : E v i d e n c e from the Y u k o n - T a n a n a Ter rane , F in layson L a k e region, Y u k o n . In: S lave-Nor thern Cord i l le ran L i thospher ic Exper imen t ( S N O R C L E ) -L i thoprobe Repor t No . 72, p. 129-138. P ie rcey , S . J . , Peter , J . M . , B radshaw, G . D . , Tucker , T L . and Parad is , S . , 2000b . G e o l o g i c a l attr ibutes of h igh- level subvo l can i c porphyrit ic intrusions in the Wo lve r i ne Z n - P b - C u - A g - A u vo lcan ic -hos ted m a s s i v e su lph ide deposi t , F in layson L a k e district, Y u k o n , C a n a d a . In: Y u k o n Explorat ion and G e o l o g y 2000 , D .S . E m o n d and L .H . W e s t o n (eds.), Explorat ion and Geo log i ca l S e r v i c e s Div is ion, Y u k o n , Indian and Northern Affa i rs C a n a d a (this vo lume) . Schu l t ze , H .C . , 1996. S u m m a r y of the K u d z Z e K a y a h project, vo lcan ic hosted m a s s i v e su lph ide deposi t , Y u k o n Territory. In: Y u k o n Explorat ion and G e o l o g y 1995, Explorat ion and Geo log i ca l S e r v i c e s Div is ion, Y u k o n , Indian and Northern Affairs C a n a d a , p. 29 -31 . T h o m p s o n , R.I., N e l s o n , J .L . , Pa rad is , S . , Roo ts , C . F . , Murphy, D . C , Go rdey , S . P . and J a c k s o n , L .E . , 2000 . Anc ien t Pac i f i c Marg in N A T M A P Project, year one. Geo log i ca l Survey of C a n a d a , Cur rent R e s e a r c h 2 0 0 0 - A 1 , 8 p. (onl ine; h t tp : / /www.nrcan.qc.ca/gsc/bookstore) . 29 Tucker , T .L . , Turner , A . J . , Terry, D.A. and B radshaw, G . D., 1997. Wo lve r i ne m a s s i v e su lph ide project, Y u k o n . In: Y u k o n Explorat ion and G e o l o g y 1996, Explorat ion and Geo log i ca l S e r v i c e s Div is ion, Y u k o n Indian and Northern Affa i rs C a n a d a , p. 53-55 . van S taa l , C . R . , W inches te r , J .A . and Beda rd , J . H . , 1991. G e o c h e m i c a l var iat ions in Midd le Ordov ic ian vo lcan ic rocks of the northern Mi ramich i H igh lands and their tectonic s ign i f i cance. C a n a d i a n Journa l of Earth S c i e n c e s , vol . 28, p. 1031-1049. 30 Figure Captions Figure 1. Locat ion m a p of the Y u k o n - T a n a n a Te r rane (YTT) , the F in layson L a k e district and the Wo lve r i ne deposi t , p lus other signif icant V H M S depos i ts in the F in layson L a k e district (from P ie rcey and Murphy, 2000) . Figure 2. Reg iona l geo log ica l m a p of the F in layson L a k e district (from Murphy and P iercey , 2000) . Figure 3. Reg iona l strat igraphic co lumn of the host - rocks to the V H M S depos i ts in the F in layson L a k e district (modi f ied after Murphy and T i m m e r m a n , 1997; Murphy, 1998; Murphy and P ie rcey , 1999a,b ,c ; P ie rcey and Murphy, 2000) . Figure 4. Loca l geo logy of the Wo lve r ine depos i t (modif ied f rom an unpub l i shed m a p by Expatr iate R e s o u r c e s Limited). Figure 5. G e n e r a l i z e d strat igraphic co lumn for the Wo lve r i ne deposi t . Cons t ruc ted f rom detai led geo log ica l mapp ing of dri l l -core, dri l l- logs, and c ross -sec t i ons suppl ied by Expatr ia te R e s o u r c e s Limi ted. Figure 6 . Geo log i ca l c ross -sec t ion 1 6 2 5 0 E through the Lynx zone of the Wo lve r i ne deposi t . T h e location of this c ross -sec t i on is shown on f igure 9. Cons t ruc ted f rom detai led geo log ica l mapp ing of dri l l -core, drill-logs and c r o s s - s e c t i o n s suppl ied by Expatr iate R e s o u r c e s Limi ted. Coord ina tes (in metres) a re f rom the property grid. Figure 7. G e o l o g i c a l c ross -sec t i on 1 6 7 0 0 E through the Wo lve r ine z o n e of the Wo lve r i ne deposi t . T h e locat ion of this c ross -sec t i on is shown on figure 9. Cons t ruc ted from detai led geo log ic mapp ing of dril l-core , dri l l- logs and c ross -sec t i ons suppl ied by Expatr iate R e s o u r c e s Limi ted. Coo rd ina tes (in metres) are from the property grid. 31 Figure 8. Photographs of host-rock lithologies: (a) K-feldspar-phyric rhyolite porphyry of Unit 1; (b) magnetite exhalite (iron formation) of Unit 2; (c) carbonate-pyrite exhalite of Unit 2; and (d) fragmental rhyolite of Unit 3. Figure 9. Contours of true thickness of massive sulphide mineralization projected to the surface. Figure illustrates the morphology of sulphide mineralization associated with the Wolverine, Lynx, and Hump zones. The locations of the individual drill holes are projected to the base of the massive sulphide intersection. Coordinates (in metres) are from the property grid. Modified from Expatriate Resources Limited (2000). Figure 10. Photographs of massive sulphide mineralization: (a) layered, massive pyrite and sphalerite, with lesser disseminated euhedral "buckshot" pyrite; (b) large, angular, breccia fragment composed of layered (possibly laminated) pyrite and sphalerite; (c) pyrrhotite-chalcopyrite-chlorite altered/replaced rhyolite at the base of the massive sulphide intersection; and (d) sulphide breccia with angular to subrounded fragments of pyrite set in a medium-grained pyrite matrix. Figure 11. Plan map of the Wolverine deposit showing the distribution of stringer veins ('feeder veins') and replacement-style mineralization. The locations of the individual drill-holes are projected to the base of the massive sulphide intersection. Coordinates (in metres) are from the property grid (J. Peter and S. Paradis, unpublished data, 2000). Figure 12. Contours of (a) Cu / Cu + Pb + Zn, (b) Zn / Cu + Pb + Zn, and (c) Pb / Cu + Pb + Zn that illustrate the lateral zonation of copper, lead, and zinc in the Wolverine deposit. Note the correspondence of elevated copper values to the location of the Hump zone. The positions of the individual drill-holes are projected to the base of the massive sulphide intersection. Plots are generated from data provided by Expatriate Resources Limited. 32 F i g u r e 13 . Pho tog raphs of alteration sty les: (a) strongly ser ic i t ized rhyolitic vo lcan ic las t i c rock; (b) chlor i t ized rhyolitic vo lcan ic las t ic rock; (c) strongly si l icif ied and su lph ide st r inger-veined (pyrite and sphaler i te) rhyolitic vo lcan ic las t ic rock; and (d) carbonat ized rhyolitic vo lcan ic las t ic rock. 33 Fig . 1 (Bradshaw et al.) 34 Fig. 2 (Bradshaw et al.) 131°45' 1 3 H 5 ' 13 TOO' Kilometres Q Quaternary sediments Pennsy lvan ian-Permian Campbell Range Belt Y//A Chert, chert-pebble conglomerate, Y///\ sandstone feigd Mafic volcanics, volcaniclastics F*r*vS3 and intrusive rocks I; ; l 11 Diamictite, mafic tuff, olisostromal I- • ' 'I carbonate, chert, sandstone Miss i ss ipp ian Unit 6: Feisic metavolcanic rocks, Fe-formation, mixed tuffs Unit 5cp: Carbonaceous argillite and phyllite Unit 5f/afp: Quartz-bearing feisic metavolcanics and intrusives Miss i ss ipp ian • Unit 51: Quartzfeldspar+shale I I chip conglomerate — ~ U n c o n f o r m i t y Jj|gJpSj Unit A: Carbonaceous phyllite, rift-^ S S V A V related mafic dykes, auartzite Unit 3: Feisic metavolcanic and P7 < ] shallow tevel intrusive rocks, ' 1 ' carbonaceous phyllite, turbiditic sedimentary rocks Unit 2: Mafk: metavolcanic and intrusive K X x S j rocks, carbonaceous phyllite, lesser feisic metavolcanic rocks [.'.•. ".I Unit 1: Quartz-I + biotite)-rich metaclastic [• • • I rocks calc-silicates. rare feisic horizons Intrusive Rocks Cretaceous | * A * A J Peraluminous granitoids Miss iss ipp ian I + 1 Grass Lakes: Peraluminous granitoids 61°30' 6 H 5 ' 61°00' * *~j Simpson Range Plutonic Suite: Metaluminous 1 granitoids °4i'S Simpson Range Plutonic Suite: Sheared j metaluminous granitoids Mississippian? serpentinized harzburgltes and ultramafic rocks (intrusions?) Other VMS deposit Faults, displacement uncertain 35 Fig. 3 (Bradshaw et al.) Campbel l Range Success ion Wolverine S u c c e s s i o n Grass Lakes S u c c e s s i o n 36 Fig. 4 (Bradshaw et al.) WOLVERINE DEPOSIT \ y v V v v v V v V v . - _ - - . - _ - l : ^ v v v V _ \v v v v v v v v x _ - ^ ^ w ^ - 3 , v v v ( V V V V V V V V V " -v v v v v v v v v \ _ _ _ _ _ _ \V V V V V V V V V V-~-~—~_-_—JiY v V v v v _ — . \ V V V V V V V V V V " — * - - - - - - - " ^ v "> -,. Vvvvvvvvvv vr_ -.,v V V v v v - • / V V V V V V V V V V v \ V V V V V V V V V V V V~',~— — — _ \ r_—_ V v v v v v v v v v v v v _ — _ ~ i v v v v V - _ ' v v v v v v v v v v v v v \ - _ - _ - _ - ~ J \ v V V V Vv- . V v v v v v v v v v v v V V _ - _ - _ - _ " A V v v v v V \ v v v v v v v v v v v v v 7 _ - _ - _ - \ v v v v 7 N y v v v v v v v w v v V u ~ _ ~ _ ™ _ \ v v v V / v v v v v v v v v v v vV - ~ - ~ - " V yX/ ^ v v v v v v v v v v v v V - — — — ^ • v v v v v v v v v v v v * . " X y v v v v v v v v v v vv~_r' w v v v v v v v v v vV?^ X y V V V V V Y _ ^ - > J v v v v v v v v v v v LEGEND 2 Kilometres Basalt and carbonaceous sediments Magnetite exhalite (iron formation) Aphyric to fragmental rhyolite and carbonaceous argillite Carbonaceous argillite and rhyolite volcaniclastic rock Quartz- feldspar- phyric volcaniclastic rock 37 Fig . 5 (Bradshaw et al.) /~\ x \ -^sP A A A A A A| /A A A A A A A A A A A A - - - - - - — A A A A A A A A A A A A A A A A A A A A A A A A ? * c < < n •+ + + H V V y _ _ y v . - - v _ v " l - ~ -V ' w — _ v - _ v _ v _ v v -_ v v_ _v - v v " v - v y- v I -v v " V - v v - V v - v. v - V V - w V - w - ~ V Legend Uni t 4 Rhyolite volcaniclastic _ Interbedded black carbonaceous ~ — argillite + carbonaceous greywacke V - W - N Massive basalt A A A A Basalt volcaniclastic Uni t 3 J u >< y, Fragmental rhyolite _ - Interbedded fragmental i rhyolite + carbonaceous argillite B T T T Uni t 2 Upper exhalite m t » carbonate Middle exhalite mt > carbonate Lower exhalite carbonate >> mt Massive aphanitic aphyric rhyolite (flow) Feisic volcaniclastic _- _ -_ Carbonaceous argillite Massive sulphide Uni t 1 Coarse grained feisic volcaniclastic +/- qtz +/- feldspar crystals Interbedded coarse grained volcaniclastic +/- qtz +/-feldspar crystals and carbonaceous argillite Feldspar porphyry Footwall carbonaceous argillite 38 Fig. 6 (Bradshaw et al.) Fig. 7 (Bradshaw et al.) 40 Fig. 8 (Bradshaw et al.) 41 Fig. 9 (Bradshaw et al.) 17300N 4 2 Fig. 10 (Bradshaw et al.) 43 Fig . 11 (Bradshaw et al.) Distribution of feeder veins and replacement mineralization in the Wolverine deposit 1 F e e d e r v e i " s vetns F e 6 d e r Replacement 1 zones No feeder veins or replacement zones • 7 9 d i amond drill hole number 44 Fig. 12 (Bradshaw et al.) 45 Fig. 13 (Bradshaw et al.) 46 Chapter 3 - Genesis of the Wolverine deposit, Finlayson Lake region, Yukon: transitional volcanic-hosted massive sulfide (VHMS) and Sedimentary Exhalative (SEDEX) mineralization in an ancient continental margin setting Geoffrey D. Bradshaw1, Stephen M. Rowins1, Jan M. Peter2, Bruce E. Taylor2 1 Depar tment of Earth and O c e a n S c i e n c e s , Universi ty of Brit ish C o l u m b i a , 6 3 3 9 S to res R o a d , V a n c o u v e r , Brit ish C o l u m b i a , V 6 T 1Z4 2 M inera l R e s o u r c e s Div is ion, Geo log i ca l Survey of C a n a d a , 601 Booth Street, Ot tawa, Ontar io , K 1 A 0 E 8 sen io r author Ema i l : qeo f f@bradshaw.ne t vers ion date: M a r c h 29, 2 0 0 3 1 Department of Earth and O c e a n Sc iences , University of British Co lumb ia , 6339 Stores R o a d , Vancouver , British Co lumb ia , V 6 T 1Z4 2 Mineral Resou rces Division, Geo log ica l Survey of C a n a d a , 601 Booth Street, Ottawa, Ontario, K 1 A 0 E 8 47 Abstract T h e Wo lve r i ne deposi t ( -6.2 Mt @ 1 2 . 7 % Z n , 1.3% C u , 1.6% P b , 370.9 g/t A g , & 1.8 g/t Au) fo rmed on the margin of an evolv ing ens ia l ic back -a rc o c e a n bas in , be tween the Y u k o n - T a n a n a terrane (YTT) and the ances t ra l North A m e r i c a n craton. T h e depos i t is hosted within a s u c c e s s i o n of ear ly M iss i ss ipp ian fe ls ic vo lcan ic and sed imentary rocks . Mineral izat ion occu rs at a s ing le hor izon ("Wolver ine horizon"), that ma rks a signif icant change in the charac ter of the vo l can i sm between the footwall and the hanging wal l of the deposi t . T h e footwall cons is ts of a s e q u e n c e of c a r b o n a c e o u s sha le , quar tz- and fe ldspar-phyr ic vo lcan ic las t ic rhyolite, and minor fe ldspar-phyr ic rhyolite si l ls, w h e r e a s the hanging wal l is ' c o m p r i s e d of intercalated aphyr ic rhyolite, c a r b o n a c e o u s sha le , and carbonate-pyr i te exhal i te. Minera l izat ion o c c u r s as two separa te Z n - P b - A g m a s s i v e sulf ide l enses si tuated at the s a m e strat igraphic hor izon, wh ich are connec ted by s t ra tabound, s e m i - m a s s i v e rep lacement-s ty le , Z n - P b - A g mineral izat ion. Copper - r i ch mineral izat ion common l y rep laces the Z n - P b - A g mineral izat ion at the b a s e of the l enses and in the footwall rep lacement z o n e s , indicating that pr imary metal and mineral zon ing are p reserved . Mult iple z o n e s of sul f ide str inger ve ins , and con fo rmab le chlor i te-ser ic i te-carbonate alteration are deve loped within pe rmeab le vo lcan ic las t ic rocks of the footwall . M ic roprobe ana l yses of alteration minera ls indicate that B a -rich phengi t ic m i ca , biotite, Mg-r ich chlori te and sideri te a re preferential ly a s s o c i a t e d with m a s s i v e sul f ide mineral izat ion. T h e Z n - P b - A g m a s s i v e sul f ide l enses fo rmed between 215-336 °C (mean = 264°C), b a s e d on the arsenopyr i te geo thermometer . T h e sul f ide str inger z o n e s formed at slightly h igher tempera tu res (273-288°C; m e a n = 282°C) b a s e d on the es t imates der ived from the compos i t ion of a s s o c i a t e d hydrothermal chlorite. La te -s tage quar tz-chalcopyr i te ve ins formed between 265-353°C (mean = 302°C), b a s e d on fluid inc lus ion micro thermometr ic measu remen ts . Pr imary fluid inc lus ions hosted in quar tz are low salinity (2.1-8.5 wt.% N a C l eq . ; m e a n = 6.0), two-phase , a q u e o u s solut ions with high l iquid-to-vapor ratios. E v i d e n c e of fluid boil ing or p h a s e separat ion is absent . B a s e d on an ave rage salinity and tempera tu res of homogen iza t ion , mineral izat ion formed at a m in imum water depth - 1 0 4 8 meters . In-situ 5 3 4 S va lues of sulf ide minera ls f rom m a s s i v e sulf ide l enses and sulf ide str inger ve ins d isplay a p ronounced b imoda l distr ibution with m o d e s of 0.8 % o and 12.0 % o . T h e lighter 5 3 4 S va lues are near the top of the l enses , w h e r e a s the heav ier va lues c o m e from the underlying str inger ve ins. T h e 8 3 4 S va lues and distinct populat ions sugges t that sulfur w a s der ived by a combinat ion of b iogenic and inorganic reduct ion of 48 seawa te r sul fate within a partly c l o s e d , reduced bas in . Mineral izat ion fo rmed through a combina t ion of seaf loor hydrothermal vent ing from multiple sul f ide m o u n d s and sub-sea f loo r rep lacement p r o c e s s e s . T h e reduced nature of the ambient bottom water in the bas in likely contr ibuted to the preservat ion of the sul f ide mounds . T h e geo log ic sett ing, sty les of mineral izat ion and phys i co -chemica l condi t ions of the mineral iz ing f luids all sugges t that the Wo lve r i ne deposi t fo rmed in a geo log ica l env i ronment transit ional be tween that wh ich hosts c l a s s i c b imodal vo lcan ic rock-hosted m a s s i v e sulf ide depos i ts (e.g. Kuroko) and sed imentary exhalat ive ( S E D E X ; e .g . Sul l ivan) m a s s i v e sul f ide depos i ts . 49 Introduction T h e d iscovery of the Wo lve r i ne polymetal l ic vo lcan ic rock-hosted m a s s i v e sul f ide ( V H M S ) depos i t in 1995, together with that of severa l other base metal depos i ts and minera l o c c u r r e n c e s of potential e c o n o m i c s ign i f i cance (e.g., Fyre Lake , Ice, G P 4 F , K u d z Z e Kayah) , hera lded the e m e r g e n c e of the F in layson L a k e district in Y u k o n a s a V H M S district of s ignif icant e c o n o m i c potential . T h e Wo lve r i ne depos i t has a geo log ica l resource of 6 ,237,000 tonnes grading 12 .7% z inc , 1.3% copper , 1.6% lead, 370.9 g r a m s per tonne (g/t) s i lver and 1.8 g/t gold (Tucker et a l . , 1997). T h e s e d iscover ies spur red an integrated research program of regional geo log ica l mapp ing (Murphy, 1998; Murphy and P iercey , 1999; Murphy et a l . , 2002) , meta l logenic , and l i thogeochemica l s tud ies (B radshaw et a l . , 2 0 0 1 ; P ie rcey e t a l . , 2 0 0 1 a , 2001b , 2002) of the F in layson L a k e district. Explorat ion in the district has been h indered by inadequate documenta t ion of the local geo log ica l env i ronment and inadequate knowledge of the geo log ica l p r o c e s s e s that control led the locat ion and g e n e s i s of the depos i ts . F ie ld s tud ies (Tucker et a l . , 1997; B r a d s h a w et a l . , 2001) sugges t that the Wo lve r i ne depos i t is transit ional between b imodal V H M S depos i ts such a s those of Kuroko , J a p a n (Ohmoto , 1996), and sha le -hos ted depos i ts such a s those in the Se lwyn B a s i n , Y u k o n (Gus ta fson and Wi l l i ams , 1981; Good fe l l ow et al . , 1993), and may fit into an economica l l y important subgroup of vo lcan ic -assoc ia ted seaf loor hydrothermal depos i ts referred to a s vo lcan ic -sed iment hosted m a s s i v e su lph ide ( V S H M S ) depos i ts by Good fe l l ow (2001). Th is study w a s initiated to const ruct a genet ic mode l for the Wo lve r i ne deposi t , with the ult imate a im of unders tanding the local geo log ica l env i ronment and the geo log ica l p r o c e s s e s that fo rmed m a s s i v e sul f ide mineral izat ion in this transit ional tectonic sett ing. Geologic Setting Regional geology T h e V H M S depos i ts of the F in layson L a k e District are hosted within the Y u k o n T a n a n a Ter rane , wh ich under l ies m u c h of Y u k o n and A l a s k a and is one of the innermost ter ranes of the C a n a d i a n 50 Cord i l le ra ( T h o m p s o n et a l . , 2000 ; F ig . 14). Th is comp lex , he te rogeneous terrane of per icratonic origin is interpreted to be a Late Devon ian to Ear ly J u r a s s i c compos i te arc s e q u e n c e under la in by p re -Devon ian sed imentary rocks of cont inental affinity (Mor tensen, 1992). T h e rocks that host the Wo l ve r i ne depos i t are bounded to the northeast by the F in layson L a k e fault z o n e and to the southwest by the Tint ina Fault, wh ich has dextral ly offset the F in layson L a k e District f rom the main portion of the Y u k o n T a n a n a Te r rane by approx imate ly 4 5 0 k m (Fig. 14; Mor tensen , 1992). ' T h e Fyre Lake , K u d z Z e Kayah , and Wo lve r ine m a s s i v e sulf ide depos i ts are hos ted by a highly de fo rmed but coheren t strat igraphic s u c c e s s i o n of ear ly P e r m i a n to early M iss i ss ipp ian m e t a m o r p h o s e d plutonic, vo lcan ic , and sed imentary rocks (Murphy, 1998; F ig . 15). A n angu lar unconformi ty sepa ra tes the G r a s s L a k e s s u c c e s s i o n , wh ich hosts the K u d z Z e Kayah , Fyre Lake , and G P 4 F depos i ts , f rom the younger c a r b o n a c e o u s metac las t ic rocks and quartz- and fe ldspar-phyr ic fe is ic me tavo lcan ic rocks of the Wo lve r i ne s u c c e s s i o n that host the Wo lve r ine deposi t . A s e c o n d unconformity sepa ra tes the Wo lve r i ne s u c c e s s i o n f rom the overly ing C a m p b e l l R a n g e s u c c e s s i o n , the latter wh ich is c o m p r i s e d primari ly of m a s s i v e metabasa' l t (Murphy and P iercey, 1999; F ig . 15). T h e fe is ic vo lcan ic rocks in the Wo lve r ine s u c c e s s i o n have e levated high-f ield-strength e lement ( H F S E ) contents and within plate (A-type) t race e lement character is t ics , cons is ten t with format ion in an early M i ss i ss i pp ian ens ia l ic back -a rc rift-basin env i ronment (P iercey et a l . , 2001a) . T h e C a m p b e l l R a n g e s u c c e s s i o n is c o m p r i s e d of basal ts with ex tended t race-e lement profi les very s imi lar to those of m id -o c e a n ridge basal t ( M O R B ) , indicating that the rift-basin eventual ly evo lved to a center of sea- f loor spread ing (P iercey et al . , 2001a) . Metamorphism and structure R o c k s in the vicinity of the Wo lve r i ne deposi t have been m e t a m o r p h o s e d to midd le- or even upper -g reensch is t g rade b a s e d on a defining metamorph ic mineral a s s e m b l a g e of actinol i te, albite, chlori te and biotite. A major deformat iona l event is recorded a s a prominent ST fol iat ion, wh i ch t rends northwest and d ips gently to the northeast into the hil lside (Fig. 16b,c). Fo lds (F i ) in the vicinity of the depos i t ve rge to the southwest , and are ' S ' - s h a p e d indicating that the Wo lve r i ne depos i t is on the western l imb of an open , upright structure (D .C . Murphy, pers. c o m m u n . , 2000). A t severa l locat ions, whe re 51 primary compos i t iona l layering is visible, the intersect ion of the ST foliation with bedd ing (S 0 ) fo rms a l ineation paral lel to the orientation of the fold h inges. T h e compos i t iona l layering and S i foliation essent ia l ly are paral lel excep t near the vicinity of fold h inges. De fo rmat ion h a s resul ted in ex tens ive g o u g e z o n e s in mo re duct i le rocks (e.g., argillite) and in tense fracturing in more brittle rocks (e.g., rhyolite). Faul t ing is present to s o m e deg ree throughout the strat igraphic s e q u e n c e , a l though offsets greater than 1 m are not recogn ized . Faul t ing and folding of the Wo lve r i ne strat igraphic s e q u e n c e is attributed to the s a m e major deformat ional event. Deposit stratigraphy Desp i te middle to upper g reensch is t grade me tamorph ism and strong deformat ion, it is poss ib le to recogn ize vo lcan ic , vo lcan ic las t ic and sed imentary protoliths at the Wo lve r i ne deposi t . B r a d s h a w et al . (2001) prov ide a deta i led descr ip t ion of the strat igraphic s e q u e n c e that hos ts the Wo l ve r i ne deposi t . T h e rocks are d iv ided into four s u c c e s s i v e units, e a c h of wh ich is compr i sed of seve ra l different l i thologies. T h e units are desc r i bed be low (from oldest to youngest ) and il lustrated in f igures 16 and 17a-d . Note that the m a s s i v e su l f ides and other exhalat ive rocks are restr icted to Unit 2. Unit 1 - Footwall Volcaniclastic, Carbonaceous Sedimentary and Porphyritic Intrusive Rocks: T h e b a s e of the vo lcano-sed imen ta ry s e q u e n c e that hos ts the mineral izat ion is m a r k e d by a grey to b lack c a r b o n a c e o u s argillite (footwall argillite) in e x c e s s of 50 meters thick that g rades upward into g reen to grey quartz- and fe ldspar-crysta l -bear ing rhyolite vo lcan ic las t ic rock. Th is rhyolite vo lcan ic las t ic rock is 1 to 60 meters thick and conta ins f lattened, sub-angu la r to sub- rounded f ragments of rhyolite, and severa l vo lume percent (vol.%) po tass ium fe ldspar and quartz crysta ls . T h e rhyolite is the immedia te footwall to the m a s s i v e sul f ide l enses . T h e s ize and a b u n d a n c e of fe ls ic vo lcan ic rock f ragments in Unit 1 d e c r e a s e signif icantly with increas ing lateral d is tance f rom the deposi t . S ix to 15 m-thick po tass ium fe ldspar-phyr ic rhyolite bod ies punctuate this s e q u e n c e of intercalated argillite and rhyolite vo lcan ic las t ic rock (Fig. 17a). They o c c u r on ave rage 20 m strat igraphical ly be low the b a s e of the m a s s i v e sul f ide hor izon and are interpreted to be intrusive sil ls that were e m p l a c e d pre- or syn-minera l izat ion (P iercey et a l . , 2001b) . Si l ls that are compos i t iona l ly and texturally s imi lar occu r at the s a m e strat igraphic posi t ion at the F i she r and S a b l e occu r rences , 8 km northwest and 3 km southeas t of the Wo lve r ine deposi t , respect ive ly (Fig. 16a). 52 T h e s e si l ls, however , are not recogn ized outs ide of these locat ions. Porphyr i t ic si l ls f rom the F i she r occu r rence y ie lded a U - P b (zircon) age of 346.6 +/- 2.2 M a , wh ich is cons ide red the approx imate (max imum) a g e of mineral izat ion for the Wo lve r i ne depos i t (P iercey, 2001) . Unit 2 - interbedded Argillite, Rhyolite, and Magnetite-Carbonate-Pyrite Exhalites: Th i s unit is 85 to 160 m thick and cons is t s of more than 90 v o l . % interbedded b lack graphit ic argillite and m a s s i v e to f low-banded, aphyr ic rhyolite or rhyolite vo lcan ic las t ic rock, either of wh ich c a n attain t h i c k n e s s e s of up to 30 m. M u c h of the argillite and rhyolite in Unit 2 conta ins m m - s c a l e quartz-pyri te vein lets and a s s o c i a t e d s i l ica al terat ion. T h e lens- l ike m a s s i v e su l f ides range from <1 m up to 10 m in th i ckness and mos t c o m m o n l y occu r at the contact between Unit 1 and Unit 2. Th i s contact , te rmed the "Wo lve r ine hor izon", is recogn ized regional ly by the transit ion from quartz- and fe ldspar-phyr ic rhyolite in the footwall to aphyr ic rhyolite in the hang ing wal l . T h e hanging wal l to the m a s s i v e sulf ide is typically graphit ic argill ite, but carbonate-pyr i te exhal i te locally over l ies the m a s s i v e sulf ide. The re are 3 to 4 individual exhal i te beds within Unit 2, and these vary f rom < 1 m up to 10 m in width. T h e lowermost exhal i te is ca rbona te -predominant (F ig. 17b); w h e r e a s the uppermost are magnet i te -predominant and te rmed "iron format ions" (Fig. 17c). T h e s e iron format ions are si tuated approx imate ly 80 to 100 meters a b o v e the m a s s i v e sul f ide, and are laterally ex tens ive with str ike- lengths in e x c e s s of 12 km. They d isp lay s o m e minera log ica l and g e o c h e m i c a l simi lar i t ies with iron format ions assoc ia ted with the Brunswick 6 and 12, and Aus t in Brook depos i ts of the Bathurst District, N e w Brunswick (Peter and Goodfe l low, 1996; Peter , in p ress) , but in contrast to these depos i ts , they are not the exac t lateral fac ies equiva lents of the m a s s i v e sul f ide mineral izat ion ( B r a d s h a w et a l . , 2 0 0 1 ; Peter , in press) . T h e carbonate -p redominant exha l i tes are a lso laterally ex tens ive and are spatial ly related to m a s s i v e sul f ide mineral izat ion. T h e overal l t h i ckness of Unit 2 (from the uppermos t iron format ion to the Wo lve r i ne horizon) d e c r e a s e s signif icantly a s lateral d is tance f rom the depos i t i nc reases . Unit 3 - Fragmental Rhyolite: Th i s unit occu rs above the minera l ized s e q u e n c e and its b a s e is general ly ma rked by the p resence of the uppermost iron formation (Fig. 17d). T h e unit a v e r a g e s a relatively constant 80 m in th ickness . F ragmenta l rhyolite is c las t -suppor ted and compr i sed of cent imeter-s i zed fe is ic aphani t ic vo lcan ic rock f ragments within a matrix of wispy, sub-mi l l imeter , dark g reen to black, anas tomos ing m i c a c e o u s bands . F ragmen ts are sub-angu la r to sub- rounded with ragged boundar ies and 53 i rregular s h a p e s . M inor c a r b o n a c e o u s argillite is intercalated locally with the rhyolite f ragments sugges t ing that Unit 3 is vo lcan ic las t ic in origin. Unit 4 - Interbedded Carbonaceous Argillite and Greywacke, with lesser Basalt and Rhyolite: Th is uppermos t unit is domina ted by in terbedded b lack c a r b o n a c e o u s argillite and grey to black, m e d i u m -gra ined, g reywacke ( -60 vol .%). M e d i u m green , mass i ve , f ine-grained basal t with biotite and minor epidote on part ings ( -40 vol.%) is the next most c o m m o n rock. Layers of fe ls ic vo lcan ic las t i c rocks s imi lar in a p p e a r a n c e to the f ragmenta l rhyolite of Unit 3 are volumetr ical ly minor. Th i s uppermos t s e q u e n c e represents the transit ion from the Wo lve r ine strat igraphy to the overlying basal t ic f lows and vo lcan ic las t ic rocks of the C a m p b e l l R a n g e s u c c e s s i o n . T h e basa l ts and the c a r b o n a c e o u s sed imentary rocks are most ly in terbedded on a cent imeter -sca le , a l though individual m a s s i v e basal t layers ( f lows?) and c a r b o n a c e o u s sed imentary s e q u e n c e s c a n be up to 40 m and 30 m thick, respect ively. T h e b a s e of unit 4 is def ined by the first occu r rence of green basal t ic vo lcan ic las t ic rock. Mineralization Mineralization styles and textures O n the bas is of style and mineralogy, the sul f ide mineral izat ion at Wo lve r i ne has been div ided into (1) m a s s i v e layered sulf ide, (2) s e m i - m a s s i v e rep lacement sulf ide and (3) str inger vein sul f ide (F ig. 18). T h e chem ica l compos i t i ons of representat ive s a m p l e s of mineral izat ion, e n c o m p a s s i n g these differing styles, are presented in Tab le 1. T h e greatest proport ion of mineral izat ion occu rs a s tabular, h o m o g e n e o u s , m a s s i v e , layered to less common l y brecc ia ted, sul f ide lenses . A signif icant proport ion of the mineral izat ion cons is t s of s e m i - m a s s i v e rep lacement sul f ides. Str inger vein su l f ides are volumetr ical ly minor. Massive layered sulfides: T h e s e tabular, lens- l ike bod ies contain 70 -95 vol % f ine-gra ined sulf ide minera ls . Pyri te and sphaler i te are the predominant sul f ides, with subord inate pyrrhotite, chalcopyr i te, ga lena , tetrahedri te-tennanti te and arsenopyr i te. Other t race minera ls identif ied inc lude marcas i te , native gold and native si lver. Menegh in i te ( P b 1 3 C u S b 7 S 1 3 ) is the predominant lead sul fosal t minera l , and t race amoun ts of this minera l occu r locally together with lesser bournonite ( P b C u S b S 3 ) , boulanger i te 54 ( P b 5 S b 4 S n ) , and miargyri te ( A g 2 S b 2 S 3 ) . P rev ious workers recogn ized that m a s s i v e su l f ides f rom the Wo lve r i ne depos i t conta in S e (J. Jambo r , writ, c o m m u n . , 1996) and that sul f ide concen t ra tes conta in anoma lous l y high concent ra t ions of se len ium (S. Ch ryssou l i s and D. K ings ton, writ, c o m m u n . , 1997). Pyri te, the pr incipal sulf ide minera l , occu rs a s very f ine-grained anhedra l m a s s e s , coarse ly gra ined porphyrob lasts ( termed "buckshot" pyrite), and rarely a s very fine, anhedra l co l lo form m a s s e s and f ramboids , typically near the upper contact with the hanging-wal l graphit ic argillite (Fig. 19a). Abundant , f ine-gra ined, reddish brown (i.e., iron-rich) sphaler i te fo rms del icate, wispy, sub-mi l l imeter- to cent imeter-s c a l e layers that a re largely respons ib le for the layered a p p e a r a n c e of the m a s s i v e su l f ides (Fig. 18a; 19c). Layers a re typically paral lel to the S , foliation as a result of deformat ion. Spha ler i te compos i t i ons are remarkab ly var iab le over the a rea of the deposi t , ranging from 4.1 wt% F e in pyrite- and sphaler i te-r ich m a s s i v e sul f ide to 10.4 wt% F e in chalcopyr i te-r ich m a s s i v e sulf ide. Represen ta t i ve sphaler i te a n a l y s e s (n=13) f rom 5 s a m p l e s of m a s s i v e sul f ide are presented in Tab le 2. High- i ron sphaler i te o c c u r s together with chalcopyr i te at the base of the m a s s i v e sul f ide lenses . Sphaler i te compos i t i ons c a n be usefu l , in s o m e c a s e s , for est imat ing p ressu res attending me tamorph i sm (Scott, 1983; S u n d b l a d et a l . , 1984). However , most sphaler i te compos i t ions from the Wo lve r i ne deposit , regard less of texture, co r respond to p ressu res that are unreal ist ical ly high (Fig. 20). Th is is likely due to incomplete reequi l ibrat ion of sphaler i te dur ing me tamorph i sm . G a l e n a , tetrahedrite, and arsenopyr i te are c o m m o n in the m a s s i v e sul f ide l enses and typically occu r together a s f ine-gra ined, anhedra l aggrega tes within sphaler i te-r ich layers (Table 2; F ig . 19b). G a l e n a is not an important host for s i lver at Wo lve r ine , even though the overal l s i lver g rade of the depos i t is high (370.9 g/t). G a l e n a within s o m e port ions of the Wo lve r ine deposi t (near the b a s e of the Lynx sul f ide lens) is high in se len ium (up to 6.86 wt.