Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Geology of the Ajax East and Ajax West, silica-saturated alkalic copper-gold porphyry deposits, Kamloops,… Ross, Katherina V. 1993

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-ubc_1993_fall_ross_katherina.pdf [ 31.53MB ]
Metadata
JSON: 831-1.0052622.json
JSON-LD: 831-1.0052622-ld.json
RDF/XML (Pretty): 831-1.0052622-rdf.xml
RDF/JSON: 831-1.0052622-rdf.json
Turtle: 831-1.0052622-turtle.txt
N-Triples: 831-1.0052622-rdf-ntriples.txt
Original Record: 831-1.0052622-source.json
Full Text
831-1.0052622-fulltext.txt
Citation
831-1.0052622.ris

Full Text

GEOLOGY OF THE AJAX EAST AND AJAX WEST, SILICA-SATURATED ALKALICCOPPER-GOLD PORPHYRY DEPOSITS, KAMLOOPS, SOUTH-CENTRALBRITISH COLUMBIAbyKATHERINA V. ROSSB.Sc., The University of Waterloo, 1988A THESIS SUBMITTED IN PARTIAL FULFILLMENT OFTHE REQUIREMENTS FOR THE DEGREE OFMASTER OF SCIENCEinTHE FACULTY OF GRADUATE STUDIESDEPARTMENT OF GEOLOGICAL SCIENCESWe accept this thesis as conformingto the required standardTHE UNIVERSITY OF BRITISH COLUMBIAJuly, 1993© Katherina V. Ross, 1993In presenting this thesis in partial fulfilment of the requirements for an advanceddegree at the University of British Columbia, I agree that the Library shall make itfreely available for reference and study. I further agree that permission for extensivecopying of this thesis for scholarly purposes may be granted by the head of mydepartment or by his or her representatives. It is understood that copying orpublication of this thesis for financial gain shall not be allowed without my writtenpermission.(Signature)Department of ^6-leol sccak^ST .The University of British ColumbiaVancouver, CanadaDate^4^-06cts 4- II^199 .DE-6 (2/88)AbstractAjax East and Ajax West deposits are two of a number of porphyry copper-gold deposits that are hosted bythe silica-saturated alkaline Iron Mask batholith, in the southern part of Quesnellia. The northwesterly trendingbatholith is an Early Jurassic composite intrusion emplaced in the Nicola Group, a well defined volcanic island arcpackage.Pit mapping delineated eleven significantly different rock units: Nicola Group volcanic rocks, picrite andnine intrusive units ranging in composition from diorite or gabbro to quartz monzonite. The Ajax deposits occur atthe intersection of two major dioritic phases of the Iron Mask pluton, the hybrid diorite and the younger Sugarloafdiorite, which is recognized as the probable source of mineralization.Porphyry-style mineralization consists of pyrite and chalcopyrite. Alteration has been divided into fourcategories: (i) pre-main stage alteration, (ii) main stage porphyry alteration and mineralization, (iii) late mainstage alteration, and (iv) post porphyry alteration. Four main stage porphyry alteration assemblages have beendefined: propylitic, albitic, potassic and scapolitic. Propylitic alteration, which occurs peripheral to albiticalteration, appears to be a weaker manifestation of the albitic assemblage. Albitic alteration, which is spectacularlydeveloped along the contact of the Sugarloaf diorite and the hybrid diorite is associated with high grade copper-gold mineralization. Potassic and scapolitic alteration occurs as veins that cross-cut propylitic and albiticalteration. Pyrite and chalcopyrite are present in all main stage alteration assemblages but are most closelyassociated with albitic alteration. Albitic alteration liberates Fe + and may decrease pH, assisting in theprecipitation of chalcopyrite. Mineralization also appears to be controlled to some extent by host lithology with theSugarloaf diorite as the most favourable host. Main stage alteration assemblage minerals overprint several deutericalteration events and are overprinted in turn by a low grade metamorphic assemblage.Screens of hornfelsed Nicola Group volcanics and serpentized picrite indicate the presence of major faultsystems that have also controlled the intrusion of the younger, mineralizing phases of the batholith, and thus, aregood indicators of potential mineralization.iiTABLE OF CONTENTSABSTRACT^ iiTABLE OF CONTENTS^ iiiLIST OF TABLESLIST OF FIGURES^ viLIST OF PLATES viiiACKNOWLEDGEMENTS^ ix1.0 INTRODUCTION 11.1 Location, Access and Reserves^ 31.2 Previous Work^ 41.2.1 Exploration 41.2.2 Geology^ 51.3 Objectives^ 52.0 GEOLOGY, PETROGRAPHY AND GEOCHEMISTRY OF IGNEOUS UNITS^72.1 Introduction^ 72.2 Regional Geology 72.3 Property Lithology and Petrography^ 92.4 Geochemical Analysis of Major Units 212.4.1 Major Element Analyses^ 212.4.2 Minor and Trace Element Analyses^ 302.5 Summary^ 363.0 ALTERATION AND MINERALIZATION OF THE AJAX EAST ANDAJAX WEST DEPOSITS^ 463.1 Introduction 463.2 Data Collection^ 463.3 Data Reconnaissance 473.4 Pre- and Post-Main Stage Alteration^ 513.5 Main Stage Alteration and Mineralization 553.6 Pearce Element Ratio Analysis^ 653.7 Summary^ 714.0 MICROPROBE ANALYSES^ 794.1 Introduction^ 794.2 Primary Igneous Minerals^ 794.3 Alteration Minerals 814.4 Summary and Discussion^ 93iii5.0 ZONATION OF METALS AND SULPHUR^ 955.1 Introduction^ 955.2 Metal Ratios 955.3 Summary and Discussion^ 1036.0 STRUCTURAL GEOLOGY 1076.1 Introduction^ 1076.2 Ajax West pit 1086.3 Ajax East pit^ 1106.4 Summary and Discussion^ 1137.0 DISCUSSION^ 1157.1 Introduction 1157.2 Important Characteristics^ 1157.3 Discussion of Models 1167.3.1 Mass Balance Equations^ 1167.3.2 Deposit Scale Model 1187.3.3 Batholith Scale Model^ 1228.0 CONCLUSIONS^ 125REFERENCES 129APPENDICES:A. Alteration Study^ 134B. Electron microprobe Analyses^ 170C. Metal and Sulphur Analyses 205ivLIST OF TABLESTable 2.1 Summary of petrographic characteristics of the major rock units^ 15Table 2.2 Whole rock analyses of rocks of the Ajax East and Ajax West pits 24Table 3.1 Whole rock analyses of weakly to intensely altered Sugarloaf diorite^ 66Table 3.2 Volume changes and net gains and losses of major oxides in albitized Sugarloaf diorite^72Table 4.1 Microprobe analyses of feldspars from the Ajax East and Ajax West pits^80Table 4.2 Microprobe analyses of pyroxenes from the Ajax East and Ajax West pits 82Table 4.3 Microprobe analyses of epidote from the Ajax East and Ajax West pits^ 86Table 4.4 Microprobe analyses of chlorite from the Ajax East and Ajax West pits 87Table 4.5 Microprobe analyses of scapolite and zeolite from the Ajax East and Ajax West pits^91Table 4.6 Microprobe analyses of prehnite and pumpellyite from the Ajax East and Ajax West pits^92Table 6.1 Common structures in the Ajax West pit^ 113Table 6.2 Common structures in the Ajax East pit 113Table A.1 Ajax West pit drill core data^ 142Table A.2 Ajax West pit plan level grab samples^ 145Table A.3 Ajax West pit cross-section 8.5 West data 147Table A.4 Ajax West pit cross-section 12.5 West data^ 153Table A.5 Ajax East pit drill core data^ 155Table A.6 Ajax East pit 940 and 860 metre plan level grab samples^ 161Table A.7 Ajax East pit cross-section 7.0 North data^ 163Table A.8 Normalization factors, MORB and Sun 169Table B.1 Microprobe analyses of primary feldspars from the Ajax East and Ajax West pits^172Table B.2 Microprobe analyses of secondary feldspars from the Ajax East and Ajax West pits^175Table B.3 Microprobe analyses of primary pyroxenes from the Ajax East and Ajax West pits 183Table B.4 Microprobe analyses of secondary pyroxenes from the Ajax East and Ajax West pits^186Table B.5 Microprobe analyses of epidote from the Ajax East and Ajax West pits^ 190Table B.6 Microprobe analyses of chlorite from the Ajax East and Ajax West pits 193Table B.7 Microprobe analyses of scapolite from the Ajax East and Ajax West pits^196Table B.8 Microprobe analyses of prehnite from the Ajax East and Ajax West pits 198Table B.9 Microprobe analyses of pumpellyite from the Ajax East and Ajax West pits^201Table B.10 Microprobe analyses of zeolite from the Ajax East and Ajax West pits 203Table B.11 Standards used for microprobe analyses^ 204Table C.1 Metal analyses of drill core from the Ajax East and Ajax West pits^ 207Table C.2 Metal analyses of grab samples from the Ajax East and Ajax West pits 210LIST OF FIGURESFigure 1.1 Regional geology of the Iron Mask batholith^ 2Figure 2.1 Geological map of the Ajax East and Ajax West pits 8Figure 2.2 Geology of the Ajax West pit^ 10Figure 2.3 Geology along two cross-sections of the Ajax West pit^ 11Figure 2.4 Geology of the Ajax East pit^ 12Figure 2.5 Geology of the Ajax East pit in cross-section^ 13Figure 2.6 Classification of rocks from the Ajax East and Ajax West pits^ 22Figure 2.7 Classification of rocks from the Ajax East and Ajax West pits on an alkaline affinity diagram 23Figure 2.8 Classification of rocks from the Ajax East and Ajax West pits on an orogenic affinity plot andon a Na2O/K2O discrimination plot^ 23Figure 2.9 Data from major rock units from the Ajax East and Ajax West pits plotted on Harkerdiagrams^ 28Figure 2.10 Spider diagrams for major rock units from the Ajax East and Ajax West pits^31Figure 2.11 Test for the conservation of elements in data for Sugarloaf diorite, monzodiorite dykes andtrachytic monzonite^ 34Figure 2.12 Pearce element ratio plots for Sugarloaf diorite, monzodiorite dykes and trachytic monzonite,using Zr as a conserved element^ 35Figure 3.1 Three dimensional reprsentation of assay data from the Ajax West pit^ 48Figure 3.2 Correlation among alteration minerals and mineralization^ 49Figure 3.3 Box and whisker plots of data from the Ajax East and Ajax West pits^ 50Figure 3.4 Histograms of arithmetic and transformed data^ 53Figure 3.5 Bubble plots of the distribution of alteration minerals on the representative plan levels of theAjax West pit and Ajax East pit^ 58Figure 3.6 Cross-sectional bubble plots of the the distribution of alteration minerals on cross sectionsthrough Ajax West and Ajax East pits^ 62Figure 3.7 Histogram of the standard deviation of calculated Pearce element ratios^67Figure 3.8 Pearce element ratio diagrams to discriminate between alteration and fractionation^67Figure 3.9 Pearce element ratio diagrams to model fractionation and alteration^ 69Figure 4.1 Ternary plots of microprobe data for primary and secondary feldspar 83Figure 4.2 Ternary plots of microprobe data for primary and secondary pyroxene^ 83Figure 4.3 Quadralateral plots of microprobe data for primary and secondary pyroxene 84viFigure 4.4 Binary plots of microprobe data for epidote^ 88Figure 4.5 Binary and quadralateral plots of microprobe data for chlorite^ 89Figure 5.1 Scatterplot correlation matrix of untransformed metal assay data 96Figure 5.2 Comparison of calculated weighted average assays against reassays of composited samplesfor copper^ 97Figure 5.3 Histograms of metal ratios from assay data of the Ajax East and Ajax West pits^99Figure 5.4 Scatterplotsof Cu and Au concentrations^ 102Figure 5.5 Metal and sulphur assays from drill core pulps and grab samples^ 105Figure 6.1 Structural geology of the Ajax West pit.^ (in pocket at back)Figure 6.2 Structural geology of the Ajax East pit. (in pocket at back)Figure 6.3 Fault orientations in the Ajax West and Ajax East pits^ 109Figure 6.4 Vein orientations in the Ajax West pit^ 111Figure 6.5 Vein orientations in the Ajax East pit 112Figure 7.1 Deposit scale alteration model of the Ajax deposits^ 119Figure 7.2 A generalized batholith-scale model of the Ajax deposits 123Figure A.1 Ajax West pit sample locations^ 135Figure A.2 Ajax East pit sample locations 136Figure A.3 Scatterplot matrix correlation diagram of untransformed visually estimated mineralpercentages^ 137Figure A.4 Scatterplot matrix correlation diagram of transformed visually estimated mineral percentages 138Figure A.5 Probability plots of chlorite, epidote, pyrite, albite copper and gold^ 139Figure C.1 Scatterplot matrix of logrithmically (base 10) transformed metal data 206viiLIST OF PLATESPlate 2.1A Photomicrograph of Nicola Group volcanic rock^ 37Plate 2.1B. Photomicrograph of picrite^ 37Plate 2.2A Photomicrograph of pyroxene gabbro^ 38Plate 2.2B Photomicrograph of pyroxene gabbro 38Plate 2.3A Photomicrograph of medium-grained hybrid diorite^ 39Plate 2.3B Photomicrograph of fine-grained hybrid diorite 39Plate 2.4A Photomicrograph of pegmatitic hybrid diorite^ 40Plate 2.4B Photomicrograph of trachytic monzonite 40Plate 2.5A Drill core samples of hybrid diorite showing the variation in texture.^ 41Plate 2.5B An example of the pegmatitic hybrid diorite (Ajax West pit)^ 41Plate 2.6 Drill core samples of Sugarloaf diorite showing the variation in texture and alteration^42Plate 2.7A Photomicrograph of Sugarloaf diorite^ 43Plate 2.7B Photomicrograph of Sugarloaf diorite 43Plate 2.8A Photomicrograph of a monzodiorite dyke^ 44Plate 2.8B Photomicrograph of a magnetite rich dyke 44Plate 2.9A Photomicrograph of a magnetite rich dyke^ 45Plate 2.9B Photomicrograph of a quartz eye latite dyke 45Plate 3.1A Weak to intense albitic alteration in Sugarloaf diorite (Ajax West pit)^ 74Plate 3.1B Intense albitic alteration in Sugarloaf diorite (Ajax West pit)^ 74Plate 3.2A Propylitic alteration in fine grained hybrid diorite (Ajax West pit) 75Plate 3.2B K-feldspar veins within pervasively albitized Sugarloaf diorite (Ajax East pit)^75Plate 3.3A White-grey scapolite veins with biotite-chlorite envelopes (Ajax East pit) 76Plate 3.3B Photomicrograph of scapolite vein^ 76Plate 3.4A Photomicrograph of chess-board albite from a vein^ 77Plate 3.4B Photomicrograph of prehnite surrounding chalcopyrite 77Plate 3.5A Diopside veinlet in intensely albitized Sugarloaf diorite^ 78Plate 3.5B Photo micrograph of a late pumpellyite veinlet in albitized Sugarloaf diorite^78viiiACKNOWLEDGEMENTSColin Godwin and Ken Dawson are thanked for initiating the project and for their guidance andinstruction over the last two and a half years. Afton Operating Corporation, in particular Lorne Bond and LouisTsang, helped in geological and mapping problems in the pit and provided access to company files, drill core andthe mine property. Wayne Spilsbury, of Teck Corporation helped focus the project. Thanks are extended to MattiRaudsepp for his patient instruction on the electron microprobe, and to Matti and Ken Wilks for help ininterpreting the data. Cliff Stanley was particularly helpful in clarifying details about PER's and likely chemicalreactions involved in alteration. Jim Lang and John Thompson are greatfully acknowledged for their editorialcomments. David Rhys provided suggestions and general moral support. Arne Toma prepared the rock samples.And finally, my horse is thanked for helping me keep a healthy perspective on things.Research has been supported by the Geological Survey of Canada and the Mineral Deposit Research Unitat the Department of Geological Sciences, The University of British Columbia, through the Collaborative Industry-SCBC-NSERC research project, "Copper-Gold Porphyry Deposits of British Columbia." Financial support from aCOSEP Grant to Ross is gratefully acknowledged.ixGEOLOGY OF THE AJAX EAST AND AJAX WEST, SILICA-SATURATED ALKALIC COPPER-GOLDPORPHYRY DEPOSITS, KAMLOOPS, SOUTH-CENTRAL BRITISH COLUMBIA1.0 INTRODUCTIONThe alkaline suite of porphyry copper deposits represent an important class of deposits in the CanadianCordillera. The deposits are associated with small, complex alkaline plutons, which are comagmatic with thesurrounding volcanic rocks and spatially related to regional faults. Alkalic porphyries differ from the calc-alkalineporphyries in mineralization and alteration. Alkaline deposits tend to be enriched in gold and silver and depletedin molybdenum relative to calc-alkaline porphyries (Barr et al., 1976). Phyllic and argillic alteration zones areabsent or poorly developed, therefore the classic calc-alkaline alteration zonation model (Lowell and Guilbert,1970) does not apply. Instead, alteration consists of potassic alteration, propylitic alteration, and less commonly,skarn development. Potassic alteration, consisting of biotite and K-feldspar, is directly related to coppermineralization in most deposits. Propylitic zones, consisting of chlorite, epidote and albite are more intenselyaltered than those associated with calc-alkaline porphyries and are host to ore deposits (Barr et al., 1976). Somealkalic porphyries contain significant amounts of garnet (Galore Creek: Allen et al., 1976; Cariboo Bell: Hodgsenet al., 1976) and scapolite (Ingerbelle: Fahrni et al., 1976).The alkaline suite of rocks can be subdivided into sodic, potassic and high-K suites (Middlemost, 1975).A recent subdivision based on silica saturation has been proposed (Lang et al., 1992) that divides the rocks intosilica-saturated alkalic and nepheline-alkalic suites. The silica-saturated alkalic suite, comprising diorite,monzodiorite and monzonite, is silica saturated, although free quartz is rare. The nepheline-alkalic suite,comprising phonolite and syenite, is silica undersaturated and nepheline- or pseudoleucite-bearing. The Ajax Eastand Ajax West deposits are associated with sodic to potassic, silica-saturated alkaline rocks of the Iron Maskbatholith.LegendMiocene and olderOlivine basaltEoceneKamloops Group volcanicand sedimentary rocksJurassicIron Mask batholithTriassicNicola Group volcanicrocksFaults• 1 Mines and prospectsk VFig. 1.1 location V V120° 5'500 48^ vvvvvvvvvvvvvvvvvvvvvv „s, v „ vv.._^ vvvvvvvvvvvvvvvvvvvvvv v v vvv vv,^ vvvvvvvvvvvvvvvvvvvvvvv v vyvv^ vvvvvvvvvvvvvvvvvvvvvvv v v v^v v v^ vvvvvvvvvvvvvvvvvvvvvvvv V v v 4^vv vv v^ vvvvvvvvvvvvvvvvvvvvvvvvv v v^V v^ vvv.,\,\,\,\,./\,\,\,\/vvvvvvvvvvv^vvvvvvvvv Cherry Creek Pluton vvvvvvvvvv v v vv v vv,^ vvvvvvvvvvvvv V V V V v V Vvvvvvvvvvvvvvv vv v vv v v v,^ vvvvvvvvvvvvv v v v v v v vvvvvvvvvvvvvv v v v v vv v v ,vvvvvvvvvvvv vvvvvvvvvvvvvvvvvvv v v v v v v v v Vvvvvv vvvvvvvvVVVVVVVV v v vvvvvvv^v v v v v v v vvvvvvvvvvvvvv^ V V V V V^ V^V V V V^V V^ V V V V V V V V V V V V V V V V V V^ V V V V V V V V V V V V V V V V V V V V^ v v v v v v v V V V V V V V V V V V V V V V V V V V v^ V V V V V V V V V V V V V V V V V V V V V V V V V^ v v V V v v v v v V V V V V V V^ V V V V V V V V V V^V V V V V^ V V V V V V V V V V^V V V V^ V V V V V V V V V V V V V V^ V V V V V V V V V V V V V V^ V V V V V V V V V V V V V V V^ V V V V V V V V V V V V V V V V^ V V V V V V V V V V V V V V V V V VV vvvvvvvSugarloaf v V VHill^ v v v v v v v v^ vvvvvvv^ V V V V V V V V V^ vvvvvvvv Jackov VLake s,Study Area^ V V V V v v v v v v v v v v v^ v v v v v v vv v v v v v v vAuce,^ v v v v v v sIron Mask Plutons,^ v v v v v v v v v v v v v v v v^ vvvvvvvv „v V v v „v „^ vvvvvvvvvvvvvvvvvvv v v v v v v v „„„v v „vvvvvvvvvvvvvvvvvv„v v v v v v vvvvvvv v v v ,v vvvvvvv^vvvvvv5vvvvvvv▪ vvvv▪ +^V V V+^ V V V VV V V-45'V V V V V V V VV V V V V V Vv v v v v v vv v vvvvvv v v v v^ vvv^ v v v^ v V v-35'V V V V V^ v v^ vvv^ vvv^ vvv^ vs, v^ V V V^ v v^ v vV V+ + + + ++ +++++ + + ++ ++ + ++ +V V V V V V v V V V VV V v V V V V V V V V^ V V V V V V V V V V^ V V V V V V V V Vv v v v v v v v vV V V V V V V V VV V V V V V V V V V^ V V V V v V V V V^ V V V V V V V V V V^ V V V V V V V V V^ V V V V V V V V V V^ V V V V V V V V VV V V V V V V V V VV V V V V V V V V50° 30120° 40'^35'Figure 1.1 Regional geology of the Iron Mask and Cherry Creek plutons. Ajax East and Ajax West pits arelocated near the centre of the southwestern side of the Iron Mask batholith, immediately east of Jacko Lake. Otherdeposits mentioned in the text are: 1 = Afton, 2 = Pothook, 3 = Cresent, 4 = DM, 5 = Big Onion, 6 = Iron Maskand Erin, 7 = Python, 8 = Galaxy, 9 = Ajax West pit, 10 = Ajax East pit and 11 = Kimberly. Terrane map insetlocates the area within Quesnellia (QN) of the Intermontane Belt, Canadian Cordillera.30' 25' 20'50° 30'120° 15'21.1 Location, Access and ReservesAjax East and Ajax West deposits are two of a number of porphyry copper-gold deposits in the Aftonmining district (Fig. 1.1). The district is located southwest of Kamloops, 360 kilometers northeast of Vancouver,British Columbia, within the silica-saturated alkaline Iron Mask batholith (Lang et al., 1992). The northwesterlytrending batholith is an Early Jurassic composite intrusion that occurs in the southern part of Quesnellia in theIntermontane Belt. The batholith is approximately 22 kilometers long and 5 kilometers wide.The Ajax deposits, near the southwestern edge of the batholith, occur at the intersection of two majordioritic phases of the Iron Mask pluton. Porphyry-style mineralization consists of pyrite and chalcopyrite withtrace amounts of bornite and chalcocite (Bond, 1987). The 1990 open pit reserves in the combined Ajax depositswere estimated at 20.7 million tonnes averaging 0.45% copper and 0.034 g/tonne gold (Teck Corporation, 1990Annual Report). Open pit mining of the Ajax West deposit began in 1988 and ore was first processed in mid-1989.Mining of stage 1 of the Ajax West pit was completed in March 1990. Preparation of stage 2 was halted in August1991. Open pit mining of the Ajax East zone began in November 1989 and was halted August 1991.The property is readily accessible from the Trans-Canada Highway, via the Afton Mine site, fivekilometers west of Kamloops. A fifteen kilometer haulage road leads from the mill and office site to the two pits.The Ajax East pit lies approximately 600 metres east of Ajax West pit.The Iron Mask batholith occurs within the dry belt of the interior of British Columbia. Annual rainfallaverages about 26 centimeters. Sagebrush, Ponderosa pine and Douglas fir are the dominant vegetation.Topography is glaciated and generally gentle, consisting of rolling hills and broad uplands, with elevationsbetween 610 and 1 100 metres. Glacial overburden up to 100 metres in thickness infills paleo-valleys. Althoughoutcrops are sparse in some areas of the batholith, they are abundant in the vicinity of the pits.31.2 Previous Work1.2.1 ExplorationExploration for copper mineralization within the Iron Mask batholith dates back to the late 1890's whenwork was done in the vicinity of what is now known as the Afton orebody. In 1896, the first year in which miningactivity was recorded, over 200 claims were located on the batholith. Some of the more significant prospects werethe Python (Makaoo), Noonday, Lucky Strike, Iron Mask and Erin, Wheal Tamar and Monte Carlo (Ajax), andKimberly. By 1900 underground work had been done on all of these properties. Most, with the exception of theIron Mask and associated Erin deposit, produced only a few tons of select copper-bearing ore. The Iron Mask andErin orebodies produced 165 555 tonnes grading 1.47 % copper, 0.69 g/tonne gold and 2.74 g/tonne silver (Carr,1956). Production continued intermittently from 1904 to 1928. In 1916 Granby Mining and Smelting Companyoptioned and drilled the Python, Evening Star and Wheal Tamar groups (Fig. 1.1). In 1951 and 1952 KenncoExplorations Ltd, conducted an electromagnetic survey and drilled 14 diamond drill holes in the Pothook claimarea. In 1954 the Consolidated Mining and Smelting Company of Canada diamond drilled over 5 000 metres onthe Ajax-Monte Carlo group. Other companies extended old workings on the Python, Night Hawk, Copper Headand Evening Star claims. The Afton claims were staked in 1949, but the orebody was not discovered until 1971when it was drilled by Afton Mines Ltd. The Big Onion was also discovered in 1971 by International DevelopersLtd. This same company outlined mineralization in the DM and Cresent deposits.Afton Mines Ltd. open-pit mined the Afton deposit from 1977 to 1987. Total production was 22.1 milliontonnes grading 0.91% copper and 0.69 g/tonne gold. The Pothook pit was mined from 1987 to 1988 and produced2.4 million tonnes grading 0.35% copper and 0.72 g/tonne gold. The Crescent was mined from 1988 to 1989,producing 1.23 million tonnes of ore grading 0.46% copper, 0.21 g/tonne gold. Estimated reserves for the DMzone are 2.69 million tonnes grading 0.38% copper and 0.24 g/tonne gold. Big Onion estimated reserves are 3.2million tonnes grading 0.71% copper and 0.41 g/tonne gold.Work in the Ajax East and Ajax West pit areas (Wheal Tamar and Monte Carlo), by Rolling Hills CopperMines Ltd., began in the early 1970's with geological mapping and magnetic and induced polarization surveys. In41980 Cominco undertook an extensive exploration program on what was then known as the Ajax Monte Carloproperty. They drilled 190 percussion holes totaling 14 347 metres and ran approximately 70 kilometers of groundmagnetometer and induced polarization surveys on the property. In 1981 Cominco drilled 14 diamond drill holestotaling 2 200 metres. An extensive drill project to prove up reserves in the Ajax East and Ajax West deposits wasundertaken in 1987 by Cominco Thirty-one NQ diamond drill holes, totaling 3 851 metres, were drilled in theAjax East deposit. Forty-six NQ diamond drill holes, totaling 7 608 metres were drilled in the Ajax West deposit.1.2.2 GeologyEarly descriptions of the geology of the batholith are found in Mathews (1941) and Cockfield (1948).More detailed studies of the Iron Mask pluton and summaries of exploration activities can be found in Carr (1956)and Preto (1967). Further studies on the geology and structure were undertaken by Northcote (1974, 1976 and1977). Detailed work on the Afton orebody and the geochemistry of the batholith was undertaken by Reed et al.(1983) and Kwong (1987).1.3 ObjectivesFieldwork consisted of two summers mapping the two Ajax pits at 1:750 scale, and logging 4 900 metresof diamond drill core from approximately 150 drill holes on two representative plan sections and three cross-sections. Core was logged on three metre intervals that coincided with the assay intervals. Visual estimates ofalteration mineral and sulphide abundances were systematically recorded. Thirty-three whole rock analyses weredone and two-hundred thin and polished thin sections were examined to aid in characterizing rock units andalteration suites. Electron microprobe analyses were obtained from twelve polished sections to determineelemental compositions of primary igneous and alteration minerals.This study, based on the above work, examines the compositional, temporal and structural relationships ofthe rock units within the Ajax East and Ajax West pits, and the alteration and mineralization related to these units.Conditions that led to mineralization are constrained and compared to similar deposits elsewhere in the world.5This study forms part of a larger program of research directed towards the alkaline suite of porphyrydeposits under the auspices of MDRU. Other members of the research team have carried out mapping andresearch in the Iron Mask batholith (L. Snyder) and the Cresent (J. Lang) and Pothook pits (C. Stanley). Thisresearch and the study at the Ajax deposits contributes to an improved understanding of the Iron Mask batholithand its contained mineralization.62.0 GEOLOGY, PETROGRAPHY AND GEOCHEMISTRY OF IGNEOUS UNITS2.1 IntroductionThis chapter describes the regional and property geology of the Ajax East and Ajax West deposts.Petrography of all units is detailed. Major and minor element analyses of the major units are used to constrainnomenclature and genetic relationships.2.2 Regional GeologyThe Iron Mask batholith lies in the southern part of Quesnellia (Fig. 1.1). The most extensive assemblagein Quesnellia is the Nicola Group, a well defined volcanic island arc (Monger et al., 1991), which consists ofUpper Triassic to Lower Jurassic volcanic and related sedimentary rocks. Comagmatic calc-alkalic and alkalinebatholiths are emplaced in the assemblage and are host to numerous copper deposits. Calc-alkaline rocks occur inthe east, grading to increasingly more alkaline rocks to the west, possibly reflecting a west dipping subduction zone(Monger et al., 1991). Four major plutonic events (Preto et al., 1979) occurred at 200 million years (Ma), 160 Ma,100 Ma and 50-70 Ma. The 200 Ma group includes plutons of both the alkaline and calc-alkaline series. Theyounger events comprise only calc-alkaline series plutons. Copper mines have been developed along the entirelength of Quesnellia. These include from north to south: Afton, Pothook, Crescent, Ajax, Highland Valley,Brenda, Ingerbelle and Copper Mountain.The Iron Mask batholith is one of the larger silica-saturated alkaline intrusions of the 200 Ma group andconsists of two plutons, the Iron Mask pluton and the Cherry Creek pluton (Fig. 1.1). The Iron Mask plutonconsists of four major phases: the hybrid diorite, the Pothook diorite, the Cherry Creek unit and the Sugarloafdiorite. The Cherry Creek pluton consists of the undivided Cherry Creek unit. Both plutons were emplaced inUpper Triassic volcanic and sedimentary strata of the Nicola Group. Preto (1977) and Northcote (1976) suggestedthat these intrusions were emplaced within centers of Nicola volcanism. An easterly trending graben filled with upto 1 000 metres of Middle Eocene Kamloops Group volcanic and sedimentary rocks separates the plutons at7Figure 2.1 Geological map of the Ajax East and Ajax West pits and the immediately surrounding area. Legend isin Figure 2.2. Both deposits occur at the contact between hybrid diorite and Sugarloaf diorite.surface. Most nomenclature for the batholith follows the work of Carr (1956), Preto (1968) and Northcote (1975,1977a, b), but recent revisions by L. Snyder (Univ. of B.C., M.Sc. thesis in progress) are also utilized.2.3 Property Lithology and PetrographyPit mapping delineated eleven significantly different rock units (Figs. 2.1-2.5). The sequence may requirerevision upon completion of U-Pb zircon dating currently underway on several of the major units. The currentlyinterpreted order, from oldest to youngest, is: (unit 1) Nicola Group volcanic rocks, (2) picrite, (3) pyroxenegabbro, (4) hybrid diorite, (5) pegmatitic hybrid diorite, (6) trachytic monzonite, (7) Sugarloaf diorite, (8)monzodiorite dyke, (9) diorite dyke, (10) magnetite-rich dyke, and (11) quartz eye latite dyke. A summary of themodal characteristics for each unit is presented in Table 2.1 and whole rock analyses are presented in Table 2.2. Adetailed description of each unit follows.Nicola Group volcanic rocks (unit 1) are sub-alkaline basalts in the vicinty of the pits. They occur southof the Ajax West pit along the margins of Jacko Lake (Fig. 2.1). Good exposures have been created by theconstruction of the haul road. A hornfelsed screen of Nicola Group volcanic rocks, striking north 40 degrees eastoccurs along the contact between the hybrid and Sugarloaf diorite units along the length of the Ajax East pit (Figs.2.4 and 2.5). Outside the pits, the Nicola Group volcanic rocks are dark green to black, augite phyric and non- toweakly magnetic. In thin section (Plate 2.1A), the euhedral augite phenocrysts are pseudomorphed by blue-greento yellow hornblende. The matrix is trachytic and consists of cloudy feldspar laths and fine grained hornblende.Secondary red-brown biotite is also weakly developed in the matrix. In samples taken from the strongly foliatedscreen of volcanic rocks in the Ajax East pit, the augite phenocrysts are replaced by pale green amphibole in agroundmass of medium grained red-brown biotite and fine grained hornblende and sericite. Numerous dykes anddykelets of Sugarloaf diorite (unit 7) intrude the screen.Picrite (unit 2) occurs predominantly south of the Ajax West pit (Figs. 2.2 and 2.3), where holes drilled in1990 intersected as much as 150 metres of serpentinized picrite. Screens of picrite are also found along the9..^...Ajax^West^PitGeologyLegend_dsilso w►• 111111,^MP"—, .^11111111^111111^/.. . 11111111mini^11^li Awn^null^mu^•1111^11^un^17^111111111^.^111).)// //;///11^' 11^11 '4(1 ,,,^ ,^/,,^- ^/„ /,,,^/ , /,/ /4,960 m^/ '' /, 0 //7 / /^o^mair00186111111, ///^',, ,,,,,',,,,,Overburden/ , /0 / ^// ///, /// 4800 N.5/8^,o.''^/^./ •.•^1^1 : ' /•^/•^/ •^•///•///^//^-////^///0^/0/0^//-/^///^..///•^//^11V/ 0 /^0/. ///^//,0^0 /^/ 0 0 / 0 /^/ /^/ 0 / iii. / 0 // Ns./ 0^/ //^0^0"4 / 0 0^/ 0 /^0 /^0 0^•r'^/ 0^/ 1^/^ i/^/^ /^ ///^// /^ / ^////^ / ^, ,a,^/^//^/,^"/, /,^/,' /l//Tertiary^?11 RPc^Quartz eye lards dykesIron Mask Botholith and related intrusionsUpper Triassic and Lower Jurassic10Magnetite rich dyk esY^9 ^/I^•/ Diorite dykes///• / /^ /^ //0/0 / 0 ^ •/^/ ^// ^' / //I 0 0 0 .^0^0/^0 //^0/^0////0 /// 0 / 0^8°/9/ /// /^/ ^0/ / / ^4/ / 0/ 0/ // ^//^/ // ^//// 0/ 0 0/ 0 // / // /^/ // / / / /^Nam('^/// ///^0^0, 0,^/^0/ ,/ /^// // / /^//^/ / //^f7'/'^/ /^/ 1/,/, /^/„ /, /,//„^/ /^ //,,, //, / „//,^/ ^/^/^/„ ,/1! • // /0 /^/ /, / 0 /^/^/ //^/0 / ^95. / A // /// /0///. 0 /^ / //// /0 /// / / 0/^//// /0 // . / /. „ /D H 8 7 - 7///// ' /0 0/". ^/ //1i ; 1^1/ /1/ / /^1/ / //  /1 1/ /^1/ / /1/ //^//^//,^,/ ,///, / '■/// /0// 0/^/0 / //,^ ---.4700 N/ / /^/MI121 0 / / / 0 / / 0 // 0/.^•^• - •^/•^/^• ./././.// .0 ,0/ / „ ^El/ ..,^.^\\\\\\D^...,., 02212 ,, , \\^ 1\ \,\ Monsodiorite d ykes\^1)..-."41i.\\^' '\ DH^ 0■\\, \_ • \ '^ DDH87-63,, r\7^.,\.-..\ Sugarloaf diorite,\;\^DH87- 11^•\\N *I^' ^.\\ ^•Trachytic monzodioritePegmatitic hybrid diorite,^f\\\ MC \\\\'\^ ' • \\ •--\\* \\ -_,,. \\\ \\ ,.,,//'\\\,..\\\\\\ ' ,V \\‘\^i‘\\\\`\\\■\•\^\\ 7 ...„\\ \\\\`\\.\\`\ \\\5 [1111 -•`\\^'\'\\. -`.^• \\\\ . \\ \ . \\^\\H i0^••• •^ \ \^\ ^'^.^. •^\ ^. . ^-• \^i \^\ '\^\\ • ' \ \\\^• • . \^'\ -\^•  DDH87-61\ \ \ \4 V/ /^/. ,^ Hybrd dioritePyrovene gabbrop,cr,te3\^\\ 4600 N\ -\ •\ \\^. \\\N\^\\ \\\X\\'\ \\\\^\ \\2\\\ . \• ,^ \\,. • \\\ \^\\:, :v  \\\^ \\\\ \.\\ \\k\ • \\\\\41' DDH87-18,t4• 87-831f^V^Vv^V^Nicola Group volcanic racks^---------- ^Trace of Faults7,,,,.-is^Geological^Contacts.^InferredOpen Pit Bench Contours\\\\ 5/7"°^\;_if^•^ >\\\.;,,,,,^\\.\ ^\ ^•\^\^,-,-•^\..\\\ \\ ^\\\\\\\\\\\\''\,■'..^ N\ \ \\\ \\\^\\^/''• ii\\\\\ ^'...\\\\^. ',\\^\\\\'...\ ••••••)\\• ^\As\^\ \ \A ^\ ^\\\.\\„:^-^\\.1'.1'^\\^sH87-17^ 4500 N^, s^„_^..,.isDF190 1 ^' ^-*1"\-4,.\..\;, • \ \ \ 'A^v...;)\,-\\/X'<i&,^'''.:1•;;;;"/^ ,i'i^DDH87-850,10LI^ w^ 111.^DDHBB-C1^'-10o • o0 0o 00: : :.3. CP^ 0^ 7)1. .^ di 4400 N-.--^Strike and Dip of Major Contacts_1_^Strike and Dip of Dykes and Veins1 860 1 Bench elevation^(metres)J11 I L^Pit^outlineI^I^10 50^100metres001-188-03C\\•,,,.\\ -\\\ -\\,,,,, \ \\\\.\\\\\\sk.'"^^k\\\\\'\\\\\\\\\``\\`` \\\\\\\\ts,\ 1\:\\"\\::"::E'l:11,:::2111:I:\ \ \\\ \\; \\\\\\\\\\ \\\\\\\\\\^2\\\:\\\::: \\\ /1, ,://1, //„ //„/„/„/„?•^4;1 A\\\\V\ \\\\\\\\\\\\\\,ii ^„\::::,!\\,^\\\\\\\\\\\\ \:\\\\\\\\\\\\\k;k^\\■sc \\\\\ \\\\ \\\ ,\kk\ \\\/ /// ///\ tD F18/71///:.^///////, :::::::/1/:111111////:////:///:/;,:////:////:///,:///,//////:/ /  //1/://///// /::/;//////i//1///.11,/$/1///,1/////////////////;: // //////////////;////////////////////////",/////////o/ / //// /;/::\\\\\\:\\,\\\\\ ki/\//:///\://:/\/:. :// /:/\://. //,\:///////'\:/ :///)///:/:////:////.////. 1:////. 11:1:/1///1/.11/1/‘:///. ////:/:///111/1/1//:/1/t1;111/. /1/11/11111/1:o^ 0\\1\ k^'//<4ex+e ///,///://1 X/i/ /'//DDH87— 1 1DDH87-09Ajax West Pit, Cross Section 12.5 W940920900880860840820800780760740720700(meters)960940920900880860840820800780760740720700metres)C D\\ ‘\ \\k4\ 1\kx\\k\i\ '',\;.■\^...:`\\\\—\\\\\\\\ \\\S\ \Nx. \ \ \N.\\\\\ \\\\\\\Sk\\\ \\k\\ \\\‘kk \^\\\\k\. \ \N. \ 4'S■Nk\.:\ \s\s<k\,,s, \\\.,\, \\\‘\\‘*\\\`‘,:\\,,,,,\\„\\\\\ \\s"■\\\■\ \S‘XX\.\\\S\\\\\\ \\\\N \\\.\ \\\\\\\\\\ .‘\\\\\ \^\\\\\\\ \  •\.\\ \\\\..\\•\ \^\ • : \ .\ \\\\‘\ N// ////'///r,/ /r,///r,/,/.///rr/rr,// r ) •///r/p^) •,/ ///' ////r,/r /r, /r,/r960940920900880860840820800780760740720700// //^// ////// /// /// /r// ////////?//,/////////DDH88-03(metres)^Ajax West Pit, Cross Section 8.5 WAFigure 2.3 Geology along two cross-sections of the Ajax West pit (Fig. 2.2): (a) cross-section A-B (12.5 west),looking northwest, with existing pit outline; (b) cross-section C-D (8.5 west), looking northwest, with the proposedStage 2 pit outline. Legend is in Figure 2.2.11Ajax^East^PitGeologyLegendtrt^/ ^/'//^/ //^/ / /////^//I^/^/^/ // // //^/5100NI.,,,.../'^// // // 4S / // // // //^/•&^4• // // // // // ^'', %// ^s/^// // // // // // //^// 0 0 0 0 0 0 /4_4 , .,„0 0 0 0 0 /e,. .,^/r, , \/ /^0 0 0 0 /-i, , ^, , ../ -•<, /^/^/^4- • • A\ .OverburdenTertiary199o1 0 /^//? ^/^//0 way^/^//,,,^ , ,,, 4,- - —^ ,, "/^7 V \^7'' " ' A \\ ''\\°/ / /^/^/ *. ^•^\\>\\<\\<33a%-/^/ // /'!(<"^• • ' X\\\\\\\\.1cA^%' //-i-^- \\ - • -;\\\\\\\\-/^0„ , , ^\\,\\\\\\\\.0,-; „ 1,450000 11^-416, Quartzw-, /• /•.'^,:li^/^/•eye^latite^d y ke s// // / // //s./ /^ 0 / // i'• •. • - \" K\\\`,"\\\\\\\\\\4 \\ ',: '';'<\\\ A\\ \\ \\ \ 'k\\\Iron^Mask^Batholith^and^related^intrusionsUpper^Triassic^and^Lower^Jurassic/^/^, / , / 0, //,//0///,^--I ,/0,<< • ' " ' "'\\‘\\\\\\ \\ \7,A.^\‘',`; ' "\\\N\\\\\\\\\\\\\ \"\'.\^\\\\‘`\\  ^\\  9•■ •/^/^/^/, /^/^/^/^/ ^.c. ,^ct/^/^/ ,/ // // // // // -,\;,,...^v , 8 I^I Monzodiorite^dykes\ ',^- .^,^\,\ .\,\\'\,\\\\\,\\^;;;/^/^0 // // 0 // // 0 •:<<",\,',.• * " " '/,\\`\\1940k`\\`\\\\‘\\\i",^, ^,^\   ^,.   ^,\,,^\ ^,   ^.\\„^;r\7 •\\C* Sugarloaf^diorite/^, /• /V /DDH87 - 55DDH8^56,^,,,/^/^/ 7^'^\I/ 7 / ^—A• N^.<\\\\\\\\\\`  \\\\\\\\\\\\\\\\\\\\/^/ /^/^/^//^/^/, /, /, 0 /, /^. • N. ■\*\\\\\\\\\\\ '\\ -^/^/ '/ '/ '/ 'l ' <"`^\\^• • \`;.• ^" N''.,\\\ \\\\\\ \\\ \\\\\\\\^\\'\•\\,/_.^/, /, /' ,\‘‘‘\ - '••■ ' A\ • \^ .\\ ' \\ ,\^ \^\\,`\>/. v - • • •^\^\\^\.\\, \\\ \\^\\, \\^\^\//^Is ,,,,,,,,,^—^\ \..\,.)^, v ,^t5 \ ,\,.N .^ ,\, . \ ..\. .\ \\\---"/^\\\>\\4Y. • . . .^\ \ \K"\\ \\\\\\\\\\\ ^\\ \\• .,^/• • \,\\„\\\^- • • • - ,/..^oi '1.‘ /41# \ \ \ \\,:.\\ \ \.\\, ,,, N,^ \\, \\.\\. \\\., \\` ‘', \\\,\. \\ ^490005^P il ]^Pe^' '^- dioritegrnatitic^hybrid^ i.D .// /^0 / / \\‘`.\, %,<\\\\\\.\\.,\k\\ \\\\k\\k\\ \\\\k\\\A\\\>\\7,\.\\\ ‘,\\\\^\ ^\\\\ .\\'" 4 [ 0 „ ,1^Hybrid^diorite0 / //^/^/^/ \k\^' '^\s‘k\•\•\\\Dlk 7^\^, ^'X. \\\\\\\,')^\^s.\ ((\\\ \\\\\\\•/ \ •• .\ . \ .\\\ .\\.\\\\,\\^ )ko,\\\.,^\\\.\\,.\\\\\\\\\\\ . 7\ \ \\\\\\\\• \\  \^•^  433^::: : : : ::: : 1„.^1 Pyroxene gabbro980 4// '///// / 0 0 2 ^ 1^PicriteI`.\\ \\ \V ,. \ \\ \^440^\ Ny ...s. \ ^'^\\\\\\\\\\\\\\\\\\\\\N 'mow\\:\ `\'`\^\-.;\\\\\\ \\\.\\^\\\ :^\\\.\\ \,,/0^/^/^/^\\\\,)”^4. \\N1^Hornfelsed^Nicola^Croup^volcanic^rocks/^,    ^\\\ \\\,\\:"^ \,. \ . \^ \\• \ •^\\\ \.\\\\ \ \\\.\\,\:,\,\\.\^‘.\\\^\\\ g60 \\,^,\ \ • •\\/^/^/ •^\ 48000/^/^/'/ //^/ /^/I^1^\\ ^ ‘\\4\ ^, `\.\\‘'`\'\\\ \\.\\\\''^‘\\\\\^\\ \ ^\^\^ \^ ^..\\ ,..„ \\\ DD•87- 51^\\^\\,\\ \\\ \\\\^\,,,, \\\\\■,,^\\ v . 'v\\•^\^,\.' ',\\J^\ \\. \^\`` "- \ \ \ \\k\ \ \ \ \\^"°^\\\ \^•^\\ \\\\‘ \960  / /^ 4\.."•Y/ 1  (/ \ ^\ \ \   .. v v.A. \\ \ \\'‘. \ \  \ \ \\\ \ • \ \ \S \ \ \ \ \\  \ \^.---.."-^Geolog ical^contacts,^inferred>\\\\1?34>\\\\\\\\\^\\\.\ \\`‘^ \\ \ \\ '^ `\\ \\\ \ \ ^\ \\\\\^\\\\\\ DDH8^0, '- \\. \^\ ^ \\\\\ \\\ \ <\,\ Vs> \ S\\\ \^ \^, \ • \\\ \\\\\\\\\\\\\\\\\\\\\'\^\^\,\\\\^-Open pit bench^contours*N^ \'\\\\\\\\\\\\\\\\\^\\^\\\\\\ n• \\\\\\\\\\\\\\\\\\\\\\\\\ \^\ \\\^9' \^DH8 0-_,.-^Strike^and^dip^of^major^contacts\\\\"/\ ..•"\\\\\\\\\\\\\\\\\\\\\\\\\\\^\ I^ 41,;--., t.\ \\s`.\\s\\ .\\ \s\\.\\ \\\ \\\\ „„0 io Ay,0^<,.\\•4'1''\\.A\,,^,\ \A\•.\-: \\^\sA\ \\ 44V^44.- \* \\\.70011\‘\\‘\\>\ ^‘\\\\•\\\\..\.\ .^ \\\^\^-,,19401 (metres)Bench^ele,ations^\ \ \ \ \ \ \.s.‘\\\"‘.\ \\\\\\\\\\A\\\\44.1'*\\\^\. "...\\\\\\\\\\\\\\\\\.\\\\\\ \ \ \ \ \ \ \ \^\ \ `‘,^s"^ ',r ^'.\\01\\\ \\‘' #^\\.\\‘ ‘...•\ \\ \\ \\ \\S^ #^ \\\ss\\\\ A\^■- *F ,,,,\N '\ \\:  s^\\ ' 4, \\.^OPR PE\\ks,.\\\\.\\>,.\\,\\\ ,\ ,-'12111"9 \\ \\ \  • ,\\ ‘\\\'\\\,\\\ \\\^...PS^ \.\,\ `\\ D IDI-188 -110-,B 11`ckP^.^4oooUJ^ ul^ LLJ^ Lu^ Lsio o „ o o o , o0 oof0 50 100metresascs, ,)v)^ ------"T Zii^ 70^ 70Figure 2.4 Geology of the Ajax East pit. The legend, abbreviated from Figure 2.2, excludes units not present inthis pit. Cross-section A-B is in Figure 2.5. Mineralization follows the trend of the screen of hornfelsed NicolaGroup volcanic rocks that parallels the contact of hybrid diorite with Sugarloaf diorite.major faults that separate the hybrid and Sugarloaf diorite units. Picrite also occurs in the southwest corner of theAjax West pit, along the ramp into the pit, and as slices in the major east-west fault that divides the pit in half.Picrite occurs on the northeast corner of the Ajax East pit (Fig. 2.4), where it is in contact with Sugarloaf dioriteand a monzodiorite dyke, and in the southwestern half of the pit as slices within the screen of hornfelsed NicolaGroup volcanic rocks (Fig. 2.4). The picrite also occurs outside the batholith (Carr, 1956; Snyder, 1993) and is notthought to have a direct genetic relationship to the batholith.The picrite is highly magnetic in all but the most intensely altered areas. In hand sample it is dark greywith an aphanitic matrix surrounding rounded, darker phenocrysts, which are mainly olivine or rarely pyroxenethat are partially to completely replaced by serpentine and magnetite. On sheared surfaces, waxy serpentinite ischaracteristic. In thin section (Plate 2.1B) the corroded, serpentinized, coarse grained olivine and relictclinopyroxene phenocrysts are set in a groundmass of aphanitic to fine grained, grey serpentine with needles oftremolite. The picrite is cut by trachytic Sugarloaf diorite (unit 7).Pyroxene gabbro (unit 3) occurs as two large tabular bodies in the Ajax West pit. The dip of the bodiescoincides with the southern pit wall, leading to extensive exposure. Intersections in drill core indicate it is 3metres wide. It has very limited exposure in the Ajax East pit where it is restricted to one small (1 by 2 metre)outcrop of uncertain orientation within albitized Sugarloaf diorite.In hand sample pyroxene gabbro is a medium grained porphyritic unit with equant phenocrysts ofpyroxene in a dark grey to black matrix. It is weakly magnetic to nonmagnetic. In thin section (Plate 2.2) themajority of the equant phenocrysts are pseudomorphed by strongly pleochroic, olive-green hornblende. Relictpyroxene is locally present in the cores of the hornblende grains, and the hornblende preserves pyroxene twinning.Saussuritized plagioclase laths are common. The groundmass comprises microcrystalline secondary hornblende,sericitized feldspar and minor magnetite. Contacts with Sugarloaf diorite appear interleaved and are sharp but donot provide unambiguous information on their relative timing; neither appear chilled. In thin section the contact ismasked by a <5 mm reaction rim of strong epidote alteration. Texturally this unit is very similar to the NicolaGroup volcanic rocks observed along the haul road. It is therefore suggested that the pyroxene gabbro may be14Table 2.1 Summary of Petrographic Characteristics of the Major Rock Units of the Ajax East and A'ax West pits.Primary Mineralogy prior to alterationRock UnitName Phenocrysts % Groundmass %Nicola Group Pyroxene 35 Plagioclase^40Volcanic rock Plagioclase 25Picrite Olivine 10 no relict primary mineralsPyroxene 3Pyroxene Pyroxene 25 Plagioclase 40Gabbro Plagioclase 30 Opaques 5Hybrid Pyroxene 25 Plagioclase (-An 30) 20diorite Plagioclase (-An 45) 15 Magnetite 7Biotite^5Pegmatite Pyroxene^i 15hybrid Hornblende 25diorite Magnetite 10Plagioclase 50Trachytic Plagioclase 35 Plagioclase 20monzonite Pyroxene 22 Magnetite 5Apatite 3 Orthoclase 15Sugarloaf Hornblende 25 Plagioclase 45diorite Apatite 2 Opaques 7Plagioclase (-An 30) 20Pyroxene 1AlterationPhenocryst Replacement % Groundmass Replacement% Vein %Hornblende 65Serpentinite 20 Tremolite/ Diopside 2Magnetite 10 Actinolite 30Serpentinite 30Hornblende 25 Hornblende 30Epidote 5 SericiteCalcite 1Chlorite 4Hornblende 45 Epidote 7 Epidote 5Epidote 5 Quartz 2 Calcite 5Chlorite 3 Calcite 7 Chlorite 1Biotite 5 Sericite Pumpellyite 1Sphene 2Biotite 4 Epidote 10Epidote 3Hornblende 1Chlorite 1Hornblende 3 Sericite CalciteSphene 2Biotite 3Epidote 1Chlorite 3Hornblende 2 Sericite Prehnite 2Prehnite 5 Diopside 20 Pumpellyite 5Diopside 5Calcite 3Table 2.1 Summa of Petro:. a c hic Characteristics of the Ma'or Rock Units of the A'ax East and A'ax West •its.