Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Regional geochemical reconnaissance and compositional variations in grain and forage crops on the Southern.. 1977

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
UBC_1977_A1 D69.pdf
UBC_1977_A1 D69.pdf [ 27.19MB ]
UBC_1977_A1 D69.pdf
Metadata
JSON: 1.0052444.json
JSON-LD: 1.0052444+ld.json
RDF/XML (Pretty): 1.0052444.xml
RDF/JSON: 1.0052444+rdf.json
Turtle: 1.0052444+rdf-turtle.txt
N-Triples: 1.0052444+rdf-ntriples.txt
Citation
1.0052444.ris

Full Text

REGIONAL GEOCHEMICAL RECONNAISSANCE AND COMPOSITIONAL VARIATIONS IN • GRAIN AND FORAGE CROPS ON THE SOUTHERN CANADIAN INTERIOR PLAIN by PATRICK J . DOYLE B . S c , U n i v e r s i t y o f Ottawa, 1969 M.Sc, U n i v e r s i t y o f B r i t h i s h Columbia, 1972 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY i n THE FACULTY OF GRADUATE STUDIES (Department o f G e o l o g i c a l Sciences) We accept t h i s t h e s i s as conforming to the r e q u i r e d standard THE UNIVERSITY OF BRITISH COLUMBIA September,. 1977 © P a t r i c k J . Doyle, 1977 In present ing th is thes is in p a r t i a l fu l f i lment o f the requirements for an advanced degree at the Un ivers i ty of B r i t i s h Columbia, I agree that the L ibrary sha l l make it f r ee ly ava i l ab le for reference and study. I fur ther agree that permission for extensive copying of th is thes is for scho la r ly purposes may be granted by the Head of my Department or by h is representa t ives . It is understood that copying or p u b l i c a t i o n of th is thes is fo r f i n a n c i a l gain sha l l not be allowed without my wri t ten permission. Depa rtment The Un ivers i ty of B r i t i s h Columbia 2075 Wesbrook Place Vancouver, Canada V6T 1W5 ABSTRACT The d i s t r i b u t i o n o f Cu, Fe, Mn, Zn, Mo and Se i n e a r t h s u r f a c e m a t e r i a l s on the Southern Canadian I n t e r i o r P l a i n was examined wi t h the aim of recommending a p p r o p r i a t e methods of producing r e g i o n a l geochemical maps. I n v e s t i g a t i o n s were undertaken i n three separate areas, one i n each of the p r a i r i e p r o v i n c e s , s e l e c t e d to r e p r e s e n t a range of environmental con- d i t i o n s . In the Swan R i v e r - Dauphin area emphasis was p l a c e d on i n v e s t i g a t i n g the r e g i o n a l d i s t r i b u t i o n o f Mo i n both s o i l and stream sediment. These p a t t e r n s were r e l a t e d to data on the Mo s t a t u s o f p l a n t s and to i n f o r m a t i o n on Mo-induced Cu d e f i c i e n c y i n c a t t l e . In the Rosetown area of Saskatchewan, and the Red Deer area of A l b e r t a , a t t e n t i o n v/as focussed on examining v a r i a t i o n s i n the Cu, Fe, Mn, Zn and Se content o f s o i l s ; i n the Rosetown area c o n c e n t r a t i o n s o f these elements i n whole wheat p l a n t s were a l s o determined. Procedures f o r r e g i o n a l geochemical mapping u s i n g stream sediment are w e l l e s t a b l i s h e d . On the Southern Canadian I n t e r i o r P l a i n , however, stream d e n s i t y i s g e n e r a l l y inadequate f o r r o u t i n e a p p l i c a t i o n o f these t e c h n i q u e s . Although t r i b u t a r y drainages are r e l a t i v e l y common i n p a r t s o f southern Manitoba, r e s u l t s of i n v e s t i g a t i o n s i n the Swan R i v e r - Dauphin area i n - d i c a t e t h a t Mo c o n c e n t r a t i o n s i n stream sediment t y p i c a l l y r e f l e c t Mo l e v e l s i n upstream s o i l , but not those o f a s s o c i a t e d p l a n t s . In c o n t r a s t to f i n d i n g s r e p o r t e d by V7ebb and h i s assoc- i a t e s i n the U n i t e d Kingdom, Manitoba stream sediment data are of l i t t l e v a lue i n i d e n t i f y i n g areas where p o t e n t i a l l y t o x i c Mo c o n c e n t r a t i o n s are l i k e l y to occur i n forage. Reconnaissance surveys based on s o i l sampling, on the other hand, can be applied throughout the Canadian p r a i r i e s . Results of studies around Rosetown and Red Deer indicate that regional compositional trends for s o i l may be e f f i c i e n t l y des- cribed i n terms of variations among means estimated for indiv- idual s o i l parent materials. In the Rosetown area, for example, over 70% of the t o t a l variance for Cu, Fe, Mn and Zn i n A hor- izons i s attributable to differences among parent material means. This parent material e f f e c t appears, i n turn, to be mainly a function of textural variations, with lowest concent- rations associated with sand-rich and highest with c l a y - r i c h deposits. The importance of differences among means for s o i l associat- ed with i n d i v i d u a l s u r f i c i a l deposits i s also emphasized, i n the Rosetown area, by r e l a t i v e l y strong p o s i t i v e relationships (r>0.73) between parent material based Mn, Fe and Cu means for wheat and s o i l . When data are considered on an in d i v i d u a l sample basis relationships between plant and s o i l concentrations are generally much weaker (r< 0.40). It i s suggested, therefore, that on the Southern Canadian Interior P l a i n , regional geochemical maps can be e f f i c i e n t l y produced using parent material based s o i l compositional data. The procedure recommended involves c o l l e c t i o n of A horizon samples at randomly chosen s i t e s over each of the major parent i materials recognized, and estimation of geometric mean and deviation values for each deposit. Duncan's New Multiple Range test i s used to i d e n t i f y s i g n i f i c a n t differences among means, i v and r e s u l t s are summarized i n map form, showing only composition- a l l y d i s t i n c t i v e parent m a t e r i a l s or parent m a t e r i a l groups. In view of c l o s e r e l a t i o n s h i p s noted between parent m a t e r i a l based means f o r s o i l s and p l a n t s , maps produced i n t h i s f a s hion should be u s e f u l i n i d e n t i f y i n g areas where t r a c e element excesses or d e f i c i e n c i e s are l i m i t i n g crop or l i v e s t o c k p r o d u c t i v i t y . V TABLE OF CONTENTS CHAPTER PAGE I INTRODUCTION A. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 1 1. TRACE ELEMENTS IN PLANT AND ANIMAL 1 HEALTH 2. TRACE ELEMENT STATUS OF PLANTS AND 2 ANIMALS 3. REGIONAL GEOCHEMICAL RECONNAISSANCE 7 TECHNIQUES a. Stream Sediment Sampling 8 b. S o i l , P l a n t , Rock and Water Sampling 10 B. SOUTHERN CANADIAN INTERIOR PLAIN 14 1. REGIONAL DESCRIPTION 14 a. P h y s i c a l S e t t i n g 14 b. A g r i c u l t u r a l Trace Element D i s o r d e r s 19 2. STUDY OBJECTIVES 21 3. OUTLINE OF APPROACH 22 II SAMPLE COLLECTION, PREPARATION AND ANALYSIS, AND DATA HANDLING PROCEDURES A. SAMPLE COLLECTION AND PREPARATION 26 1. COLLECTION 26 2. PREPARATION 26 B. SAMPLE ANALYSIS 26 1. COPPER, IRON, MANGANESE AND ZINC 2 8 a. D i g e s t i o n o f P l a n t s 28 b. D i g e s t i o n of S o i l s 28 c. A n a l y s i s 29 2. MOLYBDENUM 31 a. D i g e s t i o n o f P l a n t s 31 b. D i g e s t i o n of G e o l o g i c a l M a t e r i a l s 34 c. A n a l y s i s 35 3. SELENIUM 37 4. SOIL REACTION 40 C. STATISTICAL METHODS 40 1. DATA TRANSFORMATION 42 2. ESTIMATION OF POPULATION PARAMETERS 44 3. IDENTIFICATION OF OUTLIERS 4 5 4. TESTS OF SIGNIFICANCE 46 a. C o r r e l a t i o n 46 b. A n a l y s i s o f V a r i a n c e 46 c. Duncan's New M u l t i p l e Range T e s t 46 d. Median T e s t 47 v i CHAPTER I I I ROSETOWN AREA PAGE A. DESCRIPTION OF STUDY AREA 48 1. GENERAL 48 2. BEDROCK 50 3. SOIL PARENT MATERIAL 52 4. SOIL 56 5. AGRICULTURAL LAND USE AND TRACE 57 ELEMENT IMBALANCES B. SAMPLE COLLECTION AND ANALYSIS 59 1. COLLECTION 59 a. S o i l 59 b. P l a n t - S o i l 60 c. B e d r o c k 61 2. ANALYSIS 63 C. RESULTS - COPPER, IRON, MANGANESE AND ZINC 63 1. AMONG PARENT MATERIAL SOIL COMPOSITIONAL 6 5 VARIATIONS 2. WITHIN PARENT MATERIAL SOIL COMPOSITION- 72 AL VARIATIONS a. V e r t i c a l 72 b. G e o g r a p h i c 8 2 3. RELATIONSHIPS BETWEEN SOIL AND PLANT 86 COMPOSITIONAL DATA D. DISCUSSION - COPPER, IRON, MANGANESE AND ZINC 89 1. C HORIZON S O I L 89 2. A HORIZON AND 30-46 CM DEPTH SOIL 96 3. RELATIONSHIP BETWEEN PLANT AND SOIL 99 CONENTRATIONS 4. GEOCHEMICAL MAPS 101 a. M e t h o d o f P r e s e n t a t i o n 101 b. P a t t e r n s a n d T h e i r S i g n i f i c a n c e 104 E. RESULTS - SELENIUM 105 1. BEDROCK CONCENTRATIONS 105 2. S O I L AND PLANT COMPOSITIONAL VARIATIONS 107 F. DISCUSSION - SELENIUM 111 1. BEDROCK 111 2. C HORIZON SOIL 114 3. PLANTS 115 G. CONCLUSION 117 I V RED DEER AREA A. DESCRIPTION OF STUDY AREA 1. GENERAL 118 118 v i i CHAPTER PAGE 2. BEDROCK 120 3. SOIL PARENT MATERIAL 122 4. SOIL 12 5 •5. AGRICULTURAL LAND USE AND TRACE ELEMENT 1 2 5 IMBALANCES B. SAMPLE COLLECTION AND ANALYSIS 12 6 1. COLLECTION 12 6 2. ANALYSIS 126 C. RESULTS 127 1. AMONG PARENT MATERIAL SOIL COMPOSITIONAL 127 VARIATIONS 2. WITHIN PARENT MATERIAL SOIL COMPOSITION- 136 ,AL VARIATIONS a. V e r t i c a l 136 b. G e o g r a p h i c 140 D. DISCUSSION 1 4 0 1. C HORIZON SOIL 2. A AND B HORIZON S O I L irVl 3. GEOCHEMICAL MAPS , 144 CONCLUSION 146 V SWAN RIVER - DAUPHIN AREA A. DESCRIPTION OF STUDY AREA 147 1. GENERAL 147 2. BEDROCK 149 3. S O I L PARENT MATERIAL 151 4. SOIL 155 5. AGRICULTURAL LAND USE AND TRACE 157 ELEMENT IMBALANCES B. SAMPLE COLLECTION AND ANALYSIS 160 T . COLLECTION 160 a. B e d r o c k 160 b. S t r e a m S e d i m e n t 160 c. S o i l 161 d. P l a n t s 162 2. ANALYSIS 163 3. ADDITIONAL INVESTIGATIONS 163 C. RESULTS - MOLYBDENUM AND COPPER 163 1. BEDROCK 163 2. STREAM SEDIMENT 16 5 3. SOIL AND PLANTS 167 a. N i t r i c - P e r c h l o r i c A c i d E x t r a c t i o n 167 b. A c i d Ammonium O x a l a t e E x t r a c t i o n 186 v i i i CHAPTER PAGE D. DISCUSSION - MOLYBDENUM AND COPPER 188 1. BEDROCK 188 2. SOIL 189 3. PLANTS 192 4. AGRICULTURAL SIGNIFICANCE OF THE 196 DATA E. RESULTS - SELENIUM 199 F. DISCUSSION - SELENIUM 199 1. BEDROCK 199 2. SOIL 203 3. PLANTS 204 G. APPLICATION OF REGIONAL GEOCHEMICAL 205 RECONNAISSANCE TECHNIQUES 1. SOIL 205 2. STREAM SEDIMENT 205 H. CONCLUSION 207 VI CONCLUSION A. STATEMENT OF THE PROBLEM 209 B. SUMMARY OF RESULTS 210 1. ROSETOWN AND RED DEER AREAS 210 2. SWAN RIVER-DAUPHIN AREA 212 C. RECONNAISSANCE GEOCHEMICAL SURVEYS 214 1. INTRODUCTION 214 2. RECOMMENDED PROCEDURES 215 3. DISCUSSION 216 a. Choice o f S i z e o f Area 216 b. I d e n t i f i c a t i o n o f Targ e t P o p u l a t i o n s 217 c. S e l e c t i o n o f S o i l H o r izon 219 d. Choice o f Number and D i s t r i b u t i o n 220 of Sample S i t e s e. Sample P r e p a r a t i o n and A n a l y s i s 222 f . Data P r e s e n t a t i o n 224 D. GENERAL CONCLUSIONS 22 5 E. SUGGESTIONS FOR FURTHER WORK 227 BIBLIOGRAPHY 231 APPENDIX A PROCEDURE FOR THE FLUORQMETRIC DETERMINATION 243 OF SELENIUM IN BOTH PLANT AND GEOLOGICAL MATERIALS i x PAGE APPENDIX B COMPUTATIONAL PROCEDURES FOR 247 STATISTICAL TREATMENT OF THE DATA APPENDIX C LISTING OF INDIVIDUAL DATA VALUES 2 53 USED FOR MEAN (OR MEDIAN) AND VARIABILITY ESTIMATES X LIST OF TABLES TABLE PAGE I Comparison of t y p i c a l t r a c e element 4 c o n c e n t r a t i o n s a s s o c i a t e d w i t h v a r i o u s sedimentary rock types. I I P r e l i m i n a r y comparison of estimated w i t h i n 24 and among township C h o r i z o n s o i l v a r i a n c e components, southern p o r t i o n of Rosetown area and Red Deer area. I l l Approximate numbers and types of samples 27 c o l l e c t e d i n each of the three major study areas. IV R e l a t i v e e x t r a c t i o n e f f i c i e n c i e s of s o i l 30 d i g e s t i o n Procedures 1 and 2 f o r s e l e c t e d C h o r i z o n Rosetown area samples. V Instrumental s e t t i n g s f o r Techtron AA-4 32 spectrophotometer. VI P r e c i s i o n of Cu, Fe, Mn and Zn a n a l y s e s a t 33 the 9 5% c o n f i d e n c e l e v e l . VII Comparison of Mo c o n c e n t r a t i o n s obtained 36 by t h i s and other l a b o r a t o r i e s on s e l e c t e d p l a n t samples. V I I I P r e c i s i o n of Mo a n a l y s i s , a t the 95% con- 38 f i d e n c e l e v e l , based on d u p l i c a t e d e t e r - m i n a t i o n s on randomly s e l e c t e d samples. IX Percentage of estimated t o t a l s o i l Mo 39 content removed by a c i d ammonium o x a l a t e and n i t r i c - p e r c h l o r i c a c i d e x t r a c t i o n s . X Comparison of accepted Se c o n c e n t r a t i o n s 41 f o r s e l e c t e d standard b i o l o g i c a l samples wit h v a l u e s determined i n t h i s study. XI R e s u l t s of c h i - s q u a r e n o r m a l i t y t e s t s on 43 p l a n t and s o i l Cu, Fe, Mn and Zn data from the Rosetown area. XII P h y s i c a l and chemical p r o p e r t i e s of s e l e c t e d 58 Rosetown area s o i l p r o f i l e s . X I I I Approximate number and types of analyses 64 performed on Rosetown area samples. x i TABLE XIV XV XVI XVII XVIII XIX XX XXI XXII XXIII XXIV XXV Trace element content of C horizon s o i l from i n d i v i d u a l morainal types, Rosetown area. Results of application of Duncan's New Multiple Range test to log 10 C horizon s o i l data for in d i v i d u a l morainal types, Rosetown area. Trace element content and pH of A and C horizon and 30-46 cm depth s o i l from i n d i v i d u a l s o i l parent material types, Rosetown area. Comparison of estimated within and among parent material logarithmic variance components, Rosetown area. Results of application of Duncan's New Multiple Range test to A and C horizon and 30-46 cm depth log 10 s o i l data for in d i v i d u a l s o i l parent materials, Rosetown area. Trace element d i s t r i b u t i o n i n selected Orthic Brown and Dark Brown Chernozemic s o i l p r o f i l e s , Rosetown area. Correlation c o e f f i c i e n t s r e l a t i n g log 10 trace element concentrations for A horizon and 30-46 cm depth samples to C horizon values, Rosetown area. Comparison of logarithmic within and among sample s i t e variance components for C horizon s o i l , Rosetown area. Comparison of logarithmic within and among township variance components for C horizon s o i l , Rosetown area. Trace element content of wheat (dry weight basis) and associated Ap and C horizon s o i l and.soil pH, Rosetown area. Results of application of Duncan's New Multiple Range test to log 10 wheat and s o i l data for i n d i v i d u a l parent materials, Rosetown area. Correlation c o e f f i c i e n t s r e l a t i n g log 10 wheat and s o i l trace element data, Rosetown area. PAGE 66 67 68 70 71 79 80 84 85 87 88 90 x i i TABLE XXVI XXVII XXVIII XXIX XXX XXXI XXXII XXXIII XXXIV XXXV XXXVI XXXVII XXXVIII Numbers of randomly selected s o i l samples (n) required from each Rosetown area parent material to give adjustable variance r a t i o (Vm) values of 1.0 and 5.0. Se content of Bearpaw Formation bedrock, Rosetown area. Se content of wheat-(dry weight basis) and C horizon s o i l , and s o i l pH values, Rosetown area. Results of application of Median te s t to wheat and C horizon s o i l Se values, Rosetown area. Correlation c o e f f i c i e n t s r e l a t i n g log 10 Se concentrations i n wheat to those i n associ- ated C horizon soil, and' arithmetic s o i l pH values, Rosetown area. Trace element content of C horizon, s o i l from i n d i v i d u a l morainal types, Red Deer area. Results of application of Duncan's New Multiple Range tes t to log 10 C horizon s o i l data for i n d i v i d u a l morainal types, Red Deer area. Trace element content and pH of A and C horizon s o i l associated with major parent materials, Red Deer area. PAGE 102 106 109 112 113 128 130 131 Results of application of Duncan's New Multiple 132 Range test to log 10 C horizon s o i l data for major parent materials, Red Deer area. Comparison of estimated within and among 137 parent material C horizon logarithmic v a r i - ance components, Red Deer area. Correlation c o e f f i c i e n t s r e l a t i n g log 10 138 trace element concentrations for A and C horizons, Red Deer area. Trace element content of selected Black and 139 Dark Brown Chernozemic s o i l p r o f i l e s , Red Deer area. Comparison of logarithmic within and among 141 township variance components for C horizon g l a c i a l t i l l , Red Deer area. x i i i TABLE XXXIX XXXX XXXXI XXXXII XXXXIII XXXXIV xxxxv XXXXVI XXXXVII XXXXVIII XXXXIX LI LI I L I I I Numbers of randomly s e l e c t e d C h o r i z o n s o i l samples (n) r e q u i r e d from each Red Deer area parent m a t e r i a l to g i v e a d j u s t a b l e v a r i a n c e r a t i o (Vm) valu e s o f 1.0 and 5.0. Mo content o f Manitoba bedrock u n i t s . Chemical p r o p e r t i e s o f some r e p r e s e n t a t i v e Swan River-Dauphin area s o i l p r o f i l e s . Approximate numbers and types o f analyses performed on Swan River-Dauphin area samples, Mo content of Cretaceous bedrock, west- c e n t r a l Manitoba. Mo content and pH o f A and C h o r i z o n s o i l a s s o c i a t e d w i t h i n d i v i d u a l s o i l parent m a t e r i a l s , Keld area. Mo content o f s h a l e - t i l l parent m a t e r i a l and u n d e r l y i n g bedrock, Keld a r e a . Mo and Cu content of-vegetation (dry weight b a s i s ) a s s o c i a t e d w i t h i n d i v i d u a l s o i l p arent m a t e r i a l s , Keld area. Mo content and pH of A and C h o r i z o n s o i l a s s o c i a t e d w i t h major s o i l parent m a t e r i a l s , Swan Ri v e r V a l l e y . Mo content o f Mo-toxic area K e n v i l l e S o i l S e r i e s parent m a t e r i a l . Mo and Cu content of v e g e t a t i o n (dry weight b a s i s ) , Swan Ri v e r V a l l e y . Mo content and pH o f A and C h o r i z o n s o i l a s s o c i a t e d w i t h i n d i v i d u a l s o i l p a rent m a t e r i a l s , F a v e l area. Mo content o f F a v e l S e r i e s s h a l e - c l a y and u n d e r l y i n g s h a l e , F a v e l area. Mo and Cu content o f v e g e t a t i o n (dry weight b a s i s ) a s s o c i a t e d w i t h i n d i v i d u a l s o i l p arent m a t e r i a l s , F a v e l area. A c i d ammonium o x a l a t e e x t r a c t a b l e Mo content of s e l e c t e d C h o r i z o n s o i l s a s s o c i - ated w i t h both Mo-rich and Mo-poor grass samples. PAGE 145 152 158 164 166 174 175 176 178 180 181 183 184 185 187 x i v TABLE L I V LV LVI PAGE Se content of selected Mo-rich bedrock 200 samples, west-central Manitoba. Se content of selcted C horizon s o i l 201 samples, west-central Manitoba. Se content of selected plant samples (dry 202 weight basis), west-central Manitoba. X V LIST OF FIGURES FIGURE PAGE 1• Diagramatic representation of movement of 3 trace elements from bedrock through s o i l to plants and animals. 2. Location of a g r i c u l t u r a l l y s e t t l e d Southern 15 Canadian Inter i o r P l a i n , . 3. Major physiographic subdivisions of the 16 Southern Canadian I n t e r i o r P l a i n . 4. Vegetation-type areas of Southern Canadian 16 I n t e r i o r P l a i n . 5. S o i l zones of the Southern Canadian Inter i o r 17 P l a i n . 6. Bedrock geology of the Southern Canadian 17 I n t e r i o r P l a i n . 7. Areas of known or suspected trace element 20 imbalances on the Southern Canadian Inter i o r P l a i n . 8. Topography and drainage, Rosetown area. 49 9. Bedrock geology, Rosetown area. 51 10. S o i l parent materials, Rosetown area. 54 11. C h a r a c t e r i s t i c surf ace morphologies associated with 55 i n d i v i d u a l parent materials, Rosetown area. 12. L i t h o l o g i c a l logs of sampled Bearpaw Formation 62 d r i l l holes. 13. Cu, Fe, Zn content and pH of A horizon s o i l , 73 Rosetown area. 14. Mn content and pH of A horizon s o i l , Rosetown 74 . area. 15. Cu, Fe, Mn, Zn content and pH of 30-46 cm 75 depth s o i l , Rosetown'area. 16. Cu, Fe, Zn content and pH of C horizon s o i l ; 76 Rosetown area. 17. Mn content and pH of C horizon s o i l , Rosetown 77 area. 18. Scatter diagram of log 10 Cu content of A vs 81 C horizon s o i l . S c a t t e r diagram of l o g 10 Cu content of wheat vs t h a t of C h o r i z o n s o i l . S c a t t e r diagram o f l o g 10 Fe content o f wheat vs t h a t of C h o r i z o n s o i l . S c a t t e r diagram of l o g 10 Mn content of wheat vs t h a t of C h o r i z o n s o i l . S c a t t e r diagram of l o g 10 Zn content of wheat vs t h a t of C h o r i z o n s o i l . Histograms of Se content of wheat and C h o r i z o n s o i l Rosetown area. Se content, wheat m a t e r i a l (dry weight), Rosetown area. Topography and drainage, Red Deer area. Bedrock geology, Red Deer area. S o i l p a rent m a t e r i a l , Red Deer area. C h a r a c t e r i s t i c s u r f a c e morphologies associated with i n d i v i d u a l parent m a t e r i a l s , Red Deer area. Cu and Zn content and pH, C h o r i z o n s o i l , Red Deer area. Fe content and pH, C h o r i z o n s o i l , Red Deer area. Mn content and pH, C h o r i z o n s o i l , Red Deer area. Topography and drainage, Swan River-Dauphin area. Bedrock geology, Swan River-Dauphin area. S o i l p a rent m a t e r i a l s , Swan River-Dauphin area. S o i l parent m a t e r i a l and bedrock, K e l d area. S o i l p a rent m a t e r i a l and bedrock, F a v e l area. Mo content of minus 8 0-mesh stream sediment, Swan River-Dauphin area. Mo content of minus 8 0-mesh stream sediment and A h o r i z o n bank s o i l . Mo-toxic area, Swan R i v e r V a l l e y . Mo content of minus 80-mesh stream sediment southwest of Dauphin. Mo content of selected C horizon s o i l samples, southwest of Dauphin. Mo content of C horizon s o i l , Keld area. Mo content of C horizon s o i l , Swan River Valley. Mo content of C horizon s o i l , Favel area. x v i i i ACKNOWLEDGEMENTS Sincere gratitude i s extended to Dr. K. Fletcher Drs. V.C. Brink, CA. Rowles and H.V. Warren Mr. Mike Waskett-Myers Mr. Dhillpn, Ms. Anne Baxter and Mr. David Marshall Drs. S. Nash, A. Kozak and A.J. S i n c l a i r Mr. Bob Drysdale Mr. Ed Montgomery and the technical s t a f f of the Department of Geological Sciences for having suggested and funded t h i s project (NRC Grant #67-7714) and e s p e c i a l l y for having provided much enthusiastic advice and en- couragement throughout i t s f i v e year duration. for i n t e r e s t and guidance f r e e l y offered. for his assistance i n the laboratory and for having drafted many of the i l l u s t r a t i o n s . for having done much of the sample preparation and analyses. for advice on the s t a t i s t i c a l aspects of the investigation. for his keen i n t e r e s t and active cooperation i n the study undertaken i n the Swan River-Dauphin area of Manitoba. for technical assistance w i l l i n g l y rendered, but e s p e c i a l l y for Tuesday and Thursday morning hockey, F i n a l l y I would es p e c i a l l y l i k e to thank the many friends and r e l a t i v e s without whose encouragement and prayers the completion of t h i s thesis would not have been possible. CHAPTER I INTRODUCTION 1 A. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 1. TRACE ELEMENTS IN PLANT AND ANIMAL HEALTH The f i r s t s uggestion t h a t t r a c e elements c o u l d be an important f a c t o r i n human and animal n u t r i t i o n came i n the e a r l y p a r t of t h i s century with the r e c o g n i t i o n t h a t i n some areas the l a c k of I i n food and water s u p p l i e s i s the primary cause of endemic g o i t r e (Underwood, 1962). Beginning i n the l a t e 1920's, c h i e f l y through the f e e d i n g of h i g h l y p u r i f i e d d i e t s to l a b o r a t o r y animals, the l i s t of t r a c e elements c o n s i d e r - ed e s s e n t i a l f o r animal h e a l t h has been c o n t i n u o u s l y expanding. A t p r e s e n t a t l e a s t f o u r t e e n elements are i n c l u d e d i n t h i s group - I, Cu, Fe, Mn, Zn, Cr, Co, Mo, Se, F, C l , S i , Sn and V (F r i e d e n , 1972). Experimental work i n the f i e l d of p l a n t n u t r i t i o n has demonstrated t h a t Cu, Fe, Mn, Zn, Mo, Co and B are needed f o r the maintenance of p l a n t h e a l t h . D e f i c i e n c y s t a t e s i n v o l v i n g most of the p l a n t m i c r o n u t r i e n t s have been r e p o r t e d , p r i m a r i l y i n a g r i c u l t u r a l crops ( S a u c h e l l i , 1969). F i e l d cases of t r a c e element d e f i c i e n c i e s i n l i v e s t o c k , on the other hand, have been mainly l i m i t e d t o those i n v o l v i n g Co, Cu, Mn and Se (Underwood, 1962). Given s u f f i c i e n t l y high exposure any t r a c e element can be i n j u r i o u s to both p l a n t s and animals. Some elements however are more noted f o r t h e i r t o x i c p r o p e r t i e s than o t h e r s . The damaging e f f e c t s of As> Pb, Hg and Cd on human health., f o r example, have been w e l l documented. In a d d i t i o n 2 Se and Mo t o x i c i t y are r e c o g n i z e d i n l i v e s t o c k over wide areas, and Mn i s w e l l known f o r i t s l o c a l l y t o x i c e f f e c t on c r o p s . 2. TRACE ELEMENT STATUS OF PLANTS AND ANIMALS As i l l u s t r a t e d d i a g r a m a t i c a l l y i n F i g 1, l o c a l bedrock, s o i l , p l a n t and animal p o p u l a t i o n s may be regarded as comprising a mote or l e s s i n t e r r e l a t e d h i e r a r c h i c a l s e r i e s . Although the t r a c e element s t a t u s of any one member of the s e r i e s i s determined, to a g r e a t e r or l e s s e r extent, by those of the u n d e r l y i n g l e v e l s , a v a r i e t y of f a c t o r s may i n t e r v e n e to a l t e r the nature of t h i s chemical interdependency. Hodgson (1970) d i s c u s s e s many of these f a c t o r s i n r e l a t i o n t o r o c k , s o i l and p l a n t i n t e r a c t i o n s . Bedrock, which l i e s at the base of the s e r i e s , may vary c o n s i d e r a b l y i n i t s t o t a l t r a c e element content (Table I ) . Mo l e v e l s i n b l a c k s h a l e f o r example (median lOppm), are g e n e r a l l y an order of magnitude above those i n sandstone (mean 0.2ppm).. V a r i a t i o n s of a s i m i l a r magnitude c h a r a c t e r i z e most of the other elements c i t e d . The extent to which bedrock composition i s r e f l e c t e d i n the o v e r l y i n g s o i l i s , i n p a r t , a f u n c t i o n of the nature of the geomorphic processes i n v o l v e d i n s o i l parent m a t e r i a l , formation. For example, i n areas where parent m a t e r i a l s are composed mainly of overburden which has been t r a n s p o r t e d long d i s t a n c e s by g l a c i a l or a l l u v i a l p r o cesses, bedrock and a s s o c i a t e d s o i l would 3' © © ANIMAL availabilty and consumption PLANT t SOIL plant species and availabilty A geomorphic and pedogenic processes © BEDROCK Figure I. Diagramatic representation of movement of trace elements from bedrock, through soil to plants and animals. 14 Table I Comparison of t y p i c a l t r a c e element c o n c e n t r a t i o n s a s s o c i a t e d w i t h v a r i o u s sedimentary rock types. Trace Element Content * ** ** ** Element Black Shale Sandstone Carbonates Shale Mo (ppm) 10.0 2.6 0.2 0.4 Se (ppm) — 0.6 0.05 0.08 Cu (ppm) (%) 70.0 45.0 — 4.0 Fe 6.7 4.72 0.98 0.38 Mn (ppm) 150.0 850.0 — 1100.0 Zn (ppm) 300.0 95.0 16.0 20.0 B (ppm) 50.0 100.0 35.0 20.0 Co (ppm) 10.0 19.0 0.3 0.1 * Vine and T o u r t e l o t (19 70); median val u e s quoted. ** Turekian and Wedepohl (1961); average v a l u e s quoted. i 5 not necessarily be expected to be compositionally s i m i l a r . On the other hand, where parent materials are r e s i d u a l , or have been transported only short distances and have not been subjected to extensive weathering, rock and s o i l compositions are normally clo s e l y related. Bedrock-soil relationships are also influenced by pedogenic processes which may r e s u l t i n either the removal or r e d i s t r i b u - t i o n of trace elements i n the s o i l . Biocycling, for example, which i s the process by which nutrients are removed from lower s o i l horizons by plant roots, accumulate i n surface organic layers and are i n varying degrees s o l u b i l i z e d and c a r r i e d back into the solum, may r e s u l t i n the accumulation of trace elements, such as Mn and Zn, i n surface s o i l (Mills and Zwarich, 1975). As M i t c h e l l (1964) has noted however, pedogenic processes have generally had a more limited e f f e c t on s o i l composition i n regions influenced by Pleistocene g l a c i a t i o n , because s o i l parent materials i n these areas are comparatively young. Trace elements incorporated within the structures of r e s i s t a n t s o i l minerals or strongly complexed by organic phases exert l i t t l e influence on the composition of associated plants. On the other hand those which are either water-soluble or which are bound i n a r e a d i l y exchangeable form, are at least p o t e n t i a l l y available for plant uptake. Plant-available elements t y p i c a l l y comprise a r e l a t i v e l y small proportion of the t o t a l s o i l trace element content. Their concentration i n the s o i l 6 solution depends, to a large extent, on s o i l reaction (pH) and drainage (Eh). In oxidizing environments, for example, Mo occurs as the molybdate anion (Mo0~), which at low pH values i s strongly adsorbed by s o i l clays and hydrous iron oxides, but as pH leve l s r i s e i s progressively released into s o i l solution (Jones, 1957). Doyle et a l . (1973) have noted that plants grow- ing i n Mo-rich a c i d i c s o i l s contain r e l a t i v e l y l i t t l e Mo, where- as those associated with similar neutral to alkaline s o i l s may contain., large quantities (^50 ppm) of t h i s element. Because d i f f e r e n t plant genotypes vary i n t h e i r a b i l i t y to absorb p a r t i c u l a r elements, plant trace element status i s also dependent on the kinds of plants growing in an area. M i t c h e l l (1957) has reported, for instance, that under conditions of abundant supply, clovers tend to be enriched in Mo r e l a t i v e to grasses growing i n the same s o i l . S i m i l a r l y , some species, such as Astragalus bisulcatus and A. pectinatus, are known to accumu- lat e Se i n concentrations of over 1000 ppm when growing i n s o i l s containing less than 2 ppm (Williams et a l . 1941). The extent to which the n u t r i t i o n a l status of animals re- f l e c t s l o c a l plant concentrations of trace elements depends on both the degree to which they r e l y on l o c a l food sources and on the a v a i l a b i l i t y of the nutrients ingested. Thus, grazing l i v e - stock, for example, would be expected to be p a r t i c u l a r l y influenc- ed by trace element concentrations i n l o c a l plant communities. With respect to nutrient a v a i l a b i l i t y Cu retention i n c a t t l e 7 and sheep, f o r i n s t a n c e , has been shown to decrease c o n s i d e r a b l y i n the presence o f hi g h d i e t a r y i n t a k e s of Mo (Underwood, 1962). D e s p i t e the apparent complexity of t h i s r o c k - s o i l - p l a n t - animal c h a i n t r a c e element d i s o r d e r s i n both p l a n t s and animals can, i n some i n s t a n c e s , be more or l e s s d i r e c t l y r e l a t e d to con- c e n t r a t i o n s i n a s s o c i a t e d bedrock or s o i l parent m a t e r i a l s . Thus, i n the Un i t e d Kingdom Thornton and Webb (197 0) have demonstrated a r e l a t i o n s h i p between the i n c i d e n c e of Mo-induced Cu d e f i c i e n c y i n c a t t l e and the d i s t r i b u t i o n of Mo-rich b l a c k shale bedrock and, i n North America, an a s s o c i a t i o n has been observed between the d i s t r i b u t i o n of S e - r i c h Upper Cretaceous shale and Se t o x i - c i t y i n l i v e s t o c k (Rosenfeld and Beath, 1964) . 3. REGIONAL GEOCHEMICAL RECONNAISSANCE TECHNIQUES Because rock and s o i l composition can i n f l u e n c e the t r a c e element s t a t u s of a s s o c i a t e d p l a n t s and animals, i n f o r m a t i o n on the d i s t r i b u t i o n of t r a c e elements i n these m a t e r i a l s i s of p o t e n t i a l i n t e r e s t to both a g r i c u l t u r a l and medical s c i e n t i s t s concerned w i t h r e l a t i o n s h i p s between t r a c e elements and h e a l t h . The problem of d e v e l o p i n g s u i t a b l e methods of c o l l e c t i n g and p r e s e n t i n g r e g i o n a l t r a c e element data f o r use by these and perhaps other environmental s c i e n t i s t s , however, has o n l y r e c e n t l y been i n v e s t i g a t e d . To date two d i s t i n c t approaches have been adopted; d i f f e r i n g both i n the types of m a t e r i a l c o l - l e c t e d (stream sediment v s . s o i l , p l a n t , rock or water) and i n o v e r a l l sampling d e s i g n . 8 a) Stream Sediment Sampling Stream sediment sampling procedures were f i r s t developed by Hawkes and Webb (Hawkes e t a l . , 1956) i n the e a r l y 1950's f o r a p p l i c a t i o n i n the mining i n d u s t r y . The method i s based on the premise t h a t , by v i r t u e o f i t s o r i g i n , stream sediment may be con s i d e r e d a composite sample of rock, overburden and s o i l i n the catchment area upstream from the sample s i t e . As a r e s u l t r e l a t i v e l y few samples are r e q u i r e d t o determine r a p i d l y , g e n e r a l i z e d t r a c e element d i s t r i b u t i o n p a t t e r n s over l a r g e areas. Reconnaissance stream sediment sampling programs have been used to prepare geochemical a t l a s e s showing b a s e l i n e data on the r e g i o n a l d i s t r i b u t i o n of 26 elements i n Northern I r e l a n d , England and Wales. These maps r e f l e c t not onl y the n a t u r a l composition of bedrock, overburden and s o i l but a l s o i n d i c a t e areas of indus- t r i a l metal contamination (Thornton and Webb, 197 5). P r o c e d u r a l d e t a i l s are d e s c r i b e d by Hawkes and Webb (1962). B r i e f l y the method i n v o l v e s the c o l l e c t i o n of a c t i v e stream sediment from t r i b u t a r y drainage and subsequent a n a l y s i s of the minus 8 0-mesh f r a c t i o n . Sampling i s c a r r i e d out i n one o p e r a t i o n at a predetermined d e n s i t y which, depending on the purpose of the study and the s i z e o f the area being i n v e s t i g a t e d , . c a n v a r y be- tween about 1.5 samples per square k i l o m e t e r (4/sq.mi) t o one sample per 180 square k i l o m e t e r s (1/7 0 sq mi). Trace element data f o r i n d i v i d u a l sample s i t e s are c o n v e n t i o n a l l y e i t h e r con- toured or rep r e s e n t e d by v a r i a b l e - s i z e d b l a c k d o t s . Recently however c o n s i d e r a b l y more s o p h i s t i c a t e d computerized p l o t t i n g 9 systems i n v o l v i n g the p r o d u c t i o n o f smoothed gray-tone, as w e l l as c o l o u r maps, have been developed f o r a p p l i c a t i o n t o stream sediment data by Howarth (1971) and Lowenstein and Howarth (1973). The g r e a t advantage o f stream sediment l i e s i n the r e l a t i v e ease and speed w i t h which i t can be c o l l e c t e d , processed and ana- l y s e d . However the technique i s o n l y a p p l i c a b l e i n areas where a w e l l developed t r i b u t a r y drainage system e x i s t s . Furthermore, because of the l a r g e number of f a c t o r s i n f l u e n c i n g sediment com- p o s i t i o n i n t e r p r e t a t i o n can, i n some cases, be complex ( H o r s n a i l e t a l . , 1969). N e v e r t h e l e s s , w i t h a few n o t a b l e . e x c e p t i o n s , an encouraging degree of c o r r e l a t i o n has been observed between t r a c e element c o n c e n t r a t i o n s i n stream sediments and a s s o c i a t e d rock, s o i l and even plant, m a t e r i a l s (Thornton and Webb, 1970) . Uses f o r t h i s technique have been suggested i n such d i v e r s e f i e l d s as land-use p l a n n i n g , p o l l u t i o n and epidemiology. I t s a p p l i c a t i o n s i n a g r i c u l t u r e were pioneered iby Webb and h i s a s s o c i - ates (Webb, 1964) i n the mid-1960's i n the United Kingdom and I r e l a n d . S i n c e then these i n v e s t i g a t o r s have been s u c c e s s f u l i n r e l a t i n g r e g i o n a l stream sediment data to such p r e v i o u s l y r e c o g n i z e d d i s o r d e r s as Mo-induced Cu d e f i c i e n c y , Mn d e f i c i e n c y and Se t o x i c i t y i n c a t t l e (Webb and At k i n s o n , 19 6 5'; Thornton and Webb, 1970) and Mn d e f i c i e n c y and Zn t o x i c i t y i n c e r e a l s (Webb e t a l . , 1968). Perhaps more s i g n i f i c a n t l y however, stream sediment data have proven u s e f u l i n d e l i n e a t i n g areas where p r e v i o u s l y . unrecognized, s u b c l i n i c a l n u t r i t i o n a l d i s o r d e r s are a d v e r s e l y a f f e c t i n g a g r i c u l t u r a l p r o d u c t i v i t y 10 (Thornton e t a l . , 1972 a, b ) . b) S o i l , P l a n t , Rock and Water Sampling More s t a t i s t i c a l l y r i g o r o u s sampling procedures f o r g e n e r a l a p p l i c a t i o n i n environmental i n v e s t i g a t i o n s have r e c e n t l y been developed a t the Branch of Regional Geochemistry of the United S t a t e s G e o l o g i c a l Survey. These techniques were designed to de- s c r i b e r e g i o n a l v a r i a t i o n s i n the chemical c h a r a c t e r i s t i c s of s o i l s , p l a n t s , rock and water i n the S t a t e of M i s s o u r i . They t. were o r i g i n a l l y o u t l i n e d by Connor e t a l . (197 2), and have s i n c e been d e s c r i b e d i n g r e a t e r d e t a i l by Miesch (1976). I n i t i a l l y e a r t h s u r f a c e m a t e r i a l s t o be i n v e s t i g a t e d are s u b d i v i d e d i n t o s e v e r a l mapable " c a t e g o r i e s " which are expected to be more or l e s s c o m p o s i t i o n a l l y homogeneous. S o i l , f o r exampl c o u l d be c l a s s i f i e d on the b a s i s of parent m a t e r i a l type, as was done i n t h i s study. As d e s c r i b e d by Connor e t a l . (197 2) two phases of sampling are i n v o l v e d , w i t h two stages o c c u r r i n g w i t h i n each phase: "Phase 1: Sampling to d e s c r i b e d i f f e r e n c e s among categor Stage l a : P r e l i m i n a r y sampling designed to determine the extent to which the c a t e g o r i e s are indeed geo- c h e m i c a l l y d i s t i n c t , and to p r o v i d e the b a s i s f o r p l a n n i n g stage l b . Stage l b : F i n a l sampling to d e r i v e r e l i a b l e estimates of d i f f e r e n c e s among c a t e g o r i e s , and the amounts of c o m p o s i t i o n a l v a r i a b i l i t y w i t h i n each category. "Phase 2: Sampling to d e s c r i b e p a t t e r n s of v a r i a t i o n w i t h i n c a t e g o r i e s . Stage 2a: P r e l i m i n a r y sampling w i t h i n each catego r y to determine the sampling l o c a l i t y spacing t h a t would be most e f f i c i e n t f o r d e s c r i b i n g the geochemical v a r i a t i o n p a t t e r n s w i t h i n each category, and the number of samples r e q u i r e d from each l o c a l i t y . Stage 2b: F i n a l sampling t o d e s c r i b e the geochemical p a t t e r n s w i t h i n each category." 11 The purpose of Phase 1 sampling i s to describe major (among category) geochemical patterns only, whereas Phase 2 provides information on more detailed (within category) compositional var i a t i o n s . Because Miesch and his coworkers consider that geochemical surveys should i n i t i a l l y focus on providing useful background or baseline data, Phase 2 sampling was generally not undertaken i n Missouri. A h i e r a r c h i c a l sampling plan i s used during Stage l a such 2 that the t o t a l data v a r i a b i l i t y (s ) can be partitioned into 2 2 . several components ( s a , s^ etc.) using an analysis of variance procedure: s 2 = s 2 + s 2 + s 2 + s 2 + ... (1-1) X a B y o Although the number and type of components may vary with the object of the study, four are commonly examined r e f l e c t i n g v a r i - 2 ations among categories ( s a ) , as well as both regional and 2 2 l o c a l v a r i a t i o n within categories (s^ and s^, resp e c t i v e l y ) , 2 and v a r i a t i o n due to laboratory procedures (s 5) . A s t a t i s t i c referred to as the "adjustable variance r a t i o " (Vm), which compares the among category variance with the v a r i - ance of category means, i s used to assess the adequacy of Stage l a sampling ( T i d b a l l , 1970). The variance of category means 2 (s ) i s estimated from: m sm = S B + S Y + S 5 + •••' ( 1 _ 2 ) n B n 8 n Y n B n Y n 6 12 where n̂ ., riy and n 5 are the number of sampling units i n each of the three lower l e v e l s of the design. Vm i s calculated as: 2 Vm = S a - . (1-3) 2 s m For surveys aimed at describing broad compositional v a r i a - tions across an area with an acceptable degree of confidence Vm must be at. l e a s t equal to 1.0. If the purpose, however, i s to describe r e l i a b l y more detailed compositional patterns a Vm value of 5.0 or more i s desirable ( T i d b a l l , 1973). When a low Vm value indicates that Stage l b sampling i s required, a new h i e r a r c h i c a l design i s chosen by adjusting the values for the subscripted 2 n's i n equation (1-2) u n t i l s i s s u f f i c i e n t l y small. In the J m case that a large proportion of the t o t a l data v a r i a b i l i t y occurs within areas of r e l a t i v e l y small geographic si z e , Stage lb sampling e f f i c i e n c y can be maximized by concentrating p r i - marily on increasing the number of samples c o l l e c t e d within these smaller areas (Miesch, 1976). When r e l i a b l e estimates of category means have been obtained, Duncan (1955)'s New Multiple Range test may be used to i d e n t i f y groups of categories among ' which mean compositional differences are not s t a t i s t i c a l l y s i g n i f i c a n t . Results can f i n a l l y be summarized i n the form of s t a t i s t i c a l tables and modified category maps showing compositionally d i s t i n c t i v e categories or groups of categories for each element examined. The p r i n c i p a l o r i g i n a l i t y of t h i s approach l i e s i n the 13 s t a t i s t i c a l l y r i g o r o u s nature of i t s m u l t i - s t a g e d e s i g n . Because the number of samples r e q u i r e d f o r a p a r t i c u l a r study depends on the r e l a t i v e chemical uniqueness of the c a t e g o r i e s being compared and not d i r e c t l y on the s i z e of the area being examined, i t i s p o s s i b l e to produce r e g i o n a l maps q u i c k l y and i n e x p e n s i v e l y , u s i n g r e l a t i v e l y few samples. Maps showing the t r a c e element d i s t r i b u t i o n i n M i s s o u r i v e g e t a t i o n , f o r example ( S h a c k l e t t e e t a l . 1971), were produced u s i n g an average sample 2 d e n s i t y of about one s i t e ,per 650 km (1/250 sq mi). Problems, however, may a r i s e i n the i n i t i a l s e l e c t i o n of c r i t e r i a f o r category d e f i n i t i o n . A f t e r Stage l a sampling, f o r example, T i d b a l l (1971) found t h a t none of the taxonomic d i v i s i o n s of M i s s o u r i s o i l were s u i t e d to r e g i o n a l geochemical map p r o d u c t i o n . Furthermore, probably i n p a r t due to the very g e n e r a l nature of the maps produced, Miesch and h i s a s s o c i a t e s have had l i t t l e success i n attempts to r e l a t e t r a c e element d i s t r i b u t i o n p a t t e r n s i n M i s s o u r i to i n f o r m a t i o n on the d i s t r i - b u t i o n of p a r t i c u l a r d i s e a s e s t a t e s i n e i t h e r l i v e s t o c k or man. 14 B. SOUTHERN CANADIAN INTERIOR PLAIN The Southern Canadian I n t e r i o r P l a i n , as r e f e r r e d t o i n t h i s study, comprises the a g r i c u l t u r a l l y s e t t l e d p o r t i o n of the North American I n t e r i o r P l a i n n o r t h of the Canada-United S t a t e s boundary ( F i g 2). 1. REGIONAL DESCRIPTION a) P h y s i c a l S e t t i n g The Southern Canadian I n t e r i o r P l a i n i s d i v i d e d i n t o two major p h y s i o g r a p h i c r e g i o n s , the Great P l a i n and the C e n t r a l Lowland (Bostock, 1969). The Great P l a i n r e g i o n , l o c a l l y r e f e r - red t o as the A l b e r t a P l a i n , i s the h i g h e s t (average e l e v a t i o n 750 m or 2 / 5 0 0 f t ) and d i s p l a y s the g r e a t e s t r e l i e f ( F i g 3). The Manitoba Escarpment d i v i d e s the C e n t r a l Lowland i n the east i n t o the Saskatchewan P l a i n (average e l e v a t i o n 600 m or 2,000 f t ) and the Manitoba P l a i n (average e l e v a t i o n 240 m or 800 f t ) . C limate i s of the c o n t i n e n t a l type, c h a r a c t e r i z e d by s h o r t hot summers and long c o l d w i n t e r s . Highest summer temperatures and lowest p r e c i p i t a t i o n l e v e l s occur i n the s e m i - a r i d southeast- ern p o r t i o n of A l b e r t a and southwestern Saskatchewan. Tempera- t u r e s decrease and p r e c i p i t a t i o n i n c r e a s e s more or l e s s r a d i a l l y outward from t h i s area. As i n d i c a t e d i n F i g 4, s e m i - a r i d areas are c h a r a c t e r i z e d by g r a s s l a n d v e g e t a t i o n whereas b o r e a l f o r e s t s p r e v a i l i n the more no r t h e r n sub-humid r e g i o n s (Coupland, 1961). R e l a t i v e l y low p r e c i p i t a t i o n l e v e l s ( t y p i c a l l y 30-40 cm or 15 Figure 2. Location of agriculturally settled Southern Canadian Interior Plain. 16 Boundary of Interior Plain m i m I n Northern limit ot agricultural settlement — • — B o u n d a r y of Interior P la in s u b d i v i s i o n s Detailed Study Areas I Rosetown H Red Deer I H Swan R i v e r - D a u p h i n ( M o d i f i e d f r o m B o s t o c k , 1 9 6 9 ) 'A. Inter ior P l a i n S u b d i v i s i o n s G r e a t P la in A A l b e r t a P l a i n C e n t r a l L o w l a n d B S a s k a t c h e w a n P l a i n C M a n i t o b a Plain F igure 3. Mo jor p h y s i o g r a p h i c subd iv i s ions of the Southern C a n a d i a n Interior Plain. Figure 4. Vegetation-type areas of Southern Canadian Inferior P la in . 17 Figure 5. Soil zones of the Southern Ccnadian Interior PIcin. Figure 6. Bedrock geology of the Southern Canadian Interior Plain. 18 12-16 in/year) are p r i m a r i l y r e s p o n s i b l e f o r the g e n e r a l absence of t r i b u t a r y drainage systems, which i n t u r n p r o h i b i t s the under- t a k i n g of reconnaissance stream sediment surveys through most of the r e g i o n . The f o u r major s o i l zones r e c o g n i z e d ( A t l a s of Canada, 1957) are shown i n F i g 5. P r o f i l e development i s g e n e r a l l y r e l a t i v e l y weak i n the Brown, Dark Brown and Black Zones. Most s o i l s i n these zones belong to the Chernozemic Order, although S o l o n e t z i c s o i l s a l s o occupy l a r g e areas. L u v i s o l i c s o i l s w i t h w e l l d e v e l - oped Ae and Bt h o r i z o n s c h a r a c t e r i z e the sub-humid Greywooded Zone. An a d d i t i o n a l i n t r a z o n a l c l a s s of "High-lime" s o i l s occurs on the Manitoba P l a i n . G e n e r a l i z e d bedrock geology (Douglas, 1968) i s i l l u s t r a t e d i n F i g 6. Limestone and d o l o m i t e - r i c h O r d o v i c i a n to Devonian bedrock formations (Unit 6) occur beneath the Manitoba P l a i n i n the e a s t and are the source m a t e r i a l f o r the High-lime s o i l s i n t h i s r e g i o n . These rocks are o v e r l a i n by a r e l a t i v e l y t h i n sequence of J u r a s s i c and Cretaceous shale and sandstone (Units 4 and 5.) U n i t 4, which i s composed, f o r the most p a r t , of o r g a n i c - r i c h shale has been r e p o r t e d by Oddy (1966) to c o n t a i n e x c e p t i o n a l l y h i g h Mo c o n c e n t r a t i o n s . Most of the A l b e r t a and Saskatchewan P l a i n s are u n d e r l a i n by t h i c k d e p o s i t s of Upper Cretaceous marine s i l t s and c l a y s (Unit 3) and non-marine sand- stone (Unit 2). Non-marine T e r t i a r y sandstone, s i l t s t o n e , mud- stone and conglomerate (Unit .1) l o c a l l y o v e r l i e these Cretaceous s t r a t a . Bedrock u n i t s are covered by up to 100 m (300 f t ) of P l e i s t o c e n e t i l l and s t r a t i f i e d d r i f t . S u r f i c i a l d e p o s i t s t y p i c a l l y c o n s i s t of a r e l a t i v e l y complex i n t e r m i x t u r e of g l a c i a l t i l l , g l a c i o l a c u s t r i n e sands, s i l t s and c l a y s , and l e s s e r amounts of a e o l i a n sand and r e c e n t a l l u v i u m . M i n e r a l o g i c a l and chemical s t u d i e s of t i l l d e p o s i t s i n d i c a t e t h a t the composition of these m a t e r i a l s i s c o n t r o l l e d , t o a l a r g e extent, by l o c a l bedrock l . i t h o l o g i e s (Pawluk and Bayrock, 1969). b) A g r i c u l t u r a l Trace Element D i s o r d e r s A v a r i e t y of t r a c e element excess and d e f i c i e n c y problems are r e c o g n i z e d i n both crops and l i v e s t o c k throughout the South- ern Canadian I n t e r i o r P l a i n . Cu, Fe, Mn, Zn and B d e f i c i e n c i e s and Mn t o x i c i t y have been noted i n a g r i c u l t u r a l crops. Se d e f i c i e n c y and Mo and Se t o x i c i t y are a l s o known to a f f e c t l i v e - stock o f the r e g i o n . A map showing some areas where t r a c e element problems are e i t h e r known or suspected, compiled from both p u b l i s h e d r e p o r t s and p e r s o n a l communications w i t h l o c a l a g r i c u l t u r a l s c i e n t i s t s , i s presented i n F i g 7. M i c r o n u t r i e n t imbalances a f f e c t i n g v e g e t a t i o n are t y p i c a l l y a t t r i b u t e d t o problems of t r a c e element a v a i l a b i l i t y as opposed to t o t a l t r a c e element c o n c e n t r a t i o n s i n s o i l s . For example, d e f i c i e n c i e s of Fe and Mn r e p o r t e d i n some p l a n t s p e c i e s i n p a r t s of Manitoba are g e n e r a l l y a t t r i b u t e d t o h i g h l e v e l s of c a l c i u m carbonate and a l k a l i n e s o i l c o n d i t i o n s which l i m i t the a v a i l a b i l - i t y of these elements t o p l a n t s ( H e d l i n , 1972). S i m i l a r l y i n c e n t r a l Alberta,, a v a i l a b i l i t y f a c t o r s have been i m p l i c a t e d i n the I I U U O L . I V I I I V I I I III l l f H I VII I W V * W Boundary of Interior Plain i m i I I m Northern limit of agricultural settlement Detailed Study Areas I Rosetown H Red Deer U I Swan River-Dauphin Crops Local B deficiency Cu deficiency . © Mn deficiency 0 Cu and Zn deficiency Livestock Mo toxicity Se toxicity Se deficiency Cu deficiency Regional ' Figure 7 . Areas of known or suspected trace element imbalances on the Southern Canadian Interior Plain. 21 i n c i d e n c e of Cu and Mn d e f i c i e n c y i n c e r e a l s grown on peaty s o i l (Massey, 1972). Low t o t a l s o i l t r a c e element c o n c e n t r a t i o n s , however, probably c o n t r i b u t e t o a t l e a s t some p l a n t d e f i c i e n c y problems, p a r t i c u l a r l y those a s s o c i a t e d w i t h r e l a t i v e l y coarse t e x t u r e d or h i g h l y leached s o i l s . Se d e f i c i e n c y i s r e c o g n i z e d as a major a g r i c u l t u r a l problem a f f e c t i n g l i v e s t o c k over wide areas of the p r a i r i e s . T h i s d i s e a s e i s p a r t i c u l a r l y p r e v a l e n t i n w e s t - c e n t r a l A l b e r t a (Walker, 1971) , where i t has been suggested t h a t i t s d i s t r i b u t i o n i s r e - l a t e d t o the presence o f sandy L u v i s o l i c s o i l s . Se t o x i c i t y , on the other hand, has been r e p o r t e d o n l y l o c a l l y i n c a t t l e g r a z i n g selenium accumulator p l a n t s i n southeastern A l b e r t a and southwestern Saskatchewan (Byers and L a k i n , 1939). Mo-induced Cu d e f i c i e n c y has been r e p o r t e d i n c a t t l e from a small area i n the Swan R i v e r V a l l e y o f Manitoba where i t was r e l a t e d t o enhanced bedrock and s o i l Mo l e v e l s (Oddy, 1966^ Smith 1955). Furthermore, p a r t l y as a r e s u l t o f the presen t i n v e s t i g a - t i o n , Cu d e f i c i e n c y has r e c e n t l y been r e c o g n i z e d i n l i v e s t o c k over wide areas of w e s t - c e n t r a l Manitoba. The f i n a n c i a l b e n e f i t which would accrue from r o u t i n e Cu supplementation of c a t t l e i n t h i s r e g i o n has been c o n s e r v a t i v e l y estimated a t n e a r l y two m i l l i o n 1974 d o l l a r s per annum (Drysdale, 1975). 2. STUDY OBJECTIVES The purpose of t h i s study was to i n v e s t i g a t e t r a c e element d i s t r i b u t i o n p a t t e r n s i n e a r t h - s u r f a c e m a t e r i a l s on the Southern Canadian I n t e r i o r P l a i n w i t h the aim of recommending s u i t a b l e procedures f o r e f f i c i e n t l y c o l l e c t i n g and p r e s e n t i n g r e g i o n a l geochemical i n f o r m a t i o n i n t h i s area. Throughout most of the Canadian p r a i r i e s t r i b u t a r y drainages are too s c a r c e to permit reconnaissance mapping u s i n g stream sediment, and consequently an a l t e r n a t e medium i s r e q u i r e d f o r r o u t i n e sampling purposes. In view of the f a c t t h a t s o i l i s everywhere a v a i l a b l e and can be c o l l e c t e d w i t h r e l a t i v e l y l i t t l e e f f o r t , emphasis was p l a c e d on examination of t r a c e element c o m p o s i t i o n a l v a r i a t i o n s i n t h i s m a t e r i a l , i n order t o assess the u s e f u l n e s s of s o i l d ata f o r reconnaissance geochemical mapping. Because t r i b u t a r y streams are l o c a l l y common i n southern Manitoba, an important aspect of t h i s study i n v o l v e d the d i r e c t comparison of r e s u l t s from s o i l and stream sediment surveys. 3. OUTLINE OF APPROACH Three areas (I - Rosetown, I I - Red Deer and I I I - Swan 2 River-Dauphin) v a r y i n g i n s i z e from about 6,000 up t o 15,000 km (2,400 t o 5,800 sq mi) were s e l e c t e d f o r study. As i n d i c a t e d i n F i g s 3 to 6 these areas span a wide v a r i e t y of environments, ranging from c o m p a r a t i v e l y dry g r a s s l a n d around Rosetown to sub- humid b o r e a l f o r e s t i n the Swan River-Dauphin area. Trace e l e - ment imbalances, recognized, or suspected i n l i v e s t o c k i n each of these areas are, Cu d e f i c i e n c y ( i n p a r t Mo-induced) i n the Swan River-Dauphin area, Se t o x i c i t y near Rosetown and Se d e f i c i e n c y i n the Red Deer r e g i o n . In the Rosetown and Red Deer areas, where t r i b u t a r y streams are r a r e , a t t e n t i o n focussed on an examination o f the nature o f both r e g i o n a l and d e t a i l e d s o i l c o m p o s i t i o n a l v a r i a t i o n s . O r i g i n a l l y i t was thought t h a t r e g i o n a l t r a c e element p a t t e r n s f o r s o i l c o u l d simply be d e s c r i b e d i n terms of d i f f e r e n c e s among 2 means f o r i n d i v i d u a l 94 km (36 sq mi) townships w i t h i n the area being examined. A c c o r d i n g l y township means were estimated on the b a s i s of analyses f o r s o i l s o b t ained from two randomly s e l e c t - ed s i t e s w i t h i n each township. However comparison of " w i t h i n " and "among" township data v a r i a b i l i t y f o r C h o r i z o n s o i l (Table II) i n d i c a t e d t h a t the v a r i a t i o n among township means t y p i c a l l y accounted f o r a r e l a t i v e l y s m a l l p o r t i o n (< 25%) of the t o t a l data v a r i a n c e . Furthermore, i n the m a j o r i t y of cases v a r i a t i o n s among township means were not s t a t i s t i c a l l y s i g n i f i c a n t (at the 95% c o n f i d e n c e l e v e l ) : consequently most map p a t t e r n s based on these means could.be a t t r i b u t e d t o chance. I n s p e c t i o n of the data i n d i c a t e d t h a t s o i l composition tended to be c o n t r o l l e d , t o a l a r g e extent, by the nature of s o i l parent m a t e r i a l s . In f a c t , as w i l l be d e s c r i b e d i n sub- sequent c h a p t e r s , a n a l y s i s of v a r i a n c e shows t h a t depending upon the area being c o n s i d e r e d up to 78% of the t o t a l s o i l data v a r i a n c e can be a t t r i b u t e d t o d i f f e r e n c e s among parent m a t e r i a l means. Consequently i t was decided t o d e s c r i b e r e g i o n a l s o i l composition- a l v a r i a t i o n s i n terms of these among parent m a t e r i a l mean d i f f e r e n c e s . As recommended by Miesch (1976), Duncan (1955)'s New M u l t i p l e Range t e s t was used t o i d e n t i f y means which do not 24 Table I I P r e l i m i n a r y comparison of estimated w i t h i n and among township C h o r i z o n s o i l v a r i a n c e components, southern p o r t i o n of Rosetown area and Red Deer area. Number Estimated Partitioned Variance Area of Element Total log 10 Town- Variance Within Township Among Township Ships & g. Component of Component of total total Rosetown 54 (southern portion) Cu 0.0496 Fe 0.0212 Mn 0.0203 Zn 0.0296 0.0371 74.8 0.0182 85.8 0.0177 85.3 0.0231 78.0 0.0125* 25.2 0.0030 14.2 0.026 14.7 0.0065* 22.0 Red Deer 66 Cu 0.0335 Fe 0.0141 Mn 0.0368 Zn 0.0192 0.0324 96.6 0.0141 100.0 0.0368 100.0 0.0192 100.0 0.0011 3.4 0.0000 0.0 0.0000 0.0 0.0000 0.0 Significantly greater than zero at P = 0.05. d i f f e r s i g n i f i c a n t l y , and r e s u l t s were summarized i n map form showing the d i s t r i b u t i o n o f c h e m i c a l l y d i s t i n c t i v e parent mate- r i a l s o r parent m a t e r i a l groups f o r each element examined. In the Rosetown area the a g r i c u l t u r a l s i g n i f i c a n c e o f parent m a t e r i - a l based s o i l c o m p o s i t i o n a l maps was assessed i n r e l a t i o n t o r e g i o n a l v a r i a t i o n s i n the t r a c e element content of a s s o c i a t e d wheat p l a n t s . In the Swan R i v e r - Dauphin area, where t r i b u t a r y streams are r e l a t i v e l y common, emphasis was p l a c e d on comparison of the r e l a t i v e m e r i t s of s o i l sampling and reconnaissance stream sediment sampling procedures. A t t e n t i o n was focussed p r i m a r i l y on the d i s t r i b u t i o n o f molybdenum. Geochemical maps were eval u a t e d i n r e l a t i o n t o i n f o r m a t i o n o f the Mo content of forage p l a n t s and the d i s t r i b u t i o n of Mo-induced Cu d e f i c i e n c y i n c a t t l e CHAPTER I I SAMPLE COLLECTION, PREPARATION AND ANALYSIS AND DATA HANDLING PROCEDURES 26 A. SAMPLE COLLECTION AND PREPARATION 1. COLLECTION Approximate numbers and types of samples c o l l e c t e d i n each of the three study areas are summarized i n Table I I I . In the Rosetown and Red Deer areas a t t e n t i o n focussed mainly on s o i l sampling. A l i m i t e d number of p l a n t and rock samples were a l s o taken i n the Rosetown area. In the Swan R i v e r - Dauphin area s o i l , and l e s s e r amounts of stream sediment, v e g e t a t i o n and bed- rock were c o l l e c t e d . Because p r o c e d u r a l d e t a i l s f o r o b t a i n i n g these m a t e r i a l s v a r i e d somewhat from one area t o the next, they are d e s c r i b e d s e p a r a t e l y i n subsequent c h a p t e r s . 