%). Fur thermore, ga lena is the only minera l within the m a s s i v e sul f ides where se len ium is present in concent ra t ions greater than about 1% (i.e. the detect ion limit of energy d ispers ive spec t romete r ( E D S ) microana lys is . T h e high si lver g rades in the Wo lve r i ne depos i t are due mainly to the a b u n d a n c e and high si lver content of tetrahedrite (up to 14.26 wt.%). Cha lcopyr i te is rare within the upper port ions of the m a s s i v e sul f ide l enses and o c c u r s a lmost exc lus ive ly a s remobi l ized med ium-gra ined m a s s e s on the e d g e s of large pa tches of quartz g a n g u e or wal l rock f ragments . In s o m e locali t ies, however , the lowermost part of the sul f ide l enses cons i s t s of chalcopyr i te and pyrrhotite domina ted m a s s i v e sul f ide that ranges from cent imeters to seve ra l meters 55 thick (F ig. 18c, 19d). In these local i t ies, chalcopyr i te and pyrrhotite rep lace sphaler i te, ga lena and tetrahedrite. B recc i a textures are u n c o m m o n within m a s s i v e layered sul f ide and result f rom tectonic deformat ion rather than primary deposi t ional p r o c e s s e s . Semi-massive replacement sulfides: Sul f ide minera ls in these z o n e s have partly to comple te ly rep laced host rocks and compr i se 10 to 50 v o l . % of the rock. Th i s has resul ted in d iscre te , f ine-gra ined, strat i form, s e m i - m a s s i v e sulf ide layers ranging in th i ckness from severa l cent imeters up to one meter that are c o m p o s e d of chalcopyr i te, sphaler i te, and pyrite with subord inate pyrrhotite. Cha lcopyr i te - r ich rep lacement - type mineral izat ion fo rmed z o n e s that are typically 30 c m thick and conta in 60 to 80 v o l . % m a s s i v e to interstitial chalcopyr i te with subord inate pyrrhotite, sphaler i te and pyrite. They are assoc ia ted with in tense and pervas ive chlorite and iron carbonate alteration of the host rocks . Cha lcopyr i te is more c o m m o n in rep lacement - type mineral izat ion than in the m a s s i v e layered sul f ide mineral izat ion. Spha ler i te -rich rep lacement - type mineral izat ion occu rs a s either m a s s i v e layers or irregular b lebs and d issemina t ions together with subord ina te pyrite, and is common l y assoc ia ted with the more distal alteration a s s e m b l a g e s of ser ic i te, calc i te and subord inate chlorite. Stringer vein sulfides: T w o to three cent imeter-wide, planar, quartz-sul f ide ve ins c o m p r i s e 5 to 10 v o l . % of the rock and are t ransposed into the p lane of the S i fol iation. A 5-10 c m w ide enve lope of quartz alteration c o m m o n l y sur rounds individual ve ins . T h e ve ins are te rmed "stringer" ve ins and these z o n e s of e n h a n c e d vein deve lopmen t are te rmed str inger z o n e s . T h e s e z o n e s of relatively large ve ins , and assoc ia ted pervas ive si l ici f ication, are narrow (on the order of 25 m) and contain pyrite and sphaler i te with subord inate chalcopyr i te and pyrrhotite and rare arsenopyr i te. Quar tz , calc i te, dolomite, anker i te, sideri te, chlori te, biotite, and muscov i te are c o m m o n gangue minera ls . W e a k l y deve loped str inger vein mineral izat ion is m u c h more w idesp read , however , and it cons is ts of 1- to 10 -mm-w ide sul f ide ve in le ts . that conta in little quartz and lack s i l ica alteration ha loes . T h e s e weak ly deve loped str inger ve ins occu r outboard of the bet ter -developed str inger z o n e s and contain chalcopyr i te and pyrrhotite with subord inate sphaler i te and pyrite. In s o m e local i t ies, str inger ve ins contain chalcopyr i te that rep laces ear l ier sphaler i te. Str inger ve in - and rep lacement- type mineral izat ion general ly contain anhedra l su l f ides that lack me tamorph ic textures. 56 Mineral-metal zonation and deposit architecture T h e Wo lve r i ne depos i t is compr i sed of two d iscrete lenses . T h e s e tabular, h o m o g e n e o u s m a s s i v e bod ies are te rmed the Wo lve r i ne and Lynx z o n e s (Fig. 21a). A 200 meter- long z o n e of s e m i - m a s s i v e rep lacement sul f ide mineral izat ion and sul f ide-str inger vein mineral izat ion that occu r at or near the s a m e strat igraphic posit ion as the m a s s i v e sul f ide l enses sepa ra tes these z o n e s f rom one another. Th i s a rea is te rmed the H u m p z o n e (F ig. 21a) . T h e entire Wo lve r ine depos i t is 700 m long, at least 4 7 5 m wide, and between 1 and 10 m thick. T h e Wo lve r i ne and Lynx z o n e s are e a c h approx imate ly 250 meters long. T h e sulf ide l enses a re less than 1 m thick near the fr inges of the deposi t but inc rease up to 10 m thick in the Wo lve r i ne z o n e . In s o m e local i t ies, such a s in the th ickest sec t ions of the Lynx z o n e , there are mult iple sul f ide l e n s e s separa ted by 4 to 8 m of argillite or rhyolite. T h e s h a p e of the depos i t is strongly control led by the S i foliation and , to a lesse r extent, by smal l southwest -verg ing Fi folds. T h e low aspec t ratio and sheet- l ike morpho logy of the m a s s i v e sul f ide l enses is, at least in part, a result of deformat ion. Loca l th ickening of the m a s s i v e sul f ide l enses occu rs at fold h inges, with shor ten ing perpendicu lar to the axial p lane of the folds and attenuat ion on the fold l imbs. T h e deposi t s t r ikes northwest and d ips at approx imate ly 30 deg rees to the northeast. T h e sul f ide l enses pinch out on their up-dip edge , approx imate ly 50 meters be low sur face, but the down-d ip limits have not yet been def ined by explorat ion dril l ing. Str inger z o n e s are not particularly wel l deve loped at the Wo lve r i ne deposi t , but four d iscre te z o n e s of sul f ide str inger ve ins are identif ied (Fig. 21b). T h e s e str inger z o n e s ex tend to dep ths of up to 13 m beneath the b a s e of m a s s i v e layered su lph ide in the Wo lve r ine and H u m p z o n e s . T w o addi t ional str inger z o n e s identif ied on the western and southwestern up-dip e d g e s of the depos i t (drill ho les 81 and 97; F ig . 21b) may have underlain sul f ide l enses that have been e roded away. Rep lacemen t - t ype mineral izat ion typically sur rounds and occu rs above and outboard of the str inger vein mineral izat ion. Cha lcopyr i te is the dominant sulf ide mineral in rep lacement- type mineral izat ion that is prox imal to the main str inger z o n e s , located mainly down-d ip to the northeast of the H u m p z o n e (Fig. 21 b). It occu rs as thin (<1 to 13 m), stratiform layers or pods of chalcopyr i te-r ich s e m i - m a s s i v e sul f ide hos ted by strongly al tered rhyolite vo lcan ic las t ic rock. Cha lcopyr i te rep lacement z o n e s g rade to sphaler i te-r ich rep lacement -type mineral izat ion on the fr inges of the deposi t , most notably the western up-dip e d g e of the Lynx z o n e 57 and the nor theastern down-d ip edge of both the Lynx and Wo lve r ine z o n e s whe re it at tains widths of 13 meters (F ig. 21b) . T h e distr ibution of copper (Fig. 22a) ref lects the relative a b u n d a n c e of chalcopyr i te , wh ich is the main const i tuent of rep lacement- type mineral izat ion in the H u m p zone . Conve rse l y , z inc and lead occu r in the greatest concent ra t ion in the m a s s i v e layered sul f ides on the fr inges df the depos i t (e.g., F igs . 22b,c) outboard, and strat igraphical ly above , the sul f ide str inger vein and rep lacement z o n e s . T h i s is s imi lar to the c l a s s i c zonat ion obse rved at the V H M S depos i ts of Kuroko , J a p a n (e.g., E ldr idge et a l . , 1983) and sugges t s that, a l though structural modif icat ion and remobi l izat ion of su l f ides has occu r red , the primary metal zon ing within the m a s s i v e sul f ide l enses is largely p reserved . T h e c o m b i n e d metal g rades used to genera te the contours in F igure 22 represent , in most c a s e s , a combinat ion of m a s s i v e mineral izat ion and s e m i - m a s s i v e rep lacement /su l f ide str inger vein mineral izat ion (where the latter has c o m b i n e d b a s e metal g rades greater than 1%). C o n s i d e r e d separate ly , rep lacement- type mineral izat ion d isp lays a s imi lar zon ing with respect to copper , z inc and lead. Little vert ical zon ing is evident within the layered pyrite- and sphaler i te -dominant m a s s i v e sul f ide lenses . Sphaler i te- r ich mineral izat ion with assoc ia ted ga lena and tetrahedri te-tennanti te o c c u r s throughout the sul f ide l enses in the Lynx and Wo lve r ine z o n e s , a s poorly def ined cent imeter- to meter- th ick z o n e s that al ternate with pyr i te-dominant m a s s i v e sul f ides. In most p laces , the entire sul f ide interval conta ins abundant sphaler i te and distribution of the ext remely sphaler i te-r ich z o n e s is erratic. Th is lack of sys temat ic vert ical mineral zon ing may be s imi lar to that documen ted in certain Aust ra l ian sheet-s ty le V H M S depos i t s (e.g. Rosebery ) desc r ibed by Large (1992). Cha lcopyr i te and pyrrhotite d isp lay strong vert ical zonat ion , and occu r only at the base of the layered m a s s i v e sul f ide l enses and in m a s s i v e rep lacement - type mineral izat ion in the footwall . Hydrothermal Alteration T h e different types of hydrothermal alteration and their distribution at the Wo lve r i ne depos i t a re related directly to the different types and styles of mineral izat ion. Consequen t l y , the minera logy and the distribution of hydrothermal alteration z o n e s , and the compos i t ion of alteration minera ls we re s tud ied in 58 detail with the a im of unders tand ing paleo-f luid pathways and , thus, the archi tecture of the Wo lve r i ne deposi t . Alteration styles Hydrothermal alteration is restr icted primarily to the immedia te footwall to the m a s s i v e sul f ide mineral izat ion, within pe rmeab le fe ls ic vo lcan ic las t ic rocks. Alterat ion is general ly s t ra ta-bound and con fo rmab le . Strongly al tered rocks occu r beneath , lateral to, and within s e m i - m a s s i v e rep lacement and str inger sul f ide z o n e s . T h e four main styles of hydrothermal alteration at the Wo lve r i ne depos i t are, in order of inc reas ing d is tance outward f rom the str inger sul f ide z o n e s : (1) s i l ica (quartz), (2) carbonate , (3) chlorite, and (4) ser ic i te (F ig. 23a-c) . Hang ing wal l alteration (mainly serici te) is volumetr ical ly minor but weak ly deve loped on the western , eas tern , and up dip e d g e s of the sul f ide l enses (F ig. 24d) . Silica (quartz) alteration: Pe rvas i ve , f ine-grained quartz in rocks immediate ly ad jacent to q u a r t z -sul f ide (pyrite >sphaleri te » c h a l c o p y r i t e ) str inger ve ins charac te r i zes this style of alterat ion (Fig. 23a) . Intense s i l ica alteration is conf ined to narrow z o n e s less than 25 meters wide. W h e r e wel l deve loped , si l ici f ication ex tends up to 20 m strat igraphical ly be low the base of the m a s s i v e sul f ide l enses and enve lopes 3 cm-w ide quartz-pyr i te-sphaler i te ve ins that compr i se 3 to 5 v o l . % of the rock. In other local i t ies, sul f ide str inger ve ins are narrower and lack assoc ia ted s i l ica alterat ion. Carbonate alteration: Th i s alteration is charac ter ized by the p r e s e n c e of var iab le amoun ts of c reamy white calc i te, o range-brown anker i te and brown sideri te within footwall fe ls ic vo lcan ic las t ic rocks (Fig. 23b). C a r b o n a t e minera ls common l y occu r as large porphyroblasts ranging up to 2 c m in d iameter that occupy between 20 to 30 v o l . % of the rock over widths of 1 to 2 meters. C a r b o n a t e alterat ion occu rs with chlori te alterat ion and rep lacement- type mineral izat ion and is most abundant immediate ly beneath the m a s s i v e su lph ide lens in the Lynx zone (Fig. 24a) . Th is region of the depos i t l acks str inger vein sul f ide mineral izat ion (Fig. 21b). Chlorite alteration: Th is alteration is charac ter ized by the p r e s e n c e of pervas ive chlori te in f ine- to coa rse -g ra ined fe ls ic vo lcan ic las t ic rocks (Fig. 23b). Chlor i te alteration occu rs outboard (to the eas t -southeast ) of str inger vein sulf ide mineral izat ion and assoc ia ted s i l ica alteration (F ig. 24b) . Chlor i te c a n extend down to ~30 m be low the m a s s i v e sulf ide l enses . In most local i t ies where chlori te alterat ion is 59 present , there is a gradual transit ion in al terat ion-types f rom chlor i te-dominant to ser ic i te-dominant with increas ing d is tance f rom the m a s s i v e sul f ide lenses . Sericite alteration: Modera te to pervas ive seric i te in f ine- to coa rse -g ra ined fe is ic vo lcan ic las t ic rocks charac te r i zes this alteration style (Fig. 23c) . Ser ic i te alteration is s t ra tabound and o c c u r s throughout the deposi t , both within, below, and lateral to (or outboard of) the z o n e of chlori te al terat ion; however , it is most c o m m o n in the footwall to m a s s i v e sul f ide mineral izat ion. Ser ic i te-a l tered vo lcan ic las t ic rocks are intensely fol iated (likely due to a ductility contrast with ad jacent unal tered rocks) and conta in 40 to 60 v o l . % ser ic i te. In the most strongly altered z o n e s , ser ic i te has complete ly rep laced all minera ls other than quartz. Ser ic i te alterat ion is the most ex tens ive and w idesp read alteration type, reach ing a th i ckness of 40 m where best deve loped in the H u m p and Wo lve r i ne z o n e s (Fig. 24c) . The re is a gradua l d e c r e a s e in the intensity of ser ic i te alteration moving laterally away f rom these z o n e s . Composition of hydrothermal alteration minerals T h e compos i t ion of m icas , chlor i tes, and ca rbona tes from the var ious sty les of alteration were ana lyzed by electron mic roprobe in order to aid in the identif ication and character izat ion of chem ica l c h a n g e s dur ing hydrothermal evolut ion of the mineral iz ing f luids. T h e s e data may then se rve a s vectors to the locat ion of pa leo-hydrothermal vents and z o n e s of intense footwall rep lacement mineral izat ion. In the c a s e of chlori te, es t imates of the temperature of mineral izat ion are poss ib le . Individual gra ins had 2 to 5 ana lys is points, with the number of ana l yses depend ing mainly on the s ize and heterogenei ty of the minera l grain. Opera t iona l detai ls of the microprobe and representat ive a n a l y s e s are given in Tab le 3. Mica: Wh i t e m i cas are most abundant (up to 30 vol.%) in ser ic i te-al tered rhyolite, and are a lso a major const i tuent of unal tered rhyolite tuffs and argil l i tes in the host rocks . They are a minor p h a s e in chlor i te- and /or carbonate-a l tered rocks and gangue within m a s s i v e sul f ide. Wh i te m i c a s in the al tered footwall rocks at the Wo lve r i ne depos i t are phengi tes, wh ich are intermediate compos i t i ons of the sol id solut ion se r ies be tween muscov i te (K 2 Al4[Si 6 Al202o](OH,F) 4 ) and ce ladoni te ( K ( M g F e ) ( F e A I ) S i 4 O i 0 ( O H ) 2 ) and have subst i tut ion of s i l icon for tetrahedral a luminum coup led with m a g n e s i u m and iron substi tut ion for oc tahedra l a lum inum (Deer et a l . , 1966; F ig . 25a) . Phengi t ic m i cas are c o m m o n in hydrothermal ly al tered rocks that have been subsequent ly m e t a m o r p h o s e d (e.g., Large et a l . , 2001) , but are a lso c o m m o n in a 60 wide variety of other metamorph ic rocks (e.g., Guidott i , 1984). Iron and m a g n e s i u m contents of white m i ca inc rease with proximity to mineral izat ion (Fig. 25a) . Wh i te m i cas in al tered rocks and m a s s i v e su l f ides at the Wo lve r i ne depos i t have e levated bar ium contents (up to 3.61 wt.%), a feature c o m m o n l y noted in hydrothermal ly al tered rocks from V H M S depos i ts (e.g., Large et a l . , 2001) . B rown m ica (biotite) is m u c h less abundant in the hydrothermal ly al tered rocks than white m i ca or chlori te. Biotite and phlogopi te a re locally c o m m o n (up to ~ 5 vol.%) immediate ly beneath the m a s s i v e sul f ide l enses where it is assoc ia ted with Ba- r ich white m ica , patchy chlorite aggrega tes (Type II chlorite - s e e below), coa rse -g ra ined anker i te, and rep lacement - type sulf ide mineral izat ion. Biotite and phlogopite typically form large euhedra l laths. O n e s a m p l e of m a s s i v e sul f ide conta ins f luorophlogopi te (character ized by very high m a g n e s i u m and f luorine content), w h e r e a s all other ana l yses are more typical of biotite, a l though they have high M g O contents (Table 3). Chlorite: M inera ls of this group are less w idesp read than white m ica , and o c c u r primari ly in hydrothermal ly al tered rocks immediate ly ad jacent to sul f ide str inger vein z o n e s whe re pervas ive ly al tered footwall rhyolite c a n contain up to 46 v o l . % chlorite. Chlor i te occu rs in two dist inct textures: Type I fo rms dark g reen pervas ive , fine, m a s s i v e aggrega tes in the immedia te footwall , and up to 30 meters be low the m a s s i v e sul f ide l enses (Fig. 26c,d) . Type II is less c o m m o n and forms loca l ized, patchy c lots that o c c u r together with coa rse -g ra ined carbonate minera ls , brown mica , Ba-r ich white m i ca and rep lacement - type pyrite and sphaler i te mineral izat ion (Fig. 26e,f). E lect ron microprobe s tud ies indicate that these two texturally different types of chlor i tes have very different compos i t ions (Fig.. 25c) . Type I chlori te is Mg- r ich , (i.e. F e / ( F e + Mg)<0.5), and is s imi lar in compos i t ion to chlorite from hydrothermal ly al tered rocks in s o m e of the Ku roko depos i ts of J a p a n (Urabe et a l . , 1983) and the R o s e b e r y deposi t , T a s m a n i a (Large et a l . , 2001) , but is different f rom Fe- r ich chlori te in vent prox imal alteration at K idd C r e e k ( K o o p m a n et a l . , 1999) and the Bathurst depos i ts (Lentz, 1999). Carbonate: Th i s group of minera ls is c o m m o n throughout the host rocks to the deposi t , but is most abundant as an alteration product that occu rs together with chlorite and rep lacement - type mineral izat ion in the footwall to the m a s s i v e sulf ide l enses . Ca rbona te minera ls in these z o n e s are c o a r s e gra ined and have been identif ied as anker i te in hand s p e c i m e n by color and reactivity with HCI. In genera l , ca rbona tes within m a s s i v e sul f ide have compos i t i ons that are c l ose to end m e m b e r sideri te, a l though M n contents are a s high a s 26 mo l .% . Coa rse -g ra i ned ca rbona tes typical of the immedia te footwal l and within 61 vent prox imal hydrothermal ly al tered rocks, together with chlorite and rep lacement su l f ides, are typically anker i te with up to 38 m o l % M g . Ca rbona te in vent distal ser ic i te alteration or in unal tered rhyolite are most c o m m o n l y calc i te (Fig. 25d). Hydrothermal alteration and its relationship to massive sulfide mineralization T h e zonat ion of hydrothermal alteration around str inger ve ins (si l ica alteration prox imal to str inger ve ins grading to distal ser ic i te alteration) is typical of many V H M S depos i ts (e.g., Lydon , 1984; Large, 1992) and c a n be asc r ibed to the twin in f luences of dec reas ing heat and fluid f low in those a reas distal to the main zone(s ) of hydrothermal activity (e.g., Lydon , 1988). T h e lack of a c l a s s i c alterat ion pipe, or p ipes (e.g., Lydon , 1984), and the p reva lence of con fo rmab le st rata-bound alteration ref lects the high permeabi l i ty of the footwall vo lcanic last ic rocks. In combinat ion with ev idence f rom rep lacement -s ty le sul f ide mineral izat ion, this indicates ex tens ive lateral f low of hydrothermal. f luid in the sub-seaf loor . Type I chlori te (ripidolite) prox imal to str inger z o n e s is Mg-r ich and is s imi lar in compos i t ion to vent-prox imal chlori te alteration at K idd C r e e k ( K o o p m a n et a l . , 1999). T h e high m a g n e s i u m content likely ref lects the ent ra inment of seawa te r into the hydrothermal fluid (e.g., Lydon, 1988). Th in , s t ra tabound carbonate alterat ion (mainly ankeri te) occu rs immediate ly beneath m a s s i v e sul f ide in the Lynx Z o n e , distal f rom any str inger z o n e s (Fig. 24a). Th i s carbonate likely precipi tated at low tempera tures . f rom Fe- r ich hydrothermal f luids that s c a v e n g e d calc i te f rom the underly ing sed imentary rocks . T h e p r e s e n c e of e levated bar ium in muscov i te is cons ide red a reflection of the original Ba- r ich charac te r of the hydrothermal fluid (e.g., Lydon, 1984; Ohmo to , 1996). S e v e r a l of these compos i t iona l features are useful for identifying vent prox imal z o n e s and/or nearby sul f ide mineral izat ion. Muscov i te clearly b e c o m e s enr iched in F e and M g with increas ing proximity to su lph ide mineral izat ion (Fig. 25a) . In addit ion, high a b u n d a n c e s of B a in muscov i te preferential ly occu r in chlor i te-al tered rocks that are c lose ly assoc ia ted with m a s s i v e sulf ide mineral izat ion (F ig. 25b). L imited data for chlori te sugges t that the F e content of ripidolite (type I) i nc reases with proximity to minera l izat ion, w h e r e a s diabant i te (type II) is part of a dist inct ive prox imal alteration a s s e m b l a g e that a lso conta ins biotite, phlogopite, Ba- r ich phengit ic muscov i te and ankeri te. Final ly, siderite occu rs within m a s s i v e layered 62 sulf ide and s e m i - m a s s i v e rep lacement sul f ide, w h e r e a s anker i te is the most c o m m o n const i tuent of prox imal chlori te and carbonate altered rocks. Ca lc i te is the most dominant ca rbona te minera l in weak ly al tered to unal tered vo lcan ic and sed imentary host rocks . T e m p e r a t u r e E s t i m a t e s o f M i n e r a l i z a t i o n Es t ima tes of the tempera tures of mineral izat ion for the Wo lve r ine depos i t are obta ined f rom the appl icat ion of two wel l -cal ibrated mineral thermometers and fluid inclusion microthermometry . T h e arsenopyr i te geo the rmomete r w a s used to constra in the temperature of the Z n - P b - A g m a s s i v e layered sul f ide mineral izat ion, w h e r e a s the chlorite geo thermomete r w a s used to es t imate the temperature of the hydrothermal alterat ion accompany ing the underly ing s e m i - m a s s i v e rep lacement style sul f ide and str inger z o n e sul f ide mineral izat ion. Fluid inclusion microthermometry prov ides temperature es t ima tes of the format ion of quar tz-chalcopyr i te str inger ve ins. Arsenopyrite thermometry T h e arsenopyr i te geo thermometer w a s deve loped fol lowing the recognit ion that the compos i t ion of arsenopyr i te w a s a funct ion of both the temperature and the activity of sulfur dur ing the minera l deposi t ional event (K re tschmar and Scott , 1976). T h e latter can be es t imated if arsenopyr i te crysta l l ized in equi l ibr ium with pyrrhotite and pyrite, in wh ich c a s e the percentage of a r sen i c present in arsenopyr i te is a funct ion of temperature. T h e refractory nature of arsenopyr i te is ideal for preserv ing the original A s contents, wh ich permi ts appl icat ion of the thermometer to depos i ts m e t a m o r p h o s e d to g reensch is t fac ies (K re tschmar and Scott , 1976; S h a r p et a l . , 1985). In this study, a total of s ix teen gra ins of arsenopyr i te were ana lyzed in five s a m p l e s of m a s s i v e sul f ide mineral izat ion. Zon ing w a s not obse rved in any arsenopyr i te grains probed. Pe t rograph ic ana lys is indicates that arsenopyr i te is locally c o m m o n in m a s s i v e layered sulf ide and o c c u r s together with sphaler i te and pyrite a s fine subhedra l to euhedra l crysta ls with skeleta l textures (F ig. 26a) . Arsenopyr i te is less c o m m o n at the b a s e of m a s s i v e layered sulf ide lenses , but local concent ra t ions exist where 63 crysta ls occu r together with chalcopyr i te, pyrrhotite, and sphaler i te (Fig. 26b). A l though arsenopyr i te d o e s not occu r with both pyrite and pyrrhotite in the s a m e thin sect ion, arsenopyr i te gra ins in contact with pyrite are indis t inguishable in their at.% a rsen ic contents f rom arsenopyr i te gra ins that coex is t with pyrrhotite. Th is ind icates that pyrite, pyrrhotite and arsenopyr i te are in equi l ibr ium. Arsenopyr i te f rom the Wo lve r i ne depos i t has a tomic % (at.%) a rsen ic ranging from 28.6 to 30.4, and a m e a n of 29.4 ± 0.5 (1a; Tab le 4; F ig . 27a) , forming a un imodal distribution. T h e point at wh ich the at.% a rsen ic isopleth in tersects the arsenopyri te-pyr i te-pyrrhot i te stability line on a temperature vs. f S 2 d iagram for the F e - A s - S sys tem is cons ide red the temperature of the format ion (or poss ib ly reequil ibration) of the arsenopyr i te . T h e exac t posit ion of the pyrrhoti te-pyri te-arsenopyri te stability line is poorly const ra ined at tempera tures be low ~300 °C, but has been extrapolated to lower temperatures in this and prev ious s tud ies (e.g., S u n d b l a d et a l . , 1984), b e c a u s e the line s h o w s no c h a n g e in s lope or likely inflection with dec reas ing temperature. T h e at.% a rsen ic in arsenopyr i te within m a s s i v e layered sul f ide co r respond to a temperature range of 215° to 336 °C, with the m e a n of 29.4 ±0.5 at % a rsen ic yielding a temperature of 264 ± 33 °C (F ig. 2 7 a ; Tab le 4). Chlorite thermometry Var ia t ions in the compos i t ion of chlori te at different temperatures are wel l d o c u m e n t e d (e.g., M c D o w e l l and E lders , 1980), and the amount of AI(VI) in chlori te cor re la tes with format ion temperature (Cathe l ineau and N ieva , 1985). Tempera tu res ca lcu la ted from chlorite conta in ing high Fe / (Fe+Mg) ratios, however , will be overes t imates of the true format ion temperature un less a correct ion is m a d e accord ing to the relat ionship be tween AI(IV) and the Fe / (Fe+Mg) ratio. T h e wel l -cal ibrated the rmometer of Ca the l i neau and N ieva (1985) uti l izes chlor i tes with a narrow range of Fe / (Fe+Mg) ratios (0.27-0.38, with an ave rage of 0.34). In this study, a correct ion w a s m a d e to ca lcu la te AI(IV) in all s a m p l e s to the va lue at 0.34 Fe / (Fe+Mg) equivalent us ing the method of Z a n g and Fyfe (1995). The re are two textural types of chlori te in the Wo lve r i ne deposi t , a s desc r ibed above . C o m p o s i t i o n s are cons is tent with hydrothermal chlorite f rom u n m e t a m o r p h o s e d (or very weak ly me tamorphosed ) m a s s i v e su lph ide depos i ts (c f . U rabe et a l . , 1983), a l though c h a n g e s in compos i t ion due to g reensch is t me tamorph i sm cannot be ruled out. Tempera tu re es t imates for type I chlori te range f rom 273° to 288 °C, with a m e a n of 282 ± 7 °C (Fig. 27b, Tab le 5). Th i s temperature range is within that 64 of the m a s s i v e layered sul f ide f rom arsenopyr i te geothermometry , but the m e a n temperature is slightly higher. Tempera tu re es t imates for type II chlori te range f rom 170° to 185°C, with an a v e r a g e of 176 ± 6 °C. T y p e II chlor i tes do not d isplay a sys temat ic correlat ion between AI(IV) and Fe / (Fe+Mg) . Consequen t l y , t hese data are uncorrected and the temperature es t imate is unrel iable. F l u i d I n c l u s i o n s Str inger ve ins contain ing quartz, pyrite and chalcopyr i te directly underl ie m a s s i v e layered sul f ide mineral izat ion, and are likely fluid condui ts or feeders to m a s s i v e chalcopyr i te-r ich mineral izat ion that c o m m o n l y occu rs at the b a s e of the lenses . In this study fluid inc lus ions t rapped in hydrothermal quartz f rom sul f ide-bear ing str inger ve ins were used to es t imate the temperature and p ressure and gain data on the compos i t ion of the hydrothermal f luids that fo rmed these ve ins . In this study, pr imary and seconda ry fluid inc lus ions are c lass i f ied accord ing to the criteria of R o e d d e r (1984). Pr imary inc lus ions are those which formed during crystal l izat ion of the host quartz, ei ther in growth z o n e s or in f ractures fo rmed during crystal growth (i.e. pseudo-secondary ) . S e c o n d a r y inc lus ions post-date the growth of the host quartz and formed from fluids unrelated to format ion of the quartz-sul f ide ve ins . Pr imary a q u e o u s inc lus ions were only recogn ized in two s a m p l e s of 1-2 c m wide quartz-pyr i te-chalcopyr i te str inger ve ins, despi te examinat ion of twenty-three s a m p l e s of m a s s i v e layered sul f ide, s e m i -m a s s i v e rep lacement -s ty le sul f ide and footwall str inger sulf ide ve ins co l lec ted f rom drill co re for the spec i f i c pu rpose of fluid inclusion microthermometry. S e c o n d a r y carbon ic inc lus ions were s tud ied in four s a m p l e s , including the two s a m p l e s that conta ined primary fluid inc lus ions. A total of n inety-one pr imary and seconda ry fluid inc lus ions f rom four s a m p l e s were e x a m i n e d in this study. M ic ro thermomet r i c m e a s u r e m e n t s were conduc ted using a Flu id Inc.® modi f ied U S G S gas- f low heat ing/ f reezing s tage at the Universi ty of Brit ish C o l u m b i a . T h e genera l p rocedure for heat ing and f reez ing exper iments are g iven in S h e p h e r d et al . (1985). A c c u r a c y of the m e a s u r e m e n t s w a s ensu red by cal ibrat ion aga ins t the triple point of pure C 0 2 (-56.6°C), the f reezing point of water (0.0 °C), and the crit ical point of water (374.1 °C) using synthet ic fluid inc lus ions. P rec i s ion of tempera tures obta ined w a s +0.2 °C for f reez ing runs and ±3.0 °C for heat ing runs (40-500°C). Sal in i t ies were ca lcu la ted f rom the 65 temperature of f inal melt ing of ice using the equat ion of state of B o d n a r and Vityk (1994) for the H 2 0 - N a C I sys tem, and are e x p r e s s e d a s NaCI equivalent weight percent (equiv. wt.% NaCI) . Fluid inclusion petrography Fluid inc lus ions in hydrothermal quartz are typically very rare at the Wo lve r i ne depos i t b e c a u s e most quartz is recrysta l l ized and complete ly f ree of inc lus ions. Quar tz ad jacent to sul f ide minera ls within str inger ve ins and , less common ly , in m a s s i v e (layered) sulf ide, however , may be c lea r and unst ra ined with abundant fluid inc lus ions (Fig. 28a) . Care fu l petrographic examinat ion of t hese gra ins revea ls two distinct types of inc lus ions. T y p e I inc lus ions are aqueous , two-phase (liquid plus vapor) , and l iquid-rich (median degree-of -f i I li ng of liquid (F) =0.7) with equant to ell iptical morpho log ies and lengths typically <10 u.m (F ig. 28b). T h e s e a q u e o u s inc lus ions are abundant in one s a m p l e (GB-01 -175 ) of quartz-sul f ide vein where they occu r a s isolated inc lus ions or three d imens iona l c lusters and p s e u d o s e c o n d a r y trails. They are rare in other s a m p l e s . Type II inc lus ions are ca rbon i c -aqueous solut ions rich in C 0 2 with F>0.6. M a n y inc lus ions cons is t of a lmos t pure ca rbon ic fluid. In most c a s e s , a q u e o u s and carbon ic c o m p o n e n t s a re v is ib le at room temperature with the a q u e o u s componen t forming a thin rim surrounding the m u c h more vo luminous carbon ic componen t . T y p e II inc lus ions are far more abundant than Type I inc lus ions and occu r in e a c h of the 4 s a m p l e s that contain useab le fluid inc lus ions. C a r b o n i c inc lus ions are c lear ly seconda ry in origin and normal ly occu r in seconda ry trails cutting grain boundar ies . The i r s i ze and s h a p e are c o m m o n l y s imi lar to a q u e o u s inc lus ions, a l though carbon ic inc lus ions may attain greater s i ze (up to 24 u m in length). Fluid inclusion microthermometry T e m p e r a t u r e s of first ice melt ing approx imate eutect ic tempera tures (T e ) and range f rom -45° to -24 .5 °C for pr imary (Type I) inc lus ions (n=14). Th is impl ies that the mineral iz ing fluid conta ins F e , K, and M g in addit ion to N a (Fig. 29a) . T h e apparent lack of C a and poss ib le p r e s e n c e of M g is unusua l for a V H M S minera l iz ing fluid (e.g., V o n D a m m , 1990) but this may be attributed to the sma l l s i ze of the dataset 66 and/or diff iculties in measu r ing first melt ing tempera tures due to the smal l s i ze of the inc lus ions. It is poss ib le that C a wou ld be detected f rom T e data if a greater number of larger pr imary inc lus ions were ava i lab le for micro thermometr ic m e a s u r e m e n t s . Sal in i t ies for Type I inc lus ions (n=16) range f rom 2.1 to 8.5 wt.