(continued)Magnetite Plagioclase (—An 30)^55 Feldspars 35rich Dykes Hornblende^25 Opaques 15Quartz eye Hornblende^20 Opaques tr.latite dyke Quartz 5 K-Feldspar 45Pyroxene^5K-Feld 'arAlterationPhenocryst Replacement % Groundmass Replacement% Vein %Actinolite 12 SericiteSphene 4Epidote 5Chlorite 2Calcite 1Diopside 2Biotite 5 Chlorite^15 Calcite 10Epidote 1 Epidote 10 Epidote 1Calcite^7Chlorite^15 Calcite 7Calcite 3 Epidote 2Primary Mineralogy prior to alterationRock UnitName^Phenocrysts %^Groundmass %Monzodiorite Plagioclase (—An 30) 30^Opaques^4dykes^Apatite^1^Plagioclase 40comagmatic with the Nicola Group volcanic rocks.Hybrid diorite (unit 4) is a variable, medium grey to green unit, that ranges from a fine grained diorite to acoarse grained pyroxenite. A phase that is extremely coarse grained and hornblende-rich has been mapped as aseparate unit (pegmatitic hybrid diorite). All phases are characterized by strong magnetism. The fine graineddioritic phase predominates in the Ajax West pit (Fig. 2.2), where it occurs to the north of a major easterlytrending fault that separates the hybrid diorite from the Sugarloaf diorite. In the Ajax East pit (Fig. 2.4) the darkgrey-green, medium to coarse grained, pyroxene-rich phases predominate. The unit occurs on the northwesternside of the pit, and is separated from the Sugarloaf diorite by a fault and by the screen of hornfelsed Nicola Groupvolcanic rocks.In thin section (Plate 2.4) the fine grained diorite consists of pale green pyroxene, plagioclase, pale greenhornblende, red-brown biotite and magnetite. Textural varieties include those characterized by: (i) well twinnedplagioclase grains, smaller anhedral pyroxene grains and interstitial hornblende, magnetite and biotite, (ii)equigranular, interlocking pyroxene and weakly twinned plagioclase with interstitial biotite and magnetite, and(iii) subhedral pyroxene and laths of plagioclase enclosed in poikiolitic red-brown biotite and poikioliticplagioclase. The hybrid diorite in the Ajax East pit is characterized by two dominant types: (i) a medium to coarsegrained phase with interlocking pyroxene grains and interstitial plagioclase and magnetite, and (ii) a mediumgrained phase with equant pyroxene phenocrysts in a groundmass of hornblende and plagioclase.Pegmatitic hybrid diorite (unit 5)  is a mixture of fine to very coarse grained diorites and hornblenditeswith the appearance of an agmatite (Plate 2.5B). The unit appears in the East pit as localized pockets of coarsegrained material. The unit outcrops in the upper benches of the Ajax West pit, and occurs in large areasimmediately north of the Ajax West and Ajax East pits (Figs. 2.1 and 2.2).Fine and coarse grained phases cross-cut one another. The coarsest material is dominated by hornblendelaths up to 5 cm long. Plagioclase and magnetite are interstitial to the hornblende laths. Minor amounts ofsecondary red-brown biotite replace hornblende. Pyroxene is the dominant mineral in the less coarse grained17phases, accompanied by twinned plagioclase, a primary pale olive-green hornblende, a primary red-brown biotiteand abundant interstitial coarse grained magnetite. Secondary red-brown biotite is a common alteration of thehornblende.Trachytic monzonite (unit 6) is present in the Ajax West pit as a poorly defined tabular body within thefine grained hybrid diorite (Fig. 2.2). Contacts between the trachytic monzonite and the surrounding fine grainedhybrid diorite are possibly gradational. In hand sample the rock is greyish pink and porphyritic with a welldeveloped trachytic texture defined by plagioclase laths and pyroxene. In thin section (Plate 2.4B) the unit ischaracterized by large (3 mm), cloudy plagioclase phenocrysts with interstitial, granular, faintly green pyroxeneand magnetite. Continuous grains of clear potassium feldspar are interstitial to all other phases. Apatite andsphene are accessory minerals. Red-brown biotite and chlorite replace the pyroxene.Sugarloaf diorite (unit 7) is a fine to medium grained porphyry that occurs as a lobe-shaped body alongthe margin of the hybrid diorite. In the Ajax West pit (Fig. 2.2) the unit occurs to the south of the major east-westfault. It occurs on the southeastern side of the Ajax East pit (Fig. 2.4). This unit displays considerable texturalvariation (Plate 2.6). It ranges from fine grained and weakly porphyritic to a medium grained, commonlytrachytic, crowded porphyry. Overall, Sugarloaf diorite is characterized by elongate hornblende and plagioclasephenocrysts enclosed in a grey matrix. Two fine grained to aphanitic phases were distinguished in drill core, butnot in the pits. An aphanitic, grey, weakly magnetic phase, occurs as small (<0.5 metre) dykelets that cross-cut themore typical Sugarloaf diorite. Similar dykelets with disseminated chalcopyrite were observed 600 metres east ofthe Ajax East pit. The second variety is not easily distinguished from the main phase. Equant, black phenocrysts(originally pyroxene?) are present in varying amounts in an aphanitic matrix. Contact relationships are uncertainand gradational. In some cases clasts of the plagioclase porphyritic Sugarloaf diorite are enclosed in a matrix ofthe darker aphanitic unit, but the reverse also occurs. This phase may represent Sugarloaf diorite that has beencontaminated with large inclusions of Nicola Group volcanic rocks which have been only partially assimilated.The mixed origin of this unit might explain its irregular distribution.18In thin section (Plate 2.7) the typical porphyritic unit contains olive-green, strongly pleochroic hornblendethat occurs as prismatic crystals, tabular laths and needles. Tabular plagioclase feldspar displays twinning but ischaracteristically sericitized. The groundmass is mainly aphanitic to microcrystalline, saussuritized plagioclase.One section, which displayed large and well zoned primary plagioclase phenocrysts, contained approximately 15%mosaic textured quartz in the groundmass. Accessory minerals are subhedral, corroded apatite with abundantinclusions and microcrystalline magnetite. Common secondary minerals include blue-green hornblende andyellow-green epidote after primary hornblende.Monzodiorite (unit 8) occurs as prominent cross-cutting dykes in both the Ajax West and Ajax East pits(Figs. 2.2 and 2.4). The largest dyke in the Ajax West pit is 4 metres wide, strikes northeast at 030°, dips 75°northwest and is paralleled by several smaller dykes. In the Ajax East pit one large dyke cuts hornfelsed NicolaGroup volcanic rocks, the hybrid diorite and the Sugarloaf diorite (Fig. 2.4). A second large dyke, on thenortheastern wall of the pit, separates the Sugarloaf diorite from the hybrid diorite. A third dyke partially separatesthe picrite in the northeastern corner of the pit from the Sugarloaf diorite. Numerous smaller dykes occur withinthe hybrid diorite on the northwestern wall of the pit. All the dykes strike northwest and are steeply dipping.In hand sample the monzodiorite is a fine-grained, blue-grey to pinkish, amphibole and plagioclase phyricunit, commonly with pervasive yellow-green epidote alteration. The pinkish colour is due to pervasive K-feldsparalteration that occurs sporadically in some dykes but is absent in others. In thin section (Plate 2.8A) it is stronglyporphyritic with tabular to equant phenocrysts of well twinned plagioclase, prismatic pale green amphibole andminor pyroxene, all in a feldspar groundmass. Common accessory minerals are subhedral apatite and magnetite ina matrix of aphanitic plagioclase. This unit has previously been grouped with the Cherry Creek suite, butpetrography and geochemical data (section 2.4) suggest a closer affiliation with the Sugarloaf diorite suite.Diorite dyke (unit 9) is a prominent feature on the floor of the 900 metre level of the Ajax West pit (Fig.2.2) where it cuts the Sugarloaf diorite. A small outcrop, possibly of the same dyke, occurs on the 840 level. Nodykes of this composition were observed in the Ajax East pit. In hand specimen it is similar to the Sugarloafdiorite, but is intensely altered to calcite, epidote and hematite. In thin section the unit comprises fine grained19chlorite, brown to green epidote, and minor sphene replacing all the primary mafic minerals in a groundmass offiner grained twinned plagioclase, quartz, calcite and opaques. Only traces of relict pyroxene are present and thereis no evidence of primary amphiboles. Larger patches of chlorite have anomalous blue interference. Opaquesconsist dominantly of magnetite and hematite with minor pyrite and chalcopyrite.Magnetite rich dykes and dykelets (unit 10) cross-cut the Sugarloaf and hybrid diorites at several localitiesin both pits. Based on a single whole rock analysis, these dykes are quartz monzonites. A single, one metre widedyke of this type can be traced up the southwestern wall of the Ajax West pit, where it cross-cuts the Sugarloafdiorite. The remainder of these dykes are less than one metre wide and are very discontinuous and difficult to mapThey are generally too small to appear on the maps. All the dykes are characterized by their aphanitic texture andstrong magnetism. They vary in colour from medium grey to dark green-grey to dark purple-grey. In thin section(Plates 2.8B, 2.9A) they are variably altered. Fresher examples contain very fine grained, euhedral, greenhornblende phenocrysts, slightly larger feldspar phenocrysts and 15% subhedral primary magnetite disseminated ina microcrystalline groundmass of twinned plagioclase. One dyke differed; it contained pyroxene grains withsecondary hornblende and chlorite, in a cloudy feldspar matrix. Trace chalcopyrite and pyrite were observedlocally. In more altered dykes brown biotite and chlorite with normal to anomalous purple birefringence replacethe hornblende. Cloudy green-brown epidote and sphene occur in the sericitized feldspar groundmass. In the mostaltered samples, calcite replaces feldspar phenocrysts in a mesh textured groundmass of sericitized feldspar andpale green chlorite.Quartz eve latite dykes (unit 11) occur in both Ajax pits. In the Ajax West pit a single large dyke can betraced across the northern half of the pit, where it cross-cuts the hybrid diorite (Fig. 2.2). It is disrupted by intensefaulting in the northeast quadrant of the pit. Two major quartz eye latite dykes cut the Sugarloaf diorite and thepicrite in the Ajax East pit (Fig. 2.4). The largest dyke is approximately five metres wide and follows the entirelength of the southeastern side of the pit. A second large dyke occurs at the contact of hybrid diorite and Sugarloafdiorite in the southwest corner of the pit. Several parallel dykelets were noted. These dykes clearly post-datealteration, mineralization and many of the faults within the Ajax East and Ajax West pits. Kwong (1987)concluded, based on mineralogy and alteration, that similar-looking dykes in the Afton pit were pre-Tertiary.20In hand sample this unit is a uniform, fine grained, porphyritic, brownish-pink rock with hornblendeneedles and characteristic quartz and K-feldspar phenocrysts. Clots of coarse grained K-feldspar occur locally.Minor amounts of disseminated pyrite are present. Epithermal style, vuggy quartz veining, accompanied bybleaching and silicification of the host rock, is associated with these dykes. In thin section (Plate 2.9B) freshquartz eye latite is a mass of golden brown hornblende needles in a groundmass of K-feldspar and twinnedplagioclase. Quartz eyes and K-feldspar laths are up to one cm long. The K-feldspar laths commonly have calcitein their cores. Patches of chlorite with anomalous blue birefringence are common.2.4 Geochemical Analysis of Major UnitsTwenty one samples of least altered rocks from the major units were collected for major, minor andselected trace element and rare earth element (REE) analysis Sample locations are in Appendix A and results arepresented in Table 2.2. Most of the samples have undergone some degree of alteration and are not necessarilyrepresentatives of the primary composition. Samples that are most strongly altered, based on petrography, are:Nicola Group volcanic rock (KR92-28), Sugarloaf microdiorite (KR92-25) and pyroxene gabbro (KR92-29). Acomplementary data base of whole rock analyses of samples collected within the batholith but distal tomineralization are in L. Snyder (Univ. of B. C., M.Sc. thesis in progress).2.4.1 Major Element AnalysesThe data (with the exception of the picrite and the Nicola Group volcanic rock, shown in Figure 2.6b), areplotted in Figure 2.6a on a granitoid discrimination diagram (after Le Maitre, 1989). Most of the samples plot inthe quartz monzodiorite, monzodiorite and diorite/gabbro fields with the exceptions of the magnetite rich dyke(KR92-05) that plots in the quartz monzonite field, and two of the monzodiorite dykes which plot in the monzoniteand syenite fields. The picrites (Fig. 2.6b) clearly plot in the picrite field and the Nicola Group volcanic rock plotsin the basalt field. The data, plotted on an alkaline/subalkaline discrimination plot in Figure 2.7 (Irvine andBaragar, 1971), are mainly within the alkaline field, but are close to the discriminating line. In an orogenicaffinity diagram (Fig. 2.8a, Shervais, 1982) the samples plot in the volcanic island arc fields. On a K20 vs. Na2021basaltandesitebasalticandesite3—basaritei- tepkvite pictobaseitfoiditer--Mq0>1874 pipits0Mg0>18% & Ti02>1% meinechiteMg0)18% & Ti020% ketnatiiteboniniteMg0>E1,4 & Ti02<0.5%80 900^10^20^30^40^50^60^70AN/(AN + OR)QUARTZ-ALKALIFELDSPARGRANITE GRANITE3025QUARTZ I QUARTZ^QUARTZ^QUARTZ DIORITESYENITE 1 MONZONITE MONZODIORITE^QUARTZ GABBRODQUARTZ ALKALFELDSPARGRANITEGM^cjik_a^G SM DIORITE, GABBROMONZONITE^MONZODIORITE1 1^ ANORTHOSITE H•50(a)ALKALI FELDSPA •SYENITE^YENIMF100M+ 20zcc• 150O 10045^ 55Si02 (wt %)(b)Figure 2.6 Classification of rocks from the Ajax East and Ajax West pits: (a) granitoid discrimination diagram(after LeMaitre, 1989), and (b) picrite discrimination diagram (after LeMaitre, 1989). Symbols are:(a) H - hybriddiorite, T -trachytic monzonite, G - pyroxene gabbro, S - Sugarloaf diorite, M - monzodiorite dyke, D - magnetiterich dyke, and Q - quartz eye latite dyke, and (b) o - picrite and + - Nicola Goup volcanic rock.z°10075 8520■T 12701^TIVITTI—Z▪^syn.001.6V^Iry v■IIIWPGVAGI^1111111111 I080I 100010010+ Nicola Group volcanic rocko picritex pyroxene gabbro• hybrid diorite* trachytic monzonite^ Sugarloaf diorite■ monzodiorite dykeo magnetite rich dykequartz eye latite dykeFigure 2.7 Classification of rocks from the Ajax East and Ajax West pits on an alkaline affinity diagram (Irvineand Baragar, 1971). Symbols are defined in the legend.10^10:I^1007^2000Y • Nb Wpm)(a) (b)Figure 2.8 Classification of rocks from the Ajax East and Ajax West pits on (a) an orogenic affinity plot(Shervais, 1982), and on (b) a Na20/K20 discrimnation diagram, (after Middlemost, 1975). Symbols are definedin Figure 2.7. The affinity to arc rocks is emphasized in (a). All major rocks units plot in the volcanic arc granites(VAG) field Other fields are ocean ridge granites (ORG), within plate granites (WPG), and syn-collisional plategranites (syn-COLG).23Table 2.2 Whole rock analyses of major rock units from the Ajax East and Ajax West pits. (See samplelocations in Fi A.1 and A.2)UNITS90101PICRITE90102PICRITEKR92-28NICOLA GROUPVOLCANICROCKKR92-01PEGMATITICHYBRIDDIORITEKR92-02HYBRIDDIORITEKR92-03HYBRIDDIORITEKR92-24HYBRIDDIORITESiO2 % 43.2 44.7 48 41.4 51.5 51.9 41.6TiO2 % 0.296 0.518 0.555 0.741 0.886 0.744 0.977Al203 % 5.77 7.58 11.8 19 16.1 18.6 7.03Fe2O3 % 9.62 9.79 10.3 13.3 8.92 7.71 19.2FeO % 4 6.2 6.5 4.8 5 3.6 7.4MnO % 0.15 0.17 0.2 0.13 0.17 0.15 0.17MgO % 27.6 21.7 11.8 5.88 4.21 3.2 10.8CaO % 6.02 8.35 10.2 16 9.39 6.76 15.4Na2O % 0.21 0.55 1.69 0.81 3.41 4.07 0.71K2O % 0.96 0.65 1.47 0.29 1.95 2.6 0.99P2O5 % 0.12 0.14 0.24 0.07 0.36 0.46 0.12H20+ % 5.3 4.1 2.2 1.4 1.6 1.8 1.4H2O- % 0.2 0.3 0.1 0.2 0.2 0.2 0.2CO2 % 0.1 0.07 0.11 0.51 0.13 0.2 0.22WI % 5.45 4.15 1.7 1.35 1.95 1.7 1.5SUM % 99.80 98.61 98.21 99.70 98.80 98.80 98.56Au ppb -5 -5 7 -5 -5 -5 -5S ppm -50 -50 -50 -50 399 2320 -50F ppm 280 168 249 56 350 500 439Na ppm 1700 4400 13000 7900 24000 30000 5900CI ppm 196 221 484 262 385 412 696Sc ppm 22.2 30.3 31.4 41.8 23.8 11.1 109V ppm 131 145 279 323 259 285 303Cr ppm 2250 1820 700 39 73 33 139Co ppm 86 73 49 35 23 16 59Ni ppm 1060 817 273 76 19 7 58Cu ppm 30 22 184 4 53 45 39Zn ppm 47 61 70 67 61 47 69As ppm 5 2 3 -2 -2 2 3Br ppm 2 2 1 3 3 2 3Rb ppm 38 18 55 -20 -20 40 18Sr ppm 61 55 464 731 857 901 150Y ppm -2 -2 -2 -10 15 10 -2Zr ppm 13 45 29 -10 82 40 17Nb ppm 5 5 5 2 6 9 5Sb ppm 0.4 0.2 0.2 0.2 0.2 0.3 0.3Cs ppm 1 -1 -1 1 1 1 2Ba ppm 561 259 780 102 787 1720 141La ppm 2.1 3.1 9.8 1.3 9.7 8.7 2.5Ce ppm 6 9 19 4 22 20 7Nd ppm -5 5 8 -5 12 12 -5Sm ppm 0.8 1.4 1.7 _ 1 2.8 2.9 1.5Eu ppm 0.2 0.7 0.5 0.5 0.8 0.6 0.9Yb ppm 0.6 1.1 1 0.6 1.9 1.9 0.6Lu ppm 0.15 0.16 0.17 0.08 0.27 0.28 0.13Hf ppm -0.5 1.1 0.9 -0.5 1.7 1.7 0.8Th ppm -0.5 -0.5 0.8 -0.5 1.3 1.1 -0.5U ppm -0.5 -0.5 -0.5 -0.5 0.9 0.6 -0.524Table 2.2 (continued)UNITS90108HYBRIDDIORITEKR92-04TRACHYTICMONZONITE^DY 3474^KR92-25^KR92-26^KR92-27^KR92-64^SUGARL AF^SUGARLOAF SUGARLOAF MONZODIORITE MONZODIORITE^DIORITE^MICRODIORITE^DIORITE^DYKE^DYKES102 % 46.8 53.5 54.6 49.4 54.9 58.2 55.6TiO2 % 0.823 0.676 0.67 0.825 0.647 0.484 0.556Al203 % 17.8 18.5 18 15.1 18.2 18.4 18.5Fe203 % 10.1 7.53 7.03 9.92 6.83 5.31 2.4FeO % 5 3 3 5.9 3.8 1.3 1.1MnO % 0.15 0.1 0.08 0.14 0.11 0.04 0.07MgO % 6.45 2.57 3.21 8.15 3.22 1.63 3.09Ca0 % 9.63 6.81 7.31 9.13 7.33 5.3 9.57Na20 % 2.96 4.44 5.95 2.58 5.63 5.89 6.8K20 % 1.79 2.48 1.2 1.72 1.56 2.14 0.45P205 % 0.33 0.35 0.24 0.24 0.25 0.23 0.29H20+ % 2.5 1.6 1.3 2.1 1.1 1.4 1.9H20- % 0.2 0.2 0.1 0.2 0.1 0.3 0.2CO2 % 0.59 0.09 0.69 0.16 0.09 0.08 1.06WI % 3.25 2.3 2.05 1.95 1.15 2 3.05SUM % 100.32 99.10 100.50 99.41 99.98 99.88 100.48Au ppb 12 -5 10 7 -5 41 -5S ppm 1020 -50 -50 98 -50 -50 -50F ppm 388 370 304 287 256 198 240Na ppm 23000 32000 42000 21000 42000 44000 50000Cl ppm 433 345 377 568 586 208 161Sc ppm 26.6 11.7 16.6 34.5 17.3 7.5 13.5V ppm 353 158 234 263 234 129 121Cr ppm 207 40 86 363 66 67 49Co ppm 38 15 18 39 22 13 11Ni ppm 64 3 12 140 11 10 3Cu ppm 379 9 50 151 51 263 68Zn ppm 56 34 42 47 38 32 23As ppm 2 3 7 2 -2 6 2Br ppm 1 2 2 2 3 3 2Rb ppm 42 60 35 54 43 31 14Sr ppm 743 701 610 506 631 795 509Y ppm -2 14 -2 3 7 3 -2Zr ppm 23 80 84 70 71 72 67Nb ppm 6 8 5 6 6 10 6Sb ppm 3.7 0.2 0.2 0.4 -0.2 0.3 0.2Cs ppm -1 1 -1 -1 1 1 -1Ba ppm 919 1260 441 1090 472 1190 166La ppm 7 12.1 8.7 7.7 7.3 10.4 10.2Ce ppm 17 26 21 18 17 24 24Nd ppm 10 14 10 10 11 12 13Sm ppm 2.6 3 2.5 2.6 2.6 2.7 2.9Eu ppm 0.7 0.1 1.2 - 0.9 0.9 0.8 1.1Yb ppm 1.8 1.9 1.9 2 2 1.8 1.7Lu ppm 0.25 0.26 0.3 0.3 0.31 0.32 0.28Hf ppm 1 2.1 2.1 1.6 2.1 2 2Th ppm -0.5 1.2 1.5 1 1.2 1.5 1.6U ppm -0.5 1 1.3 1 1 1.9 1.825Table 2.2 (continued)90107^KR92-06MONZODIORITE^CHILLEDUNITS^DYKE^MONZODIORITEDYKEKR92-05MAGNETITE-RICH DYKEDY 3475PYROXENEGABBROKR92-29PYROXENEGABBRO90106PYROXENEGABBRODY 3463QUARTZ EYELATITE DYKESiO2 55.4 50 46.8 49 47.6 50.3 51.1TiO2 0.562 0.602 0.711 0.703 0.668 0.778 1.2Al203 % 17.7 17.5 17 13.7 10.8 13.7 14.7Fe2O3 % 6.91 8.73 12 9.66 9.63 10 6.86FeO % 2.8 4 7.2 5.7 6.2 5.4 4.4MnO % 0.04 0.05 0.05 0.14 0.2 0.17 0.11MgO % 2.54 3.13 3.98 8.57 16.6 7.36 6.81CaO % 5.27 5.05 5.39 8.58 8.7 8.54 7Na2O % 4.58 5.01 5.61 2.85 0.83 2.33 4.13K2O % 4.23 3.31 0.7 1.7 2.33 2.89 1.88P2O5 0.27 0.36 0.32 0.26 0.17 0.24 0.4H20+ % 1.4 2 3 2.5 2.7 1.6 2.4H2O- 0.1 0.2 0.2 0.2 0.1 -0.1 0.2CO2 % 1.04 2.6 3.51 0.59 0.08 0.24 1.69WI % 2.6 5.3 1.9 3 2.2 1.35 4.05SUM % 100.46 98.50 97.90 98.41 100.00 98.03 98.41Au ppb 24 -5 200 12 5 19 10S PPm -50 -50 4220 1250 72 154 -50F PPm 312 290 320 330 250 238 640Na PPm 35000 35000 40000 23000 6600 16000 30000CI PPm 374 245 258 477 586 551 173Sc PPm 13.4 14.3 14.3 33.7 29 30 18.4V PPm 209 197 291 282 208 254 180Cr PPm 63 13 14 413 1270 306 265Co PPm 18 17 25 47 53 33 32Ni PPm 11 12 47 149 556 80 150Cu PPm 340 2 3870 156 4 182 28Zn ppm 36 35 40 45 60 57 58As PPm 6 -2 -2 10 -2 4 12Br PPm 4 2 4 2 2 2 4Rb PPm 50 40 20 32 62 64 45Sr PPm 586 486 336 435 187 525 497Y PPm -2 -10 -10 -2 -2 4 -2Zr PPm 72 55 46 39 32 52 155Nb PPm 5 8 9 6 6 6 23Sb PPm 10 0.2 0.5 0.5 0.3 1.8 0.5Cs PPm 1 1 -1 -1 2 1 2Ba PPm 2350 1830 205 1090 485 2210 345La PPm 11.5 10.5 7.2 8.6 3.8 7.9 23.5Ce PPm 25 22 17 19 10 18 50Nd PPm 12 11 10 10 5 10 23Sm PPm 2.7 2.2 2.6 _ 2.2 1.7 2.3 4.5Eu PPm 1.2 0.8 1.4 0.7 0.4 1.1 1.4Yb PPm 1.8 1.3 1.5 1.6 1.5 1.5 1.4Lu PPm 0.32 0.22 0.25 0.2 0.22 0.26 0.25Hf PPm 2 1.3 1.2 1.4 0.8 1.6 3.6Th PPm 2.1 1.7 0.8 1.1 -0.5 1.2 3.2U PPm 2.5 1.3 2.7 0.8 -0.5 0.9 1.226plot (Fig. 2.8b, Middlemost, 1975) which subdivides the alkalic suite, the samples lie in the sodic and potassicfields, with the exception of one pyroxene gabbro sample which lies in the high-K field.Compositional trends between rock units are apparent on variation diagrams (Fig. 2.9a-h). All units, withthe exception of the picrite and the quartz eye latite, are considered to be closely related genetically. Instead ofclustering into discrete groups, there is significant overlap among the units. The exceptions are the two picritesamples, and two hybrid diorite samples (Table 2.2: KR92-01, pegmatitic variety and KR92-24, coarse grainedpyroxenite phase). These four samples are relatively lower in Si02. The quartz eye latite plots within the maintrend of the data, with the exception of Zr and Ti02, in which it is slightly enriched relative to the Iron Maskbatholith phases. Progressively younger units have increasingly higher Si02. Coinciding with higher silica is amarked increase in Al203, Na20, P205 and Zr. A prominent decrease in FeO, Fe203 and MgO occurs withincreasing Si02. There is a general decrease in CaO, although the data are scattered. K20 exhibits a slightincrease with increasing Si02, with the exception of several Sugarloaf diorite and monzodiorite dyke sampleswhich show a decrease. No clear trend can be interpreted for Ti02, other than a slight enrichment exhibited by thequartz eye latite relative to the other phases (Table 2.2).A close correlation exists on the Harker plots between the three pyroxene gabbro samples, the NicolaGroup volcanic sample (KR92-28) and the Sugarloaf microdiorite sample (KR92-25). This is consistent with thepossibility that the pyroxene gabbro is a screen of Nicola Group volcanic rocks, and that the dark greymicrodioritic phase of the Sugarloaf has partially assimilated Nicola Group volcanic rocks. It is significant thatthree of these samples also represent the most altered samples. Two interpretations are possible: (i) the units maybe similarly altered due to their similar original geochemistry and instability with respect to the younger, moresodic phases, or alternatively, (ii) the units were originally dissimilar and alteration homogenized theirgeochemistry. The three other Sugarloaf diorite and four monzodiorite dyke samples cluster together consistently.The hybrid diorite displays a wide variation in major oxide concentrations that corresponds to the marked texturaland mineralogical variation seen in this unit. The single analysis of the trachytic monzodiorite unit lies near theSugarloaf diorite analyses. The magnetite rich dyke sample plots within the overall trend.270o 0 • x■ ••••o•+4,•XXXx•^•co000 •^■^■I201816141210864258^62^66^7058^62^66^70• •0■0:•■0x x2522.52017.515125510^7.5^ •^0052.5^33^34^38^42^46^50^54Si02 (wt34^38^42^46^50^54Si132 (w030272421186115129637058 62 66•00 •0 •• ••034^38^42^46^50^54Si02 (v.1%)2018161412I 108642706658 6230^34^38^42^46^50^545132 (MX)Figure 2.9 Data from major units from the Ajax East and Ajax West pits plotted on Harker diagrams that show whole rock major element chemical variation withrespect to SiO2. Clustering of some rock types along differentation trends in these diagrams help to assign rock unit relationships. Symbols are defined in Figure 2.7.x■x• 0Figure 2.9 (continued)0x• •tito^■•1 ■ •7066621098760 0 •2■0■•X ••• x0 xx•0109876it4523130^34^38^42^46^50^54Si02 liwt X)58 62 66•o X▪ 5tc?431330^34^38^42^46^50^546032 Iwt585 •4109876▪ 5tt•• )43a321 • 0■03034^38^42^46^50^545102 (wto 0• II58 62 66 70■■x+ ox •• 0•58 62 66030^38^42^46^50^54SA2 (wt XJ.8.7.6.5▪ .4.3.2.12.4.2 Minor and Trace Element AnalysesThe minor and trace element data were used to test whether or not the units in the pits are cogenetic, andto further examine relationships among units. The data have been divided into four groups based on similarity intexture, petrography and major element composition. The groups include: (i) Nicola Group volcanic rocks,pyroxene gabbro, and picrite, (ii) trachytic monzonite and hybrid diorite, (iii) Sugarloaf diorite and monzodioritedykes, and (iv) quartz eye latite and magnetite rich dyke, plotted with typical Sugarloaf diorite and hybrid dioritesamples for comparison.The data are presented as eight spider diagrams (Fig. 2.10), normalized to MORB (Appendix A). Allunits with the exception of the picrite and the quartz eye latite have similar patterns with consistently low Yttrium.One of the two samples of picrite shows a Eu depletion (Fig. 2.10a) . With only two samples it is difficult to assesswhether this is a true difference or a detection limit problem. Among the samples of hybrid diorite (Fig. 2.10b),the pegmatitic hybrid diorite has a relative strontium enrichment, but lower overall concentration of REE's than theother hybrid phases. Figure 2.10c shows that the patterns of Sugarloaf diorite and monzodiorite dykes closelyoverlap with the exception of Rb, Ba and K, which may reflect their mobility during alteration. The notabledifferences among the hybrid diorite, the Sugarloaf diorite and monzodiorite dyke are the weak enrichment of U(Table 2.2) and Eu, and a relative depletion of K in the Sugarloaf suite. The differences are slight, but it appearsthat the monzodiorite dykes are not only texturally similar to the Sugarloaf diorite, but are also compositionallycloser to it than to the hybrid diorite suite. Absence of the weak K depletion distinguishes the pyroxene gabbro(Fig. 2.10a) from the Sugarloaf diorite. The single sample of the trachytic monzonite has a strong Eu depletion.As with the picrite, it is difficult to assess the significance of this depletion. In other aspects the overall pattern issimilar to both the Sugarloaf diorite and the hybrid diorite. The magnetite rich dyke is enriched in Eu butotherwise has the same overall pattern as the diorites. The quartz eye latite has a distinct pattern, supporting theidea that it is an unrelated intrusion.Pearce element ratio theory (Pearce 1968; Russell and Stanley 1990) was used to determine which rockunits are cogenetic, using ratios of conserved elements. Conserved elements are those elements that do not3001.0CC.01.0coE E Ez Dco 3CC100010009010190102x 90106+ DY 3475- KR92-28■ KR92-29101000100I^I•90108• KR92-01•KR92-02• KR92-03• KR92-04o KR92-2410Figure 2.10 Spider diagrams for major granitoid units from the Ajax East and Ajax West pits. Values have beennormalized to (1) MORB (Appendix A) and to (2) Sun (1982). Grouping by diagram is as follows: (a) NicolaGroup volcanic rocks, picrite, and pyroxene gabbro, (b): hybrid diorite, and trachytic monzonite.a 0^.coT^I^•90107o DY 3474o KR92-06o KR92-25KR92-26• KR92-27• KR92-6410001001001(5 (F)r■ DY 3463• KR92-03• KR92-05• KR92-26a KR92-28100010010.01CC(7, O E 33 33 3 S .0 O E15 31001010310Figure 2.10 (continued) Grouping by diagram is as follows:(c) Sugarloaf diorite, and monzodiorite dykes, (d)magnetite rich dyke, and quartz eye latite, with Sugarloaf diorite and hybrid diorite for comparison.participate in material transfer processes such as igneous differentiation and hydrothermal alteration. The hybriddiorite unit, with its agmatitic nature is not a good candidate to test for conserved elements, and is thereforeexcluded. The data set of Nicola Group volcanic rock, pyroxene gabbro and magnetite rich dyke samples is toosmall to adequately test for the presence of conserved elements. The most extensive data set is of themineralogically similar Sugarloaf diorite and monzodiorite dykes. Therefore the test was limited to whether or notthe Sugarloaf diorite and monzodiorite dykes are cogenetic. The Sugarloaf diorite samples analyzed by L. Snyder(1993, unpublished data) were incorporated into the Ajax data base because they represent least altered samples.In addition, a suite of twelve least to most albitically altered Sugarloaf diorite samples are included in the data set(see Chapter 3 for data and discussion). The trachytic monzonite sample was also added to test the hypothesis thatit is related to Sugarloaf diorite through fractionation.Pearce element ratios require the presence of at least one conserved element. Conserved elements aredetermined by plotting potential, commonly conserved candidates (Zr, Ti02, V, P205, Th, Nb and Hf) againsteach other (Figs. 2.11 a-e). On these plots a linear trend indicates either: (i) the elements are conserved, and thesystem size is changing, or (ii) coherent mobility of the two elements. A cluster of data can mean: (i) the elementsare conserved and the system size is not changing, or (ii) coherent mobility. TiO2 and V have a linearrelationship. Because these elements commonly occur in magnetite, the linearity probably reflects coherentmobility and indicates that TiO2 is not a conserved element. In contrast, Zr exhibits a loose cluster (within 2standard deviations) with P205, Th, Nb and Hf. The correlation of Zr with Hf may indicate coherent mobility (Zrand Hf substitute for one another in zircon), but its relationship with the other elements indicates it is a conservedelement. Thus, Pearce element ratios were calculated using Zr in the denominator.To determine how the Sugarloaf diorite, monzodiorite dyke and trachytic monzonite samples are related,fractionation trends were examined. Plagioclase and hornblende are phenocryst phases in all Sugarloaf diorite andmonzodiorite dyke rocks. Therefore, a set of axes modeling the effects of feldspar fractionation alone is examinedin Figure 2.12a. The coefficients on the Y-axis are chosen to ensure that the effects due to the addition or removalof feldspar would be represented by a line with a slope of one. The data plot on a line with a steeper slope andindicate the possible presence of at least one other significant fractionating phase and/or the probable33(c) (d)2 Std. Dev.Analytical Error4.5-44i0.5100^10^20^30^40^50^60^70^80^90 100Zr (PPrn)90 100(e)1(b)90 100Figure 2.11 Test for the conservation of elements in data for Sugarloaf diorite, monzodiorite dykes and trachyticmonzonite samples in the Ajax East and Ajax West pits. The plots test two hypotheses: (a) whether TiO2 is aconserved element, and (b-e) whether Zr is a conserved element. In (a) the good correlation between TiO2 and Vmay be due to coherent mobility, therefore TiO2 cannot be considered conserved with certainty. Figures (b-e)illustrate Zr plotted against Hf, P2O5, Th and Nb. The clustering of data indicates Zr is a conserved element.34A0.1^0.2^0.3^0.4^0.5^0.6^0.7^0.8^0.9Al/Zr PER (molar)(a)AFeldspar and HornblendeFractionation0.5^1^1.5^2^2.5^3.5Si/Zr PER (molar)w^4 ^z 3-CDrn2.5-2c.)+ 1.5-LA-UD.7( 0.5^=- 0^0(b)cc^4War■l- 3.52z 3coa)co+ 2.5 -^Effects due to^Aco Aco^Alteration co2 M,rin A^I Feldspar and Hornblende+ 1.5su_co-c:i 10.5KI,..L...0 0AAFractionation0.5^1^1.5^2^2.5Si/Zr PER (molar)3.5^4(c)Figure 2.12 Pearce element ratio plots for Sugarloaf diorite, monzodiorite dykes and trachytic monzonite samples.Symbols are: A = intensely albitized Sugarloaf diorite, I = intermediate albitization of Sugarloaf diorite, W =weakly albitized to unaltered Sugarloaf diorite, S = least altered Sugarloaf diorite, M = monzodiorite dykes, and T= trachytic monzonite. Plots (a) and (b) test two different hypotheses: (a) magmatic evolution due to feldsparfractionation alone, and (b) magmatic evolution due to feldspar and hornblende fractionation (using edenite andpargasite compositions). The linear trend in Figure (b) implies that the Sugarloaf diorite, monzodiorite dykes andtrachytic monzonite are cogenetic and evolved through the fractionation of feldspar and hornblende; the effects ofalteration can not be discriminated in this diagram. Figure (c) discriminates between the magmatic evolution dueto fractionation of plagioclase and hornblende of paragonite and edenite composition and the effects of albiticalteration.35effect of metasomatism associated with albitic alteration. In Figure 2.12b the Y-axis coefficients are chosen so thatthe combined effects of feldspar and hornblende (of tschermakite and paragasite end member compositions)fractionation form a line with a slope of one. The data plot along the line, indicating that Sugarloaf diorite,monzodiorite dykes and the trachytic monzonite are related to one another through the fractionation of feldspar(plagioclase as determined from petrography) and hornblende. Effects of albitic alteration and feldspar-hornblendefractionation in Fig. 2.12b can be distinguished by assuming an edenite and paragasite composition for theamphibole (Fig. 2.12c). The least altered samples lie along the fractionation line; the most intensely alteredsamples lie above this line. This indicates an addition of Na and Ca and/or removal of Fe and Mg. The validity ofthis method of identifying alteration is supported by the paragasitic composition of probed hornblendes (C. Stanley,Univ. of B.C., pers. comm., 1993). Further evaluation of this data set is discussed in Chapter 3.0.2.5 SummaryEleven significant rock units have been identified in the Ajax East and Ajax West pits. Nine of theseunits belong to the Iron Mask batholith suite of intrusive rocks and the related Nicola Group volcanic rocks. Theyrange in composition from gabbro/diorite to quartz monzonite. The picrite unit is temporally related to NicolaGroup volcanic rocks (L. Snyder, Univ. of B.C., pers. comm., 1993) but is compositionally distinct. The quartz eyelatite dykes are younger, by cross-cutting relationships, and are a compositionally distinct unit. The older andmore mafic hybrid diorite, pyroxene gabbro and trachytic monzonite units are plagioclase, pyroxene andhornblende-bearing and generally silica-undersaturated. The younger Sugarloaf diorite, monzodiorite dykes andmagnetite rich dykes are plagioclase and hornblende-bearing, silica-saturated and porphyritic.Major element chemistry has shown that the Iron Mask pluton suite is silica-saturated and alkalic, and liesin the K- and Na-series fields. The compositional trends and tectonic discrimination diagrams indicate an islandarc affinity. The incompatible and REE patterns are similar for all units that are part of the Iron Mask plutonsuites and are characteristic of alkalic rocks (Wilson, 1989). Notable revisions to previous reports (Ross et al.,1992; 1993) include:(i) the genetic relationship of pyroxene gabbro unit to the Nicola Group volcanic rocks, and(ii) the inclusion of the monzodiorite dykes with the Sugarloaf diorite suite of rocks.36Plate 2.1A Photomicrograph (plane polarized light) of Nicola Group volcanic rock (KR92-28, location Fig. A.1).Equant pyroxene phenocrysts are replaced from the rims inwards by hornblende. Much of the groundmass is alsoreplaced by hornblende. Cloudy plagioclase laths have a weakly developed trachytic texture. Abbreviations are:Px pyroxene, 1-1b = hornblende, PI = plagioclase. (Field of view is 2.6 mm.)177:Plate 2.1B Photomicrograph (plane polarized light) of picrite (KR92-19, location Fig. A 1). Relict olivinephenocrysts occur in a groundmass of serpentinite and tremolite. The opaques are minute magnetite crystalsexsolving from the olivine. Abbreviations are: 01 = olivine. (Field of view is 2.6 mm.)37Plate 2.2A Photomicrograph (plane polarized light) of pyroxene gabbro (KR91-41, location Fig. A.1). Subequantto equant pyroxene phenocrysts are partially replaced on the rims by hornblende. Plagioclase occurring asphenocrysts and in the groundmass is saussuratized. Abbreviations are: Px = pyroxene, Hb = hornblende, PI =plagioclase. (Field of view is 2.6 mm.)Plate 2.2B Photomicrograph (plane polarized light) of pyroxene gabbro (KR91-45, location Fig. A.1). Subequantto equant pyroxene phenocrysts are almost totally replaced by hornblende. Hornblende has also replaced thegroundmass. Plagioclase lathes are not destroyed. Note the textural similarity to the Nicola Group volcanic rock.Plate 2.1A Abbreviations are: Px = pyroxene, Hb = hornblende, PI = plagioclase. (Field of view is 2.6 mm.)38Plate 2.3A Photomicrograph (plane polarized light) of medium grained hybrid diorite (KR92-02, location Fig.A.1). This unit characteristically comprises equigranular pale green pyroxene and plagioclase with interstitalmagnetite and (primary?) biotite. K-feldspar occassionally occurs, sometimes poikilitically enclosing plagioclaseand pyroxene. Its distribution is erratic. Abbreviations are: Px = pyroxene, PI = plagioclase,Bi = biotite, Mg = magnetite. (Field of view is 2.6 mm.)Plale 2.3B Photomicrograph (cross-polarized light) of fine grained hybrid diorite (KR92-02A, location Fig. A.1).Fine grained pyroxene and plagioclase are poikiolitically enclosed in red-brown biotite. Abbreviations are: Px =pyroxene, PI = plagioclase, Bi = biotite, Mg = magnetite. (Field of view is 1.3 mm.)39Plate 2.4A Photomicrograph (plane polarized light) of pegmatitic hybrid diorite (KR92-01, location Fig. A.1).Primary plagioclase, pyroxene and hornblende are the dominant minerals. There is up to 15% interstitalmagnetite. Abbreviations are: Px pyroxene, Hb = hornblende, P1= plagioclase, Mg = magnetite. (Field of view is2.6 mm.)rani:Plate 2.4B Photomicrograph (plane polarized light) of trachytic monzonite (KR92-04, location Fig. A.1).Plagioclase phenocrysts with finer grained interstial pyroxene and magnetite occur in a K-feldspar groundmass.Abbreviations are: Px = pyroxene, P1 = plagioclase, Kf = K-feldspar, Mg = magnetite. (Field of view is 2.6 mm.)40Plate 2.5A Drill core samples of hybrid diorite (Ajax West pit) showing variations in alteration: (1) weakpervasive albitic alteration in a medium-grained hybrid, (2) calcite veins and pervasive propylitic alteration in finegrained hybrid diorite, and (3) albitic alteration envelopes around a microfracture and pervasive hematitereplacement of original, disseminated magnetite.Plate 2.5B Different phases of pegmatitic hybrid diorite (920 metre bench, Ajax West pit). Note coarse grainedand fine grained phases.41Plate 2.6 Drill core samples of Sugarloaf diorite (Ajax West pit) showing variations in texture and alteration: (1)weak pervasive albitic alteration, (2) pervasive propylitic alteration, (3) chalcopyrite-pyrite mineralization alongmicrofractures, (4) moderate pervasive albitic alteration with a sulphide-bearing, hornblende xenolith, which iscommon in the Sugarloaf diorite, (5) a relatively unaltered example, and (6) an unaltered sample of themicrodiorite phase of the Sugarloaf diorite.42Plate 2.7A Photomicrograph (plane polarized light) of Sugarloaf diorite (KR91-40, Ajax West pit) exhibitingcharacteristic porphyritic texture. Plagioclase, hornblende and apatite occur in a plagioclase groundmass. Atrachytic texture, as shown here, is locally developed. Abbreviations are: Hb = hornblende, P1 = plagioclase, Apapatite, Mg = magnetite. (Field of view is 2 6 min)Plate 2.7B Photomicrograph (cross-polarized light) of Sugarloaf diorite (KR91-11, Ajax West pit) showingcharacteristically zoned hornblende phenocrysts. Abbreviations are: Hb = hornblende, PI = plagioclase, Ap =apatite, Mg = magnetite. (Field of view is 2.6 mm.)43Plate 2.8A Photomicrograph (plane polarized light) of a monzodiorite dyke (KR92-27, location Fig. A.2).Monzodiorite dykes are porphyritic and invariably deuterically altered. Plagioclase and hornblende phenocrystsoccur in either a plagioclase or a K-feldspar matrix. Apatite is a common accesory mineral. Abbreviations are: Fib---- hornblende, PI = plagioclase, Ap = apatite, Mg = magnetite. (Field of view is 2.6 mm.)Plate 2.8B Photomicrograph (plane polarized light) of a magnetite rich dyke (KR92-05, location Fig. A.1).Texture and mineralogy varies among the several magnetite-rich dykes documented in the Ajax East and AjaxWest pits. In this sample plagioclase is saussuritized, pale green chlorite totally replaces hornblende. Opaques aremagnetite. Abbreviations are 1-1b = hornblende, P1 = plagioclase, CI = chlorite, Mg = magnetite. (Field of view is1.3 mm.)44Plate 2.9A Photomicrograph (plane polarized light) of a magnetite rich dyke (KR91-10, Ajax West pit). Thisparticular dyke contained pyroxene phenocrysts in a plagioclase, hornblende, pyroxene and magnetite (opaque)groundmass. Hornblende rims the pyroxene grains. Abbreviations are: flb = hornblende, Px = pyroxene, P1 =plagioclase, Cl = chlorite, Mg = magnetite. (Field of view is 2.6 min)Plate 2.9B Photomicrograph (plane polarized light) of a quartz eye latite dyke (KR91-47, Ajax West pit).Amphibole needles occur in a groundmass of mainly K-feldspar. K-feldspar phenocrysts and quartz eyes arecommon. Chlorite has an anomalous blue interference colour Abbreviations are: Kf = K-feldspar, CI = chlorite,Qz = quartz, flb = hornblende. (Field of view is 1.3 mm.)453.0 ALTERATION AND MINERALIZATION OF THE AJAX EAST AND AJAX WEST DEPOSITS3.1 IntroductionDescriptions of alteration are based on field observations, petrographic work, electron microprobeanalyses, and a statistical study. The studies were based on examinations of relogged split drill core and handsamples collected during pit mapping. Pearce element theory is applied to whole rock analyses of altered rocks tocharacterize the elemental exchanges that accompany albitic alteration, the dominant alteration. Electronmicroprobe results are presented and discussed in Chapter 4. Alteration has been divided into four categories: (i)deuteric alteration prior to mineralization, (ii) main stage porphyry mineralization, (iii) late stage porphyryalteration and (iv) post-porphyry alteration. Four main stage alteration assemblages are recognized: propylitic,albitic, potassic and scapolitic.3.2 Data CollectionTwo representative plan level and three-cross sections were studied in detail. In the Ajax West pit, the860 metre level offered excellent exposures of all rock types and alteration and was chosen as the representativeplan level. In the Ajax East pit the 940 metre level was chosen as the representative plan level because it offeredmaximum exposure in the pit. The 860 metre level was also examined for comparative purposes, although thislevel is below the existing floor of the pit (930 metres) and drill intersections are relatively sparse.Drill core from 130 drill holes was examined. For plan level studies, a 12 metre interval comprising twothree metre assay intervals above and two three metre assay intervals below the plan level pierce point for eachdrill hole were logged in detail. For the cross-sections, the entire length of the drill holes were logged on threemetre intervals corresponding with the assay intervals. Visual estimates in percent of the abundance of 20minerals were made on each interval and recorded on log sheets following a GEOLOG-type format (Godwin et al.,1982), which facilitated data entry into spread sheet programs. Minerals with two obvious modes of occurrence,such as vein and pervasive habits of pyrite and albite, were recorded separately to determine if the style of46occurrence was significant. Where spatial distributions of a given mineral with different habits wereindistinguishable the values were combined. The plan level data for each pierce point were averaged to a singledata point. For consistency, the cross-sectional data were averaged to a mid-point across intervals of 12 metres.This data formed the main database for statistical modeling. The data were supplemented with similar visualestimates of mineral abundance made on grab samples taken from regularly spaced sample stations along the pitwalls on each plan level and cross-section. Representative specimens of each rock type and alteration werecollected systematically from the logged intervals for thin section and electron microprobe analysis. Additionaltype specimens of alteration were collected from a number of places in both pits.3.3 Data ReconnaissanceThe objective of the plan and cross-section study was to define broad scale features of zoning and to definealteration assemblages large enough to provide vectors to focus exploration or development drilling. Large errorsin visual estimates of mineral percentages in the field, non-symmetric distributions of data, multiple populations,generalized averages and zero values were among the primary difficulties encountered in data analysis.The statistical study started with examination of the data base in SYSTAT/SYGRAPH (Wilkinson, 1990,1990a). Several methods of presenting the data were examined to determine which method most clearly illustratedalteration distribution patterns. Data were first plotted in three dimensional diagrams (Fig. 3.1). Contouring andfitting of 3-D surfaces to the data permit quick visual comparison of enriched and depleted areas of elements orminerals. Unfortunately, both methods suffer from edge effects that may indicate trends where no data exist. Thedata in this study did not come from a regularly spaced grid, causing some points to have inappropriately largeareas of influence and distorting both contours and surfaces. Areas of possible distortion can be recognized onspike plots, which show the exact location and value of data, but these are difficult to read. The least ambiguityresults from presenting the data as 2-D bubble plots (Figs. 3.5, 3.6), where the center of the bubble is the samplelocation and the size of the bubble is proportional to the arithmetic value of the data point. This method is appliedto much of the data from this study.47moo(a)T'T1.0•^•T ii.1^II!(b)(c)Figure 3.1 Three dimensional representation of assay data from the Ajax West pit: (a) spike diagrams of copperthat indicate sample location and value, (b) 3-dimensional surface plot of copper %; note edge effects beyond datapoints, and (c) contour map of copper %; uneven spacing of samples can create misleading edge effects. Graphicswere generated in SYGRAPH (Wilkinson, 1990a).48Correlation Tree Diagram, Single Linkage Method—1 .000^Dissimilarities^1 .000PropyliticAlbiticChlorite ^Pyrite ^Copper ^GoldSilverAlbiteDiopside ^K—feldspar^Epidote ^ PotassicFigure 3.2 Correlation among alteration minerals and mineralization. Broad alteration facies andinterrelationships among data from the Ajax East and Ajax West pits are defined in a correlation tree defined byhierarchical clustering based on Pearson correlation coefficients. The diagram roughly corroborates field andlaboratory interpretation of the main facies: albitic (copper, gold, silver, pyrite and albite), propylitic (chlorite) andpotassic (K-feldspar and epidote). The scapolite facies is not represented in this diagram due to its limiteddistribution.(S' 1 02.0 ^1 5 (-^00^0000.5(a)0^ -* 001:040200(b)*1 p\\ --C3- 0)■Kb \ &3E3C))c\ \"63 .,'AC0:43??^\ 09‘(-1.-VY•\C'ROCK TYPELegend0ROCK TYPENICOLA Nicola Group0volcanic rockPICRHYBDpicritehybird dioriteoutliersGBPX pyroxene gabbro 95%DIOR Sugarloaf dioriteMGPP monzodioritedykesecond quartileQZLPALBTquartz eye latitedykeintensely albitizedrock,protolith ?medianfirst quartileBRXX albitized,brecciated rock. *protolith ?5%outliersFigure 3.3 Box and whisker plots of data from the Ajax East and Ajax West pits. This figure illustratesrelationships between variables such as frequency and degree of mineralization and alteration within rock units.