Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Characterization of the geochemistry of discharge waters, pore waters, primary and secondary minerals… Wagner, Karin 2004

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-ubc_2005-0127.pdf [ 18.3MB ]
Metadata
JSON: 831-1.0052594.json
JSON-LD: 831-1.0052594-ld.json
RDF/XML (Pretty): 831-1.0052594-rdf.xml
RDF/JSON: 831-1.0052594-rdf.json
Turtle: 831-1.0052594-turtle.txt
N-Triples: 831-1.0052594-rdf-ntriples.txt
Original Record: 831-1.0052594-source.json
Full Text
831-1.0052594-fulltext.txt
Citation
831-1.0052594.ris

Full Text

CHARACTERIZATION OF THE GEOCHEMISTRY OF DISCHARGE WATERS, PORE WATERS, PRIMARY AND SECONDARY MINERALS OF AN EXPERIMENTAL WASTE ROCK PILE, CLUFF LAKE MINE, SASKATCHEWAN, CANADA by KARLN WAGNER Dipl. Geol., Friedrich-Alexander University, Erlangen, Germany, 2002 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES Department of Earth and Ocean Sciences We accept this thesis as conforming -to the required standard THE UNIVERSITY OF BRITISH COLUMBIA SEPTEMBER 2004 © KARLN WAGNER 2004 11 Abstract The objective of this study was to characterize the geochemistry of an experimental waste rock pile, focusing on the outflow waters, pore waters, and primary and secondary mineral phases. The experimental pile was located at the Guff Lake mine operated by Cogema Resources Incorporated in Saskatchewan. Constructed in 1998, instantaneous water samples were collected and flow was monitored continuously for a period of approximately six years before the pile was deconstructed and sampled in 2004. The water chemistry data and flow data were used to investigate the relationship between outflow water chemistry and flow rates. The data also allowed the total sulfate loading from the pile and the rate of sulfate and metal release to be estimated and compared to laboratory derived estimates. The primary minerals in the waste rock are quartz, k-feldspar, albite, chlorite, muscovite, kaolinite, smectite and amphibole. Acid base accounting results indicate that the waste rock is acid generating, with neutralization potentials less than 0.5. Due to the low pH of 3.6, almost all the primary minerals are weathering. Secondary minerals include gypsum, jarosite, ferryhydrite, goethite, annabergite and hydrated aluminum and magnesium sulfates. The total dissolved solids content of the pore water in the waste rock pile increases with depth indicating the ongoing acid mine drainage generation in the pile. The investigations of the outflow water revealed strong temporal and spatial variability in its quality. Sulfate is the major anion in the outflow water with concentrations mainly between 10,000 and 20,000 mg/1. The dominant cations are Mg, Al, Ca, Na, Ni, TJ and Mn with concentrations between 100 mg/1 and 3,500 mg/1. K, Co, Li, Sr, Zn, Ce, Fe, Cu, La, Be and As are present in the outflow water in minor concentrations. The chemical composition of the outflow water remains roughly the same in terms of the proportion of the existent cations and sulfate. Most of the cations except Ca and Fe show a strong correlation with the sulfate. The electrical conductivity of the outflow water correlates with the sulfate concentration. Thus, the simple measurement of the electrical conductivity yields a good estimate of the total dissolved solids content of the outflow water. A general inverse relation between the flow rates Ill and the outflow chemistry is observed. In general, high flow rates correlate with fresher outflow water and slow flow correlates with more concentrated outflow water. The investigation of the outflow chemistry during and after infiltration events revealed that the outflow water becomes relatively fresh immediately after a rapid increase in the flow rates. A low-permeability cover that was put On the pile surface induced a decrease of the concentrations in the outflow water, suggesting that the oxygen concentrations decreased and that the pile is aging. During the four years between 2000 and 2003, approximately 5 % or 150 kg of the original primary, sulfur was released at the base of the pile. iv Table of contents Abstract " Table of contents iv List of tables -vi List of figures vii Acknowledgements xi 1. Introduction . 1 1.1 Introduction to Research Topic and Purpose 1 1.2 Background and Motivation 2 1.3 Key Questions 2 1.4 Outline of Thesis 3 2. Review of Acid Water Drainage 4 2.1 Basic Chemistry of Acid Generation 4 2.2 Factors controlling Acid Rock Drainage 5 3. Field Site Description 9 3.1 Field Site Environment 9 3.2 Geology of the Cluff Lake Mine Site 10 3.3 Constructed Waste Rock Pile Experiment 10 3.4 Waste Rock Material 15 3.4.1 Mineralogy 15 3.4.2 Grain Size Distribution 16 3.4.3 Physical and chemical characteristics 17 4. Methods 24 4.1 Field Sampling...: 24 4.2 Chemical Screening Tests, 25 4.2.1 Rinse pH 25 4.2.2 . Electrical Conductivity... 25 4.3 Laboratory Testing :.' 25 4.3.1 Geochemical Analysis of Anions 25 4.3.2 Geochemical Analysis of Cations 26 V 4.4 Mineralogical Analysis 28 4.5 Sulfur content analysis 28 5. Results 30 5.1 Mineralogy 30 5.2 Pore water chemistry 33 5.3 Outflow water chemistry 36 5.3.1 Major anion sulfate 36 5.3.2 Electric vs. calculated conductivity 45 5.3.3 Major Cations and Metals 46 5.3.4 Electrical Neutrality 51 5.3.5 Relationship between Cations and Sulfate 52 5.3.6 Saturation states 56 5.4 Relationship between Flow and Outflow Water Chemistry 57 5.5 Loading Estimation 68 6. Discussion 76 6.1 Behavior of sulfate 77 6.2 Behavior of metals and their sources 78 6.3 Relationship between flow and chemistry 79 6.4 Implications of the mass loading estimation...: 82 7. Conc lus ions a n d S u m m a r y 84 8. References 88 A p p e n d i x •• 94 vi List o f tables Table 5-1: Identified primary and secondary minerals in the waste rock and their chemical notation 33 Table 5-2: Relative abundances of metal concentration for Na and Ca within their total concentration ranges 50 Table 5-3: Calculated total amount of removed sulfur and average sulfate release rate between January 2000 and December 2003 69 Table 5-4: Summary of the sulfate release rates results of the DJX waste rock from laboratory and field experiments 71 Table 5-5: Summary of the average sulfate release rates and sulfur mass removal. Sulfate release rates and sulfur mass removal is shown for every year between 2000 and 2003 and prior to and after the cover placement in August 2002 72 Table 5-6: Summary of the release rates of the dominant cations. The numbers are just a rough estimate of the metal loading. Results are recorded up to three decimals to show the differences in the release rates and do not represent the exact rate .73 Table 5-7: Summary of the extraction results 74 Table 5-8: Summary of the sulfur content and total amount'of sulfur stored in the pile prior to the placement of the waste rock in the pile experiment and after the deconstruction of the pile 75 V l l List of figures Fig. 3-1: Map of Canada with the Guff Lake Mine Site in Northern Saskatchewan 9 Fig. 3-2: View of DJ-N waste rock pile with the constructed pile experiment on top of it!, looking South-East. The CPE is marked by the black circle. The lake in the upper part of the photo is Guff Lake 13 Fig. 3-3: Constructed waste rock pile experiment at Guff Lake mine site, looking north : •. ,.: 14 Fig. 3-4: Sketched plan view of the outline of the constructed waste rock pile experiment and the arrangement of the 16 lysimeters at the base of the waste rock pile (Nichol, 2002) 14 Fig. 3-5: Tipping bucket rain gauges in the instrumentation hut and the outflow water sampling advice 15 Fig. 3-6: Grain size distribution of DJX-waste rock used for the constructed pile experiment 16 Fig. 3-7: Map of the Guff Lake mine site. The constructed waste rock pile experiment is located on top of the DJN pile. The experiment is composed of DJX waste rock from the DJX pit 18 Fig. 3-8: Grain size distribution curves of the DJX waste rock material (Haug, 2001; dotted line) and of the waste rock material from the constructed pile experiment (solid lines) 19 Fig. 5-1: Precipitation of hydrated sulfates around the outflow gages and funnels in the instrumentation hut 32 Fig. 5-2: Sulfate, magnesium, aluminum, calcium and sodium concentrations in the pore water for different depths within the pile 34 Fig. 5-3: Manganese, potassium, iron, nickel and lithium concentrations of the pore water for different depths within the pile 35 Fig. 5-4: Cobalt, copper, strontium and zinc concentrations of the pore water for different depths within the pile 35 Fig. 5-5: Distribution of sulfate concentration in waste rock outflow for all 16 lysimeters and lysimeter 2, 6 and 10 36 V l l l Fig. 5-6: Total average sulfate concentrations for all lysimeters for the years 2000, 2001, 2002 and 22003 38 Fig. 5-7: Average sulfate concentrations in the outflow water for the years 2000 to 2003 and for each lysimeters 39 Fig. 5-8: Average sulfate concentration for each outflow lysimeter for the winter months in 2000. 40 Fig. 5-9: Average sulfate concentration for each outflow lysimeter for the summer months in 2000 40 Fig. 5-10: Average sulfate concentration for each outflow lysimeter for the summer months in 2001 41 Fig. 5-11: Average sulfate concentration for each outflow lysimeter for the summer months in 2002 42 Fig. 5-12: Average sulfate concentration for each outflow lysimeter for the winter months in 2003 43 Fig. 5-13: Average sulfate concentration for each outflow lysimeter for the summer months in 2003 43 Fig. 5-14: Monthly average sulfate concentration of all lysimeters from January 2000 to January 2004. The missing months have less than 16 data points and do not present a reasonable average value 44 Fig. 5-15: Measured and calculated electric conductivities for three different data sets 46 Fig. 5-16: Major cations in analyzed outflow samples 47 Fig. 5-17: Concentration of cations in outflow water for different water samples. The 47 Fig. 5-18: Average cation concentrations of the seven dominating cations Mg, Al, Na, Ca, Ni, U, Mn ..." 48 Fig. 5-19: Measured maximum cation concentrations for the seven major metals including Mg, Al, Na, U, Ni, Mn and Ca 49 Fig. 5-20: Measured minimum cation concentrations for the seven major metals including Mg, Al, Na, U, Ni, Mn and Ca 49 Fig. 5-21: Average concentrations of the less abundant cations 51 I ix Fig. 5-22: Correlation between sulfate and magnesium in the outflow water 52 Fig. 5-23: Correlation between sulfate and aluminum in the outflow water 53 Fig. 5-24: Correlation between sulfate and calcium in the outflow water 53 Fig. 5-25: Correlation between sulfate and sodium in the outflow water 54 Fig. 5-26: Correlation between sulfate and nickel in the outflow water 54 Fig. 5-27: Correlation between sulfate and uranium in the outflow water 55 Fig. 5-28: Correlation between sulfate and iron in the outflow water 55 Fig. 5-29: Outflow rates and sulfate concentrations from December 1999 to January 2004 for lysimeter6 58 Fig. 5-30: Outflow rates and sulfate concentrations from December 1999 to January 2004 for lysimeter 9. 59 Fig. 5-31: Outflow rates and sulfate concentrations from December 1999 to January 2004 for lysimeter 14 59 Fig. 5-32: Flow rate and sulfate concentration against time for lysimeter 2, 7, 9 and 14. The flow rates are represented by the solid lines, the sulfate concentration are represented by the data points 60 Fig. 5-33: Measured flow rate and sulfate concentration against time for August and .September 2000 .61 Fig. 5-34: Measured flow rate and sulfate concentration against time from May to August 2001 ; 62 Fig. 5-35: Correlation between flow volume and sulfate concentration for the two monitored periods: June - September 2000 and June - August 2001 63 Fig. 5-36: Sulfate concentrations and flow rates during an infiltration event in September 2001 65 Fig. 5-37: Sulfate concentrations and flow rates during an infiltration event in October 2001 65 Fig. 5-38: Sulfate concentrations and flow rates during an infiltration event in August 2002 66 Fig. 5-39: Correlation between the sulfate concentration and the flow rate in lysimeter 11 for 2000, 2001, 2002 and 2003 67 Fig. 5-40: Correlation between the sulfate concentration and the flow rate in lysimeter 5 for 2000, 2001, 2002 and 2003 68 Fig. 5-41: Mass of sulfur that is released per month at the base of the pile for the time period between January 2000 and December 2003 70 Fig. 5-42: Rates of sulfate released at the base of the pile for months between January 2000 and December 2003 70 Fig. 6-1: Sketch of the processes contributing to the production of acid mine drainage 76 Fig. 6-2: Sketch of the particle leaching process, where the reaction front within each particle starts at its surface and moves towards its center (Davis & Ritchie, 1986a) 77 xi Acknowledgements I would like to acknowledge the financial support for this thesis provided by NSERC, Cogema Resources Incorporated and the Cameco Corporation. I would like to express my gratitude to Dr. Roger Beckie and Dr. Leslie Smith. It has been both an honor, and a privilege to have studied and researched under their supervision and guidance. Special thanks go to Maureen Soon and Bert Miiller for their help during the months of IC and ICP-MS analyses. Without their instruction and assistance, this work would have not been possible. I would also like to thank John Jambor for his help with mineralogical and petrographic analyses. I would like to express my gratitude to all the members of the hydrogroup for their technical and non-technical support throughout the entire thesis process. Thanks to the Cluff Lake mine site staff for sampling and their assistance with the operation of the experiment. 1 1. Introduction 1.1 Introduction to Research Topic and Purpose Waste rock is the overburden material that is excavated and disposed of in order to access valuable ore bodies. This material is composed of various rock types and shows a high variation in grain size. The uneconomic waste rock material is dumped into piles as close to the mine as possible, to minimize the cost of hauling this rock. A typical waste rock pile is often constructed by dumping the rock in layers, which produces a relatively high, coarse and unsaturated pile. When the sulfide minerals within the waste rock are exposed to air and water, they chemically react to produce acid that can dissolve heavy and toxic metals in the waste rock. The release of toxic bearing hydroxides and hydroxysulfates into surface and ground waters is known as acid mine drainage. Acid rock drainage (ARD) results from the geochemical oxidation of sulfide minerals when these minerals are exposed to air and water. The oxidation reaction produces acid that dissolves and leaches metals out of the rock, degrading the quality of the drainage water. Acid mine drainage (AMD) is a form of acid rock drainage (ARD), which is produced through the disturbance and exposure of large quantities of sulfide bearing rocks by mining activities, and is one of the major environmental problems facing the mining industry. The water pollution problems that result from acid mine drainage are very difficult to clean up. In many cases, the pollution is predicted to continue for many years once the chemical and microbial processes that drive acid mine drainage are set into motion. The release of acid mine drainage to the environment is a major problem associated with the disposal of sulfide-bearing mine waste rock. The major question regarding waste rock piles is whether or not the pile will generate acidic water and if so, how long the pile will release elevated concentrations of metals to the environment. To understand these issues numerous waste rock characteristics such as pile hydrostratigraphy, textural properties of the waste rock, spatial and temporal variations of water content, temperature profiles, water flow characteristics 2 and waste rock geochemistry need to be determined. These are all important factors that control the acid mine drainage potential, intensity and duration. These factors were observed at a highly instrumented waste rock pile that was constructed at Cogema Resources Inc's Guff Lake mine site in Saskatchewan. The objectives of this study are to investigate the geochemistry of the constructed-pile experiment to examine the relationship between pile-outflow geochemistry and the spatial and temporal variability in outflow rates, and to determine the solute loads released from the waste rock pile. 1.2 Background and Motivation Many studies have been conducted on the chemical and transport processes that drive AMD and ultimately contribute to the environmental loading of waste rock piles to the hydrosphere. Several laboratory methods such as humidity cell and kinetic cell tests have been developed to characterize reaction rates on small volumes of waste rock material under controlled conditions (Murr et al., 1981; Stromberg & Banwart, 1999b; Hollings et al., 2001). Similarly, small scale laboratory experiments have been preformed to investigate flow patterns and geochemistry (Campbell, 2000). It is difficult, however, to scale up small-scale laboratory data to predict field-scale results (Ritchie, 1994; Drever and Clou, 1995; Stromberg & Banwart, 1994 & 1999; Frostad& Klein, 2000; Malmstrom et al., 2000;). Collecting and observing field data from large-scale waste rock piles is often impracticable and as a result only few large field-scale studies have been conducted. In this study I investigate the chemical processes occurring in and at the bottom of a large-scale experimental waste rock pile. 1.3 Key Questions This work focuses on the timing, duration and intensity of leaching metals and acidity from a field-scale constructed waste rock pile experiment. In addition, this work investigates the relationship between flow and geochemical processes in unsaturated mine waste rock. The key questions include a) the rate of geochemical weathering processes occurring within a constructed waste rock pile experiment, b) the sulfate release rates at the base of the pile, c) the concentration of metals leached out due to 3 acid rock drainage processes, d) the relationship between the outflow chemistry and flow, e) the dominant minerals contributing to acid rock drainage process and f) the future mass loading. 1.4 Outline of Thesis The research questions mentioned above (section 1.3) were addressed by analyzing the waste rock material, the pore water and the outflow water that drains from the base of the constructed waste rock pile experiment. The analysis of the mineralogical content of the waste rock material provides information about the primary and secondary minerals that are involved in the weathering processes. The detailed analysis of the quality of the outflow water at the bottom of the constructed waste rock pile experiment includes the analysis of the anion and cation concentrations as well as the electrical conductivity. Correlations between the anion and cation concentrations in the outflow water as well as the relationship between the anion concentration and the electrical conductivity are investigated. Relations between the quality of the outflow water and the volumes of water that drained at the bottom of the pile are evaluated. Data observed from a detailed characterization of the physical, and chemical characteristics of the waste rock material by Haug (2001) is incorporated in this work. The mass loading at the base of the pile is estimated. 4 2. R e v i e w o f A c i d W a t e r D r a i n a g e 2.1 Bas ic C h e m i s t r y o f A c i d Generat ion The interaction of minerals, air and water phases in the unsaturated waste rock often results in AMD. This generation of AMD is a result of several different reactions between the phases. The following exothermic equation summarizes the overall process of acid rock drainage, where pyrite oxidizes in the presence of oxygen and water to produce ferrous iron and sulfuric acid (Singer & Stumm, 1970; Nordstrom, 1982): 4 FeS2 + 14 H 20 + 15 0 2 -> 16 H + + 8 S042" + 4 Fe(OH)3 (1) This reaction illustrates the strong generation of acid by pyrite oxidation. The complete oxidation process involves the oxidation of both the polysulfide S22~ and of Fe2+ as indicated in equation 1, but under natural conditions it often proceeds in two steps. The initial step is the oxidation of the poly-sulfide to sulfate by oxygen: FeS2 + H 2 0 + 3.5 0 2 — 2 H + + 2 S042" + Fe2+ (2) Subsequently, Fe2+ is oxidized by oxygen to Fe3+ which may precipitate as iron-oxyhydroxide (FeOOH), depending on pH. Fe 2 + +0 2 +4H + -*2H 2 0 + Fe3+ (3) The energy yield of the polysulfide oxidation is larger than of the ferrous iron oxidation. An insufficient supply of electron acceptors results in an incomplete pyrite oxidation and the solutions become rich in Fe2+ and SO4 2". The low pH values increase the amount of dissolved aluminum and a variety of secondary minerals may precipitate under such extreme pyrite oxidation conditions. Typical secondary minerals include gypsum, ferric hydroxysulfates like jarosite (KTe3(S04)3*9H20) and several others. 5 Generally these precipitates are very soluble and will disappear with time except for FeOOH. Neutralization of the acidic metal-rich solutions may occur as a result of the dissolution of neutralizing minerals that come in contact with the acidic solutions. The most common minerals are calcite and dolomite. Calcite dissolves according to the following equation: CaC03 + FT — HC03" + Ca 2 + (4) At the same time, the acid produced by the sulfide oxidation is neutralized. The sulfate mineral that is most commonly formed is gypsum (equation 5): Ca 2 + + S042" + H 20 -> CaS04:2(H20) (5) As sulfate is one of the major products of the AMD processes, the measurement of its production, allows us to determine oxidation reaction rates. 2.2 Factors controlling Acid Rock Drainage Numerous laboratory investigations have been conducted to study water-rock interactions, reaction and weathering rates that control acid, sulfate and metal release from waste rock. Comparison of geochemical weathering rates at field scale with measured rates from laboratory experiments show that in-situ measured element release rates are approximately two orders of magnitude lower for the laboratory tests (Stromberg & Banwart, 1994 & 1999b). These large discrepancies between mineral weathering rates determined in the laboratory and in the field could be minimized by using a site-specific correction factor. Only few studies have investigated the empirical relationships between laboratory data-sets and those measured in a field-setting (Malmstrom et al., 2000; Velbel, 1992). These studies focused on the physical controls (e.g., hydrologic) rather than compositional or chemical controls on mineral weathering 6 rates. The physical aspects such as pH, temperature, particle size, mineral content, and flow paths are likely responsible for the observed difference between weathering rates in nature and the laboratory. One of the major reasons for these differences is that flow in natural weathering profiles is spatially heterogeneous, and thus, not all of the potentially available surface actually participates in reaction with pore fluids. Equation 1 shows that the presence of oxygen and water are major controlling factors for the mineral oxidation rate. While most mine waste rock piles contain sufficient pore water to sustain this reaction, air movement within the pile may be sufficiently slow, thus controlling oxidation by limiting the oxygen supply. Numerous studies of the air flow within waste rock piles have been undertaken to improve characterization and quantification of the geochemical reaction rates (Harries & Ritchie, 1985; Birkham et al., 2003; Wels et al., 2003). Several models have been proposed to describe the sulfide-mineral oxidation process. Davies and Ritchie (1986) examined the diffusion of air through the pore space between particles and the diffusion into a moving reaction front, where the actual weathering process is occurring within the particles. - In many cases the rate of the mineral oxidation is limited by the rate at which oxygen can be supplied to the reaction sites. Additionally, the mineral oxidation rate is affected by the rate at which oxygen from the impoundment surface can diffuse into the waste rock material (Davies and Ritchie, 1986; Elberling et al., 1994). Their model assumes that the oxygen diffuses from the particle surface through the porous oxidized coating toward the unoxidized core of the particle where the oxidation of pyrite occurs. The diffusion of the unoxidized core is driven by the oxygen concentration gradient between the surface and the core of the particles. As the reaction between oxygen and sulfide minerals within the particles progresses, the radius of the unreacted core will decrease, while the thickness of the oxidized shell increases. The rate at which the unreacted core shrinks is about 1000 times slower than the flow rate of oxygen within the particle. This model is called the "shrinking core model" (Levenspiel, 1972). Investigations by Pantelis and Ritchie (1991a) suggest that it takes approximately a month to oxidize a 2 mm particle of pyrite. Other models examined the convection and diffusion as transport mechanisms for oxygen within waste rock dumps (Pantelis and Ritchie, 1991b). They found that for waste rock permeabilities of less than 10E"10 m2, convection of oxygen is not a significant mechanism of oxygen transport. Levebvre et al. (2001 a&b) created a model that describes the coupled physical processes which are responsible for the AMD production in waste rock piles. These coupled processes include gas transfer by diffusion and convection as well as heat transfer. Their model was applied to two sites (South Dump of Doyon Mine, Canada; Nordhalde of the Ronnenberg Mine, Germany). Simulation results show that at the Nordhalde Site in Germany, the oxygen supply mechanisms are a relatively balanced contribution of gaseous diffusion and convection, while at the Doyon Site in Canada the temperature driven air convection seems to be the dominant oxygen supply mechanism. These models and their numerical simulations can improve our fundamental understanding of the processes responsible for AMD production. However, a thorough site characterization is necessary in order to be able to integrate all the available site-specific physical properties in the numerical simulations for a quantitative representation of the occurring processes and long-term predictions. Work is required to determine the most important factors that affect ARD processes.. Hollings et al. (2001) demonstrated that the oxidation rate in waste rock was strongly dependent on grain size and moderately dependent on water content, temperature and microbiology. Other studies showed that the rate of the sulfide and silica dissolution within waste rock depends on the particle size. Experiments on waste rock from northern Sweden showed that particles with a diameter smaller than 0.25 mm contributed approximately 80 % of the sulfide and silica dissolution (Stromberg & Banwart, 1999a). Other studies examined in detail the effects of mineralogy and geochemistry on the weathering processes (Jambor & Blowes, 1994; Malmstrom et al., 2000). 8 Another important mechanism that affects the AMD production is the flow of water. Previous studies of water flow in coarse rock include small scale laboratory experiments (Dexter, 1993; Campbell, 2000), large column experiments (Frostad, 2000; Li, 2000), field studies of full scale piles (Gelinas et al., 1994; Ericksson et al., 1997; Nichol et al., 2000), and numerical studies (Davies et al., 1986a&b; Ericksson & Destouni, 1997; Newman et al., 1997; Gerke et al., 1998). However, the flow of water in waste rock is still not well understood (Nichol, 2002). Hence, with water volume being a major influence on the environmental loading, it represents a large uncertainty in predicting the impact of AMD on the environment. Comparison of outflow volumes with the geochemistry of the outflow waters proved the existence of a relationship between these two factors (Murr et al., 1981; Nichol, 2002). This research tries to reduce these uncertainties by analyzing the chemistry of outflow waters and to examine its relationship to outflow rates and volumes for a field-based study of a waste rock pile. 9 3. F i e l d Site D e s c r i p t i o n 3.1 F i e l d Site E n v i r o n m e n t The field data was collected from a constructed waste rock pile experiment at the Cluff Lake uranium mine site in northern Saskatchewan, Canada Cluff Lake is located approximately 75 km south of Lake Athabasca and 30 km east of the Alberta-Saskatchewan border (Fig. 3-1). Fig. 3-1: Map of Canada with the Cluff Lake Mine Site in Northern Saskatchewan. At the latitude of 58° 22' N and the longitude of 109° 32' W this area experiences a continental sub-arctic climate with variable temperature changes. In the summer the daily mean temperature varies from 14.7 °C to 17.0 °C and in the winter from -17.5 °C to -20.3 °C. Recorded extremes range from 36.0 °C in the summer to -49.0 °C in the winter. The mean annual temperature is -0.3 °C. The summers are short and cool with an average frost-free period of about 90 days. Snowfall usually occurs between October and May, with the largest amount from January to April. Cluff Lake has an average 10 annual precipitation of 451.4 mm with 310.7 mm of rain. The precipitation levels for the region are highest during the summer months, with more than half of the annual precipitation occurring between June and September. This data is based on three weather monitoring stations on the mine site which were operated from 1981 to 1998 (Cogema Resources, 2001). More detailed data is available in appendix A. 3.2 Geology of the Cluff Lake Mine Site Geologically, the Cluff Lake Region lies within the southwestern part of the multi-ring Carswell Meteorite Impact Structure, which is located in the western part of the Athabasca Basin. The impact occurred during the Cretaceous, about 115 million years ago (Bell et al., 1985). The Carswell Structure is about 35 km in diameter and comprises an uplifted Archaean basement core of about 18 km in diameter; an inner ring 5 km wide of Athabasca group rocks; and an outer annulus 3 to 4 km wide which contains the Douglas and Carswell formations. The Precambrian basement rocks are typically metamorphosed to upper amphibolite to greenschist facies (Blaise & Koning, 1985). The Carswell Structure hosts a number of unconformity-type uranium deposits near the southern margin of the basement core. The deposits were brought to the surface by rebounding forces which formed the central uplift. The uranium deposits contain high-grade ore and can be extracted at production costs below those in many other parts of the world. This area contributes a significant portion to the world's known uranium resources. 3.3 Constructed Waste Rock Pile Experiment The constructed waste rock pile experiment was built in 1997 and 1998 on top of a larger waste rock pile (Fig. 3-2). The waste rock material was mined from the Dominique Janine (DJ)-Extension open pit in fall of 1996 (DJX waste rock) and was exposed to natural weathering conditions at the.Cluff Lake mine site from 1996 until its placement in the constructed pile experiment in 1998. 11 The waste rock pile was constructed with an 8 x 8 m square base and a height of 5 m (Fig. 3-3). Impermeable sides of plywood lined with a 60 mil HDPE (high density polyethylene) were constructed connecting the base of the lysimeter grid to the top surface of the pile, ensure a complete water balance. The pile is built on a contoured cement pad lined with a PVC geomembrane. The base was contoured into 16, 2 x 2 m lysimeters (Fig. 3-4). Within each lysimeter a layer of 9.5 to 25 mm washed gravel was placed to ensure that gravity drainage from the pile occurred. Each lysimeter was individually piped to the instrumentation hut and heat-traced. In the instrumentation hut the outflow volume was measured and recorded using 16 individual tipping-bucket rain gauges (Fig. 3-5). Instruments were installed in the pile during the waste rock placement within three profiles. Instrumentation includes TDR (time domain reflectrometry) probes to measure the water content, TC (thermal conductivity) sensors to measure the matric suction, thermistors to measure the in-situ temperature, and suction lysimeters for manual extraction of in-situ water samples. Pore water and outflow water samples were collected from the constructed pile between September 1998 and June 2004. Different experiments including tracer tests and j artificial rainfall tests were conducted. Outflow rates were recorded throughout the whole duration of the experiment which included both natural infiltration and a series of artificial rainfall events. A low-permeability, approximately 30 cm thick cover was placed on the pile surface in August 2002. The cover material consists of approximately 23 m3 of compacted waste rock with particles less than 10 cm in diameter. The waste rock pile experiment was deconstructed in May and June of 2004. The deconstruction process followed the methodology and recommendations presented by Herasymuik (1996) and Stockwell (2002) based on experience gathered during the deconstruction of the waste rock piles at the Golden Sunlight Mine in Montana and the 12 Key Lake mine in northern Saskatchewan. The pile was removed in five lifts. Four trenches were excavated per lift to allow the detailed sampling of water and waste rock, observation of the waste rock structure and salvage of the in-situ instrumentation. The results of field experiments conducted between 1998 and summer 2001 addressing the behavior of transient flow and transport in the waste rock pile are presented by Nichol (2002). The ongoing research of the water flow processes in the waste rock pile and the impacts of the low-permeability cover is conducted by Joseph Marcoline. Fig. 3-2: View of DJ-N waste rock pile with the constructed pile experiment on top of it, looking South-East. The CPE is marked by the black circle. The lake in the upper part of the photo is Cluff Lake. 14 w x, y - dm Fig. 3-3: Constructed waste rock pile experiment at Cluff Lake mine site, looking north. inset A Otr. * « :0 4^  ifctsftwtefMa 3»t»t#)4«4 Fig. 3-4: Sketched plan view of the outline of the constructed waste rock pile experiment and the arrangement of the 16 lysimeters at the base of the waste rock pile (Nichol, 2002). 15 Fig. 3-5: Tipping bucket rain gauges in the instrumentation hut and the outflow water sampling advice. 3.4 Waste Rock Material 3.4.1 Mineralogy The waste rock consists mainly of the Peter River aluminous gneisses, which are garnet ± cordierite ± sillimanite gneisses with an approximate age of 1760 Ma, and the older feldspathic and mafic gneisses from the Earl River Complex with an approximate age of 1870 Ma (Pagel & Svab, 1985). Small amounts of Athabasca Sandstone are also found in the waste rock. By definition, the waste rock has less than 0.5% uranium. Petrographic studies conducted by Hollings et al. (2001) show that the dominant minerals are quartz and Fe-16 rich amphibole. The amphibole was often altered to chlorite or illite. Less abundant (less than 5% by area) are biotite, pyrite, chalcopyrite, Th-rich monazite, apatite, zircon and rutile. The sulfide minerals pyrite and chalcopyrite were evenly spread out throughout the waste rock, but never constituted more than 1-2 % by area. Pyrite is the dominant sulfide mineral. The sulfide content of the waste rock in the constructed pile experiment is about 0.46 wt % (Hollings et al., 2001). 3.4.2 Grain Size Distribution The waste rock is highly heterogeneous in both grain size and structure. The rock fragments are a product of mechanical processes, such as drilling and blasting designed to disaggregate a massive body of in-place rock in order to excavate and transport the materials. Consequently, waste rock ranges in size from clay particles to boulders (less than 0.1 mm up to 1.5 m in diameter). The grain size distribution in Fig. 3-6 shows that 25 % by mass is less than 2 mm in size and a silt fraction less than 8 % by mass. DJX Waste Rock Grain Size Distribution Grain Size [mm] Fig. 3-6: Grain size distribution of DJX-waste rock used for the constructed pile experiment (Nichol, 2002). 17 The waste rock is heterogeneous and contains areas where the fine grained material is dominant (matrix-supported), and other areas where the boulders and cobbles are dominant. This strongly heterogeneous nature of the waste rock makes it more difficult to analyze its risk of environmental loading to the hydrosphere. 3.4.3 Physical and chemical characteristics The physical and geochemical characteristics of the waste rock at Cluff Lake mine site were determined by Haug (2001) to quantify the rate of mechanical breakdown of the waste rock and the release rate of soluble species. Different field tests were designed in order to determine the characteristics of the waste rock materials. The constructed waste rock pile experiment consists of DJX waste rock. Haug excavated one trench on the backfill at the DJX pit to conduct a detailed waste rock characterization. The pit is immediately south-west of the DJN waste rock pile, upon which rests the constructed waste rock pile (Fig. 3-7). A 10 m deep trench was excavated. Samples were collected at one meter depth intervals. The objective was to collect a representative sample of one cubic meter of waste rock in two 0.5 m lifts. Typically about 170 1 were collected together with one sealed 20 1 bag for immediate moisture content determination. Fig. 3-7: Map of the Cluff Lake mine site. The constructed waste rock pile experiment is located on top of the DJN pile. The experiment is composed of DJX waste rock from the DJX pit. 19 The physical property measurement conducted in the field included a complete grain-size curve and the moisture content. The results are located in appendix B. The grain size distribution curve obtained by Haug (2001) shows a much smaller percentage of fine material than the grain size distribution curve achieved from the constructed waste rock pile experiment (Fig. 3-8). The difference of the curves originates from the analyses of different waste rock material. The solid lines represent the grain size distribution of the DJX waste rock material that was placed in the constructed waste rock pile experiment, whereas the dotted lines represent the grain size distribution obtained from the DJX material from the DJX pit. Although the grain sizes of the DJX material from the DJX pit are coarser than the grain sizes in the experimental waste rock pile, the results of the chemical characterization of the DJX waste rock conducted by Haug (2001) are still representative for the waste rock in the experimental pile. The chemistry results obtained by Haug (2001) are not affected by the grain size (e.g., many of the tests involved crushing and subsampling). The low average fraction of fines in the DJX material from the DJX pit are reflected in the low overall gravimetric moisture content with only 3.8 %. Fig. 3-8: Grain size distribution curves of the DJX waste rock material (Haug, 2001; dotted line) and of the waste rock material from the constructed pile experiment (solid lines). 20 Chemical tests were conducted on site to screen samples for subsequent geochemical laboratory analysis. The chemical field tests included rinse pH, fizz tests, electrical conductivity (EC) measurements and gamma radiation scans. The pH was measured, and fizz tests were conducted to; determine if calcium carbonate (CaCC^) or other carbonates are present within the waste rock samples. Electrical conductivity was measured Ao qualitatively evaluate the total dissolved solids and relative ionic strength of the rinse pH solution. The gamma radiation scans allows an estimation of the uranium content in the waste rock. A summary of the chemical properties measured in the field is located in appendix B, table B-3. The Haug results are incorporated in the studies of the mineralogical content (section 5.1). The laboratory test program was designed to evaluate the potential for acid generation and leaching of metals. Geochemical laboratory analysis included whole rock major and trace elements, acid base accounting measurement of acid generation and neutralization potential, solid waste extraction procedure, humidity cell tests and leach column tests. The whole rock major elements are presented in appendix B, table B-4. Major element analysis were completed on five composite DJX samples and three individual samples. Relatively high sulfur values between 0.47 and 0.76 % suggest that some trace metals may be elevated. The total carbon is low with only 0.19 %. The analyses are consistent with the composition of a mixture of aluminous and granitic gneiss. Three individual and five composite samples were analyzed for their whole rock trace elements. The concentration of arsenic, cobalt, copper, molybdenum, nickel, lead, uranium, vanadium and zinc are presented in appendix B, table B-5. The DJX waste rock material is considered to be 'clean' with respect to uranium. However, the DJX waste rock contains significant amounts of cobalt, copper and nickel. A summary of the static acid base accounting (ABA) test work of five individual and one composite sample is given in appendix B, table B-6. The ABA analysis measures 21 the balance of the acid potential (AP), related mainly to the sulfide content, and the neutralization potential (NP), related mainly to the carbonate content using the Sobek method (Sobek et al., 1978). The sulfide-sulfur content (S-S) is based on the difference between the total sulfur (total S) and the sulfate-sulfur (SO4-S) content. The acid potential is based on sulfide-sulfur. More than 83 % of the DJX waste rock samples gave neutralization ratios substantially less than one indicating a potential for acid generation. The low paste pH testifies to this. The level of readily extractable contaminants in the waste rock was determined by the British Columbia Special Waste Extraction Procedure (BC SWEP, Waste Management Act, Province of British Columbia, 1992). The extraction procedures use a 1:20 rock-water ratio. 50 g of waste rock material were added to 1000 ml of deionized water and subjected to agitation for 24 hours at room temperature. A summary of the results is given in appendix B, table B-7. Nickel and uranium are easily extracted from the DJX waste rock with an average concentration of 0.07 mg/1 for uranium and 0.2 mg/1 for nickel. Cobalt and zinc are also found at elevated levels. The concentrations of arsenic, molybdenum, lead and vanadium were below the detection limits of the instrument. The pH is low with an average value of five and the sulfate concentration is relatively high (63 mg/1). Approximately 3 kg of the composite samples were tested in a large humidity cell (52 cm x-35 cm x 13 cm) for thirty weeks. The cells were sealed with a plastic lid and had a 5 mm diameter hole atone end to introduce air and an 8 mm diameter hole at the opposite end to remove the air. The experiment was conducted on a seven day cycle. For the first three days, dry air flow through the cell followed by a three-day period of moistened air passing through the cell. On the seventh day of the cycle, deionized water was introduced into the cell and allowed to react with the waste rock for one hour. Standing water was decanted and centrifuged. The solids were returned to the cells. Filtered samples were analyzed by ICP-AES - atomic emission spectroscopy. 22 The fractional mass of arsenic, cobalt, copper, molybdenum, nickel, lead, sulfate, uranium and zinc leached for weeks 1, 10, 20 and 30 is summarized in appendix B, table B-8. The metals leached in the humidity cell test are the same as those extracted in the SWEP tests. The results indicate that the waste rock is highly leachable. Cobalt (7.3 %), nickel (24.7%), uranium (61.3 %) and zinc (5.5 %) are readily removed in solution. The concentrations in the leachate after thirty weeks in mg/1 were Co 0.038, Ni 0.090, U 0.029, and Zn 0.015. Leach column tests were conducted to determine the concentration of metals in aerobic water when placed in contact with various waste rock samples. The columns were constructed out of PVC pipes, which were approximately 150 mm in diameter and 1.5 m in length. The columns were filled with 35 - 40 kg of waste rock sample. Approximately 3 liters of water was added to the columns every week. The cells were leached over seven day cycles. The first three days dry air passed over the waste rock samples in the cells. The following for days, deionized water that was aerated to oxygen saturation was introduced into the columns. At the end of a seven-day cycle, water was drained at the bottom of the column and analyzed by ICP-AES. The fractional mass leached for weeks 1, 10 and 20 are summarized in appendix B, table B-9. The results substantiate the highly leachable behavior of the waste rock observed from the humidity cell tests. Sulfate (27.3%), cobalt (12.5%), copper (2.3 %), nickel (34.3 %), uranium (78.6 %) and zinc (8.4 %) are readily removed in solution. Initial concentrations in the leachates from the column are much higher than those from the large humidity cell tests mainly because of the smaller fluxes through the columns (roughly twelve times less). After twenty weeks, the metal concentrations in the waste rock composite leachates are substantially higher than those for the humidity cell tests. Metal concentrations in mg/1 are Co 0.49, Cu 0.25, Ni 1.1, U 0.32, and Zn 0.12. The total rates of mass removal are similar for both humidity cells and column tests. 23 Kinetic leaching tests were stopped after a period of 37 weeks for humidity cells and 35 weeks for columns. The solid residues were subjected to ABA analysis to determine the acid generation potential after 35 to 37 weeks of testing. The final ABA results are listed in appendix B, table B-10. The results show the acid generating potential with low NP/AP ratios and low pH values for both samples. After cell tests were stopped, 1 kg of the waste rock material was transferred from the test cells into a 4 liter polyethylene jar. The empty test cell was thoroughly cleaned with 3 liters of demineralized and deionized water that was added to the sample material the polyethylene jar. The jar was placed on a rotary extractor to agitate the sample for 24 hours, followed by a minimum of three hours calm state to allow the sample to settle. Rotary jar fluids were drained and submitted for leachate analysis. The concentrations of nine elements were measured in the final leachate of the cell material that was transferred to the jars. The results are presented in appendix B, table B-l 1. Since the volume used in the rotary jar procedure is significantly smaller than the amount used for humidity and column cell testing results are not directly comparable. Final pH, conductivity, total dissolved solids (TDS), sulfate and chloride concentrations determined for the rotary jar leachate are listed in appendix B, table B-12. The results of the sulfur content analyses are included in the mass loading calculation in section 5.5. Other physical and chemical properties of the waste rock material described above are incorporated in the results of this study and are discussed in section 6.2. 24 4. Methods 4.1 Field Sampling The water samples analyzed for this thesis are obtained from the 16 lysimeters that collect the outflow from the bottom of the waste rock pile. The samples were collected and stored in 60 ml bottles. Samples collected for dissolved metals were fdtrated through 0.45 pm membrane filters and acidified to pH less than two with nitric acid (HNO3) immediately after collection to stop most bacterial growth, to block oxidation reaction and to prevent adsorption or precipitation of cations. Outflow water chemistry was monitored throughout the duration of the experiment. The heat-traced tubing from each of the 16 gravity drainage lysimeters at the base of the pile to the instrumentation hut allowed for year-round water sampling. Instantaneous samples were collected at biweekly intervals by mine site staff. Additionally, there are some high frequency sampling periods in July 2000, September 2001, October 2001, May 2002 and August 2002 during and after precipitation events and tracer experiments. The high frequency samples are collected in minimum time intervals of 15 minutes by UBC researchers. Flow rates are monitored over the whole period of time for each individual lysimeter. This data allows for a comparison of the flow and the chemistry to obtain a better estimate of the environmental loading. Waste rock material was collected during the deconstruction of the constructed waste rock pile experiment for detailed analysis of the mineral content and extraction experiments. 