Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Geology and lithogeochemistry of the cirque stratiform sediment-hosted Ba-Zn-Pb-Ag deposit Northeastern… Gorzynski, George Arthur 1986

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1986_A7 G69.pdf [ 29MB ]
Metadata
JSON: 831-1.0052368.json
JSON-LD: 831-1.0052368-ld.json
RDF/XML (Pretty): 831-1.0052368-rdf.xml
RDF/JSON: 831-1.0052368-rdf.json
Turtle: 831-1.0052368-turtle.txt
N-Triples: 831-1.0052368-rdf-ntriples.txt
Original Record: 831-1.0052368-source.json
Full Text
831-1.0052368-fulltext.txt
Citation
831-1.0052368.ris

Full Text

GEOLOGY AND LITHOGEOCHEMISTRY OF THE CIRQUE STRATIFORM SEDIMENT-HOSTED Ba-Zn-Pb-Ag DEPOSIT NORTHEASTERN BRITISH COLUMBIA by GEORGE ARTHUR GORZYNSKI B.A.Sc, The University of Toronto, 1978 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE in THE FACULTY OF GRADUATE STUDIES (Department of Geological Sciences) We accept this thesis as conforming to the required standa THE U N I V E R S I T Y OF B R I T I S H CO L U M B I A -• May 1986 !(c) George Arthur Gorzynski, 1986 The University of B r i t i s h Columbia 2075 Wesbrook Place Vancouver, B r i t i s h Columbia Canada V6T 1W5 21 May 1986 In presenting this thesis in p a r t i a l f ulfilment of the requirements for an advanced degree at the University of B r i t i s h Columbia, I agree that the Library s h a l l make i t freel y available for reference and study. I further agree that permission for extensive copying of thi s thesis for scholarly purposes may be granted by the head of the Department of Geological Sciences or by his or her representatives. It i s understood that copying or publication of th i s thesis for f i n a n c i a l gain s h a l l not be allowed without my written permission. G. Gorfzynski Department of Geological Sciences The University of B r i t i s h Columbia ABSTRACT The Cirque deposit is one of several Devono-Mississippian stratiform sediment-hosted Ba-Pb-Zn-Ag deposits in the Akie Zn-Pb d i s t r i c t of northeastern B r i t i s h Columbia. I t has d r i l l indicated reserves of 32.2 m i l l i o n tonnes grading 7.9% Zn, 2.1% Pb, and 47.7 g/tonne Ag. The "ore" zone i s a syngenetic exhalite deposit. Its deposition, however, was but one of many wide-ranging "ore"-related events that dominated sedimentation i n the shale basin. These "ore"-related events include exhalative a c t i v i t y , influxes of tur b i d i t e s and increased organic productivity. Many d e t a i l s of the "ore"-related events can be deduced from f i e l d observations and bulk lithogeochemical data. In this study 271 samples representing over 700 m of d r i l l c o r e were analysed for up to 33 elements. These lithogeochemical data were investigated using a standardization procedure in which analyses were ratioed to the abundances of the r e l a t i v e l y immobile d e t r i t a l components, alumina and zirconium. After this transformation, anomalous abundances of "ore" constituents (Ba, Fe, Zn, Pb, Ag and S) and many other chemical components, were i d e n t i f i e d in the host rocks beyond the immediate v i c i n i t y of the "ore" zone. This procedure also f a c i l i t a t e d an estimate of provenance for the host rocks and thei r r e l a t i v e rates of sedimentation. Page i i Geochemical trends are a l s o e v i d e n t w i t h i n the "ore" zone. Ba:Sr r a t i o trends mimic Pb:Zn r a t i o trends and may be a u s e f u l t o o l i n the study and e x p l o r a t i o n of other s t r a t i f o r m b a r i t e d e p o s i t s . They d e l i n e a t e zoning p a t t e r n s and may a c t as a guide to e x h a l a t i v e vent areas which may be of economic i n t e r e s t . Page i i i TABLE OF CONTENTS Page 0. COPYRIGHT STATEMENT 0. ABSTRACT i i 0. PREAMBLE x i i 0. ACKNOWLEDGEMENTS x i i i 1. INTRODUCTION 1 2. GEOLOGY 8 2.1 Regional geology 8 2.2 Detailed stratigraphy in the Cirque deposit area 12 2.2.1 S i l u r i a n s i l t s t o n e 12 2.2.2 Earn Group 20 2.2.2.1 Akie member 22 2.2.2.2 Gunsteel member 22 2.2.2.3 Turbidites 32 2.2.3 "Ore" facies 32 Page i v TABLE OF CONTENTS - continued Page 3. LITHOGEOCHEMISTRY: SAMPLING AND ANALYSIS 40 3.1 Sampling 40 3.2 A n a l y t i c a l procedures 41 3.3 S t a t i s t i c s 47 4. LITHOGEOCHEMISTRY: RESULTS 49 4.1 Provenance determinations 51 4.1.1 Indicators of d e t r i t a l sedimentation 51 4.1.2 P e l i t e - t u r b i d i t e (p,t) fractions 52 4.1.3 Excess component abundances 56 4.1.4 R-mode correlations 66 4.1.5 Provenance determinations: discussion 75 4.1.5.1 Akie member 75 4.1.5.2 Upper Pregnant shale (unit UPR) 76 4.1.5.3 Porcellanites (units UP1 and LP1) 78 4.1.5.4 Other Gunsteel strata (units LPR, PC and LP2) 79 4.2 Rates of sedimentation 80 4.3 Lithogeochemical trends in the "ore" zone 85 Page v TABLE OF CONTENTS - continued Page 5. DEPOSITIONAL ENVIRONMENTS OF THE CIRQUE STRATA 95 5.1 Sedimentation in the Cirque area 95 5.1.1 Conditions accompanying background Akie shale sedimentation 95 5.1.2 Sedimentation rates 96 5.1.3 Evidence for anoxic bottom waters 96 5.1.4 S t r a t i f i c a t i o n of the water column 97 5.1.5 Water depth 98 5.1.6 Origin of Gunsteel shales 99 5.1.6.1 Excess "ore" components 99 5.1.6.2 Excess non-"ore" components 100 5.1.7 Organic a c t i v i t y 103 5.1.8 Large-scale hydrothermal effects 104 5.2 "Ore" deposition 105 5.2.1 Duration of exhalative a c t i v i t y 105 5.2.2 Character of "ore" solutions 106 5.2.3 Character of "ore" deposition 106 5.2.4 Non-sulphidic b a r i t i c horizons 108 6. CONCLUSIONS 110 Page v i TABLE OF CONTENTS - continued Page REFERENCES 1 1 2 APPENDICES 1 . Chemical analyses 130 2. Summary of a n a l y t i c a l data 199 3. X-ray fluorescence data reduction programs 238. 4. S t a t i s t i c a l analysis of duplicate samples 254 5. Derivation of equations used in the text 287 6. Excess component abundance tables 295 7. Notes to accompany source f r a c t i o n and excess component abundance calculations 358 8. Zr:Al O histograms 368 2 3 9. Correlation plots for raw data 378 10. I n i t i a l publication: "Sampling procedure and analysis of duplicates". 390 Page v i i LIST OF FIGURES Page 1. Location map of major Zn-Pb d i s t r i c t s in northwestern Canada 2-3 2. Location of stratiform barite-sulphide occurrences in the Akie Zn-Pb d i s t r i c t 5-6 3. General stratigraphic section, Cirque area 10-11 4. Geology of the str u c t u r a l panel hosting the Cirque deposit 13-14 5. The study s e c t i o n - - d r i l l h o l e cross-section G-G' 15-16 6. Detailed stratigraphic column for the study section 17-18 7. SiO versus Al O scatterplot for background shales 2 2 3 turbi d i t e s and porcellanites 58-59 8A to 8F. Excess component abundance r-mode cor r e l a t i o n plots 68-74 9. Pb:Zn ratios in the Cirque deposit 86-87 10. Pb:Zn r a t i o trends in the study section 89-90 11 . Ba:Sr r a t i o trends in the study section 91-92 FIGURES IN APPENDICES: A. 1-1 Subdivision of the "ore" zone into lodes 134 A.4-1 to A.4-32 An a l y t i c a l precision plots 255-286 A.8-1 to A.8-9 Zr:Al 0 histograms 369-377 2 3 A.9-1 to A.9-11 Correlation plots for raw data 379-389 Page v i i i LIST OF TABLES Page 1. Median values of major and minor chemical components for main l i t h o l o g i e s 42 2. Median values of trace chemical components for main l i t h o l o g i e s 43 3. Median values of rare earth elements for main l i t h o l o g i e s 44 4. Combined a n a l y t i c a l and sampling precision 48 5. Calculated p e l i t e - t u r b i d i t e (p,t) fractions in Earn Group strata 54 6. Excess SiO r e l a t i v e to Al 0 62 2 2 3 7. Summary of excess component abundances 63-64 8. Rates of sedimentation 81-82 Page ix LIST OF TABLES - continued Page TABLES IN APPENDICES: A.1-1 Abbreviations used for major l i t h o l o g i e s 131 A.1-2 Abbreviations used for minor l i t h o l o g i e s 132 A. 1-3 XRF instrument settings 133 A. 1-4 Major element analyses 135-155 A. 1-5 Partitioned major element analyses 156-170 A. 1-6 Trace element analyses 171-180 A. 1-7 ICP analyses 181-189 A.1-8 Rare earth element analyses 190-196 A.1-9 Major element check analyses 197 A.1-10 Sulphur and carbon check analyses 198 A.2-1 Reference standards 200 A.2-2 to A.2-37 Summary of a n a l y t i c a l data 202-237 A.6-1 to A.6-62 Excess component abundances 296-357 A.7-1 P e l i t e - t u r b i d i t e (p,t) fractions 360 A.7-2 Excess component abundances 363-364 Page x LIST OF PLATES Page 1. General geology of the Cirque deposit area 4 2. S i l u r i a n s i l t s t o n e (unit SS) 19 3. P h y l l i t i c shale (unit UPH) 23 4. Ribbon-banded porcellanite (unit UP1) 25 5. Blocky po r c e l l a n i t e (unit LP2) 27 6. Lower Pregnant shale (unit LPR) 28 7. Upper Pregnant shale (unit UPR) 30 8. Poker Chip shale (unit PC) 31 9. Nodular b a r i t i c horizon (unit LBA) 34 10. P y r i t i c "ore" facies (unit SB) 35 11. Photomicrograph - P y r i t i c and B a r i t i c facies 36 12. B a r i t i c "ore" facies 37 Page x i P R E A M B L E T I T L E : G e o l o g y a n d l i t h o g e o c h e m i s t r y o f t h e C i r q u e s t r a t i f o r m s e d i r n e n t - h o s t e d B a - Z n - P b - A g d e p o s i t , n o r t h e a s t e r n B r i t i s h C o l u m b i a . A U T H O R : G e o r g e A r t h u r G o r z y n s k i S U P E R V I S O R : D r . C o l i n I . G o d w i n C O M M I T T E E : D r . W i l l i a m C . B a r n e s D r . K e n e t h M . D a w s o n N U M B E R O F P A G E S : x i v , 1 2 9 , 10 a p p e n d i c e s P U R P O S E A N D S C O P E : T h i s s t u d y i s a d e t a i l e d e x a m i n a t i o n o f a c r o s s - s e c t i o n t h r o u g h t h e C i r q u e d e p o s i t a n d i t s h o s t r o c k s t o d e t e r m i n e t h e i r p h y s i c a l a n d c h e m i c a l c h a r a c t e r i s t i c s f r o m w h i c h o b s e r v a t i o n s o n t h e i r c o - e v o l u t i o n m a y b e m a d e . K E Y W O R D S A N D P H R A S E S : C i r q u e d e p o s i t , B r i t i s h C o l u m b i a , s t r a t i f o r m , s e d i m e n t - h o s t e d , b a r i t e , z i n c , l e a d , s i l v e r , g e o c h e m i s t r y , e x c e s s c o m p o n e n t a b u n d a n c e s , p r o v e n a n c e . P a g e x i i ACKNOWLEDGEMENTS C y p r u s A n v i l M i n i n g C o r p o r a t i o n p r o v i d e d me w i t h e m p l o y m e n t t h r o u g h t w o f i e l d s e a s o n s , f u n d e d s o m e o f t h e c h e m i c a l a n a l y s e s , a n d g e n e r a l l y l e n t s u p p o r t t o m a n y a s p e c t s o f t h e r e s e a r c h . W o r k i n g w i t h t h e c o m p a n y g e o l o g i s t s w a s b o t h e d u c a t i o n a l a n d a h e c k o f a g o o d t i m e . I t h a n k ( U n c l e ) W a y n e R o b e r t s a n d D a n K i l b y f o r t h e i r l e a d e r s h i p a n d h u m o u r , a n d L e e P i g a g e a n d C h a r l i e J e f f e r s o n w h o w e r e a l w a y s r e a d y a n d w i l l i n g t e a c h e r s . D r . C o l i n I . G o d w i n , my a d v i s e r , a r r a n g e d t h e r e s e a r c h p r o j e c t , a n d t h e n g u i d e d , p r o d d e d , a n d g a v e g e n e r o u s l y o f h i s t i m e a n d i d e a s t h r o u g h t h e m a n y d i s r u p t e d y e a r s o f s t u d y . D r . W i l l i a m C . B a r n e s a n d D r . K e n e t h M . D a w s o n a r e t h a n k e d f o r s i t t i n g o n my a d v i s o r y c o m m i t t e e a n d p r o v i d i n g c r i t i c a l r e v i e w s o f t h e m a n u s c r i p t . I am g r a t e f u l t o D r . A . J . S i n c l a i r f o r h i s c o n c i s e a n d f r e q u e n t d o s e s o f a d v i c e o n t h e s t a t i s t i c s , t o D r . S . E . C a l v e r t w h o s e s u g g e s t i o n s r e d i r e c t e d t h e c o u r s e o f t h e s t u d y , a n d t o D r . W . K . F l e t c h e r f o r a d v i c e o n t h e a n a l y s e s a n d s t a t i s t i c s . S t a n y a H o r s k y g a v e c h e e r f u l i n s t r u c t i o n o n a m u l t i t u d e o f a n a l y t i c a l i n s t r u m e n t s . T e c h n i c i a n M a g g i e E l l i o t h e l p e d i n t h e e a r l y a n a l y t