Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The lithology and lithogeochemistry of the San Antonio Gold Mine, Bisset, Manitoba Whiting, Bernard Henry 1989

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1989_A6_7 W47.pdf [ 19.68MB ]
Metadata
JSON: 831-1.0052423.json
JSON-LD: 831-1.0052423-ld.json
RDF/XML (Pretty): 831-1.0052423-rdf.xml
RDF/JSON: 831-1.0052423-rdf.json
Turtle: 831-1.0052423-turtle.txt
N-Triples: 831-1.0052423-rdf-ntriples.txt
Original Record: 831-1.0052423-source.json
Full Text
831-1.0052423-fulltext.txt
Citation
831-1.0052423.ris

Full Text

THE LITHOLOGY AND LITHOGEOCHEHISTRY OF THE SAN ANTONIO GOLD MINE, BISSETT, MANITOBA B.Sc, The University of B r i t i s h Columbia, 1979 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE i n THE FACULTY OF GRADUATE STUDIES Department of Geological Sciences We accept t h i s thesis as conforming by BERNARD HENRY WHITING to the required standards THE UNIVERSITY OF BRITISH COLUMBIA MARCH, 1989 (c) Bernard Henry Whiting, 1989 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. B e r n a r d H. W h i t i n g Department of (gEjo^QG/Crt L SC/£MC£S The University of British Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3 Date 23 -Of  DE-fin/ft-n FRONTISPIECE - "THE NUGGET EFFECT" A prime example of the part i c u l a t e nature of gold, -this nugget from the San Antonio Gold Mine measures 24 cm x 20 cm x 4 cm at 23.7 Kg ( 697 troy ounces ) (Photo courtesy of the National Museum of Canada) ( i i ) ( i i i ) ABSTRACT The San Antonio Gold Mine, at B i s s e t t , Manitoba, was a major precious metals producer. Over the history of the mine more than 45 thousand kilograms (1.35 m i l l i o n ounces) of gold and 6 thousand kilograms (194 thousand ounces) of s i l v e r were produced. The mine i s i n the Archean Rice Lake Greenstone Belt of the Superior Province. Ore zones are s t r u c t u r a l l y controlled within extensional stockwork veins and shear veins, which are primarily r e s t r i c t e d to one b a s a l t i c u n i t . The purpose of t h i s study i s to describe the mine s i t e l i t h o l o g i e s , p a r t i c u l a r l y the auriferous host rock, and to examine lithogeochemical patterns within the mine. Key objectives of the research were; i ) to e s t a b l i s h hydrothermal a l t e r a t i o n patterns, i i ) to d e t a i l the e f f e c t s of igneous d i f f e r e n t i a t i o n on the chemistry of the gold hosting SAM Unit, and i i i ) to define a suite of elements that can be useful as gold pathfinders i n future exploration. The SAM Unit, host to most of the productive veins on the property, represents a sequence of basalt flows with thin interflow sediments. The lower part of the SAM Unit i s a single flow member that has undergone d i f f e r e n t i a t i o n by c r y s t a l s e t t l i n g of o l i v i n e , plagioclase and pyroxene from the melt. ( i v ) Around the large gold bearing extensional stockwork veins i n the SAM Unit, both v i s i b l e and c r y p t i c a l t e r a t i o n can be detected. An examination of XRF whole rock chemical analyses, using Gresens (1967) mass balance methods, indicate that a 5 percent volume increase and multi-element enrichment occurs i n a halo (envelope) about gold r i c h zones, as compared to unaltered host rock. V i s i b l e (megascopic) a l t e r a t i o n zones underwent a 10 percent volume increase. A l b i t i z a t i o n of wallrock i s the dominant a l t e r a t i o n type. Multi-element ICP analysis patterns were studied, revealing discrete populations and elemental groupings associated with ore zones, halos and host rocks. S i l v e r , arsenic and tungsten are the most s e n s i t i v e pathfinder elements f o r gold. The halo zones are marked by an enrichment of the base metals, copper, lead and zinc, whereas both halos and ore zones exhibit elevated values for sodium, potassium, and barium. The s i g n i f i c a n c e of the a l t e r a t i o n element suites and presence of halos i s i n enhancing the a b i l i t y to recognize mineralized structures where gold values are sporadic. In the orientation study case, the halos e f f e c t i v e l y doubled the width of the exploration target. (v) P o t e n t i a l f o r g o l d e x p l o r a t i o n has a l s o been i d e n t i f i e d f o r the North B a s a l t U n i t , the G a b r i e l l e U n i t and U n i t 'A' i n the m i n e s i t e a r e a . These are competent v o l c a n i c u n i t s t h a t r e a c t e d i n a s i m i l a r manner to the SAM U n i t to r e g i o n a l t e c t o n i s m . An a n c i l l a r y o b j e c t i v e of the r e s e a r c h was to examine the v a r i a t i o n of g o l d with depth i n the San Antonio Gold Mine. I t i s the author's f i n d i n g t h a t g o l d v a l u e s i n the lowest l e v e l s of the mine (Domain I I I ) , where the bulk of the c u r r e n t r e s e r v e s are s i t u a t e d , should y i e l d grades as r i c h as the h i s t o r i c a l r e c o v e r y from the upper l e v e l s (Domain I ) . ( v i ) PREFACE MYTHOLOGY AND THE GENESIS OF GOLD There have been many theories throughout history for the emplacement mechanisms of gold. The f i r s t recorded discovery on the shore of Rice Lake, l a t e r to become part of the San Antonio Gold Mine, was made in 1911 by a native prospector named Duncan 'Twohearts' Ninimitenan. The Cree have legends r e l a t i n g to the occurrence of gold that have been passed on o r a l l y for many years. It i s not known whether the following account pre- or post-dates the 1911 discovery (Minton, 1982). "One (legend) t e l l s of a strange fair-skinned blond youth from the north, who long, long ago v i s i t e d the Cree on the east side of Lake Winnipeg. His v i s i t brought good hunting and the Cree believed him to be the messenger of Manitou, adopted him and c a l l e d him Pigowi Manitou. The most bea u t i f u l maiden i n the v i l l a g e was Etomami, but while she had many s u i t o r s , she loved only the f a i r - h a i r e d Pigowi Manitou. After the appropriate courtship, the two were married. Pigowi Manitou took his bride to the i n t e r i o r to gather wild r i c e . While Pigowi Manitou had won Etomami, he had also won the jealous hatred of another of her s u i t o r s , named Manigotagan. Manigotagan followed the couple and struck down Pigowi Manitou i n ambush at Rice Lake. The spot where his head lay was marked forever a f t e r with threads of yellow running through the rock. So the legend goes." ( v i i ) TABLE OF CONTENTS T i t l e page i F r o n t i s p i e c e i i A b s t r a c t . . i v P r e f a c e - Mythology and the Genesis of Gold v i i Table o f Contents v i i i L i s t of I l l u s t r a t i o n s x i i L i s t of P l a t e s xv L i s t of Tables . . x v i Acknowledgements x v i i CHAPTER I INTRODUCTION 1.1. PURPOSE AND METHODOLOGY 1 1.2. BACKGROUND INFORMATION 2 1.2.1. L o c a t i o n and Access 2 1.2.2. B r i e f H i s t o r y 4 1.3. REGIONAL GEOLOGY 6 1.4. STRUCTURAL SETTING ....9 1.5. MINERALIZATION 15 CHAPTER II LITHOLOGY OF THE SAN ANTONIO GOLD MINE 2.1. THE SAM UNIT - HOST ROCK 18 2.1.1. D e s c r i p t i o n of the SAM U n i t 18 2.1.2. The SAM U n i t - H i s t o r i c a l P e r s p e c t i v e s 23 2.2. LATE STAGE DYKES WITHIN THE SAM UNIT 26 ( v i i i ) 2.3. HANGING WALL SEQUENCE 27 2.3.1. S c h i s t s and S e d i m e n t a r y Rocks 27 2.3.2. N o r t h B a s a l t U n i t 31 2.3.3. P o r p h y r i t i c A n d e s i t e 34 2.3.4. The G a b r i e l l e U n i t 37 2.4. FOOT WALL SEQUENCE 39 2.4.1. H a r e s I s l a n d U n i t 39 2.4.2. U n i t 'A' B a s a l t . 42 2.5. CHEMICAL CLASSIFICATION OF THE UNITS 44 CHAPTER III DIFFERENTIATION OF THE SAM UNIT - LOWER FLOW MEMBER 3.1. DEGREE OF DIFFERENTIATION 52 3.2. INTERPRETATION OF THE PROCESS OF DIFFERENTIATION... 56 3.2.1. P l a g i o c l a s e S e t t l i n g 57 3.2.2. P y r o x e n e S e t t l i n g 59 3.2.3. O l i v i n e S e t t l i n g 60 3.2.4. P l a g i o c l a s e - P y r o x e n e - O l i v i n e S e t t l i n g 63 CHAPTER IV GEOCHEMICAL PATTERNS OF ALTERATION ASSOCIATED WITH EXTENSIONAL VEIN STOCKWORKS 4.1. HYDROTHERMAL ALTERATION - GENERAL STATEMENT 65 4.2. ELEMENTAL LOSSES AND GAINS 69 4.2.1. Mass B a l a n c e Method 69 4.2.2. A s s u m p t i o n o f a P a r e n t Rock C o m p o s i t i o n . . . . . 71 4.2.3. A s s u m p t i o n o f Immobile Components 76 ( i x ) 4.2.4. Volume I n c r e a s e s 7 8 4.3. DISCUSSIONS OF INDIVIDUAL OXIDE COMPONENTS 81 4.3.1. D a t a U n a d j u s t e d f o r Volume I n c r e a s e s 81 4.4.2. D a t a A d j u s t e d f o r Volume I n c r e a s e s 84 4.4. ALTERATION CONCLUSIONS 86 CHAPTER V MULTI-ELEMENT ICP ANALYSIS PATTERNS 5.1. GENERAL STATEMENT 88 5.2. GROUPING OF ELEMENTS 89 5.2.1. C o r r e l a t i o n M a t r i x 89 5.2.2. C o r r e l a t i o n S c h e m a t i c s 98 5.2.3. D e n d r o g r a p h i c s 105 5.3. IDENTIFICATION OF DISCRETE POPULATIONS 107 5.3.1. P r o b a b i l i t y P l o t s - O re Zone E l e m e n t s 108 5.3.2. P r o b a b i l i t y P l o t s - H a l o E l e m e n t s 122 5.3.3. P r o b a b i l i t y P l o t s - H o s t Rock E l e m e n t s 134 5.4. STRIP PLOTS THROUGH ORE ZONES 142 5.4.1. Ore Zone E l e m e n t s 142 5.4.2. H a l o E l e m e n t s 144 5.4.3. H o s t Rock E l e m e n t s .148 5.5. MULTI-ELEMENT PATTERN CONCLUSIONS 152 CHAPTER VI CONCLUSIONS AND DISCUSSION 6.1. CONCLUSIONS FROM THE CURRENT STUDY 155 6.1.1. L i t h o l o g y and D i f f e r e n t i a t i o n 155 (x) 6.1.2. Hydrothermal A l t e r a t i o n 157 6.1.3. Multi-Element ICP Analysis Patterns 158 6.2. FUTURE AREAS OF STUDY 159 6.2.1. Structural Reinterpretations 159 6.2.2. Age Dating of Mineralizing Events 160 6.2.3. Epidote Zonation Concept 162 6.2.4. Exploration D r i l l i n g - 609 Crosscut 163 6.2.5. Projection of Shear Structures to Adjacent Units 165 REFERENCES 167 APPENDICES I. Variation of Gold Content with Depth i n the San Antonio Gold Mine 174 II. A n a l y t i c a l Data 191 II I . A n a l y t i c a l Preparation 216 IV. S t r i p Plots Through #97 Vein 220 V. ICP versus XRF Comparison 226 VI PEARCE . PLOT - S t a t i s t i c a l Printout 234 (xi) LIST OF ILLUSTRATIONS Figure No. Description Page 1.1. Location Map.... 3 1.2. Regional Geology Map 7 1.3. Scanning Electron Microprobe (SEM) spectrogram of native gold 17 2.1. Geology Map - San Antonio Gold Mine (Pocket) 2.2. Generalized s t r a t i g r a p h i c column 19 2.3. Sketch of an angular unconformity i n the Hanging Wall Sequence sedimentary rocks......32 2.4. Jensen Cation Graph of whole rock analyses from the SAM Unit 45 2.5. Normative plagioclase composition versus Ala OJ for volcanic rocks from the San Antonio Gold Mine area 48 2.6. Normative plagioclase composition versus normative colour index for volcanic rocks from the San Antonio Gold Mine area 48 2.7. Jensen Cation Graph of volcanic rocks from the San Antonio Gold Mine area 49 3.1. Mafic index versus normalized sample position for the SAM Unit - Lower Flow Member and the Great Lake T h o l e i i t e Sheet 55 3.2a. Pearce v a r i a t i o n diagram f o r plagioclase s e t t l i n g - S i / T i vs ( 2 . 0*Na +Al)/Ti 58 3.2b. Pearce v a r i a t i o n diagram for plagioclase s e t t l i n g - Si/P vs (2.0*Na+Al)/P 58 3.3. Pearce v a r i a t i o n diagram for pyroxene s e t t l i n g - Si/P vs (2.0*Ca+Na-Al)/P ....61 3.4. Pearce v a r i a t i o n diagram f o r o l i v i n e s e t t l i n g - Si/P vs 0. 5* (Mg+Fe)/P 62 3.5. Pearce v a r i a t i o n diagram for plagioclase, pyroxene and o l i v i n e s e t t l i n g - Si/P vs (0.5*CMg + FeI*l.5*Ca+2.75*Na+0.25*Al)/P 64 4.1a. Composition-volume diagram of a sample from the stockwork zone 72 ( x i i ) 4.1b. Composition-volume diagram of a sample from the c r y p t i c halo zone 72 4.1c. Composition-volume diagram of a sample from the barren zone 73 4.Id. Composition-volume diagram of the parent sample as an i n t e r n a l check 73 4.2. Jensen Cation Graph of the orientation dataset 75 4.3. Assumed immobile components versus volume factor with averages of samples from the barren, halo and stockwork zones 79 4.4. Distance from the core of a stockwork vein versus an average of volume factors for TiOa , A l a O i , and Zr 80 4.5. Distance from the core of a stockwork versus unadjusted change i n weight percent for i n d i v i d u a l components 82 4.6. Distance from the core of a stockwork versus the change i n weight percent of i n d i v i d u a l components adjusted for volume increases 85 5.1. Correlation Schematic - R > 0.9 99 5.2. Correlation Schematic - R > 0.8 100 5.3. Correlation Schematic - R > 0.7 101 5.4. Correlation Schematic - R > 0.6 102 5.5. Correlation Schematic - R > 0.5 103 5.6. Correlation Schematic - R > 0.4 104 5.7. Dendrograph 106 5.8. Au - logarithmic p r o b a b i l i t y plot (prelim) I l l 5.9. Au - logarithmic p r o b a b i l i t y plot (2 pop.) 113 5.10. Au - logarithmic p r o b a b i l i t y plot (3 pop.) 114 5.11. Ag - logarithmic p r o b a b i l i t y p l o t 117 5.12. As - logarithmic p r o b a b i l i t y plot 121 5.13. K - logarithmic p r o b a b i l i t y p l o t 125 5.14. Na - logarithmic p r o b a b i l i t y plot 129 ( x i i i ) 5.15. Pb - l o g a r i t h m i c p r o b a b i l i t y p l o t 133 5.16. Co - l o g a r i t h m i c p r o b a b i l i t y p l o t 137 5.17. A l - a r i t h m e t i c p r o b a b i l i t y p l o t 141 5.18. S t r i p p l o t - o r e zone e l e m e n t s 143 5.19. S t r i p p l o t - h a l o e l e m e n t s ( b a s e m e t a l s ) 145 5.20. S t r i p p l o t - h a l o e l e m e n t s (Group I I I - ICP) 146 5.21. S t r i p p l o t - h a l o e l e m e n t s (Group I I I - XRF) 147 5.22. S t r i p p l o t - h a l o e l e m e n t s (Group I I - ICP) 149 5.23. S t r i p p l o t - h a l o e l e m e n t s (Group I I - XRF) 150 5.24. S t r i p p l o t - h o s t r o c k e l e m e n t s (Group IV - ICP)..151 5.25. S t r i p p l o t - h o s t r o c k e l e m e n t s (Group IV - XRF)..153 ( x i v ) LIST OF PLATES Plate No. Description Page 1.1. Extensional stockwork (38-type) vein exhibiting a brecciated and bleached core with peripheral ladder-like s t r i n g e r s . . . 10 1.2. Shear (16-type) vein exhibiting high quartz content and a well defined margin 12 1.3. The marginal zone of a shear (16-type) vein exhibiting p y r i t e layering 13 1.4. Veining relationships; i ) extensional stockwork (38-type) vein, i i ) shear (16-type) vein and i i i ) l a t e stage extensional v e i n l e t s . 14 2.1. Massive basalt from the SAM Unit - 3rd l e v e l 21 2.2. Cherty mudstone interflow sedimentary rock from within the SAM Unit 24 2.3. The sharp hanging wall contact of the SAM• Unit basalt .29 2.4. The hanging wall contact of the SAM Unit exhibiting embayment of c h l o r i t i z e d basalt in the overlying quartz-sericite-carbonate s c h i s t , 16th Level 30 2.5. Angular unconformity i n the Hanging Wall Sequence sedimentary rocks 33 2.6. Surface exposure of the Hanging Wall Sequence porphyritic andesite 35 2.7. Underground exposure of the Hanging Wall Sequence por p h y r i t i c andesite 36 2.8. Hares Island Unit conglomerate and s i l t s t o n e 41 2.9. Massive sulphide lens i n Unit 'A' basalt 43 (xv) LIST OF TABLES Table No. Description Page 2.1. XRF whole rock analyses of volcanic rocks from the San Antonio Gold Mine 46 2.2. XRF whole rock analyses of q u a r t z - s e r i c i t e -carbonate schists from the San Antonio Gold Mine 51 3.1. XRF whole rock analyses of SAM Unit - Lower Flow Member basalt 54 3.2. Mafic index as a measure of the degree of d i f f e r e n t i a t i o n 54 4.1a,b XRF whole rock analyses of an orientation sample set, 33rd l e v e l 67-68 5.1. Correlation Matrix 90-94 5.2. Au - arithmetic s t a t i s t i c s and histogram 109 5.3. Au - logarithmic s t a t i s t i c s and histogram 110 5.4. Ag - arithmetic s t a t i s t i c s and histogram 115 5.5. Ag - logarithmic s t a t i s t i c s and histogram 116 5.6. As - arithmetic s t a t i s t i c s and histogram 119 5.7. As - logarithmic s t a t i s t i c s and histogram 120 5.8. K arithmetic s t a t i s t i c s and histogram 123 5.9. K - logarithmic s t a t i s t i c s and histogram 124 5.10. Na - arithmetic s t a t i s t i c s and histogram 127 5.11. Na - logarithmic s t a t i s t i c s and histogram 128 5.12. Pb - logarithmic s t a t i s t i c s and histogram 131 5.13. Pb - arithmetic s t a t i s t i c s and histogram 132 5.14. Co - arithmetic s t a t i s t i c s and histogram 135 5.15. Co - logarithmic s t a t i s t i c s and histogram 136 5.16. Al - arithmetic s t a t i s t i c s and histogram 139 5.17. Al - logarithmic s t a t i s t i c s and histogram......... 140 (xvi) ACKNOWLEDGEMENTS The author wishes t o express h i s thanks t o Pr o f . A. J . S i n c l a i r f o r h i s c o n t r i b u t i o n s and encouragement throughout and f o r s t a n d i n g as t h e s i s s u p e r v i s o r . Thanks a l s o go t o committee members Mr. R. S. Hewton, who o r i g i n a l l y suggested the t h e s i s t o p i c , and P r o f . J . K. R u s s e l l , who aided i n a c l e a r e r understanding of the v o l c a n i c s e t t i n g . C o l l e a g u e s a s s o c i a t e d with the San Antonio Gold Mine, i n c l u d i n g A. A. Burgoyne, F. G e n t i l e , M. Wynne, S. MacSwain and J . Hogan, p a r t i c i p a t e d i n v a l u a b l e d i s c u s s i o n s , f o r which the author i s g r a t e f u l . C o nversations on v a r i o u s aspects of geology with K. H. Poulsen and D. E. Ames of the G e o l o g i c a l Survey of Canada, W. B r i s b i n and S. Lau of the U n i v e r s i t y o f Manitoba, P. Theyer, M. Fedikow, G. Gale and R. Schmidke of the Manitoba Department of Energy and Mines and A. Turek of the U n i v e r s i t y of Windsor are very much a p p r e c i a t e d . The author a l s o expresses h i s thanks t o a l l the members of the Department of G e o l o g i c a l S c i e n c e s o f the U n i v e r s i t y of B r i t i s h Columbia, with s p e c i a l thanks t o S. J u r a s , C. S t a n l e y , R. Forman, D. S k e t c h l e y , A. Woodbury, C. Mase, J . Knight, P r o f . C. Godwin and P r o f . W. K. F l e t c h e r . F i n a l l y , the author's g r e a t e s t a p p r e c i a t i o n go t o h i s f a m i l y and, i n p a r t i c u l a r , h i s wi f e , Nancy, whose p a t i e n c e and l o v i n g support were i n v a l u a b l e a s s e t s . ( x v i i ) 4 1 CHAPTER I INTRODUCTION 1.1. PURPOSE AND METHODOLOGY F i e l d work f o r t h i s study of the San Antonio Gold Mine was performed d u r i n g 1983 and 1984, when a l l l e v e l s of the mine were a c c e s s i b l e . The author gained f a m i l i a r i t y with the geology of the m i n e s i t e and r e g i o n by conducting underground and s u r f a c e mapping, diamond d r i l l core l o g g i n g , p r o s p e c t i n g and sampling. The study i s aimed at d e s c r i b i n g the l i t h o l o g i e s , p a r t i c u l a r l y t h a t of the a u r i f e r o u s host rock (SAM Unit) and at examining l i t h o g e o c h e m i c a l p a t t e r n s w i t h i n the mine. More than 500 samples of v a r i o u s u n i t s were taken and analysed f o r g o l d by neutron a c t i v a t i o n a n a l y s i s (NAA) and f o r a 37 element s u i t e by i n d u c t i v e l y coupled plasma (ICP) a n a l y s i s , u s i n g an aqua r e g i a d i g e s t i o n . Subsets of these samples were analysed f o r whole rock components p l u s t r a c e elements by X-Ray f l u o r e s c e n c e (XRF) spectrometry. Key purposes were t o ; 1) d e f i n e hydrothermal a l t e r a t i o n t rends through the use of mass balance c a l c u l a t i o n s u sing Gresens' (1967) formula f o r elemental l o s s e s and gains d u r i n g 2 metasomatism, 2) r e c o g n i z e a chemical s i g n a t u r e t o the d i f f e r e n t i a t i on of a p a r t of the SAM U n i t , and 3) develop a s u i t e of elements t h a t can be u s e f u l as p a t h f i n d e r s i n f u t u r e e x p l o r a t i o n . An a d d i t i o n a l problem t h a t i s addressed, stems from concern about a p o s s i b l e drop i n g o l d content with depth based on a 1971 study of p r o d u c t i o n r e c o r d s (McRitchie and Weber, 1971). The drop i n g o l d content with depth was found not t o be due s o l e l y to g e o l o g i c a l f a c t o r s . The observed trends were man induced, a d i s c u s s i o n of which i s presented i n Appendix I. 1.2. BACKGROUND INFORMATION 1.2.1. LOCATION AND ACCESS The San Antonio Gold Mine i s Manitoba, on the nor t h shore of k i l o m e t r e s n o r t h e a s t of Winnipeg, sheet N.T.S. 52M/4, at l a t i t u d e ( F i g u r e 1.1). Paved roads extend F a l l s , with the l a s t 100 k i l o m e t r e s g r a v e l road. i n the town of B i s s e t t , Rice Lake, approximately 220 T h i s area i s i n c l u d e d on map 51°10'N, l o n g i t u d e 95°45'W from Winnipeg, through Pine to B i s s e t t on an a l l weather T h i s p a r t of Manitoba has t y p i c a l s h i e l d topography with low, rounded r i d g e s separated by swamp, muskeg, numerous l a k e s and l o c a l sand f l a t s , The t e r r a i n i s p r i m a r i l y f o r e s t covered with mixed pine, f i r , b i r c h and p o p l a r . ANTONIO F i g u r e 1 .1 . SAN ANTONIO GOLD PROJECT BISSETT, MANITOBA LOCATION MAP SCALE l"« I20mil«i 4 1.2.2. BRIEF HISTORY In the year 1911, the f i r s t g o l d i n Manitoba was d i s c o v e r e d on the north shore of Rice Lake. Various accounts have been w r i t t e n about the d i s c o v e r y , but the most quoted i s t h a t of a Cree p r o s p e c t o r - t r a p p e r named Duncan (Twohearts) Ninimitehan having sent a sample of rock, t h a t had s p l a y e d o f f i n h i s camp f i r e p i t , to Major E. A. P e l l e t i e r . P e l l e t i e r r e c o g n i z e d the s i g n i f i c a n c e of the sample and, on h i s p r o p e r t y examination, saw v i s i b l e g o l d , which l e a d t o the s t a k i n g of the G a b r i e l l e c l a i m (Berard, 1979; Minton, 1982), which i s a p a r t of the c u r r e n t San Antonio p r o d u c t i o n l e a s e . The twenty years t h a t f o l l o w e d l e d t o the d i s c o v e r y of s e v e r a l g o l d showings i n the area, many of which were mined b r i e f l y . San Antonio Gold Mine o f f i c i a l l y opened i n 1932. From 1932 to 1968, the mine was i n v i r t u a l l y continuous o p e r a t i o n , producing 1.35 m i l l i o n ounces of g o l d from 4.88 m i l l i o n tons of ore f o r , an average grade of 0.28 ounces g o l d per ton. A combination of f i n a n c i a l f a c t o r s p l u s a f i r e i n one of the h o i s t rooms l e d to the 1968 c l o s u r e . With the resurgence of g o l d p r i c e s i n 1980, B r i n c o Mining L i m i t e d (now known as C a s s i a r Mining C o r p o r a t i o n ) entered i n t o a j o i n t venture with New F o r t y - F o u r Mines L i m i t e d f o r the redevelopment of the mine. P r o d u c t i o n of remnant ore zones from 5 the upper l e v e l s was resumed i n 1982. U n f o r t u n a t e l y , d e c l i n i n g g o l d p r i c e s and d i f f i c u l t y i n m a i n t a i n i n g the 500 tons per day m i l l feed from the upper l e v e l s l e a d to a c l o s u r e of the mining o p e r a t i o n i n 1983. B r i n c o ' s p r o d u c t i o n was 102,384 tons y i e l d i n g 14,256 ounces of g o l d (Anonymous, 1983). I t was r e c o g n i z e d at t h a t time t h a t c o n v e n t i o n a l f u t u r e p r o d u c t i o n would be more f e a s i b l e from the lower l e v e l s of the mine. A 1983 d r i l l i n g programme was designed to t e s t major v e i n s t r u c t u r e s i n the lower l e v e l s . D r i l l r e s u l t s proved f a v o u r a b l e , however, c o n s i d e r a b l e c a p i t a l had to be r a i s e d t o c a r r y on with e x p l o r a t i o n and upgrade the haulage system. B r i n c o continued e x p l o r a t i o n at the mine, i n i t i a l l y through L a t h w e l l Resources L i m i t e d conducting a s h o r t d r i l l i n g program i n 1984. More r e c e n t l y , e x p l o r a t i o n continued through San Antonio Resources L i m i t e d (an Inco L i m i t e d - Quest Resources L i m i t e d j o i n t venture) d r i l l i n g a f u r t h e r +6,000 metres i n 1985-86. Ore r e s e r v e s as of August 1986 stood a t 1,955,208 tons grading 0.215 ounces g o l d per ton, f o r a contained g o l d content of 421,231 ounces (Dingwall, 1986). The author's involvement a t the San Antonio Gold Mine i n c l u d e d the B r i n c o 1983 and L a t h w e l l 1984 programmes. 6 1.3. REGIONAL GEOLOGY The San A n t o n i o G o l d Mine l i e s w i t h i n t h e S u p e r i o r P r o v i n c e -R i c e L a k e G r e e n s t o n e B e l t , a s t r u c t u r a l l y d e f i n e d g r a b e n b l o c k o f K o l c a n o - s e d i m e n t a r y s e q u e n c e s . I t e x t e n d s f r o m L a k e W i n n i p e g on t h e West, e a s t w a r d i n t o O n t a r i o , as a narrow ( a p p r o x i m a t e l y 18 k i l o m e t r e s wide) b e l t . The c o n t a c t s a r e i n t e r p r e t e d t o be f a u l t m a r g i n s and t h e r o c k s b o t h n o r t h and s o u t h a r e o f h i g h e r m e t a m o r p h i c g r a d e ( F i g u r e 1 . 2 ) . The b e l t c o n s i s t s p r i m a r i l y o f l o w e r g r e e n s c h i s t r e g i o n a l l y metamorphosed u n i t s o f v o l c a n i c and s e d i m e n t a r y o r i g i n d e s c r i b e d as t h e R i c e L a k e Group. The s u c c e s s i o n i s e s s e n t i a l l y b a s a l t i c and a n d e s i t i c f l o w r o c k , o v e r l a i n by d a c i t i c t u f f s and v o l c a n i c b r e c c i a s , t o p p e d by a t h i c k t u r b i d i t e p i l e and p y r o c l a s t i c r o c k s . The b a s a l t s a r e g e n e r a l l y t h o l e i i t i c , s u b a q u e o u s t o s u b a e r i a l , w i t h t h e d a c i t e s and a n d e s i t e s b e i n g c a l c - a l k a l i n e ( M c R i t c h i e and Weber, 1 9 7 1 ) . R i c e L a k e Group r o c k s have r e t u r n e d A r c h e a n a g e s a v e r a g i n g 2,740 Ma f r o m Rb-Sr d a t i n g (Lowdon, 1961; T u r e k and P e t e r m a n , 1968; T u r e k , 1971) and by l e a d i s o t o p e s ( O z a r d and R u s s e l l , 1 9 71), w h i l e more r e c e n t work, u s i n g U-Pb f r o m z i r c o n s , i s i n d i c a t i n g t h a t a g e s may be g r e a t e r t h a n 2,800 Ma ( T u r e k , Weber and Van Schmus, 1 9 8 5 ) . The a u t h o r p r o v i d e d a c c e s s t o s a m p l i n g o f t h e a u r i f e r o u s h o s t r o c k (SAM U n i t ) t o P r o f e s s o r T u r e k , a t t h e U n i v e r s i t y o f W i n d s o r , b u t t h e a n a l y s i s o f t h i s s p e c i f i c u n i t was n o t r e a d y a t t h e t i m e o f w r i t i n g . 7 LEGEND Wanipigow River P l u t o n i c Complex Manigotagan Gneiasic B e l t LP-PAfl San Antonio Formation Sediments |1 '. '. '. '. | Quartz D i o r i t e to Granite Gabbro Sediments BLACK:. LAKE ••••• — RICE LAKE GROUP Ex t r u s i v e Volcanics V o l c a n i c Sediments — Area of Detailed Study (Figure No: 2.1.) mil* 1 REGIONAL GEOLOGY MAP F i g u r e No: 1.2. (map adapted from M c R i t c h i e & Weber, 1971) 8 In the Ric e Lake area, a n d e s i t e with r e l a t e d p y r o c l a s t i c s dominate. These g i v e way up s e c t i o n to a t h i n s u i t e of a r g i l l i c rocks with minor c h e r t and i r o n formation, which i n t u r n y i e l d s to deeper water a r g i l l i t e s and greywacke. A younger form a t i o n , known as the San Antonio Formation (not to be confused with the SAM Unit) unconformably o v e r l i e s the Rice Lake Group west of the m i n e s i t e . T h i s younger sequence c o n s i s t s p r i m a r i l y o f arkose, greywacke and conglomerate. Both e a s t and west of the mine s i t e , w i t h i n 5 k i l o m e t r e s , are quartz d i o r i t i c t o g r a n i t i c p l u t o n s . To the e a s t i s the Ross Ri v e r P l u t o n , which has an e l l i p t i c a l p l a n with the long a x i s p a r a l l e l l i n g the t r e n d of the b e l t . Minor g o l d v e i n s , i n t e r n a l phases and c o n t a c t metamorphic halos have been documented f o r the Ross R i v e r P l u t o n (Weber, 1971). To the west l i e s the Wanipigow Lake South P l u t o n . T h i s p l u t o n , although not s t u d i e d i n as much d e t a i l as the Ross R i v e r P l u t o n , a l s o shows the presence of minor gold v e i n s and i n t e r n a l l i t h o l o g i c a l v a r i a t i o n s (Whiting, 1983). Many dykes, s i l l s and i r r e g u l a r s t o c k s have been i n j e c t e d i n t o the R i c e Lake Group. S e v e r a l o f these, however, may have been m i s - i n t e r p r e t e d . The host rock of the San Antonio Gold Mine (SAM Unit) was long d e s c r i b e d as a diabase dyke, but i s now co n s i d e r e d t o be a sequence of b a s a l t i c f l o w s . D e t a i l e d geology of the SAM U n i t and adjacent s t r a t a i s 9 presented i n 'Chapter II - L i t h o l o g y of the San Antonio Gold Mine', 'Chapter II I - D i f f e r e n t i a t i o n of the SAM U n i t - Lower Flow Member' and 'Chapter IV - Geochemical P a t t e r n s of A l t e r a t i o n A s s o c i a t e d With E x t e n s i o n a l Stockwork Veins'. 1.4. STRUCTURAL SETTING The SAM U n i t i s a very competent b a s a l t t h a t r e a c t e d i n a b r i t t l e manner to r e g i o n a l t e c t o n i s m . Mapping by the author has shown t h a t the v e i n s can be grouped i n two major and two minor v e i n p a t t e r n s , t h a t are d i s t i n c t i n time d u r a t i o n r e l a t i v e t o each o t h e r , but are g e n e r a l l y p a r t of the same m i n e r a l i z i n g event (Whiting, 1984). Of prime importance are the e x t e n s i o n a l 'Stockwork' b r e c c i a veins (38-type). These are the most s i g n i f i c a n t because of t h e i r high g o l d content and g r e a t tonnage p o t e n t i a l . G e n e r a l l y they c o n s i s t of a c e n t r a l b r e c c i a zone with l a r g e , angular, bleached c l a s t s of w a l l r o c k , f r i n g e d by a s e r i e s of quartz s t r i n g e r s t h a t l o c a l l y form a l a d d e r - l i k e s t r u c t u r e ( P l a t e 1.1). Thicknesses of over 30 metres occur, but up to 8 metres i s more common. Northwesterly s t r i k i n g and v e r t i c a l l y d i p p i n g , these v e i n s terminate a g a i n s t the hanging and f o o t w a l l s of the i n c l i n e d SAM U n i t w i t h i n a h e i g h t of 200 metres, but can extend h o r i z o n t a l l y f o r over 600 metres. 10 E x t e n s i o n a l s t o c k w o r k ( 3 8 - t y p e ) v e i n e x h i b i t i n g a b r e c c i a t e d and b l e a c h e d c o r e w i t h p e r i p h e r a l l a d d e r - l i k e s t r i n g e r s ( w i d t h o f v i e w - 6 m e t r e s ) . 11 The second important, vein type i s the 'Shear' (16-type) set. These s t r i k e northeasterly and dip an average of 60° to the northwest. They are much more c l e a r l y defined than the stockwork veins, having a higher quartz content and one or both walls as s l i p surfaces (Plate 1.2). The productive shear veins average 2 metres i n thickness, but can exceed 4 metres. They terminate horizontally against the unit hanging and foot walls, generally within 150 metres length, but, as i n the case of the #16 vein, can have a down dip continuation of up to 800 metres. Layered sulphides are common i n t h i s type of vein (Plate 1.3). The shear veins were t e c t o n i c a l l y active at the same time as the stockwork veins, but continued for some time afterward, as evidenced by the offse t s and l o c a l juxtaposition of one stockwork vein onto another, by the shears. The remaining two vein types are r e l a t i v e l y thin and are of minor s i g n i f i c a n c e . They seldom exceed 10 centimetres i n thickness and are not very continuous. Short extensional veinlets occur as a waning stage remobilization of s i l i c a and appear as random s t r i n g e r s . The shearing of 16-type veins was s t i l l weakly active during emplacement of the extensional vei n l e t s (Plate 1.4). F i n a l l y , a l a t e s t stage series of narrow stringers were emplaced. These are d i s t i n c t from a l l other types because of up to 50 percent c h l o r i t e content. They may be related to the end of the lower greenschist metamorphism. 12 P l a t e 1.2. S h e a r ( 1 6 - t y p e ) v e i n e x h i b i t i n g h i g h q u a r t z c o n t e n t and a w e l l d e f i n e d m a r g i n on t h e h a n g i n g w a l l o f t h e v e i n . 1 3 P l a t e 1.3. The m a r g i n a l zone o f a s h e a r ( 1 6 - t y p e ) v e i n e x h i b i t i n g p y r i t e l a y e r i n g . The l a r g e r g o l d ' Nuggets' g e n e r a l l y o c c u r a l o n g t h e s e s u l p h i d e l a y e r s . T h i s v e i n s t y l e i s a l s o r e f e r r e d t o as ' R i b b o n v e i n i n g ' ( w i d t h o f v i e w - 1 m e t r e ) . 14 Plate 1.4. Veining relationships; i ) extensional stockwork (38-type) vein, i i ) shear (16-type) vein, and i i i ) l a t e stage extensional v e i n l e t s (width of view - 3 metres). 15 1.5. MINERALIZATION S e v e r a l p r e v i o u s s t u d i e s have concentrated on v e i n s p e c i f i c m i n e r a l i z a t i o n , so such work was not repeated h e r e i n . Vein minerals t h a t have been i d e n t i f i e d i n c l u d e q u a r t z , carbonate, a l b i t e , c h l o r i t e and p y r i t e , with l e s s e r K - f e l d s p a r , c h a l c o p y r i t e , n a t i v e g o l d and t r a c e s of s p h a l e r i t e , galena, p e t z i t e and t e l l u r o b i s m u t h i t e (Amukun, 1969; Stephenson, 1971). Reid (1931) noted t h a t t h e r e are two types of p y r i t e present. The f i r s t forms l a r g e (up t o 5 m i l l i m e t r e s ) , euhedral c r y s t a l s disseminated through v e i n and a d j o i n i n g w a l l r o c k . Reid s t a t e d t h a t t h i s type of p y r i t e was i n d i c a t i v e of barren rock. However, i t was observed d u r i n g t h i s study t h a t , although the presence of coarse euhedral p y r i t e does not i n d i c a t e t h a t g o l d i s present, i t a l s o does not exclude the p o s s i b l e presence of a p p r e c i a b l e g o l d v a l u e s . The second p y r i t e type i s i n the form of f i n e wisps or l a y e r s . I t i s a s s o c i a t e d with the margins of v e i n s and l o c a l l y has a more y e l l o w i s h c o l o u r than normal p y r i t e . G e n e r a l l y where the second type of p y r i t e i s present, g o l d assays are n o t i c e a b l y high. On c l o s e examination of the f i n e p y r i t e , n a t i v e g o l d commonly i s e v i d e n t along some g r a i n margins. Samples of n a t i v e g o l d were e x t r a c t e d and analysed using the Scanning E l e c t r o n Microprobe (SEM) Energy D i s p e r s i v e System a t 16 t h e U n i v e r s i t y o f B r i t i s h C o l u m b i a . G o l d p a r t i c l e s w e r e f o u n d t o b e v e r y p u r e , g r e a t e r t h a n 9 5 0 f i n e n e s s . O n F i g u r e 1 . 3 , t h e A u t a n d Aun o r b i t a l g o l d p e a k s a n d a m i n o r Aga s i l v e r p e a k w e r e i d e n t i f i e d , s i l v e r b e i n g t h e m a j o r i m p u r i t y i n t h e n a t i v e g o l d g r a i n s . A n e a r l i e r s t u d y o f t h e p u r i t y o f g o l d f r o m S a n A n t o n i o c o n c l u d e d t h a t t h e r e w a s a l s o a r e d d i s h C u - A u a l l o y p r e s e n t w i t h s o m e y e l l o w g o l d ( F e r g u s o n , 1 9 5 0 ) . A l t h o u g h t h e r e a r e p l a c e s i n t h e m i n e w h e r e c h a l c o p y r i t e o c c u r s n e a r n a t i v e g o l d , n o C u - A u a l l o y w a s d e t e c t e d d u r i n g t h i s s t u d y . 17 SAN ANTONIO GOLD MINE SAMPLE AU30 Z = 00 PR= S 6/8SEC 115834 INT U = 8192 H=48KEU 1 • IH AQ=40KEU 1H Au m 1 A U L KEU KES 1 2 e . 4 8 K E U > F i g u r e 1.3. Scanning E l e c t r o n Microprobe (SEM) spectrogram of n a t i v e g o l d , e x h i b i t i n g Au and minor Ag peaks. A n a l y s i s by J . Knight, U n i v e r s i t y of B r i t i s h Columbia. (Sample AU80 from 16-type v e i n on 29th l e v e l ) . 18 CHAPTER I I LITHOLOGY OF THE SAN ANTONIO GOLD MINE The San Antonio Gold Mine i s on the western l imb of the northward p lung ing B i s s e t t synform, i n an area u n d e r l a i n by v o l c a n i c and sedimentary rocks of the Narrows Formation - R ice Lake Group (McRi t ch i e and Weber, 1971). In the mine workings , 1,320 metres (4,300 fee t ) of s t r a t i g r a p h y have been exposed. For convenience o f p o s i t i o n i n g w i t h i n the mine, rock types are d e s c r i b e d s t a r t i n g wi th the a u r i f e r o u s host u n i t . The rock sequence s t r a t i g r a p h i c a l l y above the host u n i t (north) i s r e f e r r e d to as the Hanging Wal l Sequence and the rock sequence below the host u n i t (south) i s r e f e r r e d to as the Foot Wal l Sequence. Th i s t e rminology i s c o n s i s t e n t w i th the mine s i t e nomenclature (F igures 2.1 and 2 . 2 ) . 2 . 1 . THE SAM UNIT - HOST ROCK 2 . 1 . 1 . DESCRIPTION OF THE SAM UNIT The a u r i f e r o u s host u n i t of the San Antonio Gold Mine, the SAM U n i t , i s a major b a s a l t i c sequence. Most of the rock i s homogeneous, massive, a p h a n i t i c to f i n e g r a i n e d , dark grey-green 19 GENERALIZED STRATIGRAPHIC COLUMN — a trnckness (m; 60-6Q - x r s 3 130 25 100 10 130 100 700 r r r 100 FULL EXPOSURE Pbnryritic Andesite GP6RIOLE LNIT - Andesite Cbrchyritic Anasite — Narth Basalt H.W. Sedirants K U . Schist SAfl LNIT - Basalt F.WSSchist HIRES ISLAM) LNIT - Arkcset Siltstone, Cudstcne (ninor Canalarerate, Qmt GABRIELLE UNIT Rjrp> r i t ic Andesite Chloritized Andesite Cart>-chlarite bandaa Schist Vein - Au Chloritized Andesite FarcryriUc Andesite SAM UNIT Qtz-carb-sericite Schist Itper Flcus (?) u-cif. chlorite Schist Late Stage Oykes Interflcu cherty fldstcre lojer Flcu Center differentiated coarse grained core - rare Pecnstite^lenSss - Qjartz-carbonate soust LNIT 'A' - Basalt - Qoarti-cara3nBte"Scrttst • QU-caro-sericite Schist UNIT 'A' QU-carb-sericite Schist Banded oMcrita Tuff (?) Pecretite Passive F1OJ retan. ptftilps or fragier-its Passive Sjlffude I Chlorite Schist - Tuff (?) QU-caro-sericite Schist F i g u r e 2.2. G e n e r a l i z e d s t r a t i g r a p h i c c o l u m n , San A n t o n i o Mine a r e a , B i s s e t t M a n i t o b a . 20 to black i n colour and contains variable amounts of either magnetite or leucoxene laths and blebs a f t e r t i t a n i f e r o u s magnetite (Plate 2.1). The author considers t h i s variety to be a basalt of stacked volcanic flow o r i g i n . While not ubiquitous, epidote occurs i n minor amounts i n most parts of the SAM Unit. Near the unit contacts, i t i s generally metamorphosed to a moderately f o l i a t e d c h l o r i t e s c h i s t . Where the b a s a l t i c flow rocks are p a r t i c u l a r l y thick, portions of the unit have a grain s i z e approaching that of a fine grained d i o r i t e . Changes i n grain s i z e are gradational. Such features, noted i n past d r i l l i n g programs, were considered as possible l a t e r stage dykes intruded into the SAM Unit, or as tuffaceous layers (Hewton and Gentile, 19S3). A review of d r i l l core and thi n sections suggest that these coarser zones are a slower cooling feature in the central part of a flow. The SAM Unit composite flow sequences consists of a major lower flow member, topped by thinner flows and very thin interflow sediments. This can be seen by textural relationships in hand samples and thi n sections. Textures that indicate slow cooling are from the lower half of the SAM Unit where d i f f e r e n t i a t i o n of the lava by gra v i t a t i o n a l s e t t l i n g has occurred. For a discussion of the lower flow member d i f f e r e n t i a t i o n , see Chapter I I I . 21 Plate 2.1. Massive basalt from the SAM Unit - 3rd l e v e l , lower flow member. 22 S u b - o p h i t i c t e x t u r e s c o n s i s t i n g o f s m a l l p l a g i o c l a s e (andesine) l a t h s p a r t l y surrounded by pyroxene (a u g i t e ) have been i d e n t i f i e d i n t h i n s e c t i o n . Compositional measurements by twinning e x t i n c t i o n on the v a r i a b l y s a u s s u r i t i z e d p l a g i o c l a s e l a t h s y i e l d values near l a b r a d o r i t e - a n d e s i n e (An* B ) f o r the b a s a l r e g i o n and values near a n d e s i n e - o l i g o c l a s e (Ana t ) f o r the top of the lower flow member. Primary p l a g i o c l a s e values c o n t r a s t s h a r p l y with the n e a r l y pure a l b i t e (Ana ) values f o r p l a g i o c l a s e formed by hydrothermal a l t e r a t i o n next t o v e i n systems. The p e r v a s i v e n e s s of r e g i o n a l metamorphism has o b l i t e r a t e d many of the o r i g i n a l t e x t u r e s a s s o c i a t e d with d e p o s i t i o n o f a flow. T h i s masking of t e x t u r e s i s c h a r a c t e r i s t i c of the whole Rice Lake area (Davies, 1963). There are, however, r a r e l a y e r s p a r a l l e l t o the base of the SAM U n i t t h a t e x h i b i t amygdaloidal t e x t u r e s . These tend t o be s p h e r o i d a l t o e l l i p s o i d a l bodies 0.6 mm i n diameter, where carbonate i s the dominant v e s i c l e - f i l l i n g m a t e r i a l . The carbonate amygdules are o l d e r and are cut by the carbonate s t r i n g e r s and bleb s emplaced d u r i n g metamorphism. Above the lower flow member, t e x t u r e s and geochemical p a t t e r n s do not show the same trends o f c r y s t a l d i f f e r e n t i a t i o n . The upper h a l f o f the SAM U n i t i s comprised of t h i n n e r flows v a r i a b l y deformed, i n cases t o c h l o r i t e s c h i s t . I n t e r f l o w sedimentary rocks c o n s t i t u t e an extremely minor, 23 ( l e s s than 1 p e r c e n t ) , component of the t o t a l SAM U n i t s t r a t i g r a p h y . Sedimentary l a y e r s are mostly t h i n n e r than 10 cm, medium to p a l e grey-green and are composed of moderately c h l o r i t i z e d c h e r t y mudstone. F i n e (0.5 mm) l a m i n a t i o n s and b a s a l , 2 mm lode c a s t s have been seen i n d r i l l core ( P l a t e 2.2). In t h i n s e c t i o n , the dominant mineral i d e n t i f i e d i s m i c r o g r a n u l a r q u a r t z . Small blebs of carbonate occupy 10 percent of the rock and minute micaceous f l a k e s are o r i e n t e d roughly p a r a l l e l t o the bedding. I t i s l i k e l y t h a t t h i s was o r i g i n a l l y an a r g i l l a c e o u s c h e r t . Thin quartz r i c h s t r i n g e r s , i n which the quartz g r a i n s are up t o 0.1 mm, c r o s s c u t the l a m i n a t i o n s along f r a c t u r e s . 2.1.2. THE SAM UNIT - HISTORICAL PERSPECTIVES The SAM U n i t , host t o most of the ore zones at the San Antonio Gold Mine, has long been c o n s i d e r e d i n t r u s i v e i n nature. E a r l y mine maps show i t as ' b a s a l t i c ( i n t r u s i v e ) ' (Anonymous, 1933), as 'diabase dyke' or 'metadiabase dyke' (Reid, 1931; S t o c k w e l l , 1938; S k e r l , 1955) and as a 'diabase s i l l ' (Davies, 1963; Stephenson, 1971). B r i n c o Mining L i m i t e d g e o l o g i s t s , i n the e a r l y 1980's, harboured some doubts concerning the ' i n t r u s i v e ' i n t e r p r e t a t i o n , so they i n i t i a t e d s e v e r a l i n v e s t i g a t i o n s . F i r s t among these was a study by the Manitoba Department of Energy and Mines. In 1983, P. Theyer and M. Fedikow conducted s h o r t programs of underground mapping and 2 4 P l a t e 2.2. C h e r t y mudstone ( g r e y ) i n t e r f l o w s e d i m e n t a r y r o c k f r o m w i t h i n t h e SAM U n i t , w i t h SAM U n i t b a s a l t ( b l a c k ) . S e c o n d a r y c a r b o n a t e b l e b s ( b e i g e ) f o l l o w t h e 30° a n g l e o f weak f o l i a t i o n t o b e d d i n g c o n t a c t . (Sample f r o m 3 3 r d l e v e l . ) 2 5 sampling, with conclusions that diverged from the e a r l i e r i n t r u s i v e i n t e r p r e t a t i o n . Theyer (1983) and the author have i d e n t i f i e d several variations i n the rock unit formerly c a l l e d the 'diabase dyke.' The term 'SAM Unit', short for San Antonio Mine Unit, a term considered less controversial i n t h i s time of divergent theories, was thus proposed for i t has no genetic implication. Portions of the SAM Unit, previously described as 'intermediate t u f f (dacite?)' and ' f e l s i c t u f f ( r h y o l i t e ? ) ' (Theyer, 1983) are now considered by the author to be, respectively, variations i n the basalt caused by intensive hydrothermal a l t e r a t i o n , and th i n interflow sediments. Theyer's i n i t i a l observations and sampling were conducted on the 26th l e v e l of the mine, where rock i d e n t i f i c a t i o n confusion was possible because of t h i s l e v e l ' s position i n s t r u c t u r a l Domain II. Gentile (1983) proposed the domain concept based on the presence or absence of extensional stockwork veins within regions of the mine. Gentile noted that Domain II lacked stockwork veins but did possess shear veins. What he did not note was that Domain II possessed thinner and more cl o s e l y spaced shear veins than the other domains. The c l o s e l y spaced shears i n h i b i t e d development of penecontemporaneous extensional veins. (See Appendix I for a more detailed description of the domain concept.) 