Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Primary production and the settling flux in two fjords of British Columbia, Canada Timothy, David Andrew 2001

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-ubc_2001-715442.pdf [ 10.18MB ]
Metadata
JSON: 831-1.0052544.json
JSON-LD: 831-1.0052544-ld.json
RDF/XML (Pretty): 831-1.0052544-rdf.xml
RDF/JSON: 831-1.0052544-rdf.json
Turtle: 831-1.0052544-turtle.txt
N-Triples: 831-1.0052544-rdf-ntriples.txt
Original Record: 831-1.0052544-source.json
Full Text
831-1.0052544-fulltext.txt
Citation
831-1.0052544.ris

Full Text

P R I M A R Y P R O D U C T I O N A N D T H E S E T T L I N G F L U X IN T W O F J O R D S O F BRITISH C O L U M B I A , C A N A D A by David Andrew Timothy M.Sc. Oceanography, U . B . C , 1994 B.Sc. Environmental Engineering, M.I.T., 1989  A THESIS S U B M I T T E D IN PARTIAL F U L F I L L M E N T O F T H E REQUIREMENTS  FOR T H E DEGREE OF  D O C T O R OF P H I L O S O P H Y  in T H E F A C U L T Y OF G R A D U A T E STUDIES D E P A R T M E N T OF E A R T H A N D O C E A N  SCIENCES  We accept this thesis as conforming to the required standard  T H E UNIVERSITY OF BRITISH C O L U M B I A  July  2001  © David Andrew Timothy, 2001  In  presenting  this  degree at the  thesis  in  University of  partial  fulfilment  of  of  department  this or  thesis for by  his  or  requirements  British Columbia, I agree that the  freely available for reference and study. I further copying  the  representatives.  an advanced  Library shall make it  agree that permission for extensive  scholarly purposes may be her  for  It  is  granted  by the  understood  that  head of copying  my or  publication of this thesis for financial gain shall not be allowed without my written permission.  Department of The University of British Columbia Vancouver, Canada  DE-6 (2/88)  Abstract  A time series of primary production and sediment trap flux measurements was carried out in two fjords of British Columbia, C a n a d a between 1983 and 1989.  T h e fjords, pe-  riodically anoxic Saanich Inlet and oxygen-replete Jervis Inlet, were chosen in order to compare organic matter formation and particle flux in these environments with largely differing redox conditions. T w o sediment-trap moorings were deployed in each fjord, and each mooring had sediment traps at three depths. T h e moorings were serviced monthly, when primary production was also measured using the  14  C - u p t a k e technique.  Hydro-  graphic and nutrient data were collected during portions of the experiment, and  2 1 0  Pb  profiling of bottom sediments allowed comparison of water-column fluxes and sedimentary accumulation rates. Saanich Inlet (490 g C m ~ (290 g C m  -  2  y  _ 1  )  2  y  - 1  )  was 1.7 times more productive than Jervis Inlet  and primary production toward the mouths of both fjords was  1.4  times higher than at the heads of the fjords. T h e elevated rates of primary production in Saanich Inlet were probably due to exchange with the nutrient-rich surface waters of the passages leading to the Pacific Ocean, and the up-inlet gradients in both fjords reflected the relative nutrient supply. T h e sediment-trap material was dominated by biogenic silica, especially in the spring and early summer but also in the late summer and fall, while organic carbon fluxes tended to peak in the summer. W h i l e winter fluxes were usually dominated by aluminosilicates, at the mouth of Jervis Inlet organic matter often comprised most of the mass flux to the 50 m sediment traps, as wintertime sources of biogenic silica and aluminosilicates were small. A t the head of Saanich Inlet, the aluminosilicate flux closely followed the pattern of local rainfall and flow from the Cowichan  ii  River, a distinct difference from the other stations where turbulent resuspension from topographic boundaries and particle focusing appear to have dominated the lithogenic flux. 5 C 13  of the trapped material was heavier in the summer than in the winter, reflect-  ing a higher ratio of marine to terrestrial organic matter at that time. T h e relationship between stable carbon isotope ratios and B S i content revealed that 70-80% of the marine O C in these fjords is diatomaceous. T h i s relationship was furthermore used to estimate the <5 C endmember of the marine organic matter and the proportion of terrigenous ma13  terial to the total organic matter flux. E x p o r t ratios of organic carbon were low, likely because of solubilisation within the traps, while export ratios of biogenic silica were high. Sediment-trap fluxes at the mouth of Saanich Inlet were strongly affected by a sediment plume that extended off the nearby sill. However, compared to the other stations, this plume did not result in excess sedimentary accumulation of biogenic silica and organic carbon relative to local primary production. A t each station, similar proportions of local primary production (~5%) were buried in the sediments below, suggesting that the bulk of the marine organic matter was not preferentially preserved in the intensely anoxic sediments of Saanich Inlet. T h e possibility of organic matter solubilisation within the sediment traps, and the excessive water-column fluxes at the mouth of Saanich Inlet, confuse comparison of organic carbon fluxes in Saanich and Jervis Inlets.  However, away from the mouth of  Saanich Inlet water-column fluxes of biogenic silica were proportional to local primary production. If the biogenic silica carried proportional amounts of organic matter, then the heightened primary production in Saanich Inlet resulted in a large delivery of organic matter to depth. Combined with the high primary production and export flux, low rates of vertical mixing and particle-entrapment within the fjord, factors associated with the weak estuarine circulation and weak winds of Saanich Inlet, may have also stimulated  iii  anoxia. Although in Jervis Inlet there is more stagnant water behind the sill and deepwater renewals were less frequent than in Saanich Inlet, the deep sill allows oxidation of a significant fraction of the sinking organic matter before the stagnant waters are reached, reducing the chances of oxygen depletion in the bottom waters. A model that estimates rates of water-column decay from sediment-trap data showing increases in flux with depth was used with the time series from Saanich and Jervis Inlets. Model results from Saanich Inlet were not conclusive, possibly because the depth interval between sediment traps was too small to resolve water-column rates of decay. However, the model fit well to the time series from Jervis Inlet, and rate constants for organic carbon and nitrogen agree well with previous estimates made from oceanic settings. T h e model has also allowed some of the first estimates of depth-dependent dissolution rates of sinking biogenic silica, and translation to time-dependent dissolution using a nominal sinking rate suggests the diatomaceous opal in Jervis Inlet was dissolving rapidly. Changes with depth of rate constants for organic carbon, nitrogen and biogenic silica are well described by the power function, suggesting that organic matter and biogenic silica are composed of a set of multiple components that decay at varying rates. T h i s model for decay has been explained for organic matter, and for the biogenic silica may be caused by the presence of various diatom species or degrees of frustule fragmentation that result in a number of fractions with different dissolution rates. T h e model has also allowed a description of the material that causes increases in flux with depth. T h i s sediment was depleted of organic carbon and nitrogen and thus appeared diagenetically altered, and its aluminosilicate and biogenic silica contents were characteristic of hydrodynamically sorted resuspended material. Additional material was delivered to the deepest sediment traps during deepwater renewals, but a continual process such as tidal resuspension, particle focusing, or increases in trapping efficiency with depth resulted in additional fluxes to the mid-depth sediment traps. iv  Table of Contents  Abstract  ii  List of Tables  ix  List of Figures  xi  Preface  xiv  Acknowledgements 1  Physical, ecological and environmental setting  1  1.1  Introduction  1  1.2  Saanich and Jervis Inlets  3  1.2.1  Physical descriptions  3  1.2.2  Plankton ecology  1.3  2  xv  12  Environmental setting  14  P r i m a r y production i n Saanich and Jervis Inlets  2  1  2.1  Introduction  21  2.2  Methods  23  2.3  Results  25  2.3.1  Salinity and temperature  25  2.3.2  Nutrient concentrations and uptake  31  2.3.3  Estimates of primary production  34  v  2.4  2.5  3  Discussion  40  2.4.1  Temporal pattern of primary production  40  2.4.2  Geographic pattern of primary production  43  2.4.3  Bottom-water oxygen in Saanich and Jervis Inlets  48  Conclusions  49  S e t t l i n g fluxes i n S a a n i c h a n d J e r v i s I n l e t s  50  3.1  Introduction  50  3.2  Materials and methods  52  3.2.1  Field design and sample preparation  52  3.2.2  Laboratory analyses  54  3.2.3  Effect of preservative treatments  55  3.2.4  Linear regressions  57  3.3  3.4  3.5  Results  58  3.3.1  Components of the mass  flux  58  3.3.2  Fluxes at the head of Saanich Inlet (station SN-0.8)  61  3.3.3  Fluxes at the mouth of Saanich Inlet (station SN-9)  71  3.3.4  Fluxes in Jervis Inlet  72  Discussion  82  3.4.1  O C - B S i relationships  82  3.4.2  Marine and terrigenous O C  3.4.3  E x p o r t ratios of O C and B S i  95  3.4.4  T h e riverine source of particulates to Saanich Inlet  99  3.4.5  Deep-trap, sediment-interface and burial  Conclusions  fluxes  84  fluxes  103 114  vi  4  A m o d e l t o i n t e r p r e t i n c r e a s e s i n flux w i t h d e p t h 4.1  Introduction  117  4.2  Description and solution of the model  119  4.3  Results  123  4.4  4.5  5  117  4.3.1  Sensitivity analyses and examples of the planar  4.3.2  T h e error term  fits  123 127  Discussion  130  4.4.1  Describing depth dependence of the rate constants  130  4.4.2  T h e anticipated  133  4.4.3  T h e additional flux in Jervis Inlet  135  4.4.4  T h e additional flux in Saanich Inlet  138  flux  Conclusions  140  Conclusions  142  Bibliography  147  Appendix A  Separating marine from terrigenous organic matter  169  Appendix B  U s i n g a conservative tracer w i t h the trap m o d e l  172  B.l  A n alternate model for when rate constants do not converge  172  B.2  T h e normalisation scheme  174  Appendix C  S e n s i t i v i t y analysis a n d r e s u l t s for J e r v i s I n l e t  175  Appendix D  S e n s i t i v i t y analysis a n d r e s u l t s for S a a n i c h I n l e t  184  Appendix E  E x p o n e n t i a l fit t o r a t e c o n s t a n t s  190  vii  Appendix F  Tabulation of primary production data  Appendix G  Sediment-trap data of Saanich Inlet  Appendix H  Sediment-trap data of Jervis Inlet  viii  L i s t of Tables  2.1  Primary production in Saanich and Jervis Inlets  2.2  Comparison of production in Saanich Inlet with Hobson's estimates  3.1  Station locations  3.2  Preservation effects of N a N  3.3  Fluxes in Saanich Inlet  70  3.4  Fluxes in Jervis Inlet  81  3.5  Terrigenous O C in the inlets  90  3.6  Total and diatom production  91  3.7  E x p o r t ratios of O C and B S i at 50 m  96  3.8  Composition of upper sediments  3.9  Interface and burial  A.l  Marine 5  C l  Model results from Jervis Inlet  183  D.l  Model results from Saanich Inlet  189  1 3  37 . . .  38  53 3  and brine  56  104 fluxes  C endmembers and the composition of marine samples  108  . . . .  171  F.l  1 4  C uptake at station SN-9  193  F.2  1 4  C uptake at station SN-0.8  194  F.3  1 4  C uptake at station J V - 3  195  F. 4  1 4  C uptake at station J V - 7  196  G. l  Sediment-trap fluxes measured at station SN-9: 45 m  G.2  Sediment-trap fluxes measured at station SN-9: 45 m (continued)  G.3  Sediment-trap fluxes measured at station SN-9: 110 m ix  198 . . . .  199  • . .  200  G.4  Sediment-trap fluxes measured at station SN-9: 110 m (continued) . . . .  201  G.5  Sediment-trap fluxes measured at station SN-9: 150 m  202  G.6  Sediment-trap fluxes measured at station SN-9: 150 m (continued) . . . .  203  G.7  Sediment-trap fluxes measured at station SN-0.8: 50 m  204  G.8  Sediment-trap fluxes measured at station SN-0.8: 50 m (continued)  G.9  Sediment-trap fluxes measured at station SN-0.8: 135 m  . . .  205 206  G.10 Sediment-trap fluxes measured at station SN-0.8: 135 m (continued) . . .  207  G . l l Sediment-trap fluxes measured at station SN-0.8: 180 m  208  G . 12 Sediment-trap fluxes measured at station SN-0.8: 180 m (continued) . . .  209  H. l  Sediment-trap fluxes measured at station J V - 3 : 50 m  211  H.2  Sediment-trap fluxes measured at station J V - 3 : 300 m  212  H.3  Sediment-trap fluxes measured at station J V - 3 : 600 m  213  H.4  Sediment-trap fluxes measured at station J V - 7 : 50 m  214  H.5  Sediment-trap fluxes measured at station J V - 7 : 200 m  215  H.6  Sediment-trap fluxes measured at station J V - 7 : 450 m  216  x  List of Figures  1.1  Sampling stations in Saanich and Jervis Inlets  4  1.2  Longitudinal and transverse cross-sections of Saanich Inlet  5  1.3  Longitudinal and transverse cross-sections of Jervis Inlet  6  1.4  Temperature, salinity and dissolved oxygen at station SN-9  8  1.5  Temperature, salinity and dissolved oxygen at station SN-0.8  9  1.6  Temperature, salinity and dissolved oxygen at station J V - 3  10  1.7  Temperature, salinity and dissolved oxygen at station J V - 7  11  1.8  Environmental and lighthouse stations  15  1.9  Southern Oscillation Index  15  1.10 Atmospheric temperature at weather stations  16  1.11 Precipitation at weather stations  17  1.12 Hours of sunshine at weather stations  17  1.13 River flow during the study  18  1.14 Surface salinity in the southern Strait of Georgia  19  2.1  Primary production at station SN-9 in Saanich Inlet  26  2.2  Primary production at station SN-0.8 in Saanich Inlet  27  2.3  Primary production at station J V - 3 in Jervis Inlet  28  2.4  Primary production at station J V - 7 in Jervis Inlet  29  2.5  Vertical profiles of T , S and nitrate  30  2.6  N : P and Si:N uptake ratios  33  2.7  Vertical profiles of primary production  35  xi  2.8  Averages of daily primary production  36  2.9  Nitrate versus phosphate in both inlets  46  3.1  Organic carbon to nitrogen ratios  59  3.2  A l u m i n i u m to lithogenic ratios  60  3.3  Total mass fluxes in Saanich Inlet  62  3.4  Biogenic silica fluxes in Saanich Inlet  63  3.5  Organic carbon fluxes in Saanich Inlet  64  3.6  A l u m i n i u m fluxes in Saanich Inlet  67  3.7  Seasonally-averaged sediment-trap fluxes in Saanich Inlet  68  3.8  Seasonally-averaged composition of settling fluxes in Saanich Inlet  3.9  Total mass fluxes in Jervis Inlet  . . . .  69 73  3.10 Biogenic silica fluxes in Jervis Inlet  74  3.11 Organic carbon fluxes in Jervis Inlet  76  3.12 A l u m i n i u m fluxes in Jervis Inlet  78  3.13 Seasonally-averaged sediment-trap fluxes in Jervis Inlet  79  3.14 Seasonally-averaged composition of settling fluxes in Jervis Inlet  80  3.15 Production and O C flux residuals at station J V - 7  82  3.16 O C versus B S i in both inlets  83  3.17 5  86  1 3  C of the trapped organic matter of Saanich Inlet  3.18 <5 C of the trapped organic matter of Jervis Inlet  87  3.19 5 C  89  13  l3  versus % B S i in Saanich and Jervis Inlets  3.20 <5 C versus O C / N in Saanich and Jervis Inlets 13  93  3.21 Source of A l to station SN-0.8  101  3.22 T h e lithogenic A l 0 : S i 0  105  2  3  2  weight ratio  3.23 Summary of O C  fluxes  xii  110  3.24 Summary of B S i fluxes  Ill  4.1  Diagram of the sediment-trap model  120  4.2  Plot of O C solution: station J V - 3 , 300-600 m  125  4.3  Plot of B S i solution: station J V - 7 , 50-450 m  126  4.4  Rate constants versus depth  129  4.5  F l u x versus depth  132  4.6  Composition of the additional flux in Jervis Inlet  135  4.7  T h e additional flux in Jervis Inlet  137  4.8  T h e additional flux in Saanich Inlet  139  C l  Sensitivity analysis for station J V - 3 , 50-300 m  176  C.2  Sensitivity analysis for station J V - 3 , 50-600 m  177  C.3  Sensitivity analysis for station J V - 3 , 300-600 m  178  C.4  Sensitivity analysis for station J V - 7 , 50-200 m  179  C.5  Sensitivity analysis for station J V - 7 , 50-450 m  180  C.6  Sensitivity analysis for station J V - 7 , 200-450 m  181  C. 7  D a t a removed from analyses in Jervis Inlet  182  D. l  Sensitivity analysis for station SN-9, 45-110 m  186  D.2  Sensitivity analysis for station SN-9, 45-150 m  186  D.3  Sensitivity analysis for station SN-9, 110-150 m  187  D.4  Sensitivity analysis for station SN-0.8, 50-135 m  187  D.5  Sensitivity analysis for station SN-0.8, 50-180 m  188  D.6  Sensitivity analysis for station SN-0.8, 135-180 m  188  xiii  Preface  T h e results of the primary production time series have been published (Timothy and Soon, 2001); Chapter 2 is a slightly modified version to accommodate the structure of this dissertation. T h e descriptive portion of the sediment trap experiment (the majority of Chapter 3) will be submitted to  Progress in Oceanography.  T h e principles of the  sediment-trap model used in Chapter 4 were first described by T i m o t h y (1994) and a version of the model was published by T i m o t h y and P o n d (1997).  T h e results of this  model applied to the time series from Jervis Inlet will be submitted to the  Geophysical Research or Global Biogeochemical Cycles.  xiv  Journal of  Acknowledgements  From the beginning of this project, my supervisor, Steve Calvert, has been extremely supportive intellectually and personally, and through many surprising circumstances he somehow maintained his calm. I am grateful to Steve and committee member K e n Denman for quickly commenting on chapters of the dissertation. T h e rest of my committee, Paul Harrison and C . S . Wong, were always supportive and P a u l gave very good advice at various stages. I am very grateful to Steve Pond who encouraged me to think critically in the early stages of my work. Collecting the data presented here was truly a Herculean endeavor, tackled almost entirely by Maureen Soon. I can't thank her enough for her commitment, and for the constructive and pleasant environment she created in the lab. R a m and Hugh, and the officers and crew of the  C.S.S. Vector,  provided excellent help and good humour during  the field program, so P m told! Bente Nielsen, Christine Elliott, K a t h y Gordon and Bert Mueller were also very helpful with laboratory analyses. I am thankful to everybody in the Annex for their help and patience. Roger Pieters, Rich Pawlowicz, Susan Allen and Lionel Pandolfo have answered questions and allowed me to work on their computers. T o m Pedersen was always available for questions and advice, and Kristin Orians helped establish methods on the I C P - M S . Yuval gave very efficient lessons in matlab particular to the modelling - thanks!  D o n Murray and Jesse Hoey pointed me to the solution I  used in the model. Stan Stubbe at Environment Canada was helpful in providing data. Discussions with Stephanie and Markus Kienast were helpful, especially in the last days of writing. Thanks to Greg Cowie, L o u Hobson and G r a h a m Shimmield for providing data. A n d thanks to Roger Frangois for his early involvement in the project.  xv  V e r yr a r e l y , b u te v e r yo n c e in a w h i l e ,Iw a sn o t in t h el a bo r in f r o n to ft h  T h a n k st ot h em a n yf r i e n d sw h oh a v em a d em ye x p e r e in c e s in British C o u lm b a i f a n Ia m g r a t e f u lt om yf a m i l yf o rt h e i rs u p p o r t w h i l eI ' v e b e e n s of a ra w a y a n d f o r ... r e f r a i n i n gf r o mt e a r i n gm el i m bf r o ml i m bw i t hh i st e r r i b l es h a r pt e e t ha n d s l a s h i n g c a lw s !  xvi  Chapter 1  Physical, ecological a n d environmental setting  1.1  Introduction  A n improved understanding of primary production and particle flux in the ocean requires the construction of reliable budgets of biogenous elements.  Indeed, much work  has focussed on descriptions of carbon and nutrient cycling for both open ocean (Bishop, 1989; Siegenthaler and Sarmiento, 1993; Michaels et al., 1994; Emerson et al., 1995) and coastal regions (Burrell, 1988; Wassmann, 1991; Smith and Hollibaugh, 1993; L i u et al., 2000).  Budgets for carbon are of special interest because of the role that the oceans  play in modulating atmospheric CO2 concentration (Siegenthaler and Sarmiento, 1993). However, descriptions for coastal regions are complicated because at the coastal boundary continental inputs (Berner, 1989; Smith and Hollibaugh, 1993; L i u et al., 2000) and turbulent processes causing sediment resuspension and redistribution (Hakanson et al., 1989) are significant but difficult to quantify. by their heterogeneity,  T h e coastlines are furthermore marked  so that generalisations of biogeochemical processes are difficult  to make ( L i u et al., 2000).  Nevertheless,  a description of the fluxes occurring at the  oceanic boundary is crucial to our understanding of carbon and nutrient cycling on a global scale, as the ocean margins account for ~20% of global ocean primary production (Walsh, 1988; L i u et al., 2000) and most ofthe organic carbon burial in marine sediments (Berner, 1982; Hedges and K e i l , 1995; Middleburg, 1997). Large, fast-sinking particles make up a small fraction of the particulate matter in sea  1  Chapter 1. Physical,  ecological and environmental  setting  2  water, but they are the primary vehicle by which material is transported through the water column (McCave, 1975). Therefore, an important component of our understanding of element cycling is a description of large particle sinking and decay.  Combined with  knowledge of the export flux of material from surface waters (Dugdale and Goering, 1967; Eppley and Petersen, 1979; B o y d and Newton, 1995), decay rates can then be used to infer, for example, the vertical distribution of oxygen and nutrients (e.g.; Suess, 1980; M a r t i n et al., 1987) and the effectiveness of carbon delivery to the deep ocean and sediments (Suess and Miiller, 1980; Hargrave et al., 1994; Hedges, 1992). T o this end, sediment-trap fluxes are often appropriate for estimates of vertical flux and particulate decay (e.g.; Bishop, 1989), but in coastal waters a number of processes can contribute excess material to deep sediment traps rendering the information they collected difficult to interpret. Fjords are semi-enclosed, overdeepened coastal features that have long been recognised as accessible locations where biological and geochemical processes relevant to oceanic systems can be studied (e.g.; Skei, 1983). Studies in fjords have greatly contributed to our understanding of the ecology and physiology of phytoplankton (e.g.; Sakshaug and Myklestad, 1973; Takahashi et a l , 1977, 1978; Hobson, 1981; Parsons et al., 1983; Sakshaug and Olsen, 1986; M c Q u o i d and Hobson, 1995; Kukert and Riebesell, 1998) and zooplankton (Huntley and Hobson, 1978; Takahashi and Hoskins, 1978; Koeller et al., 1979; Dagg et al., 1989; Buck and Newton, 1995), and the factors that control plankton community development have been tested using the environment of a fjordal basin (Ross et al., 1993). Links between the plankton community and sedimentation have been investigated in a number of fjords (e.g.; Wassmann, 1984; Burrell, 1988; Sancetta and Calvert, 1988; Sancetta, 1989c; Wassmann, 1991; Overnell et al., 1995), and models of diatom aggregation have here been explored (Kiorboe et al., 1994, 1996; Hansen and Kiorboe, 1995). Measurements of biochemical markers for marine and terrigenous organic matter  3  Chapter 1. Physical, ecological and environmental setting  c o le c t i n g on the c o n t i n e n t a l m a r g n is h a v e b e e n m a d e in t h i s e n v r io n m e n t ( H e d g e s et al., 1 9 8 8 a , 1 9 8 8 b ; C o w e i and H e d g e s , 1992)  and,  as a n a o lg s of a n o x c i b a s i n s , the r e d o x  c h e m s it r y w i t h i n f j o r d s has b e e n s t u d i e d in g r e a t detail (e.g.; R i c h a r d s , 1965; E m e r s o n , 1980;  S k e i , 1983;  S m e t h e i, 1987;  M c K e e and S k e i , 1 9 9 9 ) .  T h i s t h e s i sr e p o r t s am u l t i y e a rt i m es e r i e s of p r i m a r yp r o d u c t i o n and s e d i m e n t t r a p  flux c o l e c t e dd u r i n g the 1 9 8 0 s in S a a n c ih and J e r v i sI n l e t s , two f j o r d s of s o u t h e r n Brit C o l u m b i a , C a n a d a . In t h i s c h a p t e r , I p r o v d ie p h y s i c a l and e c o l o g i c a ld e s c r i p t i o n s of the  f j o r d s and s h o w e n v r io n m e n t a lt i m es e r e is f r o m the 1 9 8 0 s , p r o v i d i n g ab a c k d r o p for s u b s e q u e n t c h a p t e r s . C h a p t e r 2r e p o r t s the p r m i a r yp r o d u c t i o nr e s u l t s and d s ic u s s e s c a u s e s of a n o x a i in S a a n c ih I n l e t .C h a p t e r 3 p r e s e n t s the s e d i m e n t t r a p d a t a , d s ic u s s e s the r e l a t i o n s h i pb e t w e e np r m i a r yp r o d u c t i o n and w a t e r c o u lm nfluxand c o m p a r e ss e d m i e n t -  t r a pfluxesw i t h b o t o m s e d m i e n t a c c u m u a lt o in r a t e s . In c h a p t e r 4, a b a a ln c e e q u a t o in is u s e d to d e t e r m n ie r a t e s of w a t e r c o u lm n r e m i n e r a l i s a t i o n of the b o ig e n o u sfluxesand d e s c r b ie s the c a u s e s of o b s e r v e d n ic r e a s e s influxw i t h d e p t h in b o t h f j o r d s .C h a p t e r 5 p r o v d ie sas u m m a r y of c o n c l u s i o n s .  1.2  Saanich a n d J e r v i s Inlets  1.2.1  P h y s i c a l descriptions  S a a n c ih and J e r v i s I n l e t s of s o u t h e r n British C o u lm b a i ( F i g u r e s 1.1 t h r o u g h 1.3)  are  c o n t r a s t i n g f j o r d s c o n t g iu o u s w i t h the s o u t h e r n S t r a i t of G e o r g i a . J e r v i s I n l e t is a o ln g (89 km),  d e e p s i le d (240 m) f j o r dw i t h am a x m iu md e p t h of 730 m. M o d e r a t ef r e s h w a t e r  i n p u t at the h e a d of J e r v i sI n l e t ( a n n u a lm e a n of 180 m s ; P i c k a r d , 1961) 3  _1  d r i v e s w e a k  e s t u a r i n ec i r c u l a t i o nw i t h a net m o v e m e n t of s u r f a c ew a t e r ss e a w a r d and r e p a lc e m e n t flo at d e p t h ( P i c k a r d , 1961; (CWH)  Lazier, 1 9 6 3 ) . J e r v i sI n l e t is w i t h i n the c o a s t a lw e s t e r nh e m o lc k  b i o g e o c l i m a t i c z o n e t h a t e x t e n d s t h r o u g h o u t m o s t of c o a s t a l BC ( P o j a r et  al.,  Chapter 1. Physical, ecological and environmental setting  128°W  126°W  124°W  4  122°W  24.00'  F i g u r e 1.1: S a m p n i lg s t a t i o n s in S a a n c ih and J e r v i s I n l e t s . The C o w c ih a n R i v e r flow i n t o C o w c ih a n Bay.  Chapter 1. Physical, ecological and environmental setting  SN-0.8  SN-9  0m  100  200  300  SN-9  SN-0.8  1.0 km  Figure  1.2:  Longitudinal  (vertical exaggeration  1.5  =  50)  and transverse  (to scale)  cross-sections of Saanich Inlet showing mooring locations and sediment-trap depths. Sill and maximum depths of Saanich Inlet are 70 m and 235 m, respectively. 1991). T h e C W H zone is characterised as cool and mountainous with heavy precipitation in the fall and winter (Figure 1.11). Anoxia is not known to occur in Jervis Inlet (Lazier, 1963; Smethie, 1987; Figures 1.6 and 1.7). Located on southern Vancouver Island, Saanich Inlet (Figures 1.1 and 1.2) is 24 k m long, has a m a x i m u m depth of 235 m and a broad, shallow (70-80 m) sill that runs the length of the eastern branch of Satellite Channel.  Saanich Inlet is in the coastal  Douglas-fir ( C D F ) zone, a low-elevation region along the southeastern coast of Vancouver  Chapter 1. Physical, ecological and environmental setting  6  F i g u r e1 . 3 : L o n g i t u d i n a l( v e r t i c a l e x a g g e r a t o in = 5 0 ) a n d t r a n s v e r s e( t o s c a l e ) c r o s s s e c t o in s o fJ e r v i s I n l e t s h o w n ig m o o r n ig l o c a t i o n s a n d s e d i m e n t t r a p d e p t h s . T h m o o r n ig a t t h e m o u t h o f J e r v i s I n l e t w a s m o v e d f r o m J V 1 1 . 5 t o J V 3 e a r l y t i m e s e r i e s ( s e eT a b l e3 . 1 d a t e so fd e p o ly m e n t ) . Sill a n dm a x m i u md e p t h s o fJ e r v i s a r e 2 4 0 m a n d 7 3 0 m , r e s p e c t i v e l y .T h i s sill d e p t h is s i g n i f i c a n t l y s h a o lw e r t h a n b e e n r e p o r t e d b yo t h e r s , i n c l u d i n gT m i o t h ya n d S o o n ( 2 0 0 1 ) , w h o u s e d av a u le r e b y P i c k a r d ( 1 9 6 1 ) . P i c k a r d s ' v a u le o f3 8 5m r e f e r st ot h e d e p t h o ft h er e g i o n w f a c e w a t e r p r o p e r t i e s a r e n o o ln g e r a f f e c t e d b y t h e o u t f o lw f r o m J e r v i s Inlet, a l o s o m e w h a t i n s i d e t h e m o r p h o o lg c ia l sill.  7  Chapter 1. Physical, ecological and environmental setting  Island and including many islands within the southern Strait of Georgia (Nuszdorfer et al., 1991).  T h e C D F zone is within the rainshadow of Vancouver Island and the  Olympic mountains, and is drier and warmer than the C W H zone surrounding Jervis Inlet. Runoff from the Goldstream River (Figure 1.13) at the head of Saanich Inlet is very small (annual mean < 2 m  3  s ; Stucchi and Whitney, 1997) and the largest sources - 1  of fresh water, the Cowichan and Fraser Rivers (Figure 1.1), are located seaward of the fjord (Herlinveaux, 1962). Precipitation in coastal southern British C o l u m b i a tends to be highest in the fall and winter.  Thus, runoff from the Cowichan River peaks in the  winter while that of the Fraser River, the predominant source of freshwater to the Strait of Georgia, is highest, in June when the melt from ice and snow peaks.  These external  sources of freshwater cause irregular surface currents and weak or absent estuarine flow within Saanich Inlet (Herlinveaux, 1962; Stucchi and Whitney, 1997). A characteristic relatively unique among British Columbia fjords is the periodic development of anoxia in the bottom waters of Saanich Inlet (Richards, 1965; Anderson and Devol, 1978; Cowie et al., 1992; Figures 1.4 and 1.5); hydrogen sulphide periodically extends to 50-80 m off the bottom in the central basin of Saanich Inlet (Richards, 1965). Generally, neither inlet exhibits an upper mixed layer.  Instead, the steepest den-  sity gradient occurs at the surface in Saanich Inlet (Herlinveaux, 1962) and Jervis Inlet (Pickard, 1961) and is larger in Jervis Inlet (Sancetta, 1989a).  Deepwater renewal to  both fjords occurs during the summer or fall when upwelling along the coastal rim of the northeast Pacific Ocean brings dense, nutrient-rich waters through Juan de Fuca Strait and into the Strait of Georgia. Deepwater renewal appears to occur most years in Saanich Inlet (Anderson and Devol, 1973; Figures 1.4 and 1.5), but renewals occur every several years in Jervis Inlet (Lazier, 1963; Pickard, 1975; Figures 1.6 and 1.7).  Chapter 1. Physical, ecological and environmental setting  8  F i g u r e 1 . 4 : T e m p e r a t u r e , salinity a n d d s is o v le d o x y g e n a t s t a t i o n S N 9 . G r e a t e r de o ft h e t e m p e r a t u r e a n d salinity s t r u c t u r e o ft h e u p p e r 4 0 m is g v ie n in F i g u r e 2  Chapter 1. Physical, ecological and environmental setting  9  Temperature f°C) I  1985  1986  I  1987  I  I  1988  I  L  1989  F i g u r e 1.5: T e m p e r a t u r e , salinity and d s is o v le do x y g e n at s t a t i o nS N 0 . 8 . Z e r od s is o v le d o x y g e n c o n c e n t r a t o in s w e r e m e a s u r e d in w a t e r s i n s i d e the 1 pM c o n t o u r . G r e a t e r detail of the t e m p e r a t u r e and salinity s t r u c t u r e of the u p p e r 40 m is g v ie n in F i g u r e 2.2.  10  Chapter 1. Physical, ecological and environmental setting  i 1985  i  i  i  i  i  i 1986  i  i  i  i—i—i—i—i—i—i—i—i—i—i—i—i—>—i— 1987  1988  1989  F i g u r e 1.6: T e m p e r a t u r e , salinity and d s is o v le d o x y g e n at s t a t i o n JV-3. G r e a t e r detail of the t e m p e r a t u r e and salinity s t r u c t u r e of the u p p e r 40 m is g v ie n in F i g u r e 2.3.  Chapter 1. Physical, ecological and environmental setting  11  Figure 1.7: Temperature, salinity and dissolved oxygen at station J V - 7 . Greater detail of the temperature and salinity structure of the upper 40 m is given in Figure 2.4.  Chapter 1. Physical,  1.2.2  ecological and environmental  setting  12  P l a n k t o n ecology  Harrison et al.  (1983) provide a thorough review of plankton ecology for the Strait  of Georgia and contiguous waters, for which reports from Saanich Inlet are significant. From what is known about plankton dynamics in Jervis Inlet (Stockner and Cliff, 1975; Parsons et al., 1984b; Cochlan et al., 1986; Sancetta, 1989a, 1989b, 1989c), they appear similar to the descriptions of Harrison et al. (1983). Further insight into Jervis Inlet is provided by Haigh et al. (1992) and Taylor et al. (1994) who present a two-year study of phytoplankton ecology in a connected fjord, Sechelt Inlet (Figure 1.1). Similarly, a oneyear study of diatom populations outside but near Saanich Inlet (Hobson and M c Q u o i d , 1997) is relevant. T h e phytoplankton succession typical of coastal, temperate seas (Margarlef, 1958; Guillard and K i l h a m , 1977) is observed in the southern Strait of Georgia (Harrison et al., 1983; Haigh et al., 1992) with some exceptions in Saanich and Jervis Inlets (Sancetta, 1989a). Thus, diatoms contribute most of the yearly primary production with occasionally significant growth of dinoflagellates and nanoflagellates, while diatom-predominance is greater in Saanich Inlet than in Jervis Inlet (Sancetta, 1989a). D u r i n g much of the fall and winter in Saanich Inlet, light limits photosynthesis (Takahashi et al., 1978) and nanoflagellates are the predominant phytoplankton (Takahashi et al., 1978; Smith and Hobson, 1994). Although winter conditions may be similar in Jervis Inlet, sampling has been less frequent there. In and near both inlets, the productive season begins around A p r i l with the blooming of and small  Chaetoceros  Thalassiosira  spp., while blooms of  Skeletonema costatum  species occur concomitantly or shortly thereafter (Stockner and  Cliff, 1975; Takahashi et al., 1977; Hobson, 1981, 1983; Sancetta, 1989a, 1989b, 1989c; Haigh et al., 1992; Hobson and M c Q u o i d , 1997). T h r o u g h frequent sampling, Takahashi et al. (1977) found the spring bloom in Saanich Inlet to last for about two weeks and,  Chapter 1. Physical, ecological and environmental setting  1 3  t h r o u g h o u t t h e s u m m e r a n d fall, v a r o iu s o t h e r d a it o m a n dflagellateb o lo m s o c c u r r e  T h e y s h o w e d t h a t t h e s e b o lo m sw e r e a w la y s p r e c e d e d b y h i g h s u r f a c e n i t r a t e a n d  a c i d c o n c e n t r a t o in s a n d l a t e r P a r s o n s e t al. ( 1 9 8 3 ) s u g g e s t e d t h a t t h e y w e r e c a u s e d  n ic r e a s e d m x in ig a c r o s s t h e b r o a d sill d u r i n g s p r i n g t i d e s l e a d i n g t o g r e a t e r i n f l u x e  n u t r i e n t s .H o b s o n ( 1 9 8 5 ) f o u n d p e r o id s o f t h e s u m m e r w h e n n u t r i e n t s w e r e s e v e r  d e p e lt e d in S a a n c ih I n l e t a n dflagellatesp r e d o m n ia t e d . S i m i l a r flagellate-pre  w a so b s e r v e d d u r i n gn u t r i e n t d e p l e t e , s u m m e r m t i ec o n d i t i o n s in S e c h e t l I n l e t ( H a i g h e al., 1 9 9 2 ; T a y l o r e t al., 1 9 9 4 ) , ab r a n c h o ft h e J e r v i s I n l e t s y s t e m ( F i g u r e 1 . 1 ) .  T h e z o o p a ln k t o n o f t h e s e w a t e r s c a n h a v e a s i g n i f i c a n t m i p a c t o n p h y t o p a ln k  d y n a m c is . T h e i rp o p u l a t i o n ss o m e m t i e sc o m p r s ie a l a r g ea m o u n to fs u r f a c el a y e rb o im a  a n d c a n l e a d t o m a s s e x p o r t o ft h e p h y t o p a ln k t o n p o p u l a t i o n ( T a k a h a s h i a n d H o  1 9 7 8 ; K o e l e re t al., 1 9 7 9 ; H a r r i s o ne t al., 1 9 8 3 ; S a n c e t t a , 1 9 8 9 a , 1 9 8 9 b , 1 9 8 9 c ) . C a  c o p e p o d s s u c h a s Pseudocalanus spp., Calanus pacificus a n d Neocalanus plumchrus h a v e  t h e l a r g e s t e f f e c t o n t h e p h y t o p a ln k t o n o fw a t e r s c o n t g iu o u s w i t h t h e Strait o fG e  ( H a r r i s o n e t al., 1 9 8 3 ) . T h e i r g r e a t e s t g r a z i n g p r e s s u r e o c c u r s a t o r s h o r t l y a f t e r t  s p r i n gb o lo m ,w h e n Calanus pacificus a n d Neocalanus plumchrus h a v er e t u r n e dt os u r f a c  w a t e r s f r o m d e p t h in t h e i r o n t o g e n c i cycle. I n t h e p a s t d e c a d e , it a p p e a r s t h a t  t i m i n go ft h i sc y c l eh a ss h i f t e dt oa b o u to n em o n t he a r l i e rt h a n historicaly r e p o r t e d  w h e n t h i s s h i f t o c c u r r e d r e l a t i v e t o t h e 1 9 8 0 s w h e n t h i s e x p e r m i e n t o c c u r r e d is u  ( B o r n h o l d , 2 0 0 0 ) . M e d u s o d i z o o p a ln k t o n h a v e b e e n r e p o r t e d t o p e n e t r a t e i n t o S a a n c i  I n l e t a n d s i g n i f i c a n t l y m i p a c t p h y t o p a ln k t o n n u t r i e n t d y n a m c is ( H u n t l e y a n d H o b s o n , 1 9 7 8 ) .  14  Chapter 1. Physical, ecological and environmental setting  1.3  E n v i r o n m e n t a l setting  The t i m es e r i e s r e p o r t e d in t h i s t h e s i s b e g a n in 1983 and e n d e d in 1989. E n v r io n m e n t a l d a t a f r o m t h i s p e r i o d are p r e s e n t e d in F g iu r e s 19 . t h r o u g h 11 .4  in o r d e r to put  the  p r m i a r yp r o d u c t i o n and s e d i m e n t t r a p t i m e s e r e is in c o n t e x t . Aw e a k El N n io o c c u r r e d  in 1 9 8 6 / 8 7 , and a l a r g e r El N n io o c c u r r e d in 1 9 8 2 8 /3 s h o r t l yb e f o r e the t i m es e r i e sb e g a ( F i g u r e 1.9).  T h e r ed o e s not a p p e a r to h a v eb e e nas t r o n ga t m o s p h e r c i r e s p o n s e to t h e s  El N n io e v e n t s ; h o w e v e r , the F r a s e rR i v e rf r e s h e t was p e r t u r b e df r o m the d e c a d a la v e r a g e in 1982 and 1986.  W h e r e a v a i l a b l e , the e n v r io n m e n t a l d a t a go b a c k to 1980 in o r d e r to  i n c l u d e the e a r l i e r El N n i o and to t e s t for t e e lc o n n e c t o in s b e t w e e n the E q u a t o r i a lP a c i f i c and s o u t h e r n BC. T e m p e r a t u r e and p r e c i p i t a t i o nd a t a ( F i g u r e s 11 .0 and 1.11) ria Airport, M e r r y I s l a n d and M a l i b u R a p d is ( F i g u r e 1.8), ( F i g u r e 1.12)  w e r e c o l e c t e d at Victoand s u n s h n ie m e a s u r e m e n t s  w e r e m a d e at Victoria A i r p o r t and M e r r y I s l a n d ( E n v r io n m e n t C a n a d a ) .  The s u n s h n ie d a t aw e r e c o l e c t e du s n ig C a m p b e l S t o k e sS u n s h n ie R e c o r d e r s to m e a s u r e  c o lu do p a c i t y . T h e s en is t r u m e n t sr e c o r d the n u m b e r of h o u r s per day t h a tl i g h ti n t e n s i t y  is a b o v eat h r e s h o l dv a u l e and are r e p o r t e d in u n i t s of 'actual s u n l i g h th o u r s , ' r a n g n i g be t w e e nz e r o and the n u m b e r of h o u r sb e t w e e ns u n r s ie and s u n s e t on a g v ie n day. E f f o r t s c o n v e r t 'actual s u n l i g h t h o u r s ' i n t oi r r a d i a n c e (pE/m /s) or p h o t o s y n t h e t i c a l ya v a i l a b l e 2  r a d i a t i o n (PAR;  pE/m /s of w a v e e ln g t h s b e t w e e n ~ 4 0 0 7 0 0 nm) are g e n e r a l y u n s u c 2  c e s s f u l b e c a u s e the t h r e s h o l d v a l u e , d e t e r m n ie d as the ability to b u r n c h e m i c a l y c o a t e d c a r d b o a r d , is a f f e c t e d by a t m o s p h e r c i h u m i d i t y .N e v e r t h e l e s s , F i g u r e 11 .2  p r o v d ie s a  s u b j e c t i v er e c o r d of s e a s o n a l variability in the a m o u n t of s u n s h n ie r e a c h n ig S a a n c ih I n l e t and a r e g o in n e a r the m o u t h of J e r v i s Inlet. S u n s h n ie at Victoria A i r p o r t and M e r r y I s l a n d w e r e s i m i l a r t h r o u g h o u t the 1 9 8 0 s , but, b e c a u s e p r e c i p i t a t i o n was s i g n i f i c a n t l y  1 5  Chapter 1. Physical, ecological and environmental setting  F i g u r e 1 . 8 : E n v r io n m e n t a l ( d a im o n d s ) a n d g i lh t h o u s e ( c i r c l e s ) s t a t i o n s . T e m p e r a t u r e , p r e c i p i t a t i o n a n d s u n s h n ie ( F i g u r e s 1 1 .0 t h r o u g h 1 . 1 2 ) w e r e c o l e c t e d d a i l y a t t h e r o n m e n t a ls t a t i o n s ; s e as u r f a c e salinity ( F i g u r e1 . 1 4 ) w a so b t a n ie dd a i l ya tt h eg i lh t h o s t a t i o n s .  80  81  82  83  i 84 i  85  86  87  88  89  F i g u r e 1 . 9 :T h e S o u t h e r n O s c i la t i o n I n d e x . T h e S O I is t h e a t m o s p h e r c i s e a l e v p r e s s u r e a n o m a y l b e t w e e n D a r w i n , Australia, a n d Tahiti. El N n io e v e n t s o c c u r w h e n t h e p r e s s u r e a n o m a y l is n e g a t i v e ,L a N n ia s w h e n it is p o s i t i v e . ( S o u r c e : h t t p :/ w w w . c g d . u c a r . e d u/ c a s/ c a t a l o g / c l i m i n d/s o i . h t m l . )  Chapter 1. Physical, ecological and environmental setting  80  81  82  83  84  85  86  87  16  88  Figure 1.10: Atmospheric temperature at weather stations near Saanich and Jervis Inlets. Dashed lines are the decadal means. higher at M a l i b u Rapids (Figure 1.11) where sunshine measurements are not made, irradiance was certainly lower towards the head of Jervis Inlet. There is no clear evidence of an E l Nino effect on temperature, precipitation or sunshine in the southern Strait of Georgia. T h e Cowichan and Fraser Rivers are the major sources of fresh water to the region of Saanich Inlet, and both are continually monitored by Environment C a n a d a (Figure 1.13). T h e Goldstream River at the head of Saanich Inlet has a smaller effect on Saanich Inlet due to its low flow, and is not continually monitored. However, data from 1977 and 1978 exist and are presented in Figure 1.13. T h e Skwawka and Hunaechin Rivers flow into the head of Jervis Inlet, but Environment C a n a d a has no record of their flow. Adjacent to and east of the Skwawka and Hunaechin watersheds is the the larger, glaciated watershed of the Elaho River. T h e Elaho is a monitored river, and the record is given in Figure 1.13 as a proxy for flow into the head of Jervis Inlet.  Although the Jervis Inlet watershed  has only minor glaciers, it is influenced by the spring freshet (Lazier, 1963;  Pickard,  Chapter  1. Physical,  ecological and environmental  setting  17  F i g u r e 1.12: H o u r s of s u n s h n ie at w e a t h e rs t a t i o n s . C a m p b e l S t o k e sS u n s h n ie R e c o r d e r s w e r e u s e d to m e a s u r e the n u m b e r of h o u r s per day t h a t l i g h t i n t e n s i t y was a b o v e a t h r e s h o l d v a u le ( c l o u d o p a c i t y ) . D a s h e d l i n e s are the d e c a d a l m e a n s .  18  Chapter 1. Physical, ecological and environmental setting  80  81  82  83  84  85  86  87  88  89  F i g u r e 1.13: R i v e r f o lw f r o m the F r a s e r , E l a h o , C o w c ih a n and G o d ls t r e a m R i v e r s . The E a lh o is i n c l u d e d as an a n a o l g for the S k w a w k a and H u n a e c h n i R i v e r s ( u n m e t e r e d ) t h a tflowi n t o the h e a d of J e r v i s I n l e t . M o n t h y l flows( h e a v y l i n e ) are g i v e n , as are the a v e r a g e s for 1 9 8 0 1 9 8 9 ( d a s h e d lines). The G o d ls t r e a m R i v e r d r a i n s i n t o the h e a d of S a a n c ih I n l e t and was m e t e r e d d u r i n g 1977 and 1978. A v e r a g eflowfor t h o s e y e a r s is s h o w n .  Chapter 1. Physical, ecological and environmental setting  1 9  F i g u r e1 . 1 4 : S u r f a c e salinity m e a s u r e dd a i l ya tg i lh t h o u s e st h r o u g h o u tt h es o u t h e r n Str o fG e o r g i a . M o n t h y l a v e r a g e s a r e plotted, a n d t h e d a s h e d l i n e s a r e t h e d e c a d a l m  Chapter 1. Physical, ecological and environmental setting  2 0  1 9 6 1 ) d u e t om e l t i n gs n o wf r o ms u r r o u n d n ig m o u n t a n i p e a k s r e a c h n ig 2 0 0 0 me l e  T h e r e f o r e , t h e s e a s o n a l p a t t e r n ( d o m n ia t e d b y t h e f r e s h e t ) a n d i n t e r a n n u a l variabili m a y h a v e b e e n s i m i l a rf o r t h e t w o w a t e r s h e d s .  I nt h es u m m e r so f1 9 8 2a n d1 9 8 6 ,t h ep e a ko ft h eF r a s e rR i v e rf r e s h e tw a sa n o  h i g h , a n d in 1 9 8 2t h eE a lh of r e s h e t w a sl a r g e . I nc h a p t e r 2 it is p o s t u l a t e dt h a t f r e s h e t m a y h a v e a f f e c t e d p r m i a r y p r o d u c t i o n in S a a n c ih a n d J e r v i s I n l e t s , b u t u n l i k e l y t h e a t y p i c a lr i v e r f l o w s o ft h es u m m e r s o f1 9 8 2 a n d 1 9 8 6w e r e r e l a t e d t o  e v e n t s . T h ef r e s h e t is t h e r e s u l t o fm e l t i n go fs n o w a n d i c ea n d t h e r e f o r e is c o n t r  p r e c i p i t a t i o n o ft h e p r e c e d n ig w i n t e r a n d b y s p r i n g a n d s u m m e r t e m p e r a t u r e s . B e c a u  t h e l a r g e f r e s h e t s o c c u r r e d a s t h e 1 9 8 2 8 /3 a n d 1 9 8 6 8 /7 El N i f i o s w e r e b e g i n n i n g d o u b t f u l t h a t t h e 1 9 8 2 a n d 1 9 8 6 f r e s h e t s w e r e s o m e h o w a r e s p o n s e t o El N i n o .  T h e m a j o r i t y o f t h e f r e s h w a t e r r e a c h n ig t h e S t r a i t o f G e o r g a i is d e l i v e r e d b y  F r a s e rR i v e r ,a n dt h es u m m e rf r e s h e tr e s u l t s in a s u r f a c eb r a c k i s hl a y e ro f5 1 0mt  e x t e n d n ig o v e r t h e s o u t h e r n a n d c e n t r a l p o r t i o n s o ft h e Strait o f G e o r g a i ( L e B o ln d  al., 1 9 9 4 ) . S u r f a c e salinity c o l e c t e dd a i l ya tg i lh t h o u s es t a t i o n st h r o u g h o u tt h es o u t h e  S t r a i t o fG e o r g a i a n d J u a n d e F u c a ( F i g u r e s 1 8 . a n d 1 . 1 4 ) s h o w t h e e f f e c t o ft h  R i v e r f r e s h e t a s o lw salinities a r o u n d J u n e a n d July. T h e l a r g e f r e s h e t o f 1 9 8 2 c  o lw s u r f a c e salinities a t g i lh t h o u s e s t a t i o n s t h r o u g h o u t t h e s o u t h e r n Strait o f G e o r g  w h i l e e f f e c t s o f t h e 1 9 8 6 f r e s h e t o n s u r f a c e salinity a r e e ls s e v i d e n t ( F i g u r e 1 . 1 4  R a c e R o c k s in J u a n d e F u c a , h g ih s u m m e r m t i e salinities ( F i g u r e 1 . 1 4 ) a r e c a u s e  w i n d d r i v e nu p w e n i lg a n dg r e a t e rm x in ig o fi n t e r m e d i a t eP a c i f i cw a t e r sd u et oe n h a n c e s t u a r i n e e x c h a n g e d u r i n gt h e F r a s e r R i v e rf r e s h e t .  Chapter 2  P r i m a r y p r o d u c t i o n i n Saanich and J e r v i s Inlets: what causes h i g h p r o d u c t i o n i n Saanich Inlet?  2.1  Introduction  The m a n i p r o c e s s e s of o x y g e nc o n s u m p o t in in a q u a t i cb a s n i s are by the h e t e r o t r o p h i c ox-  i d a t i o n of o r g a n c i m a t t e r and t h r o u g hb a c t e r i a ly m e d a it e do x i d a t i o n of r e d u c e dc h e m c ia l s p e c e is (e.g.; HS~,  N H 4 , CH, 4  Fe and Mn) t h a t a c c u m u a lt e due to o r g a n c i o r g a n c i 2 +  2 +  m a t t e rd e g r a d a t o i n in o lw o x y g e nr e g o in s and t h e n mx i or d i f f u s ei n t oo x y g e n r e p e lt e wa-  ters. The a d v e c t v ie s u p p y l of o x y g e n to the d e e p w a t e r s of silled f j o r d s s u c h as S a a n c ih  and J e r v i sI n l e t s is l i m i t e d to p e r i o d i cr e n e w a le v e n t s so that, w h e r eo x y g e nc o n s u m p o t in e x c e e d s the d i f f u s i v e s u p p y l and the p e r i o d b e t w e e n r e n e w a s l is s u f f i c i e n t l y long, a n o x a i can result. Of the m a n y d e e p - and s h a lo w s i le df j o r d s of BC, o n y l a few are k n o w n to d e v e o lp s e v e r e a n o x a i and,  c o m p a r e d w i t h t h e s e , r e n e w a l of the b o t o m w a t e r s in S a a n c ih I n l e  ( A n d e r s o n and D e v o l , 1973) L o u s ia I n l e t s ( F i g u r e 1.1),  is r e g u l a r and r e l a t i v e l y v i g o r o u s .N a r r o w s and P r n ic e s s s m a e lr f j o r d s w i t h i n the J e r v i s I n l e t s y s t e m , are s e p a r a t e d  f r o m the Strait of G e o r g a i by m u l t i p l e sills and d e e p w a t e r r e n e w a l t e n d s to be i r r e g u l a r and w e a k ( L a z i e r , 1963;  P i c k a r d , 1 9 7 5 ) . In N i t i n a t L a k e , at r u e f j o r d on the s o u t h w e s t  c o a s t of V a n c o u v e rI s l a n dw h e r e the w a t e r s are p e r m a n e n t y l a n o x c i b e o lw ~30 m, r e n e w a l to d e p t h is s e v e r e y l r e s t r i c t e d by a v e r ys h a o l w and p r o t r a c t e d sill ( N o r t h c o t e et al.,  1964;  R i c h a r d s , 1 9 6 5 ) . E f n ig h a m I n l e t , l o c a t e d on the c e n t r a lw e s t c o a s t of V a n c o u v e r I s l a n d  21  Chapter 2. Primary production in Saanich and Jervis Inlets  2 2  h a s o n y l r e c e n t l y b e e n d s ic o v e r e d t o b e p e r i o d i c a ly a n o x c i (e.g.; B a u m g a r t n e r e t  in r e v i e w ) a n d t h e d y n a m c is o fd e e p w a t e r r e n e w a l h a v e y e t t o b e d e s c r i b e d . H o m x in ig a o ln g t h e a p p r o a c h n ig c h a n n e l o fa p p r o x m i a t e y l 2 5 k m l e n g t h a n d a s e t  l e a d i n gt ot h ei n n e rb a s n i o fE f n ig h a mI n l e tr e d u c et h ep o t e n t i a lf o rd e e p w a t e rr e n e  A t lh o u g h v e r i f i c a t i o n is n e e d e d t h a t M u c h a a lt I n l e t o n t h e w e s t c o a s t o f V a n c o u  I s l a n d d e v e o lp s s t r o n g b o t o m w a t e r a n o x a i ( P i c k a r d , 1 9 6 3 ) , a o ln gc h a n n e l a n d s e v  sills l e a d t o t h i s fjord. T h e c h a r a c t e r i s t i c s o fd e e p w a t e r r e n e w a l a n d a d v e c t v ie o x y g s u p p l y , t h e r e f o r e , d i s t i n g u i s h e s S a a n c ih I n l e t f r o m o t h e r a n o x c i B C f j o r d s .  L o c a l p r m i a r yp r o d u c t i o n is a n i m p o r t a n t f a c t o r t h a t c a n l e a d t o a n o x c i b o t o m t e r s ( R i c h a r d s , 1 9 6 5 ; C a l v e r ta n dP e d e r s e n , 1 9 9 2 ) a n d ,i n d e e d ,c o n d i t i o n s in S a a n c ih  a r e u n q iu e y l s u i t e d f o r p h y t o p a ln k t o n g r o w t h . S u r f a c e stratification a n d r e l a t i v e l yo lw  vertical m i x i n gd u e t o w e a k w n id s , tidal c u r r e n t s a n d e s t u a r i n ec i r c u l a t i o n ( S t u c c h i  W h i t n e y , 1 9 9 7 ) c r e a t e s t a b l e c o n d i t i o n s f o r p h y t o p a ln k t o n g r o w t h , a n d s u r f a c e n u t r i e n  c o n c e n t r a t o in s o u t s d ie t h e sill a r e h g ih y e a r r o u n d ( L e w i s , 1 9 7 8 ; M a c k a s a n d H a r r i s  1 9 9 7 ) . I n t r u s i o n s o f nutrient-rich, s u r f a c e w a t e r s i n t o S a a n c ih I n l e t w e r e s e e n t o c  p h y t o p a ln k t o nb o lo m s ( T a k a h a s h ie t al., 1 9 7 7 ) in p h a s ew i t ht h ef o r t n i g h t l y ,s p r n ig n e tidal c y c l e ( P a r s o n s e t al., 1 9 8 3 ) , a n d H o b s o n a n d M c Q u o d i ( i n p r e s s ) o b s e r v e d  n ic r e a s e s in p h y t o p a ln k t o n b o im a s s in S a a n c ih I n l e t w e r e r e l a t e d t o t i d a ly m o d u l a t e  n u t r i e n t i n t r u s i o n s . H e r n i lv e a u x ( 1 9 6 2 ) h a s p o s t u l a t e d t h a t b e n t h i c a n d p e l a g i c p h y t o  p l a n k t o na r eu l t i m a t e l yr e s p o n s b ie l f o rd e e p w a t e ra n o x a i in S a a n c ih Inlet, w h i l eH o b s o  ( 1 9 8 3 ) t e s to ft h er e l a t i o n s h i pb e t w e e np h y t o p a ln k t o nb o im a s s , b a c t e r i a lm e t a b o s i lm a n  d e e p w a t e ro x y g e nc o n t e n tw a sc o m p c i la t e db yd e e p w a t e rr e p a lc e m e n td u r i n gt h a ts t u d  T h i s c h a p t e r p r e s e n t s t h e p r m i a r y p r o d u c t i o n t i m e s e r i e s f r o m S a a n c ih a n d J e r v  I n l e t s . P r m i a r y p r o d u c t i o n w a s s i g n i f i c a n t l y h g ih e r in S a a n c ih I n l e t t h a n in J e r v i s I n  o r t h e m a j o r i t y o ft h e S t r a i t o fG e o r g i a , s u p p o r t i n gt h e possibility t h a t a l a r g e d e  o fo r g a n c i m a t t e rt ot h ed e e pw a t e r s is p a r t l yr e s p o n s b ie l f o rt h ea n o x a i in S a a n c ih  Chapter 2. Primary production in Saanich and Jervis Inlets  23  Also considered are the possibilities that weak estuarine circulation, leading to particleretention within the fjord, and low rates of vertical mixing in Saanich Inlet stimulate deep-water anoxia.  2.2  M e t h o d s  From August, 1985 to October, 1989, primary production was measured at each station (SN-9 and SN-0.8 in Saanich Inlet; JV-11.5 or J V - 3 , and J V - 7 in Jervis Inlet) when the sediment-trap moorings were serviced. O n station, subsurface light was determined using a L I - C O R 185B quantum meter. Water samples were collected from depths corresponding to 56, 32, 18, 11 and 7% surface irradiance and carbon fixation was determined by the uptake of  1 4  C following the method and equation, including dark-bottle subtraction, of  Parsons et al. (1984a). Unscreened seawater was transferred to two 125 m L borosilicate bottles and about 5 pCi of N a H  1 4  C0  3  were added.  One bottle from each depth was  wrapped with neutral density screening to mimic in situ irradiance and the dark bottle was wrapped with electrical tape. B o t h were placed in a Plexiglas incubator thermally regulated by flowing surface seawater.  After approximately 2 h, cells were collected  by filtration with applied pressure < 12 cm H g onto Millipore H A filters, rinsed with filtered seawater and placed in Aquasol II for analysis of radioactivity by scintillation spectrometry. T h e incubations may have occurred at any time during the day, depending on when stations were visited. T h e hourly rates of  14  C - u p t a k e thus obtained can be converted to daily rates of  primary production by assuming that carbon assimilation is proportional to photosynthetically available radiation ( P A R ) and scaling the incubation results by the ratio of total, daily P A R to P A R integrated throughout the incubation (e.g., Perry et al., 1989; Clifford et al., 1992). P A R was not measured during the experiment, so it was assumed  Chapter 2. Primary production in Saanich and Jervis Inlets  24  that P A R throughout the day follows the first-order sine function. T h e incubation results were then appropriately scaled knowing the times of the beginning and end of each incubation relative to sunrise and sunset. Piatt et al. (1990) showed that the first-order sine function provides a good description of the curve for daily irradiance when daylength is < 20 h; at the latitude of southern British Columbia, maximum daylength is approximately 16 h. One assumption of this conversion is that the fraction of P A R attenuated by clouds during the incubation was similar to the attenuation throughout the day. A l t h o u g h this assumption may lead to errors in the primary production estimates for any given day, it should not result in systematically positive or negative errors. If cloud attenuation is constant throughout the day, this sine conversion will accurately estimate the ratio of daily P A R to incubation-period P A R . Areal estimates of primary production were obtained by trapezoidal integration over depth of the carbon assimilation profiles. 1 4  During this procedure, the measurement of  C uptake at 56% surface irradiance was used as the rate of carbon assimilation from  that depth to the surface. Also, rates of C - u p t a k e were extrapolated from 7 to 1% sur14  face irradiance by assuming that the rates measured at 7% surface irradiance decreased with depth proportionally to light. T h e extinction coefficient for light was approximated as the slope of the relationship between In ( P A R ) and depth as measured prior to each incubation.  