Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Regional geochemical reconnaissance and compositional variations in grain and forage crops on the Southern.. Doyle, Patrick J. 1977

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
UBC_1977_A1 D69.pdf [ 27.19MB ]
Metadata
JSON: 1.0052444.json
JSON-LD: 1.0052444+ld.json
RDF/XML (Pretty): 1.0052444.xml
RDF/JSON: 1.0052444+rdf.json
Turtle: 1.0052444+rdf-turtle.txt
N-Triples: 1.0052444+rdf-ntriples.txt
Original Record: 1.0052444 +original-record.json
Full Text
1.0052444.txt
Citation
1.0052444.ris

Full Text

REGIONAL GEOCHEMICAL RECONNAISSANCE AND COMPOSITIONAL VARIATIONS IN • GRAIN AND FORAGE CROPS ON THE  SOUTHERN  CANADIAN  INTERIOR PLAIN  by PATRICK J . DOYLE B.Sc, M.Sc,  University  University  o f O t t a w a , 1969  o f B r i t h i s h C o l u m b i a , 1972  A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE  REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY  in THE  FACULTY OF GRADUATE STUDIES  (Department o f G e o l o g i c a l  We  accept to  THE  this thesis  the required  as  Sciences)  conforming  standard  UNIVERSITY OF BRITISH  COLUMBIA  September,. 1977 ©  Patrick  J . Doyle,  1977  In p r e s e n t i n g t h i s  thesis  an advanced degree at the L i b r a r y I  further  for  freely  available  the  requirements  for  this  representatives. thesis for  It  financial  that  this  thesis or  i s understood that copying or p u b l i c a t i o n g a i n s h a l l not  Depa rtment U n i v e r s i t y o f B r i t i s h Columbia  2075 Wesbrook Place Vancouver, Canada V6T 1W5  for  reference and study.  t h a t p e r m i s s i o n f o r e x t e n s i v e copying o f  written permission.  The  of  s c h o l a r l y purposes may be granted by the Head of my Department  by h i s of  fulfilment  the U n i v e r s i t y of B r i t i s h Columbia, I agree  s h a l l make it  agree  in p a r t i a l  be allowed without my  ABSTRACT The  distribution  o f Cu, F e , Mn,  s u r f a c e m a t e r i a l s on t h e S o u t h e r n was e x a m i n e d w i t h of  producing  ditions. on and  Canadian  Interior  Plain  t h e a i m o f recommending a p p r o p r i a t e methods  r e g i o n a l geochemical  undertaken i n three separate provinces,  Zn, Mo and Se i n e a r t h  maps. I n v e s t i g a t i o n s were  areas,  one i n e a c h o f t h e p r a i r i e  s e l e c t e d t o r e p r e s e n t a range o f environmental  con-  I n t h e Swan R i v e r - D a u p h i n a r e a e m p h a s i s was p l a c e d  investigating stream  the r e g i o n a l d i s t r i b u t i o n  o f Mo i n b o t h  s e d i m e n t . T h e s e p a t t e r n s were r e l a t e d  soil  t o d a t a on  t h e Mo s t a t u s o f p l a n t s and t o i n f o r m a t i o n on M o - i n d u c e d Cu deficiency and  in cattle.  I n t h e Rosetown a r e a o f S a s k a t c h e w a n ,  t h e Red Deer a r e a o f A l b e r t a , a t t e n t i o n v/as f o c u s s e d on  examining v a r i a t i o n s soils;  i n t h e Cu, Fe, Mn,  i n t h e Rosetown a r e a  concentrations o f these  i n w h o l e wheat p l a n t s were a l s o Procedures  Zn and Se c o n t e n t o f  determined.  f o r r e g i o n a l geochemical  mapping u s i n g  s e d i m e n t a r e w e l l e s t a b l i s h e d . On t h e S o u t h e r n Plain,  however, s t r e a m  routine  results dicate  of  Interior  Although  tributary  common i n p a r t s o f s o u t h e r n  Manitoba,  o f i n v e s t i g a t i o n s i n t h e Swan R i v e r - D a u p h i n a r e a i n -  r e f l e c t Mo  iates  are r e l a t i v e l y  techniques.  t h a t Mo c o n c e n t r a t i o n s  plants.  Canadian  stream  d e n s i t y i s g e n e r a l l y inadequate f o r  a p p l i c a t i o n o f these  drainages  elements  levels  i n stream  sediment  i n upstream s o i l , but not those  typically of associated  I n c o n t r a s t t o f i n d i n g s r e p o r t e d by V7ebb and h i s a s s o c -  i n the United  little  value  Kingdom, M a n i t o b a s t r e a m  i n identifying  Mo c o n c e n t r a t i o n s a r e l i k e l y  areas  to occur  sediment data are  where p o t e n t i a l l y i n forage.  toxic  Reconnaissance surveys based on s o i l sampling, on the o t h e r hand, can be a p p l i e d throughout the Canadian p r a i r i e s . Results o f s t u d i e s around Rosetown and Red Deer i n d i c a t e t h a t regional compositional  trends  f o r s o i l may be e f f i c i e n t l y des-  c r i b e d i n terms o f v a r i a t i o n s among means estimated  forindiv-  i d u a l s o i l parent m a t e r i a l s . In the Rosetown area,  f o r example,  over 70% o f the t o t a l v a r i a n c e  f o r Cu, Fe, Mn and Zn i n A hor-  i z o n s i s a t t r i b u t a b l e t o d i f f e r e n c e s among parent  material  means. T h i s parent m a t e r i a l e f f e c t appears, i n t u r n , t o be mainly a f u n c t i o n o f t e x t u r a l v a r i a t i o n s , with  lowest concent-  r a t i o n s a s s o c i a t e d w i t h s a n d - r i c h and h i g h e s t with  clay-rich  deposits. The ed w i t h  importance o f d i f f e r e n c e s among means f o r s o i l individual surficial  Rosetown area, by r e l a t i v e l y  associat-  d e p o s i t s i s a l s o emphasized, i n the strong p o s i t i v e r e l a t i o n s h i p s  (r>0.73) between parent m a t e r i a l based Mn, Fe and Cu means for  wheat and s o i l . When data a r e considered  on an i n d i v i d u a l  sample b a s i s r e l a t i o n s h i p s between p l a n t and s o i l  concentrations  are g e n e r a l l y much weaker ( r < 0.40). I t i s suggested, t h e r e f o r e , t h a t on the Southern Canadian I n t e r i o r P l a i n , r e g i o n a l geochemical maps can be e f f i c i e n t l y produced u s i n g parent m a t e r i a l based s o i l c o m p o s i t i o n a l  data.  The procedure recommended i n v o l v e s c o l l e c t i o n o f A h o r i z o n samples a t randomly chosen s i t e s over each o f the major  parent  i  materials recognized, d e v i a t i o n values  and e s t i m a t i o n o f geometric mean and  f o r each d e p o s i t . Duncan's New M u l t i p l e Range  t e s t i s used t o i d e n t i f y s i g n i f i c a n t d i f f e r e n c e s among means,  iv and r e s u l t s a r e summarized i n map form, showing o n l y c o m p o s i t i o n a l l y d i s t i n c t i v e parent materials or parent m a t e r i a l  groups.  I n view o f c l o s e r e l a t i o n s h i p s noted between p a r e n t m a t e r i a l based means f o r s o i l s and p l a n t s , maps produced i n t h i s s h o u l d be u s e f u l i n i d e n t i f y i n g areas where t r a c e  element  excesses o r d e f i c i e n c i e s are l i m i t i n g crop o r l i v e s t o c k productivity.  fashion  V  TABLE OF CONTENTS  CHAPTER I  PAGE INTRODUCTION A.  II  ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 1. TRACE ELEMENTS IN PLANT AND ANIMAL HEALTH 2. TRACE ELEMENT STATUS OF PLANTS AND ANIMALS 3. REGIONAL GEOCHEMICAL RECONNAISSANCE TECHNIQUES a. S t r e a m S e d i m e n t S a m p l i n g b. S o i l , P l a n t , Rock and W a t e r S a m p l i n g  1 1  8 10  B. SOUTHERN CANADIAN INTERIOR PLAIN 1. REGIONAL DESCRIPTION a. P h y s i c a l S e t t i n g b. A g r i c u l t u r a l T r a c e E l e m e n t D i s o r d e r s 2. STUDY OBJECTIVES 3. OUTLINE OF APPROACH  14 14 14 19 21 22  2 7  SAMPLE COLLECTION, PREPARATION AND ANALYSIS, AND DATA HANDLING PROCEDURES A.  SAMPLE COLLECTION AND PREPARATION 1. COLLECTION 2. PREPARATION  26 26 26  B. SAMPLE ANALYSIS 1. COPPER, IRON, MANGANESE AND ZINC a. D i g e s t i o n o f P l a n t s b. D i g e s t i o n o f S o i l s c. A n a l y s i s 2. MOLYBDENUM a. D i g e s t i o n o f P l a n t s b. D i g e s t i o n o f G e o l o g i c a l M a t e r i a l s c. A n a l y s i s 3. SELENIUM 4. SOIL REACTION  26 28 28 28 29 31 31 34 35 37 40  C. S T A T I S T I C A L METHODS 1. DATA TRANSFORMATION 2. ESTIMATION OF POPULATION PARAMETERS 3. IDENTIFICATION OF OUTLIERS 4. TESTS OF SIGNIFICANCE a. C o r r e l a t i o n b. A n a l y s i s o f V a r i a n c e c. Duncan's New M u l t i p l e Range T e s t d. M e d i a n T e s t  40 42 44 45 46 46 46 46 47  vi PAGE  CHAPTER III  IV  ROSETOWN A R E A A . D E S C R I P T I O N OF STUDY A R E A 1. G E N E R A L 2. BEDROCK 3. S O I L P A R E N T M A T E R I A L 4. S O I L 5. A G R I C U L T U R A L L A N D U S E AND T R A C E ELEMENT IMBALANCES  48 48 50 52 56 57  B. S A M P L E C O L L E C T I O N AND A N A L Y S I S 1. C O L L E C T I O N a. S o i l b. P l a n t - S o i l c. B e d r o c k 2. A N A L Y S I S  59 59 59 60 61 63  C. R E S U L T S - C O P P E R , I R O N , MANGANESE AND Z I N C 1. AMONG P A R E N T M A T E R I A L S O I L C O M P O S I T I O N A L VARIATIONS 2. W I T H I N P A R E N T M A T E R I A L S O I L C O M P O S I T I O N AL VARIATIONS a. V e r t i c a l b. G e o g r a p h i c 3. R E L A T I O N S H I P S BETWEEN S O I L AND P L A N T C O M P O S I T I O N A L DATA  63 65  D. D I S C U S S I O N - C O P P E R , I R O N , MANGANESE AND 1. C H O R I Z O N S O I L 2. A H O R I Z O N AND 3 0 - 4 6 CM D E P T H S O I L 3. R E L A T I O N S H I P BETWEEN P L A N T AND S O I L CONENTRATIONS 4. G E O C H E M I C A L MAPS a. Method o f P r e s e n t a t i o n b. P a t t e r n s a n d T h e i r S i g n i f i c a n c e  89 89 96 99  ZINC  72 72 82 86  101 101 104  E.  RESULTS - SELENIUM 1. BEDROCK C O N C E N T R A T I O N S 2. S O I L AND P L A N T C O M P O S I T I O N A L V A R I A T I O N S  105 105 107  F.  DISCUSSION - SELENIUM 1. BEDROCK 2. C H O R I Z O N S O I L 3. P L A N T S  111 111 114 115  G.  CONCLUSION  117  RED D E E R  AREA  A. D E S C R I P T I O N OF STUDY 1.  GENERAL  AREA  118 118  vii CHAPTER  PAGE 2. 3. 4. •5.  BEDROCK S O I L PARENT M A T E R I A L SOIL A G R I C U L T U R A L L A N D U S E AND T R A C E E L E M E N T IMBALANCES  B. S A M P L E C O L L E C T I O N AND A N A L Y S I S 1. C O L L E C T I O N 2. A N A L Y S I S  12 6 12 6 126  C. R E S U L T S 1. AMONG P A R E N T M A T E R I A L S O I L C O M P O S I T I O N A L VARIATIONS 2. W I T H I N P A R E N T M A T E R I A L S O I L C O M P O S I T I O N ,AL V A R I A T I O N S a. V e r t i c a l b. G e o g r a p h i c  127 127  D. D I S C U S S I O N 1. C H O R I Z O N S O I L 2. A AND B H O R I Z O N S O I L 3. G E O C H E M I C A L MAPS CONCLUSION V  120 122 12 5 125  136 136 140 1  4  0  irVl , 144 146  SWAN R I V E R - D A U P H I N A R E A A. D E S C R I P T I O N OF STUDY A R E A 1. G E N E R A L 2. BEDROCK 3. S O I L P A R E N T M A T E R I A L 4. S O I L 5. A G R I C U L T U R A L LAND U S E AND T R A C E ELEMENT IMBALANCES  147 147 149 151 155 157  B. S A M P L E C O L L E C T I O N AND A N A L Y S I S T . COLLECTION a. B e d r o c k b. S t r e a m S e d i m e n t c. S o i l d. P l a n t s 2. A N A L Y S I S 3. A D D I T I O N A L I N V E S T I G A T I O N S  160 160 160 160 161 162 163 163  C. R E S U L T S - MOLYBDENUM AND C O P P E R 1. BEDROCK 2. S T R E A M S E D I M E N T 3. S O I L AND P L A N T S a. N i t r i c - P e r c h l o r i c A c i d E x t r a c t i o n b. A c i d Ammonium O x a l a t e E x t r a c t i o n  163 163 16 5 167 167 186  viii CHAPTER  VI  PAGE D. DISCUSSION - MOLYBDENUM AND COPPER 1. BEDROCK 2. SOIL 3. PLANTS 4. AGRICULTURAL SIGNIFICANCE OF THE DATA  188 188 189 192 196  E.  RESULTS - SELENIUM  199  F.  DISCUSSION - SELENIUM 1. BEDROCK 2. SOIL 3. PLANTS  199 199 203 204  G. APPLICATION OF REGIONAL GEOCHEMICAL RECONNAISSANCE TECHNIQUES 1. SOIL 2. STREAM SEDIMENT  205  H. CONCLUSION  207  CONCLUSION A.  STATEMENT OF THE PROBLEM  A  209  B. SUMMARY OF RESULTS 1. ROSETOWN AND RED DEER AREAS 2. SWAN RIVER-DAUPHIN AREA  210 210 212  C. RECONNAISSANCE GEOCHEMICAL SURVEYS 1. INTRODUCTION 2. RECOMMENDED PROCEDURES 3. DISCUSSION a. C h o i c e o f S i z e o f A r e a b. I d e n t i f i c a t i o n o f T a r g e t P o p u l a t i o n s c. S e l e c t i o n o f S o i l H o r i z o n d. C h o i c e o f Number and D i s t r i b u t i o n o f Sample S i t e s e. Sample P r e p a r a t i o n and A n a l y s i s f . Data P r e s e n t a t i o n  214 214 215 216 216 217 219 220  D. GENERAL CONCLUSIONS  22 5  E. SUGGESTIONS FOR FURTHER WORK  227  BIBLIOGRAPHY APPENDIX  205 205  222 224  231 PROCEDURE FOR THE FLUORQMETRIC DETERMINATION OF SELENIUM IN BOTH PLANT AND GEOLOGICAL MATERIALS  243  ix PAGE APPENDIX  B  COMPUTATIONAL PROCEDURES FOR S T A T I S T I C A L TREATMENT OF THE DATA  247  APPENDIX  C  L I S T I N G OF INDIVIDUAL DATA VALUES USED FOR MEAN (OR MEDIAN) AND VARIABILITY ESTIMATES  2 53  X  L I S T OF  TABLES  TABLE I  PAGE Comparison of t y p i c a l t r a c e element concentrations associated with various sedimentary rock types.  4  II  P r e l i m i n a r y comparison of estimated w i t h i n and among t o w n s h i p C h o r i z o n s o i l v a r i a n c e components, s o u t h e r n p o r t i o n o f Rosetown a r e a and Red D e e r a r e a .  24  Ill  A p p r o x i m a t e numbers and t y p e s o f s a m p l e s c o l l e c t e d i n each of the three major study areas.  27  R e l a t i v e e x t r a c t i o n e f f i c i e n c i e s of s o i l d i g e s t i o n P r o c e d u r e s 1 and 2 f o r s e l e c t e d C h o r i z o n Rosetown a r e a s a m p l e s .  30  Instrumental s e t t i n g s f o r Techtron spectrophotometer.  32  IV  V VI  at  33  C o m p a r i s o n o f Mo c o n c e n t r a t i o n s o b t a i n e d by t h i s and o t h e r l a b o r a t o r i e s on s e l e c t e d p l a n t samples.  36  P r e c i s i o n o f Mo a n a l y s i s , a t t h e 95% c o n f i d e n c e l e v e l , b a s e d on d u p l i c a t e d e t e r m i n a t i o n s on r a n d o m l y s e l e c t e d s a m p l e s .  38  IX  P e r c e n t a g e o f e s t i m a t e d t o t a l s o i l Mo c o n t e n t removed by a c i d ammonium o x a l a t e and n i t r i c - p e r c h l o r i c a c i d e x t r a c t i o n s .  39  X  C o m p a r i s o n o f a c c e p t e d Se c o n c e n t r a t i o n s f o r s e l e c t e d s t a n d a r d b i o l o g i c a l samples with v a l u e s determined i n t h i s study.  41  Results of chi-square normality tests p l a n t and s o i l Cu, F e , Mn and Zn d a t a t h e Rosetown a r e a .  on from  43  selected  58  VII  VIII  XI  XII  XIII  P r e c i s i o n o f Cu, F e , Mn and t h e 9 5% c o n f i d e n c e l e v e l .  Zn  AA-4  analyses  P h y s i c a l and c h e m i c a l p r o p e r t i e s o f Rosetown a r e a s o i l p r o f i l e s .  A p p r o x i m a t e number and t y p e s o f a n a l y s e s p e r f o r m e d on Rosetown a r e a s a m p l e s .  64  xi PAGE  TABLE Trace element content of C h o r i z o n s o i l from i n d i v i d u a l morainal types, Rosetown area.  66  R e s u l t s o f a p p l i c a t i o n o f Duncan's New M u l t i p l e Range t e s t t o l o g 10 C h o r i z o n s o i l data f o r i n d i v i d u a l m o r a i n a l types, Rosetown area.  67  Trace element content and pH o f A and C h o r i z o n and 30-46 cm depth s o i l from i n d i v i d u a l s o i l parent m a t e r i a l types, Rosetown area.  68  Comparison of estimated w i t h i n and among parent m a t e r i a l l o g a r i t h m i c v a r i a n c e components, Rosetown area.  70  R e s u l t s of a p p l i c a t i o n of Duncan's New M u l t i p l e Range t e s t t o A and C h o r i z o n and 30-46 cm depth l o g 10 s o i l data f o r i n d i v i d u a l s o i l parent m a t e r i a l s , Rosetown area.  71  Trace element d i s t r i b u t i o n i n s e l e c t e d O r t h i c Brown and Dark Brown Chernozemic s o i l p r o f i l e s , Rosetown area.  79  XX  C o r r e l a t i o n c o e f f i c i e n t s r e l a t i n g l o g 10 t r a c e element c o n c e n t r a t i o n s f o r A h o r i z o n and 30-46 cm depth samples t o C h o r i z o n v a l u e s , Rosetown area.  80  XXI  Comparison of l o g a r i t h m i c w i t h i n and among sample s i t e v a r i a n c e components f o r C h o r i z o n s o i l , Rosetown a r e a .  84  Comparison of l o g a r i t h m i c w i t h i n and among township v a r i a n c e components f o r C h o r i z o n s o i l , Rosetown area.  85  XXIII  T r a c e element content o f wheat (dry weight b a s i s ) and a s s o c i a t e d Ap and C h o r i z o n s o i l a n d . s o i l pH, Rosetown area.  87  XXIV  R e s u l t s of a p p l i c a t i o n of Duncan's New M u l t i p l e Range t e s t t o l o g 10 wheat and s o i l data f o r i n d i v i d u a l parent m a t e r i a l s , Rosetown area.  88  C o r r e l a t i o n c o e f f i c i e n t s r e l a t i n g l o g 10 wheat and s o i l t r a c e element d a t a , Rosetown area.  90  XIV  XV  XVI  XVII  XVIII  XIX  XXII  XXV  xii PAGE  TABLE Numbers of randomly s e l e c t e d s o i l samples (n) r e q u i r e d from each Rosetown area parent material to give adjustable variance r a t i o (Vm) v a l u e s of 1.0 and 5.0.  102  Se content of Bearpaw Formation bedrock, Rosetown area.  106  XXVIII  Se content of wheat-(dry weight basis) and C h o r i z o n s o i l , and s o i l pH v a l u e s , Rosetown area.  109  XXIX  R e s u l t s o f a p p l i c a t i o n o f Median t e s t t o wheat and C h o r i z o n s o i l Se v a l u e s , Rosetown area.  112  C o r r e l a t i o n c o e f f i c i e n t s r e l a t i n g l o g 10 Se c o n c e n t r a t i o n s i n wheat t o those i n a s s o c i ated C h o r i z o n s o i l , and' a r i t h m e t i c s o i l pH v a l u e s , Rosetown area.  113  XXXI  Trace element content o f C horizon, s o i l from i n d i v i d u a l m o r a i n a l types, Red Deer a r e a .  128  XXXII  R e s u l t s of a p p l i c a t i o n o f Duncan's New M u l t i p l e Range t e s t t o l o g 10 C h o r i z o n s o i l data f o r i n d i v i d u a l m o r a i n a l types, Red Deer area.  130  Trace element content and pH o f A and C h o r i z o n s o i l a s s o c i a t e d with major parent m a t e r i a l s , Red Deer area.  131  XXVI  XXVII  XXX  XXXIII  XXXIV  R e s u l t s o f a p p l i c a t i o n of Duncan's New M u l t i p l e 132 Range t e s t t o l o g 10 C h o r i z o n s o i l data f o r major parent m a t e r i a l s , Red Deer area. Comparison of estimated w i t h i n and among parent m a t e r i a l C h o r i z o n l o g a r i t h m i c v a r i ance components, Red Deer a r e a .  137  C o r r e l a t i o n c o e f f i c i e n t s r e l a t i n g l o g 10 t r a c e element c o n c e n t r a t i o n s f o r A and C h o r i z o n s , Red Deer area.  138  XXXVII  T r a c e element content o f s e l e c t e d B l a c k and Dark Brown Chernozemic s o i l p r o f i l e s , Red Deer area.  139  XXXVIII  Comparison o f l o g a r i t h m i c w i t h i n and among township v a r i a n c e components f o r C h o r i z o n g l a c i a l t i l l , Red Deer a r e a .  141  XXXV  XXXVI  xiii TABLE XXXIX  XXXX XXXXI XXXXII  XXXXIII XXXXIV  xxxxv XXXXVI  XXXXVII  XXXXVIII XXXXIX  PAGE Numbers o f r a n d o m l y s e l e c t e d C h o r i z o n s o i l s a m p l e s (n) r e q u i r e d f r o m e a c h Red Deer area parent m a t e r i a l to give adjustable v a r i a n c e r a t i o (Vm) v a l u e s o f 1.0 and 5.0.  145  Mo c o n t e n t  152  o f Manitoba bedrock  units.  C h e m i c a l p r o p e r t i e s o f some r e p r e s e n t a t i v e Swan R i v e r - D a u p h i n a r e a s o i l p r o f i l e s .  158  A p p r o x i m a t e numbers and t y p e s o f a n a l y s e s p e r f o r m e d o n Swan R i v e r - D a u p h i n a r e a samples,  164  Mo c o n t e n t o f C r e t a c e o u s c e n t r a l Manitoba.  166  bedrock,  west-  Mo c o n t e n t and pH o f A and C h o r i z o n s o i l associated with i n d i v i d u a l s o i l parent materials, Keld area.  174  Mo c o n t e n t o f s h a l e - t i l l p a r e n t m a t e r i a l and u n d e r l y i n g b e d r o c k , K e l d a r e a .  175  Mo and Cu c o n t e n t of-vegetation ( d r y w e i g h t basis) associated with i n d i v i d u a l s o i l parent materials, Keld area.  176  Mo c o n t e n t and pH o f A and C h o r i z o n s o i l a s s o c i a t e d with major s o i l parent m a t e r i a l s , Swan R i v e r V a l l e y .  178  Mo c o n t e n t o f M o - t o x i c a r e a Series parent m a t e r i a l .  180  Kenville Soil  Mo and Cu c o n t e n t o f v e g e t a t i o n b a s i s ) , Swan R i v e r V a l l e y .  (dry weight  181  Mo c o n t e n t and pH o f A and C h o r i z o n s o i l associated with i n d i v i d u a l s o i l parent materials, Favel area.  183  Mo c o n t e n t o f F a v e l S e r i e s s h a l e - c l a y and underlying shale, Favel area.  184  LII  Mo and Cu c o n t e n t o f v e g e t a t i o n ( d r y w e i g h t basis) associated with i n d i v i d u a l s o i l parent materials, Favel area.  185  LIII  A c i d ammonium o x a l a t e e x t r a c t a b l e Mo content of s e l e c t e d C horizon s o i l s a s s o c i a t e d w i t h b o t h M o - r i c h and Mo-poor g r a s s samples.  187  LI  xiv PAGE  TABLE LIV  LV  LVI  Se content o f s e l e c t e d M o - r i c h bedrock samples, w e s t - c e n t r a l Manitoba.  200  Se content of s e l c t e d C h o r i z o n s o i l samples, w e s t - c e n t r a l Manitoba.  201  Se content of s e l e c t e d p l a n t samples (dry weight b a s i s ) , w e s t - c e n t r a l Manitoba.  202  X V  LIST OF FIGURES FIGURE  PAGE  1•  Diagramatic r e p r e s e n t a t i o n of movement of t r a c e elements from bedrock through s o i l to p l a n t s and animals.  2.  L o c a t i o n of a g r i c u l t u r a l l y s e t t l e d Southern Canadian I n t e r i o r P l a i n , .  15  3.  Major p h y s i o g r a p h i c s u b d i v i s i o n s of the Southern Canadian I n t e r i o r P l a i n .  16  4.  V e g e t a t i o n - t y p e areas of Southern Canadian Interior Plain.  16  5.  S o i l zones of the Southern Canadian Plain.  17  6.  Bedrock geology of the Southern Canadian Interior Plain.  17  7.  Areas of known or suspected t r a c e element imbalances on the Southern Canadian I n t e r i o r Plain.  20  8.  Topography and d r a i n a g e , Rosetown area.  49  9.  Bedrock geology, Rosetown area.  51  10.  S o i l parent m a t e r i a l s , Rosetown area.  54  11.  C h a r a c t e r i s t i c s u r f ace morphologies associated with i n d i v i d u a l parent m a t e r i a l s , Rosetown area.  55  12.  L i t h o l o g i c a l l o g s of sampled Bearpaw Formation d r i l l holes.  62  13.  Cu, Fe, Zn content and pH of A h o r i z o n s o i l , Rosetown area.  73  14.  Mn content and pH of A h o r i z o n s o i l , . area.  Interior  Rosetown  Zn content and pH of 30-46 cm Rosetown'area.  3  74  15.  Cu, Fe, Mn, depth s o i l ,  75  16.  Cu, Fe, Zn content and pH of C h o r i z o n s o i l ; Rosetown area.  76  17.  Mn content and pH of C h o r i z o n s o i l , Rosetown area.  77  18.  S c a t t e r diagram of l o g 10 Cu content of A vs C horizon s o i l .  81  S c a t t e r d i a g r a m o f l o g 10 C u c o n t e n t vs t h a t o f C h o r i z o n s o i l .  o f wheat  S c a t t e r d i a g r a m o f l o g 10 F e c o n t e n t vs t h a t o f C h o r i z o n s o i l .  o f wheat  S c a t t e r d i a g r a m o f l o g 10 Mn c o n t e n t vs t h a t o f C h o r i z o n s o i l .  o f wheat  S c a t t e r d i a g r a m o f l o g 10 Zn c o n t e n t vs that of C horizon s o i l .  o f wheat  H i s t o g r a m s o f Se c o n t e n t o f wheat and C h o r i z o n s o i l Rosetown a r e a . Se c o n t e n t , wheat m a t e r i a l Rosetown a r e a . T o p o g r a p h y and d r a i n a g e , Bedrock geology, Soil  parent  Red D e e r  (dry weight),  Red D e e r  area.  area.  m a t e r i a l , Red D e e r  area.  C h a r a c t e r i s t i c s u r f a c e morphologies associated with i n d i v i d u a l p a r e n t m a t e r i a l s , Red D e e r a r e a . Cu and Zn c o n t e n t Deer a r e a .  and pH, C h o r i z o n  soil,  Red  Fe c o n t e n t area.  and pH, C h o r i z o n  soil,  Red D e e r  Mn c o n t e n t area.  and pH, C h o r i z o n  soil,  Red D e e r  T o p o g r a p h y and d r a i n a g e , area. Bedrock geology,  Swan  River-Dauphin  Swan R i v e r - D a u p h i n  area.  Soil  parent  m a t e r i a l s , Swan R i v e r - D a u p h i n  Soil  parent  m a t e r i a l and b e d r o c k , K e l d  Soil  p a r e n t m a t e r i a l and b e d r o c k , F a v e l  Mo c o n t e n t o f m i n u s 8 0-mesh s t r e a m Swan R i v e r - D a u p h i n area.  area.  area. area.  sediment,  Mo c o n t e n t o f m i n u s 8 0-mesh s t r e a m s e d i m e n t and A h o r i z o n bank s o i l . M o - t o x i c a r e a , Swan River Valley.  Mo content o f minus 80-mesh stream sediment southwest o f Dauphin. Mo content of s e l e c t e d C h o r i z o n samples, southwest o f Dauphin.  soil  Mo content of C h o r i z o n s o i l , K e l d  area.  Mo content of C h o r i z o n s o i l , Valley.  Swan R i v e r  Mo content of C h o r i z o n s o i l ,  F a v e l area.  xviii ACKNOWLEDGEMENTS S i n c e r e g r a t i t u d e i s extended  to  Dr. K. F l e t c h e r  f o r having suggested and funded t h i s p r o j e c t (NRC Grant #67-7714) and e s p e c i a l l y f o r having p r o v i d e d much e n t h u s i a s t i c a d v i c e and encouragement throughout i t s f i v e year d u r a t i o n .  Drs. V.C. B r i n k , C A . Rowles and H.V. Warren  f o r i n t e r e s t and guidance offered.  Mr. Mike Waskett-Myers  f o r h i s a s s i s t a n c e i n the l a b o r a t o r y and f o r having d r a f t e d many o f the illustrations.  Mr. D h i l l p n , Ms. Anne Baxter and Mr. David Marshall  f o r having done much of the sample p r e p a r a t i o n and a n a l y s e s .  Drs. S. Nash, A. Kozak and A . J . S i n c l a i r  f o r a d v i c e on the s t a t i s t i c a l aspects of the i n v e s t i g a t i o n .  Mr. Bob Drysdale  f o r h i s keen i n t e r e s t and a c t i v e c o o p e r a t i o n i n the study undertaken i n the Swan River-Dauphin area o f Manitoba.  Mr. Ed Montgomery and the t e c h n i c a l s t a f f of the Department of Geological Sciences  for technical assistance w i l l i n g l y rendered, but e s p e c i a l l y f o r Tuesday and Thursday morning hockey,  freely  F i n a l l y I would e s p e c i a l l y l i k e t o thank the many f r i e n d s and r e l a t i v e s without whose encouragement and p r a y e r s the completion o f t h i s t h e s i s would not have been p o s s i b l e .  CHAPTER  I  INTRODUCTION  1 A.  1.  ENVIRONMENTAL  GEOCHEMISTRY AND HEALTH  TRACE ELEMENTS IN PLANT AND ANIMAL HEALTH The  first  important early part  suggestion  that  of t h i s  century  c a u s e o f endemic g o i t r e 1920's, c h i e f l y  diets  be an  f a c t o r i n human and a n i m a l n u t r i t i o n came i n t h e with the recognition  areas the lack o f I i n food  late  t r a c e elements could  to laboratory  and w a t e r s u p p l i e s  (Underwood, 1 9 6 2 ) .  through the feeding animals,  the l i s t  ed  e s s e n t i a l f o r animal h e a l t h  At  present  at l e a s t fourteen  that  i n some  i s the primary  Beginning  of highly  of trace  i nthe  purified  elements  h a s been c o n t i n u o u s l y  elements a r e i n c l u d e d  expanding.  i n t h i s group -  I , Cu, F e , Mn, Zn, C r , Co, Mo, S e , F, C l , S i , Sn and V 1972). E x p e r i m e n t a l work i n t h e f i e l d demonstrated  Deficiency  states  have b e e n r e p o r t e d ,  on Co,  Field  the other  injurious  o f p l a n t n u t r i t i o n has  health.  i n v o l v i n g most o f t h e p l a n t  cases of trace  sufficiently to both plants for their  high  (Sauchelli,  element d e f i c i e n c i e s i n l i v e s t o c k ,  hand, have been m a i n l y  a r e more n o t e d  micronutrients  p r i m a r i l y i n a g r i c u l t u r a l crops  Cu, Mn and Se (Underwood, Given  (Frieden,  t h a t C u , F e , Mn, Zn, Mo, Co and B a r e needed f o r  the maintenance o f p l a n t  1969).  consider-  l i m i t e d t o those  involving  1962). e x p o s u r e any t r a c e  and a n i m a l s .  e l e m e n t c a n be  Some e l e m e n t s however  toxic properties  than others.  The  damaging e f f e c t s o f As> Pb, Hg and Cd on human health., f o r example,  have been w e l l  documented.  In  addition  2 Se  and  Mo  toxicity  are r e c o g n i z e d i n l i v e s t o c k over wide  and  Mn  i s w e l l known f o r i t s l o c a l l y  2.  TRACE ELEMENT STATUS OF As  plant or  illustrated  and  less  animal  p o p u l a t i o n s may  interrelated  chemical these  of  one  in relation  Bedrock, which l i e s considerably levels  regarded  series.  those  Hodgson  is  the  a mote  determined,  the nature  of  levels, this  and  plant  interactions.  s e r i e s , may  vary  (Table I ) .  Mo  (median lOppm), a r e g e n e r a l l y i n sandstone  (mean 0.2ppm)..  V a r i a t i o n s o f a s i m i l a r m a g n i t u d e c h a r a c t e r i z e most o f t h e elements  cited.  The  extent  overlying  soil  to which bedrock composition  F o r example, of  overburden  glacial  i s reflected  i s , i n p a r t , a f u n c t i o n of the nature  geomorphic p r o c e s s e s  involved i n s o i l  of  or a l l u v i a l  other  i n the  the  parent material, formation.  i n a r e a s where p a r e n t m a t e r i a l s a r e composed w h i c h has  soil,  trace  of the u n d e r l y i n g  t r a c e element content  an o r d e r o f m a g n i t u d e above t h o s e  bedrock,  (1970) d i s c u s s e s many o f  to r o c k , s o i l  i n b l a c k s h a l e f o r example  crops.  as c o m p r i s i n g  series  a t the base of the  in i t s total  local  Although  intervene to a l t e r  interdependency.  on  ANIMALS  member o f t h e  e x t e n t , by  f a c t o r s may  factors  be  hierarchical  a greater or l e s s e r  a variety  PLANTS AND  effect  d i a g r a m a t i c a l l y i n F i g 1,  e l e m e n t s t a t u s o f any to  toxic  areas,  mainly  b e e n t r a n s p o r t e d l o n g d i s t a n c e s by  p r o c e s s e s , b e d r o c k and  associated s o i l  would  3'  ©  ©  ANIMAL  availability and consumpo tin  PLANT  t  pa l nt spece i s and availability  A  geomorphci and pedogenci processes  SOIL  ©  Figure I.  BEDROCK  Diagramatic representation of movement of trace elements from bedrock, through soil to plants and animals.  14  Table  I  Comparison o f t y p i c a l t r a c e element concentrations associated with various sedimentary rock types.  Trace Element  * Element  Mo Se Cu Fe Mn Zn B Co  (ppm) (ppm) (ppm) (%) (ppm) (ppm) (ppm) (ppm)  Content  **  Black Shale  Shale  10.0  2.6 0.6 45.0 4.72 850.0 95.0 100.0 19.0  —  70.0 6.7 150.0 300.0 50.0 10.0  ** Sandstone  ** Carbonates  0.2 0.05  0.4 0.08 4.0 0.38 1100.0 20.0 20.0 0.1  —  0.98 —  16.0 35.0 0.3  * V i n e and T o u r t e l o t  (19 7 0 ) ; m e d i a n v a l u e s  quoted.  **  T u r e k i a n a n d Wedepohl  i  (1961);  average  values  quoted.  5 not n e c e s s a r i l y be expected to be c o m p o s i t i o n a l l y  similar.  On  the other hand, where parent m a t e r i a l s are r e s i d u a l , or have been t r a n s p o r t e d only s h o r t d i s t a n c e s and to e x t e n s i v e weathering, rock and  have not been  subjected  s o i l compositions are  normally  closely related. B e d r o c k - s o i l r e l a t i o n s h i p s are a l s o i n f l u e n c e d by processes  which may  r e s u l t i n e i t h e r the removal or  t i o n of t r a c e elements i n the s o i l . which i s the process  by which n u t r i e n t s are removed from lower  are i n v a r y i n g degrees s o l u b i l i z e d and  i n t o the solum, may such as Mn  and  Zn,  redistribu-  B i o c y c l i n g , f o r example,  s o i l h o r i z o n s by p l a n t r o o t s , accumulate i n s u r f a c e l a y e r s and  pedogenic  organic  c a r r i e d back  r e s u l t i n the accumulation of t r a c e elements, i n surface s o i l  ( M i l l s and  Zwarich, 1975).  As M i t c h e l l (1964) has noted however, pedogenic processes g e n e r a l l y had regions  a more l i m i t e d e f f e c t on s o i l composition  have  in  i n f l u e n c e d by P l e i s t o c e n e g l a c i a t i o n , because s o i l  m a t e r i a l s i n these areas are comparatively  parent  young.  Trace elements i n c o r p o r a t e d w i t h i n the s t r u c t u r e s o f r e s i s t a n t s o i l minerals phases e x e r t l i t t l e plants.  On  or s t r o n g l y complexed by  i n f l u e n c e on the composition  the other hand those which are e i t h e r  organic of a s s o c i a t e d water-soluble  or which are bound i n a r e a d i l y exchangeable form, are at l e a s t p o t e n t i a l l y a v a i l a b l e f o r p l a n t uptake.  P l a n t - a v a i l a b l e elements  t y p i c a l l y comprise a r e l a t i v e l y small p r o p o r t i o n of the  total  s o i l t r a c e element content.  soil  Their concentration  i n the  6  s o l u t i o n depends, t o a l a r g e extent, on s o i l r e a c t i o n (pH) and  drainage (Eh).  In o x i d i z i n g environments, f o r example, Mo  occurs as the molybdate anion  (Mo0~), which a t low pH v a l u e s  i s s t r o n g l y adsorbed by s o i l c l a y s and hydrous i r o n oxides, but as pH l e v e l s r i s e i s p r o g r e s s i v e l y (Jones, 1957).  released  into s o i l  solution  Doyle e t a l . (1973) have noted t h a t p l a n t s grow-  i n g i n Mo-rich a c i d i c s o i l s c o n t a i n  r e l a t i v e l y l i t t l e Mo, where-  as those a s s o c i a t e d w i t h s i m i l a r n e u t r a l t o a l k a l i n e s o i l s may contain., l a r g e q u a n t i t i e s  (^50 ppm) o f t h i s element.  Because d i f f e r e n t p l a n t genotypes vary i n t h e i r a b i l i t y t o absorb p a r t i c u l a r elements, p l a n t t r a c e element s t a t u s i s a l s o dependent on the kinds of p l a n t s growing i n an area. (1957) has r e p o r t e d ,  f o r instance,  t h a t under c o n d i t i o n s o f  abundant supply, c l o v e r s tend t o be e n r i c h e d grasses growing i n the same s o i l . as A s t r a g a l u s  containing The  i n Mo r e l a t i v e t o  S i m i l a r l y , some s p e c i e s ,  b i s u l c a t u s and A. p e c t i n a t u s ,  l a t e Se i n c o n c e n t r a t i o n s  such  are known t o accumu-  o f over 1000 ppm when growing i n s o i l s  l e s s than 2 ppm (Williams  e t a l . 1941).  extent t o which the n u t r i t i o n a l s t a t u s of animals r e -  f l e c t s l o c a l plant concentrations  o f t r a c e elements depends on  both the degree t o which they r e l y on l o c a l food the a v a i l a b i l i t y of the n u t r i e n t s i n g e s t e d . stock,  Mitchell  sources and on  Thus, g r a z i n g  live-  f o r example, would be expected t o be p a r t i c u l a r l y i n f l u e n c -  ed by t r a c e element c o n c e n t r a t i o n s With r e s p e c t  i n local plant  communities.  t o n u t r i e n t a v a i l a b i l i t y Cu r e t e n t i o n i n c a t t l e  7 and in  sheep,  f o r i n s t a n c e , h a s b e e n shown t o d e c r e a s e  the presence o f high d i e t a r y  i n t a k e s o f Mo  (Underwood,  Despite the apparent complexity o f t h i s animal c h a i n t r a c e element c a n , i n some i n s t a n c e s , centrations in  disorders  bedrock  t h e U n i t e d Kingdom T h o r n t o n  1962).  rock-soil-plant-  i n b o t h p l a n t s and a n i m a l s  be more o r l e s s d i r e c t l y  i n associated  considerably  or s o i l  and Webb  related  t o con-  parent materials.  (197 0)  have  Thus,  demonstrated  a r e l a t i o n s h i p between t h e i n c i d e n c e o f M o - i n d u c e d Cu d e f i c i e n c y in  cattle  and, the city  3.  and t h e d i s t r i b u t i o n  i n North America, distribution  an a s s o c i a t i o n  i n livestock  ( R o s e n f e l d and B e a t h ,  REGIONAL GEOCHEMICAL RECONNAISSANCE  element  distribution  s h a l e and Se  TECHNIQUES  composition can i n f l u e n c e  o f t r a c e elements  interest  problem  presenting  t o both a g r i c u l t u r a l  and m e d i c a l elements  i s of  scientists and h e a l t h .  o f d e v e l o p i n g s u i t a b l e methods o f c o l l e c t i n g and regional  t r a c e element  d a t a f o r u s e by t h e s e and  other environmental s c i e n t i s t s ,  however, h a s o n l y  To d a t e two d i s t i n c t  have been a d o p t e d ;  both  overall  the trace  i n these m a t e r i a l s  r e c e n t l y been i n v e s t i g a t e d .  lected  toxi-  1964) .  c o n c e r n e d w i t h r e l a t i o n s h i p s between t r a c e  perhaps  between  s t a t u s o f a s s o c i a t e d p l a n t s and a n i m a l s , i n f o r m a t i o n on  potential  The  bedrock  has b e e n o b s e r v e d  o f S e - r i c h Upper C r e t a c e o u s  B e c a u s e r o c k and s o i l  the  of Mo-rich black shale  differing  (stream sediment sampling d e s i g n .  vs. s o i l ,  approaches  i n the types of m a t e r i a l plant,  col-  r o c k o r w a t e r ) and i n  8  a)  Stream  Stream  sediment  Hawkes and Webb application premise  generalized  a composite  few s a m p l e s trace  element  These  of  overburden  trial  atlases  maps r e f l e c t  As a r e s u l t rapidly,  p a t t e r n s over l a r g e areas.  showing  used  b a s e l i n e d a t a on t h e  i n Northern Ireland,  England  not only the natural composition but also  indicate  areas of indus-  m e t a l c o n t a m i n a t i o n ( T h o r n t o n a n d Webb, 197 5 ) . Procedural d e t a i l s  Briefly sediment  are described  t h e method i n v o l v e s from t r i b u t a r y  minus 8 0-mesh f r a c t i o n . at  and s o i l  and s o i l i n  s a m p l i n g p r o g r a m s have b e e n  o f 26 e l e m e n t s  and W a l e s . bedrock,  t o determine  distribution  stream sediment  distribution  s t r e a m s e d i m e n t may be  f r o m t h e sample s i t e .  are required  1950's f o r  T h e method i s b a s e d o n t h e  sample o f r o c k , o v e r b u r d e n  prepare geochemical  regional  1956) i n t h e e a r l y  of i t s origin,  a r e a upstream  Reconnaissance to  (Hawkes e t a l . ,  i n the mining industry.  catchment  relatively  Sampling  s a m p l i n g p r o c e d u r e s were f i r s t d e v e l o p e d by  t h a t , by v i r t u e  considered the  Sediment  by Hawkes and Webb  the c o l l e c t i o n  of active  d r a i n a g e and subsequent Sampling  a predetermined d e n s i t y which,  i s carried depending  (1962).  stream  analysis  ofthe  o u t i n one o p e r a t i o n on t h e p u r p o s e  of the  s t u d y and t h e s i z e o f t h e a r e a b e i n g i n v e s t i g a t e d , . c a n v a r y b e tween a b o u t  1.5 samples  p e r s q u a r e k i l o m e t e r (4/sq.mi)  sample p e r 180 s q u a r e k i l o m e t e r s (1/7 0 s q m i ) . data  for individual  sample  sites  Trace  are conventionally  t o one element  either  con-  t o u r e d o r r e p r e s e n t e d by v a r i a b l e - s i z e d  black dots.  Recently  however c o n s i d e r a b l y more s o p h i s t i c a t e d  computerized  plotting  9 systems  involving  t h e p r o d u c t i o n o f smoothed g r a y - t o n e , a s w e l l  as c o l o u r maps, have b e e n d e v e l o p e d  for application  sediment  d a t a by Howarth  (1971) and L o w e n s t e i n  The  g r e a t advantage  o f stream sediment  ease and speed w i t h which  and Howarth  lies  i t c a n be c o l l e c t e d ,  because  al.,  i n t e r p r e t a t i o n can, 1969).  p r o c e s s e d and a n a -  element  ates  com-  (Horsnail  and a s s o c i a t e d  trace  rock,  ( T h o r n t o n a n d Webb, 1970) .  t e c h n i q u e have been s u g g e s t e d  i n such  diverse  and e p i d e m i o l o g y . I t s  i n a g r i c u l t u r e were p i o n e e r e d iby Webb and h i s a s s o c i -  Since then these i n v e s t i g a t o r s  relating  regional  recognized disorders and  sediment  (Webb, 1964) i n t h e mid-1960's i n t h e U n i t e d Kingdom and  Ireland. in  sediments  as l a n d - u s e p l a n n i n g , p o l l u t i o n  applications  influencing  Furthermore,  o f c o r r e l a t i o n h a s b e e n o b s e r v e d between  plant, m a t e r i a l s  Uses f o r t h i s fields  exists.  i n some c a s e s , b e complex  c o n c e n t r a t i o n s i n stream  and e v e n  i n a r e a s where  N e v e r t h e l e s s , w i t h a few n o t a b l e . e x c e p t i o n s , an  encouraging degree  soil  d r a i n a g e system  o f t h e l a r g e number o f f a c t o r s  position et  tributary  (1973).  i n the r e l a t i v e  l y s e d . However t h e t e c h n i q u e i s o n l y a p p l i c a b l e a w e l l developed  t o stream  Se t o x i c i t y  stream  sediment  i n cattle  1968).  stream sediment where p r e v i o u s l y disorders  successful  data t o such  previously  as M o - i n d u c e d Cu d e f i c i e n c y ,  Mn d e f i c i e n c y  (Webb and A t k i n s o n , 19 6 5'; T h o r n t o n  and Webb, 1970) and Mn d e f i c i e n c y (Webb e t a l . ,  have b e e n  Perhaps  a n d Zn t o x i c i t y  more s i g n i f i c a n t l y  d a t a have p r o v e n u s e f u l  however,  i n delineating  . unrecognized, s u b c l i n i c a l  are adversely affecting  i n cereals  areas  nutritional  agricultural  productivity  10 ( T h o r n t o n e t a l . , 1972 b)  Soil,  a,  Plant,  Rock and  More s t a t i s t i c a l l y application  Water  rigorous  i n environmental  developed at the States  b).  sampling procedures f o r  p l a n t s , rock  and  Geochemistry of the  These techniques  s c r i b e r e g i o n a l v a r i a t i o n s i n the soils,  general  i n v e s t i g a t i o n s have r e c e n t l y b e e n  Branch of Regional  G e o l o g i c a l Survey.  Sampling  water  chemical  i n the  State  United  were d e s i g n e d  to  characteristics of M i s s o u r i .  de-  of  They  t. were o r i g i n a l l y been d e s c r i b e d  i n greater  Initially subdivided  into  t o be  more o r  could  be  each  earth  C o n n o r e t a l . (197 2 ) , and  detail  by  Miesch  surface materials  less  study.  sampling  compositionally on As are  the  t o be  investigated  homogeneous.  b a s i s of parent  described  by  involved, with  have  since  (1976).  s e v e r a l mapable " c a t e g o r i e s " which a r e  classified  done i n t h i s phases o f  o u t l i n e d by  Soil,  expected f o r exampl  type,  as  C o n n o r e t a l . (197 2)  two  two  material  are  stages  occurring  was  within  phase: "Phase 1: S a m p l i n g t o d e s c r i b e d i f f e r e n c e s among c a t e g o r Stage l a : P r e l i m i n a r y sampling designed to determine the e x t e n t to which the c a t e g o r i e s are indeed geoc h e m i c a l l y d i s t i n c t , and t o p r o v i d e t h e b a s i s f o r planning stage l b . Stage l b : F i n a l sampling to d e r i v e r e l i a b l e estimates o f d i f f e r e n c e s among c a t e g o r i e s , and t h e amounts o f c o m p o s i t i o n a l v a r i a b i l i t y w i t h i n each category. "Phase 2: S a m p l i n g t o d e s c r i b e p a t t e r n s o f v a r i a t i o n within categories. S t a g e 2a: P r e l i m i n a r y s a m p l i n g w i t h i n e a c h c a t e g o r y t o determine the sampling l o c a l i t y s p a c i n g t h a t would be most e f f i c i e n t f o r d e s c r i b i n g t h e g e o c h e m i c a l v a r i a t i o n p a t t e r n s w i t h i n e a c h c a t e g o r y , and t h e number o f s a m p l e s r e q u i r e d f r o m e a c h l o c a l i t y . S t a g e 2b: F i n a l s a m p l i n g t o d e s c r i b e t h e g e o c h e m i c a l p a t t e r n s w i t h i n each category."  11 The purpose o f Phase 1 sampling category) geochemical  p a t t e r n s o n l y , whereas Phase 2 p r o v i d e s  i n f o r m a t i o n on more d e t a i l e d variations.  i s to d e s c r i b e major (among  ( w i t h i n category)  compositional  Because Miesch and h i s coworkers c o n s i d e r t h a t  geochemical  surveys should i n i t i a l l y  focus on p r o v i d i n g u s e f u l  background or b a s e l i n e d a t a , Phase 2 sampling was g e n e r a l l y not undertaken  i n Missouri.  A h i e r a r c h i c a l sampling  p l a n i s used d u r i n g Stage  l a such  2 t h a t the t o t a l data v a r i a b i l i t y (s ) can be p a r t i t i o n e d i n t o 2 2 . s e v e r a l components ( s , s^ etc.) u s i n g an a n a l y s i s of v a r i a n c e a  procedure: s  =  2  s  X  Although  2  + s  + s  2  B  a  + s  2  y  2  + ...  (1-1)  o  the number and type of components may v a r y w i t h the  o b j e c t of the study, f o u r are commonly examined r e f l e c t i n g  vari-  2 a t i o n s among c a t e g o r i e s ( s ) , as w e l l as both r e g i o n a l and 2 2 l o c a l v a r i a t i o n w i t h i n c a t e g o r i e s ( s ^ and s^, r e s p e c t i v e l y ) , 2 and v a r i a t i o n due t o l a b o r a t o r y procedures (s 5) . a  A s t a t i s t i c r e f e r r e d t o as the " a d j u s t a b l e v a r i a n c e r a t i o " (Vm),  which compares the among c a t e g o r y v a r i a n c e w i t h the v a r i -  ance o f c a t e g o r y means, i s used t o assess the adequacy o f Stage l a sampling  (Tidball,  1970).  The v a r i a n c e o f c a t e g o r y means  2 (s ) i s estimated from: m s  m  =  S  B  +  n  B  S  Y n  +  8 Y n  S  5 n  •••'  +  B Y 6 n  n  (  1  _  2  )  12 where n^., riy and n of the t h r e e lower  5  are the number of sampling l e v e l s o f the d e s i g n .  u n i t s i n each  Vm i s c a l c u l a t e d as:  2 Vm  =  S  .  a-  (1-3)  2 s m For surveys aimed a t d e s c r i b i n g broad c o m p o s i t i o n a l  varia-  t i o n s across an area w i t h an a c c e p t a b l e degree of confidence Vm must be a t . l e a s t equal t o 1.0.  I f the purpose, however, i s t o  d e s c r i b e r e l i a b l y more d e t a i l e d c o m p o s i t i o n a l p a t t e r n s a Vm value of 5.0 or more i s d e s i r a b l e ( T i d b a l l , 1973). i n d i c a t e s t h a t Stage l b sampling  When a low Vm value  i s r e q u i r e d , a new h i e r a r c h i c a l  design i s chosen by a d j u s t i n g the v a l u e s f o r the s u b s c r i p t e d 2 n's i n equation (1-2) u n t i l s i s s u f f i c i e n t l y s m a l l . In the m J  case t h a t a l a r g e p r o p o r t i o n o f the t o t a l data  variability  occurs w i t h i n areas o f r e l a t i v e l y small geographic l b sampling  s i z e , Stage  e f f i c i e n c y can be maximized by c o n c e n t r a t i n g  pri-  m a r i l y on i n c r e a s i n g the number o f samples c o l l e c t e d w i t h i n these s m a l l e r areas  (Miesch,  1976).  When r e l i a b l e estimates o f category means have been o b t a i n e d , Duncan (1955)'s New M u l t i p l e Range t e s t may be used t o i d e n t i f y groups of c a t e g o r i e s among are not s t a t i s t i c a l l y  ' which mean c o m p o s i t i o n a l d i f f e r e n c e s  significant.  R e s u l t s can f i n a l l y be  summarized i n the form o f s t a t i s t i c a l t a b l e s  and m o d i f i e d  category maps showing c o m p o s i t i o n a l l y d i s t i n c t i v e c a t e g o r i e s or groups o f c a t e g o r i e s f o r each element examined. The p r i n c i p a l o r i g i n a l i t y o f t h i s approach l i e s i n the  13 statistically Because the d e p e n d s on being  rigorous  number o f the  nature  i t s multi-stage  samples r e q u i r e d  relative  compared and  of  not  chemical directly  design.  for a particular  uniqueness of the on  the  size  of the  study  categories area  being  e x a m i n e d , i t i s p o s s i b l e t o p r o d u c e r e g i o n a l maps q u i c k l y inexpensively, using trace  relatively  element d i s t r i b u t i o n  few  samples.  Maps s h o w i n g  i n Missouri vegetation,  ( S h a c k l e t t e e t a l . 1 9 7 1 ) , were p r o d u c e d u s i n g  and  an  the  f o r example  average  sample  2 d e n s i t y o f a b o u t one  s i t e ,per  P r o b l e m s , however, may criteria  for category  example, T i d b a l l  production.  general  nature  have had  little  distribution bution  arise  definition.  km  (1/250 s q  i n the  A f t e r Stage l a sampling, taxonomic  i n p a r t due  t h e maps p r o d u c e d , M i e s c h and  success  patterns  of p a r t i c u l a r  for  s o i l were s u i t e d t o r e g i o n a l g e o c h e m i c a l  Furthermore, probably of  mi).  i n i t i a l s e l e c t i o n of  (1971) f o u n d t h a t none o f t h e  d i v i s i o n s of M i s s o u r i map  650  i n attempts to r e l a t e  in Missouri disease  his  trace  to information  on  to the  very  associates element the  distri-  s t a t e s i n e i t h e r l i v e s t o c k or  man.  14  B.  The this  SOUTHERN CANADIAN  Southern Canadian I n t e r i o r  study,  1.  The  Interior  red  Plain  Physical  Southern Canadian  (Bostock,  Interior  regions,  1969).  the  Saskatchewan P l a i n  the  Manitoba P l a i n Climate  Plain,  States  and l o n g c o l d  and  lowest p r e c i p i t a t i o n  ern  portion  of Alberta  characterized  elevation (Fig 3).  levels  occur  summer  low p r e c i p i t a t i o n  by  short  temperatures  i n the semi-arid  and s o u t h w e s t e r n S a s k a t c h e w a n .  by g r a s s l a n d  into  240 m o r 800 f t ) .  Highest  southeastTempera-  i n c r e a s e s more o r l e s s  As i n d i c a t e d  The  600 m o r 2,000 f t ) and  type, characterized  winters.  i n t h e more n o r t h e r n  Relatively  (average  refer-  the C e n t r a l Lowland i n t h e e a s t  t u r e s d e c r e a s e and p r e c i p i t a t i o n area.  two  locally  the greatest r e l i e f  (average e l e v a t i o n  summers  into  and t h e C e n t r a l  region,  i s the highest  (average e l e v a t i o n  hot  i s divided  the Great P l a i n  i s of the continental  from t h i s  Plain  The G r e a t P l a i n  Manitoba Escarpment d i v i d e s  prevail  of the  n o r t h of the Canada-United  750 m o r 2 / 5 0 0 f t ) and d i s p l a y s  are  portion  Setting  t o as t h e A l b e r t a  outward  to i n  DESCRIPTION  major p h y s i o g r a p h i c Lowland  as r e f e r r e d  (Fig 2).  REGIONAL a)  Plain,  comprises the a g r i c u l t u r a l l y s e t t l e d  North American boundary  INTERIOR PLAIN  radially  i n F i g 4, s e m i - a r i d  v e g e t a t i o n whereas b o r e a l  areas forests  sub-humid r e g i o n s  (Coupland,  levels  30-40 cm o r  (typically  1961).  15  Figure  2.  Location of agriculturally settled Southern Canadian Interior Plain.  16  Boundary mi  m  In  Northern  of Interior  Plain  Interior  limit ot agricultural  —  •—Boundary  of Interior P l a i n  Detailed  'A.  I  Study  Plain  Great  settlement  A  subdivisions  Central  Areas  Rosetown  H  Red  IH  Swan  Deer  Alberta  Plain  Lowland  B  Saskatchewan  C  Manitoba  Plain  River-Dauphin ( Modified  Figure  Subdivisions  Plain  3.  Mojor  physiographic  Southern  Figure  4.  from  Canadian  Vegetation-type Canadian  Bostock , 1969)  subdivisions Interior  of  Plain.  a r e a s of S o u t h e r n  Inferior  Plain.  the  Plain  17  Figure 5.  Figure 6.  Soil zones of the Southern Ccnadian Interior PIcin.  Bedrock geology of the Southern Canadian Interior Plain.  18 12-16  in/year)  of t r i b u t a r y taking the  are  drainage  general  absence  stream  sediment surveys  under-  t h r o u g h most  of  region.  are  f o u r major s o i l  shown i n F i g 5.  weak i n t h e  zones b e l o n g  soils  a l s o occupy  oped Ae  and  Zone.  An  this  and  are  the  source  4,  Luvisolic  sub-humid  occur  material  are  devel-  Greywooded  "High-lime"  soils  1968)  Cretaceous  shale  been r e p o r t e d  occurs  and  clays  to  Devonian  soils  a relatively and  by  Oddy  (1966) t o  ( U n i t 3)  and  locally  overlie  of  of  contain and  Upper  non-marine siltstone, these  in  (Units  Most o f t h e A l b e r t a thick deposits  in  thin  sandstone  Non-marine T e r t i a r y s a n d s t o n e , ( U n i t .1)  illustrated  f o r t h e most p a r t ,  concentrations.  Cretaceous marine s i l t s  conglomerate  is  f o r the High-lime  o v e r l a i n by  u n d e r l a i n by  and  well  beneath the Manitoba P l a i n  Saskatchewan P l a i n s are  stone  in  Solonetzic  s o i l s with  (Douglas,  w h i c h i s composed,  e x c e p t i o n a l l y h i g h Mo  (Unit 2).  Most s o i l s  dolomite-rich Ordovician  ( U n i t 6)  s h a l e has  stone  relatively  Chernozemic Order, although  bedrock geology  These r o c k s  Unit  organic-rich  strata.  Zones.  1957)  Plain.  L i m e s t o n e and  region.  5.)  Black  c h a r a c t e r i z e the  s e q u e n c e o f J u r a s s i c and 4 and  development i s g e n e r a l l y  large areas.  bedrock formations east  to the  ( A t l a s of Canada,  a d d i t i o n a l i n t r a z o n a l c l a s s of  Generalized  the  Profile  Bt h o r i z o n s  the Manitoba  F i g 6.  zones r e c o g n i z e d  Brown, D a r k Brown and  these  in  f o r the  systems, which i n t u r n p r o h i b i t s the  of reconnaissance  The  on  primarily responsible  sandmud-  Cretaceous  B e d r o c k u n i t s a r e c o v e r e d by up t o 100 m Pleistocene typically till,  till  and s t r a t i f i e d  c o n s i s t of a r e l a t i v e l y  studies  s a n d and r e c e n t  of t i l l  materials  (Pawluk  alluvium.  Mineralogical  indicate that  and B a y r o c k ,  are  recognized  ern  Canadian  and  Mn t o x i c i t y  deficiency  of g l a c i a l  and c h e m i c a l  the composition of these by l o c a l  bedrock  1969).  A g r i c u l t u r a l Trace Element  A variety of trace  deposits  and c l a y s , and l e s s e r amounts  i s c o n t r o l l e d , t o a large extent,  l.ithologies  b)  deposits  Surficial  complex i n t e r m i x t u r e  g l a c i o l a c u s t r i n e sands, s i l t s  of aeolian  stock  drift.  (300 f t ) o f  Disorders  e l e m e n t e x c e s s and d e f i c i e n c y  problems  i n b o t h c r o p s and l i v e s t o c k t h r o u g h o u t t h e S o u t h -  Interior Plain.  Cu, F e , Mn, Zn and B d e f i c i e n c i e s  have b e e n n o t e d i n a g r i c u l t u r a l c r o p s .  and Mo and Se t o x i c i t y  of the region.  A map  Se  a r e a l s o known t o a f f e c t  s h o w i n g some a r e a s where  trace  e l e m e n t p r o b l e m s a r e e i t h e r known o r s u s p e c t e d , c o m p i l e d both published agricultural  reports  scientists,  Micronutrient attributed to t o t a l  deficiencies  i s presented  element c o n c e n t r a t i o n s  o f F e and Mn r e p o r t e d are generally  in soils.  i n some p l a n t  a t t r i b u t e d to high conditions  o f these elements t o p l a n t s  c e n t r a l Alberta,, a v a i l a b i l i t y  from local  i n F i g 7.  imbalances a f f e c t i n g v e g e t a t i o n  c a r b o n a t e and a l k a l i n e s o i l ity  communications w i t h  are t y p i c a l l y  t o problems o f t r a c e element a v a i l a b i l i t y  trace  of Manitoba  and p e r s o n a l  live-  F o r example, species  i n parts  l e v e l s of calcium  which l i m i t  (Hedlin,  as opposed  1972).  the a v a i l a b i l Similarly i n  f a c t o r s have b e e n i m p l i c a t e d  i n the  I I U U O  L.IVIIIVIII  Crops  i m iII m  Boundary of Interior Plain Northern limit of agricultural settlement Detailed  Figure  Study Areas  I  Rosetown  H  Red Deer  UI  Swan  7.  Areas of known or suspected trace  B  deficiency  Cu  deficiency  . ©  Mn  deficiency  0  Cu and Zn deficiency Livestock  River-Dauphin  Mo  toxicity  Se  toxicity  Se  deficiency  Cu  deficiency  element  on the Southern Canadian Interior Plain.  III l l f H I V I I I W V * W  Local  imbalances  Regional  '  21 i n c i d e n c e o f Cu and Mn d e f i c i e n c y i n c e r e a l s grown on soil  (Massey,  1972).  however, p r o b a b l y  Low t o t a l  those  textured or h i g h l y leached  disease  livestock  over  on  as a major a g r i c u l t u r a l of the p r a i r i e s .  grazing  soils.  hand, h a s b e e n r e p o r t e d o n l y  selenium  (Byers  locally  and L a k i n ,  t o e n h a n c e d b e d r o c k and s o i l  1955).  Furthermore, p a r t l y  Mo l e v e l s  as a r e s u l t  of west-central  would accrue  2.  A l b e r t a and  i n cattle  from a  Manitoba.  f r o m r o u t i n e Cu s u p p l e m e n t a t i o n  p e r annum  (Drysdale,  i n livestock  over  The f i n a n c i a l b e n e f i t w h i c h  has been c o n s e r v a t i v e l y e s t i m a t e d  dollars  (Oddy, 1966^ S m i t h  of the present i n v e s t i g a -  t i o n , Cu d e f i c i e n c y h a s r e c e n t l y been r e c o g n i z e d  1974  i n cattle  i n t h e Swan R i v e r V a l l e y o f M a n i t o b a where i t was  related  region  i s re-  1939).  M o - i n d u c e d Cu d e f i c i e n c y h a s b e e n r e p o r t e d  wide a r e a s  (Walker,  Se t o x i c i t y ,  accumulator p l a n t s i n southeastern  southwestern Saskatchewan  small area  problem  This  that i t s d i s t r i b u t i o n  t o t h e p r e s e n c e o f sandy L u v i s o l i c  the other  coarse  prevalent i n west-central Alberta  1971) , where i t has b e e n s u g g e s t e d lated  relatively  soils.  wide a r e a s  i s particularly  concentrations,  some p l a n t d e f i c i e n c y  associated with  d e f i c i e n c y i s recognized  affecting  t r a c e element  contribute to at least  problems, p a r t i c u l a r l y  Se  soil  peaty  of c a t t l e  i n this  a t n e a r l y two m i l l i o n  1975).  STUDY OBJECTIVES The  purpose o f t h i s  distribution  patterns  Canadian I n t e r i o r  study  was t o i n v e s t i g a t e t r a c e  element  i n e a r t h - s u r f a c e m a t e r i a l s on t h e S o u t h e r n  Plain with  t h e a i m o f recommending s u i t a b l e  procedures  for efficiently  geochemical Canadian  collecting  information i n this  prairies  tributary  area.  an a l t e r n a t e medium i s r e q u i r e d view  of the  fact  that  soil  collected with r e l a t i v e l y examination material,  of trace  most o f  for routine  effort,  sampling  and  stream  3.  