25 4.2 Chemical Screening Tests 4.2.1 Rinse pH Rinse pH was used as an observational test to determine present state of acid concentration and rate of acid generation. The waste rock pH was measured during the pile deconstruction using a waste rock and distilled water slurry with an Orion 9157BN combination 3-in-l pH/ATC probe and a portable Orion pH Meter 250A. 4.2.2 Electrical Conductivity Electric conductivity of the outflow water was measured on approximately 250 samples in the laboratory. The electric conductivity was used to qualitatively evaluate the total dissolved solids in the outflow water. An Orion 115 Meter with a Thermo Orion 013005D probe was used for the measurements. 4.3 Laboratory Testing 4.3.1 Geochemical Analysis of Anions More than 2500 outflow water samples were analyzed for anions. The concentrations of the anions were determined by using an Ion Chromatograph. Ion chromatography is a useful technique for the measurement of various ionic species in solution. It is based on the principles of chromatographic separation, and detection methods, the most common being conductivity suppression. A DionexDX-100 model with an ASH analytical column at the University of British Columbia, Oceanography Department was used to measure the anion concentrations in the outflow samples collected from the base of the constructed waste rock pile experiment. The sulfate concentration is much higher relative to other anions (-50 times higher), and as a result sulfate has to be measured individually using a much higher dilution. In these waters, sulfate comprises by far the most abundant anion and good charge balance could be achieved by ignoring all other anions. Thus, only sulfate 26 was analyzed using a 250 times dilution. The sample was diluted with an eluent, consisting of 1.8 mM sodium carbonate (NaHCOs) and 1.7 mM sodium bicarbonate (Na2HC03). The injected volume of the diluted sample was between 500 and 750 pi. The instrument calculates concentrations from measured electric conductivity which were displayed as pmoles. One standard per eight samples was analyzed for quality control. At this dilution, the detection limit is approximately 550 mg/1. Most of the samples analyzed were well above this limit, and most in the range of 10,000 mg/1 -20,000 mg/1. A few samples required a smaller dilution than 250. The estimated error is in general less than 4.38 %. This calculated la error (n = 34) includes the preparation and instrument error. Approximately 50 outflow samples from 2003 and 116 pore water samples from 1999 and 2000 were analyzed by ALS Environmental in Vancouver. 4.3.2 Geochemical Analysis of Cations 165 samples from the outflow lysimeters were analyzed for 33 different cations including the alkali metals Lithium (Li), Sodium (Na), Potassium (K) and Cesium (Cs), the alkaline earth metals Beryllium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr) and Barium (Ba), the transition metals Titanium (Ti), Vanadium (V), Chromium (Cr), Manganese (Mn), Iron (Fe), Cobalt (Co), Nickel (Ni), Copper (Cu), Zinc (Zn), Mercury (Hg), Molybdenum (Mo), Silver (Ag) and Cadmium (Cd), the metalloids Arsenic (As) and Antimony (Sb), the rare earth elements Lanthanum (La), Cerium (Ce) and Uranium (U), the non-metal Selenium (Se), and the other metals Aluminum (Al), Gallium (Ga), Tin (Sn), Lead (Pb), Bismuth (Bi). Cation analysis was conducted using inductively coupled plasma mass spectroscopy (ICP-MS). This is a powerful technique for the quantification of trace elements, which allows a multielement analysis across the periodic table covering a mg/1 to sub pg/1 concentration range. A Thermo Electron Finnigan ELEMENT 2, which is a double 27 focusing magnetic sector field ICP-MS at UBC, Earth and Ocean Sciences, was used to determine the concentrations of the major cations in the outflow samples. The 'Semi quant' method was used to get a semi-quantitative overview of the concentrations of 34 elements in the samples. This method is slightly less accurate, however this method was chosen because it allows an inexpensive and fast analysis of a high number of samples, and is the most commonly used method by industrial laboratories. The injection of a multielement standard solution allows the software of the ICP-MS to receive the signal intensity of the elements in the standard solution and calculates a response curve. This response curve allows the determination of the element concentrations of the unknown samples, even for such elements, which were not contained in the standard solution. All the samples were filtered and acidified with HNO3 and diluted 400 times before injection. An internal standard is used to correct for instrument drift. Indium was chosen as the internal standard, because it has the lowest interference with the other elements. Every injected sample is automatically analyzed three times by the instrument and the average is calculated. The detection limits are calculated based on the MDL (method detection limit) method defined by the USEPA as the minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix containing the analyte (EPA, Federal Register, 2004). The MDL was computed as the product of the standard deviation and the critical t-value (3.41) for each cation (appendix C, table C-l). The calculated la error including preparation and analysis ranges between 5 and 20 % for most of the cations (appendix C, table C-l). 16 outflow samples from 2003 and approximately 90 outflow samples from 1999 and early 2000 were analyzed by ALS Environmental in Vancouver by ICP-AES (Inductively coupled plasma - atomic emission spectroscopy) for aluminum, antimony, arsenic, barium, beryllium, bismuth, boron, cadmium, calcium, chromium, cobalt, copper, iron, lead, lithium, magnesium, manganese, molybdenum, nickel, potassium, 28 selenium, silver, sodium, strontium, thallium, tin, titanium, vanadium and zinc. 116 pore water samples were also analyzed by ICP-AES Scan. 4.4 Mineralogical Analysis A comprehensive interpretation of waste rock geochemistry requires a petrographic and mineralogical analysis, focusing on primary sulfide source minerals, buffering minerals and principal secondary mineral products. Thin sections were prepared for microscopic examination. The thin sections were prepared in the thin section lab of UBC, Earth and Ocean Sciences. The most abundant minerals in the waste rock were identified by X-ray diffraction with a Siemens (Bruker) D5000 Bragg-Brentano diffractometer at UBC, Earth and Ocean Sciences. The diffractometer is equipped with a diffracted-beam graphite mono-chromator crystal, 2 mm (1°) divergence and antiscatter slits, 0.6 mm receiving slit and incident-beam Soller slit. The long fine-focus Cu X-ray tube was operated at 40 kV and 40 mA, using a take-off angle of 6°. The step-scan X-ray powder-diffraction data were collected over a range of 3-70 degree of 2 teta with CuKa radiation. The composition and texture of the phases present in the waste rock material was examined on a Philips XL30 Scanning Electron Microscope (SEM) with a Princeton Gamma-Tech Energy Dispersive Spectrometer (EDS) system with the assistance of Dr. John Jambor at UBC, Earth and Ocean Sciences. Back scattered electron (BSE) images reflect the variation in the sample of average atomic number. 4.5 Sulfur content analysis The amount of the remaining in-situ total sulfur and sulfate sulfur in the waste rock pile was determined. The analysis of the total sulfur included the amount of sulfate sulfur and sulfide sulfur. The amount of sulfate sulfur was determined by washing bulk samples of the waste rock material. Sulfide sulfur could be determined by subtracting the sulfate sulfur from the total sulfur. 29 10 waste rock samples were taken during the deconstruction of the waste rock pile in May and June 2004. These bulk samples were used in extractions of water-soluble sulfur-bearing minerals to determine the amount of sulfate remaining in the pile. The water-soluble digestion method is based on that described by Ribet et al. (1995). In the extraction experiment, a 40:1 water to rock ratio was used. Approximately 25 grams of waste rock material were mixed with about one liter of water in a container and shaken continuously for two hours at room-temperature. Filtered water samples were analyzed for sulfate concentration by a turbimetric method with a barium chloride reagent using a HACH D2010 Spectrophotometer. Because the sulfate concentrations exceeded the maximum concentration limit of the spectrophotometer, dilutions up to 5 times were necessary. Knowing the volume of water and weight of the waste rock material that was used for the extraction process, the amount of sulfur was determined. Leco furnace total sulfur was determined on 14 waste rock samples by ALS Chemex in North Vancouver. 30 5. Results 5.1 Mineralogy The dominant primary minerals found in the waste rock samples collected during the deconstruction of the experimental pile in spring 2004 are quartz, potassium feldspar, albite, muscovite, chlorite, a clay mineral (kaolinite or smectite) and some minor amounts of amphibole. These minerals are listed with their chemical notation in Table 5-1. Based upon the minerals present, the examined waste rock material seems to have a negligible neutralization potential. The iron sulfides pyrite and pyrrhotite were determined as the dominant oxidizing minerals that drive AMD generation. The pH environment of the waste-rock pile, measured as paste pH at on average 3.6 is such that only quartz should resist dissolution (John Jambor, personal communication). Muscovite, chlorite, amphibole and the clay minerals are more susceptible to weathering than the feldspars. No acid neutralizing minerals, such as calcite of dolomite were found in the examined samples. This observation agrees with the fizz tests conducted in the field on DJX waste rock by Haug (2001) that showed no reaction (Appendix B, table B-3). The NP/AP ratio is determined with an average of 0.35 which indicates a low potential for acid neutralization (Appendix B, table B-6). The low content of CaO (0.2 %) in the DJX-waste rock obtained from the whole rock major element analyses by Haug (2001, appendix B, table B-4) also indicates the small amount of calcium carbonates. The low paste pH of 3.6 is also measured by Haug (20001) in the field (appendix B, table B-3). Detailed laboratory ABA test work determined a higher paste pH of 5.4 (appendix B, table B-6). Secondary minerals identified from X-ray diffraction and microscopic analyses include the iron oxy-hydroxides goethite and ferryhydrite, jarosite, gypsum, hydrated 31 magnesium and aluminum sulfates and annabergite. Photographs taken during the SEM analysis are located in appendix D. The iron oxy-hydroxides appear as a visible brown coating on the surface of the waste rock particles. The yellow colored coating on the particle surfaces is mostly associated with the mineral jarosite, mainly natrojarosite. Annabergite is a conspicuous bright, apple green mineral that was found during the deconstruction of the waste rock pile in very limited locations. It is a hydrated nickel arsenate that belongs to the vivianite mineral group. Common sources for annabergite are the sulfides gersdorffite and arsenopyrite. The hydrated magnesium and aluminum sulfates precipitated around the outflow tubes and gages in the instrument hut (Fig. 5-1). The furnace in the instrument hut produced very warm temperatures in the hut while mine staff were sampling in the winter. These elevated temperatures promoted evaporation and probably caused the precipitation of these minerals from a supersaturated solution. The main source of the cations potassium, magnesium, aluminum and iron in the solution are most likely muscovite and chlorite. The weathering of the clay minerals adds the cations potassium, sodium and calcium to the water. The weathering of the amphibole supplies calcium to the solution as well. The feldspars are another potential source for potassium, sodium and aluminum. 32 33 Mineral name Chemical notation Quartz Si02 eral: K-Feldspar KAlSi 30 8 min Albite NaAlSi308 es Muscovite K(Mg,Al)(AlSi3O10)(F, 0H)2 E u Chlorite (Fe, Mg, Al)6(Si, Al)4O10(OH)8 Kaolinite KAl2Si205(OH)4 Smectite (Ca, Na, H)(A1, Mg, Fe, Zn)2(Si, Al)4O10(OH)2- xH20 Goethite FeO(OH), Ferryhydrite 5Fe203-9H20 rals Jarosite KFe3(S04)2(OH)6 Secondary mine Hydrated magnesium sulfate MgS04 - nH20 Secondary mine Hydrated aluminum sulfate KA13(S04)2(0H)5 Gypsum CaS04-2(H20), Annabergite Ni3(As04)2-8(H20) Gersdorffite NiAsS Arsenopyrite FeAsS Table 5-1: Identified primary and secondary minerals in the waste rock and their chemical notation. 5.2 Pore water chemistry Pore water was collected within the waste rock pile experiment using suction lysimeters at six different depths: 0.2 m, 0.5 m, 1 m, 1,7.5 m, 3 m and 4.5 m: Sulfate is the major anion in the pore water with concentrations between 400 mg/1 and 40,000 mg/1. The average sulfate concentration of the 116 collected pore water samples is measured with 11300 mg/1. The major cations include magnesium, aluminum, calcium, sodium and nickel. Minor metals in the pore water include manganese, potassium, lithium, cobalt, iron, strontium, zinc and copper. The observed lithium concentrations in the pore water 34 originated most likely from the lithium-chloride tracer test conducted in September 1999. The total dissolved solids content of the pore water increases with depth (Fig. 5-2, Fig. 5-3 and Fig. 5-4). As water drains down in the pile, the amount of water-rock interaction increases and the pore water accumulates more and more metals and sulfate. sulfate concentration [mg/1] 5000 10000 15000 20000 25000 30000 35000 40000 •+-•x • I 2 -a 3 )MO$ 4KtX • )K • X XMg •f Al ®Ca i»Na • S04 x* mtr +>$wm4m*K #>*x x • x _ j — . — ( r - r -1000 2000 3000 cation concentration [mg/1] 4000 5000 Fig. 5-2: Sulfate, magnesium, aluminum, calcium and sodium concentrations in the pore water for different depths within the pile. 35 0 100 Ni, Li concentration [mg/1] 200 300 iWrtiUiU hi -2 --S3 - J — J U . 400 500 X ->^&->0< SK—X-•~"T T 1 1 1 1 1— 20 40 60 80 Mn, K, Fe concentration [mg/1] 100 X M n 4 K • Fe &Ni • Li 120 Fig. 5-3: Manganese, potassium, iron, nickel and lithium concentrations of the pore water for different depths within the pile. Sr, Co concentration [mg/1] 10 20 30 40 50 60 p s m m - x + ^ 2 FJL„l* -i«M0i: it «••#• 4- • I XCu ! - f Zn « h »»»»<XKq» ,1. • -fr • 4 r « 4 f « • |*Co .&Sr ~T—T—I—i—i—,—r —,—r —(-•*-!—r —(—i—f* v—T""r"f"r-"V"i—r-^-T-f-i--,-^-,-^— r~T— ]—,— f— r...1—j 2 4 6 8 10 12 14 16 Cu, Zn concentration [mg/1] Fig. 5-4: Cobalt, copper, strontium and zinc concentrations of the pore water for different depths within the pile. 36 5.3 Outflow water chemistry 5.3.1 Major anion sulfate Chemical analyses show that sulfate is by far the dominant anion in the outflow water from the constructed waste rock pile experiment with about 100 - 200 times higher concentrations than other anions, i.e. chloride, bromide, nitrate, etc. Sulfate is mainly present within a range of 600 mg/1 of up to 35,000 mg/1. Some extraordinary high concentrations were determined with values up to 400,000 mg/1. For the purpose of the following presentation of results, sulfate concentrations are divided into 5,000 mg/1 increments in order to look at the relative concentration distributions. The majority of the samples have sulfate concentration between 5,000 -15,000 mg/1 (51 %). About a fifth of the outflow water shows sulfate concentration less than 5,000 mg/1, and about a third has sulfate concentration higher than 15,000 mg/1 (Fig. 5-5). Distribution of sulfate concentrations 60% : 5000 mg/1 15000- 10000 mg/1 E3 10000- 15000 mg/1 15000 -20000 mg/1 1320000 -25000 mg/1 125000 -30000 mg/1 • 30000 mg/1 all 10 Lysimeter Fig. 5-5: Distribution of sulfate concentration in waste rock outflow for all 16 lysimeters and lysimeter 2, 6 and 10. 37 Sulfate concentrations in the outflow water show a high variability in space and time. The distribution of sulfate concentration for outflow lysimeter 2, 6 and 10 is also presented in Fig. 5-5. The histograms of all lysimeters are available in Appendix E. Lysimeter 3, 5, 8, 9, 10, 12 and 16 show a relatively even distribution of the different sulfate concentration ranges. Lysimeter 10 is presented as an example in Fig. 5-5. About half of the outflow water has concentrations less than 15,000 mg/1 and the other half shows concentrations higher than 15,000 mg/1. In contrast, about 80 % of the outflow water from lysimeter 1, 2, 4, 7, 11, 13, 14 and 15 has sulfate concentrations less than 15,000 mg/1. Lysimeter 2 is presented as an example in Fig. 5-5. Outflow lysimeter 6 has the lowest sulfate concentration with 97 % less than 10,000 mg/1 (Fig. 5-5). The outflow water from lysimeter 5 shows the highest percentage with 16 % of sulfate concentrations larger than 30,000 g/1, followed by lysimeter 16, 3, 9 and 8 with more than 10 % of the sulfate concentrations higher than 30,000 g/1. A yearly average sulfate concentration of the outflow water of the whole waste rock pile is calculated. These average numbers are simply based on the results collected from the IC analyses where all the analyses for a given year are averaged. The average sulfate concentrations for all lysimeters decreased during the monitored period from 2000 to 2003 by 43 % (Fig. 5-6). The change in sulfate concentrations between 2001 and 2002 is relatively small compared to the other years. While the concentration drops by almost a quarter from 2000 to 2001 and 2002 to 2003, they drop only by 7 % from 2001 to 2002. The placement of the low-flux cover on the surface of the pile in August 2002 contributed to the significant change between 2003 and the previous years. 38 Fig. 5-6: Total average sulfate concentrations for all lysimeters for the years 2000, 2001, 2002 and 2003. The average sulfate concentrations of the outflow water- for each individual lysimeter show an overall decrease throughout the monitored years from 2000 to 2003 by about 40-50% (Fig. 5-7). The outflow water from, lysimeter 1, 11, 12 and 13 show a continuous drop in their sulfate concentrations throughout the monitored period. Lysimeter 3, 6, 7, 14 and 15 have a slight increase in their sulfate concentrations in 2003, whereas lysimeter 2, 4, 5, 8, 9 and 16 show a slight increase in 2002. The concentration of the outflow water from lysimeter 5 and 16 in 2002 exceeds the concentration in 2000. Additionally, the outflow water from lysimeter 16 is reduced by only 16 % from 2000 to 2003. This extremely small drop in the sulfate concentration is also observed in lysimeter 6. 39 2 0 0 0 0 T 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Lysimeter Fig. 5-7: Average sulfate concentrations in the outflow water for the years 2000 to 2003 and for each lysimeters. Fig. 5-8 and Fig. 5-9 show the average sulfate concentrations for each lysimeter for the winter months from December 1999 to April 2000 and the summer months from May 2000 to October 2000. In winter 2000, the outflow lysimeters 2 and 10 have the highest average sulfate concentrations with values higher than 20,000 mg/1 while the outflow from lysimeter 1, 5 and 7 have the lowest average sulfate concentrations with values around 10,000 mg/1. During the summer months, the overall average sulfate concentration is 14,000 mg/1, approximately 2,000 mg/1 lower than that observed during the winter months. The highest average concentrations are measured in outflow lysimeter 3 and 12 with values around 18,000 mg/1. The lowest average sulfate concentrations are measured from lysimeter 6 and 13 with values less than 10,000 mg/1. 40 Winter 2000 30000 T 0 0 g 25000 a o $ 20000 « o § 15000 o 10000 2 3 5000 7 8 9 10 11 12 13 14 15 16 Lysimeter Fig. 5-8: Average sulfate concentration for each outflow lysimeter for the winter months in 2000. Summer 2000 30000 b o g 25000 a o •g 20000 -4—' a • u o o 15000 IOOOO 44 u b o 2 5000 7 8 9 10 Lysimeter 11 12 13 14 15 16 Fig. 5-9: Average sulfate concentration for each outflow lysimeter for the summer months in 2000. 41 The plot in Fig. 5-10 shows the average sulfate concentrations for each lysimeter during the months of May to October in 2001. Compared to the concentrations measured in summer 2000, the sulfate concentrations in summer 2001 tend to be on average about 2500 mg/1 lower. In 2001 outflow lysimeter 9 has the highest average sulfate concentration with a value barely higher than 15,000 mg/1 (15,700 mg/1), followed by lysimeter 10 and 12. Outflow lysimeter 6 shows the lowest average sulfate concentration with about 5,500 mg/1. Summer 2001 30000 T B 25000 g 20000 a u o a o o u 15000 "3 10000 CD be 2 3 5000 44 7 8 9 10 11 Lysimeter 12 13 14 15 16 Fig. 5-10: Average sulfate concentration for each outflow lysimeter for the summer months in 2001. The total average sulfate concentration for all lysimeters during the summer months in 2001 wasv 11,000 mg/L, while the average was 15,000 mg/1 for the summer months of 2002. The average sulfate concentrations for the summer 2002 show a much higher variability within the outflow lysimeters (Fig. 5-10). Outflow lysimeter 5 shows the highest average sulfate concentrations with values larger than 30,000 mg/1. In May 2002, extraordinary high values were measured with values up to 400,000 mg/1. Outflow lysimeter 9 and 16 show also elevated average sulfate concentrations with values around 20,000 mg/1. The lowest concentrations are in outflow lysimeter 6, 7 and 14 with values around 5,500 mg/1. 42 Summer 2002 30000 g 25000 a o fs 20000 +J e u o g 15000 o u -= 10000 u be 3 5000 7 8 9 10 11 12 13 14 15 16 L y s i m e t e r Fig. 5-11: Average sulfate concentration for each outflow lysimeter for the summer months in 2002. Fig. 5-12 shows the average sulfate concentration for the winter months of 2003. January to May 2003 is a season with little flow through the pile. The average sulfate concentrations are lower compared to the previous years with,only three lysimeters 9, 10 and 16 exceeding the 10,000 mg/1. The lowest concentrations are measured in lysimeter 1, 5 and 15 with values around 3,000 mg/1. The average sulfate concentration for the months of May to September 2003 is presented in Fig. 5-13. Compared to the other years, the concentrations seem to be less variable with most of the values around 10,000 mg/1. Lysimeter 5 is the only lysimeter with an observed concentration that is higher than 15,000 mg/1. In contrast to the summer periods in 2000, 2001 and 2002, there are no noticeably low concentrations observed in lysimeter 6 in 2003. The outflow chemistry of the samples taken from lysimeter 4, 8, 12 and 16 was not analyzed for this period because no reasonable flow rates were monitored. 43 30000 _[ 25000 a 3 20000 15000 H 10000 60 u 5000 3 Winter 2003 n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Lysimeter Fig. 5-12: Average sulfate concentration for each outflow lysimeter for the winter months in 2003. Summer 2003 30000 60 _[ 25000 a o 1? 20000 a o a o 60 2 15000 <D •3 10000 5000 4-4j 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Lysimeter Fig. 5-13: Average sulfate concentration for each outflow lysimeter for the summer months in 2003. 44 By looking at the monthly average sulfate concentrations (Fig. 5-14) a general increase in concentration starting in the beginning of the flow season in May is observed. The sulfate concentration peaks during the summer months June, July, August and September. In 2002 and 2003, extraordinary high,,concentrations were analyzed for outflow water samples in May. The provided monthly averages (Fig. 5-14) are a simple calculation of the mean value of the measured sulfate concentrations. The estimated average was based solely upon directly measured sulfate values, and not sulfate values estimated from flow rates. However, before the calculation of an average value a thorough check and comparison with the flow rates was conducted to see if the measured sulfate concentrations within each month may represent an adequate mean value. The missing months did not have a representative mean value after the check with the flow rates (e.g. chemistry results were available only from the first week but there are some drastic changes in the flow rates later this month). Sulfate Concentrations - monthly averages 25000 20000 •2 15000 § o c o o ID a 10000 5000 m ° 2 .3 c 13* 2000 2001 2002 2003 2004 Fig. 5-14: Monthly average sulfate concentration of all lysimeters from January 2000 to January 2004. 45 5.3.2 Electric vs. calculated conductivity Another useful technique to check the accuracy of chemical analysis is to compare calculated conductivities with measured electrical conductivity (EC). The electric conductivity is related to the ions which are present in solution. At 25°C, the electrical conductivity divided by 100 yields a good estimate of the sum of anions or cations (both in meq/1) (Appelo and Postma, 1996). _] anions = _] cations (meq/1) = EC / 100 (u\S/cm) (6) This relation is valid for electric conductivity values up to 2000 uS/cm, which accords to a maximum sulfate concentration of approximately 960 mg/1. More than 90 % of the measured sulfate concentrations in the outflow water exceed that value, so that a more complicated equation needs to be used. Desbarats and Dirom (2004) modeled the relationship between sulfate and conductivity. To improve the estimation at higher concentrations, weighted non-linear least-squares regression with the weighting based on conductivity was used. Desbarats and Dirom's (2004) regression model is of the form: Y = b0 + bi-bi(l+(b2X)")-m + 8 (7) Where Y is the dependent variable, X is conductivity and s is a random error term. The coefficients bo, bi and b2 are estimated by regression using an iterative Gauss-Newton method while n and m (m = 1 - 1/n) are fixed after preliminary trial-and-error adjustment. The correlation between the measured electrical conductivity and the calculated conductivity based on the sulfate concentration of the outflow water from the constructed waste rock pile experiment is shown in Fig. 5-15 for three different data sets: 1999, 2000-2002 and 2003. The relationship for the 1999, 2000-2002 and 2003 data sets seem to be close to linear; however the slopes are slightly different. The electric conductivity increases with increasing sulfate concentration. The difference in 46 the slopes between the 1999 and the 2000-2002 and 2003 data is because of different measuring techniques. An attempt was made to measure more 2003 samples, but the instrument failed to calibrate properly. Measured vs. calculated EC 35000 -, EC[mS/cm] Fig. 5-15: Measured and calculated electric conductivities for three different data sets. 5.3.3 Major Cations and Metals The most abundant cations in the outflow water are magnesium, aluminum, calcium, sodium, nickel, uranium, lithium and manganese. Magnesium concentrations are more than half of the total cation concentration on an equivalent basis (see Fig. 5-16). The 0.7 % of other cations consist mainly of K, Co, Sr, Zn, Fe, Ce, Be, Cu, La, Se, Cr and As. The cations Cd, Ba, Sn, Ga, Mo, Pb, V, Sb, Ag, Ti, Hg, Bi and Cs are either not present in the outflow water or their concentrations are below the detection limits of the analysis methods. 47 The proportions of the different cation concentrations in the outflow water are roughly constant in all samples except for calcium and iron (Fig. 5-17). The exceptions calcium and iron are discussed in section 5.3.5. Mg Al Ca Na Ni U Li Mn others Fig. 5-16: Major cations in analyzed outflow samples. Cation 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Fig. 5-17: Schoeller diagram showing the concentrations of cations in outflow water. Each line represents the concentrations measured in one water sample. 48 Magnesium has'by far the highest concentrations with an average of about 3,800 mg/1, followed by aluminum, which has less than a third of the average concentration of magnesium. Fig. 5-18 shows the computed average concentrations for the seven most abundant metals including Mg, Al, Na, Ca, Ni, U and Mn. The average concentration of each of these cations is higher than 100 mg/1. except for manganese, which is measured with 98 mg/1. Average cation concentrations 4000 £.2500 a 12000 I _ 1500 a O 1000 Fig. 5-18: Average cation concentrations of the seven dominating cations Mg, Al , Na, Ca, Ni, U, Mn. The measured concentrations of magnesium show the largest range from 185 mg/1 to 61,000 mg/1, followed by Al, Na, U, Ni, Mn and Ca in decreasing order. The metals Al and Na have also measured maximum concentrations higher than 10,000 mg/1, whereas the cations U, Ni, Mn and Ca all show measured maximum concentrations lower than 10,000 mg/1. The minimum concentrations are all lower than 100 mg/1 except for Mg. The metals U, Ni, Mn and Ca have a measured minimum concentration of less than 10 mg/1 (Fig. 5-19 and Fig. 5-20). 49 1. 1 a o U 70000 60000 50000 40000 30000 20000 10000 0 Mg Maximum Cation Concentrations Al Na U N i Mn Ca Fig. 5-19: Measured maximum cation concentrations for the seven major metals including Mg, Al , Na, U, Ni, Mn and Ca (between 1999 and 2003). Minimum Cation Concentrations 200 -, , , ,• , Fig. 5-20: Measured minimum cation concentrations for the seven major metals including Mg, Al, Na, U, Ni, Mn and Ca 8 (between 1999 and 2003). 50 As shown in Fig. 5-16 calcium has a higher percentage of the total cation concentration than sodium; however its average concentration is approximately 200 mg/1 lower as depicted in Fig. 5-18. The highest measured concentration of sodium is about an order of magnitude higher than the measured concentration of calcium (12,000 mg/1 vs. 1100 mg/1), whereas the minimum measured concentrations for both metals are approximately the same (23 mg/1 vs. 7 mg/1) (Table 5-2). The range in concentration of each metal is subdivided into four equal parts. The percentage of metals in each concentration range is presented in Table 5-2. Sodium Calcium Subdivided concentration ranges [mg/1] Abundance [%] .it • • Subdivided concentration ranges [mg/1] Abundance [%] 1 23 -2939 97 7-267 10 2 2940 - 5877 . 1 -268 - 533 39 3 5878 - 8816 1 534-800 49 4 8817- 11731 1 801 - 1060 2 Table 5-2: Relative abundances of metal concentration for Na and Ca within their total concentration ranges. 97 % of the measured sodium concentrations are less than approximately 3000 mg/1. The measured concentrations of calcium are more evenly distributed throughout its whole concentration range. The other major metals including Mg, Al, U, Ni and Mn show the same distribution in concentration within their concentration ranges as does sodium. The majority of the measured concentrations are within the lowest quarter of their concentration range (see table E-l in appendix F). 51 The average concentrations of the less abundant cations in the outflow water are presented in Fig. 5-21. Potassium measures the highest average concentration of approximately 55 mg/1, followed by cobalt and lithium. The average concentrations of strontium, zinc, cerium, iron, lanthanum and copper are all within 10 mg/1 and 1 mg/1. 5.3.4 Electrical Neutrality The electrical neutrality (E.N.) condition for each analyzed sample is calculated as a check as a check of the water analyses. The sum of the positive and the negative charges in each water sample should balance if all ions in solution are properly measured, although electrical neutrality does not guarantee that all ions have been properly detected. Cy cations + V anions) ElectricalNeutrality(E.N.,%) = ^  ±± * 100 (8) (> cations - ^anions) An average E.N. of + 4.88% was calculated based on the analyzed samples. The positive number indicates that the sum of cations in the outflow water is higher than that of anions. This can be explained by chloride, which was below detection under the 52 strong dilutions needed for IC analyses. Lithium-chloride was used for a tracer test in summer 1999. 5.3.5 Relationship between Cations and Sulfate The relationship between metal and sulfate concentrations is depicted in Fig. 5-22 - Fig. 5-28. The metal concentrations are plotted against the sulfate concentrations for Mg, Al, Ca, Na, U and Fe. Except for calcium and iron, the other metals show similar trends: as the sulfate concentration increases, the metal concentration increases as well. This suggests that a strong correlation exists between the concentration of the metals Mg, Al, Na, Ni and U and the sulfate in the outflow water. This correlation between sulfate and metal concentrations in the outflow water was also found for Mn, Co, Zn, Ce, La, Cu, Be, Se and As (appendix G). Thus, the analysis of the sulfate concentration in the outflow water also provides information about the concentration of most of the metals that are leaching to the environment. a O a o a 40000 35000 30000 25000 20000 15000 10000 5000 0 Magnesium vs. Sulfate 50000 100000 150000 200000 250000 300000 SO4 "Concentration, [mg/1] Fig. 5-22: Correlation between sulfate and magnesium in the outflow water. 53 o a o U 14000 12000 10000 8000 6000 4000 2000 0 Aluminium vs. Sulfate • 2000-20031 x 1999 & 2003 50000 100000 150000 200000 250000 300000 2-S04 Concentration, [mg/1] Fig. 5-23: Correlation between sulfate and aluminum in the outflow water. 60 o s o a o U a O 1000 900 800 700 600 500 400 300 200 100 Calcium vs. Sulfate • 2000-20021 x 1999 A 2003 50000 100000 150000 200000 250000 300000 SO4 Concentration [mg/1] Fig. 5-24: Correlation between sulfate and calcium in the outflow water. 54 2000 n 1800 -1——1 1600 \ CO 1400 : o 1200 ^ u 1000 : O 800 -C c3 600 \ Na 400 : 200 ^ 0 -Sodium vs. Sulfate • - . • • i x ^1 X < • X -X-20000 40000 60000 80000 SCM Concentration [mg/1] • 2000-20021 x 1999 A 2003 100000 Fig. 5-25: Correlation between sulfate and sodium in the outflow water. 2500 Nickel vs. Sulfate ao 2000 e o 1500 | 1000 c 6 % 5 0 0 • 2000-20021 x 1999 A 2003 50000 100000 150000 200000 250000 300000 SO4 Concentration [mg/1] Fig. 5-26: Correlation between sulfate and nickel in the outflow water. 55 60 <o o C o U D 3500 3000 2500 2000 1500 1000 500 0 Uranium vs. Sulfate • 2000-2002 50000 100000 150000 200000 250000 300000 SO4 Concentration [mg/1] Fig. 5-27: Correlation between sulfate and uranium in the outflow water. Iron vs. Sulfate 30 • 2000-20021 x 1999 A 2003 50000 100000 150000 200000 250000 300000 S04 Cone, [ppm] Fig. 5-28: Correlation between sulfate and iron in the outflow water. 56 The metals such as magnesium, aluminum, sodium, nickel and uranium that show a strong correlation with the sulfate concentration in the outflow water are released to the pore-water and leached from the waste rock pile. The strong correlation between sodium and sulfate is only developed for relatively fresh outflow water with sodium concentrations less than 300 mg/1 likely because sodium is removed from the solution and included in the jarosite precipitation. The metals iron and calcium do not show a correlation with the sulfate concentration. They may be stored in the pile as secondary mineral precipitates. The iron likely forms meta-stable secondary products such as ferryhydrite (5 Fe203-*9 H2O), as well as the more stable secondary products jarosite (KFe3(S04)2(OH)6) and goethite (a-FeO(OH)) depending on the geochemical conditions. The formation of jarosite requires potassium which is produced from silicate weathering. The calcium may precipitate together with-sulfate as gypsum ((CaS04(Ff20)2). The calcium in the pore water might be produced by calcite or dolomite dissolution, but due to the low calcite content in the material it is more likely produced by muscovite, chlorite and smectite- dissolution. The dissolution of these minerals contributes to the neutralization of the acidic metal-rich solutions generated by the sulfide oxidation processes. The dissolution of calcite by proton attack is shown in equation 9. The formation of gypsum by removing calcium and sulfate from the water is presented in equationlO: Oxidation products that are stored as secondary minerals are characterized in order to quantify weathering (see chapter 5.1). 5.3.6 Saturation states Speciation calculations of the outflow water were conducted using PFfREEQC code with the WATEQ4F database. The distribution of aqueous species and the saturation states are calculated for different outflow water concentrations between 5,000 mg/1 and CaC03 + 2Ff H 2 C O 3 + Ca: Ca2+.+ S042" -> CaS04(H20)2 2+ (9) (10) 57 190,000 mg/1 of sulfate. The saturation indices for all minerals that are appropriate for the given analytical data are listed in appendix H. PHREEQC uses ion-association and Debye-Huckel expressions to account for the non-ideality of aqueous solutions. This type of model is inadequate at higher ionic strengths (>0.7). Accordingly, the resulting speciation calculations are only an approximation. For high ionic strength waters, the Pitzer (1979) approach should be used, but this approach is not incorporated in PHREEQC. Positive saturation indices suggest the precipitation of alunite (KA13(S04)2(0H)6 and jurbanite ( A I O H S O 4 ) for all different outflow water concentrations. The calcium concentration in the outflow water is the limiting factor for the precipitation of gypsum (CaSC<4:2H20). Equilibrium between gypsum and the solution is found for calcium concentrations around 350 mg/1. More concentrated outflow water with sulfate concentrations between 29,000 mg/1 and 40,000 mg/1 is slightly supersaturated with respect to anhydrite (CaSC )^ and celestite (SrSC^). Extraordinary high concentrated outflow water with sulfate concentrations around 200,000 mg/1 is supersaturated with respect to basaluminite (Al4(OH)i0SO4), diaspore (AlOOH) and epsomite (MgS04:7H20) in addition to the other mineral phases mentioned above. 5.4 Relationship between Flow and Outflow Water Chemistry A summary of the outflow rates and the chemistry is shown in Fig. 5-29, Fig. 5-30 and Fig. 5-31. The plots show the flow rate and the sulfate concentration for lysimeter 6, 9 and 14 over time between 2000 and 2003. The hydrographs for the other 13 lysimeters are located in appendix I, Fig. 1-1 -1-13. Low flow is usually observed during the winter months from November to April. Freezing conditions last from November to March on the pile surface and were measured down to a depth of 1.75 m within the pile from February to April (Nichol, 2002). The outflow rates vary by up to three orders of magnitude over the year. Elevated flow rates are usually observed in May, June, July, August, September and 58 October. In 2003 the flow rates are in general much lower than in the previous years. This overall decrease by a factor of approximately three in the outflow rates in 2003 is due to a lower-permeability cover that was put on the top surface of the pile in August 2002. In addition to the seasonal variations in the outflow rates, the outflow rates are also highly variable within the 16 lysimeters. During periods of elevated flow rates the range in sulfate concentration reaches its maximum with values between 500 mg/1 and 30,000 mg/1. During low or moderate flow periods the sulfate concentrations are less spread out and the range drops by about 40 %. The concentrations still remain within the higher numbers but they are rarely observed lower than 3,000 mg/1. A general decrease of the sulfate concentration is observed over the monitored period. Fig. 5-29: Outflow rates and sulfate concentrations from December 1999 to January 2004 for lysimeter 6. 59 25 20 IP 15 CD £ 10 o x X X x Lysimeter 9 r 25000 20000 60 55 15000 .2 ts 10000 $3 o o 5000 3 0 Dec-99 Jun-00 Dec-00 Jun-01 Dec-01 Jun-02 Dec-02 Jun-03 Dec-03 Fig. 5-30: Outflow rates and sulfate concentrations from December 1999 to January 2004 for lysimeter 9. Fig. 5-31: Outflow rates and sulfate concentrations from December 1999 to January 2004 for. lysimeter 14. 60 The hydrographs plotted with the sulfate concentrations superimposed show the relationships between the outflow chemistry and the flow rates at the base of the pile. The sulfate concentration and the outflow rates are plotted against time for the winter months in 2000 in Fig. 5-32. The flow rate is constantly low with values less than 1 1/day, whereas the sulfate concentration varies noticeably between 3,000 and 30,000 mg/1. During these months, no significant flow occurs in the pile and the flow rates do not seem to have an effect on the chemistry of the outflow water. 3.0 2.5 ^ 2.0 a 1.5 o 1.0 Flow Rate & Sulfate Concentration - January-April 2000 Lys2- flow ............... L y s 7 - flow . , L y s 9 . flow Lys 14 - flow + Lys 2 - sulfate <> Lys 7 - sulfate A Lys 9 - sulfate • Lys 14 - sulfate 0.5 4 0.0 A - A -A ' • • 4. • • • • • • A -T_r-~ T — a r t • 30000 25000 oo s 20000 15000 S 10000 5000 Fig. 5-32: Flow rate and sulfate concentration against time for lysimeter 2, 7, 9 and 14. The flow rates are represented by the solid lines, the sulfate concentration are represented by the data points. During the summer months, more water flows through the pile, and the outflow volume apparently affects the chemical concentration of the outflow water. Fig. 5-33 shows the sulfate concentration and the outflow rates against time for the 43-day period between August 20th and October 1st of 2000. These results suggest that elevated flow rates induce lower sulfate concentrations whereas less intense flow rates lead to higher 61 concentrated outflow water. Outflow lysimeter 2 shows the highest flow rates with 141/day correlating with the lowest sulfate concentrations with values around 12,000 mg/1. The lowest flow rate is measured in lysimeter 3 with a maximum value of 8 1/day. The corresponding sulfate concentrations are about twice as high as observed in lysimeter 2. :• SBOO Fig. 5-33: Measured flow rate and sulfate concentration against time for August and September 2000. 1 Fig. 5-34: Measured flow rate and sulfate concentration against time from May to August 2001. The same behavior is observed for the monitored period between May 24 and August 27th 2001 (Fig. 5-34). Significantly higher outflow, rates areobserved in lysimeter 6 with values up to 110 1/day. The large volumes of water flowing through the pile yield less concentrated outflow water. The sulfate concentrations lie around 10,000 mg/1. Similarly, the lower flow rates observed in lysimeter .5, and 8 are consistent with a more concentrated outflow water. A correlation between the intensity of flow and the concentration of outflow water is observed for all lysimeters. The plot in Fig. 5-35 shows the relationship between the flow volumes and the average sulfate concentrations. Each data point represents the average sulfate concentration and the amount of water that was released for a single lysimeter during June, July, August and September 2000 or June, July and August 2001. 63 500 450 400 S 350 Flow volume & Average Sulfate Concentration 300 4 o 250 4 > 200 150 100 50 • Jun-Sep2000 XJun-Aug 2001 -X-- X -—xx-• x • x x x X X 0 1-T-i-,-,-r-T—r~n—T--m)—i—r—T—i—i—r--i—i—i—i—ri—i—i—i—i—i—I—i—r—i—i—i—i—rT—i—r-~r~'r~r~*T~*i~~T~T~'\—r--T--T-^  5000 7000 9000 11000 13000 15000 17000 19000 21000 23000 25000 Sulfate Concentration [mg/1] Fig. 5-35: Correlation between flow volume and sulfate concentration for the two monitored periods: June - September 2000 and June - August 2001. The following plots (Fig. 5-36 - Fig. 5-38) show the response of the outflow chemistry to infiltration events. Samples of outflow water were collected at a high frequency during and after infiltration events to. investigate the changes in chemistry. The observations made during the different infiltration events are presented in the following three figures. The figures follow the same arrangement as in the previous figures (Fig. 5-33 and Fig. 5-34). The concentration of the outflow water drops significantly during the peak flow levels following an infiltration event. Fig. 5-36 shows the response of the chemistry to an infiltration event in September 2001. The rapid increase in the flow rate within a few hours from rates around 3 1/day up to 80 1/ corresponds to a decrease in the sulfate concentrations from 15,000 mg/1 to less than 1,000 mg/1. During the flow peak, the sulfate concentrations of the relatively fresh outflow water are present in two dominant clusters around 2,500 mg/1 and 9,000 mg/1. An October 2001 infiltration event is shown in Fig. 5-37% Lysimeter 6 measures a th major flow peak on October 12 of 2001 with flow rates up to 686 1/day. The flow rates increased up to a factor of 30 compared to the background flow rate. The response 64 to the infiltration event is less intense in lysimeter 8. The flow rate in lysimeter 8 reaches a maximum of 370 1/day. However, this is 56 times higher than the monitored background flow rate in lysimeter 8. Elevated flow rates are observed in both lysimeters only for a short time, between 10 and 15 hours. With the rapid increase in the flow rate, the sulfate concentration drops significantly for both lysimeters by factors between 3 and 10. As soon as the flow reaches a stable rate, the sulfate concentration increases back to its original level. The same relationship between flow and chemistry is observed during another infiltration event in August of 2002. The curve of the sulfate concentrations shows the converse behavior compared to the flow rate curve. With the first sharp peak of the flow rate, that increases within about 30 minutes from 5 to 501/day, the sulfate concentration drops from 9000 mg/1 to 1500 mg/1 in lysimeter 8. Two hours later, the flow rate reaches a minimum. As a consequence, the sulfate concentration reaches a maximum with 17500 mg/1. Another increase in the flow rate results in a reduction of the sulfate concentration. The gradual decrease in the flow rate during the next two days corresponds to a slight increase in the sulfate concentration. Lysimeter 6 shows one major peak in the afternoon of August 8th 2002. The response of the chemistry is a drop in the concentrations with values as low as 900 mg/1. In general, the flow rates of lysimeter 6 are higher than of lysimeter 8. As a consequence, the sulfate concentrations of lysimeter 6 are lower compared to lysimeter 8. This supports the observation that flow and chemistry are inversely proportional. 65 Fig. 5-36: Sulfate concentrations and flow rates during an infiltration event in September 2001. m 1 •SI': its f -26 a WB * 3C 0 Ftew £irie & Sulfate Cottentrafiui - 0<toW ^001 - Ljrsttwter t & S [ - *.>•-> 6 - flow * lyo 2 - ffc'-w ":l.y? <S -outfit <: I.y* S - •:ul:*;4?'j /v . Fig. 5-37: Sulfate concentrations and flow rates during an infiltration event in October 2001. 66 '.SMC S * i^> ' 4 * ^ Fig. 5-38: Sulfate concentrations and flow rates during an infiltration event in August 2002. The relationship between sulfate and flow is also observed in the other lysimeters. More detailed flow and chemistry plots are available in appendix I, Fig. 1-17 - Fig. 1-40. Additional insight into the correlation between chemistry and flow is achieved by comparing the chemistry of the outflow water and the corresponding flow rate. The x-y plot of the sulfate concentration against the flow rate allows the determination of dominant sulfate concentrations for a given flow rate. The relationship is shown for lysimeter 11 (Fig. 5-39) and lysimeter 5 (Fig. 5-40). The same relationship is observed for the other 14 outflow lysimeters (appendix I, Fig. 1-41 - Fig. 1-56). The two plots show that in general, outflow water with concentrations higher than 17,000 mg/1 or less than 7,000 mg/1 coincides with flow rates of less than about 6 1/day. However, a few concentrations less than 7,000 mg/1 are observed during flow rates greater than 61/day. The moderate concentrated outflow water with sulfate concentrations between 7,000 mg/1 and 17,000 mg/1 is observed for all different rates of flow. This observation matches with the collected information from the hydrographs in Fig. 5-29, Fig. 5-30 and Fig. 5-31. 