(a) Copper mineralization is most strongly correlated with Sugarloaf diorite and with intensely albitized rocks. (b)Albitic alteration is most strongly correlated with Sugarloaf diorite, were the protolith can be determined.Explanations of abbreviations and interpretation of the box plot are given in the legend.50A variety of methods were used to examine correlations among alteration minerals and mineralization.General correlations observed in bubble plots were further explored with tree diagrams, which divide the data intobroad assemblages (Fig. 3.2), and with a scatterplot correlation matrix (Appendix A, Fig. A.2.1). From thesediagrams a close correlation between gold and copper is obvious and both are positively correlated to albite.However, many correlations are weak, especially for visually estimated data. Box and whisker plots (Fig. 3.3) alsodemonstrate that copper-gold mineralization is most closely associated with albitic alteration (ALBT) and ispreferentially hosted by the Sugarloaf diorite (DIOR) and intensely albitized breccia (BRXX).Detailed correlations were examined after partitioning the data into populations. It was quickly apparentfrom histograms (Fig. 3.4) that the data are in general negatively skewed and that many data points have a value ofzero. To overcome the highly skewed nature of the visually estimated data it was necessary to find a suitabletransformation to give the data a more normal distribution. The arcsine of the square root of the data is the bestmethod to accomplish this (Stanley, pers. comm., 1993). Assay data, because it represents continuous data, waslogarithmically (base 10) transformed. The histograms of untransformed and transformed data of selectedminerals are shown in Figure 3.4 (a-f). The transformed data was modeled in PROBPLOT (Appendix A: Stanley,1988; Sinclair, 1976, 1991); histograms were monitored to ensure that population assignments were appropriate.Figures 3.5 and 3.6 illustrate the distribution of sample locations and the relative abundance of theminerals chosen to represent the alteration assemblages. (The complete data set is presented in Appendix A.) Thesize of the bubbles in the figures is proportional to the arithmetic abundance of the mineral, larger bubblesrepresent higher arithmetic values. The upper populations of albite, chlorite and epidote, based on PROBPLOTpartitioning of transformed data (Appendix A), have been cross-hatched. Pyrite, copper and gold did not subdivideinto populations, therefore the upper 50% of the data has been shaded.3.4 Pre- and Post-Main Stage AlterationSeveral types of alteration are not directly related to the main alteration and mineralizing event. Theearliest alteration is related to the intrusion of the batholith into picrite and Nicola Group volcanic rocks, resulting51in serpentinization and hornfelsing, respectively. Three types of deuteric alteration were observed: (i) hornblendein the hybrid diorite, (ii) epidote in the hybrid diorite and monzodiorite dykes, and (iii) K-feldspar in themonzodiorite dykes. Silicic alteration, probably associated with pre-Tertiary quartz eye latite dykes, post-datesmineralization.Serpentinization of picrite within the batholith is ubiquitous. Outside the batholith picrite is relativelyunaltered (Snyder, pers. comm., 1992). Screens of picrite adjacent to and within the diorite units have beenintensely and pervasively altered to a fine grained mass of serpentinite, tremolite and magnetite. Relict olivinephenocrysts have survived locally. Where picrite is intruded by mineralized Sugarloaf diorite, sulphidemineralization penetrates only a few centimeters. The screen of picrite that occurs in the major fault on the easternwall of the Ajax West pit (Figs. 2.2, 2.3) has been locally altered to a carbonate-quartz-fuchsite assemblage. Thisalteration is related to intense carbonate alteration that affects all units present in the northeastern quadrant of theAjax West pit.Hornfelsing of Nicola Group volcanic rocks is prominent in a screen that occurs along the contact betweenSugarloaf diorite and hybrid diorite in the Ajax East pit. This screen is thermally metamorphosed to a biotite-richassemblage and foliated, whereas the volcanic rocks outside the batholith are not foliated. K-feldspar-calcite+epidote veins, associated with the main alteration and mineralizing event(s), cross-cut foliation. Theprominent foliation was probably developed during the intrusion of the hybrid diorite and/or the Sugarloaf diorite.Hornblende alteration converted much of the pyroxene in the hybrid diorite unit to a green-brownhornblende. The occurrence of the hornblende-rich pegmatitic and agmatitic phases within this unit, suggest thatsecondary hornblende in the hybrid diorite may have formed by a late magmatic or deuteric process.Epidote alteration is pervasive and abundant in pegmatitic hybrid diorite and the monzodiorite dykes. Inthe hybrid diorite, the epidote occurs with chlorite in angular interstices between the coarse hornblende andplagioclase. In the monzodiorite dykes epidote is often disseminated throughout the groundmass and is a common520.8 " 200- socc 0.15^I- 150^Wtuo.O 0.10,100 I^cc0CCa, 0.05 -I(b) EPIDOTE DATA0C1.2CHLORITE DATA TRANSFORMED CHLORITE DATA0.2080" 5040Cf030201012(a)10000Cz500.20 -- 80- 50TRANSFORMED PYRITE DATA(c)Figure 3.4 Histograms of arithmetic and transformed data from detailed sampling and logging of the Ajax Eastand Ajax West pits. Visually estimated data (chlorite, epidote, pyrite, albite) is transformed using the arcsine ofthe square root; assay data (copper, gold) is log transformed. Transforming the data changes it from a negativelyskewed population to a more normally distributed population.530.3 1- 100- 80- 800Cz- 40200C(d) 1200.20 HI- BO5040(")30 0I-^c-40.20 -1- 70- 80- 50- 40 0C0I_ 301- 20100.20 -100(f)1.0 HFigure 3.4 (continued)54coating on joint surfaces. The concentration of epidote in the hybrid diorite suggests that it may also be deuteric inpart.Potassium feldspar alteration is pervasive in some monzodiorite dykes, but is sparse to absent in others.The alteration does not penetrate the surrounding rocks, and therefore is likely deuteric. A variation in primary K-feldspar within this unit cannot be discounted.Silica alteration is related spatially to post porphyry mineralization quartz eye latite dykes. Quartz veinsare often vuggy, with buff coloured silicification envelopes that are less than 0.5 metres thick. Pyrite-bearing,vuggy, epithermal style quartz veins, surrounded by silicic envelopes, were observed in the Ajax West pit. It islikely but not known if these veins are related genetically to the quartz eye latite dykes.Regionally Quesnellia is characterized by low grade, greenschist facies alteration (Carr and Reed, 1976).Pumpellyite, prehnite and zeolites common to the batholith (Can, 1956), may be related to burial metamorphiceffects.3.5 Main Stage Alteration and MineralizationThe main alteration stages can be divided into propylitic, albitic, potassic and scapolitic assemblages.Propylitic and albitic alteration are the dominant assemblages. Potassic alteration occurs as irregularly distributedK-feldspar veins within the pervasive propylitic and albitic alteration zones. Scapolitic alteration occurs onlylocally in the Ajax East pit. The correlation tree diagram (Fig. 3.2) indicates that copper and gold mineralizationis related to albitic alteration but not potassic alteration.Propylitic alteration assemblage is characteristically green due to chlorite and epidote alteration. Thedistributions of chlorite and epidote in the Ajax East and Ajax West pits are illustrated in Figures 3.5a and b. Thechlorite data was split into two populations (PROBPLOT, Appendix B). The upper population representing the top30% of the data (greatest abundance of chlorite) occurs in areas of hybrid diorite, and peripheral to albitic55alteration and mineralization. It is commonly more intense near the margin of the open pits. The epidote is bestdescribed as two populations (PROBPLOT, Appendix A). The population with the highest values represents only5% of the data and is from areas of intense epidotization within the propylitic assemblage. Most of the epidote isperipheral to both intense albitic alteration and copper mineralization.The mineralogy and appearance of propylitic alteration largely reflects host rock composition.Propylitized hybrid diorites are commonly veined with barren calcite and epidote veinlets, some with weak albiticenvelopes (Plate 3.2A). The intensity of propylitic alteration varies among the phases of hybrid diorite. The onlyevidence of alteration in fine to medium grained diorite is saussuritization of plagioclase and minor overgrowths ofiron-rich prehnite on pyroxene. In the fine grained, more felsic phase of hybrid diorite that dominates the AjaxWest pit, the propylitic alteration is characterized by saussuritization of plagioclase and formation of minoramounts of blue-green chlorite and yellow-green epidote. Epidote, occurring as veinlets and pervasive patches, isassociated with sparse pyrite and chalcopyrite. Primary magnetite remains unaltered. Pervasive epidote alterationof hybrid diorite is locally intense in the Ajax West pit. The coarser grained, pyroxene-rich phase of hybrid dioritethat dominates the Ajax East pit is the most intensely chloritized.Yellow-green epidote is ubiquitous in propylitized Sugarloaf diorite. It is both disseminated through thegroundmass and in veinlets. Pyrite and chalcopyrite occur in the epidote veinlets. Plagioclase phenocrysts arevisually enhanced by extensive saussuritization. Blue-green hornblende and minor blue-green chlorite replaceprimary hornblende. Secondary calcite and diopside, which is partially replaced by pumpellyite, appear in thegroundmass. Primary magnetite is not affected by propylitic alteration.Albitic alteration assemblage is characterized by albite, diopside and pyrite. This assemblage isparticularly important because it is closely related to copper and gold. Diopside was not recognized as animportant mineral in the alteration assemblage in the 1991 field season, therefore no diopside data are recorded forthe Ajax West pit. The distribution of albite, pyrite, copper and gold in Ajax West and Ajax East pits is shown inFigures 3.5c to 3.5f. Albite (Fig. 3.5d) is divided into two populations (PROBPLOT, Appendix A). The upperpopulation comprises 15% and represents intense albitic alteration. Pyrite, copper and gold (Figs. 3.5c,e,f) appear56to be one population (PROBPLOT, Appendix A), therefore the median was chosen as a convenient division pointfor shading.Albitization is best developed in the Sugarloaf diorite, especially at its contacts with hybrid diorite (Fig.3.5d). The most intense albitization is adjacent to the highest copper and gold grades. Sulphides are absent fromthe most intensely albitized rock but are intimately associated with moderate albitization (Plate 3.1). Alterationoccurs as albitic envelopes around microfractures that commonly coalesce into massive, dense, white rockcomposed dominantly of albite and diopside. Primary textures are preserved in the less intensely altered rocks, butare destroyed at greater intensities, rendering identification of the protolith difficult. Pyrite distribution correlatespositively with high values of copper and gold in this assemblage. Moderate to intense albitic alteration is alsodeveloped in the monzodiorite dykes, but is not accompanied by mineralization. Albitic alteration does not occurin the pegmatitic hybrid diorite.Incipient albitization is characterized by: (i) alteration of plagioclase to a cloudy mass, with patches ofclear, commonly twinned secondary albite, and (ii) replacement of primary hornblende and primary pyroxene bydiopside. Chess-board albite (Plate 3.4A) is developed in some sections. Veinlets of diopside, epidote and albiteoccur, and locally contains sulphides. Pyrite and chalcopyrite occur as disseminations and microveinlets mostoften associated with epidote. In the more intensely altered rock the sulphides, especially chalcopyrite, areconcentrated in 'islands' surrounded by intense albite alteration (Plate 3.1). As alteration progresses, sphene withminute inclusions of magnetite replaces diopside. Sphene grains are commonly surrounded by calcite. Prehniteappears along fractures and surrounding chalcopyrite and pyrite (Plate 3.4B). Both epidote and prehnite can befound in some sections, whereas in others, prehnite occurs exclusively with the sulphides. The prehnite appears tobe in textural equilibrium with albitic plagioclase, but not with diopside. The latest mineral is pumpellyite whichoccurs with calcite in cross-cutting veinlets (Plate 3.5B) and as replacements of diopside in the groundmass.Prehnite and albite occur in envelopes adjacent to pumpellyite veinlets. Calcite veinlets occur throughout thesequence. One late calcite veinlet that cross-cut both the prehnite and the pumpellyite carried trace pyrite andchalcopyrite, indicating sulphide deposition continued through the entire sequence of albitization.57Figure 3.5 Bubble plots of the distribution of alteration minerals on the representative plan levels of the Ajax Westpit (circles represent 860 meter level) and Ajax East pit (squares represent 860 meter level and circles represent940 meter level). Bubbles represent values in drillhole pierce points and grab sample locations from each level.The size of the bubble is proportional to the arithmetic value for the raw data. (For sample numbers refer toAppendix A, Fig. A.1.) Pit outlines, and cross-section locations are shown for reference. Ranges represented bythe bubble diameters are: (a) chlorite: minimum valueAs, maximum value=25%, (b) epidote: minimum,maximum=10%, (c) pyrite: minimum=0, maximum=4.4%, (d) albite: minimum, maximum=98%, (e) copper:minimum, maximum=1.23%, and (f) gold: minimum, maximum=1.47 ppm. Shaded bubbles represent: (a)chlorite, top 26%, (b) epidote, top 12%, (c) pyrite, top 50%, (d) albite, top 15%, (e) copper, top 50%, and (f) gold,top 50%.585200Ajax East pit5100^I-5000 1-0 49000 z0 48000 0 Fi00 0 0 Z 4700 E-46004500 - CHLORITE n °4400 ^5400^5600 5700 5800 5900 6000 6100 6200 6300 6400Ajax West pit49004800 F-4700E• 46000• 45004400CHLORITE4300 ^4700 4800 4900 5000 5100EASTING5200EASTING5100 r5000 -0z 49004800CL0Z 47004600 1-4500 EPIDOTE^id4400(a)490048004700az• 4600z 450044004300())490048004700 4800^4900^5000^5100^5200^5300^5400EASTING5200510050005600 5700 5800 5900 6000 6100 6200 6300EASTINGh[-4700 I-z 4900 r0z4600 1-4500 k aEli0Z48004700hs^a4600 [-4400 h PYRITE 4500 H PYRITE4300 ^ 4400 ^4700 4800 4900 5000 5100 5200 5300 5400^5600 5700 5800 5900 6000 6100 6200 6300 6400(c) EASTING^ EASTINGFigure 3.5 (continued)640059000COPPER5200 [^5100 I-5000 F0 4900z4800 P0Z 4700 P4600 I- 4500 P COPPER44000GOLDAjax West pit4300 ^4700 4800 4900 5000 5100 5200 5300 5400(d) EASTINGAjax East pit04500 ALBITE^0r4400^ 1 5600 5700 5800 5900 6000 6100 6200 6300 6400EASTING5200 ^5100 P5000 HO 4900(.! 4800 pZ• 4700 1-4600 F490048004700 -z0E.q, 4600• 4500 -440049004800 -4700 1-z[_, 4600 hoGO• 4500 H4400 H4300 ^4700(f)(e)^ EASTING43004700 4800 4900 5000 51004800 4900 5000 5100 5200 5300 5400EASTING5200^5300 5400 560052005100 r5000 r0 490000oE., 4800 r00 0 Z 4700 r4600 P4500 -4400 ^5700 5800 5900 6000 6100 6200 6300 6400EASTINGGOLD5600 5700 5800 5900 6000 6100 6200 6300 6400EASTINGFigure 3.5 (continued)60Potassic alteration assemblage is marked mainly by K-feldspar, and typically occurs as sub-parallel veinswarms within zones of pervasive albitic and propylitic alteration (Plate 3.2B). Potassic veins occur in both thehybrid diorite and Sugarloaf diorite units. The K-feldspar can be modeled with two populations (PROBPLOT,Appendix A). The first population (52%) represents minor microveinlet occurrences; the second populationrepresents intense vein swarms located mainly in the Ajax East pit.Secondary biotite is common in the coarse grained hybrid diorite on the northwestern side of the AjaxEast pit and may represent a pervasive potassic event. Potassic veins are far more common in the Ajax East pitand consists of cloudy K-feldspar and cloudy albite, in varying proportions, frequently with calcite, epidote anddiopside, and rarely with chalcopyrite. In hand sample the albite in the veins is white, whereas the K-feldspar issalmon pink. In thin section both are cloudy, and cannot be readily distinguished. Vein selvages consist ofchlorite, calcite and actinolite, with an envelope of K-feldspar and actinolite. The veins occur singly and inswarms up to several metres across. The K-feldspar veining is neither demonstrably related to the pervasivepropylitic and albitic alteration that it commonly cuts, nor is it well mineralized. It therefore appears to berelatively later than main stage mineralization.A K-feldspar-magnetite-chalcopyrite stockwork/breccia occurs on the 960 metre bench of the Ajax Eastpit in medium grained, dark green hybrid diorite. It is approximately 5 metres long and 2 metres wide. Itcomprises a sub-parallel swarm of K-feldspar veins striking 056 0, dipping steeply to the southeast and surroundedby magnetite-rich alteration that grades into a breccia of small angular K-feldspar clasts in a magnetite matrix.Chalcopyrite is associated with the magnetite in the breccia. This is an isolated feature and is not clearly related tothe other potassic alteration.Scapolite alteration assemblage occurs in several areas as a stockwork, on the northwestern side of theAjax East pit, within the hybrid diorite. Individual waxy, grey-green-blue veins are up to 6 centimeters across(Plate 3.3). Narrow (3-5 mm) envelopes of biotite surround the veins and pervasive biotite is developed in a meterwide area in the host rock surrounding the veins. The occurrence on the 930 metre level lies within the hybriddiorite adjacent to its contact with the Sugarloaf diorite. Scapolite occurrences on the 940 and 960 metre benches6110001000chlorite(b)600 ^150^250^350^450^550^650^750^150^250^350^450^550^650^750NORTHEASTING^AJAX WEST PIT 8.5W^NORTHEASTING600o^0^ .-Li,^o \°%}trir:00%. 0chlorite%'4,^0  oroo'oo r-Va—41rr^*t)900800700epidote10009008007001000900 1--80070060050(a)1150^250^350^450^550^650NORTHEASTING50^150^250^350^450^550^650NORTHEASTING600AJAX WEST PIT 12.5W1000z0;Li900 -1100  ^1100800 -chlorite700150^250^350^450^550^650^50^150^250^350^450^550^650SOUTHEASTING^AJAX EAST PIT 7.0N^SOUTHEASTING1000 6-900 f-no I-700 ^50(C)Figure 3.6 Cross-sectional bubble plots of the the distribution of alteration minerals on cross sections through AjaxWest and Ajax East pits. The size of the bubble is proportional to the raw data. Pit outlines and major contacts areshown for reference. The pit outline on section 8.5 Ajax West is the proposed Stage 2 open pit. Figure 3.5 definesmaximum and minimum values, and interpretation of shading. (a) chlorite and epidote, cross-section A-B (12.5west), Ajax West pit; (b) chlorite and epidote, cross-section C-D (8.5 west), Ajax West pit; (c) chlorite and epidote,cross-section A-B (7.0 north), Ajax East pit.62800700650^750^150^250^350^450^550NORTHEASTING650 7501000  ^1000900 —albite60050^150^250^350^450^550^650(d) AJAX WEST PIT 12.5Wwoo-r-rr-^ 900?3•-rc6:,r-^°.°ca. 800NORTHEASTINGAJAX WEST PIT 8.5W1100 ^11001 000 F=.900800 Lalbite1000 k-900800700550 650SOUTHEASTING700(f)50^150^250^350^450^550^650SOUTHEASTINGAJAX EAST PIT 7.0N700pyrite600600 ^150^250^350^450^550(e) NORTHEASTING1000900800700Figure 3.6 (continued) (d) pyrite and albite, cross-section A-B (12.5 west), Ajax West pit; (e) pyrite and albite,cross-section C-D (8.5 west), Ajax West pit; (f) pyrite and albite, cross-section A-B (7.0 north), Ajax East pit;63NORTHEASTING AJAX WEST PIT 12.5W600 ^50 150^250^350^450(g)150^250^350^450^550^650NORTHEASTING700copper900 I--O800 1-700 1-600 ^650^50gold550900 1-800 1-600 ^150^250^350^450^550^650^7501000 ,^gold600150^250^350^450^550^650 75011001000 k900 r800 -1 000  ^1000NORTHEASTING NORTHEASTING800(h)copper700  ^70050^150^250^350^450^550^650 50^150^250^350^450^550^650SOUTHEASTING^AJAX EAST PIT 7.0N^SOUTHEASTINGFigure 3.6 (continued) (g) copper and gold, cross-section A-B (12.5 west), Ajax West pit; (h) copper and gold,cross-section C-D (8.5 west), Ajax West pit; and (i) copper and gold, cross-section A-B (7.0 north), Ajax East pit.(i)64are fresher. The scapolite occurs as masses of tabular grains in veins with minor interstitial red-brown biotite andchlorite, and rare diopside grains. Red-brown biotite forms a one centimeter envelope around the vein,poikilitically enclosing diopside. The diopside appears to be in equilibrium with the scapolite. The host rockconsists of coarse, equant, cloudy relict phenocrysts of pyroxene, minor hornblende, sericitized plagioclase andclear, twinned secondary albite. Microveinlets of calcite and an unidentified mineral, possibly a zeolite occurperpendicular to and cross-cutting the scapolite veining.Scapolite veins cross-cut disseminated mineralization, but contain minor chalcopyrite. Scapolite veiningpostdates both albitization and main stage mineralization. No cross-cutting relationships with the K-feldsparveining were observed. The scapolite occurrence on the 930 metre bench is overprinted by a lower temperaturealteration assemblage of calcite and a pink zeolite. The zeolite replaces scapolite, and the biotite in envelopes isaltered to chlorite and actinolite.3.6 Pearce Element Ratio AnalysisA suite of twelve weakly to intensely albitized Sugarloaf diorite samples were collected from the Ajax pitsto determine which elements were mobile. Analyses are listed in Table 3.1. This data has been combined with theleast altered Sugarloaf diorite, monzodiorite dyke and trachytic monzonite data from the pits and surroundingbatholith to examine the effects of alteration. The determination of conserved elements is discussed in section2.4.2. Figure 3.7 shows the standard deviation in the Pearce element ratios of the major and minor elements; thelarger the deviation, the greater the mobility of the element (Stanley and Madeisky, 1993). Part of the mobility isdue to magmatic fractionation and part is due to alteration. Figure 3.8a shows two distinct trends when Fe/Zr isplotted against Ti/Zr. The upper trend represents the fractionation of titanomagnetite, the lower trend includes themost intensely altered samples and represents alteration of titanomagnetite, pyroxene and hornblende, whichresults in the loss of Fe and development of secondary sphene that occurs during albitic alteration. In Figure 3.8bthe effects of the fractionation of feldspar and hornblende are represented by a line with a slope of one. The leastaltered samples fall along this line, indicating that they are related through magmatic fractionation. The fourintensely altered samples and three weakly to moderately altered samples lie on a line with a steeper slope65loaf diorite, from the A .ax East and Km( WestTable 3.1 Whole rock anal ses of albitized Su^ its.AlterationM2-AweakM2-BintenseM3-AweakM3-BintenseM3-CmoderateM4-AweakM4-BintenseM5-AweakMS-BintenseM6-AweakM6-BmoderateM6-CintenseSiO2 % 53.1 49.1 54.6 56.5 54.3 51.4 54.8 58.8 56.8 49 50.8 52.2TiO2 % 0.764 0.571 0.598 0.617 0.606 0.764 0.619 0.448 0.553 0.661 0.731 0.763Alt % 17.3 18.8 18 18.5 18.9 16.5 18.3 18.6 19.1 17.1 18 18.703Fe2O3 % 6.75 6.36 6.04 2.75 2.1 8.1 1.78 4.79 1.01 8.99 8.33 2.72FeO % 3.4 2.1 3.3 1.5 1.2 4.7 1.1 2.3 0.6 4.3 4.9 1.8MnO % 0.11 0.03 0.1 0.05 0.04 0.11 0.04 0.04 0.04 0.13 0.07 0.06MgO % 4.08 1.65 3.71 3.2 2.11 5.59 3.3 2.63 2.53 5.12 433 4.33CaO % 7.77 7.31 7.86 8.73 9.16 8.47 11.4 6.27 9.17 9 6.05 10.6Na2O % 5.12 5.31 4.59 6.36 5.99 4.49 5.83 4.49 6.84 3.06 5.65 4.41C20 % 1.81 1.45 1.37 0.68 0.83 0.81 0.74 1.13 0.61 2.14 1.17 1.87P2O5 % 0.34 0.34 0.32 0.32 0.31 0.29 0.29 0.23 0.27 0.25 0.23 0.23CO2 % 0.09 1.61 0.4 0.81 1.67 0.14 1.6 0.51 1.53 0.92 1.49 0.88LOT % 2.0 2.1 2.4 2.4 3.0 2.2 3.0 2.4 2.8 3.0 3.4 3.2SUM % 99.33 93.21 99.84 100.31 97.50 98.89 100.23 100.03 99.86 98.67 98.84 99.16Au ppb 210 3600 140 10 460 87 20 5 6 5 77 62S ppm 2740 34300 1930 -50 5210 5940 481 2250 -50 -50 2350 604F ppm 348 229 352 280 237 402 198 335 169 344 288 195Na ppm 40000 44000 37000 50000 48000 38000 45000 35000 53000 26000 47000 35000CI ppm 288 202 397 278 178 548 219 241 318 451 185 150Sc ppm 23.3 8.1 19 19.2 19.3 34.9 20 11.1 14.5 29.5 25.5 27.1V ppm 237 110 201 241 195 287 203 127 164 251 233 233Cr ppm 41 32 101 86 65 139 66 96 75 81 39 28Co ppm 25 60 26 13 25 69 9 10 6 29 40 15Ni ppm 16 110 28 23 43 51 13 4 10 25 44 15Cu ppm 1910 26700 759 156 4280 1620 320 55 13 157 1800 609Zn ppm 39 31 39 28 30 45 28 31 26 43 41 29As ppm 2 6 -2 2 3 -2 4 -2 2 4 4 13Br ppm 5 4 3 4 4 4 4 3 2 3 2 2Rb ppm 23 35 28 18 33 17 23 30 14 42 38 61Sr ppm 880 651 887 1050 760 769 1000 819 1010 525 448 701Y ppm 7 10 3 3 -2 2 -2 -2 -2 -2 5 4Zr ppm 94 67 61 64 52 52 43 69 62 43 60 42Nb ppm 6 7 7 7 7 6 8 6 7 5 7 6Mo ppm -2 8 3 -2 110 -2 6 -2 9 -2 2 -2Ag ppm 0.5 8 -0.5 -0.5 0.5 -0.5 -0.5 -0.5 -0.5 -0.5 0.5 -0.5Sb ppm 03 0.5 0.3 0.3 03 0.2 0.2 -0.2 0.2 0.2 1 0.4Cs ppm -1 2 -1 -1 -1 -1 1 -1 -I -1 -1 1Ba ppm 530 798 1060 424 331 371 363 667 318 1110 481 338La ppm 11.4 9.9 12.5 10.5 8.7 10.5 7.2 8.2 7.3 7.3 8.3 7.5Ce ppm 27 25 26 17 19 22 18 17 17 16 19 19Nd ppm 15 19 12 13 12 12 11 9 9 9 13 11Sm ppm 3.7 5.7 2.9 3 3.1 3 2.7 1.9 2.2 2.2 2.7 2.8Eu ppm 1.5 2.6 1.2 0.9 1.5 - 1.6 1.2 0.8 0.9 0.7 1.4 0.8Tb ppm 0.6 0.7 -0.5 -0.5 -0.5 0.6 0.6 -0.5 -0.5 0.5 0.6 0.5Yb ppm 2.4 2.4 1.9 2.1 1.8 2.2 1.8 1.6 1.5 1.4 1.8 2Lu ppm 0.36 0.4 0.3 0.37 0.32 0.32 0.3 0.25 0.26 0.29 0.31 0.3Hf ppm 3 2.5 2.4 2.2 2.1 2.4 2.2 2.1 2.3 1.4 2 1.4Ta ppm -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -IW ppm -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3Ir ppm -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20Pb ppm -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2Th ppm 2.5 2.3 1.4 1.8 1.3 1.3 1.2 1.1 1.1 1.2 1.1 1.3U ppm 1.8 1.7 1.4 2 1.9 0.9 1.6 0.7 1.5 0.6 2 166cc 4LLa_t 3.52'z 3cocncn+ 2.5^Effects due to^A.3co^2-^Alteration^M A --------r.)-1 A..-----Feldspar and Hornblende^1.5- S Fractionation0:3^1-AA0.3-0.25-w00.2-0. (05 0.15-,-20.1 -c-0(Ti(/)r--1^'111 1421;^rel^IC MG SI CL CA V FE RB ZR BA CE THNA AL P K TI MN CU SR NB LA HFPER/ZrFigure 3.7 Histogram of the standard deviation of calculated Pearce element ratios for Sugarloaf diorite,monzodiorite dyke and trachytic monzonite samples, Ajax East and Ajax West pits. Higher deviations indicategreater changes in proportions of the given elements. This indicates which elements have been the most mobileduring fractionation and/or alteration, but does not distinguish between the two trends, shown in Figure 3.8b.0.2s0.2Effects due to^§ S W0E^0.15ccFractionation oftitanomagnetite zr::S11 Effects due toa_ A- SS Alteration0.1^SLL^A(/41 V^A0.05- A AA0.005^0.01^0.015^0.02^0.025^0.03(a)^Ti/Zr PER (molar)(b)cmFigure 3.8 Pearce element ratio diagrams to discriminate between alteration and fractionation in Sugarloafdiorite, monzodiorite dykes and trachytic monzonite samples, Ajax East and Ajax West pits. Figure (a) Fe(total)vs. Ti; the least altered samples lie along a line that represents the fractionation of titanomagnetite, altered rockslie below the line indicating the removal of Fe during albitic alteration. Figure (b) fractionation of feldspar andhornblende (using edenite and paragonite end members), lie on a line with a slope of one, albitically alteredsamples are shifted away from the line by hydrothermal addition of Ca, Na and K and/or removal of Fe and Mg.Symbols are: A = intensely albitized Sugarloaf diorite, I = intermediate albitization of Sugarloaf diorite, W =wealdy albitized to unaltered Sugarloaf diorite, S = least altered Sugarloaf diorite, M = monzodiorite dykes, and T= trachytic monzonite.67indicating: (i) an addition of Ca 2+, Na+ and/or K+, and/or (ii) the loss of Al 3+, Fe2+,3+ and Mg2+. Plots of themost significant elements are presented in Figure 3.9. The tight clustering of the data points in a plot of Al (Fig.3.9a) indicates that Al is effected by fractionation alone, therefore the proportion of Al in the system duringalteration remains constant. A single line can be drawn through the Si data, although there is minor scatter aboutthe line (Fig. 3.9b). Changes in Ba and Rb are linked to fractionation of feldspars (Fig. 3.9c, d). Na content ishigher in altered samples (Fig. 3.9e), and the change in Ca content is variable (Fig. 3.9f). Fe is clearly depleted inmost intensely altered samples (Fig. 3.9g). Mg is slightly depleted in altered samples (Fig. 3.12h) and K is low inall samples (Fig. 3.9c). A clear correlation between increased Na content and depleted Fe content in alteredsamples can be seen in Figure 3.9j.A hypothetical, simplified equation for the conversion of fresh plagiolcase- and hornblende-bearingSugarloaf diorite to an intensely albitized mass of albite and diopside can be written. Proportions of reactant andproduct minerals are based on petrographic work. Sugarloaf diorite is about 80% plagioclase and 20% hornblende,and intensely albitized Sugarloaf diorite is about 80% albite and 20% diopside. Discounting accessory phases suchas primary apatite and magnetite, and secondary phases such as epidote and sphene, a mass balanced equation,based on constant Al, for the alteration of Sugarloaf diorite to intensely albitized rock can be written as:8 Na0.6Ca0.4A11.4Si2.608 + 2 NaCa2Mg2Fe2A13Si6022(OH)2 + 10.4 Nana?) + 26.8H4SiO4(ao + 811+00= 17.2 NaAISi3O8 + 4 CaMgSi2O6 + 4 Fe+2(aq) + 3.2 Ca+2 (a0+ 57.6 H2O^(1)In this reaction Na+ l, H+ and SiO2 are consumed, and Fe +2 , Ca+2 and H2O are liberated. The largeconsumption of SiO2 is not predicted from the Pearce element plots, as SiO2 appears to lie along the fractionationline. The equation is driven to the right by acidic conditions. It is possible that the albite-diopside assemblage isnot an equilibrium assemblage and the equation is not valid. However, the results of this reaction equation areconsistent with what is observed in the field and may explain why quartz veins are rare in this system. A relatedreaction can be written which predicts the precipitation of chalcopyrite:Fe+2 +CuCl° (aq) + 2 H2S (aq) = CuFeS2 +^(aq) + 41-1+ (aq)^(2)68020.16 0.18(a)^2 ^ A^2^1.8 1.81.6^ 1.6^7.-.. 1.4 p. 1.42 1.2^ E 1.2cc lx^1N 0.8!;..t 0.6^ 1 00 .68 -u)0.4 0.4-^02^ 0.2-00.005^0.01^0.015^0.02^0.0251/Zr (wt %) (b)0.005 0.02 0.0252 ^1.8-1.6-▪ 1.4-g 1.2-rr^1• 0.8s.c1cr 0.6 -0.4-0.200(d)0^0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0 2(C) K/Zr PER (molar)0.02 0.04 0.06 0.08 0.1 0.12 0.14K/Zr PER (molar)Figure 3.9 Pearce element ratio plots for Sugarloaf diorite, monzodiorite dykes and trachytic monzonite samples,Ajax East and Ajax West pits. These figures help to distinguish fractionation from alteration effects.Fractionation is indicated by Al (a), and Si (b), and to a lesser extent by Ba (c) and Rb (d) which are linked to K-feldspar fractionation. Altered samples (A) are marked by an increase in Na (e), Ca (f), and a decrease in Fe (g),Mg (h), and possibly K (i). Fe vs. Na (j) illustrates the correlation between Fe depletion and Na addition.AAAASMAMI^ AS I M W?t%S^S^S^WAOT § %Sm , AS SST &• % IS0.50.45-0.4-0.35-E 0.3-,5 0.25-a.0.2-z 0.15-0.1-0.05-00(f)0.0250.020.005^0.01^0.0151/Zr (wt %)0.0250.020.50.45-0.4-_1 0.35-g 0.3-ILE 0.25-a_A-Jo▪ 0.15-0.1-0.05-00(e)0.005^0.01^0.0151/Zr (wt %)S0.50.45-0.4-1 0.35-T)E 0.3-E 0.25-5 515^WS wt,AS IST M ,SSM^Akitt^A^AAWs^AAMAS T111^0.2-u. 0.15-0.1-0.05-00(g)0.50.45-0.4-0.35-0E 0.3-e 0.25-'pq^0.2-cr)2 00.1. 5-1,0.05-0'0050.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45S% Si0 1 AM0.02 0.025Na/Zr PER (molar) (h)0.005^0.01^0.0151/Zr (wt %)0.45-0.4-0.35-0.3-0.251^0.2-^Fractionation0.15-0.10.05-0^0.0050.5Effects due toFeldspar and Hornblende SSEffects due toAlterationAA^AccO-rLL0.02^0.025(I)Figure 3.9 (continued)0.50.450.01^0.0151/Zr (wt %)0.005 0.02 0.02The iron in the equation is the iron liberated from the hornblende in equation (1). The copper and H2S are presentin the mineralizing fluids. The precipitation of CuFeS2 liberates H+, lowering the pH which in turn may drive thealbitizing process (1) further to the right, releasing more Fe+2 , resulting in further chalcopyrite precipitiation.The reaction would proceed until one of the components is used up, most likely either the Fe +2 , which is mainlyfrom a limited source (i.e. the hornblende). The most intensely albitized rock tends to be less mineralized thanmoderately altered rock. Possibly, the most strongly albitizing fluids removed all the iron before chalcopyriteprecipitation could occur. Limited availability of sulphur (equation 2) can also limit chalcopyrite precipitation.The measured average density of fresh rock is 2.83 gm/c, while altered rock has a slightly lower density of2.74 gm/cc. The gain or loss of each oxide in grams per 100 grams of rock can be calculated using the equation(Gresens, 1967):Ti = ((VdpdNppp)xiid - xiip)Sp^(3)where: Ti is the amount of element Xi added (+) or lost(-) from the rock during material transfer; Vd and V p arethe daughter and parent rock volumes; pd and pp are daughter and parent densities (measured); xiid and xi p arethe concentrations of element x in the daughter and parent respectively; and S p is the initial size of the rock, (100grams) Based on the assumption that there is no net change in Al203, (Ti = 0), a change in volume can becalculated, assuming the parent volume is 100 cc (V p). Using this information, the net gains and losses of theother major oxides can also be calculated. A summary of the net change in volume and net gains and losses ofmajor oxides are presented in Table 3.2. The net change in volume is negative in each case. Thus increasingalteration results in increasing loss of volume. This might facilitate the opening up of spaces for vein formation.3.7 SummaryFour main stage alteration assemblages have been defined in the Ajax East and Ajax West pits: propylitic,albitic, potassic and scapolitic. Propylitic alteration, which occurs peripheral to albitic alteration, appears to be aweaker manifestation of the albitic assemblage. Albitic alteration, which is spectacularly developed along thecontact of the Sugarloaf diorite and the hybrid diorite is associated with high grade copper-gold mineralization.71Table 3.2 Volume changes and net gains and losses of major oxides in a suite of albitized Sugarloaf diorite samples from the Ajax East and Ajax West pits.Calculation of volume change is based on the assum stion that there is no net change in Al 0 and that the initial volume = 100cc. SampleIntensity ofAlterationDensity^Change ing/cc^Volume (cc=%)Loss or gain in oxides in grams/100 grams.Na2O^MgO^SiO2^P2O5 K2O CaO TiO2 MnO FeO Fe2O3M2-A weak (parent) 2.85M2-B strong 2.80^-7.98 0.17 -2.20 -3.62 0.00 -0.33 -0.40 -0.20 -0.07 -1.18 -0.353M3-A weak (parent) 2.77M3-B moderate 2.68^-2.70 1.67 -0.48 1.79 0.00 -0.65 0.82 0.02 -0.05 -1.69 -3.10M3-C strong 2.63^-4.76 1.27 -1.45 -0.27 -0.01 -0.49 1.18 0.01 -0.05 -1.90 -3.56M4-A weak (parent) 2.88M4-B strong 2.78^-9.84 1.17 -1.99 2.96 0.00 -0.06 2.55 -0.13 -0.06 -3.13 -5.50M5-A weak (parent) 2.75M5-B strong 2.69^-2.62 2.24 -0.10 -1.91 0.04 -0.50 2.76 0.10 0.00 -1.62 -3.60M6-A weak (parent) 2.89M6-B moderate 2.86^-5.00 2.43 -0.74 1.69 -0.02 -0.91 -2.77 0.07 -0.06 0.56 -0.62M6-C strong 2.82^-8.56 1.20 -0.70 2.86 -0.02 -0.24 1.43 0.09 -0.06 -2.23 -5.59Potassic and scapolitic alteration occurs as veins that cross-cut propylitic and albitic alteration. Pyrite andchalcopyrite, present in all main stage alteration assemblages, are most closely associated with albitic alteration.Mineralization also appears to be controlled to some extent by host lithology because the Sugarloaf diorite containsmost of the mineralization (see Fig. 3.3). Alteration zoning within assemblages is poorly developed. The mineralsof the main stage alteration assemblages overprint several deuteric alteration events (epidote, hornblende and K-feldspar). These are overprinted in turn by a low grade metamorphic assemblage (prehnite, pumpellyite andzeolite) and by minor quartz veining.Albitic alteration is the result of addition of Na and removal of Fe and Mg. The onset of albitic alterationresults in the conversion of primary, moderately calcic plagioclase to increasingly sodic plagioclase and epidotewith the concurrent formation of sulphides with iron from primary mafic minerals. Intense albitization results inthe conversion of all plagioclase to albite, the destruction of primary mafic minerals, and the formation of diopside.The most intense albitization results in the removal of all iron from the host rock, consequently there is noneavailable to react with the Cu and S in solution. This may be the reason why the most intensely albitized areas areless well mineralized.73Plate 3.1A Weak to intense albitic alteration in Sugarloaf diorite (Ajax West pit: 4710 N, 5040 E, 860 m). In thewhite areas the primary texture is totally destroyed, in the darker areas it is well preserved. Note pale albiticenvelopes around microveins.Plate 3.1B Intense albitic alteration in Sugarloaf diorite (Ajax West pit: 4740 N, 5020 E, 860 m). The darkerareas are concentrations of sulphides. Weak to moderate albitic alteration accompanies sulphide mineralization,but intense albitic alteration contains less sulphide mineralization, White veinlets are dominantly calcite. Blue-green veinlets are pumpellyite.74Plate 3.2A Propylitic alteration in fine grained hybrid diorite (Ajax West pit: 4770 N, 4900 E, 880 m). Albite-epidote veins and envelopes (low angle) are cross-cut by epidote-calcite veinlets (steep angle).Plate 3.2B K-feldspar veins within pervasively albitized Sugarloaf diorite (Ajax East pit: 4850 N, 5900 E. 930 m).Note chlorite after biotite, envelopes around K-feldspar veins. The blue green mineral in the veins is pumpellyite.Calcite, not shown in this photo, is common elsewhere.75Plate 3.3A White-gray scapolite veins with biotite-chlorite envelopes (KR92-49, location Fig. A.2). A pale pinkzeolite replaces scapolite along fractures.Plate 3.3B Photomicrograph (cross-polarized light) of scapolite vein (KR92-49, location Fig. A.2). Veins aregenerally a mass of tabular scapolite crystals. Calcite sometimes surrounds the scapolite. Abbreviations are: Sc =scapolite. (Field of view is 2.6 mm.)76Plate 3.4A Photomicrograph (cross-polarized light) of chess-board albite from a vein (KR92-42, location Fig.A 1). Secondary diopside, calcite and sphene are visible on the left hand side of the photo. Abbreviations are: Ab= albite, Px pyroxene. (Field of view is 0.63 mm.)Plate 3.4B Photomicrograph (cross-polarized light) of prehnite surrounding chalcopyrite (KR91-17, location Fig.A,^Prehnite usually occurs with epidote surrounding sulphides in albitized rock. It is not clear whether theprehnite is syn-mineral, or whether it is a retrograde reaction of epidote and albite. Abbreviations are Pr =prehnite, Cp = chalcopyrite, Ab = albite. (Field of view is 1.3 mm.)77Plate 3.5A Diopside veinlet (plane polarized light) in intensely albitized Sugarloaf diorite (KR91-17, location Fig.A.1). Diopside occurs more commonly in the groundmass rather than as veinlets. Abbreviations are: Dp =cliopside, Ab = albite. (Field of view is 2.6 mm,)Plate 3,5B Photomicrograph (cross polarized light) of a late stage pumpellyite veinlet in albitized Sugarloaf diorite(KR92-42, location Fig. A.2). Abbreviations are: Pp = pumpellyite, Ab = albite, Ca = calcite. (Field of view is 1.3mm.)^ 784.0 MICROPROBE ANALYSES4.1 IntroductionMicroprobe analyses were obtained on primary igneous and alteration minerals using a Cameca SX-50electron microprobe in the Department of Geological Sciences at The University of British Columbia. Twelvepolished samples were examined. Sample locations are shown in Appendix A. Samples were chosen tocharacterize primary mineralogy of the Sugarloaf diorite and hybrid diorite, and the mineralogy of the four mainalteration assemblages. The objectives of this study were: (i) to determine the composition of primary plagioclasein the Sugarloaf and hybrid diorite units, (ii) to characterize secondary feldspars, (iii) to determine compositionalvariability in primary pyroxenes between the phases of the hybrid diorite, (iv) to determine the composition ofsecondary pyroxene associated with albitic alteration, (v) to determine if there were compositional differences inchlorites and epidotes associated with different alteration types, (vi) to determine scapolite composition, and (vii) toidentify several unknown minerals. A representative set of microprobe analyses are presented in Tables 4.1 to 4.6.The remainder of the data is in Appendix B.4.2 Primary Igneous MineralsPrimary feldspars were analyzed in two samples of Sugarloaf diorite and two samples of hybrid diorite(Table 4.1). SrO (<0.3 wt%),and BaO (<0.1 wt%) were low in all samples. The data are plotted on a ternaryanorthite-albite-orthoclase diagram (Fig. 4.1). In the Sugarloaf diorite, the majority of the phenocrysts areandesine to labradorite (An30 to An53). Porphyritic Sugarloaf diorite (KR92-33) contained large (5-10 mm)plagioclase phenocrysts with oscillatory zoning; cores were An36 and rims were An53. The more albiticcompositions (An07 to An15) from Sugarloaf diorite (KR91-35) indicate incipient propylitic alteration. Theorthoclase component in both samples is generally less than 2%, but several more potassic analyses (Or01 to Or13)were obtained from KR91-35. The higher orthoclase content coincides with higher sodic contents (An07) and mayalso reflect incipient alteration.790ooTable 4.1 Microprobe analyses of feldspars from Ajax West and Ajax East pits.SampleLithologyAlterationPrimary Feldspars33 A2 1^35 A4 6Sugarloaf^hybriddiorite^dioritepropylitic^propylitic34 B11 2hybriddioritepropylitic38 B2 7hybriddioritepropyliticSecondary Feldspars31 Al 1^31 A3 4^35 B10 3^42 B8 4^42 B9 7^57 B5 13^57 B7 1^57 B8 14^59 Al 2^59 A6 1Sugarloaf Sugarloaf^hybrid^Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloafdiorite^diorite^diorite^diorite^diorite^diorite^diorite^diorite^diorite^dioritepropylitic propylitic propylitic^albitic^albitic^albitic^albitic^albitic^albitic^albiticSi02 57.33 59.88 54.39 56.28 67.49 64.22 68.34 68.02 68.06 63.39 67.95 66.66 62.43 62.29Al203 26.93 25.08 28.88 27.32 20.20 18.76 19.74 20.05 20.01 18.73 20.09 19.57 23.20 23.50K20 0.48 0.32 0.17 0.17 0.19 16.16 0.03 0.13 0.08 16.02 0.07 5.32 0.34 0.32Na20 6.37 7.53 5.15 5.96 11.02 0.25 11.61 11.35 11.41 0.32 11.44 8.01 8.73 8.63CaO 8.62 6.69 10.99 9.56 0.79 0.03 0.15 0.35 0.29 0.01 0.39 0.13 4.62 4.93BaO 0.03 0.07 0.00 0.10 0.03 0.52 0.01 0.00 0.00 0.76 0.00 0.25 0.00 0.00MgO 0.01 0.00 0.00 0.00 0.03 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00Fe203 0.21 0.30 0.25 0.25 0.03 0.17 0.08 0.00 0.00 0.05 0.02 0.00 0.26 0.27SrO 0.07 0.14 0.08 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00TOTAL 100.05 100.01 99.93 99.84 99.79 100.12 99.95 99.91 99.84 99.28 99.97 99.95 99.67 99.94Ion calculations based on 8 oxygens.Si 2.57 2.67 2.46 2.54 2.96 2.98 2.99 2.97 2.98 2.97 2.97 2.97 2.78 2.76Al 1.42 1.32 1.54 1.45 1.04 1.03 1.02 1.03 1.03 1.03 1.04 1.03 1.22 1.23K 0.03^i 0.02 0.01 0.01 0.01 0.96 0.00 0.01 0.00 0.96 0.00 0.30 0.02 0.02Na 0.55 0.65 0.45 0.52 0.94 0.02 0.98 0.96 0.97 0.03 0.97 0.69 0.75 0.74Ca 0.42 0.32 0.53 0.46 0.04 0.00 0.01 0.02 0.01 0.00 0.02 0.01 0.22 0.23Ba 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00Mg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Fe 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01Sr 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00O 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00End member calculationsKAISi(3)0(8) 0.03 0.02 0.01 0.01 0.01 0.96 0.00 0.01 0.00 0.96 0.00 0.30 0.02 0.02NaAlSi(3)O(8) 0.55 0.65 0.45 0.52 0.94 0.02 0.98 0.96 0.97 0.03 0.97 0.69 0.75 0.74CaAI(2)Si(2)0(8) 0.42 0.32 0.53 0.46 0.04 0.00 0.01 0.02 0.01 0.00 0.02 0.01 0.22 0.23BaAI(2)Si(2)O(8) 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00(Mg Fe Sr) 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01TOTAL 1.00 0.99 0.99 1.00 0.99 0.99 0.99 0.99 0.99 1.00 0.99 1.01 0.99 1.00Primary plagioclase in the hybrid diorite (KR92-35, KR92-38) occurs as interlocking grains with simpletwinning. No zoning was observed. Both microprobe samples are from the fine grained variety of hybrid diorite.Plagioclase compositions range from andesine to labradorite (An41 to An57). The orthoclase component is 2% orless.Primary pyroxenes were analyzed in two fine to medium grained diorites and one coarse grainedpyroxenite phase of the hybrid diorite (Table 4.2). On a ternary diagram of MnO-Na20-Al203 (Fig. 4.2) thesamples form three partially overlapping groups. The Al203 content increases as MnO and MgO contentdecreases. The FeO/MgO ratio ranges from 0.26 to 0.55. There is considerable overlap between one fine grainedsample, (KR92-38), and the coarse grained sample (KR92-24), while the third sample (KR92-35) is distinctlylower in Al203 content. The samples plot in the diopside and salite fields of a pyroxene discrimination diagram(Fig. 4.3: Mg40 . 6Ca45 . 8Fe 11.5 to Mg45 . 2Ca47 . 9Fe06 . 4)•4.3 Alteration MineralsSecondary feldspar was probed in one sample of propylitic alteration, two samples of albitic alteration andtwo samples of potassic alteration (Table 4.1). Primary plagioclase is invariably cloudy and saussuritized andsecondary albites can be distinguished from it by their occurrence as either clear, well twinned grains or as cloudy,chess-board albite (An03) with embayed grain boundaries. Clear albite (An02) occurs both on the margin of anepidote vein in propylitized Sugarloaf diorite (KR92-35) and in an envelope around a prehnite-sulphide veinlet(KR92-59) in pervasively albitized Sugarloaf diorite. Chess-board albite (Plate 3.4A) occurs in veins and aspatches in the groundmass of pervasively albitized Sugarloaf diorite (KR92-42).Two samples of feldspar from within potassic alteration (KR92-31, KR92-57) were analyzed. SampleKR92-31, taken from a vein in propylitized Sugarloaf diorite, had a white albite core (An06) and a pink orthoclase(0r96) margin. Contacts between the feldspars are not sharp in hand sample, and cannot be clearly defined in thinsection. All three feldspars are cloudy and brown in thin section. The vein albite has locally developed chess-board twinning. Orthoclase is also present in the alteration envelopes adjacent to the veins. Sample KR92-57 is81Table 4.2 Microprobe analyses of pyroxenes from Ajax West and Ajax East pits.Primary Pyroxenes Secondary PyroxenesSample No. 24 Al 5 35 B12 1 35 B6 2 38 B2 2 17 A4 7 42 B2 1 42 B4 1 45 A4 2 59 A2 12Lithology c.g hybrid f.g. hybrid f.g. hybrid f.g. hybrid Sugarloaf Sugarloaf Sugarloaf hybrid Sugarloafdiorite diorite diorite diorite diorite diorite diorite diorite dioriteAlteration none propylitic propylitic propylitic albitic albitic albitic albitic albiticSiO2 52.94 53.81 53.48 50.72 54.15 54.58 54.37 54.22 53.48Al203 1.24 0.33 0.57 2.32 0.34 0.24 0.21 0.46 0.77TiO2 0.22 0.03 0.08 0.35 0.00 0.00 0.00 0.08 0.10FeO 5.77 5.01 4.72 8.00 3.93 3.79 3.46 4.27 7.00MnO 0.22 0.21 0.16 0.27 0.13 0.08 0.07 0.24 0.20MgO 14.98 15.23 15.59 14.66 15.85 16.03 16.44 16.40 14.48CaO 23.64 24.57 24.43 22.20 24.66 25.07 25.23 23.78 23.50NaO 0.31 0.21 0.24 0.48 0.24 0.19 0.21 0.30 0.47Cr2O3 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.01 0.00NiO 0.02 0.00 0.05 0.00 0.02 0.00 0.01 0.00 0.02TOTAL 99.33 99.41 99.33 99.06 99.34 99.98 100.00 99.75 100.02FeO/MgO 0.39 0.33 0.30 0.55 0.25 0.24 0.21 0.26 0.48Ion calculations based on 6 oxygensSi 1.97 2.00 1.98 1.91 2.00 2.00 1.99 1.99 1.98Al(IV) 0.03 0.01 0.02 0.09 0.00 0.00 0.01 0.01 0.02Ca 0.94 0.98 0.97 0.90 0.98 0.98 0.99 0.94 0.93Mg 0.83 0.84 0.86 0.82 0.87 0.88 0.90 0.90 0.80Fe 0.18 0.16 0.15 0.25 0.12 0.12 0.11 0.13 0.22Al(VI) 0.02 0.01 0.01 0.02 0.01 0.01 0.00 0.01 0.02Mn 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.01Na 0.02 0.02 0.02 0.04 0.02 0.01 0.02 0.02 0.03Ni 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Ti 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00O 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00Calculation of end membersMg(2)Si(2)O(6) 0.42 0.43 0.45 0.40 0.44 0.44 0.45 0.41 0.42Fe(2)Si(2)0(6) 0.08 0.07 0.07 0.11 0.06 0.06 0.05 0.13 0.09Ca(2)Si(2)0(6) 0.49 0.49 0.47 0.47 0.49 0.49 0.50 0.45 0.47(Mn Ti AINaNi) 0.02 0.02 0.02 0.03 0.02 0.01 0.01 0.04 0.03Total 0.99 0.99 0.98 0.98 0.98 0.99 1.00 0.99 0.9882(a) (b)^ (KR91-) 35 AO (KR92-) 33 A* (KR92-) 35 BO (KR92-) 38 BO (KR92-) 35 B• .