i c a l w o r k . E d M o n t g o m e r y a n d h i s s t a f f p r o v i d e d v a l u a b l e t e c h n i c a l P a g e x i i i support. Appreciation i s also extended to John Knight for lessons on the scanning electron microscope, and to K r i s t a Scott for help with the XRF and XRD analyses. Major funding for the project was provided by the National Sciences and Engineering Research Council of Canada, and Energy Mines and Resources Canada through grants to Dr. C.I. Godwin. International Geosystems Corporation, Vancouver, provided the d r i l l c o r e logging system and several d r i l l h o l e cross-sections. Generous f i n a n c i a l support was provided to me through a Dr. Aaro E. Aho Foundation Scholarship, and a Graduate Teaching Assistantship and Scholarship from The University of B r i t i s h Columbia. Page xiv 1. INTRODUCTION The Cirque stratiform sediment-hosted Ba-Zn-Pb-Ag deposit i s in the northern Rocky Mountains of B r i t i s h Columbia (Fig. 1; Plate 1). The deposit, open to the south, has d r i l l indicated reserves of 32.2 m i l l i o n tonnes grading 7.9% Zn, 2.1% Pb and 47.7 g/tonne Ag (Pigage, i n press). Other similar deposits, including the South Cirque deposit one kilometre to the southeast, occur within the general area known as the Akie Zn-Pb d i s t r i c t (Fig. 2). The area is centered about 200 km southwest of Fort Nelson, B.C. (Fig. 1). Access i s e n t i r e l y by a i r . A 360 km road running north from the town of Mackenzie to the Cirque deposit was started in 1981 but construction has been discontinued. The Cirque deposit was discovered by the Gataga Joint Venture (Cyprus Anvil Mining Corporation, Vancouver, and Hudson Bay O i l and Gas Corporation, Calgary) during a helicopter-supported grassroots exploration program in an unexplored part of the western C o r d i l l e r a . The 150 m by 30 m unvegetated area of barite talus (Plate 1) and orange rusty gossan associated with the deposit was spotted from the a i r on July 18, 1977. Subsequent Page 1 F I G U R E 1 . L o c a t i o n m a p o f m a j o r Z n - P b d i s t r i c t s o f t h e S e l w y n B a s i n a n d K e c h i k a T r o u g h i n n o r t h w e s t e r n C a n a d a . T h e C i r q u e d e p o s i t i s t h e m o s t e c o n o m i c a l l y i m p o r t a n t m i n e r a l i z a t i o n i n A k i e d i s t r i c t . P a g e 2 PLATE 1. General geology marked on a photograph of the Cirque o deposit area looking toward 210 azimuth. The red lens i s the surface trace of the "ore" zone; UDM are Earn Group strata above HW the deposit; LUD are Earn Group strata below the deposit; S i s FW SS S i l u r i a n s i l t s t o n e ; OS are Road River Group strata; red dots RR indicate c o l l a r s of early d r i l l h o l e s . White barite talus which forms the main surface showing, i s in the middle of the photograph and extends from the "ore" zone to the creek, a distance of about 150 m. This barite talus i s also indicated on Figures 4 and 9 for reference. Page 4 F I G U R E 2 . L o c a t i o n m a p o f s t r a t i f o r m b a r i t e - s u l p h i d e o c c u r r e n c e s i n t h e A k i e Z n - P b d i s t r i c t . S i z e s o f c i r c l e s a r e p r o p o r t i o n a l t o p r e s e n t l y k n o w n e c o n o m i c i m p o r t a n c e ( a f t e r P i g a g e , i n p r e s s ) . P a g e 5 F I G U R E 2 Page 6 discoveries were mainly the r e s u l t of reconnaissance stream sediment surveys. The South Cirque deposit, which does not outcrop at surface, was discovered by d r i l l i n g based on a geologic model. This study examines the geology and lithogeochemistry of the "ore" zone and i t s host rocks in a section of diamond d r i l l h o l e s across the deposit. It complements studies by Jefferson et a l . (1983) and Pigage (in press). Geology and lithogeochemistry of other deposits and their host rocks in the Akie Zn-Pb d i s t r i c t are reported by Maclntyre (1983) and Lowey (1984). L i t h o l o g i c terminology in this study follows Potter et a l . (1980) and Bates and Jackson (1980). Stratigraphic terminology mainly follows that used by Cyprus Anvil Mining Corporation. Page 7 2. GEOLOGY 2.1 REGIONAL GEOLOGY The Akie d i s t r i c t i s mainly underlain by metasedimentary Proterozoic to Early T r i a s s i c l i t h o l o g i e s that are summarized by Jefferson et a l . (1983) and Pigage (in press). Proterozoic strata are represented by l o c a l exposures of highly deformed basement metasedimentary and intrusive rocks (Taylor et a l . , 1979; Taylor and Stott, 1973). These are unconformably overlain by late Early to Late Cambrian fine to coarse c l a s t i c and carbonate strata ( F r i t z , 1980), and succeeded by shallow water argillaceous limestones of the Late Cambrian to Early Ordovician Kechika Group (Cecile and Norford, 1979). During the Ordovician and S i l u r i a n , the extensive Road River Group shales and associated limestone, sandstone and l o c a l volcanic horizons were deposited (Cecile and Norford, 1979; F i g . 3). The Road River Group l o c a l l y hosts small stratiform massive sulphide and barite deposits (Maclntyre, 1983). Sedimentation patterns during most of Cambrian to S i l u r i a n time r e f l e c t broad basinal deposition with sediment transport Page 8 westward from a continental land mass (c.f. Gabrielse, 1981; c.f. Cecile and Norford, 1979) into the Kechika Trough (Maclntyre, 1980b), a southern extension of the Selwyn Basin of the Yukon T e r r i t o r y (Fig. 1). The only major non-sedimentary unit is the northwesterly trending linear belt of Ordovician Ospika volcanics (unit Ov of Maclntyre, 1980a). This l i n e of volcanic rocks probably marks a zone of crus t a l s t r u c t u r a l weakness with which Devonian Ba-Zn-Pb-Ag mineralization appears to be s p a t i a l l y associated (C.W. Jefferson, pers. comm., 1982). Devono-Mississippian strata are, i n contrast, characterized by rapid facies changes (Fig. 3). A major marine transgression from southwest to northeast (Gabrielse et a l . , 1977; Gordey, 1982) deposited Earn Group (Gordey et a l . , 1982) shales and turbidites into l o c a l i z e d northwest trending basins in the Kechika Trough (Jefferson et a l . , 1983). A l l known economically s i g n i f i c a n t Ba-Zn-Pb-Ag mineralization in the d i s t r i c t occurs in the Earn Group. Rare Early T r i a s s i c shales unconformably ov e r l i e the Earn Group (Gabrielse, 1977). No Paleozoic int r u s i v e rocks are known in the area except for some possible s i l l s related to the Ordovician Ospika volcanics (C.W. Jefferson, per. comm., 1985). The Akie d i s t r i c t i s located in the Foreland Thrust and Fold Belt of the northern Rocky Mountains. Earn Group strata occur in Page 9 F I G U R E 3 . G e n e r a l s t r a t i g r a p h i c s e c t i o n , C i r q u e a r e a . T h e C i r q u e d e p o s i t i s m a r k e d w i t h a ' C 1 ( m o d i f i e d f r o m P i g a g e , i n p r e s s ) . P a g e 1 0 A Q E Q R O U P MEMBER yjniOMrriAM WARNEFORO EARN Pnroifcmu Mrfc«r b*4 WARNEFOMO AKE ^ > ^ AKE D E V O N I A N QUNSTEEL A K I E < J < / < ^PAUL ^> KWADACHA ^ RIVER ^ > REEF SILURIAN ROAD SILURIAN SILTSTONE RIVER O R D O V I C I A N SHALE GROUP ORDOVICIAN O S P I K A V O L C A N I C S ^ O R D O V I C I A N S H A L E FIGURE 3 P«g« 11 northwesterly trending thrust panels and sy n c l i n a l f o l d keels. Deformation i s associated with the Cretaceous-Paleogene orogeny (Jefferson et a l . , 1983; Pigage, in press). Metamorphic grade in the Cirque area i s lower to sub-greenschist as c l a s s i f i e d by Hyndman (1972). Earn Group shales generally produced sharp ten angstrom peaks on X-ray d i f f r a c t i o n scans indicating that muscovite rather than i l l i t e i s probably the dominant mica. Chl o r i t e , l o c a l l y seen in handspecimens, i s rare. The lack of b i o t i t e indicates that higher grades of metamorphism were not attained. 2.2 DETAILED STRATIGRAPHY IN THE CIRQUE DEPOSIT AREA Only the Earn Group and the top of underlying S i l u r i a n s i l t s t o n e unit of the Road River Group have been d r i l l - t e s t e d in the thrust faulted panel hosting the Cirque deposit (Figs. A, 5 and 6). These strata were sampled for lithogeochemical study and are described below. 2.2.1 S i l u r i a n Siltstone S i l u r i a n s i l t s t o n e at the Cirque deposit (Fig. 6: unit SS; Page 12 F I G U R E 4 . G e o l o g y map o f t h e s t r u c t u r a l p a n e l h o s t i n g t h e C i r q u e d e p o s i t ( m o d i f i e d f r o m P i g a g e , i n p r e s s ) . L i t h o l o g i c s y m b o l s a r e e x p l a i n e d i n F i g u r e 6 . T h e s t u d y s e c t i o n ( c r o s s - s e c t i o n G - G 1 ) i s d e t a i l e d i n F i g u r e 5 . ' N F ' i n d i c a t e s a s t e e p n o r m a l f a u l t w i t h t h e w e s t e r n b l o c k d o w n t h r o w n . ' T F ' i n d i c a t e s a t h r u s t f a u l t w i t h t h e o v e r l y i n g b l o c k e m p l a c e d f r o m t h e s o u t h w e s t . S t r a t a i n t h i s s t r u c t u r a l p a n e l g e n e r a l l y y o u n g t o w a r d t h e s o u t h w e s t . P a g e 1 3 FIGURE 4 P«g« 14| F I G U R E 5 . T h e s t u d y s e c t i o n - d r i l l h o l e c r o s s - s e c t i o n G - G 1 . T h e e n t i r e a v a i l a b l e E a r n G r o u p i n d r i l l h o l e s o f t h i s s e c t i o n w a s s a m p l e d f o r d e t a i l e d g e o l o g i c a l a n d g e o c h e m i c a l s t u d y . T h e s e c t i o n i s l o c a t e d i n F i g u r e 4 ; l i t h o l o g i c s y m b o l s a r e e x p l a i n e d i n F i g u r e 6 . P a g e 15 DDH-7t-C-14 FIGURE 6 F I G U R E 6 . D e t a i l e d s t r a t i g r a p h i c c o l u m n f o r t h e s t u d y s e c t i o n . T h i c k n e s s e s o f m o s t u n i t s d i s p l a y e d v a r y d r a m a t i c a l l y w i t h i n t h e C i r q u e a r e a . P a g e 17 ROUI MEMBER LITHOLOQY DESCRIPTION 3 0 0 m-2 0 0 — 100 — Soft, ahimtnotia PhyMtk ehakt <UPH) Moduiar to maaarve barite ± wWt w r t w i l i (U»A) Rftbon-bondod porcellanite (UP1) SUiceoua Poker Chip ehakt (PC) SIHceoua pyrttle Pragnant ahalo (UPR.WPR) laminated Maaalva pyrtla (UPY.WPY) Slllcaoua Pokar Chip shala (PC) n-banded porcallanita (LP1) * Blocky porcellanite (LP2) .Nodular to maaaiva barite * whita carbonata (LBA) Soft . aluminous Phyllltic ahala (LPH) Siliceous , nodular, pyritic Lower Pregnant ahala (LPR) Siliceous Poker Chip ahala (PC) Rlbbon-bandad porcallanita (LP1) OotomKIc to calcareoua tiltatona and aandatone (38) Turbidites (MS) FIGURE 6 P«g«18 PLATE 2. Photograph of S i l u r i a n s i l t s t o n e (unit SS: F i g . 6). This dolomitic to calcareous s i l t s t o n e and sandstone underlies the Earn Group. Note the abundance of bioturbation (feeding burrows) evident on the bedding surfaces (cf. PettiJohn, 1973, p.131). Page 19 Plate 2; unit SD of Cecile and Norford, 1979) i s the regionally extensive top-most member of the Road River Group. It i s erosionally r e s i s t a n t and tan weathering, grey, dolomitic to calcareous s i l t s t o n e and sandstone. Ty p i c a l l y i t is th i c k l y bedded and notably bioturbated. Locally g r a p t o l i t e s , sponge spicules and fa n - l i k e feeding burrows (Plate 2) can be seen on bedding surfaces. Minor interbeds of orthoquartzite, limestone and black shale occur. This unit i s 450 m to 485 m thick in the v i c i n i t y of the Cirque deposit (Pigage, in press). Maclntyre (1983) suggested that i t represents shallow marine tu r b i d i t e deposition. 