2. PREPARATION Both s o i l and stream sediment were i n i t i a l l y d i s a g g r e g a t e d i n a p o r c e l a i n mortar. Stream sediment was then passed through an 8 0-mesh (17 7 u) n y l o n s i e v e and the f i n e s r e t a i n e d f o r a n a l y s i s . A f t e r s i e v i n g t o minus 10-mesh (2 mm), s o i l was ground to approximately minus 100-mesh (149 u) i n a Spex "Shatterbox". Rock c h i p s were s u c c e s s i v e l y passed through a jaw cr u s h e r and between ceramic p l a t e s , and were f i n a l l y reduced to minus 100- mesh i n a "Shatterbox". A i r - d r i e d v e g e t a t i o n was ground i n a Wiley m i l l p r i o r to a n a l y s i s . B. SAMPLE ANALYSIS Trace element a n a l y s i s were c a r r i e d out u s i n g a combina- t i o n of atomic a b s o r p t i o n , c o l o r i m e t r i c and f l u o r i m e t r i c 27 Table i n Approximate numbers and types of samples c o l l e c t e d i n each of the three major study areas. Number o f Samples C o l l e c t e d Sample Type Red Swan R i v e r - T o t a l Rosetown Deer Dauphin Stream Sediment S o i l V e g e t a t i o n Rock 1250 600 105 50 215 215 600 2450 110 215 65 115 28 techniques. Atomic a b s o r p t i o n was used to measure n i t r i c - p e r c h l o r i c a c i d e x t r a c t a b l e Cu, Fe, Mn and Zn l e v e l s i n Rosetown and Red Deer area p l a n t s and s o i l s , and Cu c o n c e n t r a t i o n s i n Swan R i v e r - Dauphin area p l a n t samples. A c o l o r i m e t r i c proce- dure was used to determine the Mo content of both g e o l o g i c a l and p l a n t samples from the Swan R i v e r - Dauphin area. Se was d e t e r - mined f l u o r i m e t r i c a l l y i n s e l e c t e d Rosetown and Swan R i v e r - Dauphin area p l a n t s , s o i l s and bedrock. 1. COPPER, IRON, MANGANESE AND ZINC a) D i g e s t i o n of P l a n t s M i l l e d v e g e t a t i o n (0.500 g) was p l a c e d i n a l a r g e , 25 x 300 mm, pyrex t e s t tube and 10 ml of 4:1 n i t r i c p e r - c h l o r i c a c i d added. A f t e r standing o v e r n i g h t the a c i d - sample mixture was p l a c e d on a hot a i r bath a t moderate heat (approximately 150° C) and evaporated s l o w l y to dry- ness. 2.5 ml of 6M HCl were then added t o the p a r t l y c o o l e d t e s t tube t o d i s s o l v e the r e s i d u e . D i s t i l l e d water was used to b r i n g the f i n a l sample volume to 10 ml p r i o r to a n a l y s i s . b) D i g e s t i o n of S o i l s Two s l i g h t l y d i f f e r e n t n i t r i c - p e r c h l o r i c a c i d e x t r a c - t i o n procedures (#1 and 2) were employed. Procedure 1 was the f i r s t to be used and was a p p l i e d to Red Deer area samples o n l y . (i) Procedure 1 1 ml of 4:1 n i t r i c : p e r c h l o r i c a c i d was added to a 20 X 170 mm pyrex t e s t tube c o n t a i n i n g 0.200 g of ground s o i l . T e s t tubes were p l a c e d on a hot o a i r bath a t 100 C f o r t h r e e hours. A f t e r c o o l i n g sample volume was made up to 10 ml w i t h 1.5M HCI. ( i i ) Procedure 2 E i t h e r 0.200 or 0.500 g of minus 100-mesh s o i l were weighed i n t o a pyrex t e s t tube. 2 ml of 4:1 n i t r i c : p e r c h l o r i c a c i d were then added and the mix- t u r e p l a c e d on a hot a i r bath a t approximately o 200 C. E v a p o r a t i o n was allowed to proceed to dry- ness o v e r n i g h t . A f t e r p a r t i a l c o o l i n g the r e s i d u e was taken up i n 2.5 ml 6M HCI and 7.5 ml of d i s t i l l e d water. Although Procedure 1 had the advantage of being r e l a t i v e l y r a p i d , the e f f e c t i v e n e s s of t r a c e element e x t r a c t i o n was very s e n s i t i v e to temperature, which was d i f f i c u l t t o m a i n t a i n con- o s t a n t a t 100 C. Procedure 2 was subsequently i n t r o d u c e d i n order to overcome t h i s d i f f i c u l t y . As i n d i c a t e d i n Table IV the e x t r a c t i o n e f f i c i e n c i e s of the two procedures d i f f e r o n l y s l i g h t l y f o r the elements examined. Comparison of n i t r i c - p e r c h l o r i c e x t r a c t i o n data w i t h r e s u l t s f o r a h y d r o f l u o r i c - n i t r i c - p e r c h l o r i c d i g e s t i o n f o r s e l e c t e d samples i n d i c a t e s t h a t these n i t r i c - p e r c h l o r i c a t t a c k s l i b e r a t e from 60 to 75% of the t o t a l s o i l c o n c e n t r a t i o n s . c) A n a l y s i s D i g e s t e d samples, i n 1.5 M HCI s o l u t i o n s , were a s p i r a t e d i n t o the a i r - a c e t y l e n e flame of a Techtron AA-4 spectrophotometer 30 Table IV R e l a t i v e e x t r a c t i o n e f f i c i e n c i e s o f s o i l d i g e s t i o n Procedures 1 and 2 f o r s e l e c t e d C h o r i z o n Rosetown area samples. R e l a t i v e E x t r a c t i o n E f f i c i e n c y * (%) S o i l Parent Number o f M a t e r i a l Analyses Cu Fe Mn Zn L a c u s t r i n e 26 97.2 95.1 114.6 89.0 c l a y L a c u s t r i n e 31 94.0 89.4 102.5 98.2 s i l t and sand A e o l i a n 27 84.1 100.0 103.5 93.8 sand R e l a t i v e e x t r a c t i o n e f f i c i e n c y = a / x 100. b where a = me.an_,trace element content u s i n g d i g e s t i o n Procedure 1, and b = mean t r a c e element content u s i n g d i g e s t i o n Procedure 2. and absorbance val u e s recorded manually. D e t a i l s of standard p r e p a r a t i o n and i n s t r u m e n t a l o p e r a t i o n procedures are d e s c r i b e d by F l e t c h e r (1971). Instrumental s e t t i n g s f o r the fo u r elements measured are g i v e n i n Table V. An IBM 360/7 0 computer was used to c o n v e r t absorbance data i n t o c o n c e n t r a t i o n s , and to punch c o n c e n t r a t i o n v a l u e s onto cards ( F l e t c h e r , 1970). Each a n a l y t i c a l batch of 24 samples c o n t a i n e d one blank, one l a b o r a t o r y standard sample used to estimate among batch a n a l y t i c a l v a r i a t i o n s , and one randomly s e l e c t e d sample which was analysed i n d u p l i c a t e i n order t o assess w i t h i n batch a n a l y t i c a l v a r i a b i l i t y . Computational procedures f o r both w i t h i n and among batch p r e c i s i o n e s t i m a t i o n are o u t l i n e d i n Appendix B. As i n d i c a t e d i n Table VI p r e c i s i o n e stimates u s i n g both procedures compare f a v o u r a b l y and g e n e r a l l y range w i t h i n a c c e p t a b l e l i m i t s (+ 5 t o 25%). 2. MOLYBDENUM A v a r i e t y of sample e x t r a c t i o n . p r o c e d u r e s were employed p r i o r to the c o l o r i m e t r i c d e t e r m i n a t i o n of molybdenum. A d ry- ashing/HCl procedure was used r o u t i n e l y on p l a n t m a t e r i a l s where- as a " p a r t i a l " n i t r i c - p e r c h l o r i c d i g e s t i o n was g e n e r a l l y a p p l i e d to g e o l o g i c a l m a t e r i a l s . An attempt was made t o measure the p l a n t - a v a i l a b l e Mo s t a t u s of s e l e c t e d s o i l samples employing an a c i d ammonium o x a l a t e procedure. Residues from the o x a l a t e ex- t r a c t i o n were d i g e s t e d i n a mixture of h y d r o f l u o r i c , n i t r i c and p e r c h l o r i c a c i d s so t h a t the " t o t a l " sample Mo content c o u l d be estimated. a) D i g e s t i o n of P l a n t s M i l l e d v e g e t a t i o n (1.000 g) was ashed o v e r n i g h t i n a 32 Table V Instrumental s e t t i n g s f o r Techtron AA-4 spectrophotometer. Element Wavelength A i r Pressure F u e l S l i t Lamp (A) (psi) Gauge Width Current S e t t i n g (u) (mA) Cu 3247.5 20 2.5 50 3 Fe 2483.3* 20 2.5 50 5 3719.9 Mn 2794.8 20 2.5 50 5 Zn 2138.6 20 2.5 100 6 * 2483.3 used f o r p l a n t s ; 3719.9 used f o r s o i l s . 33 Table VI P r e c i s i o n o f Cu, Fe, Mn and Zn a n a l y s e s , at the 95% conf i d e n c e l e v e l . P r e c i s i o n (+ %) Type o f Element „ , „„ . . , r,1 . , G e o l o g i c a l M a t e r i a l P l a n t Estimate M . . „ , _ j M a t e r i a l Procedure Procedure Among Batch* Cu Fe Mn Zn 17.0 15.4 13.1 26.4 23.2 18.8 10.8 32.8 7, 25. 18. 9, Wi t h i n Batch** Number o f Analyses Cu Fe Mn Zn 73 8.6 14.2 7.4 9.0 52 10 14 5 17 18 21.8 28.1 24.9 8.9 Number of P a i r e d Analyses 61 74 17 Based on one a n a l y s i s o f U.B.C. Standard Rock #1 ( g e o l o g i c a l m a t e r i a l ) o r o f a l f a l f a sample #73-PD-1508 (pl a n t m a t e r i a l ) per a n a l y t i c a l b atch. ** Based on d u p l i c a t e analyses o f one randomly s e l e c t e d sample per a n a l y t i c a l b atch. 34 o 20 x 80 mm pyrex t e s t tube a t 625 C. The r e s i d u e was taken up i n 10 ml 6M HCI and 5 ml of t h i s s o l u t i o n was set a s i d e f o r Mo d e t e r m i n a t i o n . b) D i g e s t i o n of G e o l o g i c a l M a t e r i a l s (i ) N i t r i c - p e r c h l o r i c a c i d e x t r a c t i o n Ground s o i l and rock, and s i e v e d stream sediment were d i g e s t e d as d e s c r i b e d f o r Cu, Fe, Mn and Zn Procedure 2. A f t e r e v a p o r a t i o n t o dryness 4 ml of 6M HCI were used to d i s s o l v e the r e s i d u e . A 2 ml a l i q u o t of t h i s s o l u t i o n was t r a n s f e r r e d to a separate t e s t tube and d i l l u t e d t o 5 ml w i t h 6M HCI i n p r e p a r a t i o n f o r de t e r m i n a t i o n of molybdenum. ( i i ) A c i d ammonium o x a l a t e e x t r a c t i o n T h i s procedure was m o d i f i e d from t h a t d e s c r i b e d by Reisenaur (1965). 100 ml of a c i d ammonium o x a l a t e s o l u t i o n (pH 3.3) wer.e added to 10.00 g of unground minus 10-mesh s o i l i n a p l a s t i c c e n t r i f u g e b o t t l e . Samples were p l a c e d on a h o r i z o n t a l shaker f o r 12 hours and then c e n t r i f u g e d a t 4000 rpm f o r 2 0 minutes. A 50 ml a l i q u o t of the supernatant l i q u i d was t r a n s - f e r r e d t o a 100 ml beaker and evaporated t o dryness on a hot p l a t e . The r e s i d u e was p l a c e d i n a m u f f l e furnace a t 450° C f o r about 3 1/4 hours. The r e s u l - t a n t ash was taken up i n 10 ml of 6M HCI and h a l f of t h i s s o l u t i o n was used f o r Mo a n a l y s i s . ( i i i ) H y d r o f l u o r i c - n i t r i c - p e r c h l o r i c a c i d e x t r a c t i o n Ammonium o x a l a t e t r e a t e d s o i l was washed i n d i s t i l l e d water and a 2.0 g subsample was i g n i t e d a t o 600 C f o r about 3 hours. 0.500 g of t h i s m a t e r i a l were d i g e s t e d i n a t e f l o n e v a p o r a t i n g d i s h i n 5 ml h y d r o f l u o r i c a c i d and 2.5 ml 4:1 n i t r i c : p e r c h l o r i c acid., A f t e r e v a p o r a t i o n t o dryness sample r e s i d u e s were d i s s o l v e d i n 10 ml 6M HCl of which 5 ml were s e t a s i d e f o r d e t e r m i n a t i o n of molybdenum. c) A n a l y s i s Mo was measured c o l o r i m e t r i c a l l y a c c o r d i n g to the d i t h i o l procedure of Stanton and Hardwick (1967). Sodium i o d i d e , however, was used i n p l a c e of the recommended potassium i o d i d e to supress Cu i n t e r f e r e n c e ( D e l a v a u l t , 1972), because use of the l a t t e r r e - agent r e s u l t e d i n the formation of a white potassium p e r c h l o r a t e p r e c i p i t a t e when the sample r e s i d u e was leached w i t h 6M HCl. A l s o a few drops of acetone were added to c l a r i f y clouded p e t r o - leum e t h e r e x t r a c t s as suggested by Hoffman and Waskett-Myers (1974). Mo v a l u e s o b t a i n e d i n t h i s study are compared i n Table VII w i t h those o b t a i n e d by two other l a b o r a t o r i e s u s i n g atomic absorp- t i o n procedures. G e n e r a l l y good agreement between the two s e t s of data suggests t h a t the accuracy of the c o l o r i m e t r i c method employed was s a t i s f a c t o r y , a t l e a s t f o r p l a n t s . A n a l y t i c a l p r e c i s i o n , estimated from the r e s u l t s of d u p l i c a t e a n a l y s e s (see Appendix B f o r computational p r o c e d u r e s ) , ranged between 36 Table V II Comparison of Mo c o n c e n t r a t i o n s obtained by t h i s and other l a b o r a t o r i e s on s e l e c t e d p l a n t samples. Mo Content (ppm) Sample U.B.C. Other Number Values* Values 7 4 - 1 1 2 7 1 T 2 1 . 6 1.0-1.6 (4) 74-1128 1.7 , 1.2-2.4 1.3 (4) 74-1176 1.6 , 1.2-2.0 1.3 (4) 74-1207 2.9 , 2.0-4.0 3.0 (4) 74-1852 0.7 n 0.4-1.0 0.3 (4) 74-1858 1.9 1.4-2.0 0.3 1 (4) 74-M-47 7.0 9.0 (1) 7 4-M-56 11.3 12.0 (1) 74-M-106 12.1 10.0 (1) 74-M-116 24.3 24.0 (1) 2 2 2 2 Mean and range: number of analyses i n parentheses. C o n c e n t r a t i o n s measured by atomic a b s o r p t i o n by the Manitoba Dept.-of A g r i c u l t u r e , Winnipeg; number of de t e r m i n a t i o n s u n c e r t a i n . 'Concentrations measured by atomic a b s o r p t i o n a t the Canada Dept. of A g r i c u l t u r e Research S t a t i o n , A g a s s i z , B.C.; number of d e t e r m i n a t i o n s u n c e r t a i n . 37 about + 25 and + 35%, depending upon the method of e x t r a c t i o n used (Table V I I I ) . Comparison of n i t r i c - p e r c h l o r i c e x t r a c t i o n r e s u l t s w i t h the combined r e s u l t s f o r o x a l a t e and h y d r o f l u o r i c - n i t r i c - p e r - c h l o r i c e x t r a c t i o n s (Table IX) i n d i c a t e s t h a t the n i t r i c - p e r - c h l o r i c d i g e s t i o n r e l e a s e d an average of only about 38% of the t o t a l amount of Mo p r e s e n t i n the s o i l , but t h a t t h i s percentage v a r i e d c o n s i d e r a b l y from one sample to the next (range 12.5 to 64.0%). A c i d ammonium o x a l a t e treatment l i b e r a t e d , on the average, a s i m i l a r p r o p o r t i o n (35%) of the t o t a l s o i l molyb- denum. Amounts removed from i n d i v i d u a l samples by these two " p a r t i a l " e x t r a c t a n t s however g e n e r a l l y were not c l o s e l y r e l a t e d . 3. SELENIUM The f l u o r o m e t r i c procedure developed f o r the d e t e r m i n a t i o n of Se i s d e s c r i b e d i n d e t a i l i n Appendix A. B r i e f l y , the t e c h - nique i n v o l v e d d i g e s t i o n of 0.500 g of e i t h e r p l a n t or g e l o g i c a l m a t e r i a l i n a mixture of n i t r i c and p e r c h l o r i c a c i d s as recom- mended by s e v e r a l workers (Lane, 1966; Levesque and Vendette, 1971: Olson, 1969; Watkinson, 1960). E v a p o r a t i o n was continued to the f i r s t appearance of white p e r c h l o r i c a c i d fumes and then f o r an a d d i t i o n a l 15 minutes (Olson, 1969). Se was separated from p o t e n t i a l l y i n t e r f e r i n g elements such as Fe by c o p r e c i p i t a - t i o n w i t h As (Allaway and Cary, 1964). A f t e r r e a c t i o n w i t h 2, 3-diaminonapathalene (DAN) i n the presence of EDTA, Se was e x t r a c t e d i n t o a; n-hexane l a y e r ( W i l k i e and Young, 1970). 38 Table V I I I P r e c i s i o n of Mo a n a l y s i s , a t the 95% c o n f i d e n c e l e v e l , based on d u p l i c a t e d e t e r m i n a t i o n s on randomly s e l e c t e d samples. E x t r a c t i o n Sample Number of P r e c i s i o n Type D u p l i c a t e Analyses (+%) N i t r i c - p e r c h l o r i c P l a n t 27 26.4 Rock, S o i l 29 29.4 Stream Sediment A c i d Ammonium S o i l 12 35.9 Oxalate H y d r o f l u o r i c - n i t r i c - S o i l 9 25.7 p e r c h l o r i c 39 Table IX Percentage of estimated t o t a l s o i l Mo content removed by a c i d ammonium o x a l a t e and n i t r i c - p e r c h l o r i c a c i d e x t r a c t i o n s . „ , i • Percentage of E x t r a c t i o n Estimated T o t a l Procedure Removed* N i t r i c - P e r c h l o r i c 38.2 A c i d 1 2 . 5 - 64.0 A c i d Ammonium 35.2 Oxalate 3.0 - 62.5 A r i t h m e t i c mean and range; based on a n a l y s i s of 20 samples. 40 A Turner Model 111 Fluore,meter was used f o r f l u o r e s e n c e measure- ments. A d e t e c t i o n l i m i t of approximately 20 ppb was achieved, and t h i s c o u l d have been improved by i n c r e a s i n g the sample weight. The accuracy of the method f o r b i o l o g i c a l m a t e r i a l s , as checked by the a n a l y s i s of f o u r i n t e r l a b o r a t o r y standard samples, was s a t i s f a c t o r y (Table X). Recovery of 0.5 ug of Se added t o 0.500 g of 15 s o i l samples averaged 94%, and ranged from 88 to 115%. P r e c i s i o n , determined from the r e s u l t s o f d u p l i c a t e analyses of 30 randomly s e l e c t e d p l a n t , s o i l and rock samples (see Appendix B f o r computational p r o c e d u r e s ) , was approximately + 25% at the 95% co n f i d e n c e l e v e l . 4. SOIL REACTION 10 ml of d i s t i l l e d water were added to approximately 10.0 g unground (minus 10-mesh) s o i l i n a 3 oz d i s p o s a b l e D i x i e cup. A d d i t i o n a l water was added t o p a r t i c u l a r l y o r g a n i c - r i c h samples. S o i l - w a t e r mixtures were allowed t o e q u i l i b r a t e f o r at l e a s t one hour w i t h r e g u l a r s t i r r i n g . Measurements were made w i t h an Orio n s p e c i f i c i o n meter (Model 404) equipped w i t h calomel r e f e r e n c e and Ag/AgCl pH e l e c t r o d e s . The instrument was c a l i - b r a t e d p e r i o d i c a l l y i n b u f f e r s o l u t i o n s of pH 4.0 and 7.0. C. STATISTICAL METHODS The purpose of t h i s s e c t i o n i s t o d e s c r i b e , i n g e n e r a l 41 T a b l e X Comparison of accepted Se c o n c e n t r a t i o n s f o r s e l e c t e d standard b i o l o g i c a l samples w i t h v a l u e s determined i n t h i s study. Sample Se Content (ppm) D e s c r i p t i o n Accepted T h i s Values** Study* Standard Reference M a t e r i a l s #1571 0.080+0.010 0.074 Orchard Leaves 0.065 - 0.080 (6) #1577 1.100+0.100 1.136 Bovine L i v e r 0.940 - 1.34 0 (11) I n t e r n a t i o n a l Atomic Energy Agency I n t e r - comparison Samples #A - 2 D r i e d Whole Animal 0.585 0.594 Blood 0.580 - 0.600 (6) #A - 6 3.070 2.953 F i s h S o l u b l e s 2.900 - 2.980 (3) Mean and range; number of analyses i n parentheses. * Values For Standard Reference M a t e r i a l s from O r v i n i e t a l . (1974), and f o r IAEA Intercomparison Samples A-2 and A-6 from G o r s k i e t a l . (1974) and I n t e r n a t i o n a l Atomic Energy Agency (1975) r e s p e c t i v e l y . 42 terms o n l y , the v a r i o u s s t a t i s t i c a l methods employed i n t h i s i n v e s t i g a t i o n . D e t a i l s of computational procedures are g i v e n i n Appendix B. C a l c u l a t i o n s were c a r r i e d out, f o r the most p a r t , on an IBM 360/70 computer, u s i n g programs s u p p l i e d by the U n i v e r - s i t y of B r i t i s h Columbia Computing Centre. 1. DATA TRANSFORMATION Trace element data were log-transformed (base 10) p r i o r t o most s t a t i s t i c a l m a n i p u l a t i o n s . S e v e r a l authors have suggested t h a t the d i s t r i b u t i o n of t r a c e elements i n g e o l o g i c a l m a t e r i a l s approximates l o g n o r m a l i t y (Ahrens, 1954; Hawkes and Webb, 1962; Miesch, 1967). Fu t h e r - more, Duval e t a l . (1971), u s i n g computer based s i m u l a t i o n s t u d i e s , have shown t h a t the c o n c e n t r a t i o n s of t r a c e c o n s t i t u e n t s i n a v a r i e t y of e a r t h s u r f a c e environmental m a t e r i a l s i n c l u d i n g p l a n t s , may under a p p r o p r i a t e circumstances, be expected to ap- proach a iognormal d i s t r i b u t i o n . Although data s e t s i n t h i s study are t y p i c a l l y r e l a t i v e l y s m a l l (< 30 o b s e r v a t i o n s ) , a l i m i t e d number of the l a r g e s t s e t s were t e s t e d f o r d e v i a t i o n s from both n o r m a l i t y and l o g n o r m a l i t y u s i n g a c h i - s q u a r e procedure. R e s u l t s , shown i n Table XI i n d i - c ate t h a t approximately 60% of the sample s e t s t e s t e d are not l i k e l y (95% c o n f i d e n c e l e v e l ) t o be drawn from normally d i s t r i - buted parent p o p u l a t i o n s . However, l o g - t r a n s f o r m i n g the data had l i t t l e e f f e c t on the outcome of the t e s t , and the n u l l 43 Table XI R e s u l t s of c h i - s q u a r e n o r m a l i t y t e s t s on p l a n t and s o i l Cu, Fe, Mn and Zn data from the Rosetown area. S o i l Parent Sample Data Number Chi-Prob* M a t e r i a l Type Type** o f — Values Cu Fe Mn Zn L a c u s t r i n e c l a y L a c u s t r i n e s i l t and sand G l a c i a l t i l l A e o l i a n sand Wheat N 28 0.40 0.31 0.59 0.82 L 28 0.42 0.20 0.46 0.92 A Horizon N 51 0.04 0.10 0.27 0.28 S o i l L 51 0.14 0.16 0. 30 0.19 C Horizon N 96 0.01 0.56 0.60 0.24 S o i l L 96 0.00 0.08 0.75 0.00 Wheat N 24 0.01 0.03 0.11 0.24 L 24 0.03 0.01 0.12 0.32 A Horizon N 37 0.00 0.00 0.00 0.00 S o i l L 37 0.00 0.00 0.00 0 .00 C Horizon N 59 0.00 0.00 0.00 0.00 S o i l L 59 0.00 0.00 0.00 0.00 Wheat N 20 0.03 0.25 0.00 0.00 L 20 0.01 0.00 0.00 0.00 A Horizon N 48 0.43 0.26 0.63 0.17 S o i l L 48 0.43 0.19 0.74 0.01 C Hor i z o n N 94 0.00 0.44 0.51 0.33 S o i l L 94 0.10 0.59 0.28 0. 39 Wheat N 21 0.03 0.00 0.01 0.04 L 21 0.03 0.01 0.00 0.08 A Horizon N 38 0.00 0.00 0.00 0.00 S o i l L 38 0.00 0.00 0.00 0.00 C Horizon N 57 0.00 0.00 0.00 0.00 S o i l L 57 0.00 0.00 0.00 0.00 A c h i - p r o b v a l u e of l e s s than 0.05 i n d i c a t e s t h a t the sample t e s t e d i s not l i k e l y (95% confidence) t o have been drawn from a normally d i s t r i b u t e d parent p o p u l a t i o n . N = n a t u r a l v a l u e s : L = l o g 10 v a l u e s . 44 hypothesis was a l s o r e j e c t e d f o r about 60% of the l o g 10 data s e t s . N e v e r t h e l e s s , as Miesch (1976) has p o i n t e d out, l o g - t r a n s - formation of t r a c e element data can be j u s t i f i e d on other grounds. For example, f o r minor c o n s t i t u e n t s i n n a t u r a l m a t e r i a l s v a r i a n c e a r i s i n g both from a n a l y t i c a l sources and t h a t a c t u a l l y present i n the m a t e r i a l being examined, i s g e n e r a l l y approximately pro- p o r t i o n a l to the average amount of the c o n s t i t u e n t present. Log- t r a n s f o r m a t i o n of the data s e t s tends t o homogenize the data v a r i a n c e over the e n t i r e c o n c e n t r a t i o n range. T h i s i s p a r t i c u l a r l y usefulbecause homogenous v a r i a n c e i s assumed f o r both a n a l y s i s of v a r i a n c e and Duncan's New M u l t i p l e Range t e s t s which were used e x t e n s i v e l y i n t h i s study. D e v i a t i o n s of l o g 10 data from the normal form,noted i n Table XI,are not c o n s i d e r e d s e r i o u s because the assumption of l o g n o r m a l i t y does not, i n most cases, g r e a t l y a f f e c t the r e s u l t s of average and v a r i a b i l i t y estimates (Miesch, 1970). Although i t i s more important f o r a n a l y s i s of v a r i a n c e based methods of s i g n i f i c a n c e t e s t i n g , even these procedures are c o n s i d e r e d to be r e l a t i v e l y i n s e n s i t i v e to s m a l l d e v i a t i o n s from n o r m a l i t y . 2. ESTIMATION OF POPULATION PARAMETERS E i t h e r the geometric mean (GM) or, l e s s commonly the median (M), was used to estimate the c e n t r a l tendency of sampled popu- l a t i o n s . The geometric mean was computed (Le and Seagraves, 1974) as the a n t i l o g a r i t h m of the a r i t h m e t i c mean of 45 log-transformed t r a c e element v a l u e s . V a r i a b i l i t y of data s e t s was expressed e i t h e r as the geometric d e v i a t i o n (GD) or the range of observed c o n c e n t r a t i o n s . The geometric d e v i a t i o n was c a l c u l a t e d (Le and Seagraves, 197 4) as the a n t i l o g a r i t h m of the standard d e v i a t i o n of l o g - t r a n s f o r m - ed c o n c e n t r a t i o n s . In the case where log-transformed data ap- proximate a normal d i s t r i b u t i o n , the l i m i t s w i t h i n which about 95% of the parent p o p u l a t i o n v a l u e s occur can be estimated as GMxGD2 and GM-^GD2. 3. IDENTIFICATION OF.OUTLIERS Examination of a n a l y t i c a l r e s u l t s i n d i c a t e d the presence, i n some data s e t s , of one or more anomalously h i g h v a l u e s which were c o n s i d e r e d u n l i k e l y t o be r e p r e s e n t a t i v e of the p o p u l a t i o n s from which they were taken. Such v a l u e s c o u l d r e f l e c t , f o r example, the e f f e c t s of sampling or a n a l y t i c a l e r r o r , or perhaps l o c a l secondary enrichment pro c e s s e s . Consequently, to a v o i d b i a s i n g of means i t was decided t o r e j e c t a l l samples f o r which the l o g 10 c o n c e n t r a t i o n of any element was g r e a t e r than the l o g 10 a r i t h m e t i c mean p l u s two standard d e v i a t i o n v a l u e s . Although e f f e c t i v e f o r l a r g e r sample s e t s ( > 20 o b s e r v a t i o n s ) , f o r s m a l l e r ones t h i s procedure i s of l i m i t e d u s e f u l n e s s . Samples r e j e c t e d i n t h i s f a s h i o n are i n d i c a t e d i n the data l i s t i n g s i n Appendix C. 46 4. TESTS OF SIGNIFICANCE a) C o r r e l a t i o n The l i n e a r c o r r e l a t i o n c o e f f i c i e n t , r , was computed (Le and Seagraves, 1974) to measure the s t r e n g t h of r e l a t i o n s h i p s between data f o r d i f f e r e n t types of a s s o c i a t e d samples, such as t r a c e element c o n c e n t r a t i o n s i n p l a n t and s o i l m a t e r i a l obtained at the same s i t e . A b i v a r i a t e normal p o p u l a t i o n i s assumed, but t h i s s t a t i s t i c i s g e n e r a l l y c o n s i d e r e d to be r e l a t i v e l y i n - s e n s i t i v e t o d e v i a t i o n s from n o r m a l i t y . b) A n a l y s i s of V a r i a n c e A s i n g l e c l a s s i f i c a t i o n a n a l y s i s of v a r i a n c e procedure was used t o p a r t i t i o n the t o t a l data v a r i a b i l i t y i n t o w i t h i n and among group components. Data groups were d e f i n e d e i t h e r on the b a s i s of geographic areas of f i x e d s i z e (townships or sample s i t e s ) or a c c o r d i n g to parent m a t e r i a l type. Although t h i s t e s t assumes t h a t sampled p o p u l a t i o n s are normally d i s t r i b u t e d and have equal v a r i a n c e s , r e s u l t s are changed v e r y l i t t l e by moderate v i o l a t i o n s of these assumptions. I t has been documented f o r g e n e r a l use on the U.B.C. IBM 360/7 0 computer by Coshow (1971). c) Duncan's New M u l t i p l e Range T e s t T h i s t e s t was used to e v a l u a t e the s i g n i f i c a n c e of d i f - f e r e n c e s among means f o r v a r i o u s groups of data d e f i n e d on the b a s i s of s o i l parent m a t e r i a l . I t has been d e s c r i b e d i n d e t a i l by Duncan (1955), and compared with other similar tests by Steel and Torrie (1960). As Miesch (1976) has noted, i t may be considered an extension of the " t " t e s t to the case of more than two means. Like the analysis of variance i t assumes that samples are drawn randomly from normal populations with a common variance. A U.B.C. Computing Centre program documented by Halm (1971) was employed for a l l c a l c u l a t i o n s . d) Median Test This procedure was used to test the hypothesis that samples were drawn randomly from populations having i d e n t i c a l medians. E s s e n t i a l l y i t involves determining the number of values within each data set which occur above and below the over- a l l median of the combined sets, and comparing these numbers with those expected from the n u l l hypothesis using a chi-square test (Walker and Lev, 1953). Though based on the assumption that a l l populations have the same form, i t i s generally believed that the test i s not sensitive to variations i n population form. CHAPTER I I I ROSETOWN AREA 48 A. DESCRIPTION OF STUDY AREA 1. GENERAL 2 The Rosetown area i n c l u d e s approximately 9,900 km (3,900 sq mi) i n west-central Saskatchewan, southwest of Saskatoon ( i n s e t map, F i g 8). S e m i - a r i d c l i m a t i c c o n d i t i o n s p r e v a i l throughout the r e g i o n . The mean J u l y temperature i s o o © approximately 19 C (66 F) whereas t h a t f o r January i s about -16 C (3 F ) . T o t a l p r e c i p i t a t i o n i s about 35 cm (14 i n ) , h a l f of which f a l l s d u r i n g the growing season from May through September ( E l l i s e t a l . , 1970). P h y s i o g r a p h i c a l l y the area i n c l u d e s p o r t i o n s of both the Saskatchewan P l a i n and A l b e r t a High P l a i n Regions of the Canadian I n t e r i o n P l a i n (Bostock, 1970). The Saskatchewan P l a i n Region i s r e p r e s e n t e d by both the Saskatchewan R i v e r P l a i n and the Howarden H i l l s Upland, and the A l b e r t a High P l a i n by the M i s s o u r i Coteau Upland ( F i g 8). The Saskatchewan R i v e r P l a i n , which oc- c u p i e s the c e n t r a l lowland area i s g e n e r a l l y f l a t t o g e n t l y r o l l i n g , and ranges i n e l e v a t i o n from about 600 m (2,000 f t ) adjacent to the uplands to about 500 m (1,600 f t ) i n the n o r t h - e a s t . The Howarden H i l l s Upland i n the e a s t r i s e s t o a maximum e l e v a t i o n of o n l y about 615 m (2,050 f t ) and i s c h a r a c t e r i z e d by an u n d u l a t i n g t o r o l l i n g s u r f a c e . C o n s i d e r a b l y higher e l e v a - t i o n s (up to 750 m or 2,500 f t ) and more rugged r e l i e f occur on the M i s s o u r i Coteau Upland, both i n the south and i n the northwest. K>80OO' Figure8. Topography and drainage, Rosetown area. 50 P r i m a r i l y because of the r e l a t i v e l y low r a i n f a l l , p e r e n n i a l streams are r a r e throughout most of the r e g i o n and d i s c h a r g e , p a r t i c u l a r l y i n upland areas, i s c o n t r o l l e d mainly by evapora- t i o n . The South Saskatchewan R i v e r , which flows northward through the e a s t e r n p o r t i o n of the area, r e c e i v e s o n l y a smal l amount of l o c a l r u n o f f . 2. BEDROCK The subcrop o f bedrock u n i t s i s i n d i c a t e d i n F i g 9. These u n i t s c o n s i s t of an e s s e n t i a l l y f l a t l y i n g sequence of c l a y s , s i l t s , sands and g r a v e l s , ranging i n age from Upper Cretaceous through Quaternary. The o l d e s t u n i t , the Lea Park Formation, a noncalcareous grey t o b l a c k c l a y ( F r a s e r e t a l . , 1935), subcrops o n l y along the base of the Tyner V a l l e y , a p r e g l a c i a l bedrock d e p r e s s i o n which t r a v e r s e s the r e g i o n from southwest to n o r t h e a s t . T h i s formation grades upwards i n t o the s i l t y grey d e l t a i c sands (McLean, 1971) of the J u d i t h R i v e r Formation, which i n t h i s area has a maximum t h i c k n e s s of about 75 m (250 f t ) . The J u d i t h R i v e r Formation i s , i n t u r n , o v e r l a i n by the Bearpaw Formation, the most widespread bedrock u n i t . The Bearpaw, which l o c a l l y ranges up to 285 m (950 f t ) i n t h i c k n e s s , has been d i v i d e d by C a l d w e l l (196,8) i n t o s i x s i l t y c l a y and f i v e somewhat t h i n n e r s i l t y sand members. X-ray a n a l y s i s of Bearpaw Formation m a t e r i a l from the v i c i n i t y of Gardiner Dam i n d i c a t e s 3° 0 0 ' 1 0 6 ° 4 3 ' RI4 RI2 RIO R 8 BEDROCK GEOLOGY Tert iary- Qua ternary | O j Interbedded silt,marl.sand and gravel Cretaceous | 2 | Bearpaw Formation: noncalcareous silt and clay [:-:&:\ Judith River Formation: fine sand and silt | ^ | Lea Park Formation: silty clay Figure 9. Bedrock geology, Rosetown area. t h a t m o n t m o r i l l o n i t e i s the major c l a y m i n e r a l , and t h a t l e s s e r amounts of i l l i t e and k a o l i n i t e and/or c h l o r i t e are a l s o p r e s e n t (Forman and R i c e , 1959). T h i s formation, which has been r e p o r t e d by W i l l i a m s e t a l . (1941) to c o n t a i n up t o 3.5 ppm Se, c o r r e l a t e s w i t h the S e - r i c h upper p o r t i o n of the P i e r r e Shale of South Dakota.(McLean, 1971; L a k i n , 1961). Up to 75 m (250 f t ) of T e r t i a r y and Quaternary sediments l o c a l l y o v e r l i e both the Bearpaw and J u d i t h R i v e r Formations. These r e l a t i v e l y young d e p o s i t s i n c l u d e a v a r i e t y of non-marine l i t h o l o g i e s ranging from c l a y e y marls, through v e r y f i n e to medium g r a i n e d sands, t o w e l l rounded g r a v e l s ( C h r i s t i a n s e n and Meneley, 1971). 3. SOIL PARENT MATERIAL Bedrock u n i t s are t y p i c a l l y o v e r l a i n by from 30 to about 150 m (100 to 500 f t ) of P l e i s t o c e n e d r i f t of g l a c i a l , g l a c i o - f l u v i a l and • g l a c i o l a c u s t r i n e o r i g i n ( S c o t t , 1971). T h i s d r i f t cover i s c h a r a c t e r i s t i c a l l y composed of s u c c e s s i v e l a y e r s of g l a c i a l t i l l from 12 to more than 60 m (40 to 200 f t ) t h i c k , and sand and g r a v e l , s i l t and c l a y l a y e r s ranging from 1 to over 30 m (100 f t ) i n t h i c k n e s s ( C h r i s t i a n s e n , 1973). Organic m a t e r i a l beneath the uppermost t i l l sheet has been r a d i o c a r b o n dated a t approximately 10,000 years b e f o r e p r e s e n t ( S c o t t , 1971). The d i s t r i b u t i o n of s u r f i c i a l d e p o s i t s which c o n s t i t u t e the parent m a t e r i a l s f o r s o i l s i n the Rosetown area i s i l l u s t r a t e d 53 i n F i g 10. F i v e major types are re c o g n i z e d - l a c u s t r i n e c l a y , l a c u s t r i n e s i l t and sand, a l l u v i u m , a e o l i a n sand and g l a c i a l t i l l . C a l c a r e o u s t i l l d e p o s i t s u n d e r l i e both the M i s s o u r i Coteau and the Howarden H i l l s Uplands. They have been s u b d i v i d - ed i n t o ground ( F i g 11a), hummocky ( F i g l i b ) , washboard and r i d g e d end moraines on the b a s i s of s u r f a c e morphology ( S c o t t , 1971). In many areas moraines are mantled by v a r i a b l y t e x t u r e d , d i s c o n t i n u o u s a b l a t i o n d e p o s i t s r a n g i n g from l e s s than 1 t o 5 m (15 f t ) i n t h i c k n e s s . T e x t u r a l l y moraines range from s i l t y c l a y t o sandy loam, w i t h abundant pebbles and cobbles of igneous metamorphic and carbonate r o c k s . The c l a y s i z e f r a c t i o n i s r e l a t i v e l y r i c h i n m o n t m o r i l l o n i t e , which a c c o r d i n g t o S c o t t (1971), r e f l e c t s c o n t r i b u t i o n s from the u n d e r l y i n g s h a l e s . L a c u s t r i n e c l a y ( F i g l i e ) , l a c u s t r i n e s i l t and sand ( F i g l i d ) and a e o l i a n sand u n d e r l i e the Saskatchewan R i v e r P l a i n . These d e p o s i t s g e n e r a l l y d i s p l a y g r a d a t i o n a l c o n t a c t s and are under- l a i n by t i l l a t depths of up to 30 m (100 f t ) . The c l a y s i z e f r a c t i o n of l a c u s t r i n e d e p o s i t s , l i k e t h a t of the t i l l s , i s m o n t m o r i l l o n i t e - r i c h , i n d i c a t i n g t h a t both types of d e p o s i t s were e i t h e r d e r i v e d from the same source or from sources w i t h s i m i l a r mineralogy. P a r a b o l i c dunes, and t o a l e s s e r extent u n d u l a t i n g sand p l a i n s ( F i g l i e ) , c h a r a c t e r i z e areas of a e o l i a n s u r f a c e d e p o s i t s . Most dune areas have been s t a b i l i z e d by v e g e t a t i o n , but i n some 108° 00" RI4 [Z—Z\ Lacustrine clay 1 | Lacustrine silt and sand L° o °.1 Alluvium Aeolian sand RI2 RIO R 8 SOIL PARENT M A T E R I A L { j Ground moraine Hummocky moraine DL [~~3~1 Washboard moraine t 4 | Ridged end moraine j Glacial Till Figure 10. Soil parent materials, Rosetown area. Figure 11. Characteristic surface morphologies associated with individual parent materials, Rosetown area. 56 l o c a l i t i e s dune m i g r a t i o n i s a c t i v e l y t a k i n g p l a c e . The f i n e t o medium g r a i n e d sands of the dunes g e n e r a l l y c o n s i s t of from 80 to 90% q u a r t z ( S c o t t , 1971). A l l u v i a l d e p o s i t s ( F i g l l f ) are of both g l a c i a l and p o s t - g l a c i a l o r i g i n . They are d e r i v e d from a v a r i e t y of sources and i n c l u d e a wide range of t e x t u r e s , from f i n e c l a y s through to coarse g r a v e l s . Because the aerial e xtent of the v a r i o u s t e x t u r a l c l a s s e s i s g e n e r a l l y l i m i t e d , no attempt has been made to d i f f e r e n t i a t e them on the p r e s e n t map. 4. SOIL Chernozemic s o i l s cover over 90% of the area, although R e g o s o l i c , S o l o n e t z i c , and G l e y s o l i c s o i l s are a l s o p r e s e n t ( E l l i s e t a l . , 1970). S o i l s n o r t h of the boundary between Townships 24 and 25 g e n e r a l l y belong to the Dark Brown Zone, whereas those south of t h i s l i n e belong mainly to the Brown Zone. P r o f i l e development throughout the area i s g e n e r a l l y weak, due i n p a r t to the r e l a t i v e l y young age of the s u r f i c i a l d e p o s i t s as w e l l as the comparatively low p r e c i p i t a t i o n . Pedogenic processes have had l i t t l e e f f e c t on noncalcareous a e o l i a n sands where O r t h i c Regosols predominate, on the moderately c a l c a r e o u s l a c u s t r i n e c l a y s which t y p i c a l l y support both Rego Dark Brown and Rego Brown Chernozems, and on most a l l u v i a l d e p o s i t s where Rego Chernozemic, R e g o s o l i c and G l e y s o l i c s o i l s are widespread. Horizon d i f f e r e n t i a t i o n i s more advanced, however, on l u c u s t r i n e s i l t s and sands and g l a c i a l t i l l s which are c h a r a c t e r i z e d by O r t h i c and t o a l e s s e r e x t e n t C a l c a r e o u s and E l u v i a t e d Brown and Dark Brown Chernozems. Bm and Bt h o r i z o n s i n these s o i l s , which range i n t h i c k n e s s from a few c e n t i m e t e r s on t i l l s and l a c u s t r i n e s i l t s t o over 38 cm (15 in) on l a c u s t r i n e sands, are commonly u n d e r l a i n by carbonate e n r i c h e d Cca h o r i z o n s . P h y s i c a l and chemical p r o p e r t i e s obtained from E l l i s e t a l . (1970) f o r s e l e c t e d s o i l p r o f i l e s r e p r e s e n t i n g some of the more common s o i l types are g i v e n i n Table X I I . R e s u l t s of s i z e f r a c t i o n a n a l y s i s o f Ap and B h o r i z o n s are t y p i c a l l y v e r y s i m i l a r to those f o r u n d e r l y i n g C h o r i z o n s . S o i l pH v a l u e s g e n e r a l l y f a l l w i t h i n the n e u t r a l to m i l d l y a l k a l i n e range (6.6 to 7.8) and tend to i n c r e a s e w i t h depth. The m a j o r i t y of A,horizons c o n t a i n between 1.5 and. 3.5% o r g a n i c matter, and B h o r i z o n c o n t e n t s g e n e r a l l y range between about 0.5 and 1.5%. C a t i o n exchange c a p a c i t y v a l u e s are s t r o n g l y i n f l u e n c e d by v a r i a t i o n s i n s o i l parent m a t e r i a l . Highest v a l u e s , of over 40 meq/100 g, are a s s o c i a t e d w i t h c l a y - r i c h f i n e l a c u s t r i n e d e p o s i t s , whereas v a l u e s f o r l a c u s t r i n e sands may be l e s s than 10 meq/100 g. 5. AGRICULTURAL LAND USE AND TRACE ELEMENT IMBALANCES C e r e a l g r a i n p r o d u c t i o n , p r i n c i p a l l y wheat, i s the main a g r i c u l t u r a l a c t i v i t y on l a c u s t r i n e c l a y , s i l t and sand d e p o s i t s . Because of the low r a i n f a l l annual y i e l d s on c l a y s o i l s (>20 bu/acre) are a t l e a s t twice those on sands. Mixed farming Table XII Physical and chemical properties of selected Rosetown area soil profiles (from Ellis et al-, 1970). . . Soil Parent Material Subgroup Associ- ation Hor-izon Depth (cm) Particle Size Distribution (%) Sand Silt Clay Organic Matter (%) Lacustrine Rego Regina A p 0-•10 clay Dark Brown C 10+ Rego Sceptre A p 0-•8 Brown c k 1 8-•25 25-•40 c k 3 40+ Laucstrine Orthic Elstow • A p 0-•8 si l t and sand Dark Brown A B 8-•15 Bm 15-•23 Cca^ 23-•40 Ccaj 40-•53 C 53-•75 Eluviated Elstow A p 0-•20 Dark Brown AB]_ 20-•35 A B n 35-•48 Brr£ 48-•58 Brt^ 58-•68 Bca 68-•81 C 81+ Orthic Asguith A p 0-•23 Dark Brown Bm1 23-•35 Bm2 35-•63 C 63+ Glacial Orthic Weyburn A p 0-•10 t i l l Dark Brown B t 10-•20 Bm 20-•25 Cca 25-•48 C 48+ Cation Exchange Capacity (roaĉ iOOg) pH 15.0 13.2 4.7 3.5 3.8 3.3 11.6 10.8 7.4 4.4 1.4 3.9 35.5 41.8 37.5 35.9 12.9 3.0 21.8 83.6 83.2 82.8 87.8 52.8 56.0 58.8 59.5 58.7 26.3 28.1 36.5 28.2 27.7 27.0 56.1 58.1 54.7 57.5 60.4 60.0 38.5 33.2 38.2 38.9 55.6 67.6 53.2 7.4 6.6 5.5 2.7 28.9 20.2 20.1 20.7 21.2 59.4 58.7 58.8 68.3 68.5 69.7 32.4 31.1 37.8 38.1 36.2 36.1 24.3 25.0 24.3 25.1 31.5 29.4 25.1 9.0 10.2 11.8 9.4 18.3 23.8 20.8 19.8 20.0 1.78 2.73 2.92 2.94 1.83 3.58 1.19 0.71 1.32 0.78 2.07 0.83 0.53 44.7 30.7 31.6 29.5 25.8 19.1 22.7 22.4 12.0 11.0 10.5 9.1 18.1 17.1 13.6 7.7 7.9 7.5 7.0 7.5 7.6 7.5 7.7 7.7 7.6 7.8 7.9 6.4 5.7 6.5 6.7 6.6 7.2 7.5 7.1 6.9 7.2 7.3 7.1 6.5 7.4 7.9 8.1 CO 59 i s g e n e r a l l y p r a c t i c e d i n t i l l a r eas, and r e g i o n s u n d e r l a i n by a e o l i a n sand are used mainly f o r p a s t u r e . Trace element imbalances o f major economic s i g n i f i c a n c e are not a t p r e s e n t r e c o g n i z e d w i t h i n the r e g i o n . B o l t o n (1938), however, has suggested the p o s s i b i l i t y of i s o l a t e d cases of Se t o x i c i t y i n c a t t l e g r a z i n g accumulator p l a n t s , A. b i s u l c a t u s and A. p e c t i n a t u s , which are widespread on l a c u s t r i n e c l a y and g l a c i a l t i l l r e s p e c t i v e l y . B o l t o n (1938) f u r t h e r suggested t h a t wheat produced i n t h i s area c o u l d l o c a l l y c o n t a i n c o n c e n t r a t i o n s of Se w i t h i n the t o x i c range f o r l i v e s t o c k . B. SAMPLE COLLECTION AND ANALYSIS 1. COLLECTION a) S o i l A t t e n t i o n focussed on examination of s o i l c o m p o s i t i o n a l v a r i a t i o n s . As was mentioned i n Chapter I (p.23 ), the o r i g i n a l i n t e n t i o n was to d e s c r i b e t r a c e element p a t t e r n s i n terms of 2 d i f f e r e n c e s among means f o r s o i l from i n d i v i d u a l 94 km 2 (36 sq mi) townships. Consequently, two 2.6 km (1 sq mi) s e c t i o n s were randomly s e l e c t e d f o r sampling w i t h i n each town- sh i p to g i v e a t o t a l of approximately 200 sampling l o c a l i t i e s f o r the e n t i r e area. I f s e c t i o n s i n i t i a l l y chosen were not e a s i l y a c c e s s i b l e by road a l t e r n a t e ones were s e l e c t e d . One sample s i t e was l o c a t e d w i t h i n each des i g n a t e d s e c t i o n . When, 60 d u r i n g the course of the study, emphasis s h i f t e d toward an attempt to d e s c r i b e d i f f e r e n c e s among means f o r i n d i v i d u a l s o i l parent m a t e r i a l types, i t became necessary t h a t s o i l a t the l o c a l i t i e s sampled be r e p r e s e n t a t i v e of the parent m a t e r i a l i n d i c a t e d on the s u r f i c i a l g e o l o g i c a l map. S e v e r a l s i t e s had to be resampled t o comply wi t h t h i s requirement. U n i v e r s a l Transvers Mercator (U.T.M.) g r i d c o o r d i n a t e s of i n d i v i d u a l s i t e l o c a t i o n s are l i s t e d i n Appendix C ( l ) . Sample s i t e s were normally s i t u a t e d about 90 m (300 f t ) from s e c t i o n boundary roads, a t i n t e r m e d i a t e topographic p o s i t i o n s , i f p o s s i b l e i n summerfallow.' At each s i t e a 30- 46 cm (12-18 in) depth and C ( u s u a l l y Cca) h o r i z o n sample was obtained u s i n g a s m a l l p o s t - h o l e d i g g e r . The maximum depth f o r C h o r i z o n c o l l e c t i o n was about 1 m (3 f t ) . Although the ma- j o r i t y of 30-46 cm (12-18 in) depth samples were i n C h o r i z o n s , o n e - t h i r d to one-half of t i l l and l a c u s t r i n e s i l t and sand samples i n t h i s depth range represented B h o r i z o n m a t e r i a l . A composite A ( u s u a l l y Ap) h o r i z o n sample was obtained from sever- a l l o c a l i t i e s w i t h i n a few meters of the subsurface sample s i t e . A t approximately one-quarter of the l o c a l i t i e s a d u p l i c a t e s e t of samples was obtained about 30 m (100 f t ) from the o r i g i n a l subsurface sample h o l e . A l l samples were p l a c e d i n k r a f t paper bags and a i r - d r i e d i n the f i e l d . b) P l a n t - S o i l A separate sampling program was undertaken f o r p l a n t s , which a l s o i n c l u d e d c o l l e c t i o n of a s s o c i a t e d s o i l m a t e r i a l . 61 Wheat was chosen f o r sampling purposes because of i t s widespread occurrence throughout the area. The sample d e s i g n d i f f e r e d from t h a t employed f o r s o i l s i n t h a t s e c t i o n s f o r sampling were chosen on a parent m a t e r i a l r a t h e r than an i n d i v i d u a l township b a s i s . Approximately 25 s e c t i o n s were randomly s e l e c t - ed over each of the four most widespread;•parentmaterial types - l a c u s t r i n e c l a y , l a c u s t r i n e s i l t and sand, a e o l i a n sand and g l a c i a l t i l l . As f o r s o i l i n v e s t i g a t i o n s , w i t h i n each designated s e c t i o n one sample s i t e was chosen, a t l e a s t 90 m (300 f t ) from roads, to be more or l e s s r e p r e s e n t a t i v e of the p r e v a l e n t sur- f a c e g e o l o g i c a l d e p o s i t . U.T.M. c o o r d i n a t e s f o r p l a n t - s o i l sample s i t e s are g i v e n i n Appendix C ( 2 ) . At each s i t e Ap and C h o r i z o n s o i l were c o l l e c t e d as d e s c r i b e d i n the p r e c e d i n g s e c t i o n . Wheat p l a n t s were cut a t about 5 cm (2 in) above the ground s u r f a c e w i t h i n a 30m x 30m quadrat c e n t e r e d on the s o i l sample s i t e . Samples were p l a c e d i n brown paper bags and a i r - d r i e d i n the f i e l d and again i n the l a b o r a t o r y a t 70 C. Sampling extended over a two week p e r i o d i n m id-July 1974 and the growth stage o f c o l l e c t e d m a t e r i a l g e n e r a l l y ranged between e a r l y f l a g l e a f and a n t h e s i s . c) Bedrock Bearpaw Formation samples were ob t a i n e d from cores f o r two s t r u c t u r e t e s t h o l e s ( I m p e r i a l O i l S.T.H. 67 and 168) and one s t r a t i g r a p h i c t e s t h o l e (Geol. Surv. of Can. 61-1) s t o r e d at the p r o v i n c i a l government's Subsurface G e o l o g i c a l Laboratory i n Regina ( F i g 12). Although not w i t h i n the Rosetown area 62 FORMATION MEMBER Number.. Location DRILL H O L E STHI68 STH67 GSC 6!-l 6-2I-6W3 I0-20-6W3 27-2I-9W3 White Mud Eostend Bearpaw Oldman Aquadeil Cruikshank Snakebite Ardkenneth Beechy De m a ine Sherra rd Matador Broderick Outl ook U n n a m e d _ S C _ A L L r 200ft 50- m • 100ft 0 LITHOLOGIES j S i l ty clay S a n d B e n t o n i t e s e a m S a m p l e d I n t e r v a l (from Caldwell, 1968) Figure 12. Lithological logs of sampled Bearpaw Formotion drill holes Township-Range-Section). proper, these holes are l o c a t e d near the South Saskatchewan R i v e r , o n l y a few k i l o m e t e r s south of the southern boundary of the area. Here the Bearpaw Formation i s n e a r l y 360 m (1,200 f t ) i n t h i c k n e s s , and the cores sampled r e p r e s e n t the uppermost 240 m (800 f t ) of t h i s sequence. Approximately 50 composite c h i p samples were taken, each r e p r e s e n t i n g a s t r a t i - g r a p h i c i n t e r v a l of about 6 m (20 f t ) . The width of sampled i n t e r v a l s was m o d i f i e d when necessary, however, to i n s u r e t h a t d i s t i n c t i v e l i t h o l o g i e s were c o l l e c t e d s e p a r a t e l y . 2. ANALYSIS Numbers and types of samples analysed are summarized i n Table X I I I . Most of the wheat samples and about 700 of the 1250 s o i l samples c o l l e c t e d were analysed f o r n i t r i c - p e r c h l o r i c a c i d e x t r a c t a b l e Cu, Fe, Mn and Zn by atomic a b s o r p t i o n s p e c t r o - photometry. S o i l d e t e r m i n a t i o n s were c a r r i e d out u s i n g d i g e s t i o n Procedure #2 (p.29 ). Se c o n c e n t r a t i o n s were measured f l u o r i - m e t r i c a l l y f o r about h a l f of the wheat and a s s o c i a t e d C h o r i z o n s o i l and Bearpaw Formation rock samples c o l l e c t e d . pH v a l u e s were determined f o r about o n e - t h i r d of the c o l l e c t e d s o i l s . Procedures f o r sample p r e p a r a t i o n and a n a l y s i s are d e s c r i b e d i n d e t a i l i n Chapter I I . C. RESULTS - COPPER, IRON, MANGANESE AND ZINC In view of the s t r o n g i n f l u e n c e of parent m a t e r i a l on s o i l t r a c e element content, data are d e s c r i b e d i n terms of "among" and " w i t h i n " parent m a t e r i a l v a r i a t i o n s . D e s c r i p t i o n 64 Table XIII Approximate number and types o f analyses performed on Rosetown area samples. Sample Number o f Analyses Types D e s c r i p t i o n pH Cu, Fe Mn, Zn Se S o i l A Horizon 70 70+ 30-45 cm 70 70T C Horizon 70 265* P l a n t - S o i l Wheat - 85 60 Ap Horizon S o i l 105 105 C Horizon S o i l 105 105 60 Rock Bearpaw - - 25 Formation +No d u p l i c a t e s i t e samples anal y s e d . * Includes analyses o f about 50 samples from d u p l i c a t e si.t'e:a. of the e f f e c t s of pedogenic processes i s i n c l u d e d i n the "w i t h i n " parent m a t e r i a l s e c t i o n . 1. AMONG PARENT MATERIAL SOIL.- COMPOSITIONAL VARIATIONS F i v e major parent m a t e r i a l s are re c o g n i z e d i n the Rosetown area - l a c u s t r i n e c l a y , l a c u s t r i n e s i l t and sand, g l a c i a l t i l l , a l l u v i u m and a e o l i a n sand. G l a c i a l t i l l , however, i s su b d i v i d e d on the b a s i s of s u r f a c e morphology i n t o ground, hummocky, r i d g e d end and washboard moraines. Geometric mean t r a c e element c o n c e n t r a t i o n s f o r C h o r i z o n s o i l a s s o c i a t e d w i t h v a r i o u s types of t i l l (Table XIV) are g e n e r a l l y q u i t e s i m i l a r . Mn v a l u e s , f o r example, range between o n l y 2 64 ppm f o r r i d g e d end morairie and 278 ppm f o r ground moraine. Although d i f f e r e n c e s among means f o r other elements are somewhat l a r g e r , a p p l i c a t i o n of Duncan's New M u l t i p l e Range t e s t (Table XV) i n d i c a t e s t h a t none of these d i f f e r e n c e s are s t a t i s t i c a l l y s i g n i f i c a n t . Data f o r the four m o r a i n a l types have consequently been grouped together f o r the purpose of f u r t h e r s t a t i s t i c a l a n a l y s i s . Geometric means and d e v i a t i o n s f o r A and C h o r i z o n and 30-46 cm (12-18 in) depth s o i l a s s o c i a t e d w i t h each of the f i v e major parent m a t e r i a l s are giv e n i n Table XVI. Mean conc e n t r a - t i o n s i n c r e a s e from r e l a t i v e l y low va l u e s f o r a e o l i a n sand, through i n t e r m e d i a t e c o n c e n t r a t i o n s f o r a l l u v i u m , l a c u s t r i n e s i l t and sand, and g l a c i a l t i l l , t o h i g h e s t v a l u e s f o r l a c u s t r i n e 66 Table XIV Trace element content o f C h o r i z o n s o i l from i n d i v i d u a l morainal types, Rosetown ar e a . M o r a i n a l Type Trace Element Content' Cu (ppm) Fe (%) Mn (ppm) Zn (ppm) Number of Analyses Ground 16.1 (1.33) 1.46 (1.23) 278 (L22) 46. 3 (1.30) Hummocky 14.6 1.44 271 46.0 (1.50) (1.40) (1.35) (1.51) 30 Washboard 15.4 1.44 (1.22) (1.18) 273 58.3 (1.26) (1.38) 23 Ridged End 18.3 1.81 (1.24) (1.22) 264 56.1 (1.22) (1.22) a) Geometric mean (GM); geometric d e v i a t i o n (GD) i n p a r e n t h e s i s . b) I n d i v i d u a l data v a l u e s l i s t e d i n Appendix C (1). 67 Table XV R e s u l t s o f a p p l i c a t i o n o f Duncan's New M u l t i p l e Range t e s t to l o g 10 C h o r i z o n s o i l data f o r i n d i v i d u a l morainal types, Rosetown area. Geometric Mean Cu (ppm) 14.6 15.4 16.1 18. 3 hummocky washboard ground r i d g e d end moraine moraine moraine moraine Fe (%) 1.44 1.44 1.46 1. 81 hummocky washboard ground r i d g e d end moraine moraine moraine moraine Mn (ppm) 264 271 273 278 r i d g e d end hummocky washboard ground moraine moraine moraine moraine Zn (ppm) 4 6.0 46.3 56.1 58.3 hummocky ground r i d g e d end washboard moraine moraine moraine moraine Means not underscored by same or o v e r l a p p i n g l i n e s are s i g n i f i c a n t l y d i f f e r e n t a t P = 0.05. 68 Table XVI Trace element content and pH of A and C horizon and 30-46 cm depth s o i l from individual s o i l parent material types, Rosetown area. Trace Element Content* N u r a b e r D f Soil Parent Cu Fe Mn Zn pH** Trace Material (ppm) (%) (ppm) (ppm) Element Analyses A Horizon 30-46 cm C Horizon Lacustrine 21.7 2. 25 392 78.7 7. 4 22 clay (1.30) (1. 28) (1.15) (1.18) (0. 5) Lacustrine 14.3 1. 58 340 65.1 7. 0 11 s i l t and sand (1.36) (1. 28) (1.20) (1.29) (0. 7) Glacial t i l l 14.8 1. 63 370 60.1 7. 5 21 (1.14) (1. 12) (1.17) (1.20) (0. 5) Alluvium 12.1 1. 55 328 61.0 7. 3 9 (1.76) (1. 44) (1.26) (1.41) (0. 6) Aeolian sand 4.94 0. 73 164 26.6 6. 8 8 (1.15) (1. 10) (1.23) (1.13) (0. 5) Lacustrine 21.8 2. 28 341 71.1 7. 8 21 clay (1.36) (1. 27) (1.20) (1.31) (0. 4) Lacustrine 13.6 1. 60 272 53.2 7. 6 11 s i l t and sand (1.40) (1. 24) (1.31) (1.35) (0. 7) Glacial t i l l 15.0 1. 59 272 48.7 7. 8 22 (1.32) (1. 29) (1.26) (1.40) (0. 7) Alluvium 11.9 1. 35 239 50.9 7. 9 9 (1.77) (1. 53) (1.40) (1.44) (0. 8) Aeolian sand 3.70 0. 67 131 17.2 7. 2 8 (1.34) (1. 13) (1.37) (1.21) (0. 6) Lacustrine 24.0 2. 08 319 70.2 8. 1 66 clay (1.32) (1. 30) (1.18) (1.30) (0. 3) Lacustrine 14.7 1. 47 248 50.3 8. 4 33 s i l t and sand (1.56) (1. 40) (1.37) (1.41) (0. 2) Glacial t i l l 15.4 1. 48 272 51.0 8. 3 67 (1.37) (1. ,30) (1.29) (1.44) (0. 2) Alluvium 11.1 1. 22 232 39.3 8. 4 20 (1.53) (1. ,35) (1.29) (1.49) (0. 