OUTLINE OF  Three  sediment  purposes. and  e m p h a s i s was  the d i r e c t  comparison  be  in this  data f o r  Because t r i b u t a r y an  can  p l a c e d on  compositional variations  common i n s o u t h e r n M a n i t o b a ,  study involved  the  consequently  i s everywhere a v a i l a b l e  little  element  and  i n order t o assess the u s e f u l n e s s of s o i l  locally  this  Throughout  sediment,  r e c o n n a i s s a n c e g e o c h e m i c a l mapping. are  presenting regional  drainages are too scarce to permit  r e c o n n a i s s a n c e mapping u s i n g s t r e a m  In  and  important  of r e s u l t s  streams aspect of  from  soil  surveys.  APPROACH  areas  (I - Rosetown, I I - Red  D e e r and  I I I - Swan 2  River-Dauphin)  varying i n size  (2,400 t o 5,800 in  Figs  ranging  s q mi)  were s e l e c t e d  3 to 6 these areas  span  6,000 up  f o r study.  a wide v a r i e t y  ment i m b a l a n c e s ,  i n t h e Swan R i v e r - D a u p h i n  Swan R i v e r - D a u p h i n  deficiency  environments,  Rosetown t o  area.  Trace  Deer r e g i o n .  subele-  i n each  ( i n p a r t Mo-induced) i n the  a r e a , Se t o x i c i t y  i n t h e Red  km  indicated  recognized, or suspected i n l i v e s t o c k  t h e s e a r e a s a r e , Cu  deficiency  t o 15,000 As  of  from c o m p a r a t i v e l y d r y g r a s s l a n d a r o u n d  humid b o r e a l f o r e s t  of  from about  near  Rosetown and  Se  I n t h e Rosetown and Red D e e r a r e a s , where t r i b u t a r y are r a r e , both  attention  r e g i o n a l and d e t a i l e d  Originally for  f o c u s s e d on an e x a m i n a t i o n  soil  i t was t h o u g h t  soil  compositional  streams  of the nature o f variations.  t h a t r e g i o n a l t r a c e element  patterns  c o u l d s i m p l y be d e s c r i b e d i n t e r m s o f d i f f e r e n c e s  among  2 means f o r i n d i v i d u a l b e i n g examined.  94 km  A c c o r d i n g l y t o w n s h i p means were e s t i m a t e d on  the b a s i s o f a n a l y s e s ed  (36 s q mi) t o w n s h i p s w i t h i n t h e a r e a  for soils  s i t e s w i t h i n each township.  obtained  "among" t o w n s h i p d a t a v a r i a b i l i t y  II)  indicated  accounted  for a relatively  data v a r i a n c e .  f o r C horizon s o i l  among t o w n s h i p means  confidence  Furthermore,  these  means  level):  could.be  i n the m a j o r i t y of cases  consequently attributed  Inspection of the data tended soil  chapters,  the a r e a b e i n g can  typically  variations  significant  (at the  most map p a t t e r n s b a s e d  on  t o chance.  indicated  that s o i l  composition  variations  differences. New M u l t i p l e  In f a c t ,  as w i l l  be d e s c r i b e d i n s u b -  a n a l y s i s o f v a r i a n c e shows t h a t d e p e n d i n g  c o n s i d e r e d up t o 78% o f t h e t o t a l  be a t t r i b u t e d  Consequently al  (Table  t o be c o n t r o l l e d , t o a l a r g e e x t e n t , b y t h e n a t u r e o f  parent materials.  sequent  select-  s m a l l p o r t i o n (< 25%) o f t h e t o t a l  among t o w n s h i p means were n o t s t a t i s t i c a l l y 95%  two r a n d o m l y  However c o m p a r i s o n o f " w i t h i n "  and  that the v a r i a t i o n  from  to differences  i t was d e c i d e d  soil  composition-  among p a r e n t m a t e r i a l mean  A s recommended b y M i e s c h Range t e s t was u s e d  variance  among p a r e n t m a t e r i a l means.  to describe regional s o i l  i n terms o f t h e s e  data  upon  (1976),  Duncan  (1955)'s  t o i d e n t i f y means w h i c h do n o t  24  Table  Area  I I P r e l i m i n a r y comparison o f estimated w i t h i n and among t o w n s h i p C h o r i z o n s o i l v a r i a n c e components, s o u t h e r n p o r t i o n o f Rosetown a r e a and Red D e e r area.  Number of Element TownShips  Estimated T o t a l l o g 10 Variance  P a r t i t i o n e d Variance Within Township &  Component  Rosetown (southern portion)  Red Deer  54  66  of total  Among Township g. Component o f total  Cu  0.0496  0.0371  74.8  0.0125*  25.2  Fe  0.0212  0.0182  85.8  0.0030  14.2  Mn  0.0203  0.0177  85.3  0.026  14.7  Zn  0.0296  0.0231  78.0  0.0065*  22.0  Cu  0.0335  0.0324  96.6  0.0011  3.4  Fe  0.0141  0.0141  100.0  0.0000  0.0  Mn  0.0368  0.0368  100.0  0.0000  0.0  Zn  0.0192  0.0192  100.0  0.0000  0.0  S i g n i f i c a n t l y greater than zero a t P = 0.05.  differ  s i g n i f i c a n t l y , and r e s u l t s  showing t h e d i s t r i b u t i o n rials  or parent  based  soil  i n map  form  o f chemically d i s t i n c t i v e parent  mate-  m a t e r i a l groups f o r each element examined.  t h e Rosetown a r e a al  were summarized  the a g r i c u l t u r a l  compositional  significance  maps was a s s e s s e d  o f parent  In materi-  i n relation to  r e g i o n a l v a r i a t i o n s i n t h e t r a c e element content  of associated  wheat p l a n t s . I n t h e Swan R i v e r are  r e l a t i v e l y common,  r e l a t i v e merits sediment on  - D a u p h i n a r e a , where t r i b u t a r y  sampling  procedures.  the d i s t r i b u t i o n  evaluated  e m p h a s i s was p l a c e d on c o m p a r i s o n o f t h e  of s o i l  sampling  and r e c o n n a i s s a n c e  stream  A t t e n t i o n was f o c u s s e d p r i m a r i l y  o f molybdenum.  i n relation  streams  G e o c h e m i c a l maps were  t o i n f o r m a t i o n o f t h e Mo c o n t e n t  p l a n t s and t h e d i s t r i b u t i o n  of forage  o f M o - i n d u c e d Cu d e f i c i e n c y i n c a t t l e  CHAPTER I I SAMPLE COLLECTION, PREPARATION AND ANALYSIS AND DATA  HANDLING  PROCEDURES  26 A.  1.  SAMPLE COLLECTION AND  PREPARATION  COLLECTION A p p r o x i m a t e numbers and t y p e s o f s a m p l e s c o l l e c t e d  of  the three study  a r e a s a r e summarized  Rosetown a n d Red D e e r a r e a s sampling.  attention  i n t h e Rosetown a r e a .  soil,  and l e s s e r  focussed mainly  In the on  soil  I n t h e Swan R i v e r - D a u p h i n  amounts o f s t r e a m  r o c k were c o l l e c t e d .  sediment,  somewhat  from  area  for obtaining  one a r e a t o t h e n e x t ,  are d e s c r i b e d s e p a r a t e l y i n subsequent  also  v e g e t a t i o n and b e d -  Because p r o c e d u r a l d e t a i l s  these m a t e r i a l s v a r i e d  they  chapters.  PREPARATION Both  soil  and s t r e a m  in  a p o r c e l a i n mortar.  an  8 0-mesh  analysis. to  III.  A l i m i t e d number o f p l a n t and r o c k s a m p l e s were  taken  2.  i n Table  i n each  sediment  Stream sediment  s i e v e and t h e f i n e s  After  t o m i n u s 10-mesh  sieving  m i n u s 100-mesh  between c e r a m i c  plates,  i n a "Shatterbox". prior  tion  Air-dried  was  ground  "Shatterbox".  a jaw c r u s h e r a n d  reduced  t o m i n u s 100-  v e g e t a t i o n was g r o u n d  SAMPLE  in a  ANALYSIS  e l e m e n t a n a l y s i s were c a r r i e d  of atomic  soil  to analysis.  B. Trace  and were f i n a l l y  through  retained for  (2 mm),  through  disaggregated  then passed  (149 u) i n a Spex  Rock c h i p s were s u c c e s s i v e l y p a s s e d  Wiley m i l l  was  (17 7 u) n y l o n  approximately  mesh  were i n i t i a l l y  absorption, colorimetric  out u s i n g a combinaand  fluorimetric  27  Table  i n  A p p r o x i m a t e numbers and t y p e s o f s a m p l e s c o l l e c t e d i n each o f the t h r e e major study areas.  Number o f Samples C o l l e c t e d Sample  Type  Swan R i v e r Dauphin  Total  215  215  600  2450  105  110  215  50  65  115  Rosetown  Stream  Sediment  Soil Vegetation Rock  Red Deer  1250  600  28 techniques. perchloric and  A t o m i c a b s o r p t i o n was u s e d acid  t o measure  e x t r a c t a b l e Cu, F e , Mn and Zn l e v e l s  Red D e e r a r e a p l a n t s and s o i l s ,  Swan R i v e r - D a u p h i n a r e a  samples  p l a n t samples.  f r o m t h e Swan R i v e r  mined f l u o r i m e t r i c a l l y  A c o l o r i m e t r i c proce-  - Dauphin a r e a .  g e o l o g i c a l and Se was  deter-  and b e d r o c k .  COPPER, IRON, MANGANESE AND a)  o f both  i n s e l e c t e d Rosetown and Swan R i v e r -  Dauphin area p l a n t s , s o i l s  1.  i n Rosetown  and Cu c o n c e n t r a t i o n s i n  d u r e was u s e d t o d e t e r m i n e t h e Mo c o n t e n t plant  nitric-  ZINC  Digestion of Plants Milled 25  vegetation  x 300 mm,  chloric  pyrex t e s t  acid  added.  sample m i x t u r e heat  (0.500 g) was p l a c e d  t u b e and 10 m l o f 4:1 n i t r i c p e r -  A f t e r standing  was p l a c e d  (approximately  overnight  on a h o t a i r b a t h  1 5 0 ° C) and e v a p o r a t e d  ness.  2.5 m l o f 6M H C l were t h e n  cooled  test  was u s e d  i n a large,  -  a t moderate slowly  to dry-  added t o t h e p a r t l y  tube t o d i s s o l v e the r e s i d u e .  to bring the f i n a l  the acid  Distilled  water  sample volume t o 10 ml p r i o r  to a n a l y s i s .  b)  Digestion of S o i l s Two s l i g h t l y tion the  procedures first  samples (i)  different  nitric-perchloric  (#1 and 2) were e m p l o y e d .  acid  extrac-  Procedure  t o be u s e d and was a p p l i e d t o Red D e e r  1 was  area  only.  Procedure 1 1 m l o f 4:1 n i t r i c : p e r c h l o r i c t o a 20 X 170 mm  pyrex t e s t  a c i d was added  t u b e c o n t a i n i n g 0.200 g  o f ground  soil.  T e s t t u b e s were p l a c e d on  a hot  C f o r three hours.  cooling  o  air  b a t h a t 100  sample volume was (ii)  Procedure  made up  After  t o 10 ml w i t h 1.5M  HCI.  2  Either  0.200 o r 0.500 g o f minus 100-mesh  were w e i g h e d i n t o a p y r e x t e s t nitric:perchloric t u r e p l a c e d on  tube.  2 ml  of  a c i d were t h e n added and  soil 4:1  the mix-  a hot a i r bath a t approximately  o 200  C.  E v a p o r a t i o n was  ness o v e r n i g h t . was  t a k e n up  After  i n 2.5  allowed to proceed  partial  ml  6M HCI  cooling and  7.5  to dry-  the r e s i d u e ml  of  distilled  water. Although Procedure rapid,  1 had  the e f f e c t i v e n e s s  sensitive  the advantage  o f t r a c e element  to temperature,  which  was  of being  relatively  e x t r a c t i o n was  difficult  to maintain  very con-  o stant  a t 100  order  t o overcome t h i s  extraction for  C.  Procedure  Comparison  subsequently introduced i n  difficulty.  efficiencies  the elements  2 was  o f t h e two  As  from c)  slightly  of n i t r i c - p e r c h l o r i c  that  e x t r a c t i o n data with digestion  these n i t r i c - p e r c h l o r i c  of the t o t a l  results  for selected attacks liberate  s o i l concentrations.  Analysis Digested  into  only  the  examined.  indicates  60 t o 75%  i n T a b l e IV  procedures d i f f e r  for a hydrofluoric-nitric-perchloric samples  indicated  samples,  the a i r - a c e t y l e n e  i n 1.5  M HCI  s o l u t i o n s , were  f l a m e o f a T e c h t r o n AA-4  aspirated  spectrophotometer  30  T a b l e IV R e l a t i v e e x t r a c t i o n e f f i c i e n c i e s o f s o i l d i g e s t i o n P r o c e d u r e s 1 and 2 f o r s e l e c t e d C h o r i z o n Rosetown a r e a s a m p l e s .  Relative Extraction Efficiency* S o i l Parent Material  (%)  Number o f Analyses  Cu  Fe  Lacustrine clay  26  97.2  95.1  114.6  89.0  Lacustrine s i l t and sand  31  94.0  89.4  102.5  98.2  Aeolian sand  27  84.1  100.0  103.5  93.8  Relative  extraction  efficiency  = /  Mn  Zn  x 100.  a  b  where a and b  = me.an_,trace e l e m e n t c o n t e n t u s i n g = mean t r a c e e l e m e n t c o n t e n t u s i n g  digestion digestion  P r o c e d u r e 1, P r o c e d u r e 2.  and  absorbance values recorded manually.  preparation  and i n s t r u m e n t a l o p e r a t i o n p r o c e d u r e s  by F l e t c h e r ( 1 9 7 1 ) .  Instrumental  m e a s u r e d a r e g i v e n i n T a b l e V. to c o n v e r t absorbance data c o n c e n t r a t i o n v a l u e s onto  standard  variations, duplicate  i n order  cards  (Fletcher,  estimates  among b a t c h  analytical  sample w h i c h was a n a l y s e d i n analytical  variability.  f o r b o t h w i t h i n and among b a t c h i n A p p e n d i x B.  using both  As i n d i c a t e d  procedures  g e n e r a l l y range w i t h i n a c c e p t a b l e l i m i t s  2.  used  1970).  to estimate  to assess w i t h i n batch  estimation are outlined  elements  o f 24 s a m p l e s c o n t a i n e d one b l a n k , one  sample u s e d  procedures  f o r the four  An IBM 360/7 0 computer was  and one r a n d o m l y s e l e c t e d  Computational  precision  settings  are described  i n t o c o n c e n t r a t i o n s , and t o p u n c h  Each a n a l y t i c a l batch laboratory  D e t a i l s of standard  precision  i n Table VI  compare f a v o u r a b l y and (+ 5 t o 2 5 % ) .  MOLYBDENUM A variety  prior  o f sample e x t r a c t i o n . p r o c e d u r e s were  to the c o l o r i m e t r i c  ashing/HCl  procedure  as a " p a r t i a l "  ammonium  routinely  nitric-perchloric  p l a n t - a v a i l a b l e Mo acid  d e t e r m i n a t i o n o f molybdenum.  was u s e d  to g e o l o g i c a l m a t e r i a l s .  An a t t e m p t  on p l a n t m a t e r i a l s w h e r e -  was made t o m e a s u r e t h e  status of selected  o x a l a t e procedure.  A dry-  d i g e s t i o n was g e n e r a l l y a p p l i e d  soil  Residues  t r a c t i o n were d i g e s t e d i n a m i x t u r e perchloric  employed  a c i d s so t h a t t h e " t o t a l "  samples employing from  the o x a l a t e ex-  of hydrofluoric,  n i t r i c and  sample Mo c o n t e n t  c o u l d be  estimated. a)  Digestion of Plants Milled  vegetation  an  (1.000 g) was a s h e d o v e r n i g h t i n a  32  Table  Element  V  Instrumental settings f o r Techtron AA-4 spectrophotometer.  Wavelength (A)  A i r Pressure (psi)  Cu  3247.5  20  Fe  2483.3* 3719.9  Mn Zn  Fuel Gauge Setting  Slit Width (u)  Lamp Current (mA)  2.5  50  3  20  2.5  50  5  2794.8  20  2.5  50  5  2138.6  20  2.5  100  6  * 2483.3 u s e d  f o r p l a n t s ; 3719.9 u s e d  for soils.  33  Table  VI  P r e c i s i o n o f Cu, F e , Mn and Zn a n a l y s e s , a t t h e 95% c o n f i d e n c e l e v e l .  Precision Type o f , Estimate  Among  Element  Batch*  „ , „„ . . , Geological Material _ j Procedure Procedure  Cu Fe Mn Zn Number o f Analyses  Within  Batch**  (+ %) , . Plant . . „, Material r  M  1  17.0 15.4 13.1 26.4  23.2 18.8 10.8 32.8  7, 25. 18. 9,  73  52  18  Cu Fe Mn Zn  8.6 14.2 7.4 9.0  Number o f Paired Analyses  61  10 14 5 17 74  21.8 28.1 24.9 8.9 17  B a s e d on one a n a l y s i s o f U.B.C. S t a n d a r d Rock #1 ( g e o l o g i c a l m a t e r i a l ) o r o f a l f a l f a sample #73-PD-1508 ( p l a n t m a t e r i a l ) per a n a l y t i c a l batch.  ** B a s e d on d u p l i c a t e a n a l y s e s o f one r a n d o m l y s e l e c t e d per a n a l y t i c a l batch.  sample  34 20 x 80 mm  pyrex t e s t  t u b e a t 625  o  C.  The r e s i d u e  t a k e n up i n 10 ml 6M HCI a n d 5 m l o f t h i s set  b)  aside  f o r Mo  was  s o l u t i o n was  determination.  Digestion of Geological Materials (i)  Nitric-perchloric Ground  soil  acid extraction and r o c k ,  were d i g e s t e d  as d e s c r i b e d  P r o c e d u r e 2.  A f t e r evaporation  6M HCI were u s e d aliquot  of t h i s  separate  test  Acid  solution  t o d r y n e s s 4 ml o f A 2 ml  s o l u t i o n was t r a n s f e r r e d t o a  tube and d i l l u t e d  t o 5 ml w i t h  f o r determination  ammonium o x a l a t e  Reisenaur  sediment  f o r Cu, F e , Mn and Zn  (1965).  6M  o f molybdenum.  extraction  T h i s p r o c e d u r e was m o d i f i e d by  stream  to d i s s o l v e the residue.  HCI i n p r e p a r a t i o n  (ii)  and s i e v e d  from t h a t  described  100 ml o f a c i d ammonium  oxalate  (pH 3.3) wer.e added t o 10.00 g o f u n g r o u n d  m i n u s 10-mesh  soil  Samples were p l a c e d  i n a plastic  centrifuge  bottle.  on a h o r i z o n t a l s h a k e r f o r 12  h o u r s and t h e n c e n t r i f u g e d a t 4000 rpm f o r 2 0 m i n u t e s . A 50 m l a l i q u o t o f t h e s u p e r n a t a n t ferred on  t o a 100 m l b e a k e r a n d e v a p o r a t e d  a hot plate.  furnace tant  liquid  The r e s i d u e was p l a c e d  was t r a n s t o dryness  i n a muffle  a t 4 5 0 ° C f o r a b o u t 3 1/4 h o u r s .  The r e s u l -  a s h was t a k e n up i n 10 m l o f 6M HCI and h a l f  of t h i s  s o l u t i o n was u s e d  f o r Mo a n a l y s i s .  (iii)  Hydrofluoric-nitric-perchloric  acid  Ammonium o x a l a t e t r e a t e d s o i l distilled  w a t e r and  a 2.0  extraction was  washed i n  g subsample was  ignited  at  o 600  C  f o r about  3 hours.  0.500 g o f t h i s m a t e r i a l  were d i g e s t e d i n a t e f l o n hydrofluoric  acid  acid.,  evaporation to dryness  After  were d i s s o l v e d  and  evaporating dish  2.5  i n 10 ml  ml  6M  4:1  HCl  in 5  ml  nitric:perchloric sample r e s i d u e s  o f w h i c h 5 ml  were  s e t a s i d e f o r d e t e r m i n a t i o n o f molybdenum. c) A n a l y s i s Mo  was  procedure was Cu  used  measured c o l o r i m e t r i c a l l y  of Stanton  and  Hardwick  a c c o r d i n g t o the  (1967).  Sodium i o d i d e ,  i n p l a c e o f t h e recommended p o t a s s i u m  i n t e r f e r e n c e ( D e l a v a u l t , 1972), because use  agent  resulted  i n the  p r e c i p i t a t e when t h e Also  a few  drops  formation of a white sample r e s i d u e was  of acetone  leum e t h e r e x t r a c t s as  iodide to of the  potassium  leached with  were added t o c l a r i f y  suggested  dithiol  by H o f f m a n and  however, supress  latter  re-  perchlorate 6M  HCl.  clouded  petro-  Waskett-Myers  (1974). Mo  values obtained  with  those  tion  procedures.  of data  o b t a i n e d by  suggests  employed was precision,  in this two  study  other  a r e compared  i n Table  l a b o r a t o r i e s u s i n g atomic  G e n e r a l l y good a g r e e m e n t between t h e two t h a t the  satisfactory,  estimated  from  accuracy  of the c o l o r i m e t r i c  at least  for plants.  the r e s u l t s  (see Appendix B f o r c o m p u t a t i o n a l  VII absorpsets  method  Analytical  of d u p l i c a t e analyses  procedures),  ranged  between  36 Table VII  C o m p a r i s o n o f Mo c o n c e n t r a t i o n s o b t a i n e d by t h i s and o t h e r l a b o r a t o r i e s on s e l e c t e d p l a n t samples. Mo C o n t e n t  Sample Number  7  4  -  74-1128  74-1176 74-1207 74-1852 74-1858  74-M-47  (ppm)  U.B.C. Values*  1  1  2  7  1  1.0-1.6 (4) 1.7 1.2-2.4 (4) 1.6 1.2-2.0 (4) 2.9 2.0-4.0 (4) 0.7 0.4-1.0 (4) 1.9 1.4-2.0 (4) 7.0  Other Values  T  2  1  .  6 , 1.3 , 1.3 , 3.0 n  0.3 0.3  2 9.0 2  (1) 7 4-M-56  11.3  1  12.0 2  (1) 74-M-106  12.1  (1) 74-M-116 24.3 Mean and r a n g e : number o f a(1) nalyses  10.0  2  24.0 i n parentheses.  C o n c e n t r a t i o n s m e a s u r e d b y a t o m i c a b s o r p t i o n by t h e M a n i t o b a D e p t . - o f A g r i c u l t u r e , W i n n i p e g ; number o f d e t e r m i n a t i o n s uncertain. ' C o n c e n t r a t i o n s m e a s u r e d by a t o m i c a b s o r p t i o n a t t h e C a n a d a D e p t . o f A g r i c u l t u r e R e s e a r c h S t a t i o n , A g a s s i z , B.C.; number of determinations u n c e r t a i n .  37 about used  + 25  and  + 35%,  t h e combined  of n i t r i c - p e r c h l o r i c  results  chloric  extractions  chloric  digestion  total  Acid  average,  a similar  denum.  ( T a b l e IX)  indicates  an a v e r a g e  f r o m one  that  the  but that  sample t o t h e n e x t  ammonium o x a l a t e t r e a t m e n t proportion  results  (35%)  with  nitric-per-  o f o n l y about  38%  this  of  the  percentage  ( r a n g e 12.5  liberated,  of the t o t a l  Amounts removed f r o m i n d i v i d u a l  "partial"  samples  on  soil  to  the molyb-  by t h e s e  two  e x t r a c t a n t s however g e n e r a l l y were n o t c l o s e l y  related.  SELENIUM The  fluorometric  o f Se  i s described  nique  involved  material mended by 1971:  procedure developed  in detail  digestion  an a d d i t i o n a l  from p o t e n t i a l l y t i o n w i t h As  interfering  ( A l l a w a y and  into  a;  A.  Briefly,  1960).  Cary,  (DAN)  1964).  and  continued  fumes and  Se was  s u c h as Fe by After  recom-  Vendette,  E v a p o r a t i o n was acid  coprecipita-  reaction  ( W i l k i e and Young,  then  separated  with  i n t h e p r e s e n c e o f EDTA, Se  n-hexane l a y e r  tech-  gelogical  a c i d s as  Levesque  ( O l s o n , 1969). elements  the  p l a n t or  perchloric  of white p e r c h l o r i c  15 m i n u t e s  3-diaminonapathalene  and  (Lane, 1966;  Watkinson,  appearance  f o r the d e t e r m i n a t i o n  o f 0.500 g o f e i t h e r  s e v e r a l workers  O l s o n , 1969;  extracted  i n Appendix  i n a mixture of n i t r i c  to the f i r s t  2,  extraction  hydrofluoric-nitric-per-  p r e s e n t i n the s o i l ,  considerably  64.0%).  extraction  f o r o x a l a t e and  released  amount o f Mo  varied  for  upon t h e method o f  (Table V I I I ) . Comparison  3.  depending  1970).  was  38  Table VIII  P r e c i s i o n o f Mo a n a l y s i s , a t t h e 95% c o n f i d e n c e l e v e l , b a s e d on d u p l i c a t e d e t e r m i n a t i o n s on r a n d o m l y s e l e c t e d samples.  Extraction  Sample Type  Number o f Duplicate Analyses  Precision (+%)  Nitric-perchloric  Plant  27  26.4  Rock, S o i l Stream Sediment  29  29.4  A c i d Ammonium Oxalate  Soil  12  35.9  Hydrofluoric-nitricperchloric  Soil  9  25.7  39  T a b l e IX  Percentage of estimated t o t a l s o i l Mo c o n t e n t removed b y a c i d ammonium o x a l a t e and n i t r i c - p e r c h l o r i c a c i d extractions.  „ , i • Extraction Procedure  Percentage of Estimated Total Removed*  Nitric-Perchloric Acid  38.2 1 2 . 5 - 64.0  A c i d Ammonium Oxalate  A r i t h m e t i c mean and r a n g e ;  35.2 3.0 - 62.5  based  on a n a l y s i s  o f 20  samples.  40 A T u r n e r M o d e l 111 Fluore,meter  was u s e d  f o r f l u o r e s e n c e measure-  ments. A detection limit and  this  weight.  c o u l d have b e e n i m p r o v e d  by i n c r e a s i n g  by t h e a n a l y s i s o f f o u r i n t e r l a b o r a t o r y  satisfactory  (Table X ) .  0.500 g o f 15 s o i l 115%.  Precision,  Recovery  samples averaged determined  a n a l y s e s o f 30 r a n d o m l y  from  t h e sample  selected  + 25% a t t h e 95% c o n f i d e n c e  standard  samples,  o f 0.5 ug o f Se added t o  94%, and r a n g e d  from  88 t o  the r e s u l t s o f duplicate plant,  (see Appendix B f o r c o m p u t a t i o n a l  4.  20 ppb was a c h i e v e d ,  The a c c u r a c y o f t h e method f o r b i o l o g i c a l m a t e r i a l s , a s  checked was  of approximately  soil  and r o c k  samples  p r o c e d u r e s ) , was a p p r o x i m a t e l y  level.  SOIL REACTION 10 m l o f d i s t i l l e d  unground  w a t e r were added t o a p p r o x i m a t e l y  (minus 10-mesh) s o i l  i n a 3 oz d i s p o s a b l e D i x i e c u p .  A d d i t i o n a l w a t e r was a d d e d t o p a r t i c u l a r l y Soil-water mixtures  were a l l o w e d  hour w i t h r e g u l a r s t i r r i n g . Orion  specific  reference  i o n meter  C. The  purpose  samples.  f o r a t l e a s t one  Measurements were made w i t h an  (Model  i n buffer  organic-rich  to equilibrate  404) e q u i p p e d  a n d A g / A g C l pH e l e c t r o d e s .  brated p e r i o d i c a l l y  10.0 g  with  calomel  The i n s t r u m e n t was  solutions  cali-  o f pH 4.0 and 7.0.  S T A T I S T I C A L METHODS  of t h i s  section  i s to describe, i n general  41  Table  X  C o m p a r i s o n o f a c c e p t e d Se c o n c e n t r a t i o n s f o r s e l e c t e d s t a n d a r d b i o l o g i c a l samples w i t h v a l u e s determined i n t h i s study.  Sample Description  Se C o n t e n t Accepted Values**  (ppm) This Study*  Standard Reference Materials #1571 Orchard Leaves  0.080+0.010  0.074 0.065 - 0.080 (6)  #1577 Bovine  1.100+0.100  1.136 0.940 - 1.34 0 (11)  0.585  0.594 0.580 - 0.600 (6)  3.070  2.953 2.900 - 2.980 (3)  Liver  I n t e r n a t i o n a l Atomic Energy Agency I n t e r c o m p a r i s o n Samples #A - 2 D r i e d Whole A n i m a l Blood #A - 6 Fish Solubles  Mean and r a n g e ;  number o f a n a l y s e s i n p a r e n t h e s e s .  * V a l u e s F o r S t a n d a r d R e f e r e n c e M a t e r i a l s from O r v i n i e t a l . ( 1 9 7 4 ) , and f o r IAEA I n t e r c o m p a r i s o n Samples A-2 a n d A-6 f r o m G o r s k i e t a l . (1974) and I n t e r n a t i o n a l A t o m i c E n e r g y A g e n c y (1975) r e s p e c t i v e l y .  42  terms o n l y ,  the v a r i o u s  statistical  methods employed  investigation.  D e t a i l s of computational  i n A p p e n d i x B.  C a l c u l a t i o n s were c a r r i e d  on  an  IBM  sity  1.  out,  element data  most s t a t i s t i c a l  f o r t h e most p a r t ,  were l o g - t r a n s f o r m e d  (base  have s u g g e s t e d  10)  1954;  Hawkes and  Webb, 1962;  have shown t h a t t h e  a variety  p l a n t s , may  Miesch,  concentrations  of earth surface environmental under a p p r o p r i a t e  proach a iognormal Although (< 30  cate  data  sets i n this  buted had  procedure.  that approximately (95%  confidence  parent  little  60%  study  on  the  are  lognormality  1967).  Futher-  simulation  materials including be  expected  to  ap-  t o be  typically  relatively  number o f t h e  largest  normality  lognormality  Results,  of the  level)  populations.  effect  of  distribution.  observations), a limited  a chi-square  likely  to  of t r a c e c o n s t i t u e n t s  circumstances,  were t e s t e d f o r d e v i a t i o n s f r o m b o t h using  prior  t h a t the d i s t r i b u t i o n  more, D u v a l e t a l . ( 1 9 7 1 ) , u s i n g computer b a s e d  small  Univer-  Centre.  t r a c e elements i n g e o l o g i c a l m a t e r i a l s approximates  in  the  manipulations.  Several authors  studies,  given  TRANSFORMATION  Trace  (Ahrens,  this  are  360/70 c o m p u t e r , u s i n g p r o g r a m s s u p p l i e d by  of B r i t i s h Columbia Computing  DATA  procedures  in  and  shown i n T a b l e  sample  XI  However, l o g - t r a n s f o r m i n g outcome o f t h e  indi-  sets t e s t e d are  drawn f r o m n o r m a l l y  test,  and  the  sets  not  distri-  the  data  null  43 T a b l e X I R e s u l t s o f c h i - s q u a r e n o r m a l i t y t e s t s on p l a n t a n d s o i l Cu, F e , Mn and Zn d a t a f r o m t h e Rosetown a r e a . S o i l Parent Material  Lacustrine clay  Lacustrine s i l t and s a n d  Glacial  till  Sample Type  Wheat A Horizon Soil C Horizon Soil Wheat A Horizon Soil H o rizon C Soil Wheat A Horizon Soil C Horizon Soil  Aeolian  sand  Wheat A Horizon Soil C Horizon Soil  Data Type**  Number of Values  Chi-Prob* Cu  Fe  Mn  — Zn  N L N L N L  28 28 51 51 96 96  0.40 0.42 0.04 0.14 0.01 0.00  0.31 0.20 0.10 0.16 0.56 0.08  0.59 0.46 0.27 0. 30 0.60 0.75  0.82 0.92 0.28 0.19 0.24 0.00  N L N L N L  24 24 37 37 59 59  0.01 0.03 0.00 0.00 0.00 0.00  0.03 0.01 0.00 0.00 0.00 0.00  0.11 0.12 0.00 0.00 0.00 0.00  0.24 0.32 0.00 0 .00 0.00 0.00  N L N L N L  20 20 48 48 94 94  0.03 0.01 0.43 0.43 0.00 0.10  0.25 0.00 0.26 0.19 0.44 0.59  0.00 0.00 0.63 0.74 0.51 0.28  0.00 0.00 0.17 0.01 0.33 0. 39  N L N L N L  21 21 38 38 57 57  0.03 0.03 0.00 0.00 0.00 0.00  0.00 0.01 0.00 0.00 0.00 0.00  0.01 0.00 0.00 0.00 0.00 0.00  0.04 0.08 0.00 0.00 0.00 0.00  A c h i - p r o b v a l u e o f l e s s t h a n 0.05 i n d i c a t e s t h a t t h e sample t e s t e d i s n o t l i k e l y (95% c o n f i d e n c e ) t o have b e e n drawn f r o m a normally d i s t r i b u t e d parent population. N = natural  values:  L = l o g 10 v a l u e s .  44 h y p o t h e s i s was  also rejected  f o r a b o u t 60%  of the  l o g 10  data  sets. Nevertheless,  as M i e s c h  (1976) has  f o r m a t i o n o f t r a c e e l e m e n t d a t a c a n be  p o i n t e d out, justified  on  log- transother  grounds.  F o r example,  f o r minor c o n s t i t u e n t s i n n a t u r a l m a t e r i a l s v a r i a n c e  arising  from  in  both  analytical  sources  and  that actually  the m a t e r i a l b e i n g examined, i s g e n e r a l l y a p p r o x i m a t e l y  portional  to the  average  v a r i a n c e over  the e n t i r e  s e t s tends  t o homogenize t h e  c o n c e n t r a t i o n range.  and  extensively  Duncan's New in this  Multiple  not  and  be  2.  testing,  relatively  Either  used  lations.  The  1974)  of  used  the normal form,noted  estimates  even t h e s e  to estimate geometric  (Miesch,  affect  of v a r i a n c e based procedures  the  1970).  in of results  Although methods o f  are considered  t o s m a l l d e v i a t i o n s from  POPULATION  the geometric  (M), was  from  for analysis  insensitive  ESTIMATION OF  Range t e s t s w h i c h were  i n most c a s e s , g r e a t l y  variability  i s more i m p o r t a n t  significance  analysis  c o n s i d e r e d s e r i o u s because the assumption  l o g n o r m a l i t y does not, of average  data  study.  D e v i a t i o n s o f l o g 10 d a t a Table XI,are  Log-  This i s particularly  u s e f u l b e c a u s e homogenous v a r i a n c e i s assumed f o r b o t h variance  pro-  amount o f t h e c o n s t i t u e n t p r e s e n t .  transformation of the data  it  present  to  normality.  PARAMETERS  mean  (GM)  o r , l e s s commonly t h e m e d i a n  the c e n t r a l  mean was  as the a n t i l o g a r i t h m o f the  tendency  computed  of  (Le and  sampled  popu-  Seagraves,  a r i t h m e t i c mean o f  45 log-transformed  t r a c e element  Variability geometric The  of data  deviation  geometric  s e t s was  (GD)  or the  d e v i a t i o n was  as  the  ed  concentrations.  values.  a n t i l o g a r i t h m of the In the  of the parent  GMxGD  3.  and  2  c a l c u l a t e d (Le and standard case  some d a t a  s e t s , o f one  d e v i a t i o n of  the  data  l i m i t s w i t h i n which occur  can  be  197 4)  log-transformap-  about  estimated  example, t h e local  effects  of  results  t o be  r e p r e s e n t a t i v e of the  Such v a l u e s  sampling  as  o f means i t was  l o g 10  decided  c o n c e n t r a t i o n o f any  a r i t h m e t i c mean p l u s two  f o r l a r g e r sample s e t s  ones t h i s  procedure i s of  fashion are  limited  e r r o r , or  perhaps avoid  g r e a t e r than  deviation values.  the  data  log  Although  observations) , for  usefulness.  i n d i c a t e d i n the  for  a l l samples f o r which  e l e m e n t was  ( > 20  which  populations  Consequently, to  to reject  standard  effective  this  presence,  could r e f l e c t ,  or a n a l y t i c a l  secondary enrichment processes.  biasing  i n d i c a t e d the  o r more a n o m a l o u s l y h i g h v a l u e s  were t a k e n .  C.  Seagraves,  IDENTIFICATION OF.OUTLIERS  from which they  in  concentrations.  2  unlikely  10  the  GM-^GD .  were c o n s i d e r e d  the  as  where l o g - t r a n s f o r m e d  population values  Examination of a n a l y t i c a l in  either  range of observed  proximate a normal d i s t r i b u t i o n , 95%  expressed  smaller  Samples r e j e c t e d  listings  i n Appendix  46 4.  TESTS OF  SIGNIFICANCE  a) C o r r e l a t i o n The and  linear  Seagraves,  between d a t a trace  1974)  coefficient,  t o measure the  for different  types  element c o n c e n t r a t i o n s  at the but  correlation  same s i t e .  this  b)  A  the  total  a n a l y s i s of v a r i a n c e procedure  data v a r i a b i l i t y  of f i x e d  size  have e q u a l v a r i a n c e s , r e s u l t s  on  of  these  (townships  m a t e r i a l type.  assumes t h a t sampled p o p u l a t i o n s  moderate v i o l a t i o n s  into within  D a t a g r o u p s were d e f i n e d e i t h e r  to parent  or according  use  t o be  Variance  sites)  general  obtained  normality.  areas  for  soil material  as  relatively in-  b a s i s of geographic  and  such  i s generally considered  among g r o u p components.  test  of a s s o c i a t e d samples,  i s assumed,  single classification  used t o p a r t i t i o n  (Le  strength of r e l a t i o n s h i p s  i n p l a n t and  t o d e v i a t i o n s from  A n a l y s i s of  computed  A b i v a r i a t e normal p o p u l a t i o n  statistic  sensitive  r , was  are changed v e r y I t has  and on  the  sample  Although  are normally  assumptions.  or  was  this  distributed little  by  been documented  t h e U.B.C. IBM  360/7 0 computer by  M u l t i p l e Range  Test  Coshow  (1971). c)  Duncan's New T h i s t e s t was  used to e v a l u a t e  the  significance  ferences  among means f o r v a r i o u s g r o u p s o f d a t a  b a s i s of  soil  parent  material.  I t has  of  dif-  d e f i n e d on  been d e s c r i b e d  in  the  detail  by Duncan (1955), and compared w i t h other s i m i l a r t e s t s by S t e e l and T o r r i e  (1960).  As Miesch  (1976) has noted, i t may  be  considered an e x t e n s i o n of the " t " t e s t t o the case of more than two means.  L i k e the a n a l y s i s of v a r i a n c e i t assumes t h a t samples  are drawn randomly from normal p o p u l a t i o n s w i t h a common v a r i a n c e . A U.B.C. Computing Centre program documented by Halm (1971)  was  employed f o r a l l c a l c u l a t i o n s . d) Median T e s t T h i s procedure was  used to t e s t the hypothesis t h a t  samples were drawn randomly from p o p u l a t i o n s having medians.  identical  E s s e n t i a l l y i t i n v o l v e s determining the number of  v a l u e s w i t h i n each data s e t which occur above and below the overa l l median of the combined s e t s , and comparing these numbers w i t h those expected (Walker  from the n u l l hypothesis u s i n g a c h i - s q u a r e t e s t  and Lev, 1953).  Though based  on the assumption  that a l l  p o p u l a t i o n s have the same form, i t i s g e n e r a l l y b e l i e v e d t h a t the t e s t i s not s e n s i t i v e t o v a r i a t i o n s i n p o p u l a t i o n form.  CHAPTER I I I ROSETOWN AREA  48  A.  1.  Rosetown a r e a i n c l u d e s a p p r o x i m a t e l y 9,900  (3,900 s q mi) Saskatoon prevail  i n west-central Saskatchewan,  ( i n s e t map,  F).  falls  o  19 C  the growing  et a l . ,  Plain  Interion Plain  35 cm  s e a s o n f r o m May  Coteau Upland  (Fig 8).  cupies the c e n t r a l  (14 i n ) , h a l f  The  Saskatchewan  of  ©  C  which  The  Saskatchewan  adjacent  t o the uplands t o about  500 m  Howarden H i l l s  by an u n d u l a t i n g  and  the  R i v e r P l a i n , which  lowland area i s g e n e r a l l y  about  Region  and t h e A l b e r t a H i g h P l a i n by t h e M i s s o u r i  from about  of only  Plain  River Plain  and r a n g e s i n e l e v a t i o n  the  -16  Regions of the Canadian  rolling,  tions  temperature i s  the area includes p o r t i o n s of both the  (Bostock, 1970).  Upland,  elevation  conditions  t h r o u g h September  and A l b e r t a H i g h P l a i n  Howarden H i l l s  The  of  f o r January i s about  r e p r e s e n t e d by b o t h t h e S a s k a t c h e w a n  east.  2  1970).  Physiographically Saskatchewan  The mean J u l y  i s about  km  southwest  Semi-arid climatic  o (66 F) w h e r e a s t h a t  Total precipitation  during  (Ellis  F i g 8).  throughout the region.  approximately  is  STUDY AREA  GENERAL The  (3  DESCRIPTION OF  Upland  615 m  to r o l l i n g  flat 600 m  (2,050 f t ) and  surface.  to gently (2,000 f t )  (1,600 f t ) i n t h e  i n the east r i s e s  oc-  north-  t o a maximum  i s characterized  Considerably higher eleva-  (up t o 750 m o r 2,500 f t ) and more r u g g e d r e l i e f  M i s s o u r i C o t e a u U p l a n d , b o t h i n t h e s o u t h and  o c c u r on  i n the northwest.  K>8OO' 0  Figure8.  Topography and  drainage, Rosetown area.  50 Primarily  because  streams a r e r a r e particularly tion.  of the r e l a t i v e l y  perennial  t h r o u g h o u t most o f t h e r e g i o n and d i s c h a r g e ,  i n u p l a n d a r e a s , i s c o n t r o l l e d m a i n l y by e v a p o r a -  The S o u t h S a s k a t c h e w a n  through the eastern p o r t i o n amount o f l o c a l  2.  low r a i n f a l l ,  R i v e r , which  flows northward  of the area, receives only a small  runoff.  BEDROCK The  subcrop o f bedrock u n i t s  units consist silts,  sands  o f an e s s e n t i a l l y and g r a v e l s ,  i s indicated  flatlying  i n F i g 9.  sequence  These  of clays,  r a n g i n g i n age f r o m Upper C r e t a c e o u s  through Quaternary. The  oldest unit,  grey t o black c l a y  the L e a Park Formation, a noncalcareous  (Fraser e t a l . ,  base o f t h e Tyner V a l l e y , traverses the region g r a d e s upwards i n t o of  1935),  a p r e g l a c i a l bedrock d e p r e s s i o n  from southwest the s i l t y  The  75 m  to northeast.  grey d e l t a i c  t h e J u d i t h R i v e r Formation, which  t h i c k n e s s o f about  subcrops only along the  sands  i n this  This formation (McLean, 1971)  a r e a h a s a maximum  (250 f t ) .  J u d i t h River Formation i s , i n turn, o v e r l a i n  Bearpaw F o r m a t i o n , t h e most w i d e s p r e a d b e d r o c k u n i t . which  locally  been d i v i d e d  r a n g e s up t o 285 m by C a l d w e l l  somewhat t h i n n e r  silty  Formation m a t e r i a l  which  by t h e T h e Bearpaw,  (950 f t ) i n t h i c k n e s s , h a s  (196,8) i n t o  sand members.  from t h e v i c i n i t y  s i xsilty  clay  and f i v e  X - r a y a n a l y s i s o f Bearpaw o f G a r d i n e r Dam  indicates  3° 0 0 '  106° 43'  RI2  RI4  R8  RIO  BEDROCK  GEOLOGY  Tert iary- Qua ternary | O j Interbedded silt,marl.sand and gravel Cretaceous | 2  | Bearpaw  Formation: noncalcareous silt and clay  [:-:&:\ Judith River |  Figure 9.  ^  Formation: fine sand and silt  | Lea Park Formation: silty clay  Bedrock geology, Rosetown  area.  that montmorillonite  i s t h e m a j o r c l a y m i n e r a l , and  amounts o f i l l i t e  and  (Forman and  Rice,  1959).  by W i l l i a m s  e t a l . (1941) t o c o n t a i n up  with  kaolinite  Up locally  t o 75 m  Lakin,  and  o v e r l i e both  t h e Bearpaw and  Judith River  medium g r a i n e d Meneley,  from c l a y e y m a r l s ,  through  sands, t o w e l l rounded g r a v e l s  of  South  sediments Formations.  of  very  non-marine fine  to  ( C h r i s t i a n s e n and  1971).  SOIL PARENT MATERIAL Bedrock u n i t s are m  (100  fluvial cover  t o 500  and  till  sand and  over  typically  •glaciolacustrine  30 m  from  12  origin  and  clay  ft) i n thickness  at approximately  The  distribution  (40  to  200  sheet  has  been  present  about glacio-  This  drift  l a y e r s of ft)  thick,  from 1 t o  ( C h r i s t i a n s e n , 1973).  surficial  parent materials for s o i l s  to  of g l a c i a l ,  layers ranging  10,000 y e a r s b e f o r e  of  f r o m 30  ( S c o t t , 1971).  60 m  m a t e r i a l beneath the uppermost t i l l dated  by  composed o f s u c c e s s i v e  t o more t h a n  gravel, s i l t  (100  overlain  f t ) of P l e i s t o c e n e d r i f t  is characteristically  glacial and  Se, c o r r e l a t e s  Quaternary  young d e p o s i t s i n c l u d e a v a r i e t y  ranging  reported  1961).  f t ) of T e r t i a r y  lithologies  present  been  ppm  (250  These r e l a t i v e l y  150  T h i s f o r m a t i o n , w h i c h has t o 3.5  lesser  are a l s o  the S e - r i c h upper p o r t i o n of the P i e r r e Shale  D a k o t a . ( M c L e a n , 1971;  3.  and/or c h l o r i t e  that  Organic  radiocarbon ( S c o t t , 1971).  d e p o s i t s which c o n s t i t u t e the  i n t h e Rosetown a r e a  is illustrated  53  in  F i g 10.  lacustrine  F i v e major types a r e r e c o g n i z e d silt  and s a n d , a l l u v i u m ,  - lacustrine clay,  aeolian  sand and g l a c i a l  till. Calcareous t i l l  deposits  underlie  C o t e a u and t h e Howarden H i l l s  Uplands.  ed  i n t o ground  ridged  e n d m o r a i n e s on t h e b a s i s  1971).  clay  ablation deposits  (15 f t ) i n t h i c k n e s s . t o sandy  relatively  Lacustrine  deposits  contributions clay  fraction  The c l a y  (Scott, textured, 1 to  from  silty  lacustrine silt  t h e Saskatchewan R i v e r  a t d e p t h s o f up t o 30 m  of l a c u s t r i n e deposits,  were e i t h e r d e r i v e d  size fraction i s  which according  display gradational  montmorillonite-rich,  like  contacts  (100 f t ) . that  to Scott shales.  and sand Plain.  (Fig lid) These  and a r e u n d e r The c l a y  size  of the t i l l s , i s  i n d i c a t i n g that both types of deposits  f r o m t h e same s o u r c e o r f r o m s o u r c e s  with  mineralogy.  Parabolic plains  l e s s than  from t h e u n d e r l y i n g  (Fig l i e ) ,  sand u n d e r l i e  generally  l a i n by t i l l  from  T e x t u r a l l y moraines range  i n montmorillonite,  (1971), r e f l e c t s  similar  o f s u r f a c e morphology  loam, w i t h a b u n d a n t p e b b l e s and c o b b l e s o f i g n e o u s  rich  aeolian  subdivid-  ( F i g l i b ) , w a s h b o a r d and  ranging  m e t a m o r p h i c and c a r b o n a t e r o c k s .  and  They have been  I n many a r e a s m o r a i n e s a r e m a n t l e d b y v a r i a b l y  discontinuous 5 m  ( F i g 1 1 a ) , hummocky  both the Missouri  dunes, and t o a l e s s e r e x t e n t  (Fig l i e ) ,  characterize  undulating  areas of aeolian  M o s t dune a r e a s have b e e n s t a b i l i z e d  surface  by v e g e t a t i o n ,  sand deposits.  b u t i n some  108° 00"  RI4  RIO  SOIL P A R E N T  MATERIAL  [Z—Z\ Lacustrine clay 1  | Lacustrine silt and sand  L° o °.1 Alluvium Aeolian sand  Figure 10.  R8  RI2  Soil parent materials,  {  DL  j Ground moraine  moraine Glacial Till [~~3~1 Washboard moraine  t 4  Rosetown  Hummocky  | Ridged end moraine j  area.  Figure 11. Characteristic surface morphologies associated with individual parent materials, Rosetown area.  56 localities  dune m i g r a t i o n i s a c t i v e l y  t o medium g r a i n e d s a n d s 80  t o 90%  quartz  Alluvial glacial and  include  (Scott,  a wide range  classes  to d i f f e r e n t i a t e  4.  fine  of  from  1971). are of both g l a c i a l  They are d e r i v e d from a v a r i e t y o f  to coarse gravels. textural  The  o f the dunes g e n e r a l l y c o n s i s t  deposits (Fig l l f )  origin.  taking place.  of textures,  from  fine  and  post-  sources  clays  through  Because the aerial e x t e n t o f the v a r i o u s  i s generally them on  limited,  the present  no  attempt  has  been made  map.  SOIL Chernozemic  soils  cover over  Regosolic, Solonetzic,  and  (Ellis  Soils  et a l . ,  T o w n s h i p s 24  1970).  and  whereas those  90%  Gleysolic  soils  although  are a l s o  n o r t h o f the boundary  25 g e n e r a l l y b e l o n g  south of t h i s  of the area,  present between  t o t h e D a r k Brown Zone,  l i n e belong mainly  t o t h e Brown  Zone. Profile due  i n part  as w e l l  development throughout to the r e l a t i v e l y  young age  of the s u r f i c i a l d e p o s i t s  as t h e c o m p a r a t i v e l y low p r e c i p i t a t i o n .  p r o c e s s e s h a v e had where O r t h i c lacustrine and  t h e a r e a i s g e n e r a l l y weak,  little  Regosols  effect  Rego Brown C h e r n o z e m s , and  Rego C h e r n o z e m i c ,  on n o n c a l c a r e o u s a e o l i a n  predominate,  c l a y s which t y p i c a l l y  R e g o s o l i c and  Pedogenic  on  the moderately  sands  calcareous  s u p p o r t b o t h Rego D a r k Brown  on most a l l u v i a l Gleysolic  soils  d e p o s i t s where are  widespread.  Horizon silts  and  Orthic and  differentiation s a n d s and  and  i s more a d v a n c e d , however, on  glacial  tills  Bm  and  which range i n t h i c k n e s s from lacustrine  silts  t o over  commonly u n d e r l a i n by  P h y s i c a l and al.  w h i c h a r e c h a r a c t e r i z e d by  to a lesser extent Calcareous  D a r k Brown C h e r n o z e m s .  cm  chemical  types  (15  profiles  to  for underlying C horizons.  and  and. 3.5%  Soil  The  parent m a t e r i a l .  5.  for lacustrine  range  (6.6  s a n d s may  AGRICULTURAL LAND USE  and  and  AND  be  lacustrine less  than  to  B  activity  Because of the (>20  bu/acre)  low  on  are at l e a s t  size similar  7.8)  1.5%.  Cation variations  40 meq/100 g,  d e p o s i t s , whereas 10 meq/100 g.  TRACE ELEMENT IMBALANCES  lacustrine clay,  rainfall  the  horizon  C e r e a l g r a i n p r o d u c t i o n , p r i n c i p a l l y wheat, i s t h e agricultural  et  A,horizons  Highest v a l u e s , of over fine  are  values generally  s t r o n g l y i n f l u e n c e d by  are a s s o c i a t e d with c l a y - r i c h values  pH  organic matter,  exchange c a p a c i t y v a l u e s a r e soil  Ellis  R e s u l t s of  m a j o r i t y of  c o n t e n t s g e n e r a l l y r a n g e between a b o u t 0.5  in  sands,  r e p r e s e n t i n g some o f  alkaline  to i n c r e a s e w i t h depth.  c o n t a i n between 1.5  and  B horizons are t y p i c a l l y very  w i t h i n the n e u t r a l to m i l d l y tend  from  are given i n Table XII. and  soils,  horizons.  properties obtained  soil  Brown  tills  lacustrine  e n r i c h e d Cca  a n a l y s i s o f Ap  fall  Eluviated  c e n t i m e t e r s on i n ) on  fraction those  and  Bt horizons i n these  a few  carbonate  (1970) f o r s e l e c t e d  more common s o i l  38  lucustrine  annual twice  yields  those  on  silt on  and  clay  sands.  main  sand d e p o s i t s . soils Mixed  farming  Table XII  Physical and chemical properties of selected Rosetown area soil profiles (from Ellis et al-, 1970). . . Soil  Parent Material  Subgroup  Lacustrine clay  Rego Dark Brown  Regina  Rego Brown  Sceptre  Association  Horizon Ap  C Ap  ck1 ck3  Laucstrine Orthic s i l t and sand Dark Brown  Elstow  •  A p AB  Bm  Cca^ Ccaj C Eluviated Dark Brown  Elstow  Ap AB]_ ABn  Brr£ Brt^  Bca C  Glacial till  Orthic Dark Brown  Asguith  Orthic Dark Brown  Weyburn  Ap  Bm Bm2 C 1  Ap B t  Bm Cca C  Depth (cm)  Particle Size Distribution (%)  Organic Matter (%)  Cation Exchange Capacity  Sand  Silt  Clay  0-•10 10+  15.0 13.2  26.3 28.1  59.4 58.7  1.78  0-•8 8-•25 25-•40 40+  4.7 3.5 3.8 3.3  36.5 28.2 27.7 27.0  58.8 68.3 68.5 69.7  2.73  44.7  7.5 7.0 7.5 7.6  0-•8 8-•15 15-•23 23-•40 40-•53 53-•75  11.6 10.8 7.4 4.4 1.4 3.9  56.1 58.1 54.7 57.5 60.4 60.0  32.4 31.1 37.8 38.1 36.2 36.1  2.92 2.94 1.83  30.7 31.6 29.5  7.5 7.7 7.7 7.6 7.8 7.9  0-•20 20-•35 35-•48 48-•58 58-•68 68-•81 81+  35.5 41.8 37.5 35.9 12.9 3.0 21.8  38.5 33.2 38.2 38.9 55.6 67.6 53.2  24.3 25.0 24.3 25.1 31.5 29.4 25.1  3.58 1.19 0.71  25.8 19.1 22.7 22.4  6.4 5.7 6.5 6.7 6.6 7.2 7.5  0-•23 23-•35 35-•63 63+  83.6 83.2 82.8 87.8  7.4 6.6 5.5 2.7  9.0 10.2 11.8 9.4  1.32 0.78  12.0 11.0 10.5 9.1  7.1 6.9 7.2 7.3  0-•10 10-•20 20-•25 25-•48 48+  52.8 56.0 58.8 59.5 58.7  28.9 20.2 20.1 20.7 21.2  18.3 23.8 20.8 19.8 20.0  2.07 0.83 0.53  18.1 17.1 13.6  7.1 6.5 7.4 7.9 8.1  (roac^iOOg)  pH 7.7 7.9  CO  59 is  generally  aeolian  practiced  sand a r e  in t i l l  a r e a s , and  used m a i n l y f o r  regions  underlain  by  pasture.  T r a c e element imbalances o f major economic s i g n i f i c a n c e are  not  at present recognized  however, has toxicity and  A.  suggested the  in cattle  grazing  pectinatus,  glacial  till  the  possibility  region.  of  Bolton  i s o l a t e d cases of  a c c u m u l a t o r p l a n t s , A.  which are  (1938),  w i d e s p r e a d on  Se  bisulcatus  lacustrine clay  and  respectively.  Bolton area could  within  (1938) f u r t h e r locally  contain  suggested  t h a t wheat p r o d u c e d  concentrations  o f Se  within  in  the  this toxic  range f o r l i v e s t o c k .  B.  1.  SAMPLE COLLECTION AND  ANALYSIS  COLLECTION a)  Soil Attention  variations.  focussed  As  i n t e n t i o n was  was  on  examination of  mentioned  to describe  soil  i n Chapter I  trace  compositional  (p.23  ), the  element p a t t e r n s  original  i n terms  of  2 differences (36  sq mi)  sections ship for  among means f o r s o i l townships.  the  easily  Consequently,  were r a n d o m l y  to give  a total  e n t i r e area. accessible  sample s i t e was  by  f r o m i n d i v i d u a l 94 2  selected  of  approximately  road  km  (1 sq  200  sampling  town-  localities  o n e s were s e l e c t e d .  each d e s i g n a t e d  mi)  each  i n i t i a l l y c h o s e n were  alternate  within  2.6  f o r sampling w i t h i n  If sections  located  two  km  section.  not One When,  60 during  the  attempt parent  course  of the  emphasis s h i f t e d  localities  sampled be  indicated  on  the  resampled  i t became n e c e s s a r y  g e o l o g i c a l map.  t o comply w i t h  Mercator  locations  are  this  (U.T.M.) g r i d  listed  46  s e c t i o n boundary roads,  cm  obtained  using  30-46 cm  one-third  at intermediate  C  of t i l l  ( u s u a l l y Ap)  digger.  and  horizon  l o c a l i t i e s w i t h i n a few  At  approximately  of  samples was  b a g s and  b)  (300  each s i t e  horizon  site  The  lacustrine  obtained  about  sample h o l e . i n the  30 m  30was  maximum d e p t h f o r  silt  the  and  obtained  subsurface  localities (100  a  ma-  horizons, sand  B horizon material.  sample was  of the  ft)  sample  (3 f t ) . A l t h o u g h  meters of the  one-quarter  air-dried  individual  topographic  At  ( u s u a l l y Cca)  about 1 m  al  subsurface  of  s i t u a t e d a b o u t 90 m  samples i n t h i s d e p t h range r e p r e s e n t e d composite A  had  Universal  (12-18 i n ) d e p t h s a m p l e s were i n C  to one-half  the  Several sites  coordinates  a small post-hole  C h o r i z o n c o l l e c t i o n was of  at  soil  material  requirement.  i f p o s s i b l e i n summerfallow.'  (12-18 i n ) d e p t h and  jority  an  i n Appendix C ( l ) .  Sample s i t e s were n o r m a l l y  positions,  that s o i l  r e p r e s e n t a t i v e of the parent  surficial  Transvers  from  toward  t o d e s c r i b e d i f f e r e n c e s among means f o r i n d i v i d u a l m a t e r i a l types,  t o be  study,  from  sever-  sample  site.  a duplicate set  f t ) from the  A l l s a m p l e s were p l a c e d  original  in kraft  paper  field.  Plant-Soil A  separate  sampling  p r o g r a m was  which a l s o i n c l u d e d c o l l e c t i o n  undertaken  A  for plants,  of associated s o i l m a t e r i a l .  61 Wheat was  chosen f o r sampling purposes because of  occurrence throughout the from t h a t employed were c h o s e n on  ed  glacial  material  till.  As  for soil  more o r  At  are  given  each s i t e  described  25  i n the  a b o u t 5 cm  Ap  quadrat centered  in mid-July  s e c t i o n s were r a n d o m l y s e l e c t -  on  70  1974  and  soil  section.  soil  ground  of  each  90 m the  ft)  prevalent  for  from sur-  plant-soil  were c o l l e c t e d as  Wheat p l a n t s were c u t  sample s i t e . i n the  a 30m  x  at 30m  Samples were p l a c e d  field  and  again  S a m p l i n g e x t e n d e d o v e r a two the  and designated  (300  surface within  in  in  the  week p e r i o d  growth stage o f c o l l e c t e d m a t e r i a l  g e n e r a l l y r a n g e d between e a r l y f l a g  c)  least  sand  -  C(2).  C horizon  air-dried  C.  types  sand, a e o l i a n  U.T.M. c o o r d i n a t e s  i n Appendix  the  and  and  chosen, at  above t h e  brown p a p e r b a g s and at  sampling  investigations, within  preceding  (2 i n )  laboratory  for  t h a n an i n d i v i d u a l  less representative  geological deposit.  sample s i t e s  sections  differed  t h e four most widespread;•parentmaterial  sample s i t e was  r o a d s , t o be  sample d e s i g n  rather  clay, lacustrine s i l t  s e c t i o n one  face  The  i n that  Approximately  over each of  lacustrine  for soils  a parent  township b a s i s .  area.  i t s widespread  leaf  and  anthesis.  Bedrock Bearpaw F o r m a t i o n s a m p l e s were o b t a i n e d  two  structure test  one  stratigraphic test  at  the  in  Regina  holes  from c o r e s  ( I m p e r i a l O i l S.T.H. 67  hole  ( G e o l . S u r v . o f Can.  and 61-1)  p r o v i n c i a l government's S u b s u r f a c e G e o l o g i c a l ( F i g 12).  Although not  within  the  Rosetown  for  168)  and  stored Laboratory area  62  DRILL FORMATION  MEMBER  Number.. Location  STHI68 6-2I-6W3  HOLE  STH67 I0-20-6W3  GSC 6!-l 27-2I-9W3  White Mud Eostend  _SC_ALL  r 200ft 50-  Aquadeil  m  • 100ft 0  Cruikshank  Snakebite  Bearpaw  Ardkenneth Beechy De m a ine S h e r r a rd Matador Broderick  LITHOLOGIES j  Outl ook  Silty  Sam pled Interval  clay  Sand  Unnamed  Bentonite  seam  Oldman  Figure  12.  (from  Lithological  logs  of sampled  Bearpaw  Township-Range-Section).  Caldwell,  1968)  Formotion drill holes  proper,  these holes  River,  only  a few  of the  area.  are  l o c a t e d near the  kilometers  Here the  m  composite c h i p graphic  distinctive  of  the  cores  f t ) of t h i s  about 6 m  modified  360  sequence.  (20  m  ft).  the  Approximately  The  a  width of  50  strati-  sampled  when n e c e s s a r y , however, t o i n s u r e  that  separately.  ANALYSIS  Table  XIII.  types of  Most of  1250  soil  acid  e x t r a c t a b l e Cu, Soil  P r o c e d u r e #2  (p.29  metrically and  samples a n a l y s e d  t h e wheat s a m p l e s and  s a m p l e s c o l l e c t e d were a n a l y s e d  photometry.  Fe,  Mn  and  Zn  determinations ).  Se  f o r about h a l f  of  are  summarized  a b o u t 700 for  out  using  associated  samples c o l l e c t e d . of  and  the  in  the  nitric-perchloric  were m e a s u r e d  t h e wheat and  f o r about o n e - t h i r d  of  atomic a b s o r p t i o n  were c a r r i e d  P r o c e d u r e s f o r sample p r e p a r a t i o n detail  by  concentrations  Bearpaw F o r m a t i o n r o c k  were d e t e r m i n e d  digestion fluori-  C  pH  collected  spectro-  horizon values  soils.  a n a l y s i s are d e s c r i b e d  in  i n Chapter I I .  C.  RESULTS - COPPER, IRON, MANGANESE AND  In view o f the soil  i s nearly  boundary  sampled r e p r e s e n t  l i t h o l o g i e s were c o l l e c t e d  Numbers and  soil  and  southern  s a m p l e s were t a k e n , e a c h r e p r e s e n t i n g  interval  i n t e r v a l s was  2.  (800  the  Bearpaw F o r m a t i o n  (1,200 f t ) i n t h i c k n e s s , u p p e r m o s t 240  south of  South Saskatchewan  strong  t r a c e element content,  "among" and  "within" parent  i n f l u e n c e of parent data  are  material  described  ZINC material  on  i n terms  of  variations.  Description  64 Table  XIII  A p p r o x i m a t e number and t y p e s o f a n a l y s e s p e r f o r m e d on Rosetown a r e a s a m p l e s . Number o f Analyses  Sample Types  Description  pH  Cu, Fe Mn, Zn  Soil  A Horizon 30-45 cm C Horizon  70 70 70  70+ 70T 265*  Plant-Soil  Wheat Ap H o r i z o n S o i l C Horizon S o i l  Rock  +No  Bearpaw Formation  d u p l i c a t e s i t e samples  105 105 -  Se  85 105 105  60  -  25  60  analysed.  * I n c l u d e s a n a l y s e s o f a b o u t 50 s a m p l e s  from  d u p l i c a t e si.t'e:a.  of  the effects  o f pedogenic processes  "within" parent  1.  material section.  AMONG PARENT MATERIAL SOIL.- COMPOSITIONAL VARIATIONS F i v e major parent  area  - lacustrine  alluvium on  i s included i n the  materials are recognized  clay, lacustrine  and a e o l i a n s a n d .  silt  Glacial  i n t h e Rosetown  and s a n d , g l a c i a l  till,  however, i s s u b d i v i d e d  t h e b a s i s o f s u r f a c e m o r p h o l o g y i n t o g r o u n d , hummocky,  end  ridged  and w a s h b o a r d m o r a i n e s . G e o m e t r i c mean t r a c e e l e m e n t c o n c e n t r a t i o n s  soil  associated with  various types  generally quite similar. only  2 64  moraine. are  till,  Mn v a l u e s ,  ( T a b l e XIV) a r e  f o r example, r a n g e between  ppm f o r r i d g e d e n d m o r a i r i e and 278 ppm f o r g r o u n d Although  d i f f e r e n c e s among means f o r o t h e r  somewhat l a r g e r ,  test  of t i l l  statistically  significant.  have c o n s e q u e n t l y  differences are  Data f o r the four m o r a i n a l  been grouped t o g e t h e r  statistical  elements  a p p l i c a t i o n o f Duncan's New M u l t i p l e Range  ( T a b l e XV) i n d i c a t e s t h a t none o f t h e s e  further  f o r C horizon  types  f o r the purpose o f  analysis.  G e o m e t r i c means and d e v i a t i o n s f o r A and C h o r i z o n and 30-46 cm  (12-18 i n ) d e p t h s o i l  associated with  major p a r e n t m a t e r i a l s a r e g i v e n tions  i n c r e a s e from r e l a t i v e l y  through intermediate silt  i n Table  low v a l u e s  concentrations  and s a n d , and g l a c i a l  till,  XVI.  each o f the f i v e Mean  concentra-  f o r a e o l i a n sand,  f o r alluvium,  to highest values  lacustrine for lacustrine  66 T a b l e XIV T r a c e e l e m e n t c o n t e n t o f C h o r i z o n s o i l f r o m i n d i v i d u a l m o r a i n a l t y p e s , Rosetown area. Trace Morainal Type  Cu (ppm)  Content'  Element Fe (%)  Mn (ppm)  278 (L22)  Zn (ppm)  Number of Analyses  46. 3 (1.30)  Ground  16.1 (1.33)  1.46 (1.23)  Hummocky  14.6 (1.50)  1.44 (1.40)  271 (1.35)  46.0 (1.51)  30  Washboard  15.4 (1.22)  1.44 (1.18)  273 (1.26)  58.3 (1.38)  23  Ridged  18.3 (1.24)  1.81 (1.22)  264 (1.22)  56.1 (1.22)  End  a) G e o m e t r i c mean parenthesis. b)  (GM); g e o m e t r i c  Individual data values l i s t e d  deviation  (GD) i n  i n A p p e n d i x C (1).  67  Table  XV R e s u l t s o f a p p l i c a t i o n o f Duncan's New M u l t i p l e Range t e s t t o l o g 10 C h o r i z o n s o i l data f o r i n d i v i d u a l morainal types, Rosetown a r e a .  