2.2.2. Earn Group The age of the Earn Group in the Akie d i s t r i c t i s not well documented due to the sc a r c i t y of f o s s i l s . Stratigraphic correlations indicate the lowest parts of the Earn Group are Early to Middle Devonian or older; the upper parts are possibly as young as Late Mississippian in age (Pigage, in press). The barite deposits are probably Late Devonian to Early Mississippian (Jefferson et_ a l . , 1 983; Pigage, i n press). It i s notable that the worldwide Frasnian-Famennian mass extinction occurred in the same time frame (McLaren, 1982), although there i s no known evidence of i t i n the Cirque strata ( i . e . in the Earn Group near Page 20 the Cirque deposit). The Earn Group has been informally divided into the Gunsteel, Akie and Warneford members (cf. Jefferson et a l . , 1983). Details of these units and their stratigraphic relationships are outlined in Figures 3 to 6, and discussed below. Generally the Akie member represents background sedimentation dominated by soft aluminous shale in the study section. The Gunsteel member i s a s i l i c e o u s a r g i l l i t e / p o r c e l l a n i t e facies which hosts the Ba-Zn-Pb-Ag mineralization. The Warneford member which comprises shales with conglomerate, breccia and sandstone lenses (Pigage, in press), are absent in the study section and not described furthur. The Gunsteel and Akie members l o c a l l y contain t u r b i d i t i c s i l t s t o n e , sandstone, and conglomerate beds. The basal contact of the Earn Group is a diachronous onlap unconf oriri ty (Jefferson et a l . , 1 983 ). If other unconformities exist within the Earn Group they are d i f f i c u l t to demonstrate due to the abundance of small-scale f a u l t i n g . Although these faul t s do not appear to strongly disrupt stratigraphy, they probably aff e c t estimates of o r i g i n a l thicknesses of the strata (Pigage, in press). Page 21 2.2.2.1 Akie Member Aluminous P h y l l i t i c shale (Fig. 6: units UPH and LPH; Plate 3) is the dominant facies of the Akie member. Although t h i s member is up to 90 m thick in d r i l l core, outcrops are uncommon and occur as recessive, tan to rusty exposures. The rock is a soft, planar p a r a l l e l laminated to l o c a l l y massive bedded, medium grey shale with a d i s t i n c t i v e p h y l l i t i c sheen on cleavage sufaces. Thin sections reveal a f o l i a t e d groundmass of indiscernably fine minerals except for white mica, sparse small quartz grains and up to two percent p y r i t e . P h y l l i t i c shale grades l a t e r a l l y into a soft, dark grey to black, carbonaceous shale. Although rare in the study area, this i s the dominant lithology southwest of the Cirque deposit (Jefferson et a l . , 1983). 2.2.2.2 Gunsteel Member Most of the carbonaceous, s i l i c e o u s , fine grained rocks of the Earn Group are part of the Gunsteel member. They weather to slatey-cleaved but resistant outcrops with a t y p i c a l l i g h t blue-grey "gunsteel" colour. (The "gunsteel" weathering colour results from the loss (oxidation) of carbonaceous material; no Page 22 PLATE 3. Photograph of P h y l l i t i c shale (unit UPH: F i g . 6). This soft, aluminous shale has a p h y l l i t i c sheen on beddng and cleavage surfaces. It represents background pelagic sedimentation in the Cirque st r a t a . Faint p a r a l l e l bedding laminations oriented p a r a l l e l to parting surfaces and obliquely to the d r i l l c o r e axis, are evident on d r i l l c o r e i n the bottom row. P a r a l l e l lines perpendicular to the d r i l l c o r e axis are grooves inscribed during d r i l l i n g . Veins and gouge in the top row of the corebox are from the main thrust f a u l t (Fig. 5). Page 23 other mineralogical or chemical changes were evident on X-ray d i f f r a c t i o n scans or scanning electron microscope energy dispersion scans.) Thickness of the member ranges from less than 1 m to more than 200 m (Jefferson et a l . , 1983) and i t outcrops semi-continuously for at least 170 km along s t r i k e (Maclntyre, 1980a). The contact with the Akie member i s variably sharp, inter fingering, or gradational. The dominant l i t h o l o g i e s of the Gunsteel member, porcellanites and s i l i c e o u s a r g i l l i t e s , are discussed below. "Ore" fac i e s , also part of the Gunsteel member, are discussed separately in section 2.2.3. The porcellanites are very s i l i c e o u s , carbonaceous, black to dark grey strata that range in thickness from 2 m to 22 m in the study area. Thin sections t y p i c a l l y reveal a mosaic of r e c r y s t a l l i z e d quartz (up to 20 microns in diameter) with variable, often minor, amounts of pyrite, carbonate and white mica. Radiolarians are l o c a l l y abundant and s i l i c i f i e d s i l t s t o n e laminations occur i n small proportions. Two main types of por c e l l a n i t e , ribbon-banded and blocky, are distinguished: Ribbon-banded po r c e l l a n i t e , the most common, (Fig. 6: units LP1 and UP1; Plate 4) is l i g h t grey to black and d i f f u s e l y laminated to massive. It is characterized by 0.5 cm to 5 cm thick Page 24 PLATE 4. Photograph of Ribbon-banded por c e l l a n i t e (unit UP1: F i g . 6). Very s i l i c e o u s , laminated slabs of porcellanite (ribbon-bends) are separated by fine carbonaceous partings p a r a l l e l to bedding. Radiolarians can l o c a l l y be seen in thin sections of these s t r a t a . (DDH-79-C-23; scale i s at 386.9m). Page 25 p o r c e l l a n i t e slabs (ribbon-bands) separated by 1 mm to 3 mm carbonaceous f i s s i l e partings. These slabs are bedding p a r a l l e l and often maintain uniform thicknesses across a few metres. The carbonaceous partings may be d i s s o l u t i o n features as suggested by the presence of rare s t y l o l i t e s or they may be fine carbonaceous shale beds r e f l e c t i n g f l u c t u a t i n g climatic conditions (Winterer, 1979). Blocky p o r c e l l a n i t e (Fig. 6: unit LP2; Plate 5) i s dark grey, and massive to laminated. I t i s characterized by sparse moderately carbonaceous blocky partings p a r a l l e l to and oblique to bedding. Siliceo u s a r g i l l i t e s have been c a l l e d Pregnant shale by Jefferson et a l . (1983) and Pigage (in press). In the immediate v i c i n i t y of the Cirque deposit, the s i l i c e o u s a r g i l l i t e s have anomalous abundances of zinc and lead attributed to minor sphalerite and galena in framboidal pyrite (Table 1; Jefferson et a l . , 1 983). Three types of s i l i c e o u s a r g i l l i t e are distinguished here: Lower Pregnant shale (Fig. 6: unit LPR; Plate 6) l i e s on the unconformity with the S i l u r i a n s i l t s t o n e or on a thin basal Page 26 PLATE 5. ""note-graph of Blocky porcellanite (unit LP 2: F i g . 6). Very s i l i c e o u s , laminated ( l e f t ) and massive (right) p o r c e l l a n i t e . (DDH-79-C-23; 395.1m and 398.9m resp e c t i v e l y ) . Page 27 PLATE 6 . Photograph of Lower Pregnant shale (unit LPR: F i g . 6). Si l i c e o u s , laminated to massive bedded, s i l t y shale with common laminatioi.s and disseminations of p y r i t e , zones of barite and/or white carbonate nudules, and s i l t y t u r b i d i t e laminations. This shale l i e s on or near the unconformity at the base of the Earn Group. Page 28 conglomerate which i n turn l i e s on the unconformity. It c h a r a c t e r i s t i c a l l y occurs in thi n beds ( t y p i c a l l y 15 cm) with alternating (a) s i l i c e o u s black s i l t y a r g i l l i t e to porcellanite beds, (b) black s i l t y a r g i l l i t e to po r c e l l a n i t e , s i l t s t o n e and/or pyrite laminated beds, and (c) pyri t e , barite and/or white carbonate nodule-rich beds. Upper Pregnant shale (Fig. 6: unit UPR; Plate 7) o v e r l i e s , intercalates with, and i s l a t e r a l l y equivalent to the main "ore" zone on both l o c a l and regional scales. It i s a th i n l y to t h i c k l y bedded (10 cm to 50 cm) s i l t y s i l i c e o u s a r g i l l i t e or po r c e l l a n i t e with alternating dark grey to black massive beds and medium grey laminated beds containing common laminations of pyrite and l o c a l laminations and beds of s i l t s t o n e and s i l i c e o u s c a l c i s i l t i t e . Nodules of pyri t e , barite, and/or white carbonate are l o c a l l y abundant. Poker Chip shale (Fig. 6: unit PC; Plate 8) i s a medium to dark grey, laminated, s i l i c e o u s s i l t y a r g i l l i t e which in d r i l l c o r e breaks along bedding planes into poker c h i p - l i k e pieces. Up to 50% of the rock commonly consists of 0.5 cm to 3 cm thick s i l t s t o n e and/or s i l i c e o u s c a l c i s i l t i t e interbeds. Page 29 PLATE 7. Photograph of Upper Pregnant Shale (unit UPR: F i g . 6) taken near the main surface showing of the "ore" zone (Plate 1). This unit ovelies, intercalates with, and is l a t e r a l l y equivalent to the " o a . e " zone on both l o c a l and regional scales. It i s a s i l i c e o u s , laminated and massive bedded, s i l t y shale. Rusty weathering r e f l e c t s abundant laminations, disseminations and nodules of p y r i t e . Local laminations and beds of s i l t s t o n e and s i l i c e o u s c a l c i s i l t i t e , and zones of barite and/or white carbonate nodules, are also present. Page 30 f f f * r t * , ' « QMS!lit • • M C E N T I M E T R E 1 ^ ^ ^ ^ I N C H PLATE 8. Photograph of Poker Chip shale (unit PC: F i g . 6). This is s i l i c e o u s , laminated, s i l t y shale which in d r i l l c o r e breaks along bedcing planes into poker c h i p - l i k e pieces. It i s characterized by abundant f i n e l y interbedded and interlaminated s i l t s t o n e and c a l c i s i l t i t e t u r b i d i t e s . (DDH-79-C-23; scale i s at 379.6m). Page 31 2.2.2.3 Turbidites Light grey s i l t s t o n e , sandstone, c a l c i s i l t i t e , and conglomerate/breccia beds (unit MS) up to several metres thick, occur throughout the Gunsteel member and rarely in the Akie member. These t u r b i d i t e s form less than six percent of the strata in the study area. Their mineralogy i s dominated by quartz, white carbonate, white mica and pyrite in varying proportions. Their main provenance was probably from the west (Jefferson et a l . , 1 983 ); they might have been derived from an u p l i f t e d block of S i l u r i a n s i l t s t o n e , a unit to which the t u r b i d i t e s have broad visu a l (section 2.2.1) and chemical (Appendix 2) s i m i l a r i t i e s . The Lower Devonian Kwadacha Reef (Fig. 3; Akie Reef of Maclntyre, 1983) was probably a paleotopographic high during early Earn Group sedimentation and may have shed some carbonate debris into the Cirque area from the east. However, there is no evidence to indicate that a s i g n i f i c a n t t u r b i d i t e population derived from the Kwadacha Reef area, is present. 2.2.3 "Ore" Facies Three b a r i t i c horizons are present in the area: the "ore" zone and two sulphide-poor barite-carbonate horizons. The two sulphide-poor horizons (Fig. 6: units UBA and LBA) occur i n Page 32 p o r c e l l a n i t e 60 m above and 25 m below the "ore" zone. They contain nodular (Plate 9) to l o c a l l y massive and laminated, white to l i g h t grey barite +_ white carbonate, over thicknesses up to three metres. The laminated barite and carbonate contain only traces of disseminated pyrite and no sphalerite or galena. The Cirque "ore" zone is a 1000 m by 200 m by up to 65 m thick lens with i t s long axis plunging shallowly to the southwest (Fig. 4). D r i l l i n g has yet to define the southwestern extent of the mineralization. The deposit i s stratiform but r e c r y s t a l l i z a t i o n associated with deformation has commonly obscured depositional textures (McClay, 1983). Contacts with host l i t h o l o g i e s are t y p i c a l l y sharp and often intercalated. Interbeds of s i l i c e o u s shale, p o r c e l l a n i t e , s i l t s t o n e , and s i l t s t o n e breccia ( l o c a l l y with barite-sulphide clasts and/or matrix) ranging up to several metres i n thickness form less than 10% of the deposit (Jefferson et a l . , 1983). Mineralization i n the "ore" zone varies from e s s e n t i a l l y 100% barite to 100% sulphide. Three gradational categories of mineralization are distinguished (Fig. 6): 1. P y r i t i c facies (SB; Plates 10,11): pyrite + sphalerite + galena with 20-60% barite, 2. B a r i t i c facies (BS; Plates 11,12): barite greater than 60%, Page 33 PLATE 9. Photograph of a n o d u l a r b a r i t e h o r i z o n ( u n i t LBA: F i g . 