4) Aeolian sand 5.65 0. ,75 133 24.8 7. 9 27 (1.41) (1. ,39) (1.43) (1.44) (0. 6) a) Geometric mean (GM); geometric deviation (GD) i n parentheses. b) Individual data values l i s t e d i n Appendix C (1) . r Arithmetic mean; arithmetic deviation i n parentheses. c l a y . L a r g e s t r e l a t i v e d i f f e r e n c e s among means occur f o r Cu, whereas among mean Mn d i f f e r e n c e s are c h a r a c t e r i s t i c a l l y s m a l l . For example, the mean f o r Cu i n 30-46 cm depth l a c u s t r i n e c l a y i s n e a r l y 7 times as l a r g e as t h a t f o r a e o l i a n sand, whereas i n the case of Mn the h i g h e s t mean value i n 30-46 cm depth m a t e r i a l i s o n l y 2.6 times t h a t o f the lowest mean. N An a n a l y s i s of v a r i a n c e procedure (see Appendix B) was used t o estimate the r e l a t i v e magnitudes of w i t h i n and among parent m a t e r i a l l o g 10 data v a r i a n c e components. R e s u l t s (Table XVII) i n d i c a t e t h a t c o m p o s i t i o n a l v a r i a t i o n s among parent m a t e r i a l s account f o r w e l l over h a l f (54 t o 78%) of the t o t a l d ata v a r i a b i l i t y . Comparing estimates f o r d i f f e r e n t h o r i z o n s , among parent m a t e r i a l v a r i a t i o n s account f o r an average of 74% of A h o r i z o n data v a r i a b i l i t y and onl y 60% of C h o r i z o n v a r i a - t i o n s . R e s u l t s o f a p p l i c a t i o n of Duncan's New M u l t i p l e Range t e s t t o mean A h o r i z o n and 30-46 cm (12-18 in) depth s o i l v a l u e s are n e a r l y i d e n t i c a l (Table X V I I I ) . Means f o r a e o l i a n sand are g e n e r a l l y i d e n t i f i e d as being s i g n i f i c a n t l y lower and those f o r l a c u s t r i n e c l a y s i g n i f i c a n t l y h i g h e r than other mean v a l u e s . No s i g n i f i c a n t d i f f e r e n c e s , on the oth e r hand, are noted among means f o r a l l u v i u m , l a c u s t r i n e s i l t and sand and g l a c i a l t i l l . R e s u l t s f o r C h o r i z o n s are s i m i l a r i n t h a t extreme mean va l u e s ( f o r sands and c l a y s ) a re r e c o g n i z e d as being d i s t i n c t i v e . However, mean a l l u v i u m c o n c e n t r a t i o n s are normally i n d i c a t e d to be s i g n i f i c a n t l y lower than v a l u e s f o r l a c u s t r i n e s i l t and 70 Table XVII Comparison of estimated within and among parent material lcigarithmic variance components, Rosetown area. So i l Element Estimated Partitioned Variance Total log 10 ^ w i t ± i n Variance Parent Material Parent Material 9- S-•S -6 Component of Total Component of Total A Cu 0.0600 0.0444* 74.0 0.0156 26.0 Horizon Fe 0.0349 0.0255* 73.1 0.0094 26.9 Mn 0.0219 0.0163* 74.4 0.0056 25.6 Zn 0.0320 0.0236* 73.8 0.0084 26.2 30-4.6 cm ' Cu 0.0779 0.0605* 77.7 0.0174 22.3 Fe 0.0399 0.0295* 73.9 0.0104 26.1 Mn 0.0285 0.0176* 61.8 0.0109 38.2 Zn 0.0569 0.0396* 69.6 0.0173 30.4 C Cu 0.0710 0.0488* 68.7 0.0222 31.3 Horizon Fe 0.0316 0.0241* 60.9 0.0155 39.1 Mn 0.0300 0.0174* 58.0 0.0126 42.0 Zn 0.0468 0.0252* 53.9 0.0216 46.1 Significantly greater than zero at P = 0.05. 71 Table XVIII Results of application of Duncan's New Multiple Range test to A and C horizon and 30-4.6 cm depth log 10 s o i l data for individual s o i l parent materials, Rosetown area. . Soil Element Geometric Mean Concentrations* A Cu (ppm) 4.9 12.1 14.3 14.8 21.7 Horizon Aeolian Alluvium Lacustrine T i l l . Lacustrine sand s i l t arid sand clay Fe (%) 0.73 1.55 1.58 1.63 2.25 Aeolian Alluvium Lacustrine T i l l Lacustrine sand s i l t arid sand clay Mn (ppm) 164 328 340 370 392 Aeolian Alluvium Lacustrine T i l l Lacustrine sand s i l t arid sand clav Zn (ppm) 26.6 60.1 61.0 65.1 78.7 Aeolian T i l l Alluvium Lacustrine Lacustrine sand s i l t and sand clay 30-46 Cu (ppm) 3.7 11.9 13.6 15.0 21.8 cm Aeolian Alluvium Lacustrine T i l l Lacustrine sand s i l t and sand clay Fe (%) 0.67 1.35 1.59 1.60 2.28 Aeolian Alluvium T i l l Lacustrine Lacustrine sand s i l t and sand clay Mn (ppm) 131 239 272 272 341 Aeolian Alluvium Lacustrine T i l l Lacustrine sand s i l t and sand clay Zn (ppm) 17.2 48.7 50.9 53.2 71.1 Aeolian T i l l Alluvium Lacustrine Lacustrine sand s i l t and sand clay C Cu (ppm 5.7 11.1 14.7 15.4 24.0 Horizon Aeolian Alluvium Lacustrine T i l l Lacustrine sand s i l t and sand clay Fe • '(%) 0.75 1.22 1.47 1.48 2.08 Aeolian Alluvium Lacustrine T i l l Lacustrine sand s i l t arid sand clay Mn (ppm) 133 232 248 272 319 Aeolian Alluvium Lacustrine T i l l Lacustrine sand s i l t and sand clay Zn (ppm) 24.8 39.2 50.3 51.0 70.2 Aeolian Alluvium Lacustrine T i l l Lacustrine sand s i l t and sand Clay Means not underscored by the same or overlapping lines are significantly different at P = 0.05. sand and g l a c i a l t i l l , between which no s i g n i f i c a n t mean d i f f e r e n c e s are d e t e c t e d . C o n s i s t e n t w i t h t r a c e element data, mean s o i l pH v a l u e s are lowest f o r m a t e r i a l s a s s o c i a t e d w i t h a e o l i a n sand (Table XVI). O v e r a l l d i f f e r e n c e s among s o i l pH means, however, tend to be r e l a t i v e l y s m a l l ; C h o r i z o n s o i l v a l u e s , f o r example, range between o n l y 7.9 and 8.4. Duncan's New M u l t i p l e Range t e s t f a i l e d t o d e t e c t s i g n i f i c a n t among parent m a t e r i a l d i f f e r e n c e s i n mean pH v a l u e s f o r any of the h o r i z o n s examined. 7Among parent m a t e r i a l s o i l c o m p o s i t i o n a l v a r i a t i o n s are summarized i n map form i n F i g s 13 t o 17. Only c h e m i c a l l y d i s - t i n c t i v e parent m a t e r i a l s or parent m a t e r i a l groups as i d e n t i f i e d by Duncan's t e s t are d i s t i n g u i s h e d . Weighted geometric means were c a l c u l a t e d f o r parent m a t e r i a l groups f o r which no s i g n i f i - cant among mean d i f f e r e n c e s were d e t e c t e d . C o n c e n t r a t i o n ranges, g i v e n i n b r a c k e t s below category mean v a l u e s i n c l u d e an estimated 95% of p o p u l a t i o n c o n c e n t r a t i o n s . Mean s o i l pH v a l u e s g i v e n f o r each c o m p o s i t i o n a l category are, i n c o n t r a s t t o the t r a c e element data, not s i g n i f i c a n t l y d i f f e r e n t . 2. WITHIN PARENT MATERIAL SOIL COMPOSITIONAL VARIATIONS a) V e r t i c a l For a g i v e n parent m a t e r i a l , mean A and C h o r i z o n and 30-46 cm (12-18 in) depth Cu v a l u e s are g e n e r a l l y v e r y s i m i l a r . Although mean Fe v a l u e s tend to decrease w i t h depth, a b s o l u t e 73 K>8°00' 106° 43' '51° 58* L „ „ r o . . , cu Fe Zn content and pH of A horizon soil, Rosetown area. F,9Ure '3- a ^ t S e X i Z - l a e u s ' r i n e . sin and sand.till and alluv.um, 3=aeolian sand). Figure 14. Mn content and pH of A horizon soils, Rosetown area. (I-lacustrine clay, silt and sand,till,and alluvium; 2=aeolian sand) tts'oo1 pH TRACE ELEMENT CONTENT Cu(ppm) Fe(%) Mn(ppm) Zn (ppm) 21-8 2-28 341 71-1 (11-7-40-4) (1-41-3-68) (235-495) (41-6-120 7-8 6-3-8 6 7-8 141 1-55 269 49-4 6.3-8-6 (6< 7-2 6-2-8-4 12 5-63-29-9) (0-87-2-76) (152-479) (231-105) 3-7 0-67 131 17-2 (2-05-6-66) (0-37-0-86) (69-8-247) (11-8-25-0) Number of samples 21 43 8 * Geometric mean: range= GM -rGDf GM xGD 2 **Arithmetic mean:true range Figure 15. Cu,Fe,Mn,Zn content and pHof30-46cm depth soil, Rosetown area. (|=lacustrine clay;2=lacustrine silt and sand, till and alluvium; 3°aeolian sand) 106° 43' T p 3 4 T P 3 2 T p 3 0 T p 2 8 T p 2 6 Tp24 51° 0 0 ' 8-1 7-7-8-7 8-3 7-8-8-7 8-4 7-8-9-3 7-9 6-6-8-5 ra TRACE Cu(ppm) 240 (13-7-420) 15-2 (7-37-31-3) III (4-76-25-9) 5-65 (2-83-11-3) ELEMENT Fe(%) 208 (1-24-3-48) CONTENT* Zn(ppm) 70-2 (4I-3-II9) 1-47 50-7 (0-83-2-63) (24-8-104) 1-22 (0-52-2-21) 0-75 (0-39-1-43) 39-3 (16-8-87-7) 24-8 (12-0-51-4) Number of samples 66 100 20 27 • Geometric mean:range=GM-*-GD,GMxGD **Arithmetic mean-.true range Figure 16. Cu,Fe,Zn content and pH of C horizon soil, Rosetown area. (Macustrine clay;2=lacustrine silt and sand,till;3=alluvium; 4»aeolian sand) Figure 17. Mn content and pH of C horizon soil, Rosetown area. (Macustrine clay;2=lacustrine silt and sand,till and alluvium; 3«aeolian sand) 78 c o m p o s i t i o n a l d i f f e r e n c e s are a l s o very s l i g h t . In the case of Mn and Zn, on the other hand, A h o r i z o n c o n c e n t r a t i o n s are c o n s i d e r a b l y enhanced r e l a t i v e t o 30-46 cm (12-18 in) depth and C h o r i z o n v a l u e s , which are approximately equal. Mean c o n c e n t r a t i o n s f o r a l l u v i u m , f o r example, are Mn 328 ppm and Zn 61.0 ppm f o r A h o r i z o n s , Mn 239 ppm and Zn 50.9 ppm f o r 30-46 cm (12-18 in) depth m a t e r i a l , and Mn 2 32 ppm and Zn 39.3 ppm f o r C h o r i z o n s . Trace element data f o r i n d i v i d u a l s o i l p r o f i l e s , where r e c o g n i z a b l e B h o r i z o n m a t e r i a l was obtained i n the 30-46 cm (12-18 in) depth sample, are presented i n Table XIX. Although, most of the s o i l s r e p r e s e n t e d are O r t h i c Dark Brown Chernozems, one Brown Chernozemic p r o f i l e i s a l s o i n c l u d e d . Among h o r i z o n Cu, Mn and Zn c o m p o s i t i o n a l t r e n d s , p r e v i o u s l y noted f o r geometric mean va l u e s are g e n e r a l l y a l s o apparent i n these p r o f i l e s . For Fe," on the other hand, B h o r i z o n s , p a r t i c u l a r l y those developed on g l a c i a l t i l l , tend to c o n t a i n s l i g h t l y h i g h e r c o n c e n t r a t i o n s than both A and C h o r i z o n s . T h i s enrichment i s not c h a r a c t e r i s t i c of a l l p r o f i l e s however, and where present r e p r e s e n t s a maximum of o n l y about a 20% i n c r e a s e over adjacent A and C h o r i z o n v a l u e s . C o r r e l a t i o n c o e f f i c i e n t s r e l a t i n g both i n d i v i d u a l sample va l u e s and geometric means f o r A h o r i z o n and 30-46 cm (12-18 in) depth samples to C h o r i z o n v a l u e s are g i v e n i n Table XX. A more or l e s s t y p i c a l s c a t t e r diagram showing the r e l a t i o n s h i p between c o m p o s i t i o n a l data f o r A and C h o r i z o n s i s i l l u s t r a t e d i n F i g 18. Although c o e f f i c i e n t s f o r i n d i v i d u a l data v a l u e s 79 Table XIX Trace element distribution i n selected Orthic Brown and Dark Brown Chernozemic s o i l profiles, Rosetown area. Trace Element Content So i l Great Parent Group Material Site NO. Depth (cm) Hor- izon Cu (ppm) Fe (%) Mn (ppm) Zn (ppm) 218 0-15 A 16.0 1.63 504 73.0 Brown Glacial 30-46 B 13.8 1.75 353 62.0 T i l l 90-105 C 13.8 1.56 271 50.1 Dark Brown Glacial 78 0-10 A 16.0 1.60 372 66.7 T i l l 30-46 B 16.7 1.76 351 59.0 75-90 C 17.5 1.52 274 51.9 230 0-15 A 15.0 1.73 488 65.0 30-46 B 16.7 2.33 398 70.0 90-105 C 28.8 2.00 448 83.3 Lacustrine 140 0-15 A 19.2 1.94 421 82.5 s i l t and sand 30-46 B 13.2 1.87 332 55.2 90-105 C 21.9 2.23 268 63.8 161 0-15 A 11.1 1.26 304 58.0 30-46 B 8.4 1.14 198 35.1 90-105 C 10.7 1.24 219 39.2 178 0-15 A 14.2 1.45 383 75.0 30-46 B 12.4 1.64 198 68.4 90-105 C 18.7 1.40 306 55.0 /Alluvium 92 0-15 A 15.3 1.68 429 77.0 30-46 B 18.0 2.13 404 72.7 55-60 C 16.3 1.60 361 82.3 191 0-15 A 5.3 0.84 222 30.0 30-46 B 4.0 0.72 119 16.7 90-105 C 7.4 0.86 190 31.0 Table XX Correlation coefficients relating log 10 trace element concentrations for A horizon and 30-46 cm depth samples to C horizon values, Rosetown area. Correlation Coefficients Degrees AandC 30-46 cmaridC of Horizon Soil Horizon Soil Freedom Cu Fe En Zn Cu Fe Mi Zn (n-2) Individual Lacustrine clay 0.669** 0.624** 0. 665** 0.522** 0.715** 0.687** 0.562* 0.478* 16 data values Lacustrine s i l t 0.829** 0.919** 0. 361 0.711;* 0.706* 0.664* 0.257 0.367 8 and sand Glacial t i l l 0.279 0.443* 0. 166 . 0.408 -0.022 0.253 0.113 0.323 18 Alluvium 0.742* 0.818** 0. 607 0.607 0.845** 0.684* 0.638 0.592 7 Aeolian sand 0.504 0.597 0. 609 0.357 0.595 0.321 0.679 0.676 6 All parent 0.878** 0.871** 0. 808** 0.817** 0.862** 0.824** 0.746** 0.791** 62 materials Parent Material 0.988** 0.976** 0. 985** 0.937* 0.978** 0.994** 0.995** 0.973** 3 means Coefficient significantly greater than zero at P = 0.05. Coefficient significantly greater than zero at P = 0.01. OO o Data Type Soil Parent Material 81 Lacustrine clay Lacustrine silt and sand Till Alluvium Aeolian sand r60-f 0-60 0-80 100 1-20 1-40 1-60 L o g . 10 Cu (ppm) C Horizon Soi I X rx X 0-6 7 • o 063 # • 0 28 <> 0-74 0 0-50 \ 0-99 Figure 18. Scatter diagram of log 10 Cu content Ippm) of A vs C horizon soil (rcorrelation coefficient). 8 2 a s s o c i a t e d w i t h p a r t i c u l a r parent m a t e r i a l types range between - 0 . 0 2 and + 0 . 9 2 , over 6 0 % of the va l u e s exceed + 0 . 5 0 . R e l a t i v e l y h igh, s t a t i s t i c a l l y s i g n i f i c a n t c o e f f i c i e n t s , tend t o be a s s o c i - ated w i t h l a c u s t r i n e c l a y and a l l u v i u m , whereas low n o n - s i g n i f i - cant c o e f f i c i e n t s c h a r a c t e r i z e g l a c i a l t i l l . When i n d i v i d u a l data v a l u e s f o r a l l parent m a t e r i a l s are co n s i d e r e d together, c o e f f i c i e n t s i n c r e a s e markedly (range + 0 . 7 5 to + 0 . 8 8 ) and are s t a t i s t i c a l l y s i g n i f i c a n t a t the 9 9 % c o n f i d e n c e l e v e l . Comparison of parent m a t e r i a l mean v a l u e s , however, gives even l a r g e r c o e f f i c i e n t s (> + 0 . 9 3 ) , which d e s p i t e the s m a l l number of degrees of freedom, are a l s o h i g h l y s i g n i f i - cant. b) Geographic Geometric d e v i a t i o n s f o r the v a r i o u s h o r i z o n s a s s o c i a t e d w i t h i n d i v i d u a l s u r f i c i a l d e p o s i t s g i v e n i n Table XVI may be co n s i d e r e d , i n p a r t a t l e a s t , a r e f l e c t i o n of the r e l a t i v e homo- g e n e i t y of the m a t e r i a l s examined. Of the parent m a t e r i a l s i n - v e s t i g a t e d a l l u v i u m i s c h a r a c t e r i z e d by the l a r g e s t geometric d e v i a t i o n s , p a r t i c u l a r l y f o r the uppermost h o r i z o n s . Comparing values by h o r i z o n s , those f o r A h o r i z o n s are g e n e r a l l y low r e l a - t i v e to v a l u e s f o r subsurface m a t e r i a l s . T h i s t r e n d i s most apparent i n the data f o r Mn, f o r which the average A h o r i z o n geometric d e v i a t i o n i s 1 . 2 0 compared t o an average of 1 . 3 1 f o r both 3 0 - 4 6 cm ( 1 2 - 1 8 in) and C h o r i z o n samples. Because analyses f o r d u p l i c a t e C h o r i z o n samples are 83 a v a i l a b l e f o r n e a r l y one-quarter of the s i t e s sampled, and C h o r i z o n s o i l has been analysed from a t l e a s t two s i t e s w i t h i n each township, i t i s p o s s i b l e t o o b t a i n e s t i m a t e s o f both w i t h i n s i t e (sampling) and w i t h i n township data v a r i a b i l i t y . A s i n g l e c l a s s i f i c a t i o n a n a l y s i s of v a r i a n c e procedure was used f o r t h i s purpose (see Appendix B); r e s u l t s are summarized i n Tables XXI and XXII. C o n s i d e r i n g r e s u l t s f o r i n d i v i d u a l parent m a t e r i a l s i n Table XXI sampling ( w i t h i n s i t e ) v a r i a t i o n s account f o r a r e l a t i v e l y s m a l l p r o p o r t i o n (<25%) of the t o t a l C h o r i z o n data v a r i a t i o n s f o r a l l u v i u m , and among sample s i t e v a r i a t i o n s are s t a t i s t i c a l l y s i g n i f i c a n t f o r a l l elements f o r t h i s parent m a t e r i a l . In the case of g l a c i a l t i l l , on the other hand, sampl- in g v a r i a t i o n s account f o r from 61 t o 83% of the t o t a l v a r i a n c e and estimated among sample s i t e components are a l l n o n - s i g n i f i - cant- For a e o l i a n sand, l a c u s t r i n e s i l t and sand and l a c u s t r i n e c l a y , estimated, among sample s i t e v a r i a n c e components r e p r e s e n t from zero to 88% of t o t a l w i t h i n parent m a t e r i a l v a r i a t i o n s , and are s t a t i s t i c a l l y s i g n i f i c a n t i n approximately t w o - t h i r d s of the cases. Estimated w i t h i n township C h o r i z o n c o m p o s i t i o n a l v a r i a - t i o n s , g i v e n i n Table XXII, are g e n e r a l l y r e l a t i v e l y l a r g e , accounting f o r between 55 and 100% of the t o t a l i n d i v i d u a l parent m a t e r i a l data v a r i a b i l i t y . S t a t i s t i c a l l y s i g n i f i c a n t among township v a r i a t i o n s occur only f o r Cu and Zn i n C h o r i z o n g l a c i a l t i l l . Lack of correspondence between estimates 84 Table XXI Comparison of logarithmic within and among sample site variance components for C horizon s o i l , Rosetown area. Parent Material Number of Sample Sites Element Estimated Total log 10 Variance Partitioned Variance /Among Sites % Within Sites Component of total Component of total Lacustrine 17 Cu 0. 0210 0. 0135* 64 .3 0. 0075 35 .7 clay Fe 0. 0160 0. 0085* 53 .1 0. 0075 46 .9 Mn 0. 0107 0. 0040 37 .4 0. 0067 62 .6 Zn 0. 0173 0. 0115* 66 .2 0. 0058 33 .8 Lacustrine 6 Cu 0. 0154 0. 0135* 87 .7 0. 0019 12 .3 s i l t and sand Fe 0. 0027 0. 0000' 0 .0 0. 0027 100 .0 Mn 0. 0095 0. 0036 37 .4 0. 0059 62 .6 Zn 0. 0073 0. 0059* 71 .1 0. 0024 28 .9 Glacial t i l l 16 Cu 0. 0289 0. 0109 37 .3 0. 0180 62 .5 Fe 0. 0103 0. 0024 23 .3 0. 0079 76 .7 Mn 0. 0178 0. 0030 16 .6 0. 0148 83 .4 Zn 0. 0179 0. 0070. 38 .8 0. 0109 61 .2 Aeolian sand 7 Cu 0. 0049 0. 0003 6 .1 0. 0046 93 .9 Fe 0. 0158 0. 0125* 78 .8 0. 0033 21 .2 Mn 0. 0223 0. 0141* 63 .2 0. 0082 36 .8 Zn 0. 0192 0. 0119* 62 • 0 0. 0073 38 .0 Alluvium 5 Cu 0. 0337 0. 0243* 72 .1 0. 0094 27 .9 Fe 0. 0197 0. 0154* 78 .2 0. 0043 21 .8 Mn 0. 0148 0. 0118* 79 .7 0. 0030 20 .3 Zn 0. 0253 0. 0217* 85 .8 0. 0036 14 .2 * Significantly greater than zero at P = 0.05. 85 Table XXII Comparison of logarithmic within and among township variance components for C horizon s o i l , Rosetown area. Number Estimated Partitioned Variance of total Among Townships Within Townships Townships Element log 10 Component . % Component % Variance of total of total Lacustrine 19 Cu 0.0131 0.0027 20.2 0.0104 79.8 clay Fe 0.0121 0.0016 12.8 0.0105 87.2 Mn 0.0059 0.0011 17.8 0.0048 82.2 Zn 0.0145 0.0022 14.8 0.0123 85.2 Lacustrine 7 Cu 0.0306 0.0065 21.2 0.0241 78.8 s i l t and sand Fe 0.0168 0.0057 33.9 0.0111 66.1 Mn 0.0129 0.0009 6.6 0.0120 93.4 Zn 0.0158 0.0000 0.0 0.0158 100.0 T i l l 21 Cu 0.0189 0.0079* 41.9 0.0110 58.1 Fe 0.0146 0.0039 26.7 0.0107 73.3 Mn 0.0120 0.0037 30.8 0.0083 69.2 Zn 0.0256 0.0115* 45.0 0.0141 55.0 Aeolian sand 5 Cu 0.0193 0.0009 4.4 0.0184 95.6 Fe 0.0144 0.0000 0.0 0.0144 100.0 Mn 0.0112 0.0000 0.0 0.0112 100.0 Zn 0.0187 0.0066 35.0 0.0121 65.0 Parent Material Significantly greater than zero at P = 0.05. 86 of parent m a t e r i a l v a r i a n c e i n t h i s t a b l e and those i n Table XXI i s a t t r i b u t a b l e to the f a c t t h a t c a l c u l a t i o n s were based on d i f f e r e n t data subsets. 3. RELATIONSHIPS BETWEEN SOIL AND PLANT COMPOSITIONAL DATA The geometric mean t r a c e element content, of wheat and as- s o c i a t e d Ap and C h o r i z o n s o i l are summarized, on a parent m a t e r i a l b a s i s , i n Table XXIII. Mean s o i l v a l u e s , though based on a separate sample s e t , are approximately equal t o those g i v e n i n T a b l e XVI. A c c o r d i n g l y among parent m a t e r i a l s o i l composi- t i o n a l t r e n d s are e s s e n t i a l l y the same as those p r e v i o u s l y d e s c r i b e d , w i t h lowest v a l u e s a s s o c i a t e d w i t h a e o l i a n sand, i n t e r m e d i a t e w i t h g l a c i a l t i l l and l a c u s t r i n e s i l t and sand, and h i g h e s t v a l u e s with' l a c u s t r i n e c l a y . With a few e x c e p t i o n s , Duncan's New M u l t i p l e Range t e s t r e s u l t s i n Table XXIV s t a t i s t i - c a l l y c o n f i r m the s i g n i f i c a n c e of these p a t t e r n s . The among parent m a t e r i a l p a t t e r n of Fe and Mn d i s t r i b u t i o n i n wheat i s very s i m i l a r t o t h a t f o r s o i l , w i t h mean co n c e n t r a - t i o n s f o r both elements being lowest f o r p l a n t s grown on a e o l i a n sand and h i g h e s t f o r those over l a c u s t r i n e c l a y . Although a r e l a t i o n s h i p between mean Cu v a l u e s f o r wheat and s o i l i s l e s s apparent, the a s s o c i a t i o n of the lowest wheat mean w i t h a e o l i a n sand d e p o s i t s i s c o n s i s t e n t w i t h s o i l d a t a. F u r t h e r - more, as was noted f o r s o i l v a l u e s , a p p l i c a t i o n of Duncan's t e s t t o the data f o r Cu, Fe and Mn (Table XXIV), tends t o co n f i r m the s i g n i f i c a n c e of low a e o l i a n sand and h i g h l a c u s t r i n e Table XXIII Trace element content of wheat (dry weight basis) and associated Ap and C horizon s o i l and s o i l pH, Rosetown area. Sample Parent Trace Element Content* pH** Number Type Material Cu Mn Zn of (ppm) Ippm:wheat \ (ppm) (ppm) Analyses \ % : s o i l / Wheat Lacustrine 14.3 99.5 35.0 21.9 24 clay (1.11) (1.38) (1.15) (1.17) Lacustrine 15.0 87.1 26.8 23.9 23 s i l t and sand (1.13) (1.12) (1.19) (1.14) T i l l 14 .1 84.9 27.4 23.7 20 (1.10) (1.25) (1.23) (1.16) Aeolian sand 12.6 82.6 19:5 25.3 19 - (1.10) (1.20) (1.33) (1.19) Ap Horizon Lacustrine 21.7 2.23 378 78.9 •7.3 28 . S o i l clay (1. 32) (1.20) (1.13) (1.13) (0.6) Lacustrine 13.2 1.60 344 67.6 6.9 24 s i l t and sand (1.30) (1.15) (1.15) (1-23) (0.5) T i l l 15.5 1.69 361 61.5 7.5 24 (1.20) (1.15) (1.20) (1.23) (0.6) Aeolian sand 7.3 1.01 198 37.5 7.2 27 (1.31) (1.18) (1.30) (1.24) (0.6) C Horizon Lacustrine 23.6 2.12 303 66.8 8.3 29 S o i l clay (1.30) (1.19) (1.17) (1.22) (0.2) Lacustrine 12.8 1.54 245 52.7 8.2 26 s i l t and sand (1.50) (1.24) (1.24) (1.42) (0.5) T i l l 15.7 1. 56 290 45.3 8.2 23 (1.22) (1.16) (1.18) (1.24) (0.6) Aeolian sand 6.6 1.05 173 29.3 7.8 27 (1.55) (1.30) (1.30) (1.46) (0.7) *a) Geometric mean (GM); geometric deviation (GD) i n parentheses, b) Individual data values l i s t e d i n Appendix c(2) **Arithmetic mean; arithmetic deviation i n parentheses. Table XXIV Results of application of Duncan's New Multiple Range test to log 10 wheat and s o i l data for individual parent materials, Rosetown area. 88 Sample Type Element Geometric Mean Concentrations* Wheat Ap Horizon s o i l C Horizon s o i l Cu ppm Fe ppm Mn ppm Zn ppm Cu ppm Fe % Mn ppm Zn ppm Cu ppm Fe % Mn ppm Zn ppm 12.6 Aeolian sand 82.6 Aeolian sand 14.1 T i l l 19.5 Aeolian sand 21.9 Lacustrine clay 7.3 Aeolian sand 1.01 Aeolian sand 198 Aeolian sand 37.5 Aeolian sand 6.6 Aeolian sand 1.05 Aeolian sand 173 Aeolian sand 29.4 Aeolian sand 14.3 Lacustrine clay 15.0 Lacustrine s i l t and sand 84.9 87.1 T i l l Lacustrine s i l t and sand 26.8 27.4 Lacustrine T i l l s i l t and sand 23.7 23.9 Lacustrine T i l l s i l t and sand 13.2 .15.5 Lacustrine T i l l s i l t and sand 1.60 1.69 Lacustrine T i l l s i l t and sand 344 361 Lacustrine T i l l s i l t and sand 61.5 67.6 Lacustrine T i l l s i l t and sand 12.8 15.7 Lacustrine . T i l l s i l t and sand 1.54 1.56 Lacustrine T i l l s i l t and sand 245 Lacustrine s i l t and sand 45.3 T i l l 290 T i l l 52.7 Lacustrine s i l t and sand 99.5 Lacustrine clay 35.0 Lacustrine clay 25.3 Aeolian sand 21.7 Lacustrine clay 2.23 Lacustrine clay 378 Lacustrine clay 78.9 Lacustrine clay 23.6 Lacustrine clay 2.12 Lacustrine clay 303 Lacustrine clay 66.8 Lacustrine clay ic Means not underscored by the same or overlapping lines are significantly different at P = 0.05. 89 clay: mean c o n c e n t r a t i o n s f o r wheat. The among parent m a t e r i a l t r e n d f o r Zn i n wheat i s excep- t i o n a l i n t h a t , i n c o n t r a s t t o the case f o r s o i l , the h i g h e s t mean v a l u e .is a s s o c i a t e d w i t h a e o l i a n sand and the lowest with l a c u s t r i n e c l a y . Among mean d i f f e r e n c e s i n the Zn content o f wheat, however, are not s t a t i s t i c a l l y s i g n i f i c a n t (Table XXIV). C o r r e l a t i o n c o e f f i c i e n t s r e l a t i n g data f o r wheat and s o i l are g i v e n i n Table XXV. R e l a t i o n s h i p s between wheat and C h o r i z o n c o m p o s i t i o n a l data are i l l u s t r a t e d g r a p h i c a l l y i n s c a t t e r d i a - . grams i n F i g s 19 t o 22. C o e f f i c i e n t s r e l a t i n g i n d i v i d u a l Cu, Fe and Zn valu e s tend to be l o w ( < 0.30), and except when data f o r a l l parent m a t e r i a l s are co n s i d e r e d together, are g e n e r a l l y non- s i g n i f i c a n t . Mn v a l u e s , on the other hand, are l a r g e r (>0.40), and s t a t i s t i c a l l y s i g n i f i c a n t i n over h a l f o f the cases. Absolute c o e f f i c i e n t values r e l a t i n g mean c o n c e n t r a t i o n s f o r wheat and s o i l are l a r g e (range 0.74 to 0.94), but are not s i g n i f i c a n t , due i n p a r t a t l e a s t to the s m a l l number of degrees o f freedom f o r the comparisons. The high n e g a t i v e c o r r e l a t i o n between means f o r Zn should be i n t e r p r e t e d w i t h p a r t i c u l a r c a u t i o n i n view of the apparent l a c k o f s i g n i f i c a n t d i f f e r e n c e s among mean Zn con- c e n t r a t i o n s f o r wheat. D. DISCUSSION - COPPER, IRON, MANGANESE AND ZINC 1. C HORIZON SOIL Comparison of the r e l a t i v e s i z e o f estimated w i t h i n and among Table XXV Correlation coefficients relating log 10 wheat and soil trace element data, Rosetown area. Data Type Individual data values Parent Material means Parent Material Lacustrine clay Lacustrine s i l t and sand Glacial t i l l Aeolian sand A l l parent materials Correlation Coefficients Wheat and A Horizon Soil Wheat and C Horizon Soil Cu Fe Mn Zn Cu Fe Mn Zn Degrees of Freedom (n-2) -0.182 0.106 0.432* -0.303 -0.170 0.274 0.275 -0.226 22 0.305 0.148 0.493* -0.080 0.236 -0.045 0.489* -0.537* 19 0.090 0.627** 0.419 0.051 0.183 -0.027 0.286 -0.045 17 -0.175 -0.216 0.492* 0.010 -0.170 0.193 0.621** -0..294 15 0.275* 0.294** 0.714** -0.264* 0.260* 0.271* 0.697** -0.397* 79 0.747 0.837 0.913 -0.898 0.735 0.887 0.934 -0.932 Coefficient significantly greater than zero at P = 0.05. if Coefficient significantly greater than zero at P = 0.01. o 91 E Q. Q. 3 O Q J= O S * o 1-60 1 K C H 1-20 100 + X ** X Lacustr ine clay -0.17 Lacustr ine silt and sand 0 0 2 4 0 7 4 Till • 0 1 8 a Aeolian sand . o -0:17 ® § o o o °: °o°onD 0o°eo ° 8a - — r - i l I l 060 080 100 1-20 140 Log 10 Cu (ppm) C Hor izon S o i l 160 Figure 19. Scatter diagram of log 10 Cu content (ppm) of wheat vs that of C horizon soil (r = correlation coeff ic ient) . 2-40 i 3 2 2 C M ,0) *-^ o " J 2 0 0 H o •80 ^ X rx X L a c u s t r i n e clay S7 0 2 7 • L a c u s t r i n e silt and s a n d O - 0 0 5 © >Q8 9 T i l l • - 0 0 3 A e o l i a n s a n d O 0 19 © L9 OO °0 C8> o c§> CDC5 ' — I 1 1 1 1 « -020 0-00 0-20 0-40 0-60 0-80 Log 10 Fe (%) C Horizon Soil Figure 20. Scatter diagram of log 10 Fe content (%) of wheat vs that of C horizon soil (r = correlation coeff icient) . 92 1-80 n a. a. c o " H O H o 120 H L a c u s t r i n e clay L a c u s t r i n e si lt and sand T i l l Aeol ian sand X X 0-28 • o 0 49 • 0-29 m 0 0-6 2 9 2-10 2-30 0 93 Figure 21. S c a t t e r d iagram of that of C hor i z o n 2-90 3)0 250 270 Log 10 Mn (ppm) Horizon S o i l I og 10 Mn c o n t e n t ( p p m ) o f wheat vs soil ( r = cor re la t ion c o e f f i c i e n t ) . E a. a. i-eo-i 1-60 H rsi o a> 2 sz |-40 o I 20 L a c u s t r i n e c l a y L a c u s t r i n e si l t and sand Ti l l Aeol ian s a n d o • o o ° o o • o E #W ^ -0-2 3 -0-5 4 -00 5 -029 O -0-93 1 » I | l I l HO 1-30 1-50 1-70 1-90 2-10 L o g 10 Zn (ppm) C H o r i z o n S o i l Figure 22. S c a t t e r d i a g r a m of log 10 Z n c o n t e n t (ppm) of wheat vs that of C hor izon soil ( r = cor re la t ion c o e f f i c i e n t ) . 93 parent m a t e r i a l v a r i a n c e components f o r C h o r i z o n s o i l (Table XVII) i n d i c a t e s t h a t among parent m a t e r i a l d i f f e r e n c e s account f o r from 54 to 69% of the t o t a l data v a r i a b i l i t y . Examination of mean c o n c e n t r a t i o n s f o r C h o r i z o n s a s s o c i a t e d w i t h i n d i v i d u a l parent m a t e r i a l s i n Table XVI, and r e s u l t s of a p p l i c a - t i o n o f Duncan's New M u l t i p l e Range t e s t to these data i n Table XVIII, furthermore suggest t h a t among parent m a t e r i a l s o i l c o m p o s i t i o n a l v a r i a t i o n s are c l o s e l y r e l a t e d to t e x t u r a l v a r i a - t i o n s . Lowest c o n c e n t r a t i o n s c o n s i s t e n t l y occur i n f i n e t o medium g r a i n e d sand of a e o l i a n o r i g i n , somewhat high e r c o n c e n t r a - t i o n s i n i n t e r m e d i a t e t e x t u r e d t i l l , a l l u v i u m and l a c u s t r i n e s i l t and sand d e p o s i t s , and h i g h e s t c o n c e n t r a t i o n s i n c l a y - r i c h f i n e l a c u s t r i n e d e p o s i t s . S i m i l a r r e l a t i o n s h i p s between t e x t u r - a l p r o p e r t i e s of s o i l parent m a t e r i a l and s o i l t r a c e element content have r e c e n t l y been noted i n Manitoba by Haluschak and R u s s e l l (1971) and i n A l b e r t a by Pawluk , and Bayrock (1969). A e o l i a n sand i n the Rosetown area c o n s i s t s of 80 to 90% quartz ( S c o t t , 1971), which has very l i t t l e c a p a c i t y f o r e i t h e r s t r u c t u r a l i n c l u s i o n or s u r f a c e a d s o r p t i o n of t r a c e elements. F i n e s t l a c u s t r i n e d e p o s i t s , on the other hand, can c o n t a i n up to 80% c l a y s i z e m a t e r i a l , of which m o n t m o r i l l o n i t e and to a l e s s e r extent i l l i t e and k a o l i n i t e are the main c r y s t a l i n e com- ponents ( S c o t t , 1971). As M i t c h e l l (1964) has noted, i n the m o n t m o r i l l o n i t e s t r u c t u r e , A l can be r e p l a c e d by Fe and Zn as w e l l as s m a l l amounts of Mn and Cu, and s i m i l a r s u b s t i t u t i o n s can occur i n i l l i t e . Furthermore, experimental s t u d i e s have shown t h a t a p p r e c i a b l e amounts of Cu, Mn and Zn can be adsorbed from s o l u t i o n by both m o n t m o r i l l o n i t e and i l l i t e (Krauskopf, 1956; O'Connor and K e s t e r , 1975; Reddy and P e r k i n s , 1974), and by hydrous Fe oxides (Krauskopf, 1956) which are important non- c r y s t a l i n e components of the c l a y s i z e f r a c t i o n of many s o i l s . A measure of the e f f e c t of c l a y s i z e m a t e r i a l on a d s o r p t i o n c a p a c i t y of Rosetown area s o i l i s g i v e n i n Table X I I , where the c a t i o n exchange c a p a c i t y of c l a y - r i c h Sceptre s o i l i s shown t o be 4 4 meq/100 g whereas t h a t f o r c l a y - p o o r A s q u i t h s o i l i s onl y 12 meq/100 g ( E l l i s e t a l . , 1970). A comparable a s s o c i a t i o n between t r a c e element c o n c e n t r a - t i o n s and p r o p o r t i o n of c l a y s i z e m a t e r i a l i s wi d e l y r e c o g n i z e d f o r sedimentary rocks (Mason, 1966). T o u r t e l o t (1962), s t u d y i n g the d i s t r i b u t i o n of t r a c e elements i n the s t r a t i g r a p h i c e q u iva- l e n t s of the Bearpaw and r e l a t e d Upper Cretaceous Formations i n the mid-western U n i t e d S t a t e s , concluded t h a t Fe, Mn and Zn are a s s o c i a t e d w i t h the c l a y s i z e f r a c t i o n o f these r o c k s . The r e l a t i o n s h i p between c l a y content and Rosetown area s o i l composi- t i o n i s , t h e r e f o r e , l i k e l y a c h a r a c t e r i s t i c i n h e r i t e d from the sedimentary bedrock from which s o i l parent m a t e r i a l s were de- r i v e d . Some i n s i g h t i n t o the nature of w i t h i n parent m a t e r i a l data v a r i a b i l i t y , which .accounts f o r 31 to 46% of the t o t a l , i s g i v e n i n Tables XXI and XXII, where these v a r i a t i o n s are p a r t i t i o n e d i n t o s m a l l - s c a l e (sampling) and i n t e r m e d i a t e - s c a l e ( w i t h i n town- ship) components r e s p e c t i v e l y . As i s emphasized, however, by the l a c k of agreement between estimated t o t a l w i t h i n parent m a t e r i a l l o g 10 v a r i a n c e v a l u e s i n these two t a b l e s , r e s u l t s are based on separate, comparatively s m a l l sample s e t s , and should t h e r e f o r e be i n t e r p r e t e d w i t h c a u t i o n . Information f o r a l l u v i u m i s l i m i t e d t o an estimate of sampling v a r i a t i o n s o n l y (Table XXI). For t h i s parent m a t e r i a l a l a r g e p r o p o r t i o n of the c o m p o s i t i o n a l v a r i a b i l i t y (>7 5%) i s a t t r i b u t a b l e t o among sample s i t e sources - t h a t i s , occurs over d i s t a n c e s of more than 30 m (100 f t ) . These v a r i a t i o n s r e - f l e c t , to a l a r g e extent, the comparative t e x t u r a l h e t e r o g e n e i t y of a l l u v i u m . A n a l y s i s of v a r i a n c e r e s u l t s f o r l a c u s t r i n e c l a y , a e o l i a n sand, and t o a l e s s e r degree l a c u s t r i n e s i l t and sand, tend t o be s i m i l a r , i n t h a t among sample s i t e v a r i a t i o n s account f o r a r e l a t i v e l y l a r g e amount of w i t h i n parent m a t e r i a l c o m p o s i t i o n a l v a r i a t i o n s , and among township v a r i a n c e components are small and n o n - s i g n i f i c a n t . Most of the chemical v a r i a b i l i t y i n these m a t e r i a l s t h e r e f o r e , appears to occur w i t h i n areas of l e s s than 2 one township (94 km or 36 sq mi) i n s i z e . L a r g e - s c a l e w i t h i n parent m a t e r i a l c o m p o s i t i o n a l t r e n d s , such as might be expected from r e g i o n a l f a c i e s changes, are e i t h e r not presen t or ve r y weak. R e s u l t s of sampling v a r i a b i l i t y , estimates f o r g l a c i a l t i l l (Table XXI) i n d i c a t e t h a t the m a j o r i t y of c o m p o s i t i o n a l v a r i a b i l - i t y i n C h o r i z o n t i l l o ccurs over very s h o r t d i s t a n c e s ( w i t h i n s i t e s ) , w i t h among s i t e v a r i a t i o n s accounting f o r onl y 17 t o 39% of the t o t a l . Examination of estimated w i t h i n and among 96 township v a r i a n c e components i n Table XXII i n d i c a t e s t h a t the magnitude o f among township v a r i a t i o n s , expressed i n percentage form, correspond f a i r l y c l o s e l y to among sample s i t e v a r i a n c e e s t i m a t e s . T h i s i m p l i e s t h a t much of the estimated among sample s i t e v a r i a b i l i t y noted i n Table XXI occurs over areas g r e a t e r than one township i n s i z e . 2. A HORIZON AND 30-46 CM (12-18 IN) DEPTH SOIL Components of v a r i a n c e estimates i n Table XVII i n d i c a t e t h a t among parent m a t e r i a l c o m p o s i t i o n a l v a r i a t i o n s f o r A h o r i z o n and 30-46 cm (12-18 in) depth s o i l account f o r a l a r g e r p r o p o r t i o n (62 to 78%) of the t o t a l data v a r i a b i l i t y than do among parent m a t e r i a l C h o r i z o n v a r i a t i o n s (54 to 69%). Geometric d e v i a t i o n values i n Table XVI suggest t h a t A hor- i z o n s tend to be more c o m p o s i t i o n a l l y homogeneous than C h o r i z o n s , and t h i s probably accounts, to some extent, f o r the enhanced r e l a t i v e importance o f among parent m a t e r i a l v a r i a t i o n s i n A h o r i z o n s . Geometric d e v i a t i o n v a l u e s f o r A h o r i z o n s are a l s o gen- e r a l l y lower than those f o r 30-46 cm (12-18 in) depth m a t e r i a l . These r e l a t i v e l y low A h o r i z o n v a l u e s probably r e f l e c t , at l e a s t i n p a r t , decreased l o c a l c o m p o s i t i o n a l v a r i a b i l i t y a t t - r i b u t a b l e to the mixing e f f e c t of ploughing. In a d d i t i o n subsurface v a r i a b i l i t y would be expected to be i n c r e a s e d by the f a c t t h a t both 3 0 - 4 6 cm ( 1 2 - 1 8 in) depth and C h o r i z o n samples i n c l u d e m a t e r i a l from more than one pedogenic h o r i z o n — mainly B and Cca h o r i z o n s i n the case o f the 3 0 - 4 6 cm ( 1 2 - 1 8 in) sample, and C as w e l l as Cca h o r i z o n s i n the "C" h o r i z o n sample. I t should a l s o be noted however t h a t the apparent homogeneity o f A hor i z o n s c o u l d be, to some degree, a r e f l e c t i o n of the f a c t t h a t A h o r i z o n samples, as opposed to those o f subsurface m a t e r i a l s , were composites o f s o i l c o l l e c t e d from s e v e r a l s i t e s w i t h i n an 2 area of about 10 m . Other f a c t o r s being equal, t h i s procedure would be expected to reduce sampling v a r i a b i l i t y f o r A h o r i z o n s . Moderately h i g h p o s i t i v e c o r r e l a t i o n s (> 0 . 5 0 ) r e l a t i n g c o n c e n t r a t i o n s i n i n d i v i d u a l A h o r i z o n and 3 0 - 4 6 cm ( 1 2 - 1 8 in) depth samples to C h o r i z o n samples f o r most parent m a t e r i a l s (Table XX) imply t h a t w i t h i n parent m a t e r i a l s o i l c o m p o s i t i o n a l var- i a t i o n s are c o n t r o l l e d , to a c o n s i d e r a b l e extent, by C h o r i z o n s . When parent m a t e r i a l means are compared c o r r e l a t i o n c o e f f i c i e n t s i n c r e a s e to over + 0 . 9 0 , i n d i c a t i n g t h a t among parent m a t e r i a l v a r i a t i o n s are even more i n f l u e n c e d by C h o r i z o n v a l u e s . M i l l s and Zwarich ( 1975 ) have s i m i l a r l y noted t h a t parent m a t e r i a l t r a c e element content e x e r t s a very s t r o n g i n f l u e n c e on A h o r i z o n s o i l c o n c e n t r a t i o n s i n Manitoba. Examination o f F i g 18 suggests t h a t the s t r e n g t h e n i n g o f c o r r e l a t i o n s observed when data f o r a l l parent m a t e r i a l s are co n s i d e r e d together (Table XX) i s , i n l a r g e measure, a t t r i b u t a b l e to e x t e n s i o n o f the range o f c o n c e n t r a t i o n s over which the com- p a r i s o n s were made, which has the e f f e c t o f g i v i n g the data a c o n s i d e r a b l y more d i s t i n c t l i n e a r t r e n d . The f u r t h e r s t r e n g t h e n i n g 98 of c o e f f i c i e n t s when mean va l u e s are compared would appear t o be p r i m a r i l y an e f f e c t of the s t a t i s t i c a l f a c t t h a t data v a r i - a b i l i t y ( s c a t t e r ) i s lower f o r means than f o r i n d i v i d u a l observa- t i o n s (Dixon and Massey, 1969). The moderate enrichment of mean Mn and Zn l e v e l s i n A r e l a t i v e t o C h o r i z o n s r e p o r t e d i n Tab l e XVI has been noted by other workers f o r Chernozemic s o i l on the Canadian p r a i r i e s (Haluschak and R u s s e l l , 1971; M i l l s and Zwarich, 1975). T h i s e f f e c t i s a t t r i b u t e d by M i l l s and Zwarich (1975) t o removal of these elements by s u c c e s s i v e g e n e r a t i o n s o f p l a n t s and t h e i r subsequent i m m o b i l i z a t i o n i n the s u r f a c e o r g a n i c l a y e r . I t seems l i k e l y t h a t a s i m i l a r e x p l a n a t i o n a p p l i e s i n the Rosetown area because, although these enrichments c o u l d a l s o be a t t r i b u t e d f o r example to f e r t i l i z a t i o n p r a c t i c e s or p o l l u t i o n , the observed strong p o s i t i v e c o r r e l a t i o n between A and C h o r i z o n v a l u e s would, under such circumstances, be ve r y improbable. In w e l l d i f f e r e n t i a t e d s o i l p r o f i l e s , p a r t i c u l a r l y those a s s o c i a t e d w i t h Podzols, Fe and other elements leached from s u r - face s o i l c h a r a c t e r i s t i c a l l y accumulate i n B h o r i z o n s (Vinogradov, 1959). Evidence of t h i s pedogenic e f f e c t can be seen i n the data f o r Fe i n 30-46 cm (12-18 in) depth B h o r i z o n s i n Table XIX. Magnitudes of mean Fe va l u e s f o r 30-46 cm (12-18 in) depth samples g i v e n i n Table XVI however have not been g r e a t l y a f f e c t e d by these accumulations because, i n the Rosetown area B h o r i z o n s are not common w i t h i n t h i s depth range, and furthermore the observed enrichments are r e l a t i v e l y s m a l l . 99 3. RELATIONSHIP.. BETWEEN PLANT AND SOIL CONCENTRATIONS The weak r e l a t i o n s h i p between i n d i v i d u a l wheat and s o i l Cu, Fe and Zn v a l u e s (Table XXV) i s c o n s i s t e n t w i t h the commonly he l d view t h a t , because of v a r i a t i o n s i n s o i l a v a i l a b i l i t y and p l a n t a b s o r p t i o n f a c t o r s (see d i s c u s s i o n p.6 ), t o t a l s o i l t r a c e element c o n c e n t r a t i o n s g i v e l i t t l e i n d i c a t i o n of amounts l i k e l y to be present i n a s s o c i a t e d p l a n t s ( M i t c h e l l , 1972). High c o r - r e l a t i o n c o e f f i c i e n t s f o r corresponding Mn data (>0.40) are excep- t i o n a l , and are e s p e c i a l l y s u r p r i s i n g i n view of the f a c t t h a t the a v a i l a b i l i t y of t h i s element t o p l a n t s would be expected to be p a r t i c u l a r l y a f f e c t e d by v a r i a t i o n s i n s o i l environmental c o n d i t i o n s - mainly Eh and pH (Hem, 1972). Because i n the Rosetown area r e g i o n a l s o i l c o m p o s i t i o n a l v a r i a t i o n s can a p p a r e n t l y be adequately d e s c r i b e d i n terms of among parent m a t e r i a l mean d i f f e r e n c e s ( F i g s 13 to 17), the c l o s e r e l a t i o n s h i p (r> 0.73) between p l a n t and s o i l Cu, Fe and Mn mean c o n c e n t r a t i o n s f o r i n d i v i d u a l parent m a t e r i a l s i s p a r t i c - u l a r l y noteworthy. These strong mean r e l a t i o n s h i p s , however, seem t o c o n t r a d i c t r e s u l t s of i n d i v i d u a l sample comparisons. Examination of s c a t t e r diagrams i n F i g s 19 t o 22 i n d i c a t e s t h a t although i n d i v i d u a l data p o i n t s f o r a g i v e n parent m a t e r i a l tend t o be f a i r l y w i d e l y d i s p e r s e d , vaguely l i n e a r trends are d i s t i n g u i s h a b l e when data f o r a l l parent m a t e r i a l s are c o n s i d e r e d together. I t would appear, as was noted p r e v i o u s l y f o r r e l a t i o n - s h i p s between means f o r s o i l h o r i z o n s (p.98 ), t h a t the r e l a t i v e l y l a r g e s i z e of mean c o e f f i c i e n t s i s a t t r i b u t a b l e t o the 100 strengthening of these l i n e a r trends as a r e s u l t of the decrease in data v a r i a b i l i t y associated with the use of mean values. High correlations between plant and s o i l means, however, are not necessarily a r e s u l t of simple cause-effect relationships. This i s emphasized by the strong negative rel a t i o n s h i p between mean s o i l and plant Zn concentrations. In t h i s case plant Zn values would appear to be controlled by an additional factor (or factors) which i s i n turn negatively related to s o i l Zn content. Stewart and Tahir (1971) have suggested that s o i l pH and organic matter content, and plant growth stage, are important influences on the d i s t r i b u t i o n of Zn i n wheat from Saskatchewan. I t i s nevertheless possible to interpret p o s i t i v e r e l a t i o n - ships between Fe, M f r a n d Cu means causally, i n which case the scatter of i n d i v i d u a l data points could be explained, for example, as an e f f e c t of l o c a l changes i n s o i l environmental conditions (Eh, pH etc.) i f these are assumed to vary over similar ranges for the i n d i v i d u a l parent materials examined. In support of a causal explanation i t should be noted that t o t a l s o i l trace element contents have commonly been shown to a f f e c t concentra- tions i n plants i n geochemically extreme environments. For example, Cannon (1970) has observed that high Ni concentrations occur i n vegetation growing on N i - r i c h s o i l derived from u l t r a - mafic rocks i n Oregon, and that low lev e l s of n u t r i t i o n a l l y s i g n i f i c a n t trace elements are widespread i n crops in the trace element-poor coastal p l a i n sands of the eastern United States. 101 I t would seem reasonable to expect to f i n d a s i m i l a r , though perhaps more s u b t l e r e l a t i o n s h i p , between p l a n t and s o i l con- c e n t r a t i o n s i n oth e r l e s s c o m p o s i t i o n a l l y extreme environments. 4. GEOCHEMICAL MAPS a) Method of P r e s e n t a t i o n Geochemical maps i n F i g s 13 to 17 are e s s e n t i a l l y g r a p h i c a l summaries o f s t a t i s t i c a l l y s i g n i f i c a t among parent m a t e r i a l c o m p o s i t i o n a l v a r i a t i o n s as d e f i n e d by Duncan's New M u l t i p l e Range t e s t i n Table XVIII. To be u s e f u l f o r environmental s t u d i e s , these map p a t t e r n s should be s t a b l e - t h a t i s they should be f a i r l y r e a d i l y r e p r o d u c i b l e by separate sampling programs. In t h i s r e g ard . i t i s noteworthy t h a t r e s u l t s o f a p p l i c a t i o n o f Duncan's t e s t t o mean data f o r s o i l c o l l e c t e d a t wheat sample s i t e s i n Table XXIV are very s i m i l a r to those r e p o r t e d i n Table XVIII. The s t a b i l i t y of these c o m p o s i t i o n a l p a t t e r n s can be ass- essed u s i n g T i d b a l l (1970)'s a d j u s t a b l e v a r i a n c e r a t i o , Vm, as d e s c r i b e d p r e v i o u s l y i n Chapter I (p. 12). Because Vm values of a t l e a s t 1.0 and p r e f e r a b l y 5.0 are needed f o r r e p r o d u c i b l e map p a t t e r n s , these v a l u e s were used to determine the minimum number of samples r e q u i r e d per parent m a t e r i a l (Table XXVI). Re s u l t s i n d i c a t e t h a t because of the l a r g e among parent m a t e r i a l v a r i a n c e components (Table XVII) even f o r Vm values o f 5.0 i t i s necessary to c o l l e c t only 2 A or 5 C h o r i z o n samples from each s u r f i c i a l d e p o s i t . Because mean values f o r Duncan's t e s t i n 102 Table XXVI Numbers o f randomly s e l e c t e d s o i l samples C n ) r e q u i r e d from each Rosetown area parent m a t e r i a l to g i v e a d j u s t a b l e v a r i a n c e r a t i o (Vm) values of 1.0 and 5.0. n Horizon Element . Vm = 1.0* Vm = 5.0* Cu <1 1.8 Fe <1 1.8 Mn <1 1.7 Zn <1 1.8 Cu <1 2.3 Fe <1 3.2 Mn <1 3.6 Zn <1 4.3 Vm = S&/S , where Sex = among parent m a t e r i a l v a r i a n c e m from Table XVII and, 2 S . = w i t h i n parent m a t e r i a l v a r i a n c e m from Table xVTEr -n. 103 Table XVI were based on no fewer than 8 and up to 67 observa- t i o n s , Vm c a l c u l a t i o n s c o n f i r m the s t a b i l i t y of the map p a t t e r n s . Although w i t h i n parent m a t e r i a l c o m p o s i t i o n a l v a r i a t i o n s are not shown i n F i g s 13 to 17, such i n f o r m a t i o n c o u l d have been presented by, f o r example, e i t h e r p l o t t i n g township means or i n d i v i d u a l sample v a l u e s f o r each element a t a p p r o p r i a t e s i t e s on separate maps. T h i s , however, would have r e s u l t e d i n d o u b l i n g the number of maps produced. Furthermore, i t would have pr o v i d e d v e r y l i t t l e u s e f u l a d d i t i o n a l i n f o r m a t i o n because, on the one hand, a n a l y s i s of v a r i a n c e r e s u l t s i n Table XXII show t h a t d i f f e r e n c e s among township means are not s t a t i s t i c a l l y s i g n i f i c a n t f o r most parent m a t e r i a l s , and on the o t h e r , although among sample s i t e v a r i a t i o n s are commonly s i g n i f i c a n t (Table XXI), low c o r r e l a t i o n c o e f f i c i e n t s r e l a t i n g i n d i v i d u a l s o i l and p l a n t sample data (Table XXV) i n d i c a t e t h a t p l o t t i n g each s o i l con- c e n t r a t i o n s e p a r a t e l y would be of l i t t l e use i n p r e d i c t i n g l o c a l p l a n t c o m p o s i t i o n a l v a r i a t i o n s . F i n a l l y , i n i n t e r p r e t i n g these geochemical maps i t should be r e c a l l e d t h a t they are based on a s o i l parent m a t e r i a l map, which because of the s c a l e of p r e s e n t a t i o n , i s v e r y g e n e r a l i z e d . Areas shown i n F i g 10 to be u n d e r l a i n by g l a c i a l t i l l , f o r example, are commonly mantled by v a r i a b l e t h i c k n e s s of l a c u s t r i n e d e p o s i t s which are too l i m i t e d i n a e r i a l e x t e n t t o d i s t i n g u i s h s e p a r a t e l y . Because these l o c a l d e p o s i t s were p u r p o s e f u l l y avoided d u r i n g sample c o l l e c t i o n , they g e n e r a l l y do not con- t r i b u t e t o category mean and v a r i a n c e e s t i m a t e s . 104 b) P a t t e r n s and T h e i r S i g n i f i c a n c e Map Cu, Fe, Mn and Zn p a t t e r n s f o r A and C h o r i z o n and 30-46 cm(12-18 in) depth s o i l are b a s i c a l l y s i m i l a r i n t h a t s o i l a s s o c i a t e d w i t h a e o l i a n sand i s i d e n t i f i e d as being s i g - n i f i c a n t l y lower and t h a t a s s o c i a t e d w i t h l a c u s t r i n e c l a y s i g n i f i c a n t l y h i g h e r i n t r a c e element content than s o i l d e r i v e d from a l l u v i u m , g l a c i a l t i l l and l a c u s t r i n e s i l t and sand. High p o s i t i v e c o r r e l a t i o n c o e f f i c i e n t s (>0.70) between mean Fe, Mn and Cu p l a n t and s o i l v a l u e s i n d i c a t e t h a t t r a c e element p a t t e r n s f o r s o i l i n F i g s 13 to 17 are r e l a t e d to r e g i o n a l c o m p o s i t i o n a l v a r i a t i o n s i n wheat. F u r t h e r evidence of t h i s r e l a t i o n s h i p i s apparent i n r e s u l t s of a p p l y i n g Duncan's t e s t t o wheat means f o r these three elements (Table XXIV). R e s u l t s f o r wheat Mn v a l u e s are i d e n t i c a l t o those f o r s o i l , w i t h both the low mean f o r wheat growing on a e o l i a n sand and the h i g h mean f o r wheat a s s o c i a t e d w i t h l a c u s t r i n e c l a y i d e n t i f i e d as being s i g n i f i c a n t l y d i f f e r e n t from other estimated means. S i m i l a r l y , i n agreement w i t h s o i l t r e n d s , the h i g h Fe mean f o r wheat grown on l a c u s t r i n e c l a y and the low Cu mean f o r a e o l i a n sand, are i n d i c a t e d t o be s i g n i f i c a n t l y d i f f e r e n t from means a s s o c i a t e d w i t h other s u r f i c i a l d e p o s i t s . Maps l i k e those i n F i g s 13 t o 17, but based on sampling of u n c u l t i v a t e d B h o r i z o n s o i l , have been prepared f o r the Sta t e of M i s s o u r i u s i n g v e g e t a t i o n - t y p e areas i n s t e a d of s o i l parent m a t e r i a l s f o r category d e f i n i t i o n ( S h a c k l e t t e e t a l . , 1972). D e s p i t e the e x i s t e n c e of l a r g e d i f f e r e n c e s i n s o i l 105 composition among v e g e t a t i o n - t y p e areas, l i t t l e r e l a t i o n s h i p was found between s o i l p a t t e r n s d e f i n e d by Duncan's New M u l t i p l e Range t e s t and the t r a c e element content of a s s o c i a t e d p l a n t m a t e r i a l . T h i s s i t u a t i o n was however a t t r i b u t e d , i n p a r t a t l e a s t , t o l a r g e d i f f e r e n c e s among category mean pH va l u e s (range 5.3 t o 7.3), which would be expected t o c o n s i d e r a b l y a f f e c t the a v a i l a b i l i t y of t r a c e elements t o p l a n t s . D i f f e r e n c e s among mean pH v a l u e s f o r s o i l a s s o c i a t e d w i t h v a r i o u s parent m a t e r i a l s i n the Rosetown area are, i n c o n t r a s t , very s m a l l (Table XVI). The a p p a r e n t l y s t r o n g r e l a t i o n s h i p s between Cu, Fe and Mn mean p l a n t and s o i l v a l u e s suggest t h a t i n t h i s , and per- haps i n other s i m i l a r Canadian p r a i r i e environments, maps such as those presented c o u l d be of va l u e i n p r e d i c t i n g r e g i o n a l p l a n t c o m p o s i t i o n a l v a r i a t i o n s . These maps, t h e r e f o r e , c o u l d be u s e f u l i n i d e n t i f y i n g areas where t r a c e element im- balances i n crops or l i v e s t o c k are e s p e c i a l l y l i k e l y t o occur. E. RESULTS - SELENIUM 1. BEDROCK CONCENTRATIONS Se l e v e l s i n Bearpaw Formation d r i l l core are summarized i n T able XXVII. C o n c e n t r a t i o n s throughout the n e a r l y 240 m (800 f t ) i n t e r v a l examined are g e n e r a l l y l e s s than 1.0 ppm. Sandy formation members (Cruikshank, Ardkenneth and Demaine) c o n t a i n the s m a l l e s t amounts of Se (0.25 to 0.50 ppm). The 106 Table XXVII Se content of Bearpaw Formation bedrock, Rosetown area. Member D e s c r i p t i o n T hickness (m) Number of Analyses Se Content* (ppm) A q u a d e l l medium grey s i l t y c l a y 78 7 0.56 0.12-1.12 (0.47) Cruikshank g r e e n i s h grey sand 12 2 0.46 0.43-0.50 (0.46) Snakebite medium grey c l a y t o s i l t y c l a y 74 8 0.57 0.37-0.81 (0.59) Ardkenneth g r e e n i s h grey sand 33 3 0.30 0.25-0.37 (0.29) Beechy g r e e n i s h grey s i l t y c l a y 20 2 0.64 0.63-0.65 (0.64) Demaine medium grey sand 17 2 0.26 (0.26) Sh e r r a r d g r e e n i s h grey s i l t y c l a y 15 2 0. 66 0.58-0.75 (0.66) a) Geometric mean; t r u e range: median i n parentheses. b) I n d i v i d u a l data v a l u e s l i s t e d i n Appendix C ( 3 ) . 107 geometric mean Se content of a l l samples analysed i s 0.50 ppm. 2. SOIL AND PLANT COMPOSITIONAL VARIATIONS Histograms of the Se content of both wheat and C h o r i z o n s o i l a s s o c i a t e d w i t h i n d i v i d u a l parent m a t e r i a l types are shown i n F i g 23. Although a l o g a r i t h m i c bar i n t e r v a l i s used, some . of these d i s t r i b u t i o n s appear t o be p o s i t i v e l y skewed ( F i g 23h),whereas f o r ot h e r s b i m o d i a l i t y i s suggested ( F i g 23a and b ) . To a v o i d b i a s e s a s s o c i a t e d w i t h the use of mean v a l u e s , t h e r e f o r e , medians were chosen as p r e f e r a b l e estimates of the c e n t r a l tendencies of the data s e t s . Wheat and C h o r i z o n s o i l Se, and s o i l pH data, are sum- marized i n Table XXVIII and F i g 24. Compositional trends f o r Se are s i m i l a r to those f o r other elements examined. The Se content of C h o r i z o n s o i l i s lowest f o r a e o l i a n sand (median 0.12 ppm) and h i g h e s t f o r l a c u s t r i n e c l a y (median 0.37 ppm), with i n t e r m e d i a t e c o n c e n t r a t i o n s o c c u r r i n g i n t i l l and l a c u s - t r i n e s i l t and sand. Although median wheat Se v a l u e s are con- s i d e r a b l y higher than those f o r s o i l parent m a t e r i a l , the same o v e r a l l t r e n d i s apparent, w i t h the lowest v a l u e a s s o c i a t e d w i t h a e o l i a n sand (median 0.64 ppm) and the h i g h e s t w i t h l a c u s - t r i n e c l a y (median 2.18 ppm). The s i g n i f i c a n c e of d i f f e r e n c e s among medians was evaluated u s i n g the Median t e s t (see Appendix B ) . R e s u l t s suggest t h a t 108 WHEAT SOIL TJ C o CO c D O < t A I - Q . i i E p ° 1 « 2 • G M O - 9 6 G D = 2 I 7 n = l5 (0) 6 M = 0 - I 3 (b) GD = l -58 n=l5 MA o * i o ( 0 c m o o , s " r p ^ - i p w ^ - j - i - i p 6 o 6 6 - iii w * Se (ppm, dry weight) O O - = ! J Z : N N I 9 6 6 6 6 6 6 6 6 Se (ppm) TJ c o CO TJ c o CO a> c I A a> m pl  E DS 3 DS 2 H — o I GM=0-85 ( C ) GD = l-79 n =15 GM=0-32 (d) GD = I-5I n =15 mm/A Q . E o i n 3 Z H — 2 I O N 10 IO * N * I O Ol l O y <D 00 — IO o r- ao 6 6 6 6 - - n n 1 0 Se (ppm, dry weight) I /177Z) ( O O j O O I O ' t — _ w w w * * i p s 6 6 6 6 6 6 6 6 0 Se (ppm) g 'o o CD a> c E 3 0) 4 JZ3 1 GM=2-20 GD =2-41 n = l 5 (e) GM=0-27 GD=l-94 n = ! 5 (f) S 12 P7P: 'A x> E E «3 3 z f5U 6 6 — <Si 10 m 00 <vi Se (ppm, dry weight) 'A O - ^ N N t O I O N O I I Q O ) 6 6 6 6 6 6 6 6 6 — — Se (ppm) o O to n E 3 z 8 CL E o i n L GM=2-36 (g) 6 D =1-62 n = l 6 GM=0-49 (h) GD = l-84 n = l 6 i n O i X) fc z 1 Ld 21 E E o 4- ID i n o - r o o o J i - f o o w o a i c p cvi 6 — — ^ oil 10 10 * <b Se (ppm, dry weight) o > < o < o o ) ( 0 O e 4 ( 0 i r > 6 6 6 6 6 0 — — <\] Se (ppm) Figure 23. Histograms of Se content of wheat and C horizon soil, Rosetown area (bar interval logarithmic, GM»geometric mean,GD-geometric deviation). 