% N a C l equiv. (mean = 5.9 ± 1.9). Homogen iza t ion tempera tures (T H ; n=32) range f rom 265° to 353°C (mean = 302 ± 22 °C). Data for Type I inc lus ions are s u m m a r i z e d in Tab le 6 and in F igure 29a -c . At least 4 c o m p o n e n t s ( C 0 2 - C H 4 - H 2 0 - N a C I ) are identified in type II (n=48) inc lus ions. T h e p r e s e n c e of C H 4 w a s detected by the dep ress ion of the sol id C 0 2 melt ing temperature be low - 5 6 . 6 °C Us ing the equat ion of state of Thiery et al . (1994), X C H 4 w a s ca lcu la ted to range f rom 0.07-0.24. Las t ice melt ing tempera tu res ( T L M ) determined for the a q u e o u s phase (n=38) range between - 0 . 6 " C and - 6 . 7 °C, co r respond ing to sal ini t ies of 1.0 to 10.1 wt.% N a C l equiv. (mean of 5.8 ± 1.2). Homogen iza t i on tempera tures were difficult to m e a s u r e (n=5) due to p rob lems observ ing homogen iza t ion of the thin rim of a q u e o u s liquid sur rounding the carbon ic fluid. T h e T H d a t a ranged from 251° to 283 °C (mean of 270°), but t hese tempera tures are a lmost certainly underes t imates of the actual homogen iza t ion tempera tures b e c a u s e of the uncertainty in measur ing T H where very sma l l v o l u m e s of fluid wet the wal ls of fluid inc lus ions (Sterner, 1992). Interpretation of fluid inclusion data Fluid inc lus ion s tud ies of ancient V H M S depos i ts are problemat ic b e c a u s e most are in de fo rmed and m e t a m o r p h o s e d rocks . T h e s e p r o c e s s e s result in the leakage and/or destruct ion of fluid inc lus ions that are directly assoc ia ted with mineral izat ion (e.g., Marsha l l et a l . , 2000) . However , s tud ies of modern seaf loor s y s t e m s (e.g., Pe te r and Scott , 1988; Luders et a l . , 2001) and anc ient depos i ts in unde fo rmed and u n m e t a m o r p h o s e d ter ranes (e.g. Kuroko , J a p a n : U rabe and Sato , 1978; Cyp rus , G r e e c e : S p o o n e r and Bray, 1977; the Ura ls , R u s s i a : Herr ington et al . , 1998; Bail ly et a l . , 1999) demons t ra te that mineral iz ing f luids have sal ini t ies that are typically only slightly higher than seawa te r and a relatively w ide range of homogen iza t ion temperatures that reflect the evolut ion of the hydrothermal s ys tem. R e c e n t fluid inc lus ion s tud ies of depos i ts with similar i t ies to Wo lve r i ne include those of the Iberian Pyrite belt. In a study of s ix depos i ts , including the A g u a s T e n i d a s Es te and C o n c e p c i o n depos i ts , S a n c h e z - E s p a n a et a l . (in press) d o c u m e n t pr imary a q u e o u s fluid inc lus ions in quartz with sal ini t ies ranging f rom 2 to 14 wt.% 67 N a C l equiv. and homogen iza t ion temperatures ranging f rom 120°-280°C. T h e s e data are s imi lar to the Type I pr imary inc lus ions from the Wo lve r i ne deposi t . C a r b o n dioxide-r ich fluid inc lus ions are not reported in most fluid inc lus ion s tud ies of anc ient V H M S depos i ts (e.g., S a n c h e z - E s p a n a et a l . , in p ress ; Sher lock et al . , 1999), nor a re they obse rved in modern seaf loor m a s s i v e sul f ides (e.g., Pe te r and Scott , 1988; Pe te r et a l . , 1994). T h e p r e s e n c e of substant ia l C 0 2 is not expec ted at p ressu res prevalent at the seaf loor , even at water depths of 3 km (c lose to the m a x i m u m depth that modern m a s s i v e su l f ides are forming; R o n a and Scott , 1993). In light of these s tud ies and the fact that carbon ic inc lus ions are c o m m o n in rocks of most me tamorph i c g rades (e.g., Crawford and Holl ister, 1986), it is likely that the Type II ca rbon ic inc lus ions were fo rmed during me tamorph i sm and devol i t izat ion of host- rock strat igraphy - in part icular the abundant graphi t ic argil l i tes in the Wo lve r i ne s e q u e n c e . Th i s secondary origin is entirely cons is tent with the c o m m o n occu r rence of Type II inc lus ions in seconda ry trails that c rosscu t quartz grain boundar ies . Water depth estimate A p ressu re correct ion is n e c e s s a r y in order for the homogen iza t ion tempera tu res of the pr imary fluid inc lus ions to represent the true trapping tempera tures of the mineral iz ing fluid (e.g., Potter, 1977; Bodna r and Vityk, 1994). Geo log i ca l ev idence demons t ra tes that the depos i t fo rmed at, or very near, the seaf loor . Consequen t l y , hydrostat ic p ressu res due to the overlying water co lumn we re probably less than 300 bars b e c a u s e mos t modern seaf loor depos i ts form at depths of less than 3 km ( R o n a and Scott , 1993). G i v e n these low p ressures , the p ressure correct ion will be smal l (<20 °C at 300 bars ; B o d n a r and Vityk, 1994) and will result in trapping tempera tures that are only slightly higher than homogen iza t ion tempera tures . M e a s u r e d homogen iza t ion tempera tures are therefore cons ide red very c l o s e approx imat ions of mineral iz ing temperatures . T h e vapor p ressure of the t rapped fluid can be es t imated using T H da ta and sal ini t ies of pr imary fluid inc lus ions in conjunct ion with the boil ing cu rves of H a a s (1971). In the c a s e of pr imary inc lus ions in su l f ide-bear ing str inger ve ins , ev idence of fluid boil ing is lack ing, but a m in imum vapor p ressu re may be es t imated f rom the m e a n salinity (5.9 equiv. wt.% NaC l ) and m e a n trapping temperature (approx imated by the m e a n homogen iza t ion temperature; 302°C) of the fluid. T h e s e data indicate that the f luids that 68 precipi tated the quartz and , by inference, the assoc ia ted sulf ide minera ls , had vapor p ressu res of at least 103 (± 41) bars. There fore , the ve ins are es t imated to have formed at a m in imum depth of ~1048 (± 423) meters , a s s u m i n g hydrostat ic condi t ions (i.e. ve ins were freely connec ted to the su r face of the o c e a n floor). Da ta are s u m m a r i z e d in Tab le 6. S u l f u r I s o t o p e s T h e sulfur isotopic compos i t ion of hypogene pyrite, sphaler i te and chalcopyr i te f rom m a s s i v e sulf ide mineral izat ion at the Wo lve r i ne depos i t and enc los ing host rocks has been invest igated us ing in situ laser micro-analyt ica l techn iques. Pet rograph ic examinat ion revea ls that many sul f ide gra ins in the m a s s i v e sul f ide and str inger z o n e mineral izat ion are too f ine-grained (< 1 m m in d iameter) for separat ion by convent iona l bulk samp l ing techn iques. Consequen t l y , an in-situ microanalyt ica l techn ique may be benef ic ia l for s u c c e s s f u l interpretation of sulfur isotope sys temat i cs at the Wo lve r i ne deposi t . T h e major a ims of the sulfur isotope study are to identify the likely sources(s ) of sulfur for the base -me ta l sul f ide mineral izat ion and to determine, where poss ib le , tempera tures of sul f ide precipitat ion or recrystal izat ion using equi l ibr ium sul f ide minera ls . P o s s i b l e s o u r c e s of sulfur for the Wo lve r ine depos i t include: (1) hydrothermal sul fur der ived directly f rom m a g m a or l eached from sul f ides or sul fates in vo lcano-sed imenta ry host rocks ; (2) seawa te r sulfur der ived f rom the reduct ion of seawa te r sulfate; and (3) s o m e combinat ion of both. A hydrothermal sou rce in wh ich the sulfur is l eached from footwall vo lcan ic rocks or is der ived f rom a d e e p - s e a t e d m a g m a is invoked in s o m e vo lcan ic - rock assoc ia ted depos i ts (i.e., the Kuroko depos i ts ; Ishihara and S a s a k i , 1978). However , the modera te to highly posit ive 5 3 4 S va lues in many P h a n e r o z o i c V H M S depos i ts are only poss ib le if reduced seawa te r sul fate is the dominant sou rce of sulfur (Huston, 1999). T h e mos t abundant supply of H 2 S is f rom inorganic reduct ion of sulfate by ferrous minera ls dur ing the circulat ion of seawa te r within hydrothermal ce l ls in the footwall rocks (Ohmoto and Go ldhaber , 1997; S o l o m o n , 1999). Bacter ia l reduct ion of seawa te r sulfate is recogn ized as an important p r o c e s s in s o m e sha le -hosted m a s s i v e sul f ide depos i ts (e.g., G u s t a f s o n and Wi l l i ams, 1981; Tay lor and B e a u d o i n , 2000) and ca rbona te -hos ted m a s s i v e sulf ide depos i ts (e.g., Fal l ick et a l . , 2001). In most s i tuat ions, bacter ia l reduct ion will p roduce sul f ides with a wide range of negat ive 5 3 4 S va lues . If p ro longed bacter ia l sul fate 69 reduct ion o c c u r s in a sed imentary bas in c l osed to circulat ing seawater , however , the 5 3 4 S va lues of d i sso l ved sul f ide a n d res idua l sul fate will b e c o m e progress ive ly mo re posi t ive a s the fract ion of sul fate reduced to sul f ide i nc reases (Ohmoto and Rye , 1979; Good fe l l ow and J o n a s s o n , 1984; Goodfe l low, 1987). Th i s scena r i o w a s p roposed by Good fe l l ow and Pete r (1996) to expla in the highly posi t ive 5 3 4 S va lues of sul f ide minera ls in the Brunswick No.12 m a s s i v e sulf ide deposi t . Th i s hypothes is may be app l icab le to the Wo lve r i ne deposit , wh ich is very s imi lar to the Brunswick No . 12 depos i t in te rms of tectonic sett ing, local strat igraphy and sulf ide mineralogy. Methodology Fif teen s a m p l e s representat ive of all sty les of mineral izat ion at the Wo lve r i ne depos i t were se lec ted for in-situ sulfur isotope analys is . T h e s e s a m p l e s include: pyrite- and sphaler i te-r ich m a s s i v e layered sul f ide (4 samp les ) , chalcopyr i te-r ich m a s s i v e layered sul f ide (2 s a m p l e s ) , s e m i - m a s s i v e rep lacement sul f ide (3 samp les ) , and str inger sulf ide (3 samp les ) . Th ree addi t ional s a m p l e s of pyrite were ana lyzed f rom hanging wal l and footwall rhyolite and argillite at varying d i s tances f rom the depos i t for compar i son with 8 3 4 S va lues from hydrothermal su l f ides that form the deposi t . A n a l y s e s were per formed on smal l square po l ished s labs with approx imate d i m e n s i o n s of 1cm x 1cm x 5 m m thick at the Geo log i ca l Su rvey of C a n a d a ( G S C ) in Ot tawa us ing the Mic ro - l so top ic L a s e r Extract ion S y s t e m ( M I L E S ) (Taylor and Beaudo in , 1993; Beaudo in and Taylor , 1994). S a m p l e s were ana lyzed in situ by a l a s e r - S F 6 techn ique in which S F 6 is p roduced and ana lyzed by al lowing su l f ides to react with F 2 g a s in a cold s a m p l e chamber . Reac t i on craters genera ted by the C 0 2 laser range f rom 100 to 200 um a c r o s s and def ine the spat ial resolut ion of the technique. E x a m p l e s of typical react ion craters are presented in f igure 30a-d . T h e prec is ion of this technique is 0.05 %o and the a c c u r a c y is better than 0.1 %o. Fur ther detai ls of operat ion are given in Tay lor and Beaudo in (2000). Results 70 M e a s u r e d 8 J 4 S va lues f rom pyrite- and sphaler i te-r ich m a s s i v e layered sul f ide mineral izat ion s h o w a b imoda l distr ibution (Table 7 and F ig . 3 1 ) with one populat ion ranging f rom - 4 . 9 to 3 .8 %o (mode of 0 . 8 %o) and the other ranging f rom 8 .4 to 1 2 . 9 (mode of 1 0 . 6 %o). Chalcopyr i te- r ich m a s s i v e sul f ide has 8 3 4 S va lues that range f rom 1 0 . 7 to 1 4 . 6 %o (mean of 1 2 . 2 %o). S e m i - m a s s i v e rep lacement - type mineral izat ion has 5 3 4 S va lues that range f rom 8 .4 to 1 5 . 2 %o (mean of 1 1 . 8 %0). Str inger sul f ide mineral izat ion has 8 3 4 S va lues that range f rom 8 .4 to 1 8 . 4 %o (mean of 1 3 . 6 %o). Pr imary textures in pyrite within pyrite- a n d sphaler i te-r ich m a s s i v e sul f ide have low 5 3 4 S va lues , ranging from - 4 . 9 to +8 .4 %o. O n e s a m p l e of hanging wal l argill ite con ta ins pyrite with 8 3 4 S va lues that range from - 5 . 7 to 1 4 . 3 %o. O n e s a m p l e of hanging wal l rhyolite conta ins pyrite with 8 3 4 S va lues that range from 1 2 . 4 to 1 3 . 5 %o. O n e regional s a m p l e of footwall vo lcan ic las t ic rock conta ins pyrite with highly posit ive S 3 4 S va lues ( 5 3 4 S m e a n = 2 7 . 9 %o). Interpretation of sulfur isotope data T h e w ide range and overal l posit ive 8 3 4 S va lues f rom the Wo lve r i ne depos i t sugges t that seawa te r sulfate w a s the principal sulfur sou rce . Seawa te r sulfate in the M iss i ss ipp ian Per iod had an ave rage 8 3 4 S va lue of approx imate ly 2 4 % 0 (C laypool et al . , 1 9 8 0 ) . T h e 8 3 4 S va lues of su l f ides that precipi tate f rom H 2 S der ived by the reduct ion of seawate r sulfate d e p e n d primarily on the nature of the reduct ion pathway (i.e. bacter ial or the rmochemica l ) and on the relative rates of sul fate reduct ion and re-supply (Ohmoto and Go ldhabe r , 1 9 9 7 ; Tay lor and Beaudo in , 2 0 0 0 ) . Consequen t l y , a wide range of 8 3 4 S va lues are c o m m o n in sulf ide depos i t s fo rmed via the reduct ion of seawa te r sulfate. Da ta f rom the Wo lve r ine deposi t fall into two distinct populat ions (F ig. 3 1 ) . Popu la t ion A has 8 3 4 S va lues that range f rom - 4 . 9 to 3 . 8 %o (mean of 0 . 8 %o), and populat ion B has S 3 4 S va lues that range f rom 8 .4 to 1 8 . 4 %o (mean of 1 0 . 5 %o). T h e p r e s e n c e of two distinct populat ions of S 3 4 S va lues sugges t s either (1) mult iple s o u r c e s of sulfur or (2) a s ingle sou rce of sulfur f rom wh ich two different compos i t i ons of H 2 S were p roduced . Popula t ion A co r responds mainly to the upper pyrite- and sphaler i te-r ich port ions of the m a s s i v e sul f ide lenses , and d iagenet ic pyrite f rom hanging wal l b lack sha le . Mos t a n a l y s e s of pr imary textures in pyrite (fine, anhedra l , and/or col loform aggregates) have 8 3 4 S va lues in this range and occu r in the upper port ions of the m a s s i v e sul f ide l e n s e s w h e r e intercalated layers of m a s s i v e sul f ide and b lack 71 sha le a re concen t ra ted . A l though other m e c h a n i s m s are poss ib le , these relatively light 8 3 4 S va lues a re probably the result of bacter ia l reduct ion of seawate r sulfate, wh ich p roduces a q u e o u s H 2 S with 5 3 4 S va lues 20 to 60 %o l ess than the va lue of the initial sulfate (Ohmoto and Go ldhabe r , 1997). Popu la t ion B co r responds mainly to coa rse -g ra ined sul f ides f rom the lower port ions of the m a s s i v e sul f ide l e n s e s and from the underlying str inger and rep lacement z o n e s . T h e s e su lph ides were likely fo rmed f rom "hydrothermal" H 2 S genera ted by the rmochemica l reduct ion of seawa te r sul fate at high tempera tures by react ion with ca rbon and/or reduced meta ls (e.g. F e 2 + ) within the hydrothermal cel l . Th is is the typical p r o c e s s invoked for mos t V H M S depos i ts with 5 3 4 S va lues in the range of 5 to 2 0 %o (e.g., S o l o m o n et a l . , 1988; Hus ton , 1999; V e l a s c o et a l . , 1998; O h m o t o and Go ldhaber , 1997). Reduc t ion of seawa te r sul fate by this m e c h a n i s m at tempera tures of 200° to 300°C most c o m m o n l y resul ts in a q u e o u s H 2 S with 5 3 4 S v a l u e s 20 to 30 %o lower than the initial sul fate (Ohmoto and Go ldhabe r , 1997). A n addit ional s o u r c e of "heavy" sulfur cou ld have c o m e from leaching of sulfur f rom pyrite in the footwall vo lcan ic and sed imentary rocks ( 5 3 4 S m e a n = 27.9 %<>; F ig . 31) by circulat ing hydrothermal f luids. T h e s e isotopic da ta sugges t sul f ide depos i t ion occu r red within a c l o s e d or partly c l o s e d bas in b e c a u s e the 8 3 4 S va lues for sul f ides formed from H 2 S produced by bacter ial reduct ion of seawa te r sulfate (populat ion A) are more posit ive than expec ted from bacter ia l reduct ion in a sys tem open to circulat ing seawa te r (e.g. O h m o t o and Go ldhaber , 1997). Simi lar ly, the 8 3 4 S va lues for su l f ides fo rmed f rom H 2 S produced by the rmochemica l reduct ion of seawa te r sulfate (population B) are more posit ive than expec ted for the high temperature reduct ion of seawate r sulfate with ave rage 8 3 4 S va lue of 24 %o. Th i s posit ive t rend in 8 3 4 S va lues for both populat ions is cons is ten t with a start ing a v e r a g e S 3 4 S va lue for seawa te r sul fate that is s o m e w h a t higher than 24 %o. T h e ave rage S 3 4 S va lue of 27.9 %o for d iagenet ic pyrite f rom footwall sed imenta ry rocks is cons is tent with seawate r sulfate p o s s e s s i n g an equivalent or h igher ave rage 5 3 4 S va lue at or near the t ime of the format ion of the Wo lve r i ne deposit . In addit ion to 8 3 4 S data (i.e. w ide range and posit ive nature of the 8 3 4 S va lues) , seve ra l geo log ica l features sugges t that the Wo lve r ine depos i t fo rmed in a reduced "anox ic" bas in . T h e s e include: (1) the w i d e s p r e a d p r e s e n c e of graphit ic argill ite in the strat igraphy; (2) the a b s e n c e of barite c o m b i n e d with the occu r rence of bar ium (of probable hydrothermal origin) within exhalat ive units that over l ie the m a s s i v e sul f ide l enses (e.g. very low S 0 4 in ambient seawa te r at the site of vent ing; Good fe l l ow and Peter , 1996); (3) sul f ide l e n s e s a re local ly over la in by iron carbonate- r i ch exhalat ive units, wh i ch a re indicat ive of 72 reduced bot tom-water condi t ions at the t ime of sulf ide formation (Anderson et a l . , 1987; Good fe l l ow and Peter , 1996); and (4) lack of sulf ide oxidat ion on the top the m a s s i v e sul f ide l enses . Genesis of the Wolverine Deposit Depositional environment T h e Wo lve r i ne depos i t fo rmed during a per iod of act ive fe ls ic vo l can i sm and sed imenta t ion within an intracratonic back -a r c mar ine bas in in earl iest M iss i ss ipp ian t ime near the cont inental marg in of ances t ra l North A m e r i c a (P iercey et a l . , 2 0 0 1 a ; 2002 ; Ne lson et a l . , 2002) . T h e age of the Wo lve r i ne depos i t together with the locat ion of the host bas in within the regional strat igraphic f ramework of the F in layson L a k e district (Murphy, 1998; Ne l son et a l . , 2002) , sugges t that this bas in fo rmed on the western margin of the ens ia l ic rift bas in that fo rmed between Devono -M iss i ss i pp ian a rc rocks to the wes t and ances t ra l North A m e r i c a to the eas t (Fig. 32a). Th i s back -a r c rift bas in host ing the Wo lve r ine m a s s i v e su l f ides fo rmed t rends to the northwest and is de l ineated by laterally ex tens ive "A lgoma- type" iron format ions (Peter, in press) . Low- tempera ture hydrothermal p l umes on the seaf loor typically deposi t such iron format ions (Peter, in press) . Th i s s e c o n d or third order bas in is greater than 12 km in length, and at least 1000 meters deep , b a s e d on fluid inclusion data. Th is depth est imate is c l ose to the 1200 to 1500 meter depth of m o d e r n sea f loo r hydrothermal s y s t e m s in s imi lar tectonic env i ronments (e.g., H a l b a c h et a l , 1993 ; Herz ig et a l . , 1993; F ig . 32b). T h e a r e a in the immedia te vicinity of the depos i t is the only known part of the W o l v e r i n e s u c c e s s i o n w h e r e there is signif icant strat igraphic interval be tween the Wo l ve r i ne hor izon and the upper iron fo rmat ions (i.e. mos t of Unit 2 is of l imited regional extent) sugges t ing that the Wo l ve r i ne depos i t itself fo rmed on the seaf loor in a sha l low topographic dep ress ion (85-160 meters b a s e d on the th i ckness of Unit 2). Hydro thermal vent ing and coeva l fe ls ic vo l can i sm likely occur red within a topograph ic low or iented approx imate ly west -nor thwest b a s e d on the a l ignment of the vent z o n e s , as def ined by the m a s s i v e sul f ide lenses and cor respond ing str inger z o n e s in the a rea of the depos i t (Fig. 21b). 73 Per iod ic h ia tuses in vo l can i sm are marked by graphit ic sha les , wh ich are mos t abundan t in the immed ia te hang ing wal l to m a s s i v e sul f ide mineral izat ion, but o c c u r throughout the minera l i zed s e q u e n c e (Unit 2). Sed imenta t ion rates for graphit ic s h a l e s vary from 0.4 c m per 1000 years in the Se lwyn Bas in , Y u k o n , (Goodfe l low and J o n a s s o n , 1987) to 13 c m per 1000 years for the W i s s e n b a c h sha le that hosts the R a m m e l s b e r g orebody in G e r m a n y (Goodfe l low and Turner , 1989). T h e a v e r a g e th i ckness of graphit ic sha le (in Unit 2) in the Wo lve r i ne z o n e is 51 meters , wh ich co r responds to 12.7 mill ion years and 390 ,000 years for the sed imenta t ion rates g iven above . Th i s m e a s u r e d th ickness is probably not signif icantly greater than the true strat igraphic th ickness , s ince folds are smal l and highly asymmet r i c . Th is es t imated t ime per iod represents the m a x i m u m durat ion of hydrothermal activity and a s s o c i a t e d fe is ic vo l can i sm, but even the m in imum est imate of 390 ,000 years is signif icantly longer than es t imates of the life of most modern seaf loor hydrothermal sys tems , wh ich are act ive for l ess than 100,000 yea rs (e.g., R o n a , 1988). H e n c e , it is likely that the iron format ions that occu r at the strat igraphic top of Unit 2 are signif icantly younger (1.4 M a ? ) than, and unrelated to, m a s s i v e sulf ide mineral izat ion (F ig . 32c) . Th i s hypothes is is suppor ted further by rare earth e lement g e o c h e m i c a l data, wh ich indicates that the iron format ions precipi tated f rom hydrothermal fluid that never attained temperatures a b o v e - 2 5 0 °C (Peter , in press) . T h e sul f ide minera l textures and sulfur iso tope data indicate that at least s o m e of the sulfur compr is ing the Wo lve r i ne deposi t w a s der ived by bacter ial reduct ion of seawa te r sulfate. A l though sul fate-reducing bacter ia c a n occu r in both venti lated (oxic) or restr icted (anoxic) o c e a n bas ins , geo log ica l and sulfur isotope ev i dence are most cons is tent with sul f ide deposi t ion in anox ic bottom waters . Th i s geo log ica l env i ronment wou ld have promoted the preservat ion of the sul f ide m o u n d s . However , further g e o c h e m i c a l and isotopic s tud ies of the black sha les in the Wo lve r ine depos i t region are required to conf i rm the possibi l i ty of w idesp read anox ia in the host bas in . Physico-chemical conditions of sulfide deposition T h e hydrothermal f luids that fo rmed the m a s s i v e sul f ides in the Wo lve r i ne depos i t or ig inated from seawa te r that w a s modi f ied by circulat ion in the subsu r face . T h e H 2 S that c o m b i n e d with hydrothermal f luids to precipi tate sul f ide minera ls w a s p roduced by the bacterial reduct ion of seawa te r sul fate and the t he rmochem ica l reduct ion of seawa te r sul fate in the footwal l rocks . T h e s e f luids (1) precip i tated pyrite-74 sphaler i te-galena- tet rahedr i te sulf ide m o u n d s on the seaf loor and quartz-sul f ide str inger z o n e s with quartz-chlor i te alterat ion enve lopes be low the seaf loor and (2) reacted with seawater -sa tu ra ted pe rmeab le (unlithif ied?) hos t - rocks below the seaf loor and formed rep lacement-s ty le m a s s i v e sul f ide (simi lar to that d o c u m e n t e d at the Sou th Hercu les depos i t by Z a w and Large, 1992) and con fo rmab le ch lor i te-carbonate-seric i te footwall al terat ion. Low temperature hydrothermal f luids fo rmed the m o u n d and poss ib ly shee t style (see below) layered sul f ides (Fig. 33a). Tempera tu res are es t imated to have been 264 ± 33 °C f rom arsenopyr i te thermometry, but may have been a s low a s 200 °C at the ear l iest s t ages of sul f ide precipitat ion b a s e d on the stability of the sphaler i te-galena-tetrahedr i te sul f ide a s s e m b l a g e (c f . Hannington et a l . , 1999a). T h e low salinity (5.9 ± 1.9 wt.% NaCI equiv.) of the hydrothermal f luids is typical of many V H M S depos i t s (c f . Peter and Scott , 1988; Luders et a l . , 2001) , and s u g g e s t s that d e n s e , sa l ine, br ines were not involved in precipitat ion of sul f ides at the Wo lve r i ne deposi t . T h e restrict ion of chalcopyr i te- and pyrrhotite-rich m a s s i v e sul f ide to the b a s e of the l enses and the rep lacement z o n e s sugges t s that they formed from late-stage, h igher temperature (302 ± 22 °C), more reduced hydrothermal f luids that did not vent onto the seaf loor (Fig. 33b). T h e s e coppe r - and iron-rich f luids rep laced the lowermost parts of ear l ier sul f ide a s s e m b l a g e s within and lateral to the sul f ide m o u n d s , a "zone ref inement" p rocess that is wel l documen ted in the Kuroko depos i ts (e.g., E ldr idge et a l . , 1983). E v i d e n c e for this z o n e ref inement p rocess at the Wo lve r i ne deposi t c o m e s f rom sulf ide textures and minera l compos i t i ons (e.g., high iron sphaler i te at the b a s e of the m a s s i v e sul f ide; c f . Hann ington et a l . , 1999a). T h e p r e s e n c e of multiple str inger z o n e s impl ies that m u c h of the m a s s i v e layered sul f ide mineral izat ion fo rmed f rom c o a l e s c e d sul f ide mounds . T h e s e str inger z o n e s are interpreted to be up-f low condui ts for hydrothermal f luids that precipi tated the overly ing m a s s i v e layered sul f ide mineral izat ion. Str inger z o n e s beneath the b a s e of the Wo lve r i ne z o n e (drill ho les 25 and 27) and H u m p z o n e (drill ho les 20 and 50) channe led f luids that precipi tated m a s s i v e su l f ides of the Wo lve r i ne and Lynx z o n e s respect ive ly (Fig. 19b; F ig . 33a). Th i s scenar io involving the p resence of mult iple vents and m o u n d s is cons is tent with depos i t - sca le lateral metal zon ing and is appl ied to V H M S depos i t s fo rmed f rom poorly f o c u s e d hydrothermal f luids on a pe rmeab le vo lcan ic substrate (e.g., Mor ton and Frank l in , 1987; Large, 1992). E v i d e n c e for pa leo-seaf loor m o u n d s is most conv inc ing in the Wo lve r i ne z o n e , where m a s s i v e 75 layered sul f ide has a chalcopyr i te-r ich base directly underlain by a relatively we l l -deve loped quar tz-chlor i te-chalcopyr i te str inger zone . E l s e w h e r e in the deposi t , sub -sea f loo r rep lacement w a s a more important p r o c e s s . F o r e x a m p l e , chalcopyr i te rep lacement fo rms the base of the m a s s i v e sulf ide lens on the wes te rn edge of the Lynx zone , whe re an underly ing str inger zone is absen t (F ig. 21 b). T h e grain s i ze of the footwall rhyolite vo lcan ic las t ic rock is coa rses t directly beneath the Wo lve r i ne deposi t and d e c r e a s e s laterally away f rom the locus of mineral izat ion. Th i s i nc reased permeabi l i ty would have d e f o c u s e d a s c e n d i n g hydrothermal f luids in the depos i t a rea , and result ing in both sheet- l ike m a s s i v e layered sul f ide mineral izat ion and rep lacement -s ty le sul f ide mineral izat ion. Isolated z o n e s of sulf ide mineral izat ion probably reflect he te rogeneous permeabi l i ty. T h e lack of vert ical metal zon ing in the pyr i te-sphaler i te-galena-tetrahedr i te m a s s i v e layered sul f ide may be asc r ibed to lateral fluid f low during rep lacement . T h e hiatus in vo l can i sm represented by the hanging wal l graphit ic argillite is the likely t ime of m a s s i v e sul f ide format ion. E v i d e n c e for synch ronous sedimentat ion and hydrothermal activity c o m e s f rom the intercalat ion of sul f ide layers and argill ite near the hang ing wal l contact , a n d loca l thin iso la ted sul f ide lenses in the hanging wal l . Con t inued hydrothermal activity is perhaps best demons t ra ted by the p r e s e n c e of the ca rbona te exhal i te unit that locally occu rs directly above the m a s s i v e sul f ide but, more common ly , occu rs a s a separa te hor izon si tuated 30-35 meters a b o v e the Wo lve r i ne hor izon (F ig. 33c) . Th i s unit has a high sul f ide content but low (although anoma lous ) base -meta l content. It is laterally ex tens ive , and assoc ia ted with base -me ta l mineral izat ion e l sewhere a long the Wo lve r i ne Hor izon (e.g. the F i she r z o n e ; F ig . 16a). S im i la r ca rbona te units have been documen ted in the Rosebe ry , Moun t C h a l m e r s and T h a l a n g a V H M S depos i t s in Aust ra l ia (Large, 1992) and a lso are interpreted to be low- temperature sea- f loor exhal i tes. Conclusions T h e geo log ica l features that charac ter ize the Wo lve r i ne depos i t reveal the impor tance of both fe ls ic vo lcan ic rocks and c a r b o n a c e o u s mar ine sed imentary rocks in the g e n e s i s of m a s s i v e sul f ide mineral izat ion in this comp lex tectonic envi ronment . T h e best known ana logs to the Wo lve r i ne depos i t appea r to be the Ordov ic ian depos i ts of the Bathurst district, N e w Brunsw ick (e.g., Luff e t a l . , 1992; 76 M c C u t c h e o n , 1992; Lentz , 1999) and the currently forming m a s s i v e sul f ide depos i t s in the Cent ra l O k i n a w a T rough , J a p a n (Ha lbach et a l . , 1993; Luders et a l . , 2001), wh ich are a l so products of ens ia l i c back -a r c rifting. O the r wel l -s tudied m a s s i v e depos i ts that have many s imi lar charac ter is t ics to the Wo lve r i ne depos i t a re the Kuroko V H M S depos i ts of the Hokuroku District, J a p a n (Ohmoto , 1996), the V S H M S depos i t s of the Iberian Pyrite Belt ( S a e z et a l . , 1999), and the C a m b r i a n Z n - P b - C u V H M S depos i ts of T a s m a n i a , particularly the R o s e b e r y (Green et a l . , 1981), and South He rcu les (Zaw and Large, 1992) depos i ts . Th i s study ind icates that the Wo lve r i ne depos i t fo rmed in an env i ronment transit ional be tween c l a s s i c b imoda l vo lcan ic rock-hosted m a s s i v e su l f ides (e.g. Kuroko) and sed imentary exha la t ive ( S E D E X ) m a s s i v e sul f ide depos i ts (e.g. Su l l ivan; Lydon, 2000) . Simi lar i t ies between the genet ic mode l for the Wo lve r i ne depos i t and that for Z n - P b - C u V H M S depos i ts (e.g. Lydon, 1984; Large , 1992) inc lude: (1) precipitat ion of su lph ide minera ls a s m o u n d s f rom relatively high temperature and low salinity hydrothermal f luids within topograph ic dep ress i ons on the seaf loor ; (2) a strong spat ia l and tempora l assoc ia t ion with fe ls ic vo lcan ic rocks (although large rhyolite d o m e s are not recogn ized in the vicinity of the deposi t ) ; (3) zonat ion of su lph ide minera ls (and assoc ia ted metals) and hydrothermal alterat ion minera ls a round si l icif ied str inger vein z o n e s , wh ich represent hydrothermal vents ; and (4) the dominant sou rce of su lphur in the m a s s i v e su lph ide depos i t der ived from reduced seawa te r su lphate. S e v e r a l a s p e c t s of the genet ic mode l , however , are more typical of S E D E X depos i ts . T h e s e features inc lude: (1) vo luminous sub-sea f loo r rep lacement-s ty le su lph ide mineral izat ion and abundant s t ra ta-bound hydrothermal alteration hosted by pe rmeab le sed imentary (volcanic last ic) rocks ; (2) the format ion of m a s s i v e su lph ides in a c losed to partly c l osed anox ic sed imentary bas in ; and (3) the impor tance of bacter ia l reduct ion of seawate r su lphate a s a sou rce for su lphur in the m a s s i v e su lph ides . T h e reduced , local ly metal l i ferous (Expatr iate R e s o u r c e s , unpubl . data) sed imenta ry rocks in the "Wo lve r ine" bas in were likely the sou rce of the meta ls in the m a s s i v e su lph ide depos i t (cf . , O h m o t o , 1996; Lydon , 2000) , and accoun t for the high metal g rades (particularly z inc and si lver) in the Wo lve r i ne deposi t . In contrast to very prec ious metal-r ich vo lcanogen ic depos i ts s u c h a s E s k a y C r e e k (Sher lock et a l . , 1999), ev i dence f rom this study sugges ts that the high si lver content of the Wo lve r i ne depos i t is not the result of fluid immiscibi l i ty (boiling), whereby prec ious meta ls are preferential ly concent ra ted into an a q u e o u s volat i le p h a s e (e.g. Hannington et a l . , 1999b). 