6). B a r i t e and/or w h i t e c a r b o n a t e n o d u l e s o c c u r i n p o r c e l l a n i t e m a t r i c e s . These h o r i z o n s a re s t r a t i g r a p h i c a l l y e q u i v a l e n t t o n o n - s u l p h i d i c l a m i n a t e d b a r i t i c e x h a l i t e s and the " o r e " zone. They a r e a l s o found i n Lower Pregnant s h a l e ( u n i t LPR) where no massive b a r i t i c h o r i z o n s a r e known t o o c c u r . They may be f i n e b a l l - a n d - p i l l o w s t r u c t u r e s formed from e x h a l i t e h o r i z o n s d e p o s i t e d on a s o f t muddy s u b s t r a t e , or they may be pr o d u c t s of d i a g e n e t i c d e w a t e r i n g of the s t r a t i f o r m e x h a l i t e s . (DDH-79-C-23; 396.8m). Page 34 PLATE 1C. Photograph of P y r i t i c "ore" facies (unit SB: F i g . 6). Abundant crudely laminated to massive p y r i t e , sphalerite and galena occur in white barite matrix. This i s high grade "ore" in the Cirque deposit. D r i l l c o r e i n the photograph i s 3.7 cm wide. Page 35 PLATE 11. Photomicrograph of "ore" material. In the upper right portion f the photomicrograph, framboidal pyrite i s disseminated in barite xiatrix (unit BS: F i g . 6). In the lower l e f t portion framboidal and colloform pyrite occur in a sphalerite-dominated matrix (unit SB: F i g . 6). Although much of the "ore" zone has been dynamically r e c r y s t a l l i z e d , many delicate primary textures such as these, are preserved. The area shown in the photomicrograph is about 12.6 mm by 8.5 mm. (DDH-79-C-23; 310.8m). Page 36 PLATE 12. Photograph of B a r i t i c "ore" f a c i e s ( u n i t BS: F i g . 6). Massive to crudely laminated, white to medium grey b a r i t e i s dynamically r e c r y s t a l l i z e d . V e i n l e t s of white b a r i t e are common l o c a l l y e.g. top row center and bottom row r i g h t of center i n photograph). Carbonaceous p a r t i n g s (upper l e f t corner of photograph) are scarce and may be remnants of t h i c k e r shale interbeds which are found elsewhere i n the "ore" zone ( s e c t i o n 4.3; Appendix 1, Figure A.1-1). The lens cap i n the photograph i s about 54 mm i n diameter. Page 37 3 . Massive Pyrite (UPY,WPY): pyrite + sphalerite +_ galena with less than 20% b a r i t e . Most of the highly p y r i t i c UPR shale and associated Massive Pyrite facies (unit UPY), occur l a t e r a l l y adjacent to and above the main "ore" zone (Fig. 5). A prominent wedge of massive laminar-banded pyrite l i e s east of and i s continuous with both the Cirque and South Cirque deposits (Pigage, in press); t h i s wedge has been eroded away in the area of the study section (Fig. 5). Barite i n the deposit i s mainly white to medium grey and dynamically r e c r y s t a l l i z e d (McClay, 1984). Breccias of b a r i t i c or p y r i t i c facies c l a s t s healed by barite occur but are uncommon. Coarsely c r y s t a l l i n e barite and/or sulphide veins up to 5 cm thick are present l o c a l l y in both B a r i t i c and P y r i t i c f a c i e s . An attempt to study f l u i d inclusions in vein barite f a i l e d due to the small size of the inclusions. Pyrite textures in the deposit and host rocks range from framboidal to colloform to massive (Plate 11). Less commonly pyrite forms small euhedral crystals or exsolution blebs in sphalerite. Sphalerite t y p i c a l l y occurs as fine grains in pyrite and barit e . It also forms porphyroblastic grains, crude laminations, veins and colloform intergrowths with p y r i t e . Galena Page 38 occurs i n t e r s t i t i a l l y to barite and to other sulphides, or forms colloform intergrowths with p y r i t e . Other minerals are less common in the "ore" zone. Quartz i s i n t e r s t i t i a l in small amounts. Late cross-cutting quartz + white carbonate veins occur but are generally minor. Locally abundant deformed thin layers of disseminated c e l s i a n and hyalophane, as well as veins with common barytocalcite and traces of hyalophane are reported i n the B a r i t i c (BS) facies by C. Stanley (oral comm., University of B r i t i s h Columbia, 1985). Pigage (in press) and Jefferson et a l . (1983) provide additional descriptive d e t a i l s on the "ore" f a c i e s . McClay (1983 and 1984) discusses deformation textures in the mineralization. Page 39 3. LITHOGEOCHEMISTRY: SAMPLING AND ANALYSIS 3.1 SAMPLING The entire Earn Group strata and the top of the underlying S i l u r i a n s i l t s t o n e were sampled in a section of three d r i l l h o l e s across the deposit (Fig. 5). In addition, portions of two d r i l l h o l e s on adjacent sections were sampled to obtain parts of the strata missed or under-represented due to f a u l t i n g . In t o t a l 271 samples representing over 700 m of d r i l l c o r e were c o l l e c t e d . Detailed recording of l i t h o l o g y , structure, mineralization and sampling was done with the aid of the computer-based GEOLOG System (Godwin et a l . , 1982) to provide a consistent data base. Long sections of homogenous l i t h o l o g i e s were sampled at 4 m i n t e r v a l s ; sampling of shorter sections was based on l i t h o l o g i c a l breaks. The sampling procedure outlined below allowed for rapid sampling, preservation of d r i l l c o r e , and an estimate of the chemical homogeneity of the l i t h o l o g i c a l units (Godwin et a l . , 1984 i n Appendix 10). 1. Non-mineralized core from thick units was sampled in 2 m to 4 m assay i n t e r v a l s . A series of whole core samples (each 2.5 cm long for NQ (4.5 cm in diameter) or 4 cm long for Page 40 BQ (3.7 cm in diameter) core) was coll e c t e d every 0.5 m along the i n t e r v a l . Every tenth sample was duplicated by sampling in the same manner except t h i s series of samples was col l e c t e d from between previously c o l l e c t e d samples. An attempt was always made to c o l l e c t v i s u a l l y similar duplicate samples. Estimated volume of vein material was recorded for each sample taken; the rare inte r v a l s of core heavily veined by secondary carbonate and quartz (greater than 30 volume percent) were not sampled. 2. Non-mineralized core from thinner units was sampled i n 1 m to 2 m assay i n t e r v a l s . Samples were co l l e c t e d as in 1, above, except that f i v e evenly spaced samples were taken over each assay i n t e r v a l . 3. Non-mineralized core from units less than one metre thick and a l l "ore" facies intervals were sampled by c o l l e c t i n g sawn or s p l i t half-cores over the entire i n t e r v a l . Duplicate samples were not available in these instances because the core record could not be destroyed. 3.2 ANALYTICAL PROCEDURES Samples were analysed for up to 33 elements and for loss on i g n i t i o n (Tables 1, 2, and 3). Page 41 1 TABLE 1. Median values of major and minor chemical components f o r the main l i t h o l o g i e s a t the C i r q u e d e p o s i t . 4 4 Rock No. of SiO A l 0 Fe MgO CaO Na 0 K O TiO MnO P 0 Ba Pb Zn T o t a l T o t a l Organic LOI 2 3 2 2 3 2 2 2 2 5 U n i t Samples S C C UPH 42 63 .3 19.9 4. .3 2. .4 1 .6 0.5 4, .0 1 .0 0. .02 0.12 0. .4 0. 00 0, .01 1 .1 1 .1 1 .1 5.8 UP1 8 81 .0 4.5 1 . 4 0, .7 2.4 0.1 1 , .1 0.3 0, .02 0.10 0. . 5 0. 00 0, .02 1 .3 5.1 4.4 7.4 PC c 31 75 .3 7.1 1 , .9 1 , .3 2.9 0.1 2, .0 0.4 0, .03 0.12 0. . 5 0. 01 0, .06 1 .6 5.5 4.8 8.8 UPY 5 (37 -3) (2.5) (26, .4) (0, .8) (3.0) ND (0, .4) (0.1 ) (0, .4) (0.1 ) (0. .1 ) 0. 1 0 2. .28 (24 .6) (2.5) ND ND UPR C 24 75 .9 7.2 3, .3 0, .9 1 .6 0.1 1 . .9 0.4? 0, .04 0.13 0. .6 0. 03 0, .38 2 .8 4.9 4.5 9.1 J SB c 20 (0 .6) 0.0 (14. .5) 0, .0 0.0 0.0 (0. .3) ND 0, .00 0.0 (23. . ) 3. 05 12. .50 (31 .3) ND ND ND DWPY c 5 (27 .9) (0.2) (16, .8) (0, .4) (4.1 ) ND (0. .9) ND 0. .00 (0.1 ) (4. .3) 0. 24 1 . 64 ( 20 .2) ND ND ND BS 35 (3 -8) 0.0 (4, .9) 0, .0 ND 0.0 (0. .9) ND 0, .00 ND (38. . ) 1 . 86 6, .10 (18 .1 ) ND ND ND LP 2 11 78 .9 5.6 1 . .5 1 . 2 2.2 0.0 1, .1 0.4 0. .02 0.14 2. .0 0. 00 0, .03 1 .3 5.2 ND 7.6 LP1 1 4 83 .9 4.1 1 , .4 0. .8 2.1 0.1 1. .2 0.2 0. .02 0.10 0. .6 0. 00 0, .03 1 .1 4.0 4.2 6.2 LPH 9 64 .2 18.7 4 . 1 2. .6 1 .0 0.2 4. . 1 0.9 0. .03 0.12 0. .6 0. 00 0. .03 2 .2 1 .0 1 .4 6.2 LPR 18 76 .9 7.3 2. .0 1 . 0 2.0 0.0 1 . .9 0.4 0. .02 0.14 0. .4 0. 00 0. .04 1 .7 4.4 4.2 7.6 MS 18 62 .2 7.1 3. .1 2. .4 8.5 0.1 2 . 0 0.4 0. .09 0.17 0. .7 0. 01 0. .03 2 .1 4.0 ND 9.7 SS 4 58 .5 9.9 1 . .8 6. .6 14.0 0.1 3. .1 0.5 0. .08 0.12 0. .2 0. 00 0. .02 0 .5 4.5 ND 14.3? 1. A l l a n a l y s e s are i n percent. 2. L i t h o l o g i e s are l i s t e d i n roughly s t r a t i g r a p h i c order except f o r t u r b i d i t e s (MS) which occur throughout. See F i g u r e 6 or Table A.1-1 i n Appendix 1 f o r rock u n i t a b b r e v i a t i o n s . 3. Due to d i s c a r d e d v a l u e s , the number of data p o i n t s f o r some components i s l e s s than t h a t l i s t e d (e.g. o r g a n i c c a r b o n ) . 4. ND = not determined or very few data p o i n t s ; LOI = l o s s on i g n i t i o n ; other symbols are s t a n d a r d . 5. Most a n a l y s e s f o r rock u n i t s UPY, SB, WPY AND BS are shown i n br a c k e t s to i n d i c a t e they are s e m i - q u a n t i t a t i v e . Page42 1 TABLE 2. Median values of t r a c e chemical components f o r main l i t h o l o g i e s at the C i r q u e d e p o s i t . 4 Rock No. of Sr Rb U Th Ga Cr Zr Mo Cu Ag Ni Co Sb V 2 3 Unit Samples UPH 42 30. 171 . 2 14. 21 . 1 4 . 152. 8. 40. 0 .1 61 . 17. 1 . 53. UP1 8 , 64. 37. 4 5 10. 6. 11 . 58. 25. 24. 0 .2 74. 5. 2.5 29. PC 31 85. 77. 5 12. 10. 11 . 87 . 33. 30. 0 .6 80 . 5. 5. 65. UPY 5 116. 23. < 1 ND ND 31 . < 1 . 38. 38. 4 .3 47 . 3. 39. 51 . UPR 24 49. 90. 5 13. 15. 13. 76 . 38. 34 . 1 .0 88. 6. 5. 70. SB 20 1876. 34. <1 ND ND 45. ND 5. • 54. 28 .9 35. 5. 1 . 29. WPY 5 299. 21 . <1 ND ND 24 . ND 18. 29. 1 5 .4 36. 3. 1 . 50. BS 35 3082. 28. 6 ND ND 39. ND 3. 54. 33 .5 40. 6. 2. 9. LP 2 11 124. 42 . 5 1 1 . 9. 1 2 . 83. 28. 31 . 0 .3 69. 6. 3. 49. LP1 1 4 78. 42. 5 10. 7 . 9. 34. 29. 25. 0 .4 69. 5. 3. 28. LPH 9 36. 181 . 3 1 3 . 20. 1 4 . 143. 8. 43. 0 .4 68. 16. 6. 28. LPR 18 58. 80 . 5 5 1 1 . 10. 1 2 . 88. 30. 33. 0 .5 75. 6. 5. 58. MS 18 275. 62 . 3 5 12. 6. 13. 135. 8. 15. 0 .7 30. 4. 4. 27. SS 4 144. 77 . 1 10 . 7. 10. 203. 5. 12. 0 .3 15. 4. 7. 12. 1. A l l analyses are i n parts per m i l l i o n . 2. L i t h o l o g i e s are l i s t e d i n roughly s t r a t i g r a p h i c order except f o r t u r b i d i t e s (MS) which occur throughout. See F i g u r e 6 or Table A.1-1 i n Appendix 1 f o r rock u n i t a b b r e v i a t i o n s . 3. Due to d i s c a r d e d values, the number of data p o i n t s f o r some components i s l e s s than that l i s t e d . 4. ND = not determined or very few data p o i n t s ; other symbols are standard. Page 43 1 TABLE 3. Median values of rare earth elements f o r main l i t h o l o g i e s at the Cirque d e p o s i t . Rock No. of Eu Sm Yb 2 Unit Samples UPH 5 2, .9 7 , .4 3. .6 UP 1 4 0. .4 10. .5 2. .2 PC 7 0. .9 6, .9 1 , . 5 UPY 3 1 . 9 11 . ,0 1 . 5 UPR 4 0. .8 5. .9 2. .2 SB 20 2. .9 3. , 1 8. .0 WPY 5 4. .2 18. .7 9. .5 BS 35 1 . 9 6. .2 4. .0 LP2 2 0 . 4 5. .0 2. .1 LP1 5 0. .3 4. .8 1 . 5 LPH 4 2. .1 5. .1 3. .3 LPR 4 1 . 5 4. .3 2. .7 MS 3 1 . 3 8, .2 2. .5 SS 3 0, .9 3. .0 1 . 1 1. A l l analyses are i n p a r t s per m i l l i i o n . 