109 Table XXVIII Se content of wheat (dry weight b a s i s ) and C h o r i z o n s o i l , and s o i l pH v a l u e s , Rosetown area. Parent Number of Wheat S o i l C Horizons M a t e r i a l Samplest Se* Se* pH** (ppm) (ppm) L a c u s t r i n e 16:16 2.18 0.37 8.3 c l a y 1.02-5.40 0.24-1.92 8.1-8.6 L a c u s t r i n e 15:15 1.08 0.28 8.3 s i l t and sand 0.38-3.60 0.18-0.63 6.9-8.9 G l a c i a l t i l l 15:15 1.54 0.26 8.3 0.85-11.2 0.08-1.50 7.5-8.9 A e o l i a n sand 16:15 0.64 0.12 7.8 0.42-4.00 0.07-0.26 6.5-8.9 1~Number of wheat samples: number of s o i l samples. * a) Median and t r u e range. b) I n d i v i d u a l sample val u e s l i s t e d i n Appendix C ( 2 ) . ** A r i t h m e t i c mean; t r u e range. 1 0 8 ° 0 0 ' 1 0 6 ° 4 3 ' 110 Tp34 TP32 RI4 RI2 SOIL PARENT MATERIAL [?-~H Lacustrine clay | | Lacustrine silt and sand RIO 1 | Glacial till f>" ° "Q| Alluvium Aeolian sand R 8 Wheat Se Concentration (ppm) • <IOO • 100-2-99 © 3 - 0 0 - 6 - 0 0 • > 6 0 0 Figure 24. Se content, wheat material (dry weight), Rosetown area. 111 medians f o r both s o i l parent m a t e r i a l and wheat samples are probably (99% c o n f i d e n c e l e v e l ) drawn from d i f f e r e n t p o p u l a t i o n s (Table XXIX). Furthermore, although l i n e a r c o r r e l a t i o n co- e f f i c i e n t s show the r e l a t i o n s h i p between i n d i v i d u a l overburden and wheat c o n c e n t r a t i o n s to be poor (Table XXX), there i s a h i g h c o r r e l a t i o n (+0.9 0) when medians are compared, which i s s i g n i f i c a n t a t the 90% c o n f i d e n c e l e v e l . C o r r e l a t i o n s between i n d i v i d u a l wheat Se and s o i l pH v a l u e s are weak (Table XXX). Median pH v a l u e s were not com- pared w i t h corresponding wheat data because median t e s t r e s u l t s i n d i c a t e d t h a t d i f f e r e n c e s among median pH v a l u e s a s s o c i a t e d w i t h v a r i o u s parent m a t e r i a l types are not s i g n i f i c a n t . F. DISCUSSION - SELENIUM 1. BEDROCK Se c o n c e n t r a t i o n s measured i n the uppermost t w o - t h i r d s of the Bearpaw Formation range between 0.12 and 1.12 ppm. These va l u e s are much lower than those r e p o r t e d f o r b l a c k s h a l e bed- rock u n i t s (up to 100 ppm) a s s o c i a t e d w i t h the d i s t r i b u t i o n of accumulator p l a n t s ( i n c l u d i n g A. b i s u l c a t u s and A. p e c t i n a t u s ) i n the U n i t e d S t a t e s (Lakin, 1961). They are, however, con- s i s t e n t w i t h r e s u l t s of W i l l i a m s e t a l . (1941) who found an average of 1.6 ppm i n a l i m i t e d number of s u r f a c e Bearpaw Formation samples from Saskatchewan. T O u r t e l o t (1962) a t t r i b u t e d h i g h c o n c e n t r a t i o n s i n the T a b l e XXIX R e s u l t s of a p p l i c a t i o n of Median t e s t t o wheat and C h o r i z o n s o i l Se v a l u e s , Rosetown area. Number of Values Above and Below Pare n t • O v e r a l l Group Medians* C h i - s q u a r e M a t e r i a l T T, . _ •, -* Wheat S o i l C l a s s i f i c a t i o n Observed Expected Observed Expected Wheat S o i l L a c u s t r i n e c l a y Above 14 8.0 14 8.1 Below 2 8.0 2 7.9 L a c u s t r i n e s i l t Above 6 7.5 9 7.6 and sand Below 9 7.5 6 7.4 G l a c i a l t i l l Above 7 7.5 7 7.6 Below 8 7.5 8 7.4 A e o l i a n sand Above 4 8.0 0 7.6 Below 12 8.0 15 7.4 ft ft C h i - s q u a r e s i g n i f i c a n t l y g r e a t e r than zero a t P = 0.01, * Wheat median 1.53 ppm: s o i l median 0.26 ppm. 113 Table XXX C o r r e l a t i o n c o e f f i c i e n t s r e l a t i n g l o g 10 Se c o n c e n t r a t i o n s i n wheat to those of a s s o c i a t e d C h o r i z o n s o i l and a r i t h m e t i c s o i l pH v a l u e s , Rosetown area. C o r r e l a t i o n C o e f f i c i e n t s Data Type Parent Wheat Se Wheat Se Degrees M a t e r i a l and and of S o i l Se S o i l pH Freedom .". . rr. (n-2) . I n d i v i d u a l L a c u s t r i n e 0.245 -0.320 13 data c l a y v a l u e s L a c u s t r i n e 0.237 -0.186 13 s i l t and sand G l a c i a l t i l l -0.013 -0.123 13 A e o l i a n sand -0.574* 0.388 14 A l l parent 0.222 0.190 59 m a t e r i a l s Parent M a t e r i a l 0.901 2 medians * C o e f f i c i e n t s i g n i f i c a n t l y g r e a t e r than zero a t P = 0.05. 114 Pierre Shale, the stratigraphic equivalent of the Bearpaw Formation i n South Dakota, to adsorption of Se from seawater by clay and organic matter i n r e l a t i v e l y low energy far-shore environments. The Bearpaw Formation, i n contrast, was deposited comparatively rapidly i n a high energy l i t t o r a l setting .(Caldwell, 1968), which probably allowed l i t t l e time for adsorption proces- ses to be e f f e c t i v e . Furthermore t h i s formation contains a high proportion of sand and s i l t size material (Caldwell, 1968), which would be expected to have r e l a t i v e l y limited adsorption capacities. 2. C HORIZON SOIL S o i l Se concentrations (range 0.07 to 1.92 ppm) are similar to those reported for the Bearpaw Formation, and are therefore compatible with the hypothesis that s o i l parent materials were derived, at lea s t to some extent, from t h i s bedrock unit (Scott, 1960) . Median test r e s u l t s (Table XXTX) suggest that s o i l parent material i s a s i g n i f i c a n t factor i n determining regional s o i l Se d i s t r i b u t i o n patterns. Furthermore, as for the other trace elements examined, Se concentrations appear to be cl o s e l y re- lated to textural v a r i a t i o n s , with median values tending to increase with clay contient. This trend i s consistent with that noted i n the Bearpaw Formation (Table XXVII), from which i t may be, to some degree, inherited. 115 3. PLANTS Median t e s t r e s u l t s f o r p l a n t data suggest t h a t s o i l p arent m a t e r i a l i s a l s o a s i g n i f i c a n t f a c t o r i n determining r e g i o n a l Se d i s t r i b u t i o n p a t t e r n s i n wheat. The p a r t i c u l a r t r e n d apparent i n Table XXVIII toward h i g h e s t p l a n t Se con- c e n t r a t i o n s a s s o c i a t e d w i t h f i n e s t g r a i n e d parent m a t e r i a l , has been noted by other workers i n Saskatchewan. Thorvaldson and Johnson (1940), f o r example, i n v e s t i g a t i n g Se l e v e l s i n Saskatchewan wheat g r a i n , observed t h a t m a t e r i a l s d e r i v e d from areas of l a c u s t r i n e c l a y s o i l tended t o c o n t a i n h i g h e r Se con- c e n t r a t i o n s than those from other areas. S i m i l a r l y , Owen (1972), i n c o n t r o l l e d f i e l d t r i a l s , r e p o r t e d somewhat enhanced Se con- t e n t s f o r forage crops grown on Saskatchewan l a c u s t r i n e c l a y s o i l s r e l a t i v e t o those grown on g l a c i a l t i l l d e r i v e d m a t e r i a l s . Low c o r r e l a t i o n s between i n d i v i d u a l p l a n t and s o i l Se v a l u e s suggest t h a t w i t h i n parent m a t e r i a l c o m p o s i t i o n a l v a r i a b i l i t y f o r p l a n t s i s c o n t r o l l e d to a l a r g e extent by such f a c t o r s as l o c a l s o i l pH and Eh, and secondary i r o n oxide con- t e n t , which a f f e c t the form and hence a v a i l a b i l i t y of s o i l Se (Gerring e t a l . , 1968). Gupta and Winter (1975) have r e p o r t e d s i m i l a r l y low, t y p i c a l l y n o n - s i g n i f i c a n t c o r r e l a t i o n s between i n d i v i d u a l s o i l and p l a n t Se v a l u e s i n P r i n c e Edward, I s l a n d . The s t r o n g p o s i t i v e c o r r e l a t i o n between wheat and s o i l median v a l u e s (0.90), on the other hand, i m p l i e s t h a t the among parent m a t e r i a l p l a n t Se d i s t r i b u t i o n p a t t e r n i s , to some degree at l e a s t , i n f l u e n c e d by v a r i a t i o n s i n t o t a l parent m a t e r i a l 116 c o n c e n t r a t i o n s . Kubota and Allaway (1972) have l i k e w i s e noted t h a t broad geographic v a r i a t i o n s i n Se l e v e l s i n p l a n t m a t e r i a l s i n the U n i t e d S t a t e s tend t o r e f l e c t v a r i a t i o n s i n the Se content of s o i l parent m a t e r i a l . The s t r e n g t h of the median c o r r e l a t i o n , r e l a t i v e t o c o e f f i c i e n t s f o r i n d i v i d u a l d ata v a l u e s , i s i n t e r p r e t e d as b e i n g , i n l a r g e measure, an e f f e c t of the decrease i n data v a r i a b i l i t y a s s o c i a t e d w i t h the use of medians (Dixon and Massey, 1969). T h i s e f f e c t i s analo- gous to those d e s c r i b e d p r e v i o u s l y (pp.98 andlOO) f o r c o e f f i - c i e n t s r e l a t i n g data means. With r e g a r d to the p o s s i b l e h e a l t h s i g n i f i c a n c e of wheat Se c o n c e n t r a t i o n s (Table XXVIII, F i g 24), i t i s i n t e r e s t i n g t o note t h a t approximately o n e - t h i r d of the wheat samples from both t i l l and l a c u s t r i n e c l a y c o n t a i n c o n c e n t r a t i o n s equal to or g r e a t e r than the maximum l e v e l of about 3-4 ppm recommended f o r animals by Underwood (1962). BecauseSe i s concentrated i n the wheat g r a i n r e l a t i v e to the leaves and stems (Rosenfeld and Beath, 1964), an even h i g h e r p r o p o r t i o n of wheat g r a i n would be expected to c o n t a i n c o n c e n t r a t i o n s above t h i s l i m i t . These r e s u l t s c o n t r a s t w i t h the r e l a t i v e l y low v a l u e s (^2.0 ppm) p r e v i o u s l y r e p o r t e d by both B o l t o n (19 38) and Thorvaldson and Johnson (1940) f o r composite wheat g r a i n samples from Saskatchewan. 117 G. CONCLUSION Regional v a r i a t i o n s i n the t r a c e element content o f Rose- town area s o i l s are c o n t r o l l e d , to a l a r g e degree, by changes i n parent m a t e r i a l type. C o n c e n t r a t i o n s a s s o c i a t e d w i t h a p a r t i c u l a r s u r f i c i a l d e p o s i t appear, i n t u r n , to be l a r g e l y determined by i t s t e x t u r a l c h a r a c t e r i s t i c s . Low values c h a r a c t e r i z e s o i l developed on r e l a t i v e l y coarse g r a i n e d d e p o s i t s such as a e o l i a n sands, whereas hi g h c o n c e n t r a t i o n s t y p i c a l l y occur i n s o i l assoc- i a t e d w i t h f i n e g r a i n e d m a t e r i a l s such as l a c u s t r i n e c l a y . S o i l c o m p o s i t i o n a l p a t t e r n s can be c o n v e n i e n t l y d e s c r i b e d by a p p l y i n g Duncan's New Muptiple Range t e s t to mean values f o r i n d i v i d u a l p arent m a t e r i a l s and summarizing t e s t r e s u l t s i n map form, d i s t i n g u i s h i n g only c o m p o s i t i o n a l l y unique parent mat- e r i a l s or parent m a t e r i a l groups. S i m i l a r map p a t t e r n s are obtained r e g a r d l e s s of whether A, 30-46 cm (12-18 in) or C hor- i z o n s are used. Because o f r e l a t i v e l y l a r g e d i f f e r e n c e s among parent m a t e r i a l means, very few samples are r e q u i r e d (< 5 per deposit) to produce s t a b l e maps. Depending upon the element b e i n g c o n s i d e r e d , c l o s e r e l a t - i o n s h i p s may e x i s t between mean c o n c e n t r a t i o n s f o r s o i l s and p l a n t s a s s o c i a t e d w i t h the same parent m a t e r i a l . These r e l a t i o n s h i suggest t h a t s o i l c o m p o s i t i o n a l maps based on among mean d i f f e r - ences c o u l d be of c o n s i d e r a b l e v a l u e i n i d e n t i f y i n g areas where t r a c e element imbalances i n crops and l i v e s t o c k are p a r t i c u l - a r l y l i k e l y to occur. 117a CHAPTER IV RED DEER AREA 118 A. DESCRIPTION OF STUDY AREA 1. GENERAL 2 The Red Deer area covers approximately 6,100 km (2,400 sq mi) of s o u t h - c e n t r a l A l b e r t a ( i n s e t map; F i g 2 5). C l i m a t i c c o n d i t i o n s v a r y c o n s i d e r a b l y (Chapman and Brown, 1966), from m a r g i n a l l y s e m i - a r i d i n the e a s t near S u l l i v a n Lake (mean an- nu a l p r e c i p i t a t i o n 35 cm or 14 in) to sub-humid i n the extreme west (mean annual p r e c i p i t a t i o n 50 cm or 20 i n ) . The area occurs w i t h i n the A l b e r t a P l a i n p h y s i o g r a p h i c s u b d i v i s i o n of the Canadian I n t e r i o r P l a i n ( F i g 3). The land s u r f a c e r i s e s g r a d u a l l y i n a w e s t e r l y d i r e c t i o n , from a minimum of 810 m (2,7 00 f t ) on the n e a r l y l e v e l lowlands near Gough and S u l l i v a n Lakes to over 1,140 m (3,800 f t ) along the western mar- g i n adjacent t o the f o o t h i l l s of the Rocky Mountains ( F i g 25). Topography on the c e n t r a l and western upland i s g e n e r a l l y un- d u l a t i n g t o r o l l i n g , w i t h l o c a l r e l i e f r e a c h i n g a maximum of 45 m (150 f t ) . Drainage i n the e a s t e r n lowland i s c o n t r o l l e d by numerous c l o s e d b a s i n s such as Gough Lake, which d i s c h a r g e mainly by evap o r a t i o n ( F i g 25). The Red Deer R i v e r and i t s t r i b u t a r i e s d r a i n the remainder of the area. As i n the Rosetown area t r i b u - t a r y streams s u i t a b l e f o r reconnaissance stream sediment sampl- i n g purposes are r a r e . II4°46' ^Cdlgaryj AREA OF STUDY R27 R25 R23 R2I RI9 RI7 RI5 n2° 00' - 3 0 0 0 — Topographic contours (interval 200ft). "~>— River, stream. Highway Township (Tp) - Range (R) boundaries. 9 City, town. Figure 25. Topography and drainage, Red Deer area. M VO 120 2. BEDROCK Bedrock, which d i p s t o the west and southwest, comprises a s u c c e s s i o n of sandstones, s i l t s t o n e s and mudstones ranging i n age from Upper Cretaceous to T e r t i a r y . The f o u r separate map u n i t s r e c o g n i z e d ( F i g 26), have been d e s c r i b e d i n d e t a i l by I r i s h (1970) and C a r r i g y (1971). The Horseshoe Canyon Formation, which i s the o l d e s t rock u n i t , u n d e r l i e s the e a s t e r n lowland. I t i s composed of a p p r o x i - mately 225 m (750 f t ) of b e n t o n i t i c f e l d s p a t h i c sandstone and s i l t y b e n t o n i t i c s h a l e , as w e l l as c o a l seams and beds of c a r - bonaceous sh a l e . T h i s u n i t i s o v e r l a i n by from 2 to 6 m (6 to 2 0 f t ) of white weathering sand, s i l t and c l a y b e l o n g i n g to the Whitemud Formation. The B a t t l e Formation, which succeeds the Whitemud, c o n s i s t s of from 8 to 9 m (25 t o 30 f t ) of mauve weathering s h a l e . Together these three formations c o n s t i t u t e the Upper Crevtaceous Edmonton Group as d e f i n e d by I r i s h (1970). The Paskapoo Formation, of Upper Cretaceous to T e r t i a r y age, u n d e r l i e s the c e n t r a l and western p o r t i o n s of the area. I t s t h i c k n e s s i n c r e a s e s westward r e a c h i n g a maximum of 900 m (3,000 f t ) . T h i s u n i t , which i s l i t h o l o g i c a l l y s i m i l a r to the Horseshoe Canyon Formation, i n c l u d e s massive medium to coarse g r a i n e d sandstone, f i n e g r a i n e d sandstone and s i l t y s h a l e . Limestone and l e n s e s of woody c o a l and pebble conglomerate are a l s o present. !I4°46' T OJ tf> , 113° 52 SRed Deer Tp38 Tp37 n Tp36 Tp35 R7 R5 R3 , 2 Rl M l MILES I KM 20 R27 R25 R23 R2I RI9 RI7 Tp34 (From Gfreen,l972) ^ o g ^ R ' 5 ||2° 00* B E D R O C K F O R M A T I O N S T E R T I A R Y AND C R E T A C E O U S C R E T A C E O U S Poska pOO : nonmarine sands tone, si l tstone and muds t o n e ; minor c o n g l o m e r a t e , l imes tone , c o a l and t u f f beds Whitemud and Battle -, n o n m a r i ne b e n t o n i t i c s a n d s t o n e and muds t o n e ; -Includes s i l iceous t u f f beds Horseshoe Canyon: mainly n o n m a r i n e bentonit ic sands tone , mudstone and c a r b o n a c e o u s shale; includes concret ionary i ronstone , cool and benton i te Figure 26. B e d r o c k g e o l o g y , R e d D e e r a r e a . I — 1 122 3. SOIL PARENT MATERIAL The d i s t r i b u t i o n of s o i l parent m a t e r i a l s shown i n F i g 27 was compiled from s e v e r a l s u r f i c i a l g e o l o g i c a l maps ( B o y d e l l , 1973; C r a i g , 1957; MacS. S t a l k e r , 1956 and 1960). Only f o u r major u n i t s are r e c o g n i z e d - ground moraine, hummocky moraine, l a c u s t r i n e and alluvium-outwash d e p o s i t s . Moraines ( F i g 28a and b)cover most of the area and are composed mainly of t i l l d e r i v e d from l o c a l bedrock (Gravenor and Bayrock, 1961; MacS. S t a l k e r , 1960). T i l l t h i c k n e s s v a r i e s from o n l y a few meters f o r ground moraine to over 15 m (50 f t ) f o r hummocky moraine. Although t e x t u r e s are normally i n the loam to clay-loam range, hummocky moraine tends to be somewhat c o a r s e r than ground moraine because of removal of f i n e m a t e r i a l as outwash d u r i n g d e p o s i t i o n (MacS. S t a l k e r , 1960). M i n e r a l - o g i c a l examination of t i l l a s s o c i a t e d w i t h both the Paskapbo and Horseshoe Canyon Formations n o r t h of the study area i n d i c a t e s t h a t m o n t m o r i l l o n i t e i s the main c r y s t a l i n e component of the c l a y s i z e f r a c t i o n (Twardy e t a l . , 1974). Up to 15 m (50 f t ) of g l a c i o l a c u s t r i n e d e p o s i t s ( F i g 28c) l o c a l l y o v e r l i e t i l l . Although the l a r g e s t of these are shown i n F i g 27, numerous sm a l l e r d e p o s i t s are a l s o present. Because these sediments e x h i b i t c o n s i d e r a b l e t e x t u r a l h e t e r o g e n e i t y over s h o r t d i s t a n c e s , i t was not p o s s i b l e to d i v i d e them i n t o mapable u n i t s based on g r a i n s i z e . A l l u v i u m and outwash de- p o s i t s ( F i g 28 d ) , which c o n t a i n a r e l a t i v e l y l a r g e p r o p o r t i o n of sands and g r a v e l s , are a s s o c i a t e d mainly w i t h the Red Deer R27 R25 SOIL PARENT MATERIAL Ground moraine I I Hummocky moraine I - - — I Lacustrine deposits Alluvial-outwash deposits Figure 27. Soil parent material, Red Deer area. IsJ 124 c) Lacustrine deposits d) Mluvium-outwash Figure 28. Characteristic surface morphologies associated with individual parent materials, Red Deer area. 125 R i v e r and i t s t r i b u t a r i e s . G r a v e l s are c h i e f l y of e x o t i c o r i g i n , and i n c l u d e c h e r t , q u a r t z i t e and g r a n i t i c rock f r a g - ments (MacS. S t a l k e r , 1960). 4. SOIL S o i l s i n the Red Deer area have been d e s c r i b e d by Bowser et a l . (1951) and P e t e r s and Bowser (1960). As i n d i c a t e d p r e v i o u s l y i n F i g 5 three major s o i l zones are r e c o g n i z e d - from eas t to west Dark Brown, Black and Greywooded. Most s o i l s i n the Black and approximately one-half i n the Dark Brown Zone belong t o the Chernozemic Order. S o l o n e t z i c s o i l s are a l s o widespread i n the Dark Brown Zone, whereas L u v i s o l s are c h a r a c t e r i s t i c of the Greywooded Zone. Although d e t a i l e d p h y s i c a l and chemical data are not gen- e r a l l y a v a i l a b l e , s o i l survey i n f o r m a t i o n i n d i c a t e s t h a t A h o r i z o n pH v a l u e s are i n the s l i g h t l y a c i d to n e u t r a l range (6.1 - 7.3), and C h o r i z o n v a l u e s are normally m i l d l y a l k a l i n e (7.4 - 7.8). Depth to C ( u s u a l l y Cca) h o r i z o n s i n c r e a s e s west- ward from 65 cm (25 in) i n the Dark Brown Zone to over 90 cm (36 in) i n the Greywooded Zone. 5. AGRICULTURAL LAND USE AND TRACE ELEMENT IMBALANCES C l i m a t i c c o n d i t i o n s i n the c e n t r a l Black S o i l Zone are i d e a l l y s u i t e d to g r a i n crops, p r i n c i p a l l y wheat, whereas e a r l y f r o s t i n the Greywooded Zone and low r a i n f a l l i n the Dark Brown Zone favour use of these r e g i o n s f o r p a s t u r e l a n d or hay produc- t i o n . Se r e s p o n s i v e white muscle d i s e a s e i s r e c o g n i z e d as a 126 s e r i o u s problem f o r c a t t l e producers i n the western h a l f of the area (Godkin, 1973) where Se i n j e c t i o n s a re now more or l e s s r o u t i n e l y administered a f t e r c a l f b i r t h . B. SAMPLE COLLECTION AND ANALYSIS 1. COLLECTION Only s o i l was sampled i n the Red Deer area. Procedures f o r choosing s i t e s and sample c o l l e c t i o n were g e n e r a l l y s i m i l a r to those p r e v i o u s l y d e s c r i b e d f o r s o i l i n the Rosetown area (p. 59 ). However b e s i d e s two sample, s i t e s s e l e c t e d randomly w i t h i n each township, a l i m i t e d number of a d d i t i o n a l s i t e s were l o c a t e d on alluvium-outwash t o ensure adequate r e p r e s e n t a t i o n of t h i s m a t e r i a l . A l s o , d u p l i c a t e samples were not c o l l e c t e d , and B h o r i z o n s o i l was taken i n p l a c e of the 30-46cm (12-18 in) depth sample. The m a j o r i t y of A h o r i z o n s were c o l l e c t e d from the plough l a y e r , and those C h o r i z o n s obtained were normally taken from the zone of carbonate enrichment immediately below the B h o r i z o n . E i t h e r because of e x c e s s i v e r o c k i n e s s or depth of s o l a (> 1 m) C h o r i z o n s were not obtained a t over one-quarter of the sample s i t e s . U.T.M. c o o r d i n a t e s f o r i n d i v i d u a l sample s i t e s are g i v e n i n Appendix C ( 4 ) . 2. ANALYSIS A l l C h o r i z o n s , as w e l l as s e l e c t e d A and B h o r i z o n samples were analysed f o r n i t r i c - p e r c h l o r i c a c i d e x t r a c t a b l e Cu, Fe, Mn and Zn by atomic a b s o r p t i o n u s i n g s o i l d i g e s t i o n Procedure 1. S o i l r e a c t i o n was measured f o r a l i m i t e d number of both A h o r i z o n and C h o r i z o n samples. Procedures employed f o r sample p r e p a r a t i o n and a n a l y s i s are d e s c r i b e d i n d e t a i l i n Chapter I I . C. RESULTS As i n the Rosetown area, s o i l t r a c e element data are de- s c r i b e d i n terms of among and w i t h i n parent m a t e r i a l v a r i a t i o n s . Because B h o r i z o n s are not pr e s e n t everywhere, and t h e r e f o r e cannot be used f o r r e g i o n a l mapping, c o n c e n t r a t i o n s i n these materials are c o n s i d e r e d o n l y b r i e f l y i n r e l a t i o n t o the e f f e c t s of pedogenic pro c e s s e s . 1. AMONG PARENT MATERIAL SOIL COMPOSITIONAL VARIATIONS In view of the l o c a l d e r i v a t i o n of t i l l d e p o s i t s , moraines were s u b d i v i d e d i n t o those a s s o c i a t e d w i t h e i t h e r the Horseshoe Canyon or Paskapoo Formations. Geometric mean t r a c e element c o n c e n t r a t i o n s f o r C h o r i z o n s o i l from both hummocky and ground moraines a s s o c i a t e d w i t h each of these bedrock u n i t s are g i v e n i n Table XXXI. Two d i s t i n c t c o m p o s i t i o n a l trends are apparent - on the one hand, means f o r Horseshoe Canyon t i l l a r e somewhat higher than corresponding means f o r Paskapoo t i l l . , and on the other, f o r a g i v e n bedrock type c o n c e n t r a t i o n s i n ground moraine are g e n e r a l l y h i g h e r than those o f hummocky moraine. F o r example, Horseshoe Canyon mean Cu va l u e s f o r hummocky and ground moraine are 15.7 and 18.9 ppm r e s p e c t i v e l y , whereas 128 Table XXXI Trace element content o f C h o r i z o n s o i l from i n d i v i d u a l m o r a i nal types, Red Deer area. Trace Element Content* Bedrock M o r a i n a l Cu Fe Mn Zn Number Formation Type (ppm) (%) (ppm) (ppm) of Analyses Horseshoe Hummocky 15 . 7 1. ,35 22 1 40 .7 Canyon (1. 16) (1. ,15) (1. 42) (1. 15) Ground 18 .9 1. ,47 29 4 48 .8 (1. 40) (1. .28) d - 26) (1. 22) Paskapoo Hummocky 12 .8 1. .20 20 8 34 .9 (1. 58) (1. . 33) (1. 41) (1. 41) Ground 14 .9 1. .49 280 42 .1 (1. 40) (1. .22) (1- 37) (1. 24) a) Geometric mean (GM); geometric d e v i a t i o n (GD) i n parentheses. b) I n d i v i d u a l sample val u e s l i s t e d i n Appendix C ( 4 ) . 129 Paskapoo Formation means are 12.8 ppm f o r hummocky moraine and 14.9 ppm f o r ground moraine. A p p l i c a t i o n of Duncan's New M u l t i p l e Range t e s t t o these v a l u e s however (Table XXXII), f a i l e d t o d e t e c t any s i g n i f i c a n t d i f f e r e n c e s among Cu, Fe and Zn means. Data f o r each of these elements f o r a l l m o r a i n a l types were t h e r e f o r e grouped together f o r the purpose of f u r t h e r s t a t i s t i c a l a n a l y s i s . R e s u l t s f o r Mn were e x c e p t i o n a l i n t h a t means f o r hummocky moraine (2 08 and 221 ppm) were found t o be s i g n i f i c a n t l y lower than those f o r ground moraine (280 and 294 ppm). Mean c o n c e n t r a t i o n s f o r both A and C h o r i z o n s a s s o c i a t e d w i t h major Red Deer area parent m a t e r i a l s are g i v e n i n Tab l e XXXIII. Examination of C h o r i z o n data i n d i c a t e s t h a t v a l u e s f o r g l a c i a l t i l l and l a c u s t r i n e d e p o s i t s are g e n e r a l l y s i m i l a r , whereas those f o r alluvium-outwash are r e l a t i v e l y low. Duncan's t e s t confirms the s i g n i f i c a n c e of t h i s t r e n d f o r Cu and Zn (Table XXXIV), R e s u l t s f o r Fe d i f f e r i n t h a t the mean f o r l a c u s - t r i n e d e p o s i t s i s i d e n t i f i e d as being s i g n i f i c a n t l y g r e a t e r than t h a t f o r t i l l . In the case of Mn, two d i s t i n c t i v e data subsets are d e f i n e d comprising alluvium-outwash and hummocky moraine on the one hand, and l a c u s t r i n e d e p o s i t s and ground moraine on the other. These t e s t r e s u l t s are summarized i n map form i n F i g s 29 to 31. As i n the Rosetown area weighted means were c a l c u l a t e d when c o m p o s i t i o n a l c a t e g o r i e s i n c l u d e d more than one parent m a t e r i a l . An a n a l y s i s of v a r i a n c e procedure (see Appendix B) was 130 Table XXXII R e s u l t s o f a p p l i c a t i o n o f Duncan's New M u l t i p l e Range t e s t t o l o g 10 C h o r i z o n s o i l data f o r i n d i v i d u a l morainal types, Red Deer area. Element Geometric Mean Conc e n t r a t i o n s ' (ppm) 12.8 14.9 15.7 18.9 Cu Horseshoe Paskapoo Paskapoo Horseshoe hummocky ground Canyon Canyon moraine moraine hummocky ground moraine moraine Fe (%) 1.20 1.35 1.47 1.49 Paskapoo Horseshoe Horseshoe Paskapoo hummocky Canyon Canyon ground moraine hummocky ground moraine moraine moraine (ppm) 208 221 280 294 Mn Paskapoo Horseshoe Paskapoo Horseshoe hummocky Canyon ground Canyon moraine hummocky moraine ground moraine moraine Zn (ppm) 34.9 40.7 42.1 48.8 Paskapoo Horseshoe Paskapoo Horseshoe hummocky Canyon ground Canyon moraine hummocky moraine ground moraine moraine Means not underscored by the same or o v e r l a p p i n g l i n e s are s i g n i f i c a n t l y d i f f e r e n t a t P = 0.05. 131 Table XXXIII Trace element content and pH of A and C horizon s o i l associated with major parent materials, Red Deer area. Soil Parent Number Trace Element Content* of Horizon Material Mn Cu Fe Zh.. pH** Element (ppm) (ppm) (%) (ppm) Analyses A Ground moraine Hummocky moraine 437 (1.25) 335 (1.40) 12.8 (1.25) 1.43 (1.23) 62.2 (1.21) 6.0 5.4-8.0 27 Lacustrine deposits 375 13.0 1.46 60.7 7.1 (1.20) (1.34) (1.25) (1.21) 6.1-8.0 10 Ground moraine Hummocky moraine 272 (1.25) 218 (1.41) 15.4 (1.39) 1.35 (1.25) 40.6 (1.28) 7.9 5.1-9.0 57 Lacustrine deposits 270 (1.33) 17.2 (1.49) 1.54 (1.29) 46.8 (1.36) 8.0 7.8-8.1 22 Alluvium- 201 8.9 1.00 24.4 7.4 outwash deposits (1.65) (1.40) (1.42) (1.75) 5.9-8.0 a) Geometric mean (GM); geometric deviation i n parentheses. b) Individual sample values l i s t e d i n Appendix C (4) . ** Arithmetic mean and true range. 132 Table XXXIV R e s u l t s o f a p p l i c a t i o n o f Duncan's New M u l t i p l e Range t e s t to l o g 10 C h o r i z o n s o i l data f o r major parent m a t e r i a l s , Red Deer area. Element Geometric Mean C o n c e n t r a t i o n s * Cu (ppm) Fe (%) Mn (ppm) Zn (ppm) 8.9 Al l u v i u m - outwash d e p o s i t s 1.00 A l l u v i u m - outwash d e p o s i t s 201 218 A l l u v i u m - Hummocky outwash d e p o s i t s moraine 24.4 A l l u v i u m - outwash d e p o s i t s 15.0 Moraines 1. 35 Moraines 270 L a c u s t r i n e d e p o s i t s 40.6 Moraines 17.2 L a c u s t r i n e d e p o s i t s 1.54 L a c u s t r i n e d e p o s i t s 272 Ground moraine 46.8 L a c u s t r i n e deposits Means not underscored by the same or o v e r l a p p i n g l i n e s are s i g n i f i c a n t l y d i f f e r e n t a t P = 0.05. 113° 52 I14°46' R27 R25 pH R23 R2I RI9 TRACE ELEMENT CONTENT* Cu (ppm) Zn (ppm) 7-9 5-1-9-0 7-4 5-9-8-0 15-6 (7-7-31-4) 8-89 (45-17-4) 42-3 (24-6-72 6) 24-4 (8-0-74-7) RI7 Number of analyses 79 8 Tp36 Tp35 Tp34 5I°53 RI5 ||2° QO1 * Geometric mean (GM):range=GfVRGD?GMxGDz * * Arithmetic mean-, true range Figure 29 . Cu and Zn content and pH, C horizon soil, Red Deer area. (l=ground and hummocky moraines and lacustrine deposits>2=alluvium-outwash deposits) H L O 0 0 52°I9- 113° 52 II4°46' pH R23 R2I RI9 TRACE ELEMENT CONTENT * Fe (%) 5-1-9-0 7-4 5-9-8-0 80 r^== 1-54 7 . 8 - 8 l WI1M (0-93-2-56) 7-9 r - r - r - i 1-35 (0-87-210) 1-00 (0-50-2-02) * Geometric mean (GM):range=GM+GD*GMxGD8 **Arithmetic mean,true range Figure 30. Fe content and pH, C horizon soil, Red Deer area. (Hacustrine depositS52=ground and hummocky moraines;3=alluvium-outwash deposits). RI7 Number of analyses 22 57 8 RI5 -5I°53' 112° 00 ' * Geometric mean (GM):range=GM+GD*GMxGD2 * * Arithmetic mean-.true range Figure 31. Mn content and pH, C horizon soil, Red Deer area. (l=groundmoraine and lacustrine deposits;2=hummocky moraine and alluvium- outwash deposits). OJ on 136 used to estimate the r e l a t i v e magnitudes of among and w i t h i n parent m a t e r i a l c o m p o s i t i o n a l v a r i a t i o n s i n C h o r i z o n s o i l . R e s u l t s , g i v e n i n Table XXXV, show t h a t a r e l a t i v e l y s m a l l p r o p o r t i o n (14-42%) of the t o t a l C h o r i z o n data v a r i a b i l i t y can be a t t r i b u t e d to d i f f e r e n c e s among parent m a t e r i a l means. 2. WITHIN PARENT MATERIAL SOIL COMPOSITIONAL VARIATIONS a) V e r t i c a l C o r r e l a t i o n c o e f f i c i e n t s r e l a t i n g i n d i v i d u a l l o g 10 con- c e n t r a t i o n s i n A and C h o r i z o n s f o r moraines and l a c u s t r i n e d e p o s i t s are g i v e n i n Table XXXVI. In agreement w i t h r e s u l t s r e p o r t e d i n the p r e c e d i n g chapter v a l u e s f o r moraines are g e n e r a l l y low and n o n - s i g n i f i c a n t , whereas those f o r l a c u s t r i n e d e p o s i t s are somewhat hi g h e r . The s t r e n g t h of between h o r i z o n r e l a t i o n s h i p s , however, i s not a p p r e c i a b l y i n c r e a s e d by com- b i n i n g the two data s e t s . Because A h o r i z o n v a l u e s were measured f o r o n l y two parent m a t e r i a l s , i t was not p o s s i b l e to compute c o e f f i c i e n t s r e l a t i n g . A and C h o r i z o n means. A l s o c o n s i s t e n t w i t h Rosetown area t r e n d s , both Mn and Zn are e n r i c h e d i n A h o r i z o n s ; The mean Zn content of A h o r i z o n g l a c i a l t i l l f o r example (62.2 ppm) i s about 50% g r e a t e r than the mean f o r corresponding C h o r i z o n m a t e r i a l (40.6 ppm). Examination of c o m p o s i t i o n a l data f o r a l i m i t e d number of Chernozemic B h o r i z o n s (Table XXXVII) i n d i c a t e s a tendency f o r t h i s m a t e r i a l to be e n r i c h e d i n i r o n . 137 Table XXXV Comparison o f estimated w i t h i n and among parent m a t e r i a l C h o r i z o n l o g a r i t h m i c v a r i a n c e components, Red Deer area. P a r t i t i o n e d V a r i a n c e Estimated Element T o t a l l o g 10 Among Wi t h i n V a r i a n c e Parent M a t e r i a l s Parent M a t e r i a l s Component % Component % of t o t a l of t o t a l Cu 0.0326 Fe 0.0153 Mn 0.0221 Zn 0.0295 0.0100* 31.7 0.0043* 28.1 0.0031* 14.0 0.0125* 42.4 0.0226 68.3 0.0110 71.9 0.0190 86.0 0.0170 57.6 S i g n i f i c a n t l y g r e a t e r than zero a t P = 0.05. 138 TABLE XXXVI C o r r e l a t i o n c o e f f i c i e n t s r e l a t i n g l o g 10 t r a c e element c o n c e n t r a t i o n s f o r A and C h o r i z o n s , Red Deer area. S o i l Parent M a t e r i a l C o r r e l a t i o n Coeff1c1ent Cu Fe Mn Zn Degrees of Freedom (n-2) Moraines 0.245 0.368 0.495* 0.269 20 L a c u s t r i n e D eposits 0.762 0.958** -0.086 0.919** Both Parent M a t e r i a l s 0.316 0.532** 0.389* 0.432* 26 •k C o e f f i c i e n t s i g n i f i c a n t l y g r e a t e r than zero a t P = 0.05. C o e f f i c i e n t s i g n i f i c a n t l y g r e a t e r than zero a t P = 0.01. 139 Table XXXVII Trace element content o f s e l e c t e d Black and Dark Brown Chermozemic s o i l p r o f i l e s , Red Deer area. S o 1 1 Trace Element Content Great Parent Site Depth Horizon Group Material No. (cm) Cu Fe Mn Zn (ppm) (%) (ppm) (ppm) Black Ground 9 .'nbraine 11 22 Lacustrine 110 deposits Dark Hummocky 75 Brown moraine 79, 94 Ground 81 moraine 86 92 Lacustrine 147 deposits 0-15 A 12.0 30-46 B 9.7 76-91 C 11.6 0-15 A 12.9 46-61 B 12.5 76-81 C 9.8 0-15 A 10.4 30-46 B 4.8 76-91 C 17.5 0-15 A 16.0 35-51 B 15.5 76-91 C 16.7 0-10 A 12.9 23-38 B 11.6 46-61 C 17.2 0-10 A 12.0 15-30 B 9.7 30-46 C 15.7 0-10 A 8.8 30-46 B 14.5 61-66 C 19.4 0-10 A 30.3 30-46 B 21.3 76-91 C 18.5 0-10 A 10.4 15-30 B 9.7 56-71 C 12.0 0-10 A 12.8 15-30 B 7.. 8 76-91 C 38.9 0-10 A 10.0 15-30 B 5.0 76-91 C 6.9 1.35 . 380 51.5 2.06 749 36.9 1.15 315 37.0 1.48 499 52.8 1.81 292 48.6 1.00 190 31.0 0.99 366 56.9 1.51 212 28.8 1.37 172 43.0 1.51 486 66.7 1.67 264 44.9 1.54 283 45.9 1.44 413 66.4 1.81 311 48.5 1.41 324 42.9 1.23 518 69.4 1.67 297 61.0 1.42 266 41.0 1.56 343 54.7 1.58 109 59.2 1.45 184 41.5 2.54 486 74.7 2.14 406 71.8 1.49 342 50.3 2.05 680 64.0 1.37 344 68.2 1.86 311 51.7 1.40 518 65.4 1.11 231 37.7 2.10 393 69.2 0.93 347 51.6 0.81 110 23.1 0.86 122 19.2 140 b) Geographic Comparison o f geometric d e v i a t i o n s f o r A and C h o r i z o n s a s s o c i a t e d w i t h t i l l and l a c u s t r i n e d e p o s i t s (Table XXXIII) suggests t h a t A h o r i z o n s tend to be more c o m p o s i t i o n a l l y homo- genous than C h o r i z o n s . C o n s i d e r i n g Cu data, f o r example, A h o r i z o n geometric d e v i a t i o n v a l u e s are 1.2 5 f o r t i l l and 1.34 f o r l a c u s t r i n e d e p o s i t s , whereas corresponding C h o r i z o n v a l u e s are 1.39 and 1.49 r e s p e c t i v e l y . The r e l a t i v e magnitudes of among and w i t n i n township C h o r i z o n data v a r i a b i l i t y f o r t i l l were estimated u s i n g an a n a l y s i s of v a r i a n c e technique ( see Appendix B ) . R e s u l t s , i n Table XXXVIII show t h a t among township c o m p o s i t i o n a l v a r i a t i o n s are n e g l i g i b l e . D. , DISCUSSION 1. C HORIZON SOIL D i f f e r e n c e s between means f o r C h o r i z o n t i l l a s s o c i a t e d w i t h Horseshoe Canyon and Paskapoo Formations (Table XXXI) are c o n s i s t e n t w i t h the r e s u l t s of Pawluk.' and Bayrock (19 69) who noted t h a t r e g i o n a l v a r i a t i o n s i n the t r a c e element con- t e n t o f A l b e r t a t i l l are c l o s e l y r e l a t e d to changes i n bedrock type. Lack o f s t a t i s t i c a l s i g n i f i c a n c e f o r these c o m p o s i t i o n a l d i f f e r e n c e s (Table XXXII) r e f l e c t s , t o a l a r g e e x t e n t , the l i t h o l o g i c a l and chemical s i m i l a r i t y o f the two bedrock formations. 141 Table- XXXVIII Comparison o f l o g a r i t h m i c w i t h i n and among township v a r i a n c e components f o r C h o r i z o n g l a c i a l t i l l , Red Deer area. „ J_. A , Partitioned Variance Estimated : Number of F l p m p n t « w . a l l o a Townships J i - L e m e n T : ^ ^ ^ Z ^ Among Township Within Township Component o f ^ t a l Component o f ^ t a l 17 Cu 0.0140 0.0 0.0 0.0140 100.0 Fe 0.0080 0.0 0.0 0.0080 100.0 Mn 0.0170 0.0 0.0 0.0170 100.0 Zn 0.0093 0.0 0.0 0.0093 100.0 1 4 2 As was noted i n Chapter I I I , t e x t u r a l c h a r a c t e r i s t i c s appear to be of c o n s i d e r a b l e importance i n determining among parent m a t e r i a l c o m p o s i t i o n a l t r e n d s . Thus low mean v a l u e s f o r alluvium-outwash d e p o s i t s (Table XXXIII) are c o n s i s t e n t w i t h the r e l a t i v e l y h i g h p r o p o r t i o n of sand and g r a v e l i n samples from t h i s parent m a t e r i a l . L i k e w i s e , the occurrence of s i g n i f i c a n t l y lower mean Mn c o n c e n t r a t i o n s i n hummocky r e l a t i v e to ground moraine(Table XXXII) can be r e l a t e d t o the r e l a t i v e l y coarse g r a i n e d nature of the former d e p o s i t s . The comparatively s m a l l p r o p o r t i o n of the t o t a l l o g 1 0 c h o r i z o n data v a r i a b i l i t y a t t r i b u t a b l e to among parent m a t e r i a l sources ( 1 4 - 4 2 % ) r e f l e c t s the r e l a t i v e l y narrow range of parent m a t e r i a l means. Mean Mn c o n c e n t r a t i o n s , f o r example, range from o n l y 2 0 1 to 2 7 2 ppm, whereas i n the Rosetown area, where 5 4 - 6 9 % of C h o r i z o n c o m p o s i t i o n a l v a r i a t i o n s can be e x p l a i n e d i n terms of among parent m a t e r i a l mean d i f f e r e n c e s , Mn means range between 1 3 3 and 3 1 9 ppm. Extreme Rosetown mean v a l u e s are a s s o c i a t e d w i t h c o m p a r a t i v e l y coarse sands and f i n e c l a y s , and s m a l l among parent m a t e r i a l v a r i a n c e components . i n the Red Deer area r e f l e c t the absence of s i m i l a r t e x t u r a l u n i t s i n t h i s r e g i o n . The l a c k of measurable among township c o m p o s i t i o n a l v a r i a t i o n s f o r C h o r i z o n t i l l (Table XXXVIII) i n d i c a t e s t h a t on a r e g i o n a l s c a l e t i l l may be c o n s i d e r e d to be e s s e n t i a l l y homogeneous. These r e s u l t s are c o n s i s t e n t w i t h those of Duncan's New M u l t i p l e Range t e s t f o r Cu, Fe and Zn (TableXXXII) but ap- pear to c o n t r a d i c t r e s u l t s f o r Mn f o r which s i g n i f i c a n t d i f - f e r e n c e s were noted between means f o r hummocky and ground 143 l moraines. E x p l a i n a t i o n of these seemingly c o n t r a d i c t o r y f i n d - ings l i e s , i n p a r t a t l e a s t , i n the f a c t t h a t the a n a l y s i s of v a r i a n c e was based on a subset only of t i l l data, and furthermore both hummocky and ground moraines were represented i n the sample p a i r s from some townships. 2 . A AND B HORIZON SOIL As d i s c u s s e d p r e v i o u s l y i n r e l a t i o n to Rosetown r e s u l t s , the apparent homogeneity o f A r e l a t i v e to C h o r i z o n s (Table XXXIII) i s probably a p a r t i a l e f f e c t of l o c a l mixing a s s o c i a t e d w i t h ploughing, as w e l l as the composite nature of A h o r i z o n samples. Subsurface v a r i a b i l i t y would a l s o , however, be expected to be r e l a t i v e l y enhanced by the f a c t t h a t , i n some o f the deeper s o i l p r o f i l e s , the B-Cca c o n t a c t was very c l o s e to the maximum sampling depth o f the equipment used, and as a r e s u l t v a r i a b l e amounts of B h o r i z o n m a t e r i a l were i n a d v e r t e n t l y i n c l u d e d i n C h o r i z o n samples. R e l a t i v e l y low c o r r e l a t i o n s between t r a c e element valu e s f o r i n d i v i d u a l A and C h o r i z o n samples f o r t i l l (Table XXXVI) suggest t h a t f o r t h i s parent m a t e r i a l c o m p o s i t i o n a l v a r i a t i o n s i n A horizons are not s t r o n g l y i n f l u e n c e d by C h o r i z o n concent- r a t i o n s . The r e v e r s e would appear to be t r u e f o r l a c u s t r i n e dep- o s i t s , although more data i s r e q u i r e d to c o n f i r m t h i s . As was p o i n t e d out i n Chapter I I I , enhanced Mn and Zn con- c e n t r a t i o n s i n A h o r i z o n s are l i k e l y a t t r i b u t a b l e to the 144 i n f l u e n c e of b i o c y c l i n g ( M i l l s and Zwarich, 1975). Fe e n r i c h - ment i n B h o r i z o n s , (Table XXXVII) on the other hand, r e f l e c t s the e f f e c t s of s u r f a c e l e a c h i n g and subsequent f i x a t i o n processes. 3. GEOCHEMICAL MAPS Map p a t t e r n s i n F i g s 29 to 31 are based on r e s u l t s of ap- p l i c a t i o n of Duncan's New M u l t i p l e Range t e s t t o C h o r i z o n s o i l data (Table XXXIV). They are c o n s i d e r a b l y l e s s complex than those f o r C h o r i z o n Rosetown area s o i l ( F i g s 16 and 17), i n p a r t because among parent m a t e r i a l mean d i f f e r e n c e s are s m a l l e r , but a l s o because fewer parent m a t e r i a l types are r e c o g n i z e d . The a d j u s t a b l e v a r i a n c e r a t i o (see Chapter I, p.12 ) was used to estimate the number of samples r e q u i r e d per parent m a t e r i a l to ensure map s t a b i l i t y . R e s u l t s i n T a b l e XXXIX, i n d i c a t e t h a t depending on whether a Vm v a l u e of 1.0 or 5.0 i s taken as the accepted standard, as few as 6 or as many as 30 samples are r e q u i r e d from each parent m a t e r i a l . These v a l u e s r e p r e s e n t a c o n s i d e r a b l e i n c r e a s e over corresponding numbers r e q u i r e d from i n d i v i d u a l s u r f i c i a l d e p o s i t s i n the Rosetown area (maximum 5), p r i n c i p a l l y because of the comparatively s m a l l d i f f e r e n c e s i n parent m a t e r i a l mean c o n c e n t r a t i o n s . In view of the f a c t t h a t a Vm v a l u e of 1.0 i s c o n s i d e r e d adequate f o r the d e s c r i p t i o n of g e n e r a l map p a t t e r n s , and i n t h i s study a t l e a s t 8 C h o r i z o n samples were obtained from each parent m a t e r i a l examined, i t i s concluded t h a t the map p a t t e r n s presented should be f a i r l y s t a b l e . 145 Table XXXIX Numbers of randomly s e l e c t e d C h o r i z o n s o i l samples ( n ) r e q u i r e d from each Red Deer area parent m a t e r i a l to g i v e a d j u s t a b l e v a r i a n c e r a t i o (Vm) valu e s o f 1.0 and 5.0. n Element Vm = 1.0* Vm = 5.0* Cu Fe Mn Zn 2.3 2. 8 6.1 1.4 11.5 14.0 30.0 7.0 2 2 - 2 Vm = Sex / s , where S < * = among parent m a t e r i a l m  2 v a r i a n c e from TableXXXV,and S = w i t h i n parent m a t e r i a l m v a r i a n c e from TableXXXV-r H . 146 E. CONCLUSION The i n f l u e n c e of parent m a t e r i a l on r e g i o n a l c o m p o s i t i o n a l v a r i a t i o n s i n Red Deer area s o i l i s c o n s i d e r a b l y l e s s than t h a t observed i n the Rosetown area. T h i s s i t u a t i o n r e f l e c t s the absence of t e x t u r a l l y extreme s u r f i c i a l d e p o s i t s ( i e . r e l a t i v e l y coarse sands and f i n e c l a y s ) and thus the s m a l l d i f f e r e n c e s among mean c o n c e n t r a t i o n s f o r i n d i v i d u a l p arent m a t e r i a l s . Because of these r e l a t i v e l y s m a l l among mean d i f f e r e n c e s a g r e a t e r number of samples are r e q u i r e d per parent m a t e r i a l to produce s t a b l e geochemical maps. 146a CHAPTER V SWAN RIVER - DAUPHIN AREA 147 A. DESCRIPTION OF STUDY AREA 1. GENERAL 2 The Swan River-Dauphin area covers approximately 15,000 km (6,000 sq mi) of western Manitoba and adjacent Saskatchewan ( F i g 32). The c l i m a t e , as i n the western p o r t i o n of the Red Deer area, i s sub-humid. Mean J u l y and January temperatures i n a g r i c u l t u r a l l y s e t t l e d areas are about 18 and -19° C (65 and -2 ° F) r e s p e c t i v e l y , and p r e c i p i t a t i o n ranges from approximately 45 to 50 cm (18-20 in) a n n u a l l y ( E h r l i c h e t a l . , 1959 and 1962). Elements of both the Manitoba P l a i n and Saskatchewan P l a i n p h y s i o g r a p h i c r e g i o n s are r e c o g n i z e d w i t h i n the area. The Saskatchewan P l a i n i s r e p r e s e n t e d by the Duck and Porcupine Mountains and K e n v i l l e and V a l l e y R i v e r P l a i n s : the Manitoba P l a i n i n c l u d e s both the Lowland and Swan R i v e r P l a i n s ( F i g 32). The break i n slope between Saskatchewan and Manitoba P l a i n s , l o c a l l y r e f e r r e d to as the Manitoba Escarpment, i s p a r t i c u l a r l y w e l l developed along the e a s t e r n margin of Duck Mountain. Topography i n p l a i n areas ( e l e v a t i o n s l e s s than 510 m o r 1700 f t ) i s g e n e r a l l y smooth to g e n t l y s l o p i n g . The p l a t e a u - l i k e s u r - f a c e of the c e n t r a l upland, on the other hand, i s c h a r a c t e r i z e d by numerous i r r e g u l a r l y shaped m o r a i n i c h i l l s . v Because of the r e l a t i v e l y h i g h r a i n f a l l and c o o l e r tempera- t u r e s , r i v e r s and t r i b u t a r y streams are abundant throughout the r e g i o n . Most streams, which b e g i n i n s m a l l upland l a k e s , are e i t h e r d r y by mid-summer or are occupied by d i s c o n t i n u o u s 148 101° 48' 100° 0 0 ' 52° 20' T p 3 8 T p 3 6 T p 3 4 Tp 32 T p 3 0 T p 2 8 T p 2 6 Tp 24 l 0 l ° 4 8 ' R24 R22 Figure 32 . Topography and drainage, Swan River-Dauphin area. R20 5I°00' 100° 00 ' 149 bodies of stagnant water. Some of the r i v e r and l a r g e r stream channels have been eroded to bedrock, p a r t i c u l a r l y i n the area southwest of Dauphin where overburden i s t h i n . 2. BEDROCK The r e g i o n i s u n d e r l a i n by a s u c c e s s i o n of carbonates, s h a l e s and sandstones which d i p v e r y g e n t l y i n a southwesterly d i r e c t i o n , and range from Devonian to Upper Cretaceous i n age. Information on the d i s t r i b u t i o n of bedrock u n i t s , i n d i c a t e d i n F i g 33, was obtained from Cherry and Whitaker (1969), K l a s s e n e t a l . ( 1 9 7 0 ) , L i t t l e (1973) and Moran and Whitaker (1969). L i t h o l o g i c and s t r a t i g r a p h i c d e s c r i p t i o n s were taken mainly from Wickenden (1945). Devonian limestones and dolomites (Unit 1) u n d e r l i e the Lowland P l a i n i n the n o r t h e a s t . S i m i l a r P a l e o z o i c carbonates are widespread beneath the Manitoba P l a i n n o r t h and east of the study area. These rocks a re o v e r l a i n unconformably by a r e l a t i v e l y t h i c k ( 120 m or 400 f t ) sequence of J u r a s s i c t o Lower Cretaceous marine and non-marine shale and sandstone, w i t h minor limestone and e v a p o r i t e s (Units 2 and 3). U n i t s 4, 5 and 6 which u n d e r l i e the e a s t e r n s l o p e s of Duck Mountain and l a r g e p o r t i o n s of both the Swan and V a l l e y R i v e r b a s i n s , correspond r e s p e c t i v e l y t o the Cretaceous A s h v i l l e , F a v e l and V e r m i l l i o n R i v e r o r g a n i c - r i c h s h a l e Formations. Greenish grey t o grey s h a l e s of the most r e c e n t Upper Cretaceous R i d i n g Mountain Formation (Unit 7 ), occur beneath most of the upland r e g i o n s . 150 101° 48' C R E T A C E O U S E Riding Mountain: greenish grey, non-calcareous shale carbonaceous shale Favel: grey to black calcareous shale, minor limestone and bentonite Ashville: grey to black non-calcareous shale; minor sand and silt Swan River-.sandstone with shale and minor lignite JURASSIC 12 I Amaranth, Reston, Melita and Waskade: shale L=J sandstone, limestone, evaporites DEVONIAN tn Dawson Bay and Sourls River, limestone, dolomite, minor shale 100° 00' 52° 20' Tp38 Tp36 Tp34 Tp 32 Tp30 Tp28 Tp26 Tp 24 ^•SPOO" 100° 00' 101° 48' R24 Figure 33 . Bedrock geology, Swan River-Dauphin area. R22 R20 Mo l e v e l s have been measured i n rock m a t e r i a l from some of these u n i t s . D e l a v a u l t (1972) found o n l y background Mo c o n c e n t r a t i o n s (<3ppm) i n a l i m i t e d number of samples of R i d i n g Mountain Formation s h a l e . Oddy (1966) however has r e p o r t e d enhanced Mo c o n c e n t r a t i o n s ( up to 14 0 ppm) i n A s h v i l l e , F a v e l and V e r m i l l i o n R i v e r Formations (Table XXXX). The A s h v i l l e Formation comprises a sequence of dark grey to b l a c k , l o c a l l y b e n t o n i t i c s h a l e s , which i n c r e a s e i n t h i c k n e s s from about 30 m (100 f t ) i n the southern p a r t of the area to approximately 105 m (350 f t ) i n the n o r t h . The F a v e l Formation, which i s somewhat t h i n n e r (maximum t h i c k n e s s 36 m or 120 f t ) , c o n s i s t s of a grey t o dark grey c a l c a r e o u s s h a l e w i t h minor limestone and b e n t o n i t e . V e r m i l l i o n R i v e r Formation s t r a t a (maximum t h i c k n e s s 72 m or 240 f t ) have been d i v i d e d i n t o Morden, Boyne and Pembina Members. B a s a l Morden beds are composed of approximately 12 m (40 f t ) of grey to b l a c k non-calcareous s h a l e . Grey c a l c a r e o u s s h a l e s , from 12 to 24 m (40 to 80 f t ) i n t h i c k n e s s , c h a r a c t e r i z e the o v e r l y i n g Boyne Member, which a c c o r d i n g to Wickenden (1945) c o r r e l a t e s w i t h N i o b r a r a Formation sha l e i n the U n i t e d S t a t e s . The uppermost Pembina Member ranges i n t h i c k n e s s from 18 to 36 m (60 to 120 f t ) and i n c l u d e s mainly grey to b l a c k non-calcareous s h a l e . 3. SOIL PARENT MATERIAL Bedrock i n the Swan R i v e r - Dauphin area i s o v e r l a i n by a 152 Table XXXX Mo content o f Manitoba, bedrock u n i t s , Formation L i t h o l o g y Mo Content* (ppm) Number of Analyses R i d i n g Mountain non-calcareous shale 2.0 < 0.5-6.0 V e r m i l l i o n R i v e r non-calcareous shale 19.4 3.0-120 22 F a v e l c a l c a r e o u s s h a l e 49.4 13.0-140 31 A s h v i l l e non-calcareous shale 8.2 2.5-75.0 16 Swan R i v e r s h a l e sand 2.5 2.5 6 1 Geometric mean and t r u e range: R i d i n g Mountain Formation data from D e l a v a u l t ( 1972 ) ;. oth e r data from Oddy (1966) . 153 v a r i a b l e t h i c k n e s s of u n c o n s o l i d a t e d P l e i s t o c e n e s u r f i c i a l d e p o s i t s , p r i m a r i l y of g l a c i a l o r i g i n ( F i g 34). D r i f t t h i c k - ness ranges from l e s s than one meter on the southeastern p o r t i o n of the V a l l e y R i v e r P l a i n where bedrock exposures are most common, to more than 100 m (300 f t ) on Duck Mountain (Klassen e t a l . , 1970). Deposits i n p l a i n areas c o n s i s t f o r the most p a r t of e x o t i c s t r o n g l y c a l c a r e o u s ground moraine, d e r i v e d from P a l e o z o i c carbonate, and to a l e s s e r extent Precambrian g r a n i t i c rocks t o the n o r t h e a s t . Duck and Porcupine Mountains are c h a r a c t e r i z e d by somewhat l e s s c a l c a r e o u s end moraines, which c o n t a i n v a r i a b l e amounts of shal e ( E h r l i c h e t a l . , 1959). Ground moraine i n the V a l l e y and Swan R i v e r b a s i n s and e a s t e r n lowland i s l o c a l l y mantled by c a l c a r e o u s sand, s i l t , c l a y and to a l e s s e r extent g r a v e l d e p o s i t s . These sediments, which were l a i d down i n d e l t a i c environments i n former g l a c i a l Lake A g a s s i z ( E h r l i c h e t a l . , 1959 and 1962), were probably d e r i v e d from g l a c i a l d r i f t t o the west. Recent a l l u v i a l d e p o s i t s , many of which are too l o c a l i n extent t o d i s t i n g u i s h i n F i g 34 are widespread i n p l a i n areas. Southwest of Dauphin, where stream- cut bedrock exposures are common, these d e p o s i t s may l o c a l l y c o n t a i n s i g n i f i c a n t amounts of s h a l e . A l i m i t e d number of g e o g r a p h i c a l l y r e s t r i c t e d , e s s e n t i a l l y r e s i d u a l s u r f i c i a l d e p o s i t s have developed d i r e c t l y on s h a l e . A few s m a l l bodies o f K e l d S o i l A s s o c i a t i o n " s h a l e - t i l l " occur on the southeastern p o r t i o n of the V a l l e y R i v e r P l a i n . Deep 154 IO0° 00* j I Calcareous ground moralne:source mainly limestone | 2 j Calcareous end morafne:source shale, limestone and granitic rock | | Calcareous lacustrine silt and clay Calcareous lacustrine sand | 1 Beach deposits | | Noncalcareous shale-till and shale-clay \S='o\ Recent alluvium LI Peat deposits RIVER J i l M Tp30 Tp28 Tp26 Tp 24 f5l°00' 100° 00' 101" 48' R24 R22 Figure 34. Soil parent materials, Swan River-Dauphin area. R20 155 parent m a t e r i a l samples o b t a i n e d w i t h the a i d of a cobra d r i l l ( F i g 35), i n d i c a t e t h a t t h i s s h a l e - t i l l grades a t a depth of about one meter i n t o non-calcareous b e n t o n i t i c , presumably V e r m i l l i o n R i v e r s h a l e . A s i m i l a r body of F a v e l S o i l S e r i e s " s h a l e - c l a y " i s l o c a t e d on the Swan R i v e r P l a i n ( F i g 36). Although s o i l survey i n f o r m a t i o n i n d i c a t e s t h a t t h i s d e p o s i t i s u n d e r l a i n a t shallow depth by c a l c a r e o u s t i l l ( E h r l i c h e t a l . , 1962), cobra d r i l l i n v e s t i g a t i o n s have shown t h a t , a t l e a s t l o c a l l y , t h i s m a t e r i a l a l s o grades i n t o u n d e r l y i n g s h a l e , l i k e l y b e l o n g i n g i n t h i s case t o the A s h v i l l e Formation. 4. SOIL Although most o f the Swan River-Dauphin area occurs w i t h - i n the Greywooded S o i l Zone ( F i g 5), Lowland and Swan R i v e r P l a i n s o i l belongs t o the."High-lime" or Rendziria Zone. Upland areas are c h a r a c t e r i z e d by L u v i s o l s , whereas on the Swan and Valley R i v e r P l a i n s and e a s t e r n Lowland R e g o s o l i c , Chernozemic and L u v i s o l i c Orders are a l l r e p r e s e n t e d . These s o i l s have been d e s c r i b e d i n d e t a i l by E h r l i c h e t a l . (1959 and 1962). S o i l p r o f i l e development i n the e a s t e r n Lowland, as w e l l as over wide r e g i o n s i n the r i v e r b a s i n s , has been r e t a r d e d by both h i g h c a l c i u m carbonate content of s o i l parent m a t e r i a l s and g e n e r a l l y poor i n t e r n a l drainage. Ground moraine i n the V a l l e y R i v e r b a s i n and adjacent p o r t i o n s of the e a s t e r n Lowland i s p a r t i c u l a r l y c a r b o n a t e - r i c h , and g e n e r a l l y supports O r t h i c or Gleyed Regosols. Gleyed Black Chernozems predominate on l a c u s t r i n e d e p o s i t s i n these areas, although O r t h i c Black 156 SOIL PARENT MATERIAL ONon-calcoreous shale -till (Keld Soil Assoc) , Calcareous till and • J sond BEDROCK Vermi Formation j s ^ l llion River —1300—Topographic contours (feet) ® Cobra drill sample site Tp24 Tp23 R2I R 2 0 Figure 35 . Soil parent material and bedrock, Keld oreo. Tp 36 me u n i t , i f 7^ • / ' / I Tp 35 R 25 SOIL PARENT MATERIAL ONoncalcareous shale-clay (Favel soil series) Calcareous till and Lacustrine deposits 0̂ ) Cobra drill sample site *isoo—Topographic contours (feet) R 2 4 BEDROCK FORMATIONS Y7A Swan River Ashville fTTffl Favel Vermillion River Figure 3 6 . Soil parent maierial and bedrock, Favel area. s o i l s occur l o c a l l y on c o a r s e r t e x t u r e d sediments. S o i l s developed on t i l l d e p o s i t s i n the Swan R i v e r b a s i n and northern Lowland P l a i n are c h a r a c t e r i s t i c a l l y e i t h e r O r t h i c or Gleyed Grey Wooded L u v i s o l s , whereas l a c u s t r i n e d e p o s i t s i n the Swan Ri v e r b a s i n t y p i c a l l y support Gleyed Rego Black Chernozems. Chemical p r o p e r t i e s of some r e p r e s e n t a t i v e s o i l p r o f i l e s are g i v e n i n Table XXXXI. S o i l pH v a l u e s f o r C h o r i z o n s are g e n e r a l l y i n the m i l d l y to moderately a l k a l i n e range (7.4 - 8.4). S h a l e - d e r i v e d K e l d and F a v e l s o i l s are e x c e p t i o n a l i n t h a t t h e i r parent m a t e r i a l s are a c i d i c . S t r o n g l y a c i d i c K e l d A s s o c i a t i o n s o i l i s c h a r a c t e r i s t i c a l l y f i n e t e x t u r e d and p o o r l y d r a i n e d . Surface m a t e r i a l i s t y p i c a l l y r e d d i s h , i n d i c a t i n g the presence of abundant secondary i r o n o xides. Although i t does not, s t r i c t l y speaking, f i t i n t o the Canadian S o i l C l a s s i f i c a t i o n System, K e l d s o i l has been c l a s - s i f i e d by E h r l i c h e t a l . (1959) as a Black Chernozem on the b a s i s of A h o r i z o n c h a r a c t e r i s t i c s . The F a v e l S e r i e s i s a l s o f i n e t e x t u r e d and p o o r l y d r a i n e d , but i s g e n e r a l l y grey and o n l y s l i g h t l y a c i d i c . S a l t c o n c e n t r a t i o n s are r e l a t i v e l y h i g h and F a v e l s o i l s belong to the S o l o n e t z i c Order. 