(KR92-) 31 Ax (KR92-) 42 B(KR92-) 57 B^ (KR92-) 59 AO (KR9I-) 17 A^ (KR92-) 42 B(KR92-) 45 A▪ (KR92-) 59 AFigure 4.1 Ternary plots of microprobe data for (a) primary and (b) secondary feldspar (Table 4.1) for samplesfrom the Ajax East and Ajax West pits. The An-Ab-Or diagrams indicate that there is an overlap of primary andsecondary feldspar (b) in the Anal to An40 range. However there is a distinguishable group of secondary albiteand of albite with an orthoclase component (<- —An 10 , <°r40)•Prmy MAO+ (KR92-) 24 AO (KR92-) 35 B^ (KR92-) 38 BNa20^AUG 3^Na20^AQ0 3(a) (b)Figure 4.2 Ternary plots of microprobe data for (a) primary and (b) secondary pyroxene (Table 4.2) for samplesfrom the Ajax East and Ajax West pits. The (Na20-MnO-Al203 diagrams indicate that two of the primarypyroxenes are compositionally distinct from the secondary pyroxenes, but that one primary pyroxene overlaps withsecondary pyroxene. This may indicate incipient alteration.83CaSiO T,Diooside^ ,edenDergiteCaSiOMg -SiO 3ClingenstatiteV^\/^V^.V^N/^^ V^‘\^S econdary Pyroxene FeSiO 3Clinoterrosilite(b)Figure 4.3 Quadralateral plots of microprobe data for (a) primary and (b) secondary pyroxene (Table 4.2) forsamples from the Ajax East and Ajax West pits. Primary pyroxene plots in the diopside and salite fields.Secondary pyroxene plots only in the diopside field.84taken from a feldspar vein in albitized Sugarloaf diorite. The vein contained albite (An03), orthoclase (0r96) andan intermediate feldspar (0r30Ab69An01)•Secondary pyroxene was probed in four sections (Table 4.2). All secondary pyroxene that was analyzed isdiopsidic. In two samples (KR9I-17, KR92-42) the diopside is clearly secondary, appearing in veins (Plate 3.5A)as well as in the groundmass. In the other two samples (KR92-42, KR92-59) it occurred throughout thegroundmass, and its secondary nature was not as obvious. Secondary diopside has a lower FeO/MgO ratio and isslightly more sodic and calcic than the primary pyroxenes.Epidote grains were probed in five Sugarloaf diorite samples and three hybrid diorite samples (Table 4.3).The data are plotted on Figure 4.4. Epidote analyses are reported without hydrogen as OH and consequently sumto only 95%. The epidote varies in mode of occurrence. Epidote, both in veinlets and in more disseminatedpatches in propylitized and albitized rock, is intimately associated with sulphides. Veinlet epidote is oftenassociated with chess-board albite, calcite and chlorite. Pervasive patches of epidote without mineralization occurin the propylitic alteration zones. Late cross-cutting veinlets of epidote occur in all alteration types. There is asystematic decrease of FeO with increasing Al203. However, there are no clear differences in major elementcomposition among epidotes in various types of occurrence; an exception may be a cross-cutting, veinlet-hostedepidote (KR92-35) which is high in Al203. Epidote in propylitically altered Sugarloaf diorite (KR92-33) is highin FeO and is associated with prehnite, albite and quartz, which all rim sulphides. The remaining samples show asmuch variation within samples as between samples.Chlorite was probed in four samples (Table 4.4, Fig. 4.5). One sample (KR92-31) is associated withpropylitically and potassically altered Sugarloaf diorite. Two samples (KR92-45, KR92-57) are associated withpotassic veins in albitized Sugarloaf diorite. The fourth sample (KR92-49) is associated with scapolite veining.Chlorite analyses are reported without hydrogen as OH, and consequently sum to only 84%. The samples plot inthe ripidolite and the pycnochlorite field (Fig. 4.5b). The majority of samples in the pycnochlorite field areassociated with the scapolite vein. The FeO/MgO ratio varies within each group, but variation is greater betweengroups (Fig. 4.5a). The most iron-rich sample (KR92-31) is hosted in propylitically altered Sugarloaf diorite. The85Table 4.3 Microprobe analyses of epidote from Ajax West and Ajax East pits.SampleLithologyAlteration17 Al 9^33 A5 3^34 B1 2Sugarloaf diorite Sugarloaf diorite Sugarloaf dioritealbitic^propylitic^albitic35 B2 2hybrid dioritepropylitic35 B5 2^31 A7 7^31 Al 7^45 A2 1^57 B5 10^57 B6 2^59 A7 9hybrid diorite^Sugarloaf diorite Sugarloaf diorite Sugarloaf diorite Sugarloaf diorite Sugarloaf diorite Sugarloaf dioritepropylitic^propylitic^propylitic^albitic^albitic^albitic^albiticSiO2 37.29 36.99 37.48 37.67 36.83 38.48 37.09 37.50 37.65 37.13 37.02Al203 22.15 21.38 24.40 27.71 23.75 23.63 22.96 25.00 26.95 23.94 22.75TiO2 0.00 0.07 0.03 0.04 0.07 0.01 0.00 0.02 0.00 0.03 0.01FeO 13.50 14.10 11.05 6.99 11.25 10.97 12.04 2.58 7.46 11.64 12.99MnO 0.01 0.07 0.18 0.26 0.03 0.07 0.05 0.01 0.09 0.00 0.07MgO 0.00 0.01 0.02 0.08 0.01 0.05 0.22 3.96 0.02 0.01 0.01CaO 22.69 23.11 23.03 23.22 23.19 21.90 23.01 23.30 23.06 23.00 22.90NaO 0.02 0.01 0.00 0.01 0.00 0.45 0.01 0.02 0.01 0.03 0.00Cr2O3 0.00 0.02 0.00 0.00 0.00 0.04 0.04 0.01 0.03 0.04 0.01NiO 0.00 0.00 0.00 0.02 0.00 0.00 0.09 0.00 0.00 0.00 0.06TOTAL 95.66 95.76 96.20 96.00 95.15 95.60 95.50 92.42 95.27 95.82 95.8400ciN iIon calculations based on 13 oxygensSi 3.25 3.24 3.20 3.15 3.19 3.29 3.21 3.20 3.18 3.20 3.21Al 2.27 2.20 2.46 2.73 2.43 2.38 2.35 2.52 2.68 2.43 2.33Fe 0.98 1.03 0.79 0.49 0.82 0.78 0.87 0.18 0.53 0.84 0.94Mn 0.00 0.01 0.01 0.02 0.00 0.01 0.00 0.00 0.01 0.00 0.01Mg 0.00 0.00 0.00 0.01 0.00 0.01 0.03 0.50 0.00 0.00 0.00Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Ca 2.12 2.17 2.11 2.08 2.15 2.01 2.14 2.13 2.09 2.12 2.13Na 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.01 0.00Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00Table 4.4 Microprobe analyses of chlorite from Ajax West and Ajax East pits.Sample No.LithologyAlteration31 A5 6^31 A6 7^31 A8 3^45 A3 1^45 A8 6^49 B6 3^57 B1 4^57 B1 7^57 B8 5Sugarloafdiorite Sugarloafdiorite Sugarloafdiorite Sugarloafdiorite Sugarloafdiorite Sugarloafdiorite Sugarloaf diorite Sugarloafdiorite Sugarloaf dioritepropylitic^propylitic^potassic^potassic^potassic^albitic^albitic^albitic^albiticSiO2 27.73 27.30 27.96 28.79 29.08 29.37 28.22 28.56 28.18Al203 18.11 17.88 18.31 17.92 17.79 17.17 17.97 17.17 18.36TiO2 0.02 0.00 0.01 0.00 0.01 0.01 0.04 1.53 0.00FeO 20.41 22.57 20.38 16.53 16.00 16.61 17.56 14.43 16.20MnO 0.17 0.22 0.15 0.24 0.21 0.07 0.13 0.16 0.26MgO 19.00 17.51 19.26 22.34 22.82 22.99 20.63 21.99 21.74CaO 0.00 0.02 0.02 0.01 0.06 0.03 0.04 0.79 0.05Na2O 0.04 0.05 0.01 0.02 0.08 0.05 0.05 0.05 0.05TOTAL 85.48 85.55 86.11 85.85 86.05 86.31 84.63 84.68 84.84FeO/MgO 1.07 1.29 1.06 0.74 0.70 0.72 0.85 0.66 0.75Ion calculations based on 24 oxygensSi 5.50 5.47 5.57 5.64 5.69 5.77 5.49 5.50 5.46Al 4.23 4.22 4.30 4.14 4.10 3.98 4.12 3.90 4.20Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.22 0.00Fe 3.39 3.78 3.40 2.71 2.62 2.73 2.85 2.33 2.63Mn 0.03 0.04 0.03 0.04 0.03 0.01 0.02 0.03 0.04Mg 5.62 5.23 5.72 6.52 6.66 6.74 5.98 6.32 6.28Ca 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.16 0.01Na 0.02 0.02 0.01 0.01 0.03 0.02 0.02 0.02 0.02OH 19.22 19.33 18.49 18.50 18.23 17.97 19.94 19.71 19.62Epidate100000 0138(•^low^80^ig3[^?pp+ +A. * f + +*1113K );(,1( 318LL120(a)20.8 21.6^22.4^23.2^24^24.8Al203 (v.4%)25.6 26.4 27.2 282423.723.4Epidde0 -23.122800® 0M0.0010u *t®0^+^+^+ +, *o^+0^*+ +il „i+_w****-^+1 22.5 0* +^V83+++0 022.2 )1(31( 3K21.9 0 021.60 021.3212020.8 21.6 22.4 232^24 24.8 25.6 26.4 27.2Al203 (wt %)(b)* (KR91-) 17 A+ (1CR91-) 35 AO (KR92-) 33 A^ (1CR92-) 35 B(KR92-) 31 A(1CR92-) 45 A• (KR92-) 57 B▪ (KR92-) 59 AFigure 4.4 Binary plots (a:Al203 vs. FeO; b: Al203 vs. CaO) of microprobe data for epidote (Table 4.3) forsamples from the Ajax East and Ajax West pits. A strong correlation exists between Al203 and Fe0 content of theepidote. On the other hand, there appears to be no correlation between CaO and Al203 content.0 % 00 00o^0%0^00 * 00^0^0*^0^+ +++4.+++ + + + +++^+4. +4.0GCP5^6^7^8^9^10^11^12^13^14^15Fe0 (4•( X)t (KR92-) 31 A0 (ICR92-) 45 A^ (KR92-) 49 B* (ICR92-) 57 B2524232221201918171615DaphriltsBrursevigit*Pycnochlorito40"-FClInochlore(a)1 .61.412.010.01 .2co2+ 1.0a)u.. 0.8c■I0.6u.+ 0.4u.0.2LL8.0PseudothuringlteDlabantlteCorundophillteTalc-chloriteSheridanito0.04 0^4.5^5.0^5.5^6.0^6.5^7.0^7.5^8 0(b)^ SiFigure 4.5 Binary plots (a:FeO vs. MgO) and quadralateral (b) of microprobe data for chlorite (Table 4.6) forsamples from the Ajax East and Ajax West pits. The binary plot FeO vs. MgO (a) indicates a compositionalvariation between samples of different alteration types. The chlorite quadralateral diagram shows that the samplesplot in the ripidolite and pycnochlorite fields.0.0PennInIto6.04.02.0CN1a)LL89two samples associated with orthoclase/albite veins (KR92-45, KR92-57) have similar FeO/MgO and FeO/MnOratios, whereas the sample associated with the scapolite veining has relatively higher MgO and lower MnO.Preliminary data suggest that chlorite composition varies with alteration assemblage. However, there areinsufficient data to establish clear trends.Scapolite was analyzed in one sample from a vein (Table 4.5). Grains within the vein were large (0.5mm) and tabular (Plate 3.3B), with no preferred orientation. There was no evidence of zonation within grains andno fluid inclusions were observed. Seven grains were analyzed from the core and rims of the vein. The chemicalcomposition of the seven grains are homogeneous. The CI content was analyzed, but SO4 , , which is often presentin scapolite (Deer et al., 1966), was not analyzed. However, as analyses consistently totalled 100%, no significantamounts of SO4 are present in these scapolites. Thus, the scapolite is a chlorine rich dipyre with a meionitecomponent of 27%. It has a calculated composition of (Na2 . 6Ca0 . 91(0 . 2Fe . 01)[A13 . 7Si7 . 61(023 . 1C10 . 90110 . 1 ).Zeolite, analyzed in one sample (Table 4.5), is present in the scapolite veins. The pale orange-pink zeoliteis close to heulandite or stilbite in composition. However, the Si02 content is several percent higher, and itcontains more K20 and MgO but less CaO than typical heulandite or stilbite. In hand sample the zeolite clearlyreplaces scapolite along cross-cutting fractures, although in thin section grain boundaries between scapolite andzeolite are sharp, and appear to be in equilibrium. It is a post-porphyry alteration mineral.Prehnite was analyzed in two propylitic and two albitic samples (Table 4.6). Analyses sum to 95%, theremaining 5% can be attributed to OH. The prehnite associated with albitic alteration, surrounding chalcopyriteand pyrite (Plate 3.4B), had low relief and no apparent cleavage. A second type of prehnite, a slightly more iron-rich variety, occurred in the groundmass of propylitically altered hybrid diorite and Sugarloaf diorite. It hadmoderate relief and a fibrous texture. It was not associated with mineralization.Pumpellyite was analyzed in three samples from intensely albitized rock and from the vicinity of apotassic vein (Table 4.6). OH is not reported in the total, and consequently, analyses sum to 84%. Thepumpellyite is faintly green, pleochroic and fibrous. It occurs both as veinlets (Plate 3.5B) that cross-cut all90Table 4.5 Microprobe analyses of scapolite and zeolite from Ajax West and Ajax East pits.SampleLithologyAlterationScapolite49 B2 1hybrid dioritescapolite49 B9 4hybrid dioritescapoliteZeolite49 B2 5hybrid dioritescapolite49 B3 2hybrid dioritescapoliteSiO2 55.669 55.590 SiO2 62.634 60.983Al203 23.120 23.265 Al203 15.161 15.909Fe2O3 0.119 0.197 Fe2O3 0.020 0.051MgO 0.000 0.000 MgO 1.751 1.681CaO 6.426 6.415 CaO 4.046 4.198Na2O 10.057 9.928 Na2O 0.266 0.279K2O 1.001 0.956 K2O 1.286 1.413CI 3.590 3.585 H2O 14.819 15.4810=C1 0.811 0.810Total 99.981 99.936 Total 85.181 84.519Ion calculations based on 24 oxygens Ion calculations based on 72 oxygensSi 7.591 7.580 Si 21.519 20.910Al 3.716 3.739 Al 6.652 6.503Fe3+ 0.012 0.020 Fe3+ 0.656 0.775Mg 0.000 0.000 Mg 0.897 0.859Na 2.659 2.625 Ca 1.489 1.542Ca 0.939 0.937 Na 0.177 0.185K 0.174 0.166 K 0.564 0.618Cl 0.872 0.871 (OH2O) 33.980 35.428(OH2O) 23.128 23.129Table 4.6 Microprobe analyses of prehnite and pumpellyite from Ajax West and Ajax East pits.SampleLithologyAlterationPrehnite17 A3 1^17 A6 5^33 A10 3Sugarloaf diorite Sugarloaf diorite Sugarloaf dioritealbitic^albitic^propylitic38 B5 5hybrid dioritepropylitic38 B5 7hybrid dioritepropylitic59 A41Sugarloaf dioritealbiticPumpellyite42 B1 1^42 B10 2^17 A3 5^57 B8 8Sugarloaf diorite Sugarloaf diorite Sugarloaf diorite Sugarloaf dioritealbitic^albitic^albitic^albiticSiO2 43.33 43.04 43.97 42.43 43.18 43.29 SiO2 37.87 37.87 39.95 37.47Al203 23.88 24.41 23.87 23.12 22.85 23.99 Al203 27.27 27.37 25.21 26.65TiO2 0.02 0.12 TiO2 0.02 0.00FeO 0.62 1.80 Fe2O3 1.02 1.51 1.19 6.75Fe2O3 1.12 0.35 1.95 0.56 MnO 0.05 0.05MnO 0.08 0.05 MgO 3.32 3.17 1.92 0.79MgO 0.00 0.01 0.01 0.26 0.09 0.05 CaO 23.43 23.63 25.53 22.95CaO 27.37 27.31 26.79 26.48 27.04 27.10 Na2O 0.03 0.05 0.00 0.01Na2O 0.02 0.03 0.02 0.01 0.01 0.00 K2O 0.00 0.00K2O 0.00 0.00 - 0.01 0.00Total 95.73 95.19 95.38 94.34 95.16 95.00 Total 93.06 93.62 93.80 94.68Ion calculations based on 24 oxygens Ion calculations based on 28 oxygensSi^6.52^6.50 6.03 6.52 6.56 6.55 Si 6.37 6.41 6.78 6.49Al 4.23 4.34 3.86 4.18 4.09 4.27 AI 5.40 5.46 5.04 5.44Ti 0.00 0.01 Ti 0.00 0.00Fe2+ 0.07 0.23 Fe3 + 0.13 0.19 0.15 0.88Fe3+ 0.13 0.04 0.22 0.06 Mn 0.01 0.01Mn 0.01 0.01 Mg 0.83 0.80 0.49 0.21Mg 0.00 0.00 0.00 0.06 0.02 0.01 Ca 4.22 4.29 4.64 4.26Ca 4.41 4.42 3.94 4.36 4.40 4.39 Na 0.01 0.02 0.00 0.00Na 0.01 0.01 0.01 0.00 0.00 0.00 K 0.00 0.00 0.00K 0.00 0.00 0.00 0.00 OH 7.79 7.20 7.02 6.15OH 4.29 4.84 4.23 5.81 4.90 5.04previous alteration, and as pervasive disseminations throughout the groundmass. It is high in MgO and low inFeO+Fe203 relative to other pumpellyite analyses (Deer et al., 1966).4.4 Summary and DiscussionPrimary plagioclase in Sugarloaf diorite and hybrid diorite is andesine to labradorite (Any) to An57).Secondary feldspars are dominantly albite (An02 to An07). The albite occurs either as clear grains with simpletwinning, or as cloudy chess-board albite with embayed boundaries. Orthoclase (0r96) occurs locally in veins withalbite and as alteration envelopes around albite-orthoclase veins. A transitional feldspar (0r33Ab69An01) alsooccurs in these veins and may result from orthoclase replacing albite, although there was no textural evidence ofthis. In a study of secondary alkali feldspars in porphyry environments, Leitch (1981) identified both textural andcompositional trends in alkali feldspars, which might provide vectors for porphyry copper exploration. Leitchobserved that during mineralization Na+ activity decreased and K + activity increased. A textural sequence of clearalbite (Ani l)), chess-board albite (An0_100), untwinned anoralbite (Ab900r10 to Ab700r30), and finallyorthoclase, (Ab400r60-0r100) was observed. Within the Ajax East and Ajax West pits a similar range of feldsparcompositions is observed, and the presence of K-feldspar veins cross-cutting pervasive albite indicates that thehydrothermal system became enriched in potassium in its final stages. However, the occurrence K-feldspar islimited and is not obviously related to main stage mineralization. The implied trends therefore hold little promiseas an exploration tool in this setting.Secondary diopside is more sodic and calcic than primary diopside/salite pyroxene. The commonassociation of diopside and albite in intensely albitized rock indicates that they are the products of the samehydrothermal fluid. The association of epidote+sulphides is less clear. Epidote occurs in all mineral assemblagesand shows no consistent variation in composition with alteration type. Epidote is clearly associated with pyrite andchalcopyrite, usually enclosing it. Epidote with mineralization occurs in both propylitic and albitically alteredrock. In the most intensely albitized rock, sulphides are rimmed with prehnite that may be the product of epidoteand albite breaking down.93Chlorite composition varies from ripidolite to pycnochlorite. Chlorite is best developed as envelopesaround K-feldspar veins. The FeO/MgO ratio varies between alteration assemblages. The most iron-rich chloriteis associated with propylitic alteration. Chlorite associated with scapolite veining is depleted in MnO. There is nochlorite data for the albitic assemblage, because it is generally absent in this assemblage due to the iron destructivenature of the alteration. Although there appear to be compositional trends in chlorite, the number of samplesanalyzed are too small to draw further conclusions.Scapolite is a chlorine rich dipyre (near the end-member marialite composition). Timing of the veining isuncertain, although based on cross-cutting relationships it appears to be late. The high chlorine content indicates ahigh volatile content. Experimental work on natural chlorine-rich scapolite (3.5 wt% Cl, Meionite component15%) by Vanko and Bishop (1982) concluded that in order to stabilize a marilatic scapolite at 700-750° C and 1.7-2.8 Kb, a fluid with a minimum salinity of 50 mole % NaCl and with little or no CaCO3 is required. Experimentsat lower temperatures did not reach equilibrium. The presense of limited chlorine-rich scapolite suggests that latehigh salinity fluids were evolved, at least locally.Prehnite and pumpellyite are generally characteristic of low grade metamorphism. Consequently, theformation of these minerals is post mineralization. Both minerals are present in the Afton pit (Kwong, 1987) andin other mineral occurrences in the batholith (Carr, 1956). Prehnite appears to be a retrograde alteration productof epidote and possibly albite. It is present both in propylitized and albitized rock. Pumpellyite most often occursas cross-cutting veinlets. The zeolite that was identified may be related to the same low grade metamorphism. It isonly seen with scapolite along the major Sugarloaf diorite and hybrid diorite contact.945.0 ZONATION OF METALS AND SULPHUR5.1 IntroductionPyrite and chalcopyrite mineralization occurs on microfractures and as disseminations in propylitized andmoderately albitized Sugarloaf diorite and hybrid diorite. Trace bornite and chalcocite, and minor amounts ofmolybdenum occur locally. Minor native copper was observed in oxidized faults in the upper benches of the AjaxWest pit. Free gold was not observed in either pit. A suite of 154 samples was collected and analyzed for Fe, Mg,Mn, Zn, Pb, Mo, Ag, Cu, Au, V and S to investigate the possibility of a metal zonation that could be used as anexploration vector. Scatterplot correlation matrices (Fig. 5.1) and histograms (Fig. 5.3) were used to examine inter-relationships among the metals. The distribution of the data are presented in a series of bubble plots (Fig. 5.4).5.2 Metal RatiosA suite of 61 grab-chip samples and 93 composited drill core pulps was analyzed. The grab-chip sampleswere collected from the 860 metre level in the Ajax West pit and from the 940 metre level in the Ajax East pit.The pulps from the logged assay intervals were composited to a single sample per pierce point on therepresentative levels. Composite samples combined approximately 30 grams each from the three or four relevantassay intervals in each drill hole. Copper was re-analyzed for the drill core pulps, but gold was not. The goldcontent of the drill core pulp samples was calculated by taking the weighted average of the intervals. To helpevaluate the accuracy of this calculation the weighted original copper assays were plotted against the geochemicalanalyses of the composited samples (Fig. 5.2a), the correlation is excellent. Analytical results are presented inAppendix C, Table C.1.Scatterplot correlation matrices using both raw and log transformed data were used to assess theinterelationships among sulphur and metals, except Ag, Pb and Mo (Appendix C). Although transforming thedata normalizes the distribution, correlations between elements are more readily observed in the raw data. Silver95AUFABCUPPM:.^• 11,tiVI I.0•1••:''•_Figure 5.1 Scatterplot matrix correlation diagram of untransformed metal assay data from the Ajax East and AjaxWest pits. Copper, gold and sulphur have strong positive correlations. Iron and vanadium have a strongcorrelation. Sulphur and vanadium have an exclusive correlation.96Copper Assay Comparison14000Ea.o. 12000E 10000■cocf)-o 8000a 6000 —E00 4000 —aWI. mil ■■■• 2000^ jotascc^•ORta.4.11. ma^•■00^0.2^0.4^0.6^0.8^1Originnal Assay Weighted Averages (%)■•••■ 1.2^1.4Figure 5.2 Comparison of calculated weighted average assays against reassays of composited samples for copper indrill core pulps from the Ajax West and Ajax East pits, showing excellent correlation.97was below the detection limit of 0.4 ppm in nearly all of the samples. The highest value was 2.5 ppm, in a hybriddiorite sample. Lead was below the detection limit of 4.0 ppm in all but two cases; a value of 5 ppm coincides withthe 2.5 ppm silver value and a second sample of Sugarloaf diorite had 65 ppm Pb. Molybdenum values are notablylower in the Ajax East pit than in the Ajax West pit, although most are below the detection limit of 2.0 ppm.Several correlations are obvious among the other elements analyzed. Copper correlates well with both gold andsulphur. The correlation between gold and sulphur is weaker. The iron present in chalcopyrite should show acorrelation with copper and to sulphur. However, because iron is present in several mineral phases, the patternsare almost exclusive. Iron and vanadium exhibit an excellent correlation, whereas vanadium and sulphur areexclusive. This can be explained by vanadium substitution for Fe3+ in magnetite (Deer et al., 1966) and its noninvolvement in sulphides. Iron also correlates well with magnesium, manganese and zinc, reflecting mutualsubstitution in oxides, silicates and sulphides.The existence of populations was explored further using histograms of the ratios of log-transformed data(Figs. 5.3a-j). Copper to gold ratios define one population (logged value of 1.4) with a broad tail of higher Cu toAu ratios (Fig. 5.3a). Iron to sulphur ratios are negatively skewed (Fig. 5.3b) indicating that iron occurs inmagnetite, as well as in pyrite and chalcopyrite. Most ratios for sulphur to gold and sulphur to copper (Figs.5.3c,d) form symmetrical distributions common to normally distributed, one population models. Iron to gold andvanadium to gold ratios (Figs. 5.3e,f) plot as two apparent populations. The larger high gold to low iron and lowvanadium population represents the gold associated with chalcopyrite and pyrite. The second population of highvanadium and high iron to low gold probably reflects gold occurring with a higher percentage of secondarymagnetite. Iron to copper and vanadium to copper ratios (Figs. 5.3g,h) plot as one population, with long, low tailsthat probably reflect the presence of minor secondary magnetite. Vanadium to iron ratios (Fig. 5.3i) form one,normally distributed population that characterizes magnetite. Iron to magnesium, iron to manganese and iron tozinc ratios (Figs. 5.3j,k,l) plot as single, normal populations that reflect primary mineralogy.Copper to gold ratios were further examined on a number of scatterplots (Fig. 5.4a-c), usinguntransformed data. The total data set (Fig. 5.4a) exhibits an average Cu to Au ratio of 12 000. A plot of only themost intensely altered samples (Fig. 5.4b) exhibit a tight clustering around the same ratio, suggesting that Cu98353025201 151050(a)30 -2520,5100^1 -'14 11'1`1-1-°7""'"'"1.-.7".*."''""::1::112:4:1:11t4rinr;i:17,174,1fT41::r ^Nlldlfl (Oh alA In(C)^000000000Log S/ Log Au4540353025 -I 20 -15 -10(b)1200403530251510 -0.1^0.2 0.3 0.4 0.5 0.6^0.70O DO(d) '1oN"I0cc,^.1,^indo^o4-Agonit#4444„4-444,y,„4-5-„I'd?0^ 11  ^I I^r0.8 0.9^1^1,1 1.2 1.3 1.4 1.5 1.6 1.7 1.8^.9^2^2.1Log Fe/ Log SFigure 5.3 Histograms of logged (base 10) metal ratios from assay data for the Ajax East and Ajax West pits: (a) Cu/Au, mainly one population, (b) Fe/S, mainly onepopulation, (c) S/Au, two populations, (d) S/Cu, one population, (e) Fe/Au, two populations, (f) V/Au, two populations, (g) Fe/Cu, one population, (h) V/Cu, onepopulation, (i) V/Fe, one population, (j) Fe/Mg, one population, (k) Fe/Mn, one population, and (1) Fe/Zn, one population.r-in in CD^n In co in Cr, In -ci^ci m ci n ci^cio o o o o -Log S/ Log Curr'lfN, 4 '4't(e)a In inN'9 0) °N N NLog Fe/ Log Au252015LL1 00(1)4540353025LL 201510^0 ^1-- N el .0 umnm el^el N4 mtiNmm N.NN O 2 CO CO N Y.-NN4 ul rc h m 0)^6 6 ä ci 6 6 6 6 6  N N N N N N N N N N N N N 6 N N 6 ei(h) Log V/ Log Cu0;ggggnTg.- 7rIcTetipmnme!N7Nclaw■Rnme?m7Nmawconcom4.-Nmetancontomm^  NNNNNOANNel mm6666666 44444444.iLog V/ Log AuFigure 5.3 (continued)35 -3025 -2010T.r510^'2' '1 .7°006000000 "^  "N ,r1 N NIJJ^ Log Fe/ Log Mg30 -25201510III TI-111-1Y-1?z-i-= i' -i z .i z 'I' ■ ' i' 18 7 ■2 " 'A' ' 1 'A ' 4' '`? ‘13^ro' '. r2^2 ''' ili "Log Fe/ Log Zn605040320100^ T---10.9^1^1.1 1.2 1.3 1.4^.5^.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3Log V/ Log FeIli AMA^ .11•2111M11, II.2•511171111.10 .• .11111,f•-•iz i' i' i' I' "rr^i' fr i' i' -i'4- S'-it •^ Ir0 LO ICC CO^10 ICI^ol U1 LC1 WI el CO^CCI st 1.11 .10^LO^CO CO ID CO 1.0^IA ID ID CO it, ICC CO CO2.1 9 8 c ci r,t4 +.^ci^") h 6^6 Pi,^ci 164^ci^° 6 6 °^°^7ai ° g^°^CI .S01 a^° 6^°Log Fe/ Log Mn(i)2520151050(k)Figure 5.3 (continued)1600140011200-1000-aa800-=600-400-200-16001400-1200-1000-aa 8000600400-200-1600 114001120011000-1„_±,,,_,0 0^ 6^8^10^12^14(b) Cu (ppm)(Thousands)0^0 2^4^6^8^10^12^14(c) Cu (ppm)(Thousands)Figure 5.4 Scatterplot of Cu and Au concentrations from (a) the total data set, (b) intensely albitized rocks and (c)from the Sugarloaf diorite. The data exhibit a dominant trend with a Cu. to Au ratio of 12 000 and secondarytrend with a Cu to Au ratio of approximately 35 000. The most intensely altered rocks (b) have a ratio of 12 000,suggesting that Cu and Au were co-precipitated during intense alteration.102and Au were co-precipitated during intense alteration. A plot of Sugarloaf diorite samples (Fig. 5.4c) show thatthe major trend with a Cu to Au ratio of 12 000, forms a lower limit to most ratios. Other ratios are mainly higher,up to a ratio of approximlately 35 000 (compare to log Cu/log Au histogram of Fig. 5.3a). Only a few samples aremarkedly enriched in gold. While Fig. 5.4b suggests that co-precipitation of copper and gold during intensealteration, Fig. 5.4c suggests decreasing efficiency at gold precipitation in less altered rocks. This may reflectchanges in temperature, gold complexing and gold precipitation in less albitized rocks.The distribution of the metals and sulphur are presented in bubble plots (Figs. 5.5a-h). The distribution ofiron and zinc (Figs. 5.5a,b) reflects the distribution of hybrid diorite and picrite. Vanadium distribution (Fig. 5.5c)correlates with the iron in the magnetite related to the hybrid diorite unit. High magnesium values correlate withiron associated with picrite (Fig. 5.5d). Manganese distribution (Fig. 5.5e) is relatively uniform with the exceptionof the more intensely albitized zones, where it is depleted. Sulphur distribution correlates with copper and goldmineralization (Figs. 5.5f,g,h).5.3 Summary and DiscussionA clear metal zonation pattern was not defined around the Ajax East and Ajax West pits. This may bepartially due to the sample distribution, which is restricted to the pits and a very limited surrounding area. Pb, Agand Mo are near detection limits in most samples, and Fe, Zn, V, Mg and Mn reflect primary lithology. Thedistribution of sulphur correlates with copper-gold sulphide mineralization. An examination of metal ratiosindicate possibly two populations of gold mineralization: a high gold to high copper population associated withchalcopyrite and pyrite, and a second population of moderate gold and low copper associated with magnetite (Figs.5.3e,f). These two distinct mineralization assemblages were not identified in the field, or during petrographicwork. The higher iron content in the second gold population may reflect the presence of a higher percentage ofsecondary magnetite, indicating the evolution of a fluid toward a higher oxygen fugacity, at least locally. Thedeposits generally are characterized by a Cu to Au ratio of 12 000 or higher. The most intensely albitized rocksamples exhibit this ratio, further supporting the correlation between albitic alteration and mineralization.Sugarloaf diorite exhibits a range of Cu to Au ratios. The common ratio of 12 000 forms an upper limit. A103secondary trend with a ratio of approximately 35 000 exists. This trend represents less intensely albitized rockand indicates that gold mineralization is more dependent on intense albitization than is copper mineralization.1045000 65005500 600052005000cY) 4800z 4600440042006500^45005000,2c3P 00•*I, a or o °^0 0 0° 0. 0 ° 0^0° • 00 0520050006) 4800z 460044005000^5500^6000^65004200 ^4500520050000) 4800_Ez 460044004200 ^4500 5000^5500 6000^h5000ArtO.tr^o . . 1 :0 0ti^- 0 8'e 0o00; ..•°° 0•°^„ • ° o°^•^co^• °0 ° Fe Distribution^ Zn DistributionEasting^ (b) EastingV Distribution^ Mg Distribution(c)^ Easting (d) EastingFigure 5.5 Bubble plots of the distribution of metal and sulphur assays from drill core pulps and grab samples from the Ajax East and Ajax West pits: (a)distribution of Fe (ppm), (b) distribution of Zn (ppm), (c) distribution of V (ppm), (d) distribution of Mg (ppm), (e) distribution of Mn (ppm), (f) distribution ofS (ppm), (g) distribution of Cu (ppm), and (h) distribution of Au (ppb).00: o dj0° °0 00 0 0000 0 0 Cb 00 0pn 052005000a 4800460044004800z 460044005000^5500^6000^65004200 ^4500 5000^5500^6000^65004200 ^450000 (50 0,,^ 50005200Mn Distribution^ S Distribution520050004850460044004200 ^4500(e)000^5500^6000^6500^4500^5000^5500^6000^6500Easting (f) Easting520050000) 4800z 4600J "0:6'36 „'01tp440042000•Cu Distribution^ Au Distribution(g)^Easting (h) EastingFigure 5.5 (continued)6.0 STRUCTURAL GEOLOGY6.1 IntroductionThe rocks within both the Ajax West and Ajax East pits are intensely fractured and faulted. Althoughminor (1-3 m) offsets were observed on some faults, the general lack of marker units precludes more detaileddetermination of offset direction or magnitude. Faulted contacts between several of the units form the majorstructural features within the pits. In the Ajax West pit, the faulted east-west trending contact between hybriddiorite and Sugarloaf diorite divides the pit into two domains. Similarly, the Ajax East pit is divided into twodomains along a northeasterly trending contact between these same two units. These major faults are near the fociof mineralization and alteration in both pits. They do not offset substantially either mineralization or alteration.There are several stages of irregular and widely spaced (0.5 per in) veining. Although cross-cuttingrelationships are not definitively constrained, a general paragenetic sequence has been established. Albite-epidote-calcite+sulphides veins with albitic envelopes are cross-cut locally by K-feldspar-calcite+epidote+albite+sulphideveins with chlorite-actinolite envelopes. The albitic veins are frequently wispy and discontinuous, and when well-defined, are never more than 1 to 2 metres long. The K-feldspar veins are more abundant and more continuous inthe Ajax East pit, where they tend to occur in swarms. Intensely developed, =mineralized calcite stockworksoccur in both pits. There is more than one episode of calcite veining; but it appears to be predominantly post-mineral, although calcite-chalcopyrite veins occur locally. Planar, continuous quartz veins occur in both pits. Twotypes of quartz veining are present, a purplish quartz with hematitic alteration envelopes associated withmolybdenite, and vuggy epithermal-type quartz associated with pyrite and silicic alteration envelopes. The quartz-molybdenite veins occupy faults, whereas the quartz-pyrite veins cross-cut many fault structures. Post-mineral,honey coloured opaline silica is developed in several oxidized faults in the upper benches of the Ajax West pit.Several sulphide-carbonate breccias occur in the Ajax West pit. They are less than one metre wide andvary from one metre to approximately five metres long. A larger sulphide breccia body (5 m x 5 m) wasencountered along a contact between hybrid diorite and Sugarloaf diorite during mining of the 830 metre level in107the Ajax West pit. The matrix of fine grained pyrite-chalcopyrite-calcite cements angular fragments of albitizedSugarloaf diorite (Bond, 1991).Detailed structural maps are shown in Figures 6.1 and 6.2 (in the pocket at the back). There is norecorded vein data outside the pits. The structure of the two pits is described separately.6.2 Ajax West PitThe Ajax West pit has been divided into two structural domains along the prominant contact between theSugarloaf diorite and the hybrid diorite. In the southern half of the pit, dominated by Sugarloaf diorite, intenselyalbitized rock forms resistant blocks around which the more chloritic rocks have developed a weak foliation. Thenorthern half of the pit is dominated by chloritized, hematized and faulted hybrid diorite. Failure of portions of the900 metre bench has taken place along the planes of numerous faults. Barren calcite veining is commonlydeveloped near these faults. The structural data for both domains (Table 6.1) have been divided into faults (Fig.6.3a) and veins (Fig. 6.4). Faults have been subdivided into chalcopyrite-bearing and unmineralized structures.The veins have been subdivided into K-feldspar-bearing, quartz-bearing and albite+epidote+calcite-bearing veins.Data are summarized in Tables 6.1 and 6.2.The majority of the faults in both the northern and southern domains strike northeast to northwest, dipmoderately to the west, and are unmineralized (Figs.6.3a,b). Chalcopyrite-pyrite-bearing faults display nopreferred orientation. In the southern Sugarloaf diorite domain mineralized K-feldspar-bearing, andalbite+epidote+calcite veins generally dip steeply to the northwest (Figs. 6.4a,b). Several molybdenite-bearingquartz veins were observed in the southern domain, each with a different orientation (Fig. 6.4c). In the northernhybrid diorite domain the mineralized K-feldspar and albite veins do not have a dominant trend and dip shallowlyto moderately (Figs. 6.4a,b). Quartz veins are more abundant in this domain and dip mainly to the west (Fig.6.4c).108(a) Ajax West PitHybrid diorite domain, faults(b) Ajax East PitHybrid diorite domain, faultsFigure 6.3 Fault orientations in (a) the Ajax West and (b) the Ajax East pits. Infilled circles represent the poles ofchalcopyrite±pyrite+molybdenite-bearing structures.1096.3 Ajax East PitThe Ajax East pit has been divided into two structural domains along the contact between the Sugarloafdiorite and hybrid diorite, which contains a screen of Nicola Group volcanic rocks. The northwestern half of thepit is dominated by hybrid diorite. The northern section of this domain is intensely faulted, hematized andchloritized, but the southern section lies largely outside the area affected by intense alteration and mineralization.The southeastern half of the pit is dominated by albitically and propylitically altered Sugarloaf diorite. Thestructural data for both domains (Table 6.2) has been divided into faults and veins (Fig. 6.3 b) . Faults aresubdivided into chalcopyrite-pyrite-bearing and unmineralized faults. Veins are subdivided into K-feldspar-bearing, albite+epidote+calcite-bearing and quartz-bearing veins (Fig. 6.5). K-feldspar and quartz veins are moreprevalent in the Ajax East pit than in the Ajax West pit. Chalcopyrite is present in many of the K-feldspar veins.The southeastern Sugarloaf diorite domain in the Ajax East pit is similar to the southern Sugarloaf dioritedomain in the Ajax West pit. Both are characterized by blocks of resistant, albitized Sugarloaf diorite surroundedby propylitized, weakly foliated diorite. There is an indication of two distinct orientations of faults: a northwest-striking set and northeast-striking set (Fig. 6.3b). They dip nearly vertical and steeply southwest respectively. Themajority of the mineralized faults lie in the northwest striking set and dip southwest. K-feldspar veins strikenorthwest and have moderate to steep dips to the northeast and southwest (Fig. 6.5a). The orientation of albiticveins varies widely (Fig. 6.5b). Quartz veins are scarce in this domain and tend to dip southeast (Fig. 6.5c).In the northwestern hybrid diorite domain faults are more numerous. Orientations vary, but a southerlydip predominates in both barren and chalcopyrite-bearing faults (Fig. 6.3b). K-feldspar veins (Fig. 6.5a) strikedominantly to the northwest, although a smaller northeast trending set occurs. Similar to the Sugarloaf dioritedomain, albitic veins have no preferred orientation (Fig. 6.5b). Sparse quartz veins (Fig. 6.5c), on the other hand,occur in two distinct sets, one northwest trending and the other northeast trending. Chalcopyrite-pyrite-bearingquartz veins occur in the northeast striking set.110(a)(b)(c) Ajax Wes PitSugarloaf Morns domain. quarts veins Figure 6.4 Vein orientations in the Ajax West pit. Data have been divided into two structural domains, a southernSugarloaf diorite domain and a northern hybrid diorite domain Veins have been further subdivided into threetypes; (a) K-feldspar-bearing veins (b) albite+epidotc I calcite-bearing veins and (c) quartz-bearing veins. Poles tochalcopyrite±pyrite+molybdenite-bearing veins are shown as solid circles.111Ajax East Pit(a) Hybrid diorite deseein. IC-feldspar veinsMal East PitHybrid diorite domain. albite veins• 0 +(b)• \(c)N 28Figure 6.5 Vein orientations in the Ajax East pit. Data have been divided into two structural domains, asoutheastern Sugarloaf diorite domain and a northwestern hybrid diorite domain. Veins have been furthersubdivided into three types; (a, b) K-feldspar-bearing veins (c, d) albite+epidote+calcite-bearing veins and (e, 0quartz-bearing veins. Poles to chalcopyrite-±pyrite+molybdenite-bearing veins are shown as solid circles.1126.4 Summary and DiscussionThe Ajax West and Ajax East pits have both been divided into a Sugarloaf diorite domain and a hybriddiorite domain along the faulted contact between these units. Within each pit the frequency and mineralogy offaults and veins varies between domains, but the general orientations do not, indicating that there has not beensignificant rotation on the major contacts, between the domains (Tables 6.1, 6.2). However, structural orientationsdiffer between the Ajax West and Ajax East pits. In the Ajax West pit faults strike in all directions but dominantlydip moderately to the west. In the Ajax East pit two strike trends predominate, a northwesterly trending set and anortheasterly trending set, both dipping mainly to the south. Differences are also seen in the veins that have beensubdivided into three types: (i) K-feldspar, (ii) albite+epidote+calcite, and (iii) quartz-bearing veins. All of theseare more common in the Ajax East pit. Chalcopyrite-bearing K-feldspar and albite veins strike northeast and dipnorthwest in the Ajax West pit. In the Ajax East pit K-feldspar veins strike dominantly northwest and albitic veinshave no preferred orientation. Quartz veins in the Ajax West pit are variable, but in the Ajax East pit two setsoccur, one northwest striking and the other northeast striking. These quartz veins may form a conjugate set. Thedifference in orientations between pits might be controlled by the orientation of the major fault contacts in each pit.The main fault in the Ajax West pit strikes east-west, whereas in the Ajax East pit the main faulted contact strikesnortheast.The Iron Mask batholith lies along a regional northwesterly trending srtucture (Carr and Reed, 1976).Northwest and west trending linear structures dissect the pluton and are the locus for younger intrusive phase, suchas the Sugarloaf diorite. The orientation of the K-feldspar veins reflects this regional trend, whereas the albiticveins do not. The albitic veins tend to be small (<1 cm) and discontinous. The K-feldspar veins are wider (>3cm) and continuous over tens of metres. Albitic veining is probably coeval with pervasive albitic alteration andtherefore is earlier than K-feldspar veining. The difference in vein orientations reflects the difference in stressregimes at the time of formation. The regional northwest trending structural system reflects a greater control at thetime of K-feldspar vein formation.113Table 6.1 Common structures in the Ajax West pit.Structure Vein assemblage Orientation AlterationFaults Variable: calcite, K-feldspar, quartz,calcite, clay gougeVariable strike,moderate dip to westChlorite and hematite, carbonateK-feldspar veins K-feldspar, calcite, pyrite,chalcopyriteModerate to steeply northwestdippingChloriteAlbite veins Albite+epidote+calcite+diopsideyrite+chalcopyriteVariable Albite, epidoteQuartz veins Quartz, molybdenite, pyrite Variable Hematite, silicificationTable 6.2 Common structures in the Ajax East pit.Structure^ Vein assemblage^ Orientation^ Alteration Faults Variable: K-feldspar, calcite, quartz,^Northeast to northwest,^Hematite, chloriteclay gouge moderately to steeply southdippingK-feldspar veinsAlbite veinsQuartz veinsK-feldspar, albite, epidote, calcite,^Dominant northwest strike,^Chlorite, actinolite,pyrite, chalcopyrite + quartz^minor northeast strike^K-feldspar, spheneAlbite + diopside + epidote + calcite^Variable^Albite, epidote, chlorite+ pyrite + chalcopyriteQuartz, K-feldspar, calcite, pyrite,^Two sets, northeast strike,^Silicificationchalcopyrite^ southeast dip and northweststrike, dipping northerly andsoutherly1147.0 DISCUSSION7.1 IntroductionThe Ajax East and Ajax West deposits exhibit a number of important characteristics that include:(1) The Sugarloaf diorite is a young porphyritic phase of the Iron Mask batholith, associated with copper-goldmineralization and albitic alteration.(2) Intense albitic alteration is associated with copper-gold mineralization.(3) There is an ambiguous temporal and spatial relationship of K-feldspar veins to albitic alteration.(4) Screens of foliated, biotitized Nicola Group volcanic rocks and serpentinized picrite occurwithin faulted contacts between hybrid diorite and Sugarloaf diorite.These features are discussed below.Three models have been developed to explain the Ajax deposits on an increasingly general scale. Thesemodels, detailed in section 7.3 are:(1) mass balance equations related to alteration and mineralization,(2) a deposit scale model that discusses alteration and mineralization zonation associated with the Ajaxdeposits, with comparisons to other deposit models, and(3) a batholith scale model that compares the Ajax-type pattern to batholithic scale patterns.7.2 Important CharacteristicsSugarloaf diorite is a young, porphyritic, intrusive phase of the Iron Mask batholith. The close spatialrelationship of Sugarloaf diorite to albitic alteration and copper-gold mineralization strongly supports theconclusion that it is the main mineralizer in the Ajax East and Ajax West pits. The majority of ore from both pitsis hosted in Sugarloaf diorite. Disseminated chalcopyrite, generally associated with pyrite and lesser secondarymagnetite, is common in all occurrences of Sugarloaf diorite throughout the Iron Mask batholith.115Albitic alteration associated with copper-gold mineralization is a characteristic feature of the Ajax Eastand Ajax West deposits. Albitic alteration, developed most intensely in the Sugarloaf diorite, is less intense in themore mafic hybrid diorite and is totally absent in the ultramafic picrite unit. Copper-gold mineralization occurs inall three units, but is best developed in the Sugarloaf diorite.Temporal and spatial relationship of K-feldspar veins to albitic alteration is ambiguous in the Ajax Eastand Ajax West deposits. K-feldspar occurs as veins with chlorite-actinolite envelopes within pervasive albitic andpropylitic alteration, indicating probable cross-cutting relationships. K-feldspar veining is either synchronous withalbitic alteration or later. Within the Ajax East and Ajax West pits the occurrence of K-feldspar has a clearerlithologic control than a spatial control, being more abundant in the hybrid unit.Screens of foliated, biotitized Nicola Group volcanic rock and serpentinized picrite occur along thefaulted contact between hybrid diorite and Sugarloaf diorite in both the Ajax East and Ajax West pits. Thepresence of picrite in close proximity to deposits within the batholith has been noted by other authors (Afton:Kwong, 1987; Big Onion: Preto, 1967; and Galaxy: Carr, 1956). The picrite does not play an active role inmineralization, although it is a potential host. The majority of Iron Mask batholith deposits occur within themargin of the batholith and most if not all are fault related (Fig. 1.1). Thus, the common correlation betweenpicrite and Sugarloaf diorite may be that both units are controlled by related regional major fault structures.Specifically, the presence of picrite within the batholith probably indicates the presence of a major fault structurethat may also have guided the intrusion of younger and mineralizing intrusive phases.7.3 Discussion of Models7.3.1 Mass Balance EquationsMass balance equations (section 3.6) attempt to explain the formation of albite and its association withcopper mineralization. The simplified reactions were based on field and petrographic observations. Specifically,the mass balanced equations were calculated for the conversion of fresh Sugarloaf diorite to albite and diopside(section 3.6). The equations presented imply the consumption of Na +, Si02 and I-I+ , and the release of Fe+2 ,116Ca+2 and H2O. The intense nature of the albitic alteration suggests that the inital fluid was Na +-bearing. Thismay be a result either of high temperatures (see Yerington below) and/or of the fluid being magmatic, derived fromthe crystallization of the generally sodic Sugarloaf diorite unit (see Fig. 2.8b). Magmatic fluids derived from a lowpotassic, mafic, poorly differentiated magma (e.g. no Eu anomaly in Fig. 2.10c) would be expected to be enrichedin Na and Ca, and low in K. Sugarloaf diorite lacks primary K-feldspar or biotite, therefore as the fluidscirculated through it, there was little or no K+ to exchange with the Na+. Only Ca+ and Fe+2 were released.Released Fe+2 was available for combination with Cu and S from the mineralizing fluid to form chalcopyrite andpyrite, and possibly, minor secondary magnetite. A mass balance equation for the alteration of hybrid diorite wasnot calculated due to the chemical variability of the unit. However, some possible alteration reactions can bediscussed. Biotite is present in many phases of the hybrid diorite, therefore when an Na +-bearing fluid comes incontact with it, Na+ could exchange for K+. The fluid, consequently, could become enriched in K + so that K-feldspar could be precipitated (see Yerington below), mostly as veins along fluid flow paths. Calcite and lessfrequently, quartz, occur in veins with K-feldspar. The primary plagioclase composition in both the Sugarloafdiorite and the hybrid diorite is similar (andesine to labradorite), thus the albitization of plagioclase released Ca +into the fluid from both units. Ca+ saturation could result in the precipitation of calcite with K-feldspar. Thepresence of carbonate may also indicate that the fluid was CO2-bearing (Kishda and Kerrich, 1987). SiO2 in thehydrothermal fluid would have been generally consumed by the albitization. However, because albitization is notas intense in the hybrid diorite, less S102 was consumed and the fluid locally may have become silica saturated.This might have resulted in the precipitation of the minor amounts of quartz observed in veins. The precipitationof Cu and Au in both Sugarloaf diorite and hybrid diorite was controlled by the availability of Fe in the host rock,and on the pH and sulphur content of the fluid (section 3.6).Within the Ajax East and Ajax West pits the occurrence of K-feldspar has a clearer lithologic control thana spatial control. K-feldspar veining is more abundant in the hybrid diorite unit. A strong lithologic control onalteration assemblage and sulphide mineralogy is observed in some mesothermal gold vein deposits (Alleghany,California: Bohlke, 1989; Bardoc-Kalgoorlie area, Western Australia: Witt, 1992; and Kerr-Addison, Ontario:Kishida and Kerrich, 1987), many of which are associated with albitic alteration. Kishda and Kerrich (1987)discussed the possibility that the fluids responsible for albitization are the same ones responsible for the more117common potassic alteration. Bohlke (1989) also discusses divergent metasomatic reactions with a common fluid.The stability of fields of muscovite and albite are strongly controlled by the Fe, Mg, Al and Cr content of the hostrock. Therefore the same fluid with constant (aNa+/aH+) and (aK+/aH+) ratios can be in the mica stability fieldwhen reacting with a serpentinite, but be in the albite stability field when reacting with a granite (see figure 8 inBohlke, 1989).7.3.2 Deposit Scale ModelThe simplified deposit model of Figure 7.1 describes the alteration and mineralization zoning in the AjaxEast and Ajax West deposits. Alteration and mineralization is focused along the hybrid diorite and Sugarloafdiorite contact. A vague core of intense albitic alteration with low grade copper-gold mineralization is surroundedby intermediate intensity albitization with high grade copper-gold mineralization. Peripheral to this zone ispropylitic alteration with low to moderate grades of copper-gold mineralization. Sugarloaf diorite, themineralizing unit, is intruded into the hybrid diorite along regional fault structures. K-feldspar alteration isdeveloped sporadically in both the albitic and propylitic zones, it is more common in the hybrid diorite.The intensity of albitization in the Ajax deposits is somewhat unique, however, there is a world-wideassociation of albite with porphyry deposits. Albitic alteration is not part of the classic calc-alkalic porphyryzoning model (Lowell and Guilbert, 1970), although pervasive albitic alteration has been documented at a numberof calc-alkaline porphyry copper and copper-molybdenum deposits (Ox Lake, B.C.: Richards, 1976; Catface, B.C:McDougall, 1976; Yerington, Nevada: Carton, 1986 and Dilles 1987; Yandera, P.N.G.: Watmuff, 1978; Esis,P.N.G.: Hine et al., 1978; North Sulawesi, Indonesia: Lowder and Dow, 1978). In these examples, albite isgenerally concentrated at the core of the hydrothermal system. Pervasive K-feldspar alteration occurs higher in thesystem (Yerington), laterally outward of the albitic alteration (Ox Lake), or is generally lacking (Catface, Esis,North Sulawesi and Yandera). K-feldspar is also observed in veins or as envelopes to veins cross-cutting albiticand propylitic alteration (Ox Lake and Yandera).118Legend 417/0FAY Intense Albitic AlterationIntermediate Albitic AlterationPropylitic AlterationRegional Greenschist Facies and/orDeuteric AlterationAO=[V V V V V VV V V V V V \.V V V V V V Hornfelsed Nicola GroupVolcanic rockSerpentinized picritecontact, faultedand pit outlinecontact, alterationFigure 7.1 Schematic deposit scale alteration model of the Ajax deposits. A core of intense albitic alteration issurrounded by intermediate intensity albitic alteration, grading out into propylitic alteration and finally into theregional greenschist fades and deuteric alteration. Intense albitization is developed dominantly in the Sugarloafdiorite. Copper-gold mineralization occurs in albitic and propyltic alteration zones, but the highest grades occur inthe intermediate intensity albitic alteration. Legend is above and Figure follows.119Ajax West pit outlineHybrid dioriteRegional andenteric AlteratioAIMIrropyliti71111.1r ill"-AlterationFaulted contactAir Propylitic‘t^^ Alteration11;1111t4 Alt era ti o♦I Intense 'warAlbitic^•,♦ '4% 11111 0we/AVIntermedi^4a e■1111■11mr,ow*- •^I I I I I I • I I IPicrite200 metresAjax East pit outlineAINarI---■AmmemwAlimmPro7Atio■-=/IryA Pr A 4Alw ,----1,y♦ 'intense IFAM/ AG* L, _Mgr^/^MA.....iit1111W AI I AIIIw/I .0wale .vrir Intermediate1010 alNTAlbiticA I t e r a fi o n i 0 INA,AV*# .