These shallow and deep extrapolations were performed to account for the  carbon assimilation that likely was occurring above the depth of 56% surface irradiance and below the depth of 7% surface irradiance. O n average, the shallow and deep extrapolations are 38 and 12%, respectively, of the primary-production estimates integrated between the depths for which  14  C - u p t a k e was measured (from 56 to 7% surface irradi-  ance). Deep chlorophyll maxima between the depths of 7 and 1% surface irradiance are common in these waters, but they should not have caused the deep extrapolations to  25  Chapter 2. Primary production in Saanich and Jervis Inlets  be l a r g e u n d e r e s t m i a t e s b e c a u s e the p r m i a r y p r o d u c t i o n a s s o c a it e d w i t h t h e m is typicaly o lw (e.g., Clifford et al., 1991;  H a r r i s o n et al., 1 9 9 1 ) . The d e e p e x t r a p o l a t i o n s may  be o v e r e s t m i a t e s in w i n t e r , as T a k a h a s h i et al. ( 1 9 7 8 ) h a v e s h o w n t h a t the w i n t e r t i m e  c o m p e n s a o t in d e p t h in S a a n c ih I n l e t is e ls st h a n the d e p t h of 1% s u r f a c ei r r a d i a n c e . N e v e r t h e l e s s , the d e e p e x t r a p o l a t i o n has b e e n a p p l i e d to the e n t i r e t i m e s e r i e s to m a i n t a i n c o n s s it e n c y . For the d a t a c o l e c t e d b e t w e e n N o v e m b e r and F e b r u a r y , the d e e p e x t r a p o l a t i o n s are on a v e r a g e 11% of the C-uptake p r o f i l e s i n t e g r a t e d f r o m the s u r f a c e to 4 1  the d e p t h of 7% s u r f a c e i r r a d i a n c e .B e c a u s e t h e y are r e l a t i v e l y low,  the e s t m i a t e s of  w i n t e r t i m e p r m i a r yp r o d u c t i o n h a v e little e f f e c t on y e a r l y e s t i m a t e s .  T e m p e r a t u r e and salinity w e r em e a s u r e dt h r o u g h o u t the w a t e rc o u lm nu s n i g a Guildl i n e 8 7 0 5 CTD  w h e n e a c h s t a t i o n was visited. B e g n in n ig J a n u a r y , 1988  and for  the  r e m a n in i g two y e a r s of the p r o g r a m , s a m p e ls for n u t r i e n t a n a y ls e s ( n i t r a t e + nitrite, o r t h o p h o s p h a t e and silicic a c i d { P a r s o n s et al., 1 9 8 4 a } ) w e r e c o le c t e d .  2.3  Results  2.3.1  Salinity and temperature  C o n t o u rp l o t s of n i t r a t ec o n c e n t r a t i o n , t e m p e r a t u r e and salinity are s h o w n in F i g u r e s 2.1  t h r o u g h 2.4, and t h e s ed a t a are c o m p r e s s e di n t oa v e r a g e " s u m m e r " and " w i n t e r " p r o f i l e s in F i g u r e 2.5.  The p r m i a r y p r o d u c t i o n r e s u l t s p r e s e n t e d in F i g u r e s 2.1 t h r o u g h 2.4  are  d s ic u s s e d in the n e x t s e c t i o n . In S a a n c ih Inlet, o lw s u r f a c e salinities o c c u r r e d in the fall and w i n t e r ( F i g u r e s 2.1, and 2.5) w h e n local p r e c i p i t a t i o n ( F i g u r e 1.11)  2.2  was h i g h e s t . Low s u r f a c e salinity a n o m a -  lies r e c o r d e d at one s t a t i o nw e r e not a w la y s o b s e r v e d at the o t h e r ( F i g u r e s 2.1 and  2.2),  s u g g e s t n ig s p a t i a l h e t e r o g e n e t i y of the s u r f a c e w a t e r m a s s e s of S a a n c ih Inlet, a f e a t u r e t h a t was likely c a u s e d by t i d a l y m o d u l a t e di n t r u s i o n s of w a t e r f r o m the C o w c ih a n and  26  Chapter 2. Primary production in Saanich and Jervis Inlets  12  E O  I  6  1 0  S . 15 T3  20 25 30 0  „ 10 E.  s 20 Q. (11  1 3  30 40 0  ~ 1 0 £ £ 20 a.  "°30  40 0 ~.10 E,  £ 20 a. 1 3  30 40 1985  1986  1987  1988  1989  F i g u r e 2.1: D e p t h i n t e g r a t e d p r m i a r y p r o d u c t i o n at s t a t i o n SN-9 in S a a n c ih I n l e t (top p a n e l ) f r o m A u g u s t , 1985 to O c t o b e r , 1989. The d o t t e d l i n e is the s m o o t h e d c u r v e of d a i l y a v e r a g e s f r o m F i g u r e 2.8, r e p e a t e d a n n u a l y . The p l o t s b e o lw s h o w v o l u m e t r i c p r m i a r y p r o d u c t i o n ( i s o p l e t h s at 10, 100, 500, 1000 and 2 0 0 0 mg C m~ d ), n i t r a t e c o n c e n t r a t i o n ( i s o p l e t h s at 24, 12, 5 and 1 pM), t e m p e r a t u r e ( i s o p l e t h s at 8, 12 and 16°C) and salinity ( h i g h e s t i s o p l e t h at 30, the n e x t at 29 and o t h e r s d e c r e a s n i g by four). P o i n t s in the c o n t o u r p l o t s are s a m p n i lg l o c a t i o n s . 3  -1  Chapter 2. Primary production in Saanich and Jervis Inlets  1985  1986  1987  1988  27  1989  Figure 2.2: Depth-integrated primary production at station SN-0.8 in Saanich Inlet (top panel) from August, 1985 to October, 1989.  T h e dotted line is the smoothed curve  of Figure 2.8, repeated annually. T h e plots below show volumetric primary production (isopleths at 10, 100, 500, 1000 and 1500 mg C m at 24, 12, 5 and 1 pM),  -  3  d" ), nitrate concentration (isopleths 1  temperature (isopleths at 8, 12 and 1 6 ° C ) and salinity (highest  isopleth at 30, the next at 29 and others decreasing by four). Points in the contour plots are sampling locations.  Chapter 2.  28  Primary production in Saanich and Jervis Inlets  i 1985  i  i  i  i 1986  i  i  i  i  i  1987  i  i  i  i—i—i—i—i—i—i— 1988  1989  F i g u r e 2.3: D e p t h i n t e g r a t e d p r m i a r y p r o d u c t i o n at s t a t i o n JV-3 in J e r v i s I n l e t (top p a n e l ) f r o m A u g u s t , 1985 to O c t o b e r , 1989. The d o t t e d line is the s m o o t h e d c u r v e of F i g u r e 2.8, r e p e a t e d a n n u a l y . The p l o t s b e o lw s h o w v o l u m e t r i c p r i m a r y p r o d u c t i o n ( i s o p l e t h s at 1, 10, 100 and 500 mg C m~ d ), n i t r a t e c o n c e n t r a t i o n ( i s o p l e t h s at 24, 12, 5 and 1 pM), t e m p e r a t u r e ( i s o p l e t h s at 8, 12 and 16°C) and salinity ( h i g h e s ti s o p l e t h at 29, o t h e r s d e c r e a s n i g by two). P o i n t s in the c o n t o u r p l o t s are s a m p n i lg l o c a t i o n s . 3  -1  Chapter 2. Primary production in Saanich and Jervis Inlets  29  F i g u r e 2.4: D e p t h i n t e g r a t e d p r m i a r y p r o d u c t i o n at s t a t i o n JV-7 in J e r v i s I n l e t (top p a n e l ) f r o m A u g u s t , 1985 to O c t o b e r , 1989. The d o t t e d l i n e is the s m o o t h e d c u r v e of F i g u r e 2.8, r e p e a t e d a n n u a l y . The p l o t s b e o lw s h o w v o l u m e t r i c p r i m a r y p r o d u c t i o n ( i s o p l e t h s at 1, 10, 100 and 300 mg C m d ), n i t r a t ec o n c e n t r a t i o n ( i s o p l e t h s at 24, 12, 5 and 1 pM), t e m p e r a t u r e ( i s o p l e t h s at 8, 12, 16 and 20°C) and salinity ( h i g h e s ti s o p l e t h at 29, o t h e r s d e c r e a s n i g byfour).P o i n t s in the c o n t o u r p l o t s are s a m p n i lg l o c a t i o n s . -3  _1  Chapter 2. Primary production in Saanich and Jervis Inlets  T (°C) 6  8  I •  S  10 12 14 16  lo>  I  0 0  •  9  • l u - j • • - " ^  •  20  N 0 (u.M) 3  24  28  , 1 , 1  I  •  32 0  ,  U  1  „,  ~ > 0  1• 1 1 1 i  JV-3  1 •  —  1  0  1  —  1  • •  ;  -  w  —  1 , 1 , 1  "  1 1  «  ,  1  ,  J  ,^  1  m  »  m  /  O  A  /  120 0  " 120  ,•  —  \  0 6  1 ,  —  0  1  m  •  0  180  0 ^1 , 1  1m^Sb ,  1  Q.  CD T3  m '0 ~~m  w1  _  60  ot•  11 1  60  '  -  1•  1  m  -  •  X / / ° 0  •  1 0• • •  - 1  1  "  •  —  •  •>  w  1  1  1 "  c c •cm  u ,  1  w -  O  w  ,  m  / / om zL '  w  mo  —  -  /I  •0  mo \\ mo  60  mb  a  " 11 —  O  " | mb  — II •  -  OB  -  \  winter summer  A mo  SN-0.8  \  m  0 •  '1  b  w  \ -  32  ^  ^  •  mo 1  »...  24  \l  l\ i\  -  1. , 1 *  Q  16  «D  m  —  8  •6  om  SN-9  30  -  0  1  120  0 180  D  -  c9 (. c• '  * |  1  ,  1  _1  , 1  " "  ••—  ,  k  w  _  •  11  1  «D  0  -1  , » b 0  «D •  •  JV-7  ~.  , 1  -  a  0  \ r •  60  _  »-  0  120  1  180  - , 1* 1 , 1 . 1 •1-, Figure 2.5:  1  , 1 ,•  1  -  Temperature, salinity and nitrate concentrations during the study.  Each  row of figures presents data from a different station. Profiles were created by averaging measurements collected from October to March ("winter"; open circles) and A p r i l to September ("summer"; solid circles).  T and S were measured throughout the study,  while nitrate was measured in 1988 and 1989 only. In Saanich Inlet, the deepest sampling depths were about 20 m from the bottom (165 m at SN-9 and 210 m at SN-0.8). Water depths are 660 m at J V - 3 and 530 m at J V - 7 , but water properties changed little below 200 m at these stations.  31  Chapter 2. Primary production in Saanich and Jervis Inlets  F r a s e r R i v e r s ( H e r l i n v e a u x , 1 9 6 2 ) . T h e r e was little d i s c e r n i b l e a l o n g i n l e t salinity g r a d i -  ent in S a a n c ih I n l e t as w o u d l be e x p e c t e d if typical e s t u a r i n e c i r c u l a t i o nw e r e o c c u r r i n g .  In J e r v i s Inlet, d e c r e a s e s in s u r f a c e salinity c a u s e d by fall, w i n t e r and s p r i n gp r e c i p i t a t i o n  w e r es u p e r m i p o s e d on a y e a r l yc y c l e of s u r f a c e salinity d o m n ia t e d by the f r e s h e t , c a u s n ig o lw e s t s u r f a c e salinities in J u n e and J u l y ( F i g u r e s 2.3, 2.4 and 2.5).  Also, in c o n t r a s t to  S a a n c ih Inlet, the s u r f a c e salinity p a t t e r n in J e r v i sI n l e t was i n d i c a t i v e of e s t u a r i n e flo S u r f a c e salinity n ic r e a s e d s e a w a r d f r o m JV-7  to JV-3,  w h i l e the d e p t h of the p y c n o c n i le  r e m a n ie d s i m i l a r at b o t h s t a t i o n s ( F i g u r e s 2.3, 2.4 and 2.5).  T h i s salinity s t r u c t u r e is  c h a r a c t e r i s t i c of e s t u a r i n efloww h e r ee n t r a n im e n t of m d id e p t hw a t e r sm o v n ig a ln d w a r d c a u s e s the s u r f a c e l a y e r to g a i n s a l t and v e l o c i t y as itflowss e a w a r d . No u p p e r m x ie d l a y e re x i s t s in S a a n c ih I n l e t ( H e r l i n v e a u x , 1962)  or J e r v i s I n l e t ( P i c k a r d , 1 9 6 1 ) . I n s t e a d ,  the p y c n o c n i le ( c l o s e l yr e p r e s e n t e d by the h a l o c l i n e )i n t e r s e c t e d the s u r f a c e in b o t hi n l e t s and was s t e e p e s t in J e r v i s I n l e t ( F i g u r e 2.5). The vertical t e m p e r a t u r e s t r u c t u r e of b o t h i n l e t s ( F i g u r e s 2.1 t h r o u g h 2.5) r e f l e c t e d s e a s o n a l h e a t i n g . M a x m i u m s u r f a c e t e m p e r a t u r e s w e r e u s u a l y in J u l y and A u g u s t , but in s o m e y e a r s w e r e in J u n e ( F i g u r e s 2.1 t h r o u g h 2.4).  In J e r v i s Inlet, m a x m iu m s u r f a c  t e m p e r a t u r e s a lg g e d the f r e s h e t by one or two m o n t h s . In the fall and w i n t e r , s u r f a c e c o o l i n gd e s t r o y e d the s e a s o n a l t h e r m o c l i n e .  2.3.2  N u t r i e n t concentrations and uptake  Of the m e a s u r e d n u t r i e n t s , n i t r a t e m o s t f r e q u e n t l y d r o p p e d b e o lw d e t e c t a b l e c o n c e n trations. B e g n in n ig l a t e April to e a r l y May  and c o n t i n u i n g until the e a r l y fall, s u r f a c e  n i t r a t e c o n c e n t r a t o in s w e r e a w la y s b e o lw 5 pM at e a c h s t a t i o n and c o n c e n t r a t o in s e ls s t h a n 1 pM o c c u r r e d d u r i n g m o s t of t h i s p e r i o d ( F i g u r e s 2.1 t h r o u g h 2.5). s t a t i o n s , n i t r a t e d e p l e t i o n (< ^ lxM  NOj)  was m o s t c o m m o n at JV-7  S a a n c ih Inlet, s u r f a c e n i t r a t e r e p e ln s ih m e n t s at SN-9  Of the f o u r  ( F i g u r e 2.4).  w e r e d e t e c t e d on J u n e 27,  In 1988,  Chapter 2. Primary production in Saanich and Jervis Inlets  July 4, 1989 and August 28, 1989.  32  A t SN-0.8, replenishment was observed on July 4,  1989. W h e n these nutrient replenishments occurred, primary production was relatively low, except on August 28, 1989 at SN-9. Similar lags between nutrient supply and phytoplankton production or biomass were found by Takahashi et al. (1977) and Parsons et al. (1983). Low nitrate concentrations in the deep waters of Saanich Inlet (Figure 2.5)  were  caused by nitrate reduction in the oxygen-depleted basin. T h e slight increase in winter nitrate concentrations near the bottom at station SN-0.8 was most likely caused by upinlet penetration of dense, nitrate-rich waters. T h e nutrient assimilation ratios are estimated as the slopes of nutrient-nutrient plots (Corner and Davies, 1971) for samples from waters collected at < 50 m (Figure 2.6). T h e nitrate:phosphate (N:P) assimilation ratios were 13.6 - 14.2 in Saanich Inlet and 12.7 - 13.1 in Jervis Inlet, compared with 12.5 as found by Smethie (1987) in Jervis Inlet.  These assimilation ratios are only slightly lower than the global average of 15 -  16 for the N : P concentration ratio in seawater (Redfield, 1963; Takahashi et al., 1985). T h e silicic acid:nitrate (Si:N) assimilation ratios were between 1.51 and 1.56 at stations SN-9, SN-0.8 and J V - 3 , but at station J V - 7 the ratio was 1.22, implying that toward the head of Jervis Inlet diatoms were either more weakly silicified or they made a somewhat smaller contribution to the phytoplankton community.  These Si:N assimilation ratios  are high, even for phytoplankton communities composed entirely of diatoms. Brzezinski (1985) found that the ratio of the contents of Si and N for various diatoms grown in the laboratory ranged between 0.8 and 1.4, but much higher S i : C (and, assuming a less variable C : N assimilation ratio, Si:N) assimilation ratios have been measured in the Southern Ocean (Queguiner et a l , 1997).  Chapter 2. Primary production in Saanich and Jervis Inlets  33  80 60 40 i~  20  5  o  CO X  60 40 20 0 0  10  20  30  40 0  10  20  30  40  NO" (uM) Figure 2.6: N : P and Si:N uptake ratios, taken as the slopes of the regression lines through points representing samples from waters < 50 m and excluding those with nutrient concentrations less than the detection limit. T h e 95% confidence intervals of the slopes (in percent of the slope value) are: ± 5.1 - 7.2% for N:P, and ± 7.0 - 8.7% for Si:N. 95% confidence intervals for the intercepts (in pM) are: ± 1.4 - 2.2 pM for N:P, and ± 2.4 3.2  pM for Si:N.  34  Chapter 2. Primary production in Saanich and Jervis Inlets  2.3.3  E s t i m a t e s of p r i m a r y p r o d u c t i o n  Volumetric and areal estimates of primary production are shown in Figures 2.1 through 2.4 along with contour plots of nitrate, temperature and salinity in the upper 45 m so that comparison can be made between phytoplankton growth and the hydrographic and nutrient conditions. T h e primary production results are summarized in Figures 2.7 (mean vertical profiles) and 2.8 (smoothing of the areal values to describe production throughout the year). T h e sampling depths for  1 4  C incubations were predicated by  in situ light  intensity and the deepest points in panel 2 of Figures 2.1 to 2.4 are the extrapolated depths of 1% surface irradiance (see section 2.2).  O n average, the depth of 1% surface  irradiance was at 12 to 15 m during the summer and 16 to 20 m in winter (Figure 2.7). Generally, the highest rates of carbon fixation occurred at the depth of 56% surface irradiance, but some subsurface maxima were observed (Figures 2.1 through 2.4 and F i g ure 2.7).  However, because surface primary production was not measured, subsurface  maxima occurring above the depth of 32% surface irradiance (the second measurement in the depth profiles) would have been undetected. Excluding the 89-day interval separating the first (7-9 August, 1985)  and second  (4-5 November, 1985) cruises, the sampling interval was between 21 and 55 days, with an average of 32 days.  In Saanich Inlet, changes in phytoplankton biomass  fluctuate  more frequently than this interval (Takahashi et al., 1977; Hobson and M c Q u o i d ,  in  press) and the same is likely true for Jervis Inlet. Because the sampling frequency may have missed important periods of high or low primary production, this time-series is not ideally suited for a comparison of primary production between years. However, 45 to 47 profiles of  14  C - u p t a k e were made at each station.  Assuming the sampling was  random with respect to short-term fluctuations, these data provide a means to describe average primary production throughout the four-year period ofthe study (Figure 2.8 and  Chapter 2.  Primary production  35  in Saanich and Jervis Inlets  Figure 2.7: Vertical profiles of primary production during October to March ("winter") and April to September ("summer"). The plotted depths and rates of carbon uptake are the averages of all measurements taken within each time period (Figures 2.1 to 2.4; n = 21-24 for each profile); surface and deepest (1% surface irradiance) points are extrapolations. As these plotted depths are the average depths of 56, 32, 18, 11 and 7% surface irradiance, they can be used to estimate extinction coefficients of light at each station (section 2.4.2). In the winter, the extinction coefficients were: 0.23 m (JV-7) < 0.24 m (JV-3) < 0.28 m (SN-0.8) < 0.30 m (SN-9). In the summer, the coefficients were: 0.34 m (SN-9) < 0.35 m (SN-0.8) < 0.36 m (JV-3 and JV-7). - 1  - 1  - 1  - 1  - 1  - 1  - 1  Table 2.1). B y averaging the yearly estimates at the two stations in each fjord, primary production in Saanich Inlet (1.3 g C m in Jervis Inlet (0.78 g C m  - 2  - 2  d a y ) was approximately 1.7 times higher than -1  d a y ) . Average primary production for the entire Strait of -1  Georgia has been estimated to be 280 g C m  - 2  y  - 1  , or 0.77 g C m  - 2  d  - 1  (Harrison et al.,  1983, using data of Stockner et al., 1979). Thus, Saanich Inlet appears to be significantly more productive than other local waters. Table 2.1 includes other published reports of primary production from Saanich and Jervis Inlets and, in general, there is good agreement with the results from this study. However, except for those of Takahashi et al. (1975) and Takahashi and Hoskins (1978),  Chapter 2. Primary production in Saanich and Jervis Inlets  36  Figure 2.8: Averages of daily primary production. T h e estimates of Figures 2.1 to 2.4 were arranged by calendar day and a five-point running average was used to smooth the time-series.  For each 31-day period, there are approximately five estimates of daily  primary production.  Chapter 2. Primary production in Saanich and Jervis Inlets  m o n t h l y  a n n u a l  location/source  a v g  Jan  Feb  Mar  Apr  May  37  a v e r a g e s  Jun  Jul  (all values: g C rn"-2  d  - ,  Aug  Sep  Oct  Nov  Dec  2.2 2.2  0.89  0.91  0.88 0.33  0.16 0.16 0.16  0.078 0.11 0.11  0.81  0.29  0.15  0.057  )  Figure 6 SN-9 SN-0.8  1.6  0.097  3.1  2.6 2.1  1.4  1.1  1.0  1.8 1.5 1.2  0.31 0.34 0.32  1.6 1.1  4.1 1.9  1.1  0.38  1.0  JV-3  0.92  JV-7  0 . 6 4  0.075  0.093  0.061  0.080  Saanich Inlet Takahashi et al. (1975) Takahashi and Hoskins (1978) Parsons et a l . (1983) Parsons et a l . (1983) Parsons et a l . (1983)  3.4  2.0  2.9 1.7 2.2  0.079 0.17 0.14  0.20 0.14  1.1  2.1  1  2  0.053 1.8 4.0 1.6  3  4  5  Jervis Inlet Stockner and Cliff (1975) Stockner and Cliff (1975) Parsons et a l . (1984b) Cochlan et al. (1986) Cochlan et al. (1986)  0.31 0.29  6  7  1.1 1.7  2.8 2.1  3.1 0.83  1.8  8  0.74  9  1.8  10  6  northern H o t h a m Sound; n = 1 m o n t h  - 1  7  southern H o t h a m Sound; n = 1 m o n t h  - 1  Prevost Passage; n = 3  8  various stations near mouth; n = 6  11  Satellite Channel; n = 5  9  ~ 1 1 k m up-inlet from J V - 3 ; n = 1  5  mouth; n = 3  1 0  1  P a t r i c i a B a y ; n = 15  2  mouth; n = 2-4 m o n t h  3  - 1  0.77 1.5  ~ 1 1 k m seaward of J V - 3 ; n = 1  Table 2.1: Annual and monthly estimates of primary production at each station derived by integrating the curves of Figure 6 over the appropriate time intervals.  T h e annual  averages are based on 45-47 profiles of primary production measured at each station, while each monthly estimate represents the results of approximately four profiles.  For  comparison, other estimates of primary production in Saanich and Jervis Inlets are given. Where only hourly estimates of primary production were available (Takahashi et al., 1975; Cochlan et al., 1986), we converted to daily rates using a best approximation of their incubation periods and the model of daily sunshine described in section 2.2.  38  Chapter 2. Primary production in Saanich and Jervis Inlets  h e a d c e n t r a l m o u t h ( S N 0 . 8 ) b a s n i ( S N 9 )  P e r i o d 08 Jan - 13 Aug 31 Mar - 30 Sep  2.0 2.9  09 .5 2.2  12 . 18 .  T a b l e 2.2: C o m p a r s io n of the c u r v e s of F i g u r e 2.8 for S a a n c ih I n l e t w i t h e s t m i a t e s of p r m i a r yp r o d u c t i o nm a d e by L. A. H o b s o n ( D e p a r t m e n t of B i o l o g y , U n i v e r s i t y of Victoria, Victoria, BC, p e r s . c o m m ) . in the c e n t r a lb a s n i s e v e r a l km s o u t h of SN-9. H o b s o n s ' s a m p n i lg i n t e r v a l was, on a v e r a g e , 18 d a y s . His e s t m i a t e s are b a s e d on in situ 24 h C i n c u b a t i o n s u s u a l y c a r r i e d out at the d e p t h s of 0, 1, 2, 3, 4, 5, 6 and 7 m. His 08 Jan - 13 Aug (n = 12) and 31 Mar - 30 Sep (n = 11) e s t m i a t e s are f r o m 1975 and 1976, r e s p e c t i v e l y , w h i l e the e s t m i a t e s for s t a t i o n s S N 0 . 8 and SN-9 are f r o m i n t e g r a t i n g the c u r v e s of F i g u r e 2.8 o v e r the a p p r o p r i a t e t m i ep e r o id s (08 Jan - 13 Aug and 31 Mar - 30 Sep). H o b s o n s ' e s t m i a t e s are his r e v i s i o n s of t h o s e p r e s e n t e d in H a r r i s o n et al. ( 1 9 8 3 ) . 14  all of the e s t m i a t e s of p r m i a r yp r o d u c t i o n in T a b l e 2.1 are the r e s u l t of <<  2 4 h o u r C 14  i n c u b a t i o n s and t h e r e f o r e do not a c c o u n t for a u t o t r o p h i c r e s p i r a t i o n at n i g h t w h c ih can c o n s u m e as i g n i f i c a n t f r a c t i o n of g r o s s c a r b o n a s s i m i l a t i o n ( L a n g d o n , 1993; S a k s h a u g , 1 9 9 3 ) . For i n s t a n c e , by c o m p a r n ig 24-h the y e a r , P e r r y et al.  and s h o r t e r C i n c u b a t i o n s m a d e t h r o u g h o u t 14  ( 1 9 8 9 ) e s t m i a t e d t h a t 20%  of d a y t m i e net p r i m a r y p r o d u c t i o n  was r e s p i r e d at n i g h t by the p h y t o p a ln k t o n c o m m u n e t is of the c o n t i n e n t a l s h e l f and s o lp e of W a s h n ig t o n S t a t e . The S a a n c ih I n l e t d u r i n g 1975  t h o r o u g h i n v e s t i g a t i o n c a r r i e d out  and 1976  in the  c e n t e r of  (L. A. H o b s o n , D e p a r t m e n t of B i o l o g y , U n i v e r s i t y  of Victoria, Victoria, BC, p e r s .c o m m ) . is t h e r e f o r e a p e r t i n e n t c o m p a r s io n b e c a u s e his r e s u l t s ( T a b l e 2.2)  are b a s e d on 24 h C i n c u b a t i o n s and t h e r e f o r e s h o u d l a c c o u n t 14  for r e s p i r a t i o n at n i g h t . C o n s d ie r n ig y e a r t o y e a r variability and spatial h e t e r o g e n e i t y ,  H o b s o n s ' e s t m i a t e s for the c e n t e r of S a a n c ih I n l e t and t h o s ef r o mS N 0 . 8 are similar, w h i l e the m o u t h of S a a n c ih I n l e t( S N 9 ) a p p e a r s to be s i g n i f i c a n t l ym o r ep r o d u c t i v e ( T a b l e 2.2).  Chapter 2. Primary production in Saanich and Jervis Inlets  39  Other work has found similar along-inlet gradients in phytoplankton biomass (Hobson and M c Q u o i d , in press) and sinking particle flux (Sancetta and Calvert, 1988; Chapter 3). T h e winter estimates of primary production at stations SN-9 and SN-0.8, however, are significantly higher than those made by Takahashi and Hoskins (1978) using 24 h 1 4  C incubations. T h i s discrepancy is unlikely the result of our deep extrapolations  (see  section 2.2) because the differences are too large, but may be due to their methodological consideration of autotrophic respiration at night. Assigning the difference in our winter estimates to respiration at night, up to 60% of the carbon assimilated during the day may have been respired at night by phytoplankton. It is also possible that the estimates of Takahashi and Hoskins (1978) are low due to grazing by the large microzooplankton populations during the 24 h incubations. Because the winter values are small, uncertainty in them has little effect on average yearly primary production. Stockner et al. (1979) present a map of primary production for the Strait of Georgia and connecting waters.  Their classification of the mouth of Jervis Inlet (JV-3) agrees  with the estimate presented here, while their estimates for the upper reaches of the fjord (JV-7) may be too low. T h e y classify the body and head of Saanich Inlet as a region with rates of primary production between 300 and 400 g C m ~ y 2  _ 1  . T h e results from SN-0.8  located within this area place it at the top of that range. However, their designation of primary production at the mouth of Saanich Inlet^and in Satellite Channel (200 to 300 g C m~  2  y  _ 1  ) is half the value of the estimate at station SN-9. T h e results of Parsons  et al. (1983, see our Table 1) suggest that Satellite Channel might also be considered a region with rates > 400 g C m ~  2  y  _ 1  .  Chapter 2. Primary production in Saanich and Jervis Inlets  2.4 2.4.1  40  Discussion Temporal pattern of primary production  Seasonal variability A t each station, daily primary production began to increase around A p r i l and by late September or October decreased to near-winter levels (Figures 2.1 through 2.4 and F i g ure 2.8), reflecting the availability of light with the exception of notable decreases occurring near the summer solstice. Except at station SN-0.8, the lull in production in early summer is especially noticeable in the curves of Figure 2.8, but it is also apparent for at least one year at all of the stations (Figures 2.1 through 2.4). A l t h o u g h these lulls may have been due to sampling artifacts, early to mid-summer m i n i m a in primary production or phytoplankton biomass are commonly observed in waters contiguous with the Strait of Georgia (e.g., Gilmartin, 1964; Huntley and Hobson, 1978; Stockner et al., 1979; Harrison et al., 1983; Hobson, 1983; Haigh et al., 1992) and may be related to the transition from the blooms of several diatom species in the spring  (Thalassiosira spp., Skeletonema  costatum and Chaetoceros spp.) to summer phytoplankton assemblages. T h i s transition may be facilitated by a number of factors, including decreased upward mixing of subsurface nutrients due to stratification caused by surface-water warming and weak winds, variations in grazing pressure (Harrison et al., 1983; Bornhold, 2000) and photoinhibition (Takahashi et al., 1973; Harrison et al., 1983). W a r m water may further enhance nutrient limitation by causing greater photosynthetic nutrient demands (Hobson, 1981). Aggregate formation (e.g.; Ki0rboe et al., 1994; see also Ki0rboe et al., 1996) at the end of the spring bloom and the summertime freshet may also influence primary production throughout the Strait of Georgia at this time of year. Sancetta (1989a) found that, in the spring and fall, many of the diatom frustules caught by the sediment traps deployed  Chapter 2.  Primary production  41  in Saanich and Jervis Inlets  at e a c h s t a t i o n d u r i n g the e x p e r m i e n t w e r e intact, w h i l e d u r i n g J u l y and A u g u s t t h e  w e r e m o s t y l f r a g m e n t e d , s u g g e s t n ig t h a t g r a z i n g may h a v e b e e n the c a u s e of the e a r l y s u m m e r m n im i a in p r o d u c t i o n . Low p h y t o p a ln k t o n b o im a s s was likely a s s o c a it e d w i t h  t h e s e m d is u m m e r lulls, w h c ih p r o b a b y l o c c u r r e d w h e n c h l o r o p h y l n o r m a l i s e d r a t e s of p h o t o s y n t h e s s i w e r e m a x m iu m ( H o b s o n , 1 9 8 1 ) . As o m e w h a t s u r p r i s i n gf e a t u r e of t h i s t i m e s e r i e s is the l a c k of a p r o n o u n c e d s p r i n g -  t i m e p e a k in p r o d u c t i o n . For a s t a t i o n in the S t r a i t of G e o r g i a , P a r s o n s ( 1 9 7 9 ) s h o w s al a r g e p e a k in p r m i a r y p r o d u c t i o n in M a r c h , and s i m i l a r p e a k s h a v e b e e n o b s e r v e d B o c a de Q u a d r a , s o u t h e a s t A a ls k a (Burrell, 1983)  and B a l s f j o r d e n , n o r t h e r n N o r w a y  ( H o p k i n s , 1 9 8 1 ) . H o w e v e r , the p r o d u c t i o n c y c e ls of F i g u r e s 2.1 t h r o u g h 2.4 and Fig-  ure 2.8 s h o w little e v d ie n c e for a s p r i n gb o lo mm o r ep r o d u c t i v et h a ns u b s e q u e n t m o n t h s The l a c k of t h i ss i g n a l may be the r e s u l t of the l o n gp e r i o db e t w e e ns a m p n i l g (~32 d a y s ) . A s s u m n ig a w n it e r a c c u m u a lt e dn i t r a t ec o n c e n t r a t i o n of 30 pM in the u p p e r 10 m, c o m p l e t e utilisation w o u d l r e s u l t in a p p r o x m i a t e y l 20 to 30 g C m~ of p r o d u c t i o n w h c ih in 2  t h e s e w a t e r s can be r e a l i s e d in 2 to 10 d a y s . T h u s , the s a m p n i l g may h a v e m s is e d the g r o w t h a s s o c a it e d w i t h the c o n s u m p o t in of w n it e r a c c u m u a lt e d n u t r i e n t s . T h i s a n a l y s i s  a s lo d e m o n s t r a t e s that, in p r o d u c t i v e w a t e r s w i t h as h a o lw e u p h o t c i z o n e , the p o r t i o n of y e a r l y p r i m a r y p r o d u c t i o n o c c u r r i n g as a r e s u l t of w n it e r a c c u m u a lt e d n u t r i e n t s is m n im i a l c o m p a r e d w i t h the p r o d u c t i o n d r i v e n by n u t r i e n t s m x ie d i n t o and r e g e n e r a t e d w i t h i n the e u p h o t c i z o n e ; e ls s t h a n 10% of y e a r l y p r m i a r y p r o d u c t i o n in S a a n c ih and J e r v i s I n l e t s is g e n e r a t e d by w n it e r a c c u m u a lt e d n u t r i e n t s .S i m i l a r s e a s o n a l p a t t e r n s o c c u r in s o m e s h a o lw f j o r d s and p o ls of w e s t e r n N o r w a y . A t lh o u g h K o r s f j o r d and  Kvi-  t u r d v i k p o l s h o wh g ih e s t r a t e s of p r m i a r yp r o d u c t i o nd u r i n g the s p r i n g , N o r d a s v a n n and V a g s b o p o l do not ( W a s s m a n n , 1 9 9 1 ) . Also, a m o d e l b a s e d on c h l o r o p h y l a c o n c e n t r a tions, l i g h t availability and t e m p e r a t u r ed o e s not p r e d i c tp e a k s in p r i m a r yp r o d u c t i o n in  the s p r i n g for f j o r d s and the c o a s t of w e s t e r n S w e d e n n e a r N o r w a y ( S o d e r o s t r o m , 1 9 9 6 ) .  Chapter 2. Primary production in Saanich and Jervis Inlets  42  Interannual v a r i a b i l i t y Because of the long period (~32 day) between sampling, year-to-year variability in this time-series is not emphasised. Nevertheless, during the E l Nino year of 1986 (Figures 2.1 through 2.4), primary production was 1.8, 1.3, 1.5 and 1.5 times higher than the annual averages (Table 2.1) at stations SN-9, SN-0.8, J V - 3 and J V - 7 , respectively.  Also in 1986,  the Fraser River freshet was delayed and the June peak was amplified.  Compared to  the averages for 1987-1989, flow of the Fraser River at the beginning of the freshet in May, 1986, was about 25% reduced, in June and July at the peak of the freshet was approximately 30% greater and total flow for the year of 1986 was 12% greater. T h e Fraser River freshet has a significant impact on the physical and biological oceanography of the Strait of Georgia (Harrison et al., 1983; L e B l o n d et al., 1994) and Saanich Inlet (Herlinveaux, 1962; Stucchi and Whitney, 1997). Estuarine exchange between the Strait of Georgia and the northeast Pacific Ocean is driven by the Fraser River and occurs primarily through Juan de Fuca Strait (Griffin and L e B l o n d , 1990). A s well as wind-induced upwelling occurring at the seaward end of Juan de Fuca Strait during the summer and fall (Mackas et al., 1987), modelling and data show that the estuarine circulation within Juan de Fuca Strait also forces upwelling (Masson and C u m m i n s , 1999). Intense mixing caused by strong tidal currents and estuarine exchange through Juan de Fuca and Haro Straits (eg; Pawlowicz and Farmer, 1998) maintains high surface nutrient concentrations year-round throughout the southern Strait of Georgia (Mackas and Harrison, 1997). Perhaps, from the delay of the Fraser River freshet later into the summer when nutrients normally would be most limiting to phytoplankton in the southern Strait of Georgia, increased estuarine flow in June and July of 1986 provided a greater supply of nutrients to surface waters by enhancing upwelling and mixing at this time of year.  Although the effect on Jervis Inlet is less certain, it is possible that the imprint  43  Chapter 2. Primary production in Saanich and Jervis Inlets  of Fraser River discharge on the density structure of waters of the Strait of Georgia affects exchange with Jervis Inlet and therefore has an influence on the phytoplankton populations within the fjord. It is possible that the freshet from the various rivers (all un-metered) entering Jervis Inlet was also anomalous in 1986.  2.4.2  Geographic pattern of primary production  Primary production in Saanich Inlet was significantly higher than in Jervis Inlet and the seaward stations of both fjords were more productive than their landward counterparts (Table 2.1). This pattern was reflected in the flux recorded by the sediment traps moored at 50 m at each station during the study (Chapter 3). Of the sediment-trap material, biogenic silica (BSi) is a good tracer of local primary production (Sancetta and Calvert, 1988; Sancetta, 1989a) as diatoms are its principal source. Organic carbon (OC) is not as good a tracer of primary production due to the presence of terrestrial O C and the high degree of recycling of O C in surface and sub-surface waters (Sancetta and Calvert, 1988; Timothy and Pond, 1997; Chapters 3 and 4). The measured flux of O C might also be affected by live zooplankton entering the traps; swimmers would more likely modify measured fluxes of O C than those of BSi. Annually averaged, the fluxes of BSi to the 50 m traps (g B S i m ~ d ) were: 1.8, 2  - 1  0.67, 0.46 and 0.31 at SN-9, SN-0.8, JV-3 and JV-7, respectively (Chapter 3). Other than at station SN-9 where material washing into Saanich Inlet or resuspended off the sill may have reached the 50 m traps (Sancetta and Calvert, 1988; Sancetta, 1989a; Chapter 3), the molar ratio of the 50 m B S i flux to local primary production (each averaged over the entire study period) was similar at each station, ranging between 0.087 and 0.11. Assuming that the average Si:C ratio of cultured marine diatoms (0.13±0.04, Brzezinski, 1985) can be applied to the diatoms of Saanich and Jervis Inlets, more than half of assimilated Si sank out of the euphotic zone and was caught in the 50 m traps.  Chapter 2. Primary production in Saanich and Jervis Inlets  44  T h i sl a r g e BSifluxs u p p o r t s the s u p p o s i t i o nt h a td a it o m sw e r e the p r e d o m n ia n tp r m i a r y  p r o d u c e r s in t h e s e f j o r d s in s p r i n g and s u m m e rw h e n m o s t of the g r o w t h o c c u r r e d , e v e n t h o u g hflagellatesare p r e s e n t t h r o u g h o u t the y e a r and can be a b u n d a n t or p r e d o m n ia n t d u r i n gp e r o id s of the s u m m e r , fall and w i n t e r (e.g.; H a r r i s o n et al., 1983 and r e f e r e n c e s  t h e r e i n ) . The l a r g e BSifluxa s lo i m p l i e st h a tm u c ho f t h e Si d e p o s t ie d as d a it o mf r u s t u l e s  was n e i t h e r r e c y c l e d in the e u p h o t c i z o n e nor d s is o v le d in w a t e r s e ls s t h a n 50 m d e e p .  The r e c y c l i n g of o r g a n c i c a r b o n in s u r f a c e w a t e r s a p p e a r s to h a v e b e e n m u c h g r e a t e t h a nt h a t of BSi, as was its s p a t i a l and t e m p o r a l variability ( S a n c e t t a and Calvert, 1988; C h a p t e r 3). The r a t i o s of the 50 m OCfluxto p r m i a r yp r o d u c t i o n at e a c h s t a t i o n ( e a c h a v e r a g e do v e r the e n t i r es t u d y ) r a n g e db e t w e e n 01 .0 and 01 .6 (see C h a p t e r 3). T h e s eo lw e x p o r t ratios, e s p e c i a l y c o n s d ie r n ig t h a t terrestrial OC is i n c l u d e d in the s e d i m e n t t r a p  fluxes, may h a v eb e e n due to the d e g r a d a t o i n of OC w i t h i n the s e d m i e n tt r a p s . K u m  al. ( 1 9 9 6 ) f o u n d t h a t as m u c h as 70% of p a r t i c u l a t e o r g a n c i c a r b o n c a u g h t by s e d m i e n t  t r a p s was r e e la s e d i n t o s o l u t i o n d u r i n g d e p o ly m e n t , e v e n w h e n the d e p o ly m e n t s w e r s h o r t . The f a c t o r s a f f e c t i n g the OCfluxeswill be d s ic u s s e d f u r t h e r in C h a p t e r 3. The s p a t i a lp a t t e r n of p r m i a r yp r o d u c t i o n may h a v eb e e n the r e s u l t of the d i s t r i b u t i o n of n u t r i e n t s u p p y l to s u r f a c e w a t e r s t h r o u g h o u t the s o u t h e r n Strait of G e o r g i a . Due to  u p w e n i lg i n t o J u a n de F u c a S t r a i t and m x in i g in J u a n de F u c a and H a r o S t r a i t s a  d s ic u s s e d a b o v e , s u r f a c e w a t e r s w i t h y e a r r o u n d n i t r a t e c o n c e n t r a t o in s in e x c e s s of 10 pM r e a c h i n t o S a t e l l i t e C h a n n e l at the m o u t h of S a a n c ih I n l e t but do not e x t e n d as far  n o r t h as the e n t r a n c e to J e r v i s I n l e t ( M a c k a s and H a r r i s o n , 1 9 9 7 ) . W a t e r s a b o v e the sill  in S a a n c ih I n l e t are in e x c h a n g ew i t ht h o s e of S a t e l l i t eC h a n n e lb o t h tidally and t h r o u g h i s o p y c n a l m x in ig ( H e r l i n v e a u x , 1962;  H o b s o n , 1985;  S t u c c h i and W h i t n e y , 1 9 9 7 ) , and  H o b s o n ( 1 9 8 5 ) s h o w e d t h a t lateral m x in i g at d e p t h s of 5-20 m, t h e n vertical m x in ig the s u r f a c e , was a m a o jr s o u r c e of n u t r i e n t s to the p h y t o p a ln k t o n in S a a n c ih I n l e t . The  s u r f a c e stratification and g e n e r a l y w e a k w n id s and t i d e s of S a a n c ih I n l e t ( H e r l i n v e a u x ,  Chapter 2.  1962;  Primary production  45  in Saanich and Jervis Inlets  S t u c c h i and W h i t n e y , 1997)  are f u r t h e r m o r e c o n d u c v ie to p h y t o p a ln k t o n g r o w t h ,  and i n t r u s i o n s of n u t r i e n t - and p h y t o p l a n k t o n l a d e n w a t e r s i n t o the inlet d u r i n g s p r i n g t i d e s r e s u l t in h g ih c h l o r o p h y l b o im a s s t h r o u g h o u t m u c h of the inlet, but e s p e c i a l y t o w a r d s the m o u t h ( T a k a h a s h i , 1977;  P a r s o n s et al.,  1983;  H o b s o n and M c Q u o d i , in  p r e s s ) . A t lh o u g h the b i o l o g i c a lf r o n t at the m o u t h of S a a n c ih I n l e t is w e l d o c u m e n t e d ( P a r s o n s et al., 1983;  H o b s o n and M c Q u o d i , in p r e s s ) , t h e r e is e ls se v d ie n c et h a t tidal m x in ig  t h r o u g hc o n s t r i c t i o n s in the vicinity of the m o u t h of J e r v i sI n l e t ( J V 3 )c a u s e sh e g ih t e n e d p r m i a r yp r o d u c t i o n . C o c h a ln et al. ( 1 9 8 6 ) f o u n d no e v d ie n c e of a b i o l o g i c a lf r o n t at  the  m o u t h of J e r v i s Inlet, w h i l eP a r s o n s et al. ( 1 9 8 4 b ) did o b s e r v eh i g hc h l o r o p h y lac o n c e n t r a t i o n s and h i g h r a t e s of p r m i a r y p r o d u c t i o n ~6 km s o u t h e a s t of JV-3.  T h e y a s c r b ie d  the h e g ih t e n e db i o l o g i c a l activity to e n h a n c e dn u t r i e n ts u p p y l by n it e n s em i x i n gt h r o u g h S k o o k u m c h u k N a r r o w s at the m o u t h of S e c h e t l I n l e t ( F i g u r e 1.1).  The f i n d i n gt h a t pri-  m a r yp r o d u c t i o n at the m o u t h s of S a a n c ih and J e r v i sI n l e t s was a p p r o x m i a t e y l 14 . t m i e s g r e a t e r t h a n at the i n l a n ds t a t i o n s is s u r p r i s i n gc o n s d ie r n i g the r e l a t i v e w e a k n e s s of the f r o n t at the m o u t h of J e r v i s I n l e t .H o w e v e r , u n p u b s i lh e d w o r k by Ann  G a r g e t t (Old  D o m n io in U n i v e r s i t y , N o r f o l k , VA, p e r s . c o m m ) . s u g g e s t s an e f f i c i e n t s u p p y l of s u r f a c e  n u t r i e n t s t h r o u g h o u t the l e n g t h of S a a n c ih I n l e t d u r i n gt r a n s i t i o n sf r o m n e a p to s p r i n g  tides. D u r i n gn e a p tides, w a t e r f r o m the C o w c ih a n and F r a s e r R i v e r s c a u s e so lw s u r f a c e salinity of S a t e l l i t e C h a n n e l and S a a n c ih I n l e t .I n t e n s i f i e d m x in ig d u r i n g s p r i n g t i d e s n ic r e a s e ss u r f a c e salinity in S a t e l l i t e C h a n n e l and a d e n s i t y d r i v e n s u r f a c e o u t f o lw f r o m  S a a n c ih I n l e tr e s u l t s . T h i so u t f o l w is a c c o m p a n e id by rapid, s u b s u r f a c ei n f l o w , p r o v i d i n g m u c h of the l e n g t h of S a a n c ih I n l e t w i t h a new s u p p y l of n u t r i e n t s .  O t h e re v d ie n c et h a tn u t r i e n t sw e r es u p p l i e d to the p h y t o p a ln k t o n of S a a n c ih I n l e t late r a ly f r o mS a t e l l i t eC h a n n e l is the h g ih n i t r a t e to p h o s p h a t e (N:P)  r a t i o s at m d id e p t h s  46  Chapter 2. Primary production in Saanich and Jervis Inlets  1  2  3  0  1  2  3  4  5  6  7  HP0 " OiM) 2  4  F i g u r e 2.9: N i t r a t e v e r s u s p h o s p h a t e in b o t h inlets. The a v e r a g e N:P r a t i o at 3 0 5 0 m was 107 . in S a a n c ih I n l e t and 114 . in J e r v i s I n l e t .M o s t of the s a m p e ls f r o m 3 0 5 0 m in S a a n c ih I n l e t w i t h PO c o n c e n t r a t o in s g r e a t e r t h a n 3 ^M and o lw N:P r a t i o s w e r e c o l e c t e d in the s u m m e r and fall d u r i n gd e e p w a t e r r e n e w a s l. O t h e r w i s e , the N:P r a t i o s at 3 0 5 0 m in S a a n c ih I n l e t s u g g e s t little m x in ig b e t w e e n d e e p and m d id e p t hw a t e r s . 3-  of the inlet ( F i g u r e 2.9).  W h e n o x y g e n d e p l e t i o n and s u b s e q u e n t n i t r a t e r e d u c t i o n (Fig-  ure 2.5) o c c u r r e d in the d e e p w a t e r s of S a a n c ih Inlet, N:P r a t i o sd e c r e a s e d s u b s t a n t i a ly ( F i g u r e 2.9).  If vertical m x in ig b e t w e e nd e e p and s h a o lw w a t e r sw e r e as i g n i f i c a n ts o u r c e  of n u t r i e n t s to the p h y t o p l a n k t o n , t h e n , a s s u m n ig a s i g n i f i c a n t f r a c t i o n of n i t r a t er e d u c t i o n w e r e to c o m p e lt o in ( y i e l d i n g N gas), 2  o lw N:P  r a t i o s w o u d l h a v e b e e n f o u n d at  i n t e r m e d i a t ed e p t h s ( ~ 3 0 5 0 m). A t lh o u g hs o m em x in ig i n t os h a o lw e rr e g o in s did o c c u r d u r i n gd e e p w a t e r r e n e w a l (see c a p t i o n to F i g u r e 2.9),  for m o s t o f t h ey e a r t h e r e is little  e v d ie n c e t h a t d e e pn u t r i e n t sm x ie du p w a r d . F i n d i n gt h a t (5N 5 1  of the s e d i m e n t t r a p ma-  terial c a u g h t in S a a n c ih I n l e t was s i m i l a r to t h a t f r o m J e r v i s Inlet, C a l v e r t et al. ( 2 0 0 1 )  h a v ec o m e to the s a m ec o n c l u s i o n ; m x in i g of n i t r a t ef r o m the d e e pw a t e r s of S a a n c ih I n  ( w h e r en i t r a t er e d u c t i o nw o u d l c a u s e the r e m a n in ig n i t r a t e to be i s o t o p i c a ly h e a v y ) i n t o  the e u p h o t c i z o n e m u s t h a v e b e e n s m a l c o m p a r e dw i t h the lateral n u t r i e n t s u p p y l f r o  o u t s d i e the fjord. Also, W a r d et al. ( 1 9 8 9 ) s h o w e d t h a t u p w a r d m e t h a n efluxesa c r o s s  Chapter 2. Primary production in Saanich and Jervis Inlets  4 7  3 0md e p t h in S a a n c ih I n l e tw e r et o os m a lt ob a a ln c et h ee v a s v iefluxt ot h ea t m  a n d Lilley e t al. ( 1 9 8 2 ) c o n c u ld e d t h a t lateral e x c h a n g e b e t w e e n S a a n c ih Inlet, Sat  C h a n n e la n dt h eS t r a i to fG e o r g i a ,c o m b n ie dw i t ht h ei s o l a t i o no ft h ed e e p w a t e rm e  o fS a a n c ih Inlet, c a u s e d r e g i o n a l s i m i l a r i t y in m e t h a n e p r o f i l e s a t d e p t h s a b o v e t h e  T h u s , e n h a n c e d p r i m a r y p r o d u c t i o n a t S N 0 . 8 r e l a t i v e t o JV-7 m a y h a v e b e e n  r e s u l t o fag r e a t e ra ln d w a r d n u t r i e n tfluxin S a a n c ih I n l e t a n d c o u d l e x p l a i nt h e s i m ity in t h e s e a w a r d : a ln d w a r d r a t i o s o fp r m i a r yp r o d u c t i o n b e t w e e n t h e f j o r d s d e s p i t e  p r o d u c t i v e b i o l o g i c a l f r o n t a t t h e m o u t h o fS a a n c ih Inlet. I n d e e d , o ft h e f o u r s t a t i  s u r f a c en i t r a t ed e p l e t i o nd u r i n gt h eg r o w n ig s e a s o n sw a sm o s ts e v e r ea tJ V 7 ( F i g u r e  t h r o u g h 2 . 4 ) a n d it a p p e a r s t h a t a t J V 7 d a it o m s w e r e a s m a l e r f r a c t i o n o ft h e  p l a n k t o nc o m p a r e dw i t h t h eo t h e rs t a t i o n s ( F i g u r e2 . 6 ) . A h g ih e rr e l a t i v ea b u n d a n c e  flagellates a t t h e a ln d w a r d s t a t i o n in J e r v i s I n l e t m a y h a v e b e e n a r e s p n u t r i e n t s u p p l y .  I ts h o u d l b en o t e dt h a tv a r i a t i o n s in light a t t e n u a t i o nd u et or i v e r i n e silt is a nu  c a u s e o f t h e o b s e r v e d g e o g r a p h c i p a t t e r n o f p r m i a r y p r o d u c t i o n . W i t h i n H o w e S o u  s o u t h o ft h e J e r v i s I n l e t s y s t e m , p r m i a r y p r o d u c t i o n is a f f e c t e d b y t h e t u r b i d i t y c a  b y r i v e r i n e silt a n d c l a y ( S t o c k n e r e t al., 1 9 7 7 ; P a r s o n s e t al., 1 9 8 1 ) , r a i s i n g t h e  bility t h a t t h e m o r e glacialy i n f l u e n c e d r i v e r w a t e r o fJ e r v i s I n l e t m a y c o n t a i n s u f f i c i e silt t o a f f e c t l i g h t t r a n s m i s s i o n , e s p e c i a l y a t s t a t i o n JV-7. H o w e v e r , a c o m p a r s io n  a v e r a g e w i n t e r a n d s u m m e re x t i n c t i o n c o e f f i c i e n t s a te a c h s t a t i o n is n o t c o n s s it e n t w  t h i s p o s s i b i l i t y ( F i g u r e 2 . 7 ) .I n d e e d , C a p t a i n V a n c o u v e r ( 1 7 9 8 , f r o m P i c k a r d { 1 9 6 1 } )  o b s e r v e d silty w a t e r s in s o m e o f t h e British C o u lm b a in f j o r d s , b u t n o t in J e r v i s  a n d , d u r i n g t h e c r u i s e s o ft h i s e x p e r i m e n t , silt w a s n o t n o t i c e d in t h es u r f a c e w a S a a n c ih o r J e r v i s I n l e t ( M a u r e e n S o o n , U B C , p e r s . c o m m ) .  48  Chapter 2. Primary production in Saanich and Jervis Inlets  2.4.3  B o t t o m - w a t e r oxygen i n Saanich a n d Jervis Inlets  The o x y g e nd y n a m c is of f j o r d s are a f f e c t e d by f a c t o r si n c l u d i n gf j o r dm o r p h o o lg y (e.g.; sill and f j o r dd i m e n s i o n s ) , w a t e rc i r c u l a t i o n and m i x i n g , the f r e q u e n c y and o x y g e ns u p p y l of d e e p w a t e r r e n e w a l and the d e l i v e r y of a u t o c h t h o n o u s and a o lc h t h o n o u so r g a n c i m a t t e r to the d e e p w a t e r s . Of the BC f j o r d s ,S a a n c ih I n l e t is u n i q u e , as the o t h e r a n o x c i b a s n i s are s e v e r e y l r e s t r i c t e d by t h e i r sills f r o m d e e p w a t e r r e n e w a s l ( s e c t i o n 2.1).  The  r e s u l t s of t h i s c h a p t e r s h o w t h a t p r m i a r y p r o d u c t i o n and e x p o r tfluxw e r e h i g h d u r i n g the s t u d y in S a a n c ih I n l e t and the p r i n c i p a l c a u s e has b e e n a r g u e d to be the fertility of a d j o i n i n gw a t e r s . The w e a k n e s s of e s t u a r i n eflowmay h a v e f u r t h e re n h a n c e d p a r t i c l e  flux to b o t o mw a t e r s . A d v e c t o i n is r e c o g n s ie d as an i m p o r t a n tf a c t o r in the t r a n s p o r to p a r t i c l e si n t o and out of f j o r d s (e.g.; S a k s h a u g and M y k l e s t a d , 1973; 1986;  W a s s m a n n , 1996)  L e w s i and T h o m a s ,  and G i l m a r t i n ( 1 9 6 4 ) e s t m i a t e d t h a t 25% of local c o m m u n t y i  p r o d u c t i o n was l o s tf r o m an e a r b yf j o r d ( I n d i a n Arm)  due to e s t u a r i n e circulation. S u c h  o ls s e s f r o m S a a n c ih I n l e t w o u d l be m n im i a l and, a t lh o u g h the s o u r c e of the v e r y h i g h s e d i m e n t t r a pfluxesat 50 m at s t a t i o n SN-9 is u n c e r t a i n ( w h e t h e r r e s u s p e n d e d of the sill or w a s h e d i n t o the fjord; see C h a p t e r 3), it is p o s s b ie l t h a t b e c a u s e of the u n u s u a l c i r c u l a t i o n t h e r e was a netfluxof o r g a n c i m a t e r i a l i n t o S a a n c ih Inlet. T h e s e s o u r c e s of  o r g a n c i m a t t e r to the d e e pw a t e r s are likely to r e s u l t in an u n u s u a y l l a r g eo x y g e nd e m a n d  b e h n i d the sill of S a a n c ih I n l e t . Also, o lw r a t e s of vertical m x in i g will e x a c e r b a t e o x y g e n  d e p l e t i o n in d e e p b a s i n s .A t lh o u g h s o m e e v d ie n c e e x i s t s t h a t m x in ig r a t e s in S a a n c ih I n l e t are not a n o m a o lu s ( S m e t h i e , 1 9 8 1 ) , w e a k e s t u a r i n e circulation, w n id s and t i d e s p r o v d i e little e n e r g y to mx i the d e e pw a t e r s of S a a n c ih I n l e t (Ann G a r g e t t , Old D o m n io in  U n i v e r s i t y , N o r f o l k , VA, p e r s . c o m m ) . I n d e e d , D e Y o u n g and P o n d ( 1 9 8 8 ) f o u n d vertica e d d yd i f f u s i o n is a b o u t an o r d e r of m a g n t u id eo lw e r in S a a n c ih I n l e tt h a n in I n d i a n Arm. In J e r v i s Inlet, b o t o m w a t e r s r e m a n i o x y g e n a t e d d e s p i t e i n f r e q u e n t (< one year) 1 -  Chapter 2. Primary production in Saanich and Jervis Inlets  49  d e e p w a t e r r e n e w a s l. P r m i a r yp r o d u c t i o n w a s n o t e x c e p t i o n a l y h i g h in J e r v i s I n l e t a  t h ee s t u a r i n ef l o w , a l b e i tw e a k , w o u d l c a r r yap o r t i o no fs u r f a c eb o im a s so u to ft h e  T h e d e e p ( 3 8 5 m ) sill m u s t a s lo p l a y a n i m p o r t a n t r o l e in t h e o x y g e n b a a ln c e  d e e pw a t e r so fJ e r v i s I n l e t , a sm u c h o ft h es i n k i n go r g a n c i m a t t e r will b eo x i d i s e d b o t o m w a t e r s a r e r e a c h e d .  2.5  Conclusions  A f o u r y e a r t i m e s e r i e s o f m o n t h y l p r i m a r y p r o d u c t i o n d e t e r m i n a t i o n s in S a a n c ih a n d  J e r v i s I n l e t s , British C o l u m b i a , C a n a d as h o w s t h a t S a a n c ih I n l e t w a s s i g n i f i c a n t l y m  p r o d u c t i v et h a n J e r v i s I n l e t o rt h e S t r a i t o fG e o r g i a , w h i l et h ea ln d w a r d s t a t i o n sw  e a c hf j o r dw e r ee ls sp r o d u c t i v et h a nt h o s es e a w a r d . S u r f a c en u t r i e n t s u p p l yf r o mo u t s  t h e f j o r d s w a s likely h g ih e r t o S a a n c ih I n l e t a n d m a y h a v e c o n t r o l e d t h e d i f f e r e  in p r m i a r y p r o d u c t i o n b e t w e e n s t a t i o n s . F u lx e s o f b o ig e n c i silica a t 5 0 m r e f l e c  t h e g e o g r a p h c ia l p a t t e r n o fp r m i a r y p r o d u c t i o n a n d t h e o x y g e n d e m a n d c a u s e d b y  s e t t l i n gfluxo fo r g a n c i m a t t e r p r o b a b y l c o n t r i b u t e d s i g n i f i c a n t l y t o t h e periodic, d e e p -  w a t e r a n o x a i o f S a a n c ih I n l e t .R e t a n im e n t o f o r g a n c i p a r t i c l e s d u e t o w e a k e s t u a r i n  e x c h a n g e a n do lw r a t e s o fv e r t i c a l m x in i g in S a a n c ih I n l e t w o u d l h a v e f u r t h e r n id a n o x i a .  Chapter 3  Sources a n d patterns of settling fluxes i n Saanich a n d J e r v i s Inlets  3.1  Introduction  C o a s t a l o c e a n s c o n s t i t u t e a p p r o x m i a t e y l 10% of the a r e a of the g l o b a l o c e a n s , yet t h e s e m a r g n is a c c o u n t for ~20% al.,  of g l o b a l o c e a n p r m i a r y p r o d u c t i o n ( W a l s h , 1988;  Liu  et  2 0 0 0 ) and m o s t of the o r g a n c i c a r b o n b u r i a l in m a r n ie s e d m i e n t s ( B e r n e r , 1982;  H e d g e s and Keil, 1995;  M i d d l e b u r g , 1 9 9 7 ) . Fluvial d e l i v e r y ( M e y b e c k , 1982)  cipal s o u r c e of o r g a n c i m a t t e r to c o a s t a lw a t e r s and s e d m i e n t s ( B e r n e r , 1989; Keil, 1995;  is the prinH e d g e s and  Liu, 2 0 0 0 ) . H o w e v e r , m u c h of the p r m i a r yp r o d u c t i o n of t h e s en u t r i e n t r e p l e t e  b o u n d a r e is is by d a it o m s( N e s lo n et al., 1995)  and, b e c a u s e of t h e i rh i g hg r o w t hr a t e s and  u n q iu ep h y s i o l o g i c a la d a p t a t i o n s to t u r b u l e n t and n u t r i e n t r i c hw a t e r s ( S m e t a c e k , 1 9 8 5 ) , d a it o m s are a s lo i m p o r t a n tv e c t o r s of c a r b o nfluxin c o a s t a ls e t t i n g s (e.g.; P i t c h e r , 1986; S a n c e t t a and C a l v e r t , 1988; and M a l o n e , 1992; 1996;  Del Amo  S a n c e t t a , 1 9 8 9 a , 1 9 8 9 b , 1 9 8 9 c ; W a t i e et. al., 1992; C o n e ly  K o ir b o e et al., 1994;  et al., 1997;  K i 0 r b o e et al., 1996;  P i k e and K e m p , 1 9 9 9 ) . The  Tiselius and K u y l e n s t i e r n a , r e l a t i v e l y s h a o lw w a t e r s of  c o n t i n e n t a lm a r g n is and the h i g hr a t e s of s e d m i e n t a c c u m u a lt o i n and b u r i a lf u r t h e r m o r e  r e s u l t in s h o r td i a g e n e t i cr e s d ie n c et m i e s and e n h a n c e do r g a n c i m a t t e rp r e s e r v a t i o n( M i d -  d l e b u r g , 1 9 9 7 ) . T h u s , t h e s ef a c t o r s ( l a r g e terrestrial and m a r n ie i n p u t s , e n h a n c e dp r e s e v a t i o n ) r e s u l t in the d i s p r o p o r t i o n a t e a m o u n t of o r g a n c i m a t t e r b u r i a l in c o a s t a l m a r n ie  r e g i o n s . H o w e v e r , a t lh o u g hc o a s t a lr e g o in sp l a y an i m p o r t a n tr o l e in g l o b a lc a r b o n flu t h e y are c h a r a c t e r i s t i c a ly h e t e r o g e n e o u s and g e n e r a l i s a t i o n s of b o ig e o c h e m c ia lp r o c e s s e s  50  Chapter 3.  Settling fluxes in Saanich and Jervis Inlets  51  are difficult to make (Smith and Hollibaugh, 1993; L i u et al., 2000). Glacially-carved fjords are unique coastal features that are typically over-deepened and hydrographically restricted by sills (Syvitski et al., 1987; Burrell, 1988; Wassmann, 1991; Wassmann et al., 1996). Fjords are catchment basins for high-latitude mountainous regions and collect a disproportionate amount of weathered products delivered from land to the  much as one quarter of the fluvial sediment entering the sea in the past  100,000 years is trapped in fjord basins (Syvitski et al., 1987). Furthermore, fjords are semi-enclosed mesocosms mimicking ocean basins (Skei, 1983; Burrell, 1988) and have long been recognised as accessible locations where physical, biological and geochemical processes relevant to oceanic systems can be studied. In this chapter, I examine a unique time-series of particle fluxes in two British Columbian fjords in an attempt to gain further understanding of the physical and ecological processes leading to water-column sedimentation and, ultimately, bottom sediment burial.  Sediment traps were moored at stations in Saanich Inlet and Jervis Inlet, two  contrasting fjords of British Columbia, Canada, for about five years during the 1980s; some of the information on the time series has been published. T h e 1983-84 sedimenttrap fluxes from Saanich Inlet were used to aid interpretation of the geochemistry of the bottom sediments (Frangois, 1987; 1988), and the fluxes at 50 m from a 1985 station were included in a study of marine and terrigenous biomarkers in Saanich Inlet (Cowie et al., 1992). Fluxes of total dry weight, carbon, biogenous silica and diatom valves from Saanich Inlet during 1985 have been described (Sancetta and Calvert, 1988), as well as diatom valve flux in relation to atmospheric conditions for both inlets from 1985 to 1987 (Sancetta, 1989a; 1989c).  