2. L i t h o l o g i e s are l i s t e d i n roughly s t r a t i g r a p h i c order except f o r t u r b i d i t e s ( u n i t MS) which occur throughout.' See F i g u r e 6 or Table A.1-1 i n Appendix 1 f o r rock u n i t a b b r e v i a t i o n s . Page 4'4 X-ray fluorescence (XRF) spectometry was done for 18 chemical components (Table 1). Ten major components (SiO , Al 0 , Fe, MgO, 2 2 3 CaO, Na 0, K 0, TiO , MnO, P 0 ; Table 1) were determined on the 2 2 2 2 5 non-mineralized samples by a method adapted from Brown et a l . (1973 ) by van der Heyden (1982). Barium and seven trace components (Sr, Rb, U, Th, Ga, Cr, Zr; Table 2) were determined on the non-mineralized samples by a method adapted from Feather and W i l l i s (1976) by W.K. Fletcher, S.J. Horsky and D. Heberlein (University of B r i t i s h Columbia). These methods were modified to obtain semi-quantitative data for many components in "ore" facies samples. Component concentrations were deduced from comparison with appropriate international standards (Abbey, 1980), Cyprus Anvil barium standards, and a r t i f i c i a l l y mixed standards for major chemical components in b a r i t i c matrices. XRF instrument settings are in Appendix 1, Table A.1-3. Computer programs used for XRF data reduction are i n Appendix 3. Special precautions were taken to avoid XRF a n a l y t i c a l o problems. A l l non-mineralized samples were ashed at 800 C prior to analysis to eliminate the often abundant free carbon which has a high capacity for absorbing X-rays. Loss on i g n i t i o n (LOI) was calculated at this stage. Large ten gram pressed p e l l e t s with a boric acid binder were used for a l l samples to avoid problems res u l t i n g from inadequate sample mass while analysing for barium Page 4 5 (Feather and W i l l i s , 1976). Many analyses were discarded where interferences on a n a l y t i c a l peaks by barium and occasionally other elements, were observed. Nine components (Pb, Zn, Mo, Cu, Ag, Ni, Co, Sb, V; Table 2) were determined by inductively coupled argon plasma (ICP) spectral analysis. Pulverized 0.5 gram non-mineralized samples were o digested i n 3:1:3 HNO :HC1:H 0 acid at 95 C for one hour. "Ore" 3 2 facies samples were digested i n 2:5:3 HNO :HC1:H 0 acid and 3 2 s i m i l a r l y processed. Lead, zinc and s i l v e r were analysed by atomic absorption spectrometry i n "ore" facies samples. Total carbon and t o t a l sulphur were determined on a LECO furnace (LECO, 1959; Table 1). Samples with more than 5% sulphur were analysed on a modified LECO furnace (Corbett and Mizon, 1976). Organic carbon was determined by the Walkley-Black wet oxidation method (Black, 1965, p. 1372-1376). Three rare earth elements (Eu, Sm, Yb) (Table 3) were determined by a method modified from Horsky and Fletcher (1981). Page 4 6 3.3 STATISTICS Calculation of the o v e r a l l combined sampling and a n a l y t i c a l precision was done using duplicate samples and the method of Thompson and Howarth (1976 and 1978). Precision was seen to vary with li t h o l o g y for each chemical component (Appendix 4; Godwin et a l . , 1984 i n Appendix 10); only the precision calculated c o l l e c t i v e l y for a l l l i t h o l o g i e s i s reported i n Table 4. Page 47 TABLE 4. Combined sampling and analytical precision in "non-ore" samples. 1,2 1,2 Component Pc Component Pc SiO 7% Sr 55% 2 Al 0 17 Rb (17) 2 3 Fe (20) U 60 MgO 60 Th 20 CaO 80 Ga 25 Na 0 175 Cr (20) 2 K 0 25 Zr 40 2 TiO 17 Mo 45 2 MnO 85 Cu 35 P 0 (175) Ag 105 2 5 Ba 35 Ni 25 Pb --* Co 30 Zn 145 Sb 75 Total S 45 V 40 Total C 20 Eu 85* Organic C --* Sm 70* LOI (17) Yb 50* 1. Pc : Precision is better than or equal to this value at a 90% confidence l e v e l . Calculated by the method of Thompson and Howath (1976,1978; Appendices 4 and 10). 2. An asterisk (*) indicates insufficient data points were available for proper calculation of precision. Brackets (-) indicate one data point was rejected during calculation of precision. : . Page4g 4. LITHOGEOCHEMISTRY: RESULTS L i t h o g e o c h e m i c a l s t u d i e s w e r e c a r r i e d o u t o n b o t h t h e " o r e " z o n e a n d i t s h o s t r o c k s a l o n g a s e c t i o n o f d r i l l h o l e s a c r o s s t h e d e p o s i t ( F i g . 5 ) . R e s u l t s o f t h e s e l i t h o g e o c h e m i c a l s t u d i e s w e r e i n t e g r a t e d w i t h f i e l d o b s e r v a t i o n s t o g a i n a n u n d e r s t a n d i n g o f t h e e f f e c t s h y d r o t h e r m a l a c t i v i t y h a d o n d e v e l o p m e n t o f t h e C i r q u e s t r a t a . T h e l i t h o g e o c h e m i c a l s t u d i e s w e r e d e s i g n e d t o o v e r c o m e p r o b l e m s i n h e r e n t i n t h e s t u d y o f c l o s e d d a t a a r r a y s ( C h a y e s , 1 9 7 1 ) . R a w g e o c h e m i c a l d a t a e x p r e s s e d i n u n i t s o f p e r c e n t o r p a r t s p e r m i l l i o n f o r m a c l o s e d d a t a a r r a y ; t h e e q u i v a l e n t o p e n d a t a a r r a y i s n o r m a l l y n o t a c c e s s i b l e . T h e c l o s i n g o f a d a t a a r r a y i s a t r a n s f o r m a t i o n w h i c h o f t e n p r o d u c e s s i g n i f i c a n t a r t i f i c i a l t r e n d s a n d o b s c u r e s m a n y r e a l t r e n d s a n d a n o m a l i e s i n d a t a s e t s . F o r e x a m p l e , i n T a b l e 1 r o c k u n i t s w i t h l a r g e r p r o p o r t i o n s o f S i O ( e . g . u n i t L P 1 ) h a v e s m a l l e r 2 p r o p o r t i o n s o f K 0 ( a n d m o s t o t h e r c o m p o n e n t s ) t h a n r o c k u n i t s 2 w i t h s m a l l e r p r o p o r t i o n s o f S i O ( e . g . u n i t U P H ) . T h i s d o e s n o t 2 n e c c e s s a r i l y i n d i c a t e t h a t t h e d e p o s i t i o n a l b a s i n r e c e i v e d a d e c r e a s e d s u p p l y o f K 0 a s t h e s u p p l y o f S i O i n c r e a s e d b u t 2 2 r e f l e c t s t h e d i l u t i o n o f K 0 b y S i O . W h e t h e r t h e r e w a s a r e a l 2 2 P a g e 49 increase, decrease or no change in the K o supply to the basin i s 2 not read i l y apparent. This study dealt with problems of closure in two ways: 1. Ratios of chemical components in a given sample are not subject to closure problems (Butler, 1981). Hence, ratios of chemical components were used to delineate anomalous lithogeochemical fractions often not evident i n the raw (closed) data. The raw data outlined some gross associations (e.g. i n Tables 1 and 2, Pb, Zn and Ag values increase in l i t h o l o g i e s near the "ore" zone). Most other trends and anomalies were l o s t , i n large part, through closure of the data array. However, when the data were ratioed to the immobile d e t r i t a l components, alumina and zirconium, chemical abundances in excess of those expected from d e t r i t a l sedimentation were recognized in the host rocks. In the course of this standardization procedure, provenance of the Gunsteel units was also determined. 2. R-mode correlations are also subject to problems of closure. Intermediate to large posi t i v e correlations between components, however, can be used with caution (cf. Butler, 1978). They were used to a limited extent in this study to ide n t i f y chemical associations. A l l s t a t i s t i c s were done by computer at The University of Page 50 B r i t i s h Columbia. Scatterplots were generated using a program modified from Chasen (1979). A l l other s t a t i s t i c a l and data analysis programs referred to i n the text are o r i g i n a l . 4.1 PROVENANCE DETERMINATIONS 4.1.1 Indicators of D e t r i t a l Sedimentation Two chemical components, zirconium and alumina, best f i n g e r p r i n t d e t r i t a l sedimentary input. Zirconium is predominantly found as zircon i n sedimentary rocks (Krauskopf, 1967, p.591). Zircon is a common, mechanically and chemically resistant mineral (Poldervaart, 1955) which i s known to remain unchanged through low and medium grades of metamorphism (Deer et a l . , 1962) making i t suitable for sedimentation studies (PettiJohn et a l . , 1973, p.43). Some zirconium in shales may be absorbed in or adsorbed on clays (Krauskopf, 1967, p.593) and some could be mobilized from chemically corroded zircons (Poldervaart, 1955; B l a t t and Sutherland, 1969). However, the general immobility of zirconium renders i t unlike l y that these factors s i g n i f i c a n t l y a l t e r the bulk zirconium chemistry of shales. Page 51 Alumina i s normally in the d e t r i t a l f r a c t i o n of sedimentary rocks (Bischoff et a l . , 1979). I t occurs mainly i n clays, micas and feldspars (PettiJohn et a l . , 1973, p.58). Hydrothermal alumina i s reported (Heath and Dymond, 1977), and alumina may also be remobilized during diagenesis (Pettijohn et a l . , 1973, p.411); the e f f e c t of these factors on the bulk alumina chemistry of shale is uncertain. In general, however, the large proportion of alumina in sedimentary rocks and i t s r e l a t i v e immobility (Garrels and Mackenzie, 1971, p.233) make i t a standard against which geochemical variations i n sedimentary rocks are often measured. In t h i s study the alumina data were also found to have smaller standard deviations for most l i t h o l o g i e s (Appendix 2), and better sampling and a n a l y t i c a l precision than the zirconium data (Table 4). For these reasons, alumina was chosen as the preferred indicator of d e t r i t a l sedimentary input. 4.1.2 Pe l i t e - T u r b i d i t e (p,t) Fractions Earn Group d e t r i t a l sediments were deposited i n the Cirque area through background p e l i t i c sedimentation represented by p h y l l i t i c shale (Fig. 6: unit UPH) and tur b i d i t e s represented by s i l t s t o n e , c a l c i s i l t i t e , sandstone and conglomerate/breccia beds Page 52 ( u n i t M S ) . T h e G u n s t e e l r o c k s a r e m a c r o s c o p i c a l l y a n d m i c r o s c o p i c a l l y s e e n t o c o n t a i n m i x t u r e s o f t h e s e t w o d e t r i t a l e n d m e m b e r s a n d a r e h e n c e f o r t h r e f e r r e d t o a s h y b r i d l i t h o l o g i e s . C h e m i c a l f i n g e r p r i n t s o f t h e e n d m e m b e r l i t h o l o g i e s a r e d e f i n e d b e l o w a n d u s e d t o d e t e r m i n e t h e r e l a t i v e p r o p o r t i o n s b y w e i g h t , o f p e l i t i c (p f r a c t i o n ) a n d t u r b i d i t i c (t f r a c t i o n ) i n p u t i n t o e a c h o f t h e h y b r i d l i t h o l o g i e s . T h e r e s u l t i n g p a n d t f r a c t i o n s c a l c u l a t e d b e l o w a n d r e c o r d e d i n T a b l e 5 , a g r e e w i t h q u a l i t a t i v e e x p e c t a t i o n s b a s e d o n p e t r o g r a p h i c s t u d y o f t h e r o c k s . B o t h e n d m e m b e r l i t h o l o g i e s ( u n i t s U P H a n d M S ) h a v e d i s t i n c t m e a n s o f Z r : A l o r a t i o s ( A p p e n d i x 7 , s e c t i o n A . 7 . 1 , p a r t 4 ) . U s i n g t h e s e r a t i o m e a n s a n d a l i n e a r m i x i n g m o d e l , t h e r e l a t i v e p e l i t i c (p) a n d t u r b i d i t i c ( t ) f r a c t i o n s f o r t h e h y b r i d l i t h o l o g i e s w e r e c a l c u l a t e d u s i n g t h e f o l l o w i n g e q u a t i o n s : 2 3 ( A + 1 ) x (R - B ) P = (1 ) ( A - R ) x ( B + 1 ) + (A + 1 ) x (R - B ) a n d t = 1 - p ( 2 ) w h e r e p = t h e c a l c u l a t e d p e l i t e w e i g h t f r a c t i o n o f t h e l i t h o l o g y u n d e r c o n s i d e r a t i o n , P a g e 5 3 TABLE 5. C a l c u l a t e d p e l i t e - t u r b i d i t e (p,t) f r a c t i o n s i n Earn Group s t r a t a of the study s e c t i o n . The p r o p o r t i o n of p e l i t i c (p) and t u r b i d i t i c (t) m a t e r i a l i n h y b r i d l i t h o l o g i e s i s estimated by comparing Z r : A l o r a t i o s i n these l i t h o l o g i e s to 2 3 Zr : A l 0 r a t i o s i n u n i t UPH which i s r e p r e s e n t a t i v e of p e l i t i c s e d i m e n t a t i o n and 2 3 and u n i t MS which i s r e p r e s e n t a t i v e of t u r b i d i t i c s edimentation. NUMBER Z r : A l O p FRACTION t FRACTION 2 3 MEMBER ROCK UNIT OF DATA POINTS ARITHMETIC MEAN FOR MEAN FOR MEAN AKIE UPH 42 0.000762 100. 0. GUNSTEEL UP1 PC UPR 6 31 23 0.00115 0.00128 0.000926 75. 66 . 89. 25. 34. 11 . "ORE" 0 GUNSTEEL 1 LP2 LP 1 9 12 0.00162 0.000982 44 . 86. 56. 14. AKIE LPH 6 0.000824 96. 4. GUNSTEEL LPR 18 0.001141 75. 25. TURBIDITES MS 1 3 0.00230 0. 100. 