5. AGRICULTURAL LAND USE AND TRACE ELEMENT IMBALANCES A g r i c u l t u r a l a c t i v i t y , c h i e f l y s m a l l - s c a l e mixed farming, i s c a r r i e d out most i n t e n s i v e l y on the K e n v i l l e , Swan R i v e r , V a l l e y R i v e r and southern Lowland P l a i n s . Wheat, b a r l e y and oats are the p r i n c i p a l g r a i n c r o p s , whereas d a i r y and beef Table XXXXI Chemical properties of some representative Swan River- Dauphin area s o i l profiles (from Ehrlich et a l . , 1959 and 1962). 158 CaCO * • • „ • ^ P t h J 9 ^ C ^ i 0 n Equivalent pH Parent Sub- Association Horizon Carbon Exchange Material Group or series 1 ' (%) Capacity (%) (meq/lOOg) Calcareous Orthic Meharry L-H 3-0 17.9 - - 6.8 T i l l Regosol Ah 0-25 3.9 — 8.8 7.2 AC 25-30 1.7 - 17.6 7.6 C 30-90 0.6 — 43.9 8.1 Orthic ' Garison L-H 5-0 27.3 - - 6.9 Gray Ae 0-5 0.9 11.8 - 6.8 Wooded Bt 5-13 0.7 38.0 - 6.6 BC 13-35 0.4 15.7 40.1 7.6 C 35-71 0.3 50.5 7.9 Lacustrine Orthic Gilbert Ah 0-30 2.0 15.6 0.2 7.0 sand Black Bm 30-58 0.7 6.0 6.6 7.3 Ck 58-74 0.7 5.1 26.6 8.2 Cg 74+ 0.5 3.9 19.0 7.0 Lacustrine Gleyed Plainview L-H 5-0 - - - - s i l t and Rego Ah 0-15 6.7 54.9 0.6 7.5 clay Black AC 15-30 1.7 35.8 2.4 7.7 Ckg 30-50 0.2 24.6 25.3 8.3 Cg 50-90 0.3 23.7 24.2 8.3 Orthic Kenville L-H 3-0 12.3 - - 6.4 Dark (locally Ahe 0-33 4.6 - - 6.1 Gray Mo-toxic) Bt 33-53 1.4 - - 6.3 BC 53-61 1.1 - 5.2 7.4 C 61-102 1.1 — 14.5 7.8 Residual Gleyed Keld L-H 5-0 19.0 - nd 7.0 Shale Orthic Ah 0-20 8.1 - nd 5.5 Black Bm 20-64 1.0 - nd 4.1 Cg 64-102 1.1 — nd 3.5 Gleyed Favel Ahe 0-5 10.2 42.1 nd 5.8 Black Ae 5-10 4.0 25.3 nd 5.2 Solonetz Bnt 10-25 1.5 44.2 nd 6.0 BC 25-30 0.6 46.9 nd 6.2 Csg 30-69 0.5 36.9 8.8 6.1 * nd = not detected. 159 c a t t l e , and swine are the major forms of l i v e s t o c k . The t y p i c a l l y coarse t e x t u r e d and p o o r l y d r a i n e d s o i l s of the cen- t r a l and n o r t h e r n Lowland are u t i l i z e d p r i m a r i l y f o r l i v e s t o c k p r o d u c t i o n . Duck and Porcupine Mountains, c h a r a c t e r i z e d by s t e e p l y s l o p i n g and l o c a l l y peaty s o i l s , are maintained f o r the most p a r t as f o r e s t r e s e r v e s . The s m a l l areas o f r e s i d u a l s o i l developed on s h a l e are of o n l y l i m i t e d a g r i c u l t u r a l v a l u e . Keld A s s o c i a t i o n s h a l e - t i l l s o i l s are used mainly f o r mixed farming, although poor drainage and low pH values render these areas m a r g i n a l l y p r o d u c t i v e . S i m i l a r l y , poor drainage and h i g h s a l t c o n c e n t r a t i o n s make F a v e l S e r i e s s h a l e - c l a y s o i l s u i t a b l e only f o r p a s t u r e . Mo-induced Cu d e f i c i e n c y ( a l s o r e f e r r e d to as Mo t o x i c i t y ) was f i r s t r e p o r t e d i n c a t t l e by Cunningham e t a l . (1953) w i t h i n a s m a l l area on the K e n v i l l e P l a i n ( F i g 34). Subsequent d e t - a i l e d i n v e s t i g a t i o n s by Smith (1955) i n d i c a t e d Mo c o n c e n t r a t i o n s of up to 12 ppm i n s o i l s ( K e n v i l l e S e r i e s ) and 20 ppm i n p l a n t s from the a f f e c t e d area. T y p i c a l symptoms i n c l u d e d d i a r r h o e a , anemia, f a d i n g o f h a i r c o l o r and o f t e n death. T o x i c i t y was over- come by d a i l y a d m i n i s t r a t i o n o f two grams of copper sulphate e i t h e r as a drench or s a l t l i c k . In r e c e n t years symptoms of Cu d e f i c i e n c y have been r e c - ognized i n c a t t l e throughout the Swan River-Dauphin area, assoc- i a t e d w i t h a v a r i e t y of h i g h l y c a l c a r e o u s s o i l s . Blood Cu c o n c e n t r a t i o n s of a f f e c t e d animals are t y p i c a l l y below normal 160 (Drysdale, 1975). Preliminary r e s u l t s of Cu supplementation studies indicate that the f i n a n c i a l benefit which would accrue to the region from routine administration of additional Cu to a l l herds would be nearly 2 m i l l i o n 1974 d o l l a r s per annum (Drysdale, 1975). B. SAMPLE COLLECTION AND ANALYSIS 1. COLLECTION a) Bedrock Si x t y - s i x bedrock samples were obtained from stream-cut exposures of Vermillion River, Favel, A s h v i l l e and Swan River Formations. The majority of samples were co l l e c t e d within the area of thi n d r i f t cover southwest of Dauphin (see Appendix C(6) for U.T.M. coordinates of sample s i t e s ) . Only r e l a t i v e l y unweathered material was taken, wherever possible as composite chip samples perpendicular to bedding. b) Stream Sediment Stream sediments were co l l e c t e d on a regional basis i n the basins of both the Swan and Valley Rivers and along the eastern slope of Duck Mountain, i n a manner similar to that recommended by Hawkes and Webb (1962). Over 200 samples were 2 taken at an average density of about one per 25 km (10 sq mi). Additional detailed stream sediment and bank s o i l sampling was carried out within the Mo-toxic area of Cunningham et a l . (1953). Sampling l o c a l i t i e s for the regional survey were selected 161 a s h o r t d i s t a n c e upstream of road i n t e r s e c t i o n s w i t h t r i b u - t a r y streams. U.T.M. c o o r d i n a t e s of s i t e l o c a t i o n s are g i v e n i n Appendix C ( 5 ) . F i n e , o r g a n i c - f r e e m a t e r i a l was obtained where p o s s i b l e from a c t i v e stream channels and s t o r e d i n k r a f t paper bags. c) S o i l C h o r i z o n s were c o l l e c t e d a t approximately 50 s i t e s south- west o f Dauphin, d u r i n g f o l l o w - u p i n v e s t i g a t i o n s o f stream sediment anomalies. In p a r t as a check on stream sediment sur- vey r e s u l t s , A and C h o r i z o n s o i l was a l s o obtained from about 7 5 s i t e s throughout the Swan R i v e r V a l l e y . F i n a l l y d e t a i l e d A and C h o r i z o n sampling was c a r r i e d out w i t h i n three r e l a t i v e l y s m a l l areas, two of which are centered on bodies of r e s i d u a l s o i l developed on s h a l e bedrock., and the other being d e f i n e d by the Mo-toxic area of Cunningham e t a l . (1953). For d e t a i l e d s t u d i e s sample s i t e s were l o c a t e d a t more or l e s s r e g u l a r i n t e r v a l s along g r i d roads a t d e n s i t i e s ranging 2 from about one per 2.5 to 5.0 km (1 to 2 sq m i ) . For r e g i o n a l 2 i n v e s t i g a t i o n s 2.6 km areas ( i e . 1 sq mi s e c t i o n s ) f o r sampl- i n g were s e l e c t e d randomly over each major s o i l parent m a t e r i a l . One sample s i t e was l o c a t e d w i t h i n each designated s e c t i o n t o 2 g i v e an average d e n s i t y of roughly one per 31 km (12 sq mi). C r i t e r i a governing the c h o i c e of sample s i t e l o c a t i o n s w i t h i n s e l e c t e d s e c t i o n s , and procedures f o r A and C h o r i z o n c o l l e c t i o n were g e n e r a l l y s i m i l a r to those p r e v i o u s l y d e s c r i b e d i n Chapter I I I (p. 60) . 162 Deep s o i l parent m a t e r i a l samples were a l s o o b tained from r e s i d u a l s h a l e (2 s i t e s ) and Mo-toxic K e n v i l l e s o i l (3 s i t e s ) , u s i n g an A t l a s Copco "Cobra Super" d r i l l equipped w i t h probing and s o i l sampling attachments. From 5 to 7 25 x 150 mm core samples were obtained a t each s i t e , a t i n t e r v a l s of from 0.3 to 1.0 m (1-3 f t ) , t o a maximum depth of about 5 m (16 f t ) . d) P l a n t s Although most p l a n t sampling was undertaken w i t h i n the three areas of d e t a i l e d s o i l c o m p o s i t i o n a l i n v e s t i g a t i o n s , a l i m i t e d number of a d d i t i o n a l samples were o b t a i n e d from random l o c a l i t i e s w i t h i n the Swan R i v e r V a l l e y . In t o t a l about 70 mixed g r a s s samples and 40 samples of a l f a l f a (Medicago s a t i v a L.) hay were c o l l e c t e d . Although pasture g r a s s e s were p r e f e r r e d , i n many cases samples were taken from u n c u l t i v a t e d margins of e i t h e r summerfallow or g r a i n f i e l d s . A few samples of red c l o v e r ( T r i f o l i u m p ratense L.) were a l s o obtained from some pa s t u r e s . Sampling was undertaken f o r the most p a r t , d u r i n g a two week p e r i o d i n l a t e June and e a r l y J u l y 1974. The m a j o r i t y of g r a s s e s were e i t h e r i n or had passed the boot stage of development, and legumes were t y p i c a l l y i n the l a t e bud or e a r l y f l o w e r i n g stages. Each sample was a composite of the above ground p o r t i o n s of s e v e r a l p l a n t s w i t h i n a 30m X 30m (100 f t x 100 f t ) quadrat c e n t e r e d on.a s o i l sample h o l e . W i t h i n a day or two of c o l l e c - t i o n samples, s t o r e d i n brown paper bags, were shipped t o the l a b o r a t o r i e s of the Manitoba Department of A g r i c u l t u r e i n 163 Winnipeg where they were a i r d r i e d and ground. 2. ANALYSIS Approximate numbers and types of analyses performed are summarized i n Table XXXXII. Procedures f o r sample p r e p a r a t i o n and a n a l y s i s are d e s c r i b e d i n d e t a i l i n Chapter I I . 3. ADDITIONAL INVESTIGATIONS Beginning i n 1974, i n p a r t i n c o n j u n c t i o n w i t h t h i s study, the Manitoba Department of A g r i c u l t u r e undertook a l a r g e - s c a l e s o i l and for a g e sampling program w i t h i n the Swan River-Dauphin r e g i o n and adjacent areas i n w e s t - c e n t r a l Manitoba. About 500 grass and 100 legume samples, as w e l l as approximately 12 0 s u r f i c i a l and shallow depth s o i l samples, were obtained from pastures throughout the area. D r i e d and m i l l e d forage and unground s o i l m a t e r i a l were sent t o the U n i v e r s i t y of B r i t i s h Columbia f o r t r a c e element a n a l y s i s a c c o r d i n g to the procedures d e s c r i b e d i n Chapter I I . R e s u l t s of Manitoba Department of A g r i c u l t u r e i n v e s t i g a t i o n s , were made a v a i l a b l e t o the author ( F l e t c h e r , 1976), and are d i s c u s s e d i n S e c t i o n D i n r e l a t i o n t o the f i n d i n g s of t h i s study. C. RESULTS - MOLYBDENUM AND COPPER 1. BEDROCK N i t r i c - p e r c h l o r i c a c i d e x t r a c t a b l e Mo c o n c e n t r a t i o n s i n a l i m i t e d number of samples from the V e r m i l l i o n R i v e r , A s h v i l l e 164 Table XXXXII Approximate numbers, and types o f analyses performed on Swan R i v e r - Dauphin area samples. Sample type Number o f Analyses Mo N i t r i c - p e r c h l o r i c e x t r a c t i o n Ammonium ox a l a t e e x t r a c t i o n Cu Se pH Bedrock Stream Sediment S o i l : A h o r i z o n C h o r i z o n 66 215 125 225 36 16 10 125 125 Deep parent m a t e r i a l V e g e t a t i o n 29 110 110 27 and F a v e l Formations are g i v e n i n T a b l e XXXXIII. Mean va l u e s f o r V e r m i l l i o n R i v e r and F a v e l shale are h i g h - 13.0 and 14.0 ppm r e s p e c t i v e l y . I n d i v i d u a l s h a l e samples from these forma- t i o n s may c o n t a i n up to 40 ppm Mo and none c o n t a i n l e s s than 3 ppm. Although A s h v i l l e Formation sha l e may a l s o be e n r i c h e d i n Mo (maximum c o n c e n t r a t i o n 15 ppm), n e a r l y o n e - t h i r d of A s h v i l l e rock samples analysed c o n t a i n e d o n l y background con- c e n t r a t i o n s (<3 ppm). Enhanced Mo c o n c e n t r a t i o n s were a l s o d e t e c t e d i n F a v e l Formation limestone (mean 5.1 ppm) and i n gypsum, i r o n oxide and s u l f u r p r e c i p i t a t e s a s s o c i a t e d w i t h A s h v i l l e s h a l e . Mean val u e s f o r F a v e l Formation b e n t o n i t e and Swan R i v e r Formation sandstone and s h a l e are low (<3 ppm). 2. STREAM SEDIMENT The d i s t r i b u t i o n of Mo i n minus 8 0-mesh stream sediment i s shown i n F i g 37. I n d i v i d u a l sample v a l u e s and U.T.M. co- o r d i n a t e s are l i s t e d i n Appendix C ( 5 ) . In c o n t r a s t to the case f o r bedrock, stream sediment throughout most of the r e g i o n , i n - c l u d i n g m a t e r i a l obtained w i t h i n the Mo-toxic area d e f i n e d by Cunningham e t a l . (1953), c h a r a c t e r i s t i c a l l y c o n t a i n s l e s s than 3 ppm molybdenum. D e t a i l e d stream sediment and a s s o c i a t e d bank s o i l sampling subsequently confirmed low c o n c e n t r a t i o n s w i t h i n the area where Mo t o x i c i t y had been r e c o g n i z e d ( F i g 38). A l i m i t e d number of r e l a t i v e l y Mo-rich samples were how- ever c o l l e c t e d southwest of the town of Dauphin where d r i f t 166 Table: .XXXXIII Mo content o f Cretaceous bedrock, west- c e n t r a l Manitoba. Mo Content* Number Formation L i t h o l o g y (ppm) o f Analyses V e r m i l l i o n R i v e r s o f t , b l a c k non-calcareous s h a l e 13.0 4.0-30.0 14 F a v e l grey t o bl a c k 14.0 c a l c a r e o u s s h a l e ; 3.0-40.0 minor limestone 23 A s h v i l l e limestone b e n t o n i t e grey to bl a c k non-calcareous s h a l e i n t e r m i x e d i r o n oxide and gypsum 5.1 2.0-30.0 2.5 2.0-4.0 4.6 < 1.0-15.0 5.0 5 3 13 Swan R i v e r s u l f u r white t o orange u n c o n s o l i d a t e d sand 8.0 - 0.6 <1.0-1.0 1 4 brown s i l t s t o n e and b l a c k non- c a l c a r e o u s s h a l e 0 . 5 a) Geometric mean; t r u e range. b) I n d i v i d u a l data v a l u e s , l i t h o l o g i c a l d e s c r i p t i o n s and sample s i t e l o c a t i o n s given i n Appendix C ( 6 ) . c) Samples wi t h l e s s than d e t e c t a b l e c o n c e n t r a t i o n s (1.0 ppm) assigned the value 0.5 ppm f o r mean c a l c u l a t i o n s . 167 100° 0 0 ' 101° 4S" R24 R22 R20 Figure 37. Mo content of minus 80-mesh stream sediment, Swan River — Dauphin area. 100° 00 ' 168 SOIL PARENT MATERIAL pzi—1 Lacustrine clay I I Lacustrine silty clay I 1 (Kenville Series) Lacustrine sand 1 Glacial till Cunningham et al (I953)'s Mo-toxic area Molybdenum concentration PPm < 2 Figure 38. Mo content of minus80-rnesh stream sediment (•) and A horizon bank soil (•), Mo-toxic area, Swan River Valley. 169 cover i s t h i n . L o c a t i o n s of these anomalous samples r e l a t i v e t o the d i s t r i b u t i o n of a s s o c i a t e d bedrock formations and s o i l parent m a t e r i a l s are shown i n d e t a i l i n F i g 39. Somewhat en- hanced Mo l e v e l s (3-5 ppm) i n both Wilson R i v e r and Edwards Creek sediment occur immediately downstream from exposures of Mo-rich F a v e l s h a l e . H i g h e s t sediment Mo c o n c e n t r a t i o n s (up to 14 ppm) are a s s o c i a t e d w i t h a s m a l l unnamed t r i b u t a r y of the V e r m i l l i o n R i v e r i n Township (Tp) 24 - Ranges (R) 20 and 21. Two s m a l l bodies of s e m i - r e s i d u a l t i l l , d e r i v e d from Mo- r i c h s h a l e , are i n c l u d e d w i t h i n the catchment of t h i s t r i b u t a r y one o v e r l y i n g V e r m i l l i o n R i v e r and the other A s h v i l l e Formation bedrock. 3. SOIL AND PLANTS a) N i t r i c - P e r c h l o r i c A c i d E x t r a c t i o n N i t r i c - p e r c h l o r i c e x t r a c t a b l e Mo l e v e l s i n C h o r i z o n s o i l a s s o c i a t e d w i t h anomalous stream sediments are shown i n F i g 40. Highest Mo valu e s occur i n m a t e r i a l from the V e r m i l l i o n R i v e r s h a l e - d e r i v e d t i l l body (Keld S o i l A s s o c i a t i o n ) a t K e l d J u n c t i o n . C o n c e n t r a t i o n s f o r C h o r i z o n s o i l , a s s o c i a t e d w i t h s i m i l a r K e l d A s s o c i a t i o n s h a l e - t i l l H u n d e r l a i n by the A s h v i l l e Formation a few m i l e s to the n o r t h e a s t , are somewhat lower (range 2.4 to 5.6 ppm). Samples from both l a c u s t r i n e s i l t y c l a y (Dutton S o i l A s s o c i a t i o n ) and a l l u v i u m (Edwards S o i l A s s o c i a t i o n ) s i t u a t e d near s h a l e - t i l l a l s o tend to c o n t a i n h i g h Mo l e v e l s (>5 ppm). In c o n t r a s t , Edwards A s s o c i a t i o n a l l u v i u m along both Edwards Creek and the V e r m i l l i o n R i v e r , G i l b e r t A s s o c i a t i o n sands and ni9 \ V- -/ o o O c,° RJ D A U P H I N - \-v- SOIL PARENT M A T E R I A L S Lacustrine clay Lacustrine silty clay .2 Mile* p M H r Km S T R E A M SEDIMENT Mo CONCENTRATION (ppm) > 5 k ê-mqr>ft.iodTfled from Fhrlich or al, 1959 (indKlassan etal , !970) Tp 25 Tp 24 Tp23 t;X;.;-X-J Lacustrine sand [ | Calcareous till:source mainly limestone | 1 Shale-till (Keld Soil Assoc) |o°„°o j Alluvium Figure 39 . Mo content of minus 80-mesh stream sediment southwest of Dauphin. 3 - 5 < 3 BEDROCK Riding Mountain Fm. @ Vermillion River Fm. <3) Favel Fm. © Ashville Fm. © Swan River Fm. X Outcrop Bedrock contact O R 21 R 2 0 RI9 J„° o ° ° o ° ° o Jf> i o B O O o j modified from Ehrlich et a t . V 1959 ondKlassen etal.1970) Tp25 Tp24 Tp23 SOIL PARENT MATERIAL/SOIL ASSOCIATIONS L—_-| Lacustrine clay/mainly Dauphin Lacustrine silty clay/Dutton i'-lvXvj Lacustrine sand/Gilbert | | Calcareous till/Meharry and Isafold I I Shale-till/Keld SOIL MOLYBDENUM CONCENTRATION (ppm) > 5 3 - 5 < 3 BEDROCK (§) Riding Mountain Fm. @ Vermillion River Fm. (f) Favel Fm. (D Ashville Fm. © Swan River Fm. Bedrock contact l—1 H f0 ° ° 1 Alluvium/Edwards Figure 40. Mo content of selected C horizon soil samples, southwest of Dauphin. 172 Meharry and I s a f o l d A s s o c i a t i o n t i l l s t y p i c a l l y c o n t a i n l e s s than 3 ppm molybdenum. R e s u l t s of d e t a i l e d s o i l and p l a n t c o m p o s i t i o n a l i n v e s t i g a - t i o n s i n the v i c i n i t y of K e l d J u n c t i o n (Keld area) are summarized i n F i g 41 and Tables XXXXIV to XXXXVI. S t r o n g l y a c i d i c (pH 5.3) K e l d A s s o c i a t i o n C h o r i z o n s o i l i n t h i s area c o n t a i n s an average of about 7 and up to 20 ppm Mo ( F i g 41 and T a b l e XXXXIV). A l k a - l i n e s o i l s developed on a s s o c i a t e d c a l c a r e o u s t i l l and l a c u s t r i n e d e p o s i t s , on the other hand, are comparatively Mo-poor. Analyses of cobra d r i l l samples (Table XXXXV) suggest t h a t Mo c o n c e n t r a - t i o n s i n the parent bedrock may be h i g h e r (by a f a c t o r of about 2.0) than l e v e l s i n o v e r l y i n g s o i l . In c o n t r a s t to the case f o r s o i l , Mo l e v e l s i n p l a n t s from t h i s area e x h i b i t l i t t l e among parent m a t e r i a l v a r i a b i l i t y (Table XXXXVI). C o n c e n t r a t i o n s i n g r a s s e s a s s o c i a t e d w i t h s h a l e - t i l l are low (mean 1.3 ppm) and comparable to those f o r m a t e r i a l from other s u r f i c i a l d e p o s i t s , whereas v a l u e s f o r a l f a l f a samples are u n i f o r m l y h i g h (>6 ppm). P l a n t Cu concentra- t i o n s are w i t h i n the normal range f o r forage. L i k e Mo, p l a n t Cu data appear to be most s t r o n g l y i n f l u e n c e d by v a r i a t i o n s i n p l a n t type, a l f a l f a t e n d i n g to be somewhat e n r i c h e d i n t h i s element r e l a t i v e to g r a s s e s . N i t r i c - p e r c h l o r i c e x t r a c t a b l e Mo c o n c e n t r a t i o n s i n Swan R i v e r V a l l e y s o i l , i n c l u d i n g m a t e r i a l from the Mo-toxic area of Cunningham e t a l . (1953), are i n d i c a t e d i n F i g 42 and Tables XXXXVII and XXXXVIII. C o n s i s t e n t w i t h stream sediment survey Figure 4 I Mo content of C horizon soil, Keld area. Table ..XXXXIV Mo content and pH o f A and C h o r i z o n s o i l a s s o c i a t e d w i t h i n d i v i d u a l s o i l parent m a t e r i a l s , K e l d area. Parent Number Horizon M a t e r i a l Mo Content* pH** o f (ppm) Analyses S h a l e - t i l l 3.4 7.6 9 (Keld Assoc.)<0.8-16.0 7.2-8.3 Calcareous 0.8 7.9 18 t i l l <0.8-3.2 7.6-8.5 L a c u s t r i n e 0.4 7.8 9 sand - 7.6-7.9 S h a l e - t i l l 6.7 5.1 9 (Keld Assoc.) 2.4-20.0 3.4-7.1 Calcareous 1.1 8.1 17 t i l l <0.8-6.0 7.2-8.4 L a c u s t r i n e 0.7 8.3 9 sand <0.8-8.0 7.7-8.8 a) Geometric mean; t r u e range: samples with l e s s than d e t e c t a b l e c o n c e n t r a t i o n s (0.8 ppm) assign e d the value o f 0.4 ppm. b) I n d i v i d u a l data values l i s t e d i n Appendix C (7). ** A r i t h m e t i c mean; t r u e range. 175 Table. XXXXV Mo content o f s h a l e - t i l l parent m a t e r i a l and u n d e r l y i n g bedrock, K e l d area. Cobra D r i l l h o l e Sample Mo Content (ppm) L o c a t i o n * Approximate D e s c r i p t i o n depth (m) SW5-24-20W1 0.7 c l a y : m o t t l e d grey, 12.0 non-calcareous, b e n t o n i t i c 1.0 c l a y : m o t t l e d grey, 14.0 non-calcareous, b e n t o n i t i c 1.3 s h a l e : s o f t , dark, 20.0 non-calcareous, b e n t o n i t i c 1.6 s h a l e : s o f t , dark, 24.0 non-calcareous, b e n t o n i t i c 1.9 s h a l e : s o f t , dark, 20.0 non-calcareous, b e n t o n i t i c 2.2 s h a l e : s o f t , dark, 32.0 non-calcareous, b e n t o n i t i c 2.5 s h a l e : s o f t , dark, 14.0 non-calcareous, b e n t o n i t i c * S e c t i o n - township - range 176 Table'XXXXVI Mo and Cu content o f v e g e t a t i o n (dry weight b a s i s ) a s s o c i a t e d w i t h i n d i v i d u a l s o i l parent m a t e r i a l s , Keld area. P l a n t Type Parent M a t e r i a l Trace Element* Content (ppm) Mo Cu Percentage of samples wit h Cu:Mo r a t i o s <4 . 0 Number of Analyses Grass S h a l e - t i l l 1.3 8.3 (Keld Assoc.) 0.6-2.4 6.5-10.1 13 8 Calcareous t i l l 1.1 0.4-3.4 8.6 6.5-12.1 13 L a c u s t r i n e sand 1.0 0.4-2.0 7.2 4.1-9.8 13 A l f a l f a S h a l e - t i l l (Keld Assoc.) 7.0 12.2 100 Calcareous t i l l 7.8 6.0-10.0 10.5 8.9-13.0 100 L a c u s t r i n e sand 7.0 10.6 100 * a) Geometric mean; t r u e range. b) I n d i v i d u a l data values l i s t e d i n Appendix C( 7). 177 R26 Tp36 B2<H. Tp34 Tp32 Mo CONCENTRATION ppm © 3-5 • < 3 Cunningnom et ol (I953)'s Mo-toxic area SOIL PARENT MATERIAL [ | Calcareous till: contains some shale along southern margin Lacustrine silt and clay | ' : | V : ' : V : ' : Lacustrine sand I Shale-clay (Favel Soil Series) Figure 42. Mo content of C horizon soil, Swan River Valley. 178 Table XXXXVII Mo content and pH of A and C h o r i z o n s o i l a s s o c i a t e d w i t h major s o i l parent m a t e r i a l s , Swan R i v e r V a l l e y . Parent Mo Content* Number Horizon M a t e r i a l (ppm) pH** of Analyses A Mo-toxic 0.7 7.0 19 l a c u s t r i n e s i l t <0.8-1.6 6.4-7.8 ( K e n v i l l e S e r i e s ) L a c u s t r i n e 0.4 7.5 17 s i l t and c l a y <0.8-0.8 6.2-8.2 Calcareous t i l l + 0.8 7.6 9 <0.8-2.4 7.1-7.9 L a c u s t r i n e 0.6 7.6 10 sand < 0.8-2.4 6.8-8.0 C Mo-toxic 0.9 7.6 25 l a c u s t r i n e s i l t < 0.8-3.2 5.9-8.2 ( K e n v i l l e S e r i e s ) L a c u s t r i n e 0.6 8.1 38 s i l t and c l a y <. 0.8-4.0 7.7-8.5 Calcareous t i l l t 0.8 7.9 19 < 0.8-3.2 7.7-8.2 L a c u s t r i n e 0.7 8.1 18 sand < 0.8-2.4 7.9-8.5 T L o c a l l y c o n t a i n s some s h a l e . * a) Geometric mean; t r u e range: samples wi t h l e s s than d e t e c t a b l e c o n c e n t r a t i o n s (0.8ppm) assign e d the value 0.4ppm. b) I n d i v i d u a l data v a l u e s l i s t e d i n Appendix C(8)~ . ** A r i t h m e t i c mean; t r u e range. 179 r e s u l t s n e u t r a l to m i l d l y a l k a l i n e Swan R i v e r V a l l e y s o i l , i n c l u d - i n g m a t e r i a l a s s o c i a t e d w i t h l o c a l l y s h a l e - b e a r i n g c a l c a r e o u s t i l l along the southern margin of the v a l l e y , t y p i c a l l y c o n t a i n l e s s than 3 ppm molybdenum. Des p i t e c o n c e n t r a t i o n s of up to 12 ppm r e p o r t e d by Smith (1955) f o r K e n v i l l e S e r i e s s o i l from the Mo- t o x i c area of Cunningham e t a l . (1953), o n l y background co n c e n t r a - t i o n s were d e t e c t e d i n these s o i l s . Deep K e n v i l l e s o i l parent ma- t e r i a l samples (Table XXXXVIII) were s i m i l a r l y found to be r e l a t i v e l y Mo-poor. Mo and Cu c o n c e n t r a t i o n s f o r p l a n t s growing w i t h i n the Mo- t o x i c area are compared to v a l u e s f o r m a t e r i a l c o l l e c t e d elsewhere i n the Swan R i v e r V a l l e y i n T a b l e XXXXIX. In c o n t r a s t to the case f o r s o i l s , g r a s s from the a f f e c t e d area tends to be somewhat e n r i c h - ed i n molybdenum. One sample of p a s t u r e g r a s s from w i t h i n t h i s area c o n t a i n e d 20 ppm Mo, and symptoms of Cu d e f i c i e n c y were e v i d e n t i n c a t t l e g r a z i n g t h i s m a t e r i a l . Mean v a l u e s f o r both t o x i c and background area legumes are s i m i l a r , and are somewhat e l e v a t e d r e l a t i v e t o those f o r g r a s s e s . Although Cu c o n c e n t r a t i o n s i n grasses from the Mo-toxic area are not e x c e p t i o n a l (range 3 - 1 1 ppm), legumes from t h i s area c o n t a i n r e l a t i v e l y low amounts of Cu i n comparison with legumes from other r e g i o n s . R e s u l t s of d e t a i l e d s o i l and p l a n t c o m p o s i t i o n a l i n v e s t i - g a t i o n s i n the v i c i n i t y of the body of F a v e l S e r i e s s h a l e - c l a y e a s t of Swan R i v e r (Favel area) are shown i n F i g 43 and Tables L to L I I . C o n s i s t e n t w i t h stream sediment data, Mo c o n c e n t r a t i o n s f o r t h i s r e s i d u a l s h a l e - c l a y s o i l (Table L) and the u n d e r l y i n g presumably A s h v i l l e Formation sha l e (Table LI) are low « 3 ppm). S i m i l a r l y 180 Table XXXXVIIIMo content o f Mo-toxic area K e n v i l l e S o i l S e r i e s parent m a t e r i a l . Sample Cobra Drillhole Approximate Description Mo Location* Depth (m) Content (ppm) SE32 - 34 - 29W1 0.5 1.5 2.3 3.5 4.1 calcareous fine sand and s i l t ; small iron oxide concretions calcareous sand with small iron oxide concretions as above as above sli g h t l y calcareous s i l t , orange staining 2.4 0.8 < 0 1 8 6 4.0 SE17 - 35 - 29W1 NW11 - 35 - 29W1 1.1 calcareous find sand and s i l t ; small iron oxide concretions < 0.8 1.7 as above 0.8 2.3 as above 0.8 2.9 as above 1.6 4.1 as above 1.0. calcareous s i l t to fine < 0.8 sand; orange steining 1.4 as above 0.8 1.7 calcareous s i l t and clay: 0.8 orange stoining 2.3 as above 0.8 2.8 as above 1.6 3.2 as above; no staining 2.4 3.7 as above; no staining 0.8 * Section - township - range. 181 Table XXXXIX Mo and Cu content of vegetation, (dry weight b a s i s ) , Swan River Valley. Plant .Type Area Trace Element Content (ppm) * Percentage of samples with Cu:Mo ,ratios<4.0 Mo Cu Number of Analyses Grasses Mo-toxic area 3.0* 0.6-12.0 5.7 3.0-10.7 89 19 Other areas 1.6 0.8-2.8 6.0 4.7-11.9 38 Legumes** Mo-toxic 3.6 6.8 area 1.0-6.0 6.5-8.7 83 Other areas 4.5 1.0-8.0 10.5 5.0-15.7 88 16 a) Geometric mean; true range. b) individual data values listed in Appendix C (8) . ** Includes both alfalfa and red clover. f One sample containing 20ppm molybdenum rejected as being unrepresentative of target population. R 25 R 24 SOIL PARENT MATERIAL | | Shale-clay (Favel Series) Lacustrine silt and clay Lacustrine sand [ I Calcareous till: contoins some shale MOLYBDENUM CONCENTRATION ppm % 3-5 • <3 i— 1 c o t o Figure 43. Mo content of C horizon soil , Favel area. 183 Table L Mo content and pH o f A and C h o r i z o n s o i l a s s o c i a t e d w i t h i n d i v i d u a l s o i l parent m a t e r i a l s , F a v e l a r e a . Parent Mo Content* Number Horizon M a t e r i a l (ppm) pH** of Analyses S h a l e - c l a y 0.6 7.1 9 (Favel S e r i e s ) < 0.8-5.6 6.5-8.2 L a c u s t r i n e 0.9 7.5 10 s i l t and c l a y < 0.8-2.4 6.6-8.0 Calcareous"]" 0.5 7.3 8 t i l l < 0.8-0.8 6.4-8.1 L a c u s t r i n e 0.4 7.7 6 sand - 7.1-8.7 S h a l e - c l a y 0.6 6.8 10 (Favel S e r i e s ) < 0.8-1.6 4.7-7.7 L a c u s t r i n e 1.0 7.5 11 s i l t and c l a y < 0.8-3.2 6.4-8.2 Calcareous"! 0.5 7.4 8 t i l l < 0.8-0.8 6.2-8.2 L a c u s t r i n e 0.5 8.1 5 sand < 0.8-0.8 8.0-8.1 "J" L o c a l l y c o n t a i n s some s h a l e . a) Geometric mean, t r u e range: samples c o n t a i n i n g l e s s than d e t e c t a b l e c o n c e n t r a t i o n s (0.8ppm) assign e d the value o f 0.4 ppm. b) I n d i v i d u a l data values l i s t e d i n Appendix C ( 9 ) . * * A r i t h m e t i c mean; tr u e range. 184 Table LI Mo content o f F a v e l S e r i e s s h a l e - c l a y and u n d e r l y i n g s h a l e , F a v e l area. Sample Cobra D r i l l h o l e Approximate L o c a t i o n * Depth(m) D e s c r i p t i o n Mo Content (ppm) SW11-36-25W1 0. 5 c l a y : grey, non-calcareous 1 .6 1. 0 s i l t y s h a l e : s o f t , g r e y , n o n - < 0 .8 c a l c a r e o u s 1. 4 as above wi t h minor bentonite<0 .8 1. 9 s h a l e : s o f t , b l a c k non- <o .8 c a l c a r e o u s , b e n t o n i t i c 2. 3 as above < 0 .8 * S e c t i o n - township - range. 185 Table L I I Mo. and Cu content o f v e g e t a t i o n (dry weight b a s i s ) a s s o c i a t e d with i n d i v i d u a l s o i l parent m a t e r i a l s , F a v e l area. P l a n t Type Parent M a t e r i a l Trace Element* Content (ppm) Mo Cu Percentage Number of samples of with Cu:Mo Analyses: "ratios<4.0 Grass S h a l e - c l a y (Favel S e r i e s ) L a c u s t r i n e s i l t and c l a y Calcareous t i l l t 1.4 0.6-4.0 1.1 0.6-1.8 2.7 1.0-5.0 7.7 4.4-11.5 7.6 6.0-8.7 6.0 4. 4.-10.7 25 13 86 L a c u s t r i n e sand 1.6 0.4-4.0 9.3 6.4-13.7 50 Legumes** S h a l e - c l a y (Favel S e r i e s ) L a c u s t r i n e s i l t and c l a y Calcareous t i l l L a c u s t r i n e sand t 15.2 6.0-28.0 10.0 6.2 3.4-12.0 7.6 4.0-12.0 9.6 5.7-14.1 7.4 7.0 5.4-9.4 9.3 8.1-12.0 100 100 100 100 ~ L o c a l l y c o n t a i n s some s h a l e . * a) Geometric mean; t r u e range. b) I n d i v i d u a l v a l u e s l i s t e d i n Appendix C ( 9 ) . ** Includes both a l f a l f a and r e d c l o v e r . 186 low values are associated w i t h other s o i l parent m a t e r i a l s , i n c l u d i n g c a l c a r e o u s t i l l which l o c a l l y c o n t a i n s some shale ( E h r l i c h e t a l . , 1962). Although grasses a s s o c i a t e d w i t h s o i l o f the F a v e l S e r i e s are not e n r i c h e d i n Mo (Table L I I ) , samples obtained over s h a l e - b e a r i n g c a l c a r e o u s t i l l c o n t a i n s l i g h t l y more Mo (mean 2.7ppm) and l e s s Cu (mean 6.0 ppm) than grasses a s s o c i a t e d w i t h other parent m a t e r i a l s . C o n s i s t e n t with p r e v i o u s o b s e r v a t i o n s legumes c o n t a i n l a r g e r amounts of Mo than g r a s s e s , but i n t h i s area a s i m i l a r t r e n d i s not apparent f o r copper. b) A c i d Ammonium Oxalate E x t r a c t i o n A c i d ammonium o x a l a t e e x t r a c t a b l e s o i l Mo has been r e l a t e d by G r i g g (1953 a, b) to the Mo s t a t u s of a s s o c i a t e d p l a n t s . The e f f e c t i v e n e s s o f t h i s e x t r a c t a n t i n a s s e s s i n g p l a n t - a v a i l a b l e Mo l e v e l s i n Swan River-Dauphin area s o i l was t h e r e f o r e i n v e s t i g a t e d . Oxalate e x t r a c t a b l e Mo c o n c e n t r a t i o n s were determined f o r s e l e c t e d C h o r i z o n s o i l samples a s s o c i a t e d w i t h both Mo-rich (> 5 ppm) and background (< 3 ppm) gr a s s e s . Because a r e l a t i v e l y l a r g e number of analyses were performed on m a t e r i a l from the Mo-toxic area o u t l i n e d by Cunningham e t a l . (1953), data from t h i s r e g - i o n are co n s i d e r e d s e p a r a t e l y . S o i l s a s s o c i a t e d w i t h Mo-rich grasses o u t s i d e o f Cunningham e t a l . (1953) 's Mo-toxic area were obtained i n p a r t from Manitoba Department of A g r i c u l t u r e c o l l e c t i o n s . Ammonium o x a l a t e e x t r a c t i o n r e s u l t s are summarized i n Table L I I I . W i t h i n the Mo-toxic area t h i s e x t r a c t a n t removed 187 Table L I I I A c i d ammonium o x a l a t e e x t r a t a b l e Mo content o f s e l e c t e d C h o r i z o n s o i l s a s s o c i a t e d w i t h both Mo-rich and Mo-poor grass samples. Oxalate Grass E x t r a c t a b l e Number S o i l Type Mo-status** Molybdenum* o f (ppm) Analyses . n . _ . Anomalous 1.4 4 K e n v i l l e S e r i e s Q Cj_-^ g Mo-toxic area Background 0.5 8 0.2-2.0 ^ ., Anomalous 0.4 A s s o r t e d n i o Q Q c a l c a r e o u s l a c u s t r i n e and t i l l s o i l s Background 0.2 13 < 0.1-4.0 a) Geometric mean; t r u e range. b) Samples c o n t a i n i n g u n d e t e c t a b l e amounts o f molybdenum « 0 . 1 ppm) assig n e d a value o f 0.05 ppm. Anomalous ^ 5.0 ppm; background<C3.0 ppm. 188 n e a r l y three times as much Mo from samples a s s o c i a t e d w i t h Mo-rich grasses as from samples supporting g r a s s w i t h o n l y back- ground Mo l e v e l s . D e s p i t e the smal l number of o b s e r v a t i o n s , the d i f f e r e n c e between anomalous and background mean va l u e s i s s i g n i f i c a n t a t about the 90% co n f i d e n c e l e v e l . Throughout the remainder of the Swan River-Dauphin area o x a l a t e e x t r a c t a b l e s o i l Mo l e v e l s do not appear t o be c l o s e l y r e l a t e d t o con c e n t r a - t i o n s i n a s s o c i a t e d p l a n t s . D. DISCUSSION - MOLYBDENUM AND COPPER 1. BEDROCK Mean n i t r i c - p e r c h l o r i c e x t r a c t a b l e Mo c o n c e n t r a t i o n s i n V e r m i l l i o n R i v e r , F a v e l and A s h v i l l e Formation grey to bl a c k s h a l e s (13.0,14.0 and 4.6 ppm r e s p e c t i v e l y ) are hig h r e l a t i v e t o T u r e k i a n and Wedepohl (1961)'s estimated average f o r shale (2.6 ppm), but are comparable to the median v a l u e of 10 ppm gi v e n by Vine and T o u r t e l o t (1970) f o r North American b l a c k s h a l e . In Kansas, o r g a n i c - r i c h N i o b r a r a Formation s h a l e , the s t r a t i g r a p h i c e q u i v a l e n t of the Boyne' Member of the V e r m i l l i o n R i v e r Formation, i s a l s o r e p o r t e d l y e n r i c h e d i n Mo (Vine and T o u r t e l o t , 1970). Oddy (1966) found means of 19.4, 49.4 and 8.2 ppm Mo i n V e r m i l l i o n R i v e r , F a v e l and A s h v i l l e Formation s h a l e s r e s p e c - t i v e l y . H i s v a l u e s , p a r t i c u l a r l y f o r the F a v e l Formation, are c o n s i d e r a b l y h i g h e r than those r e p o r t e d i n t h i s study. The apparent d i s c r e p a n c y i s a t t r i b u t a b l e , i n l a r g e measure, to 18 9< d i f f e r e n c e s i n sample d i g e s t i o n procedures. Oddy (1966) used a t o t a l h y d r o f l u o r i c - p e r c h l o r i c a t t a c k , whereas i n t h i s study a n i t r i c - p e r c h l o r i c procedure was employed. As noted p r e v i o u s l y (p. 37), the n i t r i c - p e r c h l o r i c a t t a c k used r e l e a s e s o n l y about 40% of the Mo l i b e r a t e d by a hydro- f l u o r i c a c i d based a t t a c k . E l e v a t e d Mo c o n c e n t r a t i o n s i n o r g a n i c - r i c h shales are u s u a l l y a t t r i b u t e d to removal of t h i s element from sea water by sediment c o l l e c t i n g i n anaerobic marine b a s i n s . T h i s i s g e n e r a l l y c o n s i d e r e d to occur e i t h e r by d i r e c t a d s o r p t i o n of Mo by decaying o r g a n i c matter (LeRiche, 1959; T o u r t e l o t , 1964) or by c o p r e c i p i t a t i o n with i r o n s u l f i d e (Korolev, 1958). Although the phase a s s o c i a t i o n s of Mo were not s p e c i f i c a l l y examined f o r Maintoba s h a l e s , Vine and T o u r t e l o t (1970) concluded t h a t Mo i n s i m i l a r s h a l e s i n the mid-western United S t a t e s i s more a s s o c i a t e d w i t h o r g a n i c matter than w i t h s u l f i d e s . 2. SOIL Enhanced c o n c e n t r a t i o n s o f n i t r i c - p e r c h l o r i c e x t r a c t a b l e Mo (> 5 ppm) i n s o i l w i t h i n the area of t h i n d r i f t cover south- west of Dauphin ( F i g 4 0) r e f l e c t the i n c o r p o r a t i o n of v a r i a b l e amounts of Mo-rich s h a l e i n t o l o c a l parent m a t e r i a l s . Anoma- lous Keld A s s o c i a t i o n s o i l near Keld J u n c t i o n , f o r example, has developed almost e x c l u s i v e l y on h i g h l y weathered Mo-rich V e r m i l l i o n R i v e r s h a l e . S i m i l a r l y h i g h Mo c o n c e n t r a t i o n s i n Edwards A s s o c i a t i o n a l l u v i u m are probably a r e s u l t of downstream t r a n s p o r t of s h a l e - d e r i v e d Keld A s s o c i a t i o n m a t e r i a l , as w e l l 190 as F a v e l s h a l e from stream-cut exposures. E l e v a t e d Mo con- c e n t r a t i o n s i n s o i l a s s o c i a t e d w i t h Mo-rich shale have been r e p o r t e d i n the Un i t e d S t a t e s by Massey and Lowe (1961) and i n Canada by Doyle e t a l . (1973). Mo l e v e l s f o r K e l d A s s o c i a t i o n s o i l developed on the A s h v i l l e Formation ( F i g 40) are c o n s i d e r a b l y lower than val u e s f o r V e r m i l l i o n R i v e r s h a l e - d e r i v e d s o i l . T h i s i s c o n s i s t e n t w i t h low c o n c e n t r a t i o n s (<2 ppm) i n many of the A s h v i l l e Formation samples analysed (Table XXXXIII) and w i t h low Mo c o n c e n t r a t i o n s i n F a v e l S e r i e s s h a l e - c l a y e a s t o f Swan R i v e r (Tables L and L I ) . Reduced Mo c o n c e n t r a t i o n s i n A r e l a t i v e to C h o r i z o n K e l d A s s o c i a t i o n s o i l developed on V e r m i l l i o n R i v e r s h a l e (Table XXXXIV), suggest t h a t e x t e n s i v e s u r f a c e l e a c h i n g has taken p l a c e . T h i s i s somewhat s u r p r i s i n g because c l a y - r i c h K e l d s o i l i s t y p i c a l l y p o o r l y d r a i n e d , and i t s s t r o n g l y a c i d i c c h a r a c t e r and hig h Fe content would be expected t o s e v e r e l y l i m i t the m o b i l i t y of Mo (Jones, 1957; Reisenaur e t a l . , 1962). F u r t h e r evidence of the removal_of Mo from t h i s s o i l i s how- ever apparent i n the low c o n c e n t r a t i o n s i n weathered s h a l e - c l a y parent m a t e r i a l r e l a t i v e t o the u n d e r l y i n g f r e s h s h a l e (Table XXXXV). G e n e r a l l y low Mo va l u e s f o r s o i l s developed on both c a l - careous t i l l and l a c u s t r i n e d e p o s i t s i n the Swan R i v e r V a l l e y ( F i g 42) and southwest of Dauphin ( F i g 40) i n d i c a t e t h a t r e l a - t i v e l y l i t t l e Mo-rich sha l e has been i n c o r p o r a t e d i n t o these 191 d e p o s i t s . In view of the g e n e r a l l y c l o s e r e l a t i o n s h i p between stream sediment and upstream s o i l composition (Thornton and Webb, 1970), low Mo v a l u e s i n sediment throughout the V a l l e y R i v e r P l a i n and along the e a s t e r n margin of the Lowland P l a i n suggest t h a t the a s s o c i a t e d s o i l s are a l s o Mo-poor. T h i s i s c o n s i s t e n t w i t h the o b s e r v a t i o n of E h r l i c h e t a l . (1959) t h a t t i l l s i n these areas are d e r i v e d mainly from e x o t i c limestone and g r a n i t i c rock. C o n c e n t r a t i o n s f o r K e n v i l l e S e r i e s s o i l from the Mo-toxic area of Cunningham e t a l . (1953) are c o n s i d e r a b l y below the enhanced v a l u e s o f up to 12 ppm. r e p o r t e d i n t h i s area by Smith (1955). As i n the case o f bedrock data t h i s i n c o n s i s t e n c y i s i n p a r t a consequence of d i f f e r e n c e s i n sample d i g e s t i o n pro- cedures. Smith (1955), l i k e Oddy (1966), used a h y d r o f l u o r i c a c i d based a t t a c k which would be expected t o l i b e r a t e more Mo than the n i t r i c - p e r c h l o r i c a c i d mixture used f o r t h i s study. However, a n a l y s i s of a r e p r e s e n t a t i v e s u i t e o f K e n v i l l e s o i l s f o r t o t a l Mo us i n g a s e q u e n t i a l ammonium o x a l a t e / h y d r o f l u o r i c - n i t r i c - p e r c h l o r i c a c i d e x t r a c t i o n i n d i c a t e d a maximum Mo con- c e n t r a t i o n of o n l y 5 ppm, and an average of 2.2 ppm. F u r t h e r - more, low t o t a l Mo v a l u e s (< 2 ppm) f o r s e l e c t e d K e n v i l l e S e r i e s samples were confirmed by a separate s e m i q u a n t i t a t i v e emission s p e c t r o g r a p h i c procedure ( M a r s h a l l , 1973) . These r e s u l t s sug- ge s t t h a t the accuracy of the anomalous s o i l c o n c e n t r a t i o n s r e p o r t e d by Smith (1955) i s q u e s t i o n a b l e . 192 3. PLANTS Enhanced Mo v a l u e s (> 5 ppm) i n g r a s s e s from the Mo-toxic area are c o n s i s t e n t w i t h h i g h c o n c e n t r a t i o n s p r e v i o u s l y noted by Smith (1955). E x c l u d i n g these r e s u l t s , Mo v a l u e s f o r g r a s s e s are g e n e r a l l y w i t h i n the normal range f o r forage (<3 ppm), where- as those f o r legumes are r e l a t i v e l y high. Because of l i m i t e d sampling, however, a l a r g e p r o p o r t i o n of non-toxic area g r a s s e s , and to a l e s s e r extent legumes, were obtained w i t h i n two r e l a - t i v e l y r e s t r i c t e d areas centered on s h a l e - d e r i v e d s o i l bodies (Keld and F a v e l a r e a s ) . A more complete r e g i o n a l p i c t u r e of the d i s t r i b u t i o n of Mo i n forage i s p r o v i d e d by r e s u l t s of Manitoba Department of A g r i c u l t u r e i n v e s t i g a t i o n s . In agree- ment w i t h f i n d i n g s of t h i s study, t h e i r data show enhanced v a l u e s f o r Mo i n legumes compared to g r a s s e s , w i t h c o n c e n t r a t i o n s equal to or g r e a t e r than 5 ppm ( and up to 7 0 ppm ) noted i n over 40% of the legumes ( F l e t c h e r , 1976). Although v a l u e s f o r the m a j o r i t y of g r a s s e s were l e s s than 3 ppm, n e a r l y 25%, most of which were c o l l e c t e d o u t s i d e the Mo-toxic area of Cunningham e t a l . (1953), c o n t a i n e d 5 ppm or more Mo ( F l e t c h e r , 1976). P l a n t Mo c o n c e n t r a t i o n s , l i k e those of other elements, are i n f l u e n c e d by a v a r i e t y of p l a n t and s o i l v a r i a b l e s . P l a n t f a c t o r s of importance i n c l u d e the genotype,age and p a r t of p l a n t s sampled ( S a u c h e l l i , 1969; Barshad, 1951a). Of these the e f f e c t s of p l a n t genotype are p a r t i c u l a r l y apparent i n t h i s study. As i n d i c a t e d i n Tables XXXXVI, XXXXIX, and L I I , Mo c o n c e n t r a t i o n s i n legumes are i n v a r i a b l y higher than c o n c e n t r a t i o n s f o r g r a s s e s 193 growing i n the same s o i l . In the F a v e l area (Table LII) legumes may be e n r i c h e d by as much as a f a c t o r of 10 r e l a t i v e to g r a s s e s . S i m i l a r grass-legume c o m p o s i t i o n a l d i f f e r e n c e s have been r e p o r t e d by other workers i n the U n i t e d S t a t e s (Barshad, 1948; Jensen and Lesperance, 1971) as w e l l as i n the B r i t i s h I s l e s (Webb e t - a l . , 1968). The tendency f o r legumes to con- c e n t r a t e r e l a t i v e l y l a r g e amounts of Mo i s probably r e l a t e d to the presence, on t h e i r r o o t s , of b a c t e r i a which r e q u i r e Mo i n the process of n i t r o g e n f i x a t i o n . With regard to s o i l f a c t o r s i n f l u e n c i n g Mo uptake, v a r i a - t i o n s i n s o i l parent m a t e r i a l appear, a t l e a s t l o c a l l y , to be of s i g n i f i c a n c e . Thus i n the F a v e l area legumes growing on s h a l e - c l a y ( F a v e l S o i l S e r i e s ) c o n t a i n e x c e p t i o n a l l y h i g h Mo l e v e l s (mean 15.2 ppm), whereas.grasses a s s o c i a t e d w i t h c a l - careous t i l l , which c o n t a i n s v a r i a b l e amounts of s h a l e , are a l s o s l i g h t l y e n r i c h e d i n t h i s element (mean 2.7 ppm). F u r t h e r - more, r e g i o n a l maps of Manitoba Department of A g r i c u l t u r e data ( F l e t c h e r , 197 6) show t h a t Mo-rich g r a s s e s are p a r t i c u l a r l y common over c a l c a r e o u s s h a l e - b e a r i n g t i l l d e p o s i t s (Unit 2, F i g 34), which are widespread i n the c e n t r a l and western p o r t i o n s of the area. These p l o t s a l s o show t h a t , although anomalous grass e s are a s s o c i a t e d w i t h a v a r i e t y of parent m a t e r i a l s l o c a t e d west of the c o n t a c t between Mo-rich s h a l e and u n d e r l y i n g Mo-poor bedrock (Units 3 and 4, F i g 33), enhanced Mo c o n c e n t r a - t i o n s do not occur i n grasses e a s t of t h i s l i n e . V a r i a t i o n s i n p l a n t Mo content are not, however, d i r e c t l y 194 r e l a t a b l e to n i t r i c - p e r c h l o r i c e x t r a c t a b l e s o i l Mo l e v e l s . For example, although h i g h Mo l e v e l s occur i n s o i l s developed on K e l d A s s o c i a t i o n s h a l e - t i l l , g r a s s e s growing i n t h i s s o i l c o n t a i n r e l a t i v e l y s m a l l amounts of molybdenum. Furthermore, both anomalous and background c o n c e n t r a t i o n s occur i n g r a s s e s growing i n a v a r i e t y of s i m i l a r l y Mo-poor s o i l s . Lack of i n c r e a s e d Mo uptake by grasses a s s o c i a t e d w i t h Ke l d s o i l i s probably r e l a t e d t o i t s s t r o n g l y a c i d i c c h a r a c t e r (C h o r i z o n pH 5.3). Greenhouse experiments by Barshad (1951a) have shown t h a t as s o i l pH decreases through the range 8.0 to 5.0, Mo c o n c e n t r a t i o n s i n both g r a s s e s and legumes f a l l by a f a c t o r of a t l e a s t 2.0. Jones (1957) and Reisenaur e t a l . (1962) have demonstrated e x p e r i m e n t a l l y t h a t t h i s pH e f f e c t i s r e l a t e d to the a b i l i t y of s o i l c l a y s and hydrous i r o n oxides to adsorb p r o g r e s s i v e l y l a r g e r amounts of Mo, as the molybdate anion, from aqueous s o l u t i o n as pH l e v e l s decrease. The absence of a r e l a t i o n s h i p between p l a n t and s o i l Mo v a l u e s f o r Mo-poor s o i l s probably, i n p a r t , r e f l e c t s the r e l a t i v e - l y high d e t e c t i o n l i m i t and poor p r e c i s i o n of the r o u t i n e ana- l y t i c a l method. In an attempt to overcome t h i s problem the method of e s t i m a t i n g a v a i l a b l e Mo u s i n g an a c i d ammonium o x a l a t e e x t r a c - t i o n , recommended by Gri g g (1953 a, b), was employed. T h i s r e - agent would be expected to r e l e a s e Mo combined w i t h secondary i r o n o x i d e s , which i t s e l e c t i v e l y d i s s o l v e s (Rose, 1975), as w e l l as exchangeable Mo a s s o c i a t e d w i t h other s o i l phases. S i n c e o r i g i n a l l y proposed, t h i s procedure has been used to 19 5 measure p l a n t a v a i l a b l e Mo by a number of i n v e s t i g a t o r s , w i t h v a r i a b l e degrees of success' (Gupta and MacKay, 1966; Pathak et a l . , 1969; Walker e t a l . , 1954). Re s u l t s of a p p l y i n g G r i g g (1953 a,b)'s procedure to Swan River-Dauphin area s o i l s (Table L I I I ) are i n c o n c l u s i v e . Oxalate e x t r a c t a b l e Mo f o r K e n v i l l e S e r i e s m a t e r i a l w i t h i n the Mo-toxic area d e f i n e d by Cunningham e t a l . (1953) appears to be c l o s e l y r e l a t e d to a s s o c i a t e d grass Mo c o n c e n t r a t i o n s , w i t h s o i l s sup- p o r t i n g Mo-rich forage c o n t a i n i n g r e l a t i v e l y high e x t r a c t a b l e Mo v a l u e s . Elsewhere, however, v a l u e s f o r a v a r i e t y of d i f f e r - ent non-toxic area s o i l s d i s p l a y r e l a t i v e l y l i t t l e r e l a t i o n s h i p to grass c o n t e n t s . Takahashi (1972) r e p o r t e d poor c o r r e l a t i o n between p l a n t and o x a l a t e e x t r a c t a b l e Mo unless data f o r i n d i v i d u a l s o i l types were c o n s i d e r e d s e p a r a t e l y . T h i s l i k e l y r e f l e c t s the e f f e c t s of changes i n s o i l environmental c o n d i t i o n s on the a v a i l a b i l i t y of molybdenum. The Mo content of p l a n t s i s known to be i n f l u e n c e d by such s o i l f a c t o r s as pH, drainage, o r g a n i c matter content, sulphate and phosphate l e v e l s (Barshad, 1951 a,b; Kubota e t a l . , 1963; Stout e t a l . , 1951). The bedrock source, which determines the o r i g i n a l form of the Mo i s a l s o important. High Mo c o n c e n t r a t i o n s i n v e g e t a t i o n a s s o c i a t e d w i t h Mo- poor s o i l s i n d i c a t e t h a t l o c a l l y these f a c t o r s combine to render a l a r g e p r o p o r t i o n of the t o t a l s o i l Mo a v a i l a b l e f o r uptake by p l a n t s . A l k a l i n e c o n d i t i o n s i n many Mo-poor s o i l s would favour i n c r e a s e d Mo uptake, but t h i s cannot be the only f a c t o r of importance because a l k a l i n e s o i l s a l s o g i v e r i s e to 196 forage w i t h normal Mo l e v e l s . F e r t i l i z a t i o n p r a c t i c e s c o u l d a l s o be s i g n i f i c a n t , because as Stout e t a l . (1951) have noted, p l a n t Mo content tends to i n c r e a s e i n the presence of phosphate. The importance o f bedrock type i s suggested by the f a c t t h a t Mo-rich grasses occur almost e x c l u s i v e l y i n areas u n d e r l a i n by e i t h e r A s h v i l l e , F a v e l , V e r m i l l i o n R i v e r or R i d i n g Mountain Formations. The p r e c i s e nature o f the r e l a t i o n s h i p between bedrock and p l a n t Mo.content i s not a t presen t c l e a r however. D e t a i l e d i n v e s t i g a t i o n s o f the f a c t o r s r e s p o n s i b l e f o r e l e v a t e d p l a n t Mo c o n c e n t r a t i o n s a s s o c i a t e d w i t h K e n v i l l e and F a v e l S e r i e s s o i l s were not undertaken. M i n e r a l o g i c a l analyses of s e l e c t e d K e n v i l l e s o i l s by Smith (1955), however, i n d i c a t e d the presence of abundant s h a l e fragments and hydrated f e r r i c o x i d e s . He suggested t h a t Mo i n these s o i l s i s a c o n s t i t u e n t of the f e r r i c o x i d e s . I f so, t h i s would h e l p to e x p l a i n ano- malous grass c o n c e n t r a t i o n s , because under the p r e v a l e n t n e u t r a l to moderately a l k a l i n e s o i l c o n d i t i o n s Mo would be expected t o be r e l a t i v e l y l o o s e l y bound to these oxides and hence would be comparatively a v a i l a b l e t o p l a n t s . In the case of F a v e l S e r i e s s o i l , enhanced Mo l e v e l s i n legumes may be r e l a t e d to poor drainage c o n d i t i o n s , which a c c o r d i n g to Kubota e t a l . (1963) and Jensen and Lesperance (1971), tend to promote Mo uptake. 4. AGRICULTURAL SIGNIFICANCE OF THE DATA The i n g e s t i o n o f l a r g e amounts of Mo i s known to i n h i b i t the a b i l i t y of ruminants to u t i l i z e d i e t a r y Cu s u p p l i e s 197 (Underwood, 1962). Although the s t r e n g t h of t h i s e f f e c t i s i n f l u e n c e d by such f a c t o r s as i n o r g a n i c s u l f a t e and p r o t e i n , as w e l l as Zn and Pb i n t a k e s (Underwood, 1976), the Cu adequacy of animal d i e t s i s , i n p r a c t i c e , g e n e r a l l y assessed i n r e l a t i o n t o a s s o c i a t e d Mo c o n c e n t r a t i o n s only. M i l t i m o r e and Mason (1971) suggest, on the b a s i s of experience i n B r i t i s h Columbia, t h a t Cu d e f i c i e n c y i s l i k e l y to occur i n areas where feeds are c h a r a c t e r i z e d by Cu:Mo r a t i o s of l e s s than 2.0. As Underwood (1976) however p o i n t s out, other workers have noted symptoms of Cu d e f i c i e n c y i n l i v e s t o c k a s s o c i a t e d w i t h Cu:Mo r a t i o s of c l o s e r to 4.0. In Manitoba, p r o v i n c i a l a g r i c u l t u r a l s c i e n t i s t s have d e f i n e d 4.0 as the minimum a c c e p t a b l e Cu:Mo r a t i o . f o r c a t t l e (Drysdale, 1975). D e f i c i e n c i e s r e s u l t i n g from consump- t i o n of feeds w i t h r a t i o s of l e s s than 4.0 are c a l l e d " c o n d i t i o n e d " or "Mo-induced". "Simple" Cu d e f i c i e n c y , on the other hand, may be caused by the i n g e s t i o n of inadequate a b s o l u t e amounts of Cu i n the presence of very low Mo c o n c e n t r a t i o n s . In Manitoba, forage Cu c o n c e n t r a t i o n s of a t l e a s t 10 ppm are co n s i d e r e d e s s e n t i a l f o r c a t t l e (Drysdale, 1975). As i n d i c a t e d i n Tables XXXXVT, XXXXIX and L H almost a l l legumes analysed i n t h i s study (most of which were a l f a l f a hay), because of t h e i r r e l a t i v e l y h i g h Mo content, are c h a r a c t e r i z e d by Cu:Mo r a t i o s of l e s s than 4.0. Furthermore, n e a r l y h a l f of these legumes c o n t a i n l e s s than 10 ppm Cu, w i t h v a l u e s f o r m a t e r i a l from the Mo-toxic area of Cunningham e t a l . (1953) being 198 p a r t i c u l a r l y low. Most grasses are a b s o l u t e l y d e f i c i e n t i n Cu, and Cu:Mo r a t i o s f o r about 43% of the samples analysed are below 4.0. Although low r a t i o s occur i n grasses a s s o c i a t e d w i t h a wide v a r i e t y of parent m a t e r i a l s , they are e s p e c i a l l y common i n Mo-rich samples obtained w i t h i n the Mo-toxic area (Table XXXXIxy and i n m a t e r i a l c o l l e c t e d over F a v e l area c a l - careous s h a l e - b e a r i n g t i l l (Table L I I ) . A s i m i l a r p a t t e r n i s apparent i n the" Manitoba Department of A g r i c u l t u r e p l a n t data. Cu c o n c e n t r a t i o n s of l e s s than 10 ppm occur i n n e a r l y a l l of the grass e s and about 9 0% of the pasture legumes, whereas Cu:Mo r a t i o s o f below 4.0 c h a r a c t e r i z e about 66% of the grasses and 84% of the legumes ( F l e t c h e r , 1976). In agreement wi t h r e s u l t s of t h i s study, low gras s r a t i o s are as- s o c i a t e d w i t h a v a r i e t y of s o i l types, but are p a r t i c u l a r l y common i n m a t e r i a l obtained over c a l c a r e o u s s h a l e - b e a r i n g t i l l d e p o s i t s (Unit 2, F i g 34). C o n s i s t e n t w i t h these data Manitoba Department of A g r i - c u l t u r e personnel have diagnosed both .simple and c o n d i t i o n e d Cu d e f i c i e n c y i n c a t t l e throughout the study area (Drysdale, 1975). Pasture grasses are probably a major f a c t o r i n t h i s problem s i n c e they appear t o be r e g i o n a l l y d e f i c i e n t i n Cu and are l o c a l l y e n r i c h e d i n molybdenum. D e f i c i e n c y c o n d i t i o n s may be f u r t h e r aggravated by the presence of Mo-rich legumes i n some pas t u r e s , as w e l l as enhanced Mo l e v e l s i n a l f a l f a hay, although as S t i l e s (1946) has noted Mo i n hay i s c o n s i d e r a b l y l e s s t o x i c than i n f r e s h forage. 199 E. RESULTS - SELENIUM R e s u l t s of Se analyses of bedrock, C h o r i z o n s o i l s and p l a n t s are summarized i n Ta b l e s LIV, LV and LVI r e s p e c t i v e l y . As i n d i c a t e d i n Table LIV Se c o n c e n t r a t i o n s i n s e l e c t e d Mo-rich s h a l e s range between 1.3 and 24.8 ppm. Values f o r the V e r m i l l i o n R i v e r Formation (mean 12.2 ppm) are c h a r a c t e r i s t i c a l l y h i g h r e l a t i v e to those f o r the F a v e l (mean 3.3 ppm) and A s h v i l l e (mean 4.8 ppm) Formations. Se, l i k e Mo, does not appear to be e n r i c h e d i n C h o r i z o n s of e i t h e r the F a v e l o r , i n the Mo-toxic area of Cunningham e t a l . (1953), K e n v i l l e s o i l s (Table L V). Mo-rich K e l d A s s o c i a t i o n s o i l c o n t a i n s an average of 4.3 and up to 7.4 ppm selenium. In view of the apparent a s s o c i a t i o n between enhanced Mo and Se c o n c e n t r a t i o n s i n both bedrock and s o i l , a l i m i t e d number of Mo-rich and Mo-poor p l a n t s were analysed f o r selenium. As i n d i c a t e d i n Table LVI, c o n c e n t r a t i o n s are g e n e r a l l y low (<1 ppm). Values of over 3 ppm were d e t e c t e d i n on l y two samples, one a gras s growing on Mo-toxic K e n v i l l e S e r i e s s o i l , and the other a c l o v e r a s s o c i a t e d w i t h the F a v e l S o i l S e r i e s , e a s t of Swan R i v e r . F. DISCUSSION - SELENIUM 1. BEDROCK Se c o n c e n t r a t i o n s i n Mo-rich V e r m i l l i o n R i v e r , F a v e l and A s h v i l l e Formation sha l e are w e l l above Goldschmidt (1954)'s 200 Table LIV Se content o f s e l e c t e d Mo-rich bedrock samples, w e s t - c e n t r a l Manitoba. Formation L i t h o l o g y Se Content* Number (ppm) o f Analyses V e r m i l l i o n R i v e r s o f t , b l a c k 12.2 non-calcareous s h a l e 6.8-24.8 F a v e l grey t o bl a c k c a l c a r e o u s s h a l e 3.3 1.3-4.9 A s h v i l l e grey t o bl a c k 4 . 