G e o m e t r i c Mean  Cu  (ppm)  14.6 hummocky moraine  15.4 washboard moraine  16.1 ground moraine  18. 3 r i d g e d end moraine  Fe  (%)  1.44 hummocky moraine  1.44 washboard moraine  1.46 ground moraine  1. 81 r i d g e d end moraine  Mn  (ppm)  264 r i d g e d end moraine  271 hummocky moraine  273 washboard moraine  278 ground moraine  Zn  (ppm)  4 6.0 hummocky moraine  46.3 ground moraine  56.1 r i d g e d end moraine  58.3 washboard moraine  Means n o t u n d e r s c o r e d b y same o r o v e r l a p p i n g s i g n i f i c a n t l y d i f f e r e n t a t P = 0.05.  l i n e s are  68 Table  XVI  Trace element content and pH o f A and C horizon and 30-46 cm depth s o i l from i n d i v i d u a l s o i l parent material types, Rosetown area.  Trace Element Content* Soil  A Horizon  Parent Material  Lacustrine clay Lacustrine s i l t and sand Glacial t i l l Alluvium Aeolian sand  30-46 cm  Lacustrine clay Lacustrine s i l t and sand Glacial t i l l Alluvium Aeolian sand  C Horizon  Lacustrine clay Lacustrine s i l t and sand Glacial t i l l Alluvium Aeolian sand  Cu (ppm)  Fe (%)  N u r a b e r  D  f  Mn (ppm)  Zn (ppm)  pH**  Trace Element Analyses  21.7 (1.30) 14.3 (1.36) 14.8 (1.14) 12.1 (1.76) 4.94 (1.15)  2.25 (1. 28) 1.58 (1. 28) 1.63 (1. 12) 1.55 (1. 44) 0. 73 (1. 10)  392 (1.15) 340 (1.20) 370 (1.17) 328 (1.26) 164 (1.23)  78.7 (1.18) 65.1 (1.29) 60.1 (1.20) 61.0 (1.41) 26.6 (1.13)  7.4 (0. 5) 7.0 (0. 7) 7.5 (0.5) 7.3 (0. 6) 6. 8 (0. 5)  22  21.8 (1.36) 13.6 (1.40) 15.0 (1.32) 11.9 (1.77) 3.70 (1.34)  2.28 (1. 27) 1.60 (1. 24) 1.59 (1. 29) 1. 35 (1. 53) 0.67 (1. 13)  341 (1.20) 272 (1.31) 272 (1.26) 239 (1.40) 131 (1.37)  71.1 (1.31) 53.2 (1.35) 48.7 (1.40) 50.9 (1.44) 17.2 (1.21)  7.8 (0. 4) 7.6 (0. 7) 7.8 (0. 7) 7.9 (0. 8) 7.2 (0. 6)  21  24.0 (1.32) 14.7 (1.56) 15.4 (1.37) 11.1 (1.53) 5.65 (1.41)  2.08 (1. 30) 1.47 (1. 40) 1.48 (1.,30) 1.22 (1.,35) 0.,75 (1.,39)  319 (1.18) 248 (1.37) 272 (1.29) 232 (1.29) 133 (1.43)  70.2 (1.30) 50.3 (1.41) 51.0 (1.44) 39.3 (1.49) 24.8 (1.44)  8.1 (0. 3) 8.4 (0. 2) 8. 3 (0. 2) 8.4 (0. 4) 7.9 (0. 6)  66  a) Geometric mean (GM); geometric deviation (GD) i n parentheses. b) Individual data values l i s t e d i n Appendix C (1) . r Arithmetic mean; arithmetic deviation i n parentheses.  11 21 9 8  11 22 9 8  33 67 20 27  clay.  Largest  relative  d i f f e r e n c e s among means o c c u r  f o r Cu,  w h e r e a s among mean Mn d i f f e r e n c e s a r e c h a r a c t e r i s t i c a l l y For  small.  example, t h e mean f o r Cu i n 30-46 cm d e p t h l a c u s t r i n e  is  n e a r l y 7 times  in  the case  material  clay  as l a r g e as t h a t f o r a e o l i a n sand, whereas  o f Mn t h e h i g h e s t mean v a l u e  i s o n l y 2.6 t i m e s  i n 30-46 cm d e p t h  t h a t o f the lowest  mean.  N  An  a n a l y s i s of variance procedure  used t o e s t i m a t e parent  materials data  variance  components.  indicate that compositional  account  f o r w e l l over  variability.  among p a r e n t of  t h e r e l a t i v e m a g n i t u d e s o f w i t h i n and among  m a t e r i a l l o g 10 d a t a  ( T a b l e XVII)  ( s e e A p p e n d i x B) was  Comparing  half  Results  v a r i a t i o n s among  parent  (54 t o 78%) o f t h e t o t a l  estimates  fordifferent  horizons,  m a t e r i a l v a r i a t i o n s a c c o u n t f o r an a v e r a g e o f 74%  A horizon data v a r i a b i l i t y  and o n l y  60% o f C h o r i z o n  varia-  tions. Results test  o f a p p l i c a t i o n o f Duncan's New M u l t i p l e Range  t o mean A h o r i z o n  and 30-46 cm  are n e a r l y i d e n t i c a l  (Table XVIII).  generally  as b e i n g  for  identified  lacustrine  (12-18 i n ) d e p t h s o i l  Means f o r a e o l i a n sand a r e  significantly  clay significantly  higher  No s i g n i f i c a n t d i f f e r e n c e s , on t h e o t h e r means f o r a l l u v i u m , Results (for  lacustrine  f o r C horizons  silt  are similar  l o w e r and t h o s e  than  o t h e r mean  among  and sand and g l a c i a l  till.  i n t h a t e x t r e m e mean as b e i n g  are normally  to  for lacustrine  values  values  distinctive.  However, mean a l l u v i u m c o n c e n t r a t i o n s lower than  values.  hand, a r e n o t e d  sands and c l a y s ) a r e r e c o g n i z e d  be s i g n i f i c a n t l y  values  indicated s i l t and  70  Table X V I I  Soil  Comparison o f estimated within and among parent material lcigarithmic variance components, Rosetown area.  Element  Estimated T o t a l l o g 10 Variance  Partitioned ^  Variance w  Parent M a t e r i a l  i  of Total  ±  i  n  Parent Material  9•S  Component  t  S-6  Component  of Total  Cu Fe Mn Zn  0.0600 0.0349 0.0219 0.0320  0.0444* 0.0255* 0.0163* 0.0236*  74.0 73.1 74.4 73.8  0.0156 0.0094 0.0056 0.0084  26.0 26.9 25.6 26.2  30-4.6 cm '  Cu Fe Mn Zn  0.0779 0.0399 0.0285 0.0569  0.0605* 0.0295* 0.0176* 0.0396*  77.7 73.9 61.8 69.6  0.0174 0.0104 0.0109 0.0173  22.3 26.1 38.2 30.4  C Horizon  Cu Fe Mn Zn  0.0710 0.0316 0.0300 0.0468  0.0488* 0.0241* 0.0174* 0.0252*  68.7 60.9 58.0 53.9  0.0222 0.0155 0.0126 0.0216  31.3 39.1 42.0 46.1  A Horizon  S i g n i f i c a n t l y greater than zero a t P = 0.05.  71 Table X V I I I Results o f a p p l i c a t i o n o f Duncan's New Multiple Range t e s t t o A and C horizon and 30-4.6 cm depth log 10 s o i l data f o r i n d i v i d u a l s o i l parent materials, Rosetown area. . Soil  A Horizon  Element  Cu (ppm)  Fe (%) Mn (ppm)  Zn (ppm)  30-46 cm  Cu (ppm) Fe (%) Mn (ppm) Zn (ppm)  C Horizon  Cu (ppm Fe • '(%) Mn (ppm) Zn (ppm)  Geometric Mean Concentrations*  4.9 Aeolian sand 0.73 Aeolian sand 164 Aeolian sand 26.6 Aeolian sand  12.1 Alluvium  3.7 Aeolian sand 0.67 Aeolian sand 131 Aeolian sand 17.2 Aeolian sand  11.9 Alluvium  5.7 Aeolian sand 0.75 Aeolian sand 133 Aeolian sand 24.8 Aeolian sand  11.1 Alluvium  1.55 Alluvium 328 Alluvium 60.1 Till  1.35 Alluvium 239 Alluvium 48.7 Till  1.22 Alluvium 232 Alluvium 39.2 Alluvium  14.3 Lacustrine s i l t arid sand 1.58 Lacustrine s i l t arid sand 340 Lacustrine s i l t arid sand 61.0 Alluvium  21.7 Lacustrine clay 2.25 1.63 Lacustrine Till clay 392 370 Lacustrine Till clav 78.7 65.1 Lacustrine Lacustrine clay s i l t and sand 14.8 Till.  21.8 Lacustrine clay 2.28 1.60 Lacustrine Lacustrine clay s i l t and sand 341 272 272 Lacustrine Till Lacustrine clay s i l t and sand 53.2 71.1 50.9 Lacustrine Lacustrine Alluvium clay s i l t and sand  13.6 Lacustrine s i l t and sand 1.59 Till  15.0 Till  14.7 Lacustrine s i l t and sand 1.47 Lacustrine s i l t arid sand 248 Lacustrine s i l t and sand 50.3 Lacustrine s i l t and sand  15.4 Till 1.48 Till 272 Till 51.0 Till  24.0 Lacustrine clay 2.08 Lacustrine clay 319 Lacustrine clay 70.2 Lacustrine Clay  Means not underscored by the same o r overlapping l i n e s are s i g n i f i c a n t l y d i f f e r e n t a t P = 0.05.  sand  and  glacial t i l l ,  differences  are  between w h i c h no  significant  detected.  C o n s i s t e n t w i t h t r a c e e l e m e n t d a t a , mean s o i l are  lowest  Overall  f o r materials associated with  differences  relatively  in  among s o i l  and  8.4.  values  f o r any  tinctive by  i n map  form  values  a e o l i a n sand  (Table  v a l u e s , f o r example, Multiple  were c a l c u l a t e d  of the h o r i z o n s  test  compositional variations  i n F i g s 13  t o 17.  are d i s t i n g u i s h e d .  Only  are  chemically  Weighted geometric  means signifi-  Concentration  i n b r a c k e t s b e l o w c a t e g o r y mean v a l u e s i n c l u d e an  of p o p u l a t i o n c o n c e n t r a t i o n s .  element data, not  are,  significantly  Mean s o i l  pH  dis-  identified  f o r p a r e n t m a t e r i a l g r o u p s f o r w h i c h no  each c o m p o s i t i o n a l c a t e g o r y  2.  Range  examined.  c a n t among mean d i f f e r e n c e s were d e t e c t e d .  95%  be  range  p a r e n t m a t e r i a l s o r p a r e n t m a t e r i a l g r o u p s as  Duncan's t e s t  given  to  XVI).  among p a r e n t m a t e r i a l d i f f e r e n c e s  7Among p a r e n t m a t e r i a l s o i l summarized  pH  means, however, t e n d  Duncan's New  to detect s i g n i f i c a n t  mean pH  pH  small; C horizon s o i l  between o n l y 7.9 failed  mean  ranges,  estimated  values given for  i n c o n t r a s t t o the t r a c e different.  WITHIN PARENT MATERIAL SOIL COMPOSITIONAL VARIATIONS a)  Vertical F o r a g i v e n p a r e n t m a t e r i a l , mean A and  30-46 cm Although  (12-18 i n ) d e p t h  Cu  mean Fe v a l u e s t e n d  C horizon  values are g e n e r a l l y very to decrease  with depth,  and similar.  absolute  73 106° 43'  K>8°00'  L„„  '51° 58*  r o  F,9Ure  ..,  cu Fe Zn content and pH of A horizon soil, Rosetown area.  '- a ^ t S e X i Z - l a e u s ' r i n e . 3  3=aeolian sand).  sin and sand.till and alluv.um,  Figure 14. Mn content and pH of A horizon soils, Rosetown area. (I-lacustrine clay, silt and sand,till,and alluvium; 2=aeolian sand)  tts'oo  1  7-8 6-3-8 6  TRACE ELEMENT CONTENT Cu(ppm) Fe(%) Mn(ppm) Zn (ppm) 21-8 2-28 341 71-1 (11-7-40-4) (1-41-3-68) (235-495) (41-6-120  7-8 . -8-6  141 1-55 269 49-4 (65 <-63-29-9) (0-87-2-76) (152-479) (231-105)  pH  6  3  7-2 6-2-8-4  12  3-7 0-67 131 17-2 (2-05-6-66) (0-37-0-86) (69-8-247) (11-8-25-0)  * Geometric mean: range= GM -rGDf GM xGD **Arithmetic mean:true range  Number of samples 21 43 8  2  Figure 15. Cu,Fe,Mn,Zn content and p H o f 3 0 - 4 6 c m depth soil, Rosetown area. (|=lacustrine clay;2=lacustrine silt and sand, till and alluvium; 3°aeolian sand)  106° 4 3 '  Tp34  TP32  Tp30  Tp28  Tp26  Tp24  51°  TRACE  Cu(ppm) 240 (13-7-420) 15-2 (7-37-31-3)  8-1 7-7-8-7 8-3 7-8-8-7 8-4 7-8-9-3 7-9 6-6-8-5 ra  ELEMENT CONTENT*  Zn(ppm) Fe(%) 70-2 208 (1-24-3-48) (4I-3-II9) 1-47 50-7 (0-83-2-63) (24-8-104)  39-3 1-22 III (4-76-25-9) (0-52-2-21) (16-8-87-7) 24-8 0-75 5-65 (2-83-11-3) (0-39-1-43) (12-0-51-4)  Number of samples  66  100 20 27  • Geometric mean:range=GM-*-GD,GMxGD **Arithmetic mean-.true range  Figure 16. Cu,Fe,Zn content and pH of C horizon soil, Rosetown area. (Macustrine clay;2=lacustrine silt and sand,till;3=alluvium; 4»aeolian sand)  00'  Figure 17. Mn content and pH of C horizon soil, Rosetown area. (Macustrine clay;2=lacustrine silt and sand,till and alluvium; 3«aeolian sand)  78 compositional  d i f f e r e n c e s are  o f Mn  on  and  Zn,  the  other  also very  concentrations  for alluvium,  61.0  h o r i z o n s , Mn  for A  approximately  239  ppm Mn  and  2 32  element data  Zn  ppm  for individual  r e c o g n i z a b l e B h o r i z o n m a t e r i a l was  and  Mean  328 ppm  Zn  are  depth  equal.  50.9  most o f t h e  soils  represented  one  Brown C h e r n o z e m i c p r o f i l e  Cu,  Mn  and  Zn c o m p o s i t i o n a l  mean v a l u e s Fe," on  soil  ppm  and  Zn  f o r 30-46  39.3  ppm  profiles,  obtained  (12-18 i n ) d e p t h s a m p l e , a r e p r e s e n t e d  i n the  i n Table  cm  for  i n these  hand, B h o r i z o n s , p a r t i c u l a r l y  glacial  till,  tend  and  a l l profiles  Correlation values  and  to contain  however, and  where p r e s e n t  i n c r e a s e over  coefficients  geometric  less  typical  between c o m p o s i t i o n a l i n F i g 18.  higher  T h i s enrichment  Although  adjacent  relating  A  both  are given  s c a t t e r diagram data  Among  for A  coefficients  and  those  concentrations characteristic a maximum  C horizon  30-46 cm i n Table  C horizons  for individual  For  developed  individual  showing the  geometric  profiles.  i s not  and  horizon  for  represents  means f o r A h o r i z o n and  d e p t h samples t o C h o r i z o n v a l u e s more o r  slightly  C horizons.  o f o n l y a b o u t a 20%  cm  Although,  t r e n d s , p r e v i o u s l y noted  are g e n e r a l l y a l s o apparent  A  30-46  XIX.  i s also included.  other  both  where  a r e O r t h i c D a r k Brown C h e r n o z e m s ,  the  than of  case  horizons. Trace  on  (12-18 i n )  f o r example, a r e Mn  (12-18 i n ) d e p t h m a t e r i a l , and C  t o 30-46 cm  C h o r i z o n v a l u e s , which are  ppm  In the  hand, A h o r i z o n c o n c e n t r a t i o n s  c o n s i d e r a b l y enhanced r e l a t i v e and  slight.  values.  sample (12-18  XX.  in)  A  relationship is  illustrated  data  values  79  Table XIX  Trace element d i s t r i b u t i o n i n selected Orthic Brown and Dark Brown Chernozemic s o i l p r o f i l e s , Rosetown area. Trace Element Content  Soil Great Group  Parent Material  Brown  Glacial Till  Dark Brown  Glacial Till  Zn (ppm)  16.0 13.8 13.8  1.63 1.75 1.56  504 353 271  73.0 62.0 50.1  A B C  16.0 16.7 17.5  1.60 1.76 1.52  372 351 274  66.7 59.0 51.9  0-15 30-46 90-105  A B C  15.0 16.7 28.8  1.73 2.33 2.00  488 398 448  65.0 70.0 83.3  0-15 30-46 90-105  A B C  19.2 13.2 21.9  1.94 1.87 2.23  421 332 268  82.5 55.2 63.8  0-15 30-46 90-105  A B C  11.1 8.4 10.7  1.26 1.14 1.24  304 198 219  58.0 35.1 39.2  0-15 30-46 90-105  A B C  14.2 12.4 18.7  1.45 1.64 1.40  383 198 306  75.0 68.4 55.0  0-15 30-46 55-60  A B C  15.3 18.0 16.3  1.68 2.13 1.60  429 404 361  77.0 72.7 82.3  0-15 30-46 90-105  A B C  5.3 4.0 7.4  0.84 0.72 0.86  222 119 190  30.0 16.7 31.0  218  0-15 30-46 90-105  A B C  0-10 30-46 75-90  78  140  161  178  /Alluvium  Mn (ppm)  Depth  230  Lacustrine s i l t and sand  Fe (%)  Horizon  Site NO.  92  191  (cm)  Cu (ppm)  Table  Data Type  Individual data values  Parent Material means  XX  Correlation coefficients relating log 10 trace element concentrations for A horizon and 30-46 cm depth samples to C horizon values, Rosetown area.  Soil Parent Material  Correlation Coefficients  Cu  AandC Horizon S o i l Fe En  Zn  Cu  30-46 cmaridC Horizon S o i l Fe Mi  Zn  Degrees of Freedom (n-2) 16  Lacustrine clay  0.669** 0.624** 0.665** 0.522**  0.715** 0.687** 0.562* 0.478*  Lacustrine s i l t and sand  0.829** 0.919** 0.361  0.706*  Glacial t i l l  0.279  0.443*  Alluvium  0.742*  0.818** 0.607  0.607  0.845** 0.684*  Aeolian sand  0.504  0.597  0.609  0.357  0.595  A l l parent materials  0.878** 0.871** 0.808** 0.817**  0.862** 0.824** 0.746** 0.791** 62  0.988** 0.976** 0.985** 0.937*  0.978** 0.994** 0.995** 0.973**  0.711;*  0.166 . 0.408  -0.022  0.664*  0.257  0.367  8  0.253  0.113  0.323  18  0.638  0.592  7  0.679  0.676  6  0.321  3  Coefficient significantly greater than zero at P = 0.05. Coefficient significantly greater than zero at P = 0.01. OO  o  81  X Lacustrine  clay  Lacustrine silt and sand  •  Till Alluvium Aeolian  o  <>  0  sand  r  x  X  0-6 7  •  063 0 28 0-74 0-50  #  \ 0-99  r60-f  0-60  0-80  100  Log. C  10  1-20  1-40  1-60  Cu (ppm)  Horizon  Soi I  Figure 18. Scatter diagram of log 10 Cu content Ippm) of A vs C horizon soil (rcorrelation coefficient).  82  associated with  particular  -0.02  and  high,  statistically  ated with cant  over  + 0 . 9 2 ,  60%  parent  of the values  significant  coefficients,  characterize glacial  When i n d i v i d u a l d a t a v a l u e s considered to  together,  Relatively  + 0 . 5 0 .  tend  t o be a s s o c i -  coefficients  till.  f o r a l l parent  level.  materials are  i n c r e a s e markedly  and a r e s t a t i s t i c a l l y  +0.88)  confidence  significant  (range  a t the  99%  C o m p a r i s o n o f p a r e n t m a t e r i a l mean v a l u e s ,  however, gives even l a r g e r c o e f f i c i e n t s the  exceed  r a n g e between  l a c u s t r i n e c l a y and a l l u v i u m , whereas low n o n - s i g n i f i -  coefficients  +0.75  m a t e r i a l types  (>  + 0 . 9 3 ) ,  which  s m a l l number o f d e g r e e s o f f r e e d o m , a r e a l s o h i g h l y  despite signifi-  cant.  b)  Geographic Geometric d e v i a t i o n s f o r the v a r i o u s horizons  with  individual  considered,  surficial  deposits given  i n part at least,  a reflection  g e n e i t y o f t h e m a t e r i a l s examined. vestigated  alluvium  deviations, values tive  to values  geometric both  30-46  those  (12-18  Of t h e p a r e n t  f o r A horizons materials.  homo-  materials i n geometric Comparing  a r e g e n e r a l l y low r e l a This trend  i s most  f o r Mn, f o r w h i c h t h e a v e r a g e A h o r i z o n  d e v i a t i o n i s 1 . 2 0 compared cm  of the r e l a t i v e  f o r t h e uppermost h o r i z o n s .  f o r subsurface  apparent i n the data  XVI may be  i s c h a r a c t e r i z e d by t h e l a r g e s t  particularly  by h o r i z o n s ,  i n Table  associated  t o an a v e r a g e o f 1 . 3 1 f o r  i n ) and C h o r i z o n  Because a n a l y s e s  samples.  f o rduplicate C horizon  samples a r e  83  available  f o r n e a r l y one-quarter  of the s i t e s  C horizon s o i l  h a s been a n a l y s e d  each township,  i t i s p o s s i b l e t o obtain estimates o f both  within  site  (sampling)  single classification for  this  purpose  from  at least  s a m p l e d , and two s i t e s w i t h i n  and w i t h i n t o w n s h i p d a t a v a r i a b i l i t y . a n a l y s i s of v a r i a n c e procedure  (see Appendix B ) ; r e s u l t s  was  A  used  a r e summarized i n  T a b l e s XXI and X X I I . Considering  results  T a b l e XXI s a m p l i n g  for individual  (within site)  parent m a t e r i a l s i n  variations  account  fora  relatively  small proportion  variations  f o r a l l u v i u m , and among sample s i t e v a r i a t i o n s a r e  statistically material.  In the case  ing  variations  and  estimated  cant-  and of  account  f o r a l l elements f o r t h i s  of g l a c i a l f o r from  among sample  site  till,  data  parent  on t h e o t h e r hand,  61 t o 83% o f t h e t o t a l  sampl-  variance  components a r e a l l n o n - s i g n i f i -  F o r a e o l i a n sand, l a c u s t r i n e  clay, from  significant  (<25%) o f t h e t o t a l C h o r i z o n  e s t i m a t e d , among sample s i t e  silt  and sand  and l a c u s t r i n e  v a r i a n c e components  represent  z e r o t o 88% o f t o t a l w i t h i n p a r e n t m a t e r i a l v a r i a t i o n s , are s t a t i s t i c a l l y  significant  i n approximately  two-thirds  the cases. Estimated  tions,  w i t h i n township C h o r i z o n c o m p o s i t i o n a l  g i v e n i n Table XXII,  accounting  are generally r e l a t i v e l y  f o r between 55 and 100% o f t h e t o t a l  parent m a t e r i a l data v a r i a b i l i t y . among  township v a r i a t i o n s occur  horizon g l a c i a l  till.  Statistically  varia-  large,  individual significant  o n l y f o r Cu and Zn i n C  Lack of correspondence  between  estimates  84 Table XXI  Comparison o f logarithmic within and among sample s i t e variance components f o r C horizon s o i l , Rosetown area.  Number of Sample Sites  Parent Material  Lacustrine clay  Element  Estimated Total l o g 10 Variance  P a r t i t i o n e d Variance /Among S i t e s % Component of total  Within S i t e s Component  of total  17  Cu Fe Mn Zn  0.0210 0.0160 0.0107 0.0173  0.0135* 0.0085* 0.0040 0.0115*  64 .3 53 .1 37 .4 66 .2  0.0075 0.0075 0.0067 0.0058  35 .7 46 .9 62 .6 33 .8  6  Cu Fe Mn Zn  0.0154 0.0027 0.0095 0.0073  0.0135* 0.0000' 0.0036 0.0059*  87 .7 0 .0 37 .4 71 .1  0.0019 0.0027 0.0059 0.0024  12 .3 100 .0 62 .6 28 .9  till  16  Cu Fe Mn Zn  0.0289 0.0103 0.0178 0.0179  0.0109 0.0024 0.0030 0.0070.  37 .3 23 .3 16 .6 38 .8  0.0180 0.0079 0.0148 0.0109  62 .5 76 .7 83 .4 61 .2  Aeolian sand  7  Cu Fe Mn Zn  0.0049 0.0158 0.0223 0.0192  0.0003 0.0125* 0.0141* 0.0119*  6 .1 78 .8 63 .2 62 • 0  0.0046 0.0033 0.0082 0.0073  93 .9 21 .2 36 .8 38 .0  Alluvium  5  Cu Fe Mn Zn  0.0337 0.0197 0.0148 0.0253  0.0243* 0.0154* 0.0118* 0.0217*  72 .1 78 .2 79 .7 85 .8  0.0094 0.0043 0.0030 0.0036  27 .9 21 .8 20 .3 14 .2  Lacustrine s i l t and sand  Glacial  * S i g n i f i c a n t l y greater than zero a t P = 0.05.  85 Table X X I I  Parent Material  Comparison o f logarithmic w i t h i n and among township variance components f o r C horizon s o i l , Rosetown area.  Number of Townships  Lacustrine clay  Lacustrine s i l t and sand  Till  Aeolian sand  Estimated total Element l o g 10 Variance  P a r t i t i o n e d Variance Among Townships Within Townships Component .% Component % of total of total  19  Cu Fe Mn Zn  0.0131 0.0121 0.0059 0.0145  0.0027 0.0016 0.0011 0.0022  20.2 12.8 17.8 14.8  0.0104 0.0105 0.0048 0.0123  79.8 87.2 82.2 85.2  7  Cu Fe Mn Zn  0.0306 0.0168 0.0129 0.0158  0.0065 0.0057 0.0009 0.0000  21.2 33.9 6.6 0.0  0.0241 0.0111 0.0120 0.0158  78.8 66.1 93.4 100.0  21  Cu Fe Mn Zn  0.0189 0.0146 0.0120 0.0256  0.0079* 0.0039 0.0037 0.0115*  41.9 26.7 30.8 45.0  0.0110 0.0107 0.0083 0.0141  58.1 73.3 69.2 55.0  5  Cu Fe Mn Zn  0.0193 0.0144 0.0112 0.0187  0.0009 0.0000 0.0000 0.0066  4.4 0.0 0.0 35.0  0.0184 0.0144 0.0112 0.0121  95.6 100.0 100.0 65.0  S i g n i f i c a n t l y greater than zero a t P = 0.05.  86 of  parent m a t e r i a l variance i n t h i s  XXI i s a t t r i b u t a b l e on d i f f e r e n t  3.  data  a separate  i n Table XXIII.  trends are e s s e n t i a l l y  Mean s o i l  till  h i g h e s t v a l u e s with' l a c u s t r i n e  in  confirm the s i g n i f i c a n c e  f o r both  aeolian  equal t o those  and l a c u s t r i n e clay.  silt  sand  given  composi-  and s a n d , and  W i t h a few e x c e p t i o n s ,  results  i n T a b l e XXIV  similar  to that f o r s o i l ,  elements being  statisti-  of these p a t t e r n s .  among p a r e n t m a t e r i a l p a t t e r n o f Fe and Mn  wheat i s v e r y  tions  based  t h e same a s t h o s e p r e v i o u s l y  Duncan's New M u l t i p l e Range t e s t  The  v a l u e s , though  lowest v a l u e s a s s o c i a t e d w i t h a e o l i a n sand,  intermediate with g l a c i a l  cally  o f wheat and a s -  A c c o r d i n g l y among p a r e n t m a t e r i a l s o i l  described, with  based  a r e summarized, on a p a r e n t  sample s e t , a r e a p p r o x i m a t e l y  i n T a b l e XVI. tional  t h a t c a l c u l a t i o n s were  mean t r a c e e l e m e n t c o n t e n t ,  s o c i a t e d Ap and C h o r i z o n s o i l  on  i n Table  BETWEEN SOIL AND PLANT COMPOSITIONAL DATA  geometric  material basis,  and t h o s e  subsets.  RELATIONSHIPS  The  to the fact  table  lowest  and h i g h e s t f o r t h o s e  distribution  w i t h mean  concentra-  f o r p l a n t s grown on  over  lacustrine  clay.  Although  a r e l a t i o n s h i p between mean Cu v a l u e s f o r wheat and s o i l i s less  apparent,  aeolian more, test  sand  the a s s o c i a t i o n  deposits i s consistent with  a s was n o t e d t o the data  confirm  o f t h e l o w e s t wheat mean  for soil  soil  data.  values, application  f o r C u , F e a n d Mn  with  Further-  o f Duncan's  (Table XXIV), tends t o  t h e s i g n i f i c a n c e o f low a e o l i a n sand  and h i g h  lacustrine  T a b l e XXIII  Sample Type  Wheat  -  Trace element c o n t e n t o f wheat (dry weight b a s i s ) and a s s o c i a t e d Ap and C h o r i z o n s o i l and s o i l pH, Rosetown a r e a .  Parent Material  Lacustrine clay Lacustrine s i l t and sand Till Aeolian  sand  Trace Element Content* Cu (ppm) Ippm:wheat\ \ %:soil / 14.3 99.5 (1.38) (1.11) 15.0 87.1 (1.12) (1.13) 84.9 14 .1 (1.25) (1.10) 82.6 12.6 (1.20) (1.10)  Mn (ppm)  pH**  Zn (ppm)  35.0 (1.15) 26.8 (1.19) 27.4 (1.23) 19:5 (1.33)  21.9 (1.17) 23.9 (1.14) 23.7 (1.16) 25.3 (1.19)  378 (1.13) 344 (1.15) 361 (1.20) 198 (1.30)  78.9 (1.13) 67.6 (1-23) 61.5 (1.23) 37.5 (1.24)  Number of Analyses 24 23 20 19  •7.3 (0.6) 6.9 (0.5) 7.5 (0.6) 7.2 (0.6)  28  8.3 66.8 303 23.6 2.12 (1.22) (0.2) (1.30) (1.17) (1.19) 12.8 1.54 245 52.7 8.2 (1.24) (1.42) (0.5) (1.24) (1.50) 290 45.3 8.2 15.7 1. 56 (1.24) (0.6) (1.22) (1.16) (1.18) 1.05 173 29.3 7.8 A e o l i a n sand 6.6 (1.30) (0.7) (1.46) (1.30) (1.55) *a) Geometric mean (GM); geometric d e v i a t i o n (GD) i n parentheses, b) I n d i v i d u a l d a t a v a l u e s l i s t e d i n Appendix c(2) * * A r i t h m e t i c mean; a r i t h m e t i c d e v i a t i o n i n p a r e n t h e s e s .  29  Ap H o r i z o n Soil  Lacustrine clay Lacustrine s i l t and sand Till Aeolian  C Horizon Soil  sand  Lacustrine clay Lacustrine s i l t and sand Till  21.7 (1. 32) 13.2 (1.30) 15.5 (1.20) 7.3 (1.31)  2.23 (1.20) 1.60 (1.15) 1.69 (1.15) 1.01 (1.18)  24 24 27  26 23 27  .  Table XXIV  Results o f a p p l i c a t i o n o f Duncan's New Multiple Range t e s t t o l o g 10 wheat and s o i l data f o r i n d i v i d u a l parent materials, Rosetown area.  Sample Type  Element  Wheat  Cu ppm Fe ppm Mn ppm Zn ppm  Ap Horizon soil  Cu ppm Fe % Mn ppm Zn ppm  C Horizon soil  Cu ppm Fe % Mn ppm Zn ppm  88  Geometric Mean Concentrations*  12.6 Aeolian sand 82.6 Aeolian sand 19.5 Aeolian sand 21.9 Lacustrine clay  14.1 Till 84.9 Till 26.8 Lacustrine s i l t and sand 23.7 Till  7.3 Aeolian sand 1.01 Aeolian sand 198 Aeolian sand 37.5 Aeolian sand  13.2 Lacustrine s i l t and sand 1.60 Lacustrine s i l t and sand 344 Lacustrine s i l t and sand 61.5  6.6 Aeolian sand 1.05 Aeolian sand 173 Aeolian sand 29.4 Aeolian sand  12.8 Lacustrine s i l t and sand 1.54 Lacustrine s i l t and sand 245 Lacustrine s i l t and sand 45.3  Till  Till  14.3 Lacustrine clay 87.1 Lacustrine s i l t and sand 27.4 Till 23.9 Lacustrine s i l t and sand .15.5 Till 1.69 Till 361 Till 67.6 Lacustrine s i l t and sand 15.7 .Till 1.56 Till 290 Till 52.7 Lacustrine s i l t and sand  15.0 Lacustrine s i l t and sand 99.5 Lacustrine clay 35.0 Lacustrine clay 25.3 Aeolian sand 21.7 Lacustrine clay 2.23 Lacustrine clay 378 Lacustrine clay 78.9 Lacustrine clay 23.6 Lacustrine clay 2.12 Lacustrine clay 303 Lacustrine clay 66.8 Lacustrine clay  ic  Means not underscored by the same o r overlapping l i n e s are s i g n i f i c a n t l y d i f f e r e n t a t P = 0.05.  89 c l a y : mean c o n c e n t r a t i o n s f o r wheat.  The tional  among p a r e n t m a t e r i a l t r e n d f o r Zn i n wheat i s e x c e p -  i n t h a t , i n c o n t r a s t t o t h e case  mean v a l u e . i s a s s o c i a t e d w i t h lacustrine  a e o l i a n sand  c l a y . Among mean d i f f e r e n c e s  wheat, however, a r e n o t s t a t i s t i c a l l y  Correlation  coefficients  f o r s o i l , the highest and t h e l o w e s t  i n t h e Zn c o n t e n t o f  significant  relating  with  data  (Table  XXIV).  f o r wheat and s o i l  a r e g i v e n i n T a b l e XXV. R e l a t i o n s h i p s b e t w e e n wheat and C h o r i z o n compositional data  are i l l u s t r a t e d  graphically  grams i n F i g s 19 t o 22. C o e f f i c i e n t s  individual  dia- . Cu, Fe  and  Zn v a l u e s  all  p a r e n t m a t e r i a l s a r e c o n s i d e r e d t o g e t h e r , a r e g e n e r a l l y non-  significant. and  t o be l o w ( < 0.30), and e x c e p t when d a t a f o r  Mn v a l u e s , on t h e o t h e r hand, a r e l a r g e r  statistically  coefficient soil  tend  relating  i n scatter  significant  values  are large  i n over h a l f o f the cases.  (range  0.74 t o 0.94), b u t a r e n o t s i g n i f i c a n t ,  i n part at least  for  the comparisons.  for  Zn s h o u l d b e i n t e r p r e t e d w i t h p a r t i c u l a r  centrations  D. 1.  C  Absolute  r e l a t i n g mean c o n c e n t r a t i o n s f o r wheat and  due  the apparent  (>0.40),  t o t h e s m a l l number o f d e g r e e s  o f freedom  The h i g h n e g a t i v e c o r r e l a t i o n b e t w e e n means  lack of significant  c a u t i o n i n view o f  d i f f e r e n c e s among mean Zn c o n -  f o r wheat.  DISCUSSION - COPPER, IRON, MANGANESE AND  ZINC  HORIZON SOIL  Comparison o f t h e r e l a t i v e  s i z e o f e s t i m a t e d w i t h i n and among  Table  Data Type  Individual data values  XXV  Correlation coefficients relating log 10 wheat and s o i l trace element data, Rosetown area.  Parent Material Cu Lacustrine clay  -0.182  0.106  0.432*  -0.303  -0.170  0.274  Lacustrine s i l t and sand  0.305  0.148  0.493*  -0.080  0.236  Glacial t i l l  0.090  0.627** 0.419  0.051 0.010  Aeolian sand A l l parent materials Parent Material means  Correlation Coefficients Wheat Wheat and C Horizon S o i l and A Horizon Soil Zn Cu Fe Zn Fe Mn Mn  -0.175 -0.216  0.492*  0.275  -0.226  22  -0.045  0.489*  -0.537*  19  0.183  -0.027  0.286  -0.045  17  -0.170  0.193  0.621** -0..294  15  0.275* 0.294** 0.714**  -0.264*  0.260*  0.271* 0.697** -0.397*  0.747  -0.898  0.735  0.887  0.837  0.913  Degrees of Freedom (n-2)  0.934  79  -0.932  Coefficient significantly greater than zero at P = 0.05.  if Coefficient significantly greater than zero at P = 0.01.  o  91  1-60  E  1  KCH  Q. Q.  X Lacustrine  clay  Lacustrine  silt and  -0.17 sand  Till Aeolian sand  X  **  0  024  •  018  o  .  3  0  a  74  ®  -0:17  O  Q J= 1-20  § o °: °o°o o ° o o° o  OS*  D  o  n  e  8a  0  100 +  i  -—r-  060  l  080 C  I  l  100 1-20 140 Log 10 Cu (ppm) Horizon Soil  160  Figure 19. Scatter diagram of log 10 Cu content (ppm) of wheat vs that of C horizon soil (r = correlation c o e f f i c i e n t ) . X  2-40 i  3  r  O  - 0 05  ©  •  -003  S7  Lacustrine  silt and s a n d  Aeolian  O  sand  X  •  clay  T ill  x  0 27  Lacustrine  >Q8 9  ©  0 19  2 2CM  ,0) *-  L9  ^  o  " o  J200H  OO ° 0 C8>  o  c§>  CDC5 •80 ^  '  —I  -020  1  1  0-00  0-20  C Figure 20. Scatter diagram of  1  1  0-40  «  0-60  0-80  Log 10 Fe (%) Horizon Soil  log 10  Fe content (%)  that of C horizon soil (r = correlation  of wheat vs  coefficient).  92 X  1-80  Lacustrine  clay  Lacustrine  s i l t and sand  o  •  Aeolian  0  sand  a. a. c H O  "  0-28 0 49 0-29 0-6 2  n  Till  o  X  •  0 93  m  9  H  o 120 H  2-10  2-30  250 Log  270  10  Mn  Scatter  diagram  that of  C  of  hori zon  Soil  I og 10 M n c o n t e n t ( p p m ) o f wheat soil ( r = c o r r e l a t i o n c o e f f i c i e n t ) .  Lacustrine  i-eo-i  Lacus trine  clay  Aeolian s a n d  E  -0-2 3 -0-5 4 -00 5 -029  o • o  s i l t and s a n d  Till  a.  3)0  (ppm)  Horizon Figure 21.  2-90  vs  -0-93  1-60 H  a. rsi  o a>  2  sz  o °  o  |-40  o o •  #W ^  E  O  o I  20  1  »  HO  I  |  1-30 Log  Figure 22. S c a t t e r t h a t of  C d i a g r a m of C  horizon  I  l  1-50 10  1-70 Zn  l  1-90  2-10  (ppm)  Horizon Soil log 10 Zn content soil ( r = c o r r e l a t i o n  (ppm) of w h e a t coefficient).  vs  93 parent  material variance  ( T a b l e XVII)  components f o r C h o r i z o n  i n d i c a t e s t h a t among p a r e n t  a c c o u n t f o r f r o m 54 t o 69% o f t h e t o t a l E x a m i n a t i o n o f mean c o n c e n t r a t i o n s i n d i v i d u a l parent tion  furthermore  compositional tions.  v a r i a t i o n s are closely  medium g r a i n e d tions  textured  till,  and s a n d d e p o s i t s , and h i g h e s t  fine  lacustrine deposits.  properties of s o i l  data  somewhat h i g h e r  concentrations  Finest to  S i m i l a r r e l a t i o n s h i p s between t e x t u r -  parent  m a t e r i a l and s o i l  t r a c e element  s a n d i n t h e Rosetown a r e a  little  or surface adsorption  l a c u s t r i n e d e p o s i t s , on t h e o t h e r  illite  ( S c o t t , 1971).  montmorillonite well  and k a o l i n i t e As M i t c h e l l  (1969).  c o n s i s t s o f 80 t o 90% capacity f o r either of trace  elements.  hand, c a n c o n t a i n up  80% c l a y s i z e m a t e r i a l , o f w h i c h m o n t m o r i l l o n i t e  ponents  can  i n M a n i t o b a b y H a l u s c h a k and  ( S c o t t , 1971), which has v e r y  lesser extent  concentra-  in clay-rich  (1971) and i n A l b e r t a b y Pawluk , and B a y r o c k  inclusion  varia-  a l l u v i u m and l a c u s t r i n e  Russell  structural  soil  i n fine to  have r e c e n t l y b e e n n o t e d  quartz  i n Table  to textural  content  Aeolian  with  of applica-  material  c o n s i s t e n t l y occur  silt  al  t o these  related  sand o f a e o l i a n o r i g i n ,  i n intermediate  associated  X V I , and r e s u l t s  t h a t among p a r e n t  Lowest c o n c e n t r a t i o n s  variability.  f o r C horizons  materials i n Table  suggest  material differences data  o f Duncan's New M u l t i p l e Range t e s t  XVIII,  soil  and t o a  a r e t h e main c r y s t a l i n e (1964) h a s n o t e d ,  com-  i nthe  s t r u c t u r e , A l c a n be r e p l a c e d b y F e and Zn a s  a s s m a l l amounts o f Mn and C u , and s i m i l a r s u b s t i t u t i o n s occur  in illite.  Furthermore, experimental  s t u d i e s have  shown t h a t a p p r e c i a b l e amounts o f Cu, Mn and Zn c a n be a d s o r b e d  from  solution  1956;  by b o t h m o n t m o r i l l o n i t e and i l l i t e  O'Connor and K e s t e r , 1975; Reddy and P e r k i n s , 1 9 7 4 ) , and  by h y d r o u s F e o x i d e s crystaline  (Krauskopf,  capacity cation  of clay  o f Rosetown a r e a s o i l  12 meq/100 g  (Ellis  A comparable  for  size  Sceptre s o i l  element  (Mason, 1 9 6 6 ) .  o f t r a c e elements  are a s s o c i a t e d with the c l a y r e l a t i o n s h i p between c l a y  bedrock  size  content  i s , therefore, likely  sedimentary  i s only  concentra-  size material i s widely Tourtelot  recognized  (1962),  i n the s t r a t i g r a p h i c  the mid-western U n i t e d S t a t e s , concluded  tion  i s shown t o  f o r clay-poor Asquith s o i l  l e n t s o f t h e Bearpaw and r e l a t e d Upper C r e t a c e o u s in  soils.  i s g i v e n i n T a b l e X I I , where t h e  a s s o c i a t i o n between t r a c e  rocks  the d i s t r i b u t i o n  o f many  e t a l . , 1970).  and p r o p o r t i o n o f c l a y  sedimentary  fraction  s i z e m a t e r i a l on a d s o r p t i o n  exchange c a p a c i t y o f c l a y - r i c h  4 4 meq/100 g w h e r e a s t h a t  tions  1956) w h i c h a r e i m p o r t a n t n o n -  components o f t h e c l a y  A measure o f t h e e f f e c t  be  (Krauskopf,  studying equiva-  Formations  t h a t F e , Mn and Zn  f r a c t i o n o f these rocks. and Rosetown a r e a s o i l  a characteristic  from which s o i l  inherited  The  composi-  from t h e  p a r e n t m a t e r i a l s were d e -  rived. Some i n s i g h t variability, in  the nature  which .accounts  T a b l e s XXI a n d X X I I ,  into  of w i t h i n parent m a t e r i a l data  f o r 31 t o 46% o f t h e t o t a l ,  i s given  where t h e s e v a r i a t i o n s a r e p a r t i t i o n e d  s m a l l - s c a l e (sampling)  ship) the  into  and i n t e r m e d i a t e - s c a l e ( w i t h i n  components r e s p e c t i v e l y .  town-  As i s e m p h a s i z e d , however, by  l a c k o f a g r e e m e n t between e s t i m a t e d  t o t a l within parent  material  l o g 10 v a r i a n c e v a l u e s  a r e b a s e d on s e p a r a t e , should  i n these  comparatively  t h e r e f o r e be i n t e r p r e t e d w i t h  Information sampling  two t a b l e s ,  s m a l l sample s e t s , and caution.  f o r alluvium i s limited  v a r i a t i o n s only  (Table XXI).  t o an e s t i m a t e o f  For this  a large proportion of the compositional attributable over  d i s t a n c e s o f more t h a n  flect, of  t o among sample s i t e  to a large extent,  30 m  parent  variability  sources  material  (>7 5%) i s  - that i s , occurs  (100 f t ) . T h e s e v a r i a t i o n s r e -  the comparative t e x t u r a l  heterogeneity  alluvium. Analysis of variance r e s u l t s  f o r lacustrine  s a n d , and t o a l e s s e r d e g r e e l a c u s t r i n e be  results  similar,in  relatively  t h a t among sample s i t e  and among t o w n s h i p v a r i a n c e  non-significant.  and s a n d , t e n d t o  v a r i a t i o n s account f o r a  l a r g e amount o f w i t h i n p a r e n t  variations,  materials  silt  clay, aeolian  Most o f t h e c h e m i c a l  t h e r e f o r e , appears t o occur  material  compositional  components a r e s m a l l and variability  w i t h i n areas  i n these of less  than  2 one  township  parent  (94 km  o r 36 s q mi) i n s i z e .  material compositional  from r e g i o n a l f a c i e s  trends,  Large-scale  s u c h a s m i g h t be  changes, a r e e i t h e r  not present  within expected  or very  weak. R e s u l t s o f sampling  v a r i a b i l i t y , estimates  forglacial  ( T a b l e XXI) i n d i c a t e t h a t t h e m a j o r i t y o f c o m p o s i t i o n a l ity  i n C horizon t i l l  sites), of  with  the t o t a l .  occurs  among s i t e  over  very  short distances  v a r i a t i o n s accounting  Examination of estimated  f o r only  till  variabil(within 17 t o 39%  w i t h i n and among  96  t o w n s h i p v a r i a n c e components i n T a b l e X X I I i n d i c a t e s m a g n i t u d e o f among t o w n s h i p v a r i a t i o n s , form, c o r r e s p o n d  fairly  closely  expressed  i n percentage  t o among sample s i t e  e s t i m a t e s . T h i s i m p l i e s t h a t much o f t h e e s t i m a t e d site  variability  noted  that the  i n T a b l e XXI o c c u r s  over  variance  among sample  areas  greater  t h a n one t o w n s h i p i n s i z e .  2. A HORIZON AND  30-46 CM  (12-18 IN) DEPTH SOIL  Components o f v a r i a n c e e s t i m a t e s  i n Table  XVII  t h a t among p a r e n t m a t e r i a l c o m p o s i t i o n a l v a r i a t i o n s h o r i z o n and 30-46 cm larger  (12-18 i n ) d e p t h  soil  p r o p o r t i o n (62 t o 78%) o f t h e t o t a l  account data  izons  tend  horizons,  d e v i a t i o n values  fora  (54 t o 6 9 % ) .  that A  hor-  t o be more c o m p o s i t i o n a l l y homogeneous t h a n C and t h i s  enhanced r e l a t i v e in  i n T a b l e XVI s u g g e s t  f o rA  variability  t h a n do among p a r e n t m a t e r i a l C h o r i z o n v a r i a t i o n s Geometric  indicate  probably importance  accounts,  t o some e x t e n t ,  f o r the  o f among p a r e n t m a t e r i a l v a r i a t i o n s  A horizons.  Geometric erally  lower  d e v i a t i o n values  than  These r e l a t i v e l y least  those  f o r 30-46 cm  subsurface  to the mixing variability  local effect  gen-  (12-18 i n ) d e p t h m a t e r i a l .  low A h o r i z o n v a l u e s p r o b a b l y  i n part, decreased  ributable  f o r A horizons are also  reflect, at  compositional v a r i a b i l i t y of ploughing.  w o u l d be e x p e c t e d  att-  In a d d i t i o n  t o be i n c r e a s e d by  the  fact  3 0 - 4 6 cm  t h a t both  ( 1 2 - 1 8 i n ) d e p t h and C h o r i z o n  i n c l u d e m a t e r i a l f r o m more t h a n Cca h o r i z o n s  and  C as w e l l as C c a h o r i z o n s  should  i n the case  a l s o be n o t e d  horizons  one p e d o g e n i c h o r i z o n — m a i n l y  o f t h e 3 0 - 4 6 cm  and  samples,  B  ( 1 2 - 1 8 i n ) sample,  i n t h e "C" h o r i z o n s a m p l e . I t  however t h a t t h e a p p a r e n t h o m o g e n e i t y o f A  c o u l d b e , t o some d e g r e e , a r e f l e c t i o n  A horizon  samples  as o p p o s e d t o t h o s e  were c o m p o s i t e s o f s o i l  collected  of the f a c t  o f subsurface  that  materials,  f r o m s e v e r a l s i t e s w i t h i n an  2 10 m  area o f about  would be e x p e c t e d Moderately  XX) i m p l y iations  this  variability  f o r A horizons.  c o r r e l a t i o n s (> 0 . 5 0 ) r e l a t i n g  t o C h o r i z o n samples  f o r most p a r e n t  material soil  (12-18 in) materials  compositional  +0.90,  indicating  (1975)  concentrations  have s i m i l a r l y  t h a t among p a r e n t  exerts  a very  noted  material  material trace soil  i n Manitoba.  observed  together  extension  that parent  Mills  s t r o n g i n f l u e n c e on A h o r i z o n  E x a m i n a t i o n o f F i g 18 suggests correlations  var-  coefficients  a r e e v e n more i n f l u e n c e d b y C h o r i z o n v a l u e s .  Zwarich  (Table  by C h o r i z o n s .  m a t e r i a l means a r e compared c o r r e l a t i o n  t o over  considered  procedure  i n i n d i v i d u a l A h o r i z o n and 3 0 - 4 6 cm  element content  to  equal,  are c o n t r o l l e d , to a considerable extent,  variations and  positive  that w i t h i n parent  When p a r e n t increase  t o reduce sampling  high  concentrations depth samples  . Other f a c t o r s being  when d a t a  that the strengthening o f  f o r a l l parent  materials are  ( T a b l e XX) i s , i n l a r g e m e a s u r e ,  o f t h e range o f c o n c e n t r a t i o n s  p a r i s o n s were made, w h i c h h a s t h e e f f e c t c o n s i d e r a b l y more d i s t i n c t  linear  over  attributable  w h i c h t h e com-  o f g i v i n g the data  t r e n d . The f u r t h e r  a  strengthening  98 of  c o e f f i c i e n t s when mean v a l u e s  be  primarily  ability tions  an e f f e c t  (scatter)  (Dixon The  of the s t a t i s t i c a l  i s lower  and Massey,  vari-  for individual  observa-  o f mean Mn and Zn l e v e l s  inA  t o C h o r i z o n s r e p o r t e d i n T a b l e XVI h a s been n o t e d b y  (Haluschak  these  that data  1969).  other workers f o r Chernozemic  effect  fact  f o r means t h a n  moderate enrichment  relative  a r e compared w o u l d a p p e a r t o  and R u s s e l l ,  i s attributed  soil  1971; M i l l s  by M i l l s  on t h e C a n a d i a n and Zwarich,  and Z w a r i c h  prairies  1975).  This  (1975) t o r e m o v a l o f  e l e m e n t s b y s u c c e s s i v e g e n e r a t i o n s o f p l a n t s and t h e i r  subsequent i m m o b i l i z a t i o n i n t h e s u r f a c e o r g a n i c likely  that a similar  because, although  layer.  I t seems  e x p l a n a t i o n a p p l i e s i n t h e Rosetown  these  enrichments  example t o f e r t i l i z a t i o n  area  c o u l d a l s o be a t t r i b u t e d f o r  practices or p o l l u t i o n ,  the observed  s t r o n g p o s i t i v e c o r r e l a t i o n between A and C h o r i z o n v a l u e s under  such In  circumstances,  well differentiated  associated with Podzols, face  soil  1959).  be v e r y  Evidence  of t h i s  d a t a f o r F e i n 30-46 cm  improbable.  soil profiles,  accumulate i n B h o r i z o n s  pedogenic  effect  (12-18 i n ) d e p t h  M a g n i t u d e s o f mean F e v a l u e s f o r 30-46 cm given i n Table these not  c a n be s e e n  because,  common w i t h i n t h i s d e p t h are r e l a t i v e l y  those from  sur-  (Vinogradov, i n the  B h o r i z o n s i n T a b l e XIX. (12-18 i n ) d e p t h  XVI however have n o t b e e n g r e a t l y  accumulations  enrichments  particularly  F e and o t h e r e l e m e n t s l e a c h e d  characteristically  would,  samples  a f f e c t e d by  i n t h e Rosetown a r e a B h o r i z o n s a r e range,  small.  and f u r t h e r m o r e  the observed  99 3.  RELATIONSHIP.. BETWEEN PLANT AND SOIL The  Cu,  CONCENTRATIONS  weak r e l a t i o n s h i p between i n d i v i d u a l wheat and s o i l  F e and Zn v a l u e s  ( T a b l e XXV) i s c o n s i s t e n t w i t h  t h e commonly  h e l d view t h a t , because o f v a r i a t i o n s i n s o i l  a v a i l a b i l i t y and  plant absorption  ), t o t a l  f a c t o r s ( s e e d i s c u s s i o n p.6  element c o n c e n t r a t i o n s to  be p r e s e n t  relation tional, the be  little  indication  o f amounts  i n associated plants  (Mitchell,  1972).  coefficients  give  f o r corresponding  and a r e e s p e c i a l l y  availability particularly  conditions  of t h i s  surprising  close  E h and pH  can apparently  noteworthy.  cor-  (>0.40) a r e e x c e p that  (Hem, 1 9 7 2 ) .  regional soil  be a d e q u a t e l y  for individual  compositional  described  i n terms o f  parent  of individual  the  Cu, Fe and  materials i s partic-  T h e s e s t r o n g mean r e l a t i o n s h i p s ,  seem t o c o n t r a d i c t r e s u l t s  to  environmental  ( r > 0.73) between p l a n t and s o i l  Mn mean c o n c e n t r a t i o n s ularly  High  m a t e r i a l mean d i f f e r e n c e s ( F i g s 13 t o 1 7 ) ,  relationship  likely  i n view o f the f a c t  a f f e c t e d by v a r i a t i o n s i n s o i l  - mainly  among p a r e n t  Mn d a t a  trace  element t o p l a n t s would be e x p e c t e d  B e c a u s e i n t h e Rosetown a r e a variations  soil  sample  however,  comparisons.  E x a m i n a t i o n o f s c a t t e r d i a g r a m s i n F i g s 19 t o 22 i n d i c a t e s that  although  i n d i v i d u a l data  tend  t o be f a i r l y  widely  d i s t i n g u i s h a b l e when d a t a together.  dispersed, vaguely  size  parent  linear  material  trends are  f o r a l l parent  materials are considered  I t w o u l d a p p e a r , a s was n o t e d  previously f o r relation-  s h i p s between means f o r s o i l large  points f o r a given  horizons  o f mean c o e f f i c i e n t s  (p.98 ) , t h a t t h e r e l a t i v e l y  i s attributable  to the  100 s t r e n g t h e n i n g of these l i n e a r trends as a r e s u l t of the  decrease  i n data v a r i a b i l i t y a s s o c i a t e d w i t h the use of mean v a l u e s . High c o r r e l a t i o n s between p l a n t and s o i l means, however, are not n e c e s s a r i l y a r e s u l t of simple c a u s e - e f f e c t r e l a t i o n s h i p s . T h i s i s emphasized by the strong n e g a t i v e r e l a t i o n s h i p between mean s o i l and p l a n t Zn c o n c e n t r a t i o n s .  In t h i s case p l a n t Zn  v a l u e s would appear t o be c o n t r o l l e d by an a d d i t i o n a l (or  factor  f a c t o r s ) which i s i n t u r n n e g a t i v e l y r e l a t e d t o s o i l  content.  Stewart and T a h i r (1971) have suggested  Zn  that s o i l  and o r g a n i c matter content, and p l a n t growth stage, are  pH  important  i n f l u e n c e s on the d i s t r i b u t i o n o f Zn i n wheat from Saskatchewan. It  i s nevertheless p o s s i b l e to i n t e r p r e t p o s i t i v e  relation-  s h i p s between Fe, M f r a n d Cu means c a u s a l l y , i n which case  the  s c a t t e r of i n d i v i d u a l data p o i n t s c o u l d be e x p l a i n e d , f o r example, as an e f f e c t of l o c a l changes i n s o i l environmental c o n d i t i o n s (Eh, pH etc.) i f these are assumed t o vary over s i m i l a r for  the i n d i v i d u a l parent m a t e r i a l s examined.  ranges  In support of a  c a u s a l e x p l a n a t i o n i t should be noted t h a t t o t a l s o i l t r a c e element contents have commonly been shown to a f f e c t  concentra-  t i o n s i n p l a n t s i n g e o c h e m i c a l l y extreme environments. example, Cannon (1970) has observed  For  that high Ni concentrations  occur i n v e g e t a t i o n growing on N i - r i c h s o i l d e r i v e d from  ultra-  mafic r o c k s i n Oregon, and t h a t low l e v e l s of n u t r i t i o n a l l y s i g n i f i c a n t t r a c e elements are widespread  i n crops i n the t r a c e  element-poor c o a s t a l p l a i n sands of the e a s t e r n U n i t e d S t a t e s .  101 I t w o u l d seem r e a s o n a b l e  to expect to f i n d  a similar,  though  p e r h a p s more s u b t l e r e l a t i o n s h i p , b e t w e e n p l a n t and s o i l centrations  4.  i n other  less  compositionally  environments.  GEOCHEMICAL MAPS a)  Method o f P r e s e n t a t i o n G e o c h e m i c a l maps i n F i g s  summaries o f s t a t i s t i c a l l y compositional Range t e s t these  this  i n Table  readily  regard  Table  XVIII.  among p a r e n t  graphical  material  should  To b e u s e f u l f o r e n v i r o n m e n t a l be s t a b l e - t h a t i s they  r e p r o d u c i b l e by s e p a r a t e  t o mean d a t a  i n Table  XXIV a r e v e r y  be  of application of  collected  similar  should  sampling programs. In  that results  forsoil  studies,  a t wheat  t o those  sample  reported i n  XVIII. The  essed  significat  . i t i s noteworthy  Duncan's t e s t sites  13 t o 17 a r e e s s e n t i a l l y  v a r i a t i o n s as d e f i n e d by Duncan's New M u l t i p l e  map p a t t e r n s  fairly  as  extreme  con-  stability  o f these  using Tidball  described  of a t l e a s t  compositional  (1970)'s a d j u s t a b l e v a r i a n c e  c a n be  ratio,  1.0 and p r e f e r a b l y 5.0 a r e needed these  values  f o r reproducible  material  (Table  XXVI).  i n d i c a t e t h a t b e c a u s e o f t h e l a r g e among p a r e n t components  ( T a b l e XVII) only  values  were u s e d t o d e t e r m i n e t h e minimum  number o f s a m p l e s r e q u i r e d p e r p a r e n t  variance  ass-  Vm,  p r e v i o u s l y i n C h a p t e r I ( p . 1 2 ) . B e c a u s e Vm  map p a t t e r n s ,  Results  patterns  e v e n f o r Vm v a l u e s  necessary  to collect  2 A or 5 C horizon  surficial  d e p o s i t . B e c a u s e mean v a l u e s  samples  material  o f 5.0 i t i s from  each  f o r Duncan's t e s t i n  102  Table  XXVI  Horizon  Numbers o f r a n d o m l y s e l e c t e d s o i l s a m p l e s C n ) r e q u i r e d f r o m e a c h Rosetown a r e a p a r e n t material to give adjustable variance r a t i o (Vm) v a l u e s o f 1.0 and 5.0. n  Element  Vm = S&/S m  .  Vm = 1.0*  Vm = 5.0*  Cu Fe Mn Zn  <1 <1 <1 <1  1.8 1.8 1.7 1.8  Cu Fe Mn Zn  <1 <1 <1 <1  2.3 3.2 3.6 4.3  , where Sex = among p a r e n t m a t e r i a l v a r i a n c e f r o m T a b l e X V I I and, 2 S . = w i t h i n parent m a t e r i a l variance f r o m T a b l e xVTEr-n. m  103  Table  XVI  were b a s e d on  t i o n s , Vm  w i t h i n parent  shown i n F i g s 13  been p r e s e n t e d or i n d i v i d u a l sites  on  doubling  the  by,  separate  the  8 and  stability  one  patterns.  have  t o w n s h i p means  f o r each element a t  appropriate  T h i s , however, w o u l d have r e s u l t e d i n  little  Furthermore, i t would  useful additional information  hand, a n a l y s i s o f v a r i a n c e  results  i n Table  show t h a t d i f f e r e n c e s among t o w n s h i p means a r e n o t significant  observa-  o f t h e map  plotting  t h e number o f maps p r o d u c e d . very  t o 67  such i n f o r m a t i o n c o u l d  f o r example, e i t h e r  maps.  up  material compositional v a r i a t i o n s  t o 17,  sample v a l u e s  have p r o v i d e d on  fewer than  c a l c u l a t i o n s confirm  Although are not  no  f o r most p a r e n t  m a t e r i a l s , and  on  because, XXII  statistically  the o t h e r ,  although  among sample s i t e v a r i a t i o n s a r e commonly s i g n i f i c a n t  (Table  low  and  correlation  sample d a t a centration  coefficients relating  ( T a b l e XXV)  Finally, be  recalled  indicate that plotting  s e p a r a t e l y w o u l d be  plant compositional  individual  of  little  use  soil  t h a t they  which because of the  these  a r e b a s e d on  each s o i l  g e o c h e m i c a l maps i t s h o u l d a soil  parent  material  t o be  u n d e r l a i n by  glacial  too  limited  Because these  during  tribute  to category  in aerial  extent  till,  to  map,  generalized.  example, a r e commonly m a n t l e d by v a r i a b l e t h i c k n e s s o f  avoided  con-  in predicting local  s c a l e of p r e s e n t a t i o n , i s very  A r e a s shown i n F i g 10  separately.  plant  variations.  i n interpreting  d e p o s i t s which are  XXI),  for lacustrine  distinguish  l o c a l d e p o s i t s were p u r p o s e f u l l y  sample c o l l e c t i o n , mean and  they  variance  g e n e r a l l y do estimates.  not  con-  104 b) P a t t e r n s  and T h e i r S i g n i f i c a n c e  Map Cu, F e , Mn and Zn p a t t e r n s 30-46 cm(12-18 soil  in) depth s o i l  associated with  nificantly  f o r A and C h o r i z o n and  are b a s i c a l l y  a e o l i a n sand i s i d e n t i f i e d  l o w e r and t h a t a s s o c i a t e d w i t h  significantly  higher  from a l l u v i u m ,  similar  till  than s o i l  and l a c u s t r i n e s i l t  High p o s i t i v e c o r r e l a t i o n  as b e i n g  sig-  lacustrine clay  i n t r a c e element content  glacial  i n that  coefficients  derived  and s a n d .  (>0.70) b e t w e e n  mean F e , Mn and Cu p l a n t and s o i l  values  element p a t t e r n s  13 t o 17 a r e r e l a t e d t o  regional of  this  test  compositional  i n Figs  v a r i a t i o n s i n wheat.  with  Further  f o r wheat Mn v a l u e s  three  elements  are identical  (Table  t o those  trace  evidence  r e l a t i o n s h i p i s apparent i n r e s u l t s o f applying  t o wheat means f o r t h e s e  Results  the  for soil  indicate that  Duncan's  XXIV). for soil,  b o t h t h e low mean f o r wheat g r o w i n g on a e o l i a n sand and h i g h mean f o r wheat a s s o c i a t e d w i t h  identified means.  as being  Similarly,  significantly  lacustrine clay  different  i n agreement w i t h  soil  from o t h e r  trends,  estimated  the h i g h Fe  mean f o r wheat grown on l a c u s t r i n e c l a y and t h e low Cu mean for  a e o l i a n sand, a r e i n d i c a t e d t o be s i g n i f i c a n t l y  f r o m means a s s o c i a t e d w i t h  Maps l i k e  those  surficial  deposits.  i n F i g s 13 t o 17, b u t b a s e d on s a m p l i n g  of u n c u l t i v a t e d B h o r i z o n State  other  different  soil,  have b e e n p r e p a r e d  of Missouri using vegetation-type  parent  materials  f o r category  1972).  Despite  the existence  definition  areas  f o r the  instead of s o i l  (Shacklette et a l . ,  of large differences i n s o i l  105 composition was f o u n d  among v e g e t a t i o n - t y p e a r e a s ,  between s o i l  little  relationship  p a t t e r n s d e f i n e d by Duncan's New  Range t e s t  and t h e t r a c e e l e m e n t c o n t e n t  material.  T h i s s i t u a t i o n was however a t t r i b u t e d ,  of associated plant  least,  to large differences  (range  5.3 t o 7 . 3 ) , w h i c h w o u l d be e x p e c t e d  affect  the a v a i l a b i l i t y  i n part at  among c a t e g o r y mean pH v a l u e s to considerably  o f t r a c e elements t o p l a n t s .  among mean pH v a l u e s f o r s o i l materials  Multiple  Differences  associated with various  i n t h e Rosetown a r e a a r e , i n c o n t r a s t , v e r y  parent small  (Table X V I ) . The  a p p a r e n t l y s t r o n g r e l a t i o n s h i p s between C u , F e and  Mn mean p l a n t a n d s o i l  values suggest  that i n this,  haps i n o t h e r  s i m i l a r Canadian p r a i r i e  such  presented  as those  environments,  c o u l d be o f v a l u e  regional plant compositional variations. could  be u s e f u l  balances  i n identifying  i n crops or l i v e s t o c k  E.  1.  BEDROCK Se  in  levels  i n predicting T h e s e maps, t h e r e f o r e ,  a r e a s where t r a c e e l e m e n t i m are especially  likely  t o occur.  RESULTS - SELENIUM  i n Bearpaw F o r m a t i o n  ft) interval  Concentrations  drill  throughout  c o r e a r e summarized t h e n e a r l y 240 m  examined a r e g e n e r a l l y l e s s  Sandy f o r m a t i o n members contain  maps  CONCENTRATIONS  T a b l e XXVII.  (800  and p e r -  (Cruikshank,  than  1.0 ppm.  A r d k e n n e t h and Demaine)  t h e s m a l l e s t amounts o f Se (0.25 t o 0.50 ppm).  The  106  T a b l e XXVII  Se c o n t e n t o f Bearpaw F o r m a t i o n b e d r o c k , Rosetown a r e a . Se Content* (ppm)  Member  Description  Thickness (m)  Number of Analyses  Aquadell  medium g r e y s i l t y clay  78  7  0.56 0.12-1.12 (0.47)  Cruikshank  greenish sand  grey  12  2  0.46 0.43-0.50 (0.46)  Snakebite  medium g r e y clay to s i l t y clay  74  8  0.57 0.37-0.81 (0.59)  Ardkenneth  greenish grey sand  33  3  0.30 0.25-0.37 (0.29)  Beechy  greenish grey s i l t y clay  20  2  0.64 0.63-0.65 (0.64)  medium g r e y sand  17  2  greenish grey silty clay  15  Demaine  Sherrard  (0.26)  a) G e o m e t r i c mean; t r u e r a n g e : m e d i a n b) I n d i v i d u a l  data values l i s t e d  0.26  2  0. 66 0.58-0.75 (0.66)  i n parentheses.  i n Appendix C ( 3 ) .  107 geometric  mean Se c o n t e n t  o f a l l samples a n a l y s e d  i s 0.50  ppm.  2.  SOIL AND PLANT COMPOSITIONAL VARIATIONS H i s t o g r a m s o f t h e Se c o n t e n t  soil  associated with  shown i n F i g 23. some . (Fig and  individual  Although  o f b o t h wheat and C h o r i z o n  parent m a t e r i a l types are  a logarithmic bar i n t e r v a l  of these d i s t r i b u t i o n s  a p p e a r t o be p o s i t i v e l y  23h),whereas f o r o t h e r s b i m o d i a l i t y b).  i s used,  To a v o i d b i a s e s a s s o c i a t e d w i t h  i s suggested  ( F i g 23a  t h e u s e o f mean v a l u e s ,  t h e r e f o r e , m e d i a n s were c h o s e n a s p r e f e r a b l e e s t i m a t e s central  tendencies  of the data  Wheat a n d C h o r i z o n s o i l marized Se  i n Table  are similar  content  0.12 ppm) with trine  pH d a t a , a r e sum-  Compositional  silt  and s a n d . h i g h e r than  clay  The  Although those  trend i s apparent,  w i t h a e o l i a n sand  trends f o r  f o r a e o l i a n sand clay  (median  intermediate concentrations occurring i n t i l l  overall  using  i s lowest  and h i g h e s t f o r l a c u s t r i n e  siderably  trine  Se, and s o i l  f o r o t h e r elements examined.  of C horizon s o i l  of the  sets.  X X V I I I and F i g 24.  t o those  skewed  The Se (median  0.37 ppm), and l a c u s -  m e d i a n wheat Se v a l u e s a r e c o n -  for soil  p a r e n t m a t e r i a l , t h e same  with the lowest value a s s o c i a t e d  (median 0.64 ppm)  and t h e h i g h e s t w i t h l a c u s -  (median 2.18 ppm).  significance  t h e Median t e s t  of differences  among m e d i a n s was  (see Appendix B ) .  evaluated  R e s u l t s suggest  that  108  WHEAT  SOIL GMO-96  6M=0-I3  (0)  GD = l - 5 8  GD=2I7  n=l5  n = l5  TJ C  o CO c  tA I-  Q .  ii E p  1 °•«  MA  2  o * i o ( 0 c m o o  D  ,  "  s  O  6  r p ^ - i p w ^ - j - i - i p  6 o 6 6 - iii w *  O  Se  <  n  =  !  6  6  J  Z  6  :  6  N  N  6  I  6  9  GM=0-32  (d)  G D = I-5I  n  =15  =15  IA  a>  mpl  I  DS  E  3 2  Q.  