67 The observed correlation between the chemistry and the flow volumes changes within the 16 lysimeters. The above described pattern is pronounced in lysimeter 1, 4, 6, 7, 10, 11, 13, 14, 15 and 16. Sulfate concentrations are highly variable for low flow rates of less than 6 1/day. Higher flow rates seem to correspond with more consistent sulfate concentrations around 10,000 mg/1. In lysimeter 2, 3, 5, 8, 9 and 12 the sulfate concentrations measured at high flow rates of greater than 6 1/day show a more erratic pattern ranging from 5,000 mg/1 to 15,000 mg/1. These lysimeters seem to be more subject to different flow paths than lysimeter 1, 4, 6, 7, 10, 11, 13, 14, 15 and 16. The pattern also changes over the monitored years. The high range of outflow volumes shifts towards lower sulfate concentrations over the years. In 2003, after the placement of the low permeability cover, the outflow volumes are much lower and never exceed 3.5 1/day. The range of flow rate still peaks at moderate sulfate concentrations. 35000 CT30000 "25000 c o g 20000 I 15000 o o B 10000 .as 5000 Flow vs. Sulfate - Lysimeter 11 X O r — _, x x ^ b o X 4 £ 0 X X o r x> , CL 0 10 20 30 40 flow rate [1/day] + \ 50 O 2000 | X2001 + 2002 • 2003 60 Fig. 5-39: Correlation between the sulfate concentration and the flow rate in lysimeter 11 for 2000, 2001, 2002 and 2003. 68 Flow vs. Sulfate - Lysimeter 5 30000 -, 25000 t ^ 20000 S|j o 1 . "S 15000 •a o o 10000 5000 -+_ o _x>_o_^>_—oo-o-X X X " S T X 6 9 flow rate [1/day] 12 O2000 X2001 + 2002 • 2003 15 Fig. 5-40: Correlation between the sulfate concentration and the flow'rate in lysimeter 5 for 2000, 2001, 2002 and 2003. 5.5 Loading Estimation The total amount of sulfur that was released at the base of the constructed pile between January 2000 and December 2003 is calculated at approximately 150 kg (calculations are located in appendix J). The calculation is based on the monthly average sulfate concentration and the monthly outflow volumes according to the following equation: outflow volume [1] * sulfate concentration [mg/1] = sulfate released [mg] (11) The amount of sulfate released is calculated for each individual lysimeter. The results were summed up in order to get the total mass loading at the base of the pile. Due to the heterogeneity of the waste rock, the sulfate release rates vary by up to 50 % between the lysimeters. The calculation of an average monthly sulfate concentration for each lysimeter was not possible for about 15 months during the four-year period because of a lack of chemistry 69 data. The missing months are mainly winter months or months where the collected chemistry data requires a flow-rate weighting to represent a realistic number. For these months the amount of sulfate released was estimated by using a correlation factor derived from the relationship between the sulfate loading and the outflow volume from the fully recorded months. An initial sulfur content for the pile of 2880 kg was calculated based on a sulfur content of 0.45 wt% and a bulk density of 2000 kg/m3 (Table 5-3). Based on our results, only 5.1 % of the total sulfur content was released during the 2000-2003 period (see Table 5-3). Density of waste rock [kg/mJ] 2000 Volume of waste rock [mJ] 320 Sulfur content [wt%] 0.45 Total initial Sulfur weight [kg] 2880 Removed mass of Sulfur [kg] 147 Sulfur removed [%] 5.1 Sulfate release [mg S04/(kg*week)] 3.3 Table 5-3: Calculated total amount of removed sulfur and average sulfate release rate between January 2000 and December 2003. The variations in the amount of sulfur released at the base of the pile are shown in Fig. 5-41. During the 'flow season', from May to October, the combination of elevated flow rates and high sulfate concentrations yield a high mass loading at the base of the pile. The maximum sulfur released is observed in July 2000 with 16.5 kg of sulfur. The smallest amount of sulfur was observed in February 2003 with approximately 100 mg. The rate of sulfate release, in mg per kg of waste rock and per week [mg SOV (kg*week)] varies between 19 in July 2000 and 0.1 in February 2003. Similar to the total amount of sulfur released every month, the sulfate release rates is correlated to the flow volumes. Elevated sulfate release rates are observed during the months where also elevated flow rates are observed. 70 Monthly Removed Sulfur 15 1 2 • • H - r - r - t -T-i—r—r • l - T - . - t -i—I—i—r^~f^1^-i—I—i—i—I—i—r i^-i—j—i—i—|—i—i—j—r \ \ \AA W X \ \s x \ w x \ Fig. 5-41: Mass of sulfur that is released per month at the base of the pile for the time period between January 2000 and December 2003. * •—. 60 cu CO _CU 2 0 -r 1 5 1 0 Monthly Sulfate Release Rates • • • • • • • • | - T - , - 4 " . - r - l - , - r - 4 - • f -r -v- | - • | - T - , - r - •4-rr-H- 4-^ \ ws W X \ \& X \ w X \ Fig. 5-42: Rates of sulfate released at the base of the pile for months between January 2000 and December 2003. 71 Hollings et al. (2001) determined the oxidation rates of the DJX waste rock from the DJX pit using kinetic cell tests. The sulfate release rates were determined using three independent methods: oxygen consumption rates in kinetic cells, sulfate measurements of kinetic cell effluent and humidity cell sulfate release rates. However, the results from the laboratory experiments conducted by Hollings et al. (2001) are up to four times higher than the sulfate release rates obtained from the experimental waste rock pile (Table 5-4). This testifies the observation made by Malmstrom et al. (2000) that there are large discrepancies between the mineral weathering rates determined in the laboratory and in the field with usually lower rates in the field. Sulfate release rates [mg SO4 /(kg*week)] Calculated from oxygen consumption rates SO4 measurements of kinetic cell effluent Humidity cell SO4 release rates Experimental waste rock pile Hollings etal. (2001) Minimum 6.9 3.1 6 0.1 Maximum 70 91- , 64 19 T a b l e 5-4: Summary of the sulfate release rates results of the DJX waste rock from laboratory and field experiments. The low permeability cover that was placed on the surface of the waste rock pile in August 2002 decreased the flow rates and in turn decreased the mass loading. As shown in Fig. 5-41 and Fig. 5-42 the mass of sulfur and sulfate release rates are lower in 2003 compared to the previous years. The average rate of sulfate release is four times higher in 2000, 2001 and 2002 prior to cover placement than afterwards (Table 5-5). This table also summarizes the yearly average sulfate release rates and sulfur mass removal, respectively. In summary, a general decrease of the mass loading is observed during the monitored period. 72 Average sulfate release rate [mg S04/(kg*week)] Average removed mass of sulfur [kg/month] before August 2002 4.8 4.1 after August 2002 1.2 1.1 ' 2000 5.9 5.1 2001 3.8 3.2 2002 3.5 3.0 2003 1.2 1.0 Table 5-5: Summary of the average sulfate release rates and sulfur mass removal. Sulfate release rates and sulfur mass removal is shown for every year between 2000 and 2003 and prior to and after the cover placement in August 2002. A good, metal, loading estimate was difficult because the number of the outflow samples analyzed was limited by time and budget constraints. However, the concentration of the majority of the metals in the outflow can be reasonably well estimated using their strong correlation with the sulfate concentration (see chapter 5.3.5). Based on this relationship, the metal loading is estimated and the results are summarized in Table 5-6. The dominant metals in the outflow water are magnesium, aluminum, sodium, calcium, nickel, uranium and manganese. With the exception of calcium, these metals also have the highest release rates with values between 0.5 and 0.014 mg / kg waste rock / week. The release rates of calcium could not be calculated because the comparison of calcium and sulfate concentrations in the outflow water does not show a correlation. The iron loading is not calculated for the same reason. The average release rates for cobalt, zinc, cerium, copper and chromium are less than seven ug / kg waste rock / week. 73 Release rate [mg/(kg * week)] Total average Prior to cover placement After cover placement 2000 2001 2002 2003 M g 0.5 0.7 0.2 0.9 0.6 0.5 0.2 A l 0.15 0.21 0.06 0.26 0.17 0.15 0.07 Na 0.1 0.14 0.07 0.17 0.11 0.1 0.04 N i 0.04 0.05 0,02 0.062 0.040 0.036 0.016 U 0.037 0.052 0.016 0.065 0.041 0.038 0.016 M n 0.014 0.019 0.006 0.024 0.015 0.014 0.006 Co 0.004 0.006 0.002 0.007 0.005 0.004 0.002 Z n 0.001 0.002 <0.001 0.002 0.001 0.001 O.001 Ce 0.001 0.002 O.001 0.002 0.001 0.001 .0.001 C u O.001 <0.001 <0.001 O.001 <0.001 <0.001 O.001 C r <0.001 <0.001 <0.001 <0.001 O.001 <0.001 O.001 Table 5-6: Summary of the release rates of the dominant cations. The numbers are just a rough estimate of the metal loading. Results are recorded up to three decimals to show the differences in the release rates and do not represent the exact rate. An average sulfate sulfur content of approximately 1000 mg / kg waste rock was obtained from the extraction experiments (section 4.5). The values varied between 550 and 1700 mg of sulfate sulfur per kg of waste rock. The results are summarized in Table 5-7. Based on the average sulfate sulfur content per kg of waste rock, the total amount of sulfate that is still retained in the pile is approximately 650 kg. The sulfate sulfur content appears to increase with increasing depth. 74 Sample # Sulfate Sulfur content [mg/kg] Depth [m] 1 557 2 763 -0.8 3 565 4 931 5 1020 - 1.7 6 767 7 1235 -3.0 8 1538 9 931 -4.1 10 1704 Average 1001 Table 5-7: Summary of the extraction results. The amount of readily solubilized sulfate sulfur obtained from the extraction experiments is similar to the results from the SWEP tests (Haug, 2001, see appendix B, Table B-7); The extraction procedures are comparable (see section 3.4.3 and 4.5). The initial total sulfur content and the amount of removed sulfur were calculated with 2880 kg and 150 kg, respectively (Table 5-3). According to these numbers, the amount of total sulfur that is still stored in the pile should be 2730 kg. The Leco Furnace total sulfur content after the experiment was measured with 0.3 wt%, 0.15 wt% less than the total sulfur content of the waste rock material at the beginning of the experiment. This suggests a total amount of sulfur of 1920 kg in the constructed waste rock pile experiment, which is approximately 30 % less than the amount of total sulfur based on the mass loading calculation (see Table 5-8). 75 Sulfur content [wt %] Total amount of sulfur in the GPE [kg] prior to experiment 0.45 2880 after experiment Mass loading 0.43 2730 LECO furnace 0.3 1920 Table 5-8: Summary of the sulfur content and total amount of sulfur stored in the pile prior to the placement of the waste rock in the pile experiment and after the deconstruction of the pile. The sulfur content of the waste rock at the beginning of the experiment was estimated at 0.45 wt%. SWEP analyses of the DJX waste rock measured slightly higher sulfur contents between 0.47 and 0.76 wt% (Haug, 2001). Key trace element studies and ABA tests on the DJX waste rock revealed sulfur content of 0.65 wt% and between 0.44 and 0.76 wt%, respectively (Haug, 2001). According to the results by Haug (2001), approximately 15 % of the total sulfur is sulfate sulfur. The amount of sulfate sulfur of the total sulfur in the constructed waste rock pile experiment is estimated at approximately 25 %. 76 6. Discussion This study focuses on the chemistry of the outflow water at the base of the constructed waste rock pile experiment. The rate and intensity of the interactions between the waste rock material and the water that flows through the pile has a major impact on the outflow chemistry (Fig. 6-1). Beside the analysis of the outflow water for its chemical concentration, detailed studies of the mineralogy of the waste rock material as well as the continuous recording of the outflow volumes contribute to a better understanding of the outflow chemistry. Infiltration I l l l l Grain size variations Water quality (pH, etc.) \ Waste rock structure Mineralogy 1 Water - rock interactions \ Variable flow paths Differential residence times l l l l l l l l l l l l l l l l l l l l l l l r Reactive material Outflow chemistry Fig. 6-1: Sketch of the processes contributing to the production of acid mine drainage. 77 Results of the chemical and mineralogical analysis are described in the last chapter. Correlations between sulfate and the dominant cations in the outflow water, sulfate and electric conductivity, and sulfate and outflow rates are examined. Based on the obtained results, the overall mass loading at the base of the constructed waste rock pile experiment is estimated. This chapter discusses the observations and the results described above. 6.1 Behavior of sulfate The outflow chemistry is highly variable during the entire monitored period. In addition the chemistry varies between each of the lysimeters. The major factors responsible for the high variability of the chemistry are the physical heterogeneity of the waste rock and the changing flow volumes in the pile throughout the years. The effects of the flow rate on the chemistry of the outflow water are discussed below (section 6.3). The overall decrease in sulfate concentration in the outflow water over the years suggests that the pile is aging. Due to the ongoing weathering processes, the waste rock material becomes more and more oxidized and the fresh unreacted surfaces for further sulfide oxidation are becoming rare. As the individual particles within the waste rock oxidize, a coating of oxidized material forms around an unoxidized core (Fig. 6-2). This oxidized coating acts to further inhibit oxygen from reaching the reaction site and hence, inhibits the weathering process. unreacted core particle coating of oxidized material position of reaction front Fig. 6-2: Sketch of the particle leaching process, where the reaction front within each particle starts at its surface and moves towards its center (Davis & Ritchie, 1986a). 78 The sulfate concentrations vary among the 16 lysimeters. For examples, lysimeter 6 measures relatively low sulfate concentrations throughout the experiment. A possible explanation for the low concentrations is a relatively coarse grained waste rock material. According to experimental studies by Stromberg & Banwart (1999), the weathering rates are highly dependent on the grain size. Particles with a diameter smaller than 0.25 mm contribute to approximately 80 % of the sulfide dissolution. If the particles in the area above lysimeter 6 exceed this size, than the sulfide oxidation process would decelerate. The structure of the waste rock is currently studied in more detail by Joseph Marcoline. The extraordinary high sulfate concentrations with values up to 400,000 mg/1 in May 2002 and 2003 are likely an artifact of the experiment. During the winter months slow flow through the pipes that connect the drainage lysimeters at the base of the pile with the rain gages in the instrumentation hut allows the precipitation and accumulation of secondary mineral in these pipes. When the first water flushes through the outflow pipes, the increased volumes of water wash out these precipitates and enrich the concentrations in the solutions. 6.2 Behavior of metals and their sources The dominant cations are magnesium, aluminum, sodium, calcium, nickel, uranium and manganese. The weathering of the minerals chlorite-and muscovite probably provide the major source of these cations. In addition, the dissolution of kaolinite, smectite, amphibole, K-feldspar and albite contributes to the cation load in the outflow water to a lesser degree. The low pH with values around 3.6 abets the weathering process, and even the more stable minerals like the feldspars begin to weather. The ongoing weathering process in the waste rock pile accumulates cations and sulfate in the pore water as it drains down the waste rock pile. The pore water close to the pile surface is relatively fresh. The cation and sulfate concentrations increase with increasing depth in the pile, because the pore water spent more time interacting with the 79 surrounding minerals. Additionally, the oxidative weathering process in areas close to the pile surface with the breakdown and alteration of the sulfide minerals generates low pH water that drains further down in the pile and favors the dissolution of minerals and the release of metals. Comparisons between the sulfate and cation concentration in the outflow water show that the concentration of the metals in the outflow water increases with increasing sulfate concentration. The rate of the ongoing weathering reactions in the pile determines the sulfate concentration and likewise the metal concentrations. The cations calcium and iron are an exception. As the weathering process proceeds, the solution reaches a supersaturated state with respect to gypsum and iron-oxyhydroxides. As a result, these cations are involved in the precipitation of the secondary minerals gypsum, ferryhydrite, goethite and jarosite. This relationship is applied in the loading calculation to estimate the metal loading. The results from the investigations addressing the release of metals from the constructed waste rock pile experiment agree with the metals released from the DJX waste rock by analyzed by Haug (2001). SWEP tests indicate that the DJX waste releases nickel, uranium, cobalt, zinc and copper in decreasing order. The abundance of these metals in the outflow water of the constructed waste rock pile experiment is similar. The metals leached in the humidity cell and leach column tests are uranium, nickel, cobalt, zinc, copper and arsenic in decreasing order (Haug, 2001). These observations agree with the chemical compositions of the outflow water from the constructed waste rock pile experiment. The DJX waste rock showed no tendency to leach molybdenum or lead. These metals are also not found in the outflow water of the waste rock pile experiment. 6.3 Relationship between flow and chemistry Unsaturated flow in coarse, heterogeneous waste rock exists in form of matrix flow and preferential flow. Matrix flow implies that water moves through the finer material under the influence of capillary and gravitational forces. Preferential flow, or 80 channeling, implies that a large part of the infiltrating water flows quickly through distinct parts of the waste rock material, including the flow in macropores, the flow in clast-supported material, surface flow over cobbles and boulders, and pounding on the surface of large cobbles and boulders. This channeling of flow to spatially distinct areas has been observed by El Boushi (1975), Dexter (1993), Murr et al. (1981), Li (2000), Bellehumeur (2001), Eriksson et al. (1997) and Nichol (2002). In. general, at low flow rates the preferred'flow path will be the fine textured material. The number of preferential flow paths increases with increasing water content and rainfall intensity. The behavior of unsaturated flow affects the leaching rates of weathering products within waste rock piles. Preferential flow contributes to these complex interactions between flow and geochemistry by increasing the spatial variability of leaching rates for different areas of a pile. The spatial distribution of preferential flow is poorly characterized and complicates the prediction of leaching rates from waste rock piles. As mentioned above, the flow dominates in the fine grained matrix during low or moderate flow periods. The water flows relatively slow through the fine grained material and has enough time to react with the surrounding waste rock. Additionally, slow flow occurs mainly in areas with relatively small particles, which tend to be more reactive than large particles. Slow flow through fine material results in generally higher concentrations at the base of the waste rock pile. The high sulfate concentrations measured during periods of low flow support this assumption. During large precipitation events, flow occurs in the fine matrix as well as in the coarse grained material. The average flow velocity of the water through the waste rock increases, which reduces the time of water-rock contact time during these higher flow periods. The outflow water is relatively fresh. These macropores or voids in the coarser grained material are only episodically wet. Thus, during long dry conditions secondary minerals might precipitate in these voids. The first flush of water through the coarse grained material after a dry period dissolves the secondary minerals and the outflow water becomes more concentrated. This might be the reason for the 81 extraordinary high sulfate concentrations that were measured in May 2002. However, the same high outflow concentrations were observed in 2003 after the cover was placed on the surface of the pile and no water was flushed through the pile. This observation suggests that the reason for the extraordinary high sulfate concentrations in the spring is very likely evapo-concentration occurring between the base of the pile and the rain gages in the instrumentation hut. Thus, the observed high concentrations in the spring are more likely an artifact of the experiment than a result of the flushing of the accumulated secondary minerals. The higher variability in the sulfate concentrations of the outflow during time periods with relatively wet conditions in the pile can be traced back to the fact that water flows in the macropores as well as in the fine-grained matrix. The outflow water is a mixture of water that traveled different flow paths through the pile. The water that travels through the fine-grained matrix contributes to the higher concentrations, whereas the water that flows quickly through coarse grained material is responsible for the lower concentrations. During the peak flow rates in September 2001, the outflow water is relatively fresh. The sulfate concentrations are less than 10,000 mg/1 and are present in two dominant clusters around 2,500 mg/1 and 9,000 mg/1. The two clusters likely correspond to water from different flow paths in the pile. Another observation is the distinctive drop in the concentration of the outflow water during high flow peaks after infiltration events. Preferential flow is the dominant flow process that is occurring in the pile after infiltration events. As mentioned above, preferential flow reduces the water-rock contact and leads to relatively fresh outflow water. No obvious relationship between the outflow chemistry and the flow rates are observed during the winter months. Almost no flow occurs in the pile during these months and the flow rates are probably too low to have an observable effect on the outflow chemistry. Furthermore, heat tracing, used to prevent the lysimeter piping from freezing, may have promoted flow and evapo-concentration in the winter months. 82 The low-permeability cover that was put on the surface of the waste rock pile in August 2002 reduced the flow rates in 2003. Due to the dry conditions in the pile, the water flows preferably in the fine-grained matrix and one would expect more concentrated outflow water. However, the outflow water is fresh compared to the previous years. The reason for the relatively fresh outflow water might be the aging of the waste rock pile. Since the flow rate is relatively constant over the year, the flow paths are relatively constant. The fine grained waste rock material might be already weathered and no fresh surfaces for further weathering reactions are available. A decrease in the oxygen concentration in the experimental waste rock pile after the cover was placed may also contribute to the reduction in the sulfate concentrations. Additionally to the air-flow inhibiting side walls of the experimental waste rock pile, the low-permeability cover on the surface of the pile further limited the transfer of oxygen into the pile. 6.4 Implications of the mass loading estimation This study includes the assessment of the chemical loading from the bottom of the constructed waste rock pile to the environment. While the calculation of the mass loading is fairly simplistic the estimates given above (section 5.5) are fairly robust. The Cluff Lake waste rock is highly heterogeneous. The subdivision of the constructed waste rock pile into 16 equal parts hardly represents the heterogeneity of the pile. The outflow chemistry is highly variable between the 16 lysimeters as well as within individual lysimeters. The outflow water from a single lysimeter is often a composition of different flow paths in the pile and therefore also a composition of different concentrations. The numbers of the mass loading given above represent an average of the 16 lysimeters and indicate the total loading that occurs at the base of the pile. Due to the heterogeneity of the waste rock, the loading rates vary up to 50 % within only a 64 m2 base of the pile. A smaller grid would enable more detailed information about the smaller-scale changes in the release rates at the bottom of the pile. 83 In addition, a continuous record of the outflow chemistry, possibly using electrical conductivity, would better constrain the loading. The calculation of the mass loading is based on monthly averages of the sulfate concentration in the outflow water. The selective sampling of the outflow water may not represent the true monthly average because the sulfate concentrations can change within a few hours. The observations made with regard to the relation between flow rates and outflow chemistry are included in the estimate of the average monthly sulfate concentrations. Prospects of the mass loading in the future are complicated. It is evident, that the release rate of sulfate and metals decreases with time. The decrease of the release rate is not constant. The rate at which the release rate decreases also decreases with time as well. No attempt was made to extrapolate the release rates into the future. This effort will require a synthesis of existing geochemical and hydrologic observations with physically-based predictive models. 84 7. Conclusions and Summary This study evaluates the geochemical behavior of a constructed waste rock pile experiment at Cluff Lake mine site in Northern Saskatchewan. The work focuses on the behavior of the outflow chemistry itself as well as other factors controlling the outflow chemistry. The following conclusions relate to the four main objectives of this study. The first objective of this research is to study of the minerals that contribute to the weathering process in the waste rock pile. The results are: The primary minerals are quartz, k-feldspar, albite, chlorite, muscovite, kaolinite, smectite and amphibole. The main suppliers for the cations in the water are chlorite and muscovite, followed by kaolinite, smectite and amphibole. The low pH in the pore water with values around 3.6 dissolves the even more stable minerals like k-feldspar and albite. Secondary minerals include gypsum, jarosite, ferryhydrite, goethite, annabergite and hydrated aluminum and magnesium sulfates. The second objective of this work is the study of the behavior of the pore water and outflow chemistry. The following observations are made with respect to the outflow chemistry: Sulfate is the major anion in the outflow water with concentrations mainly between 600 and 35,000 mg/1. The dominant cations are magnesium, aluminum, calcium, sodium, nickel, uranium and manganese. Potassium, cobalt, lithium, strontium, zinc, cerium, iron, copper, lanthanum, beryllium and arsenic are present in the outflow water in only minor concentrations. - Previous studies of the outflow water chemistry by Nichol (2002) validate that the outflow water is characterized by high sulfate concentrations (up to 40,000 mg/1) and that the key cations include magnesium, aluminum and nickel. 85 The pH was measured between 3 and 4. This data also indicates that the acid mine drainage process is actively occurring in the experimental pile. - The small deviation of the charge balance indicates that other ionic species that might be present in the water but are not included in the analysis have no significant concentration. - The chemical composition of the outflow water remains roughly the same in terms of the proportions of the existent cations and sulfate. Most of the cations show a strong correlation with the sulfate. The concentration of magnesium, aluminum, sodium, nickel, uranium, manganese, cobalt, zinc, cerium, lanthanum, copper, beryllium and arsenic increases with increasing sulfate concentration. The cations calcium and iron are an exception. The quality of the outflow water is highly variable. Large changes in the sulfate concentrations are observed within a few hours within the same lysimeter. Highly different concentrations in the outflow water of two adjoining lysimeters are observed as well.. The electrical conductivity of the outflow water is related to the sulfate concentration. The relationship is close to linear. Thus, the measurement of the electrical conductivity of the outflow water yields a good estimate of the sulfate concentrations, and thus of most of the cations in the outflow water. The chemical composition of the pore' water is similar to the chemical composition of the outflow water. The concentrations of the metals and sulfate in the pore waterjncrease with depth. The third objective of this research is to investigate the relationship between the flow and the outflow chemistry. The following observations are collected: The outflow chemistry is correlated to the flow rates. A general inverse relation is observed. High flow rates correlate with fresher outflow water and slow flow correlates with more concentrated outflow water. - During the 'flow season' the relation between the flow rates and the quality of the outflow water is pronounced. 86 In the winter months, where almost no flow occurs in the pile, the flow rates do not seem to affect the outflow chemistry. However, due to the slow flow the outflow water is relatively concentrated. - The outflow chemistry immediately responds to large changes in the flow rates. A rapid increase in the outflow rate after infiltration events induces a fast response in the outflow chemistry with relatively fresh water. A low-permeability cover that was put on the surface of the pile reduced the flow rates. In addition to the reduction of the flow rates, the low-permeability cover also led to a decrease in the concentrations in the outflow water. The decrease of the dissolved solids content in the outflow water suggests that the pile is aging and less fresh primary material is available for the sulfide and silicate dissolution. An alternative hypothesis suggests that the cover on the pile surface inhibited the air flow into the pile and an insufficient oxygen supply limited the oxidation rate in the pile. The loading at the base of the experimental pile is highly dependent on the flow rates. In the winter months, where almost no flow occurs in the pile, the loading is significantly lower than in the summer months (loadings observed in the winter months are approximately 5-10 % of the loadings observed in the 'flow season'). ,• ' . . '. The fourth objective of this work is the evaluation of the amount of sulfate and metals that was released at the base of the pile. The following results are observed: - Between 2000 and 2003, approximately 150 kg of sulfur are released at the bottom of the constructed waste rock pile. This is approximately 5 % of the total initial amount of sulfur. Sulfate release rates were observed between 0.1 and 19 mg S04/(kg*week) from the experimental waste rock pile. The comparison with laboratory results obtained by Hollings et al. (2001) shows that the values are significantly lower in the field. 87 The total sulfur content dropped from 0.45 wt% at the beginning of the experiment to 0.3 wt% at the end of the experiment. This suggests a total initial amount of sulfur at 2880 kg and a final total amount of sulfur of 1920 kg. According to the loading calculation, the amount of sulfur that was stored in the pile after the experiment is higher with 2730 kg. Approximately 25 % of the total sulfur is sulfate sulfur. The low-permeability cover that was put on the pile surface in August 2002 induced a decrease in the release rates. 88 8. References Appelo, C.A.J, and Postma, D. (1996): Geochemistry, groundwater and pollution. Rotterdam: Balkema, 536 pp. Bell, K. Cacciotti, AD. and Schnessl, JH. (1985): Petrography and geochemistry of the Earl River complex, Carswell structure, Saskatchewan - a possible Proterozoic komatiitic succession. Geological Association of Canada, Special Paper 29, pp. 71-80. Bellehumeur, T. (2001): Mechanisms and spatial variability of rainfall infiltration on the Claude waste rock pile. Master of Science, University of British Columbia. Birkham, T.K., Hendry, M.J., Wassenaar, L.L, Mendoza, CA. and Seok Lee E. (2003): Characterizing geochemical reactions in unsaturated Mine Waste-Rock Piles Using Gaseous 0 2, C0 2, and 1 3 C0 2 . Environ. Sci. Technol., 37, pp. 496-501. Blaise, JR., Koning, E. (1985): Mineralogical and structural aspects of the Dominique-Peter uranium deposit. In: Laine et al. (Eds.), The Carswell Structure Uranium Deposits. Geol. Assoc. Canada Spec. Pap., Saskatchewan, Vol. 29, pp. 139-151. Campbell, E. (2000): Geochemical analysis of Cluff Lake Mine Waste Rock Using Column Irrigation Tests. University of British Columbia, Non-Master Project. Davis, G.B., & Ritchie, A I M . (1986a): A model of oxidation in pyritic mine wastes: part 1. Equations and approximate solution. Appl. Math. Modell.,10, pp. 314-322. Davis, G.B., & Ritchie, A.I.M. (1986b): A model of oxidation in pyritic mine wastes: part 2: comparison of numerical and approximate solutions. Applied Mathematical Modelling 10, pp. 323-329. 89 Desbarats, A.J. and Dirom, G.C. (2004): Temporal variation in discharge chemistry and portal flow from the 8-Level adit, Lynx Mine, Myra Falls Operations, Vancouver Island, British Columbia. Dexter, A.R. (1993): Heterogeneity of unsaturated, gravitational flow of water through beds of large particles, Water Resources Research, 29, 6, 1859-1862. Drever, J.I. & Clow, D.W. (1995): Weathering rates in catchments, In Chemical Weathering Rates of Silicate Minerals, Reviews in Mineralogy 31: 463-483. Elberling, B., Nicholson, R.V., Scharer, J.M. (1994): A combined kinetic and diffusion model for pyrite oxidation in tailings: A change in controls with time. J. Hydrol., 157, 47-60. El Boushi, LM. (1975): Amount of water needed to initiate flow in rubbly rock. Journal of Hydrology, 27, 275-284. Environmental Protection Agency (2004): Federal Register, Vol. 69, No. 66, Proposed rules, 40 CFR Part 136. Eriksson, N., Gupta, A., Destouni, G. (1997): Comparative analysis of laboratory and field tracer tests for investigating preferential flow and transport in mining waste rock. Journ. of Hydrology, 194, pp. 143-163. Eriksson, N. & Destouni, G. (1997): Combined effects of dissolution kinetics, secondary mineral precipitation, and preferential flow on copper leaching from mining waste rock, Water Resour. Res., 33(3), pp. 471-483. Frostad, S., Klein, B., & Lawrence, R.W. (2000): Kinetic Testing 2. Scaling up laboratory data to predict field rates of weathering, 5th Inter. Conf. on Acid Rock Drainage, 651-660. 90 Harries, JR., Ritchie, A.I.M. (1985): Pore gas composition in waste rock dumps undergoing pyritic oxidation. Soil Science, Vol. 140, No. 2, pp. 143-152. Gelinas, P., Lefebvre, R., Choquette, M., Isabel, D., Locat, J. and Guay, R. (1994): Monitoring and modeling of acid mine drainage from waste rocks dumps - La mine Doyon Case study. Final Report presented to MEND Prediction committee, DSS Contract No. 23440-3-9231/01-SQ. Gerke, H.H., Molson, J.W., Frind, E.O. (1998): Modelling the effect of chemical heterogeneity on acidification and solute leaching in overburden mine spoils Journal of Hydrology, 209, pp. 166-185 Haug, M. D. (2001): Comprehensive Study Report - Cluff Lake Project - Supporting Document #2. COGEMA Resources Inc., January 5th. Herasymuik, G.M. (1996): Hydrogeology of a sulfide waste rock dump. Master of Science, University of Saskatchewan. Hollings, P., Hendry, J., Nicholson, R. & Kirkland, R. (2001): Quantification of oxygen consumption and sulphate release rates for waste.rpck piles using kinetic cells: Cluff Lake Uranium Mine, northern Saskatchewan, Canada, Applied Geochemistry, 16, 1215-1230. Jambor, J.L., and Blowes, D.W., eds. (1994): The environmental geochemistry of sulfide mine-wastes, Volume 22: Mineralogical Association of Canada , Short Course Series, 438 p. Lefebvre R., Hockley D., Smolensky J., & Gelinas P. (2001): Multiphase transfer processes in waste rock piles producing acid mine drainage. 1: Conceptual model and system characterization, Journal of Contaminant Hydrology, Vol 52, Issue 1-4, 137-164. 91 Lefebvre R., Hockley D., Smolensky J., & Gelinas P. (2001): Multiphase transfer processes in waste rock piles producing acid mine drainage. 1: Applications of numerical simulation. Journal of Contaminant Hydrology, Vol. 52, Issue 1-4, 137-164. Levenspiel, O. (1972): Chemical Reaction Engineering. John Wiley & Sons, Chichester. Li, M. (2000): Unsaturated flow and solute transport observations in large waste rock columns. In: Proceeding of the 5 th International Conference on Acid Rock Drainage, Denver, Colorado, May 21-24, 2000. 247-256. Malmstrom M.E., Destouni G., Banwart S.A., & Stromberg B. (2000): Resolving the scale-dependence of mineral weathering rates, Environmental Science & Technology, 34(7): 1375-1378. Murr, L. E., Schlitt, W. J., Cathles, L. M. (1982): Experimental Observations of Solution Flow in the Leaching of Copper-Bearing Waste. Interfacing Technologies in Solution Mining: Proceedings of the 2nd SME-SPE International Solution Mining Symposium, pp 271-290. Newman,L.L., Herasymuik,G.M., Barbour, S.L., Fredlund, D.G., Smith, T. (1997): The Hydrogeology of Waste Rock Dumps and a Mechanism for Unsaturated Preferential Flow, in Proceedings of the Fourth International Conference on Acid Rock Drainage, Vancouver, pp. 551-565. Nichol, C, Smith, L. and Beckie, RD. (2000): "Hydrogeological behaviour of unsaturated waste rock: and experimental study", Proceedings of the Fifth International Conference on Acid Rock Drainage,, Denver, Colorado, May 21 - 23. Nichol, CF. (2002): Transient Flow and Transport in unsaturated heterogeneous media: field experiments in mine waste rock. PhD-Thesis, University of British Columbia. 92 Nordstrom, D.K. (1982): Aqueous pyrite oxidation and the consequent formation of secondary iron minerals. In: Acid Sulphate Weathering (ed. D.K. Nordstrom), pp. 37-56. Soil Sci. Soc. Amer., Spec. Publ. No 10. Pagel, M., Svab, M. (1985): Petrographic and geochemical variations within the Carswell structure metamorphic core and their implications with respect to uranium mineralization. Geological Association of Canada, Special Paper 29, pp. 55-70."-Pantelis, G., Ritchie, A.I.M. (1991a): Macroscopic transport mechanisms as a rate-limiting factor in dump leaching of pyritic cores. Applied Mathematical Modelling 15, pp. 136-143. Pantelis, G., Ritchie, A.I.M. (1991b): Rate-limiting factors in dump leaching of pyritic cores. Applied Mathematical Modelling 16, pp. 553-560. Pitzer, K.S. (1979): Theory—Ion interaction approach: in R.M. Pytkowicz, ed., Activity Coefficients in Electrolyte Solutions, v. 1, CRC Press, Inc., Boca Raton, Florida, p. 157-208. Province of British Columbia (1992), Waste Management Act: Special Waste Regulation Schedule 4, Parts 1 and 2, Queen's Printer, Victoria, BC, p72-79. Ribet, I., Ptacek, C.J., Blowes, D.W., Jambor, J.L. (1995): The potential for metal release by reductive dissolution of .weathered mine tailings. Journal of Contaminant Hydrology 17, pp. 239-273. Ritchie, A.I.M. (1994): The Waste-rock Environment. In: Environmental Geochemistry of Sulfide Mine-wastes, Mineralogical Association of Canada Shortcourse Handbook (J.L. Jambor and D.W. Blowes, eds.), vol. 22, pp. 133-161. 93 Singer, PC. and Stumm, W. (1970): Acid mine drainage: The rate limiting step. Science 167, 1121-1123. Sobek, A A , Schuller, W.A, Freeman, J.R. and Smith, R.M. (1978): Field and laboratory methods applicable to overburden and minesoils, EPA 600/2-78-054, 203pp. Stockwell, J.E. (2002): Investigations of hydrological and geochemical properties and spatial relationships of an unsaturated waste rock pile, Key Lake, Saskatchewan. Master Thesis, University of British Columibia. Stromberg B., & Banwart S.A. (1994): Kinetic modelling of geochemical processes at the Aitik mining waste rock site in northern Sweden. Applied Geochemistry, 9, pp. 583-595. Stromberg B., & Banwart S.A. (1999a): Experimental study of acidity-consuming processes in mining waste rock: some influences of mineralogy and particle size, Applied Geochemistry, 14(1): 1-1. Stromberg B., & Banwart S.A. (1999b): Weathering kinetics of waste rock from the Aitik copper mine, Sweden: scale dependent rate factors and pH controls in large column experiments, Journal of Contaminant Hydrology, 39 (1-2): 59-89. Velbel M.A (1992): Constancy of silicate mineral weathering-rate ratios between natural and experimental weathering - Implications for hydrologic control of differences in absolute rates, Chem. Geol. 105 (1-3): 89-99. Wels, C, Lefebvre, R., Robertson, A.M (2003): An overview of prediction and control of air flow in.. acid-generating waste rock dumps. In proceedings of the Sixth International Conference on Acid Rock Drainage, Cairns, Queensland, Australia, 14-17 July, 2003, pp. 639-650. 94 Appendix Appendix A : Climate at the Cluff Lake Mine Site 95 Appendix B : Physical and chemical waste rock characterization 102 Appendix C : ICP MS error calculation 106 Appendix D : SEM photographs 107 Appendix E : Distribution of sulfate concentrations 110 Appendix F : Relative abundances of metal concentrations 115 Appendix G : Relationships between cations and sulfate 117 Appendix H : Calculation of saturation states 127 Appendix I : Relationship between flow and outflow chemistry 176 Appendix J : Mass loading calculation 233 Appendix K : Summary of the sulfate and cation concentrations 236 95 Appendix A: Climate at the Cluff Lake Mine Site Climatic conditions at Cluff Lake have been monitored by COGEMA Resources Inc. since 1981. Three weather stations and one wind station collected the weather data using standard "Atmospheric Environmental Service" procedures. The stations measure temperature, rainfall, snowfall, snow depth, wind velocity, wind direction and evaporation. In November 1998 a new weather station was set up that enables the digital recording of the weather observations. Climate data gathered from these weather stations is presented in the following tables (Table A-l - Table A-6). The data is discussed in section 3.2. Year January February March April May June July August September October November December Average 1981 -11.2 -15.2 -5.8 -2.1 10.3 13.4 17.9 19.6 10.4 -0.4 -4.1 -17.9 1.2 1982 -34.1 -18.3 -15.1 -1.4 7.5 14.2 16.8 12.3 9.5 3.5 -15.2 -19.6 -3.3 1983 -20.1 -17.5 -9.6 0.2 5.0 13.8 17.1 16.7 7.6 2.7 -5.3 -25.1 -1.2 1984 -22.0 -10.6 -9-2 6.0 8.0 14.6 17.5 17.5 6.9 -0.1 -13.6 -24.1 -0.8 1985 -17.5 -23.7 -6.9 0.4 10.2 13.7 15.4 14.0 7.0 -0.3 -17.6 -14.8 -1.7 1986 -16.3 -17.7 -7.8 -0.7 10.4 13.5 15.9 15.5 8.8 2.6 -14.8 -10.5 -0.1 1987 -12.2 -10.1 -10.5 4.0 • 10.7 15.9 17.0 12.5 11.9 2.2 -5.7 -11.4 3.7 1988 -22.2 -19.6 -7.3 -0.4 , 8.0 16.2 16.7 15.5 9.1 2.2 -11.0 -16.3 -0.8 1989 -20.7 -17.1 -17.5 -2.1 8.5 14.6 18.4 18.7 8.7 1.5 -15.0 -21.7 -2.0 1990 -21.2 -21.8 -6.5 -0.7 ;= 9.4 15.3 17.5 15.5 9.7 -1.4 -16.9 -23.4 -2.0 1991 -20.9 -13.6 -11.0 2.6 13.3 15.8 17.2 18.4 8.2 -3.6 -12.4 -16.8 -0.2 1992 -16.2 -14.1 -6.0 1.1 '•• 8.8 14.1 16.3 15.1 6.1 2.2 -4.7 -20.6 0.2 1993 -17.7 -14.8 -3.2 4.0 9.0 14.1 16.0 14.5 7.6 0.9 -9.0 -14.5 0.6 1994 -27.0 -25.5 -5.1 0.3; 9.7 15.1 17.8 15.6 11.1 3.7 -9.3 -14.6 -0.7 1995 -14.8 -18.4 -10.5 -2.3 8.9 16.5 14.3 13.6 10.4 2.4 -13.9 -17.4 2.1 1996 -26.7 -16.0 -15.9 -1.1 7.2 15.3 18.0 16.0 9.8 0.1 -12.5 -20.3 -2.2 1997 -22.2 -12.8 -13.1 -0.8 6.8 15.0 19.0 16.0 . 10.5 -0.3 -5.6 -9.6 0.2 1998 -22.4 -8.4 -7.5 6.0 : 9.8 14.3 18.0 17.5 9.7 4.7 -6.6 -16.5 1.6 Average -20.3 -16.4 -9.4 0.7 9.0 14.7 17.0 15.8 9.1 1.3 -10.7 -17.5 -0.3 Table A-l: Cluff Lake mean daily temperatures (°C), 1981-1998. Sources: COGEMA Resources Inc. 1997; COGEMA Resources Inc. 1998; COGEMA Resources Inc. 1999. 96 Year January February March April May June July August September October November December Year 1981 11.4 12.5 19.8 22.0 9.0 67.0 115.8 14.2 7.0 32.9 15.4 33.9 360.9 1982 17.8 13.1 35.6 17.4 14.3 17.9 99.8 49.1 47.8 25.9 19.7 26.1 384.5 1983 18.1 11.8 8.9 22.2 33.9 40.4 85.6 61.7 38.7 22.4 9.3 13.0 366.0 1984 ' 24.6 13.5 9.2 2.5 26.6 76.0 122.1 101.8 21.1 77.4 21.0 15.9 511.7 1985 11.3 13.4 20.2 42.4 28.4 67.3 56.2 75.0 53.8 51.5 30.7 17.4 467.6 • 1986 . 22.7 6.4 14.1 14.6 14.4 50.5 94.9 49.6 36.7 29.2 14.2 18.7 366.0 1987 29.8 18.1 37.0 15.6 26.2 43.9 40.8 50.5 48.2 40.4 16.1 28.2 394.8 1988 36.1 20.5 18.2 25.2 19.4 69.1 125.1 56.2 44.3 31.1 60.6 7.9 513.7 1989 12.4 28.4 12.8 10.9 58.4 74.8 41.0 87.9 46.6 24.7 50.6 27.2 475.7 1990 14.6 11.5 13.9 8.4 23.3 48.4 60.6 52.1 36.5 43.3 63.2 24.7 400.5 1991 27.5 16.9 27.9 2.4 20.5 49.3 114.1 64.8 62.9 45.6 34.5 24.3 490.7 1992 12.7 29.4 36.0 7.1 22.8 90.7 39.4 116.0 70.2 26.8 26.9 7.3 485.3 ... 1993 8.7 11.9 11.9 25.7 33.3 39.0 117.2 57.0 22.0 23.0 37.5 20.5 407.7 1994 20.8 23.9 30.1 15.3 61.2 30.1 75.1 29.9 52.2 40.1 8.9 21.0 408.6 1995 10.5 24.8 26.9 22.8 18.8 42.5 41.7 191.8 15.4 9.3 31.3 28.9 464.7 1996 r 11.3 16.8 35.7 4.3 20.5 83.6 66.4 99.9 132.0 33.0 10.0 12.1 525.6 1997 23.4 14.9 25.9 3.8 23.2 78.6 118.7 96.5 151.7 49.9 21.6 21.9 630.1 1998 12.9 11.8 0.5 22.4 19.0 83.1 176.8 44.3 50.5 3.6 16.4 29.9 471.2 • Average 18.1 16.6 21.4 15.8 26.3 58.5 88.4 72.1 52.1 33.9 27.1 21.1 451.4 Table A-2: Cluff Lake total precipitation (mm). Sources: COGEMA Resources Inc. 1997; COGEMA Resources Inc. 1998; COGEMA Resources Inc. 1999. 97 Year January February March April May June July August September October November December Year 1981 0.0 1.0 4.5 7.9 9.0 67.0 115.8 14.2 7.0 23.7 0.0 0.0 250.1 1982 0.0 0.0 0.0 4.2 11.2 17.9 99.8 49.1 47.8 2.1 0.0 0.0 232.1 1983 0.0 0.0 0.0 0.4 24.6 40.4 85.6 61.7 38.3 16.1 0.0 0.0 267.1 1984 0.0 0.0 0.0 1.1 23.4 76.0 122.1 101.8 20.7 50.3 0.0 1.8 397.2 1985 0.0 0.0 0.0 16.0 27.9 67.3 56.2 75.0 53.8 21.7 0.0 0.3 318.2 1986 0.0 0.0 0.4 10.0 14.0 50.5 94.9 49.6 36.7 12.4 0.0 0.0 268.5 1987 1.5 0.2 0.6 5.5 26.2 43.9 40.8 50.5 48.2 11.9 0.8 1.4 231.5 1988 0.0 0.0 0.3 8.9 14.2 69.1 125.1 56.2 43.1 6.1 9.3 0.0 332.3 1989 0.0 0.0 0.0 9.4 58.3 74.8 41.0 87.9 46.3 16.2 0.0 0.0 333.9 1990 0.0 0.0 3.0 3.9 20.3 48.4 60.6 52.1 36.5 8.7. 0.0 0.0 233.5 1991 0.0 trace 8.0 1.0 20.5 49.3 114.1 64.8 59.9 9.9 0.0 trace 327.5 1992 1.0 6.2 trace 1.9 17.5 90.7 39.4 116.0 58.8 20.0 0.9 0.0 352.4 1993 0.0 0.0 2.4 12.9 32.9 39.0 117.2 57.0 22.0 9.3 2.2 trace 294.9 1994 0.0 0.0 10.2 7.5 61.2 30.1 75.1 29.9 52.2 26.0 0.0 7.9 300.1 1995 0.0 0.0 0.0 2.2 16.3 42.5 41.7 191.8 9.4 5.5 0.0 0.0 309.4 1996 0.0 0.0 0.5 1.8 19.1 83.6 66.4 99.9 132.0 29.9 0.0 0.0 433.2 1997 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A. N/A N/A N/A 1998 0.0 0.0 0.0 22.4 19.0 83.1 176.8 44.3 50.5 3.6 0.0 0.0 399.7 Average 0.1 0.5 1.9 6.9 24.4 57.3 86.6 70.7 44.9 16.1 0.8 0.8 310.7 Table A-3: Cluff Lake rainfall (mm). Sources: COGEMA Resources Inc. 1997; COGEMA Resources Inc. 1998; COGEMA Resources Inc. 1999. 98 Year January February March April May June July August September October November December Average 1981 0.4 0.4 0.6 0.7. 0.3 2.2 3.7 0.5 0.2 1.1 0.5 1.1 1.0 1982 0.6 0.5 1.1 0.6 0.5 0.6 3.2 1.6 1.6 0.8 0.7 0.8 1.1 1983 0.6 0.4 0.3 0.7 1.1 1.3 2.8 2.0 1.3 0.7 0.3 0.4 1.0 1984 0.8 0.5 0.3 0.1 0.9 2.5 3.9 3.3 0.7 2.5 0.7 0.5 1.4 1985 0.4 0.5 0.7 1.4 0.9 2.2 1.8 2.4 1.8 1.7 1.0 0.6 1.3 1986 0.7 0.2 0.5 0.5 0.5 1.7 3.1 1.6 1.2 0.9 0.5 0.6 1.0 1987 1.0 0.6 1.2 0.5 0.8 1.5 1.3 1.6 1.6 1.3 0.5 0.9 1.1 1988 1.2 0.7 0.6 0.8 0.6 2.3 4.0 1.8 1.5 1.0 2.0 0.3 1.4 1989 0.4 1.0 0.4 0.4 1.9 2.5 1.3 2.8 1.6 0.8 1.7 0.9 1.3 1990 0.5 0.4 0.4 0.3 0.8 1.6 2.0 1.7 1.2 1.4 2.1 0.8 1.1 1991 0.7 0.6 0.9 0.1 0.7 1.6 3.7 2.1 2.1 1.5 1.2 0.9 1.3 1992 0.4 1.0 1.2 0.2 0.7 3.0 1.3 3.7 2.3 0.9 0.9 0.2 1.3 1993 0.3 0.4 0.4 0.9 1.1 1.3 3.8 1.8 0.7 0.7 1.3 0.7 1.1 1994 0.7 0.9 1.0 0.5 2.0 1.0 2.4 1.0 1.7 1.3 0.3 0.7 1.1 1995 0.3 0.9 0.9 0.8 0.6 1.4 1.3 6.2 0.5 0.3 1.0 0.9 1.3 1996 0.6 0.6 0.7 0.5 0.9 1.9 2.6 2.3 1.5 1.1 0.9 0.7 1.2 1997 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 1998 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A Average 0.6 0.6 0.7 0.6 0.9 1.8 2.6 2.3 1.3 1.1 1.0 0.7 1.2 Maximum Value 1.2 1.0 1.2 1.4 2.0 3.0 4.0 6.2 2.3 2.5 2.1 1.1 1.4 Table A-4: Cluff Lake average daily precipitation (mm). Sources: COGEMA Resources Inc. 1997; COGEMA Resources Inc. 1998; COGEMA Resources Inc. 1999. 