*..^ilk 401( .■ WarDescriptions of albitic alteration are found in alkaline porphyry models. Sutherland Brown (1976) classified thealkaline series deposits, in particular those associated with syenite, as volcanic porphyries. Characteristics of thisclass include the generally small size of intrusive bodies (relative to the plutonic or calc-alkaline suite), high levelemplacement into coeval volcanic rocks, common development of breccia bodies, a lack of molybdenum and thepresence of magnetite with sulphides. Included in this classification of alkaline volcanic porphyries are (Barr,1976): Afton, Galore Creek, Copper Mountain, Lorraine and Mt. Polley (Cariboo Bell). In the more granitic rocks,potassic alteration is weakly developed and occurs in the core, whereas propylitic alteration characterized bychlorite replacing hornfelsic biotite, affects a large peripheral zone. In syenitic rocks early biotite and magnetitehornfelsing is extensively destroyed by pervasive albite, zoisite and chlorite. Restricted zones of K-feldspar andbiotite replace the earlier hornfelsic assemblage. Sodic alteration may be contemporaneous with the potassicalteration. Sulphide mineralization occurs in quartz-free fractures and is often associated with magnetite, K-feldspar and biotite.Albitization is clearly associated with copper-gold mineralization in the Ajax deposits. Similar intensityof albitization is recorded at Yerington, Nevada, although the albite in this system is not associated with significantmineralization. The Yerington batholith has afforded geologists a unique oppurtunity to study an eight kilometrecross-section through a calc-alkaline porphyry system. The roots of the system are intensely albitized andunmineralized, the upper portions are potassically altered and host copper deposits (Yerington and Ann-Mason).A model that explains the similtaneous development of the albitic core and the higher level potassic alteration atthe Yerington deposit has been proposed by Carten (1986). A temperature controlled, reciprocal Na + with Ca+ toK+ exchange can explain the spatial relationship between potassic and albitic alteration. Fluids flowing from alower temperature region (the wall rock) into a higher temperature region (the intrusive), would promote theexchange of Na+ in the fluid for K+ in the rock, resulting in sodium metasomatism. Fluids flowing from a highertemperature region (the intrusive) to a lower temperature region (ascending fluids), would promote the exchange ofK+ in solution for Na+ in the rock and potassic metasomatism would result (Carten, 1986). If this model isapplied to the Ajax deposits, it implies that the intense albite alteration represents the core of a larger system, andan overlying potassically altered (and potentially mineralized) portion of the porphyry has been eroded.Unfortunately, the erosional level of the Iron Mask batholith is not known. In addition, the comparison may not be121directly applicable because albitic alteration at Yerington does not host mineralization, whereas it provides themajor host at the Ajax deposits. Thus, the presence of three copper-gold deposits (Ajax East, Ajax West and Afton)associated with albitic alteration suggests either that it is a different, more Na+-rich type of mineralizing eventthan at Yerington, or that the mineralization in all three porphyry systems are at a similar, lower level. Thecommon occurrence of albitic alteration in other alkaline porphyry deposits suggests that it is an inherent feature ofthese systems.7.3.3 Batholith Scale ModelThe Ajax East and Ajax West deposits occur along a major fault contact between two intrusive phasesnear the margin of the Iron Mask batholith. Deposits elsewhere in the batholith have similar relationships. Asimplified model illustrating the relationship of the Ajax deposits to the batholith is shown in Figure 7.2. Theintrusion of Iron Mask batholith was controlled by a regional northwesterly trending fault system. Intrusion ofprogressively younger phases of the batholith was controlled by probably related faults. In the Ajax pits the faultswere marginal to the batholith. Screens of the surrounding Nicola Group volcanic rocks were caught betweenintruding rocks. The age of the picrite is not clear, but it also occurs along these faults. It may have been pre-existing and caught up as screens by the intruding units, like the Nicola. There is neither definitive evidence todetermine the erosional level of the Iron Mask batholith, nor is there evidence of any significant degree of tilting.Thus, the erosional level shown in Figure 7.2 is schematic.The batholith scale cartoon proposed for Ajax (Fig. 7.2) has some similarities to the diorite model ofHollister (1978), which includes quartz-deficient, diorite-monzonite-syenite plutons with pervasive alteration anddisseminated copper sulphide mineralization of both the alkalic and the calc-alkalic suite. Many features of thediorite model are similar to what is observed at the Ajax deposits. Hollister recognized the presense of only twomajor alteration zones, a potassic or albitic zone that passes directly into a propylitic zone. Copper-goldmineralization can occur in either alteration zone. Magnetite often accompanies chalcopyrite indicating relativelyoxidizing conditions with low sulphur activity. The development of a pyritic halo is far weaker than in a classiccalc-alkaline system. Zinc and lead occurrences attributed to metal zoning are rare. Ore bearing veinlets often122EDIFICE OF NICOLA GROUP VOLCANIC POCKSW^NE^ V VV V V V V V V V V V VVVVVVV VVVVVVVVVV V V VV /V VVVVVVVVVVV VVVVVV V V V V V V V V V V V V V V VVVVV /V \,V •" ,,,,,,,,,,,, "vvvvvvvvvvvvvvvvvvvvvvvvvvv ivv v Nicola Group /vvvvvvvvvvvvvvvvvvvvvvvvvvv^ vvvvvvvvvvvvvvvvvvvvvvvvvvvvv v  volcanic rocks /vvvvvvvvvvvvvvvvvvvvvvvvvvvv^ vvvvvvvvvvv vvvvvvvvvvvvvvvvvvvvvvvvvvvvv^v vvvvvvvvvvvvvvvvvvv vvvvvvvvvvvvvvv v v v^ vvvvvvvvvvv^ 7*Z4b4v v 4 .1 IV% \TN,„500 metresRock units Alteration Sugarloaf dioritehybrid dioritePothook dioritepicriteNicola Groupvolcanic rockalbitic alterationpropylitic alterationcontact, lithologycontact, alterationpresent topographyfaultggg'2,gggg,o,./VVVVVVV VVVVV V .VVVVVVVVVVV^V^ V VV V V V V V VVVVVVVVVVVVVV^ V VV V V V_V______VV-C7- VVVVVV---VVVVVVVw 1/ Si 1/ 1/ 1/ 5/ k/ V V VV PRESENT DAY /V V v^ EROSIONAL LEVEL v v v^ vyvvyvvvyvyvvvvvvvvvvyv^ vvvvvyvvvyvvvvvvvvyvvv^ vvvvyvvvvvy^ vvvvvvvvvvvvvvvvv^ vvvvvvvvvvvvvvvvvvvvvvvvv ,WWWWWW N/Figure 7.2 A generalized batholith-scale cartoon of the Ajax deposits. The intrusion of the batholith into thecoeval Nicola Group volcanic rocks was controlled by northwesterly trending regional faults. The Pothook dioritemay represent the initial, uncontaminated magma. The hybrid diorite represents a marginal phase, contaminatedby the assimilation of Nicola Group volcanic rocks. The intrusion of the younger, mineralizing Sugarloaf dioriteis also controlled by major fault structures. The timing of the emplacement of the picrite is unclear, however itoccurs within the same major fault structures as the Sugarloaf diorite. Screens of Nicola are also incorporated intothe faults. Magmatic fluids associated with the Sugarloaf diorite caused albitization and mineralization mainly ofthe Sugarloaf unit itself. The surrounding hybrid diorite and Nicola were also affected, but to a limited degree.Propylitic alteration is developed peripherally to the albitic alteration. A schematic present day erosional level isshown. The original depth of emplacement is not known, but is likely in the order of 2 to 3 km.123contain no quartz, but contain epidote, chlorite, calcite, prehnite or zeolite. The variability in composition of hostplutons leads to great differences in alteration mineral assemblages. At Galore Creek, B.C. (Allen et al., 1976), thedominant pervasive alteration assemblage is K-feldspar, biotite and garnet. At Copper Mountain, B.C. (Fahrni etal., 1976), the main alteration is widespread pervasive biotite, followed by pervasive albite and epidote, and localK-feldspar veining. At the adjacent Ingerbelle deposit, B.C. (Fahrni et al., 1976), albite (+scapolite+chlorite)alteration is pervasive. Albitic alteration is dominant in the Ajax East and Ajax West deposits, B.C. (Ross et al.,1992, 1993). It also occurs at Afton, B.C. (Carr and Reed, 1976).The original emplacement level of the batholith is not known, however the prophyritic nature of theyounger units suggest it is relatively shallow. Alteration envelopes formed roughly as shells around the Sugarloafintrusion. However, the nature of the alteration is strongly lithologically controlled, which tends to disrupt theformation of concentric shells.1248.0 CONCLUSIONSThe main features of the Ajax deposits are: (i) mineralization is mainly in the Sugarloaf diorite and to alesser extent, in the hybrid diorite, (ii) the Sugarloaf diorite is interpreted to be the mineralizer, (iii) two dominantalteration assemblages exist, a pervasive central albitic assemblage and a pervasive peripheral propyliticassemblage, (iv) there is an irregular distribution of sparse potassic and scapolitic vein assemblages, and (v) metalzonation is not apparent around the deposits.Eleven significant rock units have been identified in the Ajax East and Ajax West pits. Nine of theseunits belong to the Iron Mask batholith suite of intrusive and related Nicola Group volcanic rocks. The picrite unitis temporally related to the Nicola Group volcanics but is compositionally distinct. The quartz eye latite is ayounger and compositionally distinct unit. The Iron Mask suite is alkalic, generally silica saturated, and notquartz- or feldspathoid-bearing. Younger units are progressively more felsic and porphyritic. A possible sequenceof events based on cross-cutting relationships are as follows:(1) The Nicola Group volcanic rocks were extruded in the Late Triassic to Early Jurassic. The coevalemplacement of the Iron Mask batholith was controlled by northwest trending faults of regional extent.(2) Intrusion of the hybrid diorite is accompanied by assimilation of blocks of Nicola Group volcanicrocks, giving the unit a diverse appearance and chemistry. Fractionation of the hybrid diorite results in ahydrous, volatile-rich magma that crystallizes as the pegmatitic hybrid diorite phase and causes deuterichornblende and epidote alteration.(3) Intrusion of the porphyritic Sugarloaf diorite occurs along major faults. Screens of picrite and NicolaGroup volcanic rock are caught up along the contacts between Sugarloaf diorite and hybrid diorite. Some ofthe screens of Nicola are partially to totally assimilated, others are biotitized. The pyroxene gabbro unit mayrepresent screens of partially assimilated Nicola rocks.Copper-gold mineralization and alteration is most intense in the Sugarloaf diorite but is also significantwithin the hybrid diorite. The Sugarloaf diorite is the probable source of mineralizing fluids. Copper-goldmineralization is accompanied by intense albitic alteration. Alteration history of the deposit is divided into:125(i) pre-main stage alteration, (ii) main stage porphyry mineralization, (iii) late stage porphyry alteration, and (iv)post porphyry alteration events. Main stage porphyry mineralization can be divided into four alterationassemblages: albitic, propylitic, potassic and scapolitic. Relative timing among the main stage alterationassemblages is not well constrained. Pervasive propylitic alteration is generally peripheral to pervasive albiticalteration. Potassic and scapolite alteration occur as sparse veins within pervasive propylitic and albitic alteration.The propylitic assemblage consists of epidote, albite, chlorite and pyrite+chalcopyrite+magnetite. The albiticassemblage consists of albite, diopside, sphene, prehnite and pyrite+chalcopyrite+magnetite. The potassic veinassemblage comprises K-feldspar, chlorite (after biotite?), actinolite (after biotite?), calcite, epidote and albite. Thescapolite assemblage consists of scapolite, biotite (sometimes altered to chlorite and actinolite), calcite and zeolite(the latter two are probably retrograde). Main stage porphyry mineralization includes the following:(1) intrusion of the Sugarloaf diorite that was accompanied by hydrothermal albitic alteration and copper-goldmineralization. The Ajax East and Ajax West pits are developed along the same hybrid diorite/Sugarloafdiorite contact, therefore the two deposits probably formed simultaneously.(2) albitic alteration that is most intensely developed in the sodic Sugarloaf diorite. K-feldspar veining ismore common in the more biotitic and potassium-rich hybrid diorite.(3) intense albitic alteration that may have destroyed mafic minerals.(4) cooling of the system that possibly results in potassic and scapolitic veining.Late stage porphyry alteration features include:(1) intrusion of monzodiorite dykes, which are related to the Sugarloaf diorite throughfractionation. These dykes are post main stage sulphide mineralization.(2) intrusion of the diorite dyke, and the various magnetite-rich dykes that clearly cross-cut the Sugarloafdiorite and are post main stage alteration.Post porphyry alteration events that followed main stage alteration and late stage porphyry alterationinclude: (i) low grade regional metamorphism, (ii) continued fracturing and faulting, and (iii) a late intrusivephase. Timing of the faulting is not well constrained, although it probably continued throughout the history of thebatholith. Significant post porphyry alteration features include:126(1) low grade regional metamorphosis of the batholith that resulted in (i) the reaction of epidote and albiteto prehnite (some prehnite may have formed during main stage alteration), (ii) the formation of pumpellyiteveinlets in albitic and propylitic rock, and (iii) the partial replacement of scapolite by a zeolite.(2) intrusion of quartz eye latite and associated silica alteration and veining.(3) intense carbonate alteration and faulting that occurred dominantly in the Ajax West pit. The quartzeye latite is affected by at least one episode of faulting.(4) minor epithermal style quartz veining that occurs in the Ajax West pit. Cause and exact timing areunknown.The erosional level of the batholith is unknown. A graben separating the Iron Mask pluton from theCherry Creek pluton preserves up to 1 000 metres of Tertiary Kamloops Group volcanic rocks. Elsewhere, thebatholith is covered by glacial overburden up to 100 metres thick. The final events are:(1) glaciation in the Pliestocene.(2) minor oxidation at surface. Some supergene native copper, malachite and azurite were found in theupper benches of the Ajax West pit, although unlike the Afton orebody, it was not of economic significance.Several conclusions can be drawn from this study that may help in future mineral exploration in the IronMask batholith. The Sugarloaf diorite appears to be the mineralizing unit. Mineralization is concentrated at thecontact of this unit with the hybrid diorite. A peripheral propylitic alteration around productive porphyries can bedistinguished from widespread deuteric hornblende alteration in the hybrid diorite. The distinction betweenpropyltic alteration and regional greenschist alteration is less obvious, but the frequent presence of disseminatedpyrite and a more intense albitization of plagioclase phenocrysts in the propylitic assemblage may be used as aguide. Intense albitization with low grade copper-gold mineralization may be spatially related to intermediatealbitization with higher grade mineralization. The timing of K-feldspar veins with chlorite-actinolite envelopes isambiguous, but they are part of the porphyry mineralizing event and therefore are potentially indicators ofmineralization. The majority of deposits and prospects within the batholith are located near the margins of thebatholith and many, if not all are related to major faults. The Ajax East and Ajax West deposits have both of thesefeatures. The intrusion of the Sugarloaf diorite is probably controlled by these faults. The Nicola Group volcanic127rocks associated with the deposits occur within the faulted contacts and are characterized by strong foliation andintense biotitization that is not seen elsewhere in or adjacent to the batholith. Similarly, picrite occurring withinthe batholith lies along major faults and is intensely serpentinized. Therefore, the presence of foliated or biotitizedNicola Group volcanic rock, or serpentinized picrite is evidence of the presence of one of the major faultstructures that may also host younger, mineralized intrusions.128REFERENCESAllen, D. G., Panteleyev, A., and Armstrong, A. T. (1976): Galore Creek, in Porphyry deposits of the CanadianCordillera, Canadian Institute of Mining and Metallurgy Special Vol. No. 15, pp. 402-416.Barr, D. A., Fox, P. E., Northcote, K. E., and Preto, V. A. (1976): The alkaline suite of porphyry deposits: asummary, in Porphyry deposits of the Canadian Cordillera, Canadian Institute of Mining and Metallurgy SpecialVol. No. 15, pp. 359-367.Barnes, H.L. (1979):Solubilities of Ore Minerals; In Barnes, H.L. (ed.), Geochemistry of Hydrothermal OreDeposits, John Wiley and Sons, New York, pages 404-461.Bohlke, J.,K. (1989): Comparison of metasomatic reactions between a common CO2-rich fluid and diverse wallrocks: Intensive variables, mass transfers, and Au mineralization at Alleghany, California. Economic Geology, vol.84, pp. 291-327.Bond, L. (1987): Geology and Mineralization at the Ajax Mine, unpublished company report.Can, J.M. (1956): Deposits Associated with the Eastern Part of the Iron Mask Batholith near Kamloops, B.C.Department ofMines Annual Report. pp. 47-69.Carr, J.M. and Reed, A.J. (1976): Afton: A Supergene Copper Deposit, in Porphyry Deposits of the CanadianCordillera, A. Sutherland Brown, editor, Canadian Institute ofMining and Metallurgy, Special Vol. 15 pp. 376-387.Carten, R.B. (1986): Sodium-Calcium Metasomatism: Chemical, Temporal, and Spatial Relationships at theYerinton, Nevada, Porphyry Copper Deposit, Economic Geology, vol. 81, pp. 1495-1519Cathelineau, M. (1986): The hydrothermal alkali metasomatism effects on granitic rocks. Quartz dissolution andrelated subsolidus changes. Journal of Petrology, vol. 27, pp. 945-965.Clarke, D. (1987): Newpet, a geochemical software package developed at Memorial University, Department ofGeology, Newfoundland.Cockfield, W. E. (1948): Geology and Mineral Deposits of Nicola Map Area, British Columbia, Geological Surveyof Canada, Mem. 249.Deer, W. A., Howie, R. A. and Zussman, J. (1966): An introduction to the rock-forming minerals, John Wiley andsons Inc. New York, 528 pp.Dilles, J.H. (1987): Petrology of the Yerington Batholith, Nevada: Evidence for Evolution of Porhyry Copper OreFluids, Economic Geology, vol. 82, pp. 1750-1789.Dilles , J.H., Solomon, G.C., Taylor Jr., H.P. and Einaudi, M.T. (1992): Oxygen and Hydrogen IsotopeCharacteristics of Hydrothermal Alteration at the Ann-Mason Porphyry Copper deposit, Yerington ,Nevada,Economic Geology, vol. 87, pp. 44-63.Fahrni, K. C., Macauley, T. N., and Preto, V. A. (1976): Copper Mountain and Ingerbelle, in Porphyry deposits ofthe Canadian Cordillera, Canadian Institute ofMining and Metallurgy, Special Volume No. 15, pp. 368-375.Godwin, C. I. , Blanchet, P. H. T., Chen, T., Mah, H. J., and Champigny, N. (1982): Application of the computer-based Geolog system to exploration and development data, in Western Miner, Feb. 1982, 6 pp.Gresens, R. L. (1967): Composition - volume relationships of metasomatism. Chemical Geology, vol. 2, pp. 47-65.129Gustafson,L.B. and Hunt, J.P. (1975): The porphyry copper deposit at El Salvador, Chile, Economic Geology, vol.73, pp. 857-912.Hemley, J.J., Cygan, G.L., Fein, J.B., Robinson, G.R., and D'Angelo, W.M. (1992): Hydrothermal ore-/formingproccesses in the light of studies in rock-buffered systems: I. Iron-Copper-Zinc-Lead sulphide solubility relations,Economic Geology, vol. 87, pp.1-22.Hemley, J.J., and Hunt, J.P. (1992): Hydrothermal ore-/forming proccesses in the light of studies in rock-bufferedsystems: II. Some general geologic applications, Economic Geology, vol. 87, pp. 23-43.Irvine, T.N., and Baragar, W.R.A. (1971): A guidee to the chemical classification of the common volcanic rocks,Canadian Journal of Earth Sciences, vol. 8., pp.523-548.Hine, R., Bye, S.M., Cook F.W., Leckie J.F., and Torr, G.L. (1978): The Esis porphyry copper deposit, East NewBritain, Papua New Guinea, Economic Geology, vol. 73, pp. 761-767.Hodgson, C. J., Bailes, R. J., and Verzosa, R. S. (1976): Cariboo-Bell, in Porphyry deposits of the CanadianCordillera, Canadian Institute ofMining and Metallurgy, Special Volume No. 15, pp. 388-396.Hollister, V.F. (1978): Geology of the Pophyry Copper Deposits of the Western Hemisphere, American Institute ofMining, Metallurgy and Petroleum Engineering Inc., New York, 219 pp.Kishida A.,and Kerrich, R. (1987): Hydrothermal alteration zoning and gold concentration at the Kerr - AddisonArchean lode gold deposit, Kirkland Lake, Ontario. Economic Geology, vol. 82, pp. 649-690.Kogarko, L.N. (1990): Ore-forming potential of alkaline magmas, Lithos, vol. 26, pp. 167-175.Kwong, Y.T.J. (1987): Evolution of the Iron Mask Batholith and Its Associated Copper Mineralization, B.C.Ministry of Energy, Mines and Petroleum Resources, Bulletin 77, pp. 1-55.Lang, J., Stanley, C.R. and Thompson, J.F.H. (1992): Quartz Alkalic and Nepheline Alkalic: Two DistinctSubtypes of Porphyry Deposite related to Alkalic Igneous Rocks; Geological Society ofAmerica, Abstracts withPrograms.Leitch, C.H.B. (1981):Secondary alkali feldspars in porphyry systems,Canadian Institute ofMining and MetallurgyBulletin,vol. 74, no. 831, pp. 83-88.Lemaitre, R.W. (1989):A classification of igneous rocks and glosssary of terms, Blackwell, Oxford, 193 pp.Lowder,G.G., and Dow, J.A.S. (1978): Geology and exploration of porphyry copper deposits in North Sulaweso,Indonesia, Economic Geology, vol. 73, pp. 628-644.Lowell, J.D. and Guilbert J.M. (1970): Lateral and vertical alteration-mineralization zoning in porphyry oredeposits: Economic Geology, vol. 65, pp.373-408.Mader, U., Kwong, S.D., and Russell, J.K. (1988): TRANSFORM: A Turbo-Pascal program to reduce electronmicroprobe data, The University of British Columbia, unpublished software.Mader, U., Thuringnanam, U., and Russell, J.K. (1988): FORMULA-1: A Turbo-Pascal program for thecalculation of mineral structural formulae. The University of British Columbia, unpublished U.B.C. softwaredocumentation, 40 pp.McKenzie W.F. and Helgeson, H.C. (1985): Phase relations among silicates, copper iron sulphides, and aqueoussolutions at magmatic temperatures, Economic Geology, vol. 80, 1965-1973.130McMillan, W.J. and Panteleyev, A. (1980): Ore deposit models- 1. Porphyry copper deposits, Geoscience Canada,vol. 7 no. 2., pp.52-63.Middlemost, E. A. K. (1989): Iron oxide ratios, norms and the classification of volcanic rocks, Chemical Geology,Vol. 77, pp.19-26.Monger, J.W.H., Wheeler, J.0., Tipper, H.W., Gabrielse, H.,Harms, T., Struik, L.C., Campbell, R.B., Dodds, C.J.,Gehrels, G.E., and O'Brien, J. (1991): Part B. Cordilleran terranes; in Upper Devonian to Middle Jurassicassemblages, Chapter 8 of The Geology of the Cordilleran Orogen in Canada, Geology of Cananda, no. 4., pp.281-327.Mortimer, N. (1986): Late Triassic,arc-elated, potassic igneous rocks in the North American Cordillera, Geology,vol. 14, pp. 1035-1038.Mutschler, F.E., Griffin, M.E., Stevens, D.S., and Shannon Jr., S.S. (1985): Precious metal deposits related toalkaline rocks in the North American Cordillera - An interpretive review, Transactions of the Geological Societyof South Africa, pp. 355 -377.Norman, D.K., Parry, W.T., and Bowman, J.R. (1991): Petrology and Geochemistry of Propylitic Alteration atSouthwest Tintic, Utah, Economic Geology, vol. 86, pp. 13-28.Northcote, K.E. (1974): Geology of the Northwest half of the Iron Mask batholith, in Geological Fieldwork, 1974,Paper 1975 - 1, Department ofMines and Petroleum Resources, pp.22 -26.Northcote, K.E. (1976), Geology of the Southeast half of the Iron Mask batholith, in Geological Fieldwork, 1976,Paper 77 - 1, Department ofMines and Petroleum Resources, pp.41 -46.Northcote, K.E. (1977): Preliminary Map No.26 (Iron Mask Batholith) and accompanying notes, B.C. Ministry ofEnergy, Mines and Petroleum Resources, 8 pp.Papike, J.J. (1987): Chemistry of the Rock-Forming Silicates, Ortho, Ring and Single-Chain Structures, Reviews ofGeophysics, vol. 25, no. 7, pp.1483-1526.Pearce, J. A. and Norry, J.J. (1979): Petrogenetic implications fo Ti, Zr, Y, and Nb variations in volcanic rocks,Contributions to Mineralogy and Petrology, vol. 69, pp.33 -47.Preto, V.A. (1967): Geology of the Eastern Part of the Iron Mask Batholith, B.C. Ministry ofMines and PetroleumResources, Annual Report 1967, pp. 137-147.Preto, V.A. (1972): Report on Afton, Pothook, B.C. Ministry ofMines and Petroleum Resources, GEM, 1972, pp.209-220.Preto, V.A. (1979): Geology of the Nicola Group between Merritt and Princeton, B.C. Ministry ofMines andPetroleum Resources, Bull. 69, 90 pp.Richards, G. (1976): Ox Lake, in Porphyry Deposits of the Canadian Cordillera, Canadian Institute of Mining andMetallurgy, Special Volume No. 15, pp. 289-298.Richards, J.P. (1990): Petrology and geochemistry of alkalic intrusives at the Porgera gold deposit, Papua NewGuinea, Journal of Geochemical Exploration, vol. 35, pp. 141 - 199.Richards, J.P., Chappell B.W., and McCulloch, M.T. (1990): Intraplate-type magmatism in a continent-island-arccollision zone: Porgera intrusive complex, Papua New Guinea, Geology, vol.18, pp. 958-961.Rose, N.M. (1991): Dissolution rates of prehnite, epidote and albite, Geochemica et Cosmochemica Acta, vol. 55,pp. 3273-3286.131Ross, K.V., Dawson, K.M., Godwin, C.I. and Bond L. (1992): Major lithologies of the Ajax West pit, an alkaliccopper gold porphyry deposit, Kamloops, B.C., in Current Research, Part A, Geological Survey of Canada, Paper92-1A, pp. 179-183.Ross, K.V., Dawson, K.M., Godwin, C.I. and Bond L. (1993): Lithologies and alteration of the Ajax East zone, analkalic copper gold porphyry deposit, Kamloops, B.C., in Current Research, Part A, Geological Survey of Canada,Paper 93-1A, pp. 87-95.Shaw, D.M., Schwarcz, H.P., and Sheppard, S.M.F. (1965): The petrology of two zoned scapolite skarns,Canadian Journal of Earth Sciences, vol. 2, pp. 577-239.Shervais, J.W. (1982): Ti-V plots and the petrogenesisof modern and ophiolitic lavas, Earth and Planetary ScienceLetters, vol. 36, pp. 121-132.Sinclair, A.J. (1976): Applications of Probability Graphs in Mineral Exploration; Association of ExplorationGeochemists, Special Volume 4, 95 pp.Sinclair, A.J. (1991): A Fundamental Approach to Threshold Estimation in Exploration Geochemistry: ProbabilityPlots Revisited; Journal of Exploration Geochemistry, vol. 41, pp. 1-22.Stanley, C.R. (1988): PROBPLOT: An interactive Computer Program to Fit Mixtures of Normal (or Lognormal)Distributions with Maximum Likelihood Procedures; Association of Exploration Geochemists, Special Volume 14,40 pages.Stanley, C.R. and Madeisky H.E. (1993): Pearce Element Ratio Analysis: Applications in LithogeochemicalExploration; Mineral deposit Research Unit, Short Course No. 13, 559 pp.Snyder, L. and Russell, J.K. (1993): Field Constraints on Diverse igneous processes in the Iron Mask batholith(921/9,10); in Geological Fieldwork 1992, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 93-1,pp. 281-286.Solomon, M. (1990): Subduction , arc reversal, and the origin of porphyry copper-gold deposits in island arcs,Geology, vol. 18, pp. 630-633.Streckeisen, A. (1976): To each plutonic rock its proper name, Earth Sciences Reviews, vol. 12. 1-33.Sun, S.S. (1982): Chemical composition and origin of the Earth's primitive mantle, Geochemica, CosmochemicaActa, vol. 46, pp. 179-192.Sutherland Brown, A. (1975): Morphology and Classification, in Porphyry Deposits of the Canadian Cordillera,Canadian Institute of Mining and Metallurgy, Special Volume No. 15, pp. 44-51.Teck Corporation, (1990), Annual Report, pp.1-52.Vanko, D.A. and Bishop, F.C. (1982): Occurrence and origin of marialitic scapolite in the Humboldt Lopolith, N.W. Nevada, Contributions to Mineralogy and Petrology, vol. 81, no. 4, pp. 277-289.Whitney, J.A. (1988): Origin and evolution of silicic magmas, Chapter 11 in Ore deposition associated withmagmas, editors J.A.Whitney and A.J. Naldrett, Reviews in Economic Geology, vol. 4, pp.183-201.Wilkinson, L. (1990a): SYSTAT: The system for statistics, Evanston, IL. SYSTAT, Inc. 822 pp.Wilkinson, L. (1990b): SYGRAPH: The system for graphics, Evanston, IL. SYSTAT, Inc. 805 pp.Wilson, M. (1989): Igneous petrogenesis, a global tectonic approach, Unwin Hyman Ltd., London, 466 pp.132Winchester J.A., and Floyd, P.A. (1977): Geochemical discrimination of different magma series and theirdifferentiation products using immobile element , Chemical Geology, vol. 20, pp. 325-343.Witt, W.K. (1992): Porphyry intrusions and albitites in the Bardoc-Kalgoorlie area, Western Australia, and theirrole in Archean epigenetic gold mineralization, Canadian Journal of Earth Sciences, vol. 29, pp. 1609-1622.133APPENDIX A. ALTERATION STUDYAppendix A contains tables of estimated and analyzed data, sample location maps and Probablity plots.Tables A.1 to A.7 contain the estimated percentages of alteration minerals in drill core and grab samples from theAjax East and Ajax West pit plan levels and cross-sections. Table A.8 contains major and minor-elementchemistry of weakly to strongly albitized Sugarloaf diorite. Figures A.1 and A.2 show the location of all drill holeintersections, grab sample, whole rock sample and microprobe sample locations. The Probability plots that wereused to define populations in copper, gold, pyrite, chlorite, epidote and albite are shown.Explanation of abbreviations andsample numbers.AEP6.5N^Ajax East pit, cross-section 6.5,NorthAWPIO.OW^Ajax West pit, cross-section,10.0 West87-84^Drillholenumber12.5+150^Station number where a grabsample was collectedN - northS- southL- lip of benchT - toe of benchNICOLA^Nicola GroupVolcanic rockPICR^picriteGBPX pyroxenegabbroHYBD^hybrid dioriteDIOR SugarloafdioriteNIGPP^monzodioritedykeQZLP^quartz eyelatite dykeALBT^intensely albitized rock,protolith?BRXX^albitized, brecciated rock,protolith?-4^analysis is below dection limitof 4 ppm134Ajax^West^l'itSample LocationsLegendplante^ii :I 0 41 hi dyzeol ei e::::vier ne:r 0::, oic:i ;::::::on mes, ,trl ,est imateshl iu  ar  . ^omne : rl n level and locations or grab samples® Microprobe sample sitesSomples In drill^holes.^not shown on map90101 in DDH90-11^0 18 m90102 in DDH90-11^0 25 rn90103 In DDH90-11 0 82 in 00690 - 11 0 133 mDY3475 in 00690-11 0 161 m•0^ALe'iiii c)1960 m4800^1 , 1KR92-02KR9 -03KR92-38,,-1^ 90108.12.5^■AI880 m^ 007- 7^Alligimur"^l'IP345449010^ ....+^"1:4111:1114+001^ -10^2-2B7 747^it+yy^ 87- 600920 m9090 D^ 4 70 0 N9 81 - 11^.5900 m 890 m^ —[6892 - 28190107m•• 7^7 87 —• 860 m12 5^•0^87-11 1840 m 1^11 — O 87- 22• 8 _ et a°^01 87-05 o124r39:21191-987-25087 809^087 . 7^11-^y^87-:2•87^14• 87-19^ • 87-6687-6;ZEE= rita912[. • 81-02^ 4600 N-71w^1-•11+ 0^1-1 •11+0o 81-011^• 87-8390106 7-80• 87-780 87-23^• 87-26^0 87-270^50^100 meters• 88-02At.,^• i.d.o oo,a ao• 87^79^7-17• 91-08^90-06^ 0 88-09^ • 87-240 87-7787-85 ^ • 81-07^4500 N• 89-0588-08• 81-08Ni,&^• 89-0288-01Ro10 0 87-2088-16w^ L.,L.,^• 90-0^ o °o_t`F89-03^ o• 0 87-64^ 4400 NC0 87-6515.0+60(940m)9.0+6087-55• 87-041,4:21elt• 88-04• 87-32• 87-52 .81_0.881-11• 87-344700N• Nan)• 88-04• 87-53 • 88-125100N• 12.0+60^2.0+90^12.11+• 87-43(940m) 87_ 43 11. +• (860m)13.0+00^ 11.0• 87-4413.0+30^11.0+3• 87-42^.87-4111.0 +00•10.0+120 •• 87-01 • 87-384900N.3;RV15rti8.5+2481-09+099.0+3087-50^87-6!XPEIEEN1324,111, 4800N• 87-3587-5187^8-30• 87-6710.0+90•5000N15 0 30NalIST,1• 88-13• 88-05• 88-15• 88-14Ajax East PitSample LocationsLegend• Drillhole pierce points on the 860 meter and 940meter plan levels and locations of grab samplesused for visual estimates and analyzed for metalsand sulphur.* Whole rock sample sitesIf Microprobe sample sitesSamples from drill holes, not shown on mapKR92-24 in DDH81-04^40 mKR92-64 in DDH87-55 * 35 in0^50^100metersA UGTCUA BTOT11-nn-111DP..^•EPCLKFTOT"•'• •^.•PYTOTFigure A.3 Scatterplot matrix correlation diagram of untransformed visually estimated mineral percentages andgold and copper assay data from the Ajax East and Ajax West pits.137AUSCUSfrABADPAfFnEPAnCLA-rKFAPYAFigure A.4 Scatterplot matrix correlation diagram of transformed (arcsine of the aquare root) visually estimatedmineral percentages and log (base 10) transformed gold and copper assay data from the Ajax East and Ajax Westpits.138F..ErOAJAR EAST AHD AJAR NEST PITS - TRANSFORMED DATA2^150.350.280.210.140.070.00ARITHMETIC UALUES^UARIABLE m^tpaUNIT =^7^1 . ^291H CI m^25ROAN EAST AND AJAR WEST PITS^TRANSFORMED DATA^ARITHMETIC UALUESOO0 OOO0.32 0OoOOo0 . 18- O OO O O0.00^I^I^III^1^I^I 1^1^1^1^I99^98 85^70^50 30^15 ;^2^1PERCENT0.48 -0.800.64 -VARIABLE =^claUNIT =H = 333H CI^26Figure A.5 Probability plots of (a) chlorite and epidote, (b) pyrite and albite, and (c) copper and gold. The arrowsindicate the points where thresholds were choosen. The shading of the upper populations in Figures 3.5 and 3.6are based on these thresholds.(a)139^UARIABLE^= PygUNIT^N^287H CI^2599 98^95^85^70^50^30^15PERCENT2^IAJAX EAST AND A/AH WEST PITS - TRANSFORMED DATA^ ARITHMETIC UALUESAJAH EAST AND APIK NEST PITS^TRANSFORMED DATA^ ARITHMETIC UALUESUARIABLE^;BaUNIT .g 300H CI^252.001.501. 200.800.400.00'F,, ,IEAEILIT: PLOT0ooO00 O(b)Figure A.5 (continued)140AJAX EAST AND AJAX PEST^PITS^-^TRANSFORMED DATA^ARITHMETIC VALUES=F $ GE NE IL11$^FLO!5.00 VARIABLEUNITA .^140N CI .^2604.00-OO03.00- ooO aoo2.00 -ooO OO1.00- O O000.00^1^I^I^1^I FI99^98^95^$5^70^50^I^TI^I30^15PERCENTCV46.00AJAR EAST AND AJAR WEST PITS -^TRANSFORMED DATAF$ ZE NE ILI1i^FOOTARITHMETIC UALUESUARIABLE =UNIT= 340N^CI^. 26H.80 -3.60 - OOOOa2.40ooOO1.20 , O00000.00^ I199^98^9 15^051^1^I^I^1^1^I^I^I70^50^30^15 2^I^I21PERCENT(c)Figure A.5 (continued)141Table A.1 Ajax West pit drill core data.CROSS- DRILL HOLE NORTHING EASTING ELEVATION ROCK KFV KFP KFTOT BITOTSECTION NO. NO. (metres) (metres) (metres a.s.1.) TYPE (%) (%) (%) (%)AWP4.0W 87-27 4557.8 5339.5 860.0 ALBT 0.75 0.75 1.50 0.0081-07 4505.0 5316.8 860.0 DIOR 0.00 0.00 0.00 0.0087-28 4595.6 4907.7 860.0 DIOR 0.25 1.75 2.00 0.00AWP5.0W 87-66 4612.9 5326.5 860.0 BRXX 1.25 0.50 1.75 0.0087-26 4557.7 5291.1 860.0 ALBT 0.00 0.00 0.00 0.0087-65 4373.3 5275.5 860.0 DIOR 2.75 0.00 2.75 5.7587-77 4517.1 5266.9 860.0 PICR 0.00 0.00 0.00 0.00AVVP5.5W 87-25 4633.8 5286.5 860.0 BRXX 0.50 0.50 1.00 0.2581-01 4587.8 5260.2 860.0 DIOR 0.00 0.00 0.00 1.1887-24 4518.8 5234.1 860.0 BRXX 0.75 0.00 0.75 0.0087-64 4405.1 5204.0 860.0 DIOR 5.75 0.00 5.75 0.00AWP6.5W 87-22 4660.7 5252.9 860.0 DIOR 1.25 0.00 1.25 0.0081-02 4605.3 5217.5 860.0 MCDR 0.36 0.00 0.36 0.0087-23 4557.7 5212.1 860.0 HYBD 3.75 0.00 3.75 6.2581-08 4474.8 5203.7 860.0 DIOR 0.27 0.00 0.27 0.00AWP7.5W 87-19 4614.1 5174.5 860.0 DIOR 0.00 0.00 0.00 0.0087-78 4564.7 5149.3 860.0 DIOR 0.00 0.00 0.00 0.0087-20 4442.4 5125.2 860.0 DIOR 0.20 0.00 0.20 0.0088-09 4519.0 5120.7 860.0 NICOLA 0.00 0.00 0.00 0.0090-09 4422.8 5063.2 860.0 PICR 0.00 0.00 0.00 0.00AWP8.5W 87-83 4574.2 5106.4 860.0 DIOR 1.50 0.00 1.50 0.0087-17 45440 5084.1 860.0 DIOR 0.00 0.00 0.00 0.0087-85 4500.3 5061.1 860.0 DIOR 0.00 0.00 0.00 0.0088-01 4452.7 5034.1 860.0 PICR 0.00 0.00 0.00 0.0089-03 4407.6 4993.9 860.0 PICR 0.00 0.00 0.00 0.00AWP9.OW 87-60 4712.1 5137.1 860.0 ALBT 0.00 0.00 0.00 3.7587-14 4622.4 5079.9 860.0 DIOR 0.00 0.00 0.00 0.0087-13 4580.7 5055.6 860.0 ALBT 0.00 0.00 0.00 0.0087-79 4544.9 5040.2 860.0 DIOR 0.00 0.00 0.03 0.0088-08 4495.2 5004.2 860.0 DIOR 0.00 0.00 0.00 0.1588-16 4444.0 4979.5 860.0 PICR 0.00 0.00 0.00 0.00AVVP 1 0.0W 87-12 4654.0 5049.6 860.0 ALBT 0.00 0.00 0.00 0.0087-82 4614.5 5034.5 860.0 DIOR 0.00 0.00 0.00 0.0087-80 4570.4 5001.5 860.0 DIOR 0.00 0.00 0.00 0.0090-06 4520.5 4972.0 860.0 DIOR 0.00 0.00 0.00 0.00AWPII.OW 87-59 4721.3 5048.3 860.0 ALBT 0.00 0.00 0.00 0.0087-06 4682.1 5012.1 860.0 ALBT 0.00 0.00 0.00 0.0087-84 4632.4 4992.8 860.0 DIOR 0.00 0.00 0.00 0.0387-07 4624.7 4981.0 860.0 DIOR 0.00 0.00 0.00 0.0887-71 4599.2 4967.3 860.0 DIOR 0.00 0.00 0.00 0.00AWPI2.OW 87-08 4709.9 4982.4 860.0 HYBD 0.00 0.00 2.50 6.2581-13 4703.0 4968.5 860.0 HYBD 0.03 0.00 0.03 0.7381-06 4703.0 4968.5 860.0 DIOR 1.36 0.00 1.36 0.0087-05 4657.0 4952.7 860.0 DIOR 0.00 0.00 0.00 0.0388-02 4530.2 4878.4 860.0 DIOR 0.00 0.00 0.01 0.00AVVP12.5W 87-75 4775.0 4971.9 860.0 HYBD 0.00 0.00 3.00 0.0087-10 4728.3 4949.8 860.0 HYBD 0.00 0.00 1.05 0.0087-11 4678.1 4914.9 860.0 BRXX 0.00 0.00 0.00 0.0087-09 4625.3 48848 860.0 DIOR 0.00 0.00 0.00 0.00AWP13.5W 87-73 4736.4 4905.1 860.0 HYBD 0.00 0.00 5.75 1.2587-74 4710.6 4885.8 860.0 HYBD 0.00 0.00 5.75 0.0087-72 4683.2 4867.6 860.0 ALBT 0.00 0.00 0.00 0.0087-70 4650.5 4847.6 860.0 DIOR 0.00 0.00 0.00 0.0087-68 4605.4 4823.9 860.0 DIOR 0.00 0.00 0.00 0.08AWP14.5W 87-76 4737.1 4848.9 860.0 MGPP 0.00 0.00 3.75 1.2587-81 4636.1 4793.1 860.0 DIOR 0.00 0.00 0.25 0.05142Table A.1 Ajax West pit drill core data. (continued) ^CROSS- DRILL HOLE HE^MG^ABV^ABP ABTOT CL^EP^CA^DPSECTION NO.^NO.^(%) (%) (%)^(%)^(%)^(%)^(%) (%) (%) ^AWP4.0W^87-27 0.18^0.20^6.25^40.00^46.25^1.28^1.53^1.25^0.50^81-07^0.06^0.91^1.82^0.91^2.73^2.18^7.09^2.09^0.0087-28 0.00^0.00^20.00^60.00^80.00^1.00^1.00^1.00^0.50AWP5.0W^87-66^0.00^0.00^13.75^30.00^43.75^4.25^1.25^5.25^0.5087-26 0.08^0.03^12.50^27.50^40.00^2.00^2.53^4.50^0.5387-65^0.00^0.63^1.00^21.25^22.25^10.00^2.03^3.00^0.2587-77 0.00^2.50^2.50^3.75^6.25^3.25^3.50^0.75^0.00AWP5.5W^87-25^0.03^0.05^22.50^27.50^50.00^2.00^1.50^2.00^0.0081-01 0.46^0.68^1.82^15.46^17.27^5.27^3.27^3.46^0.5687-24^0.00^0.00^6.25^43.75^50.00^2.75^1.03^2.25^0.2587-64 0.13^3.50^0.75^3.75^4.50^4.25^4.00^6.25^1.38AWP6.5W^87-22^0.13^0.13^22.50^35.00^57.50^3.00^1.13^1.25^0.5081-02 0.00^0.67^1.00^5.46^6.46^4.00^1.46^2.27^0.2787-23^0.53^2.50^0.00^10.00^10.00^7.00^5.00^3.50^1.0081-08 0.00^0.55^8.09^8.18^16.27^3.00^9.09^4.00^0.55AWP7.5W^87-19^0.00^0.03^11.25^17.50^28.75^0.50^1.00^0.63^0.0087-78 0.00^0.00^2.25^17.50^19.75^8.50^0.50^5.25^0.0087-20^0.00^0.00^4.00^56.00^60.00^1.40^4.60^2.20^0.0288-09 0.00^0.00^2.50^5.00^7.50^5.00^0.00^6.50^0.0090-09^0.00^15.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00AWP8.5W^87-83 0.00^0.00^20.00^20.00^40.00^1.00^0.75^3.25^0.2887-17^0.00^0.63^2.75^1.25^4.00^4.00^0.75^3.00^0.0087-85 0.00^0.55^6.25^8.75^15.00^2.25^2.78^3.25^0.0088-01^0.00^10.00^0.00^0.00^0.00^0.00^0.00^0.13^0.0089-03 0.00^15.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00AWP9.0W^87-60^0.28^1.38^7.50^0.75^8.25^13.75^1.38^0.40^0.0087-14 0.00^0.00^34.73^11.85^46.58^3.53^3.83^0.12^0.0087-13^0.00^0.00^68.75^4.25^73.00^1.63^0.43^0.40^0.0087-79 0.00^0.00^0.00^5.50^5.50^6.50^1.50^0.65^0.0088-08^0.00^0.08^5.50^0.50^6.00^6.25^1.38^I.33^0.0088-16 0.00^2.00^0.00^0.00^0.00^5.00^3.50^0.00^0.00AVVP10.0W^87-12^0.00^0.00^38.75^8.75^47.50^15.00^I.75^0.30^0.0087-82 0.00^0.63^7.50^15.00^22.50^5.75^6.78^1.25^0.0087-80^0.00^0.00^28.75^6.25^35.00^3.50^1.50^1.00^0.0090-06 0.03^0.05^5.00^1.25^6.25^7.50^0.78^12.63^0.00AWPII.OW^87-59^0.00^0.15^50.00^6.25^56.25^3.00^3.75^0.30^0.0087-06 0.03^0.00^45.00^13.75^58.75^4.75^0.63^0.30^0.0087-84^0.00^0.08^11.25^2.50^13.75^10.00^4.50^0.50^0.0087-07 0.03^0.00^33.75^7.50^41.25^3.50^4.00^0.10^0.0087-71^0.00^0.00^46.25^5.00^51.25^3.75^2.50^0.43^0.00AWP12.0W^87-08 0.00^0.08^0.00^9.25^9.25^20.00^1.53^1.00^0.0081-13^0.18^0.42^0.00^0.00^0.00^14.55^0.18^17.73^0.0081-06 0.03^0.83^5.00^18.64^23.64^2.55^1.65^3.00^0.6487-05^0.00^0.00^37.50^10.00^47.50^1.50^0.58^0.08^0.0088-02 0.00^1.50^5.00^0.50^5.50^3.75^4.75^0.00^0.00AWP12.5W^87-75^0.08^0.55^10.00^3.75^13.75^11.25^3.25^3.75^0.0087-10 0.05^0.50^17.25^15.00^32.25^16.25^1.78^7.00^0.0087-11^0.00^0.00^30.00^0.00^30.00^0.88^0.00^3.75^0.0087-09 0.00^0.00^6.25^2.63^8.88^3.00^0.65^0.75^0.00AVVP13.5W^87-73^0.03^0.50^0.00^13.75^13.75^4.25^1.63^1.03^0.0087-74 0.65^0.65^0.00^3.50^3.50^37.50^0.38^1.25^0.0087-72^0.34^3.45^90.00^20.45^99.00^4.73^2.39^0.26^0.0087-70 0.00^0.25^0.00^12.50^12.50^3.25^3.75^0.03^0.0087-68^0.00^0.25^28.75^8.50^37.25^10.00^2.00^0.20^0.00AWP 1 4.5W^87-76 0.05^0.90^0.00^1.25^1.25^4.00^6.00^1.63^0.0087-81^0.00^0.00^9.25^8.75^18.00^4.00^3.75^0.40^0.00143Table A.1 Ajax West pit drill core data. (continued) ^CROSS- DRILL HOLE PYV^PYP^PrIUM`^CU^AU^AGSECTION NO.^NO.