Sancetta (1989b) reported fecal pellet flux for 1986 at the  landward station in each fjord. Based on microscopic examination of the sediment-trap samples, Sancetta's observations provide a very useful descriptive foundation for this work. Primary production for most of the time-series has also been reported (Chapter  52  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  2; T m i o t h y and S o o n , 2 0 0 1 ) . The  total m a s s , b o ig e n c i silica, o r g a n c i c a r b o n , n i t r o g e n and a u lm n iu i mfluxesare  p r e s e n t e d and d s ic u s s e d in t h i s c h a p t e r . Ar e l a t i o n s h i p b e t w e e n 5C 13  and b o ig e n c i silica  c o n t e n t is u s e d to s e p a r a t e m a r n ie and terrestrial o r g a n c i c a r b o n in a way t h a t a o lw s e s t m i a t e s of the r e l a t i v e c o n t r i b u t i o n of d a it o m s to the s i n k i n gfluxof m a r n ie o r g a n c i m a t t e r .E x p o r t r a t i o s for o r g a n c i c a r b o n and b o ig e n c i silica are c o m p u t e d u s n i g the p r m i a r y p r o d u c t i o n r e s u l t s of C h a p t e r 2 and the s e d m i e n t t r a pfluxes.Finally, the s e d i m e n t t r a pfluxesare c o m p a r e d to m a s s a c c u m u a lt o in r a t e s of the b o t o ms e d m i e n t s , a l o w i n g a top ( p r i m a r y p r o d u c t i o n ) to b o t o m ( s e d m i e n t a c c u m u a lt o in ) d e s c r i p t i o n of the o r g a n c i c a r b o n and b o ig e n c i silicafluxesin two f j o r d sw i t hd i f f e r i n gr e d o xc o n d i t i o n s .  3.2  M a t e r i a l s a n d methods  3.2.1  F i e l d design a n d sample p r e p a r a t i o n  The s e d i m e n t t r a p s t u d y b e g a n in the fall and w i n t e r of 1 9 8 3 8 4 in S a a n c ih I n l e t and e x p a n d e d i n t o J e r v i s I n l e t in s p r n ig s u m m e r of 1985 ble 3.1).  ( F i g u r e s 1.1,  12 . and 1.3,  and  Ta-  The initial m o o r n ig s i t e ( J V 1 1 . 5 ) at the m o u t h of J e r v i s I n l e t was in an a c t i v e  s h i p p i n g l a n e , so the m o o r n ig was m o v e d to s t a t i o n JV-3  a f t e r s e v e r a l d e p o ly m e n t s .  T h r o u g h o u t t h i s w o r k , the d a t a c o l e c t e d f r o m J V 1 1 . 5 are t r e a t e d w i t h t h o s e c o l e c t e at JV-3.  S e d m i e n t t r a p sw e r e p a lc e d at t h r e ed e p t h s on e a c h m o o r n ig and w e r e s e r v c ie d  and r e d e p o ly e d a p p r o x m i a t e y l m o n t h y l. The s e d m i e n t t r a p s w e r e m a d e f r o m PVC cm and a h e g ih t of 48 cm ( a s p e c t r a t i o = 3.8).  c y l i n d e r s w i t h an i n s i d e d a im e t e r of  B a f f l e g r i d s (1.5  12.7  cm s q u a r e ) w e r e p a lc e d  in the o p e n n ig and t o w a r d the b a s e of e a c h t r a p in o r d e r to d e c r e a s e m x in ig ( G a r d n e r , 1 9 8 0 a ) . P r i o r to d e p o ly m e n t , t r a p s w e r efilledw i t h s e a w a t e r and 500 mL of a 30% b r i n e s o l u t i o n w e r e f u n n e e ld to the b o t o m of the t r a p s . The  s e d m i e n t t r a p s w e r e a w la y s  53  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  station  location  water depth (m)  trap depths (m)  sediment-trap time series (yymmdd)  l°-production time series (yymmdd)  SN-9  Saanich mouth 48°40.2'N 123°30.2'W  165  45 110 150  830809 to 891215  850807 to 891010  SN-0.8  Saanich head 48°33.0'N 123°32.7'W  210  50 135 180  840112 to 891215  850809 to 891010  JV-7  Jervis mid-inlet 50°03.4'N 123°48.9'W  530  50 200 450  850328 to 891219  850808 to 891011  JV-11.5  Jervis mouth 49°48.6'N 123°56.1'W  660  50 300 600  850808 to 860128  850808 to 860128  JV-3  Jervis mouth 49°48.3'N 124°02.4'W  660  50 300 600  860311 to 890829  860311 to 891011  T a b l e 3.1: S t a t i o n l o c a t i o n s , s e d m i e n t t r a p d e p t h s , and d u r a t i o n of the s e d i m e n t t r a p and p r i m a r y p r o d u c t i o nt i m es e r i e s .  d e p o ly e d in p a i r s w i t h 05 .% s o d u im a z d i e ( N a N ) as a b a c t e r i c i d e in one t r a p of e a c h 3  pair. N a Ni n h i b i t s a e r o b c i but not a n a e r o b c i b a c t e r i a l r e s p i r a t i o n and a c t s as a p o s io n 3  to z o o p a ln k t o n t h a t may be a t t r a c t e d to m a t e r i a l c a u g h t by t r a p s . U p o n retrieval, the t r a p p e d d e b r i s was filtered t h r o u g h 0.47 m m N i t e x m o n o a f l im e n t b o l t i n g c l o t h to r e m o v e l a r g e z o o p a ln k t o n and o t h e r s w m i m e r s and in the l a b o r a t o r y the s e d m i e n t was  w a s h e df r e e of s a l t by r e p e t i t i v ec e n t r i f u g a t i o nw i t hd e o in s ie dw a t e r . The s o l i dp h a s e was f r e e z e d r i e d , w e g ih e d and g r o u n d to afinep o w d e r . F r o m 1985 to 1987,  the s a m p e l was  split u p o n r e t r i e v a l and a n a y ls e d m i c r o s c o p i c a l y ( S a n c e t t a and Calvert, 1988; S a n c e t t a , 1 9 8 9 a , 1 9 8 9 b , 1 9 8 9 c ) .  Chapter 3.  3.2.2  L a b o r a t o r y analyses  T o t a l c a r b o n and C a r l o E r b a CHN  n i t r o g e n w e r e d e t e r m n ie d by gas  was  c h r o m a t o g r a p h y on a m o d e l 1106  a n a y ls e rw i t h an a n a l y t i c a lp r e c i s i o n of ±1.3%  n i t r o g e n ( V e r a r d o et al., Inc.  54  Settlingfluxesin Saanich and Jervis Inlets  1 9 9 0 ) . I n o r g a n i c c a r b o n was  CO2 c o u o lm e t e r ( p r e c i s i o n ±2%)  and  for c a r b o n and  ±2%  for  d e t e r m n ie d w i t h a C o u o lm e t r c is  c o n v e r t e d to C a C O s . O r g a n c i c a r b o n (OC)  d e t e r m n ie d by s u b t r a c t i n gi n o r g a n i c c a r b o nf r o m total c a r b o n . B o ig e n c i silica (BSi)  o lc k and  was  m e a s u r e d f o l o w i n g the  F r o e l i c h ( 1 9 8 9 ) . The  M Na2C03 and  m e t h o d and  e q u a t o in s of M o r t -  p r o c e d u r e n iv o v le s e x t r a c t i n g a m o r p h o u s silica w i t h 2  t h e n m e a s u r n ig the  d s is o v le d silicon c o n c e n t r a t i o n in the  m o y lb d e n u m b u le s p e c t r o p h o t o m e t r y .C o n v e r s o in f r o m b o ig e n c i silicon (%S)i g e n c i silica ( % S i 0 ' nH 0) a s s u m e d b o ig e n c i silica c o n t a n i s 12% 2  p r e c i s i o n for (> 10%  BSi)  2  e x t r a c t by to b i o -  w a t e r by w e i g h t . The  r e p l i c a t e s of n ih o u s e s e d m i e n t s t a n d a r d s w i t h r e l a t i v e l y h i g h BSi c o n t e n t was  A u lm n iu i m (Al)  ±4%. and  o t h e rm e t a s l (Ti,  Fe, Ba and  Zr)  w e r e m e a s u r e d by i n d u c t i v e l y -  c o u p e ld p a ls m am a s ss p e c t r o m e t r y ( I C P M S ) . A p p r o x m i a t e y l 5 mg s e d m i e n tw e r ea d d e d to a ~0.5  mL  c o c k t a i l of c o n c e n t r a t e d H N O 3 , HC1  s c r e wc a p s . The ~40 ~0.5  psi.  The  and  HF  in 15.  mL  vials w e r ep a lc e d in l a r g e rT e f l o nb 'o m b s ' and  T e f l o n v i a l s w i t h m c ir o w a v e d for 30 mni  at  v i a l sw e r et h e np a lc e d on a h o t p l a t e ,w i t ht h e i rc a p sr e m o v e d , until d r y n e s s  mL 2 N H N O 3 was  w e g ih e d and  psi m c ir o w a v ed i g e s t i o n , the  a d d e d to the  r e s d iu e and  2 N HNO3 s o l u t i o n was  a f t e ra s e c o n d 30 min,  40  d i l u t e d ~ 4 0 0 f o l dw i t h 0.1 N HN0 3  u s n ig a p r e c i s i o nb a l a n c e . F u r t h e rd i l u t i o n sw e r ep e r f o r m e d by v o u lm e . Al, Ti, Ba, Fe  and  Zr w e r ea n a y ls e d on a VG E l e m e n t a lP 'a ls m a Q u a dT u r b o Plus' C IP M Se q u p ip e dw i t h an S X 3 0 0q u a d r u p o e l m a s s a n a y ls e r and  G a l i l e o4 8 7 0 Vc h a n n e l e l e c t r o n multiplier. L i q u i d  a r g o n s e r v e d as n e b u l i s e r , a u x i l i a r y and  c o o l i n g g a s e s .E x t e r n a l s t a n d a r d s w e r e u s e d  to d e t e r m n ie m e t a l c o n c e n t r a t o in s in the  d i l u t e d s a m p e ls . The  C IP M S was d e t u n e d  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  55  so that the response was linear to 100 ppb A l in order to minimise required dilutions. Indium and scandium were used as internal standards to correct for plasma instabilities and  sensitivity changes during the analyses.  A number of in-house (bottom sediments  from Saanich and Jervis Inlets) and certified sediment (MESS-2) standards were digested and  analysed with the sediment-trap samples; the accuracy of the A l analyses on these  standards was 3% or better, while the precision was ± 6 % or better. The HC1)  isotopic composition of organic carbon was determined on decarbonated (10%  subsamples using a V G P R I S M isotope ratio mass spectrometer, with a Carlo  E r b a C H N analyser fitted in-line as a gas preparation device. Values are reported in S notation relative to the P D B reference: r5 C = 1000 ( [ 13  The  1 3  C:  1 2  C]  s a m p  i /[ e  1 3  C:  1 2  C]p B  - 1).  D  precision was ± 0 . 2 ° / o o -  3.2.3  Effect of preservative treatments  To test the effectiveness of sodium azide as a preservative, fluxes measured by the sediment traps with and without N a N  3  from all depths at each station were averaged. Fluxes  were considered instead of percentages because variable preservation of one constituent could affect the content of another constituent. there was no clear preservative effect for N a N  3  For the total mass, O C and N fluxes, (Table 3.2).  Therefore, in order to re-  duce the number of analyses, B S i and A l were measured on sediments collected from the N a N - t r e a t e d traps and <5 C was measured on samples from the 'brine only' traps. A 13  3  number of cross-analyses found little or no effect of preservative treatment on B S i fluxes (Table 3.2).  Where analyses were performed on samples from each trap in a pair, the  values presented in this chapter are the average of the two treatments. CaC0 ble 3.2).  3  fluxes were 16 to 28% greater for the sediment traps treated with N a N  C 0  buffers C a C 0  _ 3  3  is undersaturated with respect to C a C 0  3  3  (Ta-  in coastal waters, but N a N  3  dissolution (Knauer and Asper, 1989); T i m o t h y and Pond (1997) also  56  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  SN-9  SN-0.8  JV-3  mass flux (g m brine brine + N a N % A (n)  3  9.66 9.74  2.16 2.19  0.79 (173) 1.3 (189)  468 457  3  _ 1  1.62 1.66  1.27 1.31  2.2 (122) 3.3 (144)  176 173  2  d" ) 1  144 140  130 135  -2.4 (173) -1.5 (189) -2.7 (122) 4.0 (144) N flux (mg m~  brine brine + N a N % A (n)  d )  - 2  O C flux (mg m brine brine + N a N % A (n)  JV-7  3  57.6 55.2  22.7 22.2  d )  2  - 1  16.8 16.4  15.7 16.3  -4.2 (173) -2.2 (189) -2.4 (122) 3.9 (144) C a C O flux (mg m" d" ) 2  1  s  brine brine + N a N % A (n)  66.3 78.9  3  16 (173)  36.0 45.4  21 (189)  22.8 30.4  25 (122)  19.1 26.6  28 (144)  B S i flux (mg m" d ) 2  brine brine + N a N % A (n)  3  2750 2840 3.4 (9)  1450 1400 -3.5 (7)  _ 1  703 668 686 677 -2.4 (13) 1.5 (6)  Table 3.2: Average fluxes to both sets of traps (with and without N a N ) in each deploy3  ment-pair. Negative differences occur where fluxes to N a N - t r e a t e d traps were smaller 3  than fluxes to traps without N a N . 3  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  found that C a C 0  3  57  was higher in sediments from N a N - t r e a t e d traps in a shorter exper3  iment in Sechelt Inlet (Figure 1.1). Because of the N a N  3  effect on C a C 0  3  preservation,  the lack of an effect on organic preservation cannot be attributed to outwash of the preservative during each deployment.  Although these results might therefore suggest  that sodium azide is an ineffective bactericide, Lee et al. (1992) found it to be a better preservative than brine alone, though not as good a bactericide as other preservatives. Other possible explanations for the lack of a preservative effect on the organics include: O M loss was minimal in both treatments or the organic degradation was not aerobic; cell lysis and other physical processes affected solubilisation of the most labile organics while the sediment traps were moored; the treatment of samples after they were retrieved (rinsing and centrifugation) removed the labile organics that may have been preserved differently in the traps.  3.2.4  L i n e a r regressions  A l l linear regressions are model II (functional) geometric mean regressions ( G M R ) , also known as the reduced major axis regression. T h e 95% confidence intervals of the slopes and intercepts are calculated according to Ricker (1984).  Functional regressions are  preferred over the more commonly applied model I (predictive) regression when describing relationships of field data such as reported here (Ricker, 1973, 1984; M a r k and Church, 1977; Laws and Archie, 1981; Sokal and Rohlf, 1995). A property of the G M R line that makes it better for describing the relationship between two variables with similar degrees of natural variability is that, when y is plotted against x, the slope is the inverse of the line obtained when x is plotted against y. For practical purposes, it is useful to know that the slope of the G M R line (mn) can be calculated from the slope of the model I regression (mi): m n = m i / | r | , where r is the correlation coefficient.  T h u s , the slope  of the G M R line is always steeper than the slope of the model I regression line; the  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  58  importance of choosing the proper regression increases as the correlation between two variables decreases. Although the use of G M R is strongly advised for the description of naturally varying data (references above), there remains controversy about the application of model II regression for predictive purposes. Ricker (1973, 1975, 1984) recommends that, in some cases where there is natural variability in a data set, G M regression should be used for both description and prediction, while Sokal and Rohlf (1995, p. 543) discourage the use of model II regressions for any predictive purpose. In the one case where regression is used for predictive purposes (Figures 3.19 and 3.20), the G M R is used.  3.3  Results  3.3.1  C o m p o n e n t s of the mass  flux  To satisfy the mass balance of the total flux, factors to convert organic carbon ( O C ) to total organic matter and A l to total lithogenic material are estimated.  Following  T i m o t h y (1994) and T i m o t h y and Pond (1997), the O M : O C ratio is approximated by assuming a molar O C P ratio of 106:1 (Redfield et al., 1963) and writing the model organic molecule as: ( C H 0 ) i o 6 ( N H 3 ) ( H P 0 4 ) , where x = 106 N : O C For the range of 2  OCN  x  3  ratios observed during the study (7.1 to 15; Figure 3.1), the O M : O C ratio was  2.67 to 2.78.  T h e use of 106:1 for the O C P ratio is an overestimate of the amount of  phosphorus in the sediment-trap samples (unpublished data), but these estimates are not sensitive to the O C P ratio. Figure 3.2 shows the relationship between A l and total lithogenic material ( L M ) . According to these plots, the lithogenic flux was 8.5 - 10% A l . T h e tendency for negative intercepts on the A l axes of Figure 3.2, especially at station SN-0.8, may be caused by the presence of quartz in the samples. Gucluer and Gross (1964) reported quartz in the  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  59  Figure 3.1: O C versus N for the entire data set, showing the range in O O N ratios caught in the traps. Dashed lines in the upper panels are the slopes of the regression lines of the lower figures. Filled circles are summer data, open circles winter data. B y multiplying weight percent N by 12/14, the slope of the regression line gives the mean molar ratio.  6 0  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  F i g u r e 3 . 2 : Al v e r s u s l i t h o g e n i c m a t e r i a l a t e a c h station. T h e l i t h o g e n i c p e r c e n t a g e c a l c u l a t e d a s 1 0 0 - % B S i - ( O M : O C ) % O C - %CaC0 .T h e s o lp e s a r e i n t e r p r e t e d b e n ig t h e a v e r a g e Al c o n t e n t o ft h e s e t t l i n ga l u m i n o s i lc a t e s . 3  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  61  sands and fine laminae of the bottom sediments of Saanich Inlet and X - r a y diffraction analyses (unpublished) indicate the presence of quartz in both sediment-trap and bottom sediments of Saanich and Jervis Inlets. CaCO"3 made only small contributions to the sediment-trap material (on average 2% of the mass flux at stations J V - 3 , J V - 7 and SN-0.8, and 0.8% of the mass flux at station SN-9), as foraminifera and coccolithophorids are rare in waters connecting to the Strait of Georgia. Other sources of C a C 0 3 may have been resuspended fragments of mollusk shells, eroded limestone exposures within the watersheds and, in Saanich Inlet, a cement plant at mid-fjord on the west side (Gucluer and Gross, 1964). Higher carbonate fluxes to the deep trap at SN-0.8 (average of 2.2% and occasionally surpassing 4% of the mass flux) might have been the result of sediment transport from the area of the cement plant.  3.3.2  F l u x e s at t h e h e a d o f S a a n i c h Inlet ( s t a t i o n S N - 0 . 8 )  T h e magnitude and the character of the settling fluxes at the two stations in Saanich Inlet differred dramatically, as the sediment traps at station SN-9 were in a nepheloid region or depocenter affected by resuspended sediments most likely originating from the broad sill at the mouth ofthe inlet (Figure 1.1). Therefore, discussed first are the settling fluxes measured at station SN-0.8 toward the head of Saanich Inlet where the influence of the autochthonous phytoplankton was more apparent. A t station SN-0.8, interannual variability of the mass, B S i , O C and A l fluxes was small during the study (Figures 3.3 through 3.6), so when referring to the entire time series, most of the attention will be given to seasonal patterns and depth variations of fluxes (Figures 3.7 and 3.8, and Table 3.3).  Biogenic  fluxes  Mass fluxes to 50 m at station SN-0.8 (Figures 3.3 and 3.7; Table 3.3) were highest in the spring, decreased in the summer and were low in the fall and winter. O f the primary  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  62  Figure 3.3: Total mass fluxes in Saanich Inlet. T h e gray lines are the curves of Figure 3.7, repeated annually. Pooling both stations and all depths, lost samples represented 9% of the time series and on 1% of the collected samples not all laboratory analyses were performed.  Missing data can be inferred from gaps in the bar graphs. Note that the  range of the ordinate is four times larger for station SN-9 than for station SN-0.8.  63  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  C  O  C  ,  L_, 0  M  5  I (  T  -  O  ,  . 0  i C  ,  , 0  C  ,  L_, O  C  V  i  J  ,  0  , '  i C  T  ,  -  , 0  O  C  ,  L_, O  C  M  i 0  T  ,  , C  -  ,  i 0  O  ,  r  O  ./fep LU jsa 6  L  z  F i g u r e 3.4: B o ig e n c i silica f l u x e s in S a a n c ih I n l e t . The g r a y l i n e s are the c u r v e s of F i g u r e 3.7, r e p e a t e d a n n u a l y . N o t e the d i f f e r e n c e in the s c a e l of the y a x e s for the two s t a t i o n s .  F i g u r e 3.5: O r g a n c i c a r b o n f l u x e s in S a a n c ih I n l e t .T h e g r a y l i n e s a r e t h e c u r v e s F i g u r e 3.7, r e p e a t e d a n n u a l y . T h e r e is a t h r e e f o l ds c a e l c h a n g eb e t w e e n s t a t i o n sf o r O C flux.  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  6 5  c o m p o n e n t s , t h i s p a t t e r n r e s e m b e ld m o s t c l o s e l yt h a t o fB S i ( F i g u r e s 3 . 4 a n d 3 . 7 ) .  m a n i s o u r c eo fa m o r p h o u s silica t oS a a n c ih a n dJ e r v i sI n l e t s is d a it o mf r u s t u l e s , w i t h  n o rc o n t r i b u t i o n sm a d eb ys i l i c o f l a g e la t e s( S a n c e t t aa n d Calvert, 1 9 8 8 ; S a n c e t t a , 1 9 8 9  w h i l e o r g a n c i m a t t e r c a n h a v e t e r r g ie n o u s a n d o t h e r m a r n i e (e.g.;flagellatesa n d z  p l a n k t o n ) s o u r c e s . E v e n w i t h t h e terrestrial c o n t r i b u t i o n s ( s e c t i o n 2 . 4 . 1 ) , O Cfluxesa 5 0 m s h o w e d a s i m i l a r s e a s o n a l p a t t e r n t o t h o s e o fB S i ( F i g u r e s 3 . 5 a n d 3 . 7 )  r o u g h y l r e f l e c t e d t h e y e a r l y c y c l e o f p r m i a r y p r o d u c t i o n ( F i g u r e 3 . 7 ) b y i n c r e a s i n g M a r c h A p r i l a n d d e c r e a s n i g in S e p t e m b e r O c t o b e r .A t lh o u g h t h e d e p o ly m e n t p e r i o d ( ~ 1 m o n t h ) w a st o oo ln gt om e a s u r ec h a n g e s in p l a n k t o nd y n a m c is s h o r t e rt h a n  (e.g.; D e u s e r , 1 9 9 6 ) , t h ea v e r a g e dc u r v e so fF i g u r e3 . 7s h o wap r o n o u n c e dJ u n e J u l y  in t h efluxo f BSi, f o o lw e d b y a s m a l r e b o u n d in A u g u s t . T h e e a r l y s u m m e r d  B S ifluxeso c c u r r e d w h i l e O Cfluxesd e c r e a s e d s l i g h t l y b u t r e m a n ie d n e a r p e a k levels s u p p o r t i n g t h e p o s s i b i l i t y that, d u e t o l i m i t e d n u t r i e n t s u p p l y ,flagellatesp a ly e d a n  c r e a s i n g l y i m p o r t a n t r o l e in t h e e c o o lg y o ft h e p l a n k t o n a f t e r t h e s p r i n g b o lo m t o w  t h e h e a d o f S a a n c ih I n l e t ( T a k a h a s h i e t al., 1 9 7 7 ; H o b s o n , 1 9 8 1 ; P a r s o n s e t al.,  F r a n c o i s , 1 9 8 7 ; S a n c e t t a a n d C a l v e r t , 1 9 8 8 ; H o b s o n a n d M c Q u o d i , in p r e s s ; T m i o a n d S o o n , 2 0 0 1 ) .  W i n t e rfluxeso fB S i t o 5 0 m a t s t a t i o n S N 0 . 8w e r e af a c t o r o f1 0 s m a l e rt h s p r i n gp e a k s , w h i l et h ec o n t r i b u t i o no fB S it ot h em a s sfluxfell f r o mam a x m iu m  t h a n 5 0 % t o a b o u t 1 5 % in t h e w i n t e r ( F i g u r e s 3 . 4 , 3 . 7 a n d 3 . 8 ) .S e a s o n a l v a  in O Cfluxesw e r e s m a l e r ; t h e w i n t e rfluxesw e r e a b o u t 3 0 % o ft h e s p r i n g a n d s u m a x m i a ( F i g u r e s 3 . 5 a n d 3 . 7 ) . T h e p r o p o r t i o n o fO C in t h e s e t t l i n gfluxp e a k e d s u m m e r a t a b o u t 1 5 % in t h e u p p e r t r a p s , a n d d r o p p e d t o 8 % in t h e w i n t e r  s p r i n g ( F i g u r e 3 . 8 ) . O C c o n t e n t s w e r eo lw in t h e s p r i n g w h e nfluxeso fo r g a n c i m w e r eh g ih e s t a ts t a t i o nS N 0 . 8 , t h er e s u l t o f dilution b y BSi.  C h a n g e s influxw i t h d e p t h w e r e m n im i a l f o r B S i a n d O C a t s t a t i o n S N 0 . 8  Chapter 3. Settlingfluxesin Saanich and Jervis Inlets  6 6  t h e fall a n d w i n t e r , b o t h t e n d e d t o n ic r e a s e d w i t h d e p t h , e s p e c i a l y f r o m t h e s  ( 5 0 m ) t o t h e m d id e p t h ( 1 3 5 m ) t r a p s ( F i g u r e 3 . 7 ) .I n t h e s p r i n g a n d s u m m  d e c r e a s e d s l i g h t l y w i t h d e p t h , a s d i d B S i in t h e s u m m e r . H o w e v e r , s p r i n g t i m eflux  B S iw e r e h g ih e s t t ot h e m d id e p t ht r a p s ( F i g u r e3 . 7 ) . A s a t t h e o t h e rs t a t i o n s , t h  flux g e n e r a l yn ic r e a s e d w i t h d e p t h a t s t a t i o n S N 0 . 8 , l a r g e l y d u e t o i n c r e a s i n gflu  l i t h o g e n i c m a t e r i a l in d e e p w a t e r s . T h u s , w h i l e a t 5 0 m t h e m a s sfluxw a s d e t e  m o s t y l b y B S i a n d O Cfluxes,a t d e p t h t h e m a s sfluxw a s m o r e h e a v i l y i n f l u e n c  l i t h o g e n i c d e b r i s ( F i g u r e 3 . 7 ) . C o n t e n t s o fB S i a n d O C in t h e s e t t l i n g m a t e r i a l u s d e c r e a s e d w i t hd e p t h a ts t a t i o n S N 0 . 8 ( F i g u r e3 . 8 ) .  A l u m i n i u m fluxes  W i t h ar e m a r k a b y l r e g u l a r p a t t e r n a n d u n l i k e a t a n y o t h e r station, Alfluxesa t s t a S N 0 8 . w e r eh i g h in t h ew i n t e ra n do lw in t h es u m m e r( F i g u r e s3 . 6a n d3 . 7 ,a n d T h i s s e a s o n a l i t y o c c u r r e d a t all d e p t h s , w h i l e Alfluxesn ic r e a s e d b y a f a c t o r o f  f r o m 5 0 m t o 1 3 5 m a n d w e r e n e a r l y t h e s a m e a t 1 3 5 m a n d 1 8 0 m .  s h o w e d a no p p o s t ie s e a s o n a lt r e n dt ot h em a s sflux,t h ec o n t r i b u t i o nt ot h em a s sf  a l u m i n o s i l c a t e sw a s p a r t i c u l a r l y h g i h in t h e w i n t e r . T h e p r o p o r t i o n o fa l u m i n o s i l c a t e  in t h es i n k i n gp a r t i c l e sa ts t a t i o nS N 0 8 . w a s 1 0 2 0 % in t h es p r i n ga n ds u m m e ra t o m o r e t h a n 5 0 % in t h e w i n t e r ( F i g u r e 3 . 8 ) .  T h e p r o n o u n c e d s e a s o n a l i t y o ft h e Alfluxa t t h e h e a d o fS a a n c ih I n l e t f o o lw e d  o f local rainfall a n dflowsf r o m t h e C o w c ih a n a n d G o d ls t r e a m R i v e r s , a n d e f f e c t i v  r u l e so u tt h eF r a s e rR i v e ra sap o t e n t i a ls o u r c eo fl i t h o g e n i cp a r t i c u l a t em a t t e ra ts  S N 0 . 8b e c a u s eflowf r o mt h eF r a s e rR i v e rp e a k sd u r i n gt h eJ u n ef r e s h e t . T h es o u r c e Al t o S a a n c ih I n l e t a r e d s ic u s s e d in s e c t i o n 3 . 4 . 4 .  6 7  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  CD O  CO O  O O  CD O  CO O  CO O  O O  ^ C\j  -»— C\i  CO •»—'  LO -r^  C\J  T~  CD O  CD O  CO O  O O  ^Aepg.oi iv 6  F i g u r e3 . 6 : A u lm n iu i mfluxesin S a a n c ih I n l e t . T h eg r a yl i n e sa r et h ec u r v e so fF i g u r r e p e a t e d a n n u a l y . T h e r e is a six-fold s c a e l c h a n g e b e t w e e n s t a t i o n s f o r t h e a u lm n i flux.  68  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  ra 3 E  Q.  2  fe o  ra  E  ra "° CM  5  5  4  4  3  3  2  2  1  1  0  0  20  4  15  3  10  2 1 0  v  E  4.5  1.5  3.0  1.0  1.5  0.5  w CQ  o)  0.0  i  1  1  1  i  1~  0.9  1  0.0 0.3  r  \ •a  CM  0.2  0.6  E  O  °  •o  0.1  0.3  o.o  0.0  1.2  0.15  0.8  0.10  E 3  0.05  0.4  0.0  .  J  F  ~i  M  A  1  1  1  1  1  1  M  J  J  A  S  O  1  N  1  D  r n  1  J  1  1  1  1  1  F  M  A  M  J  1  J  i  1  A  S  i  O  i  N  r  0.00  D  F i g u r e 3.7: S e a s o n a y la v e r a g e d s e d m i e n t t r a pfluxes.(totalm a s s , BSi, OC and Al) in S a a n c ih Inlet. The s e a s o n a lp a t t e r n of p r m i a r yp r o d u c t i o n ( F i g u r e 2.8) at e a c hs t a t i o n is i n c l u d e d for c o m p a r s io n . The c u r v e s d e s c r i b i n g thefluxesat d i f f e r e n t d e p t h s w e r e m a d e by g i v i n ge a c h day d u r i n g the t m i es e r e is ( F i g u r e s 3.3 t h r o u g h 3.6) thefluxv a u le m e a s u r e d on t h a t day. The s e r i e s was t h e n s o r t e d by J u l i a n day and a s e v e n d a y s m o o t h n ig was a p p l i e d . N o t e the d i f f e r e n c e in s c a e l b e t w e e n s t a t i o n s .  69  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  8.0  h  1  J  F  1  M  1  A  1  M  1  J  1  1  J  A  1  S  1  1  O  N  1  1  D  J  1  F  1  M  A  1  M  1  J  1  1  J  1  1  A  S  1  O  N  1  D  F i g u r e 3.8: S e a s o n a y la v e r a g e dc o m p o s t io in a lc h a r a c t e r i s t i c s of s e t t l i n gfluxesin S a a n c ih I n l e t . The c u r v e s w e r e c r e a t e d as d e s c r b ie d for F i g u r e 3.7. < 5 C and OC/N are flux-weighted a v e r a g e s .M u l t i p l i c a t i o n of %OC and %A1 by 2.7 and 9.2, r e s p e c t i v g v ie e s t m i a t e s of %OM and % a l u m i n o s i l c a t e s ( s e c t i o n 3 . 3 . 1 ) . 3 1  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  sp  su  SN-9 wi au  annual  sp  mass flux (g m Zl Z2 Z3  6.12 11.3 11.0  7.80 13.4 18.7  5.19 10.1 11.5  3.59 9.50 9.81  5.67 11.1 12.7  su  Zl Z2 Z3  2400 3310 3090  2940 4030 4500  1420 2110 2240  608 1360 1380  Zl Z2 Z3  385 551 451  517 737 744  312 518 468  189 366 330  351 543 498  Zl Z2 Z3  220 560 576  296 646 1060  220 626 649  240 556 659  244 597 735  1.04 2.31 2.45  1.63 2.33 2.40  284 324 324  208 390 351  669 750 680  106 121 162  89.9 132 131  168 177 178  18.9 37.7 39.1  26.1 48.6 62.1  53.7 128 126  33.6 75.1 77.3  -19.5 -19.9 -19.7  -20.6 -21.1 -20.9  -21.9 -22.2 -22.0  -20.0 -20.5 -20.5  8.90 8.76 8.75  9.71 9.45 9.32  9.58 9.74 9.76  9.20 9.16 9.09  d )  2  _ 1  757 756 736 d" )  2  1  250 244 215  A l flux (mg m  0.936 1.41 2.00  1.79 2.11 1.95  1430 1530 1320  O C flux (mg m "  annual  _ 1  2.75 3.51 3.19  1840 2700 2800  SN-0.8 wi au  d )  - 2  B S i flux (mg m ~  70  - 2  228 211 204 d )  35.7 86.2 81.8  _ 1  <5 C 13  Zl  -19.8  -19.6  -20.7  -22.0  -20.2  -20.6  -20.5  -21.2  -22.2  -21.0  Z2  z  3  -19.6 -20.0 -19.9  O C / N (molar) Zl Z2 Z3  8.77 9.18 9.60  8.82 9.21 9.54  10.0 10.5 10.1  9.83 10.4 10.8  9.29 9.73 9.97  8.73 8.94 8.85  T a b l e 3.3: F u lx e s in S a a n c ih I n l e t at e a c hs e d i m e n t t r a pd e p t h (zi, z and z; see T a b l e 3.1 for d e p t h s of traps). V a u le s w e r e o b t a n ie d by a v e r a g n i g the c u r v e s of F i g u r e 3.7 o v e r e a c h s e a s o n a l p e r i o d . 5 C and OC/N w e r eflux-weighted,sp = s p r i n g , su = s u m m e r , au = a u t u m n and wi = w i n t e r . 2  13  3  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  3.3.3  71  F l u x e s at the m o u t h of Saanich Inlet (station SN-9)  Compared to those at station SN-0.8, T h e settling fluxes at station SN-9 inside the sill of Saanich Inlet were many times larger (Figures 3.3 through 3.7; Table 3.3) and the trapped material was rich in A l , depleted in B S i and especially O C - p o o r (Figure 3.8). Fluxes of biogenic silica and organic carbon generally followed autochthonous primary production (high in spring and summer, decreasing in fall and winter; Figures 3.4, 3.5 and 3.7), but the A l fluxes show that resuspension was significant throughout the water column and especially at the deep traps when replacement waters flowed over the sill and into the fjord basin in the summer and fall (Chapter 4). Year-round, fluxes of B S i and O C increased significantly from 45 m to 110 m. From 110 m to 150 m, however, changes with depth were less pronounced (Figure 3.7); on average, B S i fluxes increased slightly, and O C fluxes decreased between these depth intervals (Table 3.3). A l u m i n i u m and mass fluxes increased ~two-fold from shallow to mid-depth traps, but changed little between 110 m and 150 m, except during renewal periods when peaks in A l and mass fluxes were recorded at 150 m (Figure 3.7 and Table 3.3). Thus, it appears that turbulence across the sill (approximately 70 m) regularly delivered sediment to the water column at station SN-9 such that fluxes at 110 m and 150 m were similar while, during renewal events, fluxes to the deep traps were most affected.  % B S i and % O C decreased with depth  year-round at station SN-9 while %AI increased with depth, a sign of water column organic remineralisation and a preponderance of resuspended, reworked sediments in deep sediment traps. Deepwater renewal often overlapped with the period of high primary production at station SN-9 and, therefore, resuspended fluxes of B S i and O C clouded the sediment-trap signal of surface ecology. T h e resuspended fluxes tended to peak during the second half of the production season, broadening the biogenic flux maxima into the late summer and  72  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  fall. U p w a r d t r a n s m s is o i n of the r e s u s p e n s o in s i g n a l was c o m m o n and e x a m p e ls of the e f f e c t on BSi and OCfluxesare the s u m m e r f a lp e r o id s of 1984,  1985  and 1986. D u r i n g  one or m o r ed e p o ly m e n t sw i t h i nt h i sp e r i o d of e a c hy e a r , Alfluxesw e r ee s p e c i a l yh i g ha 150 m and d e c r e a s e d u p w a r d ( F i g u r e 3.6).  The BSi and OCfluxes( F i g u r e s 3.4 and  3.5)  b e h a v e d similarly, but t h e i rr e s u s p e n s o in s i g n a l sw e r en e a r l yl o s tw i t h i n the s e a s o n a lc y c of s u r f a c ee x p o r td e l i v e r e d to the m d id e p t h and s h a o lw t r a p s . D e s p t ie the c o m b n ie d and l a r g e i n f l u e n c e s of b o t h local p r o d u c t i o n and r e s u s p e n s o in , the y e a r l y c y c e ls of BSi OCfluxes( F i g u r e s 3.4 and 3.5) at s t a t i o n SN-9.  and  w e r ev e r yr e g u l a r at all d e p t h st h r o u g h o u t the t i m es e r i e s  T h u s ,w i t h o u tr e c o g n s in i g the e x t e n t of r e s u s p e n s o in at t h i s location, the  BSi and OCfluxp a t t e r n s c o u d l be i n t e r p r e t e d as p r m i a r y p r o d u c t i o n s i g n a l s . C h a p t e r 4p r o v d ie s am o r e d e t a i l e d d e s c r i p t i o n of the r e s u s p e n d e dfluxesin S a a n c ih and J e r v i s I n l e t s . 3.3.4  F l u x e s i n Jervis Inlet  The n a t u r e of the s e t t l i n gfluxesat the two m o o r n ig s i t e s in J e r v i sI n l e t (JV-3  and  JV-7)  w e r e s u f f i c i e n t l y s i m i l a rt h a t t h e y are d s ic u s s e d t o g e t h e r .  Biogenic  fluxes  As in S a a n c ih Inlet, m a s s , BSi and OCfluxesto the 50 m s e d m i e n t t r a p s in J e r v i s I n l e t f o o lw e d local p r m i a r y p r o d u c t i o n , i n c r e a s i n g in M a r c h A p r i l and d e c r e a s n i g in S e p t e m b e r O c t o b e r ( F i g u r e s 3.9,  3.10,  3.11  and 3 . 1 3 ) . BSifluxesv a r i e d by a f a c t o r of  ~20 at the 50 m t r a p s in J e r v i s Inlet, w h i l e OCfluxesat s t a t i o n s JV-3  and JV-7  v a r i e d by  f a c t o r s of ~3 and ~5, r e s p e c t i v e l y ( F i g u r e 3 . 1 3 ) . A g a i n , the s m a l e r s e a s o n a l v a r i a t i o n s in OCflux( c o m p a r e d w i t h BSifluxes)w e r e due to the w i n t e r t i m e p r e s e n c e of terrestial OC (see s e c t i o n 3 . 4 . 2 ) and to the l i k e l i h o o d t h a tflagellatesw e r e l a r g e r c o n t r i b u t o r s to the m a r n i e OCfluxin the w i n t e r .  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  1985  1986  1987  1988  1989  1985  1986  73  1987  1988  1989  Figure 3.9: Total mass fluxes in Jervis Inlet. T h e gray lines are the curves of Figure 3.13, repeated annually. Pooling both stations and all depths, lost samples from all or part of a mooring represented 11% of the time series in Jervis Inlet and all analyses were performed on all collected samples. Missing data can be inferred from gaps in these bar graphs. A t both stations in Jervis Inlet, biogenic silica, organic matter and lithogenic debris all comprised >50% ofthe mass flux at certain times and depths (Figure 3.14). Organic matter often comprised a significant fraction of the settling debris at 50 m, but the seasonal pattern of O C content did not follow the pattern of O C flux (Figures 3.13 and 3.14). In fact, at station J V - 3 , O C content was inversely related to O C flux at the 50 m traps. T h e A l fluxes at this location were very low year-round (Figure 3.12), as were the B S i fluxes in the winter. Thus, in the fall and winter, organic matter remained the  74  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  1985  1986  1987  1988  1989  1985  1986  1987  F i g u r e 3.10: B o ig e n c i silica f l u x e s in J e r v i s I n l e t . The F i g u r e 3.13, r e p e a t e d a n n u a l y .  1988 1989  g r a y l i n e s are the  c u r v e s of  d o m n ia n t c o n s t i t u e n t of the m a s s f l u x e v e n t h o u g h OMfluxesw e r e m i n i m a l . I n d e e d , w i n t e r t i m e m a s sfluxesat the s h a o lw t r a p s of s t a t i o n JV-3 s e r e is ( T a b l e s 3.3 and 3.4),  w e r e the o lw e s t of the t i m e  r e f l e c t i n g the s m a ll i t h o g e n i c and d a it o m a c e o u sc o n t r i b u t i o n s .  In g e n e r a l , the m a g n t u id e of the BSifluxeswas s i m i l a r f r o m y e a r to y e a r and  the  s e a s o n a l i t y was c l e a r at al d e p t h s ( F i g u r e 3 . 1 0 ) . A t lh o u g h s p r i n g and s u m m e r flux w e r e r e l a t i v e l y c o n s t a n t w i t h d e p t h , in the a u t u m n and w i n t e r BSifluxesn ic r e a s e d  w i t h d e p t h ( F i g u r e 3 . 1 3 ) , p o s s i b l y due to r e s u s p e n s o in of BSi-rich s e d m i e n t s . D u r i n g  s p r i n g and s u m m e r , t h e r ew e r e p e r o id sw h e nfluxesof b o ig e n c i silica d e c r e a s e d and t h e n r e b o u n d e d ( F i g u r e 3 . 1 0 ) . T h e s e f l u c t u a t i o n s a lg g e d the e a r y ls u m m e r lulls in p r i m a r y p r o d u c t i o n ( C h a p t e r 2) by a b o u t two to f o u r w e e k s ( F i g u r e 3 . 1 3 ) . If the s u m m e r m t i e d r o p s in the two t i m e s e r e is are not c a u s e d by s a m p e l b i a s i n g and are not an artifact  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  7 5  o ft h e a v e r a g n ig s c h e m e s , t h e n t h i s l a gi m p l i e st h a t t h e e a r y ls u m m e r lull in p r o d u  r e s u l t e d in a d e c r e a s e in t h e B S iflux( a n d O Cflux;s e e F i g u r e 3 . 1 3 ) s e v e r a l w e e k s  S a n c e t t a ( 1 9 8 9 a ) f o u n de v d ie n c eo fn ic r e a s e d g r a z i n g in J u l y a n d A u g u s t in S a a n c ih  J e r v i sI n l e t s ,w h i l eS a n c e t t a( 1 9 8 9 b )s h o w e dt h a tf e c a lp e le t sa n dB S ifluxesw e r er e d u  a t t h i s t i m e ; if g r a z i n g w a s t h e c a u s e o ft h e m d is u m m e r p r o d u c t i o n lulls, it m a y  r e s u l t e d in s m a e lrfluxeso fB S it ot h es e d m i e n tt r a p s . F e c a lp e le t sa r ei m p o r t a n tv e c  o fd o w n w a r d t r a n s p o r t , b u t g r a z i n gc a n d e c r e a s e t h e a m o u n t o fm a t e r i a l e x p o r t e d f  t h ee u p h o t c i z o n ea sf e c a lp e le t sa r el a r g e l yd e c o m p o s e d in t h ew a t e rc o u lm n ( S m e  1 9 8 0 b ; J u m a r se t al., 1 9 8 9 ; S a n c e t t a , 1 9 8 9 b ; N o j ie t al., 1 9 9 1 )a n dg r a z i n gb yz o o p  (e.g.; H a r r i s o n e t al., 1 9 8 3 ; B o r n h o l d , 2 0 0 0 ) a n d h e t e r o t r o p h i c d i n o f l a g e l a t e s ( J a c o b s o  a n d A n d e r s o n , 1 9 8 6 ; B u c k a n d N e w t o n , 1 9 9 5 ; T i s e l i u s a n d K u y l e n s t i e r n a , 1 9 9 6 ) c o n t r o l d a it o mg r o w t h , b o im a s s a n d , u l t i m a t e l y , e x p o r t flux.  T h e s e a s o n a l i t y o f t h e O Cfluxesd a m p e n e d s i g n i f i c a n t l y w i t h d e p t h ( F i g u r e s 3 . 1  a n d 3 . 1 3 ; T a b l e 3 . 4 ) .A t lh o u g h f o r m o s t d e p t h i n t e r v a l s in J e r v i s I n l e t O Cfluxe  m a n ie d r e l a t i v e l y c o n s t a n t , f r o m 5 0 m t o 2 0 0 m a t s t a t i o n JV-7, t h e s u m m e r  fluxes d e c r e a s e ds u b s t a n t i a ly ,w h i l ea t4 5 0mt h es e a s o n a lc y c l ew a sa b s e n t ( F  a n d 3 . 1 3 ) . I n 1 9 8 5 a n d 1 9 8 6 a t s t a t i o n JV-7, t h e s p r i n g a n d s u m m e rfluxeso fO  mw e r e s i g n i f i c a n t l yh g ih e rt h a nt h es e a s o n a l m e a n , a t lh o u g ht h e d e e p e r O Cfluxes  s i m i l a rt o o t h e r y e a r s ( F i g u r e 3 . 1 1 ) . P r m i a r y p r o d u c t i o n w a s a s lo h i g h in 1 9 8 6 ( s e  2 . 4 . 1 ) , b u t t h eh i g hO Cfluxesa t 5 0mw e r en o t a c c o m p a n e id b yB S i ( F i g u r e s3  h g ih O Cfluxes,t h e r e f o r e , m a yh a v e b e e n c a u s e d b yt h e d e p o s i t i o no fn o n d a it o m a c e  p h y t o p a ln k t o n c a u g h t a t 5 0 m a n d l a r g e l y r e m i n e r a l i s e d o r laterally t r a n s p o r t e d b e  s i n k i n g t o t h e d e p t h o f 2 0 0 m . I f lateral t r a n s p o r t w e r e t o h a v e c a u s e d t h e s e  influxb e t w e e n 5 0 m a n d 2 0 0 m , t h e n t h e h o r i z o n t a l g r a d i e n t s in t h e e x p o r tf  h a v e b e e n v e r y l a r g e (e.g.; S i e g e l a n d D e u s e r , 1 9 9 7 ; T m i o t h y a n d P o n d , 1 9 9 7 ) . B  h g ih p r m i a r y p r o d u c t i o n in 1 9 8 6 w a s r e c o g n s ie d a t t h e o t h e r s t a t i o n s , it is likely  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  7 6  CO  •o CvJ  E  o o  1985  1986  1987  1988  1989  1985  1986  1987  1988  1989  F i g u r e 3 . 1 1 : O r g a n c i c a r b o nfluxesin J e r v i s Inlet. T h e g r a y l i n e s a r e t h e c u r v e s F i g u r e 3 . 1 3 , r e p e a t e d a n n u a l y .  p r o d u c t i o ns i g n a lo f1 9 8 6w a sar e g i o n a le v e n ta n dh o r i z o n t a lg r a d i e n t s in t h ee x p o  w e r en o ts i g n i f i c a n t l yd i f f e r e n tt h a n in o t h e ry e a r s . L a t e r a lt r a n s p o r t , t h e r e f o r e ,p r o b a b  d i d n o t c a u s e t h el a r g ed e p t h c h a n g e s in O Cfluxesb e t w e e n 5 0 m a n d 2 0 0m .  s u g g e s t st h a tflagellatesw e r e r e l a t i v e l ym o r ea b u n d a n t a ts t a t i o n J V 7t h a na tt h eo  m o o r n ig sites; t h u s , b o lo m s o fp h y t o p a ln k t o n o t h e r t h a n d a it o m s c o u d l e x p l a i n t h e  fluxes t o t h e s h a o lw t r a p s in 1 9 8 5 a n d 1 9 8 6 . H o w e v e r , a n o t h e r possibility f o  O Cfluxesis t h a ts 'w m i m e r s ' w e r e a t t r a c t e d t ot h e 5 0ms e d m i e n t t r a p sd u r i n gt h  m e r s o f 1 9 8 5 a n d 1 9 8 6 . B o lo m s o fp e l a g i c p o y lc h a e t e s w e r e s o m e m t i e s o b s e r v e d d  t h ee x p e r m i e n t a n dt h e yw e r eo c c a s i o n a l yc a u g h tw i t h i nt h eg r i d so ft h es e d m i e n tt  P e r h a p s t h eh i g hO Cfluxesw e r e in f a c tp o y lc h a e t er e m a i n s . C o r r e l a t i o n sb e t w e e n r e s u a l s o fp r m i a r y p r o d u c t i o n a n d o fs e d i m e n t t r a pfluxh a v e b e e n d e t e r m n ie d a n d it  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  77  found that at all stations, B S i flux residuals were not strongly correlated with the production residuals. A t stations SN-9, SN-0.8 and J V - 7 , O C flux residuals and production residuals also were not significantly correlated but, at station J V - 7 , there was a positive relationship between these residuals (Figure 3.15), lending support to the possibility that the high 50 m O C fluxes of 1985 and 1986 were the result of flagellate blooms.  A l u m i n i u m fluxes A t both stations in Jervis Inlet, A l flux (Figures 3.12 and 3.13) and A l content ure 3.14) increased with depth.  (Fig-  A l fluxes showed little seasonality, except that A l as-  sociated with turbulent resuspension during deepwater renewals in the fall was caught in the deeper traps (Chapter 4).  50-m A l fluxes were "smallest at station J V - 3 , as the  mooring was within a large basin and was farther from riverine sources than station J V - 7 (Figures 1.1 and 1.3).  A l fluxes in Jervis Inlet were a good tracer of 'additional' fluxes,  which are discussed in more detail in Chapter 4. T h e high A l fluxes in the fall of 1985 and recorded for station J V - 3 (Figure 3.12) occurred when the traps at the mouth of Jervis Inlet were moored at station JV-11.5 (Figures 1.1 and 1.3; Table 3.1).  A t 50 m and 300 m, the total flux did not deviate  substantially from the seasonal averages but, at 600 m, the traps at station JV-11.5 collected a large amount of Al-rich material (Figures 3.9 and 3.12). A l t h o u g h there was a deepwater renewal occurring at the time (Chapter 4) and similarly high fluxes might have been recorded at station J V - 3 , the high fluxes at 600 m at station JV-11.5 may have been caused by localised slumping or resuspension and, therefore, may not represent the fluxes that were occurring at station J V - 3 .  78  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  0.15 0.10 0.05 0.00 0.10 0.05 is  <  o.oo  600 m  0.35  450 m  J  0.30 0.25 0.20 0.15 0.10 0.05 0.00  1985  1986  1987  1988  1989  1985  1986  1987  1988  1989  F i g u r e3 . 1 2 : A u lm n iu i mfluxesin J e r v i sI n l e t . T h eg r a yl i n e sa r et h ec u r v e so fF i g u r e r e p e a t e d a n n u a l y .  79  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  JV-7  1  1  1  ~i  r  - 50 m • 200 m - 450 m  1  r  1 o  i  i  r  i  0.9  0.6  0.3 0.0 0.3  0.2  0.1  0.0  "T  1  r  0.18  "°  CM  0.12  E <  cn  0.06  0.00 J  i  F  i  M  1  A  1  M  1  J  1  J  1  A  1  S  1  O  1  N  1  D  r—i  J  1  F  1  M  1  A  1  M  1  J  i  i  J  i  A  i  S  O  i  N  i  D  r  F i g u r e 3.13: S e a s o n a y la v e r a g e d s e d i m e n t t r a pfluxes(total m a s s , BSi, OC and Al) in J e r v i s I n l e t . The s e a s o n a l p a t t e r n of p r m i a r y p r o d u c t i o n ( F i g u r e 2.8) at e a c h s t a t i o n is i n c l u d e d for c o m p a r s io n . The c u r v e s d e s c r i b i n g thefluxesat d i f f e r e n t d e p t h s w e r e m a d e by g i v i n g e a c h day d u r i n g the t m i e s e r i e s ( F i g u r e s 3.9 t h r o u g h 3.12) the flux v a u le m e a s u r e d on t h a t day. The s e r e is was t h e n s o r t e d by J u l i a n day and a s e v e n d a y s m o o t h n ig was a p p l i e d .  8 0  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  F i g u r e3 . 1 4 : S e a s o n a y la v e r a g e dc o m p o s t io in a lc h a r a c t e r i s t i c so fs e t t l i n gf l u x e s in J e r v i s I n l e t . T h e c u r v e s w e r e c r e a t e d a s d e s c r b ie d f o r F i g u r e 3 . 1 3 . 5C a n d OC/N flux-weighted a v e r a g e s .M u l t i p l i c a t i o n o f % O C a n d % A 1 b y 2 . 7 a n d 8 g v ie e s t m i a t e s o f% O M a n d %a l u m i n o s i l c a t e s ( s e c t i o n 3 . 3 . 1 ) . 1 3  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  sp  su  JV-3 wi au  annual  81  su  JV-7 wi au  annual  1.21 1.24 1.61  0.762 0.955 1.83  0.688 0.894 1.66  1.05 1.11 1.72  181 231 349  78.1 90.3 227  311 313 392  222 127 116  110 87.8 122  93.3 80.3 111  173 104 116  25.8 41.7 71.7  12.5 26.8 53.3  27.1 40.4 85.5  31.9 51.7 85.4  24.3 40.2 74.0  sp  mass flux (g m" d" 2  Zl Z2 Z3  1.61 1.90 2.36  1.27 1.71 2.49  0.743 1.03 2.77  0.521 1.02 1.90  1.04 1.42 2.38  1.56 1.37 1.78  B S i flux (mg m Zl Z2 Z3  875 769 800  598 647 725  224 273 580  460 471 611  147 196 337  2  d" ) 1  535 474 519  450 456 472  O C flux (mg m" d" ) 2  Zl Z2 Z3  174 141 136  173 157 162  150 107 161  80.6 99.5 121  144 126 145  268 120 113  1  A l flux (mg m - d" 2  Zl  z z  2  3  16.3 54.1 85.3  10.8 46.0 99.0  14.5 41.4 141  16.0 51.2 100  14.4 48.2 107 6 C 13  Zl  i  -21.7  -21.0  -22.5  -22.5  -21.8  -22.4  -21.6  -23.7  -23.2  -22.5  -21.7  -21.0  -21.8  -22.1  -21.6  -22.3  -21.7  -22.6  -23.1  -22.4  9.19 9.82 10.1  10.1 10.5 10.2  9.52 10.9 10.6  9.36 10.2 10.3  Z2  z  3  O C / N (molar) Zl Z2 Z3  9.53 10.0 10.2  9.66 10.0 10.3  10.2 10.3 9.93  11.0 10.4 10.4  10.1 10.2 10.2  8.83 9.63 10.3  Table 3.4: Fluxes in Jervis Inlet at each sediment-trap depth (zi, z and z ; see Table 3.1 2  3  for depths of traps). Values were obtained by averaging the curves of Figure 3.7 over each seasonal period. <5 C and O C / N were flux-weighted, 13  au = autumn and wi = winter.  sp = spring, su = summer,  Chapter 3.  Settling fluxes in Saanich and Jervis Inlets  1.5  1  I  1  82  1  • • •  1.0  nj •g  E  •  •  0.5  • •  • • •  • •  • * 1*- •  •  * *  m^ m  • i  -1.0  -0.5  0.0  r = 0.47 1  1  1  0.5  1.0  1.5  2.0  production residual  Figure 3.15: Production and 50 m O C flux residuals at station J V - 7 . Production residuals are the average of the production measurements at the beginning and end of each deployment minus the average for the deployment period from the curve of Figure 2.8. F l u x residuals are values of Figure 3.11 minus the appropriate portion of the curve of Figure 3.13.  Residuals are normalised to the mean production or O C fluxes for each  deployment period.  3.4  Discussion  3.4.1  O C - B S i relationships  Figure 3.16 shows settling fluxes of organic carbon plotted against fluxes of B S i . T h e data are separated into 'summer' and 'winter' regimes. For the landward stations (SN-0.8 and JV-7) in 1986, Sancetta (1989b) found that fecal pellets in the traps deployed between A p r i l and September were pale green, while the pellets trapped between October and March were brown. She suggested the reason was not only changes in the zooplankton community, but also a shift from organic-rich to detrital sources of energy for the grazers. These time intervals (April-September, October-March) were used for the seasonal separation of the data in Figure 3.16. T h e slopes of Figure 3.16 are interpreted as average ratios ofthe diatomaceous O C and  83  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  •  shallow  •  middle  filled = summer  •  deep  hollow = winter  60 JV-7  50 40 30  ,' w: 1^=0.59 OC = 1.2 BSi + 4.6  20 R o o , n  10  =0.18  s: OC = 0.84 BSi + 4.8; r*=0.25 i  10 120  •  1 1  i  i  1 1 1  1  1  i  1  15  1  1  1  i  1  20  1  1  40  '  I  '  1  1  1  i  1  1  1  1  i  1  1  i  i  i  15  10 '  1 1  i  1 1  20  1  s: OC = 0.63 BSi + 8.2; r*=0.61  s: OC = 0.85 BSi + 4.5; 1^=0.72  100  i  0  25  i  i  w: OC = 1.7 BSi + 2.5; ^=0.53 \  T  w: OC = 1.3 BSi + 3.0; 1^=0.75  80 60 40 20 0  I  0  20  40  i  i  i  I  60  i  i  i  I  80  100  30  120 2  40  ^1-1  mmol B S i m d  F i g u r e 3.16: OC f l u x e s v e r s u s BSi f l u x e s .D a t a f r o m s u m m e r (s) and w i n t e r (w) w e r e s e p a r a t e d . P o i n t s w i t h i n d o t t e d r e g o in sw e r e not i n c l u d e d in r e g r e s s i o n s .  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  84  B S i ( O C d : B S i ratios) for the material reaching the sediment traps. These molar ratios (approximately 1) are much lower than the O C : B S i ratio of about 7.7 for living diatoms d  (Brzezinski, 1985) and are indicative of intensive recycling of diatomaceous carbon relative to B S i . Glycine and serine are concentrated in the cell walls of diatoms (Hecky et a l , 1973), and studies (Burdige and Martens, 1988; Cowie and Hedges, 1992) have shown these amino acids to have a longer residence time in the marine environment than intracellular amino acids, suggesting preferential preservation of the cell wall proteins.  Not  only will zooplankton grazing and cell lysis cause preferential loss of O C relative to B S i , dinoflagellates that phagocytise (Buck and Newton, 1995; Tiselius and Kuylenstierna, 1996) or extracellularly digest (Jacobson and Anderson, 1986) diatom chains while leaving the frustules intact also provide an efficient means to produce low O C d i B S i ratios in sinking material. T h e intercepts of Figure 3.16 indicate that a significant portion of the settling organic material in Saanich and Jervis Inlets was non-diatomaceous.  The  non-diatomaceous O C would have been composed of both terrestrial O C and marine O C from sources such as nanoflagellates, dinoflagellates, heterotrophic plankton including bacteria, and transparent exopolymer particles ( T E P ; Alldredge et al., 1993).  3.4.2  M a r i n e a n d t e r r i g e n o u s O C fluxes  Figures 3.17 and 3.18 show the time series of <5 C at each station during the study (only 13  at SN-0.8 were the mid-depth samples analysed for  1 3  C/  1 2  C ) . T h e isotopic signatures,  summarised in Figures 3.8 and 3.14, and in Tables 3.3 and 3.4, were heavy in spring and summer and light in autumn and winter. In their seminal work, Sackett and T h o m p s o n (1963) noted that terrestrial plants are enriched in  1 2  C (isotopically light or 5 C 13  values  that are more negative) when compared to marine plants, and suggested that the progressively heavier isotopic composition of sediments away from the mouth of the Mississippi River is the result of a decreasing presence of terrigenous O M . A l t h o u g h these data have  Chapter 3. Settlingfluxesin Saanich and Jervis Inlets  85  since been reinterpreted based on contributions to marine sediments by degraded, isotopically heavy, terrestrial C 4 grasses (Gohi et al., 1997; Gofii et al., 1998), in the Pacific Northwest, C 4 plants are rare (Teeri and Stowe, 1976). Indeed, changes in particulate f5 C due to variable proportions of marine and terrestrial organics are consistent with the 13  trends of marine and terrestrial biomarkers in Saanich Inlet (Cowie et al., 1992) and the Washington margin (Prahl et al., 1994). However, marine and terrestrial organic (5 C 13  endmembers vary regionally (Prahl et ab, 1994), so that 8 C endmembers appropriate l3  for Saanich and Jervis Inlets should be determined if the <5 C data are to be used to 13  separate terrestrial from marine organics. Cowie (unpublished) has measured r5 C on soils collected from the banks of Saanich 13  Inlet and Jervis Inlet. From his data, a best estimate for the organic matter of soils is -25.1°/oo in Saanich Inlet and -26.5°/oo in Jervis Inlet. These values are within the general range expected for terrestrial C 3 plants (Deines, 1980) and are saddled by the terrestrial (5 C endmember (-25.7°/oo) used by Prahl et al. (1994) to describe C o l u m b i a River basin 13  sediments. T h e different endmembers observed for the fjords might be explained by the biogeoclimatic zones they occupy. Jervis Inlet is located in the coastal western hemlock ( C W H ) zone which covers most of the coast of British Columbia, penetrating into Alaska to the north and along the coasts of Washington and Oregon to the south (Pojar et al., 1991). T h e C W H zone is the rainiest biogeoclimatic zone of British C o l u m b i a with a cool, mesothermal climate where nutrient leaching from the mineral soils is rapid (Pojar et al., 1991). Saanich Inlet and portions of the Cowichan River watershed are located in the coastal Douglas-fir ( C D F ) zone, a stretch of low-elevation terrain covering the southeastern coast of Vancouver Island and many islands of the southern Strait of Georgia (Nuszdorfer et al., 1991). T h e C D F zone is in the rainshadow of Vancouver Island and the Olympic mountains, and is warmer and drier than the C W H zone (Nuszdorfer et al., 1991). Given the differences in the biogeoclimatic zones of these fjords, it is reasonable  Chapter 3. Settlingfiuxesin Saanich and Jervis Inlets  Figure 3.17:  86  8 C of the trapped organic matter of Saanich Inlet. C a r b o n isotopes were l3  not measured on sediments trapped at mid-depth at station SN-9. T h e gray lines are the curves of Figure 3.8, repeated annually.  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  i  '"i  JV-3  i  __  —  i  _  1  -_  I  I  i  1  1  '  I  Figure 3.18:  1987  1988  1989  1 .  I"  1  -  4 5 0 m  600 m ; 1986  '"i  _ I  __ :  1985  1 .  1  50 m  -  I  i  "  JV-7  50 m I  87  '.  "1985  1986  1987  : 1988  1989  r5 C of the trapped organic matter of Jervis Inlet. C a r b o n isotopes were 13  not measured on samples collected at the mid-depth traps. T h e gray lines are the curves of Figure 3.14, repeated annually. to expect that the residence time of the O M in the soils surrounding Saanich Inlet is longer than that for the O M of Jervis Inlet soils. T h e potential of a longer soil residence time and the warmer temperatures of the C D F zone may promote a greater degree of O M recycling within the Saanich Inlet/Cowichan Valley watershed, resulting in heavier terrestrial S C 13  (5 C 13  as  1 2  C is preferentially respired.  of marine O C varies significantly, but a median value at temperate  latitudes  is about -20°/oo (Deines, 1980). During photoautotrophic carbon fixation, the resulting isotopic composition of the phytoplankton is affected by <5 C of the dissolved inorganic 13  carbon pool and a number of physiological and environmental factors that affect biological fractionation (for a summary, see Kukert and Riebesell, 1998). (1988a) measured S C 13  Indeed, Hedges et al.  on plankton tows from D a b o b Bay and found values ranging  between -26.0°/oo and - 1 9 . 5 ° / o o , Kukert and Riebesell (1998) found that <5 C of suspended 13  P O C increased from -25%o  Skeletonema costatum  to -20°/oo throughout the spring bloom of predominantly  in the Norwegian fjord Lindaspollene, and R a u et al.  (2001)  8 8  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  a t t r i b u t e d f l u c t u a t i o n s in 5C o fp a r t i c u l a t e O C b e t w e e n a b o u t 2 8 ° / o o a n d 1 6 ° / o o 1 3  M o n t e r e yB a y , C a l i f o r n i at ov a r i a b l ep h o t o s y n t h e t c i Cf r a c t i o n a t i o n . F o rt h es e d m i e n t 1 3  t r a p s a m p e ls f r o m S a a n c ih a n d J e r v i s I n l e t s , t h e c o r r e l a t i o n s b e t w e e n 5 C a n d 13  c o n t e n t ( F i g u r e3 . 1 9 ) w e r e u s e d t oe s t m i a t et h em a r n ie < 5 Ce n d m e m b e r so f1 7 . 3 ° / o o 3 1  S a a n c ih Inlet, a n d 1 9 . 