99 Year January February March April May June July August September October November December 1981 36.8 39.6 38.6 31.2 3.6 21.3 1982 31.2 41.1 42.7 50.8 14.0 26.2 1983 40.4 46.0 46.5 28.4 5.6 11.4 1984 25.9 34.0 37.3 18.0 19.8 25.7 1985 36.8 46.7 48.5 32.5 22.4 29.0 1986 40.4 51.1 46.0 11.9 25.4 1987 35.1 43.2 57.4 7.9 8.9 1988 50.0 48.0 50.3 26.7 28.2 24.9 1989 36.8 37,1 43.4 35.1 27.7 37.1 1990 49.5 58.2 51.3 29.7 8.6 24.1 44.2 1991 65.8 57.6 59.9 ' 19.3 14.0 31.2 39.6 1992 43.2 54.4 51.5 43.3 9.7 15.5 1993 20.5 15.2 7.1' 8.1 9.9 23.4 1994 30.5 46.0 37.7 17.6 9.5 17.8 1995 . 20.4 28.8 41.0 23.6 15.9 30.2 1996 39.9 44.7 52.4 34.1 8.3 17.2 1997 N / A N / A N / A N / A N / A N / A N / A 1998 N / A N / A ' N / A . N / A N / A N / A N / A Average 37.7 43.2 44.5 28.5 11.3 15.6 24.9 Table A -5 : Cluff Lake snow survey, mean depth (m)." Sources: C O G E M A Resources Inc. 1997; C O G E M A Resources Inc. 1998; C O G E M A Resources Inc. 1999. 100 Year January February March April May June July August September October November December Year 1981 37.5 19.8 180.4 92.2 37.5 367.4 1982 37.5 192.1 173.6 108.0 76.6 37.5 625.3 1983 37.5 116.1 161.4 174.1 141.1 58.1 37.5 725.8 1984 37.5 136.0 169.5 181.7 153.3 67.0 37.5 782.5 1985 37.5 131.8 185.2 183.9 143.8 60.7 37.5 780.4 1986 37.5 126.6 177.3 127.0 142.2 61.8 37.5 709.9 1987 37.5 179.1 194.7 189.5 121.8 85.2 37.5 845.3 1988 37.5 136.8 168.1 166.4 149.3 80.1 37.5 775.7 1989 37.5 142.9 181.1 193.1 127.3 57.4 37.5 776.8 1990 37.5 121.7 177.2 196.0 158.8 70.2 37.5 798.9 1991 37.5 151.4 157.4 161.8 157.4 54.2 37.5 757.2 1992 37.5 83.2 149.0 158.7 137.0 31.2 37.5 634.1 1993 37.5 141.9 169.5 154.6 87.2 59.8 37.5 688.0 1994 37.5 88.7 187.5 152.3 129.7 74.9 37.5 708.1 1995 37.5 86.5 158.2 153.4 187.9 58.8 37.5 719.8 1996 37.5 84.1 169.6 173.2 96.1 51.0 37.5 649.0 1997 37.5 72.7 150.3 168.9 99.6 65.5 37.5 632.0 1998 N/A N/A N/A N/A N/A N/A N/A N/A Average 37.5 120.0 171.8 160.5 136.5 65.0 37.5 704.5 Table A-6: Cluff Lake total evaporation (mm). April and October show a calculated value. Sources: COGEMA Resources Inc. 1997; COGEMA Resources Inc. 1998; COGEMA Resources Inc. 1999. 101 102 Appendix B: Physical and chemical waste rock characterization The following tables (Table B-l - Table B-12) present the results of the physical and chemical waste rock characterization conducted by Haug (2001) discussed in section 3.4.3. The DJX waste rock material at the Cluff Lake mine site is analyzed for its rate of mechanical breakdown and the release rate of soluble species. Field tests include grain-size curves, moisture content, rinse pH, fizz tests, electrical conductivity (EC) and gamma radiation scans (Table B-l - Table B-3). Geochemical laboratory analyses include whole rock major and trace elements, acid base accounting (ABA) tests, solid waste extraction procedures (SWEP), humidity cell tests and leach column tests (Table B-4-Table B-12). D90 D75 D50 D25 D10 # (mm) (mm) (mm) (mm) (mm) DJX 11 283 146 63.3 22.2 5.53 Table B-l: Average grain size distribution of the DJX waste rock (Haug, 2001). dso Grain-size Moisture Content (%) Overall % MC Coarse Medium Fine Coarse Medium Fine mm >19 mm <6 DJX 63.3 0.69 0.13 0.17 1.91 5.47 8.94 3.80 Table B-2: Average moisture contents CH a ug. 2001) # Rinse pH EC (mS/m) Fizz Test Rating Gamma Activity (Bq/g) DJX 11 3.60 4.70 10N-1W 30 Table B-3: Average chemical properties. 10N-1W indicates that 10 samples showed no reaction and one sample showed weak reaction with respect to diluted HC1 O^ug, 2001). 103 Sample # Si0 2 (%) A1 20 3 (%) Fe 20 3 (%) MgO (%) CaO (%) Na20 (%) K 2 0 (%) T i 0 2 (%) PiOs (%) MnO (%) TOT C (%) TOT S (%) Individual 3 67.42 15.58 4.46 2.59 0.22 0.69 4.44 0.49 0.06 0.03 0.19 0.47 Composite 5 66.28 16.06 4.69 2.37 0.21 0.85 4.98 0.50 0.07 0.04 0.19 0.76 Table B-4: Major element oxide average and composite of the DJX waste rock material (Haug, 2001). Sample # As Co Cu Mo Ni Pb U V Zn ppm Ppm Ppm ppm ppm ppm ppm ppm ppm Individual 3 23 33 39 5 45 9 12 82 8 Composite 5 15 41 40 5 42 9 14 87 10 AVERAGE DJX 8 18 38 39 5 43 9 13 85 9 Table B-5: Summary of trace elements (Haug, 2001). Sample Paste pH Total S (Wt.%) S0 4 S (Wt.%) S" S (Wt.%) AP (kg/tonne) NP (kg/tonne) NET NP (kg/tonne) NP/AP Ratio Fizz Test Rating Individual 5.2 0.44 0.08 0.36 11.1 4.6 -6.5 0.4 none Composite 5.6 0.76 0.10 0.66 20.6 2.8 -17.8 0.1 none Table B-6: ABA Summary (Haug, 2001). SAMPLE # pH S0 4 mg/L As mg/L Co mg/L Cu mg/L Mo mg/L Ni mg/L Pb mg/L u mg/L V mg/L Zn mg/L Individual 4 5.2 54 <0.0 30 0.025 < 0.002 < 0.005 0.18 < 0.010 <0.050 < 0.010 0.016 Composite 5 4.9. 71 < 0.030 0.056 0.002 < 0.005 0.21 < 0.010 0^ 080 < 0.010 0.006 AVERAGE DJX 9 5.0 63 < 0.030 0.042 0.002 < 0.005 0.20 < 0.010 0.07 < 0.010 0.010 Table B-7: SWEP Analysis Summary QHaug, 2001). 104 Analy te W e e k A s C o C u M o N i P b so 4 U Z n 1 0.36 1.45 0.10 0.00 4.75 0.00 2.85 11.1 1.18 10 0.81 5.78 0.55 0.00 20.0 0.00 11.1 50.4 4.05 20 0.81 6.75 0.79 0.00 23.1 0.00 12.7 57.3 4.89 30 0.81 7.33 1.04 0.00 24.7 0.00 13.6 61.3 5.51 T a b l e B-8: Leaching efficiencies (%) of the humidity cell test (Haug, 2001). A n a l y t e W e e k A s C o C u M o N i P b S 0 4 U Z n 1 0.11 3.25 0.19 0,01 9.52 0.00 5.95 25.2 1.17 10 0.33 9.39 1.05 0.06 27.0 0.00 18.5 72.3 5.06 20 0.38 11.5 1.82 0.07 31.8 0.00 24.3 77.0 7.44 30 0.38 12.5 2.30 0.07 34.3 0.00 27.3 78.6 8.44 T a b l e B-9: Leaching efficiencies (%) of the leach column test (Haug, 2001). Sample Paste p H Tota l S (Wt .%) SO4 S (Wt.%) S" S (Wt.%) A P (kg/tonne) N P (kg/tonne) Net N P (kg/tonne) N P / A P Rat io F i z z Test R a t i n g H u m i d i t y C e l l 4.7 0.41 0.02 0.39 12.1 4.2 -7.9 0.3 None C o l u m n 4.6 0.33 0.12 0.21 6.5 2.2 ' -4.3 0.3 None T a b l e B-10: Final ABA results from the humidity cell tests and column tests (Haug, 2001). S a m p l e # A s ., C o C u M o - N i , P b • u V Z n m g / L m g / L m g / L m g / L m g / L m g / L m g / L m g / L m g / L H u m i d i t y Cel ls 5 < 0.030 0.040 0.007 < 0.005 0.104 < 0.010 0.02 < 0.010 0.018 C o l u m n s 5 < 0.030 0.046 0.028 < 0.005 0.131 < 0.010 0.011 < 0.010 0.049 T a b l e B - l l : Rotary jar wash trace element summary (Haug, 2001). 105 Sample PH Cond. Redox TDS Sulphate Chloride mS/s (mV) (mg/L) (mg/L) (mg/L) Humidity Cells 4.5 13.8 284 89 50 0.48 Column Cells 4.2 25.0 391 150 85 0.35 Table B-12: Rotary jar extraction results (Haug, 2001). 106 Appendix C: ICP MS error calculation The same sample was prepared and analyzed 24 times to calculate the analysis and preparation error of the cation analysis using ICP-MS. Detection limits are calculated using the method detection limit (MDL) defined by USEPA. The M D L for each cation is computed as the product of the standard deviation and the critical t-value (= 3.41). The results are listed in the table below (Table C-l). This calculation is described in more detail in section 3.4.2. Element lo • ' " Error [%] Detection Limit [mg/1] Al 122.632 6.6 0.207 As 0.005 6.6 0.256 Be 0.018 6.6 0.206 Ca 78.433 6.7 0.209 Ce 0.242 7.6 0.238 Co 2.849 6.4 0.200 Cr 0.010 21.7 0.681 Cu 0.168 39.9 1.254 Fe 0.331 18.4 0.577 La 0.082 7.4 0.233 Li 2.525 7.1 0.222 Mg 556.518 11.7 0.369 Mn 9.021 9.1 0.285 Na 48.313 7.3 0.230 Ni 17.974 6.2 0.195 Se 0.043 34.5 1.083 Sr 0.685 7.2 0.226 U 14.241 5.7 0.178 Zn 0.761 6.4 0.200 Table C- l : Summary of the error analysis and detection limits of the cation analysis based on ICP-MS. 107 Appendix D: S E M photographs Photographs were taken during the SEM analysis of the minerals in the waste rock. The surface coating on the samples consists of iron oxyhydroxides and looks like mud cracks under the microscope (Fig. D-l). The hydrated aluminum and magnesium sulfates are shown in Fig. D-2 and Fig. D-3. The aluminum sulfates appear as flowers whereas the magnesium sulfates look more like sheets. The minerals are described in more detail in section 5.1 Fig. D-l: Surface coatings consisting of iron-oxyhydroxides. Fig. D-2: Hydrated aluminum sulfates. 109 Fig. D-3: Hydrated magnesium sulfates. 110 Appendix E : Distribution of sulfate concentrations The histograms in Fig. E-l - Fig. E-4 show the distribution of the sulfate concentration in the outflow water within each lysimeter. The observations are discussed in section 5.3.1. 35% T Distribution of sulfate concentrations - Lysimeter 1 - 4 m < 5000 mg/1 m 5000 - 10000 mg/1 m 10000- 15000 mg/1 @ 15000 - 20000 mg/1 FJ 20000 - 25000 mg/1 m 25000 - 30000 mg/1 @> 30000 mg/1 Lvsimeter Fig. E - l : Distribution of sulfate concentrations in the outflow water of lysimeter 1-4. I l l 60% T Distribution of sulfate concentrations - Lysimeter 5-8 H < 5000 mg/1 S5000- 10000 mg/1 H 10000- 15000 mg/1 015000 -20000 mg/1 El 20000 - 25000 mg/1 S 25000- 30000 mg/1 H> 30000 mg/1 Lvsimeter Fig. E-2: Distribution of sulfate concentrations in the outflow water of lysimeter 5-8. 112 Distribution of sulfate concentrations - Lysimeter 9-12 35% 9 10 11 12 Lysimeter Fig. E-3: Distribution of sulfate concentrations in the outflow water of lysimeter 9 - 1 3 . 113 Distribution of sulfate concentrations - Lysimeter 13-16 114 115 Appendix F: Relative abundances of metal concentrations Table F-l summarizes the relative abundances of the metal concentrations for magnesium, aluminum, manganese, nickel and uranium as described in section 5.3.3. The concentration range of each metal was subdivided into four equal parts. The abundance of each metal within each its individual subdivided concentration range is subdivided. Each of the listed metals appears with more than 96 % in its lowest concentration range. Magnesium Aluminum Manganese Nickel Uranium Subdivided concentration ranges [mg/1] Abundance [%] Subdivided concentration ranges [mg/1] Abundance [%]• Subdivided concentration ranges [mg/1] Abundance [%] Subdivided concentration ranges [mg/1] Abundance [%] Subdivided concentration ranges [mg/1] Abundance [%] 1 183 -15198 98 55^5439 97.6 4-479 98 55 - 5439 98 7-1368 96.9 2 15199-30396 0.8 5440-,10878 1.2 480 - 957 0.4 5440- 10878 0.4 1369-2736 1.9 3 30397-45595 0.8 10879-16318 0.8 958 - 1436 1.2 10879- 16318 1.2 .2737-4104 0.6 4 45596 - 60609 0.4 16319-21756 0.4 1437- 1910 0.4 16319-21756 0.4 4105-5464 0.6 Table F- l : Relative abundances of metal concentration for Mg, Al, Mn, Ni and U within their total concentration ranges. 116 117 Appendix G : Relationships between cations and sulfate The following figures (Fig. G-l - Fig. G-9) show the correlation between the cations manganese, cobalt, zinc, cerium, lanthanum, copper, beryllium, selenium and arsenic and the sulfate concentration in the outflow water. The relationship between these cations and sulfte is discussed in section 5.3.5. Manganese vs. Sulfate 2500 T 2000 •B 1500 s tu o a o o _ 1000 s 00 s 500 • • • 2000-2002 X1999 4 2003 50000 100000 150000 -200000 Sulfate concentration [mg/1] 250000 300000 Fig. G - l : Correlation between sulfate and manganese in the outflow water. 118 300 250 !> 200 a 150 o o s o o Cobalt vs. Sulfate 50000 100000 150000 200000 Sulfate concentration [mg/1] 250000 • 2000-2002 X 1 9 9 9 A 2003 300000 Fig. G-2: Correlation between sulfate and cobalt in the outflow water. 119 80 -r 70 60 S, 50 a o a D O a o o o a N 40 30 20 10 Zinc vs. Sulfate • • - .TM^f.Y. • A t • 2000 - 2002 50000 100000 150000 200000 Sulfate concentration [mg/1] 250000 300000 Fig. G-3: Correlation between sulfate and zinc in the outflow water. 120 100 T 90 80 c o •a 2 S u o s o o 3 •c 60 50 40 $ 30 20 10 Cerium vs. Sulfate 50000 100000 150000 200000 Sulfate concentration [mg/1] 250000 • 2000 - 2002 300000 Fig. G-4: Correlation between sulfate and cerium in the outflow water. 121 Lanthanum vs. Sulfate 40 35 =r 30 "5b g 25 1 e 0 20 o U e 1 15 s CS J 10 50000 100000 150000 200000 Sulfate concentration [mg/1] 250000 • 2000 - 2002 300000 Fig. G-5: Correlation between sulfate and lanthanum in the outflow water. 122 12 10 1 Copper vs. Sulfate 50000 100000 150000 200000 Sulfate concentration [mg/1] 250000 • 2000-2002 X 1999 4 2003 300000 Fig. G-6: Correlation between sulfate and copper in the outflow water. 123 Beryllium vs. Sulfate a o •a pa 5 T 4.5 4 3.5 3 2.5 2 1.5 • 2000-2002 X 1999 4 2003 50000 100000 150000 Sulfate concentration [mg/1] 200000 250000 300000 Fig. G-7: Correlation between sulfate and beryllium in the outflow water. 124 Selenium vs. Sulfate 3.5 o a OJ a a 8 1.5 6 •a 13 l 1 0.5 50000 100000 150000 200000 Sulfate concentration [mg/1] • 2000 - 2002 250000 300000 Fig. G-8: Correlation between sulfate and selenium in the outflow water. 125 Arsenic vs. Sulfate 1.2 T-"5b 0.8 a o •a 03 H 5 0.6 o a o o o I 0.4 0.2 • 2000 - 2002 50000 100000 150000 200000 Sulfate concentration [mg/1] 250000 300000 Fig. G-9: Correlation between sulfate and arsenic in the outflow water. 126 127 A p p e n d i x H : Calculation of saturation states The output files of the speciation calculations of the outflow water using the PHREEQC code with the WATEQ4F database are listed below. The distribution of aqueous species and the saturation states are calculated for eight different outflow water concentrations between 5,000 mg/1 and 190,000 mg/1 of sulfate. The name of the input and output file indicates the exact sulfate concentration of the input data in mg/1. The results are discussed in section 5.3.6. 128 Input f i l e : 5370.pqi Output f i l e : 5370.pqo Database f i l e : C:\Program Files\USGS\Phreeqc I n t e r a c t i v e 2.8\wateq4f.dat Reading data base. SOLUTION_MASTER_SPECIES SOLUTION_SPECIES PHASES EXCHANGE_MASTER_SPECIES EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES RATES END Reading input data f o r simulation 1. DATABASE C:\Program Files\USGS\Phreeqc I n t e r a c t i v e 2.8\wateq4f.dat SOLUTION 1 temp 15 PH 3.6 pe 10 redox pe unit s mg/1 density 1 A l 161 Ca 535 K 18 Mg 723 Na 104 S(6) 5370 Ni 40 As 0. 008 L i 9 Zn 1.176 U(6) 13.177 Fe(2) 0.455 Cu(2) 0. 67 6 Sr 5 .53 Cd 0.004 Mn (2) 16.325 Se 0. 004 water 1 # kg END Beginning of i n i t i a l s o l u t i o n c a l c u l a t i o n s . I n i t i a l s o l u t i o n 1. Solution composition Elements M o l a l i t y Moles A l 6.009e-003 6.009e-003 As 1.075e-007 1.075e-007 Ca 1.344e-002 1.344e-002 Cd 3.584e-008 3.584e-008 129 Cu(2) 1 071e- 005 1 071e- 005 Fe(2) 8 205e- 006 8 205e- 006 K 4 636e- 004 4 636e- 004 L i 1 306e- 003 1 306e- 003 Mg 2 995e- 002 2 995e- 002 Mn(2) 2 992e- 004 2 992e- 004 Na 4 556e- 003 4 556e- 003 Ni 6 861e- 004 6 861e- 004 S(6) 5 630e- 002 5 630e- 002 Se 5 102e- 008 5 102e- 008 Sr 6 356e- 005 6 356e- 005 U(6) 5 575e- 005 5 575e- 005 Zn 1 812e- 005 1 812e- 005 Description of s o l u t i o n pH pe A c t i v i t y of water Ionic strength Mass of water (kg) Total a l k a l i n i t y (eq/kg) Total carbon (mol/kg) Total C02 (mol/kg) Temperature (deg C) E l e c t r i c a l balance (eq) Percent error, 100*(Cat-|An|)/(Cat+|An|) It e r a t i o n s T o t a l H Total 0 3. 600 10.000 0. 999 1.232e-001 1.000e+000 -5.882e-004 0.000e+000 0.000e+000 15.000 1.414e-003 1.11 8 1.110130e+002 5.573152e+001 D i s t r i b u t i o n of species Log Log Log Species M o l a l i t y A c t i v i t y M o l a l i t y A c t i v i t y Gamma A l As (3) As (5) H+ 3.066e-004 2 512e-004 -3 513 -3 600 -0 087 OH- 2.317e-011 1 792e-011 -10 635 -10 747 -0 112 H20 6 009e-5.551e+001 003 9 985e-001 1 744 -0 001 0 000 A1S04+ 3.781e-003 2 924e-003 -2 422 -2 534 -0 112 Al(S04)2- 1.233e-003 9 535e-004 -2 909 -3 021 -0 112 Al+3 9.888e-004 9 772e-005 -3 005 -4 010 -1 005 A10H+2 5 .553e-006 1 985e-006 -5 256 -5 702 -0 447 A1HS04+2 1.690e-007 6 043e-008 -6 772 -7 219 -0 447 Al(OH)2+ 3.165e-008 2 447e-008 -7 500 -7 611 -0 112 Al(OH)3 6.335e-012 6 517e-012 -11 198 -11 186 0 012 Al(OH)4-2 881e-5 . 677e-014 016 4 390e-014 -13 246 -13 358 -0 112 H3As03 2.880e-016 2 963e-016 -15 541 -15 528 0 012 H4AS03+ 4.769e-020 3 687e-020 -19 322 -19 433 -0 112 H2AS03- 7.345e-022 5 679e-022 -21 134 -21 246 -0 112 HAS03-2 8.077e-033 2 888e-033 -32 093 -32 539 -0 447 As03-3 1 075e-0.000e+000 007 0 000e+000 -43 788 -44 793 -1 005 H2AS04- 1.039e-007 8 036e-008 -6 983 -7 095 -0 112 H3As04 3.546e-009 3 648e-009 -8 450 -8 438 0 012 HAS04-2 5.918e-011 2 .116e-011 -10 228 -10 675 -0 447 As04-3 1 344e-1.479e-018 002 1 462e-019 -17 830 -18 835 -1 005 Ca+2 7.842e-003 2 .935e-003 -2 106 -2 532 -0 427 130 CaS04 5.591e-003 5. 752e-003 -2. 253 -2 . 240 0. 012 CaHS04+ 9.784e-006 7. 565e-006 -5. 009 -5 . 121 -0. 112 CaOH+ 2.504e-012 1. 936e-012 -11. 601 -11. 713 -0. 112 Cd 3. 584e-008 CdS04 1.528e-008 1 572e-008 -7. 816 -7. 804 0. 012 Cd+2 1.501e-008 5 365e-009 -7. 824 -8. 270 -0. 447 Cd (S04)2- 2 5 .556e-009 1 986e-009 -8. 255 -8. 702 -0. 447 CdOH+ 1.065e-015 8 235e-016 -14. 973 -15 084 -0 112 Cd(OH)2 3.681e-022 3 787e-022 -21. 434 -21 422 0 012 Cd20H+3 2.491e-022 2 462e-023 -21. 604 -22 609 -1 005 Cd(OH)3- 2.184e-031 1 689e-031 -30. 661 -30 772 -0 112 Cd(OH)4-2 0.000e+000 0 000e+000 -40. 776 -41 223 -0 447 Cu(2) 1 071e-005 Cu+2 6.247e-006 2 233e-006 -5 204 -5 651 -0 447 CUS04 4.465e-006 4 594e-006 -5 350 -5 338 0 012 CuOH+ 1.148e-010 8 878e-011 -9 940 -10 052 -0 112 Cu(OH) 2 7.167e-013 7 374e-013 -12 145 -12 132 0 012 Cu2(OH)2+2 3.454e-015 1 235e-015 -14 4 62 -14 908 -0 447 Cu(OH)3- 2.284e-022 1 766e-022 -21 641 -21 753 -0 112 Cu(OH)'4-2 3.918e--031, 1 401e-031 -30 407 -30 854 -0 447 Fe(2) 8 205e-006 ' - ' Fe+2 5.278e-006 1 887e-006 -5 278 -5 724 -0 447 FeS04 2.921e-006 3 005e-006 -5 535 -5 522 0 012 FeHS04+ 6.290e-009 4 864e-009 -8 201 -8 313 -0 112 FeOH+ 1.416e-012 1 095e-012 -11 849 -11 961 -0 112 Fe(OH)2 1.464e-020 1 506e-020 -19 835 -19 822 0 012 Fe(OH)3- 2 .598e-027 2 009e-027 -26 585 -26 697 -0 112 H(0) 9 626e- 031 H2 4.813e-031 4 952e-031 -30 318 -30 305 0 012 K 4 636e- 004 K+ 4.366e-004 3 284e-004 -3 360 -3 484 -0 124 K S 0 4 - 2.696e-005 2 084e-005 -4 569 -4 681 -0 112 L i 1 306e- 003 L i + 1.247e-003 9 644e-004 -2 904 -3 016 -0 112 LiS04- 5.891e-005 4 555e-005 -4 230 -4 342 -0 112 Mg 2 995e- 002 Mg+2 1.721e-002 6 745e-003 -1 764 -2 171 -0 407 MgS04 1.274e-002 1 311e-002 -1 8 95 -1 883 0 012 MgOH+ 4.945e-011 3 824e-011 -10 306 -10 417 -0 112 Mn(2) 2 992e- 004 Mn+2 1.932e-004 6 907e-005 -3 714 -4 161 -0 447 MnS04 1.060e-004 1 091e-004 -3 975 -3 962 0 012 MnOH+ 3.927e-012 3 036e-012 -11 406 -11 518 -0 112 Mn(OH)3- 8.892e-029 6 876e-029 -28 051 -28 163 -0 112 Na 4 556e- 003 Na+ 4 .335e-003 3 355e-003 -2 363 -2 474 -0 111 NaS04- 2 .203e-004 1 .704e-004 -3 657 -3 769 -0 112 Ni 6 861e- 004 Ni+2 4 .104e-004 1 .467e-004 -3 387 -3 834 -0 447 NiS04 2 .752e-004 2 .832e-004 -3 560 -3 548 0 .012 Ni ( S 0 4 )2- 2 5 .031e-007 1 .799e-007 -6 298 -6 .745 -0 .447 NiOH+ 5.030e-011 3 .889e-011 -10 298 -10 .410 -0 .112 Ni (OH) 2 2 .253e-016 2 .318e-016 -15 647 -15 . 635 0 .012 Ni(OH)3- 1.192e-023 9 -215e-024 -22 .924 -23 .035 -0 .112 0(0) 1 509e--035 02 7.545e-036 7 .762e-036 -35 . 122 -35 .110 0 .012 S(6) 5 .630e--002 S04-2 3.064e-002 1 .082e-002 -1 .514 -1 .966 -0 .452 MgS04 1.274e-002 1 .311e-002 -1 .895 -1 .883 0 .012 CaS04 5.591e-003 5 .752e-003 -2 .253 -2 .240 0 .012 A1S04+ 3.781e-003 2 .924e-003 -2 . 422 -2 .534 -0 .112 131 U(6) Zn Al(S04)2- 1 233e--003 9 535e- 004 -2 909 -3 021 -0 112 HS04- 2 773e--004 2 144e- 004 -3 557 -3 669 -0 112 NiS04 2 752e--004 2 832e--004 -3 560 -3 548 0 012 NaS04- 2 203e--004 1 704e--004 -3 657 -3 769 -0 112 MnS04 1 060e--004 1 091e--004 -3 975 -3 962 0 012 LiS04- 5 891e--005 4 555e--005 -4 230 -4 342 -0 112 U02S04 3 730e--005 3 837e--005 -4 428 -4 416 0 012 KS04- 2 696e--005 2 084e--005 -4 5 69 -4 681 -0 112 SrS04 2 582e--005 2. 656e--005 -4 588 -4 576 0 012 CaHS04+ 9 784e--006 7 565e--006 -5 009 -5 121 -0 112 U02(S04)2 -2 9 139e--006 3 267e--006 -5 039 -5 486 -0 447 ZnS04 7 239e--006 7 447e--006 -5 140 -5 128 0 012 CuS04 4 465e--006 4 594e--006 -5 350 -5 338 0 012 FeS04 2 921e--006 3 005e--006 -5 535 -5 522 0 012 Zn(S04)2-2 1 984e--006 7 093e--007 -5 702 -6 149 -0 447 Ni(S04)2- 2 5 031e--007 1 799e--007 -6 298 -6 745 -0 447 A1HS04+2 1 690e--007 6 043e--008 -6 772 -7 219 -0 447 CdS04 1 528e--008 1 572e--008 -7 816 -7 804 0 012 FeHS04+ 6 290e--009 4 864e--009 -8 201 -8 313 -0 112 Cd(S04)2-2 5 556e--009 1 986e--009 -8 255 -8 702 -0 447 Se (-2) Se(4) Se(6) Sr 0.000e+000 H2Se 0.000e+000 HSe- 0.000e+000 5.102e-008 HSe03- 4.612e-008 H2Se03 4.896e-009 Se03-2 1.256e-012 1.107e-015 Se04-2 1.102e-015 HSe04- 4.389e-018 6.356e-005 Sr+2 3.774e-005 SrS04 2.582e-005 SrOH+ 3.750e-015 5.575e-005 U02S04 U02 + 2 U02 (S04)2-2 U020H+ (U02)20H+3 (U02)2(OH)2+2 (U02)3(OH)4+2 U02(OH)3-(U02)3(OH)5+ (U02) 4 (OH) 7+ (U02)3(OH)7-U02(OH)4-2 1.812e-005 Zn+2 ZnS04 Zn(S04)2-2 • ZnOH+ Zn(OH)2 Zn(OH)3-Zn(OH)4-2 0.000e+000 0.000e+000 3.566e-008 5.037e-009 4.489e-013 3.940e-016 3.393e-018 1.422e-005 2.656e-005 2.899e-015 -54.709 -54.920 -7.336 -8.310 -11.901 -14.958 -17.358 -4.423 -4.588 -14.426 -54.697 -55.032 -7.448 -8.298 -12.348 -15.404 -17.469 -4.847 -4.576 -14.538 0.012 -0.112 -0.112 0.012 -0.447 -0.447 -0.112 -0.424 0.012 -0.112 730e-005 3 837e-005 -4 428 -4 416 . 0 012 249e-006 3 307e-006 -5 034 -5 481 -0 447 139e- 006 3 2 67e-006 -5 039 -5 486 -0 447 626e-008 4 350e-008 -7 250 -7 361 -0 112 775e- 010 8 672e- 011 -9 057 -10 062 -1 005 367e- 010 2 276e- 010 -9 196 -9 643 -0 447 179e- 014 1 136e- 014 -13 498 -13 944 -0 447 695e- 014 1 310e- 014 -13 771 -13 883 -0 112 Ol l e - 015 2 328e- 015 -14 521 -14 633 -0 112 052e- 019 2 360e- 019 -18 515 . -18 627 . -0 112 333e- 023'' 5; 670e- 023 -22 135 -22 246 -0 112 309e- 024 8 256e- 025 -23 636 -24 083 -0 447 8 894e- 006 3 180e- 006 -5 051 -5 498 -0 447 7 239e- 006 7 447e- 006 • -5 140 -5 128 • 0 012 1 984e- 006 7 093e- 007 -5 702 -6 149 -0 447 8 176e- 012 6 322e- 012 -11 087 -11 199 -0 112 6 148e- 016 6 325e- 016 -15 211 -15 199 0 012 1 028e- 023 7 951e- 024 -22 988 -23 100 -0 112 1 401e- 032 5 009e- 033 -31 854 -32 300 -0 447 -Saturation indices-Phase SI log IAP log KT Al(OH)3(a) -4.69 6.79 11.47 A l (OH)3 AlAs04:2H20 -7.01 -1.65 5.36 AlAs04:2H20 AlumK -6. 08 -11. 43 -5. 35 KA1(S04)2:12H20 A l u n i t e 2. 27 2. 15 -0. 12 KA13(S04)2(OH)6 Anhydrite -0. 16 -4. 50 -4. 34 CaS04 A n t l e r i t e -12. 81 -4. 52 8. 29 Cu3(OH)4S04 A r s e n o l i t e -29. 49 -71. 27 -41. 78 As203 As205 -23. 71 -16. 87 6. 84 As205 B-U02(OH)2 -4. 18 1. 72 5. 89 U02(0H)2 Basaluminite -4. 71 17. 99 22. 70 A14(OH)10SO4 Bianchite -5. 71 -7. 47 -1. 76 ZnS04:6H20 B i r n e s s i t e -13. 36 30. 24 43. 60 Mn02 Boehmite -2. 51 6. 79 9. 30 AlOOH Brochantite -18. 31 -2. 97 15. 34 Cu4(OH)6S04 Bru c i t e -12. 50 5. 03 17. 53 Mg(OH)2 Bunsenite -9. 69 3. 37 13 06 NiO Ca3(As04)2:4w -26. 37 -2 88 23 49 Ca3(As04)2:4H20 CaSe03 -9. 28 -45 14 -35 86 CaSe03 Cd(gamma) -42. 32 -28 27 14. 05 Cd Cd(OH)2 -14. 72 -1 07 13 65 Cd(OH)2 Cd(OH)2(a) -15. 33 -1 07 14 26 Cd(OH)2 Cd3(OH)2(S04)2 -28. 25 -21 54 6 71 Cd3(OH)2(S04)2 Cd3(OH)4S04 -34 94 -12 38 22 5 6 Cd3(OH)4S04 Cd4(OH)6S04 -41 85 -13 45 28 40 Cd4(OH)6S04 CdMetal -42 22 -28 27 13 95 Cd CdS04 -10 51 -10 24 0 27 CdS04 CdS04:2.7H20 -8 47 -10 24 -1 76 CdS04:2.67H20 CdS04:H20 -8 77 -10 24 -1 47 CdS04:H20 C e l e s t i t e -0 19 -6 81 -6 62 ,SrS04 Chalcanthite -4 94 -7 62 -2 68 CuS04:5H20 Claudetite -29 54 -71 27 -41 73 As203 Cu(OH)2 -7 48 1 55 9 03 Cu(OH)2 Cu3(As04)2:6w -19 50 -12 23 7 27 Cu3(As04)2:6H20 CuOCuS04 -18 50 -6 07 12 43 CuO:CuS04 CuS04 -11 09 -7 62 3 47 CUS04 Diaspore -0 72 6 79 7 51 AlOOH Epsomite -1 93 • -4 14 -2 21 MgS04:7H20 FeSe2 -70 01 -234 13 -164 12 FeSe2 Gibbsite -1 90 6 79 8 69 Al(OH)3 G o s l a r i t e -5 42 -7 47 -2 04 ZnS04:7H20 Gummite -9 27 1 72 10 99 U03 Gypsum 0 09 -4 50 -4 58 CaS04:2H20 . H2 (g) -27 20 -27 20 0 00 H2 H20(g) -1 78 -0 00 1 78 H20 Hausmannite -27 27 36 32 63 59 Mn304 Jurbanite 0 85 -2 38 -3 23 A10HS04 Langite . -20 77 -2 97 17 80 Cu4 (OH) 6S04':H20 Manganite -8 70 16 64 . '; 25 34 MnOOH Melanterite ' -5 36 - -7 69 ' -2 .34 Fe'S04 : 7H20 M i r a b i l i t e -5 32 -6 .92 -1 . 60 Na2S04:10H2O Mn3(As04):8H20 -21 .45 -7 .76 13 . 69 Mn3(As04)2:8H20 MnS04 -9 .19 -6 . 13 3 .06 MnS04 Monteponite . ' -15 . 47 -1 . 07 14 . 40' CdO ' Morenosite -3 .37 -5 .80 -2 .43 NiS04:7H20 Ni(OH)2 -6 . 66 3 .37 10 .03 Ni (OH) 2 Ni3(As04)2:8H20 -23 . 67 -6 .78 16 .88 Ni3(As04)2:8H20 Ni4(OH)6S04 -27 .70 4 .30 32 . 00 Ni4(OH)6S04 Nsutite -12 .33 30 .24 42 .56 Mn02 02(g) -32 .20 54 . 40 86 . 60 02 Po r t l a n d i t e -18 . 92 4 . 67 23 .59 Ca (OH)2 Pyrochroite -12 . 16 3 . 04 15 .20 Mn(OH)2 Py r o l u s i t e -12 . 80 30 .24 43 .04 Mn02 Retgersite -3 .74 -5 .80 -2 .07 NiS04:6H20 Schoepite -3 .99 1 .72 5 .71 U02(OH)2:H20 133 Se (s) -14 11 -104 20 -90 09 Se Se02 -11 17 -49 80 -38 64 Se02 Tenorite -6 46 1 55 8 01 CuO Thenardite -6 75 -6 91 -0 16 Na2S04 U03(gamma) -6 49 1 72 8 21 U03 Z i n c i t e ( c ) -9 99 1 70 11 70 ZnO Z i n c o s i t e -10 96 -7 46 3 50 ZnS04 Zn(OH)2-a -10 75 1 70 12 45 Zn(OH)2 Zn(OH)2-b -10 05 1 70 11 75 Zn(OH)2 Zn(OH)2-c -10 50 1 70 12 20 Zn(OH)2 Zn(OH)2-e -9 80 1 70 11 50 Zn(OH)2 Zn(OH)2-g -10 01 1 70 11 71 Zn(OH)2 . Zn2 (OH).2S04 -13 26 -5 76 7 50 Zn2(OH)2S04 Zn3(As04)2:2 5w -26 62. -11 77 14 85 Zn3(As04)2:2.5H20 Zn30(S04)2 -33 82 -13 23 20 60 ZnO:2ZnS04 Zn4(OH)6S04 -30 76 -2 36 28 40 Zn4(OH)6S04 ZnMetal -52 19 -25 50 26 69 Zn ZnO(a) -9 61 1 70 11 31 ZnO ZnS04:H20 -7 16 -7 46 -0 30 ZnS04:H20 End of simulation. Reading input data f o r simulation 2. End of run. 134 Input f i l e : 16102.pqi Output f i l e : 16102.pqo Database f i l e : C:\Program Files\USGS\Phreeqc I n t e r a c t i v e 2.8\wateq4f.dat Reading data base. SOLUTION_MASTER_SPECIES SOLUTION_SPECIES PHASES EXCHANGE_MASTER_SPECIES EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES RATES END Reading input data f o r simulation 1. DATABASE C:\Program Files\USGS\Phreeqc In t e r a c t i v e 2.8\wateq4f.dat SOLUTION 1 " ' temp 15 • pH 3.6 pe 10 redox pe unit s mg/1 density 1 A l 769 Ca 133 K 14.4 Mg 2742 .5 Na 355 S(6) 16102 Ni 163 As 0. 033 L i 7. 043 Zn 3. 66 U(6) 132 Cu(2) 0.83 Sr 4.008 Cd 0.006 Mn (2) 66 Se 0. 073 Fe(2) 1.2 water 1 # kg END Beginning of i n i t i a l s o l u t i o n c a l c u l a t i o n s . I n i t i a l s o l u t i o n 1. Solution composition Elements M o l a l i t y Moles A l 2.910e-002 2.910e-002 As 4.497e-007 4.497e-007 Ca 3.388e-003 3.388e-003 Cd 5.450e-008 5.450e-008 135 Cu(2) 1 333e-005 1 333e-005 Fe(2) 2 194e- 005 2 194e- 005 K 3 760e-004 3 760e-004 L i 1 036e-003 1 036e-003 Mg 1 152e- 001 1 152e- 001 Mn (2) 1 226e-003 1 226e-003 Na 1 576e- 002 1 576e-002 Ni 2 834e- 003 2 834e- 003 S (6) 1 711e- 001 1 711e- 001 Se 9 439e- 007 9 439e- 007 Sr 4 670e- 005 4 670e- 005 U(6) 5 662e- 004 5 662e- 004 Zn 5 716e- 005 5 716e- 005 Description of solution-pH pe A c t i v i t y of water Ionic strength Mass of water (kg) •< T o t a l a l k a l i n i t y (eq/kg) Total carbon (mol/kg) Total C02 (mol/kg) Temperature (deg C) E l e c t r i c a l balance (eq) Percent error, 100*(Cat-|An|)/(Cat+|An|) It e r a t i o n s Total H Total 0 3. 600 10.00.0 0.996 3.088e-001 1.000e+000 -8 .073e-004 0.000e+000 0.000e+000 15.000 9. 654e-003 2.97 9 1.110133e+002 5.619189e+001 -D i s t r i b u t i o n of species-Log Log Log Species M o l a l i t y A c t i v i t y M o l a l i t y A c t i v i t y Gamma A l As (5) H+ 3.204e-004 2 512e- 004 -3. 494 -3 600 -0 106 OH- 2.425e-011 1 787e-011 -10. 615 -10 748 -0 133 H20 2. 910e-5 .551e+001 002 9 959e-001 1. 744 -0 002 0 000 A1S04+ 1.631e-002 1 202e-002 -1. 788 -1 920 -0 133 Al(S04)2- 9.112e-003 6 715e- 003 -2. 040 -2 173 T0 133 Al+3 3.659e-003- 2 344e-004 -2. 437; t -3 630 -1 193 A10H+2 1.611e-005 4 750e- 006 -4 793 •' -5 323 -0 530 A1HS04+2 8 .424e-007 2 484e- 007 -6 074 -6 605 -0 530 Al(OH)2+ 7.924e-008 5 840e- 008 -7 101 -7 234 -0 133 Al(OH)3 1.445e-011 1 551e- 011 -10 840 -10 809 0 031 Al(OH)4-1 106e-1.414e-013 015 1 042e- 013 -12 850 -12 982 . -0 133 H3AS03 l.l"06e-015 1 187e- 015 -14 956 -14 925 0 031 H4AS03 + 2.005e-019 1 478e- 019 -18 698 -18 830 -0 133 H2AS03- 3.088e-021 2 276e- 021 -20 510 -20 643 -0 133 HAS03-2 3.924e-032 1 157e- 032 -31 406 -31 937 -0 530 As03-3 0.000e+000 0 000e+000 -42 997 -44 191 -1 193 4 497e- 007 H2AS04- 4 .358e-007 3 .211e- 007 -6 361 -6 4 93 -0 133 H3As04 1.358e-008 1 .458e- 008 -7 8 67 -7 .836 0 031 HAS04-2 2.867e-010 8 .455e- 011 -9 543 -10 .073 -0 530 As04-3 3 388e-9.116e-018 003 5 .841e- 019 -17 040 -18 .234 -1 193 Ca+2 1.766e-003 5 .176e- 004 -2 753 -3 .286 -0 533 136 Cu(2) Fe(2) H(0) Mn(2) CaS04 1.619e-003 1. 738e-003 -2. 791 -2. 760 •0. 031 CaHS04+ 3.102e-006 2. 286e-006 -5. 508 -5. 641 -0. 133 CaOH+ 4.622e-013 3. 406e-013 -12. 335 -12 . 468 -0. 133 5. 450e-008 CdS04 2.168e-008 2. 328e-008 -7. 664 -7. 633 0. 031 Cd(S04)2-2 1.709e-008 5. 040e-009 -7. 767 -8 . 298 -0. 530 Cd+2 1.573e-008 4. 638e-009 -7. 803 -8 . 334 -0. 530 CdOH+ 9.636e-016 7.. 100e-016 -15. 016 -15 . 149 -0. 133 Cd(OH)2 3.033e-022 3. 256e-022 -21. 518 -21. 487 0. 031 Cd20H+3 2.864e-022 1 835e-023 -21 543 -22. 736 -1. 193 Cd(OH)3- 1.966e-031 1 448e-031 -30 706 -30. 839 -0. 133 Cd(OH)4-2 0. 000e+000 0 000e+000 -40 761 -41. 2 91 -0. 530 1. 333e-005 Cu+2 6.777e-006 1 998e-006 -5 169 -5. 699 -0 530 CuS04- 6.558e-006 7 041e-006 -5 183 -5 152 0 031 CuOH+ 1.075e-010 7 922e-011 -9 969 -10 101 . -0 133 Cu(OH)2 6.112e-013 6 562e-013 -12 214 -12 183 0 031 Cu2(OH)2+2 3.334e-015 9 831e-016 -14 477 -15 007 -0 530 Cu(OH)3- 2.127e-022 1 568e-022 -21 672 -21 805 -0 133 Cu(OH)4-2 4 .205e-031. 1 240e-031 -30 376 -30 907 -0 530 2 194e- 005 Fe+2 1.253e-005 3 694e-006 -4 902 -5 432 -0 530 FeS04 9.387e-006 1 008e-005 -5 027 -4 997 0 031 FeHS04+ 2.214e-008 1 632e-008 -7 655 -7 787 -0 133 FeOH+ 2.901e-012 2 138e-012 -11 537 -11 670 -0 133 Fe(OH)2 2.732e-020 2 933e-020 -19 564 -19 533 0 031 Fe(OH)3- 5.296e-027 3 903e-027 -2 6 276 . -26 409 -0 133 9 223e- 031 H2 4.612e-031 4 952e-031 -30 336 -30 305 0 031 3 760e- 004 K+ 3 . 416e-004 2 332e-004 -3 4 67 -3 632 -0 166 KS04- 3.442e-005 2 536e-005 -4 463 -4 596 -0 133 1 036e- 003 Li+ 9.587e-004 7 064e-004 -3 018 -3 151 -0 133 LiS04- 7.757e-005 5 716e-005 -4 110 -4 243 -0 133 1 152e- 001 Mg+2 5.786e-002 1 848e-002 -1 238 -1 733 -0 496 MgS04 5 .731e-002 6 153e-002 -1 242 -1 211 0 031 MgOH+ 1.418e-010 1 045e-010 -9 848 -9 981 -0 133 1 226e- 003 ' Mn+2 7.036e-004 2 075e-004 -3 153 -3 683 -0 530 MnS04 .5 .229e-004 5 614e-004 -3 282 -3 251 0 031 MnOH+ 1.234e-011 9 096e-012 -10 909 -11 041 -0 133 Mn(OH)3- 2.781e-028 2 049e-028 -27 556 -27 688 -0 133 1 576e- 002 Na+ 1.452e-002 1 056e-002 -1 838 -1 976 -0 138 NaS04- 1.247e-003 , 9 189e-0,0.4 . -2 904 ' ,-3 037 -0- 133 2 834e- 003 , . :. *• • Ni+2 'l.483e-003 4 372e-004 -2 829 -3 359 -0 .530 NiS04 1.346e-003 1 .446e-003 -2 871 -2 840 0 .031 Ni (S04)2-2 5 .335e-006 1 .573e-006 -5 .273 -5 803 -0 .530 NiOH+ 1.5 69e-010. 1-.156e-010 -9 .804 '" -9 .937 -0 .133 Ni (OH) 2 6.400e-016 6 .87,2e-X)l6 -15 .v"194 ... -15, .163 • 0 .031 Ni(OH)3- 3.697e-023 2 .724e-023 -22 . 432 -22 .5 65 -0 .133 1 438e-•035 02 7.191e-036 7 .721e-036 -35 . 143 -35 .112 • 0 .031 1 711e- -001 S04-2 7.316e-002 1 :854e-002 -1 . 136 -1 .732 -0 .596 MgS04 5 .731e-002 6 .153e-002 -1 .242 -1 .211 0 .031 A1S04+ 1.631e-002 1 .202e-002 -1 .788 -1 .920 . - o .133 Al(S04)2- 9.112e-003 6 .715e-003 -2 .040 -2 .173 -0 .133 CaS04 1.619e-003 1 .738e-003 -2 .791 -2 .760 0 .031 NiS04 1.346e-003 1 .446e-003 -2 .871 -2 .840 0 .031 137 Se (-2) Se(4) Se(6) NaS04- 1 247e- 003 9 189e-004 -2. 904 -3 037 -0. 133 MnS04 5 229e- 004 5 614e-004 -3. 282 -3 251 0. 031 HS04- 4 985e- 004 3 674e-00.4 -3. 302 -3 435 -0. 133 U02S04 3 300e- 004 3 543e-004 . -3. 481 -3 451 0. 031 U02(S04)2-2 1 753e- 004 5 168e-005 -3. 756 -4 287 -0 530 LiS04- 7 757e- 005 5 716e-005 -4. 110 -4 243 -0 133 KS04- 3 442e- 005 2 536e-005 -4. 4 63 -4 596 -0 133 ZnS04 2 285e- 005 2 453e-005 -4 641 -4 610 0 031 SrS04 2 179e- 005 2 339e-005 -4 662 -4 631 0 031 Zn(S04)2-2 1 358e- 005 4 003e-006 -4 8 67 -5 398 -0 530 FeS04 9 387e- 006 1 008e-005 -5 027 -4 997 0 031 CuS04 6 558e- 006 7 041e-006 -5 183 -5 152 0 031 Ni(S04)2-2 5 335e- 006 1 573e-006 -5 273 -5 803 -0 530 CaHS04+ 3 102e- 006 2 286e-006 -5 508 -5 641 -0 133 A1HS04+2 8 424e- 007 2 484e-007 -6 074 -6 605 -0 530 FeHS04+ 2 214e- 008 1 632e-008 -7 655 -7 787 -0 133 CdS04 2 168e- 008 2 328e-008 -7 664 -7 633 0 031 Cd(S04)2-2 1 709e- 008 5 040e-009 -7 767 -8 298 -0 530 0. 000e+000 H2Se 0 000e+000 0 000e+000 -53 475 -53 444 0 031 HSe- 0 000e+000 0 000e+000 -53 646 -53 778 -0 133 9. 439e- 007 HSe03- 8 604e- 007 6 340e-007 -6 065 -6 198 -0 133 H2Se03 8 341e- 008 8 956e-008 -7 079 -7 048 0 031 Se03-2 2 707e- 011 7 982e-012 -10 568 -11 098 -0 530 2. 378e- 014 Se04-2 2 370e- 014 6 987e-015 -13 625 -14 156 -0 530 HSe04- 8 166e- 017 6 018e-017 -16 088 -16 221 -0 133 4 . 670e- 005 Sr+2 2 491e- 005 7 311e-006 -4 604 -5 136 -0 532 SrS04 2 179e- 005 2 339e-005 -4 662 -4 631 0 031 SrOH+ 2 080e- 015 1 487e-015 -14 682 -14 828 -0 146 5. 662e- 004 U02S04 3 300e- 004 3 543e-004 -3 481 -3 451 0 031 U02 (S04)2-2 1 753e- 004 5 168e-005 -3 756 -4 287 -0 530 U02 + 2 6 044e- 005 1 782e-005 -4- 219 -4 749 -0 530 U02.0H+ 3 173e- 007 2 338e-007 -6 498 -6 631 -0 133 (U02)20H+3 3 921e- 008 2 512e-009 -7 407 -8 600 -1 193 (U02)2(OH)2+2 2 230e- 008 6 577e-009 -7 652 -8 182 -0 530 (U02) 3 (OH) 4+2 5 .969e- 012 1 760e-012 -11 224 -11 754 -0 530 (U02)3(OH)5+ 4 .881e- 013 3 597e-013 -12 311 -12 .444 -0 133 U02(OH)3- 9 .508e- 014 7 007e-014 -13 022 -13 154 -0 133 (U02)4(OH)7+ 2 .653e- 016 1 955e-016 -15 576 -15 .709 -0 133 (U02)3(OH)7 - 1 .182e- 020 8 713e-021 -19 927 -20 .060 -0 133 U02(OH)4-2 1 .493e- 023 4 403e-024 -22 826 -23 .356 -0 530 5. 716e- 005 ZnS04 2 .285e- 005 2 .453e-005 -4 641 -4 . 610 0 .031 Zn+2 2 .073e- 005 6 .114e-006 -4 683 -5 .214 -0 .530 Zn(S04)2-2 1 .358e- 005 4 .003e-006 -4 8 67 -5 .398 -0 .530 ZnOH+ 1 .645e- 011 1 .212e-011 -10 784 -10 .916 -0 .133 Zn (OH) 2 1 .127e- 015 1 .210e-015 -14 948 -14 .917 0 .031 Zn(OH)3- 2 .058e- 023 1 .517e-023 -22 . 686 -22 .819 -0 .133 Zn(OH)4-2 3 .232e- 032 9 .530e-033 -31 .491 -32 .021 -0 .530 Saturation i n d i c e s Phase SI l og IAP log KT A l (OH) 3 (a) A1AS04:2H20 AlumK A l u n i t e -4.31 7.16 -6.03 -0.67 -5.39 -10.75 3.72 3. 60 11.47 Al(OH)3 5.36 AlAs04:2H20 -5.35 KA1(S04)2:12H20 -0.12 KA13(S04)2(OH)6 Anhydrite -0. 68 -5. 02 . -4. 34 CaS04 A n t l e r i t e -12. 73 -4. 44 8. 29 Cu3(OH)4S04 A r s e n o l i t e -28. 28 -70. 06 -41. 78 As203 As205 -22. 50 -15. 67 6. 84 As205 B-U02(OH)2 -3. 45 2 45 5. 89 U02(OH)2 Basaluminite -2. 97 19 73 22. 70 A14(OH)10SO4 Bianchite -5. 20 -6 96 -1. 76 ZnS04:6H20 B i r n e s s i t e -12. 89 30 71 43. 60 Mn02 Boehmite -2. 13 7 17 9. 30 AlOOH Brochantite -18. 28 -2 94 15. 34 Cu4(OH)6S04 Bru c i t e -12. 07 5 46 17. 53 Mg(OH)2 Bunsenite -9. 22 3 84 13. 06 NiO Ca3(As04)2:4w -27. 43 -3 94 23. 49 Ca3(As04)2:4H20 CaSe03 -8. 78 -44 64 -35 86 CaSe03 Cd(gamma) -42. 39 -28 33 14 05 Cd Cd(OH)2 -14 79 -1 14 13 65 Cd(OH)2 Cd(OH)2(a) -15 40 -1 14 14 26 Cd(OH)2 Cd3(0H)2(S04)2 -27 98 -21 27 6 71 Cd3(OH)2(S04)2 Cd3(OH)4S04 -34 90 -12 34 22 56 Cd3(OH)4S04 Cd4(OH)6S04 -41 88 -13 48 28 40 Cd4(OH)6S04 CdMetal -42 28 -28 33 13 95 Cd CdS04 -10 34 -10 07 0 27 CdS04 CdS04 : 2'. 7H20 . -8 31 -10 07 -1 76 CdS04:2.67H20 CdS04:H20 : -8 60 -iQ 07 -1'- 47 CdS04:H20 C e l e s t i t e 5 -0 25 - 6 87 -6 62 SrS04. " Chalcanthite -4 76 -7 44 -2 68 CuS04:5H20 Claudetite -28 33 -70 06 -41 73 As203 Cu(OH)2 -7 53 1 50 9 03 Cu(OH)2 Cu3(As04)2:6w -18 45 -11 18 7 27 Cu3(As04)2:6H20 CuOCuS04 -18 37 -5 93 12 43 'CuO :CuS04 CuS04 -10 90 -7 43 3 47 CuS04 Diaspore -0 34 7 17 7 51 AlOOH Epsomite -1 27 -3 48 -2 21 MgS04:7H20 FeSe2 -67 21 -231 33 -164 12 FeSe2 Gibbsite -1 53 7 16 8 69 Al(OH)3 G o s l a r i t e -4 91 -6 96 -2 04 ZnS04:7H20 Gummite -8 54 2 45 10 99 U03 Gypsum -0 44 -5 02 -4 58 CaS04:2H20 H2 (g) -27 20 -27 20 0 00 H2 H20(g) -1 78 -0 00 1 78 H20 Hausmannite -25 85 37 74 63 59 Mn304 Jurbanite 1 47 -1 76 -3 23 A10HS04 Langite -20 74 -2 94 17 80 Cu4(OH)6S04:H20 Manganite -8 23 17 11 25 34 MnOOH Melanterite -4 84 -7 18 -2 34 FeS04:7H20 M i r a b i l i t e -4 11 -5 70 -1 60 Na2S04:10H2O Mn3(As04):8H20 -18 82 -5 14 13 69 Mn3(As04)2:8H20 MnS04 -8 48 -5 41 3 06 MnS04 Monteponite -15 54 -1 14 14 40 CdO Morenosite -2 67 -5 10 -2 43 NiS04:7H20 Ni(OH)2 -6 19 3 84 10 03 Ni(OH)2 Ni3(As04)2:8H20 -21 05 -4 16 16 88 Ni3(As04)2:8H20 Ni4(OH)6S04 -25 58 6 42 32 00 Ni4(OH)6S04 Nsutite -11 85 30 71 42 56 Mn02 02 (g) -32 20 54 40 86 60 02 P o r t l a n d i t e -19 68 3 91 23 59 Ca (OH)2 Pyrochroite -11 69 3 .51 15 20 Mn(OH)2 Py r o l u s i t e -12 32 30 .71 43 04 Mn02 Retgersite -3 03 -5 .10 -2 07 NiS04:6H20 Schoepite -3 26 2 .45 5 71 U02(OH)2:H20 Se (s) -12 86 -102 . 95 -90 09 Se Se02 -9 92 -48 .55 -38 64 Se02 Tenorite -6 51 1 50 8 01 CuO Thenardite -5 52 -5 68 -0 16 Na2S04 U03(gamma) -5 76 2 45 8 21 U03 Zi n c i t e ( c ) -9 71 1 98 11 70 ZnO Zi n c o s i t e -10 44 -6 95 3 50 ZnS04 Zn(OH)2-a -10 47 1 98 12 45 Zn(OH)2 Zn(OH)2-b -9 77 1 98 11 75 Zn(OH)2 Zn(OH)2-c -10 22 1 98 12 20 Zn (OH)2 Zn(OH)2-e -9 52 1 98 11 50 Zn(OH)2 Zn(OH)2-g -9 73 1 98 11 71 Zn(OH)2 Zn2(OH)2S04 -12 46 -4 96 7 50 Zn2(OH)2S04 Zn3(As04)2:2 5w -24 57 -9 72 14 85 Zn3(As04)2:2.5H20 Zn30(S04)2 -32 50 -11 91 20 60 ZnO:2ZnS04 Zn4(OH)6S04 -29 40 -1 00 28 40 Zn4(OH)6S04 ZnMetal -51 91 -25 21 26 69 Zn ZnO(a) -9 33 1 98 11 31 ZnO ZnS04:H20 -6 65 -6 95 -0 30 ZnS04:H20 End of simulation. Reading input data f o r simulation 2. End of run. 140 Input f i l e : 21853.pqi Output f i l e : 21853.pqo Database f i l e : C:\Program Files\USGS\Phreeqc Interactive-2.8\wateq4f.dat Reading data base. SOLUTION_MASTER_SPEOIES SOLUTION_SPECIES PHASES EXCHANGE_MASTER_SPECIES EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES RATES END Reading input data f o r simulation 1. DATABASE C:\Program Files\USGS\Phreeqc In t e r a c t i v e 2.8\wateq4f.dat SOLUTION 1 temp 15 pH 3.6 pe 10 redox pe u n i t s mg/1 density 1 A l 1050 Ca 344 K 10.8 Mg 3703 Na 428 S(6) 21853 Ni 197 As 0.048 L i 17.7 Zn 5.02 U(6) 134 Fe(2) 0. 64 Cu(2) 1. 42 Sr 3.1 Cd 0. 009 Mn(2) 77.4 Se 0.085 water 1 # kg END Beginning of i n i t i a l s o l u t i o n c a l c u l a t i o n s . I n i t i a l s o l u t i o n 1. . Solution composition Elements M o l a l i t y Moles A l 4.003e-002 4.003e-002 As 6.590e-007 6.590e-007 Ca 8.828e-003 8.828e-003 141 Cd 8 236e- 008 8 236e-008 Cu(2) 2 299e- 005 2 299e-005 Fe(2) 1 179e- 005 1 179e- 005 K 2 841e- 004 2 841e- 004 L i 2 624e- 003 2 624e-003 Mg 1 567e- 001 1 5 67e-001 Mn (2) 1 449e- 003 1 449e- 003 Na 1 915e- 002 1 915e- 002 Ni 3 452e- 003 3 452e- 003 S(6) 2 340e- 001 2 340e- 001 Se 1 107e- 006 1 107e- 006 Sr 3 639e- 005 3 639e- 005 U(6) 5 791e- 004 5 791e- 004 Zn 7 899e- 005 7 899e- 005 Description of s o l u t i o n PH pe A c t i v i t y of water Ionic strength Mass of water (kg) To t a l a l k a l i n i t y (eq/kg) Total carbon (mol/kg) Total C02 (mol/kg) Temperature (deg C) E l e c t r i c a l balance (eq) Percent error, 100*(Cat-|An|)/(Cat+|An|) It e r a t i o n s T o t a l H Total 0 3. 600 10.000 0. 994 4.012e-001 1.000e+000 -8.918e-004 0.000e+000 0.000e+000 15.000 1.729e-002 4.08 9 1.110134e+002 5 . 644340e+001 D i s t r i b u t i o n of species Log Log Log Species M o l a l i t y A c t i v i t y M o l a l i t y A c t i v i t y Gamma A l H+ 3.243e-004 2 512e- 004 -3 489 -3 600 -0 111 OH- 2.430e-011 1 785e-011 -10 614 -10 748 -0 134 H20 4 003e-5 .551e+001 002 9 944e-001 1 744 -0 002 0 000 A1S04+ 2.170e-002 1 594e-002 -1 663 -1 797 -0 134 Al(S04)2- 1.396e-002 1 026e-002 -1 855 -1 989 -0 134 Al+3 4.342e-003 2 700e-004 -2 362 -3 569 -1 206 A10H+2 1.877e-005 5 463e- 006 -4 726 -5 263 -0 536 A1HS04+2 1.132e-006 3 295e- 007 -5 946 -6 482 -0 536 A l (OH)2 + 9.132e-008 6 707e-008 -7 039 -7 173 -0 134 A l (OH) 3 1.622e-011 1 779e- 011 -10 790 -10 750 0 040 Al(OH)4-1 585e-1.625e-013 015 1 193e- 013 -12 789 -12 923 -0 134 H3As03 1.585e-015 1 738e- 015 -14 800 -14 760 0 040 H4AS03+ 2.945e-019 2 163e- 019 -18 531 -18 665 -0 134 H2As03- 4 .535e-021 3 331e- 021 -20 343 -20 477 -0 134 HAS03-2 5.820e-032 1 694e- 032 -31 235 -31 771 -0 .536 As03-3 0.000e+000 0 000e+000 -42 819 -44 025 -1 206 6 590e- 007 H2AS04- 6.392e-007 4 694e- 007 -6 194 -6 328 -0 134 H3As04 1.943e-008 2 131e- 008 -7 712 -7 671 0 .040 HAS04-2 4 .247e-010' 1 .236e- 010 -9 372 -9 908 -0 .536 As04-3 1.373e-017 8 .538e- 019 -16 8 62 -18 .069 -1 .206 Ca 8.828e-003 142 Ca+2 4.464e-003 1 236e-003 -2. 350 -2. 908 -0. 558 CaS04 4 .356e-003 4 778e-003 -2. 361 -2 321 0. 040 CaHS04+ 8.556e-006 6 284e-006 -5. 068 -5 202 -0. 134 CaOH+ 1.105e-012 8 118e-013 -11. 957 -12 091 -0. 134 Cd 8. 236e-008 CdS04 3.178e-008 3 485e-008 -7. 498 -7 458 0. 040 Cd(S04)2- 2 2.986e-008 8 690e-009 -7. 525 -8 061 -0 536 Cd+2 2.072e-008 6 031e-009 -7. 684 -8 220 -0 536 CdOH+ 1.255e-015 9 220e-016 -14. 901 -15 035 -0 134 Cd20H+3 4.981e-022 3 098e-023 -21. 303 -22 509 -1 206 Cd(OH)2 3.850e-022 4 222e-022 -21. 415 -21 374 0. 040 Cd(OH)3- 2 .553e-031 1 875e-031 -30. 593 -30 727 -0 134 Cd(OH)4-2 0.000e+000 0 000e+000 -40. 643 -41 179 -0 536 Cu(2) 2. 299e-005 CuS04 1.192e-005 1 307e-005 -4. 924 -4 884 0 040 Cu+2 1.107e-005 3 221e-006 -4. 956 -5 492 -0 536 CuOH+ 1.736e-010 1 275e-010 -9. 760 -9 894 -0 134 Cu(OH) 2 9.617e-013 1 055e-012 -12. 017 -11 977 0 040 Cu2(OH)2+2 8.753e-015 2 547e-015 -14. 058 -14 594 -0 536 Cu(OH)3- 3.426e-022 2 516e-022 -21. 4 65 -21 599 -0 134 Cu(OH)4-2 6.830e-031 1 987e-031 -30 166 -30 702 -0 536 Fe(2) 1 179e- 005 Fe+2 6.422e-006 1 869e-006 -5 192 -5 .728 • -0 536 FeS04 5 .353e-006 5 871e-00.6 -5 271 -5 231' * •. 0 040 FeHS04+ 1.294e-008 9 505e-009 -7 888 -8 022 " -0 134 FeOH+ 1.470e-012 1 080e-012 -11 833 -11 967 -0 134 Fe(OH)2 1.349e-020 1 479e-020 -19 870 -19 830 0 040 Fe(OH)3- 2.676e-027 1 966e-027 -26 572 -26 706 -0 134 H(0) 9 029e- 031 H2 4.515e-031 4 95'2e-031 -30 345 -30 305 0 040 K 2 841e- 004 K+ 2 .552e-004 1 694e-004 -3 593 -3 771 -0 178 KS04- 2.888e-005 2 121e-005 -4 539 -4 673 -0 134 L i 2 624e- 003 Li+ 2.400e-003 1 763e-003 -2 620 -2 754 -0 134 LiS04- 2 .236e-004 1 643e-004 -3 650 -3 784 -0 134 Mg 1 567e- 001 MgS04 8.103e-002 8 887e-002 -1 091 -1 051 0 040 Mg+2 7.564e-002 2 318e-002 -1 121 -1 635 -0 514 MgOH+ 1.782e-010 1 309e-010 -9 749 -9 883 -0 134 Mn(2) 1 449e- 003 Mn+2 7.933e-004 2 309e-004 -3 101 -3 637 -0 536 MnS04 6.559e-004 7 193e-004 -3 183 -3 143 0 040 MnOH+ 1.376e-011 1 011e-011 -10 861 -10 995 -0 134 Mn(OH)3- 3.091e-028 2 270e-028 -27 510 -27 644 -0 134 Na 1 915e- 002 Na+ 1.744e-002 1 .253e-002 -1 758 -1 902 -0 144 NaS04- 1.709e-003 1 .255e-003 -2 767 -2 .901 -0 134 Ni 3 452e- 003 NiS04 1.730e-003 1 .898e-003 -2 762 -2 .722 0 040 Ni+2 1.713e-003 4 .985e-004 -2 766 -3 .302 -0 .536 Ni(S04)2- 2 8.173e-006 2 .378e-006 -5 088 -5 . 624 -0 .536 NiOH+ 1.792e-010 1 .316e-010 -9 747 -9 .881 -0 .134 Ni(OH)2 7.123e-016 7 .812e-016 -15 147 -15 .107 0 .040 Ni(OH)3- 4 .211e-023 3 .093e-023 -22 376 -22 .510 -0 134 0(0) 1 404e--035 02 7.019e-036 7 .699e-036 -35 154 -35 .114 0 040 S(6) 2 340e--001 S04-2 9.319e-002 2 .135e-002 -1 031 -1 . 671 -0 .640 MgS04 8.103e-002 8 .887e-002 -1 091 -1 .051 0 .040 A1S04+ 2.170e-002 1 .594e-002 -1 663 -1 .797 -0 .134 Al(S04)2- 1.396e-002 1 .026e-002 -1 855 -1 .989 -0 .134 CaS04 4 .356e-003 4 .778e-003 -2 3 61 -2 .321 0 .040 143 Se (-2) Se(4) U(6) NiS04 1. 730e-003 1. 898e-003 -2. 762 -2 722 0. 040 NaS04- 1. 709e-003 1. 255e-003 -2. 767 -2 901 -0. 134 MnS04 6. 559e-004 7. 193e-004 -3. 183 -3 143 0. 040 HS04- 5 760e-004 4 230e-004 -3. 240 -3 374 -0. 134 U02S04 3 219e-004 3 531e-004 -3. 492 -3 452 0. 040 LiS04- 2 236e-004 1 643e-004 -3. 650 -3 784 -0. 134 U02(S04)2-2 2 038e-004 5 930e-005 -3. 691 -4 227 -0 536 ZnS04 3 130e-005 3 433e-005 -4. 5 04 -4 464 0 040 KS04- 2 888e-005 2 121e-005 -4. 539 -4 673 -0 134 Zn(S04)2-2 2 216e-005 6 450e-006 . -4. 654 -5 190 -0 536 SrS04 1 750e-005 1 920e-005 -4. 757 -4 717 0 040 CuS04 1 192e-005 1 307e-005 -4 924 -4 884 0 040 CaHS04+ 8 556e-006 6 284e-006 -5 068 -5 202 -0 134 Ni(S04)2-2 8 173e-006 2 378e-006 -5 088 -5 624 -0 536 FeS04 5 353e-006 5 871e-006 -5 271 -5 231 0 040 A1HS04+2 1 132e-006 3 295e-007 -5 946 -6 482 -0 536 CdS04 3 178e-008 3 485e-008 -7 498 -7 458 0 040 Cd(S04)2-2 2 986e-008 8 690e-009 -7 525 -8 061 -0 536 FeHS04+ 1 294e-008 9 505e-009 -7 888 -8 022 -0 134 0. 000e+000 H2Se 0 000e+000 0 000e+000 -53 413 -53 373 0 040 HSe- 0 000e+000 0 000e+000 -53 574 -53 708 -0 134 1. 107e- 006 HSe03- 1 012e-006 7 430e-007 -5 995 -6 129 -0 134 H2Se03 9 569e-008 1 049e-007 -7 019 -6 979 0 040 Se03-2 3 214e-011 9 354e-012 -10 493 -11 029 -0 536 2. 819e- 014 Se04-2 2 810e-014 8 176e-015 -13 551 -14 087 -0 536 HSe04- 9 587e-017 7 041e-017 -16 018 -16 152 -0 134 3. 639e-005 Sr+2 1 889e-005 5 210e-006 -4 724 -5 283 -0 559 SrS04 1 750e-005 1 920e-005 -4 757 -4 717 0 040 SrOH+ 1 515e-015 1 058e-015 -14 820 -14 976 -0 156 5. 791e- 004 U02S04 3 219e-004 3 531e-004 -3 4 92 -3 .452 0 040 U02(S04)2-2 2 038e-004 5 930e-005 -3 691 -4 227 . -0 536 U02+2 5 299e-005' 1 542e-005 -4 276 -4 .812 -0 536 U020H+ 2 751e-007 2 021e-007 -6 560 -6 .695 -0 134 (U02)20H+3 3 020e-008 1 878e-009 -7 520 -8 .726 -1 206 (U02)2(OH)2+2 1 687e-008 4 911e-009 -7 773 -8 .309 -0 536 (U02)3(OH)4+2 3 897e-012 1 134e-012 -11 409 -11 .945 -0 .536 (U02)3(OH)5+ 3 150e-013 2 314e-013 -12 502 -12 .636 -0 134 U02(OH)3- 8 220e-014 6 037e-014 -13 085 -13 .219 -0 134 (U02)4(OH)7+ 1 477e-016 1 085e-016 -15 831 -15 .965 -0 .134 (U02)3(OH)7 - 7 610e-021 5 .589e-021 -20 •119 . -20 .253 -0 .134 U02(OH)4-2 1 302e-023 3 .788e-024 -22 885 -23 ."422".. - -0 .536 7. 899e- 005 ZnS04 3 .130e-005 3 .433e-005 -4 504 -4 .4 64 0 .040 Zn+2 2 .553e-005 7 .429e-006 -4 5 93 -5 .129 -0 .536 Zn(S04)2-2 2 .216e-005 6 .450e-006 -4 654 -5 .190 -0 .536 ZnOH+ 2 .003e-011 1 .471e-011 -10 698 -10 .832 -0 .134 Zn(OH)2 1 .336e-015 1 .466e-015 -14 874 -14 .834 0 .040 Zn(OH)3- 2 .498e-023 1 .835e-023 -22 . 602 -22 .736 -0 .134 Zn(OH)4-2 3 -957e-032 1 .151e-032 -31 .403 -31 .939 -0 .536 Saturation indi c e s Phase Al(OH)3(a) A1AS04:2H20 SI l o g IAP -4.25 7.22 -5.81 -0.44 log KT 11.47 Al(OH)3 5.36 AlAs04:2H20 AlumK -5. 36 -10. 71 -5. 35' KA1(S04)2:12H20 A l unite 3. 89 3. 77 -0. 12 KA13(S04)2(OH)6 Anhydrite -0. 24 -4. 58 -4. 34 CaS04 A n t l e r i t e -12. 05 -3. 76 8. 29 Cu3(OH)4S04 A r s e n o l i t e -27. 95 -69. 73 -41. 78 As203 As205 -22. 17 -15. 34 6. 84 As205 B-U02(OH)2 -3. 51 2. 38 5. 89 U02(OH)2 Basaluminite -2. 67 20. 03 22. 70 A14(OH)10SO4 Bianchite -5. 05 -6. 81 -1. 76 ZnS04:6H20 B i r n e s s i t e -12. 84 30. 76 43. 60 Mn02 Boehmite -2. 07 7. 23 9. 30 AlOOH Brochantite -17. 39 -2. 05 15. 34 Cu4(OH)6S04 Bru c i t e -11. 97 5. 56 17. 53 Mg(OH)2 Bunsenite -9. 16 3. 90 13. 06 NiO Ca3(As04)2:4w -25. 97 -2. 48 23. 49 Ca3(As04)2:4H20 CaSe03 -8. 34 -44. 19 -35. 86 CaSe03 Cd(gamma) -42. 27 -28. 22 14. 05 Cd Cd(OH) 2 -14. 67 -1. 02 13. 65 Cd(OH)2 Cd(OH)2(a) -15. 28 -1 02 14 26 Cd(OH)2 Cd3(OH)2(S04)2 -27 52 -20 81 6 71 Cd3(OH)2(S04)2 Cd3(OH)4S04 -34 50 -11 94 22 56 Cd3(OH)4S04 Cd4(OH)6S04 -41 36 -12 96 28 40 Cd4(OH)6S04 CdMetal -42 17 -28 22 13 95 Cd CdS04 -10 17 -9 89 0 27 CdS04 CdS04:2.7H20 -8 13 -9 90 -1 76 CdS04:2.67H20 CdS04:H20 -8 43 -9 89 -1 47 CdS04:H20 C e l e s t i t e -0 33 -6 95 -6 62 SrS04 Chalcanthi te -4 50 -7 17 -2 68 CuS04:5H20 Claudetite -28 00 -69 73 -41 73 As203 Cu (OH) 2 -7 32 1 70 9 03 Cu(OH)2 Cu3(As04)2:6w -17 50 -10 23 7 27 Cu3(As04)2:6H20 CuOCuS04 -17 89 -5 46 12 43 CuO:.CuS04 CuS04 -10 63 -7 16 3 47 CuS04 Diaspore -0 28 7 23 7 51 AlOOH Epsomite -1 11 -3 32 -2 21 MgS04:7H20 FeSe2 -67 36 -231 48 -164 12 FeSe2 Gibbsite -1 47 7 22 8 69 Al(OH)3 G o s l a r i t e -4 77 -6 82 -2 04 ZnS04:7H20 Gummite -8 60 2 39 10 99 U03 Gypsum 0 00 -4 58 -4 58 CaS04:2H20 H2 (g) -27 20 -27 20 0 00 H2 H20(g) -1 78 -0 00 ' 1 78 H20 Hausmannite -25 71 37 88 63 59 Mn304 Jurbanite 1 59 -1 64 -3 23 A10HS04 Langite -19 85 -2 06 17 80 Cu4(OH)6S04:H20 Manganite -8 18 17 16 25 34 MnOOH Melanterite -5 08 -7 42 -2 34 FeS04:7H20 Mirabili.te -3 90 -5 50 -1 60 Na2S04:10H2O . ' Mn3(As04):8H20 -18 •36 -4 67 '"'13 69 • Mn3(As04)2:8H20 MnS04 -8 37 -5 31 3 06 MnS04 Monteponite -15 42 -1 02 14 40 CdO Morenosite -2 56 -4 99 -2 43 NiS04:7H20 Ni(OH)2 -6 13 3 .89 10 .03. Ni(OH)2 Ni3(As04)2:8H20 -20 55 -3 .67. . 16 .88 Ni3(As04)2:8H20 Ni4(OH)6S04 -25 .29 6 .71 32 .00 Ni4(OH)6S04 Nsutite -11 .81 30 .76 42 .56 Mn02 02 (g) -32 .20 54 . 40 86 . 60 02 P o r t l a n d i t e -19 .30 4 .29 23 .59 Ca(OH)2 Pyrochroite -11 . 