8 non-calcareous s h a l e 3.1-6.1 a) Geometric mean; t r u e range. b) I n d i v i d u a l c o n c e n t r a t i o n s and b r i e f l i t h o l o g i c a l d e s c r i p t i o n s l i s t e d i n Appendix C ( 6 ) . 201 Table LV Se content o f s e l e c t e d C h o r i z o n s o i l samples, w e s t - c e n t r a l Manitoba. S o i l Se Content* (ppm) Number of Analyses K e l d A s s o c i a t i o n s h a l e - t i l l 4.28 2.18-7.36 F a v e l S e r i e s s h a l e - c l a y 0.50 0.37-0.92 K e n v i l l e S e r i e s Mo-toxic area 0.50 0.24-0.76 a) Geometric mean; t r u e range. b) I n d i v i d u a l data v a l u e s l i s t e d i n Appendix C(7-9) 202 Table LVI Se content of s e l e c t e d p l a n t samples (dry weight b a s i s ) , w e s t - c e n t r a l Manitoba. P l a n t Type Number C l a s s T Se Content* of (ppm) Analyses Grasses Mo-poor 0.48 0.12-0.84 Mo-rich 0.64 0.26-4.32 Legumes** Mo-poor 0.58 0.22-1.06 Mo-rich 0.6 0 0.09-4.00 a) Geometric mean; t r u e range. b) I n d i v i d u a l data v a l u e s l i s t e d i n Appendix C(8-10). A l f a l f a and red c l o v e r . t M o - r i c h > 5 ppm Mo-poor < 5 ppm 203 estimated c r u s t a l abundance of 0.09 ppm and Tur e k i a n and Wedepohl (1961) *s average f o r shale of 0.6 ppm. High concentra- t i o n s i n V e r m i l l i o n R i v e r shale are c o n s i s t e n t w i t h enhanced Se v a l u e s found by L a k i n (1961) i n s t r a t i g r a p h i c a l l y e q u i v a l e n t N i o b r a r a Formation sha l e from Colorado and Kansas. The a s s o c i a - t i o n of anomalous amounts of Mo and Se i n o r g a n i c - r i c h shale has a l s o been r e p o r t e d by F l e t c h e r e t a l . (1973), T o u r t e l o t (1962) and Webb e t a l . (1966). I t should be noted, however, t h a t the d i g e s t i o n procedure f o r Se was o n l y p a r t i a l l y e f f e c t i v e i n d e s t r o y i n g the h i g h l y r e s i s t a n t o r g a n i c f r a c t i o n of these s h a l e s , and t h e r e f o r e the accuracy of v a l u e s r e p o r t e d i n Tab l e LIV i s q u e s t i o n a b l e . N e v e r t h e l e s s , the f a c t t h a t data are c o n s i s t e n t w i t h r e s u l t s r e p o r t e d by other i n v e s t i g a t o r s f o r s i m i l a r rocks suggests t h a t they can a t l e a s t be taken as r e l i a b l e i n d i c a t i o n s of above average c o n c e n t r a t i o n s . As with Mo, enhanced l e v e l s of Se i n o r g a n i c - r i c h s h a l e s are commonly a t t r i b u t e d to a d s o r p t i o n from sea water by both o r g a n i c matter and c l a y m i n e r a l s ( T o u r t e l o t , 1964) . 2. SOIL A c c o r d i n g t o Swaine (1955) Se l e v e l s i n s o i l t y p i c a l l y range between 0.1 and 2.0 ppm. C o n c e n t r a t i o n s i n C h o r i z o n K e l d A s s o c i a t i o n s o i l (mean 4.3 ppm) are t h e r e f o r e anomalously high, whereas those i n F a v e l and K e n v i l l e S e r i e s samples (means 0.5 ppm) are not e x c e p t i o n a l . High val u e s i n Mo-rich K e l d s o i l s are not 204 s u r p r i s i n g i n view of the e l e v a t e d Se c o n c e n t r a t i o n s noted i n V e r m i l l i o n R i v e r s h a l e (Table LIV) on which t h i s s o i l has developed. Enhanced Se c o n c e n t r a t i o n s i n s o i l d e r i v e d from S e - r i c h shale have a l s o been r e p o r t e d i n the U n i t e d Kingdom by Webb e t a l . (1966) and i n the U n i t e d S t a t e s by Jackson (1964). Background c o n c e n t r a t i o n s i n F a v e l and K e n v i l l e s o i l s are c o n s i s t e n t w i t h t h e i r p r e v i o u s l y noted low Mo content. 3. PLANTS In c o n t r a s t to the case f o r bedrock and s o i l , Se l e v e l s i n p l a n t s do not appear to be r e l a t e d t o Mo contents (Table L V I ) . The mean Se content of Mo-rich legumes, f o r example, 0.60 ppm, i s o n l y 0.02 ppm g r e a t e r than t h a t f o r Mo-poor ma- t e r i a l . A l s o , u n l i k e the p a t t e r n f o r Mo, Se c o n c e n t r a t i o n s i n sampled legumes ( a l f a l f a and c l o v e r ) are not g e n e r a l l y e l e v a t e d compared to those of g r a s s e s . M i l t i m o r e e t a l . (1975) have l i k e w i s e observed s i m i l a r Se l e v e l s i n g r a s s and legume forage i n B r i t i s h Columbia. The o v e r a l l average Se content f o r both grasses and legumes, 0.58 ppm, i s c o n s i d e r a b l y h i g h e r than c o n c e n t r a t i o n s r e p o r t e d f o r forage from other p a r t s of Canada. M i l t i m o r e e t a l . (197 5), f o r example, found an average of o n l y about 0.20 ppm i n g r a s s - legume forage throughout B r i t i s h Columbia, whereas L e s s a r d e t a l . (1968) noted t y p i c a l c o n c e n t r a t i o n s of l e s s than 0.1 ppm i n g r a s s e s i n Northern O n t a r i o . R e l a t i v e l y enhanced p l a n t c o n c e n t r a t i o n s i n the Swan River-Dauphin area are probably, 205 i n p a r t , a r e s u l t of the p r e v a l e n t a l k a l i n e s o i l c o n d i t i o n s , because as L a k i n (1972) has p o i n t e d out, hig h pH valu e s tend to favour the a v a i l a b i l i t y of Se to p l a n t s by promoting i t s o x i d a t i o n to the h i g h l y s o l u b l e s e l e n a t e form. With regard to the h e a l t h i m p l i c a t i o n s of these data, n e a r l y a l l c o n c e n t r a t i o n s are above the 0.10 ppm minimum d i e t a r y i n t a k e recommended f o r c a t t l e ( N a t i o n a l Academy of S c i e n c e s - N a t i o n a l Research C o u n c i l , 1971) and below the g e n e r a l l y accept- ed minimum t o x i c l i m i t of 3-4 ppm suggested by Underwood (1962). C o n s i s t e n t w i t h these f i n d i n g s , n e i t h e r Se r e s p o n s i v e white muscle d i s e a s e nor Se t o x i c i t y a r e , a t pr e s e n t , c o n s i d e r e d major problems i n the Swan River-Dauphin a r e a . G. APPLICATION OF REGIONAL GEOCHEMICAL RECONNAISSANCE TECHNIQUES 1. SOIL Although i n the Rosetown area c l o s e r e l a t i o n s h i p s were noted between n i t r i c - p e r c h l o r i c e x t r a c t a b l e Cu, Fe, Mn and Se data f o r p l a n t s and s o i l s when expressed on a parent m a t e r i a l b a s i s , a s i m i l a r r e l a t i o n s h i p i s not apparent f o r Mo i n Manitoba. For example on l y background Mo c o n c e n t r a t i o n s occur i n grass e s growing on Mo-rich K e l d A s s o c i a t i o n s h a l e - t i l l (Table XXXXVI) whereas grasses a s s o c i a t e d w i t h Mo-poor c a l c a r e o u s t i l l e a s t of Swan Ri v e r are somewhat e n r i c h e d i n molybdenum (Table L I I ) . The r e l a t i o n s h i p between ammonium o x a l a t e e x t r a c t a b l e Mo and p l a n t c o n c e n t r a t i o n s i s a l s o weak. In the Swan River-Dauphin 206 area, t h e r e f o r e , r e g i o n a l s o i l Mo data appears to be of l i t t l e use i n p r e d i c t i n g p l a n t c o m p o s i t i o n a l t r e n d s . 2. STREAM SEDIMENT' As s t a t e d i n Chapter I, stream sediment may be regarded as an approximation to a composite sample of upstream rock, overburden and s o i l , and as such i t g e n e r a l l y c o n s t i t u t e s an i d e a l sampling medium f o r r e g i o n a l geochemical reconnaissance s t u d i e s (Hawkes and Webb, 1962). Furthermore i n the U n i t e d Kingdom Webb and h i s a s s o c i a t e s have been n o t a b l y s u c c e s s f u l i n r e l a t i n g enhanced stream sediment Mo c o n c e n t r a t i o n s (> 3 ppm) , to s i m i l a r l y e l e v a t e d c o n c e n t r a t i o n s i n a s s o c i a t e d bedrock, s o i l and forage, and to the d i s t r i b u t i o n of both c l i n i c a l and pre - v i o u s l y unrecognized s u b c l i n i c a l Mo-induced Cu d e f i c i e n c y i n c a t t l e (Thornton e t a l . , 1972 a, b; Webb e t a l . , 1968; Thornton and Webb, 1970). As i n d i c a t e d by the g e n e r a l l y low Mo c o n c e n t r a t i o n s i n sediment c o l l e c t e d over Mo-rich s h a l e u n i t s ( F i g 37), Swan R i v e r - Dauphin area sediment v a l u e s are normally not r e l a t e d to Mo l e v e l s i n a s s o c i a t e d bedrock. Anomalous sediment c o n c e n t r a t i o n s (>5 ppm) over molybdeniferous s h a l e southwest of Dauphin are e x c e p t i o n a l , and r e f l e c t the presence of stream-cut bedrock exposures i n t h i s area of r e l a t i v e l y t h i n d r i f t cover. Sediment Mo c o n c e n t r a t i o n s , on the oth e r hand, do r e f l e c t the Mo s t a t u s of s o i l . For example, v a l u e s f o r both s o i l and sediment through- out the Swan R i v e r V a l l e y are g e n e r a l l y low (<3 ppm), whereas anomalous sediments southwest of Dauphin are r e l a t e d to upstream 207 occurrences of Mo-rich s o i l u n i t s ( F i g 40). However because of t y p i c a l l y poor s o i l - p l a n t c o m p o s i t i o n a l r e l a t i o n s h i p s Mo l e v e l s i n stream sediment, l i k e those i n s o i l s , are not r e f l e c t e d i n a s s o c i a t e d p l a n t s . For example, only background Mo values were noted i n stream sediment o b t a i n e d w i t h i n the Mo t o x i c area of Cunningham e t a l . (1953), whereas grasses from t h i s area are r e l a t i v e l y Mo-rich ( F i g 3 8; Table XXXXIX). Consequently, i n c o n t r a s t to the experience of other workers, i n Manitoba, reconnaissance data on the Mo content of stream sediment are of l i t t l e v a l u e i n o u t l i n i n g areas where e l e v a t e d Mo c o n c e n t r a t i o n s i n v e g e t a t i o n are l i k e l y t o g i v e r i s e to animal d i s o r d e r s . H. CONCLUSION Grasses throughout the Swan River-Dauphin area are l o c a l l y e n r i c h e d i n Mo, whereas c o n c e n t r a t i o n s i n legumes are r e g i o n a l l y enhanced. S o i l s , however, t y p i c a l l y c o n t a i n r e l a t i v e l y l i t t l e Mo ( < 3 ppm) . E l e v a t e d values i n legumes r e f l e c t the a b i l i t y of these p l a n t s to concentrate r e l a t i v e l y l a r g e amounts o f molybdenum. L o c a l l y enhanced Mo uptake by grasses, on the other hand, appears to be a consequence of changes i n s o i l e n v i r o n - mental c o n d i t i o n s such as drainage and pH, which tend to i n c r e a s e the a v a i l a b i l i t y o f molybdenum. Widespread Cu d e f i c i e n c y i n the Swan River-Dauphin area i s a t t r i b u t a b l e , i n p a r t , to the consumption of Mo-rich feeds. However because o f poor s o i l - p l a n t c o m p o s i t i o n a l r e l a t i o n s h i p s , 208 n e i t h e r r e g i o n a l s o i l nor stream sediment survey data are u s e f u l i n p r e d i c t i n g areas where e x c e s s i v e Mo l e v e l s are mo l i k e l y to occur i n v e g e t a t i o n . CHAPTER VI CONCLUSION A. STATEMENT OF THE PROBLEM 209 The purpose of t h i s study was to examine the d i s t r i b u t i o n of t r a c e elements i n e a r t h s u r f a c e m a t e r i a l s on the Southern Canadian I n t e r i o r P l a i n w i t h a view t o recommending a p p r o p r i a t e methods of c o l l e c t i n g and p r e s e n t i n g r e g i o n a l geochemical data i n t h i s area-. Although stream sediment sampling has been used e x t e n s i v e l y f o r reconnaissance survey purposes elsewhere, on the Canadian p r a i r i e s t r i b u t a r y streams are too s c a r c e t o permit r o u t i n e a p p l i c a t i o n of t h i s technique. Because s o i l can be c o l l e c t e d everywhere wi t h r e l a t i v e l y l i t t l e e f f o r t a t - t e n t i o n was focused on o b t a i n i n g i n f o r m a t i o n on c o m p o s i t i o n a l v a r i a t i o n s i n t h i s m a t e r i a l . S t u d i e s were undertaken i n three separate areas s e l e c t e d to r e p r e s e n t a range of p r a i r i e environmental c o n d i t i o n s . In two of these, Rosetown and Red Deer, the nature of both r e - g i o n a l and l o c a l v a r i a t i o n s i n s o i l t r a c e element content were examined. In the Rosetown area s o i l c o m p o s i t i o n a l v a r i a t i o n s were r e l a t e d to the d i s t r i b u t i o n of t r a c e elements i n a s s o c i a t e d wheat p l a n t s . In the t h i r d area, around Swan R i v e r and Dauphin, t r i b u t a r y streams are r e l a t i v e l y common, and emphasis was p l a c e d on i n v e s t i g a t i n g r e g i o n a l p a t t e r n s of Mo d i s t r i b u t i o n i n both s o i l and stream sediment. The a g r i c u l t u r a l s i g n i f i c a n c e of t h i s data was evaluated i n terms of i n f o r m a t i o n on the Mo con- t e n t of forage p l a n t s and the d i s t r i b u t i o n of Mo-induced Cu d e f i c i e n c y i n c a t t l e . 210 •B. SUMMARY OF RESULTS 1. ROSETOWN AND RED DEER AREAS Regional v a r i a t i o n s i n the Cu, Fe, Mn, Zn and Se content of s o i l s are i n f l u e n c e d to a c o n s i d e r a b l e extent by changes i n s o i l parent m a t e r i a l . T h i s parent m a t e r i a l e f f e c t appears i n tu r n t o be l a r g e l y c o n t r o l l e d by t e x t u r a l v a r i a t i o n s . Thus i n the Rosetown area lowest c o n c e n t r a t i o n s are a s s o c i a t e d w i t h comparatively coarse g r a i n e d a e o l i a n sands, i n t e r m e d i a t e w i t h a l l u v i u m , g l a c i a l t i l l and l a c u s t r i n e s i l t and sand, and h i g h - e s t v a l u e s w i t h f i n e g r a i n e d l a c u s t r i n e c l a y . In the Red Deer area c o m p o s i t i o n a l d i f f e r e n c e s between hummocky and ground moraines l i k e w i s e r e f l e c t t e x t u r a l d i f f e r e n c e s i n these two m a t e r i a l s . Red Deer data f u r t h e r suggest t h a t changes i n bedrock type can a l s o i n f l u e n c e t i l l t r a c e element content. Approximately 60% of the v a r i a b i l i t y i n Rosetown Cu, Fe, Mn and Zn data f o r C h o r i z o n s o i l , and over 7 0% of the A h o r i z o n and 30-46 cm (12-18 in) depth s o i l v a r i a b i l i t y i s a t t r i b u t a b l e to d i f f e r e n c e s among parent m a t e r i a l means. .In the Red Deer area, on the other hand, on l y 14 t o 42% of the C h o r i z o n data v a r i a t i o n s can be assign e d to among parent m a t e r i a l sources. Comparatively l a r g e percentages f o r the Saskatchewan study r e f l e c t the presence of r e l a t i v e l y coarse sand and f i n e c l a y d e p o s i t s , and the r e s u l t a n t l a r g e d i f f e r e n c e s between extreme mean v a l u e s . Cu, Fe, Mn and Zn c o n c e n t r a t i o n s i n i n d i v i d u a l A h o r i z o n 211 and 30 - 46 cm (12-18 in) depth m a t e r i a l c o l l e c t e d around Rosetown are g e n e r a l l y f a i r l y c l o s e l y r e l a t e d (r>0.50) to l e v e l s i n a s s o c i a t e d C h o r i z o n s . Much stronger r e l a t i o n s h i p s (r>0.90), however, were noted when mean va l u e s f o r i n d i v i d u a l parent m a t e r i a l s were compared. E f f e c t s of pedogenic processes are most apparent i n the c h a r a c t e r i s t i c a l l y enhanced Mn and Zn c o n c e n t r a t i o n s i n A h o r i z o n s . A n a l y s i s of v a r i a n c e r e s u l t s f o r Rosetown data i n d i c a t e t h a t among sample s i t e c o m p o s i t i o n a l d i f f e r e n c e s f o r C h o r i z o n s are s t a t i s t i c a l l y s i g n i f i c a n t f o r a l l parent m a t e r i a l s w i t h the e x c e p t i o n of g l a c i a l t i l l . Among township v a r i a n c e com- ponents f o r Rosetown area parent m a t e r i a l s as w e l l as moraines i n the Red Deer area are t y p i c a l l y n o n - s i g n i f i c a n t . In both areas, estimated t o t a l v a r i a n c e f o r a g i v e n parent m a t e r i a l i s lower f o r A than C h o r i z o n s . S i g n i f i c a n t among parent m a t e r i a l v a r i a t i o n s f o r s o i l means were i d e n t i f i e d u s i n g Duncan's New M u l t i p l e Range t e s t , and r e s u l t s summarized i n map form d i s t i n g u i s h i n g o n l y composi- t i o n a l l y d i s t i n c t i v e p a rent m a t e r i a l s or parent m a t e r i a l groups. For the Saskatchewan study, because of c l o s e r e l a t i o n s h i p s be- tween A, 30-46 cm (12-18 in) and C h o r i z o n sample means, map p a t t e r n s f o r these three m a t e r i a l s are v e r y s i m i l a r . A p p l i c a - t i o n of T i d b a l l (1970)'s a d j u s t a b l e v a r i a n c e r a t i o (Vm = 5.0) i n d i c a t e s t h a t s t a b l e maps c o u l d have been produced f o r . C h o r i z o n s by c o l l e c t i n g as few as 5 samples per parent m a t e r i a l , 212 whereas f o r A h o r i z o n s 2 samples would have been adequate. In the Red Deer area as many as 30 C h o r i z o n samples would be r e q u i r e d from each s u r f i c i a l d e p o s i t . C o r r e l a t i o n c o e f f i c i e n t s r e l a t i n g Cu, Fe, Mn, Zn and Se c o n c e n t r a t i o n s i n i n d i v i d u a l wheat and s o i l samples i n the Rosetown area a re g e n e r a l l y r e l a t i v e l y weak. Strong p o s i t i v e c o e f f i c i e n t s (r>0.70), however, were observed when Cu, Fe and Mn means and Se medians f o r separate parent m a t e r i a l s were compared. Zn data i s e x c e p t i o n a l i n t h a t mean p l a n t and s o i l v a l u e s were found t o be n e g a t i v e l y r e l a t e d . A p p l i c a t i o n of Duncan (1955)'s t e s t to Cu, Fe and Mn means f o r wheat gave r e s u l t s c o n s i s t e n t w i t h those f o r s o i l . Thus means f o r both Mn and Fe a s s o c i a t e d w i t h l a c u s t r i n e c l a y were i n d i c a t e d to be , s i g n i f i c a n t l y h i g h e r , whereas Cu and Mn means f o r m a t e r i a l grow- ing on a e o l i a n sand were shown to be s i g n i f i c a n t l y lower than other mean v a l u e s . 2. SWAN RIVER-DAUPHIN AREA A g r i c u l t u r a l l y s e t t l e d p o r t i o n s of the Swan River-Dauphin area are u n d e r l a i n , i n p a r t , by a sequence of Mo and Se en- r i c h e d dark grey to b l a c k s h a l e s belonging t o the V e r m i l l i o n R i v e r , F a v e l and A s h v i l l e Formations. These bedrock u n i t s are o v e r l a i n by a v a r i a b l e t h i c k n e s s of e x o t i c g l a c i a l t i l l and g l a c i o - l a c u s t r i n e d e p o s i t s . Data from a reconnaissance stream sediment survey and follow-up s o i l sampling i n d i c a t e t h a t s o i l s developed on these d e p o s i t s i n g e n e r a l c o n t a i n u n i f o r m l y low Mo l e v e l s (<3 ppm). Enhanced sediment Mo c o n c e n t r a t i o n s w i t h i n a small 213 area southwest of Dauphin, however, l e a d to the i d e n t i f i c a t i o n of a l i m i t e d number of l o c a l l y Mo-rich s o i l u n i t s . D r i f t cover i n t h i s area i s t h i n , and h i g h e s t c o n c e n t r a t i o n s (up to 20 ppm) were d e t e c t e d i n an e s s e n t i a l l y r e s i d u a l s o i l (Keld A s s o c i a t i o n ) developed on V e r m i l l i o n R i v e r s h a l e . Se l e v e l s i n t h i s s o i l body were a l s o anomalously high. Enhanced Mo c o n c e n t r a t i o n s (up to 42 ppm) occur l o c a l l y i n g r a s s e s a s s o c i a t e d w i t h a v a r i e t y of a l k a l i n e Mo-poor s o i l s west of the c o n t a c t between the Swan R i v e r and o v e r l y i n g A s h v i l l e Formations (Units 3 and 4, F i g 33). The Mo content of legumes c o l l e c t e d throughout the r e g i o n i s g e n e r a l l y h i g h (> 5 ppm). In p a r t because of e l e v a t e d Mo v a l u e s , Cu:Mo r a t i o s i n forage are commonly below the minimum ac c e p t a b l e value of 4.0. F u r t h e r - more Cu c o n c e n t r a t i o n s i n both grasses and legumes are formally below the a b s o l u t e minimum of 10 ppm recommended f o r c a t t l e . Con- s i s t e n t w i t h these f i n d i n g s , both simple (Cu<10 ppm) and Mo- induced (Cu:Mo<4.0) Cu d e f i c i e n c y have been noted i n c a t t l e throughout the r e g i o n . Se l e v e l s measured f o r a l i m i t e d number of forage samples are w i t h i n the g e n e r a l l y accepted safe range (0.1 - 4.0 ppm) and S e - r e l a t e d n u t r i t i o n a l d i s o r d e r s are not at p resent r e c o g n i z e d i n l i v e s t o c k . There appears to be l i t t l e r e l a t i o n s h i p between the Mo content of p l a n t s and s o i l s e i t h e r when data f o r i n d i v i d u a l samples or means f o r parent m a t e r i a l s are compared. Mo con- c e n t r a t i o n s i n stream sediment g e n e r a l l y r e f l e c t l e v e l s i n as- s o c i a t e d s o i l s and consequently r e g i o n a l p a t t e r n s of Mo 214 d i s t r i b u t i o n i n stream sediment are a l s o u n r e l a t e d to v a r i a t i o n s i n p l a n t Mo content. C. RECONNAISSANCE GEOCHEMICAL SURVEYS 1. INTRODUCTION Although i n t h i s i n v e s t i g a t i o n a t t e n t i o n was co n c e n t r a t e d on a s s e s s i n g the f e a s i b i l i t y o f producing r e g i o n a l geochemical maps based on s o i l a n alyses, and on examining the p o t e n t i a l a g r i c u l t u r a l v a l u e of such maps, i n Manitoba i t was p o s s i b l e to e v a l u a t e the u s e f u l n e s s o f e s t a b l i s h e d reconnaissance stream sediment sampling procedures. Regional data on n i t r i c - p e r - c h l o r i c e x t r a c t a b l e Mo i n stream sediment, however, were found to be u n r e l a t e d to v a r i a t i o n s i n the Mo content of forage or i n f o r m a t i o n on the d i s t r i b u t i o n of Mo-induced Cu d e f i c i e n c y i n c a t t l e . Thus, i n a d d i t i o n to b e i n g i m p r a c t i c a l f o r g e n e r a l use because of the absence of w e l l developed t r i b u t a r y drainage systems, i t appears t h a t on the Canadian p r a i r i e s stream sed- iment data f o r Mo a t l e a s t , have r e l a t i v e l y l i t t l e a g r i c u l t u r a l v a l u e . R e s u l t s o f s o i l i n v e s t i g a t i o n s , on the other hand, i n d i c a t e t h a t b r o a d - s c a l e s o i l c o m p o s i t i o n a l p a t t e r n s , based on d i f f e r e n c e s among mean c o n c e n t r a t i o n s f o r i n d i v i d u a l s o i l p arent m a t e r i a l s , are r e l a t e d to c o m p o s i t i o n a l v a r i a t i o n s i n a s s o c i a t e d crops f o r s e v e r a l n u t r i t i o n a l l y important t r a c e elements. In the following s e c t i o n , t h e r e f o r e , parent mat- e r i a l based s o i l sampling procedures patternedtto a l a r g e extent 215 on those developed by Miesch (19 76) and h i s a s s o c i a t e s , are recommended f o r a p p l i c a t i o n on the Canadian p r a i r i e s . V a r i o u s aspects o f these procedures are then d i s c u s s e d i n d e t a i l . 2. RECOMMENDED PROCEDURES The area to be surveyed i s f i r s t d i v i d e d i n t o s e v e r a l subareas f o r sampling on the b a s i s o f i n f o r m a t i o n on the d i s t r i b u t i o n o f s o i l parent m a t e r i a l s . Composite A h o r i z o n samples are then c o l l e c t e d a t an equal number of randomly chosen s i t e s over each major parent m a t e r i a l . The d e c i s i o n as to how many samples to i n i t i a l l y c o l l e c t i s n e c e s s a r i l y some- what a r b i t r a r y . R e s u l t s o f t h i s study suggest t h a t , f o r the elements examined, i f among parent m a t e r i a l c o m p o s i t i o n a l v a r i - a t i o n s are expected to be l a r g e , f o r example because of the presence o f coarse sand and f i n e c l a y d e p o s i t s , as few as 5 samples per d e p o s i t are r e q u i r e d . I f , on the oth e r hand, the i n f l u e n c e of parent m a t e r i a l i s expected to be s m a l l , up to 30 samples should be taken from each d e p o s i t . A f t e r sieving.samples to minus 10-mesh and g r i n d i n g to minus 100-mesh, t r a c e element c o n c e n t r a t i o n s are measured u s i n g a p p r o p r i a t e t e c h n i q u e s . Compositional data are then log-transformed (base 10), and geometric means (GM) and geometric deviations(GD) c a l c u l a t e d f o r i n d i v i d u a l parent m a t e r i a l s . Samples c o n t a i n i n g c o n c e n t r a t i o n s i n excess 2 of the GM x GD val u e f o r any element are r e j e c t e d as 216 probably being u n r e p r e s e n t a t i v e of the parent p o p u l a t i o n . An a n a l y s i s of v a r i a n c e procedure i s a p p l i e d to estimate the magnitudes of both w i t h i n and among parent m a t e r i a l v a r i a n c e components. T i d b a l l (1970)'s a d j u s t a b l e v a r i a n c e . r a t i o (Vm = 5.0) i s used to determine whether s u f f i c i e n t samples were c o l l e c t e d t o adequately d e s c r i b e among parent m a t e r i a l c o m p o s i t i o n a l p a t t e r n s . I f necessary a d d i t i o n a l samples are c o l l e c t e d and analysed and the procedure f o r r e j e c t i n g anomalous samples r e a p p l i e d . The s i g n i f i c a n c e of d i f f e r e n c e s among means f o r i n d i v i d u a l parent m a t e r i a l s i s e v a l u a t e d u s i n g Duncan (1955)'s New M u l t i p l e Range t e s t . When d i f f e r e n c e s f o r two or more means are shown to be n o n - s i g n i f i c a n t data f o r the d e p o s i t s i n v o l v e d are group- ed together and weighted means c a l c u l a t e d based on t h e i r r e l a t i v e s i z e s . R e s u l t s are f i n a l l y summarized i n map form d i s t i n g u i s h i n g o n l y c o m p o s i t i o n a l l y d i s t i n c t i v e parent m a t e r i a l s or parent m a t e r i a l groups. 3. DISCUSSION a) Choice of S i z e of Area E f f e c t s of v a r y i n g study area s i z e on geochemical map p a t t e r n s were not s p e c i f i c a l l y examined. I f r e l a t i v e l y strong map trends are sought, however, one f a c t o r l i m i t i n g the m i n i - mum s i z e would be the requirement t h a t i t be l a r g e enough to i n c l u d e a s u f f i c i e n t v a r i e t y of c o m p o s i t i o n a l l y d i s t i n c t i v e parent m a t e r i a l s . On the other hand study area boundaries 217 cannot be extended i n d e f i n i t e l y because,(1) g e n e r a l i z a t i o n s necessary f o r p r o d u c t i o n of final-maps c o v e r i n g very l a r g e areas would g r e a t l y l i m i t t h e i r u s e f u l n e s s , a n d (2), because w i t h i n parent m a t e r i a l c o m p o s i t i o n a l v a r i a b i l i t y would be expected t o i n c r e a s e w i t h the s i z e of the r e g i o n examined, f o r very l a r g e areas the s i g n i f i c a n c e of among parent m a t e r i a l trends would be c o n s i d e r a b l y reduced. Survey procedures recommended were t e s t e d i n two areas 2 ranging i n s i z e from about 6,000 to 10,000 km (2,000 t o 4,000 sq m i ) . I t i s t e n t a t i v e l y suggested t h a t these procedures c o u l d be a p p l i e d w i t h s i m i l a r r e s u l t s i n areas of up to about 15,000 km (6,000 sq mi). T h i s s i z e i s convenient because i t corresponds to the area covered by the N a t i o n a l Topographic Map System's 1:250,000 s c a l e maps, as w e l l as many p u b l i s h e d s u r f a c e geolog- i c a l and bedrock maps. b) I d e n t i f i c a t i o n of T a r g e t P o p u l a t i o n s The area t o be i n v e s t i g a t e d should be d i v i d e d i n t o v a r i o u s subareas f o r sampling i n such a manner as to maximize the ex- pected d i f f e r e n c e s among mean s o i l c o n c e n t r a t i o n s f o r i n d i v i d u a l s u b d i v i s i o n s . R e s u l t s of t h i s i n v e s t i g a t i o n • i n d i c a t e t h a t subareas should be d e f i n e d on the b a s i s of changes i n s o i l pa- r e n t m a t e r i a l type. For example, i n the Rosetown area over 7 0% of the t o t a l data v a r i a b i l i t y f o r A h o r i z o n s i s a t t r i b u t a b l e t o d i f f e r e n c e s among means f o r i n d i v i d u a l parent m a t e r i a l s . An a d d i t i o n a l advantage i n the use of s o i l parent m a t e r i a l s i s t h a t , because they tend t o cover r e l a t i v e l y l a r g e areas,a s i n g l e mean v a l u e has c o n s i d e r a b l e r e g i o n a l s i g n i f i c a n c e . 218 U n f o r t u n a t e l y s u r f i c i a l g e o l o g i c a l maps showing the r e - q u i r e d d e t a i l are not a v a i l a b l e i n many Canadian p r a i r i e r e g i o n s . S o i l maps ,however, have been p u b l i s h e d f o r most r e g i o n s , and the r e q u i r e d i n f o r m a t i o n can g e n e r a l l y be obtained from these. When i d e n t i f y i n g i n d i v i d u a l parent m a t e r i a l s f o r sampling an attempt should be made to d i s t i n g u i s h d e p o s i t s which d i f f e r e i t h e r t e x t u r a l l y or i n probable bedrock source. In the case of l a c u s t r i n e d e p o s i t s , e x t e n s i v e bodies c o n s i s t i n g predominantly of sand, s i l t or c l a y s i z e m a t e r i a l should be sampled s e p a r a t e l y . Because t i l l tends to be l o c a l l y d e r i v e d , the t r a c e element content of moraines o v e r l y i n g c o m p o s i t i o n a l l y d i s t i n c t i v e bed- rock u n i t s should a l s o be estimated s e p a r a t e l y . D i f f e r e n c e s i n s u r f a c e morphology of t i l l d e p o s i t s should be r e c o g n i s e d i n the i n i t i a l sampling p l a n as w e l l , i f t h i s does not r e s u l t i n an e x c e s s i v e i n c r e a s e i n the t o t a l sampling l o a d . In the Red Deer area, f o r example, ground and hummocky moraines were found to d i f f e r s i g n i f i c a n t l y i n t h e i r mean Mn content. I t should, however, be emphasized t h a t , because s u r f a c e g e o l o g i c a l maps are only g e n e r a l i z e d r e p r e s e n t a t i o n s of the a c t u a l p a t t e r n o f s u r f i c i a l d e p o s i t s , i n d i v i d u a l map u n i t s which d e f i n e the subareas to be sampled,contain v a r i a b l e amounts o f " f o r e i g n " m a t e r i a l which are not r e p r e s e n t a t i v e o f the d e p o s i t s i n d i c a t e d . The t a r g e t p o p u l a t i o n s f o r sampling, t h e r e f o r e , are i n f a c t only those s o i l s , w i t h i n the v a r i o u s subareas re c o g n i z e d , which are a s s o c i a t e d w i t h the d e p o s i t of i n t e r e s t . D e f i n i n g t a r g e t p o p u l a t i o n s i n t h i s f a s h i o n , of 219 course, has the disadvantage t h a t geo.chemic.ally anomalous s o i l b odies, too g e o g r a p h i c a l l y r e s t r i c t e d t o d i s t i n g u i s h on r e g i o n a l maps, c o u l d be overlooked. Although the e f f e c t of c u l t i v a t i o n on s o i l t r a c e element content was not s p e c i f i c a l l y examined, g e n e r a l l y c l o s e r e - l a t i o n s h i p s between data f o r A and C h o r i z o n s suggest t h a t i t i s r e l a t i v e l y s l i g h t . Furthermore because c u l t i v a t e d and un- c u l t i v a t e d s o i l s were not d i f f e r e n t i a t e d i n the p r e s e n t i n v e s t i - g a t i o n and meaningful s o i l p a t t e r n s were obta i n e d , i t i s t e n t a t i v e l y proposed t h a t f o r t r a c e element map p r o d u c t i o n the i n f l u e n c e of c u l t i v a t i o n on s o i l composition need not be con- s i d e r e d . c) S e l e c t i o n of S o i l H o r i z o n Because s o i l i s c h a r a c t e r i s t i c a l l y composed of a t l e a s t three d i s t i n c t g e n e t i c h o r i z o n s , the q u e s t i o n a r i s e s as to which, i f any one of these i s most s u i t a b l e f o r sampling. In t h i s study the r e l a t i v e m e r i t s of A and C h o r i z o n s and a 30 - 46 cm (12-18 in) depth sample were compared. The u s e f u l - ness of B h o r i z o n s was not s p e c i f i c a l l y examined because t h i s h o r i z o n i s not p r e s e n t i n some s o i l s such as Regosols and Rego Chernozems. Because i n the Rosetown a r e a . t r a c e element c o n c e n t r a t i o n s i n A, 30-46 cm (12-18 in) and C h o r i z o n s are g e n e r a l l y c l o s e l y r e l a t e d , e s s e n t i a l l y s i m i l a r c o m p o s i t i o n a l p a t t e r n s c o u l d be o b t a i n e d by sampling any of these m a t e r i a l s . T h i s c l o s e 220 r e l a t i o n s h i p i s l i k e l y a t t r i b u t a b l e , to some degree, to the l a c k of p r o f i l e development i n the Chernozemic s o i l s of the r e g i o n . Somewhat weaker r e l a t i o n s h i p s would be expected, however, f o r s o i l s of the Greywooded Zone where L u v i s o l s p r e - dominate and the e f f e c t s of s u r f a c e l e a c h i n g are more pro- nounced. N e v e r t h e l e s s , Chernozemic s o i l s l i k e those around Rosetown occupy over 80% of the a g r i c u l t u r a l l y s e t t l e d Canadian p r a i r i e r e g i o n . A h o r i z o n sampling has the advantage t h a t , f o r a g i v e n parent m a t e r i a l , e r r o r a s s o c i a t e d w i t h e s t i m a t i o n of mean c o n c e n t r a t i o n s i s low r e l a t i v e t o t h a t f o r subsurface h o r i z o n s . T h i s c h a r a c t e r i s t i c i s e s p e c i a l l y u s e f u l because, other f a c t o r s being equal, a g r e a t e r p r o p o r t i o n of the t o t a l data v a r i a b i l i t y i s a t t r i b u t a b l e to among mean d i f f e r e n c e s on which f i n a l geo- chemical maps are based. Furthermore A h o r i z o n s can be c o l l e c t - ed w i t h c o n s i d e r a b l y l e s s e f f o r t than subsurface s o i l s . For reconnaissance mapping purposes, t h e r e f o r e , A h o r i z o n c o l l e c - t i o n i s recommended. d) Choice of Number and D i s t r i b u t i o n of Sample S i t e s T i d b a l l (1970)'s a d j u s t a b l e v a r i a n c e r a t i o (Vm) i s used to determine the minimum number of randomly c o l l e c t e d samples r e q u i r e d per d e p o s i t to adequately d e s c r i b e d i f f e r e n c e s among parent m a t e r i a l mean v a l u e s . A p p l i c a t i o n of t h i s s t a t i s t i c i n the Rosetown area, however, i n d i c a t e d t h a t w i t h Vm s e t equal to 1.0, f o r a l l elements examined l e s s than one sample was r e q u i r e d from each parent m a t e r i a l . These u n r e a l i s t i c a l l y low 221 values are a t t r i b u t a b l e to l a r g e among mean d i f f e r e n c e s , which i n t u r n r e f l e c t the presence o f coarse sand and f i n e c l a y d e p o s i t s i n t h i s a r ea. Because wi t h Vm s e t equal t o 5.0 more ac c e p t a b l e r e s u l t s were obta i n e d , i t i s suggested t h a t t h i s h i g h e r value g e n e r a l l y be employed. The t o t a l sampling l o a d can be g r e a t l y i n c r e a s e d i f the i n t e n t i o n i s to d e s c r i b e d e t a i l s o f " w i t h i n " as w e l l as "among" parent m a t e r i a l c o m p o s i t i o n a l v a r i a t i o n s . R e s u l t s of t h i s study, however, i n d i c a t e t h a t g e n e r a l l y a t t e n t i o n need be focused only on among parent m a t e r i a l p a t t e r n s . As noted p r e v i o u s l y , around Rosetown these p a t t e r n s account f o r over 70% of the t o t a l A h o r i z o n data v a r i a b i l i t y . Furthermore although c l o s e r e l a t i o n - s h i p s were noted between Cu, Fe and Mn mean and Se median con- c e n t r a t i o n s f o r s o i l s and p l a n t s a s s o c i a t e d w i t h the same pa- r e n t m a t e r i a l , r e l a t i o n s h i p s between data f o r i n d i v i d u a l p l a n t and s o i l samples from the same s i t e were r e l a t i v e l y weak. Thus only d i f f e r e n c e s among s o i l means appear to be of value i n p r e d i c t i n g r e g i o n a l v a r i a t i o n s i n the t r a c e element content o f p l a n t s . Miesch (1976) has l i k e w i s e s t r e s s e d the importance o f c o n c e n t r a t i n g on "among category" c o m p o s i t i o n a l trends when undertaking geochemical surveys o f t h i s type. Miesch(1976), however, does advocate the use of a "nested" sampling d e s i g n such t h a t " w i t h i n category" ( i e . i n t h i s study, w i t h i n parent m a t e r i a l ) data v a r i a b i l i t y can be p a r t i t i o n e d i n t o separate components corre s p o n d i n g to areas o f d i f f e r i n g geographic s i z e . T h i s i n f o r m a t i o n can be used to maximize 222 follow-up sampling e f f i c i e n c y when a l a r g e p r o p o r t i o n of the w i t h i n parent m a t e r i a l data v a r i a b i l i t y i s found to occur i n r e l a t i v e l y s m a l l areas. That i s , when Vm c a l c u l a t i o n s i n d i c a t e t h a t a d d i t i o n a l samples are r e q u i r e d , follow-up sampling can be c o n c e n t r a t e d i n only a few such g e o g r a p h i c a l l y r e s t r i c t e d areas, thereby r e d u c i n g the time and c o s t of sample c o l l e c t i o n ( T i d b a l l , 1976). Disadvantages a s s o c i a t e d with the use o f a nested d e s i g n , however, i n c l u d e an i n c r e a s e i n the t o t a l number of samples f o r a n a l y s i s , and c o m p l i c a t i o n of s t a t i s t i c a l h a n d l i n g of the data because many s t a t i s t i c a l t e s t s r e q u i r e random sampling. In a d d i t i o n , the nested d e s i g n proposed i s based on the assum- p t i o n t h a t geographic components of v a r i a b i l i t y are the same f o r a l l map c a t e g o r i e s (parent m a t e r i a l s ) examined. Because the v a l i d i t y of t h i s assumption i s very d o u b t f u l when d e a l i n g w i t h d e p o s i t s as d i s s i m i l a r as, f o r example, a e o l i a n sand and a l l u v i u m , n e s t i n g of samples c o u l d lead,unnecessarily , to s e r i o u s b i a s i n g of f i n a l mean and v a r i a n c e e s t i m a t e s . T h e r e f o r e , u n t i l - the r e l a t i v e importance of these shortcomings has been evaluated, random sampling i s recommended. e) Sample P r e p a r a t i o n and A n a l y s i s As i s standard a g r i c u l t u r a l p r a c t i c e , a l l s o i l s i n t h i s study were i n i t i a l l y s i e v e d to minus 10-mesh and then ground to minus 100-mesh p r i o r to d i g e s t i o n . T h i s procedure, however, was found to have the disadvantage t h a t the g r i n d i n g stage i s 223 comparatively time consuming, e s p e c i a l l y when l a r g e numbers of samples r e q u i r e p r o c e s s i n g . Sample p r e p a r a t i o n f o r m i n e r a l e x p l o r a t i o n surveys, on the other hand, c o n s i s t s simply i n s i e v i n g s o i l d i r e c t l y t o minus 80-mesh. In a d d i t i o n to de- c r e a s i n g the sample p r o c e s s i n g time, a p p l i c a t i o n of t h i s s i e v i n g procedure c o u l d improve the r e l a t i o n s h i p between p l a n t and s o i l c o m p o s i t i o n a l data because a r e l a t i v e l y l a r g e propor- t i o n of the t r a c e elements e x t r a c t e d from the minus 80-mesh f r a c t i o n would probably be l o o s e l y bound,, i n a p l a n t - a v a i l a b l e form,on the f i n e r s o i l p a r t i c l e s u r f a c e s . On the other hand, s i e v i n g i n t h i s f a s h i o n c o u l d reduce the observed d i f f e r e n c e s among parent m a t e r i a l means, because these d i f f e r e n c e s appear to be l a r g e l y t e x t u r a l l y c o n t r o l l e d . U n t i l t h i s q u e s t i o n has been examined f u r t h e r , t h e r e f o r e , a p p l i c a t i o n of standard a g r i c u l t u r a l procedures i s suggested. As Miesch (1976) has observed, f o r most reconnaissance geochemical surveys r e l a t i v e l y r a p i d , low-cost a n a l y t i c a l pro- cedures are adequate, because a n a l y t i c a l e r r o r g e n e r a l l y r e p r e s e n t s a r e l a t i v e l y s m a l l f r a c t i o n of the t o t a l e r r o r i n - v o l v e d i n e s t i m a t i n g category means. Procedures f o r Cu, Fe, Mn and Zn a n a l y s i s used i n t h i s study, i n v o l v i n g simultaneous d i g e s t i o n of up to 240 samples and subsequent atomic a b s o r p t i o n d e t e r m i n a t i o n s , t h e r e f o r e are s a t i s f a c t o r y . On the other hand methods f o r both Se and Mo r e q u i r e improvement because, the f l u o r i m e t r i c procedure f o r Se i s r e l a t i v e l y slow, whereas the c o l o r i m e t r i c method f o r Mo, though r a p i d , i s not s u f f i c i e n t l y p r e c i s e . 224 f) Data P r e s e n t a t i o n The s c a l e of f i n a l map p r o d u c t i o n i s l i m i t e d o n l y by the d e t a i l of i n f o r m a t i o n on the d i s t r i b u t i o n of i n d i v i d u a l parent m a t e r i a l s . S c a l e s t h e r e f o r e may be v a r i e d depending upon the purpose f o r which maps are to be used. For example, where the i n t e n t i o n i s to d e s c r i b e o n l y broad v a r i a t i o n s i n the geo- chemical"background" a g a i n s t which the magnitude of the e f f e c t s of p o l l u t i o n can be assessed, r e l a t i v e l y s m a l l s c a l e maps such as those presented i n Chapters I I I and IV would be s a t i s f a c t o r y . However, f o r v e t e r i n a r i a n s and other a g r i c u l t u r a l s c i e n t i s t s , concerned w i t h the occurrence, of t r a c e element imbalances on i n d i v i d u a l farms, c o n s i d e r a b l y more d e t a i l e d maps, wit h s c a l e s of not l e s s than about 1:250,000, would be r e q u i r e d . F i n a l l y i t should be noted t h a t Duncan (1955)'s New M u l t i p l e Range t e s t , which i s used as the b a s i s f o r map p r o d u c t i o n , d i s - t i n g u i s h e s only s t a t i s t i c a l l y , as opposed to " p r a c t i c a l l y " , s i g n i f i c a n t among mean d i f f e r e n c e s . That i s , s t a t i s t i c a l s i g - n i f i c a n c e does not n e c e s s a r i l y imply s i g n i f i c a n c e i n terms of p l a n t composition. I t i s p o s s i b l e , f o r example, t h a t on the Canadian p r a i r i e s , f o r among parent m a t e r i a l c o m p o s i t i o n a l v a r i - a t i o n s to be r e f l e c t e d i n a s s o c i a t e d p l a n t s , means must d i f f e r by a t l e a s t a f a c t o r of 1.5. The problem of us i n g such m i n i - mum p r o p o r t i o n a l d i f f e r e n c e s to d i s t i n g u i s h between means has been t r e a t e d b r i e f l y by Miesch (1976). 225 •D. . GENERAL CONCLUSIONS Although i n the B r i t i s h I s l e s Webb and h i s a s s o c i a t e s (Webb and A t k i n s o n , 1965; Thornton and Webb, 197 0) have been s u c c e s s f u l i n r e l a t i n g r e g i o n a l stream sediment data t o a v a r i e t y of n u t r i t i o n a l imbalances i n crops and l i v e s t o c k , on the Southern Canadian I n t e r i o r P l a i n stream d e n s i t y i s gen- e r a l l y inadequate f o r r o u t i n e a p p l i c a t i o n of stream sediment sampling techniques. Furthermore r e s u l t s of t h i s i n v e s t i g a t i o n i n d i c a t e t h a t i n f o r m a t i o n on the d i s t r i b u t i o n of Mo i n stream sediment i n w e s t - c e n t r a l Manitoba i s of l i t t l e v a l u e i n i d e n t i - f y i n g areas where enhanced forage Mo c o n c e n t r a t i o n s and as- s o c i a t e d Mo-induced Cu d e f i c i e n c y i n c a t t l e are most l i k e l y to occur. Because s o i l i s a v a i l a b l e n e a r l y everywhere, reconnaissance geochemical surveys based on s o i l sampling, on the other hand, can be a p p l i e d throughout the Canadian p r a i r i e s . More impor- t a n t l y , however, although r e l a t i o n s h i p s between p l a n t and s o i l data are weak when v a l u e s f o r i n d i v i d u a l samples c o l l e c t e d a t the same s i t e a re compared, when data are summarized on the b a s i s of mean c o n c e n t r a t i o n s a s s o c i a t e d w i t h v a r i o u s parent m a t e r i a l s r e l a t i v e l y s trong s o i l - p l a n t r e l a t i o n s h i p s e x i s t f o r s e v e r a l n u t r i t i o n a l l y s i g n i f i c a n t t r a c e elements. I t appears t h e r e f o r e t h a t s o i l survey data, when expressed i n an appro- p r i a t e f a s h i o n , can be used t o p r e d i c t r e g i o n a l v a r i a t i o n s i n the t r a c e element content of a s s o c i a t e d p l a n t s . I t i s suggested t h a t reconnaissance s o i l surveys focus on d e s c r i b i n g d i f f e r e n c e s among mean c o n c e n t r a t i o n s a s s o c i a t e d with i n d i v i d u a l s o i l parent m a t e r i a l s . B r i e f l y the procedure recommended i n v o l v e s c o l l e c t i o n of A h o r i z o n samples from the v a r i o u s s u r f i c i a l d e p o s i t s w i t h i n the area of study and estima- t i o n of mean and v a r i a n c e v a l u e s f o r each d e p o s i t . Duncan (1955)'s New M u l t i p l e Range t e s t i s used t o i d e n t i f y s i g n i f i - c ant d i f f e r e n c e s among means and r e s u l t s are summarized i n map form d i s t i n g u i s h i n g o n l y c o m p o s i t i o n a l l y unique parent m a t e r i a l s or parent m a t e r i a l groups. I f the boundaries of i n d i v i d u a l survey areas are chosen to correspond t o those of the N a t i o n a l Topographic Map System's 1:250,000 s c a l e maps, the a g r i c u l t u r a l l y s e t t l e d p o r t i o n of the Southern Canadian I n t e r i o r P l a i n c o u l d be c o n v e n i e n t l y 2 d i v i d e d i n t o about 40 separate 15,000 km (6,000 sq mi) quadrangles. Assuming t h a t , on the average, 20 samples are obtained per parent m a t e r i a l and 5 s u r f i c i a l d e p o s i t s are rec o g n i z e d w i t h i n each quadrangle, geochemical maps could be produced f o r the e n t i r e p r a i r i e r e g i o n by c o l l e c t i n g only about 4,000 samples. T h i s number i s not l a r g e when i t i s con- s i d e r e d t h a t over 2,000 s o i l samples were taken f o r the prese n t i n v e s t i g a t i o n alone. Maps so produced c o u l d be used to p r e d i c t areas where t r a c e element imbalances i n crops and l i v e s t o c k are most l i k e l y to occur. They c o u l d a l s o be of va l u e to medi c a l s c i e n t i s t s concerned w i t h the d i s t r i b u t i o n of t r a c e element r e l a t e d 227 d i s e a s e s t a t e s i n man. Furthermore, they would p r o v i d e b a s i c data on v a r i a t i o n s i n the geochemical "background" on the Canadian p r a i r i e s . Such i n f o r m a t i o n i s of fundamental value to both e c o l o g i s t s and e a r t h s c i e n t i s t s . In a d d i t i o n i t p r o v i d e s a"base- l i n e " a g a i n s t which the magnitude of the environmental impact of man's a c t i v i t i e s can be assessed. With the growing p u b l i c concern f o r environmental q u a l i t y and the awareness of the need to maximize a g r i c u l t u r a l p r o - d u c t i v i t y , the demand f o r b a s i c geochemical survey i n f o r m a t i o n i s expected to i n c r e a s e on a g l o b a l s c a l e . Because w e l l developed t r i b u t a r y drainage systems are l a c k i n g over l a r g e p o r t i o n s o f the ea r t h ' s s u r f a c e , parent m a t e r i a l based s o i l sampling procedures such as those recommended c o u l d p l a y a major r o l e i n s u p p l y i n g the r e q u i r e d d ata. E. SUGGESTIONS FOR FURTHER WORK Follow-up i n v e s t i g a t i o n s are r e q u i r e d t o t e s t the u s e f u l n e s s o f the survey procedures proposed i n ot h e r Canadian p r a i r i e environments, expanding the range o f elements and p l a n t s p e c i e s examined. In p a r t i c u l a r the s t r e n g t h o f r e l a t i o n s h i p s between parent m a t e r i a l based mean c o n c e n t r a t i o n s f o r s o i l and p l a n t s should be i n v e s t i g a t e d i n areas where c o m p o s i t i o n a l l y extreme parent m a t e r i a l s (coarse sands and f i n e c l a y s ) are not r e p r e s e n t e d . A l s o , because i t was not p o s s i b l e t o do so i n the pr e s e n t study, a s p e c i a l e f f o r t should be made 228 to r e l a t e s o i l c o m p o s i t i o n a l v a r i a t i o n s to i n f o r m a t i o n on the d i s t r i b u t i o n of t r a c e element imbalances i n e i t h e r crops or l i v e s t o c k . Around Red Deer, f o r example, r e g i o n a l p a t t e r n s f o r Se i n A h o r i z o n s o i l c o u l d be compared w i t h data on the i n c i d e n c e of Se r e s p o n s i v e white muscle d i s e a s e i n c a t t l e . In a d d i t i o n , there i s c o n s i d e r a b l e scope f o r refinement of the suggested survey procedures. S e v e r a l p o s s i b i l i t i e s f o r improvement were c o n s i d e r e d i n S e c t i o n C of t h i s Shapter. These i n c l u d e , (1) use of a nested sample d e s i g n to reduce the c o s t of sample c o l l e c t i o n , (2) s i e v i n g s o i l d i r e c t l y to minus 80-mesh to minimize sample p r o c e s s i n g time and (3) replacement of Duncan (1955)'s New M u l t i p l e Range t e s t w i t h a more s u i t a b l e procedure. B a s i c i n v e s t i g a t i o n s i n t o the nature of c o m p o s i t i o n a l r e l a t i o n s h i p s between bedrock, s o i l parent m a t e r i a l , s o i l s and p l a n t s i n the Canadian p r a i r i e environment c o u l d a l s o p r o v i d e much u s e f u l i n f o r m a t i o n . For example, although t i l l i s gen- e r a l l y c o n s i d e r e d to be d e r i v e d mainly from l o c a l bedrock, to date no attempt has been made to q u a n t i f y the extent to which t h i s i s t r u e . S i m i l a r l y l i t t l e s p e c i f i c data are a v a i l a b l e on the provenance of m a t e r i a l i n other types of s u r f i c i a l de- p o s i t s . R e s u l t s of s t u d i e s of t h i s type c o u l d have been used i n Manitoba, f o r example, to i d e n t i f y i n g the probable bedrock source of Mo i n s o i l s s u p p o r t i n g Mo-rich p l a n t s . Furthermore, i n f o r m a t i o n from such i n v e s t i g a t i o n s would be of c o n s i d e r a b l e value.when i n i t i a l l y d i v i d i n g areas to be surveyed i n t o 229 parent m a t e r i a l based subareas f o r sampling. The i n f l u e n c e s of both pedogenic processes and c u l t i v a - t i o n on s o i l composition should be examined more c l o s e l y . A nested sampling d e s i g n s i m i l a r t o t h a t used by T i d b a l l (1976) c o u l d be employed to i n v e s t i g a t e the i n f l u e n c e of s o i l type on w i t h i n parent m a t e r i a l c o m p o s i t i o n a l v a r i a t i o n s i n A h o r i z o n s . Study areas should be chosen t o i n c l u d e L u v i s o l i c s o i l s because the e f f e c t s of pedogenic processes would be expected to be par- t i c u l a r l y apparent i n s o i l s b e longing t o t h i s Order. The i n - f l u e n c e of c u l t i v a t i o n c o u l d be assessed, on the other hand, by comparing average r a t i o s of t r a c e element c o n c e n t r a t i o n s i n A and C h o r i z o n s f o r both c u l t i v a t e d and uncultivated soil'developed on the same parent m a t e r i a l . R e l a t e d t o these s t u d i e s , an a t - tempt should be made to determine whether pedogenic f a c t o r s , c u l t i v a t i o n or sampling procedures are p r i m a r i l y r e s p o n s i b l e f o r the reduced e r r o r i n mean e s t i m a t i o n f o r A h o r i z o n s r e l a t i v e to subsurface h o r i z o n s a s s o c i a t e d w i t h a p a r t i c u l a r s u r f i c i a l d e p o s i t . Information i s a l s o r e q u i r e d on how the form i n which t r a c e elements occur i n p r a i r i e s o i l ( i e . i n s o l u t i o n , adsorbed onto c l a y s etc.) a f f e c t s t h e i r availability, to plants. Such data c o u l d be used to d e s i g n p a r t i a l e x t r a c t i o n procedures which would more a c c u r a t e l y r e f l e c t p l a n t a v a i l a b l e s o i l c o n c e n t r a t i o n s than the n i t r i c - p e r c h l o r i c a t t a c k used i n t h i s study. Green- house experiments c o u l d a l s o be undertaken to e v a l u a t e the r e l a t i v e importance of such f a c t o r s as s o i l Eh, pH arid o r g a n i c 230 matter content i n t r a c e element uptake by p l a n t s . In\ t h i s manner i t should be p o s s i b l e , f o r example, to i d e n t i f y f a c t o r s r e s p o n s i b l e f o r the weak r e l a t i o n s h i p s between data on the Mo and Zn content o f s o i l s and p l a n t s noted i n t h i s i n v e s t - i g a t i o n . In a d d i t i o n to these s t u d i e s , a survey of t r a c e element c o n c e n t r a t i o n s i n the Cretaceous and younger sediments which u n d e r l i e the Canadian I n t e r i o r P l a i n would be very v a l u a b l e . Information o b t a i n e d c o u l d be used, f o r example, t o i d e n t i f y bedrock u n i t s c o n t a i n i n g anomalously h i g h or low l e v e l s of n u t r i t i o n a l l y s i g n i f i c a n t t r a c e elements, as w e l l as to p r e d i c t the i n f l u e n c e o f changes i n bedrock type on s o i l c omposition. F i n a l l y , i f proven s a t i s f a c t o r y i n other p r a i r i e , e n v i r o n - ments , i t i s recommended t h a t parent m a t e r i a l based s o i l survey procedures be used to produce geochemical maps c o v e r i n g the e n t i r e Southern Canadian I n t e r i o r P l a i n . L i k e the stream sedim- ent survey maps of Webb and h i s c o l l e g u e s (Webb e t a l . , 1968) i n the B r i t i s h I s l e s , these maps would be of c o n s i d e r a b l e b a s i c environmental as w e l l as a g r i c u l t u r a l v a l u e . 231 BIBLIOGRAPHY AHRENS, L.H., 1954. The lognormal d i s t r i b u t i o n of elements. Geochim. Cosmochim. Acta, 5 : 49-73. ALLAWAY, W.H. and CARY, E.E., 1964. Determination of submicrogram amounts of selenium i n b i o l o g i c a l materials. Anal. Chem., 36 : 1359-1362. ATLAS OF CANADA, 1957. Department of Mines and Technical Surveys, Geography Branch, Ottawa, Canada, Plate No. 35. BARSHAD, I., 1948. Molybdenum content of pasture plants i n r e l a t i o n to t o x i c i t y to c a t t l e . S o i l S c i . , 66 : 187- 195. BARSHAD, I., 1951a. Factors a f f e c t i n g the molybdenum content of pasture plants: I. Nature of s o i l molybdenum, growth of plants and s o i l pH. S o i l S c i . , 71 : 297-313. BARSHAD, I., 1951b. Factors a f f e c t i n g the molybdenum content of pasture plants; II. E f f e c t of soluble phosphates, available nitrogen and soluble sulfates. S o i l S c i . , 71 : 387-397. BOLTON, J.L., 1938. The occurrence of selenium i n western Canada and i t s e f f e c t on livestock. Canada Dept. Agric. Exp. Stn., Swift Current, Sask., 23 pp. BOSTOCK, H.S., 1969. Physiographic regions of Canada. Geological Survey of Canada, Map No. 12 54 A. BOSTOCK, H.S., 1970. Physiographic subdivisions of Canada. i n , Geology and Economic Minerals of Canada. R.J.W. Douglas ed., Geological Survey of Canada Economic Geology Rept. No. 1, pp. 10-30. BOWSER, W.E., PETERS, T.W. and NEWTON, J.D., 1951. S o i l survey of Red Deer sheet. Alberta S o i l Survey Rept. No. 19, 8 6 pp. BOYDELL, A.N., 1973.. Personal communication. Geological Survey of Canada, Ottawa, Ontario. BYERS, H.C. and LAKIN, H.W., 1939. Selenium i n Canada. Canadian J. of Research, 17(B) : 364-369. CALDWELL, W.G.E., 1968. The Late Cretaceous Bearpaw Formation i n the southwest Saskatchewan River Valley. Saskatchewan Research Council, Geology Di v i s i o n , Report No. 8, 8 9 pp. CANNON, H.L., 1970. Trace element excesses and de f i c i e n c i e s i n some geochemical provinces of the United States. 232 i n Trace Substances i n Environmental H e a l t h - I l l , D.D. Hemphill ed., Univ. o f M i s s o u r i , Columbia, M i s s o u r i , pp. 21-43. CARRIGY, M.A., 1971. L i t h o s t r a t i g r a p h y of the uppermost Cretaceous (Lance) and Paleocene s t r a t a of the A l b e r t a P l a i n s . Research C o u n c i l of A l b e r t a , B u l l . 