^(%) (%) (%) (%)^gram/tonne gram/tonne ^AWP4.0W^87-27 0.10^0.05^0.15^0.103^0.0685^-^81-07^0.10^0.23^0.33^0.075^0.010387-28 0.13^0.00^0.13^0.098^0.1370AWP5.0W^87-66^0.30^0.25^0.55^0.372^0.376787-26 0.20^0.55^0.75^0.222^0.137087-65^0.08^0.00^0.08^0.083^0.102787-77 0.33^0.23^0.55^0.327^0.1712AWP5.5W^87-25^0.33^0.75^1.08^0.320^0.376781-01 0.33^0.00^0.33^0.298^0.205587-24^0.03^0.00^0.03^0.180^0.1370^0.017187-64 0.08^0.00^0.08^0.135^0.1370AWP6.5W^87-22^0.00^1.00^1.00^0.504^0.445281-02 0.25^0.00^0.25^0.200^0.010387-23^0.08^0.00^0.08^0.110^0.171281-08 0.76^1.00^1.76^0.616^0.3425AWP7.5W^87-19^0.15^1.25^1.40^0.220^0.102787-78 0.53^0.25^0.78^0.419^0.205587-20^2.10^0.10^2.20^0.478^0.376788-09 0.80^0.05^0.85^0.631^0.205590-09^0.00^0.00^0.00^0.000^0.0000AWP8.5W^87-83 1.45^0.38^1.83^0.598^0.274087-17^0.08^0.00^0.08^0.059^0.102787-85 0.58^0.25^0.83^0.155^0.068588-01^0.75^0.13^0.88^0.225^0.068589-03 0.00^0.00^0.00^0.016^0.0017^-AWP9.0W^87-60^0.03^0.00^0.03^0.086^0.1370^0.068587-14 0.45^0.81^1.26^0.388^0.2260^0.376787-13^0.03^0.33^0.35^0.395^0.2397^-87-79 0.00^0.58^0.58^0.121^0.034288-08^0.88^3.50^4.38^0.226^0.068588-16 0.00^0.01^0.01^0.057^0.0017^-AWP10.0W^87-12^1.25^0.75^2.00^0.337^0.2397^0.068587-82 0.03^0.15^0.18^0.132^0.239787-80^0.63^0.38^1.00^0.304^0.102790-06 0.38^1.03^1.40^0.372^0.1712^-AWP11.0W^87-59^0.00^0.75^0.75^0.348^0.3082^0.376787-06 0.03^0.05^0.08^0.064^0.102787-84^0.35^0.15^0.50^0.068^0.003487-07 0.18^1.00^1.18^0.266^0.068587-71^1.15^0.38^1.53^0.442^0.1370^0.0685AWP12.0W^87-08 0.00^0.03^0.03^0.186^0.1592^0.068581-13^1.03^0.00^1.03^1.231^1.472681-06 0.06^0.06^0.11^0.060^0.010387-05^0.13^0.68^0.80^0.853^0.7192^1.027488-02 0.01^0.00^0.01^0.007^0.0017AWP12.5W^87-75^0.55^0.00^0.55^0.179^0.102787-10 1.30^2.28^3.58^0.808^0.6507^0.958987-11^2.50^0.25^2.75^1.225^1.2671^1.883687-09 0.35^0.75^1.10^1.195^0.4349^1.3014AWP13.5W^87-73^0.03^0.13^0.15^0.043^0.068587-74 0.03^0.20^0.23^0.242^0.1712^0.205587-72^0.00^0.00^0.00^0.100^0.0342 -^87-70 0.28^0.33^0.60^0.527^0.3767^0.599387-68^0.63^1.25^1.88^0.715^0.2055AWP14.5W^87-76 1.00^0.35^1.35^0.112^0.068587-81^0.03^0.50^0.53^0.157^0.0342144Table A.2 Ajax West pit, plan level grab samples.PLAN LEVEL GRAB NORTHING EASTING ELEVATION ROCK KFV KFP KFTOT BITOT HE MG ABV ABP ABTOT(metres) SAMPLE (metres) (metres) (metres a.s.I.) TYPE (%) (%) (%) (%) (%) (%) (%) (%) (%)860 11-30 4689.0 5038.8 860.0 DIOR 0.00 0.00 0.00 0.00 0.00 0.00 90.00 0.00 90.0011+00 4719.0 5036.9 860.0 DIOR 0.00 0.00 5.00 0.00 0.00 0.00 25.00 10.00 35.0011-60 4661.2 5024.7 860.0 DIOR 0.00 0.00 0.10 0.00 0.00 0.00 90.00 0.00 90.0011+30 4742.2 5023.1 860.0 DIOR 0.00 0.00 5.00 0.00 0.00 0.00 20.00 30.00 50.0012-26 4719.8 5015.4 860.0 HYBD 0.00 0.00 0.00 0.00 0.00 0.00 40.00 15.00 55.0011-90 4636.9 5008.2 860.0 DIOR 0.00 0.00 0.00 0.00 0.00 0.00 30.00 5.00 35.0012+00 4731.8 4996.2 860.0 HYBD 0.00 0.00 3.00 0.00 0.00 0.00 0.00 30.00 30.0011-12 4613.3 4990.3 860.0 DIOR 0.00 0.00 0.00 0.00 0.00 0.00 75.00 0.00 75.00125-3 4736.5 4981.7 860.0 DIOR 0.00 0.00 0.00 0.00 0.00 0.00 80.00 5.00 85.0011-15 4592.4 4969.2 860.0 DIOR 0.00 0.00 0.00 0.00 0.00 0.00 50.00 10.00 60.0011+00 4585.7 4959.7 860.0 DIOR 0.00 0.00 0.00 0.00 0.00 0.00 5.00 0.00 5.00125+L 4731.8 4945.9 860.0 BRXX 0.00 0.00 0.00 0.00 0.00 0.00 40.00 0.00 40.0011+30 4585.8 4939.8 860.0 DIOR 0.00 0.00 0.00 0.00 0.00 2.00 0.00 2.00 2.0012.5+150 4740.5 4928.0 860.0 HYBD 0.00 0.00 0.00 0.00 0.00 3.00 10.00 10.00 20.0012+00 4596.3 4918.5 860.0 GBPX 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0012.5+120 4726.6 4901.1 860.0 DIOR 0.00 0.00 1.00 2.00 0.00 3.00 0.00 2.00 2.00.P,ul 12+30 4611.3 4890.0 860.0 DIOR 0.00 0.00 0.00 1.00 0.00 0.00 5.00 2.00 7.0012.5+9 4704.5 4881.7 860.0 DIOR 0.00 0.00 1.00 0.00 0.00 0.00 40.00 0.00 40.0012.5+T 4618.5 4880.8 860.0 DIOR 0.00 0.00 0.00 0.00 0.00 0.00 15.00 0.00 15.0012.5+8 4698.7 4878.0 860.0 PICA 0.00 0.00 0.00 0.00 0.00 5.00 0.00 0.00 0.0012.5+6 4675.2 4871.1 860.0 DIOR 0.00 0.00 0.00 0.00 0.00 0.00 10.00 5.00 15.0012.5+3 4646.0 4868.4 860.0 DIOR 0.00 0.00 0.00 0.00 0.00 0.00 20.00 5.00 25.00900 12.5 NT 4813.4 375.0 900.0 GBPX 0.00 5.00 0.00 8.00 0.00 0.00 0.0012.5 NL 4801.9 355.0 900.0 DIOR 2.00 0.00 0.00 0.00 30.00 5.00 35.00880 12.5 ST 4598.7 2.5 880.0 DYKE - 1.00 0.00 0.00 0.00 0.00 0.00 0.0012.5 SL 4606.6 63.0 880.0 DIOR 0.00 0.00 0.00 0.00 5.00 0.00 5.0012.5 NT 4788.7 354.0 880.0 HYBD 0.00 1.00 0.00 0.50 5.00 15.00 20.00860 12.5 NT 4744.3 313.8 860.0 DIOR 0.00 0.00 0.00 0.00 20.00 0.00 20.0012.5 NL 4731.8 264.5 860.0 DIOR 0.00 0.00 0.00 0.00 40.00 0.00 40.0012.5 ST 4618.5 63.0 860.0 DIOR 0.00 0.00 0.00 0.00 15.00 0.00 15.0012.5 SL 4627.2 113.5 860.0 DIOR 0.00 0.00 0.00 0.00 25.00 5.00 30.00Table A.2 Ajax West pit, plan level grab samples. (continued)PLAN LEVEL(metres)GRABSAMPLECL(%)EP(%)CA^DP(%)^(%)PYV(%)PYP(%)PYTOT(%)CU(%)AU^AGgram/tonne^gram/tonne860 11-30 1.00 0.00 0.00 0.30 0.00 0.00 0.300 0.1096^-11+00 5.00 3.00 1.00 0.50 0.00 0.50 0.440 0.801411-60 1.00 1.00 0.00 0.00 0.50 0.50 0.120 0.051411+30 3.00 2.00 2.00 0.00 0.90 0.90 0.370 0.123312-26 3.00 10.00 1.00 0.30 0.00 0.30 0.300 0.215811-90 3.00 5.00 0.00 0.30 0.00 0.30 0.030 0.030812+00 3.00 0.00 0.00 0.00 0.00 0.00 0.170 0.123311-12 4.00 0.00 0.00 0.00 0.30 0.30 0.320 0.0788125-3 1.00 0.10 1.00 0.30 0.60 0.90 0.660 0.595911-15 5.00 0.00 2.00 0.60 2.40 3.00 0.750 0.407511+00 7.00 0.00 2.00 0.30 0.00 0.30 0.460 0.1336125+L 15.00 1.00 2.00 0.00 0.50 0.50 0.240 0.205511+30 15.00 5.00 0.00 0.70 0.00 0.70 0.250 0.181512.5+150 4.00 0.00 0.00 0.50 0.50 1.00 0.160 0.092512+00 2.00 0.00 2.00 1.00 0.00 1.00 0.130 0.047912.5+120 5.00 3.00 0.00 1.50 0.00 1.50 0.200 0.161012+30 4.00 0.00 0.00 0.60 1.50 2.10 0.770 0.243212.5+9 3.00 0.10 0.00 0.00 0.00 0.00 0.610 0.530812.5+1 2.00 0.00 0.00 0.60 0.30 0.90 0.820 0.325312.5+8 5.00 0.00 1.00 0.00 0.01 0.01 0.090 0.089012.5+6 5.00 0.00 0.00 0.00 0.00 0.00 0.160 0.092512.5+3 3.00 0.00 0.00 0.00 0.00 0.00 0.170 0.1233900 12.5 NT 10.00 2.00 2.00 0.00 0.00 0.00 0.040 0.041112.5 NL 8.00 0.00 5.00 0.00 0.00 0.00 0.030 0.0205880 12.5 ST 1.00 1.00 0.00 0.00 0.00 0.00 0.160 0.061612.5 SL 10.00 0.00 1.00 0.50 0.00 0.50 0.280 0.106212.5 NT 10.00 0.00 1.00 0.50 0.50 1.00 0.240 0.1507860 12.5 NT 5.00 0.00 2.00 0.20 0.80 1.00 0.510 0.328812.5 NL 15.00 1.00 2.00 0.00 0.50 0.50 0.240 0.205512.5 ST 2.00 0.00 0.00 0.60 0.30 0.90 0.820 0.325312.5 SL 4.00 0.00 0.00 0.00 0.30 0.30 0.210 0.1164Table A.3 Ajax West pit cross-section 8.5 West data.CROSS-^DRILL HOLESECTION NO.^NO.NORTH-EASTING(metres)ELEVATION(metres a.s.1.)ROCKTYPEKFV(%)KFP(%)KFTOT(%)BITOT(%)HE(%)MG(%)AWP8.5W 87-61 599.2 788.6 HYBD 1.29 0.00 1.29 0.00 0.00 2.7187-61 591.8 799.9 DIOR 1.50 0.00 1.50 0.00 0.00 0.5087-61 585.4 810.1 ALBT 0.00 0.25 0.25 0.00 0.00 0.2587-61 578.6 820.2 ALBT 2.00 5.00 7.00 0.00 0.00 0.0087-61 572.0 830.2 HYBD 1.25 2.50 3.75 0.00 0.00 0.1887-61 565.1 840.2 HYBD 0.25 3.25 3.50 0.00 0.00 0.4387-61 558.4 850.1 DIOR 0.00 0.00 0.00 0.00 0.00 0.0087-61 552.0 859.8 DIOR 0.00 0.00 0.00 0.00 0.00 0.7587-61 545.6 869.7 HYBD 0.00 0.00 0.00 0.00 0.00 0.2587-61 538.8 880.0 HYBD 0.50 1.50 2.00 0.00 0.00 0.0087-61 532.5 889.8 ALBT 0.50 0.00 0.50 0.00 0.00 0.0087-61 526.4 899.9 DIOR 0.00 0.00 0.00 0.00 0.01 0.2587-61 519.8 910.3 DIOR 0.25 0.00 0.25 0.00 0.00 0.3087-61 513.0 920.6 DIOR 0.00 0.00 0.00 0.00 0.00 0.28AWP8.5W 87-63 613.0 830.7 HYBD 1.71 0.00 1.71 2.00 0.00 0.0087-63 608.0 838.8 HYBD 0.25 0.00 0.25 1.50 0.13 1.5087-63 601.7 849.5 HYBD 0.25 0.00 0.25 2.75 0.00 1.5387-63 595.0 859.6 HYBD 1.50 0.00 1.50 10.00 1.00 2.0087-63 589.0 869.4 HYBD 0.25 0.00 0.25 4.00 0.13 0.7887-63 583.0 879.5 HYBD 0.50 0.00 0.50 3.25 0.13 0.7587-63 577.0 889.6 HYBD 0.78 0.00 0.78 1.25 0.00 0.5387-63 570.7 899.7 NICOLA 0.25 0.00 0.25 8.25 0.00 0.0387-63 564.6 909.8 HYBD 0.25 0.00 0.25 0.75 0.03 0.0387-63 558.3 919.8 ALBT 0.00 0.00 0.00 0.36 0.00 0.02AWP8.5W 87-83 512.6 764.4 BRXX 1.64 0.00 1.64 0.00 0.00 0.0087-83 507.0 774.2 ALBT 1.75 1.25 3.00 0.00 0.00 0.0387-83 500.6 784.7 ALBT 0.00 0.00 0.00 0.00 0.00 0.0087-83 494.6 795.2 DIOR 0.00 0.00 0.00 0.00 0.00 0.0387-83 488.8 805.0 ALBT 0.00 0.00 0.00 0.00 0.00 0.1387-83 483.0 815.1 ALBT 0.00 0.00 0.00 0.00 0.00 0.0387-83 476.7 825.3 DIOR 0.00 0.00 0.00 0.00 0.00 0.1587-83 470.9 835.1 DIOR 0.00 0.00 0.00 0.00 0.00 0.0587-83 464.3 846.0 DIOR 0.00 0.00 0.00 0.00 0.00 0.0387-83 458.4 855.7 DIOR 1.50 0.50 2.00 0.00 0.00 0.0087-83 452.5 866.1 DIOR 0.00 0.00 0.00 0.00 0.00 0.2587-83 445.9 876.9 ALBT 0.00 0.00 0.00 0.00 0.00 0.0087-83 414.6 929.7 ALBT 0.00 0.00 0.00 0.00 0.00 0.7587-83 421.2 918.7 DIOR 0.50 0.00 0.50 0.00 0.00 0.1387-83 427.8 907.7 DIOR 0.00 0.00 0.00 0.00 0.00 0.0087-83 433.9 897.2 ALBT 0.00 0.00 0.00 0.00 0.00 0.0087-83 439.9 887.0 ALBT 0.00 0.00 0.00 0.00 0.00 0.00AWP8.5W 87-17 467.8 780.5 DIOR 0.00 0.00 0.00 0.00 0.13 0.1887-17 461.5 790.3 DIOR 0.00 0.00 0.00 0.00 0.13 0.0387-17 455.3 801.2 ALBT 0.00 0.00 0.00 0.00 0.00 0.0087-17 449.1 811.2 DIOR 0.00 0.00 0.00 0.00 0.00 0.3087-17 443.0 820.8 ALBT 0.00 0.00 0.00 0.00 0.00 0.0387-17 436.6 830.5 ALBT 0.00 0.00 0.00 0.00 0.00 0.0087-17 430.4 841.4 ALBT 0.00 0.00 0.00 0.00 0.00 0.0087-17 423.7 851.8 DIOR 0.00 0.00 0.00 0.00 0.00 0.0087-17 417.1 862.1 DIOR 0.00 0.00 0.00 0.00 0.03 0.6587-17 411.5 872.0 ALBT 0.00 0.00 0.00 0.00 0.03 0.5087-17 405.1 882.4 ALBT 0.00 0.00 0.00 0.00 0.25 0.0087-17 398.8 892.6 DYKE 0.00 0.00 0.00 0.00 0.03 1.0087-17 391.2 903.9 DIOR 0.02 0.00 0.02 0.00 0.00 0.4087-17 384.0 916.5 DIOR 0.00 0.00 0.00 0.00 0.00 0.15147Table A.3 Ajax West pit cross-section 8.5 West data. (continued)CROSS-^DRILL HOLESECTION NO.^NO.NORTH-EASTING(metres)ELEVATION(metres a.s.1.)ROCKTYPEKFV(%)KFP(%)KFTOT(%)BITOT(%)HE(%)MG(%)AWP8.5W 88-01 301.7 882.5 PICR 0.00 0.00 0.00 0.00 0.00 5.7588-01 308.0 871.1 DIOR 1.25 0.00 1.25 0.00 0.00 4.7588-01 314.0 861.2 PICR 0.00 0.00 0.00 0.00 0.00 6.7588-01 320.3 850.9 PICR 0.00 0.00 0.00 0.00 0.00 6.2588-01 326.1 840.9 PICR 0.00 0.03 0.03 0.00 0.00 6.2588-01 332.7 830.2 PICR 0.00 0.00 0.00 0.00 0.00 6.0088-01 338.6 820.3 PICR 0.80 0.00 0.80 0.00 0.00 0.7888-01 344.5 809.7 NICOLA 0.53 0.00 0.53 0.00 0.00 0.0088-01 350.7 799.5 NICOLA 1.75 0.00 1.75 0.00 0.00 0.0088-01 357.0 790.1 ALBT 0.25 0.00 0.25 0.00 0.00 0.0088-01 363.7 779.5 ALBT 0.53 0.00 0.53 0.00 0.00 0.0088-01 369.5 769.5 ALBT 0.25 0.00 0.25 0.00 0.00 0.0088-01 376.3 758.8 ALBT 0.00 0.00 0.00 0.00 0.00 0.0388-01 382.5 748.7 ALBT 0.25 0.00 0.25 0.00 0.00 0.0588-01 389.0 739.0 DIOR 0.28 0.75 1.03 0.00 0.00 0.5588-01 395.4 728.8 DIOR 0.25 0.00 0.25 0.00 0.00 1.5088-01 402.2 718.0 DIOR 0.00 0.00 0.00 0.00 0.00 1.2588-01 408.3 708.6 DIOR 0.00 0.00 0.00 0.00 0.00 1.00AWP8.5W 89-03 302.0 790.5 PICR 1.00 0.00 1.00 0.00 0.00 3.7589-03 307.8 781.6 DIOR 0.33 0.00 0.33 0.00 0.00 0.6789-03 315.1 772.0 ALBT 0.25 0.00 0.25 0.00 0.00 4.0089-03 321.9 761.9 PICR 0.75 2.50 3.25 0.00 0.00 2.0089-03 328.8 751.9 DIOR 3.75 0.00 3.75 0.00 0.00 0.0589-03 335.7 742.2 MCDR 1.25 0.00 1.25 0.00 0.03 0.0889-03 342.6 731.9 MCDR 0.75 0.00 0.75 0.00 0.00 0.0389-03 349.3 722.7 DIOR 1.53 0.00 1.53 0.00 0.00 0.0389-03 356.2 712.8 MCDR 0.67 0.00 0.67 0.00 0.00 1.0089-03 363.0 703.1 GBPX 1.01 0.00 1.01 0.00 0.00 1.2889-03 370.1 693.0 MCDR 1.25 0.00 1.25 0.00 0.00 2.0089-03 377.2 683.3 MCDR 0.25 0.00 0.25 0.00 0.25 0.5589-03 384.2 673.9 BRXX 1.03 0.00 1.03 0.00 0.03 0.2889-03 390.7 665.2 DIOR 0.25 0.00 0.25 0.00 0.13 0.1889-03 395.7 657.6 DIOR 0.00 0.00 0.00 0.00 0.10 0.00AWP8.5W 88-85 344.3 901.3 DIOR 0.00 0.00 0.00 0.00 0.00 0.0088-85 350.3 891.2 DIOR 0.25 0.00 0.25 0.00 0.00 0.5588-85 356.7 881.2 DIOR 0.00 0.00 0.00 0.00 0.00 1.6388-85 362.8 870.9 MCDR 0.00 0.00 0.00 0.00 0.00 1.3888-85 368.6 860.3 DIOR 0.00 0.00 0.00 0.00 0.00 0.5588-85 374.8 850.6 DIOR 0.75 0.00 0.75 0.00 0.00 0.0888-85 381.5 839.7 MCDR 0.00 0.00 0.00 0.00 0.00 0.0088-85 387.6 829.4 MCDR 0.25 0.00 0.25 0.00 0.00 0.0088-85 393.9 819.5 DIOR 0.00 0.00 0.00 0.00 0.00 0.0088-85 399.3 810.7 BRXX 0.00 0.00 0.00 0.00 0.00 0.0088-85 402.3 804.9 DIOR 0.00 0.00 0.00 0.00 0.00 0.00148Table A.3 Ajax West pit cross-section 8.5 West data. (continued)^CROSS- DRILL HOLE ABV^ABP ABTOT CL^EP^CA^DP^PYV^PYP PYTOTSECTION NO.^NO.^(%)^(%)^(%)^(%)^(%)^(%)^(%)^(%)^(%)^(%) AWP8.5W^87-61 0.00^4.29^4.29^10.21^1.71^4.00^0.00^0.21^0.11^0.32^87-61^0.00^45.00^45.00^2.00^1.75^3.25^0.00^0.30^0.08^0.3887-61 0.00^47.50^47.50^1.50^1.75^5.00^0.25^0.80^0.05^0.8587-61^0.00^71.25^71.25^1.00^0.05^3.50^0.00^0.68^0.00^0.6887-61 2.25^47.50^49.75^2.00^3.25^5.00^0.25^0.38^0.15^0.5387-61^0.00^25.00^25.00^1.25^4.00^4.50^0.00^0.13^0.58^0.7087-61 0.00^7.50^7.50^8.00^1.50^2.50^0.00^0.05^0.15^0.2087-61^15.00^8.75^23.75^12.25^1.00^3.25^0.13^0.15^0.38^0.5387-61 0.50^22.50^23.00^4.00^1.25^1.75^0.00^0.20^0.53^0.7387-61^0.00^12.50^12.50^7.00^0.25^2.75^0.00^0.00^0.20^0.2087-61 0.00^86.25^86.25^2.25^0.50^3.25^0.88^0.00^0.88^0.8887-61^0.75^51.25^52.00^1.50^0.75^2.50^0.03^0.25^1.05^1.3087-61 0.75^3.75^4.50^3.25^2.00^1.00^0.00^0.53^0.55^1.0887-61^0.00^1.25^1.25^1.25^2.00^0.63^0.00^0.55^0.75^1.30AWP8.5W^87-63 2.14^12.86^15.00^3.71^1.43^4.29^0.00^0.04^0.00^0.0487-63^1.00^36.25^37.25^3.75^1.75^2.25^0.25^0.08^0.00^0.0887-63 0.00^23.75^23.75^4.50^1.50^2.75^1.00^0.05^0.00^0.0587-63^0.25^0.00^0.25^10.00^0.50^4.50^0.00^0.00^0.00^0.0087-63 0.50^0.00^0.50^7.75^0.25^3.50^0.25^1.00^0.00^1.0087-63^1.50^35.00^36.50^6.50^1.75^3.00^0.00^0.25^0.00^0.2587-63 1.25^41.25^42.50^4.75^1.50^1.75^0.03^0.08^0.00^0.0887-63^1.25^26.25^27.50^3.50^0.50^2.50^0.00^0.20^0.00^0.2087-63 1.50^58.75^60.25^2.50^1.00^3.00^0.00^0.15^0.00^0.1587-63^1.36^75.46^76.82^2.55^1.09^2.27^0.00^0.15^0.00^0.15AWP8.5W^87-83 0.00^2.73^2.73^10.00^3.55^5.55^0.00^0.18^0.20^0.3887-83^0.00^55.00^55.00^3.75^0.53^5.50^1.00^0.48^0.13^0.6087-83 0.00^87.50^87.50^0.50^0.03^2.50^0.00^0.03^0.08^0.1087-83^0.00^52.50^52.50^1.75^1.75^3.75^0.00^0.53^0.43^0.9587-83 0.00^73.75^73.75^3.75^0.50^7.00^0.00^0.63^0.38^1.0087-83^1.25^84.25^85.50^2.00^0.75^1.75^0.15^0.68^0.23^0.9087-83 6.25^48.75^55.00^2.00^1.28^2.50^0.00^0.03^0.33^0.3587-83^1.00^47.50^48.50^2.00^0.75^4.25^0.03^0.25^0.60^0.8587-83 3.25^45.00^48.25^2.50^0.53^6.00^0.25^0.13^0.25^0.3887-83^21.25^28.75^50.00^1.25^1.00^3.50^0.53^1.08^0.50^1.5887-83 0.00^60.00^60.00^1.75^1.25^3.00^0.25^0.60^0.20^0.8087-83^0.00^88.75^88.75^3.75^2.75^3.75^1.25^0.28^0.10^0.3887-83 0.00^59.25^59.25^2.25^1.75^1.38^0.25^0.23^0.03^0.2587-83^0.00^80.00^80.00^1.25^2.50^1.00^0.40^0.03^0.00^0.0387-83 0.00^85.00^85.00^2.25^0.53^2.25^0.03^0.10^0.10^0.2087-83^0.75^81.25^82.00^2.00^0.53^6.50^0.00^0.80^0.13^0.9387-83 0.00^91.25^91.25^2.00^0.55^3.50^0.00^0.30^0.15^0.45AWP8.5W^87-17^0.00^3.75^3.75^2.25^2.75^2.25^0.00^0.00^0.28^0.2887-17^0.50^25.00^25.50^1.50^1.53^11.50^0.00^0.00^0.15^0.1587-17^2.50^81.25^83.75^1.00^1.50^1.00^0.00^0.43^0.25^0.6887-17 1.00^49.75^50.75^1.75^2.50^2.00^0.00^0.15^0.28^0.4387-17^3.75^66.25^70.00^1.25^1.25^1.00^0.00^0.60^0.25^0.8587-17 1.00^77.00^78.00^1.00^0.30^2.25^0.00^0.63^0.18^0.8087-17^0.75^83.75^84.50^1.75^0.78^1.25^0.00^0.58^0.43^1.0087-17 3.00^28.75^31.75^4.00^0.25^11.00^0.00^0.45^0.03^0.4887-17^2.00^1.25^3.25^4.00^1.00^2.00^0.00^0.00^0.00^0.0087-17 2.00^15.00^17.00^4.50^1.25^2.50^0.25^0.20^0.13^0.3387-17^2.50^48.75^51.25^4.00^0.78^2.00^0.25^0.23^0.23^0.4587-17^0.00^48.75^48.75^3.25^5.00^6.00^0.00^0.00^0.55^0.5587-17^3.40^7.00^10.40^2.20^1.22^4.20^0.40^0.06^0.02^0.0887-17 5.00^6.25^11.25^3.25^1.78^4.50^0.00^0.08^0.05^0.13149Table A.3 Ajax West pit cross-section 8.5 West data. (continued)^CROSS- DRILL HOLE ABV^ABP ABTOT CL^EP^CA^DP^PYV^PYP PYTOTSECTION NO.^NO.^(%)^(%)^(%)^(%)^(%)^(%)^(%)^(%)^(%)^(%) AWP8.5W^88-01 0.50^1.25^1.75^0.00^1.43^1.03^0.00^0.03^0.00^0.03^88-01^0.00^2.50^2.50^2.50^5.00^0.50^0.00^0.00^0.03^0.0388-01 0.00^0.00^0.00^0.00^0.00^0.15^0.00^0.75^0.13^0.8888-01^0.00^0.00^0.00^0.50^0.50^0.53^0.00^0.05^0.06^0.1188-01 0.00^0.00^0.00^0.50^0.53^0.53^0.00^0.00^0.03^0.0388-01^0.00^0.00^0.00^0.00^0.00^1.25^0.00^0.05^0.03^0.0888-01 1.25^5.00^6.25^6.75^3.25^2.25^0.03^0.65^0.13^0.7888-01^0.00^0.00^0.00^10.00^0.00^1.50^0.00^0.10^0.30^0.4088-01 0.25^71.25^71.50^4.00^0.78^8.75^1.03^0.88^0.15^1.0388-01^6.25^73.75^80.00^4.75^1.00^3.50^0.65^0.43^0.75^1.1888-01 3.25^61.25^64.50^2.25^1.38^1.75^0.53^0.30^0.35^0.6588-01^4.25^77.50^81.75^2.75^1.15^4.25^0.03^0.60^0.15^0.7588-01 2.25^65.00^67.25^2.25^2.75^4.00^0.05^0.53^0.13^0.6588-01^1.25^9.50^10.75^3.75^0.50^3.50^0.00^0.48^0.08^0.5588-01 0.00^17.50^17.50^1.00^1.75^2.00^0.00^0.70^0.58^1.2888-01^1.00^10.00^11.00^1.00^5.00^4.50^0.00^0.55^0.38^0.9388-01 0.00^3.75^3.75^1.00^7.00^2.00^0.00^1.13^0.38^1.5088-01^0.00^11.67^11.67^1.00^4.33^3.00^0.00^0.83^0.40^1.23AWP8.5W^89-03 0.53^0.00^0.53^1.00^0.38^0.75^0.00^0.00^0.00^0.0089-03^0.00^41.67^41.67^1.67^1.20^1.67^0.03^0.53^0.13^0.6789-03 0.50^35.00^35.50^1.00^1.50^5.25^0.00^0.50^0.38^0.8889-03^3.00^18.75^21.75^1.75^1.25^3.25^0.25^0.28^0.10^0.3889-03 0.75^31.25^32.00^2.25^1.75^2.25^0.00^0.33^0.30^0.6389-03^0.25^0.00^0.25^2.25^1.25^3.25^0.00^0.50^0.00^0.5089-03 0.00^11.25^11.25^2.00^1.50^1.75^0.30^0.23^0.45^0.6889-03^3.25^18.75^22.00^2.25^1.75^2.25^0.55^0.35^0.13^0.4889-03 1.00^1.67^2.67^0.67^2.67^7.67^0.00^1.83^0.07^1.9089-03^0.50^1.25^1.75^1.50^3.50^2.25^0.00^0.40^0.00^0.4089-03 1.25^1.25^2.50^1.75^3.25^1.50^0.00^0.33^0.13^0.4589-03^0.25^1.25^1.50^2.75^2.75^5.00^0.00^0.23^0.10^0.3389-03 0.00^0.00^0.00^3.75^1.75^2.25^0.00^0.20^0.00^0.2089-03^0.00^7.50^7.50^2.25^1.25^6.50^0.00^0.20^0.18^0.3889-03 0.00^10.00^10.00^2.00^1.60^2.00^0.00^0.50^0.38^0.88AWP8.5W^88-85^0.00^1.36^1.36^1.82^3.55^1.00^0.00^0.69^0.77^1.4688-85 2.50^0.00^2.50^1.25^2.38^1.25^0.00^0.45^0.50^0.9588-85^0.03^3.75^3.78^3.25^1.88^1.75^0.00^0.10^0.18^0.2888-85 0.75^6.25^7.00^1.75^2.50^1.75^0.00^0.18^0.13^0.3088-85^6.25^8.75^15.00^2.25^2.78^3.25^0.00^0.58^0.25^0.8388-85 0.75^7.50^8.25^3.00^2.00^2.00^0.03^0.35^0.05^0.4088-85^0.00^1.25^1.25^5.00^2.65^8.50^0.03^0.33^0.05^0.3888-85 2.00^27.50^29.50^2.50^1.00^3.75^1.15^0.53^0.00^0.5388-85^0.00^37.50^37.50^3.25^0.00^10.75^0.00^0.20^0.10^0.3088-85 0.00^56.67^56.67^1.00^0.37^10.67^0.00^0.73^0.03^0.7788-85^1.20^10.00^11.20^1.40^0.50^3.20^0.00^0.52^0.08^0.60150Table A.3 Ajax West pit cross-section 8.5 West data. (continued)CROSS-^DRILL^CU^AU^AGSECTION NO. HOLE NO.^(%)^gram/tonne gram/tonne AWP8.5W^87-61 0.111^0.1027^0.171287-61^0.572^0.6164^1.472687-61 0.828^0.9589^1.301487-61^0.739^0.7877^0.958987-61 0.435^0.5137^0.376787-61^0.450^0.5479^0.513787-61 0.023^0.0342 -87-61^0.128^0.0685^0.068587-61 0.299^0.1370^0.171287-61^0.275^0.2055^0.068587-61 0.076^0.5822^0.719287-61^0.986^0.7877^0.958987-61 0.293^0.3767^0.428187-61^0.138^0.0685^0.3425AWP8.5W^87-63^0.093^0.0685 -87-63 0.168^0.2055^0.171287-63^0.095^0.1370^0.513787-63 0.078^0.1027^0.342587-63^0.237^0.6164^0.034287-63 0.173^0.2397^0.000087-63^0.246^0.3082^0.034287-63 0.194^0.2055^0.034287-63^0.257^0.3082^0.274087-63 0.212^0.1370AWP8.5W^87-83^0.413^0.342587-83^0.503^0.582287-83 0.113^0.102787-83^0.357^0.274087-83^0.531^0.513787-83^0.421^0.274087-83 0.113^0.171287-83^0.405^0.239787-83^0.221^0.171287-83^0.660^0.308287-83^0.192^0.102787-83 0.223^0.102787-83^0.244^0.068587-83^0.053^0.034287-83 0.344^0.205587-83^0.735^0.445287-83 0.544^0.3425^-AWP8.5W^87-17^0.098^0.0685^0.171287-17^0.147^0.1027^0.582287-17^0.342^0.1712^0.239787-17 0.264^0.1027^0.000087-17^0.643^0.2397^0.171287-17^0.991^0.376787-17^0.777^0.3767 -87-17^0.495^0.3767^0.034287-17^0.026^0.0342^0.034287-17^0.230^0.2055^0.274087-17^0.267^0.1370^0.650787-17^0.339^0.1370^1.061687-17^0.095^0.0685^0.308287-17^0.074^0.0342^0.1712151Table A.3 Ajax West pit cross-section 8.5 West data. (continued)CROSS- DRILL CU AU AGSECTION NO. HOLE NO. (%) gram/tonne gram/tonneAWP8.5W 88-01 0.011 0.001788-01 0.045 0.034288-01 0.227 0.068588-01 0.018 0.034288-01 0.048 0.034288-01 0.017 0.034288-01 0.285 0.102788-01 0.153 0.068588-01 0.561 0.376788-01 0.640 0.547988-01 0.413 0.376788-01 0.318 0.308288-01 0.433 0.411088-01 0.553 0.308288-01 1.026 0.479588-01 0.609 0.342588-01 0.121 0.034288-01 0.324 0.1370AWP8.5W 89-03 0.035 0.001789-03 0.373 0.102789-03 0.435 0.137089-03 0.210 0.102789-03 0.299 0.102789-03 0.174 0.068589-03 0.078 0.034289-03 0.285 0.102789-03 0.486 0.137089-03 0.238 0.068589-03 0.322 0.102789-03 0.207 0.102789-03 0.174 0.068589-03 0.318 0.137089-03 0.334 0.5137AWP8.5W 88-85 0.271 0.068588-85 0.294 0.102788-85 0.167 0.068588-85 0.096 0.034288-85 0.155 0.068588-85 0.242 0.102788-85 0.292 0.137088-85 0.338 0.171288-85 0.450 0.274088-85 0.608 0.513788-85 1.192 0.7534152Table A.4 Ajax West pit cross-section 12.5 West data.CROSS-^DRILL HOLE NORTHING EASTING ELEVATION ROCK KFV KFP KFTOT BITOT HE MG ABV ABP ABTOT CLSECTION NO.^NO. (metres) (metres) (metres a.s.1.) TYPE (%) (%) (%) (%) (%) (%) (%) (%) (%)AWP12.5W^90-11 4507.5 17.5 886.8 HYBD 0.00 0.00 0.00 2.00 0.00 0.00 0.00 20.0090-11 4520.7 33.0 868.1 DIOR 15.60 0.00 0.00 5.80 0.00 0.60 0.60 3.4090-11 4534.4 49.5 849.6 DIOR 28.75 0.00 0.00 5.50 0.00 1.00 1.00 7.5090-11 4548.2 65.8 830.9 MGPP 12.50 0.00 0.00 6.50 0.00 0.00 0.00 11.0090-11 4561.7 82.0 812.3 DIOR 17.86 0.00 0.02 0.79 3.29 1.43 4.71 2.7190-11 4575.4 98.0 794.1 DIOR 8.22 0.11 0.59 1.50 1.00 3.67 4.67 7.2290-11 4588.7 114.0 775.7 HYBD 0.11 0.00 0.01 0.07 28.89 10.33 39.22 7.5690-11 4605.5 130.0 752.9 ALBT 0.00 0.00 0.01 0.29 18.13 6.50 24.63 6.0090-11 4615.8 146.0 738.7 DIOR 0.01 0.00 0.01 0.09 32.22 5.22 37.44 5.2290-11 4629.2 162.5 719.7 DIOR 7.00 0.00 0.08 1.23 1.25 2.50 3.75 13.92AWP12.5W^87-09 4630.9 153.5 914.5 DIOR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.0087-09 4629.6 153.5 897.6 DIOR 0.00 0.00 0.12 0.83 2.02 1.20 3.22 1.4287-09 4626.9 153.5 879.9 DIOR 0.00 0.00 0.00 0.00 7.29 2.76 10.04 1.2987-09 4626.9 153.5 862.1 DIOR 0.00 0.00 0.00 0.00 4.14 0.80 4.94 1.7987-09 4626.9 153.5 844.1 DIOR 0.00 0.00 0.00 0.00 10.25 6.25 16.50 1.0887-09 4626.9 153.5 826.9 DIOR 0.00 0.00 0.00 0.00 19.86 8.14 28.00 1.5787-09 4626.9 153.5 809.3 ALBT 0.00 0.00 0.00 0.00 40.00 4.33 44.33 1.28AWP12.5W^87-11 4685.7 215.0 912.0 DIOR 0.00 0.00 0.03 1.02 0.00 0.00 0.00 25.0087-11 4685.7 215.0 894.1 HYBD 0.00 0.00 0.01 0.83 2.00 0.00 2.00 12.8387-11 4685.7 215.0 876.6 BRXX 0.00 0.00 0.00 0.16 14.43 2.57 17.00 4.8687-11 4685.7 215.0 858.8 ALBT 0.00 0.00 0.00 0.00 37.86 0.00 37.86 1.1487-11 4685.7 215.0 841.4 BRXX 0.00 0.00 0.00 0.00 14.00 0.00 14.00 2.0087-11 4685.7 215.0 823.2 BRXX 0.00 0.00 0.00 0.00 38.57 6.00 44.57 2.7187-11 4685.7 215.0 805.7 ALBT 0.13 0.00 0.00 0.00 53.75 4.75 58.50 0.98AWP12.5W^87-10 4696.9 227.5 910.9 MGPP 1.88 0.00 0.01 1.75 10.63 2.50 13.13 9.3187-10 4711.6 245.0 892.4 HYBD 0.00 0.01 0.04 0.64 0.00 6.83 6.83 8.1187-10 4726.3 262.5 873.7 HYBD 0.00 0.00 0.00 0.29 31.67 5.00 36.67 5.0087-10 4740.9 280.0 855.1 ALBT 0.74 0.22 0.03 0.62 20.78 14.44 35.22 15.2287-10 4755.4 297.0 836.6 ALBT 10.00 1.25 0.14 0.14 11.25 26.25 37.50 3.7587-10 4770.0 315.0 818.5 ALBT 1.89 0.00 0.13 1.06 11.33 10.00 21.33 10.8987-10 4785.1 332.0 799.5 HYBD 0.53 0.38 0.49 3.64 7.73 2.36 10.09 26.36AWP12.5W^87-75 4742.4 279.0 908.3 HYBD 3.67 0.03 0.00 1.67 5.00 3.33 8.33 13.3387-75 4757.1 296.5 889.8 HYBD 3.50 0.00 0.03 1.31 1.00 3.30 4.30 11.0087-75 4772.5 314.5 871.2 HYBD 0.41 0.00 0.03 0.16 11.88 13.63 25.50 11.2587-75 4787.6 332.5 852.7 HYBD 1.14 0.00 0.01 0.79 0.83 3.00 3.83 19.4487-75 4801.8 350.0 834.0 HYBD 1.20 0.00 0.48 5.00 8.40 1.40 9.80 19.00Table A.4 A'ax West 'it cross-section 12.5 West data. (continued)CROSS- DRILL HOLE EP CA DP PYV PYP PYTOT CU AU AGSECTION NO. NO. (%) (%) (%) (%) (%) (%) (%) gram/tonne gram/tonneAWP12.5W 90-11 1.00 0.10 0.50 0.00 0.50 -90-11 2.80 0.08 0.06 0.00 0.0690-11 3.25 0.80 0.01 0.00 0.0190-11 2.00 0.30 0.00 0.00 0.0090-11 1.57 0.89 0.14 0.64 0.79 0.03390-11 3.33 5.78 0.00 0.17 0.17 0.031 0.008090-11 2.78 15.22 0.47 1.20 1.67 0.510 0.275090-11 1.25 5.13 1.21 0.44 1.65 0.655 0.429090-11 1.72 2.00 0.66 0.58 1.23 0.410 0.244090-11 8.25 5.04 0.71 0.56 1.27 0.225 0.2010AWP12.5W 87-09 1.33 1.07 0.00 0.00 0.00 0.154 0.0750 -87-09 0.72 0.52 0.02 0.19 0.20 0.251 0.1360 0.014087-09 0.31 0.70 0.00 0.96 0.96 0.871 0.4330 0.032087-09 0.23 1.79 0.27 0.47 0.74 0.842 0.3110 0.023087-09 0.07 0.67 0.10 0.28 0.38 0.244 0.0920 0.002087-09 0.44 1.44 0.10 0.34 0.44 0.398 0.2950 0.023087-09 0.07 1.75 1.05 0.60 1.65 0.926 0.3180 0.0290AWP12.5W 87-11 2.50 6.05 0.00 033 0.33 0.210 0.6130 0.021087-11 1.17 9.00 0.00 0.00 0.00 0.059 0.1140 -87-11 0.16 2.87 0.39 0.06 0.44 0.515 0.3780 0.030087-11 0.00 3.43 2.24 0.29 2.53 0.938 0.9310 0.048087-11 0.50 4.00 1.02 1.08 1.10 0.629 0.6590 0.022087-11 0.47 4.07 0.43 0.07 0.50 0.542 0.4160 0.021087-11 0.57 1.83 0.24 0.14 0.38 0.255 0.2620 0.0020AWP12.5W 87-10 2.75 2.19 0.00 0.00 0.00 0.010 0.0650 -87-10 1.07 3.11 0.03 0.02 0.05 0.058 0.1080 0.002087-10 0.58 1.28 0.33 0.43 0.77 0.407 0.3730 0.023087-10 2.12 5.44 0.97 1.46 2.42 0.707 0.5700 0.020087-10 3.25 9.13 0.19 0.26 0.44 0.207 0.1630 0.008087-10 4.36 6.67 0.83 0.67 1.50 0.553 0.4850 0.020087-10 4.00 1.90 0.02 0.04 0.06 0.065 0.0630 0.0020AWP12.5W 87-75 2.67 0.70 0.40 0.00 0.40 0.395 0.2420 0.002087-75 3.10 1.85 0.84 0.36 1.20 0.242 0.1580 0.002087-75 0.60 2.88 0.00 0.02 0.02 0.116 0.1360 0.002087-75 3.00 2.23 0.10 0.06 0.16 0.104 0.057087-75 7.00 2.44 0.00 0.21 0.21 0.028 0.0420Table A.5 Ajax East pit drill core data.CROSS- DRILL HOLE NORTHING EASTING ELEVATION ROCK KFV KFP KFTOT BITOTSECTION NO. NO. (metres) (metres) (metres a.s.1.) TYPE (%) (%) (%) (%)AEP1.0N 88-15 4485.8 5998.0 860.0 DIOR 3.75 7.50 11.25 0.00AEP2.0N 88-05 4505.9 6009.6 860.0 DIOR 0.75 0.00 0.75 0.0088-06 4466.0 6088.9 860.0 DIOR 0.75 1.50 2.25 0.0088-14 4466.0 6088.8 860.0 DIOR 0.00 3.75 3.75 0.00AEP3.0N 87-53 4612.0 5936.0 860.0 ALBT 4.25 5.50 9.75 0.0088-13 4559.2 6011.4 860.0 PICR 1.00 0.00 1.00 0.00AEP4.0N 87-52 4690.5 5890.3 860.0 NICOLA 2.00 0.00 2.00 5.0087-34 4671.4 5920.4 860.0 ALBT 4.25 0.00 4.25 0.00AEP4.5N 81-05 4690.2 5934.4 860.0 DIOR 6.25 0.00 6.25 0.0081-11 4692.7 5956.7 860.0 DIOR 2.50 6.58 9.08 0.00AEP5.0N 87-67 4737.8 5924.5 860.0 DIOR 1.75 0.00 1.75 0.0087-32 4683.7 6015.3 860.0 QZLP 0.36 32.73 33.09 0.0088-12 4610.8 6128.7 860.0 DIOR 3.25 0.00 3.25 0.00AEP6.0N 87-35 4782.7 5928.0 860.0 DIOR 0.00 0.00 0.00 0.0087-51 4766.0 5955.4 860.0 DIOR 1.50 0.00 1.50 0.0087-31 4739.7 6001.9 860.0 DIOR 0.00 0.00 0.00 0.0088-04 4672.2 6126.6 860.0 DIOR 0.25 0.50 0.75 0.0088-03 4622.9 6208.9 860.0 DIOR 1.75 0.00 1.75 0.0087-50 4768.5 6062.9 860.0 DIOR 2.50 1.25 3.75 0.0087-30 4726.9 6123.0 860.0 QZLP 2.10 28.00 30.10 0.0088-10 4693.6 6193.6 860.0 DIOR 0.00 0.00 0.00 0.0088-11 4639.8 6282.6 860.0 ALBT 0.00 0.00 0.00 0.00AEP7.5N 87-29 4786.6 6077.0 860.0 DIOR 1.00 0.50 1.50 0.00AEP8.0N 81-04 4853.7 6022.8 860.0 DIOR 1.46 0.00 1.46 0.0087-62 4806.4 6076.8 860.0 DIOR 0.03 0.50 0.53 0.00AEP9.0N 81-10 4897.8 6046.1 860.0 DIOR 2.09 0.27 2.36 0.0087-37 4845.9 6115.3 860.0 DIOR 0.03 0.00 0.03 0.0087-03 4853.7 6109.5 860.0 DIOR 2.00 3.50 5.50 0.00AEP9.5N 87-04 4860.5 6167.3 860.0 DIOR 2.75 0.00 2.75 0.0087-01 4908.6 6103.3 860.0 DIOR 0.00 0.00 0.00 0.0087-46 4933.5 6165.6 860.0 DIOR 0.00 0.75 0.75 0.00AEP13.0N 87-43 5053.6 6158.9 860.0 HYBD 0.50 0.00 0.50 2.00AEP5.0N 87-32 4713.4 5951.4 940.0 BRXX 15.00 0.00 15.00 4.5087-51 4766.3 5955.4 940.0 DIOR 6.88 0.00 6.88 0.0087-31 4740.5 6001.4 940.0 DIOR 3.00 0.00 3.00 0.0088-04 4703.5 6067.4 940.0 QZLP 3.00 20.00 23.00 0.00AEP7.0N 87-55 4863.2 5890.6 940.0 MGPP 2.50 10.00 12.50 1.2587-56 4848.8 5915.6 940.0 ALBT 1.50 0.00 1.50 1.2587-36 4817.6 5955.1 940.0 NICOLA 1.50 0.00 1.50 5.0087-50 4799.4 6002.1 940.0 DIOR 4.50 0.00 4.50 0.0087-30 4762.1 6062.8 940.0 DIOR 1.25 0.00 1.25 0.0088-10 4722.9 6134.1 940.0 DIOR 0.23 0.00 0.23 0.00AEP7.5N 87-29 4786.9 6076.8 940.0 DIOR 0.78 0.00 0.78 0.00AEP8.0N 81-04 4888.1 5964.5 940.0 HYBD 2.82 0.00 2.82 1.9187-62 4845.1 6018.6 940.0 DIOR 2.25 0.50 2.75 0.0081-09 4824.4 6092.1 940.0 DIOR 0.27 0.00 0.27 0.00AEP8.5N 87-69 4875.3 6017.5 940.0 NICOLA 2.50 0.00 2.50 4.0081-03 4837.7 6055.5 940.0 DIOR 19.00 0.00 19.00 0.56155Table A.5 Ajax East pit drill core data. (continued)^CROSS- DRILL HOLE HE^MG^ABV^ABP ABTOT CL^EP^CA^DP^PYVSECTION NO.^NO.^(%)^(%)^(%)^(%)^(%)^(%)^(%)^(%)^(%)^(%) AEP1.0N^88-15 0.00^3.75^0.00^26.25^26.25^2.75^0.00^1.25^0.00^0.88AEP2.0N 88-05^0.00^4.25^0.50^32.50^33.00^0.90^0.03^1.50^0.00^0.75^88-06 0.00^1.53^2.75^17.50^20.25^1.00^7.50^2.25^0.00^1.7588-14^0.00^1.75^0.25^12.50^12.75^1.50^7.50^1.25^0.00^0.78AEP3.0N^87-53 0.00^0.00^5.00^63.75^68.75^4.00^0.00^2.75^1.50^0.0288-13^0.00^3.75^5.00^18.75^23.75^2.00^0.75^1.00^0.28^0.43AEP4.0N^87-52 0.00^0.00^0.00^0.50^0.50^15.00^0.75^1.25^0.38^0.3087-34^0.00^0.28^10.00^66.25^76.25^4.50^0.00^3.50^2.50^0.01AEP4.5N^81-05 0.00^0.00^10.00^45.00^55.00^3.13^1.75^1.50^2.00^0.0381-11^0.02^2.17^6.25^5.00^11.25^6.50^4.92^4.67^0.50^0.04AEP5.0N^87-67 0.00^1.63^3.75^20.00^23.75^2.75^1.28^2.00^0.28^0.1387-32^0.08^0.09^0.91^5.46^6.36^0.36^10.00^3.09^0.00^0.0788-12 0.03^0.28^0.00^5.00^5.00^2.00^2.50^1.75^0.53^0.55AEP6.0N^87-35^0.03^2.00^2.50^8.75^11.25^3.75^2.75^2.25^0.00^1.1587-51 0.00^1.25^0.00^4.50^4.50^5.00^2.75^5.00^0.80^0.0587-31^0.00^2.00^1.00^10.00^11.00^0.50^1.50^1.25^0.00^0.0188-04 0.00^0.50^2.50^32.50^35.00^2.25^4.00^4.50^0.13^1.0588-03^0.00^1.25^3.75^26.75^30.50^1.25^2.00^3.25^0.75^0.7087-50 0.00^1.50^1.75^37.50^39.25^2.00^3.75^1.00^0.25^0.0087-30^0.00^0.00^0.00^6.00^6.00^0.35^2.20^1.30^0.00^0.3088-10 0.03^0.08^0.00^6.25^6.25^6.50^2.75^2.00^0.00^0.6388-11^0.03^0.25^2.50^62.50^65.00^1.63^0.75^4.75^0.25^0.40AEP7.5N^87-29 0.00^0.65^2.50^23.75^26.25^5.75^1.75^1.25^1.00^0.78AEP8.0N 81-04^0.00^2.00^0.00^20.00^20.00^3.91^4.00^0.50^0.50^0.0087-62 0.00^1.25^15.00^22.50^37.50^1.75^3.25^1.00^1.38^0.18AEP9.0N^81-10^0.00^2.18^7.46^16.27^23.73^8.64^7.82^3.91^1.82^0.1487-37 0.03^2.00^1.00^18.75^19.75^3.25^4.25^1.00^1.00^0.0887-03^0.18^0.88^2.50^17.50^20.00^1.00^2.50^1.50^1.25^0.10AEP9.5N^87-04 0.00^2.50^3.00^16.25^19.25^1.50^5.50^0.80^1.00^0.0687-01^0.00^1.25^3.75^12.50^16.25^1.50^4.75^1.00^0.25^0.1387-46 0.00^1.00^3.75^20.00^23.75^1.13^5.75^1.00^0.25^0.40AEP13.0N^87-43^0.25^4.00^0.00^10.00^10.00^15.00^2.00^2.00^0.13^0.00AEP5.0N^87-32^0.88^0.00^0.00^21.25^21.25^13.75^3.25^6.75^7.75^0.3587-51 0.00^0.00^0.00^70.00^70.00^0.00^0.00^2.00^2.75^0.0087-31^0.00^0.00^5.00^33.75^38.75^1.38^0.63^1.88^2.38^0.4588-04 0.00^0.25^3.75^22.50^26.25^2.25^1.75^3.50^0.25^0.30AEP7.0N^87-55^0.00^2.50^0.00^10.00^10.00^2.75^2.00^9.50^0.00^0.0087-56 0.00^2.25^5.00^43.75^48.75^2.50^1.63^1.50^0.50^0.1887-36^0.00^0.00^0.00^0.75^0.75^10.00^0.53^1.00^0.00^0.1387-50 0.00^0.00^0.00^50.00^50.00^4.00^0.50^1.75^1.25^0.4087-30^0.00^1.25^9.25^18.75^28.00^1.00^1.25^1.00^1.00^1.2588-10 0.00^1.54^0.69^2.69^3.38^1.65^0.29^1.00^0.23^0.02AEP7.5N^87-29^0.03^1.75^5.00^15.00^20.00^5.00^2.50^0.75^0.63^0.10AEP8.0N 81-04 0.02^14.09^0.91^0.00^0.91^3.00^0.55^0.41^0.00^0.0087-62^0.00^0.00^1.25^27.50^28.75^4.25^0.03^1.75^0.75^1.0581-09 0.00^0.00^4.18^19.09^23.27^1.82^2.36^1.27^2.09^2.36AEP8.5N^87-69^0.00^0.00^0.00^1.25^1.25^17.50^0.25^4.50^0.00^0.4881-03 0.00^1.44^2.67^7.78^10.45^6.11^4.33^4.78^0.00^0.67156Table A.5 Ajax East pit drill core data. (continued)CROSS- DRILL HOLE PYP PYTOT CU AU AGSECTION NO. NO. (%) (%) (%) gram/tonne gram/tonneAEPI.ON 88-15 0.00 0.88 0.371 0.2055AEP2.0N 88-05 0.38 1.13 0.630 0.308288-06 0.88 2.63 0.105 0.068588-14 0.13 0.90 0.074 0.0342AEP3.0N 87-53 0.01 0.03 0.033 0.034288-13 0.13 0.55 0.262 0.1027AEP4.0N 87-52 0.13 0.43 0.200 0.102787-34 0.00 0.01 0.012 0.0034AEP4.5N 81-05 0.00 0.03 0.100 0.068581-11 0.06 0.10 0.063 0.0342AEP5.0N 87-67 0.10 0.23 0.311 0.205587-32 0.08 0.16 0.070 0.068588-12 0.30 0.85 0.236 0.1370AEP6.0N 87-35 0.30 1.45 0.095 0.034287-51 0.00 0.05 0.091 0.102787-31 0.00 0.01 0.023 0.034288-04 0.05 1.10 1.031 0.547988-03 0.13 0.83 0.133 0.171287-50 0.03 0.03 0.035 0.034287-30 0.67 0.97 0.008 0.001788-10 0.53 1.15 0.089 0.034288-11 0.38 0.78 0.258 0.2397AEP7.5N 87-29 0.53 1.30 0.082 0.0685AEP8.0N 81-04 0.00 0.00 0.065 0.068587-62 0.23 0.40 0.310 0.2397AEP9.0N 81-10 0.14 0.27 0.036 0.010387-37 0.00 0.08 0.060 0.034287-03 0.00 0.10 0.714 0.5479AEP9.5N 87-04 0.00 0.06 0.109 0.068587-01 0.13 0.26 0.180 0.102787-46 0.43 0.83 0.154 0.1370AEP13.0N 87-43 0.00 0.00 0.000 0.0171AEP5.0N 87-32 0.03 0.38 0.390 0.308287-51 0.00 0.00 0.069 0.068587-31 0.00 0.45 0.421 0.239788-04 0.75 1.05 0.069 0.0342AEP7.0N 87-55 0.00 0.00 0.036 0.034287-56 0.25 0.43 0.360 0.274087-36 0.08 0.20 0.167 0.102787-50 0.05 0.45 0.554 0.376787-30 0.88 2.13 0.797 0.479588-10 0.05 0.08 0.046 0.0685AEP7.5N 87-29 0.10 0.20 0.174 0.1027AEP8.0N 81-04 0.00 0.00 0.016 0.010387-62 0.30 1.35 0.825 0.547981-09 2.09 4.46 0.386 0.1370AEP8.5N 87-69 0.00 0.48 0.347 0.274081-03 1.72 2.39 0.487 0.2740157Table A.5 Ajax East pit drill core data. (continued)CROSS- DRILL HOLE NORTHING EASTING ELEVATION ROCK KFV KFP KFFOT BITOTSECTION NO. NO. (metres) (metres) (metres a.s.I.) TYPE (%) (%) (%) (%)AEP9.0N 81-10 4932.4 5988.2 940.0 HYBD 4.33 0.00 4.33 7.0087-37 4883.3 6053.2 940.0 DIOR 0.33 0.00 0.33 0.0087-03 4853.8 6109.9 940.0 DIOR 0.00 0.00 0.00 0.00AEP9.5N 87-04 4861.2 6167.8 940.0 DIOR 0.00 0.00 0.00 0.00AEPIO.ON 87-39 4943.5 6047.8 940.0 DIOR 0.78 0.00 0.78 15.0087-01 4909.1 6102.9 940.0 MGPP 0.00 25.00 25.00 0.00AEP10.5N 87-38 4910.4 6154.5 940.0 DIOR 3.25 1.25 4.50 0.0087-02 4883.6 6200.7 940.0 DIOR 1.09 1.73 2.82 0.00AEP11.ON 87-48 4992.2 6070.6 940.0 HYBD 2.50 0.00 2.50 4.5087-46 4966.2 6110.2 940.0 DIOR 0.00 0.00 0.00 7.5087-40 4940.5 6154.5 940.0 NICOLA 0.25 0.00 0.25 4.00AEP12.0N 87-42 5006.1 6142.1 940.0 MGPP 0.75 5.00 5.75 3.00AEP13.0N 87-43 5068.6 6133.5 940.0 HYBD 0.75 0.00 0.75 4.0087-44 5029.6 6198.0 940.0 DIOR 0.30 0.00 0.30 2.7587-41 5005.3 6235.0 940.0 NICOLA 0.75 2.00 2.75 4.0390-01 5021.3 6070.5 940.0 HYBD 2.875 0 2.875 2.75158Table A.5 Ajax East pit drill core data. (continued)CROSS- DRILL HOLE HE MG ABV ABP ABTOT CL EP CA DP PYVSECTION NO. NO. (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)AEP9.0N 81-10 0.00 4.11 1.78 1.56 3.33 7.78 0.02 5.11 0.67 0.2487-37 0.00 0.15 6.00 10.50 16.50 7.30 2.10 1.30 0.25 0.8987-03 0.05 0.69 0.00 9.62 9.62 2.39 2.31 2.92 0.23 1.46AEP9.5N 87-04 0.00 2.00 1.25 32.50 33.75 0.00 2.00 0.00 0.88 0.00AEP10.0N 87-39 0.00 0.75 0.00 3.75 3.75 11.75 0.00 5.25 0.00 0.1387-01 0.00 3.00 0.00 0.00 0.00 1.00 10.00 2.50 0.00 0.00AEP10.5N 87-38 0.00 0.03 4.00 17.50 21.50 5.25 2.50 1.00 1.75 1.5087-02 0.00 1.73 1.36 7.31 8.68 1.00 8.73 1.18 3.00 0.22AEP11.0N 87-48 0.00 1.13 0.50 5.00 5.50 8.25 1.00 2.00 0.13 0.0087-46 0.00 1.00 0.00 2.50 2.50 5.50 3.25 1.50 0.00 1.2587-40 0.00 0.63 0.00 5.00 5.00 5.00 0.75 0.75 0.25 1.13AEP12.0N 87-42 0.00 2.50 3.00 0.50 3.50 3.78 1.75 1.13 0.38 0.50AEP13.0N 87-43 0.00 3.00 0.00 12.50 12.50 5.25 0.50 1.75 0.00 0.0387-44 0.00 1.00 0.00 10.00 10.00 3.50 1.03 1.25 0.00 0.5387-41 0.00 1.53 0.50 2.50 3.00 3.00 1.53 1.00 0.00 0.3090-01 0 1.25 0.5 8.75 9.25 4.5 0.25 2.875 0 0.05159Table A.5 Ajax East pit drill core data. (continued)CROSS- DRILL HOLE PYP PYTOT CU AU AGSECTION NO. NO. (%) (%) (%) gram/tonne gramkonneAEP9.0N 81-10 0.00 0.24 0.077 0.068587-37 0.75 1.64 0.133 0.068587-03 1.00 2.46 0.226 0.1370AEP9.5N 87-04 0.00 0.00 0.029 0.0017AEP10.0N 87-39 0.08 0.20 0.222 0.205587-01 0.70 0.70 0.021 0.0342AEP10.5N 87-38 1.25 2.75 0.820 0.582287-02 0.10 0.32 0.137 0.1027AEP11.0N 87-48 0.03 0.03 0.026 0.034287-46 0.50 1.75 0.167 0.102787-40 0.63 1.75 0.264 0.1360AEP12.0N 87-42 0.00 0.50 0.268 0.2055AEP13.0N 87-43 0.03 0.05 0.287 0.205587-44 0.00 0.53 0.540 0.411087-41 0.15 0.45 0.187 0.102790-01 0.075 0.125 0.389 0.17123Table A.6 A'ax East^it 940 and 860 metre^lan level^ab sam i les.CROSS-DRILL HOLESECTION NO.^NO.NORTHING(metres)EASTING(metres)ELEVATION(metres a.s.1.)ROCKTYPEKFV(%)KFP(V0)KFTOT(%)BITOT(%)HE(%)MG(%)ABV(%)ABP(%)ABTOT(°/0)CL(%)940L 8-90 4677.0 6017.0 940.0 ALBT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 85.00 85.00 9.008-60 4715.2 6063.3 940.0 ALBT 4.00 0.00 4.00 0.00 0.00 0.00 0.00 85.00 85.00 1.008-30 4733.3 6086.0 940.0 ALBT 3.00 0.00 3.00 0.00 0.00 0.00 0.00 88.00 88.00 4.008+00 4756.5 6106.5 940.0 DIOR 0.00 0.00 0.00 0.00 0.00 1.00 0.00 75.00 75.00 2.008+30 4787.0 6116.0 940.0 DIOR 1.00 0.00 1.00 0.00 0.00 1.00 0.00 5.00 5.00 3.008.5+00 4815.8 6126.2 940.0 DIOR 2.00 0.00 2.00 0.00 0.10 0.00 0.00 10.00 10.00 15.008.5+24 4830.8 6143.9 940.0 ALBT 1.00 0.00 1.00 0.00 0.00 0.00 0.00 70.00 70.00 1.009.0+00 4836.1 6172.0 940.0 DIOR 0.00 2.00 2.00 0.00 0.00 2.00 0.00 5.00 5.00 8.009.0+30 4834.3 6200.9 940.0 DIOR 0.00 0.10 0.10 0.00 0.00 2.00 0.00 5.00 5.00 3.009.0+60 4870.6 6218.7 940.0 DIOR 0.00 0.00 0.00 0.00 0.00 1.00 0.00 20.00 20.00 5.0010.0+00 4859.9 6270.0 940.0 DIOR 0.00 0.00 0.00 0.00 0.00 0.10 0.00 50.00 50.00 5.0010.0+90 49443 6273.6 940.0 DIOR 0.00 0.00 0.00 0.00 0.00 0.20 0.00 40.00 40.00 2.0010.0+120 4973.3 62673 940.0 DIOR 0.10 2.00 2.10 0.00 0.50 0.10 0.00 20.00 20.00 10.0011.0+00 4987.6 6262.6 940.0 DIOR 0.00 0.00 0.00 0.00 0.00 1.00 0.00 65.00 65.00 5.0011.0+30 5016.3 6253.3 940.0 HYBD 0.00 0.00 0.00 5.00 0.50 4.00 0.00 0.00 0.00 6.0011.0+60 5040.5 6237.3 940.0 HYBD 0.00 0.00 0.00 1.00 0.00 5.00 0.00 0.00 0.00 10.0011.0+90 5062.4 62173 940.0 HYBD 0.00 0.00 0.00 2.00 0.00 5.00 0.00 0.00 0.00 3.0012.0+00 5080.4 6196.3 940.0 HYBD 0.00 0.00 0.00 2.00 0.00 5.00 0.00 0.00 0.00 1.0012.0+30 5092.9 6168.9 940.0 HYBD 0.00 0.00 0.00 2.00 0.00 5.00 0.00 0.00 0.00 3.0012.0+60 5088.3 6140.4 940.0 HYBD 0.00 0.00 0.00 0.00 0.50 5.00 0.00 0.00 0.00 5.0012.0+90 5071.5 6115.5 940.0 HYBD 0.00 0.00 0.00 5.00 0.10 4.00 0.00 0.00 0.00 5.0013.0+00 5041.4 6110.5 940.0 HYBD 2.00 0.00 2.00 3.00 0.00 4.00 0.00 0.00 0.00 5.0013.0+30 5012.5 6106.8 940.0 HYBD 0.00 0.00 0.00 5.00 0.00 1.00 0.00 0.00 0.00 5.0013.0+60 4986.9 6094.9 940.0 HYBD 1.00 0.00 1.00 10.00 0.00 0.00 0.00 5.00 5.00 10.0013.0+90 4973.7 6067.3 940.0 HYBD 1.00 0.00 1.00 25.00 0.00 0.50 0.00 5.00 5.00 15.0014.0+00 4969.4 6037.3 940.0 HYBD 1.00 0.00 1.00 15.00 0.00 2.00 0.00 0.00 0.00 10.0014.0+30 4964.6 6005.9 940.0 HYBD 0.00 0.00 0.00 10.00 0.00 1.00 0.00 0.00 0.00 20.0014.0+60 4959.0 5977.9 940.0 HYBD 0.00 0.00 0.00 3.00 0.00 2.00 0.00 0.00 0.00 20.0014.0+90 4944.7 5952.7 940.0 HYBD 0.00 1.00 1.00 3.00 0.00 3.00 0.00 0.00 0.00 10.0015.0+00 4929.3 5928.6 940.0 HYBD 1.00 0.00 1.00 3.00 0.00 5.00 0.00 0.00 0.00 10.0015.0+30 4902.6 5910.3 940.0 HYBD 2.00 0.00 2.00 2.00 0.00 6.00 0.00 0.00 0.00 5.0015.0+60 4876.3 5899.0 940.0 HYBD 0.00 0.00 0.00 0.00 0.00 3.00 0.00 0.00 0.00 5.0015.0+90 4845.1 5892.4 940.0 HYBD 1.00 0.00 1.00 3.00 0.00 2.00 0.00 15.00 15.00 1.0016.0+00 4818.7 5888.0 940.0 HYBD 2.00 0.00 2.00 1.00 0.00 1.00 0.00 5.00 5.00 10.0016.0+30 4794.7 5871.3 940.0 HYBD 0.00 0.00 0.00 2.00 0.00 4.00 0.00 0.00 0.00 5.0016.0+60 4769.6 5853.9 940.0 HYBD 1.00 0.00 1.00 1.00 0.00 6.00 0.00 0.00 0.00 5.0016.0+90 4743.0 5839.6 940.0 HYBD 1.00 0.00 1.00 3.00 0.00 6.00 0.00 0.00 0.00 5.00Table A.6 Ajax East pit 940 and 860 metrellan level Jab same les. (continuedCROSS-SECTION NO.DRILL HOLENO.EP(%)CA(%)DPOMPYV(%)PYPCVOPYTOT(%)CU(%)AU^AGgram/tonne^gam/tonne940L 8-90 9.00 2.00 0.00 0.00 0.00 0.00 0.015 0.00108-60 0.00 3.00 0.10 0.10 0.00 0.10 0.038 0.11008-30 0.00 2.00 1.00 0.00 0.10 0.10 0.009 0.00108+00 3.00 1.00 0.10 0.00 0.00 0.00 0.053 0.00108+30 3.00 1.00 0.00 0.20 0.00 0.20 0.045 0.00108.5+00 1.00 5.00 0.00 0.00 0.00 0.00 0.113 0.07008.5+24 1.00 3.00 1.00 0.10 0.00 0.10 0.138 0.08409.0+00 2.00 1.00 0.10 0.10 0.00 0.10 0.018 0.00109.0+30 1.00 1.00 0.00 0.00 0.10 0.10 0.011 0.00109.0+60 2.00 2.00 0.00 1.00 0.10 1.10 0.037 0.001010.0+00 1.00 2.00 0.00 1.00 0.50 1.50 0.024 0.001010.0+90 2.00 1.00 0.00 1.00 0.50 1.50 0.141 0.070010.0+120 3.00 4.00 0.00 1.50 0.50 2.00 0.128 0.172011.0+00 2.00 2.00 0.00 0.50 0.00 0.50 0.352 0.102011.0+30 1.00 2.00 0.00 0.00 0.00 0.00 0.001 0.001011.0+60 2.00 2.00 0.00 0.00 0.00 0.00 0.001 0.001011.0+90 1.00 1.00 0.00 0.00 0.00 0.00 0.001 0.001012.0+00 0.00 1.00 0.00 0.00 0.00 0.00 0.001 0.001012.0+30 1.00 1.00 0.00 0.00 0.00 0.00 0.001 0.001012.0+60 2.00 1.00 0.00 0.00 0.00 0.00 0.001 0.001012.0+90 1.00 1.00 0.00 0.00 0.00 0.00 0.005 0.001013.0+00 1.00 1.00 0.00 0.00 0.00 0.00 0.115 0.034013.0+30 0.00 1.00 0.00 0.00 0.00 0.00 0.238 0.190013.0+60 0.00 2.00 1.00 0.00 0.00 0.00 0.558 0.282013.0+90 0.00 1.00 0.00 1.00 0.00 1.00 0.233 0.240014.0+00 0.50 1.00 0.00 0.00 0.10 0.10 0.073 0.050014.0+30 0.00 1.00 0.00 0.00 0.00 0.00 0.038 0.001014.0+60 0.00 1.00 0.00 0.00 0.00 0.00 0.003 0.001014.0+90 0.00 1.00 0.00 0.00 0.00 0.00 0.010 0.001015.0+00 0.00 1.00 0.00 0.00 0.00 0.00 0.005 0.001015.0+30 0.00 1.00 0.00 0.00 0.00 0.00 0.002 0.001015.0+60 0.00 1.00 0.00 0.00 0.00 0.00 0.009 0.001015.0+90 1.00 3.00 0.00 0.00 0.00 0.00 0.395 0.346016.0+00 0.00 2.00 1.00 0.00 0.00 0.00 0.053 0.036016.0+30 0.00 1.00 0.00 0.00 0.00 0.00 0.003 0.001016.0+60 0.00 1.00 0.00 0.00 0.00 0.00 0.003 0.001016.0+90 0.00 1.00 0.00 0.00 0.00 0.00 0.002 0.0010Table A.7 Ajax East pit cross-section 7.0 North data.CROSS- DRILL HOLE NORTHING ELEVATION ROCK KFV KFP KFTOT BITOT HE MGSECTION NO. NO. (metres) (metres a.s.I.) TYPE (o%0) (%) (%) (%) (%) (%)AEP7.0N 87-55 125.1 972.3 HYBD 0.56 0.00 0.56 3.36 0.46 8.64128.1 960.7 HYBD 0.53 0.00 0.53 2.50 0.25 8.75131.3 949.0 MGPP 0.00 5.00 5.00 0.00 0.00 1.50134.5 937.6 MGPP 3.25 1.25 4.50 2.75 0.00 1.75137.6 925.8 HYBD 12.25 0.00 12.25 15.00 0.00 0.53140.6 914.4 ALBT 10.00 0.00 10.00 1.00 0.00 0.00AEP7.0N 87-56 138.0 968.2 HYBD 0.30 6.82 7.12 0.02 0.00 2.82145.7 959.0 MGPP 0.75 8.75 9.50 0.00 0.00 2.75153.5 950.1 HYBD 4.25 0.00 4.25 3.50 0.03 3.00161.1 940.9 HYBD 1.50 0.00 1.50 1.25 0.00 2.25169.1 931.6 DIOR 1.75 4.50 6.25 0.00 0.00 2.00176.7 922.3 MGPP 1.75 2.75 4.50 1.25 0.75 1.00184.7 913.5 NICOLA 0.50 0.00 0.50 3.75 0.00 0.25192.4 904.3 NICOLA 0.78 0.00 0.78 1.75 0.00 0.00200.7 895.1 MCDR 0.38 0.00 0.38 0.00 0.00 0.03208.4 886.3 DIOR 0.50 0.00 0.50 0.00 0.25 0.53216.2 876.8 DIOR 0.60 0.00 0.60 0.00 0.13 0.18221.4 871.0 ALBT 0.00 0.00 0.00 0.00 0.00 0.75AEP7.0N 87-36 200.2 954.5 DIOR 8.36 0.00 8.36 0.00 0.16 1.76207.8 945.2 NICOLA 1.50 0.00 1.50 3.75 0.00 0.03215.2 936.2 NICOLA 2.00 0.00 2.00 4.00 0.00 0.00223.3 927.1 NICOLA 1.25 0.00 1.25 1.00 0.00 0.00230.5 918.1 NICOLA 1.50 0.00 1.50 1.00 0.00 0.00238.2 909.0 NICOLA 0.78 0.00 0.78 2.75 0.00 0.28246.4 899.9 DIOR 0.50 0.50 1.00 0.00 0.00 0.90254.2 890.4 DIOR 1.67 0.00 1.67 0.00 0.00 1.33AEP7.0N 87-50 261.9 940.3 DIOR 4.50 0.00 4.50 0.00 0.00 0.00269.5 931.0 NICOLA 0.82 0.82 1.64 1.46 0.00 0.03277.5 921.5 DIOR 1.00 0.00 1.00 0.00 0.00 1.13284.9 912.5 DIOR 1.25 0.00 1.25 0.00 0.00 2.25292.3 903.2 DIOR 4.25 0.00 4.25 0.00 0.00 1.25300.1 893.9 DIOR 0.25 0.00 0.25 0.00 0.15 2.50307.8 885.0 DIOR 1.50 0.00 1.50 0.00 0.00 1.03315.9 875.7 DIOR 1.00 0.00 1.00 0.00 0.00 0.55323.9 866.2 DIOR 0.13 0.00 0.13 0.00 0.00 0.63331.4 857.7 DIOR 3.75 1.25 5.00 0.00 0.03 2.00339.6 848.7 DIOR 3.50 0.00 3.50 0.00 0.15 0.55347.4 839.8 MCDR 0.25 0.00 0.25 0.00 0.13 1.75355.3 830.7 MCDR 1.50 0.00 1.50 0.00 0.03 1.28362.0 823.1 DIOR 3.13 0.00 3.13 0.00 0.00 0.44AEP7.0N 87-30 329.4 943.5 DIOR 1.00 0.00 1.00 0.00 0.00 2.00337.9 934.0 DIOR 1.75 0.00 1.75 0.00 0.00 0.50345.4 924.7 DIOR 2.09 0.00 2.09 0.00 0.00 1.46352.0 917.4 DIOR 0.21 0.55 0.75 0.00 0.00 2.00361.3 907.0 MCDR 0.00 0.82 0.82 0.00 0.00 2.18368.7 897.7 DIOR 0.60 0.20 0.80 0.00 0.06 1.10375.6 890.0 DIOR 0.00 1.50 1.50 0.00 0.00 0.70383.0 881.7 DIOR 0.75 0.00 0.75 0.00 0.00 2.00390.4 873.2 MCDR 1.63 0.00 1.63 0.00 0.00 2.25397.7 865.2 MCDR 0.78 20.00 20.78 0.00 0.00 1.00404.4 857.7 QZLP 1.36 18.18 19.55 0.00 0.00 0.00412.1 848.8 DIOR 0.25 0.00 0.25 0.00 0.00 0.25163Table A.7 Ajax East pit cross-section 7.0 North data. (continued)CROSS- DRILL HOLE ABV ABP ABTOT CL EP CA DP PYV PYP PYTOTSECTION NO. NO. (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)AEP7.0N 87-55 0.00 0.00 0.00 4.82 0.50 3.46 0.03 0.00 0.00 0.000.00 3.75 3.75 4.25 1.25 3.75 0.00 0.00 0.00 0.000.00 0.00 0.00 1.00 8.50 3.75 0.00 0.00 0.00 0.000.00 10.00 10.00 5.00 1.00 7.75 0.00 0.00 0.00 0.002.50 0.00 2.50 10.00 0.00 1.50 0.00 0.00 0.00 0.000.00 61.25 61.25 1.75 0.28 3.25 0.53 0.03 0.00 0.03AEP7.0N 87-56 0.00 0.00 0.00 1.46 4.36 1.93 0.27 0.00 0.01 0.010.00 0.00 0.00 2.00 3.75 2.25 1.00 0.00 0.01 0.010.50 5.00 5.50 8.75 0.78 5.00 0.25 0.03 0.00 0.035.00 43.75 48.75 2.50 1.63 1.50 0.50 0.18 0.25 0.430.00 13.50 13.50 2.50 6.50 1.25 0.78 0.03 0.03 0.050.25 12.25 12.50 4.50 2.50 3.50 0.25 0.10 0.03 0.130.00 3.75 3.75 8.00 0.50 1.75 0.00 0.40 0.08 0.480.00 4.75 4.75 10.00 0.50 3.75 0.13 0.80 0.18 0.980.50 16.25 16.75 1.88 0.78 2.75 0.00 0.75 0.25 1.002.50 10.00 12.50 1.75 2.38 2.00 0.13 0.55 0.35 0.902.50 31.25 33.75 2.50 1.38 2.00 0.88 0.35 0.13 0.480.00 81.25 81.25 1.00 0.78 1.00 1.00 0.05 0.00 0.05AEP7.0N 87-36 1.64 5.00 6.64 3.00 5.00 3.46 1.73 0.35 0.00 0.350.00 11.25 11.25 7.00 1.00 1.00 0.00 0.38 0.08 0.450.00 16.25 16.25 6.50 0.53 1.75 0.03 0.28 0.05 0.331.25 50.00 51.25 2.50 0.00 1.75 0.28 0.10 0.13 0.230.00 53.75 53.75 2.75 0.25 2.50 0.40 0.13 0.05 0.182.00 11.25 13.25 3.75 1.50 2.25 0.53 0.15 1.00 1.151.00 1.50 2.50 1.00 1.50 1.00 0.00 0.75 0.68 1.430.00 5.00 5.00 1.67 2.33 4.33 0.17 0.40 0.13 0.53AEP7.0N 87-50 0.00 50.00 50.00 4.00 0.50 1.75 1.25 0.40 0.05 0.450.73 7.27 8.00 3.36 0.55 1.36 0.00 1.59 0.00 1.591.50 10.00 11.50 2.25 1.63 4.00 0.25 0.68 0.05 0.730.00 3.75 3.75 2.50 2.50 1.03 0.13 0.33 0.15 0.482.50 18.75 21.25 5.00 1.25 1.13 1.63 0.15 0.00 0.150.53 15.75 16.28 2.00 0.75 1.75 0.53 0.38 0.03 0.400.75 30.00 30.75 1.50 5.25 1.38 1.03 0.13 0.05 0.182.25 50.00 52.25 0.63 1.28 1.13 2.13 0.00 0.00 0.000.75 52.50 53.25 1.00 2.53 1.13 0.63 0.38 0.01 0.381.75 17.50 19.25 2.50 5.25 1.38 0.38 0.00 0.03 0.030.25 1.25 1.50 4.50 2.13 3.25 0.63 0.43 0.58 1.000.00 0.00 0.00 3.50 1.75 2.50 0.00 0.05 1.13 1.180.25 0.00 0.25 4.00 1.28 2.25 0.28 0.50 1.00 1.500.00 0.00 0.00 3.75 1.50 2.00 1.13 0.48 0.88 1.35AEP7.0N 87-30 2.50 2.50 5.00 1.00 1.50 1.00 0.75 1.00 1.25 2.258.75 38.75 47.50 2.00 0.75 2.00 0.25 0.65 0.28 0.931.36 19.09 20.46 2.00 3.05 2.00 1.25 0.29 0.03 0.323.64 12.27 15.91 0.68 0.74 1.09 0.02 0.29 0.09 0.381.27 7.27 8.55 1.00 4.59 1.09 0.00 0.05 0.35 0.3911.00 20.50 31.50 1.00 1.90 1.90 0.40 0.00 0.03 0.035.40 21.50 26.90 1.00 3.00 2.20 0.60 0.07 0.03 0.103.00 5.00 8.00 1.25 2.75 1.38 0.53 0.13 0.03 0.150.50 6.25 6.75 1.50 2.75 2.75 0.28 0.18 0.00 0.180.00 2.50 2.50 1.38 4.00 1.50 0.00 0.13 0.08 0.200.00 9.55 9.55 0.77 2.09 1.82 0.27 0.27 1.96 2.230.00 2.50 2.50 2.00 1.00 3.75 0.75 0.75 2.00 2.75164Table A.7 Ajax East pit cross-section 7.0 North data. (continued)CROSS- DRILL HOLE CU AU AGSECTION NO. NO. (%) gram/tonne gram/tonneAEP7.0N 87-55 0.015 0.03420.012 0.03420.012 0.03420.060 0.06850.071 0.06850.255 0.1712AEP7.0N 87-56 0.013 0.03420.012 0.03420.228 0.20550.360 0.27400.100 0.13700.100 0.06850.228 0.20550.180 0.10270.310 0.20550.279 0.17120.189 0.10270.054 0.0342AEP7.0N 87-36 0.338 0.27400.276 0.17120.164 0.10270.248 0.13700.149 0.10270.330 0.20550.434 0.30820.224 0.1370AEP7.0N 87-50 0.554 0.37670.869 0.71920.582 0.41100.190 0.10270.104 0.06850.098 0.06850.064 0.03420.038 0.03420.105 0.06850.048 0.03420.351 0.27400.258 0.10270.193 0.10270.130 0.0685AEP7.0N 87-30 0.320 0.17120.898 0.65070.328 0.27400.213 0.17120.148 0.30820.017 0.00170.091 0.10270.067 0.03420.096 0.03420.036 0.00170.011 0.00170.074 0.0342165Table A.7 Ajax East pit cross-section 7.0 North data.CROSS-^DRILL HOLESECTION NO.^NO.NORTHING(metres)ELEVATION(metres a.s.1.)ROCKTYPEKFV(%)KFP(%)KFTOT(%)BITOT(%)HENMG(%)AEP7.0NAEP7.0N88-1088-11411.3420.2427.6435.2443.0450.8458.8466.0473.8481.7489.4497.1504.9513.1521.1543.5551.5559.2567.3575.0583.4590.7596.6942.2932.1923.4914.1904.8896.0886.4877.2868.2858.8849.9840.5831.7822.3813.1907.0898.1889.0880.0871.0862.1852.9846.7DIORDIORDIORDIORDIORDIORDIORDIORDIORDIORDIORDIORDIORDIORDIORDIORDIORDIORDIORDIORALBTDIORDIOR0.233.000.001.500.750.750.000.000.000.000.000.000.030.000.500.000.000.050.051.250.000.150.000.000.000.030.000.000.250.000.280.000.000.000.000.500.000.500.000.000.000.000.000.000.000.000.233.000.031.500.751.000.000.280.000.000.000.000.530.001.000.000.000.050.051.250.000.150.