77 Th is study has important impl icat ions for ongo ing explorat ion within the F in layson L a k e district, s i n c e genet ic m o d e l s and , therefore, explorat ion criteria for V H M S depos i ts a re dist inct f rom those for S E D E X depos i ts . It shou ld be e m p h a s i z e d however that the Wo lve r i ne depos i t is the only V S H M S depos i t d i scove red thus far in the F in layson L a k e district. T h e other known m a s s i v e sul f ide o c c u r r e n c e s have different charac ter is t ics and probably fo rmed in signif icantly different tectonic env i ronments (Murphy, 1998; P i e r c e y et a l . , 2 0 0 1 a ; Hunt, 2002) . Th i s study highl ights the necess i t y of deta i led depos i t m o d e l s to facil i tate explorat ion for addit ional concea led depos i ts in the F in layson L a k e district. Acknowledgments T h i s contr ibut ion fo rms part of the sen io r author 's M . S c . thes is at the Universi ty of Brit ish C o l u m b i a . T h e Geo log i ca l Survey of C a n a d a provided funding through Pro ject P S 1 0 1 7 . Addi t ional f inancial a s s i s t a n c e c a m e from N S E R C grant 2 2 R 8 0 4 6 6 to S . Row ins . T h e authors thank H. M e a d e , T .L . Tucker , and R. D u n c a n of Expatr iate R e s o u r c e s Limited and P. Holbek of A tna R e s o u r c e s Limited for unl imited a c c e s s to Wo lve r i ne drill co re a n d outcrop, for providing geo log ica l da ta in the form of drill logs, m a p s , plan sec t ions , and unpubl ished reports, and for st imulat ing d i s c u s s i o n s on the geo logy of the Wo lve r i ne deposi t . Th i s is G S C contr ibution number 2002268 . 78 References A n d e r s o n , L. G . , D y r s s e n , D., and S k e i , J . , 1987, Format ion of c h e m o g e n i c ca lc i te in supe r -anox i c seawater ; F r a m v a r e n , Southern Norway: Mar ine Chemis t ry , v. 20 , p. 361-376 . Bail ly, L , O rgeva l , J . J . , Tesa l i na , S . , Zaykov , V . , and Mas lenn ikov , V . V . , 1999, Flu id inc lus ion data of the A lexandr ink m a s s i v e sul f ide deposit , Ura ls , in Stan ley, C . J . , et a l . , (eds.) , Minera l depos i ts : p r o c e s s e s to p rocess ing , B a l k e m a , p. 13-16. Beaudo in , G . , and Taylor , B . E . , 1994, High prec is ion and spat ial resolut ion sulfur isotope ana lys is us ing M I L E S laser mic roprobe; G e o c h i m i c a et C o s m o c h i m i c a A c t a , v. 36, p. 5055 -5063 . Bodnar , R . J . , a n d Vityk, M .O . , 1994, Interpretation of micro thermometr ic da ta for H 2 0 - N a C I fluid inc lus ions, in: De V ivo , B. and Frezzott i , M. L. (eds.), Fluid inc lus ions in minera ls : me thods and appl icat ions: V i rg in ia Po ly techn ic Institute and State University, B lacksbu rg , V i rg in ia , p. 117-130. B r a d s h a w , G . D . , Tucke r , T .L . , Peter , J . M . , Pa rad i s , and S . , Row ins , S . M . , 2 0 0 1 , G e o l o g y of the Wo lve r i ne polymetal l ic vo lcan ic -hos ted m a s s i v e su lph ide deposi t , F in layson L a k e district, Y u k o n Territory, C a n a d a , in Y u k o n Explorat ion and G e o l o g y 2000 , D .S . E m o n d and L .H . W e s t o n (eds.) , Explorat ion and Geo log i ca l S e r v i c e s Div is ion, Y u k o n , Indian and Northern Affairs C a n a d a , p. 269 -287 . Ca the l i neau , M. , and N ieva , D., 1985, A chlori te sol id solut ion geothermometer , the L o s A z u f r e s (Mex ico) geo therma l sys tem: Contr ibut ions to Minera logy and Petrology, v. 91 , p. 235 -244 . C laypoo l , G . E . , Ho lser , W . T . , Kap lan , I.R., S a k a i , H., and Zak , I., 1980, T h e age cu rves of su lphur and oxygen iso topes in mar ine sulfate and their mutual interpretation: C h e m i c a l Geo logy , v. 28 , p. 199-260. 79 Crawford, M.L., and Hollister, L.S., 1986, Metamorphic fluids: the evidence from fluid inclusions, in: Walther, J.V. and Wood, B.J., eds., Fluid-rock interactions during metamorphism: New York, Springer-Verlag, p. 1-35. Deer, W.A., Howie, R.A., and Zussman, J . , 1989, An introduction to the rock forming minerals: New York, Longman, 528 p. Eldridge, C.S. , Barton, P.B. Jr., and Ohmoto, H., 1983, Mineral textures and their bearing on formation of the Kuroko orebodies: ECONOMIC G E O L O G Y Monograph 5, p. 241-281. Fallick, A .E . , Ashton, J .H. , Boyce, A .J . , Ellarm, R.M., and Russell, M.J., 2001, Bacteria were responsible for the magnitude of the world-class hydrothermal base metal sulfide orebody at Navan, Ireland: ECONOMIC G E O L O G Y , v. 96, p. 885-890. Goodfellow, W.D., 1987, Anoxic stratified oceans as a source of sulphur in sediment-hosted stratiform Zn-Pb deposits (Selwyn Basin, Yukon, Canada): Chemical Geology (Isotope Geoscience Section), v. 65, p. 359-382. Goodfellow, W.D., 2001, Genesis of massive sulphide deposits in the Bathurst Mining Camp, northern New Brunswick, Canada: Extended Abstracts Volume, North Atlantic Minerals Symposium, St. John's, NF, Canada, p. 51-57. Goodfellow, W.D., and Jonasson, I.R., 1984, Ocean stagnation and ventilation defined by 8 S secular trends in pyrite and barite, Selwyn Basin, Yukon: Geology, v. 12, p. 5.83-586. Goodfellow, W.D., and Jonasson, I.R., 1987, Environment of formation of the Howards Pass (XY) Zn-Pb deposit, Selwyn Basin, Yukon, in: Morin, J.A. (ed.), Mineral deposits of the northern cordillera: Canadian Institute of Mining and Metallurgy, Special Volume 37, p. 19-50. 80 Goodfe l low, W . D . , and Turner, R., 1989, Sul fur isotope variability in sed imen t -hos ted m a s s i v e sul f ide depos i ts a s de termined using the ion microprobe S H R I M P ; an e x a m p l e f rom the R a m m e l s b e r g orebody; d i s c u s s i o n : E C O N O M I C G E O L O G Y , v. 84, p. 451 -452 . Goodfe l low, W . D . , Lydon , J . W . , and Turner, R., 1993, G e o l o g y and g e n e s i s of strati form sed imen t -hos ted ( S E D E X ) z inc- lead-s i l ver su lph ide depos i ts , in: K i r kham R.V. , Sinc la i r , W . D . , Thorpe , R.I. and Duke , J . M . , (eds.), Minera l depos i t mode l ing : Geo log i ca l Assoc ia t i on of C a n a d a , S p e c i a l P a p e r 40 , p. 2 0 1 -251 . Goodfe l low, W . D . , and Peter , J . M . , 1996, Su lphur isotope compos i t ion of the Brunsw ick No. 12 m a s s i v e su lph ide deposi t , Bathurst Min ing C a m p , N e w Brunswick : Impl icat ions for ambien t env i ronment , su lphur sou rce , and ore genes i s : C a n a d i a n Journa l of Earth S c i e n c e s , v. 33 , p. 2 3 1 - 2 5 1 . Goodfe l low, W . D., and Peter , J . M. , 1999, Reply : Su lphur isotope compos i t ion of the Brunsw ick No . 12 m a s s i v e su lph ide deposi t , Bathurst Mining C a m p , N e w Brunswick : impl icat ions for amb ien t env i ronment , su lphur source , and ore genes i s : C a n a d i a n Journa l of Earth S c i e n c e s , v. 36, p. 127-134. G r e e n , G . R . , S o l o m o n , M. , and W a l s h e , J . L , 1981, T h e format ion of the vo lcan ic -hos ted m a s s i v e su lph ide depos i t at Rosebe ry , T a s m a n i a : E C O N O M I C G E O L O G Y , v. 76, p. 304-338 . Guidott i , C . V . , 1984, M i c a s in metamorph ic rocks, in: S . W . Bai ley (ed.), M i c a s : R e v i e w s in Minera logy 13, Minera log ica l Soc ie ty of A m e r i c a , p. 357-467 . G u s t a f s o n , L.B. , and Wi l l i ams , N., 1981, Sed imen t -hos ted stratiform depos i ts of copper , lead, and z inc . E C O N O M I C G E O L O G Y 7 5 t h Ann ive rsary V o l u m e , p. 139-178. 81 H a a s , J . L , 1971 , T h e effect of salinity on the m a x i m u m thermal gradient of a hydrothermal s ys tem at hydrostat ic p ressure : E C O N O M I C G E O L O G Y , v. 66 , p. 940-946 . Ha lbach , P., P race jus , B., and Mar ten , A . , 1993, G e o l o g y and minera logy of m a s s i v e sul f ide o res f rom the centra l O k i n a w a Trough , J a p a n : E C O N O M I C G E O L O G Y , v. 88, p. 2210 -2225 . Hann ing ton , M.D. , B leeker , W . , and K ja rsgaard , I., 1999a, Sul f ide mineralogy, geochemis t ry and ore g e n e s i s of the Kidd C r e e k deposi t : Par t I: T h e North, Cent ra l and South o rebod ies : E C O N O M I C G E O L O G Y Monog raph 10, p. 163-224. Hann ing ton , M.D. , P o u l s e n , K .H . , T h o m p s o n , J . F . H . , and Sil l i toe, R .H . , 1999b, V o l c a n o g e n i c go ld in the m a s s i v e sul f ide envi ronment : R e v i e w s in E c o n o m i c G e o l o g y v. 8, p. 325-356 . Herr ington, R. J . , Mas lenn ikov , V . V . , Sp i ro , B., Zaykov , V . V . , Little, C . T. S . , Mi l ls , R. A . , and Har r ison , K., 1998, Anc ien t vent ch imney structures in the Si lur ian m a s s i v e su lph ides of the Ura ls , in Mode rn o c e a n f loor p r o c e s s e s and the geo log ica l record: Geo log i ca l Soc ie ty S p e c i a l Publ icat ion 148, p. 2 4 1 -257. Herz ig , P . M . , Hann ing ton , M.D. , Fouquet , Y . , V o n S tacke lbe rg , U. , and P e t e r s e n , S . , 1993. Go ld - r i ch polymetal l ic su l f ides f rom the Lau back a rc and impl icat ions for the geochemis t ry of gold in sea- f loor hydrothermal s y s t e m s of the Sou thwes t Pac i f ic : E C O N O M I C G E O L O G Y , v. 88, p. 2182 -2209 . Hey, M .H . , 1954, A new review of the chlor i tes: Minera log ica l magaz ine , v. 30 , p. 277 -292 . Hunt, J .A . , 2002 , V o l c a n i c - a s s o c i a t e d m a s s i v e su lph ide ( V M S ) mineral izat ion in the Y u k o n - T a n a n a Te r rane and coeva l strata of the North A m e r i c a n miogeoc l ine , in the Y u k o n and ad jacent a reas . Explorat ion and Geo log i ca l S e r v i c e s Div is ion, Y u k o n Reg ion , Indian and Northern Af fa i rs C a n a d a , Bul let in 12, 107 p. 82 Huston , D.L., 1999, S tab le iso topes and the g e n e s i s of vo lcan ic -hos ted m a s s i v e sul f ide depos i ts : a review: R e v i e w s in E c o n o m i c G e o l o g y v. 8, p. 157-179. Ishihara, S . , and S a s a k i , A . , 1978, Sul fur of Kuroko depos i ts - a deep -sea ted origin: Min ing Geo logy , v. 28, p. 361-367 . K o o p m a n , E .R . , Hann ington, M.D. , San tagu ida , F., and C a m e r o n , B.I., 1999, Pet ro logy and geochemis t ry of prox imal hydrothermal alteration in the M ine Rhyol i te at K idd C r e e k : E C O N O M I C G E O L O G Y M o n o g r a p h 10, p. 267-296 . K re tschmar , U., and Scott , S . D . , 1976, P h a s e relat ions involving arsenopyr i te in the sys tem F e - A s - S and their appl icat ion: C a n a d i a n Mineralogist , v. 14, p. 364-386 . Large, R .R . , 1992, Aust ra l ian vo lcan ic -hos ted m a s s i v e sulf ide depos i ts : features, sty les and genet ic mode ls : E C O N O M I C G E O L O G Y , v. 87, p. 471 -510 . Large, R .R . , A l l en , R.L. , B lake , M.D. , and He r rmann , W . , 2001 , Hydrothermal alterat ion and volati le e lement ha los for the R o s e b e r y K lens vo lcan ic -hos ted m a s s i v e sul f ide deposi t , wes te rn T a s m a n i a : E C O N O M I C G E O L O G Y , v. 96, p. 1055-1072. Lentz , D.R. , 1999, Petro logy, geochemis t ry , and oxygen isotope interpretation of fe ls ic vo lcan ic rocks host ing the Brunsw ick 6 and 12 m a s s i v e su lph ide depos i ts (Brunswick belt), Bathurst mining c a m p , N e w Brunswick , C a n a d a : E C O N O M I C G E O L O G Y , v. 94. p. 57-86. Lentz, D.R. , 2002 , Sphaler i te and arsenopyr i te at the Brunswick No . 12 m a s s i v e sul f ide deposi t , Bathurst c a m p , N e w Brunswick : constra ints on P-T evolut ion: C a n a d i a n Mineralogist , v. 40 , p. 19-31. 83 Luders , V . , P race jus , B., and Ha lbach , P., 2 0 0 1 , Fluid Inclusion and sulfur isotope s tud ies in probable modern ana logue Kuroko- type ores f rom the J A D E hydrothermal field (Centra l O k i n a w a T rough , J a p a n ) : C h e m i c a l Geo logy , v. 173. p. 45 -58 . Luff, W . , Good fe l l ow, W . D., and Ju ras , S . , 1992, E v i d e n c e for a feeder pipe and a s s o c i a t e d alteration at the Brunsw ick No . 12 m a s s i v e su lph ide deposi t : Explorat ion and Min ing Geo logy , v. 1, p. 167-185 . Lydon, J . W . , 1984, V o l c a n i c hosted m a s s i v e su lph ide depos i ts . Part 1: A descr ip t ive mode l : G e o s c i e n c e C a n a d a , v. 11, p. 195-202. Lydon , J . W . , 1988, V o l c a n i c hosted m a s s i v e su lph ide depos i ts . Part 2: genet ic mode ls : G e o s c i e n c e C a n a d a , v. 15, p. 43 -65 . Lydon, J . W . , 2000 , A synops i s of the current unders tanding of the geo log ica l env i ronment of the Sul l ivan deposi t : in Lydon , J . W . , Hoy, T., S lack , J . F . , and Knapp , M .E . , (eds.) , T h e geo log ica l env i ronment of the Sul l ivan deposi t , Brit ish C o l u m b i a , Geo log i ca l Assoc ia t i on of C a n a d a , Minera l Depos i t s Div is ion, S p e c i a l Publ icat ion No . 1, p. 12-31. Marsha l l , B., G i l es , A . D . , and H a g e m a n n , S . G . , 2000 , Fluid inc lus ions in m e t a m o r p h o s e d and synme tamorph i c ( including metamorphogen ic ) b a s e and prec ious metal depos i ts ; indicators of ore-forming condi t ions and/or ore modifying h is tor ies?, P . G . Spry, B. Marsha l l , and F . M . V o k e s , (eds.) , M e t a m o r p h o s e d and me tamorphogen ic ore depos i ts : R e v i e w s in E c o n o m i c G e o l o g y 11, p. 119-148. M c C u t c h e o n , S . R . , 1992, B a s e - m e t a l depos i ts of the Bathurs t -Newcas t le district: charac ter is t ics and depos i t iona l mode ls : Explorat ion and Mining Geo logy , v. 1, p. 105-119. M c D o w e l l , S . D . , and E lders , W . A . , 1980, Auth igen ic layer si l icate minera ls in boreho le E lmo re 1, Sa l tan S e a geo therma l f ield, Cal i forn ia , U S A : Contr ibut ions to Minera logy and Petro logy, v. 74, p. 293-310 . 84 Mor tensen , J .K . , 1992, P r e - m i d - M e s o z o i c tectonic evolut ion of the Y u k o n - T a n a n a Te r rane , Y u k o n and A l a s k a : Tec ton i cs , v. 11, p. 836-853 . Mor ton, R.L. , and Frank l in , J . M . , 1987, Two- fo ld c lass i f icat ion of A r c h e a n vo l can i c -assoc ia ted m a s s i v e sul f ide depos i ts , E C O N O M I C G E O L O G Y , v. 82. p. 1057-1063. Murphy, D . C , 1998, Strat igraphic f ramework for syngenet ic mineral occu r rences , Y u k o n - T a n a n a Te r rane south of F in layson Lake : a p rogress report, in Roo ts , C . F . , and E m o n d , D .S . (eds.) , Y u k o n Explorat ion and G e o l o g y 1997, Explorat ion and Geo log i ca l S e r v i c e s Div is ion, Y u k o n , Indian and Northern Af fa i rs C a n a d a , p. 51-58. Murphy, D. C , and P iercey , S . J . , 1999, F in layson Project: geo log ica l evolut ion of Y u k o n - T a n a n a Te r rane and its relat ionship to C a m p b e l l R a n g e belt, northern Wo lve r ine L a k e m a p a rea , sou theas te rn Y u k o n , in Roo ts , C . F . , and E m o n d , D .S . , (eds.), Y u k o n Explorat ion and G e o l o g y 1998, Explorat ion and Geo log i ca l S e r v i c e s Div is ion, Y u k o n , Indian and Northern Affa i rs C a n a d a , p. 47 -62 . Murphy, D . C , Co lp ron , M. , Roo ts , C . F . , Gordey , S . P . and Abbot t J . G . , 2002 , F in layson L a k e Targe ted G e o s c i e n c e Initiative (southeastern Yukon ) , Par t 1: Bed rock geology, in E m o n d , D .S . , W e s t o n , L .H. , and Lewis , L.L., ( e d s ) , Y u k o n Explorat ion and G e o l o g y 2001 , Explorat ion and Geo log i ca l S e r v i c e s Div is ion, Y u k o n Reg ion , Indian and Northern Affairs C a n a d a , p. 189-207. Ne l son , J . , Pa rad i s , S . , Ch r i s tensen , J . , and Gab i t es , J . , 2002 , C a n a d i a n Cord i l le ran M iss i ss ipp i Va l l ey -type depos i ts : a c a s e for Devon ian -M iss i ss ipp ian back -a rc hydrothermal origin: E C O N O M I C G E O L O G Y , v. 97, p. 1013-1036. Ohmo to , H., 1996, Format ion of vo lcan ic hosted m a s s i v e su lph ide depos i ts : T h e Ku roko perspect ive : O r e G e o l o g y R e v i e w s , v. 10, p. 135-177. 85 Ohmoto , H., and R y e , R . O . , 1979, Isotopes of sulfur and ca rbon , in Ba rnes , H.L., (ed.), G e o c h e m i s t r y of hydrothermal ore depos i ts , N e w York , J o h n Wi ley & S o n s , p. 509-567 . Ohmo to , H., and Go ldhaber , M.B. , 1997, Sul fur and ca rbon isotopes, in Ba rnes , H.L., (ed.), G e o c h e m i s t r y of hydrothermal ore depos i ts , N e w York , J o h n Wi ley & S o n s , p. 517-612 . Peter , J . M . , in p ress , Anc ien t iron-rich metal l i ferous sed imen ts (iron format ions) : their g e n e s i s and use in the explorat ion for stratiform base metal su lph ide depos i ts , with e x a m p l e s f rom the Bathurst Min ing C a m p , in Lentz , D.R. , (ed.), Geochem is t r y of sed imen ts and sed imentary rocks : secu la r evolut ionary cons idera t ions to mineral deposi t - forming env i ronments , Geo log i ca l A s s o c i a t i o n of C a n a d a , G E O t e x t v. 4. Peter , J . M. , and Goodfe l low, W . D., 1996, Minera logy, bulk and rare earth e lement geochemis t ry of m a s s i v e su lph ide -assoc ia ted hydrothermal sed imen ts of the Brunswick Hor izon , Bathurst Min ing C a m p , N e w Brunswick : C a n a d i a n Journa l of Earth S c i e n c e s , v. 33, p. 252 -283 . Peter , J . M . , and Scott , S . D . , 1988, Minera logy, compos i t ion and f lu id- inclusion Mic ro thermomet ry of seaf loor hydrothermal depos i ts in the southern trough of G u a y m a s Bas in , Gul f of Cal i forn ia : C a n a d i a n Minera logis t , v. 26, p. 567-587 . Peter , J . M. , Goodfe l low, W . D., and Leybourne, M. I., 1994, Fluid inc lus ion petrography and micro thermometry of the Midd le Va l ley hydrothermal sys tem, Northern J u a n de F u c a R idge . , in Mottl, M. J . , Dav is , E. E., F isher , A . T., and S lack , J . F., (eds.), P r o c e e d i n g s of the O c e a n Drill ing P r o g r a m , Scient i f ic Resu l t s , C o l l e g e Stat ion, T X ( O c e a n Drill ing Program) , v. 139, p. 411 -428 . P ie rcey , S . J . , 2 0 0 1 , Petro logy and tectonic sett ing of maf ic and fe ls ic vo lcan ic and intrusive rocks in the F in layson L a k e vo lcan ic -hos ted m a s s i v e su lph ide ( V H M S ) district, Y u k o n , C a n a d a : A record of mid-P a l e o z o i c arc and back -a rc m a g m a t i s m and metal logeny. Unpub l i shed P h . D . thes is , V a n c o u v e r , B . C . , C a n a d a , Universi ty of Brit ish C o l u m b i a , 305 p. 86 Piercey , S . J . , Mor tensen , J .K . , Murphy, D . C , Pa rad is , S . and C r e a s e r , R.A. , 2002 , G e o c h e m i s t r y and tectonic s ign i f i cance of a lkal ic maf ic m a g m a t i s m in the Y u k o n - T a n a n a terrane, F in layson L a k e region, Y u k o n : C a n a d i a n Journa l of Earth S c i e n c e s , v. 39, p. 1729-1744. P ie rcey , S . J . , Pa rad i s , S . , Murphy, D . C , Mor tensen , J .K . , 2 0 0 1 a , G e o c h e m i s t r y and pa leotecton ic sett ing of fe ls ic vo lcan ic rocks in the F in layson L a k e vo lcan ic -hos ted m a s s i v e sul f ide district, Y u k o n , C a n a d a : E C O N O M I C G E O L O G Y , v. 96, p. 1877-1905. P ie rcey , S . J . , Peter , J . M . , B radshaw, G . D . , Tucke r , T .L . , Pa rad is , S . , 2001b , Geo log i ca l attr ibutes of h igh-level subvo l can i c porphyrit ic intrusions in the Wo lve r ine Z n - P b - C u - A g - A u vo lcan ic -hos ted m a s s i v e su lph ide deposi t , F in layson L a k e district, Y u k o n , C a n a d a , in E m o n d , D .S . , and W e s t o n , L .H. , eds . , Y u k o n Explorat ion and G e o l o g y 2000 , Explorat ion and Geo log i ca l S e r v i c e s Div is ion, Y u k o n , Indian and Northern Affa i rs C a n a d a , p. 335-346. Potter, R . W . 1977. P r e s s u r e correct ions for fluid inclusion homogen iza t ion tempera tures b a s e d on the vo lumetr ic propert ies of the sys tem N a C I - H 2 0 : Journa l of R e s e a r c h of the U . S . G e o l o g i c a l Survey , v. 5, p. 603 -607 . Roedde r , E. , 1984, Flu id Inclusions, R e v i e w s in Minera logy, v. 12, Minera log ica l Soc ie ty of A m e r i c a . 644 P-R o n a , P., 1988, Hydrothermal mineral izat ion at o c e a n r idges: C a n a d i a n Minera logis t , v. 26 , p. 431 -465 . R o n a , P .A . , and Scott , S . D . , 1993, A spec ia l i ssue on sea- f loor hydrothermal mineral izat ion: new perspec t i ves , pre face: E C O N O M I C G E O L O G Y , v. 88, p. 1935-1976. S a e z , R., P a s c u a l , E. , T o s c a n o , M. , and A lmodovar , G . R . , 1999, T h e Iberian type of vo lcano-sed imen ta ry m a s s i v e su lph ide depos i ts : Minera l ium Depos i ta , v. 34, p. 549-570 . 87 S a n c h e z - E s p a n a , J . , V e l a s c o , F., Boyce , A . J . , and Fal l ick, A . E . , in p ress , S o u r c e and evolut ion of o re-forming hydrothermal f luids in the northern Iberian Pyrite Belt m a s s i v e su lph ide depos i t s ( S W Spa in) : ev i dence f rom fluid inc lus ions and s tab le iso topes: Minera l ium Depos i ta . Scott , S . D . , 1983, C h e m i c a l behav ior of sphaler i te and arsenopyr i te in hydrothermal and metamorph ic env i ronments : Minera log ica l Magaz ine , v. 47 , p. 427 -435 . Sharp , Z . D . , E s s e n e , E . J . , and Kelly, W . C . , 1985, A re-examinat ion of the arsenopyr i te geothermometer : p ressu re cons idera t ions and appl icat ions to natural a s s e m b l a g e s : C a n a d i a n Minera logis t , v. 23 , p. 517-534 . S h e p h e r d , T. J . , R a n k i n , A . H., and Alder ton, D. H. M. , 1985, A Pract ica l G u i d e to Flu id Inclusion Stud ies : B lack ie & S o n , G l a s g o w , Uni ted K ingdom, 239 p. Sher lock , R.L. , Ro th , T., Spoone r , E . T . C . and Bray, C . J . , 1999, Or ig in of the E s k a y C r e e k prec ious meta l -rich vo l canogen i c m a s s i v e su lph ide deposi t : fluid inclusion and stable isotope ev idence : E C O N O M I C G E O L O G Y , v. 94, p. 503-524. S o l o m o n , M. , E a s t o e , C . J . , W a l s h e , J .L . , and G r e e n , G . R . , 1988, Minera l depos i t s and sulfur isotope a b u n d a n c e s in the Mount R e a d vo lcan ics between Q u e River and Mount Darwin, T a s m a n i a : E C O N O M I C G E O L O G Y , v. 83 , p. 1307-1328. S o l o m o n , M. , 1999, Su lphur isotope compos i t ion of the Brunswick No . 12 m a s s i v e su lph ide deposi t , Bathurst mining c a m p , N e w Brunswick ; impl icat ions for ambient env i ronment , su lphur sou rce , and ore g e n e s i s ; d i scuss ion . C a n a d i a n Journa l of Earth S c i e n c e s , v. 36, p. 121-126. Spoone r , E. T. C , and Bray, C . J . , 1977, Hydrothermal f luids of seawate r salinity in ophiol i t ic su lph ide ore depos i ts in Cyp rus : Nature, v. 266, p. 808-812 . 88 Sterner, M . S . , 1992, Homogen iza t ion of fluid inc lus ions to the vapor phase ; the apparent homogen iza t ion p h e n o m e n o n : E C O N O M I C G E O L O G Y , v. 87, p. 1616-1623. S u n d b l a d , K., Z a c h r i s s o n , E., S m e d s , S .A . , Berg lund, S . , and Al inder, C , 1984, Sphaler i te geobaromet ry a n d arsenopyr i te geo thermomet ry app l ied to m e t a m o r p h o s e d su lph ide o r e s in the S w e d i s h C a l e d o n i d e s : E C O N O M I C G E O L O G Y v. 79, p. 1660-1668. Taylor , B . E . and Beaudo in , G . , 1993, M I L E S laser microprobe, Part I: sys tem descr ip t ion: Cur rent R e s e a r c h , Part D; Geo log i ca l Su rvey of C a n a d a P a p e r 93 -1D, p. 191-198. Taylor , B . E . and Beaudo in , G . , 2000, Su lphur isotope strat igraphy of the Sul l ivan P b - Z n - A g deposi t , B . C . : ev idence for hydrothermal sulphur, and bacter ial and the rmochemica l su lphate reduct ion, chapter 37, in Lydon , J . W . , Hoy, T., S lack , J . F . , and Knapp , M .E . , ( e d s ) , T h e geo log ica l env i ronment of the Sul l ivan deposi t , Brit ish C o l u m b i a , Geo log i ca l Assoc ia t i on of C a n a d a , Minera l Depos i t s Div is ion, S p e c i a l Publ icat ion No . 1, p. 696-719 . Thiery, R., V ida l , J . , and D u b e s s y , J . , 1994, P h a s e equi l ibr ia mode l ing app l ied to f luid inc lus ions : L iqu id-vapo r equi l ibr ia and calculat ion of the molar vo lume in the C 0 2 - C H 4 - N 2 s ys tem: G e o c h i m i c a et C o s m o c h i m i c a A c t a , v. 58, p. 1073-1082. T h o m p s o n , R.I., Ne l son , J .L . , Pa rad is , S . , Roo ts , C . F . , Murphy, D . C , Gordey , S . P . and J a c k s o n , L .E . , 2000 , Anc ien t Pac i f i c Marg in N A T M A P Project, year one: Geo log i ca l Su rvey of C a n a d a , Cur rent R e s e a r c h 2 0 0 0 - A 1 , 8 p. Touret , J . L . R . , 2 0 0 1 , F lu ids in metamorph ic rocks, Li thos, v .55, p. 1-25. 89 Tucker , T .L . , Turner , A . J . , Terry, D.A. and B radshaw, G . D., 1997, Wo lve r i ne m a s s i v e su lph ide project, Y u k o n , in Y u k o n Explorat ion and G e o l o g y 1996: Explorat ion and Geo log i ca l S e r v i c e s Div is ion, Y u k o n Indian and Northern Affairs C a n a d a , p. 53-55 . U rabe T., and Sa to , T., 1978, Kuroko depos i ts of the K o s a k a mine, northeast H o n s h u , J a p a n : P roduc ts of submar ine hot spr ings on M i o c e n e s e a floor: E C O N O M I C G E O L O G Y , v. 73 , p. 161-179. Urabe , T., Scott , S . D . , and Hatori , K., 1983, A compar i son of footwal l-rock alterat ion and geo therma l s y s t e m s beneath s o m e J a p a n e s e and C a n a d i a n vo lcanogen ic m a s s i v e sul f ide depos i ts : E C O N O M I C G E O L O G Y Monog raph 5, p. 345-364. V e l a s c o , F., S a n c h e z - E s p a n a , J . , Boyce , A . J . , Fal l ick, A . E . , S a e z , R., and A lmodova r , G . R . , 1998, A new su lphur isotopic study of s o m e Iberian Pyrite Belt depos i ts : ev idence of a textural control on su lphur isotope compos i t i on : Minera l ium Depos i ta , v. 34, p. 4-18. V o n D a m m , K.L., 1990, Sea f loo r hydrothermal activity: b lack s m o k e r chemis t ry and ch imneys : A n n u a l R e v i e w of Ear th and P lanetary S c i e n c e s , v. 18, p. 173-204. Z a n g , W . , and Fyfe, W . S . , 1995, Chlor i t izat ion of the hydrothermal ly al tered bedrock at the Igarape Bah ia gold deposi t , Ca ra j as , Braz i l : M inera l ium Depos i ta , v. 30, p. 30-38. Zaw , K. and Large, R .R. , 1992, T h e prec ious metal-r ich South Hercu les mineral izat ion, W e s t e r n T a s m a n i a : a poss ib le sub sea- f loor rep lacement vo lcan ic -hos ted m a s s i v e su lph ide deposi t : E C O N O M I C G E O L O G Y , v. 87, p. 931-952 . 90 Appendix - Descriptions of samples used for arsenopyrite and chlorite geothermometry Arsenopyr i te Geo the rmomet r y G B - 0 0 - 0 2 7 - weak ly layered sphaler i te-r ich m a s s i v e sulf ide with interstitial sideri te. C o a r s e subhedra l to euhedra l pyrite gra ins (20 vol.%) and med ium to f ine arsenopyr i te gra ins (8 vol.%) occu r in a matrix of po lygonal sphaler i te (40 vol.%) gra ins. F ine aggrega tes of sideri te (30 vol.%) occu r interstitial to sphaler i te grains. G a l e n a , tetrahedrite and chalcopyr i te are present in t race amoun ts . G B - 0 0 - 0 2 9 - layered sphaler i te-r ich m a s s i v e sul f ide with interstitial sideri te. F ine po lygonal sphaler i te gra ins (60 vol.%) with c o a r s e subhedra l to euhedra l pyrite (18 vol .%) a n d rare arsenopyr i te (<1 vol .%). C u s p a t e sideri te (20 vol.%) and ga lena (2 vol.%) o c c u r interstitial to sphaler i te. G B - 0 0 - 0 3 0 - layered sphaler i te-r ich m a s s i v e sul f ide with lesser rep lacement sul f ide. F ine-gra ined layered dark sphaler i te (25 vol.%) and euhedra l pyrite (15 vol.%) a lso con ta ins minor fine subhedra l arsenopyr i te (2 vol .%). Layered sul f ides overl ie al tered rhyolite conta in ing laths of biotite (15 vol.%) and muscov i te (10 vol.%) interstitial to equigranular anker i te (10 vol.%) and quartz (23 vol .%). G B - 0 0 - 0 6 0 - m a s s i v e pyrrhotite- and chalcopyr i te-r ich sul f ide. C o a r s e m a s s e s of anhedra l pyrrhotite (35 vol.%) and chalcopyr i te (30 vol.%) with ragged boundar ies conta in abundan t f ine sphaler i te inc lus ions (20 vol .%). C o a r s e euhedra l a rsenopyr i te (<1 vol .%) gra ins are spa rse . S u b - r o u n d e d pods occur interstitial to sul f ide minera ls and contain f ine agg rega tes of quartz (10 vol.%) and sideri te (5 vol .%). G B - 0 0 - 0 9 9 - layered to net-textured m a s s i v e pyrite-rich m a s s i v e sulf ide. C o a r s e subhedra l to euhedra l pyrite (40 vol .%), with f ine intergrown ga lena (5 vol.%) and tetrahedrite (2 vol.%) occu r interstitial to subhedra l sphaler i te (18 vol .%). R a r e coa rse euhedra l arsenopyr i te (<1 vol.%) gra ins conta in pyrite inc lus ions. M a s s e s of polygonal quartz (30 vol.%) and minor s ider i te (5 vo l . %) are c o m m o n . 91 Chlor i te Geo the rmomet r y G B - 0 0 - 0 0 4 - coa rse -g ra ined vo lcan ic las t ic rhyolite with strong chlori te alterat ion. C o a r s e laths of light g reen to grey (type I) chlorite (70 vol.%) a l igned paral lel to S i fol iation and layered with strongly twinned subhedra l anker i te (8 vol .%), muscov i te (2 vol .%), and quartz (2 vol .%). C o a r s e euhedra l to subhedra l pyrite (10 vol .%), chalcopyr i te (5 vol.%) and sphaler i te (3 vol .%) d i ssemina ted throughout. G B - 0 0 - 0 3 9 - coa rse -g ra ined vo lcan ic las t ic rhyolite with strong seric i te al terat ion. Layers of fine muscov i te (60 vol.%) laths contain s p a r s e (type I) chlori te (<1 vol.%) and fine equigranular quartz (30 vol .%). C o a r s e anker i te (10 vol.%) conta ins abundant inc lus ions of quartz. T r a c e s of pyrite (<1 vol.%) d i ssemina ted throughout. G B - 0 0 - 1 0 9 - f ine-gra ined vo lcan ic las t ic rhyolite with carbonate and chlori te al terat ion. Layers of in ter locked, angular to sub rounded, e longate anker i te (25 vol.%) and quar tz (20 vol.%) al ternate with layers of muscov i te (15 vol .%), biotite (10 vol .%). C o a r s e anhedra l m a s s e s of ye l low-brown (type II) chlori te (10 vol.%) occu r together with calc i te (25 vol.%) and biotite (10 vol .%). C o a r s e irregular gra ins of pyrite (10 vol .%) and sphaler i te (10 vol.%) are or iented paral lel to the S i foliation and rep lace other minera ls . G B - 0 0 - 1 3 7 - f ine-gra ined vo lcanic last ic rhyolite with carbonate and chlorite al terat ion. Anker i te (40 vol .%), muscov i te (10 vol .%), m a s s e s of (type II) chlorite (10 vol.%) and randomly or iented biotite (<1%) are rep laced by sphaler i te (30 vol .%), pyrite (10 vol.%) and pyrrhotite (<1 vol .%). 92 Figure Captions Figure 14. Locat ion m a p of the Y u k o n - T a n a n a Te r rane (YTT) , the F in layson L a k e District and the Wo lve r i ne deposi t , and other s igni f icant m a s s i v e sul f ide depos i ts in the district (modi f ied after P i e r c e y et a l . 