27, 161 pp. CHAPMAN, L. and BROWN, D.M., 1966. The c l i m a t e s of Canada f o r a g r i c u l t u r e . Canada Land Inventory Report No. 3.. CHERRY, J.A. and WHITAKER, S.H., 1969. Geology and groundwater r e s o u r c e s of the Yorkton area, Saskatchewan. Geology D i v i s i o n , Saskatchewan Research C o u n c i l , Map No. 9. CHRISTIANSEN, E.A., 1973. Quaternary geology and i t s a p p l i c a - t i o n to e n g i n e e r i n g p r a c t i c e i n the Saskatoon-Regina- Watrous area, Saskatchewan. G e o l o g i c a l Assoc. of Canada, Guidebook, F i e l d T r i p "C", G.A.C. Annual Mtng., Saskatoon, 1973, 81 pp. CHRISTIANSEN, E.A. and MENELE.Y, W.A. , 1971. Geology and ground- water r e s o u r c e s of the Rosetown area, Saskatchewan. Saskatchewan Research C o u n c i l , Geology D i v i s i o n , Map No. 14. CONNOR, J . J . and EBENS, R.J., 1970. Geochemical survey of g e o l o g i c u n i t s . i n Geochemical Survey of M i s s o u r i . Plans and progress f o r the t h i r d six-month p e r i o d , Open- f i l e r e p o r t 1970, U.S. G e o l o g i c a l Survey, Denver, Colorado, pp. 5-15. CONNOR, J . J . , FEDER, G.L., ERDMAN, J.A., and TIDBALL, R.R., 1972. Environmental geochemistry i n M i s s o u r i - a m u l t i d i s c i p l i n - a r y study. i n Proceedings of the 24th I n t e r n a t i o n a l G e o l o g i c a l Congress, 1972, Symposium 1, pp. 7-14. COSHOW, B., 1971. UBC ANOVAR : A n a l y s i s of v a r i a n c e and co- v a r i a n c e . Univ. of B r i t i s h Columbia, Computing Centre, 51 pp. COUPLAND, R.T., 1961. A r e c o n s i d e r a t i o n of g r a s s l a n d c l a s s i f i - c a t i o n i n the northern Great P l a i n s of North America. J . of Ecology, 49 : 135-167. CRAIG, B.G., 1957. S u r f i c i a l geology, Drumheller, A l b e r t a . Geol. Surv. Can. Map 13 - 1957. CUNNINGHAM, I . J . , BROWN, J.M., andEDIE, A.E., 1953. Molybdenum p o i s o n i n g of c a t t l e i n the Swan R i v e r V a l l e y of Manitoba. Can. J . A g r i c . S c i . , 33 : 254-260. DELAVAULT, R.E., 1972. P e r s o n a l communication. Dept. of G e o l o g i c a l S c i . , Univ. of B r i t i s h Columbia, Vancouver, B.C. 233 DIXON, W.J. and MASSEY, F . J . , 1969. I n t r o d u c t i o n to s t a t i s t i c a l a n a l y s i s . 3rd ed. McGraw-Hill Book Co., Toronto, 638 pp. DOUGLAS, R.J., 1968. G e o l o g i c a l map of Canada. G e o l o g i c a l Survey of Canada, Map No. 1250A. DOYLE, P.J., FLETCHER, K. and BRINK, V.C., 1973. Regional geochemical reconnaissance and the molybdenum content of bedrock, s o i l s , and v e g e t a t i o n from the e a s t e r n Yukon, i n Trace Substances i n Environmental Health-VI, D.D. Hemphill ed., Univ. of M i s s o u r i , Columbia, M i s s o u r i , pp. 369-375. DRYSDALE, R., 1975. P e r s o n a l communication. P r o v i n c e of Manitoba, Dept. of A g r i c . , Marketing and P r o d u c t i o n Div., Winnipeg, Manitoba. DUNCAN, D.B., 1955. M u l t i p l e range and m u l t i p l e F t e s t s . B i o m e t r i c s , 11 : 1-42. DUVAL, J.S., SCHWARZER, T. and ADAMS, J.A., 1971. Lognormal d i s t r i b u t i o n of t r a c e elements i n the environment. i n Trace Substances i n Environmental Health-IV, D.D. Hemphill ed., Univ. of M i s s o u r i , Columbia, M i s s o u r i , pp. 120-131. EHRLICH, W.A., PRATT, L.E. and LECLAIRE, F.P., 1959. Report of reconnaissance s o i l survey of Grandview map sheet area. Manitoba Department of A g r i c u l t u r e and C o n s e r v a t i o n , S o i l s Report No. 9, 96 pp. EHRLICH, W.A., PRATT, L.E. and LECLAIRE, F.P., 1962. Report of d e t a i l e d reconnaissance s o i l survey of Swan R i v e r map sheet area. Manitoba Department of A g r i c u l t u r e and C o n s e r v a t i o n , S o i l s Report No. 13, 79 pp. ELLIS, J.G., ACTON, D.F. and MOSS, H.C, 1970. The s o i l s of the Rosetown map area. E x t e n s i o n D i v i s i o n , Univ. of Saskatchewan, Saskatoon, P u b l i c a t i o n No. 202. 159 pp. FLETCHER, K., 1970. AAPPM: a computer program for. c o n v e r t i n g absorbance and a b s o r p t i o n values i n t o c o n c e n t r a t i o n s . Dept. of G e o l o g i c a l S c i . , Univ. of B r i t i s h Columbia, Vancouver, B.C. FLETCHER, K., 1971. Atomic a b s o r p t i o n methods. Dept. of G e o l o g i c a l S c i . , Univ. of B r i t i s h Columbia, Vancouver, B.C., 19 pp. FLETCHER, K., 1976. P e r s o n a l communication. Dept. of G e o l o g i c a l S c i . , Univ. of B r i t i s h Columbia, Vancouver, B.C. •> FLETCHER, K., DOYLE, P. and BRINK, V.C., 1973. S e l e n i f e r o u s v e g e t a t i o n and s o i l s i n the e a s t e r n Yukon. Can. J . P l a n t S c i . , 53 : 701-703. 234 FORMAN, S.A. and RICE, H.M., 1959. A m i n e r a l o g i c a l study of some core samples from the Bearpaw Formation. Can. J . S o i l S c i . , 39 : 178-184. FRASER, F . J . , McLEARN, F.H., RUSSELL, L.S., WARREN, P.S. and WICKENDEN, R.T., 1935. Geology of southern Saskatchewan. Geol. Survey of Can. Mem. 17 6, 137 pp. FRIEDEN, E., 1972. The chemical elements of l i f e . S c i e n t i f i c American, J u l y 1972, pp. 52-60. GERRING, H., CARY, E., JONES, L. and Allaway, W., 1968. S o l u b i l i t y and redox c r i t e r i a f o r the p o s s i b l e forms of selenium i n s o i l s . S o i l S c i . Soc. Amer. Proc. 32 : 35-40. GODKIN, G.,1973. P e r s o n a l communication. I n n i s f a i l V e t e r i n a r y C l i n i c , I n n i s f a i l , A l b e r t a . GOLDSCHMIDT, V.M., 1954. Geochemistry. Clarendon P r e s s , Oxford, 730 pp. GORSKI, L., HEINONEN, J . and SUSCHNY, O., 1974. F i n a l r e p o r t on the i n t e r c o m p a r i s o n of t r a c e multielement a n a l y s i s i n d r i e d animal blood, c a l c i n a t e d animal bone, powdered m i l k , wheat f l o u r and d r i e d potatoes. RL/25. I n t . At. Energy Agency, Vienna, A u s t r i a , 28 pp. GRAVENOR, C P . and BAYROCK, L.A., 1961. G l a c i a l d e p o s i t s of A l b e r t a . i n S o i l s i n Canada, Royal Soc. Can., Spec. Pub. No. 3, pp. 33-50. GREEN, R., 1972. G e o l o g i c a l map of A l b e r t a . Research C o u n c i l of A l b e r t a , Map No. 35. GRIGG, J.L., 1953a. Determination of a v a i l a b l e molybdenum of s o i l s . New Zealand J . S c i . and Tech., 34 : 405-414. GRIGG, J.L., 1953b. Determination of a v a i l a b l e soil'molybdenum. New Zealand S o i l News, No. 3 : 37-40. GUPTA, U.C. and MacKAY, D.C, 1966. The r e l a t i o n s h i p of s o i l p r o p e r t i e s t o exchangeable and water s o l u b l e copper and molybdenum s t a t u s i n podzol s o i l s of e a s t e r n Canada. S o i l S c i . Soc. Amer. P r o c , 30 : 373-375. GUPTA, U. and WINTER, K., 1975. Selenium content of s o i l s and crops and the e f f e c t s of lime and s u l f u r on p l a n t selenium. Can. J . S o i l S c i . , 55 : 161-166. HALM, J . , 1971. BMD07V: M u l t i p l e range t e s t s . Univ. of B r i t i s h Columbia, Computing Centre, 14 pp. HALUSCHAK, P. and RUSSELL, A., 1971. T o t a l minor element content of s o i l s i n the Portage map area of Manitoba. 235 Paper presented at the Manitoba S o i l Science Meeting, Dec. 8 and 9, at the University of Manitoba, 8 pp. HAWKES, H.E., BLOOM, H., RIDDELL, J.E. and WEBB, J.S., 1956. Geochemical reconnaissance i n eastern Canada, i n Symposium on Geochemical Prospecting, 20th Int. Geol. Cong., Mexico, 3 : 607-621. HAWKES, H.E. and WEBB, J.S., 1962. Geochemistry i n mineral exploration. Harper and Row, N.Y., 415 pp. HEDLIN, R.A., 1972. Personal communication. Dept. of S o i l Science, Univ. of Manitoba, Winnipeg, Manitoba. HEM, J.D., 1972. Chemical factors that influence the a v a i l a - b i l i t y of iron and manganese i n aqueous systems, i n Geol. Soc. Amer. Special Paper 140, H.L. Cannon and H.C. Hopps eds., pp. 17-24. HODGSON, J.F., 1970. Chemistry of trace elements i n s o i l s with reference to trace element concentrations i n plants. i n Trace Substances i n Environmental H e a l t h - I l l , D.D. Hemphill ed., Univ. of Missouri, Columbia, Missouri, pp. 45-58. HOFFMAN, S.J. and WASKETT-MYERS, M.J., 1974. Determination of molybdenum i n s o i l s and sediments with a modified zinc d i t h i o l procedure. J. Geochem. Explor., 3 : 61-66. HORSNAIL, R.F., NICHOL, I. and WEBB, J.S., 1969. Influence of variations i n the secondary environment on metal content of drainage sediments. Quarterly df Colorado School of Mines, 64 : 307-322. HOWARTH, R.J., 1971. Fortran IV program for grey-level mapping of s p a t i a l data. Math. Geol. 3 : 95-121. INTERNATIONAL ATOMIC ENERGY AGENCY. 1975. Reference material (A-6/1975) for the determination of As, Co, Cr, Cu, Fe, Hg, Mn, Se and Zn i n f i s h solubles. LAB/24 3. IAEA Information Sheet, Vienna, Austria, 3 pp. IRISH, E.J., 1970. The Edmonton Group of south-central Alberta. B u l l . Can. Pet. Geol.', 18 : 125-155. JACKSON, M.L., 1964. Chemical composition of s o i l s . i n The Chemistry of S o i l . F.E. Beared., Reinhold Pub. Co., N.Y. , pp. 71-141. JENSEN, E. and LESPERANCE, A., 1971. Molybdenum accumulation by forage plants. Agron. Journal, 63 : 201-204. JONES, L.H.P. 19 57. The s o l u b i l i t y of molybdenum i n s i m p l i f i e d systems and aqueous s o i l suspensions. J. S o i l S c i . , 8 : 313-327. 236 KLASSEN, R.W., WYDER, J.E. and BANNATYNE, B.B., 1970. Bedrock topography and geology of southern Manitoba. Geol. Survey Can. Paper 70-51, Map 25 - 1970. KOROLEV, D.F., 1958. The r o l e of i r o n s u l f i d e s i n the ac- cumulation of molybdenum i n sedimentary r o c k s of the reduced zone. Geochemistry, No. 4, pp. 452-463. KOZAK, A., 1976. P e r s o n a l communication. Dept. of F o r e s t r y , Univ. of B r i t i s h Columbia, Vancouver, B.C. KRAUSKOPF, K.B., 1956. F a c t o r s c o n t r o l l i n g the c o n c e n t r a t i o n s of t h i r t e e n r a r e elements i n sea-water. Geochim. e t Cosmochim. A c t a , 9 : 1-32. KUBOTA, J . and ALLAWAY, W.H., 1972. Geographic d i s t r i b u t i o n of t r a c e element problems. i n M i c r o n u t r i e n t s i n A g r i c u l t u r e , J . J . Mortvedt ed., S o i l S c i . Soc. Amer., Madison, Wisconsin, pp. 525-554. KUBOTA, J . , LEMON, E. and ALLAWAY, W., 1963. The e f f e c t of s o i l moisture content upon the uptake of molybdenum, copper and c o b a l t by A L s i k e c l o v e r . S o i l S c i . Soc. Amer., P r o c , 27 : 679-683. LAKIN, H.W., 1961. V e r t i c a l and l a t t e r a l d i s t r i b u t i o n of selenium i n sedimentary rocks of the Western U n i t e d S t a t e s . i n Selenium i n A g r i c u l t u r e , A g r i c u l t u r e Handbook 200, U.S. Dept. A g r i c , pp. 12-24. LAKIN, H.W., 1972. Selenium accumulation i n s o i l s and i t s a b s o r p t i o n by p l a n t s and animals. Geol. Soc. Amer. B u l l . 83 : 181-190. LANE, J . C , 1966. Determination of selenium i n s o i l and b i o l o g i c a l m a t e r i a l s . I r i s h J . A g r i c . Research, 5 : 177-183. LE, C D . and SEAGRAVES, P., 1974. UBC STRP: Small t r i a n g u l a r r e g r e s s i o n package. The U n i v e r s i t y of B r i t i s h Columbia, Computing Centre, 16 pp. LeRICHE, H.H., 1959. The d i s t r i b u t i o n of c e r t a i n t r a c e elements i n the Lower L a i s o f southern England. Geochim. e t Cosmochim, A c t a , 16 : 101-122. LESSARD, J.R., HIDIROGLOU, M., CARSON, R.B. and DERMINE, P., 1968. I n t r a - s e a s o n a l v a r i a t i o n s i n the selenium content of v a r i o u s forage crops a t Kapuskasing, O n t a r i o . Can. J . P l a n t S c i . , 48 : 58.1-585. LEVESQUE, M. and VENDETTE, E.D., 1971. Selenium d e t e r m i n a t i o n i n s o i l and p l a n t m a t e r i a l s . Can. J . S o i l S c i . 51 : 85-93. 237 LITTLE, J . , 1973. D r i f t t h i c k n e s s and bedrock geology, Swan Lake area. i n Ground Water A v a i l a b i l i t y Study, Swan Lake Map Sheet. Water Resources Branch, Manitoba Depart- ment of Mines Resources and Environmental Management, F i g . No. 3. LOWENSTEIN, P.L. and HOWARTH, R.J., 1973. Automated c o l o u r - mapping of three-component systems and i t s a p p l i c a t i o n t o r e g i o n a l geochemical reconnaissance. i n Geochemical E x p l o r a t i o n 1972, M.J. Jones ed., The I n s t i t u t i o n o f Mining and M e t a l l u r g y , pp. 297-304. MacS. STALKER, A., 1956. S u r f i c i a l geology, B e i s k e r , A l b e r t a . Geol. Surv. Can. P r e l . Map 55-7. MACS. STALKER, A., 1960. S u r f i c i a l geology of the Red Deer- S t e t t l e r map-area, A l b e r t a . Geol. Surv. Can. Mem. 306, 140 pp. MARSHALL, D., 1973. P e r s o n a l communication. Dept. of G e o l o g i c a l S c i e n c e s , Univ. of B r i t i s h Columbia, Vancouver, B.C. MASON, B., 1966. P r i n c i p l e s of Geochemistry. 3rd ed. John Wiley and Sons, N.Y., 329 pp. MASSEY, D.L., 1972. M i c r o n u t r i e n t s - t h e i r p l a c e i n A l b e r t a a g r i c u l t u r e . Seminar presented t o the S o i l S cience Department, Univ. of A l b e r t a , Edmonton, 17 pp. MASSEY, H.F. and LOWE, R.H., 1961. High molybdenum content of c e r t a i n Kentucky s o i l s . S o i l S c i . Soc. Amer. P r o c , 25 : 161-162. McLEAN, J.R., 1971. S t r a t i g r a p h y of the Upper Cretaceous J u d i t h R i v e r Formation i n the Canadian Great P l a i n s . Saskatchewan Research C o u n c i l , Geology D i v i s i o n , Report No. 11 , 96 pp. MIESCH, A.T., 1967. Methods of computation f o r e s t i m a t i n g geochemical abundance. U.S. Geol. Survey P r o f . Paper 574-B, 15 pp. MIESCH, A.T., 1970. S t a t i s t i c a l methods. i n Geochemical Survey of M i s s o u r i . Plans and progress f o r the second six-month p e r i o d . U.S. Geol. Survey, Denver, Colorado, pp. 17-18. MIESCH, A.T., 1976. Geochemical Survey of M i s s o u r i : Methods of sampling, l a b o r a t o r y a n a l y s i s , and s t a t i s t i c a l reduc- t i o n of data. U.S. Geol. Survey P r o f . Paper 954-A, 39 pp. MILLS, J.G. and ZWARICH, M.A., 1975. Heavy metal content of a g r i c u l t u r a l s o i l s i n Manitoba. Can. J . S o i l S c i . , 55 : 295-300. 238 MILTIMORE, J.E. and MASON, J., 1971. Copper to molybdenum r a t i o and molybdenum and copper concentrations i n ruminant feeds. Can. J . Anim. S c i . , 51 : 193-200. MILTIMORE, J.E., vanRYSWYK, A.L., PRINGLE, W.L., CHAPMAN, F.M. and KALNIN, CM., 1975. Selenium concentrations i n B r i t i s h Columbia forages, grains and processed feeds. Can. J . Anim. S c i . , 55 : 101-111. MITCHELL, R.L., 1957. The trace element content of plants. Research: Science and i t s Application in.Industry, 10 : 357-362. MITCHELL, R.L., 1964. Trace elements i n s o i l s . i n Chemistry of the S o i l , 2nd ed., F.E. Baer ed., Reinhold Pub. Co., N.Y., pp. 320-368. MITCHELL, R.L., 1972. Trace elements i n s o i l s and factors that a f f e c t t h e i r a v a i l a b i l i t y . i n Geol. Soc. Amer. Special Paper 140, H.L. Cannon and H.C. Hopps eds., pp. 9-16. MORAN, S.R. and WHITAKER, S.H., 1969. Geology and groundwater resources of the Hudson Bay area, Saskatchewan. Geology D i v i s i o n , Saskatchewan Research Council, Map. No. 8. NATIONAL ACADEMY OF SCIENCES - NATIONAL RESEARCH COUNCIL, 1971. Selenium i n n u t r i t i o n . National Academy of Sciences, Washington,.D.C., 79 pp. O'CONNOR, T.P. and KESTER, D.A., 1975. Adsorption of copper and cobalt from fresh and marine systems,. Geochim. et Cosmochim. Acta, 39 : 1531-1543. ODDY, R.W., 1966. Trace elements i n Cretaceous rocks of Manitoba. M.Sc. Thesis, Department of Geology, University of Manitoba, Winnipeg, Manitoba. OLSON, O.E., 1969. Fluorometric analysis of selenium i n plants. J. Assoc. O f f i c . Anal. Chem., 52 : 627-634. ORVINI, E., GILLS, T. and LAFLEUR, P., 1974. Methods of determination of selenium, arsenic, zinc, cadmium and mercury i n environmental matrices by neutron a c t i v a t i o n analysis. Anal. Chem., 46 : 1294-1297. OWEN, B.D., 1972. Personal communication. Dept. of Animal S c i . , Univ. of Saskatchewan, Saskatoon. PATHAK, A.N., SHANKAR, H. and MISRA, R.V., 1969. Correlation of available molybdenum values obtained by d i f f e r e n t methods to molybdenum uptake by a l f a l f a . Indian Soc. S o i l S c i . J . , 17 : 151-153. 239 PAWLUK, S. and BAYROCK, L.A., 1969. Some c h a r a c t e r i s t i c s and p h y s i c a l p r o p e r t i e s of A l b e r t a t i l l s . Research C o u n c i l of A l b e r t a , B u l l . 26, 72 pp. PETERS, T.W. and BOWSER, W.E., 1960. S o i l survey o f the Rocky Mountain House sheet. A l b e r t a S o i l Survey Report No. 19, 50 pp. REDDY, M.R. and PERKINS, H.F., 1974. F i x a t i o n of manganese by c l a y m i n e r a l s . S o i l S c i . , . 121 : 21-24. REISENAUER, H.M., 1965. Molybdenum. i n Methods of S o i l A n a l y s i s , P a r t 2, C A . Black ed., Amer. Soc. Agronomy Inc., Madison, Wisconsin, pp. 1050-1058. REISENAUR, H., TABIKH, A. and STOUT, P., 1962. Molybdenum r e a c t i o n s w i t h s o i l s and the hydrous oxides of i r o n , aluminum and t i t a n i u m . S o i l S c i . Soc. Amer. P r o c , 26 : 23-27. ROSE, A.W., 1975. The mode of occurrence of t r a c e elements i n s o i l s and stream sediments a p p l i e d t o geochemical e x p l o r a - t i o n , i n Geochemical E x p l o r a t i o n , 1974, K. F l e t c h e r and I. E l l i o t eds., I n s t i t u t e of Mining and M e t a l l u r g y , pp. 691-705. ROSENFELD, I . and BEATH, O., 1964. Selenium:geobotany, biogeochemistry, t o x i c i t y and n u t r i t i o n . Academic P r e s s , N.Y., 411 pp. SAUCHELLI, V., 1969. Trace elements i n a g r i c u l t u r e . Van Nostrand Reinhold Co., Toronto, 248 pp. SCOTT, J.S., 1960. S u r f i c i a l geology of the Elbow-Outlook area of Saskatchewan, Canada. Ph.D. Thesis,Dept. of Geology, U n i v e r s i t y of I l l i n o i s , Urbana, I l l i n o i s , 107 pp. SCOTT, J.S., 1971. S u r f i c i a l geology of Rosetown map-area, Saskatchewan. Geol. Surv. Can. B u l l . 190, 4 0 pp. SHACKLETTE, H.T., ERDMAN, J.A. and KIETH, J.R., 1971. Geochemical survey of v e g e t a t i o n . i n Geochemical Sur- vey of M i s s o u r i . Plans and progress f o r the f o u r t h s i x - month p e r i o d . U.S. Geol. Survey, Denver, Colorado, pp. 27-46. SHACKLETTE, H.T., ERDMAN, J.A. and KIETH, J.R., 1972. Geochemical survey of v e g e t a t i o n . i n Geochemical Survey of M i s s o u r i . Plans and progress f o r the s i x t h six-month p e r i o d , Open f i l e r e p o r t 1972, U.S. G e o l o g i c a l Survey, Denver, Colorado, pp. 58-79. 240 SMITH, R.E., 1955. Molybdenum i n s o i l s , f orage crops and water supply i n the Swan R i v e r V a l l e y of Manitoba. M.Sc. T h e s i s , Department of S o i l S cience, U n i v e r s i t y of Manitoba, 58 pp. SNEDECOR, G.W., 1946. S t a t i s t i c a l methods. 4th ed., The C o l l e g i a t e Press Inc., Ames,Iowa," 485 pp. STANTON, R.E. and HARDWICK, A.J., 1967. The c o l o r i m e t r i c d e t e r m i n a t i o n of molybdenum i n s o i l s and sediments by z i n c d i t h i o l . A n a l y s t , 92 : 387-390. STEEL, R.G. and TORRIE, J.H., 1960. P r i n c i p l e s and procedures of s t a t i s t i c s . McGraw-Hill Book Co., Inc., Toronto, 481 pp. STEWART, J . and TAHIR, M., 1971. E s t i m a t i o n of a v a i l a b l e z i n c i n P r a i r i e s o i l s . Proc. of I n t . Symp. on S o i l F e r t i l i t y E v a l u a t i o n , 1 : 983-991. STILES, W., 1946. Trace elements i n p l a n t s and animals. Cambridge U n i v e r s i t y P r e s s , 18 9 pp. STOUT, P., MEAGHER, W., PEARSON, G. and JOHNSON, C., 1951. Molybdenum n u t r i t i o n of crop p l a n t s : I . P l a n t and S o i l , 3 : 51-87. SWAINE, D.J., 1955. The t r a c e element content of s o i l s . Commonwealth Bureau of S o i l S c i . , Tech. Comm., No. 48. TAKAHASHI, T., 1972. The r e l a t i o n s h i p between a v a i l a b l e molybdenum i n s o i l s of v o l c a n i c ash o r i g i n and the molybdenum content of red c l o v e r l e a v e s . P l a n t and S o i l , 36 : 665-674. THORNTON, I . , KERSHAW , G. and DAVIES, M., 1972a. An i n v e s t i - g a t i o n i n t o copper d e f i c i e n c y i n c a t t l e i n the southern Pennines; I . I d e n t i f i c a t i o n of suspect areas u s i n g geo- chemical reconnaissance f o l l o w e d by blood copper surveys. J . A g r i . S c i . , Camb., 78 : 157-163. THORNTON, I . , KERSHAW, G. and DAVIES, M. , 1972b. An i n v e s t i g a - t i o n i n t o copper d e f i c i e n c y i n c a t t l e i n the southern Pennines; I I . Response to copper supplementation. J . A g r i c . S c i . , Camb., 78 : 165-171. THORNTON, I. and WEBB, J.S., 1970. Geochemical reconnaissance and the d e t e c t i o n of t r a c e element d i s o r d e r s i n animals. i n Trace Element Metabolism i n Animals, C F . M i l l s ed., WAAP/IBM Symposium, Aberdeen, S c o t l a n d , pp. 397-407. THORNTON, I . and WEBB, J.S.,1975. Trace elements i n s o i l s and s u r f a c e waters contaminated by past m e t a l l i f e r o u s mining i n p a r t s of England. i n Trace Substances i n 241 Environmental Health-IX, D.D. Hemphill ed., Univ. of M i s s o u r i , Columbia, M i s s o u r i , pp. 77-88. THORVALDSON, T. and JOHNSON, L., 1940. Selenium content of Saskatchewan wheat. Can. J . Research, 18(B) : 138-150. TIDBALL, R.R., 1970. Geochemical survey of s o i l s . i n Geo- chemical Survey of M i s s o u r i , Plans and progress f o r t h i r d six-month p e r i o d , O p e n - f i l e r e p o r t 1970, U.S. G e o l o g i c a l Survey, Denver, Colorado, pp. 16-24. TIDBALL, R.R., 1971. Geochemical v a r i a t i o n i n M i s s o u r i s o i l s , i n Trace Substances i n Environmental Health-IV, D.D. Hemphill ed., Univ. of M i s s o u r i , Columbia M i s s o u r i , pp. 15-25. TIDBALL, R.R., 1973. P e r s o n a l communication. Branch of Regi o n a l Geochemistry, U.S. Geol. Survey, Denver, Colorado. TIDBALL, R.R., 1976. Chemical v a r i a t i o n of s o i l s i n M i s s o u r i a s s o c i a t e d w i t h s e l e c t e d l e v e l s of the s o i l c l a s s i f i c a t i o n system. U.S. Geol. Survey, P r o f . Paper 954-B, 16 pp. TOURTELOT, H.A., 1962. P r e l i m i n a r y i n v e s t i g a t i o n o f the g e o l o g i c a l s e t t i n g and chemical composition of the P i e r r e Shale, Great P l a i n s r e g i o n . U.S. Geol. Survey P r o f . Paper 390, pp. 1-74. TOURTELOT, H.A., 1964. Minor element composition and or g a n i c carbon content of marine and nonmarine s h a l e s of Late Cretaceous age i n the western i n t e r i o r of the Un i t e d S t a t e s . Geochim. e t Cosmochim. A c t a , 28 : 1579-1604. TUREKIAN,K.K. and WEDEPOHL, K.H., 1961. D i s t r i b u t i o n o f the elements i n some major u n i t s of the ea r t h ' s c r u s t . Geol. Soc. Amer. B u l l . , 72 : 175-192. TWARDY, A.G., PAWLUK, S. and LINDSAY, J.D., 1974. Comparative study of fou r t i l l s i n w e s t - c e n t r a l A l b e r t a . Can. J . S o i l S c i . , 54 : 69-80. UNDERWOOD, E . J . , 1962. Trace elements i n human and animal n u t r i t i o n . 2nd ed. Academic Press Inc. N.Y., 429 pp. UNDERWOOD, E . J . , 1976. Molybdenum i n animal n u t r i t i o n . i n Molybdenum i n the Environment, V o l . 1, The B i o l o g y of Molybdenum, W.R. Ch a p p e l l and K.K. Petersen eds., Marcel Dekker Inc., N.Y., pp. 9-31. VINE, J.D. and TOURTELOT, B., 1970. Geochemistry of bl a c k s h a l e d e p o s i t s - a summary1 r e p o r t . Econ. Geol., 65 : 253-272. VINOGRADOV, A.P., 1959. The geochemistry of r a r e and d i s p e r s e d chemical elements i n s o i l s . C o n s u l t a n t s Bureau, N.Y., 209 pp. 242 WALKER, D.R., 1971. Selenium i n forage s p e c i e s i n c e n t r a l A l b e r t a . Can J . S o i l S c i . , 51 : 506-508. WALKER, H. and LEV, J . , 1953. S t a t i s t i c a l i n f e r e n c e . H o l t R e i n h a r t and Winston, Toronto, 510 pp. WALKER, T.W., ADAMS, A.F. and ORCHISTON, H.D., 1954. The e f f e c t s and i n t e r a c t i o n s of s u l f u r , phosphorous and molybdenum on the growth and composition of c l o v e r s . New Zealand J . S c i . Tech. Sec. A., 35 : 471-482. WATKINSON, J.H., 1960. F l u o r o m e t r i c d e t e r m i n a t i o n of t r a c e s of selenium. A n a l . Chem., 32 : 931-933. WEBB, J.S., 1964. Geochemistry and l i f e . New S c i e n t i s t , 23 : 504-507. WEBB, J.S. and ATKINSON, W.J., 196 5. Regional geochemical reconnaissance a p p l i e d t o some a g r i c u l t u r a l problems i n Co. L i m e r i c k , I r e l a n d . Nature, 208 : 1056-1059. WEBB, J.S.., NICHOL, I. and THORNTON, I . , 1968. The broadening scope o f r e g i o n a l geochemical reconnaissance. i n Proceedings of 23rd I n t e r n a t i o n a l G e o l o g i c a l Congress, V o l . 6, pp. 131-147. WEBB, J.S., THORNTON, I . and FLETCHER, K., 1966. S e l e n i f e r o u s s o i l s i n p a r t s of England and Wales. Nature, 211 : 327. WEBB, J.S., THORNTON, I . and FLETCHER, K., 1968. Geochemical reconnaissance and hypocuprosis. Nature, 217 : 1010-1012. WICKENDEN, R.T., 1945. Mesozoic s t r a t i g r a p h y of the E a s t e r n P l a i n s , Manitoba and Saskatchewan. Geol. Surv. Can. Mem. 2 39, 87 pp. WILKIE, J.B. and YOUNG, M., 1970. Improvement of the 2,3-diamino- napthalene reagent f o r rnicrofluorescent d e t e r m i n a t i o n of selenium i n b i o l o g i c a l m a t e r i a l s . J . A g r i c . and Food Chem., 18 : 944-945. WILLIAMS, K., LAKIN, H.W. and BYERS, H.G., 1941. Selenium i n Canada. i n Selenium Occurrence i n C e r t a i n S o i l s i n the U n i t e d S t a t e s w i t h a D i s c u s s i o n of R e l a t e d T o p i c s . U.S. Dept. A g r i c . Tech. B u l l . 758, pp. 46-55. 243 APPENDIX A PROCEDURE FOR THE FLUOROMETRIC DETERMINATION OF SELENIUM IN BOTH PLANT AND GEOLOGICAL MATERIALS SPECIAL APPARATUS Turner Model 111 fluorometer equipped with #7-60 primary f i l t e r , a combination of #58 and #2A-15 secondary f i l t e r s , a 1% neutral density f i l t e r and 12 x 100 mm glass cuvettes. REAGENTS a) Ammonium hydroxide - d i l u t e 400 ml of concentrated NH^OH to 1 L with d i s t i l l e d water. b) Arsenic solution - dissolve 250 mg of arsenic t r i o x i d e and 2 g of sodium hydroxide i n 200 ml of water.. c) DAN solution - dissolve 0.25 g of 2,3-diaminonapthalene (Aldrich Chemical Company) i n 25 ml of concentrated HCl and d i l u t e to 250 ml with d i s t i l l e d water. Extract solution with 10 ml hexanes, shaking i n a separatory funnel 4 times only, and allowing 3 to 4 minutes for the mixture to separate. Repeat extrac- ti o n 3 additional times. Store solution under about 0.5 cm of hexanes i n a brown bot t l e i n a r e f r i g e r a t o r - i t should be stable for several weeks. d) EDTA solution - 0.04M - dissolve 7.445 g Na 2H 2 EDTA.2H20 along with 50 g hydroxylamine hydrochloride i n 500 ml of d i s t i l l e d water. e) Formic acid solution - add 250 ml 91% formic acid to 250 ml d i s t i l l e d water. f) Indicator solution - dissolve 100 mg of the sodium s a l t of m-cresol purple i n 100 ml of d i s t i l l e d water. g) Selenium standard solution - 100 yg/ml - dissolve 100 mg elemental Se i n 5 ml concentrated HNO_ and 2 ml con- centrated HCl and d i l u t e to 1 L with d i s t i l l e d water. This solution should be stable for up to two.months. Prepare a fresh 1yg/ml solution from t h i s stock solution before each determination. h) Hydrochloric acid - 0.1 M - add 10 ml concentrated HCl to 990 ml d i s t i l l e d water. - 6 M - add 600 ml concentrated HCl to 400 ml of d i s t i l l e d water. 244 3. PROCEDURE a) Samples (i) D i g e s t i o n : P l a n t M a t e r i a l s : Weigh an a p p r o p r i a t e amount ( u s u a l l y 0.500 g) of ground sample i n t o a 12 5 ml erlyhmyer f l a s k . Add 15 ml of 4:1 n i t r i c - p e r c h l o r i c a c i d , cover f l a s k w i t h watch-glass and p l a c e on warm hot p l a t e o v e r n i g h t . The f o l l o w i n g morning remove watch-glass and r a i s e hot p l a t e temperature u n t i l s o l u t i o n b o i l s g e n t l y . Evaporate to about 5 ml and remove from heat. I f u n d i s s o l v e d f a t t y m a t e r i a l i s v i s i b l e on the s u r f a c e of c o o l e d s o l u t i o n , p l a c e a smal l g l a s s f u n n e l i n f l a s k mouth and r e f l u x g e n t l y on hot p l a t e u n t i l f a t s are d i s - s o l v e d , i f necessary adding a few m i l l i l i t e r s of con c e n t r a t e d n i t r i c a c i d . Remove f u n n e l , r a i s e hot p l a t e temperature and evaporate to the f i r s t appearance of white p e r c h l o r i c a c i d fumes. Con- t i n u e fuming f o r approximately 15 minutes, being c a r e f u l not to a l l o w s o l u t i o n t o approach dryness. G e o l o g i c a l M a t e r i a l s : P l a c e a s u i t a b l e weight (usu- a l l y 0.500 g) ground sample i n a 100 ml beaker. Add 15 ml of 4:1 n i t r i c - p e r c h l o r i c a c i d , cover w i t h watch-glass and heat on warm hot p l a t e o v e r n i g h t . The f o l l o w i n g morning remove watch-glass and r a i s e hot p l a t e temperature u n t i l s o l u t i o n b o i l s g e n t l y . Evaporate d i r e c t l y t o p e r c h l o r i c a c i d fumes, and then fume f o r about 15 minutes as d e s c r i b e d above. ( i i ) A r s e n i c c o p r e c i p i t a t i o n : Cool s o l u t i o n - , add 10 ml 6 M HCI and b r i n g to a r a p i d b o i l . F i l t e r warm s o l u t i o n through Watman #541 paper i n t o a tapered 40 ml g l a s s c e n t r i f u g e tube. Rinse e i t h e r f l a s k or beaker w i t h 5 ml 6 M HCI and t r a n s f e r t o c e n t r i f u g e tube. Add 2 ml a r s e n i c s o l u t i o n and 5 ml hypo- phosphorous a c i d and mix co n t e n t s . P l a c e tube i n a hot water bath a t 90°C f o r a t l e a s t one hour. When p r e c i p i t a t i o n i s complete c e n t r i f u g e a t h i g h speed f o r 10 to 15 minutes. Draw o f f supernatant l i q u i d through a f i n e - t i p p e d g l a s s tube a t t a c h e d t o an a s p i r a t o r , being c a r e f u l . . to a v o i d removing p r e - c i p i t a t e d a r s e n i c . Wash p r e c i p i t a t e i n 10 ml d i s - t i l l e d water, r e c e n t r i f u g e f o r 10 minutes and draw o f f l i q u i d phase as b e f o r e . ( i i i ) R e a c t i o n w i t h DAN: D i s s o l v e p r e c i p i t a t e i n 1 ml con c e n t r a t e d n i t r i c a c i d . Add 5 ml 0.1 M HCI, mix and t r a n s f e r s o l u t i o n to 100 ml beaker. Rinse tube w i t h 5 ml 0.1 M HCI and add to beaker. B r i n g s o l u t i o n r a p i d l y t o a b o i l on hot p l a t e , remove and c o o l . 245 Add 10 ml 0.1 M HCI, 5 ml EDTA s o l u t i o n , 5 ml formic a c i d s o l u t i o n and two drops o f i n d i c a - t o r s o l u t i o n to beaker. T i t r a t e w i t h NH.OH s o l u - t i o n u n t i l sample c o l o r i s orange i n d i c a t i n g t h a t the pH i s approximately 1.8 ( f o r more p r e c i s e r e s u l t s pH should be checked w i t h a meter). P l a c e beaker i n hot water bath a t 70°C and cover w i t h a watch-glass. A f t e r about 15 minutes remove from bath, add 2 ml DAN s o l u t i o n , mix and r e p l a c e cover- ed beaker i n bath f o r e x a c t l y 30 minutes. Remove and c o o l beaker f o r 30 t o 40 minutes. T r a n s f e r beaker contents t o 60 ml se p a r a t o r y f u n n e l and add 8 ml hexanes. Stopper and shake 4 times o n l y . A l l o w a minimum o f 3 to 4 minutes f o r phases t o separate and d r a i n o f f aqueous l a y e r . P i p e t t e 5 ml hexanes i n t o a c u v e t t e f o r f l u o r e s e n c e measurement b e i n g c a r e f u l t o a v o i d f o r m a t i o n o f water d r o p l e t s on the i n s i d e o f c u v e t t e w a l l s . b) Blank and Standards Determinations are c a r r i e d out i n batches of 16. Each bath i n c l u d e s one blank, one 0.4 yg and one 1.5 y g Se standard. Blanks and standards are taken through the e n t i r e procedure i n c l u d i n g the d i g e s t i o n step. c) Operation of Fluorometer Using the combination of f i l t e r s d e s c r i b e d i n the s e c t i o n on S p e c i a l Apparatus the Se-DAN complex i s i r r a d i a t e d a t approximately 365 my and the r e s u l t a n t f l u o r e s e n c e measured a t about 535 my. With the range s e l e c t o r s e t a t 3.x zero the f l u o r e s e n c e d i a l w i t h a dummy c u v e t t e . Measure blank f l u o r e s e n c e and r e s e t instrument to zero on blank sample. Measure the f l u o r e s e n c e o f the 0.4yg Se standard and e s t a b l i s h a c a l l i b r a t i o n curve. Measure sample f l u o r e s e n c e v a l u e s and r e c o r d those g i v i n g a s c a l e d e f l e c t i o n l e s s than t h a t o f the 0.4yg standard. A d j u s t range s e l e c t o r t o l x . Reraeasure blank f l u o r e s e n c e and zero instrument as d e s c r i b e d p r e v i o u s l y . E s t a b l i s h a c a l l i b r a t i o n curve u s i n g both the 0.4 and 1.5yg Se standards and measure f l u o r e s e n c e of samples c o n t a i n i n g more than 0.4 yg Se. For samples c o n t a i n i n g i n excess of 1.5 y g Se a new c a l l i b r a t i o n curve can be determined w i t h range s e l e c t o r a t 3x and a 1% n e u t r a l d e n s i t y f i l t e r i n s e r t e d between the u l t r a v i o l e t source and sample c u v e t t e . The f l u o r e s e n c e - c o n c e n t r a t i o n r e l a t i o n s h i p i s approximately l i n e a r up t o about 3.0 yg Se. Samples c o n t a i n i n g l a r g e r amounts of Se should be r e a n a l y s e d u s i n g a s m a l l e r sample weight. T y p i c a l blank and 246 standard f l u o r e s e n c e measurements f o r 3x and l x range s e l e c t o r s e t t i n g s are g i v e n below. Se F l u o r e s e n c e Reading* Added 3x l x Blank 0.4 yg 1.5 yg 25.5 9.0 22-28 7.5-11.0 (10) (13) 80.0 27.5 63-93 24-30 (10) (12) 99.0 90-107 (13) Mean and range; number of measurements i n parentheses. 4. NOTES a) The e n t i r e procedure i s c a r r i e d out under normal l a b o r a t o r y i l l u m i n a t i o n . b) Major items of glassware are r i n s e d i n tap and d i s - t i l l e d water between each batch, except f o r c u v e t t e s which are cleaned w i t h a l c o h o l and d r i e d i n acetone. c) Separatory f u n n e l s are equipped w i t h t e f l o n stopcocks to a v o i d contamination from g l a s s stopcock grease. d) The procedure takes two f u l l days t o complete w i t h samples t y p i c a l l y b e i n g s t o r e d o v e r n i g h t a f t e r the a r s e n i c c o p r e c i p i t a t i o n stage. e) The method d e s c r i b e d combines aspects of s e v e r a l p r e - v i o u s l y p u b l i s h e d procedures. The o r i g i n a l sources are c i t e d i n Chapter I I , p. 37. APPENDIX B COMPUTATIONAL PROCEDURES FOR STATISTICAL TREATMENT OF THE DATA DATA TRANSFORMATION x = l o g 10 y, where y r e p r e s e n t s an i n d i v i d u a l data value expressed e i t h e r i n ppm or percent. ESTIMATION OF POPULATION PARAMATERS a) Geometric Mean (GM) GM = 10 X, where x i s c a l c u l a t e d as: n x = 1=1 , n and n r e p r e s e n t s the number of samples i n the p o p u l a t i o n of i n t e r e s t . b) Geometric D e v i a t i o n (GD) s GD = 10 X , where s„ i s c a l c u l a t e d as: n _ 2 E (x.-x) i = l 1 n-1 IDENTIFICATION OF OUTLIERS A sample was r e j e c t e d as probably u n r e p r e s e n t a t i v e o f the parent p o p u l a t i o n i f f o r any element, xy x + 2 s . 248 4. TESTS OF SIGNIFICANCE a) L i n e a r C o r r e l a t i o n C o e f f i c i e n t (r) i = l ( x l i " X l } ( x 2 i ~ X 2 ) r = n _ 2 n - 2 E ( X l J - x n) E ( x 2 i - x2.) 1=1 where x^ and x 2 t y p i c a l l y r e p r e s e n t v a l u e s f o r the same element i n two d i f f e r e n t sample types and n i s the number of data p a i r s . The p r o b a b i l i t y t h a t r i s not i n f a c t equal t o zero i s determined u s i n g the " t " s t a t i s t i c c a l c u l a t e d as: t = r N J ( n - 2 ) / / ' ( l - r 2 ) The c a l c u l a t e d " t " v a l u e i s then compared to valu e s i n standard " t " t a b l e s f o r n-2 degrees of freedom (Snedecor, 1946). b) A n a l y s i s of V a r i a n c e Computational procedures f o r p a r t i t i o n i n g data v a r i a n c e i n t o among and w i t h i n group sources are sum- marized i n Tab l e B - l . In the case where there were an unequal number of o b s e r v a t i o n s w i t h i n separate groups the value of "b" i n Table B - l i s c a l c u l a t e d as: a b =. -. n. f. , i = l l i where n. r e p r e s e n t s the number of o b s e r v a t i o n s i n the i t h data group. i s g i v e n by: • _1 _ 1 f. = n. N a - l where N i s the t o t a l number of o b s e r v a t i o n s (Kozak, 1976). 249 Table B - l Method of e s t i m a t i n g w i t h i n and among group components of v a r i a n c e . Source of V a r i a t i o n Sum of Degrees Mean Mean Square Squares of Freedom Square i s estimate o f . • . Among Group SS. = Z a r E X.. ) a-1 SS- a-1 • 2 -2 "B ot a b o - (z z x i i ^ • i j ab W i t h i n S S 2 = I I ( X i j ) 2 a ( b - l ) S S 2 ^ Group a - E i ( b X . . ) 2 a ( b - l ) Adopted from Connor and Ebens (1970): X . i s the l o g 10 t r a c e element content of the j t h sample i n the i t h group, a i s the number of groups, b i s the number of samples w i t h i n each group, : a / i s the w i t h i n group v a r i a n c e component and -a* i s P t h e among group v a r i a n c e component. 250 The s i g n i f i c a n c e of among group mean d i f f e r e n c e s i s assessed by comparing the r a t i o , SS-, / s s 0 a - l / a ( b - l ) w i t h v a l u e s i n standard "F" t a b l e s f o r a - l and a ( b - l ) degrees of freedom. c) Duncan's New M u l t i p l e Range T e s t F i r s t l y the standard e r r o r of the estimated means i s c a l c u l a t e d as: s-x i ss. £(b-l) where SS2» a and b are d e f i n e d as i n Table B - l . Then a - l " s i g n i f i c a n t s t u d e n t i z e d ranges" are e x t r a c t e d from a t a b l e g i v e n by Duncan (1955) f o r the 5% conf i d e n c e l e v e l and a ( b - l ) degrees of freedom. A separate range value i s o b t a i n e d depending upon the number o f means t o be i n v o l v e d i n a s i n g l e comparison: t h a t i s one va l u e i s taken f o r the case where th e r e are o n l y two means, another f o r the case where the two means being compared are separated by a t h i r d mean, and so f o r t h t o the case where a-2 means separate the two means of i n t e r e s t . These range v a l u e s are then m u l t i p l i e d by s- t o giv e a s e t of "l e a s t s i g n i f i c a n t ranges". Means are arranged i n numeric order and d i f f e r e n c e s between them t e s t e d i n the f o l l o w i n g manner: l a r g e s t minus s m a l l e s t , l a r g e s t minus second s m a l l e s t , . . . , l a r g e s t minus second l a r g e s t , second l a r g e s t minus s m a l l e s t , second l a r g e s t minus, second s m a l l e s t and so on to the second s m a l l e s t minus the s m a l l e s t . G e n e r a l l y a d i f f e r e n c e i s d e c l a r e d s i g n i f i c a n t i f i t exceeds the " l e a s t s i g n i f i c a n t range" corresponding t o the number of means i n v o l v e d i n the comparison. An e x c e p t i o n however oc c u r s i n t h a t no d i f f e r e n c e between two means can be d e c l a r e d s i g n i f i c a n t i f the two means are c o n t a i n e d i n a l a r g e r subset w i t h a n o n s i g n i f i c a n t range. d) Median T e s t The c h i - s q u a r e formula used f o r t h i s t e s t can be expressed as f o l l o w s : 251 = E i = l E j = l ( f i j F . .) I D F. . I D where k r e p r e s e n t s the t o t a l number of data s e t s , f. . r e p r e s e n t s the number of o b s e r v a t i o n s i n the i t f t s e t e i t h e r above (j=l) or below (j=2) the o v e r a l l group median and F.. r e p r e s e n t s the c o r r e s p o n d i n g expected number of o b s e r v a t i o n s obtained u s i n g contingency t a b l e s . The n u l l h y p o t h e s i s , t h a t samples were drawn from p o p u l a t i o n s having the same median, i s t e s t e d by comparing the c a l c u - l a t e d c h i - s q u a r e v a l u e s w i t h those of standard s t a t i s t i c a l t a b l e s f o r k-1 degrees of freedom. 5. ESTIMATION OF ANALYTICAL PRECISION (P) a) Among Batches Among batch p r e c i s i o n i s estimated on the b a s i s of a n a lyses f o r a s i n g l e l a b o r a t o r y standard sample which was i n c l u d e d w i t h i n each a n a l y t i c a l batch. The formula used i s , P = 1.98 E i=.l <y. - Y)2 L - l 100 % , where y. i s the measured c o n c e n t r a t i o n ( i n ppm or %) of a p a r t i c u l a r element_in the l a b o r a t o r y standard f o r the i t h a n a l y t i c a l batch, y i s the o v e r a l l average c o n c e n t r a t i o n f o r a l l of the batches, and L i s the t o t a l number of batches. b) W i t h i n Batches W i t h i n batch p r e c i s i o n i s estimated on the b a s i s of r e s u l t s of a n alyses f o r one randomly s e l e c t e d sample w i t h i n each a n a l y t i c a l batch. P = 100 where y . and y„. are the measured c o n c e n t r a t i o n s f o r the s e l e i t e d samjle i n the i t h a n a l y t i c a l batch and L i s the t o t a l number of batches. 2 5 3 APPENDIX C LISTING OF INDIVIDUAL DATA VALUES USED POR MEAN (OR MEDIAN) AND VARIABILITY ESTIMATES 1. ROSETOWN AREA SOIL (TABLES XIV AND XVI) SAMPLE DESCRIPTION SITE U.T.M. SAMPLE CU FE MN ZN SE NO. COORDINATES NO. (PPM) (%) (PPM) (PPM) (PPM) E N PH A HORIZON LAC. SOIL CLAY 4 2996 6955 720246 26.968 2. 7 05 376.674 8 6. 049 8. 0 9 2957 6737 720261 26.639 2. 943 390.497 88.605 8. 0 16 3113 6963 72C282 24.666 2. 625 469.978 90.309 7. 4 20 3063 6777 72C294 13.813 1. 9 09 259.179 51.118 6. 8 27 32 07 7019 720316 27.626 2 . 864 425.054 81.789 7. 8 40 3292 6926 720355 19.404 1 . 989 400.864 73.269 7. 8 62 3479 7052 720421 17.333 1. 724 456.641 73.583 7. 2 93 3698 6706 720514 16.333 1 . 564 298 .573 59.037 7. 7 97 3736 7075 720526 14.000 1. 4 84 344.237 64. 171 7. 0 126 3043 7237 730067 18.229 1. 927 420.591 84.670 6. 4 129 3172 7123 73GC76 26.515 2 .690 424 .096 92.526 7. 5 143 3261 7358 730136 18.209 1. 7 00 421.193 82.509 5. 9 149 3363 712 9 730157 13.778 1. 464 364.056 63.158 7. 0 199 2949 6 890 73C355 28.889 3. 033 401.320 9 0.00 0 7. 5 208 2949 6970 730382 28. 889 2. 966 364.356 85. 000 7. 9 221 2997 6362 73C467 2 8.000 2. 9 48 390.55 1 92.000 7. 5 222 3121 6768 ' 730473 25. 778 2. 715 377.953 90.000 7 . 7 223 3221 69 18 730479 28.889 2. 793 390.55 1 95. 000 7. 8 224 3337 7029 73 04 85 23.111 2. 172 453.543 85.000 7. 7 225 3120 7127 730491 24.000 2. 2 50 491.339 85.000 7. 7 226 3055 7162 730497 24.984 2 . 488 410.915 70.000 7. 9 227 3507 7059 730503 16.239 2. 0C6 372.392 70.000 6. 9 IAC. 112 2957 7321 730010 14.938 SILT 135 3180 74 50 73C097 18.560 AND 137 3222 7562 730109 22.929 SAND 140 3284 7583 730121 19.220 156 3388 7469 730184 15. I l l 159 3488 7546 730196 15.556 160 3500 7500 73C199 11.111 161 3527 7487 73C205 11.111 172 3524 7273 730250 7.556 178 3560 7523 730274 14.222 187 3635 7170 730307 13.333 1 .674 316. 483 65.033 7.9 2.168 417.086 82.924 6.7 2.226 385.499 36.762 8.1 1.943 421.193 82.509 6.2 1.685 364.356 72.000 6.7 1.685 356.436 65.000 7.4 1.247 285.148 52.000 7.2 1.264 303.631 58.000 6.0 0.977 227.063 36.000 7.7 1.449 382.838 75.000 6.4 1.533 330.033 60. 000 6.5 GLACIAL <+i TILL 52 * 59 78 3307 3350 3324 3542 6366 6957 6596 6885 720358 72C391 72C412 720469 17.102 15.457 23.022 16.000 1. 750 1.710 2. 1 48 1.604 359.395 331.750 449.244 372.338 61. 342 58.786 69.862 66.738 7.8 7.0 8.0 7.7 * Sanple rejected for containing exceptionally high concentrations of the underlined element (s) + Blank = concentration not measured. 254 SAMPLE DESCRIPTION SITE U.T.M. NO. COORDINATES A HORIZON GLAC- SOIL IAL TILL SAMPLE NO. CU (PPM) E N 90 3710 6876 720505 14.333 91 3620 6737 720503 15.667 98 3790 7010 720529 14.000 101 3747 6891 72C538 14.333 116 2961 7511 730025 20. 581 117 3011 7541 730031 17.593 210 3088 7542 730391 13.333 *211 3102 7506 73 039 7 17.778 214 3309 6810 73C420 16.000 216 32 3 6 6700 730429 12.889 217 3253 6672 730435 12.444 218 3219 6610 73 0441 16.000 220 3152 6637 730455 14.222 228 3398 6693 730512 13.741 229 3470 6691 73C515 15.823 230 3489 6725 730521 14.990 231 3538 6789 730527 13.325 233 3495 6984 730536 11.659 235 3742 7011 730546 14.574 FE (%) 1 .684 1.305 1.684 1.684 1.993 1.333 1. 483 2. 2 24 1 .550 1.415 1.241 1.629 1. 590 1.485 1.725 1.725 1.525 1.3 64 1. 926 MN (PPM) 372.338 358.288 365.313 375.851 464.176 351 .648 303.631 396.040 337.954 290.429 428.346 503.937 340.157 423.756 410.915 487.961 359.55 I 333.868 290.208 ZN (PPM) 65.027 65. 882 70. 160 68.449 81.960 73.051 55.000 65. 000 45.000 3 6.000 55.000 73.000 55.000 62.000 60.000 65.000 55.000 50.000 60. 000 SE (PPM) PH 7.7 7.7 6. 8 7.8 7.7 7. 6 7.6 7.5 8.0 8.1 6.9 6.0 7.7 7.2 7.9 7. 6 7.2 7.5 7.9 ALLUVIUM 29 50 92 122 132 136 170 191 198 3128 3357 3682 3083 3 145 3219 3601 3768 3775 6893 7111 6748 7452 7309 7451 7200 7252 7545 720322 720385 720511 730049 730C63 730103 730241 730322 730349 27. 955 13.484 15.333 11.286 1 1 .932 20. 906 4. 889 5.333 13.333 943 392 6 84 1 96 767 226 1.247 0. 343 1. 529 425. 362, 428 260, 315 399 316 221 284 054 851 540 220 ,44 3 ,777 .832 , 782 ,913 87. 753 55. 378 77.005 56.125 61,102 90.165 4 8.00 0 30.000 70. 175 7. 6 6.7 7.9 AEOLIAN SAND * 123 141 155 166 169 173 174 182 197 3110 3237 3349 3438 3603 3557 3540 3716 3738 73 ei 7472 7436 7252 7147 7322 7345 7398 7500 730055 730127 73C178 730223 730235 730253 730259 730289 730343 ,286 0.598 6.070 0.688 5.778 0.640 4.889 0.681 4.444 0.843 5. 333 0.775 4.889 0.674 4.000 0.758 4.444 0.781 115.663 232.013 121.452 171.617 195.380 142.574 134.654 174.258 166.200 25.052 2 7. 390 29.000 29. 000 20.00 0 28.000 28. 000 25.000 28. 070 6. 6. 6. 6. 7. 7. 6. 6. 6, 30-46 CM LAC. DEPTH CLAY SOIL 4 2996 6955 720247 9 2957 6737 720262 16 3113 6963 720283 20 3083 6777 720295 27 3207 7019 720317 40 3292 6926 720356 62 3479 7052 720422 93 3698 67C6 720515 97 3736 7075 720527 28.284 2.546 26.968 2.745 24.008 2. 585 12.826 1.432 30.536 3.023 24. 666 2. 705 17.667 2.326 16.667 1.684 13. 333 1.604 380.129 362.851 449.244 2 03.88 8 459.611 317.927 351.262 252.909 344.237 92.865 84.345 76.677 35.783 9 1.161 85. 197 85.562 47.914 62.460 8.0 8. 1 7.9 3.2 7.7 7.4 8. 0 8.1 7.3 * Sanple rejected for containing anomalously high concentrations of the underlined element (s) + Blank = concentration not measured. 255 SAMPLE DESCRIPTION SITE U.T.M. SAMPLE CU FE MN ZN SE + PH NO. COORDINATES NO. (PPM) (%) (PPM) (PPM) (PPM) 30-46 CM LAC. DEPTH CLAY SOIL 126 3043 7237 730068 17.275 1. 8 29 364.169 64.961 7. 4 I 29 3172 7123 73CC77 26.735 2. 514 349.746 78.309 7. 9 143 3261 7358 730137 15.219 1. 981 338.929 62.291 6. 9 149 3363 7129 730158 11.556 1. 562 250.618 43. 860 7. 1 199 2949 6890 73C356 28. 000 2. 870 365.354 92.000 7. 9 208 2949 6970 730383 30.222 2. 9 09 340. 157 82. 000 8. 0 221 2997 6862 730468 28.889 2. 7 15 365.354 92.000 7. 8 222 3121 6768 730474 26.667 2. 5 60 332 .598 82.000 7. 8 223 3221 6918 730480 29.564 3. 210 398.074 90.000 8. 0 *224 3337 7029 730486 18.738 2. 327 539.326 85.000 8. 2 225 3120 7127 73C492 22.902 1. 926 333.868 60.000 8. 0 226 3055 7152 730498 24.151 2. 403 385.233 70.000 8. 0 227 3507 7 059 73C504 2 0.8 20 2.006 333.868 60.000 3. 6 LAC. 1 12 2957 7321 730011 16.452 1.5 24 223.549 53.393 8. 1 SILT 135 3130 7450 730098 20.566 1.638 306.479 56.062 8. 1 AND 137 3222 7562 73C110 22.622 2. 133 331.718 72. 970 8.4 SAND 140 3284 7583 730122 13.162 1.867 331.718 55.172 6.3 156 3388 7469 73C185 15. 556 1. 855 448.475 78. 947 6.6 159 3488 7546 730197 9. 333 1.269 242.704 39.474 3. 3 16C 3500 75C0 730200 12.444 1. 757 290.190 6 1.403 6.8 161 3527 7487 730206 8.444 1. 1 39 197.857 35. 068 7.8 172 3524 7273 730251 8. 889 1. 139 197.857 30.702 3. 1 17R 3560 7523 73C275 12.444 1. 643 197.857 68.421 7. 1 187 3635 7170 730308 17.778 2.017 329.761 5 7.018 7.8 SLACIAL 41 3307 6366 720359 18.088 1. 432 255.724 36. 635 8.2 TILL 52 3350 6957 720392 20.391 1.511 221. 166 37.487 7. 9 59 3 32 4 6596 720413 24.333 2.2 06 449 .616 69.305 7.9 78 3 54 2 6885 720470 16.667 1. 764 3 51.262 59.037 7.8 90 3710 6976 720506 17.667 1 .845 298.573 64.17 1 7.8 91 3620 6737 720509 18.000 1 .684 252.909 49.626 3.1 98 37 90 7010 720530 16.000 2.326 256.421 91. 551 7. 1 101 3747 6891 720539 12.333 1.283 203.732 35.936 3.3 * 1 16 2961 7511 730026 22.211 1.981 566.084 105.006 6.8 117 3011 7541 730032 16.041 1.524 259.606 53.393 8. 4 210 3088 7542 730392 14.667 1. 7 84 277. 165 50.000 8.3 211 3102 7506 73C398 26.222 2.133 327.559 65. 000 8.3 214 3309 6810 730421 14.222 1.396 284.724 39.000 8.4 2 16 3236 67CC 730430 15.556 1.3 96 191.496 39.000 8.1 217 3253 6672 730436 9. 333 1. 164 272.126 36. 500 3.0 218 3219 6610 730442 13.778 1.745 352.756 62.000 6.4 2 20 3152 6637 73C456 15.556 1. 319 214. 173 45.000 8.4 228 33 9 8 6693 730513 I 2.49 2 1.645 359.55 1 65.000 7.4 229 3470 6691 730516 8. 744 0.903 243.981 23.000 8.5 230 3489 6725 730522 16.656 2.327 398.074 70.000 6.7 231 3538 6789 730528 10.410 1.525 269.663 50.COO 6.3 233 3495 6984 730537 10. 410 1. 043 192.616 27. 000 8.2 2 35 3742 7011 730547 14.990 1 .966 218.299 60. 000 8.3 * Sample rejected for containing anomalously high concentrations of the underlined element(s) . + Blank = concentration not measured. 256 SAMPLE DESCRIPTION SITE U.T.M. SAMPLE NO. COORDINATES NO. E N 30-40 CM ALLUVIUM 29 3128 6893 720323 DEPTH 50 3357 7111 72C386 SOIL 92 3682 6748 720512 122 3083 7452 730050 132 3145 7309 73CC89 136 3219 7451 730104 170 3601 7200 730242 191 3768 7252 730323 198 3775 7545 7303 50 AEOLIAN *123 3110 7381 730056 SAND 141 3237 7472 730128 155 3349 7436 73C179 166 3438 7252 730224 169 3603 7147 73C236 173 3557 7322 730254 174 3540 7345 730260 182 3716 7398 73C290 197 3738 7500 730344 CU FE MN ZN SE + PH+ (PPM) (%) (PPM) (PPM) (PPM) 29.599 2.904 390.49 7 85.197 8.3 13.155 1. 3 52 228.078 46.858 8.6 18.000 2. 125 403.95 1 72.727 7.5 9.049 1.219 155.042 40.044 6.3 13.162 0. 990 191.099 32.036 8.5 18.098 1.714 281.240 60.512 8. 1 8.889 1.1 06 226.876 36.842 8.6 4. 000 0.716 179.390 16.667 7.2 8.889 1 .125 206.614 35.000 8. 0 8.226 0.930 227.155 42. 714 6.2 5.347 0.731 201.916 13.526 7.0 3. 556 0.5 86 92.333 17.105 7.0 4.444 0.765 133.223 22.307 7. 2 4. 444 0. 634 213.635 13.596 8.4 4.444 0. 683 109.43 1 19. 737 7.6 2.667 0.560 93.652 16.667 7. 1 2.222 0. 667 122.671 15.789 7.4 3. 556 0.781 131.904 20. 175 7. 0 C HORIZON SOIL LAC. CLAY 1 3005 7063 7200239 18.317 1. 509 331 .396 48.485 2 3033 7C66 7200242 29.974 2. 531 34 8.83 7 86.762 3 2967 7007 7200245 32.194 2. 3 36 286.046 80.333 4 2996 6955 7200243 2 7.754 2. 287 320.930 80.383 5 3027 6910 7200251 31. 63 9 2. 239 296.511 77.831 6 2938 684 1 7200254 31.639 2. 433 32 7.90 7 85. 486 7 2952 6829 72C0257 24.978 2.433 338.372 8 5. 486 8 2951 6800 7200260 16.652 1. 4 84 261.628 48.435 9 2957 6737 7200263 24.978 2. 433 324.413 82. 935 10 3022 67C7 7200266 22.203 2. 190 244.136 67.624 13 3053 7C90 720C275 31.639 2. 239 324.418 74.003 14 3070 7030 7200278 27.754 2. 336 300.000 81.659 15 3066 7010 72CC281 26.644 2. 2 87 376.744 8 2.93 5 16 3113 6963 7200284 27.754 2. 141 366.279 74.003 18 3040 6847 720C290 29.974 2. 579 313.953 89.314 19 3036 6813 7200293 17. 762 1. 4 84 296.511 54.864 20 3083 6777 7200296 12.767 0. 376 170.930 25. 51 8 21 3076 6708 7200299 2 6 . 08 8 2. 385 324.418 82.935 22 3 04 7 6679 7200302 33. 351 3. 3 50 307.692 81.250 25 3203 7039 7200312 27.026 2. 350 401.619 7 1.250 26 3198 7085 72CC315 21.851 2. 500 365.992 8 5.000 27 3207 7019 7200318 27.601 2. 600 340.081 75. 000 28 3174 6986 72CC321 10.350 1. 225 217.004 40.000 30 32 0 8 6873 7200327 3 1.051 2. 850 349.798 83.750 37 3287 7114 7200348 27.026 2. 100 333.603 62.500 39 3275 6926 72C0354 33.351 3. 150 304.453 9 1.250 40 3292 6926 7200357 18.976 1. 675 259. 109 43.750 42 3262 6858 7200363 25.876 2. 3 50 281.781 71.250 49 3329 7073 72CC384 18.772 1. 6 72 2 83.110 55.728 61 3497 7 102 7200420 29.331 2. 282 418.230 71.827 7.7 7.7 3.3 3.7 7.8 3. 1 * Sample rejected for containing anomalously high concentrations of the underlined element(s) . + Blank = value not measured. 257 SAMPLE DESCRIPTION SITE U.T.M. SAMPLE CU FE MN ZN SE + PH+ NO. COORDINATES NO. (PPM) (%) (PPM) (PPM) (PPM) C HORIZON IAC. SOIL CLAY 62 3479 7052 7200423 25. 811 1.751 312.064 6 1.920 8.7 72 3452 6590 7200453 19.089 1.8 26 360.805 7 1. 429 75 3536 7082 7200462 11.665 1.040 225.503 35.065 76 3568 6918 7200465 24. 391 2. 079 373.691 74.026 84 3553 6558 7200489 24.921 2. 130 360.805 79.221 86 3703 7071 72 00495 14.847 1.445 251 .275 48.052 93 3698 6706 7200516 28.971 2. 247 328.317 117.224 8.1 95 36 78 6564 7200522 20.016 1.712 279.070 94.602 96 3661 6559 720C525 20. 016 1.712 311.902 94.602 97 3736 7075 72C0528 14.749 1. 498 252.804 67. 866 8.6 109 3007 7139 73CC03 24.000 2.206 309.111 70. 160 1 10 2965 7162 730006 23.333 2.2 06 3 12.623 65. 027 125 3033 7253 730066 21.875 1.887 371.522 68. 085 126 3043 7237 73C069 19.886 1.767 311.938 6 I.102 8.5 127 3112 7218 730072 24.858 1.887 364.512 6 5. 466 128 3122 7211 730075 30.823 2. 6 50 3 96.05 7 35.543 129 3172 7123 730C78 33. 143 3.011 364.512 89.907 8.0 131 3129 7236 73C087 24.858 2. 2 89 399.562 78. 560 134 3198 7387 73C096 14.915 1.606 280.394 56.738 142 3327 7427 730135 28. 325 2.024 378.360 70.601 143 3261 7353 730138 22.255 1. 822 260.569 6 1. 244 8.2 144 3312 7335 730144 17.534 2. 105 356.944 47.634 147 3249 72 12 730153 30. 049 2. 389 373.980 89.137 148 3315 7136 730156 26.249 2. 142 370.452 80.223 154 3339 7384 73C177 12.434 1 .277 261.080 41.003 189 383 5 7131 73C318 30.747 2.480 328.018 7 9.778 221 2997 6862 73C469 33.706 3. 120 346.903 95.164 8. 0 222 3121 6768 73C475 34.924 3.2 72 325 .664 93.385 7.7 223 3221 6918 730431 29.239 2. 663 279.646 88. 049 7.8 224 3337 7029 73G487 30.05 1 2.663 400.000 84.491 8.4 225 3120 7127 730493 23.147 1. 864 431.858 64.925 7.9 226 3055 7162 730499 2 3.553 1.7 50 297.345 7 1.15 1 8.0 2 27 3507 7C59 . 730505 30. 863 2.473 375.221 76.487 8.3 247 3737 7067 730606 27. 558 2.171 349.746 7C. 300 248 3747 7067 730612 23.445 2.019 270.422 66.741 249 3275 7405 730618 25. 501 1 .905 331.718 69. 410 LAC. SILT AND SAND 7 1 3440 6590 72C0450 26. 512 2.231 347.919 75.325 85 3673 7104 7200492 18.558 1.674 267.382 79.221 88 3667 6917 7200501 29.693 2.029 302.819 71.429 112 2957 7321 730012 1 7. 92 5 1 .514 295.385 58.797 8.4 113 2987 7327 730018 18.921 1. 833 253.187 58. 797 124 3118 7353 730063 10.274 0.976 189.266 30.551 135 3180 74 5 C 73C099 26.515 2. 369 403.067 80.306 8.4 137 3222 7562 73011 1 2 3.604 2. 307 335.527 65.497 3.3 138 3187 7577 730117 31.359 2.7 12 381.929 85.061 1 39 32 86 7598 730120 12.813 I . 498 199.888 39. 128 140 32 84 7583 730123 21.91 8 2.226 267.708 63. 796 8.5 149 3363 7129 730159 21.414 I .689 314.002 62.396 8.6 151 3372 7265 730168 5. 181 0.659 114.664 22.284 153 3391 7349 73C174 6.908 0.692 105.843 22.462 156 3388 7469 730186 12.C89 1.8 53 275. 193 47.242 8. 1 + Blank = value not measured. 258 + + SAMPLE DESCRIPTION SITE U.T.M. SAMPLE CU FE MN ZN SE PH NO. COORDINATES NO. (PPM) (%) (PPM) (PPM) (PPM) SOIL LAC. 157 3348 75C9 730192 I 1.052 1.441 197.574 44. 568 SILT 158 3384 7564 730195 15.888 1.771 261 .080 59.721 AND 159 3483 7546 73C198 18. 996 1.894 306.946 65.070 8.6 SAND 160 3500 75C0 730201 11.052 1. 359 239.912 41. 003 8. 5 161 3527 7487 730207 10.707 1.236 218.743 39.220 8.2 162 3486 7468 730213 8.800 1. 140 211.454 36. 281 168 3490 7172 730234 14.553 1. 392 260.793 47.166 * 17 1 3539 7241 730249 18.614 1.720 655.507 67. 120 172 3524 7273 730252 9.476 1. 264 303.084 39.909 8.6 176 3557 7455 730270 12.184 1. 2 80 239.648 45.351 8. 5 177 3 540 7500 73C273 15.708 I .400 320.729 57.618 178 3560 7523 730276 18.715 1.400 306.150 54. 958 186 3686 7209 73 03 06 8.355 0.940 160.36 5 34.571 187 3635 7170 730309 22. 72 6 1.880 349.886 69.141 8.4 188 3663 7111 730315 8.639 0.940 156.720 32. 798 190 3729 7170 730321 9.358 0.960 164.009 39.003 2 39 3370 7557 730567 17.222 1. 458 256.285 60. 244 242 3288 7541 730582 18.42 3 1.650 256.285 59.358 243 3379 7563 73C588 17.275 1.371 277.634 63.181 GLACIAL TILL Ground Moraine 41 3307 6866 72CC360 13. 801 1.225 246.154 37. 500 43 3255 6824 7200366 15.526 1.425 278.542 43.750 * 48 32 7 7 6596 720C381 15.839 I .3 80 572.654 5 9.443 51 3359 6991 72C0390 16.425 1.539 308.847 45. 320 52 3350 6957 7200393 10.559 1 . 167 231.635 33.437 59 3324 6596 7200414 22.291 1.804 366.756 64.396 60 3382 6538 7200417 24.051 2.0 17 334.584 68. I l l 81 3605 6652 7200480 ' 13.786 1.217 2 15.839 41. 558 • 100 3745 6947 7200537 4. 214 3. 104 170.725 48. 946 8.3 8.2 Humitocky Moraine 31 3194 6734 720C330 14.376 1.3 50 233.199 36.250 32 3225 6 76 8 7200333 8.050 '0.375 139.271 22.500 33 3162 6695 7200336 28.176 2.300 349.798 6 7. 50 0 36 3183 6556 7200345 13. 226 1. 150 217.004 35.000 44 3278 6772 720C369 13.492 1.210 267.024 39.628 47 3240 6628 72C0378 24.638 1.6 72 305.630 59.443 53 3383 6880 720C396 1 I. 732 1.114 241.287 37.152 54 3386 6853 7200399 12.906 1.247 270.241 37.152 55 3345 6822 7200402 12.906 1.857 418.230 54.489 56 3413 6820 7200405 13.492 1. 592 312.064 53.251 57 3361 6660 7200408 14.079 1. 221 273.458 39.628 58 3403 6653 7200411 18. 772 1. 725 315.281 55.728 65 3422 6852 7200432 14.665 1. 380 299.196 43. 344 66 3457 68 51 72CC435 14.665 1.449 176.944 42.105 67 34 52 68C8 72C0438 23.861 2. 130 434.899 98.701 69 3433 6681 7200444 6.893 1.141 164.295 25.325 114 2941 7389 730020 27. 220 2.391 302.418 74.833 115 2957 7474 730024 17. 593 1. 793 316.483 65.033 116 2961 7511 73002 7 18.257 1.753 316.483 65.033 117 3011 7541 730033 18.589 1.873 393.846 65.924 8. I 8. 