1. Values c a l c u l a t e d f o r u n i t LP2 are s t a t i s t i c a l l y i n v a l i d (Appendix 7, s e c t i o n A.7.1, par t 4). " Page 5 4 t = the calculated t u r b i d i t e weight f r a c t i o n of the lithology under consideration, R = the mean Zr(percent)/Al 0 (percent) r a t i o for the 2 3 lithology under consideration, A = the mean Zr(percent)/AL 0 (percent) r a t i o for 2 3 unit UPH, and B = the mean Zr(percent)/Al 0 (percent) r a t i o for 2 3 unit MS. Derivation of these equations is in Appendix 5. The cal c u l a t i o n i s demonstrated in the following example for unit PC using arithmetic means of Zr/Al o r a t i o s found in Table 5. Note 2 3 that a l l data recorded as parts per m i l l i o n has been converted to units of percent. (0.000762+1.) x (0.00128-0.0023) P= (0.000762-0.001 28)x(0.0023 + 1 .) + (0 . 000762 + 1 .)x(0.001 28-0.0023) = 0.66 and, t = 1. - 0.66 = 0.34 Page 55 Thus about 66% of the type rock from unit PC consists of p e l i t i c material (chemically modelled after unit UPH) and about 34% consists of t u r b i d i t i c material (chemically modelled after unit MS). Results for a l l l i t h o l o g i e s using arithmetic means of Zr/Al o 2 3 r a t i o s , are i n Table 5. This c a l c u l a t i o n has several i n t r i n s i c assumptions which are discussed in Appendix 7, section A.7.1. The use of two r e l a t i v e l y immobile, inherently d e t r i t a l components such as alumina and zirconium i n the c a l c u l a t i o n e f f e c t i v e l y screens out the influence of non-detrital components in the hybrid l i t h o l o g i e s . This i s the basis for both the above calculations and those of the next section. 4.1.3 Excess Component Abundances Components other than alumina and zirconium are, for the most part, neither chemically immobile nor e n t i r e l y d e t r i t a l in o r i g i n . However by expanding on the above approach, the amount of any given chemical component which may be attributed to d e t r i t a l input can be calculated and consequently anomalous fractions can be recognized. These anomalous fractions are referred to as excess Page 56 component abundances. The technique i s modified from Bischoff et a l . (1979) and is demonstrated using s i l i c a . Figure 7 i s a scatterplot showing the d i s t r i b u t i o n of s i l i c a r e l a t i v e to alumina for the background shales (units UPH and LPH: symbols B and C), t u r b i d i t e s (unit MS: symbol T), and ribbon-banded porcellanites (unit LP1: symbol P). In a l l cases unit LP1 samples plot above the l i n e (mt) marking the most s i l i c e o u s of the t u r b i d i t e s . Thus, as expected, these rocks contain excess s i l i c a which can not be attributed to a d e t r i t a l sedimentary source. Evidence c i t e d in section 5.1.6.2 indicates this s i l i c a i s the product of both hydrothermal and biogenic a c t i v i t y . The amount of excess s i l i c a in any sample can be approximately calculated using the following equation : Excess SiO = Total SiO - Expected SiO (3) 2 2 2 and, Expected SiO = E x Total Al 0 (4) 2 2 3 where: Excess SiO = SiO in units of percent, above that 2 2 expected for the sample i f only two sedimentary sources (UPH and MS) of SiO 2 were available. Page 5 7 FIGURE 7. SiO versus Al O scatterplot for background shales 2 2 3 (units UPH and UPH, symbols B and C), t u r b i d i t e s (unit MS, symbol T) and ribbon-banded porcellanites (unit LP1, symbol P). Line 1x ' i s the expected SiO : A 1 0 r a t i o for unit LP1 i f a l l E 2 2 3 SiO were derived from a mixture of two sedimentary sources 2 modelled aft e r units UPH (shale) and MS ( t u r b i d i t e ) , and combined in proportions defined by the respective p (pelite) and t (turbidite) fractions for unit LP1 in Table 5. Calculation of error bars on 'x 1 (shaded) i s described in Appendix 7, E section A.7.2, part 1. Line 'rat' delineates the maximum SiO : A 1 0 r a t i o for t u r b i d i t e s (unit MS). Line 'x 1 delineates 2 2 3 m the median SiO : A 1 0 r a t i o for unit LP1. A l l unit LP1 samples 2 2 3 have higher SiO : A 1 0 rat i o s than expected from a mixture of 2 2 3 d e t r i t a l sedimentary sources ('x ') and even higher than the most E s i l i c e o u s t u r b i d i t e s ('mt'). This indicates that, as expected, unit LP1 could not have derived a l l i t s SiO from d e t r i t a l 2 sedimentary sources alone. Hydrothermal and biologic a c t i v i t y both play a role in the genesis of t h i s excess SiO . 2 Page 58 E x p e c t e d S i C ^ = t h e a p p r o x i m a t e S i G ^ c o n t r i b u t i o n e x p e c t e d f r o m d e t r i t a l s e d i m e n t a t i o n g i v e n t h e p e r c e n t A l 0 i n t h e s a m p l e . 2 3 T o t a l S i O = t h e t o t a l p e r c e n t S i O i n t h e s a m p l e . 2 2 T o t a l A l 0 = t h e t o t a l p e r c e n t A l 0 i n t h e s a m p l e . 2 3 2 3 F G x p + x t F + 1 G + 1 a n d : E = ( 5 ) P t + F + 1 G + 1 w h e r e : E = t h e e x p e c t e d S i O ( p e r c e n t ) / A l 0 ( p e r c e n t ) r a t i o f o r t h e 2 2 3 l i t h o l o g i c a l u n i t u n d e r c o n s i d e r a t i o n i f S i O w a s o n l y 2 d e r i v e d f r o m a l i n e a r m i x t u r e o f s e d i m e n t a r y s o u r c e s ( U P H a n d M S ) d e f i n e d b y t h e r e l e v a n t p a n d t f r a c t i o n s , p = t h e c a l c u l a t e d p e l i t e w e i g h t f r a c t i o n o f t h e l i t h o l o g y u n d e r c o n s i d e r a t i o n (p f r a c t i o n f r o m T a b l e 5 ) . t = t h e c a l c u l a t e d t u r b i d i t e w e i g h t f r a c t i o n f o r t h e l i t h o l o g y u n d e r c o n s i d e r a t i o n ( t f r a c t i o n f r o m T a b l e 5 ) . P a g e 60 F = the median SiO (percent)/Al 0 (percent) r a t i o for 2 2 3 unit UPH G = the median SiO (percent)/Al 0 (percent) r a t i o for 2 2 3 unit MS Equation (5), a combination of equations (1) and (2), i s derived in Appendix 5 where i t i s equivalent to equation 5-11. It i s unlikely that any individual sample w i l l have the exact p and t fractions determined for i t s l i t h o l o g i c a l unit in Table 5. Therefore the calculated excess SiO for each sample w i l l have an 2 error which w i l l vary from sample to sample. However the median of excess SiO abundances calculated on a l l samples available from 2 a given li t h o l o g y provides a good measure of the t y p i c a l excess SiO for that l i t h o l o g y . These medians of excess SiO abundances 2 2 are recorded i n Table 6. The calculated excess abundances for a l l components are recorded in Appendices 6 and 7 (Table A.7-2) and summarized as percentages of the expected component values in Table 7. The following example of the above ca l c u l a t i o n i s based on sample number 4994 from a Poker Chip shale (unit PC) in d r i l l h o l e 79-C-14 (Fig. 5). From Table 6, the median SiO :A1 0 rat i o s for 2 2 3 units UPH and MS respectively, are: Page 61 TABLE 6. Excess SiO r e l a t i v e to A l O . See s e c t i o n 4.1.3 f o r d e t a i l s . 2 2 3 1 3 4 MEDIAN EXPECTED MEDIAN OF MEDIAN OF NUMBER VALUE OF MEDIAN OF MEDIAN EXCESS PERCENT EXCESS 2 ROCK OF DATA SiO :A1 0 SiO :Al O EXPECTED RATIO SiO SiO EXCESS SiO 2 2 3 2 2 3 2 2 2 MEMBER UNIT POINTS RATIO RATIOS LIMITS ABUNDANCE ABUNDANCES ABUNDANCES AKIE UPH 42 3. .19 3. .19 63. .29 0.10 0% UP1 8 18. .11 3. .92 3. .61 5. .07 81 . 02 62.59 350 GUNSTEEL PC 31 10 . 83 4. .22 3. .79 6. .03 75. .26 44.66 1 40 UPR 24 10. .53 3. .47 3. . 33 3. .90 75. .91 51.29 240 "ORE" --GUNSTEEL LP 2 11 13. .92 5. .21 4 . 31 10. .92 78. .89 49.35 170 LP1 1 4 19. .95 3. .57 3. .40 4 . 15 83. .85 68.43 500 AKIE LPH 9 3. . 43 3. .29 3. .22 3. . 51 64. .15 2.52 4 GUNSTEEL LPR 18 10. .69 3. .90 3. .60 5. .00 76. .87 48.29 1 70 TURBIDITES MS 18 9.07 9.07 62.16 0.19 0 1. "Expected Median of SiO :A1 O R a t i o s " are the median r a t i o s expected f o r a given rock u n i t , i f a l l SiO were d e r i v e d 2 2 3 2 from sedimentary d e t r i t a l sources. 2. "Expected R a t i o L i m i t s " are e r r o r l i m i t s on the c a l c u l a t i o n of "Expected Median of SiO :A1 0 R a t i o s " i n 1 . ; t h i s i s 2 2 3 one p a r t of the four e r r o r a n a l y s i s d e s c r i b e d i n Appendix 7, s e c t i o n A.7.2. 3. "Median of Excess SiO Abundances" are c a l c u l a t e d from p and t f r a c t i o n s of Table 5 and are the anomalous 2 SiO f r a c t i o n s i n the given rock u n i t s . 2 4. "Median of Percent Excess SiO Abundances" are the data i n 3. expressed as a percent of the SiO expected from 2 2 d e t r i t a l sedimentation. Page 6 2 TABLE 7. Summary of excess component abundances. Recorded values are the excess component abundances expressed as a percent of the values expected from d e t r i t a l sedimentary sources f o r each rock u n i t . In other words, these values represent the anomalous p o r t i o n s of each chemical component abundance which cannot be accounted f o r as a product of d e t r i t a l sedimentation a l o n e . S u b s c r i p t s i n d i c a t e the probable genesis of these anomalous p o r t i o n s : H = introduced to the area from hydrothermal sources; S = o r i g i n a t t r i b u t e d to sources other than hydrothermal s o l u t i o n s ; I = d e p o s i t i o n mainly a t t r i b u t e d to i n o r g a n i c r e a c t i o n s such as chemical p r e c i p i t a t i o n from s o l u t i o n ; 0 = d e p o s i t i o n mainly a t t r i b u t e d to b i o l o g i c a c t i v i t y and/or o r g a n i c scavenging. 1 MEMBER ROCK UNIT SiO Al 0 2 2 3 Fe MgO CaO Na 0 2 K20 TiO MnO P 0 2 2 5 -Ba Pb Zn S C LOI AKIE UPH UP1 + 350 + 25 — _ +210 + 130 + 320 + 250 +600 +250 H,B H ,1 N,B H+S?,B H,I H+S,I S,B GUNSTEEL PC + 140 + 20 +70 + 370 + 90 +230 +130 H,B N H+S?,B H,I H+S,I S,B UPR + 240 + 90 -15 --- + 25 - +170 +160 +160 +1100 +2700 + 380 +600 +250 H,B H ,1 N H,N H?,B H,I H,I H,I H+S,I S,B "ORE" GUNSTEEL LP2 LP1 + 500 + 40 --- +210 + 30 + 170 + 300 +230 + 250 +650 +310 H,B H ,1 N,B N H+S?,B H,I H,I H+S,I S,B AKIE LPH +15 ___ -80 + 10 + 40 N N H,I+0? GUNSTEEL LPR + 170 -15 --- + 15 + 70 +130 + 90 +120 +120 H,B N H+S?,B H,I H+S,I S,B TURBIDITES MS 1. Dashes ( ) i n d i c a t e v a l i d and s i g n i f i c a n t excess component abundances were not de t e c t e d (Appendix 7, s e c t i o n A.7.2) Page63 TABLE 7--continued. Summary of excess component abundances. Recorded values are the excess component abundances expressed i n percent of the values expected from d e t r i t a l sedimentary sources f o r each rock u n i t . In other words, these values r e p r e s e n t the anomalous p o r t i o n s of each chemical component abundance which cannot be accounted f o r as a product of d e t r i t a l sedimentation a l o n e . S u b s c r i p t s i n d i c a t e the probable genesis of these anomalous p o r t i o n s : H = i n t r o d u c e d to the area from hydrothermal sources; S = o r i g i n a t t r i b u t e d to sources other than hydrothermal s o l u t i o n s ; I = d e p o s i t i o n mainly a t t r i b u t e d to i n o r g a n i c r e a c t i o n s such as chemical p r e c i p i t a t i o n i from s o l u t i o n ; O = d e p o s i t i o n mainly a t t r i b u t e d to b i o l o g i c a c t i v i t y and/or o r g a n i c scavenging. MEMBER ROCK UNIT 1 Sr Rb U Th Ga Cr Zr Mo Cu Ag Ni Co Sb V AKIE UPH UP 1 + 25 + 600 + 210 + 150 + 950 + 160 + 110 +490 +60 +190 + 11 0 N N,B N,B H, N H?, B H,N H,N N,B N,B N N GUNSTEEL PC + 220 + 70 + 50 + 550 + 110 + 160 + 190 +140 + 180 N H,N H,N N H,N H,B N N N UPR + 50 + 380 + 140 +100 + 120 --- +1000 + 120 + 850 + 310 +490 + 220 N N H,N H?,N H, N N H,N H,N N,B N N "ORE" GUNSTEEL LP 2 LP 1 + 270 + 600 +190 +50 + 170 --- +1500 + 21 0 + 550 +370 +40 +470 + 100 N N,B H?,B N H,N N,B H,N H,N N,B N,B N N AKIE LPH + 10 + 35 -10 + 1 5 + 1 60 + 330 -50 N N H,N H,N N GUNSTEEL LPR +40 + 290 + 70 + 70 + 450 + 120 + 170 + 180 +140 + 1 30 N N,B N H,N N,B H,N H,N N N N TURBIDITES MS 1. Dashes ( ) i n d i c a t e v a l i d and s i g n i f i c a n t excess component abundances were not de t e c t e d (Appendix 7, s e c t i o n A.7.2). Page 64 F = 3.19 G = 9.07 From Table 5, the p and t fractions for unit PC are: p = 66.1 t = 33.9 Thus E i s calculated u t i l i z i n g equation (5) and the above values: E = 4.224 Next a n a l y t i c a l results for sample number 4994 are taken from Appendix 1: Total SiO = 77.06% 2 Total Al 0 = 7.67% 2 3 These values and E, calculated above, are used i n equations (4) and (3): Expected SiO = E x Total %A1 O 2 2 3 = 4.224 x 7.67 = 32.40% Excess SiO = Total SiO - Expected SiO 2 2 2 = 77.06 - 32.40 = 44.66 (percent) The percent excess SiO abundance for the sample i s : 2 Excess SiO x 100 2 = +140% Expected SiO 2 Thus, sample number 4994 contains about 140% more SiO than i s 2 Page 6 5 expected from d e t r i t a l sedimentary sources alone. When these calculations were done for a l l Poker Chip shale samples, i t was found that sample number 4994 had the median Excess SiO Abundance. Therefore the values calculated above were 2 recorded i n Table 6 (and Appendix 6: Variable: SiO /Al 0 ) under 2 2 3 unit PC and the headings "Median of Excess SiO Abundance" and 2 "Median of Percent Excess SiO Abundance". 