2001a) . Figure 15. Reg iona l strat igraphic co lumn of the hos t - rocks to the V H M S depos i ts in the F in layson L a k e District (modif ied after Murphy, 1998; P ie rcey et a l . , 2001a) . Figure 16. (A) Loca l geo logy of the Wo lve r i ne depos i t a rea (modif ied f rom Expatr ia te R e s o u r c e s Limi ted unpub l i shed m a p s , 1996). (B) Detai led sur face geo logy m a p of the Wo lve r i ne depos i t a rea showing the sur face project ion of the m a s s i v e sul f ide l enses and illustrating the locat ion of Sec t ion 1 6 7 0 0 E . (C) Geo log i ca l c ross -sec t i on 1 6 7 0 0 E through the Wo lve r i ne zone of the Wo lve r i ne deposi t . Cons t ruc ted f rom deta i led geo log ic mapp ing of dr i l l -core, dri l l - logs and c ross -sec t i ons supp l ied by Expat r ia te R e s o u r c e s Limi ted. Coo rd ina tes (in meters) are f rom the property grid. Strat igraphic units are: (1) footwall vo lcan ic las t ic , c a r b o n a c e o u s sed imentary and porphyrit ic intrusive rocks; (2) in terbedded argill ite, rhyolite and magnet i te-carbonate-pyr i te exhal i tes; (3) f ragmenta l rhyolite; and (4) in terbedded c a r b o n a c e o u s argillite and g reywacke , with lesser basal t and rhyolite. S e e text for further detai ls . Figure 17. Pho tog raphs of host- rock l i thologies: (a) po tass ium- fe ldspar -phy r i c rhyolite porphyry of Unit 1; (b) carbonate-pyr i te exhal i te of Unit 2, dark bands are calc i te and lighter bands are pyrite; (c) magnet i te exhal i te (iron formation) of Unit 2, dark bands are magnet i te and lighter bands are quartz; and (d) f ragmenta l rhyolite of Unit 3, light grey quartz f ragments in a matrix of f ine-gra ined chlori te and seric i te. Figure 18. Pho tog raphs of m a s s i v e sul f ide mineral izat ion styles: (a) layered, m a s s i v e pyrite ( P Y ) and sphaler i te ( S P ) , with lesser d i ssemina ted , euhedra l , "buckshot" pyrite (b) rep lacement - type chalcopyr i te ( C C P ) in chlor i te-al tered rhyolite vo lcan ic las t ic rock; (c) m a s s i v e pyrrhotite ( P O ) over l ies chalcopyr i te ( C P P ) and chlori te ( C H L ) a l tered/ rep laced rhyolite at the base of the m a s s i v e sul f ide intersect ion; and (d) 93 pyrite (PY) st r inger-veins with surrounding s i l ica alteration in footwall rhyolite vo lcan ic las t ic rock. S c a l e bars are in cent imeters . Figure 19. (A) P lan m a p with contours of the true th i ckness of the m a s s i v e sul f ide intersect ion in e a c h drill hole. T h e individual drill ho les are located where the b a s e of the m a s s i v e sul f ide intersect ion projects to sur face . T h e true widths of the sul f ide mineral izat ion shown represent a combina t ion of m a s s i v e layered ( including mult iple l enses if present) , and s e m i - m a s s i v e rep lacement sul f ide. Coo rd ina tes (in meters) are f rom the property grid. Modi f ied f rom Expatr iate R e s o u r c e s Limited (2001). (B) P lan m a p of the Wo lve r i ne depos i t showing the distribution of str inger-veins and rep lacement-s ty le mineral izat ion. T h e locat ions of the individual dr i l l -holes are projected to the base of the m a s s i v e sul f ide intersect ion. Coo rd ina tes (in meters) are f rom the property grid. Figure 20. H is togram that i l lustrates the wide range of sphaler i te compos i t i ons at the Wo lve r i ne deposi t . R a n g e and m e a n of sphaler i te compos i t ions f rom the Kidd C r e e k depos i t (Hannington et a l . , 1999a ; n=500) and the s tockwork of the Brunswick 12 depos i t (Lentz, 2002 ; n=41) are s h o w n for c o m p a r i s o n pu rposes . Re la t ionsh ip be tween p ressure (kb) and mole % F e S in sphaler i te is f rom Scot t (1983). Figure 21. Pho tom ic rog raphs of mineral izat ion: (a) w ispy f ine-grained (primary) pyrite (PY) at hanging-wal l contact over l ies f ine to coarse -g ra ined euhedra l pyrite set in a matrix of fine gra ined sphaler i te ( S P ) ; (b) typical o c c u r r e n c e of sphaler i te (SP) , tetrahedrite (TT), and ga lena (GN) within Z n - P b - A g m a s s i v e sulf ide; (c) me tamorph ic layering within pyrite (PY) and sphaler i te ( S P ) m a s s i v e sulf ide; (d) typical occu r rence of chalcopyr i te ( C C P ) and pyrrhotite (PO) replacing sphaler i te ( S P ) at the Cu- r i ch b a s e of the m a s s i v e sul f ide lens. Figure 22. Con tou rs of (a) C u / C u + P b + Z n , (b) Z n / C u + P b + Z n , and (c) P b / C u + P b + Z n that il lustrate the lateral zonat ion of copper , lead, and z inc in the Wo lve r ine deposi t . T h e posi t ions of the individual dr i l l -holes are projected to the b a s e of the m a s s i v e sulf ide intersect ion. P lots are genera ted f rom data prov ided by Expatr ia te R e s o u r c e s Limited (2000). S h a d e d a reas indicate m a s s i v e sul f ide with true th ickness greater than 6 meters. 94 Figure 23. Pho tog raphs of alteration sty les: (a) rhyolite vo lcan ic las t ic rock with pyrite (PY) and sphaler i te ( S P ) str inger ve ins and strong s i l ica alterat ion; (b) chlorite ( C H L ) and anker i te ( A N K ) al tered rhyolite vo lcan ic las t ic rock; (c) strongly ser ic i te al tered rhyolite vo lcan ic las t ic rock with quartz and fe ldspar crysta ls . S c a l e bars are in cent imeters . Figure 24. P lan m a p of the depos i t a rea with contours of true th ickness illustrating the distr ibution of: (a) ca rbonate alteration - contoured a rea conta ins calc i te or anker i te in the footwall to the m a s s i v e sul f ide lenses , contour interval = 1 meter; (b) chlori te alteration - contoured a rea has greater than 3 meters , contour interval = 3 meters ; (c) footwall ser ic i te alteration - contoured a rea has greater than 5 meters , contour interval = 5 meters ; (d) hanging wal l ser ic i te alteration - contoured a rea has greater than 1 meter, contour interval = 1 meter. S h a d e d a reas (Wolver ine and Lynx zones ) indicate m a s s i v e sul f ide with true th i ckness greater than 6 meters . Figure 25. P lo ts of alteration mineral chemist ry with s a m p l e s grouped accord ing to intensity of alterat ion: (a) muscov i te is c lass i f ied as phengi te (Deer et al . , 1966) and has increas ing iron and m a g n e s i u m with proximity to m a s s i v e sul f ide; (b) muscov i te conta ins e levated bar ium proximal to m a s s i v e sul f ide; (c) two distinct types of chlori te are c lass i f ied a s ripidolite (Type I) and diabanti te (Type II; Hey, 1954); (d) carbonate ternary plot (Deer et a l . , 1966). Figure 26. Pho tog raphs of arsenopyr i te and chlori te gra ins ana lyzed for thermometry: (a) abundant f ine-gra ined subhedra l arsenopyr i te ( A P Y ) in pyrite (PY) and sphaler i te ( S P ) rich m a s s i v e layered sul f ide; (b) coa rse -g ra ined euhedra l arsenopyr i te ( A P Y ) crystal in chalcopyr i te ( C C P ) and pyrrhotite (PO) rich m a s s i v e rep lacement sul f ide; (c) layers of f ine-grained type I chlori te ( C H L ) in st rong chlori te and carbonate al tered footwall vo lcan ic las t ic rhyolite; (d) type I chlorite ( C H L ) in thin sect ion (plain po lar ized light) with anker i te ( A N K ) ; (e) c lots of Type II chlorite ( C H L ) in strongly al tered footwall vo lcan ic las t ic rhyolite; and (f) type II chlori te ( C H L ) in thin sect ion with muscov i te , anker i te and sphaler i te. 95 Figure 27. H i s tog rams summar i z ing tempera tures der ived from arsenopyr i te (A) and chlori te (B) geothermometry . Pet rograph ic descr ip t ions of s a m p l e s used for geothermomet ry a re g iven a s an Append ix . Figure 28. (A) A r e a of c lear quartz in s a m p l e G B - 0 1 - 1 7 5 containing abundant pr imary fluid inc lus ions is su r rounded by chalcopyr i te (black minera l on left hand s ide of photo) and recrysta l l ized quartz (right hand s ide of photo); (B) c luster of two-phase a q u e o u s inc lus ions in quartz. Figure 29. H i s tog rams that s u m m a r i z e data f rom pr imary fluid inc lus ions in quartz-pyr i te-chalcopyr i te str inger ve ins . (A) Tempera tu res of first melt (approximat ing the eutect ic tempera tures ; °C). Eutect ic tempera tures s h o w n are: (1) H 2 0 - N a C I - F e C I 2 = -37.0 °C; (2) H 2 0 - N a C I - M g C I 2 = -33.6 °C; and (3) H 2 0 -NaCI -KCI = -23 .5 °C (Shepherd et a l . , 1985). (B) salinity (equiv. wt.% NaCI) ca lcu la ted us ing the equat ion of state of B o d n a r and Vityk (1994); (C) homogen iza t ion temperatures (approx imat ions of t rapping temperatures ; °C). Figure 30. Pho tom ic rog raphs of laser ablat ion craters on po l ished s labs with a c c o m p a n y i n g sul fur isotope va lues (%o): (A) very f ine-gra ined wispy pr imary pyrite (PY) with lesser euhedra l pyrite set in a matrix of sphaler i te ( S P ) f rom near hanging wall contact with argillite (sample G B - 0 0 - 0 3 1 ) ; (B) layered very f ine-gra ined euhedra l pyrite (PY) and med ium-gra ined euhedra l pyrite with l esse r sphaler i te (samp le G B - 0 0 -045); (C) str inger vein contain ing f ine- to coarse -g ra ined anhedra l to euhedra l pyrite (PY) , minor sphaler i te and quartz (samp le G B - 0 1 - 1 5 2 ) ; (D) chalcopyr i te ( C C P ) and sphaler i te ( S P ) near b a s e of sul f ide lens is rep laced by coa rse -g ra ined pyrite (PY) of metamorph ic origin (sample G B - 0 1 - 1 4 1 ) . Figure 31. H is togram of sulfur isotope data for Wo lve r i ne depos i t mineral izat ion and host rocks . Note the wide range and b imoda l distribution of 5 3 4 S va lues and that the heav ier va lues o c c u r in the lower port ions of the m a s s i v e sul f ide l enses and within the str inger and rep lacement z o n e s . T h e a v e r a g e 8 3 4 S va lue for seawa te r sul fate at the t ime the Wo lve r i ne depos i t fo rmed is ~24%o (C laypoo l et a l . , 1980). 96 F i g u r e 32. M o d e l for the format ion of the Wo lve r i ne deposi t : (A) s c h e m a t i c d iag ram of the interpreted tectonic sett ing of the Wo lve r i ne back -a rc bas in (modif ied f rom Ne lson et a l . , 2002) ; (B) s c h e m a t i c d iag ram of the loca l topograph ic low whe re su l f ides fo rmed f rom hydrothermal f luids that (1) ven ted o n to the seaf loor f rom mult iple mounds , and (2) rep laced pe rmeab le vo lcan ic las t ic host rocks in the s u b -seaf loor synch ronous with sedimentat ion of b lack sha le ; (C) schema t i c d iag ram il lustrating the later (0.5 M a to 13 Ma) deposi t ion of iron format ions fol lowing infill of the topograph ic low and burial of the m a s s i v e su l f ides by sed imentary and vo lcan ic rocks of Unit 2. F i g u r e 33. S c h e m a t i c c ross -sec t ion through the Wo lve r ine and Lynx z o n e s of the Wo l ve r i ne deposi t : (A) lower- temperature ( -200 -300 °C) hydrothermal d i scha rge in a reduced topograph ic dep ress ion fo rmed pyr i te-sphaler i te-galena-tetrahedr i te sulf ide m o u n d s on the seaf loor and pyr i te-sphaler i te s t ra tabound rep lacement a n d d iscordan t str inger sul f ide mineral izat ion in the sub-seaf loor . Su l f ide depos i t ion w a s c o n t e m p o r a n e o u s with sed imentat ion of hanging wall graphit ic argillite, wh ich conta ins abundant pyrite of hydrothermal origin; (B) later s tage copper- r ich h igh- temperature (265 to 353 °C) hydrothermal f luids precipi tated chalcopyr i te , wh ich rep laced sphaler i te and pyrite in the sub-sea f loo r at the b a s e of the su lph ide m o u n d s and within s t ratabound rep lacement and str inger z o n e s ; (C) precipitat ion of low temperature ca lc i te -predominant exhal i te (<200 °C) occur red con tempo raneous with cont inued vo l can i sm and sed imenta t ion . Precipi tat ion of magnet i te -predominant exhal i tes f rom low-temperature seaf loor hydrothermal p lumes under more oxidiz ing bas in condi t ions occur red at least 390 thousand years later; (D) s u b s e q u e n t burial, deformat ion and me tamorph i sm of this s e q u e n c e resul ted in the present geometry a n d t r a n s p o s e d former ly d iscordant features to the p lane of the S t fol iation. S t a c k e d sul f ide l e n s e s in the Lynx z o n e are interpreted to be a result of structural repetition due to folding and/or structural d i smembermen t . 97 Fig . 14 (Bradshaw et al.) k m 98 99 Fig . 16 (Bradshaw et al.) 100 101 102 103 Fig. 20 (Bradshaw et al.) CD o 5 f K i d d G r e e k B r u n s w i i c k 1 2 - B a t h u r s t D i s t r i c t ( s t o c k w o r k m i n e r a l i z a t i o n ) 4- + 1 0 i 7 I 5 : P r e s s u r e ( k i l o b a r s ) ; ^ ; L _ L J L 1 2 . 5 P y - s p - r i c h m a s s i v e su l f i de Ccp ' - r i ch m a s s i v e su l f i de 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 M o l e % F e S i n s p h a l e r i t e 104 Fig. 21 (Bradshaw et al.) A Legend • • — i 2 metre ' contour lines 2 1 diamond drill hole 50 100 metres B Legend Stringer ve ins Rep lacement z o n e s Vs//A > l m 21 diamond drill hole 0 50^^00 metres \/ / / / / / / / / / O \ ////////' / ?5v 89/89A / V " " ' 'O' ' >••-.. \PA/ / / //V? / / / ,• / A A? CA \ / /////////////*& _ / /////// / / y •y£&. ° ////// ^ 3 84 116 / / T V / / / / / ///////// \/ ' £47  7 V / / / / \ o 60 O 69 9 0 ° w 65\ O / 118 / '' '66 \ 56 O O 6i 52 104 O LYNX •'/ / / / / 77>-?-v^ . ..--V / /_/ ////////// /'?"/' / / Aid/ / / / / / / / / / / 0 / / / • / / / / / / / _ y / / / , £U / / ,•- / A / / / / 7 / / / / / / / / / / / / / / / / >.,, ' / / / & / / , ^'ZONE V / <3 7 s&sssssss s y ' 0 - / >•-.. f ^ / ty / / £4> X / / / / • / / / / / / / . / / / / •-  / / / / / / / / / / / ' £>/ / / / />•* / / / / / / . / / / • / / / / / / / / •' /O / / / / / / /..£./. / / / / /36/ / / / / / / /*.*., / / / / /.••"' / / / / / / / / / / / / ?X / / / //' 39 "N/ / / / / / / / / / / / / / X . / / / / ' . \ / / / / / / / / / / / / / / /A. O y / / / / / / / / / / / / / / >. O 11 105 106 107 Fig . 24 (Bradshaw et al.) Fig . 25 (Bradshaw et al.) To Celadonite 20 • Fe + Mg B 0.40 - i IS 00 0.20 0.00 TO • 1.20 1.40 1.60 1.80 K 2.00 C a C O 1.0 0.8 T + c 5 + 0.6 0.4 0 2 0.0 • _ -m . . - n *" • ' " ' '03 Bruns-Pseudo- 1 = vigite Type II chlorite thuringite • u 1 Q . . - • aL L - - " O " <€ Type 1 chlorite : ' % Corundo- • philite ! Pycnochloti • Diabantite ! Sheri-) danite , 1 . — i Clino-chlore Pennine | Dolomite 4.0 4.5 5.0 5.5 S i 6.0 6.5 7.0 M g C 0 3 F e C O , + M n C O , • MASSIVE OR REPLACEMENT SULFIDE • MODERATE TO STRONG SERICITE ALTERATION A CHLORITE +/- CARBONATE ALTERATION • NO ALTERATION TO WEAK SERICITE ALTERATION 109 Fig. 26 (Bradshaw et al.) 110 Fig. 27 (Bradshaw et al.) CD 4 co ro c < 3 O CD •P 2 1 0 Temperature (°C) 27 200 N=14 mean=29.4 stdev=0.5 n — r 300 400 Samples • GB-00-027 • GB-00-030 • GB-00-099 M GB-00-029 • GB-00-060 28 29 30 31 Atomic % A s in arsenopyrite B CO 0 CO rc c < CD E =5 1 r-Type I N=5 mean=176 std.dev=23 0 100 J_L Samples H G B - 0 0 - 1 3 7 • GB-00-039 • GB-00-004 • GB-00-109 Type 2 N=6 mean=282 std.dev=24 • ' i i i i i i i i i i 150 200 250 300 Temperature (°C) 350 111 Fig . 28 (Bradshaw et al.) 112 I I I I I I I I I I I N=14 min= -45.0 —\ max= -24.5 median= -33.0 ' i i i i i i i i i i Fig. 29 (Bradshaw et al.) -60 -50 -40 -30 -20 -10 Temperatures of First Melt (°C) 8 » 6 >> 5 ro c < 4 o (D o E ^ 2 B i i i i i i i i i i i i i i i i i N=16 mean=5.9 median=6.5 max=8.5 min=2.1 std.dev=1.9 0 1 2 3 4 5 6 7 8 9 10 Salinity (wt% NaCI equiv.) 240 260 280 300 320 340 360 380 Homogenization Temperature (°C) 113 Fig. 30 (Bradshaw et al.) 114 Fig. 31 (Bradshaw et al.) Hanging wall host rocks Footwall host rocks Ccp-rich massive sulfide, replacement sulfide and stringer sulfide Py- and sp-rich massive sulfide Seawater = 24% i i ' I i i r i | 2 0 2 5 3 0 115 Fig. 32 (Bradshaw eta l . ) 116 Fig . 33 (Bradshaw et al.) A -100 me te r s L Y N X Z O N E L o w - T e m p e r a t u r e M i n e r a l i z a t i o n W L o w - t e m p e r a t u r e ven t ing G r a p h i t i c argi l l i te :4: ••Massiye^sulfide ..• . D e f o c u s e d f lu d r o w \ P e r m e a bl e v o i c a n i c l a s t ic subs t ra te ::GTaph]tfe^ Py and sp rop acc-meni-m;hera!lzat;on •.' • ' Inferred c rov / th : fau l ts c M a g n e t i t e p r e d o m i n a n t exha l i te D e p o s i t i o n of Iron F o r m a t i o n Cacite predominant.exia te D After M^tarnnrnhi^rri anri Dpformation / A l l C I I V I C l C l l l ! U I \J\ M o l 1 1 C l l l \ J L / C l v l 1 1 I w U U I 1 z-z-z-_ - _ - _ - „ - _ - . _ - _ - _ ~ ~ - - - - ~ _ ~ ~ - - _ - ~ - - - _ - - - ~ - ~ ~ _ ~ _ - _ y v Vv Vvv v'v'vVv'v St r inger y e m s t r a n s p o s e d to S 117 CO o o o o o in ••- o o o o o CD T O Tt h - O O O O O CO o o O) CO CD O T- h-Oi O O CD Tt CO W O O OO O CD CO CD lO ^ tri T °1 ^ w i - d in r - Tt CD T— C N 00 O CO CM T - T Oi O T Ol CO n O) O) T - O Tt C O O CO Q co o o o o d T}- CN O O O O O o o o o o o O O O CO o o CM co L O T co m Q o o o o o v d d d d d O fO CO o t s CD ^ CJ) CO O CO r - CM 00 C 4 r - CO CO O CO TT N O N CD ^ Tt CO O T-T - d ^ N (NI o '— i n CM ™ < ° ^ CM CM i n T - T -OCMCOCN^ COincOO c o v o o r - o o o O r- cd • CO C O t o O l o o o o o o o o CD V O O O O O O) f m m i-^ p CM i n CM CM d d CM d O CM CO CD CM CO m i - O rt CD o ^ * O O CO o d d o o m T - CM co co CM o r» Tt o cd d d ^ d C O o o o o o o O O O O i - o o ; CO CO CO CD O O CM T -T - O CM O O CO V r-- ^ r-- co CD 00 O CD CO CM O CO CO O OO CM o i n co co O) CO CM CM cd d CO CO T - CD r - o f o i o Tt i n V T - C) i n co cri CM O CO S CN i n C M co co co co i n T - o co CD o o co O O CO d d -r^ r- •<- o o o o o CD CM Tt CO -r - i -co co d i*~ T— iri Tt O T - CD O CD Tt o ^ in ^ 9 N ^ CM i - o m o Tt w o O O O O 9, J; = _« C Dl It (U .o w < s s u z O" I- 0) 3 c .Q -3 M « O N 0. £ i n o o o h - c o o c o o c M O c o c o i - < V T- O CO OCOCOinnlOOUlt-, v m m co Tt co V o C O O C O O h - C O O O O C M r - T t C M C O O C D i - - r ~ - . T - C 0 C 0 T t O r - ; L n c 0 C s l _J o o c o o m T t o c M O T t O T t i o o o V Tt Tt C O T - m ° Tt -j! g CM CM T— CM OOr^OCNCDOCMOTtOiCOTtOO Tt 8 T - O CN ° T - _ ; ° i n o c o o T t c o o o o c M o m - — i v r - i - S T - m n m c D ^ c o T - t v r-- i n co t o >- T - " n _,: T - T - CO " COCDCOOCOCOOOOCMOTtCOr-O r^ cocoinTtr--cM»-cDr-;ococMT---c o c o CD i n T - co ^  T - ^  g c j i o o T - c D O O O O C M o m c o c o r -mcocoTtr^ cMmcM^ cOTti-cM' T - C O r - CD ^- cp o ^ _: r^ -cMOOCMCDOOOCMcoT-mmo M - O C O C O C D O N N N r i C O S m t * T - CM CD T— Tt CO CM CD \? CM (vi Z-m N O S C M C D O C M O N O l C D m i D C D V OCOT-T-CDT-CMOfSOCOmT--i T - O C M O h - T - O C M ^ ^ C O O T t O O C M O O O C M C O m c M h - O T-T-OLOT-T-mT-m-^cMTtcMCM-^ V O CM C O O T - T t u • Z~ CDOOCOTtCDOOOoOO'-CMOCD t-CONCNT-CNOlCNCM^ COCDCMCMpJ m Tt co oo T— co co ; ™ Ttcoocoh-aiOOOCMOinr-cnin T - T - CM Tt CM O TT CO pj U ) T - O C s i m O T - h - C O O C M C O c M T t c o m h - h - o i ^ - i c o c o T - i CM T - h - ° -r- -m T - O O C D C O O O O T t C D r - C D v - C M Tt CM CM O l «- ° N N' V CD r - -r - CO ^ V T t c M i n c D C M c o o o o c M c o c D i — m c o T - C 0 T t 0 ) C D C D C 0 C 0 T t ( ~ 0 > h - O T -T - CO Tt CO (D T - T - ° ro ^ ^ CD l O O O n O l i - O O O N t ' - l D N N • v T— r-~ co c M i o O ) S n a i c o - < t ; V CO CD T - C M T - T - ^ r * UJ o ; II) 01 O O) TJ C D 01 H : Ol - •-118 co o 0 M H I D O U C I co cd T J T ~ J 3 O ra co CO i n ( O T J O o .o o d CO CN TJ TJ £Z CO -Q -Q d CO CN TJ TJ c Tl- £1 .o d W T 3 O) C O JQ O •<* cd Tf t- T) T -* i O) Tr co o Ti-en Tt-CJ) CD CO <0 CD TJ CN n! 73 C CM J2 r— C £ T J 111 C O D O J 3 C T - J 2 Tf CO CO O C O T T CN d TJ TJ ro ro T J O) T J T J ro T J T - T J C J 2 CN - O d O O Tf TJ L O Tf CO . Q CO C O d od d co TJ CD n CD CO CN d C L CO co 00 CO O TJ T— o CO n 00 o CN CO CO o CL co CO * " CO o CO TJ LO CD CL CN oS C O CO ro CO TJ L O C CD . O CN d d L O T J co CO -Q CN LO d CO CD TJ TJ c n n £ 2 I s ro ~ C O c 0 E 0 c L U C O 5 CD O UL O 3 C tf) O N < CO "O X I JQ . _ < o co o_ m C N C L C O C O I-s o ^ -00 O i -c o d ro co TJ TJ d O T J T J r-~ xi CO O CJ) o o r~- L O o o o o co o o ri ci N d 6 rooTjrorocoTjroro C T j - ^ c c c o j a c c d L O TT CN T - T- r-^ O N O O cd• d C D d d CO ro o) T J e m u d Tf T T T - r-~ T J ^ CO u CO CO CN roCNTJTJCOI^TJCOO) _ C N J J J J C M N i l C O C O n d cd d O N f- O) Tf T- T-r- o C D o o C N d L O d d co Tf o oo o o r~- T - o o C N d co d d co f~ •>- o oo o Tf o o C N d CD d d ro o c CJ) od ro co T J c co n d T - TJ Tf i - .Q CO ro CD C N C D co C C O LO 00 CNi ^ Tf' ro- o C Tf d ro oo T J co C Tf .Q C D C N OO ra T J O T 3 T - ro C 0 T - h ^ T 5 C N " D T J O r ^ T J CJ) . O CO C COCOJOLOX1XICNLOJ3 od d d d d od a. 2 CU - «> E co 0) LU CO S LL C U 9 = = C C f l C D O ) T J j Q J 3 . _ O Z O N < C 0 < O C 0 Q . m E L O II £ E • ro TJ E ra cu h-co I 0) o i cu ro i -a c . . a s ! S 15 to cu g -.- 9. 2 £ 5 5, ! » . O LL i^ LL ~ 0 1 m £ "5 5, ro CO o ro H E ^  _ +- _c • -E ro c <D | S r w J . - c ~ c " 2 c W CD CU f-O — | _ — Q J LL UJ LL Q. II _J D p 1 8 ' O _ ' _aj ~ a) ±; ^ Q T-l TJ TJ c • -" " " S i ) CU CU '•in IS. in ^ ^ o ^ O CN CU — -C LL CJ i B p » ^ t ' ^ CL ^ 0)W . 0) i i | co S ™ I « >• 2 S 8 8-t 1_ _>- c L L . L U ro S ro to o £ ro o ro o •S fc I-™ L L L U Ll_ L U S . - J Q L • C L l l 5 C N | 0 5 0 r a . CO I  " S L." L." o. S| " c ro ? «) S " « ro c c u c : = = = c : < c - — c m •— .. cu ro h- 4> "5 c LU U) c: co in ro uJ I k D)Q- 0)TJ < I < C i • - h • - ro _j ^ | * S co • £ 'i M I ^ 3 •7 S 2 & • - P, ro CL I CD U CO < = i _ •  E I- I- a, Q. I a) ro L U i ** ro CD CL &> s 8 ' LL 8 ^ CU q 1-ro o c: > ro _ c >> o ro 1c ro <2 ro _i x c: <0 ro .is C- y. c 8 T J CD — ' ^ i i c CO — JS ro .2 ,E ro ,S a> g js" Tj-a£-oj5raj2co C E H B - I " ' T J ro I ro I 1 1 cu S T J S a ax: ro T5 c T J ^ S » J S J 3 O C 0 < C 0 N Q . O j i J 119 < o o I m O O CD TT O O m O o CD O i , o m O <3 h~ CO CO CD ^ CO O) c CN 1 T- CD CD CO CN C ra CD c o CO CM ra ra CD ra CO T-co oo CD d co O CN CD oo CD 1-^  CO CO ro ro c c: CM oo LO CO CO d 00 co co co 01 d CD ro ro c c t T J in in u ^ CO LO T- CD TJ O xi T-T- CD TJ CO r- LO X! i -00 CM CO CM CM •>- •>-O T- CD Tf' CNi O LO ro co r- TT c oo co TT ro ro CD ro co CN CO LO Tf O CM CO TJ TJ Tf CO TJ XI XI CO CD XI TJ TJ Tf 00 TJ XI XI Tf T- XI Q. O ro Tf co r~ c CO CD LO d d co CD o ro Tf r~ Tf c Tf o ro ro ro ro OJ ro ro ro ro CN c c c c co CD 00 Tf Tf O O) TJ i- S r-^  LO xi CD Tf CD O O LO Tf d CD TJ O XI d d v- ro TJ CD c xi TJ TJ r- ro TJ XI XI T- c XI TJ TJ CD CO TJ XI XI CN C XI CN CD CD CO CD LO C C C C Tf CD CD CD CD CD T- c c c c Q Q CO I-° Q O O Q . o g o „ o ro iT1 ro O O CQ LL. O 0) l i s I TO ~o cu o_ ' t >. a cn i » J 5 O LO LL 10 0 "? i 00 £ ' | o l i s - s i ro c: cu n 0 ro c LL f-S c?^ T- < LL ^ CD E V B cu n ^ ^ •= = < 6 -S ' i n O LU .2 ' c I I— cu < £ a 111 LL 1 ro ^ CL .. 0 -o f= , </) — 1 1 CD 0 I'O J! •• 8 Sro CM S $ - l o g , 0 - 1 0 1 CD Cj o cu 0 0 c o .a . i <D I- •_• ro £ 1 .E co 0 g g o <Z O CN « 11 1 'Q.43 g a o g 2 O 8 L L J <D ^ m ro <d ra "> £ » 0 C CO >,h->- u> UJ ro H CL ratcl 1 i _ 0 0 XI TJ . . II TJ Q) 0 U) — _ N CD O 8 Q Hs = 15 * . ra o y AI C > TJ S ~ g ° IB 0 C CJ) - ^ 0 0 0 CD 1 1 O CO X C U) o c = o o — ° v r-» a) <o t 1/ 0 <= !S m >• TJ o !3 w O 1 5 LL , _ ro 43 8 I CD c ^ IScIco 120 Q CO ro CD CD O i o o I co CD < O CD O O O • CO CD o CO o I o o o m •D T3 m O o CM X ! ID XI r- co c\i iri CM d ai CM CM CO TT o CM T " 10 CO T3 TT CO CO o O XI CM CO ca CO iri CM O CD CM CM CO O CM T— CM CM -a O in CO O CO XI XI CO CD CO iri CM d CD CM CM CO • t f o CM , _ O CD "o _^ T3 o TT CD CO CD X! in XI oo CD CO CO CD CO CM CM CO TT CD CM CD TT •a CO T3 in CD 00 CD T— XI in XI CO CO CM iri CM d CD CM CM CO o CM CM CD f- CM T3 CD CO O CO LO O XI CD CO CD CO csi CM CM CD CD CM CM CO TT CO CM CM CO CO TD CO o CD O oo TT CD XI CM CO in CO CO d CD CM CM CO TT o CM r— O CD O CD in O r~-CM TT XI O CM CD CO T— CM CO O CD d CO CM CO Tf CD CO CO, CL (/) < CD CM O °l 91 CO a CM <n o < o o I CQ CD CO CD CO T3 o T3 TT m CO o o XI T— XI T— CO CD CO in CM d CD CM CM CO o CM T -CO CO CD CO •a o t-~ co CM co O in XI CD CO CO d CD CO CM CM CO CD CM N- Tf o •a CM CM CO CM o XI XI O O CO CO iri T— d d CM CM CO TT o CM CO o •a CD T3 in CO LO in XI CM XI CM CO T— CO iri T— d cd CM CM CO TT o CM CM CD T3 r- CM CO CO r-~ CD XI CD CM m CM •<t d d CD CM CM CO o CM T— CO T3 CM CO CD CO CO CO XI CO CD CO CO T— CO CM T - CO d CO CM CO -<fr CD CO 03 < —. O CD o XI o — ' CO LL o < CO 1— CO 1-O c/> vr i— a> ro io •£ O CD tf> •5 => O "O ° £ ™ ro | 1 ft & ° i aj in -8 II i r i -o CD E co E X ro CO 0> ro -°. 2 "> ^ o ro II O c o _ in CD c: o ro o 5 ~° ro c -S 2 2 co O XI . o •c I  £t a> o E C -j: d) „ <" C « 3 I  o CL ^ UJ CD < 2L roS ro II o c c 0 _ c —I o 1 T5 a a) \/ i CD 4-- 3 ro i2 XI CD O XI ° CD it 05 3 a n o -g O ro . 0) c 52 2 ro • " 5 ro o c . E C CD O CO 4= XI O . . £ > I CD ^ •c o 3 CM O II 1^ 3 CO ii JS " D O XI > -1 "O i CD S ui CD CL c , ro « CO o c —1 ro -ci E OT-— ' > . I CL a o ?. ro £ a. i— CL ^ O 1 c a 0) _ l ro < H <D LU o. 5 I ro I t <s> _i cu , >. a ro ^ c c ro N CO CO CO o o cn d d iri T - o h-d o co 0 ) 1 i / ) T 3 0 N C O t ) N T - m i - i a - r - T - m ^ c o ci ^  »- oi d d CO 1 — CO CO O O T -O r - O T : 0 ) C 0 f t J l f i I O) C O C O £ l f ) i - C J ) J 3 l > O CO O T - CO T3 T - ' TJ- TJ- T - m T - . a csi[ . co y~ d d d d I p CO CO O o o |cocor-moxj"oco [ O I C O C N T - C O - Q - Q T -d iri d ci d CSI CSI C M T -S D U 13 CO co n c , . O r- O CO "O T- cn CM csi co n . X- T - d CSI CSI C N * -T t ( O O O C O " O T 3 ' D CO CSI C M CSI T -o 2 O O O O ?g O ^S^aJccncsiroco T— CO CO CD O) T- d r-L O CO CO m co csi csi d iri S S I _ CD < U. r-E e u. 8 " ' X 3$ » » c ro E 2 £ TO - - <D s s a s 1° S JS K S o l I = « " s " E i± .. CD " ~ _ | 0> ' I 1 1 E 2 S » S M 1 9 S I S i f f ! - CSI I I a 1 1 5 5 . i * ^ CD~ CD" <U C ~ -O 3 P 'w 3 V r- . 9 . • § °- 1 if s >- ro u- _ ? * I O 0 r- cu r> N » ro n ! S o o co-™ c o ro 0) • ) S • 3 ^ <*> o a.ra oE ui. " 1^" |o 1 0 •C Q) r— a I CM" S ro O UJ ™ CL . B < CD o • Is CD g> W * O f CO I C TJ CD 1 1 O ® in O c C CT O r C £ • i i c O Q) — <D Q. X) | 3 ° | > CU o o "g Q . CO 2 c. a> s^  1 5 w 3 ' I- 9-2 . Q- o° I E E 55 c £ ° E o w » i CO T a b l e 6. M ic ro thermomet r i c D a t a from T y p e I (Pr imary) F lu id Inc lus ions in Q t z - P y - C c p St r inger V e i n s F r o m T h e W o l v e r i n e Depos i t . Inclusion T e P robab le T L M Sal in i ty ' T H Min. V a p o r P r e s s u r e2 Min . d e p t h 3 (°C) Ca t i ons CO (wt.% NaCI equ iv ) CO (bars) (meters) 175-1 -32 .6 N a , K -2.2 3.6 2 6 5 58 591 175-2 . -31 .8 N a , K -1 .9 3.1 2 8 5 81 827 175-3 -37 .3 N a , K, M g , F e -2 .9 4.7 282 77 784 175-4 -33.4 N a , K, M g -1.3 2.1 3 0 5 111 1132 175-5 175-6 -31 .6 N a , K 175-7 -37 .6 N a , K, M g , F e -4.4 7.0 3 0 5 101 1032 175-8 -37.6 N a , K, M g , F e 305 175-9 -31 N a , K -4.7 7.4 315 165 1685 175-10 -45 N a , K, M g , F e -4.1 6.5 300 9 6 9 7 8 175-11 -26.4 N a , K -5.5 8.5 2 7 3 6 0 611 175-12 -36 .5 N a , K, M g -4.1 6.5 314 118 1202 175 -13 -38 .6 N a , K, M g , F e -2.1 3.4 271 64 6 4 8 175-14 2 7 3 175 -15 277 175-16 2 8 5 175-17 2 9 0 175-18 2 7 3 175-19 -4 6.4 294 8 6 877 175-20 -4.7 7.4 339 165 1685 175-21 301 175-22 -29 .4 N a , K -4.2 6.7 175 -23 175-24 -3.8 6.1 3 5 3 194 1978 175 -25 337 175-26 2 8 9 175-27 308 175-28 312 175-29 326 175-30 324 175-31 336 175-32 321 175 -33 3 2 0 175-34 -4.9 7.7 2 9 5 85 8 6 6 175 -35 -24 .5 N a , K -4.7 7.4 287 81 827 176-01 2 9 9 n 14 16 16 32 15 15 min imum -45 -5 .5 2.1 265 5 8 591 m a x i m u m -24 .5 -1 .3 8.5 3 5 3 194 1978 med ian -33 -4.1 6.5 301 86 8 7 7 m e a n -3.7 5.9 302 103 1048 std. dev . 1.2 1.9 22 41 4 2 3 1 sal in i ty ca l cu la ted from T L M us ing the equat ion of state of B o d n a r a n d Vityk (1994); ^min imum vapo r p ressu re ca lcu la ted from T H a n d Sal in i ty by the equat ions of H a a s ( 1 9 7 1 ) ; 3 min imum depth ca lcu la ted f rom min imum vapo r p ressu re a s s u m i n g hydrostat ic condi t ions. 123 m TJ T3 t l D H L D U J J £1 n J J ' - - 3 3 3 3 to ui co to >- > > 0 . CL >• I o. a CL co co a T3 TJ TJ fl) CU .„ J-- = J= X5 D p J3 S 3 3 3 CO 3 C C C <U CU > > > CL >- 0_ a CL a co a co c c c c c t- CN T - CN CO CL C L > > C L CO CO C L C L CO T J T J T J "O H JJ IJ J 3 3 3 3 3 Ui V) Ul Ul C L C L CL Q . T J T J T J H J J £1 J J 3 3 3 3 3 3 3 (L) 0) 0) CN T - cO CN >- > a. >- Q-CL a CO CL CO i co (/) co to to to > > T J T J T J C C •£ -2 .£ Tf TJ* .1 .£ .1 2 S E E E F c — — — S S T J T J T J T - CM CO f CL a a CL -3 t O 3 l O 3 t f ) 3 £ 0 cn — (/) Q C O C T - CN CM CO CO > - a > - o . > Q - > - a . Q-coatocLcoacz) E E E E T J T J T J T J m a o a sz sz sz J= 3 C C 3 c cz c: cz c tz N CD N" °! ° c cb cd oo ** ° cd T - r - CM CO IN CL > - > - > > - CL co a CL a a. co ro co co co T J T J T J T J CD O CD OJ J= SZ SZ SZ j-j JD n xi 3 3 3 3 Ui V) Ui (0 QJ co OJ" OJ to w JO CO co nj co co o o 6 6 o o o o a. CL a CL tu oi ^3 -= co co J Z J Z J=J X3 T J T J 3 3 tf) CO K K *» U 0) CD 5 £ jg g .1 = £ S CO CO Oj" fl) 0" fl) O Q C C C C o O c c c c n cn co o i - - w t >->->- a CL >• >-C L CL C L CO CO CL C L > > > (0 JO JO o o c c c c CL C L C L 0_ T - CN CN CO a, a. > > 2 « s XJ n •*= CO tf) CO 3 3 CO cu OJ a) co co 0 | T J "O T J T J T J 11 xi n xi xi x> 3 3 3 3 3 1 — (O U) tf) 10 tf) tf) CO 8 8 8 8 8 T— r- CN CN CO > - C L > - Q_ CL C L CO C L CO CO 124 Chapter 4 - Conclus ions and implications for exploration Deta i led geo log ica l mapp ing , thin sect ion petrography, e lectron mic roprobe ana lys is , fluid inclusion microthermometry , and in-situ su lphur isotope ana lys is have been integrated to p roduce a genet ic mode l for the Wo lve r ine deposi t . Th is mode l has severa l important features that must be cons ide red whe re appl ied to explorat ion for s imi lar depos i ts transit ional be tween V H M S and S E D E X types. Deta i led re- logging of host rocks in drill co re and detai led mapp ing of e x p o s e d rocks on a regional s c a l e identif ied severa l sal ient geo log ica l features that are key constra ints on the genet ic mode l . T h e Wo lve r i ne deposi t , and other a reas of known mineral izat ion, are spatial ly and , in all l ikel ihood, temporal ly assoc ia ted with porphyrit ic rhyolite si l ls in the footwall . T h e s e si l ls occu r together with b a s e meta l mineral izat ion at the Wo lve r i ne deposi t and e l sewhere in the Wo lve r ine strat igraphy. The i r e m p l a c e m e n t may have been control led by syn-vo lcan ic faults that were a lso condui ts for hydrothermal f luids. T h e p r e s e n c e of mult iple aphyr ic rhyolite f lows in the hang ing wal l to the Wo lve r i ne depos i t (and their a b s e n c e outs ide the immed ia te depos i t area) sugges t that prox imal fe ls ic vo l can i sm c o m m e n c e d at, or near, the t ime the depos i t fo rmed and likely drove hydrothermal activity. T h e grain s i ze of the footwall vo lcan ic las t ic rock of Unit 1 c o a r s e n s with increas ing lateral proximity to the m a s s i v e su lph ide mineral izat ion. T h e resultant i nc rease in permeabi l i ty w a s probably an important factor in the locat ion of the deposi t . T h e locat ion and geochemis t ry of the carbonate-predominant exhal i tes in the hanging wal l a re cons is ten t with format ion f rom the s a m e f luids that precipi tated the m a s s i v e su lph ide mineral izat ion, albeit at lower tempera tures . The i r p resence , particularly whe re a n o m a l o u s a b u n d a n c e s of b a s e meta ls occur , may indicate proximity to m a s s i v e su lph ide mineral izat ion. Deta i led mapp ing of mineral izat ion and hydrothermal alteration on the s c a l e of the depos i t revea led severa l features that provide information on hydrothermal p r o c e s s e s that fo rmed the m a s s i v e su lph ide mineral izat ion. Polymeta l l ic su lph ide lenses d isplay the c l a s s i c Kuroko- type zonat ion (c f . E ldr idge et a l . , 1983) and overl ie poorly deve loped str inger vein z o n e s . Th is distr ibution is sugges t i ve of m a s s i v e su lph ide m o u n d s fo rmed on the seaf loor (e.g., Lydon, 1984). Sed imenta t ion of hanging wal l graphit ic argill ite is s h o w n to be con tempo raneous with the deposi t ion of m a s s i v e su lph ides . T h e relatively low permeabi l i ty of the argillite may have min imized heat loss from the vent a reas and promoted the lateral f low of hydrothermal f luids with resultant sub -sea f loo r rep lacement dur ing later s t a g e s of the 125 mineral iz ing event. T h e relatively high permeabi l i ty of the fe ls ic vo lcan ic las t ic subst ra te on wh ich the deposi t fo rmed c a u s e d dif fuse upward and lateral f low of hydrothermal f luids. Th is fluid f low path y ie lded mult iple str inger vein z o n e s and ex tens ive rep lacement-s ty le mineral izat ion in the footwall to the m a s s i v e su lph ide l enses . C o n f o r m a b l e prox imal chlori te alteration and more distal ser ic i te alterat ion are a l so st rong ev i dence that f luids f lowed laterally with dec reas ing temperature as d is tance f rom hydrothermal vent z o n e s i nc reased . E lec t ron mic roprobe ana lys is of hydrothermal alteration minera ls assoc ia ted with m a s s i v e su lph ide mineral izat ion identif ied severa l compos i t iona l features that are useful for identifying vent prox imal z o n e s and/or nearby mineral izat ion. Hydrothermal muscov i te (sericite) i n c reases in F e , M g and B a with inc reas ing proximity to mineral izat ion. Simi lar ly, the iron content of ripidolite (type I chlorite) i nc reases with proximity to mineral izat ion, w h e r e a s diabanti te (type II chlorite) is part of a dist inct ive alteration a s s e m b l a g e immediate ly assoc ia ted with m a s s i v e su lph ide minera l izat ion that a l so conta ins biotite, phlogopi te, Ba- r ich phengit ic muscov i te , and anker i te. T h e compos i t ion of ca rbona te minera ls a lso cor re la tes with the type of mineral izat ion. Sider i te o c c u r s within m a s s i v e layered su lph ide a n d s e m i -m a s s i v e rep lacement su lph ide, w h e r e a s anker i te is the most c o m m o n const i tuent of prox imal chlori te and carbonate-a l te red rocks . Final ly, calc i te is the dominant carbonate minera l in weak ly al tered to unal tered vo lcan ic and sed imentary host rocks . Es t ima tes of tempera tures and p ressu res of mineral izat ion, and the compos i t ion of hydrothermal f luids were obta ined from a combinat ion of minera l thermometry and fluid inclusion microthermometry . E lect ron mic roprobe ana lys is of arsenopyr i te f rom the upper portion of the m a s s i v e su lph ide l enses and chlori te f rom prox imal hydrothermal alteration y ie lded m e a n formation tempera tures of 264 ± 33 °C and 282 ± 7 °C respect ively. Mic ro thermometr ic ana lys is of pr imary fluid inc lus ions in hydrothermal quartz within quartz-chalcopyr i te-pyr i te str inger ve ins immediate ly be low polymetal l ic m a s s i v e su lph ide mineral izat ion s h o w e d that the hydrothermal f luids p o s s e s s e d low sal ini t ies (mean of 5.9 ± 1.9 wt.