26 With a shear vein spacing of 1 to 3 metres i n Domain II, a l t e r a t i o n of the wallrock from one minor vein can overlap with the zone of a l t e r a t i o n from an adjacent vein. This appears as a much more ' f e l s i c ' rock than otherwise expected and yie l d s compositions that might lead to m i s - i d e n t i f i c a t i o n as a dacite. The ' f e l s i c t u f f ( r h y o l i t e ? ) ' was described by Theyer as massive to f a i n t l y banded and very s i l i c i f i e d . This description could apply to the interflow sedimentary rocks now recognized as laminated cherty mudstone. While i t i s possible that there i s a p y r o c l a s t i c component to the sedimentary rocks, no evidence of t h i s has been observed by the author. 2.2. LATE STAGE DYKES WITHIN THE SAM UNIT There are l a t e stage dykes crosscutting the SAM Unit, which have been found on several le v e l s throughout the mine. These vary between 0.1 and 3 metres thick and tend to follow the s t r u c t u r a l l i n e s of weakness associated with shear vein systems. Although they are basalt, the l a t e stage dykes can be c l e a r l y distinguished from the surrounding rock by a weaker c h l o r i t i z a t i o n , absence of magnetite/leucoxene blebs and fresher appearance. The dykes are medium to dark green-grey i n colour, massive and have sharp contacts. Where the dykes are thicker, minor por p h y r i t i c textures can be seen with an alignment of the feldspar phenocrysts p a r a l l e l to the dyke walls. Feldspar 27 phenocryst laths up to 1 cm have been found, accounting for up to 5 percent of the rock. 2.3. HANGING WALL SEQUENCE Several geologically and perhaps economically important rock types occur above the SAM Unit. These rocks, referred to as the Hanging Wall Sequence, are described ascending s t r a t i g r a p h i c a l l y from the hanging wall contact of the SAM Unit. The Hanging Wall Sequence i s a complex volcano-sedimentary sequence up to 1,500 metres thick. Variable i n t e n s i t i e s of metamorphism, l o c a l variations i n character and limited outcrop have made c o r r e l a t i o n of sub-divisions d i f f i c u l t within t h i s sequence. Sedimentary rocks, agglomerates, porphyritic andesite flows, l a p i l l i t u f f s and breccias, plus minor b a s a l t i c flows a l l occur i n t h i s sequence. Underground exposures of 400 metres of stratigraphy form the basis of the following descriptions. 2.3.1. SCHISTS AND SEDIMENTARY ROCKS Immediately above the SAM Unit, the hanging wall rocks have been metamorphosed to a quartz-sericite-carbonate s c h i s t . This pale beige s c h i s t i s a lithodemic unit with variable thickness. Thicknesses of 1.2 metres on the 3rd l e v e l of the mine to 20 metres on the 16th l e v e l , approximately 600 metres lower i n elevation, have been measured. 28 F o l i a t i o n directions within the s c h i s t are oriented 20 to 30 degrees to the SAM Unit contact. The contact i s generally smooth and sharp (Plate 2.3). However, in a few locations (most notably on the 16th l e v e l - 1602 crosscut), small embayments of the c h l o r i t i z e d SAM Unit occur within the s c h i s t (Plate 2.4). Smaller scale primary textures i n both the SAM Unit basalt and the o r i g i n a l sediments of the hanging wall have been obli t e r a t e d along the contact by the intense s c h i s t o s i t y . The embayments do not extend more than 50 cm from the SAM Unit. The embayments of SAM Unit into the s c h i s t are interpreted to be rip-up c l a s t s or f i n e lobes of the flow picked up by rapid sedimentation. Intrusive proponents have suggested that these may be apophyses of a dyke into the overlying sediments. If these were apophyses, one would expect to see larger and perhaps longer fingers emanating from a dyke the magnitude (150 metres thick) of the SAM Unit. In addition, t h i s should happen on both foot and hanging wall contacts and not just on the hanging wall as seen. Above the quartz-carbonate-sericite s c h i s t are mixed altered schistose sedimentary rocks. On surface, the sedimentary rocks are recessively weathered and thus are covered by g l a c i a l debris i n depressions. Good exposures are available underground, p a r t i c u l a r l y on the 3rd l e v e l - 304 crosscut. 29 Plate 2.3. The sharp hanging wall contact of the SAM Unit basalt with quartz-carbonate-sericite s c h i s t (mylonlte i n places), 29th Level (scale s t r i p i n inches). 3 0 P l a t e 2 . 4 . The h a n g i n g w a l l c o n t a c t o f t h e SAM U n i t e x h i b i t i n g embayment o f c h l o r i t i z e d b a s a l t i n t h e o v e r l y i n g q u a r t z - s e r i c i t e - c a r b o n a t e s c h i s t , 1 6 t h L e v e l . See t e x t f o r d i s c u s s i o n o f o r i g i n , ( s c a l e b a r i n i n c h e s ) 31 In conglomeratic sections, the pebbles have been squeezed so that the pebble length i s up to f i v e times the width. Narrow cherty layers and greywacke beds can be i d e n t i f i e d . Tuffaceous beds may also play a minor part i n t h i s section, as i l l u s t r a t e d by the agglomerate exposed near 'D' Shaft on the 26th l e v e l . Most f i n e tuffaceous textures, however, would be d i f f i c u l t to confirm. Stratigraphic top indicators can be seen i n the sedimentary rocks. A minor angular unconformity occurs 45 metres above the SAM Unit (Figure 2.3 and Plate 2.5). The lower, f i n e r grained s i l t s t o n e beds are oriented 132°/52° NE and are truncated by the unconformity surface with greywacke at 119'/61° NE. This shows that the bedding i s upright i n the Hanging Wall Sequence, which i s consistent with poorly preserved graded bedding. 2.3.2. NORTH BASALT UNIT One hundred metres s t r a t i g r a p h i c a l l y above the SAM Unit i s another basalt flow, herein referred to as the North Basalt Unit. This 20 metre thick flow i s f a i r l y competent, moderately c h l o r i t i z e d and contains sporadic quartz stringers cutting obliquely through the c h l o r i t e f o l i a t i o n . Stringers account for less than 2 volume percent of the rock and rarely exceed 5 mm i n thickness. Traces of p y r i t e and chalcopyrite are also present, as i s minor malachite s t a i n i n g . 32 to / / / / 7 / / / GREYWACKE x / / B e d d i n g : 1 1 9 ° / 6 1 ° 1 \ 1 E — - < # - / / 4-^ #7 > / / / ' - / / / F^l \ l fLY LftMINATED SIk fSTONE AND MUDSTONE X . N > B e d d i h g : / 1 3 2 0 / 5 2 ° N E ^ Figure 2.3. Sketch of an angular unconformity exposed on the east wall, 3rd l e v e l - 304 crosscut, i n the Hanging Wall Sequence. This serves as a s t r a t i g r a p h i c top indicator showing the sedimentary rocks to be upright (sketch corresponds to Plate 2.5.). 33 P l a t e 2.5. A n g u l a r u n c o n f o r m i t y e x p o s e d on t h e e a s t w a l l , 3 r d l e v e l - 304 c r o s s c u t , i n t h e H a n g i n g W a l l S e q u e n c e . T h i s s e r v e s as a s t r a t i g r a p h i c t o p i n d i c a t o r s h o w i n g t h e s e d i m e n t a r y r o c k s t o be u p r i g h t ( c o r r e s p o n d s t o F i g u r e 2 . 3 . ) . 34 E a s t o f t h e mine, t h e s t r a t i g r a p h i c s e p a r a t i o n between t h e SAM U n i t and t h e N o r t h B a s a l t U n i t i n c r e a s e s , s u g g e s t i n g i n t e r n a l l o c a l i z e d u n c o n f o r m i t i e s o r f a c i e s t h i c k e n i n g i n t h e i n t e r l y i n g s e d i m e n t a r y p i l e . The s t r i n g e r s and m i n e r a l i z a t i o n , a l t h o u g h weak, show t h a t t h e N o r t h B a s a l t U n i t r e a c t e d t o f r a c t u r i n g i n a manner s i m i l a r t o t h e SAM U n i t . However, b e i n g much t h i n n e r , t h e N o r t h B a s a l t U n i t was n o t a p r e f e r r e d h o s t t o o r e a t t h e o b s e r v e d l o c a t i o n s . (See a l s o S e c t i o n 6.2.5.) 2.3.3. PORPHYRITIC ANDESITE Above t h e N o r t h B a s a l t U n i t , t h e r o c k c h a r a c t e r becomes l e s s s c h i s t o s e and more p o r p h y r i t i c , r e a c h i n g a c o a r s e g r a i n e d a n d e s i t e p o r p h y r y . The r o c k i s c o m p e t e n t , medium p a l e g r e y , w i t h 20 t o 30 p e r c e n t f e l d s p a r p h e n o c r y s t s up t o 1 cm l o n g , and 5 p e r c e n t c h l o r i t e l a t h s up t o 5 mm l o n g . The p h e n o c r y s t s were o r i g i n a l l y p l a g i o c l a s e , b u t m o s t l y have been a l t e r e d t o c a l c i t e - z o i s i t e - s e r i c i t e masses w i t h r e l i c t c r y s t a l o u t l i n e s . A c r u d e a l i g n m e n t o f p h e n o c r y s t s i s p r e s e n t ( P l a t e 2 . 7 ) . The p o r p h y r i t i c a n d e s i t e i s by f a r t h e d o m i n a n t r o c k t y p e i n t h e H a n g i n g W a l l S e q u e n c e . Over 600 m e t r e s o f t h i c k n e s s o f p o r p h y r i t i c a n d e s i t e has been mapped by S t o c k w e l l ( 1 9 3 8 ) , who c o n s i d e r e d t h i s t o be a v o l c a n i c f l o w , c l o s e l y a s s o c i a t e d w i t h a n d e s i t e b r e c c i a s h i g h e r i n t h e s t r a t i g r a p h y . D a v i e s (1963) and Weber (1971) r e f e r r e d t o t h i s r o c k t y p e as a d a c i t e c r y s t a l t u f f . A l t h o u g h some s u r f a c e e x p o s u r e s may w e l l be t u f f a c e o u s . 35 P l a t e 2.6. S u r f a c e e x p o s u r e o f t h e H a n g i n g W a l l S e q u e n c e p o r p h y r i t i c a n d e s i t e , w i t h a z e n o l i t h o f b a s a l t ( p h o t o f r o m Water Tower H i l l ) . P l a t e 2.7. U n d e r g r o u n d e x p o s u r e o f p o r p h y r i t i c a n d e s i t e f r o m t h e H a n g i n g W a l l S e q u e n c e ( p h o t o f r o m 3 r d l e v e l - 304 c r o s s c u t ) . 3 7 many o f t h e u n d e r g r o u n d e x p o s u r e s a r e c o n s i d e r e d by t h e a u t h o r t o e x h i b i t t r u e p o r p h y r i t i c t e x t u r e s . 2.3.4. THE GABRIELLE UNIT The G a b r i e l l e U n i t i s a name g i v e n t o a zone w i t h i n t h e t h i c k p o r p h y r i t i c a n d e s i t e b e l t ( F i g u r e 2 . 1 ) . Of more t h a n 150 v e i n s t r u c t u r e s t h a t have been d e v e l o p e d t o v a r i o u s d e g r e e s on San A n t o n i o G o l d M i n e ' s p r o d u c t i o n l e a s e l a n d , l e s s t h a n 5 p e r c e n t a r e o u t s i d e t h e SAM U n i t . The G a b r i e l l e U n i t i s s i g n i f i c a n t i n t h a t i t e n c l o s e s an a u r i f e r o u s v e i n , n o t d i r e c t l y a s s o c i a t e d w i t h t h e SAM U n i t b a s a l t s , w h i c h y i e l d e d e c o n o m i c p r o d u c t i o n . O t h e r v e i n s , o r i g i n a l l y worked by W i n g o l d M i n e s L i m i t e d ( L e e , 1 934), l o c a t e d n o r t h e a s t o f t h e main San A n t o n i o mine w o r k i n g s , may be i n r o c k s e q u i v a l e n t t o G a b r i e l l e U n i t . A l t h o u g h t h e G a b r i e l l e U n i t has b e en i d e n t i f i e d i n c r o s s c u t s and i n diamond d r i l l i n g , i t ' s s u r f a c e e x p r e s s i o n has n o t been t r a c e d t h r o u g h r e s i d e n t i a l a r e a s i n t h e town o f B i s s e t t . As one a p p r o a c h e s f r o m t h e f o o t w a l l s i d e o f t h e G a b r i e l l e U n i t , t h e r o c k s c h a n g e g r a d u a l l y f r o m a p o r p h y r i t i c a n d e s i t e w i t h 20 p e r c e n t f e l d s p a r p h e n o c r y s t s , t o a m o d e r a t e l y c h l o r i t i z e d a n d e s i t e , l a c k i n g p h e n o c r y s t s . I n t h e c e n t r e o f t h e G a b r i e l l e U n i t , t h e #34 v e i n i s a u n i q u e q u a r t z w i t h m i n o r c a r b o n a t e v e i n . I t i s s i m i l a r i n l o c a l m o r p h o l o g y t o t h e s h e a r v e i n s i n t h e SAM U n i t , i n t h a t i t has a 38 p r o m i n e n t v e i n a v e r a g i n g 2 m e t r e s i n t h i c k n e s s , a s h e a r e d c o n t a c t on t h e v e i n f o o t w a l l and s i n u o u s s t r i n g e r s e x t e n d i n g i n t o t h e h a n g i n g w a l l . What s e t s t h e #34 v e i n d i s t i n c t l y a p a r t f r o m t h e s i m p l e s h e a r v e i n s i s i t s a t t i t u d e . On s u r f a c e , t h e v e i n i s n o r t h e a s t e r l y s t r i k i n g , b u t by a d e p t h o f 150 m e t r e s , t h e s t r i k e i s n o r t h w e s t e r l y , g i v i n g t h e v e i n an h e l i c a l f o r m t h a t s h o u l d be c o n s i d e r e d i n p l a n n i n g f u t u r e e x p l o r a t i o n d r i l l i n g on t h i s s t r u c t u r e . I m m e d i a t e l y above t h e #34 v e i n i n t h e G a b r i e l l e U n i t i s a h i g h l y f i s s i l e , b e i g e and g r e e n , c h l o r i t e - c a r b o n a t e l a y e r e d s c h i s t , w i t h a t h i c k n e s s o f 13 m e t r e s . T h i s s c h i s t i s i n t e r p r e t e d t o have been a f i n e l y l a y e r e d s e d i m e n t , b a s e d on t h e p r e s e n c e o f r o u n d e d q u a r t z g r a i n s , b u t may be a m y l o n i t e z o n e . F o l i a t i o n i n t e r s e c t s t h e s c h i s t - a n d e s i t e f l o w c o n t a c t a t a p p r o x i m a t e l y 30 d e g r e e s . Above t h e s c h i s t , t h e G a b r i e l l e U n i t i s a m o d e r a t e l y c h l o r i t i z e d a n d e s i t e w h i c h c o n t i n u e s u n t i l an u p p e r g r a d a t i o n a l c o n t a c t w i t h f e l d s p a r p o r p h y r i t i c a n d e s i t e i s r e a c h e d . I n t o t a l , t h e G a b r i e l l e U n i t i s a 60 m e t r e t h i c k z o n e w i t h i n t h e more e x t e n s i v e p o r p h y r i t i c a n d e s i t e . Rocks above t h e p o r p h y r i t i c a n d e s i t e were n o t e x a m i n e d d u r i n g t h i s s t u d y . They a r e r e p o r t e d t o be c l o s e l y r e l a t e d t o t h e p o r p h y r i t i c a n d e s i t e a s e q u i v a l e n t b r e c c i a t e d f l o w s and p y r o c l a s t i c u n i t s , l o c a l l y e x h i b i t i n g a t r a c h y t i c a l i g n m e n t ( S t o c k w e l l , 1938; D a v i e s , 1963; Weber, 1 9 7 1 ) . 39 2.4. FOOT WALL SEQUENCE Rocks o f t h e F o o t W a l l S e q uence a r e d i v i d e d i n t o two p r i n c i p a l u n i t s t h a t a r e d e s c r i b e d below, d e s c e n d i n g s t r a t i g r a p h i c a l l y f r o m t h e SAM U n i t . 2.4.1. HARES ISLAND UNIT S t r a t i g r a p h i c a l l y b e n e a t h t h e SAM U n i t i s a 700 metre t h i c k v o l c a n o - s e d i m e n t a r y s e q u e n c e , d o m i n a t e d by m e t a - s e d i m e n t a r y r o c k s . T h i s h as been a s s i g n e d t h e name H a r e s I s l a n d U n i t i n d i s c u s s i o n s w i t h t h e G e o l o g i c a l S u r v e y o f Canada (Ames, 1985 p e r s . com.) and i s s i m i l a r t o , b u t t h i c k e r t h a n , t h e s e d i m e n t a r y r o c k s f r o m t h e H a n g i n g W a l l S e q u e n c e . I m m e d i a t e l y a d j a c e n t t o t h e SAM U n i t c o n t a c t i s a q u a r t z - c a r b o n a t e - s e r i c i t e s c h i s t w i t h t h i c k n e s s e s f r o m 50 t o 130 m e t r e s . The s c h i s t t y p i c a l l y i s composed o f q u a r t z , f i n e g r a i n e d s e r i c i t e and a n k e r i t e , w i t h t r a c e amounts o f c h l o r i t e and p y r i t e . R a r e r u t i l e g r a i n s a s c l u s t e r s a r e s e e n i n t h i n s e c t i o n . Some o f t h e q u a r t z a p p e a r s t o be p r i m a r y r o u n d e d g r a i n s o f s e d i m e n t , b u t t h e b u l k o f t h e q u a r t z has r e c r y s t a l i z e d d u r i n g metamorphism. M a r i p o s i t e , a b r i g h t g r e e n , chromium r i c h , p h e n g i t e m i c a o c c u r s a s r a r e f l a k e s i n t h e f o o t w a l l s c h i s t . The t r a n s i t i o n f r o m s c h i s t t o w e a k l y f o l i a t e d s e d i m e n t a r y r o c k s i s g r a d u a l . Once i n t o t h e u n d e r l y i n g s e d i m e n t a r y r o c k s . 4 0 l a y e r s o f i n t e r b e d d e d a r k o s e , s i l t s t o n e , and mudstone, w i t h m i n o r c o n g l o m e r a t e c a n be s e e n . C h e r t l a y e r s and t h i n ( l e s s t h a n 1 m e t r e ) d y k e s a r e a l s o p r e s e n t . Near t h e No. 2 S h a f t , on t h e 3 r d l e v e l o f t h e mine, e x p o s u r e s e x h i b i t l o d e c a s t s , f o l d c r e n u l a t i o n s i n b e d d i n g , m i n o r b o u d i n d e v e l o p m e n t and t h i n q u a r t z - c a r b o n a t e v e i n l e t s a l o n g s m a l l s h e a r s . B e d d i n g measurements i n t h i s a r e a o f t h e mine c l e a r l y i n d i c a t e b r o a d a n t i c l i n e - s y n c l i n e p a i r s ( w a v e l e n g t h a p p r o x . 10 m e t r e s ) m i m i c k i n g t h e n o r t h e a s t e r l y p l u n g i n g m a j o r B i s s e t t s y n f o r m . The most c o n t i n u o u s e x p o s u r e o f H a r e s I s l a n d U n i t s e d i m e n t a r y r o c k s i s on t h e 2 6 t h l e v e l - 2601 c r o s s c u t . S e v e r a l i n d i c a t o r s o f s t r a t i g r a p h i c t o p d i r e c t i o n c a n be s e e n , i n c l u d i n g l a m i n a t e d b e d d i n g , g r a d e d b e d d i n g and d i s r u p t e d c o n t a c t s ( P l a t e 2 . 8 ) . T e c t o n i c s t r e t c h i n g and f l a t t e n i n g o f p e b b l e s w i t h i n t h e c o n g l o m e r a t i c l a y e r h i g h l i g h t s t h e a n g u l a r r e l a t i o n s h i p between t h e s t r e t c h i n g d i r e c t i o n ( m e t a m o r p h i c f o l i a t i o n ) and p r i m a r y b e d d i n g p l a n e s . In t h e l o w e r p a r t o f t h e H a r e s I s l a n d U n i t , s e d i m e n t a r y r o c k s a r e m o d e r a t e l y f o l i a t e d , and g r a d e t o a l a y e r e d , p a l e t o medium g r e y s c h i s t . A few t h i n m a g n e t i t e l a y e r s , c o n f o r m a b l e t o a d j a c e n t b e d d i n g a t t i t u d e s , r e p r e s e n t m i n o r 'banded i r o n f o r m a t i o n . ' No s i g n i f i c a n t g o l d v a l u e s have been r e c o r d e d f r o m t h e s e l a y e r s . 41 P l a t e 2.8. Hares I s l a n d U n i t conglomerate and s i l t s t o n e . E l o n g a t i o n of pebbles h i g h l i g h t the angular r e l a t i o n s h i p between metamorphic f o l i a t i o n and bedding a t t i t u d e (photo from 26th l e v e l -2601 c r o s s c u t , width of view - 1.5 metres). 42 2.4.2. UNIT 'A' BASALT S t r a t i g r a p h i c a l l y below the Hares Island Unit i s another mafic unit, the 'South Greenstone' (Skerl, 1955) or 'Unit 'A'' (Theyer, 1983). Unit 'A' i s a basalt with some s i m i l a r i t i e s to the SAM Unit, although no auriferous quartz vein structures have been discovered i n Unit 'A'. Both the hanging wall and foot wall of Unit 'A' are marked by pale quartz-carbonate s c h i s t s derived from sediments. Unit 'A' i s approximately 110 metres thick and i s mostly f i n e to medium c r y s t a l l i n e basalt and weakly f o l i a t e d c h l o r i t e s c h i s t from basalt or b a s a l t i c t u f f . A 3 metre layer containing f e l s i c altered fragments could represent a sedimentary rock bed which divides the unit into a lower th i n flow and an upper flow(?). The upper half has f a i n t l y layered sections and has a moderate int e n s i t y of c h l o r i t e f o l i a t i o n near i t s top. Unit 'A' i s important i n that i t has potential f o r hosting massive sulphides. Several lenses of sulphide, up to 1.5 metres thick, but averaging 30 cm thick, have been d r i f t e d on for 100 metres length (Plate 2.9). These consist primarily of p y r i t e . Thin quartz-carbonate-chlorite cross stringers l o c a l l y make up 25 percent of the lenses. Minor amounts of magnetite are present immediately along the base of some of the narrower sulphide lenses and i n the c h l o r i t e s c h i s t . The massive sulphide lenses Massive sulphide lens i n Unit. 'A' Basalt. It i s conformable to the unit contacts; rusty brown • pyr i t e , pale beige = carbonate, dark green = c h l o r i t e (photo from 26th l e v e l -2602 crosscut, scale bar i n inches). 44 a r e c o n f o r m a b l e t o c o n t a c t s o f U n i t 'A', w i t h an o r i e n t a t i o n o f 130°/53° NE. B o t h S k e r l (1955) and T h e y e r (1983) s u g g e s t t h a t U n i t 'A' i s a r e p e t i t i o n o f t h e SAM U n i t , b a s e d on a t i g h t f o l d model. I f t r u e , t h e n U n i t 'A' would be an i n v e r t e d p a c k a g e . A l l o b s e r v e d s t r a t i g r a p h i c t o p s , b o t h above t h e SAM U n i t and between t h e two u n i t s i n d i c a t e t h e same n o r t h e a s t e r l y u p r i g h t t o p d i r e c t i o n . U n i t 'A' i s t h u s c o n s i d e r e d t o be a s e p a r a t e , o l d e r v o l c a n i c f l o w u n i t . 2.5. CHEMICAL CLASSIFICATION OF THE UNITS T h r e e g r o u p s o f whole r o c k a n a l y s e s have been t a k e n f r o m t h e SAM U n i t f o r p e t r o c h e m i c a l a n a l y s e s and f o r h y d r o t h e r m a l a l t e r a t i o n s t u d i e s ( F e d i k o w , 1983; Ames and P o u l s e n , 1986; and t h i s s t u d y ) . The m a j o r i t y o f s a m p l e s a r e w i t h i n t h e h i g h i r o n t h o l e i i t i c b a s a l t f i e l d on a J e n s e n C a t i o n G r a p h , F i g u r e 2.4 ( J e n s e n , 1 9 7 6 ) . Samples f r o m t h e b o t t o m p a r t o f t h e l o w e r f l o w member r e f l e c t t h e e f f e c t s o f c r y s t a l s e t t l i n g . T h e s e c o m p o s i t i o n s p l o t w i t h i n t h e b a s a l t i c k o m a t i i t e f i e l d , however, t h e y do n o t r e p r e s e n t a p r i m a r y k o m a t i i t i c l a v a . D i f f e r e n t i a t i o n w i t h i n t h e f l o w i s d i s c u s s e d i n C h a p t e r I I I and t h e e f f e c t s o f h y d r o t h e r m a l a l t e r a t i o n a r e d i s c u s s e d i n C h a p t e r IV. T a b l e 2.1 l i s t s t h e c o m p o s i t i o n s o f o t h e r v o l c a n i c r o c k 45 F e d + F e 0 C U + T i O A l Figure 2.4. Jensen Cation Graph of whole rock analyses from the SAM Unit. Note: Fedikow's (#3) analyses are apparently derived from samples high i n the SAM Unit, thus y i e l d lower MgO values. 46 TABLE 2.1 XRF WHOLE ROCK ANALYSES OF VOLCANIC UNITS FROM THE SAN ANTONIO GOLD MINE Comp. Unt 3032- 9021" Sample 10301° Numbers SA« 8006' DCT - I ' SiOa % 46.89 44.74 48.90 51.16 63.19 64. 79 T i O i % 1.25 0.73 1.00 1.07 0.57 0. 45 Ala Os % 15.96 14.28 16.39 16.67 15.95 16. 33 Fea OJ % 15.67 12.64 13.56 15.05 5.98 4. 38 MnO % 0.14 0.16 0.11 0.16 0.06 0. 05 MgO % 2.55 3.75 2.65 3.20 1.83 1. 88 CaO % 7.25 12.34 9.02 9.75 4.66 4. 17 Ka 0 % 1.19 0.17 0.73 0.80 1.95 0. 60 Pa Os % 0.13 0.08 0.12 0.11 0.11 0. 16 Naa 0 % 3.25 1.88 2.95 2.50 1.88 5. 20 Sa % 0.04 0.07 0.18 0.03 0.03 -Ba ppm 139 38 156 28 319 -Co ppm 27 47 29 41 22 -Cr ppm 19 167 77 190 173 -Cu ppm 48 73 103 75 33 -Nb ppm 1 2 4 1 3 -N i ppm 24 61 47 56 26 -Rb ppm 26 3 18 1 40 -Sr ppm 290 123 286 472 297 -V ppm 268 210 249 239 106 -Y ppm 23 15 26 21 10 -Zn ppm 113 69 76 79 59 -Zr ppm 60 37 59 56 116 T o t a l i r o n r e p o r t e d as Fe» Oi (a) Late Stage Dyke - t h o l e i i t i c b a s a l t - 3rd l e v e l (b) U n i t 'A' - t h o l e i i t i c b a s a l t - 26th l e v e l (c) North B a s a l t U n i t - t h o l e i i t i c b a s a l t - 3rd l e v e l (d) SAM U n i t - t h o l e i i t i c b a s a l t - average a n a l y s i s (e) G a b r i e l l e U n i t - c a l c - a l k a l i n e a n d e s i t e - 3rd l e v e l ( f ) P o r p h y r i t i c A n d e s i t e - c a l c - a l k a l i n e a n d e s i t e - s u r f a c e Note: A n a l y s i s do not sum t o 100% because l o s s on i g n i t i o n (LOI) was not monitored. LOI i n c l u d e s s i g n i f i c a n t Ha 0 and COa. D e t a i l e d comparisons t o standards were conducted t o maintain data q u a l i t y (see Appendix I I I ) . 47 u n i t s and, f o r c o m p a r i s o n , an a v e r a g e a n a l y s i s o f t h e SAM U n i t . A l l s a m p l e s , e x c e p t DCT-I, were a n a l y s e d by t h e a u t h o r i n t h e XRF L a b o r a t o r y , D e p a r t m e n t o f O c e a n o g r a p h y , U n i v e r s i t y o f B r i t i s h C o l u m b i a ( s e e A p p e n d i x I I I ) . Sample DCT-I was a n a l y s e d by t h e M i n e s B r a n c h , M a n i t o b a D e p a r t m e n t o f Mines and N a t u r a l R e s o u r c e s . C l a s s i f i c a t i o n o f v o l c a n i c r o c k s c a n be p r e s e n t e d i n s e v e r a l ways. N o r m a t i v e m i n e r a l a s s e m b l a g e s were c a l c u l a t e d f o r p l o t t i n g on d i s c r i m i n a n t d i a g r a m s a c c o r d i n g t o t h e methods o f I r v i n e and B a r a g a r ( 1 9 7 1 ) . F i g u r e 2.5, a p l o t o f n o r m a t i v e p l a g i o c l a s e c o m p o s i t i o n v e r s u s A l a O i , s u b d i v i d e s t h e s i x a n a l y s e s i n t o two g r o u p s . U n i t 'A', SAM U n i t , N o r t h B a s a l t U n i t and t h e l a t e s t a g e d y k e s a l l p l o t i n t h e t h o l e i i t i c f i e l d , whereas t h e G a b r i e l l e U n i t p l u s i t s ' e n c l o s i n g H a n g i n g W a l l S e q u e n c e p o r p h y r i t i c a n d e s i t e a r e w i t h i n t h e c a l c - a l k a l i n e f i e l d . F i g u r e 2.6, a p l o t o f n o r m a t i v e p l a g i o c l a s e c o m p o s i t i o n v e r s u s n o r m a t i v e c o l o u r i n d e x , i s c o n s i s t e n t w i t h f i e l d o b s e r v a t i o n s t h a t i d e n t i f i e d t h e f i r s t g r o u p o f s a m p l e s as b a s a l t s and t h e s e c o n d g r o u p o f s a m p l e s as a n d e s i t e s . On a J e n s e n C a t i o n G r a p h ( F i g u r e 2 . 7 ) , t h e b a s a l t i c s a m p l e s a l l a r e w i t h i n t h e h i g h - i r o n t h o l e i i t i c b a s a l t f i e l d , whereas t h e a n d e s i t i c s a m p l e s p l o t i n t h e c a l c - a l k a l i n e f i e l d , n e a r t h e a n d e s i t e - b a s a l t b o u n d a r y . The J e n s e n C a t i o n Graph s e r v e s as a c o m b i n a t i o n o f F i g u r e s 2.5 and 2.6. 48 26 20 18 O . - I 10 CALC-ALKALINE FIELD -4 0 2 J l —-THOLEIITIC FIELD 30 20 100 90 80 70 60 50 40 Normative P l a g i o c l a s e Composition 10 Figure 2.5. Normative plagioclase composition versus Ala Os f o r volcanic rocks from the San Antonio Gold Mine area: 1 - late stage dyke, 2 - Unit 'A' Basalt, 3 - North Basalt Unit, 4 t y p i c a l SAM Unit, 5 - Gabrielle Unit, 6 -Hanging Wall Sequence porphyritic andesite. 80 60 -40 20 . —r-90 o 4 o 2 Basalt q o ^ v T h o l e i i t i c Andesite <9 Andesite Dacite — r 50 — r 40 — r 30 —T 20 Rhyo. 100 80 70 60 Normative P l a g i o c l a s e Composition 10 Figure 2.6. Normative plagioclase composition versus normative colour index for volcanic rocks from the San Antonio Gold Mine area. Numbers coincide with those of Figure 2.5. 49 F i g u r e 2.7. J e n s e n C a t i o n G r a p h o f V o l c a n i c Rocks f r o m t h e San A n t o n i o G o l d Mine A r e a . Numbers c o i n c i d e w i t h t h o s e o f F i g u r e 2.5. 50 The most f e l s i c r o c k t y p e s a r e t h e s c h i s t s i n c o n t a c t w i t h t h e f o o t w a l l and h a n g i n g w a l l o f t h e SAM U n i t . T h e s e c o n s i s t o f q u a r t z ; c a r b o n a t e and s e r i c i t e a s t h e m a j o r m i n e r a l s and were o r i g i n a l l y c l a s t i c s e d i m e n t s . T a b l e 2.2 c o n t a i n s t h e r e s u l t s o f whole r o c k a n a l y s e s on t h e h a n g i n g and f o o t w a l l s c h i s t s . T h e r e i s a r e m a r k a b l e s i m i l a r i t y between t h e a n a l y t i c a l r e s u l t s . Sample #1001 was t a k e n f r o m t h e f o o t w a l l s c h i s t on t h e 3 r d l e v e l , s ample #7002 i s f r o m t h e f o o t w a l l s c h i s t on t h e 3 3 r d l e v e l , 1,400 m e t r e s l o w e r i n e l e v a t i o n , and s a m p l e #5033 i s f r o m t h e h a n g i n g w a l l s c h i s t on t h e 1 6 t h l e v e l . 51 TABLE 2.2 XRF WHOLE ROCK ANALYSIS OF QUARTZ-CARBONATE-SERICITE SCHISTS FROM THE SAN ANTONIO GOLD MINE Components U n i t s 1001« Sample Numbers 7002° 5033" SiOa % 63.77 62.44 64.38 TiOa % 0.27 0.30 0.33 Ala Oa % 17.03 18.28 15.37 Fea 0 3 % 4.84 3.39 4.32 MnO % 0.03 0.01 0.03 MgO % 1.52 1.48 1.68 CaO % 3.60 4.08 4.80 Ka 0 % 1.77 2.87 1.02 Pa Os % 0.09 0.09 0.11 Naa 0 % 4.96 3.81 4.61 Sa % 0.00 0.01 0.22 Ba ppm 262 389 223 Co ppm 10 13 3 C r ppm 49 121 172 Cu ppm 24 5 20 Nb ppm 2 2 2 N i ppm 15 12 16 Rb ppm 38 58 24 S r ppm 333 265 346 V ppm 29 29 43 Y ppm 2 3 5 Zn ppm 21 17 47 Z r ppm 74 74 94 T o t a l i r o n r e p o r t e d a s Fea Oi (a) F o o t w a l l s c h i s t - 3 r d L e v e l (b) F o o t w a l l s c h i s t - 3 3 r d L e v e l ( c ) H a n g i n g W a l l s c h i s t - 1 6 t h l e v e l N o t e : A n a l y s e s do n o t sum t o 100% b e c a u s e l o s s on i g n i t i o n (LOI) was n o t m o n i t o r e d . LOI i n c l u d e s s i g n i f i c a n t Ha 0 and C0a. D e t a i l e d c o m p a r i s o n s t o s t a n d a r d s were c o n d u c t e d t o m a i n t a i n d a t a q u a l i t y ( s e e A p p e n d i x I I I ) . No v o l c a n i c d e r i v a t i o n p l o t s were c r e a t e d , a s t h e s c h i s t s were d e r i v e d f r o m s e d i m e n t a r y h o s t s . 52 CHAPTER III DIFFERENTIATION OF THE SAM UNIT - LOWER FLOW MEMBER O b s e r v a t i o n s i n s u p p o r t o f d i f f e r e n t i a t i o n by g r a v i t a t i o n a l s e t t l i n g i n t h e l o w e r f l o w member o f t h e SAM U n i t were made f r o m t h i n s e c t i o n and d r i l l c o r e s t u d i e s . In t h i n s e c t i o n s , p r i m a r y p l a g i o c l a s e c o m p o s i t i o n was o b s e r v e d t o v a r y f r o m more c a l c i c a t t h e b a s e ( A r m ) t o more s o d i c a t t h e t o p ( A n s a ) . S u b - o p h i t i c t e x t u r e s ( p l a g i o c l a s e / p y r o x e n e ) and c r y s t a l s i z e d i s t r i b u t i o n i n d i c a t e t h e l o w e r f l o w member t o be a s i n g l e f l o w . 3.1. DEGREE OF DIFFERENTIATION A measure o f t h e d e g r e e o f d i f f e r e n t i a t i o n c a n be p r e s e n t e d by c a l c u l a t i n g c h a n g e s i n t h e m a f i c i n d e x i n r e l a t i o n t o s p a t i a l p o s i t i o n w i t h i n t h e u n i t (Rowe, 1 9 6 9 ) . The m a f i c i n d e x i s d e t e r m i n e d by t h e f o r m u l a : No. 3.1 M.I. = ( F e O . t ) * 100) / (Fe0<T> + MgO) c a l c u l a t e d u s i n g whole r o c k a n a l y s e s o f b a s a l t i c s a m p l e s removed f r o m o b v i o u s h y d r o t h e r m a l a l t e r a t i o n ( i e : a s s u m p t i o n t h a t h y d r o t h e r m a l a l t e r a t i o n has n o t a f f e c t e d FeO and MgO c o n t e n t ) . 53 A l t h o u g h most o f t h e whole r o c k a n a l y s e s o f t h e SAM U n i t b a s a l t a r e f r o m a r e a s i n f l u e n c e d by h y d r o t h e r m a l a l t e r a t i o n ( s e e C h a p t e r I V ) , t h e r e a r e s i x a n a l y s e s i n t h e l o w e r f l o w member s u f f i c i e n t l y d i s t a n t f r o m a l t e r e d z o n e s as t o be u s e f u l f o r d i f f e r e n t i a t i o n c o m p a r i s o n s ( T a b l e 3 . 1 ) . Sample p o s i t i o n c a n be n o r m a l i z e d t o t h e t h i c k n e s s o f t h e l o w e r f l o w member by: No. 3.2 S.P. = (Y» * 100) / Y t . t where Y» and Y t . t a r e t h e d i s t a n c e o f t h e s a m p l e p o s i t i o n above t h e f o o t w a l l c o n t a c t and t h e t h i c k n e s s o f t h e f l o w r e s p e c t i v e l y . The s a m p l e p o s i t i o n i s t h u s e x p r e s s e d a s a p e r c e n t a g e , w i t h 0 b e i n g t h e b a s e and 100 b e i n g t h e t o p o f t h e f l o w . The d e g r e e o f d i f f e r e n t i a t i o n was c a l c u l a t e d f o r t h e SAM U n i t - l o w e r f l o w member and compared t o e q u i v a l e n t c a l c u l a t i o n s made f o r t h e G r e a t L a k e T h o l e i i t i c S h e e t o f T a s m a n i a , as p r e s e n t e d i n T a b l e 3.2 and F i g u r e 3.1. The G r e a t L a k e S h e e t i s a much f r e s h e r , J u r a s s i c f o r m a t i o n where d i f f e r e n t i a t i o n i s c l e a r l y e v i d e n t , a s documented by McDougal (1964) and G r e e n l a n d and L o v e r i n g ( 1 9 6 6 ) . W i t h i n t h e G r e a t L a k e S h e e t , t h e m a f i c i n d e x v a r i e s f r o m 41.4 n e a r t h e b a s e t o 86.1 n e a r t h e t o p f o r a change o f 44.7. 54 TABLE 3.1 WHOLE ROCK GEOCHEMICAL ANALYSES OF SAM UNIT - LOWER FLOW MEMBER BASALT OXIDES SAMPLE NUMBERS 505X 507X 511X 515X 518X 7097 SiOa 42.30 42.80 48.60 48.50 51.50 52.11 TiOa 0.70 0.76 1.12 1.32 1.36 1.07 AlaOs 10.70 12.70 15.50 15.80 13.60 17.67 F e O t 13.00 14.06 9.30 10.50 12.11 13.63 M n O 0.23 0.22 0.15 0.15 0.15 0.15 MgO 10.60 9.59 2.80 2.92 2.76 3.16 C a O 8.50 7.09 7.23 4.76 5.30 9.79 Naa 0 0.50 1.10 2.20 3.80 2.30 1.85 Ka 0 0.02 0.02 1.21 0.47 0.38 0.03 Pa Os 0.08 0.10 0.14 0.14 0.17 0 .11 S 0.02 0.00 0.00 0.04 0.09 0.03 B a 0.001 0.001 0.020 0.009 0.008 0.003 N o t e : A n a l y s e s do n o t sum t o 100% b e c a u s e l o s s on I g n i t i o n (LOI) was n o t m o n i t o r e d . LOI i n c l u d e s s i g n i f i c a n t Ha 0 and C0a . D e t a i l e d c o m p a r i s o n s t o s t a n d a r d s were c o n d u c t e d t o m a i n t a i n d a t a q u a l i t y ( s e e A p p e n d i x I I I ) . TABLE 3.2 MAFIC INDEX AS A MEASURE OF DEGREE OF DIFFERENTIATION f o r t h e SAM U n i t - Lower Flow Member, M a n i t o b a and c o m p a r a b l e p o s i t i o n f o r t h e G r e a t L a k e S h e e t , T a s m a n i a Sample No. Sample M a f i c Index P o s i t i o n SAM U n i t G r e a t L a k e S h e e t TOP 7097 95.4 81.2 86.1 518X 86.0 81.4 82.8 515X 70.5 78.2 69.4 511X 45.1 76.9 53.5 507X 15.4 59.5 41.2 505X 4.8 55.1 41.4 BASE 55 0 10 20 30 40 50 60 70 80 90 100 MAFIC INDEX Figure 3.1. Mafic index versus normalized sample position f o r ( A ) SAM Unit - Lower Flow Member and ( O ) Great Lake T h o l e i i t e Sheet. Error bars represent accumulated error (component errors, expressed as 1 S.D., are squared, summed, then the square root i s calculated). 56 D a t a f r o m t h e SAM U n i t e x h i b i t s a s i m i l a r g r a d u a l i n c r e a s e f r o m t h e b a s e a t 55.1 t o t h e t o p o f t h e l o w e r f l o w member a t 81.4 f o r a c h a n g e o f 26.3. I t c a n be i n f e r r e d t h a t d i f f e r e n t i a t i o n i n t h e l o w e r f l o w member was a p p r o x i m a t e l y h a l f as c o m p l e t e as t h a t w h i c h o c c u r r e d i n t h e G r e a t L a k e S h e e t . T h i s i s p r o b a b l y due t o t h e l e s s e r t h i c k n e s s , t h u s f a s t e r c o o l i n g o f t h e SAM U n i t . 3.2. INTERPRETATION OF THE PROCESS OF DIFFERENTIATION V a r i a t i o n s i n whole r o c k c o m p o s i t i o n w i t h i n t h e l o w e r f l o w member c a n be e x p l a i n e d i n t e r m s o f d i f f e r e n t i a t i o n by g r a v i t a t i o n a l s e t t l i n g o f one o r more m i n e r a l t y p e s f r o m t h e m e l t . C r y s t a l l i z i n g p h a s e s w i t h l i m i t e d s o l i d s o l u t i o n do n o t change t h e a b s o l u t e amounts o f a l l t h e e l e m e n t s c o m p r i s i n g t h e m e l t . P e a r c e v a r i a t i o n d i a g r a m s ( a l s o known as P e a r c e e l e m e n t r a t i o d i a g r a m s ) p r o v i d e a c l e a r way o f r e p r e s e n t i n g t h e t r u e v a r i a t i o n s i n e l e m e n t a l a bundance ( P e a r c e , 1968, 1969; R u s s e l l and N i c h o l l s , 1 9 8 8 ) . To v i e w t h e c h e m i c a l d a t a p e t r o l o g i c a l l y , t h e a s s u m p t i o n must be made t h a t a t l e a s t one o f t h e e l e m e n t s i s n o t i n v o l v e d i n t h e p r e c i p i t a t i n g m i n e r a l ( s ) . T h i s component i s u s e d as t h e d e n o m i n a t o r o f t h e r a t i o s on P e a r c e v a r i a t i o n d i a g r a m s . N i c h o l l s (1988) s t a t e d t h a t p r o p e r P e a r c e e l e m e n t r a t i o s a r e t h o s e i n w h i c h t h e c o n t r i b u t i o n o f t h e d e n o m i n a t o r t o t h e v a r i a n c e o f t h e r a t i o i s v e r y much s m a l l e r t h a n t h e c o n t r i b u t i o n o f t h e n u m e r a t o r . T h i s a l l o w s f o r a t r u e , r e l a t i v e , s a m p le t o s a mple 5 7 c o m p a r i s o n . Samples f r o m d i f f e r e n t , d i f f e r e n t i a t i n g s y s t e m s c a n n o t be co m b i n e d , t h u s , o n l y s a m p l e s f r o m t h e l o w e r f l o w member have been c o n s i d e r e d . R e s u l t s f r o m t h e s i x s a m p l e s e x a m i n e d p r e v i o u s l y were r u n t h r o u g h a computer p r o g r a m w h i c h c a l c u l a t e s e l e m e n t r a t i o s f o r P e a r c e v a r i a t i o n d i a g r a m s ( R u s s e l l , 1 9 8 6 ; S t a n l e y and R u s s e l l , 1 9 8 7 ) . The e l e m e n t r a t i o s a r e p l o t t e d on F i g u r e s 3 . 2 t o 3 . 5 and b e s t f i t l i n e a r r e g r e s s i o n s a r e a p p l i e d t o p r o v i d e an e x p r e s s i o n f o r t h e o b s e r v e d c h e m i c a l c h a n g e . C o r r e l a t i o n c o e f f i c i e n t s were c a l c u l a t e d t o s e e wh e t h e r t h e r e g r e s s i o n l i n e i s a s t a t i s t i c a l l y s i g n i f i c a n t f i t o f t h e d a t a . 3 . 2 . 1 . P l a g i o c l a s e S e t t l i n g P l a g i o c l a s e i s t r e a t e d a s a b i n a r y s o l i d s o l u t i o n o f a n o r t h i t e ( C a A l » S i a 0 » ) and a l b i t e ( N a A l S i s O e ) w i t h t h e e x t e n t o f K s o l i d s o l u t i o n assumed t o be m i n i m a l . U s i n g T i and P as e l e m e n t s n o t i n v o l v e d i n t h e f r a c t i o n a t i o n ( d e n o m i n a t o r o f t h e r a t i o s ) , a c o m p a r i s o n o f t h e moles o f S i v e r s u s two t i m e s t h e moles o f Na p l u s A l was made ( F i g u r e s 3 . 2 a and 3 . 2 b ) . T h e o r e t i c a l l y , i f p l a g i o c l a s e was t h e o n l y m i n e r a l s e t t l i n g o u t , t h e s l o p e s o f t h e d i a g r a m s s h o u l d a p p r o a c h 1 . 0 . In F i g u r e 3 . 2 a , t h e s l o p e o f t h e d a t a i n t h e S i / T i v e r s u s ( 2 . 0 * N a + A l ) / T i d i a g r a m i s 0 . 0 3 3 . As t h e s l o p e i s n o t e q u a l t o 1 . 0 and t h e d a t a do n o t d e f i n e a s t r a i g h t l i n e (R = 0 . 0 8 4 ) , t h e ( i . O M h t . O O H ^ l . O O l i 38.00 " 1.00 Std.Deu. E r r o r Bounds 31.S0-31.20-27.80 " 21.00-10.00 +• 515H SAN ANtOH 10 SOLD HIKE • SDK U n i t (Loner FIOH Neiiber) l o t ) I D;t; s e t 58 * 51IX {l o p e : 0.02SC8 i n t e r c e p t : 29.11312 R2 : • 0.00710 +• 7037 sun D j j o r f i x i s + 507X SOSX H : 5 13.80 53.CO 53.10 l.OOS i / i . O O I i 73.20 83.00 g u r e 3.2a. P e a r c e v a r i a t i o n d i a g r a m f o r p l a g i o c l a s e s e t t l i n g - S i / T i v e r s u s ( 2 . 0 * N a + A l ) / T i . (l 0OAM2 OONi/1 OOF m m m m m l ' m U n i t { l m r f l 5 H m t r : y ' l o t ) I D9ti Set 310.00"! — — 1 ISO .00 H 1 ; 1 1 1 | 280.00 351.00 118.00 532.00 (IS.00 700.00 l.OOSi/l.OOP g u r e 3.2b. P e a r c e v a r i a t i o n d i a g r a m f o r p l a g i o c l a s e s e t t l i n g - S i / P v e r s u s ( 2 . 0 * N a + A l ) / P . 59 h y p o t h e s i s o f p l a g i o c l a s e s e p a r a t i o n as t h e s o l e mechanism i s r e j e c t e d . The d i a g r a m o f S i / P v e r s u s ( 2 . 0 * N a + A l ) / P y i e l d s s i m i l a r r e s u l t s w i t h a s l o p e o f 0.163 and a c o r r e l a t i o n c o e f f i c i e n t o f R = 0.294. F o r a s m a l l p o p u l a t i o n s i z e o f N = 6, a h i g h c o r r e l a t i o n c o e f f i c i e n t o f R > 0.811 w o u l d be r e q u i r e d f o r a s i g n i f i c a n t f i t a t a 95% c o n f i d e n c e l e v e l , and R > 0.917 f o r a s i g n i f i c a n t f i t a t a 99% c o n f i d e n c e l e v e l (Kozak, 1 9 6 6 ) . N e i t h e r o f t h e p l a g i o c l a s e o n l y d i a g r a m s meet t h e s e r e q u i r e m e n t s . I f b o t h T i and P a r e t r u l y i n c o m p a t i b l e i n t h e p r o c e s s o f d i f f e r e n t i a t i o n , t h e n t h e y s h o u l d e x h i b i t t h e same s l o p e . As t h i s i s n o t t h e c a s e , t h e n i t i s i n f e r r e d t h a t one o f t h e s e e l e m e n t s i s i n v o l v e d a s a c o n s t i t u e n t o f a s e t t l i n g m i n e r a l . The i d e n t i f i c a t i o n o f p y r o x e n e i n t h i n s e c t i o n s i n d i c a t e s t h a t T i i s t h e most l i k e l y e l e m e n t i n v o l v e d , p e r h a p s as a t i t a n i f e r o u s a u g i t e . 3.2.2. P y r o x e n e S e t t l i n g The o b s e r v e d p y r o x e n e , i d e n t i f i e d as a u g i t e , c a n have a complex s o l i d s o l u t i o n between h e d e n b e r g i t e ( C a F e S i a O * ) and d i o p s i d e (CaMgSiaO*) w i t h Na s u b s t i t u t i n g f o r Ca and A l s u b s t i t u t i n g f o r b o t h Mg-Fe and S i . A d d i t i o n a l s u b s t i t u t i o n o f Mn, L i , C r , and T i a r e p o s s i b l e ( H u r l b u t and K l e i n , 1977; B e s t , 1 9 8 2 ) . 60 To t e s t t h e h y p o t h e s i s t h a t p y r o x e n e s e t t l i n g i s r e s p o n s i b l e f o r t h e c h e m i c a l v a r i a b i l i t y i n t h e sample s u i t e , a d i a g r a m w i t h P a s t h e i n d e p e n d e n t d e n o m i n a t o r i s u s e d r a t h e r t h a n T i . F i g u r e 3.3. p r e s e n t s S i / P v e r s u s ( 2 . 0 * C a + N a - A l ) / P . A s l o p e a p p r o a c h i n g 1.0 w o u l d be e x p e c t e d i f c l i n o p y r o x e n e was t h e o n l y p h a s e s e p a r a t i n g . F i g u r e 3.3. p o s s e s s e s a s l o p e o f 0.400 w i t h a c o r r e l a t i o n c o e f f i c i e n t o f R = 0.925. The l i n e f i t has i m p r o v e d , b u t t h e t h e o r e t i c a l s l o p e o f 1.0 has n o t been r e a c h e d . 3.2.3. O l i v i n e S e t t l i n g A t h i r d p o s s i b l e m i n e r a l t o s e t t l e i s o l i v i n e , r e p r e s e n t e d by t h e f o r s t e r i t e ( M g j S i O * ) and f a y a l i t e ( F e i S i O * ) s o l i d s o l u t i o n s e r i e s . I f o l i v i n e were t o be t h e s o l e m i n e r a l s e t t l i n g , a d i a g r a m o f S i / P v e r s u s 0.5*(Mg+Fe)/P s h o u l d y i e l d t h e t h e o r e t i c a l s l o p e o f 1.0. F i g u r e 3.4. d e m o n s t r a t e s t h a t o l i v i n e i s a l s o n o t t h e s o l e s e p a r a t i n g m i n e r a l . A s l o p e o f 0.693 w i t h a c o r r e l a t i o n c o e f f i c i e n t o f R = 0.846 i s o b t a i n e d f o r t h i s d a t a s e t . F i g u r e 3.3. P e a r c e V a r i a t i o n D i a g r a m f o r P y r o x e n e S e t t l i n g - S i / P v e r s u s (2 . 0*Ca + N a - A l ) / P . F i g u r e 3.4. P e a r c e V a r i a t i o n D i a g r a m o f O l i v i n e S e t t l i n g - S i / P v s 0.5*(Mg+Fe)/P. 63 3.2.4. P l a g i o c l a s e - P y r o x e n e - O l i v i n e S e t t l i n g F o r t e s t i n g t h e h y p o t h e s i s t h a t t h e s e t t l i n g o f p l a g i o c l a s e , p y r o x e n e and o l i v i n e i s i n v o l v e d , S t a n l e y and R u s s e l l (1987) recommended a p l o t o f S i / P v e r s u s (0.5*CMg+Fe]+1.5*Ca+2.75*Na+0.25*Al)/P. T h i s y i e l d e d F i g u r e 3.5. w i t h a s l o p e o f 0.940 and a c o r r e l a t i o n c o e f f i c i e n t o f R = 0.971. P l u s and minus one s t a n d a r d e r r o r f o r t h e s l o p e y i e l d s a r a n g e o f 1.066 t o 0.831. T h u s , t h e s l o p e o f 0.940 i s s u f f i c i e n t l y c l o s e t o t h e t h e o r e t i c a l model s l o p e o f 1.0 t o c o n s i d e r t h e h y p o t h e s i s v a l i d . (See A p p e n d i x VI f o r d e t a i l e d s t a t i s t i c a l r e s u l t s . ) 64 F i g u r e 3.5. P e a r c e V a r i a t i o n D i a g r a m f o r P l a g i o c l a s e , P y r o x e n e and O l i v i n e S e t t l i n g - S i / P vs ( 0 . 5* l" Mg + Fe]+ 1. 5*Ca + 2 .75*Na + 0 . 25*A1) /P . 