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.030.030.000.000.000.250.000.000.030.030.000.000.000.030.002.231.752.001.501.031.780.751.030.780.300.880.401.280.401.031.001.001.001.501.530.001.751.00166Table A.7 Ajax East pit cross-section 7.0 North data. (continued)CROSS- DRILL HOLE ABV ABP ABTOT CL EP CA DP PYV PYP PYTOTSECTION NO. NO. (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)AEP7.0N 88-10 0.00 3.85 3.85 0.73 0.29 1.00 0.02 0.00 0.06 0.060.00 17.50 17.50 1.75 2.78 1.50 0.78 0.03 0.00 0.030.00 5.00 5.00 2.00 2.28 1.25 0.00 0.05 0.25 0.300.75 6.25 7.00 2.00 4.00 1.50 0.50 0.63 0.43 1.050.00 6.25 6.25 2.25 2.75 1.75 0.05 0.25 0.20 0.450.00 5.00 5.00 2.00 2.38 2.25 0.25 1.03 0.05 1.081.25 16.25 17.50 2.00 1.25 1.25 0.03 0.45 0.14 0.591.25 7.50 8.75 2.50 0.50 1.75 0.50 0.03 0.05 0.080.75 6.25 7.00 2.25 2.75 2.75 0.13 0.38 0.08 0.450.00 5.00 5.00 6.75 2.50 1.75 0.00 0.75 0.63 1.380.00 10.00 10.00 2.25 1.75 1.50 0.00 0.35 0.68 1.030.75 38.75 39.50 2.25 1.50 3.25 0.25 0.45 0.05 0.500.00 30.00 30.00 1.50 1.75 1.75 0.28 0.18 0.33 0.501.25 28.75 30.00 2.00 1.25 1.50 0.00 0.55 0.13 0.680.25 17.50 17.75 2.25 1.38 2.25 0.13 0.55 0.05 0.60AEP7.0N 88-11 0.55 13.18 13.73 1.00 0.86 1.00 0.03 0.41 0.12 0.530.25 10.00 10.25 1.50 1.03 1.25 0.00 0.33 0.33 0.650.50 5.50 6.00 1.25 1.13 1.00 0.28 0.48 0.20 0.680.00 6.25 6.25 1.75 0.75 1.50 0.03 0.05 0.08 0.130.25 1.75 2.00 3.25 2.25 2.25 0.50 0.20 0.03 0.232.50 86.25 88.75 0.63 0.00 5.00 0.00 0.40 0.38 0.780.25 2.50 2.75 2.00 1.88 2.00 0.50 0.23 0.13 0.350.00 0.00 0.00 1.00 0.75 1.50 0.00 0.00 0.00 0.30167Table A.7 Ajax East pit cross-section 7.0 North data.  (continued)CROSS- DRILL HOLE CU AU AGSECTION NO. NO. (%) gram/tonne grandtonneAEP7.0N 88-10 0.046 0.06850.051 0.03420.042 0.00170.175 0.20550.117 0.06850.386 0.10270.353 0.17120.218 0.23970.222 0.23970.052 0.00170.038 0.00170.079 0.03420.126 0.06850.077 0.03420.047 0.0342AEP7.0N 88-11 0.123 0.03420.035 0.00170.051 0.03420.213 0.10270.279 0.17120.297 0.27400.167 0.10270.066 0.0342168Table A.8 Normalization factors used to correct data for the Spiderdiagrams (Figure 2.9).Element MORB (taken Sun (1982)from NEWPET)Sr 122K 955Rb 1.12Ba 14.3Th .185Nb 3.58Ce 11.97 .865Zr 90Hf 2.87Sm 3.62 .203Ti 9000Y 34.2Yb 3.73 .22La 3.96 .329Pr .13Nd 10.96 .63Eu 1.31 .077Gd .276Tb .0498Dy 5.98 .343Ho .077Er 3.99 .225Tm .0352Lu .56 .0339169APPENDIX B. ELECTRON MICROPROBE ANALYSESAppendix B contains information on the operating conditions and standards used in this study, and tablesof electron microprobe data for feldspar, pyroxene, epidote, chlorite, scapolite, prehnite, pumpellyite, and a zeolite.Sample locations are shown in Figures A.1 and A.2.170Operating ConditionsAll mineral phases were analyzed with the Cameca SX-50 electron microprobe (EMP) at The Universityof British Columbia. Samples were prepared as polished sections and carbon coated. Prior to the carbon coating,the sections were examined under a petrographic microscope and the grains of interest were marked, to facilitatelocating the grains when the sections were loaded into the probe. A total of 12 sections, were examined over a onemonth period. Sections were choosen for two purposes. Fresh, unaltered samples were choosen to characterize thepyroxene and feldspar variation between units. Altered specimens were chosen to investigate the possibility ofspatial differences in alteration minerals such as epidote, diopside, secondary feldspar, scapolite and chlorite.The EMP was run with an accelerating potential of 15 Kv and a beam current of 10 nanoamps for allanalyses. A beam diameter of 10 microns was used to analyze feldspars, chlorite, scapolite, prehnite andpumpellyite. For pyroxene and epidote analyses, beam size was usually 2 microns. All elements except for Sr andBa used the K-alpha spectra. Sr and Ba used the L-alpha spectra. Standards of similar composition to theminerals of interest were chosen. Counting windows and baselines were set automatically by the software. The listof standards is tablulated in Table B.1.Data reduction techniquesRaw data was initially reduced using the computer program TRANSFORM (Mader et al., 1988) that wasdeveloped to transform output from the electron microprobe (element or oxide weight%) to the correct format forfurther reduction using the program FORMULA 1 (Thirugnanam et al., 1988). FORMULA 1 has been developedto calulate the mineral structural formulae. The program can be modified to incorporate specific cases ofstoichiometzy and new mineral groups. Mineral formulae can be calculated using either a fixed number of cations,or anions. A fixed number of cations was used to calculate mineral formulae in this study. The mineral formulaewere imported into NEWPET, a program that has been developed to plot major, minor and trace element data on alarge number of discrimation diagrams, as well as on user defined binary and ternary plots.171A • , endix B. Table B.1 Micro robe anal ses of • nma^felds ars from the A'ax East and A'ax West I its. Sam Ile locations in Fi^es A.1 and A.2.Sample No. 33A1 1 33A1 2 33A1 3 33A2 1 33A2 2 33A3 1 33A3 2 33A3 3 33A3 4 33A3 5 33A3 6 33A4 1 33A4 2 33A4 3Lithology Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloafdiorite diorite diorite diorite diorite diorite diorite diorite diorite diorite diorite diorite diorite dioriteAlteration Propylitic Propylitic Propylitic Propylitic Propylitic Propylitic Propylitic Propylitic Propylitic Propylitic Propylitic Propylitic Propylitic PropyliticS102 56.35 55.61 56.19 57.33 56.42 56.70 54.71 58.31 58.91 57.21 57.09 58.28 58.09 57.02Al203 27.32 27.21 27.52 26.93 27.15 27.30 28.54 26.27 25.66 26.81 26.75 25.89 26.59 26.85K2O 0.20 0.24 0.31 0.48 0.46 0.37 0.31 0.29 0.31 0.43 0.39 0.44 0.41 0.37Na2O 6.35 5.91 5.96 6.37 6.15 6.16 5.18 6.89 7.06 6.26 6.40 6.88 6.64 6.28CaO 9.28 9.95 9.63 8.62 8.84 9.21 10.96 8.21 7.51 8.86 8.68 7.81 8.42 8.81BaO 0.04 0.06 0.07 0.03 0.02 0.07 0.00 0.04 0.13 0.04 0.07 0.08 0.07 0.03MgO 0.00 0.02 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.02 0.00 0.01 0.00Fe2O3 0.20 0.36 0.20 0.21 0.13 0.15 0.16 0.25 0.30 0.17 0.16 0.13 0.12 0.19SrO 0.00 0.16 0.00 0.07 0.05 0.10 0.03 0.04 0.18 0.11 0.13 0.25 0.05 0.01TOTAL 99.76 99.51 99.88 100.05 99.23 100.04 99.91 100.32 100.06 99.89 99.70 99.77 100.42 99.57Ion calculations based on 8 oxygensSi^ 2.54^2.52 2.53 2.57 2.55 2.55 2.47 2.61 2.64 2.57 2.57 2.62 2.59 2.57Al 1.45 1.45 1.46 1.42 1.45 1.45 1.52 1.38 1.35 1.42 1.42 1.37 1.40 1.43.7: K 0.01 0.01 0.02 0.03 0.03 0.02 0.02 0.02 0.02 0.03 0.02 0.03 0.02 0.02ij Na 0.56 0.52 0.52 0.55 0.54 0.54 0.45 0.60 0.61 0.55 0.56 0.60 0.58 0.55Ca 0.45 0.48 0.47 0.42 0.43 0.44 0.53 0.39 0.36 0.43 0.42 0.38 0.40 0.43Ba 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Mg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Fe 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.01Sr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00O 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00End member proportionsKAISi(3)0(8)^0.01 0.01 0.02 0.03 0.03 0.02 0.02 0.02 0.02 0.03 0.02 0.03 0.02 0.02NaAISi(3)0(8) 0.56 0.52 0.52 0.55 0.54 0.54 0.45 0.60 0.61 0.55 0.56 0.60 0.58 0.55CaAI(2)Si(2)0(8) 0.45 0.48 0.47 0.42 0.43 0.44 0.53 0.39 0.36 0.43 0.42 0.38 0.40 0.43BaAI(2)Si(2)0(8) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00(Mg Fe Sr) 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01TOTAL 1.02 1.02 1.00 1.00 1.00 1.00 1.00 1.01 0.99 1.00 1.00 1.00 1.00 1.00A I I ndix B. Table B.1 Micro i robe anal ses of 'rim.^felds s ars from the A'ax East and A'ax West Its. (continuedSample No. 33A4 4 33A8 2 35B11 1 35B11 2 35B11 3 35B11 4 35A4 2 35A4 5 35A4 6 35A4 8 35A4 9 35A4 10 35A4 12 35A4 13Lithology SugarloafdioriteSugarloafdioritehybriddioritehybriddioritehybriddioritehybriddioriteSugarloafdioriteSugarloafdioriteSugarloafdioriteSugarloafdioriteSugarloafdioriteSugarloafdioriteSugarloafdioriteSugarloafdioriteAlteration Propylitic Propylitic Propylitic Propylitic Propylitic Propylitic Albitic Albitic Albitic Albitic Albitic Albitic Albitic AlbiticSiO2 56.49 56.49 54.72 54.39 55.74 55.16 65.31 59.49 59.88 59.70 59.47 64.72 60.16 62.38Al203 27.42 27.36 28.49 28.88 27.87 27.98 20.12 25.17 25.08 25.0825.46 22.05 24.71 23.78K2O 0.28 0.36 0.23 0.17 0.23 0.23 0.09 0.28 0.32 0.32 0.50 0.85 0.37 2.29Na2O 6.07 6.07 5.26 5.15 5.78 5.60 10.19 7.45 7.53 7.53 7.39 9.51 7.63 8.36CaO 9.38 9.26 10.71 10.99 9.97 9.93 3.28 6.84 6.69 6.57 6.27 1.73 6.30 1.44BaO 0.02 0.04 0.06 0.00 0.08 0.08 0.02 0.03 0.07 0.12 0.04 0.05 0.05 0.04MgO 0.02 0.01 0.02 0.00 0.02 0.02 0.00 0.00 0.00 0.02 0.02 0.21 0.01 0.23Fe2O3 0.31 0.20 0.36 0.25 0.32 0.22 0.27 0.36 0.30 0.17 0.17 0.23 0.31 0.40SrO 0.04 0.07 0.29 0.08 0.20 0.11 0.00 0.00 0.14 0.02 0.14 0.05 0.14 0.00TOTAL 100.02 99.88 100.13 99.93 100.21 99.34 99.29 99.61 100.01 99.52 99.45 99.41 99.67 98.91Ion calculations based on 8 oxygensSi^ 2.54^2.54 2.47 2.46 2.51 2.50 2.90 2.66 2.67 2.68 2.67 2.87 2.69 2.79Al 1.45 1.45 1.52 1.54 1.48 1.50 1.05 1.33 1.32 1.32 1.35 1.15 1.30 1.26K 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.03 0.05 0.02 0.13Na 0.53 0.53 0.46 0.45 0.50 0.49 0.88 0.65 0.65 0.65 0.64 0.82 0.66 0.73Ca 0.45 0.45 0.52 0.53 0.48 0.48 0.16 0.33 0.32 0.32 0.30 0.08 0.30 0.07Ba 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Mg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.02Fe 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01Sr 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00O 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00End member proportionsKAlS1(3)0(8)^0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.03 0.05 0.02 0.13NaAISi(3)O(8) 0.53 0.53 0.46 0.45 0.50 0.49 0.88 0.65 0.65 0.65 0.64 0.82 0.66 0.73CaAI(2)Si(2)O(8) 0.45 0.45 0.52 0.53 0.48 0.48 0.16 0.33 0.32 0.32 0.30 0.08 0.30 0.07BaAI(2)Si(2)O(8) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00(Mg Fe Sr) 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.03TOTAL 1.00 1.00 0.99 0.99 1.00 0.99 1.04 0.99 0.99 0.99 0.97 0.95 0.99 0.93ndix B. Table B.1 Micro robe anal ses of rima felds ars from the A35A5 1 35A5 2 35A5 3 35A5 4 35A5 5 35A5 6 35A5Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloafdiorite^diorite^diorite^diorite^diorite^diorite^dioriteAlbitic^Albitic^Albitic^Albitic^Albitic^Albitic^AlbiticASample No.LithologyAlteration35A5 8 35A5 9 35A5 10Sugarloaf Sugarloaf Sugarloafdiorite^diorite^dioriteAlbitic^Albitic^AlbiticSi02^62.81^59.13^59.05^58.75^59.71^59.49^59.41^59.61^59.48Al203 22.90^25.07^25.14^24.99^24.42^25.24^25.21^25.28^25.03K20^0.26^0.32^0.25^0.42^1.11^0.40^0.51^0.31^0.30Na20 9.07^7.43^7.27^7.15^7.42^7.30^7.39^7.53^7.45CaO 3.82^6.78^6.74^6.48^5.87^6.80^6.29^6.55^6.77BaO^0.05^0.06^0.05^0.07^0.09^0.08^0.00^0.00^0.04MgO 0.03^0.00^0.01^0.42^0.00^0.00^0.03^0.02^0.00Fe203^0.10^0.22^0.31^0.63^0.19^0.31^0.29^0.16^0.34Sr0 0.13^0.07^0.30^0.18^0.10^0.04^0.10^0.25^0.01TOTAL^99.16^99.08^99.11^99.10^98.93^99.66^99.25^99.72^99.43Ion calculations based on 8 oxygens2.80^2.66^2.66^2.65^2.70^2.66^2.67^2.67^2.67^2.751.20^1.33^1.34^1.33^1.30^1.33^1.34^1.33^1.32^1.240.02^0.02^0.01^0.02^0.06^0.02^0.03^0.02^0.02^0.030.79^0.65^0.64^0.63^0.65^0.63^0.64^0.65^0.65^0.730.18^0.33^0.33^0.31^0.28^0.33^0.30^0.31^0.33^0.200.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.000.00^0.00^0.00^0.03^0.00^0.00^0.00^0.00^0.00^0.030.00^0.01^0.01^0.02^0.01^0.01^0.01^0.01^0.01^0.020.00^0.00^0.01^0.01^0.00^0.00^0.00^0.01^0.00^0.008.00^8.00^8.00^8.00^8.00^8.00^8.00^8.00^8.00^8.00End member proportionsKAISi(3)O(8)^0.02NaAISi(3)O(8) 0.79CaAI(2)Si(2)O(8)^0.18BaA1(2)Si(2)O(8)^0.00(Mg Fe Sr)^0.01TOTAL 0.98ax East and Ku West its. continued35A5 12^35A5 13Sugarloaf Sugarloafdiorite^dioriteAlbitic^Albitic38B2 7^38B2 8hybrid^hybriddiorite^dioritePropylitic^Propylitic38B2 9hybriddioritePropylitic56.3627.150.225.999.270.020.020.280.0999.392.551.450.010.530.450.000.000.010.008.000.010.530.450.000.010.9961.4423.410.538.454.260.020.470.610.0099.21SiAlKNaCaBaMgFeSrO^0.0 ^0.01^0.02^0.06^0.02^0.03^0.02^0.02^0.03^0.65^0.64^0.63^0.65^0.63^0.64^0.65^0.65^0.730.33^0.33^0.31^0.28^0.33^0.30^0.31^0.33^0.200.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.000.01^0.02^0.05^0.01^0.01^0.01^0.01^0.01^0.051.00^0.98^0.96^1.00^0.98^0.98^0.99^0.99^0.9762.56^61.99^56.28^57.3223.37^23.82^27.32^26.512.26^2.32^0.17^0.218.60^8.19^5.96^6.551.39^1.73^9.56^8.460.00^0.00^0.10^0.030.25^0.22^0.00^0.000.46^0.38^0.25^0.320.07^0.16^0.20^0.1498.96^98.82^99.84^99.532.80^2.78^2.54^2.581.23^1.26^1.45^1.410.13^0.13^0.01^0.010.75^0.71^0.52^0.570.07^0.08^0.46^0.410.00^0.00^0.00^0.000.02^0.01^0.00^0.000.02^0.01^0.01^0.010.00^0.00^0.01^0.008.00^8.00^8.00^8.000.13^0.13^0.01^0.010.75^0.71^0.52^0.570.07^0.08^0.46^0.410.00^0.00^0.00^0.000.03^0.03^0.01^0.010.94^0.93^1.00^0.99felds ► es A.1 and A.2.• ts. Sam Ile locations in Fiars from the A'ax East and A'ax WestA ► ndix B. Table B.2 Micro ►robe anal ses of secondaSample No. 35B3 1 35B3 2 35B3 3 35B10 2 35B10 3 35B10 4 35B3 11 59A1 2 59A7 3 59A7 4 59A2 1 59A2 2 59A2 3 59A2 4Lithology hybrid hybrid hybrid hybrid hybrid hybrid hybrid Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloafdiorite diorite diorite diorite diorite diorite diorite diorite diorite diorite diorite diorite diorite dioriteAlteration Propylitic Propylitic Propylitic Propylitic Propylitic Propylitic Propylitic Albitic Albitic Albitic Albitic Albitic Albitic AlbiticSi02 68.17 67.09 67.94 68.64 6834 68.38 67.91 62.43 61.56 59.43 62.82 61.40 62.19 63.43A 1 2 0 3 19.86 19.88 19.58 19.88 19.74 19.56 19.90 23.20 23.92 25.37 23.19 23.94 23.53 22.53K20 0.03 0.02 0.06 0.02 0.03 0.04 0.07 0.34 0.62 0.25 0.36 0.36 0.32 0.49Na20 11.55 11.33 11.60 11.51 11.61 11.59 11.13 8.73 8.33 7.32 8.66 8.30 8.59 9.00CaO 0.48 0.56 0.41 0.11 0.15 0.11 0.38 4.62 4.84 7.16 4.58 5.16 4.87 3.85BaO 0.00 0.01 0.00 0.01 0.01 0.00 0.07 0.00 0.07 0.04 0.02 0.00 0.04 0.04MgO 0.04 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.07 0.00 0.01 0.02 0.01 0.01Fe203 0.15 0.06 0.03 0.11 0.08 0.12 0.09 0.26 0.33 0.28 0.30 0.27 0.28 0.26SrO 0.00 0.00 0.00 0.00 0.00 0.08 0.01 0.10 0.14 0.00 0.01 0.01 0.02 0.14TOTAL 100.29 98.96 99.62 100.27 99.95 99.88 99.58 99.67 99.88 99.85 99.95 99.45 99.84 99.74.4viIon calculations based on 8 oxygensSi^ 2.97^2.97 2.98 2.99 2.99 2.99 2.98 2.78 2.74 2.66 2.78 2.74 2.76 2.82Al 1.02 1.04 1.01 1.02 1.02 1.01 1.03 1.22 1.26 1.34 1.21 1.26 1.23 1.18K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.04 0.01 0.02 0.02 0.02 0.03Na 0.98 0.97 0.99 0.97 0.98 0.98 0.95 0.75 0.72 0.64 0.74 0.72 0.74 0.77Ca 0.02 0.03 0.02 0.01 0.01 0.01 0.02 0.22 0.23 034 0.22 0.25 0.23 0.18Ba 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Mg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00Fe 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01Sr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00O 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00Calculations of end member proportionsKAISi(3)O(8)^0.00^0.00^0.00 0.00 0.00 0.00 0.00 0.02 0.04 0.01 0.02 0.02 0.02 0.03NaAISi(3)O(8) 0.98 0.97 0.99 0.97 0.98 0.98 0.95 0.75 0.72 0.64 0.74 0.72 0.74 0.77CaAI(2)Si(2)O(8) 0.02 0.03 0.02 0.01 0.01 0.01 0.02 0.22 0.23 0.34 0.22 0.25 0.23 0.18BaAI(2)Si(2)O(8) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00(Mg Fe Sr) 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.02 0.01 0.01 0.01 0.01 0.01TOTAL 1.00 1.00 1.01 0.98 0.99 0.99 0.97 0.99 0.99 0.99 0.98 0.99 0.99 0.99A^ndix B. Table B.2 Micro robe anal ses of seconda felds ars from the A'ax East and A'ax West its. continuedSample No.Lithology59A2 5Sugarloaf59A2 6 59A2 8 59A2 9 59A3 1 59A3 2 59A3 3 59A3 4 59A3 5 59A4 3 59A5 1 59A5 2 59A5 3 59A5 4dioriteSugarloafdioriteSugarloafdioriteSugarloafdioriteSugarloafdioriteSugarloafdioriteSugarloafdioriteSugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf SugarloafAlteration Albitic Albitic Albitic Albitic Albitic Albitic AlbiticdioriteAlbiticdioriteAlbiticdioriteAlbiticdioriteAlbiticdioriteAlbiticdioriteAlbiticdioriteAlbiticSiO2Al20362.1923.4761.08 62.10 64.37 62.39 61.85 62.02 61.80 63.28 67.91 63.39 57.64 61.60 62.53K2O 0.3424.190.3523.70 22.19 23.53 23.90 23.40 23.91 22.91 20.22 22.80 11.64 23.72 23.27Na2O 8.561.22 1.05 0.24 0.28 0.42 0.32 0.67 0.04 0.28 0.15 0.34 0.40CaO 4.958.055.848.193.529.721.398.734.958.44 8.38 8.28 9.14 11.30 8.97 4.17 8.41 8.61 BaO 0.00 0.045.31 5.06 5.34 3.17 0.65 4.19 14.09 5.40 4.72MgO 0.010.03 0.00 0.08 0.07 0.02 0.06 0.06 0.00 0.07 0.00 0.02 0.07Fe2O3 0.280.010.290.040.240.060.130.000.270.000.210.02 0.00 0.02 0.00 0.00 7.34 0.00 0.00SrO 0.00 0.00 0.20 0.11 0.040.31 0.30 0.08 0.12 0.26 4.37 0.26 0.25TOTAL 99.80 99.850.10 0.19 0.07 0.21 0.00 0.12 0.00 0.00 0.1299.24 99.03 100.23 100.15 99.80 100.09 99.54 100.24 100.07 99.40 99.75 99.96'...71cr. Ion calculations based on 8 oxygensSiAI2.761.232.721.272.78 2.86 2.76 2.74 2.76 2.74 2.81 2.96 2.80 2.70 2.74 2.78K 0.02 0.021.25 1.16 1.23 1.25 1.23 1.25 1.20 1.04 1.19 0.64 1.25 1.22Na 0.74 0.700.07 0.06 0.01 0.02 0.02 0.02 0.04 0.00 0.02 0.01 0.02 0.02Ca 0.240.71 0.84 0.75 0.73 0.72 0.71 0.79 0.96 0.77 0.38 0.73 0.74Ba 0.000.280.000.17 0.07 0.24 0.25 0.24 0.25 0.15 0.03 0.20 0.71 0.26 0.22Mg 0.000.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Fe 0.010.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.51 0.00 0.00Sr 0.000.010.000.01 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.15 0.01 0.010 8.000.01 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.008.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00Calculations of end member proportionsKAISi(3)O(8)NaAlSi(3)0(8)0.020.740.020.700.07 0.06 0.01 0.02 0.02 0.02 0.04 0.00 0.02 0.01 0.02 0.02CaAI(2)Si(2)O(8) 0.24 0.280.71 0.84 0.75 0.73 0.72 0.71 0.79 0.96 0.77 0.38 0.73 0.74BaA1(2)Si(2)0(8) 0.00 0.000.17 0.07 0.24 0.25 0.24 0.25 0.15 0.03 0.20 0.71 0.26 0.22(Mg Fe Sr) 0.01 0.010.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00TOTAL 0.99 1.000.02 0.01 0.01 0.01 0.02 0.01 0.01 0.00 0.01 0.67 0.01 0.010.95 0.97 1.00 1.00 0.99 0.99 0.98 0.99 0.99 1.09 1.00 0.99A I - ndix B. Table B.2 Micro ^obe anal ses of secon • .^felds . s from the A'ax East and Ku West ts.^continuedSample No.^J 59A5 5 59A5 6 59A6 1 59A6 2 59A6 3 59A6 4 59A6 6 31A1 1 3IAI 2 31A1 3 31A1 4 31A2 1 31A2 2 31A2 3Lithology Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloafdiorite diorite diorite diorite diorite diorite diorite diorite diorite diorite diorite diorite diorite dioriteAlteration Albitic Albitic Albitic Albitic Albitic Albitic Albitic Propylitic Propylitic Propylitic Propylitic Propylitic Propylitic PropyliticSiO2 59.53 59.88 62.29 61.53 60.11 61.52 65.03 67.49 66.99 67.39 67.45 67.33 68.06 67.58Al203 25.53 24.68 23.50 24.10 25.22 23.82 21.53 20.20 20.28 20.50 20.4220.44 20.42 20.55K2O 0.24 0.31 0.32 0.26 0.30 0.28 0.27 0.19 0.16 0.20 0.17 0.19 0.16 0.21Na2O 7.35 7.89 8.63 8.32 7.65 8.30 10.00 11.02 10.98 10.96 11.07 10.89 11.16 11.07CaO 7.11 6.17 4.93 5.56 6.64 5.33 2.22 0.79 0.88 0.97 0.82 0.97 0.63 0.72BaO 0.05 0.04 0.00 0.01 0.05 0.06 0.03 0.03 0.06 0.05 0.00 0.00 0.04 0.03MgO 0.01 0.02 0.00 0.00 0.01 0.01 0.03 0.03 0.00 0.02 0.02 0.03 0.00 0.00Fe2O3 0.28 0.22 0.27 0.25 0.22 0.30 0.05 0.03 0.05 0.08 0.03 0.10 0.03 0.12SrO 0.00 0.07 0.00 0.09 0.09 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.04TOTAL 100.10 99.28 99.94 100.11 100.28 99.63 99.20 99.79 99.40 100.17 99.98 99.95 100.51 100.32Ion calculations based on 8 oxygensSi^ 2.65^2.69 2.76 2.73 2.67 2.74 2.88 2.96 2.95 2.95 2.95 2.95 2.96 2.95Al 1.34 1.31 1.23 1.26 1.32 1.25 1.13 1.04 1.05 1.06 1.05 1.06 1.05 1.06K 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01Na 0.64 0.69 0.74 0.72 0.66 0.72 0.86 0.94 0.94 0.93 0.94 0.93 0.94 0.94Ca 0.34 0.30 0.23 0.26 0.32 0.25 0.11 0.04 0.04 0.05 0.04 0.05 0.03 0.03Ba 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Mg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Fe 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Sr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00O 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00Calculations of end member proportionsKAISi(3)O(8)^0.01^0.02^0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01NaAISi(3)O(8) 0.64 0.69 0.74 0.72 0.66 0.72 0.86 0.94 0.94 0.93 0.94 0.93 0.94 0.94CaAI(2)Si(2)O(8) 0.34 0.30 0.23 0.26 0.32 0.25 0.11 0.04 0.04 0.05 0.04 0.05 0.03 0.03BaAI(2)Si(2)O(8) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00(Mg Fe Sr) 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01TOTAL 0.99 1.00 1.00 1.00 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.98 0.98 0.98Appendix B. Table B.2 Microprobe analyses of secondary feldspars from the Ajax East and Ajax West pits. (continued)Sample No. 31 A2 5 31A31 31A3 2 3 1 A3 3 31A34 314 5 31A5 1 3 1 A5 2 31A5 3 31A5 5 31A61 31A6 2 3 1 A6 3 3 1 A7 1Lithology Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloafdiorite diorite diorite diorite diorite diorite diorite diorite diorite diorite diorite diorite diorite dioriteAlteration Propylitic Propylitic Propylitic Propylitic Propylitic Propylitic Propylitic Propylitic Propylitic Propylitic Propylitic Propylitic Propylitic PropyliticSiO2 67.22 67.73 67.69 67.67 64.22 68.08 64.26 64.13 63.94 64.22 64.25 64.12 64.26 63.92Al203 20.75 20.43 20.28 20.51 18.76 20.29 18.42 18.53 18.46 18.62 18.57 18.84 18.64 18.59K2O 0.27 0.30 0.20 0.23 16.16 0.19 16.33 16.16 16.02 16.13 16.10 16.16 16.05 15.81Na2O 10.90 11.13 11.02 10.99 0.25 11.15 0.20 0.18 0.18 0.22 0.24 0.23 0.21 0.22CaO 0.78 0.58 0.75 0.72 0.03 0.61 0.00 0.03 0.01 0.02 0.04 0.00 0.00 0.00BaO 0.01 0.00 0.02 0.06 0.52 0.02 0.40 0.68 0.80 0.80 0.41 0.53 0.50 0.89MgO 0.01 0.02 0.02 0.01 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00Fe2O3 0.02 0.15 0.12 0.10 0.17 0.01 0.06 0.11 0.02 0.03 0.06 0.10 0.03 0.05StO 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00TOTAL 99.98 100.33 100.09 100.29 100.12 100.35 99.67 99.82 99.44 100.05 99.67 99.99 99.69 99.49Ion calculations based on 8 oxygensSi^ 2.94^2.96 2.96 2.95 2.98 2.97 2.99 2.98 2.99 2.98 2.99 2.98 2.99 2.98Al 1.07 1.05 1.05 1.06 1.03 1.04 1.01 1.02 1.02 1.02 1.02 1.03 1.02 1.02K 0.02 0.02 0.01 0.01 0.96 0.01 0.97 0.96 0.96 0.96 0.96 0.96 0.95 0.94Na 0.93 0.94 0.93 0.93 0.02 0.94 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02Ca 0.04 0.03 0.04 0.03 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Ba 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02Mg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Fe 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Sr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00Calculations of end member proportionsKA1Si(3)0(8)^0.02^0.02^0.01 0.01 0.96 0.01 0.97 0.96 0.96 0.96 0.96 0.96 0.95 0.94NaAISi(3)O(8) 0.93 0.94 0.93 0.93 0.02 0.94 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02CaA1(2)Si(2)0(8) 0.04 0.03 0.04 0.03 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00BaAI(2)Si(2)O(8) 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02(Mg Fe Sr) 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00TOTAL 0.98 0.99 0.98 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98Appendix B. Table B.2 Microprobe analyses of secondary feldspars from the Ajax East and Ajax West pits. (continued)Sample No. 31A7 2 31A7 3 31A10 1 31A10 2 31A10 3 31A10 4 31A10 5 42B8 1 42B8 2 42B8 3 42B8 4 42B6 4 42B6 5 42B9 5Lithology Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloafdiorite diorite diorite diorite diorite diorite diorite diorite diorite diorite diorite diorite diorite dioriteAlteration Propylitic Propylitic Propylitic Propylitic Propylitic Propylitic Propylitic Albitic Albitic Albitic Albitic Albitic Albitic AlbiticSiO2 64.41 64.06 63.60 66.04 60.36 64.18 65.99 68.29 68.65 68.52 68.02 68.55 68.33 67.69Al203 18.62 18.70 18.40 21.56 11.81 18.71 20.05 20.03 20.43 20.26 20.05 19.91 19.95 19.93K2O 15.95 15.88 15.61 0.23 2.16 16.27 5.77 0.13 0.18 0.20 0.13 0.18 0.10 0.23Na2O 0.22 0.22 0.23 10.27 5.12 0.20 6.77 11.44 11.46 11.36 1135 11.35 11.45 11.17CaO 0.00 0.00 0.39 1.98 6.04 0.02 0.74 0.29 0.26 0.36 0.35 0.27 0.26 030BaO 0.59 0.88 1.00 0.01 0.13 0.56 0.51 0.01 0.00 0.03 0.00 0.00 0.00 0.00MgO 0.01 0.00 0.45 0.01 7.05 0.00 0.01 0.01 0.02 0.00 0.01 0.00 0.00 0.00Fe2O3 0.10 0.06 0.40 0.13 7.68 0.05 0.24 0.03 0.00 0.01 0.00 0.02 0.01 0.03SrO 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00TOTAL 99.89 99.80 100.07 100.35 100.36 99.99 100.09 100.25 101.00 100.74 99.91 100.31 100.10 9936Ion calculations based on 8 oxygenSi 2.99 2.98 2.96 2.89 2.78 2.98 2.95 2.98 2.97 2.97 2.97 2.99 2.98 2.98Al 1.02 1.03 1.01 1.11 0.64 1.02 1.06 1.03 1.04 1.04 1.03 1.02 1.03 1.03K 0.94 0.94 0.93 0.01 0.13 0.96 0.33 0.01 0.01 0.01 0.01 0.01 0.01 0.01Na 0.02 0.02 0.02 0.87 0.46 0.02 0.59 0.97 0.96 0.96 0.96 0.96 0.97 0.95Ca 0.00 0.00 0.02 0.09 0.30 0.00 0.04 0.01 0.01 0.02 0.02 0.01 0.01 0.01Ba 0.01 0.02 0.02 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00Mg 0.00 0.00 0.03 0.00 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Fe 0.00 0.00 0.01 0.00 0.27 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00Sr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00O 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00Calculations of end member proportionsKAlSi(3)0(8) 0.94 0.94 0.93 0.01 0.13 0.96 0.33 0.01 0.01 0.01 0.01 0.01 0.01 0.01NaAlSi(3)0(8) 0.02 0.02 0.02 0.87 0.46 0.02 0.59 0.97 0.96 0.96 0.96 0.96 0.97 0.95CaAI(2)Si(2)0(8) 0.00 0.00 0.02 0.09 0.30 0.00 0.04 0.01 0.01 0.02 0.02 0.01 0.01 0.01BaAI(2)Si(2)O(8) 0.01 0.02 0.02 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00(Mg Fe Sr) 0.00 0.00 0.05 0.01 0.75 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00TOTAL 0.98 0.98 0.99 0.98 0.89 0.99 0.96 0.99 0.98 0.98 0.99 0.98 0.99 0.98Appendix B. Table B.2 Microprobe analyses of secondary feldspars from the Ajax East and Ajax West pits. (continued)Sample No. 42B9 6 42B11 1 42B2 4 42B2 5 42B5 1 42B5 2 42B5 3 42B9 5 42B9 6 42B9 7 42B9 8 57B8 13 57B8 14 57B8 15Lithology Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf unknown unknown unknowndiorite diorite diorite diorite diorite diorite diorite diorite diorite diorite dioriteAlteration Albitic Albitic Albitic Albitic Albitic Albitic Albitic Albitic Albitic Albitic Albitic Albitic Albitic AlbiticSi02 68.26 65.10 67.75 68.39 68.63 68.28 68.61 67.56 68.40 68.06 68.11 67.74 66.66 67.76Al203 19.95 19.20 20.28 20.19 20.14 20.15 20.17 19.92 20.07 20.01 20.05 19.9419.57 19.97K20 0.09 9.57 0.06 0.22 0.10 0.16 0.08 0.13 0.09 0.08 0.15 0.09 5.32 1.66Na20 11.36 4.78 11.32 11.55 11.40 11.23 11.52 11.30 11.25 11.41 11.43 11.44 8.01 10.60CaO 0.26 0.07 0.84 0.18 0.28 0.36 0.29 0.22 0.31 0.29 0.26 0.25 0.13 0.17BaO 0.00 0.27 0.00 0.02 0.00 0.02 0.05 0.02 0.04 0.00 0.03 0.00 0.25 0.05MgO 0.02 0.02 0.05 0.02 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.00Fe203 0.05 0.00 0.08 0.05 0.00 0.04 0.06 0.03 0.00 0.00 0.02 0.05 0.00 0.07SrO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00TOTAL 99.98 99.00 100.37 100.62 100.55 100.24 100.79 99.19 100.18 99.84 100.06 99.52 99.95 100.27o Ion calculations based on 8 oxygensSi^ 2.98^2.98 2.96 2.97 2.98 2.98 2.98 2.98 2.98 2.98 2.98 2.97 2.97 2.97Al 1.03 1.03 1.04 1.03 1.03 1.04 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03K 0.01 0.56 0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.30 0.09Na 0.96 0.42 0.96 0.97 0.96 0.95 0.97 0.97 0.95 0.97 0.97 0.97 0.69 0.90Ca 0.01 0.00 0.04 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01Ba 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Mg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Fe 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Sr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00Calculations of end member proportionsKAISi(3)O(8)^0.01^0.56^0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.30 0.09NaAlSi(3)O(8) 0.96 0.42 0.96 0.97 0.96 0.95 0.97 0.97 0.95 0.97 0.97 0.97 0.69 0.90CaAI(2)Si(2)O(8) 0.01 0.00 0.04 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01BaA1(2)Si(2)0(8) 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00(Mg Fe Sr) 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00TOTAL 0.98 0.99 1.00 0.99 0.98 0.97 0.99 0.98 0.97 0.99 0.99 0.99 1.01 1.00•anal ses of seconA I ndix B. Table B.2 MicroSample No.^57B8 16Lithology unknownAlteration^AlbiticSi02 66.42^67.95Ad203 19.30^20.09K20^6.60^0.07Na20 7.13^11.44CaO^0.10^0.39BaO 0.32^0.00MgO^0.02^0.00Fe203 0.03^0.02SrO^0.00^0.00TOTAL 99.92^99.97Ion calculations based on 8 oxygensSi^ 2.98^2.97Al 1.02^1.04K 0.38^0.00Na^ 0.62^0.97Ca 0.01^0.02Ba^ 0.01^0.00Mg 0.00^0.00Fe^ 0.00^0.00Sr 0.00^0.00O^ 8.00^8.00Calculations of end member proportionsKAlSi(3)0(8)^0.38^0.00NaAISi(3)O(8) 0.62 0.97CaA1(2)Si(2)0(8)^0.01^0.02BaAI(2)Si(2)O(8)^0.01^0.00(Mg Fe Sr)^0.00^0.00TOTAL 1.01^0.9957B7 2^57B7 3unknownAlbitic^66.56^68.01^68.06^68.03^67.19^67.60^67.3319.54^19.97^19.98^19.95^19.56^19.93^20.024.78^0.07^0.08^0.09^3.17^0.09^0.238.41^11.58^11.58^11.56^9.36^11.49^11.470.15^0.23^0.17^0.24^0.14^0.28^0.280.19^0.01^0.00^0.00^0.13^0.02^0.000.04^0.01^0.01^0.01^0.00^0.00^0.020.10^0.01^0.00^0.03^0.05^0.09^0.040.00^0.00^0.00^0.00^0.00^0.00^0.0099.76^99.89^99.87^99.91^99.61^99.49^99.402.97^2.98^2.98^2.98^2.98^2.97^2.961.03^1.03^1.03^1.03^1.02^1.03^1.040.27^0.00^0.00^0.01^0.18^0.01^0.010.73^0.98^0.98^0.98^0.81^0.98^0.980.01^0.01^0.01^0.01^0.01^0.01^0.010.00^0.00^0.00^0.00^0.00^0.00^0.000.00^0.00^0.00^0.00^0.00^0.00^0.000.00^0.00^0.00^0.00^0.00^0.00^0.000.00^0.00^0.00^0.00^0.00^0.00^0.008.00^8.00^8.00^8.00^8.00^8.00^8.00robe57B7 1unknownAlbiticunknownAlbitic57B7 4^57B7 5^57B7 6^57B5 11^57B5 12unknown unknown unknown unknown unknownAlbitic^Albitic^Albitic^Albitic^Albiticfelds ars from the Ku East and Kax West its. continued 57B5 13^57B5 14^57B3 1unknown unknown unknownAlbitic^Albitic^Albitic63.39^65.32^67.7318.73^19.22^20.3416.02^9.84^0.070.32^4.65^11.420.01^0.15^0.350.76^0.37^0.050.00^0.00^0.000.05^0.10^0.150.00^0.00^0.0099.28^99.65^100.1157B3 2^57B3 3unknown unknownAlbitic^Albitic67.73^68.1620.15^20.040.05^0.0811.53^11.500.32^0.270.00^0.000.00^0.000.04^0.060.00^0.0199.82^100.132.97^2.97^2.96^2.97^2.981.03^1.03^1.05^1.04^1.030.96^0.57^0.00^0.00^0.010.03^0.41^0.97^0.98^0.970.00^0.01^0.02^0.02^0.010.01^0.01^0.00^0.00^0.000.00^0.00^0.00^0.00^0.000.00^0.00^0.01^0.00^0.000.00^0.00^0.00^0.00^0.008.00^8.00^8.00^8.00^8.000.57^0.00^0.00^0.010.41^0.97^0.98^0.970.01^0.02^0.02^0.010.01^0.00^0.00^0.000.00^0.01^0.00^0.001.00^0.99^1.00^0.990.27^0.00^0.00^0.01^0.18^0.01^0.01^0.960.73^0.98^0.98^0.98^0.81^0.98^0.98^0.030.01^0.01^0.01^0.01^0.01^0.01^0.01^0.000.00^0.00^0.00^0.00^0.00^0.00^0.00^0.010.01^0.00^0.00^0.00^0.00^0.00^0.00^0.001.01^1.00^0.99^1.00^0.99^1.00^1.01^1.00Appendix B. Table B.2 Microprobe analyses of secondary feldspars from the Ajax East and Ajax West pits. (continued)Sample No.^57B3 5^57B3 6^57B3 10^57B2 8^57B2 9^57B2 10^57132 11^57B2 12^57B2 13^57B2 14Lithology unknown^unknown^unknown^unknown^unknown^unknown^unknown^unknown^unknown^unknownAlteration^Albitic^Albitic^Albitic^Albitic^Albitic^Albitic^Albitic^Albitic^Albitic^Albitic57B1 8unknownAlbitic57B1 9unknownAlbitic57B1 10unknownAlbitic57B1 11unknownAlbiticSiO2 66.51 67.59 68.27 68.16 67.98 67.45 67.18 67.46 68.30 67.38 67.16 67.01 67.33 66.60Al203 20.97 20.10 20.06 19.90 20.03 20.26 20.42 20.28 19.84 20.31 20.50 20.69 20.53 20.80K2O 0.82 0.14 0.08 0.14 0.12 0.18 0.24 0.13 0.12 0.16 0.33 0.32 0.28 0.56Na2O 10.86 11.40 11.62 11.49 11.65 11.27 11.17 11.37 11.78 11.19 11.24 11.12 11.25 11.07CaO 0.36 0.32 0.24 0.21 0.25 0.53 0.48 0.52 0.08 0.41 0.51 0.47 0.35 0.41BaO 0.03 0.00 0.00 0.00 0.00 0.00 0.11 0.04 0.00 0.03 0.04 0.03 0.00 0.00MgO 0.07 0.02 0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.04 0.04 0.04 0.03 0.03Fe2O3 0.16 0.05 0.09 0.07 0.00 0.03 0.06 0.09 0.10 0.14 0.09 0.08 0.06 0.09SrO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00TOTAL 99.77 99.63 100.36 99.97 100.03 99.74 99.67 99.90 100.22 99.66 99.91 99.77 99.84 99.58;.0..^Ion calculations based on 8 oxygensSi1,..) 2.93 2.97 2.97 2.98 2.97 2.96 2.95 2.96 2.98 2.96 2.95 2.94 2.95 2.93Al 1.09 1.04 1.03 1.03 1.03 1.05 1.06 1.05 1.02 1.05 1.06 1.07 1.06 1.08K 0.05 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.03Na 0.93 0.97 0.98 0.97 0.99 0.96 0.95 0.97 1.00 0.95 0.96 0.95 0.96 0.95Ca 0.02 0.02 0.01 0.01 0.01 0.03 0.02 0.02 0.00 0.02 0.02 0.02 0.02 0.02Ba 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Mg 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Fe 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00Sr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00Calculations of end member proportionsKAISi(3)O(8) 0.05 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.03NaAlSi(3)0(8) 0.93 0.97 0.98 0.97 0.99 0.96 0.95 0.97 1.00 0.95 0.96 0.95 0.96 0.95CaAI(2)Si(2)O(8) 0.02 0.02 0.01 0.01 0.01 0.03 0.02 0.02 0.00 0.02 0.02 0.02 0.02 0.02BaAI(2)Si(2)O(8) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00(Mg Fe Sr) 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.01TOTAL 0.99 0.99 1.00 0.99 1.01 0.99 0.99 1.00 1.01 0.98 1.00 0.99 0.99 1.00Appendix B. Table B.3 Microprobe analyses of primary pyroxenes from the Ajax East and Ajax West pits. For sample locations see Figure A.1 and A.2.Sample No.LithologyAlteration35B12 1hybriddioritePropylitic35B12 2^35B12 3hybrid^hybriddiorite^dioritePropylitic^Propylitic35812 4hybriddioritePropylitic35B12 5hybriddioritePropylitic35B12 6hybriddioritePropylitic3589 1hybriddioritePropylitic35B9 2hybriddioritePropylitic35B9 3hybriddioritePropylitic35B9 4hybriddioritePropylitic3586 1hybriddioritePropylitic3586 2hybriddioritePropylitic3586 3hybriddioritePropylitic3585 5hybriddioritePropylitic Propylitic38B1 1hybriddioriteSiO2 53.81 53.66 53.82 53.65 53.22 52.73 52.91 53.06 52.60 53.64 53.57 53.48 53.46 51.60 51.22Al203 0.33 0.51 0.49 0.58 0.88 1.06 0.67 0.84 1.62 0.44 0.64 0.57 0.49 2.49 2.07TiO2 0.03 0.07 0.06 0.07 0.16 0.18 0.08 0.18 0.37 0.05 0.13 0.08 0.07 0.33 0.20FeO 5.01 4.71 4.81 4.60 6.03 5.43 7.33 4.77 5.07 5.15 4.84 4.72 4.78 6.02 6.50MnO 0.21 0.15 0.21 0.17 0.36 0.33 0.44 0.28 0.26 0.21 0.24 0.16 0.17 0.24 0.30MgO 15.23 15.68 15.57 15.51 15.02 15.39 14.52 15.63 15.27 15.16 15.50 15.59 15.36 14.66 15.16CaO 24.57 24.19 24.22 24.45 23.79 23.94 22.82 24.21 23.68 24.21 24.21 24.43 24.20 23.16 22.82NaO 0.21 0.23 0.23 0.26 0.27 0.30 0.31 0.28 0.38 0.23 0.28 0.24 0.26 0.31 0.36Cr2O3 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.05 0.00 0.02 0.12 0.00NiO 0.00 0.00 0.00 0.02 0.00 0.01 0.02 0.01 0.00 0.00 0.03 0.05 0.02 0.00 0.03TOTAL 99.41 99.20 99.41 99.30 99.74 99.37 99.11 99.26 99.25 99.11 99.50 99.33 98.82 98.92 98.66FeO/MgO 0.33 0.30 0.31 0.30 0.40 0.35 0.51 0.31 0.33 0.34 0.31 0.30 0.31 0.41 0.43Ion calculations based on 6 oxygensSi^ 2.00^1.99 1.99 1.99 1.97 1.96 1.98 1.97 1.95 1.99 1.98 1.98 1.99 1.93 1.93A1(IV) 0.01 0.01 0.01 0.01 0.03 0.04 0.02 0.03 0.05 0.01 0.02 0.02 0.01 0.07 0.07Ca 0.98 0.96 0.96 0.97 0.95 0.95 0.92 0.96 0.94 0.96 0.96 0.97 0.97 0.93 0.92Mg 0.84 0.87 0.86 0.86 0.83 0.85 0.81 0.87 0.85 0.84 0.86 0.86 0.85 0.82 0.85Fe 0.16 0.15 0.15 0.14 0.19 0.17 0.23 0.15 0.16 0.16 0.15 0.15 0.15 0.19 0.21Al(VI) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.04 0.02Mn 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01Na 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.03Ni 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Ti 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.010 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00Calculation of end member proportionsMg(2)Si(2)0(6) 0.42 0.43 0.43 0.43 0.42 0.43 0.41 0.43 0.42 0.42 0.43 0.43 0.43 0.41 0.43Fe(2)Si(2)0(6) 0.08 0.07 0.07 0.07 0.09 0.08 0.12 0.07 0.08 0.08 0.08 0.07 0.07 0.09 0.10Ca(2)Si(2)0(6) 0.49 0.48 0.48 0.49 0.47 0.48 0.46 0.48 0.47 0.48 0.48 0.49 0.48 0.46 0.46(Mn Ti AINaNi) 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.04 0.02 0.02 0.02 0.02 0.04 0.03Total 0.99 0.99 0.98 0.98 0.98 0.99 0.98 0.99 0.97 0.98 0.98 0.99 0.98 0.97 0.99Appendix B. Table B.3 Microprobe analyses of prim.^• oxenes from the Ajax East and A'ax West 'its. (continued)Sample No.LithologyAlteration38BI 2hybriddioritePropylitic^38B1 5^38B1 6hybrid^hybriddiorite^dioritePropylitic^Propylitic38B1 7^38B2 1hybrid^hybriddiorite^dioritePropylitic^Propylitic38B2 2hybriddioritePropylitic Propylitic38B2 4hybriddiorite38B3 1hybriddioritePropylitic Propylitic38B3 2hybriddioritePropylitic38B3 3hybriddioritePropylitic38B4 1hybriddioritePropylitic38B4 2hybriddiorite24AIhybriddioritenone^none24A1 2hybriddioritenone24A1 3hybriddioriteSiO2 51.41 51.62 50.96 51.15 52.40 50.72 51.27 51.26 52.01 50.72 51.61 51.69 51.90 52.84 53.22Al203 2.28 2.19 3.05 2.68 1.50 2.32 2.21 2.66 1.97 2.91 2.37 2.39 1.78 1.20 0.75TiO2 0.28 0.22 0.36 0.34 0.15 0.35 0.28 0.31 0.20 0.30 0.31 0.37 0.28 0.23 0.16FeO 6.71 6.40 6.86 7.22 6.97 8.00 6.69 6.66 6.49 6.98 6.75 6.63 6.04 4.72 5.09MnO 0.27 0.24 0.25 0.28 0.31 0.27 0.27 0.32 0.36 0.30 0.26 0.29 0.18 0.27 0.23MgO 15.08 14.96 14.64 14.65 14.68 14.66 14.89 14.97 15.22 14.91 14.82 15.07 14.58 15.59 15.41CaO 22.62 22.65 22.44 22.41 22.96 22.20 22.95 22.60 22.57 22.30 22.90 22.38 23.24 23.70 23.93NaO 0.35 0.37 0.44 0.39 0.38 0.48 0.40 0.35 0.36 0.39 0.35 0.44 0.38 0.38 0.24Cr2O3 0.02 0.36 0.15 0.10 0.07 0.06 0.01 0.04 0.04 0.03 0.04 0.04 0.03 0.00 0.05NiO 0.03 0.00 0.07 0.00 0.01 0.00 0.00 0.02 0.00 0.02 0.00 0.00 0.01 0.03 0.00TOTAL 99.04 99.01 99.22 99.23 99.44 99.06 98.96 99.19 99.21 98.85 99.40 99.30 98.44 98.95 99.09FeO/MgO 0.44 0.43 0.47 0.49 0.47 0.55 0.45 0.44 0.43 0.47 0.46 0.44 0.41 0.30 0.33Ion calculations based on 6 oxygensSi^ 1.93^1.93 1.91 1.92 1.96 1.91 1.92 1.92 1.94 1.91 1.93 1.93 1.95 1.97 1.98A1(IV) 0.07 0.07 0.09 0.08 0.04 0.09 0.08 0.08 0.06 0.09 0.07 0.07 0.05 0.04 0.02Ca 0.91 0.91 0.90 0.90 0.92 0.90 0.92 0.91 0.90 0.90 0.92 0.89 0.94 0.94 0.95Mg 0.84 0.83 0.82 0.82 0.82 0.82 0.83 0.83 0.85 0.84 0.83 0.84 0.82 0.86 0.85Fe 0.21 0.20 0.22 0.23 0.22 0.25 0.21 0.21 0.20 0.22 0.21 0.21 0.19 0.15 0.16A1(VI) 0.03 0.03 0.04 0.03 0.02 0.02 0.02 0.03 0.03 0.04 0.03 0.03 0.03 0.02 0.01Mn 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01Na 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02Ni 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Cr 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Ti 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.000 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00Calculation of end member proportionsMg(2)Si(2)O(6) 0.42 0.42 0.41 0.41 0.41 0.41 0.42 0.42 0.42 0.42 0.41 0.42 0.41 0.43 0.43Fe(2)Si(2)O(6) 0.11 0.10 0.11 0.11 0.11 0.13 0.11 0.10 0.10 0.11 0.11 0.10 0.10 0.07 0.08Ca(2)Si(2)O(6) 0.45 0.45 0.45 0.45 0.46 0.45 0.46 0.45 0.45 0.45 0.46 0.45 0.47 0.47 0.48(Mn Ti AINaNi) 0.04 0.04 0.05 0.04 0.03 0.04 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.02Total 0.98 0.97 0.97 0.97 0.98 0.99 0.98 0.97 0.98 0.98 0.98 0.97 0.97 0.98 0.98A I I ndix B. Table B.3 Micro robe anal ses of rim oxenes from the A'ax East and A'ax West its. continuedSample No.LithologyAlteration24A1 4hybriddioritenone24A1 5^24A2 1hybrid^hybriddiorite^dioritenone^none24A2 2^24A2hybriddioritenone3hybriddioritenone24A2 4hybriddioritenone24A3 1hybriddioritenone24A3 2hybriddioritenone24A3 3hybriddioritenone24A3 4hybriddioritenone24A4 1hybriddioritenone24A4 2hybriddioritenone24A4 3hybriddioritenone24A4 4hybriddioritenone24A4 5hybriddioritenoneSiO2 52.86 52.94 51.92 51.90 52.43 51.29 53.21 53.06 52.30 53.17 50.17 50.09 50.40 50.20 50.22Al203 1.23 1.24 1.84 1.91 1.53 1.99 0.93 0.98 1.39 0.71 3.16 3.27 3.11 3.11 3.07TiO2 0.20 0.22 0.30 0.30 0.29 0.34 0.19 0.18 0.21 0.12 0.38 0.44 0.39 0.36 0.40FeO 5.13 5.77 6.52 6.01 5.19 6.46 5.23 5.64 5.95 5.79 6.77 7.12 6.61 7.38 7.06MnO 0.22 0.22 0.25 0.22 0.16 0.24 0.28 0.20 0.19 0.19 0.13 0.15 0.13 0.19 0.21MgO 15.23 14.98 14.67 14.49 15.01 14.54 15.25 15.13 14.80 15.08 14.86 14.64 14.79 14.72 13.78CaO 23.82 23.64 22.85 23.13 23.40 23.17 23.90 23.53 23.41 23.45 22.82 22.64 23.07 22.34 22.80NaO 0.39 0.31 0.42 0.43 0.37 0.39 0.29 0.41 0.30 0.29 0.18 0.21 0.19 0.21 0.44Cr2O3 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.02 0.00 0.01 0.06 0.00 0.00 0.00NiO 0.00 0.02 0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00TOTAL 99.10 99.33 98.77 98.39 98.40 98.43 99.29 99.13 98.57 98.81 98.55 98.62 98.68 98.51 97.97FeO/MgO 0.34 0.39 0.44 0.41 0.35 0.44 0.34 0.37 0.40 0.38 0.46 0.49 0.45 0.50 0.51Ion calculations based on 6 oxygensSi^ 1.97^1.97 1.95 1.95 1.96 1.93 1.98 1.98 1.96 1.99 1.89 1.89 1.90 1.90 1.91Al(IV) 0.03 0.03 0.05 0.05 0.04 0.07 0.02 0.03 0.04 0.01 0.11 0.11 0.10 0.10 0.09Ca 0.95 0.94 0.92 0.93 0.94 0.94 0.95 0.94 0.94 0.94 0.92 0.92 0.93 0.90 0.93Mg 0.85 0.83 0.82 0.81 0.84 0.82 0.84 0.84 0.83 0.84 0.84 0.82 0.83 0.83 0.78Fe 0.16 0.18 0.21 0.19 0.16 0.20 0.16 0.18 0.19 0.18 0.21 0.23 0.21 0.23 0.22Al(VI) 0.02 0.02 0.03 0.04 0.03 0.02 0.02 0.02 0.02 0.02 0.03 0.04 0.03 0.04 0.05Mn 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.01Na 0.03 0.02 0.03 0.03 0.03 0.03 0.02 0.03 0.02 0.02 0.01 0.02 0.01 0.02 0.03Ni 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Ti 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.010 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00Calculation of end member proportionsMg(2)Si(2)0(6)^0.42^0.42 0.41 0.41 0.42 0.41 0.42 0.42 0.41 0.42 0.42 0.41 0.42 0.41 0.39Fe(2)Si(2)0(6) 0.08 0.09 0.10 0.09 0.08 0.10 0.08 0.09 0.09 0.09 0.11 0.11 0.10 0.12 0.11Ca(2)Si(2)0(6) 0.48 0.47 0.46 0.47 0.47 0.47 0.48 0.47 0.47 0.47 0.46 0.46 0.47 0.45 0.46(Mn Ti AINaNi) 0.03 0.03 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.02 0.03 0.04 0.03 0.03 0.05Total 0.98 0.98 0.97 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.99 0.98 0.98 0.98 0.97A ndix B. Table B.4 Micro i robe anal ses of secondaSample No.LithologyAlterationSi02Al203TiO2FeOMnOMgOCaONa20Cr203NiOTOTALg Ions calculated based on 6 oxygenSi^ 2.00^2.01^2.00^2.00ARIV) 0.00^0.00^0.00^0.00Ca 0.97^0.95^0.96^0.97Mg^ 0.82^0.82^0.81^0.85Fe 0.16^0.16^0.18^0.14Al(VI)^0.02^0.02^0.02^0.02Mn 0.00^0.00^0.01^0.00Na 0.02^0.03^0.03^0.03Ni^ 0.00^0.00^0.00^0.00Cr 0.00^0.00^0.00^0.00Ti 0.00^0.00^0.00^0.00O^6.00^6.00^6.00^6.00Calculation of end member proportionsMg(2)Si(2)O(6)^0.41^0.41^0.41^0.42Fe(2)Si(2)O(6) 0.08^0.08^0.09^0.07Ca(2)Si(2)0(6)^0.49^0.48^0.48^0.49(Mn Ti AINaNi) 0.02^0.03^0.02^0.02TOTAL^0.98^0.96^0.97^0.9817A7 2^17A7 4Sugarloaf^Sugarloafdiorite^dioriteAlbitic^Albitic53.76 54.140.36 0.430.01 0.005.23 5.180.08 0.1214.84 14.712434 23.840.32 0.390.00 0.000.01 0.0098.94 98.8217A7 5^17A7 7Sugarloaf Sugarloafdiorite^dioriteAlbitic^Albitic^53.72^53.710.34^0.430.03^0.015.78^4.630.19^0.1414.57^15.2923.99^24.360.37^0.340.02^0.030.00^0.0799.02^99.00oxenes from the A ax East and A'ax Westits. Sam I le locations Fi! res. Al and A2.17A4 2^17A4 4^17A4 6^17A4 7^8^17A4 9Sugarloaf^Sugarloaf^Sugarloaf^Sugarloaf^Sugarloaf^Sugarloafdiorite^diorite^diorite^diorite^diorite^dioriteAlbitic^Albitic^Albitic^Albitic^Albitic^Albitic42B2 1SugarloafdioriteAlbitic42B2 2^42B2 3Sugarloaf^Sugarloafdiorite^dioriteAlbitic^Albitic42133 1SugarloafdioriteAlbitic54.06 53.80 53.54 54.15 53.79 53.94 54.58 54.63 54.31 54.190.29 0.40 0.37 0.34 0.39 0.33 0.24 0.22 0.16 0.330.03 0.02 0.04 0.00 0.01 0.00 0.00 0.00 0.01 0.054.09 4.73 5.48 3.93 4.48 4.15 3.79 3.43 4.12 3.780.07 0.10 0.15 0.13 0.14 0.12 0.08 0.02 0.09 0.1415.72 15.37 14.85 15.85 15.39 15.77 16.03 16.39 15.90 16.3624.49 24.36 24.38 24.66 24.32 24.59 25.07 25.22 24.97 24.710.25 0.34 0.28 0.24 0.35 0.28 0.19 0.17 0.16 0.240.06 0.01 0.02 0.00 0.00 0.00 0.00 0.02 0.01 0.000.00 0.00 0.01 0.02 0.01 0.00 0.00 0.02 0.00 0.0099.07 99.12 99.11 99.34 98.87 99.18 99.98 100.11 99.72 99.802.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.990.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.010.97 0.97 0.97 0.98 0.97 0.98 0.98 0.99 0.98 0.970.87 0.85 0.83 0.87 0.85 0.87 0.88 0.89 0.87 0.900.13 0.15 0.17 0.12 0.14 0.13 0.12 0.11 0.13 0.120.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.000.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.000.02 0.02 0.02 0.02 0.03 0.02 0.01 0.01 0.01 0.020.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.006.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.000.43 0.43 0.41 0.44 0.43 0.44 0.44 0.45 0.44 0.450.06 0.07 0.09 0.06 0.07 0.06 0.06 0.05 0.06 0.060.49 0.48 0.49 0.49 0.48 0.49 0.49 0.49 0.49 0.490.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.010.98 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99A ndix B. Table B.4 Micro robe anal ses of secon^oxenes from the A'ax East and A'ax West.its._ continued)42B3 2 42B3 3^42B4 1^42B4 2^42B4 3^42B6 1^42B6 2^42B6 3^42B7 1^42B7 2^42B7 3^42B7 4^45A4 1^45A4 2Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloafdiorite^diorite^diorite^diorite^diorite^diorite^diorite^diorite^diorite^diorite^diorite^diorite^diorite^dioriteAlteration^Albitic^Albitic^Albitic^Albitic^Albitic^Albitic^Albitic^Albitic^Albitic^Albitic^Albitic^Albitic^Albitic^AlbiticSiO2 53.16^53.57^54.37^54.01^53.97^53.98^53.90^53.95^53.16^53.71^53.85^53.10^54.17^54.22Al203^0.28^0.27^0.21^0.22^0.42^0.39^0.51^0.43^0.45^0.50^0.49^0.45^0.92^0.46TiO2 0.04^0.04^0.00^0.02^0.05^0.07^0.02^0.01^0.00^0.07^0.05^0.04^0.11^0.08FeO 4.33^6.26^3.46^4.67^4.45^4.51^4.70^4.53^4.78^5.14^5.05^4.93^4.91^4.27MnO^ 0.09^0.18^0.07^0.08^0.14^0.12^0.15^0.13^0.14^0.08^0.12^0.13^0.31^0.24MgO 15.64^14.48^16.44^15.76^16.06^15.87^15.44^15.53^15.39^15.22^15.18^15.35^15.52^16.40CaO 24.76^24.48^25.23^24.97^24.58^24.69^25.10^24.75^24.48^24.63^24.83^24.37^23.34^23.78Na2O^ 0.23^0.32^0.21^0.23^0.32^0.23^0.27^0.28^0.28^0.28^0.25^0.28^0.67^0.30Cr2O3 0.00^0.00^0.00^0.03^0.00^0.02^0.02^0.00^0.00^0.01^0.03^0.00^0.04^0.01NiO 0.06^0.06^0.01^0.00^0.00^0.02^0.03^0.02^0.00^0.00^0.00^0.00^0.01^0.00TOTAL^98.60^99.66^100.00^100.00^100.00^99.89^100.13^99.63^98.69^99.63^99.85^98.65^99.99^99.75Ions calculated based on 6 oxygenSi^ 1.99^1.99^1.99^1.99^1.98^1.99^1.98^1.99^1.99^1.99^1.99^1.99^1.99^1.99Al(IV) 0.01^0.01^0.01^0.01^0.02^0.01^0.02^0.01^0.02^0.01^0.01^0.02^0.01^0.01Ca 0.99^0.98^0.99^0.99^0.97^0.97^0.99^0.98^0.98^0.98^0.98^0.98^0.92^0.94Mg^ 0.87^0.80^0.90^0.87^0.88^0.87^0.85^0.86^0.86^0.84^0.84^0.86^0.85^0.90Fe 0.14^0.20^0.11^0.14^0.14^0.14^0.15^0.14^0.15^0.16^0.16^0.15^0.15^0.13Al(VI) 0.00^0.01^0.00^0.00^0.00^0.00^0.01^0.01^0.01^0.01^0.01^0.00^0.03^0.01Mn^ 0.00^0.01^0.00^0.00^0.00^0.00^0.01^0.00^0.01^0.00^0.00^0.00^0.01^0.01Na 0.02^0.02^0.02^0.02^0.02^0.02^0.02^0.02^0.02^0.02^0.02^0.02^0.05^0.02Ni 0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00Cr^ 0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00Ti 0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00O 6.00^6.00^6.00^6.00^6.00^6.00^6.00^6.00^6.00^6.00^6.00^6.00^6.00^6.00Calculation of end member proportionsMg(2)Si(2)O(6)^0.44^0.40^0.45^0.43^0.44^0.44^0.42^0.43^0.43^0.42^0.42^0.43^0.43^0.45Fe(2)Si(2)O(6) 0.07^0.10^0.05^0.07^0.07^0.07^0.07^0.07^0.08^0.08^0.08^0.08^0.08^0.07Ca(2)Si(2)O(6)^0.50^0.49^0.50^0.49^0.48^0.49^0.50^0.49^0.49^0.49^0.49^0.49^0.46^0.47(Mn Ti AINaNi) 0.01^0.02^0.01^0.01^0.02^0.01^0.02^0.02^0.02^0.02^0.02^0.02^0.05^0.02TOTAL^1.00^0.99^1.00^1.00^0.99^0.99^0.99^0.99^0.99^0.99^0.99^0.99^0.96^0.98' I .Sample No.LithologyAppendix B. Table B.4 Microprobe analyses of secondary pyroxenes from the Ajax East and Ajax West pits. (continued) Sample No.