% N a C l equiv.) and high tempera tures (mean of 302 ± 22 °C). T h e s e str inger ve ins were es t imated to have fo rmed at a m in imum water depth of - 1 0 4 8 ± 423 metres, b a s e d on the ave rage fluid salinity and temperature, in conjunct ion with the boil ing cu rves of H a a s (1971). Su lph ide minera l textures, together with in-situ su lphur isotope data, strongly sugges t that at least s o m e of the su lphur compr is ing the Wo lve r i ne depos i t w a s der ived by bacter ia l reduct ion of seawa te r 126 sulphate in a bas in c l osed (or partly c losed) to su lphate. Th is sugges t ion is further suppor ted by geo log ica l ev idence (i.e. graphit ic sha les ) that su lph ide deposi t ion occur red in a sha l low topograph ic dep ress ion with anox ic bottom waters . T h e s e anox ic condi t ions likely contr ibuted to the preservat ion of the su lph ide mounds . M a n y features of the genet ic mode l p roposed for the Wo lve r i ne depos i t are s imi lar to those p roposed for typical Z n - P b - C u V H M S depos i ts (e.g. Lydon, 1984; 1988). Important s imi lar i t ies inc lude: (1) precipitat ion of su lph ide minera ls a s m o u n d s from relatively high temperature and low salinity hydrothermal f luids within topograph ic dep ress ions on the seaf loor ; (2) a strong spat ia l and tempora l assoc ia t ion with fe ls ic vo lcan ic rocks (although large rhyolite d o m e s are not recogn ized in the vicinity of the deposi t ) ; (3) zonat ion of su lph ide minera ls (and assoc ia ted metals) and hydrothermal alteration minera ls a round s i l ica-al tered str inger vein z o n e s , wh ich represent hydrothermal vents ; and (4) the dominant sou rce of su lphur in the m a s s i v e su lph ide depos i t f rom reduced seawa te r su lphate. S e v e r a l a s p e c t s of the genet ic mode l , however , a re more typical of S E D E X depos i ts . T h e s e simi lar i t ies inc lude: (1) vo luminous sub-sea f loor rep lacement-s ty le su lph ide mineral izat ion and abundant s t ra ta-bound hydrothermal alteration hos ted by pe rmeab le sed imentary (volcanic last ic) rocks ; (2) the likely format ion of m a s s i v e su lph ides in a c losed to partly c l osed anox ic sed imentary bas in ; and (3) the impor tance of bacter ia l reduct ion of seawate r su lphate a s a sou rce for su lphur in the m a s s i v e su lph ides . T h e reduced , locally metal l i ferous (Expatr iate R e s o u r c e s , unpubl. data) sed imentary rocks in this bas in were likely the sou rce of the meta ls in the m a s s i v e su lph ide deposi t (cf . , O h m o t o , 1996; Lydon , 2000) , and accoun t for the high metal g rades (particularly z inc and silver) in the Wo lve r i ne deposi t . T h e s e geo log ica l features p lace the Wo lve r i ne depos i t in a unique subgroup of V H M S depos i ts , te rmed vo lcan ic -sed iment hos ted m a s s i v e su lph ide ( V S H M S ) depos i ts by Good fe l l ow (2001), that are transit ional to S E D E X depos i ts . T h e s e transit ional depos i ts inc lude the giant depos i ts of the Iberian Pyrite Belt ( S a e z et a l . , 1999) and the Bathurst district (Goodfe l low, 2001) . T h e genet ic mode l deve loped for the Wo lve r ine depos i t in this study will benefit explorat ion in the F in layson L a k e district, by providing spec i f i c detai ls on the geo log ica l sett ing and local deposi t ional env i ronment n e c e s s a r y for the format ion and preservat ion of these unusua l polymetal l ic depos i ts . 127 R e f e r e n c e s Eldr idge, C . S . , Bar ton, P . B . Jr. , and Ohmoto , H., 1983, Minera l textures and their bear ing on format ion of the Ku roko o rebod ies : E C O N O M I C G E O L O G Y Monog raph 5, p. 2 4 1 - 2 8 1 . Goodfe l low, W . D . , 2 0 0 1 , G e n e s i s of m a s s i v e su lph ide depos i ts in the Bathurst Min ing C a m p , northern N e w Brunswick , C a n a d a : Ex tended Abs t rac ts V o l u m e , North At lant ic M ine ra ls S y m p o s i u m , St. J o h n ' s , N F , C a n a d a , p. 51-57. H a a s , J .L . , 1971, T h e effect of salinity on the m a x i m u m thermal gradient of a hydrothermal s ys tem at hydrostat ic p ressure : E C O N O M I C G E O L O G Y , v. 66, p. 940-946 . Lydon, J . W . , 1984, V o l c a n i c hosted m a s s i v e su lph ide deposi ts . Part 1: A descr ip t ive mode l : G e o s c i e n c e C a n a d a , v. 11, p. 195-202. Lydon, J . W . , 1988, V o l c a n i c hosted m a s s i v e su lph ide deposi ts . Part 2: genet ic mode ls : G e o s c i e n c e C a n a d a , v. 15, p. 43 -65 . Lydon, J . W . , 2000 , A synops i s of the current unders tanding of the geo log ica l env i ronment of the Sul l ivan deposi t : in Lydon , J . W . , Hoy, T., S lack , J . F . , and Knapp , M .E . , (eds.), T h e geo log ica l env i ronment of the Sul l ivan deposi t , Brit ish C o l u m b i a , Geo log i ca l Assoc ia t i on of C a n a d a , Minera l Depos i t s Div is ion, S p e c i a l Publ icat ion No. 1, p. 12-31. O h m o t o , H., 1996, Format ion of vo lcan ic hosted m a s s i v e su lph ide depos i ts : T h e Ku roko perspect ive : O r e G e o l o g y R e v i e w s , v. 10, p. 135-177. S a e z , R., P a s c u a l , E. , T o s c a n o , M. , and A lmodovar , G . R . , 1999, T h e Iberian type of vo lcano-sed imen ta ry m a s s i v e su lph ide depos i ts : Minera l ium Depos i ta , v. 34, p. 549-570. 128 Appendix A - Sample List 129 Sample Zone Drill Hole From (m) To(m) Lithology Description TS WR Fl SI RV GB-00-001 Wolverine WV-96-27 385.72 385.84 A R C B hw arg wl sp + ccp stgrs X GB-00-002 Wolverine WV-96-58 143.80 143.90 R H F C carb altd rhy wl sx strgrs X G GB-00-003 Wolverine WV-95-01 53.80 54.00 R H F S hw msv rhy wl arg ptngs X G GB-00-004 Wolverine WV-95-01 90.80 91.00 R H L T fw rhy, str chl altn X G GB-00-005 Wolverine WV-95-01 82.60 82.70 S S M S high Pb, Zn msv sx X G X GB-00-006 Wolverine WV-95-01 113.60 113.70 R H L T fw rhy, str ser altn G X GB-00-007 Wolverine WV-95-01 153.80 154.00 R P T F fw xtl rhy w wk ser altn. X G GB-00-008 Wolverine WV-95-01 179.40 179.60 A R T F fw carb arg, wk cal X G GB-00-009 Wolverine WV-95-04 27.50 27.70 R H F G hw grn rhy frag, chl prtgs, tr mt X G GB-00-010 Wolverine WV-95-04 77.00 77.20 R H A R interbedded rhy tuff + carb arg X GB-00-011 Wolverine WV-95-04 96.20 96.40 R H F S msv, aph hw rhyolite G GB-00-012 Wolverine WV-95-04 86.60 86.80 A R C B blk hw carb arg. w/ py stgrs X G GB-00-013 Wolverine WV-95-04 26.15 26.30 E X C P cal , mt, py exhalite, >60% cal GB-00-014 Wolverine WV-95-04 119.80 120.00 E X C A dk gy, grainy, cal-py exhalite G GB-00-015 Wolverine WV-95-04 153.75 153.95 S S M S coarse py sp msv sx w/ min qtz GB-00-016 Wolverine WV-95-04 167.80 168.00 R H L T fw rhy, mod-str chl altn G GB-00-017 Wolverine WV-95-04 183.70 183.90 R H L T str ser altn in fw rhy lapilli tuff G GB-00-018 Wolverine WV-95-04 215.70 215.90 R H L T unaltd fw rhy lapilli tuff X G GB-00-019 Fisher WV-95-06 43.30 43.50 R H F G grn chl rhy frag, py + tr ccp G GB-00-020 Fisher WV-95-06 193.20 193.30 A D T T grn mafic tuff w/ chl + cal G GB-00-021 Lynx WV-96-65 41.50 41.70 R H F S hw msv aph rhy G GB-00-022 Lynx WV-96-65 45.90 46.10 E X M T bndd mt + sil ica w/ minor chl GB-00-023 Lynx WV-96-65 52.50 52.70 E X M T mt cal exhalite, cal>Fe carb mt G GB-00-024 Lynx WV-96-65 95.90 96.10 A R M S hw blk arg w min tuff bands G GB-00-025 Lynx WV-96-65 112.30 112.50 R H T T fg fw rhy tuff w wk ser altn G GB-00-026 Lynx WV-96-65 103.88 104.00 S S M S vfg vuggy py>sp wl 5% cal X G GB-00-027 Lynx WV-96-65 104.65 104.80 S S M S as abv but more sp X G GB-00-028 Lynx WV-96-65 105.25 105.38 S S M S 80% sp, 20% py, cal gangue X G GB-00-029 Lynx WV-96-65 105.90 106.02 S S M S 70% sp, 20% py, cal gangue X G GB-00-030 Lynx WV-96-65 106.85 106.97 S S M S base of lens - py>sp>ccp X G GB-00-031 Lynx WV-97-81 31.20 31.37 S S M S top of lens, py>sp>qtz>arg X G X GB-00-032 Lynx WV-97-81 31.62 31.75 S S M S qtz gangue, mesh texture X G X GB-00-033 Lynx WV-97-81 33.40 33.60 R H F S fw sil rhy wl stgr sx G GB-00-034 Lynx WV-97-81 34.88 35.05 R H F S fw sil rhy w/ stgr sx (qtz+py+sp) G X GB-00-035 Lynx WV-97-81 35.85 35.90 R H F S fw sil rhy w/ coarse py+qtz vns X X GB-00-036 Lynx WV-97-81 37.70 37.80 R H F S msv fw rhy w/ qtz+py vns G GB-00-037 Lynx WV-97-81 42.90 43.00 R H T T fw fine rhy tuff, wk ser G GB-00-038 Lynx WV-97-81 59.25 59.35 A R T F fw carb arg, wk cal G GB-00-039 Lynx WV-97-81 63.30 63.50 R H L T fw str ser altd rhy lapilli tuff X G GB-00-040 Lynx WV-96-71 110.40 110.60 E X M T lower Fe fm-mt»q tz+ch l G GB-00-041 Lynx WV-96-71 115.90 116.00 E X C P cal>Fe carb>qtz, py>gn G GB-00-042 Lynx WV-96-71 179.88 180.00 A R S I hw blk sil arg/rhy G GB-00-043 Lynx WV-96-71 187.95 188.10 R H F S hw msv aph rhy G GB-00-044 Lynx WV-96-71 209.00 209.15 E X C P bndd cal exhalite w py+qtz G GB-00-045 Lynx WV-96-71 211.20 211.38 S S M S py+sp msv sx, cal gangue X G X GB-00-046 Lynx WV-96-71 211.38 211.60 S S M S py>sp msv sx w cal+chf.clots X G GB-00-047 Lynx WV-96-71 213.02 213.20 R H L T fw sx rpl-ccp>py w str chl altn X G GB-00-048 Lynx WV-96-71 213.40 213.54 R H L T fw rhy, Si>carb altn, blk chl G GB-00-049 Lynx WV-96-71 216.08 216.20 R H L T mod ser altn in fw rhy G GB-00-050 Lynx WV-96-71 218.35 218.50 R H F S fw msv rhy, min cal G GB-00-051 Lynx WV-96-71 243.25 243.40 F D P H fwfp porph, min ser+py GB-00-052 Lynx WV-96-71 251.75 251.90 R P A T dk gy (arg) qtz-eye rhy GB-00-053 Wolverine WV-96-39 249.70 249.90 R H F R hw grey rhy frag X GB-00-054 Wolverine WV-96-39 407.35 407.47 R H L T str chl altn in fw rhy G X GB-00-055 Wolverine WV-96-39 397.00 397.15 S S M S msv sx w/ p y > s p » c c p X G X GB-00-056 Wolverine WV-96-39 397.82 397.95 S S M S py>po>ccp w qtz+min chl X G GB-00-057 Wolverine WV-96-39 398.78 398.93 S S M S p y > s p » c c p w qtz X G GB-00-058 Wolverine WV-96-39 400.99 401.15 S S M S ccp+chl stwk w min py . X G X GB-00-059 Wolverine WV-97-111 298.14 298.43 S S M S very fine msv sx w py>sp X G GB-00-060 Lynx WV-00-117 110.41 110.61 S S M S p o » c c p , min qtz+chl X G GB-00-061 Wolverine WV-97-111 310.58 310.78 R H L T str ser altn in fw rhy tuff X G GB-00-062 Wolverine WV-97-111 280.80 280.95 R P Q L hw rhy w qtz-eyes - unaltd X G GB-00-063 Wolver ine WV-97-111 274.90 275.05 R P T F hw fp-xtl rhy - wk ser altn. X G GB-00-064 Hump WV-97-97 102.81 102.91 R P T F fw fp-xtl tuff w chl altn+ccp X G GB-00-065 Hump WV-97-97 102.28 102.40 R H L T repl py>sp w mod carb altn X G GB-00-066 Hump WV-97-97 105.75 105.90 R P T F qtz-fp xtl rhy w str chl altn G GB-00-067 Lynx WV-00-113 101.80 101.93 R H F C stgr py>sp in carb altd rhy X G GB-00-068 Hump WV-97-97 132.40 132.55 R P T F str ser+wk chl altn in fw rhy G GB-00-069 Hump WV-97-97 56.60 56.77 E X C A gy cal exhalite w/ bndd py GB-00-070 Hump WV-97-97 42.00 42.20 R H F S hw msv aph rhy w/ ser ptngs GB-00-071 Hump WV-97-97 116.15 116.35 R P T F fw rhy w str chl altn G GB-00-072 Hump WV-97-97 46.45 46.60 E X M T mt poor Fe fm w q t z » m t GB-00-073 Hump WV-96-43 167.80 168.05 R H F R gy aph rhy frag w ser mtx G 130 Sample Zone Drill Hole From (m) To(m) Lithology Description TS WR Fl SI RV GB-00-074 Hump WV-96-43 241.90 242.10 R H F S gy msv aph rhy G GB-00-075 Hump WV-96-43 338.30 338.40 A R C B hw carb arg G GB-00-076 Hump WV-96-43 347.40 347.56 S S M S msv sx - p y > s p » t t G GB-00-077 Hump WV-96-43 349.05 349.20 R H L T carb+chl altn, rpl sp>py G GB-00-078 Hump WV-96-43 357.90 358.10 R H L T fw rhy w str chl altn G GB-00-079 Hump WV-96-43 383.00 383.20 R H L T fw rhy w str ser altn G GB-00-080 Lynx WV-96-62 193.05 193.25 F D P H fw fp porph, wk ser G GB-00-081 Lynx WV-96-62 156.10 156.20 S S M S Iwr lens, ccp > sp X G X GB-00-082 Hump WV-97-94 155.00 155.30 R P T F fp xtl tuff - graded beds . • X GB-00-083 Lynx WV-96-60 257.20 257.35 S S M S msv sx bx-py frags, sx mtx X G GB-00-084 Lynx WV-96-61 181.60 181.78 S S M S sx bx w more mtx X G GB-00-085 Lynx WV-96-64 18.25 18.35 A D M S grn msv basalt G GB-00-086 Fisher WV-96-51 474.60 474.80 F D P H msv fp porph G GB-00-087 Puck PK-97-12 267.80 268.00 F D P H grey msv fp porph G GB-00-088 Puck PK-97-09 237.40 237.60 R H T T fw rhy-wk ser (unaltd?) G X GB-00-089 Puck PK-97-12 188.60 188.80 A D M S grn msv basalt G GB-00-090 Puck PK-97-11 111.00 111.10 R H F G grn aph rhy frag, chl ptngs G GB-00-091 Lynx WV-96-62 144.60 144.70 A R T F hw sil arg w qtz-py vns GB-00-092 Lynx WV-96-62 152.70 152.80 A R T F same as above GB-00-093 Lynx WV-96-62 162.20 162.30 A R T F fw arg w qtz-py bnds G GB-00-094 Lynx WV-96-62 126.00 126.10 S S M S sp-rich msv sx - s p » p y GB-00-095 Wolverine WV-95-04 158.20 158.25 S S M S msv sx - py>sp>tt X G GB-00-096 Lynx WW-00-01 458.99 459.14 F D P H fw fp porph G GB-00-097 Lynx WW-00-01 410.80 410.90 A R T F hw arg, folded qtz vns GB-00-098 Wolverine WV-96-39 395.50 395.60 S S M S msv sx - p y » s p G GB-00-099 Lynx WV-96-62 146.05 146.20 S S M S msv sx, py>sp>qtz, net txt X X GB-00-100 Lynx WV-96-62 148.00 148.15 S S M S msv sx - p y » s p GB-00-101 Lynx WV-96-62 154.75 154.82 S S M S msv sx - py>chl>sp>ccp G GB-00-102 Lynx WV-96-62 155.46 155.58 S S M S sp>ccp>po w qtz+chl GB-00-103 Lynx WW-00-01 423.47 423.59 R H F S hw msv aph rhy w cal GB-00-104 Lynx WW-00-01 426.42 426.53 Q T V N late qtz vn w chl+ccp GB-00-105 Lynx WW-00-01 426.54 426.66 S S M S msv sx - typ bndd py>sp GB-00-106 Lynx WW-00-01 428.42 428.54 S S M S fg py w/ patchy sp returned to core box GB-00-107 Lynx WW-00-01 429.46 429.60 S S M S msv sx - bndd py>sp GB-00-108 Lynx WW-00-01 430.84 430.90 Q T V N fw late qtz vn w ccp>py GB-00-109 Lynx WW-00-01 432.97 433.09 R H T T fw rhy, rpl py>sp>cal, chl altn X G GB-00-110 Wolverine WV-95-05 87.70 87.90 E X M T upr Fe fm, qtz>mt G GB-00-111 Wolverine WV-95-05 129.55 129.70 E X M T Iwr Fe fm, mt>py X GB-00-112 Wolverine WV-95-05 147.90 148.10 E X C A c a l » m t , min chl+py X G GB-00-113 Wolverine WV-95-05 155.40 155.60 R H L T hw rhy, wk ser (unaltd?) X G GB-00-114 Wolverine WV-95-05 224.00 224.20 A R T F fw arg w carb ptngs GB-00-115 Wolverine WV-95-05 179.80 179.96 S S M S p y > s p » t t w blebby qtz GB-00-116 Wolverine WV-95-05 180.94 181.04 S S M S msv sx - py » sp X GB-00-117 Wolverine WV-95-05 183.25 183.35 S S M S msv sx - p y > s p » c c p G GB-00-118 Wolverine WV-95-05 186.00 186.10 S S M S coarse p y » s p , chl clots GB-00-119 Wolver ine WV-95-05 187.80 188.00 R P T F fw xtl rhy, c h l » c a r b altn X G GB-00-120 Lynx WW-00-02 683.00 683.10 A R T F hw arg - vfg to aph GB-00-121 Lynx WW-00-02 665.97 666.10 R H T T hw rhy tuff w/ cal G GB-00-122 Sable WV-97-106 106.00 106.20 R H L T hw rhy w/ chl ptngs G GB-00-123 Sable WV-97-106 112.40 112.60 R H T T hw fg rhy w ser ptngs G GB-00-124 Sable WV-97-106 114.25 114.38 S S M S top of sx, py>sp, min arg G GB-00-125 Sable WV-97-106 114.76 114.87 S S M S base, py>sp>ccp, qtz+cal G GB-00-126 Sable WV-97-106 118.30 118.50 R P T F fw qtz-eye rhy, str chl altn G GB-00-127 Sab le WV-97-106 124.70 124.90 R H T T fw rhy w str ser altn G GB-00-128 Sab le WV-97-106 141.90 142.10 R P T F fw rhy w fp+qtz xtls -unaltd G GB-00-129 Sable WV-97-106 148.80 149.00 R P T F coarse fw rhy G GB-00-130 Wolverine WV-96-35 218.40 218.60 A D T T msv basalt X G GB-00-131 Wolverine WV-96-39 89.90 90.00 A R W K fg carb arg (unit 4). X G GB-00-132 Wolverine WV-96-39 463.20 463.30 A R T F fw arg w carb ptgs G GB-00-133 Wolverine WV-96-35 511.90 512.10 R H L T fw tuff w str chl altn G GB-00-134 Wolverine WV-96-35 506.10 506.25 S S M S msv sx - py+sp+tt X GB-00-135 Wolverine WV-96-35 507.00 507.15 S S M S msv sx - py»sp>po>ccp G GB-00-136 Wolverine WV-96-35 507.90 508.02 S S M S py>po>sp»ccp w chl clots GB-00-137 Wolverine WV-96-35 508.82 509.00 R H L T str chl+carb altn, rpl s p » p y X G X GB-01-138 Wolverine WV-96-25 380.25 380.30 A R S I fw stgrs, qtz vn w py>sp X GB-01-139 Wolverine WV-96-27 388.90 389.00 Q T V N fw stgrs, qtz vn w py>sp X GB-01-140 Wolverine WV-96-27 387.80 387.92 R H T T str qtz altn w ccp>sp>py vns X A X GB-01-141 Wolverine WV-96-40 393.20 393.25 S S M S msv sx - ccp-rich X X GB-01-142 Wolverine WV-96-43 344.40 345.00 A R G R hw carb arg w py stgrs GB-01-143 Lynx WV-97-94 147.30 147.35 Q T V N fw qtz vn w py GB-01-144 Lynx WV-97-94 133.60 139.30 A R G R hw carb arg w/ py GB-01-145 Lynx WV-97-92 152.30 156.00 R H F S hw msv rhy w/ py GB-01-146 Lynx WV-97-95 107.10 107.20 R H T T chl altn, qtz vns w py>ccp 131 Sample Zone Drill Hole From (m) To(m) Lithology Description TS WR Fl SI RV GB-01-147 Wolverine WV-96-25 376.50 376.60 ARCB fw arg w qtz vns X GB-01-148 Wolverine WV-96-25 379.25 379.38 RHTT fw rhy w qtz altn, py vns A GB-01-149 Wolverine WV-95-16 244.25 244.30 RHTT fw rpl py>sp, chl+carb altn X X GB-01-150 Lynx WV-97-102 355.70 355.80 ARTF fw arg w sp+py repl GB-01-151 Lynx WV-97-102 110.70 110.80 RHFS post deformation qtz vn X GB-01-152 Lynx WV-97-76 96.00 96.10 RHTT fw rhy, qtz-py vns, qtz altn X A X GB-01-153 Lynx WV-97-76 111.60 111.70 RPQL fw rhy, mod chl altn A GB-01-154 Lynx WV-97-76 114.30 114.40 RPQL fw rhy, mod chl altn A GB-01-155 Lynx WV-97-76 123.60 123.70 RPTF fw rhy, mod ser, wk chl altn A GB-01-156 Lynx WV-97-76 148.10 148.20 RPTF fw rhy, str ser A GB-01-157 Lynx WV-97-77 55.80 55.85 RHTT py>ccp>sp rpl, chl+carb altn A GB-01-158 Wolverine WV-96-27 387.60 387.75 RHTT fw rhy, str qtz altn A GB-01-159 Wolverine WV-96-27 393.50 393.60 RHTT fw rhy, str chl altn A GB-01-160 Wolverine WV-96-27 403.80 403.90 RHLT fw rhy, str ser altn A GB-01-161 Fisher WV-96-45 219.15 219.20 RHFR hw msv rhy w py X GB-01-162 Wolverine WV-96-32 468.30 468.35 ARCB fw py>ccp>sp repl. GB-01-163 Wolverine WV-95-23 139.80 139.90 RHLT hw rhy, wk-mod ser altn A GB-01-164 Wolverine WV-95-22 315.90 316.00 RHTT hw rhy mod-str ser altn A GB-01-165 Wolverine WV-95-10 160.60 160.80 RHTT hw rhy, mod ser altn A GB-01-166 Lynx WW-00-01 417.20 417.30 RHFS hw rhy w py GB-01-167 Lynx WV-97-112 406.90 407.00 RPTF hw rhy, wk chl altn A GB-01-168 Lynx WV-97-102 348.80 348.90 RPQL hw rhy, mod-str chl altn A GB-01-169 Lynx WV-96-54 201.80 201.90 RHLT hw rhy, wk chl altn A GB-01-170 Lynx WV-97-88 240.70 240.80 RHLT hw rhy, wk carb+ser altn A GB-01-171 Lynx WV-96-72 66.10 66.20 RHFS hw msv rhy w py GB-01-172 Lynx WV-96-72 82.10 82.30 ARCB hw arg w py GB-01-173 Lynx WV-96-64 328.00 328.10 RHTT hw rhy w wk Fe carb A GB-01-174 Lynx WV-96-60 262.60 262.65 RHTT fw rpl sx, py»ccp X X GB-01-175 Lynx WV-00-120 91.50 91.55 RHLT fw rhy, qtz+ccp stgr vns X GB-01-176 Lynx WV-00-116 115.00 115.10 RHTT rhy w qtz-py-ccp-asp-sp vns X GB-01-177 Lynx WV-96-56 323.20 323.30 ARSI hw siliceous arg w qtz+py vns X GB-01-178 Lynx WV-00-118 108.25 108.35 RHFS rhy w euhedral diagenetic py X X GB-01-179 Wolverine WV-95-13 174.40 174.50 RHFS rhy w euhedral diagenetic py GB-01-180 Wolverine WV-95-01 65.25 65.35 ARCB carb arg w diagenetic py X X GB-01-181 Wolverine WV-96-59 83.45 83.55 ARCB carb arg w diagenetic py GB-01-182 Wolverine WV-96-59 101.75 101.85 ARSI fw arg w qtz+py+sp vns X GB-01-183 Lake WV-96-46 306.30 306.50 RHTT fg rhy w ser ptgs - unaltd X A X GB-01-184 Lake WV-96-44 261.20 261.30 RPTF fw qtz-eye rhy - unaltd A GB-01-185 Lake WV-96-44 283.30 283.40 RPTF fw rhy w fp xtls - unaltd A Total: 62 125 11 15 3 Notes: GB-01-141 - denotes high sulphide sample (>5 vol.% sulphide minerals) TS = polished thin section made W R = bulk geochemical analysis done G = analyzed at the G S C and Actlabs (Au 1D enhanced) A = analyzed at Actlabs (WRA + Trace) A = sampled for alteration study Fl = sample for fluid inclusions SI = sample for sulphur isotopes RV = Rietveld x-ray analysis done at UBC Zones : Wolverine, Lynx and Hump zones are part of the Wolverine Deposit (Chapter 2; Fig. 9) Fisher zone is located 8 km to the northwest of the Wolverine deposit (Chapter 3; Fig. 3) Puck zone is a large claim block that adjoins the Sable zone and extends several kilometers to the southeast Sable zone is located 3 km to the southeast of the Wolverine deposit (Chapter 3; Fig. 3) Lake zone is located 5 km to the northwest of the Wolverine deposit, NE of Wolverine Lake Li thologies: A D M S - massive basalt ADTT - volcaniclastic basalt A R C B - carbonaceous argillite A R G R - graphitic argillite A R M S - massive argillite A R T F - tuffaceous argillite ARSI - siliceous argillite A R W K - argillite and greywacke E X C A - calcite exhalite E X C P - calcite-pyrite exhalite EXMT - magnetite exhalite FDPH - feldspar porphyry QTVN - quartz vein RHAR - mixed argillite and rhyolite R H F C - carbonate altered rhyolite R H F G - green fragmental rhyolite RHFR - fragmental rhyolite R H F S - massive rhyolite RHLT - rhyolite lapilli tuff RHTT - rhyolite tuff RPAT - argillaceous rhyolite crystal tuff R P Q L - quartz-eye rhyolite tuff RPTF - quartz and feldspar crystal tuff S S M S - massive sulphide 132 A p p e n d i x B - G e o c h e m i s t r y 133 A n a l y t i c a l P r o c e d u r e s 134 G S C laboratory analytical procedure 1) Rock samples are prepared for geochemical analysis by jaw crushing to 1.5 cm, sub-sampling and pulverizing in a Bico ceramic disc grinder followed by reduction to <100 mesh powder in a ceramic ball mill. Final product is a 20 g vial of representative powder suitable for acid dissolution or fusion. 2) Major elements are analyzed by fused disk wavelength dispersive X-ray Fluorescence (XRF). This method is not suitable for samples containing greater than 5% S, significant amounts of barite, or percent levels of copper or lead, and was therefore not used for the high sulphide samples. The following table summarizes the oxide abundances determined by this technique, the calibration ranges and detection limits: Analy te Cal ibrat ion Range (%) Detect ion Limit (%) Si02 0-100 0.50 Ti02 0-3 0.02 Al 20 3 0-60 0.40 Cr 20 3 0-4 0.02 135 Fe203total 0-90 0.10 MnO 0-1 0.01 MgO 0-50 0.10 CaO 0-35 0.10 Na20 0-10 0.50 K20 0-15 0.05 P2O5 0-1 0.02 Ba 0-0.3 0.002 Nb 0-0.04 0.003 Rb 0-0.06 0.002 Sr 0-0.2 0.002 Zr 0-0.2 0.002 3) Samples with high abundances of sulphide minerals or barite were analyzed by fusing the sample with a mixed lithium metaborate - lithium tetraborate flux. After dissolution of the fusion melt, the sample was analyzed by ICP emission spectrometry (ICPES). The oxides/elements and the detection limits for this analysis method are summarized in the following table: Analy te Detection Limit (%) Analyte Detection Limit (%) Si02 0.5 CaO 0.01 Ti02 0.02 Na20 0.03 Al 20 3 0.2 K20 0.05 136 C r 2 0 3 0.02 P2O5. 0.01 Fe203total 0.06 Ba 0.003 MnO 0.01 Loss on ignition 0.1 MgO 0.04 4) A variety of chemical methods are used for determining abundances of ferrous iron and volatiles. These are as follows: Ferrous Iron is determined using the Wilson Method (titrimetric). H20 (total), C0 2 (total) and S are determined using combustion followed by infra-red spectrometry, and C (total non-carbonate carbon) is calculated. Loss on ignition is determined by gravimetry at 900 °C. 5) Trace element determinations are based on the total dissolution of the sample using nitric, perchloric and hydrofluoric acids followed by a lithium metaborate fusion of any residual material. Analysis is then done using ICP emission spectrometry or ICP mass spectrometry. The elements (ELEM) analyzed for by each method and their detection limits (DL) in parts per million (ppm) are summarized in the following tables: ICP e m i s s i o n spect rometry : ELEM DL ELEM DL ELEM DL Ag 5 La 10 V 5 Ba 10 Ni 10 Y 5 Be 0.5 Mo 5 Yb 0.5 Co 5 Pb 10 Zn 5 137 Cr 10 Sc 0.5 Zr 10 Cu 10 Sr 5 ICP mass spectrometry (rare earth elements + Y) ELEM DL ELEM DL ELEM DL Ce 0.1 Ho 0.02 Sm 0.02 Dy 0.02 La 0.1 Tb 0.02 Er 0.02 Lu 0.02 Tm .0.02 Eu 0.02 Nd 0.1 Y 0.02 Gd 0.02 Pr 0.02 Yb 0.05 ICP mass spectrometry (other trace elements) ELEM DL ELEM DL ELEM DL Ag 0.1 In 0.05 Ta 0.2 Bi 0.5 Mo 0.2 Th 0.02 Cd 0.2 Nb 0.05 Tl 0.02 Cs 0.02 Pb 2 U 0.02 Ga 0.1 Rb 0.05 Zr 0.5 Hf 0.05 Sn 0.5 Some of these elements are the same as those analyzed using ICP emission spectrometry techniques. However, there are lower detection limits for most elements using mass spectrometry, so this technique was used in addition to emission spectrometry on samples for which it was required. 138 6) F luor ine, ch lor ine and su lphur in rocks are de te rmined us ing a pyrohydro lys is method fo l lowed by ion chromatography . Fo r this method , the upper limit of determinat ion is 1%. T h e detect ion limits are a s fo l lows: Element Detection Limit (ppm) F 50 C l 100 s 50 139 Quality Analysis,.. Innovative Technologies C o d e I D Instrumental Neutron Activation Analysis ( INAA) is an analytical technique, which is dependent on measuring gamma radiation induced in the sample by irradiation with neutrons. The primary source of neutrons for irradiation is usually a nuclear reactor. Each element which is activated emits a "fingerprint" of gamma radiation which can be measured and quantified. Multi-element analyses of practically any material from the smallest sample which can be weighed accurately to very large samples have been analyzed routinely by I N A A . Determining rock types, alteration patterns and levels of pathfinder elements are key for the geologist to assess exploration potential. Actlabs' "Au+34" (Code ID) is a cost effective multi-element approach to A u , P G E and base metal exploration. Code ID enhanced with enhanced detection limits is also available. A 30 g aliquot, i f available, is encapsulated in a polyethylene vial and irradiated with flux wires and an internal standard (1 for 11 samples) at a thermal neutron flux of 7 x 10 1 2 n cm"2 s"1. After a 7-day decay to allow Na-24 to decay the samples are counted on a high purity Ge detector with resolution of better than 1.7 K e V for the 1332 K e V Co-60 photopeak. Using the flux wires, the decay-corrected activities are compared to a calibration developed from multiple certified international reference materials. The standard present is only a check on accuracy and is not used for calibration purposes. From 10-30% of the samples are rechecked by re-measurement. For values exceeding the upper limits, assays are recommended. Further details are available on isotopes and gamma-ray energies used in Hoffman, E .L . , 1992. Instrumental Neutron Activation in Geoanalysis. Journal of Geochemical Exploration, volume 44, pp. 297-319. Code ID (Au+34) Elements and Detection Limits (ppm) Element Detection Upper Limit Limit Au 5 ppb 30,000 ppb Ag 5 100,000 As 2 Ba 100 Br 1 Ca 1% Ce 3 10,000 Co 5 5,000 Cr ' 10 100,000 Cs 2 Eu 0.2 Fe 0.02% Element Detection Limit Upper Limit Hf 1 Hg 1 Ir 5 ppb La 1 10,000 Lu 0.05 Mo 5 10,000 Na 0.05% 10% Nd 5 10,000 Ni 50 10,000 Rb 30 Sb 0.2 10,000 Sc 0.1 Element Detection Limit Upper Limit Se 5 Sr 0.01% Sm 0.1 10,000 Sn 0.05% 10% Ta 1 10,000 Th 0.5 10,000 Tb ' 0.5 U 0.5 10,000 W 4 10,000 Yb 0.2 Zn 50 100,000 Code ID enhanced (Au+34) Elements and Detection Limits (ppm) Element Detection Limit Upper Limit Au 2 ppb 30,000 ppb Ag 5 100,000 As 0.5 Ba 50 Br 0.5 Ca 1% Ce 3 10,000 Co 1 5,000 Cr 5 100,000 Cs 1 Eu 0.2 Fe 0.01% Element Detection Limit Upper Limit Hf 1 Hg 1 Ir 5 ppb La 0.5 10,000 Lu 0.05 Mo 1 10,000 Na 0.01% 10% Nd 5 10,000 Ni 20 10,000 Rb 15 Sb 0.1 10,000 ' Sc 0.1 Element Detection Limit Upper Limit Se 3 Sr 0.05% Sm 0.1 10,000 Sn 0.02% 10% Ta 0.5 10,000 Th 0.2 10,000 Tb 0.5 U 0.5 10,000 W 1 10,000 Yb 0.2 Zn 50 100,000 140 Innovative Technologies C o d e I G A 0.5 g sample is digested with aqua regia at 90°C. The Hg in the resulting solution is oxidized to the stable divalent form. Since the concentration of Hg is determined via the absorption of light at 253.7 nm by Hg vapour, Hg (II) is reduced to the volatile free atomic state using stannous chloride. Argon is bubbled through the mixture of sample and reductant solutions to liberate and to transport the H g atoms into an absorption cell. The cell is placed in the light path of an Atomic Absorption Spectrophotometer. The maximum amount absorbed (peak height) is directly proportional to the concentration of mercury atoms in the light path. Measurement can be performed manually or automatically using a flow injection technique (FIMS). Hg analysis is performed on a Perkin Elmer FIMS 100 cold vapour Hg analyzer. Code I G ( H g - C V Add-On) Detection Limit (ppb) Element Detection L im i t Upper L imi t Hg 5 100,000 Note: Assays are recommended i f value exceed the upper limit. 141 Quality Analysis., Innovative Technologies C o d e 4 L i t h o A combination of packages Code 4B (lithium metaborate/tetraborate fusion ICP whole rock) and Code 4B2 (trace element ICP). For accurate levels of base metals (Cu, Pb, Zn and Ni) option 4B1 (see below) is recommended. Option 4 B - I N A A (see below) is recommended for As , Bs, high W >100 ppm and Cr > 1,000 ppm. Code 5D is recommended for Sn >50 ppm. Mineralized samples should have the "Quant" option (see below) selected or request assays for values which exceed the range of option 4B1. Fusion ICP Oxide Detection Limit (%) Si0 2 0.01 A1 2 0 3 0.01 Fe 2 0 3 0.01 MgO 0.01 MnO 0.001 CaO 0.01 T i 0 2 0.001 Na 2 0 0.01 K , 0 0.01 P2O5 0.01 Loss on Ignition 0.01 Trace Elements and Detection Limits (ppm) Element Detection Limit Upper Limit Ag 0.5 100 As 5 2,000 Ba 3 Be 1 Bi 0.4 2,000 Co 1 1,000 Cr 20 10,000 Cs 0.5 1,000 Cu 10 10,000 Ga 1 500 Ge 1 500 Hf 0.2 1,000 In 0.2 200 Mo 2 100 Nb 1 1,000 Element Detection Limit Upper Limit Ni 20 10,000 Pb 5 10,000 Rb 2 1,000 Sb 0.5 200 Sc 1 Sn 1 1,000 Sr 2 10,000 Ta 0.1 500 Tl 0.1 1,000 V 5 10,000 W 1 5,000 Y 2 10,000 Zn 30 10,000 Zr 4 10,000 La 0.1 2,000 Element Detection Limit Upper Limit Ce . 