65 CHAPTER IV GEOCHEMICAL PATTERNS OF ALTERATION ASSOCIATED WITH EXTENSIONAL STOCKWORK VEINS 4.1. HYDROTHERMAL ALTERATION - GENERAL STATEMENT H y d r o t h e r m a l a l t e r a t i o n o f w a l l r o c k i s v i s i b l e a d j a c e n t t o q u a r t z - c a r b o n a t e - a l b i t e s t r i n g e r v e i n s and i n f r a g m e n t s o f w a l l r o c k e n c l o s e d i n t h e b r e c c i a t e d c o r e o f s t o c k w o r k ( 3 8 - t y p e ) v e i n s t r u c t u r e s . T h i s m e g a s c o p i c a l t e r a t i o n i s e v i d e n t a s a ' b l e a c h i n g ' o f t h e b a s a l t due t o a l b i t i z a t i o n and m i n o r s i l i c i f i c a t i o n . In a d d i t i o n , a c r y p t i c h a l o , n o t e v i d e n t m e g a s c o p i c a l l y , has been d e t e c t e d i n g e o c h e m i c a l a n a l y s e s . B o t h v i s i b l e and c r y p t i c a l t e r a t i o n show marked v o l u m e t r i c c h a n g e s a c c o m p a n y i n g metasomatism, as compared t o b a r r e n h o s t r o c k . F o r t h i s a l t e r a t i o n s t u d y , 20 c o n s e c u t i v e s a m p l e s o f diamond d r i l l c o r e were t a k e n f r o m DDH 33-84-01, a h o r i z o n t a l l y o r i e n t e d d r i l l h o l e on t h e 3 3 r d l e v e l . T h i s d r i l l h o l e p a s s e s t h r o u g h a c l e a r l y d e f i n e d s t o c k w o r k v e i n s t r u c t u r e s o u t h o f t h e 3397 v e i n . From t h e s p l i t c o r e , s a m ple i n t e r v a l s o f 0.62 m e t r e s (2 f e e t ) were t a k e n , hand p i c k e d t o remove t h e s t r i n g e r s , c r u s h e d , p u l v e r i z e d , b l e n d e d t h e n s e p a r a t e d i n t o s e v e r a l s u b - s a m p l e s f o r a n a l y s i s . The r e m o v a l o f s t r i n g e r s a l l o w s f o r an e x a m i n a t i o n o f t h e w a l l r o c k a l t e r a t i o n w i t h o u t d i l a t i o n by v e i n m a t e r i a l . 66 G o l d d e t e r m i n a t i o n s were made by a t o m i c a b s o r b t i o n s p e c t r o m e t r y a t t h e B o n d a r - C l e g g and Company L i m i t e d l a b o r a t o r i e s i n N o r t h V a n c o u v e r , B r i t i s h C o l u m b i a . Whole r o c k and t r a c e e l e m e n t a n a l y s e s were made by X-Ray F l u o r e c e n c e (XRF) s p e c t r o m e t r y i n t h e X-Ray l a b o r a t o r y o f t h e D e p a r t m e n t o f O c e a n o g r a p h y , The U n i v e r s i t y o f B r i t i s h C o l u m b i a . Whole r o c k o x i d e v a l u e s were o b t a i n e d f r o m f u s e d d i s c s , w h i l e t h e t r a c e e l e m e n t s p l u s Naa0 were o b t a i n e d f r o m p r e s s e d powder p e l l e t d i s c s w i t h a PVA b i n d e r . The method i s s i m i l a r t o t h a t u s e d by N o r r i s h and H u t t o n ( 1 9 6 9 ) . M a t r i x c o r r e c t i o n s and r e g r e s s i o n c a l i b r a t i o n were d e v e l o p e d u s i n g t h e R L A R : O B T £ L A computer f i l e s ( A r m s t r o n g , 1 9 8 5 ) . F o r an e xpanded v e r s i o n o f t h e a n a l y t i c a l p r e p a r a t i o n , s e e A p p e n d i x I l i a . C o m p a r i s o n s have a l s o been made t o r e s u l t s o b t a i n e d f r o m I n d u c e d C o u p l e d P l a s m a (ICP) a n a l y s e s c o n d u c t e d by Vangeochem Lab L i m i t e d o f N o r t h V a n c o u v e r , B r i t i s h C o l u m b i a and a r e p r e s e n t e d i n C h a p t e r V. The main d i f f e r e n c e between t h e two m u l t i - e l e m e n t a n a l y t i c a l methods i s t h e p a r t i a l e x t r a c t i o n o f some e l e m e n t s , a c h i e v e d t h r o u g h i n c o m p l e t e d i g e s t i o n t e c h n i q u e s , u s e d w i t h ICP. Anomaly enhancement, compared t o b a c k g r o u n d v a l u e s , and i n d i r e c t r e c o g n i t i o n o f some e l e m e n t s ' m i n e r a l h o s t s a r e two o f ICP's s t r o n g p o i n t s . The a n a l y t i c a l p r e p a r a t i o n u s e d f o r ICP i s d e s c r i b e d i n A p p e n d i x I I l b . TABLE 4.1a XRF WHOLE ROCK ANALYSES OF AN ORIENTATION SAMPLE SET - 3 3 r d LEVEL WHOLE ROCK A N A L Y S E S SAMPLE NUMBERS 8 5 4 10 8 5 4 0 9 8 5 4 0 8 8 5 4 0 7 8 5 4 0 6 8 5 4 0 5 8 5 4 0 4 8 5 4 0 3 8 5 4 0 2 8 5 4 0 1 S I 0 2 WT % 43 0 3 44 68 42 0 5 3 9 87 46 84 5 0 55 47 6 8 47 6 7 48 0 5 4 5 . 4 3 T I 0 2 WT % 0 96 0 9 9 0 9 6 0 92 1 01 1 0 2 1 14 0 9 6 1 0 3 0 . 9 9 A L 2 0 3 WT % 14 6 5 ' 15 4 1 13 6 0 12 9 0 15 95 16 54 16 0 6 16 17 14 94 14 . 9 6 F E 2 0 3 WT % 12 43 13 43 1 1 6 6 12 72 13 38 13 57 15 0 2 12 27 13 24 1 3 . 1 7 MNO£ WT % 0 14 0 13 0 15 0 17 0 13 0 10 0 12 0 13 0 13 0 . 1 4 MGO WT % 2 62 2 77 2 64 2 8 3 2 76 2 64 3 22 2 92 2 9 3 3 . 16 CAO WT % 10 27 8 68 1 1 43 1 1 88 7 8 0 5 9 9 6 92 7 9 8 8 32 9 . 0 6 K 2 0 WT % 1 25 1 24 1 1 1 1 0 7 1 2 0 1 57 1 42 1 44 1 4 5 1 . 52 P 2 0 5 WT % 0 1 1 0 12 0 1 1 0 0 9 0 12 0 12 0 12 0 10 0 10 0 . 1 1 S2 WT % 0 83 0 57 0 47 1 17 0 1 1 0 2 1 0 0 2 O 19 0 0 3 0 . 1 1 T R A C E ELEMENT A N A L Y S E S 8 5 4 1 0 8 5 4 0 9 8 5 4 0 8 8 5 4 0 7 8 5 4 0 6 8 5 4 0 5 8 5 4 0 4 8 5 4 0 3 8 5 4 0 2 8 5 4 0 1 BA PPM 2 18 0 0 194 0 0 176 0 0 165 0 0 244 0 0 191 0 0 222 0 0 2 4 2 0 0 2 18 0 0 2 5 7 . 0 0 CR PPM 73 0 0 94 0 0 9 0 0 0 154 0 0 101 0 0 1 17 0 0 9 0 0 0 58 0 0 81 0 0 6 3 . 0 0 NB PPM 5 0 0 2 0 0 4 0 0 5 0 0 3 OO 4 0 0 4 0 0 4 OO 6 0 0 3 . 0 0 N l PPM 41 0 0 48 0 0 35 0 0 4 6 0 0 42 0 0 4 3 0 0 5 0 0 0 38 0 0 5 0 0 0 39 . 0 0 RB PPM 32 0 0 3 0 0 0 3 0 0 0 27 0 0 5 3 0 0 3 9 0 0 35 0 0 37 0 0 38 0 0 3 9 . 0 0 SR PPM 4 12 0 0 3 7 2 0 0 4 5 6 0 0 4 8 3 0 0 3 3 3 0 0 3 4 3 0 0 4 0 9 0 0 3 9 9 0 0 3 6 5 0 0 4 1 4 . 0 0 V PPM 2 2 3 0 0 2 2 8 0 0 183 0 0 189 0 0 2 5 7 0 0 2 4 8 0 0 302 0 0 2 4 2 0 0 2 7 5 0 0 2 6 6 . O O Y PPM 21 0 0 3 0 0 0 32 0 0 3 0 0 0 3 0 0 0 25 0 0 25 0 0 3 0 0 0 2 9 0 0 2 8 . 0 0 ZR PPM 52 0 0 5 5 0 0 68 0 0 6 0 0 0 6 2 0 0 73 0 0 53 0 0 6 0 0 0 7 9 0 0 5 6 . 0 0 CO PPM 18 55 25 75 24 9 9 28 28 22 81 42 0 0 46 6 2 2 9 7 1 32 72 34 . 4 2 CU PPM G3 92 67 66 87 79 91 93 94 62 6 8 8 0 47 6 9 5 3 6 5 36 0 4 6 9 . 0 2 ZN PPM 78 7 1 103 66 64 12 6 7 1 1 104 91 126 3 0 132 5 9 8 3 7 3 9 0 18 92 . 6 1 N A 2 0 WT % 4 28 4 0 2 4 6 6 4 55 2 84 3 2 0 2 6 0 3 3 5 2 51 2 . 8 2 AU PPB 5 0 0 0 0 9 0 0 0 0 3 4 0 0 0 7 2 0 0 0 15 0 0 9 0 0 3 0 0 4 5 0 0 3 0 0 8 . 0 0 S P E C I F I C G R A V I T Y 2 8 3 2 8 9 2 8 3 , 2 84 2 8 0 2 84 2 8 3 2 83 2 85 2 . 8 2 a* TABLE 4.1b XRF WHOLE ROCK ANALYSES OF AN ORIENTATION SAMPLE SET - 33rd LEVEL WHOLE ROCK A N A L Y S E S S A M P L E NUMBERS 8 5 4 2 0 8 5 4 19 8 5 4 18 8 5 4 1 7 8 5 4 1 6 8 5 4 1 5 8 5 4 14 8 5 4 13 8 5 4 1 2 8 5 4 1 1 S I 0 2 WT % 48 27 48 9 5 47 9 4 48 0 0 48 4 3 45 0 8 45 4 1 46 27 47 71 44 . 38 T I 0 2 WT 7. 1 0 2 1 0 0 1 0 2 1 01 1 0 3 0 9 9 1 0 1 0 9 6 0 9 3 0 . 9 0 A L 2 0 3 WT % 16 35 16 51 16 33 16 0 7 16 0 9 15 58 15 4 1 15 38 16 6 3 1 5 . 2 7 F E 2 0 3 WT % 13 3 5 13 52 13 38 13 8 5 13 7 0 12 7 6 13 27 12 5 4 1 1 6 0 1 1 . 9 6 MN02 WT % 0 13 0 1 1 0 14 0 13 0 12 0 13 0 13 0 13 0 1 1 0 . 1 1 MGO WT % 2 6 3 2 6 4 2 71 2 7 9 2 6 8 2 61 2 7 0 2 5 0 2 24 2 . 5 3 CAO WT % 9 42 8 98 9 92 9 45 8 88 9 16 9 17 9 47 7 7 9 9 . 54 K 2 0 WT % 0 82 0 73 0 6 8 0 71 1 0 7 1 8 5 1 3 3 1 54 1 4 6 1 . 28 P 2 0 5 WT % 0 12 0 1 1 0 1 1 0 1 1 0 1 1 0 12 0 10 0 12 0 12 0 . 1 1 S2 WT 'A 0 01 0 14 0 10 0 04 0 0 3 0 32 0 0 9 0 15 0 5 6 0 . 75 T R A C E E L E M E N T A N A L Y S E S 8 5 4 2 0 8 5 4 19 8 5 4 1 8 8 5 4 17 8 5 4 16 8 5 4 15 8 5 4 14 854 13 8 5 4 12 8 5 4 1 1 BA PPM 171 0 0 142 0 0 128 0 0 124 0 0 171 0 0 2 7 3 0 0 2 1 5 0 0 2 2 8 0 0 261 0 0 2 2 0 . 0 0 CR PPM 7 0 0 0 78 0 0 71 0 0 9 3 0 0 87 0 0 1 19 0 0 8 9 0 0 87 0 0 74 0 0 1 3 0 . 0 0 NB PPM 2 0 0 4 0 0 4 0 0 3 0 0 4 0 0 4 0 0 4 0 0 4 .00 3 0 0 6 . 0 0 NI PPM 47 0 0 46 0 0 47 0 0 51 0 0 4 9 0 0 52 0 0 47 0 0 41 0 0 35 0 0 4 3 . 0 0 RB PPM 18 0 0 18 0 0 17 0 0 16 0 0 24 0 0 47 0 0 33 0 0 41 0 0 36 0 0 3 3 . 0 0 SR PPM 2 8 9 0 0 3 0 0 0 0 3 0 9 0 0 31 1 0 0 371 0 0 4 6 3 0 0 3 9 7 0 0 3 4 0 0 0 3 3 2 0 0 3 9 4 . 0 0 V PPM 242 0 0 2 4 5 0 0 2 4 8 0 0 2 5 8 0 0 2 5 7 0 0 2 4 8 0 0 2 5 6 0 0 2 4 3 0 0 2 1 2 0 0 2 0 8 . 0 0 Y PPM 27 0 0 25 0 0 27 0 0 27 0 0 27 0 0 26 0 0 3 0 0 0 26 0 0 22 0 0 22 . 0 0 ZR PPM 62 0 0 6 0 0 0 6 0 0 0 5 9 0 0 56 0 0 52 0 0 55 0 0 57 0 0 51 0 0 52 . 0 0 CO PPM 3 0 58 28 66 33 92 32 0 2 26 72 26 8 2 32 8 0 26 0 3 24 0 7 2 0 . 4 1 CU PPM 12 57 13 01 45 0 2 56 31 47 82 1 12 75 75 4 6 77 1 1 6 6 2 9 5 0 . 3 6 ZN PPM 88 36 78 0 4 88 7 0 91 0 4 101 8 3 7 1 34 9 0 8 3 94 0 7 86 8 5 7 5 . 2 5 N A 2 0 WT % 2 72 2 94 2 82 2 86 3 12 3 2 0 3 51 3 2 1 4 76 4 . 9 9 -Al l P P B 8 0 0 4 0 0 0 13 0 0 6 0 0 5 0 0 34 0 0 23 0 0 23 0 0 1 7 0 0 0 5 2 0 . 0 0 S P E C I F I C G R A V I T Y 2 79 2 8 0 2 8 0 2 84 2 87 2 87 2 8 2 2 82 2 75 2 . 8 1 0 3 69 4.2. ELEMENTAL LOSSES AND GAINS The most common m e t a s o m a t i c e l e m e n t a l l o s s and g a i n e s t i m a t e s f o r r e l a t i v e e l e m e n t a l b e h a v i o u r a r e made by d i r e c t c o m p a r i s o n s between c h e m i c a l a n a l y s e s o f an u n a l t e r e d p a r e n t r o c k and i t s a l t e r e d e q u i v a l e n t . An a s s u m p t i o n o f some u n i q u e m e t a s o m a t i c c o n d i t i o n has been made i n a l l p r e v i o u s s t u d i e s . E xamples o f h i s t o r i c a l methods a t t e m p t e d by o t h e r a u t h o r s i n c l u d e c o n s t a n t number o f c a t i o n s , o x y g e n atoms, s i l i c a - a l u m i n a t e t r a h e d r a o r s t a b l e volume w i t h c o m p a r i s o n s t o t h e o r e t i c a l f o r m u l a e f o r t h e p a r e n t r o c k (Moore, 1970; A p p l e y a r d , 1 9 8 0 ) . However, t h e o r e t i c a l f o r m u l a e may a p p r o a c h , b u t do n o t f u l l y r e p r e s e n t , t h e a c t u a l i n - s i t u m i n e r a l s i n t h e r o c k u n i t . S e v e r a l r e s e a r c h e r s ( G r e s e n s , 1967; B a b c o c k , 1973; A p p l e y a r d , 1980) have c o n c l u d e d t h a t no s i n g l e component i n t h e c h e m i s t r y o f t h e r o c k c a n be c o n s i d e r e d c o m p l e t e l y i n d e p e n d e n t o f a l l t h e o t h e r components. 4.2.1. MASS BALANCE METHOD G r e s e n s (1967) r e s o l v e d many o f t h e p r o b l e m s o f e v a l u a t i n g l o s s e s and g a i n s . He d e r i v e d e q u a t i o n s w h i c h e x p r e s s t h e c h a n g e s i n t e r m s o f p a r e n t and p r o d u c t r o c k c o m p o s i t i o n s , s p e c i f i c g r a v i t i e s and p o t e n t i a l volume c h a n g e s . T h i s method p r o v i d e s a u n i q u e s o l u t i o n w h i c h i s n o t d e p e n d e n t upon a s p e c i f i c m e t a s o m a t i c p r o c e s s ( B a b c o c k , 1 9 7 3 ) . 70 The f u n d a m e n t a l e q u a t i o n p r e s e n t e d by G r e s e n s ( 1 9 6 7 ) , u s i n g t h e n o t a t i o n o f Babcock ( 1 9 7 3 ) , f o r moving f r o m an assumed p a r e n t r o c k (<*<) t o a g i v e n p r o d u c t r o c k (jB) i s a s f o l l o w s : No. 4.1 AX, a [ ( K, X 0 ,Q6 AX^ = L o s s o r g a i n c h e m i c a l t r a n s f e r ( w e i g h t p e r c e n t ) o f component fi between p a r e n t («.) and p r o d u c t ( y S ) . a = I n i t i a l q u a n t i t y o f r o c k oc , u s u a l l y s e t a t 100 grams s o t h a t A i s e x p r e s s e d i n w e i g h t p e r c e n t . K v = Volume F a c t o r = r a t i o between f i n a l and i n i t i a l volume o f t h e r o c k mass. > 1.00 = volume i n c r e a s e , < 1.00 = volume d e c r e a s e . *~)Cft Weight f r a c t i o n o f component /? i n p a r e n t r o c k °^ . a ^£ Weight f r a c t i o n o f component /? i n p r o d u c t r o c k /£? . D e n s i t y o f p a r e n t r o c k oc . D e n s i t y o f p r o d u c t r o c k /9 . To use t h i s e q u a t i o n , i t i s n e c e s s a r y t o know o r i n f e r v a l u e s f o r : a) q u a n t i t a t i v e c h e m i c a l c o m p o s i t i o n o f t h e p a r e n t and p r o d u c t r o c k s , g e n e r a l l y whole r o c k a n a l y s e s ; b) t h e d e n s i t i e s o f t h e p a r e n t and p r o d u c t r o c k s ; 71 c ) an e s t i m a t e o r s e r i e s o f e s t i m a t e s o f t h e volume c h a n g e o c c u r r i n g d u r i n g m etasomatism. d) t h e i d e n t i t y o f a t l e a s t one e l e m e n t t h a t i s assumed i m m o b i l e ( S e c t i o n 4 . 2 . 3 . ) . I f an e s t i m a t e o f t h e l o s s o r g a i n i s known, t h e same f o r m u l a c a n be u s e d t o c a l c u l a t e t h e volume c h a n g e r e q u i r e d . When a v a r i e t y o f volume f a c t o r s a r e c o n s i d e r e d , a c o m p o s i t i o n - v o l u m e d i a g r a m c a n be g e n e r a t e d , w h i c h i l l u s t r a t e s t h e t h e o r e t i c a l l y p o s s i b l e mass e x c h a n g e s . E xamples o f c o m p o s i t i o n - v o l u m e d i a g r a m s a r e shown i n F i g u r e s 4.1a t o 4 . I d . F o r a g i v e n volume f a c t o r , t h e l o s s o r g a i n o f a s p e c i f i c component needed t o d e r i v e t h e p r o d u c t r o c k sample f r o m t h e p a r e n t s a mple c a n be r e a d o f f where t h a t component's l i n e i n t e r s e c t s t h e volume f a c t o r . Dashed l i n e s r e p r e s e n t c o n s t a n t volume ( h o r i z o n t a l ) and c o n s t a n t c o m p o s i t i o n ( v e r t i c a l ) . F o r t h e San A n t o n i o s t u d y , t h e F o r t r a n c omputer program MASBAL ( W h i t i n g , 1985b) was w r i t t e n t o do c a l c u l a t i o n s o f t h e c o m p a r i s o n o f a p a r e n t s a mple a n a l y s i s t o a c o l l e c t i o n o f p r o d u c t s a m ple a n a l y s e s w i t h a v a r i e t y o f volume f a c t o r e s t i m a t e s , u t i l i z i n g t h e G r e s e n s ' f o r m u l a (No. 4 . 1 ) . 4.2.2. ASSUMPTION OF A PARENT ROCK COMPOSITION Some s t u d i e s u s e a t h e o r e t i c a l c o m p o s i t i o n f o r t h e p a r e n t r o c k . T h i s i s u n s a t i s f a c t o r y b e c a u s e i t does n o t t a k e i n t o a c c o u n t t h e r a n g e o f p o s s i b l e c o m p o s i t i o n s o f b a s a l t f o u n d i n 72 1.35 1.30 1.25 1.20 . -I S a m p l e 85^11 S t o c k w o r k Cons-taiit_yal uoe F i g u r e 4.1a - 1 0 1 2 3 A C h a n g e In W e i g h t P e r c e n t C o m p o s i t i o n - V o l u m e D i a g r a m o f a Sample f r o m t h e S t o c k w o r k Zone. 1.35 1.30 -| 1.25 1.20 w O Z 1-'5 | 1.10 1.05 1.00 0.95 0.90 S a m p l e 85^1^ C r y p t i c H a l o F i g u r e 4.1b - 1 0 1 2 C h a n g e i n W e i g h t P e r c e n t C o m p o s i t i o n - V o l u m e D i a g r a m o f t h e C r y p t i c H a l o Z o n e . a Sample f r o m 73 1 . 3 5 1 . 3 0 1 . 2 5 J M 1 . 2 0 J o ro 1 . 1 5 J L D ( N J CD O O O O (Nl C M ( N I * ^ C P ro C L ^ t- E : 2 o ro (_> S a m p l e 8 5 4 1 9 B a r r e n Z o n e g 1 . 1 0 F e 2 0 3 A l - , 0 2 U 3 S i O -- 4 F i g u r e 4.1c - 3 - 2 - 1 0 1 2 C h a n g e i n W e i g h t P e r c e n t C o m p o s i t i o n - V o l u m e D i a g r a m t h e B a r r e n Zone. in ( M o O O O O (Nl (si r\i o> ro o. i - E : z o f a Sample f r o m 1 . 3 5 j 1 . 3 0 -| 1 . 2 5 , 1 . 2 0 O o 1 . 1 5 -l ro Li-CU 1 . 1 0 o 1 . 0 5 => 1 . 0 0 1 0 . 9 5 J 0 . 9 0 S a m p l e 8 5 4 2 0 P a r e n t S a m p l e I n t e r n a l C h e c k F e 2 0 3 A l 2 ° 3 S i O -F i g u r e 4 . I d - 2 - 1 0 1 2 3 U C h a n g e i n W e i g h t P e r c e n t C o m p o s i t i o n - V o l u m e D i a g r a m o f t h e P a r e n t Sample as an I n t e r n a l C heck. 74 n a t u r e . I f t h e o r e t i c a l c o m p o s i t i o n s a r e c o n s i d e r e d f o r t h e p a r e n t r o c k , s u b t l e c o m p o s i t i o n - v o l u m e c h a n g e s i n a s p e c i f i c sample s e t c a n be masked. In c h o o s i n g a p a r e n t r o c k , assumed t o be u n a l t e r e d , t h e sa m p l e f a r t h e s t away f r o m t h e c o r e o f t h e s t o c k w o r k v e i n , o u t s i d e o f t h e a l t e r e d z o n e , p u t s t i l l w i t h i n t h e same f l o w a d j a c e n t t o t h e o t h e r s a m p l e s , was s e l e c t e d . T h i s s a mple has been r e g i o n a l l y metamorphosed i n a s i m i l a r manner t o t h e o t h e r s a m p l e s . The e f f e c t s o f t h e metamorphism c a n t h u s be assumed t o be u n i f o r m . Any c h e m i c a l c hange i n a p p r o a c h i n g t h e s t o c k w o r k i s a t t r i b u t e d t o t h e l o c a l i z e d metasomatism f r o m t h e h y d r o t h e r m a l s o l u t i o n s . To s e e t h a t t h e c h o i c e o f t h e p a r e n t r o c k i s i n d e e d t h e same b a s i c r o c k t y p e as t h e p r o d u c t r o c k s and w h e t h e r any a p p r e c i a b l e d i f f e r e n t i a t i o n by g r a v i t a t i o n a l s e t t l i n g o f t h e b a s a l t has o c c u r r e d between t h e p a r e n t and p r o d u c t s a m p l e s , t h e s a m p l e s have been p l o t t e d on a J e n s e n C a t i o n Graph ( J e n s e n , 1 9 7 6 ) . I f t h e r e were t h e e f f e c t s o f d i f f e r e n t i a t i o n i n t e r n a l t o t h i s s a m p le s e t , t h e r e would be a s p r e a d o f s a m p l e s o u t f r o m t h e MgO end member i n a r o u g h c o r r e l a t i o n t o t h e i r s t r a t i g r a p h i c p o s i t i o n . F i g u r e 4.2 shows t h a t t h e s a m p l e s a r e c l o s e l y c l u s t e r e d i n t h e h i g h - i r o n t h o l e i i t i c b a s a l t f i e l d and t h u s c a n be c o n s i d e r e d t o have come fr o m t h e same p r i m a r y r o c k t y p e . 7 5 F i g u r e 4.2. J e n s e n C a t i o n G r a p h o f t h e d a t a s e t . A l l s a m p l e s c l u s t e r h i g h - i r o n t h o l e i i t i c b a s a l t f i e l d . o r i e n t a t i o n w i t h i n t h e 76 4.2.3. ASSUMPTION OF IMMOBILE COMPONENTS The volume change I s e s t i m a t e d by a s s u m i n g "that: t h e r e a r e one o r more i m m o b i l e components w h i c h do n o t p a r t i c i p a t e i n t h e s p e c i f i c p r o c e s s o f m e t a s o m a t i c a l t e r a t i o n . F o r t h e s e components a c h e m i c a l t r a n s f e r o f z e r o i s a s s i g n e d . By u s i n g G r e s e n s ' f o r m u l a , a volume f a c t o r i s o b t a i n e d . I f t h e r e i s more t h a n one i m m o b i l e component, t h e volume f a c t o r s f o r a l l o f them w i l l c l u s t e r , i n d i c a t i n g t h a t t h e a b s o l u t e c h a n g e s i n t h e i m m o b i l e components i s due t o e i t h e r d i l u t i o n by a d d i t i o n o r c o n c e n t r a t i o n by e x t r a c t i o n o f o t h e r components. The r e l a t i v e i m m o b i l i t y o f v a r i o u s e l e m e n t s i n a h y d r o t h e r m a l e n v i r o n m e n t i s an a r e a o f c o n s i d e r a b l e d i s a g r e e m e n t amongst g e o l o g i s t s . By making c e r t a i n a s s u m p t i o n s , however, p a t t e r n s c a n be d e v e l o p e d w h i c h a p p e a r c o n s i s t e n t w i t h o b s e r v e d m i n e r a l o g y . T i t a n i u m i s c o n s i d e r e d r e l a t i v e l y i m m o b i l e b e c a u s e o f i t s h i g h o x i d a t i o n s t a t e and l a c k o f known h y d r o t h e r m a l aqueous s p e c i e s ( P e a r c e and Cann, 1973; N i s b e t and P e a r c e , 1973; P e t e r s e n , 1983; K e r r i c h , 1 9 8 4 ) . Sphene i s a c h e m i c a l l y r e s i s t a n t m i n e r a l and t i t a n i f e r o u s m a g n e t i t e , w h i c h o c c u r s i n t h e SAM U n i t p a r e n t r o c k , l e a v e s t h e t i t a n i u m i n l e u c o x e n e c o a t i n g s i n t h e s u l p h i d e r i c h a l t e r e d z o n e s . Aluminum has a l s o been u s e d as an i m m o b i l e e l e m e n t ( B a b c o c k , 77 1973; K e r r i c h , 1984; S k e t c h l e y , 1986; S k e t c h l e y and S i n c l a i r , 1 9 8 7 ) . T h e r e a r e d e f i n i t e e x a m ples i n o t h e r A r c h e a n g o l d d e p o s i t s where A l has been shown t o h a v e moved, s u c h a s i n t h e t o u r m a l i n e s e l v a g e s p r e s e n t e d by Hodgson ( 1 9 8 5 ) . A t San A n t o n i o , t h e r e a r e c h a n g e s i n t h e f e l d s p a r c o n t e n t as a l b i t i z a t i o n o f t h e w a l l r o c k p r o g r e s s e d , b u t i t may be more an A l r e d i s t r i b u t i o n t h a n a s i g n i f i c a n t c o n t r i b u t o r t o t h e o v e r a l l A l c o n t e n t . Z i r c o n i u m has been t a k e n as r e l a t i v e l y s t a b l e u n d e r h y d r o t h e r m a l c o n d i t i o n s (Cann, 1970; P e t e r s e n , 1983; S k e t c h l e y and S i n c l a i r , 1 9 8 7 ) . Z i r c o n , as t h e Z r m i n e r a l p h a s e , i s r e s i s t a n t , t o n o r m a l c h e m i c a l a t t a c k . The low c o n t e n t o f u r a n i u m and t h o r i u m i n t h e SAM U n i t s u g g e s t t h a t ' s e l f i r r a d i a t i o n ' breakdown o f t h e z i r c o n t o a l e s s r e s i s t a n t m e t a m i c t s t a t e has n o t o c c u r r e d . P h o s p h o r o u s i s u s e d l e s s commonly as an i m m o b i l e e l e m e n t , f o r s i m i l a r r e a s o n s as T i , b e c a u s e o f i t s h i g h o x i d a t i o n s t a t e and r e l a t i v e s t a b i l i t y u n d e r Ca r i c h c o n d i t i o n s . However, t h e a n a l y t i c a l v a l u e s o f Pa Os i n t h i s sample s u i t e a r e r e l a t i v e l y low, c l o s e t o d e t e c t i o n l i m i t , and a r e t h u s i m p r e c i s e . P h o s p h o r o u s was u s e d i n i t i a l l y i n a s t u d y o f t h e a l t e r a t i o n a t San A n t o n i o ( W h i t i n g , 1 9 8 5 a ) , b u t has been removed f o r t h i s s t u d y . an Vanadium e r r a t i c and y t t r i u m s p r e a d i n were a l s o c o n s i d e r e d , b u t t h e y y i e l d e d volume f a c t o r s , e s p e c i a l l y n e a r t h e 78 s t o c k w o r k v e i n . One p o s s i b l e i n t e r p r e t a t i o n i s t h a t t h e y were m o b i l i z e d , p e r h a p s w i t h t h e r a r e e a r t h e l e m e n t s d u r i n g v e i n emplacement. 4.2.4. VOLUME INCREASES F i g u r e 4.3 i l l u s t r a t e s t h e i m m o b i l e components v e r s u s a volume f a c t o r r e q u i r e d t o m a i n t a i n t h e same c o n c e n t r a t i o n i n t h e p r o d u c t s a m p l e s as o c c u r s i n t h e p a r e n t s a m p l e . A l m o s t a l l c a l c u l a t e d v a l u e s l i e above 1.00, s i g n i f y i n g a volume i n c r e a s e . I n g e n e r a l , t h e d i s t a l " b a r r e n z o n e " s a m p l e s p l o t c l o s e s t t o no volume c h a n g e . The " c r y p t i c h a l o " s a m p l e s p l o t h i g h e r t h a n t h e b a r r e n zone s a m p l e s and t h e s a m p l e s o f a l t e r e d r o c k f r o m w i t h i n t h e " s t o c k w o r k " p l o t h i g h e r s t i l l . By p l o t t i n g t h e d i s t a n c e f r o m t h e c o r e o f t h e s t o c k w o r k v e r s u s an a v e r a g e o f t h e t h r e e component volume f a c t o r s , a g r a d u a l i n c r e a s e i n volume c h a n g e a p p r o a c h i n g t h e s t o c k w o r k i s c l e a r l y i l l u s t r a t e d ( F i g u r e 4 . 4 ) . T h i s r e s u l t i s e x p e c t e d i n t u i t i v e l y w i t h i n an a r e a o f d i l a t e n c y . The d i s t a l s a m p l e s show o n l y a s l i g h t volume i n c r e a s e o v e r t h e p a r e n t r o c k , a 5% i n c r e a s e i s n o t e d f o r t h e c r y p t i c h a l o s a m p l e s and s a m p l e s o f a l t e r e d b a s a l t f r o m w i t h i n t h e s t o c k w o r k show a 10% i n c r e a s e i n volume. 79 0.95 H Ti02 Zr Composite Components F i g u r e 4.3. Assumed Immobile Components v e r s u s Volume F a c t o r . A v e r a g e s o f s a m p l e s f r o m t h e b a r r e n , c r y p t i c h a l o and s t o c k w o r k z o n e s . F i g u r e 4.4. D i s t a n c e f r o m t h e C o r e v e r s u s an A v e r a g e o f T i 0 2 , A 1 2 0 3 and Z r . o f a S t o c k w o r k V e i n Volume F a c t o r s f o r 81 4.3. DISCUSSION OF INDIVIDUAL OXIDE COMPONENTS 4.3.1. DATA UNADJUSTED FOR VOLUME INCREASES The b e h a v i o u r o f t h e i n d i v i d u a l m a j o r o x i d e s p l u s s u l p h u r , w i t h o u t volume a d j u s t m e n t s , i s p r e s e n t e d on F i g u r e 4.5. T h e s e a r e p l o t s o f d i s t a n c e f r o m c o r e o f s t o c k w o r k v e r s u s c h a n g e i n w e i g h t p e r c e n t f o r e a c h component. Most d i s t i n c t i v e a r e t h e d e c r e a s i n g p a t t e r n s f o r t h e assumed i m m o b i l e components AlaOa and Ti02 . The e r r a t i c n a t u r e o f Pa Os i s a l s o e v i d e n t on t h i s f i g u r e . The e l e v a t e d p a t t e r n s f o r Naa 0 and Ka 0 a r e as e x p e c t e d due t o t h e a l b i t i z a t i o n a c c o m p a n y i n g v e i n emplacement. No K - f e l d s p a r was i d e n t i f i e d i n t h i n s e c t i o n , however, f a i n t t r a c t s i n p l a g i o c l a s e g r a i n s may i n d i c a t e m i n o r f i n e a n t i p e r t h i t i c e x s o l u t i o n l a m e l l a . A l b i t e i s t h e d o m i n a n t f e l d s p a r p h a s e . The SiOa component shows a d i s t i n c t d r o p a d j a c e n t t o t h e s t o c k w o r k v e i n on t h e u n a d j u s t e d p l o t . S i m i l a r p a t t e r n s have been s e e n i n e a r l i e r s t u d i e s on t h e San A n t o n i o Mine ( D a v i e s , 1 9 6 3 ) . I t was f i r s t a t t r i b u t e d t o a m i g r a t i o n o f Si02 f r o m t h e w a l l r o c k t o t h e s t r i n g e r s . When a c o m p a r i s o n i s made between t h e amount o f SiOa t h o u g h t t o have been s t r i p p e d f r o m t h e w a l l r o c k and t h e amount o f SiOa i n t h e q u a r t z s t r i n g e r s , a d e f i n i t e d i s c r e p a n c y i s n o t e d . o i ' ii 1 I 2 0 o i 1 H~~1 I 2 0 D i s t a n c e F r o m C o r e o f S t o c k w o r k F i g u r e 4.5. D i s t a n c e f r o m t h e c o r e o f a s t o c k w o r k v e r s u s u n a d j u s t e d c hange i n t h e w e i g h t p e r c e n t f o r i n d i v i d u a l c omponents. S = S t o c k w o r k , H = H a l o and B = B a r r e n Zone. 83 The s t r i n g e r s c o n t a i n a p p r o x i m a t e l y t e n t i m e s more SiOa t h a n i s i n f e r r e d t o have m i g r a t e d f r o m t h e w a l l r o c k . W i t h t h i s i n mind, i t seems h i g h l y u n l i k e l y t h a t a s o l u t i o n h i g h i n s i l i c a and p r e c i p i t a t i n g t h a t s i l i c a a l o n g f r a c t u r e s , would draw any s i l i c a f r o m t h e w a l l r o c k . The o p p o s i t e d i r e c t i o n o f s i l i c a t r a n s p o r t would be e x p e c t e d . T o t a l i r o n , r e p o r t e d as F e a 0 » , d e c r e a s e s t o w a r d t h e s t o c k w o r k v e i n . However, s u l p h u r shows a d i s t i n c t i n c r e a s e n e x t t o t h e s t o c k w o r k v e i n . What i s s e e n v i s u a l l y i s a t r a n s g r e s s i o n from m a g n e t i t e as t h e main i r o n m i n e r a l i n t h e b a r r e n r o c k , c h a n g i n g t o p y r i t e p l u s m i n o r p y r r h o t i t e as t h e main i r o n m i n e r a l s i n t h e v e i n a r e a . P o i n t c o u n t e s t i m a t e s o f p y r i t e and m a g n e t i t e g r a i n s i n t h i n s e c t i o n s do n o t show a s i g n i f i c a n t d e c r e a s e i n i r o n c o n t e n t f r o m b a r r e n r o c k t o s t o c k w o r k v e i n . S u l p h u r a n a l y s e s , w h i l e b e i n g somewhat p r o b l e m a t i c f o r q u a n t i t a t i v e a c c u r a c y u s i n g XRF, a r e s t i l l u s e f u l f o r s e m i - q u a n t i t a t i v e t r e n d s i n s u p p o r t o f t h e v i s u a l m i n e r a l p a t t e r n . CaO and MgO show a somewhat more e r r a t i c d i s t r i b u t i o n i n t h a t t h e y a r e p r e s e n t i n v a r i a b l e amounts i n s e v e r a l m i n e r a l s . P r i m a r y p l a g i o c l a s e d e t e r m i n a t i o n s i n t h e b a r r e n r o c k s y i e l d e d v a l u e s a r o u n d Am 3 . R e g i o n a l metamorphism has i m p r i n t e d a c a r b o n a t i z a t i o n , p r i m a r i l y c a l c i t e , on much o f t h e SAM U n i t . W i t h i n t h e main s e r i e s o f s t r i n g e r s , a n k e r i t e , d e t e r m i n e d by c a r b o n a t e s t a i n i n g ( R e i d , 1969), i s t h e m a j o r c o n s t i t u e n t . 84 The l a s t e p i s o d e o f v e i n i n g , w h i c h p o s t - d a t e s m i n e r a l i z a t i o n , i n c l u d e d d o l o m i t i c c a r b o n a t e . I n t h i n s e c t i o n s , t h e d o l o m i t e r h o m b o h e d r a l c r y s t a l s e x h i b i t c u r v e d o u t l i n e s . 4.3.2. DATA ADJUSTED FOR VOLUME INCREASES When t h e i n d i v i d u a l components a r e a d j u s t e d f o r volume i n c r e a s e s , a d i s t i n c t i v e l y d i f f e r e n t s e r i e s o f p l o t s a r e o b t a i n e d ( F i g u r e 4 . 6 ) . The downward t r e n d o f t h e i m m o b i l e Ti02 i s removed, l e a v i n g j u s t random v a r i a b i l i t y . The AI2Os p l o t a l s o l o o s e s i t s downward t r e n d , and a c t u a l l y shows a p o s s i b l e m i n o r e n r i c h m e n t i n t h e v i s i b l e a l t e r a t i o n w i t h i n t h e s t o c k w o r k . T h i s may be due t o s l i g h t A l a d d i t i o n a s s o c i a t e d w i t h t h e a l b i t i z a t i o n . The s h a r p i n c r e a s e i n Na:0 and K2 0 a r e h e i g h t e n e d by volume a d j u s t m e n t s , t h u s f u r t h e r s u p p o r t i n g t h e f e l d s p a r e n r i c h m e n t o b s e r v a t i o n s . Si02, w h i c h showed an u n e x p e c t e d d e c r e a s e i n t h e u n a d j u s t e d p l o t , shows a v a r i a b l e p a t t e r n , c o n t a i n i n g more i n c r e a s e t h a n d e c r e a s e , on t h e a d j u s t e d p l o t . T h i s i s c l o s e r t o what one would i n t u i t i v e l y e x p e c t f o r S i O a . I r o n a l s o l o o s e s most o f i t s u n e x p e c t e d d r o p i n v a l u e s i n t h e s t o c k w o r k . I r o n i s c o n s i d e r e d t o have been r e m o b i l i z e d and a l t e r e d i n m i n e r a l p h a s e , b u t n o t s u b s t a n t i a l l y l o s t o r g a i n e d 85 Oistance From Core of Stockwork F i g u r e 4.6. D i s t a n c e f r o m t h e c o r e o f a s t o c k w o r k v e r s u s t h e c hange i n w e i g h t p e r c e n t o f i n d i v i d u a l components a d j u s t e d f o r volume i n c r e a s e s . S = S t o c k w o r k , H = H a l o and B = B a r r e n Zone. 86 t h r o u g h h y d r o t h e r m a l a l t e r a t i o n . The Si p l o t i s h e i g h t e n e d , b u t i s e s s e n t i a l l y t h e same. CaO and MgO a r e s t i l l a l i t t l e e r r a t i c . G e n e r a l l y , t h e y e x h i b i t g a i n p r e f e r e n t i a l t o l o s s n e x t t o t h e s t o c k w o r k v e i n . 4.4. ALTERATION CONCLUSIONS A v o l u m e t r i c s t u d y o f metasomatism u s i n g whole r o c k a n a l y s e s has d e f i n e d a h y d r o t h e r m a l a l t e r a t i o n c r y p t i c h a l o s u r r o u n d i n g m i n e r a l i z e d s t o c k w o r k s . A g r a d u a l s m a l l volume i n c r e a s e o f 5 p e r c e n t i s i n d i c a t e d by t h e G r e s e n s (1967) method as one a p p r o a c h e s a s t o c k w o r k v e i n . A l t e r a t i o n o f w a l l r o c k f r a g m e n t s i n t h e s t o c k w o r k e x h i b i t a 10 p e r c e n t volume i n c r e a s e . T h e s e volume i n c r e a s e s r e p r e s e n t metasomatism o f t h e w a l l r o c k and n o t d i l a t i o n v olume i n c r e a s e by v e i n m a t e r i a l . S e v e r a l e l e m e n t a l p a t t e r n s , u n a d j u s t e d f o r volume i n c r e a s e , have i n t h e p a s t l e a d t o f a l s e c o n c l u s i o n s a b o u t t h e d i r e c t i o n o f component t r a n s p o r t . An example o f t h i s was t h e i n t e r p r e t a t i o n o f d e p l e t i o n o f s i l i c a f r o m t h e w a l l r o c k s t o f e e d i n t o t h e s t r i n g e r s ( D a v i e s , 1 9 63). When volume c h a n g e s a r e a c c o u n t e d f o r , t h e p a t t e r n f o r s i l i c a i s r e v e r s e d , s h o w i n g a s m a l l e n r i c h m e n t a d j a c e n t t o s t o c k w o r k s . Due t o t h e 'nugget e f f e c t ' o f g o l d , s t r u c t u r e s w i t h p o t e n t i a l f o r g o l d m i n e r a l i z a t i o n , w h i c h show s p o r a d i c o r l o c a l l y a b s e n t amounts o f g o l d , c a n s t i l l be d e t e c t e d by t h e i r a l t e r a t i o n and 87 p o s s i b l y c o r r e l a t e d f r o m one d r i l l h o l e t o t h e n e x t . S t o c k w o r k v e i n s c o n s i s t o f 5 t o 40% q u a r t z - c a r b o n a t e - a l b i t e s t r i n g e r s . A d r i l l h o l e c o u l d p a s s t h r o u g h a v e i n s t r u c t u r e w i t h o u t i n t e r s e c t i n g v e r y many s t r i n g e r s . Thus, d r i l l c o r e w i t h any v i s i b l e h y d r o t h e r m a l a l t e r a t i o n , w i t h o r w i t h o u t s t r i n g e r s , s h o u l d be s a m p l e d o v e r t w i c e t h e w i d t h o f t h e v i s i b l e a l t e r a t i o n and t e s t e d f o r g o l d . W h i l e t h e v o l u m e t r i c s t u d y has a i d e d i n t h e i d e n t i f i c a t i o n and d e s c r i p t i o n o f a h a l o , t h e r e q u i r e d c a r e and h i g h c o s t o f whole r o c k a n a l y s e s a r e c o n s i d e r e d t o be t o o g r e a t a t t h i s t i m e t o be u s e f u l as a r o u t i n e e x p l o r a t i o n t o o l a t t h e San A n t o n i o G o l d Mine. The h a l o i s , however, a l s o marked by s u b t l e e n r i c h m e n t s o f b a s e m e t a l s and s i l v e r , w h i c h p r o v e t o be u s e f u l as p a t h f i n d e r s f o r g o l d ( C h a p t e r V ) . D e t e c t i o n o f t h e h a l o e f f e c t i v e l y d o u b l e s t h e t a r g e t w i d t h f o r e x p l o r a t i o n d r i l l i n g . 88 CHAPTER V MULTI-ELEMENT ICP ANALYSIS PATTERNS 5.1. GENERAL STATEMENT The o b s e r v e d m i n e r a l o g i c a l c h a n g e s and g e o c h e m i c a l p a t t e r n s a s s o c i a t e d w i t h h y d r o t h e r m a l a l t e r a t i o n / m i n e r a l i z a t i o n c a n be r e p r e s e n t e d by c o r r e l a t i o n s between e l e m e n t s f r o m m u l t i - e l e m e n t a n a l y s i s . T h i s a l l o w s f o r a g r o u p i n g o f e l e m e n t s a c c o r d i n g t o s p e c i f i c z o n e s . F u r t h e r e x a m i n a t i o n w i t h h i s t o g r a m s and p r o b a b i l i t y p l o t s show t h e p r o p o r t i o n s o f t h e t o t a l s a m ple s e t r e p r e s e n t e d by e a c h zone and an e x a m i n a t i o n o f s t r i p l o g s e x h i b i t t h e s p a t i a l r e l a t i o n s h i p o f e l e m e n t s t h r o u g h t h e z o n e s . Samples o f d r i l l c o r e and w a l l r o c k c h i p s , t a k e n f r o m t h e San A n t o n i o G o l d Mine, were t e s t e d f o r 37 e l e m e n t s by I n d u c e d C o u p l e d P l a s m a (ICP) a n a l y s i s . T h e s e a n a l y s e s were p e r f o r m e d a t t h e l a b o r a t o r i e s o f Vangeochem Lab L i m i t e d o f N o r t h V a n c o u v e r , B r i t i s h C o l u m b i a . A weak HCl-HNOs-H*0 a c i d d i g e s t i o n was u s e d t o p l a c e t h e e l e m e n t s i n t o s o l u t i o n . The a n a l y t i c a l p r e p a r a t i o n i s d e s c r i b e d i n A p p e n d i x I I I . Such an a c i d d i g e s t i o n y i e l d s a p a r t i a l e x t r a c t i o n o f some e l e m e n t s , d e p e n d i n g on t h e r e s i s t a n c e o f 89 s p e c i f i c m i n e r a l s i n t h e s a m p l e p u l p . The s t r e n g t h o f t h i s t e c h n i q u e l i e s w i t h i t s a b i l i t y t o e n h a n c e t h e i d e n t i f i c a t i o n o f m i n e r a l o g i c a l c h a n g e s , t h u s anomaly d e t e c t i o n . In c e r t a i n c a s e s , an e l e m e n t ' s m i n e r a l h o s t c a n a l s o be i n f e r r e d . A c u r r e n t weakness i n t h e t e c h n i q u e l i e s i n a h i g h d e t e c t i o n l i m i t f o r s e v e r a l e l e m e n t s , most s p e c i f i c a l l y g o l d . The d e t e c t i o n l i m i t f o r g o l d i s o n l y 3 ppm. T h e r e f o r e , g o l d r e s u l t s by N e u t r o n A c t i v a t i o n A n a l y s i s (NAA), f o r w h i c h t h e d e t e c t i o n l i m i t i s 1 ppb, were i n c o r p o r a t e d i n t o t h e s t u d y . 5.2. GROUPING OF ELEMENTS 5.2.1. C o r r e l a t i o n M a t r i x T a b l e 5.1 i s t h e l o w e r h a l f o f t h e c o r r e l a t i o n m a t r i x f o r s a m p l e s o f SAM U n i t b a s a l t s f r o m t h e 3 3 r d l e v e l . W i t h a s a mple p o p u l a t i o n o f 213 s a m p l e s , t h e a b s o l u t e v a l u e o f t h e e l e m e n t t o e l e m e n t c o r r e l a t i o n c o e f f i c i e n t s g r e a t e r t h a n 0.138 a r e deemed t o be s i g n i f i c a n t a t a 5 p e r c e n t c o n f i d e n c e l e v e l . To a c h i e v e a 1 p e r c e n t c o n f i d e n c e l e v e l , c o r r e l a t i o n c o e f f i c i e n t s must e x c e e d 0.181 (Kozak, 1 9 6 6 ) . A l l c o r r e l a t i o n c o e f f i c i e n t s whose a b s o l u t e v a l u e i s 0.200 o r g r e a t e r have been u n d e r l i n e d . No t r a n s f o r m a t i o n s have been made t o t h e raw d a t a p r i o r t o c a l c u l a t i n g t h e c o r r e l a t i o n c o e f f i c i e n t s . 90 TABLE 5.1 CORRELATION MATRIX GROUP I GROUP II Au(NAA) Au(ICP) Ag As W Cu Pb Zn Au(NAA) 1 .0000 Au(ICP > 0 .7882 1. 0000 Ag 0 .7377 0. 6410 1 .0000 As 0 .4617 0. 3315 0 .3910 1. 0000 W 0 . 3384 0 . 1680 0 .4632 0 . 3813 1 . 0000 Cu 0 .1492 0. 1439 0 .4336 0. 0637 0. 3722 1. 0000 Pb 0 . 1416 0 . 0238 0 .2711 0. 3583 0. 1358 0. 1345 1 . 0000 Zn 0 .022S 0. 1860 0 . 1349 0. 0018 -0. 0080 0. 23S1 0. 0233 1 .0000 Fe 0 . 16S5 0. 1368 0 .2987 0. 1388 0. 2283 0. 3094 0. 2103 0 .0860 Mn -0 .0973 -0. 0760 -0 .0087 -0 . 1281 -0. 0033 0. 2311 0. 0918 0 .0169 Th 0 .0018 0. 0474 0 .2890 -0. 0067 0. 0797 0. 3767 0. 1238 0 .0420 Ca 0 .0261 0. 0475 0 .2209 -0. 0737 - o . 0411 0. 2392 0. 1193 0 .0410 Sr 0 .1678 0. 1495 0 . 2311 0. 0474 0. 0418 0. 1260 0. 1498 0 .1055 Ba 0 .1387 0 . 10S9 0 . 1790 0. 1472 0. 1355 0. 0704 0. 0836 0 .0106 K 0 .2703 0. 2093 0 .4599 0. 2868 0. 2305 0. 1861 0. 1396 0 .0307 Na 0 .1290 0. 0910 0 .3128 0. 1396 0. 1452 1 0. 2234 0. 0657 -0 • 02S2 P 0 .0024 -0. 0728 0 .1906 0. 1734 0 . 3976 0. 3349 0. 1163 -0 .0652 La -0 .07SS -0. 0623 0 .0744 0. 0313 0. 2466 1 0. 2980 0. 0649 -0 .0790 Ni -0 .1692 -0. 1127 -0 .4062 -0. 1005 -0. 1737 1 -0. 2673 -0. 0846 -0 .0301 Mg -0 .1991 - 6 . 1244 -0 .4185 -0. 1276 -0. 1899 -0. 2474 -0. 0805 -0 .0228 Cr -0 .2172 -0. 1582 -0 .4861 -0. 1559 -0. 2109 -0. 3271 -0. 1209 -0 .0564 Co -0 .0998 -0. 0679 -0 .3328 -0. 0580 -0. 1177 -0. 2475 -0. 0555 -0 .0425 T i -0 .2003 -0. 1362 -0 .4763 -0. 1056 -0. 1868 -0. 3468 -0. 1452 -0 .0537 Y -0 . 1317 -0. 0894 -0 . 3252 -0. 0902 -0. 11S6 -0. 2330 -0. 0445 -0 .0203 Nb -0 .18SS -0. 1264 -0 .4588 -0. 1070 -0. 1772 1 -0. 3708 -0. 1202 -0 .0565 Zr -0 .1691 -0. 1170 -0 .4052 -0. 087S -0. 1626 -0. 3287 -0. 128S -0 .0467 Se -0 .2185 -0. 150S -0 .5274 -0. 1214 -0 . 2139 -0. 4036 -0. 1990 -0 .0851 A l -0 .2893 -0. 1382 -0 .4772 -0. 1911 -0. 2139 -0. 1422 -0. 0795 0 .0683 V -0 .2177 -0. 0766 -0 .2692 -0. 1724 -0. 1754 0. 0076 -0. 0064 0 .0912 Mo 0 .1146 0. 0881 -0 . 1442 0. 0653 -0. 08 IS -0. 2139 -0. 0446 0 .0884 Sb -0 .0908 -0. 0656 -0 .1825 -0. 0227 -0. 0781 -0. 1421 -0. 0681 -0 .0384 U -0 .0610 -0. 0423 -0 . 1578 -0. 0460 -0. 0628 -0. 1172 -0. 0387 -0 .0271 S i -0 .0415 0. 0215 -0 .0715 0. 0182 0. 1449 0. 0842 0. 0077 0 .0435 B i 0 .0258 0. 1411 0 .0185 -0. 0685 -0. 0808 0. 1480 0. 0183 0 .0282 Sn -0 .0188 -0 . 0133 -0 .0400 -0 . 0114 -0. 0197 0. 0468 0. 0392 -0 .0008 B 0 .0211 -0. 0195 0 . 1038 -0. 0859 -0. 0082 0. 0090 0. 1524 -0 .0081 Ta -0 .0332 -0. 0450 -0 .0223 -0. 0422 -0. 0279 -0. 0384 -0. 0122 -0 .0172 9 1 TABLE S.1 ( c o n t . ) CORRELATION MATRIX F e GROUP II (cont.) Mn Th Ca Sr Au(NAA) Au<ICP) Ag As W Ba GROUP III K Na Cu Pb Zn F e 1.0000 Mn 0 .8036 1 .0000 Th 0 .2240 0 . 1458 1 .0000 Ca 0 .4801 0 .6186 0 .449S 1 .0000 Sr 0 .6209 0 .6615 -0 .01S7 0 .6666 1 .0000 Ba 0 . 1046 -0 .0523 -0 .0249 0 .2392 0 .3371 1 1 .0000 K -0 .0569 -0 .2294 0 .2747 0 .3164 0 .0771 0 .5505 1. 0000 Na -0 .0140 -0 .1307 0 .3996 0 . 2897 -0 .0882 1 0 . 3183 0. 63S4 1 .0000 P -0 .1529 -0 .2S44 0 .0906 -0 .2029 -0 .2418 -0 .1310 0. 0812 0 . 1463 La 0 .0977 0 .0366 0 . 3520 0 .2890 0 .0516 1 0 . 1848 0. 3139 0 . 4393 Nl 0 .3662 0 .4493 -0 .S143 0 .0018 0 .4564 1 0 .2342 -0. 4670 -0 .4645 Mg 0 .4358 0 . 5404 -0 .4784 0 .0073 0 .4504 0 .1037 -0. 5413 -0 .5185 Cr 0 .2267 0 .3564 -0 .6055 -0 . 1312 0 .3478 1 0 .10S6 -0. 5553 -0 .5332 Co 0 .4505 0 .4770 -0 .5158 -0 .0828 0 .4068 0 .0649 -0. 5501 -0 . 5376 T i 0 .1620 0 .2855 -0 .6741 -0 .2597 0 .2079 -0 .0682 -0. 5759 -0 . 5207 Y 0 .4368 0 .5190 -0 .4445 0 .0990 0 .4800 0 .0783 -0. 3783 -0 .3666 Nb 0 . 1423 0 .2928 -0 .6277 0 .0S7S 0 .3659 1 0 .0954 -0. 3998 -0 .4109 Zr 0 .1307 0 .2007 -0 .5648 -0 .1644 0 .1998 -0 .0201 -0. 4589 -0 .3745 Se -0 .2037 -0 .0809 -0 .7318 -0 .2737 0 .0456 0 .0175 -0. 3836 -0 . 3887 Al 0 . 3805 0 .4675 -0 .1434 -0 .0006 0 .2079 -0 .1152 -0. 6324 -0 .6220 V 0 .5647 0 .5493 0 .2812 0 .2445 0 . 1638 -0 .2243 -0. 4503 -0 .2193 Mo -0 .1121 -0 .0859 -0 .3396 -0 .2728 -0 .0.086 -0 .0440 -0. 1867 -0 .0900 Sb -0 .0405 0 .1193 -0 .2554 -0 .0570 0 .0271 -0 . 1872 -0. 1797 -0 . 1015 U 0 .0088 0 .0300 -0 .1697 0 .0501 0 .1283 0 .0415 -0. 0140 -0 .1164 Si 0 . 1480 0 .0402 -0 .1665 -0 .0253 -0 .0777 1 -0 .0S7S -0. 1568 -0 . 17S7 Bi 0 .1505 0 . 2252 0 .1921 0 .3235 0 .2998 0 .0548 -0. 0154 0 .0108 Sn -0 .0316 -0 .0178 -0 .0694 -0 . 1068 -0 .0845 -0 .0590 -0. 0561 -0 . 0208 B 0 .2321 0 .1847 0 .1243 0 .1181 0 .1154 0 .0009 0. 0077 0 .0349 Ta -0 .0660 -0 • 0S98 0 .1131 -0 .0637 -0 .0758 -0 .0967 -0. 0477 -0 .0779 92 T A B L E S . 1 ( c o n t . ) C O R R E L A T I O N M A T R I X G R O U P I I I ( c o n t . ) G R O U P I V p L a N i M g C r C o T i Y A u ( N A A ) I A u ( I C P ) I A g I A s I W I C u P b Zn Fe Mn Th Ca Sr Ba K Na P 1 . 0 0 0 0 La 0 . 4 2 2 0 1 . 0 0 0 0 Ni - 0 . 3 4 6 5 - 0 . 2 0 1 3 1 1 . 0 0 0 0 Mg - 0 . 3 4 4 2 - 0 . 2 2 6 0 1 0 . 9 7 7 1 1 . 0 0 0 0 Cr - 0 . 2 B 5 0 - 0 . 2 4 7 7 1 0 . 9 6 6 0 0 . 9 5 9 3 1 . 0 0 0 0 Co - 0 . 2 9 5 7 - 0 . 2 5 8 6 1 0 . 9 4 2 2 0 . 9 6 2 4 0 . 9 3 0 0 1 . 0 0 0 0 T i - 0 . 2 0 3 S - 0 . 2 4 6 8 1 0 . 8 3 4 3 0 . 8 5 4 2 0 . 8 9 8 9 0 . 8 4 7 2 1 . 0 0 0 0 Y - 0 . 2 4 5 9 - 0 . 0 6 2 8 1 0 . 8 2 5 6 0 . 8 4 9 6 0 . 8 3 4 7 0 . 8 1 2 9 0 . 8 1 1 2 1 . 0 0 0 0 Nb - 0 . 2 0 6 8 - 0 . 1 1 2 4 1 0 . 8 1 1 3 0 . 7 9 8 7 0 . 8 3 1 4 0 . 7 6 2 9 0 . 7 6 5 0 0 . 8 0 0 0 Zr - 0 . 1 0 0 9 - 0 . 1 1 0 4 1 0 . 6 8 6 2 0 . 6 9 9 0 0 . 7 3 7 6 0 . 6 9 4 0 0 . 8 5 7 8 0 . 7 1 6 3 Se 0 . 0 0 0 9 - 0 . 0 7 7 4 1 0 . 6 3 0 7 0 . 6 0 2 9 0 . 7 2 0 4 0 . 5 9 4 2 0 . 7 6 0 7 0 . 6 1 8 2 A l - 0 . 2 8 2 0 - 0 . 1 8 1 4 1 0 . 7 1 1 7 0 . 7 7 4 5 0 . 6 9 9 0 0 . 7 4 2 6 0 . 6 2 0 4 0 . 6 2 4 3 V - 0 . 2 6 6 9 - 0 . 0 0 6 8 1 0 . 3 3 8 6 0 . 4 3 3 7 0 . 2 7 9 9 0 . 4 0 7 0 0 . 2 5 6 3 0 . 3 9 9 3 Mo - 0 . 0 3 8 4 - 0 . 1 6 1 8 1 0 . 2 6 6 5 0 . 2 7 5 3 0 . 3 9 5 9 0 . 2 8 8 9 0 . 4 2 5 9 0 . 4 4 9 9 Sb 0 . 0 0 1 4 - 0 . 0 0 9 0 1 0 . 1 7 9 8 0 . 2 0 9 0 0 . 2 3 3 6 0 . 2 0 6 9 0 . 2 9 4 7 0 . 2 6 0 0 U 0 . 0 0 9 9 - 0 . 0 0 8 9 1 0 . 2 1 6 2 0 . 2 2 6 3 0 . 2 3 1 0 0 . 1 9 8 5 0 . 1 9 0 7 0 . 2 8 3 8 S i 0 . 1 6 6 6 0 . 0 5 9 2 1 0 . 0 6 4 0 0 . 0 9 4 9 0 . 0 6 7 6 0 . 1 4 3 6 0 . 1 8 0 4 0 . 1 1 1 2 B i - 0 . 0 5 1 6 0 . 0 5 3 2 1 0 . 0 8 1 9 0 . 0 8 3 3 0 . 0 4 2 0 - 0 . 0 0 3 1 0 . 0 3 4 5 0 . 1 0 0 4 Sn 0 . 0 0 3 1 0 . 0 4 3 0 1 - 0 . 0 0 7 3 0 . 0 1 8 6 0 . 0 2 3 4 0 . 0 3 3 6 0 . 0 9 8 9 0 . 0 S 9 2 B - 0 . 1 9 1 6 - 0 . 0 3 6 4 1 0 . 0 2 9 3 0 . 0 5 3 8 0 . 0 0 3 9 0 . 0 5 4 9 - 0 . 0 1 7 1 0 . 0 7 4 0 Ta 0 . 0 1 1 2 - 0 . 0 4 9 3 1 - 0 . 0 9 4 S - 0 • 0 7 S 3 - 0 . 0 6 2 1 - 0 . 0 5 6 8 - 0 . 1 3 9 6 - 0 . 1 0 0 2 93 TABLE 5 .1 ( c o n t . ) CORRELATION MATRIX GROUP IV ( c o n t . ) Nb Zr Se A l V Mo Sb Au(NAA) Au(ICP) Ag As W Cu Pb Zn Fe Mn Th Ca Sr Ba K Na P La Ni Mg Cr Co T i Y Nb 1 .0000 Zr 0 .7028 1 .0000 Se 0 . 8314 0 .7223 1. 0000 A l 0 . S552 0 .5139 0. 3880 1 .0000 V 0 .2554 0 . 2124 0. 0386 0 .7550 1. 0000 Mo 0 .3736 0 . 3932 0. 4146 0 .1290 -0. 0199 1. 0000 Sb 0 .3010 0 . 2644 0. 3111 0 .0853 0. 0247 0. 1925 1 .0000 U 0 .3700 0 . 1987 0. 3826 0 .1482 0. 0760 0. 1334 0 .1171 1 .0000 S i 0 .2211 0 .3011 0 . 2964 0 . 3448 0. 3167 0. 0141 -0 .0786 0 .0451 B i 0 .0132 0 .0664 -0. 0134 0 . 1439 0. 1872 -0. 0286 -0 .0701 0 .0545 Sn -0 . 0209 0 .07S9 0. 1009 0 .0229 -0. 0217 0. 029S -0 .0259 -0 .0142 B -0 .0587 -0 .0543 -0. 1391 0 .0405 0. 1916 -0. 0312 -0 .0102 -0 .0680 Ta -0 . 1419 -0 . 1235 -0. 1642 0 .0305 -0. 0093 -0. 