E  3 Z  mm/A  H—  o Se  H—  2  /177Z)  0)  a> c E  4  3  1  JZ3  g 'o o  66  CD  Se  — <Si  3  z  Se  6  6  6  6  6  6  6  0  (ppm)  (e)  GM=0-27  (f)  GD=l-94  n= !5  f5U  x> E E «3 3  z  P7P:  1 2 'A m  10  in o o w o  a  —  ^  10  oil  ( O O j O O I O ' t w w * * i p s  Se  S  4ID - f o —  w  n = l5  L  CL  n E E o in  6  6  00  'A O - ^ N N t O I O N O I I Q O ) 6 6 6 6 6 6 6 6 6 — —  <vi  Se  (ppm, dry weight)  8  i  _  GD =2-41  GM=2-36  o J  —  (ppm, dry weight) GM=2-20  I  o in  10 IO * N * I O Ol l O y <D 00 — IO o r- ao 6 6 6 6 - - n n 1 0 I O N  to  -  = l-79  GD  TJ c o  O  6  GM=0-85 ( C )  CO  o  O  Se (ppm)  (ppm, dry weight)  TJ c o  CO a> c  (b)  i  GM=0-49  (g)  n = l6  n = l6 in Oi  121  X) fc  z  EE  Ld  *  (h)  GD = l-84  6 D =1-62  r o o o c p 10  (ppm)  o><o<oo)(0Oe4(0ir> cvi <b  (ppm, dry weight)  6  6  Se  6  6  6  0  — — <\]  (ppm)  Figure 23. Histograms of Se content of wheat and C horizon soil, Rosetown area (bar interval logarithmic, GM»geometric mean,GD-geometric deviation).  109  Table  XXVIII  Parent Material  Se c o n t e n t o f wheat ( d r y w e i g h t b a s i s ) and C h o r i z o n s o i l , and s o i l pH v a l u e s , Rosetown a r e a .  Number o f Samplest  Wheat Se* (ppm)  S o i l C Horizons Se* pH** (ppm)  Lacustrine clay  16:16  2.18 1.02-5.40  0.37 0.24-1.92  8.3 8.1-8.6  Lacustrine s i l t and sand  15:15  1.08 0.38-3.60  0.28 0.18-0.63  8.3 6.9-8.9  Glacial  till  15:15  1.54 0.85-11.2  0.26 0.08-1.50  8.3 7.5-8.9  Aeolian  sand  16:15  0.64 0.42-4.00  0.12 0.07-0.26  7.8 6.5-8.9  1~Number o f wheat s a m p l e s :  number o f s o i l  samples.  * a) M e d i a n  and t r u e  range.  b) I n d i v i d u a l sample  values  listed  ** Arithmetic  mean;  true  range.  i n Appendix C ( 2 ) .  110  108° 00'  106° 43'  Tp34  TP32  RI4  RI2  RIO  SOIL PARENT MATERIAL [?-~H Lacustrine clay |  | Lacustrine silt and sand  1  | Glacial till  R 8  Wheat Se Concentration (ppm) • <IOO  • 100-2-99 ©3-00-6-00 •>600  f>" ° "Q| Alluvium Aeolian sand  Figure 24. Se content, wheat material  (dry weight), Rosetown area.  111 medians f o r both probably  (99%  and  p a r e n t m a t e r i a l and  confidence  (Table XXIX). efficients  soil  drawn f r o m d i f f e r e n t  Furthermore, although  show t h e  high c o r r e l a t i o n  linear  t o be  poor  ( T a b l e XXX),  a t the  pared  a r e weak with  indicated  90%  confidence  ( T a b l e XXX).  corresponding  M e d i a n pH  wheat d a t a  m a t e r i a l types  F.  overburden  there  is a  and  soil  pH  v a l u e s were n o t  because median t e s t  are not  values  comresults  associated  significant.  DISCUSSION - SELENIUM  BEDROCK Se  concentrations  measured  i n the uppermost t w o - t h i r d s  t h e Bearpaw F o r m a t i o n r a n g e between 0.12 values rock  a r e much l o w e r t h a n  units  (up  t o 100  accumulator p l a n t s in  co-  level.  t h a t d i f f e r e n c e s among m e d i a n pH  with various parent  1.  populations  (+0.9 0) when m e d i a n s a r e compared, w h i c h i s  C o r r e l a t i o n s between i n d i v i d u a l wheat Se values  are  correlation  r e l a t i o n s h i p between i n d i v i d u a l  wheat c o n c e n t r a t i o n s  significant  level)  wheat s a m p l e s  the U n i t e d  sistent with average of Formation  results ppm  of W i l l i a m s  in a limited  1.12  ppm.  for black  shale  A.  bed-  e t a l . (1941) who  con-  found  an  s u r f a c e Bearpaw  Saskatchewan.  (1962) a t t r i b u t e d  high  concentrations  of  pectinatus)  T h e y a r e , however,  number o f  These  the d i s t r i b u t i o n  b i s u l c a t u s and  ( L a k i n , 1961).  samples from  TOurtelot  reported  associated with  ( i n c l u d i n g A.  States  1.6  ppm)  those  and  of  in  the  T a b l e XXIX  R e s u l t s o f a p p l i c a t i o n o f Median t e s t wheat and C h o r i z o n s o i l Se v a l u e s , Rosetown a r e a .  to  Number o f V a l u e s A b o v e and B e l o w O v e r a l l Group M e d i a n s * , . _ •, Wheat Soil Classification Observed Expected Observed Expected  Parent Material  •  TT  clay  Above Below  14 2  8.0 8.0  14 2  8.1 7.9  Lacustrine s i l t and sand  Above Below  6 9  7.5 7.5  9 6  7.6 7.4  Glacial  till  Above Below  7 8  7.5 7.5  7 8  7.6 7.4  Aeolian  sand  Above Below  4 12  8.0 8.0  0 15  7.6 7.4  Lacustrine  ft ft Chi-square  significantly  greater  than  zero a t P =  * Wheat m e d i a n  1.53  ppm:  s o i l median  0.26  ppm.  0.01,  Chi-square -* Wheat  Soil  113  Table  XXX  Correlation coefficients relating log 10 Se c o n c e n t r a t i o n s i n wheat t o t h o s e o f a s s o c i a t e d C h o r i z o n s o i l and a r i t h m e t i c s o i l pH v a l u e s , Rosetown a r e a .  Correlation Data Type  Parent Material  Individual data values  Coefficients  Wheat Se and S o i l Se  Lacustrine clay Lacustrine s i l t and sand  Wheat Se and S o i l pH  .".  .  Degrees of Freedom  rr.  (n-2)  0.245  -0.320  13  0.237  -0.186  13  -0.123  13  Glacial  till  -0.013  Aeolian  sand  -0.574*  0.388  14  0.222  0.190  59  A l l parent materials Parent Material medians  0.901  2  * Coefficient  significantly  greater  than  z e r o a t P = 0.05.  .  114 P i e r r e Shale, the s t r a t i g r a p h i c e q u i v a l e n t of the Bearpaw Formation i n South Dakota, t o a d s o r p t i o n o f Se from seawater by c l a y and o r g a n i c matter i n r e l a t i v e l y low energy f a r - s h o r e environments. comparatively  The Bearpaw Formation,  i n c o n t r a s t , was d e p o s i t e d  r a p i d l y i n a high energy l i t t o r a l s e t t i n g .(Caldwell,  1968), which probably  allowed  ses t o be e f f e c t i v e .  Furthermore t h i s formation c o n t a i n s a h i g h  p r o p o r t i o n of sand and s i l t which would be expected  little  time f o r a d s o r p t i o n  proces-  s i z e m a t e r i a l ( C a l d w e l l , 1968),  t o have r e l a t i v e l y l i m i t e d  adsorption  capacities.  2.  C  HORIZON SOIL S o i l Se c o n c e n t r a t i o n s  to  (range  0.07 t o 1.92 ppm) are s i m i l a r  those r e p o r t e d f o r the Bearpaw Formation,  compatible  w i t h the hypothesis  and a r e t h e r e f o r e  t h a t s o i l parent m a t e r i a l s were  d e r i v e d , a t l e a s t t o some e x t e n t , from t h i s bedrock u n i t  (Scott,  1960) . Median t e s t r e s u l t s  (Table XXTX) suggest  that s o i l  m a t e r i a l i s a s i g n i f i c a n t f a c t o r i n determining Se d i s t r i b u t i o n p a t t e r n s .  parent  regional s o i l  Furthermore, as f o r the other t r a c e  elements examined, Se c o n c e n t r a t i o n s appear t o be c l o s e l y r e l a t e d t o t e x t u r a l v a r i a t i o n s , with median v a l u e s tending t o i n c r e a s e with c l a y contient. t h a t noted  T h i s t r e n d i s c o n s i s t e n t with  i n the Bearpaw Formation  ( T a b l e XXVII), from which  i t may be, t o some degree, i n h e r i t e d .  115 3.  PLANTS Median t e s t r e s u l t s f o r p l a n t d a t a  parent material r e g i o n a l Se trend  i s also a significant  d i s t r i b u t i o n patterns  associated  b e e n n o t e d by Johnson  other  with  i n wheat.  finest  grained  lacustrine clay  centrations  tents  f o r forage  soils  relative  values  trials,  reported  c r o p s grown on  t o t h o s e grown on  variability factors  as  for plants local  soil  pH  glacial  low,  individual  The  f o r m and  strong  median v a l u e s  and  Se  least, influenced  Se by  (1972), con-  lacustrine clay  till  derived  and  materials.  soil  Se  compositional by  such  secondary i r o n oxide  con-  hence a v a i l a b i l i t y Winter  of  soil  (1975) have  Se  reported  Se  values  i n Prince  Edward, I s l a n d .  p o s i t i v e c o r r e l a t i o n between wheat and  plant  con-  n o n - s i g n i f i c a n t c o r r e l a t i o n s between  plant  ( 0 . 9 0 ) , on  parent material  and  G u p t a and  typically  soil  Eh,  and  from  somewhat e n h a n c e d Se  parent material  and  e t a l . , 1968).  similarly  higher  i s c o n t r o l l e d to a large extent  t e n t , which a f f e c t the (Gerring  derived  S i m i l a r l y , Owen  Saskatchewan  has  levels in  c o r r e l a t i o n s between i n d i v i d u a l p l a n t suggest that w i t h i n  con-  Thorvaldson  that materials  areas.  Se  parent material,  tended to c o n t a i n  than those from other  controlled field  Low  soil  particular  plant  ( 1 9 4 0 ) , f o r example, i n v e s t i g a t i n g Se  areas of  at  The  workers i n Saskatchewan.  S a s k a t c h e w a n wheat g r a i n , o b s e r v e d  soil  f a c t o r i n determining  a p p a r e n t i n T a b l e XXVIII toward h i g h e s t  centrations  in  suggest that  the  other  hand, i m p l i e s  d i s t r i b u t i o n pattern  that  i s , to  v a r i a t i o n s i n t o t a l parent  soil the  among  some d e g r e e  material  116 concentrations.  K u b o t a and  Allaway  noted  geographic  variations  that broad  materials t h e Se  i n the United S t a t e s tend  content  of s o i l  median c o r r e l a t i o n ,  relative  use  of the decrease  of medians  i n Se  The  as b e i n g ,  in plant  variations  s t r e n g t h of  to c o e f f i c i e n t s  for  the  an  associated with  Massey, 1969).  This effect  gous t o t h o s e d e s c r i b e d p r e v i o u s l y (pp.98 andlOO) f o r cients relating  in  individual  i n l a r g e measure,  i n data v a r i a b i l i t y  ( D i x o n and  levels  to r e f l e c t  parent m a t e r i a l .  data values, i s interpreted effect  (1972) have l i k e w i s e  the  i s analocoeffi-  d a t a means.  W i t h r e g a r d t o t h e p o s s i b l e h e a l t h s i g n i f i c a n c e o f wheat Se  concentrations  t o note both  that approximately  till  and  lacustrine  or g r e a t e r than for  animals  o n e - t h i r d o f t h e wheat samples  clay  from  contain concentrations equal of about  3-4  ppm  to  recommended  (1962). B e c a u s e S e i s c o n c e n t r a t e d to the  l e a v e s and  stems  t o c o n t a i n c o n c e n t r a t i o n s above t h i s contrast with  previously Johnson  relative  i t i s interesting  in  (Rosenfeld  and  1 9 6 4 ) , an e v e n h i g h e r p r o p o r t i o n o f wheat g r a i n w o u l d  expected results  F i g 24),  t h e maximum l e v e l  by Underwood  t h e wheat g r a i n Beath,  (Table XXVIII,  r e p o r t e d by  the r e l a t i v e l y both Bolton  (1940) f o r c o m p o s i t e  Saskatchewan.  low  (19 38)  wheat g r a i n  limit.  values and  (^2.0  These ppm)  Thorvaldson  samples  from  and  be  117 G. Regional town a r e a parent  by  v a r i a t i o n s i n the  soils  are  developed  on  relatively  iated with Soil  fine  associated with  i n t u r n , t o be  characteristics.  sands, whereas h i g h  by  Concentrations  d e p o s i t appear,  i t s textural  t r a c e element content  c o n t r o l l e d , t o a l a r g e d e g r e e , by  m a t e r i a l type.  surficial  CONCLUSION  coarse  Low  values  grained deposits  concentrations  typically  g r a i n e d m a t e r i a l s s u c h as c a n be  a p p l y i n g Duncan's New  Muptiple  Range t e s t  m a t e r i a l s and  form, d i s t i n g u i s h i n g o n l y erials  or parent  obtained  i o n s h i p s may  that s o i l  e n c e s c o u l d be trace  aeolian  in soil  30-46 cm  assoc-  clay.  conveniently  described  t o mean v a l u e s  for  in  map  mat-  patterns  are  (12-18 i n ) o r C  hor-  l a r g e d i f f e r e n c e s among  samples are  required  t h e same p a r e n t  compositional  considered,  (< 5  to  occur.  i n crops  and  close  for soils  m a t e r i a l . These  maps b a s e d on  of considerable value  element imbalances likely  element b e i n g  e x i s t b e t w e e n mean c o n c e n t r a t i o n s  associated with  suggest  few  soil  per  t o p r o d u c e s t a b l e maps.  D e p e n d i n g upon t h e  plants  s u c h as  c o m p o s i t i o n a l l y unique parent  r e g a r d l e s s o f w h e t h e r A,  deposit)  determined  occur  m a t e r i a l g r o u p s . S i m i l a r map  m a t e r i a l means, v e r y  particular  summarizing t e s t r e s u l t s  i z o n s are used. Because o f r e l a t i v e l y parent  changes i n a  lacustrine  patterns  parent  Rose-  characterize  compositional  individual  arly  largely  of  livestock  are  and  relationshi  among mean  in identifying  relat-  areas  differwhere  particul-  117a  CHAPTER RED  DEER  IV AREA  118  A.  1.  DESCRIPTION OF STUDY AREA  GENERAL The  Red D e e r a r e a c o v e r s  approximately  s q mi) o f s o u t h - c e n t r a l A l b e r t a conditions vary considerably marginally  (mean a n n u a l  The  ( i n s e t map;  F i g 2 5).  2  (2,400 Climatic  (Chapman and Brown, 1 9 6 6 ) ,  s e m i - a r i d i n t h e e a s t near S u l l i v a n Lake  nual p r e c i p i t a t i o n west  6,100 km  from  (mean a n -  35 cm o r 14 i n ) t o sub-humid i n t h e e x t r e m e precipitation  50 cm o r 20 i n ) .  area occurs w i t h i n the A l b e r t a P l a i n  s u b d i v i s i o n of the Canadian I n t e r i o r  Plain  physiographic  (Fig 3).  The l a n d  surface r i s e s gradually i n a westerly direction,  f r o m a minimum  of  n e a r Gough and  810 m  (2,7 00 f t ) on t h e n e a r l y l e v e l  S u l l i v a n Lakes t o over gin  adjacent  1,140 m  to the f o o t h i l l s  lowlands  (3,800 f t ) a l o n g  o f t h e Rocky M o u n t a i n s  T o p o g r a p h y on t h e c e n t r a l  and w e s t e r n u p l a n d  dulating  local  45 m  to r o l l i n g ,  i n the eastern  closed basins evaporation  tary  relief  mar-  ( F i g 25).  i s g e n e r a l l y un-  r e a c h i n g a maximum o f  (150 f t ) .  Drainage  drain  with  the western  such  lowland  i s controlled  by numerous  a s Gough L a k e , w h i c h d i s c h a r g e m a i n l y  ( F i g 25).  The Red D e e r R i v e r and i t s t r i b u t a r i e s  the remainder of the area. streams s u i t a b l e  ing purposes are r a r e .  by  A s i n t h e Rosetown a r e a  f o r reconnaissance  stream  sediment  tribusampl-  II4°46' ^Cdlgaryj AREA OF STUDY  R27  R25  R23  RI9  R2I  -3000—  Topographic contours (interval 200ft).  Highway  "~>—  River, stream.  Township (Tp) - Range (R) boundaries. 9  Figure 2 5 .  RI7  RI5 n2° 00'  City, town.  Topography and drainage, Red Deer area.  M  VO  120  2.  BEDROCK Bedrock,  which  d i p s t o t h e w e s t and  a s u c c e s s i o n of sandstones, age  siltstones  southwest,  and m u d s t o n e s r a n g i n g i n  f r o m Upper C r e t a c e o u s t o T e r t i a r y .  The  four  u n i t s r e c o g n i z e d ( F i g 26), have been d e s c r i b e d Irish  (1970) and The  unit,  Horseshoe  225 m  (750  bentonitic  Canyon F o r m a t i o n , w h i c h  f t ) of b e n t o n i t i c shale,  bonaceous s h a l e . 2 0 f t ) of  as w e l l  This unit  white weathering  t h e Whitemud F o r m a t i o n . t h e Whitemud, c o n s i s t s weathering  shale.  in detail  age,  feldspathic  as c o a l  Its  sandstone  seams and b e d s o f  sand,  clay belonging to  silt  and  2 to 6 m  car-  from  B a t t l e Formation, which  of from  the c e n t r a l  and  i s o v e r l a i n by  The  Together  rock  I t i s composed o f a p p r o x i -  8 to 9 m  (25 t o 30  these three formations  and w e s t e r n  (6 t o  succeeds  f t ) o f mauve constitute  Irish  Paskapoo F o r m a t i o n , o f Upper C r e t a c e o u s t o  underlies  map by  i s the o l d e s t  t h e Upper Crevtaceous Edmonton Group as d e f i n e d by  The  separate  (1971).  u n d e r l i e s the e a s t e r n lowland.  mately silty  Carrigy  comprises  (1970).  Tertiary  p o r t i o n s of the area.  t h i c k n e s s i n c r e a s e s w e s t w a r d r e a c h i n g a maximum o f 900  (3,000 f t ) . Horseshoe grained  T h i s u n i t , which  Canyon F o r m a t i o n ,  sandstone,  Limestone  and  also present.  fine  is lithologically  similar  m  to the  i n c l u d e s m a s s i v e medium t o c o a r s e  g r a i n e d sandstone  l e n s e s o f woody c o a l and  and  silty  shale.  pebble conglomerate  are  , 113° 52 !I4°46'  Tp38  SRed Deer  T  OJ tf>  n  Tp37  Tp36  Tp35 R7  R5  R3 , l MILES I KM 20 2  M  Rl  Tp34 (From R27  R25  BEDROCK TERTIARY  R2I  R23  Gfreen,l972) ^ o g ^  RI7  RI9  R ' 5 ||2° 00*  FORMATIONS  AND C R E T A C E O U S Poska p O O  : nonmarine  sands tone, siltstone  limestone,  coal  and t u f f  a n d muds t o n e ; minor  conglomerate,  beds  CRETACEOUS Whitemud and Battle , -  siliceous  Horseshoe Canyon:  n o n m a r i ne  tuff  bentonitic s a n d s t o n e  a n d m u d s t o n e ; -Includes  beds  mainly  nonmarine  bentonitic  s a n d s t o n e , m u d s t o n e and c a r b o n a c e o u s  shale; includes c o n c r e t i o n a r y i r o n s t o n e , c o o l a n d b e n t o n i t e  Figure  26.  Bedrock  geology,  Red  Deer  area. I—  1  122  3.  SOIL PARENT MATERIAL The  27  was  1973;  distribution  compiled Craig,  lacustrine  from  1957;  major u n i t s are and  of  s o i l parent  several s u r f i c i a l  recognized  ( F i g 28a  and  and  b)cover  MacS. S t a l k e r , 1 9 6 0 ) .  for  a few  loam t o c l a y - l o a m  as  and  Although textures  than ground moraine because of deposition  examination of  that montmorillonite size  Up locally in  from l o c a l bedrock  fraction  t o 15 m  (50  till  m a p a b l e u n i t s b a s e d on  of  s a n d s and  thickness  normally  removal of  of  in  study  ft)  the  somewhat material  Mineral-  both the  the  varies  (50  fine  Paskapbo area  ft) of g l a c i o l a c u s t r i n e deposits Although the  numerous s m a l l e r  ( F i g 28  (Gravenor  indicates the  (Twardy e t a l . , 1 9 7 4 ) .  short distances,  posits  are  associated with  deposits  these sediments e x h i b i t c o n s i d e r a b l e over  Till  are  i s t h e m a i n c r y s t a l i n e component o f  overlie t i l l .  F i g 27,  four  and  (MacS. S t a l k e r , 1 9 6 0 ) .  Horseshoe Canyon F o r m a t i o n s n o r t h  clay  area  r a n g e , hummocky m o r a i n e t e n d s t o be  outwash d u r i n g  ogical  the  m e t e r s f o r g r o u n d m o r a i n e t o o v e r 15 m  hummocky m o r a i n e .  coarser  derived  most of  and  from o n l y  Only  deposits.  till  1961;  1960).  (Boydell,  - g r o u n d m o r a i n e , hummocky m o r a i n e ,  composed m a i n l y o f Bayrock,  shown i n F i g  g e o l o g i c a l maps  MacS. S t a l k e r , 1956  alluvium-outwash  Moraines  materials  i t was grain  not  gravels,  are  are  these are  also present.  textural  28c) shown  Because  heterogeneity  p o s s i b l e t o d i v i d e them i n t o  size.  d ) , which c o n t a i n  l a r g e s t of  (Fig  Alluvium  a relatively  and  outwash  large  associated mainly with  the  de-  proportion Red  Deer  R27 SOIL  R25  PARENT MATERIAL Ground moraine  I  I Hummocky moraine  I - - — I Lacustrine deposits Alluvial-outwash deposits  Figure 27. Soil parent material, Red Deer area. IsJ  124  c) Lacustrine deposits  Figure 28.  d) Mluvium-outwash  Characteristic surface morphologies associated with individual parent materials, Red Deer area.  125 R i v e r and i t s t r i b u t a r i e s . origin, ments  4.  Gravels  of exotic  and i n c l u d e c h e r t , q u a r t z i t e and g r a n i t i c  rock  frag-  (MacS. S t a l k e r , 1 9 6 0 ) .  SOIL Soils  i n t h e Red D e e r a r e a have b e e n d e s c r i b e d by  e t a l . (1951) and P e t e r s and Bowser previously  the Black  belong  and a p p r o x i m a t e l y  widespread  Although  o f t h e Greywooded detailed  available,  h o r i z o n pH v a l u e s  soil  survey  - 7.8).  ward  f r o m 65 cm  Depth t o C  soils Zone  are also  5.  AGRICULTURAL LAND USE AND  suited  data  a r e not gen-  acid  t o n e u t r a l range  are normally m i l d l y  alkaline  i n c r e a s e s west-  (25 i n ) i n t h e Dark Brown Zone t o o v e r  i n ) i n t h e Greywooded  Climatic  Zone.  ( u s u a l l y Cca) h o r i z o n s  (36  tion.  i n t h e D a r k Brown  Solonetzic soils  are i n the s l i g h t l y  (7.4  to g r a i n crops,  use o f t h e s e  90  cm  Zone.  TRACE ELEMENT IMBALANCES  c o n d i t i o n s i n the c e n t r a l Black  i n t h e Greywooded favour  Most  -  information indicates that A  - 7 . 3 ) , and C h o r i z o n v a l u e s  Zone  and Greywooded.  p h y s i c a l and c h e m i c a l  (6.1  frost  indicated  i n t h e D a r k Brown Zone, w h e r e a s L u v i s o l s a r e  characteristic  ideally  As  Bowser  zones a r e r e c o g n i z e d  one-half  t o the Chernozemic Order.  erally  (1960).  i n F i g 5 t h r e e major s o i l  f r o m e a s t t o w e s t D a r k Brown, B l a c k in  are c h i e f l y  Soil  Zone a r e  p r i n c i p a l l y wheat, w h e r e a s  Zone and low r a i n f a l l  i n t h e D a r k Brown  regions f o r pastureland  Se r e s p o n s i v e w h i t e m u s c l e d i s e a s e  early  o r hay p r o d u c -  i s recognized  as a  126  s e r i o u s problem the  area  for cattle  (Godkin,  routinely  administered  to  after  calf  s o i l was  choosing those  SAMPLE COLLECTION AND  sites  sampled  located  However b e s i d e s  two sample,  i n t h e Rosetown a r e a sites  number  B horizon  s e l e c t e d randomly  of a d d i t i o n a l s i t e s  taken  i n p l a c e o f t h e 30-46cm (12-18 i n )  The m a j o r i t y o f A h o r i z o n s were c o l l e c t e d  t h e p l o u g h l a y e r , and t h o s e  C horizons  f r o m t h e zone o f c a r b o n a t e  obtained  were  E i t h e r because of excessive  of  sola  C h o r i z o n s were n o t o b t a i n e d a t o v e r  of  t h e sample s i t e s .  (> 1 m)  are given  U.T.M. c o o r d i n a t e s  from  normally  enrichment immediately  the B h o r i z o n .  2.  were  A l s o , d u p l i c a t e s a m p l e s were n o t c o l l e c t e d ,  s o i l was  d e p t h sample.  sites  similar  on a l l u v i u m - o u t w a s h t o e n s u r e a d e q u a t e r e p r e s e n t a t i o n  this material.  taken  Procedures  and sample c o l l e c t i o n were g e n e r a l l y  w i t h i n each township, a l i m i t e d  and  ANALYSIS  i n t h e Red D e e r a r e a .  previously described f o r s o i l  (p. 59 ) .  of  birth.  COLLECTION Only  for  i n the western half of  1973) where Se i n j e c t i o n s a r e now more o r l e s s  B.  1.  producers  below  rockiness or depth one-quarter  for individual  sample  i n Appendix C ( 4 ) .  ANALYSIS All  C horizons,  were a n a l y s e d  a s w e l l a s s e l e c t e d A and B h o r i z o n  for nitric-perchloric  acid  samples  e x t r a c t a b l e Cu, F e ,  Mn and Zn b y a t o m i c 1.  absorption using  soil  S o i l r e a c t i o n was m e a s u r e d f o r a l i m i t e d  A h o r i z o n and C h o r i z o n  samples.  C.  As  i n Chapter I I .  soil  t r a c e element data  i n t e r m s o f among and w i t h i n p a r e n t m a t e r i a l  Because B h o r i z o n s c a n n o t be u s e d  are not present  pedogenic  a r e devariations.  e v e r y w h e r e , and t h e r e f o r e  f o r r e g i o n a l mapping, c o n c e n t r a t i o n s  materials are considered  1.  in detail  RESULTS  i n t h e Rosetown a r e a ,  scribed  number o f b o t h  P r o c e d u r e s employed f o r sample  p r e p a r a t i o n and a n a l y s i s a r e d e s c r i b e d  of  d i g e s t i o n Procedure  only b r i e f l y  i n relation  i n these  t o the e f f e c t s  processes.  AMONG PARENT MATERIAL SOIL COMPOSITIONAL VARIATIONS In view o f the l o c a l d e r i v a t i o n o f t i l l  were s u b d i v i d e d  into  those  associated with  Canyon o r Paskapoo F o r m a t i o n s . concentrations  f o r C horizon  moraines a s s o c i a t e d with XXXI.  either  soil  from both  hummocky  Table  compositional  on  t h e one hand, means f o r H o r s e s h o e Canyon t i l l  higher  than  other,  f o r a g i v e n bedrock type  are g e n e r a l l y higher  than  trends  and g r o u n d  are apparent a r e somewhat  means f o r P a s k a p o o t i l l . ,  those  element  bedrock u n i t s are given  in  corresponding  the Horseshoe  G e o m e t r i c mean t r a c e  each o f these  Two d i s t i n c t  d e p o s i t s , moraines  concentrations  i n ground moraine  o f hummocky m o r a i n e .  example, H o r s e s h o e Canyon mean Cu v a l u e s  and on t h e  For  f o r hummocky and  g r o u n d m o r a i n e a r e 15.7 and 18.9 ppm r e s p e c t i v e l y , w h e r e a s  128  T a b l e XXXI T r a c e e l e m e n t c o n t e n t o f C h o r i z o n s o i l f r o m i n d i v i d u a l m o r a i n a l t y p e s , Red Deer a r e a . Trace  Element  Content*  Bedrock Formation  Morainal Type  Cu (ppm)  Fe (%)  Horseshoe Canyon  Hummocky  15 . 7 (1. 16)  1.,35 (1.,15)  22 1 (1. 42)  40 .7 (1. 15)  Ground  18 .9 (1. 40)  1.,47 (1..28)  29 4 d - 26)  48 .8 (1. 22)  Hummocky  12 .8 (1. 58)  1..20 (1.. 33)  20 8 (1. 41)  34 .9 (1. 41)  Ground  14 .9 (1. 40)  1..49 (1..22)  280 (1- 37)  42 .1 (1. 24)  Paskapoo  a)  Geometric  b)  Individual  mean  (GM); g e o m e t r i c  sample v a l u e s l i s t e d  Mn (ppm)  deviation  Zn (ppm)  Number of Analyses  (GD) i n p a r e n t h e s e s .  i n Appendix C ( 4 ) .  129 P a s k a p o o F o r m a t i o n means a r e 12.8 ppm f o r hummocky and  14.9 ppm f o r g r o u n d m o r a i n e . Application  values  however  differences  o f Duncan's New M u l t i p l e Range t e s t  (Table XXXII), f a i l e d  types  t o these  t o d e t e c t any s i g n i f i c a n t  among Cu, F e and Zn means.  elements f o r a l l morainal for  moraine  Data f o r each o f these  were t h e r e f o r e g r o u p e d  the purpose o f f u r t h e r s t a t i s t i c a l  analysis.  together  Results f o r  Mn were e x c e p t i o n a l i n t h a t means f o r hummocky m o r a i n e  (2 08  and  221 ppm) were f o u n d  those  for  ground moraine  t o be s i g n i f i c a n t l y  (280 and 294 ppm).  Mean c o n c e n t r a t i o n s w i t h m a j o r Red D e e r a r e a XXXIII. for  f o r b o t h A and C h o r i z o n s parent  till  t e s t confirms  the s i g n i f i c a n c e  ( T a b l e XXXIV),  Results  than  of this  f o r Fe d i f f e r  i s identified  that f o r t i l l .  subsets  values  and l a c u s t r i n e d e p o s i t s a r e g e n e r a l l y  f o r alluvium-outwash are r e l a t i v e l y  deposits  i n Table  indicates that  whereas those  trine  associated  materials are given  Examination of C horizon data  glacial  lower than  are defined comprising  low.  Duncan's  t r e n d f o r Cu and Zn  i n t h a t t h e mean f o r l a c u s -  as b e i n g  In the case  similar,  significantly  greater  o f Mn, two d i s t i n c t i v e  data  a l l u v i u m - o u t w a s h and hummocky  m o r a i n e on t h e one hand, and l a c u s t r i n e d e p o s i t s and g r o u n d m o r a i n e on t h e o t h e r . f o r m i n F i g s 29 t o 31.  These t e s t  one p a r e n t An  a r e summarized  i n map  A s i n t h e Rosetown a r e a w e i g h t e d means  were c a l c u l a t e d when c o m p o s i t i o n a l than  results  c a t e g o r i e s i n c l u d e d more  material.  a n a l y s i s of variance procedure  ( s e e A p p e n d i x B) was  130 T a b l e XXXII R e s u l t s o f a p p l i c a t i o n o f Duncan's New M u l t i p l e Range t e s t t o l o g 10 C h o r i z o n s o i l data f o r i n d i v i d u a l morainal types, Red D e e r a r e a .  G e o m e t r i c Mean Concentrations'  Element  Cu  (ppm)  Fe  (%)  Mn  (ppm)  Zn  (ppm)  15.7  18.9  12.8  14.9  Paskapoo hummocky moraine  Paskapoo ground moraine  Horseshoe Canyon hummocky moraine  Horseshoe Canyon ground moraine  1.20 Paskapoo hummocky moraine  1.35 Horseshoe Canyon hummocky moraine  1.47 Horseshoe Canyon ground moraine  1.49 Paskapoo ground moraine  208 Paskapoo hummocky moraine  221 Horseshoe Canyon hummocky moraine  280 Paskapoo ground moraine  294 Horseshoe Canyon ground moraine  34.9 Paskapoo hummocky moraine  40.7 Horseshoe Canyon hummocky moraine  42.1 Paskapoo ground moraine  48.8 Horseshoe Canyon ground moraine  Means n o t u n d e r s c o r e d by t h e same o r o v e r l a p p i n g s i g n i f i c a n t l y d i f f e r e n t a t P = 0.05.  l i n e s are  131 T a b l e X X X I I I Trace element content and pH o f A and C horizon s o i l associated with major parent materials, Red Deer area.  Soil Horizon  A  Parent Material  Number of  Trace Element Content* Mn (ppm)  Cu (ppm)  Fe (%)  Zh.. (ppm)  pH**  12.8 (1.25)  1.43 (1.23)  62.2 (1.21)  6.0 5.4-8.0  13.0 (1.34)  1.46 (1.25)  60.7 (1.21)  7.1 6.1-8.0  10  15.4 (1.39)  1.35 (1.25)  40.6 (1.28)  7.9 5.1-9.0  57  22  Ground moraine  437 (1.25)  Hummocky moraine  335 (1.40)  Lacustrine deposits  375 (1.20)  Ground moraine  272 (1.25)  Hummocky moraine  218 (1.41)  Lacustrine deposits  270 (1.33)  17.2 (1.49)  1.54 (1.29)  46.8 (1.36)  8.0 7.8-8.1  Alluviumoutwash deposits  201 (1.65)  8.9 (1.40)  1.00 (1.42)  24.4 (1.75)  7.4 5.9-8.0  a) Geometric mean (GM); geometric deviation i n parentheses. b) Individual sample values l i s t e d i n Appendix C (4) . ** Arithmetic mean and true range.  Element Analyses  27  132 T a b l e XXXIV R e s u l t s o f a p p l i c a t i o n o f Duncan's New M u l t i p l e Range t e s t t o l o g 10 C h o r i z o n s o i l d a t a f o r m a j o r p a r e n t m a t e r i a l s , Red Deer a r e a . G e o m e t r i c Mean Concentrations*  Element Cu  (ppm)  8.9 Alluviumoutwash d e p o s i t s  15.0 Moraines  17.2 Lacustrine deposits  Fe  (%)  1.00 Alluviumoutwash d e p o s i t s  1. 35 Moraines  1.54 Lacustrine deposits  Mn  (ppm)  Zn  (ppm)  201 Alluviumoutwash d e p o s i t s  218 Hummocky moraine  24.4 Alluviumoutwash d e p o s i t s  270 Lacustrine deposits 40.6 Moraines  Means n o t u n d e r s c o r e d by t h e same o r o v e r l a p p i n g s i g n i f i c a n t l y d i f f e r e n t a t P = 0.05.  272 Ground moraine 46.8  Lacustrine deposits  lines are  113° 52 I14°46'  Tp36 Tp35 Tp34 R27  R25 pH  R23  R2I  RI9  TRACE ELEMENT CONTENT* Cu (ppm) Zn (ppm)  RI7  5I°53  RI5 ||2° QO  1  Number of analyses  7-9 5-1-9-0  15-6 (7-7-31-4)  42-3 (24-6-72 6)  79  7-4 5-9-8-0  8-89 (45-17-4)  24-4 (8-0-74-7)  8  * Geometric mean (GM):range=GfVRGD?GMxGD * * Arithmetic mean-, true range  z  Figure 2 9 .  Cu and Zn content and pH, C horizon soil, Red Deer area. (l=ground and hummocky moraines and lacustrine deposits>2=alluvium-outwash  deposits) H LO  00  52°I9-  113° 52  II4°46'  R23  pH  TRACE  R2I ELEMENT  RI9 CONTENT *  Fe (%)  7  80 . -8l  r^== WI1M  7-9  r-r-r-i  8  5-1-9-0 7-4 5-9-8-0  1-54 (0-93-2-56)  RI7 Number of analyses 22  1-35  57  (0-87-210) 1-00 (0-50-2-02)  8  * Geometric mean (GM):range=GM+GD*GMxGD **Arithmetic mean,true range  8  Figure 3 0 . Fe content and pH, C horizon soil, Red Deer area. (Hacustrine depositS52=ground and hummocky moraines;3=alluvium-outwash  deposits).  RI5  -5I°53' 112° 0 0 '  * Geometric mean (GM):range=GM+GD*GMxGD * * Arithmetic mean-.true range  2  Figure 31. Mn content and pH, C horizon soil, Red Deer area. (l=groundmoraine and lacustrine deposits;2=hummocky moraine and alluviumoutwash deposits). OJ on  136  used t o e s t i m a t e parent  t h e r e l a t i v e m a g n i t u d e s o f among and  material compositional  Results, given proportion  i n Table  v a r i a t i o n s i n C horizon  XXXV, show t h a t a r e l a t i v e l y  (14-42%) o f t h e  t o t a l C horizon data  t o d i f f e r e n c e s among p a r e n t  soil. small  variability  can  be  2.  WITHIN PARENT MATERIAL SOIL COMPOSITIONAL VARIATIONS a)  attributed  within  Vertical Correlation  centrations  coefficients  in A  and  d e p o s i t s are given reported  low  d e p o s i t s are  and  relating  C horizons  i n Table  i n the p r e c e d i n g  generally  chapter  somewhat h i g h e r .  data  two  sets.  m e a s u r e d f o r o n l y two compute c o e f f i c i e n t s  glacial  enriched till  f o r moraines  Chernozemic B h o r i z o n s t h i s m a t e r i a l t o be  ppm)  mean Zn  data  in  not  content  i s a b o u t 50%  horizon com-  p o s s i b l e to  iron.  Mn  and  of A  horizon  greater  (40.6  for a limited  ( T a b l e XXXVII)  enriched  lacustrine  were  trends, both  C horizon material  Examination of c o m p o s i t i o n a l  are  C h o r i z o n means.  Rosetown a r e a  i n A h o r i z o n s ; The  t h e mean f o r c o r r e s p o n d i n g  for  horizon values  m a t e r i a l s , i t was  (62.2  results  a p p r e c i a b l y i n c r e a s e d by  r e l a t i n g . A and  f o r example  con-  lacustrine  s t r e n g t h o f between  Because A  parent  Also consistent with are  values  The  bining  l o g 10  In agreement w i t h  n o n - s i g n i f i c a n t , whereas those  however, i s n o t  the  individual  f o r m o r a i n e s and  XXXVI.  relationships,  Zn  m a t e r i a l means.  than  ppm).  number  of  i n d i c a t e s a tendency f o r  137  T a b l e XXXV  C o m p a r i s o n o f e s t i m a t e d w i t h i n and among parent material C horizon logarithmic v a r i a n c e components, Red D e e r a r e a .  Partitioned Element  Estimated T o t a l l o g 10 Variance  Cu Fe Mn Zn  0.0326 0.0153 0.0221 0.0295  Significantly  Among Parent M a t e r i a l s Component % of t o t a l  0.0100* 0.0043* 0.0031* 0.0125*  Variance Within Parent M a t e r i a l s Component % of t o t a l  31.7 28.1 14.0 42.4  g r e a t e r t h a n z e r o a t P = 0.05.  0.0226 0.0110 0.0190 0.0170  68.3 71.9 86.0 57.6  138  TABLE XXXVI  Correlation coefficients relating l o g 10 t r a c e e l e m e n t c o n c e n t r a t i o n s f o r A and C h o r i z o n s , Red D e e r a r e a .  Soil Parent Material  Cu  Fe  Mn  Zn  Degrees of Freedom (n-2)  Moraines  0.245  0.368  0.495*  0.269  20  Lacustrine Deposits  0.762  0.958** -0.086  0.919**  Both Parent Materials  0.316  0.532**  0.432*  Correlation  Coeff1c1ent  0.389*  •k  Coefficient  s i g n i f i c a n t l y g r e a t e r than  z e r o a t P = 0.05.  Coefficient  s i g n i f i c a n t l y g r e a t e r than  z e r o a t P = 0.01.  26  139 T a b l e XXXVII  S  o  1  Trace Element Content  1  Great Group  Parent Material  Black  Ground .'nbraine  Lacustrine deposits Dark Brown  Trace element content o f s e l e c t e d Black and Dark Brown Chermozemic s o i l p r o f i l e s , Red D e e r a r e a .  Hummocky moraine  Ground moraine  Lacustrine deposits  Site No.  Depth (cm)  Horizon Cu (ppm)  Fe (%)  Mn (ppm)  Zn (ppm)  0-15 30-46 76-91  A B C  12.0 9.7 11.6  1.35 . 2.06 1.15  380 749 315  51.5 36.9 37.0  11  0-15 46-61 76-81  A B C  12.9 12.5 9.8  1.48 1.81 1.00  499 292 190  52.8 48.6 31.0  22  0-15 30-46 76-91  A B C  10.4 4.8 17.5  0.99 1.51 1.37  366 212 172  56.9 28.8 43.0  0-15 35-51 76-91  A B C  16.0 15.5 16.7  1.51 1.67 1.54  486 264 283  66.7 44.9 45.9  0-10 23-38 46-61  A B C  12.9 11.6 17.2  1.44 1.81 1.41  413 311 324  66.4 48.5 42.9  79,  0-10 15-30 30-46  A B C  12.0 9.7 15.7  1.23 1.67 1.42  518 297 266  69.4 61.0 41.0  94  0-10 30-46 61-66  A B C  8.8 14.5 19.4  1.56 1.58 1.45  343 109 184  54.7 59.2 41.5  0-10 30-46 76-91  A B C  30.3 21.3 18.5  2.54 2.14 1.49  486 406 342  74.7 71.8 50.3  86  0-10 15-30 56-71  A B C  10.4 9.7 12.0  2.05 1.37 1.86  680 344 311  64.0 68.2 51.7  92  0-10 15-30 76-91  A B C  12.8 7.. 8 38.9  1.40 1.11 2.10  518 231 393  65.4 37.7 69.2  0-10 15-30 76-91  A B C  10.0 5.0 6.9  0.93 0.81 0.86  347 110 122  51.6 23.1 19.2  9  110  75  81  147  140  b)  Geographic Comparison o f geometric  associated with  till  and  lacustrine deposits  suggests t h a t A h o r i z o n s genous t h a n  deviations for A  tend  d e v i a t i o n values  data,  are  1.2 5 f o r t i l l  are  1.39 The  variability  a n a l y s i s of variance Table are  XXXVIII  A  and  1.34  C horizon  values  respectively.  r e l a t i v e m a g n i t u d e s o f among and  horizon data  XXXIII)  f o r example,  l a c u s t r i n e d e p o s i t s , whereas c o r r e s p o n d i n g 1.49  horizons  (Table  for  and  C  t o be more c o m p o s i t i o n a l l y homo-  C h o r i z o n s . C o n s i d e r i n g Cu  h o r i z o n geometric  and  for t i l l  technique  w i t n i n township  were e s t i m a t e d  using  ( see A p p e n d i x B ) .  C  an  Results,  in  show t h a t among t o w n s h i p c o m p o s i t i o n a l v a r i a t i o n s  negligible.  D. , DISCUSSION  1.  C HORIZON SOIL D i f f e r e n c e s b e t w e e n means f o r C h o r i z o n t i l l  with  H o r s e s h o e Canyon and  are  consistent with  who  noted  results  are c l o s e l y  Lack o f s t a t i s t i c a l  differences lithological  related  significance  ( T a b l e XXXII) r e f l e c t s , and  chemical  (Table  o f Pawluk.' and  t h a t r e g i o n a l v a r i a t i o n s i n the  tent of Alberta t i l l type.  the  Paskapoo Formations  similarity  associated XXXI)  Bayrock  t r a c e element  (19 69) con-  t o changes i n bedrock  f o r these  compositional  to a large extent, o f the  two  bedrock  the formations.  141 Table- X X X V I I I  C o m p a r i s o n o f l o g a r i t h m i c w i t h i n and among t o w n s h i p v a r i a n c e components f o r C h o r i z o n g l a c i a l t i l l , Red Deer a r e a .  „ _. , Estimated J  Number o f Townships  F  l  J i  p  -  m  p  n  t  L e m e n T :  «  ^  w  .  P a r t i t i o n e d Variance :  A  a  ^  l  l  ^  o  Z  a  ^  Among Township Component ^tal o  17  Cu Fe Mn Zn  0.0140 0.0080 0.0170 0.0093  0.0 0.0 0.0 0.0  f  0.0 0.0 0.0 0.0  Within Township Component ^tal o  0.0140 0.0080 0.0170 0.0093  f  100.0 100.0 100.0 100.0  1 4 2  As  was n o t e d  i n Chapter  III, textural  a p p e a r t o be o f c o n s i d e r a b l e parent for  material compositional  the r e l a t i v e l y  samples from t h i s significantly  relative  The  coarse  parent  m a t e r i a l means.  material.  grained  i n hummocky  XXXII) c a n be r e l a t e d  nature  reflects  t o the  o f t h e former d e p o s i t s .  attributable  t o among p a r e n t  the r e l a t i v e l y  Mean Mn c o n c e n t r a t i o n s ,  of C horizon compositional  log 1 0 c material  narrow range o f p a r e n t f o r example,  range  are associated with  s m a l l among p a r e n t  Red  Deer a r e a  reflect  v a r i a t i o n s c a n be e x p l a i n e d  E x t r e m e Rosetown mean  comparatively  and  where  m a t e r i a l mean d i f f e r e n c e s , Mn means  r a n g e between 1 3 3 and 3 1 9 ppm.  coarse  material variance  values  s a n d s and f i n e  clays,  components . i n t h e  t h e absence o f s i m i l a r  textural units i n  region.  The  l a c k o f m e a s u r a b l e among t o w n s h i p  variations on  the occurrence  small proportion of the t o t a l  t e r m s o f among p a r e n t  this  Likewise,  2 0 1 t o 2 7 2 ppm, w h e r e a s i n t h e Rosetown a r e a ,  from o n l y 5 4 - 6 9 %  values  are consistent  l o w e r mean Mn c o n c e n t r a t i o n s  comparatively  ( 1 4 - 4 2 % )  Thus low mean  among  h i g h p r o p o r t i o n o f s a n d and g r a v e l i n  horizon data v a r i a b i l i t y sources  i n determining  (Table XXXIII)  t o ground moraine(Table  relatively  in  trends.  alluvium-outwash deposits  with  of  importance  characteristics  f o rC horizon t i l l  a regional scale t i l l  homogeneous.  indicates that  t o be  are consistent with  essentially those  o f Duncan's  f o r C u , F e and Zn ( T a b l e X X X I I ) b u t a p -  pear t o c o n t r a d i c t r e s u l t s f e r e n c e s were n o t e d  XXXVIII)  may be c o n s i d e r e d  These r e s u l t s  New M u l t i p l e Range t e s t  (Table  compositional  f o r Mn f o r w h i c h s i g n i f i c a n t  between means f o r hummocky  dif-  and g r o u n d  143 l  moraines. E x p l a i n a t i o n ings  lies,  variance  in part  was  pairs  2.  a subset only  As  discussed  with ploughing,  previously  in relation relative  a partial  analysis  data,  and  of  furthermore  i n the  sample  as w e l l  as  the  t o be  relatively profiles,  e n h a n c e d by  the  sampling depth of  amounts o f B h o r i z o n C horizon  low  i n d i v i d u a l A and  suggest that  As  fact was  that, very  e q u i p m e n t u s e d , and  horizon  i n some o f  as  expected the  c l o s e to the  deeper  maximum  a result variable  were i n a d v e r t e n t l y  The  c o r r e l a t i o n s between t r a c e C horizon  samples  for this parent material  A horizons are  osits,  associated  included  in  samples.  Relatively  rations.  l o c a l mixing  w o u l d a l s o , however, be  the  material  (Table  composite nature of A  B-Cca c o n t a c t the  t o Rosetown r e s u l t s ,  to C horizons  e f f e c t of  samples. Subsurface v a r i a b i l i t y  in  till  the  find-  B HORIZON SOIL  XXXIII) i s p r o b a b l y  for  of  that  g r o u n d m o r a i n e s were r e p r e s e n t e d  apparent homogeneity o f A  soil  fact  contradictory  f r o m some t o w n s h i p s .  A AND  the  these seemingly  a t l e a s t , i n the  b a s e d on  b o t h hummocky and  of  not  reverse  strongly  was  centrations  pointed  i n Chapter  i n A horizons  are  (Table  XXXVI)  compositional  w o u l d a p p e a r t o be  out  values  for t i l l  i n f l u e n c e d by  a l t h o u g h more d a t a i s r e q u i r e d  element  true  C horizon  concent-  f o r l a c u s t r i n e dep-  to confirm  this.  I I I , e n h a n c e d Mn  likely  variations  a t t r i b u t a b l e to  and the  Zn  con-  144 influence  of b i o c y c l i n g  ment i n B h o r i z o n s , effects  3.  GEOCHEMICAL MAPS  plication data  surface  patterns  Zwarich,  l e a c h i n g and  i n F i g s 29  o f Duncan's New  (Table XXXIV).  those  and  ( T a b l e XXXVII) on  the  Map  of  (Mills  to  31  the  1975).  other  hand,  a r e b a s e d on  considerably  f o r C h o r i z o n Rosetown a r e a  enrichreflects  subsequent f i x a t i o n  M u l t i p l e Range t e s t  They a r e  Fe  soil  processes.  results  of  to C horizon  l e s s complex  ( F i g s 16  and  a l s o because fewer p a r e n t  The used  adjustable variance  to estimate  the  m a t e r i a l types  ratio  number o f  samples r e q u i r e d per  t o e n s u r e map  indicate  t h a t d e p e n d i n g on w h e t h e r a Vm  taken  the  samples a r e represent required  accepted  stability.  standard,  from i n d i v i d u a l  (maximum 5 ) , p r i n c i p a l l y  the  fact  i n c r e a s e over surficial  value  of  1.0  of  deposits  stable.  was  XXXIX,  1.0  or  These  5.0  is 30  values  numbers  i n t h e Rosetown  comparatively  in this  area  small In view  adequate f o r study  from each parent  t h a t t h e map  )  parent  corresponding  p a t t e r n s , and  smaller,  6 o r as many as  i s considered  s a m p l e s were o b t a i n e d  examined, i t i s c o n c l u d e d fairly  as  because of the  d e s c r i p t i o n o f g e n e r a l map  be  few  value  i n p a r e n t m a t e r i a l mean c o n c e n t r a t i o n s .  t h a t a Vm  8 C horizon  as  i n Table  r e q u i r e d from each parent m a t e r i a l .  a considerable  differences  Results  in  recognized.  ( s e e C h a p t e r I , p.12  material  as  are  soil  than  17),  p a r t b e c a u s e among p a r e n t m a t e r i a l mean d i f f e r e n c e s a r e but  ap-  at  of  the least  material  patterns presented  should  145  T a b l e XXXIX Numbers o f r a n d o m l y s e l e c t e d C h o r i z o n s o i l s a m p l e s ( n ) r e q u i r e d f r o m e a c h Red Deer a r e a p a r e n t m a t e r i a l t o g i v e a d j u s t a b l e v a r i a n c e r a t i o (Vm) v a l u e s o f 1.0 and 5.0.  n  Element  Vm = 1.0*  2.3 2. 8 6.1 1.4  Cu Fe Mn Zn  2 Vm = S e x / s m  Vm = 5.0*  11.5 14.0 30.0 7.0  2 2 , where S < * = among p a r e n t m a t e r i a l v a r i a n c e from TableXXXV,and S = within parent material v a r i a n c e from TableXXXV-r H . 2  m  146  E.  The  i n f l u e n c e of parent  variations observed  CONCLUSION  i n Red D e e r a r e a  m a t e r i a l on r e g i o n a l soil  i n t h e Rosetown a r e a .  i s considerably less This  absence o f t e x t u r a l l y  extreme  coarse  c l a y s ) and t h u s  s a n d s and f i n e  compositional  situation  surficial  than  that  r e f l e c t s the  deposits  (ie. relatively  t h e s m a l l d i f f e r e n c e s among  mean c o n c e n t r a t i o n s  f o r i n d i v i d u a l parent materials.  of  these  s m a l l among mean d i f f e r e n c e s a g r e a t e r number  of  samples a r e r e q u i r e d p e r p a r e n t  relatively  g e o c h e m i c a l maps.  Because  m a t e r i a l t o produce s t a b l e  146a  CHAPTER  V  SWAN RIVER - DAUPHIN AREA  147 A.  1.  DESCRIPTION OF  STUDY AREA  GENERAL The  (6,000  Swan R i v e r - D a u p h i n a r e a c o v e r s a p p r o x i m a t e l y 15,000  sq mi)  o f w e s t e r n M a n i t o b a and a d j a c e n t  (Fig  32).  The  climate,  Deer  area,  i s sub-humid.  agriculturally -2 ° F)  settled  respectively,  45 t o 50 cm  (18-20  and p r e c i p i t a t i o n  Saskatchewan Mountains Plain  Plain  (Ehrlich et a l . ,  and V a l l e y  referred  in plain  is generally  and M a n i t o b a  areas (elevations  smooth t o g e n t l y  less  sloping.  shaped m o r a i n i c  of the r e l a t i v e l y and t r i b u t a r y Most  ( F i g 32). Plains,  i s particularly  t h e e a s t e r n m a r g i n o f Duck M o u n t a i n .  by numerous i r r e g u l a r l y  rivers  Plain  The  and Swan R i v e r P l a i n s  t h a n 510 m o r 1700 f t )  The  plateau-like  f a c e o f t h e c e n t r a l u p l a n d , on t h e o t h e r hand,  Because  1962).  the Manitoba  t o as t h e M a n i t o b a E s c a r p m e n t ,  w e l l developed along  the region.  and  and S a s k a t c h e w a n  River Plains:  The b r e a k i n s l o p e between S a s k a t c h e w a n  tures,  1959  i s r e p r e s e n t e d by t h e Duck and P o r c u p i n e  and K e n v i l l e  Topography  (65 and  regions are recognized w i t h i n the area.  i n c l u d e s b o t h the Lowland  locally  -19° C  ranges from a p p r o x i m a t e l y  Elements of both the Manitoba P l a i n physiographic  Red  and J a n u a r y t e m p e r a t u r e s i n  a r e a s a r e a b o u t 18 and  in) a n n u a l l y  2  Saskatchewan  as i n t h e w e s t e r n p o r t i o n o f t h e Mean J u l y  km  i s characterized  hills.  high r a i n f a l l  v  and c o o l e r  streams a r e abundant  tempera-  throughout  streams, which b e g i n i n s m a l l upland  a r e e i t h e r d r y by mid-summer o r a r e o c c u p i e d b y  sur-  lakes,  discontinuous  148 101° 4 8 ' 100° 0 0 ' 52° 2 0 '  Tp38  Tp36  Tp34  Tp 32  Tp30  Tp28  Tp26  Tp 2 4  l  0  l  °  4  8  '  Figure 3 2 .  R24  R22  Topography and drainage, Swan River-Dauphin area.  R20  5I°00' 100° 0 0 '  149 bodies o f stagnant water. channels  have b e e n e r o d e d  southwest  2.  Some o f t h e r i v e r t o bedrock,  particularly  o f D a u p h i n where o v e r b u r d e n  stream  i n the area  i s thin.  BEDROCK The  r e g i o n i s u n d e r l a i n by a s u c c e s s i o n o f c a r b o n a t e s ,  s h a l e s and s a n d s t o n e s direction,  and r a n g e  which d i p v e r y g e n t l y i n a southwesterly from Devonian  I n f o r m a t i o n on t h e d i s t r i b u t i o n Fig  and l a r g e r  t o Upper C r e t a c e o u s  o f bedrock  units,  33, was o b t a i n e d f r o m C h e r r y and W h i t a k e r  et al.(1970), L i t t l e Lithologic  and s t r a t i g r a p h i c  from Wickenden Devonian  mainly  (1945).  i n the northeast.  are widespread  beneath  the study area. relatively  Klassen  (1969).  d e s c r i p t i o n s were t a k e n  l i m e s t o n e s and d o l o m i t e s  Lowland P l a i n  indicated i n  (1969),  (1973) and Moran a n d W h i t a k e r  i n age.  thick  (Unit  Similar  the Manitoba  1) u n d e r l i e t h e  Paleozoic carbonates  Plain  n o r t h and e a s t o f  These r o c k s a r e o v e r l a i n unconformably  by a  ( 120 m o r 400 f t ) s e q u e n c e o f J u r a s s i c t o  Lower C r e t a c e o u s m a r i n e and n o n - m a r i n e s h a l e and s a n d s t o n e , minor l i m e s t o n e and e v a p o r i t e s ( U n i t s 6 which u n d e r l i e  respectively  2 a n d 3 ) . U n i t s 4, 5 and  t h e e a s t e r n s l o p e s o f Duck M o u n t a i n  p o r t i o n s o f b o t h t h e Swan and V a l l e y  shale Formations.  F a v e l and V e r m i l l i o n  Greenish grey t o grey  s h a l e s o f t h e most r e c e n t Upper C r e t a c e o u s Formation  (Unit  7 ) , occur beneath  and l a r g e  River basins, correspond  t o the Cretaceous A s h v i l l e ,  River organic-rich  with  Riding  Mountain  most o f t h e u p l a n d r e g i o n s .  150 101° 48'  100° 00' 52° 20' Tp38  Tp36  Tp34  Tp 32  Tp30  CRETACEOUS  E  Riding Mountain: greenish grey, non-calcareous shale carbonaceous  shale  Favel: grey to black calcareous shale, minor limestone and bentonite  Tp28  Ashville: grey to black non-calcareous shale; minor sand and silt Swan River-.sandstone lignite  with shale and minor  Tp26 JURASSIC 12 I Amaranth, Reston, Melita and Waskade: shale L=J sandstone, limestone, evaporites  DEVONIAN  tn  Tp 24  Dawson Bay and Sourls River, limestone, dolomite, minor shale  101° 48'  Figure 3 3 .  R24  Bedrock geology, Swan  River-Dauphin  R22  area.  R20  ^•SPOO"  100° 00'  Mo  levels  of these  have been m e a s u r e d  units.  Delavault  concentrations  e n h a n c e d Mo  F a v e l and  The  shale.  30 m  (100  105  m  f t ) i n the (350  (Table  c o n s i s t s of a grey limestone  and  southern  in Ashville,  XXXX).  p a r t of the  f t ) i n the north.  w h i c h i s somewhat t h i n n e r  The  (maximum t h i c k n e s s  to dark grey  calcareous  area  Favel  36 m o r  to  Formation, 120 f t ) ,  shale with  River Formation  strata  minor  (maximum t h i c k n e s s  f t ) have been d i v i d e d i n t o Morden, Boyne and  Members.  grey  bentonite.  Vermillion  the  t o 14 0 ppm)  has  l o c a l l y b e n t o n i t i c s h a l e s , which i n c r e a s e i n t h i c k n e s s  approximately  f r o m 12  to black t o 24 m  non-calcareous (40  t o 80  shale.  Formation  shale i n the United  u p p e r m o s t Pembina Member r a n g e s i n t h i c k n e s s  (60  t o 120  includes mainly  12  m  calcareous  t o Wickenden  The  f t ) and  m  ft) i n thickness, characterize  o v e r l y i n g Boyne Member, w h i c h a c c o r d i n g  correlates with Niobrara  Grey  72  Pembina  B a s a l Morden b e d s a r e composed o f a p p r o x i m a t e l y  f t ) of grey  shales,  of  (1966) however  ( up  Mo  A s h v i l l e F o r m a t i o n comprises a sequence o f dark  from about  (40  Oddy  concentrations  only background  number o f s a m p l e s  V e r m i l l i o n River Formations  to black,  o r 240  (1972) f o u n d  (<3ppm) i n a l i m i t e d  R i d i n g Mountain Formation reported  i n r o c k m a t e r i a l f r o m some  grey  to black  (1945)  States.  f r o m 18  to  36  non-calcareous  shale.  3.  SOIL PARENT MATERIAL Bedrock i n the  Swan R i v e r  - Dauphin a r e a  i s o v e r l a i n by  a  m  152  T a b l e XXXX  Mo c o n t e n t o f M a n i t o b a ,  Riding  Mountain  Vermillion  River  Ashville  River  units,  Content* (ppm)  Number of Analyses  non-calcareous shale  2.0 < 0.5-6.0  non-calcareous shale  19.4 3.0-120  22  49.4 13.0-140  31  calcareous shale  Favel  Swan  Mo  Lithology  Formation  bedrock  non-calcareous shale  8.2 2.5-75.0  16  shale  2.5  6  sand  2.5  1  G e o m e t r i c mean a n d t r u e r a n g e : from D e l a v a u l t ( 1972 ) ;.  R i d i n g Mountain Formation data o t h e r d a t a f r o m Oddy (1966) .  153 variable  thickness  of unconsolidated  deposits, p r i m a r i l y of g l a c i a l ness ranges from  less  Pleistocene  origin  ( F i g 34).  t h a n one m e t e r on t h e  surficial Drift  thick-  southeastern  p o r t i o n o f t h e V a l l e y R i v e r P l a i n where b e d r o c k e x p o s u r e s a r e most common, t o more t h a n 100 m (Klassen  e t a l . , 1970).  (300 f t ) on Duck M o u n t a i n  Deposits  i n plain  areas  t h e most p a r t o f e x o t i c s t r o n g l y c a l c a r e o u s derived  from P a l e o z o i c  Precambrian  granitic  carbonate,  rocks  ground  and t o a l e s s e r  t o the northeast.  M o u n t a i n s a r e c h a r a c t e r i z e d by somewhat  less  moraine, extent  Duck and P o r c u p i n e calcareous  m o r a i n e s , w h i c h c o n t a i n v a r i a b l e amounts o f s h a l e al.,  consist for  end  (Ehrlich et  1959). G r o u n d m o r a i n e i n t h e V a l l e y and Swan R i v e r b a s i n s  eastern and  lowland  i s l o c a l l y m a n t l e d by c a l c a r e o u s  to a l e s s e r extent  were l a i d Agassiz  gravel deposits.  down i n d e l t a i c  (Ehrlich  from g l a c i a l  i n plain  i n extent  areas.  Recent a l l u v i a l  significant  A limited residual  on  Lake  derived  S o u t h w e s t o f D a u p h i n , where d e p o s i t s may  stream-  locally  amounts o f s h a l e .  s u r f i c i a l deposits  the southeastern  which  d e p o s i t s , many  number o f g e o g r a p h i c a l l y r e s t r i c t e d ,  A few s m a l l b o d i e s  clay  t o d i s t i n g u i s h i n F i g 34 a r e  c u t b e d r o c k e x p o s u r e s a r e common, t h e s e contain  These sediments,  environments i n former g l a c i a l  t o t h e west.  of which are too l o c a l widespread  sand, s i l t ,  e t a l . , 1959 and 1962), were p r o b a b l y  drift  and  of Keld  have d e v e l o p e d d i r e c t l y  essentially on  shale.  Soil Association "shale-till"  p o r t i o n of the V a l l e y River P l a i n .  occur Deep  154 IO0° 00*  Tp30 j  I Calcareous ground moralne:source mainly limestone | 2 j Calcareous end morafne:source shale, limestone and granitic rock | | Calcareous lacustrine silt and clay  Tp28  Calcareous lacustrine sand 1 Beach deposits  | |  | Noncalcareous  \S 'o\ =  LI  Recent  J i l M  shale-till and shale-clay  alluvium  RIVER  Tp26  Peat deposits  Tp 2 4  101" 48' Figure 34.  R24 Soil parent  materials, Swan River-Dauphin  R22 area.  R20  f5l°00' 100° 00'  155 parent (Fig  m a t e r i a l samples o b t a i n e d  35), i n d i c a t e that t h i s  with  the a i d o f a cobra  shale-till  drill  grades a t a depth o f  a b o u t one m e t e r i n t o n o n - c a l c a r e o u s b e n t o n i t i c , p r e s u m a b l y Vermillion River "shale-clay"  survey  information  underlain a t shallow  al.,  1962), c o b r a  least  locally,  drill  (Fig 36).  indicates that this  d e p t h by c a l c a r e o u s  till  deposit  (Ehrlich et  i n v e s t i g a t i o n s have shown t h a t , a t  i n this  case t o the A s h v i l l e  shale,  Formation.  SOIL A l t h o u g h most o f t h e Swan R i v e r - D a u p h i n a r e a  in  Series  t h i s m a t e r i a l a l s o grades i n t o u n d e r l y i n g  l i k e l y belonging  4.  A s i m i l a r body o f F a v e l S o i l  i s l o c a t e d on t h e Swan R i v e r P l a i n  Although s o i l is  shale.  the  Greywooded S o i l  Zone  occurs  ( F i g 5 ) , L o w l a n d and Swan  belongs t o the."High-lime"  River  Plain  soil  areas  a r e c h a r a c t e r i z e d b y L u v i s o l s , w h e r e a s on t h e Swan and V a l l e y  R i v e r P l a i n s and e a s t e r n  o r R e n d z i r i a Zone.  with-  Lowland R e g o s o l i c ,  Luvisolic  Orders are a l l represented.  described  i n detail  Soil as  River basin  particularly  or Gleyed  i n the r i v e r  internal  basins,  carbonate-rich,  Regosols.  lacustrine deposits  Gleyed i n these  Lowland, as w e l l  h a s been r e t a r d e d b y  of s o i l  drainage.  and a d j a c e n t  have been  e t a l . (1959 and 1 9 6 2 ) .  carbonate content  g e n e r a l l y poor  Valley is  calcium  C h e r n o z e m i c and  These s o i l s  development i n the e a s t e r n  over wide r e g i o n s  both high and  profile  by E h r l i c h  Upland  parent  materials  Ground moraine i n t h e  portions of the eastern and g e n e r a l l y s u p p o r t s  Black  Lowland Orthic  Chernozems p r e d o m i n a t e on  areas,  although  Orthic  Black  156  PARENT  O  SOIL MATERIAL  Non-calcoreous shale till (Keld Soil Assoc)  , Calcareous till and • J sond BEDROCK j s ^ l Vermillion River Vermi Formation  —1300—Topographic (feet) ®  Tp24  contours  Cobra drill sample site  Tp23  R20  R2I  Figure 3 5 . Soil parent material and bedrock, Keld oreo.  Tp 3 6  Tp 35 me  u n i t , i f 7^  •  / '  /I  R 25 SOIL PARENT MATERIAL  R24 BEDROCK  FORMATIONS  Y7A  Swan River  O  Noncalcareous shale-clay (Favel soil series) Calcareous till and Lacustrine deposits  0^)  Cobra drill sample site  *isoo—Topographic contours (feet)  Figure 3 6 . Soil parent maierial and bedrock, Favel area.  Ashville  fTTffl Favel Vermillion River  soils  occur  locally  d e v e l o p e d on  till  Lowland P l a i n  on  coarser  deposits  are  textured  i n the  sediments.  Swan R i v e r  characteristically  basin  and  either Orthic  or  G r e y Wooded L u v i s o l s , w h e r e a s l a c u s t r i n e d e p o s i t s River basin  typically  support  Gleyed  Soils  Rego B l a c k  i n Table  generally  i n the m i l d l y to moderately a l k a l i n e  Shale-derived t h e i r parent  fine  XXXXI.  Keld  and  Soil  Favel  materials are  are  Chernozems.  range  exceptional  is  textured  and  material  poorly drained.  oxides.  A l t h o u g h i t does n o t ,  basis  Ehrlich  textured  and  only  slightly  acidic.  poorly drained,  Favel  5.  AGRICULTURAL LAND USE  Valley  s o i l s belong  the  and  to the  AND  activity,  southern  principal  The  but  -  8.4).  typically  has  iron  f i t into been  the  clas-  Chernozem on  the  Favel Series i s also  i s g e n e r a l l y grey  and  are r e l a t i v e l y  high  S o l o n e t z i c Order.  TRACE ELEMENT chiefly  o u t m o s t i n t e n s i v e l y on  River  are  a Black  is  secondary  soil  Salt concentrations  and  (7.4  characteristically  speaking,  System, K e l d  characteristics.  fine  carried  strictly  e t a l . (1959) as  of A h o r i z o n  Agricultural  Surface  p r e s e n c e of abundant  Canadian S o i l C l a s s i f i c a t i o n by  are  i n that  acidic Keld Association s o i l  sified  profiles  for C horizons  Strongly  the  Swan  acidic.  