2 The entire procedure outlined here for s i l i c a was repeated for a l l chemical components with f i v e or more data points in a given l i t h o l o g y . These calculated excess component abundances were recorded i n Appendices 6 and 7 (Table A.7-2). Several errors developed in the calculations of thi s section and were dealt with using a four phase error analysis described in Appendix 7, section A.7.2. Those calculated excess component abundances i d e n t i f i e d as v a l i d and s i g n i f i c a n t by the error analysis are summarized in Table 7. 4.1.4 R-Mode Correlations Strong r-mode linear correlations between excess component abundances (Table 7) were noted after elimination of outlying data points and examination of scatterplots. Correlations displayed in Page 66 Figures 8A to 8F were chosen on the basis of r-values s i g n i f i c a n t at a 95% confidence l e v e l (Kozak,1966). Coef f i c i e n t s at or near these r-values indicate strong correlations, but because the excess component abundances were not necessarily normally d i s t r i b u t e d , a confidence l e v e l on the correlations cannot be assigned. These strong correlations reveal a number of component groupings (Fig. 8). Unit UPR, which i s s p a t i a l l y associated with the "ore" zone, has a s i g n i f i c a n t base metal group (Fe, Pb, Zn, S, LOI, Cr, MnO, Ga) and a related loosely defined group associated with phosphate (Ga, Zn, Ba, S i , Ni). Units PC and LPR, representing normal Gunsteel sedimentation (see section 4.1.5) have a s i g n i f i c a n t trace element group clustered around s i l i c a (Th, V, Cu, Ni, Cr, and Mo). Unit PC also has a loosely defined group associated with carbon and sulphur (Ag, Cr, LOI and P 0 ). 2 5 Ribbon-banded porcellanites (units UP1 and LP1) do not have s i g n i f i c a n t intercorrelated groups. Many correlations similar to those noted i n Figures 8A to 8F were found to occur between components in the raw data. However, groups of components with hydrothermal, biogenic and d e t r i t a l sedimentary a f f i n i t i e s were often not apparent. The raw data components t y p i c a l l y produced highly intercorrelated "spider web"-like plots (Appendix 9) which are d i f f i c u l t to interpret. Page 67 F I G U R E S 8A t o 8 F . E x c e s s c o m p o n e n t a b u n d a n c e r - m o d e c o r r e l a t i o n p l o t s f o r e a c h r o c k u n i t . T h e n u m b e r o f d a t a p o i n t s v a r i e s f o r d i f f e r e n t p a i r s o f c o m p o n e n t s ; m o s t c o r r e l a t i o n s h a v e a b o u t t h e m a x i m u m n u m b e r o f p a i r i n g s n o t e d o n e a c h p l o t . A l l d a t a p o p u l a t i o n s a r e n o t n e c e s s a r i l y n o r m a l l y d i s t r i b u t e d b u t , n e v e r t h e l e s s , c o r r e l a t i o n s s h o w n b e t w e e n p a i r s o f c o m p o n e n t s a r e c o n s i d e r e d t o b e s t r o n g . P a g e 68 FIGURE 8A Page 69 F I G U R E 8C Pag« 71 PORCELLANITE (Unit LP1) ( i l 4 dau pokiu) FIGURE 8D Page 7 2 FIGURE 8 E Page 7 3 FIGURE 8F P « Q « 74 4.1.5 Provenance Determinations: Discussion 4.1.5.1 Akie Member Background aluminous shale sedimentation, as represented by unit UPH (Figs. 5 and 6), has no excess component abundances by d e f i n i t i o n . However i t s median value of 0.4% Ba i s well above the 0.03% Ba median of medians for black shales generally (Vine and Tourtelot, 1970) and the 0.058% Ba average for a l l shales (Turekian and Wedepohl, 1961). This high background Ba i s c h a r a c t e r i s t i c of Earn Group shales in the Selwyn Basin of the Yukon and probably represents a hydrothermal exhalative component (Lydon et a l . , 1985); the Ba may indicate continued hydrothermal exhalations from d i s t a l exhalative vents, remnant anomalous Ba in the seawater column from e a r l i e r exhalations, and/or diagenetic r e d i s t r i b u t i o n of Ba from the underlying s t r a t a . Since this enrichment of Ba i s not taken into consideration, the excess Ba abundances calculated for the hybrid l i t h o l o g i e s represent minimum excesses. Unit LPH i s generally physically and chemically similar to unit UPH but has small differences in absolute component Page 75 abundances (Tables 1, 2 and 3) and i n excess component abundances (Table 7). These may be due to rea l differences i n sedimentation or they may be the product of diagenetic r e d i s t r i b u t i o n of chemical components from the Gunsteel strata within which unit LPH forms a thin wedge (Fig. 5). 4.1.5.2 Upper Pregnant Shale (Unit UPR) There are a number of components which are s i g n i f i c a n t l y more abundant i n the "ore" facies than in any of the Earn Group shales: Ba, Fe, Pb, Zn, Ag, Cr, Cu, and t o t a l S (Tables 1 and 2). A l l these "ore" components, except S, are presumed to have been introduced predominantly through hydrothermal a c t i v i t y into the Cirque strata (section 5.2.3). Unit UPR, which overlies and i s l a t e r a l l y equivalent to the "ore" zone, i s marked by the largest enrichment in several "ore" components: Fe, Pb, Zn, Ag and S. Ba, Cu and Cr are also s i g n i f i c a n t l y enriched (Table 7). These large enrichments may be attributed to: (a) p r e c i p i t a t i o n from the seawater column—these components may have been retained in the seawater column after exhalation of the "ore" zone or they may have been products of continued exhalation from proximal and/or d i s t a l vents, or (b) dewatering of the "ore" zone during b u r i a l . Page 76 Excess MnO in unit UPR i s of hydrothermal o r i g i n as indicated by i t s strong c o r r e l a t i o n with excess "ore" components, Pb and Fe (Fig. 8C). The comparable Meggan deposit in West Germany also has a halo of MnO enrichment i n i t s host rocks (Krebs, 1981). 2 + The MgO depletion in unit UPR may r e f l e c t Mg loss through 2 + competition with an over-abundance of Fe for octahedral binding s i t e s in smectites during early diagenesis (Drever, 1971); however, a similar argument cannot be made for the MgO depletion in unit LPR because i t has no apparent excess Fe (Table 7). Enrichments in P 0 , Ga and Th correlate with excess Zn and/or 2 5 Pb (Fig. 8C) and may be of hydrothermal o r i g i n . Excess SiO i s 2 also probably from a hydrothermal source. However, deposition of SiO and P 0 was probably controlled by biogenic a c t i v i t y 2 2 5 (section 5.1.6.2). Total carbon (which i s mainly organic carbon in a l l shales of the study section: Table 1) i s s i g n i f i c a n t l y enriched and may be the product of increased organic a c t i v i t y and/or enhanced preservation (section 5.1.7). Excess Ni correlates with excess carbon and therefore, i t was probably deposited through organic scavenging. The significance of enrichments in other components Page 77 i n unit UPR i s not known. These enrichments are in K 0, Rb, U, 2 Mo, Sb, and V . 4.1.5.3 Porcellanites (Units UP1 and LP1) Units UP1 and LP1 are v i s u a l l y and chemically similar (section 2.2.2.2; Tables 1,2,3 and 7). The o r i g i n of these units was s i g n i f i c a n t l y influenced by both bi o l o g i c and hydrothermal a c t i v i t y . The largest enrichments i n Ba, Cu and Cr as well as s i g n i f i c a n t enrichments in the other "ore" components (Fe, Zn, Ag and S: Table 7) occur in the p o r c e l l a n i t e units and indicate hydrothermal influences during deposition of these st r a t a . The largest enrichment i n (organic) carbon occurs i n these units and may be due to increased bi o l o g i c productivity and/or enhanced preservation of organic matter with changing physiochemical conditions (section 5.1.7). Enrichments in SiO and P 0 are also 2 2 5 largest in these l i t h o l o g i e s and are probably of hydrothermal o r i g i n ; deposition of these components, however, was probably, in large part, through bi o l o g i c a c t i v i t y (section 5.1.6.2). Large enrichments in CaO, U, Th, Mo, Ni and Co are also present; although the o r i g i n of these excess components i s uncertain, they too may may represent a b i o l o g i c a l l y deposited group (Saxby, 1969: Table 3; Vine and Tourtelot, 1970). S i g n i f i c a n t enrichments in K 0, Sr, Rb, Ga, Sb and V are also present. 2 Page 78 4 . 1 . 5 . 4 O t h e r G u n s t e e l s t r a t a ( U n i t s L P R , P C a n d L P 2 ) U n i t s L P R , P C a n d L P 2 ( ? ) c a n c o n v e n i e n t l y b e t h o u g h t o f a s r e p r e s e n t i n g " n o r m a l " G u n s t e e l s e d i m e n t a t i o n . T h e o v e r a l l v i s u a l s i m i l a r i t y o f u n i t s L P R a n d U P R p r o m p t e d t h e m b o t h t o b e c l a s s i f i e d a s " p r e g n a n t " s h a l e s i n t h e f i e l d ; h o w e v e r t h e e x c e s s c o m p o n e n t a b u n d a n c e s o f u n i t L P R v e r y c l o s e l y r e s e m b l e t h o s e o f t h e P o k e r C h i p s h a l e ( u n i t P C ) a n d n o t u n i t U P R ( T a b l e 7 ) . T h u s c h e m i c a l l y , u n i t L P R i s a P o k e r C h i p - l i k e s h a l e w h i c h , f o r t h e m o s t p a r t , l a c k s a b u n d a n t s i l t s t o n e a n d c a l c i s i l t i t e t u r b i d i t e b e d s . U n i t L P 2 a l s o h a s e x c e s s c o m p o n e n t a b u n d a n c e s w h i c h r e s e m b l e u n i t s L P R a n d P C ( A p p e n d i x 7 : T a b l e A . 7 - 2 ) ; i n t h i s c a s e , h o w e v e r , t h e s t a t i s t i c a l v a l i d i t y o f t h e c a l c u l a t e d e x c e s s c o m p o n e n t a b u n d a n c e s i s q u e s t i o n a b l e ( A p p e n d i x 7 , s e c t i o n A . 7 . 2 , p a r t 4 ) . T h i s g r o u p o f u n i t s ( L P R , P C a n d L P 2 ( ? ) ) r e p r e s e n t s n o r m a l G u n s t e e l s e d i m e n t a t i o n a n d d i s p l a y s c h a r a c t e r i s t i c s i n t e r m e d i a t e b e t w e e n t h e ' h y d r o t h e r m a l i n f l u e n c e s d o m i n a n t i n u n i t U P R a n d t h e b i o g e n i c i n f l u e n c e s p r e s e n t i n u n i t s L P 1 a n d U P 1 . M o s t o f t h e e x c e s s c o m p o n e n t a b u n d a n c e s o f T a b l e 7 a r e n o t a t t r i b u t a b l e t o a n y o n e c a u s e . H o w e v e r , t h e o v e r a l l n u m b e r o f t h e s e a n o m a l o u s f r a c t i o n s i s a f u r t h e r r e f l e c t i o n o f t h e d r a m a t i c c h a n g e s t h a t a c c o m p a n i e d d e p o s i t i o n o f G u n s t e e l s t r a t a . P a g e 79 4 . 2 R A T E S OF S E D I M E N T A T I O N R e l a t i v e m i n i m u m r a t e s o f s e d i m e n t a t i o n f o r G u n s t e e l u n i t s c a n b e e s t i m a t e d b y c o m p a r i n g t h e a m o u n t o f a l u m i n a o r z i r c o n i u m i n b a c k g r o u n d p e l i t e s ( u n i t U P H ) t o t h e a m o u n t o f a l u m i n a o r z i r c o n i u m r e s p e c t i v e l y i n t h e p e l i t i c f r a c t i o n o f t h e G u n s t e e l u n i t s . P e l i t i c s e d i m e n t a t i o n i n t h e C i r q u e a r e a w a s c h e m i c a l l y a n d m i n e r a l o g i c a l l y r e l a t i v e l y c o n s t a n t t h r o u g h o u t d e p o s i t i o n o f t h e E a r n G r o u p ( A p p e n d i x 7 , s e c t i o n A . 7 . 