0599 -0 .0520 -0 .0482 TABLE 5.1 (cont.) CORRELATION MATRIX GROUP VI ( c o n t . ) S i B i Sn B Ta Au(NAA) Au(ICP) Ag As W Cu Pb Zn Fe Mn Th Ca Sr Ba K Na P La N i Mg Cr Co T i Y Nb Zr Se A l V Mo Sb U S i 1.0000 B i 0.0899 1.0000 Sn 0.0650 -0.0288 1.0000 B -0.0698 0.0153 0.0156 1.0000 Ta -0.1426 -0.0415 -0.0151 -0.0437 1.0000 GROUP I GROUP II GROUP I I I GROUP IV 95 Of t h e 37 e l e m e n t s by ICP, o n l y cadmium y i e l d e d below d e t e c t i o n l i m i t f o r a l l s a m p l e s t e s t e d . The r e m a i n i n g 36 e l e m e n t s p l u s g o l d by NAA have been o r d e r e d t o r e f l e c t f o u r p r i m a r y g r o u p i n g s o f e l e m e n t s ( s e e T a b l e 5 . 1 . ) . Group I i s t h e s u i t e o f e l e m e n t s i n t i m a t e l y a s s o c i a t e d w i t h g o l d m i n e r a l i z a t i o n ; Group I I r e p r e s e n t s c a r b o n a t e and b a s e m e t a l s a s s o c i a t e d w i t h t h e o r e z o n e s and h a l o s ; Group I I I r e p r e s e n t s e l e m e n t s a s s o c i a t e d w i t h t h e a l b i t i z a t i o n p r o c e s s w h i c h o c c u r s i n o r e z o n e s and h a l o s ; and Group IV c o n t a i n s e l e m e n t s t h a t r e f l e c t t h e p r i m a r y h o s t r o c k m i n e r a l o g y . L i n e s have been drawn t o h e l p d i s t i n g u i s h i n t r a - g r o u p c o r r e l a t i o n s f r o m i n t e r - g r o u p c o r r e l a t i o n s . GROUP I As e x p e c t e d , g o l d by t h e two a n a l y t i c a l t e c h n i q u e s c o r r e l a t e w e l l , a l t h o u g h t h e l e s s s e n s i t i v e A u ( I C P ) e x h i b i t s f e w e r i n t e r - g r o u p r e l a t i o n s h i p s . S i l v e r i s t h e b e s t p a t h f i n d e r e l e m e n t f o r g o l d . S c a n n i n g E l e c t r o n M i c r o p r o b e s t u d i e s r e v e a l e d s i l v e r t o be t h e i m p u r i t y i n v i s i b l e g o l d s p e c i m e n s ( s e e S e c t i o n 1 . 5 . ) . S i l v e r a l s o o c c u r s w i t h t h e b a s e m e t a l e n r i c h m e n t i n h a l o s . A r s e n i c and t u n g s t e n a r e s i m i l a r i n d i s t r i b u t i o n t o s i l v e r and would be u s e f u l f o r b o t h o r e zone and h a l o d e t e c t i o n . GROUP I I - Group I I e l e m e n t s c o u l d be f u r t h e r s u b d i v i d e d b a s e d on i n t e r - g r o u p r e l a t i o n s h i p s w i t h Group IV h o s t r o c k . C h a l c o p y r i t e and g a l e n a have been s e e n 96 o n l y i n t h e h a l o s and, t o a m i n o r e x t e n t , i n o r e z o n e s . T h u s , c o p p e r and l e a d have a f f i n i t i e s w i t h Group I and I I I e l e m e n t s , b u t do n o t o c c u r i n a p p r e c i a b l e amounts w i t h t h e h o s t r o c k Group IV. In t h e s a m p l e a r e a , s p h a l e r i t e was n o t s e e n and z i n c shows o n l y a s i n g l e weak s i g n i f i c a n t c o r r e l a t i o n w i t h c o p p e r . In u p p e r l e v e l s o f t h e mine, t r a c e s o f s p h a l e r i t e were s e e n a s s o c i a t e d w i t h c h a l c o p y r i t e , t h u s z i n c has been i n c l u d e d w i t h Group I I . I r o n and manganese o c c u r i n s o many m i n e r a l s t h a t t h e i r p a t t e r n s a r e p e r h a p s t h e most w i d e l y c o r r e l a t e d . The d o m i n a n t m i n e r a l s a r e p y r i t e and p y r r h o t i t e i n t h e h a l o s / o r e z o n e s and f e r r o - m a g n e s i a n m i n e r a l s , i n c l u d i n g m a g n e t i t e , i n t h e h o s t r o c k . S t r o n t i u m c l o s e l y m i m i c s t h e b e h a v i o u r o f i r o n , manganese and c a l c i u m . C a l c i u m i s p r i m a r i l y a s i g n o f t h e c a r b o n a t e m i n e r a l i z a t i o n i n t h e h a l o s . A l t h o u g h c a l c i u m does o c c u r i n t h e h o s t r o c k a s c a l c i t e metamorphism, i t s p r i m a r y l o c a t i o n i s i n r e s i s t a n t p l a g i o c l a s e , w h i c h d o e s n o t r e a d i l y y i e l d t h e c a l c i u m i n t o s o l u t i o n . T h o r i u m v a l u e s a r e f a i r l y low c o r r e l a t i n g most c l o s e l y w i t h c a l c i u m , t h u s t h o r i u m may be a m i n o r i m p u r i t y i n t h e c a r b o n a t e m i n e r a l i z a t i o n . GROUP I I I The t h i r d g r o u p , d o m i n a t e d by s o d i u m and p o t a s s i u m , r e p r e s e n t s t h e p r o c e s s o f a l b i t i z a t i o n w h i c h 97 a c c o m p a n i e d t h e m i n e r a l i z i n g p r o c e s s . B a r i u m i s most l i k e l y f o u n d w i t h i n t h e a n t i - p e r t h i t i c l a t t i c e . Low l e v e l s o f l a n t h a n u m and p h o s p h o r o u s a r e a l s o a s s o c i a t e d w i t h t h i s g r o u p . GROUP IV The f o u r t h g r o u p p o s s e s s e s t h e s t r o n g e s t c o r r e l a t i o n s o f any e l e m e n t s . Many v a l u e s g r e a t e r t h a n 0.9 r e f l e c t t h e t i g h t match o f e l e m e n t s f r o m t h e h o s t r o c k m i n e r a l o g y , t y p i c a l o f a b a s a l t . From n i c k e l t h r o u g h u r a n i u m on T a b l e 5.1 i s a g r o u p o f 14 c l o s e l y i n t e r r e l a t e d e l e m e n t s . T h e s e i n c l u d e n i c k e l , magnesium, chromium, c o b a l t , t i t a n i u m , y i t t r i u m , n i o b i u m , z i r c o n i u m , s e l e n i u m , aluminum, vanadium, molybdenum, a n t i m o n y , and u r a n i u m . The l a s t 5 e l e m e n t s on T a b l e 5.1 a r e g e n e r a l l y p o o r l y c o r r e l a t e d and a l l c o n s i s t o f v a l u e s c l o s e t o t h e i r r e s p e c t i v e a n a l y t i c a l d e t e c t i o n l i m i t s . S i l i c a i s one e l e m e n t w h i c h most s t r o n g l y r e f l e c t s t h e d i g e s t i o n method u s e d . In s a m p l e s known t o have a p p r o x i m a t e l y 50 p e r c e n t SiO», t h e ICP r e s u l t s f o r S i were i n t h e 0.03-0.05 p e r c e n t r a n g e . C o r r e l a t i o n o f s i l i c a w i t h s e v e r a l h o s t r o c k e l e m e n t s i s a s i g n o f t h e breakdown o f s i l i c a t e m i n e r a l s e x c l u d i n g q u a r t z . E x t e n s i v e q u a r t z i n t h e o r e z o n e s and, t o a l e s s e r e x t e n t i n t h e h a l o s , i s n o t r e p r e s e n t e d b e c a u s e t h e s i l i c a was n o t t a k e n i n t o s o l u t i o n . 98 5.2.2. CORRELATION SCHEMATICS J u s t as t h e o r d e r i n g o f a l a r g e m a t r i x ( s e c t i o n 5.2.1.) a i d s i n t h e i n t e r p r e t a t i o n o f d a t a , o v e r an u n o r d e r e d m a t r i x , s o t o o doe s a g r a p h i c a l r e p r e s e n t a t i o n o f t h e e l e m e n t a l c o r r e l a t i o n s . C o r r e l a t i o n s c h e m a t i c s have been c o n s t r u c t e d w h i c h s y m b o l i c a l l y d i s p l a y t h e r e l a t i o n s h i p s . Due t o t h e c o n s i d e r a b l e c o m p l e x i t y i n a 37 component s y s t e m , t h e c o r r e l a t i o n s c h e m a t i c s have been a s s e m b l e d i n p r o g r e s s i v e s t e p s . F i g u r e s 5.1. t o 5.6. show t h e s t e p s f r o m c o r r e l a t i o n c o e f f i c i e n t s o f g r e a t e r t h a n 0.9, 0.8, 0.7, 0.6, 0.5, and 0.4 r e s p e c t i v e l y . N ote t h a t t h e s e do n o t i n c l u d e t h e h i g h n e g a t i v e c o r r e l a t i o n s between o r e z o n e / h a l o s and t h e h o s t r o c k e l e m e n t s , n o r do t h e y c o n t a i n t h e s i g n i f i c a n t c o r r e l a t i o n s g r e a t e r t h a n 0.3 and 0.2 b u t l e s s t h a n 0.4. I t i s a t t h i s l o w e r l e v e l t h a t t h e f e l d s p a r , c a r b o n a t e and b a s e m e t a l a s s o c i a t i o n s f r o m t h e h a l o s l i n k . a r e d e f i n i t e l i m i t a t i o n s t o t h e c o r r e l a t i o n s c h e m a t i c The more complex t h e s y s t e m , t h e more w e b - l i k e t h e becomes. I f a l l t h e l o w e r l e v e l i n f o r m a t i o n was i n c l u d e d , o f a i d i n g i n t e r p r e t a t i o n would be l o s t . T h e r e d i s p l a y . d i a g r a m t h e g o a l F i g u r e 5.1. C o r r e l a t i o n S c h e m a t i c 100 F i g u r e 5.2. C o r r e l a t i o n S c h e m a t i c R > 0.8 F i g u r e 5.3. C o r r e l a t i o n Schematic - R > 0.7 F i g u r e 5 . 4 . C o r r e l a t i o n Schematic R > 0 . 6 F i g u r e 5.5. C o r r e l a t i o n Schematic - R > 0.5 F i g u r e 5.6. C o r r e l a t i o n Schematic - R > 0.4 5.2.3. DENDROGRAPHICS A n o t h e r v i s u a l d e p i c t i o n o f c o r r e l a t i o n c o e f f i c i e n t s i s t h e d e n d r o g r a p h . The d e n d r o g r a p h i s a t r e e f o r m l i n k i n g o f e l e m e n t s where t h e f i r s t p a i r o f v a r i a b l e s t o be l i n k e d a r e t h o s e w i t h t h e h i g h e s t c o r r e l a t i o n c o e f f i c i e n t . T h i s l i n k a g e i s t r e a t e d a s a new v a r i a b l e and i s t h e n compared t o a l l t h e o t h e r v a r i a b l e s t o f i n d t h e s e c o n d p a i r t o be l i n k e d . D e n d r o g r a p h s d i f f e r f r o m d e n d r o g r a m s i n t h a t , n o t o n l y a r e t h e h e i g h t s on t h e y - a x i s r e p r e s e n t a t i v e o f t h e c o r r e l a t i o n c o e f f i c i e n t s , b u t t h e p l o t t i n g s e p a r a t i o n o f e l e m e n t s on t h e x - a x i s i s a l s o a f u n c t i o n o f t h e c o r r e l a t i o n c o e f f i c i e n t s . I n t h i s way, s t r o n g l y c o r r e l a t e d e l e m e n t s a r e p l o t t e d c l o s e r t o g e t h e r t h a n a r e w e a k l y c o r r e l a t e d e l e m e n t s . The computer program u s e d t o p r e p a r e t h e d e n d r o g r a p h i s a m o d i f i c a t i o n by t h e a u t h o r o f a program w r i t t e n by McCammon and Wenninger ( 1 9 7 0 ) . The d a t a s e t b e i n g s t u d i e d c o n s i s t s p r i m a r i l y o f e l e m e n t s r e p o r t e d i n ppm and no g l o b a l c l o s u r e o f t h e d a t a t o r e f l e c t p e r c e n t a g e summing t o 100 has been a p p l i e d . Thus, t h e d a t a a p p r o a c h an open s y s t e m and c a n be v i e w e d u s i n g d e n d r o g r a p h s . D e n d r o g r a p h s a r e n o t v e r y a p p l i c a b l e f o r p e r c e n t a g e d a t a b e c a u s e o f a v i s u a l b i a s imposed by t h e e f f e c t o f c l o s u r e , w h i c h c a n n o t be i d e n t i f i e d s e p e r a t e l y f r o m t r u e e l e m e n t c o r r e l a t i o n s ( B u t l e r , 1 9 7 8 ) . 0 . 1 0 . 2 -0 . 3 D . A 0 . 5 0 . 6 -0 . 7 -0 . 8 0 . 9 1 . 0 M —i-<2Nc/i r> 3 LD c: cn CD cn tn o cr H- o M "D —i ~n 3 n cn D CT I (D D 0) H r - TP s ^ co Q) Q) 0) I •—I 2 3 r> n 33 1= 33 3= cn ID c c 1 I 2 I—I 3= n 3= TJ Figure 5.7. Dendrograph o cr. 107 F i g u r e 5.7. i s a d e n d r o g r a p h g e n e r a t e d f r o m an u n o r d e r e d m a t r i x o f t h e s a mple d a t a c o r r e l a t i o n s . As c a n be s e e n , t h e e l e m e n t a l g r o u p i n g s o f s e c t i o n 5.2.1. a r e e x h i b i t e d , w i t h h o s t r o c k e l e m e n t s c l u s t e r e d on t h e l e f t and t h e o r e zone e l e m e n t s c l u s t e r e d on t h e r i g h t . 5.3. IDENTIFICATION OF DISCRETE POPULATIONS The p r e c e d i n g s e c t i o n s o f t h i s c h a p t e r d e a l t w i t h t h e raw d a t a c o m p a r i s o n s f o r t h e SAM U n i t as a w h o l e . However, w i t h i n t h e d a t a s e t , d i s c r e t e s u b - p o p u l a t i o n s c a n be i d e n t i f i e d . The most d r a m a t i c example i s t h e s e p a r a t i o n o f o r e z o n e s f r o m w a s t e , d e f i n e d i n t e r m s o f g o l d v a l u e s . An e f f e c t i v e method f o r i d e n t i f y i n g s u b - p o p u l a t i o n s w i t h i n a g i v e n d a t a s e t i s t h e i n t e r p r e t a t i o n o f p r o b a b i l i t y p l o t s ( S i n c l a i r , 1 9 7 6 ) . T h i s p l o t t y p e c o n s i s t s o f p e r c e n t a g e f r e q u e n c y o f o c c u r r e n c e i n a c u m u l a t i v e s c a l e on t h e x - a x i s v e r s u s t h e a r i t h m e t i c o r l o g a r i t h m i c v a l u e on t h e y - a x i s . Where a p o i n t o f i n f l e c t i o n o c c u r s between a c o n v e x upward and a c o n c a v e upward p l o t l i n e , i t i s i n t e r p r e t e d t o be t h e b r e a k between two p o p u l a t i o n s . 108 5.3.1. PROBABILITY PLOTS - ORE ZONE ELEMENTS GOLD T a b l e s 5.2 and 5.3 r e p r e s e n t t h e a r i t h m e t i c and ) l o g a r i t h m i c h i s t o g r a m s f o r g o l d v a l u e s f r o m N e u t r o n A c t i v a t i o n A n a l y s i s . C l e a r l y , t h e l o g a r i t h m i c p l o t i s t h e most i n f o r m a t i v e f o r t h e s a m p l e d i s t r i b u t i o n . F i g u r e 5.8 e x h i b i t s t h e l o g a r i t h m i c p r o b a b i l i t y p l o t f o r g o l d . I t d i s p l a y s two d i s c r e t e p o p u l a t i o n s w i t h i n t h e d a t a s e t . P o p u l a t i o n "A", o r t h e anomalous p o p u l a t i o n , r e p r e s e n t s 25.2 % o f t h e t o t a l s a m p l e s , has a mean v a l u e o f 1,000 ppb and a mean p l u s and minus one s t a n d a r d d e v i a t i o n o f 3,310 and 325 ppb r e s p e c t i v e l y . P o p u l a t i o n "B", o r b a c k g r o u n d p o p u l a t i o n , c o n s i s t s o f 74.8 % o f t h e t o t a l and a v e r a g e s 2.1 ppb w i t h mean p l u s and minus one s t a n d a r d d e v i a t i o n o f 23.0 and 0.2 ppb r e s p e c t i v e l y . T h e r e i s v e r y l i t t l e o v e r l a p between t h e sample p o p u l a t i o n s . A t a i l c u r v a t u r e a t v e r y low v a l u e s i s p r e s e n t due t o t h e a n a l y t i c a l d e t e c t i o n l i m i t . A l l v a l u e s below d e t e c t i o n a t 1 ppb were e n t e r e d i n t h e d a t a s e t as 0 . 5 ppb. S e p a r a t i o n and expanded r e - c a l c u l a t i o n o f t h e i n d i v i d u a l p o p u l a t i o n s f o r F i g u r e 5.8 were done by hand. 109 414i 4i 414i ii 4) il44 414Mi ii 414141iiil iiil I  ii 414; 41 i  41 4i 11414141 il 4HI !i I111 il II I  I  il il 1  II I  I 41 41-4141 ii 41 414t 41 44 41 41 4( 1  1  4  il il ii 41 4  41 41 4! SUMMARY STATISTICS and HISTOGRAM ARITHMETIC VALUES Var i c\b 1 e = U^- 2 Ur.i t - ITD N - 218 Moon - 577.766 Mi n 0.500 1st Quart il e - 1. OOO Std. Dev. = 1934.561 Ma :-: - 1897 2.000 Median - 5.000 CV V. -- 334.835 Skewne; E = 3.084 3rd Quartile = 90.000 '/. cufii '£ cli in l. " " " " " (41 of bint, = 36 - bin size = 512.043) 0.00 0.23 -270.321 78.44 78.31 271.521 « • * * * * * « •: * * « * « * « « « . « # « « * « • * « « — > 9 9 8.26 06.53 813.564 3.21 89.73 1355.607 *••*•*'•+': 1.38 91. 10 1397.650 * * 0.92 92.01 2439.693 *' 1.33 93.38 2981.736 * *• 2.29 95.66 3523.779 0.46 96.12 4065.821 * 0.46 96.58 4607.864 *• 0.00 96.53 5149.907 0.46 97.03 5691.950 * 0.46 97.49 6233.993 * 0.46 97.95 6776.036 * 0.00 97.95 7318.079 0.00 97.95 7860.121 0.00 97.95 8402.164 0.92 98.86 8944.207 0.00 98.86 9486.250 0.00 98.86 10028.293 0.00 98.86 10570.336 0.00 98.86 11112.379 0.46 99.32 11654.421 * O . O O 99.32 12196.464 0.00 99.32 12738.507 O . O O 99.32 13200.050 O . O O 99.32 13322.593 O . O O 99.32 1 43£>4 . 636 O . O O 99.32 14906.679 O . O O 99.32 J5440.721 0. 00 99.32 15990./64 0.00 99.32 16532.807 0.00 99.32 17074.850 O . O O 99.32 17616.893 0.00 99.32 10158.936 0.00 99.32 18700.979 0.46 99.77 19243.021 * 0 1 2 3 4 reprt'Benti spproKimately 1.7 oliEcrvations. «11 44 44 4144 414141 1141 41414»iHI 41414144 it H4I i! 44 4  4414 4  4  41 4i (11144114*44 It 41 tl II H 41114t4144H 44 44 44 44 4t 44 44 4* 44 44 44 4 4 1 4  41 41 44 44 41 «tt44 4  T a b l e 5.2. Au - A r i t h m e t i c S t a t i s t i c s and H i s t o g r a m . 110 44 4441 41 41 444441 11 4HHI 441444 14 4444 41 14 tt 4141414I-4444 44 41 «444I4414-4111 11 44 41 4)'4: II(I tttt 1411-41 il 44441411414444-4i H4I41 441441 4141444411 tl (14t II SUMMARY STATISTICS and HISTOGRAM LOGARITHMIC VALUES V a r i a b l e •• AU 2 Unit. =• S t d . Dev. cv v. 1. 1084 1.2592 113.6056 Ant) -Lciq Mean Min = Ha:: = SkewuGss = 12.834 PT'D N * -0 .3010 1st Q u s r t i l e = 4.2781 Median = 0 .7712 3rd Q u a r t i l e = A n t i - L o q S t d . Dt?v <--) <•» > 213 0.0000 0. 6990 1 .92S7 0. 707 233.101 i i n t i l o q e l s i n t (41 of b i n s = b i n s i z e = 0.1303/ 0. 00 0.23 0. 4 30 -0 .3664 16.51 16.67 0. 531 - 0 . 2 3 5 6 *•**«•** 0. OO 16.67 0.786 -0 .104 0 10.09 26. 71 1.062 0.0261 *• * * *•«•** *• * * 0. 00 26. 71 1. 435 0 .1569 0. 00 26. 71 1.940 0 .2877 9 .63 36. 30 2. 621 0 .4185 ** « * * 6.42 42.69 3.543 0.5494 4. 13 4 6. SO 4. 739 0 .6802 6. 42 53.20 6.472 0 .8110 4. 13 5 7.31 8. 747 O.9419 *•«•**# 4. 13 61.42 11.823 1.0727 ««•«** 2 .75 64. 16 15.979 1.2035 «•«*• 2.29 66. 44 21.596 1.3344 •»** 3. 21 69. 63 29.188 1.4652 1.03 71. 46 39.450 1.5960 2 .75 74.20 53.310 1.7269 * * * 0.46 74.66 72.062 1.8577 *• 0.00 74.66 97.396 1.9835 0 .92 75.57 131.636 2 .1194 * 1.39 76. 94 177.913 2 .2502 *•* O. 46 77.40 240.458 2 .3810 * 1 . 83 79. 22 324.992 2 .5319 *•«• 1.38 00.59 439.243 2 .6427 «« 3.21 83.79 593.660 2 .7735 *•«»* 2.75 86.53 802.362 2 .9044 «•*» 1 .30 87. 90 1004.4 33 3 .0352 * « 2.29 90. 18 1465.668 3 .1660 * ** 1.38 91 .55 1980.926 3 .2969 «•* 1. 33 92. 92 2677.323 3. 4 277 **• 3.21 96. 12 3618.541 3 . 5585 ** « * 0. 16 96.58 4090.645 3.6894 « 0. 92 97. 49 6609.960 3. 8202 * 1. 38 98.86 0933.702 3 .9510 fr* 0. 46 99. 32 12074.360 4 .0019 -K 0.00 99. 32 16319.122 4.2127 0. 4 6 99. 77 22056.137 4 .3435 0 1 2 3 4 U » c h "*" r e p r e s e n t s sppr CJX i matel y 1.7 o b s e r v a t i o i i t . T a b l e 5.3. Au - L o g a r i t h m i c S t a t i s t i c s and H i s t o g r a m . T I T P R O G R A M : P E R C E N T A G E C U M U L A T I V E E R E O U E N C Y P L O T S NAME AU L D A T A : G O L D L I T H O G E O C H E M I S T R Y ( p D b ) SAN A N T O N I O MINE N 2 2 6 £ S P U N : T R A N S E C T N O . 7 3 3 R D L E V E L D R I L L I N G X BAR 1 . 0 9 6 6 T I M E : 1 4 / 0 3 / 8 5 2 1 : 3 9 : 0 9 S T O D E V 1 . 2 4 6 5 112 A s o f t w a r e p rogram, "PROBPLOT", w r i t t e n by S t a n l e y (1987) was u s e d t o c a l c u l a t e t h e r e m a i n i n g p r o b a b i l i t y p l o t s i n t h i s c h a p t e r . F i g u r e 5.9 shows t h e same r e l a t i o n s h i p s i n t e r p r e t e d f o r two p o p u l a t i o n s , b u t w i t h t h r e s h o l d s c a l c u l a t e d as p l u s and minus two t i m e s t h e s t a n d a r d d e v i a t i o n s . Even w i t h two s t a n d a r d d e v i a t i o n s f r o m t h e mean, t h e r e i s no a p p r e c i a b l e o v e r l a p o f p o p u l a t i o n s . A s m a l l i n f l e c t i o n o c c u r s a t t h e u p p e r end o f t h e s c a l e . I t c a n be i n f e r r e d t o be a t h i r d p o p u l a t i o n c o n s i s t i n g o f n u g g e t g o l d v a l u e s . F i g u r e 5.10 shows t h e t h i r d p o p u l a t i o n w i t h c o n s i d e r a b l e o v e r l a p w i t h t h e h i g h e r o f t h e o r i g i n a l two p o p u l a t i o n s . T h i s t h i r d p o p u l a t i o n p o s s e s s e s o n l y 4 p e r c e n t o f t h e t o t a l s a m p l e s , w i t h a mean o f 6,699 ppb and p l u s and minus one s t a n d a r d d e v i a t i o n o f 11,538 and 3,890 ppb r e s p e c t i v e l y . SILVER S i l v e r has been i d e n t i f i e d as t h e b e s t p a t h f i n d e r f o r g o l d . S i l v e r f o l l o w s a l o g a r i t h m i c d i s t r i b u t i o n as shown i n t h e a r i t h m e t i c h i s t o g r a m ( T a b l e 5 . 4 ) , however, t h e l o g a r i t h m i c h i s t o g r a m ( T a b l e 5.5) c o n t a i n s s e v e r a l g aps a t t h e l o w e r end, r e p r e s e n t i n g d i s c r e t e s t e p v a l u e s i n t h e a n a l y s i s . In v i e w i n g t h e s i l v e r p r o b a b i l i t y p l o t ( F i g u r e 5.11) t h r e e p o p u l a t i o n s c a n be i d e n t i f i e d . The l o w e r p o p u l a t i o n s u f f e r s f r o m p r o x i m i t y t o a n a l y t i c a l d e t e c t i o n (0.1 ppm), 114 F i g u r e 5.10. Au - L o g a r i t h m i c P r o b a b i l i t y P l o t (3 pop.) 115 1144 II 414144 41 4( 41 41 ii 41 « +14! 4111414! It II41414141 It 44141141 4111 4111 it II li-14(41 III! 4! li I11<. Ii 41 li t: I11! (H11! II4144 II 44 4i 41IMIlHtli (Ml (i t4 II S U M M A R Y S T A T I S T I C S a n d H I S T O G R A M A R I T H M E T I C V A L U E S Var i ^ i ^ i e -• (-lean ••• 5 L t1 . P C V . r.' C V V. ~ A G 0 . 6 >.>•.':• 1.07 . 4 3 6 U n i t. M i n M a x S k e w n e s s P P M 0 . 1 0 0 3 . 8 0 0 2 . 2 4 1 U -1 s t O u a r t . i 1 u = M&cl i a n -3 r d Q u a r t . i l e = O . 2 0 0 O . 4 0 0 0 . 3 0 0 e l s i r. t (14 o f bi. t i e 3 6 b i n s i z e = 0 . 1 0 6 ) 0 . 0 0 0 . 2 3 0 . 0 4 7 2 2 . 9 4 2 3 . 0 6 0 . 1 5 3 **-*#•:••»'• 1 3 . 3 5 11 . 3 2 0 . 2 5 9 * * * » * • * * * • 6 . 4 2 4 7 . 7 2 0 . 3 6 4 3 . 6 / 5 1 . 3 7 0 . 4 7 0 1 1 . 9 3 6 3 . 2 4 0 . 5 7 6 6 . 4 2 6 7 . 6 3 0 . 6 3 1 **• 3 . 2 1 7 2 . 0 3 0 . 7 3 7 *«•** 4 . 1 3 7 6 . 9 4 O . 8 9 3 . * • * * » 2 • 7*5 7 9 . 6 0 0 . 9 9 9 5 . 0 5 3 4 . 7 0 1 . 1 0 4 * * * * * * 2 . 7 5 8 7 . 4 4 1 . 2 1 0 «*« 1 . 3 9 3 0 . 3 1 1 . 3 1 6 ** 2 . 7 5 9 1 . 5 5 1 . 4 2 1 **»:-0 . 9 2 9 2 . 4 7 1 . 5 2 7 * 0 . 4 6 9 2 . 9 2 1 . 6 3 3 0 . 9 2 9 3 . 8 4 1 . 7 3 9 « 0 . 4 6 9 4 . 2 9 1 . 8 4 4 0 . 4 6 7 4 . 7 5 1 . 9 5 0 0 . 4 6 9 5 . 2 1 2 . 0 5 6 * 1 . 3 8 9 6 . 5 3 2 . 1 6 1 « * 0 . 4 6 9 7 . 0 3 2 . 2 6 7 * 0 . 0 0 9 7 . 0 3 2 . 3 7 3 O . 4 6 9 7 . 4 9 2 . 4 7 9 *• 0 . 0 0 9 7 . 4 9 2 . 5 8 4 0 . 4 6 9 7 . 9 5 2 . 6 9 0 0.00 9 7 . 9 5 2 . 7 9 6 0. OO 9 7 . 9 5 2 . 9 0 1 0 . 4 6 9 3 . 4 0 3 . 0 0 7 * O . 0 0 9 8 . 4 0 3 . 1 1 3 O . 0 0 9 8 . 4 0 3 . 2 1 9 <:>. o o 9 3 . 4 0 3 . 3 2 4 0 . 4 6 9 8 . 3 6 3 . 4 3 0 0 . 0 0 9 8 . 0 6 3 . - 5 3 6 0 . 4 6 9 9 . 3 2 3 . 6 4 1 * 0 . 0 0 9 9 . 3 2 3 . 7 4 7 O . 4 6 9 9 . 7 7 3 . 8 5 3 0 1 2 3 4 F .ac4 i " * " r e p r e s e n t s a p p r o x i m a t e l y 1 . 7 o b s e r v a t i o n s . (141 (til 1111 till 11 (I It 1141 11 1141 411441 44 44 1144 14 11 14 44 44 11 41 1111 1441 41 44 It It 44 it 41 (1(4 41II 11444444 44 tl 41 44 44 44 41444444444141 44 44(44) 11414414(141 T a b l e 5.4. Ag - A r i t h m e t i c S t a t i s t i c s and H i s t o g r a m . 116 411111II tl it H i ! i l U - H « « V v « U J - t « * U H ! - - « ( H U I U (1 1111 ttil II 1 U ! 1111 « 1111 11 H It 11 II11 Ii II « 11II tl It i l W i l l ) It41 it * l t i l l I I I IH 11IIi i i ! II i i t i SUrlMARV STAT I ST1.CS and W] ST013RAM LOGARITHMIC VALUES Variable - AG 1 Jn I t PPM M .* 2 IB M. i = -«.>. 4293 Mi n -1.0000 1st Quart), le = -0.6970 Std. Dev. •-• 0.4311 Max 0.5793 Median - -0.3979 CV V. - lOO.4 294 Skewncsi. 0.IS15 3rd Quartile = -O.OV69 Anti -Log Mean — 0. 3 7 2 Anti-Log Std. Dev. : (-) 0.138 < + ) 1.004 V. cum "i ant i1ou el s i n t ( i i o-f bins = 36 - bin siz e = 0.0451) 0.00 0.23 0. 095 -1.0226 22.74 23.06 0. 105 -0.9774 ******* x-*•**-* ************ 0.00 23.06 0. 1 17 -O.9323 0.00 23.06 0. 130 -0.3872 0.00 23.06 0. 144 - O .8420 0.00 23.06 0. 160 -0.7969 0.00 23.06 0. 177 -0.7517 0.00 23.06 0. 197 -0.7066 18.35 41.32 0.213 -0.6615 *«*««*«#««*« «•*»#«•****** 0.00 41.32 0. 242 - O .6163 O . O O 41.32 0. 268 -O.S712 0.00 4 1.32 0. 298 -0.5261 6.42 47.72 0.330 -0.4809 ******** 0.00 47.72 0. 367 -0.4358 3.67 51.37 0. 407 -0.3907 *•**•*•* 0.00 51.37 0. 451 -0.3455 11.93 63.24 O . 501 -0.3004 ** *•** ***•*•« *** * * 0.00 63.24 0. 356 6.42 69.63 0.616 -0.2101 ******** 0.00 69.63 0.684 -0.1650 3.21 72.03 0. 759 - O .1198 *««<« 4.13 76.94 0.842 - O .0747 * **« * 2.75 79.68 0.934 -0.0296 **•* 2.29 81.96 1.037 O.0156 ** * 2.75 84.70 1.150 0.0607 * *•* 2.75 87.44 1.276 O.1058 *** 4.13 91.55 1.416 O.1510 * **••:* 0.92 92.47 1.571 0.1961 * 1.38 93.84 1.743 0.2413 * * 0.92 94.75 1 . 934 0.2364 * 1.83 96.58 2. 146 O.3315 0.46 97.03 2.331 0.3767 * 0.92 97.95 2.641 0.4218 « 0.00 97.95 2.931 0.4669 0.46 98.40 3. 251 O . e.121 * 0.92 99.32 3.608 0.5572 * 0.46 99.77 4. 003 0.6024 « :> i 2 3 1 Each "«" represents approximately 1.7 observations. T a b l e 5.5. Ag - L o g a r i t h m i c S t a t i s t i c s and H i s t o g r a m . 117 o cn >; i CO 00 •n r •M c* in « <j> In Ul O urt Ul 1 *4 «• o Vi II -UJ 1 cv V =• • o o o 11 o o o =1 1 s -a v • o M -1 II 1 -1 1 13 a. c« U 1 a • « a it cc i C a. Z 1 • X n 3 1 O 1 • o © O IA 11 II II II II fc. | •=> • Ul li U 1 fc- 1 iti • « li *• •H *-i 1 bi • 3B a • ii .« rvi z: i _l •J J I o fc- II .4 X 1 tt z a i o Ul m •— i « a z a i c • in Ul • fc-* I a i i* • cn n o o ae i (L 1 v • • i 1 i •E 1 IT o o IS 1 1 1 a i -I I • a • c« Q 0. O • o > a- • a. i KM Ul M ||| Si a 'At u Ul u in x: r: a a F i g u r e 5.11. Ag - L o g a r i t h m i c P r o b a b i l i t y P l o t . 118 s i m i l a r t o t h e g o l d p l o t , as w e l l a s d i s c r e t e i n t e r v a l e f f e c t s , y i e l d i n g a r o u g h f i t . T h i s p o p u l a t i o n c o n t a i n s 48.0 % o f t h e s a m p l e s and r e p r e s e n t s b a r r e n h o s t r o c k . The m i d d l e p o p u l a t i o n , c o n t a i n i n g 28.9 % o f t h e s a m p l e s , r e p r e s e n t s s i l v e r p e r m e a t i o n i n t o t h e h a l o z o n e s . T h i s o v e r l a p s w i t h t h e u p p e r p o p u l a t i o n , w h i c h p o s s e s s e s 23.1 % o f t h e t o t a l . W i t h a mean o f 1.31 ppm and a mean p l u s and minus one s t a n d a r d d e v i a t i o n o f 2.17 and 0.79 ppm r e s p e c t i v e l y , i t c o r r e s p o n d s w e l l w i t h g o l d . T h e r e i s a l s o some i n d i c a t i o n o f a f o r t h " n u g g e t " p o p u l a t i o n t h a t a p p e a r s t o be a p p r o x i m a t e l y 3 % o f t h e t o t a l . IC A r s e n i c a l s o a p p r o x i m a t e s a l o g a r i t h m i c d i s t r i b u t i o n as shown on t h e a r i t h m e t i c h i s t o g r a m ( T a b l e 5 . 6 ) . The l o g a r i t h m i c h i s t o g r a m ( T a b l e 5.7) e x h i b i t s s e v e r a l o v e r l a p p i n g p o p u l a t i o n s . T h e s e a r e c l e a r l y d e p i c t e d on F i g u r e 5.12 where a l o w e r p o p u l a t i o n o f 62.8 % has a mean v a l u e o f 2.46 ppm and mean p l u s and minus one s t a n d a r d d e v i a t i o n o f 3.72 and 1.62 ppm. The a n a l y t i c a l d e t e c t i o n l i m i t i s 2 ppm and v a l u e s a r e a f f e c t e d by d i s c r e t e s t e p s o f 1 ppm. The mid p o p u l a t i o n o f 27.2 % i s t h e c l e a r e s t o f t h o s e p r e s e n t on t h e p l o t . I t p o s s e s s e s a mean v a l u e o f 1 1 9 111111 41 4M! II ti 1! 1i 11114! 111141 44 It 41 4441 41 11 41 41 ii ti il 11 Ii 4111 • • . i i . . . . 4i 1! III1 111 II4141411141II ti 4t tt tt 11 4t 11 11 41 44 41 44 14 41 11 11 II 41 tilt 11 44 41 (1 41 tl 1  S U M M A R Y S T A T I S T I C S a n d H I S T O G R A M A R I T H M E T I C V A L U E S v-.-r i a b l e - A S U r . i t P P M N - 2 1 8 7 . 6 3 3 M i n --- 2 . 0 0 0 1 s t Q u a r t i l e = 2 . 0 0 0 S t d . D e v . 2 6 . 1 2 5 Ma;< 3 2 9 . 0 0 0 M e d i a n = 4 . 0 0 0 C V V. •-= 2 7 1 . 2 0 1 a l c e v m e s s 9 . 2 5 2 3 r d G u a r t i l e = 8 . 0 0 0 "•1 c u m >1 e l s i n t <44 o f b i n s = 3 6 - b i n s i z e = 7 . 3 4 3 ) 0 . 0 0 0 . 2 3 - 2 . 6 7 1 6 5 . 6 0 \ 6 5 . 5 3 6.. 6 7 1 ***•*• •*•«•**«•***** * « • * * — > 0 3 2 6 . 1 5 91. . 5 5 1 6 . 0 1 4 «**•**• »'««<«<«<**»««-**#«.«*«.*«'« *•**«•»* 2 . 2 9 9 3 . 3 4 2 5 . 3 5 7 *• * 1 . 3 3 9 5 . 2 1 3 4 . 7 0 0 h * 1 . 8 3 9 7 . 0 3 4 4 . 0 4 3 *• *• 0 . 0 0 9 7 . 0 3 5 3 . 3 3 6 0 . 0 0 9 7 . 0 3 6 2 . 7 2 9 0 . 9 2 9 7 . 9 5 7 2 . 0 7 1 0 . 4 6 9 8 . 4 0 8 1 . 4 1 4 0 . 0 0 9 3 . 4 0 9 0 . 7 5 7 0 . 0 0 9 3 . 4 0 1 0 0 . 1 0 0 0 . O O 9 8 . 4 0 1 0 9 . 4 4 3 0 . 4 6 9 8 . 8 6 1 1 8 . 7 0 6 *• 0 . 4 6 9 9 . 3 2 1 2 8 . 1 2 9 * 0 . 0 0 9 9 . 3 2 1 3 7 . 4 7 1 0 . 0 0 9 9 . 3 2 1 4 6 . 8 1 4 0 . 0 0 9 9 . 3 2 1 5 6 . 1 5 7 0 . 0 0 9 9 . 3 2 1 6 5 . 5 0 0 0 . 0 0 9 9 . 3 2 1 7 4 . 8 4 3 0 . 0 0 9 9 . 3 2 1 3 4 . 1 8 6 0 . 0 0 9 9 . 3 2 1 9 3 . 5 2 9 0 . 0 0 9 9 . 3 2 2 0 2 . 8 7 1 0 . 0 0 9 9 . 3 2 2 1 2 . 2 1 4 0 . 0 0 9 9 . 3 2 2 2 1 . 5 5 7 0 . 0 0 9 9 . 3 2 2 3 0 . 9 0 0 0 . 0 0 9 9 . 3 2 2 4 0 . 2 4 3 0 . 0 0 9 9 . 3 2 2 4 9 . 5 8 6 O . 0 0 9 9 . 3 2 2 5 0 . 9 2 9 0 . 0 0 9 7 . 3 2 2 6 8 . 2 7 1 O . O O 9 9 . 3 2 2 7 7 . 6 1 4 0 . 0 0 9 9 . 3 2 2 0 6 . 9 5 7 O . O O 9 9 . 3 2 2 9 6 . 3 0 0 0 . 0 0 9 9 . 3 2 3 0 5 . 6 4 3 O J O O 9 9 . 3 2 3 1 4 . 9 8 6 0 . 0 0 9 9 . 3 2 3 2 4 . 3 2 9 0 . 4 6 9 9 . 7 7 3 3 3 . 6 7 1 * O 1 2 3 4 E a c h " « " r e p r u ' s c - n t t a p p r o x i m a t e l y 1 . 7 o b s e r v a t i o n s . 4141II1411 It tt 114t 41 tt tt 4111II41 (441 It tt It til l 44 14 41 til l (11141 Htl 41 Hit II It It 44 tttttl (1 11 44 41 44 tt 4t ti 11141t 44 414l 44 44 It It tt 44 44 11 tl 44 It 41111411 Table 5.6. As - A r i t h m e t i c S t a t i s t i c s and H i s t o g r a m . 1 2 0 41 lilt 41 11 14 44 II 44 44 44 41 44 14 4 4 41 4444II« 41 44 414U 4* 41 IIII41 II II IIII Mil II II ii II II l l l l i l It 414444 41 44(1 i i i i it 4t it It 41 il 11 it I11111 il ii II il S U M M A R Y S T A T I S T I C S a n d H I S T O G R A M . L O G A R I T H M I C V A L U E S V a r i a b l e = A S U n i t - P P M N = 2 1 8 M e a n - 0 . 6 9 3 3 M i n = 0 . 3 0 1 0 1 s t Q u a r t i l e - 0 . 3 0 1 0 S t d . D e v . -- 0 . 3 9 0 4 M a : : = 2 . 3 1 7 2 M e d i a n 0 . 6 0 2 1 C V X = . 5 6 . 3 1 3 7 S k e w n e s s = 1 . 4 7 2 4 3 r d Q u a r t i l e = 0 . 9 0 3 1 A n t i - L o g M e a n 4 . 9 3 5 A n t i - L o g S t d . D e v . : <-) 2 . 0 0 7 <+) 1 2 . 1 2 7 = == = = = = = = = :;= = ::-= = •=::.•.: = = = = =• ^= = =:r- = = ;.: = = = = = = ^  = = ^  = =:^== = = = = = = = = = = = = = = =:= = = = = =: = = = = = = 7. c u n . a n t i 1 o q c l s i n t (44 o-f b i n s = 3 6 - b i n s i z e = 0 . 0 6 3 3 ) 0 . 0 0 0 . 2 3 1 . 8 5 9 0 . 2 6 9 4 2 6 . 1 5 2 6 . 2 6 2 . 1 5 1 0 . 3 3 2 7 *•* *-* * * * * * * * * * * ************* *-* 0 . 0 0 2 6 . 2 6 2 . 4 8 9 0 . 3 9 6 0 0 . 0 0 2 6 . 26. 2 . 3 8 0 0 . 4 5 9 3 1 6 . 5 1 4 2 . 6 9 > •-> J~. O . 5 2 2 6 ***** «**•**• *********** 0 . 0 0 4 2 . 6 9 3 . 8 5 4 O . 5 8 6 0 1 1 . 9 3 5 4 . 5 7 4 . 4 5 9 0 . 6 4 9 3 ** ******* ****** 6 . 0 8 6 1 . 4 2 5 . 1 5 9 0 . 7 1 2 6 *•**•* * * 0 . 0 0 6 1 . 4 2 5 . 9 6 9 0 . 7 7 5 9 4 . 1 3 6 5 . 5 3 6 . 9 0 6 0 . 8 3 9 2 ***** 7 . 3 4 7 2 . 0 3 7 . 9 9 0 0 . 9 0 2 6 * ** * ***** 9 . 6 3 8 2 . 4 2 9 . 2 4 4 O . 9 6 5 9 *•* ***** *•***•*• 2 . 7 5 3 5 . 1 6 1 0 . 6 9 5 1.. 0 2 9 2 ** * 3 . 6 7 8 8 . 8 1 1 2 . 3 7 4 1 . 0 9 2 5 ***** 2 . 2 9 9 1 . 1 0 1 4 . 3 1 6 1 . 1 5 5 8 *•* * 0 . 4 6 9 1 . 5 5 • 1 6 . 5 6 4 1 . 2 1 9 2 * 0 . 9 2 9 2 . 4 7 1 9 . 1 6 4 1 . 2 8 2 5 * 0 . 4 6 9 2 . 9 2 2 2 . 1 7 1 1 . 3 4 5 8 * 0 . 9 2 9 3 . 8 4 2 5 . 6 5 2 1 . 4 0 9 1 * 1 . 3 8 9 5 . 2 1 2 9 . 6 7 8 1 . 4 7 2 4 0 . 0 0 9 5 . 2 1 3 4 . 3 3 6 1 . 5 3 5 8 0 . 9 2 9 6 . 1 2 3 9 . 7 2 6 1 . 5 9 9 1 * 0 . 9 2 9 7 . 0 3 4 5 . 9 6 1 1 . 6 6 2 4 * 0 . 0 0 9 7 . 0 3 5 3 . 1 7 5 1 . 7 2 5 7 0 . 0 0 9 7 . 0 3 6 1 . 5 2 2 1 . 7 8 9 0 0 . 9 2 9 7 . 9 5 7 1 . 1 7 8 1 . 6 5 2 3 « 0 . 4 6 9 3 . 4 0 8 2 . 3 3 0 1 . 9 1 5 7 *• 0 . 0 0 9 8 . 4 0 9 5 . 2 7 6 1 . 9 7 9 0 0 . 4 6 9 8 . 8 6 1 1 0 . 2 3 1 2 . 0 4 2 3 « 0 . 4 6 9 9 . 3 2 1 2 7 . 5 3 3 2 . 1 0 5 6 * O . O O 9 9 . 3 2 1 4 7 . 5 3 1 2 . 1 6 0 9 0 . 0 0 9 9 . 3 2 1 7 0 . 7 1 1 2 . 2 3 2 3 0 . 0 0 9 9 . 3 2 1 9 7 . 5 0 6 2 . 2 9 5 6 0 . 0 0 9 9 . 3 2 2 2 8 . 5 0 6 2 . 3 5 8 9 0 . 0 0 9 9 . 3 2 2 6 4 . 3 7 3 2 . 4 2 2 2 O . O O 9 7 . 3 2 3 0 5 . 0 7 0 2 . 4 8 5 3 O . 4 6 9 7 . 7 7 3 3 3 . 8 0 0 2 . 5 4 8 9 * :> l 2 3 4 E a c h "*•*' r e p r e s e n t s a p p r o x i m a t e l y 1 . 7 o b s e r v a t i o n s . T a b l e 5.7. As - L o g a r i t h m i c S t a t i s t i c s and H i s t o g r a m . 121 I B <r a. a. • CO 04 O • • • « o o ». a-• •M o •N on i Ul •1 *• OH IA • « <n Vl I I -  => • o rv COi O 11. O <M r-</ • *> •Ti li> _l n «X u I I o • o Ol a 11 X z I I • • X I I oz r i a I I "O • a o in I I ». II M ti +=>  Ul I I Ul I I • K n a r-v III « 11 X I I O #• r> I I • » •N » h~ n r» » f> a Z3 I I o rv r\ VI u ae a I I • 01 • • CC r» a n rp • m cn Ul CM o o Ul U n • • • Ul X c • a a "X m a <c • • o. • a • 01 o • e> • o_ 1 a. • F i g u r e 5.12. As - L o g a r i t h m i c P r o b a b i l i t y P l o t . 122 8.25 ppm w i t h mean p l u s o r minus one s t a n d a r d d e v i a t i o n o f 10.33 and 6.58 ppm. An u p p e r m o s t p o p u l a t i o n may n o t f e a s i b l y be s e p a r a b l e f r o m t h e mid p o p u l a t i o n . I t ' s s l o p e l i n e on t h e p r o b a b i l i t y p l o t c r o s s e s t h e mid p o p u l a t i o n s l o p e l i n e . As a s e p a r a t e p o p u l a t i o n , i t would p o s s e s s 10.0 % o f t h e s a m p l e s , w i t h a mean o f 32.51 ppm and mean p l u s and minus one s t a n d a r d d e v i a t i o n o f 75.98 and 13.91 ppm r e s p e c t i v e l y . T h r e s h o l d h o r i z o n t a l l i n e s show a two s t a n d a r d d e v i a t i o n l o w e r t h r e s h o l d f o r t h e h i g h e s t p o p u l a t i o n m a t c h i n g c l o s e l y t h e u p p e r t h r e s h o l d o f t h e l o w e s t p o p u l a t i o n . 5.3.2. PROBABILITY PLOTS - HALO ELEMENTS POTASSIUM P o t a s s i u m , as a r e p r e s e n t a t i v e o f Group I I I e l e m e n t s , shows a s t e p p r o g r e s s i o n i n a n a l y s i s on b o t h t h e a r i t h m e t i c and l o g a r i t h m i c h i s t o g r a m s ( T a b l e s 5.8 and 5 . 9 ) . B o t h i l l u s t r a t e t h e p r e s e n c e o f d i s t i n c t p o p u l a t i o n s w h i c h a r e d e p i c t e d on t h e l o g a r i t h m i c p r o b a b i l i t y p l o t ( F i g u r e 5 . 1 3 ) . The l o w e s t p o p u l a t i o n o f 48.0 X i s t y p i c a l o f t h e a v e r a g e b a c k g r o u n d s a m p l e o f SAM U n i t . V e r y l i t t l e p o t a s s i u m i s a v a i l a b l e f o r e x t r a c t i o n , t h u s t h e s a m p l e s y i e l d v a l u e s c l o s e t o t h e d e t e c t i o n l e v e l . *8*S 9 i q « X tt»ttttt*ttt»i>tt«tt»»tt#ttn»»tt»«i*tt#iT«u»i*ttttn tittnti int it intittnt injttitimti * 2 3 1 " O 66 9t~*0 at i " o <-£*66 0 0 ' 0 ZZ ' Li, 0 0 • 0 -> 2 11 ' 0 r . £ " 6 6 9 V 0 6 0 1 " O 9 8 ' 0 6 0 0 * 0 9 0 1 •<) 9 0 * 0 6 0 0 * 0 * ZO\ " 0 9 8 * 0 6 Zt> *0 0 0 t * 0 G 6 V . 6 0 0 * 0 9 6 0 ' <:> T . 6 ' / . 6 0 0 * 0 £ 6 0 • 0 S 6 * i i i OO ' 0 *•» 0 6 0 • 0 S 6 " Z . 6 B £ * X / . B O ' O O S * 9 6 0 O * 0 V O O " O O S " 9 6 O 0 * 0 »•»»** I D O • 0 O S ' 9 6 19--2 8Z.O ' 0 Zb'ZL 0 0 ' 0 t rZO " 0 Zb'Zb 0 0 * 0 *•»* x /.o • 0 Zb'Z.b LZ'Z 3 9 0 • 0 1*9 " 0 6 0 0 ' 0 S 9 0 " 0 .179 " 0 6 0 0 * 0 * » * » • » * » ^ 9 0 * 0 t ' 9 * 0 6 O S ' S 6 S O ' 0 9 1 " S 8 0 0 " 0 9 G 0 ' 0 9X * S 8 0 0 " 0 #•»•»»•»•*»•»•»»**•* 3 S 0 • 0 9 1 ' S B 6 0 " O X 6t?0 "O X X *GZ. 0 0 *0 9 t r 0 " 0 X X * S £ 0 0 " 0 «•*>**»*»•****•)•»* £ t - 0 " 0 XX * S £ £ 6 " I X OfrO " 0 fr2"£9 0 0 * 0 Z . £ 0 " O bZ'£9 0 0 " 0 t-r.o • o V Z " £ 9 0 0 " 0 **•»•»»** »»>•*•» *•»•»# 0 £ 0 ' 0 t * S * £ 9 t 7 8 " S X Z .30 " 0 9 t / * 0 S 0 0 * 0 t»:*0 * 0 91/ ' O S 0 0 " 0 IZO " 0 9 t * * 0 S 9 6 V S 8 X 0 ' 0 <":s"i7t- o o *o S X O * 0 "TS ' t ' t - 0 0 " 0 9 S < — • • * * * * * • » * * * » # * » *•* * »•»*•» *»•>»•.* »•* » * » Z T O • 0 . ZQ't'b OS*t/ t O O O ' 0 £"** * 0 0 0 ' 0 -yut <5 r. i =: = = = =: = = = = = ==: = = = = - " = = — -•-=•:= j - - = rr.;=;-: — — — = :.T^------r= : Ot-0 ' 0 O S O " 0 i") X (j • O ay. TVJifMirj p j £ u e T. pan = N 6 G X • X oz i - o I 0 ' o (-/'.) =.-. :<*?|.| £ S I *6/. t- i 'O " 0 O C O ' O V. A 3 '••-•>a -p-iB l.lT-i.1l.| O 1 C|'." t -Jv.A, iirittititttiittiittttnntttttttittinnHittiiHti tr »n if t> n nt: U+MI H-IMUMI M it turn turn u t i n n t t u t u U I H U H N I lui ' . invtittui 124 4!11l!41iii:ii41liiimti4i! HUil l it i i lJI 4141 !t 11 it 4141111111 1141 H 1111 II4111 411141 II41 41 41 114141441111 411141 (1II t| Uti il 41 44 41 11-14 till it 11 till S U M M A R Y S T A T I S T I C S a n d H I S T C l G R A M L O G A R I T H M I C V A L U E S V a r i a b l e — K U n i. t ("/,) N = 218 I'lt-ai i - -.1 . 6 5 1 0 M i n = - 2 . 0 0 0 0 1 s t Q u a r t i l e =; - 2 . 0 0 0 0 S t d . D e v . •-• 0 . 3 4 2 9 M a x - 0 . 9 2 0 8 M e d i a n = - . 1 . 6 9 9 0 c v v. - - 2 0 . 7 7 0 7 S k E i w n e s s 0 . 2 4 6 7 3 r d Q u a r t i l e = - 1 . 3 9 7 9 A n t i - L o g M e a n = 0 . 0 2 2 A n t i — L o q S t d . D e v . : (--) 0 . 0 1 0 (+> 0 . 0 4 9 7. c u m 7. a n t i 1 o g e l s i n t (44 of b i n s = 3 6 - b i n s i z e = 0 . 0 3 0 0 ) 0 . 0 0 0 . 2 3 0 . 0 1 0 - 2 . 0 1 5 4 4 4 . 5 0 4 4 . 5 2 0 . 0 1 0 - 1 . 9 8 4 6 * « • * « « * * « « « « * * « * « « « « « « « « « « « « . * « * « — > 5 £ 0 . 0 0 4 4 . 5 2 0.011 - 1 . 9 5 3 7 0 . 0 0 4 4 . 5 2 0 . 0 1 2 - 1 . 9 2 2 9 0 . 0 0 4 4 . 5 2 0 . 0 1 3 - 1 . 8 9 2 1 0 . 0 0 4 4 . 5 2 0 . 0 1 4 - 1 . 8 6 1 2 0 . 0 0 4 4 . 5 2 0 . 0 1 5 - 1 . 8 3 0 4 O . O O 4 4 . 5 2 0 . 0 1 6 - 1 . 7 9 9 6 0 . 0 0 4 4 . 5 2 0 . 0 1 7 - 1 . 7 6 8 7 0 . 0 0 4 4 . 5 2 0 . 0 1 8 - 1 . 7 3 7 9 0 . 0 0 4 4 . 5 2 0 . 0 2 0 - 1 . 7 0 7 1 5 . 9 6 5 0 . 4 6 0 . 0 2 1 - 1 . 6 7 6 2 O . O O 5 0 . 4 6 0 . 0 2 3 - 1 . 6 4 5 4 0 . 0 0 5 0 . 4 6 0 . 0 2 4 - 1 . 6 1 4 6 0 . 0 0 5 0 . 4 6 0 . 0 2 6 - 1 . 5 8 3 7 O . O O 5 0 . 4 6 0 . 0 2 8 - 1 . 5 5 2 9 1 2 . 8 4 6 3 . 2 4 0 . 0 3 0 - 1 . 5 2 2 1 0 . 0 0 6 3 . 2 4 0 . 0 3 2 - 1 . 4 9 1 2 0 . 0 0 6 3 . 2 4 0 . 0 3 5 - 1 . 4 6 0 4 0 . 0 0 6 3 . 2 4 0 . 0 3 7 - 1 . 4 2 9 6 0 . 0 0 6 3 . 2 4 0 . 0 4 0 - 1 . 3 9 8 7 1 1 . 9 3 7 5 . 1 1 0 . 0 4 3 - 1 . 3 6 7 9 0 . 0 0 7 5 . 1 1 0 . 0 4 6 - 1 . 3 3 7 1 0 . 0 0 7 5 . 1 1 0 . 0 4 9 - 1 . 3 0 6 2 1 0 . 0 9 8 5 . 16 0 . 0 5 3 - 1 . 2 7 5 4 *«***««*««•** 0 . 0 0 8 5 . 1 6 0 . 0 5 7 - 1 . 2 4 4 6 5 . 5 0 9 0 . 6 4 0 . 0 6 1 - 1 . 2 1 3 7 0 . 0 0 9 0 . 6 4 O . 0 6 6 - 1 . 1 8 2 9 2 . 2 9 . 9 2 . 9 2 0 . 0 7 0 - 1 . 1 5 2 1 *** 0 . 0 0 9 2 . 9 2 0 . 0 7 6 - 1 . 1 2 1 2 3 . 6 7 9 6 . 5 8 0 . 0 8 1 - 1 . 0 9 0 4 *«•*»# O . O O 9 6 . 5 8 0 . 0 8 7 - 1 . 0 5 9 6 1 . 3 3 9 7 . 9 5 0 . 0 9 4 - 1 . 0 2 0 7 *•* 0 . 9 2 9 8 . 8 6 0 . 1 0 0 - 0 . 9 9 7 9 « 0 . 0 0 9 8 . 0 6 0 . 1 0 0 - 0 . 9 6 7 1 0 . 4 6 W . 3 2 0 . 1 1 6 - 0 . 9 3 6 2 « 0 . 4 6 9 9 . 7 7 0 . 1 2 4 - 0 . 9 0 5 4 * < ".> 1 2 3 4 E a c h " « • " r e p r e s e n t s a p p r o x i m a t e l y 1 . 7 o b s c r v i i t i o n s . T a b l e 5.9. K - L o g a r i t h m i c S t a t i s t i c s and H i s t o g r a m . F i g u r e 5.13. K - L o g a r i t h m i c P r o b a b i l i t y P l o t . 126 In t h e o r e z o n e s and h a l o s , p o t a s s i u m i s a v a i l a b l e f r o m f e l d s p a r a l t e r a t i o n . T h i s shows as a t l e a s t one and p o s s i b l y two p o p u l a t i o n s , r e p r e s e n t i n g 52.0 % o f t h e t o t a l s a m p le s e t . In C h a p t e r IV, u s i n g whole r o c k a n a l y s e s , i t was shown t h a t h a l o s e x t e n d o u t f r o m t h e o r e z o n e s t o d o u b l e t h e t a r g e t w i d t h . The p r o b a b i l i t y p l o t f o r g o l d ( F i g u r e 5.8) shows 25 % o f t h e s a m p l e s i n t h e anomalous p o p u l a t i o n . A r e s u l t o f 52.0 % o f t h e p o t a s s i u m s a m p l e s b e i n g i n t h e h i g h e r p o p u l a t i o n i s , t h e r e f o r e , c o n s i s t e n t w i t h t h e e a r l i e r o b s e r v a t i o n s . SODIUM Sodium, l i k e p o t a s s i u m , i s a m a j o r e l e m e n t i n t h e o r e z o n e s and p a r t way i n t o t h e h a l o s . R e s u l t s f o r s o d i u m a r e s i m i l a r t o , b u t n o t q u i t e m a t c h i n g , t h o s e f o r p o t a s s i u m ( T a b l e s 5.10 and 5 . 1 1 ) . T h e r e a r e two p o p u l a t i o n s f o r s o d i u m ( F i g u r e 5 . 1 4 ) . The l o w e r p o p u l a t i o n 70.0 %, r e p r e s e n t s h o s t r o c k and t h e o u t e r p o r t i o n o f h a l o s , w h i l e t h e h i g h e r 30.0 % r e p r e s e n t s o r e z o n e s and i n n e r p o r t i o n o f h a l o s . The s h o r t a g e o f b i n s c o n t a i n i n g d a t a p o i n t s l e a d s t o u n c e r t a i n t y i n p o p u l a t i o n b r e a k s and t o v a r i e d i n t e r p r e t a t i o n s . S o u r c e o f s o d i u m i s f r o m p r i m a r y p l a g i o c l a s e i n t h e h o s t r o c k and a l b i t e i n t h e 127 II 144141414111 l i l t 41 4441 414444 414MH4 4I444i 111111 4 '4 i 1141 i l (II!4111 44 4 1 44 44 41 44 41 li II 41 41 t ! 4 ' 4 l 4i II41 41 44 44 4'41 '41 II4141 11(I It ( M l 1(4141 -1411 •4144 S U M M A R V S T A T I S T I C S a n d H I P T G C 3 R A M A R I T H M E T I C V A L U E S V a r i a b l e - N A . U n i t . - (•/-> N : - 2 1 8 i ' lei i f i • • 0 . 0 2 4 M i n - 0 . 0 1 0 1 s t Q u * r t i l e 0 . 0 1 0 D e v . =-• 0 . 0 1 6 M a x -- 0 . 0 8 0 M e d i a n -•- 0 . 0 2 0 C V V. --• 6 4 . 8 4 7 S l . e w n e s s = 1 . 2 4 9 3 r d Q u a r t i l e - 0 . 0 3 0 =:•_-—zr.-.- ~ - =.zz zzzzzzr. :-i:L:r-=::":r.=:=:=:". — — n r . - ~ . z z z z z = : = z::.:zzz:zzzzz:=-.zz=zz~zz: — — -.--z = zz: — V. c u m 7. e l s i n t <4t o f b i n s - 3 6 - b i n s i z e = 0 . 0 0 0.23 0 . 0 0 9 3 3 . 9 4 3 4 . 0 2 0 . 0 1 1 *-* ******** *«* * ««««-*«-« * *•*•** »:-0.00 3 4 . 0 2 0 . 0 1 3 <".'. 0 0 3 4 . 0 2 0 . 0 1 5 0 . 0 0 3 4 . 0 2 0 . 0 1 7 0 . 0 0 3 4 . 0 2 0 . 0 1 9 3 2 . 5 7 6 6 . 4 4 0 . 0 2 1 ****** ******** *••**<**••:* * •:•*•* < •« *•»;•*• 0 . 0 0 6 6 . 4 4 0 . 0 2 3 0 . 0 0 6 6 . 4 4 0 . 0 2 5 0 . 0 0 6 6 . 4 4 0 . 0 2 7 0 . 0 0 6 6 . 4 4 0 . 0 2 9 1 1 . 4 7 7 7 . 8 5 0 . 0 3 1 ************** 0 . 0 0 7 7 . 8 5 0 . 0 3 3 0 . 0 0 7 7 . 8 5 0 . 0 3 5 0 . 0 0 7 7 . 8 5 0 . 0 3 7 0 . 0 0 7 7 . 8 5 0 . 0 3 9 1 0 . 5 5 8 8 . 3 6 0 . 0 4 1 ************* 0 . 0 0 8 8 . 3 6 0 . 0 4 3 0 . 0 0 8 8 . 3 6 0 . 0 4 5 0 . 0 0 8 8 . 3 6 0 . 0 4 7 0 . 0 0 8 8 . 3 6 0 . 0 4 9 4 . 5 9 9 2 . 9 2 0 . 0 5 1 ****** 0 . 0 0 ' 9 2 . 9 2 0 . 0 5 3 0 . 0 0 9 2 . 9 2 0 . 0 5 5 0 . 0 0 9 2 . 9 2 0 . 0 5 7 0 . 0 0 9 2 . 9 2 0 . 0 5 9 4 . 5 9 9 7 . 4 9 0 . 0 6 1 ««•«««« O . 0 O 9 7 . 4 9 0 . 0 6 3 0 . 0 0 9 7 . 4 9 0 . 0 6 5 0 . 0 0 9 7 . 4 9 O . 0 6 7 i . i .OO 9 7 . 4 9 0 . 0 6 9 1 . 3 3 9 9 . 3 2 0 . 0 7 1 ** 0 . 0 0 9 9 . 3 2 0 . 0 7 3 o . O O 9 9 . 3 2 0 . 0 7 5 0 . 0 0 9 9 . 3 2 0 . 0 7 7 0 . 0 0 9 9 . 3 2 0 . 0 7 9 ' 0 . 4 6 9 9 . 7 7 0 . 0 8 1 * 0 1 2 3 4 E a c h " * " r e p r e s e n t s a p p r o x i m a t e l y 1 . 7 o b s ^ r v a t i o r e s . 11114144114114It 14 tt4t41411t 41 tt 11 44 44 It tt 44444t 44 41 14 1114 44 44 41 41 44 41 41 41 44 « 44 44 44 44 41 44 44« 44 44 44 41 4141441414441144 4141 44 4444 4414 1144 (414 1441 T a b l e 5.10. Na - A r i t h m e t i c S t a t i s t i c s and H i s t o g r a m . 128 il 11144111111111 I111 H -II IHIHiriUHIIill It 11114111II HUH II II111111 i i i ! III11111 II I114II «il 11 i! it 414! 1141 ii il 414111 il «l i! tl 11 tl I111 till tl II (I S U M M A R Y S T A T I S T I C S a n d H I S T O G R A M L O G A R I T H M I C V A L U E S v a r i a b l e =• N A t in i t iv:? N - 2 1 9 M e a n -• - 1 . 6 9 6 3 M i n - 2 . 0 0 0 0 l i s t Q u a r t i l e = -'. 0 0 0 0 S t d . D e v . « 0 . 2 6 2 7 M a x - 1 . 0 9 6 7 M e d i a n = I. - 697i.) C V 7. - . 1 5 . 1 8 3 8 S l ' . e w n u s s 0 . 3 0 6 4 3 r d Q u a r t i l t - ? = 1 . 5 2 2 7 A n t i - L o g M e a n 0 . 0 2 0 A n t i - L a g G t d . D e v . : ( - ) 0 . 0 1 1 (+ > 0 . 0 3 7 7. c u m '/. a n t i l o q e l s i n t (it o+ b i n s =- 3 6 - b i n s i z e = 'J. 0 2 5 8 ) 0 . 0 0 0 . 2 3 0 . 0 1 0 - 2 . 0 1 2 9 3 3 . 9 4 3 4 . 0 2 0 . 0 1 0 - 1 . 9 0 7 1 * * * *:•**•:*+******•* *:-********** * * * * — - > 4 3 0 . 0 0 3 4 . 0 2 0 . 0 11 - 1 . 9 6 1 3 0 . 0 0 3 4 . 0 2 0 . 0 1 2 - 1 . 9 3 5 5 0 . 0 0 3 4 . 0 2 0 . 0 1 2 - 1 . 9 0 9 7 0 . 0 0 3 4 . 0 2 0 . 0 1 3 - 1 . 8 3 3 9 0 . 0 0 3 4 . 0 2 0 . 0 1 4 - 1 . 8 5 0 1 0 . 0 0 3 4 . 0 2 0 . 0 1 5 •• 1 . 8 3 2 3 0 . 0 0 3 4 . 0 2 0 . 0 1 6 - - 1 . 8 0 6 5 0 . 0 0 3 4 . 0 2 0 . 0 1 7 - 1 . 7 8 0 7 O . O O 3 4 . 0 2 0 . 0 1 3 - 1 . 7 5 4 9 0 . 0 0 3 4 . 0 2 0 . 0 1 7 - 1 . 7 2 9 1 0 . 0 0 3 4 . 0 2 0 . 0 2 0 - 1 . 7 0 3 3 3 2 . 5 7 6 6 . 4 4 0 . 0 2 1 - 1 . 6 7 7 5 * K * **.*«•**•*•**«*»:*****«**•«•*** *** * — - > 4 1 0 . 0 0 6 6 . 4 4 0 . 0 2 2 - 1 . 6 5 1 7 0 . 0 0 6 6 . 4 4 0 . 0 2 4 - 1 . 6 2 5 9 0 . 0 0 6 6 . 4 4 0 . 0 2 5 - 1 . 6 0 0 1 O . O O 6 6 . 4 4 0 . 0 2 7 - 1 . 5 7 4 3 0 . 0 0 6 6 . 4 4 0 . 0 2 8 - 1 . 5 4 3 5 1 1 . 4 7 7 7 . 0 5 0 . 0 3 0 - 1 . 5 2 2 7 * * * * * * * * * * * * * » 0 . 0 0 7 7 . 0 3 0 . 0 3 2 - 1 . 4 9 6 0 0 . 0 0 7 7 . 8 5 0 . 0 3 4 - 1 . 4 7 1 0 0 . 0 0 7 7 . 8 5 0 . 0 3 6 - 1 . 4 4 5 2 0 . 0 0 7 7 . 8 5 0 . 0 3 8 - 1 . 4 1 9 4 1 0 . 5 3 3 3 . 3 6 0 . 0 4 0 - 1 . 3 9 3 6 * * * * * * * * * * * * * 0 . 0 0 8 0 . 3 6 0 . 0 4 3 - 1 . 3 6 7 8 0 . 0 0 8 0 . 3 6 0 . 0 4 5 - 1 . 3 4 2 0 0 . 0 0 8 8 . 3 6 0 . 0 4 8 -•1 . 3 1 6 2 4 . 5 9 7 2 . 9 2 0 . 0 3 1 - 1 . 2 9 0 4 * * » * ** 0 . 0 0 9 2 . 9 2 0 . 0 5 4 - 1 . 2 6 4 6 0 . 0 0 9 2 . 9 2 0 . 0 5 3 - 1 . 2 3 0 8 4 . 5 9 9 7 . 4 9 0 . 0 6 1 - 1 . 2 1 3 0 *«»«»:* 0 . 0 0 9 7 . 4 9 0 . 0 6 5 - 1 . 1 8 7 2 O . O O 9 7 . 4 9 0 . 0 6 9 - 1 . 1 6 1 4 1 . 0 3 9 9 . 3 2 0 . 0 7 3 - 1 . 1 3 5 6 ** O . O O 9 9 . 3 2 0 . 0 7 0 . - 1 . 1 0 9 8 0 . 4 6 9 7 . 7 7 0 . 0 3 2 - 1 . 