indicating  oats  values  soils  reddish,  is  pH  Gleyed  i n the  C h e m i c a l p r o p e r t i e s o f some r e p r e s e n t a t i v e s o i l are given  northern  s m a l l - s c a l e mixed  farming,  t h e K e n v i l l e , Swan R i v e r ,  Lowland P l a i n s .  grain crops,  IMBALANCES  Wheat, b a r l e y  w h e r e a s d a i r y and  and  beef  158  T a b l e XXXXI Chemical properties o f some representative Swan RiverDauphin area s o i l p r o f i l e s (from E h r l i c h e t a l . , 1959 and 1962).  Parent Material  • • „ • Sub- A s s o c i a t i o n Horizon Group o r series  Calcareous Till  Orthic Regosol  ^Pth J ^ Carbon ' (%) 9  C  1  ^ Exchange Capacity (meq/lOOg) i  0  n  L-H Ah AC C  3-0 0-25 25-30 30-90  17.9 3.9 1.7 0.6  -  Orthic ' Garison Gray Wooded  L-H Ae Bt BC C  5-0 0-5 5-13 13-35 35-71  27.3 0.9 0.7 0.4 0.3  11.8 38.0 15.7  Lacustrine sand  Orthic Black  Gilbert  Ah Bm Ck Cg  0-30 30-58 58-74 74+  2.0 0.7 0.7 0.5  15.6 6.0 5.1 3.9  Lacustrine s i l t and clay  Gleyed Rego Black  Plainview  L-H Ah AC Ckg Cg  5-0 0-15 15-30 30-50 50-90  -  -  6.7 1.7 0.2 0.3  54.9 35.8 24.6 23.7  Orthic Dark Gray  Kenville (locally Mo-toxic)  L-H Ahe Bt BC C  3-0 0-33 33-53 53-61 61-102  12.3 4.6 1.4 1.1 1.1  —  Gleyed Orthic Black  Keld  L-H Ah Bm Cg  5-0 0-20 20-64 64-102  19.0 8.1 1.0 1.1  -  Ahe Ae Bnt BC Csg  0-5 5-10 10-25 25-30 30-69  10.2 4.0 1.5 0.6 0.5  42.1 25.3 44.2 46.9 36.9  Residual Shale  Meharry  Gleyed Favel Black Solonetz  * nd = not detected.  —  —  —  CaCO * Equivalent  pH  (%)  -  8.8 17.6 43.9  -  6.8 7.2 7.6 8.1  40.1 50.5  6.9 6.8 6.6 7.6 7.9  0.2 6.6 26.6 19.0  7.0 7.3 8.2 7.0  -  -  0.6 2.4 25.3 24.2  7.5 7.7 8.3 8.3  -  5.2 14.5  6.4 6.1 6.3 7.4 7.8  nd nd nd nd  7.0 5.5 4.1 3.5  nd nd nd nd 8.8  5.8 5.2 6.0 6.2 6.1  159  cattle,  and  typically tral  and  swine are  coarse  steeply  textured  northern  production.  Duck and  t h e most p a r t as  of only soils and  locally  forest  pH  Similarly,  peaty  poor drainage  these and  Favel Series shale-clay s o i l  was  first  reported  a small area  on  t o 12  anemia,  fading of hair  come by  daily  as a d r e n c h o r  in cattle  iated with  are maintained  developed  on  although  marginally  salt  for  shale  for  poor  drainage  productive. make  pasture.  (Kenville  ( F i g 34).  Subsequent  S e r i e s ) and  o f t e n death.  det-  concentrations  20  ppm  T y p i c a l symptoms i n c l u d e d  salt  toxicity)  Cunningham e t a l . (1953) w i t h i n  (1955) i n d i c a t e d Mo  c o l o r and  are  shale-till  concentrations  s u i t a b l e only  in plants  diarrhoea,  T o x i c i t y was  grams o f c o p p e r  over-  sulphate  lick.  symptoms o f Cu  throughout the  a variety  concentrations  high  a d m i n i s t r a t i o n o f two  In r e c e n t y e a r s ognized  Smith  in soils  a f f e c t e d area.  cen-  livestock  Keld A s s o c i a t i o n  areas  the K e n v i l l e P l a i n  o f up  either  soil  farming,  i n c a t t l e by  i n v e s t i g a t i o n s by  from the  the  d e f i c i e n c y ( a l s o r e f e r r e d t o as Mo  ailed  ppm  primarily for  soils,  value.  f o r mixed  render  M o - i n d u c e d Cu  of  reserves.  agricultural  values  soils  The  M o u n t a i n s , c h a r a c t e r i z e d by  of residual  are used mainly  low  poorly drained  Porcupine  small areas limited  and  forms o f l i v e s t o c k .  Lowland are u t i l i z e d  s l o p i n g and  The  the major  d e f i c i e n c y have b e e n r e c -  Swan R i v e r - D a u p h i n  of highly calcareous  of a f f e c t e d animals  are  area,  assoc-  soils.  Blood  Cu  typically  below  normal  160  (Drysdale,  1975).  P r e l i m i n a r y r e s u l t s of Cu supplementation  s t u d i e s i n d i c a t e t h a t the f i n a n c i a l b e n e f i t which would accrue to the r e g i o n from r o u t i n e a d m i n i s t r a t i o n of a d d i t i o n a l Cu to a l l herds would be n e a r l y 2 m i l l i o n 1974 d o l l a r s per annum (Drysdale,  1975).  B.  1.  SAMPLE COLLECTION AND ANALYSIS  COLLECTION a) Bedrock S i x t y - s i x bedrock samples were obtained  from stream-cut  exposures of V e r m i l l i o n R i v e r , F a v e l , A s h v i l l e and Swan R i v e r Formations.  The m a j o r i t y of samples were c o l l e c t e d w i t h i n the  area o f t h i n d r i f t cover southwest o f Dauphin C(6) f o r U.T.M. c o o r d i n a t e s  of sample s i t e s ) .  (see Appendix Only r e l a t i v e l y  unweathered m a t e r i a l was taken, wherever p o s s i b l e as composite c h i p samples p e r p e n d i c u l a r b) Stream  t o bedding.  Sediment  Stream sediments were c o l l e c t e d on a r e g i o n a l b a s i s i n the b a s i n s of both the Swan and V a l l e y R i v e r s and along the eastern  slope of Duck Mountain, i n a manner s i m i l a r t o t h a t  recommended by Hawkes and Webb (1962).  Over 200 samples were 2  taken a t an average d e n s i t y o f about one per 25 km  (10 sq m i ) .  A d d i t i o n a l d e t a i l e d stream sediment and bank s o i l sampling was c a r r i e d out w i t h i n the Mo-toxic area of Cunningham e t a l . (1953). Sampling l o c a l i t i e s f o r the r e g i o n a l survey were s e l e c t e d  161 a  short distance  tary  streams.  upstream of road  U.T.M. c o o r d i n a t e s  i n Appendix C ( 5 ) .  i n t e r s e c t i o n s with of site  tribu-  locations are given  F i n e , o r g a n i c - f r e e m a t e r i a l was  obtained  where p o s s i b l e f r o m a c t i v e s t r e a m c h a n n e l s and s t o r e d paper  bags.  c)  Soil C horizons  were c o l l e c t e d  west o f Dauphin, d u r i n g sediment anomalies. vey  75 sites  by  areas,  or  I n p a r t a s a c h e c k on s t r e a m soil  was  s a m p l i n g was c a r r i e d  less  from  sur-  about  Finally detailed  out within  two o f w h i c h a r e c e n t e r e d  the Mo-toxic area  south-  sediment  also obtained  three  on b o d i e s  d e v e l o p e d on s h a l e bedrock., and t h e o t h e r  For  50 s i t e s  i n v e s t i g a t i o n s o f stream  t h r o u g h o u t t h e Swan R i v e r V a l l e y .  A and C h o r i z o n small  a t approximately  follow-up  r e s u l t s , A and C h o r i z o n  soil  in kraft  relatively  of r e s i d u a l  being  defined  o f Cunningham e t a l . ( 1 9 5 3 ) .  d e t a i l e d s t u d i e s sample s i t e s were l o c a t e d a t more regular intervals  along  grid  roads a t d e n s i t i e s  ranging  2 f r o m a b o u t one p e r 2.5 t o 5.0 km 2 investigations  2.6 km  areas  (1 t o 2 s q m i ) .  ( i e . 1 s q mi s e c t i o n s )  ing  were s e l e c t e d r a n d o m l y o v e r e a c h m a j o r  One  sample s i t e was  give  soil  an a v e r a g e d e n s i t y o f r o u g h l y  one p e r 31 km  (12 s q m i ) .  governing  selected  s e c t i o n s , and p r o c e d u r e s f o r A and C h o r i z o n  III  (p. 60) .  t o those  material.  section to  Criteria  were g e n e r a l l y s i m i l a r  o f sample s i t e  f o r sampl-  parent  l o c a t e d w i t h i n each designated 2  the choice  For regional  locations within  previously described  collection i n Chapter  162 Deep s o i l  parent material  were a l s o o b t a i n e d  from r e s i d u a l  shale  sites),  using  an A t l a s Copco " C o b r a S u p e r " d r i l l  probing  and s o i l  core  samples  and M o - t o x i c K e n v i l l e  sampling attachments.  (1-3 f t ) ,  soil  (3  equipped w i t h  From 5 t o 7 25 x 150 mm  were o b t a i n e d a t e a c h s i t e ,  0.3 t o 1.0 m  d)  (2 s i t e s )  samples  a t i n t e r v a l s o f from  t o a maximum d e p t h o f a b o u t  5m  (16 f t ) .  Plants A l t h o u g h most p l a n t  three areas of d e t a i l e d  s a m p l i n g was u n d e r t a k e n w i t h i n t h e soil  l i m i t e d number o f a d d i t i o n a l localities mixed  within  compositional samples  and 40 samples  hay were c o l l e c t e d . many c a s e s samples  a  were o b t a i n e d f r o m random  t h e Swan R i v e r V a l l e y .  g r a s s samples  investigations,  In t o t a l  of a l f a l f a  a b o u t 70  (Medicago  s a t i v a L.)  A l t h o u g h p a s t u r e g r a s s e s were p r e f e r r e d , i n were t a k e n f r o m u n c u l t i v a t e d m a r g i n s o f  either  summerfallow  clover  ( T r i f o l i u m p r a t e n s e L.) were a l s o o b t a i n e d f r o m some  pastures.  development,  of r e d  sample  laboratories  1974.  The m a j o r i t y  i n t h e l a t e bud o r  stages.  was a c o m p o s i t e o f t h e above g r o u n d  c e n t e r e d on.a s o i l samples,  and e a r l y J u l y  i n o r had p a s s e d t h e b o o t s t a g e o f  several plants within  tion  A few samples  and legumes were t y p i c a l l y  flowering  Each of  i n l a t e June  g r a s s e s were e i t h e r  early  fields.  S a m p l i n g was u n d e r t a k e n f o r t h e m o s t p a r t , d u r i n g a  two week p e r i o d of  or grain  sample  stored  a 30m X 30m hole.  portions  (100 f t x 100 f t ) q u a d r a t  W i t h i n a d a y o r two o f c o l l e c -  i n brown p a p e r b a g s , were s h i p p e d t o t h e  o f t h e Manitoba Department  of Agriculture i n  163 W i n n i p e g where t h e y were a i r d r i e d  2.  and g r o u n d .  ANALYSIS A p p r o x i m a t e numbers and t y p e s  summarized  i n Table  XXXXII.  of analyses  Procedures  and  analysis are described i n d e t a i l  3.  ADDITIONAL Beginning  performed are  f o r sample p r e p a r a t i o n  i n Chapter I I .  INVESTIGATIONS i n 1974, i n p a r t i n c o n j u n c t i o n w i t h  this  study,  the Manitoba Department o f A g r i c u l t u r e undertook a l a r g e - s c a l e soil  and f o r a g e  region grass  sampling  and a d j a c e n t  p r o g r a m w i t h i n t h e Swan  areas  River-Dauphin  i n w e s t - c e n t r a l Manitoba.  About  and 100 legume s a m p l e s , a s w e l l a s a p p r o x i m a t e l y  surficial  and s h a l l o w d e p t h s o i l the area.  12 0  s a m p l e s , were o b t a i n e d  D r i e d and m i l l e d  500  from  pastures  throughout  unground  s o i l m a t e r i a l were s e n t t o t h e U n i v e r s i t y o f B r i t i s h  Columbia f o r t r a c e element a n a l y s i s a c c o r d i n g described  i n Chapter  Agriculture (Fletcher, the  II.  to the  procedures  R e s u l t s o f Manitoba Department o f  i n v e s t i g a t i o n s , were made a v a i l a b l e  t o the author  1 9 7 6 ) , and a r e d i s c u s s e d i n S e c t i o n D i n r e l a t i o n t o  findings of t h i s  study.  C. RESULTS  1.  f o r a g e and  - MOLYBDENUM AND  COPPER  BEDROCK Nitric-perchloric  limited  number  acid  e x t r a c t a b l e Mo c o n c e n t r a t i o n s i n a  o f samples from t h e V e r m i l l i o n R i v e r ,  Ashville  164 T a b l e XXXXII  A p p r o x i m a t e numbers, a n d t y p e s o f a n a l y s e s p e r f o r m e d on Swan R i v e r - D a u p h i n a r e a samples. Number o f A n a l y s e s  Sample type  Mo Nitricperchloric extraction  Soil:  Cu  Sediment  215  A horizon  125  C horizon  225  Deep p a r e n t material Vegetation  Se  125 10  36  29 110  pH  16  66  Bedrock Stream  Ammonium oxalate extraction  110  27  125  and  Favel Formations are given  i n Table  for  V e r m i l l i o n R i v e r and  shale are high  ppm  respectively.  t i o n s may 3 ppm. i n Mo  I n d i v i d u a l shale  c o n t a i n up  Although  rock  centrations  Ashville  (<3  sulfur  values  Mo  and  and  14.0  forma-  none c o n t a i n l e s s  s h a l e may  ppm),  a l s o be  than  enriched  nearly one-third  contained  of  o n l y background  c o n c e n t r a t i o n s were a l s o d e t e c t e d (mean 5.1  precipitates  ppm)  and  con-  shale are  low  (<3  i n Favel  i n gypsum, i r o n  associated with A s h v i l l e  f o r F a v e l Formation bentonite  s a n d s t o n e and  - 13.0  values  samples from t h e s e  Formation 15  Mean  ppm).  Formation limestone  and  oxide  shale.  Swan R i v e r  Mean  Formation  ppm).  STREAM SEDIMENT The  is  ppm  samples a n a l y s e d  E n h a n c e d Mo  2.  t o 40  (maximum c o n c e n t r a t i o n  Ashville  and  Favel  XXXXIII.  distribution  shown i n F i g 37.  o r d i n a t e s are for  bedrock,  i n m i n u s 8 0-mesh s t r e a m  I n d i v i d u a l sample v a l u e s  listed stream  o f Mo  i n Appendix C ( 5 ) .  In c o n t r a s t to the  w i t h i n the Mo-toxic area  Cunningham e t a l . ( 1 9 5 3 ) , c h a r a c t e r i s t i c a l l y molybdenum.  bank s o i l w i t h i n the  A ever  sampling  subsequently  collected  confirmed  toxicity  had  number o f r e l a t i v e l y southwest of the  low  defined less  by than  associated  concentrations  been r e c o g n i z e d  Mo-rich  case  region, i n -  contains  D e t a i l e d s t r e a m s e d i m e n t and  a r e a where Mo  limited  U.T.M. c o -  s e d i m e n t t h r o u g h o u t most o f t h e  cluding m a t e r i a l obtained  3 ppm  and  sediment  (Fig  38).  s a m p l e s were how-  town o f D a u p h i n where  drift  166  T a b l e : .XXXXIII  Mo c o n t e n t o f C r e t a c e o u s c e n t r a l Manitoba.  Formation  Vermillion  Favel  Ashville  Number of Analyses  soft, black non-calcareous shale  13.0 4.0-30.0  14  grey t o b l a c k calcareous shale; minor limestone  14.0 3.0-40.0  23  limestone  5.1 2.0-30.0  5  bentonite  2.5 2.0-4.0  3  grey t o b l a c k non-calcareous shale intermixed i r o n o x i d e and gypsum sulfur  Swan  River  w h i t e t o orange unconsolidated sand brown s i l t s t o n e and b l a c k n o n calcareous shale  a) b)  west-  Mo C o n t e n t * (ppm)  Lithology  River  bedrock,  <  4.6 1.0-15.0  13  5.0  8.0 - 0.6 <1.0-1.0  1 4  0.5  G e o m e t r i c mean; t r u e r a n g e . I n d i v i d u a l d a t a v a l u e s , l i t h o l o g i c a l d e s c r i p t i o n s and sample s i t e l o c a t i o n s g i v e n i n A p p e n d i x C ( 6 ) . c) Samples w i t h l e s s t h a n d e t e c t a b l e c o n c e n t r a t i o n s (1.0 ppm) a s s i g n e d t h e v a l u e 0.5 ppm f o r mean c a l c u l a t i o n s .  167  101° 4S"  Figure 37.  R24  Mo content Dauphin area.  of  minus 80-mesh  stream  R22  sediment,  R20  Swan  River —  100° 0 0 '  100° 0 0 '  168  SOIL  P A R E N T MATERIAL  pzi—1 Lacustrine clay I I  I Lacustrine silty clay (Kenville Series)  1  Lacustrine sand 1  Cunningham et al (I953)'s Mo-toxic area Molybdenum concentration PPm  <2  Glacial till  Figure 3 8 .  Mo content of minus80-rnesh stream sediment (•) and A horizon bank soil (•), Mo-toxic area, Swan River Valley.  169 cover  i s thin.  Locations  to the d i s t r i b u t i o n parent  materials  h a n c e d Mo  of associated  (3-5 ppm)  Creek sediment occur  to  14 ppm)  Two  rich  shale,  one  i n both Wilson River  Highest  soil  Somewhat e n and Edwards  s e d i m e n t Mo c o n c e n t r a t i o n s  are associated with  21.  i n F i g 39.  and  i m m e d i a t e l y downstream f r o m e x p o s u r e s o f  shale.  the V e r m i l l i o n R i v e r  relative  bedrock formations  a r e shown i n d e t a i l  levels  Mo-rich Favel  o f t h e s e anomalous samples  a s m a l l unnamed t r i b u t a r y o f  i n Township  (Tp) 24 - Ranges  small bodies of semi-residual are included within  overlying Vermillion River  (up  till,  (R) 20 and  derived  from  Mo-  t h e catchment o f t h i s t r i b u t a r y and t h e o t h e r  A s h v i l l e Formation  bedrock.  3.  SOIL AND a)  PLANTS  Nitric-Perchloric Acid Nitric-perchloric  associated with Highest  till  Concentrations Association few  miles  5.6 ppm).  levels  i n C horizon  soil  occur body  i n material  from t h e V e r m i l l i o n  (Keld S o i l A s s o c i a t i o n )  f o r C horizon  soil,  at Keld  associated with  River Junction.  s i m i l a r Keld  s h a l e - t i l l H u n d e r l a i n by t h e A s h v i l l e F o r m a t i o n a  to the northeast,  a r e somewhat l o w e r  Samples f r o m b o t h  Association) near  e x t r a c t a b l e Mo  anomalous s t r e a m s e d i m e n t s a r e shown i n F i g 40.  Mo v a l u e s  shale-derived  Extraction  and a l l u v i u m  shale-till  a l s o tend  lacustrine silty  ( r a n g e 2.4 t o clay  (Dutton  (Edwards S o i l A s s o c i a t i o n ) to contain  h i g h Mo  I n c o n t r a s t , Edwards A s s o c i a t i o n a l l u v i u m C r e e k and t h e V e r m i l l i o n R i v e r ,  levels  along  Soil  situated (>5 ppm).  b o t h Edwards  Gilbert Association  s a n d s and  ni9  \  V- -/  o o O  c,° RJ  DAUPHIN-  Tp 25  Tp 24  \-v-  k  ^e-mqr>t.iodTfled from Fhrlich or al, f  1959 (indKlassan e t a l , ! 9 7 0 )  .2 Mile*  SOIL P A R E N T M A T E R I A L S  BEDROCK  p M H r Km  Lacustrine clay  Riding Mountain Fm.  S T R E A M SEDIMENT Mo CONCENTRATION (ppm)  Lacustrine silty clay  @  >5  t;X;.;-X-J Lacustrine sand [  | Calcareous till:source mainly limestone  |  1 Shale-till (Keld Soil Assoc)  | o ° „ ° o  j  3-5  Vermillion River Fm.  <3)  Favel Fm.  ©  Ashville Fm.  ©  Swan River Fm.  X  Outcrop Bedrock contact  <3  Alluvium  Figure 3 9 .  Mo  content of  minus  80-mesh stream  sediment  southwest  Tp23  of  Dauphin.  O  RI9  R20  R 21  J„° o ° io B  O  ° o ° ° o Jf> O o j  Tp25  Tp24  modified from Ehrlich et a t . V 1959 ondKlassen etal.1970) BEDROCK  SOIL PARENT MATERIAL/SOIL ASSOCIATIONS L—_-| Lacustrine clay/mainly Dauphin Lacustrine silty clay/Dutton i'-lvXvj Lacustrine sand/Gilbert |  | Calcareous till/Meharry and Isafold  I  I Shale-till/Keld  SOIL MOLYBDENUM CONCENTRATION (ppm) >5 3-5  (§) Riding @  Mountain Fm.  Vermillion River Fm.  (f) Favel Fm. (D  Ashville Fm.  ©  Swan River Fm. Bedrock contact  <3  f ° ° 1 Alluvium/Edwards 0  Figure  40.  Mo  Tp23  content of selected C horizon soil samples, southwest of Dauphin.  l—  1  H  172 M e h a r r y and than  3 ppm  Isafold Association t i l l s  in  i n the v i c i n i t y  F i g 41  and  soil  and  of  cobra  tions 2.0)  on  t o 20 on  ppm  Mo  in this  samples  levels  i n overlying  area e x h i b i t  ( T a b l e XXXXVI). shale-till  are  m a t e r i a l from alfalfa  little  other  (mean 1.3 surficial  higher  5.3)  average  lacustrine  Mo-poor.  Analyses  concentra-  (by a f a c t o r  of  about  for soil,  Mo  levels  i n plants  among p a r e n t m a t e r i a l v a r i a b i l i t y i n grasses associated with  ppm)  and  comparable  to those  for  d e p o s i t s , whereas v a l u e s f o r  samples a r e u n i f o r m l y h i g h  (>6  ppm).  P l a n t Cu  concentra-  L i k e Mo,  plant  d a t a a p p e a r t o be most s t r o n g l y i n f l u e n c e d by v a r i a t i o n s i n  plant  type, a l f a l f a  element r e l a t i v e  t e n d i n g t o be  River Valley  soil,  e x t r a c t a b l e Mo  this  c o n c e n t r a t i o n s i n Swan  i n c l u d i n g m a t e r i a l from  Cunningham e t a l . ( 1 9 5 3 ) ,  XXXXVII and  somewhat e n r i c h e d i n  to grasses.  Nitric-perchloric  of  and  t h a t Mo  t i o n s are w i t h i n the normal range f o r f o r a g e . Cu  (pH  soil.  Concentrations low  summarized  T a b l e XXXXIV). A l k a -  ( T a b l e XXXXV) s u g g e s t  c o n t r a s t to the case  this  are  associated calcareous t i l l  be  investiga-  a r e a c o n t a i n s an  ( F i g 41 and  i n t h e p a r e n t b e d r o c k may  In  less  Strongly acidic  t h e o t h e r hand, a r e c o m p a r a t i v e l y  drill  than  from  up  s o i l s developed  deposits,  (Keld area)  T a b l e s XXXXIV t o XXXXVI.  a b o u t 7 and  line  plant compositional  of K e l d J u n c t i o n  Keld Association C horizon s o i l of  contain  molybdenum.  Results of d e t a i l e d tions  typically  XXXXVIII.  are  indicated  Consistent with  the Mo-toxic i n F i g 42  stream  area  and  sediment  Tables  survey  Figure 4 I  Mo  content of C horizon soil, Keld area.  T a b l e ..XXXXIV  Horizon  Mo c o n t e n t a n d pH o f A a n d C h o r i z o n s o i l associated with i n d i v i d u a l s o i l parent materials, Keld area.  Parent Material  Mo C o n t e n t * (ppm)  pH**  Number of Analyses  Shale-till 3.4 (Keld Assoc.)<0.8-16.0  7.6 7.2-8.3  9  Calcareous till  7.9 7.6-8.5  18  0.4 -  7.8 7.6-7.9  9  6.7 2.4-20.0  5.1 3.4-7.1  9  0.8 <0.8-3.2  Lacustrine sand Shale-till (Keld Assoc.) Calcareous till  1.1 <0.8-6.0  8.1 7.2-8.4  17  Lacustrine sand  0.7 <0.8-8.0  8.3 7.7-8.8  9  a)  G e o m e t r i c mean; t r u e r a n g e : s a m p l e s w i t h l e s s t h a n d e t e c t a b l e c o n c e n t r a t i o n s (0.8 ppm) a s s i g n e d t h e v a l u e o f 0.4 ppm.  b)  I n d i v i d u a l data values  listed  ** A r i t h m e t i c mean; t r u e  range.  i n A p p e n d i x C (7).  175  T a b l e . XXXXV  Mo c o n t e n t o f s h a l e - t i l l p a r e n t m a t e r i a l and u n d e r l y i n g bedrock, Keld area.  Sample Cobra D r i l l h o l e Location*  Approximate depth (m)  SW5-24-20W1  -  Description  Content (ppm)  0.7  c l a y : m o t t l e d grey, non-calcareous, bentonitic  12.0  1.0  c l a y : m o t t l e d grey, non-calcareous, bentonitic  14.0  1.3  s h a l e : s o f t , dark, non-calcareous, bentonitic  20.0  1.6  s h a l e : s o f t , dark, non-calcareous, bentonitic  24.0  1.9  s h a l e : s o f t , dark, non-calcareous, bentonitic  20.0  2.2  s h a l e : s o f t , dark, non-calcareous, bentonitic  32.0  2.5  s h a l e : s o f t , dark, non-calcareous, bentonitic  14.0  * S e c t i o n - township  Mo  range  176  Table'XXXXVI  Mo and Cu c o n t e n t o f v e g e t a t i o n ( d r y w e i g h t basis) associated with i n d i v i d u a l s o i l parent materials, Keld area.  Trace Element* Content (ppm) Cu Mo  Parent Material  Plant Type  Grass  Shale-till (Keld Assoc.)  Alfalfa  Percentage of samples w i t h Cu:Mo r a t i o s <4 . 0  1.3 0.6-2.4  8.3 6.5-10.1  Calcareous till  1.1 0.4-3.4  8.6 6.5-12.1  13  Lacustrine sand  1.0 0.4-2.0  7.2 4.1-9.8  13  7.0  Shale-till (Keld Assoc.) Calcareous till  7.8 6.0-10.0 7.0  Lacustrine sand  12.2  13  100  10.5 8.9-13.0  100  10.6  100  * a)  Geometric  mean; t r u e  range.  b)  I n d i v i d u a l data values  listed  i n A p p e n d i x C( 7).  Number of Analyses 8  177  R26  Tp36  B2<H.  Mo CONCENTRATION ppm ©  3-5  •  < 3  Tp34 Cunningnom et ol (I953)'s Mo-toxic area  SOIL PARENT MATERIAL [  | Calcareous till: contains some shale along southern margin Lacustrine silt and clay  |':|V:':V:':  Tp32  Lacustrine sand  I Shale-clay (Favel Soil Series)  Figure 4 2 .  Mo  content of C horizon soil, Swan River Valley.  178 T a b l e XXXXVII Mo c o n t e n t a n d pH o f A a n d C h o r i z o n s o i l a s s o c i a t e d w i t h major s o i l p a r e n t m a t e r i a l s , Swan R i v e r V a l l e y .  Parent Material  Horizon A  Mo C o n t e n t * (ppm)  Number of Analyses  Mo-toxic lacustrine s i l t (Kenville Series)  0.7 <0.8-1.6  7.0 6.4-7.8  19  Lacustrine s i l t and c l a y  0.4 <0.8-0.8  7.5 6.2-8.2  17  0.8 <0.8-2.4  7.6 7.1-7.9  9  0.6 0.8-2.4  7.6 6.8-8.0  10  <  0.9 0.8-3.2  7.6 5.9-8.2  25  <  0.6 <. 0.8-4.0  8.1 7.7-8.5  38  0.8 0.8-3.2  7.9 7.7-8.2  19  <  0.7 0.8-2.4  8.1 7.9-8.5  18  <  Calcareous  till+  Lacustrine sand C  pH**  Mo-toxic lacustrine s i l t (Kenville Series) Lacustrine s i l t and c l a y Calcareous  till  t  Lacustrine sand  TLocally  c o n t a i n s some s h a l e .  * a)  G e o m e t r i c mean; t r u e r a n g e : s a m p l e s w i t h l e s s t h a n d e t e c t a b l e c o n c e n t r a t i o n s (0.8ppm) a s s i g n e d t h e v a l u e 0.4ppm.  b)  Individual  data values  listed  ** A r i t h m e t i c mean; t r u e  range.  i n Appendix  C(8)~ .  179 results ing  n e u t r a l to m i l d l y a l k a l i n e  material associated with  along than  the  southern  3 ppm  r e p o r t e d by toxic  area  Smith  shale-bearing  the v a l l e y ,  Despite  concentrations  contain  o f up  samples  soils.  less ppm  from the  Mo-  concentra-  Deep K e n v i l l e s o i l  ( T a b l e XXXXVIII) were s i m i l a r l y  till  t o 12  o f Cunningham e t a l . ( 1 9 5 3 ) , o n l y b a c k g r o u n d i n these  includ-  calcareous  typically  (1955) f o r K e n v i l l e S e r i e s s o i l  t i o n s were d e t e c t e d terial  locally  margin of  molybdenum.  Swan R i v e r V a l l e y s o i l ,  found  parent  t o be  ma-  relatively  Mo-poor.  Mo toxic in  soils,  concentrations  compared  grass  to values  from the  i n molybdenum.  area in  are  Cu  t h e Swan R i v e r V a l l e y i n T a b l e  for ed  area  and  contained  20  cattle grazing  background area relative  One ppm  for material collected XXXXIX.  a f f e c t e d area  Mo,  and  grass  symptoms o f Cu  this material.  similar,  for grasses.  are  Although  Cu  from the Mo-toxic  area  are  legumes f r o m t h i s  area  contain r e l a t i v e l y  comparison with  not  and  legumes f r o m o t h e r  R e s u l t s of d e t a i l e d gations of  i n the v i c i n i t y  Swan R i v e r  of  ( F a v e l area)  Consistent with  exceptional  stream  soil  from w i t h i n  this  f o r both  evident  toxic  and  somewhat e l e v a t e d concentrations  (range low  3-11  in  grasses  ppm),  amounts o f Cu  in  regions.  and  plant compositional  investi-  t h e body o f F a v e l S e r i e s s h a l e - c l a y e a s t are  shown i n F i g 43  s e d i m e n t d a t a , Mo  residual  shale-clay s o i l  ( T a b l e L)  Ashville  Formation  (Table LI)  shale  case  somewhat e n r i c h -  d e f i c i e n c y were  Mean v a l u e s  Mo-  elsewhere  In c o n t r a s t t o the  t e n d s t o be  sample o f p a s t u r e  legumes a r e  to those  f o r p l a n t s growing w i t h i n the  and are  and  Tables  concentrations  the u n d e r l y i n g low  «3  ppm).  L  for  to L I I . this  presumably Similarly  180 T a b l e XXXXVIIIMo c o n t e n t o f M o - t o x i c a r e a K e n v i l l e S o i l Series parent m a t e r i a l .  Sample Cobra D r i l l h o l e Location*  SE32 - 34 -  29W1  Approximate Depth (m)  0.5 1.5 2.3 3.5 4.1  SE17 - 35 -  29W1  1.1 1.7 2.3 2.9 4.1  NW11  - 35 -  29W1  1.0. 1.4 1.7 2.3 2.8 3.2 3.7  * Section - township - range.  Description  calcareous f i n e sand and s i l t ; small i r o n oxide concretions calcareous sand with small i r o n oxide concretions as above as above s l i g h t l y calcareous s i l t , orange s t a i n i n g  Mo Content (ppm)  2.4 0.8 <  0 8 1 6 4.0  calcareous f i n d sand and s i l t ; small i r o n oxide concretions as above as above as above as above  <  0.8  calcareous s i l t to f i n e sand; orange s t e i n i n g as above calcareous s i l t and clay: orange s t o i n i n g as above as above as above; no staining as above; no s t a i n i n g  <  0.8 0.8 1.6  0.8 0.8 0.8 0.8 1.6 2.4 0.8  181 Table X X X X I X Mo and Cu content o f v e g e t a t i o n , (dry weight b a s i s ) , Swan R i v e r V a l l e y .  Plant .Type  Grasses  Legumes**  Area  Trace Element Content (ppm) *  Percentage of samples with Cu:Mo ,ratios<4.0  Number of Analyses  19  Mo  Cu  Mo-toxic area  3.0* 0.6-12.0  5.7 3.0-10.7  89  Other areas  1.6 0.8-2.8  6.0 4.7-11.9  38  Mo-toxic area  3.6 1.0-6.0  6.8 6.5-8.7  83  Other areas  4.5 1.0-8.0  10.5 5.0-15.7  88  16  a) Geometric mean; true range. b) individual data values listed i n Appendix C (8) . **  Includes both a l f a l f a and red clover.  f One sample containing 20ppm molybdenum rejected as being unrepresentative of target population.  R 25 SOIL  R 24 MOLYBDENUM  PARENT MATERIAL  CONCENTRATION |  | Shale-clay  (Favel  ppm  Series)  %  Lacustrine silt and clay  • <3  Lacustrine sand [  I Calcareous  till: contoins s o m e shale  Figure  43.  3-5  Mo  content  i—  1  co to  of C horizon s o i l , Favel area.  Table  L  183 Mo c o n t e n t a n d pH o f A and C h o r i z o n s o i l associated with i n d i v i d u a l s o i l parent materials, Favel area.  Parent Material  Horizon  Mo C o n t e n t * (ppm)  pH**  Shale-clay (Favel Series)  0.6 0.8-5.6  7.1 6.5-8.2  9  <  Lacustrine s i l t and c l a y  0.9 0.8-2.4  7.5 6.6-8.0  10  <  Calcareous"]" till  0.5 0.8-0.8  7.3 6.4-8.1  8  <  0.4 -  7.7 7.1-8.7  6  Lacustrine sand  "J"  Number of Analyses  Shale-clay (Favel Series)  0.6 0.8-1.6  6.8 4.7-7.7  10  <  Lacustrine s i l t and c l a y  1.0 0.8-3.2  7.5 6.4-8.2  11  <  Calcareous"! till  0.5 0.8-0.8  7.4 6.2-8.2  8  <  Lacustrine sand  0.5 0.8-0.8  8.1 8.0-8.1  5  <  contains  shale.  Locally  some  a)  G e o m e t r i c mean, t r u e r a n g e : s a m p l e s c o n t a i n i n g l e s s t h a n detectable concentrations (0.8ppm) a s s i g n e d t h e v a l u e o f 0.4 ppm.  b)  I n d i v i d u a l data  values  listed  ** Arithmetic  mean; t r u e  range.  i n Appendix C ( 9 ) .  184  Table  LI  Mo c o n t e n t o f F a v e l S e r i e s s h a l e - c l a y and u n d e r l y i n g s h a l e , F a v e l a r e a .  Sample Cobra D r i l l h o l e Location*  SW11-36-25W1  1. 0  silty s h a l e : s o f t , g r e y , n o n - < 0 .8 calcareous as above w i t h m i n o r b e n t o n i t e < 0 .8  2. 3  Section  - township - range.  shale:soft, calcareous, as above  non-calcareous  1 .6  clay:  1. 9  grey,  Mo C o n t e n t (ppm)  0. 5  1. 4  *  Description  Approximate Depth(m)  b l a c k nonbentonitic  <o .8 < 0 .8  185 Table  LII  Mo. a n d Cu c o n t e n t o f v e g e t a t i o n ( d r y weight basis) a s s o c i a t e d with i n d i v i d u a l s o i l parent materials, Favel area.  T r a c e Element* C o n t e n t (ppm)  P e r c e n t a g e Number o f samples of w i t h Cu:Mo Analyses: "ratios<4.0  Plant Type  Parent Material  Grass  Shale-clay (Favel Series)  1.4 0.6-4.0  7.7 4.4-11.5  25  Lacustrine s i l t and c l a y  1.1 0.6-1.8  7.6 6.0-8.7  13  2.7 1.0-5.0  6.0 4. 4.-10.7  86  1.6 0.4-4.0  9.3 6.4-13.7  50  15.2 6.0-28.0  9.6 5.7-14.1  Calcareous  Mo  till  t  Lacustrine sand Legumes**  Shale-clay (Favel Series)  Calcareous  till  t  Lacustrine sand  ~  L o c a l l y contains  some  100  6.2 3.4-12.0  7.0 5.4-9.4  100  7.6 4.0-12.0  9.3 8.1-12.0  100  shale.  * a) b)  G e o m e t r i c mean; t r u e r a n g e . I n d i v i d u a l values l i s t e d i n Appendix C ( 9 ) .  ** Includes  both a l f a l f a  100  7.4  10.0  Lacustrine s i l t and c l a y  Cu  and r e d c l o v e r .  186 low  values  including  a r e associated with calcareous  (Ehrlich  grasses  are not enriched  and  which l o c a l l y  associated with  i n Mo  parent  materials,  contains  some s h a l e  calcareous  soil  o f the Favel  ( T a b l e L I I ) , samples o b t a i n e d  till  contain s l i g h t l y  l e s s Cu (mean 6.0 ppm) t h a n  parent  soil  e t a l . , 1962).  Although  bearing  till  other  grasses  more Mo  over  associated with  previous  observations  contain  l a r g e r amounts o f Mo t h a n  grasses,  but i n this  similar  trend i s n o t apparent f o r copper.  A c i d Ammonium O x a l a t e Acid  by  Grigg  The  i n Swan R i v e r - D a u p h i n  area  Mo h a s b e e n  related  s o i l was t h e r e f o r e i n v e s t i g a t e d .  e x t r a c t a b l e Mo c o n c e n t r a t i o n s were d e t e r m i n e d samples a s s o c i a t e d w i t h b o t h  and  (< 3 ppm) g r a s s e s .  background  number o f a n a l y s e s  Mo-rich  are considered  f o rselected  (> 5 ppm)  Because a r e l a t i v e l y  large  were p e r f o r m e d on m a t e r i a l f r o m t h e M o - t o x i c  o u t l i n e d by Cunningham e t a l . ( 1 9 5 3 ) , d a t a  grasses  area a  extractant i n assessing plant-available  C horizon s o i l  ion  legumes  (1953 a, b) t o t h e Mo s t a t u s o f a s s o c i a t e d p l a n t s .  Mo l e v e l s  area  other  Extraction  ammonium o x a l a t e e x t r a c t a b l e s o i l  effectiveness of this  Oxalate  shale-  (mean 2.7ppm)  materials. Consistent with  b)  Series  separately. Soils  from t h i s  associated with  Mo-rich  o u t s i d e o f Cunningham e t a l . (1953) 's M o - t o x i c  were o b t a i n e d  reg-  area  i n p a r t from Manitoba Department o f A g r i c u l t u r e  collections. Ammonium o x a l a t e Table  LIII. Within  extraction results  the Mo-toxic area  this  a r e summarized i n e x t r a c t a n t removed  187  Table  Soil  A c i d ammonium o x a l a t e e x t r a t a b l e Mo c o n t e n t of s e l e c t e d C horizon s o i l s a s s o c i a t e d with b o t h M o - r i c h and Mo-poor g r a s s s a m p l e s .  Grass Mo-status**  Type  . . Kenville Mo-toxic n  LIII  _ . Series area  Oxalate Extractable Molybdenum* (ppm)  Anomalous  Number of Analyses  1.4 Q _-^ g  4  Background  0.5 0.2-2.0  8  Anomalous  0.4 n i o Q  Cj  ^ ., Assorted calcareous lacustrine and t i l l s o i l s  Background  Q  0.2 0.1-4.0  13  a)  Geometric  b)  Samples c o n t a i n i n g u n d e t e c t a b l e amounts o f « 0 . 1 ppm) a s s i g n e d a v a l u e o f 0.05 ppm.  molybdenum  <  Anomalous ^  mean; t r u e  5.0 ppm;  range.  background<C3.0  ppm.  188 nearly  three  Mo-rich  times  grasses  a s much Mo f r o m s a m p l e s a s s o c i a t e d  as from  g r o u n d Mo l e v e l s .  samples  Despite  supporting  with  grass with  only  t h e s m a l l number o f o b s e r v a t i o n s ,  t h e d i f f e r e n c e between anomalous and b a c k g r o u n d mean is  significant  a t a b o u t t h e 90% c o n f i d e n c e  t h e r e m a i n d e r o f t h e Swan R i v e r - D a u p h i n soil  Throughout  oxalate  related  extractable  to concentra-  DISCUSSION - MOLYBDENUM AND COPPER  BEDROCK Mean n i t r i c - p e r c h l o r i c  e x t r a c t a b l e Mo c o n c e n t r a t i o n s i n  V e r m i l l i o n R i v e r , F a v e l and A s h v i l l e shales  Formation grey  and Wedepohl  (1961)'s e s t i m a t e d  g i v e n by V i n e  and T o u r t e l o t  Oddy  Formation shale, the  i s also reportedly enriched  i n Mo  ( V i n e and  1970). (1966) f o u n d  means o f 19.4, 49.4 and 8.2 ppm Mo i n  V e r m i l l i o n R i v e r , F a v e l and A s h v i l l e tively.  black  e q u i v a l e n t o f t h e Boyne' Member o f t h e V e r m i l l i o n  River Formation, Tourtelot,  o f 10 ppm  (1970) f o r N o r t h A m e r i c a n  In Kansas, o r g a n i c - r i c h N i o b r a r a  stratigraphic  relative  average f o r shale  ppm), b u t a r e c o m p a r a b l e t o t h e m e d i a n v a l u e  shale.  to black  (13.0,14.0 and 4.6 ppm r e s p e c t i v e l y ) a r e h i g h  to Turekian (2.6  values  i n associated plants.  D.  1.  level.  area  Mo l e v e l s do n o t a p p e a r t o be c l o s e l y  tions  back-  His values,  considerably higher apparent discrepancy  particularly than  those  Formation shales  respec-  f o r the F a v e l Formation,  reported  i s attributable,  i n this  study.  are  The  i n l a r g e measure, t o  18 9< differences  i n sample d i g e s t i o n p r o c e d u r e s .  used a t o t a l this  study  a nitric-perchloric  releases only  (p. 3 7 ) ,  a b o u t 40%  a c i d based  E l e v a t e d Mo usually by  Mo  o r by the  considered  decaying  t h e Mo  to occur matter  c o p r e c i p i t a t i o n with  shales  a  used  hydro-  and  element from sea  marine b a s i n s .  e i t h e r by  direct  (LeRiche,  1959;  sulfide  Tourtelot  organic  matter  This i s  Tourtelot,  specifically  States  of 1964)  1958). Although examined  (1970) c o n c l u d e d  than with  water  adsorption  (Korolev,  i n the mid-western United  are  that  for  Mo  i s more  sulfides.  SOIL  (> 5 ppm)  i n s o i l within  west o f Dauphin  ( F i g 4 0)  amounts o f M o - r i c h s h a l e  of n i t r i c - p e r c h l o r i c the  area  reflect  the  into local  lous Keld A s s o c i a t i o n s o i l has  this  were n o t  Enhanced c o n c e n t r a t i o n s Mo  As  attack  i n o r g a n i c - r i c h shales  iron  p h a s e a s s o c i a t i o n s o f Mo  similar  l i b e r a t e d by  i n anaerobic  organic  associated with  2.  nitric-perchloric  concentrations  Maintoba shales, Vine in  of  employed.  attack.  sediment c o l l e c t i n g  by  the  p r o c e d u r e was  a t t r i b u t e d to removal of  generally  (1966)  h y d r o f l u o r i c - p e r c h l o r i c a t t a c k , whereas i n  noted p r e v i o u s l y  fluoric  Oddy  near Keld  d e v e l o p e d a l m o s t e x c l u s i v e l y on  Vermillion  River  shale. Similarly  Edwards A s s o c i a t i o n a l l u v i u m transport of shale-derived  of thin d r i f t  extractable cover  south-  incorporation of v a r i a b l e parent  m a t e r i a l s . Anoma-  Junction,  f o r example,  h i g h l y weathered  high  Mo  are probably  Mo-rich  concentrations a result  of  in  downstream  K e l d A s s o c i a t i o n m a t e r i a l , as  well  190 as F a v e l  shale  centrations reported in  from  stream-cut exposures.  in soil  associated with  i n the United  States  Canada b y D o y l e e t a l .  Mo l e v e l s Ashville for with  (1961) and  (1973).  shale-derived  low c o n c e n t r a t i o n s  (<2 ppm)  F o r m a t i o n samples a n a l y s e d concentrations  by M a s s e y and Lowe  d e v e l o p e d on t h e  ( F i g 40) a r e c o n s i d e r a b l y  Vermillion River  con-  M o - r i c h s h a l e have been  f o r Keld Association s o i l  Formation  E l e v a t e d Mo  soil.  lower than  This  values  i s consistent  i n many o f t h e A s h v i l l e  ( T a b l e XXXXIII) and w i t h  low Mo  i n F a v e l S e r i e s s h a l e - c l a y e a s t o f Swan  River  ( T a b l e s L and L I ) . Reduced Mo c o n c e n t r a t i o n s Keld Association s o i l  in A relative  Keld  soil  character limit  i s typically and h i g h  evidence  poorly drained,  Fe c o n t e n t  l e a c h i n g has  because  clay-rich  and i t s s t r o n g l y  (Jones,  acidic  1957; R e i s e n a u r e t a l . , 1 9 6 2 ) .  o f t h e r e m o v a l _ o f Mo f r o m t h i s  material relative  shale  w o u l d be e x p e c t e d t o s e v e r e l y  a p p a r e n t i n t h e low c o n c e n t r a t i o n s  parent  surface  i s somewhat s u r p r i s i n g  t h e m o b i l i t y o f Mo  Further ever  This  horizon  d e v e l o p e d on V e r m i l l i o n R i v e r  ( T a b l e XXXXIV), s u g g e s t t h a t e x t e n s i v e taken place.  to C  soil  i n weathered  to the underlying  fresh  i s howshale-clay  shale  (Table  XXXXV). Generally careous t i l l (Fig  low Mo v a l u e s  f o r s o i l s developed  and l a c u s t r i n e d e p o s i t s  42) and s o u t h w e s t o f D a u p h i n  tively  little  on b o t h  cal-  i n t h e Swan R i v e r V a l l e y  ( F i g 40) i n d i c a t e  M o - r i c h s h a l e has been i n c o r p o r a t e d  that  into  rela-  these  191 deposits.  I n v i e w o f t h e g e n e r a l l y c l o s e r e l a t i o n s h i p between  s t r e a m s e d i m e n t and u p s t r e a m Webb, 1 9 7 0 ) , l o w Mo v a l u e s River Plain  and a l o n g  tills and  i n these  granitic  enhanced v a l u e s  in  soils  a r e a l s o Mo-poor.  of E h r l i c h  Plain  This i s  e t a l . (1959)  a r e d e r i v e d m a i n l y from e x o t i c  f o r Kenville Series soil  that  limestone  from t h e Mo-toxic  o f Cunningham e t a l . (1953) a r e c o n s i d e r a b l y  (1955).  and  rock.  Concentrations area  (Thornton  t h e e a s t e r n margin o f t h e Lowland  the observation areas  composition  i n sediment throughout t h e V a l l e y  suggest that the a s s o c i a t e d consistent with  soil  o f up t o 12 ppm. r e p o r t e d  As i n the case o f bedrock data  i n this this  below t h e area  by S m i t h  inconsistency i s  p a r t a c o n s e q u e n c e o f d i f f e r e n c e s i n sample d i g e s t i o n  cedures.  Smith  ( 1 9 5 5 ) , l i k e Oddy  pro-  (1966), used a h y d r o f l u o r i c  a c i d b a s e d a t t a c k w h i c h w o u l d be e x p e c t e d t o l i b e r a t e more Mo than t h e n i t r i c - p e r c h l o r i c  a c i d mixture used  forthis  study.  However, a n a l y s i s o f a r e p r e s e n t a t i v e s u i t e o f K e n v i l l e for  t o t a l Mo u s i n g  nitric-perchloric centration of only  a s e q u e n t i a l ammonium o x a l a t e / h y d r o f l u o r i c a c i d e x t r a c t i o n i n d i c a t e d a maximum Mo 5 ppm, and an a v e r a g e o f 2.2 ppm.  more, low t o t a l Mo v a l u e s samples were c o n f i r m e d spectrographic gest  by S m i t h  con-  Further-  (< 2 ppm) f o r s e l e c t e d K e n v i l l e S e r i e s  by a separate  procedure  that the accuracy  reported  soils  semiquantitative  ( M a r s h a l l , 1973) .  o f t h e anomalous s o i l  (1955) i s q u e s t i o n a b l e .  emission  These r e s u l t s  sug-  concentrations  192 3.  PLANTS E n h a n c e d Mo  values  (> 5 ppm)  i n grasses  from  the  Mo-toxic  area are c o n s i s t e n t w i t h high c o n c e n t r a t i o n s p r e v i o u s l y noted by  Smith  (1955).  Excluding these  r e s u l t s , Mo  values for grasses  are g e n e r a l l y w i t h i n the normal range f o r forage as t h o s e  f o r legumes a r e r e l a t i v e l y  sampling, and  extent  restricted  ( K e l d and  areas  c e n t e r e d on  o f Mo  for to 40%  Mo  i n forage  f i n d i n g s of t h i s  of the  majority  legumes  5 ppm  al.  influenced  by  (Sauchelli,  up  1976).  In  than  3 ppm,  o r more Mo  invariably  of agree-  Barshad,  higher  equal  most o f  a r e a o f Cunningham  (Fletcher,  of other elements,  soil  variables.  Of  apparent  in this  L I I , Mo  et  1976).  1951a).  than  values  v a l u e s f o r the  i n c l u d e t h e g e n o t y p e , a g e and  1969;  of  i n over  n e a r l y 25%,  those  o f p l a n t and  ) noted  Although  i n T a b l e s XXXXVI, XXXXIX, and  legumes a r e  bodies  d a t a show e n h a n c e d  t o 7 0 ppm  p l a n t genotype are p a r t i c u l a r l y  indicated in  their  concentrations, like  f a c t o r s of importance  of  5 ppm  a variety  rela-  results  investigations.  o u t s i d e the Mo-toxic  contained  P l a n t Mo  sampled  ( and  o f g r a s s e s were l e s s  (1953),  grasses,  to grasses, with concentrations  (Fletcher,  w h i c h were c o l l e c t e d  shale-derived s o i l  i s p r o v i d e d by  study,  i n legumes compared  or g r e a t e r than  area  A more c o m p l e t e r e g i o n a l p i c t u r e  Manitoba Department of A g r i c u l t u r e ment w i t h  where-  limited  legumes, were o b t a i n e d w i t h i n two  Favel areas).  the d i s t r i b u t i o n  ppm),  Because of  however, a l a r g e p r o p o r t i o n o f n o n - t o x i c  to a lesser  tively  high.  (<3  are  Plant  p a r t of p l a n t s  these  the  effects  study.  As  concentrations  concentrations f o r grasses  193 growing  i n the  legumes may to  be  grasses.  same s o i l .  In the F a v e l area  e n r i c h e d by  as much as  other  1948;  J e n s e n and  Lesperance,  Isles  (Webb e t - a l . ,  centrate r e l a t i v e l y the presence, the process  on  in soil  levels  1968).  1971)  of  The  d i f f e r e n c e s have (Barshad, British  t e n d e n c y f o r legumes t o i s probably  con-  related  to in  fixation.  f a c t o r s i n f l u e n c i n g Mo  Thus i n the F a v e l a r e a  ppm),  relative  i n the  parent m a t e r i a l appear, a t l e a s t  (mean 15.2  10  r o o t s , o f b a c t e r i a w h i c h r e q u i r e Mo  to s o i l  (Favel S o i l  LII)  States  a s w e l l as  l a r g e amounts o f Mo  their  significance.  shale-clay  workers i n the United  of n i t r o g e n  With regard  of  a factor  S i m i l a r grass-legume compositional  been r e p o r t e d by  tions  (Table  uptake,  varia-  locally,  to  legumes g r o w i n g  on  Series) contain exceptionally high whereas.grasses a s s o c i a t e d with  be  Mo  cal-  careous t i l l ,  w h i c h c o n t a i n s v a r i a b l e amounts o f  shale,  are  also  enriched  ppm).  Further-  slightly  in this  element  (mean 2.7  more, r e g i o n a l maps o f M a n i t o b a D e p a r t m e n t o f A g r i c u l t u r e d a t a (Fletcher,  197 6)  common o v e r  show t h a t M o - r i c h  calcareous  shale-bearing  34), which are widespread of  the  area.  grasses  i n the  are a s s o c i a t e d with  Mo-poor b e d r o c k not  till  central  are  particularly  deposits and  of parent  c o n t a c t between M o - r i c h  ( U n i t s 3 and  occur  Variations  a variety  4,  i n grasses  i n p l a n t Mo  F i g 33),  Fig  portions  anomalous  materials  s h a l e and  e n h a n c e d Mo  east of t h i s  content  ( U n i t 2,  western  T h e s e p l o t s a l s o show t h a t , a l t h o u g h  l o c a t e d west o f the  t i o n s do  grasses  underlying concentra-  line.  are not,  however,  directly  194 relatable For  to n i t r i c - p e r c h l o r i c  example,  a l t h o u g h h i g h Mo  on K e l d A s s o c i a t i o n  levels  shale-till,  contain r e l a t i v e l y  in a variety  (C  soil  5.3).  have shown t h a t 5.0,  Mo  factor  concentrations of at l e a s t  have d e m o n s t r a t e d to  the a b i l i t y  progressively  The values ly  soils.  pH  character  e x p e r i m e n t s by B a r s h a d  d e c r e a s e s through the range  i n b o t h g r a s s e s and Jones  clays  estimating  limit  legumes f a l l  that  t h i s pH  and h y d r o u s  effect  iron  be  to  by  a  i s related  oxides to adsorb  as t h e m o l y b d a t e  probably, i n part, and p o o r p r e c i s i o n  a n i o n , from  reflects  soil the  Mo relative-  of the r o u t i n e  ana-  I n an a t t e m p t t o overcome t h i s p r o b l e m t h e method  a v a i l a b l e Mo  t i o n , recommended by G r i g g agent would  8.0  l e v e l s decrease.  f o r Mo-poor s o i l s  high detection  (1951a)  (1957) and R e i s e n a u r e t a l . (1962)  amounts o f Mo,  as pH  soil  Furthermore,  a b s e n c e o f a r e l a t i o n s h i p between p l a n t and  l y t i c a l method. of  in this  to i t s strongly acidic  experimentally  larger  developed  u p t a k e by g r a s s e s a s s o c i a t e d w i t h  2.0.  of s o i l  aqueous s o l u t i o n  g r a s s e s growing  Greenhouse  as s o i l  levels.  concentrations occur i n grasses  i s probably related  h o r i z o n pH  Mo  occur i n s o i l s  o f s i m i l a r l y Mo-poor  L a c k o f i n c r e a s e d Mo Keld  soil  s m a l l amounts o f molybdenum.  b o t h anomalous and b a c k g r o u n d growing  extractable  using (1953  an a c i d a, b), was  e x p e c t e d t o r e l e a s e Mo  i r o n oxides, which  employed.  combined  i t selectively dissolves  w e l l as e x c h a n g e a b l e Mo Since o r i g i n a l l y  ammonium o x a l a t e  This re-  with secondary  (Rose, 1 9 7 5 ) ,  associated with other s o i l  proposed, t h i s  extrac-  p r o c e d u r e has been  phases. used  to  as  19 5 measure p l a n t a v a i l a b l e Mo v a r i a b l e degrees of et  a l . , 1969;  s u c c e s s ' (Gupta and  of applying  River-Dauphin area e x t r a c t a b l e Mo  Grigg  soils  porting  Mo-rich  to  forage  area  b e t w e e n p l a n t and  reflects on  the  and  Mo  Mo  inconclusive.  concentrations,  oxalate  types  effects  of  e x t r a c t a b l e Mo  changes i n s o i l  drainage,  organic  (Barshad,  e t a l . , 1 9 5 1 ) . The form o f  H i g h Mo poor s o i l s render  would factor  t h e Mo  of  1951  i s also  concentrations  a,b;  data  for likely conditions  the  such  sulphate 1963;  which determines  the  important. associated with  these  f a c t o r s combine  total  soil  plants. Alkaline conditions i n c r e a s e d Mo  i n f l u e n c e d by  Kubota e t a l . ,  i n vegetation  indicate that l o c a l l y  favour  differ-  correlation  matter content,  bedrock source,  a large proportion of  u p t a k e by  sup-  o f molybdenum.  f a c t o r s as pH,  original  closely  extractable  environmental  i s known t o be  Stout  Mo-toxic  soils  separately. This  of plants  levels  poor  unless  content  phosphate  high  Oxalate  l i t t l e relationship  (1972) r e p o r t e d  were c o n s i d e r e d  with  f o r a v a r i e t y of  display relatively  Takahashi  availability  The soil  soil  the  are  containing relatively  soils  contents.  individual  Pathak  a , b ) ' s p r o c e d u r e t o Swan  E l s e w h e r e , however, v a l u e s  non-toxic grass  MacKay, 1966;  Cunningham e t a l . (1953) a p p e a r s t o be  to a s s o c i a t e d grass  ent  investigators, with  f o r K e n v i l l e S e r i e s m a t e r i a l w i t h i n the  d e f i n e d by  values.  (1953  (Table LIII)  related  Mo  a number o f  Walker e t a l . , 1954).  Results  area  by  uptake, but  importance because a l k a l i n e  Mo  soils  to  available for  i n many Mo-poor this  Mo-  c a n n o t be  soils the  only  also give r i s e  to  196 f o r a g e w i t h n o r m a l Mo l e v e l s . a l s o be s i g n i f i c a n t ,  practices  to increase  importance o f bedrock  type i s suggested by t h e f a c t  either A s h v i l l e , Favel,  F o r m a t i o n s . The p r e c i s e  Vermillion  River  elevated Favel  or Riding  of the  selected  of  Kenville soils  by S m i t h  He s u g g e s t e d oxides.  be  relatively  be  comparatively  fragments  and h y d r a t e d  soils  I f so, t h i s would h e l p  to moderately a l k a l i n e s o i l  is a  analyses indicated ferric  constituent  to explain  because under t h e p r e v a l e n t conditions  anoneutral  Mo w o u l d be e x p e c t e d t o  l o o s e l y bound t o t h e s e o x i d e s and h e n c e w o u l d available to plants.  In the case o f Favel  Series  e n h a n c e d Mo l e v e l s i n legumes may be r e l a t e d t o p o o r  drainage conditions,  which according  t o K u b o t a e t a l . (1963)  and  J e n s e n and L e s p e r a n c e  4.  AGRICULTURAL SIGNIFICANCE OF THE DATA The  the  w i t h K e n v i l l e and  ( 1 9 5 5 ) , however,  t h a t Mo i n t h e s e  malous g r a s s c o n c e n t r a t i o n s ,  soil,  associated  s o i l s were n o t u n d e r t a k e n . M i n e r a l o g i c a l  the f e r r i c  however.  i n v e s t i g a t i o n s of the factors responsible f o r  p r e s e n c e o f abundant s h a l e  oxides.  Mountain  n a t u r e o f t h e r e l a t i o n s h i p between  p l a n t Mo c o n c e n t r a t i o n s  Series  that  underlain  b e d r o c k and p l a n t M o . c o n t e n t i s n o t a t p r e s e n t c l e a r Detailed  noted,  i n the presence o f phosphate.  Mo-rich grasses occur almost e x c l u s i v e l y i n areas by  could  b e c a u s e as S t o u t e t a l . (1951) have  p l a n t Mo c o n t e n t t e n d s The  Fertilization  (1971), tend  ingestion of large  ability  o f ruminants  t o p r o m o t e Mo  uptake.  amounts o f Mo i s known t o i n h i b i t  to u t i l i z e  dietary  Cu  supplies  197 (Underwood, 1 9 6 2 ) . is  Although  i n f l u e n c e d by s u c h  factors  as w e l l a s Zn and Pb i n t a k e s of animal  diets  the strength of this  as i n o r g a n i c s u l f a t e and p r o t e i n , (Underwood, 1 9 7 6 ) , t h e Cu a d e q u a c y  i s , i n practice,  generally assessed  t o a s s o c i a t e d Mo c o n c e n t r a t i o n s o n l y . (1971) s u g g e s t ,  characterized  i s likely  (1976) however p o i n t s o u t , o f Cu d e f i c i e n c y closer  to occur  b y Cu:Mo r a t i o s  t o 4.0.  i n relation  M i l t i m o r e and Mason  on t h e b a s i s o f e x p e r i e n c e  t h a t Cu d e f i c i e n c y  effect  in British  i n a r e a s where f e e d s a r e  of less  than  2.0.  A s Underwood  o t h e r w o r k e r s have n o t e d  i n livestock  Columbia,  symptoms  a s s o c i a t e d w i t h Cu:Mo r a t i o s o f  In Manitoba, p r o v i n c i a l  agricultural  scientists  have d e f i n e d 4.0 a s t h e minimum a c c e p t a b l e Cu:Mo r a t i o . f o r cattle tion or  ( D r y s d a l e , 1975).  of feeds with r a t i o s  of less  4.0 a r e c a l l e d  Cu d e f i c i e n c y ,  the ingestion  presence Cu  resulting  than  from  consump"conditioned"  "Mo-induced". "Simple"  by  Deficiencies  of very  of inadequate  cattle As  (Drysdale,  indicated i n this  of  relatively  ratios  of less  than  the Mo-toxic  10 ppm a r e c o n s i d e r e d  forage  essential  1975).  study  legumes c o n t a i n l e s s from  In Manitoba,  i n Tables XXXXVT, XXXXIX and L H almost  analysed their  may be c a u s e d  a b s o l u t e amounts o f Cu i n t h e  low Mo c o n c e n t r a t i o n s .  concentrations of a t least  for  on t h e o t h e r hand,  (most o f w h i c h were a l f a l f a  h i g h Mo c o n t e n t , 4.0. than  a l l legumes hay),  because  a r e c h a r a c t e r i z e d b y Cu:Mo  Furthermore,  nearly half  of these  10 ppm C u , w i t h v a l u e s f o r m a t e r i a l  a r e a o f Cunningham e t a l . (1953)  being  198 particularly Cu,  low.  Most g r a s s e s a r e a b s o l u t e l y d e f i c i e n t i n  a n d Cu:Mo r a t i o s  b e l o w 4.0. with  Although  a wide v a r i e t y  common i n M o - r i c h ( T a b l e XXXXIxy careous A  f o r a b o u t 43% o f t h e s a m p l e s a n a l y s e d a r e low r a t i o s  i n grasses associated  o f parent m a t e r i a l s , they  and i n m a t e r i a l c o l l e c t e d  shale-bearing t i l l similar  are especially  samples o b t a i n e d w i t h i n t h e M o - t o x i c over  area  Favel area  cal-  (Table L I I ) .  p a t t e r n i s apparent  A g r i c u l t u r e plant data. occur  occur  i n the" M a n i t o b a D e p a r t m e n t o f  Cu c o n c e n t r a t i o n s o f l e s s  i n n e a r l y a l l o f t h e g r a s s e s and a b o u t 9 0%  than  10 ppm  of the pasture  l e g u m e s , w h e r e a s Cu:Mo r a t i o s o f b e l o w 4.0 c h a r a c t e r i z e a b o u t 66%  o f t h e g r a s s e s and 84% o f t h e legumes  agreement w i t h r e s u l t s  of t h i s  sociated with a variety  study,  of s o i l  1976).  low g r a s s r a t i o s  In  are as-  types, but are p a r t i c u l a r l y  common i n m a t e r i a l o b t a i n e d o v e r deposits  (Fletcher,  calcareous shale-bearing  till  ( U n i t 2, F i g 3 4 ) .  C o n s i s t e n t w i t h t h e s e d a t a Manitoba Department o f A g r i culture personnel Cu  deficiency  have d i a g n o s e d  i n cattle  1975).  Pasture grasses  problem  s i n c e they  and  are locally  may be f u r t h e r in  b o t h .simple a n d c o n d i t i o n e d  throughout  t h e study  are probably  e n r i c h e d i n molybdenum. by t h e p r e s e n c e  deficient  less  as S t i l e s  toxic  than  (1946) h a s n o t e d  i n fresh  forage.  i n this i n Cu  Deficiency conditions of Mo-rich  some p a s t u r e s , a s w e l l a s e n h a n c e d Mo l e v e l s  although  (Drysdale,  a major f a c t o r  a p p e a r t o be r e g i o n a l l y  aggravated  area  legumes  i n a l f a l f a hay,  Mo i n h a y i s c o n s i d e r a b l y  199 E.  RESULTS  R e s u l t s o f Se a n a l y s e s  - SELENIUM  of bedrock, C h o r i z o n  soils  and  p l a n t s a r e summarized i n T a b l e s L I V , LV a n d L V I r e s p e c t i v e l y . As  i n d i c a t e d i n Table  L I V Se c o n c e n t r a t i o n s  s h a l e s r a n g e between 1.3 and 24.8 ppm. River Formation relative  t o those  (mean 4.8 ppm) be  enriched  area  (mean 12.2 ppm) f o r the Favel  Formations.  i n C horizons  i n selected  Values  f o r the V e r m i l l i o n  are c h a r a c t e r i s t i c a l l y (mean 3.3 ppm)  Se, l i k e Mo, of either  Keld Association s o i l  up t o 7.4 ppm  high  and A s h v i l l e  does n o t appear t o  the Favel o r , i n the Mo-toxic  o f Cunningham e t a l . ( 1 9 5 3 ) , K e n v i l l e s o i l s  Mo-rich  Mo-rich  contains  (Table L V ) .  an a v e r a g e o f 4.3 and  selenium.  I n v i e w o f t h e a p p a r e n t a s s o c i a t i o n between e n h a n c e d and of  Se c o n c e n t r a t i o n s Mo-rich  indicated Values grass  i n both  b e d r o c k and s o i l ,  and Mo-poor p l a n t s were a n a l y s e d i n Table  of over  LVI, concentrations  3 ppm were d e t e c t e d  f o r selenium.  i n only  the F a v e l S o i l  number As  a r e g e n e r a l l y low (<1 ppm). two s a m p l e s , one a  g r o w i n g on M o - t o x i c K e n v i l l e S e r i e s s o i l ,  a clover associated with  a limited  Mo  and t h e o t h e r  S e r i e s , e a s t o f Swan  River.  F.  1.  DISCUSSION  - SELENIUM  i n Mo-rich  V e r m i l l i o n R i v e r , F a v e l and  BEDROCK Se  Ashville  concentrations  F o r m a t i o n s h a l e a r e w e l l above G o l d s c h m i d t  (1954)'s  200  Table LIV  Se c o n t e n t o f s e l e c t e d M o - r i c h b e d r o c k samples, w e s t - c e n t r a l Manitoba.  Se Lithology  Formation  Vermillion  River  soft, black non-calcareous  shale  Content* (ppm)  12.2 6.8-24.8  Favel  grey t o b l a c k calcareous shale  3.3 1.3-4.9  Ashville  grey t o b l a c k non-calcareous  4. 8 3.1-6.1  shale  a)  G e o m e t r i c mean; t r u e  range.  b)  I n d i v i d u a l c o n c e n t r a t i o n s and b r i e f lithological d e s c r i p t i o n s l i s t e d i n Appendix C ( 6 ) .  Number of Analyses  201  Table  LV  Se c o n t e n t o f s e l e c t e d C h o r i z o n samples, w e s t - c e n t r a l Manitoba.  Se  Soil  Content* (ppm)  Keld A s s o c i a t i o n shale-till  4.28 2.18-7.36  Favel Series shale-clay  0.50 0.37-0.92  Kenville Mo-toxic  0.50 0.24-0.76  a)  Series area  Geometric  b) I n d i v i d u a l  mean; t r u e  soil  Number of Analyses  range.  data values  listed  i n A p p e n d i x C(7-9)  202  Table  Plant  Type  Grasses  Legumes**  LVI  Se c o n t e n t o f s e l e c t e d p l a n t s a m p l e s (dry w e i g h t b a s i s ) , w e s t - c e n t r a l M a n i t o b a .  Class  T  Se C o n t e n t * (ppm)  Mo-poor  0.48 0.12-0.84  Mo-rich  0.64 0.26-4.32  Mo-poor  0.58 0.22-1.06  Mo-rich  0.6 0 0.09-4.00  a) G e o m e t r i c mean; t r u e r a n g e . b) I n d i v i d u a l d a t a v a l u e s l i s t e d Alfalfa tMo-rich Mo-poor  and r e d c l o v e r . > 5 ppm < 5 ppm  i n Appendix  Number of Analyses  C(8-10).  203 estimated Wedepohl tions  crustal  i n Vermillion River  Niobrara  has  found  by L a k i n  Formation  ppm.  and  High  o f Mo  concentra-  enhanced  (1961) i n s t r a t i g r a p h i c a l l y  o f anomalous amounts  equivalent  and K a n s a s .  The a s s o c i a -  and Se i n o r g a n i c - r i c h s h a l e  a l s o been r e p o r t e d by F l e t c h e r e t a l . ( 1 9 7 3 ) , T o u r t e l o t  It  should  Se was  resistant accuracy  (1966).  be n o t e d ,  however,  only p a r t i a l l y organic  of values  Nevertheless,  effective  reported  i n Table  that data  i n d e s t r o y i n g the h i g h l y s h a l e s , and t h e r e f o r e t h e LIV i s questionable.  