1 * Sample rejected for containing anomalously high concentrations of the underlined element (s) . + Blank = value not measured. 259 SAMPLE DESCRIPTION SITE U.T.M. SAMPLE CU FE MN ZN . SE PH NO. COORDINATES NO. (PPM) (%) (PPM) (PPM) (PPM) E N C HORIZON Humm- SOIL ocky Moraine Wash- board Moraine Ridged End Moraine 118 2957 7612 73C039 24. 232 2. 271 369.231 119 3059 7591 730042 13.278 1.435 253.187 120 3C92 7568 73C045 7.303 0.510 140.659 214 3309 6810 7304 22 14.151 1. 752 327.840 216 3236 6700 730431 11.900 1.448 292.205 217 32 53 6672 73C437 5. 789 0.789 174.610 218 3219 6610 73C443 13.829 1.562 270.824 220 3152 6637 73C457 12.995 1.294 261.947 228 3398 6693 730511 12.995 1.2 18 254.867 229 3470 6691 730517 23.836 1.880 363.070 63 3461 6988 7200426 14.079 1 .343 257 . 37 3 64 3494 6926 7200429 14.079 1.4 59 267.024 77 3547 6911 72C0468 12.726 1. 166 206. 174 78 3542 6885 72C0471 1 7. 498 1. 521 273.825 79 3607 6814 7200473 15.907 1. 471 206.174 80 3552 6743 72CC477 16. 968 1.521 376.913 82 3518 6648 7200483 12.726 1.293 244.832 87 3680 6975 720C497 12.196 1.029 180.403 90 3710 6876 720C507 14.749 1.327 262.654 91 3620 6737 7200510 17.909 1 . 498 239.672 94 3641 6688 7200519 12.115 1.311 219.973 98 3790 70 10 720C531 15.802 1. 552 443.229 99 3803 6998 7200534 14.222 1.231 321.751 101 3747 6891 72CC540 16.856 1.391 275.786 102 3747 6872 72C0543 12.642 1. 177 249. 52 I 1 C3 3769 6808 72 C0545 15.802 1.472 311.902 104 3803 6750 720C549 14.222 1 .980 308.618 105 38C8 6697 7200552 13.169 1.498 262.654 230 3489 6725 730523 28.836 1.995 448.498 231 3538 6739 730529 18.023 1.650 281.201 2 33 3495 6984 730538 20.000 1.611 356. 142 235 3742 7011 730548 17.622 1 . 765 224.249 244 3470 7020 73C591 13.985 1.219 227.155 11 2948 6610 72C0269 22. 203 1 .6C6 320.930 12 2983 6550 720C272 14.432 1. 324 237.209 23 3076 6599 7200305 15.526 1 .650 187.854 24 3063 6628 7200309 23.001 2.100 259.109 121 3067 7509 730048 23.900 2.391 323.516 210 3088 7542 730393 15.802 1.976 244.248 211 3102 7506 730399 16.080 1.8 29 302.895 81.96 0 48.107 15.234 47. 802 46.900 22.548 50. 507 40.912 40.912 76. 191 39.628 47.059 34.416 51.948 48.052 64.935 36.364 35.065 67.866 90.488 61.697 88.432 67.866 82.262 58. 61 2 76.093 96.658 71. 979 83.278 5 3. 156 48.246 66.445 37. 37 5 61.244 40. 829 47.500 62.500 75.724 54.607 56. 82 1 8 . 3 8. 1 8.2 3. 1 3.4 7.9 8. 5 7.9 8.7 8.1 ALLUVIUM 17 3104 69C0 720C287 4.996 1 .046 327.907 20.415 29 3128 6893 7200324 20.701 1.900 272.065 53.750 38 3238 7 02 5 7200351 5.750 0.565 139.271 19.750 50 3357 7111 72CC387 8. 799 0. 876 154.424 26.625 70 3431 6658 7200446 8.484 1.471 241.61 1 29. 870 74 3588 7063 720C459 13.786 1.217 209.396 44.156 92 3682 6748 720C513 16.329 1. 605 361.149 82.262 • 111 3017 7281 730009 9.295 0.693 573.187 37.416 122 3083 7452 73CC51 9.62 7 1 .235 193.407 33.853 * Sample rejected for containing anomalous concentrations of the underlined element (s) + Blank = value not measured. 7. 8 8.5 7.8 8.3 260 C HORIZON ALLU- SOIL VTUM t SITE U.T .M. SAMPLE CU FE MN ' ZN SE + PH+ NO. COORDINATES NO. (PPM) (% SOIL) (PPM) (PPM) (PPM) E ' N (PPM WHEAT) 132 3145 7309 73C090 13.920 1.486 269.879 48.009 8.5 136 3219 7451 730105 19.220 1.984 356.944 69.750 8.4 145 3297 7281 730147 13.488 1 .376 221 .305 35.726 8.6 150 3363 7177 730165 13.815 1.236 246.968 37.437 167 3443 7184 730230 14.215 1.220 239.648 56.236 170 3601 7200 73C243 11.846 1 .448 296.035 58.050 9.3 185 3682 7253 730303 10.026 1. 032 189.522 35.457 191 3768 7252 73 0324 7. 352 0.880 189 .522 3 1.025 8. 6 193 3776 7305 730333 4. 741 0. 801 201.770 21.479 195 3789 7429 730339 16.198 1. 4 54 261.947 56.428 198 3775 7545 73C351 13.432 1.267 191. 150 39.135 8.1 238 3604 6910 73C562 12.816 1.228 213.57 1 47.841 73 3 5 83 6992 7200456 8. 484 0.882 151.409 34.805 89 3630 6911 7200504 9. 544 1.090 199.732 42.857 106 3768 6627 7200555 3. 160 0. 546 91.929 26.324 123 3110 7381 73C057 5.634 0. 422 70.099 12. 220 6.6 133 3243 7343 73C093 3.314 0.474 80.613 15.887 141 3237 7472 730129 5. 058 0.4 05 123.500 14.886 8.4 146 3260 7280 73C150 3.454 0.478 70.562 22.284 152 3407 7278 730171 7.598 0.885 208. 159 24.067 155 3349 7436 730180 5. 526 0.482 67.034 15.688 8.5 163 3473 7379 7 30216 5.415 0. 800 137.445 31 .746 164 3455 7345 730219 10.153 1 .240 190.308 40.8 16 165 3446 7277 730222 5. 077 0.6 16 1 12.775 I 7.415 166 3438 7252 730225 5.077 0.720 126.872 22.313 7. 8 169 3603 7147 730237 4.73 8 0.648 193.833 15.420 7.9 173 3557 7322 730255 7. 784 1 .1 36 169.163 36. 28 1 8.3 174 35 40 7345 73C261 4. 06 1 0.5 80 86.696 22.404 3. 3 175 3609 743 1 7 30267 7. 446 0. 840 197.357 34.467 179 3658 7561 730282 8.689 1. 180 178.588 46.094 1 80 3678 7539 730285 6.016 0. 364 153.075 30.139 181 3648 7463 73C288 4. 679 0. 776 116.629 31. 02 5 182 3716 7 39 8 730291 4.010 0.756 123.918 22.515 8. 1 183 3687 7367 730297 4. 010 0.660 120.273 19.058 *184 3700 7302 730300 14.037 1. 380 280.638 52.299 194 3728 73 61 730336 5.136 0.846 176.99 1 19.386 196 3737 7451 730342 4. 741 0.865 134.513 21.843 197 3 73 8 7500 730345 5. 136 0. 883 141.593 24.755 7.4 240 36 23 7433 730573 I 1.214 1.266 245.606 41.639 2. ROSETOWN AREA WHEAT AND ASSOCIATED SOIL (TABLES XXIII AND XXVTII) LAC. 251 29 53 7152 740598 12.348 151.64 43 .845 21.432 2 .120 CLAY 2 52 3008 7156 740601 1 6. 582 187.32 37.481 18.845 253 3029 7040 740604 14.818 114.17 39.602 17.367 3 .880 263 3319 7417 740634 12.348 139. 15 26.873 22.818 1 .020 283 3280 7390 740694 I 7.471 100.46 30.280 19.738 2 .1 80 * Sample rejected for containing anomalously high concentrations of the underlined elemeent(s) . + Blank = value not measured. 261 SAMPLE DESCRIPTION SITE U.T.M. SAMPLE CU+ FE + MN+ ' ZN + SE + PH+ NO. COORDINATES NO. (PPM) (PPM) (PPM) (PPM) (PPM) WHEAT LAC. CLAY *284 3C70 7223 740697 10.696 159.09 33.032 33.201 285 2919 6998 740700 16.045 120.91 35.097 24.105 3 .160 286 2960 6997 740703 13.192 88.64 32.688 24.559 2 .1 80 287 2991 6860 740706 15.331 156.36 36.817 18. 192 *288 2932 6839 74C7C9 16.401 143.18 49.892 13.644 3 .560 289 2982 6770 740712 13.549 76.36 39.570 16.328 2 .5 80 290 3067 67C0 740715 14. 975 89. 54 32.688 2 1.831 2 .420 291 31 09 6797 740713 14.975 126.82 32.000 25. 014 292 3185 6800 74C721 13.549 65.00 26.151 26.651 293 3069 6928 740724 14.690 96. 34 41.695 26.132 294 3223 6961 740727 12.019 12 8.00 40.678 23.564 5 .400 295 3123 6995 740730 1 4. 02 2 96.78 41 .356 17.880 296 3C99 6988 740733 13.020 120.42 31.186 21.547 306 3135 7215 74C763 12.686 74.93 32.203 18.980 1 .940 307 3158 71 89 740766 14. 022 147.13 37 .28 3 22.189 322 3221 7182 740811 17.525 74.22 30.728 27. 518 1 .0 40 323 3240 7215 740814 17.850 80. 89 34.614 24.767 3 24 3327 7231 74C817 1 3. 631 59. 11 29.316 2 1.818 339 3750 7154 740862 14.280 80. 00 37.036 27.518 354 3613 656C 740907 16. 162 89.57 36.247 26.634 5 .160 359 3087 7 122 740922 13.899 64. 88 36.247 22. 388 1 .920 360 3003 7035 740925 13.576 61.95 29.850 19.976 1 .900 361 2956 6812 74C928 14.222 61 . 53 39.800 19.300 1 .600 LAC. SILT AND SAND *256 3558 7544 740613 13.760 131.57 25.459 24.480 1 .000 257 3482 7585 740616 12.701 8 0.. 28 34.652 24.296 2 58 3428 7595 740619 16.229 109.2 7 26.87 3 24.203 0 .96 0 260 3281 7537 740625 16. 93 5 100. 35 25.459 28.360 261 3287 7516 740628 17.641 87. 86 27.580 24. 665 1 .680 262 3 286 7500 74C631 16. 935 73.94 28.287 23.279 268 3 72 2 7 3 28 740649 1 1.290 77. 60 22.276 31.963 277 3383 7474 740676 16.401 90. 91 27.527 19.557 1 .0 80 278 3399 7 473 740679 17. 82 7 76.36 22.710 2 1.831 1 .020 279 3479 7444 740682 13.905 90. 91 32.000 23.286 2 80 3514 7435 74C685 16.758 92. 73 26.151 22.922 1 .600 281 3530 7397 740688 14.262 84. 09 23.398 19.829 282 3543 74C5 74C691 16.045 85. 00 23.903 2 1. 467 1 . 140 297 2940 7292 740736 15.023 91. 43 25.763 23.473 1 .700 298 3019 7323 74C739 14.022 91. 88 20.339 19.897 1 .000 299 3056 7322 740742 14.022 92. 32 32.542 22.464 301 3140 7379 740748 14.356 64.22 25.085 22.739 302 3217 7481 740751 1 7.360 98. 56 29.492 2 6.407 303 3192 7459 740754 16.025 99.46 23.390 26.957 304 3102 7477 740757 14.356 89.20 21 .017 19.713 305 3117 7433 740760 14.356 84. 29 21.017 28. 607 0 .440 325 3362 7132 740820 3 .600 326 3508 72 10 740823 12.333 81 . 78 32.49 4 27. 027 0.330 348 3172 7416 740389 13. 576 76. 60 33.404 24. 125 0. 380 355 3780 67C5 74C910 2 .600 358 3179 7433 740919 14.545 89. 16 33.048 26.345 1 .600 * Sample rejected for containing anomalously high concentrations of the underlined element (s) . + Blank = value not measured. 262 SAMPLE DESCRIPTION SITE NO. WHEAT GLACIAL TILL U.T.M. COORDINATES SAMPLE NO. CU (PPM) FE (PPM) E N , 308 3358 6967 740769 14.022 113.28 309 3376 6954 74G772 12.686 91.43 310 3409 6953 740775 14. 690 107.04 311 3424 6972 740778 13.354 82.96 312 3450 6912 740781 12.353 74. 04 313 3398 6888 740784 11.685 63. 33 314 3307 6803 740787 12.982 91. 11 315 3311 67E2 740790 11.359 69.33 *316 3283 6667 74C793 14.929 164.44 317 3300 66C5 74C796 14.929 98.67 318 3282 6590 740799 14. 929' 88.00 319 3261 6563 740802 15.578 80. 89 3 20 3218 6630 740805 15.254 132.00 321 3162 6722 740808 14.280 82. 22 341 3703 6973 740868 121.78 34 2 3731 6971 74C671 15.903 343 3731 6993 740874 14.280 66. 67 344 3775 7010 74C877 349 3350 6792 740892 77. 85 3 50 3410 6759 740895 14.869 351 3573 6861 740898 15. 192 64.46 353 3585 6690 740904 14.869 81. 20 356 3743 6871 740913 15.833 92. 09 357 3797 6916 74C916 MN (PPM) 28.136 27.797 21.017 21.695 25.763 16.949 31.082 32.848 42.031 40.618 35. 320 28.962 35.320 22.605 29.669 26.137 20.611 27.713 27.007 30.205 ZN (PPM) 23. 656 27.966 27. 140 30.716 18.155 18.338 20.344 21.622 22. 113 21.818 24. 177 28. 698 20.049 21.622 24.079 23.587 27.406 23.836 28.372 26.538 SE (PPM) PH" I .240 1 .280 1 .780 3 .700 0.380 9.500 1 .400 1 .040 11.200 6 .000 1.540 1 .000 1 .500 1.12 0 6.400 AEOLIAN SAND 254 3679 7587 740607 255 3608 7540 740610 2 59 33 54 7537 740622 264 3627 7460 740637 265 3549 7273 740640 267 3692 7297 740646 269 3728 7366 740652 270 3748 7425 740655 271 3729 7393 740658 272 31 83 7249 740661 274 3200 7248 740667 *275 3210 7343 74C670 276 3175 7350 740673 300 3102 7380 740745 327 3564 72 03 74C826 328 3347 7475 74C829 329 33 79 7509 74C332 330 33 41 7472 74C835 331 3324 7440 740838 *332 3319 7437 74C841 3 34 3623 7093 74C847 335 3615 7129 740850 336 3763 72C4 74C853 345 3453 72 4 8 74C880 346 3492 7327 74C383 13.407 13.407 13.407 11.996 13. 407 13.407 13.054 13.054 12.348 11.409 11.409 14.975 15.331 12.019 12.008 11.034 10.385 14.929 12.333 14.929 104.36 83. 85 100.79 118.19 100.35 73.59 99. 01 78.94 77 .60 108.64 7 4. 54 227.27 77. 27 72. 25 69.33 67. 56 73.33 82. 22 61. 33 142.22 11. 636 72. 83 26 .873 24.751 19.801 21.923 21.923 12.729 22.276 25.812 25.459 22.022 12.387 21 .677 19.613 11.525 21 .898 14.834 26.137 16.954 24.371 19.426 13.148 26.513 28. 1 76 21.801 29. 56 1 2 6. 513 23.095 27.714 34. 457 19.400 2 5.469 30.927 21 .831 30. 654 21.639 23.784 1 9. 459 19.165 30.467 24.767 23.096 24. 125 0.570 0.640 0.620 0 .540 0.760 0.640 0.560 0.480 0.420 1 .440 2 .580 2.730 3 .130 0.680 4 .000 * Sample rejected for containing anomalously high concentrations of the underlined element (s) + Blank = value not measured. 263 A HORIZON LAC. SOIL CLAY SITE U.T. M. SAMPLE CU FE MN ZN NO. COORDINATES NO. (PPM) (%) (PPM) (PPM) 251 29*53 7^52 740C596 25. 852 2. 4 82 454.586 94.144 252 3008 7156 7400599 28. 3 74 2. 177 350.783 72.928 2 53 302 9 7040 7400602 29.320 2. 635 400.895 92.818 263 3319 7417 740C632 13.631 1. 4 72 294.005 57. 174 283 3280 7390 74CC692 13.353 2. 081 391.546 75. 082 284 3070 7223 74CC695 15.261 1.890 420 .022 78.346 285 2919 69S8 740C698 23.845 2. 749 345.272 86.181 286 2960 6997 7400701 24.799 2. 215 295.439 73.776 287 2991 6860 74GC704 22.414 2. 8 64 377.308 9 1.404 288 2932 6 839 74CC707 26.230 2. 444 302.558 78.346 289 2 9 82 6770 7400710 23.368 2. 673 355.95 I 88.139 290 3067 67C0 7400713 25. 514 2. 864 355.951 97.933 291 3109 6797 7400716 17.407 2. 406 391.546 81. 610 292 3165 68C0 7400719 13.830 1. 947 402.225 67.900 293 3069 6928 740C722 27. 340 2. 568 417.548 86.557 294 3223 6961 7400725 28.893 2. 491 449.944 90.492 295 3123 6995 74CC728 29.204 2.721 424.747 85.246 296 3099 6988 7400731 30. 447 2. 549 352.756 8C.656 306 3135 7215 7400761 20.585 2. 153 417.391 80.465 3C7 3158. 7189 74CC764 19.649 1 . 958 428.375 77.930 322 3221 7182 74CC809 20.391 2. 117 437. 856 84. 599 323 3240 7215 74CC812 15.457 1. 683 369.44 1 69.63 1 3 24 3327 7231 740C815 1 5. 786 1. 791 355.758 65.076 339 3750 7154 7400860 15.683 1. 524 400.921 69.328 354 3613 6560 7400905 17.442 2. 088 386.207 72.414 359 3087 7122 740C920 22.877 2. 1 33 405.806 75.661 360 3 003 7035 7400923 31.560 2. 2 57 337.327 72.076 361 2956 6812 74CC926 30.059 2. 4 84 351.264 78.601 256 3558 7544 740061 1 15.133 1. 6 80 411.633 76.243 257 3432 7585 740C614 15.448 1. 757 422.371 82.21 0 '258 3428 7595 7400617 15.133 1. 757 386.577 517.127 260 32 81 7537 740C623 I 6.C79 1. 718 422 .371 84.199 261 3287 7516 740C626 15.133 1. 757 375.839 8C.884 262 3286 7500 74C0629 14.280 1. 4 92 344.202 68.346 268 3722 7328 74C0647 7. 140 1. 077 294.005 44.688 277 3383 7474 7400674 10.640 1. 796 346.816 7 9.0 34 278 3399 7473 7400677 11. 60 7 1. 739 339.665 64.544 279 3479 7444 740C680 9. 189 1. 455 346.816 79.034 280 3514 7435 7400683 10.156 1. 607 346.816 102.086 281 3530 7397 74CC686 8. 947 1. 493 311 .061 7 1.13 1 282 3543 7405 740C689 10. 156 1. 5 50 368.268 44. 127 297 2940 7292 74CC734 16.466 1. 8 40 316.760 68.852 298 3019 7328 74CC737 10.563 1. 226 241. 170 5 1.148 299 3056 7322 7400740 13.359 1. 456 287.964 61.639 301 3 140 7379 7400746 13.359 1.6 10 305.961 57.049 302 3217 7481 74CC749 19.262 1. 954 341.957 66.885 3 03 3192 7459 7400752 14.602 1. 6 10 313. 161 6G.984 '304 3102 7477 74C0755 24. 327 2. 2 84 411.899 74.129 305 3117 7433 7400753 16.218 1. 468 378.947 66.526 325 3362 7132 74CC818 19.253 1. 855 391.724 77.754 3 26 35C8 7210 740C821 12.282 1. 473 331.034 62.851 SE (PPM) PH 7.2 8.1 7.7 6.4 7.0 6.3 7.8 7.7 7.9 7.8 7. 7 7.8 7.3 7.1 7.9 7.8 8.2 7.1 7. 3 7.2 6.2 6.3 7.1 6.4 7.4 6.6 7.9 7.6 6.3 6.9 6. 9 6 .4 6.4 6.5 7.1 6.8 6.4 6.4 7.1 7.8 6. 5 7.9 6. 8 6.7 7.5 * Sample rejected for containing anomalously high concentrations of the underlined element (s) + Blank = value not measured. 264 NO. E N 348 3172 7416 355 3780 67C5 358 3179 7433 'SAMPLE DESCRIPTION SITE A HORIZON LAC. SOIL SAND AND SILT GLACIAL 308 3358 6967 TILL 309 3376 6954 310 3409 6953 311 3424 6972 312 3450 6912 313 3398 6888 314 3307 6303 315 3311 6782 316 3283 6667 317 3300 6605 318 3282 6590 319 3261 6563 *320 3218 6630 321 3162 6 722 341 3703 6973 342 3731 6971 343 3731 6993 344 3775 7010 349 3350 6792 350 3410 6759 351 3573 6861 352 3598 6752 353 3585 6690 356 3743 6371 357 3797 6916 SAMPLE NO. 740C887 74CC908 74CC917 7400767 740C770 740C773 74CC776 7400779 740C782 74CC785 7400788 740C79 1 74CC794 740C797 74CC800 7400803 74CC806 74CC866 7400869 740C872 74CC875 74C0890 740C893 7400896 74GC899 74C0902 7400911 74CC914 CU (PPM) 17.778 11.069 17.792 16.530 19.337 18.090 14.971 13.411 13.723 20.719 17. 102 20.391 19.075 17.102 19.733 24.337 16.444 12.013 16.017 14.682 14.348 15.765 11.740 14.423 14.088 16.101 12.459 10.157 FE (%) 1.925 1.492 1. 808 1.794 1.794 1.9 30 1. 615 1.631 1 .495 1. 710 1.683 2.117 2. 063 1.873 1.927 2.226 1 .683 1. 676 1.879 1.625 1.686 1.681 1. 323 1.398 1.725 1. 492 1.503 1 .123 MN (PPM) 419.310 297.931 385.023 351.487 392.677 373.455 417.391 307.552 3 76.201 323.392 509.008 424.173 405.017 451.540 448.803 541.847 383.124 290.322 320.737 345.622 331.797 441.379 275 .862 284.138 377.931 391.72 4 339.515 229.336 ZN ' (PPM) 80. 172 53.017 69.209 65.892 68.427 67.159 7 1. 594 53. 854 60.190 52.711 75.488 71.584 68. 330 71.584 65.076 78.091 63.774 58.190 62. 069 64.655 64.655 73.060 45.259 64.655 64.655 64.65 5 56.774 27.527 SE (PPM) PH 7.3 8.0 7.0 6.7 6.8 6.6 6.0 7.9 7.9 8.4 8. 1 8.0 3.0 7.9 8.0 4 , 5 ,9 . 8 .0 . 1 . 9 7.3 7.0 7.5 7.4 7.7 7.6 AEOLIAN 254 3679 7587 740C605 SAND *255 2 59 3608 7540 7400603 3354 7537 7400620 264 3627 74 6 0 74006 35 265 3549 7273 7400638 267 3692 7297 7400644 269 3728 7366 740C650 270 3748 7425 7400653 271 3729 7393 74CC656 272 3183 7249 7400659 2 74 3200 7248 7400665 27 5 32 10 7343 74CC668 276 3175 7350 74GC671 300 3102 7380 7400743 3 27 3564 7203 740C824 328 3347 7475 740C827 329 3379 75C9 74CG830 330 3341 74 72 74C0833 331 3324 7 4 4 0 7400836 *332 3319 7437 74CC339 333 3623 7083 740C842 10.719 1 1.980 6.305 6. 81 5 5. 842 5.842 7.789 5.517 7. 140 5. 562 3. 869 5.320 7. 496 6.835 7.967 8.963 11.618 8.299 11.6 18 6.6 39 5. 643 1.2 60 1. 146 0. 894 0. 969 0. 891 0.930 1 .123 1.038 1.104 0. 862 0.567 0. 998 1. 134 0. 843 1.129 1.037 1.255 1. 146 1.2 00 .753 , 900 0. 0. 279. 195 304.250 178.97 1 179.272 179.272 179.272 268.907 218.711 276.078 185.922 114.413 160.894 332.514 165.579 248.276 206.896 286.896 187.586 237.241 377.931 137.931 51.713 6 9.613. 29.834 34.330 2 8.258 34.173 40.745 34.173 39.430 36. 883 25.027 32.931 44.786 32.787 37.581 40.821 58.315 43.413 49.892 23.974 29.158 6.1 6. 5 7.8 6.5 6. 8 7.8 6. 6 6.4 6.8 6. 6 6. 8 8.2 * Sample rejected for containing anomalously high concentrations of the underlined element (s) . + Blank = value not measured. 265 SAMPLE DESCRIPTION SITE U.T.M. SAMPLE CU FE m ZN SE PH NO. COORDINATES NO. (PPM) (%) (PPM) (PPM) (PPM) E N SOIL SAND 334 3623 7C93 7400845 7.967 1.004 v 146 .207 3 3 . 6 9 3 8 . 0 335 3615 7129 740C848 5 .673 0.965 152 .074 2 5 . 862 8 . 6 336 3763 72 04 7400851 7.341 1 .057 17 4 . 19 4 4 2 . 0 2 6 7 . 2 337 3768 7218 74CC854 9. 009 0.965 179 .723 4 0 . 7 3 3 6 . 8 338 3698 7208 74CC857 9 .34 3 1.092 171 .429 3 8 . 793 7 . 4 345 3453 7248 74CC878 9 .009 1.016 248 .848 4 3 . 319 7 . 2 346 3492 7327 740C881 10 . 734 1.258 2 7 5 . 8 6 2 5 4 . 9 5 7 6 . 8 347 3345 7422 7400884 6 .373 0 .949 146.207 3 2 . 328 7 . 2 C HORIZON SOIL LAC. CLAY 251 2953 7152 7400597 3 I. 527 2. 138 343 . 624 8 2 . 8 7 3 0 . 32 8 . 1 252 3008 7156 7400600 26 . 483 1. 928 357 . 942 6 1.657 7 . 9 253 3029 7040 740C603 29 . 005 2 .368 3 4 0 . 0 4 5 79. 558 0 . 6 4 3 . 2 2 63 3319 74 17 7400633 2 7 . 5 8 6 2. 189 333 . 445 6 5 . 7 1 7 0 . 70 3 . 6 283 3280 7390 740C693 17 .407 2. 062 3 02 . 55 8 6 1 . 3 7 1 0 . 36 8 . 4 284 3070 7223 7400696 16 .215 1 .604 202 .892 4 8 . 9 6 6 28 3 . 1 285 2919 6998 7400699 2 6 . 9 4 5 2 .406 2 84 . 761 7 6 . 3 3 7 1 . 8 .1 286 2960 6997 74CC7G2 2 4 . 7 9 9 2. 444 302 .558 7 7 . 0 4 0 0 . 35 8 . 3 287 2991 6860 7400705 2 4 . 5 6 0 2. 558 313 .237 7 8 . 3 4 6 8 . 2 288 2932 683 9 74C0708 32 . 429 2 .177 2 2 4 . 2 4 9 6 5 . 2 8 8 1. 92 8 . 2 289 2982 6770 7400711 2 5. 2 76 2 .406 259 .844 78 . 346 0 . 3 4 8 . 3 290 3067 6700 740Q714 23 . 845 3 . 131 320 . 356 9 9 . 2 3 8 0 . 3 3 3. 2 29 1 3109 6797 74CC717 21 .461 2 .368 266 . 963 7 1 . 8 1 7 8 . 2 292 3185 68C0 7400720 15 .499 1.489 220 .690 4 3. 743 3 . 6 293 3069 6928 740C723 37 . 282 2 .223 295 . 163 6 8 . 8 5 2 3 . 4 294 3223 6961 7400726 2 7 . 3 4 0 2. 529 4 10 .349 8 8 . 5 2 5 0 . ,74 3 . 4 295 3123 6995 7400729 30 .447 2.0 12 287 .964 5 6 . 3 9 3 8 . 0 296 3C99 6988 7400732 2 7 . 3 4 0 2. 721 334 .758 8 1 . 9 6 7 .24 8 . 6 306 3135 7215 74C0762 19 .961 1.794 367 .963 5 8. 923 0 . 3 . 5 3 07 3158 7189 7400765 2 4 . 0 1 6 2.066 340 . 503 6 5 . 8 9 2 3. 6 322 3221 7182 740C810 25 . 324 2.443 344 .812 71 .56 4 0 . .38 3 . 2 323 3240 7215 74CC813 14 . 800 1.7 37 301 . 026 4 9 . 4 5 8 7. 8 324 3327 7231 740C816 14 .606 1.528 256 . 552 4 8 . 5 9 6 3 . 6 339 3750 7154 740C861 14 .015 1. 829 276 . 498 5 1 . 7 2 4 3 . 1 340 3769 7102 7400864 19 .020 2. 083 3 4 5 . 6 2 2 7 2 . 4 1 4 8 . 6 354 3613 6560 7400906 22 . 474 2.061 325 . 517 6 2 . 7 1 6 0 , . 28 3 . 3 359 3087 7 122 7400921 24. 935 1. 764 299 .391 6 0 . 150 o, .26 8 . 2 36C 3C03 7035 740C924 2 9 . 9 7 6 2 .070 297 . 003 6 7 . 2 0 5 0 . 2 7 8.4 361 2956 6812 74CC927 3 0 . 0 5 9 2.3 63 3 2 0 . 6 9 8 7 8 . 9 5 0 0 . 5 7 8 . 5 LAC. 256 3558 7544 74006 12 11 . 665 1 .713 268 . 456 4 5 . 0 8 3 0 . 1 8 6 . 9 SILT 257 . 3482 7585 7400615 14 .502 2. 024 311 .409 5 4 . 3 6 5 7 . 2 AND 258 3428 7595 7400618 16 .709 1.642 268 . 456 7 2 . 9 2 8 0 . 4 6 8 .6 SAND 260 3281 7537 740C624 13 .241 1 .432 221 . 924 4 6 . 4 0 9 8 . 3 261 3287 7 516 7400627 15 .578 1. 588 2 4 3 . 8 1 0 50 . 602 0 . 2 6 8.2 262 3286 7500 74CC630 12 .657 1 .588 207 . 955 4 0 . 7 4 5 7 . 1 268 3722 7328 74CC648 5. 517 0. 988 207 . 955 2 6 . 2 8 7 8 . 4 277 3383 7474 7400675 10 .640 1.701 264 .581 8 0 . 3 5 1 0 . 2 4 8 . 4 278 3399 7473 74CC678 12 . 574 1.739 271 .732 8 8 . 2 5 5 0 .2 8 8 .4 279 3479 7444 7400681 6 .287 1.210 178 .771 9 8 . 7 9 3 8 .1 280 3514 7435 74CC684 7 .254 1.285 207 .374 8 2 . 3 2 7 0 . 2 0 8. 2 + Blank = value not measured. 266 S A M P L E D E S C R I P T I O N S I T E U . T . M S A M P L E C U F E ' M N W S E + P H N O . C O O R D I N A T E S N O . ( P P M ) (%) ( P P M ) ( P P M ' ( F M > C H O R I Z O N S O I L L A C . S I L T A N D S A N D 281 3530 7397 74C0687 282 3543 7405 7400690 297 2940 7292 7400735 298 3019 7328 74CC738 299 3056 73 22 74CC741 301 3 140 7379 74CC747 ' 302 3217 7481 740C750 303 3192 7459 7400753 304 3102 7477 740C756 305 3117 7433 740C759 325 3362 7132 7400819 3 26 3508 7210 740C822 348 3172 7416 74C0888 3 55 3780 67C5 74C0909 358 3179 7433 74CC918 308 33 58 6967 74CC768 309 3376 6954 74C0771 310 3409 69 53 7400774 311 3424 6972 74CC777 312 3450 6912 7400780 313 3398 6888 74CC783 314 33 07 6803 74CC786 315 3311 6782 7400789 316 3283 6 66 7 74CC792 317 3300 66C5 74CC795 318 3282 6590 74CC798 319 3261 6563 740C801 320 3218 6630 740C804 *32 l 3162 6 722 740C807 341 3703 6973 74CC867 342 3731 6971 7400870 343 3731 6993 740Ce73 344 3775 7010 740C876 349 3 35 0 6792 740C891 3 50 3410 6759 740C894 351 3573 686 I 7400897 352 3598 6752 74C0900 *3 53 3585 6690 74C0903 356 3743 6871 7400912 357 3797 69 16 74CCS15 8.222 10.015 14.602 14.602 17.398 14.913 28.583 8.421 24.951 13.411 14.606 11.618 18.449 9.057 23. 823 1.361 1. 547 1.495 1.610 1.744 1.590 2. 299 1.033 2.066 1. 4 68 2. 101 1.2C0 1.736 1.106 1.687 14.035 16.218 13.723 16.218 14.659 19.337 15.457 13.313 19.733 19.733 17.760 19.733 22.035 16.444 14.015 16.017 16.017 12.013 21. 132 10.734 13.417 15.765 17.773 17.339 10.442 232. 242. 259. 2 08. 2 33. 226. 341. 156. 351. 164. 344. 2 09. 284. 275 325 402 047 167 774 971 .772 .957 . 522 .437 . 760 .827 655 .138 .862 .731 68 39. 59. 44. 5 1. 44. 65. 30. 65. 43. 74. 36. 54. 28. 58. 496 1 73 016 590 148 590 574 412 259 083 514 933 957 448 055 0.6 0 0.20 0.42 0.28 0.44 0.22 0.45 0.40 0.6 3 8.2 8.3 8.8 8.2 8.3 8.3 8.5 8.7 8.6 8.5 7. 3 8 1 .349 255.378 38.0 15 8.3 1.4 14 269.107 39.232 8.3 1 .305 263.615 36.648 8. 7 1 .658 324.027 44.35 1 3.3 1 .441 291.075 41. 183 0 . 1 8 8. 6 1.523 296.567 43.033 0. 36 8.3 1. 5 74 339.339 48.156 0. ,26 8.9 2.0 36 333.865 60,52 1 7.6 1 . 737 328.392 5 6.616 3.4 1. 656 311.973 5C.759 0. ,24 8.6 1.683 3 14.709 53.362 8. 4 1.818 361 . 23 2 53. 362 0. .36 8.7 1.818 394.071 61.322 3.9 1.7 10 506.272 6 5.07 6 6.0 1. 473 254.378 35.560 0 .18 3.2 1.727 254.37 3 48.49 1 0 .36 8. 6 2. 032 282.028 6 1.422 0 .2 1 7.5 1.2 95 212.903 36.8 53 0 .27 3. 3 1.681 358.62 1 53.017 0 .5 8 8. 0 1. 1 66 262.069 3 1.034 0 .08 8. 1 1. 508 215. 172 42.672 0 .14 3.4 1.519 284.138 46.552 8. 1 1.953 468.965 85.345 0 .25 8. 0 1.7 09 307.154 5 1.038 1 .50 8.2 1.222 229.336 28.383 0 .29 8.1 A E O L I A N 254 3679 7587 74 C0606 12.926 S A N D 2 55 3608 7-54 0 7400609 15.133 2 59 3354 7537 7400621 9.458 264 3627 7460 74G0636 7. 140 265 3549 7273 740C639 4. 544 267 3692 7297 7400645 3.895 269 3728 7366 740C651 8. 763 270 3748 7425 7400654 3.895 271 3729 7 393 74CC657 10.385 1.165 1.451 1.214 1.1 04 0.910 0.8 33 1.414 0.930 1.550 178.971 232.662 218.344 186.443 161.345 132.661 233.053 172.101 276.078 37.127 58.343 35.138 32.859 24. 315 28.258 36.802 21.030 42.059 0.20 0.18 0.20 0.26 8.0 8.0 8. 5 7.3 7.5 7. 2 7.4 7.0 7.8 * Sample rejected for containing anomalously high concentrations of the underlined element (s) + Blank = value not measured. 2 6 7 SAMPLE DESCRIPTION SITE NO. U.T.M. (XXDRDINATES E N SAMPLE NO. CU (PPM) FE (%) MN (PPM) ZN (PPM) SE (PPM) PH C HORIZON AEOLIAN 2 72 3183 7249 74CC660 4. I l l 1.191 121.564 30.296 0. 24 7.1 SOIL SAND *274 3200 7248 7400666 4.111 0.711 10011.172 18.441 0. I 0 6.5 275 3210 7343 7400669 4.353 1.115 132.29 I 3 1.614 8.4 276 3175 7350 7400672 2. 902 0.567 221.676 1 C. 999 0. 10 8.3 300 3102 7380 7400744 5.592 0.901 118.785 24.913 0. 13 6.9 327 3564 72 03 7400825 4.315 0.938 220.690 18.143 0. 12 8.4 3 28 3347 7475 740C828 9. 959 1.391 184.828 36.933 7.2 329 3379 7509 7400831 10.622 1 . 500 228.965 40.321 7.2 330 3341 7472 740C834 9.295 1.228 171.034 38.877 8.2 *33l 3324 7440 74C0837 21.909 2.455 353.103 69.978 6. 7 332 3319 7437 7400840 12.282 1 . 664 262.069 5 5.076 0. 18 7.1 333 3623 70E3 7400843 5. 643 0. 835 132.414 24.622 8.7 334 3623 7093 7400846 4.315 0.8 18 132.414 23.974 0. 07 8.5 335 3615 7129 7400849 4.004 0.828 229.493 14.871 0. 07 8.9 336 3763 7204 740C852 6. 0C6 0. 940 132.719 29.741 0. 09 3.1 337 3768 7218 7400855 5.673 0.813 110.599 23.922 7.9 338 369 8 72C8 740G858 7.341 1.2 70 179.723 37.500 8.3 345 3453 7248 740C879 6.373 0. 786 146.207 2 1. 336 0. 0 8 8.5 346 349 2 7327 74CC382 7.044 0.803 137.931 23.276 0. 08 8.1 347 3345 7422 7400885 8.386 1.226 176.552 42.026 8.2 3. RC6ET0WN AREA BEDROCK - BEARPAW FORMATION (TABLE XXVII) MEMBER DRILL SAMPLE SE HOLE NO. (PPM) NO. AOUADELL I C168 740996 0.436 10168 74C998 0.465 10168 7410CC 0.740 10168 741002 1.170 1067 74 1005 1.040 1067 741007 0.610 1067 741C09 0.155 CRU IKSHANK 1067 741010 0.495 1067 741011 0.430 SNAKEBITE 1067 741012 0.460 1067 741014 0. 510 1067 741016 0.600 1067 741018 C.580 1067 741020 0.665 1067 741022 0.810 GSC61- 1 74 1032 0. 655 GSC61--1 741034 0.370 AROKENNITH GSC61-•1 741035 0.370 GSC6 1-• 1 741037 0. 245 GSC61-•1 741039 0.285 BEECHY GSC61--I 74 104 1 0. 62 5 GSC61-•1 741043 0.650 DEKAINE GSC61--1 741044 0.260 GSC61--1 741046 0.260 SHERARO GSC61--1 741047 0.750 GSC61--I 741049 0.575 * Sample rejected for containing anomalously high concentrations of the underlined + Blank = value not measured. 268 SAMPLE DESCRIPTION SITE U.T.M. SAMPLE CU FE MN ZN SE PH NO. COORDINATES NO. (PPM) (%) (PPM) (PPM) (PPM) E N 4. RED DEER AREA SOIL (TABLES XXXI AND XXXIII) A HORIZON GROUND SOIL MORAINE HUMMOCKY MORAINE IAC. 9 3096 7590 730589 12.048 1.346 379.526 5 1.456 7. 3 • 11 3100 7525 73C598 12.851 1.4 77 499.376 52.810 6.4 22 3183 7583 730634 10.442 0.985 366.209 56. 872 5.9 24 3234 7574 73C643 14.458 1 .477 372.867 73.121 5.9 29 3238 7783 730661 16.667 1.723 492.717 83.954 6.4 39 3393 7664 730696 12.048 1.477 319.601 62. 288 6.0 47 3527 7731 73C722 10.442 I. 182 466.084 41.977 5.8 103 2920 7682 73C930 18.349 1. 707 375.556 8C. 053 6.3 115 2667 7662 730962 14.3 60 0.952 336.706 82. 722 7.3 1 18 2722 7813 73C971 17.551 1 .641 505.058 74.716 7.6 * 123 2604 7804 73C990 10.371 1.641 1036.018 80.053 5.6 * 1 3 0 2527 7793 731013 10.371 1.313 1063.393 60.040 6.5 137 2433 7707 731040 8. 347 1. 501 582.760 82.392 5.6 76 3923 7590 730831 8. 775 1 .280 330.231 49.366 6.9 * 81 406 I 7587 730e50 30.315 2.544 485.63 3 74.716 3. 0 86 4200 7709 73C865 10.371 2.051 679.886 64.043 5. 7 92 4234 7577 73C887 12.764 1 .395 518.009 65.377 5.7 34 3278 7563 730679 14.458 1 . 395 532.667 77.183 6. 5 44 3457 7560 73C713 12.851 1.313 366.209 64.997 6. 1 45 3476 7666 73C716 14.458 1. 641 319.601 54.164 5.9 51 3529 7652 7 3073 8 19.277 1 .305 332.917 67.705 6.6 54 3589 7570 730747 12.851 1. 543 319.601 5 1.456 5.8 58 3657 76 32 73076.3 16.867 2.215 499.376 6 2. 288 5.4 59 3630 7688 730768 12.043 1 . 149 199.750 64.99 7 5.4 56 3730 . 7549 730755 14.458 1. 723 279.651 51.456 6.1 72 3852 7708 730813 11.245 0.985 186.434 58. 226 6. 0 75 3920 7649 730826 12.851 1.444 412.817 66.351 5.5 79 4043 7553 730842 11.967 1.231 518.009 69.380 6 . 0 89 4163 7548 730876 12.764 1.231 259.004 46.698 7.8 94 4214 7615 730895 8. 775 1 .559 343. 181 54.703 5.5 2 3112 7920 730565 13.655 1. 362 346.234 56.872 8 . 0 S K 3179 7900 73 0610 16.867 1.674 392.843 63.643 6.8 ICO 3002 7712 730915 15.955 1.6 90 388.507 81.388 7. 1 110 2765 7856 730945 15.955 1.510 485.633 66.711 8 . 0 111 2783 7800 730948 14.360 1.690 343.181 65. 377 6.3 119 2740 7900 730976 14.360 1. 362 518.009 62.708 7.6 *129 2488 7745 731C08 9. 573 1.559 1133.144 78.719 6.9 133 23 74 7 922 731024 14.360 2.051 271.955 74. 71 6 6.6 136 2393 7772 73103 5 6.382 1.477 349.656 44.029 6. 1 142 4024 7493 73001535 12. 01.5 1 .1 96 367.279 49.793 7.9 147 4081 7712 73001550 10.013 0.926 347.246 51.637 6. 7 * Sample rejected for containing anomalously high concentrations of the underlined element (s) . + Blank = value not measured. 269 SAMPLE DESCRIPTION SITE U.T.M. SAMPLE CU FE MN ZN SE* PH + NO. COORDINATES NO. (PPM) (%) (PPM) (PPM) (PPM) E N C HORIZON PASK- SOIL APOO GROUND MORAINE * 1 7 8 9 10 11 17 22 23 24 39 49 101 103 105 117 *1 18 122 123 131 3143 3100 3100 3096 3082 3100 3173 3183 32 06 3234 3393 3561 3022 2920 2920 2656 2722 2640 2604 2542 7965 7658 7638 7590 7581 7525 7780 7583 7574 7574 7664 7737 7648 7682 7730 7767 7813 7846 7804 7841 73 0564 73C585 730588 730591 73C597 73C600 730621 730636 73C642 730645 730698 73C732 730920 73C926 73C932 730970 73G973 73C989 730992 731C18 33.929 12.500 12.500 11.607 13.393 9.821 12.621 17.476 20.388 18.447 12.621 23. 301 6.481 24.074 15. 741 12.963 16.667 2C. 370 16.667 20.370 2.926. 1. 183 1 .619 1.146 1.619 0. 996 1 . 922 1.369 1.689 1.529 1. 500 1.893 1. 140 1.698 1.267 1. 337 1.012 1. 742 1.731 1 .846 275.711 229.759 407.002 315.098 328.228 190.372 6 56. 716 171.642 261.194 194.030 247.500 315.000 218.532 276.379 2 44.24 2 282.807 726.299 270.096 321.543 366.560 66.990 31. 664 36.187 37.049 53. 419 31.018 35.015 43. 027 45.994 48. C71 56.119 56.716 27. 378 52.668 41.299 41. 763 51.7^0 46.260 38.515 50.580 8.1 8.7 8.0 7.0 6. 7 8.0 8. 1 7.5 HORSE- SHOE ' CANYON GROUND MORAINE 73 76 77 81 85 86 * 88 91 92 39 70 3 92 3 3976 4061 4156 4200 41 42 4270 4234 7734 7590 7563 7587 7 7 53 7 7 09 7616 7553 7577 144 4086 7748 146 3983 7688 73C820 73C833 730338 73C652 730864 73C867 73C875 730886 73C889 73001543 73001549 25.837 17. 225 20.370 18. 519 16.667 12.037 13. 889 19.444 38.889 17.763 12.82 9 1.982 1.3 50 1.638 1.488 1. 292 1. 364 1.315 1.315 2. 100 0. 998 1. 107 397. 309. 2 93. 342. 234. 310. 684 . 790 39 2 C97 495 672 782 989 298 393 233 190 ,097 23 5 422 ,98 1 6C, 50, 49, 50 4C. 51 35 46 69 4 3 34 714 000 .116 ,269 81 5 , 653 ,742 . 580 ,178 , 437 .483 8.3 7.8 5. 1 8.1 PASK- APOO HUMMOCKY MORAINE 12 34 35 44 45 46 51 52 55 57 58 59 60 171 3132 32 73 3312 3457 3476 3496 3529 3620 3726 3652 3657 3630 3690 3232 7537 7563 7545 7560 7666 7679 7652 7636 7530 7628 7632 7688 7750 7697 730606 730681 73C684 730715 730718 730721 730740 73C743 730754 730762 730765 730770 73G775 73001627 13.393 13.592 21. 359 12.621 20.388 13.592 22.330 13. 592 7.767 13.397 16.268 7. 656 15.311 4. 025 1.556 1.034 1.646 1. 194 1 .675 1. 150 1.777 1.2 09 1 .063 1.163 1. 2 06 0.977 1.2C6 0.575 347. 208. 270. 187. 285. 217. 292. 165. 180. 213, 228. 110. 250, 107. 921 955 000 500 000 500 500 000 000 ,629 361 497 460 473 45.880 36.202 53.134 34.328 53.134 33.433 53.433 35.224 25. 075 29.762 35.714 28.869 3 5.714 14.45 1 7.9 8.0 8.0 8. 3 8. 1 9. 0 * Sample rejected for containing anomalously high concentrations of the underlined element(s) . + Blank = value not measured. 270 SAMPLE DESCRIPTION SITE U.T.M. SAMPLE CU FE MN ZN NO. COORDINATES t? M NO. (PPM) .(%) (PPM) (PPM) C HORIZON HORSE- 56 3730 754.9 730757 15.311 1.235 206.252 36.310 SOIL SHOE 64 3718 7670 730789 13. 39 7 1 .436 2 94.65 9 36.310 CANYON 65 3736 7548 730792 14.354 1.465 272.560 3 8. 095 HUWDCKY 66 3756 7530 730795 13.397 1 . 178 228.361 36.905 MORAINE 68 3896 757 1 73C801 13.397 1 .178 220.995 3 5.714 69 3868 7633 73C804 22.010 1.695 250.460 55. 952 70 3841 7656 73C807 13.397 1 .235 265.193 35. 119 72 3852 77G8 730815 14.354 1. 250 235.728 36.607 75 3920 7649 730828 17.225 1.408 324. 125 42. 857 * 78 3951 7521 73C841 35. 185 1.973 317. 125 71.483 79 4043 7553 73C844 15.741 I. 419 266.385 41. 045 82 4036 7639 730855 15.741 1.500 215.645 42.429 87 4117 7653 73C872 12.963 1 .592 69.767 39.662 89 4 163 7548 73C878 15.741 0.958 145.677 36.434 90 41 80 7547 730883 16.667 1.338 272.727 47.041 93 4214 7590 73C894 18.519 1.581 266.385 52.575 94 4214 7615 730897 19.444 1 .454 183.932 41. 507 143 403 3 7632 73001540 17.763 1 .197 222.812 44.444 S E (PPM) PH 8. 1 8.0 3.1 8.3 8.7 8. 1 LAC. 3 3111 7897 730573 14.286 1 .345 210.066 4 1.357 DEPOSITS 4 3110 7850 730576 13.393 1. 457 393 .873 48.034 5 3103 7780 730579 10.714 1.494 303.534 31.018 6 3053 7730 73C582 28.571 2.328 479.212 68.067 18 3 198 7732 73C624 1 7. 476 1.427 261. 194 51.92 9 97 3032 7902 730908 3. 333 1.015 234.672 28.132 ICC 3002 77 12 73C917 2C.370 1. 651 276.379 52.204 7.8 104 2361 7742 73C929 22.222 1. 733 295.661 55.684 1 C6 2877 7742 73C935 19.444 1.651 250.670 4 6.4 04 107 2932 7838 730938 26.852 1.977 231 .387 59.397 1 10 2765 7856 730947 16.667 1.535 282.807 45. 940 8. 0 1 11 2783 7 300 73C950 16.667 1 .384 224.960 42.923 8.1 112 2816 77 78 73C955 17.593 1.465 218.532 42.691 119 2 740 7900 730978 11.111 1.212 212.219 37.319 8. 1 128 2489 7727 731007 30.556 2.538 398 .714 74.246 133 2374 7922 731026 2 8. 704 2. 158 334.405 64.501 7.8 134 2370 7863 731031 12.963 1.223 257.235 40.603 135 2420 78C9 731034 22.222 1 .708 308.682 55.220 145 4003 7751 730C1546 20.724 1. 578 265.252 54.023 147 4081 7712 73001552 6. 908 0.862 122.016 19.157 148 4049 7747 73001554 22.697 1.3 62 381.963 57.854 1 49 4003 7767 73001557 17.763 1.723 228.117 54.406 ALLUVIUM-• 27 3309 7890 73C654 11.650 1.267 313.433 35. 015 OUIVJASH * 71 3823 7690 730812 20.096 3.045 1038.674 66.07 1:. DEPOSITS 116 2650 7687 73C967 8. 333 1.128 385.646 27.146 154 2365 7790 7301582 7.895 0.889 185.676 24. 329 164 2830 7756 7301608 10.063 0.997 194. 179 3 1.792 167 3061 7879 7301615 7. 044 0. 843 141.058 24.C85 168 2992 7800 7301619 15.094 1. 802 335.852 43.353 170 3333 76C8 7301624 10.C63 0.958 144.417 24.085 177 3306 7793 7301699 5.006 0.538 90.000 6.773 * Sample rejected for containing anomalously high concentrations of the underlined element (s) . + Blank = value not measured. SWAN RIVER - DAUPHIN AREA STREAM SEDIMENT SAMPLE U.T.M. M0+ NO. COORDINATES (PPM) E N 7200001 3322 7600 7200002 3335 7598 1.5 7200003 3280 7570 0.5 7200004 3158 7507 7200005 2966 7483 720CC06 2953 7617 72C0007 3004 7614 7200008 31C3 75C8 0.5 7200009 3138 '7413 .72000 10 3196 7477 0.5 7200011 3196 7480 720CC12 3192 7531 72000 13 3228 7570 0.5 7200014 3260 7544 0.5 7200015 3243 7468 7200016 3264 74C6 7200017 3285 7410 72000 18 3312 7402 7200019 3337 7486 7 2000 20 334? 747C 7200021 3323 7520 7200022 3336 7600 7200023 3404 7 546 7200024 3413 7548 1 .< 7200025 3428 7547 7200026 3440 7549 7200C 27 3437 75 80 7200028 3430 7595 7200029 3446 7578 . 0.! 7200030 3468 7593 0.' 7200031 3475 7593 7200032 3494 7595 7200 033 3495 7625 7200034 3520 7625 7200035 3540 7630 7200036 358 2 7668 7200037 3608 7675 1 . 7200038 3625 7555 7200039 3645 7510 7200040 3751 7400 7200041 3750 7394 7200042 3 R00 7400 7200043 3802 7402 7200044 3894 7394 7200045 392 1 74C0 7200046 3909 7432 + Blank = value less than detection limit of 0.5 ppm. 272 SAMPLE NO. U.T.M. •COORDINATES MO (PPM) 7200047 3888 7489 7200C48 3860 7540 7200049 3843 7563 7200050 3857 7554 7200051 3850 76C9 7200C52 3846 7 6 28 7200053 3845 764C 72000 54 3815 7730 7200055 3598 7721 7200056 3580 7722 7200057 3529 7723 7200058 3780 7782 720CC59 3738 7782 7200060 3705 7783 7200061 3 657 7783 7200062 3606 7784 7200C63 3597 7786 7200064 3507 7787 7200065 3012 7662 7200066 3020 7715 7200067 3145 7684 7200068 3256 7655 7200C69 3198 7700 720007C 3195 77C3 7200071 3175 7710 7200072 3113 7770 7200073 3114 778C 7200074 3115 7796 7200075 3 196 7773 7200076 3196 7793 7200077 3212 78C1 7200078 3193 7757 7200079 3 192 7722 7200080 3242 7739 7200081 3243 7756 7200082 3253 7801 7200083 3353 7793 7200084 3275 7735 72C0C85 3295 7728 7200086 3291 7666 7200097 3342 7663 7200088 3354 7663 7200089 3441 7654 7200138 39 39 7353 7200137 3931 7377 7200139 3940 7346 7200140 3953 73C8 7200141 3968 7253 7200142 3954 7228 1 .0 0. 5 0.5 0.5 1.0 0.5 l . C 0.5 + Blank = value less than detection limit of 0.5 ppm. SAMPLE U.T.M., NO. (COORDINATES E N 7200143 7200144 7200 145 7200146 7200147 7200148 7200149 7200150 7200151 7200152 7200153 7200154 7200155 7200156 7200157 7200158 720 0159 7200160 7200161 7200162 7200163 7200164 7200165 7200166 7 20 0167 7200168 7200169 720017C 7200171 7200172 7200173 7 200174 720C175 7200176 7200177 7200178 7200179 7200180 7200181 7200182 7200183 7200184 7200185 7200186 7200187 7200188 7200189 7200190 7200191 7200192 3943 3952 3974 3982 3980 4C46 4057 4039 3798 3798 3798 3348 3846 3876 3866 3867 3914 3915 3964 39 63 3963 3965 3915 3963 3962 3960 4026 4 02 7 4029 4029 4028 4028 4 063 4069 3745 3 72 5 3 7 85 3763 3763 3785 3836 3848 3873 3862 3862 3862 3862 4155 4132 4123 7202 7167 7134 7086 7C68 7020 6968 6860 6746 6768 6793 6758 6740 6732 6837 6864 6858 68 86 6884 l.C 6870 6853 6846 2.5 6796 6805 6757 6740 6 733 6752 6814 3.0 6820 1.0 6826 6831 6747 6676 3.5 6704 6630 6680 6624 6584 6580 6581 6582 6580 6 618 6625 6640 6656 6607 4.5 6608 1.5 6580 + Blank = value less than detection limit of 0.5 274 SAMPLE U.T.M. MO+ NO. CXXIRDINATES (PPM) E N 7 200193 4128 6574 0.5 7200194 4020 6543 7200195 4C13 6542 7200196 3992 6563 7200197 3965 6563 720C198 3946 6563 7200199 3921 6580 7200200 3915 6580 7200201 3927 6 6 38 7200202 3969 6627 7200203 3967 6610 7200204 3972 6610 7200205 3981 6610 7200236 4064 6642 7300881 4243 6540 4.0 7300883 4244 6556 3.2 7300884 4250 6590 1.6 7300965 4273 6633 7300966 4288 6635 7300967 4255 6623 7300968 4250 6605 1.6 730C969 4250 6573 1.6 7300977 4090 6590 2.4 7300978 4106 6556 5.6 /30G979 4 123 6564 14.4 73C0S80 4100 6541 7300981 4111 6559 7300983 4142 6592 6.4 7300985 41 88 6603 4.8 7300989 4131 66C8 2.0 7300990 4104 66CC 0.8 7300991 41 57 6624 4.6 7301038 4065 6756 7301039 4045 6759 7301041 4021 6750 1.6 7301C42 399 5 6750 3.2 7301043 3957 6762 7301044 4013 6818 1.6 7301055 3585 7673 2 .4 7301056 3574 7658 0. 8 7301215 3971 6610 7301219 4028 6752 7301469 3610 7656 7400059 4072 6582 7400060 4082 6540 7400061 4071 6.557 + Blank = value less than detection limit of 0.5 ppm. 275 6. SWAN RIVER - DAUPHIN AREA BEDRCCK (TABLES XXXXIII AND LTV) FORMATION UraOLOGbf V E R N I L L I C N R I V E R S H A L E F A V E L S H A L E L I M E S T O N E B E N T O N I T E A S H V I L L E S H A L E SITE U.T.M. SAMPLE MO+ SE++ NO. OOORDINATES NO. (PPM) (PPM) 1 ri 4182 N 6535 730385 20. 0 8 4170 6493 730908 4.0 20. 5 7309 09 10. 0 730910 6. 0 24. 8 15 3245 75 95 731390 15.0 731391 £. 0 10. 3 731392 14 . 0 731393 15. 0 6. 3 7 31394 12 . 0 16 3610 7653 731395 15 . 0 731396 2 5 . 0 731397 14.0 731398 3 0 . 0 731399 1 C . 0 2 4170 6576 730837 13. 0 1 . 3 730888 8 . 0 3 4130 6606 730889 3 . 0 2. 7 730891 3C. 0 4. 4 4 4068 6670 730892 14 . 0 73C893 14. 0 2 . 9 7 30894 14. 0 730896 8 . 0 . 2 . 5 6 4027 6730 730900 1 5 . J 730901 13. 0 9 4243 6528 730921 14 . 0 730922 14. 0 7 309 2 3 2 5 . 0 4. 5 730924 15 . 0 10 4200 656 5 730970 2 5 . 0 73C971 12 . 0 4. 4 12 3584 7673 731048 3 0 . 0 731049 4C. 0 4 • 9 731050 15. 0 14 3270 7605 •73 1065 7 . 0 731067 1 2. 0 15 3245 7595 73 1389 15 . 0 17 3666 7690 731465 12 . 0 1. 4182 6535 730886 3. 0 9 4243 6528 730919 5.0 12 3584 76 73 731047 3 C . 0 15 3245 7595 731333 2.0 17 3666 7690 731464 4.0 3 4130 6606 730890 2. 0 4 4068 6670 730395 4. 0 10 4200 6565 730972 2.0 6 4027 6730 730897 7. 0 7 4128 6690 7309 03 0. 5 730904 C . 5 730905 6. 0 730907 C . 5 10 42 00 6565 730973 13.0 5. . 0 730974 1 3. 0 + Values below the detection limit (1 ppm) given as 0.5 ppm. •H- Blank = value not measured. 276 FORMATION LITHOLOGY SITE NO. U.T.M. CXXJRDINATES E N SAMPLE NO. MO (PPM) SE (PPM) A S H V I L L E SHALE SWAN RIVER 11 4160 6605 12 3584 7673 FE CX-GYPSUM 6 402 7 673C SULFUR 7 4128 6690 SAND 13 3540 7673 S I L T S T O N E SHALF S H A L E / S I L T 13 3540 7673 13 13 3540 3 540 7673 7673 730975 730976 731217 731051 731052 731053 730899 730906 731057 731058 731062 731063 731059 731060 731061 731064 10.0 5. 0 2.0 15.0 1 3. 0 10. 0 5.0 8. 0 1.0 C.5 0. 5 0. 5 0.5 0. 5 0. 5 0.5 3. 1 6. 1 5.4 7. KELD DETAILED STUDY AREA SOILS AND PLANTS (TABLES XXXXIV, XXXXVI AND LV) SAMPLE DESCRIPTION SITE U.T.M. NO. COORDINATES SOIL E N SHALE- I 18 4142 6544 74CC81 4.0 TILL 1 19 4140 6550 74C085 4.0 128 4126 6558 740118 0 .4 130 4128 6540 74C128 4.0 1 33 4116 6544 740139 7.2 136 41 35 6546 740152 16 .0 139 41C7 6552 740164 1.6 148 4 117 6 5 50 740191 7.2 150 41 33 6550 740199 1 .6 SAMPLE MO1" CU SE PH NO. (PPM) (PPM) (PPM) 7.4 7.8 7.3 7.3 7. 3 7.2 7.7 7.8 8.3 CALC- AREOUS TILL 112 4153 6572 740064 1 .6 116 4142 6528 74CC77 0.4 117 4142 6532 74CC79 0 .4 126 4123 6568 740113 2.4 127 4131 6561 74C115 0.4 131 4127 6533 74C133 1 .6 132 4127 6526 740135 0.4 1 34 4111 6528 740147 1.6 135 4111 6 5 33 74C150 0.8 137 4110 6546 740156 0.4 1 38 4107 6558 74C160 2.4 141 4088 6530 74C170 0.8 142 4087 6546 74C172 0.4 143 4095 6562 740176 4.0 144 4100 6558 740180 0.4 145 4112 6566 74C183 2.4 1 46 4093 6578 740186 0.4 147 4111 6576 740183 0.4 + Values below the detection ++ Blank = value not measured limit (1 ppm) given as 0.5 ppm. 8.0 8.1 8. 0 7.7 7.8 7.8 7.8 7.4 7.4 7.8 7.8 7.8 7.9 7.9 8.5 8.3 8.2 277 A HORIZON IAC. SOIL SAND C HORIZON SOIL SHALE- TILL SITE U.T. .M. SAMPLE MO+ CU++ SE""" PH"1"1 NO. OOORDINATES NO. (PPM) (PPM) (PPM) E N 113 4153 6558 740C66 0.4 7.7 114 «1 5 3 6545 74CC69 0.4 7.7 115 4153 6527 74CC73 0.4 7. 9 120 4138 6562 74CG89 0.4 7.9 121 4148 6544 74CC92 0.4 7.9 122 4146 6558 740096 0.4 7.9 123 41 38 6568 740100 0.4 7.8 124 4137 6577 740104 0.4 7.8 125 4123 6572 7401C9 0.4 7.6 118 4142 6544 74C083 8 .0 6.6 119 4140 6550 74CC87 10.4 7.36 3.5 128 4126 6558 740121 6.4 7. 1 130 4128 6540 740131 4.8 2. 18 4.4 133 4116 6544 74C140 4.8 136 4135 6546 740154 3.0 3. 4 139 4107 6552 74C166 5 .6 3.5 148 4117 6550 74C193 20.0 4.88 3.9 150 4133 6550 74C200 2.4 CALC- AREOUS TILL 112 4153 6572 74CC65 6.0 7. 2 1 16 4142 6528 740073 2 .4 8.3 117 4142 6532 74CC80 0.4 8.4 126 4123 6568 740114 1.6 8. 3 127 4131 6561 740116 0.4 8. 1 131 4127 6533 74C134 0.4 8.4 132 4127 6526 740136 I .6 7.9 134 4111 6 528 74C148 3 .2 8.3 1 35 4111 6533 74C151 1.6 8. 1 138 4107 6558 740161 I .6 140 4100 6546 740169 0.4 8.3 141 4088 6530 74C171 4.0 8. 2 142 4C87 6546 740173 0 .4 7.8 144 41 CO 6556 74C181 2.4 8. 1 146 4093 6578 74C187 0.4 8.2 147 4111 6576 740189 0.8 7.8 LAC. SAND 113 4153 6558 74CC67 0.4 8.3 1 14 4153 6545 74CC71 0.4 8.4 115 4153 6527 74CC75 0.4 8.4 120 4138 6562 74CC91 8.0 7.7 121 4148 6544 74CC94 0.4 8. 1 122 4146 6558 74C098 0.4 8.3 123 4138 6568 740102 2 .0 8.4 124 4137 6577 74C1C6 0.4 8.8 125 4123 6572 740111 0.4 8.5 + Values below the detection limit (0.8 ppm) given as 0.4 ppm. ++ Blanks = values not measured. 278 GRASS DESCRIPTION SITE U.T.M. SAMPLE MO+ CU++ NO. COORDINATES NO. (PPM) (PPM) E • N SHALE- 118 4142 6544 740084 1.6 6. 926 TILL 119 4140 6550 74CC88 1 .0 6 .518 128 4126 6558 740122 0.6 7.296 130 41 28 6540 740132 1 .2 8 .917 136 4135 6546 740155 1.6 10.133 1 39 4107 6552 74C167 2.4 8.917 148 4117 6550 740194 I .0 9.399 150 4133 6550 740202 1.6 9.399 S E ^ (PPM) PH CALC- AREOUS TILL 127 4131 6561 740117 0 .4 6.926 132 4127 6526 74C137 0 .8 9.322 134 4111 6528 740149 0 .8 12 .160 *137 4110 6546 74C158 8 .0 11.349 1 28 4107 6558 740162 2 .0 8.917 143 4095 6562 740178 I .8 9 .728 144 4100 6556 74C182 3 .4 8.917 145 4112 6566 740185 0 .6 6 .485 147 4111 6576 740190 0 .8 7.296 LAC. 113 4153 6558 SAND I 14 41 53 6545 115 4153 6527 121 4148 6544 122 4146 6558 123 41 38 6568 124 41 37 6577 125 4123 6572 SHALE- 13? 4116 6544 TILL CALC- 122 4127 6526 AREOUS 1 27 4 110 6546 TILL 1 38 4107 6558 142 4095 6562 LAC. 124 41 37 6577 SAND 74 006 8 1.2 9.777 740072 1 .4 8 .962 74CC76 0.4 8.555 74CC95 0.8 6.51 8 74CC99 0.4 7.333 74 0103 2.0 4.0 74 74C107 1 .4 6 .111 740112 1 .4 7 .740 740142 7.0 12.160 740138 7.0 8.917 74C159 10.0 12.970 740163 9 .0 10.5 38 74C179 6.0 10.133 740108 7 .0 10 .592 8. SWAN RIVER VALLEY SOILS AND PLANTS (TABLES XXXXVII, XXXXIX, LV AND LVI) A HORIZON MO- SOIL TOXIC LAC. SILT 2 3240 7630 731C71 1.6 7.4 51 32 6 8 7588 73 1299 2 .4 7.4 144 3222 7624 740445 0.4 6.6 145 3220 7637 740450 0.4 6. 8 146 3243 7649 740454 0.8 7.8 147 3255 7646 740458 0.4 7.5 149 3280 7650 740466 0.4 6.4 + Values belcw the dection limit (0.8 ppm) given as 0.4 ppm. 4+ Blank = value not measured. 279 SAMPLE DESCRIPTION SITE U.T.M. SAMPLE MO+ OjV' SE** PH NO. COORDINATES NO. (PPM) (PPM) (PPM) A HORIZON MO- SOIL TOXIC LAC. SILT 15C 3273 7644 74G470 0.4 6.4 151 3277 7630 74C475 0.4 6.6 152 3245 7622 740479 0.8 6.8 153 3290 76C5 740484 1 .6 7.2 154 3281 7596 74C488 C.8 7.0 155 3276 7577 74G492 0.4 6.6 157 3314 7597 74C500 1 .6 7.1 158 3312 7576 740505 0.8 6.6 159 3328 7576 740508 0.4 7.2 160 332C 7604 740512 0.8 6.8 161 3323 7588 740517 0.8 7. 5 162 3298 7588 740521 0.8 6.4 LAC. SILT AND CLAY CALC- AREOUS TILL LAC. SAND 24 3372 7637 731158 0.4 6.8 28 32<;6 7760 731170 0.4 7.9 32 3311 7859 721236 0.4 7. 5 39 3525 7916 731259 0.4 8.0 41 3458 7859 731266 0.4 7.9 49 3293 7686 731293 0.4 7.9 57 3683 7816 731319 0 .4 7.8 59 3676 7917 721225 C.4 7.9 61 3574 7916 731331 0 .4 7.7 63 3555 7857 731337 0.4 8.1 69 3506 764 7 731355 0.4 7.6 75 3459 7663 731373 0 .4 8.2 163 3349 76C4 740525 0.8 6.7 164 3375 7626 74C530 0.4 7. 1 165 3353 7649 740534 0.8 6.2 166 3385 7650 74C538 0.4 6.5 167 3431 7632 74C542 0.4 7.5 10 3621 7658 731 107 2 .4 7.9 14 3458 7542 731123 1 .6 7.6 16 3238 7418 731130 1.6 7.1 25 3389 7727 731162 0.4 7.9 26 3361 7782 731164 0.4 7.9 30 3231 7871 731177 0.4 7.3 35 3370 7941 731246 0.8 7.6 47 3224 7676 731285 1.6 7.6 71 3425 7803 72 1361 0.4 7. 9 5 3385 7665 731C83 0.4 8.0 6 3554 7 996 731089 0.4 6.8 45 3259 7.562 731278 1 .6 6.8 53 3769 7762 731306 0.4 7.9 60 3633 7918 731328 0.4 7.5 64 3580 7853 731340 C.4 7.8 65 3587 7817 73 1342 0.4 8. 0 67 3552 7737 731348 0.4 7.8 73 3466 7598 731367 0.4 7.9 77 3473 7748 731379 2.4 7. 5 + Values below the detection limit (0.8 ppm) given as 0.4 ppm. 4 + Blank = value not mfflsured. 280 SAMPLE DESCRIPTION SITE U.T.M. SAMPLE M0+ CU** SE** PH4 NO. COORDINATES NO. (PPM) (PPM) (PPM) SOIL MO- 1 3230 7633 731C70 0.8 TOXIC 2 3240 763C 731073 2 .4 7.8 LAC. 3 3256 7638 731C79 1.6 SILT 4 3313 7572 731C82 2.4 51 32 68 7588 731301 1 .6 8.2 52 3296 7573 7313C5 C.8 85 3270 7590 731428 0.4 85 327C 7590 74C573 0. 50 99 3282 7634 731478 0.4 144 3222 7624 74C447 0.8 7.9 145 3220 7637 740452 1.6 5.9 146 3243 7649 74C456 0.4 7.4 147 32 55 7646 74 0460 0.4 7.9 148 3261 7620 7 4C464 1.6 7.9 149 3280 7650 74 046 3 0.4 7.8 15C 32 73 7644 740472 0.4 7.7 151 3277 7630 74C477 0.8 6.5 152 3245 7622 740481 0.4 0. 76 7.5 153 3290 76C5 74C486 0.8 0.24 8.0 154 3281 7596 740490 1 .6 7.4 155 3276 7577 74C4 94 0.8 8. 1 157 3314 7597 74C502 1.6 7.8 159 3328 7576 74C510 0.4 8.0 16C 332C 7604 74C514 3.2 0. 63 8.0 161 3323 7588 74C519 0.4 7. 7 162 3298 7588 74C523 0.8 7.6 LAC. SILT AND CLAY 24 3372 7637 731160 1 .6 7.7 27 3287 7767 731169 0 .4 28 3296 7760 731172 1.6 8.2 32 3311 7859 721238 0.4 8.2 34 3350 7890 731245 0.4 39 3525 7916 731261 2.4 8. 1 41 3458 7859 731267 1 .6 7.9 42 3478 7R24 731270 1.6 49 3293 7686 731294 0.4 8.3 50 3290 7722 731298 0.4 56 3667 7776 731318 0.4 57 3683 7816 731321 1.6 7. 9 58 3653 7865 731324 0.8 59 3676 7917 721326 0.4 8.3 61 3574 7916 731332 0.4 8.5 63 3555 7857 731338 0.4 8.0 66 3556 7781 721347 4.0 69 3506 7647 731357 0.4 7.7 72 3436 7 64 3 731366 0.8 74 3502 7638 731372 0.8 75 3459 7663 731375 1.6 . 8.0 76 3457 77C2 731378 C.4 86 3361 7579 731432 0.4 89 3370 7547 731440 0.4 92 3298 7821 731443 0.4 93 328C 7811 731450 0.4 98 3588 7761 721473 0.4 +' Values below the detection limit (0.8 ppm) given as 0.4 ppm. ++ Blank = value not measured. 281 SAMPLE DESCRIPTION SITE U.T.M. SAMPLE MO+ CU** SE44" PH4 NO. COORDINATES NO. (PPM) (PPM) (PPM) C HORIZON SOIL LAC. ICO 3337 7631 731481 0.4 SILT 101 3352 7630 731484 0.4 AND 102 3 391 7632 731487 0.4 CLAY 1 03 34 12 7 63 1 73149C 0.4 104 3451 7.628 731493 0.4 105 3488 7620 731496 0.4 107 3356 7732 731511 0.4 163 3349 7604 740527 0.8 164 3375 7626 740532 1 .6 166 3385 7650 740540 1.6 167 3431 7632 740544 0.4 CALC- AREOUS TILL LAC. SAND 9 3768 77C8 731106 1.6 10 3621 7658 731109 1 .6 7.9 11 3 6 02 7633 731115 0.4 13 3496 7562 731122 3.2 14 3458 7542 731125 1.6 7.7 15 3238 7452 7? 1129 0.4 16 3238 7418 731132 2.4 7.8 17 3293 7406 731136 0.8 19 3224 7442 731143 2 .4 26 3361 7782 731165 0.4 8.1 30 3231 7671 73 1179 0.4 7.8 35 3370 794 1 721248 0.4 8. 0 36 3399 7933 731252 0 .8 44 3281 7510 721277 0.4 46 3226 7663 731284 0.4 47 3224 7676 731289 0.4 8.0 48 3226 7684 72 1292 0.4 71 3425 7803 731362 1 .6 8.2 78 3748 7796 731401 C.4 5 3385 7685 731085 0.4 8.2 6 3554 7996 731091 0.4 8.3 23 3342 7586 731157 2.4 25 3389 7727 731163 0 .4 33 3370 7890 731242 0.4 37 3392 7869 731255 4.0 8.0 38 3482 7951 731258 0.8 40 3462 7880 721265 1.6 43 3384 7797 731274 0.4 53 3769 7762 731307 0.4 7.9 6C 3633 7918 721330 0.8 8.2 62 3562 7955 731336 0.4 64 3580 7853 73 1341 0.4 8.0 65 3 5 87 78 17 731343 C.8 8. 5 67 3552 7737 731350 0.8 8.1 70 3502 7722 73136C 0.4 73 3466 759 8 731369 0.4 7.9 77 3473 7748 731381 0.8 8.3 + Values below the detection limit of 0.8 ppm given as 0.4 ppm. ++ Blank = value not measured. 282 GRASS MO-TOXIC AREA SITE U.T.M. SAMPLE MO NO. COORDINATES NO. (PPM) E N ' 1 3230 7633 740569 5 .0 * 85 3270 7590 7301429 20.0 144 3222 762 4 740448 0.8 145 3220 7637 740453 1 .6 146 3243 764 9 740457 0.6 147 3255 7646 740461 3.0 148 3261 7620 74 046 5 5.0 149 3280 7650 740469 2.0 150 3273 7644 740473 3.2 151 32 77 7630 740473 2.6 152 3245 7622 740482 5.0 1 53 3290 7605 740487 8 .0 154 3281 7596 740491 1.8 155 32 76 75 77 740495 1 .6 157 3314 7597 74 05 03 4.0 1 58 3312 7576 740507 2.6 159 3328 7576 740511 5.0 160 3320 7604 74C515 12.0 161 3323 7588 74C520 4.0 162 3298 7583 740524 3.0 CU (PPM) 4 .685 12.910 4.345 5.347 7 . 3 5,2 4.010 10 .695 7.019 5.347 6.684 6.350 4.345 347 003 347 679 687 6.684 7.352 7.013 SE PH (PPM) 4.32 0. 26 0. 68 1.66 OTHER AREAS 5 3385 7685 73C1424 0 .6 11 .8 80 78 3748 7796 7301404 1 .0 9.279 80 3686 7717 7301409 1 . 8 8.2 54 163 3349 76 04 7 4052 8 1 .4 5.013 164 3 37 5 7626 740533 1 .6 6 .350 165 3353 7649 740537 I .4 6.350 166 33 8 5 7650 740541 2 .8 6.016 167 3431 7632 740545 2 .0 4.679 LEGUMES MO-TOXIC AREA OTHER AREAS I 3230 7633 740570 4.0 6 .486 2 3240 7630 7301475 6.0 14.004 144 3222 7624 740449 1.0 6.016 150 32 73 7644 74 04 74 4.0 6.350 152 3245 7622 740483 4.0 6.684 157 3314 7597 740504 6.0 8.689 160 3320 7604 740516 6.0 6 .684 10 3621 7658 7301471 6.0 15.649 16 3238 7418 7301499 5.0 11.038 19 3324 7442 7301500 9.0 11.038 20 3358 7506 7301502 5.0 12.903 21 3378 7548 7301503 2.4 10.256 44 3281 7510 7301501 5.0 10 .737 50 3290 7722 7301508 5.0 11 .038 76 3457 7702 7301436 6.0 14. 187 77 3473 7748 7301474 8.0 14.430 91 3566 7995 7301446 6 .0 11 .0 32 104 3451 7628 7301497 8.0 10.9 10 105 3438 7620 73C1498 4.0 13.755 106 3397 7679 7301507 2.4 5.941 107 3356 7732 7301512 3.0 10.857 163 3349 7604 740529 1.2 5.013 167 3431 7632 740546 4.0 7.111 0. 50 0. 86 0. 66 I . 06 ++ Blank = value not measured. SAMPLE DESCRIPTION SITE U.T.M. ' > NO. COORDINATES E N SAMPLE NO. (PPM) CU^ (PPM) SE"" (PPM) FAVEL DETAILED STUDY AREA SOILS AND PLANTS (TABLES L, LII, LV AND LVI) PH A HORIZON SHALE- SOIL CLAY LAC. SILT AND CLAY 5 5 3665 7705 731312 0.4 no 3633 7698 740287 0.4 i i 4 3653 7712 740305 0.4 115 3648 7695 740210 0.4 118 3666 7715 740325 0.4 119 367C 7710 740329 0.4 124 3682 7723 74C358 0.8 128 3705 7728 740375 0.4 129 3698 7725 740379 0.4 e 371C 7716 731098 1 .6 125 3682 7710 740363 0.8 126 3682 7702 740367 1.6 131 3698 7714 74C388 1 .6 123 3702 7709 74C396 0.4 136 3721 7732 74C411 2.4 137 3721 7728 74C414 0.4 138 3717 7720 74C419 0.4 139 3720 7710 740422 0.4 141 3728 7717 740432 1.6 7.1 7.4 6.5 6.8 7.0 8.2 6.9 6.9 7.0 7.9 7.7 7.7 CALC- AREOUS TILL LAC. SAND 1G9 3633 7711 740283 0.4 111 3637 7691 740291 0.8 122 3667 7689 740349 0.4 134 3698 7695 74C4C0 0.8 135 3702 7700 740405 0.4 140 3716 77C0 740427 0.4 169 3690 7718 740552 0.4 170 3677 7688 740556 0.4 108 3633 7732 74C280 0.4 112 3650 7729 740295 0 .4 113 3650 7725 74C3C0 0.4 116 3666 7728 740316 0.4 117 3667 7722 740321 0.4 123 3681 7732 74C354 0.4 7.2 7.4 8.0 7.4 7. 4 6.4 6.8 7. 6 7.7 7.3 7.8 7. 8 8.7 7.0 C HORIZON SOIL SHALE- CLAY c c 3665 77C5 . 731314 0.4 80 3673 7712 731410 0.4 1 10 3633 7698 740289 0.4 114 3653 7712 74C3C8 0.4 115 3648 7695 74C212 0.4 1 15 3648 7695 740313 118 3666 7715 74C327 0.8 119 3670 7710 740331 1 .6 124 3682 . 7723 740360 1 .6 128 3705 7728 74C377 0.4 129 3698 7725 740381 0.4 0.92 0. 37 0.37 + Values below the dectionlimit of 0.8 ppm given as 0.4 ppm. ++ Blank = value not measured. 4.7 7.3 7.1 5.3 7. 5 7.7 7. 3 6.8 6.9 6.9 SAMPLE DESCRIPTION SITE U.T.M. NO. COORDINATES E N' SAMPLE NO. C HORIZON SOIL LAC. 8 3710 7716 731101 0.8 SILT 125 3682 7710 740365 2.4 AND 126 36 8 2 7702 740369 3.2 CLAY 131 3698 7714 740390 0.8 133 3702 7709 74C397 0.4 136 3721 7732 74C412 1.6 137 3721 7728 740415 2.4 138 3717 7720 740420 0.4 139 3720 7710 740423 0.8 141 3728 7717 740433 1 .6 142 3732 7 723 740436 0 .4 7.4 7.3 7.8 6. 4 7.8 7.8 8. 2 8.0 8.0 6.7 7.0 CALC- 95 3673 7690 731460 0.4 AREOUS 96 3667 7695 731463 0.4 TILL 109 36 33 7711 740285 0.8 111 3637 7691 74C293 0.4 134 3698 7695 740401 0.8 135 3702 7700 740406 0.4 140 371 6 7700 740429 0.4 17C 3677 7688 74C558 0.8 LAC. 54 3682 7732 731311 0.4 SAND 1 12 3650 7 7 29 74C297 0.4 1 13 3650 7725 740302 0 .8 116 3666 7729 74C313 C.4 123 3681 7722 740356 0.4 3RASS CLAY no 3633 7698 74C290 1.0 9.399 114 3653 7712 740309 2.6 11 .108 0. 14 115 3648 7695 74C214 0.6 9.399 118 3666 77 15 740328 2.8 11.535 0. 84 119 3670 7710 740333 0.6 8.117 124 3682 7723 740361 0.6 6.031 0. 12 128 3705 7728 740378 4.0 5. 361 129 3698 7725 74C383 2.0 4.356 IAC. SILT AND CLAY 125 3682 7710 740366 0.6 7 .372 126 3682 7702 74C370 1.2 8.377 127 3701 7734 74C373 1 .4 6.031 131 3698 7714 740391 1 .6 9 .047 136 3721 7732 74C413 1.8 6 .684 137 3721 7728 ' 74C417 1 .2 8.021 142 3732 7723 740437 0.6 8.689 143 3726 7727 74C44I 1.2 7.018 TILL 109 3633 7711 74C286 4 .0 10.681 111 3637 7691 74C294 1 .0 7 .263 122 3667 7689 74G352 I .2 4 .356 134 3698 7695 7404C3 3 .4 4 .356 135 3702 7700 740408 4 .0 6.031 + Soil values below the dection limit of 0.8 ppm given as 0.4 ppm. 4+ Blank = value not measured. SAMPLE DESCRIPTION SITE U.T.M. SAMPLE MO CU SE NO. COORDINATES NO. (PPM) (PPM)- (PPM) E N CALC- 140 3716 77C0 AREOUS 170 3677 7688 TILL LAC. 100 3633 7732 SAND 112 3650 7729 113 3650 7725 116 3666 7728 117 3667 7722 123 3681 7732 740430 3.0 5 .681 740559 5.0 5.766 74C282 3.0 8.972 740298 4.0 10.254 740303 3.0 13 .672 740319 0.4 9.399 740324 0.6 8.545 740357 I .6 6.366 LEGUMES SHALE- 55 3665 77C5 731459 20 .0 14 .126 CLAY 115 3648 7695 740315 6.0 10.681 119 3670 7710 740334 16.0 9 .326 124 3682 7723 74036 2 28 .0 5 .696 LAC. SILT 127 3701 7 7 34 740374 10 .0 7.372 AND CLAY CALC- 122 3667 7689 740353 3 .4 8 .042 AREOUS 134 3698 7695 74C404 9 .0 5 .361 TILL 140 3716 7700 740431 4 .0 6.016 170 3677 7688 74C560 12 .0 9 . 369 LAC. 112 3650 7729 74C299 12 .0 11 .963 SAND 113 Zt 50 7725 740304 10.0 9 .399 116 3666 7728 740320 4.0 10.681 117 3667 7722 74C323 7 .0 8.117 PARENT 139 3720 7710 74C426 MATERIAL 163 3720 7723 740551 4.00 0.60 UNCERTAIN 10. MANITOBA DEPARTMENT OF AGRICULTURE GRASS ANALYSED FOR SE (TABLE LVI) MO- POOR SAMPLE SECT.-TP.-RANGE SE NO. (PPM) 740004 SE 12-25-25 0.30 740C26 NW 26-2 3-2 6 C.46 740034 S26-2 5-28 0.52 740074 33-27-15 C.42 740093 SE 17-3.7-27 C .46 MO_ 740043 KCCH 74 0C47 740056 74CO83 ++ Blank = value NW27-35-28 C.28 NW29-35-29 0.52 NW 4-37-25 C.36 36-32-23 C.66 measured. PUBLICATIONS Doyle,'P.J. and Fletcher, K., 1977. Molybdenum content of bedrock, s o i l and vegetation and the incidence of copper deficiency i n cattle i n west- ern Manitoba, i n Symposium on molybdenum i n the environment. Vol.11. W. Chappell and K. Petersen eds., Marcel Dekker Inc., New York, N.Y. pp. 371-386. Doyle, P. J . and Fletcher, K., 1977. The influence of s o i l parent material on the selenium content of wheat from west-central Saskatchewan. Can. J. Plant Sci. Doyle, P., Fletcher, K. and Brink, V.C., 1973. Trace element content of soils and plants from the Selwyn Mountains, Yukon and Northwest Territories. Can. J. Botany 51:421-427. Doyle, P., Fletcher, K. and Brink, V.C, 1974. Regional geochemical reconn- aissance and the molybdenum content of bedrock, soi l s and vegetation from the eastern Yukon, i n Trace substances i n environmental health- VI. A Symposium. D. D. Hemphill ed., University of Missouri, Columbia, Missouri, pp. 369-375. Fletcher, K. and Doyle, P., 1971. Regional geochemistry of the Hess Mountains and eastern Yukon Plateau. CIM B u l l . 64:61-67. Fletcher, K. and Doyle, P., 1974. Some factors influencing trace element distribution i n the eastern Yukon. CIM Bu l l . 67:61-65. Fletcher, K., Doyle, P. and Brink, V. C , 1973. Seleniferous vegetation and soi l s i n the eastern Yukon. Can. J . Plant Sci. 53:701-703.

Cite

Citation Scheme:

    

Usage Statistics

Country Views Downloads
China 7 13
Canada 6 0
Japan 2 0
Hungary 2 0
Russia 2 0
United States 1 3
City Views Downloads
Unknown 10 4
Beijing 7 0
Tokyo 2 0
Ashburn 1 3

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}

Share

Share to:

Comment

Related Items