0 0 4 0 * T a b l e 5.11. Na - L o g a r i t h m i c S t a t i s t i c s and H i s t o g r a m . o O o o 40 n I S rn k» rv (4 I A « A o V I II - U Z> ' M » a n »-v • 4* rt -1 il i i «r Cl W 1 o • T4 a II a B X w X 1 X II <c a i •o • O o I / I II 3 I I II II II — i 4 = • uj il IAJ M t- i (A • ed. n M U kl k— s a i T~ II n » (—1 «J 1 O II * k> et X 3 1 o kn V . u c =1 X tk 1 C • « C» • • OS »-• 1 <% • at m U l u a a 1 11 • • 1 •n X <r E • •H 3 9 i 1 Du a • C 4 i M o 4. _ in «• _ in g u r e 5.14. Na - L o g a r i t h m i c P r o b a b i l i t y P l o t . 130 hydro-thermal a l t e r a t i o n o f t h e o r e z o n e s and h a l o s . LEAD I n f o l l o w i n g t h e same a p p r o a c h f o r d i a g n o s i n g l e a d p o p u l a t i o n s , t h e l o g a r i t h m i c h i s t o g r a m ( T a b l e 5.12) p e r m i t s more d i f f e r e n t i a t i o n t h a n t h e a r i t h m e t i c h i s t o g r a m ( T a b l e 5 . 1 3 ) . The p r o b a b i l i t y p l o t ( F i g u r e 5.15) i s , however, c o n f u s i n g due t o t h e o v e r l a p p i n g t h r e s h o l d s i n d e f i n e d p o p u l a t i o n s . The l o w e s t p o p u l a t i o n s u f f e r s f r o m t h e same d i s c r e t e s t e p p r o g r e s s i o n and p r o x i m i t y t o d e t e c t i o n a s t h e e a r l i e r d e s c r i b e d e l e m e n t s . A mid p o p u l a t i o n , t o g e t h e r w i t h t h e l o w e s t p o p u l a t i o n , r e p r e s e n t t h e a v e r a g e r o c k v a l u e d i s t r i b u t i o n and a c c o u n t f o r 83.0 % o f t h e t o t a l s a m p l e s e t . The most h i g h l y anomalous v a l u e s i n t h e u p p e r 4 %, as a s e p a r a t e f o r t h p o p u l a t i o n , c o m p l e t e l y e n c l o s e w i t h i n i t s t h r e s h o l d s t h e t h i r d p o p u l a t i o n . T h e s e two h i g h e s t p o p u l a t i o n s o f 17.0 % c o n s i s t o f s a m p l e s d o m i n a n t l y i n t h e h a l o z o n e s , w i t h some o v e r l a p i n t o o r e z o n e s . Due t o t h e c o n s i d e r a b l e o v e r l a p o f p o p u l a t i o n s , t h e a u t h o r i n t e r p r e t s t h e p r e s e n c e o f h i g h l e a d v a l u e s as an i n d i c a t i o n t h a t a g i v e n s a m p l e i s l i k e l y t o be f r o m t h e b a s e m e t a l e n r i c h e d h a l o , b u t t h e a b s e n c e o f l e a d does n o t mean t h a t t h e s a m p l e i s n o t f r o m t h e h a l o . 131 41 41414t 411! ii 44 ii 4144 44 4 ! 41414! 41 4 1 41 4 1 41 44 4 4 44 41 41 4! (hi 414144 11 41 44 41 I 41 41 41 44 4l 4t tl(', 4! 41 it II414! 4111II 41 44 41 it 41 II H4111 11 41 11 14 14 44 11 it S U M M A R Y S T A T I S T I C S a n d H I S T Q S R A I * L O G A R I T H M I C V A L U E S V/ar i o b 1 e - P B U n I t = P P M N =- 2 1 S 0 . 3 0 1 3 M i r 0 . 0 0 0 0 1 s t Q u a r t i l e = 0 . 6 - 7 9 0 S i d . D e v . - 0 . 2 9 4 7 M.:»>: 2 . 1 3 9 9 M e d i a n = 0 . 3 4 5 1 C v' 7. 3 6 . 7 7 1 9 - 0 . 1 . 4 7 6 3 r d Q u a r t i l e = 0 . 9 5 4 2 A u t i • L o g M e a n 6 . 3 2 9 A n t i - I . o q S4-.d. D e v . : ( - ) 3 . 2 1 1 <+) 1 2 . 4 7 4 c u m V. intl i 1 oc i c I E i n t (44 o-f b i n * = 3 6 - b i n s i z e = 0 . 0 6 1 1 ) 0 . 0 0 0 . 2.3 0 . 9 3 2 — 0 . 0 3 0 6 3 . 6 7 3 . aa 1 . 0 7 3 0 . 0 3 0 6 ***** 0 . 0 0 3 . 8 0 1 . 2 3 5 0 . 0 9 1 7 0 . 0 0 3 . 3 3 1 . 4 2 2 0 . 1 5 2 0 0 . 0 0 3 . 8 8 1 . 6 3 7 0 . 2 1 4 0 0 . 0 0 3 . 8 8 1 . 8 8 4 0 . 2 7 5 1 . Ow» 8 . 9 0 2 . 1 6 9 0 . 3 3 6 3 ****** 0 . 0 0 0 . 9 0 2 . 4 9 7 0 . 3 9 7 4 0 . OO 0 . 9 0 2 . 8 7 4 0 . 4 5 8 5 7 . 3 0 1 6 . 6 7 3 . 3 0 9 0 . 5 1 9 7 ********** 0 . 0 0 1 6 . 6 7 3 . 8 0 9 0 . 5 8 0 3 5 . 7 6 2 2 . 6 0 4 . 3 8 5 0 . 6 4 2 0 ******** 1 1 . 0 1 33-* 5*6 5 . 0 4 8 0 . 7 0 3 1 ************** 0 . 0 0 3 3 . 5 6 5 . 8 1 1 0 . 7 6 4 2 1 1 . O l 4 4 . 5 2 6 . 6 8 9 O . 8 2 5 4 ************** 1 3 . 7 6 5 0 . 2 2 7 . 7 0 1 0 . 8 3 6 5 ***************** 1 3 . 3 0 71 . 4 6 8 . 8 6 5 0 . 9 4 7 7 ********«*#**«•*<•« 1 0 . S 3 3 1 . 9 6 1 0 . 2 0 5 1 . 0 0 8 0 ************* 5 . 0 5 8 6 . 9 9 1 1 . 7 4 7 1 . 0 6 9 9 ***** * 3 . 5 0 9 2 . 4 7 1 3 . 5 2 3 1 . 1 3 1 1 ******* 3 . 6 7 9 6 . 1 2 1 5 . 5 6 7 1 . 1 9 2 2 *«« *« 0 . <4 6 9 6 . 5 8 1 7 . 9 2 1 1 . 2 5 3 4 * 0 . 9 2 9 7 . 4 9 2 0 . 6 3 0 1 . 3 1 4 5 * 0 . 4 6 9 7 . 9 5 2 3 . 7 4 9 1 . 3 7 5 6 * 0 . 0 0 9 7 . 9 5 2 7 . 3 3 9 1 . 4 3 6 8 0 . 9 2 9 3 . 8 6 3 1 . 4 7 1 1 . 4 9 7 9 * O . 0 0 9 3 . 8 6 3 6 . 2 2 9 1 . 5 5 9 1 0 . 0 0 9 8 . 8 6 4 1 . 7 0 6 1 . 6 2 0 2 0 . 0 0 9 0 . 8 6 4 8 . 0 1 0 1 . 6 8 1 3 0 . 0 0 9 8 . 8 6 3 5 . 2 6 8 1 . 7 4 2 5 O . 4 6 V 9 . 3'* 6 3 . 6 2 3 1 . 8 0 3 6 « 0 . 0 0 9 9 . 3 2 7 3 . 2 4 1 1 . 8 6 4 8 o . OO 9 C ' . 3 V 0 4 . 3 1 2 1 . 9 2 5 9 O . 0 0 7 9 . 3 2 9 7 . 0 5 8 1 . 9 8 7 0 0 . 0 0 9 9 . 3 2 1 1 1 . 7 3 0 2 . 0 4 8 2 0 . 0 0 9 9 . 3*> 1 2 3 . 6 2 0 2 . 1 0 9 3 0 . 4 6 9 9 . 7 7 1 4 0 . 0 6 4 2 . 1 7 0 4 * 0 1 2 3 4 E a c h r e p r e s e n t s a p p r o x i m a t e l y 1 . 7 o b s e r v a t i o n s . 44 It 4t 44114* (t 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 #44 it H 44 44« « 44 41 44 41 4t 44 414444 44 44 44 444t 44 44 44 44 44 44 44 44 44 4t 44 44 44 44 44 44 4t 44 (t 44 44 4144 44 (4 414t 44 T a b l e 5.12. Pb - L o g a r i t h m i c S t a t i s t i c s and H i s t o g r a m . 1 3 2 « « It«*t 414* «<m 414Mt IMIJJ It +1 « 4*+t *44HiU'114 JUt 41-IUMH) 4UM i il 114) W tt 41 II (Ml +144 (1 11 4 1 44 41 114 1 44 4 1 44 4 4 4 1 41 44 44 14 41 (1 (1 4 1 (1 S U M M A R Y S T A T I S T 1 C S a n d H I S T O G R A M A R I T H M E T I C V A L U E S V a r i a b l e =•= P6 U n i t - P P M N = : : io M<n-f<i. - 0 . 1 6 5 M i n •- } . 0 0 0 1 s t Q u d i ' t i l e - 5 . OC G U I . D e v . --• 1 0 . 4 3 0 M a x - 1 3 0 . 0 0 0 M e d i a n = 7 . OC C V 7. -- 1 2 7 . 743 i j k e w n e s s - 9 . 5 6 0 3 r d Q u a r t i l e - 9 . 0 0 0 Z — ZZZZZTL\ZZZZZZ-ZZZZZZZ-.ZZZZ^ZZZTZZZZZZZZZZ zzz zzzz: -_: t.: zz ^ : =-.: T- zzz:= zzz z z z : z z z z =z = — = r.z zz: zz:zzzzz zzz. zzz zr. :zz 7. <_:um 7. e l s i n t (41 o< b i n s =- 3 6 - b i n s i : - e -0 . 0 0 0 . 2 3 - 0 . 9 5 7 3 . 7 2 0 . 9 0 2 . 9 5 7 a K is- K *-x 3 5 . 7 8 4 4 . 5 2 6 . 0 7 1 * * * * * « * * K *•>.•••: * * *•:•*•»: «t •>-><•-X-K-* 3 7 . 6 1 8 1 . 7 6 1 0 . 7 3 6 K-« * # * • * * • * * * » « • * * ) ( • * * » « • * » * * • * * * * - * - * - * • * 1 2 . 3 4 9 4 . 7 5 1 4 . 7 0 0 v*-v*' ¥.- +; 2 . 2 9 9 7 . 0 3 1 8 . 6 1 4 0 . 9 2 9 7 . 9 5 2 2 . 5 2 9 * 0 . . 0 0 9 7 . 9 5 2 6 . 4 4 3 0. '«?2 9 8 . 8 6 3 0 . 3 5 7 * 0 . 0 0 9 3 . 8 6 3 4 . 2 7 1 0 . 0 0 9 3 . 8 6 3 3 . 1 3 6 0 . 0 0 9 0 . 0 6 4 2 . 1 0 0 0 . 0 0 9 3 . 0 6 4 6 . 0 1 4 O . O O 9 8 . 0 6 4 9 . 9 2 9 0 . 0 0 9 8 . 0 6 3 3 . 8 4 3 0 . 0 0 9 8 . 8 6 5 7 . 7 5 7 G . 4 6 9 9 . 3 2 6 1 . 6 7 1 *• 0 . 0 0 9 9 . 3 2 6 5 . 5 8 6 O . O O 9 9 . 3 2 6 9 . 5 0 0 0 . 0 0 9 9 . 3 2 7 3 . 4 1 4 O . O O 9 9 . 3 2 7 7 . 3 2 9 0 . 0 0 9 9 . 3 2 0 1 . 2 4 3 O . O O 9 9 . 3 2 0 5 . 1 5 7 0 . 0 0 9 9 . 3 2 8 9 . 0 7 I 0 . 0 0 9 9 . 3 2 9 2 . 9 0 6 0 . 0 0 9 9 . 3 2 9 6 . 9 0 0 0 . 0 0 9 9 . 3 2 1 0 0 . 0 1 4 0 . 0 0 9 9 . 3 2 1 0 4 . 7 2 7 O . O O 9 9 . 3 2 1 0 3 . 6 4 3 0 . O O 9 9 . 3 2 1 1 2 . 5 3 7 0 . 0 0 9 9 . 3 > 1 1 6 . 4 7 1 0 . 0 0 9 9 . 3 2 1 2 0 . 3 3 6 O . O O 9 9 . 3 2 1 2 4 . 3 0 0 0 . 0 0 9 9 . 3 2 1 2 8 . 2 1 4 O . O O 9 9 . 3 2 1 3 2 . 1 2 9 O . O O 9 9 . 3 2 1 3 6 . 0 4 3 0 . 4 6 9 9 .77 1 3 9 . 9 5 7 0 1 2 3 4 C c i c l i i C M f P t i r n l ; . a p j i r o x i n i a t e l y 1 . 7 o b s e r v a t i o n s . . 41 14 114444 44 41 II4144II41141114 4111 till 441444 11 II 4t44 41 44 41 41 II tl 14 tl tl tl It It IIII114111 H44 ti It 41 4141 4)41 4(444141 414144411141 44 11 tl 414144 tl 441141 T a b l e 5.13. Pb - A r i t h m e t i c S t a t i s t i c s and H i s t o g r a m . 1 3 3 <X o O a O v • r \ 10 o rt VP rt o TV in rtl Om IV o rt o « rs K VI II -COJ V 3 • O m IV. a t l o rt rt *4 B rt * t V • #• •w d- •» _ i II o . ct W 1 O • o a II & Oi Z 1 X II a i •o • e © o « IA II II II II II ~ i *» • U l II t - i U l I II o I/I u u Um B ft-j a i X II o COi - i »-» • J -1 I « 9 «• 1— II ta X 3 1 o o r»l f% « a . i C • Ul rt >n "Q • . m a i •s • 00 o =- o o o o U a i V • • " 1 <r c • e o rt -H 9 a . • c« ffl zr CL 1 rt u DC VI 111 a: •-Ul u m x a «r U l no no a z . — i n o o F i g u r e 5.15. Pb - L o g a r i t h m i c P r o b a b i l i t y P l o t . 134 5.3.3. PROBABILITY PLOTS - HOST ROCK ELEMENTS COBALT As an example o f t h e h o s t r o c k s u i t e o f e l e m e n t s , c o b a l t has been c o m p i l e d i n T a b l e s 5.14 a r i t h m e t i c h i s t o g r a m and 5.15 l o g a r i t h m i c h i s t o g r a m . B o t h t a b l e s s u g g e s t t h r e e b a s i c p o p u l a t i o n s . The l o g a r i t h m i c p r o b a b i l i t y p l o t ( F i g u r e 5.16) shows t h e c l e a r e s t p o p u l a t i o n b r e a k s . O n l y m i n o r t h r e s h o l d o v e r l a p s o c c u r . The l o w e s t p o p u l a t i o n , n e a r e s t t o d e t e c t i o n l i m i t s , c o n t a i n s 4.5% o f t h e t o t a l . The mid p o p u l a t i o n c o n t a i n s 76.4 % and t h e u p p e r m o s t p o p u l a t i o n c o n t a i n s 19.2 %. In v i e w i n g t h e s p a t i a l d i s t r i b u t i o n o f v a l u e s , most o f t h e h i g h c o b a l t o c c u r s low i n s t r a t i g r a p h i c p o s i t i o n . W h i l e t h i s p o s i t i o n i s a l s o low i n g o l d v a l u e s , i t may be p a r t l y a c o i n c i d e n t a l r e l a t i o n s h i p . The d i s t r i b u t i o n o f c o b a l t , and l i k e w i s e i t s companion e l e m e n t s n i c k e l magnesium and chromium, i s p r o b a b l y more s t r o n g l y a f f e c t e d by t h e p r i m a r y s t r a t i g r a p h y and c r y s t a l d i f f e r e n t i a t i o n i n t h e SAM U n i t ( C h a p t e r I I I ) t h a n by an a b s e n c e i n t h e g o l d e n r i c h e d a r e a s . W i t h t h e i n f l u x o f q u a r t z and l o c a l a l b i t i z a t i o n , t h e r e would be e x p e c t e d a m i n o r d r o p i n c o b a l t , b u t n o t t o t h e l a r g e p o p u l a t i o n p e r c e n t a g e i n d i c a t e d by t h e l o w e r p o p u l a t i o n s on t h e p r o b a b i l i t y p l o t . 135 1 5 : 1 2 = 2 6 c: A N A N T O N I O 3 3 r d L E V E L . S A M U N I T 0 9 / 0 5 / 0 7 II illUMI 4411 It 44 41 44 44 44 41 4141 41 41 41 41 4( 11 41 4141 4141 41 (444 4141411(4:411141114! 11 4 1 44 44 4 4 41 41 44 41 4( 41 44 4t 41.44 44 4 4 41 1l 1! (Ml 4414 141! 44 (1 44 44 41 41 Si IC-1I IARV S T A T I S T I C S a r i d II1 S'l O G R A M A R I T l IMC.T .1C VAI .LIES V a r i a b l e •-- C D U n i t - P P M N --• 2 1 0 l"1t'.xn ~ 1 7 . 7 4 3 M i n -- 5 . 0 0 0 1 s t Q u a r t i l e •••• 1 3 . 3 0 0 S t d . D e v . -•=• 9 . 2 5 5 M a x - 5 0 . 0 0 0 M e d i a n 1 7 . 0 0 0 C V 7. - 4 6 . 0 7 3 S k e w n e s s = 1 . 3 0 0 3 r d Q u a r t i l e = 2 1 . 0 0 0 7. c u m 7. e l s i n t (44 ai b i n s = 3 6 - b i n s i r e = 1 . 2 S 6 ) 0 . 0 0 0 . 2 3 4 . 3 5 7 0 . 4 6 0 . 6 3 3 . 6 4 3 * 0 . 0 0 0 . 6 3 6 . 9 2 9 1 . 3 3 2 . 5 1 8 . 2 1 4 ** 1 . 3 3 3 . 3 3 9 . 5 0 0 ** 2 . 2 9 6 . 1 6 I O . 7 8 6 *«•* 1 0 . 0 9 1 6 . 2 1 1 2 . 0 7 1 ****** ******* 0 . 7 2 2 4 . 3 9 1 3 . 3 5 7 *"•« ********* 3 . 7 2 3 3 . 5 6 1 4 . 6 4 3 *********** 6 . 8 8 4 0 . 4 1 1 5 . 9 2 9 * ******** 1 . 4 . 2 2 5 4 . 5 7 1 7 . 2 1 4 ****************** 5 . 9 6 6 0 . 5 0 1 3 . 5 0 0 ******** 5 . 9 6 6 6 . 4 4 1 9 . 7 8 6 ******** 9 . 6 3 7 6 . 0 3 2 1 . 0 7 1 ************ 0 . 9 2 7 6 . 9 4 2 2 . 3 5 7 * 1 . 8 3 7 8 . 7 7 2 3 . 6 4 3 ** 0 . 4 6 7 9 . 2 2 2 4 . 9 2 9 * 0 . 9 2 8 0 . 1 4 2 6 . 2 1 4 * 0 . 4 6 8 0 . 5 9 2 7 . 5 0 0 * 0 . 9 2 8 1 . 5 1 2 8 . 7 0 6 * 1 . 8 3 8 3 . 3 3 3 0 . 0 7 1 *« 1 . 3 8 0 4 . 7 0 3 1 . 3 5 7 ** 0 . 0 0 8 4 . 7 0 3 2 . 6 4 3 1 . 3 8 8 6 . 0 7 " 3 3 . 9 2 9 ** M . 5 9 9 0 . 6 4 3 5 . 2 1 4 **« ft** 1 . 3 0 9 2 . 0 1 3 6 . 5 0 0 *-* 0 . 4 6 9 2 . 4 7 3 7 . 7 8 6 * 1 . 8 3 9 4 . 2 9 3 9 . 0 7 1 1 . 3 3 9 5 . 6 6 4 0 . 3 5 7 ** O . O O 9 5 . 6 6 4 1 . 6 4 3 0 . 0 0 9 5 . 6 6 4 2 . 9 2 9 2 . 2 9 9 7 . 9 5 4 4 . 2 1 4 *** 0 . 0 0 9 7 . 7 5 4 3 . 5 0 0 0 . 9 2 9 8 . 0 6 4 6 . 7 8 6 * 0 . 4 6 9 9 . 3 2 4 0 . 0 7 1 K 0 . 0 0 9 9 . 3 2 4 9 . 3 5 7 0 . 4 6 9 9 . 7 7 5 0 . 6 4 3 * 0 1 2 3 4 E a c l i " * " r e p r e s e n t s a p p r o>: i m a t e l y 1 . 7 o b s e r v a t i o n s . 11 (1 4111 41 4414(44t41 44 1444 14 ((44(tit 44 4( 44 41 14 41 It 44 11 41 (141 44 4t4144It4144 44 41 4441 «41 44 44 44 41 41 41 41 44 U 44 4 ( 41 41 14 4441 41 11 4444 44 44 tt 14 44 44 11 (1 1: T a b l e 5.14. Co - A r i t h m e t i c S t a t i s t i c s and H i s t o g r a m . 136 ) 5 : 1 2 : SA U A N T O N I O 3 3 r d ; ;;>••).;. SAM LIMIT 0 9 / 0 3 / 8 7 U1t«i l tt l t*UIHU(MHI«IHHUUHll l tHMI i l l ! 11 l l i l i i il 11 il III! tt II II il il I111 it 11IIII liil il II it it 11 il 1111 IHiii 11 1141 11 44 44 44 1441 11 44 41 H KUITI'IAR .' S T A T ] S T I C K a n d H 1 G T 0 8 R A M L O G A R 1 T l ( M I C V A C U U S V a r i a b l e = C O U n i t 1 M T l N - 2 1 0 1-1 Ju l I - 1 . 2 5 5 1 M i n 0 . 6 9 9 0 1 s t Q u a r t i l e - 1 . 1 3 0 0 S t d . D e - / . 0 . 1 3 2 4 M a x - 1 . 6 9 9 0 . M e d i a n = 1 . 2 3 0 4 C V 7. = • 1 4 . 5 3 3 6 S k e w n e s s 0 . 4 5 1 9 3 r d Q u a r t i l e = 1 . 3 2 2 2 A n t i L o g M e a n = 1 7 . 9 9 1 A n t i - L o g S t d . D e v . : ( - ) 1 1 . 8 2 1 (-<-> 2 7 . 3 8 2 ZZIZ-T-ZZZT-ZZ. -.--.= ^r- = -. =. - zr. :.z — = z: .^; tr r; =r n; — :zr.-z.: z= zzzzzz zz: zzzrzzzzz = = = = = = = =:= = = = = zzzzzzzzzzzz V. IZ UfH "/. • a n t i 1 e g e l s i n t ( i i o f b i n s - 3 6 - b i n s i z e = 0 . 0 2 8 6 ) 0 . oo 0 . 2 3 4 . 0 3 3 0 . 6 8 4 7 0 . 4 6 0 . 6 8 5 . 1 6 7 0 . 7 1 3 3 0 . oo 0 . 6 0 5 . 5 1 9 0 . 7 4 1 8 0 . 0 0 0 . 6 0 5 . Q 9 4 0 . 7 7 0 4 0 . 0 0 0 . 6 8 6 . 2 9 5 0 . 7 9 9 0 0 . 0 0 0 . 6 8 6 . 7 2 3 0 . 8 2 7 5 0 . 0 0 0 . 6 8 7 . i e o O . 8 5 6 1 0 . 0 0 0 . 6 8 7 . 6 6 8 0 . 8 3 4 7 1 . 8 3 2 . 5 1 0 . 1 8 9 0 . 9 1 3 3 0 . 0 0 2 . 5 1 8 . 7 4 6 0 . 9 4 1 8 1 . 3 8 3 . 8 8 9 . 3 4 1 0 . 9 7 0 4 * * 0 . 0 0 3 . 8 8 9 . 9 7 6 0 . 9 9 9 0 2 . 2 9 6 . 1 6 1 0 . 6 5 5 1 . 0 2 7 5 «•«•« 4 . 1 3 1 0 . 2 7 1 1 . 3 7 9 1 . 0 5 6 1 5 . 9 6 1 6 . 2 1 1 2 . 1 5 3 1 . 0 8 4 7 ***r 0 . 0 0 1 6 . 2 1 1 2 . 9 7 9 1 . 1 1 3 3 8 . 7 2 2 4 . 8 9 1 3 . 6 6 2 1 . 1 4 1 8 *««•:•*« •:*«•«« 3 . 7 2 3 3 . 5 6 1 4 . 8 0 5 1 . 1 7 0 4 »•*•***•*»*•»* * 6 . 8 8 4 0 . 4 1 1 5 . 0 1 1 1 . 1 9 9 0 **•****«+:« 6 . 3 8 4 7 . 2 6 1 6 . 8 8 7 1 . 2 2 7 5 « * * * K *•* 1 3 . 3 0 6 0 . 5 0 1 0 . 0 3 5 1 . 2 5 6 1 #**•* ««««•** « « « « * * K 5 . 9 6 6 6 . 4 4 1 9 . 2 6 1 1 . 2 8 4 7 K * *• * «• K- k « 4 . 5 9 7 1 . 0 0 2 0 . 5 7 1 1 . 3 1 3 3 «*•«•* « •:• 5 . 0 5 7 6 . 0 3 2 1 . 9 7 0 1 . 3 4 1 3 «•*** «<* 2 . 7 5 7 8 . 7 7 2 3 . 4 6 4 1 . 3 7 0 4 O . 4 6 7 9 . 2 2 2 5 . 0 5 9 1.. 3 9 9 0 * 0 . 9 2 eo . 14 2 6 . 7 6 3 1 . 4 2 7 5 * 1 . 3 3 0 1 . 5 1 2 3 . 5 8 3 I . 4 5 6 1 * » 1 . 8 3 3 3 . 3 3 3 0 . 5 2 7 1 . 4 0 4 7 *«• 1 . 3 3 0 4 . 7 0 3 2 . 6 0 3 1 . 5 1 3 3 «•* 3 . 6 7 8 8 . 3 6 3 4 . 8 2 0 1 . 5 4 1 0 * y. * * •> 4 . 1 3 9 2 . 4 7 3 7 . 1 0 0 1 . 5 7 0 4 «*•#» * 1 . 0 3 9 4 . 2 9 3 9 . 7 1 6 1 . 5 9 9 0 *••* 1 . 3 S 9 5 . 6 6 4 2 . 4 1 7 1 . 6 2 7 5 ** 2 . 2 9 r?"7 * V 5 * ^ 5 . 3 0 2 1 . 6 5 6 1 r- •:• 1 . 3 8 9 9 . 3 2 4 8 . 3 0 2 1 . 6 8 4 7 « « 0 , 4 6 9 9 . 7 7 5 3 . 6 7 2 1 . 7 1 3 3 * c :> 1 2 3 4 L a r : h r e p r e s e n t s a p p r o x i m a t e l y 1 . 7 o b s e r v a t i o n s . T a b l e 5.15. Co - L o g a r i t h m i c S t a t i s t i c s and H i s t o g r a m . i g u r e 5.16. Co - L o g a r i t h m i c P r o b a b i l i t y P l o t . 138 ALUMINUM I t i s n o t p o s s i b l e t o f u l l y d i f f e r e n t i a t e w h i c h e l e m e n t s o f Group IV, w i t h i n t h e d a t a s e t , a r e d o m i n a n t l y c o n t r o l l e d by s t r a t i g r a p h i c p o s i t i o n and w h i c h a r e c o n t r o l l e d by l o w e r i n g o f v a l u e s i n o r e z o n e s and h a l o s . One e l e m e n t whose ICP d i s t r i b u t i o n i s a t t r i b u t e d t o t h e i n f l u e n c e o f o r e zone p o s i t i o n i n g i s aluminum. Aluminum f o l l o w s n e i t h e r an a r i t h m e t i c ( T a b l e 5.16) n o r l o g a r i t h m i c ( T a b l e 5.17) d i s t r i b u t i o n . The h i s t o g r a m s seem t o be q u i t e s c a t t e r e d , as a p o l y m o d a l p a t t e r n , w i t h t h e a r i t h m e t i c d i s t r i b u t i o n s h o w i n g t h e most s p r e a d . A s m o o t h i n g o f t h e p o l y m o d a l p a t t e r n y i e l d s t h r e e p o p u l a t i o n s ( F i g u r e 5 . 1 7 ) . The l o w e s t p o p u l a t i o n o f 6.5 %, n e a r e s t d e t e c t i o n , and t h e mid p o p u l a t i o n o f 48.5 % , a r e r e p r e s e n t a t i v e o f t h e o r e z o n e s and h a l o s . I n t h e s e z o n e s , s e c o n d a r y f e l d s p a r i s p r e s e n t as a s o u r c e o f aluminum, b u t t h e weak a c i d d i g e s t i o n has n o t t a k e n t h e e l e m e n t i n t o s o l u t i o n . The h i g h e s t p o p u l a t i o n o f 45 X l i e s beyond t h e a f f e c t s o f h y d r o t h e r m a l a l t e r a t i o n and y i e l d s i t s aluminum f r o m o r i g i n a l s a u s s u r i t i z e d p l a g i o c l a s e . T h e r e i s t h r e s h o l d o v e r l a p between p o p u l a t i o n s w h i c h may, i n p a r t , be due t o g r a d a t i o n a l c o n t a c t s between a l t e r e d and u n a l t e r e d z o n e s and v a r i a b l e d e g r e e s o f s a u s s u r i t i z a t i o n . 139 1.2: 4 9 : 2 7 S A M I O N 1 0 ! :•• •! I..1 ::VEL S A M U M V 0 9 / 0 S / 8 ? 11 11 1441 11 44 41 1441 «414441 41 4111 44+14141414141411141414H14t4l 4141 41 4H11HI11 till 11114111 414(41 41 tl 41 tl4111 It 4111144111 4114414141 HI! It 111111 || S U M M A R Y S T A T T. S T I C S a n d III. S T O G R A M A R I T H M E T I C V A L U E S V a r i a b l e = A L U n i t = <X> N ~ 2 1 8 1 l e a n •  2 . 3 5 5 M i n '- 0 . 2 8 0 1 s t Q u a r t i l e - 1 . 4 5 0 S t d . D e v . =• 1 . 0 4 3 M a x - 4 . 7 0 0 M e d i a n = 2 . 2 8 0 <:v - 4 4 . 2 3 0 £f k e w n e s s = 0 . 1 5 9 3 r d Q u a r t i l e = 3 . 1 0 0 - z r - . - . - . T Z - r . - — = = = = = -_z- = = r= = =;r-=;=;'.^ . = = = = = = - zz-=z:-:zz:z-:==zz:z=zz =-: — z.\=z = = = 7= =- — zz.-:-z--z-.z^ — 7. c u m 7. c I s i n t . (44 o-f b i n s - 3 6 - b i n s i : : e = 0 . 1 2 6 ) 0 . 0 0 0 . 2 3 0 . 2 1.7 0 , 1 6 0 . 6 B 0 . 3 4 3 * 1 . 8 3 2 . 5 1 0 . 4 6 9 * * 0 . 0 0 2 . 5 1 0 . 5 9 6 1 . 3 3 3 . 8 3 0 . 7 2 2 * * 3 . 2 1 7 . oa 0 . 8 4 8 *•#** 0 . 4 6 7 . 5 3 0 . 9 7 5 * 3 . 6 7 1 1 . 1 9 1 . 1 0 1 * * * * * 3 . 6 7 1 4 . 8 4 1 . 2 2 7 ' * * « * « 5 . 5 0 2 0 . 3 2 1 . 3 5 3 * * * * * * * 5 . 9 6 2 6 . 2 6 1 . 4 3 0 * * * * * * * * 3 . 6 7 2 9 . 9 1 1 . 6 0 6 * <•*** 3 . 6 7 3 3 . 5 6 1 . 7 3 2 * * * * * 3 . 6 7 3 7 . 2 1 1 . 8 5 9 ***** 5 . 5 0 4 2 . 6 9 1 . 9 0 5 ******* 2 . 7 5 4 5 . 4 3 2 . I l l *•** 4 . 5 9 5 0 . 0 0 2 . 2 3 7 ****** 2 . 7 5 5 2 . 7 4 2 . 3 6 4 * * * 3 . 2 1 5 5 . 9 4 2 . 4 9 0 **** 0 . 9 2 5 6 . 8 5 2 . 6 1 6 *• 6 . 4 2 6 3 . 2 4 2 . 7 4 3 * * * * * * * * 3 . 2 1 6 6 . 4 4 2 . 0 6 9 ****• 0 . 9 2 6 7 . 3 5 2 . 9 9 5 * 5 . 9 6 7 3 . 2 9 3 . 1 2 1 * « « * * « *•* 3 . 6 7 7 6 . 9 4 3 . 2 4 0 * * * * * 2 . 2 9 7 9 . 2 2 3 . 3 7 4 *•*•<• 3 . 6 7 8 2 . 8 8 3 . 5 0 0 * * * * » • 3 . 2 1 8 6 . 0 7 3 . 6 2 7 * **•« 5 . 0 3 9 1 . 1 0 3 . 7 5 3 * * * * * * 1 . 3 8 9 2 . 4 7 3 . 8 7 9 2 . 2 9 9 4 . 7 5 4 . 0 0 5 K ** 0 . 4 6 9 5 . 2 1 4 . 1 3 2 * 0 . 9 2 9 6 . 1 2 4 . 2 3 8 * 0 . 9 2 9 7 . 0 3 4 . 3 8 4 * 1 . 8 3 9 3 . 3 6 4 . 5 1 1 « * 0 . 4 6 9 9 . 3 2 4 . 6 3 7 * 0 . 4 6 9 9 . 7 7 4 . 7 6 3 * O 1. 2 3 4 ^ a c h " * " r e p r e s e n t s a p p r o x i m a t e l y 1 . 7 o b s e r v a t i o n s . 414141 (Ml U414141 (141 ttU 4144 It tl 44 1411 44 4111 II tt It 444411 It t i l l 4114114t 111111 tl 11 tt 11 41 14 14 4441 41 41 44 44 444444144441 41444414 41 14 (1 44(4 41 41 11 41 44 T a b l e 5.16. A l - A r i t h m e t i c S t a t i s t i c s and H i s t o g r a m . 140 4144 4144II441441 44 44414441 44 41 41414(41414141 ll'li II tl 11 tl till 1111414141 41II li tl II tl 11 II till till !l 4141 41 41 41414i II41 it 44 41+4 1(41 11 44 4i 41 it 44 444141 S U M M A R Y S T A T I S T I C S a n d H I S T O G R A M L O G A R I T H M I C V A L U E S V a r i a b l e = A L U n i t ^ ( v ) M e a n 3 t e l . D e v . 0 . 3 1 9 ; M i n = M a x = - O . t>'j >'3 0 . 6 7 2 1 C V 7. = 7 2 . 8 5 9 9 S k e w i e s s - - 0 . V 5 0 6 A n t i - L a q M e a n 2 . 0 8 6 A n t i - L a q V c u m a n t i 1 o g e l s i n t (41 o f b i n s -- 3 6 0 . 0 0 0 . 2 3 0 . 2 6 9 - 0 . 5 7 0 3 0 . 4 6 0 . 6 8 0 . 2 9 2 - 0 . 5 3 5 3 * 0 . 0 0 0 . 6 8 0 . 3 1 6 - 0 . 5 0 0 3 0 . 0 0 0 . 6 8 0 . 3 4 2 - 0 . 4 6 5 3 0 . 9 2 1 . 6 0 0 . 3 7 1 — 0 . 4 3 0 3 *• 0 . 0 0 1 . 6 0 0 . 4 0 2 - 0 . 3 9 5 3 0 . 9 2 2 . 5 1 0 . 4 3 6 - 0 . 3 6 0 4 0 . 0 0 2 . 5 1 0 . 4 7 3 - 0 . 3 2 5 4 0 . 0 0 2 . 5 1 0 . 5 1 2 - 0 . 2 9 0 4 0 . 0 0 2 . 5 1 U . J J J - 0 . 2 5 5 4 0 . 4 6 2 . 9 7 0 . 6 0 2 - 0 . 2 2 0 4 * 0 . 0 0 2 . 9 7 0 . 6 5 3 - 0 . 1 8 5 4 0 . 9 2 3 . 0 8 O . 7 0 7 - 0 . 1 5 0 4 *•• 1 . 3 0 5 . 2 5 0 . 7 6 7 - 0 . 1 1 5 4 * * 1 . 3 3 6 . 6 2 0 . 8 3 1 - 0 . 0 8 0 4 * * 0 . 4 6 7 . 0 8 0 . 9 0 1 - 0 . 0 4 5 4 * O . 4 6 7 . 5 3 0 . 9 7 6 - 0 . 0 1 0 4 « 2 . 7 5 1 0 . 2 7 1 . 0 5 8 0 . 0 2 4 6 1 . 8 3 1 2 . 1 0 1 . 1 4 7 0 . 0 5 9 6 «« 2 . 7 5 1 4 . 8 4 1 . 2 4 3 0 . 0 9 4 6 4 . 1 3 1 8 . 9 5 1 . 3 4 8 0 . 1 2 9 6 •K-«*•*•« 6 . a a 2 5 . 8 0 1 . 4 6 1 0 . 1 6 4 6 **«•**•* »* * 4 . 1 3 2 9 . 9 1 1 . 5 8 4 0 . 1 9 9 6 ** «•* *• *-? -rcr •*_•./•%_• 3 2 . 6 5 1 . 7 1 6 O . 2 3 4 6 »** 4 . 5 9 3 7 . 2 1 1 . 8 6 0 0 . 2 6 9 6 •:****« 5 . 5 0 4 2 . 6 9 2 . 0 1 7 O . 3 0 4 6 * « * » « * • * 5 . 5 0 4 0 . 17 2 . 1 8 6 0 . 3 3 9 6 #•*«•«•••:•«« 4 . 5 9 5 2 . 7 4 2 . 3 6 9 0 . 3 7 4 6 « « « * » * 3 . 2 1 5 5 . 9 4 2 . 5 6 8 0 . 4 0 9 6 M « •* *• 3 . 2 6 6 4 . 1 6 2 . 7 3 4 0 . 4 4 4 6 •*•***« **!•** 3 . 2 1 6 7 . 3 5 3 . 0 1 7 O . 4 7 9 6 * * * * 1 0 . 5 5 7 7 . 0 5 3 . 2 7 0 0 . 5 1 4 6 **«**•«***« 5 . 0 5 0 2 . 8 8 3 . 5 4 5 0 . 5 4 9 6 * * * 4r -X *. 9 . 1 7 9 2 . 0 1 3 . 8 4 2 0 . 5 3 4 6 • H H H K * * * * * * * 3 . 2 1 9 5 . 2 1 4 . 1 6 5 0 . 6 1 9 6 «*« * 3 . 6 7 9 8 . 8 6 4 . 5 1 4 0 . 6 5 4 6 0 . 9 2 9 9 . 7 7 4 . 8 9 3 0 . 6 8 9 6 * N 1 s t Q u a r t i l e = M e d i a n =•• 3 r d Q u a r t i l e -S t d . D e v . : ( - ) b i n 2 1 8 0 . 1 6 1 4 0 . 3 5 7 9 0 . S 0 2 4 1 . 2 2 1 0 3 5 0 ) T a b l e 5.17, A l - L o g a r i t h m i c S t a t i s t i c s and H i s t o g r a m . 0 . 0 0 - ^ — i — i — i — i 1 1 I I I — i — i — i — i i i i i — i — i — 3S 3* 35 $5 70 50 30 15 5 2 1 USERS UliUfiL PERCENT TOfEIEft E5IIHAJES 142 5 . 4 STRIP PLOTS THROUGH ORE ZONES P r e s e n t a t i o n o f s t a t i s t i c a l i n f o r m a t i o n on g e o c h e m i c a l d a t a i s u s e f u l i n e x a m i n i n g l a r g e s c a l e r e l a t i o n s h i p s . However, t o u n d e r s t a n d how t h e s e r e l a t i o n s h i p s r e l a t e s p a t i a l l y t o an o r e z o n e , a s t r i p l o g t h r o u g h t h e o r e zone i s t h e most i n f o r m a t i v e g r a p h i c f o r m . The f o l l o w i n g s t r i p p l o t s t h r o u g h t h e o r i e n t a t i o n v e i n have been p r e p a r e d t o i l l u s t r a t e how ICP e l e m e n t s u i t e s f r o m e a c h g r o u p r e l a t e t o g o l d v a l u e s . Where a v a i l a b l e , t h e e q u i v a l e n t v a l u e s o b t a i n e d f r o m XRF a n a l y s i s a r e a l s o p r e s e n t e d . T h e s e show how t h e p a r t i a l d i g e s t i o n e x t r a c t i o n o f ICP a n a l y s i s c a n e n h a n c e d i f f e r e n c e s n o t r e a d i l y e v i d e n t w i t h t h e whole r o c k XRF a n a l y s i s . F o r c o m p a r i s o n . A p p e n d i x V c o n t a i n s s i m i l a r s t r i p p l o t s f o r t h e No. 97 v e i n on t h e 3 3 r d l e v e l and i t s s o u t h h a l o zone, w h i c h i l l u s t r a t e t h a t t h e o b s e r v a t i o n s made below h o l d t r u e f o r o t h e r v e i n s t r u c t u r e s i n t h e mine. 5 . 4.1. ORE ZONE ELEMENTS G o l d by NAA i s p r e s e n t e d i n t h e t o p s t r i p on a l l s t r i p p l o t s . F i g u r e 5.18 shows g o l d by ICP ( s t r i p 2) as a f l a t l i n e . T h i s i n d i c a t e s t h a t t h e ICP method i s n o t s u f f i c i e n t l y s e n s i t i v e t o r e l y upon f o r g o l d d e t e c t i o n . S i l v e r ( s t r i p 3) e x h i b i t s p e a k s i n t h e o r e z one w i t h a t a p e r i n g o f f o f v a l u e s F i g u r e 5.19. S t r i p P l o t - O r e Zone E l e m e n t s . 144 i n t h e h a l o s . A r s e n i c ( s t r i p 4) shows t h e b e s t match t o g o l d t h r o u g h t h e o r i e n t a t i o n v e i n and t u n g s t e n ( s t r i p 5) e x h i b i t s c o i n c i d e n t a l p e a k s t o g o l d , c l o s e t o t h e t u n g s t e n d e t e c t i o n l i m i t . T h e s e a r e t h e b e s t p a t h f i n d e r e l e m e n t s f o r g o l d . None o f t h e above e l e m e n t s were a n a l y s e d by t h e XRF method. S u l p h u r by XRF matches t h e g e n e r a l f o r m o f t h e o r e z o ne e l e m e n t s ( s t r i p 6 ) . T h i s r e p r e s e n t s t h e p r e s e n c e o f p y r i t e as t h e d o m i n a n t i r o n m i n e r a l i n t h e o r e z one and, t o a l e s s e r e x t e n t , i n t h e h a l o s . 5.4.2. HALO ELEMENTS Base m e t a l s have been s e e n t o f l a n k t h e o r e zone w i t h p e a k s i n t h e h a l o s . F i g u r e 5.19 shows t h e r e l a t i o n s h i p s o f c o p p e r , l e a d and z i n c ( s t r i p s 2-4) by ICP t o g o l d ( s t r i p 1 ) . The e q u i v a l e n t XRF a n a l y s e s f o r c o p p e r and z i n c ( s t r i p s 5-6) r e v e a l t h a t t h e ICP d i g e s t i o n method y i e l d e d a l m o s t a l l o f t h e a v a i l a b l e m e t a l . S i m i l a r r e l a t i o n s h i p s c a n be s e e n i n t h e Group I I I e l e m e n t s ( F i g u r e 5 . 2 0 ) , w i t h t h e e x c e p t i o n t h a t t h e h a l o v a l u e s p e r s i s t i n t h e o r e z o n e . B a r i u m , p o t a s s i u m and s o d i u m ( s t r i p s 2-4) a r e t h e d o m i n a n t e l e m e n t s i n t h e g r o u p , r e f l e c t i n g t h e p r o c e s s o f a l b i t i z a t i o n . P h o s p h o r o u s and l a n t h a n u m ( s t r i p s 5-6) show r a t h e r e r r a t i c p a t t e r n s t h r o u g h t h e o r i e n t a t i o n v e i n . F i g u r e 5.19. S t r i p P l o t - H a l o E l e m e n t s ( B a s e M e t a l s ) AU (NAA) ppl) QA (ICP) ppm 20. - i 16. -12. B. -4. 0. 0. JO K (ICP) % NA (ICP) X P (ICP) X 0 . 0 8 -0 . 0 6 -0 . 0 4 -0 . 0 2 -0 . 0 0 0 . 1 0 O—O-0 . 0 8 -0 . 0 6 -0 . 0 4 -0 . 0 2 -0 . 0 0 0 . 1 0 LA (ICP) ppm 0 . 0 8 -0 . 0 6 -0 . 0 4 0 . 0 2 -0 . 0 0 15. 1 2 . 9. 6 . -3. 0 . £ I I I ! I ^ c a o c O W 1 IC Ol H i B o o o 1000 . 1300. GOO . 400 . 200 . 0 . 20. 16. 12. 0 . 4. 0 . 0 . 1 0 0 . 0 8 0 . 0 6 0 . 0 4 0 . 0 2 0 . 0 0 • 0 . 1 0 0 . 0 8 • 0 . 0 6 • 0 . 0 4 • 0 . 0 2 0 . 0 0 • 0 . 1 0 • 0 . 0 8 - 0 . 0 6 - 0 . 0 4 - 0 . 0 2 - 0 . 0 0 15. - 1 2 . • 9. • 6 . - 3. - 0 . 146 ( o m o c j " » < o a i o o j - ^ ( £ > t D F i g u r e 5.20. S t r i p P l o t - H a l o E l e m e n t s (Group I I I - I C P ) . 1000 AU (NAA) ppb BA (XRF) ppm K20 (XRF) X NA20 (XRF) X P 2 0 5 (XRF) X o o o o o o o o o o o o o o o o o o o <TCO<DOCVI^(0<DO(U<T(DCOO • r t - n . - i a j f u c u c v j c v i e i o n o n v F i g u r e 5.21. S t r i p P l o t - H a l o E l e m e n t s (Group I I I - XRF) 148 C o m p a r i s o n t o XRF a n a l y s e s o f Ba, Naa0 and Ki 0 ( s t r i p s 2-4) on F i g u r e 5.21 r e v e a l t h a t o n l y a b o u t one t w e n t i e t h o f t h e a v a i l a b l e e l e m e n t s i s e n t e r i n g i n t o s o l u t i o n i n t h e ICP d i g e s t i o n p r o c e s s . T h e r e a r e e l e v a t e d p a t t e r n s i n t h e o r e z o n e s and h a l o s f o r b o t h methods o f a n a l y s i s , w i t h ICP a n a l y s i s e x h i b i t i n g t h e g r e a t e s t c o n t r a s t . Group I I e l e m e n t s , i r o n , manganese, t h o r i u m , c a l c i u m and s t r o n t i u m ( s t r i p s 2-6) on F i g u r e 5.22, a l l o c c u r i n v a r y i n g m i n e r a l s p e c i e s i n d i f f e r e n t z o n e s t h r o u g h o u t t h e SAM U n i t . As s u c h , t h e y a r e l e s s u s e f u l a s s p a t i a l i n d i c a t o r s t h a n p r e v i o u s l y r e p o r t e d e l e m e n t s . I n t h e i m m e d i a t e a r e a o f t h e o r i e n t a t i o n v e i n , t h e r e i s an i n c r e a s e i n t h e v i s u a l l y e s t i m a t e d c a r b o n a t e c o n t e n t , w h i c h c a n e x p l a i n t h e c a l c i u m - s t r o n t i u m e l e v a t i o n . T h e s e same e l e m e n t s , o b t a i n e d f r o m XRF a n a l y s e s m o s t l y a s whole r o c k o x i d e components ( F i g u r e 5 . 2 3 ) , show l i t t l e i n d i c a t i o n o f p r e f e r r e d z o n e s . 5.4.3. HOST ROCK ELEMENTS Group IV e l e m e n t s , b e i n g p r i m a r i l y a s s o c i a t e d w i t h t h e h o s t r o c k m i n e r a l o g y , would be e x p e c t e d t o show a m i n o r d i p i n v a l u e s i n a r e a s where m a t e r i a l n o t c o n t a i n i n g t h o s e components has been a d d e d . T h i s c o n c e p t was e x p l o r e d i n C h a p t e r IV i n l i g h t o f v o l u m e t r i c c h a n g e s . F i g u r e 5.24 shows ICP a n a l y s i s o f s e v e r a l Group IV e l e m e n t s , some o f w h i c h have marked d e p l e t i o n o v e r t h e o r e zone and h a l o w i d t h s . F i g u r e 5.22. S t r i p P l o t - H a l o E l e m e n t s (Group I I - I C P ) . 150 F i g u r e 5.23. S t r i p P l o t - H a l o E l e m e n t s (Group I I - X R F ) . F i g u r e 5.24. S t r i p P l o t - H o s t Rock E l e m e n t s (Group I V - I C P ) . 152 F o r s i l i c a and a l u m i n a ( s t r i p s 5 - 6 ) , t h e d e c r e a s e i s more p r o n o u n c e d t h a n w o u l d be e x p e c t e d , g i v e n t h a t t h e o r e zone a d d i t i o n s i n c l u d e s i l i c a and a l u m i n a . T h i s low i s a f u n c t i o n o f t h e d i g e s t i o n p r o c e s s . In t h e o r e z o n e s and h a l o s , t h e m a j o r s o u r c e s o f s i l i c a and aluminum a r e q u a r t z and s e c o n d a r y f e l d s p a r , b o t h o f w h i c h a r e c h e m i c a l l y r e s i s t a n t . Away f r o m t h e s e z o n e s , t h e main s o u r c e would be s a u s s u r i t i z e d o r i g i n a l p l a g i o c l a s e , w h i c h i s more v u l n e r a b l e t o c h e m i c a l d i g e s t i o n . F i g u r e 5.25 shows t h e same e l e m e n t s , o r t h e i r o x i d e compounds, o b t a i n e d by XRF a n a l y s i s . Most o f t h e o b s e r v e d v a r i a t i o n s d i m i n i s h . The u s e o f t h e a b s e n c e o f h o s t r o c k e l e m e n t s i s n o t c o n s i d e r e d by t h e a u t h o r t o be as u s e f u l an i n d i c a t o r o f o r e z o n e s t h a n i s t h e p r e s e n c e o f o r e zone and h a l o e l e m e n t s . 5.5. MULTI-ELEMENT PATTERN CONCLUSIONS ICP a n a l y s i s , u s i n g a weak a c i d d i g e s t i o n , has been u s e f u l i n i d e n t i f y i n g d i s c r e t e p o p u l a t i o n s and e l e m e n t a l g r o u p i n g s a s s o c i a t e d w i t h o r e z o n e s , h a l o s and h o s t r o c k s . The e l e m e n t s s i l v e r , a r s e n i c and t u n g s t e n a r e t h e most u s e f u l p a t h f i n d e r s o t h e r t h a n g o l d i t s e l f . F i g u r e 5.25. S t r i p P l o t - H o s t Rock E l e m e n t s (Group I V - X R F ) . 154 H a l o s c a n e f f e c t i v e l y d o u b l e t h e s i z e o f t h e t a r g e t o f e x p l o r a t i o n . The most u s e f u l e l e m e n t s i n i d e n t i f y i n g h a l o s a r e t h e b a s e m e t a l s c o p p e r , l e a d and z i n c , p l u s t h e f e l d s p a r e l e m e n t s s o d i u m , p o t a s s i u m and b a r i u m . W h i l e t h e d e p l e t i o n o f h o s t r o c k e l e m e n t s i s a f a v o u r a b l e s i g n f o r d e t e c t i n g h a l o s and o r e z o n e s , i t t e n d s t o be more s u s c e p t i b l e t o d i g e s t i o n e f f e c t s i n t h e a n a l y t i c a l p r o c e s s and i s t h u s l e s s a p p l i c a b l e as an e x p l o r a t i o n t o o l . 155 CHAPTER VI CONCLUSIONS AND DISCUSSION 6.1. CONCLUSIONS FROM THE CURRENT STUDY 6.1.1. LITHOLOGY AND DIFFERENTIATION An e x a m i n a t i o n o f t h e l i t h o l o g i c u n i t s o f t h e San A n t o n i o G o l d Mine y i e l d e d s e v e r a l k ey o b s e r v a t i o n s t h a t c l a r i f y t h e o r i g i n o f r o c k s e n c l o s i n g g o l d d e p o s i t s . T h e r e a r e 1,320 m e t r e s (4,300 f e e t ) o f s t r a t i g r a p h y e x p o s e d i n t h e u n d e r g r o u n d w o r k i n g s upon w h i c h t h i s s t u d y i s b a s e d . The SAM U n i t , h o s t t o most o f t h e p r o d u c t i v e v e i n s on t h e p r o p e r t y , was f o u n d n o t t o be a u n i f o r m d i a b a s e dyke. The c u r r e n t i n t e r p r e t a t i o n i s t h a t t h e u n i t was d e p o s i t e d a s a b a s a l t i c f l o w s e q u e n c e w i t h t h i n i n t e r f l o w s e d i m e n t s c o m p r i s e d o f c h e r t y mudstone. The l o w e r p a r t o f t h e SAM U n i t i s a s i n g l e f l o w member t h a t h as u n d e r g o n e d i f f e r e n t i a t i o n by c r y s t a l s e t t l i n g . An e x a m i n a t i o n o f t h i n s e c t i o n s and whole r o c k g e o c h e m i c a l t r e n d s by P e a r c e v a r i a t i o n d i a g r a m s shows t h i s d i f f e r e n t i a t i o n t o be due t o s e t t l i n g o f p l a g i o c l a s e , o l i v i n e and p y r o x e n e f r o m t h e m e l t . 156 A p p a r e n t a n g u l a r i t y o f SAM U n i t h a n g i n g and f o o t w a l l c o n t a c t s p r o v e d t o be due t o f o l i a t i o n o f t h e s c h i s t s , w hich i s a t a p p r o x i m a t e l y 30° t o t h e o r i g i n a l b e d d i n g . The SAM U n i t c o n t a c t s a r e c o n f o r m a b l e t o b e d d i n g e x c e p t where f a u l t o f f s e t has o c c u r e d . S t r a t i g r a p h i c t o p s i n d i c a t o r s i n b o t h t h e H a n g i n g and F o o t W a l l S e q u e n c e s show t h e c o m p l e t e e x p o s e d p a c k a g e t o be u p r i g h t . T h e s e i n c l u d e a n g u l a r u n c o n f o r m i t i e s , g r a d e d b e d d i n g and l o d e c a s t s . As s u c h , t h e p a s t p r o p o s a l s p o r t r a y i n g t h e SAM U n i t as r e p e t i t i v e l y f o l d e d t o p r o d u c e U n i t 'A' and t h e N o r t h B a s a l t U n i t a r e n o t s u p p o r t e d . U n i t 'A', a l s o a c o m p o s i t e b a s a l t i c s e q u e n c e , p o s s e s s e s m a s s i v e s u l p h i d e l e n s e s up t o 1.5 m e t r e s t h i c k , c o n f o r m a b l e w i t h s t r a t i g r a p h y . T h i s u n i t i s c o n s i d e r e d a good t a r g e t f o r p o t e n t i a l v o l c a n o g e n i c m a s s i v e s u l p h i d e d e p o s i t s ( s e e a l s o s e c t i o n 6 . 2 . 2 ) . The N o r t h B a s a l t U n i t , 100 m e t r e s s t r a t i g r a p h i c a l l y a b ove t h e SAM U n i t , e x h i b i t s s e v e r a l f e a t u r e s s i m i l a r t o t h e SAM U n i t . M i n o r q u a r t z s t r i n g e r s w i t h t r a c e s o f p y r i t e and c h a l c o p y r i t e h a v e been s e e n i n t h e N o r t h B a s a l t U n i t . T h i s c o m p e t e n t u n i t i s b e l i e v e d t o have r e a c t e d i n a s i m i l a r manner as t h e SAM U n i t t o t h e r e g i o n a l t e c t o n i s m and i s t h u s a t a r g e t u n i t f o r f u t u r e e x p l o r a t i o n ( s e e a l s o s e c t i o n 6 .2.5). 157 The G a b r i e l l e U n i t i s a n o n - p o r p h y r i t i c a n d e s i t e zone w i t h i n t h e t h i c k H a n g i n g W a l l S e q uence p o r p h y r i t i c a n d e s i t e . T h e r e i s a l s o a nar r o w s c h i s t o s e s e d i m e n t a r y member i n t h e G a b r i e l l e U n i t . As w e l l a s h o s t i n g t h e #34 v e i n , w h i c h s u s t a i n e d good g o l d p r o d u c t i o n , t h e G a b r i e l l e U n i t may be t h e h o s t o f v e i n s t o t h e e a s t , o r i g i n a l l y worked by W i n g o l d M i n e s L i m i t e d ( L e e , 1 9 3 4 ) . V e r y l i t t l e work has been done between t h e s e l o c a t i o n s t o s e e i f t h e u n i t c a n be t r a c e d t h r o u g h r e s i d e n t i a l a r e a s o f B i s s e t t . 6.1.2. HYDROTHERMAL ALTERATION A v o l u m e t r i c mass b a l a n c e s t u d y o f metasomatism, u s i n g t h e methods o f G r e s e n s (1967) on a s a m p l e s e t p a s s i n g t h r o u g h a s t o c k w o r k v e i n , has d e f i n e d a h y d r o t h e r m a l a l t e r a t i o n c r y p t i c h a l o . T h i s h a l o shows a 5 p e r c e n t volume i n c r e a s e r e l a t i v e t o t h e u n - a l t e r e d h o s t r o c k . W i t h i n t h e s t o c k w o r k z o n e , v i s i b l e a l t e r a t i o n y i e l d s a 10 p e r c e n t volume i n c r e a s e . The h a l o e f f e c t i v e l y d o u b l e s t h e t a r g e t w i d t h f o r e x p l o r a t i o n . Some c h e m i c a l components, i f n o t c o n s i d e r e d i n t h e l i g h t o f a volume i n c r e a s e , h a v e i n t h e p a s t l e a d t o f a l s e c o n c l u s i o n s a b o u t t h e d i r e c t i o n o f component t r a n s p o r t . An example o f t h i s i s t h e i n t e r p r e t a t i o n o f d e p l e t i o n o f s i l i c a f r o m t h e w a l l r o c k s i n t o q u a r t z s t r i n g e r s ( D a v i e s , 1 9 6 3 ) . Where volume c h a n g e s a r e a c c o u n t e d f o r , t h e p a t t e r n o f s i l i c a i s r e v e r s e d , s h o w i n g a s m a l l e n r i c h m e n t a d j a c e n t t o s t o c k w o r k s . 158 E x p e c t e d t r e n d s , s u c h as s o d i u m , p o t a s s i u m ( i n f e l d s p a r ) and s u l p h u r ( i n p y r i t e ) e n r i c h m e n t a r e e n h a n c e d a f t e r volume change c o n s i d e r a t i o n s . 6.1.3. MULTI-ELEMENT ICP ANALYSIS PATTERNS ICP a n a l y s i s , u s i n g a weak a c i d d i g e s t i o n , has been u s e f u l i n i d e n t i f y i n g d i s c r e t e p o p u l a t i o n s and e l e m e n t a l g r o u p i n g s a s s o c i a t e d w i t h o r e z o n e s , h a l o s and h o s t r o c k s . S i l v e r , a r s e n i c and t u n g s t e n a r e t h e most s e n s i t i v e g o l d p a t h f i n d e r e l e m e n t s . T h i s i s i n agr e e m e n t w i t h t h e i d e n t i f i c a t i o n by S c a n n i n g E l e c t r o n M i c r o p r o b e o f s i l v e r a s t h e main i m p u r i t y i n v i s i b l e g o l d . The h a l o z o n e s a r e marked by an e n r i c h m e n t i n t h e b a s e m e t a l s c o p p e r , l e a d and z i n c , whereas b o t h h a l o s and o r e z o n e s e x h i b i t e l e v a t e d v a l u e s f o r p o t a s s i u m , s o d i u m and b a r i u m . R e c o g n i t i o n o f a p p a r e n t h o s t r o c k e l e m e n t d e p l e t i o n i n h a l o s i s more d i f f i c u l t w i t h ICP d a t a t h a n w i t h X-Ray F l u o r e s c e n c e d a t a due t o p a r t i a l and v a r i a b l e e x t r a c t i o n o f many m a j o r e l e m e n t s i n t h e weak d i g e s t i o n p r o c e s s u s e d w i t h t h e c o m m e r c i a l ICP p r o c e d u r e . C o n s e q u e n t l y , t h e p a r t i a l e x t r a c t i o n ICP method i s c o n s i d e r e d t o be l e s s a p p l i c a b l e as an e x p l o r a t i o n t o o l f o r h o s t r o c k e l e m e n t d e p l e t i o n d e t e c t i o n t h a n i t i s f o r o r e zone and h a l o e l e m e n t e n r i c h m e n t d e t e c t i o n . 159 6.2. FUTURE AREAS OF STUDY 6.2.1. STRUCTURAL REINTERPRETATIONS A d e t a i l e d , v e i n - s p e c i f i c , s t u d y o f t h e s t y l e o f v e i n i n g was c o n d u c t e d by L a u (1985) a t t h e U n i v e r s i t y o f M a n i t o b a . H i s c o m p o s i t e p l a n v i e w s i l l u s t r a t e d t h e c o n s i d e r a b l e c o n t i n u i t y o f t h e s h e a r ( 1 6 - t y p e ) v e i n s . T h e r e was, however, some d i f f i c u l t y i n a n a l y s i n g t h e o r i e n t a t i o n r e l a t i o n s h i p s o f t h e s t o c k w o r k ( 3 8 - t y p e ) v e i n s . T h i s was p a r t l y due t o t h e mine maps, f r o m w h i c h v e i n s h a p e s were t a k e n , m o s t l y b e i n g b a s e d on a s s a y c u t o f f v a l u e s and n o t on m i n e r a l o g y o f v e i n i n g , o r s t r u c t u r a l r e l a t i o n s h i p s . A r e i n t e r p r e t a t i o n o f v e i n s t r u c t u r e s b a s e d on mine r e c o r d s , on t h e d e t a i l e d s t r u c t u r a l g e o l o g y o f Lau (1985) and on t h e j u x t a p o s i t i o n o f v e i n s c o n c e p t , d e v e l o p e d i n an e a r l i e r s t u d y by t h e a u t h o r ( W h i t i n g , 1 9 8 4 ) , may y i e l d s i g n i f i c a n t r e s u l t s i n a r e a s o f p a s t m i n i n g . T h e r e a r e many d r i l l h o l e i n t e r s e c t s o f o r e g r a d e and n e a r o r e g r a d e i n t h e mine r e c o r d s t h a t have n e v e r been a s c r i b e d t o p a r t i c u l a r v e i n s . T h i s i s an i n t e r p r e t a t i o n i s s u e t h a t would p r o b a b l y r e q u i r e r e m a p p i n g o f some mine l e v e l s where g e o l o g i c a l maps no l o n g e r e x i s t . 160 6.2.2. AGE DATING OF MINERALIZING EVENTS Age d a t i n g o f m i n e r a l i z i n g e v e n t s i n t h e San A n t o n i o G o l d Mine may a i d f u r t h e r e x p l o r a t i o n i n t h e R i c e Lake G r e e n s t o n e B e l t . A c c e s s i s a v a i l a b l e w i t h i n t h e mine w o r k i n g s t o m a s s i v e s u l p h i d e l e n s e s i n U n i t 'A' b a s a l t ( d e s c r i b e d i n C h a p t e r I I , s e c t i o n 2 . 4 . 2 . ) . T h e s e a r e c o n f o r m a b l e t o t h e c o n t a c t s o f U n i t 'A' and a r e p r o b a b l y s y n g e n e t i c . I f age d a t e s were o b t a i n e d f r o m t h e s u l p h i d e s o f U n i t 'A' and f r o m s u l p h i d e s i n t h e SAM U n i t v e i n s t r u c t u r e s , a c o m p a r i s o n c o u l d be drawn t o c l a r i f y t h e s y n g e n e t i c v e r s u s e p i g e n e t i c d i s c u s s i o n t h a t has been t a k i n g p l a c e c o n c e r n i n g t h e m i n e r a l i z a t i o n a t San A n t o n i o . The i m p o r t a n c e o f s u c h a c o m p a r i s o n l i e s i n t h e d i r e c t i o n o f f u t u r e o f f s i t e e x p l o r a t i o n . I f t h e s u l p h i d e l e n s e s o f U n i t 'A' y i e l d an age s i m i l a r t o t h e h o s t r o c k s , t h e n an e x p l o r a t i o n p r o g r a m f o r p o t e n t i a l v o l c a n o g e n i c m a s s i v e s u l p h i d e d e p o s i t s w o u l d be more s t r o n g l y w a r r a n t e d . A y o u n g e r age would l o w e r t h e p o t e n t i a l f o r d i s c o v e r y o f a s i g n i f i c a n t s i z e m a s s i v e s u l p h i d e d e p o s i t . I f t h e SAM U n i t m i n e r a l i z a t i o n y i e l d e d a young age, s i m i l a r t o t h e n e i g h b o u r i n g Ross R i v e r P l u t o n o r Wanipigow L a k e S o u t h P l u t o n , t h e n a p u r e l y e p i g e n e t i c o r i g i n f o r t h i s t y p e o f m i n e r a l i z a t i o n would be c o n f i r m e d . T h i s would l e a d t o a c l o s e r 161 e v a l u a t i o n o f t h e r o l e o f t h e s e i n t r u s i v e b o d i e s i n t h e m i n e r a l i z i n g p r o c e s s , and h e l p t o f o c u s e x p l o r a t i o n e f f o r t s s p a t i a l l y n e a r t h e s e i n t r u s i o n s . I f t h e SAM U n i t m i n e r a l i z a t i o n does n o t y i e l d t h e same ages as t h e i n t r u s i o n s , i t w i l l l i k e l y y i e l d an age s i m i l a r t o t h e e s t i m a t e d d a t e o f r e g i o n a l metamorphism. Hodgson (1985) has s u g g e s t e d t h a t m e t a m o r p h i c s o l u t i o n s may be r e s p o n s i b l e f o r t h e d e p o s i t i o n o f many l o d e g o l d d e p o s i t s i n t h e P r e c a m b r i a n . I f t h i s i s t h e c a s e , t h e n t h e e x p l o r a t i o n a r e a s w i l l be l e s s s p a t i a l l y r e s t r i c t e d . The most u n l i k e l y c a s e i s t h a t o f o b t a i n i n g a g e s o f m i n e r a l i z a t i o n i n t h e SAM U n i t t h a t a r e t h e same as t h e age o f t h e SAM U n i t . T h i s would open up t h e s e a r c h f o r a u r i f e r o u s z o n e s w i t h i n t h e SAM U n i t , t h a t a r e n o t a t t r i b u t e d t o v e i n i n g , a s s y n g e n e t i c m i n e r a l i z a t i o n . The p r o p o s e d age d a t i n g c o u l d be p e r f o r m e d on t h e s u l p h i d e l e n s m a t e r i a l , d o m i n a n t l y p y r i t e , f r o m U n i t 'A' and on l a y e r e d s u l p h i d e , d o m i n a n t l y p y r i t e , f r o m t h e s h e a r v e i n s o f t h e SAM U n i t . I n s p i t e o f t h e low l e a d v a l u e s p r e s e n t , l e a d i s o t o p e r a t i o s may d e v e l o p f u n c t i o n a l i s o c h r o n s f o r i n t e r p r e t a t i o n . T h i s a p p r o a c h has been a p p l i e d s u c c e s s f u l l y e l s e w h e r e i n M a n i t o b a (Cumming, e t a l . , 1 9 8 2 ) . 