64 3 .56 15 .20 Mn(OH)2 Py r o l u s i t e -12 .28 30 .76 43 .04 Mn02 Retgersite -2 .92 -4 .99 -2 .07 NiS04:6H20 Schoepite -3 .33 2 .38 5 .71 U02(OH)2:H20 145 Se (s) -12 79 -102 88 -90 09 Se Se02 -9 85 -48 48 -38 64 Se02 Tenorite -6 30 1 71 8 01 CuO Thenardite -5 31 -5 47 -0 16 Na2S04 U03(gamma) -5 82 2 39 8 21 U03 Z i n c i t e ( c ) -9 63 2 07 11 70 ZnO Z i n c o s i t e -10 30 -6 80 3 50 ZnS04 Zn (OH)2-a -10 38 2 07 12 45 Zn (OH)2 Zn(OH)2-b -9 68 2 07 11 75 Zn(OH)2 Zn(OH)2-c -10 13 2 07 12 20 Zn(OH)2 Zn(OH)2-e -9 43 2 07 11 50 Zn(OH)2 Zn(OH)2-g -9 64 2 07 11 71 Zn(OH)2 Zn2(OH)2S04 -12 23 -4 73 7 50 Zn2(OH)2S04 Zn3(As04)2:2 5w -23 98 -9 14 14 85 Zn3(As04)2:2 Zn30(S04)2 -32 13 -11 53 20 60 ZnO:2ZnS04 Zn4(OH)6S04 -29 00 -0 60 28 40 Zn4(OH)6S04 ZnMetal -51 82 -25 13 26 69 Zn ZnO(a) -9 24 2 07 11 31 ZnO ZnS04:H20 -6 50 -6 80 -0 30 ZnS04:H20 End of simulation. Reading input data f o r simulation 2. End of run. 146 Input f i l e : 25198.pqi Output f i l e : 25198.pqo Database f i l e : C:\Program Files\USGS\Phreeqc Interactive 2.8\wateq4f.dat Reading data base. SOLUTION_MASTER_SPECIES SOLUTION_S PE CIES PHASES EXCHANGE_MASTER_SPECIES EXCHANGE_SPECIES SURFACE_MA.STER_SPECIES SURFACE_SPECIES RATES END Reading input data for simulation 1. DATABASE C:\Program Files\USGS\Phreeqc Interactive 2.8\wateq4f.dat SOLUTION 1 temp • 15 PH 3.6, pe 10 redox pe units mg/1 density 1 Al , • ' 1124. Ca 471 K 12 .2 Mg 3624 Na 342 S(6) 25198 Ni 197 As 0.036 Li 10.098 Zn 6.82 U(6) 145 Fe(2) 3.023 Cu(2) 1.34 Sr 2.94 Cd 0.006 Mn(2) 68.6 Se 0.086 water 1 # kg END Beginning of i n i t i a l solution calculations. I n i t i a l solution 1. • Solution composition-Elements M o l a l i t y Moles A l 4.300e-002 4.300e-002 As 4.960e-007 4.960e-007 Ca 1.213e-002 1.213e-002 147 Cd 5 510e-008 5 510e-008 Cu(2) 2 177e-005 2 177e-005 Fe(2) 5 587e-005 5 587e-005 K 3 221e-004 3 221e-004 Li 1 502e-003 1 502e-003 Mg 1 539e-001 1 539e-001 Mn(2) 1 289e-003 1 289e-003 Na 1 536e-002 1 536e-002 Ni 3 464e-003 3 464e-003 S(6) 2 708e-001 2 708e-001 Se 1 124e-006 1 124e-006 Sr 3 463e-005 3 463e-005 U(6) 6 288e-004 6 288e-004 Zn 1 077e-004 1 077e-004 Description of solution Percent error, pH pe Activity of water Ionic strength Mass of water (kg) Total alkalinity (eq/kg) Total carbon (mol/kg) Total C02 (mol/kg) Temperature (deg C) Electrical balance (eq) 100*(Cat-|An|)/(Cat+|An|) Iterations Total H Total 0 3. 600 10.000 0. 994 4 .278e-001 1.000e+000 -1.020e-003 0.000e+000 0.000e+000 15.000 -5.113e-002 -11.33 8 1.110135e+002 5.659054e+001 Distribution of species Log Log Log Species Molality Activity Molality Activity Gamma Al As (5) H+ 3.252e-004 2 512e-004 -3 488 -3 600 -0 112 OH- 2.428e-011 1 784e-011 -10 615 -10 749 -0 134 H20 4 300e-5 .551e+001 002 9 941e-001 1 744 -0 003 0 000 A1S04+ 2.213e-002 1 626e-002 -1 655 -1 789 -0 134 Al(S04)2- 1.720e-002 1 263e-002 -1 765 -1 898 -0 134 Al+3 3.655e-003\ 2 281e-004 -2 437 . -3' 642 -1 205 AlOH+2 ... • 1.583e-005 ' 4 613e-006 -4 '8 01 -5 336 •- * -0 535 A1HS04+2 1.153e-006 3 361e-007 -5 938 -6 474 -0 535 Al(OH)2+ 7.705e-008 5 661e-008 -7 113 -7 247 -0 134 Al(OH)3 1.360e-011 1 501e-011 -10 866 -10 824 0 043 Al(OH)4-1 187e-1.370e-013 015 ' 1 007e-013 ,-12 8 63 -12 997 -0 134 H3As03 1.186e-015 1 309e-015 -14 926 -14 883 0 043 H4AS03+ 2.218e-019 1 629e-019 -18 654 -18 788 -0 134 H2AS03- 3.415e-021 2 509e-021 -20 4 67 -20 600 -0 134 HAS03-2 4 .378e-032 1 276e-032 -31 359 -31 894 -0 535 As03-3 0.000e+000 0 000e+000 -42 943 -44 148 -1 205 4 960e-007 H2As04- 4 .811e-007 3 535e-007 -6 318 -6 452 -0 134 H3As04 1.454e-008 1 605e-008 -7 837 -7 795 0 043 HAS04-2 3.193e-010 9 307e-011 -9 496 -10 031 -0 535 AS04-3 1.030e-017 6 429e-019 -16 987 -18 192 -1 205 Ca ' 1.213e-002 148 CaS04 6.499e-003 7. 172e-003 -2. 187 -2. 144 0. 043 Ca+2 5 . 618e-003 1. 536e-003 -2. 250 -2. 814 -0. 5 63 CaHS04+ 1.284e-005 9. 433e-006 -4. 891 -5. 025 -0. 134 CaOH+ 1.373e-012 1. 009e-012 -11. 8 62 -11. 996 -0. 134 Cd 5. 510e- 008 Cd(S04)2-2 2 .342e-008 6 825e-009 -7. 630 -8. 166 -0. 535 CdS04 2.054e-008 2 267e-008 -7. 687 -7. 645 0. 043 Cd+2 1.114e-008 3 248e-009 -7. 953 -8. 488 -0 535 CdOH+ 6.755e-016 4 963e-016 -15. 170 -15 304 -0 134 Cd(OH) 2 2.059e-022 2 272e-022 -21. 686 -21 644 0 043 Cd20H+3 1.439e-022 8 980e-024 -21 842 -23 047 -1 205 Cd(OH)3- 1.373e-031 1 009e-031 -30 8 62 -30 996 -0 134 Cd(OH)4-2 0.000e+000 0 000e+000 -40 913 -41 449 -0 535 Cu(2) 2. 177e- 005 CuS04 1.228e-005 1 355e-005 -4 911 -4 868 0 043 Cu+2 9.487e-006 2 765e-006 -5 023 -5 558 -0 535 CuOH+ 1.489e-010 1 094e-010 -9 827 -9 961 -0 134 Cu(OH)2 8.199e-013 9 048e-013 -12 086 -12 043 0 043 Cu2(OH)2+2 6.436e-015 1 876e-015 -14 191 -14 727 -0 535 Cu(OH)3- 2.937e-022 2 158e-022 -21 532 -21 666 -0 134 Cu(OH)4-2 5.846e-031 1 704e-031 -30 233 -30 769 -0 535 Fe(2) 5 587e-005 FeS04 2.793e-005 3 082e-005 -4 554 -4 511 0 043 Fe+2 2.787e-005 8 124e-006 -4 555 -5 090 -0 535 FeHS04+ 6.791e-008 4 990e-008 -7 168 -7 302 -0 134 FeOH+ 6.387e-012 4 693e-012 -11 195 -11 329 -0 134 Fe (OH)2 5.824e-020 6 427e-020 -19 235 -19 192 0 043 Fe(OH)3- 1.162e-026 8 536e-027 -25 935 -26 069 -0 134 H(0) 8 974e-031 H2 4.487e-031 4 952e-031 -30 348 -30 305 0 043 K 3 221e- 004 K+ 2.836e-004 1 869e-004 -3 547 -3 728 -0 181 KS04- 3.846e-005 2 826e-005 -4 415 -4 549 -0 134 Li 1 502e-003 Li+ 1.350e-003 9 921e-004 -2 870 -3 003 -0 134 LiS04- 1.519e-004 1 116e-004 -3 818 -3 952 -0 134 Mg 1 539e-001 MgS04 8 . 624e-002 9 517e-002 -1 064 -1 022- 0 043 Mg+2 6.763e-002 2 056e-002 -1 170 -1 687 -0 517 MgOH+ 1.579e-010 1 160e-010 -9 802 -9 935 - o 134 Mn(2) 1 289e-003 Mn+2 6.464e-004 1 884e-004 -3 189 -3 725 -0 535 MnS04 6.425e-004 7 090e-004 -3 192 -3 149 0 043 MnOH+ 1.122e-011 8 245e-012 -10 950 -11 084 -0 134 Mn(OH)3- 2.519e-028 1 851e-028 -27 599 -27 733 -0 134 Na 1 536e-002 Na+ 1.373e-002 9 844e-003 -1 8 62 -2 007 -0 145 NaS04- 1.621e-003 1 191e-003 -2 790 -2 924 -0 134 Ni 3 '4 64e-003, NiS04 l'.894e-003 2 090e-003 . -2 723 -2 680 '.' o. 043 Ni+2 1.55'9e-003' 4 .544e-004 -2 807 -3 343 -0 .535 Ni(S04)2-2 1.085e-005 3 .162e-006 -4 965 -5 .500 -0 .535 NiOH+ 1.632e-010 1 .199e-010 -9 787 -9 .921 -0 .134 Ni(OH)2 6.449e-016 .7 . 117e-016 -15 190 -15 .148 -0 .043 Ni(OH)3- 3.833e-023 2 . 817e-023 . -22 '416 -22 .'550 -0 .134 0(0) 1 394e-•035 02 6.972e-036 7 .693e-036 -35 157 -35 .114 0 .043 S(6) 2 708e-•001 S04-2 1.154e-001 2 .578e-002 -0 938 -1 .589 -0 .651 MgS04 8 . 624e-002 9 .517e-002 -1 064 -1 .022 0 .043 A1S04+ 2 .213e-002 1 .626e-002 -1 655 -1 .789 -0 .134 Al(S04)2- 1.720e-002 1 .263e-002 -1 .765 -1 .898 -0 .134 CaS04 6.499e-003 7 .172e-003 -2 .187 -2 .144 0 .043 149 Se (-2) Se(4) Se(6) Sr U(6) Zn NiS04 1 894e-003 2 090e-003 -2. 723 -2 680 0. 043 NaS04- 1 621e-003 1 191e-003 -2. 790 -2 924 -0. 134 HS04- 6 953e-004 5 109e-004 -3. 158 -3 292 -0. 134 MnS04 6 425e-004 7 090e-004 -3. 192 -3 149 0. 043 U02S04 3 299e-004 3 641e-004 -3. 482 -3 439 0. 043 U02(S04)2-2 2 534e-004 7 385e-005 -3. 596 -4 132 -0. 535 LiS04- 1 519e-004 1 116e-004 -3. 818 -3 952 -0 134 ZnS04 4 244e-005 4 683e-005 -4. 372 -4 329 0 043 KS04- 3 846e-005 2 826e-005 -4. 415 -4 549 -0 134 Zn(S04)2-2 3 646e-005 1 063e-005 -4. 438 -4 974 -0 535 FeS04 2 793e-005 3 082e-005 -4. 554 -4 511 .0 043 SrS04 1 812e-005 1 999e-005 -4 742 -4 699 0 043 CaHS04+ 1 284e-005 9 433e-006 -4 8 91 -5 025 -0 134 CuS04 1 228e-005 1 355e-005 -4 911 -4 868 0 .043 Ni(S04)2-2 1 085e-005 3 162e-006 -4 965 -5 500 -0 535 A1HS04+2 1 153e-006 3 361e-007 -5 938 -6 474 -0 535 FeHS04+ 6 791e-008 4 990e-008 -7 168 -7 302 -0 134 Cd(S04)2-2 2 342e-008 6 825e-009 . -7 630 -8 166 -0 535 CdS04 2 054e-008 2 267e-008 -7 687 -7 645 0 043 0. 000e+000 H2Se 0 000e+000 0 000e+000 -53 408 -53 365 0 043 HSe- . 0 000e+000 0 000e+000 . -53 566 -53 700 -0 134 1. 124e- 006 HSe03- 1 028e-006 7 550e-007 -5 988 -6 122 -0 134 H2Se03 9 664e-008 1 066e-007 -7 015 -6 972 0 043 Se03-2 3 261e-011 9 505e-012 -10 487 -11 022 -0 535 2. 859e-014 Se04-2 2 850e-014 8 306e-015 -13 545 -14 081 -0 535 HSe04- 9 735e-017 7 153e-017 -16 012 -16 146 -0 134 3. 463e-005 SrS04 1 812e-005 1 999e-005 -4 742 -4 699 0 043 Sr+2 1 652e-005 4 492e-006 -4 782 -5 348 - o 566 SrOH+ 1 313e-015 9 118e-016 -14 882 -15 040 -0 158 6. 288e-004 U02S04 3 299e-004 3 641e-004 -3 482 -3 439 0 043 U02(S04)2-2 2 534e-004 7 385e-005 -3 596 -4 132 -0 535 U02+2 4 .518e-005 1 317e-005 -4 345 -4 881 -0 535 U020H+ 2 .347e-007 1 725e-007 -6 629 -6 .763 -0 134 (U02)20H+3 2 . 193e-008 1 369e-009 -7 659 -8 .864 -1 205 (U02)2(OH)2+2 1 .228e-008 3 578e-009 -7 911 -8 .446 -0 535 (U02)3(OH)4+2 2 .419e-012 7 049e-013 -11 616 -12 .152 -0 .535 (U02)3(OH) 5 + 1 . 957e-013 1 438e-013 -12 708 -12 .842 -0 .134 U02(OH)3- 7 .008e-014 5 .149e-014 -13 154 -13 .288 -0 .134 (U02)4(OH)7+ 7 .830e-017 5 753e-017 -16 106 -16 .240 -0 .134 (U02)3(OH)7 - 4 .724e-021 3 .471e-021 -20 326 -20 .460 -0 .134 U02(OH)4-2 1 .108e-023 3 .230e-024 -22 955 -23 .491 -0 535 1. 077e-004 ZnS04 4 .244e-0.05 4 . 683e-005 -4 372 . -4 .329 0 .043 Zn(S04)2-2 3 .646e-005 1 .063e-005 -4 438 -4 .974 -0 .535 Zn+2 2 .879e-005 8 .392e-006 -4 541 -5 .076 -0 .535 ZnOH+ 2 .261e-011 1 . 661e-011 -10 646 -10 .780 -0 .134 Zn (OH) 2 1 .499e-015 1 . 655e-015 -14 824 -14 .781 0 .043 Zn(OH)3- 2 .818e-023 2 .071e-023 -22 550 -22 .684 -0 .134 Zn(OH)4-2 4 .456e-032 1 .299e-032 -31 351 -31 .886 -0 .535 -Saturation indices-Phase SI log IAP log KT Al(OH)3(a) -4.32 7.15 11.47 Al(OH)3 AlAs04:2H20 -6.00 -0.64 5.36 AlAs04:2H20 AlumK -5.23 -10.58 -5.35 KA1(S04)2:12H20 A l unite 3. 87 3. 75 -0. 12 KA13(S04)2(OH)6 Anhydrite -0. 07 -4. 40 -4. 34 CaS04 A n t l e r i t e -12. 16 -3. 87 8. 29 Cu3(OH)4S04 A r s e n o l i t e -28. .20 -69. 98 -41. 78 As203 As205 -22. 42 -15. 58 6. 84 As205 B-U02(OH)2 -3. 58 2. 31 5. 89 U02(OH)2 Basaluminite -2. 88 19. 82 22. 70 A14(OH)10SO4 Bianchite -4. 92 -6. 68 -1 76 ZnS04:6H20 B i r n e s s i t e -12. 93 30. 67 43 60 Mn02 Boehmite -2. 15 7. 15 9 30 AlOOH Brochantite -17. 58 -2. 24 15 34 Cu4(OH)6S04 Brucite -12. 02 5. 51 17 53 Mg(OH)2 Bunsenite -9. 20 3. 85 13 06 NiO Ca3(As04)2:4w -25. 93 -2. 44 23 49 Ca3(As04)2:4H20 CaSe03 -8. 24 -44. 09 -35 86 CaSe03 Cd(gamma) -42. 54 -28. 49 14 05 Cd Cd(OH)2 -14. 94 -1. 29 13 65 Cd(OH)2 Cd(OH)2(a) -15. 55 -1 29 14 26 Cd(OH)2 Cd3(OH)2(S04)2 -28. 16 -21 45 6 71 Cd3(OH)2(S04)2 Cd3(OH)4S04 -35 22 -12 .66 22 56 Cd3(OH)4S04 Cd4(OH)6S04 -42 36 -13 96 28 40 Cd4(OH)6S04 CdMetal -42 44 -28 49 13 95 Cd CdS04 -10 35 -10 08 0 27 CdS04 CdS04:2.7H20 -8 32 -10 08 -1 76 CdS04:2.67H20 CdS04:H20 -8 61 • -10 08 -1 47 CdS04:H20 C e l e s t i t e -0 32 -6 94 -6 62 SrS04 Chalcanthite -4 48 -7 16 -2 68 CuS04:5H20 Cla u d e t i t e -28 25 -69 98 -41 73 As203 Cu(OH)2 -7 39 1 64 9 03 Cu(OH)2 Cu3(As04)2:6w -17 95 -10 68 7 27 Cu3(As04)2:6H20 CuOCuS04 -17 94 -5 51 12 43 CuO: C.US04 CuS04 -10 62 -7 15 3 47 CuS04 Diaspore -0 35 7 15 7 51 AlOOH Epsomite -1 08 -3 29 -2 21 MgS04:7H20 FeSe2 -66 71 -230. 83 -164 12 FeSe2 Gibbs i t e -1 54 7 15 8 69 Al(OH)3 G o s l a r i t e -4 64 -6 68 -2 04 ZnS04:7H20 Gummite -8 67 2 32 10 99 U03 Gypsum 0 18 -4 41 -4 58 CaS04:2H20 H2(g) -27 20 -27 20 0 00 H2 H20(g) -1 78 -0 00 1 78 H20 Hausmannite -25 98 37 61 63 59 Mn304 Jurbanite 1 60 -1 63 -3 23 A10HS04 Langite -20 04 -2 24 17 80 Cu4(OH)6S04:H20 Manganite -8 27 17 07 25 34 MnOOH Melanterite -4 36 -6 70 -2 34 FeS04:7H20 M i r a b i l i t e -4 03 -5 63 -1 60 Na2SO4:10H2O Mn3(As04):8H20 -18 87 -5 18 13 69 Mn3(As04)2:8H20 MnS04 -8 38 -5 31 3 06 MnS04 Monteponite -15 69 -1 29 14 .40 CdO Morenosite -2 51 -4 95 -2 .43 NiS04:7H20 Ni(OH)2 -6 17 3 85 10 .03 Ni (OH) 2 Ni3(As04)2:8H20 -20 92 -4 04 16 .88 Ni3(As04)2:8H20 Ni4(OH)6S04 -25 37 6 63 32 .00 Ni4(OH)6S04 Nsutite -11 89 30 67 42 .56 Mn02 02 (g) -32 20 54 39 86 . 60 02 P o r t l a n d i t e -19 21 4 38 23 .59 Ca(OH)2 Pyrochroite -11 73 3 47 15 .20 Mn(OH)2 P y r o l u s i t e -12 37 30 67 43 .04 Mn02 Retgersite -2 88 -4 95 -2 . 07 NiS04:6H20 Schoepite -3 40 2 31 5 .71 U02(OH)2:H20 Se (s) -12 78 -102 87 -90 . 09 Se Se02 -9 84 -48 .48 -38 . 64 Se02 151 Tenorite -6 37 1 64 8. 01 CuO Thenardite -5 44 -5 60 -0 16 Na2S04 U03(gamma) -5 89 2 32 8 21 U03 Zincite(c) -9 57 2 12 11 70 ZnO Zincosite -10 16 -6 66 3 50 ZnS04 Zn(OH)2-a -10 33 2 12 12 45 Zn (OH) 2 Zn(OH)2-b -9 63 2 12 11 75 Zn(OH)2 Zn(OH)2-c -10 08 2 12 12 20 Zn(OH)2 Zn(OH)2-e -9 38 2 12 11 50 Zn(OH)2 Zn (OH)2-g -9 59 2 12 11 71 Zn(OH)2 Zn2(OH)2S04 -12 05 -4 55 7 50 Zn2(0H)2S04 Zn3(As04)2:2 5w -24 07 -9 22 14 85 Zn3(As04)2:2.5H20 Zn30(S04)2 -31 81 -11 21 20 60 ZnO:2 ZnS04 Zn4(OH)6S04 -28 71 -0 31 28 40 Zn4(OH)6S04 ZnMetal -51 77 -25 08 26 69 Zn ZnO(a) -9 19 2 12 11 31 ZnO ZnS04:H20 -6 37 -6 67 -0 30 ZnS04:H20 End of simulation. Reading input data for simulation 2. End of run. 152 Input f i l e : 26160.pqi Output f i l e : 26160.pqo Database f i l e : C:\Program Files\USGS\Phreeqc Interactive 2.8\wateq4f.dat Reading data base. SOLUTION_MAS TER_SPECIES SOLUTION_SPECIES PHASES EXCHANGE_MASTER_SPECIES EXCHANGE_SPECIES S URFAC E_MAS T ER_S PE CIE S SURFACE_SPECIES RATES END Reading input data for simulation 1. DATABASE C:\Program Files\USGS\Phreeqc Interactive 2.8\wateq4f.dat SOLUTION 1 temp 15 pH 3.6 pe 10 redox pe units mg/1 density 1 Al 1151 Ca 117 K 35.1 Mg 4716 Na 480 S(6) 26160 Ni 185 As 0.068 Li 62.395 Zn 13.6 U(6) 229 Fe(2) 2.7 Cu(2) 2.52 Sr 5.049 Cd 0. 022 Mn (2) 112.2 Se 0.122 water 1 # kg END Beginning of i n i t i a l solution calculations. I n i t i a l solution 1.. Solution composition-Elements Molality Moles Al 4.413e-002 4.413e-002 As 9.389e-007 9.389e-007 Ca 3.020e-003 3.020e-003 153 Cd 2 025e-007 2 025e-007 Cu(2) 4 102e-005 4 102e-005 Fe(2) 5 OOle-005 5 OOle-005 K 9 285e-004 9 285e-004 Li 9 301e-003 9 301e-003 Mg 2 007e-001 2 007e-001 Mn(2) 2 113e-003 2 113e-003 Na 2 160e-002 2 160e-002 Ni 3 260e-003 3 260e-003 S (6 ) 2 817e-001 2 817e-001 Se 1 598e-006 1 598e-006 Sr 5 961e-005 5 961e-005 U(6) 9 952e-004 9 952e-004 Zn 2 152e-004 2 152e-004 Description of solution PH pe Activity of water Ionic strength Mass of water (kg) Total alkalinity (eq/kg) Total carbon (mol/kg) Total C02 (mol/kg) Temperature (deg C) Electrical balance (eq) Percent error, 100*(Cat-| An I)/(Cat+IAn I) Iterations Total H Total O 3.600 = 10.000 0.993 = 4.708e-001 = 1.000e+000 = -9.450e-004 = 0.000e+000 = 0.0d0e+000 = 15.000 = 2.257e-002 4.51 9 = 1.110134e+002 = 5.663503e+001 -Distribution of species-Species Log Log Log Molality Activity Molality Activity Gamma H+ 3.265e-004 2 512e-004 -3 486 -3 600 -0 114 OH- 2.422e-011 1 782e-011 -10 616 -10 749 -0 133 H20 5 .551e+001 9 933e-001 1 744 -0 003 0 000 Al 4 413e-002 A1S04+ 2.339e-002 1 721e-002 -1 631 -1 764 -0 133 Al(S04)2- 1.653e-002 1 216e-002 -1 782 -1 915 -0 133 Al+3 4.192e-003 2 654e-004 -2 378 -3 576 -1 198 A10H+2 1.828e-005 5 363e-006 -4 738 -5 271 -0 533 A1HS04+2 1.213e-006 3 557e-007 -5 916 -6 449 -0 533 Al(OH)2+ 8.937e-008 6 577e-008 -7 049 -7 182 -0 133 Al(OH)3 1.563e-011 1 742e-011 -10 806 -10 759 0 047 Al(OH)4- 1.586e-013 1 168e-013 -12 800 -12 933 -0 133 As (3) 2 230e-015 H3As03 2.230e-015 2 485e-015 -14 652 -14 605 0 047 H4AS03+ 4.202e-019 3 092e-019 -18 377 -18 510 -0 133 H2As03- 6.472e-021 4 763e-021 -20 189 -20 322 -0 133 HAs03-2 8.256e-032 2 422e-032 -31 083 -31 616 -0 533 As03-3 0.000e+000 0 000e+000 -42 671 -43 870 -1 198 As (5) 9 389e-007 H2As04- 9.109e-007 6 704e-007 -6 041 -6 174 -0 133 H3As04 2 .731e-008 3 043e-008 -7 564 -7 517 0 047 HAS04-2 6.017e-010 1 765e-010 -9 221 -9 753 -0 533 As04-3 1.926e-017 1 219e-018 -16 715 -17 914 -1 198 Ca 3 020e-003 154 CaS04 1.526e-003 1. 701e-003 -2. 816 -2. 769 0. 047 Ca+2 1.490e-003 4. 004e-004 -2. 827 -3. 397 -0. 571 CaHS04+ 3.040e-006 2. 237e-006 -5. 517 -5 . 650 -0. 133 CaOH+ 3.571e-013 2. 628e-013 -12. 447 -12 . 580 -0. 133 Cd 2. 025e-007 Cd(S04)2-2 7.984e-008 2 . 342e-008 -7. 098 -7. 630 -0. 533 CdS04 7.672e-008 8 . 550e-008 -7. 115 -7. 068 0. 047 Cd+2 4 .591e-008 1. 347e-008 -7. 338 -7. 871 -0. 533 CdOH+ 2 .795e-015 2. 057e-015 -14. 554 -14. 687 -0. 133 Cd20H+3 2.437e-021 1. 543e-022 -20. 613 -21. 812 -1. 198 Cd(OH)2 8.440e-022 9. 407e-022 -21. 074 -21. 027 0. 047 Cd(OH)3- 5.671e-031 4. 174e-031 -30. 246 -30. 379 -0. 133 Cd(OH)4-2 0.000e+000 0 000e+000 -40. 300 -40; 832 -0. 533 Cu(2) . 4. 102e- 005 CuS04 2.215e-005 2 468e-005 -4. 655 -4 608 0 047 Cu+2 1.888e-005 5 537e-006 -4. 724 -5 257 -0 533 CuOH+ 2.975e-010 2 189e-010 -9. 527 -9 660 -0 133 Cu(OH) 2 1.623e-012 1 809e-012 -11 790 -11 743 0 047 Cu2(OH)2+2 2.560e-014 7 509e-015 -13 592 -14 124 -0 533 Cu(OH)3- 5.856e-022 4 310e-022 -21 232 -21 366 -0 133 Cu(OH)4-2 1.159e-030 3 400e-031 -29 936 -30 468 -0 533 Fe(2) 5 OOle-005 Fe+2 2 . 618e-005 7 678e-006 -4 582 -5 115 -0 533 FeS04 2 .378e-005 2 650e-005 -4 624 -4 577 0 047 FeHS04+ 5.829e-008 4 290e-008 -7 234 -7 368 -0 133 FeOH+ 6.022e-012- 4 431e-012 -11 220 -11" 353- - -0 133 Fe(OH)2 5.441e-020 6 064e-020 -19 264 -19 217 0 047 Fe(OH)3- 1.094e-026 8 048e-027 -25 961 -26 094. -0 133 H(0) 8 886e-031 H2 4.443e-031 4 952e-031 -30 352 -30 305 0 047 K 9 285e-004 K+ 8.277e-004 5 398e-004 -3 082 -3 268 -0 186 KS04- 1.009e-004 7 425e-005 -3 996 -4 129 -0 133 Li 9 301e- 003 Li + 8.438e-003 6 210e-003 -2 074 -2 207 -0 133 LiS04- 8.637e-004 6 356e-004 -3 064 -3 197 -0 133 Mg 2 007e-001 MgS04 1.067e-001 1 189e-001 -0 972 -0 925 0 047 Mg+2 9.392e-002 2 825e-002 -1 027 -1 549 -0 522 MgOH+ 2.165e-010 1 593e-010 -9 665 -9 798 -0 133 Mn (2) 2 113e- 003 Mn+2 l.llle-003 3 260e-004 -2 954 -3 487 -0 533 MnS04 1.001e-003 1 116e-003 -2 999 -2 952 0 047 MnOH+ 1.937e-011 1 426e-011 -10 713 -10 846 -0 133 Mn(OH)3- 4 .341e-028 3 195e-028 -27 362 -27 496 -0 133 Na 2 160e- 002 Na+ 1.951e-002 1 .394e-002 -1 710 -1 856 -0 146 NaS04- 2.085e-003 1 .534e-003 -2 681 -2 814 -0 .133 Ni 3 260e-003 NiS04 1.703e-003 1 .898e-003 -2 769 -2 .722 0 .047 Ni+2 1.547e-003 4 .539e-004 -2 810 -3 .343 -0 .533 Ni(S04)2-2 8.909e-006 2 .613e-006 -5 050 -5 .5 83 -0 .533 NiOH+ 1.626e-010 1 -197e-010 -9 .789 -9 .922 -0 .133 Ni(OH)2 6.368e-016 7 .097e-016 -15 .196 -15 .149 0 .047 Ni(OH)3- 3.813e-023 2 .806e-023 -22 .419 -22 .552 -0 .133 0(0) 1 .378e--035 02 6.8.92e-036 7 .681e-036 -35 .162 -35 .115 0 .047 S {6 ) 2 .817e--001 S04-2 1.090e-001 2 .345e-002 -0 . 963 -1 .630 -0 . 667 MgS04 1.067e-001 1 .189e-001 -0 . 972 -0 .925 0 .047 A1S04+ 2.339e-002 1 .721e-002 -1 . 631 -1 .764 -0 .133 Al(S04)2- 1.653e-002 1 .216e-002 -1 .782 -1 .915 -0 .133 NaS04- 2.085e-003 1 .534e-003 -2 . 681 -2 .814 -0 .133 155 Se (-2) Se(4) Se (6) Sr U(6) NiS04 1. 703e-003 1. 898e-003 -2. 769 -2 . 722 0. 047 CaS04 1. 526e-003 1. 701e-003 -2. 816 -2. 769 0 047 MnS04 1 001e-003 1. 116e-003 -2. 999 -2. 952 0 047 LiS04- 8 637e-004 6. 356e-004 -3. 064 -3 197 -0 133 HS04- 6 314e-004 4. 647e-004 -3. 200 -3 333 -0 133 U02S04 5 370e-004 5. 985e-004 -3. 270 -3 223 0 047 U02(S04)2-2 3 764e-004 1. 104e-004 -3. 424 -3 957 -0 533 KS04- 1 009e-004 7. 425e-005 -3. 996 -4- 129 -0 133 ZnS04 8 497e-005 9 470e-005 -4 071 -4 024 0 047 Zn(S04)2-2 6 664e-005 1 955e-005 -4 176 -4 709 -0 533 SrS04 2 932e-005 3 268e-005 -4 533 -4 486 0 047 FeS04 2 378e-005 2 650e-005 -4 624 -4 577 0 047 CuS04 2 215e-005 2 468e-005 -4 655 -4 608 0 047 Ni(S04)2-2 8 909e-006 2 613e-006 -5 050 -5 583 -0 533 CaHS04+ 3 040e-006 2 237e-006 -5 517 -5 650 -0 133 A1HS04+2 1 213e-006 3 557e-007 -5 916 -6 449 -0 533 Cd(S04)2-2 7 984e-008 2 342e-008 -7 098 -7 630 -0 533 CdS04 7 672e-008 8 550e-008 -7 115 -7 068 0 047 FeHS04+ 5 829e-008 4 290e-008 -7 234 -7 368 -0 133 0. 000e+000 H2Se 0 000e+000 0 000e+000 -53 258 -53 211 0 047 HSe- 0 000e+000 0 000e+000 -53 412 -53 545 -0 133 1. 598e-006 HSe03- 1 462e-006 1 076e-006 -5 835 -5 968 -0 133 H2Se03 1 364e-007 1 520e-007 -6 8 65 -6 818 0 047 Se03-2 4 617e-011 1 354e-011 -10 336 -10 868 -0 533 4. 045e-014 Se04-2 4 031e-014 1 183e-014 -13 395 -13 927 -0 533 HSe04- 1 384e-016 1 018e-016 -15 859 -15 992 -0 133 5. 961e- 005 Sr+2 3 029e-005 8 073e-006 -4 519 -5 093 -0 574 SrS04 2 932e-005 3 268e-005 -4 533 -4 486 0 047 SrOH+ 2 378e-015 1 637e-015 -14 624 -14 786 -0 162 9. 952e-004 U02S04 5 370e-004 5 985e-004 -3 270 -3 223 0 047 U02(S04)2-2 3 764e-004 1 104e-004 -3 424 -3 957 -0 533 U02+2 8 112e-005 2 379e-005 -4 091 -4 624 -0 533 U020H+ 4 232e-007 3 114e-007 -6 373 -6 507 -0 133 (U02)20H+3 7 054e-008 4 467e-009 -7 152 -8 350 -1 198 (U02) 2 (OH) 2+2 3 .976e-008 1 166e-008 -7 4 01 -7 933 -0 533 (U02)3(OH)4+2 1 .414e-011 4 147e-012 -10 850 -11 .382 -0 .533 (U02)3(OH)5+ 1 .148e-012 8 451e-013 -11 940 -12 .073 -0 .133 U02(OH)3- 1 .261e-013 9 283e-014 -12 899 -13 .032 -0 .133 (U02)4(OH)7+ 8 .289e-016 6 100e-016 -15 081 -15 .215 -0 .133 (U02)3(OH)7 - 2 .767e-020 2 .036e-020 -19 .558 -19 . 691 -0 .133 U02(OH)4-2 1 .983e-023 5 .817e-024 -22 .703 -23 .235 -0 .533 2. 15 2e-004 . - . ZnS04 8 . 497e-005'-' 9. :470e-005. -4 . 071 -4 .024 0 .047 Zn(S04)2-2 6 . 664e-005 1 .955e-005 -4 . 176 -4 .709 -0 .533 Zn+2 6 .360e-005 1 -866e-005 -4 . 197 -4 .729 -0 .533 ZnOH+ 5 .014e-011 3 .690e-011 -10 .300 -10 .433 -0 .133 Zn (OH) 2 3 .295e-015 3 .672e-015 -14 . 482 -14 .435 . 0 .047 Zn(OH)3- 6 .240e-023 4 .592e-023 -22 .205 -22 .338 -0 .133 Zn(OH)4-2 9 .811e-032 2 .878e-032 -31 .008 -31 .541 -0 .533 Saturation indices Phase SI log IAP log KT Al(OH)3(a) -4.26 7.22 11.47 Al (OH)3 AlAs04:2H20 -5.66 -0.30 5.36 AlAs04:2H20 AluniK -4.79 -10.14 -5.35 KA1(S04)2:12H20, Alunite 4. 45 4. 33 -0. 12 KA13(S04)2(OH)6 Anhydrite -0. 69 -5. 03 -4. 34 CaS04 Antlerite -11. 30 -3. 01 8. 29 Cu3(OH)4S04 Arsenolite -27. 64 -69. 42 -41. 78 As203 As205 -21. 86 -15. 02 6. 84 As205 B-U02(OH)2 -3. 32 2. 57 5. 89 U02(OH)2 Basaluminite -2. 66 20. 04 22. 70 A14(OH)10SO4 Bianchite -4. 62 -6. 38 -1. 76 ZnS04:6H20 Birnessite -12. 69 30. 91 43. 60 Mn02 Boehmite -2. 08 7. 22 9. 30 AlOOH Brochantite -16. 41 -1. 07 15. 34 Cu4(OH)6S04 Brucite -11. 88 5. 65 17. 53 Mg(OH)2 Bunsenite -9. 20 3. 85 13. 06 NiO Ca3(As04)2:4w -27. 13 -3. 64 23. 49 Ca3(As04)2:4H20 CaSe03 -8. 67 -44. 52 -35. 86 CaSe03 Cd(gamma) -41. 92 -27. 87 14. 05 Cd Cd(OH)2 -14. 33 -0. 68 13. 65 Cd(OH)2 Cd(OH)2(a) -14. 93 -0. 68 14. 26 Cd(OH)2 Cd3(0H)2(S04)2 -26. 39 -19. 68 6. 71 Cd3(OH)2(S04)2 Cd3(OH)4S04 -33. 41 -10. 85 22. 56 Cd3(OH)4S04 Cd4(OH)6S04 -39. 93 -11. 53 28. 40 Cd4(OH)6S04 CdMetal -41. 82 -27. 87 13. 95 Cd CdS04 -9. 78 -9 50 0 27 CdS04 CdSO'4 : 2 . 7H20 -7 74 -9 51 -1 76 CdS04:2.67H20 CdS04:H20 -8 04 -9 50 -1 47 CdS04:H20 Celestite -0 10 -6 72 -6 62 SrS04 Chalcanthite -4 22 -6 90 -2 68 CuS04:5H20 Claudetite -27 69 -69 42 -41 73 As203 Cu(OH)2 -7 09 1 94 9 03 Cu(OH)2 Cu3(As04)2:6w -16 49 -9 22 7 27 Cu3(As04)2:6H20 CuOCuS04 -17 38 -4 95 12 43 CuO:CuS04 CuS04 -10 36 -6 89 3 47 CuS04 Diaspore -0 29 7 22 7 51 AlOOH Epsomite -0 99 -3 20 -2 21 MgS04:7H20 FeSe2 -66 43 -230 55 -164 12 FeSe2 Gibbsite -1 47 7 22 8 69 Al(OH)3 Goslarite -4 34 -6 38 -2 04 ZnS04:7H20 Gummite -8 41 2 57 10 99 U03 Gypsum -0 45 -5 03 -4 58 CaS04:2H20 H2 (g) -27 20 -27 20 0 00 H2 H20(g) -1 78 -0 .00 1 78 H20 Hausmannite -25 26 38 33 63 59 Mn304 Jurbanite • 1 62 -1 61 -3 23 A10HS04 Langite -18 87 -1 08 17 80 Cu4(OH)6S04:H20 Manganite -8 03 17 31 25 34 MnOOH Melanterite -4 43 -6 77 -2 34 FeS04:7H20 Mirabilite -3 77 -5 37 -1 60 Na2S04:10H2O Mn3(As04):8H20 -17 60 -3 92 13 69 Mn3(As04)2:8H20 MnS04 -8 18 -5 12 3 06 MnS04 Monteponite -15 07 -0 67 14 40 CdO Morenosite -2 56 -4 99 -2 43 NiS04:7H20 Ni(OH)2 " . -6 17 3 85 • 10 03 Ni(OH)2 Ni3(As04)2:8H20 -20 37 -3 49 16 88 Ni3(As04)2:8H20 Ni4(OH)6S04 -25 42 6 58 32 .00 Ni4(OH)6S04 Nsutite -11 66 30 .91 42 .56 Mn02 02(g) -32 20 54 .39 86 . 60 02 • Portlandite -19 .79 3 .80 .23 .59 Ca(OH)2 Pyrochroite -11 .49 3 .71 15 .20 Mn (OH) 2 Pyrolusite -12 . 13 30 . 91 43 . 04 Mn02 Retgersite -2 .92 -4 . 99 -2 .07 NiS04:6H20 Schoepite -3 . 14 2 .57 5 .71 U02(OH)2:H20 Se (s) -12 . 62 -102 .72 -90 . 09 Se Se02 -9 . 69 -48 .32 -38 . 64 Se02 157 Tenorite -6 07 1 94 8 01 CuO Thenardite -5 18 -5 34 -0 16 Na2S04 U03(gamma) -5 64 2 57 8 21 U03 Zincite(c) -9 23 2 47 11 70 ZnO Zincosite -9 86 -6 36 3 50 ZnS04 Zn (OH)2-a -9 99 2 46 12 45 Zn(OH)2 Zn(OH)2-b -9 29 2 46 11 75 Zn(OH)2 Zn(OH)2-c -9 74 2 46 12 20 Zn(OH)2 Zn(OH)2-e -9 04 2 46 11 50 Zn(OH)2 Zn(OH)2-g -9 25 2 46 11 71 Zn(OH)2 Zn2(OH)2S04 -11 39 -3 89 7 50 Zn2(OH)2S04 Zn3(As04)2 :2 5w -22 48 -7 63 14 85 Zn3(As04)2:2.5H20 Zn30(S04)2 -30 85 -10 25 20 60 ZnO:2ZnS04 Zn4(OH)6S04 -27 36 1 04 28 40 Zn4(OH)6S04 ZnMetal -51 42 -24 73 26 69 Zn ZnO(a) -8 84 2 47 11 31 ZnO ZnS04:H20 -6 06 -6 36 -0 30 ZnS04:H20 End of simulation. Reading input data for simulation 2. End of run. 158 Input f i l e : 29105.pqi Output f i l e : 29105.pqo Database f i l e : C:\Program Files\USGS\Phreeqc Interactive 2.8\wateq4f.dat Reading data base. SOLUTION_MASTER_SPECIES SOLUTION_SPECIES PHASES EXCHANGE_MASTER_SPECIES EXCHANGE_S PECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES RATES END . Reading input data for simulation 1. DATABASE C:\Program Files\USGS\Phreeqc Interactive 2.8\wateq4f.dat SOLUTION 1 temp 15 PH 3.6 pe 10 redox pe units mg/1 density 1 Al 1056 Ca 642 K 31 Mg 4838 Na 852 S(6) 29105 Ni 274 As 0.1 Li 21 Zn 8.8 U(6) 129 Fe(2) 1.2 Cu(2) 2.12 Sr 6.8 Cd 0. 02 Mn (2) 99.7 Se 0.13 water 1 # kg END Beginning of i n i t i a l solution calculations. I n i t i a l solution 1. Solution composition-Elements Molality Moles Al 4.064e-002 4.064e-002 As 1.386e-006 1.386e-006 Ca 1.663e-002 1.663e-002 Cd 1.848e-007 1.848e-007 159 Cu(2) 3 4 65e-005 3 4 65e-005 Fe(2) 2 231e-005 2 231e-005 K 8 233e-004 8 233e-004 Li 3 143e-003 3 143e-003 Mg 2 067e-001 2 067e-001 Mn (2) 1 885e-003 1 885e-003 •Na . 3 84.9e-002 3 849e-002 Ni 4 847e-003 4 8 47e-003 S(6) 3 146e-001 3 146e-001 Se 1 710e-006 1 710e-006 Sr •8 060e-005 8 060e-005 U(6) . . • 5 628e-004 . 5 628.e-004 Zn 1 398e-004' . 1 398e-004 Description of solution-PH pe Activity of water Ionic strength Mass of water (kg) Total alkalinity (eq/kg) Total carbon (mol/kg) Total C02 (mol/kg) Temperature (deg C) Electrical balance (eq) Percent error, 100*(Cat-|An|)/(Cat+|An I) Iterations Total H Total 0 3. 600 10.000 0.992 5.152e-001 1.000e+000 -1.042e-003 0.000e+000 0.000e+000 15.000 -2.143e-003 -0.39 10 1.110135e+002 5 . 676595e+001 Distribution of species Log Log Log Species Molality Activity Molality Activity Gamma Al As (3) As (5) H+ 3.278e-004 2 512e-004 -3 484 -3 600 -0 116 OH- 2.413e-011 1 781e-011 -10 617 -10 749 -0 132 H20 4 064e-5 .551e+001 002 9 925e-001 1 744 -0 003 0 000 A1S04+ 2 .083e-002 1 537e-002 -1 681 -1 813 -0 132 Al(S04)2- 1.655e-002 1 222e-002 -1 781 -1 913 -0 132 Al+3 3.247e-003 2 108e-004 -2 488 -3 676 -1 188 A10H+2 1.435e-005 4 257e-006 -4 843 -5 371 -0 528 A1HS04+2 1.071e-006 3 177e-007 -5 970 -6 498 -0 528 Al(OH)2+ 7.067e-008 5 216e-008 -7 151 -7 283 -0 132 Al(OH)3 1.226e-011 1 381e-011 -10 911 -10 860 0 052 Al(OH)4-3 271e-1.253e-013 015 9 244e-014 -12 902 -13 034 -0 132 H3AS03 3.271e-015 3 682e-015 -14 485 -14 434 0 052 H4AS03+ 6.210e-019 4 583e-019 -18 207 -18 339 - -0 132 H2As03- 9.564e-021 7 058e-021 -20 019 -20 151 -0 132 HAS03-2 1.210e-031 3 589e-032 -30 917 -31 445 -0 528 As03-3 0.000e+000 0 000e+000 -42 511 -43 699 -1 188 1 386e-006 H2AS04- 1.345e-006 9 927e-007 -5 871 -6 003 -0 132 H3AS04 4.003e-008 4 507e-008 -7 398 -7 346 0 052 HAS04-2 8.812e-010 2 614e-010 -9 055 -9 583 -0 528 As04-3 1 663e-2.781e-017 002 1 .806e-018 -16 556 -17 743 -1 188 CaS04 8.789e-003 9 .896e-003 -2 056 -2 005 0 052 160 Ca+2 7 828e--003 2 072e--003 -2 106 -2 684 -0 577 CaHS04+ 1 764e--005 1 302e--005 -4 754 -4 886 -0 132 CaOH+ 1 841e--012 1 359e--012 -11 735 -11 8 67 -0 132 Cd 1.848e-007 Cd(S04)2-2 7 999e-008 2 372e-008 -7 097 -7 625 -0 528 CdS04 6 841e-008 7 703e-008 -7 165. -7 113 0 052 Cd+2 3 638e-008 1 079e-008 -7 439 -7 967 -0 528 CdOH+ 2 231e-015 1 647e-015 -14 651 -14 783 -0 132 Cd20H+3 1 525e-021 9 900e-023 -20 817 -22 004 -1 188 Cd(OH)2 6 684e-022 7 525e-022 -21 175 -21 123 0 052 Cd(OH)3- 4 521e-031 3 336e-031 -30 345 -30 477 -0 132 Cd(OH)4-2 0 000e+000 0 OOOe+000 -40 402 -40 930 -0 528 Cu(2) 3.465e-005 Fe(2) Mn(2) O(0) S(6) CuS04 1.971e-005 2 220e-005 -4 705 -4 654 0 052 Cu+2 1.493e-005 4 429e-006 -4 826 -5 354 -0 528 CuOH+ 2.371e-010 1 750e-010 -9 625 -9 757 -0 132 Cu(OH)2 1.283e-012 1 445e-012 -11 892 -11 840 0 052 Cu2(OH)2+2 1.617e-014 4 796e-015 -13 791 -14 319 -0 528 Cu(OH)3- 4.660e-022 3 439e-022 -21 332 -21 4 64 -0 132 Cu(OH)4-2 2 231e-9.141e-005 031 2 711e-031 -30 039 -30 5 67 -0 528 FeS04 1.127e-005 1 268e-005 -4 948 -4 897 0 052 Fe+2 1.102e-005 3 269e-006 -4 958 -5 486 -0 528 FeHS04+ 2.783e-008 2 053e-008 -7 556 -7 688 -0 132 FeOH+ 2.554e-012 1 885e-012 -11 5 93 -11 725 -0 132 Fe(OH)2 2.289e-020 2 578e-020 -19 640 -19 589 0 052 Fe(OH)3-8 795e-4.632e-031 027 3 418e-027 -26 334 -26 466 -0 132 H2 8 233e-4.398e-004 031 4 952e-031 -30 357 -30 305 0 052 K+ 7.252e-004 4 684e-004 -3 140 -3 329 -0 190 KS04-3 143e-9.816e-003 005 7 244e-005 -4 008 -4 140 -0 132 Li + 2.818e-003 2 080e-003 -2 550 -2 682 -0 132 LiS04-2 067e-3.244e-001 004 2 394e-004 -3 489 -3 621 -0 132 MgS04 1.150e-001 1 295e-001 -0 939 -0 888 0 052 Mg+2 9.166e-002 2 735e-002 -1 038 -1 5 63 -0 525 MgOH+ 1 885e-2.088e-003 010 1 541e-010 -9 680 -9 812 -0 132 MnS04 9.488e-004 1 068e-003 -3 023 -2 971 , 0 052 Mn+2 9.358e-004 2 776e-004 -3 029 -3 557 -0 528 MnOH+ 1.643e-011 1 213e-011 -10 784 -10 916 -0 132 Mn(OH)3-3 849e-3.677e-002 028 2 714e-028 -27 435 -27 566 -0 132 Na+ 3.438e-002 2 451e-002 -1 464 -1 611 -0 147 NaS04-4 847e-4.110e-003 003 3 033e-003 -2 386 -2 518 -0 132 NiS04 2.673e-003 3 OlOe-003 -2 573 -2 521 . 0 052 Ni+2 2.158e-003 6 400e-004 -2 666 -3 194 -0 528 Ni(S04)2-2 1.571e-005 4 659e-006 -4 804 -5 332 -0 528 NiOH+ 2.285e-010 1 686e-010 -9 641 -9 773 -0 132 Ni(OH)2 8.874e-016 9 991e-016 -15 052 -15 000 0 052 Ni(OH)3-1 362e-5.349e-035 023 3 948e-023 -22 272 -22 404 -0 132 02 3 146e-6.811e-001 036 7 669e-036 -35 167 -35 115 0 052 S04-2 1.270e-001 2 637e-002 -0 896 -1 579 -0 683 MgS04 1.150e-001 1 295e-001 -0 939 -0 888 0 052 A1S04+ 2.083e-002 1 537e-002 -1 681 -1 813 • -0 132 Al(S04)2- 1.655e- 002 1 222e-002 -1 781 -1 913 -0 132 CaS04 8.789e- 003 9 896e-003 -2 056 -2 005 0 052 NaS04- 4.110e- 003 3 033e-003 -2 386 -2 518 -0 132 161 Se (-2) Se(4) Se (6) Sr U(6) Zn NiS04 2 673e-003 3 010e-003 -2 573 -2 521 0 052 MnS04 9 488e-004 1 068e-003 -3 023 -2 971 0 052 HS04- 7 080e-004 5 225e-004 -3 150 -3 282 -0 132 LiS04- 3 244e-004 2 394e-004 -3 489 -3 621 -0 132 U02S04 2 927e-004 3 296e-004 -3 534 -3 482 0 052 U02(S04)2-2 2 305e-004 6 838e-005 -3 637 -4 165 -0 528 KS04- 9 816e-005 7 244e-005 -4 008 -4 140 -0 132 ZnS04 5 491e-005 6 182e-005 -4 260 -4 209 0 052 Zn(S04)2-2 4 837e-005 1 435e-005 -4 315 -4 843 -0 528 SrS04 4 145e-005 4 667e-005 -4 383 -4 331 0 052 CuS04 1 971e-005 2 220e-005 -4 705 -4 654 0 052 CaHS04+ 1 764e-005 1 302e-005 -4 754 -4 886 -0 132 Ni(S04)2-2 1 571e-005 4 659e-006 -4 804 -5 332 -0 528 FeS04 1 127e-005 1 268e-005 -4 948 -4 8 97 0 052 A1HS04+2 1 071e-006 3 177e-007 -5 970 -6 498 -0 528 Cd(S04)2-2 7 999e-008 2 372e-008 -7 097 -7 625 -0 528 CdS04 6 841e-008 7 703e-008 -7 165 -7 113 0 052 FeHS04+ 2 783e-008 2 053e-008 -7 556 -7 688 -0 132 0. 000e+000 H2Se 0 000e+000 0 000e+000 -53 230 -53 179 0 052 HSe- 0 000e+000 0 000e+000 -53 382 -53 514 -0 132 1. 710e- 006 HSe03- 1 565e-006 1 155e-006 -5 806 -5 937 -0 132 H2Se03 1 449e-007 1 631e-007 -6 839 -6 787 0 052 Se03-2 4 902e-011 1 454e-011 -10 310 -10 837 -0 528 4. 291e- 014 Se04-2 4 276e-014 1 268e-014 -13 369 -13 897 -0 528 HSe04- 1 480e-016 1 092e-016 -15 830 -15 962 -0 132 8. 060e-005 SrS04 4 145e-005 4 667e-005 -4 383 -4 331 0 052 Sr+2 3 915e-005 1 025e-005 -4 407 -4 989 -0 582 SrOH+ 3 042e-015 2 078e-015 -14 517 -14 682 -0 166 5. 62 8 e-004 U02S04 2 927e-004 3 296e-004 -3 534 -3 482 0 052 U02(S04)2-2 2 305e-004 6 838e-005 -3 637 -4 165 -0 528 U02+2 3 929e-005 1 165e-005 -4 406 -4 934 -0 528 U020H+ . - - 2 065e-007 1 524e-007 -6 685 -6 817 -0 132 (U02)20H+3 1 649e-008. 1 <)71e-009 -7 783 "• -8 970 -1 188 (U02)2(OH)2+2 9 419e-009 2 794e-009 -8 026 -8 554 -0 528 (U02)3(OH)4+2 1 637e-012 4 .857e-013 -11 786 -12 314 -0 528 (U02)3(OH)5+ 1 340e-013 9 .891e-014 -12 873 -13 005 -0 132 U02(OH)3- 6 146e-014 4 .536e-014 -13 211 -13 343 -0 .132 (U02)4(OH)7+ 4 731e-017 3 .491e-017 -16 325 -16 457 -0 .132 (U02)3(OH)7 - 3 225e-021 2 .380e-021 -20 492 -20 .623 -0 .132 U02(OH)4-2 9 576e-024 2 .840e-024 -23 019 -23 .547 -0 .528 1. 398e-004 ZnS04 5 491e-005 6 .182e-005 -4 260 -4 .209 0 .052 Zn(S04)2-2 4 837e-005 1 .435e-005 -4 315 -4 .843 -0 .528 Zn+2 3 652e-005 1 .083e-005 -4 437 -4 .965 -0 .528 ZnOH+ 2 901e-011 2 .141e-011 -10 537 -10 .669 -0 .132 Zn(OH) 2 1 891e-015 2 .129e-015 -14 723 -14 .672 0 .052 Zn(OH)3- 3 .604e-023 2 .660e-023 -22 443 -22 .575 -0 .132 Zn(OH)4-2 5 .616e-032 1 .666e-032 -31 251 -31 .778 -0 .528 Q a l - i i r a f i i~\rt -i r i H T i - c i o Phase SI log IAP log KT Al(OH)3(a) AlAs04:2H20 AlumK Alunite -4.36 7.11 -5.59 -0.23 -4.85 -10.20 11.47 Al(OH)3 5.36 AlAs04:2H20 -5.35 KA1(S04)2:12H20 4.19 4.06 -0.12 KA13(S04)2(OH)6 Anhydrite 0. 07 -4. 26 -A. 34 CaS04 Antlerite -11. 54 -3. 25 8. 29 Cu3(OH)4S04 Arsenolite -27. 30 -69. 08 -41. 78 As203 As205 -21. 52 -14. 68 6. 84 As205 B-U02(OH)2 -3. 63 2. 26 5. 89 U02(OH)2 Basaluminite -3. 02 19. 68 22. 70 A14(OH)10SO4 Bianchite -4. 80 -6. 56 -1. 76 ZnS04:6H20 Birnessite -12. 76 30. 84 43. 60 Mn02 Boehmite -2. 18 7. 12 9. 30 AlOOH Brochantite -16. 75 -1. 41 15. 34 Cu4(OH)6S04 Brucite -11 90- 5 63 17 53 Mg(OH)2 Bunsenite . -9 06 4' 00 13 06 NiO Ca3(As04)2:4w -24 65 -1 16 23 49 Ca3(As04)2:4H20 CaSe03 -7 92 -43 78 -35 86 CaSe03 Cd(gamma) -42 02 -27 97 14 05 Cd Cd(OH)2 -14'. 42 -0 77 13 65 Cd(OH)2 Cd(0H)2(a) -15 03 -0 77 14 26 Cd(OH) 2 Cd3(OH)2(S04)2 -2 6 58 -19 87 6 71 Cd3(OH)2(S04)2 . Cd3(OH)4S04 -33 65 -11 09 22 56 Cd3(OH)4S04 Cd4(OH)6S04 -40 27 -11 87 28 40 Cd4(OH)6S04 CdMetal -41 91 -27 97 13 95 Cd CdS04 -9 82 -9 55 0 27 CdS04 CdS04:2.7H20 -7 79 -9 55 -1 76 CdS04:2.67H20 CdS04:H20 -8 08 -9 55 -1 47 CdS04:H20 Celestite 0 05 -6 57 -6 62 SrS04 Chalcahthite -4 27 -6 95 -2 68 CuS04:5H20 Claudetite -27 34 -69 08 -41 73 As203 Cu(OH)2 -7 19 1 84 9 03 Cu(OH)2 Cu3(As04)2:6w -16 44 -9 17 7 27 Cu3(As04)2:6H20 CuOCuS04 -17 52 -5 09 12 43 CuO:CuS04 CuSO 4 -10 40 -6 93 3 47 CuS04 Diaspore -0 39 7 12 7 51 AlOOH Epsomite -0 95 -3 16 -2 21 MgS04:7H20 FeSe2 -66 73 -230 85 -164 12 FeSe2 Gibbsite -1 58 7 11 8 69 Al(OH)3 Goslarite -4 52 -6 57 -2 04 ZnS04:7H20 Gummite -8 73 2 26 10 99 U03 Gypsum 0 32 -4 27 -4 58 CaS04:2H20 H2(g) -27 20 -27 20 0 00 H2 H20(g) -1 78 -0 00 1 78 H20 Hausmannite -25 47 38 12 63 59 Mn304 Jurbanite 1 57 -1 66 -3 23 A10HS04 Langite -19 21 -1 42 17 80 Cu4(OH)6S04:H20 Manganite -8 10 17 24 25 34 MnOOH Melanterite -4 75 -7 09 -2 34 FeS04:7H20 Mirabilite -3 24 -4 83 -1 60 Na2S04:10H2O Mn3(As04):8H20 -17 48 -3 79 13 69 Mn3(As04)2:8H20 MnS04 -8 20 -5 14 3 06 MnS04 Monteponite -15 17 -0 77 . 14 40 CdO Morenosite -2 .36 -4 80 -2 43 NiS04:7H20 Ni(OH)2 -6 03 4 00 10 03 Ni(OH)2 Ni3(As04)2:8H20 -19 58 -2 70 16 88 Ni3(As04)2:8H20 Ni4(OH)6S04 -24 77 7 23 32 00 Ni4(OH)6S04 Nsutite -11 73 30 84 42 56 Mn02 02 (g) -32 20 54 39 86 60 02 Portlandite -19 08 4 51 23 59 Ca(OH)2 Pyrochroite -11 56 3 64 15 20 Mn (OH) 2 Pyrolusite -12 20 30 84 43 04 Mn02 Retgersite -2 72 -4 79 -2 07 NiS04:6H20 Schoepite -3 45 2 26 5 71 U02(OH)2:H20 Se (s) -12 59 -102 68 -90 09 Se Se02 -9 65 -48 .29 -38 64 Se02 Tenorite -6 16 1 .84 8 01 CuO Thenardite -4 64 -4 80 -0 16 Na2S04 U03(gamma) -5 95 2 26 8 21 U03 Zincite(c) -9 46 2 23 11 70 ZnO Zincosite -10 04 -6 54 3 50 ZnS04 Zn(OH)2-a -10 22 2 23 12 45 Zn(OH) 2 Zn(OH)2-b -9 52 2 23 11 75 Zn(OH) 2 Zn(OH)2-c . -9 97 . 2 23 12 20 Zn(OH)2 Zn(OH)2-e -9 27 2 23 11 50 Zn(OH)2 Zn(OH)2-g -9 48 2 23 11 71 Zn(OH)2 Zn2(OH)2S04 -11 82 -4 32 7 50 Zn2(OH)2S04 Zn3(As04)2:2 5w -22 84 -8 00 14 85 Zn3(As04)2:2.5H20 Zn30(S04)2 -31 45 -10 86 20 60 ZnO:2ZnS04 Zn4(OH)6S04 -28 26 ' 0 14. 28 40 Zn4 (OH) 6S04-.ZnMe'tal •- -51 66 -24 97 2 6 69 Zn ZnO(a) -9 08 2 23 11 31 ZnO ZnS04:H20 -6 25 -6 55 -0 30 ZnS04:H20 End of simulation. Reading input data for simulation 2. End of run. 164 Input f i l e : 39829.pqi Output f i l e : 39829.pqo Database f i l e : C:\Program Files\USGS\Phreeqc Interactive 2.8\wateq4f.dat Reading data base. SOLUTION_MASTER_SPECIES SOLUTION_SPECIES PHASES EXCHANGE_MASTER_SPECIES EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES RATES END Reading input data for simulation 1. DATABASE C:\Program Files\USGS\Phreeqc Interactive 2.8\wateq4f.dat SOLUTION 1 temp : i s pH 3.6 pe 10 redox pe units mg/1 density 1 Al 1858 Ca 613 K 23 Mg 6552 Na 754 S(6) 39829 Ni 367 As 0.12 Li 17.2 Zn 9.7 U(6) 201 Fe(2) 1.5 Cu(2) 1.72 Sr 6.123 Cd 0.017 Mn(2) 135 Se 0.13 water 1 # kg END Beginning of i n i t i a l solution calculations. I n i t i a l solution 1. Solution composition-Elements Molality Moles Al 7.251e-002 7.251e-002 As 1.687e-006 1.687e-006 Ca 1.611G-002 1.611e-002 Cd 1.593e-007 1.593e-007 165 Cu(2) 2 850e-005 2 850e-005 Fe(2) 2 828e-005 2 828e-005 K 6 194e-004 6 194e-004 Li 2 610e-003 2 610e-003 Mg 2 838e-001 2 838e-001 Mn(2) 2 588e-003 2 588e-003 Na 3 454e-002 3 454e-002 Ni 6 583e-003 6 583e-003. S(6) 4 366e-001 4 366e-001 Se 1 7.34e-006 1 734e-006 Sr 7 359e-005 7 359e-005 U(6) 8 892e-004 8 892e-004 Zn 1 5 63e-004 1 563e-004 Description of solution-pH pe Activity of water Ionic strength Mass of water (kg) Total alkalinity (eq/kg) Total carbon (mol/kg) Total C02 (mol/kg) Temperature (deg C) Electrical balance (eq) Percent error, 100* (Cat-| An | ) / (Cat+| An| ). Iterations Total H Total 0' 3. 600 10.000 0. 990 6.500e-001 1.000e+000 -1.103e-003 0.000e+000 0.000e+000 15.000 3.671e-003 0.53 10 1.110136e+002 5 .725447e+001 -Distribution of species-Al As (3) As (5) Species Molality H+ 3.310e-004 2 OH- 2 .375e-011 1 H20 5 .551e+001 9 7 251e-002 A1S04+ 3.615e-002 2 Al(S04)2- 3.178e-002 2 Al+3 4.563e-003 3 A10H+2 2.155e-005 6 A1HS04+2 1.784e-006 5 Al(OH)2+ 1.104e-007 8 Al(OH)3 1.878e-011 2 Al(OH)4- 1.947e-013 1 3 923e-015 H3As03 3.923e-015 4 H4AS03+ 7.578e-019 5 H2As03- 1.167e-020 8 HAS03-2 1.417e-031 4 As03-3 0.000e+000 0 1 687e-006 H2AS04- 1.638e-006 1 H3AS04 4 .790e-008 5 HAS04-2 1.029e-009 3 As04-3 3.032e-017 2 1 611e-002 CaS04 8 . 670e-003 1 Log " • Log • Log Activity Molality Activity Gamma 512e-004 -3 480 -3 600 -0 120 777e-011 -10 624 -10 750 -0 126 902e-001 1 744 -0 004 0 000 705e-002 -1 442 -1 5 68. -0 126 378e-002 -1 498 -1 624 -0 126 353e-004 -2 341 -3 475 -1 134 755e-006 -4 666 -5 170 -0 504 590e-007 -5 749 -6 253 -0 504 258e-008 -6 957 -7 083 -0 126 181e-011 -10 726 -10 661 0 065 457e-013 -12 711 -12 837 - o 126 556e-015 -14 406 -14 341 0 065 670e-019 -18 120 -18 246 -0 126 732e-021 -19 933 -20 059 -0 126 440e-032 -30 849 -31 353 -0 504 000e+000 -42 473 -43 607 -1 134 225e-006 -5 786 -5 912 -0 126 563e-008 -7 320 -7 255 0 065 226e-010 -8 987 -9 491 -0 504 229e-018 -16 518 -17 652 -1 134 007e-002 -2 062 -1 997 0 065 166 Cu(2) Fe(2) Mn(2) 0(0) S(6) Ca+2 7.418e-003 1 906e-003 -2. 130 -2. 720 -0 590 CaHS04+ 1.770e-005 1 324e-005 -4. 752 -.4. 878 -0 126 CaOH+ 1.666e-012 1 247e-012 -11. 778 -11. 904 -0. 126 1. 593e-007 Cd(S04)2-2 7.361e-008 2 307e-008 -7. 133 -7. 637 -0 504 CdS04 5.830e-008 6 771e-008 -7. 234 -7. 169 0 065 Cd+2 2 .736e-008 8 575e-009 -7. 5 63 -8. 067 -0 504 CdOH+ 1.745e-015 1 305e-015 -14. 758 -14. 884 -0. 126 Cd20H+3 8.485e-022 6 236e-023 -21. 071 -22. 205 -1. 134 Cd(OH)2 5.125e-022 5 952e-022 . -21. 290 -21. 225 0 065 Cd(OH)3- 3.519e-031 2 633e-031 -30. 454 -30' 580 -0 126 Cd(OH)4-2 0.000e+000 0 000e+000 -40. 530 -41 034 -0 504 2. 850e-005 CuS04 1.708e-005 1 984e-005 -4. 767 -4 702 0 0 65 Cu+2 . 1.142e-005 3 579e-006 -4 942 -5 446 . -0 504. CuOH+. . 1.885e-010" 1 411'e-010 -9 725 .. -9 851 -0 126 Cu(OH)2 1.000e-012 1 162e-012 -12 000 -11 935 0 0 65 Cu2(OH)2+2 9.947e-015 3 117e-015 -14 002 -14 506 -0 504 Cu(OH)3- 3.689e-022 2 760e-022 -21 433 -21 559 -0 126 Cu(OH)4-2 6.927e-031 2 171e-031 -30 159 -30 663 -0 504 2 828e-005 FeS04 1.516e-005 1 761e-005 -4 819 -4 754 0 065 Fe+2 1.309e-005 4 101e-006 -4 883 -5 387 -0 504 FeHS04+ 3.809e-008 2 850e-008 -7 419 -7 545 -0 126 FeOH+ 3.154e-012 2 360e-012 -11 501 -11 627 -0 126 Fe(OH)2 2 .772e-020 3 219e-020 -19 557 -19 492 0 065 Fe(OH)3- 5 . 693e-027 4 259e-027 -26 245 -26 371 -0 126 8 526e-031 H2 4 .263e-031 4 952e-031 -30 370 -30 305 0 065 6 194e- 004 K+ 5.414e-004 3 412e-004 -3 266 -3 4 67 -0 200 KS04- 7.803e-005 5 838e-005 -4 108 -4 234 -0 126 2 610e- 003 Li+ 2.315e-003 1 732e-003 -2 635 -2 761 -0 126 LiS04- 2.948e-004 2 206e-004 -3 530 -3 656 -0 126 2 838e-001 MgS04 1.620e-001 1 882e-O0l -0 790 -0 725 0 065 Mg+2 1.217e-001 3 593e-002 -0 915 -1 445 -0 530 MgOH+ 2 .700e-010 2 020e-010 -9 569 -9 695 -0 126 2 588e-003 MnS04 1.383e-003 1 607e-003 -2 859 -2 794 0 065 Mn+2 1.204e-003 3 774e-004 -2 919 -3 423 -0 504 MnOH+ 2.199e-011 1 645e-011 -10 658 -10 784 -0 126 Mn(OH)3- 4.897e-028 3 664e-028 -27 310 -27 436 -0 126 3 454e-002 Na+ 3.056e-002 2 174e-002 -1 515 -1 663 -0 148 NaS04- 3.977e-003 2 976e-003 -2 400 -2 526 -0 126 6 583e-003 NiS04 3.830e-003 4 449e-003 -2 417 -2 352 0 065 Ni+2 2 .728e-003 8 550e-004 -2 564 -3 068 -0 504 Ni(S04)2-2 2.430e-005 7 617e-006 -4 614 -5 118 -0 504 NiOH+ 3.004e-010 2 248e-010 -9 522 -9 648 -0 126 Ni(OH)2 1.144e-015 1 .329e-015 -14 942 -14 877 . 0 065 Ni(OH)3- 7.001e-023 5 .238e-023 -22 155 -22 281 -0 126 1 314e- -035 02 6.572e-036 7 .633e-036 -35 182 -35 117 0 065 4 366e--001 MgS04 1.620e-001 1 .882e-001 -0 790 -0 725 0 065 S04-2 1.543e-001 2 .917e-002 -0 812 -1 535 -0 .723 A1S04+ 3.615e-002 2 .705e-002 -1 442 -1 .568 -0 .126 Al(S04)2- 3.178e-002 2 .378e-002 -1 .498 -1 .624 -0 .126 CaS04 8.670e-003 1 .007e-002 -2 .062 -1 .997 0 .065 NaS04- 3.977e-003 2 .976e-003 -2 .400 -2 .526 -0 .126 167 Se (-2) Se(4) Se (6) Sr U(6) NiS04 3 830e-003 4 . 449e-003 -2. 417 -2 352 0. 065 MnS04 1 383e-003 1. 607e-003 -2. 859 -2 794 0. 065 HS04- 7 726e-004 5. 780e-004 -3. 112 -3 238 -0. 126 U02S04 4 514e- 004 5. 243e-004 -3. 345 -3 280 0. 065 U02(S04)2 -2 3 839e-004 1. 203e-004 -3. 416 -3 920 -0 504 LiS04- 2 948e-004 2 206e-00.4 -3. 530 -3 656 -0 126 KS04- 7 803e-005 5 838e-005 -4. 108 ; -4 234 -0 126 ZnS04 6 156e- 005 7 lSOe 1 005 -4. 211 -4 146 0 065 Zn(S04)2-2 5 857e-005 1 836e-005 -4. 232 -4 736 -0 504 SrS04 3 841e- 005 4 461e- 005 -4. 416 -4 351 0 065 Ni(S04)2-2 . 2 430e-005 7 617e- 00.6. -4. 614 -5 118 -0 504 GaHS04+' 1 770e-005 1 324e.-005 -4. 752 -4 878 -0 126 CuS0'4 ' 1 708e-005 ' 1 984e-005' -4 : 767 -4 702 0 065 FeS04 1 516e- 005 1 761e- 005 -4. 819 -4 754 0 065 A1HS04+2 1 784e-006 5 590e-007 -5. 749 -6 253 -0 504 Cd(S04)2-2 7 361e- 008 2 307e-008 -7. 133 -7 637 -0 504 CdS04 5 830e-008 6 771e- 008 -7. 234 -7 169 0 065 FeHS04+ 3 809e-008 2 850e-008 -7. 419 -7 545 -0 126 0. 000e+000 H2Se 0 000e+000 0 000e+000 -53 228 -53 163 0 065 HSe- 0 000e+000 0 000e+000 -53 372 -53 498 -0 126' 1. 734e--006 HSe03- 1 589e- 006 1 189e- 006 -5 799 -5 925 -0 126 H2Se03 1 446e- 007 1 679e- 007 -6 840 .-6 775 0 065 Se03-2 4 776e- 011 1 497e- O i l -10 321 -10 825 -0 504 4. 172e--014 -Se04-2 4 157e- 014 1 303e- 014 -13 381 -13 885 -0 504 HSe04- 1 500e- 016 1 122e- 016 -15 824 -15 .950 -0 126 7. 359e--005 SrS04 3 841e- 005 4 461e- 005 -4 416 -4 .351 0 065 Sr+2 3 518e- 005 8 860e- 006 -4 454 -5 .053 -0 599 SrOH+ 2 676e- 015 1 791e- 015 -14 572 -14 747 -0 174 8. 892e--004 U02S04 4 514e- 004 5 243e- 004 -3 345 -3 .280 0 0 65 U02(S04)2 -2 3 839e- 004 1 203e- 004 -3 416 -3 920 -0 504 U02 + 2 5 347e- 005 1 676e- 005 -4 272 -4 .776 -0 504 U020H+ 2 922e- 007 2 187e- 007 -6 534 -6 .660 -0 126 (U02)20H+3 3 006e- 008 2 209e- 009 -7 522 -8 .656 -1 134 (U02)2(OH)2+2 1 835e- 008 5 750e- 009 -.7 736 -8 .240 -0 504 (U02)3(OH)4+2 4 566e- 012 1 431e- 012 -11 340 -11 .844 -0 504 (U02)3(OH)5+ 3 886e- 013 2 907e- 013 -12 411 -12 .537 -0 126 U02(OH)3- 8 . 657e-014 6 478e- 014 -13 063 -13 .189 • -0 126 (U02)4(OH)7+ 1 .963e- 016 1 469e- 016 -15 707 -15 .833 -0 126 (U02)3(OH)7 - 9 .306e- 021 6 963e- 021 -20 031 -20 .157 -0 126 U02(OH)4-2 . 1 .291e- 023 4 047e- 024 -22 889 . -23 .393 -0 504 1. 563e--004 ZnS04 6 .156e- 005 7 .150e- 005 -4 211 -4 .146 0 065 Zn(S04)2- 2 5 .857e- 005 1 .836e- 005 -4 232 -4 .736 -0 .504 Zn+2 3 .613e- 005 1 .132e- 005 -4 442 -4 .946 -0 .504 ZnOH+ 2 .984e- 011 2 .233e- O i l -10 525 -10 . 651 -0 .126 Zn(OH)2 1 .907e- 015 2 .215e--015 -14 720 -14 . 655 0 .065 Zn(OH)3- •3 .691e--023 2 .762e--023 -22 433 -22 .559 -0 .126 Zn(OH)4-2 5 .505e--032 1 .725e--032 -31 259 -31 .7 63 -0 .504 Saturation i n d i c e s Phase SI log IAP l o g KT Al(OH)3(a) AlAs04:2H20 AlumK A l u n i t e -4.16 7.31 -5.30 0.06 -4.71 -10.06 4.74 11.47 Al(OH)3 5.36 AlAs04:2H20 -5.35 KA1(S04)2:12H20 4.61 -0.12 KA13(S04)2(OH)6 Anhydrite 0 08 -4 26 -4 34 CaS04 Antlerite -11 78 -3 49 8 29 Cu3(OH)4S04 Arsenolite -27. 11 -68 89 -41 78 As203 As 2 05 -21. 33 -14 50 6 84 As205 B-U02(OH)2 -3 48 2 42 5 89 U02(OH)2 Basaluminite -2 18 20 52 22 70 A14(OH)10SO4 Bianchite -4 75 -6 51 -1 76 ZnS04:6H20 Birnessite -12 63 30 97 43 60 Mn02 Boehmite -1 98 7 32 9 30 AlOOH Brochantite -17 09 -1 75 15 34 Cu4(OH)6S04 Brucite -11 78 5 75 17 53 Mg(OH)2 Bunsenite -8 93 4 13 13 06 NiO Ca3(As04)2:4w -24 58 -1 09 23 49 Ca3(As04)2:4H20 CaSe03 -7 94 -43 80 -35 86 CaSe03 Cd(gamma) -42 12 -28 07 14 05 Cd Cd(0H)2 -14 53 -0 88 13 65 Cd(OH)2 Cd(OH)2(a) -15 13 -0 88 14 26 Cd(OH)2 Cd3(OH)2(S04)2 -26 79 -20 08 6 71 Cd3(OH)2(S04)2 Cd3(OH)4S04 -33 91 -11 35 22 56 Cd3(OH)4S04 Cd4(OH)6S04 -40 63 -12 23 28 40 Cd4(OH)6S04 CdMetal -42 01 -28 07 13 95 Cd CdS04 -9 88 -9 60 0 27 CdS04 CdS04:2.7H20 -7 85 -9 61 -1 76 CdS04:2.67H20 CdS04:H20 -8 14 -9 61 -1 47 CdS04:H20 Celestite 0 03 -6 59 -6 62 SrS04 Chalcanthite -4 33 -7 00 -2 68 CuS04:5H20 Claudetite -27 16 -68 89 -41 73 As203 Cu(OH)2 -7 28 1 75 9 03 Cu(OH)2 Cu3(As04)2:6w -16 55 -9 27 7 27 Cu3(As04)2:6H20 CuOCuS04 -17 67 -5 23 12 43 CuO:CuS04 CuS04 -10 45 -6 98 3 47 CuS04 Diaspore -0 19 7 32 7 51 AlOOH Epsomite -0 80 -3 01 -2 21 MgS04:7H20 FeSe2 -66 60 -230 72 -164 12 FeSe2 Gibbsite -1 38 7 31 8 69 Al (OH) 3 Goslarite -4 47 -6 51 -2 04 ZnS04:7H20 Gummite -8 57 2 42 10 99 U03 Gypsum 0 32 -4 26 -4 58 CaS04:2H20 H2 (g) -27 20 -27 20 0 00 H2 H20(g) -1 78 -0 00 1 78 H20 Hausmannite -25 08 38 51 63 59 Mn304 Jurbanite 1 82 -1 41 -3 23 A10HS04 Langite -19 55 -1 75 17 80 Cu4(OH)6S04:H20 Manganite -7 97 17 37 25 34 MnOOH Melanterite -4 61 -6 95 -2 34 FeS04:7H20 Mirabilite -3 31 -4 90 -1 .60 Na2S04:10H2O Mn3(As04):8H20 -16 90 -3 21 13 69 Mn3(As04)2:8H20 MnS04 -8 02 -4 96 3 06 MnS04 Monteponite -15 27 -0 87 14 40 CdO Morenosite -2 20 -4 63 -2 43 NiS04:7H20 Ni(OH)2 -5 90 4 12 10 03 Ni(OH)2 Ni3(As04)2:8H20 -19 03 -2 15 16 88 Ni3(As04)2:8H20 Ni4(OH)6S04 -24 23 7 77 32 00 Ni4(OH)6S04 Nsutite -11 60 30 97 42 56 Mn02 02(g) -32 20 54 39 86 60 02 Portlandite -19 12 4 47 23 59 Ca(OH)2 Pyrochroite -11 43 3 77 15 20 Mn(OH)2 Pyrolusite -12 07 30 97 43 04 Mn02 Retgersite -2 56 -4 63 -2 07 NiS04:6H20 Schoepite -3 30 2 41 5 71 U02(OH)2:H20 Se (s) -12 58 -102 67 -90 09 Se Se02 -9 64 -48 28 -38 64 Se02 Tenorite -6 26 1 75 8 01 CuO 169 Thenardite -4 70 -4 86 -0 16 Na2S04 U03(gamma) -5 79 2 42 8 21 U03 Zincite(c) -9 45 2 25 11 70 ZnO Zincosite -9 98 -6 48 3 50 ZnS04 Zn(OH)2-a -10 20 2 25 12 45 Zn(OH)2 Zn(OH)2-b -9 50 2 25 11 75 Zn(OH)2 Zn(OH)2-c -9 95 2 25 12 20 Zn(OH)2 Zn(OH)2-e -9 25 2 25 11 50 Zn(OH)2 Zn (OH)2-g -9 46 2 25 11 71 Zn(OH)2 Zn2(OH)2S04 -11 74 -4 24 7 50 Zn2(OH)2S04 Zn3(As04)2:2 5w -22 61 -7 76 14 85 Zn3(As04)2:2.5H20 Zn30(S04)2 -31 31 -10 71 20 60 ZnO:2ZnS04 Zn4(OH)6S04 -28 14 0 26 28 40 Zn4(OH)6S04 ZnMetal -51 64 -24 95 26 69 Zn ZnO(a) -9 06 2 25 11 31 ZnO ZnS04:H20 -6 19 -6 49 -0 30 ZnS04:H20 End of simulation. Reading input data for simulation 2. End of run. 170 Input f i l e : 189640.pqi Output f i l e : 189640.pqo Database f i l e : C:\Program Files\USGS\Phreeqc In t e r a c t i v e 2.8\wateq4f.dat Reading data base. SOLUTION_MASTER_SPECIES SOLUTION_SPECIES PHASES EXCHANGE_MASTER_SPECIES EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES •RATES' • ' END Reading input data f o r simulation 1. DATABASE C:\Program Files\USGS\Phreeqc I n t e r a c t i v e 2.8\wateq4f.dat SOLUTION 1 temp 15 PH 3.6 pe 10 redox pe u n i t s mg/1 density 1 A l 10305 Ca 412 K 302 Mg 29817 Na 8033 S(6) 189640 Ni 1841 As 0.77 L i 231 Zn 54 U(6) 2023 Fe(2) 5.478 Cu(2) 9.6 Sr 45.1 Cd 0.23 Mn(2) 987 Se 1.9 water 1 # kg END Beginning of i n i t i a l s o l u t i o n c a l c u l a t i o n s . I n i t i a l s o l u t i o n 1. Solution composition Elements Molality Moles Al 5.050e-001 5.050e-001 As 1.359e-005 1.359e-005 Ca 1.359e-002 1.359e-002 Cd 2.706e-006 2.706e-006 171 Cu(2) 1 998e-004 1 998e-004 Fe(2) 1 297e-004 1 297e-004 K 1 021e-002 1 021e-002 Li 4 402e-002 4 402e-002 Mg 1 622e+000 1 622e+000 Mn(2J" ' 2 375e-002 2 375e-002 Na 4 620e-001 4 620e-00"l Ni 4 146e-002 4 146e-002 S(6) 2 610e+000 2 610e+000 Se 3 182e-005 3 182e-005 Sr 6 806e-004 6 806e-0Q4 U(6) • ' 1 124e-002' 1 124e-002 Zn 1 092e-003 1 092e-003 Description of solution-pH pe Activity of water Ionic strength Mass of water (kg) Total alkalinity (eq/kg) Total carbon (mol/kg) Total C02 (mol/kg) Temperature (deg C) Electrical balance (eq) Percent error, 100*(Cat-|An|)/(Cat+|An|) Iterations Total H Total 0 3. 600 10.000 0.945 2.469e+000 1.000e+000 -1.250e-003 0.000e+000 0.000e+000 15.000 2.394e-001 8.03 14 1.110138e+002 6.597007e+001 Distribution of species Log Log Log Species Molality Activity Molality Activity Gamma As (3) As (5) H+ 3 468e-004 2 512e- 004 -3 460 -3 600 -0 140 OH- 1 460e-011 1 696e-011. -10 836 -10 771 0 065 H20 5 551e+001 9 452e-001 1 744 -0 024 0 000 5 050e-001 Al(S04)2- 3 057e-001 3 551e- 001 -0 515 -0 450 0 065 A1S04+ 1 988e-001 2 309e-001 -0 702 -0 637 0 065 Al+3 4 258e-004 1 637e-003 -3 371 -2 786 0 585 A10H+2 1 730e-005 3 147e- 005 -4 762 -4 502 0 260 A1HS04+2 2 623e-006 4 773e-006 -5 581 -5 321 0 260 Al (OH)2+ 3 162e-007 3 673e-007 -6 500 -6 435 0 065 Al(OH)3 5 244e-011 9 259e-011 -10 280 -10 033 0 247 Al(OH)4- 5 083e-013 5 903e-013 -12 294 -12 229 0 065 3 381e- 014 H3As03 3 380e-014 5 968e-014 -13 471 -13 224 0 247 H4AS03+ 6 395e-018 7 428e-018 -17 194 -17 129 0 065 H2AS03- 9 850e-020 1 144e- 019 -19 007 -18 942 0 065 HAS03-2 3 197e-031 5 816e- 031 -30 4 95 -30 235 0 2 60 As03-3 0 000e+000 0 000e+000 -43 074 -42 489 0 585 1 359e-005 H2As04- 1 319e-005 1 532e-005 -4 880 -4 815 0 065 H3As04 3 940e-007 6 956e-007 -6 405 -6 158 0 247 HAS04-2 2 217e-009 4 034e-009 -8 654 -8 394 0 260 As04-3 7 249e-018 2 787e-017 -17 140 -16 555 0 585 1 359e-002 CaS04 8 . 