6 ° / o o in J e r v i s I n l e t ( A p p e n d x i A). D u r i n g c a r b o n a s s i m i l a t i o p h y t o p a ln k t o n f r a c t i o n a t e Cf r o m Ce ls s e f f e c t i v e l y ( b e c o m n ig i s o t o p i c a ly h e a v i e r ) 1 2  1 3  a s g r o w t h r a t e n ic r e a s e s a n d [C0] d e c r e a s e s ( L a w s e t al., 1 9 9 5 ; B i d i g a r e e t al., 2a q  B u r k h a r d te t al., 1 9 9 9 ; Tortell e t al., 2 0 0 0 ) . F u r t h e r m o r e ,d a it o m sa r ei s o t o p i c a ly h e a t h a n o t h e r p h y t o p a ln k t o n ( F r y a n d W a i n r i g h t , 1 9 9 1 ; P a n c o s t e t al., 1 9 9 7 ; K u k e r t  R i e b e s e l, 1 9 9 8 ; R e i n f e l d e r e t al., 2 0 0 0 ) , a s a r e l a r g e c e ls w h e n c o m p a r e d t o s m a  ( P a n c o s t e t al., 1 9 9 7 ; P o p p e t al., 1 9 9 8 ) .T h u s , w h e n t h e p h y t o p a ln k t o n o f S a a n c i I n l e t a r e c o m p a r e d t o t h o s e o fJ e r v i s I n l e t , h g ih e r g r o w t h r a t e s ( a s i n f e r r e d f r o m  n u t r i e n ts u p p y l a n dp r m i a r yp r o d u c t i o n{ C h a p t e r2 ;T m i o t h ya n dS o o n ,2 0 0 1 } ) , ag r e  p r e d o m n ia n c eo fd a it o m s ( S a n c e t t a , 1 9 8 9 a ; 1 9 8 9 b ; C h a p t e r 2 ; T m i o t h y a n d S o o n , 2 0  a n d l a r g e rd a it o m s ( S a n c e t t a , 1 9 8 9 a ) c o u d l e x p l a i nt h e h e a v e ir m a r n ie < 5 C e n d m e m 3 1  in S a a n c ih I n l e t .  T h e l a r g e d i f f e r e n c e b e t w e e n t h e s e m a r n ie < 5 C e n d m e m b e r s f o r S a a n c ih a n d J e 3 1  I n l e t s ( 1 9 6 .% o t o -17.3°/oo) a n d < 5 C o ft h en e t t o ws a m p e ls f r o mD a b o b B a y (-2 3 1  t o1 9 . 5 % o ; H e d g e se t al, 1 9 8 8 a ) a n do f filtered P O Co fL i n d a s p o l e n e ( 2 5 % o t o-  K u k e r t a n d R i e b e s e l, 1 9 9 8 ) m u s t b e a d d r e s s e d , a s it is difficult t on iv o k e l a r g e r e  d i f f e r e n c e s in p l a n k t o n 5C f o rt h e s es i m i l a re n v r io n m e n t s . T h es i z e f r a c t i o n a t e ds a m p e ls 1 3  o fH e d g e s e t al. ( > 6 4 pm) a n d K u k e r t a n d R i e b e s e l ( < 2 0 pm a n d > 2 0 pm  s u s p e n d e d m a t e r i a l , w h i l e t h i s s t u d y s a m p e ld t h e s i n k i n g m a t e r i a l . K u k e r t a n d R i e b  sell ( 1 9 9 8 ) f o u n d t h e > 2 0 pm s i z e f r a c t i o n ( p r e d o m n ia t e y l d a it o m s ) t o b e s e v e r a  m i l h e a v e ir t h a n t h e < 2 0 pm s i z e f r a c t i o n ( m o s t y l flagellates)a n d , f u r t h e r m o r e , t h  f o u n d h e a v e is t v a u le s w h e n p a r t i c u l a t e O C c o n c e n t r a t o in s (i.e.; Skeletonema b o im a s s )  89  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  O CO  "to  shift of 5 C d u e t o non-diatomaceous, marine O M 13  o  co  ""to  shift of 8 C d u e t o non-diatomaceous, marine O M 13  10  20  30  40  50  60  70  80  90  100  %BSi F i g u r e 3.19: < 5 Cv e r s u s %BSi in S a a n c ih and J e r v i sI n l e t s . W i t he s t m i a t e s of the t e r r i g e n o u s < 5 C e n d m e m b e r s , t h e s e c o r r e l a t i o n s are u s e d tofindthe m a r n ie 5 C e n d m e m b e r in e a c h fjord. The e q u a t o in s of the r e g r e s s o in s and the way t h e y are u s e d in t h i se x e r c s ie is e x p a ln ie d in A p p e n d x i A. 3 1  3 1  13  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  90  terrigenous O C % of total O C at shallow trap  SN-9 SN-0.8 JV-3 JV-7  sp  su  au  wi  annual  32  30  43  61  37 35 32 41  29  28  42  59  31  20  43  43  40  29  59  53  Table 3.5: Terrigenous O C in Saanich and Jervis Inlet. These estimates were made using <5 C of Tables 3.3 and 3.4, and the marine and terrigenous r5 C endmembers of -17.3°/oo 13  and - 2 5 . 1 ° /  13  0 0  in Saanich Inlet, and -19.6%o and -26.5°/oo in Jervis Inlet.  were highest. T h e isotopically heavy values associated with the large size fraction at the peak and end of the bloom (-21°/oo to -20°/oo; Kukert and Riebesell, 1998) are the most likely signals to be transmitted to the settling flux, significantly decreasing the apparent discrepancy between the marine <5 C endmembers identified here (Table A . l ) and 13  the time-course of particulate O C <5 C in Lindaspollene. T h e sediment-trap samples also 13  represent material that was likely recycled to some degree, and therefore potentially fractionated towards heavier values, as  1 3  C accumulates in higher trophic levels (DeNiro and  Epstein, 1978; W a d a et al., 1987). Finally, just as terrigenous organic debris contributes to the settling fluxes in coastal environments, it is likely to be suspended throughout the water column so that the records of Kukert and Riebesell (1998) and Hedges et al. (1988a) may be somewhat lighter than if only marine O M had been sampled. T h e net tow samples from D a b o b Bay did not contain microscopically visible vascular plant debris (Hedges et al., 1988a), but flocculated terrestrial humic substances (Sholkovitz, 1976) are likely present in all these fjords.  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  91  total primary production (diatom production) mg C m" d 2  1  sp  su  au  wi  annual  SN-9  2740 (2160)  2880 (2280)  609 (481)  119 (94)  1580 (1250)  SN-0.8  1390 (1100)  2160 (1710)  621 (491)  207 (164)  1090 (861)  JV-3  1600 (1120)  1650 (1160)  280 (196)  157 (110)  921 (645)  JV-7  1150 (805)  1060 (742)  233 (163)  128 (90)  641 (449)  T a b l e 3.6: T o t a l and d a it o m p r o d u c t i o n at e a c h station. T o t a l p r o d u c t i o n is f r o m a v e r a g n ig T a b l e 2.1 o v e r e a c h s e a s o n . D a it o m p r o d u c t i o n is e s t m i a t e d as 79% and 70% of the total p r o d u c t i o n in S a a n c ih and J e r v i s I n l e t s , r e s p e c t i v e l y ( T a b l e A.l).  The m a r n i e and terrestrial 5C 1 3  e n d m e m b e r s h a v e b e e n u s e d to e s t m i a t e the t e r -  r g ie n o u s c o n t r i b u t i o n s to the s e t t l i n g OC in the s h a o lw s e d m i e n t t r a p s ( T a b l e 3.5). C o n s d ie r n i g the v a r o iu s e r r o r s of the e s t i m a t e s , the a n n u a y la v e r a g e d t e r r i g e n o u s c o n -  t r i b u t i o n s w e r e s i m i l a r at e a c h s t a t i o n ( 3 0 4 0 % ) . In s p r i n g and s u m m e r , terrestrial OM c o m p r s ie d 2 0 4 0 % of total OM, w h i l e in the fall and w i n t e r it was 4 0 6 0 % of the total. A n c i la r yi n f o r m a t i o nf r o m the e x e r c s ie in A p p e n d x i A is the c o m p o s t i o n of the 'typical' m a r n ie s a m p e l f r o m e a c h f j o r d ( T a b l e A.l).  In S a a n c ih Inlet, t h i s m a r n ie s a m p e l w  66% BSi, 27% d a it o m a c e o u s OM and 7 % n o n d a it o m a c e o u s OM. In J e r v i s Inlet, it was 65% BSi, 24% d a it o m a c e o u s OM and 11% n o n d a it o m a c e o u s OM. C o m p a r n ig the p r o p o r t i o n s of d a it o m a c e o u s and n o n d a it o m a c e o u s OM, 79% of the m a r n ie o r g a n c i m a t t e r was d a it o m a c e o u s in S a a n c ih I n l e t and 70% in J e r v i s Inlet. T h e s ee s t m i a t e s are not sign i f i c a n t l y d i f f e r e n t ( T a b l e A.l),  a t lh o u g h t h e y are c o n s s it e n t w i t h the s u p p o s i t i o n t h a t  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  92  diatoms were more prevalent in Saanich Inlet. T h i s result supports the generality made by Nelson et al. (1995) that 75% of primary production in nutrient-replete waters is by diatoms, and allows estimates of diatomaceous carbon assimilation in Saanich and Jervis Inlets (Table 3.6).  However, because translation from the settling flux of diatomaceous  carbon to diatom primary production assumes similarity in the recycling of diatomaceous and non-diatomaceous marine organic matter, the estimates of diatom production of Table 3.6 should be viewed as rough approximations. T h e exercise in Appendix A has been carried out for various sub-sets of the time series.  W h e n the entire data set (all four stations) or some portion of it (one or two  stations) was separated by season ('winter' and 'summer' as defined section 3.4.1), <5 C 13  of the marine endmember was not different for the two periods because the correlation between <5 C and B S i content was low. Different marine S C 13  13  endmembers at any two  stations (e.g.; SN-9 and SN-0.8) were not observed for the same reason. T h e O C : N ratio of marine phytoplankton of 6.6 (Fleming, 1940; Redfield et al., 1963) is a broad average that can be used over large spatial scales, but locally varies because of factors including species composition and nutrient availability (Parsons, 1961; Redfield et al., 1963; Sakshaug, 1977; Sakshaug et al., 1983; Sakshaug and Olsen, 1986; Sakshaug et al., 1989; Wong et al., 1999). Nevertheless, the O C : N ratio of marine O M tends to be lower than the O C : N ratio of terrestrial O M (e.g.; Hedges et al., 1986), and can sometimes be used as an indicator of marine and terrigenous O M fractions (e.g.; Hedges et al., 1988b; Prahl et al., 1994; Ruttenberg and G o n i , 1997). Indeed, the O C : N ratio of the settling material in Saanich and Jervis Inlets was high in the fall and winter and lower in the spring and summer (Figures 3.8 and 3.14), correlating with the relative abundance of marine and terrigenous O M based on S C n  endmembers (Table 3.5). However, the poor  correlation between r5 C and O C / N (Figure 3.20), especially for Jervis Inlet, indicates 13  that one or both of these compositional traits was affected by factors other than the  9 3  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  -27 -26 -25 -24 -23 -22 -21 -20 -19 -18 -17 -16  5 C 13  F i g u r e3 . 2 0 : SC v e r s u s OC/N in S a a n c ih a n dJ e r v i sI n l e t s . Ap o i n t (OC/N = 1 4 . 7 , = 2 1 . 0 ) f r o m J e r v i s I n l e t is o u t o fr a n g e a n d n o t i n c l u d e d in t h e r e g r e s s i o n . T h e o fM o d e lIr e g r e s s o in o rM o d e lI Ir e g r e s s o in ( u s e dh e r e ) is crucial f o rd e s c r i p t i o n s w i t ho lw r v a l u e s . T h e c o m m o n M o d e l I r e g r e s s o i n (|r| e ls s s t e e p t h a n t h e s e M r e g r e s s o in s ; s e c t i o n3 . 2 . 4 )w o u d l r e s u l t in m a r n ie a n dt e r r i g e n o u s OC/N e n d m e m b e r sw little p h y s i c a l m e a n n ig a n d , statistically s p e a k i n g , is i n t e r p r e t e d a s a l a c k o fc o n f d ie n in p r e d i c t i n g OC/N e n d m e m b e r s f r o m 5C e n d m e m b e r s . U  _ 1  1 3  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  94  marine:terrigenous O M ratio. Although the low correlation between r5 C and % B S i in 13  Jervis Inlet (Figure 3.19 and Appendix A ) may have been caused by larger variability in the relative contributions of flagellates and other non-diatomaceous marine plankton to the settling flux than occurred in Saanich Inlet, it is also likely that the terrigenous and marine O C / N and 5 C 13  endmembers were not temporally constant.  T h e exercise to estimate <5 C of the marine O M endmember (Figure 3.19 and A p 13  pendix A ) could not be performed using a correlation between O C / N and % B S i because the O C : N ratio of terrigenous O M is not known. (In the exercise of A p p e n d i x A , a measure of <5 C in the terrigenous O M fraction was required to estimate the marine <5 C 13  endmember.)  13  However, using the <5 C endmembers that have been described for each 13  fjord (Figure 3.19), endmember values for the O C : N ratio of marine and terrigenous O M can be estimated (Figure 3.20).  T h e overall agreement in the O C / N endmembers of  Figure 3.20 with expected values (e.g.; Prahl et al., 1994) suggests that r5 C and O C / N 13  can be used as rough guides of marine and terrigenous O M in the sedimentary record of these fjords (e.g.; Tunnicliffe, 2000), while they should be used cautiously for sampling that represents short time periods.  Figure 3.20 also demonstrates that these proxies  of marine and terrigenous contributions are better suited for some environments (e.g.; Saanich Inlet) than others (e.g.; Jervis Inlet).  Indeed, off the west coast of Vancouver  Island, settling fluxes followed primary production and were highest in the spring and summer, but O C : N ratios of the sinking material were lowest in the winter (Pefia et al., 1999).  Pefia et al.  (1999) attributed this signal to inorganic nitrogen adsorbed onto  clays, and to the possibility of reduced organic degradation caused by ballast-mediated, rapid sinking (e.g.; Ittekkot, 1993).  95  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  3.4.3  E x p o r t ratios of O C and B S i  The e r a t i o (the  r a t i o of the s e t t l i n g f l u x of an e e lm e n t to the p h o t o a u t o t r o p h i c a s s m i -  ilation of t h a t e e lm e n t ; d e f n ie d for o r g a n c i c a r b o n by D o w n s , 1989)  is a m e a s u r e of the  d e g r e e of r e c y c l i n g and r e m i n e r a l i s a t i o nt h a t has o c c u r r e d s n ic e the e e lm e n t was a s s m i ilated. In s e c t o in s 3.3.2  t h r o u g h 3 . 3 . 4 , OC and BSi f l u x e s are p r e s e n t e d and, in s e c t i o n  3 . 4 . 2 , t e r r i g e n o u s and m a r n i e OC are s e p a r a t e d and e s t m i a t e s of the d a it o m a c e o u s c o n -  t r i b u t i o n to total p r m i a r yp r o d u c t i o n are m a d e . F r o mt h e s ed a t a , T a b l e 3.7 g v ie se r a t i o  for b o t h total and m a r n i e OC. OCt e r a t i o s h a v e e ls s o c e a n o g r a p h c i s i g n i f i c a n c e t h a n o t  m a r n i e OC e-ratios, but t h e y can be c o m p a r e d to o t h e rd a t as e t s w h e r e t e r r i g e n o u s OC has not b e e n s u b t r a c t e d . The BSi e r a t i o s of T a b l e 3.7 are r e l a t i v e to b o t h total and d a it o mp r o d u c t i o n . W h i l e (BSiflux/totalp r o d u c t i o n ) has e c o l o g i c a l and b o ig e o c h e m c ia l s i g n i f i c a n c e , (BSiflux/diatomp r o d u c t i o n ) is a b e t t e r m e a s u r e o f t h e d e g r e e of r e c y c l i n g and d i s s o l u t i o n of r e a c t i v e silicon. B e c a u s e the OC e r a t i o is a C:C ratio, its h y p o t h e t i c a l m a x m iu m is one.  E r a t i o s for b o ig e n c i silica are Si:C m o a lr r a t i o s and the m a x m iu m is  set by the a s s i m i l a t i o n of t h e s ee e lm e n t s by p h y t o p l a n k t o n . B r z e z i n s k i ( 1 9 8 5 ) f o u n d Si:C r a t i o s of v a r o iu s s p e c e is of l a b o r a t o r yd a it o m s r a n g n ig b e t w e e n 00 .4 and 0.42. B S : iP O C m o a lr r a t i o s as h g i h as 17 .5  in A n t a r c t i c s u r f a c e w a t e r s w e r e due to the p r e s e n c e of  h e a v i l y silicified d i a t o m s , and p o s s i b l y to m o r er a p i dr e c y c l i n g of POC ( Q u e g u n ie r et al., 1 9 9 7 ) . For b o t h OC and BSi, the a n n u a le r a t i o s of T a b l e 3.7 arefluxw e g ih t e d , so t h e ym o s t c l o s e l yr e f l e c t the r a t i o s of the s p r i n g and s u m m e rw h e nfluxesw e r e h i g h e s t . The s p r i n g and s u m m e r OC e r a t i o s of a b o u t 0.1 a p p e a ro lw w h e n c o m p a r e d to the f-ratios t h a t m a r  m g ih t be e x p e c t e d in t h e s e h i g h l yp r o d u c t i v e w a t e r s w i t h l a r g e n u t r i e n t s u p p y l ( E p p l e and P e t e r s o n , 1979;  Piatt and H a r r i s o n , 1985;  H a r r i s o n et al., 1987;  W a s s m a n n , 1 9 9 1 ) .  The f-ratio is the r a t i o of new n u t r i e n t a s s i m i l a t i o n to total n u t r i e n t a s s i m i l a t i o n (sensu  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  O e-r ra — w vC^* t. e a tt ii o o —  o c  (OC  m a r  e-ratio  B S i e-ratio =  w t 50 m flux tot prod t n t  t o  n r f ) d  O C m a r 50 m  tot prod  96  fluX  B  ^ °™ 5  t  flux od  (BSi e-ratio =  )  BSi:C molar ratio  C:C ratio sp  su  au  wi  annual  sp  su  au  wi  annual  SN-9  0.14 (0.096)  0.18 (0.13)  0.51 (0.29)  1.6 (0.62)  0.22 (0.14)  0.16 (0.20)  0.18 (0.23)  0.42 ( 0.53)  0.91 (1.1)  0.21 (0.26)  SN-0.8  0.18 (0.13)  0.11 (0.076)  0.17 (0.098)  0.43 (0.18)  0.15 (0.10)  0.18 (0.23)  0.062 (0.079)  0.081 (0.10)  0.18 (0.23)  0.11 (0.14)  JV-3  0.11 (0.075)  0.10 (0.084)  0.53 (0.31)  0.51 (0.29)  0.16 (0.11)  0.097 (0.14)  0.065 (0.092)  0.14 (0.20)  0.17 (0.24)  0.089 (0.13)  JV-7  0.23 (0.14)  0.21 (0.15)  0.47 (0.19)  0.73 (0.34)  0.27 (0.16)  0.083 (0.12)  0.076 (0.11)  0.14 (0.20)  0.11 (0.16)  0.086 (0.12)  Table 3.7: Export ratios of O C and B S i at 50 m at each station. 50 m fluxes are from Tables 3.3 and 3.4. Total and diatom production are from Table 3.6. W h i l e O C t e-ratios t o  consider the total O C flux, O C  m a r  e-ratios subtract terrigenous O C contributions (Ta-  ble 3.5). While the first values may be compared to other studies, values in parentheses are ecologically more meaningful.  Dugdale and Goering, 1967; Eppley and Peterson, 1979), and in steady state conditions is a predictor for the export of that nutrient in organic (dissolved and particulate) form. Therefore, for steady state and assuming lateral transport does not export significant amounts of organic material, f-ratios should be greater than e-ratios by the amount of dissolved and suspended matter that is exported, and by the amount of remineralisation occurring between the base of the euphotic zone and the depth of the sediment traps. A number of factors can affect* the amount of organic matter caught by sediment traps. D O C held interstitially within sinking particles can be a significant fraction of the total O C flux (Noji et al., 1999) and was not quantified in this experiment, and swimmers can unpredictably affect measured fluxes of organic matter (Lee et al., 1988; K a r l and  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  97  Knauer, 1989; Michaels et al., 1990). Based on considerations of fluid flow (Hargrave and Burns, 1979; Lau, 1979; Gardner, 1980b; Butman et al., 1986; Hawley, 1988), variable trapping efficiency has been documented in controlled experiments (Hargrave and Burns, 1979; Gardner, 1980b; Gardner, 1985; Butman, 1986; Gardner and Zhang, 1997) and in the field (Gardner, 1980a; Blomqvist and K 0 f o e d , 1981; Baker et al., 1988; Laws et al, 1989; Buesseler, 1991; Honjo et al., 1992; Gust et al., 1992; Gust et al., 1994; Nodder and Alexander, 1999; Buesseler et al., 2000; Y u et al., 2001). Although over-collection has been observed (e.g.; Buesseler et al., 1994), low trapping efficiency is more commonly observed. Poor trapping efficiency is especially common in surface waters, partly because the sinking debris is unconsolidated.  As particulates sink, they are biologically and  physically repackaged with the result that sinking rates tend to increase with depth. Syvitski et al. (1985) found that sinking rates increase with depth, and several authors have suggested trapping efficiency improves in deep waters at least partly because of the increased fall velocities and greater consolidation ofthe settling debris (Smetacek et al., 1978; Timothy and Pond, 1997; Y u et al., 2001). Some of the explanations for the lack of a difference in measured fluxes of organic matter by the sediment traps with and without sodium azide as a preservative (section 3.2.3) involve the loss of labile organic matter between the time of interception and measurement in the laboratory. Iseki et al. (1980) described a sediment-trap experiment in Patricia Bay of Saanich Inlet. The absolute O C fluxes they reported for traps moored at 50 m (2 to 3 times lower than the fluxes collected at a similar season and depth and given in Table 3.3 for stations SN-0.8 and SN-9) are not comparable to the fluxes of this study because their experiment occurred in a relatively isolated portion of Saanich Inlet. However, Iseki et al. (1980) determined rate constants of decay for the O C collected at 50 m to be between 0.014 and 0.029 d a y . They also derived an equation to correct for in -1  situ  loss knowing the rate constant of decay and the length of a deployment. Using their  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  98  rate constants for 50 m (0.014 0.029 d a y ) and their equation 6, measured O C fluxes - 1  should be multiplied by a factor of 1.2 to 1.5 to obtain the true flux caught by sediment traps moored for 30 days.  Others have also shown organic matter to leach into the  surrounding sediment-trap solution (Knauer et al., 1984; K a r l et al., 1988) and Knauer et al. (1990) found that more than half of the organic nitrogen contained within sediment traps was dissolved.  Furthermore, K u m a r et al. (1996) found that as much as 70% of  organic matter was rapidly lost during even short sediment trap deployments. Thus, the apparently low e-ratios for organic carbon (Table 3.7) are likely caused by the presence of interstitial D O M , low trapping efficiency and organic leaching after interception. O f these possibilities, trapping efficiency may not have been a serious problem, as it appears the majority of sinking diatom frustules was trapped (discussed below).  T o correct for  possible O C leaching, multiplication of the spring and summer carbon fluxes by a factor of two to four (Knauer et al., 1990; K u m a r et al., 1996) would make the O C e-ratios of Table 3.7 closer to the expected values for these highly productive fjords. In light of these complications, it is difficult to interpret the higher e-ratios in the fall and winter for both marine and total O C (Table 3.7).  T h e y may reflect less O M  recycling and remineralisation or better trapping efficiency due to a shift from unconsolidated diatom aggregates to a greater proportion of fecal pellets (Sancetta, 1989b, 1989c).  Lithogenic ballast in the fall and winter (Ittekkot,  1989a,  1993) might facili-  tate decreased water-column remineralisation and increased trapping efficiency, although the flux of aluminosilicates was not notably seasonal, except at station SN-0.8 (Figures 3.6, 3.7, 3.12 and 3.13).  Organic matter in fecal pellets might also be less likely  leached while in the sediment traps or during rinsing and centrifugation after retrieval. It is also possible that a large proportion of resuspended O C reached the shallow traps during the fall and winter. T h e range of O C t e-ratios (0.24 to 0.55) presented by Wasst o  mann (1990) for coastal waters of the north Atlantic including many fjords and bays is  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  99  generally higher than the spring and summer values from Saanich and Jervis Inlets, but similar to, or lower than, the autumn and winter values (Table 3.7). T h e Si:C ratio (molar) for a suite of laboratory diatoms ranged between 0.04 and 0.42, with a mean of 0.13 ± 0 . 0 4 (Brzezinski, 1985). If this ratio is applicable to the diatoms of Saanich and Jervis Inlets, it appears that most of the silicon assimilated by diatoms was eventually trapped at 50 m, as the B S i e-ratios with respect to diatom production are very close to Brzezinski's average (Table 3.7). It should be noted, however, that K u m a r et al. (1996) found 25% of biogenic silica was lost from sediment traps and Scharek et al. (1999) estimated 10-60% of captured biogenic silica dissolved in sediment traps. Thus, unlike the case for organic carbon, the B S i e-ratios appear high, but could be the result of the combined effects of minimal B S i recycling, heavily silicified diatoms (Si:C ratio > 0.13) and the presence of a BSi-rich, resuspended fluxes reaching the shallow traps. T h i s latter possibility seems especially likely in the fall and winter throughout the study area (except in the fall at station SN-0.8; Table 3.7) and year-round at station SN-9. T h e water-column fluxes at the mouth of Saanich Inlet were much higher than elsewhere (section 3.3.3) and were likely caused by sediment transport from the broad sill at the entrance to Saanich Inlet.  3.4.4  T h e riverine source of particulates to Saanich Inlet  One of the most interesting and certainly the most unexpected feature of this time series is the aluminium record from station SN-0.8 (Figure 3.6). Unlike at the other stations (SN9, J V - 3 and J V - 7 ) where A l fluxes were largely affected by the physical processes leading to turbulent resuspension, at station SN-0.8 fluxes of A l appear to have been determined by the environmental factors that delivered A l to surface waters.  A l fluxes peaked in  the late fall and winter when local rainfall (Figure 1.11) and flow of the Cowichan and Goldstream Rivers (Figure 1.13)  were highest; local runoff in the vicinity of station  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  1 0 0  S N 0 8 . a n d / o r t h e s e d m i e n t l o a d o f t h e C o w c ih a n R i v e r c o u d l h a v e d e l i v e r e d t h e  t o t h e h e a d o fS a a n c ih I n l e t . T h e c o r r e l a t i o n ( r = 0 . 7 2 ) b e t w e e n C o w c ih a n R i v e a n d 5 0 m Alfluxa t s t a t i o n S N 0 8 . is b e t t e r t h a n t h e c o r r e l a t i o n ( r = 0 . 4 9 )  p r e c i p i t a t i o n a t Victoria A i r p o r t a n d t h e Alflux,b u t t h e s e c o r r e l a t i o n s m a y b e c a u  b y c o n ic d ie n c e o f t h e s e a s o n a l c y c l e in e a c h t i m e s e r i e s .C o m p a r s io n o f t h e r e s i d  o f e a c h t i m e s e r i e s ( F i g u r e 3 . 2 1 ) , h o w e v e r , s u g g e s t s t h a t t h e C o w c ih a n R i v e r h a  g r e a t e r i n f l u e n c e o n t h efluxo f a l u m i n o s i l c a t e s a t t h e h e a d o f S a a n c ih I n l e t t h a n  local r u n o f f . B e c a u s e d a i l y r i v e r f l o w is a v a i l a b l e , it w a s a s lo p o s s b ie l t o t e s t w h e t h t m i el a go c c u r r e d b e t w e e n C o w c ih a n R i v e rflowa n d Alfluxa t t h eh e a d o fS a a n c ih  A s t h e r e s i d u a l s o fC o w c ih a n R i v e rfloww e r e a o lw e d t o p r e c e d e t h efluxr e s i d u a l s ,  c o r r e l a t i o nd i dn o tm i p r o v e , b u t it d i dr e m a n i c o n s t a n tf o r4 6d a y s a n dd e c r e a s e d  s e p a r a t i o n e ln g t h e n e d . N o t i n g t h a t t h e 3 0 d a yfluxa n d r i v e r f l o w a v e r a g e s ( s e e c a p  t o F i g u r e 3 . 2 1 ) a r e n o t w e l s u i t e d t o e x p o lr e t i m e l a g s e ls s t h a n a b o u t o n e a v  p e r i o d , o r a m o n t h , o n e i n t e r p r e t a t i o n o ft h e s e r e s u l t s is t h a t s e d m i e n t s r e a c h t h e o fS a a n c ih I n l e t w i t h i n aw e e k o fd s ic h a r g e f r o m t h e C o w c ih a n R i v e r .  A u lm n iu im a p p e a r st oh a v eb e e nd e l i v e r e df r o mt h es u r f a c ea ts t a t i o nS N 0 . 8a n  s e a s o n a lp a t t e r no ffluxw a sn e a r l yi d e n t i c a la te a c hd e p t h( F i g u r e s3 . 6a n d3 . 7 ) . H o  Alfluxesn ic r e a s e d b y a f a c t o r o f~ 2 b e t w e e n 5 0 m a n d 1 3 5 m a n d w e r e s i m  m a n d 1 8 0 m ( T a b l e 3 . 3 ) . T h en ic r e a s e influxw i t h d e p t h b e t w e e n 5 0 m a n d  p r o b a b y l n o t c a u s e d b y t u r b u l e n t r e s u s p e n s o in , a s n o h g ih e n e r g y e v e n t s (e.g., s i m  t o t h e Alfluxesa s s o c a it e d w i t h d e e p w a t e r r e n e w a s l) w e r e r e c o r d e d . F o r a s h o r t e r t i m  s e r e is f r o m S e c h e t l Inlet,fluxess i m i l a r l y n ic r e a s e d w i t h d e p t h m o s t d r a m a t i c a l y f r o m  s h a o lw t o m d id e p t h t r a p s , i n c r e a s i n g e ls s t o w a r d s t h e b o t t o m .T m i o t h y ( 1 9 9 4 ) a n  T m i o t h y a n d P o n d ( 1 9 9 7 ) c o n c u ld e d that, a t lh o u g h r e s u s p e n s o in e v e n t s w e r e p r o b a  r e c o r d e d , p a r t i c l e f o c u s n i g in t h e U s h a p e d f j o r d (e.g., W a s s m a n n , 1 9 8 4 ) a n d n ic r e a s in t r a p p i n g e f f i c i e n c y w i t h d e p t h w e r e l a r g e l y r e s p o n s b ie l f o r o b s e r v e d c h a n g e s in  Chapter 3.  Settling fluxes in Saanich and Jervis Inlets  101  F i g u r e 3.21: R e s d iu a s l of 50 m Al f l u x f r o m s t a t i o n S N 0 . 8 p l o t t e d a g a i n s t r e s i d u a l s of C o w c ih a nR i v e rflowand r e s i d u a l s of rainfall at the Victoria Airport. D a i l yr i v e r f l o w and rainfall d a t a w e r e u s e d to c r e a t e a v e r a g e v a u le s for t i m e p e r o id s c o r r e s p o n d n i g to the s e d m i e n tt r a pd e p o ly m e n tp e r i o d s . P o i n t s in p a r e n t h e s e sw e r e not i n c l u d e d in r e g r e s s o in s .  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  1 0 2  w i t h d e p t h .A t s t a t i o n S N 0 . 8 , t h e c h a n n e l w i d t h ( F i g u r e 1 . 2 ) is 1 3 . t m i e s g r e a t e  5 0 m t h a n a t 1 3 5 m a n d , t h e r e f o r e , p a r t i c l e f o c u s n ig c a n n o t h a v e a c c o u n t e d f  t h e Alfluxc h a n g e s b e t w e e n t h e s ed e p t h s . A t lh o u g h n o d a t ao n c u r r e n t s e x i s t f r o m s t u d y in S a a n c ih a n d J e r v i s I n l e t s , c u r r e n t s p e e d p r o b a b y l d e c r e a s e d w i t h d e p t h ,  p a r t i c l e sa g g r e g a t ea n dc o n s o d i la t ea sr e s d ie n c et i m e ( d e p t h ) i n c r e a s e s . T h i s flocc  will c a u s e s i n k i n g r a t e s t o n ic r e a s e (e.g.; S y v i t s k i e t al., 1 9 8 5 ) a n d t h e r e f o r e t r a p e f f i c i e n c y t om i p r o v e ( B u t m a n , 1 9 8 6 ; Y u e t al., 2 0 0 1 ) .  F r a s e rR i v e rflowp e a k s in t h es p r i n ga n ds u m m e r ( F i g u r e 1 . 1 3 ) a n dt h u sc a n n o t  b e e n t h e s o u r c e o fa l u m i n o s i l c a t e st o s t a t i o n S N 0 . 8 a t t h e h e a d o fS a a n c ih Inlet.  w a s s e d m i e n t f r o m t h e F r a s e r R i v e r p u lm e d e p o s t ie d a t s t a t i o n S N 9 i n s i d e t h e m  o fS a a n c ih I n l e t ? B e c a u s e t h e C o w c ih a n a n d F r a s e r R i v e r s a r e b o t h s e a w a r d o fS  I n l e t , t h e r a t i o o ft h e c o n c e n t r a t o in s o fp a r t i c u l a t e m a t t e r f r o m t h e r i v e r s o c c u r r i n g  s u r f a c ew a t e r sa tt h em o u t ho f t h ef j o r dc a n n o tv a r yw i t h i nt h ef j o r de x c e p tb yd i f f e  s i n k i n go ft h ep a r t i c l e sf r o mt h et w os o u r c e s . A sap u lm ee la v e s t h em o u t ho fa  p a r t i c u l a t el o a dd e c r e a s e sd u et om x in ig w i t hs e a w a t e ra n ds e t t l i n g (Hill e t al., 2 0 0 0  t h es i z ef r a c t i o n so ft h ep a r t i c u l a t e ss h i f tf r o mp r e d o m n ia n t y l c o a r s e silts t ofinesilts c l a y s (e.g.; S y v i t s k i e t al, 1 9 8 8 ) . T h e S t o k e s a in s e t t l i n gv e l o c i t y o ft h e p a r t i c u l a t e  o fa p u lm e , t h e r e f o r e , d e c r e a s e s a s t h e d s it a n c e f r o m a r i v e r m o u t h i n c r e a s e s ; h o  a n u m b e r o fs t u d i e s (e.g.; S y v i t s k i e t al., 1 9 8 5 ; G b ib s a n d K o n w a r , 1 9 8 6 ; K n ie k e  1 9 8 6 ; Milligan, 1 9 9 5 ; S t e r n b e r ge t al., 1 9 9 9 ; Hill e t al., 2 0 0 0 ) s h o wt h a tflocculation  s i g n i f i c a n te f f e c to np r e d i c t e ds e t t l i n gr a t e so ft h es m a e ls ts i z ef r a c t i o n s . N e v e r t h e l e s s ,  is r e a s o n a b e l t om o d e lt h es i n k i n gr a t eo fp u lm ep a r t i c l e sa se i t h e rc o n s t a n t (e.g.; a s  b y Hill e t al. { 2 0 0 0 }f o rt h e Eel R i v e rp u lm e ) o ra sd e c r e a s n i g (e.g.; a sf o u n db y  e t al., { 1 9 8 5 } f o rt h eH o m a t h k oR i v e ro fB u t eI n l e t ) w i t hd i s t a n c ef r o mt h es o u r c  F r a s e r R i v e r is f a r t h e r f r o m S a a n c ih I n l e t ( ~ 5 0 k m ) t h a n is t h e C o w c ih a n R i v e  k m ) . A t t h e m o u t h o f S a a n c ih I n l e t , F r a s e r R i v e r s e d m i e n t s will b e m o r e fine  103  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  w i t hs i m i l a r or s m a e lr s i n k i n gr a t e st h a n C o w c ih a nR i v e rs e d m i e n t s and t h u s the F r a s e r  R i v e r s e d m i e n t s will d s ip e r s e t h r o u g h o u t S a a n c ih I n l e t as w e l or b e t t e r t h a n C o w c ih a n R i v e rs e d m i e n t s . B e c a u s e aF r a s e r R i v e rs i g n a l was not o b s e r v e d at s t a t i o nS N 0 . 8w h e r e d s ic h a r g e of the C o w c ih a n R i v e ra p p e a r s to h a v e a f f e c t e d Al f l u x e s , it is u n l i k e l yfinesilt  and c l a yf r o m the F r a s e r R i v e r r e a c h e d p a r t s of S a a n c ih I n l e t s e a w a r d of s t a t i o n S N 0 . 8  3.4.5  D e e p w a t e r - c o l u m n , sediment-interface a n d b u r i a l fluxes  C o m p a r s io n of s e d i m e n t t r a pfluxesand b o t o m a c c u m u a lt o in r a t e s has b e e n u s e d to g a i n i n f o r m a t i o n on the p r o c e s s e s t h a t c o n t r o l s e d m i e n t d e l i v e r y to the s e a f l o o r and b u r i a l (e.g.; D y m o n d , 1984;  A n d e r s o n et al.,  1994)  and a s lo to u jd g e thefidelityof  s e d m i e n t t r a p s (e.g.; D y m o n d , 1 9 8 4 ) . T h i s s e c t i o n u s e s e s t m i a t e s of m a s s a c c u m u a lt o i r a t e (MAR)  c a l c u l a t e df r o m Pb p r o f i l e s to e v a l u a t e the a c c u r a c y of the s e d i m e n t t r a p 2 1 0  fluxes and to a d d r e s s the c a u s e s and c o n s e q u e n c e s of the d e p t h d e p e n d e n tfluxesin the two f j o r d s . B e c a u s e of the u n q iu e s e d m i e n t a r y e n v r io n m e n t at the m o u t h of S a a n c ih Inlet, the h i g hw a t e rc o u lm nfluxesat s t a t i o n SN-9  M A R from  2 1 0  are c o n s d ie r e d s e p a r a t e l y .  P b profiles  In the s u m m e r of 1988,  s e d m i e n t c o r e s w e r e e x t r a c t e d f r o m e a c h s t a t i o n u s n ig a P e d e  sen c o r e r ( P e d e r s e n et al., 1 9 8 5 ) , and the top 2 5 3 0 cm w e r e s a m p e ld at 1 cm i n t e r v a l s . OC, N and S C w e r e m e a s u r e d in the s e d m i e n t s a m p e ls as d e s c r b ie d in s e c t i o n 3 . 2 . 2 . 13  A I 2 O 3 ,  S i 0 2 and o t h e rm e t a s lw e r em e a s u r e d by X r a yfluorescence(XRF) s p e c t r o m e t r y .  BSi was not m e a s u r e d on the c o r e s a m p e ls , but was e s t m i a t e d by s u b t r a c t i n gl i t h o g e n i c Si0 f r o m total Si0. L i t h o g e n i c Si0 was c a l c u l a t e d u s n i g the r e g r e s s o in e q u a t o i n of 2  2  F i g u r e 32 .2 ure 32 .2  (3.4)  2  and m e a s u r e d A10 c o n c e n t r a t i o n s . The s o lp e of the r e g r e s s o in l i n e of Fig2  3  is a b e s t e s t m i a t e of the Al03:Si0 r a t i o for the a l u m i n o s i l c a t ef r a c t i o n 2  2  c a u g h t by the s e d m i e n t t r a p s and is w i t h i n the r a n g e e x p e c t e d for u p p e r c o n t i n e n t a l  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  S N 9 S N 0 . 8 JV-3  1 0 4  JV-7  linear A R ( c my r) 0 6 . 0 0 6 . 0 0 2 .7 1 5 . l  % BSi  % oc % N % Al 5C n  s e d i m e n t c o m p o s i t i o n 1 8 7 . 1 9 9 . 2 4 5 . 1 5 0 . 5 .9 4 8 .4 3 9 .6 3 2 . 9 1 0 2 .9 2 0 0 4 . 0 0 0 2 . 6 6 4 .6 1 8 .4 6 3 .8 6 6 7 .3 5 0 .3 2 1 . 7  2 2 . 9 2 1 . 7 -  2 1 . 9  T a b l e 3 . 8 : C o m p o s t io in a l p r o p e r t i e s o ft h e u p p e r 2 5 3 0 c m o f c o r e s e x t r a c t e d a t station. ( S e e T a b l e 3 . 1 f o r s t a t i o n l o c a t i o n s . )  c r u s t ( T a y l o r a n d M c C e ln n a n , 1 9 8 5 ) . L i n e a rs e d m i e n t a t o in r a t e sf o rt h eu p p e r 2 5 3 0  w e r e e s t m i a t e df r o mm e a s u r e s o fe x c e s s Pb a n d c o n v e r t e d t od e p t h a v e r a g e d m a s s 2 1 0  c u m u a lt o in r a t e s ( M A R ) u s n ig m e a s u r e dp o r o s i t yv a u le sa n de s t m i a t e dd r yb u k l d e n  ( S h i m m i e l d , u n p u b s i lh e d d a t a ) . Pb h a s a h a l f life o f2 2 2 .6 y r a n d is w e l s u i t e d 2 1 0  d a t i n g r a p i d l y a c c u m u l a t i n g , l a m i n a t e d s e d m i e n t s s u c h a s t h o s e in S a a n c ih Inlet. W  m o r eu n c e r t a i n t y , Pb c a nb eu s e dt od a t eb i o t u r b a t e ds e d m i e n t s if l i n e a ra c c u m u a lt o 2 1 0  r a t e sa r es u f f i c i e n t l yf a s tt h a te x c e s s Pb a c c u m u a lt e sb e o lw t h eb i o t u r b a t e dl a y e r ( B r u 2 1 0  land, 1 9 7 4 ; S k e i a n d P a u s , 1 9 7 9 ; Skei, 1 9 8 1 ; C r u s u is a n d A n d e r s o n , 1 9 9 5 ) , a s is  in J e r v i s I n l e t . L i n e a r a c c u m u a lt o in r a t e s a n d a v e r a g e s e d m i e n t a r y c o m p o s t i o n f o r t h  u p p e r 2 5 3 0 c m o fe a c h c o r e a r e g v ie n in T a b l e 3 . 8 , w h i l e w i t h i n T a b l e 3 . 9 a r e  a c c u m u a lt o in r a t e s ( t h e r e i n t e r m e d b u r i a l o ft h e m a s s flux). T h e l i n e a r s e d m i e n t a t o i  r a t ea ts t a t i o nJ V 7 is h a l ft h o s eo fs t a t i o n sJ V 3a n d S N 0 . 8 , b u tt h ep o r o s i t ya t J V 7w a s p r o p o r t i o n a ly o lw e rs o t h a t M A Ra t t h e t h r e es t a t i o n sw a s similar.  T a b l e3 . 9c o m p a r e sf l u x e st ot h ed e e ps e d m i e n tt r a p s , t ot h es e d m i e n t w a t e ri n t e r  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  105  70  60 \-  50 \-  40  o 30  20  10  0  0  2  4  8  6  %AI 0 2  10  12  14  3  Figure 3.22: T h e A l 0 3 : S i 0 ratio for the lithogenic debris in Saanich and Jervis Inlets 2  2  using analyses on the sediment trap material.  A I 2 O 3  and S i 0  2  were measured by X R F  on 104 sediment-trap samples from Saanich Inlet and nine samples from Jervis Inlet (Frangois, 1989).  Biogenic silica has been measured on all samples.  total metal concentrations ( X R F ) . Closed circles are lithogenic S i 0 A l 0 3 . Lithogenic S i 0 2  2  2  O p e n circles are  plotted against total  is calculated as total S i 0 minus biogenic S i 0 . T w o points with 2  2  parentheses were not included in the regression. T h e nine samples from Jervis Inlet fall close to the regression line. and those representing permanent burial. T h e sediment-trap fluxes are the annual averages of Tables 3.3 and 3.4 and the burial fluxes are from multiplying the M A R s by the sediment concentration of each constituent (Table 3.8).  210  Pb-derived  T h e differences  between interface and burial fluxes of Table 3.9 provides the percent of the interface flux that was remineralised. T h e flux of constituent j reaching the sediment-water interface was estimated using the focusing factor for the change in flux of A l between the depths of the deep sediment trap and the bottom sediments  (Al^ i i/Al ur  a  ).  deeptrap  (3.1) Equation 3.1 assumes A l behaves conservatively during diagenesis and that the material  106  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  causing the difference in flux between sediment traps and the sediment-water interface is compositionally similar. T h e first assumption is reasonable for these recently deposited sediments and the second is supported by work suggesting that resuspended material is "rebound" in nature (Walsh et al., 1988a) and is often similar in composition to the bulk material caught in deep traps (Bloesch, 1982; Walsh and Gardner, 1992; T i m o t h y and Pond, 1997; Lampitt et al., 2000), so that debris transported laterally underneath the deep traps may have been compositionally similar to the sediments reaching the deep traps. If diagenetically old sediment with high A l content is a significant fraction of the material causing larger fluxes to the interface, however, Equation 3.1 will overestimate constituent fluxes to the interface. For a station in the center of Saanich Inlet nine k m south of SN-9 and using  2 1 0  Pb  profiling in the manner described above, Bruland (1974) estimated a linear accumulation rate of 0.8 cm y r  and a M A R of 1,300 g m ~ y r  - 1  2  measured a M A R of 2,600 g m  -  2  yr  - 1  - 1  . Again from  2 1 0  P b profiles, Sage (1994)  two km south of SN-9. T h u s a gradient exists in the  M A R of bottom sediments in Saanich Inlet, from 1,900 to 2,600 g m ~ y r 2  (Table 3.9; Sage, 1994), to 1,300 g m and 770 g m ~ y r 2  - 1  -  2  yr  - 1  - 1  at the mouth  in the center of the fjord (Bruland, 1974)  towards the head at station SN-0.8 (Table 3.9). Based on chlorophyll  a concentrations (Hobson and M c Q u o i d , in press), rates of primary production (Chapter 2; T i m o t h y and Soon, 2001) and the sediment trap fluxes at stations SN-9 and SN-0.8, these decreasing M A R s towards the head of Saanich Inlet can be explained by a gradient in primary production and the introduction of sediments into the fjord from the region of the sill. A t a station one k m south of J V - 3 and in waters slightly deeper (685 m versus 660 m at J V - 3 ) , Sage (1994) estimated a M A R of 1,500 g m of 650 g m errors in  2 1 0  -  2  yr  - 1  -  2  yr  - 1  , more than twice the value  reported for J V - 3 in Table 3.9. T h i s difference may reflect inherent  P b dating, but may also be the result of heterogeneous sedimention rates near  1 0 7  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  t h e m o u t h o f J e r v i s I n l e t ; t h e c o r e e x t r a c t e d in s o m e w h a t d e e p e r w a t e r s ( S a g e , m a y h a v e b e e n f r o m al o c a l i s e d d e p o c e n t e r .  Stations SN-0.8, JV-3 and JV-7  A p a r t f r o m s t a t i o n S N 9 , t h e a c c u m u a lt o in r a t e o f Al w a s h g ih e r in t h e s e d m i e n t s  in t h e d e e p s e d m i e n t t r a p s b y f a c t o r s r a n g n ig f r o m 1 . 1 t o 1 7 . ( T a b l e 3 . 9 ) . F o  t h e s e U s h a p e d f j o r d s ( W a s s m a n n , 1 9 8 4 ; T m i o t h y a n d P o n d , 1 9 9 7 ) , a s w e l a s la  t r a n s p o r to fm a t e r i a lf r o mt o p o g r a p h c i r i s e s a n ds u lm p n ig o fs e d m i e n t o f ft h es i d e w  ( H e d g e s e t al., 1 9 8 8 b ; C o w e i e t al., 1 9 9 2 ; B o r n h o d l e t al., 1 9 9 4 ) is likely t o h a v e  t h e Al f l u xn ic r e a s e s f r o m t h e d e e p s e d m i e n t t r a p s t o t h e f j o r dfloors.N o t i n gt h a t  n ic r e a s e influxw i t hd e p t h is e x p e c t e db e t w e e n t h ed e e ps e d m i e n tt r a p sa n dt h es  t h e m a g n t u id e o ft h e s e f o c u s n ig f a c t o r s q u a l i t a t i v e l y s u g g e s t s t h e d e e p s e d m i e n t t r a  w e r e a c c u r a t e l y t r a p p i n g t h e s e t t l i n gfluxo f Al. T h e l a r g e s t n ic r e a s e s influxb e t w e e  t h e d e p t h s o ft h e m d id e l a n d d e e p s e d m i e n t t r a p s ( T a b l e s 3 . 3 a n d 3 . 4 ) w e r e r e c  s t a t i o n JV-3. T h e r e f o r e , t h e s m a l f o c u s n ig f a c t o r t h e r e ( T a b l e 3 . 9 ) n e e d s e x p l a n a t i o  M u c h o ft h e d i f f e r e n c e influxb e t w e e n 3 0 0 a n d 6 0 0 m a t s t a t i o n J V 3 is t h e  t u r b u l e n t r e s u s p e n s o in d u r i n gd e e p w a t e r r e n e w a s l ( C h a p t e r 4). O t h e r w i s e , s t a t i o n J V 3 is in t h el a r g e s tb a s n i o ft h ef o u rs e d i m e n t t r a pm o o r n ig sites. T h es h a o lw e s t p a r t  J e r v i sI n l e t sill is a t~ 2 8 0ma n d ,a p p a r e n t l y ,d u r i n gd e e p w a t e rr e n e w a las e d m i e n t p r o p a g a t e s a t d e p t h s p r i n c i p a ly b e o lw 3 0 0 m . B e c a u s e s t a t i o n J V 3 is o t h e r w s ie  l a r g e b a s i n , c h a n g e s influxw i t h d e p t h b e o lw 6 0 0 m m a y b e smal. T h e w a t e r -  fluxes a t s t a t i o n S N 9 d e m o n s t r a t e t h e e f f e c t s o fa p u lm e p r o p a g a t n ig f r o m a  l a r g e s t n ic r e a s e s influxw i t h d e p t h o c c u r r e d b e t w e e n t h e s h a o lw ( 4 5 m ) a n d m d i-  ( 1 1 0 m ) t r a p s , w h e r e t h e lip o ft h e sill is l o c a t e d , b u tfluxesb e t w e e n t h em d id e p  m ) a n d d e e p ( 1 5 0 m ) s e d m i e n t t r a p s c h a n g e d little. N e v e r t h e l e s s , it m a y b e t h  s m a l f o c u s n ig f a c t o r a t s t a t i o n J V 3 r e f l e c t s e r r o r in t h e Pb d a t i n g , a s S a g e ( 1 2 1 0  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  SN-9 :  deep trap interface burial focusing factor  SN-0.8  JV-3  108  JV-7  A l flux (mol m~ yr" 9.94 1.44 1.00 1.05 1.72 1.54 4.77 1.43 1.54 1.72 4.77 1.43 2  1.4  0.48  1.1  1.7  mass flux (g m yr" 870 628 4650 875 928 1080 2230 1200 680 770 650 1910 14 30 37 36 B S i flux (mol m~ yr 2.12 15.2 3.31 3.69 3.53 3.65 7.27 5.06 1.89 2.80 1.45 5.65 22 59 48 45 flux (mol m yr *) oc t o t 3.52 5.41 4.41 15.1 7.42 4.70 6.06 7.26 2.14 3.10 2.03 4.63 54 66 36 58 flux (mol m yr *) OC 3.21 2.09 8.05 3.11 4.40 3.31 3.60 3.86 1.07 1.28 1.49 2.03 70 47 71 55 flux (mol m yr ) oc t e r 2.20 1.43 7.10 1.31 3.02 2.46 1.39 3.40 1.82 0.97 0.66 2.60 24 40 53 61 N flux (mol m~ yr~ 0.432' 0.341 1.53 0.595 0.734 0.587 0.816 0.461 0.186 0.129 0.398 0.253 69 60 78 46 - 2  deep trap interface burial ( M A R ) % loss  2  deep trap interface burial % loss  2  deep trap interface burial % loss  2  m a r  deep trap interface burial % loss  2  deep trap interface burial % loss  1  2  deep trap interface burial % loss  Table 3.9: Deep sediment-trap (Tables 3.3 and 3.4), sediment-water interface tion 3.1) and burial (Shimmield, unpublished) fluxes.  (Equa-  T h e focusing factor is of E q u a -  tion 3.1. T h e percent lost is the fraction of the interface flux remineralised during diagenesis in the upper sediment core. Marine and terrestrial O C fluxes are estimated from <5 C as for section 3.4.2. 13  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  1 0 9  o b t a n ie d a M A Rf o r a c o r e c o l e c t e d n e a r s t a t i o n J V 3 o fm o r e t h a n t w c ie t h e in T a b l e 3 . 9 .  A sm u c ha s5 4t o6 6 %o ft h eO Cd e p o s t i e da tt h es e d m i e n t w a t e ri n t e r f a c ea t  S N 0 . 8 , J V 3a n dJ V 7w a sr e m i n e r a l i s e d in t h eu p p e r3 0c mo fs e d m i e n t , a n d4 5  o f t h e b o ig e n c i silica d s is o v le d ( T a b l e 3 . 9 ) ; m o s t o f t h i s o ls s p r o b a b y l o c c u r r e d in  u p p e r m o s t p o r t i o n o ft h e c o r e (e.g.; H e d g e s e t al., 1 9 8 8 b ) . T h e s e O C o ls s e s a g r e e o t h e re s t m i a t e sm a d e in S a a n c ih I n l e t( C o w e i e t al., 1 9 9 2 )a n do t h e rf j o r d s (Burrell,  I n J e r v i s Inlet, r o u g h y l e q u a l f r a c t i o n s o f t h e m a r n ie a n d t e r r i g e n o u s o r g a n c i m  r e a c h n ig t h e s e d m i e n t s w e r e r e m i n e r a l i s e d , w h i l e a t s t a t i o n S N 0 . 8 s i g n i f i c a n t l y m o r e  t h e m a r n ie O C w a s d e g r a d e d ( 7 1 % ) t h a n o ft h e t e r r i g e n o u s O C ( 4 0 % ; T a b l e 3 . 9  d i f f e r e n c eb e t w e e nf j o r d sm a yb ed u et oag r e a t e rd e g r e eo fw a t e r c o u lm nr e m i n e r a l i s a  o f t h em o s t labile m a r n ie O M in J e r v i sI n l e td u ee i t h e rt o its g r e a t e rd e p t h ,o rt h e  a n o x a i in S a a n c ih I n l e t . H o w e v e r , a n o x a i d o e s n o t a p p e a rt o a f f e c t t h e d e c o m p o s t i o  b u k l O M , a ss i m i l a ra m o u n t so ft h ec a r b o nfluxt o t h e i n t e r f a c e a r el o s td u r i n gs e  d i a g e n e s i s . I nS a a n c ih Inlet, o lw o x y g e nc o n d i t i o n sm a yi n d i r e c t l ye f f e c to p a lp r e s e r v a  b y d e c r e a s n ig t h e r a t e b y w h c ih o r g a n c i c o a t n ig s a r e d e g r a d e d (e.g.; L e w i n , 1 9 6 1 ;  a n dA z a m , 1 9 9 9 ) , b u tt h i sf a c t o rd o e sn o ta p p e a rt ob es i g n i f i c a n t ; a ts t a t i o nS N 0  o ft h e b o ig e n c i silica d i s s o l v e d , w h e l i in J e r v i s I n l e t 4 8 5 9 % w a s l o s t f r o m t h e s e d  Station SN-9  A t lh o u g h t h e O C e r a t i o s a t s t a t i o n S N 9 w e r e n o t h g ih e r t h a n f o r t h e o t h e r s t t h e B S i e r a t i o s w e r e a b o u t d o u b e l t h o s e o b s e r v e d a t t h e h e a d o f S a a n c ih I n l e t  J e r v i s I n l e t a n d , a t all d e p t h s , t h e m a t e r i a l i n t e r c e p t e d b y s e d m i e n t t r a p s a t s t a  S N 9w a s m o r e r e f r a c t o r yt h a n a t t h e o t h e rs t a t i o n s ; % O C a n d % B S i w e r e l o w e s % A 1 w a s h g ih e s t a t t h i s s i t e ( F i g u r e s 3 . 8 a n d 3 . 1 4 ) . R e f r a c t o r y m a t e r i a l w a s  r e s u s p e n d e d o f ft h e sill o f S a a n c ih I n l e t a n d p e r h a p s a s lo t r a v e le d f r o m t h e m o u  Chapter 3. Settlingfluxesin Saanich and Jervis Inlets  mol C m" yr" 2  10  20  30  110  mol C m" yr" 2  1  40  50  0  10  20  30  1  40  50  SN-9 14(22)%  yy ^  8.0(15)% 4.2 (9.6)%  production 50 m flux interface flux burial flux  6 /;  16(27)% terrigenous flux  18 (31)% 5.5(10)%  i 0  0.33  0.66  0.99  g C m" day" 2  1  1.32  1.65  0  0.33  i_  0.66  0.99  1.32  1.65  ,-2 ^o„-1 gCm day"  Figure 3.23: Summary of O C fluxes. Primary production is from Table 2.1, 50 m fluxes are from Tables 3.3 and 3.4 and sediment-water interface and burial fluxes are from Table 3.9. T h e sediment-trap and benthic fluxes are separated into marine (filled part of each bar) and terrigenous (hatched portion of bar) components, so that their sum is the total O C flux at each interval. Numbers associated with each bar are the percent of primary production accounted for by each flux. Numbers in parentheses are for total O C , while numbers before parentheses are for marine O C .  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  mol Si m" yr" 2  0  2  4  6  8  111  mol Si m" yr" 2  1  10  12  0  2  4  6  1  8  10  12  200% 150% 110%  SN-0.8  JV-7  I  I production  I  I 5 0 m flux interface flux burial flux  96%  110%  210%  150% 110%  82%  0  0.37  0.74  1.11  1.48  1.85  2.21  g BSi m" day" 2  Figure 3.24:  1  0  0.37  0.74  1.11  1.48  1.85  2.21  g BSi m" day" 2  1  Summary of B S i fluxes.  Si production is calculated as 0.13 x diatoma-  ceous carbon assimilation (Table 3.6).  50 m fluxes are from Tables 3.3 and 3.4, and  sediment-water interface and burial fluxes are from Table 3.9.  112  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  the Cowichan River to the vicinity of station SN-9.  Nevertheless,  the water-column  fluxes of A l were higher than the M A R of A l in the sediments, resulting in a focusing factor less than one (Table 3.9).  In fact, there is no evidence of enhanced sediment  deposition at station SN-9 when comparing sedimentary fluxes of O C and B S i to local primary production (Figures 3.23 and 3.24). According to Gucluer and Gross (1964) and Frangois (1987), station SN-9 is located at the northern edge of sediments characteristic of the central basin, and the large linear accumulation rates measured there (Table 3.8) argue against this as a location of winnowing.  Therefore, it appears that a nepheloid  layer or sediment plume extends from the sill of Saanich Inlet to station SN-9.  This  plume, furthermore, does not appear to deposit an amount of biogenic material to the sediments in excess of the focusing occurring at other stations. Remineralisation within the sediments at station SN-9, however, is less than at the other stations (Table 3.9). T h e enhanced preservation inside the sill of Saanich Inlet is probably caused by the very high accumulation rate, but may also be the result of particularly refractory sediments being deposited here. A t all stations, the B S i interface flux is 1.4 to 2.1 times greater than estimated Si assimilation (Figures 3.23 and 3.24).  While at stations J V - 3 , J V - 7  and SN-0.8 these additional fluxes may represent relatively young, autochthonous debris focused toward the bottom, at station SN-9 the additional sediments coming from outside the fjord may be more diagenetically altered.  O x y g e n a n d c a r b o n budgets for the deep waters of J e r v i s Inlet For the stagnant waters behind the sill of a fjord, the decay of dissolved oxygen over time allows estimation of the water-column and sediment oxygen demand in the deep basin. T h i s exercise is complicated for Saanich Inlet because dissolved oxygen concentrations did not decay in a gradual manner (see Figures 1.4, 1.5 and 4.8), likely due to the oxidation of reduced chemical species during and shortly after deepwater renewals.  However, in  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  113  Jervis Inlet, dissolved oxygen decayed in such a manner that this exercise is possible (Figures 1.6, 1.7 and 4.7). A box model is used to compare the observed loss of oxygen behind the sill (240 m) of Jervis Inlet and the predicted oxygen demand based on organic carbon remineralisation within the deep waters and sediments.  Oxygen contours (Figures 1.6 and 1.7)  show  that dissolved oxygen was often homogeneously distributed below about 300 m, while above this depth mid-water advection seasonally affected oxygen concentration.  Thus,  300 m is taken as the top of the box within which advective sources of oxygen should be negligible and diffusion effects are ignored, noting that vertical gradients in dissolved oxygen concentration at 300 m at stations J V - 3 and J V - 7 were small. T h e mean depth of the center of Jervis Inlet is 495 m (Pickard, 1961). Accounting for the sloping sides below 300 m (see transects of Figure 1.3), the average depth of the box is 160 m. For sampling locations within the box (Figures 1.6 and 1.7), the rate of dissolved oxygen decay during periods between deepwater renewals was approximately 0.10 pM d  _ 1  (see  Figure 4.7 for an example), converting to an oxygen consumption rate of 5.8 moi m ~ yr  - 1  2  within the box. In Chapter 4, water-column remineralisation rates of organic carbon  are estimated. From those results and using a mean flux of 130 m g O C m ~  d  2  (mean  _ 1  annual O C flux for sediment traps moored within the box; Table 3.4) at the top of the box, 0.64 moi O C m  -  2  yr  - 1  were lost within the water-column of the box. Finally, from  Table 3.9, 2.6 to 4.0 moi O C m ~  2  yr  - 1  were lost within the sediments at stations J V - 7  and J V - 3 , respectively, for an average sedimentary O C loss of 3.3 moi O C m  -  yr  2  - 1  .  These water-column and sedimentary losses of organic matter can be converted to an oxygen demand using the stoichiometry outlined in section 3.3.1. For the O C : N ratios observed in Jervis Inlet, oxygen and organic carbon should be lost at a molar ratio of 126:106 during organic matter degradation (Timothy, 1994).  Thus, the water-column  and sediment oxygen demands are predicted to have been 0.76 and 3.9 moi 0  2  m  -  2  yr  - 1  ,  Chapter  3.  114  Settling fluxes in Saanich and Jervis Inlets  respectively. Considering the errors, these independent estimates of the oxygen demand for the bottom 160 m of Jervis Inlet (5.8 mol m ~ oxygen concentration and 4.7 mol m  -  2  yr  2  - 1  yr  - 1  based on the time-course of dissolved  determined from remineralisation of organic  matter) agree very well. T h e largest sources of error in the estimate based on dissolved oxygen concentrations is determining the upper boundary of the box, which could be off by about 50 m ( ± 3 0 % ) , and the rate of oxygen decay, which ranged between about 0.06 and 0.16 pM d of 0.10 pM d  _ 1  _ 1  for different periods, depths, and stations of the time series. T h e average  is probably accurate to within 20%. T h e predicted oxygen demand based  on organic matter degradation is most sensitive to the sedimentary oxygen demand, as it accounted for 84% of predicted organic matter remineralisation within the box. It is difficult to put an error on the sediment oxygen demand, which is based on  2 1 0  P b profiles  and sediment-trap fluxes, but ± 5 0 % is probably a conservative estimate.  3.5  Conclusions  1. Water-column fluxes of organic carbon and biogenic silica follow local primary production in Saanich and Jervis Inlets. However, physical processes of resuspension and particle focusing in the vertically-narrowing channels, and possibly increased trapping efficiency with depth due to weak deepwater currents and accelerated sinking, cause increases in flux with depth.  A t station SN-9, the effect of m i d  and deepwater renewals on particle flux throughout the water column deceptively suggest late summer plankton blooms.  2. Although resuspension largely affects the A l fluxes at stations SN-9, J V - 3 and J V - 7 , at station SN-0.8 the rain of aluminosilicates is controlled by terrigenous runoff, as A l fluxes closely follow local precipitation and flow of the Cowichan and Goldstream  Chapter 3. Settlingfluxesin Saanich and Jervis Inlets  1 1 5  R i v e r s . T h e r e is s o m e e v d ie n c e t h a t t h e C o w c ih a n R i v e r h a s ag r e a t e r e f f e c t o  fluxes t h a n local r u n o f f . T h eF r a s e rR i v e ra sas i g n i f i c a n ts o u r c eo fa l u m i n t o S a a n c ih I n l e t is u n l i k e l y . 