162 S u f f i c i e n t sample m a t e r i a l i s c u r r e n t l y a v a i l a b l e f o r a f i r s t a p p r o x i m a t i o n t e s t . T h i s would be enough t o g i v e an i n d i c a t i o n o f ; a) p r o b a b l e age, b) more a n a l y s e s r e q u i r e d , o r c) n o t l i k e l y u s e f u l t o a t t e m p t f u r t h e r a n a l y s e s (Cumming, 1984, p e r s . com.). 6.2.3. EPIDOTE ZONATION CONCEPT Some r e g i o n s o f t h e SAM U n i t a r e s t r o n g l y e p i d o t i z e d , w i t h v i s i b l e g r a i n s o f p i s t a c h i o g r e e n e p i d o t e as an a l t e r a t i o n o f p r i m a r y f e l d s p a r . A g r a d a t i o n a l b o u n d a r y u s u a l l y e x i s t s between e p i d o t i z e d b a s a l t and n o n - e p i d o t i z e d b a s a l t . The l o c a t i o n o f e p i d o t i z e d r e g i o n s may be o f c o n s i d e r a b l e i m p o r t a n c e f o r a i d i n g e x p l o r a t i o n i n t h e mine i n l i g h t o f t h e comment: "...no m i n e r a l i z e d z o n e s a r e e v e r f o u n d w i t h i n i t s b o r d e r " ( B r a g g , 1 9 4 3 ) . B r a g g ' s o b s e r v a t i o n was made when t h e mine e x t e n d e d down t o t h e 1 6 t h l e v e l , a p p r o x i m a t e l y h a l f o f t h e c u r r e n t d e p t h . To t h e a u t h o r ' s k n o w l e d g e , no a t t e m p t has b e en made t o s p a t i a l l y model t h e e p i d o t i z e d r e g i o n s and t o a s c e r t a i n w hether t h e r e l a t i o n s h i p h o l d s t r u e t h r o u g h o u t t h e mine. E a r l y d r i l l i n g r e c o r d s a t t h e m i n e s i t e o c c a s i o n a l l y c o n t a i n r e f e r e n c e s t o t h e p r e s e n c e o f e p i d o t e , b u t r a r e l y a r e t h e r e p e r c e n t a g e e s t i m a t e s . E p i d o t e was n o t e d i n m o d e r a t e amounts (5-10%) i n t h e 3 3 r d l e v e l 163 d r i l l i n g d u r i n g t h e c u r r e n t s t u d y . I t s l o c a t i o n c o i n c i d e d w i t h an a r e a v o i d o f a u r i f e r o u s v e i n i n g , w h i c h i s i n a greement w i t h t h e u p p e r l e v e l s o b s e r v a t i o n . F u t u r e c o m p u t e r i z a t i o n o f t h e mine d a t a s h o u l d i n c l u d e a f i e l d f o r r e c o r d i n g e p i d o t e amount. In t h i s way, t h e o b s e r v a t i o n a b o u t e p i d o t e z o n e s c a n be t e s t e d . D u r i n g new d r i l l i n g , t h e p e r c e n t a g e o f e p i d o t e s h o u l d be e s t i m a t e d , i n c l u d i n g a z e r o e n t r y i n a r e a s w i t h o u t e p i d o t e . From o l d d r i l l r e c o r d s , a s e m i - q u a n t i t a t i v e s c a l e c a n be c r e a t e d f r o m t h e more s u b j e c t i v e 'weakly', ' m o d e r a t e l y ' , ' s t r o n g l y ' , e t c . t e r m s and a s p a t i a l model c a n t h u s be d e v e l o p e d . U n t i l a s t u d y o f t h e g o l d c o n t e n t v e r s u s e p i d o t e amount has been e x a m i n e d more r i g o r o u s l y , t h e p r e s e n c e o f e p i d o t e s h o u l d n o t be u s e d on i t s own as a r e a s o n f o r e l i m i n a t i n g a r e a s o f t h e mine f r o m f u t u r e e x p l o r a t i o n . 6.2.4. EXPLORATION DRILLING - 609 CROSSCUT T h e r e a r e e n c o u r a g i n g s i g n s o f t h e p r e s e n c e o f a s t o c k w o r k v e i n s t r u c t u r e on t h e n o r t h w e s t end o f t h e 6 t h l e v e l u n d e r g r o u n d w o r k i n g s . T h i s s t r u c t u r e s h o u l d be c o n s i d e r e d as an a d d i t i o n a l t a r g e t i n any f u t u r e d r i l l i n g p r o g r a m s . In t h e l a t e 1930's, t h e 609 c r o s s c u t on t h e 6 t h l e v e l was e x t e n d e d t o i t s most n o r t h w e s t e r l y p o s i t i o n . The n a r r o w e s t 164 s p o t i n t h e SAM U n i t b a s a l t s was f o u n d t o be 290 f e e t f r o m t h e end o f t h e c r o s s c u t , west o f w h i c h t h e u n i t t h i c k e n s a g a i n . The t h i c k n e s s a t t h e c o n s t r i c t i o n i s 40 f e e t and t h e t h i c k n e s s a t t h e most n o r t h w e s t e r l y known s p o t i s 120 f e e t . Near t h e c o n s t r i c t i o n , a d r i l l h o l e i n 1938 i n t e r c e p t e d a 2.5 f o o t z one o f p y r i t i c q u a r t z - c a r b o n a t e v e i n i n g w h i c h a s s a y e d o n l y t r a c e g o l d . A h o l e i n 1939, 60 f e e t f r o m t h e end o f t h e 609 c r o s s c u t i n t e r c e p t e d a 9 f o o t zone o f q u a r t z - c a r b o n a t e v e i n i n g w i t h c h l o r i t e , p y r i t e and c h a l c o p y r i t e , p l u s a l t e r e d b a s a l t i c i n c l u s i o n s . T h i s t h i c k e r i n t e r s e c t i o n had a c e n t r a l 4.5 f o o t p o r t i o n w h i c h a s s a y e d 0.10 o z / t o n g o l d . W h i l e t h i s a s s a y i s n o t o r e g r a d e a t p r e s e n t , i t do e s i n d i c a t e t h e p r e s e n c e o f g o l d i n t h e s t r u c t u r e . What i s r e p r e s e n t e d i s a s t o c k w o r k t y p e v e i n s t r u c t u r e t h a t i s i n c r e a s i n g i n t h i c k n e s s a s t h e h o s t r o c k u n i t t h i c k n e s s i n c r e a s e s t o t h e n o r t h w e s t . I t f o l l o w s t h e same s t r i k e and c o n t a i n s t h e same i n c l u s i o n s o f a l t e r e d h o s t r o c k and f i n e p y r i t e s t r e a k s a s many o f t h e v e r y p r o d u c t i v e v e i n s . L e v e l s 5 and 7 do n o t e x t e n d t h i s f a r n o r t h w e s t , t h u s no t e s t i n g has been c o n d u c t e d on t h i s s t r u c t u r e above o r below t h e 6 t h l e v e l . To t e s t t h i s s t r u c t u r e , i t i s recommended t h a t t h e 609 c r o s s c u t be r e o p e n e d and a d r i l l i n g s i t e be e s t a b l i s h e d a t t h e 165 most n o r t h w e s t e r l y e nd. From h e r e , s i x diamond d r i l l h o l e s c o u l d be d r i l l e d t h r o u g h t h e s t o c k w o r k and i n t o t h e f o o t w a l l c o n t a c t o f t h e SAM U n i t . T h r e e h o l e s a t a z i m u t h 200° and p l u n g e s o f - 4 5 ° , 0° and + 4 5 ° , p l u s t h r e e h o l e s a t a z i m u t h 235° and t h e same p l u n g e s a r e recommended. R o u g h l y 700 f e e t o f d r i l l i n g w o uld be n e c e s s a r y t o c o m p l e t e t h e s e s i x h o l e s . The g r e a t e s t p o t e n t i a l i n t h i s a r e a i s c o n s i d e r e d t o be above t h e 6 t h l e v e l and t o t h e n o r t h w e s t . B e c a u s e t h e n e a r v e r t i c a l s t o c k w o r k t y p e v e i n s t r u c t u r e s t e n d t o p i n c h o u t and t e r m i n a t e a g a i n s t t h e n o r t h e a s t e r l y d i p p i n g f o o t w a l l , t h e -45° h o l e s w i l l p r o b a b l y d e f i n e t h e l o w e s t e x t e n t o f t h e v e i n . R e s u l t s f r o m a d r i l l i n g p r o g r am as p r o p o s e d s h o u l d be s u f f i c i e n t t o e i t h e r j u s t i f y f u r t h e r e x p l o r a t i o n and d e v e l o p m e n t on t h e v e i n s t r u c t u r e o r e l i m i n a t e i t f r o m a c t i v e f u r t h e r c o n s i d e r a t i o n . 6.2.5. PROJECTION OF SHEAR STRUCTURES TO ADJACENT UNITS S h e a r s t r u c t u r e s i n t h e SAM U n i t have v e r y s t r o n g l a t e r a l c o n t i n u i t y . A l t h o u g h v e i n t h i c k n e s s t e n d s t o p i n c h and s w e l l , t h e s t r u c t u r e r e m a i n s c o n s t a n t . As t h e s h e a r s t r u c t u r e s a p p r o a c h t h e h a n g i n g and f o o t w a l l s c h i s t s , t h e amount o f d i l a t e n c y d i m i n i s h e s due t o t h e l o w e r i n g i n r o c k c o m p e t e n c y . On t h e g e o l o g y map ( F i g u r e 2.1.) t h e c o n t i n u a t i o n o f some o f t h e s h e a r s b e y o n d t h e h o s t SAM U n i t has been p r o j e c t e d . 166 S t o c k w e l l (1938) n o t e d a l e f t l a t e r a l s t r i k e s l i p o f t h e N o r t h B a s a l t U n i t on h i s map 464A - s h e e t 7. T h i s was i n d i c a t e d by an o f f s e t o f t h e u n i t and by t h e symbol f o r q u a r t z v e i n s and s h e a r z o n e s . No a p p a r e n t a t t e m p t was made t o r e l a t e t h i s s h e a r t o o t h e r v e i n s on t h e p r o p e r t y . A p r o j e c t i o n o f t h i s s h e a r s o u t h w e s t t o t h e SAM U n i t a l l i g n s i t w i t h t h e #17 s h e a r v e i n . P r o j e c t i n g n o r t h e a s t a l o n g t h e #17 s h e a r , beyond t h e N o r t h B a s a l t U n i t , t h e W i n g o l d V e i n #5 i s matched. T h i s v e i n was c o l l a r e d on by W i n g o l d M i n e s L i m i t e d i n t h e 1930's. S t r a t i g r a p h i c a l l y , t h e W i n g o l d V e i n #5 may be l o c a t e d i n G a b r i e l l e U n i t e q u i v a l e n t r o c k s . F u r t h e r s o u t h e a s t , t h e #27 s h e a r v e i n i n t h e SAM U n i t a l l i g n s w i t h t h e W i n g o l d V e i n #6 i n G a b r i e l l e U n i t e q u i v a l e n t r o c k s . No d a t a on t h e N o r t h B a s a l t U n i t i s a v a i l a b l e f o r t h i s p o s i t i o n . I t i s t h e o p i n i o n o f t h e a u t h o r t h a t t h e p o s i t i o n i n g o f v e i n s i s more a f u n c t i o n o f r o c k competency t h a n i t i s o f s p e c i f i c u n i t d e p e n d e n c e . As s u c h , t h e t r a c i n g o f s t r u c t u r e s o u t f r o m t h e SAM U n i t t o o t h e r c o m p e t e n t u n i t s may p r o v e a d v a n t a g e o u s i n t h e s e a r c h f o r new a u r i f e r o u s v e i n s . 167 REFERENCES Ames D. E. and P o u l s e n K. H. 1986: "XRF A n a l y s e s f r o m t h e 1 6 t h L e v e l - San A n t o n i o G o l d Mine"; p e r s o n a l c o m m u n i c a t i o n . Amukun S. E. 0. 1969: " P e t r o l o g y o f t h e G o l d - B e a r i n g V e i n Rocks f r o m B i s s e t t A r e a , S o u t h e a s t e r n M a n i t o b a " ; M.Sc. T h e s i s , U n i v e r s i t y o f M a n i t o b a . Anonymous 1933: " G e o l o g y Map o f t h e 2nd L e v e l " ; San A n t o n i o G o l d Mine, m i n e s i t e map. Anonymous 1982 and 1983: " B r i n c o L i m i t e d - A n n u a l R e p o r t s " ; s e c t i o n c o n c e r n i n g Sa.n A n t o n i o G o l d P r o j e c t , R e p o r t t o S h a r e h o l d e r s , p 7. A p p l e y a r d E . C. 1980: "Mass B a l a n c e C o m p u t a t i o n s i n Me t a s o m a t i s m : M e t a g a b b r o / N e p h e l i n e S y e n i t e P e g m a t i t e i n t e r a c t i o n i n N o r t h e r n Norway"; C o n t r i b u t i o n s t o M i n e r a l o g y and P e t r o l o g y , V o l . 73, pp 131-144. A r m s t r o n g R. L. 1985: "XRF M a j o r and T r a c e E l e m e n t s U s i n g t h e Automated XRF i n O c e a n o g r a p h y D e p a r t m e n t " ; UBC i n - h o u s e r e p o r t , l i p . B e s t M. G. 1982: " I g n e o u s and M e t a m o r p h i c P e t r o l o g y " ; W. H. Freeman and Co., p 150. Bab c o c k R. S. 1973: " C o m p u t a t i o n a l M o d e l s o f M e t a s o m a t i c P r o c e s s e s " ; L i t h o s 6, pp 279-290. B e r a r d J . 1979: "The O i s e a u - M a n i g o t a g a n Waterways"; M a n i t o b a D e p a r t m e n t o f M i n e s , N a t u r a l R e s o u r c e s and E n v i r o n m e n t , P a r k s B r a n c h . B r a g g J . G. 1943: "Rock A l t e r a t i o n a t t h e San A n t o n i o M i n e " ; C a n a d i a n M i n i n g J o u r n a l , V o l . 64, September, pp 553-556. 168 B u t l e r J . C. 1978: " V i s u a l B i a s i n R-Mode Dendrograms Due t o t h e E f f e c t o f C l o s u r e " ; M a t h e m a t i c a l G e o l o g y , V o l . 10, No. 2, pp. 243-252. Cann J . R. 1970: "Rb, S r , Y, Z r and Nb i n some Ocean F l o o r B a s a l t i c R o c k s " ; E a r t h and P l a n e t a r y S c i e n c e L e t t e r s , V o l . 10, pp 7-11. C o l v i n e S. 1984: "The G e o l o g i c S e t t i n g o f A r c h e a n G o l d D e p o s i t s -C l a s s i c a l Themes and V a r i a t i o n s " ; G e o l o g i c a l V i s i t i n g S p e a k e r , U n i v e r s i t y o f B r i t i s h C o l u m b i a , 13 Dec 1984. Cumming G. L., E c k s t r a n d 0. R. and P e r e d e r y W. V. 1982: " G e o c h r o n o l o g i c I n t e r p r e t a t i o n s o f Pb I s o t o p e R a t i o s i n N i c k e l S u l p h i d e s o f t h e Thompson B e l t , M a n i t o b a " ; Camadian J o u r n a l o f E a r t h S c i e n c e s , V o l . 19, No. 12, pp. 2306-2324. D a v i e s J . F. 1963: " G e o l o g y and G o l d D e p o s i t s o f t h e R i c e L a k e -Wanipigow R i v e r A r e a , M a n i t o b a " ; Ph.D. T h e s i s , U n i v e r s i t y o f T o r o n t o . D i n g w a l l L. 1986: " R e s e r v e s Q u a d r u p l e a t t h e San A n t o n i o " ; N o r t h e r n M i n e r , 25 A u g u s t 1986, p 1 & 6. F e r g u s o n R. B. 1950: "Red G o l d f r o m t h e San A n t o n i o G o l d Mine, B i s s e t t , M a n i t o b a " ; A m e r i c a n M i n e r a l o g i s t , V o l . 35, pp 459-460. G e n t i l e F. 1983: " G o l d M i n e r a l i z a t i o n a t t h e San A n t o n i o P r o j e c t ( B r i n c o M i n i n g L i m i t e d ) , B i s s e t t , M a n i t o b a " ; f o r p r e s e n t a t i o n CIM W i n n i p e g '83, 28 p. G r e e n l a n d L. P. and L o v e r i n g J . R. 1966: " F r a c t i o n a t i o n o f F l u o r i n e , C h l o r i n e and O t h e r T r a c e E l e m e n t s D u r i n g D i f f e r e n t i a t i o n o f a T h o l e i i t i c Magma"; G e o c h i m i c a e t C o s m o c h i m i c a A c t a , V o l . 30, pp 963-982. G r e s e n s R. L. 1967: " C o m p o s i t i o n - Volume R e l a t i o n s h i p s o f M e t a s o m a t i s m " ; C h e m i c a l G e o l o g y , V o l . 2, pp 47-65. Hewton R. S. and G e n t i l e F. 1983: "San A n t o n i o Mine - P h a s e I E x p l o r a t i o n D r i l l i n g - #97 V e i n " ; B r i n c o M i n i n g L i m i t e d , i n t e r n a l r e p o r t . 169 Lau S, Hodgson J . 1985: " P r e c a m b r i a n Lode G o l d D e p o s i t s " ; G.A.C. C o r d i l l e r a n S e c t i o n S h o r t C o u r s e No. 6. I r v i n e T. N. and B a r a g a r W. R. E. 1971: "A G u i d e t o t h e C h e m i c a l C l a s s i f i c a t i o n o f t h e Common V o l c a n i c R o c k s " ; C a n a d i a n J o u r n a l o f E a r t h S c i e n c e s , V o l . 8, pp 523-548. J e n s e n L. S. 1976: "A New C a t i o n P l o t f o r C l a s s i f y i n g S u b a l k a l i c V o l c a n i c R o c k s " ; O n t a r i o D e p a r t m e n t o f M i n e s , M i s c . P a p e r 66. K e r r i c h R. 1983: " G e o c h e m i s t r y o f G o l d D e p o s i t s i n t h e A b i t i b i G r e e n s t o n e B e l t " ; C a n a d i a n I n s t i t u t e o f M i n i n g and M e t a l l u r g y , S p e c . V o l . 27, 75p. Kozak A. 1966: " M u l t i p l e C o r r e l a t i o n C o e f f i c i e n t T a b l e s f o r up t o 100 I n d e p e n d a n t V a r i a b l e s " ; U n i v e r s i t y o f B r i t i s h C o l u m b i a , F a c u l t y o f F o r e s t r y , R e s e a r c h Note No. 57. 1985: "The S t r u c t u r a l G e o l o g y o f t h e V e i n System i n t h e San A n t o n i o Mine, R i c e L a k e , M a n i t o b a " ; p r o g r e s s r e p o r t , U n i v e r s i t y o f M a n i t o b a , 16p. L e e A. A. 1934: " R e p o r t on t h e W i n g o l d M i n e s L i m i t e d , R i c e L a k e D i s t r i c t , M a n i t o b a " ; W i n g o l d M i n e s L i m i t e d , i n t e r n a l r e p o r t , 4p. Lowdon J . A . 1961: "Age D e t e r m i n a t i o n s by t h e G e o l o g i c a l S u r v e y o f Canada"; R e p o r t 2, G.S.C. P a p e r 61-17. McCammon R. B. and Wenninger G. 1970: "The D e n d r o g r a p h " ; Computer C o n t r i b u t i o n No. 48, S t a t e G e o l o g i c a l S u r v e y , The U n i v e r s i t y of' K a n s a s , i n c o o p e r a t i o n w i t h t h e A m e r i c a n A s s o c i a t i o n o f P e t r o l e u m G e o l o g i s t s . McDougal I . 1964: " D i f f e r e n t i a t i o n o f t h e G r e a t L a k e D o l e r i t e S h e e t , T a s m a n i a " ; J o u r n a l o f t h e G e o l o g i c a l S o c i e t y o f A u s t r a l i a , V o l . 11, pp 107-132. M c R i t c h i e W. D. and Weber W. 1971: " G e o l o g y and G e o p h y s i c s o f t h e R i c e L a k e R e g i o n , S o u t h e a s t e r n M a n i t o b a ( P r o j e c t P i o n e e r ) " ; M a n i t o b a D e p a r t m e n t o f M i n e s and N a t u r a l R e s o u r c e s . 170 M i n t o n J . 1982: " G o l d e n Memories o f B i s s e t t " ; W. K. P r i n t e r s A i d L i m i t e d , pp 9-26. Moore D. P. 1970: " M e t a s o m a t i c A l t e r a t i o n n e a r t h e Gypo Q u a r t z D e p o s i t , O l i v e r , B r i t i s h C o l u m b i a " ; B.A.Sc. T h e s i s , U n i v e r s i t y o f B r i t i s h C o l u m b i a , 57p. N i c h o l l s J . 1988: "The S t a t i s t i c s o f P e a r c e E l e m e n t D i a g r a m s and t h e C h a yes P r o b l e m " ; C o n t r i b . M i n e r a l P e t r o l o g y , t o be p u b l i s h e d . N i s b e t E. and P e a r c e J . A. 1973: "TiOa and a P o s s i b l e G u i d e t o P a s t O c e a n i c S p r e a d i n g R a t e s " ; N a t u r e , V o l . 246, pp 468-470. N o r r i s h K. and H u t t o n J . T. 1969: "An A c c u r a t e X-Ray S p e c t r o g r a p h i c Method f o r t h e A n a l y s i s o f a Wide Range o f G e o l o g i c a l S a m p l e s " ; G e o c h i m i c a e t C o s m o c h i m i c a A c t a , V o l . 33, pp 431-453. O z a r d J . M. and R u s s e l l R. D. 1971: " L e a d I s o t o p e S t u d i e s o f Rock Samples f r o m t h e S u p e r i o r G e o l o g i c a l P r o v i n c e " ; C a n a d i a n J o u r n a l o f E a r t h S c i e n c e s , V o l . 8, pp 444-454. P e a r c e T. H. 1968: "A C o n t r i b u t i o n t o t h e T h e o r y o f V a r i a t i o n D i a g r a m s " ; C o n t r i b u t i o n s t o M i n e r a l o g y and P e t r o l o g y , V o l . 19, No. 2, pp 142-157. P e a r c e T. H. 1969: "Some Comments on t h e D i f f e r e n t i a t i o n o f t h e D u n d o n a l d S i l l , O n t a r i o " ; C a n a d i a n J o u r n a l o f E a r t h S c i e n c e s , V o l . 6, pp 75-80. P e a r c e J . A. and Cann J . R. 1973: " T e c t o n i c S e t t i n g o f B a s i c V o l c a n i c Rocks D e t e r m i n e d U s i n g T r a c e E l e m e n t A n a l y s e s " ; E a r t h and P l a n e t a r y S c i e n c e L e t t e r s , V o l . 19, pp 290-300. P e t e r s e n M. D. 1983: "The u s e o f t h e "Immobile" E l e m e n t s Z r and T i i n L i t h o g e o c h e m i c a l E x p l o r a t i o n f o r M a s s i v e S u l p h i d e D e p o s i t s i n t h e P r e c a m b r i a n P e c o s G r e e n s t o n e B e l t o f N o r t h e r n New M e x i c o " ; J o u r n a l o f G e o c h e m i c a l E x p l o r a t i o n , V o l . 19, pp 615-617. 171 P i r i e J . 1981: " R e g i o n a l G e o l o g i c a l S e t t i n g o f G o l d D e p o s i t s i n t h e Red L a k e A r e a , N o r t h w e s t e r n O n t a r i o " ; i n G e n e s i s o f A r c h e a n V o l c a n i c H o s t e d G o l d D e p o s i t s , O n t a r i o G e o l o g i c a l S u r v e y , M i s c . P a p e r 97, pp 71-93. P o u l s e n K. H. 1984: "San A n t o n i o Mine - G e o l o g i c a l D i s c u s s i o n s " ; p e r s o n a l c o m m u n i c a t i o n . R e i d J . A. 1931: "The G e o l o g y o f t h e San A n t o n i o G o l d Mine, R i c e L a k e , M a n i t o b a " ; E c o n o m i c G e o l o g y , V o l . XXVI, No. 6, pp 644-661. R e i d J . A. and Kennedy D . J . 1933: "The San A n t o n i o G o l d M i ne"; The C a n a d i a n I n s t i t u t e o f M i n i n g and M e t a l l u r g y B u l l e t i n No. 256, 495-505. R e i d W. P. 1969: " M i n e r a l S t a i n i n g T e s t s " ; C o l o r a d o S c h o o l o f M i n e s , M i n e r a l I n d u s t r i e s B u l l e t i n , V o l . 3, No. 12, pp 2-4. Rowe J . J . 1969: " F r a c t i o n a t i o n o f G o l d i n a D i f f e r e n t i a t e d T h o l e i i t i c D o l e r i t e " ; C h e m i c a l G e o l o g y , V o l . 4, pp 421-427. R u s s e l l J . K. 1986: "A F o r t r a n 77 Computer Program f o r t h e L e a s t S q u a r e s A n a l y s i s o f C h e m i c a l D a t a i n P e a r c e V a r i a t i o n D i a g r a m s " ; Computers & G e o s c i e n c e s , V o l . 12, No. 3, pp 327-338. R u s s e l l J . K. and N i c h o l l s J . 1988: " A n a l y s i s o f P e t r o l o g i c H y p o t h e s e s w i t h P e a r c e E l e m e n t R a t i o s " ; C o n t r i b u t i o n s t o M i n e r a l o g y and P e t r o l o g y , #99, pp. 25-35. S i n c l a i r A. J . 1976: " A p p l i c a t i o n o f P r o b a b i l i t y G r a p h s i n M i n e r a l E x p l o r a t i o n " ; A s s o c i a t i o n o f E x p l o r a t i o n G e o c h e m i s t s , S p e c . V o l . 4. S k e r l A. C. 1955: "A S t u d y o f t h e S t r u c t u r a l S e t t i n g o f t h e San A n t o n i o G o l d M i n e " ; i n t e r n a l r e p o r t . 172 S k e t c h l e y D. A. 1986: "The N a t u r e o f C a r b o n a t e A l t e r a t i o n o f B a s a l t a t E r i c k s o n G o l d Mine, C a s s i a r , N o r t h - c e n t r a l B r i t i s h C o l u m b i a " ; u n p u b l i s h e d M.Sc. T h e s i s , D e p a r t m e n t o f G e o l o g i c a l S c i e n c e s , The U n i v e r s i t y o f B r i t i s h C o l u m b i a . S k e t c h l e y D. A. and S i n c l a i r A. J . 1987: " G a i n s and L o s s e s o f E l e m e n t s R e s u l t i n g f r o m W a l l r o c k A l t e r a t i o n - A Q u a n t i t a t i v e B a s i s f o r E v a l u a t i n g L i t h o g e o c h e m i c a l Samples"; BCMEMPR, G e o l o g i c a l F i e l d w o r k , P a p e r 1987-1, pp. 413-417. S t a n l e y C. R. 1987: "PROBPLOT - An I n t e r a c t i v e Computer Program t o F i t M i x t u r e s o f Normal ( o r Log-Normal) D i s t r i b u t i o n s w i t h Maximum L i k e l i h o o d O p t i m i z a t i o n P r o c e d u r e s " ; A s s o c i a t i o n o f E x p l o r a t i o n G e o c h e m i s t s , S p e c . V o l . #14. S t a n l e y C. R. and R u s s e l l J . K. 1987: "PEARCE.PLOT - A T u r b o - P a s c a l Program f o r t h e A n a l y s i s o f Rock C o m p o s i t i o n s w i t h P e a r c e E l e m e n t R a t i o D i a g r a m s " ; Computers and G e o s c i e n c e , t o be p u b l i s h e d . S t e p h e n s o n J . F. 1971: " G o l d D e p o s i t s o f t h e R i c e L a k e - B e r e s f o r d L a k e G r e e n s t o n e B e l t , S o u t h e a s t e r n M a n i t o b a " ; Ph.D. T h e s i s , U n i v e r s i t y o f M a n i t o b a . S t o c k w e l l C. H. 1938: " R i c e L a k e - G o l d L a k e A r e a , S o u t h e a s t e r n M a n i t o b a " ; G e o l o g i c a l S u r v e y Memoir No. 210, pp 1-79. T h e y e r P. 1983: " G e o l o g y and G o l d E n v i r o n m e n t s i n t h e B i s s e t t -W a l l a c e L a k e P o r t i o n o f t h e R i c e L a k e G r e e n s t o n e B e l t " ; M a n i t o b a D e p a r t m e n t o f E n e r g y and M i n e s , M i n e r a l R e s o u r c e s D i v i s i o n , R e p o r t G.S.-17. T u r e k A., Weber W. and Van Schmus W. R. 1985: "U-Pb Z i r c o n G e o c h r o n o l o g y o f t h e R i c e L a k e A r e a " ; i n R e p o r t o f F i e l d A c t i v i t i e s , M a n i t o b a D e p a r t m e n t o f E n e r g y and M i n e s , G.S.-24, pp 120-121. T u r e k A. 1971: " G e o c h r o n o l o g y o f t h e R i c e L a k e - B e r e s f o r d L a k e A r e a " ; M a n i t o b a M i n e s B r a n c h P u b l i c a t i o n 71-1, R e p o r t 14, pp 313-324. T u r e k A. and P e t e r m a n Z. A. 1968: " P r e l i m i n a r y Rb-Sr G e o c h r o n o l o g y o f t h e R i c e L a k e B e r e s f o r d L a k e A r e a , S o u t h e a s t e r n M a n i t o b a " ; C a n a d i a n J o u r n a l o f E a r t h S c i e n c e s , V o l . 5, pp 1373-1380. 173 Weber W. 1971: " G e o l o g y o f t h e Wanipigow R i v e r - M a n i g o t a g a n R i v e r R e g i o n " ; M a n i t o b a D e p a r t m e n t o f Mi n e s and N a t u r a l R e s o u r c e s , map t o accompany P u b l i c a t i o n 71-1. Weber W. and S t e p h e n s o n J . F. 1973: "The C o n t e n t o f M e r c u r y and G o l d i n Some A r c h e a n Rocks o f t h e R i c e L a k e A r e a " ; E c o n o m i c G e o l o g y , V o l . 68, pp 401-407. W h i t i n g B. H. 1983: " P h y s i c a l Work and P r e l i m i n a r y G e o l o g i c a l R e p o r t f o r t h e S t o p y Group"; B r i n c o M i n i n g L i m i t e d , MDEMR A s s e s s m e n t R e p o r t , 33p. W h i t i n g B. H. 1984: "San A n t o n i o P r o j e c t - 1984 Program on t h e 3 3 r d L e v e l " ; L a t h w e l l R e s o u r c e s L i m i t e d , i n t e r n a l r e p o r t . W h i t i n g B. H. 1985a: " A l t e r a t i o n A s s o c i a t e d w i t h E x t e n s i o n a l V e i n S t o c k w o r k s i n t h e San A n t o n i o G o l d Mine, B i s s e t t , M a n i t o b a " ; i n . A l t e r a t i o n w i t h S p e c i a l R e f e r e n c e t o P r e c i o u s M e t a l D e p o s i t s , e d i t . W. K. F l e t c h e r , P r o f e s s i o n a l D e v e l o p m e n t C o u r s e , U n i v e r s i t y o f B r i t i s h C o l u m b i a , pp 105-114. W h i t i n g B. H. 1985b: "MASBAL - A Program D e s i g n e d t o C a l c u l a t e Mass B a l a n c e R e l a t i o n s h i p s a s a C o m p u t a t i o n a l Model o f M e t a s o m a t i c P r o c e s s e s " ; D e p a r t m e n t o f G e o l o g i c a l S c i e n c e s , U n i v e r s i t y o f B r i t i s h C o l u m b i a , i n - h o u s e F o r t r a n p r o g r a m . W i l l i a m s H., T u r n e r F. J . and G i l b e r t C. M. 1982: " P e t r o g r a p h y - An I n t r o d u c t i o n t o t h e S t u d y o f Rocks i n T h i n S e c t i o n " ; W. H. Freeman and Co., 2 e d . , pp 52-61. / APPENDIX I VARIATION OF GOLD CONTENT WITH DEPTH IN THE SAN ANTONIO GOLD MINE ( P r e p a r e d a s a s e p a r a t e a r t i c l e ) 175 VARIATION OF GOLD CONTENT WITH DEPTH IN THE SAN ANTONIO GOLD MINE B. H. (Ben) W h i t i n g D e p a r t m e n t o f G e o l o g i c a l S c i e n c e s U n i v e r s i t y o f B r i t i s h C o l u m b i a , V a n c o u v e r , B.C., V6T 1Z2 ABSTRACT The San A n t o n i o G o l d Mine i s M a n i t o b a ' s most i m p o r t a n t p a s t g o l d p r o d u c e r . T h i s mine, i n t h e A r c h e a n R i c e L a k e G r e e n s t o n e B e l t , was i n c o n t i n u o u s p r o d u c t i o n f r o m 1932 t o 1968, y i e l d i n g 1.35 m i l l i o n o u n c e s o f g o l d f r o m 4.88 m i l l i o n t o n s o f o r e f o r an a v e r a g e g r a d e o f 0.28 o u n c e s p e r t o n . A f t e r t h e 1968 c l o s u r e , two p u b l i c a t i o n s r e p o r t e d t h e a v e r a g e g o l d g r a d e o f t o t a l o r e trammed v e r s u s m i n i n g l e v e l . The i m p r e s s i o n g e n e r a t e d was t h a t g o l d g r a d e d r o p p e d o f f w i t h d e p t h due t o l o w e r g o l d c o n t e n t w i t h i n t h e v e i n s . R e c e n t o b s e r v a t i o n s s u g g e s t t h a t t h e r e d u c e d g r a d e i n t h e m i d d l e l e v e l s o f t h e mine i s g e o l o g i c a l l y c o n t r o l l e d , b u t t h e r e d u c e d g r a d e i n t h e l o w e r l e v e l s o f t h e mine was due t o a l a c k o f t i g h t m i n i n g c o n t r o l . F a c t o r s t a k e n i n t o c o n s i d e r a t i o n when s t u d y i n g t h e g o l d d i s t r i b u t i o n i n c l u d e d v e i n i n g s t y l e s w i t h i n s t r u c t u r a l d omains, v a r i a t i o n s i n m i n i n g c o n t r o l , r e c e n t o r e muck 176 s a m p l i n g r e s u l t s and l i t h o g e o c h e m i c a l p r o f i l e s . The g e o l o g i c s e t t i n g and g o l d v a l u e s f r o m t h e u p p e r and l o w e r l e v e l s o f t h e mine a r e v e r y s i m i l a r . C o n s i s t e n t m i n i n g c o n t r o l s h o u l d y i e l d good g r a d e s o f g o l d f r o m f u t u r e p r o d u c t i o n o f t h e l o w e r l e v e l s a t San A n t o n i o . Keywords: G o l d , San A n t o n i o Mine, A r c h e a n , v e i n i n g s t y l e s , s t r u c t u r a l d omains, m i n i n g c o n t r o l , R i c e L a k e G r e e n s t o n e B e l t , N.T.S. 52M/4 INTRODUCTION The San A n t o n i o G o l d Mine, l o c a t e d i n B i s s e t t , M a n i t o b a , i s one o f Canada's i m p o r t a n t p a s t p r o d u c e r s . I t o c c u r s w i t h i n a c o m p o s i t e b a s a l t i c f l o w s e q u e n c e o f t h e A r c h e a n R i c e L a k e G r e e n s t o n e B e l t . From i n i t i a l p r o d u c t i o n i n 1932 t o t h e mine c l o s u r e o f 1968, San A n t o n i o p r o d u c e d 1.35 m i l l i o n o u n c e s o f g o l d f r o m 4.88 m i l l i o n t o n s o f o r e f o r an a v e r a g e g r a d e o f 0.28 o u n c e s p e r t o n . Over 100 s t o p e s and t a k e down b a c k s were d e v e l o p e d on 33 l e v e l s e x t e n d i n g t o a d e p t h o f 5,380 f e e t . C l o s u r e o f t h e mine was prompted by a s e r i e s o f f a c t o r s i n c l u d i n g low g o l d p r i c e s and a f i r e i n t h e h o i s t r o o m . 177 A round t h e t i m e o f t h e c l o s u r e and s h o r t l y t h e r e a f t e r , t h e M a n i t o b a D e p a r t m e n t o f M i n e s and N a t u r a l R e s o u r c e s c o n d u c t e d a major r e g i o n a l s t u d y o f t h e R i c e Lake B e l t e n t i t l e d " P r o j e c t P i o n e e r " ( M c R i t c h i e and Weber, 1 9 7 1 ) . A Ph.D. t h e s i s was b e i n g done a t t h e U n i v e r s i t y o f M a n i t o b a ( S t e p h e n s o n , 1972), i n c o n j u n c t i o n w i t h P r o j e c t P i o n e e r . U n f o r t u n a t e l y f o r S t e p h e n s o n , a c c e s s t o t h e mine was n o t a v a i l a b l e a t t h e t i m e o f h i s r e s e a r c h . In b o t h p u b l i c a t i o n s , a g r a p h o f a v e r a g e g o l d g r a d e o f t o t a l o r e trammed v e r s u s m i n i n g l e v e l was p r e s e n t e d u n d e r t h e t i t l e " V a r i a t i o n o f t h e G r a d e o f G o l d w i t h D epth o f M i n i n g " ( F i g u r e 1 ) . The i n t e r p r e t a t i o n o f t h e p r o d u c t i o n d a t a w i t h o u t r e f e r e n c e t o o t h e r i n f l u e n c i n g f a c t o r s l e a d s t o t h e i m p r e s s i o n t h a t g r a d e s o f g o l d d e c r e a s e d w i t h d e p t h f o r g e o l o g i c a l r e a s o n s . In 1984, t h e a u t h o r was r e q u e s t e d t o examine f u r t h e r t h e g o l d g r a d e v e r s u s d e p t h q u e s t i o n . A c c e s s t o a l l l e v e l s was a v a i l a b l e due t o an e x p l o r a t i o n programme by L a t h w e l l R e s o u r c e s L i m i t e d , u n d e r j o i n t v e n t u r e a g r e e m e n t w i t h B r i n c O M i n i n g L i m i t e d . VEINING STYLES An u n d e r s t a n d i n g o f t h e s t y l e s o f v e i n i n g i s n e c e s s a r y when i n t e r p r e t i n g t h e d i s t r i b u t i o n o f g o l d . The v e i n s f a l l w i t h i n two m a j o r and two m i n o r v e i n p a t t e r n s t h a t a r e c o n t e m p o r a n e o u s . As a r e s u l t o f m a j o r t e c t o n i c d e f o r m a t i o n , b o t h e x t e n s i o n a l z o n e s and s h e a r z o n e s d e v e l o p e d i n t h e c o m p e t e n t h o s t b a s a l t . 178 1 s t L e v e l 5 t h L e v e l 1 0 t h L e v e l 1 5 t h L e v e l -+-DEPTH 2 0 t h L e v e l -h 2 5 t h L e v e l - f 3 0 t h L e v e l 3 3 r d L e v e l 0 . 1 0 0 . 2 0 0 . 3 0 0 . 4 0 A u ( o u n c e s / t o n ) 0 . 5 0 F i g u r e 1. V a r i a t i o n o f t h e G r a d e o f G o l d w i t h Depth of M i n i n g ( S t e p h e n s o n , 1 9 7 2 ) . D a t a b a s e d on t h e a v e r a g e g r a d e o f t o t a l o r e trammed p e r l e v e l t o J u l y 1968. 179 The most i m p o r t a n t v e i n t y p e i s t h e S t o c k w o r k B r e c c i a ( 3 8 - t y p e ) v e i n s . T h e s e e x t e n s i o n a l z o n e s a r e t h e most e c o n o m i c a l l y s i g n i f i c a n t b e c a u s e t h e i r g r e a t t h i c k n e s s e s a l l o w f o r l a r g e t o n n a g e w i t h l e s s d i l u t i o n t h a n t h e n a r r o w e r v e i n t y p e s . U s u a l l y , t h e y c o n s i s t o f a c e n t r a l b r e c c i a zone w i t h l a r g e , a n g u l a r , b l e a c h e d c l a s t s o f w a l l r o c k , f r i n g e d by a s e r i e s o f q u a r t z s t r i n g e r s t h a t o f t e n f o r m a l a d d e r - l i k e s t r u c t u r e . T h i c k n e s s e s may e x c e e d 100 f e e t , b u t a v e r a g e 30 f e e t . N o r t h w e s t e r l y s t r i k i n g and v e r t i c a l l y d i p p i n g , t h e y t e r m i n a t e w i t h i n 60 f e e t o f t h e h a n g i n g and f o o t w a l l s o f t h e h o s t u n i t . H o r i z o n t a l l y , t h e y may e x t e n d f o r o v e r 2,000 f e e t . The s e c o n d i m p o r t a n t v e i n t y p e i s t h e s h e a r ( 1 6 - t y p e ) s e t o f v e i n s . T h e s e s t r i k e n o r t h e a s t e r l y and d i p an a v e r a g e o f 60*-' t o t h e n o r t h w e s t . They a r e much more s h a r p l y d e f i n e d , h a v i n g a h i g h e r m a s s i v e q u a r t z c o n t e n t and a s h e a r s u r f a c e a t one o r b o t h m a r g i n s . Banded s u l p h i d e s a r e q u i t e common i n t h i s t y p e o f v e i n . The p r o d u c t i v e s h e a r v e i n s a v e r a g e 6 f e e t t h i c k , b u t may e x c e e d 12 f e e t . They t e r m i n a t e h o r i z o n t a l l y a g a i n s t t h e h a n g i n g and f o o t w a l l s , u s u a l l y w i t h a l e n g t h o f a p p r o x i m a t e l y 500 f e e t . T h e i r down d i p c o n t i n u a t i o n i s up t o 2,500 f e e t . S h e a r v e i n s t r u n c a t e and o c c a s i o n a l l y j u x t a p o s e s t o c k w o r k v e i n s . The r e m a i n i n g two v e i n t y p e s a r e o f m i n o r s i g n i f i c a n c e . They s e l d o m e x c e e d 5 i n c h e s t h i c k and a r e n o t v e r y c o n t i n u o u s . E x t e n s i o n a l s t r i n g e r s o c c u r as a waning s t a g e o f r e m o b i l i z a t i o n 180 o f s i l i c a and a p p e a r t o be r a n d o m l y o r i e n t e d . S h e a r i n g o f t h e 1 6 - t y p e was s t i l l a c t i v e d u r i n g emplacement o f t h e s e e x t e n s i o n a l s t r i n g e r s . A l a t e s t a g e s e r i e s o f narrow q u a r t z - c h l o r i t e s t r i n g e r s a r e a l s o p r e s e n t . They a r e d i s t i n c t b e c a u s e o f up t o 50 p e r c e n t c h l o r i t e c o n t e n t . T h e s e may be r e l a t e d t o t h e l o w e r g r e e n s c h i s t metamorphism. DOMAIN CONCEPT The San A n t o n i o Mine has been d i v i d e d i n t o t h r e e s t r u c t u r a l domains b a s e d on t h e p r e s e n c e and d i s t r i b u t i o n o f t h e major v e i n s e t s ( G e n t i l e , 1 9 8 3 ) . Domain I i s p o p u l a t e d by b o t h s t o c k w o r k and s h e a r v e i n s . A c l u s t e r o f t h e s t o c k w o r k v e i n s o c c u r s w i t h i n 5 l e v e l i n t e r v a l s and t h e domain e x t e n d s f r o m s u r f a c e down t o l e v e l 16. Domain I I d i f f e r s f r o m Domain I i n t h a t no major s t o c k w o r k v e i n s were d i s c o v e r e d . Domain I I e x t e n d s f r o m l e v e l 17 t o l e v e l 26. Domain I I I i s v e r y s i m i l a r t o Domain I i n t h a t b o t h t y p e s o f v e i n s a r e p r e s e n t . I t has been d e v e l o p e d down t o t h e 3 3 r d l e v e l and d r i l l i n g i n d i c a t e s t h a t s t o c k w o r k v e i n s a r e p r e s e n t down t o a t l e a s t a 3 5 t h p r o j e c t e d l e v e l . The a b s e n c e o f t h e e x t e n s i o n a l s t o c k w o r k v e i n s i n Domain I I i s b e l i e v e d t o be a t t r i b u t a b l e t o a c l o s e r s p a c i n g o f t h e s h e a r 181 v e i n s . I t was o b s e r v e d on t h e 2 6 t h l e v e l t h a t t h e s h e a r s were a v e r a g i n g 5 t o 7 f o o t s p a c i n g and were g e n e r a l l y t h i n n e r t h a n i n t h e same c l a s s o f v e i n s i n t h e o t h e r two d o m a i n s . The n a r r o w e r Domain I I s h e a r s p a c i n g d i d n o t a l l o w f o r t h e c o n t e m p o r a n e o u s e x t e n s i o n z o n e s t o d e v e l o p . Domains I and I I I e x h i b i t s h e a r s p a c i n g o f 20 t o 40 f e e t . G o l d c o n t e n t o f s t o c k w o r k v e i n s has been d e s c r i b e d as 8 p e r c e n t h i g h e r t h a n o f s h e a r v e i n s ( G e n t i l e , 1 9 8 3 ) . W h i l e t h i s i s t r u e f r o m a s t r a i g h t number c o m p a r i s o n , i t i s t h e a u t h o r ' s b e l i e f t h a t t h i s i s due n o t t o l e s s g o l d p e r t o n o f v e i n m a t e r i a l , b u t t o a g r e a t e r d i l u t i o n when m i n i n g most s h e a r v e i n s . The s h e a r v e i n s a r e s u b s t a n t i a l l y t h i n n e r t h a n t h e s t o c k w o r k v e i n s and would be e x p e c t e d t o have c o n s i d e r a b l e ( o c c a s i o n a l l y up t o 30 p e r c e n t ) d i l u t i o n . By a p p l y i n g t h e domain c o n c e p t , r e d u c t i o n o f t h e g o l d c o n t e n t i n t h e m i d d l e l e v e l s , Domain I I , i s e x p l a i n e d by t h e l a c k o f s t o c k w o r k v e i n s . The l o w e r l e v e l s , Domain I I I , s h o u l d c o n t a i n h i g h e r v a l u e s , s i m i l a r t o Domain I , a f e a t u r e n o t e v i d e n t on F i g u r e 1. MINING CONTROL M i n i n g c o n t r o l c a n have a g r e a t i m p a c t on t h e e v e n t u a l g r a d e o f o r e mined. A t t h e San A n t o n i o G o l d Mine, t h e d e p t h o f m i n i n g 182 i s r o u g h l y c o r r e l a t i v e t o t h e y e a r o f p r o d u c t i o n . Development o f Domain I I I o c c u r r e d d u r i n g t h e l a t e 1960's, t h e waning y e a r s o f o p e r a t i o n . O b s e r v a t i o n s made by t h e a u t h o r and S. MacSwain ( p e r s . com., 1984) i n d i c a t e t h a t a r e d u c t i o n i n m i n i n g c o n t r o l may have o c c u r r e d d u r i n g t h e l a s t y e a r s o f o p e r a t i o n . C. G i b s o n ( 1 9 8 4 ) , who was t h e mine manager a t t h a t t i m e , s t a t e d s e v e r a l s t a f f i n g c u t b a c k s were made i n t h e l a t e 1960's, an e c o n o m i c a l l y d i f f i c u l t p e r i o d f o r t h e o p e r a t i n g company. Such t i g h t e n i n g o f b u d g e t s would a l s o r e d u c e t h e amount o f s a m p l i n g and d r i l l i n g a v a i l a b l e f o r g r a d e c o n t r o l . A r e d u c t i o n i n m i n i n g c o n t r o l c a n be i n f e r r e d f r o m t h r e e t a n g i b l e s i g n s o f c h a n g e s i n r e l a t e d a c t i v i t i e s . F i r s t l y , as a d i r e c t s i g n , i n s e v e r a l l o w e r l e v e l s t o p e s , a g r e a t e r d i l u t i o n o f t h e o r e c a n be s e e n , sometimes w i t h o v e r 100 p e r c e n t i n c l u s i o n o f a d j a c e n t w a l l r o c k m a t e r i a l . T h i s i s most e a s i l y s e e n i n t h e s h e a r v e i n s t o p e s where t h e v e i n - w a l l r o c k b o u n d a r i e s a r e c l e a r l y d e f i n e d . S e c o n d l y , e v i d e n c e i n t h e mine r e c o r d s show t h a t t h e same r i g o r o u s s a m p l i n g u s e d on t h e u p p e r l e v e l s was n o t c o n t i n u e d on t h e l o w e r l e v e l s . T h i s i s a l s o i n d i r e c t l y shown by r e d u c t i o n s i n t h e d r i l l i n g . The t r a d i t i o n a l a p p r o a c h t a k e n on t h e u p p e r l e v e l s was t o d r i l l t o t h e h a n g i n g and f o o t w a l l s e v e r y 100 f e e t , f o r l o c a t i o n a l c o n t r o l and f o r e x p l o r a t i o n . T h i s was n o t c a r r i e d o u t 183 as t h o r o u g h l y on t h e l o w e r l e v e l s . In f a c t , i t was n o t u n t i l 1984 t h a t a h o l e was d r i l l e d t o t h e f o o t w a l l on t h e 3 3 r d l e v e l . In a d d i t i o n t o a s c e r t a i n i n g t h e p o s i t i o n o f t h e f o o t w a l l , t h e h o l e e xpanded t h e t h i c k n e s s o f a known s t o c k w o r k v e i n and d i s c o v e r e d a h e r e t o f o r e unknown m i n e r a l i z e d zone t h a t w i l l be t e s t e d i n f u t u r e programmes ( W h i t i n g , 1 9 8 4 ) . T h e i r o r i g i n a l d e t a i l e d d r i l l i n g method was e v i d e n t l y e f f e c t i v e . I t s r e d u c t i o n , w h i l e h a v i n g no d i r e c t e f f e c t on g r a d e s , i s c o n s i d e r e d a symptom o f t h e c h a n g i n g c o n t r o l e x e r c i s e d i n t h e mine. T h i r d l y , t h e a c t u a l c a r e t a k e n when d r i f t i n g and c r o s s c u t t i n g seems t o have d i m i n i s h e d . T h i s c a n be s e e n by t h e r e l a t i v e l y smooth w a l l s and b a c k s i n t h e u p p e r l e v e l s , w h i l s t t h e l o w e r l e v e l s have i r r e g u l a r w a l l s . P a r t o f t h i s c a n be e x p l a i n e d by t h e f a c t t h a t s e v e r a l a r e a s were s t i l l i n p r o d u c t i o n and s c a l i n g had n o t been c o m p l e t e d p r i o r t o shutdown. However, s e v e r a l a r e a s t h a t d i d n o t a p p e a r t o be a c t i v e s i t e s were a l s o i n need o f s c a l i n g . In s e v e r a l p l a c e s , d a n g e r o u s b l o c k s were l e f t o v e r h a n g i n g and had t o be removed d u r i n g t h e more r e c e n t programmes. ORE MUCK SAMPLING D u r i n g t h e 1984 e x p l o r a t i o n programme on t h e 3 3 r d l e v e l o f t h e mine, two l a r g e b r o k e n o r e p i l e s had t o be c l e a r e d t o a l l o w a c c e s s t o d r i l l s t a t i o n s . T h i s o r e muck came f r o m t h e 3397 v e i n , w h i c h i s a s t o c k w o r k v e i n , and t h e 3396 v e i n , w h i c h i s an 1 8 4 e x c e p t i o n a l l y t h i c k ( a v e r a g i n g 12 f e e t ) s h e a r v e i n . T h i c k s h e a r v e i n s c a n be t r e a t e d s i m i l a r t o s t o c k w o r k v e i n s when c o n s i d e r i n g t h e l i k e l i h o o d ' o f d i l u t i o n . From e a c h o f 6 one t o n o r e c a r s a random f i s t f u l l o f muck was t a k e n and combined t o f o r m a s a m p l e . The r e m a i n i n g muck was dumped i n t o t h e 2 9 t h l e v e l o r e p a s s . In t o t a l , 354 t o n s o f o r e were s a m p l e d , w h i c h y i e l d e d an u n c u t g o l d a s s a y a v e r a g e o f 0.527 ou n c e s p e r t o n ( T a b l e 1 ) . I f a l l a s s a y s g r e a t e r t h a n 1 ounce p e r t o n a r e c u t t o 1 ounce p e r t o n , t h e c u t a s s a y a v e r a g e i s 0.378 o u n c e s p e r t o n . The above f i g u r e s , t a k e n f r o m what i s known t o be o r e m a t e r i a l f r o m t h i c k v e i n s w i t h m i n i m a l d i l u t i o n , i s s i g n i f i c a n t l y a bove t h e v a l u e o f 0.20 o u n c e s p e r t o n p r e d i c t e d f r o m F i g u r e 1. By c o m p a r i s o n , t h e muck s a m p l i n g g r a d e i s s i m i l a r t o t h e h i g h r e s u l t s o b t a i n e d f r o m p r o d u c t i o n i n t h e u p p e r l e v e l s . As s u p p o r t i n g d a t a , d r i l l r e s u l t s i n t h e l o w e r l e v e l s (Hewton and G e n t i l e , 1983) a l s o showed g o l d v a l u e s s u b s t a n t i a l l y h i g h e r t h a n p r e d i c t e d f r o m F i g u r e 1. B o t h muck s a m p l i n g and diamond d r i l l i n g r e s u l t s s u g g e s t t h a t , u n d e r p r o p e r m i n i n g c o n t r o l , g o l d v a l u e s s i m i l a r t o Domain I c a n be a c h i e v e d i n Domain I I I . 