639e-003 1 525e-002 -2 064 ' -1 817 0 .247 172 Cd Cu(2) Fe(2) Mn(2) 0(0) S(6) Ca+2 4.935e-003 1 651e-003 -2. 307 -2 782 -0 476 CaHS04+ 1.728e-005 2 006e-005 -4. 763 -4 698 0 065 CaOH+ 8.876e-013 1 031e-012 -12 052 -11 987 0 065 2 706e-006 CdS04 1.641e-006 2 898e-006 -5 785 -5 538 0 247 Cd(S04) 2-2 9.491e-007 1 727e-006 -6 023 -5 7 63 0 260 Cd+2 1.153e-007 2 098e-007 -6 938 -6 678 0 260 CdOH+ 2.625e-014 3 049e-014 -13 581 -13 516 0 065 Cd20H+3 9.270e-021 3 564e-020 -20 033 -19 448 0 585 Cd(OH)2 7.515e-021 1 327e-020 -20 124 -19 877 0 247 Cd(OH)3- 4 .824e-030 5 602e-030 -29 317 -29 252 0 065 Cd(OH)4-2 1.033e-040 1 879e-040 -39 98 6 -39 726 0 2 60 1 998e-004 CuS04 1.816e-004 3 206e-004 -3 741 -3 494 0 247 Cu+2 1.817e-005 3 306e-005 -4 741 -4 481 0 2 60 CUOH+ 1.071e-009 1 244e-009 -8 970 -8 905 0 065 Cu(OH)2 5 .539e-012 9 780e-012 -11 257 -11 010 0 247 Cu2(OH)2+2 1.332e-013 2 424e-013 -12 875 -12 615 0 260 Cu(OH)3- 1.909e-021 2 217e-021 -20 719 -20 654 0 065 Cu(OH)4-2 9.150e-031 1 665e-030 -30 039 -29 779 0 260 1 297e-004 FeS04 1.146e-004 2 024e-004 -3 941 -3 694 0 247 Fe+2 1.481e-005 2 695e-005 -4 829 -4 569 0 260 FeHS04+ 2.821e-007 3 276e-007 -6 550 -6 485 0 065 FeOH+ 1.274e-011 1 480e-011 -10 895 -10 830 0 065 Fe(OH)2 1.092e-019 1 927e-019 -18 962 -18 715 0 247 Fe(OH)3- 2.096e-026 2 434e-026 -25 679 -25 614 0 065 5 609e-031 H2 2.804e-031 4 952e-031 -30 552 -30 305 0 247 1 021e- 002 K+ 8.905e-003 5 072e-003 -2 050 -2 295 -0 245 KS04- 1.307e-003 1 518e-003 -2 884 -2 819 0 065 4 402e-002 L i + 3.600e-002 4 181e-002 -1 444 -1 379 0 065 LiS04- 8.017e-003 9 311e-003 -2 096 -2 031 0 065 1 622e+000 MgS04 1.148e+000 2 028e+000 0 060 0 307 0 247 Mg+2 4.732e-001 2 214e-001 -0 325 -0 655 -0 330 MgOH+ 1.023e-009 1 188e-009 -8 990 -8 925 0 065 2 375e-002 MnS04 2.102e-002 3 711e-002 -1 677 -1 431 0 247 Mn+2 2.739e-003 4 983e-003 -2 5 62 -2 303 0 260 MnOH+ 1.785e-010 2 073e-010 -9 748 -9 683 0 065 Mn(OH)3- 3.623e-027 4 207e-027 -26 441 -26 376 0 065 4 620e-001 Na+ 3.934e-001 3 328e-001 -0 405 -0 478 -0 073 NaS04- 6.861e-002 7 968e-002 -1 164 -1 099 0 065 4 146e- 002 NiS04 3.737e-002 6 598e-002 -1 427 -1 181 0 247 Ni+2 3.985e-003 7 251e-003 -2 400 -2 140 0 260 Ni (S04)2-2 1.086e-004 1 976e-004 -3 964 -3 704 0 260 NiOH+ 1.567e-009 1 820e-009 -8 805 -8 740 0 065 Ni (OH) 2 5.814e-015 1 027e-014 -14 236 -13 989 0 247 Ni(OH)3- 3.326e-022 3 863e-022 -21 478 -21 413 0 065 7 878e-036 02 3.939e-036 6 955e-036 -35 405 -35 158 0 247 2 610e+000 MgS04 1.148e+000 2 028e+000 0 060 0 307 0 247 S04-2 4.892e-001 5 102e-002 -0 310 -1 292 -0 982 A l (S04)2- 3.057e-001 3 551e-001 -0 515 -0 450 0 065 A1S04+ 1.988e-001 2 .309e-001 -0 702 -0 637 0 065 NaS04- 6.861e-002 7 .968e-002 -1 164 -1 099 0 065 NiS04 3.737e-002 6 .598e-002 -1 427 -1 181 0 .247 173 Se (-2) Se(4) Se(6) Sr U(6) MnS04 2 102e-002 3 711e-002 -1. 677 -1 431 0 247 CaS04 8 639e-003 1 525e-002 -2. 064 -1 817 0 247 LiS04-. 8 017e-003 9 311e-003 -2. 096 -2 031 0 065 U02S04 7 982e-003 1 409e-002 -2. 098 . -1 851 0 247 U02(S04)2-2 3 110e-003 5 658e-003 -2. 507 -2 247 0 260 KS04- 1 307e-003 1 518e-003 -2. 884 -2 819' 0 065 HS04- 8 705e-004 1 Olle-003 -3. 060 -2 995 0 065 ZnS04 7 169e-004 1 266e-003 -3. 145 -2 898 0 247 SrS04 3 968e-004 7 006e-004 -3. 401 -3 155 0 247 Zn(S04)2-2 3 124e-004 5 684e-004 -3 505 -3 245 0 260 CuS04 1 816e-004 3 206e-004 -3 741 -3 494 0 247 FeS04 1 146e-004 2 024e-004 -3 941 -3 694 0 247 Ni(S04)2-2 1 086e-004 1 976e-004 -3 964 -3 704 0 260 CaHS04+ 1 728e-005 2 006e-005 -4 7 63 -4 698 0 065 A1HS04+2 2 623e-006 4 773e-006 -5 581 -5 321 0 260 CdS04 1 641e-006 2 898e-006 -5 785 -5 538 0 247 Cd(S04)2-2 9 491e-007 1 727e-006 -6 023 -5 763 0 260 FeHS04+ 2 821e-007 3 276e-007 -6 550 -6 485 0 065 0. 000e+000 H2Se 0 000e+000 0 000e+000 -51 896 -51 649 0 247 HSe- 0 000e+000 0 000e+000 -52 048 -51 983 0 065 3. 182e- 005 HSe03- 2 911e-005 3 381e-005 -4 536 -4 471 0 065 H2Se03 2 705e-006 4 776e-006 -5 568 -5 321 0 247 Se03-2 2 340e-010 4 256e-010 -9 631 -9 371 0 2 60 1. 970e-013 Se04-2 1 944e-013 3 536e-013 -12 711 -12 451 0 260 HSe04- 2 622e-015 3 046e-015 -14 581 -14 516 0 065 6. 806e-004 SrS04 3 968e-004 7 006e-004 -3 4.01 .-3 155 0 247 Sr+2 2 838e-004 7 955e-005 -3 547 -4 099 -0 552 SrOH+ 2 552e-014 1 535e-014 -13 593 -13 814 -0 221 1. 124e- 002 U02S04 7 982e-003 1 409e-002 - 7 2 098 -1 851 0 247 U02(S04)2-2 3 110e-003 5 658e-003. -2 507 -2 247 0 260 U02+2 1 ,416e-004; 2 576e-004 -3 849 -3 589 0 260 U020H+ 2 762e-006 3 208e-006 -5 559 -5 494 0 065 (U02)2(OH)2+2 6 802e-007 1 238e-006 -6 167 -5 907 0 260 (U02)20H+3 1 296e-007 4 981e-007 -6 888 -6 303 0 585 (U02)3(OH)4+2 2 370e-009 4 312e-009 -8 625 -8 365 0 .260 (U02)3(OH)5+ 7 201e-010 8 363e-010 -9 143 -9 078 0 065 (U02)4(OH)7+ 5 095e-012 5 .917e-012 -11 293 -11 228 0 .065 U02(OH)3- 7 455e-013 8 .658e-013 -12 128 . -12 063 0 065 (U02)3(OH)7 - 1 .571e-017 1 .825e-017 -16 804 -16 739 0 065 U02(OH)4-2 2 .838e-023 5 .163e-023 -22 547 -22 287 0 .260 1. 092e-003 ZnS04 7 .169e-004 1 .266e-003 -3 145 -2 .898 0 .247 Zn(S04)2-2 3 .124e-004 5 . 684e-004 -3 505 -3 .245 0 .260 Zn+2 6 .300e-005 1 .146e-004 -4 201 -3 .941 0 .260 ZnOH+ 1 .857e-010 2 .157e-010 -9 731 -9 .666 0 .065 Zn(OH)2 1 .157e-014 2 -043e-014 -13 937 -13 . 690 0 .247 Zn(OH) 3- 2 .093e-022 2 .431e-022 -21 679 -21 . 614 0 .065 Zn(OH)4-2 7 .968e-032 1 .450e-031 -31 099 -30 .839 0 .260 Saturation indices Phase SI log IAP log KT Al(OH)3(a) -3.53 7.94. 11.47 Al (OH)3 AlAs04:2H20 -3.55 1.81 5.36 AlAs04:2H20 AlumK -2.61 -7.96 -5.35 KA1(S04)2:12H20 Alunite 8. 34 8. 22 -0. 12 KA13(S04)2(OH)6 Anhydrite 0. 26 -4. 07 -4. 34 CaS04 Antlerite -8. 72 -0. 43 8. 29 Cu3(OH)4S04 Arsenolite -24. 81 -66. 59 -41. 78 As203 As205 -19. 08 -12. 24 6. 84 As205 B-U02(OH)2 -2. 33 3. 56 5. 89 U02(OH)2 Basaluminite 0. 62 23. 32 22. 70 A14(OH)10SO4 Bianchite -3. 62 -5. 38 -1. 76 ZnS04:6H20 Birnessite -11. 55 32. 05 43. 60 Mn02 Boehmite -1. 34 7. 97 9. 30 AlOOH Brochantite -13. 10 2. 24 15. 34 Cu4(OH)6S04 Brucite -11. 03 6. 50 17. 53 Mg(OH)2 Bunsenite -8. 02 5. 04 13. 06 NiO Ca3(As04)2:4w -22. 65 0. 84 23. 49 Ca3(As04)2:4H20 CaSe03 -6. 55 -42- 41 -35 .86- CaSe03 Cd(gamma) -40. 73 -26 68 14 05. 'Cd • Cd(OH)2 -13. 18 0 47 13 65 Cd(OH)2 Cd(OH)2(a) -13. 79 0 47 14 26 Cd(OH)2 Cd3(OH)2 (S0.4)2 -22. 18 -15 47 6 71 Cd3(OH)2(S04)2 Cd3(OH)4S04 -29. 58 -7 02 22 56 Cd3(OH)4S04 Cd4(OH)6S04 -34 95 -6 55 28 40 Cd4(OH)6S04 CdMetal -40 63 -26 68 13 95 Cd CdS04 -8 25 -7 97 0 27 CdS04 CdS04:2.7H20 -6 27 -8 04 -1 76 CdS04:2.67H20 CdS04:H20 -6 53 -7 99 -1 47 CdS04:H20 Celestite 1 23 -5 39 -6 62 SrS04 Chalcanthite -3 22 -5 90 -2 68 CuS04:5H20 Claudetite -24 86 -66 59 -41 73 As203 Cu(OH) 2 -6 36 2 67 9 03 Cu(OH) 2 Cu3(As04)2:6w -11 58 -4 30 7 27 Cu3(As04)2:6H20 CuOCuS04 -15 51 -3 08 12 43 CuO:CuS04 CuS04 -9 24 -5 77 3 47 CuS04 Diaspore 0 46 7 97 7 51 AlOOH Epsomite 0 09 -2 12 -2 21 MgS04:7H20 FeSe2 -62 76 -226 88 -164 12 FeSe2 Gibbsite -0 75 7 94 8 69 Al (OH) 3 Goslarite -3 36 -5 40 -2 04 ZnS04:7H20 Gummite -7 40 3 59 10 99 U03 Gypsum 0 46 -4 12 -4 58 CaS04:2H20 H2 (g) -27 20 -27 20 0 00 H2 H20(g) -1 80 -0 02 1 78 H20 Hausmannite -21 80 41 79 63 59 Mn304 Jurbanite 2 73 -0 50 -3 23 A10HS04 Langite -15 58 2 21 17 80 Cu4(OH)6S04:H20 Manganite -6 89 18 45 25 34 MnOOH Melanterite -3 69 -6 03 -2 34 FeS04:7H20 Mirabilite -0 90 -2 .49 -1 60 Na2S04:10H2O Mn3(As04):8H20 -11 51 2 . 18 13 . 69 Mn3(As04)2:8H20 MnS04 -6 66 -3 .59 3 .06 MnS04 Monteponite -13 90 0 .50 14 .40 CdO Morenosite -1 17 -3 . 60 -2 . 43 NiS04:7H20 Ni(OH)2 -5 01 5 . 01 10 . 03 Ni(OH)2 Ni3(As04)2:8H20 -14 21 2 . 67 16 . 88 Ni3 (As04)2:8H20 Ni4(OH)6S04 -20 40 11 . 60 32 .00 Ni4(OH)6S04 Nsutite -10 .52 32 .05 42 .56 Mn02 02 (g) -32 .24 54 .35 86 . 60 02 Portlandite -19 .22 4 .37 23 .59 Ca(OH)2 Pyrochroite -10 .35 4 .85 15 .20 Mn(OH)2 Pyrolusite -10 .99 32 .05 43 .04 Mn02 Retgersite -1 .51 -3 .58 -2 .07 NiS04:6H20 Schoepite -2 . 17 3 .54 5 .71 U02(OH)2:H20 Se (s) -11 . 06 -101 . 15 -90 . 09 Se 175 Se02 -8 17 -46 80 -38 64 Se02 Tenorite -5 31 2 69 8 01 CuO Thenardite -2 08 -2 25 -0 16 Na2S04 U03(gamma) -4 62 3 59 8 21 U03 Zincite(c) -8 46 3 23 11 70 ZnO Zincosite -8 73 -5 23 3 50 ZnS04 Zn(OH)2-a -9 24 3 21 12 45 Zn(OH)2 Zn(OH)2-b -8 54 3 21 11 75 Zn(OH)2 Zn(OH)2-c -8 99 3 21 12 20 Zn(OH) 2 . .. Zn(OH)2-e . -8 29 3 21 •  11 5.0 Zft(OH)2 ' Zn'(OH) 2-g -8 50 3 21 "11" 71 Zn(OH)2 Zn2(OH)2S04 -9 52 -2 02 7 50 Zn2(OH)2S04 Zn3(As04)2:2 5w -17 45 -2 60 14 85 Zn3(As04)2:2.5H20 Zn30(S04)2 -27 83 -7 23 20 60 ZnO:2ZnS04 Zn4(OH)6S04 -24 00 4 40 28 40 Zn4(OH)6S04 ZnMetal -50 63 -23 94 26 69 Zn ZnO(a) -8 08 3 23 11 31 ZnO ZnS04:H20 -4 96 -5 26 -0 30 ZnS04:H20 End of simulation. Reading input data for simulation 2. End of run. 176 Appendix I : Relationship between flow and outflow chemistry The hydrographs in this appendix show the sulfate concentration and the flow rates measured during the experiment for different periods of time. The sulfate concentration is represented by data points and its number is indicated on the right y-axis. The flow rate is represented by a solid line with the numbers printed on the left y-axis. Fig. 1-1 - Fig. 1-16 show an overview of the outflow chemistry and flow rate during the whole duration of the experiment from December 1999 to January 2004 for each lysimeter. Fig. 1-17 - Fig. 1-20 show close-ups of the winter months in 2000, Fig. 1-21 -Fig. 1-24 show close-ups of the summer months in 2000 and Fig. 1-25 - Fig. 1-28 show close-ups of the spring and summer months in 2001. The hydrographs in Fig. 1-29 -Fig. 1-32 show the flow rate and sulfate concentration during and after an infiltration event in September 2001. Other infiltration events in October 2001 and August 2002 are presented in Fig. 1-33 - Fig. 1-36 and Fig. 1-37 - Fig. 1-40, respectively. The x-y plots in Fig. 1-41 - Fig. 1-56 compare the flow rate with the sulfate concentration for each lysimeter and year between 2000 and 2003. The relationships between flow and outflow chemistry is described in section 5.4. Lysimeter 1 25 i r 25000 20000 15000 10000 a a o G CD O a o o 5000 Dec-99 Jun-00 Dec-00 Jun-01 Dec-01 Jun-02 Dec-02 Jun-03 Dec-03 Fig. 1-1: Outflow rates and sulfate concentrations from December 1999 to January 2004 for lysimeter 1. 177 Lysimeter 2 Dec-99 Jun-00 Dec-00 Jun-01 Dec-01 Jun-02 Dec-02 Jun-03 Dec-03 Fig. 1-2: Outflow rates and sulfate concentrations from December 1999 to January 2004 for lysimeter 2. 178 25 20 1Z. 15 <§ 10 0 x x Dec-99 X X Lysimeter 3 x ? x " ^ xx x xx x X x x 25000 20000 <a0 £ 15000 ^ o •a a <u o c o o I 10000 5000 Jun-00 Dec-00 Jun-01 Dec-01 Jun-02 Dec-02 Jun-03 Dec-03 Fig. 1-3: Outflow rates and sulfate concentrations from December 1999 to January 2004 for lysimeter 3. 179 Lysimeter 4 Dec-99 Jun-00 Dec-00 Jun-01 Dec-01 Jun-02 Dec-02 Jun-03 Dec-03 Fig. 1-4: Outflow rates and sulfate concentrations from December 1999 to January 2004 for lysimeter 4. Lysimeter 5 25000 Dec-99 Jun-00 Dec-00 Jun-01 Dec-01 Jun-02 Dec-02 Jun-03 Dec-03 Fig. 1-5: Outflow rates and sulfate concentrations from December 1999 to January 2004 for lysimeter 5. 181 Lysimeter 6 Dec-99 Jun-00 Dec-00 Jun-01 Dec-01 Jun-02 Dec-02 Jun-03 Dec-03 Fig. 1-6: Outflow rates and sulfate concentrations from December 1999 to January 2004 for lysimeter 6. 182 25 T Lysimeter 7 r 25000 20000 ao £ 15000 ^ o ' 1 a <u o c< o o 10000 5000 Dec-99 Jun-00 Dec-00 Jun-01 Dec-01 Jun-02 Dec-02 Jun-03 Dec-03 Fig. 1-7: Outflow rates and sulfate concentrations from December 1999 to January 2004 for lysimeter 7. 183 25 -r 20 ^ 15 o 10 x xx X 0 Dec-99 XX X X Lysimeter 8 X X X X 3 X X X X X x x x x V L X 25000 20000 s 15000 ^ o I s 4> o e 10000 „ 1 3 C/3 5000 Jun-00 Dec-00 Jun-01 Dec-01 Jun-02 Dec-02 Jun-03 Dec-03 Fig. 1-8: Outflow rates and sulfate concentrations from December 1999 to January 2004 for lysimeter 8. 184 Lysimeter 9 r 25000 Dec-99 Jun-00 Dec-00 Jun-01 Dec-01 Jun-02 Dec-02 Jun-03 Dec-03 Fig. 1-9: Outflow rates and sulfate concentrations from December 1999 to January 2004 for lysimeter 9. 185 Lysimeter 10 25 T 25000 Dec-99 Jun-00 Dec-00 Jun-01 Dec-01 Jun-02 Dec-02 Jun-03 Dec-03 Fig. 1-10: Outflow rates and sulfate concentrations from December 1999 to January' 2004 for lysimeter 10. 186 Lysimeter 11 Dec-99 Jun-00 Dec-00 Jun-01 Dec-01 Jun-02 Dec-02 Jun-03 Dec-03 Fig. 1-11: Outflow rates and sulfate concentrations from December 1999 to January 2004 for lysimeter 11. 187 Lysimeter 12 25 T Dec-99 Jun-00 Dec-00 Jun-01 Dec-01 Jun-02 Dec-02 Jun-03 25000 20000 15000 10000 a o s o s o 5000 Dec-03 Fig. 1-12: Outflow rates and sulfate concentrations from December 1999 to January 2004 for lysimeter 12. 188 Lysimeter 13 189 Lysimeter 14 Dec-99 Jun-00 Dec-00 Jun-01 Dec-01 Jun-02 Dec-02 Jun-03 Dec-03 Fig. 1-14: Outflow rates and sulfate concentrations from December 1999 to January 2004 for lysimeter 14. 190 25 20 o 10 X X x X X Lysimeter 15 0 Dec-99 Jun-00 Dec-00 Jun-01 Dec-01 Jun-02 Dec-02 Jun-03 25000 20000 £ 15000 ^ o •a a o s o o. 10000 43 5000 Dec-03 Fig. 1-15: Outflow rates and sulfate concentrations from December 1999 to January 2004 for lysimeter 15. 191 Lysimeter 16 25 T Dec-99 Jun-00 Dec-00 Jun-01 Dec-01 Jun-02 Dec-02 Jun-03 r 25000 20000 15000 10000 •a a <u o s o o u 5000 Dec-03 Fig. 1-16: Outflow rates and sulfate concentrations from December 1999 to January 2004 for lysimeter 16. 192 3.0 2.5 2.0 T3 3 1.5 o 1.0 0.5 0.0 -n-% Flow Rate & Sulfate Concentration - January-April 2000 - Lysimeter 1-4 — L y s 1 - flow Ly S 2 - flow Lys 3 - flow Lys 4 - flow •j- Lys 1 - sulfate O Lys 2 - sulfate A Lys 3 - sulfate • Lys 4 - sulfate • A-A • -i 1 1 1 1 1 r* ^ 1 1——~r: 1 1 1 1 1— 30000 25000 20000 15000 c o •a 10000 ts 5000 % % % % Fig. 1-17: Flow rate and sulfate concentration for lysimeter 1-4 during the winter months of 2000. 193 3.0 2.5 2.0 5 ? •a B 1.5 o 1.0 Flow Rate & Sulfate Concentration - January-April 2000 - Lysimeter 5-8 — » L y s 5 -flow •••••••••••••••••• I A S 6 - flow Lys 7 - flow Lys $ »- flow ••• Lys 5 - sulfate O Lys 6 - sulfate A Lys 7 - sulfate • LysS > - sulfate "CT A • A - A i — i i i i i % % % % • • 30000 25000 20000 J l c o •Z3 15000 10000 5000 Fig. 1-18: Flow rate and sulfate concentration for lysimeter 5-8 during the winter months of 2000. 194 Flow Rate & Sulfate Concentration - January-April 2000 - Lysimeter 9-11 'Lys 9 - flow """—Lys 10 - flow Lys 11 - flow -f Lys 9 - sulfate O Lys 10 - sulfate A Lys 11 - sulfate 3.0 T 2.5 2.0 -a & 1.5 2 o 1.0 0.5 0.0 A i v 1 r 'i —l 1 1 r- i 1 I i % o, 'o, 'o % o, 'o, 'o A r 30000 25000 20000 S. s o • I 15000 1 o e • o o 10000 % 5000 ft Fig. 1-19: Flow rate and sulfate concentration for lysimeter 9-11 during the winter months of 2000. 195 3.0 2.5 2.0 33 3 1.5 S • o 1.0 0.0 Flow Rate & Sulfate Concentration - January-April 2000 - Lysimeter 13-16 "•""""Lys 13 - flow f^ ys 14 - flow Lys 15 - flow Lys 16 - flow + Lys 13 - sulfate O Lys 14 - sulfate A Lys 15 - sulfate • Lys 16 - sulfate • A ' 1 i I ' V % A A <> • A <> + - + 30000 25000 20000 JL 15000 10000 5000 •<3» Fig. 1-20: Flow rate and sulfate concentration for lysimeter 13-16 during the winter months of 2000. 196 How Rate & Sulfate Coaceatrs&oa - Augysi/September 2000 - Lysimeter 1-4 • Lys i - flow • Lys 2 - flw - Lys 3 •• 8c-y/ - Lys 4 • 3<w x Lye; 1 • saJfats S3 Lys 2 • sul&t* ALys 3 • sa&'ai* O Lys 4 • suJ&i* Fig. 1-21: Flow rate and sulfate concentration of lysimeter 1-4 for September and October 2000. 197 198 Flow Rate & Sulfate Cocceatratiofl - Aagust/Sebiwnfcer 2000 - Lysimeter 9-12 * Lys 9 - -fiw 'Lys t0-fiw -Lys It Boy/ 'Lys52ik>w x Lys 9 • suifats OLys 19 • sxti&fe &Ly* Jl - sulfat* Oly* 12 • sulfide Fig. 1-23: Flow rate and sulfate concentration of lysimeter 9-12 for September and October 2000. 199 Flow P„ate <& Sulfate Conceafraiioo - August/Septerftbsr 2000 • Lysimeter 13-16 • Lys B-flow Lys 14- few • Lya 15-&••«•" • Lj» 1*5 • ffew xLys 1?. - sml&te uLy^ 14-saifate &Lys 13 - sniftfe $L;s» 16 - snlfflft 3D r 30000 24000 1S000 120GD 2 r 6000 %»0 Fig. 1-24: How rate and sulfate concentration of lysimeter 13-16 for September and October 2000. 200 Flow Kate & Sulfate Co&ecafcrstioa - June-August 2001 - Lysiaaeier 1-4 <Lys1 -tlos - » L y a 2 - f l o w * Lya 3 - fiow • Lys 4-flow xl.ya I - sutftiie ;:;Lys2-suif&le &Ly* 3 - su3fst« Ol..ys<ss. sujftte Fig. 1-25: Flow rate and sulfate concentration of lysimeter 1-4 for June - August 2001. 201 4 50 Flow Rate & Sulfate Concentration - May-August 2001 - Lysiaaeier 5-8 Lys ' - flew • Lys 6 - flow - Lys ? - 8w < Lys $ - fiw x Lys 5 - sulfate O Lys 6 - svff&i* £, Lys 7 - sulfate O Lys 8 - siifat* j 4 • X X | o "T A f x x x , ! I & « A A 1 II -. -irnr. •.rjjLiijuuuuuuuLiLiuuuuuuLiJj. m. L.L/L'L'. L.LV.j.y •, •, •, • iMUMfjunni.vAnf.n r , n 1 mn^ .uuyLiuuuuuL.Li^ .M.n.^ .irLnnr.in.n ri nn n n -i n -.n 11 -Tin mnnnnnmnnnmnn njwir nnnnrjuuu.i •„.„.„.,uj,.n.rmrif mAW.n  nnr.nnnr.nmnnririnnimm inrirmif.-. ! * : a 8 V- * •j %j 1 O D 1 I t & » V . 5K - T O S . •i O D <": | I - J i K * ft 14 v. ^ ri% ^ j 1 " v ••^  •••>»M:S:;M» . | "I'WllllllUil ** 2 W as 55900 $0000 * 5000 ^ 0 ••re-. f?3 3?, Fig. 1-26: Flow rate and sulfate concentration of lysimeter 5-8 for May - August 2001. 202 Flow Rate & Sulfate Coactaaratioa - May-August 2001 - Lysimeter S-12 * , -< Lys 9 - flw •: Lys 10 - dow • Lys U - Sow • Lys 12 - &ow xLys 9 - sv&m uLys 10 - si^fsJ* A Lys 11 - *utfet« >0 Lys 12 - sutf«J* Fig. 1-27: Flow rate and sulfate concentration of lysimeter 9-12 for May - August 2001. 203 Flow Rate & Sulfate Coaeeatraaoa - May-August 2001 - Ljrameter 13-16 > lm O - f i w • Lys l4-8w • Lys IJ {ley/ * Lys 16 ilow xLyes 13 • suifet* TILys M-sift&ts ALysiS - sulfate OLyslti- s\»ifsUs I Fig. 1-28: Flow rate and sulfate concentration of lysimeter 13-16 for May - August 2001. 204 Flow Rate & SuBkte Concentration - August/September 2001 - Lysaaeter 1-4 * Lys 5 • flow • Lys 2 •• fl«w • Lys 3 •• flw - Lys 4 • flow X Lyp 1 • ssuSfat* D Lys 2 • «4f* i* A Lys 3 • sutfste O l y s 4 • stiftle Fig. 1-29: Sulfate concentrations and flow rates during an infiltration event in September 2001 for lysimeter 1-4. 205 Flow S.ate & Sulfate Concwxtra&M* - Aagast/Septeasber 2001 - Lysjjrteter 5-8 • Lys 5 • flow" •• Lys tS • flowr • Lys'/ • ftow * Lys ? • flow * Lys 5 - gulfete « Lys 6' • suifak A Lys V - sulfate o Lys S • sulfet* Fig. 1-30: Sulfate concentrations and flow rates during an infiltration event in September 2001 for lysimeter 5-8. 206 Flow Rate & Sulfate Conceatraibfl - August/September 2001 - Lysimeter 5-11 • Lys 9 - ftow » Lys 10 - flow • Lys 51 - fiow * Lys 9 - suifst* e Lys 10 - A Lys 11 - s«Jf*U Fig. 1-31: Sulfate concentrations and flow rates during an infiltration event in September 2001 for lysimeter 9-11. 207 Flow Rate & Sulfate Coaceidraaoa - August/September 2001 - Lyssmttet 13-16 • Lys !>-flo«r ' Ly* O-flaw - Lys 14-flew -LyclS-Sow xLyes 13 • sulfite OLys M • suJM* ALys 15-sulfate OLys U> • swiftte Fig. 1-32: Sulfate concentrations and flow rates during an infiltration event in September 2001 for lysimeter 13-16. 208 Flow Eate & Sulfate Coaeeolxa&ea - October 2001 - Lyacaeter 1 ~4 - Lys i - ffow - Lys 2-flaw • Lys 3 - Sow • Lys4-8cw *Lysl - sulfate "= Lys 2 • sulfite A Lys 3- sulfate oLy*4- sulfate Fig. 1-33: Sulfate concentrations and flow rates during an infiltration event in October 2001 for lysimeter 1-4. 209 210 25 as Flow Rate & Sulfate Co»ceatrMiofi - October 2001 - Lysimeter 9-12 •Lys 9-flow •LysiO-ftcw • OO-HVJ < T.ys 11 - flow • Lys !2 - flow s Lys 9 - srfats Lys 10 - sulfate A Lys • • - sulfate «Ly*i2-suSfet« V7 25000 !5DQ0 r 3008 t "r ) r~ ~H j ) 1 1 i—•—r- -i r-J1* Fig. 1-35: Sulfate concentrations and flow rates during an infiltration event in October 2001 for lysimeter 9-12. 211 212 Flow Rate & Sulfate Cst&esBSratidfi - August. 2002 - lysjaitter 1 -4 -tysl-Bow -Ly»2 -flow •Lys3-J;Uw «Ly»4.flow xLyei ••suS&ie Oiys2~esulJ5sS» &Lys 3 • swtf»te OLys4-.«uJf«te Fig. 1-37: Sulfate concentrations and flow rates during an infiltration event in August 2002 for lysimeter 1-4. 213 214 Plow Rate & SuSate Csttcentratk>fi - August 2002 -Lydmeter 9-12 - Lys ? • flow • lye 10 • fto^ * Lys 11 • ilcw • Lys 12 • flow x Lys 9 - sulfide » Lys it) • sulfate a Lys 11 • sulfate * Lys 12 • sulfete ***** Fig. 1-39: Sulfate concentrations and flow rates during an infiltration event in August 2002 for lysimeter 9-12. 215 Plow Rate & Sulfate CottccntraiJoa - August 2002 - Ly?imeter 13-16 -L<fs)3-fe«' • Lys i-1 • few • Lys 35 - few • Lys 16-Aw xiys B - e<M'm DLyg J4 • «o5fa*« &t#* tf-sxd&i* *Ly» t6'• s»tftt» Fig. 1-40: Sulfate concentrations and flow rates during an infiltration event in August 2002 for lysimeter 13-16. 216 Flow vs. Sulfate - Lysimeter 1 35000 30000 CT 25000 "5b g a o "3 ± 3 S3 0) o s 3 20000 15000 1 0 0 0 0 + o x o , o . O y-O O * o x 0 < > X ^ X - — X" x * x x x 4- X -5000 t r * — + X X xx o o — ! 10 + X 15 , 20 flow rate [1/day] O2000 X2001 + 2002 • 2003 25 Fig. 1-41: Correlation between the sulfate concentration and the flow rate in lysimeter 1 for 2000, 2001, 2002 and 2003. 217 Flow vs. Sulfate - Lysimeter 2 35000 7 " 30000 ~ 25000 + a, J 20000 2 o § 15000 CJ 10000 o + % o + <> A <*> + o x O 0 • o o o o <*> o ° fc x+* l € o v x o * X o . . X * ° x o X J . 1 f+ + x ! ^ ^> + *+ + x x X X x 1 1 + X % x x II + o x X x y X X x x x 1 i i 10 15 20 flow rate [1/day] O2000 X2001 + 2002 • 2003 25 Fig. 1-42: Correlation between the sulfate concentration and the flow rate in lysimeter 2 for 2000, 2001, 2002 and 2003. 218 Flow vs. Sulfate - Lysimeter 3 35000 30000 =r 25000 g 20000 a o a s a o 15000 o S 10000 5000 X o o / \ , pb< o o ^ » & ° x x X X Y p **' #X x x X X X X v X X v X X X x x x +x X X x x + X l:i O X X « - y ^ * xx x X Ix o x x * X O X X X " " " " " — 1 " , j 10 15 20 flow rate [1/day] O2000 X2001 + 2002 • 2003 25 Fig. 1-43: Correlation between the sulfate concentration and the flow rate in lysimeter 3 for 2000, 2001, 2002 and 2003. 219 Flow vs. Sulfate - Lysimeter 4 35000 -r 30000 ™ 25000 "So S s o •a a c o o 20000 15000 P * * « o * ° 10000 $ f ft* K x x x • X , x + x x o X -x-X 5000 X X X X •bo* X x oP-10 15 flow rate [1/day] 20 X O2000 X2001 + 2002 • 2003 25 Fig. 1-44: Correlation between the sulfate concentration and the flow rate in lysimeter 4 for 2000, 2001, 2002 and 2003. 220 Flow vs. Sulfate - Lysimeter 5 30000 10 flow rate [1/day] 12 O2000 X2001 + 2002 12003 14 Fig. 1-45: Correlation between the sulfate concentration and the flow rate in lysimeter 5 for 2000, 2001, 2002 and 2003. 221 Flow vs. Sulfate - Lysimeter 6 <5> 35000 T---30000 CT 25000 £ a •2 20000 1 o § 15000 o o O X + 10000 5000 <>x + X X o X £ x x+ x + x x x + 0 ^ L x+ X X + X 10 — ! 15 X flow rate [1/day] 20 O2000 X2001 + 2002 D 2003 7 ^ ~f" 25 Fig. 1-46: Correlation between the sulfate concentration and the flow rate in lysimeter 6 for 2000, 2001, 2002 and 2003. 222 35000 30000 =r 25000 1 20000 a a o § 15000 o 3 « 10000 %x O' X o , x « 5000 Flow vs. Sulfate - Lysimeter 7 X X x-p f *+ |p> x X t i -l t " x X o X. Xx x xx o x x x x X X -x x* X 10 15 flow rate [1/day] 20 X xl X 25 O2000 X2001 + 2002 • 2003 Fig. 1-47: Correlation between the sulfate concentration and the flow rate in lysimeter 7 for 2000, 2001, 2002 and 2003. 223 Flow vs. Sulfate - Lysimeter 8 35000 n 30000 =7 25000 a 20000 a o I o o 15000 o M « 10000 5000 „ „ „ — . . . — — •• • — • ' 4-<9 o + o X X + x<* o o x. X x A x x£ CH~ X 0 + o A ° + + + t t * ° fx o * ^ + X ' * . o x+ X + X r + *xx o o o o xX xx + + X ± + X X + x ^ x% x o X X x -\ir*-r^ i ° + X* + + + X x x ° o x + 10 15 flow rate [1/day] 20 O2000 X2001 4-2002 • 2003 25 Fig. 1-48: Correlation between the sulfate concentration and the flow rate in lysimeter 8 for 2000, 2001, 2002 and 2003. 224 Flow vs. Sulfate - Lysimeter 9 35000 30000 =r 25000 S a •2 20000 1 o o 15000 o S « 10000 5000 I] X + + ^ X y V X -"1" X x X 0 t o x T w X X X " " * x X ^ x , x x x o $ o • l o x * x x ^ v O X X X y X X O X 0 o 1-K X X X t + + + 0 10 ! 15 flow rate [1/day] 20 O 2 0 0 0 X 2 0 0 1 + 2002 • 2003 25 Fig. 1-49: Correlation between the sulfate concentration and the flow rate in lysimeter 9 for 2000, 2001, 2002 and 2003. 225 Flow vs. Sulfate - Lysimeter 10 35000 30000 CT 25000 a * x g x x — X T O X X X X X o X x x if x x x x x x x X 5000 II >x x o x X X *xx X X X 10 15 flow rate [1/day] 20 O2000 X2001 + 2002 G2003 25 F i g . 1-50: Correlation between the sulfate concentration and the flow rate in lysimeter 10 for 2000, 2001, 2002 and 2003. 226 Flow vs. Sulfate - Lysimeter 11 35000 30000 =r 25000 "5b S •B 20000 1 y o 15000 o 3 SS « 10000 5000 |+ X X o x x X -k 4.+ 4 s X * X" X o X X X X X X x o X o 10 15 flow rate [1/day] 20 o 4 25 O2000 X2001 + 2002 : •2003 Fig. 1-51: Correlation between the sulfate concentration and the flow rate in lysimeter 11 for 2000, 2001, 2002 and 2003. 227 Flow vs. Sulfate - Lysimeter 12 35000 -, 30000 =< 25000 -fc s s o 2 20000 C3 a a o u 3 15000 10000 5000 X o o o o o + X * x * x *x X X X 4- X x<^  -pr* o o X X x^ \ x x x< X ^ x -xx_ o x x x It-—^o-X X o X X X X X + + + 4-10 15 20 flow rate [1/day] O2000 X2001 4-2002 D2003 25 Fig. 1-52: Correlation between the sulfate concentration and the flow rate in lysimeter 12 for 2000, 2001, 2002 and 2003. 228 Flow vs. Sulfate - Lysimeter 13 35000 30000 =7 25000 a •2 20000 a a Hi B o o tf-15000 Sa 3 10000 -+ oo o o x* * ° x x X o X + X 5000 -| #- x + + + + + 0 4* X *<^x + 10 15 flow rate [1/day] 20 X t X O2000 X2001 1 + 2002 12003 25 Fig. 1-53: Correlation between the sulfate concentration and the flow rate in lysimeter 13 for 2000, 2001, 2002 and 2003. 229 Flow vs. Sulfate - Lysimeter 14 35000 30000 CT 25000 g . e •2 20000 o o 15000 o S « 10000 -x-5000 --- X 0 X X —<>x-o X X o xx* 0 , x ° >^-X" }4*+X X "X Q o X x x ~ ^ x ^ — x X X x x X X X X o 10 15 flow rate [1/day] 20 Fig. 1-54: Correlation between the sulfate concentration and the flow rate in lysimeter 14 for 2000, 2001, 2002 and 2003. 230 Flow vs. Sulfate - Lysimeter 15 35000 T 30000 25000 S i ) e e •2 20000 1 o o 15000 o Q Sa « 10000 5000 Jj <>x X X X ^ o o 0 X o Oi...: ^ *x x X X o o Q o o o o O O) < X x o "xx + x x x o 0 X X X ! + X o X ^ X "x X X x x X r X o ;—1 1 10 15 flow rate [1/day] 20 25 Fig. 1-55: Correlation between the sulfate concentration and the flow rate in lysimeter 15 for 2000, 2001, 2002 and 2003. 231 Flow vs. Sulfate - Lysimeter 16 35000 30000 CT 25000 s •2 20000 i i a i> 9 o 15000 o I? •p. ip o o It 0 o o • x o x o x x x x x X • 0 X V fcl 3 10000 x % x + o fOO. X 5000 o x x * x 00 _xx ^ o o o o x ~ x x o X X X X o 0 10 15 flow rate [1/day] 20 X 25 Fig. 1-56: Correlation between the sulfate concentration and the flow rate in lysimeter 16 for 2000, 2001, 2002 and 2003. 232 233 Appendix J : Mass loading calculation. The following two tables (Table J-l and Table J-2) summarize the mass loading calculation. The amount of sulfate released per month and per lysimeter is calculated where sufficient chemistry data allows the calculation of a monthly sulfate average concentration. The blank cells in the table indicate that not enough chemistry data was available to get a good estimation of the monthly average sulfate concentrations. The amount of sulfate released at the base of the waste rock pile is estimated based on the flow volumes and on the observed relationships between flow and outflow chemistry. These sulfate release values are presented in the grey cells. Lysimeter 2 Lvshneter 3 Lvsimeter 4 Lvsimeter 5 Lysimeter 6 Lysimeter 7 Lysimeter 8 outflow sulfate sulfate outflow sulfate sulfate outflow sulfate sulfate outflow sulfate sulfate outflow sulfate sulfate outflow sulfate sulfate outflow sulfate sulfate outflow sulfate sulfate volume concentration released volume concentration released volume concentration released volume concentration released volume concentration released volume concentration released volume concentration released volume concentration released ra [mg/1] [mg] ra [mg/1] [mg] [1] [mg/1] [mg] [1] [mg/1] [mg] ra [mg'll [mg] ra [mg/1] [mg] m [mg/I] [mg] [1] [mg/1] [mg] Jan-00 13 8859 118730 15 18684 288346 14 13817 197586 14 11102 158763 10 14379 150446 19 12957 251566 14 6472 88128 14 480 6860 Feo-OO 6 7441 44363 9 20495 191164 9 16407 144385 7 20225 139672 7 12472 93244 11 27212 312846 8 22051 184231 6 24502 139596 Mar-00 4 6680 23606 7 25222 175030 6 16737 96474 5 17389 83825 5 7361 34610 45 11340 505595 7 5466 37720 6 14342 82411 Apr-00 16 13116 205757 8 22965 195004 5 13116 60643 3 13116 45843 4 13116 56924 44 13116 571490 9 13116 120510 5 2585 12483 May-00 57 188 23 31 30 182 80 39 Jun-00 24 81 19 26 19 72 29 21 Jul-00 232 10907 2530206 242 16425 3978255 146 18886 2756820 223 15068 3356336 134 11078 1480393 629 7728 4857510 296 10999 3253293 166 12462 2064887 Aug-00 163 11387 1860057 190 12045 2289700 104 23743 2471888 146 17205 2518713 103 20112 2075329 537 4356 2338988 201 15374 3088218 141 14896 2105897 Sep-00 90 12041 1087683 126 12156 1534356 89 20713 1834416 95 15620 1491202 65 17512 1130859 234 8366 1960230 121 16016 1942544 79 22802 1812197 Oct-00 101 15812 1593644 138 16063 2219707 56 16588 924956 62 15111 942486 38 16288 617644 203 12290 2495741 68 13042 891491 276 13638 3757778 Nov-00 • 31 9669 300316 41 9669 392167 27 9669 262214 30 9669 292678 27 9669 260272 57 9669 549746 36 9669 352092 25 9669 242335 Dec-00 18 21 10 12 14 30 20 13 Jall-01 9 12 9 8 8 17 11 8 Feb-01 5 6 8 6 5 11 10 7 Mar-01 4 6 7 5 11 13 6 4 Apr-01 46 4 1 4 3 15 5 2 May-01 65 5195 335304 51 9445 478193 4 25707 107542 7 14630 106033 20 15993 326414 128 6226 797497 13 13272 168762 4 7375 29864 Jun-01 35 9780 346640 50 14023 704190 15 17930 262202 21 17550 361872 21 11224 235165 64 10460 664675 26 5621 144865 13 13473 180481 Jul-01 78 12878 999257 87 10069 872841 20 13046 255584 37 13869 507050 30 18911 574533 194 6018 1169367 53 15546 824579 25 13548 342671 Aug-01 100 8993 896837 146 12299 1798315 101 16119 1623655 109 9939 1079699 63 15919 • 1001994 222 7375 1636449 128 12159 1554564 76 18151 1378987 Sep-01 153 8293 1269519 198 7764 1539065 110 14991 1654616 177 10631 1876771 72 10746 771395 425 5187 2204426 196 7670 1502957 125 11201 1398911 Oct-01 126 7498 946953 178 6283 1117664 137 10795 1474742 145 8310 1205431 67 13335 886899 325 4075 1323195 159 10814 1719079 113 7236 818295 Nov-01 37 9753 358849 44 9753 432785 36 9753 352829 38 9753 372468 28 9753 276669 60 9753 589703 43 9753 422350 31 9753 305645 Dec-01 17 19 15 18 14 27 19 15 Jan-02 9 15063 136500 10 11115 113587 10 15063 149810 9 15063 135074 8 15430 120293 16 8882 140854 13 15063 191203 22 19257 432357 Feb-02 5 6 8 5 5 10 7 5 Mar-02 3 4 6 6 4 •7 5 3 Apr-02 2 3 3 3 2 5 4 3 M«y-02 70 9853 693885 91 13353 1218379 55 8961 496791 48 22558 1086346 47 163512 7658980 180 5269 950706 41 620 25217 28 27769 767304 Jun-02 42 62 53 33 28 73 54 17 Jul-02 82 127 71 85 56 168 98 59 Aug-02 202 5359 1083943 303 8177 2475349 441 7117 3135439 592 8697 5149968 164 18639 3057327 448 4989 2233125 306 6852 2098955 385 7802 3001444 Sep-02 29 60 55 47 28 55 40 47 Oct-02 12 13848 164922 18 9377 169709 36 13848 500464 18 13848 244881 12 28392 336331 25 8211 201324 18 13848 256010 14 11560 158078 Nov-02 8 2041 16799 10 " 8723 88738 23 2789 65317 9 9910 90608 7 7551 54034 . 13 6399 82704 10 7228 70403 7 7481 53383 Dec-02 6 6168 38592 7 9306 68462 7 10548 77782 8 8488 68601 5 1853 9262 10 5326 52647 8 5542 41739 7 4226 29211 Jan-03 4 1168 4643 5 5088 24757 5 5281 23900 4 9532 41416 3 2109 6795 7 2714 18366 5 6080 32663 12 5490 66330 Feb-03 2 792 1736 2 7739 18651 3 5888 15087 3 6001 17335 2 3873 8090 4 4575 20341 4 3720 13492 5 2566 12264 Mar-03 1 1209 1607 3 4345 13035 2 12509 27917 2 18157 41145 1 1051 1427 3 7819 23557 3 3240 8413 6 5187 30081 Apr-03 1 6652 6050 2 9346 17757 2 5734 8986 2 7554 13231 1 2632 2562 2 7197 16958 2 10624 23869 2 1890 3421 May-03 3 7786 20211 3 36586 103939 2 50794 77466 113 19359 2197258 1 171398 243118 2 15686 28848 2 123182 280441 302 20000 6040253 Jun-03 14 10911 156258 5 12700 59892 2 10911 19335 100 10911 1086027 1 10911 13532 1 12100 18086 • 2 10911 18959 49 10911 539392 Jul-03 14 10700 151693 19 8940 173096 8 10861 90909 22 10836 234566 3 18000 52240 9 7930 72234 3 14900 38929 67 10836 727523 Aug-03 4 12200 49695 5 9400 42963 3 10500 32425 6 11452 68712 5 19798 100630 12 7950 92861 5 12300 67564 11 11452 126307 Sep-03 11 14152 154625 15 9270 135902 12 10700 131154 11 11411 127712 7 18000 120696 12 7580 91630 8 11551 90508 9 11411 108012 Oct-03 27 9 9 9 8 17 8 10 Nov-03 42 31 25 31 22 . 54 11 38 Dec-03 15 7447 112956 21 12219 250507 16 16250 257410 16 9854 161040 12 7514 90428 27 7859 208394 17 7876 134956 26 8953 236179 Table J - l : Summary of mass loading calculation, part 1. 234 Lysimeter 9 Lysimeter 10 Lysimeter 11 Lysimeter 12 Lysimeter 13 Lysimeter 14 Lysimeter 15 Lysimeter 16 CI outflow sulfite sulfate outflow sulfate sulfate outflow sulfate sulfate outflow sulfate sulfate outflow sulfate sulfate outflow sulfite - sulfite outflow sulfate sulfate outflow sulfate sulfite sulfate removed volume concentration released volume concentration released volume concentration released volume concentration released volume concentration released volume concentration released volume concentration released volume concentration released released sulfur [kg] [1] [mg/1] [mg] Ml [mg/1] [nig I [•1 [mg/1] [mgl (•] [mg/11 [mg] [1] [mg/1] [mgl [1] [mg/1] [1] [mg/1] [mgl [1] [mg/1 j [mgl [kg] Jan-00 17 23367 400713 16 30345 485785 12 10650 127300 14 7076 101186 14 22566 322688 16 14902 231683 14 18534 265043 10 16606 168054 3.4 1.1 Feb-00 10 20334 209765 9 31355 295496 10 18344 175361 9 19851 174690 9 13122 115471 10 21502 211322 11 11220 126256 9 18053 154134 2.7 0.9 Mar-00 8 15941 120675 . ; 7 28478 187227 8 12456 97310 6 20174 129114 9 12278 104872 7 12594 91233 7 15867 117230 6 20121 126991 2.0 0.7 Apr-00 3 24709 203107 5 2100 10575 7 13116 97761 5 13116 65581 11 3110 32696 7 12334 92220 7 15073 101179 4 22054 94711 2.0 0.7 May-00 57 56 96 71 77 71 111 63 yytt#3&i m-y-y-m Jun-00 36 29 37 39 5B 30 45 40 Jol-00 159 11660 1S58321 332 11614 3850168 315 10805 3398280 217 17007 3685203 459 9609 4410343 252 10023 2526186 256 9812 2509416 263 10905 2865602 49.4 16.5 Ang-00 140 22925 3202319 183 14791 2707516 209 9551 1995528 166 20537 3411365 327 11864 3881837 193 15227 2931460 222 14258 3161314 201 17108 3435670 43.5 14.5 Sep-00 94 23063 2171610 140 21638 3036440 139 13203 1834434 139 19199 2672974 179 9098 1630340 131 17993 2360393 138 14521 2006548 140 16260 2271117 30.8 10.3 Oct-00 68 13555 923318 85 13597 1150159 77 10361 802863 60 22272 1345251 131 7184 944480 80 19330 1543049 70 12705 884910 67 12154 811951 21.3 7.3 Nov-00 38 9669 367491 40 9669 387970 38 9669 363797 35 9669 336896 56 7184 400119 41 9669 394338 43 9669 415334 41 12154 493641 5.8 1.9 DK-00 21 22 21 21 28 21 21 21 r-XyyXftX Jan-01 13 12 13 13 15 12 14 12 V h yyyyyyyM Feb 01 S 7 8 9 8 7 10 7 Mar-01 6 7 8 13 6 7 7 5 Apr-01 5 .4 5 8 6 6 5 4 yyy-yy->ylji y-yy-yy^ May-01 27 10344 2803(58 16 16392 254662 14 11216 156388 4 18405 77424 105 7317 770039 12 19625 244147 68 10546 718975 28 13951 384256 5.2 1.7 JDD-O 1 39 23741 925147 39 14258 55B773 35 13730 478529 23 20950 487429 65 12592 817782 21 12719 263145 35 9967 348655 28 14192 400610 7.2 2.4 Jnl-01 55 24523 1351842 61 17725 1079454 56 13574 753629 28 15863 449411 103 9159 940280 47 11781 553295 77 20942 1611940 32 16751 543382 12.8 4.3 Ang-01 95 19179 1827502 153 16517 2524532 141 13041 1832411 110 17126 1887980 209 8059 1682843 125 13881 1738537 142 11730 1667429 103 13718 1410852 25.5 8.5 Sep-01 106 14224 1513234 178 11856 2107 879 212 8399 1781367 169 12484 2109582 281 10098 2839423 166 9497 1573796 220 9044 1991670 200 9482 1897359 28.0 9.4 Ocl-01 91 13133 1197924 133 15839 2102091 149 9817 1463462 138 12445 1718776 159 9524 1515370 96 12966 1233428 122 10068 1223427 113 9981 1131099 21.1 7.0 Nov-01 42 9753 407172 50 9753 486462 48 9753 465333 49 9753 481010 61 9524 577839 45 9753 435579 51 9753 498860 49 9981 485680 6.9 2.3 Dec-01 21 22 21 22 27 20 22 21 •y-y-y.-y.-iSA •yy.-yyyy.-tj0 Jan-02 13 20489 257753 12 15063 186719 13 12891 163039 12 16370 203120 16 10426 163549 11 15063 170903 13 15063 202368 13 20694 269460 3.0 1.0 Feb-02 8 7 8 7 9 7 9 7 4 Mnr-02 6 5 6 5 6 5 7 4 <y:-ttX&& Apr-02 4 4 4 4 4 4 5 3 mmm May-02 84 30203 2536298 91 21277 1945163 84 16434 1385996 43 15019 640404 65 ISO 20 1173508 51 27769 1413689 77 20103 1555912 38 43587 1647115 25.2 8.4 JDD-02 51 59 53 30 70 53 59 50 +><<<y>>XZ Jul-02 67 95 84 63 109 60 69 61 AA Aug-02 246 9806 2413300 375 7871 2952473 314 6067 1905747 276 7801 2151656 392 6659 2611680 318 6345 2017025 349 5848 2038871 378 6303 2574849 40.9 13.7 Sep-02 39 45 . 40 45 64 64 63 48 yyyymm yyyyyyyyX* Ocl-02 18 18024 331004 20 ; 13848 277838 20 13701 267998 17 13848 233344 35 8372 296529 32 13848 439870 27 13848 374270 21 13150 282223 4.5 1.5 Nov-02 11 2845 30205 10 14675 148627 10 2297 23280 8 9748 82024 19 7499 139550 16 7449 121540 20 9426 192229 12 14747 173658 1.4 0.5 Dcc-02 8 8165 67267 s 3785 28682 8 4715 37 823 9 9733 85647 12 4920 59919 11 5701 65198 17 2612 45669 9 2041 19036 0.8 0.3 Jan-03 6 10033 57306 5 9879 51596 6 10608 60502 7 5725 40073 7 3399 25206 8 5859 44956 17 3539 61332 10 9548 98535 0.7 0.2 Feb-03 4 6148 23150 3 7190 24450 4 4261 16448 3 6335 19004 4 2862 12643 5 4855 23618 7 1917 13930 5 7111 35589 0.3 0.1 Mar-03 3 12765 33741 2 18052 42509 3 3901 10986 3 13009 39028 3 6151 17179 3 4158 14235 6 2726 15909 3 13972 41150 0.4 0.1 Apr-03 2 14672 31380 2 11612 22021 2 7408 17794 2 S256 16512 2 8491 16697 3 5274 14671 3 2765 9345 2 16231 31826 0.8 0.3 May 03 2 59550 127986 2 23032 35698 2 51692 110509 21 6221 131954 24 13061 314169 30 17630 522356 34 18042 604853 62 20000 1238036 12.1 4.0 Jnn-03 3 10911 36137 1 10911 12914 2 10911 17783 51 10911 554299 33 10911 361411 30 7932 240103 30 10911 332250 51 10911 557759 4.0 1.3 Jul-03 12 13200 155202 9 11344 102380 3 11000 34116 28 10583 299716 35 7170 253652 27 8285 222966 30 7960 238553 31 10336 331488 3.2 1.1 Aug-03 14 15896 219518 11 11600 128756 7 10700 75175 7 11452 76120 27 3140 216861 22 9490 209887 24 9450 223535 20 11452 230900 2.0 0.7 Sep-03 13 14200 184359 11 11700 126455 9 10500 94898 15 11411 168556 19 8379 155346 14 10400 147733 16 10500 166587 15 11411 168766 2.2 0.7 Oct-03 16 12 8 8 26 13 11 12 :>-:-:-:-:-:-:-:-±-& ft f Nov-03 39 59 14 18 68 43 43 20 « ' Dec 03 22 11012 245623 24 12647 309778 22 11076 238303 22 10469 234509 28 7473 210347 22 6701 150155 45 5627 253179 22 14635 317426 3.5 1.2 T a b l e J-2: Surnmary of mass loading calculation, part 2. 235 236 Appendix K : Summary of the sulfate and cation concentrations The sulfate and cation concentrations for every sample that was analyzed are listed below. Table K- l - Table K-4 list the sulfate concentrations sorted by lysimeter and date, Table K-5 - Table K-l6 list the cation concentrations sorted by lysimeter and date. 237 Lyameter 1 Lrnm«<r3 Lyrim«ter4 LTrim« rS L rnm«er6 Ljdm.t.r 7 LydmMar 8 D M * and Tin* S04 ImtAl Dat* and Tim* S04 Imrfl Date and Tim* S04tmf/l| Data and Tin* S04|mgn| Dat* and Tim* S04 |mg,l| Dat* and Time S04 |mg/l] Dat. and Tim* S04 [mg/I) Date and Tim. S04 lmt/1] 22/12/1999 0853 10140 15/12/1999 08:53 17684 15/12/1999 08 53 20701 1VI2/1999 08:53 23611 1V12/1999 08 53 19736 11/10/1999 1745 5661 22/12/1999 08:53 6529 15/12/1999 08:53 26145 30/12/1999 08:53 18078 22/12/1999 08:51 17017 22/12/1999 08 53 24973 22/12/1999 08 53 15290 22/12/1999 08:53 9483 15/12/1999 08:53 10891 30/12/1999 08 53 26501 22/12/1999 08:53 636 QW01/2Q0Q OB: 53 12198 30/12/1999 08.53 15476 30/12/1999 08 53 23534 30/12/1999 08:53 4216 30/12/1999 08:53 3990 22/12/1999 08:53 10824 05/01/2000 08:53 586 30/12/1999 08:53 24248 12/01/2000 08 53 6633 05/01/2000 08:53 18563 12/01/2000 08 53 20952 05/01/2000 08:53 ' 24 690 05/01/2000 08:53 22291 30/12/1999 08:53 10688 12/01/2000 08:53 13300 19/01/2000 08:53 390 19/01/2000 08:53 7326 12/01/2000 08-53 20476 19/01/2000 08:53 6683 19/01/2000 08:53 3012 26/01/2000 08:53 6466 05/01/2000 08:53 12921 19/01/2000 08:53 10083 26/01/2000 08:53 26677 26/01/2000 08:53 9279 19/01/2000 08:53 17013 03/02/2000 08 53 25957 26/01/2000 08.53 5605 09/02/2000 08:53 26693 12/01/2000 08:53 10104 26/01/2000 08:53 1918 02/02/2000 08:53 24625 02/02/2000 08:53 3064 02/02/2000 08-53 18491 09/02/2000 08 53 23023 02/0 2/2000 08:53 12496 16/0272000 08:53 8577 26/01/2000 08-53 15845 02/02/2000 08:53 21073 09/02/2000 08:53 24378 09/02/2000 08:53 3106 09/02/2000 08:53 22500 16/02/2000 08 53 242 09/02/2000 08-53 26693 23/02/2000 08:53 2147 09/02/2000 08:53 27212 09/02/2000 08:53 17324 01/03/2000 08:53 13265 16/02/2000 OS 53 20005 01/03/2000 08:53 21328 01/03/2000 08 53 25162 15/03/2000 08 53 27610 01/0372000 08.53 9342 01/03/2000 08:53 26815 16/02/2000 08:53 23436 08/03/2000 08:53 12701 23/02/2000 08:53 3588 15/03/2000 08:53 27419 08/03/2000 08.53 7032 22/03/2000 08:53 4054 08/03/2000 08 53 6760 08/03/2000 08:53 400 23/02/2000 08.53 24210 15/03/2000 08:53 13492 01/03/2000 08:53 8180 22/03/2000 08 53 27656 15/03/2000 08.53 17710 29/03/2000 08 53 20503 15/03/2000 08:53 6953 15/03/2000 08:53 7067 01/03/2000 08:53 9956 22/01/2000 08:53 17592 08/03/2000 08 53 10377 29/03/2000 08 53 24485 22/03/2000 08:53 17044 13/07/2000 22.00 14424 22/03/2000 08:53 10095 22/03/2000 08 53 15155 08/03/2000 08.53 6707 29/03/2000 08:53 14660 15/03/2000 08:53 2861 05/04/2000 08 53 22965 13/07/2000 22:00 1E822 13/07/2000 22 30 15081 29/03/2000 08.53 6390 29/03/2000 08 53 7263 15/03/2000 08 53 6049 05/04/2000 08:53 2585 22/03/2000 08:53 5303 13/07/2000 22:00 5075 14/07/2000 03.00 10042 13/07/2000 23 00 15149 13/07/2000 22 00 10133 13/07/2000 22 00 7287 22/03/2000 08 53 4193 13/07/2000 2 2 00 8032 13/07/2000 22:00 10238 13/07/2000 22:30 16962 14/07/2000 03:00 6136 14/07/2000 01:00 12355 13/07/2000 22:30 9919 13/07/2000 22:30 6934 29/03/2000 08:53 224 13/07/2000 22:30 3018 13/07/2000 22:30 10295 13/07/2000 23 00 16908 14/07/2000 04:00 28176 14/07/2000 02 00 14848 13/07/2000 23 00 9868 13/07/2000 23 00 7558 13/07/2000 22:00 10082 13/07/2000 23 00 12478 13/07/2000 23:00 10191 14/07/2000 01.00 13661 14/07/2000 18:00 9286 14/07/2000 03.00 15736 14/07/2000 01:00 10934 14/07/2000 01:00 2587 13/07/2000 23:00 9742 14/07/2000 02 00 14220 14/07/2000 01:00 11161 14/07/2000 02:00 14903 15/07/2000 00:00 31757 14/07/2000 04:00 16048 14/07/2000 02 00 10233 14/07/2000 02.00 7724 13/07/2000 23:00 724 14/07/2000 03:00 3697 14/07/2000 02:00 11786 14/07/2000 03 00 14986 15/07/2000 04:00 8217 14/07/2000 06 00 15832 14/07/2000 03 00 10570 14/07/2000 03 00 7521 14/07/2000 01:00 9871 14/07/2000 04:00 13760 14/07/2000 03:00 2612 14/07/2000 04:00 16985 15/07/2000 08:00 27673 14/07/2000 08:00 16047 14/07/2000 04 00 10764 14/07/2000 04:00 8156 14/07/2000 02:00 10354 14/07/2000 06:00 13324 14/07/2000 04:00 10447 14/07/2000 05:00 15439 22/08/2000 08:53 22680 14/07/2000 08-53 14735 14/07/2000 06:00 12209 14/07/2000 06:00 7532 14/07/2000 03.00 5656 14/07/2000 08:00 15266 14/07/2000 05:00 11181 14/07/2000 06:00 16313 26/08/2000 08 53 24806 14/07/2000 10 00 18356 14/07/2000 08 00 10140 14/07/2000 08 00 8906 14/07/2000 04:00 10617 14/07/2000 10:00 13944 14/07/2000 06:00 12291 14/07/2000 08:00 18911 02/09/2000 08:53 22525 14/07/2000 11:30 19085 14/07/2000 08:53 8373 14/07/2000 08 53 7248 14/07/2000 06:00 10646 14/07/2000 11:30 15476 14/07/2000 08.00 12748 14/07/2000 10 00 15971 07/09/2000 08-53 23469 14/07/2000 14:00 17235 14/07/2000 10:00 11385 14/07/2000 10 00 8200 14/07/2000 0 8 00 11713 14/07/2000 14:00 15024 14/07/2000 08 53 4936 14/07/2000 11:30 16796 09/09/2000 08:53 656 14/07/2000 16:00 17226 14/07/2000 11:30 12303 14/07/2000 11:30 8102 14/07/200008:53 10059 14/07/2000 1 6 00 16765 14/07/2000 10.00 12783 14/07/2000 14:00 19962 12/09/2000 08.53 24522 14/07/2000 18:00 17608 14/07/2000 14:00 12456 14/07/2000 !4:00 9346 14/07/2000 10 00 16821 14/07/2000 18 00 16719 14/07/2000 11:30 11547 14/07/2000 16:00 19305 14/09/2000 08:53 24066 15/07/2000 00:00 15162 14/07/2000 16:00 17490 14/07/2000 16 00 9514 14/07/2000 11:30 10664 15/07/2000 00.00 14862 14/07/2000 14:00 12605 14/07/2000 18.00 16044 21/09/2000 08:53 25164 15/07/2000 02:00 15512 14/07/2000 18:00 14353 14/07/2000 18:00 10176 14/07/2000 1 4.00 12495 15/07/2000 04 00 14051 14/07/2000 16:00 12732 15/07/2000 00:00 21588 28/09/2000 08.53 23567 15/07/2000 04:00 15157 15/07/2000 00:00 449] 15/07/2000 00:00 5473 14/07/2000 16:00 11705 15/07/2000 0 8 00 15163 14/07/2000 18:00 21334 15/07/2000 04:00 17821 30/09/2000 08:53 21732 15/07/2000 08 00 690 15/07/2000 08 00 12705 15/07/2000 04:00 5779 14/07/2000 1 8:00 11942 22/08/2000 08:51 13099 15/07/2000 00 00 2490 15/07/2000 08.00 18021 24/10/2000 08:53 24698 22/08/2000 08 53 13813 22/08/2000 08 53 22762 15/07/2000 08 00 10276 15/07/2000 00:00 10802 26/08/2000 08:53 15355 15/07/2000 04:00 14957 22/08/2000 08 53 8965 25/10/2000 08:53 20134 26/08/2000 08-53 19188 26/08/2000 08.53 21153 22/08/2000 08:53 645 15/07/2000 04:00 11142 31/08/2000 08:53 16232 22/08/2000 08:53 10690 26/08/2000 08.53 14052 25/10/2000 09:30 20931 31/08/2000 08.53 13614 31/08/2000 08:53 16422 31/08/2000 08.53 8067 15/07/2000 08:00 12658 02/09/2000 08:53 19253 26/08/2000 08:53 12602 31/08/2000 08 53 13117 25/10/2000 21:00 588 02/09/2000 08 53 4531 02/09/2000 08 53 625 02/09/2000 08 53 6922 22/08/2000 08.53 16679 07/09/2000 08:53 23140 31/08/2000 08.53 10868 02/09/2000 08 53 14666 26/05/2001 15:00 25237 07/09/2000 08 53 17356 07/09/2000 OS 53 18713 07/09/2000 08 53 9232 26/08/2000 08.53 17SSE 09/09/2000 08 53 22858 02/09/2000 08 53 10474 07/09/2000 08 53 12744 3I/0V2001 08:53 26177 09/09/2000 08:53 16979 08/09/2000 08:53 25696 12D9/20OO 08:53 8898 11/08/2000 08.53 11557 12/09/2000 08 53 224 63 07/09/2000 08:53 14502 09/09/2000 08 53 11453 02/06/2001 08.53 24488 12/09/2000 08 53 15745 09/09/2000 08:53 20366 14/09/2000 08.53 8753 02/09/2000 08 53 18259 14/09/2000 08 53 24658 09/09/2000 08:53 14356 12/09/2000 08 53 12576 07/06/2001 08:53 18801 14/09/2000 08:53 18770 12/09/2000 08:53 19933 21/09/2000 08:53 8220 07/09/2000 08:53 14304 21/09/2000 08.53 22266 12/09/2000 08:53 13651 14/09/2000 08:53 2500 14/06/2001 08-53 13726 21/09/2000 08:53 18901 14/09/2000 08.53 22852 23/09/2000 08:53 9169 12/09/2000 08:53 16489 23/09/2000 08 53 23189 21/09/2000 08:53 11746 21/09/2000 08:53 14595 16/06/2001 08:53 21494 23/09/2000 08:53 15680 21/09/2000 08:53 18371 28/09/2000 08:53 8112 14/09/2000 08:53 16516 30/09/2000 08:53 24585 23/09/2000 08:53 11642 25/09/2000 08:53 14714 23/06/2001 08.53 21693 28/09/2000 08 53 16199 23/09/2000 08:53 23905 30/09/2000 08:53 7624 21/09/2000 08.53 14143 24/10/2000 08:53 19686 24/09/2000 08:53 13247 28/09/2000 08:53 15408 28/06/2001 08:53 24638 30/09/2000 08:53 16423 30/09/2000 08 53 7148 24/10/2000 08:53 16340 23/09/2000 08:53 17865 25/10/2000 08:53 3773 28/09/2000 08 53 7844 30/09/2000 08:53 10746 30/06/2001 08:53 673 24/10/2000 08 53 17820 24/10/2000 08.53 17968 25/10/2000 08.53 8953 28/09/2000 08:53 16056 25/10/2000 09.30 13967 30/09/2000 08.53 1090E 24/10/2000 08:53 13632 05/07/2001 08 53 3396 25/10/2000 08.53 16440 25/10/2000 08:53 16953 25/10/2000 09.30 14792 30/09/2000 08:53 14493 2*10/200021:00 17126 24/10/2000 08:53 19638 25/10/2000 08:53 14025 07/07/2001 08:53 18588 25/10/2000 09.30 18329 25/10/2000 09.30 13715 25/10/2000 21:00 9076 24/10/2000 08:53 17403 12/05/2001 17:00 11708 25/10/2000 08.53 13924 25/10/2000 09.30 23032 12/07/2001 08-53 17504 25/10/2000 21:00 7856 25/10/2000 21:00 16518 03/05/2001 08:53 7033 25/10/2000 08.53 17481 24/05/2001 08:53 5249 25/10/2000 09 30 15644 25/10/2000 21:00 13561 14/07/2001 08.53 18454 12/05/2001 16 55 10331 12/05/2001 16:55 1289] 05/05/2001 08:53 689 25/10/2000 09 30 587 26/05/2001 15:00 1480 25/10/2000 21:00 14040 01/05/2001 08 53 10917 19/07/2001 08:53 679 24/05/2001 08 53 17480 24/05/2001 08:53 17686 12/05/2001 16 55 6981 25/10/2000 21:00 16697 11/05/2001 08:51 9065 12/05/2001 04:55 2336 0V05/2001 08:53 2710 28/07/2001 08:53 19655 26/05/2001 15:00 18762 26/05/2001 15.00 16454 24/05/2001 08:53 7749 12/05/2001 17:00 630 02/06/2001 08:53 10831 24/05/200 1 08.53 10540 12/05/2001 04:55 3318 02/08/2001 08 53 17293 31/05/2001 08:53 11945 31/05/2001 08:53 16942 26/05/2001 15 00 7318 24/05/2001 08 53 23364 07/06/2001 08:53 12244 26/05/2001 15.00 905 24/0 V 2 001 08:53 13571 04/08/2001 08:53 15246 02/06/2001 08:53 24868 02/06/2001 08:53 I486! 31/05/2001 08:53 7584 26/05/2001 15 00 50000 16/06/2001 08:53 14928 29/0*2001 08 53 2694 26/0V2D01 15:00 13040 09/08/2001 08:53 21663 07/06/2001 08 53 17707 07/06/2001 08:53 18319 02/06/2001 08 53 8952 31/05/2001 08:53 15823 23/06/2001 08:53 15889 31/05/2001 08:53 9498 31/05/2001 14:00 13110 10/08/2001 08-53 3432 14/06/2001 08 53 17660 14/06/2001 08:53 16468 14/06/2001 08:53 8288 02/06/2001 08:51 599 14/07/2001 08:53 673 02/06/2001 08:53 14175 02/06/2001 08:53 12906 11/08/2001 08:53 20646 23/06/2001 08 53 3685 16/06/2001 08:53 647 16/06/2001 08-53 9545 07/06/2001 08:51 10429 28/07/2001 08:51 26423 07/06/2001 08:53 10675 07/06/2001 08.53 13730 16/08/2001 08:53 12861 30/06/2001 08.53 23833 23/06/2001 08:53 5825 23/06/2001 08.53 9182 14/06/2001 08:51 1036 02/08/2001 08:51 12768 14/06/2001 08 53 17372 14/06/2001 08-53 15249 23/08/2001 08:53 18579 07/07/2001 08-53 4638 14/07/2001 08 53 702 28/06/2001 08 53 14831 16/06/200! 