3 . T h e r e l a t i o n s h i p b e t w e e n s t a b l e c a r b o n s io t o p e s a n d B S i c o n t e n t r e v e a l s t h a t 8 0 % o ft h e m a r n ie O C in t h e s e f j o r d s is d a it o m a c e o u s . T h i s r e l a t i o n s h i pw a s  t o m a k e e s t m i a t e s o ft h e m e a n 5C s i g n a l o fs e t t l i n g m a r n ie o r g a n c i m a t t e r . 13  S a a n c ih I n l e t , a n e s t m i a t e o ft h e m e a n 5C o fm a r n ie o r g a n c i m a t t e r is 1 7 . 3 1 3  a n d , in J e r v i s Inlet, is -19.6°/oo- T h e d i f f e r e n c e b e t w e e n f j o r d s m a y b e d u e t  g r e a t e r p r e d o m n ia n c e o ff a s t g r o w i n g d a it o m s in S a a n c ih Inlet. I n t h e s p r i n g a n s u m m e r , 2 0 4 0 % o ft h e s i n k i n go r g a n c i m a t t e r a t 5 0 m is t e r r i g e n o u s w h i l e , fall a n d w i n t e r , 4 0 6 0 % is t e r r i g e n o u s .  4 . T h e s e d i m e n t t r a p e x p o r t r a t i o s o f O C w e r e v e r y o lw in b o t h f j o r d s d u r i n g  s t u d y , a n d m a y h a v e b e e n a f f e c t e d b y s o l u b i l i s a t i o n o f o r g a n c i m a t e r i a l w i t h  t h e s e d m i e n t t r a p s a n d d u r i n g l a b o r a t o r y p r o c e s s n ig .E x p o r t r a t i o s o f B S i w e r e  high, s u g g e s t n ig a n e f f i c i e n t t r a n s f e r o f b o ig e n c i silica o u t o f t h e e u p h o t c i z o n  T h e o b s e r v e d B S i e r a t i o s m a y h a v e f u r t h e r m o r e b e e n a f f e c t e d b y r e s u s p e n d e d  f o c u s e ds e d m i e n t sr e a c h n ig t h es h a o lw s e d m i e n tt r a p s . E x c e p t i o n a l yh i g hfluxeso f  b o ig e n c i silica a ts t a t i o nS N 9m a r kas e d m i e n tp u lm eo rn e p h e o ld i l a y e ra s s o c a i w i t h t h e sill.  5 . A t lh o u g h a s e d m i e n t p u lm e e x t e n d s f r o m t h e sill i n t o S a a n c ih Inlet, w h e n  p a r i n g t o local p r m i a r y p r o d u c t i o n , b o ig e n c i m a t e r i a l is n o t t r a n s m i t t e d t o t h  s e d m i e n t s in e x c e s s o f t h e b o ig e n c i d e l i v e r y t o s e d m i e n t s a t t h e h e a d o f S a a  I n l e to r in J e r v i s Inlet. H o w e v e r , a ts t a t i o nS N 9o r g a n c i m a t t e ra n db o ig e n c i s  is b e t t e r p r e s e r v e d in t h e s e d m i e n t s , p r o b a b y l b e c a u s e o f t h e h i g h a c c u m u a lt o i r a t e s a n d t h e r e f r a c t o r y n a t u r e o ft h e s e d m i e n t n ig m a t e r i a l .  Chapter 3. Settling fluxes in Saanich and Jervis Inlets  1 1 6  6 . C o m p a r n ig a c c u m u a lt o in r a t e s in t h e u p p e r 3 0 c m o f t h e s e d m i e n t s w i t h  p r m i a r y p r o d u c t i o n , t h e r e is little e v d ie n c e t h a t e i t h e r o r g a n c i m a t t e r o r b o ig e n c i  silica is p r e f e r e n t i a ly p r e s e r v e d in t h e p e r i o d i c a ly a n o x c i e n v r io n m e n t o fS a a n c ih  I n l e t ; in b o t h S a a n c ih a n d J e r v i s I n l e t s , a b o u t 5 % o f t h e c a r b o n a n d 6 0  o ft h e Si a s s i m i l a t e d in t h e e u p h o t c i z o n e is b u r i e d in t h e s e d m i e n t s b e n e a t  C h a p t e r 4 it is e s t m i a t e dt h a tw a t e r c o u lm nd i s s o l u t i o n in J e r v i sI n l e tc a u s e sa b a 2 0 % o ls s o fb o ig e n c i silica a s it s n ik s f r o m 1 0 0 m t o 2 0 0 m , a n d a  s i n k i n gf r o m 1 0 0 m t o 6 0 0 m . C o n s d ie r n ig w a t e r c o u lm n d i s s o l u t i o n y e t t h e  p r o p o r t i o n o f a s s i m i l a t e d Si b u r i e d in t h e s e d m i e n t s , t h e r e is a l a r g e a m o u n  p a r t i c l ef o c u s n ig o c c u r r i n g in t h e s ef j o r d sa n d / o rt h e Si:C u p t a k e r a t i oo f0 1 .3 u  t oe s t m i a t e Si a s s i m i l a t i o n is t o ol o w . A w a yf r o ms t a t i o nS N 9w h e r ea c c u m u  r a t e s a r e h g ih e s t a n d t h e s e d m i e n t is o fam o r e r e f r a c t o r y n a t u r e , s i m i l a ra m o fo r g a n c i c a r b o n ( 5 4 6 6 % ) ,n i t r o g e n ( 6 0 7 8 % ) a n db o ig e n c i silica ( 4 5 5 9 % ) a r e  b e t w e e n t h e s e d m i e n t w a t e r i n t e r f a c e a n d d e e p e r in t h e s e d m i e n t c o r e a t s t a t i o S N 0 . 8 , J V 3 a n d JV-7.  Chapter 4  A m o d e l to interpret increases i n flux w i t h d e p t h : r e m i n e r a l i s a t i o n rate constants a n d the a d d i t i o n a l flux to deep sediment traps  4.1  Introduction  In s t u d i e s of vertical p a r t i c l e f l u x in the o c e a n u s n ig m o o r e d s e d m i e n t t r a p s , n ic r e a s e s in f l u x w i t h d e p t h are o f t e n o b s e r v e d , e s p e c i a l y in c o a s t a l e n v r io n m e n t s . For t h e s e s i t u a t i o n s , d e d u c n ig p a r t i c u l a t e s u p p y l f r o m s u r f a c e w a t e r s as w e l as the a l t e r a t i o n of m a t e r i a l as it s n ik s is not s t r a i g h t f o r w a r d w i t h o u t am e a n s of s e p a r a t i n gp r i m a r yf l u x e s f r o m the a d d i t i o n a lm a t e r i a lc a u g h t by d e e p t r a p s .  Q u a n t i t a t i v em e t h o d s to i n t e r p r e ts e d i m e n t t r a pf l u x e st h a tn ic r e a s ew i t hd e p t hh a v e c o n s d ie r e d e i t h e r the d e c a y of p r m i a r yfluxesor the c o m p o s t i o n and a m o u n t of a d d i t i o n a lfluxes,but not b o t hs i m u l t a n e o u s l y . For i n s t a n c e , N o r i k i et al. ( 1 9 8 5 ) d e t e r m n ie d r e g e n e r a t o in r a t e s for b o ig e n c i silica and o r g a n c i m a t t e r in a s h a o l w bay in J a p a n by n o r m a l i s i n gfluxesto a u lm n iu i m (Al).  Later, N o r i k i and T s u n o g a i ( 1 9 8 6 ) , for t r a p fluxe  f r o m the P a c i f i c and S o u t h e r n O c e a n s , and W a s lh et al.  ( 1 9 8 8 b ) , for the E q u a t o r i a l  N o r t h Pacific, a s lo n o r m a s i le dfluxesof p a r t i c u l a t e o r g a n c i c a r b o n , c a c lu im c a r b o n a t e and b o ig e n c i silica to Al. The o c e a n c i e s t m i a t e s of r e m i n e r a l i s a t i o ng i v es i m i l a ra m o u n t s of b o ig e n o u sfluxd e c a y o v e r c o m p a r a b e l d e p t h i n t e r v a l s .H o w e v e r , the n o r m a l i s a t i o n p r o c e d u r e a s s u m e s c o m p o s t io in a l s i m i l a r i t y b e t w e e n p r i m a r y and a d d i t i o n a lfluxes,a c o n s t r a i n t t h a t is not e v e r y w h e r e a p p r o p r i a t e . For e x a m p e l, artificially h i g hd e c a yr a t e s are o b t a n ie d if Al-rich m a t e r i a l , s u c h as r e f r a c t o r y b o t o m s e d m i e n t , is the c a u s e of an  117  Chapter 4.  A model to interpret increases in flux with depth  118  n ic r e a s e influxw i t h d e p t h ( W a s lh et al., 1 9 8 8 a ) . N o r m a l i s a t i o n to Al a s lo a s s u m e s t h a t the Alfluxis c o n s e r v a t i v e , t h o u g h d s is o v le d Al is k n o w n to be s c a v e n g e d by s i n k i n g p a r t i c l e s ( O r i a n s and B r u l a n d , 1 9 8 6 ) . In r e g o in s w h e r e Alfluxesare smal, s c a v e n g n ig may c a u s e o v e r e s t m i a t e s of d e c a y .B o le s c h ( 1 9 8 2 ) a p p l i e d am e t h o d to q u a n t i f y the a m o u n t of r e s u s p e n d e d m a t e r i a lt h a t r e a c h e d n e a r b o t t o m t r a p s in the s h a o l w and t u r -  b u e ln t w a t e r s of L a k e Erie. The m e t h o d was a b l e to d e t e c t t h a t t h e r e w e r e b o t h loca  r e s u s p e n d e d s e d m i e n t s and m a t e r i a l of a m o r e o r g a n i c r i c h n a t u r e w i t h i n the a d d i t i o n a l  flux to h y p o l i m n e t i c t r a p s .W a s lh and G a r d n e r ( 1 9 9 2 ) d e s c r b ie d as i m i l a r m o d e l and f o u n d t h a t the c o m p o s t i o n of the a d d i t i o n a lfluxto d e e p e r t r a p s m o o r e d in the G u l f of  M e x c io was m o r e s i m i l a r to the p r m i a r yfluxt h a n to b o t o ms e d m i e n t s . H o w e v e r , t h e s e two t e c h n q iu e s w e r e not g e n e r a l b e c a u s e w a t e r c o u lm n d e c a y was e i t h e r not c o n s d ie r e d ( B l o e s c h , 1982)  or had to be e s t m i a t e d n id e p e n d e n t y l u s n i g the n o r m a l i s a t i o n s c h e m e  ( W a s lh and G a r d n e r , 1 9 9 2 ) .  T h r e e c o m m o n m e t h o d s to u n r a v e l c o a s t a l s e d i m e n t t r a pfluxest h a t n ic r e a s e w i t h  d e p t hw e r er e v e iw e d by H a k a n s o n et al. ( 1 9 8 9 ) , and a c o m b n ia t o i n of two of t h o s em e t h ods (the b a s e l i n ea p p r o a c h and the b u r i a la p p r o a c h ) was u s e d by P e j r u p et al. ( 1 9 9 6 ) to  s e p a r a t ep r i m a r yf r o mr e s u s p e n d e dfluxesin a s h a l o w , c o a s t a l e n v r io n m e n t . T e c h n q iu e s  s i m i l a r to the l a b e l a p p r o a c h of H a k a n s o n et al. ( 1 9 8 9 ) h a v e b e e n u s e d to i n f e r m u c h a b o u t p r o c e s s e s a f f e c t i n g p a r t i c l e s as t h e y s i n k . For i n s t a n c e , B o lm q v s it and L a r s s o n ( 1 9 9 4 ) u s e d the Al c o n c e n t r a t i o n of p r m i a r y and r e s u s p e n d e d s e d m i e n t s to e s t m i a t e the  p r o p o r t i o n of p r m i a r ys e t t l i n gm a t e r i a l to s e d m i e n tt r a p sm o o r e d at a s i n g l ed e p t h at two s t a t i o n sd u r i n g afivey e a r t m i es e r e is in the Baltic Sea. A g r e a t e r a b u n d a n c e and d i f f e r ent a s s e m b a lg e s of i n t a c t p h y t o p a ln k t o n c e ls in d e e p s e d m i e n t t r a p s r e l a t i v e to s h a o lw t r a p s was u s e d to e v a u la t e the d e g r e e of lateral t r a n s p o r tf r o m the s h e l f to the s o lp e of the M i d d l e A t l a n t i c B i g h t ( F a k lo w s k i et al., 1 9 9 4 ) . Also, the c o m p o s t i o n of s e d i m e n t t r a p m a t e r i a l and u n d e r l y i n gs e d m i e n t s has p r o v d ie di n s i g h ti n t o the b o ic h e m c ia lc h a n g e st h a t  Chapter 4. A model to interpret increases in flux with depth  119  o c c u r to p a r t i c l e s as t h e y s n ik t h r o u g h the w a t e r c o u lm n and b e c o m e i n c o r p o r a t e d i n t o the s e d m i e n t s in D a b o b Bay, WA ( H e d g e s et al., 1 9 8 8 a ; 1 9 8 8 b ) . H o w e v e r , n o n e of the a p p r o a c h e so u t l i n e d by H a k a n s o n et al. ( 1 9 8 9 ) d e s c r b ie sr e m i n e r a l i s a t i o n of the p r i m a r y  flux, a t e r mt h a t may be r e l a t i v e l yl a r g ew h e r ew a t e r d e p t h s are g r e a t e rt h a nr o u g h to 100 m ( P e j r u p et al., 1 9 9 6 ) . The p r m i a r y c o n c e r n of t h i s w o r k is to e s t m i a t e r e m i n e r a l i s a t i o n r a t e s of s e t t l i n g  p a r t i c u l a t e m a t e r i a l w h e r e o b s e r v e dfluxesn ic r e a s e w i t h d e p t h so t h a t m o r e a c c u r a t e  e e lm e n t a l b u d g e t s can be d e s c r b ie d for c o a s t a l r e g i o n s . Ag e n e r a lb a a ln c e e q u a t o in t h a t t r e a t s as u n k n o w n s b o t hw a t e r c o u lm nd e c a y and the c o m p o s t i o n of a d d i t i o n a lm a t e r i a l  c a u g h t by a d e e p e rt r a p was d e v e o lp e d by T m i o t h y( 1 9 9 4 ) and T m i o t h y and P o n d( 1 9 9 7 ) . T h a tm o d e l is a p p l i e d tofluxesof o r g a n c i c a r b o n ,n i t r o g e n ,b o ig e n c i silica and a u lm n iu im d u r i n g the m u l t i y e a rs e d i m e n t t r a pt i m e s e r i e sf r o m S a a n c ih and J e r v i sI n l e t s p r e s e n t e d in C h a p t e r 3.  4.2  D e s c r i p t i o n a n d solution of the m o d e l  T m i o t h y ( 1 9 9 4 ) and T m i o t h y and P o n d ( 1 9 9 7 ) d e s c r b ie d am o d e l to e s t m i a t e r a t e s of  w a t e r c o u lm nd e c a yw h e r em e a s u r e dfluxesn ic r e a s ew i t hd e p t h for the g e n e r a lc a s ew h e r  the r a i n to the d e e p s e d m i e n t t r a p is a m i x t u r e of d e b r i sf r o md i f f e r e n t s o u r c e s and w i t h d i f f e r e n t c o m p o s t io in a l p r o p e r t i e s . The m o d e l ( F i g u r e 4.1)  p a r t i t i o n s thefluxto a d e e p  s e d m i e n t t r a p i n t o two c o m p o n e n t s . The anticipatedfluxis the r e p r e s e n t a t i v e m a t e r i a l e x p e c t e d to r e a c h the d e e ps e d m i e n t t r a pk n o w n ig thefluxat the s h a o lw s e d m i e n t trap, and the additionalfluxis the m a t e r i a l c a u g h t by a d e e p s e d m i e n t t r a p in e x c e s s of the a n t i c i p a t e dflux.The o b s e r v e dfluxto a d e e p s e d m i e n t trap, t h e r e f o r e , is the sum of a n t i c i p a t e d and a d d i t i o n a lfluxes.In g e n e r a l , a n t i c i p a t e d and a d d i t i o n a lfluxesm g ih t be e q u a t e dw i t hp r m i a r y and r e s u s p e n d e dfluxes,r e s p e c t i v e l y , but the o p e r a t i o n a lt e r m s are  Chapter 4. A model to interpret  120  increases in flux with depth  upper trap  c  anticipated flux  lower trap  F i g u r e 4.1: S c h e m a c t i of the s e d m i e n t t r a p m o d e . lA n t i c i p a t e dfluxesare a o lw e d to d e c a y as t h e y s i n k and t h e r e is no c o n s t r a i n t on the s o u r c e of a d d i t i o n a l fluxes. u s e d to e m p h a s s ie t h a t the m o d e l can be a p p l i e d to a d a t a set r e g a r d e ls s of the s o u r c e s of m a t e r i a lr e a c h n ig u p p e r and o lw e r s e d m i e n t t r a p s . F u lx e s are r e c o r d e d by s e d m i e n t t r a p s at d e p t h s z\ and z (z is p o s i t i v e d o w n w a r d ) . 2  j is a c o m p o n e n t of the m a s sflux,J. A n t i c i p a t e d and a d d i t i o n a lfluxesare i d e n t i f i e d by s u b s c r i p t s n and d, r e s p e c t i v e l y , so t h a t : ( 4 . 1 a )  J2 = jn + 3d •  The  ( 4 . 1 6 )  m o d e l is d e s g in e d l a r g e l y tofindr a t e s of r e m i n e r a l i s a t i o n of the s i n k i n gfluxo f  j b e t w e e n d e p t h s z\ and z b o u n d e d by two s e d m i e n t t r a p s .U s n i g the r e s u l t s of 2  the  m o d e n i l g on the six d e p t h i n t e r v a l s in J e r v i s I n l e t , it will be s h o w n in s e c t i o n 4.4.1 t h a t r a t e s of r e m i n e r a l i s a t i o n of OC, N and BSi d e c r e a s e dw i t hd e p t hd u r i n g the s t u d y in J e r v i s  I n l e t . H o w e v e r , b e c a u s e the d e p t h d i s t r i b u t i o n of o ls s c a n n o t be d e t e r m n ie df r o m flu  121  Chapter 4. A model to interpret increases in flux with depth  m e a s u r e d at two d e p t h s , h e r e it is a s s u m e dt h a t the r a t e of r e m i n e r a l i s a t i o n of c o n s t i t u e n t jb e t w e e n the d e p t h s of two s e d m i e n tt r a p s is c o n s t a n t , so t h a ta n t i c i p a t e df l u x e sd e c r e a s e  e x p o n e n t i a l yw i t hd e p t h as t h e ys n i k (e.g.; W a s lh et al., 1 9 8 8 b ) . E q u a t i o n 41 .6 b e c o m e s : (4.2)  J2 = jie- '^+j . k  d  kj (m) 1 -  is the r a t ec o n s t a n t for c o m p o n e n t j. In o r d e r to e s t i m a t e the r a t ec o n s t a n t , j  d  m u s t be q u a n t i f i e d and in the m o d e l is w r i t t e n as the p r o d u c t of Jd and the f r a c t i o n of j in J , (j/J)d- E q u a t i o n 4.2 is r e w r i t t e n as: d  ( 4 . 3 a )  .32=he- ^ +(^jJ . k  z  d  If an e s t m i a t e of J can be m a d e for e a c hd e p o ly m e n tp e r i o d ,t h e n E q u a t i o n 4.3a is l i n e a r d  w i t h the m e a s u r e d (or e s t i m a t e d ) v a r i a b l e s j , j\ and Jd- For d a t a f r o m n d e p o ly m e n t 2  p e r i o d s , t h e s e v a r i a b l e s can be p l o t t e d on t h r e e o r t h o g o n a l a x e s . If a p a ln e is fitte t h r o u g h the d a t ap o i n t s , the s o lp e of the l i n er e p r e s e n t n ig i n t e r s e c t i o n of thefittedp a ln e w i t h the J2 • ji p a ln e is a b e s t e s t i m a t e of e~ > , and the s o lp e of the l i n e w h e r e the k  fitted p a ln e i n t e r s e c t s the j  Az  : Jd p a ln e is an e s t m i a t e of (j/'J) . The d e g r e e of fit of  2  d  the p a ln e to the d a t a is a m e a s u r e of the e x t e n t to w h c ih e~  kjAz  and {j/J}d b e h a v e d as  c o n s t a n t s o v e r the p e r i o d and d e p t h i n t e r v a l c o n s d ie r e d . As E q u a t i o n 4.3a is w r i t t e n , the s o l u t i o n p a ln e s h o u d l p a s s t h r o u g h the o r i g i n and t h e r e f o r e s h o u d l h a v e az e r o i n t e r c e p t on the j-axis. H o w e v e r , t h e r e m a y be e r r o r s 2  a s s o c a it e d w i t h the t r a p p i n g e x p e r m i e n t or w i t h the a s s u m p o t in s of the m o d e l t h a t m g ih t c a u s e an o n z e r o i n t e r c e p t on the j-axis. A t e r m (e, the i n t e r c e p t on the j-axis) 2  2  is i n c l u d e d in E q u a t i o n 4.3a to q u a n t i f y t h e s e p o s s b ie l e r r o r s . h = he- '^+(^j k  J +e d  T h i s e r r o r t e r m is d s ic u s s e d f u r t h e r in s e c t i o n 4 . 3 . 2 .  ( 4 . 3 6 )  Chapter 4. A model to interpret increases in flux with depth  122  In o r d e r to s o v le E q u a t i o n 4.36, the total a d d i t i o n a lflux,J , m u s t be e s t m i a t e d d  for e a c h d e p o ly m e n t p e r i o d . Iffluxess e t t l e c o n s e r v a t i v e l y , J can be e s t m i a t e d as the d  d i f f e r e n c e influxb e t w e e n d e p t h s z i and z : J — J2 — J\- H o w e v e r , w h e r e w a t e r c o u lm n 2  d  d e c a y o c c u r s , Jd will be g r e a t e r t h a n J — J\ by the a m o u n t of J\ t h a t is l o s t w h i l e it 2  s n ik s to d e p t h z . The s i n k i n gfluxis c o m p o s e d of o r g a n c i m a t t e r , b o ig e n c i silica, c a c lu im 2  c a r b o n a t e and l i t h o g e n i c d e b r i s . L t i h o g e n o u sfluxesare e x p e c t e d to be c o n s e r v a t v ie and  C a C O " 3 m a d e up o n y l a b o u t 2 % of the o b s e r v e dfluxesin S a a n c ih and J e r v i sI n l e t s . O n y l the d e g r a d a t o i n of POM and the d i s s o l u t i o n of b o ig e n c i silica are t h e r e f o r e i n c l u d e d in the e x p r e s s o i n for Jd in t h i s s t u d y : -ke..  J = J - J + 2.7Ci (1 - e-*c**) + Sh (1 - e d  2  Az  (4.4)  l  C\ and Si\ arefluxesof o r g a n c i c a r b o n and b o ig e n c i silica at the d e p t h of the u p p e r s e d m i e n t trap, k and k c  Si  are d e c a yc o n s t a n t s for o r g a n c i c a r b o n and b o ig e n c i silica, and  the f a c t o r 2.7 is u s e d to c o n v e r t POC to POM ( s e c t i o n 3.3.1). In e q u a t o i n 4.4, the t e r m s w i t h C\ and Si\ a c c o u n t for the p o r t i o n of J\ l o s t to the w a t e r c o u lm n b e t w e e n d e p t h s z\ and zi- R e p a lc n i g Jd of E q u a t i o n 4.36 w i t h E q u a t i o n 4.4, 32 = 3i e~-kjAz  +  (1)  (J -J 2  1  +  2.7C7i { 1 -  e~ c } + Sh k  Az  {1 -  e- s* }) + e . k  Az  (4.5)  For d a t ac o l e c t e do v e r nd e p o ly m e n tp e r i o d s , E q u a t i o n 4.36 is a set of n s m i u t l a n e o u s e q u a t i o n s .  3n Jdi  1  321  -kjAz  e  3l2 Jd2 1  J22  jln Jdn 1  32n  (4.6a)  W r i t i n g E q u a t i o n 4.6a in a b b r e v i a t e d m a t r i x n o t a t i o n : X  a  =  Y  (4.66)  Chapter 4. A model to interpret increases in flux with depth  123  and matrix multiplication of both sides of Equation 4.6b by (X Xj T  -l  X  T  gives:  (4.7)  periods represented. In applying Equation 4.7, ( J of Jrf. First estimates of k  c  and k  Si  2  — J i ) is used as a first approximation  are made by solving Equation 4.7 for j — O C and  j = B S i , respectively. These rate constants are used in Equation 4.4 to make improved estimates of Jd which, again applying Equation 4.7, give new estimates of k  c  and  k. Si  T h i s iterative procedure is continued until the rate constants used to calculate Jd converge with k  c  and k  Si  estimates of k  c  given back when solving Equation 4.7 for O C and B S i fluxes. W i t h final and k  Si  for the depth interval and deployment periods being addressed,  best estimates of Jd (Equation 4.4) can be made, and kj and (j/ J)d of constituent fluxes (e.g.; N, A l ) can be solved without iteration. For the case where the rate constants do not converge, or where computational resources do not allow the iteration described here, an alternate solution to the model is described in A p p e n d i x B .  4.3 4.3.1  Results S e n s i t i v i t y analyses a n d examples of the planar fits  T h e model of Equation 4.5 and solved using Equation 4.7 has been applied to the sediment-trap fluxes from Saanich and Jervis Inlets reported in Chapter 3.  A sensi-  tivity analysis of the data from each depth interval (three at each station) was performed in order to find and remove records that heavily biased model solution (Appendices C and D ) . T h e model solutions presented in Tables C . l and D . l are the results after outliers have been removed.  T h e rate constants estimated for Saanich Inlet (Table D . l ,  Figure 4.4) are spatially inconsistent, and the differences between constituents are not  Chapter 4. A model to interpret increases in flux with depth  clearly meaningful.  124  Possible causes of these results are discussed in A p p e n d i x D ; one  is that the depth intervals separating the sediment traps may have been too small to resolve the decay of the settling flux. Rate constants from Saanich Inlet are plotted in Figure 4.4. Otherwise, this chapter will consider only the results for Jervis Inlet. In Jervis Inlet, 11 of the surface records biased the model results for the surface-mid and/or the surface-deep intervals.  O f these 11 records, eight were from station J V - 7  and most were from periods of anomalously high fluxes of O C to the 50 m sediment traps (Figure C.7). T h e majority of these periods occurred in the spring and summer of 1985 and 1986, and were generally characterised by high O C : B S i ratios (compare Figures 3.11 and 3.10). Primary production was not measured throughout 1985, but in 1986 was higher than average in Jervis Inlet.  It is possible that these high O C fluxes  were associated with blooms of thecate dinoflagellates or nanoflagellates as described for Sechelt Inlet (Haigh et a l , 1992; Taylor et al., 1994), adjoining Jervis Inlet near station J V - 3 (Figure 1.1). Nutrient data from station J V - 7 (Figure 2.6) further suggest that towards the head of Jervis Inlet autotrophic flagellates were more prevalent than at station J V - 3 or in Saanich Inlet. T h e high O C fluxes with low O C : B S i ratios also may have represented a response by the zooplankton to blooms of diatoms or flagellates. While grazing heterotrophs may have died and sank to the depth of the 50 m sediment traps, it is also possible they were attracted to the debris in the 50 m traps and contaminated the samples (e.g.; Michaels et al., 1990). T h i s latter explanation for the high O C fluxes is supported by the observation of polychaetes occasionally caught within the grids of the sediment traps (Chapter 3).  Furthermore, for these fluxes to have resulted from  naturally sinking phytoplankton or heterotrophs, remineralisation between the 50 m and the mid-depth traps would have been exceptionally high.  W i t h o u t a protective shell,  sinking flagellates may remineralise quickly, but if so they would not be expected to sink in abundance to 50 m, a depth well below the euphotic zone in Jervis Inlet (Figure 2.7).  Chapter 4. A model to interpret increases in flux with depth  125  J V - 3 : 300-600 m. O C solution  0.5^  0.4  v  0.3^  Figure 4.2: Plot of O C solution: station JV-3, 300-600 m. The upper plot depicts the plane relative to the OC , OC\ and J axes. Below, the plot has been rotated to an angle where the plane intersects the data to show the goodness of fit of the model solution. Open circles are plotted data, filled circle is the OCVintercept. 2  d  Chapter 4. A model to interpret increases in flux with depth  126  J V - 7 : 50-450 m. BSi solution  F i g u r e 4.3: P l o t of BSi s o l u t i o n : s t a t i o n JV-7, 5 0 4 5 0 m. The u p p e rp l o ts h o w s the p a ln e r e l a t i v e to the BSi , BSi\ and Jd a x e s and, b e o lw , is r o t a t e d to s h o w the g o o d n e s s of fit. O p e n c i r c l e s are p l o t t e d d a t a ,filledcircle is the B S ^ i n t e r c e p t . 2  Chapter 4. A model to interpret increases in flux with depth  127  Swimmer contamination was therefore a likely cause of the anomalously high O C fluxes to the 50 m sediment traps in Jervis Inlet. Figures 4.2 and 4.3 show examples of the solution plane fit to the sediment-trap data from Jervis Inlet. These examples were chosen because they represent the range of goodness-of-fit of the model to this data set (Table C . l ) . T h e fit to O C fluxes of 300-600 m at station J V - 3 (Figures 4.2) was very good, while the fit to B S i flux for 50-450 m at station J V - 7 was not as good, and a significant intercept on the .BS^-axis occurred (Figure 4.3).  4.3.2  T h e error t e r m  T h e error term included in the model and depicted as the intercept on the ji axis (e.g.; Figure 4.3) was small for the deep sediment-trap depth intervals in Jervis Inlet, but, for many cases from the more shallow intervals, the error was non-zero (Table C . l ) . T h e model assumes that the material representing the anticipated flux reaches the deep sediment trap, but this assumption may be at least partially invalid for a number of reasons including changes in trapping efficiency with depth and horizontal advection across a horizontal gradient in the settling flux. Thus, the anticipated flux might be over- or under-represented in the deep sediment trap, giving physical significance to e. T h e modelled fluxes to a deep sediment trap, including the error term (Equation 4.36), can be equated with the true fluxes in a way that allows for the possibility that the deep sediment trap imperfectly captured the anticipated flux.  jn +jd + £ = yjn+ jd • y is the fraction of j  n  (4.8)  that reaches the deep sediment trap. Rearranging Equation 4.8:  e =  (V -  1)  Jn •  (4.9)  128  Chapter 4. A model to interpret increases in flux with depth  • e > 0: o v e r c o le c t i o n of j  at z .  n  \  2  •  • e < 0: u n d e r c o l e c t i o n of j  n  at z . 2  For the d e p t h i n t e r v a l s a s s o c a it e d w i t h the s u r f a c e s e d m i e n t traps, p o s i t i v e e r r o r s (the  i n t e r c e p t s r e p o r t e d in T a b l e C.l)  w e r e c o m m o n for OC, N and Al, and c o u d l be  c a u s e d by n ic r e a s e dt r a p p i n ge f f i c i e n c yw i t hd e p t h . m I p r o v e d t r a p p i n ge f f i c i e n c y in d e e p w a t e r can be c a u s e d by r e d u c e d c u r r e n t s p e e d s at d e p t h , and by a c c e l e r a t e d s i n k i n g of the s e t t l i n g d e b r i s (e.g.; S m e t a c e k et al., 1978;  T m i o t h y and P o n d , 1997;  Yu et al.,  2 0 0 1 ) . H o w e v e r , if m i p r o v e dt r a p p i n ge f f i c i e n c yw e r ec a u s n ig t h e s ei n t e r c e p t s for the  OC,  N and Al s o l u t i o n s , it is e x p e c t e d the BSi s o l u t i o n s w o u d l a s lo h a v e p o s i t i v e i n t e r c e p t s , but t h e y do not.  The n e g a t v ie BSi i n t e r c e p t s c o u d l be c a u s e d by h o r i z o n t a l a d v e c t o in  c a r r y i n g the a n t i c i p a t e dfluxa w a y f r o m the d e e p s e d m i e n t t r a p and r e p l a c i n g it w i t h m a t e r i a l f r o m ar e g i o n of s m a l e x p o r tflux( D e u s e r et al., 1988;  S i e g e l et al., 1990;  Yu  et al., 2 0 0 1 ) . T m i o t h y and P o n d ( 1 9 9 7 ) p r e s e n t e d as c a e l a n a l y s i s for S e c h e t l I n l e t to  d e t e r m n ie w h e t h e rn ic r e a s e s influxw i t hd e p t h c o u d l h a v e b e e n c a u s e d by the a d v e c t o in  of s e d m i e n t f r o m ah i g h e x p o r t r e g i o n . T h e y c o n c u ld e d t h a t h o r i z o n t a l g r a d i e n t s in the  e x p o r tflux,r e l a t i v e to local c u r r e n t s p e e d s , w e r e not s u f f i c i e n t to c a u s en ic r e a s e s in flu w i t h d e p t h u n e ls s s i n k i n gr a t e s w e r e q u i t eo lw (< 20 m  d ). _1  C u r r e n t l y , the c a u s e of the d i f f e r e n c e in s i g n of the BSi e r r o r s and t h o s e of OC, N and Al is u n r e s o v le d . It r e m a n is to be s e e n w h e t h e rs a m p e l artifacts, s u c h as d i f f e r e n t i a l p r e s e r v a t i o n and s w m i m e r c o n t a m i n a t i o n , are a f f e c t i n gt h e s e results.  Chapter  4.  A model  to interpret  increases  in flux with  depth  129  F i g u r e 4.4: The r e l a t i o n s h i pb e t w e e nr a t ec o n s t a n t s (kc, k^ and kst) and d e p t h . Top row: r a t ec o n s t a n t sp l o t t e da g a n is td e p t h . M i d d l e row: s e m i l np l o t sd e s c r i b i n g an e x p o n e n t i a l d e p e n d e n c e ( E q u a t i o n E.2) of r a t ec o n s t a n t s on d e p t h . B o t o m row: ln-ln p l o t ss h o w n ig the p o w e rf u n c t i o nr e l a t i o n s h i p ( E q u a t i o n4 . 1 1 ) . For the p o w e rf u n c t i o n a l i t y , z is set at 20 m, the a p p r o x m i a t e b a s e of the e u p h o t c i z o n e in J e r v i s Inlet. S o l i d and d a s h e d l i n e s are for s e m i l n and ln-ln t r e a t m e n t s , r e s p e c t i v e l y . k , ct and (3 are f r o m the r e g r e s s o in e q u a t o in s of the s e m i l n and ln-ln plots. See A p p e n d x i E for the e x p o n e n t i a l ( s e m i l n ) t r e a t m e n t , and why it was r e j e c t e d . The m o d e l r e s u l t s f r o m S a a n c ih I n l e t are v e iw e d s k e p t i c a ly ( A p p e n d x i D ) , but the r a t e c o n s t a n t s are p l o t t e d h e r e for c o m p a r s io n . 0  WOm  Chapter 4. A model to interpret increases in flux with depth  4.4  130  Discussion  4.4.1  Describing depth dependence of the rate constants  A t Equation 4.2, it was noted that the depth dependence of the rate constants cannot be determined from data collected at two sediment traps, so it was assumed that the rate parameters were constant with depth. However, results from the six depth intervals in Jervis Inlet (Figure 4.4) show that the rate parameters decreased with depth non-linearly. Organic matter is made of a range of constituents that differ in their susceptibility to degradation; the most labile compounds are oxidised quickly, while refractory components require more time (or depth) to decay (Toth and Lerman, 1977; Westrich and Berner, 1984; Harvey et al., 1995). D i a t o m frustules also exhibit a large range in their dissolution rate. Temperature plays an important role in silica dissolution (Lewin, 1961; Lawson et al., 1978; K a m a t i n i and Riley, 1979), as does ambient silicic acid concentration (Hurd and Birdwhistell, 1983; V a n Cappellen and Q i u , 1997). However, below 50 m in Jervis Inlet, these factors did not vary significantly ( T = 9 ° ± 1°; [Si ( O H ) J = 54 -  6SpM).  Susceptibility to dissolution varies widely between diatom species depending on the specific surface area and morphology of their frustules (e.g.; Lewin, 1961; K a m a t i n i and Riley, 1979; K a m a t i n i , 1980). Furthermore, organic coatings play an important role in protecting biogenic silica from dissolution (e.g.; Lewin, 1961; Bidle and A z a m , 1999) and diatom fragmentation by grazing can also greatly accelerate B S i dissolution (Sancetta, 1989a, 1989b; Ragueneau et al., 2000). Indeed, Sancetta (1989c) found that the small and weakly silicified cells in Jervis Inlet were preferentially lost in the water column, while the dense taxa and diatom cysts better survived transit to the deep sediment traps. The scenario where organic matter is composed of various fractions that decay with different reactivities has been described with the m u l t i - G model (J0rgensen, 1978; Westrich and Berner, 1984), which predicts that changes in the rate constant with time (depth) are  131  Chapter 4. A model to interpret increases in flux with depth  m o s t r a p i d n e a r to (zo). M d id e lb u r g (1989) f o u n d t h a t the p o w e rf u n c t i o n d e s c r b ie s r a t e c o n s t a n t s of o r g a n c i c a r b o n r a n g n ig e i g h t o r d e r s of m a g n t i u d e in age, i n c l u d i n g l a b o r a t o r y d a t at h a t had p r e v i o u s l y b e e n c h a r a c t e r i s e d by the q u a n t u m G m o d e l (a v a r i a n t of the m u l t i G m o d e l t h a t c o n s d ie r s afiniten u m b e r of r e a c t i v e c o m p o n e n t s ; W e s t r c ih and  B e r n e r , 1984). B e c a u s e the d a it o m a s s e m b a lg e in J e r v i s I n l e t e n c o m p a s s e s d v ie r s e t a x a w i t h v a r i a b l e s u s c e p t i b i l i t y to d i s s o l u t i o n , the p o w e r f u n c t i o n may a s lo be a p p r o p r i a t e to d e s c r b ie c h a n g e s w i t h d e p t h of b o ig e n c i silica r a t e c o n s t a n t s . In c o n s t r u c t i n g the p o w e r f u n c t i o n m o d e , l c h a n g e s in kj w i t h d e p t h are a f u n c t i o n of d e p t h : ^  dz  = -/3fco^-D .  (4.10)  P is a d m i e n s o in e ls s c o n s t a n t t h a t d e s c r b ie s the d e p e n d e n c e of kj on z. E q u a t i o n 4.10 is w r i t t e n as s u c h so t h a t i n t e g r a t i o n g v ie s the p o w e r f u n c t i o n :  k = koz-P  .  (4.11)  The n a t u r a l l o g a r i t h m of E q u a t i o n 4.11 is: l n ( i f c ) = -Pln{z) + n l( A ; o ) .  (4.12)  P and k can t h u s be d e t e r m n ie d as the s o lp e and the i n t e r c e p t , r e s p e c t i v e l y , of the 0  r e g r e s s o in l i n e of ln(fc) p l o t t e d a g a n is t \n(z). P is s e n s i t i v e to z , the d e p t h w h e r e ma0  terial b e g n is s i n k i n g and e q u i v a l e n t to t of M d id e lb u r g (1989). For the c u r v efittingof 0  F i g u r e 4.4, z was set at 20 m, the a p p r o x m i a t e d e p t h of 1% s u r f a c e i r r a d i a n c e d u r i n g 0  the s t u d y ( F i g u r e 2.7).  Chapter  4.  A model  to interpret  increases  in flux with  132  depth  OC:BSi (molar) 0.5  normalized flux 0.0  0.5  normalized flux 1.0  0.0  0.5  1.0  1.5  OC:N (molar) 1.0  9.0  9.5  10.0  10.5  11.0  Figure 4.5: F l u x versus depth in Jervis Inlet, a. Decrease with depth of the anticipated fluxes of P O C and B S i for Jervis Inlet. T h e curves extending to ~300 m were generated from results from nearby Sechelt Inlet (Timothy and Pond, 1997). T h e longer curves are from the results of Figure 4.4; heavy lines are from the power-function description of rate constants (Equation 4.14) and light lines are from the exponential description of the rate constants (Equation E.5; the two curves for B S i flux are nearly identical and difficult to differentiate), b. Comparison of the Jervis P O C curve with curves published by M a r t i n et al. (1987; central dashed curve), Betzer et al. (1984; right-hand dashed curve) and Suess (1980; left-hand dashed curve).  Other oceanic curves (Bishop, 1989) are within  the envelope of those presented here. c. F l u x ratios with depth in Jervis Inlet.  Chapter  4.4.2  4.  A model  to interpret  The anticipated  increases  in flux with  133  depth  flux  H a v n i gfittedthe p o w e r f u n c t i o n of E q u a t i o n 4.11  to the r a t e c o n s t a n t s of T a b l e C.l, a  d e s c r i p t i o n of c h a n g e s in flux w i t h d e p t h can be m a d e .  I = -kj  (4.13)  S u b s t i t u t i n g E q u a t i o n 4.11 i n t o E q u a t i o n 41 .3  and i n t e g r a t i n g : ( 4 . 1 4 )  {(5^1). E q u a t i o n 41 .4  is a d e s c r i p t i o n of thefluxt h a t w o u d l be o b s e r v e d if a d d i t i o n a l m a t e r i a l  did not r e a c h d e e p s e d m i e n t t r a p s . F r o m k and 3 of F i g u r e 4.4, the a n t i c i p a t e d fluxe 0  of OC and BSi in J e r v i s I n l e t are g v ie n in F i g u r e 4.5. p a r t i c u l a t e f r a c t i o n are a s lo g v ie n in F i g u r e 4.5.  OC:N  and O C : B S i r a t i o s of the  The O C : B S i r a t i o of the s e t t l i n g flux  d e c r e a s e s w i t h d e p t h , as r e m i n e r a l i s a t i o n of OC e x c e e d s t h a t of BSi. is an n ic r e a s e in the p a r t i c u l a t e OC:N  In g e n e r a l , t h e r e  r a t i o w i t h d e p t h , as N r e m i n e r a l i s a t i o n o c c u r s  s l i g h t l y m o r e r a p i d l y t h a n c a r b o n , e x c e p t for the s u r f a c e m i d and s u r f a c e d e e p d e p t h i n t e r v a l s at s t a t i o n JV-7  ( T a b l e C.l).  H e r e , kc is l a r g e r t h a n k, t h o u g h the d i f f e r e n c e N  was not s i g n i f i c a n t . T h e r e f o r e , the s u r f a c ew g ig e l in the O C : N r a t i op r o f i l e is not certain. N e v e r t h e l e s s , T m i o t h y and P o n d ( 1 9 9 7 ) f o u n d kc >ftjvfor a p o r t i o n of t h e i rs t u d y , and  H a r v e y et al. ( 1 9 9 5 ) o b s e r v e d t h a t p h y t o p a ln k t o n c a r b o h y d r a t e s w e r e l o s t m o r er a p i d l y  t h a n p r o t e i n s or lipids u n d e r o x c i c o n d i t i o n s d u r i n g l a b o r a t o r y e x p e r m i e n t s of o r g a n c i d e c a y . The  p o w e r f u n c t i o n is c o m m o n y l u s e d to d e s c r b ie w a t e r c o u lm nfluxesof s e t t l i n g  m a t e r i a l ( r e v e iw by B i s h o p , 1989)  but to my k n o w e ld g e at r e a t m e n t s u c h as p r e s e n t e d  h e r e ( u s i n g the p o w e r f u n c t i o n to d e s c r b ie c h a n g e s in k w i t h d e p t h , and E q u a t i o n 41 .4 for c h a n g e s influxw i t h d e p t h ) has not b e e n m a d e p r e v i o u s l y .A t lh o u g h the s h a p e is s o m e w h a t d i f f e r e n t b e t w e e n the c u r v e for o r g a n c i c a r b o nfluxin J e r v i s I n l e t and o c e a n c i  134  Chapter 4. A model to interpret increases in flux with depth  r e s u l t s , the two s e t s of c u r v e s g v ie v e r y s i m i l a r a m o u n t s of d e c a y o v e r a 500 m d e p t h interval. The f a s t e r fall-off of d e c a y in J e r v i s Inlet, c o m p a r e d to the o c e a n c i c u r v e s , is due to the s m a lr a t ec o n s t a n t s in the d e e pw a t e r s of J e r v i sI n l e t and not thefittingp r o c e d u r e s  p e r f o r m e dh e r e , as the d e e p w a t e rr a t ec o n s t a n t sw e r ev e r yw e l fitby the p o w e rf u n c t i o n  T h e s e s m a l r a t e c o n s t a n t s for OC and N in the d e e p w a t e r s of J e r v i s Inlet, c o m p a r e d  to the o c e a n c i r a t e c o n s t a n t s i m p l i e df r o md e s c r i p t i o n s of f l u x (e.g.; M a r t i n et al., 1 9 8 7 ) , are u n l i k e l y am o d e l a r t i f a c t b e c a u s e the m o d e l b e s t d e s c r b ie d d e e p w a t e r s e d i m e n t t r a p flux.  In o r d e r to e v a u la t e the b o ig e n c i silica r a t e c o n s t a n t s f r o m J e r v i s Inlet, t h e y can be c o n v e r t e d to t m i e d e p e n d e n t d i s s o l u t i o n r a t e s (Vdi ; h )  by m u l t i p l y i n g by the s i n k i n g  -1  ss  rate. U s n ig a n o m n ia ls i n k i n gr a t e of 100 m d  _1  A l d r e d g e and G o s t c h a l k , 1 9 8 8 ) , the k  Si  and d e c r e a s e d to 0 0 .0 2 h  _1  ( S u e s s , 1980;  F o w e lr and K n a u e r , 1986;  v a u le s of T a b l e C.l w e r e 00 .2  h" at 110 m 1  at 450 m. T h e s e e s t m i a t e s are s i m i l a r to t h o s e m e a s u r e d  in the c o a s t a l w a t e r s of N o r t h w e s t Africa ( 0 . 0 0 4 0 . 0 2 3 h; N e s lo n and G o e r i n g , 1 9 7 7 ) , _1  w h c ih w e r e the h g ih e s t d i s s o l u t i o n r a t e s r e p o r t e d in a c o m p i l a t i o n by R a g u e n e a u et al.  ( 2 0 0 0 ) . The c o n v e r s o in f r o m k  Si  to Vdi is d e p e n d e n t on the s i n k i n g r a t e and an ss  i n t e r e s t i n gp o s s i b i l i t y is t h a ts i n k i n g was e ls st h a n 100 m d  _1  in the u p p e rw a t e rc o u lm n  and a c c e l e r a t e d i n t o d e e p e r w a t e r s . H o w e v e r , it is likely t h a t m u c h of the c u r v a t u r e in the d e p t h p r o f i l e of k  Si  ( F i g u r e 4.4) was in f a c t c a u s e d by d e c r e a s n i g Vdi w i t hd e p t h , as ss  S a n c e t t a ( 1 9 8 9 c ) f o u n d t h a t w e a k y l silicified d a it o m s did not s u r v i v e the fall i n t o d e e p w a t e r s as w e l as did the l a r g e r d i a t o m s . As n o t e d a b o v e , t h i s s h i f t to m o r e h e a v i l y silicified t a x a o c c u r r e d in w a t e r s w i t h r e l a t i v e l y h o m o g e n e o u s t e m p e r a t u r e and a m b e in t silicic a c i d c o n c e n t r a t i o n .  Chapter 4. A model to interpret increases in flux with depth  135  composition of additional flux (relative to mass flux at z ) 2  -1.0  -0.8  -0.6  -0.4  -0.2  depletion in additional flux  100 [•  Al  0.0  0.2  0.4  0.6  excess in additional flux  BSi  200 [•  E  300  o. <u •o 400  500  600  F i g u r e 4.6: C o m p o s t i o n of the a d d i t i o n a lfluxin J e r v i s I n l e t r e l a t i v e to the m a s sfluxto the m d id e l and d e e ps e d m i e n t t r a p s . 4.4.3  T h e a d d i t i o n a l flux i n Jervis Inlet  The c o m p o s t i o n of the a d d i t i o n a lfluxin J e r v i s Inlet, r e p o r t e d for e a c hd e p t h i n t e r v a l in T a b l e Cl, is p l o t t e d r e l a t i v e to the m a s sfluxi n t e r c e p t e d by the d e e ps e d m i e n t t r a p s in F i g u r e 4.6. R e l a t i v e to the m a s sflux,the a d d i t i o n a lfluxwas d e p e lt e d in o r g a n c i c a r b o n and n i t r o g e n t h r o u g h o u t the w a t e r c o u lm n , and b e c a m e i n c r e a s i n g l y e n r c ih e d in a l u m i n o s i lc a t e s and d e p e lt e d in b o ig e n c i silica w i t h d e p t h ( F i g u r e 4.6).  The OM d e p l e t i o n is  s u g g e s t v ie of d i a g e n e t i c a l y old s e d m i e n t , likely r e s u s p e n d e d f r o m the b o u n d a r e is of the fjord, i n c l u d i n gt o p o g r a p h c i p e a k ss u c h as the sill and i n t e r n a lr i s e s (see F i g u r e 1.3).  The  vertical g r a d i e n t of the c o n t e n t s of a l u m i n o s i l c a t e s and BSi may be e x p l a i n e d by h y d r o d y n a m c i s o r t i n g of t h i sr e s u s p e n d e d m a t e r i a l ( S m e t a c e k , 1 9 8 0 a ) . As s e d m i e n t s are lifted  a w a y f r o m the t o p o g r a p h c i b o u n d a r e is , silts and c l a y will s e t t l e out m o r e q u i c k l y t h a  136  Chapter 4. A model to interpret increases in flux with depth  the diatomaceous debris leaving increasingly BSi-rich sediments as the distance from the the bottom and sides increases. Using Equation 4.4 and the rate constants of Table C l , the total additional flux to middle and deep sediment traps has been calculated for each deployment period in Jervis Inlet (Figure 4.7). Bottom water 0  2  concentration is plotted with the additional  fluxes in Figure 4.7 and shows two large deepwater renewals occurring in the late summer and fall of 1985 and 1988, and a smaller renewal in the fall of 1986.  In addition, the  beginning of a renewal was observed at the end of the time-series in the fall of 1989, and the gradual 0  2  increases in the winter of 1987/88 indicate a mid-depth renewal followed  by downward diffusion of 0  2  (eg; DeYoung and Pond, 1988). Historically, renewals occur  every several years in Jervis Inlet (Lazier, 1963; Pickard, 1975), when dense,  oxygen-  rich waters penetrate Juan de Fuca and the Strait of Georgia during the summer-fall upwelling season (Chapters 1 and 2). Resuspension during deepwater renewals has been observed in two Norwegian fjords (Skei, 1980) and a Scottish fjord (Stanley et al., 1981). Additional fluxes to the deep sediment traps were associated with each of the renewals observed in Jervis Inlet, especially at station J V - 3 closer to the mouth, and show that the renewal events were sufficiently turbulent to resuspend sediment to depths 50 m off the bottom or carry material as a plume away from the sill and up-inlet. Additional fluxes to mid-depth traps, however, generally did not show peaks during deepwater renewals, although at 200 m at station J V - 7 there were relatively large additional fluxes in the fall and winter of 1986/87 corresponding to an oxygen renewal.  T h e additional flux  was a substantial portion of the total to 200 m (station J V - 7 ) and 300 m (station J V 3). Certainly with exceptions, the additional flux to the mid-depth traps was a relatively constant fraction of the total flux, suggesting a continual process such as particle focusing (e.g.; Wassmann, 1984; and discussed in Chapter 3) in the narrowing fjord, or regularly occurring resuspension caused by tidal currents. Using a version of the model described  137  Chapter 4. A model to interpret increases in flux with depth  E  450 m  600 m  i 1985  1986  1987  1988  1989  1985  1986  1987  1988  200  1989 'I  I  160 i  120 'I  1985  1986  I  1987  I  I  1988  1989  I  1985  •  1986  i  i"'  1987  '  '  1988  i  '  '  '  i  1989  F i g u r e 4.7: The a d d i t i o n a lfluxin J e r v i s I n l e t . L i g h t b a r s are the total m a s sflux,d a r k b a r s are the a d d i t i o n a lflux.The a d d i t i o n a lfluxto the d e e p s e d m i e n t t r a p s is w i t h r e s p e c t to thefluxat the m d id e p t h t r a p s . B e o lw is o x y g e n c o n c e n t r a t i o n , s h o w n ig the t i m i n g of d e e p w a t e r r e n e w a s l. The o x y g e n t i m e s e r i e s are f r o m 650 m at s t a t i o n JV-3, and 500 m at s t a t i o n JV-7. The o lw 0 v a u le f r o m JV-7 c o l e c t e d A u g u s t 6, 1986, was a c c o m p a n e id by a s l i g h t decrease in d e n s i t y b e t w e e n 400 m and 500 m. 2  Chapter  4.  A model  to interpret  increases  in flux with  depth  138  here, T i m o t h y and Pond (1997) suggested that increases in flux with depth in Sechelt Inlet were partly caused by increasing trapping efficiency in deep waters.  4.4.4  T h e a d d i t i o n a l flux i n Saanich Inlet  Although the solutions of the records from Saanich Inlet are suspect (Appendix D ) , additional fluxes can be calculated because the distance between the sediment traps was short and, therefore, the terms accounting for water-column decay in Equation 4.4 small. Considering a treatment similar to that of Figure 4.7 for Jervis Inlet, similar results are found in Saanich Inlet (Figure 4.8), where additional-flux peaks often coincide with oxygen-rich intrusions to the depths of the fjord. Although the A l fluxes at station S N 9 showed little seasonality, many of the peaks in the A l flux to 110 m coincided with renewal events. Specifically, the renewals of Feb-Mar, 1985; A u g - D e c , 1985; A u g , 1986 (this event was discussed by Ward and Kilpatrick, 1990); J u l - A u g , 1987 and J u l - A u g 1988 resulted in high additional fluxes to 150 m at station SN-9. Approximately one month later, muted versions of most of these events were recorded at station SN-0.8 near the head of Saanich Inlet (Figure 4.8). Effects of the renewal event of 1986 were observed in September by W a r d and Kilpatrick (1990) at a station located in the central basin of Saanich Inlet. T h e deepwater renewals were not clearly evident in the magnitude of the additional flux to the mid-depth sediment traps, even though the additional fluxes were significantly larger than to the deep sediment traps. A s in Jervis Inlet, the additional flux to m i d depth followed the total flux and was likely the result of particle focusing (Wassmann, 1984; T i m o t h y and Pond, 1997) and increasing trapping efficiency with depth (Smetacek, 1978; T i m o t h y and Pond, 1997; Y u et a l , 2001).  139  Chapter 4. A model to interpret increases in flux with depth  16  j  'tz  0  40  D)  32 24 16  "'  I  1984  83 120 .' C\J  O |_  I"  I  1987  1986  1985 I  1  1988 1  r  T  83  1989  1984  1985  1986  1987  1988  1989 120  T  r  80  80  40  40  0 I  83  1984  1985  1986  I  1987  i  1988  1989  83  1984  1985  1986  1987  1988  1989  F i g u r e 4.8: The a d d i t i o n a lfluxin S a a n c ih I n l e t .L i g h t b a r s are the total m a s s flux d a r kb a r s are the a d d i t i o n a lflux.The a d d i t i o n a lfluxto the d e e p s e d m i e n t t r a p s is w i t h r e s p e c t to thefluxat the m d id e p t ht r a p s . O x y g e nc o n c e n t r a t o in sb e o lw s h o wi n t r u s i o n s spiling o v e r the sill w i t hw e a k p e n e t r a t i o n to s t a t i o nS N 0 . 8 . The o x y g e nt i m es e r i e s f r o m 140 m at s t a t i o n SN-9, and 190 m at s t a t i o n S N 0 . 8 .  Chapter 4. A model to interpret increases in flux with depth  4.5  140  Conclusions  To my k n o w e ld g e , t h e r e are v e r ye fw d e p t h d e p e n d e n t r a t ec o n s t a n t e s t m i a t e s of o r g a n c i m a t t e r or b o ig e n c i silica in the w o r l d s ' o c e a n s .T h o s e of N o r i k i and T s u n o g a i ( 1 9 8 6 ) and W a s lh et al.  ( 1 9 8 8 b ) for the d e e p o c e a n are the o n y l explicit e s t m i a t e s of kc or  ksi, and I k n o w of n o n e for the u p p e r w a t e r c o u lm n .H o w e v e r , u p p e r o c e a n d e c a y r a t e s can be m a d e f r o m the first d e r i v a t i v e of the o c e a n c i c u r v e s of OC f l u x s h o w n in F i g u r e 4.5 ( M a r t i n et al., 1 9 8 7 ) . The a g r e e m e n t b e t w e e n the c u r v e s d e s c r b ie d f r o m the kc v a u le s in J e r v i s I n l e t and the o c e a n c i c u r v e s s u g g e s t , t h e r e f o r e , similarity in the p r o c e s s e s c a u s n ig w a t e r c o u lm n o ls s of OM. BSifluxhas not b e e n d e s c r b ie d for o c e a n c i and c o a s t a l s e t t i n g s to the e x t e n t of OC d e s c r i p t i o n s , but c o n v e r s o in f r o m ksi to Vdi  SS  u s n i g an e s t m i a t e d s i n k i n g r a t e s u g g e s t s t h a t BSi d i s s o l u t i o n was r a p i d in J e r v i s Inlet. The m o d e la s lo d e s c r b ie d the a d d i t i o n a lfluxto d e e p s e d m i e n t traps, and it a p p e a r s two  p r o c e s s e sl a r g e l yc o n t r i b u t e de x c e s sm a t e r i a l to d e e pt r a p s . T u r b u l e n td e e p w a t e rr e n e w a  e v e n t sp e r i o d i c a ly c o n t r i b u t e dd e b r i s to d e e ps e d m i e n tt r a p s , and o t h e rp r o c e s s e ss u c ha  p a r t i c l ef o c u s i n g , tidally d r i v e nr e s u s p e n s o in e v e n t s a n d / o ri n c r e a s i n gt r a p p i n ge f f i c i e n c y  w i t h d e p t h w e r e ac o n t i n u a ls o u r c e of a d d i t i o n a lfluxesto md i and d e e p s e d m i e n t t r a p s .  The m o d e l p r e s e n t e d in t h i s c h a p t e r is a b l e to f i n d d e c a y r a t e s of s e t t l i n g m a t e r i a by q u a n t i f y i n g the o p e r a t i o n a l y d e f i n e d 'anticipated' and 'additional'fluxeso b s e r v e d  d u r i n g as e d m i e n t t r a p e x p e r i m e n t , and t h u s o b v a it e s m a n y of the c o m p l i c a t i o n s t h a t o c c u rw h e n t r a n s l a t i n gf r o m the o b s e r v e d to the true, d o w n w a r dflux.The a d v a n t a g e of the m o d e l is a s lo a w e a k n e s s , as the r a t ec o n s t a n t s it p r o d u c e so n y l a p p l y to the m a t e r i a l i n t e r c e p t e d by s e d m i e n t t r a p s and m e a s u r e d in the l a b o r a t o r y . The results, t h e r e f o r e ,  s h o u d l be c o n s d ie r e d a c c u r a t e e s t m i a t e s of r a t e c o n s t a n t s of the m e a s u r e d s i n k i n g flu For e x a m p e l, the r a t ec o n s t a n t sd e r i v e d for the POMfluxare not a p p l i c a b l e to the s o lw y l s i n k i n go r g a n c i m a t t e rt h a t was not s a m p e ld by the s e d m i e n t traps, or the f r a c t i o no f t h e  Chapter  4.  A model  to interpret  increases  in flux with  depth  141  rapidly sinking debris that may have been solubilised within the sediment traps (Knauer et al., 1990; K u m a r et al., 1996) or during sample processing (i.e.; rinsing with distilled water and centrifugation).  Finally, another advantage only recently recognised is the  possibility that the error term might be an indication of changes in trapping efficiency with depth. In Jervis Inlet, the different sign of some of the constituent error terms make immediate interpretation difficult, but further application of the model to various data sets may find an explanation.  Chapter 5  Conclusions  T h i st h e s i s has r e p o r t e dam u l t i y e a rt i m es e r e is of p r m i a r yp r o d u c t i o n and s e d i m e n t t r a p  flux c o l e c t e d f r o m S a a n c ih and J e r v i s I n l e t s , two f j o r d s of s o u t h e r n British C o u lm w i t h c o n t r a s t i n g r e d o x e n v r io n m e n t s . The d e e p w a t e r s of S a a n c ih I n l e t are s e a s o n a y l  a n o x i c , e v e n t h o u g h itsflushingr a t e is r e l a t i v e l y high. T h i s c o n d i t i o n is r a r e a m o n g BC f j o r d s , so p a r t of the m o t i v a t i o n of the s t u d y was to d e t e r m n i e the c a u s e of a n o x a i in S a a n c ih I n l e t .  S a a n c ih I n l e t was s i g n i f i c a n t l ym o r ep r o d u c t i v et h a nJ e r v i s Inlet, and t h e s eh i g hr a t e of p r o d u c t i o n w e r e likely c a u s e d by the u n q iu e c i r c u l a t i o n and m i x i n g of S a a n c ih I n l e t and the s o u t h e r nS t r a i t of G e o r g i a . In the s u m m e r and fall w h e nn u t r i e n t s typicaly limit  p h y t o p a ln k t o n g r o w t h , w i n d d r i v e n u p w e n i lg b r n ig s n u t r i e n t r i c h w a t e r s t h r o u g h J u a n de F u c a and H a r o S t r a i t s and t o w a r d the m o u t h of S a a n c ih Inlet. Tidal and i s o p y c n a l  m x in ig t h u s s u p p e i ls S a a n c ih I n l e t w i t h new n u t r i e n t s , and s u r f a c e d e n s i t y g r a d i e n t s  f u r t h e r m o r ep u m pn u t r i e n t r i c hw a t e r st o w a r d the h e a d of S a a n c ih I n l e t as s u r f a c e salinity  at S a t e l l i t eC h a n n e ln ic r e a s e sd u r i n gs p r i n g tides. The n u t r i e n ts u p p y l and h i g hp r m i a r y p r o d u c t i o nr e s u l t in l a r g efluxesof d a it o m a c e o u sd e b r i s to the d e e pw a t e r s , likely c a u s n ig an n ic r e a s e d d e e p w a t e r o x y g e n d e m a n d . O t h e r a s p e c t s of the p h y s i c a l o c e a n o g r a p h y of  S a a n c ih I n l e t are a s lo c o n d u c v ie to d e e p w a t e r a n o x i a .D o w n w a r d m i x i n g of o x y g e n may be e ls s e f f e c t i v e h e r e t h a n in o t h e r s i m i l a re n v r io n m e n t s , and the w e a k or n e g a t v ie  e s t u a r i n eflowwill t e n d to t r a p s u r f a c e w a t e r p r o p e r t i e s w i t h i n the fjord. T h u s , al a r g e p r o p o r t i o n of the h g ih b o im a s s of the e u p h o t c i z o n e may  142  s e t t l e out w i t h i n the f j o r d  Chapter 5.  Conclusions  143  i n s t e a d o fb e n ig t r a n s p o r t e d s e a w a r d .  