185 TABLE NO. 1. SAN ANTONIO GOLD MINE ORE MUCK SAMPLING RESULTS - 3396 AND 3397 DRIFTS Drift No. Sample Assay Cut Value Drift No. Sample Assay Cut Valu No. Value No. Value (ozltonl (max 1 {ozltonl (max 1 ozltonl ozltonl 3396 15202 0.13 0.13 3396 15203 1.22 1.00 3396 15204 0.10 0.10 3396 15205 0.40 0.40 3396 15206 0.72 0.72 3396 15207 0.24 0.24 3396 15208 1.10 1.00 3396 15209 1.22 1.00 3396 15210 0.14 0.14 3396 15211 0.16 0.16 3396 75212 0.04 0.04 3396 15213 0.44 0.44 3396 15214 0.24 0.24 3396 16773 0.50 0.50 3396 16774 1.04 1.00 3396 16775 0.10 0.10 3396 16776 0.16 0.16 3396 16777 0.22 0.22 3396 16778 0.34 0.34 3396 16779 0.38 0.38 3396 16780 0.15 0.15 3396 16781 0.06 0.06 3396 16782 0.13 0.13 3396 16783 0.28 0.28 3396 16784 0.22 0.22 3396 16785 0.66 0.66 3396 16786 0.13 0.13 3396 16787 0.70 0.70 3396 16788 0.44 0.44 3396 16789 0.58 0.58 3396 16790 0.70 0.70 3396 16791 1.16 1.00 3396 16792 0.64 0.64 3396 16793 1.04 1.00 3396 16794 0.24 0.24 3396 16795 0.32 0.32 3396 16796 0.80 0.80 3396 16797 0.30 0.30 3396 16798 0.36 0.36 3396 16799 0.46 0.46 3396 16800 8.62 1.00 3397 16751 0.06 0.06 3397 16752 0.47 0.47 3397 16753 0.11 0.11 3397 16754 0.24 0.24 3397 16755 0.13 0.13 3397 16756 0.13 0.13 3397 16757 0.13 0.13 3397 16758 0.28 0.28 3397 16759 0.13 0.13 3397 16760 0.12 0.12 3397 16761 0.24 0.24 3397 16762 0.13 0.13 3397 16763 0.17 0.17 3397 16764 0.16 0.16 3397 16765 0.18 0.18 3397 16766 0.23 0.23 Average Uncut = 0.527 Cut = 0.378 Values 186 GEOCHEMICAL PROFILES - GOLD AND SILVER In t h e t h e s i s o f S t e p h e n s o n (1972) t h e s i l v e r c o n t e n t o f t o t a l o r e trammed v e r s u s d e p t h o f m i n i n g was a l s o p r e s e n t e d . The s i l v e r g r a d e was n o t o b s e r v e d t o have d r o p p e d w i t h d e p t h i n t h e same manner as g o l d . T h i s r e l a t i v e s t a b i l i t y i n t h e s i l v e r g r a d e s w i t h d e p t h , d e s p i t e t h e g r e a t e r d i l u t i o n as p r o p o s e d by t h e a u t h o r , c a n be u n d e r s t o o d by c o m p a r i n g d i s p e r s i o n o f t h e two e l e m e n t s away f r o m o r e z o n e s . F i g u r e 2 shows g o l d and c o r r e s p o n d i n g s i l v e r p r o f i l e s f o r two d r i l l h o l e s f r o m t h e 3397 d r i f t . T h e s e c l e a r l y i l l u s t r a t e t h e a b r u p t c hange i n g o l d c o n t e n t between m i n e r a l i z e d and b a r r e n r o c k . C o r r e s p o n d i n g s i l v e r v a l u e s show a more g e n t l e d e c r e a s e f r o m s t r o n g l y m i n e r a l i z e d , t o w e a k l y m i n e r a l i z e d , t o b a r r e n r o c k . The d i s p e r s i o n o f s i l v e r away f r o m t h e v e i n s means t h a t d i l u t i o n o f v e i n o r e w i t h w a l l r o c k does n o t have as major an e f f e c t on s i l v e r v a l u e s as i t does on g o l d v a l u e s . In f a c t , one would e x p e c t t h e g o l d / s i l v e r r a t i o t o d e c r e a s e w i t h i n c r e a s i n g d i l u t i o n . S t e p h e n s o n (1972) n o t e d c h a n g e s i n t h e g o l d / s i l v e r r a t i o b u t drew no i n t e r p r e t a t i o n . 187 F i g u r e 2. G o l d and S i l v e r G e o c h e m i c a l P r o f i l e s f o r DDH-33-84-01 ( l e f t s i d e ) and DDH-33-84-02 ( r i g h t s i d e ) D r i l l e d f r o m t h e 3397 D r i f t (gap i n p r o f i l e ) . Sample i n t e r v a l - 2 f e e t . 1 8 8 DISCUSSION AND CONCLUSIONS The 1971-72 p r e s e n t a t i o n s o f d a t a on g r a d e o f g o l d f r o m o r e trammed v e r s u s l e v e l o f m i n i n g l e a d t o an i m p r e s s i o n t h a t t h e r e was p r o g r e s s i v e l y l e s s g o l d a v a i l a b l e w i t h d e p t h . T h i s d e c r e a s e i n g o l d must be i n t e r p r e t e d u s i n g a b r o a d e r r a n g e o f f a c t o r s t h a n t h o s e a v a i l a b l e f o r s t u d y i n t h e e a r l y 1970's, when a c c e s s u n d e r g r o u n d was n o t p o s s i b l e . I t i s t h e a u t h o r ' s f i n d i n g t h a t t h e l o w e r g o l d v a l u e s i n t h e m i d - l e v e l s o f t h e mine a r e due t o a change i n s t r u c t u r a l domain. The c o n t i n u e d r e d u c t i o n i n g o l d i n t h e l o w e r l e v e l s i s a t t r i b u t e d t o l e s s t h a n o p t i m a l m i n i n g c o n t r o l . G e o l o g i c a l l y , t h e l o w e r l e v e l s (Domain I I I ) s h o u l d c a r r y s i m i l a r g o l d v a l u e s as t h e u p p e r l e v e l s (Domain I ) . The s t r u c t u r a l domain c o n c e p t i s b a s e d on t h e t y p e s o f v e i n s e t s and t h e i r d i s t r i b u t i o n i n t h e mine. A r e a s o f t h e mine r e l y i n g on n a r r o w e r s h e a r v e i n s would have g r e a t e r d i l u t i o n t h a n a r e a s w i t h b o t h s t o c k w o r k and s h e a r v e i n s . T h i s i s c l e a r l y r e p r e s e n t e d i n t h e m i d - l e v e l s (Domain I I ) . A r e d u c t i o n i n m i n i n g c o n t r o l i s i n f e r r e d f r o m d i r e c t and i n d i r e c t f a c t o r s i n t h e l o w e r l e v e l s . G r e a t e r d i l u t i o n as o b s e r v e d i n some s t o p e s , r e d u c e d diamond d r i l l i n g and l e s s f o l l o w - u p mine c a r e i n d r i f t i n g and c r o s s c u t t i n g , p e r h a p s c a u s e d 189 by e c o n o m i c c o n s t r a i n t s on t h e mine management, a r e t h e main , symptoms. The g r e a t e r d i l u t i o n would b r i n g a b o u t t h e d r o p i n g o l d g r a d e r e p o r t e d i n t h e f i n a l y e a r s o f p r o d u c t i o n . I f t h e s t a n d a r d o f m i n i n g c o n t r o l employed i n t h e u p p e r l e v e l s was u s e d i n t h e l o w e r l e v e l s , s i m i l a r m i n i n g g r a d e s might have been a c h i e v e d . T h i s i s s u b s t a n t i a t e d by r e s u l t s f r o m r e l a t i v e l y u n d i l u t e d o r e muck s a m p l i n g f r o m t h e 3 3 r d l e v e l and by diamond d r i l l i n g r e s u l t s f r o m s e v e r a l o f t h e l o w e r l e v e l s . The argument t h a t t h e d r o p i n g o l d g r a d e i n t h e l o w e r l e v e l s i s g e o l o g i c a l l y c o n t r o l l e d b e c a u s e a s i m i l a r d r o p does n o t o c c u r i n s i l v e r g r a d e has been shown t o be i n c o n c l u s i v e . S i l v e r has a g r e a t e r d i s p e r s i o n f r o m t h e c o r e s o f v e i n s t h a n does g o l d . A r e d u c t i o n i n m i n i n g c o n t r o l , w h i c h i n c r e a s e s d i l u t i o n , would n o t a f f e c t s i l v e r v a l u e s t o t h e same e x t e n t as g o l d , t h u s m i n i n g c o n t r o l c o u l d a l s o e x p l a i n g o l d / s i l v e r r a t i o v a r i a t i o n s . In c o n c l u s i o n , t h e '• d r o p i n t h e g r a d e o f g o l d o f o r e trammed a t d e p t h o f m i n i n g i s n o t p u r e l y a r e s u l t o f g e o l o g i c a l f a c t o r s . A r e d u c t i o n i n m i n i n g c o n t r o l i s c o n s i d e r e d t o be t h e major f a c t o r i n f l u e n c i n g g o l d v a l u e s i n t h e l o w e r l e v e l s o f t h e mine. I f f u t u r e m i n i n g programmes m a i n t a i n t h o r o u g h s a m p l i n g and t e s t i n g , t h e n g r a d e s f r o m t h e l o w e r l e v e l s w i l l be f o u n d t o be as r i c h as t h e h i s t o r i c a l r e c o v e r y f r o m t h e u p p e r l e v e l s . 190 ACKNOWLEDGEMENTS The a d v i c e , c o n t r i b u t i o n s and a s s i s t a n c e o f R. S. Hewton and A. A. B u r g o y n e ( B r i n c o - V a n c o u v e r ) , A. J . S i n c l a i r (U.B.C.), F. G e n t i l e , S. MacSwain and J . Hogan ( B i s s e t t ) and G. F u r n i v a l ( L a t h w e l l - C a l g a r y ) a r e g r a t e f u l l y a c k n o w l e d g e d i n t h e p r e p a r a t i o n o f t h i s p a p e r . The a s s i s t a n c e o f K. A k h u r s t and N. A. W. Matheson f o r p r o o f r e a d i n g a r e a l s o a p p r e c i a t e d . REFERENCES G e n t i l e F. 1983: " G o l d M i n e r a l i z a t i o n a t t h e San A n t o n i o P r o j e c t ( B r i n c o M i n i n g L i m i t e d ) B i s s e t t , M a n i t o b a " ; f o r p r e s e n t a t i o n CIM W i n n i p e g '83. G i b s o n C 1984: " D i s c u s s i o n s on t h e h i s t o r y o f t h e San A n t o n i o G o l d Mine"; p e r s o n a l c o m m u n i c a t i o n . Hewton R. S. and G e n t i l e F. 1983: "San A n t o n i o Mine, Phase I E x p l o r a t i o n D r i l l i n g , No. 97 V e i n " ; B r i n c o M i n i n g L i m i t e d , i n t e r n a l r e p o r t . M c R i t c h i e W. D. and Weber W. 1971: " G e o l o g y and G e o p h y s i c s o f t h e R i c e L a k e R e g i o n , S o u t h e a s t e r n M a n i t o b a ( P r o j e c t P i o n e e r ) " ; M a n i t o b a D e p a r t m e n t o f Mi n e s and N a t u r a l R e s o u r c e s , M i n e s B r a n c h P u b l i c a t i o n 71-1. S t e p h e n s o n J . F. 1972: " G o l d D e p o s i t s o f t h e R i c e L a k e - B e r e s f o r d Lake G r e e n s t o n e B e l t , S o u t h e a s t e r n M a n i t o b a " ; Ph.D. t h e s i s . U n i v e r s i t y o f M a n i t o b a . W h i t i n g B. H. 1984: "1984 Programme on t h e 3 3 r d L e v e l , San A n t o n i o Mine"; L a t h w e l l R e s o u r c e s L i m i t e d , i n t e r n a l r e p o r t . APPENDIX I I ANALYTICAL DATA - ICP ANALYSES TRANSECT *7 - ICP ANALYSES Number Mo(ppm) Cu(ppm) Pb(ppm) Zn(ppm) AgCppm 7001 4. .00 8 .00 2. 00 10 .00 0. 10 7002 2, .00 7 .00 3. 00 12 .00 0. 10 7003 2. .00 2 .00 2. 00 18 .00 0. 10 7004 1, .00 1 .00 5. 00 20 .00 0. 10 7005 3. .00 3 .00 2. 00 25 .00 0. 10 7006 1, .00 1 .00 1. 00 25 .00 0. 10 7007 4. .00 1 .00 1. 00 32 .00 0. 10 7008 2, .00 7 .00 4. 00 30 .00 0. 10 ~/W CONTACT 7009 2 . . 0 0 36 .00 3. 00 68 .00 0. 10 7010 2 . . 0 0 40 .00 7. 00 66 .00 0. 20 7 0 11 3. . 0 0 48 .00 6. 00 78 .00 0. 10 7012 2. .00 35 .00 7. 00 66 .00 0. 10 7013 2. .00 20 .00 8. 00 62 .00 0. 10 7014 3. .00 11 .00 8. 00 67 .00 0. 10 701S 3. .00 16 .00 10. 00 65 .00 0. 10 7016 2. .00 20 .00 6. 00 68 .00 0. 10 7017 4. .00 16 .00 5. 00 85 .00 0. 10 7018 3. .00 21 .00 6. 00 72 .00 0. 10 7019 4, .00 30 .00 6. 00 76 .00 0. 10 7020 2. .00 37 .00 14. 00 77 .00 0. 10 7021 2. .00 41 .00 7. 00 81 .00 0. 20 7022 2. .00 55 .00 7. 00 89 .00 0. 10 7023 3. . 0 0 69 .00 5. 00 87 .00 0. 20 7024 2 . . 0 0 60 . 0 0 6. 00 74 .00 0. 10 7025 3 . . 0 0 41 .00 5. 00 76 .00 0. 20 7 0 2 6 3. . 0 0 34 . 0 0 5. 00 68 .00 0. 10 7027 3. .00 30 .00 10. 00 77 .00 0. 10 7028 4. . 0 0 26 . 0 0 7. 00 75 .00 0. 20 7029 1. .00 39 .00 6. 00 80 .00 0. 10 7030 1, .00 25 .00 8. 00 78 .00 0. 10 7031 3. ,00 22 .00 7. 00 89 .00 0. 20 7032 1. .00 30 .00 10. 00 84 .00 0. 10 7033 3. .00 98 .00 8. 00 87 .00 0. 10 7034 2, .00 47 .00 6. 00 87 .00 0. 10 7035 3. .00 41 .00 8. 00 83 .00 0. 10 7036 2. .00 72 .00 7. 00 84 .00 0. 10 7037 2. .00 36 .00 7. 00 85 .00 0. 10 7038 1 . 00 32 .00 7. 00 79 .00 0. 10 7039 2 _ . 0 0 20 .00 9. 00 84 .00 0. 10 7040 1 . . 0 0 47 .00 6. 00 73 .00 0. 20 Ni(ppm) Co(ppm) Mn(ppm) F e ( X ) A s ( p p m ) 9.00 4.00 118 .00 1. . 1 5 2 . . 0 0 10.00 5.00 112 .00 1. . 2 5 3 . .00 12.00 6.00 131 .00 1. . 5 8 2 , , 0 0 12.00 5.00 155 .00 1 .41 2, .00 12.00 5.00 171 .00 1. . 4 3 3. . 0 0 13.00 5.00 182 .00 1, . 52 2 .00 16.00 6.00 157 .00 1. . 7 8 5 . . 0 0 19.00 6.00 441 .00 1, . 9 6 4 . 0 0 62.00 21.00 951 .00 5. . 4 4 5 , . 0 0 138.00 29.00 1096 .00 6 , . 5 0 3 . 0 0 169.00 35.00 1142 .00 7 , . 8 2 3 . 0 0 139.00 30.00 1097 .00 7 . 14 4 . 0 0 148.00 29.00 1362 .00 6 , . 4 6 2 . . 0 0 169.00 33.00 1216 .00 7 . 7 4 4 . 0 0 153.00 31.00 1326 .00 7 , . 5 5 4 , . 0 0 168.00 33.00 1324 .00 7 . . 2 5 2 . 0 0 196.00 37.00 1364 .00 8 , . 7 5 2 . . 0 0 169.00 33.00 1375 .00 7, . 5 8 3 . 0 0 174.00 34.00 1373 .00 7 . 7 4 3 . . 0 0 177.00 34.00 1320 .00 7. . 0 8 6 , . 0 0 187.00 36.00 1311 .00 7 . , 5 6 5 . . 0 0 204.00 39.00 1358 .00 7 .  9 3 2 . 0 0 181.00 35.00 1294 .00 7, . 3 2 4 , . 0 0 162.00 31.00 1430 .00 6 . . 13 5 . . 0 0 189.00 35.00 1307 .00 7. . 4 4 4 . . 0 0 182.00 34.00 1280 .00 6 . . 9 7 6 , . 0 0 185.00 36.00 1349 .00 7 . . 4 4 4 . . 0 0 185.00 34.00 1312 .00 7 . . 2 7 7 , , 0 0 241.00 39.00 1308 .00 7. . 0 5 4 . , 0 0 280.00 43.00 1267 .00 7. . 4 8 3 . . 0 0 320.00 47.00 1299 .00 8 . , 4 6 ' 3 . . 0 0 369.00 50.00 1124 .00 8 . , 2 8 4 . , 0 0 329.00 46.00 1342 .00 8 . . 3 6 3 . . 0 0 322.00 46.00 1264 .00 8 . , 4 3 3 . , 0 0 305.00 43.00 1205 .00 7. , 8 3 3 . 0 0 301.00 43.00 1203 .00 7. .75 4. . 0 0 303.00 43.00 1177 .00 7. .74 2 . 00 277.00 40.00 1178 .00 7. 12 2. , 0 0 304.00 44.00 1166 .00 7. 8 8 9 . 0 0 287.00 40.00 1149 .00 6 . 85 7 . , 0 0 TRANSECT »7 - ICP ANALYSES Number U(ppm) 7 0 0 1 5 . 0 0 7 0 0 2 5 . 0 0 7 0 0 3 7 . 0 0 7 0 0 4 6 . 0 0 7 0 0 5 6 .00 7006 5 . 0 0 7 0 0 7 5 . 0 0 7008 5.00 F/W CONTACT 7009 5.00 7010 7.00 7011 8.00 7012 7.00 7013 5.00 7014 7.00 7 0 1 5 5 . 0 0 7 0 1 6 5 . 0 0 7 0 1 7 5 . 0 0 7 0 1 8 5 . 0 0 7 0 1 9 5 . 0 0 7 0 2 0 5 . 0 0 7 0 2 1 5 . 0 0 7022 5 . 0 0 7023 5.00 7024 8.00 7025 5.00 7026 5.00 7027 5.00 7028 5.00 7029 5.00 7 0 3 0 5 . 0 0 7 0 3 1 5 . 0 0 7 0 3 2 5 . 0 0 7 0 . ' ' t 3 5 . 0 0 7 0 3 4 5 . 0 0 7 0 3 5 5 . 0 0 7 0 3 6 5 . 0 0 7037 6 . 0 0 7038 5.00 7039 5.00 7040 • 5.00 Au-Kppm) Th(ppm) Sr(ppm) 1.00 2.00 47.00 1.00 2.00 34.00 1.00 2.00 33.00 1.00 2.00 35.00 1.00 2.00 38.00 1.00 2.00 29.00 1.00 2.00 21.00 1.00 2.00 B2.00 1.00 3.00 199.00 1.00 3.00 195.00 1.00 3.00 157.00 1.00 2.00 159.00 1.00 2.00 235.00 1.00 3.00 170.00 1.00 2.00 210.00 1.00 2.00 190.00 1.00 2.00 156.00 1.00 2.00 192.00 1.00 2.00 190.00 1.00 2.00 168.00 1.00 2.00 165.00 1.00 2.00 163.00 1.00 2.00 157.00 1.00 2.00 219.00 1.00 2.00 162.00 1.00 2.00 168.00 1.00 2.00 172.00 1.00 2.00 187.00 1.00 2.00 194.00 1.00 2.00 202.00 1.00 2.00 186.00 1.00 2.00 165.00 1.00 2.00 242.00 1.00 2.00 213.00 1.00 2.00 207.00 1.00 2.00 205.00 1.00 2.00 191.00 1.00 2.00 209.00 1.00 2.00 198.00 1.00 2.00 227.00 Cd(ppm) Sb(ppm) Bi(ppm) 1.00 2.00 2.00 1.00 2.00 2.00 1.00 2.00 2.00 1.00 2.00 2.00 1.00 2.00 2.00 1.00 2.00 2.00 1.00 2.00 2.00 1.00 2.00 2.00 1.00 2.00 2.00 1.00 2.00 2.00 1.00 2.00 3.00 1.00 3.00 5.00 1.00 3.00 3.00 1.00 3.00 4.00 1.00 2.00 3.00 1.00 5.00 2.00 1.00 2.00 4.00 1.00 2.00 2.00 1.00 2.00 3.00 1.00 5.00 2.00 1.00 2.00 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00 2.00 3.00 1.00 5.00 2.00 1.00 2.00 2.00 1.00 4.00 2.00 1.00 2.00 2.00 1.00 2.00 2.00 1.00 2.00 4.00 1.00 2.00 4.00 1.00 2.00 4.00 1.00 2.00 4.00 1.00 2.00 3.00 1.00 2.00 5.00 1.00 2.00 4.00 1.00 2.00 4.00 1.00 2.00 2.00 1.00 2.00 2.00 V(ppm) C a ( X ) P C X ) 2 . 0 0 2 . 7 8 0 . 0 4 2 . 0 0 2 . 3 6 0 . 0 4 2 . 0 0 2 . 3 5 0 . 0 4 2 . 0 0 2 . S 2 0 . 0 4 2 . 0 0 2 . 6 3 0 . 0 4 2 . 0 0 2 . 0 8 0 . 0 4 1 4 . 0 0 1 . 0 3 0 . 0 4 3 0 . 0 0 3 . 1 1 0 . 0 4 1 2 6 . 0 0 6 . 5 1 0 . 0 7 1 1 7 . 0 0 5 . 8 1 0 . 0 4 1 4 0 . 0 0 4 . 0 4 0 . 0 5 1 3 6 . 0 0 3 . 9 4 0 . 0 5 1 1 5 . 0 0 6 . 6 8 0 . 0 4 1 4 2 . 0 0 4 . 0 4 0 . 0 4 1 3 9 . 0 0 4 . 9 7 0 . 0 4 1 1 9 . 0 0 4 . 3 9 0 . 0 4 1 5 0 . 0 0 3 . 6 4 0 . 0 3 1 2 8 . 0 0 4 . 3 5 . 0 . 0 4 1 3 5 . 0 0 4 . 3 7 0 . 0 3 1 2 3 . 0 0 3 . 6 9 0 . 0 4 1 3 2 . 0 0 3 . 4 7 0 . 0 3 1 3 4 . 0 0 3 . 3 4 0.03 1 2 2 . 0 0 3 . 2 8 0.03 1 0 5 . 0 0 4 . 7 3 0 . 0 4 1 3 2 . 0 0 3 . 4 4 0 . 0 4 1 2 7 . 0 0 3 . 5 3 0 . 0 3 1 3 3 . 0 0 3 . 6 7 0.01 1 2 1 . 0 0 3 . 8 0 0.04 1 0 0 . 0 0 3 . 7 2 0 . 0 3 1 0 3 . 0 0 3 . 7 7 0.03 1 1 6 . 0 0 3 . 5 6 0 . 0 3 1 1 1 . 0 0 3 . 0 2 0.03 1 1 2 . 0 0 4 . 6 7 0.04 1 1 6 . 0 0 4 . 0 2 0.03 1 1 2 . 0 0 3 . 9 4 0.03 1 0 9 . 0 0 3 . 7 7 0.04 1 0 8 . 0 0 3 . 5 8 0.03 1 0 0 . 0 0 3 . 8 6 0.03 1 0 9 . 0 0 3 . 5 4 0.02 9 3 . 0 0 4 . 1 5 0 . 0 2 TRANSECT #7 - ICP ANALYSES Number La(ppm) 7001 6 .00 7002 7 .00 7003 8 .00 7004 6 .00 7005 8 .00 7006 7 .00 7007 8 .00 7008 7 .00 /W CONTACT 7009 1 1 . 0 0 7010 6 . 00 7 0 11 •t .00 7012 11 .00 7013 2 .00 7014 7 .00 7015 9 .00 7016 7 .00 7017 2 .00 7018 7 .00 7019 2 .00 7020 6 .00 7021 3 .00 7022 9 . 00 7023 3 .00 7024 2 . 00 7025 8 .00 7026 6 .00 7027 2 .00 7028 6 .00 7029 2 .00 7030 4 .00 7031 3 .00 7032 4 .00 7033 5 .00 7034 8 .00 7035 2 .00 7036 7 .00 7037 2 .00 7038 2 .00 7039 4 .00 7040 4 .00 Cr(ppm) Mg(X) Ba(ppm) 63.00 0.78 16.00 44.00 0.79 13.00 46.00 0.87 23.00 40.00 0.93 20.00 47.00 0.93 36.00 49.00 1.02 27.00 77.00 0.98 22.00 72.00 0.98 6.00 108.00 2.60 2.00 199.00 3.83 2.00 226.00 4.76 2.00 195.00 4.17 2.00 191.00 3.9S 2.00 22S.00 4.44 2.00 213.00 4.28 2.00 221.00 4.21 2.00 285.00 4.82 2.00 238.00 4.39 2.00 239.00 4.48 2.00 208.00 4.30 2.00 225.00 4.55 3.00 255.00 4.93 3.00 237.00 4.54 3.00 205.00 4.09 3.00 239.00 4.60 3.00 235.00 4.46 3.00 255.00 4.83 • 2.00 251.00 4.63 10.00 292.00 5.29 15.00 322.00 5.65 16.00 371.00 6.29 16.00 366.00 6.23 10.00 331.00 5.98 28.00 350.00 5.88 20.00 323.00 5.65 21.00 311.00 5.84 27.00 317.00 5.97 23.00 286.00 5.61 30.00 325.00 6.05 32.00 296.00 5.28 26.00 Ti(X) B(ppm) AKX) 0.01 2.00 0.27 0.01 5.00 0.22 0.01 2.00 0.35 0.01 2.00 0.28 O.'Ol 3.00 0.43 0.01 2.00 0.46 0.01 2.00 0.91 0.01 2.00 1.03 0.03 2.00 2.66 0.07 2.00 3.50 0.13 2.00 4.11 0.13 5.00 3.60 0.12 5.00 3.31 0.16 12.00 3.75 0.20 5.00 3.65 0.13 2.00 3.50 0.25 3.00 3.95 0.19 6.00 3.63 0.21 8.00 3.71 0.12 5.00 3.50 0.15 6.00 3.73 0.16 9.00 4.00 0.15 6.00 3.56 0.11 2.00 3.20 0.17 2.00 3.63 0.13 6.00 3.56 0.18 4.00 3.85 0.17 7.00 3.56 0.14 5.00 3.97 0.15 4.00 4.17 0.22 9.00 4.70 0.16 9.00 4.32 0.17 2.00 4.46 0.18 7.00 4.46 0.16 2.00 4.23 0.17 4.00 4.42 0.16 7.00 4.55 0.15 4.00 4.28 0.20 4.00 4.49 0.13 7.00 3.78 Nad) K(X) W(ppm) 0.07 0.09 2.00 0.04 0.08 2.00 0.04 0.12 2.00 0.03 0.09 2 . 0 0 0.04 0.14 2.00 0.03 0.08 2.00 0.07 0.05 2.00 0.05 0.01 2 . 0 0 0.02 0.01 2 . 0 0 0.01 0.01 2 . 0 0 0.01 0.01 2 . 0 0 0.01 0.01 2.00 0.01 0.01 2.00 0.01 0.01 2.00 0.01 0.01 2.00 0.01 0.01 2 . 0 0 0.02 0.01 2 . 0 0 0.01 0.01 2 . 0 0 0.02 0.01 2 . 0 0 0.01 0.01 2 . 0 0 0.01 0.01 2 . 0 0 0.01 0.01 3 . 0 0 0.01 0.01 2 . 0 0 0.01 0.01 2 . 0 0 0.01 0.01 2 . 0 0 0.01 0.01 2.00 0.01 0.01 2.00 0.01 0.01 2.00 0.01 0.01 2.00 0.01 0.01 2.00 0.01 0.01 3.00 0.01 0.01 2.00 0.01 0.01 2.00 0.01 0.01 2.00 0.01 0.01 2.00 0.01 0.01 2.00 0.01 0.01 2.00 0.01 0.01 2.00 0.01 0.01 2.00 0.01 0.01 2.00 TRANSECT #7 - ICP ANALYSES (except Au-2 by NAA) Number Si<X) Zr < ppm) Se(ppm) Sn(ppm) Y(ppra) Nb(ppm) Ta(ppm) Au- 2(ppb) 7001 0. 03 2.00 9.00 2.00 2.00 16.00 2.00 2 . 00 7002 0 . 03 2.00 11.00 2.00 2.00 15.00 2.00 6 .00 7003 0. 04 2.00 12.00 2.00 2.00 14.00 2.00 ' 130 .00 7004 0 . 03 2.00 11.00 2.00 2.00 16.00 2.00 1 .00 7005 0. 04 3.00 11.00 2.00 2.00 17.00 2.00 1 .00 7006 0. 03 2.00 11.00 2.00 2.00 14.00 2.00 2 .00 7007 0. 05 3.00 11.00 2.00 2.00 8.00 2.00 1 .00 7008 0. 04 3.00 10.00 2.00 2.00 20.00 2.00 1 .00 F/W CONTACT 7009 0.08 5.00 17.00 2.00 3.00 32.00 2.00 1 .00 7010 0. 07 2.00 12.00 2.00 3.00 28.00 2.00 2 .00 7011 0.04 4 .00 13.00 2.00 4.00 26.00 2.00 4 .00 7012 0. 04 4 .00 14.00 2.00 3.00 25.00 2.00 1 .00 7013 0. 03 3.00 10.00 2.00 4.00 34.00 2.00 2 .00 7014 0. 05 4.00 11.00 2.00 4.00 27.00 2.00 1 .00 7015 0. 05 6.00 10.00 2.00 5.00 32.00 2.00 2 .00 7016 0 . 02 3.00 10.00 2.00 4.00 28.00 2.00 4 .00 7017 0 . 05 6.00 9.00 2.00 5.00 20.00 2.00 0 .50 7018 0 . 04 5.00 9.00 2.00 5.00 29.00 2.00 7 .00 7019 0. 05 5.00 8.00 2.00 5.00 28.00 2.00 1 .00 7020 0. 03 3.00 10.00 2.00 3.00 24.00 2.00 3 .00 7021 0. 03 4.00 9.00 2.00 4.00 23.00 2.00 . 2 .00 7022 0. 03 3.00 7.00 2.00 4.00 20.00 2.00 1 .00 7023 0. 04 4.00 9.00 2.00 4.00 21.00 2.00 1 .00 7024 0. 02 3.00 9.00 2.00 4.00 28.00 2.00 0 . 50 7025 0. 04 4.00 10.00 2.00 5.00 22.00 2.00 0 .50 7026 0. 04 3.00 10.00 2.00 4.00 24.00 2.00 3 .00 7027 0. 04 4.00 8.00 2.00 4.00 21.00 2.00 2 .00 7028 0. 04 5.00 10.00 2.00 4.00 26.00 2.00 0 . 50 7029 0. 04 4.00 9.00 2.00 3.00 23.00 2.00 0 . 50 7030 0 . 03 4.00 9.00 2.00 3.00 24.00 2.00 0 . 50 7031 0 . 05 6 .00 10.00 2.00 5.00 22.00 2.00 0 . 50 7032 0 . 04 4 .00 11.00 2.00 4.00 19.00 2.00 0 . 50 7033 0. 04 5.00 10.00 2.00 4.00 30.00 2.00 0 . 50 7034 0. OS 5.00 9.00 2.00 4.00 25.00 2.00 0 .50 7035 0. 05 5.00 9.00 2.00 4.00 23.00 2.00 9 .00 7036 0. 04 5.00 9.00 2.00 4.00 23.00 2.00 0 . 50 7037 0. 04 5.00 9.00 2.00 4.00 22.00 2.00 0 .50 7038 0. 04 4.00 9.00 2.00 3.00 23.00 2.00 0 .50 7039 0.05 5.00 7.00 2.00 4.00 22.00 2.00 0 . 50 7040 0. 03 3 .00 6.00 2.00 3.00 24.00 2.00 0 . 50 (O tn TRANSECT *7 - ICP ANALYSES N u m b e r M o ( p p m ) C u ( p p m ) P b ( p p m ) Z n ( p p m ) A g C p p r o 7041 2.00 89.00 6.00 72.00 0.10 7042 1.00 87.00 7.00 76.00 0.10 7043 1.00 65.00 4.00 73.00 0.10 7044 1.00 21.00 5.00 70.00 0.10 704S 1.00 36.00 13.00 71.00 0.10 7046 2.00 28.00 5.00 68.00 0.10 7047 2.00 13.00 6.00 71.00 0.10 7048 2.00 22.00 5.00 S9.00 0.10 7049 2 .00 20.00 8.00 69.00 0.10 7050 1 .00 23.00 4.00 55.00 0.10 7051 2.00 27.00 4.00 70.00 0.10 70S2 2 .00 31 .00 2.00 61.00 0.10 7053 2.00 27.00 5.00 64.00 0.10 7054 1.00 20 . 00 5.00 58.00 0.20 7055 2.00 11.00 5.00 59.00 0.20 7056 1.00 15.00 3.00 45.00 0.20 7057 2.00 11.00 2.00 42.00 0.20 7058 1.00 10.00 2.00 41.00 0.20 7059 1.00 13.00 2.00 38.00 0.20 7060 2.00 14.00 3.00 40.00 0.20 7061 2.00 12.00 3.00 43.00 0.20 7062 2.00 11 .00 2.00 41.00 0.20 7063 1.00 7.00 1.00 43.00 0.10 7064 2.00 45 .00 3.00 48.00 0.20 7065 2 .00 16.00 4.00 51.00 0.10 7066 2 . 00 30.00 6.00 58.00 0.10 7 0 6 7 2 . 00 82 .00 3.00 59.00 0.20 7068 2.00 44 .00 4.00 67.00 0.10 7069 1 .00 80.00 4.00 52.00 0.20 7070 3.00 54.00 2.00 67.00 0.20 7071 2.00 97.00 2.00 71.00 0.10 7072 2.00 86.00 14.00 82.00 0.20 7073 1.00 9.00 5.00 69.00 0.20 7074 2.00 21 .00 1.00 57.00 0.10 7075 2.00 121.00 4.00 69.00 0.20 7076 2.00 43.00 4.00 76.00 0.20 7077 1.00 42.00 1.00 71.00 0.20 7078 2.00 36.00 3.00 69.00 0.20 7079 2 . 00 6 3.00 1.00 71.00 0.20 7080 2 . 00 43.00 3.00 65.00 0.10 N i ( p p m ) C o ( p p m ) M n ( p p m ) F e ( X ) A s ( p p m ) 256.00 38.00 1177 .00. 6. .20 7 . ,00 273.00 40.00 1189 .00 6 .68 7 , . 00 249.00 38.00 1106 .00 6. .42 7. , 00 221.00 35.00 1083 .00 6 .25 5 , . 00 214.00 36.00 1047 .00 6 .49 6 . .00 193.00 34.00 1030 .00 6 .54 9, . 00 196.00 35.00 1068 .00 7. .01 7. , 00 147.00 28.00 1011 .00 5, .60 3 . , 00 146.00 31.00 1075 .00 6. .85 5 . ,00 108.00 23.00 938 .00 4. . 60 6, .00 129.00 29.00 1064 .00 6. .21 8 . ,00 115.00 26.00 985 .00 5, .37 9 , .00 119.00 27.00 1005 .00 5. .61 11 . , 00 112.00 26.00 994 .00 5, .44 13, .00 120.00 28.00 1011 .00 6. . 19 9. , 00 98.00 23.00 873 .00 4. .91 10, .00 84.00 21.00 703 .00 4. .46 6 . ,00 80.00 20.00 663 .00 4, .07 4 , 00 77.00 19.00 662 .00 3. .71 10. ,00 87.00 21 .00 737 .00 4 . 33 10, .00 78.00 20.00 697 .00 4. .27 9 . ,00 65.00 18.00 597 .00 3, .68 7 , 00 51.00 17.00 580 .00 3. .47 4. ,00 58.00 19.00 593 . 00 3, .71 4 . 00 61.00 19.00 646 .00 3. .63 6 . , 0 0 58.00 20.00 682 .00 3. . 84 5 . , 00 56.00 19.00 623 .00 3 . 74 8 . , 00 71.00 23.00 798 .00 4 . 56 7 , 00 49.00 17.00 655 .00 3. , 34 5 . 0 0 52.00 20.00 766 .00 4 .  1 1 7 , . 00 55.00 21.00 747 .00 4. ,31 8 . , 00 58.00 24.00 894 .00 5. , 22 5 . . 00 46.00 18.00 900 .00 4 . . 23 8 . 00 43.00 16 .00 623 .00 3 , .42 4 .  00 46.00 19.00 676 . 00 3 . , 6 7 4 . 0 0 47.00 19.00 727 .00 3 . , 7 7 8 . 00 44.00 18.00 691 .00 3. , 57 6 . 00 46.00 19.00 741 .00 3. .76 8. ,00 44.00 19.00 700 .00 3. ,95 8 . 00 43.00 19.00 732 .00 3 . , 85 e. 00 TRANSECT #7 - ICP ANALYSES Number U(ppm) Au-1(ppm) Th(ppm) Sr(ppm) Cd(ppm 7041 5.00 1.00 2.00 229.00 1.00 7042 7 . 00 1 .00 3.00 216.00 1.00 7043 5 . 00 1 .00 2.00 191.00 1.00 . 7044 5 . 00 1 .00 2.00 191.00 1.00 7045 S.00 1 .00 2.00 178.00 1.00 7046 5.00 1 .00 2.00 171.00 1.00 7047 5.00 1 .00 2.00 164.00 1.00 7048 5.00 1.00 2.00 163.00 1.00 7049 7.00 1.00 2.00 152.00 1.00 7050 5.00 1.00 2.00 125.00 1.00 7051 5.00 1.00 2.00 117.00 1.00 7052 5.00 1.00 2.00 100.00 1.00 7053 5.00 1.00 2.00 91.00 1.00 7054 5.00 1.00 2.00 94.00 1.00 7055 5.00 1.00 2.00 91.00 1.00 7056 5.00 1.00 2.00 81.00 1.00 7057 5.00 1 .00 2.00 70.00 1.00 7058 5 . 00 1 .00 2.00 62.00 1.00 7059 5 . 00 1 .00 2.00 59.00 1.00 7 060 S . 00 1 .00 2.00 67.00 1.00 7061 5.00 1.00 2.00 71.00 1.00 7062 5.00 1 .00 2.00 66.00 1.00 7063 5.00 1.00 2.00 41.00 1.00 7064 5.00 1.00 2.00 45.00 1.00 7065 5.00 1.00 2.00 48.00 1.00 7066 5.00 1.00 2.00 46.00 , 1.00 7067 5.00 1.00 2.00 33.00 1.00 7068 5.00 1.00 2.00 57.00 1.00 7069 S.00 1.00 2.00 28.00 1.00 7070 5.00 1.00 2.00 44.00 1.00 7071 5.00 1.00 2.00 45.00 1.00 7072 5 . 00 1 .00 2.00 43.00 1.00 7073 5 . 00 1 .00 2.00 46.00 1.00 7074 5.00 1.00 2.00 39.00 1.00 7075 5.00 1 .00 2.00 31.00 1.00 7076 5.00 1 .00 2.00 34.00 1.00 7077 5.00 1 .00 2.00 28.00 1.00 7078 5.00 1 .00 2.00 33.00 1.00 7079 5.00 1.00 2.00 29.00 1.00 7080 5.00 1.00 2.00 33.00 1.00 Sb(ppm) Bi(ppm) V(ppm) Ca(X> P( X ) 2.00 2.00 83. 00, 4 . 53 0. 02 2.00 2.00 86. 00 4 . 22 0 . 03 2.00 2.00 85. 00 3 . 83 0 . 04 2.00 2.00 91 . 00 4 .07 0 . 04 3.00 2.00 92. 00 3 . 80 0 . 03 2.00 3.00 99. 00 3 .86 0. 03 4.00 3.00 112. 00 3 . 84 0. 03 3.00 2.00 86. 00 3 .99 0. 03 4.00 4.00 114. 00 3 .97 0 . 03 2.00 2.00 72. 00 3 .72 0 . 04 2.00 2.00 99. 00 3 .61 0 . 04 2.00 2.00 86. 00 3 .32 0. 04 2.00 2.00 91. 00 3 .15 0. 04 2.00 2.00 91 . 00 3 .21 0. 03 2.00 2.00 105. 00 2 .93 0. 03 2.00 2.00 83. 00 2 .69 0 . 03 2.00 2.00 72. 00 1 .63 0. 04 2.00 2.00 65. 00 1 .41 0. 04 2.00 2.00 60. 00 1 .61 0. 04 3.00 2.00 68. 00 2 .06 0. 04 2.00 2.00 66 . 00 1 .47 0 . 04 2.00 2.00 55. 00 0 . 94 0 . 04 3.00 2.00 46. 00 0 . 69 0. 04 4.00 2.00 49. 00 0 .60 0. 05 2.00 3.00 50. 00 0 .69 0. 04 2.00 3.00 51. 00 0 .77 0. 05 2.00 4.00 47. 00 0 . 53 0 . 05 2.00 2.00 64. 00 0 .95 0. 04 4.00 2.00 47. 00 0 .90 . o. 05 3.00 2.00 60. 00 0 .96 0. 05 2.00 2.00 59. 00 0 .82 0. 05 2.00 2.00 71. 00 1 .26 0. 04 3.00 2.00 58. 00 3 .55 0. 05 3.00 2.00 47. 00 1 . 10 0. 04 2.00 2.00 51. 00 0 . 87 0 . 05 3.00 2.00 53. 00 1 .03 0. 04 2.00 2.00 48. 00 0 .91 0 . 05 3.00 2.00 50. 00 1 . 11 0. 04 3.00 2.00 54. 00 0 .80 0. 05 3.00 2.00 55. 00 1 .16 0 . 05 lO TRANSECT *7 - ICP ANALYSES Number La(ppm) Cr(ppm) MgCX) Ba(ppm) Ti(X> B(ppm) Al (X ) Na(X) K<X) W < ppm) 7041 3.00 269.00 4.97 15.00 0.11 2.00 3.59 0. 01 0. 01 2 . 00 7042 3.00 276.00 5.20 13.00 0.11 2.00 3.93 0 . 01 0. 01 2.00 7043 5.00 266.00 5.08 10.00 0.10 3.00 3.84 0 . 01 0. 01 2.00 7044 9.00 250.00 4.72 8.00 0.12 5.00 3.66 0. 01 0. ,01 2.00 7045 5.00 241.00 4.66 8.00 0."l2 2.00 3.61 0 . 01 0. 01 2 .00 7046 7.00 223.00 4.36 6.00 0.13 3.00 3.40 0 . 01 0. ,01 2 . 00 7047 5.00 233.00 4.57 4.00 0.18 2.00 3.58 0. 02 0. 01 2 . 00 7048 8.00 182.00 3.79 3.00 0.12 5.00 3.03 0. .01 0. .01 2.00 7049 6.00 183.00 3.98 2.00 0.17 2.00 3.20 0. 02 0. 01 2 . 00 7050 2 . 00 136.00 2.90 2.00 0.07 3.00 2.35 0. 01 0. 01 2.00 7051 5 . 00 164.00 3.63 2.00 0.12 2.00 3.03 0. 02 0. 01 2.00 7052 2 . 00 145.00 3.27 2.00 0.08 2.00 2.67 0. 01 0. 01 2.00 7053 2 . 00 1S3.00 3.41 2.00 0.09 3.00 2.81 0. 01 0. 01 2 .00 7054 2.00 147.00 3.31 2.00 0.10 2.00 2.73 0. 01 0. 01 2.00 7055 2.00 158.00 3.62 2.00 0.13 3.00 3.07 0. 01 0. 01 2.00 7056 2.00 135.00 2.99 2.00 0.10 4.00 2.47 0. 01 0. 01 2.00 7057 3.00 132.00 2.65 2.00 0.12 3.00 2.20 0. 01 0. 01 2.00 7058 2.00 133.00 2.51 2.00 0.11 2.00 2.02 0. 02 0. 01 2 . 00 7059 2.00 123.00 2.43 2.00 0.10 2.00 1 . 94 0. 01 0. 01 2 . 00 7060 3.00 125.00 2.62 2.00 0.10 4.00 2.12 0. 02 0. 01 2 . 00 7061 2.00 126.00 2.61 2.00 0.13 4.00 2. 18 ' 0. 02 0. 01 2 . 00 7062 4.00 132.00 2.22 2.00 0.13 4.00 1 . 89 0. 02 0. 01 2 . 00 7063 2.00 101.00 2.18 2.00 0.11 2.00 1 .74 0. 01 0 . 01 2 . 00 7064 3.00 122.00 2.17 2.00 0.11 3.00 1 .77 0. 01 0. 01 2 . 00 7065 4.00 121.00 2.30 2.00 0.11 3.00 1 . 90 0. 01 0. 01 2 . 00 7066 5.00 120.00 2.36 2.00 0.10 3.00 1.95 0. 01 0 . 01 2.00 7067 5.00 120.00 2.17 2.00 0.07 2.00 1.73 0. 01 0. 01 2 . 00 7068 2 . 00 136.00 2.79 2.00 0.14 2.00 2.35 0. 02 0. 01 2.00 7069 4.00 106.00 2.12 2.00 0.07 2.00 1.73 0. 01 0. 01 2 . 00 7070 4.00 118.00 2.46 2.00 0.11 4.00 2.21 0. 02 0. 01 2 . 00 7071 7.00 128.00 2.46 2.00 0.11 7.00 2.29 0. 01 0. 01 2.00 7072 7.00 125.00 2.82 2.00 0.14 5.00 2.66 0. 02 0. 01 2.00 7073 2.00 95.00 2.35 2.00 0.09 7.00 2.17 0. 02 0. 01 2.00 7074 4.00 94.00 1.84 2.00 0.09 4.00 1 .84 0. 02 0. 01 2 . 00 7075 4.00 111.00 2.17 . 2.00 0.09 2.00 2.07 0. 01 0. 01 2 . 00 7076 4.00 106.00 2.30 2.00 0.10 5.00 2.23 0. 01 0. 01 2 . 00 7077 4.00 91.00 2.14 2.00 0.08 4.00 2.08 0. 01 0. 01 2.00 7078 2.00 105.00 2.18 2.00 0.09 4.00 2.16 0. 01 0. 01 2.00 7079 5.00 98.00 2.19 2.00 0.08 4.00 2.14 0. 02 0. 01 2.00 7080 4. 00 99.00 2.08 2.00 0.09 4.00 2.09 0. 02 0. 01 2.00 TRANSECT »7 - ICP ANALYSES (except Au-2 by NAA) Number Si(X) Zr(ppra) 7041 0.03 3.00 7042 0.03 3.00 7043 0 .03 3.00 7044 0.03 4.00 7045 0.03 4.00 7046 0.03 5.00 7047 0.04 7.00 7048 0.02 5.00 7049 0.05 9.00 7050 0.04 3.00 7051 0.06 5.00 7052 0.04 3.00 7053 0.04 3.00 7054 0.04 3.00 7055 0.05 4.00 7056 0.04 3.00 7057 0. 04 3.00 7058 0.03 3.00 7059 0.04 3.00 7060 0.04 3.00 7061 0.04 4 .00 7062 0.03 4.00 7063 0.03 4.00 7064 0.03 3.00 706S 0.03 3.00 7066 0.03 3.00 7067 0.03 2.00 7068 0.04 4.00 7069 0.03 2.00 7070 0.04 3.00 7071 0.04 3.00 7072 0.05 4 .00 7073 0 . 05 3.00 7074 0 .04 3 . 00 7075 0.04 2 .00 7076 0.04 3.00 7077 0.04 2.00 7078 0.04 4.00 7079 0.05 4.00 7080 0.05 5.00 Se(ppm) Sn(ppm) Y(ppm) 7.00 2.00 3.00 8.00 2.00 3.00 9.00 2.00 3.00 10.00 2.00 3.00 9.00 2.00 3.00 10.00 2.00 3.00 10.00 2.00 4.00 8.00 2.00 3.00 10.00 2.00 4.00 9.00 2.00 2.00 8.00 2.00 3.00 8.00 2.00 2.00 7.00 2.00 2.00 7.00 2.00 2.00 6.00 2.00 2.00 6.00 2.00 2.00 6.00 2.00 2.00 6.00 2.00 2.00 6.00 2.00 2.00 5.00 2.00 2.00 7.00 2.00 2.00 7.00 2.00 2.00 7.00 2.00 2.00 8.00 2.00 2.00 7.00 2.00 2.00 8.00 2.00 2.00 8.00 2.00 2.00 9.00 2.00 2.00 8.00 2.00 2.00 10.00 2.00 3.00 10.00 2.00 2.00 10.00 3.00 3.00 7.00 2.00 2.00 7.00 2.00 2.00 7.00 2.00 2.00 7.00 2.00 2.00 7.00 2.00 2.00 6.00 2.00 2.00 8.00 2.00 2.00 8.00 2.00 2.00 Nb(ppm) Ta(ppm) A u - 2 ( p p b ) 26.00 2.00 1 .00 24.00 2.00 0 . 50 23.00 2.00 1 .00 26.00 2.00 0 .50 25.00 2.00 .. 0 . 50 25.00 2.00 1 .00 27.00 3.00 0 .50 26.00 2.00 0 .50 26.00 2.00 0 .50 21.00 2.00 0 .50 20.00 2.00 0 .50 19.00 2.00 120 .00 18.00 2.00 0 . 50 16.00 2.00 0 .50 17.00 2.00 0 .50 14.00 2.00 0 . 50 8.00 2.00 10 .00 8.00 2.00 0 .50 9.00 2.00 1 .00 11.00 2.00 0 . 50 8.00 2.00 0 . 50 4.00 2.00 0 . 50 4.00 3.00 9 .00 3.00 2.00 0 .50 S.00 2.00 0 .50 5.00 3.00 2 .00 3.00 2.00 1 .00 5.00 2.00 2 .00 5.00 2.00 1 .00 5.00 2.00 2 .00 4.00 2.00 3 .00 5.00 2.00 24 .00 18.00 2.00 1 .00 5.00 2.00 2 .00 4.00 2.00 1 .00 5.00 2.00 1 .00 3.00 2.00 1 .00 5.00 2.00 2 .00 4.00 3.00 0 .50 5.00 2.00 2 .00 TRANSECT *7 - ICP ANALYSES N u m b e r Mo(ppm) Cu < ppm) Pb(pptn) Zn(ppm) Ag(ppm) 7081 2.00 46.00 2.00 71.00 0.20 7082 2.00 37.00 4.00 72.00 0.20 7083 2.00 88.00 3.00 73.00 0.30 7084 2.00 66.00 6.00 77.00 0.20 7085 2.00 38.00 6.00 85.00 0.10 7086 2.00 47.00 7.00 98.00 0.10 7087 2.00 59.00 4.00 82.00 0.20 7088 2.00 64.00 5.00 97.00 0.10 7089 1.00 49.00 5.00 72.00 0.40 7 0 9 0 1 .00 41 .00 7.00 69.00 0.30 7091 1 . 0 0 61 .00 8.00 67.00 0.30 7 0 9 2 2 . 0 0 45.00 8.00 97.00 0.30 7 0 9 3 1 . 0 0 SO .00 3.00 149.00 0.20 7 0 9 4 2.00 38 .00 3.00 109.00 0.20 7095 2.00 66.00 1.00 87.00 0.20 7096 3.00 64.00 9.00 69.00 0.10 7097 3.00 66.00 3.00 62.00 0.30 7098 3.00 30.00 2.00 47.00 0.20 7099 2.00 62.00 3.00 48.00 0.20 7100 3.00 33.00 6.00 57.00 0.30 7101 2.00 42.00 9.00 54.00 0.20 7102 3.00 21 .00 1.00 60.00 0.20 7103 3.00 16.00 5.00 69.00 0.10 7104 3.00 10.00 9.00 66.00 0.30 7 1 0 5 2 . 0 0 10.00 1.00 53.00 0.20 7106 1 . 0 0 12 .00 5.00 60.00 0.20 7 1 0 7 1 . 0 0 31 .00 10.00 67.00 0.40 7 1 0 8 1 . 0 0 4 9 . 0 0 11.00 67.00 0.50 7 1 0 9 2 . 0 0 74.00 8.00 70.00 0.30 7110 1.00 39.00 11.00 71.00 0.30 7111 1.00 17.00 6.00 69.00 0.30 7112 1.00 17.00 8.00 70.00 0.30 7113 1.00 44.00 7.00 71.00 0.50 7114 1.00 66.00 5.00 72.00 0.60 7115 1.00 49.00 15.00 83.00 0.S0 7116 2.00 115.00 12.00 54.00 0.80 7117 1.00 77.00 2.00 76.00 1.00 7118 1.00 80.00 6.00 76.00 0.40 7119 1.00 70.00 9.00 77.00 0.90 7 1 2 0 2 . 0 0 52.00 8.00 63.00 1.00 Ni(ppm) Co(ppm) Mn(ppm) F e d ) As(ppm) 46.00 21 .00 803 .00 4 .79 10 , . 0 0 43.00 20 .00 763 .00 4 .61 9 .00 41.00 20 .00 728 .00 4 .53 8. . 00 44.00 21 .00 752 .00 5 . 17 10 .00 39.00 19 .00 875 .00 4 .99 8 .00 41.00 20 .00 957 .00 5 .37 8 .00 40.00 21 .00 741 .00 5 .13 7 . 00 33.00 16 .00 1071 .00 4 . 53 7 . 00 40.00 17 .00 902 .00 5 .45 2 .00 45.00 21 .00 820 .00 5 .62 5 . 00 43.00 22 .00 876 .00 5 .38 2 . 00 41.00 17 .00 819 .00 4 .92 2 . 00 39.00 17 .00 855 .00 4 .64 2 . 00 41.00 18 .00 824 .00 4 . 32 2 . 0 0 37.00 15 .00 783 .00 4 .31 2. . 0 0 39.00 17 .00 790 .00 4 .33 2 . 00 40.00 17 .00 757 .00 4 . 54 2 , . 00 38.00 14 .00 759 .00 4 .01 2 . 00 35.00 18 .00 762 .00 4 .35 2 , .00 38.00 17 . 00 824 .00 4 . 67 2 . 0 0 33.00 17 .00 770 .00 4 .35 2 , . 0 0 37.00 20 .00 752 .00 4 . 26 2 . . 0 0 38.00 22 .00 858 .00 4 . 95 2 .  0 0 37.00 17 .00 809 .00 4 . 82 3 . 0 0 32.00 12 .00 791 .00 4 . 27 3 . . 0 0 34.00 13 .00 860 .00 5 . 34 2 . 0 0 33.00 14 . 00 809 .00 5 . 90 2 . . 0 0 31 .00 14 . 00 991 .00 5 .71 3 . . 0 0 28.00 13 .00 1053 .00 5 .94 2 . . 0 0 29.00 15 .00 989 .00 5 . 97 2 , . 0 0 28.00 10 .00 947 .00 5 .79 3 . , 00 30.00 14 .00 931 .00 5 . 98 3 . 00 32.00 15 .00 1021 .00 5 . 84 2 . 00 26.00 17 .00 919 .00 5 .83 2. , 00 31.00 16 .00 930 .00 6 .01 2. 00 31.00 12 .00 1043 .00 5 . 49 2 . 00 31.00 12 .00 1036 .00 6 . 08 2 . 0 0 29.00 10 .00 969 .00 5 .69 4 . 00 27.00 11 .00 825 .00 5 .43 7 . 0 0 30.00 15 .00 939 .00 S .47 12. ,00 O O T R A N S E C T #7 - I C P A N A L Y S E S l u m b e r U ( p p m ) A u - 1 ( p p m ) T h ( p p m ) S r ( p p m ) C d ( p p m 7 0 8 1 5 . 0 0 1 . 0 0 2 . 0 0 4 6 . 0 0 1 . 0 0 7 0 8 2 5 . 0 0 1 . 0 0 2 . 0 0 4 9 . 0 0 1 . 0 0 7 0 3 3 5 . 0 0 1 . 0 0 2 . 0 0 3 6 . 0 0 1 . 0 0 7 0 8 4 S . 0 0 1 . 0 0 2 . 0 0 S 6 . 0 0 1 . 0 0 • 0 8 5 5 . 0 0 1 . 0 0 2 . 0 0 4 6 . 0 0 1 . 0 0 7 0 6 6 5 . 0 0 1 . 0 0 2 . 0 0 4 9 . 0 0 1 . 0 0 7 0 8 7 5 . 0 0 1 . 0 0 2 . 0 0 5 3 . 0 0 1 . 0 0 7 0 8 8 5 . 0 0 1 . 0 0 2 . 0 0 6 6 . 0 0 1 . 0 0 7 0 8 9 5 . 0 0 1 . 0 0 6 . 0 0 7 9 . 0 0 1 . 0 0 7 0 9 0 5 . 0 0 1 . 0 0 5 . 0 0 6 5 . 0 0 1 . 0 0 7 0 9 1 5 . 0 0 1 . 0 0 5 . 0 0 6 4 . 0 0 1 . 0 0 7 0 9 2 5 . 0 0 1 . 0 0 ... 5 . 0 0 6 5 . 0 0 1 . 0 0 7 0 9 3 5 . 0 0 1 . 0 0 4 . 0 0 5 9 . 0 0 1 . 0 0 7 0 9 4 5 . 0 0 1 . 0 0 5 . 0 0 5 6 . 0 0 1 . 0 0 7 0 9 5 5 . 0 0 1 . 0 0 5 . 0 0 5 7 . 0 0 1 . 0 0 7 0 9 6 5 . 0 0 1 . 0 0 5 . 0 0 5 3 . 0 0 1 . 0 0 7 0 9 7 5 . 0 0 1 . 0 0 4 . 0 0 5 3 . 0 0 1 . 0 0 ' 0 9 8 5 . U 0 1 . 0 0 5 . 0 0 5 8 . 0 0 1 . 0 0 7 0 9 9 5 . 0 0 1 . 0 0 4 . 0 0 6 0 . 0 0 1 . 0 0 1 0 0 5 . 0 0 1 . 0 0 5 . 0 0 3 8 . 0 0 1 . 0 0 •101 5 . 0 0 1 . 0 0 4 . 0 0 5 0 . 0 0 1 . 0 0 ; i o 2 5 . 0 0 1 . 0 0 5 . 0 0 3 9 . 0 0 1 . 0 0 7 1 0 3 5 . 0 0 1 . 0 0 4 . 0 0 4 5 . 0 0 1 . 0 0 7 1 0 4 5 . 0 0 1 . 0 0 5 . 0 0 3 7 . 0 0 1 . 0 0 7 1 0 5 5 . 0 0 1 . 0 0 5 . 0 0 7 1 . 0 0 1 . 0 0 7 1 0 6 5 . 0 0 1 . 0 0 6 . 0 0 6 7 . 0 0 1 . 0 0 7 1 0 7 5 . 0 0 1 . 0 0 7 . 0 0 6 1 . 0 0 1 . 0 0 7 1 0 8 5 . 0 0 1 . 0 0 7 . 0 0 9 8 . 0 0 1 . 0 0 7 1 0 9 5 . 0 0 1 . 0 0 8 . 0 0 1 1 0 . 0 0 1 . 0 0 7 1 1 0 5 . 0 0 1 . 0 0 7 . 0 0 9 6 . 0 0 1 . 0 0 7 1 1 1 5 . 0 0 1 . 0 0 6 . 0 0 8 7 . 0 0 1 . 0 0 7 1 1 2 5 . 0 0 1 . 0 0 6 . 0 0 9 6 . 0 0 1 . 0 0 "7113 5 . 0 0 1 . 0 0 7 . 0 0 1 0 1 . 0 0 1 . 0 0 7 1 1 4 5 . 0 0 1 . 0 0 6 . 0 0 8 8 . 0 0 1 . 0 0 • 1 15 5 . 0 0 1 . 0 0 5 . 0 0 8 9 . 0 0 1 . 0 0 ' 1 1 6 5 . 0 0 1 . 0 0 5 . 0 0 1 1 7 . 0 0 1 . 0 0 7 1 1 7 5 . 0 0 1 . 0 0 4 . 0 0 1 0 8 . 0 0 1 . 0 0 7 1 1 8 5 . 0 0 1 . 0 0 3 . 0 0 1 2 6 . 0 0 1 . 0 0 7 1 1 9 5 . 0 0 1 . 0 0 4 . 0 0 1 2 9 . 0 0 1 . 0 0 7 1 2 0 5 . 0 0 1 . 0 0 4 . 0 0 1 7 1 . 0 0 1 . 0 0 S b ( p p m ) B i ( p p m ) V ( p p m ) C a(X) P(X) 2 . 0 0 2 . 0 0 7 2 . 0 0 1 . 4 8 0.05 2 . 0 0 2 . 0 0 6 9 . do 1 . 4 4 0 . 0 5 2 . 0 0 2 . 0 0 6 2 . 0 0 1 . 3 1 0 . 0 4 2 . 0 0 2 . 0 0 7 6 . 0 0 1 . 6 4 0 . 0 5 3 . 0 0 2 . 0 0 8 9 . 0 0 2 . 9 8 0 . 0 4 4 . 0 0 2 . 0 0 1 0 2 . 0 0 3 . 1 9 0 . 0 4 2 . 0 0 2 . 0 0 9 2 . 0 0 2 . 3 0 0 . 0 4 2 . 0 0 2 . 0 0 8 6 . 0 0 6 . 4 4 0 . 0 4 2 . 0 0 2 . 0 0 9 0 . 0 0 3 . 0 8 0 . 0 4 2 . 0 0 2 . 0 0 1 0 4 . 0 0 2 . 1 8 0 . 0 4 2 . 0 0 2 . 0 0 1 0 5 . 0 0 2 . 2 5 0.03 2 . 0 0 2 . 0 0 9 7 . 0 0 2 . 0 4 0 . 0 4 2 . 0 0 2 . 0 0 9 9 . 0 0 2 . 0 8 0 . 0 4 2 . 0 0 2 . 0 0 9 0 . 0 0 1 . 8 9 0 . 0 4 2 . 0 0 2 . 0 0 8 4 . 0 0 1 . 5 7 0 . 0 5 2 . 0 0 3 . 0 0 8 2 . 0 0 1 . 5 5 0 . 0 4 2 . 0 0 2 . 0 0 8 4 . 0 0 1 . 1 8 0 . 0 4 2 . 0 0 2 . 0 0 7 9 . 0 0 1 . 8 0 0 . 04 2 . 0 0 2 . 0 0 8 0 . 0 0 1 . 7 6 0 . 04 2 . 0 0 3 . 0 0 8 7 . 0 0 1 . 7 5 0 . 04 3 . 0 0 2 . 0 0 8 3 . 0 0 1 . 7 8 0 . 04 2 . 0 0 3 . 0 0 7 2 . 0 0 1 . 2 6 0 . 04 2 . 0 0 2 . 0 0 9 1 . 0 0 1 . 5 4 0.05 2 . 0 0 2 . 0 0 9 5 . 0 0 1 . 6 5 0 . 0 4 2 . 0 0 2 . 0 0 8 9 . 0 0 2 . 9 1 0.04 2 . 0 0 2 . 0 0 1 1 4 . 0 0 3 . 5 2 0 . 04 2 . 0 0 2 . 0 0 1 3 4 . 0 0 3 . 4 5 0 . 04 2 . 0 0 2 . 0 0 1 2 4 . 0 0 5 . 7 0 0 . 0 4 2 . 0 0 2 . 0 0 1 2 1 . 0 0 6 . 1 9 0.04 2 . 0 0 2 . 0 0 1 2 5 . 0 0 5 . 5 9 0 . 0 4 2 . 0 0 2 . 0 0 1 2 5 . 0 0 4 . 7 0 0 . 0 4 2 . 0 0 2 . 0 0 1 3 0 . 0 0 4 . 5 9 0 . 0 4 2 . 0 0 2 . 0 0 1 2 8 . 0 0 5 . 7 8 0 . 0 4 2 . 0 0 2 . 0 0 1 1 6 . 0 0 4 . 6 9 0 . 0 3 2 . 0 0 2 . 0 0 1 0 3 . 0 0 4 . 4 3 0 . 0 4 2 . 0 0 2 . 0 0 4 6 . 0 0 4 . 9 8 0 . 0 4 2 . 0 0 2 . 0 0 7 1 . 0 0 4 . 8 4 0 . 0 4 2 . 0 0 2 . 0 0 5 5 . 0 0 5 . 7 6 0 . 0 4 2 . 0 0 2 . 0 0 4 2 . 0 0 4 . 1 9 0 . 0 5 3 . 0 0 2 . 0 0 3 3 . 0 0 5 . 9 9 0 . 0 4 O TRANSECT §7 - ICP ANALYSES lumber La(ppm) Cr(ppm) Mg(X) Ba(ppm) Ti(X) 7081 2.00 101.00 2.31 2.00 0.14 7082 6.00 105.00 2.27 2.00 0.13 7083 S.00 87.00 2.18 2.00 0.10 7084 7.00 102.00 2.30 2.00 0.13 7085 5.00 74.00 2.26 2.00 0.07 7086 3.00 84.00 2.36 2.00 0.04 7087 4.00 84.00 2.13 2.00 0.01 7088 3.00 69.00 1.93 2.00 0.01 7089 6.00 84.00 2.22 6.00 0.01 7090 4 .00 95.00 2.34 2.00 0.01 7091 2 . 00 92.00 2.48 2.00 0.01 7092 2.00 109.00 2.37 2.00 0.01 7093 2.00 88 .00 2.48 2.00 0.02 7094 2.00 99.00 2.26 2.00 0.02 7095 3.00 89.00 2.21 2.00 0.03 7096 2.00 104.00 2.30 2.00 0.03 7097 3.00 89.00 2.35 2.00 0.03 7098 4.00 92.00 1.94 2.00 0.03 7099 5.00 91.00 2.05 2.00 0.04 7100 4.00 94.00 2.37 2.00 0.02 7101 4.00 80.00 2.24 2.00 0.02 7102 4.00 83.00 2.27 2.00 0.02 7103 5.00 80.00 2.55 2.00 0.02 7104 4.00 78.00 2.48 2.00 0.01 7105 5.00 76.00 1.72 2.00 0.01 7106 5 . 00 69.00 1.98 3.00 0.01 7107 7.00 51.00 2.04 3.00 0.01 7108 7 .00 55.00 1.81 6.00 0.01 7109 7.00 49.00 1.72 14.00 0.01 7110 6.00 48.00 1.77 9.00 0.01 7111 10.00 43.00 1.79 6.00 0.01 7112 6.00 50.00 1.88 6.00 0.01 7113 7.00 43.00 1.85 6.00 0.01 7114 4.00 55.00 1.76 5.00 0.01 7115 9.00 55.00 1.89 9.00 0.01 7116 8.00 64.00 1.83 14.00 0.01 7117 9.00 49.00 1.87 12.00 0.01 7118 9.00 47.00 1.72 9.00 0.01 7119 7.00 38.00 1.60 14.00 0.01 71 20 6.00 69.00 1.68 17.00 0.01 B(ppm) Al (X) Na(X) K(X) W(ppm) 3.00 2.47 0.02 0 . 01 2 . 00 4.00 2.58 0.02 0. 01 2 .00 2.00 2.45 0.01 0. 01 2 . 00 3.00 2.73 0.02 0. 01 2 . 00 5.00 2.59 0.02 0. 01 2.00 4.00 2.76 0.02 0. 01 2 . 00 2.00 2.74 0.02 0. 01 2 . 00 4.00 2.37 0.01 0. 01 2.00 2.00 3.24 0.02 0. 01 2 . 00 2.00 3.25 0.01 0. 01 2.00 8.00 3.35 0.01 0. 01 2.00 2.00 3.08 0.01 0. 01 2.00 8.00 3.03 0.01 0. 01 2 . 00 3.00 2.76 0.01 0. 01 2.00 5.00 2.69 0.01 0. 01 2 . 00 2.00 2.74 0.01 0. 01 2.00 2.00 2.86 0.01 0. 01 2 . 00 7.00 2.48 0.01 0. 01 2.00 5.00 2.68 0.02 0. 01 2 . 00 4.00 2.82 0.03 0. 01 2.00 4.00 2.85 0.02 0. 01 2 . 00 2.00 2.69 0.01 0. 01 2 . 00 2.00 3. 16 0.02 0. 01 2 . 00 4.00 3.05 0.01 0. 01 2 . 00 2.00 2.65 0.01 0. 01 2.00 2.00 3.13 0.03 0. 02 2.00 2.00 3.26 0.02 0. 02 2 . 00 3.00 3.06 0.02 0. 04 2.00 2.00 3.06 0.04 0. 07 2.00 2.00 3.03 0.02 0. 03 • 2.00 2.00 3.03 0.02 0. 03 2.00 2.00 3.18 0.02 0. 03 2 . 00 5.00 3.08 0.02 0. 03 2 . 00 2.00 2.74 0.02 0. 02 2.00 2.00 2.36 0.05 0. 04 2 . 00 10.00 0.79 0.07 0. 09 2 . 00 7.00 1.21 0.06 0. 07 2 . 00 2.00 1.35 0.04 0. 06 2.00 2.00 1 .04 0.04 0. 07 4 . 00 2.00 0.70 0.06 0. 08 2 . 00 TRANSECT #7 - ICP ANALYSES (except Au-2 by NAA) Number Si(X> Zr(ppm) 7 0 8 1 0 .07 7.00 7082 0 . 0 6 5.00 7 0 8 3 0 . 0 6 3.00 7 0 6 4 0.07 4.00 7085 0.07 3.00 7086 0.08 3.00 7087 0.09 3.00 7088 0.08 2.00 7089 0.03 2.00 7090 0.03 2.00 7091 0.03 2.00 7092 0.03 2.00 7093 0.02 2.00 7094 0.03 2.00 7095 0.02 2.00 7 0 9 6 0 . 0 2 2.00 7 0 9 7 0 . 0 2 2 .00 7 0 9 8 0 . 0 2 2.00 7 0 9 9 0 . 0 3 2 .00 7 1 0 0 0.03 2.00 7101 0.02 2.00 7102 0.02 2.00 7103 0.03 2.00 7104 0.03 2.00 7105 0.03 2.00 7106 0.04 2.00 7107 0.04 2.00 7108 0.04 2.00 7109 0.04 2.00 7110 0 . 0 4 2.00 7 1 1 1 0 . 0 4 2.00 7 1 1 2 0 . 0 4 2.00 7 1 1 3 0 . 0 4 2.00 7 1 1 4 0 . 0 4 2 . 00 7115 0.04 2.00 7116 0.02 2.00 7117 0.03 2.00 7118 0.03 2.00 7119 0.03 2.00 7120 0.02 2.00 Se(ppm) Sn(ppm) Y(ppm) 9.00 2.00 2.00 8.00 2.00 2.00 9.00 2.00 2.00 9.00 2.00 2.00 7.00 2.00 2.00 8.00 2.00 2.00 9.00 2.00 2.00 7.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 N b ( p p m ) T a ( p p m ) A u - 2 ( p p b ) 6.00 2 .00 1 .00 7.00 2 .00 4 . 00 6.00 2 .00 2 .00 6.00 2 .00 3 . 00 14.00 2 .00 4 .00 18.00 2 .00 3 .00 12.00 2 .00 5 . 00 30.00 2 .00 5 .00 2.00 6 .00 2 .00 2.00 103 .00 2 .00 2.00 S .00 0 .50 2.00 9 .00 0 . 50 2.00 13 .00 2 .00 2.00 7 .00 2 .00 2.00 3 .00 3 .00 2.00 7 .00 2 .00 2.00 6 .00 2 .00 2.00 7 .00 1 .00 2.00 10 .00 3 .00 2.00 7 .00 3 .00 2.00 15 .00 2 .00 2.00 13 .00 1 .00 2.00 9 .00 2 .00 2.00 2 .00 1 .00 2.00 12 .00 1 .00 2.00 4 .00 1 .00 2.00 2 .00 45 .00 2.00 2 .00 48 .00 2.00 6 .00 5 . 00 2.00 2 .00 6 . 00 2.00 7 .00 8 . 00 2.00 6 .00 40 .00 2.00 2 .00 13 .00 2.00 6 .00 6 .00 2.00 3 .00 5 . 00 2.00 2 .00 34 .00 2.00 2 .00 23 .00 2.00 6 .00 23 .00 2.00 2 .00 170 .00 2.00 7 .00 520 .00 T R A N S E C T #7 - I C P A N A L Y S E S l u m b e r M o ( p p m ) C u ( p p m ) P b ( p p m ) Z n ( p p m ) A g ( p p m 7 1 2 1 1 . 0 0 67.00 6.00 66.00 1 . 8 0 7122 1.00 74.00 5.00 93.00 1.10 7123 2.00 90.00 8.00 55.00 1.10 7124 3.00 93.00 5.00 57.00 1.40 7125 1.00 101.00 7.00 93.00 0.70 7126 2.00 78.00 21.00 114.00 0.50 7127 1.00 54.00 7.00 128.00 0.70 7128 1.00 61.00 3.00 72.00 0.50 7129 1 . 0 0 46.00 7.00 82.00 0.60 7 1 3 0 1 . 0 0 70.00 7.00 78.00 0.50 7 1 3 1 1 . 0 0 8 0 . 0 0 11.00 81.00 0.70 7 1 3 2 1 . 0 0 7 3 . 00 10.00 73.00 0.40 7 1 3 3 1 . 0 0 7 2.00 a. oo 76.00 0.60 7 1 3 4 1.00 . 8 4 .00 11.00 87.00 0.60 7135 1 . 0 0 8 1 . 0 0 8.00 67.00 0.50 7136 1.00 90.00 9.00 82.00 0.50 7137 1.00 96.00 8.00 82.00 0.50 7138 1.00 85.00 30.00 69.00 0.30 7139 1.00 124.00 6.00 74.00 0.60 7140 1.00 70.00 7.00 66.00 0.80 7141 1.00 99.00 10.00 78.00 0.80 7142 1.00 98.00 12.00 79.00 0.50 7143 1.00 40.00 10.00 85.00 0.40 7144 1.00 70.00 6.00 78.00 0.50 7145 1 . 0 0 88.00 13.00 71.00 0.50 7146 1 . 0 0 8 1 .00 7.00 83.00 0.40 7 1 4 7 1 . 0 0 7 1 .00 11.00 81.00 0.50 7 1 4 8 1 . 0 0 8 9 .00 10.00 87.00 0.80 7149 1.00 167.00 13.00 84.00 1.50 7150 1 .00 6 8.00 10.00 83.00 0.50 7151 1.00 33.00 12.00 85.00 0.50 7152 1.00 58.00 8.00 80.00 0.40 71S3 1.00 77.00 9.00 79.00 0.30 71S4 1.00 119.00 4.00 92.00 0.60 7155 3.00 174.00 9.00 2614.00 1.70 7156 1.00 126.00 5.00 61.00 1.00 7157 1.00 33.00 10.00 86.00 0.40 7158 1.00 65.00 7.00 92.00 0.60 7159 1 . 0 0 102.00 10.00 84.00 0.60 7160 1 . 0 0 81.00 8.00 76.00 0.60 N K p p m ) C o ( p p m ) M n ( p p m ) F e ( % ) A s ( p p m 29.00 14.00 1023 .00 5 .72 17 . 00 34.00 15.00 979 . 00 6 . 32 8 , . 00 25.00 13.00 1227 .00 5 . 47 8 . 00 30.00 13.00 1258 , . 00 5 .95 17 . 00 29.00 12.00 1002 .00 6 .02 3 . 00 32.00 21.00 863 .00 6 .26 4 . 00 35.00 16.00 998 .00 6 .97 3 . 00 28.00 12.00 983. .00 5 .93 3 .00 31 .00 11 .00 984 .00 6 . 3 3 3 . 00 29.00 14.00 1034. .00 6 . 2 2 3 , . 00 28.00 14.00 1090 .00 6 .49 3 .00 22.00 8.00 1260, .00 5 .84 3 , . 00 25.00 8.00 1250, .00 5 . 95 4 .00 29.00 9.00 993, .00 6 . 50 2 .00 27.00 11 .00 1042, .00 5 .72 2 .00 27.00 15.00 1095, .00 6 .23 3 , . 00 28.00 13.00 1160, .00 6 . 16 2 .00 34.00 13.00 1174, .00 5 .98 2 , . 00 33.00 13.00 1289, .00 6 . 2 2 2 .00 26.00 13.00 1187, .00 5 . 25 2 . , 00 24.00 13.00 979, .00 6 .00 3 . 00 26.00 14.00 980. ,00 5 . 96 3 ,  00 30.00 16 .00 1037, .00 7 .00 2 .00 32.00 13.00 1159. ,00 6 .95 4 , .00 28.00 14.00 1137, .00 6 .42 2 . 00 31.00 18.00 1097, ,00 6 .81 2 . 00 28.00 15.00 1118. .00 6 .72 3 . , 00 30.00 13.00 1138. .00 7 . 11 5 . 00 28.00 9.00 1218, .00 7 .05 3 .  00 26.00 12.00 985. ,00 6, .32 2 . 00 22.00 12.00 1039. .00 6 .40 2 . . 00 24.00 14.00 1105. ,00 5, .93 2 . 00 24.00 11.00 1060. ,00 5 .96 2 . ,00 29.00 18.00 1124. ,00 6, .76 4 . 00 23.00 10.00 830. ,00 6 . 18 10. , 00 10.00 8.00 701 . ,00 4 .18 3 .  00 26.00 17.00 1066. ,00 6 .48 2 . , 00 33.00 18.00 1064. ,00 7 .47 4 . 00 24.00 13.00 980. ,00 6 . 20 4 . , 00 24.00 12.00 1088. 00 5, .85 2 . 00 O TRANSECT #7 - ICP ANALYSES Number U(ppm) Au-1(ppn ») Th(ppm) Sr(ppm) Cd(ppm) Sb(ppm) Bi(ppm) V(ppm) Ca(X) P(%) 7121 5.00 1.00 5.00 178.00 1.00 2.00 2.00 34.00 6. 39 0.03 7122 5 . 00 1.00 5.00 154.00 1.00 3.00 2.00 56.00 4 73 0.05 7123 5.00 1.00 7.00 217.00 1.00 3.00 2.00 19.00 7 31 0 . 04 7124 5.00 1.00 5.00 238.00 1.00 3.00 2.00 17.00 7 56 0 . 03 7125 5.00 1 .00 , S.00 120.00 1.00 2.00 2.00 47.00 4. 20 0 . 04 7126 5.00 1.00 5.00 96.00 1.00 2.00 2.00 61.00 3 23 0 . 05 7127 5.00 1 .00 5.00 111.00 1.00 2.00 2.00 83.00 3. 69 0 . 04 7128 5.00 1.00 5.00 101.00 1.00 2.00 2.00 55.00 4 34 0.03 7129 5.00 1.00 6.00 107.00 1.00 2.00 4.00 64.00 4 45 0.03 7130 5.00 1.00 6.00 119.00 1.00 2.00 4.00 57.00 4 84 0 . 03 7131 5.00 1.00 6.00 100.00 1.00 2.00 2.00 69.00 4 46 0 . 04 7132 5.00 1.00 6.00 275.00 1.00 2.00 16.00 64.00 7 45 0.04 7133 5.00 1.00 5.00 248.00 1.00 2.00 12.00 82.00 7. 59 0.04 7134 5.00 1.00 6.00 77.00 1.00 2.00 5.00 80.00 4 37 0.04 7135 5.00 1.00 5.00 76.00 1.00 2.00 2.00 65.00 3. 85 0.04 7136 5.00 1.00 5.00 85.00 1.00 2.00 3.00 82.00 4 36 0.04 7137 5.00 1.00 4.00 89.00 1.00 2.00 2.00 97.00 4. 50 0.04 7138 5. 00 1 .00 5.00 105.00 1.00 2.00 2.00 72.00 4. 20 0.04 7139 5.00 1.00 5.00 102.00 1.00 2.00 2.00 91.00 3. 97 0.04 7140 5.00 1 .00 4.00 261.00 1.00 2.00 2.00 80.00 7 61 0 .03 7141 5.00 1.00 5.00 117.00 1.00 2.00 2.00 93.00 4. 44 0.03 7142 5.00 1 .00 5.00 102.00 1.00 2.00 2.00 101.00 4 52 0 .03 7143 5.00 1.00 5.00 117.00 1.00 2.00 2.00 157.00 4. 59 0.03 7144 5.00 1.00 7.00 148.00 1.00 2.00 6.00 147.00 5. 85 0.03 7145 5.00 1.00 7.00 142.00 1.00 2.00 5.00 121.00 5. 76 0.03 7146 5.00 1.00 5.00 112.00 1.00 2.00 3.00 161.00 4 . 59 0 .03 7147 5.00 1.00 6.00 114.00 1.00 2.00 2.00 143.00 4. 78 0 . 03 7148 5.00 1.00 7.00 112.00 1.00 2.00 6.00 183.00 4. 82 0 . 04 7149 5.00 9.00 7.00 196.00 1.00 2.00 12.00 153.00 6 . 72 0.03 7150 5.00 1.00 7.00 143.00 1.00 2.00 2.00 127.00 4 . 32 0 . 04 7151 5.00 1.00 6.00 93.00 1.00 2.00 2.00 158.00 4. 