0.1 3,000 Pr 0.05 1,000 Nd 0.1 2,000 Sm 0.1 1,000 Eu 0.05 1,000 Gd 0.1 1,000 Tb 0.1 1,000 Dy 0.1 1,000 Ho 0.1 1,000 Er 0.1 1,000 Tm 0.05 1,000 Yb • 0.1 1,000 Lu 0.04 1,000 U 0.1 1,000 Th • 0.1 2,000 C o d e 4 L i t h o - O p t i o n s 4LithoOuant A 1 g sample is digested with aqua regia and diluted to 250 ml volumetrically. Appropriate international reference materials for the metals of interest are digested at the same time. The samples and standards are analyzed on a Thermo Jarrell Ash E N V I R O II simultaneous and sequential ICP or a Perkin Elmer Optima 3000 ICP. 142 4B1 A 0.25 g sample is digested with four acids beginning with hydrofluoric, followed by a mixture of nitric and perchloric acids, heated using precise programmer controlled heating in several ramping and holding cycles which takes the samples to dryness. After dryness is attained, samples are brought back into solution using hydrochloric acid. With this.digestion certain phases may be only partially solubilized. These phases include zircon, monazite, sphene, gahnite, chromite, cassiterite, rutile and barite. A g greater than 100 ppm and Pb greater than 5,000 ppm should be assayed as high levels may not be solubilized. Only sulphide sulfur wi l l be solubilized. A n in-lab standard (traceable to certified reference materials) or certified reference materials are used for quality control. Samples are analyzed using a Perkin Elmer Optima 3000 ICP. Option 4B1 Elements and Detection Limits (ppm) i r : i I Element Detection Limit Upper Limit Cd 0.5 2,000 Cu 1 10,000 Ni 1 10,000 S 0.01% 20% Zn 1 100,000 Rb 1 1,000 Ag 0.3 100 . Pb 5 5,000 4 B - I N A A A n approximately 30 g aliquot i f available is encapsulated and weighed in a polyethylene vial and irradiated with flux wires and an internal standard (1 for 11 samples) at a thermal neutron flux of 7 x 10 1 2 n cm"2s"'. After a seven day decay to allow Na-24 to decay the samples are counted on a high purity Ge detector with a resolution of better than 1.7 K e V for the 1332 K e V Co-60. Using the flux wires the decay corrected activities are compared to a calibration developed from multiple certified international reference materials. The standard present is only a check on accuracy of the analysis and is not used for calibration purposes. From 10-30% of samples are rechecked by re-measurement. Further details are available on isotopes and gamma-ray energies used in Hoffman, E .L . , 1992. Instrumental Neutron Activation in Geoanalysis. Journal of Geochemical Exploration, volume 44, pp. 297-319. Option 4B - INAA Elements and Detection Limits (ppm) Element Detection Limit Upper Limit As 0.5 0.5 Au 2ppb 30,000 ppb Br 0.5 Cr 5 Ir 5ppb Sb 0.2 10,000 Sc 0.1 Se 3 Rb 1 1,000 143 Geochemical analyses of low sulphide samples 144 cn CD CD CD CO CD CD O X > y) or J ro L i -E ca CD CD CD CQ CD CQ CD 1 s ° tt J _ o E ro CQ _ 0 -e 1 8 s X or <=> -E o CD g - x g co a: > CD 1 CD 5 o 6 CQ CD o CQ CD CQ CD o CQ CD L I . -E ro H _ 9; * £.8 CO ^ L L - C X °-o co o cn CO CO o CO CO in o CM o O CO 0 0 CO o t- CO tr o CO O o CO c i CD CO ci d d d d d CM oi CO V cn O CO O r~ in CO cn CO o o m O o CO CO cn CO o CO CO CN CM cn CO r~ CM i r i c i iri c i CO d d CN d iri CO cn o o o ID tr o 0 0 CM o CM o o in CN CO CO O o CN o cn o tr o O) CO d ci tr CN d CO d CO d d tr CD V cn o r~ o CO 0 0 tr CO CD o CO o o cn cn CN o O o CD cn o t- o CM CO cn cn ci CM cri d 0 0 d d CM d *-' d tr CD CD cn O CN o r-- OO 0 0 o CO cn o cn o o tr CD o •tr •tr CM T— o o o CN o CO CO C\i ci c i iri d d CO d d d CM CO d CM CN CO V CO CO O O cn o o CM LO CO tr CM O CD o O tr cn CO CD CO o in CD o m m cn CM t- O co Ci CD CD d —^ d ^ d CO CO iri r~ V o o CD o CO cn cn CO tr CM o O o o CN CO CO o 0 0 CD o CM o cn tr cn ci Lfi CNi d d d d d d d T— o oo o o •SI- o CD tr cn cn tr CO o CM o o CO CN CO CD tr CO CM o CM t- CD CM ci CD CO d d d d d d r - cri 0 0 cn o CD o CD CD 0 0 CN cn cn o CM O o CO CO CN tr o •>r CM CM cn CM CO CD r- CM ci CD ^ d d ' d r-^  d r— d CM h-^  CD cn o O o CM tr CO CO CO O cn O o cn a> CN CO CD o CM CO o CO CO CD CD CD d CO d d d d tr d d d CN CO cn o 0 0 O cn 0 0 CM o tr O o CO CO t- o in o cn o CD * - CD CO CO C\i O CD co d CD d d CO d d d tr tr CD cn O O o O CM CO CO o o O o in CD CO CD CD CM in o CM o CO tr CO _^' CN O CN iri d d CM d d tr CO CO CN V cn O cn O tr CD cn T o CD o o o CM CO tr CD CO T— o o o o o CM tr ci CO d CN CO d d iri o CD 0 0 cn T - o r ^ t r c o o c N c o m c o t r i n t - c o t r h ~ ^ j ^ ; v Q C D C O c n c M T - C N i n i - c o c N o o o « i c i o d 9 r 6 d N S s V V V O V C D j U i -h - C O L n h - C M O O O C M v - C N i n o o m C N O O O O " « CO N OI v r n n o < -cn T- o o O c O C O O ^ O O l C O C N C O l f l C O a i O O O C N ' - C N i n N c O N O O O cn o o T-t - V O ^ ^ S t C N O O V tr CN CM V V i t r O CO CD O CM O O _f t - f f cn T- ^ v • m o co £2 C M C D 1 1^ - T- T- CO CO C O CM C N CO CN d d v oo ~ co t - C D C M O O O ; oo C M d ° . JG co i v m ^ 2 m • O I - ^ O T - C O B I O M N C M O ' c r i r - d ^ d d P d c N d ^ g - ^ • c o o c n c o t r o o t r c M c n c n c o i n c n T - o o i n r ^ c n h - L n o t r c N 2 " d J f f l N « J g i j i s v d ( 0 " « i K N s d d ° - i i i o 0 0 t - T- C M t ^ ^ C O V ^ C D C O O V O O O CN T- O ^ - O tr c o r ^ c D i n t - c D o c D o o i n c n t r t r c o o , - ; ^ : „ i C N O o o o c o - i - C M i n c n t r c M o o o S c N c N ^ d d d P d d d ^ S c N i i o N ^ s t D ^ o a i c o i n w c o o o c o t N ' - t N i o c N n c N i o o o v- T- v T- CD V V O V ^ lA ^ M O l O C O i N C N i f l O O i n O f f l n i f i r t ^ O O O c X l W N i n N c O c N O O O O If) CD ^ ^ - O co o T cn o m o O C N O C D O CO o ^ g \/ C N W t r c n o c o T - L n c o t r o o o c o c N c O L O O " " O d t r ' ^ d S ^ c r i c M v ^ c N d d 0 " ~ C N T- v tr r~ i co i C N o o o : d ^ <S C M v to J s c o o c n o o o o c N o i n c D t r o o o o o o o o o o i n o o o ^ ^ i n t - o o ^ ^ c o o t r i n ^ ^ ^ ^ o ^ ^ c n ^ o q o ^ rt\ r~ i , C N r - C M O CO S c n ^ C M 1 0 ~^ T- V-O >- CO O CM i n C D * - C N C n c O C N C M O O _ • " - i N d ^ S r r cu u _ t ^ ~o co CD , ro c o CD — W D O Q < o o °"° 9 Q. o co h- < li- en ro co _ O Z .. O K O 1 O IO J 0 _ o i - o CQ L L U « I > U O . ^ C C D O C D ' I - . Q I _ : U N C D < C O C O Q : C O > - N Z O o i " D „ c ^ c D i n r o r o S < u £ c o c O H O C O - i 145 i— X o GO W -8 O 1 CO ' 9 i ro . c o CD m cc "t L L "> I— -Q S? 8 u. •£ ro is CO x: o i y a . c o r - q T - i n c o ^ t o i n c o f N j i n w i o i f l ^ w r ^ N o o c o c N i ^ i o c o ^ ^ t b f o d c N o o i d ^ d T - d c N O v v v ^ o v ' ^ o o o o j t D c o T - O N n m i r j i n m ^ T - i o r o o O T - c M o i D c o N ^ f f i o i ^ N ^ c d ^ c o d r o d i n ^ v v / m « - > ™ . • -* O O O m N U > ( O C O m O ) t D ( N l O » - Q r - i ^ C \ | L O O i n C N ] O M D ^ ^ ' c d r o d s ^ s r t o d ^ d a i ^ v v v v r\i C M Q ^ ^ co O O O "3" CO ID ^ CO O CO O N V V V C O T -c o Q C D N C N O C N o r o a ) ( N f O C N i T - i n 0 3 O C 0 O O ^ O ^ O O t 3 T - ' o o P LO V O O CO (M N „ o o o o T f o c o o c o r o i o a i t ^ ' - i n o c o o T - r o T - c o ^ i - C N C O O C O O C O O V V N CO N OJ ( O O O L O W C O ^ C O i n c O f N L O N O J C O ' - L O C N L O i r J r o c N c N O C N i d c A i o T - d v - o r - d v w " m CM v-- CO CM N N OJ co in o c o V « o v -O t O O O O C D C O U O O C D I ^ O O C O O C O O C O O CO CD CO CD T- CD CO TJ- CM h- O T-« O iri ^ « O V o o o o C O C 7 ) ^ - L T ) L O C D L n O T f t D C O T - L n C M L f ) 0 ' r c o r N r c o d r i d c d ^ v v V ^ < CM O OJ O) o o ^ a n n r - ' - r o i n m ' t m m c o r - i n T j - T t o o j o j o c N c D d d N r - ' d ^ d r - ' c o o r o o i o ^ v v ^ r ^ O N S IC T~ CO T~ V T- - • O O O O N O i n C N N C D S C O S O C D B c d ^ d f f i T - c o T - ' T j d ^ d d o j ro o co CD Lf) O) d 00 h- O TT CD O r- CN O OJ t o c o t L D C M C O O t - O O O v 5 5 S S si 3 O O J O C N C N c r i o -"tf-h- h- CD l ~ -O CO O CO O CJ) CO CN -*T CD CO *— o csi o co o T-LOCNCMOCNCNCDCncN V V » N n ri m ^ y- o o s b .-t± -o w a) CO C O CD ~ co 3 o a < I E D "O J3 >* O ~ -Q JI a a a a a r- Q. ' C -Q D **- ro •> 3 0)_ h > - J I h g h < - ' — _ .o . _ JZ ro I h 0. IP h D S 146 m CD CN tr o E? CD 0- CD CO CD UJ ^ o tr o a) CD E cn co o CQ CD CQ CD ca CD CD CO o ca CD ca CD c - >> CO 1— >- CO a: J o co S CN "~ ca CD % 8 5 X ai ICQ UJ cn CD g CM f. O co 9 5 ro 5 . C O _ o i— ° £ 3 ca < 5 CD * o o o o od CN d d c i o LT> o d CN d d d CN d r> o CD o o o tr co tr o o d o t- d ^ r CN d o o o CM CM o CO CM CO o cn o o o CM CO OO tr CM o tr CM o CM o cn oi d iri CO d d d CO CO iri CM tr V o o CO o o CO CD in CO CO cn o r- o o i — CN CM CD o CD o T— CM 0 0 tr ro d tr tr d d d d d d d CM d CD CM V o o r - o in tr cn CO o CO O o CO co m m o in T— o cn o CO o tr d CM tr d iri CO d CM d tr d r»' d CD cn O o o CO CM o tr O o OI '— CN CO o o CO CD CO o CM CO d d d d d d d CM CD r~ V T— o o CM o tr tr 0 0 CO in o CD O o o tr CD o o CM o CO o tr m CO CO CN d od CM d T~ d d CM d d d ' d CO V o o CM o CO CO CO CO CO o o o o CO *— CM CO o in o CO o CD o CO a i d CD CD d d d d ^ d d iri tr CM V V O o cn O tr tr CM CO cn CD o tr o O CO O tr o CD o o cn o o CO tr LO d 0 0 d d d d d d d ^ a i CO V a> o o CO cn CO CO m o cn o o CO CD OO CO CO cn o o cn o in cn in d d a i tr d tr CO d T- d CO CM CM CM in O o m o o CM cn o in co CO o O O CN T— in CN O CO tr CM 0 0 CO 0 0 tr o CO CO d d d d CM d d CO T— CM CN CM o o o o CD tr in o CO m o tr o o cn CN CO o m CO CM o in tr CO CO CO d CO ' d d d d d d d d ^ od CO cn o cn o cn 0 0 tr o CO 0 0 o CN o o CO CD CN o cn 5 in cn o tr oo 0 0 CM CO od d : cb d co d CM d tr r-' »- cn c o o o o c M c n i n a i c o c o f X c o o ' t r t r v ^ - i n t - -w O) r - ^ T- o 5 O O O C M C M C n i O h - C O C M O O O « ) N d d d d ° r r d ° S N CN l O T- V O V CD £ i CN c n t r o c D t r t r o o c D o c M o c o c o L n t r t r o o r -^ o o ^ cn tr « i « ) ; o i t » d ° s i c J r i « i T7 ^ v - v ^ t - C D t r c N m c N t r c N o o d d P i - i r i d ° g v o v i n 2 c O T - o r o c o s c o o c o c o n o o j i O N c o o m cn o o » g ? d tr co i n co tr O C M O C M O O i n O O C M O O O riitintcidPrddlSs O C N l O N C O C O N C D r O l O r - C D C O C O < - C N C O ^ a i V 0 ' C N C M u l , ^ ^ v " t- m C N O O C N C N C O f ^ O C N L O c D N n d d P ^ ^ v <- $2 . o c o o o h - o o c o o r - - t r L o c n r ^ o o o c o c M C N m c O h - c M o o o ; ^ o l r ; CM ^  ^ ^ co ^  , - ; H O ^ t ^ c M i r i c N d d P i r i d d P S J c o • in CN v o v t - ^ t r v v v co • t r o r ^ h - T - c o * - t r r ^ m c N o m c o m o o o T - c o m m i n o c N o o * -j cn o „ c i co ' » " , ' i o ^ r i n J i i i T t c d ^ d r i 0 r i i N d « ? " c d v tr v ^ co o v t - v t -o r ^ o o c o c o i n c O ' ^ t r o c o c o m t - T - o o o m c o m L n i n c o c M o o o S O ^ C O C O j - C D O n O t - ^ t -O CD tr CD t - ™ 1 o o co in o o CO 9 ^ CN i= CD _ _ _ _ _ i n o c M o o o c o m t r O ( r ; C N * - V ' - C D C D - W C O r - ; cn t- 1 0 t- v v C O I I J L ° o i n o o t r t r o o t r o o r - o o o OT^^iriodcNtr'd'q:cocMdtPfii CN r— O t- CM c n t ^ o o a j C N T - C N L O C N O o o c o L n o o r ^ o o c o c M t r c M i n r ^ o c N O t r co T- t o r^ - i n . o ^ cn co cn o o o o o CM CD L O T - o o t - c n o c n o o c M o c o c D i n c o c o CO g ° ^  $2 1 0 ^ ^ ™ f~ co d d ^ g; O T - C O L O L O O O O C N O N t d d P ^ C N O ^ t- O T- V CM T - c D o c o t r c o i n c N c n o o ^ CO CN h- CN o o cn CD N L O O L O i n S C O l O ' co co co in , D CM T- co m 52 O C O C M l O i n o O C M O O O 0 0 0 9 0 0 0 ° ! ° r- v o v tr £j cn CN o . o C N i n i o c o t r o o c o c o c n c o c M O O O c O T - c D c D c n c o c N o o o « S ? » t N n N N " N ™ » v ° f f i c N ' > i - " o o 9 - c i r i 9 g _ Jf; ,7 » - ' N » - CM v l N , C N c n c o v o v c N ^ f c o E = W 3 O c CD a a < 6'9, Qoo 9, o 6 Q Q V j ^ c o i r o r a co t- < . . . . O o o ^ H O 10 J h ca u. o co > o o :ONCD<C0C0Ct:c0>-rsJZ ! O I D ^ c O flj cfl CO m 147 I CO >. - E O CO L -A LL ° CN £ CL 9 i CO CD 0 1 > CD 5 2 CN 9 O CD CD CD CD CD CD co CD o CD CD CD CD >< LU CJ) LL RO h- £ 01 ro < o I— >- ra I— >. ro H £ <-2 CN ! CD CD ca CD CD CD co '-LL - £ x °-' I CN ~ t-o o- a lea < CD o r ^ o m o O T - f ^ - c o o c o ^ t o m o o r - -W l D l D ^ l O U l l f l C v l N C O N ^ ' w d N d w d ^ d ^ d r d LOCNCNOIOCNCNCJ1CO V ^ CN LO d ( D ^ -CN V 0> c n a i T - o o c N c o c o c N T- V CO o w c o c i D C N N c o n o i n t D ^ T - i n m i n o T - c j c M T -C N N ^ C N d c N d c o d ^ d W d r - o V V V C N i - - - d co a ~ O O O C D L n o O C N I C N l O O C O c d d c c » i ^ d c b ^ - r ^ * - ' s r d o c n i o r ^ c o c n c o o m c o ' - ^ h - ^ d ^ d c N ' d co co o • ci oi CN CD CN If) O CO CN V V CN o CO V CO CO CN t - IO CD CO o d d v v -* i : O O) IN O t N O O O N » I O ( J ) C M N O ) n ( N ^ i - O T - i n ( N O O O ) ( N C , ) ' t l o d c N - ^ d c o d c o d - i ^ d c N d c o ^ v v v c N C N o N c\i LO CN V o CN o co io co v s c o LO d • » d o f f l i T - ^ c f l f f l T - L o o n N O L O ^ o ^ - c o ^ c N d c o d c o d v v c o g r q g ^ a j ^ T $2 CO T _ u i ^ ^ t d i t d ^ T O N ' t N i n c O N i - l f i l O M O f f l t N O m N v v T- oo d r - r - i r i t«- V CN CN O CO O CN O o c o o c o o r ^ i ^ o CO CO ^J" CO d CN d CN O O O C N O C D C D C O h - C J ) C O C T ) C O i - C O L N m c d c o ^ c o d r t d ^ d - r d ^ d C N o a > c D * - L n c D C D r ^ c o a > c o c D c o ^ • c o c o c N ' d c o d c N ' d ^ d > - d r d T - C O O O ) C N C N T - T -CN fri CN 9 l f ) < t ( D ( O O M « M D v t 9 d co ^ O V o i c D r ^ C N C D ^ ^ f O C N d ^ d ' * ' C I ! 0 ) O I ( O C f l C O N S T - L O L O l O O O C M C O ( N N V V C O T - Q ^ W ' -c o E - _ ro c o CO 3 O ni o 2 — CO CJ cu ~ Q < I I _ " O E 3 " O X ) > ' O I _ E ^ 3 D d Z W L l J O H Q I L l l h > - J .a -a X ) C L C L a a a C L V CL CO I— Z) 148 GB-00-074 2 RHFS hw aph rhy 79.30 0.12 3.00 0.76 T- LO CO O CN CO o d d 0.04 0.77 0.02 0.40 2.45 0.80 93.20 CN cn O N • CN O O CN » -V CO CO LO V co o o co co " 0 0 ° tr d v i n t r t r t r o c n T - c N c D d ^ ^ o d o i c N c N c N ' d V CO o co tr T o i c i o <0.2 1.00 55200 7.2 GB-00-073 RHFR hw frag rhy 88.50 0.19 4.60 2.29 0.12 0.81 0.93 0.03 1.31 0.04 1.10 0.41 1.40 100.90 CJ> tt O O tf d E 5 ° s < » V cn CO tr tr co LO co <*> 0 0 <° CO CD v C O C M S O O m t ' - C D d ^ ^ c N V ^ c o d d V <- CO V <0.05 0.8 0.3 <0.2 2.60 4980 12.0 GB-00-071 RPTF fw xtl rhy str chl altn 06 09 0.26 12.50 13.60 0.12 7.29 0.56 O.03 0.90 0.06 0.60 0.23 4.80 97.20 CN LO O CO LO • O) O » r CO t~ *- V <10 LO o CM tr o co o t- CD O ^ • t-V ^ CM CO L O T - O O O O t r t - O O d n , " i c ) c c ) d ( M V d V CO CO CM CN i n cn co o CM O CD O d f ° -V CO LO GB-00-068 RPTF fw xtl rhy str ser altn 63.80 0.38 15.60 3.59 0.08 6.54 1.26 0.09 3.51 0.08 1.60 0.02 5.10 96.80 3.6 1398 <100 6.1 19 O V LO V O CD CO o r— CD TJ "~ 2 cri i r i V ^ CN T-L O C O C O O O O t t T - C M d l l ^ t r ' r - ' d c N d d V LO CO V V CO CO LO CD ° . r~ ^ o CN O O O d <N £ <° V CO ^ to GB-00-066 RPTF fw xtl rhy str chl altn 54.00 0.27 11.70 16.00 o tt cn T- co r~ c i N d <0.03 1.08 0.05 0.60 4.86 6.90 98.50 O) T- CT) O CO d £ 9 . r i -o V CO CN o o o o CO o t - o CO _j CO v tr co $£ ~ i o '— CO ••' <0.5 39 19 36.0 275.0 20.0 1.8 8.2 36.0 0.72 27.0 3.5 CM O O O d P t r c M v co ^ t j GB-00-063 RPTF hw xtl rhy wk ser altn 74.40 0.28 12.60 2.28 CO O r-O 0> T-d d CN 2.63 2.79 0.04 1.70 0.23 2.60 100.20 cn o o o ^ tf 5 2 w * " <10 LO V o o CD o tr tr "~ m cri ^ L O r C M O O O C O T - « d S ^ t r ' i r i i r i t - d d V CO O CM V V CO <0.05 7.0 0.4 <0.2 7.00 1620 40.0 GB-00-062 RPQL hw xtl rhy least altd 59.60 0.55 13.00 3.78 0.14 1.07 8.82 2.06. 3.05 0.22 6.90 0.72 7.20 100.20 2.4 1323 <100 14.0 31 <10 LO O O CO O CM CO « - t - co • ^ v <0.5 101 220 47.0 610.0 41.0 1.0 <0.1 <0.2 0.07 3.2 0.7 <0.2 9.20 1540 117.0 GB-00-061 RHLT fw rhy str ser altn 64.50 0.29 13.60 2.98 0.09 7.06 1.97 0.07 3.08 0.06 2.90 0.10 6.10 97.10 O CO O CO CO <•> co 2 « ^ <10 LO V o cn o o co co T7 ^ £ CM' cri " v i ; CM <-L O - ^ - C O O O O C O C M C O d S ^ c o c d t r ' c N ' d d v ^ tr co CM CM 0.19 8.5 4.4 <0.2 7.30 1720 63.0 GB-00-054 RHLT fw rhy str chl altn 70.20 0.23 9.30 7.75 0.14 4.92 1.67 <0.03 1.27 0.05 2.20 0.23 4.90 98.10 1.2 1652 <100 3.5 13 <10 r~ O CO CO O LO CO t- - O ^ _ V v t - CM l O C N O O O O C D - i - C N d ' ^ ^ t d c o V c i d V CO CM t- V CM LO CO CM P O i ^ o <0.2 3.90 1270 39.0 GB-00-050 RHFS fw rhy wk qtz altn 76.40 0.18 4.40 3.20 CO CD t O N C O d d co O.03 0.15 0.03 4.00 2.29 3.80 100.30 co co o o cn ° CO CO CO CM tr co tr LO co °° « d o; v ™ CO L b h - c o o o c n c n t r c n d 5 -r cri d d d d v " t- tr <0.05 0.6 21.0 <0.2 0.22 48500 12.0 GB-00-049 RHLT fw rhy mod ser altn 25.90 0.11 9.80 2.79 0.27 6.15 23.90 <0.03 2.98 0.01 24.60 0.55 21.90 98.60 CD O O tf CO d %> ° CN CN V <10 <5 CN 00 O O CO O " " S ! « i r i j : ^ CN CN ^ L O L O c o o o o c n c o o d S ^ f S d c d i r i v ^ d t r V ^ 1 0 CO T- T- t - <0.05 2.5 9.7 <0.2 7.60 12400 37.0 GB-00-048 RHLT fw rhy str carb altn 28.40 0.11 7.00 11.20 0.29 7.38 14.50 0.64 1.56 0.03 22.40 2.66 20.30 99.30 CO (D t CD N Q CO CO CO cn LO tr O) O O O O CN O CM O CO CO CD IT) S S CO CM CD L o r ^ i ^ o o o o o o d ^ i S c o r ^ d - ^ r ^ o d V n CN O) T- CN CO LO 0.38 5.2 34.0 <0.2 8.40 7860 17.0 GB-OO-044 2 EXCP cal exhalite 34.20 0.12 2.80 9.70 0.34 0.58 25.70 0.03 0.79 0.01 20.80 7.65 9.90 103.60 LO CO O CO CM • r- o cn CN T - * V CO CN CO T- LO h- tr CO CN CM 1- ^ V L O ^ - t r O O L O C N C O C N d t o I T . t r t r c N ' v J d d V N CN CO V <0.05 0.9 9.9 <0.2 1.10 8390 12.0 Sample Unit Code DescripTiOn AlteraTiOn CM O CO O i -« O < f— o cu1 LL o o o 9 , C O) CO CO 5 5 O z O CM 6 0. O o t-co LOl Total CD — O i - O — : 3 c C 0 u ) C D C . Q i _ , D O o o m i i O w > o o z o N O < i o i i i ( i : o ) > - N z 5 < o C -Q CD CO CO CO j = CO CO H O CD _ l 149 o O i o CD CD CO * -£ CO SZ S CO CO CD CQ CD co CD Li- € CO H i LL- - £ CO € ra a - « CQ CD CQ CD CQ CD CO CD ii. -E ro CL S< m 44 o CQ CD o CQ CD CQ CD CQ CD ^ -J € — is S i . i i 8 ™ CQ o o o c o c o L o c o L o r o c n r M O C M o c N O) o t oi T-' CNJ . f N O C N i o ^ d ^ d r - d m C N C O C M l f i C N J O N V V - LT) C M 0 ^ o o v i n OJ O T- CD CN L O v v - o c d o o o s o i o » - N r o i n c D c o o i f ) N ' t i r ) c j ) 0 0 ' < t o o [ 1 0 ' t " 1 0 4 0 5 - LO CD id T- tf) CN CN o o o o c n r ^ r ^ o j c n o a s c o c o C N u i c o V d a i ^ d ^ L f i d i r i d n o m oo ' C O O ^ ^ C D ^ ^ ( O ^ C D O D ( D t D N ' N k L O ( D w w . , ' d d N d d T - d ' - r o d c o d N t - v ••- co oo co C OOCNCOOCMOl . m Ifi CO N " LO CN 0 ( N O i n ( D a ) 0 0 ( N O ) ' j O ) t t c o T - i n N o o t CNCT>COcbdl r i^'^^ r X i^^i^ ' Y > r - ^ ^ v ffl O O O O r O N O N N N C O N O O I i n i O i O C N O T - f O O m C M t O t O If) C N O O O O l f i C O t ^ C D T - ( O r t O T - f f l T - U ) f ^ ( f l O l O Q O C O N ^ d d d c d ^ o o ^ ^ d ^ d c d r 1 v v v ^ 0 1 d aj s ° i O O O C O O I S O M N r - l O c o m t m c d o a ^ d d L b ^ i f i v - ' d d r o ' d c D V CD ^ • t f L O O J L O O C O C N O m c n OJ OCOOfflCONtttnCOCNItf iWCOCOCDtniONOT-- ' - - ' - S c M O r - O x - O T - c d V ^ CO CO CO CN CN CO d c o V c n c o r ^ o o c N C N L O c N L n L O O L O V - C D T ~ C O O C O C J ' CO T - LO OI ^ V V V O l O C O C O O t- C O 1 V C N O C M O L O C M 00 in cd cj c d co cn T-d CM' C O O C O C D C O T - L O O O O O C D CO 03 O CO « CO CO cfj N U ^ CM OJ O OJ o O N O C O C D C O l O O N Q C O T - c O C O C N ' - i n i n O O C D O J t N C N V c s i d c N ' d r o ' d t - d f N i d d d v v 0 0 P 0 0 o i a> o vi — "D 1/3 (1) . c o <D W D O Q < O Q_ l E D T3 J3 >, ! W UJ (!) h Q r - > - l X r - g j = < X | - Q - C Q r - Z ) , OL Q- CL Q . * " CO > V 3 O) 150 CD o co CD 00 CD CD CD CL Q. Q o LL C L I -< CD X cc < ICQ £ J _ CD 5 l o x £ o CL g -CQ CD a _ LL Q. 2 - £ & — a o ICQ ° -CD J I to 9 CQ < J CD xi?" r - Q - 2-Q o |C0 I CD J 5 >• ro I D CQ CD co CD ca CD H >-C0 Si "E CD o -9 § S 5 o o h- uo o o o Tf o o o ^ - n in N t O O CO CO CT) ( D C O O O N O i n o O N O ( O r O L O O ' t O O O N t C N O O i r O C \ I O O O ^ V - 1 - <N CN V CD CO TJ- V O V CO CD TJ- CO O CO CD r*- o to CN o co CO O O CN O ^ O CO (N TJ- O COCOOLOCNCOLOCOCO o i g 2 ^ TJ- r- co TJ-OICDLOLDNLOOOtN N N N ( N O O CDCNLOOOOCNOO " - rr iotC O o o T-a> CN CD TJ-CD d Tf CN O O O O TJ" Tf CO O O v~ O O h- o o O CO CN 6 ^ 0 ) CTipOOOOT-TTCOCOCOCTiOCOLnO^TjOOCTlCNCNCNLO CN T-CT> v v o v ro 2 I Tj" CD CN *— T— co T- T j - T - ' o r ^ o c N o o o TJ" T - T - T -00 O CM O CN O O — - - O LO CO O i - 00 CO *~ O O LO O ° CO T-V O l O O ^ C O l O N O t D n i J O C O t O O Q l f i C O C N C O C O C N r N O j T - ^ r^L CN O Tf N- CO CO —: • V CM • • (~> _• • • r-» rn • ; C N O ^ N c o c o „ _ V « ™ CM CM O ^ LO T f O CO o O CM CM d o L o c d d d ^ c N c d d d c N c d o i o a o c o i n o c o o o o h -V N V O !I ° CO N r- (Ni CM CO V LO CO CM CO CN CO Tf 00 CN CO T- o o N T - in co to o co CD CM O f - CO CO CO ~^ cd o ' o o o ' o oS o O O T- CO o £ o o t CO N CN O Tf T- o o o o Tf LO O h- Tf od d d I T — O T j - T - T - L O O O C O O T r c O L O O O O O O O T - c O C M C D O ; C O O « C N ^ V ^ ^ W , n l f i V n W N ^ ^ « _ X X O , X CO Is— , LO CO CO LO CO T f CN O O O d d 9 £ d V T f |> T -I O O O ; O r-CN ^ CO T f T -O O CO LO O CO CN CO O CN O O Tf IO T— Tf LO cp p CO o o c o LO o i d N T- c o d d co d c d cd LOOOOCMCMOCOLOCOOOOLOLOCOCNOOCNCOCNTfLOCO^CNCJ)TfCO d ^ O c d ^ g J ^ c O T f o o ^ ^ ; ^ C O ^ . - J ^ ^ ^ ^ O ^ ^ ^ X - T - ^ 1 £ 0 0 Tf E x T f ' d c d d d d H d t -CN LO O O CO O IO CN CN N N Tf Tf O h~ O O I ^ C O O O T f O L O O ^ — f ^ O I ^ C O L O C O O O O O C N C M C M C O O CM Tf ^ CN O LO CO LO CO - CD CD CM Tf „ r O „ C M ^ V - - C M f n t n V f S T f T - r ^ ^ - r v : ' - o l f S L o o L O L o d d d ^ c d d d c o T f d N O) CN d d CD CN CO V 1 CO CN O O ! LO cd d ^ V CM ^ ^ O CO CO O CD O O Tf o o o o o h- Tf Tf T f C 0 O L 0 O a ) T f O C 0 h - L 0 C M T - O O O C 0 T - C N L 0 O 0 0 C N O O O ' m O J - r - r ^ I I o T f o T 2 O J c o ^ c o f N i d d ° c N o o 0 ^ CO CM V CO CD CO V V O i - V i - IT h-v ^ CD CD CO O T f O O C O L O h - C O C O C O O CM CN O Tf T— O CO O O O r -CN d d d d r ^ c N d - r - d T f CD O O CN CO N d CD CO O U ^ O C O L O O L O O C D T f O C D C D L O C M O O O O C O C D C O r ^ C O T f C N . t O ^ r r r r C N l T ) , , ^ n t (D ^  ^ N ^ Q Q O ffl ^ Q ^ T f V ^ Tf CO O LO O T - T - C O C O C O h- Tf O T f O O CO CM C O C O O C D T - O O O C N Tf LO Tf CO od d to to d o ^ d T-' d cd CN CN C M L O o c o c o c n o o L O L O T - o o o o L n o o o LO CO f r j N- CN C D C D L O ^ Q - J T - Q C D C D , T - T ~ ^ T— N" V ^ CD COOOOTfLOCOOCNOOO d d c N f ' 9 c N m o | v S d LO O Tf CN 2 r-CD ±= Q < n ' n ° n ° 9 9 , ° ° CO h- < L Z S S O Z OJ 03 - . . O K O o ^ 0. O (0 J r -o o CD — O i - O — 3 c C 0 y ) C D i _ - C l i _ . C Q L L O C O > U O Z U N C D < C O C Q Q : C O > - N x> o < U • £ CO CO OJ W CO CO h O m _ i 151 GB-00-096 FDPH fw porphyry O O O O C O O ^ r O C O C O C O C O C O O C O T - L O C n C N I O C D ' s r O C D C D d c d d d c N h ^ c N C N C N i r i d L r i d c b c N v v *~ 9 c ° d -a^  i n °> •ST CN O CN v - T- T- CN - t f c o CN T- CN GB-00-093 ARTF fw carb arg O m o W t D t D ^ O l ^ i - l M i t f V S ^ T - L O T - ^ O C N l N t D N L O w ^ s n d c \ i d ^ d v - ' d v - d ^ d v v < N , 0 0 T ^ c v l d c o - ^ h -CO i - LO V O l CN GB-00-090 RHFG hw frag rhy o i n q ^ L o o i n s L n ^ i N t o n L o ^ r - u i c o i n i n t - L N t D c o p j o i n T f c o d r i d L N d ^ d ^ d ^ d v v v ^ r d r ) d n CO T- O V CT> CN GB-00-089 4 ADMS hw bsit O C O O O O C O O C O C O C N T T L n ^ L O ^ C N T - i n c N L n i n C N C N C N - ^ - C N T : T - ' d o V L o d i n V n d c o d i N o v v v V P o o o d *<-•<- O V CO GB-00-088 RHTT fw rhy wk ser altn O ^ O C O a J N L n 0 0 3 0 ) N ( D C D N » - T - L r i ( N ( D O l O i n O T r ( D ^ o i N N d s ^ c B > - ' f d ' f d i r i c \ i v v v ^ c ^ C o c d o S o S 1^  CO T— CN GB-00-087 FDPH fw porphyry O O O O O O T - O O T - C O O ) f ^ O C D r - i r ) C N L f ) O O C O O C T ) C N ^ C D I ^ O D C N ^ C N ^ C N l O C ) ^ C J L r i c N V v v v r M d ri V 7 C O C N O I T - T - T - T— co ^ f r ^ CN CN GB-00-086 FDPH fw porphyry O O O O C O O O l O O C O h - ^ - C D O O ^ - L O C N O O t ^ - C N O C N ^ r c d c o ^ ' c o ^ c o ' r - d c N ^ d ^ c > c d c N v v v t N J 0 9 r " d r o ^ : r H O C N C O T - T - T - r- V CO CO CN CN GB-00-085 4 ADMS hw bsit c o c O T - i n o ^ c o o o c n c o ^ L n ^ ^ c N T - L n c N c o c N - » - C N c o c n c o ri^swrridridiN'drJdr:dv v V , - P d d d 9 O V CO CN GB-00-080 FDPH fw porphyry wk ser altn O O O O C D O T - O T - L n c O C O C O O C O T - l f ) l T ) C O O C N C O O O L n C D L r i c N c d ^ ^ c N ^ ' c N L r i d i d d c o ' c N ' V v ^~ ^ t ^ cd in 9 CN CJ> i - v - T- CN C O O ) CN CN GB-00-079 RHLT fw rhy str ser altn o o o o c n o o 5 0 C N T - O L n o > o o > ^ - i ^ T - ^ r o c o c o o o i ^ c N i ^ c o c o d ^ ^ ' ^ C N d ^ c b d i o c N v CN CN d d ^ " l~ m T - ( D ' - " C - T - T - X ~ CO GB-00-078 RHLT fw rhy str chl altn O N q ^ i N L D O o c N t m c o L o t j i ^ L o m L o i o o i - c o o O ' -^ ' c d ^ ' d d i r i ^ c d - ^ c o d c d d c n ^ - ' v P ^ i - ^ d i n CO T f CN CO T - CN GB-00-075 2 ARCB hw carb arg o c o o o i i n c £ ) - ^ - c o i n c o c o c o c o o r ^ c o i n o i n o - r - c o c o T - < o S I - N l N O L N O t N O ' - d ^ d C N d V O O C O T f Q ^ ^ L O CN *— ^ " h~ i -CN Sample Unit Code DescripTiOn AlteraTiOn ^ B" 2 3 J3 D. D. a . a . o. co C r- Q. ^ ^ J l l Z t 0 1 1 J ( 3 l - O I L l h > - J l l - S i < I I - l C 0 i - D S 152 CQ CD 9; * CQ CD I T - ,_ - ro ICQ 8 CD U - ! t— CO CQ CD CO CN u- -E co CO i J= CD CQ CD ca CD ca CD co 8 - a : ' ce CD CD CO o " CD CD o CD CO CD I- p a, s -E ce 1 » 5 CD < CO o ^  8 O O ^ CO T-N ^ t (O O N t M O O O C D O C M T - C O h - O C O o O CN CN CO CO O t f CM T- o O CN O O co ^ i n c i o cd CD o o CN r-O -^ T C \ I O T — T— T— CO O O O CM CO C D i — in o r— T ^ - o r-C O O ( D N" O C D t- C N vi d d d cd d cd r - ' d d d O O O CO CO CD O i — CN O CO O O LO CD LO C O O C N C O T - O C N T— T— CN CD C D d cd d d ^ j - d d c d d d d ' ^ i ' L O LO T- T- CD O CN CD CO d CO O CN O CN O CD T LO h-CO O i - T -n d ^ 6 6 CO o o CD O O CO CD CO CN cd d O CM Lt) S r "^T CO O CD O O O O C O O T - CO T— CO CD LO 0 0 ^ r d ^ - T - C N cd d d T- LO tb c d d c d ^ d d o d d d d C D o o o 0 0 co N - C O C N C N L O T- T- C N O C O O d c d co d r r o o d d T - X - T- V CD CN CD CO O N~ CD LO CN CN 0 0 *fr i -CO O CN CD O tD O d d o i T - d cd d o to o o t ^ - Q CO CN O f CO O O t ^ O C O CO CV) C O t- TJ- o cd d v - C M d v - CN V r - o co o o 0 0 C N 0 0 C D LO LO h - O O CO CD CD CO LO CN O CD O O O 0 0 O T— CD O O T- CD CM '^ l " LO d -r-' T - ' d d d d d d d d ^ ^ j -L O C ^ O O ^ I ^ C O C M t D C O O T - c O L O I ^ C O O O C D C N C N C N ^ L n o o C M O C O O d V d ^ ^ L r i c o c v i d o o ^ r - o d V "tf CN V V O •OOO^OOOLOOOCOOCNCOLOO'^J'OOO'^rr-CNf^CDCDCNOOO ; N O - W ' - v • r - T - C O ^ l r j V n t C O ^ , n f , l n n r ; O i r ; ^ r , O r -o ' ^ ^ C O C O C N O O O W l O O CO T- CN V V O CM ^ co 0 0 ^ ~~ w ^ N CO LO O ' CD ^ ^ V Q t CN CM w x -O O O T-0 0 CM CM T ~ C N N O O N ' C M O O O COiOOOlCDOmOOr ^ 3 C 0 C M ' C N , ~ T - T - ^ T CO V V V iCOCOLO-^LOOOOCDCOCNLOCMCDCNOOO I i r i V o ^ ^ L O - r r - d o O N r O ^ S c O f - V CN CO T— V O V CD CM CO CN O j x - o D ^ O C D O L O C D O C O O O L O O C N O O O r ^ - T - h - C D O r ^ C N s c o t - ^ cn co d d ^ ^ ^ ' t j - ' c d ^ ^ d ^ d ^ d 1 CO ^ ^ CNOCOi-OlOOCOOOCNr-LOOr^OOO CN V V ' g l M ^ t " V ^  ^~ g ^ t r c o o c n c N o c N o o o CN CO l o c n o o t - o o o o c n o c o c o i h «-i LO O „ ' l O T- ^ T > o " 2CN „ ~ . . L u * _ , O O O O O L O C M a O - < - O C N O O O <N cri ^  v d « f f l c « c d d r i d d ° i d c c i d ° S . v to ^ v o v c o i i j o co CN r- -COT-OCOtJ-COCOCOLOOT-OCOlOCDCDOOCOCN CD O ^ CO CN V CO XI cn r-- CM o o CN LO LO CD CN CO O d 9 d r - ' d l " g ^ v o v v o y T-n N O C O f f i O n O L O l O O C V 1 0 l O C D 0 1 0 0 0 i - r J O I S O ) ^ C \ I O l O O - t ? ' f " v ' " V S [ N " - d n » ^ s - o d d 9 o ^ d « g C D C O O C M L O O L O O O T - O T - C O L O O O O O O r ^ i - C N ^ ^ 2 d v T ; V r ; - r ~ d ^ V o ^ 2 ' J : t - ' i r i t f ' d o C^TT v v C0CNJ V O C N r ~ v v N V *— LO • O O CN O O O : C N V 6 9 » ^ I r - v CO £ a> O C N O C O C O C 7 > L O O c N r - ~ l O C O C O L O h - C O v f V t -O t N f O m i O N C D C N O [ 0 1 0 ^ 1 0 0 ^ 9 0 ^ 0 9 C N O t J - C N O C O C O C N t r O i - C O C O ' CM O ^ CD r- ^- N CM ^ ^ V n N V- v ;_• O O S O C O C M l O a i L O C M O J O O ) L c i c O T - ' c o ' d d 9 c M N d 9 2 ^ 0 O c H O .9-P 0 o 2 b T3 10 0 , CO C O 0 ~ , | W D O Q < | o " 9 , o o o ° „ O) CO CO o z O O CM CM iii CL o . O CO H O o — O « - O . _ 3 C C O C O 0 L _ . I ] L ,_ -Q . u c o > u u z o i M C D < c o c o c e c o > - N j z : ! C O " D : < O . C 0 CO CO CO : CO CO t - O CO _ J 153 CO CO CD CO CD CQ CD CQ CD CO CM - I . u_ -£ co 1^  O CM ^ ^ iS CQ O X or O C O O C T l C O r - n O O C j O S C O N L O r j ^ L O C V I L O ^ C N I C N L O L O o j i n i r i T - N T - c o o ^ o co o V V x- V CM O O O CD CN 00 cn ^j- h-r - O J 6 O J O) co t- m s in - v v S O (N M O r r-0 ( o o N O ) O c \ i c o n n L o m t a ) O T - i n N c o o ^ r i n o o ) o i co o CN o in o i o ^ o c D ^ o j r ^ - c o c o o c o o i c o c o T - T - i n o j ^ i r i o N - o t d ^ d t N o ^ d t r i r - ' v v v • O CD CO O I ^ * ~ r\i ^ o o o o - ^ r o c o L O d n d c T J T - ^ r - ' a i CO CO OI T - T -L O N I O N O N T - I O d d cb OJ V V o t T > o m o o m o j 0 1 - O N c D \ - O L n N ' i N c o d i o ' d ^ ^ d r - r o d ^ d N C O C D O C O C D C D T - L O O V CD o m co o o co ; ^ £ d cd ^ O O O C O O i - ( d d CD c d in o i C M oi cn t- T -CO CO CD N o i iri d -^r d o m T - m ^ - c N - o c n c o o T - c o ^ CM V V C O C D M - C O H ^ - i r i o og v >-O V N X > m CD CO CD ^ J= CD 5 I ^ 5! < ro CD S CD CD X CD LU O) O O O C N r ~ - C O L O C N h - a O C O O C O C J 3 C N O L O C N ^ c o ' c v c o d c o d r i d ^ d c N ' c i d d * " v v LO O CM O CO CN CO LO CD C M ° > C O O N N C O C N q c O C M C O L O L O L O C N C O O L O C M T - O C O C O O t f C O d ^ ^ L n V c o ' d c o d c o T-* ^ V V 1 - 1 ^ O ' L O C D o o o o o o ^ t - CN t -O t r O^-CDO)LOLOLOCOCMCOCM c b c d t r c d d c M o c N d ^ c i T - c i O T - O I ^ O C D O O - I - I O C 7 > C 7 ) O L O C N O T - I ~ t r ^ J ' - J ^ - ' ^ L O L O v v ^ ci d cd C O T - L O C M C M O C M C N C O L O C O C O V C O C 7 > I ^ O > r ~ C N C O T - C T j C N L 0 T - C D T - L O T - T - L O C M C O l O C M C M h ~ C O C 0 T d c N ' d d d d d d d d d d d d v v v 9 d d d r 0 Q. p ,- o o ! h .-ti to 0 , ro c o 0 ~ « I D O Q < a a a a. a. a. | O Q . Z W L i m h Q I L l i h > - J I | - g ^ < I h ^ T J E => "O . a 11011-35 1 5 4 GB-01-159 RHTT fw rhy 24.36 0.32 14.39 29.80 0.29 9.11 4.26 0.01 0.22 0.08 8.95 91.80 O CN LO ™ 3330 O O T- O T f ~i O) V CO CD CN o v 292.0 31.0 o i n CN GB-01-158 RHTT fw rhy 88.53 0.09 4.94 2.72 0.00 0.25 0.05 0.10 1.39 0.02 2.12 100.20 T - CJ) V CO 3480 O O T - CO O T- v T f T-T f CN 84.0 o cri 10.9 2490 GB-01-157 RHTT fw rhy str carb altn 23.05 0.15 9.92 23.99 0.21 12.61 6.66 0.21 2.18 <0.01 16.82 95.32 V O 0) CO ^1 24400 O v- x- CD irj 1^- V CJ) CD CO 0 0 . 165.0 31.0 143.0 2618 GB-01-156 RPTF fw xtl rhy 60.74 0.42 15.15 2.88 0.04 3.65 3.27 0.12 5.30 0.10 7.49 99.15 o CO O T f ^ CN 0S> o i n T - T f co ^ V V h- CO 384.0 50.0 o T f 3089 GB-01-155 RPTF fw xtl rhy mod ser altn 75.86 0.27 11.60 4.46 0.04 2.50 0.12 0.14 2.77 0.06 2.56 100.38 o CN O CN LO ^ i n o i n * - CN r-^ v v o r -247.0 33.0 2017 GB-01-154 RPQL fw xtl rhy mod chl altn 67.39 0.26 10.76 11.60 0.10 4.96 0.33 0.04 0.98 0.07 3.73 100.21 V O i -T f CD CD O CD CN O T f V CO i-242.0 31.0 1222 GB-01-153 RPQL fw xtl rhy mod chl altn 60.62 0.25 10.95 15.53 0.13 7.05 0.36 <0.01 0.11 0.06 4.59 99.65 V O CN CO T ~ o CO CN o cn T- o CN' V CO 248.0 26.0 CO LO GB-01-152 RHTT fw rhy mod qtz altn 61.41 0.26 10.13 10.72 0.07 1.43 2.18 0.09 3.31 <0.01 7.81 97.35 o CN O T -cd 9260 O CD t- CN T f 240.0 26.0 130.0 11322 GB-01-148 RHTT fw rhy str qtz altn 90.89 0.07 4.42 1.43 0.00 0.29 0.15 0.83 0.32 0.04 1.79 100.23 V T- CO V CO CO CJ) CO o cn T- o co Q CN V CO x— 64.0 12.0 CO CN CN CO i n GB-01-140 RHTT fw rhy str qtz altn 82.71 0.09 5.31 2.91 0.01 0.18 0.08 0.12 0.84 0.03 2.94 95.21 V o r-29800 114.0 398 •<1 <30 10 95.0 10.0 14.0 1535 GB-00-133 RHLT fw rhy str chl altn 65.40 0.28 11.80 9.28 0.08 6.43 0.51 <0.03 1.45 0.06 0.70 0.67 4.20 97.10 2.0 2537 <100 r*- o o Lri " V m <10 cn CO CN 174 29.0 I O N L O T - -T O N " O " IN CO V T f 300.0 19.0 CN i r i 0.1 <0.2 <0.05 CD 8.7 <0.2 7.10 2950 46.0 GB-00-132 ARTF fw arg 73.00 0.20 14.70 1.62 1.45 0.35 0.06 4.85 0.15 0.70 0.91 3.20 98.50 5.1 1978 <100 CO CO o c o ^ V <5 <10 CO T- O ^ CN CN T f CO LO O CJ) O • V ~ <D • 5 V ™ CO 149.0 17.0 CO CO CO d d 0.07 O) CO 3.4 <0.2 9.40 4310 29.0 GB-00-131 4 ARWK hw arg 66.60 0.62 13.60 8.31 0.29 2.59 0.77 2.02 2.10 0.12 1.10 0.59 3.10 99.10 x- cn <100 O CO T f LO £ 0 0 T f T f 145 18.0 T f co CN LO o o ^ v ^ co CD ^ T f ^ CN 143.0 14.0 CO o ' 0.2 <0.2 0.07 CN 0.4 <0.2 4.30 3160 35.0 Sample Unit Code DescripTiOn AlteraTiOn f— io h < ii. 5 5 o z ^ a o CO LOI Total CD — O i - O . - D c C T J w c D i - ^ J u . , j O O n,T] C 0 L L O M > O O Z O N O < C 0 m - L K W > N Z 5 < O Sn -Q CD CO 1- Cs .S " CQ _J 155 GB-01-159 RHTT fw rhy str chl altn 69.0 o Tf LO CNi v v -23.5 31.19 GB-01-158 RHTT fw rhy ctr ("it"7 altn 33.0 r- Tf LO CNI V V V CNI 15.0 31.09 GB-01-157 RHTT fw rhy str carb altn 62.0 O Tf LO CO V V CD CM 20.9 29.87 GB-01-156 RPTF fw xtl rhy str ser altn 108.0 O Tf i n O CN! V V T-29.9 26.34 GB-01-155 RPTF fw xtl rhy mod ser altn 86.0 o Tf m LO ^ V V V 24.5 28.49 GB-01-154 RPQL fw xtl rhy mod chl altn 60.0 O Tf LO LO CN! v V 23.0 28.05 GB-01-153 RPQL fw xtl rhy mod chl altn 60.0 o Tf LO m ^ V V V 21.3 27.75 GB-01-152 - 1 RHTT fw rhy mod qtz altn 53.0 O Tf LO CO • V V T-CM 19.5 30.55 GB-01-148 RHTT fw rhy str qtz altn 32.0 T- Tf LO CD V V V 11.4 30.36 GB-01-140 RHTT fw rhy str qtz altn 19.0 O Tf LO CD CNi V V CM 13.7 26.15 GB-00-133 RHLT fw rhy str chl altn 92.0 10.0 38.0 LO CO c i CD CD CD Tf CO CD d CD CO m d CD T- LO CM CM V V V T-29.00 LO CM CM oS 23.0 6.0 24.87 GB-00-132 ARTF fw arg 64.0 7.7 29.0 Tf CO d CO i r i q CO i r i CO CN Tf d CNi Tf d r~ Tf o Tf m i CM CM' V CD 3.60 CO CM Tf d 15.0 6.6 25.26 GB-00-131 4 ARWK hw arg 67.0 8.1 30.0 o CO CN CM i r i CO d LO Tf o> d LO CNi Tf d CNi Tf d CO o T- m cx* CM V V T- 0.48 CD <0.2 11.0 2.9 22.3 Sample Unit Code DescripTiOn AlteraTiOn J> CL PN Sm Eu t J o CD h Q I LU Tm Yb Lu I Ta W Ir (ppb) Au (ppb) Hg (ppb) H tn tn .0 ._ sz ™ CL CQ 1- 13 5 156 GB-01-185 RPTF fw xtl rhy 73.41 0.29 11.46 3.20 0.01 0.19 0.43 0.32 7.19 <0.01 2.65 99.12 o O C O tr CN CD tr O L O T - C O S CQ- V V CO CO h- T~ 248.0 36.0 22.8 6420 GB-01-184 RPTF fw xtl rhy least altd 67.58 0.42 12.66 2.82 0.04 1.31 4.37 2.86 2.30 0.18 4.89 99.43 o c\i O r -d T~ CD O C N m T - cn tr V V V C O f 402.0 43.0 to d 2673 GB-01-183 RHTT fw rhy least altd 77.29 0.28 11.40 2.85 0.02 0.09 0.76 1.78 2.58 0.02 3.02 100.07 o C N O C O CO * ~ CN C N CO o to t- tr o oS v v tr C D CO 248.0 35.0 16.5 1911 GB-01-173 RHTT hw rhy wk carb altn 66.67 0.54 9.83 5.32 0.14 1.88 4.33 0.04 3.36 0.29 6.34 98.74 o CN 15.0 141 O O O L O r i - ! M iri v y co ^ 103.0 25.0 C O d 10039 GB-01-170 RHLT hw rhy wk ser altn 78.50 0.34 7.57 3.29 0.05 1.20 1.54 0.03 2.44 0.22 3.28 98.46 O CN o to o °> O 0 in cn C N 01 v » 81.0 23.0 CO 11838 GB-01-169 RHLT hw xtl rhy wk chl altn 68.68 0.42 16.40 2.34 0.02 1.05 0.96 3.46 3.30 0.14 3.21 99.97 O C O 0 CO 01 ™ C O r~ 0 LO s— t~ CD 01 V V t- LO 483.0 62.0 r-co 9414 GB-01-168 RPQL hw xtl rhy mod chl altn 73.70 0.27 13.21 3.66 0.05 1.14 1.07 0.08 4.28 0.15 2.77 100.37 o CN O r--tr ™ CN o r — t- L O co CN V J ' 162.0 28.0 CO 2511 GB-01-167 RPTF hw xtl rhy wk chl altn 74.59 0.26 12.37 2.54 0.05 1.08 1.70 0.05 3.93 0.14 3.25 99.96 O CN O CO tr ™ C O tr CN CN LO i - C O CO V V V CN LO 160.0 26.0 3436 GB-01-165 RHTT hw rhy mod ser altn 69.43 0.44 16.35 2.48 0.01 1.46 0.20 0.11 5.15 0.15 3.76 99.54 O tr O CN d ™ C O cn o L O T - tr ro 0 ' V V CO t-CN ' 500.0 57.0 o d 8302 GB-01-164 RHTT hw rhy mod ser altn 66.48 0.61 14.99 3.31 0.04 1.49 2.14 0.18 4.78 0.14 4.86 99.00 O CO O CO CO ™ r~ r -o L O T - tr 1-^ V V CO CD CD 662.0 54.0 C O cri 6876 GB-01-163 RHLT hw rhy mod ser altn 62.88 0.59 16.32 4.04 0.06 2.17 1.58 0.18 5.40 0.25 5.51 98.97 o CO O C O tr CO o CN O CN r - CO CO " ~ 587.0 55.0 in iri 4339 GB-01-160 RHLT fw rhy mod ser altn 70.55 0.32 13.75 2.82 0.03 3.75 0.44 0.28 3.43 0.08 3.47 98.92 o CO O t-cd o n r - s j L O <_; CN V t- CN 293.0 43.0 C O iri 2106 Sample Unit Code DescripTiOn AlteraTiOn O C O O r -O H ° o o o ° „ u. 5 5 O Z O 9, O 0- O S T LOl Total CD — O i - O — 3 c r a c O C D i _ J 3 i _ C Q U . O C O > O O Z O N O < C O C Q Q : C O > -c_ - ° ° O ) 1 3 N Z 5 < O C - Q CD £ C O C O H to ro ni O O J 1 5 7 GB-01-185 RPTF fw xtl rhy 89.0 O TT LO LO CNi V V J -26.5 27.01 GB-01-184 RPTF fw xtl rhy 166.0 O TT LO LO csj V V V 33.1 24.99 GB-01-183 RHTT fw rhy least altd 73.0 O Tj" LO LO n i v v i r 23.9 28.4 GB-01-173 RHTT hw rhy wk carb altn 38.0 T - T f LO LO V V V cn T f 26.67 GB-01-170 2 RHLT hw rhy wk ser altn 42.0 T- t f IO LO V V V V LO 28.4 GB-01-169 RHLT hw xtl rhy wk chl altn 180.0 O T f LO TT CN V V 43.2 26.36 GB-01-168 RPQL hw xtl rhy mod chl altn 71.0 O T f LO CO V V 16.8 26.44 GB-01-167 RPTF hw xtl rhy wk chl altn 63.0 O T f LO LO V V V 15.1 25.59 GB-01-165 RHTT hw rhy mod ser altn 205.0 o T f in cn v v T -47.5 23.01 GB-01-164 RHTT hw rhy' mod ser altn 242.0 O T f LO T f rsi v v CM 48.9 25.71 GB-01-163 RHLT hw rhy mod ser altn 225.0 O T f LO CO ^ V V T f 48.1 22.47 GB-01-160 RHLT fw rhy mod ser altn 101.0 O T f LO LO CM V V 30.4 24.92 Sample Unit Code DescripTiOn AlteraTiOn O O - Z C O L U C D l - O I <- E LU h- Yb Lu Hf Ta W Ir (ppb) Au (ppb) Hg (ppb) Tl 0) n ._ s: ™ L L L I I - D S 1 5 8 Geochemical analyses of high sulphide sampl 159 3 o to ° > ~ 6 N 2 c i O CO « o m w >;.