S e t t l i n gfluxesin S a a n c ih a n d J e r v i s I n l e t s w e r e typical o fc o a s t a l t e m p e r a t e s e a s  t h a t t h e r a i n o fd a it o m a c e o u s m a t e r i a l ( b i o g e n i c silica a n d o r g a n c i m a t t e r ) w a s h i g h  t h e s p r i n g a n d s u m m e r , w h i l e t e r r g ie n o u s c l a y s a n d o r g a n c i m a t t e r d o m n ia t e d t h e  a n dw i n t e rfluxes.T h e m o o r n ig s i t e n e a rt h e m o u t h o fS a a n c ih I n l e t r e c e v ie d s i g n i f i c  a m o u n t s o fm a t e r i a l w a s h e d i n t o t h e f j o r d f r o m t h e s h a o l w sill o f Satellite C h a n n e  b o t h f j o r d s , s e d m i e n t s f r o m s e v e r a l r e a l o r a p p a r e n t s o u r c e s w e r e s u p e r m i p o s e d o n  s e a s o n a l c y c l e o fd a it o m p r o d u c t i o n . D e e p w a t e r r e n e w a s l c a u s e d h i g hfluxest o t h e d e  s e d m i e n t t r a p s b y r e s u s p e n d n ig d e b r i s f r o m t h e sills a n d o t h e r t o p o g r a p h c i f e a t u r e s  t h e f j o r d s . T h e e f f e c t o fd e e p w a t e r r e n e w a l w a s m o s t n o t i c e a b l e a t t h e s e a w a r d s t a t  b u t w e a k s e d m i e n t a r y s i g n a l s o ft h e r e n e w a s l w e r e a s lo r e c o r d e d a t t h e a ln d w a r d  tions. O t h e r p r o c e s s e s c a u s e d " a d d i t i o n a l "fluxest om d i a n d d e e p s e d m i e n t t r a p s o n  m o r e c o n t i n u a l b a s i s . P a r t i c l e f o c u s n ig a t d e p t h d u e t o t h e n a r r o w n ig c r o s s s e c t o in s  t h e f j o r d s , r e s u s p e n s o in c a u s e d b y r e g u l a r tidal c u r r e n t s o r i n t e r n a l w a v e b r e a k i n g , a  n ic r e a s e d t r a p p i n ge f f i c i e n c y w i t h d e p t h ( a n a p p a r e n t s o u r c e o fs e d m i e n t t o d e e p t r a  likely all p a r t i c i p a t e d in t h e a m p l i f i c a t i o no fs e t t l i n gfluxest ot h e d e e p e rs e d m i e n t t r a p  S e v e r a lc o n c u ls o in sw e r eo b t a n ie df r o mt h ec o m p a r s io no fp r i m a r yp r o d u c t i o n , w a t e  c o u lm nfluxesa n d t h e a c c u m u a lt o in o fm a t e r i a l in t h e b o t o m s e d m i e n t s . D e s p t ie t h  h g ih w a t e r c o u lm nfluxesa t t h e m o u t h o fS a a n c ih Inlet, t h e d e l i v e r y o f b o ig e n c i si a n d o r g a n c i c a r b o n t o t h e s e d m i e n t w a t e r i n t e r f a c e a t t h e s t a t i o n i n s i d e t h e sill  n o t in e x c e s s o ft h e o t h e r s t a t i o n s if n o r m a s i le d t o p r i m a r y p r o d u c t i o n a t e a c h sta  A p p a r e n t l y , a s e d m i e n t a r y p u lm e o r n e p h e o ld i l a y e r e x t e n d e d i n t o S a a n c ih I n l e t f r o m  t h e sill a n d a t lh o u g h it c e r t a i n l y d e p o s t i e d m a t e r i a lt o t h e s e d m i e n t s , it d i d n o t d  m o r et h a n d i ds e d m i e n t f o c u s n ig a t t h e o t h e r s t a t i o n s . T h e m a s s a c c u m u a lt o in r a t e  h g ih e s t a t t h e s a m e s t a t i o n ( p r o p o r t i o n a ly w i t h local p r i m a r y p r o d u c t i o n ) , a n d it  b e l i e v e d t h a t t h i s is w h y p r e s e r v a t i o n o fo r g a n c i m a t t e r a n d b o ig e n c i silica w e r e h g i  Chapter 5.  Conclusions  144  in t h es e d m i e n t sn e a rt h e sill ( T a b l e 3.9). O t h e r w i s e , t h ep r e s e r v a t i o no fo r g a n c i c a r b  n i t r o g e n a n d b o ig e n c i silica w e r e s i m i l a r in J e r v i s I n l e t ( o x y g e n a t e d s u r f a c e s e d m i e n a n d S a a n c ih I n l e t ( a n o x c i s e d i m e n t s ) . A m o d e l d e s g in e d t o e s t m i a t e d e c a y c o n s t a n t s f o r c o n s t i t u e n t s o f t h e s i n k i n g  a n d t h e c o m p o s t i o n o ft h e m a t e r i a l c a u s n ig n ic r e a s e s in f l u x w i t h d e p t h w a s a p p  t h es e d m i e n t t r a pt i m es e r i e s . R a t ec o n s t a n t sw e r ei n c o n s i s t e n t in S a a n c ih Inlet, p e r h  b e c a u s et h ed e p t hi n t e r v a lb e t w e e ns e d m i e n tt r a p sw a st o os m a lt or e s o v le w a t e r c o u l d e c a y . H o w e v e r , r a t ec o n s t a n t sf r o mJ e r v i sI n l e tw e r es e l f c o n s i s t e n t ; o r g a n c i c a r b o n  n i t r o g e n d e c a y e d similarly, a n d f a s t e r t h a n t h e r a t e o fb o ig e n c i silica d i s s o l u t i o n , w  a u lm n iu im r a t ec o n s t a n t sw e r ee f f e c t i v e l yz e r o . Ap o w e rf u n c t i o nd e s c r b ie dc h a n g e sw d e p t h o ft h e o r g a n c i c a r b o n , n i t r o g e n a n d b o ig e n c i silica r a t e c o n s t a n t s , s u g g e s t n ig O M a n d B S i in J e r v i s I n l e t a r e c o m p o s e d o fv a r o iu s c o m p o n e n t s w i t h d i f f e r e n t  r a t e s .T h e s p e c t r u m o f o r g a n c i m a t t e r in J e r v i s I n l e t m a y r a n g e f r o m f r e s h p l a n k  t o t e r r g ie n o u s o r g a n c i m a t t e r a n d d i a g e n e t i c a l y a l t e r e d , r e s u s p e n d e d o r g a n i c s . F o r t h e  b o ig e n c i silica o f d i a t o m s , a r a n g e o f c o m p o n e n t s d i s s o l v i n g a t d i f f e r e n t r a t e s c a n  e x p a ln ie d b y w e a k y l silicified s p e c e is a n d s m a l f r a g m e n t e d r e m a n is o fc o p e p o d g r a z  d i s s o l v i n g in s h a o lw w a t e r s , w h i l e intact, h e a v i l y silicified c e ls t r a n s i tt h ew a t e rc o u lm  w i t h e ls s d i s s o l u t i o n . T h e m o d e l a s lo d e s c r b ie d t h e a d d i t i o n a lflux,w h c ih a p p e a r e d  b er e s u s p e n d e d a n dh y d r o d y n a m c ia y l s o r t e ds e d m i e n t ; it w a so lw in o r g a n c i m a t t e r  b e c a m e i n c r e a s i n g l y r i c h in B S i a n d d e p e lt e d in Al a w a y f r o m t h e b e n t h i c b o u n d  Af e a t u r eo ft h e m o d e lt h a tn e e d sf u r t h e re x p l o r a t i o n is t h ee r r o rt e r m , e , w h c i  r e p r e s e n t c h a n g e s in t r a p p i n g e f f i c i e n c y w i t h d e p t h o r b e i n f l u e n c e d b y lateral a d  t i o n a c r o s s h o r i z o n t a l g r a d i e n t s in t h e e x p o r tflux.F r o m t h e m d it o d e e p d e p t h i n t e r  in J e r v i s Inlet, t h e e r r o r t e r m s w e r e n e g l i g i b l e , v a l i d a t i n g t h e b a s c i a s s u m p o t in s o f  m o d e l c o n s t r u c t i o n f o r t h e d e e p w a t e r s o fJ e r v i s I n l e t . H o w e v e r , f o r t h e s h a l o w t o -  a n ds h a o lw t o d e e pd e p t hi n t e r v a l s , t h ee r r o rt e r m ss u g g e s t e d that, r e l a t i v et om e a s u  Chapter 5. Conclusions  145  fluxes at 50 m, the a n t i c i p a t e dfluxesof o r g a n c i c a r b o n , n i t r o g e n and a u lm n iu im w e r  o v e r c o l e c t e d in d e e pw a t e r (e.g.; t r a p p i n ge f f i c i e n c y may h a v eb e e ng r e a t e r for t h e s ec o n s t i t u e n t s in d e e p w a t e r ) , w h i l e the a n t i c i p a t e dfluxof b o ig e n c i silica was u n d e r c o l e c t e d s (o m e p r o c e s s s u c h as h o r i z o n t a l a d v e c t o in c a u s e d s m a l e r t h a n e x p e c t e dfluxesin d e e p w a t e r s ) . The m e a n n ig of t h e s e r e s u l t s ( o v e r c o le c t i o n of OM and Al, u n d e r c o l e c t i o n of BSi)  is u n r e s o l v e d , but a p p l i c a t i o n of the m o d e l on o t h e r d a t as e t s c o u d l r e v e a l m o r e of  its f e a t u r e s .  T h i st i m es e r i e sb e g a nw h e ns a m p n i l g the m a r n ie e n v r io n m e n tw i t hp a r t i c l ei n t e r c e p t o r s was in its e a r l y d e v e o lp m e n t . S o m e f e a t u r e s of the e x p e r m i e n t w e r e w e l d e s g in e d ,  and f r o m w h a t we h a v e s n ic e e la r n e d o t h e r s m g ih t be c h a n g e d if the e x p e r m i e n t w e r e r e p e a t e d . The  cylindrical s e d m i e n t t r a p s w e r e w e l c h o s e n for t h e s e w a t e r s s u b j e c t to  h i g hc u r r e n ts p e e d s , a t lh o u g ht r a p sw i t h ah g ih e ra s p e c t ( h e i g h t to d i a m e t e r ) r a t i om g i h a v er e s u l t e d in e ls sh y d r o d y n a m c i u n c e r t a i n t y due to the possibility of d o w n w a r dm x in ig to the b o t o m of the trap. The s e d m i e n t t r a p s and d e p o ly m e n t s c h e d u e l ( m o n t h l y ) may h a v e b e e n w e l s u i t e d for a c c u r a t e m e a s u r e m e n t of the lithicfluxand to a e ls s e r d e g r e e  the r a i n of b o ig e n c i silica. H o w e v e r , it a p p e a r s as t h o u g h , at s o m es t a g e o f t h es a m p n i lg  p r o c e d u r e , t h e r e was a g e n e r a l o ls s of o r g a n c i m a t t e r ; i n d e e d , o t h e r s t u d i e s h a v e s h o w  t h a t al a r g e f r a c t i o n of p a r t i c u l a t e o r g a n c i m a t t e r is s o l u b i ls e d w i t h i n s e d m i e n t t r a p s  w h i l et h e y are still d e p o ly e d . T h i sa r t i f a c t is e s p e c i a l ys e v e r e for s e d m i e n t t r a p sm o o r e d  in s h a o lw w a t e r s w h e r e the i n t e r c e p t e d o r g a n c i m a t t e r will t e n d to be m o r e labile t h a n  in d e e p e rw a t e r s . S h o r t e rd e p o ly m e n tp e r i o d s , s e d m i e n tt r a p sw i t hc l o s i n gs a m p e l c h a m b e r s and s u b s e q u e n t m e a s u r e m e n t of d s is o v le d o r g a n c i c a r b o n on the c h a m b e r s o l u t i o n to q u a n t i f y s o l u b i ls e do r g a n c i m a t t e r , and a m o r eg e n t l e l a b o r a t o r y t r e a t m e n t ( w i t h o u t  d i s t i le d w a t e rr i n s e and c e n t r i f u g a t i o n ) w o u d l p r o b a b y l r e s u l t in h g ih e rm e a s u r e d fluxe of o r g a n c i m a t t e r and, to a e ls s e r e x t e n t , b o ig e n c i silica. The s t a t i o nl o c a t i o n s and d e p t hi n t e r v a l sc h o s e n in J e r v i sI n l e tw e r e e x c e le n t , as was  Chapter 5. Conclusions  146  the positioning of station SN-0.8 toward the head of Saanich Inlet. Interesting features of sedimentation off the sill in Saanich Inlet were gleaned from the record from station SN-9, but the time series may have been more significant biologically and geochemically if this mooring had been located in the central basin of Saanich Inlet.  T h i s said, the  primary production time series at station SN-9 is very valuable as it appears to be from a location of maximal production due to high nutrient supply just inside the sill. T h e addition of chlorophyll measurements in a future study would certainly be valuable. A n intriguing possibility to obtaining higher depth-resolution of the rate constants determined from the sediment-trap model would be to place more sediment traps on a single mooring.  It would be interesting to test the model on data collected from  such an arrangement, but also the results from Saanich Inlet may indicate that decay between closely moored sediment traps cannot be resolved by the model. It would also be interesting to test the model on data from many short deployment periods (1/2 week) from a single season to determine the seasonality of rate constants. Such a high resolution data set would also be very telling of the timing of the various sedimentation events in these fjords.  Bibliography  Alldredge, A . L . , and Gotschalk, C . (1988).  In situ settling behavior of marine snow.  Limnology and Oceanography, 33(3), 339-351. Alldredge, A . L . , Passow, U . , and Logan, B . E . (1993). T h e abundance and significance of a class of large, transparent organic particles in the ocean. Deep-Sea Research I, 40(6), 1131-1140. Anderson, J . J . , and Devol, A . H . (1973). Deep water renewal in Saanich Inlet, an intermittently anoxic basin. Estuarine and Coastal Marine Science, 1, 1-10. Anderson, R . F . , Rowe, G . T . , K e m p , P . F . , Trumbore, S., Biscaye, P . E . (1994).  Carbon  budget for the mid-slope depocenter of the Middle Atlantic Bight. Deep-Sea Research II, 41(2/3), 669-703. Baker, E . T . , M i l b u r n , H . B . , and Tennant, D . A . (1988). Field assessment of sediment trap efficiency under varying flow conditions. Journal of Marine Research, 46(3), 573-592. Baumgartner, T . , Crusius, J . , Thomson, R., Holmgren, D . , Francis, R . , Soutar, A . , Ferreira, V . , and Field, J . (in review). A sedimentary record of small pelagic fish abundances from the west coast of Vancouver Island. Canadian Journal of Fisheries and Aquatic Sciences. Berner, R. A . (1982). Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance. American Journal of Science, 282, 451-473. Berner, R . A . (1989). Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over Phanerozoic time. Palaeogeography, Palaeoclimatology, Palaeoecology, 73, 97-122. Betzer, P. R., Showers, W . J . , Laws, E . A . , W i n n , C . D . , D i T u l l i o , G . R . , and Kroopnick, P. M . (1984). Primary productivity and particle fluxes on a transect of the equator at 1 5 3 ° W in the Pacific Ocean. Deep-Sea Research, 31(1), 1-11. Bidigare, R . R . , Fluegge, A . , Freeman, K . H . , Hanson, K . L . , Hayes, J . M . , Hollander, D . , Jasper, J . P., K i n g , L . L . , Laws, E . A . , Milder, J . , Millero, F . J . , Pancost, R . , Popp, B . N . , Steinberg, P. A . , and Wakeham, S. G . (1997).  Consistent fractionation of  1 3  C  in nature and in the laboratory: Growth-rate effects in some haptophyte algae. Global Biogeochemical Cycles, 11(2), 279-292.  147  US  Bibliography-  Bidle, K . D . , and A z a m , F . (1999).  Accelerated dissolution of diatom silica by marine  bacterial assemblages. Nature, 397, 508-512. Bishop, J . K . B . (1989). Regional extremes in particulate matter composition and flux: effects on the chemistry of the ocean interior. Productivity of the Oceans: Present and Past, W . H . Berger, V . S. Smetacek, and G . Wefer, eds., John W i l e y and Sons Limited, 117-137. Bloesch, J . (1982). Inshore-offshore sedimentation differences resulting from resuspension in the eastern basin of Lake Erie. Canadian Journal of Fisheries and Aquatic Sciences, 39, 748-759. Blomqvist, S., and K0foed, C . (1981). Sediment trapping - A subaquatic in situ experiment. Limnology and Oceanography, 26(3), 585-590. Blomqvist, S., and Larsson, U . (1994). Detrital bedrock elements as tracers of settling resuspended particulate matter in a coastal area of the Baltic Sea. Limnology and Oceanography, 39(4), 880-896. Bornhold, B . D . , Ren, P., and Prior, D . B . (1994). High-frequency turbidity currents in British C o l u m b i a fjords. Geo-Marine Letters, 14, 238-243. Bornhold, E . A . (2000). Interannual and interdecadal patterns in timing and abundance of phytoplankton and zooplankton in the central Strait of Georgia, B C : with special reference to Neocalanus  plumchrus,  M.Sc, UBC.  Boyd, P., and Newton, P. (1995). Evidence of the potential influence of planktonic community structure on the interannual variability of particulate organic carbon flux. Deep-Sea Research I, 42(5), 619-639. Bruland, K . W . (1974). Pb-210 geochronology in the coastal margin environment, P h . D . , University of California. Brzezinski, M . A . (1985). T h e S i : C : N ratio of marine diatoms: interspecific variability and the effect of some environmental variables. Journal of Phycology, 21, 347-357. Buck, K . R . , and Newton, J . (1995). Fecal pellet flux in D a b o b B a y during a diatom bloom: Contribution of microzooplankton. Limnology and Oceanography, 40(2), 306-315. Buesseler, K . O . (1991).  D o upper-ocean sediment traps provide an accurate record of  particle flux? Nature, 353, 420-423. Buesseler, K . O . , Michaels, A . F . , Siegel, D . A . , K n a p , A . H . (1994). A three dimensional time-dependent  approach to calibrating sediment trap  cycles, 8(2), 179-193.  fluxes.  Global  biogeochemical  Bibliography  149  B u e s s e e lr , K. O., S t e i n b e r g , D. K., M i c h a e l s , A. F., J o h n s o n , R. J., A n d r e w s , J. E., V a l d e s , J. R., and Price, J. F. ( 2 0 0 0 ) . Ac o m p a r s io n of the q u a n t i t y and c o m p o s t i o n of m a t e r i a l c a u g h t in a n e u t r a ly b u o y a n t v e r s u s s u r f a c e t e t h e r e d s e d m i e n t trap. D e e p S e aR e s e a r c h I, 47, 2 7 7 2 9 4 . B u r d i g e , D. J., and M a r t e n s , C. S. ( 1 9 8 8 ) . B o ig e o c h e m c ia lc y c l i n g in an o r g a n i c r i c hc o a s t a l m a r n ie b a s i n : 10. The r o l e of a m n io a c d i s in s e d m i e n t a r y c a r b o n and n i t r o g e n cycling. G e o c h m i c ia et C o s m o c h m i c ia Acta, 52, 1 5 7 1 1 5 8 4 . B u r k h a r d t , S., R i e b e s e l, U., and Z o n d e r v a n , I. ( 1 9 9 9 ) . E f f e c t s of g r o w t h rate, CO2 c o n c e n tration, and cell s i z e on the s t a b l ec a r b o ns io t o p ef r a c t i o n a t i o n in m a r n ie p h y t o p l a n k t o n . G e o c h m i c ia et C o s m o c h m i c ia Acta, 6 3 ( 2 2 ) , 3 7 2 9 3 7 4 1 . Burrell, D. C. ( 1 9 8 3 ) . P a t t e r n s of c a r b o n s u p p y l and d i s t r i b u t i o n and o x y g e n r e n e w a l in two A a ls k a n f j o r d s . S e d m i e n t a r y G e o o lg y , 36, 9 3 1 1 5 . Burrell, D. C. ( 1 9 8 8 ) . C a r b o nflowin f j o r d s .O c e a n o g r a p h y and M a r n ie B i o l o g y A n n u a l R e v e iw , 26, 1 4 3 2 2 6 .  B u t m a n , C. A. ( 1 9 8 6 ) . S e d m i e n t t r a pb a is e s in t u r b u l e n tflows:R e s u l t sf r o m al a b o r a t o r y f u lm e s t u d y . J o u r n a l of M a r n ie R e s e a r c h , 4 4 ( 3 ) , 6 4 5 6 9 3 . B u t m a n , C. A., G r a n t , W. D., and S t o z le n b a c h , K. D. ( 1 9 8 6 ) . P r e d i c t i o n s of s e d m i e n t t r a p b a is e s in t u r b u l e n tflows:A t h e o r e t i c a l a n a l y s i s b a s e d on o b s e r v a t o in s f r o m the literature. J o u r n a l of M a r n ie R e s e a r c h , 4 4 ( 3 ) , 6 0 1 6 4 4 . C a l v e r t , S. E., and P e d e r s e n , T. F. ( 1 9 9 2 ) . O r g a n c i c a r b o n a c c u m u a lt o i n and p r e s e r v a t i o n in m a r n ie s e d m i e n t s : how i m p o r t a n t is a n o x a i? O r g a n c i M a t t e r : P r o d u c t i v i t y , A c c u m u l a t i o n , and P r e s e r v a t i o n in R e c e n t and A n c e in t S e d m i e n t s , J. K. W h e a ln and J. W. F a r r i n g t o n , eds., C o u lm b a i U n i v e r s i t y P r e s s , 2 3 1 2 6 3 . C a l v e r t , S. E., P e d e r s e n , T. F., and Karlin, R. E. ( 2 0 0 1 ) . G e o c h e m c ia l and i s o t o p i ce v d ie n c e for p o s t g l a c i a l p a a le o c e a n o g r a p h c i c h a n g e s in S a a n c ih Inlet, British C o l u m b i a . M a r n ie G e o o lg y , 174, 2 8 7 3 0 5 . Clifford, P. J., H a r r i s o n , P. J., St. J o h n , M. A., Yin, K., and Albright, L. J. ( 1 9 9 1 ) . P l a n k t o np r o d u c t i o n and n u t r i e n td y n a m c is in the F r a s e rR i v e rP l u m e , 1989. M a n u s c r p it r e p o r t no. 54, U n i v e r s i t y of British C o l u m b i a . Clifford, P. J., H a r r i s o n , P. J., Yin, K., St. J o h n , M. A., and Goldblatt, R. H. ( 1 9 9 2 ) . P l a n k t o np r o d u c t i o n and n u t r i e n t d y n a m c is in the F r a s e r R i v e rP l u m e , 1991. V o u lm e 1. M a n u s c r p it r e p o r t no. 59, U n i v e r s i t y of British C o l u m b i a . C o c h l a n , W. P., H a r r i s o n , P. J., T h o m p s o n , P. A., and P a r s o n s , T. R. ( 1 9 8 6 ) . P r e l i m i n a r y o b s e r v a t o in s of the s u m m e rp r o d u c t i o n of t h r e e British C o u lm b a in c o a s t a l inlets. Sarsia,  150  Bibliography  71, 161-168. Conley, D . J . , and Malone, T . C . (1992). A n n u a l cycle of dissolved silicate in Chesapeake Bay: implications for the production and fate of phytoplankton biomass. Marine Ecology Progress Series, 81, 121-128. Corner, E . D . S., and Davies, A . G . (1971).  Plankton as a factor in the nitrogen and  phosphorus cycles in the sea. Advances in Marine Biology, 9, 101-204. Cowie, G . L . , and Hedges, J . I. (1992). T h e role of anoxia in organic matter preservation in coastal sediments: relative stabilities of the major biochemicals under oxic and anoxic depositional conditions. Advances in Organic Geochemistry, 19(1-3), 229-234. Cowie, G . L . , Hedges, J . I., and Calvert, S. E . (1992). Sources and relative reactivities of amino acids, neutral sugars, and lignin in an intermittently anoxic marine environment. Geochimica et Cosmochimica A c t a , 56, 1963-1978. Crusius, J . , and Anderson, R . F . (1995). Sediment focusing in six small lakes inferred from radionuclide profiles. Paleolimnology, 13, 143-155. Dagg, M . J . , Frost, B . W . , and Walser, W . E . J . (1989). C o p e p o d diel migration, feeding, and the vertical flux of pheopigments.  Limnology and Oceanography, 34(6), 1062-1071.  de Young, B . , and Pond, S. (1988). T h e deepwater exchange cycle in Indian A r m , British Columbia. Estuarine, Coastal and Shelf Science, 26, 285-308. Deines, P. (1980).  T h e isotopic composition of reduced organic carbon.  Handbook of  Environmental Isotope Geochemistry, P. Fritz and J . C . Fontes, eds., Elsevier Scientific, Amsterdam, 329-406. Del A m o , Y . , Queguiner, B . , Treguer, P., Breton, H . , and Lampert, L . (1997).  Impacts  of high-nitrate freshwater inputs on macrotidal ecosystems. II. Specific role of the silicic acid pump in the year-round dominance of diatoms in the B a y of Brest (France). Marine Ecology Progress Series, 161, 225-237. DeNiro, M . J . , and Epstein, S. (1978).  Influence of diet on the distribution of carbon  isotopes in animals. Geochimica et Cosmochimica A c t a , 42, 495-506. Deuser, W . G . , Muller-Karger, F . E . , and Hemleben, C . (1988).  T e m p o r a l variations of  particle fluxes in the deep subtropical and tropical North Antlantic: Eulerian versus Lagrangian effects. Journal of Geophysical Research, 93(C6), 6857-6862. Deuser, W . G . (1996).  Temporal variability of particle flux in the deep Sargasso Sea.  Particle F l u x in the Ocean, V . Ittekkot, P. Schafer, S. Honjo, and P. J . Depetris, eds., John Wiley and Sons, Chichester, 185-198.  151  Bibliography  Downs, J . N . (1989). E x p o r t production in oceanic systems: Information from phaeopigment, carbon and nitrogen analyses, P h . D . , University of Washington. Dugdale, R. O , and Goering, J . J . (1967). Uptake of new and regenerated forms of nitrogen in primary productivity. Limnology and Oceanography, 12(2), 196-206. D y m o n d , J . (1984). Sediment traps, particle fluxes, and benthic boundary layer processes. Global Ocean F l u x Study, Woods Hole, M A , 260-284. Emerson, S. (1980). Redox species in a reducing fjord: the oxidation rate of manganese II. Fjord Oceanography, H . J . Freeland, D . M . Farmer, and C . D . Levings, eds., Plenum Press, New York, 681-687. Emerson, S., Quay, P. D . , Stump, C . , Wilbur, D . , and Schudlich, R . (1995).  Chemical  tracers of productivity and respiration in the subtropical Pacific Ocean. Journal of Geophysical Research, 100(C8), 15,873-15,887. Eppley, R . W . , and Peterson, B . J . (1979). Particulate organic matter flux and planktonic new production in the deep ocean. Nature, 282, 677-680. Falkowski, P. G . , Biscaye, P. E . , and Sancetta, C . (1994).  T h e lateral flux of biogenic  particles from the eastern North American continental margin to the North Atlantic Ocean. Deep-Sea Research II, 41(2/3), 583-601. Fleming, R . H . (1940). Composition of plankton and units for reporting populations and production.  Proceedings of the Sixth Pacific Science Congress of the Pacific Science  Association, University of California and Stanford, 535-540. Fowler, S. W . , and Knauer, G . A . (1986). Role of large particles in the transport of elements and organic compounds through the oceanic water column. Progress in Oceanography, 16, 147-194. Frangois, R. (1987).  Some aspects of the geochemistry of sulphur and iodine in marine  humic substances and transition metal enrichment in anoxic sediments, P h . D . , U B C . Frangois, R. (1988). A study on the regulation of the concentrations of some trace metals (Rb, Sr, Z n , P b , C u , V , C r , N i , M n , a n d Mo) in Saanich Inlet sediments, British Columbia, Canada. Marine Geology, 83, 285-308. Fry, B . , and Wainright, S. C . (1991). D i a t o m sources of  1 3  C - r i c h carbon in marine food  webs. Marine Ecology Progress Series, 76, 149-157. Gardner, W . D . (1980a). Field assessment of sediment traps. Journal of Marine Research, 38(1), 41-52. Gardner, W . D . (1980b). Sediment trap dynamics and calibration: a laboratory evaluation.  Bibliography  152  J o u r n a l of M a r n ie R e s e a r c h , 3 8 ( 1 ) , 1 7 3 9 . G a r d n e r , . W. D. ( 1 9 8 5 ) . The e f f e c t s of tilt on s e d m i e n t t r a p e f f i c i e n c y . D e e p S e aR e s e a r c h , 3 2 ( 3 ) , 3 4 9 3 6 1 . G a r d n e r , W. D., and Z h a n g , Y. ( 1 9 9 7 ) . The e f f e c t of b r i n e on the c o le c t i o n e f f i c i e n c y of cylindrical s e d m i e n t t r a p s . J o u r n a l of M a r n ie R e s e a r c h , 55, 1 0 2 9 1 0 4 8 . G i b b s , R. J., and K o n w a r , L. ( 1 9 8 6 ) . C o a g u l a t i o n and s e t t l i n g of A m a z o nr i v e r s u s p e n d e d s e d m i e n t . C o n t i n e n t a l S h e l fR e s e a r c h , 6 ( 1 / 2 ) , 1 2 7 1 4 9 . Gilmartin, M. ( 1 9 6 4 ) . The p r i m a r yp r o d u c t i o n of a British C o u lm b a i fjord. J o u r n a l of the F i s h e r i e s R e s e a r c h B o a r d of C a n a d a , 2 1 ( 3 ) , 5 0 5 5 3 8 . Goni, M. A., R u t t e n b e r g , K. C, and Eglinton, T. I. ( 1 9 9 7 ) . S o u r c e s and c o n t r i b u t i o n s of t e r r i g e n o u s o r g a n c i c a r b o n to s u r f a c e s e d m i e n t s in the G u l f of M e x i c o . N a t u r e , 389, 2 7 5 2 7 8 . Goni, M. A., R u t t e n b e r g , K. C, and Eglinton, T. I. ( 1 9 9 8 ) . Ar e a s s e s s m e n t o f t h e s o u r c e s and m i p o r t a n c e of the l a n d d e r i v e d o r g a n c i m a t t e r in s u r f a c es e d m i e n t s f r o m the G u l f of M e x i c o . G e o c h m i c ia et C o s m o c h m i c ia Acta, 6 2 ( 1 8 ) , 3 0 5 5 3 0 7 5 . Griffin, D. A., and L e B l o n d , P. H. ( 1 9 9 0 ) . E s t u a r y / o c e a n e x c h a n g e c o n t r o l e d by s p r i n g n e a p tidal m i x i n g . E s t u a r i n e , C o a s t a l and S h e l fS c i e n c e , 30, 2 7 5 2 9 7 . G u c l u e r , S. M., and G r o s s , M. G. ( 1 9 6 4 ) . R e c e n t m a r n ie s e d m i e n t s in S a a n c ih Inlet, a s t a g n a n t m a r n ie b a s i n . L m i n o o lg y and O c e a n o g r a p h y , 9(2), 3 5 9 3 7 6 . Guillard, R. R. L., and K i l h a m , P. ( 1 9 7 7 ) . The e c o o lg y of m a r n ie p l a n k t o n i cd i a t o m s . The B o io lg y of D i a t o m s , D. W e r n e r , eds., B l a c k w e l Scientific, O x f o r d , 3 7 2 4 6 9 .  G u s t , G., B y r n e , R. H., B e r n s t e i n , R. E., B e t z e r , P. R., and B o w e ls , W. ( 1 9 9 2 ) . P a r t i c l e fluxes and m o v n igfluids:e x p e r e in c e f r o m s y n c h r o n o u s t r a p c o le c t i o n s in the S a r g a s s Sea. D e e p S e a R e s e a r c h , 3 9 ( 7 / 8 ) , 1 0 7 1 1 0 8 3 .  G u s t , G., M i c h a e l s , A. F., J o h n s o n , R., D e u s e r , W. G., and B o w e ls , W. ( 1 9 9 4 ) . M o o r n ig l i n em o t o in s and s e d m i e n tt r a ph y d r o m e c h a n c is : in situ n it e r c o m p a r s io n of t h r e ec o m m o n d e p o ly m e n t d e s g in s . D e e p S e aR e s e a r c h I, 4 1 ( 5 / 6 ) , 8 3 1 8 5 7 . H a i g h , R., T a y l o r , F. J. R., and S u t h e r l a n d , T. F. ( 1 9 9 2 ) . P h y t o p a ln k t o ne c o o lg y of S e c h e t l I n l e t , af j o r ds y s t e m on the British C o u lm b a i c o a s t . I. G e n e r a lf e a t u r e s of the n a n o - and m i c r o p l a n k t o n . M a r n ie E c o o lg y P r o g r e s s S e r i e s , 89, 1 1 7 1 3 4 . H a k a n s o n , L., F l o d e r u s , S., and Wailin, M. ( 1 9 8 9 ) . S e d m i e n t t r a pa s s e m b a lg e s-am e t h o d o l o g i c a ld e s c r i p t i o n . H y d r o b i o l o g i a , 1 7 6 / 1 7 7 , 4 8 1 4 9 0 .  Bibliography  153  H a n s e n , J. L. S., T m i m , U., and K i 0 r b o e , T. ( 1 9 9 5 ) . A d a p t i v es i g n i f i c a n c e of p h y t o p a ln k t o n s t i c k i n e s sw i t he m p h a s s i on the d a it o m Skeletonema costatum. M a r n ie B i o l o g y , 123, 667676. H a r g r a v e , B. T., and B u r n s , N. M. ( 1 9 7 9 ) . A s s e s s m e n t of s e d m i e n tt r a pc o le c t i o ne f f i c i e n c y . L m i n o o lg y and O c e a n o g r a p h y , 2 4 ( 6 ) , 1 1 2 4 1 1 3 6 . H a r g r a v e , B. T., B o d u n g e n , B., Stoffyn-Egli, P., and M u d i s , P. J. ( 1 9 9 4 ) . S e a s o n a l variability in p a r t i c l es e d m i e n t a t o in u n d e rp e r m a n e n t ice c o v e r in the Arctic O c e a n . C o n t i n e n t a l S h e l fR e s e a r c h , 14, 2 7 9 2 9 3 . H a r r i s o n , P. J., Fulton, J. D., T a y l o r , F. J. R., and P a r s o n s , T. R. ( 1 9 8 3 ) . R e v e iw of the b i o l o g i c a lo c e a n o g r a p h y of the Strait of G e o r g i a : p e l a g i ce n v r io n m e n t . C a n a d a in J o u r n a l of F i s h e r i e s and A q u a t i c S c e in c e s , 40, 1 0 6 4 1 0 9 4 . H a r r i s o n , P. J., Clifford, P. J., C o c h l a n , W. P., Yin, K., St. J o h n , M. A., T h o m p s o n , P. A., S i b b a l d , M. J., and Albright, L. J. ( 1 9 9 1 ) . N u t r i e n t and p l a n k t o nd y n a m c is in the F r a s e r R i v e r p u lm e , Strait of G e o r g i a , British C o l u m b i a . M a r n ie E c o o lg y P r o g r e s s S e r i e s , 70, 2 9 1 3 0 4 . H a r r i s o n , W. G., Piatt, T., and L e w i s , M. R. ( 1 9 8 7 ) . f R a t i o and its r e l a t i o n s h i p th a m b e in t n i t r a t e c o n c e n t r a t i o n in c o a s t a l w a t e r s . J o u r n a l of P l a n k t o n R e s e a r c h , 9(1), 2 3 5 2 4 8 . H a r v e y , H. R., Tuttle, J. H., and Bell, J. T. ( 1 9 9 5 ) . K i n e t i c s of p h y t o p a ln k t o nd e c a yd u r i n g s m i u a lt e d s e d i m e n t a t i o n : C h a n g e s in b o ic h e m c ia l c o m p o s t i o n and m i c r o b i a l activity u n d e ro x c i and a n o x c i c o n d i t i o n s . G e o c h m i c ia et C o s m o c h m i c ia Acta, 5 9 ( 1 6 ) , 3 3 6 7 3 3 7 7 .  H a w e ly , N. ( 1 9 8 8 ) . F o lw in cylindrical s e d m i e n t t r a p s . J o u r n a l of G r e a t L a k e s R e s e a r c h 1 4 ( 1 ) , 7 6 8 8 . H e c k y , R. E., M o p p e r , K., K i l h a m , P., and D e g e n s , E. T. ( 1 9 7 3 ) . The s u g a r c o m p o s t i o n of d a it o m cel-wals. M a r n ie B i o l o g y , 19, 3 2 3 3 3 1 .  a m n io a c i d and  H e d g e s , J. I., Clark, W. A., Q u a y , P. D., R i c h e y , J. E., D e v o l , A. H., and S a n t o s , U. d. M. ( 1 9 8 6 ) . C o m p o s t o in s andfluxesof p a r t i c u l a t e o r g a n c i m a t e r i a l in the A m a z o n R i v e r . L m i n o o lg y and O c e a n o g r a p h y , 3 1 ( 4 ) , 7 1 7 7 3 8 . H e d g e s , J. I., Clark, W. A., and C o w e i, G. L. ( 1 9 8 8 a ) . O r g a n c i m a t t e rs o u r c e s to the w a t e r c o u lm n and surficial s e d m i e n t s of a m a r n i e bay. L m i n o o lg y and O c e a n o g r a p h y , 3 3 ( 5 ) , 1 1 1 6 1 1 3 6 . H e d g e s , J. I., Clark, W. A., and C o w e i, G. L. ( 1 9 8 8 b ) . F u lx e s and r e a c t i v i t i e s of o r g a n c i m a t t e r in a c o a s t a l m a r n i e bay. L m i n o o lg y and O c e a n o g r a p h y , 3 3 ( 5 ) , 1 1 3 7 1 1 5 2 . H e d g e s , J. I., and B e r g a m a s c h , i B. A. ( 1 9 9 2 ) . S e a w a t e rc a r b o nm e a s u r e m e n t . N a t u r e , 359,  Bibliography  154  202. H e d g e s , J. I., and Keil, R. G. ( 1 9 9 5 ) . S e d m i e n t a r yo r g a n c i m a t t e rp r e s e r v a t i o n : an a s s e s s m e n t and s p e c u l a t i v e s y n t h e s i s . M a r n ie C h e m i s t r y , 49, 8 1 1 1 5 . H e r l i n v e a u x , R. H. ( 1 9 6 2 ) . O c e a n o g r a p h y of S a a n c ih I n l e t in V a n c o u v e r I s l a n d , British C o l u m b i a . J o u r n a l o f t h e F i s h e r i e s R e s e a r c h B o a r d of C a n a d a , 1 9 ( 1 ) , 1-37. Hill, P. S., Milligan, T. G., and G e y e r , W. R. ( 2 0 0 0 ) . C o n t r o l s on e f f e c t i v es e t t l i n gv e l o c i t y of s u s p e n d e ds e d m i e n t in the Eel R i v e rfloodp u lm e . C o n t i n e n t a lS h e l fR e s e a r c h , 20 (C2), 2 0 9 5 2 1 1 1 . H o b s o n , L. A. ( 1 9 8 1 ) .S e a s o n a l v a r i a t i o n s in m a x m iu m p h o t o s y n t h e t i c r a t e s of p h y t o p l a n k t o n in S a a n c ih I n l e t , V a n c o u v e rI s l a n d , British C o l u m b i a . J o u r n a l of E x p e r i m e n t a l M a r n ie B o io lg y and E c o l o g y , 52, 1-13. H o b s o n , L. A. ( 1 9 8 3 ) . P h y t o p a ln k t o n c r o p s , b a c t e r i a l m e t a b o s i lm and o x y g e n in S a a n c ih Inlet, a f j o r d in V a n c o u v e r I s l a n d , British C o l u m b i a . S e d m i e n t a r y G e o o lg y , 36, 1 1 7 1 3 0 . H o b s o n , L. A. ( 1 9 8 5 ) . S e a s o n a l v a r i a t i o n s and s p a t i a l g r a d i e n t s of n t i r o g e n o u s n u t r i e n t s in w a t e r s of s o u t h e a s t e r n V a n c o u v e r I s l a n d , British C o l u m b i a , C a n a d a . N e t h e r a ln d s J o u r n a l of Sea R e s e a r c h , 1 9 ( 3 / 4 ) , 2 5 1 2 5 6 . H o b s o n , L. A., and M c Q u o d i , M. R. ( 1 9 9 7 ) .T e m p o r a l v a r i a t i o n s a m o n g p l a n k t o n dia t o m a s s e m b a lg e s in a t u r b u l e n t e n v r io n m e n t of the s o u t h e r n Strait of G e o r g i a , British C o l u m b i a , C a n a d a . M a r n ie E c o o lg yP r o g r e s s S e r i e s , 150, 2 6 3 2 7 4 .  H o b s o n , L. A., and M c Q u o d i , M. R. ( 2 0 0 1 ) . P e l a g i cd a it o ma s s e m b a lg e s are g o o di n d i c a t o r s of m x ie dw a t e ri n t r u s i o n si n t oS a a n c ih I n l e t , a stratified f j o r d in V a n c o u v e rI s l a n d . M a r n ie G e o o lg y , 174, 1 2 5 1 3 8 . H o n j o , S., S p e n c e r , D. W., and G a r d n e r , W. D. ( 1 9 9 2 ) . As e d m i e n t t r a p n it e r c o m p a r s io n e x p e r m i e n t in the P a n a m a Basin, 1979. D e e p S e a R e s e a r c h , 3 9 ( 2 ) , 3 3 3 3 5 8 . H o p k i n s , C. C. E. ( 1 9 8 1 ) . E c o l o g i c a li n v e s t i g a t i o n s on the z o o p a ln k t o nc o m m u n t y i of B a l s f j o r d e n , N o r t h e r nN o r w a y : c h a n g e s in z o o p a ln k t o na b u n d a n c e and b o im a s s in r e l a t i o n to p h y t o p a ln k t o n and h y d r o g r a p h y , M a r c h 1 9 7 6 F e b r u a r y 1977. K i e l e r M e e r e s f o r s c h u n g e n S o n d e r h e f t , 5 ( 1 2 4 1 3 9 ) . H u n t l e y , M. E., and H o b s o n , L. A. ( 1 9 7 8 ) . M e d u s a p r e d a t i o n and p l a n k t o n d y n a m c is in a t e m p e r a t e fjord, British C o l u m b i a . J o u r n a l of the F i s h e r i e s R e s e a r c h B o a r d of C a n a d a , 35, 2 5 7 2 6 1 . H u r d , D. C, and Birdwhistel, S. ( 1 9 8 3 ) . On p r o d u c n ig a m o r eg e n e r a l m o d e l for b o ig e n c i silica d i s s o l u t i o n . A m e r c ia n J o u r n a l of S c e in c e , 283, 1-28.  155  Bibliography  I s e k i , K., W h i t n e y , F., and W o n g , C.S. ( 1 9 8 0 ) . B o ic h e m c ia lc h a n g e s of s e d m i e n t e d m a t t e r in s e d m i e n t t r a p in s h a o lw c o a s t a lw a t e r s . Buletin of P l a n k t o n S o c e it y of J a p a n , 2 7 ( 1 ) , 2 7 3 6 . I t t e k k o t , V. ( 1 9 9 3 ) . The a b i o t i c a ly d r i v e n b i o l o g i c a l p u m p in the o c e a n and s h o r t t e r m f l u c t u a t i o n s in a t m o s p h e r c i C0 c o n t e n t s . G l o b a l P l a n e t a r y C h a n g e , 8, 1 7 2 5 . 2  J a c o b s o n , D. M., and A n d e r s o n , D. M. ( 1 9 8 6 ) .T h e c a t e h e t e r o t r o p h i c d i n o f l a g e la t e s : f e e d n ig b e h a v o i r and m e c h a n s im s . J o u r n a l of P h y c o o lg y , 22, 2 4 9 2 5 8 .  J O r g e n s e n , B. B. ( 1 9 7 8 ) .A c o m p a r s io n of m e t h o d s for the q u a n t i f i c a t i o n of b a c t e r i a l s u l f a t e r e d u c t i o n in c o a s t a l m a r n ie s e d m i e n t s II. c a l c u l a t i o nf r o m m a t h e m a t c ia lm o d e s l. G e o m c ir o b o io lg yJ o u r n a l , 1(1), 2 9 4 7 .  J u m a r s , P. A., P e n r y , D. L., B a r o s s , J. A., P e r r y , M. J., and Frost, B. W. ( 1 9 8 9 ) . C l o s i n g the m i c r o b i a ll o o p : d s is o v le d c a r b o n p a t h w a y to h e t e r o t r o p h i c b a c t e r i af r o mn ic o m p e lt e i n g e s t i o n , d i g e s t i o n and a b s o r p t o i n in a n i m a l s . D e e p S e aR e s e a r c h , 36, 4 8 3 4 9 5 . K a m a t a n i , A., and Riley, J. P. ( 1 9 7 9 ) . R a t e of d i s s o l u t i o n of d a it o m silica w a l s in s e a w a t e r . M a r n ie B i o l o g y , 55, 2 9 3 5 . K a m a t a n i , A., Riley, J. P., and S k i r r o w , G. ( 1 9 8 0 ) . The d i s s o l u t i o n of o p a l i n e silica of d a it o mt e s t s in s e a w a t e r . J o u r n a l of the O c e a n o g r a p h c ia lS o c i e t y of J a p a n , 36, 2 0 1 2 0 8 . Karl, D. M., K n a u e r , G. A., and M a r t i n , J. H. ( 1 9 8 8 ) . D o w n w a r dfluxof p a r t i c u l a t eo r g a n c i m a t t e r in the o c e a n : ap a r t i c l e d e c o m p o s t o in p a r a d o x . N a t u r e , 3 3 2 ( 6 1 6 3 ) , 4 3 8 4 4 1 . Karl, D. M., and K n a u e r , G. A. ( 1 9 8 9 ) . S w m i m e r s : ar e c a p i t u l a t i o n of the p r o b e lm and a p o t e n t i a l s o l u t i o n . O c e a n o g r a p h y , 3 2 3 5 . K i n e k e , G. O, S t e r n b e r g , R. W., and J o h n s o n , R. ( 1 9 8 9 ) . A new n is t r u m e n t for m e a s u r n ig s e t t l i n gv e l o c i t i e s in situ. M a r n ie G e o o lg y , 90, 1 4 9 1 5 8 . K i o r b o e , T., L u n d s g a a r d , C., O l e s e n , M., and H a n s e n , J. L. S. ( 1 9 9 4 ) . A g g r e g a t o i n and s e d m i e n t a t o in p r o c e s s e sd u r i n g as p r i n gp h y t o p a ln k t o nb o lo m : Afielde x p e r m i e n t to t e s t c o a g u a a l t o i nt h e o r y . J o u r n a l of M a r n ie R e s e a r c h , 52, 2 9 7 3 2 3 . K i o r b o e , T., H a n s e n , J. L. S., A ld r e d g e , A. L., J a c k s o n , G. A., P a s s o w , U., Dam, H. G., D r a p e a u , D. T., W a i t e , A., and Garcia, C. M. ( 1 9 9 6 ) . S e d m i e n t a t o i n of p h y t o p a ln k t o n d u r i n g ad a it o m b o lo m : R a t e s and m e c h a n s im s . J o u r n a l of M a r n ie R e s e a r c h , 54, 11231148. K n a u e r , G. A., Karl, D. M., M a r t i n , J. H, and H u n t e r , C. N. ( 1 9 8 4 ) . In situ e f f e c t s of s e e lc t e d p r e s e r v a t v ie s on total c a r b o n , n i t r o g e n and m e t a s l c o l e c t e d in s e d m i e n t t r a p s . J o u r n a l of M a r n ie R e s e a r c h , 4 2 ( 2 ) , 4 4 5 4 6 2 .  Bibliography  156  K n a u e r , G., and A s p e r , V. ( 1 9 8 9 ) . S e d m i e n t t r a p t e c h n o o lg y and s a m p l i n g : r e p o r t of the U.S. G O F S w o r k n ig g r o u p on s e d m i e n t t r a p t e c h n o o lg y and s a m p l i n g , N o v e m b e r 1988. U.S. G O F S P l a n n i n g R e p o r t N u m b e r 10. K n a u e r , G. A., R e d a l j e , D. G., H a r r i s o n , W. G., and Karl, D. M. ( 1 9 9 0 ) . New p r o d u c t i o n at the V E R T E X t i m e s e r i e s site. D e e p S e a R e s e a r c h , 3 7 ( 7 ) , 1 1 2 1 1 1 3 4 . Koeler, P. A., B a r w e lC l a r k e , J. E., W h i t n e y , F., and T a k a h a s h i , M. ( 1 9 7 9 ) . W i n t e r c o n d i t i o n of m a r n ie p l a n k t o n p o p u a lt o in s in S a a n c ih Inlet, B.C., C a n a d a . III. M e s o z o o p l a n k t o n . J o u r n a l of E x p e r i m e n t a l M a r n ie B o io lg y and E c o l o g y , 37, 1 6 1 1 7 4 .  K u k e r t , H., and R i e b e s e l, U. ( 1 9 9 8 ) . P h y t o p a ln k t o n c a r b o ns io t o p ef r a c t i o n a t i o nd u r i n ga d a it o ms p r i n gb o lo m in a N o r w e g a in fjord. M a r n ie E c o o lg yP r o g r e s sS e r i e s , 173, 1 2 7 1 3 7 . K u m a r , N., A n d e r s o n , R. F., and B i s c a y e , P. E. ( 1 9 9 6 ) . R e m i n e r a l i z a t i o n of p a r t i c u l a t e a u t h i g e n i c t r a c e m e t a s l in the M i d d l e A t l a n t i c B i g h t : I m p l i c a t i o n s for p r o x e is of e x p o r t p r o d u c t i o n . G e o c h m i c ia et C o s m o c h m i c ia Acta, 6 0 ( 1 8 ) , 3 3 8 3 3 3 9 7 . L a m p i t t , R. S., N e w t o n , P. P., Jickels, T. D., T h o m s o n , J., and King, P. ( 2 0 0 0 ) . N e a r b o t o m p a r t i c l e f l u x in the a b y s s a l n o r t h e a s t Atlantic. D e e p S e a R e s e a r c h II, 47, 20512071. L a n g d o n , C. ( 1 9 9 3 ) . The s i g n i f i c a n c e of r e s p i r a t i o n in p r o d u c t i o n m e a s u r e m e n t s b a s e d on o x y g e n . M e a s u r e m e n t of P r m i a r y P r o d u c t i o n f r o m the M o e lc u a lr to the G l o b a l S c a l e , La R o c h e l e , 6 9 7 8 . Lau, Y. L. ( 1 9 7 9 ) . L a b o r a t o r y s t u d y of cylindrical s e d m i e n t a t o i n traps. J o u r n a l of F i s h e r i e s R e s e a r c h B o a r d of C a n a d a , 36, 1 2 8 8 1 2 9 1 .  the  L a w s , E. A., and A r c h i e , J. W. ( 1 9 8 1 ) . A p p r o p r i a t e use of r e g r e s s o in a n a l y s i s in m a r n ie b i o l o g y . M a r n ie B i o l o g y , 65, 1 3 1 6 . L a w s , E. A., DiTullio, G. R., B e t z e r , P. R., Karl, D. M., and C a r d e r , K. L. ( 1 9 8 9 ) . Aut o t r o p h i cp r o d u c t i o n and e e lm e n t a lfluxesat 26°N, 1 5 5 ° W in the N o r t hP a c i f i cs u b t r o p i c a l g y r e . D e e p S e a R e s e a r c h , 3 6 ( 1 ) , 1 0 3 1 2 0 . L a w s , E. A., P o p p , B. N., B i d i g a r e , R. R., K e n n i c u t t , M. C, and M a c k o , S. A. ( 1 9 9 5 ) . D e p e n d e n c e of p h y t o p a ln k t o n c a r b o n i s o t o p i c c o m p o s t i o n on g r o w t h r a t e and [ C 0 2 ] a q : T h e o r e t i c a lc o n s d ie r a t o in s and e x p e r m i e n t a lr e s u l t s . G e o c h m i c ia et C o s m o c h m i c ia Acta, 5 9 ( 6 ) , 1 1 3 1 1 1 3 8 . L a w s o n , D. S., H u r d , D. C, and P a n k r a t z , H. S. ( 1 9 7 8 ) . Silica d i s s o l u t i o n r a t e s of dec o m p o s n ig p h y t o p a ln k t o n a s s e m b a lg e s at v a r o iu s t e m p e r a t u r e s .A m e r c ia n J o u r n a l of S c e in c e , 278, 1 3 7 3 1 3 9 3 .  157  Bibliography  Lazier, J . R. N . (1963). Some aspects of the oceanographic structure of the Jervis Inlet system, M . S c , U . B . C . LeBlond, P. H . , Griffin, D . A . , and Thomson, R. E . (1994). Surface salinity variations in the Juan de Fuca Strait: test of a predictive model. Continental Shelf Research, 14(1), 37-56. Lee, C , Wakeham, S. G . , and Hedges, J . I. (1988). T h e measurement of oceanic particle flux - are "swimmers" a problem? Oceanography, 34-36. Lee,  O , Hedges, J . I., Wakeman, S. G . , and Zhu, N . (1992).  Effectiveness  of various  treatments in retarding microbial activity in sediment trap material and their effects on the collection of swimmers. Limnology and Oceanography, 37(1), 117-130. Lewin, J . C . (1961).  T h e dissolution of silica from diatom walls.  Geochimica et Cos-  mochimica A c t a , 21, 182-198. Lewis, A . G . (1978). Concentrations of nutrients and chlorophyll on a cross-channel transect in Juan de Fuca Strait, British Columbia.  Journal of the Fisheries Research Board of  Canada, 35, 305-314. Lewis, A . G . , and Thomas, A . C . (1986). T i d a l transport of planktonic copepods  across  the sill of a British C o l u m b i a fjord. Journal of Plankton Research, 8(6), 1079-1089. Lilley, M . D . , Baross, J . A . , and Gordon, L . I. (1982). Dissolved methane and hydrogen in Saanich Inlet, British Columbia. Deep-Sea Research, 29(12A), 1471-1484. L i u , K . K . , Iseki, K . , and Chao, S. Y . (2000).  Continental margin carbon  fluxes.  The  changing ocean carbon cycle, R. B . Hanson, H . W . Ducklow, and J . G . Field,  eds.,  Cambridge University Press, Cambridge, 187-239. Mackas, D . L . , Denman, K . L . , and Bennett, A . F . (1987). Least squares multiple tracer analysis of water mass composition. Journal of Geophysical Research, 92(C3), 2907-2918. Mackas, D . L . , and Harrison, P. J . (1997).  Nitrogenous nutrient sources and sinks in  the Juan de Fuca Strait/Strait of Georgia/Puget Sound estuarine system: assessing the potential for eutrophication. Estuarine, Coastal and Shelf Science, 44, 1-21. Margalef, R. (1958).  Temporal succession and spatial heterogeneity in phytoplankton.  Perspectives in Marine Biology, A . A . Buzzati-Traverso, eds., University of California Press, Berkeley and Los Angeles, 323-349. Mark, D . M . , and Church, M . (1977). O n the misuse of regression in earth science. M a t h ematical Geology, 9(1), 63-75. Martin, J . H , Knauer, G . A . , K a r l , D . M . , and Broenkow, W . W . (1987).  VERTEX:  158  Bibliography  carbon cycling in the northeast Pacific. Deep-Sea Research, 34(2), 267-285. Masson, D . , and Cummins, P. F . (1999).  Numerical simulations of a buoyancy-driven  coastal countercurrent off Vancouver Island. Journal of Physical Oceanography, 29, 418435. McCave, I. N . (1975).  Vertical flux of particles in the ocean.  Deep-Sea Research, 22,  491-502. McKee, B . , and Skei, J . (1999). Framvaren Fjord as a natural laboratory for examining biogeochemical processes in anoxic environments. Marine Chemistry, 67, 147-148. M c Q u o i d , M . R . , and Hobson, L . A . (1995). Importance of resting stages in diatom seasonal succession. Journal of Phycology, 31, 44-50. Meybeck, M . (1982). Carbon, nitrogen and phosphorus transport by world rivers. A m e r i can Journal of Science, 282, 401-450. Michaels, A . F . , Silver, M . W . , Gowing, M . M . , and Knauer, G . A . (1990). C r y p t i c zooplankton "swimmers" in upper ocean sediment traps. Deep-Sea Research, 37(8), 12851296. Michaels, A . F . , Bates, N . R . , Buesseler, K . O . , Carlson, C . A . , and K n a p , A . H . (1994). Carbon-cycle imbalances in the Sargasso Sea. Nature, 372, 537-540. Middleburg, J . J . (1989). A simple rate model for organic matter decomposition in marine sediments. Geochimica et Cosmochimica A c t a , 53, 1577-1581. Middleburg, J . J . , Soetaert, K . , and Herman, P. M . (1997). Emperical relationships for use in global diagenetic models. Deep-Sea Research I, 44(2), 327-344. Milligan, T . G . (1995). A n examination of the settling behaviour of a flocculated suspension. Netherlands Journal of Sea Research, 33(2), 163-171. Mortlock, R . A . , and Froelich, P. N . (1989). A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep-Sea Research, 36(9), 1415-1426. Nelson, D . M . , and Goering, J . J . (1977). Near-surface silica dissolution in the upwelling region off northwest Africa. Deep-Sea Research, 24, 65-73. Nelson, D . M . , Treguer, P., Brzezinski, M . A . , Leynaert, A . , and Queguiner, B . (1995). Production and dissolution of biogenic silica in the ocean:  Revised global estimates,  comparisons with regional data and relationship to biogenic sedimentation. Global Biogeochemical Cycles, 9(3), 359-372. Nodder, S. D . , and Alexander, B . L . (1999). T h e effects of multiple trap spacing, baffles  Bibliography  159  and brine volume on sediment trap collection efficiency. Journal of Marine Research, 57, 537-559. Noji, T. T., Estep, K . W., Maclntyre, F., and Norrbin, F . (1991). Image analysis of faecal material grazed upon by three species of copepods: evidence for coprohexy, coprophagy and coprochaly. Journal of the Marine Biological Association of the United Kingdom, 71, 465-480. Noji, T. T., Borsheim, K . Y . , Rey, F., and Nortvedt, R. (1999). Dissolved organic carbon associated with sinking particles can be crucial for estimates of vertical carbon flux. Sarsia, 84, 129-135. Noriki, S., Ishimori, N . , and Tsunogai, S. (1985). Regeneration of chemical elements from settling particles collected by sediment trap in Funka Bay, Japan. Journal of the Oceanographical Society of Japan, 41, 113-120. Noriki, S., and Tsunogai, S. (1986). Particulate fluxes and major components of settling particles from sediment trap experiments in the Pacific Ocean. Deep-Sea Research, 33(7), 903-912. Northcote, T. G . , Wilson, M . S., and Hum, D . R. (1964). Some characteristics of Nitinat Lake, an inlet on Vancouver Island, British Columbia. Journal of the Fisheries Research Board of Canada, 21(5), 1069-1081. Nuszdorfer, F . O , Klinka, K . , and Demarchi, D . A . (1991). Coastal douglas-fir zone. Ecosystems of British Columbia, D . Meidinger and J . Pojar, eds., Research Branch, Ministry of Forests, Victoria, B C , 81-94. Orians, K . J., and Bruland, K . W . (1986). The biogeochemistry of aluminum in the Pacific Ocean. Earth and Planetary Science Letters, 78, 397-410. Overnell, J., Edwards, A . , Grantham, B . E . , Harvey, S. M . , Jones, K . J., Leftley, J . W . , and Smallman, D. J. (1995). Sediment-water column coupling and the fate of the spring phytoplankton bloom in Loch Linnhe, a Scottish fjordic sea-loch. Sediment processes and sediment-water fluxes. Estuarine, Coastal and Shelf Science, 41, 1-19. Pace, M . J., Knauer, G . A . , Karl, D . M . , and Martin, J . H . (1987). Primary production, new production and vertical flux in the eastern Pacific Ocean. Nature, 325, 803-804. Pancost, R. D., Freeman, K . H . , Wakeham, S. G., and Robertson, C. Y . (1997). Controls on carbon isotope fractionation by diatoms in the Peru upwelling region. Geochimica et Cosmochimica Acta, 61(23), 4983-4991. Parsons, T. R., Stephens, K . , and Strickland, J . D. H . (1961). On the chemical composition of eleven species of marine phytoplankters. Journal of the Fisheries Research Board of  Bibliography  160  Canada, 18(6), 1001-1025. Parsons, T . R. (1979). T h e Strait of Georgia program. Marine production mechanisms, M . J . Dunbar, eds., Cambridge University Press, Cambridge, 133-149. Parsons, T . R . , Stronach, J . , Borstad, G . A . , Louttit, G . , and Perry, R . I. (1981). B i ological fronts in the Strait of Georgia, British Columbia, and their relation to recent measurements of primary productivity. Marine Ecology Progress Series, 6, 237-242. Parsons, T . R . , Perry, R . I., Nutbrown, E . D . , Hsieh, W . , and Lalli, C . M . (1983). Frontal Zone analysis at the mouth of Saanich Inlet, British Columbia, Canada. Marine Biology, 73, 1-5. Parsons, T . R . , M a i t a , Y . , and Lalli, C . M . (1984a). A Manual of Chemical and Biological Methods for Seawater Analysis, Pergamon press, Oxford. Parsons, T . R . , Dovey, H . M . , Cochlan, W . P., Perry, R . I., and Crean, P. B . (1984b). Frontal zone analysis at the mouth of a fjord - Jervis Inlet, British Columbia. Sarsia, 69, 133-137. Pawlowicz, R., and Farmer, D . M . (1998). Diagnosing vertical mixing in a two-layer exchange flow. Journal of Geophysical Research, 103(C13), 30,695-30,711. Pedersen, T . F . , Malcolm, S. J . , and Sholkovitz, E . R. (1985). A lightweight gravity corer for undisturbed sampling of soft sediments.  Canadian Journal of E a r t h Science,  22,  133-135. Pejrup, M . , Valeur, J . , and Jensen, A . (1996).  Vertical fluxes of particulate matter in  Aarhus Bight, Denmark. Continental Shelf Research, 16(8), 1047-1064. Peiia, M . A . , Denman, K . L . , Calvert, S. E . , Thomson, R . E . , and Forbes, J . R . (1999). T h e seasonal cycle in sinking particle fluxes off Vancouver Island, British Columbia. Deep-Sea Research II, 46, 2969-2992. Perry, M . J . , Bolger, J . P., and English, D . C . (1989). Primary production in Washington coastal waters. Coastal Oceanography of Washington and Oregon, M . R. Landry and B . M . Hickey, eds., Elsevier Science Publishers, Amsterdam, 117-138. Pickard, G . L . (1961). Oceanographic features of inlets in the British C o l u m b i a mainland coast. Journal of the Fisheries Research Board of Canada, 18(6), 907-999. Pickard, G . L . (1963). Oceanographic characteristics if inlets of Vancouver Island, British Columbia. Journal o f t h e Fisheries Research Board of Canada, 20(5), 1109-1144. Pickard, G . L . (1975). Annual and longer term variations of deepwater properties in the coastal waters of southern British Columbia. Journal of the Fisheries Research Board of  161  Bibliography  Canada, 32, 1561-1587. Pike, J . , and K e m p , A . E . S. (1999). D i a t o m mats in G u l f of California sediments: Implications for the paleoenvironmental interpretation of laminated sediments and silica burial. Geology, 27(4), 311-314. Pitcher, G . C . (1986).  Sedimentary flux and the formation of resting spores of selected  Chaetoceros species at two sites in the southern Benguela system. South African Journal of Marine Science, 4, 231-244. Piatt, T . , and Harrison, W . G . (1985). Biogenic fluxes of carbon and oxygen in the ocean. Nature, 318(6041), 55-58. Piatt, T . , Sathyendranath, S., and Ravindran, P. (1990). Primary production by phytoplankton: analytic solutions for daily rates per unit area of water surface.  Proceedings  of the Royal Society of London B , 241, 101-111. Pojar, J . , Klinka, K . , and Demarchi, D . A . (1991). Coastal western hemlock zone. Ecosystems of British Columbia, D . Meidinger and J . Pojar, eds., Research Branch, Ministry of Forests, Victoria, B C , 95-112. Popp, B . N . , Laws, E . A . , Bidigare, R. R . , Dore, J . E . , Hanson, K . L . , and Wakeham, S. G . (1998).  Effect of phytoplankton cell geometry on carbon isotopic fractionation.  Geochimica et Cosmochimica A c t a , 62(1), 69-77. Prahl, F . G . , Ertel, J . R., G o n i , M . A . , Sparrow, M . A . , and Eversmeyer, B . (1994). Terrestrial organic carbon contributions to sediments on the Washington margin. Geochimica et Cosmochimica A c t a , 58(14), 3035-3048. Queguiner, B . , Treguer, P., Peeken, I., and Scharek, R. (1997). Biogeochemical dynamics and the silicon cycle in the Atlantic sector of the Southern Ocean during austral spring 1992. Deep-Sea Research II, 44(1-2), 69-89. Ragueneau, O . , Treguer, P., Leynaert, A . , Anderson, R. F . , Brzezinski, M . A . , DeMaster, D . J . , Dugdale, R. O , D y m o n d , J . , Fischer, G . , Frangois, R . , Heinze, O , Maier-Reimer, E . , Martin-Jezequel, V . , Nelson, D . M . , and Queguiner, B . (2000). A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Global Planetary Change, 26, 317-365. R a u , G . H , Chavez, F . P., and Friederich, G . E . (2001). Plankton  1 3  C/  1 2  C variations in  Monterey Bay, California: evidence of non-diffusive inorganic carbon uptake by phytoplankton in an upwelling environment. Deep-Sea Research I, 48, 79-94. Redfield, A . O , Ketchum, B . H . , and Richards, F . A . (1963). T h e influence of organisms on the composition of sea-water. T h e Sea, M . N . H i l l , eds., John W i l e y & Sons, New  Bibliography  162  Y o r k , 2 6 7 7 . R e i n f e l d e r , J. R., Kraepiel, A. M. L., and M o r e l , F. M. M. ( 2 0 0 0 ) . U n i c e lu l a r C p h o t o s y n t h e s s i in a m a r n ie d i a t o m . N a t u r e , 407, 9 9 6 9 9 9 . 4  R i c h a r d s , F. A. ( 1 9 6 5 ) . A n o x c i b a s n i s and f j o r d s . C h e m c ia lO c e a n o g r a p h y , J. P. R i l e y and G. S k i r r o w , eds., A c a d e m c i P r e s s , L o n d o n , 6 1 1 6 4 5 . R i c k e r , W. E. ( 1 9 7 3 ) .L i n e a r r e g r e s s o in s in f i s h e r y r e s e a r c h . J o u r n a l of the F i s h e r i e s R e s e a r c h B o a r d of C a n a d a , 30, 4 0 9 4 3 4 . R i c k e r , W. E. ( 1 9 7 5 ) .C o m p u t a t o i n and I n t e r p r e t a t i o n of B i o l o g i c a l S t a t i s t i c s of F i s h P o p u l a t i o n s , D e p a r t m e n t of the e n v r io n m e n tfisheriesand m a r n ie s e r v i c e .  R i c k e r , W. E. ( 1 9 8 4 ) . C o m p u t a t o i n and u s e s of c e n t r a l t r e n d lines. C a n a d a in J o u r n a l of Z o o o lg y , 62, 1 8 9 7 1 9 0 5 . R o s s , A. H., G u r n e y , S. C, H e a t h , M. R., Hay, S. J., and H e n d e r s o n , E. W. ( 1 9 9 3 ) . A s t r a t e g i c s i m u l a t i o n m o d e l of a f j o r d e c o s y s t e m . L m i n o o lg y and O c e a n o g r a p h y , 3 8 ( 1 ) , 1 2 8 1 5 3 . R u t t e n b e r g , K. C, and Goni, M. A. ( 1 9 9 7 ) . P h o s p h o r u s distribution, C:N:P ratios, and 5 C in arctic, t e m p e r a t e , and t r o p i c a l c o a s t a l s e d m i e n t s : t o o l s for c h a r a c t e r i z i n g b u k l s e d m i e n t a r y o r g a n c i m a t t e r . M a r n ie G e o o lg y , 139, 1 2 3 1 4 5 . 13  S a c k e t t , W. M., and T h o m p s o n , R. R. ( 1 9 6 3 ) . I s o t o p i co r g a n c i c a r b o nc o m p o s t i o n of r e c e n t c o n t i n e n t a l d e r i v e d clastic s e d m i e n t s of e a s t e r n g u l fc o a s t , G u l f of M e x i c o . Buletin of the A m e r c ia n A s s o c i a t i o n of P e t r o e lu m G e o l o g i s t s , 4 7 ( 3 ) , 5 2 5 5 3 1 .  S a g e , D. ( 1 9 9 4 ) . R h e n u im and m o y lb d e n u m in S a a n c ih and J e r v i sI n l e ts e d m i e n t s : a n a l y s i s and distribution, B.Sc, UBC. S a k s h a u g , E., and M y k l e s t a d , S. ( 1 9 7 3 ) .S t u d e is on the p h y t o p a ln k t o n e c o o lg y of the T r o n d h e m i s f o jr d . III. D y n a m c is of p h y t o p a ln k t o n b o lo m s in r e l a t i o n to e n v r io n m e n t a l f a c t o r s , b o ia s s a y e x p e r m i e n t s and p a r a m e t e r s for the p h y s i o l o g i c a l s t a t e of the p o p u l a tions. J o u r n a l of E x p e r i m e n t a l M a r n ie B o io lg y and E c o l o g y , 11, 1 5 7 1 8 8 .  