are consistent with  investigators for similar  c a n a t l e a s t be t a k e n  average c o n c e n t r a t i o n s . organic-rich  that the d i g e s t i o n procedure  f r a c t i o n of these  the f a c t  r e p o r t e d by o t h e r they  and T u r e k i a n  shale are consistent with  s h a l e from Colorado  (1962) and Webb e t a l .  for  ppm  (1961) *s a v e r a g e f o r s h a l e o f 0.6  Se v a l u e s  tion  a b u n d a n c e o f 0.09  as r e l i a b l e  A s w i t h Mo,  suggests  that  i n d i c a t i o n s o f above  enhanced l e v e l s  s h a l e s a r e commonly a t t r i b u t e d  s e a w a t e r by b o t h  rocks  results  o f Se i n  to adsorption  o r g a n i c m a t t e r and c l a y m i n e r a l s  from  (Tourtelot,  1964) .  2.  SOIL According  r a n g e between Association  0.1  soil  whereas t h o s e are  t o Swaine  (1955) Se l e v e l s  and 2.0 (mean 4.3  ppm. ppm)  in soil  Concentrations  i n C horizon  are t h e r e f o r e anomalously  i n F a v e l and K e n v i l l e S e r i e s s a m p l e s  not e x c e p t i o n a l .  typically  High values  i n Mo-rich  Keld  (means soils  Keld high, 0.5  ppm)  are not  204 surprising in  i n view of the  e l e v a t e d Se  concentrations  Vermillion River shale  ( T a b l e LIV)  on w h i c h t h i s  developed. Se-rich  E n h a n c e d Se  concentrations  s h a l e have a l s o b e e n r e p o r t e d  by Webb e t a l . (1966) and (1964). are  3.  their  p l a n t s do  LVI). 0.60  The ppm,  terial. in  not  mean Se i s only  sampled  forage  case  i n F a v e l and low  f o r b e d r o c k and  a p p e a r t o be content 0.02  legumes  ppm  related  of Mo-rich greater  compared  (alfalfa to those  have l i k e w i s e o b s e r v e d in British  The  overall  0.58  ppm,  for  forage  for  example,  from  Kingdom Jackson  Kenville Mo  soils  content.  Se  levels  contents  (Table  legumes, f o r example,  than  t h a t f o r Mo-poor  f o r Mo,  Se  concentrations  c l o v e r ) are not  Se  generally  Miltimore  levels  ma-  i n grass  e t a l . (1975) and  legume  Columbia.  from o t h e r found  an  content  than  average of only  typical  i n the  f o r both  Miltimore a b o u t 0.20  and  legumes,  reported  e t a l . (197 5 ) , ppm  i n grass-  Columbia, whereas L e s s a r d  concentrations  Ontario.  grasses  concentrations  p a r t s of Canada.  throughout B r i t i s h  i n Northern  concentrations  soil,  t o Mo  of grasses.  similar  a v e r a g e Se  (1968) n o t e d grasses  and  i s considerably higher  legume f o r a g e  in  S t a t e s by  p r e v i o u s l y noted  A l s o , u n l i k e the p a t t e r n  elevated  al.  derived  has  PLANTS In c o n t r a s t to the  in  soil  i n the United  i n the U n i t e d  Background c o n c e n t r a t i o n s  consistent with  in soil  noted  of  Relatively  Swan R i v e r - D a u p h i n  less  than  0.1  et ppm  enhanced p l a n t  area are  probably,  205 in part, a result because as L a k i n  of the prevalent a l k a l i n e (1972) h a s p o i n t e d  the a v a i l a b i l i t y  oxidation  to the h i g h l y s o l u b l e selenate  nearly  conditions,  o u t , h i g h pH v a l u e s  to favour  With regard  soil  o f Se t o p l a n t s by p r o m o t i n g i t s form.  t o the h e a l t h i m p l i c a t i o n s of these  a l l concentrations  tend  data,  a r e a b o v e t h e 0.10 ppm minimum d i e t a r y  i n t a k e recommended f o r c a t t l e  ( N a t i o n a l Academy o f S c i e n c e s -  N a t i o n a l R e s e a r c h C o u n c i l , 1971) a n d b e l o w t h e g e n e r a l l y  accept-  ed minimum t o x i c  (1962).  Consistent with  limit these  o f 3-4 ppm s u g g e s t e d  f i n d i n g s , n e i t h e r Se r e s p o n s i v e  m u s c l e d i s e a s e n o r Se t o x i c i t y  are,  a t present,  m a j o r p r o b l e m s i n t h e Swan R i v e r - D a u p h i n  G.  APPLICATION OF REGIONAL RECONNAISSANCE  1.  noted data  considered  area.  GEOCHEMICAL  TECHNIQUES  i n t h e Rosetown a r e a  between n i t r i c - p e r c h l o r i c f o r p l a n t s and s o i l s when  basis,  a similar  relationship  c l o s e r e l a t i o n s h i p s were  e x t r a c t a b l e Cu, F e , Mn and Se expressed  on a p a r e n t  whereas g r a s s e s  occur  Keld Association s h a l e - t i l l  o f Swan R i v e r a r e somewhat e n r i c h e d r e l a t i o n s h i p between ammonium i s a l s o weak.  i n grasses  ( T a b l e XXXXVI)  a s s o c i a t e d w i t h Mo-poor c a l c a r e o u s  plant concentrations  material  i s n o t a p p a r e n t f o r Mo i n M a n i t o b a .  example o n l y b a c k g r o u n d Mo c o n c e n t r a t i o n s  g r o w i n g on M o - r i c h  The  white  SOIL Although  For  by Underwood  till  east  i n molybdenum ( T a b l e L I I ) .  o x a l a t e e x t r a c t a b l e Mo and I n t h e Swan  River-Dauphin  206 area,  therefore,  regional  use  i n predicting  2.  STREAM SEDIMENT' As  stated  soil  Mo d a t a a p p e a r s  plant compositional trends.  i n Chapter  I, stream  as an a p p r o x i m a t i o n t o a c o m p o s i t e overburden ideal  t o be o f l i t t l e  and s o i l ,  s e d i m e n t may be r e g a r d e d sample o f u p s t r e a m  a n d a s s u c h i t g e n e r a l l y c o n s t i t u t e s an  s a m p l i n g medium f o r r e g i o n a l g e o c h e m i c a l  studies  (Hawkes and Webb, 1 9 6 2 ) .  Furthermore  reconnaissance  i n the United  Kingdom Webb and h i s a s s o c i a t e s have b e e n n o t a b l y in  relating  to  similarly  and  enhanced  stream  elevated  sediment  cattle  Mo c o n c e n t r a t i o n s (> 3 ppm) ,  of both c l i n i c a l  (Thornton e t a l . ,  As  1972 a , b; Webb e t a l . ,  Dauphin  collected  over Mo-rich  area sediment i n associated  exceptional, exposures  bedrock.  and r e f l e c t  i n this  shale units  ( F i g 3 7 ) , Swan not r e l a t e d  s h a l e southwest  thin d r i f t  F o r example, v a l u e s f o r b o t h  anomalous s e d i m e n t s  soil  are generally  southwest  t o Mo  o f Dauphin a r e  the presence of stream-cut  area of r e l a t i v e l y  t h e Swan R i v e r V a l l e y  River-  Anomalous s e d i m e n t c o n c e n t r a t i o n s  Mo c o n c e n t r a t i o n s , on t h e o t h e r hand, d o r e f l e c t soil.  1968; T h o r n t o n  l o w Mo c o n c e n t r a t i o n s i n  values are normally  (>5 ppm) o v e r m o l y b d e n i f e r o u s  out  and p r e -  1970).  i n d i c a t e d by t h e g e n e r a l l y  sediment  of  soil  u n r e c o g n i z e d s u b c l i n i c a l M o - i n d u c e d Cu d e f i c i e n c y i n  and Webb,  levels  successful  c o n c e n t r a t i o n s i n a s s o c i a t e d bedrock,  f o r a g e , and t o t h e d i s t r i b u t i o n  viously  rock,  o f Dauphin  bedrock  cover. t h e Mo  and s e d i m e n t  Sediment status through-  l o w (<3 ppm), w h e r e a s are related  t o upstream  207 occurrences of  soil  units  t y p i c a l l y poor s o i l - p l a n t  levels in  of Mo-rich  i n stream  were n o t e d  compositional  sediment, l i k e  associated p l a n t s . For i n stream  those  in  c o n t r a s t to the  reconnaissance little in  value  Mo-rich  throughout  i n Mo,  Mo  ( < 3 ppm)  of  these  toxic  from  XXXXIX).  this  Consequently,  content  sediment are  of stream  a r e a s where e l e v a t e d Mo to give r i s e  to animal  however, t y p i c a l l y  concentrations  disorders.  area are  relatively  e n h a n c e d Mo  hand, a p p e a r s t o be  a consequence o f changes i n s o i l as d r a i n a g e  and  pH,  little  ability  l a r g e amounts  molybdenum. L o c a l l y  the a v a i l a b i l i t y  u p t a k e by  the  grasses,  on  which tend  locally  regionally  contain r e l a t i v e l y  i n legumes r e f l e c t  plants to concentrate  mental c o n d i t i o n s such  of  CONCLUSION  t h e Swan R i v e r - D a u p h i n  . Elevated values  of  the  other  environto i n c r e a s e  o f molybdenum.  W i d e s p r e a d Cu attributable,  values  w h e r e a s c o n c e n t r a t i o n s i n legumes a r e  enhanced. S o i l s ,  reflected  i n Manitoba,  t h e Mo  likely  Table  Mo  of other workers,  H.  enriched  are not  whereas g r a s s e s  ( F i g 3 8;  experience  in outlining  Grasses  in soils,  s e d i m e n t o b t a i n e d w i t h i n t h e Mo  d a t a on  vegetation are  relationships  example, o n l y b a c k g r o u n d Mo  a r e a o f Cunningham e t a l . ( 1 9 5 3 ) , area are r e l a t i v e l y  ( F i g 4 0 ) . However b e c a u s e  d e f i c i e n c y i n the  i n p a r t , to the  Swan R i v e r - D a u p h i n  consumption o f Mo-rich  However b e c a u s e o f p o o r s o i l - p l a n t  compositional  area i s feeds.  relationships,  208 neither  regional  soil  useful  in predicting  likely  to occur  nor  stream  sediment  survey data  a r e a s where e x c e s s i v e Mo  i n vegetation.  levels  are are  mo  CHAPTER V I CONCLUSION  209 A.  The of  STATEMENT OF THE PROBLEM  purpose o f t h i s  was t o examine t h e d i s t r i b u t i o n  t r a c e e l e m e n t s i n e a r t h s u r f a c e m a t e r i a l s on t h e S o u t h e r n  Canadian I n t e r i o r  P l a i n with  methods o f c o l l e c t i n g in  study  this  area-.  a v i e w t o recommending  and p r e s e n t i n g  Although  on  the Canadian p r a i r i e s  permit can  survey  tributary  everywhere w i t h  t e n t i o n was f o c u s e d variations  relatively  soil  effort at-  compositional  areas  In the t h i r d  conditions.  investigating  and s t r e a m s e d i m e n t .  this  d a t a was e v a l u a t e d  tent of forage  were  compositional v a r i a t i o n s  common,  and D a u p h i n ,  and e m p h a s i s was p l a c e d  o f Mo d i s t r i b u t i o n  The a g r i c u l t u r a l  i n both  s i g n i f i c a n c e of  i n t e r m s o f i n f o r m a t i o n on t h e Mo  p l a n t s and t h e d i s t r i b u t i o n  i n cattle.  of both r e -  a r o u n d Swan R i v e r  regional patterns  soil  In  o f t r a c e elements i n a s s o c i a t e d  area,  streams a r e r e l a t i v e l y  selected  t r a c e element content  soil  to the d i s t r i b u t i o n  wheat p l a n t s .  deficiency  separate  Rosetown and Red D e e r , t h e n a t u r e  I n t h e Rosetown a r e a  were r e l a t e d  on  little  environmental  g i o n a l and l o c a l v a r i a t i o n s i n s o i l  tributary  Because  on o b t a i n i n g i n f o r m a t i o n on  a range o f p r a i r i e  of these,  examined.  elsewhere,  i n this material.  represent  two  has been  purposes  technique.  S t u d i e s were u n d e r t a k e n i n t h r e e to  data  streams a r e t o o s c a r c e t o  routine a p p l i c a t i o n of this  be c o l l e c t e d  r e g i o n a l geochemical  stream sediment sampling  used e x t e n s i v e l y f o r reconnaissance  appropriate  con-  o f M o - i n d u c e d Cu  210 •B.  1.  SUMMARY  ROSETOWN AND RED DEER AREAS Regional v a r i a t i o n s  of  soils  i n t h e C u , F e , Mn, Zn a n d Se c o n t e n t  a r e i n f l u e n c e d t o a c o n s i d e r a b l e e x t e n t by c h a n g e s i n  soil  parent m a t e r i a l .  turn  t o be l a r g e l y  t h e Rosetown a r e a comparatively  This parent m a t e r i a l e f f e c t  controlled  appears i n  by t e x t u r a l v a r i a t i o n s .  Thus i n  lowest c o n c e n t r a t i o n s a r e a s s o c i a t e d with  c o a r s e g r a i n e d a e o l i a n sands,  alluvium, g l a c i a l est  OF RESULTS  till  and l a c u s t r i n e  values with fine grained  intermediate  silt  lacustrine  with  a n d s a n d , and h i g h -  clay.  I n t h e Red D e e r  a r e a c o m p o s i t i o n a l d i f f e r e n c e s between hummocky and g r o u n d moraines l i k e w i s e r e f l e c t  textural  materials.  further  bedrock  Red D e e r d a t a  type can a l s o  Approximately Mn and Zn d a t a and to  area,  suggest  influence t i l l  f o rC horizon s o i l , soil  i n t h e s e two  t h a t changes i n  t r a c e element  60% o f t h e v a r i a b i l i t y  30-46 cm (12-18 i n ) d e p t h differences  differences  content.  i n Rosetown Cu, F e ,  and o v e r  7 0%  variability  of the A horizon i s attributable  among p a r e n t m a t e r i a l means. . I n t h e Red D e e r  on t h e o t h e r hand, o n l y 14 t o 42% o f t h e C h o r i z o n  variations  c a n b e a s s i g n e d t o among p a r e n t m a t e r i a l s o u r c e s .  Comparatively reflect  l a r g e percentages  the presence  deposits,  data  f o r t h e Saskatchewan  of r e l a t i v e l y  and t h e r e s u l t a n t  coarse  sand  study  and f i n e  l a r g e d i f f e r e n c e s between  clay  extreme  mean v a l u e s . Cu,  F e , Mn a n d Zn c o n c e n t r a t i o n s i n i n d i v i d u a l A h o r i z o n  211 and  30  - 46  cm  (12-18 i n ) d e p t h m a t e r i a l c o l l e c t e d  Rosetown a r e g e n e r a l l y f a i r l y levels  closely  i n associated C horizons.  ( r > 0 . 9 0 ) , however, were n o t e d parent  related  when mean v a l u e s Effects  Analysis that are  among sample s i t e  the exception  t h e Red  areas,  significant  of g l a c i a l  Deer a r e a  estimated  lower f o r A  are  total  than  C  Significant  results  tionally For  summarized  e n h a n c e d Mn  differences for C  patterns  f o r these  indicates C horizons  with  Among t o w n s h i p v a r i a n c e  parent  m a t e r i a l s as w e l l as  typically  variance  non-significant.  for a given  com-  moraines In  both  parent m a t e r i a l i s  u s i n g Duncan's New i n map  (12-18 i n )  form d i s t i n g u i s h i n g o n l y  and  C horizon  composi-  m a t e r i a l groups.  sample means,  (1970)'s a d j u s t a b l e v a r i a n c e  as  test,  b e c a u s e o f c l o s e r e l a t i o n s h i p s be-  three m a t e r i a l s are very  collecting  soil  M u l t i p l e Range  similar. ratio  t h a t s t a b l e maps c o u l d have been p r o d u c e d by  Zn  horizons  f o r a l l parent materials  till.  the Saskatchewan study, 30-46 cm  and  f o r Rosetown d a t a i n d i c a t e  d i s t i n c t i v e parent m a t e r i a l s or parent  of T i d b a l l  processes  among p a r e n t m a t e r i a l v a r i a t i o n s f o r  tween A,  tion  individual  horizons.  means were i d e n t i f i e d and  results  compositional  p o n e n t s f o r Rosetown a r e a in  for  horizons.  of v a r i a n c e  statistically  to  of pedogenic  a r e most a p p a r e n t i n the c h a r a c t e r i s t i c a l l y in A  (r>0.50)  Much s t r o n g e r r e l a t i o n s h i p s  m a t e r i a l s were compared.  concentrations  around  few  as  5 samples per  map  Applica-  (Vm  =  5.0)  for .  parent m a t e r i a l ,  212 whereas f o r A h o r i z o n s I n t h e Red Deer a r e a required  2 s a m p l e s w o u l d have b e e n  a s many a s 30 C h o r i z o n  from each s u r f i c i a l  Rosetown a r e a coefficients  relating  Zn d a t a  t o be n e g a t i v e l y r e l a t e d .  when Cu, F e and  m a t e r i a l s were  A p p l i c a t i o n of  t o Cu, F e and Mn means f o r wheat g a v e those  Mn and F e a s s o c i a t e d w i t h  ing  parent  for soil.  Thus means f o r b o t h  l a c u s t r i n e c l a y were i n d i c a t e d t o be ,  h i g h e r , w h e r e a s Cu and Mn means f o r m a t e r i a l grow-  on a e o l i a n sand were shown t o be s i g n i f i c a n t l y  o t h e r mean  2.  than  SWAN RIVER-DAUPHIN AREA  area  settled  p o r t i o n s o f t h e Swan  River-Dauphin  a r e u n d e r l a i n , i n p a r t , by a s e q u e n c e o f Mo and Se e n -  riched  dark grey  to black  R i v e r , F a v e l and A s h v i l l e  shales belonging Formations.  to the V e r m i l l i o n  These bedrock u n i t s a r e  o v e r l a i n by a v a r i a b l e t h i c k n e s s o f e x o t i c g l a c i a l lacustrine deposits. survey  (<3  lower  values.  Agriculturally  on  positive  i s e x c e p t i o n a l i n t h a t mean p l a n t and s o i l  consistent with  significantly  Strong  ( r > 0 . 7 0 ) , however, were o b s e r v e d  (1955)'s t e s t  results  samples i n t h e  a r e g e n e r a l l y r e l a t i v e l y weak.  v a l u e s were f o u n d Duncan  Cu, F e , Mn, Zn and Se  i n i n d i v i d u a l wheat and s o i l  Mn means and Se m e d i a n s f o r s e p a r a t e compared.  samples w o u l d be  deposit.  Correlation coefficients concentrations  adequate.  and f o l l o w - u p  these  deposits  ppm).  Data from a r e c o n n a i s s a n c e soil  sampling  i n general  Enhanced  till  stream  indicate that s o i l s  contain uniformly  and g l a c i o -  low Mo  sediment developed  levels  s e d i m e n t Mo c o n c e n t r a t i o n s w i t h i n a s m a l l  213 area  s o u t h w e s t o f D a u p h i n , however, l e a d t o t h e  of  a limited  number o f  in  this  i s thin,  area  were d e t e c t e d developed  i n an  l o c a l l y Mo-rich and  highest  essentially  on V e r m i l l i o n R i v e r  body were a l s o a n o m a l o u s l y E n h a n c e d Mo in  grasses  Formations collected  concentrations  residual  shale.  concentrations  4,  throughout the  levels  (up  t o 42  ppm)  the  F i g 33).  induced  these  i n both  The  forage  (0.1 at  present  ppm)  and  Se  in  T h e r e a p p e a r s t o be o f p l a n t s and  Mo  content  ppm  grasses  value and  of  of  sociated  (> 5 ppm). i n forage  4.0.  and  In are  Further-  legumes a r e formally below  (Cu<10 ppm) in  Con-  and  Mo-  cattle  l e v e l s measured f o r a l i m i t e d safe  number range not  livestock.  little  soils  r e l a t i o n s h i p between t h e  e i t h e r when d a t a  for  i n stream sediment g e n e r a l l y r e f l e c t  soils  legumes  recommended f o r c a t t l e . simple  soils  overlying Ashville  consequently  regional patterns  Mo  individual  samples o r means f o r p a r e n t m a t e r i a l s a r e compared. centrations  soil  S e - r e l a t e d n u t r i t i o n a l d i s o r d e r s are  recognized  ppm)  locally  samples are w i t h i n the g e n e r a l l y a c c e p t e d  - 4.0  content  and  d e f i c i e n c y have b e e n n o t e d  throughout the r e g i o n . of  occur  v a l u e s , Cu:Mo r a t i o s  f i n d i n g s , both  (Cu:Mo<4.0) Cu  cover  t o 20  in this  region i s generally high  a b s o l u t e minimum o f 10  s i s t e n t with  (up  o f a l k a l i n e Mo-poor  commonly b e l o w t h e minimum a c c e p t a b l e concentrations  Drift  (Keld A s s o c i a t i o n )  Se  a variety  p a r t b e c a u s e o f e l e v a t e d Mo  more Cu  soil  c o n t a c t between t h e Swan R i v e r ( U n i t s 3 and  units.  high.  associated with  west o f the  soil  identification  Mo  levels of  Mo  conin  as-  214 distribution in  p l a n t Mo  i n stream  sediment a r e a l s o  unrelated to variations  content. C. RECONNAISSANCE GEOCHEMICAL  1.  INTRODUCTION Although  on  i n this  on s o i l  agricultural  a t t e n t i o n was  of producing  analyses,  concentrated  regional  and on e x a m i n i n g  geochemical  the p o t e n t i a l  v a l u e o f s u c h maps, i n M a n i t o b a i t was p o s s i b l e  evaluate the usefulness o f e s t a b l i s h e d reconnaissance  sediment sampling chloric to  investigation  assessing the f e a s i b i l i t y  maps b a s e d  to  SURVEYS  procedures.  Regional  e x t r a c t a b l e Mo i n s t r e a m  be u n r e l a t e d t o v a r i a t i o n s  cattle.  Thus, i n a d d i t i o n  d a t a on n i t r i c - p e r -  s e d i m e n t , however,  i n t h e Mo c o n t e n t  i n f o r m a t i o n on t h e d i s t r i b u t i o n  i t appears  i m e n t data  to being  found  of forage or  impractical  f o r general  tributary  t h a t on t h e Canadian p r a i r i e s  f o r Mo a t l e a s t ,  were  o f M o - i n d u c e d Cu d e f i c i e n c y i n  use because o f t h e absence o f w e l l developed systems,  stream  have r e l a t i v e l y  little  drainage  stream  sed-  agricultural  value. Results of s o i l that broad-scale differences  investigations,  soil  c o m p o s i t i o n a l p a t t e r n s , based  among mean c o n c e n t r a t i o n s f o r i n d i v i d u a l  parent materials, are related in  a s s o c i a t e d crops  elements. erial  based  on t h e o t h e r hand,  to compositional  for several nutritionally  In the following s e c t i o n , soil  sampling  procedures  indicate  on soil  variations important  trace  t h e r e f o r e , p a r e n t matpatternedtto a l a r g e extent  215 on  those developed  recommended  by Miesch  for application  are  Various  a r e then d i s c u s s e d i n d e t a i l .  RECOMMENDED PROCEDURES The  subareas  a r e a t o be s u r v e y e d f o r sampling  distribution of soil samples  a r e then  chosen s i t e s to  and h i s a s s o c i a t e s ,  on t h e Canadian p r a i r i e s .  aspects o f these procedures  2.  (19 76)  into several  p a r e n t m a t e r i a l s . Composite A h o r i z o n a t an e q u a l number o f r a n d o m l y  e a c h m a j o r p a r e n t m a t e r i a l . The d e c i s i o n as  how many s a m p l e s  what a r b i t r a r y .  divided  on t h e b a s i s o f i n f o r m a t i o n on t h e  collected  over  isfirst  to i n i t i a l l y  Results of this  collect study  i s necessarily  suggest  some-  that, for the  elements examined,  i f among p a r e n t m a t e r i a l c o m p o s i t i o n a l  ations  t o be l a r g e ,  a r e expected  presence 5 the to  o f coarse  sand  and f i n e  f o r example b e c a u s e o f t h e clay  d e p o s i t s , as few as  s a m p l e s p e r d e p o s i t a r e r e q u i r e d . I f , on t h e o t h e r i n f l u e n c e o f parent m a t e r i a l i s expected 30 s a m p l e s s h o u l d be t a k e n  After  sieving.samples  minus 100-mesh,  from  geometric materials.  t o be s m a l l , up  t o minus 10-mesh a n d g r i n d i n g t o  t r a c e element c o n c e n t r a t i o n s a r e measured  (base  10),  deviations(GD)  and g e o m e t r i c  calculated  data a r e then  means  (GM) and  for individual  parent  Samples c o n t a i n i n g c o n c e n t r a t i o n s i n e x c e s s 2  of  t h e GM x GD  hand,  each d e p o s i t .  using appropriate techniques. Compositional log-transformed  value  vari-  f o r any e l e m e n t a r e r e j e c t e d a s  216 probably  being  unrepresentative  a n a l y s i s of v a r i a n c e magnitudes of both components. (Vm  =  5.0)  of  the parent  population.  procedure i s a p p l i e d to estimate  w i t h i n and  Tidball  among p a r e n t  material  (1970)'s a d j u s t a b l e v a r i a n c e . r a t i o  to adequately  compositional  patterns.  collected  analysed  and  the  variance  i s used t o d e t e r m i n e whether s u f f i c i e n t  were c o l l e c t e d  An  d e s c r i b e among p a r e n t  I f necessary and  samples material  a d d i t i o n a l samples  the procedure f o r r e j e c t i n g  are  anomalous  samples r e a p p l i e d . The  significance  parent materials Range t e s t . t o be ed  i s evaluated  n o n - s i g n i f i c a n t data  relative  and  distinguishing  f o r the  Multiple  o r more means a r e  deposits  Results are f i n a l l y  individual  ( 1 9 5 5 ) ' s New  shown  i n v o l v e d are  w e i g h t e d means c a l c u l a t e d b a s e d on  sizes.  or parent  u s i n g Duncan  When d i f f e r e n c e s f o r two  together  3.  o f d i f f e r e n c e s among means f o r  summarized  only compositionally d i s t i n c t i v e  group-  their  i n map  form  parent  materials  m a t e r i a l groups.  DISCUSSION a)  Choice  of S i z e of  Effects  of v a r y i n g study  p a t t e r n s were n o t map  trends  mum  s i z e w o u l d be  include parent  Area  are  area  specifically  s i z e on  examined.  s o u g h t , however, one the  a sufficient materials.  On  requirement variety the  factor  geochemical If relatively limiting  t h a t i t be  hand  study  strong mini-  l a r g e enough  of c o m p o s i t i o n a l l y  other  the  map  area  to  distinctive boundaries  217 cannot  be e x t e n d e d  necessary  indefinitely  because,(1) g e n e r a l i z a t i o n s  f o r p r o d u c t i o n of final-maps  would g r e a t l y  limit  their  covering very  usefulness,and  areas be  the s i z e  areas  (2), b e c a u s e w i t h i n  parent m a t e r i a l compositional v a r i a b i l i t y increase with  large  w o u l d be e x p e c t e d t o  o f t h e r e g i o n examined, f o r v e r y  large  t h e s i g n i f i c a n c e o f among p a r e n t m a t e r i a l t r e n d s w o u l d  considerably Survey  reduced.  procedures  recommended were t e s t e d i n two a r e a s 2  ranging  i n size  sq  mi).  be  applied with  a b o u t 6,000 t o 10,000 km  I t i s tentatively  (6,000 s q m i ) . to  from  similar  results  This size  the area covered  suggested  (2,000 t o 4,000  that these procedures  i n a r e a s o f up t o a b o u t  i s convenient  15,000 km  because i t corresponds  by t h e N a t i o n a l T o p o g r a p h i c  Map S y s t e m ' s  1:250,000 s c a l e maps, a s w e l l a s many p u b l i s h e d s u r f a c e ical b)  geolog-  and b e d r o c k maps. Identification The  subareas  f o r sampling  subdivisions. subareas  of Target  Populations  a r e a t o be i n v e s t i g a t e d  pected d i f f e r e n c e s  i n such  s h o u l d be d i v i d e d  into  various  a manner a s t o m a x i m i z e t h e e x -  among mean s o i l  Results of this  concentrations f o r individual  investigation•  indicate  that  s h o u l d b e d e f i n e d on t h e b a s i s o f c h a n g e s i n s o i l p a -  rent m a t e r i a l type. of  could  the t o t a l  differences additional  F o r example,  data v a r i a b i l i t y  i n t h e Rosetown a r e a o v e r  f o r A horizons i s attributable to  among means f o r i n d i v i d u a l advantage i n the use of s o i l  t h a t , because they  tend  7 0%  t o cover  parent m a t e r i a l s .  An  parent m a t e r i a l s i s  relatively  large areas,a  s i n g l e mean v a l u e h a s c o n s i d e r a b l e r e g i o n a l s i g n i f i c a n c e .  218 Unfortunately quired  detail  surficial  a r e n o t a v a i l a b l e i n many C a n a d i a n  prairie  maps  f o r most  regions.  Soil  regions,  and t h e r e q u i r e d  obtained  from  ,however, h a v e b e e n p u b l i s h e d  attempt should  either  texturally  sand, s i l t  in the an  extensive  t e n d s t o be l o c a l l y  should  derived,  a l s o be e s t i m a t e d  initial  sampling plan  excessive  Deer a r e a ,  increase  the trace  separately.  element  distinctive  should  as w e l l , i f t h i s  i n the t o t a l  differ  In the case  be sampled  separately.  deposits  which  c o n s i s t i n g predominantly  o f moraines o v e r l y i n g c o m p o s i t i o n a l l y  s u r f a c e morphology o f t i l l  bed-  Differences  be r e c o g n i s e d i n  does n o t r e s u l t i n  sampling  load.  I n t h e Red  f o r example, g r o u n d and hummocky m o r a i n e s were  found t o d i f f e r It  bodies  or clay size material  units should  f o r sampling  or i n probable bedrock source.  of  rock  materials  b e made t o d i s t i n g u i s h d e p o s i t s  lacustrine deposits,  content  c a n g e n e r a l l y be  i n d i v i d u a l parent  of  Because t i l l  information  these.  When i d e n t i f y i n g an  g e o l o g i c a l maps s h o w i n g t h e r e -  should,  significantly  however, be e m p h a s i z e d  g e o l o g i c a l maps a r e o n l y actual pattern which d e f i n e  i n t h e i r mean Mn  generalized  of s u r f i c i a l  content.  t h a t , because  representations  deposits,  surface of the  i n d i v i d u a l map  units  t h e s u b a r e a s t o be s a m p l e d , c o n t a i n v a r i a b l e amounts  o f " f o r e i g n " m a t e r i a l w h i c h are n o t r e p r e s e n t a t i v e  o f the deposits  indicated.  therefore, are  in  The t a r g e t p o p u l a t i o n s  fact only  those s o i l s ,  which are a s s o c i a t e d with target populations  i n this  within  f o r sampling, the various  the deposit fashion, of  subareas  of interest.  recognized,  Defining  219 course, soil  has  the disadvantage  bodies,  too g e o g r a p h i c a l l y r e s t r i c t e d  r e g i o n a l maps, c o u l d be Although c o n t e n t was  the  not  relatively  effect  cultivated gation  of c u l t i v a t i o n  specifically  slight.  soil  on  t r a c e element  examined, g e n e r a l l y c l o s e r e -  f o r A and  C horizons  suggest  that i t  Furthermore because c u l t i v a t e d  and m e a n i n g f u l proposed  to d i s t i n g u i s h  on  s o i l s were n o t d i f f e r e n t i a t e d  tentatively  anomalous  overlooked.  l a t i o n s h i p s between d a t a is  t h a t geo.chemic.ally  soil  i n the present  p a t t e r n s were o b t a i n e d ,  t h a t f o r t r a c e e l e m e n t map  i n f l u e n c e of c u l t i v a t i o n  on  soil  and  composition  un-  investi-  i t is  production  need n o t be  the  con-  sidered.  c)  S e l e c t i o n of S o i l Because  soil  three d i s t i n c t w h i c h , i f any this 30  study  - 46  cm  Horizon  is characteristically  composed o f a t  g e n e t i c h o r i z o n s , the q u e s t i o n a r i s e s one  of these  i s most s u i t a b l e  the r e l a t i v e m e r i t s (12-18 i n ) d e p t h  o f A and  not  specifically  h o r i z o n i s not p r e s e n t  i n some s o i l s  as  to  f o r sampling.  C horizons  sample were compared.  n e s s o f B h o r i z o n s was  least  and  a  The  useful-  examined b e c a u s e  such  In  as R e g o s o l s  and  this Rego  Chernozems. B e c a u s e i n t h e Rosetown a r e a . t r a c e e l e m e n t in  A,  30-46 cm  (12-18 i n )  and  related,  essentially  similar  obtained  by  any  sampling  C horizons  concentrations  are g e n e r a l l y c l o s e l y  compositional  patterns could  of these m a t e r i a l s .  This close  be  220 relationship  is likely  l a c k of p r o f i l e region.  the e f f e c t s  the  of  the  expected,  o f s u r f a c e l e a c h i n g a r e more  N e v e r t h e l e s s , Chernozemic 80%  soils  like  o f the a g r i c u l t u r a l l y  those  parent m a t e r i a l , error concentrations  i s low  This characteristic  has  proaround  settled  Canadian  the advantage t h a t , f o r a g i v e n  associated with relative  e s t i m a t i o n o f mean  to that f o r subsurface  is especially  horizons.  u s e f u l because, other  e q u a l , a g r e a t e r p r o p o r t i o n of the  attributable  t o among mean d i f f e r e n c e s  total  data  on w h i c h f i n a l  Furthermore  A h o r i z o n s c a n be  ed w i t h c o n s i d e r a b l y l e s s  effort  subsurface  reconnaissance  d)  mapping p u r p o s e s ,  than  soils.  therefore, A horizon  geocollectFor  collec-  i s recommended.  Choice  o f Number and  Tidball to determine required  (1970)'s  Distribution  required  per d e p o s i t to adequately  (Vm)  i s used samples  describe differences  Application  each p a r e n t m a t e r i a l .  of t h i s  t h a t w i t h Vm  f o r a l l e l e m e n t s examined l e s s from  Sites  t h e minimum number o f r a n d o m l y c o l l e c t e d  t h e Rosetown a r e a , however, i n d i c a t e d 1.0,  o f Sample  adjustable variance ratio  p a r e n t m a t e r i a l mean v a l u e s .  to  factors  variability  c h e m i c a l maps a r e b a s e d .  tion  pre-  region.  A h o r i z o n sampling  is  to  o f t h e Greywooded Zone where L u v i s o l s  Rosetown o c c u p y o v e r  being  soils  Somewhat weaker r e l a t i o n s h i p s w o u l d be  d o m i n a t e and  prairie  t o some d e g r e e ,  development i n the Chernozemic  however, f o r s o i l s  nounced.  attributable,  than  one  among  statistic set  sample  in  equal was  These u n r e a l i s t i c a l l y  low  221  values  are attributable  which i n t u r n r e f l e c t deposits  i n this  t o l a r g e among mean  the presence  area.  differences,  o f coarse  sand  B e c a u s e w i t h Vm s e t e q u a l  a c c e p t a b l e r e s u l t s were o b t a i n e d ,  i t i s suggested  and f i n e  clay  t o 5.0 more that  this  h i g h e r v a l u e g e n e r a l l y be e m p l o y e d .  The  total  intention  sampling  l o a d c a n be g r e a t l y  i s to describe d e t a i l s  o f " w i t h i n " as w e l l a s "among"  parent material compositional v a r i a t i o n s . however, i n d i c a t e on  Results of this  that generally attention  horizon data v a r i a b i l i t y . s h i p s were n o t e d centrations  f o r over  Furthermore  soil  although  only differences predicting  and p l a n t s a s s o c i a t e d w i t h  from  among s o i l  geochemical  geographic  weak. Thus  surveys  of this  type.  t h e use o f a  that "within category"  components c o r r e s p o n d i n g  size.  of  c o m p o s i t i o n a l t r e n d s when  however, d o e s a d v o c a t e  d e s i g n such  separate  plant  i n t h e t r a c e element c o n t e n t o f  within parent material) data v a r i a b i l i t y into  for individual  (1976) h a s l i k e w i s e s t r e s s e d t h e i m p o r t a n c e  Miesch(1976), sampling  con-  means a p p e a r t o be o f v a l u e i n  c o n c e n t r a t i n g on "among c a t e g o r y " undertaking  relation-  t h e same p a -  t h e same s i t e were r e l a t i v e l y  regional variations  p l a n t s . Miesch  close  A  b e t w e e n Cu, F e and Mn mean and Se m e d i a n  for soils  samples  only  p r e v i o u s l y , around  70% o f t h e t o t a l  r e n t m a t e r i a l , r e l a t i o n s h i p s between d a t a and  study,  need be f o c u s e d  among p a r e n t m a t e r i a l p a t t e r n s . As n o t e d  Rosetown t h e s e p a t t e r n s a c c o u n t  increased i f the  "nested"  (ie. i n this  study,  c a n be p a r t i t i o n e d  to areas  T h i s i n f o r m a t i o n c a n be u s e d  of differing  t o maximize  222 follow-up  sampling  e f f i c i e n c y when a l a r g e p r o p o r t i o n o f  within parent  material data  in  small  relatively  that be  areas.  variability That  a d d i t i o n a l samples a r e  concentrated  areas,  i n only  thereby  (Tidball,  reducing  i s , when Vm  required,  a few the  t i m e and  a n a l y s i s , and  In a d d i t i o n , the  for  increase  complication  nested  that geographic  a l l map  validity with  of  alluvium,  this  the  evaluated,  study  can  restricted collection  final  were i n i t i a l l y  number o f  proposed  i s very as,  i s b a s e d on are  the  sampling. the  assum-  the  same  examined. Because  the  d o u b t f u l when d e a l i n g  lead,unnecessarily variance these  and  , to  estimates.  shortcomings  Therefore, has  been  Analysis practice,  t o minus  a l l soils  10-mesh and  in  this  then ground  minus 100-mesh p r i o r  to d i g e s t i o n . This procedure,  was  disadvantage t h a t the  found t o h a v e t h e  of  i s recommended.  agricultural sieved  samples  f o r example, a e o l i a n s a n d  importance of  and  design,  handling  t e s t s r e q u i r e random  mean and  random s a m p l i n g  i s standard  total  of a nested  statistical  n e s t i n g o f samples c o u l d  relative  use  (parent materials)  as d i s s i m i l a r  Sample P r e p a r a t i o n As  of  design  assumption  serious b i a s i n g of  e)  sampling  sample  components o f v a r i a b i l i t y  categories  deposits  until-  c o s t of  the  i n the  b e c a u s e many s t a t i s t i c a l  ption  follow-up  1976).  however, i n c l u d e an  data  occur  calculations indicate  such g e o g r a p h i c a l l y  Disadvantages associated with  for  i s found to  the  however,  g r i n d i n g stage  is  to  223 comparatively  t i m e c o n s u m i n g , e s p e c i a l l y when l a r g e numbers  samples r e q u i r e exploration sieving  sieving and  the  on  directly  of  finer  in this  fashion  r e l a t i o n s h i p between large  could  propor-  f r o m t h e m i n u s 80-mesh  surfaces.  reduce the  largely texturally controlled.  been examined f u r t h e r , t h e r e f o r e , procedures i s  As  (1976) has  Miesch  On  the  observed  other  represents  differences  a relatively  i n estimating  Mn  Zn  observed,  small  to  determinations,  therefore  methods f o r b o t h Se fluorimetric  240  and  procedure  has  standard  f o r most  reconnaissance  r a p i d , low-cost a n a l y t i c a l pro-  f r a c t i o n of  in this  d i g e s t i o n o f up  study,  samples and  Mo  are  the  generally total  Procedures involving  On  error i n -  f o r Cu,  the  absorption other  improvement b e c a u s e ,  is relatively  though r a p i d ,  Fe,  simultaneous  subsequent atomic  satisfactory.  require  f o r Se  c o l o r i m e t r i c method f o r Mo, precise.  a p p l i c a t i o n of  c a t e g o r y means.  a n a l y s i s used  appear  this question  adequate, because a n a l y t i c a l e r r o r  volved and  Until  hand,  suggested.  geochemical surveys r e l a t i v e l y cedures are  plant  l o o s e l y bound,, i n a p l a n t - a v a i l a b l e  particle  agricultural  de-  this  among p a r e n t m a t e r i a l means, b e c a u s e t h e s e d i f f e r e n c e s t o be  in  In a d d i t i o n to  data because a r e l a t i v e l y  soil  mineral  simply  time, a p p l i c a t i o n of  t r a c e elements e x t r a c t e d  form,on the  for  hand, c o n s i s t s  improve the  f r a c t i o n w o u l d p r o b a b l y be  sieving  other  sample p r o c e s s i n g  compositional the  the  Sample p r e p a r a t i o n  t o m i n u s 80-mesh.  procedure could  soil  tion  surveys,  soil  creasing  processing.  of  hand the  s l o w , whereas  i s not  the  sufficiently  224 f) Data The detail  Presentation s c a l e o f f i n a l map p r o d u c t i o n  of information  materials.  Scales  i s l i m i t e d only  on t h e d i s t r i b u t i o n o f i n d i v i d u a l p a r e n t  t h e r e f o r e may be v a r i e d  p u r p o s e f o r w h i c h maps a r e t o be u s e d . intention  i s to describe  only  chemical"background" against  those presented  d e p e n d i n g upon t h e  F o r example, where t h e  broad v a r i a t i o n s i n the  geo-  which t h e magnitude o f t h e e f f e c t s  o f p o l l u t i o n c a n be a s s e s s e d , r e l a t i v e l y as  by t h e  small  s c a l e maps  such  i n C h a p t e r s I I I and I V w o u l d be s a t i s f a c t o r y .  However, f o r v e t e r i n a r i a n s and o t h e r  agricultural scientists,  c o n c e r n e d w i t h t h e o c c u r r e n c e , o f t r a c e e l e m e n t i m b a l a n c e s on individual  farms, c o n s i d e r a b l y  more d e t a i l e d maps, w i t h  o f n o t l e s s t h a n a b o u t 1:250,000, w o u l d be Finally  i t should  be n o t e d  tinguishes significant  only  statistically,  among mean d i f f e r e n c e s .  composition.  Canadian p r a i r i e s , ations by mum  I t i s possible,  a t l e a s t a f a c t o r o f 1.5. proportional  differences  been t r e a t e d b r i e f l y  Multiple dis-  to " p r a c t i c a l l y " ,  That i s , s t a t i s t i c a l  sig-  s i g n i f i c a n c e i n terms o f f o r example, t h a t on t h e  f o r among p a r e n t m a t e r i a l  t o be r e f l e c t e d i n a s s o c i a t e d  ( 1 9 5 5 ) ' s New  f o r map p r o d u c t i o n ,  as opposed  n i f i c a n c e does n o t n e c e s s a r i l y imply plant  required.  t h a t Duncan  Range t e s t , w h i c h i s u s e d a s t h e b a s i s  scales  compositional  p l a n t s , means must  The p r o b l e m o f u s i n g  such  vari-  differ mini-  t o d i s t i n g u i s h between means h a s  by M i e s c h  (1976).  225 •D. . GENERAL CONCLUSIONS  Although  i n the B r i t i s h  (Webb and A t k i n s o n , successful variety  erally  1965; T h o r n t o n  i n relating  of n u t r i t i o n a l  the Southern  I s l e s Webb and h i s a s s o c i a t e s and Webb, 197 0)  r e g i o n a l stream imbalances  inadequate  sediment data  i n crops  Canadian I n t e r i o r P l a i n  d e n s i t y i s gen-  o f stream  sampling  techniques.  indicate  t h a t i n f o r m a t i o n on t h e d i s t r i b u t i o n  sediment i n w e s t - c e n t r a l Manitoba fying  a r e a s where e n h a n c e d  of this  sediment  investigation  o f Mo i n s t r e a m  i s of l i t t l e  value  i n identi-  f o r a g e Mo c o n c e n t r a t i o n s and a s -  s o c i a t e d M o - i n d u c e d Cu d e f i c i e n c y to  results  to a  and l i v e s t o c k , on  stream  f o r routine application Furthermore  have b e e n  in cattle  a r e most  likely  occur. Because s o i l  geochemical  i s available  surveys  based  n e a r l y everywhere,  on s o i l  sampling,  reconnaissance  on t h e o t h e r  c a n be a p p l i e d t h r o u g h o u t  the Canadian p r a i r i e s .  tantly,  r e l a t i o n s h i p s between p l a n t and  data  however, a l t h o u g h  a r e weak when v a l u e s f o r i n d i v i d u a l  More  hand,  imporsoil  samples c o l l e c t e d a t  t h e same s i t e a r e compared, when d a t a a r e summarized on t h e b a s i s o f mean c o n c e n t r a t i o n s a s s o c i a t e d w i t h v a r i o u s  parent  materials  exist for  relatively  strong s o i l - p l a n t  several nutritionally therefore priate the  that s o i l  significant  relationships  t r a c e elements.  s u r v e y d a t a , when e x p r e s s e d  f a s h i o n , c a n be u s e d  t r a c e element c o n t e n t  to predict  I t appears  i n an  appro-  regional variations i n  of associated plants.  It  i s suggested  on d e s c r i b i n g with  differences  individual  soil  recommended i n v o l v e s various tion  that reconnaissance s o i l  surficial  collection  Briefly  the procedure  o f A h o r i z o n samples from t h e  deposits within  t h e a r e a o f s t u d y and e s t i m a -  o f mean and v a r i a n c e v a l u e s f o r e a c h d e p o s i t .  cant differences map form  Range t e s t  the boundaries  to identify  signifi-  a r e summarized i n parent  groups.  of i n d i v i d u a l  survey areas a r e chosen  correspond t o those of the N a t i o n a l Topographic  1:250,000 s c a l e maps, t h e a g r i c u l t u r a l l y the Southern Canadian  Duncan  o n l y c o m p o s i t i o n a l l y unique  materials or parent m a t e r i a l  If  i s used  among means and r e s u l t s  distinguishing  focus  among mean c o n c e n t r a t i o n s a s s o c i a t e d  parent materials.  ( 1 9 5 5 ) ' s New M u l t i p l e  to  surveys  Interior Plain  settled  Map S y s t e m ' s  portion of  c o u l d be c o n v e n i e n t l y 2  divided  into  quadrangles. obtained  about  Assuming  about  on t h e a v e r a g e ,  20 s a m p l e s a r e  per parent m a t e r i a l  and 5 s u r f i c i a l  deposits are  each  t h a t over  investigation  t r a c e element occur.  concerned  prairie  geochemical  maps c o u l d be  r e g i o n by c o l l e c t i n g  only  T h i s number i s n o t l a r g e when i t i s c o n -  2,000 s o i l  s a m p l e s were t a k e n  f o r the present  alone.  Maps so p r o d u c e d  to  quadrangle,  f o r the e n t i r e  4,000 s a m p l e s .  sidered  (6,000 s q mi)  that,  recognized within produced  40 s e p a r a t e 15,000 km  c o u l d be u s e d  imbalances  to predict  i n c r o p s and l i v e s t o c k  a r e a s where a r e most  T h e y c o u l d a l s o be o f v a l u e t o m e d i c a l w i t h the d i s t r i b u t i o n  of trace  element  likely  scientists  related  227  disease states on v a r i a t i o n s prairies. ecologists line" of  they would p r o v i d e b a s i c  "background"  Such i n f o r m a t i o n i s o f fundamental and e a r t h s c i e n t i s t s .  man's a c t i v i t i e s  earth's  the growing  public  concern  d r a i n a g e systems  f o r environmental  geochemical  survey i n f o r m a t i o n  soil  sampling  a major r o l e  procedures  i n supplying  SUGGESTIONS FOR FURTHER WORK  investigations  expanding  examined. I n p a r t i c u l a r  are required  the range  to test  i n o t h e r Canadian o f elements  s h o u l d be i n v e s t i g a t e d parent materials  prairie  the strength o f r e l a t i o n s h i p s  ( c o a r s e sands  and f i n e c l a y s )  s h o u l d b e made  between  and p l a n t s  i n a r e a s where c o m p o s i t i o n a l l y  i t was n o t p o s s i b l e  effort  the usefulness  and p l a n t s p e c i e s  p a r e n t m a t e r i a l b a s e d mean c o n c e n t r a t i o n s f o r s o i l  a special  developed  are l a c k i n g over l a r g e p o r t i o n s o f the  the survey procedures proposed  A l s o , because  pro-  data.  Follow-up  environments,  quality  s c a l e . Because w e l l  s u r f a c e , parent m a t e r i a l based  E.  of  a"base-  impact  t o maximize a g r i c u l t u r a l  t h e demand f o r b a s i c  required  i t provides  c a n be a s s e s s e d .  s u c h as t h o s e recommended c o u l d p l a y the  value to both  In addition  e x p e c t e d t o i n c r e a s e on a g l o b a l  tributary  data  on t h e C a n a d i a n  t h e magnitude o f the environmental  t h e a w a r e n e s s o f t h e need  ductivity, is  i n the geochemical  a g a i n s t which  With and  i n man. F u r t h e r m o r e ,  extreme  are not represented.  t o do so i n t h e p r e s e n t s t u d y ,  228 to  relate  soil  compositional variations  the d i s t r i b u t i o n or  livestock.  for  Se  of t r a c e  element imbalances  A r o u n d Red  i n A horizon s o i l  t o i n f o r m a t i o n on in either  D e e r , f o r example, r e g i o n a l c o u l d be  crops patterns  compared w i t h d a t a on  the  i n c i d e n c e o f Se r e s p o n s i v e w h i t e m u s c l e d i s e a s e i n c a t t l e . In of  the  for  addition, suggested  t h e r e i s c o n s i d e r a b l e scope survey procedures.  possibilities  Shapter.  improvement were c o n s i d e r e d i n S e c t i o n C o f t h i s  T h e s e i n c l u d e , (1) u s e  of a nested  c o s t o f sample c o l l e c t i o n , 80-mesh t o m i n i m i z e of  Several  f o r refinement  Duncan  (1955)'s  (2)  sample d e s i g n t o r e d u c e  sieving  soil  sample p r o c e s s i n g t i m e New  directly and  (3)  the  t o minus replacement  M u l t i p l e Range t e s t w i t h a more  suitable  procedure. Basic  investigations  into  the nature  of c o m p o s i t i o n a l  r e l a t i o n s h i p s between b e d r o c k ,  soil  plants  environment  i n the Canadian  much u s e f u l erally d a t e no this on  information.  c o n s i d e r e d t o be attempt  i s true.  has  For  could also  example, a l t h o u g h  derived mainly  from  till  soils  i s gen-  l o c a l bedrock,  s o u r c e o f Mo  Similarly  little  specific  data are  available  t y p e c o u l d have been  f o r example, t o i d e n t i f y i n g  the probable  in soils  plants.  i n f o r m a t i o n from  to  b e e n made t o q u a n t i f y t h e e x t e n t t o w h i c h  R e s u l t s of s t u d i e s of t h i s  Manitoba,  and  provide  the provenance of m a t e r i a l i n other types of s u r f i c i a l  posits. in  prairie  parent material,  such  supporting Mo-rich  i n v e s t i g a t i o n s w o u l d be  value.when i n i t i a l l y d i v i d i n g  areas  t o be  deused  bedrock  Furthermore,  of c o n s i d e r a b l e  surveyed  into  229 parent m a t e r i a l based  The tion  subareas  i n f l u e n c e s of both  on s o i l  A nested  composition  sampling  pedogenic  processes  and c u l t i v a -  s h o u l d be examined more  design  c o u l d be employed  f o r sampling.  similar  to investigate  t o t h a t used  closely.  by T i d b a l l  the i n f l u e n c e of s o i l  on w i t h i n p a r e n t m a t e r i a l c o m p o s i t i o n a l v a r i a t i o n s Study areas  s h o u l d be c h o s e n t o i n c l u d e L u v i s o l i c  the e f f e c t s  of pedogenic  ticularly  apparent  fluence of c u l t i v a t i o n by  comparing  average  ratios  A and C h o r i z o n s f o r b o t h on  cultivated  for to  the reduced subsurface  error  t o be p a r The i n -  on t h e o t h e r  hand,  and uncultivated soil'developed  Related t o these  tempt s h o u l d be made t o d e t e r m i n e or sampling  because  of t r a c e element c o n c e n t r a t i o n s i n  t h e same p a r e n t m a t e r i a l .  cultivation  soils  t o t h i s Order.  c o u l d be a s s e s s e d ,  type  i n A horizons.  p r o c e s s e s w o u l d be e x p e c t e d  i n s o i l s belonging  (1976)  s t u d i e s , an a t -  whether pedogenic  procedures  factors,  are primarily responsible  i n mean e s t i m a t i o n f o r A h o r i z o n s  horizons associated with a p a r t i c u l a r  relative  surficial  deposit. Information elements occur clays be  etc.)  used  i s a l s o r e q u i r e d on how t h e f o r m  in prairie  affects  to design p a r t i a l  plant available  relative  a t t a c k used  soil  importance  o f such  factors  as s o i l  onto  could  which would  concentrations  i n this  c o u l d a l s o be u n d e r t a k e n  adsorbed  Such d a t a  e x t r a c t i o n procedures  the n i t r i c - p e r c h l o r i c  house experiments  (ie. i n solution,  t h e i r a v a i l a b i l i t y , to plants.  more a c c u r a t e l y r e f l e c t than  soil  i n which t r a c e  study.  Green-  to evaluate the E h , pH arid o r g a n i c  230 matter content i n t r a c e  element  manner i t s h o u l d be p o s s i b l e , responsible  u p t a k e by p l a n t s .  f o r example, t o i d e n t i f y  f o r t h e weak r e l a t i o n s h i p s  Mo and Zn c o n t e n t o f s o i l s  In\ this  and p l a n t s  factors  between d a t a on t h e noted i n t h i s  invest-  igation. In  addition  concentrations underlie  to these studies,  a survey of trace  i n t h e C r e t a c e o u s and y o u n g e r  the Canadian  Interior  P l a i n would  I n f o r m a t i o n o b t a i n e d c o u l d be u s e d , bedrock of  units  containing  nutritionally  predict  anomalously  significant  sediments  be v e r y  which  valuable.  f o r example, t o i d e n t i f y h i g h o r low l e v e l s  t r a c e elements,  t h e i n f l u e n c e o f changes  element  i n bedrock  as w e l l t y p e on  as t o soil  composition. Finally,  i f proven  ments , i t i s recommended p r o c e d u r e s be u s e d entire ent in  satisfactory  that parent m a t e r i a l based  t o produce  Southern Canadian  i n other prairie, environ-  basic  Isles,  Interior  Plain.  t h e s e maps w o u l d  e n v i r o n m e n t a l as w e l l  survey  g e o c h e m i c a l maps c o v e r i n g t h e  s u r v e y maps o f Webb and h i s c o l l e g u e s the B r i t i s h  soil  Like  the stream  (Webb e t a l . ,  sedim1968)  be o f c o n s i d e r a b l e  as a g r i c u l t u r a l v a l u e .  231 BIBLIOGRAPHY AHRENS, L.H., 1954. The lognormal d i s t r i b u t i o n o f elements. Geochim. Cosmochim. A c t a , 5 : 49-73. ALLAWAY, W.H. and CARY, E.E., 1964. Determination of submicrogram amounts of selenium i n b i o l o g i c a l m a t e r i a l s . A n a l . Chem., 36 : 1359-1362. ATLAS OF CANADA, 1957. Department of Mines and T e c h n i c a l Surveys, Geography Branch, Ottawa, Canada, P l a t e No. 35. BARSHAD, I . , 1948. Molybdenum content o f p a s t u r e p l a n t s i n r e l a t i o n to t o x i c i t y to c a t t l e . S o i l S c i . , 66 : 187195. BARSHAD, I . , 1951a. F a c t o r s a f f e c t i n g the molybdenum c o n t e n t of p a s t u r e p l a n t s : I. Nature of s o i l molybdenum, growth of p l a n t s and s o i l pH. S o i l S c i . , 71 : 297-313. BARSHAD, I . , 1951b. F a c t o r s a f f e c t i n g the molybdenum c o n t e n t of pasture p l a n t s ; II. E f f e c t o f s o l u b l e phosphates, a v a i l a b l e n i t r o g e n and s o l u b l e s u l f a t e s . Soil Sci. , 71 : 387-397. BOLTON, J.L., 1938. The occurrence of selenium i n western Canada and i t s e f f e c t on l i v e s t o c k . Canada Dept. A g r i c . Exp. Stn., S w i f t C u r r e n t , Sask., 23 pp. BOSTOCK, H.S., 1969. P h y s i o g r a p h i c r e g i o n s of Canada. G e o l o g i c a l Survey of Canada, Map No. 12 54 A. BOSTOCK, H.S., 1970. P h y s i o g r a p h i c s u b d i v i s i o n s o f Canada. i n , Geology and Economic M i n e r a l s of Canada. R.J.W. Douglas ed., G e o l o g i c a l Survey of Canada Economic Geology Rept. No. 1, pp. 10-30. BOWSER, W.E., PETERS, T.W. and NEWTON, J.D., 1951. S o i l survey of Red Deer sheet. A l b e r t a S o i l Survey Rept. No. 19, 8 6 pp. BOYDELL, A.N., 1973.. P e r s o n a l communication. of Canada, Ottawa, O n t a r i o .  G e o l o g i c a l Survey  BYERS, H.C. and LAKIN, H.W., 1939. Selenium i n Canada. Canadian J . o f Research, 17(B) : 364-369. CALDWELL, W.G.E., 1968. The L a t e Cretaceous Bearpaw Formation i n the southwest Saskatchewan R i v e r V a l l e y . Saskatchewan Research C o u n c i l , Geology D i v i s i o n , Report No. 8, 8 9 pp. CANNON, H.L., 1970. Trace element excesses and d e f i c i e n c i e s i n some geochemical p r o v i n c e s of the U n i t e d S t a t e s .  232 i n T r a c e S u b s t a n c e s i n E n v i r o n m e n t a l H e a l t h - I l l , D.D. H e m p h i l l ed., Univ. o f M i s s o u r i , Columbia, M i s s o u r i , pp. 21-43. CARRIGY, M.A., 1971. L i t h o s t r a t i g r a p h y o f t h e u p p e r m o s t C r e t a c e o u s (Lance) a n d P a l e o c e n e s t r a t a o f t h e A l b e r t a Plains. R e s e a r c h C o u n c i l o f A l b e r t a , B u l l . 27, 161 pp. CHAPMAN, L . a n d BROWN, D.M., 1966. T h e c l i m a t e s o f C a n a d a f o r agriculture. C a n a d a L a n d I n v e n t o r y R e p o r t No. 3.. CHERRY, J . A . a n d WHITAKER, S.H., 1969. G e o l o g y and g r o u n d w a t e r r e s o u r c e s o f t h e Y o r k t o n a r e a , Saskatchewan. Geology D i v i s i o n , S a s k a t c h e w a n R e s e a r c h C o u n c i l , Map No. 9. CHRISTIANSEN, E.A., 1973. Q u a t e r n a r y g e o l o g y and i t s a p p l i c a t i o n t o engineering p r a c t i c e i n t h e Saskatoon-ReginaWatrous a r e a , Saskatchewan. G e o l o g i c a l A s s o c . o f Canada, G u i d e b o o k , F i e l d T r i p "C", G.A.C. A n n u a l Mtng., S a s k a t o o n , 1973, 81 p p . CHRISTIANSEN, E.A. a n d MENELE.Y, W.A. , 1971. G e o l o g y and g r o u n d w a t e r r e s o u r c e s o f t h e Rosetown a r e a , S a s k a t c h e w a n . S a s k a t c h e w a n R e s e a r c h C o u n c i l , G e o l o g y D i v i s i o n , Map No. 14. CONNOR, J . J . a n d EBENS, R . J . , 1970. G e o c h e m i c a l s u r v e y o f geologic units. i n Geochemical Survey o f M i s s o u r i . P l a n s a n d p r o g r e s s f o r t h e t h i r d s i x - m o n t h p e r i o d , Openf i l e r e p o r t 1970, U.S. G e o l o g i c a l S u r v e y , D e n v e r , C o l o r a d o , pp. 5-15. CONNOR, J . J . , FEDER, G.L., ERDMAN, J . A . , a n d TIDBALL, R.R., 1972. Environmental geochemistry i n Missouri - a m u l t i d i s c i p l i n ary study. i n Proceedings o f t h e 24th I n t e r n a t i o n a l G e o l o g i c a l C o n g r e s s , 1972, Symposium 1, pp. 7-14. COSHOW, B., 1971. UBC ANOVAR : A n a l y s i s o f v a r i a n c e a n d c o variance. U n i v . o f B r i t i s h Columbia, Computing C e n t r e , 51 pp. COUPLAND, R.T., 1961. A r e c o n s i d e r a t i o n o f g r a s s l a n d c l a s s i f i c a t i o n i n t h enorthern Great P l a i n s of North America. J . o f E c o l o g y , 49 : 135-167. CRAIG, B.G., 1957. S u r f i c i a l g e o l o g y , D r u m h e l l e r , A l b e r t a . G e o l . S u r v . C a n . Map 13 - 1957. CUNNINGHAM, I . J . , BROWN, J.M., a n d E D I E , A.E., 1953. Molybdenum p o i s o n i n g o f c a t t l e i n t h e Swan R i v e r V a l l e y o f Manitoba. C a n . J . A g r i c . S c i . , 33 : 254-260. DELAVAULT, R.E., 1972. P e r s o n a l c o m m u n i c a t i o n . Dept. o f G e o l o g i c a l S c i . , Univ. o f B r i t i s h Columbia, Vancouver, B.C.  233 DIXON, W.J. and MASSEY, F . J . , 1969. a n a l y s i s . 3 r d ed. M c G r a w - H i l l  Introduction to s t a t i s t i c a l Book Co., T o r o n t o , 638 pp.  DOUGLAS, R . J . , 1968. G e o l o g i c a l map o f Canada. S u r v e y o f C a n a d a , Map No. 1250A. DOYLE,  Geological  P . J . , FLETCHER, K. and BRINK, V.C., 1973. Regional g e o c h e m i c a l r e c o n n a i s s a n c e and t h e molybdenum c o n t e n t o f b e d r o c k , s o i l s , and v e g e t a t i o n f r o m t h e e a s t e r n Yukon, i n T r a c e S u b s t a n c e s i n E n v i r o n m e n t a l H e a l t h - V I , D.D. H e m p h i l l ed., U n i v . o f M i s s o u r i , C o l u m b i a , M i s s o u r i , pp. 369-375.  DRYSDALE, R., 1975. P e r s o n a l communication. Province of M a n i t o b a , D e p t . o f A g r i c . , M a r k e t i n g and P r o d u c t i o n D i v . , Winnipeg, Manitoba. DUNCAN, D.B., 1955. M u l t i p l e range B i o m e t r i c s , 11 : 1-42.  and m u l t i p l e F  tests.  DUVAL, J . S . , SCHWARZER, T. and ADAMS, J.A., 1971. Lognormal d i s t r i b u t i o n of t r a c e elements i n the environment. i n Trace Substances i n Environmental Health-IV, D.D. H e m p h i l l e d . , U n i v . o f M i s s o u r i , C o l u m b i a , M i s s o u r i , pp. 120-131. EHRLICH, W.A., PRATT, L . E . and LECLAIRE, F.P., 1959. Report o f r e c o n n a i s s a n c e s o i l s u r v e y o f G r a n d v i e w map s h e e t area. M a n i t o b a D e p a r t m e n t o f A g r i c u l t u r e and C o n s e r v a t i o n , S o i l s R e p o r t No. 9, 96 pp. EHRLICH, W.A., PRATT, L . E . and LECLAIRE, F.P., 1962. Report d e t a i l e d r e c o n n a i s s a n c e s o i l s u r v e y o f Swan R i v e r map sheet area. M a n i t o b a D e p a r t m e n t o f A g r i c u l t u r e and C o n s e r v a t i o n , S o i l s R e p o r t No. 13, 79 pp. ELLIS,  of  J.G., ACTON, D.F. and MOSS, H . C , 1970. The s o i l s o f t h e Rosetown map a r e a . E x t e n s i o n D i v i s i o n , U n i v . o f S a s k a t c h e w a n , S a s k a t o o n , P u b l i c a t i o n No. 202. 