^45A4 3^45A5 4^45A6 1^45A6 2^45A6 3^45A7 1^45A7 2^45A7 3^45A7 4^45A7 5^45A8 I^45A8 2^45A8 3^45A8 4LithologySugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloafdiorite^diorite^diorite^diorite^diorite^diorite^diorite^diorite^diorite^diorite^diorite^diorite^diorite^dioriteAlteration^Albitic^Albitic^Albitic^Albitic^Albitic^Albitic^Albitic^Albitic^Albitic^Albitic^Albitic^Albitic^Albitic^AlbiticSiO2 54.24^54.16^53.37^53.45^54.33^53.78^53.87^53.26^53.89^53.81^54.30^53.86^54.06^53.97Al203^0.58^0.52^0.55^1.01^0.62^0.64^0.36^0.62^0.67^0.78^0.68^0.35^0.74^0.63TiO2 0.07^0.09^0.10^0.17^0.07^0.12^0.04^0.12^0.11^0.12^0.12^0.04^0.08^0.08FeO 4.37^3.95^6.43^4.40^3.89^4.34^4.35^6.56^4.39^3.97^4.22^4.16^4.07^3.98MnO^ 0.26^0.24^0.27^0.24^0.27^0.24^0.22^0.42^0.27^0.26^0.20^0.24^0.24^0.24MgO 16.10^16.24^15.60^15.77^16.22^16.17^16.30^15.15^16.11^16.16^16.09^16.46^16.01^16.56CaO 24.12^24.32^22.70^24.03^24.18^24.07^24.43^22.78^24.23^23.95^24.04^24.27^24.17^24.27Na2O^ 0.37^0.38^0.32^0.47^0.39^0.40^0.25^0.41^0.39^0.42^0.35^0.27^0.35^0.35Cr2O3 0.06^0.07^0.01^0.05^0.07^0.05^0.01^0.05^0.08^0.09^0.00^0.00^0.05^0.05NiO 0.03^0.00^0.00^0.00^0.00^0.00^0.04^0.02^0.00^0.00^0.00^0.00^0.00^0.01TOTAL^100.20^99.96^99.35^99.59^100.04^99.81^99.86^99.38^100.15^99.57^100.00^99.65^99.78^100.15Ions calculated based on 6 oxygensSi^ 1.99^1.99^1.99^1.97^1.99^1.98^1.98^1.98^1.98^1.98^1.99^1.98^1.99^1.98Al(IV) 0.01^0.01^0.02^0.03^0.01^0.02^0.02^0.02^0.02^0.02^0.01^0.02^0.01^0.02Ca 0.95^0.96^0.90^0.95^0.95^0.95^0.96^0.91^0.95^0.95^0.94^0.96^0.95^0.95Mg^ 0.88^0.89^0.87^0.87^0.89^0.89^0.89^0.84^0.88^0.89^0.88^0.90^0.88^0.90Fe 0.13^0.12^0.20^0.14^0.12^0.13^0.13^0.20^0.14^0.12^0.13^0.13^0.13^0.12Al(VI) 0.01^0.01^0.01^0.02^0.02^0.01^0.00^0.01^0.01^0.02^0.02^0.00^0.02^0.00Mn^ 0.01^0.01^0.01^0.01^0.01^0.01^0.01^0.01^0.01^0.01^0.01^0.01^0.01^0.01Na 0.03^0.03^0.02^0.03^0.03^0.03^0.02^0.03^0.03^0.03^0.03^0.02^0.03^0.03Ni 0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00Cr^ 0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00Ti 0.00^0.00^0.00^0.01^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.000 6.00^6.00^6.00^6.00^6.00^6.00^6.00^6.00^6.00^6.00^6.00^6.00^6.00^6.00Calculation of end member proportionsMg(2)Si(2)O(6)^0.44^0.44^0.43^0.43^0.44^0.44^0.45^0.42^0.44^0.44^0.44^0.45^0.44^0.45Fe(2)Si(2)O(6) 0.07^0.06^0.10^0.07^0.06^0.07^0.07^0.10^0.07^0.06^0.07^0.06^0.06^0.06Ca(2)Si(2)O(6)^0.47^0.48^0.45^0.48^0.47^0.48^0.48^0.46^0.48^0.47^0.47^0.48^0.48^0.48(Mn Ti AINaNi) 0.03^0.02^0.02^0.03^0.03^0.02^0.01^0.03^0.02^0.03^0.03^0.01^0.03^0.02TOTAL^0.98^0.98^0.99^0.98^0.98^0.99^1.00^0.98^0.98^0.98^0.98^1.00^0.98^0.99Appendix B. Table B.4 Microprobe analyses of secondary pyroxenesfrom the A'ax East and A'ax West 'its. continued)Sample No. 45A8 5 59A3 7 59A2 11 59A2 12 59A2 13 59A7 12 59A7 13 59A1 10Lithology Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloafdiorite diorite diorite diorite diorite diorite diorite dioriteAlteration Albitic Albitic Albitic Albitic Albitic Albitic Albitic Albitic5102 53.85 52.71 52.96 53.48 53.44 54.33 52.64 52.63Al203 0.59 0.88 0.52 0.77 0.84 0.77 1.08 0.76TiO2 0.07 0.13 0.07 0.10 0.12 0.08 0.22 0.18FeO 4.09 6.46 6.13 7.00 7.20 6.07 7.23 6.90MnO 0.25 0.16 0.16 0.20 0.20 0.16 0.22 0.21MgO 16.13 14.64 14.87 14.48 14.07 14.63 14.21 14.26CaO 24.25 23.52 23.78 23.50 22.52 22.52 22.95 23.01Na2O 0.31 0.44 0.35 0.47 0.48 0.42 0.56 0.45Cr2O3 0.00 0.00 0.01 0.00 0.01 0.02 0.04 0.00NiO 0.00 0.02 0.02 0.02 0.00 0.03 0.03 0.02TOTAL 99.53 98.97 98.88 100.02 98.89 99.03 99.17 98.42Ions calculated based on 6 oxygensSi^ 1.99^1.97 1.98 1.98 2.00 2.02 1.97 1.98Al(IV) 0.02 0.03 0.02 0.02 0.00 0.00 0.03 0.02Ca 0.96 0.94 0.95 0.93 0.90 0.90 0.92 0.93Mg 0.89 0.82 0.83 0.80 0.79 0.81 0.79 0.80Fe 0.13 0.20 0.19 0.22 0.23 0.19 0.23 0.22Al(VI) 0.01 0.01 0.01 0.02 0.04 0.03 0.02 0.02Mn 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01Na 0.02 0.03 0.03 0.03 0.04 0.03 0.04 0.03Ni 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01O 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00Calculation of end member proportionsMg(2)Si(2)O(6)^0.44^0.41^0.42 0.40 0.39 0.41 0.40 0.40Fe(2)Si(2)O(6) 0.06 0.10 0.10 0.11 0.11 0.09 0.11 0.11Ca(2)Si(2)O(6) 0.48 0.47 0.48 0.47 0.45 0.45 0.46 0.47(Mn Ti AINaNi) 0.02 0.03 0.02 0.03 0.04 0.04 0.04 0.03TOTAL 0.99 0.98 0.99 0.98 0.96 0.95 0.97 0.97A -^ndix B. Table B.5 Micro robe anal ses of e 'idote from the A .ax East and A'ax West • its. Sam 'le locations Fi^res. Al and A2.Sample No. 33A5 2 33A5 3 33A7 1 33A7 2 33A7 3 33A9 2 33A1 1 1 33A1 1 3 33Al2 1 33Al2 3 33Al2 4 33Al2 5 35B2 1 35B2 2 35B7 1 35B7 2Lithology Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf hybrid hybrid hybrid hybriddiorite diorite diorite diorite diorite diorite diorite diorite diorite diorite diorite diorite diorite diorite diorite dioriteAlteration Propylitic Propylitic Propylitic Propylitic Propylitic Propylitic Propylitic Propylitic Propylitic Propylitic Propylitic Propylitic Propylitic Propylitic Propylitic PropyliticSiO2 36.94 36.99 36.80 37.03 36.78 36.57 36.88 36.40 36.77 36.60 37.14 36.77 37.75 37.67 36.51 36.25Al203 21.57 21.38 21.56 21.42 21.55 20.61 21.61 22.73 22.10 20.95 22.25 22.86 27.71 27.71 21.14 20.69TiO2 0.01 0.07 0.09 0.03 0.05 0.01 0.02 0.04 0.08 0.58 0.00 0.03 0.01 0.04 0.01 0.02FeO 14.25 14.10 14.69 14.62 14.88 15.61 14.37 12.79 13.72 14.51 13.68 13.02 6.92 6.99 14.51 15.07MnO 0.02 0.07 0.25 0.04 0.24 0.00 0.01 0.04 0.07 0.03 0.01 0.06 0.07 0.26 0.13 0.19MgO 0.00 0.01 0.05 0.00 0.05 0.00 0.01 0.03 0.04 0.03 0.00 0.02 0.04 0.08 0.00 0.00CaO 22.79 23.11 22.26 23.11 21.85 22.94 23.16 23.33 22.95 23.02 23.20 23.13 23.27 23.22 22.43 21.94Na2O 0.00 0.01 0.00 0.00 0.01 0.00 0.02 0.03 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00Cr2O3 0.01 0.02 0.03 0.00 0.00 0.01 0.00 0.02 0.00 0.06 0.00 0.04 0.00 0.00 0.04 0.00NiO 0.01 0.00 0.02 0.00 0.00 0.04 0.00 0.00 0.00 0.04 0.01 0.00 0.00 0.02 0.04 0.00TOTAL 95.61 95.76 95.75 96.25 95.42 95.79 96.06 95.41 95.72 95.83 96.29 95.95 95.77 96.00 94.82 94.17Ion calculations based on 13 oxygensSi 3.24 3.24 3.23 3.23 3.23 3.23 3.22 3.18 3.21 3.21 3.22 3.19 3.16 3.15 3.23 3.24AI 2.23 2.20 2.23 2.20 2.23 2.14 2.22 2.34 2.27 2.17 2.27 2.34 2.73 2.73 2.21 2.18Fe 1.04 1.03 1.08 1.07 1.09 1.15 1.05 0.93 1.00 1.07 0.99 0.94 0.48 0.49 1.07 1.13Mn 0.00 0.01 0.02 0.00 0.02 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.02 0.01 0.01Mg 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.00Ti 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00Ca 2.14 2.17 2.09 2.16 2.06 2.17 2.17 2.18 2.15 2.17 2.16 2.15 2.09 2.08 2.13 2.10Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00A.• • - ndix B. Table B.5 Micro s robe anal ses of e idote from the kax East and A'ax West17A1 7SugarloafdioriteAlbitic17A1 8^17A1 9^17A1 10^35A1 1^35A1 2^35A1 3^35A3 7^35A3 8^35A3 9^45A2 1^45A2 3^45A2 4Sugarloaf^Sugarloaf^Sugarloaf^Sugarloaf^Sugarloaf^Sugarloaf^Sugarloaf^Sugarloaf^Sugarloaf^Sugarloaf^Sugarloaf^Sugarloafdiorite^diorite^diorite^diorite^diorite^diorite^diorite^diorite^diorite^diorite^diorite^dioriteAlbitic^Albitic^Albitic^Albitic^Albitic^Albitic^Albitic^Albitic^Albitic^Albitic^Albitic^Albitic37.89 37.03 37.29 37.23 37.73 37.48 37.80 37.36 37.44 37.48 37.50 37.05 36.6723.97 23.81 22.15 23.13 26.42 24.40 26.11 23.40 24.84 26.19 25.00 26.80 26.080.02 0.04 0.00 0.00 0.06 0.03 0.07 0.33 0.01 0.06 0.02 0.00 0.0611.14 11.87 13.50 12.17 8.78 11.05 9.21 12.04 10.50 9.09 2.58 2.31 3.120.31 0.67 0.01 0.18 0.03 0.18 0.00 0.00 0.08 0.05 0.01 0.11 0.040.06 0.06 0.00 0.03 0.01 0.02 0.01 0.03 0.04 0.04 3.96 2.75 2.6821.46 21.42 22.69 22.26 23.02 23.03 22.28 23.07 23.09 23.15 23.30 23.27 23.050.31 0.01 0.02 0.01 0.00 0.00 0.00 0.01 0.02 0.01 0.02 0.04 0.030.00 0.01 0.00 0.01 0.03 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.000.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.0395.16 94.92 95.66 95.03 96.08 96.20 95.48 96.26 96.03 96.07 92.42 92.33 91.773.26 3.21 3.25 3.24 3.18 3.20 3.20 3.21 3.19 3.17 3.20 3.16 3.162.43 2.44 2.27 2.37 2.62 2.46 2.61 2.37 2.50 2.61 2.52 2.69 2.650.80 0.86 0.98 0.88 0.62 0.79 0.65 0.86 0.75 0.64 0.18 0.16 0.220.02 0.05 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.000.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.50 0.35 0.340.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.001.98 1.99 2.12 2.07 2.08 2.11 2.02 2.12 2.11 2.10 2.13 2.12 2.130.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.010.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0013.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00Sample No.^35B5 2^35B5 3^17A1 6Lithology^hybrid^hybrid^Sugarloafdiorite^diorite^dioriteAlteration^Propylitic Propylitic AlbiticSiO2 36.83^36.72^37.09Al203^23.75^24.13^22.96TiO2 0.07^0.05^0.03FeO^11.25^10.34^12.38MnO 0.03^0.09^0.08MgO^0.01^0.02^0.03CaO 23.19^22.44^22.82NaO^0.00^0.02^0.00Cr2O3 0.00^0.00^0.00NiO^0.00^0.00^0.01.....,-.; TOTAL^95.15^93.80^95.39Ion calculations based on 13 oxygensSi^3.19^3.20^3.22Al 2.43^2.48^2.35Fe 0.82^0.75^0.90Mn^0.00^0.01^0.01Mg 0.00^0.00^0.00Ti 0.00^0.00^0.00Ca^2.15^2.10^2.12Na 0.00^0.00^0.00Cr^0.00^0.00^0.000 13.00^13.00^13.00Appendix B Table B.5 Microprobe anases of epidSample No.^59A7 9^59A7 10 59A7 11 31A7 6Lithology^Sugarloaf Sugarloaf Sugarloaf Sugarloafdiorite^diorite^diorite^dioriteAlteration^Albitic^Albitic^Albitic^PropyliticSiO2 37.02^36.85^35.86^37.42Al203^22.75^23.38^22.11^24.16TiO2 0.01^0.04^0.02^0.04FeO^12.99^12.55^12.96^10.71MnO 0.07^0.24^0.07^0.14MgO^0.01^0.05^0.06^0.04CaO 22.90^22.68^22.86^22.52NaO^0.00^0.01^0.02^0.02Cr2O3 0.01^0.00^0.03^0.00NiO^0.06^0.08^0.00^0.01ote from the Ajax East and Ajax West pits. (continued) 31A7 7^31A7 8^31A1 6^57B2 6^57B2 7^57B5 6^57B5 7^57B5 8^57B6 1^57B6 2^57B6 3^57B6 4Sugarloaf Sugarloaf Sugarloaf unknown unknown unknown unknown unknown unknown unknown unknown unknowndiorite^diorite^dioritePropylitic Propylitic Propylitic Albitic^Albitic^Albitic^Albitic^Albitic^Albitic^Albitic^Albitic^Albitic^38.48^36.73^37.05^36.79^36.90^37.39^37.50^37.20^37.25^37.13^37.91^37.2723.63^21.44^24.34^23.54^21.58^25.16^25.92^25.31^25.54^23.94^23.37^23.870.01^0.03^0.03^0.00^0.05^0.04^0.01^0.01^0.00^0.03^0.00^0.0310.97^13.90^10.69^11.16^13.39^9.55^8.15^9.24^9.47^11.64^11.75^11.510.07^0.01^0.18^0.06^0.06^0.10^0.04^0.11^0.28^0.00^0.01^0.000.05^0.02^0.30^0.01^0.04^0.03^0.28^0.05^0.04^0.01^0.02^0.0021.90^22.67^22.61^22.05^22.59^22.91^22.80^22.70^22.62^23.00^22.04^22.850.45^0.00^0.02^0.01^0.00^0.00^0.01^0.03^0.02^0.03^0.47^0.010.04^0.00^0.09^0.02^0.00^0.02^0.00^0.03^0.04^0.04^0.00^0.000.00^0.00^0.07^0.01^0.03^0.00^0.00^0.01^0.00^0.00^0.04^0.03TOTAL^95.84^95.87^93.99^95.05^95.60^94.79^95.38^93.66^94.66^95.20^94.70^94.69^95.24^95.82^95.62^95.57Ion calculations based on 13 oxygensSi^3.21^3.19^3.19^3.22^3.29^3.24^3.19^3.23^3.25^3.20^3.20^3.192.33^2.38^2.31^2.45^2.38^2.23^2.47^2.43^2.24^2.54^2.60^2.560.94^0.91^0.96^0.77^0.78^1.03^0.77^0.82^0.99^0.68^0.58^0.660.01^0.02^0.01^0.01^0.01^0.00^0.01^0.00^0.00^0.01^0.00^0.010.00^0.01^0.01^0.00^0.01^0.00^0.04^0.00^0.01^0.00^0.04^0.010.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.002.13^2.10^2.18^2.08^2.01^2.14^2.08^2.07^2.13^2.10^2.08^2.090.00^0.00^0.00^0.00^0.08^0.00^0.00^0.00^0.00^0.00^0.00^0.000.00^0.00^0.00^0.00^0.00^0.00^0.01^0.00^0.00^0.00^0.00^0.0013.00^13.00^13.00^13.00^13.00^13.00^13.00^13.00^13.00^13.00^13.00^13.00AlFeMnMgTiCaNaCr03.18^3.20^3.26^3.212.57^2.43^2.37^2.420.68^0.84^0.85^0.830.02^0.00^0.00^0.000.01^0.00^0.00^0.000.00^0.00^0.00^0.002.07^2.12^2.03^2.110.00^0.01^0.08^0.000.00^0.00^0.00^0.0013.00^13.00^13.00^13.00A^ndix B Table B.6 Micro robe anal sis of chlorite from the A'ax East and A'ax West 'its. Sam .le locations Fi es. Al and A2.Sample No. 45A1 2 45A3 1 45A3 2 45A3 3 45A8 6 45A8 7 45A8 8 49B6 2 49B6 3 49B6 4 49B6 5 49B6 7 31A8 1 31A8 2 31A8 3 31A8 4Litholgy Sugarloaf. Sugarloaf. Sugarloaf. Sugarloaf. Sugarloaf. Sugarloaf. Sugarloaf Sugarloaf. Sugarloaf. Sugarloaf. Sugarloaf. Sugarloaf. Sugarloaf. Sugarloaf. Sugarloaf. Sugarloaf.Diorite Diorite Diorite Diorite Diorite Diorite Diorite Diorite Diorite Diorite Diorite Diorite Diorite Diorite Diorite DioriteAlteration Potassic Potassic Potassic Potassic Potassic Potassic Potassic Albitic Albitic Albitic Albitic Albitic Propylitic Propylitic Propylitic PropyliticSiO2 28.00 28.79 28.86 28.17 29.08 27.97 29.94 28.94 29.37 29.17 29.57 29.10 26.94 27.82 27.96 27.45Al203 17.91 17.92 18.12 17.86 17.79 18.29 1738 17.29 17.17 17.11 16.81 17.29 18.74 18.04 18.31 18.53TiO2 0.06 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.02 0.04 0.02 0.01 0.00FeO 18.03 16.53 16.49 15.96 16.00 15.14 14.96 16.76 16.61 16.52 16.73 17.09 22.63 20.03 20.38 20.94MnO 0.22 0.24 0.11 0.15 0.21 0.28 0.21 0.11 0.07 0.08 0.16 0.11 0.25 0.14 0.15 0.17MgO 20.77 22.34 22.42 22.42 22.82 22.72 22.65 23.05 22.99 22.96 22.00 22.40 17.23 19.72 19.26 18.34CaO 0.03 0.01 0.00 0.03 0.06 0.02 0.05 0.06 0.03 0.07 0.10 0.16 0.00 0.03 0.02 0.03Na2O 0.05 0.02 0.03 0.06 0.08 0.08 0.12 0.02 0.05 0.06 0.06 0.06 0.04 0.04 0.01 0.05TOTAL 85.09 85.85 86.03 84.65 86.05 84.50 85.30 86.24 86.31 85.98 85.44 86.22 85.86 85.83 86.11 85.52FeO/MgO 0.87 0.74 0.74 0.71 0.70 0.67 0.66 0.73 0.72 0.72 0.76 0.76 1.31 1.02 1.06 1.14Ion calculations based on 36 (0,0H)Si 5.48 5.64 5.65 5.45 5.69 5.39 5.79 5.69 5.77 5.72 5.77 5.73 5.41 5.53 5.57 5.46Al 4.13 4.14 4.18 4.07 4.10 4.15 3.96 4.01 3.98 3.95 3.87 4.01 4.44 4.22 4.30 4.34Ti 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00Fe 2.95 2.71 2.70 2.58 2.62 2.44 2.42 2.76 2.73 2.71 2.73 2.81 3.80 3.33 3.40 3.48Mn 0.04 0.04 0.02 0.02 0.03 0.05 0.03 0.02 0.01 0.01 0.03 0.02 0.04 0.02 0.03 0.03Mg 6.06 6.52 6.55 6.46 6.66 6.52 6.52 6.76 6.74 6.71 6.40 6.58 5.16 5.84 5.72 5.44Ca 0.01 0.00 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.02 0.03 0.00 0.01 0.00 0.01Na 0.02 0.01 0.01 0.02 0.03 0.03 0.04 0.01 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.02OH 19.50 18.50 18.28 19.82 18.23 19.93 18.97 18.08 17.97 18.35 18.96 18.12 18.97 18.79 18.49 19.22A^ndix B Table B.6 Micro robe anal sis of chlorite from A'ax East and A'ax West its. continued)Sample No. 31A6 7 31A6 8 31A6 9 31A11 1 31A11 2 3 1A1 1 3 3 1A1 1 4 31A11 5 31A11 6 31A5 6 31A5 7 31A5 8 31A3 6 31A3 7 31A3 8 31A3 9Litholgy Sugarloaf. Sugarloaf. Sugarloaf. Sugarloaf. Sugarloaf. Sugarloaf. Sugarloaf. Sugarloaf. Sugarloaf. Sugarloaf. Sugarloaf. Sugarloaf. Sugarloaf. Sugarloaf. Sugarloaf. Sugarloaf.Diorite Diorite Diorite Diorite Diorite Diorite Diorite Diorite Diorite Diorite Diorite Diorite Diorite Diorite Diorite DioriteAlteration Propylitic Propylitic Propylitic Propylitic Propylitic Propylitic Propylitic Propylitic Propylitic Propylitic Propylitic Propylitic Propylitic Propylitic Propylitic PropyliticSi02 27.30 27.35 27.44 26.52 27.05 27.83 27.21 26.91 27.46 27.73 27.04 27.70 27.21 27.67 28.22 28.74Al203 17.88 18.57 18.53 19.11 18.29 18.40 18.45 18.41 18.30 18.11 18.54 17.72 17.63 17.75 18.15 17.30TiO2 0.00 0.00 0.02 0.02 0.00 0.01 0.00 0.00 0.01 0.02 0.00 0.03 0.00 0.02 0.02 0.02FeO 22.57 21.38 20.81 21.85 19.63 19.61 20.85 21.13 21.66 20.41 22.08 21.34 20.92 20.10 18.51 19.94MnO 0.22 0.19 0.19 0.18 0.23 0.22 0.18 0.27 0.23 0.17 0.15 0.22 0.19 0.17 0.16 0.18MgO 17.51 18.67 18.56 17.70 17.93 19.18 18.06 17.72 18.17 19.00 17.40 18.38 17.43 18.89 20.33 18.44CaO 0.02 0.02 0.02 0.02 0.02 0.01 0.04 0.03 0.01 0.00 0.00 0.01 0.02 0.04 0.05 0.04Na20 0.05 0.00 0.01 0.03 0.06 0.06 0.07 0.05 0.06 0.04 0.04 0.04 0.09 0.07 0.06 0.08TOTAL 85.55 86.18 85.58 85.42 83.21 85.32 84.86 84.51 85.91 85.48 85.26 85.43 83.50 84.71 85.51 84.73FeO/MgO 1.29 1.15 1.12 1.23 1.10 1.02 1.15 1.19 1.19 1.07 1.27 1.16 1.20 1.06 0.91 1.08Ion calculations based on 36 (0,0H)Si 5.47 5.48 5.46 5.29 5.24 5.49 5.38 5.31 5.50 5.50 5.39 5.51 5.31 5.44 5.55 5.64Al 4.22 4.39 4.34 4.50 4.17 4.28 4.30 4.28 4.32 4.23 4.35 4.16 4.06 4.12 4.21 4.00Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Fe 3.78 3.58 3.46 3.65 3.18 3.24 3.45 3.49 3.63 3.39 3.68 3.55 3.41 3.31 3.05 3.27Mn 0.04 0.03 0.03 0.03 0.04 0.04 0.03 0.04 0.04 0.03 0.03 0.04 0.03 0.03 0.03 0.03Mg 5.23 5.58 5.50 5.27 5.18 5.64 5.32 5.21 5.43 5.62 5.17 5.45 5.07 5.54 5.96 5.39Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01Na 0.02 0.00 0.00 0.01 0.02 0.02 0.03 0.02 0.03 0.02 0.02 0.02 0.03 0.03 0.02 0.03OH 19.33 18.50 19.14 19.42 21.70 19.34 19.97 20.40 18.83 19.22 19.62 19.36 21.50 20.08 19.03 20.00Appendix B Table B.6 Microprobe analysis of chlorite from the Ajax East and Ajax West pits. (continued) Sample No.^57B1 5^57B2 1^57B2 2^57B5 2^57B5 3^57135 5^57B8 1^57138 2^57B8 3^57B8 4^57138 5^57B8 6^57B8 7^57B3 7^57B3 8^57B3 9Litholgy^unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown unknownAlteration^Albitic^Albitic^Albitic^Albitic^Albitic^Albitic^Albitic^Albitic^Albitic^Albitic^Albitic^Albitic^Albitic^Albitic^Albitic^AlbiticSi02 27.64^28.14^28.08^28.41^28.40^28.72^27.96^27.73^27.47^28.83^28.18^27.95^28.48^28.22^27.80^27.61Al203^16.65^17.48^18.28^18.58^18.20^18.00^17.96^18.49^18.69^17.84^18.36^18.47^18.07^17.01^17.67^17.90TiO2 0.04^0.03^0.05^0.00^0.01^0.00^0.01^0.01^0.00^0.00^0.00^0.01^0.00^0.03^0.02^0.02FeO^18.35^16.01^16.28^15.70^15.44^15.07^14.78^14.69^14.10^15.34^16.20^16.24^16.50^17.94^18.18^18.54MnO 0.14^0.20^0.24^0.25^0.26^0.24^0.24^0.24^0.25^0.25^0.26^0.27^0.22^0.27^0.20^0.24MgO^18.93^21.30^21.45^21.59^21.87^21.94^21.71^22.49^22.60^21.05^21.74^21.57^21.08^19.39^19.54^19.91CaO 0.05^0.07^0.05^0.41^0.02^0.01^0.06^0.05^0.04^0.07^0.05^0.03^0.04^0.03^0.05^0.05Na20^0.11^0.08^0.11^0.03^0.06^0.06^0.06^0.07^0.08^0.05^0.05^0.06^0.04^0.11^0.12^0.09TOTAL 81.90^83.31^84.54^84.98^84.25^84.04^82.80^83.77^83.22^83.44^84.84^84.59^84.43^82.97^83.59^84.37Fe0/Mg0^0.97^0.75^0.76^0.73^0.71^0.69^0.68^0.65^0.62^0.73^0.75^0.75^0.78^0.93^0.93^0.93Ion calculations based on 36 (0,0H)Si^5.26^5.38^5.43Al 3.74^3.94^4.17Ti 0.01^0.00 0.01Fe^2.92^2.56^2.63Mn 0.02^0.03^0.04Mg^5.38^6.07^6.19Ca 0.01^0.01^0.01Na^0.04^0.03^0.04OH 23.01^21.30^19.97^5.50^5.46^5.50^5.29^5.30^5.21^5.49^5.46^5.41^5.50^5.41^5.37^5.384.24^4.12^4.06^4.01^4.16^4.18^4.01^4.20^4.21^4.11^3.85^4.02^4.110.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.00^0.002.54^2.48^2.41^2.34^2.35^2.24^2.44^2.63^2.63^2.66^2.88^2.94^3.020.04^0.04^0.04^0.04^0.04^0.04^0.04^0.04^0.04^0.04^0.04^0.03^0.046.24^6.26^6.26^6.13^6.40^6.39^5.98^6.28^6.22^6.07^5.54^5.63^5.790.09^0.00^0.00^0.01^0.01^0.01^0.02^0.01^0.01^0.01^0.01^0.01^0.010.01^0.02^0.02^0.02^0.02^0.03^0.02^0.02^0.02^0.02^0.04^0.04^0.0419.43^20.21^20.39^21.74^20.70^21.24^21.05^19.62^19.90^20.08^21.81^21.17^20.35A I^ndix B. Table B.7 Micro robe anal ses of sca  II lite from the A'ax East and A'ax West its. Sam ile locations in Fi es. Al and A2.Sample No. 49B2 1 49B2 2 49B2 3 49133 1 49B5 1 49B5 2 49135 3 49B7 1 49B7 2 49B7 3 49)37 4 49B8 1 49B8 2 49B8 3Lithology hybrid hybrid hybrid hybrid hybrid hybrid hybrid hybrid hybrid hybrid hybrid hybrid hybrid hybriddiorite diorite diorite diorite diorite diorite diorite diorite diorite diorite diorite diorite diorite dioriteAlteration Scapolite Scapolite Scapolite Scapolite Scapolite Scapolite Scapolite Scapolite Scapolite Scapolite Scapolite Scapolite Scapolite ScapoliteSiO2 55.67 55.65 55.19 55.06 55.72 55.93 55.35 55.88 55.17 55.30 55.80 55.44 55.35 55.46Al203 23.12 23.19 22.99 23.28 23.25 23.12 22.98 23.19 23.44 23.25 23.23 23.29 23.09 23.06Fe2O3 0.12 0.07 0.11 0.13 0.09 0.08 0.09 0.13 0.11 0.08 0.11 0.13 0.06 0.11MgO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01CaO 6.43 6.68 6.46 6.73 6.64 6.51 6.50 6.44 6.76 6.39 6.54 6.65 6.30 6.41Na2O 10.06 9.98 9.81 9.72 9.76 9.95 9.67 9.99 9.77 9.97 9.90 9.85 9.96 9.92K2O 1.00 0.98 1.02 0.97 1.16 1.17 1.18 0.99 0.96 1.01 1.09 1.07 0.96 1.06Cl 3.59 3.48 3.67 3.47 3.66 3.63 3.58 3.90 3.62 3.65 3.61 3.75 3.53 3.560=C1 0.81 0.79 0.83 0.79 0.83 0.82 0.81 0.88 0.82 0.83 0.81 0.85 0.80 0.80TOTAL 99.98 100.03 99.24 99.37 100.27 100.39 99.35 100.51 99.82 99.66 100.28 100.19 99.24 99.59Ion calculations based on 24 oxygensSi^ 7.59^7.59 7.58 7.56 7.58 7.60 7.60 7.57 7.54 7.56 7.59 7.55 7.60 7.59Al 3.72 3.73 3.72 3.77 3.73 3.70 3.72 3.70 3.77 3.75 3.72 3.74 3.73 3.72Fe+3 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01Mg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Na 2.66 2.64 2.61 2.59 2.57 2.62 2.57 2.63 2.59 2.64 2.61 2.60 2.65 2.63Ca 0.94 0.98 0.95 0.99 0.97 0.95 0.96 0.94 0.99 0.94 0.95 0.97 0.93 0.94K 0.17 0.17 0.18 0.17 0.20 0.20 0.21 0.17 0.17 0.18 0.19 0.19 0.17 0.18Cl 0.87 0.85 0.90 0.85 0.89 0.88 0.87 0.94 0.88 0.89 0.87 0.91 0.86 0.87O 23.13 23.15 23.10 23.15 23.11 23.12 23.13 23.06 23.12 23.11 23.13 23.09 23.14 23.13Appendix B. Table B.7 Microprobe analyses of scapolite from the Ajax East and Ajax West pits.continued).Sample No. 49B8 4 49B9 1 49B9 2 49B9 3 49B9 4 49B10 1 491310 2 491310 3Lithology hybrid hybrid hybrid hybrid hybrid hybrid hybrid hybriddiorite diorite diorite diorite diorite diorite diorite dioriteAlteration Scapolite Scapolite Scapolite Scapolite Scapolite Scapolite Scapolite ScapoliteSiO2 55.52 56.26 55.77 55.66 55.59 55.70 55.33 55.77Al203 23.16 22.93 23.11 23.21 23.27 22.90 23.14 22.86Fe2O3 0.06 0.19 0.09 0.16 0.20 0.11 0.09 0.15MgO 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00CaO 6.54 6.38 6.43 6.41 6.42 6.29 6.52 6.40Na2O 9.85 9.99 10.04 10.05 9.93 9.96 9.82 9.99K2O 1.05 1.10 1.04 1.03 0.96 1.09 1.06 1.07CI 3.64 3.66 3.67 3.80 3.59 3.72 3.76 3.620=C1 0.82 0.83 0.83 0.86 0.81 0.84 0.85 0.82TOTAL 99.82 100.52 100.14 100.31 99.94 99.77 99.73 99.86Ion calculations based on 24 oxygensSi^ 7.58^7.63 7.59 7.57 7.58 7.61 7.56 7.61Al 3.73 3.66 3.71 3.72 3.74 3.69 3.73 3.68Fe+3 0.01 0.02 0.01 0.02 0.02 0.01 0.01 0.02Mg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Na 2.61 2.63 2.65 2.65 2.62 2.64 2.60 2.65Ca 0.96 0.93 0.94 0.93 0.94 0.92 0.95 0.94K 0.18 0.19 0.18 0.18 0.17 0.19 0.18 0.19CI 0.89 0.88 0.89 0.92 0.87 0.91 0.92 0.88O 23.11 23.12 23.11 23.08 23.13 23.09 23.08 23.12A I^ndix B. Table B.8 Micro irobe anal ses of rehnite, from A'ax East and A'ax West its. Sam le locations in Fi es A.1 and A.2.Sample No.LithologyAlteration33A10 3SugarloafdioritePropylitic33A11 2SugarloafdioritePropylitic38135 1HybriddioritePropylitic38135 4HybriddioritePropylitic38B5 5Hybriddiorite.Propylitic38B5 6HybriddioritePropylitic38B5 4HybriddioritePropylitic59A4 1SugarloafdioriteAlbitic59A4 2SugarloafdioriteAlbitic38B5 7HybriddioritePropylitic38B5 8HybriddioritePropylitic38B5 9HybriddioritePropylitic38B5 10HybriddioritePropylitic38B5 11HybriddioritePropylitic38B5 12HybriddioritePropyliticSiO2 43.97 43.22 41.79 42.27 42.43 42.66 42.27 43.29 43.63 43.18 42.87 43.07 43.35 43.36 42.84Al203 23.87 23.92 22.54 22.40 23.12 23.89 22.40 23.99 23.71 22.85 23.05 23.41 23.95 23.62 23.45TiO2 0.02 0.08 0.25 1.12 0.12 0.05 1.12FeO 0.62 1.04 2.27 1.57 1.80 0.92 1.57 - - - - -Fe2O3 - - 0.56 0.78 1.95 2.03 1.43 1.45 0.55 1.28MnO 0.08 0.02 0.02 0.04 0.05 0.00 0.04 - - - - -MgO 0.01 0.01 0.05 0.08 0.26 0.00 0.08 0.05 0.02 0.09 0.23 0.02 0.04 0.00 0.10CaO 26.79 27.03 26.60 26.48 26.48 26.41 26.48 27.10 26.95 27.04 26.94 26.42 24.69 26.79 26.65Na2O 0.02 0.03 0.01 0.01 0.01 0.07 0.01 0.00 0.00 0.01 0.00 0.05 0.09 0.09 0.04K2O - 0.00 0.03 0.01 0.00 0.13 0.74 0.01 0.02BaO - - 0.00 0.01 0.04 0.00 0.00 0.00 0.01 0.05Cr203 0.00 0.01 0.02 0.07 0.01 0.03 0.07 - - - -NiO 0.01 0.02 0.02 0.03 0.05 0.05 0.03 - - -TOTAL 95.38 95.38 93.57 94.07 94.34 94.07 94.07 95.00 95.14 95.16 95.13 94.54 94.32 94.44 94.41Si 6.03 6.53 6.50 6.51 6.52 6.53 6.51 6.55 6.59 6.56 6.51 6.56 6.60 6.59 6.53Al 3.86 4.26 4.13 4.07 4.18 4.31 4.07 4.27 4.22 4.09 4.13 4.20 4.29 4.23 4.22Ti 0.00 0.01 0.03 0.13 0.01 0.01 0.13Fe2+ 0.07 0.13 0.30 0.20 0.23 0.12 0.20 - - - -Fe3+ - - - 0.06 0.09 0.22 0.23 0.16 0.17 0.06 0.15Mn 0.01 0.00 0.00 0.00 0.01 0.00 0.00 - - - - -Mg 0.00 0.00 0.01 0.02 0.06 0.00 0.02 0.01 0.00 0.02 0.05 0.00 0.01 0.00 0.02Ca 3.94 4.38 4.43 4.37 4.36 4.33 4.37 4.39 4.36 4.40 4.38 4.31 4.02 4.36 4.35Na 0.01 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.02 0.03 0.03 0.01K 0.00 0.01 0.00 0.00 0.03 0.14 0.00 0.00Ba 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Cr 0.00 0.00 0.00 0.01 0.00 0.00 0.01Ni 0.00 0.00 0.00 0.00 0.01 0.01 0.00OH 4.23 4.67 6.67 6.10 5.81 6.05 6.10 5.04 4.89 4.90 4.94 5.54 5.76 5.64 5.69A • • - ndix B. Table B.8 Micro s robe anal ses of rehnite, from Kax East and Kax West s its. continued)Sample No.LithologyAlteration17A1 1SugarloafdioriteAlbitic17A1 2SugarloafdioriteAlbitic17A1 3SugarloafdioriteAlbitic17A1 4SugarloafdioriteAlbitic17A1 5SugarloafdioriteAlbitic17A2 1SugarloafdioriteAlbitic17A2 2SugarloafdioriteAlbitic^17A2 3^17A2 4Sugarloaf^Sugarloafdiorite^dioriteAlbitic^Albitic17A2 5SugarloafdioriteAlbitic17A2 6SugarloafdioriteAlbitic17A2 7SugarloafdioriteAlbitic17A2 8SugarloafdioriteAlbitic17A3 1SugarloafdioriteAlbitic17A3 2SugarloafdioriteAlbiticSiO2 42.81 42.73 42.38 42.67 42.88 42.88 43.28 43.02 42.79 42.42 42.53 42.19 42.35 43.33 42.97Al203 23.90 23.93 23.86 23.62 23.71 24.02 24.49 24.12 24.12 24.07 24.27 24.06 23.93 23.88 24.07TiO2 - - - -FeO - - - - - -Fe203 0.89 0.96 1.01 1.15 0.94 0.49 0.26 0.44 0.51 0.74 0.46 0.48 0.74 1.12 0.89MnO - - - - - - - -MgOCaO0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.0027.04 27.48 26.77 27.36 27.17 27.19 27.58 26.95 27.38 27.31 26.96 27.26 26.78 27.37 27.72Na2O 0.02 0.03 0.02 0.01 0.01 0.03 0.01 0.01 0.02 0.01 0.01 0.01 0.04 0.02 0.03K2O 0.00 0.00 0.02 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.03 0.01 0.00 0.017:,,c,BaOCr2O3NiO0.00-0.02 0.00-0.05-0.02 0.00--0.00-0.07 0.07 0.01--0.05-0.00 0.02--0.03-0.00-TOTAL 94.65 95.17 94.07 94.87 94.76 5.40 4.33 5.38 5.08 5.43 5.72 94.03 93.87 95.73 95.6994.60 95.67 94.62 94.92 94.57 94.28SiAlTi6.514.286.484.276.494.306.494.246.524.256.524.306.504.346.534.316.494.316.464.326.484.366.464.346.494.326.524.236.484.28- -Fe2+Fe3+Mn0.10 0.11 0.12-0.13-0.11 0.06-0.03-0.05 0.06 0.08-0.05 0.06 0.09-0.13-0.10MgCaNaKBaCr0.004.41.010.000.000.004.460.010.000.000.004.390.010.000.000.004.460.000.000.00-0.004.420.000.000.000.004.430.010.000.000.004.440.000.000.000.004.380.000.000.000.004.450.010.000.000.004.460.000.000.000.004.400.000.000.00-0.004.470.000.010.000.004.400.010.000.000.004.410.010.000.000.004.480.010.000.00NiA^endix B. Table B.8 Micro i robe anal ses of s rehnite, from A'ax East and A.ax West its. continuedSample No.LithologyAlteration17A3 3SugarloafdioriteAlbitic17A3 4SugarloafdioriteAlbitic17A3 5SugarloafdioriteAlbitic17A3 8SugarloafdioriteAlbitic17A5 1SugarloafdioriteAlbitic17A5 2SugarloafdioriteAlbitic17A5 3SugarloafdioriteAlbitic^17A5 5^17A5 4Sugarloaf^Sugarloafdiorite^dioriteAlbitic^Albitic17A5 6SugarloafdioriteAlbitic17A6 1SugarloafdioriteAlbitic17A6 2SugarloafdioriteAlbitic17A6 3SugarloafdioriteAlbitic17A6 4SugarloafdioriteAlbitic17A6 5SugarloafdioriteAlbiticSiO2 42.82 42.97 39.95 42.69 42.75 42.13 42.93 42.97 42.95 43.17 42.93 42.89 42.00 42.60 43.04Al203TiO224.29 24.16 25.21-24.07 24.28 24.49-24.30 23.89 24.41 24.37 24.03 24.07 24.15 23.77 24.41FeO - - - - - -Fe2O3MnO0.48 0.82 1.19 0.96 0.55 0.34 0.62 1.11 0.25 0.27 0.68 0.67 1.15 0.92 0.35- - - - - - - -MgOCaO0.00 0.00 1.92 0.00 0.01 0.00 0.02 0.00 0.00 0.00 0.01 0.00 0.02 0.01 0.0127.55 26.71 25.53 27.45 26.86 27.28 27.34 27.08 27.38 26.99 27.19 27.45 26.83 27.10 27.31Na2O 0.01 0.02 0.00 0.01 0.02 0.01 0.00 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.03K2OBaO0.01 0.01 0.00 0.00 0.01 0.02 0.00 0.02 0.00 0.02 0.01 0.01 0.00 0.01 0.00Nc-_,o Cr2O30.05 0.02 0.00-0.03 0.00 0.00-0.00 0.03 0.00-0.00 0.04 0.05-0.01-0.03 0.05Ni0 - - - - - - - -TOTAL 95.26 94.72 93.80 95.25 94.48 94.28 95.26 95.11 95.00 94.84 94.90 95.16 94.17 94.45 95.19SiAlTi6.484.336.524.32-6.154.576.474.306.504.35-6.434.416.494.336.514.26-6.504.35-6.534.346.514.296.494.29-6.434.366.504.276.504.34Fe2+- -Fe3+MnMgCaNaKBaCr0.050.004.460.000.000.00.0.090.004.340.010.000.000.14-0.444.210.000.000.000.110.004.450.000.000.00.0.060.004.380.010.000.000.04-0.004.460.000.000.000.070.004.430.000.000.00..0.130.004.390.000.000.000.03-0.004.440.000.000.000.030.004.370.010.000.00_0.080.004.420.000.000.000.08-0.004.450.010.000.000.13-0.004.400.000.000.000.110.004.430.000.000.000.04-0.004.420.010.000.00NiA^nclix B. Table B.9 Micro robe anal ses of um -11 *te from AUx West and Ku East its. Sam i le locations in Fi!^es A.1 and A.2.Sample No. 42B9 1 42B9 2 42B9 3 42B9 4 42B1 6 42B1 7 42B10 1 42B10 2 42B10 3 42B10 4 17A3 5 17A3 6 17A3 7 42B1 ILithology SugarloafdioriteSugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf Sugarloaf SugarloafAlteration Albiticdiorite diorite diorite diorite diorite diorite diorite diorite diorite diorite diorite diorite dioriteAlbitic Albitic Albitic Albitic Albitic Albitic Albitic Albitic Albitic Albitic Albitic Albitic AlbiticSiO2 36.94 37.31 37.57 37.41 37.62 37.63 37.85 37.87 38.08 37.69 39.95 37.38 37.87Al203 27.58 26.69 26.54 27.11 26.82 27.20 26.06 27.37 26.79 26.39 25.21 26.33 26.15 27.27TiO2 - - - 0.02Fe2O3MnO1.39 1.62 1.99 1.14 2.58 1.99 1.51 1.51 1.56 1.56 1.19 1.63 2.07 1.020.05MgO 2.81 3.14 3.26 3.16 3.09 3.17 3.34 3.17 3.02 3.59 1.92 3.63 3.40 3.32CaO 23.16 23.33 23.44 23.25 23.79 23.68 23.03 23.63 23.44 23.96 25.53 23.69 23.42 23.43Na2O 0.06 0.04 0.02 0.05 0.01 0.03 0.03 0.05 0.04 0.02 0.00 0.03 0.04 0.03K2O 0.00 0.01 0.00 0.02 0.01 0.02 0.06 0.00 0.03 0.03 0.00 0.00 0.01Cr202NiO - - - - - -0.060.00TOTAL 91.98 92.15 92.84 92.16 93.92 93.79 91.87 93.62 92.97 93.24 93.80 92.68 92.43 93.06SiAlTi6.165.426.235.266.335.276.245.336.415.396.405.456.305.116.415.466.405.316.375.266.785.046.295.226.275.176.375.40Fe3+Mn0.17 0.20 0.25 0.14 0.33 0.25 0.19 0.19 0.20 0.20 0.15 0.21 0.260.000.13MgCaNaKCr0.704.140.020.000.784.180.010.000.824.230.010.000.784.160.020.000.784.340.000.000.804.310.010.000.834.100.010.010.804.290.020.000.764.220.010.010.904.340.010.010.494.640.000.000.914.270.010.000.854.210.010.000.010.834.220.01Ni 0.01OH 8.92 8.76 0.008.05 8.73 6.92 7.04 9.02 7.20 7.89 7.63 7.02 8.21 8.49 7.79Appendix B. Table B.9 Microprobe analyses of pumpellyite from Ajax West and Ajax East pits.(continued)Sample No.LithologyAlteration42B1 2SugarloafdioriteAlbitic42B1 3SugarloafdioriteAlbitic42B1 4SugarloafdioriteAlbitic42B1 5SugarloafdioriteAlbitic57B8 8unknownAlbitic57B8 9unknownAlbitic57B8 10unknownAlbitic57B8 11unknownAlbiticSiO2 37.82 37.82 37.31 37.47 37.47 37.28 39.90 37.08Al203 27.69 26.62 26.21 26.21 26.65 25.91 25.93 26.18TiO2 0.02 0.02 0.00 0.01 0.00 0.03 0.00 0.00Fe2O3 0.75 1.33 2.13 2.06 6.75 2.99 2.30 3.14MnO 0.05 0.06 0.04 0.08 0.05 0.07 0.06 0.04MgO 2.83 3.55 2.98 3.50 0.79 2.84 2.40 2.55CaO 23.59 23.16 23.49 23.55 22.95 22.53 21.22 23.01Na2O 0.05 0.04 0.03 0.01 0.01 0.15 1.08 0.02K2OCr202 0.03 0.00 0.00 0.00 0.01 0.00 0.00 0.01ts..)^NiOotv0.03 0.00 0.00 0.01 0.00 0.00 0.05 0.05TOTAL 92.86 92.60 92.19 92.90 94.68 91.79 92.96 92.09Si 6.34 6.34 6.25 6.32 6.49 6.22 6.68 6.22Al 5.47 5.25 5.17 5.21 5.44 5.10 5.12 5.17Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Fe3+ 0.09 0.17 0.27 0.26 0.88 0.38 0.29 0.40Mn 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01Mg 0.71 0.89 0.74 0.88 0.21 0.71 0.60 0.64Ca 4.24 4.16 4.22 4.26 4.26 4.03 3.81 4.13Na 0.02 0.01 0.01 0.00 0.00 0.05 0.35 0.01K 0.00 0.00 0.00 0.00Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Ni 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01OH 7.99 8.27 8.73 7.99 6.15 9.14 7.86 8.85A^ndix B. Table B.10 Micro • robe anal ses of zeolite from the A'ax East^'t. Sam s le locations in Fi re A2.Sample No. 49132 4 49B2 5 49B2 6 49B2 7 49B3 2 49B3 3 49B3 4 49133 5 49B3 6 49134 1 49B4 2 49134 3Lithology hybrid hybrid hybrid hybrid hybrid hybrid hybrid hybrid hybrid hybrid hybrid hybriddiorite diorite diorite diorite diorite diorite diorite diorite diorite diorite diorite dioriteAlteration Scapolite Scapolite Scapolite Scapolite Scapolite Scapolite Scapolite Scapolite Scapolite Scapolite Scapolite ScapoliteSiO2 61.87 62.63 60.77 61.10 60.98 61.38 60.41 58.26 60.53 62.04 60.41 61.31Al203 15.06 15.16 15.45 15.03 15.91 15.90 14.90 15.84 15.77 15.73 15.79 15.45Fe2O3 0.01 0.02 0.00 0.04 0.05 0.04 0.00 0.00 0.00 0.04 0.02 0.03MgO 1.65 1.75 1.46 1.69 1.68 1.57 1.65 1.35 1.65 1.58 1.60 1.60CaO 3.97 4.05 4.43 4.01 4.20 4.36 4.18 4.36 4.16 4.43 4.39 4.34Na2O 0.25 0.27 0.39 0.36 0.28 0.29 0.25 0.35 0.25 0.28 0.28 0.22K2O 1.37 1.29 1.25 1.35 1.41 1.42 1.11 1.48 1.40 1.31 1.27 1.15Total 84.19 85.18 83.75 83.59 84.52 84.96 82.54 81.74 83.75 85.40 83.76 84.11Ion calculations based on 72 oxygensSi^ 21.12^21.52 20.72 20.79 20.91 21.12 20.39 19.65 20.63 21.39 20.60 20.92NAl 6.70 6.65 6.54 6.48 6.50 6.63 6.45 6.66 6.51 6.65 6.60 6.570^Fe3+c...) 0.67 0.66 0.68 0.65 0.77 0.78 0.79 0.66 0.64 0.67 0.73 0.71Mg 0.84 0.90 0.74 0.86 0.86 0.80 0.83 0.68 0.84 0.81 0.81 0.81Ca 1.45 1.49 1.62 1.46 1.54 1.61 1.51 1.58 1.52 1.64 1.60 1.59Na 0.16 0.18 0.26 0.24 0.19 0.20 0.16 0.23 0.17 0.18 0.18 0.15K 0.60 0.56 0.54 0.59 0.62 0.63 0.48 0.64 0.61 0.58 0.55 0.50(OH 2O) 36.01 33.98 36.97 37.27 35.43 34.53 39.34 41.12 36.97 33.59 36.97 36.19Table B.11 Standards used for analyzing feldspar, pyroxene,chlorite, scapolite, prehnite and pumpellyite.Standard Ref. Standard Mineral ElementnumberS105 Albite NaS028 Orthoclase KS101 Anorthite AlS246 Aegirine FeS101 Anorthite CaS028 Orthoclase SiS379 Diopside MgS274 Strontianite SrS016 Barite^' BaS246 Aegirine NaS379 Diopside MgS379 Diopside CaS222 Chromite CrS379 Diopside SiS013 Rutile TiS007 Grossularite AlS246 Aegirine FeS245 Pyroxene MnS241 Olivine NiAPPENDIX C. METAL AND SULPHUR ANALYSESAppendix C contains a scatterplot matrix correlation diagram of log (base 10) transformed metal data anda table of metal and sulphur analyses of drill core and grab samples that occur on the Ajax East pit 940 metre leveland the Ajax West pit 860 metre level. Sample locations are shown in Figures A.1 and A.2.205AULOGItCULOGrhn-r11-41LOGFEFflll LOGMGLOGINLOGINllI JrLOGYrriLOGSFigure C.1 Scatterplot matrix correlation diagram of log (base 10) transformed metal assay data from the AjaxEast and Ajax West pits. Copper, gold and sulphur have positive correlations. Iron and vanadium have a positivecorrelation. Sulphur and vanadium have an exclusive correlation. Correlations are seen better in untransformeddata, Figure 5.4.206ndix D. Table D. I Metal anal ses of drill core from the Anx East and A'ax Westits.CROSS-SECTION NO.DRILLHOLE NO.INTERVALFROM^TO(metres)^(metres)NORTHING(metres)EASTING(metres)ELEVATION(metres)ROCKTYPECu(ppm)Pb(ppm)Zn(PPrn)Ag Fe(%)Mo(ppm)V(ppm)Mn(ppm)Mg(%)S(%)Au(ppb)AEP5.0N 87-32 21 33 4713.4 5951.4 940 BRXX 3422 -4 27 -0.4 3.39 5 146 261 3.82 0.39 30887-51 18.9 24 4766.3 5955.4 940 DIOR 485 -4 20 -0.4 1.39 7 99 159 2.05 0.04 6887-31 9 21 4740.5 6001.4 940 DIOR 3544 -4 13 -0.4 1.56 8 127 169 1.74 1.43 24088-04 3 15 4703.5 6067.4 940 QZLP 674 -4 25 -0.4 2.55 -2 119 309 2.65 0.13 34AEP7.0N 87-55 42 54 4863.2 5890.6 940 MGPP 306 -4 14 -0.4 2.05 2 127 289 1.72 0.02 3487-56 54 66 4848.8 5915.6 940 ALBT 3291 -4 18 -0.4 2.78 -2 154 244 2.01 0.37 27487-36 42 54 4817.6 5955.1 940 NICOLA 1506 -4 15 -0.4 2.76 7 94 218 3.65 0.37 10387-50 27 39 4799.4 6002.1 940 DIOR 4434 -4 14 -0.4 1.59 14 76 133 1.33 0.7 37787-30 15 27 4762.1 6062.8 940 DIOR 7771 -4 16 -0.4 3.67 7 122 183 1.05 1.37 47988-10 6.1 18.1 4722.9 6134.1 940 DIOR 373 -4 20 -0.4 4.35 -2 180 295 1.63 0.06 68AEP7.5N 87-29 12 24 4786.9 6076.8 940 DIOR 1499 -4 11 -0.4 4.4 9 205 174 1.28 0.14 103AEP8.0N 81-04 35.3 47.3 4888.1 5964.5 940 HYBD 81 -4 29 -0.4 9.44 -2 468 344 1.87 -0.01 1087-62 21 33 4845.1 6018.6 940 DIOR 7872 -4 25 1.0 2.82 2 117 264 2.65 1.04 54881-09 19.7 31.7 4824.4 6092.1 940 DIOR 9269 -4 11 0.9 2.19 9 57 113 0.73 0.56 137AEP8.5N 87-69 27 39 4875.3 6017.5 940 NICOLA 3166 -4 25 -0.4 3.86 -2 150 343 3.53 0.38 274N 81-03 26.1 38.1 4837.7 6055.5 940 DIOR 4095 -4 14 0.4 2.95 79 136 175 1.34 0.66 274o--.1 AEP9.0N 81-10 42.2 54.2 4932.4 5988.2 940 HYBD 409 -4 20 -0.4 5.26 -2 284 317 3.03 0.07 6887-37 30 42 4883.3 6053.2 940 DIOR 1262 -4 15 -0.4 2.53 3 108 184 2.41 0.72 6887-03 24 36 4853.8 6109.9 940 DIOR 1662 -4 13 -0.4 4.61 32 157 289 1.55 1.65 137AEP9.5N 87-04 21 33 4861.2 6167.8 940 DIOR 285 -4 12 -0.4 1.8 2 89 192 0.56 0.06 2AEP10.0N 87-39 39 51 4943.5 6047.8 940 DIOR 2295 -4 23 -0.4 2.73 8 118 350 3.8 0.3 20587-01 15 27 4909.1 6102.9 940 MGPP 162 -4 12 -0.4 2.55 -2 83 174 0.78 0.03 34AEP10.5N 87-38 27 39 4910.4 6154.5 940 DIOR 7281 -4 20 0.4 3.3 11 112 185 1.38 1.84 58287-02 22.5 34.5 4883.6 6200.7 940 DIOR 1084 65 14 -0.4 2.18 4 100 201 0.82 0.19 103AEPII.ON 87-48 57 69 4992.2 6070.6 940 HYBD 227 -4 20 -0.4 5.1 -2 265 376 3.71 0.02 3487-46 48 60 4966.2 6110.2 940 DIOR 1076 -4 13 -0.4 3.4 8 121 211 2.25 1.07 10387-40 39 51 4940.5 6154.5 940 NICOLA 2302 -4 13 -0.4 3.14 19 103 190 2.29 1.22AEP12.0N 87-42 36 48 5006.1 6142.1 940 MGPP 2254 -4 17 -0.4 3.08 4 119 286 1.91 0.79 205AEP13.0N 87-43 18 30 5068.6 6133.5 940 HYBD 2556 -4 23 -0.4 5.55 -2 236 309 2.74 0.34 20587-44 21 33 5029.6 6198.0 940 DIOR 4509 -4 25 -0.4 4.25 2 183 320 3.83 0.63 41187-41 24 36 5005.3 6235.0 940 NICOLA 1699 -4 20 -0.4 3.98 -2 165 288 2.6 0.33 10390-01 70 82 5021.3 6070.5 940 HYBD 2698 -4 27 -0.4 4.94 -2 212 319 3 0.24 171AWP4.0N 81-07 46.3 58.3 4505.0 5316.8 860 DIOR 580 -4 12 -0.4 2.39 9 105 176 0.93 0.2 1087-27 77 89 4557.8 5339.5 860 ALBT 854 -4 12 -0.4 2.09 -2 116 298 2.42 0.12 6887-28 81 93 4595.6 4907.7 860 DIOR 814 -4 12 -0.4 1.23 6 64 306 1.25 0.1 137ndix D. Table D.1 Metal anal ses of drill core from the A'ax East and A'ax West Its. (continued)INTERVALCROSS- DRILL FROM TO NORTHING EASTING ELEVATION ROCK Cu Pb Zn Ag Fe Mo V Mn Mg S AuSECTION NO. HOLE NO. (metres) (metres) (metres) (metres) (metres) TYPE (ppm) (ppm) (ppm) (ppm) (%) (ppm) (ppm) (ppm) (%) (%) (ppb)AWP5.0W 87-77 54 66 4517.1 5266.9 860 PICR 2605 -4 25 -0.4 3.61 78 112 339 4.31 0.45 17187-26 90 102 4557.7 5291.1 860 ALBT 1861 -4 12 -0.4 1.84 12 100 254 1.38 0.34 13787-66 83 95 4612.9 5326.5 860 BRXX 3329 -4 17 0.7 2.45 12 120 383 2.19 0.44 37787-65 96 108 4373.3 5275.5 860 DIOR 747 -4 19 -0.4 2.67 -2 129 363 3.11 0.11 103AWP5.5W 87-24 83 95 4518.8 5234.1 860 BRXX 1489 -4 13 -0.4 1.38 37 75 210 1.68 0.21 13781-01 90 102 4587.8 5260.2 860 DIOR 2984 -4 16 -0.4 2.48 6 112 348 2.32 0.37 20587-25 87 99 4633.8 5286.5 860 BRXX 2838 -4 20 0.5 2.27 28 68 292 1.81 0.75 37787-64 96 108 4405.1 5204.0 860 DIOR 1206 -4 21 -0.4 5.12 2 182 366 2.61 0.22 137AWP6.5W 89-05 56 68 4494.6 5147.8 860 PICR 52 -4 23 -0.4 4.84 -2 91 381 7.44 0.04 281-02 81.1 93.1 4605.3 5217.5 860 MCDR 1818 -4 12 -0.4 2.49 15 81 195 1.45 0.37 1087-22 89 101 4660.7 5252.9 860 DIOR 1489 -4 17 0.6 2 16 81 255 1.64 0.8 44587-23 93 105 4557.7 5212.1 860 HYBD 930 -4 24 -0.4 4.61 -2 198 413 2.53 0.13 17181-08 100 112 4474.8 5203.7 860 DIOR 5717 -4 16 -0.4 3.08 2 127 251 1.63 0.89 342AWP7.5W 89-02 51 63 4465.3 5093.9 860 PICR 192 -4 20 -0.4 5.9 -2 77 432 7.63 0.04 288-09 65 77 4519.0 5120.7 860 NICOLA 5471 -4 19 0.6 3.53 86 118 275 3.45 0.17 205ooo 87-78 84 96 4564.7 5149.3 860 DIOR 3861 -4 23 -0.4 2.45 65 119 342 1.61 0.42 20587-19 96 108 4614.1 5174.5 860 DIOR 1889 -4 12 -0.4 1.24 13 79 174 0.9 0.45 10387-20 114 126 4442.4 5125.2 860 DIOR 1675 -4 17 0.9 2.34 17 115 303 1.58 0.83 377AWP8.5W 89-03 37 49 4407.6 4993.9 860 PICR 126 -4 18 -0.4 7.34 -2 79 422 7.61 0.05 288-01 50 62 4452.7 5034.1 860 PICR 1809 -4 32 -0.4 5.58 -2 94 439 7.31 0.55 6887-85 66 78 4500.3 5061.1 860 DIOR 1309 -4 14 -0.4 2.46 5 112 303 1.68 0.19 6887-17 80 92 4544.0 5084.1 860 DIOR 520 -4 11 -0.4 1.99 2 114 240 1.74 0.08 10387-83 84 96 4574.2 5106.4 860 DIOR 6061 -4 13 0.6 1.71 12 71 197 0.95 0.75 27487-61 81 93 4697.3 5171.9 860 DIOR 1092 -4 13 -0.4 2.31 -2 65 333 2.49 0.64 6887-63 87 99 4362.8 5034.8 860 HYBD 630 -4 14 -0.4 4.09 3 142 350 2.7 0.05 103AWP9.0W 88-08 52 64 4495.2 5004.2 860 DIOR 2012 -4 13 -0.4 4.25 7 90 215 1.91 2.55 6887-79 69 81 4544.9 5040.2 860 DIOR 1130 -4 10 -0.4 1.97 20 87 268 1.75 0.34 3487-13 78 90 4580.7 5055.6 860 ALBT 3565 -4 8 0.8 1.03 10 81 130 0.76 0.51 24087-14 78.1 93 4622.4 5079.9 860 DIOR 3653 -4 9 0.9 1.61 6 67 156 0.83 0.78 22687-60 81 93 4712.1 5137.1 860 ALBT 791 -4 18 0.5 4.28 13 202 386 2.86 0.08 137AWP10.0W 90-06 46 58 4520.5 4972.0 860 DIOR 622 -4 11 0.5 1.6 6 55 131 0.58 0.53 17187-80 78 90 4570.4 5001.5 860 DIOR 3121 -4 15 -0.4 1.87 121 105 238 1.78 0.66 10387-82 93 105 4614.5 5034.5 860 DIOR 1152 -4 10 0.7 1.93 6 80 193 1.2 0.19 24087-12 93 105 4654.0 5049.6 860 ALBT 3298 -4 10 0.4 1.65 40 67 187 0.81 0.89 240ndix D. Table D.1 Metal anal ses of drill core from the A'ax East and A'ax West its. continuedINTERVALCROSS- DRILL FROM TO NORTHING EASTING ELEVATION ROCK Cu Pb Zn Ag Fe Mo V Mn Mg S AuSECTION NO. HOLE NO. (metres) (metres) (metres) (metres) (metres) TYPE (ppm) (ppm) (ppm) (%) (ppm) (ppm) (ppm) (%) (%) (ppb)(PPm)AWP1 1.0W 87-71 81 93 4599.2 4967.3 860 DIOR 4225 -4 11 1.2 2.41 39 98 202 1.27 1.03 13787-84 90 102 4632.4 4992.8 860 DIOR 642 -4 11 -0.4 1.57 6 44 118 0.54 0.58 387-07 73 85 4624.7 4981.0 860 DIOR 2758 -4 10 0.4 1.61 102 100 148 1.23 0.67 6887-06 102 114 4682.1 5012.1 860 ALBT 656 -4 9 -0.4 1.93 11 82 184 3.36 0.11 103AWP12.0W 88-02 46 58 4530.2 4878.4 860 DIOR 43 -4 11 -0.4 3.31 2 116 203 0.85 0.01 287-05 70 82 4657.0 4952.7 860 DIOR 8245 -4 12 1.7 2.1 51 91 148 1.02 1.47 71981-06 46 58 4703.0 4968.5 860 DIOR 675 -4 12 -0.4 2.13 2 89 253 2.17 0.22 1081-13 99.4 111.4 4703.0 4968.5 860 HYBD 13990 5 24 2.5 4.65 18 144 425 4.33 1.57 147387-08 67 79 4709.9 4982.4 860 HYBD 2004 -4 16 0.4 2.65 2 91 273 3.04 0.26 159AWP12.5W 87-09 60 63 4625.3 4884.8 860 DIOR 12190 -4 11 1.6 2.35 103 53 121 0.9 1.79 43587-11 66 78 4678.1 4914.9 860 BRXX 12500 -4 15 2 2.39 120 85 206 1.58 1.45 126787-10 90 102 47283 4949.8 860 HYBD 7606 -4 15 1.6 2.21 10 83 292 1.64 0.89 65187-75 51 63 4775.0 4971.9 860 HYBD 1314 -4 21 -0.4 4.77 2 222 424 2.79 0.24 103AWP13.5W 87-68 50 62 4605.4 4823.9 860 DIOR 6979 -4 22 1.1 2.99 216 45 164 0.46 2.03 20587-70 65 77 4650.5 4847.6 860 DIOR 4804 -4 10 0.9 1.99 10 69 159 0.8 0.55 37787-72 65 78.2 4683.2 4867.6 860 ALBT 895 -4 9 -0.4 3.62 25 93 198 4.28 0.1 3487-74 81 93 4710.6 4885.8 860 HYBD 2460 -4 22 0.7 3.67 9 128 418 3.47 0.3 17187-73 77 89 4736.4 4905.1 860 HYBD 409 -4 28 -0.4 3.03 3 87 479 2.27 0.24 68AWPI4.5W 87-81 48 60 4636.1 4793.1 860 DIOR 1572 -4 16 -0.4 2.05 5 64 188 0.87 0.46 3487-76 78 90 4737.1 4848.9 860 MGPP 1049 -4 20 0.5 4.08 2 149 449 1.45 0.78 68A^ndix D. Table D.2 Metal anal ses of ab sam es from the A'ax East and A'ax West 'its.GRAB^NORTHINGSAMPLE^(metres)NO.EASTING(metres)ELEVATION^ROCK(metres)^TYPECu(PPm)Pb(PPm)Zn(ppm)Ag(ppm)Fe(%)Mo(ppm)V(PPm)Mn(ppm)Mg(%)S(%)Au(PPb)Ajax East pit, 940 metre level8-90 4677.0 6017.0 940 ALBT 146 -4 7 -0.4 0.57 22 87 170 1.33 0.002 -108-60 4715.2 6063.3 940 ALBT 378 -4 13 -0.4 0.95 2 63 168 1.61 0.05 1108-30 4733.3 6086.0 940 ALBT 88 -4 11 -0.4 0.72 -2 54 136 0.92 -0.01 -108+00 4756.5 6106.5 940 DIOR 528 -4 13 -0.4 2.84 -2 139 163 1.06 0.08 -108+30 4787.0 6116.0 940 DIOR 449 -4 18 -0.4 4.24 -2 201 223 1.74 0.07 -108.5+00 4815.8 6126.2 940 DIOR 1133 -4 20 -0.4 2.81 -2 130 224 1.92 0.14 -108.5+24 4830.8 6143.9 940 ALBT 1377 -4 12 -0.4 1.43 -2 115 197 1.42 0.19 -109.0+00 4836.1 6172.0 940 DIOR 176 -4 15 -0.4 3.29 -2 141 289 0.8 0.05 -109.0+30 4834.3 6200.9 940 DIOR 107 -4 19 -0.4 3.62 -2 129 282 0.81 0.03 -109.0+60 4870.6 6218.7 940 DIOR 365 -4 12 -0.4 4.48 -2 229 211 1.5 0.35 -1010.0+00 4859.9 6270.0 940 DIOR 243 -4 14 -0.4 5.72 -2 150 314 1.91 2.77 -1010.0+90 4944.3 6273.6 940 DIOR 1410 -4 9 -0.4 1.55 -2 70 121 0.46 0.86 -1010.0+120 4973.3 6267.3 940 DIOR 1281 -4 16 -0.4 2.91 3 169 269 1.29 0.81 -1011.0+00 4987.6 6262.6 940 DIOR 3519 -4 21 -0.4 4.22 -2 109 275 2.54 0.47 -1011.0+30 5016.3 6255.3 940 HYBD 8 -4 19 -0.4 7.77 -2 387 260 1.38 -0.01 -1011.0+60 5040.5 6237.3 940 HYBD 6 -4 27 -0.4 8.52 -2 410 430 1.97 -0.01 -10t..2 11.0+90 5062.4 6217.3 940 HYBD 7 -4 30 -0.4 8.07 -2 411 380 1.73 -0.01 -10C 12.0+00 5080.4 6196.5 940 HYBD 5 -4 23 -0.4 7.46 -2 382 357 1.68 -0.01 -1012.0+30 5092.9 6168.9 940 HYBD 8 -4 35 -0.4 8.69 -2 430 537 1.83 -0.01 -1012.0+60 5088.3 6140.4 940 HYBD 13 -4 35 -0.4 11.36 -2 596 469 1.95 -0.01 -1012.0+90 5071.5 6115.5 940 HYBD 48 -4 25 -0.4 4.83 -2 333 317 3.27 -0.01 -1013.0+00 5041.4 6110.5 940 HYBD 1150 -4 23 -0.4 5.72 -2 252 309 2.82 0.13 3413.0+30 5012.5 6106.8 940 HYBD 2384 -4 22 -0.4 4.09 -2 212 250 2.57 0.22 19013.0+60 4986.9 6094.9 940 HYBD 5584 -4 34 -0.4 2.96 52 170 277 3.39 0.74 28213.0+90 4973.7 6067.3 940 HYBD 2327 -4 23 -0.4 2.75 -2 118 311 3.81 0.33 24014.0+00 4969.4 6037.3 940 HYBD 725 -4 22 -0.4 5.93 -2 282 323 2.85 0.11 5014.0+30 4964.6 6005.9 940 HYBD 384 -4 29 -0.4 6.09 -2 298 433 4.72 0.1 -1014.0+60 4959.0 5977.9 940 HYBD 28 -4 28 -0.4 8.34 -2 458 422 2.78 0.01 -1014.0+90 4944.7 5952.7 940 HYBD 95 -4 27 -0.4 5.81 -2 320 380 2.68 -0.01 -1015.0+00 4929.3 5928.6 940 HYBD 48 -4 27 -0.4 9.12 -2 493 387 1.6 -0.01 -1015.0+30 4902.6 5910.3 940 HYBD 19 -4 32 -0.4 10.54 -2 551 396 1.78 -0.01 -1015.0+60 4876.3 5899.0 940 HYBD 91 -4 26 -0.4 11.04 -2 653 331 2.23 0.01 -1015.0+90 4845.1 5892.4 940 HYBD 3948 -4 21 -0.4 6.66 -2 359 210 2.36 0.41 346A I^ndix D. Table D.2 Metal anal ses of ab sam .les from the A'ax East and A'ax West its.GRAB^NORTHINGSAMPLE^(metres)NO.EASTING(metres)ELEVATION^ROCK(metres)^TYPECu(PPm)Pb(PP1►►)Zn(PPm)Ag(PPm)Fe(%)Mo(Wm)V(PPm)Mn(PPm)Mg(%)S(%)Au(PPb)16.0+00 4818.7 5888.0 940 HYBD 534 -4 19 -0.4 3.36 -2 183 260 3.63 0.04 3616.0+30 4794.7 5871.3 940 HYBD 26 -4 27 -0.4 10.9 -2 551 357 2.1 -0.01 -1016.0+60 4769.6 5853.9 940 HYBD 34 -4 35 -0.4 11.6 -2 478 391 1.68 -0.01 -1016.0+90 4743.0 5839.6 940 HYBD 20 -4 29 -0.4 10.02 -2 453 351 2.67 -0.01 -10Ajax West pit, 860 metre level11+00S^4585.7^4959.7 860 DIOR 4685 -4 16 -0.4 2 68 129 274 1.79 0.53 13411+30 4585.8 4939.8 860 DIOR 2568 -4 9 -0.4 0.93 2 98 172 0.94 0.31 18212+00S 4596.3 4918.5 860 GBPX 1474 -4 25 -0.4 3.56 24 111 358 3.35 0.37 4812+30 46113 4890.0 860 DIOR 7683 -4 12 -0.4 1.91 85 73 138 1.15 0.89 24312.5+OOST 4618.5 4880.8 860 DIOR 8366 -4 13 -0.4 2.31 25 86 167 0.95 1.09 32512.5+00SL 4627.2 4887.5 860 DIOR 5968 -4 10 -0.4 1.4 29 49 116 0.63 0.77 11612.5+30 4646.0 4868.4 860 DIOR 1769 -4 10 -0.4 1.43 13 80 181 1.11 0.18 12312.5+60 4675.2 4871.1 860 DIOR 1699 -4 9 -0.4 1.06 35 69 155 0.98 0.14 9212.5+85 4698.7 4878.0 860 PICR 892 -4 13 -0.4 3.95 1603 100 671 6.29 0.25 8912.5+90 4704.5 4881.7 860 DIOR 6319 -4 22 -0.4 5.18 16 196 297 2.89 0.71 53112.5+120 4726.6 4901.1 860 DIOR 2186 -4 18 -0.4 4.48 5 180 316 1.66 0.33 16112.5+150 4740.5 4928.0 860 HYBD 1437 -4 18 -0.4 4.8 2 202 335 1.64 0.35 9212+00N 4731.8 4996.2 860 HYBD 6773 -4 15 -0.4 2.22 5 99 187 1.17 0.65 12312-26.8 4719.8 5015.4 860 HYBD 3136 -4 15 -0.4 2.56 18 167 213 1.33 0.42 21612.5+00NT 4744.3 4952.9 860 DIOR 5176 -4 12 -0.4 1.67 5 64 218 1.08 0.5 32912.5+00NL 4731.8 4945.9 860 BRXX 2570 -4 18 -0.4 2.38 10 92 375 2.34 0.27 20512.5-30 4736.5 4981.7 860 DIOR 6818 -4 12 -0.4 1.48 11 52 233 1.13 0.68 59611+00N 4719.0 5036.9 860 DIOR 4324 -4 16 -0.4 2.68 22 146 239 2.14 0.48 80111-30 4689.0 5038.8 860 DIOR 3080 -4 25 -0.4 3.41 2 133 392 1.93 0.53 11011-60 4661.2 5024.7 860 DIOR 1395 -4 9 -0.4 1.42 7 73 115 0.62 034 5111-90 4636.9 5008.2 860 DIOR 304 -4 15 0.5 2.36 4 83 239 1.12 0.52 3111-120 4613.3 4990.3 860 DIOR 3397 -4 13 -0.4 2.94 21 140 164 1.25 1.11 7911-150 4592.4 4969.2 860 DIOR 7096 -4 15 -0.4 2.05 17 113 331 1.46 0.94 40811+30ramp 4742.2 5023.1 860 DIOR 3649 -4 10 -0.4 1.58 8 81 205 1.32 0.41 123

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0052622/manifest

Comment

Related Items