08 53 3504 04/08/2001 08 53 13901 16/06/2001 08.53 19S2 16/06/2001 08:53 13625 28/08/2001 18:30 19235 12/07/2001 08 53 17727 19/07/2001 08:53 29090 30/06/2001 08:53 11964 23/06/2001 08:53 2572 09/08/2001 08:53 20014 28/06/2001 08:53 9774 23/06/2001 08:53 11350 01/09/2001 22:00 12838 14/07/2001 08 53 16737 28/07/2001 08:53 26942 05/07/2001 08:53 2181 28/06/2001 08:51 15588 11/08/2001 0853 20283 30/06/2001 08 53 4696 28/06/2001 08 53 17638 02/09/2001 04:00 4436 19/07/2001 08:53 17133 02/08/2001 08:53 10460 07/07/2001 08:53 2510 30/06/2001 08:51 50000 16/08/2001 08:53 21508 05/07/200 1 08 53 15355 30/06/2001 08:53 13663 02/09/2001 05:30 19056 28/07/2001 08:53 13108 04/08/2001 08 53 2841 12/07/2001 08.53 8793 05/07/2001 08:51 278 56 23/08/2001 08:53 19395 07/07/2001 08:53 15654 0V07/2D01 08.53 4491 02/09/200 ! 06:00 9547 02/08/2001 08:53 14 376 09/08/2001 04:00 19550 14/07/2001 08 53 6936 07/07/2001 08:53 3923 28/08/2001 18:10 19188 12/07/2001 08.53 3395 07/07/2001 08:53 13870 02/09/2001 08:00 19600 04(08/2001 08 53 14324 09/08/2001 08.53 20497 19/07/2001 08 53 7989 12/07/2001 08:53 21652 01/09/2001 22.00 9266 14/07/2001 08.53 1S780 12/07/2001 08.53 14637 02/09/2001 10:00 19261 09/08/2001 08 53 3600 11/08/2001 08:53 21633 28/07/2001 08:53 7697 14/07/200 1 08:53 19886 01/09/2001 2300 24814 19/07/2001 08:53 16156 14/07/2001 08 53 15098 02/0 9/2001 13:00 24371 11/08/2001 08 53 14290 16/08/2001 08:53 5165 02/08/2001 08:53 598 19/07/2001 08:53 15904 02/09/2001 01:00 10278 28/07/2001 08:53 10927 19/07/2001 08:53 2801 02/09/2001 14:30 30502 16/08/2001 08 53 3604 23/08/2001 08 53 23344 04/08/2001 08 53 9055 28/07/2001 08:53 4058 02/09/2001 01:30 10367 02/08/2001 08:53 1907 28/07/2001 08.53 9516 02/09/2001 18:45 17468 23/08/2001 08:53 9079 25/08/2001 08 53 24611 09/08/2001 08.53 8231 02/08/2001 08:53 9651 02709/2001 02:00 7606 04/08/2001 08:53 2614 02/08/2001 08:53 13110 03/09/2001 05 30 21751 25/08/2001 08 53 15899 28/08/2001 18 30 15168 11/08/2001 08-53 9514 04/08/2001 08 53 12579 02709/2001 03:00 2616 09/08/2001 08:53 11330 04/08/200 1 08:53 10810 04/09/2001 08:53 4805 28/08/2001 18 30 4343 01/09/2001 22 00 10758 16/08/2001 08 53 8056 09/08/2001 08:53 2916 02/09/2001 04:00 10415 11/08/2001 08:53 11749 09/08/2001 08:53 12989 06/09/2001 08:53 18882 01/09/2001 22:00 12020 01/09/2001 23.00 8822 25/08/2001 08 53 8550 11/08/2001 08:53 13707 02/09/2001 05 00 10099 16/08/2001 08 53 10827 11/08/2001 08:53 11783 08/09/2001 08:53 20254 01/09/2001 23:00 2707 02/09/2001 01:00 9901 28/08/2 001 18:30 7621 16/08/2001 08 53 14937 02/09/2001 06 00 12471 23/0872001 08:5: 11865 16/08/2001 08 53 12102 12/10/2001 08.53 11240 02/09/2001 01:00 10757 02/09/2001 01:30 15476 01/09/2001 02:30 5039 23/08/2001 08 53 16004 02/09/2001 08 00 9632 25/08/2001 08 53 12663 23/08/2001 08:53 12749 12/10/2001 09 45 16412 02/09/2001 01:30 12726 02/09/2001 02:00 13027 01/09/200 1 22:00 634 25/08/2001 08.53 14988 02/09/200! 1000 2284 01/09/2001 08.00 12987 25/08/2001 08:53 13351 12/10/2001 10-15 5423 02/09/2001 02 00 12667 02/09/2001 03:00 10009 02/09/2001 01:00 5516 28/08/2001 18 30 12489 02/09/200! 13.00 . 12269 01/09/2001 22 00 7407 28/08/2001 18:30 11500 12/10/2001 10.30 5431 02/09/2001 03:00 11521 02/09/2001 04:00 14122 02/09/2001 01:30 1301 01/09/2001 22 00 6362 02/09/200! 14 30 10626 01/09/2001 23.00 6947 01/09/2001 22:00 8284 12/10/2001 10:45 7771 02/09/2001 05:00 3937 02/09/2001 06:00 10400 02/09/2001 02:00 1210 01/09/2001 23:00 5917 02/09/2001 17.30 10733 02/09/2001 01:00 5367 01/09/2001 23:00 S3S6 12/10/2001 11:00 8144 02/09/2001 06:00 14667 02/09/2001 08 00 8841 02/09/2001 03.00 5783 02/09/2001 01:00 5458 03/09/2001 05:30 10937 02/09/2001 01:30 11088 02/09/2001 01:00 2629 12/10/2001 11:45 8315 02/09/2001 08:00 13116 02/09/2001 09:00 11181 02/09/2001 04:00 6122 02/09/2001 01:30 7164 03/09/2001 08:30 10836 02/09/2001 02:00 8617 02/09/2001 01:30 9487 12/10/2001 12:00 10356 02/09/2001 10:00 11485 02/09/2001 10:00 9244 02/09/2001 05:00 5987 02/09/2001 02:00 8321 03/09/2001 08:53 10156 02/09/2001 03 00 11995 02/09/2001 02 00 4819 12/10/2001 12:15 9014 02/09/2001 13 00 12014 02/09/2001 13:00 12720 02/09/2001 06:00 6041 02/09/2001 01:00 699 04/09/200 1 08:53 14612 02/09/2001 04: Ot 566 02/09/2001 03:0C 1854 12/10/2001 12:30 9414 02/09/2001 14:30 11897 02/09/2001 14:30 5326 02/09/2001 08:00 576S 02/09/2001 04:00 6840 06/09/2001 08 53 15739 02/09/2001 05 00 9660 02/09/2001 04:00 9141 12/10/2001 1245 9159 02/09/2001 IB 45 10801 02/09/2001 17.30 647 02/09/2001 10 00 2185 02/09/2001 05.00 7306 08/09/2001 08.53 18069 02/09/2001 06:00 7411 02/09/2001 05 00 7508 12/10/2001 13:00 10211 01119/2001 08:30 4428 02/09/2001 18 45 21609 02/09/2001 13 00 6327 02/09/2001 06 00 2168 12710/2001 09 30 4791 02/09/2001 08:00 2095 02/09/2001 06.00 2491 12/10/2001 13:15 10905 08/09/2001 08 53 14720 03/09/2001 00.00 643 02/09/2001 14:30 7867 02/09/2001 08 00 7725 12/10/2001 10 15 3577 02/09/2001 08-53 8551 02/09/2001 08 00 7874 12/10/2001 13:30 12403 12/10/2001 09.30 14565 03/09/2001 08 30 12160 02/09/2001 17.30 6954 02/09/2001 10 00 8664 12/10/2001 10.30 3406 02/09/2001 10:00 7788 02/09/2001 10:00 9155 12/10/2001 13:45 2295 12/10/2001 09.45 14512 03/09/2001 08.53 665 02/09/200 1 21.00 6183 02/09/2001 13 00 7412 12/10/2001 10:45 3744 02/09/2001 13:00 10706 02/09/2001 13:00 9603 12/10/2001 14:30 10494 12/10/2001 10 00 14775 04/09/2001 08 53 14865 03/09/200! 05.30 7088 02/09/2001 14 30 8681 12/10/2001 11 00 3317 02/09/2001 14:30 7918 02/09/2001 14:30 1488 12/10/2001 13 00 16920 12/10/2001 10.15 4667 06/09/2001 08 53 18509 03/09/2001 08.30 6238 02/09/2001 17.30 8511 12/10/2001 11:30 4180 02/09/2001 17:30 9466 02/09/2001 17:30 9900 14/10/2001 11:00 15990 12/10/2001 10 30 5280 08/09/2001 08 53 16738 06/09/2001 08-53 7325 02/09/2001 20 45 8147 12/10/2001 11 45 3780 02/09/2001 18:45 2321 02/09/2001 18.45 9540 15/10/2001 08 53 13298 12/10/2001 1045 5326 12/10/2001 10:30 22262 08/09/2001 08:53 7917 02/09/2001 21 00 9333 12/10/2001 1200 4493 03/09/2001 08:30 8548 02/09/2001 20 45 9569 15/10/2001 1700 633 12/10/2001 11:00 1770 12/10/2001 10 45 21869 12/10/2001 OS 00 7878 02/09/2001 22 00 1733 12/10/2001 12:15 4171 03/09/2001 08:53 8502 03/09/2001 05:30 9712 15/10/2001 22 00 4669 12/10/2001 11:30 6833 12/10/2001 11:45 4348 12/10/2001 08:53 1224 02/09/2001 23 00 8790 12/10/2001 12:30 5056 04/09/2001 08:53 10134 03/09/2001 08:53 9015 16/10/2001 10 00 12350 12/10/2001 11:45 6210 12/10/2001 12:00 3448 12/10/2001 09 30 6116 03/09/2001 05 30 10739 12/10/2001 12.45 4732 06/09/2001 08.53 9206 04/09/2001 08:53 9767 17/10/2001 15 00 20614 12/10/2001 12:00 6594 12/10/2001 12:15 5614 12/10/2001 09 45 9129 03/09/2001 08 30 8480 12/10/2001 13 00 5774 08/09/2001 08:5: 11482 06/09/2001 08:5: 12536 17/10/2001 16:25 18820 12/10/200] 12-15 1708 12/10/2001 12.45 22989 12/10/2001 10:00 7761 03/09/2001 08:53 8462 12/10/2001 13:15 4879 12/10/2001 08 00 11926 08/09/2001 08:53 12072 17/10/2001 17:00 8240 12/10/2001 12:30 6857 12/10/2001 13:00 21989 12/10/2001 10:15 603 06/09/2001 08 53 13063 12/10/2001 13 30 5527 12/10/2001 09 30 17398 12/10/2001 09:30 12233 18/10/2001 08 00 17435 12/10/2001 1245 7285 12/10/200] 13 30 24168 12/10/2001 10 30 1502 08/09/2001 08.53 16422 12/10/2001 14 00 5171 12/10/2001 09.45 16682 12/10/2001 09.45 5522 18/10/2001 18:00 16306 12/10/2001 13:00 7953 12/10/2001 15:00 2675 12/10/2001 10 45 611 12/10/2001 09:30 3567 12/10/2001 14:30 5174 12/10/2001 10:00 13817 12/10/2001 10:00 2473 22/10/2001 09 00 588 12/10/2001 13:30 7143 12/10/2001 15:30 11683 12/10/2001 11:45 3775 12/10/2001 09 45 15998 12/10/2001 1500 6355 12/10/2001 10 15 13557 12/10/2001 10 15 2110 23/10/2001 12.30 15325 12/10/2001 1345 2024 12/10/2001 1545 10708 12/10/2001 12 00 2872 12/10/2001 10 15 15783 12/10/200) 1600 2365 12/10/2001 10:31 9131 12/10/2001 10-30 3121 27/10/2001 09:30 15669 12/10/2001 14 00 8002 12/10/2001 16 00 9191 12/10/2001 12:15 4190 12/10/2001 10:30 17446 12/10/2001 1700 6776 12/10/2001 10 45 6394 12/10/2001 10:45 4766 1 1/05/2002 09:00 13040 12/10/2001 15:00 7738 12/10/2001 16:30 8626 12/10/2001 12:30 1051 12/10/2001 10 45 6628 12/10/2001 1800 6465 12/10/2001 11:00 7108 12/10/2001 11:00 4743 13/05/2002 09 30 4882 12/10/2001 15:45 7180 12/10/2001 16:45 7258 12/10/200! 12 45 1187 12/10/2001 11:00 16188 13/10/2001 10 00 10316 12/10/2001 11:31 2555 12/10/2001 11:45 1656 08/08/2002 21:00 11098 12/10/2001 16:00 8393 12/10/2001 17:00 770] 12/10/2001 13:00 3956 12/10/2001 11:30 27611 13/10/2001 1800 12763 12/10/2001 11-45 2646 12/10/2001 12:00 5288 08/08/2002 23:00 11037 12/10/2001 17.00 7179 12/10/2001 17:30 8187 12/10/2001 13:15 1955 12/10/2001 11:45 18444 14/10/2001 11:00 588 12/10/2001 12:00 2635 12/10/2001 12:15 4722 08/08/2002 23:30 1573 12/10/2001 18 00 7597 12/10/2001 18:00 1212 12/10/2001 13.30 1078 12/10/2001 12.00 12579 15/10/2001 09.00 13966 12/10/200I 12:15 2097 12/10/2001 12 3( 5697 09/08/2002 00:30 10699 13/10/2001 18 00 9755 12/10/2001 18 30 7221 12/10/2001 15 00 1810 12/10/2001 12:15 17522 15/10/2001 17:00 15539 12/10/2001 12:30 5565 12/10/2001 12:45 5813 09/08/2002 01:40 10149 14/10/2001 11:00 6023 13/1072001 18:00 10766 12/10/2001 16:00 1472 12/10/200! 12:10 14437 15/10/2001 22 00 14356 12/10/2001 12:45 5638 12/10/2001 13 00 5309 09/08/2002 04:00 2822 15/10/2001 09 00 12541 14/10/2001 11:00 12500 12/10/2001 16-15 1959 12/10/2001 1245 16350 16/10/2001 1000 15044 12/10/2001 13:00 5629 12/10/2001 13.15 1316 09/OE/2002 08:00 2774 15/10/2001 13 15 7444 15/10/2001 09:00 15595 12/10/2001 17.00 4072 12/10/2001 13:00 16345 17/10/2001 17.00 2980 12/10/2001 13 15 5381 12/10/2001 13:30 6213 09/08/2002 08:53 2212 15/10/2001 17.00 13178 15/10/2001 17.00 16147 12/10/2001 18 00 4086 12/10/2001 13:15 17210 18/10/2001 08 00 9592 12/10/2001 13 3( 6377 12/10/2001 14-30 5483 31/08/2002 10 00 11689 15/10/2001 22 00 10843 15/10/2001 22 00 11006 13/10/2001 18 00 5454 12/10/2001 1345 2694 18/10/2001 1800 13748 12/10/2001 16:00 5655 12/10/2001 15:00 1464 12/11/2002 08.53 2789 16/10/2001 10:0( 2991 16/10/2001 10:00 1758: 14/10/2001 11:00 6625 12/10/2001 14:30 10411 22/10/2001 09.00 15972 12/10/2001 18 00 6096 12/10/2001 16:00 1371 10/12/2002 08:53 6673 IS/10/2001 08 00 12120 17/10/2001 17.00 17898 15/10/2001 09 00 6141 12/10/2001 14 45 6699 23/10/2001 12:30 2847 13/10/2001 18 00 7306 12/10/2001 17.00 5913 17/12/2002 08:53 11094 18/10/2001 18 00 11321 18/10/2001 08.00 19347 15/10/2001 17.00 657 12/10/2001 16 00 6775 27/10/2001 09 30 17336 14/10/2001 11:00 7113 12/10/2001 18:00 9201 30/12/2002 08:53 13879 22/10/2001 09.00 12518 18/10/2001 18 00 18159 15/10/2001 22- 00 6547 12/10/2001 16:15 4817 07/01/2002 08:53 26633 15/10/2001 09:00 8979 13/10/2001 10:00 8561 08/01/2003 08 53 3053 23/10/200! 12:30 12013 22/1072001 09.00 22336 16/10/2001 10 00 6700 12/10/2001 16:30 6577 15/01/2002 08:53 11882 15/10/2001 17.00 9645 13/10/2001 18:00 60] 14/01/2003 08 53 1528 27/10/2001 09.30 12208 23/10/2001 12 30 16812 17/10/2001 17.00 1105 12/10/2001 17.00 1621 18/05/2002 08 00 122353 15/10/2001 22.00 2203 14/10/2001 11:00 8174 21/01/2003 08.53 7143 11/05/2002 09.00 23259 27/10/2001 09.30 20749 18/10/2001 08 00 6534 12/10/2001 17.30 6527 24/05/2002 08:53 25814 16/10/2001 10.00 9053 15/10/2001 09:00 4788 28/01/2003 08.53 9400 13/05/2002 09.30 21857 07/01/2002 08:53 16102 18/10/2001 IS 00 6076 12/10/2001 18:00 1355 01/08/2002 1600 23809 17/10/2001 17:00 2830 15/10/2001 17:00 10376 04/02/2003 08.53 1909 08/08/2002 21:00 7126 15/01/2002 OS 53 14759 22/10/2001 09 00 1442 13/10/2001 08:53 8075 02/08/2002 14 00 14913 18/10/2001 08 00 9368 15/10/2001 22:00 10334 11/02/2003 08.53 7235 08/08/2002 22:30 8417 11/05/2002 09.15 8423 23/10/2001 12:30 6956 14/10/2001 11:00 9058 07/08/2002 15 30 25198 18/10/2001 18.00 8427 16/10/2001 10:00 8007 19/02/2003 08:53 8551 08/08/2002 23:30 9414 13/05/2002 09:00 3009 27/10/200! 09 30 5947 15/10/2001 09 00 10738 08/08/2002 10.30 4042 22/10/2001 09.00 8842 17/10/2001 17:00 9921 25/02/2003 08 53 5858 09/08/2002 00:30 746! 16/05/2002 13:51 72: 07/01/2002 08 5: 8967 15/10/2001 17:00 10882 08/08/2002 10 55 9250 Table K-l: Summary of sulfate concentrations for lysimeter 1-8, part 1 (of 2). 238 23/10/2001 12.30 27/10/2001 09:30 ~ 15/05/2002 15 00 ~ 15/05/2002 19.45 ~ 16/05/2002 07:00 " 16/05/2002 08.35 _ 16/05/2002 10:00 " 16/05/2002 12:50 16/05/2002 16:30 " | 08/08/2002 22:301 09/08/2002 00:30 | 09/08/2002 01:4o| 09/08/2002 08:53 31/08/2002 10:00 12/11/2002 08:53 I 10/12/2002 03:53 ~" 17/12/2002 08:53 " 30/12/2002 08:53 " 08/01/2003 08:53 ~ [21/01/2003 08:53| 28/01/2003 08:53 I 04/02/2003 08:531 11/02/2003 08:53| | 19/02/2003 08:531 1 25/02/2003 08: S31 j 04/03/2003 08:531 | 12/03/2003 08 S3| 26/03/2003 08:53 01/04/2003 08 53| | 08/04/2003 08 531 | 15/04/2003 03.531 | 29/04/2003 08:53| | 10/05/2003 08.I5J 21/05/2003 08 53 28/05/2003 08:53 28/07/2003 21:30 "~ 20/08/2003 08:53 ~ 16/09/2003 08:53 ~ 13/01/2004 08.53 20/01/2004 08 53 ~ 23/10/2001 12:30 27/10/200109 30 07/01/2002 08.53 15/01/2002 08 53 15/01/2002 08:53 11/05/200209:15 13/05/200209.00 » 16/05/2002 13:50 j 17/05/2002 10:00 ) 17/05/2002 17:45 j 18/05/2002 07:30 122/05/2002 08.53 24/05/2002 0a~53| 11 01/08/2002 16:1 11 07/08/2002 08:53 i| 07/08/2002 14:0p| •| 08/08/2002 13:50| i| 08/08/20022l:00| 'I 08/08/2002 22:30| | 09/08/2002 00:30| '[ 09/08/2002 01:40 09/08/2002 08:53| I 09/08/2002 22:C l | 20/08/2002 11:30| i| 26/08/2002 10:30| l| 28/08/2002 10:30| i| 31/08/2002 10:C ;| 03/10/2002 08:531 18/10/2002 10:30 12/11/2002 08:53 10/12/2002 08:53 30/12/2002 08:53 08/01/2003 08:53 > 14/01/2003 08:53 > 21/01/2003 08:53 ' 28/01/2003 08:53 04/02/2003 08:53 11/02/2003 08:53 19/02/2003 08:53 25/02/2003 08:53 04/03/2003 08:53 12/03/2003 08.53 26/03/2003 08 53 01/04/2003 0 8 53 08/04/2003 08:53 22/04/2003 08:53 29/04/2003 0 8:53 10/05/2003 08.15 10/05/2003 08:30 21/05/2003 08:53 28/05/2003 08:53 17/06/2003 OB: 53 28/07/2003 21:30 20/08/2003 08:53 16/09/2003 08:53 13/01/2004 OB:53 20/01/2004 08:53 8884 720E 2434 9534 9557 1711 10155 9276 1910 1849 9613 12700 8940 9400 9270 12090 12348 04/03/2003 08:53 _ 12/03/2003 08:53 _ 26/03/2003 08:53 01/04/2003 08:53 " 08/04/2003 08:53 _ 15/04/2003 03:53 ~ 22/04/2003 08:53 _ 29/04/2003 03:53 10/05/200308:15 " 10/05/2003 08:30 ~ 21/05/2003 08:53 " 28/05/2003 08:53 " 28/07/200 3 21:30 " 20/08/2003 08:53 _ 16/09/2003 08:53 _ 20/01/2004 08:53 09/08/2002 01:40| 09/08/2002 04:0 09/08/2002 03 00 09/08/2002 OS: 53 31/08/2002 10.00 12/11/2002 03 53 10/12/2002 08.53 17/12/2002 08:53 30/12/2002 08:53 08/01/2003 08:53 14/01/2003 08:53 28/01/2003 08:53 04/02/2003 03:53 11/02/2003 03 53 19/02/2003 03:53 25/02/2003 08:53 04/03/2003 08.53; 12/03/2003 03 53j 26/03/2003 08.531 01/04/2003 08:53 08/04/2003 08.53 15/04/2003 08:53 22/04/2003 08:53 29/04/2003 08:53 10/05/2003 OB: 30 17/05/2002 10:00 17/05/2002 17.45| 22/05/2002 03.53 24/05/2002 0 8:53 08/08/2002 21:00 08/08/2002 22 30 09/08/2002 01:40 09/03/2002 08:53 03/10/2002 08 53| 10/12/2002 08 53 17/12/2002 08 53 30/12/2002 08:53 08/01/2003 08:53 14/01/2003 08 53 21/01/2003 08:53 28/01/2003 08:53 04/02/2003 08:53 11/02/2003 08:53 19/02/2003 08.53 25/02/2003 08:531 04/03/2003 08:53| 12/03/2003 08.531 26/03/2003 08:53| 01/04/2003 08:53| 08/04/2003 08T53| 15/04/2003 0 8 53| 22/04/2003 0 8 53| 29/04/2003 08^ 531 10/05/2003 OB 30| 21/05/2003 08:53| 28/05/2003 08.53| 17/06/2003 08 53| 23/07/200321:30 20/08/2003 08 53 16/09/2003 08 53 20/01/2004 08:53 15/01/2002 08:53 11/05/2002 09!l5| lV05/2002 06iOOl 16/05/2002 07:00 16/05/2002 08:30 16/05/2002 09:40 16/05/2002 10:301 I6/0V2002 11:20 16/05/2002 12:50 16/05/2002 13:50 16/05/2002 15:30 16/05/2002 17:30 16/05/2002 20-30 16/05/2002 22 25 16/05/2002 23 25 17/05/2002 10:00 17/05/2002 13:30 17/05/2002 15:30 17/0V2002 16.45 18/05/200 2 07:30 8/05/2002 11:30 8/0V2002 13:00 IB/05/2002 16:001 19/05/2002 11.001 22/05/2002 08:53 24/05/2002 08:531 07/0B/2002 08:53| 08/08/2002 10:301 08/08/2002 12:10 03/03/2002 12:501 08/08/2002 15 00 08/08/2002 16:1 08/08/2002 16:30 08/08/2002 17751 08/08/2002 17.45 08/08/2002 13:30] 08/0E/2002 19:301 08/03/2002 20:301 0S/03/2002 22:30| Q9/Q8/2002 08 00 09/08/2002 08.53 09/08/2002 10:30 09/08/2002 11:55 09/08/2002 15 00 09/08/2002 18:50 10/08/2002 11:30 11/03/2002 15:00 19/08/2002 09:00 20/08/2002 11:30 26/08/2002 10:30 27/08/2002 23:30 28/08/2002 10:30 28/08/2002 23:00 31/08/2002 10:00 03/10/2002 08:53 18/10/2002 10:30 24/10/2002 12/11/2002 10/12/2002 03.531 17/12/2002 O 8 T 5 3 ] 30/12/2002 08:531 03/01/2003 03 53; 21/01/2003 08.53 28/01/2003 08:53 04/02/2003 08 53 11/02/2003 08:53 19/02/2003 08:53 25/02/2003 08:53 04/03/2003 08:53 12/03/2003 08:53 26/03/2003 08:53 01/04/2003 08:53 08/04/2003 08:53 15/04/2003 08:53 22/04/2003 08:53 29/04/2003 08:53 10/05/2003 08:15 21/05/2003 08:53 28/05/2003 08:53 17/06/2003 08:53 28/07/2003 21:30 20/03/2003 03:53 16/09/2003 08:53 13/01/2004 08:53 20/01/2004 08:53 4345 1055 4190 3034 5112 4487 3263 5271 4259 5988 6360 6555 7550 6666 6516 1543 6213 6723 • 6913 7617 8164 3477 7992 6399 2795 11388 9274 7675 10319 6667 8210 7822 10957 31600 19512 12100 7930 7950 7580 6796 16/10/2001 10:00 17/10/2001 17.001 18/10/2001 18 30 23/10/2001 12 30 27/10/2001 09:3o| 16/05/2002 13:501 08/08/2002 22:30 08/08/2002 23.30 09/08/2002 0030 ~ 09/08/2002 08 53 12/11/2002 03.53 _ 10/12/2002 03:53 ~ 17/12/2002 08 53 ~ 30/12/2002 08:53 " 03/01/2003 08 53 ~ 21/01/2003 08:531 1 08/08/2002 11:35 I 08/08/2002 12:10 " I 08/08/2002 12:50 ~ ) 03/08/2002 13:30 "* ? 03/03/2002 14 00 ~ I 08/08/2002 15 Ot J 08/03/2002 15 45 _ ) 08/08/2002 16:30 " 1 08/08/2002 17:00 " 5 08/08/2002 17:25 ~ S 08/08/2002 17:45 ~ i 08/08/2002 18.30 " I 08/08/2002 19.30 " j 08/08/2002 19:45 " 7 08/08/2002 20.00 " » 08/08/2002 20 30 _ 1 08/08/2002 21:00 _ 1 08/08/2002 22:30 _ 3 08/08/2002 23:30 ~ D 09/08/2002 00:30 "" 3 09/08/2002 01:40 " 2 09/08/2002 04:00 " 2 09/08/2002 08:00 ~ 23/01/2003 08.53| •\ 09/08/2002 15:01 )| 09/08/2002 18 501 19/02/2003 08:53| >| 09/03/2002 21:001 25/02/2003 08 531 04/03/2003 08:53| | 10/08/2002 11:30| 12/03/2003 08:53| I 11/08/200215:001 26/03/2003 08:531 03/04/2003 08:531 15/04/2003 08:53] )[ 26/03/2002 10:30| 22/04/2003 08:531 • | 27/08/2002 23:30| 29/04/2003 08:531 l| 28/08/2002 10:30| 10/05/2003 03:151 21/05/2003 OS: S31 ]| 28/03/2002 23:01 28/05/2003 08 53 _ 23/07/2003 21:30 _ 20/03/2003 08 S3 16/09/2003 03.53 " 13/01/2004 08 53 " 20/01/2004 08:53 ) 31/08/2002 10:00 _ ) 03/10/2002 08:53 _ ) 03/10/2002 08:53 I 18/10/2002 10-30 ~ ! 12/11/2002 08 53 ~ ) 12/11/2002 08:53 ~ " 10/12/2002 08:53 17/12/2002 08:53 30/12/2002 08:53 ~ 03/01/2003 08:53 ~ 14/01/2003 08:53 21/01/2003 OB: 53 23/01/2003 08:53 ~ 04/02/2003 08:53 ~ 11/02/200308 S3 " 25/02/2003 08.53 ~ 04/03/2003 08:53 ~ 12/03/2003 08:53 " 22/03/2003 08:53 " 26/03/2003 08:53 " 01/04/2003 08:53 " 08/04/2003 08:53 13/01/2004 08.53 20/01/2004 08.53 1545 7921 10113 10191 12473 15363 13561 16388 17220 16369 13103 13599 13832 11764 2386 9556 10820 10745 9215 9472 10727 11104 11716 12930 12288 15533 14442 17080 20S02 19486 4372 19719 6462 6053 7484 20722 20207 2398 7481 5222 6930 S06S 684 12755 4678 1004 3524 2720 . Table K-2: Summary of sulfate concentrations for lysimeter 1-8, part 2 (of 2). 239 Lynmet«r9 Lyiimiitfr 10 Lyiimater 11 Ly.imatar 12 Lyiimatar 13 Lyrimal.r 14 Lyatn*t*r 15 Lysmatar 16 D i l iud Time S04|mfl] Data ud Tim* S04 |«E/1] Dit*and Tim* S 04 (miHl Dat* and Time S04 |mf/l| D»t.ind Tim. S04 |m(/l] Dat* anil Tim* S04 |n(/l| D*t* ud Tim* S04 (mr/ll D*t* and Tim* S04 In 15/12/1999 08:53 17076 22/12/1999 08:53 19832 22/12/1999 08:53 1578 15/12/1999 08:53 12292 15/12/1999 08.53 18279 15/12/1999 08:53 17240 15/12/1999 08 53 25020 30/12/1999 08.53 11463 22/12/1999 08:53 20927 30/12/1999 08:53 19711 30/12/1999 08 53 24710 12/01/2000 08:53 7076 22/12/1999 08:53 655 22/12/1999 03:53 14745 22/12/1999 08 53 14390 26/01/2000 08.53 16606 05/01/2000 08:53 24562 05/01/2000 08:53 25144 05/01/2000 08.53 10117 23/02/2000 08 53 19851 30/12/1999 08:53 26122 30/12/1999 08 53 20268 30/12/1999 08 53 20678 16/02/2000 03:53 9277 19/01/2000 08:53 25703 12/01/2000 08:53 20507 26/01/2000 08 53 11184 01/03/2000 08:53 17792 05/01/2000 08:53 24545 05/01/2000 08:53 17975 12/01/2000 08:53 20464 23/02/2000 08 53 26829 26/01/2000 08.53 19834 19/01/2000 08:53 18618 02/02/2000 08:53 20077 03/03/2000 08:53 23329 12/01/2000 08:53 21688 12/01/2000 08 53 21454 19/01/2000 08:53 17896 01/03/2000 08 53 22730 02/02/2000 08 53 11598 26/01/2000 08:53 20877 09/02/2000 08:53 20899 15/03/2000 08:53 23159 19/01/2000 08.53 24799 19/01/2000 03:53 18B75 26/01/2000 08:53 17243 08/03/2000 08 53 22735 09/02/2000 08 53 24871 02/02/2000 08:53 22414 23/02/2000 08:53 14055 22/03/2000 08 53 10474 26/01/2000 03 53 19231 25/01/2000 01:14 13689 02/02/2000 08 53 21054 15/03/2000 03 53 9248 16/02/2000 OS 53 27123 09/02/2000 08:53 23509 01/03/2000 08.53 12329 29/03/2000 08:53 26116 16/02/2000 08:53 14994 26/01/2000 08:53 2517 09/02/2000 08:53 382 29/03/2000 08.53 25770 23/02/2000 08:53 17742 16/02/2000 08:53 21762 08/03/2000 08 53 11997 13/07/2000 22:00 27168 23/02/2000 03:53 11250 02/02/2000 08.53 16965 16/02/2000 08:53 15049 05/04/2000 08.53 22054 01/03/2000 08:53 9621 23/02/2000 08:53 18259 15/03/2000 08 53 19132 13/07/2000 23:00 27253 01/03/2000 08:53 2249 16/02/2000 03:53 25799 23/02/2000 08:53 8394 13/07/2000 2 2 00 94 IB 08/03/2000 08:53 22417 01/03/2000 OS 53 18305 22/03/2000 08:53 8616 14/07/2000 01:00 1726 08/03/2000 03 53 15361 23/02/2000 08 53 21743 01/03/2000 OS-53 16180 13/07/2000 22:30 8974 15/0372000 08.53 20311 08/03/2000 08:53 16087 29/03/2000 08.53 10206 14/07/2000 02 00 4708 15/03/2000 08:53 12467 01/03/2000 08 53 16113 08/03/2000 08 53 20401 13/07/2000 23 00 11112 22/03/2000 08 53 11412 22/03/2000 08:53 18310 13/07/2000 22.00 9867 14/07/2000 03:00 7061 22/03/2000 08 53 16151 08/03/2000 08-53 14200 15/03/20 00 0 8-53 26295 14/07/2000 01:00 9921 05/04/2000 08.53 24709 29/03/2000 08 53 23833 13/07/2000 22-30 9862 14/07/2000 04:00 24406 29/03/2000 08 53 15164 15/03/2000 08.53 1973 22/03/2000 03 53 1050S 14/07/2000 0 2 00 9827 13/07/2000 22:00 12445 05/04/2000 08:53 1976 13/07/2000 23:00 10567 14/07/2000 05 00 24063 05/04/2000 08:53 3110 22/03/2000 08:53 15802 29/03/2000 08.53 5949 14/07/2000 03 00 10121 13/07/2000 22:30 11716 13/07/2000 22 00 10219 14/07/2000 01:00 10661 14/07/2000 06:00 21715 13/07/2000 22 00 8237 29/03/2000 08-53 14335 05/04/2000 08:53 15073 14/07/2000 04 00 10854 13/07/2000 23.00 12273 13/07/2000 22-30 10266 14/07/2000 02:00 10266 14/07/2000 08:00 17826 13/07/2000 22 30 7696 05/04/2000 08:53 12334 13/07/2000 22:00 B326 14/07/2000 06:00 11274 14/07/2000 01:00 11385 13/07/2000 2 3 00 12003 14/07/2000 03:00 10708 14/07/2000 10 00 18768 13/07/2000 23 00 7632 13/07/2000 22 00 12515 13/07/2000 22 30 8604 14/07/2000 0 8 00 12272 14/07/2000 02:00 12161 14/07/2000 01:00 11206 14/07/2000 04:00 11053 14/07/2000 11:30 6931 14/07/2000 01:00 9404 13/07/2000 22 30 11613 13/07/2000 2 3 00 9811 14/07/2000 08:53 2743 14/07/2000 03:00 10765 14/07/2000 02 00 963 14/07/2000 06:00 11833 14/07/2000 14:00 21800 14/07/2000 02 00 8396 13/07/2000 23 00 12027 14/07/200001:00 9146 14/07/2000 1000 13719 14/07/2000 04:00 2100 14/07/2000 03:00 11377 14/07/2000 08.00 11139 14/07/2000 15:00 18868 14/07/2000 03:00 8746 14/07/2000 01:00 2515 14/07/2000 02 00 2605 14/07/2000 11:30 13002 14/07/2000 06:00 11458 14/07/2000 04:00 11669 14/07/2000 08:53 7822 14/07/2000 16:00 23342 14/07/2000 04:00 3130 14/07/2000 02:00 10994 14/07/2000 0 3 00 9140 14/07/2000 14:00 13085 14/07/2000 08:00 13604 14/07/2000 06:00 2678 14/07/2000 10.00 10099 14/07/2000 18:00 17259 14/07/2000 06 00 9805 14/07/2000 03 00 10406 14/07/2000 04 00 9108 14/07/2000 16 00 14963 14/07/2000 08-53 10825 14/07/2000 08:00 3526 14/07/2000 11:30 639 15/07/2000 00:00 14601 14/07/2000 08:00 12508 14/07/2000 04:00 1374 14/07/2000 06:00 10303 14/07/2000 1800 9136 14/07/2000 1 0:00 8694 14/07/2000 OS 53 7706 14/07/2000 14:00 12433 15/07/2000 04:00 14003 14/07/2000 08:51 7793 14/07/2000 06:00 441 14/07/2000 08:00 1O540 15/07/2000 0 0 00 12834 14/07/2000 11:30 13197 14/07/2000 10.00 1743 14/07/2000 16.00 12476 15/07/2000 08.00 14626 14/07/2000 10.00 10677 14/07/2000 08:00 15003 14/07/2000 1 0:00 12396 15/07/2000 04 00 13453 14/07/2000 14:00 15573 14/07/2000 11:30 12927 14/07/2000 18:00 13534 26/08/2000 08 53 21139 14/07/2000 11:30 11130 14/07/2000 08 53 10855 14/07/2000 11:30 11073 15/07/2000 0 3 00 9531 14/07/2000 16:00 5390 14/07/2000 14:00 104)8 15/07/2000 00.00 13453 31/08/2000 08:53 19935 14/07/2000 14:00 13545 14/07/2000 10 00 14673 14/07/2000 14:00 11277 22/03/2000 08:53 175B7 14/07/2000 1 8 00 17209 14/07/2000 16:00 15289 15/07/2000 04:00 13097 02/09/2000 03:53 22229 14/07/2000 16.00 13460 14/07/2000 11:30 12367 14/07/200016:00 11465 26/03/2000 08:53 17649 15/07/2000 00 00 13749 14/07/2000 18 00 15429 15/07/2000 08:00 14979 07/09/2000 08:53 22441 14/07/2000 18 00 13262 14(07/2000 14:00 2020 14/07/2000 18 00 12552 31/08/2000 08:53 16086 15/07/2000 04:00 15001 15/07/2000 00:00 5352 22/03/2000 08:53 15521 09/09/2000 08 53 18349 15/07/2000 00 00 8573 14/07/2000 16 00 14453 14/07/2000 20 00 6907 02/09/2000 0B.53 18832 15/07/2000 08:00 14654 15/07/2000 04:00 14433 26/08/2000 08:53 4068 12/09/2000 08:53 21927 15/07/2000 04:00 3764 14/07/2000 18 00 2938 15/07/2000 00:00 11421 07/09/2000 08.53 19394 22/08/2000 08:53 26752 15/07/2000 08:00 11525 31/08/2000 08:53 9063 14/0912000 08-53 20757 15/07/2000 08 00 14607 15/07/2000 00.00 12585 15/07/2000 04:00 10021 09/09/2000 08.53 17004 26/08/2000 08 53 25758 22/08/2000 08 53 17519 02/09/2000 08:53 610 21/09/2000 03.53 22295 15/07/2000 08:53 10204 15/07/2000 04 00 16572 15/07/2000 08 00 11420 12/09/2000 08 53 19765 31/08/2000 08 53 16265 26/08/2000 08:53 3603 07/09/2000 08 53 15052 28/09/2000 08.53 20779 21/0S/2000 OS. 53 10949 21/08/2000 08:53 13858 22/08/2000 08:53 15145 14/09/2000 08.53 20914 02/09/2000 08:53 4575 31/08/2000 08:53 12706 09/09/2000 08:53 14717 30/09/2000 08.53 4813 22/08/2000 08 53 12523 22/03/2000 03 53 13589 26/08/2000 08:53 15576 21/09/2000 08:53 19504 07/09/2000 08 53 25792 02/09/2000 08 53 14893 12/09/2000 08:53 16862 24/10/2000 08 53 26482 26/08/2000 08 53 12121 26/08/2000 08.53 13234 31/08/2000 08:53 12052 23/09/2000 08.53 2362 09/09/2000 08 53 23371 07/09/2000 08 53 16887 14/09/2000 08:53 15200 25/10/2000 08:53 20684 02/09/2000 08:53 12215 02/09/2000 08 53 16891 02/09/2000 08:53 17101 28/09/2000 08:53 22500 12/09/2000 08:53 26965 09/09/2000 08:53 15664 21/09/2000 08 53 15571 25/10/2000 09 30 21299 07/09/2000 08-53 12360 07/09/2000 08-53 19693 07/09/2000 0 8 53 17250 30/09/2000 08 53 6065 14/09/2000 08:53 2 6278 12/09/2000 08:53 17462 23/09/2000 08:53 22515 25/10/2000 21:00 20623 09/09/2000 08:53 4670 09/09/2000 08:53 18896 09/09/2000 08:53 7013 24/10/2000 03:53 2529 21/09/2000 08:53 25198 14/09/2000 08:53 18046 26/09/2000 08 53 2615 12/05/2001 17:00 20825 12/09/2000 08.53 12384 12/09/2000 08:53 17802 12/09/2000 08 53 17602 25/10/2000 08.53 600 23/09/2000 08 53 24619 21/09/2000 08.53 17078 30/09/2000 08 53 15683 24/05/2001 08:53 24 690 14/09/2000 08:53 634 14/09/2000 08:53 15315 14/09/2000 08:53 17674 25/10/2000 09:30 14905 28/09/2000 08 53 25429 23/09/2000 08:53 14696 24/10/2000 08 53 693 31/05/2001 08 53 9700 23/09/2000 08 53 11427 21/09/2000 03 53 18280 21/09/2000 08 53 17674 25/10/2000 21:00 19028 30/09/2000 08 53 25340 28/09/2000 08.53 16344 25/10/2DO0 08:53 12359 02/06/2001 08 53 28031 28(1)9/2000 08.53 9995 23/09/2000 08 53 19218 23/09/2000 08:53 16756 12/05/2001 17.00 I414C 24/10/2000 08.53 6436 30/09/2000 08:53 17093 25/10/2000 09:30 14729 07/06/2001 08.53 22173 24/1012000 08:53 10729 28/09/2000 08 53 18376 28/09/2000 08:53 16807 24/05/2001 08:53 15886 25/10/2000 08 53 4088 24/10/2000 08.53 2713 25/10/2000 21:00 13664 14/06/2001 08.53 653 25/10/2000 OS 53 2124 30/09/2000 08:53 17467 30/09/2000 08:53 28 OS 26/05/2001 15.00 10941 25/10/2000 09 30 20263 25/10/2000 08 53 4668 25/04/2001 08:53 11615 16/06/2001 08 53 19443 25/10/2000 09 30 4915 24/10/2000 08 53 22991 24/10/2000 08 53 13676 31/05/2001 08:53 14837 25/10/2000 21:00 23433 2V10/2000 09 30 15401 12/05/200! 17:00 12572 23/06/2001 08 53 1S036 25/10/2000 21:00 10969 25/10/2000 08:53 15580 25/10/2000 08:53 11282 02/06/2001 08:53 14156 07/01/2001 08 53 2918 25/tO/2000 21:00 16044 26/05/2001 15:00 10698 28/06/2001 08 53 23583 01/05/2001 08.53 16476 25/10/2000 09.30 23049 25/10/2000 09:30 13156 07/06/2001 08:53 13813 24/05/200 1 08.53 10919 12/05/2001 17:00 13882 31/05/2001 08:53 10378 30/06/2001 08.53 14433 12/05/2001 17.00 3145 25/10/2000 21:00 15699 12/05/2001 17:00 11895 14/06/2001 08 53 16629 26/05/2001 15 00 11685 24/05/2001 08 53 13135 02/06/2001 08:53 13552 05/07/2001 08 53 17732 24/05/2001 08.53 7776 12/05/2001 17.00 19625 24/05/2001 08:53 11155 16/06/2001 08 53 17467 31/05/2001 08:53 8427 31/OV2001 08:53 14263 07/06/2001 08 53 1 3550 12/07/2001 08 53 20155 31/05/2001 08.53 1871 02/06/2001 08:53 11405 26/05/2001 15.00 10937 23/06/2001 08:53 18209 02/06/2001 08 53 19914 02/06/2001 08 53 15333 14/06/2001 08:53 12914 14/07/2001 08 53 20104 02/06/2001 08.53 11487 07/06/2001 08-53 11523 31/05/2001 08:53 8197 28/06/2001 08 53 3334 14/06/2001 08:53 22509 07/06/2001 08.53 7842 16/06/2001 08:53 14494 19/07/2001 08 53 19575 07/06i2001 08 53 13385 16/06/2001 08.53 4313 02/06/2001 08:53 12297 30/06/2001 08 53 10733 16/06/2001 08:53 22667 16/06/2001 08 53 11863 23/06/2001 08:53 10543 25/07/2001 08 53 1865 14/06/2001 08 53 11758 23/06/2001 08:53 12765 07/06/2001 08:53 11631 05/07/2001 08 53 661 23/06/2001 08:53 24722 23/06/2001 08 53 16859 28/06/2001 08:53 16003 28/07/2001 08:53 15745 16/06/2001 08 53 13161 28/06/2001 08-53 21456 14/06/2001 08:53 12836 07/07/2001 03:53 627 30/06/2001 08 53 28892 28/06/2001 08 53 20634 30/06/2001 08 S3 1S057 02/08/2001 08.53 13176 23/06/2001 08:53 12510 30/06/2001 08 53 14850 16/06/2001 08 53 11385 12/07/2001 08.53 750 05/07/2001 08.53 275S5 30/06/2001 08 53 3350 OS/07/2001 08:53 11270 09/08/2001 08.53 17342 28/06/2001 08 53 13249 07/07/2001 08 53 7755 23/06/200! 08:53 1834 14/07/2001 08:53 17896 07/07/2001 08 53 21039 05/07/200 1 08 53 18766 07/07/2001 08 53 11962 11/08/2001 08 53 17278 30/06/2001 OS 53 661 12/07/2001 08 53 1107 28/06/2001 08 53 8028 19/07/2001 08 53 15028 12/07/2001 08:53 25485 07/07/2001 08 53 2719 12/07/2001 08 53 14117 16/08/2001 08.53 18829 05/07/2001 08 53 9703 14/07/2001 08 53 25094 30/06/2001 08 53 11759 28/07/2001 03:53 1733C 14/07/200! 08:53 25248 12/07/2001 08:53 15890 14/07/2001 08:53 1S071 23/08/2001 08.53 18S69 05/07/2001 08 53 2338 19/07/200 1 08 53 22039 07/07/200] 08:53 23690 02/03/2001 03.53 102 60 19/07/200 1 08:53 25014 14/07/2001 08.53 16717 19/07/2001 08:53 16667 25/08/2001 OS 53 17079 07/07/2001 OS 53 4749 28/07/200 1 08 53 2913 12/07/2001 08 53 22756 04/08/2001 08-53 14071 28/07/2001 08:53 22770 19/07/200 1 08.53 17330 28/07/2001 08 53 12356 28/08/2001 18.30 17310 12/07/2001 08.53 5809 02/08/2001 03 53 6008 14/07/2001 08.53 21052 09/08/2001 08:53 15793 02/08/2001 OS 53 9936 28/07/2001 08 53 7640 02/08/2001 08:53 10254 01/09/2001 22 00 10341 14/07/2001 08 53 12339 04/08/2001 08:53 12759 15/07/2001 08:53 26643 11/08/2001 08:53 135B6 04/08/2001 08.53 15439 02/08/2001 08 53 9329 04/08/200] 08:53 12268 01/09/2001 23 00 11120 19/07/2001 08 53 12184 09/08/2001 08 53 15718 19/07/2001 08:53 18944 16/08/2001 08.53 19146 09/08/2001 08:53 19427 04/08/2001 08.53 3995 09/08/2001 08.53 12971 02/09/2001 01:00 10873 28707/200 1 08.53 10170 11/08/2001 08 53 18509 28/07/2001 08 53 12571 23/08/2001 08:53 17066 11/08/2001 08-53 22480 09/08/2001 08 53 14936 11/08/2001 08 53 15226 02/09/2001 02:00 12027 02/08/2001 08 53 2296 16/08/2001 OS 53 647B 02/08/2001 08.53 9902 25/08/2001 08 53 15814 16/08/2001 08 53 22173 11/08/2001 08:53 12907 16/08/2001 08:53 14382 02/09/2001 03 00 10521 09/08/2001 08 53 10630 23/08/2001 OS 53 17020 04/08/2001 08 5: 10839 23/08/2001 18:30 4009 23/08/2001 08:53 21254 16/08/2001 08.53 15550 23/08/2001 08.53 12283 02/09/2001 04:00 628 11/08/200! 08:53 10843 25/08/2001 08:53 20401 09/08/2001 08.53 14583 01/09/2001 2200 6066 25/08/2001 08:53 23314 25/08/2001 08:53 17154 25/08/2001 08 53 13910 02/09/2001 05-00 13034 16/08/2001 08:53 11957 28/08/2001 18.30 14155 11/08/2001 08 53 15071 01/09/2001 23 00 7004 28/08/2001 18:30 19406 28/08/2001 1S:30 15147 28/08/2001 1B:30 12534 02/09/2001 06 00 12505 23/08/2001 08:53 1696 01/09/2001 08 00 12688 16/08/2001 OB 53 14350 02/09/2001 01 00 7456 01/09/2001 22:00 15141 01/09/2001 21:15 15836 01/09/2001 08.00 2433 02/09/2001 08:00 10548 25/08/2001 08:53 10932 01/09/2001 22:00 7884 23/08/2001 08:53 14007 02/09/2001 01:30 8205 01/09/2001 23:00 2305 01/09/2001 21:30 2641 01/09/2001 22 00 7453 02/09/2001 10.00 9407 01/09/2001 08:00 10972 01/09/2001 23:00 9093 25/08/200! 08:53 2894 02/09/2001 02.00 7250 02/09/2001 01:3C 25558 01/09/2001 21 45 14551 01/09/2001 23 00 9467 02/09/2001 13.00 10148 01/09/2001 22:00 5815 02/09/2001 01:00 815B 28/08/2001 18-30 11698 02/09/2001 03 00 8566 02/09/2001 02:00 13079 01/09/2001 22:00 16906 02/09/2001 01:00 8624 02/09/2001 14:30 11182 01/09/2001 23.00 6009 02/09/2001 01:30 9746 01/09/2001 08:00 11464 02/09/2001 04 00 8267 02/09/2001 03 00 13074 01/09/2001 23:00 14688 02/09/2001 01:30 624 02/09/2001 1730 9332 02/09/2001 01:00 6181 02/09/2001 02:30 14902 01/09(2001 22:00 7340 02/09/2001 06 00 8651 02/09/2001 04:0C 18386 02/09/2001 01:0C 14090 02/09/2001 02:00 7382 03/09/2001 08:30 12374 02(1)9/2001 01:30 6249 02/09/2001 03:00 8133 01/09/2001 23:00 7501 02/09/2001 08:00 7552 02/09/2001 05.00 11394 02/09/2001 01:30 3476 02/09/2001 03.00 7790 03/09/2001 08 53 11873 02/09/2001 02:00 6038 02/09/2001 04:00 9579 02/09/2001 01:00 3174 02/09/2001 10.00 7789 02/09/2001 06 00 12351 02/09/2001 02:00 657 02/09/2001 04 00 8039 04/09/2001 08:53 20780 02/09/2001 03 00 3433 02/09/2001 05 00 8211 02/09/2001 01:30 3554 02/09/2001 1300 B323 02/09/2001 08:00 9807 02/09/2001 02:3C 3773 02/09/2001 05 00 3703 06/09/2001 08:53 17830 02/09/2001 04:00 2353 02/09/2001 06: Ot 10432 02/09/2001 03:0C 686( 02/09/2001 14.30 B445 02/09/2001 10:00 24979 02/09/2001 03:00 2274 02/09/2001 06 00 7739 08/09/2001 03.53 18328 02/09/2001 05 00 1307 02/09/2001 03:00 7899 02/09/2001 04:00 7086 02/09/2001 17:30 S642 02/09/2001 13 00 10407 02/09/200 1 04:00 14780 02/09/2001 08 00 7598 12/10/2001 09 45 17357 02/09/2001 06 00 6683 02/09/2001 08:53 8347 02/09/2001 05 00 7335 03/09/2001 08:53 9555 02/09/2001 14:3C 14513 02/09/2001 05:0C 10837 02/09/2001 10:00 7444 12/10/2001 10:00 16444 02/09/2001 08 00 6382 02/09/2001 10 00 9371 02/09/2001 05 00 1902 04/09/2001 08 53 15707 02/09/2001 18:45 12264 02/09/2001 06:00 11505 02/09/2001 13.00 17772 12/10(2001 10:15 18430 02/09/2001 10:00 6845 02/09/2001 13:00 4633 02/09/2001 05:30 9016 06/09/2001 08 53 17290 02/09/2001 20 45 10219 02/09/2001 08:00 9630 02/09/2001 14:30 8586 12/10/2001 10:30 3319 02/09/2001 11:30 4050 02/09/2001 14:30 9149 02/09/2001 06:00 9194 08/09/2001 08 53 16435 03/09/2001 05.30 14675 02/09/2001 08:53 9492 02/09/2001 IB 45 10084 12/10/2001 10 45 17314 02/09/2001 13 00 6001 02/09/2001 17:30 3296 02/09(2001 08 00 6464 12/10/2001 09 30 17147 04/09/2001 08:53 13219 02/09/2001 10:00 8654 03/09/2001 08:30 8184 12/10/2001 11:00 20883 02/09/2001 14:30 1832 02/09/2001 18 45 8300 02/09/2001 10 00 6613 12/10/2001 09 45 19869 06/09/2001 08 53 15433 02/09/2001 13:00 11232 04/09/2001 08:53 10032 12/10/2001 11:30 18339 02/09/2001 17:30 6669 03/09/2001 08:53 2060 02/09/2001 13 00 11193 12/10/2001 10 00 16449 08/0W2001 08 53 19224 02/09/2001 14:3C 9791 06709/2001 08 53 12339 12/10/2001 11:45 6301 02/09/2001 18 45 6931 04/09/2001 08 53 11709 02/09/2001 14:30 8117 12/10/2001 10 15 15376 12/10/2001 09 30 20489 02/09/2001 20 45 8815 08/09/2001 03 53 14296 12/10/2001 12 00 14709 02/09/2001 20 45 6823 06/09/2001 08.53 17561 02/09(2001 17.30 10803 12/10/2001 10 30 14511 12/10/2001 09:45 2262G 03/09/2001 08:30 9822 12/10/2001 08 00 17474 12/10/2001 12:15 1677 02/09/2001 23:00 7404 08/09/2001 08:53 17217 02/09/2001 18 45 8193 12/10/2001 1045 7917 12/10/2001 10:00 11106 03/09/2001 08:53 6313 12/10/2001 08.53 7626 12/10/2001 12:30 11357 03/09/2001 08:30 7721 12/10/2001 08 00 7711 02/09/2001 20 45 1987 12/10/2001 11:00 7360 12/10/2001 10 15 23559 03/09/2001 20:30 2091 12/10/2001 09 30 13149 12/10/2001 12.45 10181 04/09/2001 03:53 14440 12/10/2001 08:53 18031 02/09/2001 21:00 755C 12/10/2001 11.45 1360 12/10/2001 10 30 23863 04/09/2001 08:53 10937 12/10/2001 10.15 15173 12/10/2001 13:00 2869 06/09/2001 08:5! 9973 12/10/2001 09.30 17252 03/09/2001 05:30 8712 12/10/2001 12 00 4S43 12/10/2001 10 45 4132 06/09/2001 03.53 13183 12/10/2001 10:30 593 12/10/2001 13:15 10363 08/Q9/2Q01 08.5J 12915 12/10/2001 10:15 18590 03/09/2001 08:30 9021 12/10/2001 12:15 3407 12/10/2001 11:30 21755 08/09/2001 08 53 13555 12/10/2001 10.45 13392 12/10/2001 14:30 8481 12/10/2001 09.45 11231 12/10/2001 11:30 10082 03/09/2001 08:53 23782 12/10/2001 12:30 5729 12/10/2001 11:45 10323 12/10/2001 09:15 17525 12/10/2001 11:45 18800 12/10/2001 15:00 13247 12/10/2001 10:30 10944 12/10/2001 11:45 19073 04/09/200 1 0 8 5: 12026 12/10/2001 12:45 5419 12/10/2001 12:00 13433 12/10/2001 09.30 22369 12/10/2001 12:00 8952 12/10/2001 16:00 S449 12/10/2001 10:45 11220 12/10/2001 12 00 26022 06/09/2001 08:53 14107 12/10/2001 1300 6635 12/10/2001 12:15 5645 12/10/2001 09.45 7288 12/10/2001 12.15 4104 12/10/2001 17:00 8135 12/10/2001 11:30 12301 12/10/2001 12 15 22137 08/09/2001 08:53 15961 12/10/2001 13:15 6410 12/10/2001 12:3( 9602 12/10/2001 10. Ot 13731 12/10/2001 12 30 15630 13/10/2001 IB 00 10359 12/10/2001 11:45 9930 12/10/2001 12:30 5925 12/10/2001 08:5: 635 12/10/2001 13-30 6036 12/10/2001 12 45 6491 12/10/2001 10 15 20089 12/10/2001 12:45 7354 14/10/2001 11:00 597 12/10/2001 12 00 10028 12/10/2001 13:00 627 12/10(2001 10:15 17783 12/10/2001 14:30 7127 12/10/2001 13 00 19588 12/10/2001 10:30 635 12/10/2001 13 IS 13467 15/10/2001 09 00 12523 12/10(2001 12 30 593 12/10/2001 13:15 210B1 12/10/2001 10:30 3489 12/10/2001 16:00 7514 12/10/2001 13:15 15921 12/10/2001 10 45 19534 12/10/2001 13:30 10284 15/10/2001 17:00 13528 12/10/2001 12 45 12005 12/10/2001 13-30 10623 12/10/2001 10:45 17765 12/10/2001 17:00 2166 12/10/2001 13:30 13922 12/10/2001 11:45 18116 12/10/2001 14:45 • 11349 15/10/2001 22.00 14177 12/10/2001 13:00 7799 12/10/2001 14.45 13691 12/10/2001 11:00 15092 12/10/2001 1800 8914 12/10/2001 14:00 8768 12/10/2001 12 00 15755 12/10/2001 15:45 10612 16/10/2001 10 00 . 15519 12/10/2001 13.15 9833 12/10/2001 15 30 18024 12/10/2001 11:30 13166 14/10/2001 11:00 16110 12/10/2001 14:30 9968 12/10/2001 12:15 4566 12/10/2001 16 15 10217 17/10/2001 17:00 - 11521 12/10/2001 13-30 16372 12/10/2001 15 45 6403 12/10/2001 11:45 15117 15/10/2001 09.00 12091 12/10/2001 16:00 9216 12/10/2001 12:30 19303 12/10/2001 16:30 9310 18/10/2001 08:00 17456 12/10/2001 13.45 9287 12/10/2001 16.00 4349 12/10/2001 12 00 16305 15/10/2001 17:00 13586 12/10/2001 17:00 2298 12/10/2001 12.45 18218 12/10/2001 16:45 6976 18/10/2001 18 00 16444 12/10/2001 14 45 11639 12/10/2001 16:30 13406 12/10/2001 12:15 12914 15/10/2001 22 00 13164 12/10/2001 18:00 5317 12/10/2001 13.00 14107 12/10/2001 17:00 3427 22/10/2001 09.00 19428 12/10/2001 16 00 10218 12/10/2001 17.00 12482 12/10/2001 12:30 2332 16/10/2001 1000 12856 13/10/2001 IS 00 11196 12/10/2001 13:15 16422 12/10/2001 17:30 8710 23/10/200! 12:30 4465 12/10/2001 16:30 2183 12/10/2001 17:30 12477 12/10/2001 12 45 2375 17/10/2001 1500 14237 14/10/2001 11:00 15114 12/10/2001 13:30 13767 12/10/2001 18 00 8328 27/10/2001 09.30 17137 12/10/2001 16 45 11200 12/10/2001 18.00 9480 12/10/2001 13 00 14289 17/10/2001 16 25 11795 15/10/2001 09.00 14968 12/10/2001 14:00 15491 12/10/2001 18 30 7387 15/01/2002 08:53 16370 12/10/2001 17:00 12390 14/10/2001 11:00 15192 12/10/2001 13.15 26356 17/10/2001 17.00 1702 15/10/2001 17.00 15645 12/10/2001 15:45 17815 13/10/2001 18 00 9289 16/05/2002 07:00 4938 12/10/2001 1730 10344 15/10/2001 09.00 3115 12/10/2001 13 45 14621 18/10/2001 08 00 11854 15/10/2001 22.0( 14877 12/10/2001 16.0( 2505 14/10/2001 1 00 9479 16/05/2002 13:50 25100 12/10/2001 18:00 10352 15/10/2001 17:00 14924 12/10/2001 14 45 11592 18/10/2001 1800 164S 17/10/2001 17,00 17428 12/10/2001 16:30 4396 15/10/2001 0 00 9600 03/08/2002 21:00 1437 14/10/2001 11:00 9751 15/10/2001 22:00 14 501 12/10/2001 16.00 574 22/10/2001 09 00 11615 18/10/2001 08 00 7368 12/10/2001 16:45 14513 15/10/200! 17 00 9932 08/08/2002 22 30 668 15/10/2001 09:00 9312 16/10/2001 10:00 15827 12/10(2001 16:15 11866 23/10/2001 12:30 16760 18/10/2001 18:01 3077 12/10/2001 17:3( 1482J 15/10/2001 2 00 9328 08/08/2002 23:30 9410 15/10/2001 12 00 1956 17/10/2001 17.00 15994 12/10/2001 16:30 12443 27/10/2001 09 30 17296 22/10/2001 09.00 14047 12/10/2001 18 00 603 16/10/2001 1 00 10371 09/08(2002 00.50 5634 15/10/2001 22 00 8812 18/10/2001 08:00 14628 12/10/2001 16:45 577 07/01/2002 08:53 21853 23710/2001 12 30 16667 12/10/2001 18:30 14800 17/10/2001 17 00 9608 09/08/2002 01:40 9686 16/10/2001 10 00 8343 18/10/2001 18 00 9883 12/10/200! 17:00 12582 15/01/2002 08:53 19535 27/10/2001 09.30 18724 13/10/2001 18 01 14747 18/10/2001 0 00 3499 09/08/2002 04 00 10428 17/10/2001 17.00 8183 22/10/2001 09 00 12584 12/10/200! 17:30 3243 16/05/2002 20:30 58971 07/01/2002 08:53 21721 14/10/2001 11:00 10756 18/10/2001 1 00 9853 09/08(2002 08:00 9092 18/10/2001 08 00 7354 23/10/2001 12:30 2873 12/10/2001 18 00 10324 17/05/2002 17.4 5 39949 15/01/2002 08:53 19963 14/10/2001 11:30 12425 22/10/2001 09.00 2189 09/08(2002 08:53 9632 13/10/2001 18.00 7474 27/10/2001 09 30 14958 12/10/2001 18-30 3765 13/05/2002 08:00 68988 13/05/2002 09:00 14968 14/10/2001 13.45 10159 23/10/2001 12:30 10034 31/08/2002 10:00 14222 22/10/2001 09.00 9781 15/05/2002 15:00 707 13/10/2001 13:00 2152 19/05/2002 08:00 34511 Table K-3: Summary of sulfate concentrations for lysimeter 9-16, part 1 (of 2). 240 15/05/2002 06:00 16/05/2002 20:30 ~ 17/05/2002 10:00 ~ 17/05/2002 17:45 ~ 19/05/2002 08:00 ~ 22/05/2002 08:53 ~ 24/05/2002 08:53 ~ 08/08/2002 21:00 *" 08/08/2002 22:30 ~ 08/08/2002 23 30 ~ 09/08/2002 00.30 ~ 09/08/2002 01:40 09/08/2002 04:00 ~ 09/08/2002 08:53 " 19/08/2002 09:00 ~ 31/08/2002 10:00 " 03/10/2002 08:53 " 18/10/2002 10:30 _ 12/11/2002 08:53 _ 10/12/2002 08 53 _ 30/12/2002 08:53 _ 08/01/2003 08 53 14/01/2003 08 53 " /01/2003 08 53 ~ 28/01/2003 08 53 04/02/2003 08:53 ~ 11/02/2003 08:53 _ 19/02/2003 08.53 ~ 25/02/2003 08 53 " 04/03/2003 08:53 " 12/03/2003 08:53 " 26/03/2003 08:53 ~ 01/04/2003 08:53 " 08/04/2003 08.53 ~ 15/04/2003 08 53 " 22/04/2003 08 53 " 29/04/2003 08 53 *" 21/05/2003 08 53 28/05/2003 08 53 " 28/07/2003 21:30 " 20/08/2003 08 53 " 16/09/2003 08.53 " 13/01/2004 08:53 " 20/01/2004 08 53 " 1 14/10/2001 14:30 15/10/2001 09:Oo| 1 18/10/2001 08 00 t 18/10/2001 18 00 ~ ! 22/10/2001 09:00 ~ i 22/10/2001 09:30 ~ /" 23/10/2001 12:30 ~ i 13/05/2002 09.00 ~ l| 16/05/2002 13'S0| l | 08/08/2002 22.30J i[ Q9/0B/2002 00:301 >| 09/03/2002 08:53 12/11/2002 08.53 _ 10/12/2002 08 S3 _ 17/12/2002 OB S3 _ 30/12/2002 08:53 _ 08/01/2003 08:53 " 14/01/2003 08 53 " 21/01/2003 08:53 ~ 28/01/2003 08:53 " 04/02/2003 08:53 ~ 11/02/2003 08:53 " 19/02/2003 08: S3 25/02/2003 08:53 _ 04/03/2003 08:53 12/03/2003 08:53 ~ 26/03/200308:53 "" 01/04/200308.53 ~ 08/04/2003 OB S3 " 15/04/2003 08:53 ~ 22/04/2003 0 8 53| 10/0S/2003 08.31 28/05/2003 08.53 _ 21/05/2003 08:53 28/07/200321:30 " 2O/O8/20O3 08.53 ~ 16/09/2003 08:53 "" 1 13/01/2004 08:53 " 20/01/2004 08:53 " 27/10/2001 09:30 _ 07/01/2002 08:53 ~ 15/01/2002 08 53 ~ 11/05/2002 09:00 ~ 13/05/2002 09:30 ~ 16/05/2002 07:00 ~ 16/05/2002 13:50 " 17/0V2002 10 00 ~ 17/05/2002 17.45 ~ 18/05/2002 08:00 ~ 19/05/2002 08:00 ~ 22/05/2002 08:53 " 24/OV2002 0B:S3 ~ 08/08/2002 21:00 _ 08/OB/2OO2 22:30 _ 08/08/2002 23:30 " 09/08/2002 00:30 _ 09/08/2002 01:40 >| 09/08/2002 03:53] 31/08/2002 08:53| 31/08/2002 10:Qi 03/10/2002 08:S3| 18/10/2002 10:30 ~ 12/11/2002 08:53 " 17/12/2002 08:53 " 30/12/2002 08:53 " 08/01/2003 08:53 " 14/01/2003 08:53 " 21/01/2003 03:53 " 28/01/2003 03:53 " 04/02/2003 03 S3 " 11/02/200308:53 ~ 19/02/2003 08:53 " 25/02/2003 08:53 " 04/03/2003 08:53 " 12/03/2003 08.53 "" 26/03/2003 0B:53 ~ 01/04/2003 08:53 " 08/04/2003 08:53 ~ 15/04/2003 08:53 "" 29/04/2003 08:53 " 10/05/2003 03:15 " 10/05/2003 03:30 " 21/05/2003 03:53 " 28/05/2003 08:53 " 28/07/2003 21:30 " 20/08/2003 08:53 ~ 16/09/2003 08:53 _ 13/01/2004 08:53 20/01/2004 08:53 ~ n 1/2002 08:53 _ 10/12/2002 OB: 53 ~ 17/12/2002 03 53 ~ 30/12/2002 03 53 ~ ) 03/01/2003 08 53 ~" 14/01/2003 08:53 ~ 21/01/2003 08 53 ~ 28/01/2003 08:53 ~ 04/02/2003 08: S3 ~ 11/02/2003 08| S3 ~ 19/02/2003 03:53 "" 25/02/2003 08 53 ~ 04/03/2003 08 S3 ~ 01/04/2003 08 53 ~ 08/04/2003 08.53 ~ IV04/2Q03 08 S3 ~ 22/04/2003 08.53 10/05/2003 08:15 10/05/2003 08:30 01/07/2003 08 53 _ 13/01/2004 08:53 20/01/2004 08:53 7849 14614 5286 4007 1733 5964 7543 11411 3021 76S6 4476 11567 93200 57400 I 23/10/2001 12:30 _ I 27/10/200 1 09.30 " ) 07/01/200208:53 " S 15/01/2002 08 S3 " \ 11/05/200209.15 ~ '1 17/05/2002 17.451 I 22/05/2002 08:53 1 24/05/2002 08.53 ~ ! 01/08/2002 16 00 ~" 1 07/03/2002 08.53 ~ I 08/08/2002 10:30 ~ i 08/08/2002 12 10 ~ i 08/08/2002 12:50 ~ ? 08/08/2002 13 30 ~ > 08/08/2002 15 45 _ I 08/08/2002 17:25 > 08/08/2002 17:45 1 08/08/2002 18:30 " 08/08/2002 19.30 _ 08/08/2002 20.00 _ 08/08/2002 20:30 1 08/08/2002 22 30| I 09/08/2002 04:OO| 1 09/08/2002 08 531 09/08/2002 10:30| I 09/08/2002 11:55) I 10/08/2002 11:301 19/08/2002 09:00 20/08/2002 11:30 "* 27/08/2002 23:30 23/08/2002 10:30 ~ 31/03/2002 10:00 03/10/2002 08:53 " 03/10/2002 10.00 ~ 18/10/2002 10:30 " 12/11/2002 08:53 " 10/12/2002 08:53 " 13/12/2002 08:53 ~ 17/12/2002 08 S3 _ 08/01/2003 08.53 _ 14/01/2003 08 S3 21/01/2003 08:53 " 28/01/2003 08 53 _ 04/02/2003 OB S3 _ 11/02/2003 08 S3 ~ 19/02/2003 08:53 _ 25/02/2003 OB- S3 _ 04/03(2003 08: S3 _ 12/03/2003 08.53 ~ 26/03/2003 08 S3 " 01/04/2003 08 S3 ~ 03/04/2003 08. S3 ~ 15/04/2003 03 S3 ™ 22/04/2003 08:53 " 29/04/2003 08 S3 " 10/05/2003 08:15 " 10/05/2003 08 30 ~ 21/05/2003 08 S3 " 28/05/2003 08:53 " 28/07/2003 21:30 " 20/08/2003 08 S3 " 16/09/2003 08 53 " 13/01/2004 08.53 ~ 20/01/2004 08.53 ~ 20/01/2 0 04 0 8 S3 " 03/08/2002 22:30 09/08/2002 00:30 " 09/08/2002 01:40 " 09/08/2002 08:53 12/11/2002 08:53 _ 10/12/2002 08:53 ~ 17/12/2002 08:53 ~ 30/12/2002 08:53 ~ 08/01/2003 08:53 ~ 14/01/2003 08:53 ~ 21/01/2003 08:53 ~ 28/01/2003 08:53 ~ 04/02/2003 08:53 ~ 11/02/200308:53 _ 19/02/2003 08:53 ~ 25/02/2003 08:53 ~ 04/03/2003 08:53 ~ 12/03/2003 08:53 " 26/03/2003 08:53 " 01/04/2003 08:53 ~ OB/04/2003 08:53 _ 22/04/2003 08:53 _ 29/04/2003 08:53 10/OV2003 08:1S " 23/07/2003 08:53 ~ 21/05/2003 03:53 " 28/0V2003 03:53 " 17/06/2003 08:53 " 28/07/2003 21:30 ~ 20/08/2003 08:53 " 16/09/2003 08:53 " 13/01/200 4 0 8:53 " 20/01/2004 08:53 " 7163 9363 7033 2148 5567 8532 6006 9707 7684 8364 8380 6627 5404 4277 2782 2243 4369 9661 7S37 7039 30500 7630 7170 8140 8379 6267 8776 737S 14/10/2001 11:00 14/10/2001 11:30 ~ 14/10/2001 13.45 ~ 14/10/2001 14:30 ~ IV10/2001 09.00 ~ IS/10/2001 17:00 ~ 15/10/2001 17:00 _ 17/10/2001 IS 00 ~ 17/10/2001 16 25 ~ 17/10/2001 17.00 " 23/10/2001 12:30j 27/10/2001 09 30| 13705/2002 Q9.30| 08/08/2002 22:30 08/03/2002 23:301 09/08/2002 00.301 09/08/2002 08: Ot 09/08/2002 08:53 _ 31/08/2002 10:00 _ 12/11/2002 08 S3 _ 10/12/2002 08 53 _ 30/12/2002 08:53 " 14/01/2003 08 53 " 21/01/2003 08:53 " 28/01/2003 08 53 " 04/02/2003 03 S3 " 11/02/2003 08 53 " 19/02/2003 08 53 " 2V02/2003 08:53 " 04/03/2003 08:53 " 12/03/2003 08 53 ~ 26/03/2003 08:53 01/04/2003 08:53 ~ 08/04/2003 08 53 ~ 15/04/2003 08.53 22/04/2003 08:53 ~ 29/04/2003 08:53 " 15/10/2003 08:15 ' 1V10/2003 03 30 " 21/05/2003 08.53 " 28/05/2003 08 53 " 28/07/2003 21:30 ~ 20/08/2003 08:53 16/09/2003 08:53 " 13/01/2 0 04 08 S3 _ 20/01/2004 08:53 J 22/05/2002 08:53 I 24/05/2002 03:53 ~ I 03/08/200221:00 " i 08/08/2002 23.30 ~ I 09/08/2002 00:30 ~ [ 09/08/2002 01 40 ~ / 09/08/2002 04:00 ~ 'I 09/08/2002 08:S3| i 03/10/2002 08 S3 12/10/2002 08:53 " 18/10/2002 10:30 " 12/11/2002 08.53 " 17/12/2002 03:53 " i 30/12/2002 08 S3 " 14/01/2003 08 S3 _ i 21/01/2003 08:53 _ ) 28/01/2003 08:53 _ 11/02/2003 08:53 _ 14/02/2003 08:53 19/02/2003 08:53 _ ' 25/02/2003 08:53 ' 04/03/2003 08:53 ~ 12/03/2003 08:53 " ! 01/04/2003 08:53 ! 