159 pp.  FLETCHER, K., 1970. AAPPM: a c o m p u t e r p r o g r a m f o r . c o n v e r t i n g a b s o r b a n c e and a b s o r p t i o n v a l u e s i n t o c o n c e n t r a t i o n s . Dept. o f G e o l o g i c a l S c i . , Univ. o f B r i t i s h Columbia, Vancouver, B.C. FLETCHER, K., 1971. Atomic a b s o r p t i o n methods. Dept. of G e o l o g i c a l S c i . , Univ. o f B r i t i s h Columbia, Vancouver, B.C., 19 pp. FLETCHER, K., 1976. P e r s o n a l communication. Dept. of G e o l o g i c a l S c i . , Univ. of B r i t i s h Columbia, Vancouver, B.C. •>  FLETCHER, K., DOYLE, P. and BRINK, V.C., 1973. Seleniferous v e g e t a t i o n and s o i l s i n t h e e a s t e r n Yukon. Can. J . P l a n t S c i . , 53 : 701-703.  234 FORMAN, S.A. and RICE, H.M., 1959. A mineralogical some c o r e s a m p l e s f r o m t h e Bearpaw F o r m a t i o n . S o i l S c i . , 39 : 178-184.  study of Can. J .  FRASER, F . J . , McLEARN, F.H., RUSSELL, L.S., WARREN, P.S. and WICKENDEN, R.T., 1935. Geology of s o u t h e r n Saskatchewan. G e o l . S u r v e y o f Can. Mem. 17 6, 137 pp. FRIEDEN, E . , 1972. The c h e m i c a l e l e m e n t s A m e r i c a n , J u l y 1972, pp. 52-60.  of l i f e .  Scientific  GERRING, H., CARY, E . , JONES, L . and A l l a w a y , W., 1968. S o l u b i l i t y and r e d o x c r i t e r i a f o r t h e p o s s i b l e f o r m s o f selenium i n s o i l s . S o i l S c i . S o c . Amer. P r o c . 32 : 35-40. GODKIN, G.,1973. P e r s o n a l communication. Clinic, Innisfail, Alberta. GOLDSCHMIDT, V.M., 730 pp.  1954.  Geochemistry.  Innisfail Veterinary Clarendon Press,  Oxford,  GORSKI, L., HEINONEN, J . and SUSCHNY, O., 1974. Final report on t h e i n t e r c o m p a r i s o n o f t r a c e m u l t i e l e m e n t a n a l y s i s i n d r i e d a n i m a l b l o o d , c a l c i n a t e d a n i m a l bone, powdered m i l k , wheat f l o u r and d r i e d p o t a t o e s . RL/25. Int. At. E n e r g y A g e n c y , V i e n n a , A u s t r i a , 28 pp. GRAVENOR, C P . Alberta. Pub. No.  and BAYROCK, L.A., 1961. G l a c i a l d e p o s i t s of i n S o i l s i n Canada, R o y a l Soc. Can., S p e c . 3, pp. 33-50.  GREEN, R., 1972. of A l b e r t a , GRIGG, J . L . , soils.  G e o l o g i c a l map Map No. 35.  of A l b e r t a .  Research C o u n c i l  1953a. D e t e r m i n a t i o n o f a v a i l a b l e molybdenum o f New Z e a l a n d J . S c i . and T e c h . , 34 : 405-414.  GRIGG, J . L . , 1 9 5 3 b . D e t e r m i n a t i o n o f a v a i l a b l e New Z e a l a n d S o i l News, No. 3 : 37-40.  soil'molybdenum.  GUPTA, U.C. and MacKAY, D . C , 1966. The r e l a t i o n s h i p o f s o i l p r o p e r t i e s t o e x c h a n g e a b l e and w a t e r s o l u b l e c o p p e r and molybdenum s t a t u s i n p o d z o l s o i l s o f e a s t e r n C a n a d a . S o i l S c i . Soc. Amer. P r o c , 30 : 373-375. GUPTA, U. and WINTER, K., 1975. Selenium content of s o i l s c r o p s and t h e e f f e c t s o f l i m e and s u l f u r on p l a n t selenium. Can. J . S o i l S c i . , 55 : 161-166. HALM, J . , 1971. BMD07V: M u l t i p l e r a n g e t e s t s . Univ. B r i t i s h C o l u m b i a , C o m p u t i n g C e n t r e , 14 pp.  and  of  HALUSCHAK, P. and RUSSELL, A., 1971. T o t a l minor element o f s o i l s i n t h e P o r t a g e map a r e a o f M a n i t o b a .  content  235 Paper presented a t the Manitoba S o i l Science Meeting, Dec. 8 and 9, a t the U n i v e r s i t y of Manitoba, 8 pp. HAWKES, H.E., BLOOM, H., RIDDELL, J.E. and WEBB, J.S., 1956. Geochemical reconnaissance i n e a s t e r n Canada, i n Symposium on Geochemical P r o s p e c t i n g , 20th I n t . Geol. Cong., Mexico, 3 : 607-621. HAWKES, H.E. and WEBB, J.S., 1962. Geochemistry i n m i n e r a l e x p l o r a t i o n . Harper and Row, N.Y., 415 pp. HEDLIN, R.A., 1972. P e r s o n a l communication. Dept. of S o i l S c i e n c e , Univ. of Manitoba, Winnipeg, Manitoba. HEM, J.D., 1972. Chemical f a c t o r s t h a t i n f l u e n c e the a v a i l a b i l i t y of i r o n and manganese i n aqueous systems, i n Geol. Soc. Amer. S p e c i a l Paper 140, H.L. Cannon and H.C. Hopps eds., pp. 17-24. HODGSON, J.F., 1970. Chemistry of t r a c e elements i n s o i l s w i t h r e f e r e n c e t o t r a c e element c o n c e n t r a t i o n s i n p l a n t s . i n Trace Substances i n Environmental H e a l t h - I l l , D.D. Hemphill ed., Univ. of M i s s o u r i , Columbia, M i s s o u r i , pp. 45-58. HOFFMAN, S.J. and WASKETT-MYERS, M.J., 1974. Determination of molybdenum i n s o i l s and sediments w i t h a m o d i f i e d z i n c d i t h i o l procedure. J . Geochem. E x p l o r . , 3 : 61-66. HORSNAIL, R.F., NICHOL, I . and WEBB, J.S., 1969. I n f l u e n c e of v a r i a t i o n s i n the secondary environment on metal content of drainage sediments. Q u a r t e r l y df Colorado School o f Mines, 64 : 307-322. HOWARTH, R.J., 1971. F o r t r a n IV program f o r g r e y - l e v e l mapping of s p a t i a l d a t a . Math. Geol. 3 : 95-121. INTERNATIONAL ATOMIC ENERGY AGENCY. 1975. Reference m a t e r i a l (A-6/1975) f o r the d e t e r m i n a t i o n o f As, Co, C r , Cu, Fe, Hg, Mn, Se and Zn i n f i s h s o l u b l e s . LAB/24 3. IAEA I n f o r m a t i o n Sheet, Vienna, A u s t r i a , 3 pp. IRISH, E . J . , 1970. The Edmonton Group o f s o u t h - c e n t r a l A l b e r t a . B u l l . Can. P e t . Geol.', 18 : 125-155. JACKSON, M.L., 1964. Chemical composition o f s o i l s . i n The Chemistry of S o i l . F.E. Beared., Reinhold Pub. Co., N.Y. , pp. 71-141. JENSEN, E. and LESPERANCE, A., 1971. Molybdenum accumulation by f o r a g e p l a n t s . Agron. J o u r n a l , 63 : 201-204. JONES, L.H.P. 19 57. The s o l u b i l i t y o f molybdenum i n s i m p l i f i e d systems and aqueous s o i l suspensions. J . S o i l S c i . , 8 : 313-327.  236 KLASSEN, R.W., WYDER, J . E . and BANNATYNE, B.B., 1970. Bedrock topography and geology o f s o u t h e r n Manitoba. Geol. S u r v e y Can. P a p e r 70-51, Map 25 - 1970. KOROLEV, D.F., 1958. The r o l e o f i r o n s u l f i d e s i n t h e a c c u m u l a t i o n o f molybdenum i n s e d i m e n t a r y r o c k s o f t h e r e d u c e d zone. G e o c h e m i s t r y , No. 4, pp. 452-463. KOZAK, A., 1976. P e r s o n a l communication. Dept. o f F o r e s t r y , U n i v . o f B r i t i s h C o l u m b i a , V a n c o u v e r , B.C. KRAUSKOPF, K.B., 1956. F a c t o r s c o n t r o l l i n g the c o n c e n t r a t i o n s of t h i r t e e n r a r e elements i n sea-water. Geochim. e t Cosmochim. A c t a , 9 : 1-32. KUBOTA, J . a n d ALLAWAY, W.H., 1972. Geographic d i s t r i b u t i o n of t r a c e element problems. i n Micronutrients i n A g r i c u l t u r e , J . J . Mortvedt e d . , S o i l S c i . S o c . Amer., M a d i s o n , W i s c o n s i n , pp. 525-554. KUBOTA, J . , LEMON, E . and ALLAWAY, W., 1963. The e f f e c t o f s o i l m o i s t u r e c o n t e n t upon t h e u p t a k e o f molybdenum, c o p p e r and c o b a l t by A L s i k e c l o v e r . S o i l S c i . S o c . Amer., P r o c , 27 : 679-683. LAKIN, H.W., 1961. V e r t i c a l and l a t t e r a l d i s t r i b u t i o n o f selenium i n sedimentary rocks o f the Western U n i t e d States. i n S e l e n i u m i n A g r i c u l t u r e , A g r i c u l t u r e Handbook 200, U.S. D e p t . A g r i c , pp. 12-24. LAKIN, H.W., 1972. S e l e n i u m a c c u m u l a t i o n i n s o i l s and i t s a b s o r p t i o n by p l a n t s and a n i m a l s . G e o l . S o c . Amer. B u l l . 83 : 181-190. LANE,  LE,  J . C , 1966. Determination of selenium biological materials. Irish J . Agric. 5 : 177-183.  i n s o i l and Research,  C D . a n d SEAGRAVES, P., 1974. UBC STRP: S m a l l t r i a n g u l a r r e g r e s s i o n package. The U n i v e r s i t y o f B r i t i s h Columbia, C o m p u t i n g C e n t r e , 16 pp.  LeRICHE, H.H., 1959. The d i s t r i b u t i o n o f c e r t a i n t r a c e e l e m e n t s i n t h e Lower L a i s o f s o u t h e r n E n g l a n d . Geochim. e t Cosmochim, A c t a , 16 : 101-122. LESSARD, J.R., HIDIROGLOU, M., CARSON, R.B. and DERMINE, P., 1968. Intra-seasonal v a r i a t i o n s i n the selenium content of v a r i o u s f o r a g e crops a t Kapuskasing, O n t a r i o . Can. J . P l a n t S c i . , 48 : 58.1-585. LEVESQUE, M. and VENDETTE, E.D., 1971. Selenium i n s o i l and p l a n t m a t e r i a l s . Can. J . S o i l 85-93.  determination S c i . 51 :  237 L I T T L E , J . , 1973. D r i f t t h i c k n e s s a n d b e d r o c k g e o l o g y , Swan Lake a r e a . i n Ground Water A v a i l a b i l i t y S t u d y , Swan L a k e Map S h e e t . W a t e r R e s o u r c e s B r a n c h , M a n i t o b a D e p a r t ment o f M i n e s R e s o u r c e s a n d E n v i r o n m e n t a l Management, F i g . No. 3. LOWENSTEIN, P.L. a n d HOWARTH, R . J . , 1973. A u t o m a t e d c o l o u r mapping o f t h r e e - c o m p o n e n t s y s t e m s a n d i t s a p p l i c a t i o n t o r e g i o n a l geochemical reconnaissance. i n Geochemical E x p l o r a t i o n 1972, M.J. J o n e s e d . , T h e I n s t i t u t i o n o f M i n i n g and M e t a l l u r g y , pp. 297-304. MacS. STALKER, A., 1956. S u r f i c i a l g e o l o g y , B e i s k e r , G e o l . S u r v . C a n . P r e l . Map 55-7.  Alberta.  MACS. STALKER, A., 1960. S u r f i c i a l g e o l o g y o f t h e Red D e e r S t e t t l e r map-area, A l b e r t a . G e o l . S u r v . C a n . Mem. 306, 140 p p . MARSHALL, D., 1973. P e r s o n a l c o m m u n i c a t i o n . Dept. o f G e o l o g i c a l S c i e n c e s , Univ. o f B r i t i s h Columbia, Vancouver, B.C. MASON, B., 1966. P r i n c i p l e s o f G e o c h e m i s t r y . W i l e y a n d Sons, N.Y., 329 p p .  3rd ed.  John  MASSEY, D.L., 1972. M i c r o n u t r i e n t s - t h e i r p l a c e i n A l b e r t a agriculture. Seminar p r e s e n t e d t o t h e S o i l S c i e n c e D e p a r t m e n t , U n i v . o f A l b e r t a , Edmonton, 17 pp. MASSEY, H.F. a n d LOWE, R.H., 1961. H i g h molybdenum c o n t e n t of c e r t a i n Kentucky s o i l s . S o i l S c i . S o c . Amer. P r o c , 25 : 161-162. McLEAN, J.R., 1971. S t r a t i g r a p h y o f t h e Upper C r e t a c e o u s J u d i t h River Formation i n the Canadian Great P l a i n s . Saskatchewan Research C o u n c i l , Geology D i v i s i o n , Report No. 11 , 96 pp. MIESCH, A.T., 1967. Methods o f c o m p u t a t i o n f o r e s t i m a t i n g g e o c h e m i c a l abundance. U.S. G e o l . S u r v e y P r o f . P a p e r 574-B, 15 pp. MIESCH, A.T., 1970. S t a t i s t i c a l methods. i n Geochemical Survey o f M i s s o u r i . P l a n s and p r o g r e s s f o r t h e second six-month p e r i o d . U.S. G e o l . S u r v e y , D e n v e r , C o l o r a d o , pp. 17-18. MIESCH, A.T., 1976. G e o c h e m i c a l S u r v e y o f M i s s o u r i : Methods o f s a m p l i n g , l a b o r a t o r y a n a l y s i s , and s t a t i s t i c a l r e d u c t i o n of data. U.S. G e o l . S u r v e y P r o f . P a p e r 954-A, 39 pp. MILLS, J . G . a n d ZWARICH, M.A., 1975. Heavy m e t a l c o n t e n t o f a g r i c u l t u r a l s o i l s i n M a n i t o b a . C a n . J . S o i l S c i . , 55 : 295-300.  238 MILTIMORE, J.E. and MASON, J . , 1971. Copper t o molybdenum r a t i o and molybdenum and copper c o n c e n t r a t i o n s i n ruminant feeds. Can. J . Anim. S c i . , 51 : 193-200. MILTIMORE, J.E., vanRYSWYK, A.L., PRINGLE, W.L., CHAPMAN, F.M. and KALNIN, CM., 1975. Selenium c o n c e n t r a t i o n s i n B r i t i s h Columbia f o r a g e s , g r a i n s and processed feeds. Can. J . Anim. S c i . , 55 : 101-111. MITCHELL, R.L., 1957. The t r a c e element content of p l a n t s . Research: S c i e n c e and i t s A p p l i c a t i o n i n . I n d u s t r y , 10 : 357-362. MITCHELL, R.L., 1964. T r a c e elements i n s o i l s . i n Chemistry of the S o i l , 2nd ed., F.E. Baer ed., R e i n h o l d Pub. Co., N.Y., pp. 320-368. MITCHELL, R.L., 1972. T r a c e elements i n s o i l s and f a c t o r s that a f f e c t t h e i r a v a i l a b i l i t y . i n G e o l . Soc. Amer. S p e c i a l Paper 140, H.L. Cannon and H.C. Hopps eds., pp. 9-16. MORAN, S.R. and WHITAKER, S.H., 1969. Geology and groundwater r e s o u r c e s of the Hudson Bay area, Saskatchewan. Geology D i v i s i o n , Saskatchewan Research C o u n c i l , Map. No. 8. NATIONAL ACADEMY OF SCIENCES - NATIONAL RESEARCH COUNCIL, 1971. Selenium i n n u t r i t i o n . N a t i o n a l Academy of S c i e n c e s , Washington,.D.C., 79 pp. O'CONNOR, T.P. and KESTER, D.A., 1975. A d s o r p t i o n of copper and c o b a l t from f r e s h and marine systems,. Geochim. e t Cosmochim. A c t a , 39 : 1531-1543. ODDY, R.W., 1966. T r a c e elements i n Cretaceous r o c k s of Manitoba. M.Sc. T h e s i s , Department o f Geology, U n i v e r s i t y of Manitoba, Winnipeg, Manitoba. OLSON, O.E., 1969. F l u o r o m e t r i c a n a l y s i s of selenium i n plants. J . Assoc. O f f i c . A n a l . Chem., 52 : 627-634. ORVINI, E., GILLS, T. and LAFLEUR, P., 1974. Methods of d e t e r m i n a t i o n of selenium, a r s e n i c , z i n c , cadmium and mercury i n environmental m a t r i c e s by neutron a c t i v a t i o n a n a l y s i s . A n a l . Chem., 46 : 1294-1297. OWEN, B.D., 1972. P e r s o n a l communication. Dept. o f Animal S c i . , Univ. of Saskatchewan, Saskatoon. PATHAK, A.N., SHANKAR, H. and MISRA, R.V., 1969. C o r r e l a t i o n of a v a i l a b l e molybdenum v a l u e s o b t a i n e d by d i f f e r e n t methods t o molybdenum uptake by a l f a l f a . I n d i a n Soc. S o i l S c i . J . , 17 : 151-153.  239 PAWLUK, S. a n d BAYROCK, L.A., 1969. Some c h a r a c t e r i s t i c s and p h y s i c a l p r o p e r t i e s o f A l b e r t a t i l l s . Research C o u n c i l o f A l b e r t a , B u l l . 26, 72 pp. PETERS, T.W. and BOWSER, W.E., 1960. S o i l s u r v e y o f t h e Rocky M o u n t a i n House s h e e t . A l b e r t a S o i l S u r v e y R e p o r t No. 19, 50 p p . REDDY, M.R. and PERKINS, H.F., 1974. F i x a t i o n clay minerals. S o i l S c i . , . 121 : 21-24.  o f manganese b y  REISENAUER, H.M., 1965. Molybdenum. i n Methods o f S o i l A n a l y s i s , P a r t 2, C A . B l a c k e d . , Amer. S o c . Agronomy I n c . , M a d i s o n , W i s c o n s i n , pp. 1050-1058. REISENAUR, H., TABIKH, A. and STOUT, P., 1962. Molybdenum r e a c t i o n s w i t h s o i l s and t h e h y d r o u s o x i d e s o f i r o n , aluminum a n d t i t a n i u m . S o i l S c i . S o c . Amer. P r o c , 26 : 23-27. ROSE, A.W., 1975. The mode o f o c c u r r e n c e o f t r a c e e l e m e n t s i n s o i l s and s t r e a m s e d i m e n t s a p p l i e d t o g e o c h e m i c a l e x p l o r a tion, i n G e o c h e m i c a l E x p l o r a t i o n , 1974, K. F l e t c h e r and I . E l l i o t e d s . , I n s t i t u t e o f M i n i n g and M e t a l l u r g y , pp. 691-705. ROSENFELD, I . a n d BEATH, O., 1964. S e l e n i u m : g e o b o t a n y , b i o g e o c h e m i s t r y , t o x i c i t y and n u t r i t i o n . Academic P r e s s , N.Y., 411 pp. SAUCHELLI, V., 1969. T r a c e e l e m e n t s i n a g r i c u l t u r e . N o s t r a n d R e i n h o l d Co., T o r o n t o , 248 pp.  Van  SCOTT, J . S . , 1960. S u r f i c i a l g e o l o g y o f t h e E l b o w - O u t l o o k a r e a o f Saskatchewan, Canada. Ph.D. T h e s i s , D e p t . o f Geology, U n i v e r s i t y o f I l l i n o i s , Urbana, I l l i n o i s , 107 pp. SCOTT, J . S . , 1971. S u r f i c i a l g e o l o g y o f Rosetown map-area, S a s k a t c h e w a n . G e o l . S u r v . C a n . B u l l . 190, 4 0 pp. SHACKLETTE, H.T., ERDMAN, J . A . a n d K I E T H , J.R., 1971. Geochemical survey o f v e g e t a t i o n . i n Geochemical Survey o f M i s s o u r i . P l a n s and p r o g r e s s f o r t h e f o u r t h s i x month p e r i o d . U.S. G e o l . S u r v e y , D e n v e r , C o l o r a d o , pp. 27-46. SHACKLETTE, H.T., ERDMAN, J.A. and KIETH, J.R., 1972. Geochemical survey o f v e g e t a t i o n . i n Geochemical Survey of M i s s o u r i . P l a n s and p r o g r e s s f o r t h e s i x t h six-month p e r i o d , Open f i l e r e p o r t 1972, U.S. G e o l o g i c a l S u r v e y , D e n v e r , C o l o r a d o , pp. 58-79.  240 SMITH,  R.E., 1955. Molybdenum i n s o i l s , f o r a g e c r o p s and w a t e r s u p p l y i n t h e Swan R i v e r V a l l e y o f M a n i t o b a . M.Sc. T h e s i s , Department o f S o i l S c i e n c e , U n i v e r s i t y o f M a n i t o b a , 58 pp.  SNEDECOR, G.W., 1946. S t a t i s t i c a l m e t h o d s . 4 t h e d . , The C o l l e g i a t e P r e s s I n c . , Ames,Iowa," 485 pp. STANTON, R.E. a n d HARDWICK, A . J . , 1967. The c o l o r i m e t r i c d e t e r m i n a t i o n o f molybdenum i n s o i l s and s e d i m e n t s by zinc d i t h i o l . A n a l y s t , 92 : 387-390. STEEL, R.G. a n d TORRIE, J . H . , 1960. P r i n c i p l e s a n d p r o c e d u r e s of s t a t i s t i c s . M c G r a w - H i l l Book Co., I n c . , T o r o n t o , 481 pp. STEWART, J . and TAHIR, M., 1 9 7 1 . E s t i m a t i o n o f a v a i l a b l e z i n c in Prairie soils. P r o c . o f I n t . Symp. on S o i l F e r t i l i t y E v a l u a t i o n , 1 : 983-991. S T I L E S , W., 1946. T r a c e e l e m e n t s i n p l a n t s a n d a n i m a l s . C a m b r i d g e U n i v e r s i t y P r e s s , 18 9 pp. STOUT, P., MEAGHER, W., PEARSON, G. and JOHNSON, C., 1 9 5 1 . Molybdenum n u t r i t i o n o f c r o p p l a n t s : I . P l a n t and S o i l , 3 : 51-87. SWAINE, D . J . , 1955. T h e t r a c e e l e m e n t c o n t e n t o f s o i l s . Commonwealth B u r e a u o f S o i l S c i . , T e c h . Comm., No. 48. TAKAHASHI, T., 1972. The r e l a t i o n s h i p b e t w e e n a v a i l a b l e molybdenum i n s o i l s o f v o l c a n i c a s h o r i g i n a n d t h e molybdenum c o n t e n t o f r e d c l o v e r l e a v e s . P l a n t a n d S o i l , 36 : 665-674. THORNTON, I . , KERSHAW , G. a n d DAVIES, M., 1 9 7 2 a . An i n v e s t i g a t i o n i n t o copper d e f i c i e n c y i n c a t t l e i n the southern Pennines; I . I d e n t i f i c a t i o n o f s u s p e c t areas u s i n g geoc h e m i c a l r e c o n n a i s s a n c e f o l l o w e d by b l o o d copper s u r v e y s . J . A g r i . S c i . , Camb., 78 : 157-163. THORNTON, I . , KERSHAW, G. and DAVIES, M. , 1 9 7 2 b . An i n v e s t i g a t i o n i n t o copper d e f i c i e n c y i n c a t t l e i n the southern Pennines; I I . Response t o copper s u p p l e m e n t a t i o n . J. A g r i c . S c i . , Camb., 78 : 165-171. THORNTON, I . a n d WEBB, J . S . , 1970. G e o c h e m i c a l reconnaissance and t h e d e t e c t i o n o f t r a c e e l e m e n t d i s o r d e r s i n a n i m a l s . i n Trace Element Metabolism i n Animals, C F . M i l l s ed., WAAP/IBM Symposium, A b e r d e e n , S c o t l a n d , pp. 397-407. THORNTON, I . and WEBB, J . S . , 1 9 7 5 . T r a c e e l e m e n t s i n s o i l s and s u r f a c e w a t e r s c o n t a m i n a t e d b y p a s t m e t a l l i f e r o u s mining i n p a r t s o f England. i n Trace Substances i n  241 E n v i r o n m e n t a l H e a l t h - I X , D.D. H e m p h i l l e d . , M i s s o u r i , C o l u m b i a , M i s s o u r i , pp. 77-88.  Univ. of  THORVALDSON, T. a n d JOHNSON, L . , 1940. S e l e n i u m c o n t e n t o f S a s k a t c h e w a n wheat. C a n . J . R e s e a r c h , 18(B) : 138-150. TIDBALL, R.R., 1970. G e o c h e m i c a l s u r v e y o f s o i l s . i n Geoc h e m i c a l Survey o f M i s s o u r i , P l a n s and p r o g r e s s f o r t h i r d s i x - m o n t h p e r i o d , O p e n - f i l e r e p o r t 1970, U.S. G e o l o g i c a l S u r v e y , D e n v e r , C o l o r a d o , pp. 16-24. TIDBALL, R.R., 1971. G e o c h e m i c a l v a r i a t i o n i n M i s s o u r i s o i l s , i n T r a c e S u b s t a n c e s i n E n v i r o n m e n t a l H e a l t h - I V , D.D. H e m p h i l l e d . , U n i v . o f M i s s o u r i , C o l u m b i a M i s s o u r i , pp. 15-25. TIDBALL, R.R., 1973. P e r s o n a l c o m m u n i c a t i o n . Branch o f R e g i o n a l G e o c h e m i s t r y , U.S. G e o l . S u r v e y , D e n v e r , C o l o r a d o . TIDBALL, R.R., 1976. C h e m i c a l v a r i a t i o n o f s o i l s i n M i s s o u r i associated with selected levels of the s o i l c l a s s i f i c a t i o n system. U.S. G e o l . S u r v e y , P r o f . P a p e r 954-B, 16 pp. TOURTELOT, H.A., 1962. P r e l i m i n a r y i n v e s t i g a t i o n o f t h e g e o l o g i c a l s e t t i n g and c h e m i c a l c o m p o s i t i o n o f t h e P i e r r e Shale, Great P l a i n s region. U.S. G e o l . S u r v e y P r o f . P a p e r 390, pp. 1-74. TOURTELOT, H.A., 1964. M i n o r e l e m e n t c o m p o s i t i o n a n d o r g a n i c carbon c o n t e n t o f marine and nonmarine s h a l e s o f L a t e C r e t a c e o u s age i n t h e w e s t e r n i n t e r i o r o f t h e U n i t e d States. Geochim. e t Cosmochim. A c t a , 28 : 1579-1604. TUREKIAN,K.K. a n d WEDEPOHL, K.H., 1961. D i s t r i b u t i o n o f t h e e l e m e n t s i n some m a j o r u n i t s o f t h e e a r t h ' s c r u s t . G e o l . Soc. Amer. B u l l . , 72 : 175-192. TWARDY, A.G., PAWLUK, S. a n d LINDSAY, J.D., 1974. C o m p a r a t i v e study o f f o u r t i l l s i n w e s t - c e n t r a l A l b e r t a . Can. J . S o i l S c i . , 54 : 69-80. UNDERWOOD, E . J . , nutrition.  1962. T r a c e e l e m e n t s i n human a n d a n i m a l 2nd ed. A c a d e m i c P r e s s I n c . N.Y., 429 pp.  UNDERWOOD, E . J . , 1976. Molybdenum i n a n i m a l n u t r i t i o n . i n Molybdenum i n t h e E n v i r o n m e n t , V o l . 1, T h e B i o l o g y o f Molybdenum, W.R. C h a p p e l l a n d K.K. P e t e r s e n e d s . , M a r c e l D e k k e r I n c . , N.Y., pp. 9-31. VINE, J.D. a n d TOURTELOT, B., 1970. G e o c h e m i s t r y o f b l a c k s h a l e d e p o s i t s - a summary r e p o r t . E c o n . G e o l . , 65 : 253-272. 1  VINOGRADOV, A.P., 1959. T h e g e o c h e m i s t r y o f r a r e a n d d i s p e r s e d c h e m i c a l e l e m e n t s i n s o i l s . C o n s u l t a n t s B u r e a u , N.Y., 209 pp.  242 WALKER, D.R., 1971. S e l e n i u m i n f o r a g e s p e c i e s i n c e n t r a l Alberta. C a n J . S o i l S c i . , 51 : 506-508. WALKER, H. a n d LEV, J . , 1953. S t a t i s t i c a l i n f e r e n c e . R e i n h a r t a n d W i n s t o n , T o r o n t o , 510 pp.  Holt  WALKER, T.W., ADAMS, A . F . and ORCHISTON, H.D., 1954. The e f f e c t s and i n t e r a c t i o n s o f s u l f u r , phosphorous and molybdenum o n t h e g r o w t h a n d c o m p o s i t i o n o f c l o v e r s . New Z e a l a n d J . S c i . T e c h . S e c . A., 35 : 471-482. WATKINSON, J.H., 1960. F l u o r o m e t r i c d e t e r m i n a t i o n o f t r a c e s of selenium. A n a l . Chem., 32 : 931-933. WEBB, J . S . , 1964. G e o c h e m i s t r y 23 : 504-507.  and l i f e .  New  Scientist,  WEBB, J . S . a n d ATKINSON, W.J., 196 5. Regional geochemical r e c o n n a i s s a n c e a p p l i e d t o some a g r i c u l t u r a l p r o b l e m s i n Co. L i m e r i c k , I r e l a n d . N a t u r e , 208 : 1056-1059. WEBB, J.S.., NICHOL, I . a n d THORNTON, I . , 1968. T h e b r o a d e n i n g scope o f r e g i o n a l geochemical r e c o n n a i s s a n c e . i n P r o c e e d i n g s o f 23rd I n t e r n a t i o n a l G e o l o g i c a l Congress, V o l . 6, pp. 131-147. WEBB, J . S . , THORNTON, I . a n d FLETCHER, K., 1966. S e l e n i f e r o u s s o i l s i n p a r t s o f E n g l a n d a n d W a l e s . N a t u r e , 211 : 327. WEBB, J . S . , THORNTON, I . and FLETCHER, K., 1968. Geochemical r e c o n n a i s s a n c e a n d h y p o c u p r o s i s . N a t u r e , 217 : 1010-1012. WICKENDEN, R.T., 1945. M e s o z o i c s t r a t i g r a p h y o f t h e E a s t e r n P l a i n s , M a n i t o b a and S a s k a t c h e w a n . G e o l . Surv. Can. Mem. 2 39, 87 pp. WILKIE, J . B . a n d YOUNG, M., 1970. Improvement o f t h e 2 , 3 - d i a m i n o napthalene reagent f o r rnicrofluorescent determination of selenium i n b i o l o g i c a l materials. J . A g r i c . and F o o d Chem., 18 : 944-945. WILLIAMS, K., LAKIN, H.W. a n d BYERS, H.G., 1941. S e l e n i u m i n Canada. i n Selenium Occurrence i n C e r t a i n S o i l s in the United States with a Discussion of Related Topics. U.S. D e p t . A g r i c . T e c h . B u l l . 758, pp. 46-55.  243 APPENDIX A PROCEDURE FOR THE FLUOROMETRIC DETERMINATION OF SELENIUM IN BOTH PLANT AND GEOLOGICAL MATERIALS SPECIAL APPARATUS Turner Model 111 fluorometer equipped w i t h #7-60 primary f i l t e r , a combination o f #58 and #2A-15 secondary f i l t e r s , a 1% n e u t r a l d e n s i t y f i l t e r and 12 x 100 mm glass cuvettes. REAGENTS a) Ammonium hydroxide - d i l u t e 400 ml of c o n c e n t r a t e d NH^OH t o 1 L w i t h d i s t i l l e d water. b) A r s e n i c s o l u t i o n - d i s s o l v e 250 mg o f a r s e n i c t r i o x i d e and 2 g of sodium hydroxide i n 200 ml o f water.. c) DAN s o l u t i o n - d i s s o l v e 0.25 g o f 2,3-diaminonapthalene ( A l d r i c h Chemical Company) i n 25 ml o f c o n c e n t r a t e d HCl and d i l u t e t o 250 ml w i t h d i s t i l l e d water. E x t r a c t s o l u t i o n w i t h 10 ml hexanes, shaking i n a s e p a r a t o r y f u n n e l 4 times o n l y , and a l l o w i n g 3 t o 4 minutes f o r the mixture t o separate. Repeat e x t r a c t i o n 3 a d d i t i o n a l times. Store s o l u t i o n under about 0.5 cm o f hexanes i n a brown b o t t l e i n a r e f r i g e r a t o r i t should be s t a b l e f o r s e v e r a l weeks. d) EDTA s o l u t i o n - 0.04M - d i s s o l v e 7.445 g N a H EDTA.2H 0 along with 50 g hydroxylamine h y d r o c h l o r i d e i n 500 ml of d i s t i l l e d water. 2  2  2  e) Formic a c i d s o l u t i o n - add 250 ml 91% formic a c i d t o 250 ml d i s t i l l e d water. f)  I n d i c a t o r s o l u t i o n - d i s s o l v e 100 mg o f the sodium s a l t of m-cresol p u r p l e i n 100 ml o f d i s t i l l e d water.  g) Selenium standard s o l u t i o n - 100 yg/ml - d i s s o l v e 100 mg elemental Se i n 5 ml c o n c e n t r a t e d HNO_ and 2 ml conc e n t r a t e d HCl and d i l u t e t o 1 L w i t h d i s t i l l e d water. T h i s s o l u t i o n should be s t a b l e f o r up t o two.months. Prepare a f r e s h 1yg/ml s o l u t i o n from t h i s stock s o l u t i o n b e f o r e each d e t e r m i n a t i o n . h) H y d r o c h l o r i c a c i d - 0.1 M - add 10 ml concentrated HCl t o 990 ml d i s t i l l e d water. - 6 M - add 600 ml concentrated HCl t o 400 ml of d i s t i l l e d water.  244 3.  PROCEDURE a)  Samples ( i ) D i g e s t i o n : P l a n t M a t e r i a l s : Weigh a n a p p r o p r i a t e amount ( u s u a l l y 0.500 g) o f g r o u n d sample i n t o a 12 5 m l e r l y h m y e r f l a s k . Add 15 m l o f 4:1 n i t r i c p e r c h l o r i c a c i d , c o v e r f l a s k w i t h w a t c h - g l a s s and p l a c e on warm h o t p l a t e o v e r n i g h t . The f o l l o w i n g m o r n i n g remove w a t c h - g l a s s a n d r a i s e h o t p l a t e temperature u n t i l s o l u t i o n b o i l s gently. Evaporate t o a b o u t 5 m l a n d remove f r o m h e a t . I f undissolved f a t t y m a t e r i a l i s v i s i b l e on t h e s u r f a c e o f c o o l e d s o l u t i o n , p l a c e a s m a l l g l a s s f u n n e l i n f l a s k mouth and r e f l u x g e n t l y o n h o t p l a t e u n t i l f a t s a r e d i s s o l v e d , i f n e c e s s a r y a d d i n g a few m i l l i l i t e r s o f concentrated n i t r i c acid. Remove f u n n e l , r a i s e hot p l a t e t e m p e r a t u r e and e v a p o r a t e t o t h e f i r s t a p p e a r a n c e o f w h i t e p e r c h l o r i c a c i d fumes. Cont i n u e fuming f o r a p p r o x i m a t e l y 15 m i n u t e s , b e i n g careful not to allow solution t o approach dryness. G e o l o g i c a l M a t e r i a l s : P l a c e a s u i t a b l e weight (usua l l y 0.500 g) g r o u n d sample i n a 100 ml b e a k e r . Add 15 m l o f 4:1 n i t r i c - p e r c h l o r i c a c i d , c o v e r w i t h w a t c h - g l a s s a n d h e a t on warm h o t p l a t e o v e r n i g h t . The f o l l o w i n g m o r n i n g remove w a t c h - g l a s s a n d r a i s e hot p l a t e temperature u n t i l s o l u t i o n b o i l s g e n t l y . E v a p o r a t e d i r e c t l y t o p e r c h l o r i c a c i d fumes, a n d t h e n fume f o r a b o u t 15 m i n u t e s a s d e s c r i b e d above.  (ii)  A r s e n i c c o p r e c i p i t a t i o n : C o o l s o l u t i o n - , a d d 10 ml 6 M HCI a n d b r i n g t o a r a p i d b o i l . F i l t e r warm s o l u t i o n t h r o u g h Watman #541 p a p e r i n t o a t a p e r e d 40 m l g l a s s c e n t r i f u g e t u b e . Rinse e i t h e r f l a s k or b e a k e r w i t h 5 m l 6 M HCI a n d t r a n s f e r t o c e n t r i f u g e tube. Add 2 ml a r s e n i c s o l u t i o n and 5 ml hypophosphorous a c i d and mix c o n t e n t s . P l a c e tube i n a h o t w a t e r b a t h a t 90°C f o r a t l e a s t one h o u r . When p r e c i p i t a t i o n i s c o m p l e t e c e n t r i f u g e a t h i g h s p e e d f o r 10 t o 15 m i n u t e s . Draw o f f s u p e r n a t a n t l i q u i d through a f i n e - t i p p e d g l a s s tube attached t o an a s p i r a t o r , b e i n g c a r e f u l . . t o a v o i d r e m o v i n g p r e cipitated arsenic. Wash p r e c i p i t a t e i n 10 m l d i s t i l l e d w a t e r , r e c e n t r i f u g e f o r 10 m i n u t e s a n d draw o f f l i q u i d phase as b e f o r e .  (iii)  R e a c t i o n w i t h DAN: D i s s o l v e p r e c i p i t a t e i n 1 ml concentrated n i t r i c acid. Add 5 m l 0.1 M H C I , mix a n d t r a n s f e r s o l u t i o n t o 100 m l b e a k e r . Rinse t u b e w i t h 5 m l 0.1 M HCI a n d a d d t o b e a k e r . Bring s o l u t i o n r a p i d l y t o a b o i l on h o t p l a t e , remove and c o o l .  245 Add 10 m l 0.1 M HCI, 5 m l EDTA s o l u t i o n , 5 m l f o r m i c a c i d s o l u t i o n and two d r o p s o f i n d i c a t o r s o l u t i o n t o beaker. T i t r a t e w i t h NH.OH s o l u t i o n u n t i l sample c o l o r i s o r a n g e i n d i c a t i n g t h a t t h e pH i s a p p r o x i m a t e l y 1.8 ( f o r more p r e c i s e r e s u l t s pH s h o u l d be c h e c k e d w i t h a m e t e r ) . Place b e a k e r i n h o t w a t e r b a t h a t 70°C and c o v e r w i t h a watch-glass. A f t e r a b o u t 15 m i n u t e s remove f r o m b a t h , a d d 2 m l DAN s o l u t i o n , m i x a n d r e p l a c e c o v e r ed b e a k e r i n b a t h f o r e x a c t l y 30 m i n u t e s . Remove and c o o l b e a k e r f o r 30 t o 40 m i n u t e s . T r a n s f e r b e a k e r c o n t e n t s t o 60 m l s e p a r a t o r y f u n n e l and add 8 ml hexanes. S t o p p e r and shake 4 t i m e s o n l y . A l l o w a minimum o f 3 t o 4 m i n u t e s f o r p h a s e s t o s e p a r a t e a n d d r a i n o f f aqueous l a y e r . P i p e t t e 5 m l hexanes i n t o a c u v e t t e f o r f l u o r e s e n c e measurement b e i n g c a r e f u l t o a v o i d f o r m a t i o n o f w a t e r d r o p l e t s on t h e i n s i d e o f c u v e t t e w a l l s .  b)  Blank  and S t a n d a r d s  D e t e r m i n a t i o n s a r e c a r r i e d o u t i n b a t c h e s o f 16. E a c h b a t h i n c l u d e s one b l a n k , one 0.4 y g a n d one 1.5 g Se s t a n d a r d . B l a n k s and s t a n d a r d s a r e taken through the e n t i r e procedure i n c l u d i n g t h e d i g e s t i o n step. y  c) O p e r a t i o n o f F l u o r o m e t e r Using the combination of f i l t e r s described i n the s e c t i o n o n S p e c i a l A p p a r a t u s t h e Se-DAN c o m p l e x i s i r r a d i a t e d a t a p p r o x i m a t e l y 365 my and t h e r e s u l t a n t f l u o r e s e n c e m e a s u r e d a t a b o u t 535 my. W i t h t h e r a n g e s e l e c t o r s e t a t 3.x z e r o t h e f l u o r e s e n c e d i a l w i t h a dummy c u v e t t e . M e a s u r e b l a n k f l u o r e s e n c e and r e s e t i n s t r u m e n t t o z e r o on b l a n k sample. Measure t h e f l u o r e s e n c e o f t h e 0.4yg Se s t a n d a r d a n d e s t a b l i s h a c a l l i b r a t i o n curve. M e a s u r e sample f l u o r e s e n c e v a l u e s and r e c o r d t h o s e g i v i n g a s c a l e d e f l e c t i o n l e s s t h a n t h a t o f t h e 0.4yg s t a n d a r d . A d j u s t range s e l e c t o r t o lx. Reraeasure b l a n k f l u o r e s e n c e and z e r o i n s t r u m e n t as d e s c r i b e d p r e v i o u s l y . Establish a callibration c u r v e u s i n g b o t h t h e 0.4 a n d 1.5yg Se s t a n d a r d s a n d m e a s u r e f l u o r e s e n c e o f s a m p l e s c o n t a i n i n g more t h a n 0.4 yg Se. F o r s a m p l e s c o n t a i n i n g i n e x c e s s o f 1.5 y g Se a new c a l l i b r a t i o n c u r v e c a n b e d e t e r m i n e d w i t h r a n g e s e l e c t o r a t 3x and a 1% n e u t r a l d e n s i t y f i l t e r i n s e r t e d between t h e u l t r a v i o l e t s o u r c e a n d sample cuvette. The f l u o r e s e n c e - c o n c e n t r a t i o n r e l a t i o n s h i p i s a p p r o x i m a t e l y l i n e a r up t o a b o u t 3.0 yg Se. Samples c o n t a i n i n g l a r g e r amounts o f Se s h o u l d be r e a n a l y s e d u s i n g a s m a l l e r sample w e i g h t . T y p i c a l blank and  246 s t a n d a r d f l u o r e s e n c e measurements f o r 3x and range s e l e c t o r s e t t i n g s a r e g i v e n below. Se  Fluoresence  lx  Reading*  Added  Blank 0.4  yg  1.5  yg  Mean and r a n g e ; parentheses.  4.  3x  lx  25.5 22-28 (10) 80.0 63-93 (10)  9.0 7.5-11.0 (13) 27.5 24-30 (12) 99.0 90-107 (13)  number o f measurements i n  NOTES a)  The e n t i r e p r o c e d u r e i s c a r r i e d laboratory illumination.  out under  normal  b)  M a j o r i t e m s o f g l a s s w a r e a r e r i n s e d i n t a p and d i s t i l l e d water between each b a t c h , e x c e p t f o r c u v e t t e s w h i c h a r e c l e a n e d w i t h a l c o h o l and d r i e d i n a c e t o n e .  c)  Separatory f u n n e l s are equipped w i t h t e f l o n stopcocks to a v o i d c o n t a m i n a t i o n from g l a s s stopcock g r e a s e .  d)  The p r o c e d u r e t a k e s two samples t y p i c a l l y b e i n g arsenic coprecipitation  e)  The method d e s c r i b e d c o m b i n e s a s p e c t s o f s e v e r a l p r e v i o u s l y published procedures. The o r i g i n a l s o u r c e s a r e c i t e d i n C h a p t e r I I , p. 37.  f u l l days t o complete w i t h s t o r e d o v e r n i g h t a f t e r the stage.  APPENDIX  B  COMPUTATIONAL PROCEDURES FOR S T A T I S T I C A L TREATMENT OF THE DATA  DATA  TRANSFORMATION x = l o g 10 y ,  where y r e p r e s e n t s a n i n d i v i d u a l d a t a e x p r e s s e d e i t h e r i n ppm o r p e r c e n t . ESTIMATION OF POPULATION a) G e o m e t r i c Mean  value  PARAMATERS  (GM)  GM = 1 0 , X  where x  i s calculated as: n x =  ,  1=1  n and n r e p r e s e n t s t h e number o f s a m p l e s i n the p o p u l a t i o n of i n t e r e s t . b) G e o m e t r i c D e v i a t i o n  (GD)  s GD = 10 where  s„  X  ,  i s calculated as: n E i=l  _ (x.-x)  2  1  n-1  IDENTIFICATION OF OUTLIERS A sample was r e j e c t e d a s p r o b a b l y u n r e p r e s e n t a t i v e o f the p a r e n t p o p u l a t i o n i f f o r any element,  xy  x +  2s  .  248 4.  TESTS OF  SIGNIFICANCE  a) L i n e a r C o r r e l a t i o n C o e f f i c i e n t (r)  i=l  r =  (  n E  x  (  l i  "  X  l  }  (  2 i~  x  _ 2 - x )  X l J  X  2  )  n  E 1=1  n  (x  2 i  - 2 - x .) 2  where x^ and x t y p i c a l l y represent values f o r the same e l e m e n t i n two d i f f e r e n t sample t y p e s and n i s t h e number o f d a t a p a i r s . 2  The p r o b a b i l i t y t h a t r i s n o t i n f a c t e q u a l t o zero i s determined using the " t " s t a t i s t i c c a l c u l a t e d as: t =  r  J(n-2) /'(l-r ) 2  N  /  The c a l c u l a t e d " t " v a l u e i s t h e n compared t o v a l u e s i n s t a n d a r d " t " t a b l e s f o r n-2 d e g r e e s o f f r e e d o m (Snedecor, 1946). b) A n a l y s i s o f V a r i a n c e Computational procedures f o r p a r t i t i o n i n g data v a r i a n c e i n t o among and w i t h i n g r o u p s o u r c e s a r e summarized i n Table B - l . I n t h e c a s e where t h e r e were an u n e q u a l number of o b s e r v a t i o n s w i t h i n separate groups the value of "b" i n T a b l e B - l i s c a l c u l a t e d a s : a b =. -. i=l  n. l  f. , i  where n. r e p r e s e n t s t h e number o f o b s e r v a t i o n s i n t h e i t h data group. i s g i v e n by: • _1 _ 1 f . = n. N a-l where N i s t h e t o t a l number  of observations  (Kozak,  1976).  249  Table  B-l  Method o f e s t i m a t i n g w i t h i n and among g r o u p components o f v a r i a n c e . Sum o f Squares  Source of V a r i a t i o n  Among Group  a = Z  SS.  r  Degrees o f Freedom  X.. )  E  a-1  Mean Square  Mean S q u a r e i s estimate of. • . • 2  SS-  "B  ot  a-1 a  - (z  • i  b  o  z  i i ^  x  j  ab  Within  SS  2  = I  I  a - E i  ( X..)  (  X  i j  )  2  a(b-l)  SS  2  ^  Group b  2  a(b-l)  Adopted from Connor and Ebens (1970): X . i s t h e l o g 10 t r a c e e l e m e n t c o n t e n t o f t h e j t h sample i n t h e i t h g r o u p , a i s t h e number o f g r o u p s , b i s t h e number o f s a m p l e s w i t h i n each group, : a / i s t h e w i t h i n group v a r i a n c e component a n d -a* i s t h e among g r o u p v a r i a n c e component. P  -2  250 The s i g n i f i c a n c e o f among g r o u p mean d i f f e r e n c e s i s a s s e s s e d by c o m p a r i n g t h e r a t i o ,  SS-, a - l /  /ss  0  a(b-l)  with values i n standard degrees o f freedom.  " F " t a b l e s f o r a - l and a ( b - l )  c)  Duncan's New M u l t i p l e Range T e s t F i r s t l y t h e s t a n d a r d e r r o r o f t h e e s t i m a t e d means i s c a l c u l a t e d as: sx  where SS2»  i  ss.  £(b-l)  a and b a r e d e f i n e d a s i n T a b l e B - l .  Then a - l " s i g n i f i c a n t s t u d e n t i z e d r a n g e s " a r e e x t r a c t e d f r o m a t a b l e g i v e n b y Duncan (1955) f o r t h e 5% c o n f i d e n c e l e v e l and a ( b - l ) d e g r e e s o f f r e e d o m . A separate range value i s o b t a i n e d d e p e n d i n g upon t h e number o f means t o b e i n v o l v e d i n a s i n g l e c o m p a r i s o n : t h a t i s one v a l u e i s t a k e n f o r t h e c a s e where t h e r e a r e o n l y two means, a n o t h e r f o r t h e c a s e where t h e two means b e i n g compared a r e s e p a r a t e d b y a t h i r d mean, and s o f o r t h t o t h e c a s e where a-2 means s e p a r a t e t h e two means of i n t e r e s t . T h e s e r a n g e v a l u e s a r e t h e n m u l t i p l i e d by s - t o give a s e t o f "least s i g n i f i c a n t ranges". Means a r e a r r a n g e d i n n u m e r i c o r d e r and d i f f e r e n c e s between them t e s t e d i n t h e f o l l o w i n g manner: l a r g e s t minus s m a l l e s t , l a r g e s t minus second s m a l l e s t , . . . , l a r g e s t minus second l a r g e s t , second l a r g e s t minus s m a l l e s t , second l a r g e s t minus, s e c o n d s m a l l e s t and so on t o t h e s e c o n d s m a l l e s t m i n u s the s m a l l e s t . G e n e r a l l y a d i f f e r e n c e i s d e c l a r e d s i g n i f i c a n t i f i t exceeds t h e " l e a s t s i g n i f i c a n t range" c o r r e s p o n d i n g t o t h e number o f means i n v o l v e d i n t h e c o m p a r i s o n . An e x c e p t i o n however o c c u r s i n t h a t no d i f f e r e n c e between two means c a n be d e c l a r e d s i g n i f i c a n t i f t h e two means a r e c o n t a i n e d i n a l a r g e r subset w i t h a n o n s i g n i f i c a n t range. d)  Median  Test  The c h i - s q u a r e f o r m u l a expressed as f o l l o w s :  used  for this  test  c a n be  251  =  E i=l  E j= l  (  f  F . .)  ij  ID  F. . ID  where k r e p r e s e n t s t h e t o t a l number o f d a t a s e t s , f . . r e p r e s e n t s t h e number o f o b s e r v a t i o n s i n t h e i t f t s e t e i t h e r above ( j = l ) o r b e l o w (j=2) t h e o v e r a l l g r o u p m e d i a n and F . . r e p r e s e n t s t h e c o r r e s p o n d i n g e x p e c t e d number o f o b s e r v a t i o n s o b t a i n e d u s i n g c o n t i n g e n c y t a b l e s . The n u l l h y p o t h e s i s , t h a t s a m p l e s were drawn f r o m p o p u l a t i o n s h a v i n g t h e same m e d i a n , i s t e s t e d by c o m p a r i n g t h e c a l c u l a t e d c h i - s q u a r e v a l u e s w i t h those of s t a n d a r d s t a t i s t i c a l t a b l e s f o r k-1 d e g r e e s o f f r e e d o m .  5. ESTIMATION OF a) Among  ANALYTICAL PRECISION  (P)  Batches  Among b a t c h p r e c i s i o n i s e s t i m a t e d on t h e b a s i s o f a n a l y s e s f o r a s i n g l e l a b o r a t o r y s t a n d a r d sample w h i c h was i n c l u d e d w i t h i n e a c h a n a l y t i c a l b a t c h . The  formula  used i s ,  P  1.98  =  <y. E i=.l  -  Y)  2  100  % ,  L - l  where y. i s t h e m e a s u r e d c o n c e n t r a t i o n ( i n ppm o r %) o f a p a r t i c u l a r element_in the l a b o r a t o r y standard f o r the i t h a n a l y t i c a l batch, y i s the o v e r a l l average c o n c e n t r a t i o n f o r a l l o f t h e b a t c h e s , and L i s t h e t o t a l number o f b a t c h e s . b) W i t h i n  Batches  W i t h i n b a t c h p r e c i s i o n i s e s t i m a t e d on t h e b a s i s o f r e s u l t s o f a n a l y s e s f o r one r a n d o m l y s e l e c t e d sample w i t h i n each a n a l y t i c a l batch.  P  =  100  where y . and y „ . a r e t h e m e a s u r e d c o n c e n t r a t i o n s f o r t h e s e l e i t e d s a m j l e i n t h e i t h a n a l y t i c a l b a t c h and L i s t h e t o t a l number o f b a t c h e s .  253  APPENDIX C LISTING OF INDIVIDUAL DATA VALUES USED POR MEAN (OR MEDIAN) AND VARIABILITY ESTIMATES 1. ROSETOWN AREA SOIL (TABLES XIV AND XVI) SAMPLE DESCRIPTION SITE NO.  U.T.M. COORDINATES E N  SAMPLE NO.  CU (PPM)  FE (%)  MN (PPM)  ZN (PPM)  SE (PPM)  PH  A HORIZON LAC. SOIL CLAY  4 9 16 20 27 40 62 93 97 126 129 143 149 199 208 221 222 223 224 225 226 227  2996 2957 3113 3063 32 07 3292 3479 3698 3736 3043 3172 3261 3363 2949 2949 2997 3121 3221 3337 3120 3055 3507  6955 6737 6963 6777 7019 6926 7052 6706 7075 7237 7123 7358 712 9 6 890 6970 6362 6768 ' 69 18 7029 7127 7162 7059  720246 720261 72C282 72C294 720316 720355 720421 720514 720526 730067 73GC76 730136 730157 73C355 730382 73C467 730473 730479 73 04 85 730491 730497 730503  26.968 26.639 24.666 13.813 27.626 19.404 17.333 16.333 14.000 18.229 26.515 18.209 13.778 28.889 28. 889 2 8.000 25. 778 28.889 23.111 24.000 24.984 16.239  2. 7 05 2. 943 2. 625 1. 9 09 2 .864 1 .989 1. 724 1 .564 1. 4 84 1. 927 2 .690 1. 7 00 1. 464 3. 033 2. 966 2. 9 48 2. 715 2. 793 2. 172 2. 2 50 2 .488 2. 0C6  376.674 390.497 469.978 259.179 425.054 400.864 456.641 298 .573 344.237 420.591 424 .096 421.193 364.056 401.320 364.356 390.55 1 377.953 390.55 1 453.543 491.339 410.915 372.392  8 6. 049 88.605 90.309 51.118 81.789 73.269 73.583 59.037 64. 171 84.670 92.526 82.509 63.158 9 0.00 0 85. 000 92.000 90.000 95. 000 85.000 85.000 70.000 70.000  8. 0 8. 0 7. 4 6. 8 7. 8 7. 8 7. 2 7. 7 7. 0 6. 4 7. 5 5. 9 7. 0 7. 5 7. 9 7. 5 7 .7 7. 8 7. 7 7. 7 7. 9 6. 9  IAC. SILT AND SAND  112 135 137 140 156 159 160 161 172 178 187  2957 3180 3222 3284 3388 3488 3500 3527 3524 3560 3635  7321 74 50 7562 7583 7469 7546 7500 7487 7273 7523 7170  730010 73C097 730109 730121 730184 730196 73C199 73C205 730250 730274 730307  14.938 18.560 22.929 19.220 15. I l l 15.556 11.111 11.111 7.556 14.222 13.333  1 .674 2.168 2.226 1.943 1.685 1.685 1.247 1.264 0.977 1.449 1.533  316. 483 417.086 385.499 421.193 364.356 356.436 285.148 303.631 227.063 382.838 330.033  65.033 82.924 36.762 82.509 72.000 65.000 52.000 58.000 36.000 75.000 60. 000  7.9 6.7 8.1 6.2 6.7 7.4 7.2 6.0 7.7 6.4 6.5  GLACIAL TILL  <+i 52 * 59 78  3307 3350 3324 3542  6366 6957 6596 6885  720358 72C391 72C412 720469  17.102 15.457 23.022 16.000  1. 750 1.710 2. 1 48 1.604  359.395 331.750 449.244 372.338  61. 342 58.786 69.862 66.738  7.8 7.0 8.0 7.7  *  Sanple rejected for containing exceptionally high concentrations of the underlined element (s)  +  Blank = concentration not measured.  254  SAMPLE DESCRIPTION SITE NO.  A HORIZON GLACSOIL IAL TILL  ALLUVIUM  AEOLIAN SAND  30-46 CM DEPTH SOIL  LAC. CLAY  U.T.M. COORDINATES N E  SAMPLE NO.  CU (PPM)  14.333 15.667 14.000 14.333 20. 581 17.593 13.333 17.778 16.000 12.889 12.444 16.000 14.222 13.741 15.823 14.990 13.325 11.659 14.574  FE (%)  1 .684 1.305 1.684 1.684 1.993 1.333 1. 483 2. 2 24 1 .550 1.415 1.241 1.629 1. 590 1.485 1.725 1.725 1.525 1.3 64 1. 926  MN (PPM)  372.338 358.288 365.313 375.851 464.176 351 .648 303.631 396.040 337.954 290.429 428.346 503.937 340.157 423.756 410.915 487.961 359.55 I 333.868 290.208  ZN (PPM)  65.027 65. 882 70. 160 68.449 81.960 73.051 55.000 65. 000 45.000 3 6.000 55.000 73.000 55.000 62.000 60.000 65.000 55.000 50.000 60. 000  SE (PPM)  PH  7.7 7.7 6. 8 7.8 7.7 7. 6 7.6 7.5 8.0 8.1 6.9 6.0 7.7 7.2 7.9 7. 6 7.2 7.5 7.9  90 91 98 101 116 117 210 *211 214 216 217 218 220 228 229 230 231 233 235  3710 3620 3790 3747 2961 3011 3088 3102 3309 32 3 6 3253 3219 3152 3398 3470 3489 3538 3495 3742  6876 6737 7010 6891 7511 7541 7542 7506 6810 6700 6672 6610 6637 6693 6691 6725 6789 6984 7011  720505 720503 720529 72C538 730025 730031 730391 73 039 7 73C420 730429 730435 73 0441 730455 730512 73C515 730521 730527 730536 730546  29 50 92 122 132 136 170 191 198  3128 3357 3682 3083 3 145 3219 3601 3768 3775  6893 7111 6748 7452 7309 7451 7200 7252 7545  720322 720385 720511 730049 730C63 730103 730241 730322 730349  27. 955 13.484 15.333 11.286 1 1 .932 20. 906 4. 889 5.333 13.333  943 392 6 84 1 96 767 226 1.247 0. 343 1. 529  425. 054 362, 851 428 540 260, 220 315 ,44 3 399 ,777 316 .832 221 , 782 284 ,913  87. 753 55. 378 77.005 56.125 61,102 90.165 4 8.00 0 30.000 70. 175  7. 6 6.7 7.9  * 123 141 155 166 169 173 174 182 197  3110 3237 3349 3438 3603 3557 3540 3716 3738  73 e i 7472 7436 7252 7147 7322 7345 7398 7500  730055 730127 73C178 730223 730235 730253 730259 730289 730343  ,286 6.070 5.778 4.889 4.444 5. 333 4.889 4.000 4.444  0.598 0.688 0.640 0.681 0.843 0.775 0.674 0.758 0.781  115.663 232.013 121.452 171.617 195.380 142.574 134.654 174.258 166.200  25.052 2 7. 390 29.000 29. 000 20.00 0 28.000 28. 000 25.000 28. 070  6. 6. 6. 6. 7. 7. 6. 6. 6,  4 9 16 20 27 40 62 93 97  2996 2957 3113 3083 3207 3292 3479 3698 3736  6955 6737 6963 6777 7019 6926 7052 67C6 7075  2.546 2.745 2. 585 1.432 3.023 2. 705 2.326 1.684 1.604  380.129 362.851 449.244 2 03.88 8 459.611 317.927 351.262 252.909 344.237  92.865 84.345 76.677 35.783 9 1.161 85. 197 85.562 47.914 62.460  720247 720262 720283 720295 720317 720356 720422 720515 720527  28.284 26.968 24.008 12.826 30.536 24. 666 17.667 16.667 13. 333  8.0 8. 1 7.9 3.2 7.7 7.4 8. 0 8.1 7.3  *  Sanple rejected for containing anomalously high concentrations o f the underlined element (s)  +  Blank = concentration not measured.  255  SAMPLE DESCRIPTION SITE NO.  30-46 CM DEPTH SOIL  U.T.M. COORDINATES  SAMPLE NO.  CU (PPM)  FE (%)  MN (PPM)  ZN (PPM)  SE (PPM) +  PH  LAC. CLAY  126 I 29 143 149 199 208 221 222 223 *224 225 226 227  3043 3172 3261 3363 2949 2949 2997 3121 3221 3337 3120 3055 3507  7237 7123 7358 7129 6890 6970 6862 6768 6918 7029 7127 7152 7 059  730068 73CC77 730137 730158 73C356 730383 730468 730474 730480 730486 73C492 730498 73C504  17.275 26.735 15.219 11.556 28. 000 30.222 28.889 26.667 29.564 18.738 22.902 24.151 2 0.8 20  1. 8 29 2. 514 1. 981 1. 562 2. 870 2. 9 09 2. 7 15 2. 5 60 3. 210 2. 327 1. 926 2. 403 2.006  364.169 349.746 338.929 250.618 365.354 340. 157 365.354 332 .598 398.074 539.326 333.868 385.233 333.868  64.961 78.309 62.291 43. 860 92.000 82. 000 92.000 82.000 90.000 85.000 60.000 70.000 60.000  7. 4 7. 9 6. 9 7. 1 7. 9 8. 0 7. 8 7. 8 8. 0 8. 2 8. 0 8. 0 3. 6  LAC. SILT AND SAND  1 12 135 137 140 156 159 16C 161 172 17R 187  2957 3130 3222 3284 3388 3488 3500 3527 3524 3560 3635  7321 7450 7562 7583 7469 7546 75C0 7487 7273 7523 7170  730011 730098 73C110 730122 73C185 730197 730200 730206 730251 73C275 730308  16.452 20.566 22.622 13.162 15. 556 9. 333 12.444 8.444 8. 889 12.444 17.778  1.5 24 1.638 2. 133 1.867 1. 855 1.269 1. 757 1. 1 39 1. 139 1. 643 2.017  223.549 306.479 331.718 331.718 448.475 242.704 290.190 197.857 197.857 197.857 329.761  53.393 56.062 72. 970 55.172 78. 947 39.474 6 1.403 35. 068 30.702 68.421 5 7.018  8. 1 8. 1 8.4 6.3 6.6 3. 3 6.8 7.8 3. 1 7. 1 7.8  3307 6366 3350 6957 3 32 4 6596 3 54 2 6885 3710 6976 3620 6737 37 90 7010 3747 6891 2961 7511 3011 7541 3088 7542 7506 3102 3309 6810 3236 67CC 6672 3253 3219 6610 6637 3152 33 9 8 6693 3470 6691 3489 6725 3538 6789 3495 6984 3742 7011  720359 720392 720413 720470 720506 720509 720530 720539 730026 730032 730392 73C398 730421 730430 730436 730442 73C456 730513 730516 730522 730528 730537 730547  18.088 20.391 24.333 16.667 17.667 18.000 16.000 12.333 22.211 16.041 14.667 26.222 14.222 15.556 9. 333 13.778 15.556 I 2.49 2 8. 744 16.656 10.410 10. 410 14.990  1. 432 1.511 2.2 06 1. 764 1 .845 1 .684 2.326 1.283 1.981 1.524 1. 7 84 2.133 1.396 1.3 96 1. 164 1.745 1. 319 1.645 0.903 2.327 1.525 1. 043 1 .966  255.724 221. 166 449 .616 3 51.262 298.573 252.909 256.421 203.732 566.084 259.606 277. 165 327.559 284.724 191.496 272.126 352.756 214. 173 359.55 1 243.981 398.074 269.663 192.616 218.299  36. 635 37.487 69.305 59.037 64.17 1 49.626 91. 551 35.936 105.006 53.393 50.000 65. 000 39.000 39.000 36. 500 62.000 45.000 65.000 23.000 70.000 50.COO 27. 000 60. 000  8.2 7. 9 7.9 7.8 7.8 3.1 7. 1 3.3 6.8 8. 4 8.3 8.3 8.4 8.1 3.0 6.4 8.4 7.4 8.5 6.7 6.3 8.2 8.3  41 52 59 78 90 91 98 101 * 1 16 117 210 211 214 2 16 217 218 2 20 228 229 230 231 233 2 35  SLACIAL TILL  * +  Sample rejected for containing anomalously high concentrations o f the underlined element(s) . Blank = concentration not measured.  256  SAMPLE DESCRIPTION SITE NO.  30-40 CM ALLUVIUM DEPTH SOIL  AEOLIAN SAND  C HORIZON SOIL  LAC. CLAY  * +  U.T.M. COORDINATES E N  SAMPLE NO.  CU (PPM)  29 50 92 122 132 136 170 191 198  3128 3357 3682 3083 3145 3219 3601 3768 3775  6893 7111 6748 7452 7309 7451 7200 7252 7545  720323 72C386 720512 730050 73CC89 730104 730242 730323 7303 50  29.599 13.155 18.000 9.049 13.162 18.098 8.889 4. 000 8.889  *123 141 155 166 169 173 174 182 197  3110 3237 3349 3438 3603 3557 3540 3716 3738  7381 7472 7436 7252 7147 7322 7345 7398 7500  730056 730128 73C179 730224 73C236 730254 730260 73C290 730344  3005 7063 3033 7C66 2967 7007 2996 6955 3027 6910 2938 684 1 2952 6829 2951 6800 2957 6737 3022 67C7 3053 7C90 3070 7030 3066 7010 3113 6963 6847 3040 3036 6813 3083 6777 3076 6708 3 04 7 6679 3203 7039 3198 7085 3207 7019 3174 6986 32 0 8 6873 3287 7114 3275 6926 3292 6926 6858 3262 3329 7073 3497 7 102  7200239 7200242 7200245 7200243 7200251 7200254 72C0257 7200260 7200263 7200266 720C275 7200278 72CC281 7200284 720C290 7200293 7200296 7200299 7200302 7200312 72CC315 7200318 72CC321 7200327 7200348 72C0354 7200357 7200363 72CC384 7200420  1 2 3 4 5 6 7 8 9 10 13 14 15 16 18 19 20 21 22 25 26 27 28 30 37 39 40 42 49 61  FE (%)  MN (PPM)  ZN (PPM)  SE (PPM) +  PH  +  2.904 1. 3 52 2. 125 1.219 0. 990 1.714 1.1 06 0.716 1 .125  390.49 7 228.078 403.95 1 155.042 191.099 281.240 226.876 179.390 206.614  85.197 46.858 72.727 40.044 32.036 60.512 36.842 16.667 35.000  8.3 8.6 7.5 6.3 8.5 8. 1 8.6 7.2 8. 0  8.226 5.347 3. 556 4.444 4. 444 4.444 2.667 2.222 3. 556  0.930 0.731 0.5 86 0.765 0. 634 0. 683 0.560 0. 667 0.781  227.155 201.916 92.333 133.223 213.635 109.43 1 93.652 122.671 131.904  42. 714 13.526 17.105 22.307 13.596 19. 737 16.667 15.789 20. 175  6.2 7.0 7.0 7. 2 8.4 7.6 7. 1 7.4 7. 0  18.317 29.974 32.194 2 7.754 31. 63 9 31.639 24.978 16.652 24.978 22.203 31.639 27.754 26.644 27.754 29.974 17. 762 12.767 2 6 . 08 8 33. 351 27.026 21.851 27.601 10.350 3 1.051 27.026 33.351 18.976 25.876 18.772 29.331  1. 509 2. 531 2. 3 36 2. 287 2. 239 2. 433 2.433 1. 4 84 2. 433 2. 190 2. 239 2. 336 2. 2 87 2. 141 2. 579 1.4 84 0. 376 2. 385 3. 3 50 2. 350 2. 500 2. 600 1. 225 2. 850 2. 100 3. 150 1. 675 2. 3 50 1. 6 72 2. 282  331 .396 34 8.83 7 286.046 320.930 296.511 32 7.90 7 338.372 261.628 324.413 244.136 324.418 300.000 376.744 366.279 313.953 296.511 170.930 324.418 307.692 401.619 365.992 340.081 217.004 349.798 333.603 304.453 259. 109 281.781 2 83.110 418.230  48.485 86.762 80.333 80.383 77.831 85. 486 8 5. 486 48.435 82. 935 67.624 74.003 81.659 8 2.93 5 74.003 89.314 54.864 25. 51 8 82.935 81.250 7 1.250 8 5.000 75. 000 40.000 83.750 62.500 9 1.250 43.750 71.250 55.728 71.827  7.7  7.7  3.3 3.7  7.8  3. 1  Sample rejected for containing anomalously high concentrations of the underlined element(s) . Blank = value not measured.  257  SAMPLE DESCRIPTION SITE NO.  C HORIZON SOIL  IAC. CLAY  LAC. SILT AND SAND  U.T.M. COORDINATES  62 72 75 76 84 86 93 95 96 97 109 1 10 125 126 127 128 129 131 134 142 143 144 147 148 154 189 221 222 223 224 225 226 2 27 247 248 249  3479 3452 3536 3568 3553 3703 3698 36 78 3661 3736 3007 2965 3033 3043 3112 3122 3172 3129 3198 3327 3261 3312 3249 3315 3339 383 5 2997 3121 3221 3337 3120 3055 3507 3737 3747 3275  7052 6590 7082 6918 6558 7071 6706 6564 6559 7075 7139 7162 7253 7237 7218 7211 7123 7236 7387 7427 7353 7335 72 12 7136 7384 7131 6862 6768 6918 7029 7127 7162 7C59 7067 7067 7405  71 85 88 112 113 124 135 137 138 1 39 140 149 151 153 156  3440 3673 3667 2957 2987 3118 3180 3222 3187 32 86 32 84 3363 3372 3391 3388  6590 7104 6917 7321 7327 7353 74 5 C 7562 7577 7598 7583 7129 7265 7349 7469  SAMPLE NO.  7200423 7200453 7200462 7200465 7200489 72 00495 7200516 7200522 720C525 72C0528 73CC03 730006 730066 73C069 730072 730075 730C78 73C087 73C096 730135 730138 730144 730153 730156 73C177 73C318 73C469 73C475 730431 73G487 730493 730499 . 730505 730606 730612 730618 72C0450 7200492 7200501 730012 730018 730063 73C099 73011 1 730117 730120 730123 730159 730168 73C174 730186  + Blank = value not measured.  CU (PPM)  FE (%)  MN (PPM)  ZN (PPM)  25. 811 19.089 11.665 24. 391 24.921 14.847 28.971 20.016 20. 016 14.749 24.000 23.333 21.875 19.886 24.858 30.823 33. 143 24.858 14.915 28. 325 22.255 17.534 30. 049 26.249 12.434 30.747 33.706 34.924 29.239 30.05 1 23.147 2 3.553 30. 863 27. 558 23.445 25. 501  1.751 1.8 26 1.040 2. 079 2. 130 1.445 2. 247 1.712 1.712 1. 498 2.206 2.2 06 1.887 1.767 1.887 2. 6 50 3.011 2. 2 89 1.606 2.024 1. 822 2. 105 2. 389 2. 142 1 .277 2.480 3. 120 3.2 72 2. 663 2.663 1. 864 1.7 50 2.473 2.171 2.019 1 .905  312.064 360.805 225.503 373.691 360.805 251 .275 328.317 279.070 311.902 252.804 309.111 3 12.623 371.522 311.938 364.512 3 96.05 7 364.512 399.562 280.394 378.360 260.569 356.944 373.980 370.452 261.080 328.018 346.903 325 .664 279.646 400.000 431.858 297.345 375.221 349.746 270.422 331.718  6 1.920 7 1. 429 35.065 74.026 79.221 48.052 117.224 94.602 94.602 67. 866 70. 160 65. 027 68. 085 6 I.102 6 5. 466 35.543 89.907 78. 560 56.738 70.601 6 1. 244 47.634 89.137 80.223 41.003 7 9.778 95.164 93.385 88. 049 84.491 64.925 7 1.15 1 76.487 7C. 300 66.741 69. 410  26. 512 18.558 29.693 1 7. 92 5 18.921 10.274 26.515 2 3.604 31.359 12.813 21.91 8 21.414 5. 181 6.908 12.C89  2.231 1.674 2.029 1 .514 1. 833 0.976 2. 369 2. 307 2.7 12 I . 498 2.226 I .689 0.659 0.692 1.8 53  347.919 267.382 302.819 295.385 253.187 189.266 403.067 335.527 381.929 199.888 267.708 314.002 114.664 105.843 275. 193  75.325 79.221 71.429 58.797 58. 797 30.551 80.306 65.497 85.061 39. 128 63. 796 62.396 22.284 22.462 47.242  SE (PPM) +  PH  +  8.7  8.1 8.6  8.5 8.0  8.2  8. 0 7.7 7.8 8.4 7.9 8.0 8.3  8.4 8.4 3.3 8.5 8.6 8. 1  258  + SAMPLE DESCRIPTION SITE NO.  SOIL  LAC. SILT AND SAND  157 158 159 160 161 162 168 * 17 1 172 176 177 178 186 187 188 190 2 39  242 243  U.T.M. COORDINATES  SAMPLE NO.  CU (PPM)  FE (%)  MN (PPM)  730192 730195 73C198 730201 730207 730213 730234 730249 730252 730270 73C273 730276 73 03 06 730309 730315 730321 730567 730582 73C588  I 1.052 15.888 18. 996 11.052 10.707 8.800 14.553 18.614 9.476 12.184 15.708 18.715 8.355 22. 72 6 8.639 9.358 17.222 18.42 3 17.275  1.441 1.771 1.894 1. 359 1.236 1. 140 1. 392 1.720 1. 264 1. 2 80 I .400 1.400 0.940 1.880 0.940 0.960 1. 458 1.650 1.371  197.574 261 .080 306.946 239.912 218.743 211.454 260.793 655.507 303.084 239.648 320.729 306.150 160.36 5 349.886 156.720 164.009 256.285 256.285 277.634  3307 6866 3255 6824 32 7 7 6596 3359 6991 3350 6957 3324 6596 3382 6538 6652 3605 3745 6947  72CC360 7200366 720C381 72C0390 7200393 7200414 7200417 7200480 ' 7200537  13. 801 15.526 15.839 16.425 10.559 22.291 24.051 13.786 4. 214  1.225 1.425  1 . 167 1.804 2.0 17 1.217 3. 104  246.154 278.542 572.654 308.847 231.635 366.756 334.584 2 15.839 170.725  37. 500 43.750 5 9.443 45. 320 33.437 64.396 68. I l l 41. 558 48. 946  6734 6 76 8 6695 6556 6772 6628 6880 6853 6822 6820 6660 6653 6852 68 51 68C8 6681 7389 7474 7511 7541  720C330 7200333 7200336 7200345 720C369 72C0378 720C396 7200399 7200402 7200405 7200408 7200411 7200432 72CC435 72C0438 7200444 730020 730024 73002 7 730033  14.376 8.050 28.176 13. 226 13.492 24.638 1 I. 732 12.906 12.906 13.492 14.079 18. 772 14.665 14.665 23.861 6.893 27. 220 17. 593 18.257 18.589  1.3 50 '0.375 2.300 1. 150 1.210 1.6 72 1.114 1.247 1.857 1. 592 1. 221 1. 725 1. 380 1.449 2. 130 1.141 2.391 1. 793 1.753 1.873  233.199 139.271 349.798 217.004 267.024 305.630 241.287 270.241 418.230 312.064 273.458 315.281 299.196 176.944 434.899 164.295 302.418 316.483 316.483 393.846  36.250 22.500 6 7. 50 0 35.000 39.628 59.443 37.152 37.152 54.489 53.251 39.628 55.728 43. 344 42.105 98.701 25.325 74.833 65.033 65.033 65.924  3348 3384 3483 3500 3527 3486 3490 3539 3524 3557 3 540 3560 3686 3635 3663 3729 3370 3288 3379  75C9 7564 7546 75C0 7487 7468 7172 7241 7273 7455 7500 7523 7209 7170 7111 7170 7557 7541 7563  ZN (PPM)  SE (PPM)  + PH  44. 