S a k s h a u g , E. ( 1 9 7 7 ) . L i m i t i n gn u t r i e n t s and m a x m iu mg r o w t h r a t e s for d a it o m s in N a r r a g a n s e t Bay. J o u r n a l of E x p e r i m e n t a l M a r n ie B o io lg y and E c o l o g y , 28, 1 0 9 1 2 3 . S a k s h a u g , E., A n d e r s e n , K., M y k l e s t a d , S., and O l s e n , Y. ( 1 9 8 3 ) . N u t r i e n t s t a t u s of p h y t o p l a n k t o n c o m m u n t e is in N o r w e g a in w a t e r s ( m a r i n e , b r a c k i s h , and f r e s h ) as r e v e a e ld by t h e i r c h e m c ia l c o m p o s i t i o n . J o u r n a l of P l a n k t o n R e s e a r c h , 5(2), 1 7 5 1 9 6 . S a k s h a u g , E., and O l s e n , Y. ( 1 9 8 6 ) . N u t r i e n ts t a t u s of p h y t o p a ln k t o nb o lo m s in N o r w e g a in w a t e r s and a l g a l s t r a t e g i e s for n u t r i e n t c o m p e t i t i o n . C a n a d a in J o u r n a l of F i s h e r i e s and  Bibliography  163  A q u a t i c S c e in c e s , 43, 3 8 9 3 9 6 . S a k s h a u g , E., A n d e r s e n , K., and Kiefer, D. A. ( 1 9 8 9 ) . As t e a d ys t a t ed e s c r i p t i o n of g r o w t h and l i g h ta b s o r p t i o n in the m a r n ie p l a n k t o n i cd a it o mS k e e lt o n e m ac o s t a t u m . L m i n o o lg y and O c e a n o g r a p h y , 3 4 ( 1 ) , 1 9 8 2 0 5 . S a k s h a u g , E. ( 1 9 9 3 ) . The r e l a t i o n s h i pb e t w e e n p h y t o p a ln k t o ng r o w t hr a t e and p r o d u c t i o n w i t h e m p h a s s i on r e s p i r a t i o n and e x c r e t i o n . M e a s u r e m e n t of P r i m a r y P r o d u c t i o n f r o m the M o e lc u a lr to the G l o b a l S c a l e , La R o c h e l e , 6 3 6 8 . S a n c e t t a , C, and Calvert, S. E. ( 1 9 8 8 ) . The a n n u a l c y c l e of s e d m i e n t a t o i n in S a a n c ih Inlet, British C o u lm b a i: i m p l i c a t i o n s for the i n t e r p r e t a t i o n of d a it o m fossil a s s e m b a lg e s . D e e p S e a R e s e a r c h , 3 5 ( 1 ) , 7 1 9 0 . S a n c e t t a , C. ( 1 9 8 9 a ) . S p a t i a l and t e m p o r a l t r e n d s of d a it o mfluxin British C o u lm b a in f j o r d s . J o u r n a l of P l a n k t o n R e s e a r c h , 1 1 ( 3 ) , 5 0 3 5 2 0 . S a n c e t t a , C. ( 1 9 8 9 b ) .S e d m i e n t t r a n s p o r t by f e c a l p e le t s in British C o u lm b a in f j o r d s . M a r n ie G e o o lg y , 89, 3 3 1 3 4 6 . S a n c e t t a , C. ( 1 9 8 9 c ) . P r o c e s s e s c o n t r o li n g the a c c u m u a lt o i n of d a it o m s in s e d m i e n t s : a m o d e l d e r i v e d f r o m British C o u lm b a i f j o r d s . P a e lo c e a n o g r a p h y , 4(3), 2 3 5 2 5 1 . S c h a r e k , R., T u p a s , L. M., and Karl, D. M. ( 1 9 9 9 ) . D a it o mfluxesto the d e e p sea in the o l i g o t r o p h i cN o r t hP a c i f i cg y r e at S t a t i o nA L O H A . M a r n ie E c o o lg yP r o g r e s sS e r i e s , 182, 5 5 6 7 . S h o l k o v i t z , E. R. ( 1 9 7 6 ) . F l o c c u l a t i o n of d s is o v le do r g a n c i and i n o r g a n i cm a t t e rd u r i n g the m x in i g of r i v e r w a t e r and s e a w a t e r . G e o c h m i c ia et C o s m o c h m i c ia Acta, 40, 8 3 1 8 4 5 . S i e g e l , D. A., G r a n a t a , T. C, M i c h a e l s , A. F., and D i c k e y , T. D. ( 1 9 9 0 ) . M e s o s c a e l e d d y d i f f u s i o n , p a r t i c l es i n k i n g , and the i n t e r p r e t a t i o n of s e d m i e n t t r a pd a t a . J o u r n a l of G e o p h y s c ia l R e s e a r c h , 9 5 ( C 4 ) , 5 3 0 5 5 3 1 1 .  S i e g e l , D. A., and D e u s e r , W. G. ( 1 9 9 7 ) . T r a j e c t o r i e s of s i n k i n g p a r t i c l e s in the S a r g a s s o Sea: m o d e n i lg of statistical f u n n e s l a b o v ed e e p o c e a ns e d m i e n tt r a p s . D e e p S e aR e s e a r c h I, 4 4 ( 9 1 0 ) , 1 5 1 9 1 5 4 1 . S i e g e n t h a l e r , U., and S a r m e in t o , J. L. ( 1 9 9 3 ) . A t m o s p h e r c i c a r b o n d i o x i d e and the o c e a n . N a t u r e , 365, 1 1 9 1 2 5 . S k e i , J. M., and P a u s , P. E. ( 1 9 7 9 ) . S u r f a c e m e t a l e n r c ih m e n t and p a r t i t i o n i n g of m e t a s l in a d a t e d s e d m i e n t c o r e f r o m aN o r w e g a in fjord. G e o c h m i c ia et C o s m o c h m i c ia Acta, 43, 2 3 9 2 4 6 . S k e i , J. ( 1 9 8 0 ) . The c h e m s it r y of s u s p e n d e d p a r t i c u l a t e m a t t e r f r o m two o x y g e n d e f i c i e n t  Bibliography  164  N o r w e g a in f j o r d s - w i t h s p e c i a l r e f e r e n c e to m a n g a n e s e .F j o r d O c e a n o g r a p h y , H. J. F r e e l a n d , D. M. F a r m e r , and C. D. L e v i n g s , eds., P e ln u m P r e s s , New Y o r k , 6 9 3 6 9 7 . Skei, J. M. ( 1 9 8 1 ) . D i s p e r s a l and r e t e n t i o n of p o lu t a n t s in N o r w e g a in f j o r d s . R a p p o r t P r o c e s V e r b a l C o n s e i l I n t e r n a t i o n a l E x p l o r a t i o n de la Mer, 181, 7 8 8 6 . S k e i , J. ( 1 9 8 3 ) . Why s e d m i e n t o o lg s it s are i n t e r e s t e d in f j o r d s .S e d m i e n t a r y G e o o lg y , 36, 7 5 8 0 . S m e t a c e k , V., von B r o c k e l , K., Z e i t z s c h e l , B., and Z e n k , W. ( 1 9 7 8 ) .S e d m i e n t a t o i n of p a r t i c u l a t em a t t e rd u r i n gap h y t o p a ln k t o ns p r i n gb o lo m in r e l a t i o n to the h y d r o g r a p h i c a l r e g m i e . M a r n ie B i o l o g y , 47, 2 1 1 2 2 6 . S m e t a c e k , V. ( 1 9 8 0 a ) . A n n u a l c y c l e of s e d m i e n t a t o i n in r e l a t i o n to p l a n k t o n e c o o lg y in w e s t e r n Kiel B i g h t . O p h e l i a , 1 (suppl.), 6 5 7 6 . S m e t a c e k , V. ( 1 9 8 0 b ) . Z o o p a ln k t o n s t a n d n ig s t o c k , c o p e p o d f e c a l p e le t s and p a r t i c u l a t e d e t r i t u s in Kiel B i g h t . E s t u a r i n e and C o a s t a l M a r n ie S c i e n c e , 11, 4 7 7 4 9 0 . S m e t a c e k , V. S. ( 1 9 8 5 ) . R o e l of s i n k i n g in d a it o m life-history c y c l e s : e c o l o g i c a l , e v o l u t i o n ary and g e o l o g i c a ls i g n i f i c a n c e . M a r n ie B i o l o g y , 84, 2 3 9 2 5 1 . S m e t h e i, W. M. J. ( 1 9 8 1 ) . Vertical m x in ig r a t e s in f j o r d s d e t e r m n ie d u s n ig r a d o n and salinity as t r a c e r s . E s t u a r i n e , C o a s t a l and S h e l fS c e in c e , 12, 1 3 1 1 5 3 . S m e t h e i, W. M. J. ( 1 9 8 7 ) . N u t r i e n t r e g e n e r a t o i n and d e n i t r i f i c a t i o n in o lw o x y g e n f j o r d s . D e e p S e a R e s e a r c h , 3 4 ( 5 / 6 ) , 9 8 3 1 0 0 6 . S m i t h , S. V., and H o li b a u g h , J. T. ( 1 9 9 3 ) . C o a s t a l m e t a b o s i lm and the o c e a n c i o r g a n c i c a r b o n b a l a n c e . R e v e iw s of G e o p h y s c is , 3 1 ( 1 ) , 7 5 8 9 . S m i t h , P. J., and H o b s o n , L. A. ( 1 9 9 4 ) . T e m p o r a lv a r i a t i o n s in the t a x o n o m c i c o m p o s t i o n offlagellatedn a n o p a ln k t o n in a t e m p e r a t e fjord. J o u r n a l of P h y c o o lg y , 30, 3 6 9 3 7 5 . S o d e r s t r o m , J. ( 1 9 9 6 ) . The s i g n i f i c a n c e of o b s e r v e d n u t r i e n t c o n c e n t r a t o in s in the d i s c u s s i o n a b o u t n i t r o g e n and p h o s p h o r u s as limiting n u t r i e n t s for the p r i m a r yc a r b o nfluxin c o a s t a l w a t e r e c o s y s t e m s . Sarsia, 81, 8 1 9 6 . S o k a l , R. R., and R o h l f , F. J. ( 1 9 9 5 ) . B i o m e t r y : the p r i n c i p l e s and p r a c t i c e of statistics in b i o l o g i c a lr e s e a r c h , W.H. F r e e m a n and C o m p a n y , New Y o r k ./ S t a n l e y , S. O., L e f t l e y , J. W., L i g h t f o o t , A., R o b e r t s o n , N., S t a n l e y , I. M., and V a n c e , I. ( 1 9 7 8 ) . The L o c h Eil p r o j e c t : s e d m i e n t c h e m i s t r y , s e d m i e n t a t o i n and the c h e m s it r y of the o v e r l y i n g w a t e r in L o c h Eil. J o u r n a l of E x p e r i m e n t a l M a r n ie B i o l o g y and E c o l o g y , 55, 2 9 9 3 1 3 .  Bibliography  165  S t e r n b e r g , R. W., B e r h a n e , I., and O g s t o n , A. S. ( 1 9 9 9 ) . M e a s u r e m e n t of s i z e and s e t t l i n g v e l o c i t y of s u s p e n d e d a g g r e g a t e s on the n o r t h e r n California c o n t i n e n t a l s h e l f . M a r n ie G e o o lg y , 154, 4 3 5 4 . S t o c k n e r , J. G., and Cliff, D. D. ( 1 9 7 5 ) . M a r n ie p h y t o p a ln k t o np r o d u c t i o n ,d i s t r i b u t i o n and s p e c e is c o m p o s t i o n in P e n d r e l and H o t h a m S o u n d s , British C o l u m b i a . 516, F i s h e r i e s R e s e a r c h B o a r d of C a n a d a .  S t o c k n e r , J. G., Cliff, D. D., and B u c h a n a n , D. B. ( 1 9 7 7 ) . P h y t o p a ln k t o n p r o d u c t i o n and d i s t r i b u t i o n in H o w eS o u n d , British C o u lm b a i: a c o a s t a lm a r n ie e m b a y m e n t-f j o r du n d e r s t r e s s . J o u r n a l of the F i s h e r i e s R e s e a r c h B o a r d of C a n a d a , 34, 9 0 7 9 1 7 . S t o c k n e r , J. G., Cliff, D. D., and S h o r t r e e d , K. R. S. ( 1 9 7 9 ) . P h y t o p a ln k t o ne c o o lg yo f t h e S t r a i t of G e o r g i a , British C o l u m b i a . J o u r n a l of the F i s h e r i e sR e s e a r c h B o a r d of C a n a d a , 36, 6 5 7 6 6 6 . S t u c c h i , D., and W h i t n e y , F. ( 1 9 9 7 ) . C i r c u l a t i o n and n i t r o g e n t r a n s p o r t in S a a n c ih Inlet, B.C. C a n a d a in M e t e o r o l o g i c a l and O c e a n o g r a p h c i S o c e it y Bulletin, 2 5 ( 2 ) , 3 9 4 4 . S u e s s , E. ( 1 9 8 0 ) . P a r t i c u l a t e o r g a n c i c a r b o nfluxin the o c e a n s -s u r f a c e p r o d u c t i v i t y and o x y g e n utilization. N a t u r e , 288, 2 6 0 2 6 3 . S u e s s , E., and M u le r , P. J. ( 1 9 8 0 ) .P r o d u c t i v i t y , s e d m i e n t a t o in r a t e and s e d m i e n t a r y o r g a n c i m a t t e r in the o c e a n s II. - e e lm e n t a l f r a c t i o n a t i o n . B o ig e o c h m i e i de la M a t i e r e O r g a n q iu e AL T n t e r f a c e E a u S e d m i e n t M a r i n , 1 8 2 6 . Syvitski, J. P. M., A s p r e y , K. W., C l a t t e n b u r g , D. A., and H o d g e , G. D. ( 1 9 8 5 ) . The p r o d e l t a e n v r io n m e n t of a f j o r d :s u s p e n d e d p a r t i c l e d y n a m c is . S e d m i e n t o o lg y , 32, 83107. Syvitski, J. P. M., Burrell, D. C, and S k e i , J. M. ( 1 9 8 7 ) . F j o r d s : p r o c e s s e s and p r o d u c t s , S p r i n g e r V e r l a g New Y o r k , Inc., New Y o r k . Syvitski, J. P. M., S m i t h , J. N., C a l a b r e s e , E. A., and B o u d r e a u , B. P. ( 1 9 8 8 ) . B a s n i s e d m i e n t a t o i n and the g r o w t h of p r o g r a d n ig d e l t a s .J o u r n a l of G e o p h y s c ia l R e s e a r c h , 9 3 ( C 6 ) , 6 8 9 5 6 9 0 8 . T a k a h a s h i , M., Fujii, K., and P a r s o n s , T. R. ( 1 9 7 3 ) . S i m u l a t i o n s t u d y of p h y t o p a ln k t o n p h o t o s y n t h e s s i and g r o w t h in the F r a s e r R i v e r e s t u a r y . M a r n ie B i o l o g y , 19, 1 0 2 1 1 6 . T a k a h a s h i , M., T h o m a s , W. H., S e i b e r t , D. L., B e e r s , J., Koeler, P., and P a r s o n s , T. R. ( 1 9 7 5 ) . The r e p l i c a t i o n of b i o l o g i c a l e v e n t s in e n c o ls e d w a t e r c o u lm n s . A r c h i v fur H y d r o b i o l o g i e , 7 6 ( 1 ) , 5-23.  Bibliography  166  T a k a h a s h i , M., S e i b e r t , D. L., and T h o m a s , W. H. ( 1 9 7 7 ) . O c c a s o in a l b o lo m s of p h y t o p l a n k t o nd u r i n gs u m m e r in S a a n c ih I n l e t , B.C., C a n a d a . D e e p S e aR e s e a r c h , 24, 7 7 5 7 8 0 . T a k a h a s h i , M., B a r w e lC l a r k e , J., W h i t n e y , F., and Koeler, P. ( 1 9 7 8 ) . W i n t e r c o n d i t i o n of m a r n ie p l a n k t o n p o p u a lt o in s in S a a n c ih Inlet, B.C., C a n a d a . I. p h y t o p a ln k t o n and its s u r r o u n d n ig e n v r io n m e n t . J o u r n a l of E x p e r i m e n t a l M a r n ie B i o l o g y and E c o l o g y , 31, 2 8 3 3 0 1 . T a k a h a s h i , M., and H o s k i n s , K. D. ( 1 9 7 8 ) . W i n t e r c o n d i t i o n of m a r n ie p l a n k t o n p o p u l a t i o n s in S a a n c ih Inlet, B.C., C a n a d a . II. M i c r o z o o p l a n k t o n . J o u r n a l of E x p e r i m e n t a l M a r n ie B o io lg y and E c o l o g y , 32, 2 7 3 7 . T a k a h a s h i , T., B r o e c k e r , W. S., and L a n g e r , S. ( 1 9 8 5 ) . R e d f i e l d r a t i o b a s e d on c h e m c ia l d a t af r o m i s o p y c n a l s u r f a c e s . J o u r n a l of G e o p h y s c ia l R e s e a r c h , 9 0 ( C 4 ) , 6 9 0 7 6 9 2 4 . T a y l o r , S. R., and M c C e ln n a n , S. M. ( 1 9 8 5 ) . The C o n t i n e n t a l C r u s t : its C o m p o s t i o n and E v o l u t i o n , B l a c k w e l Scientific. T a y l o r , F. J. R., H a i g h , R., and S u t h e r l a n d , T. F. ( 1 9 9 4 ) .P h y t o p a ln k t o n e c o o lg y of S e c h e t l Inlet, a f j o r d s y s t e m on the British C o u lm b a i c o a s t . II. P o t e n t i a ly h a r m f u l s p e c i e s . M a r n ie E c o o lg y P r o g r e s s S e r i e s , 103, 1 5 1 1 6 4 . Teeri, J. A., and S t o w e , L. G. ( 1 9 7 6 ) . C l i m a t e p a t t e r n s and the d i s t r i b u t i o n of C4 g r a s s e s in N o r t h A m e r i c a . O e c o l o g i a , 23, 1-12.  Thunel, R. C, V a r e l a , R., L l a n o , M., Collister, J., M u le r K a r g e r , F., and B o h r e r , R. ( 2 0 0 0 ) . O r g a n c i c a r b o nfluxes,d e g r a d a t i o n , and a c c u m u a lt o i n in an a n o x c i b a s i n : S e d i m e n tt r a pr e s u l t sf r o m the C a r i a c oB a s i n . L m i n o o lg y and O c e a n o g r a p h y , 4 5 ( 2 ) , 3 0 0 3 0 8 . T i m o t h y , D. A. ( 1 9 9 4 ) .P r o d u c t i o n and c o n s u m p o t in of o r g a n c i c a r b o n and o x y g e n in S e c h e t l Inlet, British C o l u m b i a , M.Sc, U n i v e r s i t y of British C o l u m b i a . T i m o t h y , D. A., and P o n d , S. ( 1 9 9 7 ) . D e s c r i b i n g a d d i t i o n a lfluxesto d e e p s e d m i e n t t r a p s and w a t e r c o u lm nd e c a y in a c o a s t a l e n v r io n m e n t . J o u r n a l of M a r n ie R e s e a r c h , 55, 383406. T i m o t h y , D. A., and S o o n , M. Y. S. ( 2 0 0 1 ) . P r m i a r y p r o d u c t i o n and d e e p w a t e r o x y g e n c o n t e n t of two British C o u lm b a in f j o r d s . M a r n ie C h e m i s t r y , 7 3 ( 1 ) , 3 7 5 1 . Tiselius, P., and K u y l e n s t i e r n a , M. ( 1 9 9 6 ) . G r o w t h and d e c l i n e of a d a it o m s p r i n gb o lo m : p h y t o p a ln k t o ns p e c e is c o m p o s i t i o n ,f o r m a t i o n of m a r n ie s n o w and the r o l e of h e t e r o t r o p h i c d i n o f l a g e la t e s . J o u r n a l of P l a n k t o n R e s e a r c h , 1 8 ( 2 ) , 1 3 3 1 5 5 . Tortell, P. D., Rau, G. H., and M o r e l , F. M. M. ( 2 0 0 0 ) . I n o r g a n i c c a r b o n a c q u i s i t i o n in  167  Bibliography  c o a s t a l P a c i f i c p h y t o p a ln k t o n c o m m u n t i e s . L m i n o o lg y and O c e a n o g r a p h y , 4 5 ( 7 ) , 14851500. Toth, D. J., and L e r m a n , A. ( 1 9 7 7 ) . O r g a n c i m a t t e r r e a c t i v i t y and s e d m i e n t a t o in r a t e s in the o c e a n . A m e r c ia n J o u r n a l of S c e in c e , 277, 4 6 5 4 8 5 . Tunnicliffe, V. ( 2 0 0 0 ) .A f i n e s c a l e r e c o r d of 130 y e a r s of o r g a n c i c a r b o n d e p o s i t i o n in an a n o x c i fjord, S a a n c ih Inlet, British C o l u m b i a . L m i n o o lg y and O c e a n o g r a p h y , 4 5 ( 6 ) , 1 3 8 0 1 3 8 7 . Van C a p p e l e n , P., and Qiu, L. ( 1 9 9 7 ) .B o ig e n c i silica d i s s o l u t i o n in s e d m i e n t s of S o u t h e r n O c e a n . II. Kinetics. D e e p S e a R e s e a r c h II, 4 4 ( 5 ) , 1 1 2 9 1 1 4 9 .  the  V e r a r d o , D. J., Froelich, P. N., and M c l n t y r e , A. ( 1 9 9 0 ) . D e t e r m i n a t i o n of o r g a n c i c a r b o n and n i t r o g e n in m a r n ie s e d m i e n t s u s n i g the C a r l o E r b a N A 1 5 0 0 A n a l y z e r . D e e p S e a R e s e a r c h , 3 7 ( 1 ) , 1 5 7 1 6 5 . W a d a , E., T e r a z a k i , M., K a b a y a , Y., and N e m o t o , T. ( 1 9 8 7 ) . N and C a b u n d a n c e s in the A n t a r c t i c O c e a n w i t h e m p h a s s i on the b o ig e o c h e m c ia l s t r u c t u r e of the f o o d web. D e e p S e a R e s e a r c h , 3 4 ( 5 / 6 ) , 8 2 9 8 4 1 . 15  13  W a i t e , A., B i e n f a n g , P. K., and H a r r i s o n , P. J. ( 1 9 9 2 ) . S p r i n g b o lo m s e d m i e n t a t o i n in a s u b a r c t i c e c o s y s t e m II. S u c c e s s o in and s e d i m e n t a t i o n . M a r n ie B i o l o g y , 114, 1 3 1 1 3 8 . W a s lh , J. J. ( 1 9 8 8 ) . On the n a t u r e of c o n t i n e n t a ls h e l v e s , A c a d e m c i P r e s s , Inc.,  San D i e g o .  W a s lh , I., F i s c h e r , K., M u r r a y , D., and D y m o n d , J. ( 1 9 8 8 a ) . E v d ie n c e for r e s u s p e n s o in of r e b o u n d p a r t i c l e sf r o mn e a r b o t t o m s e d m i e n t t r a p s . D e e p S e a R e s e a r c h , 3 5 ( 1 ) , 5 9 7 0 .  W a s lh , I., D y m o n d , J., and Collier, R. ( 1 9 8 8 b ) . R a t e s of r e c y c l i n g of b o ig e n c i c o m p o n e n t s of s e t t l i n g p a r t i c l e s in the o c e a n d e r i v e d f r o m s e d m i e n t t r a p e x p e r m i e n t s . D e e p S e a R e s e a r c h , 3 5 ( 1 ) , 4 3 5 8 .  W a l s h , I. D. ( 1 9 9 2 ) . L a r g e a g g r e g a t efluxand f a t e at the s e a f l o o r : D a ig e n e s s i d u r i n g the r e b o u n d p r o c e s s . D e e p S e aF o o d C h a n i s and the G l o b a l C a r b o n Cycle, G. T. R o w e and V. P a r i e n t e , eds., K u lw e r A c a d e m c i P u b l i s h e r s , N e t h e r l a n d s , 3 6 5 3 7 3 . W a s lh , I. D., and G a r d n e r , W. D. ( 1 9 9 2 ) . Ac o m p a r s io n of a g g r e g a t ep r o f i l e sw i t hs e d m i e n t t r a pfluxes.D e e p S e aR e s e a r c h , 3 9 ( 1 1 / 1 2 ) , 1 8 1 7 1 8 3 4 . W a r d , B. B., Kilpatrick, K. A., W o p a t , A. E., M i n n i c h , E. C, and L i d s t r o m , M. E. ( 1 9 8 9 ) . M e t h a n e o x i d a t i o n in S a a n c ih I n l e t d u r i n g s u m m e r stratification. D e e p S e a R e s e a r c h , 9(1), 6 5 7 5 . W a r d , B. B., and Kilpatrick, K. A. ( 1 9 9 0 ) . R e l a t i o n s h i p b e t w e e n s u b s t r a t e c o n c e n t r a t i o n and o x i d a t i o n of a m m o n u im and m e t h a n e in a stratified w a t e rc o u lm n . C o n t i n e n t a lS h e l f  Bibliography  168  Research, 10(12), 1193-1208. Wassmann, P. (1984). Sedimentation and benthic mineralization of organic detritus in a Norwegian fjord. Marine Biology, 83, 83-94. Wassmann, P. (1990). Relationship between primary and export production in the boreal coastal zone of the North Atlantic. Limnology and Oceanography, 35(2), 464-471. Wassmann, P. (1991). Dynamics of primary production and sedimentation in shallow fjords and polls of western Norway. Oceanography and Marine Biology A n n u a l Review, 29, 87154. Wassmann, P., Svendsen, H . , Keck, A . , and Reigstad, M . (1996). Selected aspects of the physical oceanography and particle fluxes in fjords of northern Norway. Journal of Marine Systems, 8, 53-71. Westrich, J . T . , and Berner, R. A . (1984).  T h e role of sedimentary organic matter in  bacterial sulfate reduction: T h e G-model tested. Limnology and Oceanography, 29(2), 236-249. Wong, C . S., Whitney, F . A . , Crawford, D . W . , Iseki, K . , Matear, R . J . , Johnson, W . K . , Page, J . S., and Timothy, D . (1999). Seasonal and interannual variability in particle fluxes of carbon, nitrogen and silicon from time series of sediment traps at Ocean Station P, 1982-1993: relationship to changes in subarctic primary productivity. Deep-Sea Research II, 46, 2735-2760. Y u , E . - F . , Frangois, R . , Bacon, M . P., Honjo, S., Fleer, A . P., Manganini, S. J . , Rutgers van der Loeff, M . M . , and Ittekot, V . (2001). Trapping efficiency of bottom-tethered traps estimated from the intercepted fluxes of 865-889.  2 3 0  T h and  2 3 1  sediment  P a . Deep-Sea Research I, 48,  Appendix A  S e p a r a t i n g m a r i n e from terrigenous organic m a t t e r  If all m a r n i e OC in S a a n c ih and J e r v i sI n l e t sw e r ed a it o m a c e o u s , t h e n the y i n t e r c e p t s of the r e g r e s s o in s of F i g u r e 3.19 w o u d l be g o o d a p p r o x m i a t o in s of 5 C of the s e t t l i n g t e r 13  r g ie n o u s OC. The t e r r i g e n o u s e n d m e m b e r s h a v e b e e n m e a s u r e d directly, g i v i n g -25.1°/o 0  in S a a n c ih I n l e t and -26.5°/oo in J e r v i s I n l e t ( C o w i e , u n p u b s i lh e d d a t a ) . A s s u m n ig the s h i f t s of the y i n t e r c e p t s of F i g u r e 3.19 a w a y f r o m t h e s e e n d m e m b e r v a u le s are c a u s e d by the p r e s e n c e of n o n d a it o m a c e o u s , m a r n i e OC t h a t is i s o t o p i c a ly h e a v e ir t h a n t e r r g ie n o u s OM, the f o l o w i n ge x e r c s ie g v ie s e s t m i a t e s of m a r n ie S C e n d m e m b e r s and  the  13  c o m p o s t i o n of 'typical' m a r n ie s a m p e ls . 1. E s t i m a t e the BSi c o n t e n t of a p r o t o t y p i c a lm a r n ie s a m p e l by a s s u m n ig it is e n t i r e l y d a it o m a c e o u s . The s o lp e s of F i g u r e 3.16 g v ie the m e a n d a it o m a c e o u s OC to  BSi  ( O C d B 'S i ) r a t i o s of the s e t t l i n gp a r t i c u l a t e s . All d a t a for e a c hf j o r d ( b o t hs t a t i o n s ,  all s e a s o n s ) w e r ec o m b n ie d to o b t a i n the f o l o w i n g ratios. C o n v e r s o in f r o m OC:BSi d  to OM :BSi u s e s an O M : O C r a t i o of 2.7 ( s e c t i o n 3.3.1). d  • S a a n c ih I n l e t : OC:BSi = 0.84 ( m o e ls ) = 0.15 ( w e i g h t ) d  OM :BSi = 0.40. d  T h i s r a t i o g v ie s 71% as the p r o p o r t i o n of BSi in a 'typical' m a r n ie s a m p e l. • J e r v i s I n l e t : OC:BSi = 0.79 ( m o e ls ) = 0.14 ( w e i g h t ) d  OM :BSi = 0.38, d  g i v i n g a 'typical' m a r n ie s a m p e l w i t h 73% BSi. 2. U s n i g %BSi  of t h e s e d a it o m a c e o u s s a m p e ls , a first e s t i m a t e of r5 C of the m a r n ie 13  169  Appendix A  1 7 0  Separating marine from terrigenous organic matter  e n d m e r a b e r c a n b e m a d e ( F i g u r e 3 . 1 9 ) . <5C = % B S i ( s l o p e ) +i n t e r c e p t  (A.l)  1 3  m a r  T h e s o lp e a n d i n t e r c e p t a r e t h o s e o ft h e r e g r e s s o in l i n e s o fF i g u r e 3 . 1 9 . • S a a n c ih I n l e t : S C = 0 0 .9 3 % B S i - 2 3 . 5 ; r = 0 . 7 8 . 13  • J e r v i s I n l e t : 6 C =0 0 .7 4 % B S i - 2 4 . 4 ; r = 0 . 4 0 . 13  3 . F r o mE q u a t i o n A.l, afirstp a r t i t i o n i n go ft h e m a r n ie o r g a n c i m a t t e ri n t o d i a t o m c e o u s a n d n o n d a it o m a c e o u s c o m p o n e n t s c a n b e m a d e . OM O C n d £ C - o- C OM ~ OC 5iC - 5 C 13  n d  =  13  =  int  3  d  5 C 13  d  ter  1 3  m a r  1  i n t  ' '  is t h e i n t e r c e p t o n t h e 5C a x e s o f F i g u r e 3 1 .9 ( t h e i n t e r c e p t o f E q l3  int  t i o n A.l). OM j a n d O C d a r e t h e n o n d a it o m a c e o u s , m a r n ie o r g a n c i c o m p o n e n c n  n  o fat y p i c a lm a r n ie s a m p e l i n c l u d i n ga sp h o t o s y n t h e t c i flagellates,h e t e r o t r o p h s a n d  t r a n s p a r e n t e x o p o y lm e r p a r t i c l e s (TEP). T h e y d o n o t i n c l u d e t e r r i g e n o u s o r g a n ics. E q u v ia e ln c e b e t w e e n O M „ d a n d O C d a s s u m e s t h e p r o p o r t i o n s o f c a r b o n n  d a it o m a c e o u s a n d n o n d a it o m a c e o u s , m a r n ie o r g a n c i m a t t e r a r e similar.  4 . E q u a t i o n A . 3 e s t m i a t e s % B S i o fam a r n ie s a m p e l c o n t a i n i n g BSi, O M d a n d O  T h i s e s t m i a t e will b e e ls s t h a n t h e B S i c o n t e n t o ft h e p r o t o t y p i c m a r n ie s a m s t e p 1 , b e c a u s e o ft h e p r e s e n c e o fO M d n  OM ^ % B S i = 1 0 0 ( 1 +1 ° + ~-OM B S i r  M d  n d  - 1  ( A . 3 )  f  OM :BSi is f r o m s t e p 1 a n d OM:OM is f r o m E q u a t i o n A.2. ( E q u a t i o n A . 3 d  n d  d  b e s i m p l i f i e d , b u t a n e w t e r m w o u d l b e i n t r o d u c e d . ) T h e p r o p o r t i o n o fB S i  E q u a t i o n A . 3 is u s e d t o m a k e a n m i p r o v e d e s t m i a t e o f <5C ( E q u a t i o n A 1 3  m a r  w h c ih is t h e n u s e d t o r e e s t i m a t e O M d : O M o fE q u a t i o n A.2. T h i s n e w e s t m i n  d  Appendix A  171  Separating marine from terrigenous organic matter  Saanich Inlet  Jervis Inlet  marine endmember  5C  -17.3  13  ±  0.41  -19.6  ±  06 .9  typical marine sample %FJSi %OM %OM  662 . 26.7 70 .4  d  n  d  ± ± ±  18 . 02 .5 16 .  648 . 245 . 107 .  ± 4.5 ± 05 .0 ± 4.0  diatomaceous proportion of marine O M  100  x  792 .  ± 3.5  69.7  ±  7.3  T a b l e A.l: E s t m i a t e s of < 5 C of the m a r n i e OC e n d m e m b e r s and the c o m p o s t i o n of t y p i c a l m a r n ie s a m p e ls f r o m S a a n c ih and J e r v i s I n l e t s . E r r o r e s t m i a t e s are d e s c r b ie d in the text. 3 1  of O M d : O M is t h e n u s e d in E q u a t i o n A.3 to m a k e ab e t t e r e s t i m a t e of the n  d  BSi  c o n t e n t of a typical m a r n ie s a m p e l. I t e r a t i o n is p e r f o r m e d until the v a u le u s e d for %BSi in E q u a t i o n A.l c o n v e r g e sw i t h the %BSi v a u le c a l c u l a t e df r o mE q u a t i o n A.3. 5. The l a r g e s t e r r o r s of t h i se x e r c s ie are f r o mu n c e r t a i n t y in the OC:BSi r a t i o s (Figd  ure 3.16, t i o n A.l).  s t e p 1) and in the u n c e r t a i n t y of the r e g r e s s o in l i n e s of F i g u r e 31 .9 ( E q u a T a b l e A.l g v ie sr e s u l t sw i t h the 95% c o n f d ie n c e i n t e r v a l of b o t hs o u r c e s  of e r r o r . The d e g r e e to w h c ih it is i n c o r r e c t to a s s u m eC a C O s m a k e s up a n e g l i g i b l e  p o r t i o n of the " t y p i c a l " m a r n ie s a m p e l ( s e c t i o n3 . 3 . 1 ) will m a k e the final e s t m i a t e s of the m a r n i e OC o~C 31  e n d m e m b e r lighter.  Appendix B  Using a conservative tracer w i t h the trap m o d e l  B.l  A n a l t e r n a t e m o d e l for w h e n r a t e c o n s t a n t s d o n o t c o n v e r g e  For c e r t a i ns u b s e t so f t h et i m es e r i e s , the i t e r a t i v ep r o c e d u r e did not r e s u l t in c o n v e r g e n c e of the r a t e c o n s t a n t s of E q u a t o in s 4.4 and 4.7.  A t lh o u g h o n l yr e s u l t sw h e r e c o n v e r g e n c e  o c c u r r e d are p r e s e n t e d in t h i st h e s i s , in e x p l o r i n g the d a t as e t s it was u s e f u l to o t h e r w s ie e s t i m a t e k and k c  Si  w h e r ec o n v e r g e did not o c c u r .  The a d d i t i o n a lfluxof E q u a t i o n 4.4 is w r i t t e n as the m a s sfluxat d e p t h z not 2  at-  t r i b u t a b l e to the a n t i c i p a t e dflux.B e c a u s e the a n t i c i p a t e dfluxd e c a y s as it s i n k s , the i t e r a t i o nd e s c r b ie d in s e c t i o n 4.2.2  is r e q u i r e d to s o v le the m o d e . l H o w e v e r , if a c o n s e r v a -  t i v ee e lm e n tw e r ec o n s d i e r e d ,a c c o m m o d a o t in of o ls sd u r i n gs i n k i n gw o u d l not be r e q u i r e d to q u a n t i f y the a d d i t i o n a lflux,and the i t e r a t i o n of s e c t i o n 4.2.2  w o u d l be a v o i d e d . Alu-  m i n o s i l c a t e s are not b i o l o g i c a ly or c h e m c ia y l r e a c t i v e on the t i m e s c a e ls c o n s d ie r e d h e r e , and thefluxof a d s o r b e d Al ( s e c t i o n 4.1)  a f f e c t s the totalfluxof Al o n l yw h e r e the  r a i n r a t e of a l u m i n o s i l c a t e s is v e r y s m a l. U s n i g Al as a c o n s e r v a t v ie t r a c e r ,  Al = Al - Ah . d  2  (B.l)  R e p a lc n i g Jd w i t h Al , E q u a t i o n 4.5 can be w r i t t e n as: d  (B.2)  172  Appendix  B  Using a conservative  T h e set of linear equations used to solve for e  in  173  tracer with the trap model  Al  1  dl  k  j  A  z  and (j/J)  d  -kjAz  then becomes:  321  e  312 Al  1  d2  3 In  322  Al dn  (B-3)  32n  Equation B.2 can be applied to all constituent fluxes. Another approach, however, is to use Equation B.2 to solve for k  c  and k , Si  put these values into Equation 4.4, and  non-iteratively solve for constituent fluxes, including O C and B S i , using Equation 4.5 as described in section 4.2.2. Model Equation B.2 was developed, and A l and T i measured on the sediment-trap samples, to test the possibility that this model would produce meaningful solutions of -kjAz  e  f  o r  data sub-sets where early use of Equation 4.5 was not successful. However, it  was found that the use of Equation B.2 (using either A l or T i as the conservative tracer) did not improve model solution. Nevertheless, one advantage of E q u a t i o n B.2 is that no iterations are required to solve the model. T h i s may be especially useful depending on the computational method used to solve for a of Equation 4.7. I have written a routine that performs the iterations, and it was not time-consuming to run the model of Equation 4.5. Furthermore, a disadvantage of Equation B.2 is that the information returned about the composition of the additional flux, (j/Al) , d  is physically less meaningful than (j/J)  d  as  determined by Equations 4.5. Thus, use of Equation B.2 has been reserved for the case where the rate constants of Equations 4.4 and 4.6 do not converge.  Appendix  B.2  B  174  Using a conservative tracer with the trap model  T h e normalisation  scheme  If the c o m p o s t i o n of the a d d i t i o n a lfluxis i d e n t i c a l to the c o m p o s t i o n of the b u k l flux to the d e e p s e d m i e n t trap, E q u a t i o n B2 . can be w r i t t e n as: 32 = Ji  e- > k  Az  + -£-(Al  2  - Ah) .  (B.4)  E q u a t o i n B4 . s i m p l i f i e s to: <  W a s lh et al.  a  5  >  ( 1 9 8 8 b ) u s e d E q u a t i o n B5 . to e s t m i a t e d e c a y r a t e s of o r g a n c i c a r b o n ,  b o ig e n c i silica and CaC0 for the d e e pE q u a t o r i a lN o r t h Pacific, and N o r i k i and T s u n o g a i 3  ( 1 9 8 6 ) u s e d af o r m of t h i s m o d e l on the s a m efluxesf r o m d a t a c o l e c t e d in the P a c i f i c and S o u t h e r n O c e a n s . W a s lh et al. ( 1 9 8 8 b ) n o t e d t h a t an a s s u m p t o in of E q u a t i o n B.5 is c o m p o s t io in a ls i m i l a r i t yb e t w e e n a d d i t i o n a lfluxesand the b u l k m a t e r i a lr e a c h n i g the d e e p s e d m i e n t t r a p s .H o w e v e r , t h e y a s lo d e m o n s t r a t e d ( W a s lh et al., 1 9 8 8 a ) t h a t the n ic r e a s e influxw i t hd e p t h as the b o t o mb o u n d a r yl a y e r of the o c e a n is a p p r o a c h e d was  c a u s e d by m a t e r i a lt h a t was n id e e dm o r es i m i l a r to the m a t e r i a ls i n k i n gf r o ma b o v et h a to b o t o ms e d m i e n t s . T h e yp o s t u l a t e dt h a t ar 'e b o u n d 'fluxof r e l a t i v e l yy o u n gs e d m i e n t s  c a u s e do b s e r v e dn ic r e a s e s influxw i t hd e p t h , and o t h e r sh a v ef o u n da d d i t i o n a lfluxese ls s  l i k eb o t o ms e d m i e n tt h a ne x p e c t e d if r e s u s p e n d e dm a t e r i a lw e r ec a u s n ig n ic r e a s e s in f w i t h d e p t h ( S m e t a c e k , 1978; W a s lh and G a r d n e r , 1992; T m i o t h y and P o n d , 1 9 9 7 ) . An  a l t e r n a t i v e to the r e b o u n d h y p o t h e s s i is t h a t u p p e r s e d m i e n t t r a p s c a t c h m a t e r i a l e ls s e f f i c i e n t l y t h a n d e e p t r a p s , c a u s n i g an a p p a r e n t , but not a real, n ic r e a s e influxw i t h d e p t h ( S m e t a c e k , 1978; T m i o t h y and P o n d , 1997; Yu et al., 2 0 0 1 ) .  Appendix C  S e n s i t i v i t y analysis a n d results for J e r v i s Inlet  D a t af r o m s o m e d e p o ly m e n t p e r o id s h e a v i l y w e g ih t e d the m o d e l r e s u l t s for J e r v i s Inle  In g e n e r a l , the d e c a y t e r m s (e~ i ) w e r e m o r e s e n s i t i v e to d a t a r e m o v a l t h a n w e r e the k  Az  t e r m s d e s c r i b i n g the c o m p o s t i o n of the a d d i t i o n a lflux({j/J}d) and, f u r t h e r m o r e , k  c  (and k ) w e r e m o r e s e n s i t i v e t h a n ksi- Also, w h i l e (j/J)d has localy u s e f u l i n f o r m a t i o n N  a b o u ts e d m i e n t a t o i n in J e r v i s Inlet, the d e c a yc o n s t a n t s are m o r ei m p o r t a n t for e e lm e n t a l b u d g e t s and can be a p p l i e d to o t h e r t e m p e r a t e c o a s t a l s e t t i n g s . T h e r e f o r e , s o l u t i o n s for -k Az  e  c  ^  n e  oc d e c a y t e r m s ) w e r e u s e d tofindr e c o r d s f r o m d e p o ly m e n t p e r o id s t h a t  l a r g e l y a f f e c t e d m o d e l results. The m e t h o d u s e d was to r e m o v e d a t a f r o m one d e p o ly m e n t p e r i o d at a t i m e , s u c c e s s i v e l yf r o m thefirstto the l a s t d e p o ly m e n t , and to r e s o l v e the m o d e l of E q u a t i o n 4.6a. If the r e m o v a l of a c e r t a i nd e p o ly m e n tp e r i o dr e s u l t e d in a s i g n i f i c a n t l yd i f f e r e n t solution, t h a td e p o ly m e n t was r e m o v e df r o m the d a t a set and the e x e r c s ie was r e p e a t e d . The crite-  r i o nu s e d to d e t e r m n ie w h e t h e r to r e j e c t ad e p o ly m e n tp e r i o d s ' d a t a was w h e t h e rr e m o v a l of t h o s e d a t ac a u s e d ac h a n g e in e~  kcAz  of m o r e t h a n 30% ( d a s h e d l i n e s in the f o l o w i n g  figures). F i g u r e s C.l t h r o u g h C.6 s h o w the s e n s i t i v i t y a n a l y s i s , and F i g u r e C.7 s h o the d e p o ly m e n t p e r o id s t h a t w e r e p e r m a n e n t y l r e m o v e d f r o m the m o d e l i n ge x e r c s ie in J e r v i s Inlet.  175  Appendix  C  Sensitivity  176  analysis and results for Jervis Inlet  b1. J V 3 : 50-300 m-> O C data, final solution (n=37) 0.35  -i—i—i—r~i—i—i—i—i—i—i—i—i—i—i—r—i—i—i—i—i—i—i—i—i—i—m—i—i—i—i—i—i—i—i r~  * 0.25 0.2 0.15 l<u  5  10  15  20  25  30  35  b2. J V 3 : 50-300 m-> BSi data, final solution (n=37) 0.8  -I—I—I—I—l—I—I—I—I—I—I—I—I—I—I—I—I—I—I—I—I—I—I—I—I—I—I—I—I—I—I—I  I  I  I T"  0.6 0.4 h  10  15 20 25 number of deployments (n)  30  35  F i g u r e Cl: S e n s i t i v i t y a n a l y s i s for s t a t i o n JV-3, 5 0 3 0 0 m. al: e~ w h e n s u c c e s s v ie d e p o ly m e n t p e r o id s are r e m o v e d f r o m the e n t i r e d a t a set. a2: One p e r i o d has b e e n p e r m a n e n t y l r e m o v e d and the s e n s i t i v i t y a n a l y s i s r e p e a t e d (and a g a n i for a3). bl and b2: S e n s i t i v i t y a n a l y s i s for OC and BSi on thefinals u b s e t u s e d for t h i s d e p t h interval. kcAz  Appendix C  Sensitivity  177  analysis and results for Jervis Inlet  a. JV3: 50-600 m-> all OC data (n=40)  number of deployments (n)  b1. JV3: 50-600 m-> OC data, final solution (n=37)  0.4  — i-— i— i— i— i— i— i— i— i— i— i— i— i— i— i— ii ii — i— l— i— i— i— i— i— i— i— i— i— (— i— i— i— i— ir -  0.3 \  CD  0.2 h :  5 10 15 20 25 30 35 b2. JV3: 50-600 m-> BSi data, final solution (n=37) ~1  I I I 1 I I I I 1 I i  i  ~1—I—I—I—I—I—I—I—1—1  0.8 h : 0.6 0.4 h  :  _l  I I I I I I  10  U.  15 20 25 number of deployments (n)  __l  1 I I I I l_  30 35  F i g u r e C.2: S e n s i t i v i t y a n a l y s i s for s t a t i o n JV-3, 5 0 6 0 0 m. a: e~ w h e n s u c c e s s v ie d e p o ly m e n tp e r o id s are r e m o v e df r o m the e n t i r ed a t a set. bl and b2: S e n s i t i v i t ya n a l y s i s for OC and BSi a f t e r r e m o v n ig the t h r e e d e p o ly m e n t p e r o id s t h a t w e r e t a k e n out of the 5 0 3 0 0 md e p t h i n t e r v a l ( F i g u r e C.l). f c c A z  Appendix C  Sensitivity analysis and results for Jervis Inlet  178  a1. J V 3 : 300-600 m—> all O C data, final solution (n=40) i—i—i—i—i—i—r-  I—i—i—i—i—i—i—i—i—r"  0.8 0.6 0.4  5  10  15  20  25  30  35  40  a2. J V 3 : 3 0 0 - 6 0 0 m—> all BSi data, final solution (n=40)  12 .f <  V  -i—i—i—i—i—i—i—r  -l—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—r  -  1  0.8 0.6 10  15 20 25 30 number of deployments (n)  F i g u r e C.3: S e n s i t i v i t y a n a l y s i s for s t a t i o n JV-3, for t h i s d e p t h interval.  35  40  3 0 0 6 0 0 m. The e n t i r e d a t a set is u s e d  Appendix  C  Sensitivity  179  analysis and results for Jervis Inlet  a1. J V 7 : 50-200 m-> all O C data (n=47)  5  10  15  20  25  30  35  40  45  a2. JV7: 50-200 m ^ O C data (n=45)  5  10  15  20  25  a3. J V 7 : 50-200  5  10  30  35  40  45  O C data (n=44)  15 20 25 30 number of deployments (n)  35  40  b1. J V 7 : 50-200 m-> O C data, final solution (n=40) —i—i—i—i—i—i—i i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—l—i—i—i—i—i—i—i—i—i  i  i  l  r  0.2  0.1 5  10  15  20  25  30  35  40  b2. J V 7 : 50-200 r r w BSi data, final solution (n=40) 0.8  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  0.6 0.4 10  15 20 25 30 number of deployments (n)  35  40  F i g u r e C.4: S e n s i t i v i t y a n a l y s i s for s t a t i o n JV-7, 5 0 2 0 0 m. al: e~ w h e n s u c c e s s i v e d e p o ly m e n t p e r o id s are r e m o v e d f r o m the e n t i r e d a t a set. a2: Two p e r o id s h a v e b e e n p e r m a n e n t y l r e m o v e d and the s e n s i t i v i t y a n a l y s i s r e p e a t e d (and, a g a i n , one p e r i o d r e m o v e d for a3). bl and b2: S e n s i t i v i t ya n a l y s i s for OC and BSi on thefinald a t as u b s e t . kcAz  Appendix  C  180  Sensitivity analysis and results for Jervis Inlet  a. JV7: 50-450 m-> all OC data (n=48)  5  10  15 20 25 30 35 number of deployments (n)  40  45  b1. JV7:50-450 m->OC data, final solution (n=40) 0.14 N  0.12  *  0.1  l<u  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  i  i  i  I  i  I  I  I  I  I  i  i  i  t  i  I  I  I  I  I  i  i  i  i  i  I  I  I  I  I  i  i  i  i  i  I  I  I I  t  i  i  0.08 0.06  i  5  10  15  20  25  30  35  i  40  b2. JV7: 50-450 m-> BSi data, final solution (n=40)  i ii iii iii iii iii iii iiiiiiiiiiiii ii iiii i < 0.8 \ 0.6 0.4 [  •  5  10  15 20 25 30 number of deployments (n)  35  40  Figure C.5: Sensitivity analysis for station J V - 7 , 50-450 m. a: e~  kcAz  when successive  deployment periods are removed from the entire data set. b l and b2: Sensitivity analysis for O C and B S i after the seven deployment periods that were taken out of the 50-200 m depth interval (Figure C.4), plus one more, have been removed from this depth interval.  Appendix C  181  Sensitivity analysis and results for Jervis Inlet  a1. J V 7 : 200-450 m -> all O C data, final solution (n=47)  iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i 0.8 h 0.6 0.4 5  10  15  20  25  30  35  40  45  a2. J V 7 : 200-450 m - » all B S i data, final solution (n=47)  1.2  iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i  1 0.8 0.6 5  10  15 20 25 30 35 number of deployments (n)  F i g u r e C.6: S e n s i t i v i t y a n a l y s i s for s t a t i o n JV-7, for t h i s d e p t h interval.  40  45  2 0 0 4 5 0 m. The e n t i r e d a t a set is u s e d  Appendix  C  Sensitivity  1985  1986  182  analysis and results for Jervis Inlet  1987  1988  1989  1985  1986  1987  1988  1989  F i g u r e C.7: D a t ar e m o v e df r o ms h a o lw m d i and s h a o lw d e e pa n a y ls e s ( d a r kb a r s ) . M o s t of t h e s ed e p o ly m e n t p e r o id s are c h a r a c t e r i s e d by h g i h OCfluxesto the s h a o lw s e d m i e n t t r a p s and l a r g e d e c r e a s e s w i t h d e p t h of the OC r a i n rate. In Sept/Oct, 1985, w h i l e the 5 0 2 0 0 md a t af r o m s t a t i o n JV-7 did not s t a n d out in the s e n s i t i v i t y a n a l y s i s , the d a t a f r o m the 5 0 4 5 0 md e p t h i n t e r v a l did. The e n t i r e t i m e s e r i e s was u s e d for the m d id e e p d e p t h i n t e r v a l at e a c h s t a t i o n s .  Appendix  r z  2  l/2  *c %OC O C int d  r  2  Zl/2  %BSi B S i int d  r z  2  l/2  %N N int d  r z  2  l/2  %Al A l int d  C  Sensitivity  183  analysis and results for Jervis Inlet  200-450 m JV-7 n = 47  300-600 m JV-3 n = 40  organic c a r b o n solution 0.72 0.85 154 248 0.0022 (15) 0.0058 (15) 4.4 (7.7) 5.7 (10) 30 (34) 35 (26)  0.85 311 0.0018 (19) 5.5 (7.7) 6.5f(M00)  0.97 442 0.00075 (21) 4.5 (3.2) . -5.8f(M00)  0.95 158 0.0022 (11) 45 (11) -190 (21)  biogenic silica solution 0.90 0.79 293 235 0.00084 (14) 0.00076 (30) 22 (9.0) 30 (14) -70f(66) -160 (38)  0.86 320 0.00069 (35) 22 (15) -38f(95)  0.97 445 0.00046 (22) 20 (4.4) -16f(M00)  0.79 98 0.011 (8.4) 0.91 (12) 3.3 (22)  0.79 133 0.0058 (19) 1.0 (14) 2.2f(54)  nitrogen solution 0.80 0.65 242 156 0.0024 (15) 0.0056 (13) 0.46 (9.1) Q.61 (12) O.Of(MOO) 4.3 (26)  0.72 307 0.0024 (21) 0.66 (11) 1.6f(73)  0.94 439 0.00099 (20) 0.49 (4.3) 0.20f(MOO)  0.89 124 0.0004 (96) 0.96 (44) 8.1 (35)  0.56 171 0.0006 (MOO) 1.7 (31) 22 (24)  a l u m i n i u m solution 0.95 0.88 333 253 -0.0002 (MOO) -0.0002 ( M 0 0 ) 3.5 (14) 5.8 (5.1) -10 (52) 4.9f(M00)  0.94 326 -0.0001 (MOO) 4.4 (7.9) 0.30f(M00)  50-200 m JV-7 n = 40  50-300 m JV-3 n = 37  50-450 m JV-7 n = 40  0.76 94 0.012 (12) 7.9 (12) 37 (17)  0.76 134 0.0056 (22) 7.8 (16) 27 (40)  0.92 114 0.0040 (12) 40 (12) -81 (32)  50-600 m JV-3 n = 37  0.98 451 -0.00008 (>10C 6.1 (2.4) -9.4f(57)  Table C . l : Results of the model applied to each depth interval in Jervis Inlet after the sensitivity analysis was used to remove some deployment periods. Standard errors (percent of the value represented) are in parentheses and results that are not significantly different from zero (P > 0.05) are tagged (t; for a rate constant of zero, e~  kjAz  of the  model is one and, therefore, significant). zx/ is the depth between z\ and z at which half 2  2  of the decay of the anticipated flux has occurred (where j  = 0.5{1 -f- e~ ^ ~ ^}) k  n  Z2  Zl  and is  used as the reference depth for which decay constants are characteristic. Rate constants (kj) have units m  - 1  , intercepts are mg m  -  2  d  - 1  .  Appendix D  S e n s i t i v i t y analysis a n d results for Saanich Inlet  T h i s A p p e n d x i s h o w s the r e s u l t s of the s e n s i t i v i t y a n a y ls e s for the d a t a f r o m S a a n c ih I n l e t . For a d e s c r i p t i o n of the p r o c e d u r e , see A p p e n d x i C. On the w h o e l, the d a t a of o n y l one d e p o ly m e n t p e r i o d and one d e p t h i n t e r v a l ( s t a t i o n S N 0 . 8 , 1 3 5 1 8 0 m; F i g u r e D.6) w e r e r e m o v e d f r o m final a n a l y s e s . F r o m the s e n s i t i v i t y a n a y ls e s and the r e g r e s s o in c o e f f i c i e n t s ( c o m p a r e r of T a b e ls C.l 2  and D.l),  it a p p e a r st h a t the m o d e ld e s c r b ie d the d a t af r o mS a a n c ih I n l e tr e l a t i v e l y well,  yet the r a t e c o n s t a n t s are s p a t i a ly i n c o n s i s t e n t and d i f f e r e n c e s b e t w e e n c o n s t i t u e n t s are not e a s i l ye x p l a i n e d . For i n s t a n c e , for the 4 5 1 1 0 md e p t h i n t e r v a l at s t a t i o n SN-9, r a t e c o n s t a n t s are n e g a t v ie and, c o m p a r n ig the 4 5 1 5 0 and the 1 1 0 1 5 0 md e p t hi n t e r v a l s , the r a t e c o n s t a n t s n ic r e a s e w i t h d e p t h ( T a b l e D.l).  At s t a t i o n S N 0 . 8 , a t lh o u g h k  c  and  k  N  are s p a t i a ly r e a s o n a b e l ( d e c r e a s n ig w i t h d e p t h ) and of s i m i l a rm a g n t iu d e , ksi n ic r e a s e s w i t h d e p t h and, (k  M  > ki > k S  c  for the 1 3 5 1 8 0 md e p t h interval, the m a g n t i u d e of the r a t e c o n s t a n t s  > k ) is the r e v e r s e of t h a t e x p e c t e d . O t h e r e v d ie n c e t h a t the m o d e l N  r e s u l t sf r o mS a a n c ih I n l e t are s u s p e c t is the c o m p o s t i o n of the a d d i t i o n a lflux.A t lh o u g h not s h o w n explicitly (e.g.; as is for J e r v i s I n l e t at F i g u r e 4.6),  for e a c h d e p t h i n t e r v a l in  S a a n c ih Inlet, OC, N, BSi and Al are all d e p e lt e d in the a d d i t i o n a lfluxw h e n c o m p a r e d  to the total m a s sfluxr e a c h n i g the d e e p s e d m i e n t t r a p s . In the r e a l c a s e , c o n s t i t u e n t s  t h a t are d e p e lt e d m u s t be b a a ln c e d by o t h e r s in e x c e s s . T h u s , the m o d e l a p p e a r s to be p a r t i t i o n i n g too m u c h m a t e r i a li n t o the a n t i c i p a t e dfluxto d e p t h z in S a a n c ih I n l e t . If 2  t h i s is the c a s e , the r a t e c o n s t a n t s are too s m a l ( r e s u l t i n g in a l a r g e a n t i c i p a t e d flux  184  Appendix  D  Sensitivity  analysis and results for Saanich Inlet  185  and the s i z e of the a d d i t i o n a lf l u x ( p a r a m e t e r s ie d by {]/ J}d) is too smal.  A n u m b e r of f a c t o r s m g ih t h a v e c o n t r i b u t e d to t h e s e p e c u l i a r r e s u l t s f r o m S a a n c ih  I n l e t . The d e p t h i n t e r v a l s b e t w e e n s e d m i e n t t r a p s was m u c h e ls s t h a n in J e r v i s I n l e t and p o s s i b l y too s m a l to r e s o v le d e c a y of the s e t t l i n gflux.At s t a t i o n SN-9, e x t r e m e y l h i g h a d d i t i o n a lfluxeso c c u r r e d for the two d e p t h i n t e r v a l s a n c h o r e d a b o v e by the  45  m s e d m i e n t trap. D e t e r m n in i g the s i z e of the a n t i c i p a t e dfluxfor t h e s e i n t e r v a l s may be i n a c c u r a t e b e c a u s e it is the d i f f e r e n c e b e t w e e n two l a r g e n u m b e r s ( E q u a t i o n s 4.1a and 4 . 1 6 ) . H o r i z o n t a l g r a d i e n t s in the e x p o r tflux,c o m b n ie d w i t h h o r i z o n t a l c u r r e n t s , m g ih t h a v e o c c u r r e d s u c h t h a t the c o n s t r u c t i o n o f t h e m o d e l ( F i g u r e 4.1) e s p e c i a l y at s t a t i o n SN-9  was not valid,  w h e r el a r g eh o r i z o n t a lg r a d i e n t s in s u r f a c eb o im a s s (e.g.; H o b -  son and M c Q u o d i , in p r e s s ) and s i g n i f i c a n t h o r i z o n t a lt r a n s p o r t of r e s u s p e n d e d m a t e r i a l o c c u r r e d . H o w e v e r , E q u a t o in s 4.8 and 4.9 s u g g e s t t h a t h o r i z o n t a l a d v e c t i o n , e n h a n c n ig or d i m i n i s h i n g the d o w n w a r dfluxf r o m one d e p t h to the n e x t , w o u d l r e s u l t in a p o s i t i v e  ( a d v e c t i o nf r o mh i g he x p o r tr e g i o n ) or a n e g a t v ie ( a d v e c t i o nf r o mr e g o in s of o lw e x p o r t ) e r r o r t e r m w i t h o u t n e c e s s a r y l i c o m p r o m s in ig e s t m i a t e s of r a t e c o n s t a n t s . It is u n l i k e l y t h a t s e a s o n a l a n o x a i a f f e c t e d the s i n k i n gflux;o n y l the 180 m s e d m i e n t  t r a p at s t a t i o n S N 0 . 8 w o u d l h a v e b e e n e x p o s e d to a n o x c i w a t e r s for e x t e n d e d p e r o id of t i m e . I n d e e d , T h u n e l et al.  ( 2 0 0 0 ) f o u n d t h a t d e c r e a s e s w i t h d e p t h of POC flux  in the a n o x c i w a t e r s of the C a r i a c o T r e n c h w e r e not d i f f e r e n t t h a n t h o s e p r e d i c t e d f r o m o x y g e n a t e d s e t t i n g s , and c e r t a i n r e s u l t s ( h i g h r a t e c o n s t a n t s for Al, d e p l e t i o n of all c o n s t i t u e n t s in the a d d i t i o n a lfluxes)c a n n o t be e x p l a i n e d by o lw r e d o x c o n d i t i o n s .  Appendix  D  Sensitivity  186  analysis and results for Saanich Inlet  a1. S N 9 : 4 5 - 1 1 0 m -> all O C data, final solution (n=61)  l .D  • I M I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II I I I  1.4 1.2 1 0.8 | 0.6  I  I  5  10  15  20  25  I  30  I  35  40  45  50  55  60  a2. S N 9 : 4 5 - 1 1 0 m -> all B S i data, final solution (n=61) 16 14 12 108 06-  5  10  15  20 25 30 35 40 45 number of deployments (n)  F i g u r e D.l: S e n s i t i v i t y a n a l y s i s for s t a t i o n SN-9, final a n a l y s i s .  50  55  60  4 5 1 1 0 m. No d a t aw e r e r e m o v e d f r o m  a1. S N 9 : 4 5 - 1 5 0 m-> all O C data, final solution (n=62)  iiiiiii1 1 i i i i i i i i i i i i i i i i i 111 i i 1 1iiiii1 1iiiiiiii1 1iiiiiiii 108 060  4L  i • • i • • i • • '• i • • i i • i i i i i • • • • • • • ' • • • ' ' '  5  10  15  20  25  30  35  40  •  45  50  55  60  a2. S N 9 : 4 5 - 1 5 0 m - » all B S i data, final solution (n=62) 14 12 108 06-  I I I I 1 1 1 I 1 I T I I I 1 I I 1 1 I" I I I M I I 1 II I I 1 I I I I I I l~T niTT  i i i i i i i i i j j i j i i i i i i  5  10  15  1  i i i i i i i i i i i I I I I I t i  i I I I i  20 25 30 35 40 45 number of deployments (n)  F i g u r e D.2: S e n s i t i v i t ya n a l y s i s for s t a t i o n SN-9, final a n a l y s i s .  50  55  60  4 5 1 5 0 m. No d a t aw e r e r e m o v e d f r o m  Appendix D  187  Sensitivity analysis and results for Saanich Inlet  a1. S N 9 : 1 1 0 - 1 5 0 m - > all O C data, final solution (n=61) T I T I 1 II  I I l I I I I I I I I I I I I I I I I I I I ) I I i i i i i  t t I t I T I I I 1 I 1 I I I I I I I I  0.8 h 0.6 h 0.4 5  10  15  20  25  30  35  40  ' '  45  50  55 60  a2. S N 9 : 110-150 m-> all B S i data, final solution (n=61) i i i i i tiiiiI I i  i i i i i i i i i i iiiii  i i i i i i i i i i i iiiii  i i i i i i i i i iiiii  ii i  1.2 1 0.8 0.6 5  10  15  20 25 30 35 40 45 number of deployments (n)  F i g u r e D.3: S e n s i t i v i t ya n a l y s i s for s t a t i o n SN-9, final a n a l y s i s .  50  55 60  1 1 0 1 5 0 m. No d a t aw e r er e m o v e df r o m  a1. SN0.8: 5 0 - 1 3 5 m-> all O C data, final solution (n=62) i i i 1  11  i i i i i i i i i  i i i i i i i 11  i i i 11  11  i i i i i i i 11  i i i i i i i i i  45  i 55 60 i, , ,j  M  0.8 0.6 0.4  • '  1  5  10  '• •  15  20  25  30  35  40  50  a2. SN0.8: 5 0 - 1 3 5 m-> all B S i data, final solution (n=62) 1.4 1.2 1 0.8 0.6  j  i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i  5  10  15  20 25 30 35 40 45 number of deployments (n)  50  I J  55 60  F i g u r e D.4: S e n s i t i v i t y a n a l y s i s for s t a t i o n S N 0 . 8 , 5 0 1 3 5 m. No d a t a w e r e r e m o v e d f r o mfinala n a l y s i s .  Appendix D  188  Sensitivity analysis and results for Saanich Inlet  a1. SN0.8: 50-180 l ; l l l l l l I I I M  N  0  all OC data, final solution (n=63)  l l l l l l l l l ) l ) l l l l I I I l l l l l l l l l l l l l l l l I I I l l l l l l l )  8  <  0.6 0.4  5 10 15 20 25 30 35 40 45 50 55 60 a2. SN0.8: 50-180 m-> all BSi data, final solution (n=63)  1.2 i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i 1r 0.8 0.6 1  5  F i g u r e D.5: a n a l y s i s .  • • ' • • • • *  10  15  20 25 30 35 40 45 number of deployments (n)  50  55  I J  60  S e n s i t i v i t y a n a l y s i s for s t a t i o n S N 0 . 8 , 5 0 1 8 0 m. w e r e r e m o v e d f r o m fina  a. SN0.8: 135-180 m-> all OC data (n=63)  iiiiiiiiiiiiiiiiiiiiiiitiiiiiiiiiiiii  1.2 1 0.8 0.6 5  10  15  20 25 30 35 40 45 number of deployments (n)  50  55  60  b1. SN0.8: 1 35-180m-> OC data, final solution (n=62) I I I I 1 I I I I  1.4 1.2 0.8 0.6  rrr-r-i-T-i r i i i i i 1 i i i i i i i  '  5 10 15 20 25 30 35 40 45 50 55 60 b2. SN0.8: 135-180 m-> BSi data, final solution (n=62)  iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii  1.2 1 0.8 0.6 5  10  15  20 25 30 35 40 45 number of deployments (n)  50  55  60  F i g u r e D.6: S e n s i t i v i t y a n a l y s i s for s t a t i o n S N 0 . 8 , 1 3 5 1 8 0 m. A t lh o u g h it p a s s e d the 30% criteria u s e d in J e r v i s I n l e t ( A p p e n d x i C), One d e p o ly m e n t p e r i o d s ' d a t a (a) s t o o d out and was r e m o v e d f r o m the final a n a l y s i s (bl and b2).  Appendix  Zl/2  %oc  d  O C int  Zl/2  %BSi BSi int d  z  l/2  %N N int d  r  %Al A l int d  D  Sensitivity  189  analysis and results for Saanich Inlet  110-150 m SN-9 n = 61  135-180 m SN-0.8 n = 62  0.94 128 0.011 (15) 2.7 (6.5) 79 (28)  0.91 157 0.00082 (>100) 6.0 (7.5) -0.30f(M00)  biogenic silica solution 0.89 0.98 112 97 0.0014 (25) 0.00017 (MOO) 15 (24) 15 (4.0) -33f(>100) -84f(80)  0.99 129 0.0030 (18) 14 (4.0) 64f(82)  0.90 157 0.0027 (37) 20 (20) 1.8f(>100)  0.89 90 0.0033 (16) 0.58 (14) 1.2t(M00)  nitrogen solution 0.71 0.94 108 94 0.0033 (19) 0.0023 (21) 0.57 (18) 0.31 (5.2) 2.6f(78) 1.4f(>100)  0.93 128 0.011 (16) 0.32 (7.9) 8.8 (32)  0.91 157 0.00052 (MOO) 0.79 (8.3) -0.30f(M00)  0.85 97 -0.0052 (19) 3.2 (14) -3.3f(>100)  aluminium solution 0.70 0.96 94 120 -0.0023 (43) 0.0023 (62) 6.8 (2.6) 2.5 (20) 47f(64) 4.0t(M00)  0.99 130 0.00075 (>100) 7.0 (2.1) -19f(>100)  0.77 156 0.0047 (35) 2.3 (20) 10f(53)  45-110 m SN-9 n = 61  50-135 m SN-0.8 n = 62  45-150 m SN-9 n = 62  0.86 78 -0.0011 (78) 2.9 (12) 12t(M00)  0.89 90 0.0028 (19) 5.1 (12) 1.2f(>100)  organic carbon solution 0.71 0.96 108 94 0.0032 (20) 0.0024 (19) 4.8 (16) 2.7 (4.0) 17f(95) 29f(54)  0.97 78 -0.0015 (25) 16 (7.5) -180f(52)  0.96 92 0.00036 (83) 26 (11) -120 (31)  0.88 78 -0.0014 (54) 0.32 (14) -O.40f(M00)  0.94 77 0.00080 (>100) 6.68 (3.5) 16f(>100)  50-180 m SN-0.8 n = 63  T a b l e D.l: R e s u t ls of the m o d e la p p l i e d to e a c hd e p t hi n t e r v a l in S a a n c ih Inlet. F r o m th s e n s i t i v i t ya n a l y s e s , one d e p o ly m e n tp e r i o d ( 1 3 5 1 8 0md e p t hi n t e r v a l at s t a t i o nS N 0 . 8 w a sr e m o v e d . S t a n d a r d e r r o r s ( p e r c e n t of the v a u le r e p r e s e n t e d ) are in p a r e n t h e s e s and r e s u l t s t h a t are not s i g n i f i c a n t l y d i f f e r e n t f r o m z e r o (P > 0.05) are t a g g e d (f; for a r a t e c o n s t a n t of z e r o , e~ of the m o d e l is one and, t h e r e f o r e , significant, so r a t e c o n s t a n t s not d i f f e r e n t t h a nz e r o are not t a g g e d ) . z i / is the d e p t h b e t w e e n zi and z at w h c ih h a l f of the d e c a y of the a n t i c i p a t e dfluxhas o c c u r r e d ( w h e r e j = 0.5{1 + e~ ^ ~ ty). R a t e c o n s t a n t s (kj) have u n i t s m and i n t e r c e p t s are in mg m~ d . kjAz  2  2  k  n  -1  2  -1  Z2  Zl  Appendix E  E x p o n e n t i a l fit t o r a t e c o n s t a n t s  O r i g i n a ly I had n it e n d e d to fit an e x p o n e n t i a l f u n c t i o n to the d e p t h p r o f i l e s of k.  The  r e a s o n n i g was s m i p y l t h a t the c u r v a t u r e of t h e s e p r o f i l e s m g ih t be w e l e x p l a i n e d by an e x p o n e n t i a l f u n c t i o n . H o w e v e r , the p o w e r f u n c t i o n d s ic u s s e d in C h a p t e r 4d e s c r b ie s the p r o f i l e s b e t t e r , e s p e c i a l y the p l o t of k$i v e r s u s d e p t h . The p o w e rf u n c t i o n , f u r t h e r m o r e , has m o r e p h y s i c a l m e a n n ig t h a n the e x p o n e n t i a l f u n c t i o n , as it d e s c r b ie s the realistic c a s e w h e r e the d e c a y n ig m a t e r i a l (OM  or BSi)  is m a d e up of a s u i t e of c o m p o n e n t s ,  e a c hd e c a y n i g at a d i f f e r e n tr a t e( M i d d l e b u r g , 1 9 8 9 ) . A t lh o u g h the p o w e rf u n c t i o n is the  b e t t e r m o d e l w i t h w h c ih to d e s c r b ie v a r i a t i o n s in k w i t h d e p t h , the f o r m u l a t i o n of the e x p o n e n t i a lfitis g v ie n h e r e . F i g u r e 4.4 s h o w s the e x p o n e n t i a lfitsto the r a t ec o n s t a n t s , and F i g u r e 4.5 u s e s E q u a t o i n E.5 to c o m p a r e the d e s c r i p t i o n offluxw i t h d e p t h a r r i v e d at u s n i g the p o w e r f u n c t i o n and the e x p o n e n t i a l m o d e l of k v e r s u s d e p t h . If the d e c a y p a r a m e t e r k is m o d e e ld to d e c r e a s e w i t h d e p t h at a c o n s t a n t rate, a dk  (E.l)  ^- = -ak.  dz I n t e g r a t i n g E q u a t i o n E.l g v ie s the e x p o n e n t i a l r e l a t i o n s h i p :  k = k e~  az  0  ,  (E.2)  w h e r e k is the v a u l e of & at a r e f e r e n c e d e p t h , w h c ih can be c h o s e n arbitrarily b e c a u s e 0  the s h a p e of t h i sfirst-ordere x p o n e n t i a l f u n c t i o n d o e s not c h a n g e w i t h d e p t h . T a k i n g the l o g a r i t h m of E q u a t i o n E.2 p r o v d ie s am e a n s tofindko and a of the r a t e c o n s t a n t s  190  Appendix E  Exponential At to rate constants  191  p r e s e n t e d in F i g u r e 4.4. \n(k) = -OLZ + ln{k ) 0  (E.3)  T h u s , for a p l o t of \n(kj) v e r s u s z, the s o lp e of the r e g r e s s o in l i n e is —a and the i n t e r c e p t at z = 0 is \n(k ) 0  ( F i g u r e 4.4).  C h a n g e in the flux  of j w i t h d e p t h is w r i t t e n as:  f  = ~kj  .  (E.4)  dz  S u b s t i t u t i n g k of E q u a t i o n E.2 i n t oE q u a t i o n E.4 and i n t e g r a t i n gg v ie s an e x p r e s s o i n for the c h a n g e w i t h d e p t h of j for the c a s e w h e r e kd e c r e a s e s e x p o n e n t i a l yw i t h d e p t h :  3=j\ exp  [e-^-e-^Yj  (E.5)  Appendix F  T a b u l a t i o n of p r i m a r y p r o d u c t i o n d a t a  T h i s appendix presents the primary production data collected during the study section 2.2 for methods). d  _ 1  Tables F . l through F.4 give  14  (see  C - u p t a k e rates (mg C m "  3  ) at the depths of sampling (z: meters); section 2.2 explains how hourly rates were  converted to the daily rates presented here. T h e header at the top of each block of data in Tables F . l through F.4 is the date of sampling (yymmdd); depth and C - u p t a k e rates 14  are given in the left and right columns of each block. T h e first 5 depths in each block are those that corresponded to 56, 32, 18 and 7% surface irradiance. T h e last depth in each group is an extrapolated estimate of the depth of 1% surface irradiance, and the corresponding rate of The  14  1 4  C uptake is also an extrapolation (see section 2.2 for details).  C - u p t a k e value under the line at the end of each block is the vertically integrated  estimate of primary production (mg C m  -  2  d  _ 1  ) , obtained by trapezoidal integration from  the surface to the depth of 7% surface irradiance (where the  14  C - u p t a k e rate at the depth  of 56% surface irradiance was extrapolated to the surface) and by assuming that primary production decreased exponentially with depth in proportion to light between 7% and 1% surface irradiance. See section 2.2 for the manner in which extinction coefficients for light were estimated.  192  Appendix F  z  1 4  c  850807 1 3 4.5 7.5 14 23.6  284 162 197 20.6 30.9 4.41 1627  860714  2.5 4 5.5 7.5 9 15.1  858 384 291 129 74.3 10.6 4362  870309 1 2 3.5 5 7 12.0  17.1 8.90 7.12 0 0 0 47.4  871214 1.5 3 4.5 6 8 13.5  6.06 0 0.46 0 0 0 14.3  880808 1 2.5 4 5.5 6.5 11.7  321 261 196 113 72.3 10.3 1583  890403 1.5 3 5 7 8.5 15.0  56.5 53.3 39.2 29.1 13.1 1.87 396  193  Tabulation of primary production data  Z  14  C  851104 1 3.5 5.5 9 16 27.3  31.2 6.77 10.2 6.10 6.10 0.87 197  860805  1.5 2.5 3.5 5 6 10.2  2094 1705 1778 1860 694 99.1 12094  870504 1.5 3.5 6 8.5 11 19.3  17.8 17.8 11.9 8.89 5.93 0.85 165  880105 1.5 3.5 5 7 10 16.8  22.4 12.3 5.16 0 0 0 86.5  880916 1 3.5 5 8 10 17.9  109 73.9 31.8 18.0 10.3 1.47 555  890501 1.5 3 4.5 6.5 9 15.2  303 275 140 75.3 9.37 1.34 1546  Z  14  C  851216 2 4.5 7.5 12 20 33.8  18.7 6.59 10.4 8.24 6.59 0.94 237  860908  1 3 4 5 6.5 11.2  883 182 26.8 34.4 4.69 0.67 2121  870615 1.5 3 4.5 6.5 7 12.7  173 193 98.6 141 113 16.2 1329 8.19 7.45 3.36 1.16 0 0 40.5 17.5 7.71 3.44 0 0 0 76.6 26.9 109 29.0 0 0 0 310  230 206 205 152 57.9 8.27 1202  870713 2 3 4.5 6 7 11.9  254 144 124 58.7 28.8 4.12 1153  880229 1.5 3 5.5 7.5 10.5 18.0  5.86 3.73 4.27 9.06 6.66 0.95 85.2  881115 1.5 3 5 7 9 15.6  890704 1.5 3 5 7 9.5 16.3  7.18 10.2 10.8 16.1 13.8 1.96 204  861014  1 2 3.5 4.5 6 10.3  881017 2 4 6 9 13 21.8  C  860127 1 2 4 6 12 20.2  880201 1.5 3 5 7 9 15.6  14  Z  7.87 3.31 0.79 0 0 0 25.1  890828 1 2.5 4 5.5 8.5 14.3  1436 103 72.7 75.8 43.7 6.24 3129  Z  14  C  860310 1 2 4.5 6.5 9 15.9  45.5 91.9 73.0 46.3 35.3 5.05 648  861112  1.5 3 5 7 10 16.9  12.4 9.32 9.32 7.46 6.84 0.98 113  870826 1.5 4 6 7.5 10.5 17.9  73.5 101 95.0 53.8 15.2 2.18 790  880328 1 2.5 4 6 7.5 13.3  36.9 38.7 41.4 15.2 3.77 0.54 234  881212 1.5 4 6.5 9 11 19.7  4.19 1.07 1.40 0 0 0 17.7  Z  14  Z  C  23.7 9.67 1.06 0 0 0 104  1 1.5 2.5 3 4 6.6  861208  1 2 3.5 4.5 5.5 9.7  1.5 3 5 7 8 14.4  1 2.5 5 6.5 9 15.8  26.5 22.1 9.58 11.8 5.90 0.84 158  880524  602 852 1417 674 228 32.6 4698  1 2 3 4 5 8.6  890104 1.5 3 5 7 9 15.6  18.0 7.94 2.81 1.22 0.0 0.0 61.8  871019  949 843 497 1555 379 54.1 5569  880425 1 2 3.5 4.5 5 9.1  2791 2677 2026 1651 791 113 9610  870120  13.1 4.72 9.10 5.69 3.01 0.43 49.6  870921 1.5 3 4 4.5 5.5 9.3  C  860512  860414 2 4.5 7 9.5 12 20.9  14  1130 917 822 384 533 76.1 4932  890130  5.13 1.43 0 3.80 2.54 0.36 31.6  2 4 6 7.5 9 15.6  5.22 5.22 4.31 3.82 2.31 0.33 47.8  Z  14  C  860605 1.5 2.5 4 5.5 6.5 11.3  870 831 717 392 229 32.8 4942  870216  1.5 3 4.5 6 7.5 12.9  19.0 8.84 1.90 0 0 0 58.9  871116 1 2 3 4 5.5 9.2  98.0 103 63.7 51.9 15.3 2.19 416  880627 1 2 3 4 5 8.6  365 300 179 136 79.8 11.4 1329  890306 1 2.5 4 6 7 12.7  19.7 16.6 6.83 0.17 0 0 71.5  891010 2 4 6 9 12.5 21.1  26.6 45.6 57.2 25.8 5.03 0.72 426  T a b l e F.l: V o l u m e t r i c (mg C m~ d ) and a r e a l (mg C m d ) r a t e s of C u p t a k e v e r s u s d e p t h (z: m e t e r s ) at s t a t i o n SN-9. See t e x t of t h i s a p p e n d x i for d e t a i l s . 3  _1  2  l  U  Appendix F  z  14 C  8 5 0 8 0 9 1 2 3 6 15 25.4  583 504 290 24.2 0 0 2104  8 6 0 7 1 4  1.5 3 4.5 5.5 7 11.9  699 161 152 38.4 0 0 2052  8 7 0 3 0 9 0.5 1.5 3 4.5 5.5 10.2  25.3 13.7 10.6 2.64 0.32 0 62.4  8 7 1 1 1 6  1 2 3 5 7 12.0  137 59.6 49.4 33.0 5.83 0.83 424  8 8 0 6 2 7 1 2.5 4 5.5 7 12.3  202 157 85.6 141 44.6 6.37 1064  8 9 0 3 0 6  2 4 5.5 7 10.5 17.1  16.3 17.7 16.9 7.70 5.56 0.79 151  194  Tabulation of primary production data  Z  14 C  8 5 1 1 0 4 1.5 3 4 6 13 21.1  3.97 9.92 3.97 3.97 1.98 0.28 59.6  8 6 0 8 0 5  1.5 3 5 6.5 8 14.0  448 320 224 331 92.0 13.1 2768  8 7 0 4 0 6  1 2 3 4.5 7 11.6  26.8 36.1 141 78.6 35.1 5.02 528  8 7 1 2 1 4  2 6 10 13.5 17 30.4  0 0 0 0 0 0 0  8 8 0 8 0 8  1.5 3 4 6 7 12.2  213 187 81.2 71.3 7.24 1.03 961  8 9 0 4 0 3 1.5 3.5 7 9 11 20.0  23.8 30.1 16.1 5.19 0 0 197  Z  14 C  8 5 1 2 1 6 1.5 3.5 6 11 20 34.2  40.7 32.2 20.3 18.6 i:69 0.24 399  8 6 0 9 0 8  1 2 3 3.5 4.5 7.6  900 1965 591 182 182 26.1 4244  8 7 0 5 0 4 1.5 4 7 10 13 23.1  39.6 18.2 20.3 7:48  3.21 0.46 261  8 8 0 1 0 5 1.5 3 4.5 7 9.5 16.2  55.7 29.3 12.6 2.04 0:40 0.06 201  8 8 0 9 1 6 1.5 3 5 7 9.5 16.3  38.3 27.4 15.1 17.1 0 0 203  8 9 0 5 0 1 1.5 3.5 6 8.5 11 19.3  94.6 93.9 55.5 79.6 71.5 10.2 1133  Z  14 C  8 6 0 1 2 7 1 2.5 4 6 12 20.0  47.3 43.9 54.1 32.1 28.7 4.10 563  8 6 1 0 1 4  1.5 2.5 4 5.5 6.5 11.3  233 203 131 91.6 8.28 1.18 1051  8 7 0 6 1 5  1 3 4.5 5.5 6.5 11.7  136 53.7 45.5 57.9 57.9 8.27 639  8 8 0 2 0 1  1.5 3 4.5 6.5 8 13.9  43.0 32.6 21.0 12.1 4.07 0.58 217  8 8 1 0 1 7 1 2 3 5 8 13.4  43.0 28.2 29.5 13.5 2.70 0.39 181  8 9 0 7 0 4 2 4 6.5 8.5 11 18.9  69.1 67.0 45.4 34.6 29.2 4.18 677  Z  14 C  8 6 0 3 1 0 1 2 4 6 10 17.0  195 108 71.1 62.6 53.0 7.57 1058  8 6 1 1 1 2  1 2 3 5 6.5 11.3  8.42 0 0 0 0 0 12.6  8 7 0 7 1 3  2.5 4.5 6 8 9 15.6  529 1081 1149 145 106 15.1 6328  8 8 0 2 2 9  1.5 3 5 7 9.5 16.3  7.48 9.05 6.91 7.48 0.33 0 64.7  8 8 1 1 1 5  1.5 3 4.5 6.5 8.5 14.5  0 0 0 0 0 0 0  8 9 0 8 2 8 1 1.5 2 3 4.5 7.3  684 948 282 0 201 28.7 1953  Z  14  Z  C  21.0 6.67 0 0 0 0 63.8  1 2.5 4.5 6 7 12.8  8 6 1 2 0 8  1 2 3.5 5 6.5 11.3  1 2 3 4 5 8.6  988 1014 1013 398 371 53.1 4684  8 8 0 4 2 5  46.0 32.0 19.2 0.27 0 0 198  1.5 3 4.5 5.5 7 11.9  447 811 582 365 98.6 14.1 3696  8 9 0 1 0 4  8 8 1 2 1 2  1 4 5 7 11 18.5  15.8 1.16 0.44 2.25 1.09 0.16 38.5  8 7 0 9 2 1  192 57.6 35.2 6.40 0 0 544  8 8 0 3 2 8 1.5 3 5 7 9.5 16.3  795 593 265 117 96.6 13.8 3323  Z  14 C  8 6 0 6 0 5 1 2 3.5 5 6 10.7  316 189 143 71.5 23.1 3.30 1073  8 7 0 1 2 0 8 7 0 2 1 6  1 2.5 4 6 8 14.0  26.3 11.1 11.6 4.56 0 0 77.5  8 7 0 8 2 6 1.5 2.5 4.5 6 8 13.7  C  8 6 0 5 1 2  8 6 0 4 1 4 1 3.5 6 9 12 21.4  14  0 0 0 0 0 0 0  1.5 3.5 4.5 7 11.5 19.0  1.49 1.10 1.17 0 0 0 7.42  27.3 20.1 9.65 10.5 7.16 1.02 174  1.5 3 5.5 7.5 9.5 16.7  8 7 1 0 1 9 1.5 3 5 7 9 15.6  101 94.4 77.2 21.3 8.21 1.17 621  8 8 0 5 2 4 1 3 4 6 7 12.6  407 365 347 309 255 36.4 3078  8 9 0 1 3 0 1.5 3.5 6 9 14 23.8  0.41 0.82 0 0.26 0.29 0 5.95  8 9 1 0 1 0 1 2 3 4 5 8.6  286 185 10.9 0 0 0 625  T a b l e F.2: V o l u m e t r i c (mg C m~ d ) and a r e a l (mg C m d ) r a t e s of C u p t a k e v e r s u s d e p t h (z: m e t e r s ) at s t a t i o n S N 0 . 8 . See t e x t of t h i s a p p e n d x i for details. 3  _1  2  x  14  Appendix  z  1 4  F  c  Tabulation  Z  14  C  Z  of primary production  14  C  14  Z  C  Z  195  data  14  C  Z  14  14  Z  C  C  Z  14  C  850808 1.5 80.1 4 127 5 101 7 59.1 13 30.0 21.1 4.29 1035  851105 7.94 2.5 6 5.95 13.9 9.5 13 6.61 6.61 20 0.94 33.6 202  851217 2 24.3 4 18.3 8 0 13.5 0 25 2.03 42.6 0.29 155  860128 1.5 29.8 3 26.5 6.63 5 13.3 8 18 19.9 30.0 2.84 425  860311 1 59.1 44.6 3 29.0 5.5 21.8 7.5 12.4 10 17.8 1.78 390  860415 336 1.5 264 3 5 179 99.2 7 59.5 9 15.6 8.50 2007  860513 1 567 2 438 3.5 353 186 4.5 5.5 108 9.7 15.4 2274  860604 0.75 670 2.5 526 3.5 653 4.5 241 5.5 140 9.8 20.0 3035  860715 1 731 469 2.5 4 616 5 227 6.5 48.1 11.3 6.88 3175  860806 1 464 547 2 249 3 4.5 259 111 5.5 9.6 15.9 2134  860909 362 1.5 359 3 5 131 7.5 56.9 45.0 9 6.43 16.0 2021  861015 1 70.7 2 62.9 4 62.9 5.5 12.4 7 14.8 2.11 12.5 375  861113 26.8 1.5 13.0 3 8.93 5 7 2.68 9 0 15.6 0 106  861209 1 9.80 4.60 3.5 3.24 6 8 2.56 2.19 11.5 20.1 0.31 59.9  870121 9.01 1 2 9.01 3.5 6.43 6 5.02 8 3.67 14.1 0.52 62.3  870217 1.5 19.3 3.5 16.3 5.5 13.4 8 8.17 10.5 5.79 18.2 0.83 158  870310 1 8.02 2.5 7.23 5 2.96 7 0 9 0 16.2 0 35.2  870407 1 159 2 110 107 3 5 59.1 6.5 30.1 4.29 11.3 697  870505 1 96.6 2 62.1 71.8 3 41.4 4.5 35.9 6 10.2 5.13 454  870616 1 244 2 419 4 317 248 5 189 6.5 11.5 27.0 2330  870714 1 218 322 2 4 246 677 6 9 193 15.5 27.6 3841  870827 247 1.5 2.5 220 4 198 105 5 50.2 6.5 10.9 7.17 1285  870922 1 261 2 124 3.5 103 5 57.9 6 36.7 10.7 5.25 865  871020 0.5 170 2 85.2 3 89.5 4 58.2 5 30.4 9.0 4.34 533  871117 22.6 1.5 17.0 3 13.2 4.5 6.5 6.91 8 4.65 0.66 13.9 127  871215 1 11.0 3 8.75 8.12 4.5 5.87 7 9 7.37 1.05 15.9 96.2  880106 3.74 2 5 3.91 7 1.69 9.5 0 14 0 0 23.4 26.7  880202 2 0 4.5 0 0 8.5 12.5 0 16 0 28.5 0 0  880301 2 41.9 4 23.3 9.84 6 6.46 8 0 10 17.2 0 205  880329 2 72.1 58.3 3 5 36.1 22.1 7 13.0 9 15.3 1.86 434  880426 1.5 128 3.5 188 5.5 99.5 8 70.1 9 37.8 16.4 5.41 1178  880525 2 111 3 704 4 513 5 373 6 199 9.9 28.5 2327  880628 96.2 1 3 115 4 139 132 5.5 7 40.1 12.2 5.73 856  880809 198 1.5 3 190 5 180 6.5 119 56.7 8 8.10 14.0 1463  880917 104 1.5 3.5 57.7 5.5 51.9 7.5 37.9 9 24.7 16.0 3.53 638  881018 1.5 0 0 2.5 4 0 6 0 7.5 0 12.9 0 0  881116 2 24.5 15.7 3.5 12.7 5 7 9.49 7.04 8 13.9 1.01 149  881213 2 8.75 4.5 5.56 7 4.22 3.91 9 12 2.16 0.31 20.5 73.0  890105 1.5 13.7 4 11.4 6.5 11.3 8.30 9 12 8.68 20.9 1.24 164  890131 1.5 8.83 3.5 8.90 5.5 5.26 7 1.07 9.5 0 16.2 0 51.2  890307 2 16.5 4 16.1 11.2 6.5 12.2 9.5 4.92 12.5 21.6 0.70 180  890404 69.4 1 69.9 2.5 4.5 32.3 6.5 10.6 4.01 8.5 0.57 15.1 345  890502 1.5 336 511 3 4 453 128 5 70.7 6 10.2 10.1 2144  890606 2 608 531 3.5 4.5 267 78.6 6 7.5 13.8 1.97 12.4 2829  890705 1 94.5 2 69.3 4 33.8 5 12.6 7.5 5.01 12.8 0.72 337  890829 53.8 1.5 3 65.3 4 53.0 5.5 41.2 7 0 11.8 0 331  891011 1 58.6 2 32.6 4 9.41 5.5 2.54 8 0 13.8 0 158  T a b l e F.3: V o l u m e t r i c (mg C m~ d") and a r e a l (mg C m" d ) r a t e s of C u p t a k e v e r s u s d e p t h (z: m e t e r s ) at s t a t i o n JV-3. S a m p e ls for the first f o u r p e r o id s ( 8 5 0 8 0 8 to 8 6 0 1 2 8 ) w e r e c o l e c t e d at s t a t i o n J V 1 1 . 5 . See t e x t of t h i s a p p e n d x i for details. 3  1  2  _1  14  Appendix F  z  14 C  8 5 0 8 0 8 1.5 3.5 6 8.5 13 22.1  79.8 56.3 83.9 61.4 22.5 3.22 893  8 6 0 7 1 5 1 3 4.5 6 7.5 13.3  216 182 218 102 0 0 1232  8 7 0 3 1 0  0.5 2 4 6 8.5 15.2  27.3 11.1 9.55 5.12 3.41 0.49 98.2  8 7 1 1 1 7 1.5 3 5 7.5 9.5 16.6  17.6 16.8 3.92 2.72 1.36 0.19 89.6  8 8 0 6 2 8 1.5 3 4.5 6 7 12.3  69.6 51.3 30.5 25.6 9.89 1.41 339  8 9 0 3 0 7  Tabulation of primary production data  Z  14 C  8 5 1 1 0 5 1.5 3 5.5 9 18 30.3  20.8 9.02 6.94 7.63 5.55 0.79 189  8 6 0 8 0 6 1 2 3 4.5 5.5 9.6  344 232 371 313 141 20.2 1926  8 7 0 4 0 7  1 2 3 4.5 6 10.2  227 151 110 46.6 10.6 1.51 727  8 7 1 2 1 5 1.5 3.5 6 8.5 11 19.3  10.6 7.68 3.14 0.0 0.0 0.0 51.6  8 8 0 8 0 9  2 4 6 7.5 9 15.6  137 102 130 213 81.5 11.6 1459  8 9 0 4 0 4  1.5 29.5 1.5 4 29.3 3 6.5 25.4 5 7 9 14.9 10.5 3.46 9 15.6 19.1 0.49 263  108 71.2 21.3 14.7 9.15 1.31 476  Z  14 C  8 5 1 2 1 7 2.5 5.5 9.5 15 25 42.3  9.50 0 6.71 0 0 0 69.9  8 6 0 9 0 9 1.5 3 5 6.5 8 14.0  204 93.5 60.0 54.4 29.3 4.19 907  8 7 0 5 0 5  1 2 4 6 7 12.9  137 190 60.1 45.8 43.9 6.27 810  8 8 0 1 0 6 2 4.5 7 10 14 23.8  5.10 6.93 3.19 3.19 3.82 0.55 78.3  8 8 0 9 1 7  1 2 4 5.5 7 12.5  138 161 127 109 42.4 6.06 965  8 9 0 5 0 2  1.5 2.5 3.5 4.5 6 9.8  273 272 229 167 82.9 11.8 1466  Z  14 C  8 6 0 1 2 8 2.5 5 9 14 20 34.5  0 11.7 14.2 6.79 4.32 0.62 180  8 6 1 0 1 5 1.5 2.5 4.5 6.5 8 14.0  40.7 46.5 26.8 9.08 1.63 0.23 226  8 7 0 6 1 6  1 2 3 4 6 9.9  205 198 142 81.6 54.4 7.78 923  8 8 0 2 0 2 2 4 7.5 11 15 26.1  0 0 0 0 0 0 0  8 8 1 0 1 8  1 2 4 6 8.5 14.8  26.3 20.8 7.62 5.26 1.52 0.22 104  8 9 0 6 0 6  2 3.5 5 7 9 15.1  89.5 91.4 245 212 93.4 13.3 1588  Z  14 C  8 6 0 3 1 1 1 3 5 8 10 18.1  67.1 50.5 31.7 34.7 24.1 3.45 508  8 6 1 1 1 3 1.5 3 5 7 9 15.6  61.8 27.3 18.0 6.54 1.36 0.19 241  8 7 0 7 1 4  2 3 4.5 6.5 8.5 14.2  96.3 227 150 45.9 17.9 2.56 944  8 8 0 3 0 1  1 2.5 4 6 8 14.0  31.3 17.2 7.88 4.13 0 0 103  8 8 1 1 1 6  2 3.5 5.5 8 10 17.2  10.9 7.25 6.64 1.21 0 0 60.2  8 9 0 7 0 5  1.5 3 5.5 7 8 14.6  76.5 45.4 75.2 44.3 17.5 2.49 526  196  Z  14  Z  C  373 235 118 64.5 37.2 5.32 1669  1 2 3.5 4.5 6 10.3  15.5 9.78 5.29 5.76 4.89 0.70 78.8  1.5 3 5 7.5 11 18.7  102 111 127 84.0 37.9 5.41 944  1.5 3 4.5 6.5 8.5 14.5  95.3 85.6 69.2 21.8 6.32 0.90 571  1 2 3 4 5 8.6  3.87 2.52 4.19 4.73 1.93 0.28 33.8  2 4 6.5 10 13 22.6  8 9 0 8 2 9  1 2 3.5 5 6 10.7  171 161 149 174 98.4 14.1 947  8 9 0 1 0 5  8 8 1 2 1 3 1.5 3 4.5 6 8 13.5  152 69.1 38.5 14.9 7.87 1.12 572  8 8 0 4 2 6  8 8 0 3 2 9 1.5 3 5 7 9 15.6  11.5 7.14 3.61 1.31 0.92 0.13 55.2  8 7 0 9 2 2  8 7 0 8 2 7  2 3.5 5 7 8.5 14.5  485 503 434 188 58.4 8.34 2290  8 7 0 1 2 1  8 6 1 2 0 9 0.5 2 4.5 6.5 8 15.0  C  8 6 0 5 1 3  8 6 0 4 1 5  1 2.5 5 7 9 16.2  14  3.73 2.02 0.73 2.02 1.35 0.19 32.2  Z  14 C  8 6 0 6 0 4 1 2 3 4.5 5.5 9.6  96.0 81.5 374 788 282 40.3 2324  8 7 0 2 1 7 1.5 3 5 8 10 17.7  13.9 10.2 3.70 0 0 0 58.3  8 7 1 0 2 0 1 2 3.5 5 6 10.7  163 82.3 20.6 10.7 5.10 0.73 405  8 8 0 5 2 5 1 2.5 4 5 6.5 11.3  63.9 52.7 58.3 71.8 46.0 6.57 485  8 9 0 1 3 1 1.5 3.5 5.5 7.5 10 17.2  5.81 0 3.95 5.16 3.73 0.53 50.6  8 9 1 0 1 1  146 175 269 269 43.0 6.14 1286  0.5 1.5 2.5 4 5.5 9.7  114 32.9 6.68 2.71 0 0 160  T a b l e F.4: V o l u m e t r i c (mg C m~ d") and a r e a l (mg C m d ) r a t e s of C u p t a k e v e r s u s d e p t h (z: m e t e r s ) at s t a t i o n JV-7. See t e x t of t h i s a p p e n d x i for details. 3  1  2  l  14  Appendix G  Sediment-trap d a t a of Saanich Inlet  T h i s appendix presents the sediment-trap data collected from Saanich Inlet during the study (see section 3.2 for methods).  Sediment traps were moored in pairs with a brine  solution at the base of each. In addition, N a N  3  was used in one sediment trap of each  pair while no preservative was used in the other (section 3.2). T h e total mass, O C and N fluxes presented in these tables are the averages of the fluxes to the two traps in each pair. B S i , A l and T i were measured on samples collected by the N a N - t r e a t e d sediment 3  traps and stable isotope ratios were determined for samples collected by sediment traps without N a N . 3  The C a C 0  3  fluxes presented in these tables are those collected by the  sediment traps treated with sodium azide, as N a N  3  buffers C a C 0  and "end" are the beginning and end of each deployment period.  197  3  dissolution,  "start"  endix G  Sediment-trap  end start ddmmyy 830809 830912 830930 831031 831128 840112 840209 840305 840409 840510 840618 840716 840824 840919 841108 841213 850117 850218 850328 850425 850521 850807 850917 851008 851104 860310 860414 860512 860605 860714 860805 860908 861014 861112 861208  830912 830930 831031 831128 840112 840209 840305 840409 840510 840618 840716 840824 840919 841108 . 841213 850117 850218 850328 850425 850521 850703 850917 851008 851104 851216 860414 860512 860605 860714 860805 860908 861014 861112 861208 870120  mass  OC  N  BSi CaC0 mg m day 2  10197 8135 5511 6812 4300 4311 3226 3999 5802 6982 9039 8690 7415 7954 4230 3495 2550 2656 5891 4206 6148 9775 5571 4500 3302 4172 3360 5127 7234 4067 7180 6893 5405 5437 4451  198  data of Saanich Inlet  531 498 309 313 163 206 165 233 337 413 554 570 543 402 174 163 142 134 331 329 419 574 388 229 175 258 211 363 485 356 466 542 490 316 221  64.2 59.3 34.2 32.7 17.0 24.5 21.9 35.2 47.9 60.1 80.1 82.2 73.9 46.5 19.7 18.2 16.8 14.7 45.7 45.6 56.3 71.2 49.9 27.9 20.1 32.6 28.9 50.4 64.2 48.7 57.6 65.0 57.9 37.2 25.6  3751 3715 1873 1312 528 569 527 1499 1920 2943 3349 3510 2095 1803 580 504 391 525 2392 2201 2532 4709 2105 991 560 1578 892 2174 2075 1215 3086 2536 1527 793 594  3  Al  Ti  <5 C  5 N  428 265 243  28.1 16.5 16.5  -19.9 -19.1 -20.2  -  13  1 5  -1  203 176 79.3 26.4 44.1 61.7 0 0 0 70.5 132 52.9 52.9 177 59.8 80.0 63.1 53.2 93.4 69.3 168 165 26.8 63.9 50.3 56.0 48.7 79.4 97.2 64.5 70.5 85.4 55.8 59.9 50.1  -  267 273 204 174 275 246 335 321 365 391 264 220 156 153 264 102 220 378 229 280 191 195 182 187 345 172 242 266 246 361 310  -  17.8 17.3 13.1 11.4 18.1 16.5 21.1 19.8 22.6 24.1 17.2 13.8 10.2 9.42 17.0 6.56 14.2 24.4 14.3 17.7 11.9 12.3 11.5 12.2 21.4 11.1 15.5 16.3 15.7 23.0 20.0  -  -22.4  -  -19.9 -19.5 -19.6 -19.2 -19.1 -20.3 -20.9 -22.8 -22.6 -22.3 -23.0 -21.1 -19.3 -19.4 -19.3 -19.9 -21.1 -21.9 -20.6 -21.2 -20.5 -20.5 -19.8 -19.3 -20.1 -20.5 -21.4 -21.9  -  -  -  8.9 9.4 7.3 7.3 7.3 6.9 6.1 7.1 6.9 7.5 7.3 7.5 7.3 7.6 8.4 7.3 7.7 8.6 8.7 8.9  T a b l e G.l: S e d m i e n t t r a pfluxesm e a s u r e d at s t a t i o n SN-9:  45 m.  endix G  Sediment-trap  start end ddmmyy 870120 870216 870309 870406 870504 870615 870713 870826 870921 871019 871116 871214 880229 880328 880425 880524 880627 880808 880916 881212 890104 890130 890306 890403 890501 890605 891010  870216 870309 870406 870504 870615 870713 870826 870921 871019 871116 871214 880105 880328 880425 880524 880627 880808 880916 881017 890104 890130 890306 890403 890501 890605 890704 891215  mass  data of Saanich Inlet  OC  N  BSi C a C 0 mg m d a y - 2  3128 4368 3266 6808 7427 10333 9008 7417 7053 4207 2885 2647 3788 7614 7146 10534 6166 6130 5754 3065 3368 4530 2852 7778 5336 6430 4504  176 236 206 431 420 697 577 558 536 258 147 158 215 420 497 525 446 452 449 172 207 230 161 488 448 508 300  20.2 28.8 26.6 59.9 56.4 91.4 73.8 83.5 61.0 31.3 16.9 18.7 26.1 52.9 59.2 61.1 58.0 59.1 54.9 20.8 24.4 25.3 19.2 65.6 55.5 66.2 33.8  432 735 872 3457 2830 3748 3531 2933 3037 1442 849 352 802 2816 3009 3452 1797 2284 2411 443 476 758 517 3650 2292 2681 1431  3  Al  Ti  <5 C  (5 N  206 286 179 193 303 362 328 241 189 175 152 166 209 282 140 418 255 196 183 171 206 283 160 193 92.9 135 180  12.4 17.2 11.2 12.3 18.8 22.4 19.2 15.5 12.0 11.2 10.3 10.4 12.4 18.0 9.62 26.8 15.4 12.6 11.4 11.7 13.0 18.0 9.91 12.3 6.45 9.00 12.3  -22.0 -22.9 -22.4 -19.6 -19.5 -19.3 -19.7 -19.4 -19.7 -21.5 -22.7 -21.6 -22.2 -20.6 -19.3 -19.7 -20.0 -20.1 -20.1 -21.4 -21.8 -22.3 -19.8 -19.3 -18.7 -18.7 -19.8  9.4 9.4 8.5 7.1 5.9 8.0 6.3 7.4 7.0 7.1 8.6 6.4 6.5 6.3 7.0 6.7 7.7 8.8 8.8 7.2 6.0 6.4 6.9 6.4  13  15  -1  34.0 53.6 36.1 34.7 89.5 193 159 116 59.2 49.8 45.0' 28.1 59.1 51.1 22.5 65.0 99.6 110 95.6 47.1 51.5 95.2 39.7 43.0 28.7 37.6 41.9  T a b l e G.2: S e d m i e n t t r a pfluxesm e a s u r e d at s t a t i o n SN-9:  45 m ( c o n t i n u e d ) .  Appendix  G  Sediment-trap  end start ddmmyy 830809 830912 830930 831031 831128 840112 840209 840305 840409 840510 840618 840716 840824 840919 841108 841213 850117 850218 850328 850425 850521 850807 850917 851008 851104 860310 860414 860512 860605 860714 860805 860908 861014 861112 861208  830912 830930 831031 831128 840112 840209 840305 840409 840510 840618 840716 840824 840919 841108 841213 850117 850218 850328 850425 850521 850703 850917 851008 851104 851216 860414 860512 860605 860714 860805 860908 861014 861112 861208 870120  mass  OC  N  BSi CaC0 mg m - d a y 2  17369 13688 10451  -  9182 5998 13064 9060 17655 12376 20146 16259 9504 12516 9567 7873 11517 13742 8323 10255 10173 15572 9320 8960 11499 6739 9744 10847 12360 9260 13175 9845 8196 12913 7720  200  data of Saanich Inlet  765 669 446  -  280 211 386 316 608 615 891 844 560 547 331 282 392 480 408 551 611 765 527 424 794 352 395 594 707 571 768 789 668 551 343  86.8 73.9 49.1  -  28.9 22.2 39.8 42.1 79.4 86.1 126 111 76.6 58.5 39.7 30.3 43.2 52.2 52.0 73.9 79.8 94.1 65.2 48.4 79.3 42.1 48.7 79.1 95.4 75.9 93.5 92.6 79.2 62.0 39.0  5184 4625 2852  -  1134 743 1690 2447 4142 4058 5290 5124 2380 2328 1223 1036 1422 1862 2492 3796 3636 5930 2898 1733 1686 1880 1851 3183 2972 2374 4290 2679 1921 1786 1084  3  Al  Ti  835 642 606  50.9 40.2 39.6  <5 C 13  5 N 1 5  -1  247 344 61.7  -  0  -  0 0 88.2 106 167 52.9 52.9 162 121 104 129 157 88.2 82.4 84.7 167 35.7 74.2 121 53.9 75.1 96.7 91.8 70.7 106 79.6 64.0 112 71.1  -  590 389 902 528 1108 608 1082 733 507 669 593 495 855 1043 462 487 484 765 474 570 644 367 575 555 641 511 578 457 456 852 476  -  -  36.7 24.4 58.4 34.6 73.5 41.3 69.7 49.2 34.3 42.8 38.9 33.4 51.3 67.8 27.4 30.6 32.2 45.6 30.5 36.7 43.0 23.3 38.5 34.8 41.3 31.5 37.6 29.0 29.0 54.9 31.9  -  -  7.6 7.7 7.7 8.6 8.8 8.3 6.0 7.1 6.3 8.2 8.1 8.0 8.9 9.1 8.3 7.8 8.6 9.4 8.4 8.8  T a b l e G.3: S e d m i e n t t r a pfluxesm e a s u r e d at s t a t i o n SN-9:  110 m.  Appendix  G  Sediment-trap  start end ddmmyy 870120 870216 870309 870406 870504 870615 870713 870826 870921 871019 871116 871214 880229 880328 880425 880524 880627 880808 880916 881212 890104 890130 890306 890403 890501 890605 891010  870216 870309 870406 870504 870615 870713 870826 870921 871019 871116 871214 880105 880328 880425 880524 880627 880808 880916 881017 890104 890130 890306 890403 890501 890605 890704 891215  mass  OC  N  BSi CaCOs mg m d a y - 2  7686 8057 5425 12222 14779 16751 13005 12099 10699 7797 15130 7300 13348 12419 12359 11439 10847 11783 10169 9248 7573 12955 6927 9776 9754 13117 7330  201  data of Saanich Inlet  378 423 327 595 677 1000 734 745 640 369 516 342 501 502 689 633 618 764 618 335 306 492 341 468 532 711 449  43.8 49.9 42.6 79.4 87.2 136 90.9 92.4 72.7 43.7 54.5 37.2 58.1 59.1 76.4 74.2 76.5 92.4 75.7 36.6 33.0 54.9 41.6 59.1 65.3 87.8 47.3  1028 1317 1174 4058 4316 4799 4291 3495 3415 1967 2567 1049 2073 3641 3961 3801 2858 3464 2880 1177 1075 1770 1173 3266 3197 3856 1914  Al  Ti  513 523 332 545 744 685 629 571 456 414 931 464 852 644 441 452 600 504 445 561 491 804 357 377 402 453 335  31.1 33.5 20.2 35.0 48.7 46.9 38.8 34.6 27.5 26.5 61.3 30.4 55.4 40.3 29.9 29.0 37.7 32.4 29.1 37.8 32.1 56.0 24.3 23.3 25.9 30.9 22.7  <5 C 13  5 N 1 5  -1  65.2 77.3 48.6 66.9 96.9 118 104 89.4 50.4 53.0 109 41.1 65.2 54.3 49.4 77.7 74.3 91.4 65.4 64.2 55.9 113 63.4 36.6 57.7 53.7 49.0  T a b l e G.4: S e d m i e n t t r a pfluxesm e a s u r e d at s t a t i o n SN-9:  9.7 10.4 10.0 7.1 8.8 7.0 7.6 6.7 6.9 6.3 7.1 8.2 7.8 6.6 7.6 6.9 7.6 7.3 7.6 8.8 7.6 8.0 7.2  110 m ( c o n t i n u e d ) .  Sediment-trap  start end ddmmyy 830809 830912 830930 831031 831128 840112 840209 840305 840409 840510 840618 840716 840824 840919 841108 841213 850117 850218 850328 850425 850521 850807 850917 851008 851104 860310 860414 860512 860605 860714 860805 860908 861014 861112 861208  830912 830930 831031 831128 840112 840209 840305 840409 840510 840618 840716 840824 840919 841108 841213 850117 850218 850328 850425 850521 850703 850917 851008 851104 851216 860414 860512 860605 860714 860805 860908 861014 861112 861208 870120  mass  OC  N  BSi C a C 0 mg m d a y - 2  18459 12662 11456 7087 8658 6008 9965 7066 13905 9626 39631 30306 10208 14308 9750 8041 9886 23082 8289 13145 12460 18396 15026 16156 14742 6924 9462 9191 11909 11138 26615 14135 11665 12947 8205  202  data of Saanich Inlet  724 592 446 289 260 209 291 264 468 429 1273 1069 521 530 317 277 320 631 333 536 563 752 665 580 633 299 337 385 545 498 896 594 508 474 322  83.0 64.5 51.5 34.7 25.6 21.1 30.4 34.6 58.4 57.2 161 139 69.9 58.5 39.0 30.2 34.1 64.6 41.0 69.7 72.9 92.8 78.9 64.6 71.7 34.6 38.3 49.2 70.4 61.7 101 69.3 60.1 53.7 36.9  4854 4151 2791 1308 1075 788 1292 1842 3114 2973 7821 6625 2244 2466 1241 1045 1277 3007 2197 4595 3842 5619 3669 2490 2110 1912 1802 2732 2719 2503 5564 3482 2382 1748 1099  3  Al  Ti  5 C  <5 N  960 593 626 461 554 393 652 417 821 473 2437 1894 565 794 587 507 714 1737 512 645 638 1040 874 1132 859 387 638 526 645 670 1591 803 692 868 567  62.5 37.9 41.8 30.1 37.2 24.9 42.6 26.4 54.5 31.8 162 119 38.3 50.8 37.1 33.0 44.8  -20.5 -19.7 -20.5 -20.9 -22.4 -22.0 -22.1 -21.0 -20.7 -20.0 -19.7 -20.5 -20.9 -21.4 -21.8 -22.7 -22.7 -22.8 -22.1 -20.6 -20.2 -20.3 -20.8 -21.6 -21.4 -21.3 -21.8 -21.1 -21.2 -20.9 -21.0 -20.9 -21.2 -22.7 -22.3  -  1 3  1B  -1  414 212 70.5 0 52.9 0 0 0 79.3 150 194 79.3 0 212 117 119 119 264 89.9 100 113 204 148 157 142 49.7 57.8 75.5 85.4 79.7 169 135 88.1 114 64.9  to  Ux G  30.9 45.7 43.1 65.0 54.1 70.1 56.7 24.1 41.2 32.4 40.6 41.8 101 50.0 43.8 58.4 34.5  -  -  -  7.2 6.4 5.9 7.4 7.1  -  6.7  -  6.4 7.4 6.6 5.9 6.4 9.1 7.9 6.3 6.4 7.1 6.5 8.0  T a b l e G.5: S e d m i e n t t r a pfluxesm e a s u r e d at s t a t i o n SN-9:  150 m.  Appendix  G  Sediment-trap  start end mass ddmmyy 870120 870216 870309 870406 870504 870615 870713 870826 870921 871019 871116 871214 880229 880328 880425 880524 880627 880808 880916 881212 890104 890130 890306 890403 890501 890605 891010  870216 870309 870406 870504 870615 870713 870826 870921 871019 871116 871214 880105 880328 880425 880524 880627 880808 880916 881017 890104 890130 890306 890403 890501 890605 890704 891215  7943 7457 5080 10614 13316 16842 19208 16580 13173 9030 13688 8239 14590 16218 11491 6931 12062 15643 11594 10241 6655 13411 5554 9699 8734 18274 7298  data of Saanich Inlet  OC  N BSi C a C 0 mg m ~ d a y 2  292 277 204 400 489 711 765 732 650 462 463 302 491 604 543 464 579 718 558 361 257 456 230 416 424 729 350  31.0 27.6 22.1 48.8 58.0 85.1 96.0 90.3 75.8 54.2 51.5 33.0 52.6 67.3 64.9 56.1 69.9 80.6 66.7 38.4 28.3 49.0 25.5 49.5 49.8 84.0 40.8  1016 1102 1055 3704 3760 4825 5025 4153 3800 2134 2308 1146 2341 4020 3846 2837 2768 3865 2994 1304 926 1798 920 3278 2801 4729 1851  3  Al  Ti 5 C 1 3  <5 N  -22.6 -23.0 -22.8 -20.7 -20.5 -20.3 -20.5 -20.7 -20.3 -21.4 -22.4 -22.1 -21.6 -21.2 -19.6 -19.0 -20.5 -20.6 -20.4 -21.5 -21.5 -22.1 -21.8 -20.7 -19.9 -19.9 -20.4  7.2 5.6 6.5 5.8 5.7 7.1 7.1 7.2 6.4 7.4 6.0 6.1 6.8 7.3 7.7 7.0 6.7 6.9 6.9 6.7 6.9 6.4 6.5 7.4 6.4  15  -1  52.6 43.1 28.8 36.5 61.5 81.4 144 138 80.7 62.5 93.1 37.4 92.7 90.6 59.2 45.1 92.9 124 110 84.6 44.6 119 34.8 40.5 43.9 63.3 49.7  542 437 311 496 772 886 1099 769 596 481 844 527 922 895 495 173 664 808 553 634 425 813 318 399 330 838 339  33.1 28.1 19.4 30.6 50.5 56.0 67.5 51.1 36.5 31.4 56.1 32.5 55.7 54.9 33.1 11.0 43.1 53.5 36.0 42.9 27.7 54.8 21.9 27.4 22.2 56.8 22.6  c o n t i n u e d ) . l u x e s m e a s u r e d at s t a t i o n-9:SN150 m ( T a b l e G.6: S e d m i e n t t r a pf  Appendix  G  Sediment-trap  start end ddmmyy 840112 840209 840305 840409 840510 840618 840716 840824 841006 841108 841213 850117 850218 850328 850425 850521 850703 850807 850917 851008 851104 851216 860127 860310 860414 860512 860605 860714 860805 860908 861014 861112 861208  840209 840305 840409 840510 840618 840716 840824 841006 841108 841213 850117 850218 850328 850425 850521 850703 850807 850917 851008 851104 851216 860127 860310 860414 860512 860605 860714 860805 860908 861014 861112 861208 870120  mass  OC  N  BSi C a C 0 mg m ~ d a y 2  1042 682 2142 3787 2898 2459 2385 894 1102 981 969 973 1027 2896 2917 2960 1898 1584 1716 673 720 1333 1275 1629 849 3035 1305 1386 2468 746 969 1088 947  204  data of Saanich Inlet  60.8 50.2 226 305 266 300 317 122 110 101 75.4 65.6 76.1 213 298 326 283 176 183 79.2 79.3 112 106 145 116 323 201 217 268 103 131 113 69.7  7.09 6.35 37.1 42.7 37.4 47.1 47.0 16.8 12.8 14.5 8.24 8.38 10.4 29.5 41.9 44.0 38.3 21.6 22.7 10.3 10.9 12.5 13.2 19.4 16.0 40.1 26.8 27.6 34.4 12.6 16.8 12.9 8.24  _  111 1229 1920 1615 794 996 294 294 135 127 170 227 1669 1885 1591 883 809 791 177 140 216 131 821 289 1650 500 680 1378 322 404 177 151  3  Al  Ti  5 C 1 3  <5 N  -  15  -1  17.6 44.1 159 0 0 26.4 44.1 35.3 53.7 38.4 36.2 43.6 44.9 43.4 40.8 81.7 25.7 57.3 5.20 23.9 3.18 35.1 19.8 25.2 25.1 84.2 25.2 13.9 53.3 28.1 21.5 24.9 15.7  -  -  -  39.5 36.1 50.3 25.2 27.2 27.2 11.9 47.5 44.5 62.5 56.0 54.8 51.5 23.2 36.7 23.0 15.0 14.5 23.5 32.0 76.9 85.0 35.6 23.9 39.7  2.34 2.19 3.02 1.59 1.67 1.50 0.795 3.02 2.96 3.75 3.18 3.22 3.23 1.52 2.06 1.34 1.11 0.989 1.52 2.07 4.41 5.12 2.14 1.48 2.42  -22.5 -19.6 -18.4 -18.4 -19.2 -18.8 -19.5 -21.7 -22.4 -22.9 -22.1 -22.3 -20.8 -19.4 -18.9 -19.5 -19.0 -19.0 -20.2 -21.2 -21.8 -22.2 -20.2 -20.9 -20.3 -20.1 -19.3 -18.8 -19.3 -19.4 -21.2 -22.4  -  12.7 19.0 11.2 10.1 47.0 56.2  -  0.861 1.49 0.756 0.735 3.20 3.26  -  -  9.3 9.5 8.7 6.6 7.8 8.9 8.7 9.2 8.1 9.4 10.6 8.5 8.8 9.0 8.4 8.8 8.7 9.0 8.2 8.5 8.7 8.9 9.8  T a b l e G.7: S e d m i e n t t r a pfluxesm e a s u r e d at s t a t i o n S N 0 . 8 : 50 m.  Appendix  G  Sediment-trap  start end ddmmyy 870120 870216 870309 870406 870504 870615 870713 870826 870921 871019 871116 871214 880105 880201 880229 880328 880425 880524 880627 881017 881115 881212 890104 890130 890306 890403 890501 890605 890704 890828 891010  870216 870309 870406 870504 870615 870713 870826 870921 871019 871116 871214 880105 880201 880229 880328 880425 880524 880627 880808 881115 881212 890104 890130 890306 890403 890501 890605 890704 890828 891010 891215  mass  OC  N  B S i CaCOa mg m d a y - 2  1042 1325 1274 3807 2537 2866 2630 622 1175 353 1110 1036 688 645 694 2610 4266 3262 836 988 805 513 925 1305 481 4120 3077 2963 1790 863 961  205  data of Saanich Inlet  97.6 117 124 310 249 291 292 108 142 58.1 88.6 105 65.9 67.5 69.6 191 368 232 173 117 93.3 56.3 96.3 117 56.0 296 300 327 243 142 105  11.6 14.6 16.0 42.1 32.7 36.9 37.6 14.3 17.8 6.33 10.2 12.2 7.21 7.76 8.71 22.6 46.1 28.2 23.1 11.1 10.4 6.23 10.6 14.4 7.82 40.0 36.7 40.9 29.3 16.8 11.4  160 233 431 ' 2312 1442 1319 1253 176 510 70.4 355 125 113 131 182 1174 2404 1702 206 350 158 75.3 128 187 104 2104 1246 1160 507 146 414  Al  Ti  <5 C  <5 N  62.9 70.1 49.9 43.4 31.0 29.0 27.8 9.74 6.36 10.3 35.6 59.5 33.0 29.9 29.8 45.2 26.4 45.0 12.1 17.2 31.9 25.1 49.2 60.6 23.2 58.4 14.6 25.4 12.1 5.95 19.2  3.65 4.26 2.91 2.49 1.60 2.33 1.97 0.720 0.514 0.736 2.42 3.70 1.91 1.86 1.84 2.63 1.59 2.86 0.786 1.23 2.17 1.62 2.93 3.87 1.35 3.33 1.10 1.61 0.906 0.488 1.31  -21.4 -22.4 -22.7 -19.5 -19.2 -19.1 -19.4 -20.9 -19.1 -23.0 -22.2 -22.4 -23.1 -20.3 -19.8 -19.0 -20.8 -21.9 -21.8 -20.4 -22.3 -21.7 -21.9 -22.9 -20.9 -19.1 -19.1 -19.7 -20.4 -19.9  10.7 9.3 8.6 7.9 8.0 8.0 8.6 7.8 7.9 6.3 6.5 7.3 7.1 5.8 7.1 8.2 6.4 6.4 8.4 8.9 9.0 9.0 9.3 6.7 7.5 7.4 7.9 7.1 7.1  13  15  -1  18.9 33.8 7.99 18.4 27.7 42.8 58.7 20.9 6.95 22.0 29.4 23.3 29.0 17.6 39.9 11.9 29.1 25.1 36.6 30.0 25.6 19.2 27.0 87.1 12.2 24.7 22.2 33.2 33.0 7.24 17.1  T a b l e G.8: S e d m i e n t t r a pf l u x e s m e a s u r e d at s t a t i o n S N 0 . 8 : 50 m ( c o n t i n u e d ) .  Appendix  G  Sediment-trap  start end ddmmyy 840112 840209 840305 840409 840510 840618 840716 840824 841006 841108 841213 850117 850218 850328 850425 850521 850703 850807 850917 851008 851104 851216 860127 860310 860414 860512 860605 860714 860805 860908 861014 861112 861208  840209 840305 840409 840510 840618 840716 840824 841006 841108 841213 850117 850218 850328 850425 850521 850703 850807 850917 851008 851104 851216 860127 860310 860414 860512 860605 860714 860805 860908 861014 861112 861208 870120  mass  OC  N  BSi C a C 0 mg m d a y - 2  2237 2253 2682 4073 3274 2322 2258 1015  108 117 198 236 239 188 242 98.4  11.3 14.8 29.9 31.3 33.5 29.2 32.9 14.2  289 370 1120 1818 1728 447 963 280  -  -  -  -  1410 1740 1884 2425 3558 4578 3642 1845 1432 1381 1422 1762 2775 2293 2234 1765 3241 1756 1899 2228 884 1694 2359 2100  206  data of Saanich Inlet  103 97.1 94.3 124 212 323 323 240 124 155 134 123 139 138 157 120 227 176 205 210 94.8 215 139 125  13.9 10.9 11.0 14.4 26.9 41.7 43.5 31.9 17.1 19.4 18.2 14.9 15.3 15.7 20.2 15.7 30.0 23.0 27.4 27.1 12.3 26.6 16.5 16.0  200 238 309 415 1539 2557 1896 744 604 616 279 242 406 284 927 443 1705 654 827 951 299 441 329 301  3  Al  Ti  <5 C  <J N  150 139 94.3 110 64.8 47.2 39.9 12.0  8.89 8.07 5.60 6.61 3.88 2.84 2.30 0.787  -22.1 -22.0 -20.1 -18.7 -18.9 -19.6 -19.4 -19.6  -  13  15  -1  26.4 0 79.3 0 52.9 17.6 52.9  -  46.4 51.5 60.8 56.3 66.4 73.2 67.2 29.3 25.7 7.00 54.8 74.5 99.0 56.9 41.2 31.1 82.2 45.0 50.8 48.0 24.0 51.3 71.7 52.4  -  74.6 111 116 150 131 70.4 64.2 33.3 20.2 17.8 49.8 71.4 161 144 76.5 74.2 83.0 40.4 36.7 36.0 19.4 29.9 103 119  -  4.96 6.46 6.85 9.03 7.83 3.98 3.52 2.11 1.32 1.24 3.28 4.75 9.21 8.48 4.38 5.23 4.94 2.22 2.37 2.34 1.30 2.03 6.94 7.01  -  -22.4 -22.8 -22.3 -22.4 -21.3 -19.9 -19.5 -19.6 -18.8 -19.1 -21.2 -22.3 -22.1 -23.2 -20.9 -21.5 -20.4 -20.2 -19.7 -19.4 -20.8 -20.4 -21.8 -21.8  8.4 8.4 8.1 7.9 8.2 8.9 8.9 8.9 7.8 9.2 8.4 7.8 8.5 8.4  -  7.1 8.3 8.2 9.5 10.2 9.7 9.2 10.5  T a b l e G.9: S e d m i e n t t r a pfluxesm e a s u r e d at s t a t i o n S N 0 . 8 : 135 m.  Appendix  G  Sediment-trap  start end ddmmyy 870120 870216 870309 870406 870504 870615 870713 870826 870921 871019 871116 871214 880105 880201 880229 880328 880425 880524 880627 881017 881115 881212 890104 890130 890306 890403 890501 890605 890704 890828, 891010  T a b l e G.10:  870216 870309 870406 870504 870615 870713 870826 870921 871019 871116 871214 880105 880201 880229 880328 880425 880524 880627 880808 881115 881212 890104 890130 890306 890403 890501 890605 890704 890828 891010 891215  mass  OC  N  BSi C a C 0 mg m d a y - 2  2520 2013 2146 4379 3810 4254 3424 1437 1263 563 1869 2994 2762 2006 2437 3824 5062 4023 1566 1122 1464 1842 1913 3165 1603 4214 3959 3496 2310 884 1094  207  data of Saanich Inlet  145 132 130 227 230 353 312 151 128 54.0 114 185 145 120 147 234 405 313 202 112 102 115 111 178 121 267 307 282 247 129 105  17.6 15.5 15.7 30.2 30.8 44.1 41.7 21.5 17.6 6.82 13.5 23.5 17.0 14.8 18.0 29.2 46.1 37.4 27.3 10.4 11.6 12.4 12.9 21.2 15.9 35.4 40.2 37.8 30.2 16.1 12.2  372 351 457 2076 1632 1899 1296 355 435 127 468 530 414 316 460 1170 2398 1973 314 323 252 286 283 470 294 1839 1685 1150 621 131 387  3  Al  Ti  5 C  <5 N  145 107 112 111 86.8 89.1 64.8 32.2 15.4 17.6 77.7 150 146 80.7 111 135 74.0 46.4 37.0 28.6 61.2 101 103 163  8 71 6 61 6 38 6 38 4 98 4 68 4 04 2 12 1 11 1 13 5 15 9 25 8 36 4 58 6 91 8 05 4 43 2 96 2 46 2 01 4 14 6 03 6 19 10.1 6.61 3 88 2.85 2.21 0.976 2.15  -22.1 -22.6 -22.7 -20.2 -19.5 -18.8 -21.0 -20.9 -19.5 -20.9 -22.6 -22.3 -22.5 -22.4 -22.5 -21.2 -19.8 -19.1 -20.5 -21.6 -21.4 -21.8 -22.4 -21.9  9.7 8.5 8.2 7.3 7.9 8.5 9.3 9.3  13  15  -1  52.4 48.4 11.7 45.7 47.0 74.3 84.5 48.5 10.5 21.6 51.7 80.0 75.7 58.0 62.7 53.1 60.8 30.0 33.6 26.7 31.9 47.7 42.4 114 37.5 40.1 44.1 22.6 35.2 40.6 26.1  -  117 61.0 47.5 34.2 13.7 32.4  -  -21.2 -19.3 -18.9 -20.2 -21.0 -20.3  -  9.4 8.6 9.9 9.0 9.7 9.1 8.6 8.5 8.0 8.5 7.5 8.2 8.6 8.8 9.3 8.6 8.0 8.3 8.5 8.4 9.4 7.7  S e d m i e n t t r a pfluxesm e a s u r e d at s t a t i o n S N 0 . 8 : 135 m ( c o n t i n u e d ) .  Appendix  G  Sediment-trap  start end ddmmyy 840112 840209 840305 840409 840510 840618 840716 840824 841006 841108 841213 850117 850218 850328 850425 850521 850703 850807 850917 851008 851104 851216 860127 860310 860414 860512 860605 860714 860805 860908 861014 861112 861208  840209 840305 840409 840510 840618 840716 840824 841006 841108 841213 850117 850218 850328 850425 850521 850703 850807 850917 851008 851104 851216 860127 860310 860414 860512 860605 860714 860805 860908 861014 861112 861208 870120  T a b l e G.ll:  mass  OC  N  BSi CaC0 mg m day2  1909 1814 2481 3152 3390 3433 2206 894 3253 1515 1845 1973 2248 3050 3805 2963 1493 1690 2367 2741 2548 3430 3364 3226 2294 3170 2009 1686 2326 1668 2463 3299 2869  208  data of Saanich Inlet  93.1 95.2 189 191 242 303 242 95.2 309 112 99.3 100 115 176 254 263 192 155 224 235 152 166 161 186 147 216 202 200 212 152 297 178 137  9.36 11.5 28.1 26.2 33.8 46.4 33.8 13.3 40.9 14.7 11.3 11.9 14.3 22.9 33.2 36.6 22.5 20.9 31.0 27.7 19.2 18.7 18.7 22.9 19.0 29.5 27.0 27.5 27.8 21.0 37.4 22.9 17.2  259 289 1012 1686 1675 1626 919 173 209 214 253 322 398 1245 2045 1534 594 717 775 286 236 367 261 888 466 1322 856 749 989 327 473 331 248  3  Al  Ti  <5 C  5 N  134 118 87.6 91.9 68.6 76.5 45.0 14.2 134 79.5 115 125 137 118 58.6 55.4 27.4 30.2 30.7 58.8 88.9 157 155 90.8 95.2 83.5 49.1 33.3 38.7 26.3 34.1 116 115  8.00 6.87 5.22 5.73 4.06 4.65 2.67 0.946 8.74 5.30 7.07 7.26 8.29 7.26 3.46 3.02 1.81 2.09 2.02 3.85 6.04 9.32 9.56 5.51 5.87 5.25 2.73 2.12 2.73 1.70 2.29 7.52 6.88  -22.3 -22.1 -19:9 -19.1 -18.8 -19.3 -19.5 -20.4 -21.6 -21.7 -23.0 -22.5 -21.9 -21.1 -19.6 -19.0 -19.5 -19.8 -19.7 -20.3 -21.5 -21.9 -22.6 -20.9 -21.6 -21.1 -20.4 -19.6 -19.7 -21.3 -20.1 -21.3 -21.6  -  13  1 5  1  0 52.9 0 0 44.1 70.5 44.1 8.82 32.3 49.9 37.0 64.2 61.9 48.0 41.0 52.5 8.81 33.0 68.1 132 104 142 137 121 88.1 81.6 49.2 31.4 44.0 79.8 114 132 124  -  -  -  8.3 7.8 8.1 6.8 7.6 8.3 9.4 8.5  -  9.6 9.0 7.7 8.1 8.0  -  7.6 7.8 8.2 8.9 10.2 10.5 9.8 9.6  S e d m i e n t t r a p f l u x e s m e a s u r e d at s t a t i o n S N 0 . 8 : 180 m.  Appendix  G  Sediment-trap  start end ddmmyy 870120 870216 870309 870406 870504 870615 870713 870826 870921 871019 871116 871214 880105 880201 880229 880328 880425 880524 880627 881017 881115 881212 890104 890130 890306 890403 890501 890605 890704 890828 891010  T a b l e G.12:  870216 870309 870406 870504 870615 870713 870826 870921 871019 871116 871214 880105 880201 880229 880328 880425 880524 880627 880808 881115 881212 890104 890130 890306 890403 890501 890605 890704 890828 891010 891215  mass  data of Saanich Inlet  OC  N  BSi mg  2783 2389 2414 4219 3753 3774 2797 1078 1153 545 1881 2026 2403 1514 1664 2994 4157 2671 1383 1965 2191 2273 2411 3219 1866 4549 3526 1686 1631 1154 1564  138 137 131 232 230 330 284 116 115 52.7 116 126 132 92.9 102 169 255 289 186 187 147 138 133 176 110 271 246 141 223 127 141  17.1 16.7 15.9 30.6 30.2 40.9 38.0 16.9 15.9 6.79 14.0 15.0 15.4 11.5 12.3 21.4 30.5 35.6 26.8 18.7 17.6 15.7 15.8 19.7 14.0 35.9 32.4 18.6 26.6 16.2 15.6  rn"  2  294 318 423 1942 1689 1663 1123 258 383 119 452 293 397 272 308 843 1771 1049 317 377 296 297 321 454 255 1750 1479 650 463 148 422  CaC0 day  3  Al  Ti  SC 13  <5 N  129 110 128 119 92.0 82.7 65.1 30.7 14.0 18.7 108  7.78 6.97 7.08 6.81 5.59 4.16 4.16 2.25 1.02 1.27 7.02  -22.0 -22.2 -22.0 -20.0 -19.3 -17.8 -19.6 -20.6 -19.4 -20.9 -22.8  8.9  -  -  -  -1  100 83.4 41.1 56.4 65.1 55.3 66.2 8.58 4.94 11.5 40.9 26.2 62.2 28.9 52.5 35.6 45.8 20.3  -  63.0 60.4 61.4 61.8 115 55.8 76.6 45.5 15.5 26.0 56.6 57.0  130  7.58  -22.5  -  -  -  82.2 111 62.1 19.8 37.5 41.5 72.2 103 119 160 77.4 118 61.2 26.7 28.7 16.5 39.6  5.09 6.48 3.86 1.34 2.68 3.00 4.81 6.24 7.16 9.67 5.05 6.82 3.57 1.67 1.89 1.31 2.61  -21.4 -19.4 -19.3 -20.7 -22.0 -20.9 -21.8 -22.1 -22.0 -22.2 -21.3 -19.3 -19.4 -20.0 -20.1  15  -  8.2 7.5 7.7 8.3 7.9 9.2 7.7 9.3  -  8.8 8.5 8.3 7.1 6.6 7.6 7.9 8.0 8.2 8.3 8.2 8.0 8.9 7.2 7.6 7.8 8.2 8.5 8.8  S e d m i e n t t r a pfluxesm e a s u r e d at s t a t i o n S N 0 . 8 : 180 m ( c o n t i n u e d )  Appendix H  Sediment-trap data of Jervis Inlet  T h i s a p p e n d x i p r e s e n t s the s e d i m e n t t r a p d a t a c o l e c t e d f r o m J e r v i s I n l e t d u r i n g the  s t u d y (see s e c t i o n 3.2 for m e t h o d s ) . S e d m i e n t t r a p s w e r e m o o r e d in p a i r s w i t h a b r i n e s o l u t i o n at the b a s e of e a c h . In a d d i t i o n , N a N was u s e d in one s e d m i e n t t r a p of e a c h 3  p a i r w h i l e no p r e s e r v a t i v e was u s e d in the o t h e r ( s e c t i o n 3.2).  The total m a s s , OC  and  Nfluxesp r e s e n t e d in t h e s e t a b l e s are the a v e r a g e s of thefluxesto the two t r a p s in e a c h pair. BSi, Al and Ti w e r e m e a s u r e d on s a m p e ls c o l e c t e d by the N a N t r e a t e d s e d m i e n t 3  t r a p s and s t a b l e s io t o p e r a t i o s w e r e d e t e r m n ie d for s a m p e ls c o l e c t e d by s e d m i e n t t r a p s w i t h o u t NaN. The 3  CaC0fluxesp r e s e n t e d in t h e s e t a b l e s are t h o s e c o l e c t e d by 3  the  s e d m i e n t t r a p s t r e a t e d w i t h s o d u im a z i d e , as N a N b u f f e r s CaC0 d i s s o l u t i o n , " s t a r t " 3  and "end"  are the b e g n in n i g and end of e a c h d e p o ly m e n t p e r i o d .  210  3  Appendix  H  Sediment-trap  end start ddmmyy 850808 850918 851009 851217 860311 860415 860513 860604 860715 860806 860909 861015 861113 870121 870217 870310 870407 870616 870714 870827 870922 871020 871117 871215 880106 880202 880329 880426 880525 880628 880809 880917 881018 881116 881213 890105 890131 890307 890404 890502 890606 890705  850918 851009 851105 860128 860415 860513 860604 860715 860806 860909 861015 861113 861209 870217 870310 870407 870505 870714 870827 870922 871020 871117 871215 880106 880202 880329 880426 880525 880628 880809 880917 881018 881116 881213 890105 890131 890307 890404 890502 890606 890705 890829  T a b l e H.l:  mass  OC  N  BSi CaC0 mg m day 2  1179 1416 1049 590 1059 1250 2050 1754 872 1592 795 841 592 459 587 453 1783 1455 1429 732 958 661 669 382 444 590 1982 1514 1614 898 1214 776 736 431 325 284 431 1074 1849 1659 2885 1086  211  data of Jervis Inlet  263 422 157 67.9 127 213 257 195 132 164 199 247 144 100 92.3 87.0 167 145 164 164 151 85.1 112 82.3 102 63.4 186 175 178 111 152 108 133 96.1 66.6 66.3 69.9 115 141 174 223 185  33.3 58.3 17.2 7.31 14.2 25.6 33.8 25.3 16.4 18.9 25.1 31.2 14.0 11.1 10.8 10.8 21.7 19.0 19.7 19.7 18.7 9.71 12.4 8.21 8.08 7.19 22.2 20.0 20.4 13.7 18.3 13.1 14.1 10.0 6.98 7.40 7.47 14.0 17.8 22.2 28.1 19.6  525 502 216 58.1 528 607 907 881 377 987 284 285 112 50.2 61.7 129 1227 743 800 242 454 329 126 53.3 64.9 348 1217 752 862 372 627 399 98.2 51.8 43.7 38.2 73.3 616 1267 925 1296 340  3  Al  Ti  5C 13  5 N  6.53 8.53 42.7 32.6 23.5 10.6 36.1 29.4 10.4 9.17 5.39 7.22 13.5 19.7 32.1 11.6 13.2 15.8 8.98 5.10 5.58 6.89 21.3 11.0 10.3 6.12 9.01 13.8 13.8 8.38 7.13 5.32 24.2 14.4 9.89 7.69 16.6 7.68 14.0 10.6 28.5 8.67  0.350 0.461 2.34 1.75 1.21 0.529 1.71 1.18 0.410 0.501 0.303 0.372 0.844 1.03 1.64 0.723 0.570 0.741 0.561 0.286 0.349 0.353 1.08 0.625 0.628 0.300 0.480 0.788 0.640 0.361 0.332 0.331 1.37 0.854 0.708 0.467 0.864 0.389 0.715 0.471 1.68 0.377  -21.8 -22.2 -23.4 -22.9 -22.8 -22.6 -22.3 -20.3 -20.5 -20.1 -21.5 -21.6 -23.1 -22.5 -22.5 -22.9 -21.9 -20.4 -20.1 -21.7 -22.0 -23.9 -22.4 -23.2 -21.0 -22.9 -21.4 -20.8 -21.2 -21.4 -23.0 -23.4 -23.4 -22.8 -23.1 -23.3 -22.1 -22.7 -22.5 -22.3 -19.9 -20.2  10.9 12.0 10.7 9.9 . 8.7 9.3 8.6 7.3 8.0 7.3 9.2 12.5 9.7 10.6 10.8 9.9 7.8 8.3 7.3 7.6 8.0 8.0 10.5 10.1 9.0 9.1 8.0  -1  38.0 37.5 45.4 27.2 29.9 55.2 51.4 87.7 16.8 19.5 25.5 19.4 39.2 22.7 22.6 13.2 34.4 52.5 55.4 29.3 10.9 21.7 85.8 31.0 34.6 18.5 33.5 29.3 29.0 32.0 40.4 49.1 53.2 34.9 36.7 24.0 31.6 28.5 56.8 34.6 91.0 40.5  1 5  -  7.6 7.3 6.8 7.1 8.8 9.9 9.8  -  9.3 8.0 6.9 6.9 7.2 7.5  S e d m i e n t t r a pfluxesm e a s u r e d at s t a t i o n JV-3:  50 m.  Appendix  H  Sediment-trap  start end ddmmyy 850808 850918 851009 851217 860311 860415 860513 860604 860715 860806 860909 861015 861113 870121 870217 870310 870407 870616 870714 870827 870922 871020 871117 871215 880106 880202 880329 880426 880525 880628 880809 880917 881018 881116 881213 890105 890131 890307 890404 890502 890606 890705  850918 851009 851105 860128 860415 860513 860604 860715 860806 860909 861015 861113 861209 870217 870310 870407 870505 870714 870827 870922 871020 871117 871215 880106 880202 880329 880426 880525 880628 880809 880917 881018 881116 881213 890105 890131 890307 890404 890502 890606 890705 890829  mass  OC  N  BSi mg  1032 789 1482 927 1394 1575 2284 2328 988 1694 1016 812  -  1214 1095 1069 2239 2154 2264 1391 1063 1212 1114 1144  -  960 1643 2066 2021 1343 1779 1130 871 825 1078 690 1039 1346 1769 1721 3493 1687  212  data of Jervis Inlet  95.4 82.1 120 106 115 118 168 186 111 144 104 87.5  -  123 110 95.1 156 166 184 181 137 107 124 136  -  65.7 132 152 149 118 153 99.0 93.3 93.4 117 75.9 104 106 136 126 217 213  11.8 10.3 11.7 10.8 13.0 13.2 21.2 23.0 13.6 18.1 12.6 10.5  -  14.2 12.3 10.9 20.6 21.2 22.1 21.9 16.2 13.1 13.6 14.2  -  7.57 14.2 16.4 16.0 13.5 17.0 11.7 10.2 9.83 13.8 8.66 11.8 12.8 15.6 15.2 26.2 21.7  rn"  2  479 307 320 120 437 596 1021 960 393 744 369 232  -  168 172 200 1041 843 924 412 323 436 230 191  -  313 736 914 830 437 671 454 183 136 177 114 143 398 727 662 1381 482  CaC0 day  3  Al  Ti  31.7 27.6 77.8 52.8 70.6 59.9 66.0 73.7 32.3 52.7 28.6 29.6  1.33 1.23 3.84 2.87 3.45 2.97 3.32 3.27 1.40 2.53 1.31 1.47  5 C 1 3  <5 N 15  -1  21.1 3.59 21.8 16.4 22.9 17.7 24.9 27.8 14.2 19.9 7.57 12.2  -  20.8 19.5 9.89 17.9 28.4 22.9 20.6 14.6 21.6 34.7 20.9  -  14.5 15.0 19.1 20.6 19.5 29.8 20.4 19.4 20.6 22.1 14.5 24.5 17.4 23.8 22.2 36.9 18.9  -  75.2 61.1 60.0 62.7 67.7 51.9 42.8 37.4 36.7 49.5 54.7  -  32.9 46.9 45.2 36.7 41.0 39.1 32.5 37.7 40.0 47.9 33.6 55.5 54.8 47.7 45.1 60.3 44.0  -  3.66 3.16 3.21 2.79 2.84 2.96 1.80 1.67 1.86 2.46 2.84  -  1.64 2.30 2.35 1.87 1.69 1.52 1.51 1.87 2.03 2.54 1.77 2.68 2.82 2.41 2.30 2.81 1.80  8.6 9.2 7.8 10.3 9.6 9.0 8.5 7.9 9.5 8.7 8.4 9.4  -  9.7 10.7 9.4 8.5 8.0 7.6 8.7 8.4 8.8 9.8 9.9  -  10.8 11.1 10.1 9.2 9.0 8.2 8.4 9.9 10.2 10.0 10.6 10.6 10.4 9.4 8.4 7.9 8.3  at s t a t i o n JV-3: 300 m. e d m i e n t t r a pfluxesm e a s u r e d T a b l eH.2: S  Appendix  H  Sediment-trap  start end ddmmyy 850808 850918 851009 851217 860311 860415 860513 860604 860715 860806 860909 861015 861113 870121 870217 870310 870407 870616 870714 870827 870922 871020 871117 871215 880106 880202 880329 880426 880525 880628 880809 880917 881018 881116 881213 890105 890131 890307 890404 890502 890606 890705  850918 851009 851105 860128 860415 860513 860604 860715 860806 860909 861015 861113 861209 870217 870310 870407 870505 870714 870827 870922 871020 871117 871215 880106 880202 880329 880426 880525 880628 880809 880917 881018 881116 881213 890105 890131 890307 890404 890502 890606 890705 890829  mass  OC  N  BSi CaC0 mg m - d a y 2  4007 4268 6472 2362 2023 2369 2610 2765 1308 2001 1853 2375  -  2317 1780 1898 2679 2754 3107 1944 1972 2485 2000 2159  213  data of Jervis Inlet  202 217 329 154 119 130 153 178 109 125 119 136  -  144 122 112 141 162 193 161 136 134 133 143  -  -  1313 2289 2402 2491 1847 2488 2468 3486 2457 2142 1540 1749 2293 2190 2005 3221 2136  74.5 116 143 153 122 149 134 194 154 138 103 117 124 120 120 189 191  23.4 24.9 34.3 16.5 12.8 15.0 18.1 21.3 12.8 13.7 14.0 16.5  -  16.5 12.8 11.9 16.6 18.7 23.0 18.6 17.4 16.8 15.4 16.5  -  8.27 12.9 16.2 15.6 13.7 16.9 16.8 22.2 17.4 15.9 12.0 13.9 14.0 13.8 14.5 23.6 19.7  999 947 1294 368 521 756 919 931 360 652 594 546  -  337 273 354 1032 826 1051 502 467 609 399 368  -  351 810 1007 894 452 747 639 609 395 327 234 265 622 757 652 1098 537  3  Al  Ti  5 C  <5 N  224 246 389 135 97.1 104 96.8 117 54.7 87.8 81.2 125  9.70 11.9 19.2 7.00 4.81 5.03 4.56 5.41 2.63 4.06 3.82 6.21  -21.2 -21.5 -22.3 -22.2 -22.4 -21.9 -22.1 -21.1 -20.8 -21.2 -20.9 -21.7  7.6 7.6 7.5 8.3 7.5 8.0 6.8 6.7 6.9 6.8 7.5 8.3  1 3  15  -1  68.4 55.1 97.7 36.9 29.1 28.0 27.0 31.8 20.5 29.3 23.9 37.7  -  32.5 19.9 17.0 18.6 29.7 21.9 22.7 29.8 35.3 37.0 32.9  -  20.5 21.7 24.1 28.5 23.6 32.1 33.1 50.2 47.3 50.9 24.4 39.8 29.7 25.1 39.3 30.9 29.1  -  144 109 102 93.4 104 101 75.5 85.7 107 99.5 108  -  55.7 81.4 81.7 65.2 72.0 88.9 118 173 118 105 78.6 90.9 96.3 83.7 61.9 67.6 74.0  -  6.84 4.92 5.07 4.46 5.10 4.42 3.19 4.04 5.44 4.77 5.41  -  2.54 3.92 3.98 3.20 3.22 3.73 5.11 8.94 5.94 5.27 4.11 4.38 4.86 3.94 2.90 3.04 3.22  -  -22.1 -22.4 -22.5 -22.2 -21.2 -20.5 -21.1 -21.5 -21.8 -21.7 -21.9  -  -22.1 -21.9 -21.4 -21.4 -21.5 -21.7 -21.8 -22.1 -22.1 -21.9 -22.1 -22.0 -21.9 -22.1 -21.8 -20.5 -20.6  -  9.2 8.5 8.3 6.4 6.7 6.5 7.2 7.4 8.6 8.5 10.1 8.6 8.7 8.0 8.0 7.8 7.7 7.4 8.8 9.5 9.7 9.7 9.3 8.5 7.7 7.5 7.0 7.1  T a b l e H.3: S e d m i e n t t r a pf l u x e s m e a s u r e d at s t a t i o n JV-3:  600 m.  Appendix  H  Sediment-trap  start end ddmmyy 850328 850424 850522 850704 850808 850919 851009 851105 851217 860128 860311 860415 860513 860604 860715 860806 860909 861015 861113 861209 870121 870217 870310 870407 870505 870714 870827 870922 871020 871117 871215 880106 880202 880301 880329 880426 880525 880628 880809 880917 881018 881116 881213 890105 890404 890502 890606 890705 890829 891011  850424 850522 850704 850808 850919 851009 851105 851217 860128 860311 860415 860513 860604 860715 860806 860909 861015 861113 861209 870121 870217 870310 870407 870505 870616 870827 870922 871020 871117 871215 880106 880202 880301 880329 880426 880525 880628 880809 880917 881018 881116 881213 890105 890131 890502 890606 890705 890829 891011 891219  mass  OC  N  BSi C a C 0 mg m d a y - 2  1715 1728 2442 1385 1127 1740 1142 250 844 1033 989 1742 3972 1931 998 1994 688 844 988 1352 344 587 735 912 1412 1306 822 401 619 297 257 381 316 940 1149 1634 1094 1125 606 693 1040 433 336 348 1076 1291 2225 737 421 1077  214  data of Jervis Inlet  197 307 604 281 153 169 113 40.8 69.7 111 244 610 453 376 212 482 174 231 248 118 54.6 50.8 253 164 204 164 163 87.5 80.9 62.6 51.2 62.7 50.9 137 140 190 137 165 108 101 98.6 87.8 72.9 60.4 130 180 247 163 73.2 87.5  24.7 46.4 85.4 39.1 20.4 23.0 12.4 4.79 7.95 14.2 30.2 78.9 59.1 48.2 27.8 65.5 22.4 30.0 27.4 10.9 6.16 5.55 39.9 24.6 28.9 21.7 19.6 11.6 10.1 6.22 6.19 7.09 6.45 16.6 16.5 19.3 16.0 20.8 13.5 13.9 9.41 9.32 9.56 6.80 15.8 20.3 30.2 18.8 7.27 7.76  813 607 912 357 609 1262 184 45.1 48.4 66.1 91.3 356 865 732 327 788 205 220 170 71.7 32.6 25.8 47.9 344 521 615 233 135 205 25.3 43.5 50.3 79.9 394 869 611 439 371 149 301 81.1 51.1 32.4 29.5 322 351 950 148 282 84.7  3  Al  Ti  5 C  <5 N  20.5 10.8 19.5 9.41 9.03 7.26 55.9 8.48 52.6 59.6 33.8 11.6 138 25.7 15.2 11.7 6.15 16.7 24.2 82.0 14.8 36.4 10.1 12.8 30.7 13.8 8.83 4.30 17.2 11.7 6.59 13.9 9.20 12.3 7.50 28.4 20.4 17.1 7.76 6.17 49.5 16.7 9.57 13.1 21.6 23.4 21.9 9.14 2.75 68.3  1.03 0.444 0.927 0.471 0.449 0.359 2.92 0.536 2.69 2.85 1.55 0.513 6.74 1.17 0.714 0.515 0.414 0.979 1.24 3.76 0.800 1.63 0.554 0.589 1.64 0.686 0.501 0.258 0.838 0.578 0.342 0.691 0.587 0.601 0.347 1.21 0.976 0.783 0.403 0.383 2.32 0.874 0.560 0.725 1.02 1.00 1.10, 0.486 0.143 2.94  -21.5 -23.6 -21.5 -21.5 -22.4 -24.5 -24.9 -24.1 -23.3 -23.4 -23.0 -22.8 -22.7 -21.2 -21.8 -20.8 -22.5 -22.3 -23.2 -24.3 -23.3 -23.8 -22.2 -23.5 -22.3 -20.6 -21.6 -24.3 -25.2 -23.8 -23.8 -23.4 -22.1 -22.2 -21.6 -21.3 -23.1 -24.4 -24.9 -24.7 -24.0 -23.9 -23.8 -23.7 -24.1 -21.1 -21.7 -19.9 -24.3  6.7 11.8 9.0 9.5 7.6 8.5 9.3 11.7 11.8 11.8 9.3 9.3 10.0 11.6 9.8 11.8 11.6 9.6 10.6 9.8 14.0 11.7 11.0 7.8 10.6 7.6 7.9 9.8 9.6 10.0 6.6 7.6 8.8 7.6 7.6 7.2 6.8 9.8 10.9  1 3  15  -1  120 481 49.8 368 86.5 56.6 41.6 13.5 12.2 16.8 22.7 31.5 27.0 11.9 12.5 7.98 16.2 11.8 16.4 16.2 11.0 6.37 3.79 11.8 12.0 60.1 20.5 16.1 9.16 14.3 20.6 21.5 7.59 22.0 10.7 25.6 24.8 47.9 50.1 92.1 42.4 34.5 18.6 16.1 25.0 11.1 58.4 57.0 9.23 12.4  atds t a t i o n JV-7: e d m i e n t t r a pf l u x e s m e a s u r e T a b l eH.4: S  -  8.6 10.2 8.4 10.6 7.4 7.3  50 m.  Appendix  H  Sediment-trap  end start ddmmyy 850328 850424 850522 850704 850808 850919 851009 851105 851217 860128 860311 860415 860513 860604 860715 860806 860909 861015 861113 861209 870121 870217 870310 870407 870505 870714 870827 870922 871020 871117 871215 880106 880202 880301 880329 880426 880525 880628 880809 880917 881018 881116 881213 890105 890404 890502 890606 890705 890829 891011  850424 850522 850704 850808 850919 851009 851105 851217 860128 860311 860415 860513 860604 860715 860806 860909 861015 861113 861209 870121 870217 870310 870407 870505 870616 870827 870922 871020 871117 871215 880106 880202 880301 880329 880426 880525 880628 880809 880917 881018 881116 881213 890105 890131 890502 890606 890705 890829 891011 891219  mass  OC  N  BSi mg  1512 810 1602 1188 1005 1215 1301 577 732 1120 978 843 2838 1841 1000 1497 1061 665 1822 1441 778 1095 738 674  -  1667 1175 495 723 577 447 617  -  1247 2034 955 1128 852 776 1278 540 565 491 870 1806 2024 960 982 1264  215  data of Jervis Inlet  120 90.2 149 132 104 90.4 97.4 59.9 49.4 90.8 98.6 104 189 140 113 130 108 77.6 121 104 72.8 92.7 72.2 71.8  -  133 152 80.5 79.1 75.2 64.8 81.2 -  -  118 163 110 117 118 85.7 108 64.2 71.1 63.0 88.5 130 156 136 125 88.6  15.1 12.2 19.1 17.5 13.5 11.2 10.0 6.64 5.17 9.12 12.9 12.5 22.4 17.5 14.8 15.6 12.6 9.68 13.4 9.36 7.76 9.46 8.20 9.28  -  15.8 18.6 10.9 9.85 8.09 7.21 9.29  -  13.3 17.8 11.9 13.5 14.1 10.9 9.84 6.50 7.58 7.06 10.5 15.2 18.7 14.4 12.2 7.51  rn"  2  658 296 753 483 468 753 375 123 76.6 99.0 113 193 730 767 254 786 435 193 506 128 79.3 91.3 77.5 182  -  594 374 110 229 84.1 62.3 97.6 -  -  585 768 270 303 226 256 161 80.5 71.6 68.2 262 705 794 229402 128  d" C  <5 N  CaCOa day  Al  Ti  . 35.1 34.4 29.4 26.4 37.1 8.02 8.83 5.45 6.31 10.6 7.37 11.8 22.6 10.2 32.1 14.0 20.7 5.31 39.0 8.91 7.87 7.93 0.78 2.82  33.2 21.8 39.6 24.0 19.5 16.6 58.8 25.2 42.5 70.3 53.2 32.3 135 57.7 35.1 32.0 32.0 25.9 84.1 95.5 41.0 66.9 45.7 28.1  1.61 0.944 1.61 1.09 0.998 0.800 2.85 1.35 2.18 3.22 2.56 1.57 6.74 2.65 1.65 1.53 1.48 1.33 3.90 4.86 2.15 2.94 1.90 1.27 1.35 1.09 0.578 1.09 1.18 0.863 1.18  7.5  -  -  13  15  -1  -  -  7.57 5.19 14.7 9.22 8.60 6.16 16.1  27.3 21.5 10.7 23.6 24.4 16.1 25.4  -  -  10.7 12.4 11.2 21.1 26.6 22.7 10.5 15.0 18.3 21.1 16.2 23.3 22.1 19.4 5.65 6.01  24.6 34.4 27.1 24.8 20.6 18.9 57.4 25.8' 24.9 18.5 31.8 39.0 32.5 19.1 12.1 77.5  1.17 1.57 1.21 1.28 0.964 0.763 2.57 1.21 1.18 0.990 1.31 1.65 1.54 0.943 0.589 3.36  -  7.8 7.9 8.2 7.1 7.4 7.7 8.0 8.5 9.9 9.9 7.5 8.0 7.9 7.5 8.0 8.0 7.8 8.1 9.4 9.1 9.1 9.0  -  7.9 7.9 7.2 8.9 9.2 9.0 -  -  7.7 8.2 7.9 8.0 7.3 6.0 8.4 7.9 10.9 9.4  -  7.6 8.2 6.5 6.4  T a b l e H.5: S e d m i e n t t r a pfluxesm e a s u r e d at s t a t i o n JV-7:  200 m.  Appendix  H  Sediment-trap  end start ddmmyy 850328 850424 850424 850522 850522 850704 850704 850808 850808 850919 850919 851009 851009 851105 851105 851217 851217 860128 860128 860311 860311 860415 860415 860513 860513 860604 860604 860715 860715 860806 860806 860909 860909 861015 861015 861113 861113 861209 861209 870121 870121 870217 870217 870310 870310 870407 870407 870505 870505 870616 870714 870827 870827 870922 870922 871020 871020 '871117 871117 871215 871215 880106 880106 880202 880202 880301 880301 880329 880329 880426 880426 880525 880525 880628 880628 880809 880809 880917 880917 881018 881018 881116 881116 881213 881213 890105 890105 890131 890404 890502 890502 890606 890606 890705 890705 890829 890829 891011 891011 891219  mass  OC  N  BSi CaC0 mg m" d a y 2  2424 1404 2231 1722 1801 2376 3329 1444 1529 1834 1845 1272 3491 1974 1192 1867 1341 1485 1844 2457 1492 1780 1329 948 -  1855 1570 966 1347 1315 1126 1422  216  data of Jervis Inlet  134 87.1 149 137 125 147 181 104 104 115 121 90.4 185 115 87.2 117 113 105 121 149 100 127 85.9 66.4  -  115 120 82.9 89.9 92.2 92.9 105  16.6 10.6 18.8 18.3 16.1 20.2 20.0 12.5 12.4 12.0 12.4 9.48 20.6 13.5 10.4 12.7 15.0 13.4 12.7 14.6 10.8 14.4 8.31 6.86 -  13.2 14.4 9.94 11.0 10.1 11.2 11.2  1077 406 643 560 572 702 776 261 211 201 250 287 875 643 297 619 482 332 225 315 188 213 161 188  -  572 522 213 329 229 187 243  -  -  -  -  1422 1621 2485 1360 1537 1293 1438 2783 1748 1508 1467 1164 1404 2005 1147 1490 2280  100 115 160 93.2 106 96.5 97.9 175 122 118 102 78.2 96.7 127 110 147 136  10.8 13.1 17.0 10.3 11.7 10.1 11.7 17.7 14.8 15.4 11.9 8.79 11.4 15.1 12.0 13.8 13.0  351 566 973 317 342 289 348 397 273 213 215 246 507 662 285 466 273  3  Al  Ti  <5 C  <5 N  60.4 52.9 88.3 55.1 64.8 90.9 162 67.6 73.2 102 115 69.8 189 83.9 51.9 55.4 43.1 66.8 74.5 132 83.7 97.5 81.3 49.4  3.17 2.44 3.83 2.48 2.94 4.04 8.05 3.51 3.70 4.78 5.49 3.26 9.16 3.71 2.30 2.53 1.94 3.18 3.47 6.60 3.86 4.47 3.47 2.21  -21.0 -21.7 -21.2 -21.1 -21.4 -21.7 -23.1 -22.8 -22.9 -23.4 -23.2 -23.6 -22.6 -22.0 -22.4 -21.6 -21.2 -22.1 -22.6 -23.5 -23.0 -22.9 -23.7 -24.1  8.3  13  15  -1  26.5 27.7 39.2 14.0 51.4 32.8 53.4 20.2 36.9 29.6 21.5 20.7 12.5 6.97 7.69 11.2 12.1 20.3 4.00 26.2 14.2 18.0 5.57 4.93 -  6.29 9.8 10.9 16.0 13.6 13.3 13.3  -  13.9 6.12 10.1 7.29 14.3 11.6 31.4 45.2 50.9 35.7 22.2 9.09 17.9 13.5 9.25 7.76 28.1  -  50.0 52.0 38.0 53.7 57.4 48.7 64.8  -  53.4 50.8 54.6 48.2 50.7 41.1 54.4 136 82.4 61.1 62.8 56.6 45.5 58.8 38.3 35.1 142  -  2.28 2.69 1.74 2.58 2.65 2.32 2.80  -  2.47 2.31 2.24 2.09 2.12 1.84 2.38 6.55 3.66 2.81 2.88 2.13 1.96 2.43 1.70 1.61 6.18  -  -21.5 -21.7 -22.2 -23.3 -23.5 -22.8 -23.2  -  -23.2 -22.3 -21.3  -  -22.2 -23.0 -21.3 -23.3 -22.4 -22.1 -22.7 -23.3 -22.9 -21.7 -22.1 -20.3 -23.3  -  7.8 8.3  -  9.4 7.9 8.3 9.1 8.4 9.0 7.8 6.4 6.2 8.2 7.7 8.9 7.7 9.8 8.9 8.4 9.4 7.4 7.2  -  6.3 7.2 7.7 7.2 7.8 8.1 8.4  -  7.9  -  7.5 6.8 7.4 7.5 7.2 7.4 8.9 10.3 9.3 7.5 6.7 6.9 7.3 6.6  -  at s t a t i o n JV -7: 450 m. e d m i e n t t r a pfluxesm e a s u r e d T a b l eH.6: S  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0052544/manifest

Comment

Related Items