08/04/2003 08:53 " 15/04/2003 08:53 " f 29/04/2003 08:53 " 13/01/200408:53 " ) 20/01/200403:53 ~ 3480 5373 2256 62376 94S0 105O0 2022 9233 Table K-4: Summary of sulfate concentrations for lysimeter 9-16, part 2 (of 2). Lysimeter date and time Li [mg/1] Be [mg/1] Ga [mg/1] As [mg/1] Se [mg/1] Ag [mg/1] Cd [mg/1] Sb [mg/1] Cs [mg/1] Ba [mg/1] La [mg/1] 1 16/05/2002 16:30 11.058 0.089 0.010 0.075 0.058 0.000 0.005 0.002 0.000 0.013 2.230 1 31/08/2002 10:00 11.324 0.092 0.008 0.027 0.070 0.000 0.004 0.000 0.000 0.022 0.447 2 12/09/2000 00:00 17.198 0.189 0.000 0.035 0.090 0.000 0.010 0.000 0.000 0.000 0.726 2 07/01/2002 00:00 17.102 0.112 0.001 0.044 0.063 0.000 0.006 0.000 0.000 0.000 0.593 2 15/01/2002 00:00 13.674 0.099 0.008 0.037 0.062 0.000 0.004 0.000 0.000 0.017 0.536 2 16/05/2002 00:00 44.249 0.295 0.014 0.185 0.252 0.001 0.024 0.000 0.000 0.001 4.237 2 17/05/2002 10:00 44.402 0.280 0.014 0.167 0.227 0.000 0.024 0.000 0.000 0.000 4.128 2 17/05/2002 17:45 29.845 0.198 0.011 0.124 0.166 0.000 0.017 0.001 0.000 0.008 2.596 2 18/05/2002 07:30 27.670 0.148 0.004 0.078 0.062 0.000 0.009 0.000 0.000 0.000 1.782 2 18/05/2002 13:00 20.306 0.103 0.012 0.049 0.074 0.001 0.006 0.000 0.000 0.027 0.978 2 19/05/2002 08:00 20.256 0.090 0.002 0.030 0.046 0.001 0.004 0.000 0.000 0.000 0.636 2 22/05/2002 00:00 16.107 0.074 0.000 0.016 0.004 0.000 • 0.002 0.000 0.000 0.002 0.382 2 24/05/2002 00:00 16.687 0.086 0.002 0.017 0.039 0.000 0.004 0.000 0.000 0.004 0.383 2 01/08/2002 16:00 13.096 0.080 .0.007 0.013 0.021 0.000 0.001 0.000 0.000 0.020 0.205 2 02/08/2002 14:00 13.964 0.090 0.006 0.016 0.042 0.000 0.004 0.000 0.000 0.016 0.237 2 07/08/2002 14:00 13.943 0.090 0.010 0.018 0.042 0.001 0.004 0.000 . 0.000 0.031 0.269 2 08/08/2002 13:50 10.228 0.065 0.008 0.025 0.022 0.000 0.005 0.010 0.000 0.024 0.218 2 08/08/2002 16:30 12.214 0.075 0.009 0.028 0.038 0.001 0.003 0.008 0.000 0.027 0.226 2 09/08/2002 22:00 14.086 0.090 0.008 0.017 0.043 0.000 0.002 0.000 0.000 0.024 0.219 2 11/08/2002 15:00 12.673 0.087 0.010 0.015 0.051 0.001 0.003 0.000 0.000 0.030 0.227 2 20/08/2002 11:30 11.114 0.079 0.009 0.015 0.030 0.000 0.002 0.000 0.000 0.025 0.222 2 26/08/2002 10:30 12.048 0.080 0.019 0.017 0.062 0.002 0.004 0.001 0.000 0.056 0.241 2 28/08/2002 10:30 11.380 0.077 0.009 0.016 0.043 0.000 0.003 0.000 0.000 0.027 0.235 2 31/08/2002 10:00 13.039 0.079 0.000 0.018 0.027 0.000 0.002 0.001 0.000 0.004 0.228 2 03/10/2002 00:00 13.280 0.084 0.003 0.021 0.043 0.000 0.004 0.000 0.000 0.005 ' 0.306 2 18/10/2002 10:30 13.223 0.085 0.002 0.027 0.043 0.000 0.004 0.000 0.000 0.006 0.344 3 31/08/2002 10:00 12.518 0.093 0.007 0.020 0.071 0.000 0.003 0.000 0.000 0.019 0.254 4 31/08/2002 10:00 0.000 0.090 0.007 0.018 0.056 0.000 0.003 0.000 0.000 0.018 0.238 4 15/04/2003 00:00 11.239 0.088 0.003 0.033 0.076 0.000 0.007 0.000 0.000 0.000 0.000 5 .07/01/2002 00:00 7.043 0.121 0.002 0.033 . 0.073 0.000 0.006 0.000 0.000 0.004 0.718 5 15/01/2002 00:00 7.790 0.128 0.006 0.032 0.086 .0.000 0.008 0.000 0.000 0.016 0.697 5 16/05/2002 20:30 237.228 3.233 0.076 0.899 2.261 0.002 0.269 0.003 0.001 0.050 31.815 5 17/05/2002 10:00 218.417 2.990 0.072 0.834 2.022 0.001 0.244 0.002 0.001 0.042 28.711 5 17/05/2002 17:45 331.962 4.879 0.086 1.167 3.000 0.000 0.372 0.000 0.002 0.000 38.011 5 19/05/2002 08:00 231.176 3.050 0.071 0.770 1.896 0.000 0.230 0.001 . 0.001 0.003 29.342 5 22/05/2002 00:00 120.894 1.730 0.043 0.417 0.966 0.001 0.128 0.000 0.000 0.018 15.399 5 24/05/2002 00:00 20.902 0.230 0.011 0.102 0.205 0.000 0.016 0.000 0.000 0.007 2.941 5 19/08/2002 09:00 11.174 0.146 0.022 0.047 0.103 0.002 0.008 0.002 0.000 0.063 0.807 5 31/08/2002 10:00 10.214 0.146 0.009 0.048 0.120 0.001 0.007 0.000 0.000 0.019 0.867 5 03/10/2002 00:00 12.178 0.174 0.008 0.060 0.129 0.000 0.009 0.000 0.000 0.013 1.100 Table K-5: Summary of cation concentrations, part 1 (of 12). 241 Lysimeter date and time L i [mg/1] Be [mg/1] G a [mg/1] As [mg/1] Se [mg/I] A g [mg/1] C d [mg/1] Sb [mg/1] Cs [mg/1] Ba [mg/1] L a [mg/1] 5 18/10/2002 10:30 14.478 0.227 0.012 0.069 0.167 0.002 0.013 0.000 0.000 0.024 1.434 5 22/04/2003 00:00 1.152 0.018 0.002 0.003 0.000 0.000 0.000 0.000 0.000 0.004 0.031 5 15/07/2003 00:00 12.930 0.162 0.022 0.150 0.453 0.000 0.016 0.000 0.000 0.005 0.000 6 07/01/2002 00:00 17.384 0.094 0.000 0.027 0.083 0.000 0.005 0.000 0.000 0.000 0.429 6 15/01/2002 00:00 16.245 0.085 0.008 0.023 0.042 0.001 0.006 0.000 0.000 0.018 0.412 6 16/05/2002 12:50 6.314 0.038 0.006 0.007 0.000 0.000 0.001 0.000 0.000 0.022 0.156 6 16/05/2002 13:50 6.647 0.040 0.006 0.007 0.000 0.000 0.001 0.000 0.000 0.024 0.164 6 16/05/2002 15:30 8.632 0.049 0.012 0.010 0.000 0.000 0.002 0.000 0.000 0.036 0.194 6 16/05/2002 17:30 6.272 0.038 0.004 0.006 0.000 0.000 0.001 0.000 0.000 0.021 0.152 6 16/05/2002 20:30 7.386 0.042 0.018 0.009 0.042 0.001 0.002 0.001 0.000 0.058 0.174 6 16/05/2002 23:25 7.247 0.043 0.006 0.008 0.000 0.000 0.001 0.000 0.000 0.022 0.193 6 17/05/2002 10:00 7.375 0.043 0.019 0.009 0.052 0.001 0.002 0.001 0.000 0.058 0.170 6 17/05/2002 13:30 7.617 0.044 0.008 0.009 0.020 0.000 0.001 0.000 0.000 0.024 0.159 6 17/05/2002 15:30 8.341 0.045 0.004 0.009 0.024 0.000 0.001 0.000 0.000 0.013 0.167 6 17/05/2002 16:45 9.518 0.048 0.020 0.008 0.000 0.000 0.004 0.001 0.000 0.065 0.167 6 18/05/2002 07:30 9.123 0.046 0.019 0.008 0.004 0.000 0.004 0.002 0.000 0.068 0.165 6 18/05/2002 11:30 7.770 0.043 0.006 0.008 0.008 0.000 0.000 0.000 0.000 0.020 0.161 6 18/05/2002 13:00 7.923 0.045 0.006 0.006 0.000 0.000 0.001 0.000 0.000 0.020 0.161 6 18/05/2002 14:00 8.704 0.047 0.004 0.009 0.029 0.000 0.000 0.000 0.000 0.014 0.172 6 18/05/2002 15:00 8.248 0.046 0.005 0.009 0.018 0.000 0.001 0.000 0.000 0.014 0.170 6 18/05/2002 16:00 8.618 0.047 0.008 0.008 0.000 0.000 0.001 0.000 0.000 0.026 0.172 6 18/05/2002 17:00 11.680 0.062 0.002 0.011 0.000 0.000 0.001 0.000 0.000 0.006 0.220 6 19/05/2002 08:00 8.872 0.048 0.007 0.005 0.064 0.001 0.002 0.000 0.000 ' 0.026 0.156 6 19/05/2002 11:00 9.450 0.057 0.008 0.011 0.002 0.000 0.002 0.000 0.000 0.026 0.231 6 22/05/2002 00:00 12.478 0.062 0.008 0.008 0.025 0.001 0.004 0.000 0.000 0.026 0.220 6 24/05/2002 00:00 11.288 0.060 0.005 0.014 0.041 0.000 0.002 0.000 0.000 0.014 0.261 6 19/08/2002 09:00 10.838 0.064 0.024 0.014 0.036 0.002 0.004 0.001 0.000 0.074 0.211 6 31/08/2002 10:00 9.769 0.060 0.007 0.013 0.053 0.000 0.002 0.000 0.000 0.021 0.205 6 03/10/2002 00:00 12.964 0.070 0.002 0.010 0.026 0.000 0.002 0.000 0.000 0.006 0.242 6 18/10/2002 10:30 14.087 0.072 0.010 0.013 0.036 0.001 0.004 0.000 0.000 0.024 0.267 6 24/10/2002 01:30 9.789 0.059 0.006 0.014 0.000 0.000 0.002 0.000 0.000 0.021 0.250 6 22/04/2003 00:00 15.146 0.081 0.019 0.030 0.017 0.001 0.010 0.001 0.000 0.053 0.388 7 12/09/2000 00:00 18.746 0.184 0.009 . 0.042 0.256 0.001 0.010 0.000 0.000 0.013 0.000 7 31/08/2002 10:00 8.303 0.089 0.006 0.022 0.074 0.000 0.004 0.000 0.000 0.018 0.264 8 23/06/2001 00:00 10.983 0.107 0.005 0.053 0.140 0.000 0.009 0.000 0.000 0.001 0.000 8 07/01/2002 00:00 14.263 0.218 0.002 0.060 0.093 0.000 0.010 0.000 0.000 0.000 0.830 8 15/01/2002 00:00 5.060 0.100 0.010 0.029 0.064 0.000 0.005 0.000 0.000 0.022 0.399 8 17/05/2002 10:00 198.769 2.788 0.053 0.471 1.180 0.000 0.171 0.001 0.000 0.000 8.780 8 17/05/2002 17:45 222.315 3.083 0.059 0.523 1.322 0.000 0.190 0.004 0.000 0.002 10.126 Table K-6: Summary of cation concentrations, part 2 (of 12). 242 Lysimeter date and time L i [mg/1] Be [mg/1] G a [mg/1] As [mg/1] Se [mg/1] A g [mg/1] C d [mg/1] Sb [mg/1] Cs [mg/1] B a [mg/1] L a [mg/1] 8 18/05/2002 08:00 197.526 2.827 0.054 0.493 1.277 0.000 0.176 0.002 0.000 0.001 9.785 8 19/05/2002 08:00 167.582 2.342 0.049 0.438 1.068 0.000 0.146 0.001 0.000 0.000 8.784 8 22/05/2002 00:00 166.714 2.394 0.042 0.396 1.022 0.000 0.149 0.001 0.000 0.000 7.256 8 24/05/2002 00:00 253.852 3.530 0.073 0.728 1.651 0.000 0.217 0.001 0.000 0.000 15.141 8 01/08/2002 16:00 16.622 0.194 0.010 0.054 0.104 0.001 0.010 0.000 0.000 0.018 0.812 8 07/08/2002 15:30 10.098 0.144 0.008 0.036 0.086 0.000 0.006 0.000 0.000 0.021 0.397 8 08/08/2002 15:45 8.540 0.109 0.008 0.027 0.050 0.001 0.004 0.001 0.000 0.024 0.281 8 09/08/2002 22:00 12.400 0.127 0.008 0.025 0.056 0.001 0.004 0.000 0.000 0.022 0.260 8 18/08/2002 09:00 9.587 0.146 0.008 0.034 0.074 0.000 0.005 0.000 0.000 0.022 0.314 8 28/08/2002 10:30 4.098 0.050 0.005 0.011 0.015 0.000 0.000 0.000 0.000 0.014 0.096 8 31/08/2002 10:00 6.954 0.096 0.007 0.018 0.055 0.000 0.003 0.000 0.000 . 0.020 0.192 8 03/10/2002 00:00 10.424 0.151 0.002 0.038 0.076 0.000 0.007 0.000 0.000 0.000 0.414 8 18/10/2002 10:30 19.026 0.325 0.021 0.082 0.192 0.001 0.016 0.000 0.000 0.031 0.889 8 15/04/2003 00:00 0.550 0.011 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.025 9 07/01/2002 00:00 10.516 0.204 0.001 0.057 0.114 0.000 0.008 0.000 0.000 0.000 0.883 9 15/01/2002 00:00 9.458 0.191 0.010 0.058 0.120 0.001 0.010 0.000 0.000 0.017 0.872 9 15/01/2002 00:00 9.291 0.170 0.007 0.062 0.212 0.000 0.010 0.000 0.000 0.002 0.000 9 16/05/2002 20:30 11.994 0.232 0.027 0.171 0.233 0.001 0.017 0.002 0.000 0.051 2.717 9 17/05/2002 10:00 15.560 0.288 0.024 0.227 0.285 0.001 0.020 0.001 0.000 0.036 3.718 9 17/05/2002 1 7:45 15.448 - 0.240 0.027 0.160 0.140 0.000 0.018 0.002 0.000 0.062 2.446 9 18/05/2002 08:00 15.965 0.293 0.025 0.191 0.199 0.001 0.022 0.002 0.000 0.059 3.069 9 19/05/2002 08:00 16.435 0.294 0.014 0.174 0.270 0.001 0.019 0.000 0.000 0.018 3.058 9 22/05/2002 00:00 13.160 0.267 0.014 0.151 0.224 0.001 0.016 0.000 0.000 0.016 3.147 9 24/05/2002 00:00 10.815 0.133 0.004 0.063 0.103 0.000 0.008 0.000 0.000 0.004 1.132 9 19/08/2002 09:00 8.782 0.133 0.021 0.035 0.059 0.002 0.007 0.001 0.000 0.064 0.383 9 31/08/2002 10:00 10.758 0.144 0.002 0.031 0.071 0.000 0.005 0.000 0.000 0.005 0.401 9 03/10/2002 00:00 10.857 0.147 0.003 0.035 0.101 0.000 0.006 0.000 0.000 0.006 0.446 9 18/10/2002 10:30 11.493 0.158 0.009 0.040 0.109 0.001 0.007 0.000 0.000 0.026 0.508 9 22/04/2003 00:00 17.074 0.261 0.019 0.080 0.127 0.001 0.017 0.001 0.000 0.052 0.761 9 23/07/2003 00:00 9.538 0.122 0.000 0.046 0.091 0.000 0.011 0.000 0.000 0.000 0.744 10 05/01/2000 00:00 11.467 0.303 0.016 0.081 0.240 0.000 0.020 0.001 0.000 0.006 2.976 10 31/08/2002 10:00 12.782 0.103 0.008 0.022 0.074 0.000 0.004 0.000 0.000 0.025 0.263 11 07/01/2002 00:00 12.243 0.142 0.000 0.033 0.052 0.000 0.006 0.000 0.000 0.000 0.450 11 15/01/2002 00:00 13.198 ' 0.140 0.008 0.034 0.065 0.000 0.008 0.000 0.000 0.018 0.449 11 16/05/2002 20:30 22.611 0.265 0.027 0.132 0.203 0.002 0.022 0.001 0.000 0.054 2.129 11 17/05/2002 10:00 20.645 0.240 0.026 0.118 0.200 0.001 0.019 0.001 0.000 0.056 1.993 11 17/05/2002 17:45 23.271 0.234 0.028 0.109 0.105 0.001 0.020 0.002 0.000 0.064 1.950 11 18/05/2002 08:00 21.244 0.219 0.025 0.109 0.128 0.000 0.019 0.002 0.000 0.061 1.952 11 19/05/2002 08:00 19.530 0.202 0.016 0.099 0.205 0.001 0.014 0.000 0.000 0.020 1.836 Table K-7: Summary of cation concentrations, part 3 (of 12). 243 Lysimeter date and time L i [mg/1] Be [mg/1] G a [mg/1] A s [mg/1] Se[mg/1] A g [mg/11 C d [mg/1] Sb [mg/1] C s [mg/1] Ba [mg/1] L a [mg/1] 11 22/05/2002 00:00 15.383 0.082 0.006 0.019 0.054 0.002 0.004 0.000 0.000 0.022 0.359 11 24/05/2002 00:00 12.130 0.074 0.004 0.021 0.028 0.001 0.003 0.000 0.000 0.011 0.342 11 18/08/2002 09:00 13.433 0.091 0.020 0.018 0.030 0.002 0.006 0.001 0.000 0.064 0.208 11 31/08/2002 10:00 18.378 0.126 0.008 0.026 0.090 0.001 0.006 0.000 0.000 0.023 0.305 11 03/10/2002 00:00 16.085 0.104 0.001 0.018 0.052 0.001 0.004 0.000 0.000 0.002 0.254 11 18/10/2002 10:30 21.378 0.149 0.009 0.029 0.089 0.003 0.008 0.000 0.000 0.029 0.384 11 22/04/2003 00:00 46.746 0.326 0.019 0.063 0.101 0.001 0.026 0.001 0.000 0.056 0.383 12 23/06/2001 00:00 12.497 0.172 0.006 0.064 0.186 0.000 0.013 0.000 0.000 0.006 0.000 12 15/01/2002 00:00 11.334 0.173 0.005 0.047 0.152 0.000 0.010 0.000 0.000 0.005 0.000 12 31/08/2002 10:00 0.000 0.124 0.006 0.030 0.080 0.001 0.005 0.001 0.000 0.022 0.268 12 15/04/2003 00:00 9.156 0.093 0.002 0.027 0.055 0.000 0.007 0.000 0.000 0.000 0.000 12 01/07/2003 00:00 11.376 0.092 0.004 0.024 0.101 0.000 0.006 0.000 0.000 0.008 0.000 13 07/01/2002 00:00 26.198 0.160 0.000 0.033 0.063 0.000 0.006 0.000 0.000 0.000 0.511 13 15/01/2002 00:00 16.217 0.096 0.007 0.024 0.038 0.001 0.004 0.000 0.000 0.019 0.393 13 16/05/2002 20:30 182.309 1.065 0.033 0.238 0.454 0.002 0.069 0.005 0.000 0.063 5.152 13 17/05/2002 10:00 170.606 0.983 0.028 0.214 0.472 0.001 0.062 0.004 0.000 0.047 5.081 13 17/05/2002 17:45 165.034 0.896 0.034 0.208 0.328 0.000 0.055 0.006 0.000 0.066 5.041 13 18/05/2002 08:00 124.308 0.690 0.028 0.179 0.306 0.000 0.045 0.005 0.000 0.063 4.389 13 19/05/2002 08:00 94.569 0.521 0.018 0.169 0.318 0.001 0.032 0.002 0.000 0.022 4.233 13 22/05/2002 00:00 16.268 0.084 0.007 0.031 0.064 0.001 0.006 0.004 0.000 0.022 0.530 13 24/05/2002 00:00 12.162 0.062 0.004 0.028 0.020 0.000 0.002 0.005 0.000 0.012 0.251 13 19/08/2002 09:00 14.037 0.081 0.020 0.018 0.021 0.002 0.004 0.002 0.000 0.060 0.232 13 31/08/2002 10:00 17.064 0.088 0.002 0.016 0.036 0.000 0.003 0.000 0.000 0.006 0.260 13 03/10/2002 00:00 15.013 0.082 0.000 0.014 0.018 0.000 0.002 0.000 0.000 0.001 0.250 13 22/04/2003 00:00 62.395 0.354 0.019 0.068 0.122 0.002 0.022 0.004 0.000 0.056 0.904 14 23/07/2003 00:00 10.768 0.068 0.004 0.022 0.094 0.000 0.005 0.000 0.000 0.009 0.000 15 23/06/2001 00:00 11.096 0.111 0.005 0.050 0.112 0.002 0.008 0.000 0.000 0.005 0.000 15 31/08/2002 10:00 10.066 0.104 0.005 0.031 0.068 0.001 0.004 0.002 0.000 0.015 0.318 16 07/01/2002 00:00 17.701 0.207 0.006 0.048 0.085 0.000 0.009 0.000 0.000 0.000 0.743 16 15/01/2002 00:00 14.318 0.185 0.014 0.042 0.098 0.001 0.008 0.000 0.000 0.018 0.708 16 16/05/2002 20:30 33.918 0.513 0.064 0.198 0.384 0.008 0.034 0.002 0.000 0.057 4.020 16 17/05/2002 10:00 30.574 0.475 0.059 0.182 0.367 0.001 0.032 0.002 0.000 0.058 3.780 16 17/05/2002 17:45 28.902 0.416 0.052 0.151 0.236 0.000 0.028 0.002 0.000 0.062 2.989 16 18/05/2002 08:00 26.475 0.400 0.048 0.153 0.264 0.001 0.028 0.002 0.000 0.060 2.978 16 19/05/2002 08:00 23.795 0.384 0.039 0.145 0.304 0.000 0.023 0.000 0.000 0.021 3.186 16 22/05/2002 00:00 17.236 0.276 0.023 0.118 0.216 0.001 0.017 0.000 0.000 0.016 2.392 16 24/05/2002 00:00 10.020 0.148 0.009 0.060 0.092 0.000 0.009 0.000 0.000 0.008 1.014 16 18/08/2002 09:00 14.432 0.122 0.021 0.025 0.036 0.002 0.006 0.001 0.000 0.061 0.296 16 31/08/2002 10:00 14.553 0.128 0.007 0.030 0.082 0.000 0.004 0.000 0.000 0.019 0.333 16 03/10/2002 00:00 16.842 0.148 0.004 0.026 0.050 0.000 0.005 0.000 0.000 0.001 0.398 16 18/10/2002 10:30 9.788 0.096 0.007 0.020 0.058 0.001 0.004 0.000 0.000 0.022 0.292 16 22/04/2003 00:00 27.819 0.333 0.032 0.102 0.157 0.000 0.018 0.000 0.000 0.000 1.328 Table K-8: Summary of cation concentrations, part 4 (of 12). 244 Lys imeter date and t ime C e [mg/1] H g [mg/1] T I [mg/1] P b [mg/1] B i [mg/1] N a [mg/1] M g [mg/1] A l [mg/1] K [mg/1] C a [mg/1] •V [mg/1] 1 16/05/2002 16:30 5.551 0.000 0.000 0.000 0.000 379.674 2227.300 622.540 13.127 620.813 0.000 1 31/08/2002 10:00 1.364 0.000 0.000 0.000 0.000 293.125 2132.646 614.708 16.616 499.076 0.000 2 12/09/2000 00:00 2.409 0.001 0.000 0.004 0.000 637.127 2532.903 1082.747 26.008 709.447 0.005 2 07/01/2002 00:00 1.648 0.000 0.000 0.000 0.000 397.219 2115.504 554.355 321.859 388.457 0.000 2 15/01/2002 00:00 1.416 0.000 0.000 0.000 0.000 337.243 2052.734 516.836 33.325 318.098 0.001 2 16/05/2002 00:00 10.444 0.000 0.000 0.000 0.000 1307.056 7570.426 1773.351 934.638 781.201 0.001 2 17/05/2002 10:00 10.152 0.000 0.000 0.000 0.000 1217.016 7204.425 1666.048 807.367 696.431 0.000 2 17/05/2002 17:45 6.521 0.000 0.000 0.005 0.000 830.864 4942.204 1160.731 575.466 634.227 0.000 2 18/05/2002 07:30 4.511 0.000 0.000 0.000 0.000 595.107 3575.642 817.295 317.910 656.794 0.000 2 18/05/2002 13:00 2.659 0.000 0.000 0.000 0.000 332.862 2210.510 499.216 31.507 524.970 0.001 2 19/05/2002 08:00 1.736 0.000 0.000 0.000 0.000 267.877 1796.324 432.736 40.226 538.559 0.000 2 22/05/2002 00:00 1.017 0.000 0.000 0.000 0.000 226.764 1472.382 369.625 40.100 520.936 0.000 2 24/05/2002 00:00 1.055 0.000 0.000 0.000 0.000 263.894 1781.247 446.679 11.598 527.440 0.000 2 01/08/2002 16:00 0.689 0.000 0.000 0.000 0.000 200.121 1634.200 414.382 12.317 463.036 0.000 2 02/08/2002 14:00 0.804 0.000 0.000 0.000 0.000 232.578 1770.988 471.064 7.431 481.278 0.000 2 07/08/2002 14:00 0.894 0.000 0.000 0.000 0.000 251.504 1913.015 492.374 17.681 483.720 0.000 2 08/08/2002 13:50 0.686 0.000 0.000 0.000 0.000 257.099 1389.446 350.862 19.706 417.693 0.000 2 08/08/2002 16:30 0.737 0.000 0.000 0.000 0.000 260.713 1614.430 401.472 21.237 461.909 0.000 2 09/08/2002 22:00 0.757 0.000 0.000 0.000 0.000 243.056 1834.392 468.849 12.620 528.454 0.000 2 11/08/2002 15:00 0.779 0.000 0.000 0.000 0.000 239.219 1680.990 456.730 14.365 487.874 0.001 2 20/08/2002 11:30 0.732 0.000 0.000 0.000 0.000 216.907 1498.026 398.442 13.622 471.092 0.000 2 26/08/2002 10:30 0.767 0.000 0.000 0.000 0.000 232.604 1593.112 418.492 11.588 490.313 0.001 2 28/08/2002 10:30 0.757 0.000 0.000 0.000 0.000 217.793 1577.790 414.114 14.310 483.3 68 0.001 2 31/08/2002 10:00 0.739 0.000 0.000 0.000 0.000 234.018 1537.228 402.126 9.392 514.784 0.000 2 03/10/2002 00:00 0.931 0.000 0.000 0.000 0.000 249.758 1649.059 449.678 51.205 534.911 0.000 2 18/10/2002 10:30 1.048 0.000 0.000 0.000 0.000 250.305 1725.230 449.731 104.857 609.266 0.000 3 31/08/2002 10:00 0.887 0.000 0.000 0.000 0.000 345.929 2005.017 499.137 9.232 462.356 0.000 4 31/08/2002 10:00 0.866 0.000 0.000 0.000 0.000 208.106 1696.559 522.901 7.284 483.620 0.000 4 15/04/2003 00:00 0.000 0.000 0.000 0.001 0.000 253.444 1067.050 473.477 2.702 149.784 0.000 5 07/01/2002 00:00 1.771 0.000 0.000 0.000 0.000 354.690 2742.494 768.997 14.398 132.657 0.007 5 15/01/2002 00:00 1.724 0.000 0.000 0.000 0.000 385.678 2702.912 755.968 16.560 88.744 0.008 5 16/05/2002 20:30 82.021 0.000 0.008 0.000 0.000 11731.000 60609.264 21755.931 333.138 644.792 0.136 5 17/05/2002 10:00 73.576 0.000 0.007 0.000 0.000 8564.213 37003.492 13105.185 264.824 418.496 0.077 5 17/05/2002 17:45 95.995 0.000 0.009 0.000 0.000 9496.196 34686.697 12008.674 346.602 426.042 0.072 5 19/05/2002 08:00 72.122 0.000 0.006 0.000 0.000 8032.978 29817.316 10305.031 302.360 412.348 0.065 5 22/05/2002 00:00 36.211 0.000 0.003 0.000 0.000 4772.855 22969.574 8977.983 173.261 645.252 0.058 5 24/05/2002 00:00 7.053 0.000 0.000 0.000 0.000 765.677 5746.340 1489.148 32.873 501.856 0.006 5 19/08/2002 09:00 2.542 0.000 0.000 0.000 0.000 475.133 3664.362 1039.936 24.838 537.662 0.006 5 31/08/2002 10:00 2.625 0.000 0.000 0.000 0.000 500.367 3565.328 1029.062 34.797 496.390 0.005 5 03/10/2002 00:00 3.335 0.000 0.000 0.000 0.000 548.760 4412.734 1265.507 24.444 553.103 0.006 Table K-9: Summary of cation concentrations, part 5 (of 12). 245 Lysimeter date and time Ce [mg/1] Hg [mg/1] TI [mg/1] Pb [mg/1] Bi [mg/1] Na [mg/1] M g [mg/1] Al[mg/I] K[mg/1] C a [mg/1] V[mg/1] 5 1 8 / 1 0 / 2 0 0 2 1 0 : 3 0 . 4 . 1 4 9 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 5 7 9 . 7 2 8 5 1 5 4 . 8 6 7 1 5 4 8 . 1 9 9 3 1 . 0 6 2 5 7 8 . 9 5 6 0 . 0 1 0 5 2 2 / 0 4 / 2 0 0 3 0 0 : 0 0 0 . 0 7 8 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 4 5 . 0 5 0 4 5 7 . 1 2 3 1 1 0 . 9 6 1 0 . 3 4 0 6 . 5 8 2 0 . 0 0 2 5 1 5 / 0 7 / 2 0 0 3 0 0 : 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 4 0 . 0 0 0 6 7 8 . 2 8 7 7 2 0 9 . 5 2 2 1 2 4 3 . 2 2 8 4 3 . 1 7 6 6 1 4 . 5 9 2 0 . 0 0 5 6 0 7 / 0 1 / 2 0 0 2 0 0 : 0 0 1 . 1 1 7 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 2 5 6 . 9 1 2 1 6 5 7 . 3 8 8 3 6 3 . 3 3 4 1 6 . 0 7 4 5 3 4 . 5 0 7 0 . 0 0 0 6 1 5 / 0 1 / 2 0 0 2 0 0 : 0 0 1 . 0 7 9 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 2 3 5 . 3 3 8 1 5 2 1 . 1 4 2 3 2 9 . 3 2 9 1 7 . 6 4 9 4 9 5 . 6 5 0 0 . 0 0 0 6 1 6 / 0 5 / 2 0 0 2 1 2 : 5 0 0 . 3 9 2 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 8 9 . 6 4 7 6 4 9 . 2 0 2 1 4 3 . 6 8 5 9 . 3 0 8 5 5 5 . 4 7 5 0 . 0 0 0 6 1 6 / 0 5 / 2 0 0 2 1 3 : 5 0 0 . 4 1 7 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 8 7 . 6 2 1 6 7 9 . 6 6 3 1 4 4 . 4 0 8 9 . 5 1 1 5 6 4 . 8 5 6 0 . 0 0 0 6 1 6 / 0 5 / 2 0 0 2 1 5 : 3 0 0 . 4 9 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 1 1 4 . 5 3 7 8 5 7 . 3 9 2 1 7 5 . 1 3 5 1 5 . 7 9 1 6 5 5 . 3 2 9 0 . 0 0 0 6 1 6 / 0 5 / 2 0 0 2 1 7 : 3 0 0 . 3 8 7 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 8 1 . 0 4 5 6 7 2 . 3 4 1 1 4 1 . 0 4 4 7 . 4 6 8 5 1 7 . 7 2 9 0 . 0 0 0 6 1 6 / 0 5 / 2 0 0 2 2 0 : 3 0 0 . 4 3 8 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 1 0 3 . 5 6 6 7 3 6 . 7 6 3 1 5 3 . 4 0 0 1 2 . 5 0 4 5 5 0 . 6 7 4 0 . 0 0 1 6 1 6 / 0 5 / 2 0 0 2 2 3 : 2 5 0 . 4 9 3 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 9 7 . 5 1 8 7 5 1 . 4 3 2 1 5 0 . 1 3 3 7 . 8 0 2 5 5 9 . 3 8 3 0 . 0 0 0 6 1 7 / 0 5 / 2 0 0 2 1 0 : 0 0 0 . 4 3 2 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 1 0 5 . 3 5 4 7 2 9 . 9 0 4 1 5 2 . 1 4 7 1 2 . 8 7 0 5 2 9 . 2 2 1 0 . 0 0 2 6 1 7 / 0 5 / 2 0 0 2 1 3 : 3 0 0 . 4 1 1 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 1 0 2 . 8 3 1 7 5 9 . 3 0 9 1 6 6 . 6 7 0 1 0 . 6 4 6 5 6 9 . 0 1 8 0 . 0 0 1 6 1 7 / 0 5 / 2 0 0 2 1 5 : 3 0 0 . 4 3 2 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 1 0 5 . 4 1 7 8 2 8 . 9 3 2 1 7 1 . 4 9 3 6 . 2 6 9 5 9 9 . 4 8 4 0 . 0 0 0 6 1 7 / 0 5 / 2 0 0 2 1 6 : 4 5 0 . 4 2 9 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 1 1 5 . 8 6 6 7 4 8 . 4 6 4 1 6 7 . 5 4 0 2 0 . 1 6 5 5 8 1 . 7 6 6 0 . 0 0 1 6 1 8 / 0 5 / 2 0 0 2 0 7 : 3 0 0 . 4 2 8 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 1 0 3 . 5 3 8 7 2 3 . 0 1 8 1 6 1 . 4 8 8 1 8 . 2 4 2 5 3 4 . 5 8 8 0 . 0 0 2 6 1 8 / 0 5 / 2 0 0 2 1 1 : 3 0 0 . 4 2 4 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 1 0 6 . 8 3 8 7 9 3 . 9 5 2 1 6 7 . 1 8 0 7 . 8 6 2 5 2 4 . 1 3 9 0 . 0 0 0 6 1 8 / 0 5 / 2 0 0 2 1 3 : 0 0 0 . 4 2 5 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 1 0 1 . 2 5 1 7 5 5 . 7 7 5 1 6 0 . 9 7 9 7 . 4 6 8 5 4 1 . 4 8 1 0 . 0 0 0 6 1 8 / 0 5 / 2 0 0 2 1 4 : 0 0 0 . 4 5 2 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 1 0 7 . 0 2 6 8 1 0 . 3 1 7 1 7 0 . 6 8 1 5 . 0 3 6 5 5 5 . 5 8 4 0 . 0 0 0 6 1 8 / 0 5 / 2 0 0 2 1 5 : 0 0 0 . 4 5 8 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 1 1 0 . 9 6 8 8 5 5 . 7 8 0 1 7 3 . 8 8 4 5 . 7 8 0 5 6 9 . 1 5 1 0 . 0 0 0 6 1 8 / 0 5 / 2 0 0 2 1 6 : 0 0 0 . 4 5 1 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 1 1 1 . 4 5 7 8 1 2 . 6 4 7 1 7 6 . 8 6 0 8 . 9 5 8 5 6 6 . 0 4 0 0 . 0 0 0 6 1 8 / 0 5 / 2 0 0 2 1 7 : 0 0 0 . 5 9 2 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 1 3 9 . 0 0 4 1 1 0 2 . 4 7 4 2 3 2 . 3 4 0 4 . 5 4 9 7 5 0 . 2 6 9 • 0 . 0 0 0 6 1 9 / 0 5 / 2 0 0 2 0 8 : 0 0 0 . 4 1 2 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 1 0 4 . 6 1 9 6 9 8 . 3 0 3 1 5 8 . 0 0 3 8 . 1 3 4 5 5 2 . 1 1 9 0 . 0 0 0 6 1 9 / 0 5 / 2 0 0 2 1 1 : 0 0 0 . 6 0 3 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 1 5 3 . 8 9 2 1 1 2 6 . 6 6 1 2 4 1 . 3 4 2 1 2 . 5 1 9 6 4 8 . 4 2 2 0 . 0 0 0 6 2 2 / 0 5 / 2 0 0 2 0 0 : 0 0 0 . 5 7 2 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 1 4 3 . 6 0 7 1 0 1 4 . 0 8 8 2 2 3 . 7 4 7 1 0 . 6 9 0 6 7 8 . 8 7 6 0 . 0 0 0 6 2 4 / 0 5 / 2 0 0 2 0 0 : 0 0 0 . 6 9 5 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 1 5 4 . 9 8 0 1 2 1 6 . 7 0 8 2 5 8 . 8 1 4 9 . 2 0 8 5 3 8 . 3 7 1 0 . 0 0 0 6 1 9 / 0 8 / 2 0 0 2 0 9 : 0 0 0 . 6 7 3 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 1 1 6 . 8 1 1 9 2 8 . 8 1 6 2 1 5 . 9 1 6 9 . 1 4 2 3 6 9 . 7 3 2 0 . 0 0 1 6 3 1 / 0 8 / 2 0 0 2 1 0 : 0 0 0 . 6 4 2 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 1 5 9 . 6 3 6 1 2 8 4 . 8 0 0 2 9 4 . 8 3 4 1 3 . 4 4 3 5 2 3 . 0 5 6 0 . 0 0 1 6 0 3 / 1 0 / 2 0 0 2 0 0 : 0 0 0 . 7 1 2 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 1 6 6 . 2 7 6 1 3 2 8 . 1 3 1 3 1 8 . 7 2 4 1 0 . 0 8 3 5 6 3 . 5 2 9 0 . 0 0 0 6 1 8 / 1 0 / 2 0 0 2 1 0 : 3 0 0 . 7 5 4 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 . 0 . 0 0 0 1 6 0 . 8 4 2 1 3 7 3 . 5 7 2 3 0 7 . 8 0 8 1 2 . 4 3 2 6 3 1 . 6 6 0 0 . 0 0 0 6 2 4 / 1 0 / 2 0 0 2 0 1 : 3 0 0 . 7 1 2 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 1 5 5 . 7 9 7 1 2 3 8 . 7 7 6 2 7 3 . 8 2 7 1 1 . 5 7 2 4 8 4 . 4 1 0 0 . 0 0 0 6 2 2 / 0 4 / 2 0 0 3 0 0 : 0 0 0 . 9 1 4 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 2 5 1 . 7 9 5 1 8 1 4 . 8 2 6 3 1 5 . 1 3 5 1 6 . 2 2 4 2 0 4 . 7 1 6 0 . 0 0 3 7 1 2 / 0 9 / 2 0 0 0 0 0 : 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 9 0 . 0 0 0 6 5 5 . 2 5 3 2 6 9 8 . 7 1 0 1 0 8 9 . 7 3 6 1 1 . 3 0 9 6 4 9 . 9 0 9 0 . 0 0 0 7 3 1 / 0 8 / 2 0 0 2 1 0 : 0 0 0 . 9 7 2 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 3 6 7 . 7 3 0 2 1 6 9 . 6 5 2 5 0 7 . 9 9 8 8 . 1 8 4 4 5 9 . 1 3 6 0 . 0 0 0 8 2 3 / 0 6 / 2 0 0 1 0 0 : 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 2 0 . 0 0 0 3 0 0 . 1 4 6 1 5 3 3 . 6 8 2 6 9 7 . 2 6 9 5 . 7 2 4 2 5 6 . 8 4 2 0 . 0 0 0 8 0 7 / 0 1 / 2 0 0 2 0 0 : 0 0 2 . 8 3 5 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 4 6 3 . 7 3 5 4 9 3 2 . 4 8 1 1 5 7 4 . 9 4 8 2 . 2 5 7 2 1 1 . 3 1 5 0 . 0 0 0 8 1 5 / 0 1 / 2 0 0 2 0 0 : 0 0 1 . 2 3 6 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 2 1 9 . 8 9 9 2 1 0 7 . 1 1 7 7 5 7 . 4 5 4 1 2 . 0 3 7 1 1 9 . 3 5 8 0 . 0 0 2 8 1 7 / 0 5 / 2 0 0 2 1 0 : 0 0 2 5 . 9 8 0 0 . 0 0 0 0 . 0 0 3 0 . 0 0 0 0 . 0 0 0 1 7 3 5 . 5 6 6 9 8 6 4 . 0 5 9 4 2 8 7 . 8 7 5 1 5 8 . 2 2 5 6 0 1 . 4 4 0 0 . 0 1 5 8 1 7 / 0 5 / 2 0 0 2 1 7 : 4 5 3 0 . 5 0 7 0 . 0 0 0 0 . 0 0 4 0 . 1 2 8 0 . 0 0 0 1 0 0 5 . 3 2 0 5 7 7 1 . 7 8 8 0 . 0 0 0 4 5 . 2 9 7 8 0 9 . 3 6 7 0 . 0 1 7 Table K-10: Summary of cation concentrations, part 6 (of 12). 246 L y s i m e t e r date and t ime C e [mg/1] H g [mg/1] T I [mg/1] P b [mg/1] B i [mg/1] N a [mg/1] M g [mg/1] A l [mg/1] K[mg/1] C a [mg/1] V [mg/1] 8 18/05/2002 08:00 29.627 0.000 0.003 0.002 0.000 2715.198 12674.057 5908.684 81.730 506.788 0.010 8 19/05/2002 08:00 26.578 0.000 0.003 0.000 0.000 1344.680 8515.468 2842.114 154.368 674.977 0.012 8 22/05/2002 00:00 21.820 0.000 0.003 0.000 0.000 1356.232 9369.699 3599.947 153.230 715.063 0.013 8 24/05/2002 00:00 47.778 0.000 0.004 0.000 0.000 1254.654 8057.766 1967.837 41.007 1059.809 0.012 8 01/08/2002 16:00 2.762 0.000 0.000 0.000 0.000 490.451 4274.382 1391.920 11.097 525.068 0.001 8 07/08/2002 15:30 1.627 0.000 0.000 0.000 0.000 342.005 3624.057 1123.687 12.199 471.010 0.001 8 08/08/2002 15:45 1.147 0.000 0.000 0.000 0.000 274.882 2592.100 821.732 15.722 497.107 0.001 8 09/08/2002 22:00 1.094 0.000 0.000 0.000 0.000 322.198 2675.169 840.587 10.314 533.865 0.000 8 18/08/2002 09:00 1.405 0.000 0.000 0.000 0.000 313.583 3365.546 1099.620 13.314 520.199 0.000 8 28/08/2002 10:30 0.392 0.000 0.000 0.000 0.000 117.647 968.247 287.144 7.328 486.339 0.000 8 31/08/2002 10:00 0.810 0.000 0.000 0.000 0.000 217.273 1983.603 617.298 9.526 493.756 0.001 8 03/10/2002 00:00 1.672 0.000 0.000 0.000 0.000 337.264 3574.393 1199.682 0.000 534.663 0.000 8 18/10/2002 10:30 3.567 0.000 0.000 0.000 0.000 649.124 7625.726 2639.283 23.663 474.634 0.004 8 15/04/2003 00:00 0.073 0.001 0.000 0.000 0.000 23.356 183.421 55.125 4.918 12.423 0.003 9 07/01/2002 00:00 2.766 0.000 0.000 0.000 0.000 497.474 3840.760 1086.191 31.170 353.432 0.000 9 15/01/2002 00:00 2.770 0.000 0.000 0.000 0.000 491.973 3783.652 991.611 34.124 395.347 0.002 9 15/01/2002 00:00 0.000 0.000 0.000 0.003 0.000 458.191 2175.948 896.867 36.182 362.640 0.000 9 16/05/2002 20:30 7.714 0.000 0.002 0.000 0.000 1271.910 6633.052 1543.179 293.123 606.052 0.001 9 17/05/2002 10:00 10.520 0.000 0.002 0.000 0.000 1481.910 8303.217 1974.914 404.819 734.984 0.002 9 17/05/2002 17:45 6.904 0.000 0.001 0.040 0.000 1129.638 4531.027 979.835 396.189 443.309 0.002 9 18/05/2002 08:00 8.733 0.000 0.001 0.001 0.000 1226.374 7388.111 1851.687 393.945 654.718 0.002 9 19/05/2002 08:00 8.512 0.000 0.001 0.000 0.000 1176.840 7242.687 1897.247 295.866 700.335 0.001 9 22/05/2002 00:00 8.894 0.000 0.000 0.000 0.000 839.438 6399.283 1623.205 105.254 589.591 0.000 9 24/05/2002 00:00 3.199 0.000 0.000 0.000 0.000 414.007 3301.021 839.614 31.088 536.810 0.000 9 19/08/2002 09:00 1.359 0.000 0.000 0.000 0.000 353.374 2933.288 827.108 13.831 498.503 0.002 9 31/08/2002 10:00 1.580 0.000 0.000 0.000 0.000 396.297 3118.928 881.414 68.910 545.393 0.000 9 03/10/2002 00:00 1.594 0.000 0.000 0.000 0.000 380.454 3231.410 837.352 25.111 547.447 0.000 9 18/10/2002 10:30 1.910 0.000 0.000 0.000 0.000 380.439 3265.638 849.083 32.688 627.039 0.000 9 22/04/2003 00:00 2.216 0.000 0.001 0.000 0.000 883.363 5985.348 1420.286 93.769 136!422 0.004 9 23/07/2003 00:00 1.954 0.001 0.000 0.004 0.000 361.395 2528.407 795.899 44.207 595.132 0.007 10 05/01/2000 00:00 6.114 • 0.000 0.002 0.019 0.000 962.025 3963.962 1412.206 74.418 666.055 0.003 10 31/08/2002 10:00 0.968 0.000 0.000 0.000 0.000 265.297 2287.565 578.082 19.196 504.411 0.001 11 07/01/2002 00:00 1.174 0.000 0.000 0.000 0.000 377.496 2427.517 574.556 7.715 277.023 0.000 11 15/01/2002 00:00 1.214 •0.000 0.000 0.000 0.000 404.835 2301.710 583.665 9.237 199.913 0.000 11 16/05/2002 20:30 5.530 0.000 0.000 . 0.000 0.000 1074.817 5894.116 1383.674 27.688 640.436 0.003 11 17/05/2002 10:00 5.361 0.000 0.000 0.000 0.000 987.194 5662.380 1230.212 24.935 810.723 0.002 11 17/05/2002 17:45 4.971 0.000 0.000 0.059 0.000 867.410 4622.688 977.613 31.331 599.780 0.004 11 18/05/2002 08:00 5.267 0.000 0.000 0.009 0.000 851.914 4838.408 1055.540 30.787 642.432 0.003 11 19/05/2002 08:00 4.934 0.000 0.000 0.000 0.000 811.393 4687.980 1022.658 21.690 625.981 0.002 Table K - l l : Summary of cation concentrations, part 7 (of 12). 247 Lys imeter date and t ime C e [mg/1] H g [mg/1] T I [mg/1] P b [mg/l[ B i [mg/1] N a [mg/1] M g [mg/1] A l [mg/1] K [mg/1] C a [mg/1] V [mg/1] 11 22/05/2002 00:00 0.917 0.000 0.000 0.000 0.000 212.136 1447.062 299.792 7.440 537.281 0.000 11 24/05/2002 00:00 0.904 0.000 0.000 0.000 0.000 209.739 1588.314 315.622 4.532 522.096 0.000 11 18/08/2002 09:00 0.765 0.000 0.000 0.000 0.000 278.080 1953.367 453.642 12.812 502.956 0.002 11 31/08/2002 10:00 1.090 0.000 0.000 0.000 0.000 386.095 2804.528 643.437 12.512 676.221 0.001 11 03/10/2002 00:00 0.829 0.000 0.000 0.000 0.000 288.120 2057.501 486.524 4.840 535.944 0.000 11 18/10/2002 10:30 1.261 0.000 0.000 0.000 0.000 408.016 2874.961 681.004 11.308 605.447 0.001 11 22/04/2003 00:00 1.060 0.000 0.001 0.000 0.000 926.695 6202.778 1127.822 35.238 121.318 0.004 12 23/06/2001 00:00 0.000 0.000 0.000 0.006 0.000 476.049 1945.917 936.555 14.008 551.004 0.000 12 15/01/2002 00:00 0.000 0.000 0.000 0.005 0.000 392.183 1590.337 743.450 7.998 318.864 0.000 12 31/08/2002 10:00 1.016 0.000 0.000 0.000 0.000 268.658 2378.318 691.303 8.419 472.058 0.000 12 15/04/2003 00:00 0.000 0.000 0.000 0.030 0.000 243.477 1062.423 411.560 6.242 174.867 0.000 12 01/07/2003 00:00 0.000 0.000 0.000 0.006 0.000 203.850 1495.880 536.769 5.969 549.464 0.000 13 07/01/2002 00:00 1.388 0.000 0.000 0.000 0.000 248.954 2354.220 586.670 22.707 346.834 0.000 13 15/01/2002 00:00 1.035 0.000 0.000 0.000 0.000 181.064 1582.777 382.115 18.999 241.976 0.000 13 16/05/2002 20:30 12.784 0.000 0.004 0.004 0.000 2064.135 13551.129 4439.512 172.076 675.175 0.004 13 17/05/2002 10:00 12.847 0.000 0.003 0.000 0.000 1969.899 12891.468 3891.142 156.590 627.347 0.002 13 17/05/2002 17:45 12.547 0.000 0.003 0.065 0.000 1598.350 10640.652 3274.148 165.325 699.767 0.004 13 18/05/2002 08:00 11.206 0.000 0.002 0.009 0.000 1325.880 8993.807 2513.693 137.153 669.334 0.003 13 19/05/2002 08:00 11.145 0.000 0.002 0.000 0.000 1077.133 8732.061 2082.100 113.112 643.171 0.001 13 22/05/2002 00:00 1.156 0.000 0.000 0.000 0.000 154.882 1508.331 287.954 18.114 528.446 0.000 13 24/05/2002 00:00 0.685 0.000 0.000 0.000 0.000 123.140 1174.578 237.412 10.808 506.837 0.000 13 19/08/2002 09:00 0.742 0.000 0.000 0.000 0.000 151.989 1548.456 382.195 15.541 536.370 0.002 13 31/08/2002 10:00 0.819 0.000 0.000 0.000 0.000 165.904 1673.924 411.709 43.696 559.498 0.000 13 03/10/2002 00:00 0.730 0.000 0.000 0.000 0.000 133.506 1434.590 336.422 12.948 501.485 0.000 13 22/04/2003 00:00 2.445 0.000 0.002 0.000 0.000 479.800 4716.150 1151.994 35.082 117.928 0.003 14 23/07/2003 00:00 0.000 0.000 0.000 0.003 0.000 189.709 1096.631 320.073 15.932 523.646 0.000 15 23/06/2001 00:00 0.000 0.000 0.000 0.002 0.000 395.262 1424.566 526.860 13.272 438.690 0.000 15 31/08/2002 10:00 1.116 0.000 0.000 0.000 0.000 321.180 2492.363 597.499 13.188 535.421 0.000 16 07/01/2002 00:00 2.427 0.000 0.000 0.000 0.000 428.003 3703.227 1049.817 10.825 344.154 0.001 16 15/01/2002 00:00 2.344 0.000 0.000 0.000 0.000 401.553 3365.798 992.733 12.961 336.911 0.004 16 16/05/2002 20:30 11.330 0.000 0.001 0.004 0.000 1623.520 12170.414 3815.487 37.428 730.169 0.013 16 17/05/2002 10:00 10.560 0.000 0.001 0.000 0.000 1467.140 11733.128 3619.758 33.537 650.176 0.011 16 17/05/2002 17:45 8.520 0.000 0.000 0.040 0.000 1190.461 8635.610 2416.361 37.410 579.157 0.010 16 18/05/2002 08:00 8.776 0.000 0.000 0.006 0.000 1158.494 9593.934 2954.149 36.833 636.235 0.009 16 19/05/2002 08:00 8.946 0.000 0.000 0.012 0.000 1063.266 9825.583 2836.293 30.571 692.511 0.009 16 22/05/2002 00:00 6.918 0.000 0.000 0.000 0.000 754.488 6551.918 1857.725 22.638 613.178 0.004 16 24/05/2002 00:00 2.948 0.000 0.000 0.000 0.000 396.826 3557.793 967.464 13.568 496.984 0.002 16 18/08/2002 09:00 1.132 0.000 0.000 0.000 0.000 266.268 2468.475 717.289 6.303 487.956 0.003 16 31/08/2002 10:00 1.265 0.000 0.000 0.000 0.000 278.452 2791.232 789.399 9.764 505.616 0.001 16 03/10/2002 00:00 1.216 0.000 0.000 0.000 0.000 304.021 2928.621 897.357 6.784 545.793 0.000 16 18/10/2002 10:30 1.083 0.000 0.000 0.000 0.000 191.008 1899.022 567.726 6.241 596.485 0.001 16 22/04/2003 00:00 4.159 0.000 0.000 0.000 0.000 781.546 8416.556 2136.292 7.793 161.342 0.013 Table K-12: Summary of cation concentrations, part 8 (of 12). 248 Lysimeter date and time Cr [mg/1] Mn [mg/1] Fe [mg/1] Co [mg/1] Ni [mg/1] Cu [mg/1] Zn [mg/1] Sr [mg/1] Mo [mg/1] Sn [mg/] U [mg/1] 1 16/05/2002 16:30 0.117 52.569 0.982 16.811 135.979 0.868 5.277 20.516 0.000 0.004 91.602 1 31/08/2002 10:00 0.042 40.095 1.690 15.449 126.160 0.718 4.218 7.856 0.003 0.000 96.564 2 12/09/2000 00:00 0.136 82.696 4.753 28.380 199.429 1.100 7.974 11.957 0.078 0.003 149.982 2 07/01/2002 00:00 0.032 49.077 0.953 17.241 132.085 0.673 4.412 6.162 0.000 0.001 96.343 2 15/01/2002 00:00 0.041 38.314 1.100 15.133 114.384 0.713 4.203 4.880 0.002 0.000 87.736 2 16/05/2002 00:00 0.116 180.366 1.838 56.789 441.105 2.141 14.738 21.269 0.002 0.003 301.199 2 17/05/2002 10:00 0.101 167.129 1.433 48.854 405.882 1.935 13.545 18.665 • 0.002 0.003 266.582 2 17/05/2002 17:45 0.077 116.309 1.163 34.188 279.913 1.724 10.047 14.186 0.001 0.002 195.667 2 18/05/2002 07:30 0.040 82.454 0.742 27.032 184.989 1.075 7.166 11.232 0.000 0.001 128.233 2 18/05/2002 13:00 0.042 38.742 1.022 15.372 109.880 0.983 4.603 7.198 0.001 0.002 69.596 2 19/05/2002 08:00 0.017 35.708 0.589 13.554 97.714 0.658 3.366 6.461 0.000 0.001 51.954 2 22/05/2002 00:00 0.014 28.430 1.769 11.836 86.608 0.550 3.168 6.485 0.000 0.000 48.779 2 24/05/2002 00:00 0.014 34.305 1.102 13.546 99.655 0.639 3.512 6.543 0.000 0.000 57.325 2 01/08/2002 16:00 0.027 30.894 1.166 11.390 80.399 0.722 3.666 5.405 0.001 0.000 48.986 2 02/08/2002 14:00 0.021 34.750 1.222 13.105 94.340 0.849 3.719 5.380 0.000 0.000 58.998 2 07/08/2002 14:00 0.035 34.187 1.628 13.496 98.294 1.490 4.843 5.903 0.001 0.001 65.304 2 08/08/2002 13:50 0.157 28.224 1.138 10.047 73.514 0.983 3.092 4.453 0.001 0.000 48.086 2 08/08/2002 16:30 0.129 31.196 1.200 11.160 80.626 1.220 3.650 5.628 0.001 0.002 51.904 2 09/08/2002 22:00 0.030 34.062 1.439 12.818 93.399 0.826 3.986 6.074 0.001 0.000 59.655 2 11/08/2002 15:00 0.032 34.652 1.648 12.840 92.670 0.912 3.893 5.261 0.000 0.000 61.289 2 20/08/2002 11:30 0.029 31.185 1.296 11.383 81.994 0.690 3.480 5.104 0.000 0.000 55.125 2 26/08/2002 10:30 0.062 32.818 2.380 11.952 86.213 0.776 5.618 5.326 0.001 0.012 53.070 2 28/08/2002 10:30 0.028 31.572 1.322 11.422 83.763 0.698 3.488 5.236 0.000 0.000 52.202 2 31/08/2002 10:00 0.034 27.454 0.966 11.563 86.545 0.573 3.220 5.595 0.000 0.000 50.130 2 03/10/2002 00:00 0.019 33.144 1.008 13.077 98.355 0.603 3.502 5.813 0.002 0.001 60.384 2 18/10/2002 10:30 0.018 34.891 1.331 13.300 98.773 0.703 3.610 6.186 0.001 0.000 57.771 3 31/08/2002 10:00 0.034 34.389 1.449 13.882 106.000 0.961 3.845 4.764 0.002 0.000 80.264 4 31/08/2002 10:00 0.027 33.157 1.582 13.298 96.582 0.716 4.051 2.828 0.002 0.000 84.934 4 15/04/2003 00:00 0.034 42.497 0.602 16.543 117.057 0.624 4.205 1.391 0.000 0.000 127.376 5 07/01/2002 00:00 .0.000 65.733 0.000 21.622 162.788 0.830 . 3.656 4.008 0.000 0.000 131.556 5 15/01/2002 00:00 0.000 67.947 0.000 22.023 167.471 0.806 4.712 3.308 0.000 0.016 121.164 5 16/05/2002 20:30 2.075 1910.193 17.430 455.450 3473.570 18.690 114.314 54.086 0.024 0.022 5464.474 5 17/05/2002 10:00 1.228 1150.472 8.534 275.678 2164.756 11.799 68.954 32.158 0.010 0.020 3095.245 5 17/05/2002 17:45 0.862 1143.649 5.389 268.542 2084.152 11.584 63.762 37.059 0.008 0.004 2646.866 5 19/05/2002 08:00 0.765 986.840 5.478 228.459 1841.233 9.598 54.426 45.083 0.010 0.024 2022.856 5 22/05/2002 00:00 0.796 778.702 3.934 176.208 1399.737 8.083 42.926 43.503 0.007 0.025 1991.648 5 24/05/2002 00:00 0.126 141.320 1.246 35.914 347.830 1.570 10.953 15.397 0.002 0.003 284.624 5 19/08/2002 09:00 0.104 87.980 4.151 28.942 228.215 1.230 10.125 8.298 0.003 0.011 166.886 5 31/08/2002 10:00 0.059 84.179 2.534 27.847 218.659 1.079 7.706 7.985 0.002 0.000 164.989 5 03/10/2002 00:00 0.076 101.224 2.832 32.466 259.592 1.134 8.149 9.189 0.001 0.002 186.882 Table K-13: Summary of cation concentrations, part 9 (of 12). 249 Lysimeter date and time C r [mg/1] M n [mg/1] Fe [mg/1] Co [mg/1] Ni [mg/1] C u [mg/1] Z n [mg/1] Sr [mg/1] M o [mg/1] Sn [mg/] U [mg/1] 5 18/10/2002 10:30 0.000 120.572 1.585 34.582 333.181 1.442 9.269 11.148 0.001 0.015 200.187 5 22/04/2003 00:00 0.024 11.746 0.900 3.765 31.535 0.204 0.886 0.232 0.000 0.003 15.819 5 15/07/2003 00:00 0.155 189.334 5.370 79.668 662.536 1.438 18.729 16.383 0.000 0.000 223.650 6 07/01/2002 00:00 0.000 36.312 0.000 12.507 101.610 0.550 2.258 6.789 0.000 0.000 67.628 6 15/01/2002 00:00 0.000 32.239 0.000 11.496 92.511 0.563 2.315 6.190 0.000 0.016 61.020 6 16/05/2002 12:50 0.021 15.620 0.716 5.212 35.832 0.427 1.825 6.228 0.000 0.004 18.484 6 16/05/2002 13:50 0.017 15.384 0.777 5.321 36.005 0.419 1.790 5.975 0.000 0.006 18.557 6 16/05/2002 15:30 0.036 19.572 1.221 6.592 45.488 0.557 2.380 7.589 0.000 0.012 12.052 6 16/05/2002 17:30 0.018 14.230 0.663 4.910 33.818 0.377 1.573 5.495 0.000 0.006 16.177 6 16/05/2002 20:30 0.046 15.424 1.751 5.328 36.932 0.538 3.986 6.203 0.002 0.013 17.573 6 16/05/2002 23:25 0.014 16.378 0.707 5.560 38.821 .0.414 1.884 5.972 0.000 0.006 15.187 6 17/05/2002 10:00 0.050 15.658 1.606 5.417 37.544 0.548 3.926 5.831 0.001 0.009 18.491 6 17/05/2002 13:30 0.028 17.592 0.961 6.032 41.088 0.478 2.192 6.129 0.000 0.009 18.964 6 17/05/2002 15:30 0.015 18.017 0.568 6.178 42.906 0.438 2.018 6.326 0.000 0.002 12.608 6 17/05/2002 16:45 0.033 17.232 0.497 5.849 40.816 0.687 1.250 5.957 0.000 0.027 13.343 6 18/05/2002 07:30 0.025 16.325 0.455 5.678 39.832 0.676 1.176 5.530 0.000 0.028 13.177 6 18/05/2002 11:30 0.012 16.414 0.664 5.642 40.043 0.456 1.989 5.529 0.000 0.007 14.384 6 18/05/2002 13:00 0.014 16.874 0.726 5.820 41.091 0.410 1.877 5.538 0.000 0.005 16.188 6 18/05/2002 14:00 0.012 17.369 0.490 6.028 42.840 0.405 1.830 5.780 0.000 0.002 12.901 6 18/05/2002 15:00 0.015 17.900 0.547 6.288 44.323 0.440 1.966 5.802 0.000 0.003 13.302 6 18/05/2002 16:00 0.020 17.089 0.887 5.989 42.878 0.453 1.992 5.714 0.000 0.008 13.058 6 18/05/2002 17:00 0.002 23.160 0.407 8.173 57.062 0.524 2.468 7.649 0.000 0.000 17.304 6 19/05/2002 08:00 0.000 15.835 0.000 5.474 39.099 0.433 0.340 5.115 0.001 0.020 15.522 6 19/05/2002 11:00 0.032 25.318 1.202 8.361 61.033 0.610 2.810 6.783 0.000 0.008 32.183 6 22/05/2002 00:00 0.000 21.770 0.000 7.393 52.752 0.539 1.022 5.978 0.000 0.016 23.508 6 24/05/2002 00:00 0.014 24.894 0.861 8.586 64.492 0.485 2.646 6.097 0.004 0.002 35.753 6 19/08/2002 09:00 0.041 19.051 1.708 6.814 52.899 0.502 3.911 3.802 • 0.003 0.014 34.938 6 31/08/2002 1 0:00 0.018 27.708 0.897 9.829 75.449 0.568 3.022 5.494 0.000 0.000 51.096 6 03/10/2002 00:00 0.000 28.972 0.000 10.172 80.713 0.476 1.271 5.708 0.001 0.000 44.577 6 18/10/2002 10:30 0.000 28.026 0.000 10.153 78.477 0.569 1.799 6.053 0.000 0.016 37.323 6 24/10/2002 01:30 0.023 26.792 1.141 9.162 72.330 0.481 2.911 5.480 0.000 0.006 48.290 6 22/04/2003 00:00 0.064 36.318 1.953 12.965 101.508 0.711 6.565 3.640 0.002 0.011 73.829 7 12/09/2000 00:00 0.119 94.106 4.306 31.756 239.374 1.609 7.470 6.047 0.002 0.000 242.424 7 31/08/2002 10:00 0.036 43.775 1.240 15.111 127.056 0.924 4.021 3.196 0.001 0.000 97.189 8 23/06/2001 00:00 0.054 60.525 1.600 26.316 194.871 0.792 5.837 3.584 . 0.000 0.000 131.496 8 07/01/2002 00:00 0.101 101.030 2.326 32.913 307.283 1.525 8.930 2.465 0.000 0.000 216.049 8 15/01/2002 00:00 0.057 39.588 1.560 16.362 130.303 0.788 4.255 1.053 0.001 0.001 104.238 8 17/05/2002 10:00 1.388 317.978 38.874 78.020 567.038 18.180 68.856 13.937 0.049 0.006 875.308 8 17/05/2002 17:45 1.606 186.382 22.526 46.480 333.061 17.393 79.429 17.186 0.057 0.008 517.511 Table K-14: Summary of cation concentrations, part 10 (of 12). 250 r Lysimeter date and time Cr [mg/1] Mn [mg/1] Fe [mg/1] Co [mg/1] Ni [mg/1] Cu [mg/1] Zn [mg/1] Sr [mg/1] Mo [mg/1] Sn [mg/] U[mg/1] 8 18/05/2002 08:00 0.847 398.859 24.973 103.058 746.500 10.462 51.277 10.892 0.028 0.006 995.571 8 19/05/2002 08:00 1.126 254.818 36.818 67.214 487.956 11.905 61.821 14.271 0.034 0.006 670.921 8 22/05/2002 00:00 1.194 • 277.314 30.050 74.230 538.015 15.544 67.268 12.882 0.037 0.009 740.831 8 24/05/2002 00:00 1.229 219.457 31.791 64.688 476.094 17.204 79.064 19.454 0.000 0.012 513.714 8 01/08/2002 16:00 0.081 94.649 3.281 32.778 247.256 1.800 9.216 4.410 0.004 0.002 155.524 8 07/08/2002 15:30 0.066 ' 68.646 3.023 26.400 197.238 1.343 6.817 2.939 0.002 0.000 145.073 8 08/08/2002 15:45 0.088 48.208 2.205 18.639 146.111 1.188 5.242 3.552 0.002 0.002 97.299 8 09/08/2002 22:00 0.052 53.549 2.480 20.810 158.151 1.162 5.729 3.663 0.002 0.000 105.736 8 18/08/2002 09:00 0.065 67.396 2.924 24.334 168.192 1.401 6.958 3.033 0.003 0.002 136.826 8 28/08/2002 10:30 0.032 19.599 1.050 7.477 57.185 0.490 2.296 2.632 0.002 0.000 34.437 8 31/08/2002 10:00 0.038 . 35.281 1.885 14.871 115.363 0.854 4.101 2.842 0.002 0.000 77.820 8 03/10/2002 00:00 0.072 ' 75.590 3.049 28.483 217.592 1.204 6.920 2.945 0.005 0.000 151.594 8 18/10/2002 10:30 0.170 145.832 .6.431 54.788 441.746 • 2.904 15.360 3.854 0.006 0.003 309.432 8 15/04/2003 00:00 0.058 4.095 1.110 1.425 11.063 0.094 0.506 0.102 0.029 0.010 7.050 9 07/01/2002 00:00 0.000 88.806 •0.000 29.156 232.998 1.006 5.167 6.502 0.000 0.000 190.679 9 15/01/2002 00:00 0.000 80.658 0.539 27.726 220.744 1.049 5.216 6.299 0.000 0.017 176.936 9 15/01/2002 00:00 0.089 83.250 2.226 29.827 215.782 1.015 6.196 6.272 0.000 0.000 225.214 9 16/05/2002 20:30 0.164 151.564 2.706 43.997 406.025 1.399 12.496 16.886 0.002 0.012 300.674 9 17/05/2002 10:00 0.186 183.145 2.472 57.311 506.792 1.520 14.034 20.037 0.003 0.008 358.455 9 17/05/2002 17:45 0.119 . 105.764 1.044 33.356 271.245 1.221 6.906 11.545 0.000 0.022 169.182 9 18/05/2002 08:00 0.165 170.721 1.393 51.973 456.347 1.683 11.383 16.887 0.000 0.031 332.803 9 19/05/2002 08:00 0.081 166.941 0.000 49.382 435.687 1.608 10.221 15.642 0.002 0.019 330.236 9 22/05/2002 00:00 0.035 - 146.174 0.000 41.389 403.720 1.480 9.068 15.662 0.000 0.016 272.288 9 24/05/2002 00:00 0.069 71.492 0.953 23.830 167.598 0.889 5.363 9.653 0.001 0.004 154.553 9 19/08/2002 09:00 0.076 61.148 3.624 22.617 155.929 0.987 7.517 4.887 0.002 0.013 139.390 9 31/08/2002 10:00 0.039 67.155 2.210 24.539 187.921 0.862 5.569 5.266 0.000 0.000 156.441 9 03/10/2002 00:00 0.000 62.533 0.000 23.638 161.920 0.837 4.038 5.084 0.000 0.000 123.131 9 18/10/2002 10:30 0.000 64.468 1.173 24.227 187.395 0.984 4.191 6.023 0.000 0.018 123.852 9 22/04/2003 00:00 0.143 133.366 2.287 37.121 335.047 1.315 11.789 3.641 0.002 0.018 330.146 9 23/07/2003 00:00 0.093 63.896 1.371 21.523 148.572 0.756 5.364 7.002 0.229 0.015 109.554 10 05/01/2000 00:00 0.165 137.578 1.575 31.407 376.178 1.516 9.702 17.916 0.011 0.024 338.464 10 31/08/2002 10:00 0.033 41.058 1.699 16.010 126.010 0.754 4.729 4.123 0.005 0.000 89.972 11 07/01/2002 00:00 0.000 . 53.428 0.000 18.097 146.652 0.920 3.335 2.996 0.000 0.000 88.887 11 15/01/2002 00:00 0.000 53.914 0.000 17.624 141.759 0.983 . 3.524 2.532 0.000 0.014 87.430 11 16/05/2002 20:30 0.133 136.978 2.947 36.435 344.618 2.587 13.874 7.765 0.003 0.014 199.754 11 17/05/2002 10:00 0.139 125.138 2.577 33.817 317.354 2.346 12.602 7.947 0.002 0.015 166.992 11 17/05/2002 17:45 0.115 106.828 1.907 34.006 277.344 2.077 8.855 5.993 0.000 0.027 127.441 11 18/05/2002 08:00 0.096 99.717 1.189 33.537 274.061 2.117 8.807 6.840 0.002 0.026 128.706 11 19/05/2002 08:00 0.000 100.485 0.000 33.652 265.364 1.945 7.743 6.853 0.003 0.019 133.222 Table K-15: Summary of cation concentrations, part 11 (of 12). 251 Lysimeter date and time Cr [mg/1] Mn [mg/1] Fe [mg/1] Co [mg/1] Ni [mg/1] Cu [mg/1] Zn [mg/1] Sr [mg/1] Mo [mg/1] Sn [mg/] U [mg/1] 11 22/05/2002 00:00 0.000 29.201 0.000 9.988 76.589 0.756 1.508 4.710 0.002 0.020 39.002 11 24/05/2002 00:00 0.019 34.879 0.922 11.439 87.812 0.728 3.201 4.872 0.000 0.002 50.430 11 18/08/2002 09:00 0.064 35.749 2.552 14.250 112.876 1.075 6.385 3.415 0.002 0.014 74.538 11 31/08/2002 10:00 0.035 56.625 1.769 19.819 157.557 1.130 5.544 4.468 0.002 0.000 104.765 11 03/10/2002 00:00 0.000 38.235 0.000 14.289 116.065 0.741 2.300 3.193 0.000 0.000 63.418 11 18/10/2002 10:30 0.000 60.712 0.936 20.900 134.894 1.240 4.602 3.961 0.001 0.016 79.167 11 22/04/2003 00:00 0.126 147.966 2.318 38.139 304.504 2.705 15.750 2.162 0.004 0.014 254.760 12 23/06/2001 00:00 0.062 84.428 2.752 30.730 229.125 1.227 7.730 3.529 0.000 0.000 177.682 12 15/01/2002 00:00 0.059 69.566 2.545 26.692 181.715 1.164 6.323 1.941 0.000 0.000 157.806 12 31/08/2002 10:00 0.039 42.212 1.927 18.151 135.814 1.093 4.952 1.856 0.001 0.000 84.666 12 15/04/2003 00:00 0.033 37.066 2.286 17.200 112.769 0.765 4.219 0.896 0.000 0.000 69.867 12 01/07/2003 00:00 0.026 37.588 1.272 17.385 118.861 0.874 5.091 2.096 0.000 0.000 37.737 13 07/01/2002 00:00 0.000 47.971 0.000 18.068 134.532 0.849 3.484 5.446 0.000 0.000 89.378 13 15/01/2002 00:00 0.000 31.265 0.000 12.306 93.704 0.609 2.053 3.970 0.000 0.017 50.870 13 16/05/2002 20:30 0.579 373.206 5.849 99.572 715.411 6.582 32.588 25.068 0.004 0.016 723.461 13 17/05/2002 10:00 0.498 330.193 4.244 90.833 654.291 6.181 32.120 26.673 0.004 0.012 642.827 13 17/05/2002 17:45 0.408 302.948 3.280 80.920 603.446 5.062 24.808 23.311 0.000 0.024 493.430 13 18/05/2002 08:00 0.298 231.573 2.034 66.678 498.381 4.070 20.482 21.122 0.000 0.025 346.798 13 19/05/2002 08:00 0.122 202.166 0.361 65.009 482.685 3.205 18.439 21.584 0.002 0.019 288.200 13 22/05/2002 00:00 0.000 29.575 0.000 10.561 76.697 0.658 1.775 5.776 0.001 0.018 36.116 13 24/05/2002 00:00 0.073 24.205 0.910 8.845 62.149 0.506 2.668 5.168 0.004 0.002 33.855 13 19/08/2002 09:00 0.066 31.311 2.455 12.318 88.211 0.803 5.899 4.556 0.002 0.012 59.884 13 31/08/2002 10:00 0.020 28.786 0.927 12.817 93.801 0.614 3.382 4.646 0.000 0.000 57.623 13 03/10/2002 00:00 0.000 27.889 0.000 11.126 79.780 0.513 1.309 4.134 - 0.000 0.000 34.792 13 22/04/2003 00:00 0.242 112.221 2.703 29.434 185.385 2.520 13.596 5.049 0.002 0.014 229.020 14 23/07/2003 00:00 0.023 28.977 0.620 13.544 98.555 0.524 3.117 6.903 0.000 0.000 25.572 15 23/06/2001 00:00 0.062 61.546 1.694 20.354 146.218 0.814 4.476 6.798 0.000 0.000 116.073 15 31/08/2002 10:00 0.057 45.097 1.353 17.074 135.868 1.212 4.953 6.208 0.003 0.000 80.396 16 07/01/2002 00:00 0.000 77.396 0.641 27.568 197.382 1.419 5.020 3.104 0.001 0.000 133.512 16 15/01/2002 00:00 0.000 69.730 1.542 24.967 184.000 0.986 4.757 2.820 0.002 0.022 113.333 16 16/05/2002 20:30 0.312 285.921 8.663 91.881 724.638 3.098 24.742 9.208 0.008 0.014 501.813 16 17/05/2002 10:00 0.283 258.688 7.778 84.343 668.115 2.586 22.211 8.012 0.009 0.012 387.285 16 17/05/2002 17:45 0.206 197.135 4.991 62.813 513.773 2.681 15.388 6.184 0.004 0.026 304.253 16 18/05/2002 08:00 0.186 212.718 5.191 68.492 563.057 2.293 17.044 6.882 0.004 0.030 283.990 16 19/05/2002 08:00 0.094 206.090 4.280 69.750 553.241 1.999 15.439 7.248 0.004 0.017 296.135 16 22/05/2002 00:00 0.032 134.913 1.459 42.943 366.804 1.718 9.742 6.123 0.004 0.021 200.602 16 24/05/2002 00:00 0.070 80.645 2.027 26.994 188.474 0.962 6.426 4.950 0.002 0.002 129.550 16 18/08/2002 09:00 0.072 46.738 3.943 18.595 136.960 1.076 7.006 2.862 0.005 0.012 92.437 16 31/08/2002 10:00 0.040 48.703 2.206 19.530 144.520 0.990 5.156 3.119 0.003 0.000 98.667 16 03/10/2002 00:00 0.000 55.529 1.487 22.040 162.729 0.976 3.764 3.146 0.000 0.000 85.518 16 18/10/2002 10:30 0.000 31.124 0.132 13.549 100.598 1.124 1.845 2.854 0.002 0.019 61.163 16 22/04/2003 00:00 0.140 156.577 3.596 55.383 445.785 1.451 13.458 2.795 0.004 0.000 306.711 Table K-16: Summary of cation concentrations, part 12 (of 12). 252 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0052594/manifest

Comment

Related Items