45 0.03 7152 5.00 1.00 7.00 99.00 1.00 2.00 3.00 126.00 4. 87 0.03 7153 5.00 1.00 6.00 96.00 1.00 2.00 2.00 130.00 4 . 50 0.03 71 54 5 . 00 1 .00 8.00 114.00 1.00 2.00 5.00 164.00 5. 73 0.03 7155 5.00 5.00 4.00 194.00 1.00 2.00 3.00 103.00 4. 07 0 . 03 7156 5.00 1 .00 9.00 212.00 1.00 2.00 5.00 41.00 5 . 78 0 . 09 7157 5.00 1.00 5.00 86.00 1.00 2.00 2.00 147.00 4. 60 0 .03 7158 5.00 1.00 8.00 78.00 1.00 2.00 3.00 239.00 4 . 50 0 . 03 7159 5.00 1.00 7.00 81.00 1.00 2.00 4.00 144.00 4. 53 0.03 7160 5.00 1.00 6.00 64.00 1.00 3.00 2.00 92.00 4 . 39 0.04 O TRANSECT #7 - ICP ANALYSES Number La(ppm) Cr(ppm) Mg(%) Ba(ppm) Ti ( X ) B(ppm) Al (X) Na(X) K(X) W(ppm) 7121 5.00 32.00 1.82 12.00 0.01 3.00 0.68 0.04 0. 06 2.00 7122 8.00 53.00 2.00 12.00 0.01 8.00 1.35 0.04 0. 06 3 . 00 7123 10.00 46.00 1.85 14.00 0.01 2.00 0.36 0.06 0. 08 2.00 7124 7.00 84.00 1.95 14.00 0.01 7.00 0.28 0.06 0. 08 2 . 00 7125 8.00 SI.00 1.90 12.00 0.01 2.00 1.47 0.04 0. 08 2.00 7126 11.00 70.00 1.90 9.00 0.01 2.00 1.95 0.04 0. 06 2. 00 7127 4.00 53.00 2.23 6.00 0.01 9.00 2.19 0.03 0. 03 2.00 7128 6.00 35.00 1.94 9.00 0.01 2.00 1.43 0.04 0. 05 2.00 7129 11 .00 44.00 2.02 6.00 0.01 8.00 1.55 0.03 0. 04 2.00 7130 7.00 34.00 2.08 6.00 0.01 7.00 1.37 0.03 0. 04 2 . 00 7131 9 . 00 42.00 1.99 6.00 0.01 2.00 1.56 0.03 0. 04 2.00 7132 7.00 33.00 1.72 9.00 0.01 2.00 1.54 0.04 0. 05 2.00 7133 6.00 42.00 1.70 9.00 0.01 2.00 1.87 0.04 0. 04 2 . 00 7134 7.00 30.00 1.92 6.00 0.01 3.00 1 .74 0.04 0. 04 2 . 00 7135 7.00 36.00 1.71 9.00 0.01 2.00 1.33 0.04 0. 04 2 . 00 7136 5.00 32.00 1.90 6.00 0.01 4.00 1 .90 0.03 0. 04 2.00 7137 9.00 33.00 1.85 9.00 0.01 3.00 2.28 0.04 0. 05 2 . 00 7138 8.00 49.00 1.99 11.00 0.01 6.00 1.96 0.05 0. 06 2.00 7139 7.00 36.00 2.23 9.00 0.01 2.00 2. 18 0.04 0. 05 2 . 00 7140 7.00 43.00 1.64 9.00 0.01 7.00 2.35 0.03 0. 04 2 . 00 7141 8.00 29.00 1.79 11.00 0.01 5.00 3.05 0.03 0. 05 2 . 00 7142 3.00 26.00 1.75 6.00 0.01 7.00 3.02 0.01 0 . 03 2 .00 7143 3.00 31.00 2.17 6.00 0.01 6.00 3.70 0.02 0. 03 2 . 00 7144 4 .00 35.00 2.17 6.00 0.01 2.00 3.65 0.02 0. 03 2.00 7145 5.00 27.00 1.91 6.00 0.01 6.00 3.31 0.02 0. 04 2 .00 7146 6 . 00 33 .00 2.01 6.00 0.01 5.00 3.48 0.02 0. 03 2.00 7147 5 . 00 23.00 1.96 7.00 0.01 8.00 3.42 0.02 0 . 04 2.00 7148 4.00 32.00 2.10 6.00 0.02 6.00 3.64 0.02 0 . 03 2 .00 7149 5.00 31.00 2.11 9.00 0.01 6.00 3.63 0.03 0. 06 2.00 7150 3.00 29.00 1.89 6.00 0.01 2.00 3.21 0.02 0. 03 2.00 7151 7.00 24.00 1.85 9.00 0.01 11.00 3.18 0.03 0. 02 2.00 7152 9.00 23.00 1.69 7.00 0.01 7.00 2.90 0.02 0. 03 2 . 00 7153 8.00 20.00 1.73 6.00 0.01 10.00 2.96 0.02 0. 03 2 . 00 71S4 4.00 27.00 2.01 6.00 0.01 8.00 3. SO 0.02 0. 03 2 . 00 7155 2.00 24.00 1.74 9.00 0.01 3.00 2.81 0.02 0. 05 2 . 00 7156 17.00 34.00 1.18 9.00 0.01 5.00 1.93 0.03 0. 05 2.00 7157 5.00 22.00 2.01 9.00 0.01 3.00 3.42 0.02 0 . 04 2.00 7158 6.00 30.00 2.38 3.00 0.01 11.00 3.98 0.02 0. 02 2 . 00 7159 6.00 30.00 1.90 6.00 0.01 6.00 2.47 0.05 0. 03 2.00 7160 4.00 31.00 1.84 6.00 0.01 8.00 1 .21 0.06 0. 03 2 . 00 (V) o 0^  Number Si(X) Zr(ppra) 7121 0.02 2.00 7122 0 .04 2.00 7 123 u . 0 1 2.00 7124 0.01 2.00 7125 0.03 2.00 7126 0.04 2.00 7127 0.04 2.00 7128 0.03 2.00 7129 0.03 2.00 7130 0.03 2.00 7131 0.03 2.00 7132 0.04 2.00 7133 0.04 2.00 7134 0.03 2.00 7135 0.03 2.00 7136 0.03 2.00 7137 0.04 2.00 7138 0.04 2.00 71 39 0.04 2 .00 7140 0.04 2 .00 7141 0.05 2 .00 7142 0.03 2.00 7143 0.05 2.00 7144 0.05 2.00 7145 0.04 2.00 7146 0.05 2.00 7147 0.05 2.00 7148 0.06 2.00 7149 0.06 2.00 7150 0.04 2.00 7151 0.05 2.00 7152 0.04 2.00 7153 0 . 04 2.00 7154 0 . OS 2.00 7155 0.04 2.00 7156 0.03 4.00 7157 0.04 2.00 7158 0.05 2.00 7159 0.04 2.00 7160 0.02 2.00 TRANSECT »7 - ICP ANALYSES (except Au-2 by NAA) Se(ppm) Sn(ppm) Y(ppm) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 6.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 Nb(ppm) Ta(ppm) Au-2(ppb) 2.00 3. 00 500. . 00 2 . 00 2 . 00 900. 00 2.00 8 . 00 340. , 00 2 .00 2. 00 720. 00 2.00 2. ,00 15. .00 2.00 2. 00 9. ,00 2.00 2. 00 3. ,00 2.00 2 . 00 45. 00 2.00 3. 00 3 . ,00 2.00 6. 00 8. ,00 2.00 2 . 00 7. .00 2.00 2. 00 9. ,00 2.00 3 . 00 14. , 00 2.00 2 . 00 5. 00 2.00 2. 00 7. , 00 2.00 2. 00 10. 00 2.00 2. 00 6. ,00 2.00 3. 00 19. 00 2.00 2. 00 47. .00 2.00 11 . 00 700. 00 2.00 3. 00 38. ,00 2.00 2. 00 10. 00 2.00 2. 00 6. 00 2.00 7. 00 18. 00 2.00 2. 00 20. 00 2.00 2. 00 8. 00 2.00 2. 00 39. 00 2.00 2. 00 8. 00 2.00 2. 00 3200. 00 2.00 2. 00 360. 00 2.00 2. 00 7 . 00 2.00 2. 00 9. 00 2.00 2. 00 15. 00 2.00 2. 00 260. 00 2.00 2. 00 1300. 00 2.00 6. 00 740. 00 2.00 2. 00 3. 00 2.00 2. 00 4. 00 2.00 2. 00 4. 00 2.00 2. 00 3. 00 Number Mo( ppm) Cu( ppm) Pb(ppm) 7161 1 .00 87 .00 5 .00 7162 2 .00 76 .00 3 .00 7163 2 .00 84 .00 4 .00 7164 2 .00 67 .00 5 .00 7165 2 .00 17 .00 3 .00 7166 1 .00 28 .00 7 .00 7167 1 .00 . 50 .00 6 .00 7168 2 .00 77 .00 S .00 7169 2 .00 53 .00 7 .00 7170 1 .00 71 .00 13 .00 7171 1 .00 94 .00 3 .00 7172 1 . 00 103 .00 8 .00 7173 1 .00 85 .00 8 .00 7174 1 .00 83 .00 8 .00 7175 1 .00 119 .00 10 .00 7176 1 .00 64 .00 7 .00 7177 1 .00 88 .00 6 .00 7178 1 .00 87 .00 5 .00 7179 1 .00 63 .00 6 .00 7180 2 .00 47 .00 7 .00 7181 3 .00 56 .00 1 .00 7182 1 .00 40 .00 7 .00 7183 2 .00 36 .00 8 .00 7184 2 .00 36 .00 7 .00 7185 2 .00 81 .00 61 .00 DRIFT NO. . 3397 7186 2 .00 152 .00 4 .00 7187 1 .00 95 .00 8 .00 7188 2 .00 88 .00 5 .00 7189 1 .00 291 .00 8 .00 7190 1 .00 226 .00 6 .00 7191 2 .00 111 .00 8 .00 7192 1 .00 156 .00 11 .00 7193 1 .00 121 .00 2 .00 7194 1 .00 146 .00 7 .00 7195 2 .00 76 .00 138 .00 7196 2 .00 91 .00 10 .00 7197 2 .00 76 .00 29 .00 7198 1 .00 213 .00 14 .00 7199 .00 66 .00 15 .00 7200 1-.00 89 .00 8 .00 TRANSECT #7 - ICP ANALYSES Zn(ppm) Ag(ppm) Nl(ppm) 89.00 0.60 24.00 79.00 0.50 26.00 48.00 0.60 19.00 49.00 0.30 21.00 65.00 • O.SO 23.00 117.00 0.60 23.00 98.00 0.50 25.00 127.00 O.SO 27.00 108.00 0.50 19.00 129.00 0.50 28.00 82.00 0.80 20.00 45.00 0.70 14.00 140.00 0.70 31.00 138.00 1.20 27.00 86.00 1.20 25.00 72.00 0.90 21.00 87.00 0.50 22.00 66.00 1.10 21.00 69.00 1.90 18.00 62.00 2.20 25.00 48.00 2.60 23.00 79.00 3.40 24.00 49.00 2.40 29.00 46.00 1.40 22.00 94.00 1.20 22.00 92.00 0.50 15.00 96.00 1.60 9.00 74.00 1.10 13.00 78.00 1.30 10.00 97.00 2.10 12.00 73.00 1.20 10.00 98.00 1.30 12.00 82.00 1.40 10.00 87.00 1.40 12.00 71.00 2.00 11.00 93.00 3.00 12.00 87.00 2.10 12.00 91.00 2.10 11.00 89.00 3.60 14.00 91.00 1.40 12.00 Co(ppm) Mn(ppm) Fe(X) As(ppm) 18.00 1181 .00 7, .05 2. , 00 15.00 1079 .00 6 .58 3. . 00 11.00 1058 .00 6 .24 2 . , 00 8.00 1076 .00 6 . 34 5, . 00 10.00 1088 .00 6 .88 2 . 00 21.00 935 .00 8 .58 4, .00 17.00 1019 .00 7 . 40 3. , 00 19.00 816 .00 6 .96 2 .00 14.00 873 .00 6 .42 2. , 00 16.00 949 .00 7 .66 2, .00 11.00 1201 .00 6 .47 3. .00 5.00 1102 .00 5 .09 4 . 00 23.00 723 .00 7 .59 2 . , 00 17.00 806 .00 7 .80 2 , . 00 12.00 812 .00 6 . 18 13. .00 18.00 1058 .00 6 .48 15, .00 9.00 1117 .00 7, .34 11 , 00 15.00 1098 .00 6 .80 28, .00 14.00 1078 .00 6 .50 24. ,00 21.00 808 .00 7 .48 71 . 00 15.00 838 .00 6 .55 77. . 00 18.00 795 .00 7 .36 71 , . 00 16 .00 620 .00 6 .54 120. . 00 16.00 721 .00 6 .38 110 . 00 14.00 709 .00 7 .49 329 . , 00 13.00 1179 .00 7 .11 11 , 00 12.00 1089 .00 7 .42 35 , .00 11.00 983 .00 7. .39 27. , 00 11.00 1141 .00 7 . 51 7 , . 00 14.00 891 .00 7. .65 14 . , 00 14.00 944 .00 6 .29 5 , . 00 19.00 1051 .00 7 . 54 7 . ,00 13.00 1091 .00 6 .61 4 , 00 13.00 1086 .00 6. .58 12. ,00 15.00 906 .00 6 .32 39. .00 19.00 772 .00 7, .00 25. ,00 17.00 1060 .00 7, .76 27. .00 20.00 963 .00 8, .62 42. .00 15.00 872 .00 6, .54 20. ,00 12.00 1024 .00 6. , 98 4. 00 TRANSECT #7 - ICP ANALYSES Number U(ppm) Au-l(ppm) Th(ppm) Sr(ppm) Cd(ppm) Sb(ppm) Bi(ppm) V(ppm) Ca( X) P(X) 7161 5 .00 1 .00 6 . 00 62 .00 1 .00 2. 00 3 .00 142 .00 4 .51 0. 03 7162 5 .00 1 .00 7 . 00 61 .00 1 .00 3. 00 2 .00 116 .00 4 .39 0. 04 7163 5 .00 1 .00 7 . 00 65 .00 1 .00 2. 00 5 .00 92 .00 4 -S6 0. 05 7164 5 .00 1 .00 6 . 00 79 .00 1 .00 2. 00 2 .00 92 .00 4 . 54 0. 04 7165 5 .00 1 .00 6 . 00 91 .00 1 .00 2. 00 2 .00 113 .00 4 .21 0 . 04 7166 5 .00 1 .00 7 . 00 96 .00 1 .00 2. 00 2 .00 163 .00 3 .33 0. 04 7167 5 .00 1 .00 6 . 00 362 .00 1 .00 2. 00 2 .00 137 .00 4 .23 0. 03 7168 S .00 1 .00 6 . 00 79 .00 1 .00 2. 00 2 .00 131 .00 3 .25 0. 04 7169 5 .00 1 .00 6 . 00 79 .00 1 .00 2. 00 2 .00 106 .00 3 .26 0. 04 7170 5 .00 1 .00 5. 00 77 .00 1 .00 2. 00 2 .00 162 .00 3 .32 0. 04 7171 5 .00 1 .00 4. 00 139 .00 1 .00 2. 00 2 .00 80 .00 6 .35 0. 04 7172 5 .00 1 .00 5. 00 134 .00 1 .00 4. 00 2 .00 26 .00 6 .01 0. 04 7173 5 .00 1 .00 4. 00 68 .00 1 .00 2. 00 2 .00 122 .00 2 .80 0. 04 7174 5 .00 1 .00 5. 00 81 .00 1 .00 2. 00 2 .00 141 .00 3 .05 0 . 04 7175 5 .00 1 .00 3. 00 87 .00 1 .00 2. 00 2 .00 76 .00 3 . 1 5 0. 0 5 7176 5 .00 1 .00 3. 00 117 .00 1 .00 2. 00 2 .00 64 .00 3 .99 0. 04 7177 5 .00 1 .00 4. 00 124 .00 1 .00 2. 00 2 .00 83 .00 4 . 17 0 . 0 5 7178 5 . 00 1 .00 4. 00 140 .00 1 .00 2. 00 2 .00 56 .00 4 . 06 0. 04 7179 5 . 0 0 3 . 00 4. 00 158 .00 1 .00 2. 00 2 .00 49 .00 4 .43 0 . 04 7 1 80 b . 00 3 . 00 4. 00 158 .00 1 .00 2. 00 2 .00 45 .00 3 . 67 0 . 0 6 7161 5 .00 6 .00 3. 00 162 .00 1 .00 2. 00 2 . 00 25 .00 3 . 8 2 0. 0 3 7182 5 .00 9 .00 4. 00 131 .00 1 .00 2. 00 2 .00 60 .00 3 . 1 8 0 . 0 5 7183 5 .00 6 .00 3. 00 124 .00 1 .00 2. 00 2 .00 34 .00 2 . 7 8 0 . 0 3 7184 5 .00 3 .00 4. 00 114 .00 1 .00 3. 00 2 .00 33 .00 2 . 7 0 0 . 0 4 7185 5 .00 2 .00 5. 00 115 .00 1 .00 2. 00 2 .00 69 .00 2 . 5 8 0 . 0 6 DRIFT NO. 3397 0. 7186 5 .00 1 .00 4. 00 132 .00 1 .00 2. 00 2 .00 74 .00 3 . 3 6 0 6 7187 5 .00 3 .00 S. 00 117 .00 1 .00 2. 00 2 .00 66 .00 3 . 1 3 0 . 06 7188 5 .00 1 .00 3. 00 120 .00 1 .00 2. 00 2 .00 60 .00 3 . 4 2 0 . 05 7189 5 .00 1 .00 4. 00 120 .00 1 .00 2. 00 2 .00 89 .00 3 . 8 9 0 . 0 6 7190 5 .00 1 .00 6. 00 112 .00 1 .00 2. 00 2 .00 7 8 .00 3 . 3 3 0 . 0 7 7191 5 .00 1 .00 5. 00 133 .00 1 .00 2. 00 2 .00 55 .00 3 . 5 1 0. 0 6 7192 5 . 00 1 .00 4. 00 119 .00 1 .00 2. 00 2 .00 77 .00 3 . 4 1 0 . 0 6 7193 5 . 0 0 1 .00 5. 00 120 .00 1 .00 2. 00 2 .00 56 .00 3 . 7 5 0 . 0 6 7194 5 . 00 1 .00 6. 00 141 .00 1 .00 2. 00 2 .00 51 . 00 3 .70 0 . 0 5 7195 5 .00 1 .00 4. 00 145 .00 1 .00 2. 00 2 .00 58 .00 3 . 4 4 0 . 0 6 7196 5 .00 11 .00 5. 00 169 .00 1 .00 2. 00 2 .00 59 .00 3 .63 0 . 04 7197 5 .00 1 .00 4. 00 181 .00 1 .00 2. 00 2 .00 58 .00 4 .34 0 . 04 7198 5 .00 1 .00 5. 00 125 .00 1 .00 2. 00 2 .00 63 .00 3. . 2 0 0. 06 7199 5 .00 2 .00 3. 00 135 .00 1 .00 2. 00 4 .00 63 .00 3 . 2 5 0. 06 7200 5 .00 1 .00 5. 00 143 .00 1 .00 2. 00 2 .00 76 .00 3 .61 0 . 0 5 O TRANSECT «7 - ICP ANALYSES l u m b e r L a ( p p m ) Cr(ppm) Mg(X) Ba(ppm) Ti (X) B(ppm) Al (X) Na(X) 7161 7.00 30.00 2.09 3.00 0.01 5.00 1.05 0.06 7162 7.00 38.00 1.83 6.00 0.01 6.00 0.81 0.07 7163 8.00 28.00 1.63 3.00 0.01 2.00 0.37 0.07 7164 6.00 41.00 1.68 6.00 0.01 8.00 0.43 0.08 7165 8.00 31.00 1.69 6.00 0.01 5.00 0.75 0.07 7166 6.00 35.00 1.85 8.00 0.01 13.00 1.70 0.06 7167 6.00 22". 00 1.91 12.00 0.01 2.00 1.37 0.03 7168 9.00 43.00 1.97 9.00 0.01 10.00 2.11 0.05 7169 6.00 29.00 1.82 8.00 0.01 3.00 1.81 0.04 7170 5.00 33.00 2.10 9.00 0.01 7.00 2.42 0.04 7171 6.00 25.00 1.93 9.00 0.01 2.00 1.49 0.04 7172 7.00 33.00 1.71 12.00 0.01 2.00 0.60 0.05 7173 6.00 25.00 1.81 9.00 0.01 6.00 2.69 0.04 7174 8.00 45.00 1.93 11.00 0.01 2.00 2.69 0.05 7175 7.00 9.00 1.46 14.00 0.01 2.00 1.61 0.06 7176 8.00 8.00 1.70 14.00 0.01 5.00 1.35 0.05 7177 10.00 8.00 1.91 9.00 0.01 2.00 1.92 0.05 7178 7.00 6.00 1.70 14.00 0.01 2.00 1.28 0.06 7179 7.00 8.00 1.73 17.00 0.01 3.00 1.05 0.04 7180 5.00 9.00 1.58 17.00 0.01 5.00 0.95 0.05 7181 3.00 12.00 1.43 9.00 0.01 7.00 0.42 0.06 7182 7.00 9.00 1.63 14.00 0.01 2.00 1.25 0.05 7183 4.00 10.00 1.25 14.00 0.01 2.00 0.73 0.04 7184 6.00 11.00 1.30 14.'00 0.01 2.00 0.79 0.03 7185 8.00 13.00 1.75 14.00 0.01 2.00 1 .76 0.04 )RIFT NO, . 3397 7186 9.00 50.00 1.80 6.00 0.01 2.00 1.80 0.02 7187 10.00 31 .00 1.71 8.00 0.01 2.00 1.70 0.02 7188 8.00 45.00 1.51 9.00 0.01 4.00 1.52 0.02 7189 10.00 25.00 1.73 8.00 0.01 3.00 1 .90 0.03 7190 11.00 38.00 1.82 9.00 0.01 5.00 2.11 0.03 7191 10.00 45.00 1.55 9.00 0.01 11.00 1.44 0.04 7192 7.00 45.00 1.69 6.00 . 0.01 4.00 1.95 0.03 7193 8.00 29.00 1.49 7.00 0.01 3.00 1 .44 0.03 7194 6.00 42.00 1.58 9.00 0.01 6.00 1 .44 0.02 7195 7.00 37.00 1.46 9.00 0.01 10.00 1 .05 0.03 7196 5.00 42.00 1.74 9.00 0.01 2.00 1.32 0.02 7197 2.00 33.00 1.85 9.00 0.01 2.00 1.17 0.03 7198 4.00 28.00 1.67 9.00 0.01 2.00 1.70 0.02 7199 2.00 44.00 1.57 6.00 0.01 7.00 1.34 0.02 7200 5.00 29.00 1.70 6.00 0.01 3.00 1.63 0.02 :x) W(ppm) o. 02 2 , .00 0. 02 2 . 00 0. 03 2 , . 00 0. 02 2 . 00 0. 04 2 . 00 0. 04 2 . 00 0. 02 2 . 00 0. 04 2 . 00 0. 03 2 , . 00 0. 04 2 . 00 0. 04 2. .00 0. 07 2 . 00 0. 05 2. .00 0. OS 2 .00 0. 08 2 , . 00 0. 08 11 , .00 0. 08 2. .00 0. 11 8 .00 0. 10 3. ,00 0. 10 4 .00 0. 04 5. . 00 0. 07 7 , . 00 0. 08 6 , . 00 0. 09 8 . 00 0 . 09 6 . 00 0 . 03 S. , 00 0 . 04 13. , 00 0. 03 10. , 00 0. 02 3 ,  00 0. 03 14 . 00 0. 05 9, . 00 0. 02 8 . ,00 0. 03 S. ,00 0. 04 7. 00 0. 03 S. , 00 0. OS 2. 00 0. 04 2. , 00 0. 06 8. 00 0. 02 4. 00 0. 04 2 . 00 TRANSECT «7 - ICP ANALYSES (except Au-2 by NAA) Number Si(X) Zr(ppm) Se(ppm) Sn(ppm) Y(ppm) Nb(ppm) Ta(ppm) Au-2(ppb) 7161 0. 02 2 .00 2. 00 2. 00 2. 00 2. 00 2. .00 4. .00 7162 0. 02 2 .00 2. 00 2. 00 2. 00 2. 00 2, .00 4, .00 7163 0 . 01 2 .00 2. 00 2. 00 2. 00 2. 00 2. .00' 4. .00 7164 0. 01 2 .00 2. 00 2. 00 2. 00 2. 00 2 , .00 3, .00 7 165 0. 02 2 .00 2. 00 2. 00 2. 00 2. 00 2 . 00 7, .00 7166 0. 03 2. .00 2. 00 2. 00 2. 00 2. 00 2, .00 2 .00 7167 0. 03 2 .00 2. 00 2. 00 2. 00 2. 00 2. .00 3. .00 7168 0. 04 2 .00 2. 00 2. 00 2. 00 2. 00 2, .00 27, .00 7169 0. 04 2 .00 2. 00 2. 00 2. 00 2. 00 2. .00 10, .00 7170 0. 05 2 .00 2. 00 2. 00 2. 00 2. 00 4, .00 6 .00 7171 0. 04 2 .00 2. 00 2. 00 2. 00 2. 00 4, .00 720, .00 7172 0. 02 2 .00 2. 00 2. 00 2. 00 2. 00 4, .00 23, .00 7173 0. 05 2 .00 2. 00 2. 00 2. 00 2. 00 2. ,00 5, .00 7174 0. 06 2 .00 2. 00 2. 00 2. 00 2. 00 2. .00 5, .00 7175 0. 04 2 .00 2. 00 2. 00 2. 00 2. 00 3, .00 46. .00 7176 0. 05 2 .00 2. 00 2. 00 2. 00 2. 00 2. .00 460, .00 7177 0. 05 2 .00 2. 00 2. 00 2. 00 2. 00 2. .00 22. .00 7178 0. 05 2 .00 2. 00 2. 00 2. 00 2. 00 2. .00 2400, .00 7179 0. 04 2 .00 2. 00 2. 00 2. 00 2. 00 2. .00 1950. .00 7180 0. 04 2 .00 2. 00 2. 00 2. 00 2. 00 2. .00 6700 .00 7181 0. 03 2 .00 2. 00 2. 00 2. 00 2. 00 2. .00 8800, .00 7182 0. 04 2 .00 2. 00 2. 00 2. 00 2. 00 2. .00 8874, .00 7183 0. 03 2 .00 2. 00 2. 00 2. 00 2. 00 2. ,00 11288. .00 7184 0. 03 2 .00 2. 00 2. 00 2. 00 2. 00 2. .00 3000, .00 7185 0. 04 2 .00 2. 00 2. 00 2. 00 2. 00 2. ,00 2600. .00 DRIFT NO. 3397 1100. ,00 7186 0. 05 2 .00 2. 00 2. 00 2. 00 2. 00 2. ,00 7187 0. 05 2 .00 2. 00 2. 00 2. 00 2. 00 2. ,00 5300. .00 7188 0. 05 2 .00 2. 00 2. 00 2. 00 2. 00 2. .00 820. .00 7189 0. 05 2 .00 2. 00 2. 00 2. 00 2. 00 2. ,00 27, .00 7190 0. 05 2 .00 2. 00 2. 00 2. 00 2. 00 2. ,00 260. ,00 7191 0. 04 2 .00 2. 00 2. 00 2. 00 2. 00 12. ,00 640. .00 7192 0 . 05 2 .00 2. 00 2. 00 2. 00 2. 00 2. ,00 900, .00 7193 0 . 0-1 2 .00 2. 00 2. 00 2. 00 2. 00 3. ,00 440, .00 7194 0 . 04 .00 2. 00 2. 00 2. 00 2. 00 6. ,00 1800. .00 7195 0. 04 2 .00 2. 00 2. 00 2. 00 2. 00 2. .00 2600. .00 7196 0 . 04 2 .00 2. 00 2. 00 2. 00 2. 00 2. .00 4300. .00 7197 0. 04 2 .00 2. 00 2. 00 2. 00 2. 00 2. ,00 3300. .00 7198 0. 05 2 .00 2. 00 2. 00 2. 00 2. 00 3. ,00 3100. ,00 7199 0. 04 2 .00 2. 00 2. 00 2. 00 2. 00 2. ,00 2700. .00 7200 0. 04 2 .00 2. 00 2. 00 2. 00 2. 00 2. 00 440. ,00 TRANSECT #7 - ICP ANALYSES u m b e r Mo(ppm) Cu(ppm) Pb(ppm) Zn(ppm) Ag(ppm) Nl(ppra) Co(ppm) Mn(ppm) Fe<X ) A s ( p p m ) 7201 1.00 40.00 8.00 74.00 0.50 11.00 16 .00 1071 .00 6 .80 5 .00 7202 1.00 80.00 8.00 59.00 0.70 10.00 11 .00 947 .00 6 .03 7. .00 7203 1.00 76.00 13.00 76.00 1.S0 16.00 18 .00 902 .00 6 .76 7 .00 7204 1.00 71.00 13.00 70.00 0.50 15.00 13 .00 1055 .00 6 .26 3 .00 7205 2.00 73.00 11.00 86.00 0.90 17.00 18 .00 1160 .00 6 . 84 3 . 00 7206 1.00 51.00 12.00 72.00 0.70 17.00 12 .00 971 .00 6 . 22 6 . 00 7207 1.00 38.00 11.00 77.00 1.00 18.00 14 .00 995 .00 6 . 46 2 . 00 720B 1.00 70.00 13.00 70.00 0.90 20.00 14 .00 1068 .00 6 .49 3 . 00 7209 1.00 53.00 11.00 74.00 1.40 22.00 14 .00 963 .00 6 .45 9 . 00 7210 1 .00 68.00 10.00 67.00 0.80 16.00 15 .00 978 .00 5 .98 3 , .00 7211 1 . 00 52.00 17.00 61.00 1.10 23.00 16 .00 909 .00 5 .82 12 . 00 7212 3.00 86.00 8.00 83.00 3.80 2S.00 20 .00 857 .00 6 .98 44 . 00 7213 4 .00 126.00 19.00 61.00 1.10 20.00 10 .00 740 .00 5 . 12 5 . 00 7214 1 .00 41. 00 11.00 65.00 1.20 24.00 16 .00 975 .00 5 . 96 9. . 00 7215 2 .00 58.00 14.00 71.00 0.90 26.00 16 .00 110S .00 6 . 36 4 , . 00 7216 . 1.00 31.00 8.00 62.00 0.80 21.00 13 .00 1015 .00 6 . 14 - 5 . 00 7217 1.00 74.00 9.00 77.00 1.00 27.00 13 .00 1056 .00 6 .80 2. . 00 7218 3.00 55.00 12.00 69.00 1.20 22.00 12 .00 834 .00 5 . 58 13. .00 7219 1.00 48.00 7.00 61.00 1.30 24.00 14 .00 969 .00 5 .83 11 . 00 7220 1.00 9.00 7.00 74.00 0.50 28.00 16 .00 682 .00 5 .40 6 . , 00 7221 1.00 24.00 11.00 65.00 1.70 29.00 16 .00 956 .00 5 .96 12 . 00 7222 1.00 24.00 18.00 72.00 0.60 34.00 13 .00 1047 .00 6 . 16 2 . 00 7223 1 .00 14.00 14.00 94.00 0.90 29.00 17 .00 871 .00 6 .38 2 . 00 7224 1 .00 68.00 7.00 67.00 0.80 31.00 15 .00 979 .00 5 . 66 3 . 00 7225 1 . 00 31 .00 6.00 69.00 0.80 33.00 15 .00 1012 .00 5 . 83 2 . 00 7226 1 . 00 10.00 15.00 80.00 0.60 33.00 16 .00 1043 .00 6, .81 14 . 00 TRANSECT #7 - ICP ANALYSES Number U(ppm) Au-1(ppm) Th(ppm) Sr(ppm) Cd(ppm) Sb(ppm) BI(ppm) V(ppm) Ca(X) P(X) 7201 5.00 1.00 4.00 13S.00 1.00 2.00 2.00 62.00 3. 94 0 . 04 .7202 5 .00 1 .00 4.00 130.00 1.00 2.00 2.00 40 .00 3. 96 0.05 7203 S.00 1 .00 5.00 131.00 1.00 2.00 4.00 59.00 3. 63 0 .05 7204 5 . 00 1 .00 3.00 134.00 1.00 2.00 2.00 52.00 4 . 43 0.04 7205 5 . 00 1 .00 5.00 171.00 1.00 2.00 2.00 43.00 6 . 52 0 . 04 7206 5.00 1-00 4.00 123.00 1.00 2.00 2.00 56.00 3. 83 0 . 04 7207 5.00 1 .00 4.00 130.00 1.00 2.00 2.00 61 .00 4 . 11 0 . 04 7208 5.00 1 .00 5.00 145.00 1.00 2.00 2.00 49.00 4. 35 0 . 04 7209 5.00 1.00 5.00 160.00 1.00 2.00 2.00 50.00 . 4. 10 0.04 7210 5.00 1.00 4.00 149.00 1.00 2.00 2.00 45.00 4 . 06 0 . 04 7211 5.00 1.00 3.00 179.00 1.00 2.00 2.00 40.00 4. 08 0.03 7212 5.00 12.00 3.00 191.00 1.00 2.00 3.00 61.00 4. 09 0.02 7213 5.00 1.00 2.00 141.00 1.00 2.00 4.00 38.00 3. 18 0.03 7214 5.00 1.00 3.00 163.00 1.00 2.00 2.00 53.00 3. 88 0.03 7215 5.00 1.00 3.00 163.00 1.00 2.00 2.00 53.00 4. 27 0 . 04 7216 5.00 1.00 4.00 150.00 1.00 2.00 2.00 45.00 4. 01 0 . 04 7217 5.00 1 .00 4.00 150.00 1.00 2.00 3.00 64.00 4. 02 0.04 7218 5.00 1.00 3.00 166.00 1.00 2.00 2 .00 47.00 3. 76 0.03 7219 5.00 1.00 2.00 145.00 1.00 2.00 3.00 42.00 3. 89 0 . 04 7220 5.00 1 .00 3.00 124.00 1.00 2.00 2.00 57.00 2. 91 0.03 7221 5.00 1 .00 5.00 147.00 1.00 2.00 2.00 47.00 4 . 09 0. 03 7222 5.00 1 .00 4.00 149.00 1.00 2.00 2.00 52.00 4. 36 0.03 7223 5.00 1.00 5.00 141.00 1.00 2.00 2.00 56.00 4. 11 0.02 7224 5.00 1.00 3.00 172.00 1.00 2.00 2.00 36 .00 4. 57 0.03 7225 5.00 1.00 4.00 169.00 1.00 2.00 2.00 33.00 4. 82 0.03 7226 5.00 1.00 3.00 168.00 1.00 2.00 2.00 53.00 4. 54 0.04 TRANSECT *7 - ICP ANALYSES l u m b e r La(ppm) Cr(ppm) Mg(X) Ba(ppm) Ti(X) 7201 7.00 25.00 1.65 3.00 0.01 7202 7.00 24.00 1.58 3.00 0.01 7203 7.00 30.00 1.63 6.00 0.01 7204 8.00 22.00 1.71 5.00 0.01 7205 6.00 61.00 1.92 6.00 0.01 7206 4.00 38.00 1.69 6.00 0.01 7207 7.00 36.00 1.80 6.00 0.01 7208 6.00 30.00 1.79 6.00 0.01 7209 6.00 40.00 1.84 9.00 0.01 7210 6 .00 27.00 1.78 9.00 0.01 7211 2 .00 39.00 1.68 9.00 0.01 7212 2 . 00 46.00 1.90 9.00 0.01 7213 2 .00 83.00 1.35 9.00 0.01 7214 2.00 47.00 1.82 9.00 0.01 7215 2.00 64.00 1.81 9.00 0.01 7216 4.00 36.00 1.78 6.00 0.01 7217 2.00 43.00 2.03 9.00 0.01 7218 2.00 65.00 1.73 9.00 0.01 7219 2.00 47.00 1.81 6.00 0.01 7220 2.00 52.00 1.80 8.00 0.01 7221 2.00 44.00 1.97 6.00 0.01 7222 2.00 48.00 2.16 6.00 0.01 7223 4.00 49.00 2.14 3.00 0.01 7224 2.00 53.00 1.97 9.00 0.01 7225 2 . 0 0 50.00 2.03 6.00 0.01 7226 2 . 00 62.00 2.13 14.00 0.01 B(ppm) A l (X) Na(X) K(X) W(ppm) 2.00 1.52 0.02 0. 03 2.00 2.00 1.18 0.02 0. 03 2 . 0 0 2.00 1.46 0.02 0. 02 4 . 0 0 7.00 1.25 0.03 0. 03 2 . 0 0 2.00 1.10 0.03 0. 05 2 . 0 0 4.00 1.42 0.03 0. 05 2 . 0 0 8.00 1.53 0.02 0. 04 2 . 0 0 4.00 1.42 0.03 0. 05 2 . 0 0 9.00 1.40 0.02 0. 06 2 . 00 2.00 1.30 0.02 0. 06 2 . 0 0 3.00 0.84 0.02 0. 03 2 . 0 0 7.00 1.14 0.02 0. 05 2 . 0 0 8.00 0.75 0.02 0. 05 3 . 0 0 9.00 1.13 0.02 0. 05 3. 0 0 2.00 1.31 0.02 0. 06 2 . 0 0 9.00 1.33 0.02 0. 05 2 . 0 0 10.00 1.74 0.02 0. 05 2 . 0 0 7.00 1.07 0.03 0. 06 2 . 0 0 2.00 1.18 0.01 0. 04 2 . 0 0 12.00 1.46 0.02 0 . 04 2 . 0 0 10.00 1.22 0.01 0. 03 2 . 0 0 2.00 1.42 0.02 0. 05 2 . 0 0 4.00 1.66 0.01 0 . 05 2 . 0 0 12.00 1.03 0.02 0. 06 2 . 0 0 8.00 1 .01 0.01 0. 05 2 . 0 0 9.00 1.51 0.04 0. 12 2 . 0 0 TRANSECT #7 - ICP ANALYSES (except Au-2 by NAA) Number Si(X) ZrCppm) 7201 0.04 2.00 7202 0.03 2.00 7203 0.05 2.00 7204 0.03 2.00 7205 0.03 2.00 7206 0.03 2.00 7207 0.03 2.00 7208 0.03 2.00 7209 0.03 2.00 7210 0.03 2.00 7211 0.02 2.00 7212 0.03 2.00 7213 0.02 2.00 7214 0.03 2.00 7215 0.03 2.00 7216 0.03 2.00 7217 0.04 2.00 7218 0.03 2.00 7219 0 . 03 2 .00 7220 0.03 2.00 7221 0.03 2.00 7222 0.03 2.00 7223 0.03 2.00 7224 0.02 2.00 7225 0.02 2.00 7226 0.04 2.00 Se(ppm) Sn(ppm) Y(ppm) 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 2 . 0 0 Nb(ppm) Ta(ppm) Au-2(ppb) 2.00 5 .00. 1350 .00 2.00 2 .00 280 .00 2.00 2 .00 3600 .00 2.00 9 .00 130 .00 2.00 3 .00 13 .00 2.00 2 .00 380 .00 2.00 7 .00 5 .00 2.00 9 .00 14 .00 2.00 5 .00 640 .00 2.00 4 .00 21 .00 2.00 8 .00 3000 .00 2.00 2 .00 18972 .00 2.00 5 .00 6000 .00 2.00 8 .00 1450 .00 2.00 8 .00 180 .00 2.00 3 .00 39 .00 2.00 2 .00 19 .00 2.00 2 .00 1300 .00 2.00 8 .00 1550 .00 2.00 5 .00 520 .00 2.00 7 .00 480 .00 2.00 2 .00 6 .00 2.00 5 .00 60 .00 2.00 2 .00 280 .00 2.00 2 .00 150 .00 2.00 7 .00 150 .00 APPENDIX I I I ANALYTICAL PREPARATION 2 1 7 APPENDIX I I I A. X-RAY FLUORESCENCE SPECTROMETRY G e o c h e m i c a l a n a l y s i s by X-Ray F l u o r e s c e n c e S p e c t r o m e t r y was p e r f o r m e d i n t h e X-Ray L a b o r a t o r y o f t h e D epartment o f O c e a n o g r a p h y , U n i v e r s i t y o f B r i t i s h C o l u m b i a . Sample p r e p a r a t i o n and o p e r a t i o n were p e r f o r m e d by t h e a u t h o r , u t i l i z i n g s t a n d a r d p r o c e d u r e s e s t a b l i s h e d between t h e D e p a r t m e n t s o f O c e a n o g r a p h y and G e o l o g i c a l S c i e n c e s . Whole r o c k o x i d e v a l u e s were o b t a i n e d f r o m f u s e d g l a s s d i s c s p r e p a r e d as f o l l o w s : 1) P l a t i n u m c r u c i b l e c l e a n e d , d r i e d and weighed b e f o r e s a m ple and f l u x a d d e d . 2) Powdered sample o f 0.4000 grams added t o 3.6000 grams o f p r e d r i e d F l u x 105 ( F l u x 105 d r i e d i n f u r n a c e a t 500 °C f o r one h o u r ) . 3) T o t a l w e i g h t r e c o r d e d f o r c r u c i b l e , s a m ple and f l u x . 4) C r u c i b l e w i t h s a mple p l a c e d i n f u r n a c e a t 1100 °C f o r 20-30 m i n u t e s . 5) C r u c i b l e removed f r o m f u r n a c e and c o o l e d on a c o o l i n g b l o c k . 6) C r u c i b l e w e i g h e d and t h e w e i g h t l o s s d i f f e r e n c e made up w i t h F l u x 100. 218 7) Sample r e m e l t e d o v e r f l a m e t o r c h u n t i l c r u c i b l e was r e d h o t . 8) Sample p o u r e d i n t o p r e - h e a t e d mould and p r e s s e d . 9) Mould and d i s c p e r m i t t e d t o c o o l t o room t e m p e r a t u r e , t h e n d i s c removed. 10) D i s c trimmed o f e x c e s s g l a s s . F l u x 100 c o n s i s t s o f d i l i t h i u m t e t r a b o r a t e (1,128407) . F l u x 105 c o n s i s t s o f d i l i t h i u m t e t r a b o r a t e , l a n t h a n u m o x i d e (La30) and d i l i t h i u m c a r b o n a t e ( L i 2 C 0 3 ) . T r a c e e l e m e n t s and N a £ 0 were o b t a i n e d f r o m p r e s s e d powder p e l l e t d i s c s , where a PVA b i n d e r was added t o t h e sample p u l p . The d i s c s were t h e n r u n f l u o r e s c e n c e s p e c t r o m e t e r , w h i c h t h a t documented by N o r r i s h and c o u n t s and c o n c e n t r a t i o n s e l e m e n t s / o x i d e s . t h r o u g h t h e a u t o m a t e d X-Ray u t i l i z e s a p r o c e s s s i m i l a r t o H u t t o n ( 1 9 6 9 ) . T h i s y i e l d s b o t h f o r t h e v a r i o u s s e l e c t e d F o r c a l l i b r a t i o n , t h e f o l l o w i n g s t a n d a r d s were a n a l y s e d d u r i n g t h e same r u n s : AGV-1 BCR-1 BE-N BHV0-1 G-2 GA GSP-1 JB-1 MRG-1 NIM-N CC1 W-l 219 M a t r i x c o r r e c t i o n s and r e g r e s s i o n c a l l i b r a t i o n were d e v e l o p e d u s i n g t h e R L A R : O B T E L A computer f i l e s ( A r m s t r o n g , 1985) on t h e Amdahl m a i n f r a m e computer a t t h e U n i v e r s i t y o f B r i t i s h C o l u m b i a . B. INDUCED COUPLED PLASMA ANALYSIS G e o c h e m i c a l a n a l y s i s by I n d u c e d C o u p l e d P l a s m a were p e r f o r m e d a t t h e l a b o r a t o r i e s o f Vangeochem Lab L i m i t e d , 1521 Pemberton Avenue, N o r t h V a n c o u v e r , B r i t i s h C o l u m b i a , V7P 2S3. C e r t i f i e d B.C. a s s a y e r Dean T o y e s u p e r v i s e d t h e p r o c e s s t o i n d u s t r y s t a n d a r d s . A 0.500 gram s a m p l e was d i g e s t e d w i t h a 3 m i l l i l i t r e s o l u t i o n o f H C l - H N O i - H a O i n a 3:1:3 r a t i o a t 95 °C f o r one h o u r , t h e n d i l u t e d t o 10 m i l l i l i t r e s w i t h d i s t i l l e d w a t e r . T h i s l e a c h i n g t e c h n i q u e i s c o n s i d e r e d t o y i e l d a p a r t i a l l e a c h f o r Mn, F e , Ca, P, C r , Mg, Ba, T i , B, A l , Na, K, W, S i , Z r , Ce, Sn, Y, Nb, and T a , d e p e n d i n g on t h e m i n e r a l o g y o f t h e s a m p l e p u l p . Au d e t e c t i o n l i m i t by ICP i s 3 ppm. APPENDIX IV S t r i p P l o t s o f ICP A n a l y s e s T h r o u g h t h e #97 V e i n and i t s S o u t h H a l o Zone 3 3 r d L e v e l , San A n t o n i o G o l d Mine (B - B a r r e n Zone, H - H a l o Zone, S - S t o c k w o r k Zone) Figure A 4 . 1 S t r i p P l o t - Ore Zone Elements 2 2 2 F i g u r e A 4 . 2 S t r i p P l o t - H a l o E l e m e n t s ( B a s e M e t a l s ) AU (NAA) poll 2000 . 1U00 . -1200 . 800 . 400 . 0 . 20-. •«a—o -•!>• o— OA (ICP) ppm K (ICP) % NA (ICP) X P (ICP) X 1G . H 12. 0. 4. 0. 0. 10 0 . 0 6 -0 . 0 6 -0 . 0 4 -0 . 0 2 -0.00 0. 10 0 . 0 8 -0.06-0.04 0.02-1 0.00-0.10-0 . 0 8 -0.06 0.04-0 . 0 2 -LA (I CP) ppc 0.00-15.-12.-9. -6. -3. 0 O-•e—©—o—o—©-. - I I 1 I I UJ W O O <-> l< o u o t . : o tu < 10 CU --« I 1 I I -e- J&—G 2C00 . 1G00 . 1200 . 000 . 400 . 0 . 20. 16. 12. fi. 4. 0. 0 . 10 0.08 0.06 0.04 0.02 •0.00 • 0. 10 • 0.08 •0.06 •0.04 -0.02 -0.00 - 0. 10 - 0.08 - 0.06 -0.04 -0.02 - 0.00 - 15. - 12. - 9 . - 6. - 3 . - 0. o o o (V 31 O <V " « 111 W *r to cn o rj -"j to m cu cu cu n pi ri ri pj F i g u r e A4.3 S t r i p P l o t - H a l o Elements (Group I I I ) F i g u r e A4.4 S t r i p P l o t - H a l o E l e m e n t s (Group I I ) F i g u r e A 4 . 5 S t r i p P l o t - Host Rock E l e m e n t s (Group IV) 226 APPENDIX V ICP versus XRF Comparison (The XRF A n a l y s i s i s a whole r o c k a n a l y t i c a l method, whereas t h e ICP A n a l y s i s u s e s a weak a c i d p a r t i a l d i g e s t i o n t o p l a c e t h e e l e m e n t s i n t o s o l u t i o n . Twenty s a m p l e s were a n a l y s e d by b o t h t e c h n i q u e s , y i e l d i n g t h e f o l l o w i n g c o m p a r a t i v e s c a t t e r g r a m s . F o r manganese and magnesium, t h e s c a t t e r g r a m s y i e l d u n e x p e c t e d h i g h e r v a l u e s f r o m ICP t h a n XRF. T h i s i s c o n s i d e r e d t o be due t o m i n o r c a l l i b r a t i o n d i f f e r e n c e s between t h e two a n a l y t i c a l l a b s . ) 0 20 40 60 80 100 120 140 ZINC (ICP) PPM NA20 (ICP) UT% K20 (ICP) UT% 229 0 4 8 12 16 20 F E 2 0 3 (ICP) UT% 0.0 0.05 0.10 0.15 0.20 0.25 MN02 (ICP) UT% RL203 (ICP) UT% 0 2 4 6 8 10 12 CflO (ICP) Ul% 0 10 20 30 40 50 COBALT (ICP) PPN VANADIUM (ICP) PPM STRONTIUM (ICP) PPM APPENDIX VI PEARCE.PLOT - S t a t i s t i c a l P r i n t o u t 235 t t H t t f t t f i m t f f t t » » * t f t f t f * t t i H t t * f t i t * t m * t m 09/11/88 17:20:45 SAN ANTONIO SOLD NINE - SAN Unit (Loiter Flo* rienber) PEARCE DIAGRAMS RAH DATA ECHO Rat* Data F i l e Na«e : SAM.DAT Subset Label : TOTAL DATA SET Nuwber cf Saaples Analyzed : 6 Nuiber of Deteminations : 12 XRF Default Errors ERRORS Si02 Ti02 A1203 FeO NnO HgO CaO Na20 K20 P205 S Ba 1 Std.Dev. 0.160 0.010 0.120 0.070 0.010 0.010 0.080 0.070 0.050 0.010 0.040 0.002 Raw Data in Units as Entered 111 SiD2 Ti02 A1203 FeO NnO McjO 7097 52.110 1.070 17.670 13.630 0.150 3.160 505X 42.300 0.700 10.700 13.000 0.230 10.600 507X 42.800 0.760 12.700 14.060 0.220 9.590 51IX 48.600 1.120 15.500 9.300 0.150 2.800 515X 48.500 1.320 15.800 10.500 0.150 2.920 518X 51.500 1.360 13.600 12.110 0.150 2.760 CaO Na20 K20 P205 S Ba TOTAL 9.790 1.850 0.030 0.110 0.030 0.003 99.603 3.500 0.500 0.020 0.080 0.020 0.001 86.651 7.090 1.100 0.020 0.100 0.005 0.001 88.446 7.230 2.200 1.210 0.140 0.005 0.020 83.275 4.760 3.800 0.470 0.140 0.040 0.009 88.409 5.300 2.300 0.380 0.170 0.090 0.008 89.728 MEAN 47.635 1.055 14.328 12.100 0.175 5.305 7.112 STD.DEV. 4.207 0.276 2.492 1.865 0.039 3.727 1.894 STDV.MEAN 1.717 0.113 1.017 0.761 0.016 1.521 0.773 CV 7. 8.831 26.157 17.393 15.414 22.205 70.248 26.626 1.958 1.135 0.463 0.355 0.464 0.189 0.123 0.033 0.013 0.032 0.007 0.032 0.007 0.013 0.003 57.962 130.611 26.481 100.194 103.411 236 09/11/88 SAN ANTONIO GOLD NINE - SAN Unit (Loner F l o * Neiber) PEARCE DIABRAHS 18:14:28 CONSERVED VARIABLE EVALUATION Raw Data F i l e Name : SAN.DAT Number of Samples Analyzed : 6 Subset Label : TOTAL DATA SET Number of D e t e r m i n a t i o n s : 12 Simple Pearce E l e i e n t R a t i o s Denominator = l.OOTi SHUN Si Al FeT Mn MQ Ca Na K P S Ba 7097 64.761 25.BB1 14.166 0.158 5.854 13.036 4.458 0.048 0.116 0.070 0.002 505X 80.356 23.956 20.653 0.370 30.014 17.300 1.842 0.048 0.129 0.071 0.001 507X 74,887 26.189 20.573 0.326 25.010 13.291 3.732 0.045 0.148 0.016 0.001 51 n 57.702 21.689 9.234 0.151 4.955 9.197 5.064 1.833 0.141 0.011 0.010 5 J 5 X 48.859 18.759 8.846 0.128 4.385 5.138 7.422 0.604 0.119 0.076 0.004 518* 50.355 15.672 9.902 0.124 4.022 5.552 4.360 0.474 0.141 0.165 0.003 MEAN 62.820 22.025 13.896 0.210 12.373 10.586 4.480 0.509 0.132 0.068 0.004 STD.DEV. 12.910 4.173 5.541 0.109 11.849 4.803 1.813 0.693 0.013 0.055 0.004 STDV.KEAN 5.271 1.704 2.262 0.044 4.837 1.96.1 0.742 0.283 0.005 0.023 0 . 0 0 1 CV I 20.551 18.948 39.873 52.017 95.762 45.374 40.594 136.318 9.840 81.305 103.600 237 09/11/88 18:14;37 SAN ANTONIO SOLD NINE - SAN Unit (Loner F l o * Neiber) PEARCE DIAGRAMS RATIO ERROR PROPAGATION Ran Data F i l e Name : SAN.DAT Number of S a i p l e s Analyzed : 6 Subset Label : TOTAL DATA SET Nuiber of D e t e r m i n a t i o n s : 12 Simple Pearce E l e i e n t R a t i o 1 S t d . Dev. Error P r o p a g a t i o n SNUN 7097 505X 507X 51IX 515X 518X NEAN STD.DEV. STDV.NEAN CV 7. Si 1.187 1.024 0.549 0.404 0.402 0.701 0.331 0.135 Al FeT Hn No Ca Na Denominator = l.OOTi P S 6a 0.637 0.299 0.151 0.011 0.058 0.162 0.174 0.079 0.011 0.093 0.001 0.435 0.424 0.256 0.201 0.180 0.299 0.109 0.045 0.315 0.289 0.103 0.089 0.093 0.174 0.102 0.042 0.017 0.015 0.010 0.009 0.008 0.012 0.004 0.001 0.430 0.330 0.048 0.036 0.033 0.156 0.177 0.072 0.296 0.230 0.131 0.095 0.093 0.168 0.081 0.033 0.259 0.242 0.167 0.148 0.137 0.188 0.051 0.021 0.121 0.112 0.077 0.064 0.062 0.086 0.025 0.010 0.016 0.015 0.010 0.009 0.008 0.011 0.003 0.001 0.142 0.131 0.089 0.076 0.073 0.101 0.029 0.012 0.002 0.002 0.001 0.001 0.001 0.001 0.000 0.000 47.175 36.520 5B.522 31.094 113.409 48.156 27.066 28.603 28.956 28.920 28.860 238 09/11/88 17:21:59 SAN ANTONIO SOLD NINE - SAN Unit (Loner F l o * Hetber) PEARCE DIA6RANS CONSERVED VARIABLE EVALUATION Raw Data F i l e Name : SAN.DAT Nusber of S a i p l e s Analyzed : 6 Subset Label : TOTAL DATA SET Nuiber of D e t e r m i n a t i o n s : 12 S i i p l e Pearce E l e i e n t R a t i o s Denominator = LOOP SNUH 7097 505X 507X 5111 515X Si 559.568 624.561 505.555 410.046 409.202 Al FeT 8.641 223.629 122.402 7.772 186.199 160.523 6.751 176.802 138.BB9 7.106 154.130 65.620 8.375 157.113 74.088 Hn No Ca 1.364 50.577 112.636 2.876 233.280 134.467 2.201 168.842 B9.729 1.072 35.212 65.358 1.072 36.721 43.029 Na 38.517 14.314 25.192 35.989 62.163 0.411 0.377 0.301 13.023 5.059 0.604 0.553 0.111 0.079 0.632 Ba 0.014 0.006 0.005 0.074 0.033 518X 357.835 7.106 111.371 70.369 0.883 28.5B4 39.456 30.985 3.368 1.172 0.024 HEAN 477.794 7.625 168.208 105.315 1.578 92.203 80.779 34.527 3.756 0.525 0.026 STD.DEV. 102.648 0.764 37.472 40.594 0.789 87.043 38.335 16.063 4.945 0.402 0.026 STDV.HEAN 41.906 0.312 15.298 16.572 0.322 35.535 15.650 6.558 2.019 0.164 0.010 CV 7. 21.484 10.019 22.277 38.545 50.019 94.404 47.456 46.523 131.642 76.520 98.120 239 17:22:09 09/11/88 PEARCE DIAGRAMS SAN ANTONIO GOLD MINE - SAM Unit (Lower Flow Neiber) RATIO ERROR PROPAGATION Ran Data F i l e Naie : SAM.DAT Nuiber of Saiples Analyzed : 6 Subset Label : TOTAL DATA SET Nuiber of Determinations : 12 Simple Pearce E l e i e n t Ratio 1 Std. Dev. Error Propagation SNUM 507X 511X 515J 5181 MEAN STD.DEV. STDV.HEAN CV I Si Al FeT Mn Mg Ca Na Denominator = LOOP Ba 7097 50.899 0.790 20.387 11.145 0.154 4.601 10.2B1 3.793 0.686 0.807 0.009 5051 73.106 0.978 23.368 20.084 0.3B1 29.161 16.856 2.686 0.943 1.109 0.013 50.591 29.320 29.260 21.078 43.209 21.017 8.580 48.641 0.6B1 0.512 0.602 0.421 0.664 0.200 0.082 30.178 17.759 11.074 11.286 6.625 15.083 6.418 2.620 42.553 13.906 4.713 5.315 4.159 9.887 6.359 2.596 64.318 0.242 0.105 0.105 0.078 0.177 0.115 0.047 16.885 2.518 2.626 1.685 9.579 11.155 4.554 64.955 116.446 9.030 4.724 3.157 2.396 7.741 5.475 2.235 70.728 2.986 2.814 4.5B5 2.052 3.153 0.898 0.367 28.487 0.754 1.075 0.64B 0.485 0.765 0.212 0.087 27.767 0.886 0.633 0.634 0.525 0.766 0.213 0.087 27.814 0.010 0.009 0.008 0.006 0.009 0.002 0.001 24.585 240 09/11/88 18:22:26 SAN ANTONIO SOLD NINE - SAN Unit (Loner Flow Hetber) PEARCE DIAGRAMS LINEAR FIT STATISTICS Ran Data F i l e Name : SAH.DAT Subset Label : TOTAL DATA SET Nuiber of Samples Analyzed : 6 Nuiber of Determinations : 12 Pearce Element X-Axis Ratio = l.OOSi/l.OOTi Pearce Element Y-Axis Ratio = 1.00Al+2.00Na/1.00Ti Hajor Axis Regression Line Slope = 0.02968 Intercept = 29.11942 + 1 Std. Err. = 0.21198 - 1 Std. Err. = -0.15067 • 1 Std. Err. = 40.44903 - 1 Std. Err. = 17.66731 R2 = 0.00710 V e r t i c a l Residuals from Sloping Line SNUN X Value Y Value X Error Y Error Residual 7097 64.76091 505X 80.35594 507X 74.8B6B9 51IX 57.70240 515X 48.85887 518X 50.35516 34.79688 0.63707 27.63959 1.18750 33.65276 1.02435 31.81833 0.54911 33.60387 0.40372 24.39296 0.40195 0.50045 3.75520 0.70284 -3.86498 0.69489 2.31052 0.46127 0.98617 0.39985 3.03421 0.34890 -6.22112 241 t < t t t t t t M t t t f r t i < T« H « t f t f t t * f t t t t < t t * < t t ^ 09/11/88 17,33.40 SAN ANTONIO GOLD NINE - SAM Unit (Loner FIOM Member) PEARCE DIAGRAMS LINEAR FIT STATISTICS Raw Data F i l e Name : SAM.DAT Subset Label : TOTAL DATA SET Number of Samples Analyzed : 6 Number of Determinations s 12 Pearce Element X-Axis Ratio = l.OOSi/l.OOP Pearce Element Y-Axis Ratio = 1.00AH-2.00Na/1.00P Major Axis Regression Line Slope = 0.16278 * l std. Err. = 0.46143 - 1 Std. E r r . = -0.11004 Intercept = 159.4B686 + 1 Std. Err. = 289.83506 - 1 Std. Err. = 16.79237 R2 = 0.08636 V e r t i c a l Residuals from Sloping Line SNUK X Value Y Value 7097 559.56771 300.66299 505X 624.56068 214.82672 507X 505,55456 227.18670 511X 410.04592 226.10801 515X 409.20220 281.43871 518X 357.83479 ' 173.34171 X Error Y Error Residual 50.89B80 27.52990 50.09135 78.10582 27.23097 -46.32428 50.59077 23.00454 -14.59284 29.32009 16.35573 -0.12491 29.259B9 20.26796 55.34313 21.07844 10.41599 -44.39244 242 09/11/88 17:51:37 SAN ANTONIO GOLD NINE - SAN Unit ILoner F l o * Neiber) PEARCE DIAGRAMS LINEAR FIT STATISTICS Raw Data F i l e Naie : SAN.DAT Subset Label : TOTAL DATA SET Nuiber of S a i p l e s Analyzed : 6 Nuiber of D e t e r i i n a t i o n s : 12 Pearce E l e i e n t X-Axis R a t i o = l.OOSi/l.OOP Pearce E l e i e n t Y-Axis R a t i o = -1.00AU2.00Ca+1.00Na/1.00P Major A x i s R e g r e s s i o n L i n e Slope = 0.35252 + 1 Std. E r r . = 0.42715 - 1 S t d . E r r . = 0.28123 In t e r c e p t = -140.55606 •+ 1 Std. E r r . = -106.49398 - 1 S t d . E r r . = -176.21221 R2 = 0.85490 V e r t i c a l R e s i d u a l s f r o i S l o p i n g L i n e SNUH X Value Y Value 7097 559.56771 40.15937 505X 624.56068 97.04784 507X 505.55456 27.84761 S i 1X 410.04592 12.57389 515X 409.20220 -8.B919B 518X 357.83479 -1.47445 X E r r o r Y E r r o r R e s i d u a l 50.B9B80 4.5986B -16.54462 78.10582 12.72571 17.43239 50.59077 4.14922 -9.B1554 29.32009 2.37355 8.57965 29.25989 2.2B703 -12.58879 21.07844 1.81143 12.93690 243 tt<ftttmitMMt<tftft**tttttmttt**ttttt4«m 09/11/88 17:55:47 SAN ANTONIO BOLD NINE - SAN Unit (Lower Flow Neiber) PEARCE DIAGRAMS LINEAR FIT STATISTICS Raw Data F i l e Naie : SAN.DAT Subset Label : TOTAL DATA SET Nuiber of Saiples Analyzed : 6 Nuiber of Determinations : 12 Pearce Eleient X-Axis Ratio = l.OOSi/l.OOP Pearce Eleient Y-Axis Ratio = -1.00A1+2.0OCa+1.OONa/1.OOP Reduced Major Axis Regression Line Slope = 0.37436 • 1 Std. Err. • 0.46136 - 1 Std. E r r . = 0.30376 Intercept = -150.98818 • 1 Std. Err. = -117.25678 - 1 Std. Err. = -192.55928 R2 = 0.85490 V e r t i c a l Residuals f r o i Slopi SNUN X Value 7097 559.56771 505X 624.56068 507X 505.55456 511X 410.04592 515X 409.20220 518X 357.83479 Line Y Value X Error 40.15937 50.89880 97.04784 78.10582 27.84761 50.59077 12.57389 29.32009 -8.B919B 29.25989 -1.47445 21.07844 Y Error Residual 4.59B6B -18.33005 12.72571 14.22790 4.14922 -10.42165 2.37355 10.05887 2.28703 -11.09115 1.81143 15.55609 244 09/11/88 17:59:54 SAN ANTONIO 60LD MINE - SAW U n i t (Loner Flow Heaber) PEARCE DIAGRAMS LINEAR FIT STATISTICS Raw Data F i l e Na«e : SAM.DAT Subset L a b e l : TOTAL DATA SET Nu i b e r of S a i p l e s A n a l y z e d : 6 N u i b e r of D e t e r m i n a t i o n s : 12 P e a r c e E l e i e n t X - A x i s R a t i o = l.OOSi/l.OOP P e a r c e E l e i e n t Y - A x i s R a t i o = -1.00AI+2.0OCa+l.OOMa/1.OOP Average E r r o r A x i s R e g r e s s i o n L i n e S l o p e = 0.40034 • 1 S t d . E r r . = 0.50274 - 1 S t d . E r r . = 0.33100 I n t e r c e p t = -143.40075 • 1 S t d . E r r . = -130.27373 - 1 S t d . E r r . = -212.33006 R2 = 0.85490 V e r t i c a l R e s i d u a l s f r o i S l o p i n g L i n e SNUN X V a l u e Y V a l u e 7097 559.56771 40.15937 505X 624.56068 97.0*704 507X 505.55456 27.84761 511X 410.04592 12.57389 515X 409.20220 -8.89198 51BX 357.83479 -1.47445 X E r r o r Y E r r o r R e s i d u a l 50.89860 4.59868 -20.45444 78.10582 12.72571 10.41507 50.59077 4.14922 -11.14283 29.32009 2.37355 11.81890 29.25989 2.28703 -9.30921 21.07844 1.81143 18.67250 245 09/11/88 17:39.16 SAN ANTONIO SOLD NINE - SAN Unit (Loner F l o * Hetber) PEARCE DIAGRANS LINEAR FIT STATISTICS Rat Data F i l e Nate : SAN.DAT Subset Label : TOTAL DATA SET Nueber of Saiples Analyzed : & Nuiber of Determinations : 12 Pearce Eleient X-Axis Ratio - l.OOSi/l.OOP Pearce Eleient Y-Axis Ratio = 0.50FeT+0,50Hg/1.00P Najor Axis Regression Line Slope = 0.55989 + 1 Std. Err. = 0.75454 - 1 Std. Err. = 0.39295 Intercept = -168.75520 * 1 Std. E r r . = -8B.99011 - 1 Std. E r r . = -261.75683 R2 = 0.71572 V e r t i c a l Residuals f r o t Sloping Line SNUN X Value Y Value X Error Y Error Residual 7097 559.56771 505X 624.56068 507X 505.55456 511X 410.04592 515X 409.20220 518X 357.83479 86.48943 50.89880 196.90132 78.10582 153.86554 50.59077 50.41621 29.32009 55.40432 29.25989 49.47625 21.07844 7.86936 -58.05383 24.61671 15.96890 15.39069 39.56391 3.61016 -10.41074 3.96565 -4.95023 2.91792 17.88199 246 • M t f t <*»<«<*<*< ttttt<t<tftt<tttttitm 09/11/88 17:43:36 SAN ANTONIO SOLD NINE - SAM Unit (Loner F l o * Neiber) PEARCE DIAGRAMS LINEAR FIT STATISTICS Raw Data F i l e Naie : SAN.DAT Subset Label : TOTAL DATA SET Nuiber of Saiples Analyzed : 6 Nuiber of Determinations : 12 Pearce Eleient X-Axis Ratio - l.OOSi/l.OOP Pearce Eleient Y-Axis Ratio = O.SOFeT+O.SOMg/l.OOP Reduced Major Axis Regression Line Slope = 0.60784 + 1 Std. Err. = 0.84229 - 1 Std. Err. = 0.43865 Intercept = -191.66298 • 1 Std. Err. = -110.82410 - 1 Std. E r r . = -303.68247 R2 = 0.71572 V e r t i c a l Residuals f r o i Slo| SNUN X Value 7097 559.56771 505J 624.56068 5071 505.55456 511X 410.04592 515X 409.20220 51BX 357.83479 Line Y Value X Error 86.48943 50.89880 196.90132 78.10582 153.86554 50.59077 50.41621 29.32009 55.40432 29.25989 49.47625 21.07844 Y Error Residual 7.86936 -61.97445 24.61671 8.93221 15.39069 38.23295 3.61016 -7.16255 3.96565 -1.66159 2.91792 23.63343 247 < t t { f { t < t f t t t t t < t { t t f t t f t < t t t t t { « t t < i t t < t « t f t U ^ 09/11/88 . 17:27:37 SAN ANTONIO SOLD NINE - SAN Unit (Loner F l o * Heiber) PEARCE DIAGRAMS LINEAR FIT STATISTICS Ran Data F i l e Naie : SAN.DAT Subset Label : TOTAL DATA SET Nuiber of Saiples Analyzed : 6 Nuiber of Deteriinations : 12 Pearce Eleient X-Axis Ratio = l.OOSi/l.OOP Pearce Eleient Y-Axis Ratio = 0.50FeT+0.5OHg/l.0OP Average Error Axis Regression Line Slope = 0.69305 Intercept = -232.37575 * 1 Std. Err. = 1.00224 - 1 Std. Err. = 0.52195 • 1 Std. Err. = -150.62479 - 1 Std. E r r . = -380.10777 R2 = 0.71572 Ve r t i c a l Residuals f r o i Slopi SNUH X Value 7097 559.56771 505X 624.56068 507X 505.55456 51IX 410.04592 515X 409.20220 518X 357.83479 Line Y Value X Error 86.48943 50.89880 196.90132 78.10582 153.86554 50.59077 50.41621 29.32009 55.40432 29.25989 49.47625 21.07844 Y Error Residual 7.86936 -68.94235 24.61671 -3.57372 15.39069 35.86750 3.61016 -1.38972 3.96565 4.18313 2.91792 33.85516 248 M r t t t t t f f t » t t M T t t < t t t * t « t t t f t t t t t m m t l M ^ 09/11/88 18:04:49 SAN ANTONIO SOLD NINE - SAN Unit (Loner Flow Neiber) PEARCE DIAGRAMS LINEAR FIT STATISTICS Ran Data F i l e Naie : SAN.DAT Subset Label : TOTAL DATA SET Nuiber of Saiples Analyzed : 6 Nuiber of Determinations : 12 Pearce Eleient X-Axis Ratio = l.OOSi/l.OOP Pearce Eleient Y-Axis Ratio = 0.25A1 •0.50FeT*0.50rlg*l.50Ca+2.75Na/l.OOP Najor Axis Regression Line Slope = 0.93232 Intercept = -88.53060 • 1 Std. Err. = 1.05541 - 1 Std. Err. = 0.82269 + 1 Std. Err. = -36.14978 - 1 Std. Err. = -147.34329 R2 = 0.94214 V e r t i c a l Residuals f r o i Sloping Line SNUN X Value Y Value 7097 559.56771 417.27195 505X 624.56068 484.51393 507X 505.55456 401.93795 511X 410.04592 285.95463 515X 409.20220 330.17405 518X 357.83479 221.71213 X Error Y Error Residual 50.89880 38.17319 -15.89461 78.10582 60.84794 -9.24700 50.59077 40.46709 19.12903 29.32009 20.69882 -7.80950 29.25989 23.82112 37.19653 21.07844 13.33112 -23.37444 249 ttiffftmt«tmMt«*ftftft**tt»tm*tfttttfmtf*m 09/11/88 18:09:09 SAN ANTONIO SOLD NINE - SAN Unit (Loner F l o * Heiber) PEARCE DIAGRAMS LINEAR FIT STATISTICS Ran Data F i l e Naie : SAN.DAT Subset Label : TOTAL DATA SET Nuiber of Saiples Analyzed : 6 Nuiber of Deteriinations : 12 Pearce Eleient X-Axis Ratio = l.OOSi/l.OOP Pearce Eleient Y-Axis Ratio = 0.25Al+0.50FeT+0.50Hg+1.50Ca+2.75Na/1.00P Reduced Major Axis Regression Line Slope = 0.93424 • 1 Std. Err. = 1.05816 - 1 Std. E r r . = 0.82483 Intercept = -89.44673 + 1 Std. Err. = -37.17226 - 1 Std. Er r . = -148.65502 R2 = 0.94214 V e r t i c a l Residuals f r o i Sloping Line SNUH X Value Y Value X Error Y Error Residual 7097 559.56771 417.27195 50.89880 38.17319 -16.05141 505X 624.56068 484.51393 78.10582 60.84794 -9.52841 507X 505.55456 401.93795 50.59077 40.46709 19.07580 511X 410.04592 285.95463 29.32009 20.69882 -7.67960 515X 409.20220 330.17405 29.25989 23.82112 37.32804 518X 357.83479 221.71213 21.07844 13.33112 -23.14443 250 it«tt<ttttm<t*t{t<*<tttit<t<tftttfttmtt*t{H^  07/11/88 18s13:31 SAN ANTONIO 60LD MINE - SAM Unit (Lower Flow Member) PEARCE DIAGRAMS LINEAR FIT STATISTICS Raw Data F i l e Nane : SAM.DAT Subset Label : TOTAL DATA SET Nuiber o f Samples Analyzed : 6 Number of Determinations : 12 Pearce Element X-Axis Ratio = 1.OOSi/1.OOP Pearce Element Y-Axis Ratio = 0.25Al+0.50FeM.50Ng+J.50Ca+2.75Na/1.00P Average Error Axis Regression Line Slope = 0.93996 + 1 Std. Err. = 1.06636 - 1 Std. Err. = 0.83123 Intercept = -92.18164 • 1 Std. E r r . = -40.22755 - 1 Std. Err. = -152.57457 R2 = 0.94214 V e r t i c a l Residuals from Sloping Line SHUH X Value Y Value 7097 559.56771 417.27195 505X 624.56068 484.51393 50 7X 505.55456 401.93795 511X 410.04592 285.95463 515X 409.20220 330.17405 518X 357.83479 221.71213 X Error Y Error Residual 50.89880 38.17319 -16.51948 78.10582 60.84794 -10.36850 50.59077 40.46709 18.91690 29.32009 20.69882 -7.29181 29.25989 23.82112 37.72067 21.07844 13.33112 -22.45778 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0052423/manifest

Comment

Related Items