568  59.721 65.070 41. 003 39.220 36. 281 47.166 67. 120 39.909 45.351 57.618 54. 958 34.571 69.141 32. 798 39.003 60. 244 59.358 63.181  8.6 8. 5 8.2  8.6 8. 5  8.4  GLACIAL TILL Ground Moraine  Humitocky Moraine  41 43 * 48 51 52 59 60 81 • 100 31 32 33 36 44 47 53 54 55 56 57 58 65 66 67 69 114 115 116 117  3194 3225 3162 3183 3278 3240 3383 3386 3345 3413 3361 3403 3422 3457 34 52 3433 2941 2957 2961 3011  I1.539 .3 80  8.3  8.2  8. I 8. 1  * Sample rejected for containing anomalously high concentrations of the underlined element (s) . + Blank = value not measured.  259  SAMPLE DESCRIPTION SITE NO.  C HORIZON HummSOIL ocky Moraine  118 119 120 214 216 217 218 220 228 229  U.T.M. COORDINATES E N  2957 3059 3C92 3309 3236 32 53 3219 3152 3398 3470  7612 7591 7568 6810 6700 6672 6610 6637 6693 6691  SAMPLE NO.  CU (PPM)  FE (%)  MN (PPM)  ZN . (PPM)  73C039 730042 73C045 7304 22 730431 73C437 73C443 73C457 730511 730517  24. 232 13.278 7.303 14.151 11.900 5. 789 13.829 12.995 12.995 23.836  2. 271 1.435 0.510 1. 752 1.448 0.789 1.562 1.294 1.2 18 1.880  369.231 253.187 140.659 327.840 292.205 174.610 270.824 261.947 254.867 363.070  81.96 0 48.107 15.234 47. 802 46.900 22.548 50. 507 40.912 40.912 76. 191  3461 63 64 3494 77 3547 3542 78 79 3607 3552 80 82 3518 3680 87 3710 90 3620 91 3641 94 3790 98 3803 99 3747 101 3747 102 1 C3 3769 3803 104 105 38C8 230 3489 3538 231 2 33 3495 3742 235 3470 244  6988 6926 6911 6885 6814 6743 6648 6975 6876 6737 6688 70 10 6998 6891 6872 6808 6750 6697 6725 6739 6984 7011 7020  7200426 7200429 72C0468 72C0471 7200473 72CC477 7200483 720C497 720C507 7200510 7200519 720C531 7200534 72CC540 72C0543 72 C0545 720C549 7200552 730523 730529 730538 730548 73C591  14.079 14.079 12.726 1 7. 498 15.907 16. 968 12.726 12.196 14.749 17.909 12.115 15.802 14.222 16.856 12.642 15.802 14.222 13.169 28.836 18.023 20.000 17.622 13.985  1 .343 1.4 59 1. 166 1. 521 1. 471 1.521 1.293 1.029 1.327 1 . 498 1.311 1. 552 1.231 1.391 1. 177 1.472 1 .980 1.498 1.995 1.650 1.611 1 . 765 1.219  257 . 37 3 267.024 206. 174 273.825 206.174 376.913 244.832 180.403 262.654 239.672 219.973 443.229 321.751 275.786 249. 52 I 311.902 308.618 262.654 448.498 281.201 356. 142 224.249 227.155  39.628 47.059 34.416 51.948 48.052 64.935 36.364 35.065 67.866 90.488 61.697 88.432 67.866 82.262 58. 61 2 76.093 96.658 71. 979 83.278 5 3. 156 48.246 66.445 37. 37 5  11 12 23 24 121 210 211  2948 2983 3076 3063 3067 3088 3102  6610 6550 6599 6628 7509 7542 7506  72C0269 720C272 7200305 7200309 730048 730393 730399  22. 203 14.432 15.526 23.001 23.900 15.802 16.080  1 .6C6 1. 324 1 .650 2.100 2.391 1.976 1.8 29  320.930 237.209 187.854 259.109 323.516 244.248 302.895  61.244 40. 829 47.500 62.500 75.724 54.607 56. 82 1  17 29 38 50 70 74 92 • 111 122  3104 3128 3238 3357 3431 3588 3682 3017 3083  69C0 6893 7 02 5 7111 6658 7063 6748 7281 7452  720C287 7200324 7200351 72CC387 7200446 720C459 720C513 730009 73CC51  4.996 20.701 5.750 8. 799 8.484 13.786 16.329 9.295 9.62 7  1 .046 1.900 0.565 0. 876 1.471 1.217 1. 605 0.693 1 .235  327.907 272.065 139.271 154.424 241.61 1 209.396 361.149 573.187 193.407  20.415 53.750 19.750 26.625 29. 870 44.156 82.262 37.416 33.853  Washboard Moraine  Ridged End Moraine  ALLUVIUM  SE (PPM)  * Sample rejected for containing anomalous concentrations of the underlined element (s) + Blank = value not measured.  PH  8. 3  8. 1 8.2 3. 1  3.4 7.9 8. 5 7.9  8.7 8.1  7. 8 8.5 7.8 8.3  260  t SITE NO.  C HORIZON ALLUSOIL VTUM  132 136 145 150 167 170 185 191 193 195 198 238  U.T .M. COORDINATES 'N E  3145 3219 3297 3363 3443 3601 3682 3768 3776 3789 3775 3604  7309 7451 7281 7177 7184 7200 7253 7252 7305 7429 7545 6910  73 3 5 83 6992 89 3630 6911 106 3768 6627 7381 123 3110 7343 3243 133 141 3237 7472 146 3260 7280 152 3407 7278 3349 7436 155 7379 163 3473 7345 164 3455 7277 165 3446 3438 7252 166 7147 169 3603 173 3557 7322 174 35 40 7345 175 3609 743 1 3658 7561 179 1 80 3678 7539 3648 7463 181 7 39 8 3716 182 183 3687 7367 3700 7302 *184 3728 73 61 194 3737 7451 196 197 3 73 8 7500 36 23 7433 240  SAMPLE NO.  CU (PPM)  73C090 730105 730147 730165 730230 73C243 730303 73 0324 730333 730339 73C351 73C562  13.920 19.220 13.488 13.815 14.215 11.846 10.026 7. 352 4. 741 16.198 13.432 12.816  1.486 1.984 1 .376 1.236 1.220 1 .448 1. 032 0.880 0. 801 1. 4 54 1.267 1.228  269.879 356.944 221 .305 246.968 239.648 296.035 189.522 189 .522 201.770 261.947 191. 150 213.57 1  48.009 69.750 35.726 37.437 56.236 58.050 35.457 3 1.025 21.479 56.428 39.135 47.841  7200456 7200504 7200555 73C057 73C093 730129 73C150 730171 730180 7 30216 730219 730222 730225 730237 730255 73C261 7 30267 730282 730285 73C288 730291 730297 730300 730336 730342 730345 730573  8. 484 9. 544 3. 160 5.634 3.314 5. 058 3.454 7.598 5. 526 5.415 10.153 5. 077 5.077 4.73 8 7. 784 4. 06 1 7. 446 8.689 6.016 4. 679 4.010 4. 010 14.037 5.136 4. 741 5. 136 I 1.214  0.882 1.090 0. 546 0. 422 0.474 0.4 05 0.478 0.885 0.482 0. 800 1 .240 0.6 16 0.720 0.648 1 .1 36 0.5 80 0. 840 1. 180 0. 364 0. 776 0.756 0.660 1. 380 0.846 0.865 0. 883 1.266  151.409 199.732 91.929 70.099 80.613 123.500 70.562 208. 159 67.034 137.445 190.308 1 12.775 126.872 193.833 169.163 86.696 197.357 178.588 153.075 116.629 123.918 120.273 280.638 176.99 1 134.513 141.593 245.606  34.805 42.857 26.324 12. 220 15.887 14.886 22.284 24.067 15.688 31 .746 40.8 16  2. ROSETOWN AREA WHEAT AND ASSOCIATED SOIL  LAC. CLAY  251 2 52 253 263 283  29 53 3008 3029 3319 3280  7152 7156 7040 7417 7390  FE (% SOIL) (PPM WHEAT)  MN (PPM)  ' ZN (PPM)  SE (PPM) +  PH  +  8.5 8.4 8.6 9.3 8. 6 8.1  6.6 8.4 8.5  I 7.415 22.313  7. 8 7.9 8.3 3. 3  15.420 36. 28 1 22.404 34.467 46.094 30.139 31. 02 5 22.515 19.058 52.299 19.386 21.843 24.755 41.639  8. 1  7.4  (TABLES XXIII AND XXVTII)  740598 740601 740604 740634 740694  12.348 1 6. 582 14.818 12.348 I 7.471  151.64 187.32 114.17 139. 15 100.46  43 .845 37.481 39.602 26.873 30.280  21.432 18.845 17.367 22.818 19.738  2 .120 3 .880 1 .020 2 .1 80  * Sample rejected for containing anomalously high concentrations of the underlined elemeent(s) . + Blank = value not measured.  261  SAMPLE DESCRIPTION SITE NO.  WHEAT  LAC. CLAY  LAC. SILT AND SAND  *284 285 286 287 *288 289 290 291 292 293 294 295 296 306 307 322 323 3 24 339 354 359 360 361 *256 257 2 58 260 261 262 268 277 278 279 2 80 281 282 297 298 299 301 302 303 304 305 325 326 348 355 358  U.T.M. COORDINATES  3C70 2919 2960 2991 2932 2982 3067 31 09 3185 3069 3223 3123 3C99 3135 3158 3221 3240 3327 3750 3613 3087 3003 2956 3558 3482 3428 3281 3287 3 286 3 72 2 3383 3399 3479 3514 3530 3543 2940 3019 3056 3140 3217 3192 3102 3117 3362 3508 3172 3780 3179  7223 6998 6997 6860 6839 6770 67C0 6797 6800 6928 6961 6995 6988 7215 71 89 7182 7215 7231 7154 656C 7 122 7035 6812 7544 7585 7595 7537 7516 7500 7 3 28 7474 7 473 7444 7435 7397 74C5 7292 7323 7322 7379 7481 7459 7477 7433 7132 72 10 7416 67C5 7433  SAMPLE NO.  740697 740700 740703 740706 74C7C9 740712 740715 740713 74C721 740724 740727 740730 740733 74C763 740766 740811 740814 74C817 740862 740907 740922 740925 74C928 740613 740616 740619 740625 740628 74C631 740649 740676 740679 740682 74C685 740688 74C691 740736 74C739 740742 740748 740751 740754 740757 740760 740820 740823 740389 74C910 740919  CU (PPM) +  10.696 16.045 13.192 15.331 16.401 13.549 14. 975 14.975 13.549 14.690 12.019 1 4. 02 2 13.020 12.686 14. 022 17.525 17.850 1 3. 631 14.280 16. 162 13.899 13.576 14.222  FE (PPM) +  159.09 120.91 88.64 156.36 143.18 76.36 89. 54 126.82 65.00 96. 34 12 8.00 96.78 120.42 74.93 147.13 74.22 80. 89 59. 11 80. 00 89.57 64. 88 61.95 61 . 53  13.760 131.57 12.701 8 0.. 28 16.229 109.2 7 16. 93 5 100. 35 87. 86 17.641 16. 935 73.94 1 1.290 77. 60 90. 91 16.401 17. 82 7 76.36 90. 91 13.905 16.758 92. 73 84. 09 14.262 85. 00 16.045 15.023 91. 43 14.022 91. 88 14.022 92. 32 14.356 64.22 1 7.360 98. 56 16.025 99.46 89.20 14.356 84. 29 14.356  MN (PPM) +  33.032 35.097 32.688 36.817 49.892 39.570 32.688 32.000 26.151 41.695 40.678 41 .356 31.186 32.203 37 .28 3 30.728 34.614 29.316 37.036 36.247 36.247 29.850 39.800  ' ZN (PPM) +  33.201 24.105 24.559 18. 192 13.644 16.328 2 1.831 25. 014 26.651 26.132 23.564 17.880 21.547 18.980 22.189 27. 518 24.767 2 1.818 27.518 26.634 22. 388 19.976 19.300  25.459 34.652 26.87 3 25.459 27.580 28.287 22.276 27.527 22.710 32.000 26.151 23.398 23.903 25.763 20.339 32.542 25.085 29.492 23.390 21 .017 21.017  24.480 24.296 24.203 28.360 24. 665 23.279 31.963 19.557 2 1.831 23.286 22.922 19.829 2 1. 467 23.473 19.897 22.464 22.739 2 6.407 26.957 19.713 28. 607  12.333 13. 576  81 . 78 76. 60  32.49 4 33.404  27. 027 24. 125  14.545  89. 16  33.048  26.345  SE (PPM)  PH  +  +  3 .160 2 .1 80 3 .560 2 .5 80 2 .420  5 .400 1.940 1.0 40  5 .160 1 .920 1 .900 1 .600 1 .000  0.96  0  1 .680 1 .0 80 1 .020 1 .600 1 . 140 1 .700 1 .000  0 .440 3 .600 0.330 0. 380 2 .600 1 .600  * Sample rejected for containing anomalously high concentrations of the underlined element (s) . + Blank = value not measured.  262  SAMPLE DESCRIPTION SITE NO. WHEAT GLACIAL TILL  AEOLIAN SAND  U.T.M. COORDINATES N , E  3358 6967 308 309 3376 6954 6953 310 3409 3424 6972 311 3450 6912 312 3398 6888 313 3307 6803 314 67E2 3311 315 *316 3283 6667 3300 66C5 317 6590 3282 318 6563 3261 319 6630 3 20 3218 6722 321 3162 3703 6973 341 6971 34 2 3731 6993 3731 343 3775 7010 344 3350 6792 349 3 50 3410 6759 6861 3573 351 6690 3585 353 6871 356 3743 357 3797 6916 3679 254 3608 255 2 59 33 54 3627 264 265 3549 3692 267 3728 269 270 3748 3729 271 31 83 272 3200 274 3210 *275 3175 276 300 3102 3564 327 3347 328 329 33 79 33 41 330 3324 331 3319 *332 3 34 3623 3615 335 3763 336 3453 345 346 3492  7587 7540 7537 7460 7273 7297 7366 7425 7393 7249 7248 7343 7350 7380 72 03 7475 7509 7472 7440 7437 7093 7129 72C4 72 4 8 7327  SAMPLE NO. 740769 74G772 740775 740778 740781 740784 740787 740790 74C793 74C796 740799 740802 740805 740808 740868 74C671 740874 74C877 740892 740895 740898 740904 740913 74C916 740607 740610 740622 740637 740640 740646 740652 740655 740658 740661 740667 74C670 740673 740745 74C826 74C829 74C332 74C835 740838 74C841 74C847 740850 74C853 74C880 74C383  CU (PPM)  FE (PPM)  MN (PPM)  14.022 113.28 12.686 91.43 14. 690 107.04 13.354 82.96 12.353 74. 04 11.685 63. 33 12.982 91. 11 11.359 69.33 14.929 164.44 14.929 98.67 14. 929' 88.00 15.578 80. 89 15.254 132.00 14.280 82. 22  28.136 27.797 21.017 21.695 25.763 16.949 31.082 32.848 42.031 40.618 35. 320 28.962 35.320 22.605  23. 656 27.966 27. 140 30.716 18.155 18.338 20.344 21.622 22. 113 21.818 24. 177 28. 698 20.049 21.622  15.903 121.78 14.280 66. 67  29.669 26.137  24.079 23.587  77. 85 64.46 81. 20 92. 09  20.611 27.713 27.007 30.205  27.406 23.836 28.372 26.538  14.869 15. 192 14.869 15.833  SE (PPM)  ZN (PPM)  PH"  I .240 1 .280 1 .780 3 .700 0.380 9.500 1 .400 1 .040 11.200 6 .000 1.540 1 .000 1 .500 1.12 0 6.400  13.407 13.407 13.407 11.996 13. 407 13.407 13.054 13.054 12.348 11.409 11.409 14.975 15.331 12.019 12.008 11.034 10.385 14.929 12.333 14.929  104.36 83. 85 100.79 118.19 100.35 73.59 99. 01 78.94 77 .60 108.64 7 4. 54 227.27 77. 27 72. 25 69.33 67. 56 73.33 82. 22 61. 33 142.22  26 .873 24.751 19.801 21.923 21.923 12.729 22.276 25.812 25.459 22.022 12.387 21 .677 19.613 11.525 21 .898 14.834 26.137 16.954 24.371 19.426  26.513 28. 1 76 21.801 29. 56 1 2 6. 513 23.095 27.714 34. 457 19.400 2 5.469 30.927 21 .831 30. 654 21.639 23.784 1 9. 459 19.165 30.467 24.767 23.096  11. 636  72. 83  13.148  24. 125  0.570 0.640 0.620 0 .540 0.760 0.640 0.560 0.480 0.420  1 .440 2 .580 2.730 3 .130 0.680 4 .000  * Sample rejected for containing anomalously high concentrations of the underlined element (s) + Blank = value not measured.  263  SITE NO. A HORIZON SOIL  LAC. CLAY  U.T.M. COORDINATES  SAMPLE NO.  CU (PPM)  FE (%)  251 252 2 53 263 283 284 285 286 287 288 289 290 291 292 293 294 295 296 306 3C7 322 323 3 24 339 354 359 360 361  29*53 3008 302 9 3319 3280 3070 2919 2960 2991 2932 2 9 82 3067 3109 3165 3069 3223 3123 3099 3135 3158. 3221 3240 3327 3750 3613 3087 3 003 2956  7^52 7156 7040 7417 7390 7223 69S8 6997 6860 6 839 6770 67C0 6797 68C0 6928 6961 6995 6988 7215 7189 7182 7215 7231 7154 6560 7122 7035 6812  740C596 7400599 7400602 740C632 74CC692 74CC695 740C698 7400701 74GC704 74CC707 7400710 7400713 7400716 7400719 740C722 7400725 74CC728 7400731 7400761 74CC764 74CC809 74CC812 740C815 7400860 7400905 740C920 7400923 74CC926  25. 852 28. 3 74 29.320 13.631 13.353 15.261 23.845 24.799 22.414 26.230 23.368 25. 514 17.407 13.830 27. 340 28.893 29.204 30. 447 20.585 19.649 20.391 15.457 1 5. 786 15.683 17.442 22.877 31.560 30.059  2. 4 82 2. 177 2. 635 1. 4 72 2. 081 1.890 2. 749 2. 215 2. 8 64 2. 444 2. 673 2. 864 2. 406 1. 947 2. 568 2. 491 2.721 2. 549 2. 153 1 .958 2. 117 1. 683 1. 791 1. 524 2. 088 2. 1 33 2. 2 57 2. 4 84  256 257 '258 260 261 262 268 277 278 279 280 281 282 297 298 299 301 302 3 03 '304 305 325 3 26  3558 3432 3428 32 81 3287 3286 3722 3383 3399 3479 3514 3530 3543 2940 3019 3056 3 140 3217 3192 3102 3117 3362 35C8  7544 7585 7595 7537 7516 7500 7328 7474 7473 7444 7435 7397 7405 7292 7328 7322 7379 7481 7459 7477 7433 7132 7210  740061 1 740C614 7400617 740C623 740C626 74C0629 74C0647 7400674 7400677 740C680 7400683 74CC686 740C689 74CC734 74CC737 7400740 7400746 74CC749 7400752 74C0755 7400753 74CC818 740C821  15.133 15.448 15.133  1. 6 80 1. 757 1. 757 1. 718 1. 757 1. 4 92 1. 077 1. 796 1. 739 1. 455 1. 607 1. 493 1. 5 50 1. 8 40 1. 226 1. 456 1.6 10 1. 954 1.6 10 2. 2 84 1. 468 1. 855 1. 473  I 6.C79 15.133 14.280 7. 140 10.640 11. 60 7 9. 189 10.156 8. 947 10. 156 16.466 10.563 13.359 13.359 19.262 14.602 24. 327 16.218 19.253 12.282  MN (PPM) 454.586 350.783 400.895 294.005 391.546 420 .022 345.272 295.439 377.308 302.558  ZN (PPM)  SE (PPM)  PH 7.2 8.1  355.95 I 355.951 391.546 402.225 417.548 449.944 424.747 352.756 417.391 428.375 437. 856 369.44 1 355.758 400.921 386.207 405.806 337.327 351.264  94.144 72.928 92.818 57. 174 75. 082 78.346 86.181 73.776 9 1.404 78.346 88.139 97.933 81. 610 67.900 86.557 90.492 85.246 8C.656 80.465 77.930 84. 599 69.63 1 65.076 69.328 72.414 75.661 72.076 78.601  411.633 422.371 386.577 422 .371 375.839 344.202 294.005 346.816 339.665 346.816 346.816 311 .061 368.268 316.760 241. 170 287.964 305.961 341.957 313. 161 411.899 378.947 391.724 331.034  76.243 82.21 0 517.127 84.199 8C.884 68.346 44.688 7 9.0 34 64.544 79.034 102.086 7 1.13 1 44. 127 68.852 5 1.148 61.639 57.049 66.885 6G.984 74.129 66.526 77.754 62.851  6.3 6.9 6. 9 6 .4 6.4 6.5 7.1  7.7  6.4 7.0 6.3 7.8 7.7 7.9 7.8 7. 7 7.8 7.3 7.1 7.9 7.8 8.2 7.1 7. 3 7.2 6.2 6.3 7.1 6.4 7.4 6.6 7.9 7.6  6.8 6.4 6.4 7.1 7.8 6. 5 7.9 6. 8 6.7 7.5  * Sample rejected for containing anomalously high concentrations of the underlined element (s) + Blank = value not measured.  264  'SAMPLE DESCRIPTION SITE NO. A HORIZON LAC. SOIL SAND AND SILT GLACIAL TILL  348 355 358  E 3172 3780 3179  308 3358 309 3376 310 3409 311 3424 312 3450 313 3398 314 3307 315 3311 316 3283 317 3300 318 3282 319 3261 *320 3218 321 3162 341 3703 342 3731 343 3731 344 3775 349 3350 350 3410 351 3573 352 3598 353 3585 356 3743 357 3797  AEOLIAN 254 SAND *255 2 59 264 265 267 269 270 271 272 2 74 27 5 276 300 3 27 328 329 330 331 *332 333  SAMPLE NO.  CU (PPM)  FE (%)  N 7416 67C5 7433  740C887 74CC908 74CC917  17.778 11.069 17.792  6967 6954 6953 6972 6912 6888 6303 6782 6667 6605 6590 6563 6630 6 722 6973 6971 6993 7010 6792 6759 6861 6752 6690 6371 6916  7400767 740C770 740C773 74CC776 7400779 740C782 74CC785 7400788 740C79 1 74CC794 740C797 74CC800 7400803 74CC806 74CC866 7400869 740C872 74CC875 74C0890 740C893 7400896 74GC899 74C0902 7400911 74CC914  1.794 16.530 1.794 19.337 1.9 30 18.090 1. 615 14.971 1.631 13.411 1 .495 13.723 1. 710 20.719 17. 102 1.683 2.117 20.391 2. 063 19.075 1.873 17.102 1.927 19.733 2.226 24.337 1 .683 16.444 1. 676 12.013 1.879 16.017 1.625 14.682 1.686 14.348 1.681 15.765 1. 323 11.740 1.398 14.423 1.725 14.088 1. 492 16.101 1.503 12.459 1 .123 10.157  7587 3679 3608 7540 3354 7537 74 6 0 3627 3549 7273 3692 7297 3728 7366 3748 7425 3729 7393 7249 3183 3200 7248 32 10 7343 3175 7350 7380 3102 3564 7203 7475 3347 3379 75C9 74 72 3341 3324 7 4 4 0 3319 7437 3623 7083  740C605 7400603 7400620 74006 35 7400638 7400644 740C650 7400653 74CC656 7400659 7400665 74CC668 74GC671 7400743 740C824 740C827 74CG830 74C0833 7400836 74CC339 740C842  10.719 1 1.980 6.305 6. 81 5 5. 842 5.842 7.789 5.517 7. 140 5. 562 3. 869 5.320 7. 496 6.835 7.967 8.963 11.618 8.299 11.6 18 6.6 39 5. 643  1.925 1.492 1. 808  1.2 60 1. 146 0. 894 0. 969 0. 891 0.930 1 .123 1.038 1.104 0. 862 0.567 0. 998 1. 134 0. 843 1.129 1.037 1.255 1. 146 1.2 00 0..753 0., 900  SE (PPM)  PH  MN (PPM)  ZN ' (PPM)  419.310 297.931 385.023  80. 172 53.017 69.209  7.3 8.0 7.0  351.487 392.677 373.455 417.391 307.552 3 76.201 323.392 509.008 424.173 405.017 451.540 448.803 541.847 383.124 290.322 320.737 345.622 331.797 441.379 275 .862 284.138 377.931 391.72 4 339.515 229.336  65.892 68.427 67.159 7 1. 594 53. 854 60.190 52.711 75.488 71.584 68. 330 71.584 65.076 78.091 63.774 58.190 62. 069 64.655 64.655 73.060 45.259 64.655 64.655 64.65 5 56.774 27.527  6.7 6.8 6.6 6.0 7.9 7.9 8.4 8. 1 8.0 3.0 7.9 8.0 4 , 5 ,9 . 8 .0 . 1 .9  279. 195 304.250 178.97 1 179.272 179.272 179.272 268.907 218.711 276.078 185.922 114.413 160.894 332.514 165.579 248.276 206.896 286.896 187.586 237.241 377.931 137.931  51.713 6 9.613. 29.834 34.330 2 8.258 34.173 40.745 34.173 39.430 36. 883 25.027 32.931 44.786 32.787 37.581 40.821 58.315 43.413 49.892 23.974 29.158  7.3 7.0 7.5 7.4 7.7 7.6  6.1 6. 5 7.8 6.5 6. 8 7.8 6. 6 6.4 6.8 6. 6 6. 8 8.2  * Sample rejected for containing anomalously high concentrations of the underlined element (s) . + Blank = value not measured.  265  SAMPLE DESCRIPTION SITE NO.  SOIL  C HORIZON SOIL  SAND  LAC. CLAY  LAC. SILT AND SAND  U.T.M. COORDINATES E N  SAMPLE NO.  CU (PPM)  FE (%)  ZN (PPM)  146.207 152.074 17 4 . 19 4 179.723 171.429 248.848 275.862 146.207  33.693 2 5 . 862 42.026 40.733 3 8 . 793 4 3 . 319 54.957 3 2 . 328  2 . 138 1. 928 2.368 2. 189 2. 062 1 .604 2 .406 2. 4 4 4 2. 558 2.177 2.406 3 . 131 2 .368 1.489 2.223 2. 529 2.0 12 2. 721 1.794 2.066 2.443 1.7 37 1.528 1. 829 2. 083 2.061 1. 764 2.070 2 . 3 63  343.624 357.942 340.045 333.445 3 02 . 55 8 202.892 2 84.761 302.558 313.237 224.249 259.844 320.356 266.963 220.690 2 9 5 . 163 4 10.349 287.964 334.758 367.963 340.503 344.812 301.026 256.552 276.498 345.622 325.517 299.391 297.003 320.698  82.873 6 1.657 79. 558 65.717 61.37 1 48.966 76.337 77.040 78.346 65.288 78.346 99.238 71.817 4 3. 7 4 3 68.852 88.525 56.393 81.967 5 8. 9 2 3 65.892 71.56 4 49.458 48.596 51.724 72.414 62.716 6 0 . 150 67.205 78.950  1.713 2. 024 1.642 1 .432 1. 588 1 .588 0. 988 1.701 1.739 1.210 1.285  268.456 311.409 268.456 221.924 243.810 207 . 9 5 5 207.955 264.581 271.732 178.771 207.374  45.083 54.365 72.928 46.409 50. 602 40.745 26.287 80.351 88.255 98.793 82.327  334 335 336 337 338 345 346 347  3623 3615 3763 3768 3698 3453 3492 3345  7C93 7129 72 04 7218 7208 7248 7327 7422  7400845 740C848 7400851 74CC854 74CC857 74CC878 740C881 7400884  7.967 5.673 7.341 9. 009 9.34 3 9.009 1 0 . 734 6.373  1.004 0.965 1 .057 0.965 1.092 1.016 1.258 0.949  251 252 253 2 63 283 284 285 286 287 288 289 290 29 1 292 293 294 295 296 306 3 07 322 323 324 339 340 354 359 36C 361  2953 3008 3029 3319 3280 3070 2919 2960 2991 2932 2982 3067 3109 3185 3069 3223 3123 3C99 3135 3158 3221 3240 3327 3750 3769 3613 3087 3C03 2956  7152 7156 7040 74 17 7390 7223 6998 6997 6860 683 9 6770 6700 6797 68C0 6928 6961 6995 6988 7215 7189 7182 7215 7231 7154 7102 6560 7 122 7035 6812  7400597 7400600 740C603 7400633 740C693 7400696 7400699 74CC7G2 7400705 74C0708 7400711 740Q714 74CC717 7400720 740C723 7400726 7400729 7400732 74C0762 7400765 740C810 74CC813 740C816 740C861 7400864 7400906 7400921 740C924 74CC927  3 I. 527 2 6 . 483 29.005 27.586 17.407 16.215 26.945 24.799 24.560 32.429 2 5. 2 76 23.845 21.461 15.499 37.282 27.340 30.447 27.340 19.961 24.016 25.324 14.800 14.606 14.015 19.020 22.474 2 4 . 935 29.976 30.059  3558 256 257 . 3 4 8 2 3428 258 3281 260 3287 261 3286 262 3722 268 3383 277 3399 278 3479 279 3514 280  7544 7585 7595 7537 7 516 7500 7328 7474 7473 7444 7435  74006 12 7400615 7400618 740C624 7400627 74CC630 74CC648 7400675 74CC678 7400681 74CC684  11.665 14.502 16.709 13.241 15.578 12.657 5. 517 10.640 12.574 6.287 7.254  + Blank = value not measured.  m (PPM)  v  SE (PPM)  PH  8. 8. 7. 6. 7. 7. 6. 7.  0 . 32 0.64 0 . 70 0 . 36 1 . 28 0 . 35 1. 9 2 0 .34 0. 3 3  0 . ,74 0 ..24 0 ..38  0 ,. 2 8 o,. 2 6 0.27 0 .57 0.18 0.46 0.26 0.24 0.2 8 0.20  0 6 2 8 4 2 8 2  8. 1 7.9 3.2 3. 6 8.4 3. 1 8.1 8.3 8. 2 8.2 8.3 3. 2 8.2 3.6 3.4 3 .4 8.0 8.6 3.5 3. 6 3.2 7. 8 3.6 3 . 1 8.6 3.3 8.2 8.4 8.5 6.9 7.2 8.6 8.3 8.2 7. 1 8.4 8. 4 8.4 8.1 8. 2  266  SAMPLE DESCRIPTION  SITE NO.  C  HORIZON SOIL  LAC. SILT AND SAND  281 282 297 298 299 301 302 303 304 305 325 3 26 348 3 55 358 308 309 310 311 312 313 314 315 316 317 318 319 320 *32l 341 342 343 344 349 3 50 351 352 *3 53 356 357  AEOLIAN SAND  254 2 55  2 59 264 265 267 269 270 271  U.T.M  SAMPLE  COORDINATES  3530 3543 2940 3019 3056 3 140 3217 3192 3102 3117 3362 3508 3172 3780 3179  7397 7405 7292 7328 73 22 7379 7481 7459 7477 7433 7132 7210 7416 67C5 7433  NO.  74C0687 7400690 7400735 74CC738 74CC741 74CC747 ' 740C750 7400753 740C756 740C759 7400819 740C822 74C0888 74C0909 74CC918  CU (PPM)  8.222 10.015 14.602 14.602 17.398 14.913 28.583 8.421 24.951 13.411 14.606 11.618 18.449 9.057 23. 823  33 58 3376 3409 3424 3450 3398 33 07 3311 3283 3300 3282 3261 3218 3162 3703 3731 3731 3775 3 35 0 3410 3573 3598 3585 3743 3797  6967 6954 69 53 6972 6912 6888 6803 6782 6 66 7 66C5 6590 6563 6630 6 722 6973 6971 6993 7010 6792 6759 686 I 6752 6690 6871 69 16  74CC768 74C0771 7400774 74CC777 7400780 74CC783 74CC786 7400789 74CC792 74CC795 74CC798 740C801 740C804 740C807 74CC867 7400870 740Ce73 740C876 740C891 740C894 7400897 74C0900 74C0903 7400912 74CCS15  14.035 16.218 13.723 16.218 14.659 19.337 15.457 13.313 19.733 19.733 17.760 19.733 22.035 16.444 14.015 16.017 16.017 12.013 21. 132 10.734 13.417 15.765 17.773 17.339 10.442  3679 3608 3354 3627 3549 3692 3728 3748 3729  7587 7-54 0 7537 7460 7273 7297 7366 7425 7 393  74 C0606 7400609 7400621 74G0636 740C639 7400645 740C651 7400654 74CC657  12.926 15.133 9.458 7. 140 4. 544 3.895 8. 763 3.895 10.385  F E ' (%)  1.361 1. 547 1.495 1.610 1.744 1.590 2. 299 1.033 2.066 1. 4 68 2. 101 1.2C0 1.736 1.106 1.687  232. 402 242. 047 259. 167 2 08.774 2 33. 971 226..772 341..957 156.. 522 351..437 164.. 760 344..827 2 09..655 284..138 275 .862 325 .731  255.378 1 .349 269.107 1.4 14 263.615 1 .305 324.027 1 .658 291.075 1 .441 296.567 1.523 339.339 1. 5 74 333.865 2.0 36 1 . 737 328.392 311.973 1. 656 3 14.709 1.683 361 . 23 2 1.818 394.071 1.818 506.272 1.7 10 254.378 1. 473 254.37 3 1.727 282.028 2. 032 212.903 1.2 95 358.62 1 1.681 262.069 1. 1 66 215. 172 1. 508 284.138 1.519 468.965 1.953 307.154 1.7 09 229.336 1.222 1.165 1.451 1.214 1.1 04 0.910 0.8 33 1.414 0.930 1.550  W  MN (PPM)  178.971 232.662 218.344 186.443 161.345 132.661 233.053 172.101 276.078  (  P P M  SE+ '  68 496 39. 1 73 59. 016 44. 590 5 1.148 44. 590 65. 574 30. 412 65. 259 43. 083 74. 514 36. 933 54. 957 28. 448 58. 055  (  F  M  0.6 0 0.20 0.42  0.28 0.44 0.22 0.45 0.40 0.6 3  38.0 15 39.232 36.648 44.35 1 41. 183 0 .1 8 43.033 0. 36 48.156 0.,26 60,52 1 5 6.616 5C.759 0.,24 53.362 0..36 53. 362 61.322 6 5.07 6 35.560 0 .18 0 .36 48.49 1 6 1.422 0 .2 1 0 .27 36.8 53 53.017 0 .5 8 3 1.034 0 .08 42.672 0 .14 46.552 85.345 0 .25 5 1.038 1 .50 28.383 0 .29 37.127 58.343 35.138 32.859 24. 315 28.258 36.802 21.030 42.059  PH  >  0.20 0.18 0.20 0.26  8.2 8.3 8.8 8.2 8.3 8.3 8.5 8.7 8.6 8.5 7. 3 8  8.3 8.3 8. 7 3.3 8. 6 8.3 8.9 7.6 3.4 8.6 8. 4 8.7 3.9 6.0 3.2 8. 6 7.5 3. 3 8. 0 8. 1 3.4 8. 1 8. 0 8.2 8.1 8.0 8.0 8. 5 7.3 7.5 7. 2 7.4 7.0 7.8  * Sample rejected for containing anomalously high concentrations of the underlined element (s) + Blank = value not measured.  2 6 7  SAMPLE DESCRIPTION SITE NO.  C HORIZON AEOLIAN 2 72 SOIL SAND *274 275 276 300 327 3 28 329 330 *33l 332 333 334 335 336 337 338 345 346 347  U.T.M. (XXDRDINATES E N  3183 3200 3210 3175 3102 3564 3347 3379 3341 3324 3319 3623 3623 3615 3763 3768 369 8 3453 349 2 3345  7249 7248 7343 7350 7380 72 03 7475 7509 7472 7440 7437 70E3 7093 7129 7204 7218 72C8 7248 7327 7422  SAMPLE NO.  CU (PPM)  74CC660 7400666 7400669 7400672 7400744 7400825 740C828 7400831 740C834 74C0837 7400840 7400843 7400846 7400849 740C852 7400855 740G858 740C879 74CC382 7400885  4. I l l 4.111 4.353 2. 902 5.592 4.315 9. 959 10.622 9.295 21.909 12.282 5. 643 4.315 4.004 6. 0C6 5.673 7.341 6.373 7.044 8.386  FE (%)  MN (PPM)  121.564 1.191 0.711 10011.172 132.29 I 1.115 221.676 0.567 118.785 0.901 220.690 0.938 184.828 1.391 228.965 1 . 500 171.034 1.228 353.103 2.455 262.069 1 . 664 132.414 0. 835 132.414 0.8 18 229.493 0.828 132.719 0. 940 110.599 0.813 1.2 70 179.723 146.207 0. 786 137.931 0.803 176.552 1.226  ZN (PPM)  SE (PPM)  PH  30.296 18.441 3 1.614 1 C. 999 24.913 18.143 36.933 40.321 38.877 69.978 5 5.076 24.622 23.974 14.871 29.741 23.922 37.500 2 1. 336 23.276 42.026  0. 24 0. I 0  7.1 6.5 8.4 8.3 6.9 8.4 7.2 7.2 8.2 6. 7 7.1 8.7 8.5 8.9 3.1 7.9 8.3 8.5 8.1 8.2  0. 10 0. 13 0. 12  0. 18 0. 07 0. 07 0. 09 0. 0 8 0. 08  3. RC6ET0WN AREA BEDROCK - BEARPAW FORMATION (TABLE XXVII)  SAMPLE SE DRILL (PPM) HOLE NO. NO. 0.436 740996 I C168 AOUADELL 0.465 74C998 10168 0.740 7410CC 10168 1.170 741002 10168 1.040 74 1005 1067 0.610 741007 1067 741C09 0.155 1067 0.495 741010 1067 CRU IKSHANK 0.430 741011 1067 0.460 741012 1067 SNAKEBITE 741014 0. 510 1067 0.600 741016 1067 C.580 741018 1067 0.665 741020 1067 0.810 741022 1067 0. 655 GSC61- 1 74 1032 0.370 GSC61--1 741034 0.370 GSC61-•1 741035 AROKENNITH 0. 245 GSC6 1-• 1 741037 0.285 GSC61-•1 741039 0. 62 5 GSC61--I 74 104 1 BEECHY 0.650 GSC61-•1 741043 0.260 GSC61--1 741044 DEKAINE 0.260 GSC61--1 741046 0.750 GSC61--1 741047 SHERARO 0.575 GSC61--I 741049 * Sample rejected for containing anomalously high concentrations of the underlined MEMBER  + Blank = value not measured.  268  SAMPLE DESCRIPTION SITE NO.  U.T.M. COORDINATES E N  SAMPLE NO.  CU (PPM)  FE (%)  MN (PPM)  ZN (PPM)  SE (PPM)  PH  4. RED DEER AREA SOIL (TABLES XXXI AND XXXIII) 379.526 499.376 366.209 372.867 492.717 319.601 466.084 375.556 336.706 505.058 1036.018 1063.393 582.760  5 1.456 52.810 56. 872 73.121 83.954 62. 288 41.977 8C. 053 82. 722 74.716 80.053 60.040 82.392  7. 3 6.4 5.9 5.9 6.4 6.0 5.8 6.3 7.3 7.6 5.6 6.5 5.6  1 .280 2.544 2.051 1 .395 1 . 395 1.313 1. 641 1 .305 1. 543 2.215 1 . 149 1. 723 0.985 1.444 1.231 1.231 1 .559  330.231 485.63 3 679.886 518.009 532.667 366.209 319.601 332.917 319.601 499.376 199.750 279.651 186.434 412.817 518.009 259.004 343. 181  49.366 74.716 64.043 65.377 77.183 64.997 54.164 67.705 5 1.456 6 2. 288 64.99 7 51.456 58. 226 66.351 69.380 46.698 54.703  6.9 3. 0 5. 7 5.7 6. 5 6. 1 5.9 6.6 5.8 5.4 5.4 6.1 6. 0 5.5 6.0 7.8 5.5  1. 362 1.674 1.6 90 1.510 1.690 1. 362 1.559 2.051 1.477 1 .1 96 0.926  346.234 392.843 388.507 485.633 343.181 518.009 1133.144 271.955 349.656 367.279 347.246  56.872 63.643 81.388 66.711 65. 377 62.708 78.719 74. 71 6 44.029 49.793 51.637  8.0 6.8 7. 1 8.0 6.3 7.6 6.9 6.6 6. 1 7.9 6. 7  9 11 22 24 29 39 47 103 115 1 18 * 123 *130 137  3096 3100 3183 3234 3238 3393 3527 2920 2667 2722 2604 2527 2433  7590 7525 7583 7574 7783 7664 7731 7682 7662 7813 7804 7793 7707  730589 73C598 730634 73C643 730661 730696 73C722 73C930 730962 73C971 73C990 731013 731040  12.048 12.851 10.442 14.458 16.667 12.048 10.442 18.349 14.3 60 17.551 10.371 10.371 8. 347  1.346 1.4 77 0.985 1 .477 1.723 1.477 I. 182 1. 707 0.952 1 .641 1.641 1.313 1. 501  76 HUMMOCKY MORAINE * 81 86 92 34 44 45 51 54 58 59 56 72 75 79 89 94  3923  406 4200 4234 3278 3457 3476 3529 3589 3657 3630 3730 3852 3920 4043 4163 4214  7590 7587 7709 7577 7563 7560 7666 7652 7570 76 32 7688 . 7549 7708 7649 7553 7548 7615  730831 730e50 73C865 73C887 730679 73C713 73C716 7 3073 8 730747 73076.3 730768 730755 730813 730826 730842 730876 730895  8. 775 30.315 10.371 12.764 14.458 12.851 14.458 19.277 12.851 16.867 12.043 14.458 11.245 12.851 11.967 12.764 8. 775  2 K ICO 110 111 119 *129 133 136 142 147  3112 3179 3002 2765 2783 2740 2488 23 74 2393 4024 4081  7920 7900 7712 7856 7800 7900 7745 7 922 7772 7493 7712  730565 73 0610 730915 730945 730948 730976 731C08 731024 73103 5 73001535 73001550  13.655 16.867 15.955 15.955 14.360 14.360 9. 573 14.360 6.382 12. 01.5 10.013  A HORIZON GROUND SOIL MORAINE•  IAC.  S  I  * Sample rejected for containing anomalously high concentrations o f the underlined element (s) . + Blank = value not measured.  269  SAMPLE DESCRIPTION SITE NO.  C HORIZON PASK- * SOIL APOO GROUND MORAINE  1 7 8 9 10 11 17 22 23 24 39 49 101 103 105 117 *1 18 122 123 131  73 76 77 81 85 86 * 88 91 92 144 146  HORSESHOE ' CANYON GROUND MORAINE  PASKAPOO HUMMOCKY MORAINE  12 34 35 44 45 46 51 52 55 57 58 59 60 171  U.T.M. COORDINATES E N  3143 7965 3100 7658 7638 3100 7590 3096 3082 7581 7525 3100 7780 3173 7583 3183 32 06 7574 3234 7574 7664 3393 7737 3561 3022 7648 7682 2920 7730 2920 2656 7767 2722 7813 7846 2640 2604 7804 2542 7841  39 70 3 92 3 3976 4061 4156 4200 41 42 4270 4234 4086 3983  7734 7590 7563 7587 7 7 53 7 7 09 7616 7553 7577 7748 7688  3132 32 73 3312 3457 3476 3496 3529 3620 3726 3652 3657 3630 3690 3232  7537 7563 7545 7560 7666 7679 7652 7636 7530 7628 7632 7688 7750 7697  SAMPLE NO.  CU (PPM)  FE (%)  MN (PPM)  275.711 229.759 407.002 315.098 328.228 190.372 6 56. 716 171.642 261.194 194.030 247.500 315.000 218.532 276.379 2 44.24 2 282.807 726.299 270.096 321.543 366.560  ZN (PPM)  66.990 31. 664 36.187 37.049 53. 419 31.018 35.015 43. 027 45.994 48. C71 56.119 56.716 27. 378 52.668 41.299 41. 763 51.7^0 46.260 38.515 50.580  73 0564 73C585 730588 730591 73C597 73C600 730621 730636 73C642 730645 730698 73C732 730920 73C926 73C932 730970 73G973 73C989 730992 731C18  33.929 12.500 12.500 11.607 13.393 9.821 12.621 17.476 20.388 18.447 12.621 23. 301 6.481 24.074 15. 741 12.963 16.667 2C. 370 16.667 20.370  2.926. 1. 183 1 .619 1.146 1.619 0. 996 1 . 922 1.369 1.689 1.529 1. 500 1.893 1. 140 1.698 1.267 1. 337 1.012 1. 742 1.731 1 .846  73C820 73C833 730338 73C652 730864 73C867 73C875 730886 73C889 73001543 73001549  25.837 17. 225 20.370 18. 519 16.667 12.037 13. 889 19.444 38.889 17.763 12.82 9  1.982 1.3 50 1.638 1.488 1. 292 1. 364 1.315 1.315 2. 100 0. 998 1. 107  397. 790 309. 39 2 2 93.C97 342. 495 234. 672 310. 782 684 .989 298 ,097 393 23 5 233 422 190 ,98 1  6C, 714 50, 000 49, .116 50 ,269 4C. 81 5 51 , 653 35 ,742 46 . 580 69 ,178 4 3 , 437 34 .483  1.556 1.034 1.646 1. 194 1 .675 1. 150 1.777 1.2 09 1 .063 1.163 1. 2 06 0.977 1.2C6 0.575  347. 921 208. 955 270. 000 187. 500 285. 000 217. 500 292. 500 165. 000 180. 000 213, ,629 228. 361 110. 497 250, 460 107. 473  45.880 36.202 53.134 34.328 53.134 33.433 53.433 35.224 25. 075 29.762 35.714 28.869 3 5.714 14.45 1  730606 730681 73C684 730715 730718 730721 730740 73C743 730754 730762 730765 730770 73G775 73001627  13.393 13.592 21. 359 12.621 20.388 13.592 22.330 13. 592 7.767 13.397 16.268 7. 656 15.311 4. 025  SE* (PPM)  PH  +  8.1 8.7 8.0 7.0 6. 7  8.0 8. 1 7.5  8.3 7.8 5. 1 8.1  7.9 8.0 8.0 8. 3  8. 1 9. 0  * Sample rejected for containing anomalously high concentrations of the underlined element(s) . + Blank = value not measured.  270  SAMPLE DESCRIPTION SITE NO.  U.T.M. COORDINATES  SAMPLE NO.  CU (PPM)  FE .(%)  MN (PPM)  ZN (PPM)  t?  M  3730 3718 3736 3756 3896 3868 3841 3852 3920 3951 4043 4036 4117 4 163 41 80 4214 4214 403 3  754.9 7670 7548 7530 757 1 7633 7656 77G8 7649 7521 7553 7639 7653 7548 7547 7590 7615 7632  730757 730789 730792 730795 73C801 73C804 73C807 730815 730828 73C841 73C844 730855 73C872 73C878 730883 73C894 730897 73001540  15.311 13. 39 7 14.354 13.397 13.397 22.010 13.397 14.354 17.225 35. 185 15.741 15.741 12.963 15.741 16.667 18.519 19.444 17.763  1.235 1 .436 1.465 1 . 178 1 .178 1.695 1 .235 1. 250 1.408 1.973 I . 419 1.500 1 .592 0.958 1.338 1.581 1 .454 1 .197  206.252 2 94.65 9 272.560 228.361 220.995 250.460 265.193 235.728 324. 125 317. 125 266.385 215.645 69.767 145.677 272.727 266.385 183.932 222.812  36.310 36.310 3 8. 095 36.905 3 5.714 55. 952 35. 119 36.607 42. 857 71.483 41. 045 42.429 39.662 36.434 47.041 52.575 41. 507 44.444  3 4 5 6 18 97 ICC 104 1 C6 107 1 10 1 11 112 119 128 133 134 135 145 147 148 1 49  3111 3110 3103 3053 3 198 3032 3002 2361 2877 2932 2765 2783 2816 2 740 2489 2374 2370 2420 4003 4081 4049 4003  7897 7850 7780 7730 7732 7902 77 12 7742 7742 7838 7856 7 300 77 78 7900 7727 7922 7863 78C9 7751 7712 7747 7767  730573 730576 730579 73C582 73C624 730908 73C917 73C929 73C935 730938 730947 73C950 73C955 730978 731007 731026 731031 731034 730C1546 73001552 73001554 73001557  14.286 13.393 10.714 28.571 1 7. 476 3. 333 2C.370 22.222 19.444 26.852 16.667 16.667 17.593 11.111 30.556 2 8. 704 12.963 22.222 20.724 6. 908 22.697 17.763  1 .345 1. 457 1.494 2.328 1.427 1.015 1. 651 1. 733 1.651 1.977 1.535 1 .384 1.465 1.212 2.538 2. 158 1.223 1 .708 1. 578 0.862 1.3 62 1.723  210.066 393 .873 303.534 479.212 261. 194 234.672 276.379 295.661 250.670 231 .387 282.807 224.960 218.532 212.219 398 .714 334.405 257.235 308.682 265.252 122.016 381.963 228.117  4 1.357 48.034 31.018 68.067 51.92 9 28.132 52.204 55.684 4 6.4 04 59.397 45. 940 42.923 42.691 37.319 74.246 64.501 40.603 55.220 54.023 19.157 57.854 54.406  ALLUVIUM-• 27 OUIVJASH * 71 DEPOSITS 116 154 164 167 168 170 177  3309 3823 2650 2365 2830 3061 2992 3333 3306  7890 7690 7687 7790 7756 7879 7800 76C8 7793  73C654 730812 73C967 7301582 7301608 7301615 7301619 7301624 7301699  11.650 20.096 8. 333 7.895 10.063 7. 044 15.094 10.C63 5.006  1.267 3.045 1.128 0.889 0.997 0. 843 1. 802 0.958 0.538  313.433 1038.674 385.646 185.676 194. 179 141.058 335.852 144.417 90.000  35. 015 66.07 1:. 27.146 24. 329 3 1.792 24.C85 43.353 24.085 6.773  C HORIZON HORSESOIL SHOE CANYON HUWDCKY MORAINE  56 64 65 66 68 69 70 72 75 * 78 79 82 87 89 90 93 94 143  LAC. DEPOSITS  SE  (PPM)  PH 8. 1  8.0 3.1 8.3 8.7 8. 1  7.8  8. 0 8.1 8. 1 7.8  * Sample rejected for containing anomalously high concentrations of the underlined element (s) . + Blank = value not measured.  SWAN RIVER - DAUPHIN AREA STREAM SEDIMENT  SAMPLE NO. 7200001 7200002 7200003 7200004 7200005 720CC06 72C0007 7200008 7200009 .72000 10 7200011 720CC12 72000 13 7200014 7200015 7200016 7200017 72000 18 7200019 7 2000 20 7200021 7200022 7200023 7200024 7200025 7200026 7200C 27 7200028 7200029 7200030 7200031 7200032 7200 033 7200034 7200035 7200036 7200037 7200038 7200039 7200040 7200041 7200042 7200043 7200044 7200045 7200046  +  U.T.M. COORDINATES N E 3322 7600 3335 7598 7570 3280 7507 3158 7483 2966 2953 7617 3004 7614 75C8 31C3 3138 '7413 7477 3196 7480 3196 3192 7531 3228 7570 3260 7544 7468 3243 3264 74C6 7410 3285 7402 3312 3337 7486 334? 747C 7520 3323 3336 7600 3404 7 546 7548 3413 3428 7547 3440 7549 3437 75 80 3430 7595 3446 7578 3468 7593 7593 3475 3494 7595 7625 3495 7625 3520 3540 7630 358 2 7668 3608 7675 7555 3625 7510 3645 7400 3751 7394 3750 3 R00 7400 3802 7402 3894 7394 392 1 74C0 3909 7432  M0 (PPM) +  1.5 0.5  0.5 0.5 0.5 0.5  1 .<  . 0.! 0.'  1 .  Blank = value less than detection l i m i t o f 0.5 ppm.  272  SAMPLE NO. 7200047 7200C48 7200049 7200050 7200051 7200C52 7200053 72000 54 7200055 7200056 7200057 7200058 720CC59 7200060 7200061 7200062 7200C63 7200064 7200065 7200066 7200067 7200068 7200C69 720007C 7200071 7200072 7200073 7200074 7200075 7200076 7200077 7200078 7200079 7200080 7200081 7200082 7200083 7200084 72C0C85 7200086 7200097 7200088 7200089 7200138 7200137 7200139 7200140 7200141 7200142  U.T.M. •COORDINATES 3888 7489 3860 7540 7563 3843 3857 7554 3850 76C9 3846 7 6 28 764C 3845 3815 7730 3598 7721 3580 7722 3529 7723 3780 7782 3738 7782 3705 7783 3 657 7783 7784 3606 3597 7786 3507 7787 3012 7662 3020 7715 7684 3145 3256 7655 3198 7700 3195 77C3 7710 3175 3113 7770 3114 778C 3115 7796 3 196 7773 3196 7793 78C1 3212 7757 3193 3 192 7722 3242 7739 7756 3243 7801 3253 3353 7793 3275 7735 3295 7728 3291 7666 3342 7663 3354 7663 7654 3441 39 39 7353 7377 3931 3940 7346 3953 73C8 3968 7253 3954 7228  MO (PPM) 1 .0 0. 5  0.5  0.5 1.0 0.5  l.C  0.5  + Blank = value less than detection l i m i t of 0.5 ppm.  SAMPLE NO.  7200143 7200144 7200 145 7200146 7200147 7200148 7200149 7200150 7200151 7200152 7200153 7200154 7200155 7200156 7200157 7200158 720 0159 7200160 7200161 7200162 7200163 7200164 7200165 7200166 7 20 0167 7200168 7200169 720017C 7200171 7200172 7200173 7 200174 720C175 7200176 7200177 7200178 7200179 7200180 7200181 7200182 7200183 7200184 7200185 7200186 7200187 7200188 7200189 7200190 7200191 7200192  U.T.M., (COORDINATES E N 3943 3952 3974 3982 3980 4C46 4057 4039 3798 3798 3798 3348 3846 3876 3866 3867 3914 3915 3964 39 63 3963 3965 3915 3963 3962 3960 4026 4 02 7 4029 4029 4028 4028 4 063 4069 3745 3 72 5 3 7 85 3763 3763 3785 3836 3848 3873 3862 3862 3862 3862 4155 4132 4123  7202 7167 7134 7086 7C68 7020 6968 6860 6746 6768 6793 6758 6740 6732 6837 6864 6858 68 86 6884 6870 6853 6846 6796 6805 6757 6740 6 733 6752 6814 6820 6826 6831 6747 6676 6704 6630 6680 6624 6584 6580 6581 6582 6580 6 618 6625 6640 6656 6607 6608 6580  l.C 2.5  3.0 1.0  3.5  4.5 1.5  + Blank = value less than detection l i m i t of 0.5  274  SAMPLE NO.  7 200193 7200194 7200195 7200196 7200197 720C198 7200199 7200200 7200201 7200202 7200203 7200204 7200205 7200236 7300881 7300883 7300884 7300965 7300966 7300967 7300968 730C969 7300977 7300978 /30G979 73C0S80 7300981 7300983 7300985 7300989 7300990 7300991 7301038 7301039 7301041 7301C42 7301043 7301044 7301055 7301056 7301215 7301219 7301469 7400059 7400060 7400061  U.T.M. CXXIRDINATES E N 4128 4020 4C13 3992 3965 3946 3921 3915 3927 3969 3967 3972 3981 4064 4243 4244 4250 4273 4288 4255 4250 4250 4090 4106 4 123 4100 4111 4142 41 88 4131 4104 41 57 4065 4045 4021 399 5 3957 4013 3585 3574 3971 4028 3610 4072 4082 4071  6574 6543 6542 6563 6563 6563 6580 6580 6 6 38 6627 6610 6610 6610 6642 6540 6556 6590 6633 6635 6623 6605 6573 6590 6556 6564 6541 6559 6592 6603 66C8 66CC 6624 6756 6759 6750 6750 6762 6818 7673 7658 6610 6752 7656 6582 6540 6.557  MO (PPM) +  0.5  4.0 3.2 1.6  1.6 1.6 2.4 5.6 14.4 6.4 4.8 2.0 0.8 4.6 1.6 3.2 1.6 2 .4 0. 8  + Blank = value less than detection l i m i t of 0.5 ppm.  275  6. SWAN RIVER - DAUPHIN AREA BEDRCCK (TABLES XXXXIII AND LTV)  FORMATION V E R N I L L I C N  RIVER  UraOLOGbf SHALE  SITE NO. 1 8 15  16  SHALE  FAVEL  2 3 4  6 9  10 12 14  LIMESTONE  BENTON ITE  ASHVILLE  SHALE  15 17 1. 9 12 15 17 3 4 10 6 7  10  SAMPLE MO U.T.M. (PPM) OOORDINATES NO. N ri 20. 0 730385 4182 6535 730908 4.0 4170 6493 7309 09 10. 0 6. 0 730910 3245 75 95 731390 15.0 731391 £. 0 14.0 731392 15. 0 731393 7 31394 1 2 . 0 15.0 3610 7653 731395 25.0 731396 731397 14.0 30.0 731398 1C. 0 731399 13. 0 4170 6576 730837 730888 8.0 3.0 4130 6606 730889 730891 3C. 0 14.0 4068 6670 730892 14. 0 73C893 7 30894 14. 0 730896 8.0 1 5. J 4027 6730 730900 730901 13. 0 14.0 4243 6528 730921 14. 0 730922 7 309 2 3 2 5 . 0 15.0 730924 4200 656 5 730970 2 5 . 0 12.0 73C971 30.0 3584 7673 731048 731049 4C. 0 15. 0 731050 7.0 3270 7605 •73 1065 731067 1 2. 0 15.0 3245 7595 73 1389 12.0 3666 7690 731465 3. 0 4182 6535 730886 5.0 4243 6528 730919 3584 76 73 731047 3 C . 0 2.0 3245 7595 731333 4.0 3666 7690 731464 2. 0 4130 6606 730890 4. 0 4068 6670 730395 2.0 4200 6565 730972 7. 0 4027 6730 730897 0. 5 4128 6690 7309 03 730904 C. 5 6. 0 730905 730907 C. 5 13.0 42 00 6565 730973 730974 1 3. 0 +  + Values below the detection l i m i t (1 ppm) given as 0.5 ppm. •H- Blank = value not measured.  SE++ (PPM) 20.  5  24. 8 10.  3  6. 3  1 .3 2. 7 4. 4 2. 9  . 2 .5  4.  5  4. 4  4 •9  5.. 0  276  LITHOLOGY  FORMATION  SAMPLE U.T.M. NO. CXXJRDINATES E N  SHALE  ASHVILLE  SWAN  SITE NO.  RIVER  11 12  4160 6605 3584 7673  FE CX-GYPSUM SULFUR SAND  6 7 13  402 7 673C 4128 6690 3540 7673  SILTSTONE  13  3540 7673  SHALF SHALE/SILT  13 13  3540 7673 3 540 7673  730975 730976 731217 731051 731052 731053 730899 730906 731057 731058 731062 731063 731059 731060 731061 731064  7. KELD DETAILED STUDY AREA SOILS AND PLANTS (TABLES XXXXIV, XXXXVI AND LV) SAMPLE DESCRIPTION SITE NO.  SOIL  SHALETILL  I 18  1 19 128 130 1 33 136 139 148 150  U.T.M. COORDINATES N E 4142 4140 4126 4128 4116 41 35 41C7 4 117 41 33  6544 6550 6558 6540 6544 6546 6552 6 5 50 6550  SAMPLE NO.  MO" (PPM)  74CC81 74C085 740118 74C128 740139 740152 740164 740191 740199  4.0 4.0 0 .4 4.0 7.2 16 .0 1.6 7.2 1 .6  1  CU (PPM)  SE (PPM)  740064 1 .6 74CC77 0.4 74CC79 0 .4 740113 2.4 74C115 0.4 74C133 1 .6 740135 0.4 740147 1.6 74C150 0.8 740156 0.4 74C160 2.4 74C170 0.8 0.4 74C172 740176 4.0 740180 0.4 74C183 2.4 740186 0.4 740183 0.4 l i m i t (1 ppm) given as 0.5 ppm. + Values below the detection ++ Blank = value not measured  CALCAREOUS TILL  112 116 117 126 127 131 132 1 34 135 137 1 38 141 142 143 144 145 1 46 147  4153 4142 4142 4123 4131 4127 4127 4111 4111 4110 4107 4088 4087 4095 4100 4112 4093 4111  6572 6528 6532 6568 6561 6533 6526 6528 6 5 33 6546 6558 6530 6546 6562 6558 6566 6578 6576  PH  7.4 7.8 7.3 7.3 7. 3 7.2 7.7 7.8 8.3 8.0 8.1 8. 0 7.7 7.8 7.8 7.8 7.4 7.4 7.8 7.8 7.8 7.9 7.9 8.5 8.3 8.2  MO (PPM)  10.0 5. 0 2.0 15.0 1 3. 0 10. 0 5.0 8. 0 1.0 C.5 0. 5 0. 5 0.5 0. 5 0. 5 0.5  SE  (PPM) 3. 1 6. 1 5.4  277  SITE NO.  A HORIZON IAC. SOIL SAND  C HORIZON SOIL  SHALETILL  CALCAREOUS TILL  LAC. SAND  U.T..M. OOORDINATES N E  SAMPLE NO.  MO (PPM) +  CU++ (PPM)  SE""" (PPM)  PH""  1 1  7.7 7.7 7. 9 7.9 7.9 7.9 7.8 7.8 7.6  113 114 115 120 121 122 123 124 125  4153 «1 5 3 4153 4138 4148 4146 41 38 4137 4123  6558 6545 6527 6562 6544 6558 6568 6577 6572  740C66 74CC69 74CC73 74CG89 74CC92 740096 740100 740104 7401C9  0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4  118 119 128 130 133 136 139 148 150  4142 4140 4126 4128 4116 4135 4107 4117 4133  6544 6550 6558 6540 6544 6546 6552 6550 6550  74C083 74CC87 740121 740131 74C140 740154 74C166 74C193 74C200  8 .0 10.4 6.4 4.8 4.8 3.0 5 .6 20.0 2.4  4153 112 1 16 4142 117 4142 4123 126 127 4131 4127 131 132 4127 134 4111 1 35 4111 138 4107 140 4100 4088 141 142 4C87 144 41 CO 146 4093 147 4111  6572 6528 6532 6568 6561 6533 6526 6 528 6533 6558 6546 6530 6546 6556 6578 6576  74CC65 740073 74CC80 740114 740116 74C134 740136 74C148 74C151 740161 740169 74C171 740173 74C181 74C187 740189  6.0 2 .4 0.4 1.6 0.4 0.4 I .6 3 .2 1.6 I .6 0.4 4.0 0 .4 2.4 0.4 0.8  7. 2 8.3 8.4 8. 3 8. 1 8.4 7.9 8.3 8. 1  4153 4153 4153 4138 4148 4146 4138 4137 4123  6558 6545 6527 6562 6544 6558 6568 6577 6572  74CC67 74CC71 74CC75 74CC91 74CC94 74C098 740102 74C1C6 740111  0.4 0.4 0.4 8.0 0.4 0.4 2 .0 0.4 0.4  8.3 8.4 8.4 7.7 8. 1 8.3 8.4 8.8 8.5  113 1 14 115 120 121 122 123 124 125  2. 18  6.6 3.5 7. 1 4.4  4.88  3. 4 3.5 3.9  7.36  + Values below the detection l i m i t (0.8 ppm) given as 0.4 ppm. ++ Blanks = values not measured.  8.3 8. 2 7.8 8. 1 8.2 7.8  278  DESCRIPTION SITE NO.  GRASS  U.T.M. COORDINATES E • N  SAMPLE NO.  MO (PPM) +  CU++ (PPM)  SHALETILL  118 119 128 130 136 1 39 148 150  4142 4140 4126 41 28 4135 4107 4117 4133  6544 6550 6558 6540 6546 6552 6550 6550  740084 74CC88 740122 740132 740155 74C167 740194 740202  1.6 1 .0 0.6 1 .2 1.6 2.4 I .0 1.6  6. 926 6 .518 7.296 8 .917 10.133 8.917 9.399 9.399  CALCAREOUS TILL  127 132 134 *137 1 28 143 144 145 147  4131 4127 4111 4110 4107 4095 4100 4112 4111  6561 6526 6528 6546 6558 6562 6556 6566 6576  740117 74C137 740149 74C158 740162 740178 74C182 740185 740190  0 .4 0.8 0 .8 8 .0 2 .0 I .8 3 .4 0 .6 0 .8  6.926 9.322 12 .160 11.349 8.917 9 .728 8.917 6 .485 7.296  LAC. SAND  113 I 14 115 121 122 123 124 125  4153 41 53 4153 4148 4146 41 38 41 37 4123  6558 6545 6527 6544 6558 6568 6577 6572  74 006 8 740072 74CC76 74CC95 74CC99 74 0103 74C107 740112  1.2 1 .4 0.4 0.8 0.4 2.0 1 .4 1 .4  SHALETILL  13?  4116  6544  740142  7.0  12.160  CALCAREOUS TILL  122 1 27 1 38 142  4127 4 110 4107 4095  6526 6546 6558 6562  740138 74C159 740163 74C179  7.0 10.0 9 .0 6.0  8.917 12.970 10.5 38 10.133  LAC. SAND  124  41 37  6577  740108  7 .0  10 .592  SE^ (PPM)  PH  9.777 8 .962 8.555 6.51 8 7.333 4.0 74 6 .111 7 .740  8. SWAN RIVER VALLEY SOILS AND PLANTS (TABLES XXXXVII, XXXXIX, LV AND LVI) A HORIZON MOSOIL TOXIC LAC. SILT  2 51 144 145 146 147 149  3240 32 6 8 3222 3220 3243 3255 3280  7630 7588 7624 7637 7649 7646 7650  731C71 73 1299 740445 740450 740454 740458 740466  1.6 2 .4 0.4 0.4 0.8 0.4 0.4  + Values belcw the dection l i m i t (0.8 ppm) given as 0.4 ppm. 4+ Blank = value not measured.  7.4 7.4 6.6 6. 8 7.8 7.5 6.4  279  SAMPLE DESCRIPTION SITE NO.  A HORIZON MOSOIL TOXIC LAC. SILT  U.T.M. COORDINATES  SAMPLE NO.  MO (PPM) +  OjV' (PPM)  SE** PH (PPM)  15C 151 152 153 154 155 157 158 159 160 161 162  3273 3277 3245 3290 3281 3276 3314 3312 3328 332C 3323 3298  7644 7630 7622 76C5 7596 7577 7597 7576 7576 7604 7588 7588  74G470 74C475 740479 740484 74C488 74G492 74C500 740505 740508 740512 740517 740521  0.4 0.4 0.8 1 .6 C.8 0.4 1 .6 0.8 0.4 0.8 0.8 0.8  6.4 6.6 6.8  24 28 32 39 41 49 57 59 61 63 69 75 163 164 165 166 167  3372 32<;6 3311 3525 3458 3293 3683 3676 3574 3555 3506 3459 3349 3375 3353 3385 3431  7637 7760 7859 7916 7859 7686 7816 7917 7916 7857 764 7 7663 76C4 7626 7649 7650 7632  731158 731170 721236 731259 731266 731293 731319 721225 731331 731337 731355 731373 740525 74C530 740534 74C538 74C542  0.4 0.4 0.4 0.4 0.4 0.4 0 .4 C.4 0 .4 0.4 0.4 0 .4 0.8 0.4 0.8 0.4 0.4  6.8 7.9 7. 5 8.0 7.9 7.9 7.8 7.9 7.7 8.1 7.6 8.2 6.7 7. 1 6.2 6.5 7.5  CALCAREOUS TILL  10 14 16 25 26 30 35 47 71  3621 3458 3238 3389 3361 3231 3370 3224 3425  7658 7542 7418 7727 7782 7871 7941 7676 7803  731 107 731123 731130 731162 731164 731177 731246 731285 72 1361  2 .4 1 .6 1.6 0.4 0.4 0.4 0.8 1.6 0.4  7.9 7.6 7.1 7.9 7.9 7.3 7.6 7.6 7. 9  LAC. SAND  5 6 45 53 60 64 65 67 73 77  3385 3554 3259 3769 3633 3580 3587 3552 3466 3473  7665 7 996 7.562 7762 7918 7853 7817 7737 7598 7748  731C83 731089 731278 731306 731328 731340 73 1342 731348 731367 731379  0.4 0.4 1 .6 0.4 0.4 C.4 0.4 0.4 0.4 2.4  8.0 6.8 6.8 7.9 7.5 7.8 8. 0 7.8 7.9 7. 5  LAC. SILT AND CLAY  + Values below the detection l i m i t (0.8 ppm) given as 0.4 ppm. 4 + Blank = value not mfflsured.  7.2 7.0  6.6  7.1 6.6 7.2  6.8  7. 5  6.4  280  SAMPLE DESCRIPTION SITE NO.  SOIL  MOTOXIC LAC. SILT  LAC. SILT AND CLAY  U.T.M. COORDINATES  SAMPLE NO.  M0 (PPM) +  1 2 3 4 51 52 85 85 99 144 145 146 147 148 149 15C 151 152 153 154 155 157 159 16C 161 162  3230 3240 3256 3313 32 68 3296 3270 327C 3282 3222 3220 3243 32 55 3261 3280 32 73 3277 3245 3290 3281 3276 3314 3328 332C 3323 3298  7633 763C 7638 7572 7588 7573 7590 7590 7634 7624 7637 7649 7646 7620 7650 7644 7630 7622 76C5 7596 7577 7597 7576 7604 7588 7588  731C70 731073 731C79 731C82 731301 7313C5 731428 74C573 731478 74C447 740452 74C456 74 0460 7 4C464 74 046 3 740472 74C477 740481 74C486 740490 74C4 94 74C502 74C510 74C514 74C519 74C523  0.8 2 .4 1.6 2.4 1 .6 C.8 0.4  24 27 28 32 34 39 41 42 49 50 56 57 58 59 61 63 66 69 72 74 75 76 86 89 92 93 98  3372 3287 3296 3311 3350 3525 3458 3478 3293 3290 3667 3683 3653 3676 3574 3555 3556 3506 3436 3502 3459 3457 3361 3370 3298 328C 3588  7637 7767 7760 7859 7890 7916 7859 7R24 7686 7722 7776 7816 7865 7917 7916 7857 7781 7647 7 64 3 7638 7663 77C2 7579 7547 7821 7811 7761  731160 731169 731172 721238 731245 731261 731267 731270 731294 731298 731318 731321 731324 721326 731332 731338 721347 731357 731366 731372 731375 731378 731432 731440 731443 731450 721473  1 .6 0 .4 1.6 0.4 0.4 2.4 1 .6 1.6 0.4 0.4 0.4 1.6 0.8 0.4 0.4 0.4 4.0 0.4 0.8 0.8 1.6 . C.4 0.4 0.4 0.4 0.4 0.4  CU** (PPM)  SE** (PPM)  PH  4  7.8 8.2 0. 50  0.4 0.8 1.6 0.4 0.4 1.6 0.4 0.4 0.8 0.4 0.8 1 .6 0.8 1.6 0.4 3.2 0.4 0.8  0. 76 0.24  0. 63  +' Values below the detection l i m i t (0.8 ppm) given as 0.4 ppm. ++ Blank = value not measured.  7.9 5.9 7.4 7.9 7.9 7.8 7.7 6.5 7.5 8.0 7.4 8. 1 7.8 8.0 8.0 7. 7 7.6 7.7 8.2 8.2 8. 1 7.9 8.3 7. 9 8.3 8.5 8.0 7.7 8.0  281  SAMPLE DESCRIPTION SITE NO.  U.T.M. COORDINATES  SAMPLE NO.  C HORIZON SOIL  ICO 101 102 1 03 104 105 107 163 164 166 167  3337 3352 3 391 34 12 3451 3488 3356 3349 3375 3385 3431  7631 7630 7632 7 63 1 7.628 7620 7732 7604 7626 7650 7632  731481 731484 731487 73149C 731493 731496 731511 740527 740532 740540 740544  0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.8 1 .6 1.6 0.4  9 10 11 13 14 15 16 17 19 26 30 35 36 44 46 47 48 71 78  3768 3621 3 6 02 3496 3458 3238 3238 3293 3224 3361 3231 3370 3399 3281 3226 3224 3226 3425 3748  77C8 7658 7633 7562 7542 7452 7418 7406 7442 7782 7671 794 1 7933 7510 7663 7676 7684 7803 7796  731106 731109 731115 731122 731125 7? 1129 731132 731136 731143 731165 73 1179 721248 731252 721277 731284 731289 72 1292 731362 731401  1.6 1 .6 0.4 3.2 1.6 0.4 2.4 0.8 2 .4 0.4 0.4 0.4 0 .8 0.4 0.4 0.4 0.4 1 .6 C.4  5 6 23 25 33 37 38 40 43 53 6C 62 64 65 67 70 73 77  3385 7685 3554 7996 3342 7586 3389 7727 3370 7890 3392 7869 3482 7951 3462 7880 3384 7797 3769 7762 3633 7918 3562 7955 3580 7853 3 5 87 78 17 3552 7737 3502 7722 3466 759 8 7748 3473  731085 731091 731157 731163 731242 731255 731258 721265 731274 731307 721330 731336 73 1341 731343 731350 73136C 731369 731381  0.4 0.4 2.4 0 .4 0.4 4.0 0.8 1.6 0.4 0.4 0.8 0.4 0.4 C.8 0.8 0.4 0.4 0.8  LAC. SILT AND CLAY  CALCAREOUS TILL  LAC. SAND  MO (PPM) +  CU** (PPM)  SE " (PPM) 44  + Values below the detection l i m i t of 0.8 ppm given as 0.4 ppm. ++ Blank = value not measured.  PH  4  7.9 7.7 7.8 8.1 7.8 8. 0  8.0 8.2  8.2 8.3  8.0  7.9 8.2 8.0 8. 5 8.1 7.9 8.3  282  GRASS MO-TOXIC AREA  SAMPLE NO.  MO (PPM)  1 * 85 144 145 146 147 148 149 150 151 152 1 53 154 155 157 1 58 159 160 161 162  7633 3230 7590 3270 3222 762 4 3220 7637 764 9 3243 3255 7646 7620 3261 7650 3280 7644 3273 32 77 7630 7622 3245 3290 7605 7596 3281 32 76 75 77 7597 3314 7576 3312 3328 7576 7604 3320 7588 3323 3298 7583  740569 7301429 740448 740453 740457 740461 74 046 5 740469 740473 740473 740482 740487 740491 740495 74 05 03 740507 740511 74C515 74C520 740524  4 .685 5 .0 4.32 12.910 20.0 4.345 0.8 5.347 1 .6 7 . 3 5,2 0.6 4.010 3.0 10 .695 0. 26 5.0 7.019 2.0 5.347 3.2 6.684 2.6 6.350 5.0 4.345 0. 68 8 .0 347 1.8 003 1 .6 347 4.0 679 2.6 687 5.0 6.684 1.66 12.0 7.352 4.0 7.013 3.0  MO-TOXIC AREA  OTHER AREAS  SE (PPM)  U.T.M. COORDINATES N ' E  OTHER AREAS  LEGUMES  CU (PPM)  SITE NO.  5 78 80 163 164 165 166 167  3385 3748 3686 3349 3 37 5 3353 33 8 5 3431  7685 7796 7717 76 04 7626 7649 7650 7632  73C1424 7301404 7301409 7 4052 8 740533 740537 740541 740545  11 .8 80 0 .6 9.279 1 .0 1. 8 8.2 54 1 .4 5.013 1 .6 6 .350 .4 6.350 2 .8 6.016 2 .0 4.679  I 2 144 150 152 157 160  3230 3240 3222 32 73 3245 3314 3320  7633 7630 7624 7644 7622 7597 7604  740570 7301475 740449 74 04 74 740483 740504 740516  4.0 6.0 1.0 4.0 4.0 6.0 6.0  6 .486 14.004 6.016 6.350 6.684 8.689 6 .684  3621 3238 3324 3358 3378 3281 3290 3457 3473 3566 3451 3438 3397 3356 3349 3431  7658 7418 7442 7506 7548 7510 7722 7702 7748 7995 7628 7620 7679 7732 7604 7632  7301471 7301499 7301500 7301502 7301503 7301501 7301508 7301436 7301474 7301446 7301497 73C1498 7301507 7301512 740529 740546  6.0 5.0 9.0 5.0 2.4 5.0 5.0 6.0 8.0 6 .0 8.0 4.0 2.4 3.0 1.2 4.0  15.649 11.038 11.038 12.903 10.256 10 .737 11 .038 14. 187 14.430 11 .0 32 10.9 10 13.755 5.941 10.857 5.013 7.111  10 16 19 20 21 44 50 76 77 91 104 105 106 107 163 167  ++ Blank = value not measured.  PH  I  0. 50 0. 86  0. 66  I . 06  SAMPLE DESCRIPTION SITE NO.  U.T.M. ' > COORDINATES E N  SAMPLE NO.  (PPM)  CU^ (PPM)  SE"" (PPM)  PH  FAVEL DETAILED STUDY AREA SOILS AND PLANTS (TABLES L, LII, LV AND LVI)  3665 3633 3653 3648 3666 367C 3682 3705 3698  7705 7698 7712 7695 7715 7710 7723 7728 7725  731312 740287 740305 740210 740325 740329 74C358 740375 740379  0.4 0.4 0.4 0.4 0.4 0.4 0.8 0.4 0.4  7.1 7.4 6.5 6.8 7.0 8.2 6.9 6.9 7.0  125 126 131 123 136 137 138 139 141  371C 3682 3682 3698 3702 3721 3721 3717 3720 3728  7716 7710 7702 7714 7709 7732 7728 7720 7710 7717  731098 740363 740367 74C388 74C396 74C411 74C414 74C419 740422 740432  1 .6 0.8 1.6 1 .6 0.4 2.4 0.4 0.4 0.4 1.6  7.9 7.7 7.7  CALCAREOUS TILL  1G9 111 122 134 135 140 169 170  3633 3637 3667 3698 3702 3716 3690 3677  7711 7691 7689 7695 7700 77C0 7718 7688  740283 740291 740349 74C4C0 740405 740427 740552 740556  0.4 0.8 0.4 0.8 0.4 0.4 0.4 0.4  7.2 7.4 8.0 7.4 7. 4 6.4 6.8 7. 6  LAC. SAND  108 112 113 116 117 123  3633 3650 3650 3666 3667 3681  7732 7729 7725 7728 7722 7732  74C280 740295 74C3C0 740316 740321 74C354  0.4 0 .4 0.4 0.4 0.4 0.4  7.7 7.3 7.8 7. 8 8.7 7.0  731314 731410 740289 74C3C8 74C212 740313 74C327 740331 740360 74C377 740381  0.4 0.4 0.4 0.4 0.4  4.7 7.3 7.1 5.3 7. 5  A HORIZON SHALESOIL CLAY  LAC. SILT AND CLAY  C HORIZON SOIL  55  no ii4 115 118 119 124 128 129  e  cc 80 1 10 114 115 1 15 118 119 124 128 129 + Values below SHALECLAY  77C5 . 3665 3673 7712 3633 7698 7712 3653 3648 7695 3648 7695 7715 3666 3670 7710 3682 . 7723 3705 7728 3698 7725 the dectionlimit  ++ Blank = value not measured.  0.8 1 .6 1 .6 0.4 0.4  0.92 0. 37 0.37  of 0.8 ppm given as 0.4 ppm.  7.7 7. 3 6.8 6.9 6.9  SAMPLE DESCRIPTION SITE NO.  C HORIZON SOIL  LAC. SILT AND CLAY  8 125 126 131 133 136 137 138 139 141 142  CALC95 AREOUS 96 TILL 109 111 134 135 140 17C  U.T.M. COORDINATES E N'  SAMPLE NO.  7716 7710 7702 7714 7709 7732 7728 7720 7710 7717 7 723  731101 740365 740369 740390 74C397 74C412 740415 740420 740423 740433 740436  0.8 2.4 3.2 0.8 0.4 1.6 2.4 0.4 0.8 1 .6 0 .4  3673 3667 36 33 3637 3698 3702 371 6 3677  7690 7695 7711 7691 7695 7700 7700 7688  731460 731463 740285 74C293 740401 740406 740429 74C558  0.4 0.4 0.8 0.4 0.8 0.4 0.4 0.8  3710 3682 36 8 2 3698 3702 3721 3721 3717 3720 3728 3732  7.4 7.3 7.8 6. 4 7.8 7.8 8. 2 8.0 8.0 6.7 7.0  LAC. SAND  54 1 12 1 13 116 123  3682 3650 3650 3666 3681  7732 7 7 29 7725 7729 7722  731311 74C297 740302 74C313 740356  0.4 0.4 0 .8 C.4 0.4  CLAY  114 115 118 119 124 128 129  no  3633 3653 3648 3666 3670 3682 3705 3698  7698 7712 7695 77 15 7710 7723 7728 7725  74C290 740309 74C214 740328 740333 740361 740378 74C383  1.0 2.6 0.6 2.8 0.6 0.6 4.0 2.0  125 126 127 131 136 137 142 143  3682 3682 3701 3698 3721 3721 3732 3726  7710 7702 7734 7714 7732 7728 7723 7727  740366 74C370 74C373 740391 74C413 ' 74C417 740437 74C44I  0.6 1.2 1 .4 1 .6 1.8 1 .2 0.6 1.2  7 .372 8.377 6.031 9 .047 6 .684 8.021 8.689 7.018  109 111 122 134 135  3633 3637 3667 3698 3702  7711 7691 7689 7695 7700  74C286 74C294 74G352 7404C3 740408  4 .0 1 .0 I .2 3 .4 4 .0  10.681 7 .263 4 .356 4 .356 6.031  3RASS  IAC.  SILT AND CLAY  TILL  9.399 11 .108 9.399 11.535 8.117 6.031 5. 361 4.356  0. 14 0. 84 0. 12  + S o i l values below the dection l i m i t of 0.8 ppm given as 0.4 ppm. 4+ Blank = value not measured.  SAMPLE DESCRIPTION SITE NO.  LEGUMES  U.T.M. COORDINATES E N  SAMPLE NO.  MO (PPM)  CU (PPM)-  CALCAREOUS TILL  140 170  3716 3677  77C0 7688  740430 740559  3.0 5.0  5 .681 5.766  LAC. SAND  100 112 113 116 117 123  3633 3650 3650 3666 3667 3681  7732 7729 7725 7728 7722 7732  74C282 740298 740303 740319 740324 740357  3.0 4.0 3.0 0.4 0.6 I .6  8.972 10.254 13 .672 9.399 8.545 6.366  SHALECLAY  55 115 119 124  3665 3648 3670 3682  77C5 7695 7710 7723  731459 740315 740334 74036 2  20 .0 6.0 16.0 28 .0  14 .126 10.681 9 .326 5 .696  127  3701  7 7 34  740374  10 .0  7.372  CALCAREOUS TILL  122 134 140 170  3667 3698 3716 3677  7689 7695 7700 7688  740353 74C404 740431 74C560  3 .4 9 .0 4 .0 12 .0  8 .042 5 .361 6.016 9 . 369  LAC. SAND  112 113 116 117  3650 Zt 50 3666 3667  7729 7725 7728 7722  74C299 740304 740320 74C323  12 .0 10.0 4.0 7 .0  139 PARENT MATERIAL 163 UNCERTAIN  3720 3720  7710 7723  74C426 740551  LAC. SILT AND CLAY  SE (PPM)  11 .963 9 .399 10.681 8.117 4.00 0.60  10. MANITOBA DEPARTMENT OF AGRICULTURE GRASS ANALYSED FOR SE (TABLE LVI)  MOPOOR  MO_ KCCH  SAMPLE NO. 740004 740C26 740034 740074 740093  SE 12-25-25 NW 26-2 3-2 6 S26-2 5-28 33-27-15 SE 17-3.7-27  SE (PPM) 0.30 C.46 0.52 C.42 C .46  740043 74 0C47 740056 74CO83  NW27-35-28 NW29-35-29 NW 4-37-25 36-32-23  C.28 0.52 C.36 C.66  ++ Blank = value  SECT.-TP.-RANGE  measured.  PUBLICATIONS Doyle,'P.J. and Fletcher, K., 1977. Molybdenum content o f bedrock, s o i l and vegetation and the incidence o f copper deficiency i n c a t t l e i n western Manitoba, i n Symposium on molybdenum i n the environment. Vol.11. W. Chappell and K. Petersen eds., Marcel Dekker Inc., New York, N.Y. pp. 371-386. Doyle, P. J . and Fletcher, K., 1977. The influence o f s o i l parent material on the selenium content o f wheat from west-central Saskatchewan. Can. J . Plant S c i . Doyle, P., Fletcher, K. and Brink, V.C., 1973. Trace element content o f s o i l s and plants from the Selwyn Mountains, Yukon and Northwest T e r r i t o r i e s . Can. J . Botany 51:421-427. Doyle, P., Fletcher, K. and Brink, V . C , 1974. Regional geochemical reconnaissance and the molybdenum content of bedrock, s o i l s and vegetation from the eastern Yukon, i n Trace substances i n environmental healthVI. A Symposium. D. D. Hemphill ed., University o f Missouri, Columbia, Missouri, pp. 369-375. Fletcher, K. and Doyle, P., 1971. Regional geochemistry o f the Hess Mountains and eastern Yukon Plateau. CIM B u l l . 64:61-67. Fletcher, K. and Doyle, P., 1974. Some factors influencing trace element d i s t r i b u t i o n i n the eastern Yukon. CIM B u l l . 67:61-65. Fletcher, K., Doyle, P. and Brink, V. C , 1973. Seleniferous vegetation and s o i l s i n the eastern Yukon. Can. J . Plant S c i . 53:701-703.  

Cite

Citation Scheme:

    

Usage Statistics

Country Views Downloads
China 7 13
Canada 6 1
United States 6 4
Ukraine 2 1
Hungary 2 0
Russia 2 0
Japan 2 0
Mexico 1 0
Sweden 1 0
City Views Downloads
Unknown 13 5
Beijing 7 0
Ashburn 4 3
Mountain View 2 0
Tokyo 2 0
Norsholm 1 0

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}
Download Stats

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0052444/manifest

Comment

Related Items