* CD <=L 5 LO o §' co CD CQ CD O c CN CO CD CO c i CO to CO >^  CL X ce o co la - £ CD co CD CD CD CO CO co c£ CO to o co o § ™ CQ CD CD CM O O I O CQ CD co c£ co « CD CQ CD o 6 i CO CD ICQ CD co CD c c i co V co CL CO CL CO LO c d CO O) V > i CO CL CO d. to CO CO CO CO CO c£ CO to o ro to O CN O O O O O O O CO O O O O O O O CO CO CO co o o h- o o o to LO O CO i — CO CN o ^ o co o d cd crj 6 d d i - O CD O O o T - cn CM co d d -r-o d " s t O O O O o o o o CN o co o o CM CM ° d O CO "Cf CM CO to O O O r--r-~ x - T~ CM O CM O O N - CO CD CN d d i n d d d CM cd CM v v x— co CM co O CO ^ t CO LO T-o o o o o o cd d d d d d d -tf v v v v o to o o C O O C O O O T - O T - O T -LO CN CN o o o m N O CO CD r*-' cd LO CN x— O CO O O CM O O O CO ^ N r -r*- o o o o o O CN O LO O CM o o o O f CO O CO •^ r T- oo ^ o CN d d CM d LO T- O O O - - - - T- tj T- cd CO CN CD O O L  d d cd LO CM CN O CO CD CO CO O Q LO T - CD N O d v I s - d d x- d O CO O O CO d -r-T- O O O CM O O) CM ^ LO d CN t N V -cj- CN CM O O O CN t CO (D N h - O O O O O O O CM N N -^ r o o O 0 0 CM O T- T- o to ro N N C D O O L O C O C O t D C D O O L O O O h - . CM o l O O n C D C N r - r - C N O ^ ^ O ^ i ° V t - ° CD O X? CN \/ v v oo o 9* T- v C M t D C D O O O C O O O ^ t L O C ^ r - o o T - o ^ o o o T S c o CN r CO O O CO O )A CM r j " t - CO Z-~ o C S - L O L O C D O O O C D O T -( D r - m CO O ^ Q CO CD O S CO LO i -O LO LO CN CO CO CN d O O O 0 0 O O i o o o N -cr CD CN O O • CM LO O CO O CD V T- N O K » CD ° ? LO O LO CN O O O O O O O t O O O C M O O O d c r i u ) t N d d ° r : d d ^ ! i t o T- CD CO CO O CN O) V ^ - 3 C D O O O L O L O L O O O O r - i L O O - C M - r - V t - c O O w V -<- ^ V 0 0 to O O CO CD x— LO i Q S c d -^ r O O O O O C O L O C N O O O O O ' LO O : LO CM V O t - o i r ; V ^" CN CN I s - CD LO CM x— T— CD CD r~-^ CM ^ ^ LO d O O O LO O O CN CD O CM CD V O ^ C O O O C O M - T - m N t N O C N O M O C N L O O H C O C O V O O O ^ g ^ ^ CM O C N i - N O O O L O O O N L O O l O l i - C N O C N C O O . C N O T - CD « - O CM O O r - r-CM O , d C D O O O O O C O C N L O l O O O O O S c M ^ ^ r - ' d r - t r - . „ . w w Xj K t- r- ^ V t- r>- t- CM CJl <- (M IN O !P CO CO -Looocotrh-«-www — V t - ^ ^- CO O " P T \/ rN r i ^_ O O CO O O O fflgp:ci«!»c«i *~ CO CM o o CM tr LO LO ; o O O L O T - L O C O C O O O C D O O L O O C O T - T - C M O O i o o d * - c o t o ^ o ^ d i n 1 n - ^ N d N s d T o c i d H ™ d v T 7 v in in r- ™ v L o r — c n c o c M o v o — v K O O C M C M O o - tr co LO O O LO LO tr CM o o CO CD O T- CO O T- O CD CM d iri 2 d C O O C M T - O O O O O O C M C O C O L O < N x ^ ^ d c M c d d 1 9 d d d 0 . g > d C D C D C O C O C O t r O U ) CD CD t- »-LO CM c D o o L O t - o o r — o o r - O T -n L O O r i C O C N ^ O l L O O m n C O ° V t- V CO O 0 1 2 CO v - £ S CN £ • O r - CD T - O O O ^ ro ro 6 C N V 6 tr r- cn CN LO CO t- CD O CO O CN h O O l D I N O l l O i - O O l O O O r O t n i O M O O O N O O N N O ) ' -• i n o ^ n N V r t o O n o S , ; ' L O n d ro'to c i ^ s d d ° , r ^ S S r- ™ v T - c n c o o c n c o v ^ 3C f co t-^ o C O O O C D O r - L O O O O C M • L O O Q t T T - V <- O O ° V v - ° V 0 0 O 0 0 V LO o O C O L O t r o t D O t r c D O O O O O C M d r 2 c M , ~ T T d c o ' c d c d T ^ d P d d d r - c o v v CN LO ro cn N v 0 0 T - CN t - t -o tr o ^ CO ? ! L O C N O L O C M C D L O t r T - O C D O L O L O O t O r - O L O O C M O O O O C M O O O ' ' ' n » S s ^ » d n S < n d n ( N ' r i d " ' t d d 1 1 ! ^ "° 2 O " V 0 , 1 t- CN 0 0 LO t- LO V CN LT o CO O • CO CM Xt T— T— in r~ m i_i i_ b .t; TJ to tu » c o » r CO Z3 O Q < o n ° ° 9 ° o 9 , 0 O r ? (0 h < I L S S o z ^ 1 O «) O p CD — O i _ O . _ D c r o t 0 C D L _ i 3 i _ ^X> m u - O c o > u u z U N C D < c o c o c e c o > - i s i z o OIO s < o : CO CO CD CO CO h O CD 160 CD o co 8 CM ^ o co 6 M 2 q N CO O g ™ CQ O g CM 2 CM c CO O) 5 c i CO to CO >; Q. to ±-: E CD CD 1st to >31 x Lv to J= co co co CO CO C L CO co CO CO CO 1 w £ CO CO CO I DC CO T -CO ^ CJ) T- T~ CO d c i d c i c i co o CM x- cn LO d d d d v v r— co o CM co tN * CO O) „ CM LO CD N- CD CM Cn CO T- CO d d d d d T - C O O C O T - T - T - C O d d d d d d d KI O r S r S O T - T - T C M O L O ' r i r i 1 ^ O C D O I O C N T - ^ ^ L O I ^ C M C O C M O I L O c o i c o ' c o ' c N ' d c N ' d c v i d T ^ d v ^ d ^ d L n i i O C N | T - ( S | ( \ J C 0 C O N T - N - r - 0 0 C \ l r L O r O r O r d d d d d o O P?j Z_ . I__ CD CO C\l l N ^ m ^ O O C N O T - O C D ^ C D C O C O O C D ^ p - j ^ C N o t r •^r co ^ co i n L n o c D C N N ^ c o o j ^ T - v t ^ r o L o i r i L o o N c r i d c N i d d d d d d d d d d d ° v V c o c o CO LO I CO o CO T- CM O CM O d d o o o d T - O d d i n CD i n O N O N O V V CD CD O t d co T- ^  in V -^r LO ^ LO V LO CM CO CM CO CO CM O O CO O ^ O C O C D O L O C O C D L O C M co ^ r d c o d c o ' d c M d - r ^ d CD-r-COv-Ov-Or-d d d d d d d d r ^ ^ - ^ - C M O C M O C M O T - C N d d d d d d d d d d P * C N O J C D C D L O N N O C n Q Q O • " V V O ^- O N ^ Q, ^ CO O) Q LO CM ^ CM O CM O • C N l T - L O r O L O O C N I O L n t O L O r -J O O O ^ T - I X I C N J O N ^ Q O C N > d ° d v V ^ T ^ ^ C N ^ 0 0 v v r ) y CM LO LO LO LO O O O O O t- i - CD CO ' n n n V V l> CM CO CO O O 1 S cri d CM m CM oo co T- ^  r-d d d d d d T - C M O C N O T - L O C O O O L O o o d d d o 9 % g j ; CD CO , CO g CO LO CM CD CD x-••^ d d d d d d r- TJ- T- x- LO d d d d P o v L o o r ^ o c M T - o c o c n v T - x j - L o r ^ - ' r i ^ c o c n x - r i ^ t d T- co co JS O r ^ C O C T ) C M L O C M C M C M C D x - L O T - O C O C O L O C T ) t ^ O T T C O C M C J ) T - 0 - ( - O T - 0 0 0 0 0 C O t T ) t O T - t M T r c O L f ] t O N T - t O T -h ~ d c O T - d x - d * - d d d d d _ _ cn co CO co CD N O CO CM o iri co ^ IO CD N CO CO S O - CM ^ CD ™ t- ^ u i_ L "O to tD CO C O CD ±L W D O Q < L U E 3 O A > , 0 L E £ a . Z l f l U l O h D I L U h > -X ! C L C L C L a C L C L ' ^ 3 ro -> 3 CD _ -Q . _ _ l X H S J = < X I - Q - C Q 161 o o a j O N ^ t D L o m c o o o o t D L O c o o i n O O ^ i - N i - C M O i r ; ^ l ^ - o C D " -° o ••- ^ r - c n c o ^ i j l c o 0 m c n o o o o - r r o o r ^ c o r M o o o - « - » • • • O CO • • C O CO CO CQ CD CQ CD CQ CD q CQ CD CO CO CO o- ro E S 3 " ! •is'8 Q. _ 9 C M CQ CD w 8 co -cn co o co CD CL O CM 2 o CO CQ W ££ CD <° Q. C o_ _ 00 LO q co 6 CM 5 q ™ CO f f -CQ W 8 "§ « C L E 0) CQ CD CO CO o Li I CQ CD ' CO CO 9 ™ CQ CD c CO ° > S c i CO <" q CQ CD K 8 t h-- CO O CD O O O W O N C1CN LO O LO r- O O CD d ^ O N ^ CD CO O CM O O LO O CM CD CO O O O O O O O O h - CO CO CO •«-' CD CO CM O o r-- o o CJ> h - o co o CO O CD CD O h -^ d L O CO o O h - o o O O CM CO CD oi d cb cd c o V V T - v- O O LO O LO O h -cri d co w d i r i d d O CM O O ^ CD LO CO LO O CO t T- N CD O i~ d d d d o CD d O N t O) O o o o o CM CD L O CO co cri t - r-OJ v- O O C D O O O O O O CM 00 CM O O CO O O O CD o o -^ r CD CO CO CD -r- o o o o O v - N O 1 CO O CO O CD CS O J r -d co d c i d d d d d co cri CO V CO o O J O O ^ - O o o co O CM O O C D O O O O O O O o o o LO CD CD d cri CO CM O CM CM O CO LO ^  CO LO T - O O O O o 0 - O O O O O O O O) CO N d v c o d d d d d d d T - ^ T - ^ O l O O t - i - CO CD OJ LO CN CM ^ O r~ d d d s i r i d i - CM O CD O CO CD ^ i o c o V o J o 9 c D N CO LO T- CO CD T-• o o LO CD o c o ; m O n O l CN (N N . _ ' V ° o o O O O O O C O C N O J O I ^ - O I C O O O O C N O O C N C N O C O n S co d i : co u d o i d N O ) d ^ d d o , " r ; d tZ V V IO CO N O CO O V VX O J j^- oj o S T - T- CM CM N C D ^ C O C O O m O O O O C O C O L O O L O O O r - C D O O l O C O O o 2 r - % % 8 8 ^ " [ g o ; N N O i ^ d 0 C D C D ^ V V ^ ^ I - L O ^ V --co - t T r o io CM O O O ^1 CO L O f - O ^ C O O O I O O O O 0 - CD O ~ v ^ V v ^ v ^ v , _ ^ u w . LO LO CD I s -: O ) V - T - T — o o ' w j a ) — ; c o c o V V CO CO II ^ CO y CO CM CO V CM T-CN O O CD CM CD O O CM O O O : cri d ° . $ -O O O O C O O C O I ^ - C D C O O C n O O O O O O C M O O h - L O ^ o ^ ao- C M ' o o r*- co o L o o o r ^ T j - c n o o o o c o r ^ - o c N c o O ' s r h - c D o o o o o O T r o o a j o o o i n O o N i N c n - j o o ^ ^ N U ^ C M c d d c M o S p ^ c M o d ^ E 9 d c D O O L O c n c n L o o o o c n o o c o c o c o r ^ c M c o o o o L o o o c M O O c o L O O O L O C n c O O O O O O O O T T x -' L 0 O ' C M C M C D ^ - O O _ f ' r i C M r i C 0 \ / m r n IN ^ « V O C O C O V o l O O T - O O O O O O ^ f O O ' d a i T r L o ^ d P c N C J c d P S c o t - T j - CN CD CO LO T- CO I I CO T- T- LO ^ c o o o c o c o c n - r - r ^ o O L O o c n ricoOr-jCMT-cocotoOri^T-° V T- ° IN o " 5 co V T- CO £ LO ^ CM L O r ^ h - r - O O O O O O C M C O C M C O > CO CO CD V O cd d d i-' d r - r>- ~ — ^ L O o o o o c o O T f T r c o o o o T - o o c M c n L o c o ; L O o ri L O C M s o o K J j j T ^ " - n « ; r i » ; - : r ; t n X n n v - j • O O L O C O C O L O L O O - o ri co - • - - O C O T J - O ^ O O O C O CO T f o o o L O h - T" T-c D O O L O v - N - c o c n o o c o o - ; L O O r i i ^ C M I ^ C O O O ^ - r i IN o N 2 n j CM CO • fg T- V CM LO < D ; L O C D T - O C M C M C M O O O O O O C M C n O T T — ^ b ^ b c t i c d d ^ d d d P J d T i - h - C M L O T - c n v o C O L O T- C O T - C M O O C O O L O O O O O O c° ^  oS ° d ^ ° C O C D ' — 1^ CO 10 O Q < O Lt W) CD n n " 0 " ° 9 9 . ° ° O O h < i L 5 5 o z ^ o. O p. o o O CO J ' O CD — O i _ 0 . _ 3 cr o W C D L - . C t i _ L U O o i O - C U C I— m L L U C 0 > U U Z U N C D < C 0 C Q Q : c 0 > - N Z S < U £ c 0 C 0 l -0 0) co ro O CO _ J 1 6 2 CO CD CO CD CO CD CD CD CQ CD ce S 8 CO CO £1 e a- ro E cc S Q . & - a ra" 8 ~u o E CO S CM 1 CO CD CQ CD O CM ^ O CO ICQ « CD CQ CD CD LO O CO CD CO CO a. CO co o CM £ O CO CQ W CD CQ CD I ac cc 8 e OCNOr-COOJOLOT-OTJI T - d c \ i L d d L d T - L o , T ^ C N d c N d ' < ~ r d co ^ T - C N x - C M x - C N x - C N x - C N T - C N x - L O C O L O O L n O O L O o o o o o o v £ j CD ^ o o o c o T - o i i f i o c o s M s n c o c o r - L n > - c o o o r o c r i c x i ^ n d n o c r i d ^ o ^ d c N d v v N , t ° o CN S OJ y l o iocnncNQcotr jcoT-ncotr iLn I _ • • _ • • _ • \ / « N lO CD CO n ' ^ c d t N O c v i d d d c N i d r - ' d ^ d ¥ od o c o c N r o T - T - W T t c o c x i T - W T - n T - t o w o ^ o c o o i n ^ c n I N - O C O O O x - O v - O O O O O O O V V Tj" 00 CD 00 CO CD ^ CD CN V ~ C O C N C O C N O C N O C O t - C N O C N O T - o o o o o o o d d o d o l O L O L n N T M O ^ O r - C N ; O V V C O t O N N 0 0 f 0 o !I CD 5 o O LO r - O C M O i - N T - ^ T - LO r - CM c c Q V d d d c i c i d O C i c b ci CO cn CO Q . CO sp, LO LO O O CO O IT) O CN CO LO LO CD CT> d V V x - CO ^ CD CD U5 O T O f ' - c o c o c n c o c n r -d c o ' c v i c N d c x i d ^ d d d d d r - ' C O C O C N L O O L O O C O O - T L O C O 8 ° ° 2 c n n O T ^ S C M C M C N L O T - ' * ! -^ d ^ d d d d ^ d d d d d O O C M C O t - O t - C N t - C N O C N O C N d d d d d ° . d ° . d ° d 9 o o o o L O O l C D O n O r M CO I— p j CN — . CNJ CM T— • L o o L o o T - o t r c M - < - t r r -: o t - v - " " " " t - oo • oo T - oo ~ oo cd ci ci d d o o V o o o o o o o o o V V v v v v v v v V V CD O O O O T - C O O C N r ^ . ^ c r i c o d i^' ^ c o 00 CO C O C D L O t T L O r - L O T -^ - ' c d c i c d c i L O ^ v o 00 o o CD q r— CO tr od CD CN tr ci 00 CO cs o i ! a T J t/i CD c o m a CO Z> O Q < u n a o_ o . Q . IQ.21(lUiOhOIIliH>-Jlh$i:<Ihtt.lllH3 163 GB-00-137 RHLT ank, sp, py str chl altn 6.70 LO o d 4.90 30.20 0.29 4.49 7.47 <0.03 0.15 O c i V 11.30 17.60 13.60 101.60 C O O O O C N C D O L O O O O T - O r - L O t f O O t r r - O O O O O O C O C T J t f o f f l O j j c t i r s w n O p j ^ n d " ^ t r i n N o H c o o i - j N " V •>}• h- l N — CM v »- 00 T - CM CO T -GB-00-135 2 SSMS py, po, sp, ccp 0.90 CM O cb V 0.20 44.90 0.10 0.11 0.23 <0.03 0.05 <0.01 1.90 44.00 25.10 113.60 r ^ O O I ^ r - c n i ^ C M O O C O O O C D C O O ' x r T - C N J O O O O O O C N l ^ - C O C M 0 « 1 0 n ' t « 4 « J O O ( j r j C O t j ^ d ^ d M c i i d ^ d o o n S o ° V ° •<- ^ S S CO 1 0 V V C O O I N M C N S V O " V " " " C M ^ CO CM CD — £ CO *-GB-00-125 SSMS py, sph, ccp 11.60 0.02 1.40 32.60 0.12 0.26 5.64 <0.03 0.41 0.14 8.00 33.50 18.50 110.50 T - O O C O C N O ^ t f r O O L O O O ^ t f C D O O C O O O O O O O C N O C M C M • i n O ' S C \ i N c o o g ^ r N J T - c o ^ o N N s d ° v r d d r S c o v ° 2 oo ° v C N C M f i T - o n c o n v - ™ V ^ ^ CD ^  C M L O t J -GB-00-124 SSMS py, sph 15.50 0.03 2.00 35.90 0.05 0.29 4.02 <0.03 0.55 O.01 6.00 34.60 20.30 111.40 C N O O C M O C N O C O O O O O t t C M C D C D O O t T O O O O O O C M O t r C M ^ L j o ^ ^ c N ^ n c o o ^ ^ ^ . - c o ^ ^ ^ ^ ^ d ^ d o o ^ ^ c o V V " co S £ v ^ ™ M - ? " CM V GB-00-117 SSMS py. sp 8.00 <0.02 <0.2 45.60 0.03 0.09 0.32 <0.03 <0.05 <0.01 1.10 42.50 25.40 113.10 L O O O L O t r c O O T O O O O O O O O O O C O C D C N L O O O C O O O C N C D C O O V v CD CO ^ <- v CO O ^ f GB-00-109 RHTT cal, qtz, py, sp mod chl altn 20.90 0.13 8.30 14.00 0.17 0.94 12.80 0.10 2.20 <0.01 10.80 15.50 10.40 100.40 t r C N O C D C D O O O O O O O C O L O C O O l O O O C D O O t r O O C M O O O r n r - « v V ' - p ^ ^ c o ' r / ™ n S < - w c o o N i f v - ^ f l ! N V 1 0 £^ CM *~ CM *~ GB-00-101 SSMS py, chl, sp 3.40 0.03 2.10 35.50 0.13 1.17 3.33 <0.03 0.55 <0.01 4.70 36.00 19.90 108.50 OTOo^-^CM^r^ooooov-LOtrcoocDOOOOoocDogtr _ - i n o ^ o c N » ^ o o ^ r j ^ o i c j ^ ^ ^ ^ ^ r i c q ^ s o c n c o t o V y - O O ^ M M v (v, CO LO M O S O) ' " C O CM CO ' t GB-00-098 SSMS py, sp 10.20 <0.02 <0.2 37.50 0.03 0.04 0.44 <0.03 <0.05 <0.01 0.50 38.20 21.10 110.70 C D O O L O C D C O O O C n o O O O O a i - r - O C O r ^ C M O O O O O O C M C O C O C O n ' L O O n O N S O O O r j d N ^ T; d d d ri CO d ° l d O o ° . ™ o ° V V T _ c ^ g r - 0 ° V V L O i - O t r t D r - V O V CN § ^ CO CO CO GB-00-095 2 SSMS py, sp, asp, tt 0.90 <0.02 0.50 40.50 0.21 0.13 1.05 <0.03 0.13 O.01 1.70 39.70 23.00 106.60 r - O O L O L O L O L O T - O O C n O O C O t r c O C O t T L O O O O L O O O t f L O C D C N - j i o O Q ^ c N v c o s O p j d N j i ' N > f L d d o i r i d ° d o o p ! S c j i a v L J co o 1 ' g CM 'rv. " c M c o c n o o t n o l N CO g t - CO ^ CM GB-00-084 SSMS py, sp, ccp 1.50 <0.02 0.30 47.80 0.05 0.83 1.95 <0.03 <0.05 O.01 2.80 43.60 28.10 111.80 r - O O r - L O O l c D - ^ O O O O O C O T - C D ^ C O C M O O O y - O q C M C O C O C D o l O O n C O l N V I O O O H J Q J ^ ^ r O C N d d d d X O I O O ^ g n v 5 g o T _ c o r - r-GB-00-083 2 SSMS py, ccp, sp, gn 0.70 <0.02 0.20 46.00 0.03 0.23 0.58 <0.03 <0.05 <0.01 0.90 45.30 27.20 112.90 r ^ o o i n o o c n c O T - o o i n o o i o o x - ^ c n i n t - o o o g o p c N L q m o i - | L O O O > - C N I O C N O O J J Q J H ^ ^ ^ d ^ C M ' d H r - O o R ^ - r -° V ° *- 2 C n ^  V ^ C O N C O C O C O v o " V « J io T - L O C M GB-00-081 2 SSMS py, sp, ccp, po 4.10 0.03 2.60 34.20 0.06 0.52 0.63 <0.03 0.47 <0.01 3.00 34.00 20.20 108.20 c o o o c D c D T - T - c o o o o o o O T C B T - r ^ o c D c n o o o o O L q g g t f v LO co ^ co v _ CM Sample Unit Code Description Alteration SiO, TiO, O < 9 o o 9 , c o i co ra i i S S O Z O m o CN 0 _ CO, ST LOl Total (11 o v _ O . _ D c C 0 y ) C 0 ^ J O i _ ^ . a O O T T 3 ^ c . a c D , c f l r a r a m u . o w > O O Z O r 5 o < c o m K c o > N Z S < O S c o w H O m _ i 164 c n r a r o ^ o i ^ u i i n c N t N O i - f O ^ - T - i n L O T - o c n O ' r ' t r - ' d d - ^ d v ^ d c N d t - ' d - r ^ d ^ d V v S S ° i o ^ a ' c v ' O ^ T - N C O *— CO CD LO C O Q . ~ i-r n> a . o o 9 OT o m w a CD _ V £2 CD CO "> 9 « to ca CD co £ O OJ 2 o co ab w CD CO CD 1=2 ce a- -o . o ro E C L CO ^ 6 (M 5 r O CO o c i w >. CD Q-CO o. — to co CD o O c\t  9 co >; CD 8 " CO CD Q. CO co 2 ro co d CO to 9 < N CQ CD D -CO 8 I & CO -9 CQ CD $ 8 co o o CO CD CN C L 8 ' C N O C N L O L O t - L O O C D ; O ^ O O O V V t - O O N O O CD CD O W ( D ^ ^ ^ N ( O C O ^ C O C N n a 3 C \ | C O i r ) O C 0 0 0 3 0 m N C N rocMcxJcNdcdd^dcNdcNddd'^' v S ° ° S c o ' c N t D " * T"" CO N ^ CO v " O L o u ^ i x ) C N c o ^ c o L n ^ c N ^ c N r ^ c \ i c D L n c s i ^ i r i T - ' d ^ o c N d T - d r o d d v v O C O O ( N O C T ) N r CM CM CN O T - CT> T - C O O O O O O C N T - c N i n i n c n m o a i O N O ' - O N — o o o v v m a i o co " co o C N CM" 0 0 * ~ ' C M ^ ^ O LO O ^ CO r ^ o o c o ^ r L o c M L O T - c o T - i o c M c o o c o L o o ^ i -c d a i c d i i i d ^ ^ c i i ^ c o d c o d i r ) co O ' t C N L O T - x - C N c O C N ' C f r - ^ r -a i c N c o v - o ^ - o d o d d d o C M C D C D C D t O N O C N j N L O - V V t - C M O C N H c O T - -° CD "v]" ' CO S CO ^ CO ™ T - C M T - C M T - C M C M C M C M C M L O L O T - C O O C D O O O O O C O C T > o o o o o o o d d O O O T " T -d d d co ^j- L O C O V V V V V V V O C N l U l C J ) C O O ) C v l N r - ( O O C N O ( N L O t - I O O ( i ) O c O c N l O N C O C O T - C O O O O O O O O O O O O O CM CN N t o C O C M C O C O o C O d d d L O r -V d COtDCDlfir-NT-LDrCNOCMO L o d ^ d d d d d d d d d d m m m o N O C M O ' - ^ ; O I - V C D T - O O -o V o • *- ^  V ^ - LO ^ C O V CM ! cd C D ^ co o CO O T - o o C O T - C O T - T - C N T - C N L O L O L O L O O C D O C O d d d o d P d O o q - v c o r - o c j O O s o i o o - » t t C O O L O C O » - C O O J O C N t D » - C O T - C f l C 0 0 1 L O O i -c o i - n d d d d ^ d d d d d c i d y v L O ^ C O o tr o -*r cn tr E • ro _ to CD CD ~ . Q - Q J 3 D . CL Q. a a. to)Doa< i E 3 i j j ) > . O u E j l D * - r c i > i - 3 C » _ i ! _ c ro :COLIJUHQXUJI->- -JXI -SJ=<XHCLCQHZ )S 165 Appendix C - Mineral composit ions 166 Weight Percent Oxides in Carbonates as determined by Electron Microprobe Analysis Gra in Samp le Mineral C a O FeO M g O M n O Total 1 G B - 0 0 - 0 0 7 ca l 5 4 . 2 6 0 .53 0 .18 0 . 9 5 5 5 . 9 3 2 G B - 0 0 - 0 0 7 ca l 54 .04 0 .56 0 .09 1.13 5 5 . 8 2 3 G B - 0 0 - 0 0 7 ca l 5 4 . 3 9 0 .16 0 .15 1.05 5 5 . 7 6 4 G B - 0 0 - 0 4 7 ank 2 8 . 8 3 14 .25 11 .35 1.24 5 5 . 6 7 5 G B - 0 0 - 0 4 7 ank 2 0 . 7 8 2 6 . 9 8 8 .22 1.60 5 7 . 5 7 6 G B - 0 0 - 0 4 7 ank 2 9 . 2 5 13 .69 12 .25 1.04 5 6 . 2 2 7 G B - 0 0 - 0 4 7 ank 2 8 . 6 3 13 .89 11 .90 0 .84 5 5 . 2 6 8 G B - 0 0 - 0 4 7 a n k 2 8 . 9 6 12.01 13.31 1.07 5 5 . 3 4 9 G B - 0 0 - 0 6 0 s d 6 .19 5 1 . 8 6 1.44 0 .67 6 0 . 1 6 10 G B - 0 0 - 0 6 0 s d 4 . 5 2 5 4 . 0 2 0.91 2.11 6 1 . 5 7 11 G B - 0 0 - 0 6 5 ank 2 9 . 7 0 7 .33 1 5 . 9 3 0 .85 5 3 . 8 2 12 G B - 0 0 - 0 6 5 a n k 29.11 7 .34 13 .50 0.41 5 0 . 3 6 13 G B - 0 0 - 0 6 5 ca l 5 2 . 2 7 1.29 1.08 0 .57 55.21 14 G B - 0 0 - 0 8 1 s d 3 .53 5 2 . 3 8 4 . 3 9 0 .42 6 0 . 7 2 15 G B - 0 0 - 0 8 1 s d 6 .23 4 8 . 7 8 4 . 5 6 0 .24 59.81 16 G B - 0 0 - 0 8 1 s d 5 .92 4 8 . 2 9 5 .46 0 .24 5 9 . 9 2 17 G B - 0 0 - 1 0 9 ca l 5 3 . 7 5 1.40 0 .40 0 .69 5 6 . 2 5 18 G B - 0 0 - 1 0 9 ca l 5 3 . 2 9 1.46 0 .40 0 .76 55.91 19 G B - 0 0 - 1 0 9 ca l 5 2 . 9 9 1.38 0 .47 0 .63 5 5 . 4 7 2 0 G B - 0 0 - 1 0 9 ca l 5 3 . 0 4 1.34 0 .57 0 .66 55.61 21 G B - 0 0 - 1 0 9 ca l 5 3 . 9 3 1.19 0 .56 0 .63 5 6 . 3 2 2 2 G B - 0 0 - 1 0 9 ca l 53.21 1.39 0 .46 0 .65 5 5 . 7 0 2 3 G B - 0 0 - 1 0 9 ca l 53.61 1.45 0.41 0 .66 5 6 . 1 2 2 4 G B - 0 0 - 1 3 4 s d 0 .02 5 7 . 8 7 0 .00 3 .38 6 1 . 2 7 2 5 G B - 0 0 - 1 3 4 s d 0 .05 3 6 . 0 3 6.71 16 .69 5 9 . 4 8 2 6 G B - 0 0 - 1 3 4 s d 0 .19 5 3 . 8 7 0 .28 6.71 6 1 . 0 5 2 7 G B - 0 0 - 1 3 7 ank 2 9 . 2 3 14 .72 10 .86 0 .89 5 5 . 7 0 2 8 G B - 0 0 - 1 3 7 ank 2 8 . 8 4 14 .62 11.21 0 .87 5 5 . 5 4 2 9 G B - 0 0 - 1 3 7 ank 2 9 . 0 6 15 .47 10 .93 0 .88 5 6 . 3 5 167 Weight Percent Oxides in Biotite as determined by Electron Microprobe Analysis (Operating conditions and standards used given in Chapter 3, Table 3) Grain Sample S i0 2 Ti0 2 A l 2 0 3 FeO T MgO Na 20 K 2 0 BaO F Total 1 GB-00-004 34.81 0.99 16.59 20.35 14.06 0.15 5.68 0.49 na 93.11 2 GB-00-004 37.74 1.29 16.76 15.50 13.94 0.21 8.39 0.69 na 94.52 3 GB-00-039 38.15 0.80 17.09 11.64 17.08 0.15 7.21 0.17 na 92.30 4 GB-00-047 39.42 0.69 15.75 14.20 14.88 0.12 8.47 1.03 1.06 95.63 5 GB-00-047 39.83 0.47 15.95 14.10 15.30 0.14 8.55 0.68 1.07 96.09 6 GB-00-059 42.65 0.14 14.94 1.84 25.80 0.23 8.85 0.21 7.73 102.40 7 GB-00-059 42.56 0.08 14.80 2.14 25.00 0.16 9.36 0.19 7.49 101.77 8 GB-00-059 42.71 0.10 14.60 2.42 25.47 0.21 8.84 0.21 7.69 102.23 9 GB-00-137 36.89 0.81 16.90 17.82 11.67 0.19 8.10 0.64 1.69 94.71 Weight Percent Oxides in Muscovite as determined by Electron Microprobe Analysis (Operating conditions and standards used given in Chapter 3, Table 3) Grain Sample S i0 2 Ti0 2 A l 2 0 3 FeO T MgO Na 20 K 2 0 BaO F Total 1 GB-00-004 48.09 0.41 29.55 2.97 2.71 0.35 9.62 1.57 na 95.25 2 GB-00-004 46.81 0.42 31.04 2.52 2.11 0.37 9.43 2.07 na 94.76 3 GB-00-007 47.59 0.69 33.86 0.96 0.65 0.32 10.52 0.26 0.00 94.84 4 GB-00-007 46.73 0.76 33.34 1.39 0.63 0.22 10.30 0.26 0.00 93.62 5 GB-00-007 47.65 0.67 33.64 1.19 0.64 0.26 10.85 0.23 0.00 95.13 6 GB-00-018 48.67 0.55 31.41 1.17 1.88 0.16 9.61 1.18 0.00 94.63 7 GB-00-018 48.49 0.82 31.78 0.95 1.90 0.19 9.83 1.02 0.00 94.98 8 GB-00-018 48.52 0.69 31.35 0.98 1.95 0.15 9.39 1.06 0.00 94.09 9 GB-00-039 49.26 0.25 29.66 1.35 2.77 0.27 9.51 1.10 na 94.17 10 GB-00-039 47.96 0.47 30.61 1.55 2.63 0.29 9.38 1.15 na 94.04 11 GB-00-049 46.54 0.20 28.55 3.42 2.75 0.24 8.29 4.41 0.00 94.40 12 GB-00-058 49.02 0.28 30.99 1.86 2.56 0.46 8.56 1.66 0.56 95.95 13 GB-00-058 50.59 0.23 30.90 1.16 2.91 0.38 8.93 1.58 0.68 97.36 14 GB-00-058 49.88 0.28 31.12 1.25 2.48 0.45 8.43 1.74 0.57 96.22 15 GB-00-058 50.11 0.32 28.18 1.20 3.62 0.29 9.10 1.71 0.95 95.49 16 GB-00-059 50.59 0.18 29.83 0.92 4.56 0.44 9.06 0.88 1.25 97.70 17 GB-00-061 50.59 0.32 30.91 0.80 2.84 0.25 9.13 0.65 0.00 95.49 18 GB-00-061 50.01 0.26 31.35 0.73 2.62 0.23 9.14 0.67 0.00 95.02 19 GB-00-061 49.89 0.32 30.84 0.79 2.66 0.23 9.51 0.63 0.00 94.88 20 GB-00-109 45.74 0.41 28.50 2.45 2.53 0.34 9.08 4.08 0.56 93.69 21 GB-00-109 46.60 0.31 28.11 2.59 2.44 0.23 8.83 4.09 0.50 93.70 22 GB-00-109 46.47 0.43 28.11 2.72 2.58 0.32 8.86 4.27 0.54 94.30 23 GB-00-109 45.20 0.52 27.21 2.97 2.68 0.41 8.90 3.93 0.57 92.40 24 GB-00-109 45.09 0.62 27.41 3.16 2.60 0.73 8.84 4.21 0.56 93.22 25 GB-00-109 46.86 0.46 27.91 2.68 2.48 0.40 8.69 4.04 0.51 94.03 26 GB-00-137 48.07 0.19 28.96 2.93 2.49 0.36 8.05 2.44 0.18 93.67 Weight Percent Oxides in Chlorite as determined by Electron Microprobe Analysis (Operating conditions and standards used given in Chapter 3, Table 5) Grain Sample Type S i0 2 A l 2 0 3 FeO T MgO Na 20 K 2 0 F Total 1 GB-00-004 1 26.23 21.47 21.95 17.59 0.03 0.05 * 87.30 2 GB-00-004 1 26.08 21.79 21.73 17.64 0.00 0.01 * 87.25 3 GB-00-004 1 26.12 21.73 21.19 17.79 0.03 0.02 86.88 4 GB-00-004 1 26.29 21.31 20.67 18.44 0.01 0.01 * 86.72 5 GB-00-039 1 28.01 21.35 15.63 21.31 0.04 0.60 * 86.95 6 GB-00-109 2 29.90 15.81 32.60 6.59 0.94 0.18 0.75 86.77 7 GB-00-109 2 29.05 14.81 32.88 8.19 0.35 0.15 1.12 86.54 8 GB-00-109 2 30.19 14.54 31.15 9.10 0.58 0.17 1.37 87.09 9 GB-00-137 2 29.35 15.56 33.48 7.79 0.02 0.08 0.00 86.28 10 GB-00-137 2 29.68 16.11 32.28 8.54 0.02 0.12 0.00 86.75 11 GB-00-137 2 25.18 20.84 25.05 13.95 0.04 0.02 0.00 85.07 168 Weight Percent Elements in Arsenopyrite as determined by Electron Microprobe Analysis (Operating conditions and standards used given in Chapter 3, Table 4) Grain Sample As Fe s Co Total Associated Phases 1 GB-00-027 39.3 35.2 24.3 0.00 98.78 py. sp 2 GB-00-027 42.1 33.8 21.4 0.00 97.27 py. sp 3 GB-00-027 41.7 35.0 22.7 0.00 99.35 py. sp 4 GB-00-029 41.3 35.5 23.5 0.02 100.27 sp, tt, gn, py 5 GB-00-029 41.7 35.0 23.3 0.00 100.02 sp, py 6 GB-00-029 41.6 34.8 23.2 0.06 99.70 sp, py 7 GB-00-029 42.1 35.0 23.0 0.01 100.15 sp. py 8 GB-00-030 43.0 34.5 22.2 0.00 99.66 sp, py 9 GB-00-030 44.5 33.7 20.7 0.00 98.89 sp, py 10 GB-00-060 42.0 33.8 23.0 1.43 100.28 po. cpy 11 GB-00-060 42.0 32.4 23.0 2.57 99.97 po, cpy 12 GB-00-099 42.5 35.1 22.7 0.00 100.35 py. gn, sp 13 GB-00-099 41.5 35.0 23.3 0.03 99.83 sp, py 14 GB-00-099 42.1 35.3 23.0 0.00 100.44 tt, py, gn 15 GB-00-099 42.1 35.1 23.0 0.00 100.24 sp, gn, py 16 GB-00-099 42.5 35.2 22.7 0.00 100.45 sp, py Weight Percent Elements in Sphalerite as determined by Electron Microprobe Analysis (Operating conditions and standards used given in Chapter 3, Table 2) Grain Sample Zn Fe s Cd Total Associated Phases 1 GB-00-027 59.4 5.96 33.2 0.67 99.24 py, asp 2 GB-00-027 57.1 7.70 33.2 0.70 98.69 py, asp 3 GB-00-029 59.4 6.02 33.3 0.80 99.50 py, asp, gn, t t , 4 GB-00-029 59.7 5.93 33.1 0.77 99.47 py, asp, gn, tt 5 GB-00-029 58.8 6.33 33.4 0.74 99.22 py, asp, gn, tt 6 GB-00-029 59.6 5.82 33.2 0.82 99.36 py, asp, gn, tt 7 GB-00-030 58.7 6.71 33.1 0.69 99.27 py, asp 8 GB-00-030 57.4 7.84 33.1 0.66 98.96 py, asp 9 . GB-00-030 55.6 9.15 33.1 0.57 98.42 py. gn, tt 10 GB-00-045 58.7 6.47 32.9 0.49 98.55 py. gn 11 GB-00-045 59.3 6.18 32.7 0.52 98.76 py. gn 12 GB-00-045 58.9 5.64 32.8 0.63 97.93 py, gn, stn 13 GB-00-046 60.0 5.86 33.4 0.53 99.76 py, gn 14 GB-00-046 59.4 6.50 33.0 0.55 99.46 py. gn 15 GB-00-046 60.9 5.26 33.0 0.57 99.71 py. gn-16 GB-00-046 58.5 7.49 33.2 0.47 99.64 py. gn 17 GB-00-046 57.6 8.09 33.2 0.55 99.42 py 18 GB-00-058 54.9 10.42 32.8 0.47 •98.63 py, ccp 19 GB-00-058 55.4 9.75 32.7 0.50 98.27 ccp, py, po 20 GB-00-058 54.6 9.67 33.0 0.52 97.75 ccp, py, po 21 GB-00-059 57.8 7.31 32.9 0.43 98.45 py, gn, tt 22 GB-00-059 57.3 6.88 32.9 0.52 97.56 tt, py, gn 23 GB-00-059 57.9 7.67 33.0 0.49 99.07 py, gn, tt 24 GB-00-059 59.1 6.42 32.9 0.45 98.80 gn, py 25 GB-00-060 55.9 9.32 32.8 0.51 98.56 po, ccp, asp 26 GB-00-060 55.6 9.30 33.0 0.54 98.38 po, ccp, asp 27 GB-00-099 61.9 4.14 33.0 0.70 99.72 py, asp, gn 28 GB-00-099 61.8 4.14 33.1 0.76 99.80 gn, asp, py 29 GB-00-134 58.8 7.06 33.0 0.42 99.21 py, gn, tt 30 GB-00-134 58.4 6.96 33.1 0.32 98.79 gn, py, tt Weight Percent Elements in Galena as determined by Electron Microprobe Analysis (Operating conditions and standards used given in Chapter 3, Table 2) Grain Sample Pb SS Se Sb Ag Zn 1 GB-00-030 48.3 43.5 2 GB-00-134 48.6 50.2 3 GB-00-134 47.7 49.1 4 GB-00-134 49.0 49.5 5 GB-00-04S 48.6 48.9 Weight Percent Elements in Tetrahedrite as determined by Electron Microprobe Analysis (Operating conditions and standards used given in Chapter 3, Table 2) Grain Sample Cu Ag Fe Sb As Si Zn 1 GB-00-030 23.4 11.2 2.98 2 GB-00-134 21.4 13.2 6.07 3 GB-00-134 19.7 14.3 6.91 4 GB-00-134 20.9 13:3 6.09 5 GB-00-045 32.0 2A8 5_34 8J53 6.86 0.01 0.08 0.56 1.52 0.50 0.35 0.30 0.17 0.20 0.49 0.27 0.26 0.15 0.08 U.UJ 0.21 2.19 0.21 0.37 » 3 . ( 99.7 99.5 99.7 99.6 13.7 13.4 13.7 13.7 0.01 0.17 0.00 0.02 44.6 44.4 44.7 . 1.16 0.96 1.21 99.9 100.0 99.9 169 Appendix D - Fluid inclusion data 170 W O L V E R I N E D E P O S I T FLUID I N C L U S I O N D A T A Notes: 1. Vo lume fraction vapour by visual estimation at room temperature (20 deg C) 2. Freezing data accurate to within plus or minus 0.2 deg C 3. Heating data accurate to within plus or minus 3.0 deg C 4. Salinities calculated from the equations of state of Bodnar and Vityk (1994) TYPE I (primary aqueous inclusions) Minera l i za t ion vol.fr. Te Tm (ice) sa l in i ty Th S a m p l e S ty le Inc lus ion v a p o u r (deg C) (deg C) (wt% NaCI eq. ; (deg C) GB-01 -175 Stringer vein 6-1 0.15 -32.6 -2.2 3.6 265 (qtz+cpy+py) 6-2 0.30 -31.8 -1.9 3.1 285 7-1 0.20 -37.3 -2.9 4.7 282 7-2 0.10 -33.4 -1 .3 2.1 305 7-3 0.00 7-4 0.35 -31.6 7-5 0.40 -37.6 -4.4 7.0 305 7-6 0.40 -37.6 305 8-1 0.50 -31 -4.7 7.4 315 8-2 0.30 -45 -4.1 6.5 300 8-3 0.05 -26.4 -5.5 8.5 273 8-4 0.20 -36.5 -4.1 6.5 314 8-5 0.10 -38.6 -2.1 3.4 271 19-1 0.10 273 19-2 • 0.50 277 19-3 0.20 285 19-4 0.15 290 19-5 0.30 273 13-1 0.10 -18.7 -4 6.4 294 13-2 0.10 -14.8 -4.7 7.4 339 13-3 0.40 -17.8 301 13-4 0.40 -29.4 -4.2 6.7 13-5 0.60 13-6 0.50 -3.8 6.1 353 19-7 0.40 337 19-8 0.40 289 19-9 0.05 308 19-10 0.30 312 19-11 0.20 326 19-12 0.20 324 19-13 0.20 336 19-14 ' 0.30 321 19-15 0.30 320 GB-00-058 Replacement sulphide 20-1 0.40 -29.8 -3.6 5.8 (qtz+chl+cpy) 20-3 0.50 -34.7 -4.3 6.8 26-5 0.40 -27.4 -3.2 5.2 299 GB-00 -099 Layered sulphide 15-2 0.40 -23.5 -3.6 5.8 (sph+py+qtz) 15-3 0.25 -26.7 0 15-4 0.05 -36.8 -0.2 7-1 0.10 -5.5 8.5 GB-01 -175A Stringer vein 11-1 0.30 -15.9 -4.9 7.7 295 (qtz+cpy+py) 11-3 0.30 -24.5 -4.7 7.4 287 GB-01-176 Stringer vein 22-1 0.05 299 (qtz+py+cpy) 171 *= O - o O O (J ra O O O O O O O O O O O O O O O T - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 T - o o o o t- T- O O o o d d o o d d o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o LO CD ^ - C O C O C O T J - C O C O C N o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o CM CO d d u D c O L O c o c D L n c o L O r ^ ^ i n c o c O L n T - L ^ d o d o d d o d d d d d o d d o ' o ' o d d d d d d d d d o ' o ' o ' CO IO O) N CO CO oo d d d d d d d N N O l N N C O N C O m c D d d d d d d o d d d CM co LO CM cn co o~> co CD CM CD CO to <b cO CO CM LT) CD N CO CM LO OO TT CO CD LO LO LO od co CD LO 00 CM O) CO m CO CM CD LO CO v- CM CD CO CO , d o o d d d o co M- M- ; d d d d . L O ^ - c o ^ - c o S g ^ o o o o o o o . C M C M C M T - T - g c O C O L O C O d o d o d f - j d o o d t D U l ' J C M U l C O N ' - O O l T ^ d c D ^ C M ' d c o v - ' d d ^•IOLOIOCD^J-T-LOT-, CO CO CD CO CO LO LO CO CO C N ^ u i m c o a j a j c o N N O i o o T - o o n u i r M n c o ^ N ' M C N T - ^ N c o c o C M ^ m C D S C O O l T - C N r t x ' C D N C D C J l ^ LO Tj" CT CO LO CD T- T- CM CO CO 5 E ¥ CQ O OJ CL CO CD CD CQ CD CD > o l_ + cn p-IS CO CD 172 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            data-media="{[{embed.selectedMedia}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0052630/manifest

Comment

Related Items