1 , p a r t s 1 a n d 2 ) . T h e p l a n a r p a r a l l e l l a m i n a t i o n s t h a t c h a r a c t e r i z e m o s t o f t h e C i r q u e s t r a t a i n d i c a t e r e l a t i v e l y q u i e s c e n t a c c u m u l a t i o n o f s e d i m e n t . T h u s t h e d i l u t i o n o f a l u m i n a a n d z i r c o n i u m ( p e l i t i c f r a c t i o n o n l y - - s e e T a b l e 5: p f r a c t i o n ) i n t h e G u n s t e e l u n i t s r e l a t i v e t o A k i e s h a l e ( u n i t U P H ) i s p r o p o r t i o n a l t o t h e r e l a t i v e m i n i m u m r a t e s o f s e d i m e n t a t i o n f o r t h o s e l i t h o l o g i e s . T h e s e c a l c u l a t e d r e l a t i v e r a t e s a r e r e c o r d e d i n T a b l e 8. A s i m i l a r s t u d y w a s d o n e b y F i n l o w - B a t e s ( 1 9 7 9 ) a t M o u n t I s a , A u s t r a l i a . T h e r e a r e s o m e t h i n g s t o n o t e a b o u t t h e s e c a l c u l a t e d r a t e s o f s e d i m e n t a t i o n : 1 . T h e y a r e m i n i m u m r a t e s o f s e d i m e n t a t i o n b e c a u s e t h e P a g e 80 TABLE 8. Rates of sedimentation. Calculated rates are based on relative dilution of p e l i t i c a l l y derived Al O and Zr which are 2 3 estimated using the appropriate p fractions from Table 5. A rate of 4 mm per 1000 years is assumed for unit UPH based on comparison with other studies. Rates for other rock units are calculated relative to this assumed rate for unit UPH. MEMBER ROCK UNIT DILUTION OF PELITIC FRACTION 2 RELATIVE TO UNIT UPH Al 0 2 3 Zr RATE OF MINIMUM PERIOD 3 4. SEDIMENTATION OF ACCUMULATION (mm/1000 years) (millions of years) STRATIGRAPHIC 5 THICKNESS (metres) AKIE UPH 1 .0 1 .0 4.0 (assumed) 26.3 105 GUNSTEEL "ORE" GUNSTEEL UP1 PC UPR PC* LP 2 LP1 5.9 4.2 3.1 3.5 2.6 2.2 >>10 (8.0] 5.7 (4.1 ) 5.2 18.8 13.6 10.6 > > 40 (24.2) 21 .8 1 .1 )4.0 <<1 .5 1 .3 HO.4) 20 48 60 18 10 AKIE LPH 1 .1 1 .1 4.4 1 .8 GUNSTEEL LPR 3.6 2.3 11.8 3.2 38 TOTALS: 40 m.y.(approx.) 307 m Footnotes 1-7 are on next page. PAGE 8 1 Footnotes to Table 8. 1. L i t h o l o g i c a b b r e v i a t i o n s are i n Figure 6. 2. D i l u t i o n of p e l i t i c f r a c t i o n = (W ) / (W x pPC) AL/PH AL/PC where: W and W are the weight percent A l 0 (or Zr) i n u n i t UPH and a given h y b r i d l i t h o l o g y r e s p e c t i v e l y AL/PH AL/PC 2 3 (Tables 1 and 2), and pPC i s the p f r a c t i o n f o r the a p p r o p r i a t e h y b r i d l i t h o l o g y (Table 5). 3. The r a t e of sedimentation (post-compaction sense) i s assumed to be 4 mm per 1000 years f o r u n i t UPH. For other rock u n i t s , r a t e s are c a l c u l a t e d from the averages of the c a l c u l a t e d A l 0 - and Zr-based d i l u t i o n f a c t o r s i n 2. 2 3 4. Minimum time of accumulation i s c a l c u l a t e d by d i v i d i n g the s t r a t i g r a p h i c t h i c k n e s s f o r a rock u n i t by i t s c a l c u l a t e d r a t e of sedimentation. 5. S t r a t i g r a p h i c t h icknesses are the average thicknesses for the rock u n i t s i n the study s e c t i o n . 6. PC* i s a Poker Chip shale u n i t found below the "ore" zone. 7. The p f r a c t i o n f o r u n i t LP2 i s s t a t i s t i c a l l y not r e l i a b l e (Appendix 7, s e c t i o n A.7.1, par t 4); thus data f o r u n i t LP2 i n t h i s t a b l e i s a l s o q u e s t i o n a b l e . PAGE 82 Gunsteel units are largely d i s t a l t u r b i d i t e s with a reworked rather than a pelagic, p e l i t i c (p) f r a c t i o n (Appendix 7, section A.7.2, part 2). 2. Rates are determined in a post-compaction sense, i . e . they represent the present stratigraphic thickness of rock which i s equivalent to the thickness of the same u n l i t h i f i e d material deposited over a period of 1000 years. Actual rates of sedimentation can be estimated from comparison with other studies. Jefferson et a l . (1983) suggest an average sedimentation rate, after compaction, of 0.5 mm to 4 mm per 1000 years for lower portions of the Earn Group in the v i c i n i t y of the Cirque deposit. This rate i s based on the variable thickness of Earn Group strata between dated f o s s i l s at the top of the S i l u r i a n s i l t s t o n e and an Upper Devonian (Frasnian) ammonoid found in the lower barite horizon (Fig. 6: unit LBA). Due to the unconformity at the base of the Earn Group, this i s a minimum sedimentation rate. Sandberg and Gutschick (1979) report sedimentation rates, after compaction of 8.9 mm to 11.5 mm per 1000 years for Devono-Mississippian starved basin phosphatic shales and cherts in Utah, U.S.A.; these sediments represent greater biogenic a c t i v i t y as indicated by r e l a t i v e l y abundant f o s s i l remains and therefore probably greater sedimentation rates than those for background p e l i t i c sedimentation (unit UPH) at the Page 8 3 Cirque deposit. Based on comparisons with the above, a rate of 4 mm per 1000 years was assumed for the background shale (unit UPH) sedimentation at the Cirque deposit and the approximate minimum rates of sedimentation for the Gunsteel units were calculated from the r e l a t i v e rates determined above (Table 8 ) . At these calculated rates the entire Earn Group of the study area t o t a l l i n g 307 m, would have accumulated in about 40 m i l l i o n years at an average post-compaction sedimentation rate of 7.5 mm per 1000 years. The calculated rates (Table 8 ) also demonstrate that not only was the deposition of the "ore" rapid (much greater than 40 mm per 1000 years) but deposition of the entire Gunsteel member was also r e l a t i v e l y rapid (greater than 13 mm per 1000 years) as i t overprinted the slow Akie shale sedimentation (4 mm per 1000 years). The Akie member comprises 45% of the stratigraphic thickness of the Earn Group shales in the study area, but i t represents at least 75% of the duration of shale sedimentation (Table 8 ) . Page 84 4.3 LITHOGEOCHEMICAL TRENDS IN THE "ORE" ZONE Location of exhalative vent s i t e s associated with the Cirque deposit are indicated through several lines of evidence. Pb:Zn ra t i o s , often used in the study of stratiform sulphide deposits to indicate proximity to source areas for metalliferous brines (Large, 1983), broadly increase eastwardly across the Cirque deposit (Fig. 9). Pigage (in press) c i t e s Pb:Zn rat i o s and the d i s t r i b u t i o n of P y r i t i c (SB) and B a r i t i c (BS) facies in the deposit to suggest source vents were located in the northern part of the deposit. Also c i t e d by Pigage (ibid) are Pb+Zn and Ag values for the deposit. A l l the above data are consistent with source vents located along the northeastern side of the deposit (Fig. 9). A northeasterly source vent was also indicated by f i e l d evidence. The main surface showing i s a 150 m by 30 m barite talus slope (Figs. 4 and 9; Plate 1). The barite i s t y p i c a l l y massive to brecciated and vuggy with up to two percent pyrobitumen and black shale fragments, and contains low grade Pb+Zn mineralization. Some of the talus resembles the coarsely c r y s t a l l i n e and l o c a l l y clear barite found in veins which l o c a l l y cut the deposit. The abundance of veining, breccias and Page 85 F I G U R E 9 . P b : Z n r a t i o s b y w e i g h t i n t h e C i r q u e d e p o s i t ( a f t e r P i g a g e , i n p r e s s ) . D o t s i n d i c a t e l o c a t i o n o f d a t a p o i n t s . C o n t o u r s d e l i n e a t e P b : Z n r a t i o s w h i c h s h o w a g e n e r a l e a s t w a r d l y i n c r e a s e . S i l v e r v a l u e s , P b + Z n v a l u e s , P b : Z n r a t i o t r e n d s , B a : S r r a t i o t r e n d s , d i s t r i b u t i o n o f p y r i t i c ( S B ) f a c i e s a n d o t h e r g e o l o g i c a l d a t a , c o l l e c t i v e l y i n d i c a t e e x h a l a t i v e v e n t s i t e s w e r e l o c a t e d a l o n g t h e n o r t h e a s t e r n s i d e o f t h e d e p o s i t . P a g e 86 FIGURE 9. Page 8? pyrobitumen (cf. Simoneit, i s an erosional remnant of within a vent zone. 1985) suggests mineralization that the b a r i t i c talus deposited near and/or Ba:Sr r a t i o trends also r e f l e c t the position of these source vents. The d i v i s i o n of the "ore" zone into seven lodes (Figs. 10 and 11: Lodes I to VII) i s based on c o r r e l a t i o n of shale interbeds within the P y r i t i c (SB) and B a r i t i c (BS) facies (Appendix 1: F i g . A.1-1). Carbonates which may contribute Sr to the Ba:Sr r a t i o are generally minor i n these f a c i e s . Thus, e s s e n t i a l l y a l l Ba and Sr i s presumed to occur in barite . Ba:Sr rat i o s (Fig. 11) mimic Pb:Zn rat i o s (Fig. 10) across the study section and both suggest one and possibly two source vents. Through most of the period of Ba-Zn-Pb deposition a source vent near the northeastern end of the study section i s indicated (Fig. 9). However, during deposition of the top of lode I I I , a source near the southwestern end of the study section i s indicated. (Lode IV shows c o n f l i c t i n g Ba:Sr and Pb:Zn trends which may r e f l e c t remobilized sulphides in d r i l l h o l e "9-C-23 where the zone i s t e c t o n i c a l l y brecciated.) The factors responsible for Ba:Sr r a t i o trends i n the Cirque deposit are not known. Ba:Sr ratios in barite can be influenced by temperature of barite c r y s t a l l i z a t i o n , the a c t i v i t y of anionic species such as c h l o r i t e and carbonate (Goodfellow et al.,1980), Page 38 F I G U R E 1 0 . P b : Z n r a t i o t r e n d s i n t h e s t u d y s e c t i o n . L i t h o l o g i c s y m b o l s a r e e x p l a i n e d i n F i g u r e 6. " O r e " z o n e d e p o s i t i o n a l l o d e s a r e n o t e d w i t h R o m a n n u m e r a l s . A r a b i c n u m b e r s i n d i c a t e m e a n P b : Z n r a t i o s f o r e a c h " o r e " l o d e . A r r o w s i n d i c a t e d i r e c t i o n o f d e c r e a s i n g P b : Z n r a t i o s . T h e s e r a t i o s i n m o s t " o r e " l o d e s d e c r e a s e w i t h d i s t a n c e a w a y f r o m p r o p o s e d e x h a l a t i v e v e n t s i t e s n e a r t h e n o r t h e a s t e r n e n d o f t h e s t u d y s e c t i o n ( F i g . 9 ) . P a g e 8 9 F I G U R E 1 1 . B a : S r r a t i o t r e n d s i n t h e s t u d y s e c t i o n . L i t h o l o g i c s y m b o l s a r e e x p l a i n e d i n F i g u r e 6 . " O r e " z o n e d e p o s i t i o n a l l o d e s a r e n o t e d w i t h R o m a n n u m e r a l s . A r a b i c n u m b e r s i n d i c a t e m e a n B a : S r r a t i o s f o r e a c h " o r e " l o d e . A r r o w s i n d i c a t e d i r e c t i o n o f d e c r e a s i n g B a : S r r a t i o s . T h e s e r a t i o t r e n d s m i m i c P b : Z n r a t i o t r e n d s ( F i g . 1 0 ) ; b o t h r a t i o s d e c r e a s e w i t h d i s t a n c e a w a y f r o m p r o p o s e d e x h a l a t i v e v e n t s i t e s n e a r t h e n o r t h e a s t e r n e n d o f t h e s t u d y s e c t i o n ( F i g . 9 ) . P a g e 91 and the a c t i v i t y of Ba and Sr. Temperature of barite c r y s t a l l i z a t i o n i s c i t e d as the major control on these Ba:Sr rati o s ( i b i d ) ; the s o l u b i l i t y of Ba increases and the s o l u b i l i t y o of Sr decreases with increasing temperatures up to 100 C (Barnes, 1979, p.494-496). Therefore barite with high Ba:Sr r a t i o s i s predicted to p r e c i p i t a t e from low temperature brines and barite with low Ba:Sr r a t i o s i s predicted to p r e c i p i t a t e from higher temperature brines. As temperature of an exhaled brine decreases with distance from i t s source vent, Ba:Sr rat i o s i n barite p r e c i p i t a t i n g from the brine should, t h e o r e t i c a l l y , increase. The opposite trend i s evident in the Cirque deposit (Fig. 11) indicating that temperature i s not a s i g n i f i c a n t factor c o n t r o l l i n g Ba:Sr rat i o s in the "ore" zone. An explanation for the Ba:Sr r a t i o trends persent in the Cirque deposit i s not readily apparent. Ba:Sr r a t i o values vary over a wide range across the study section. However, P y r i t i c (SB) beds adjacent to B a r i t i c (BS) beds in i n d i v i d u a l d r i l l h o l e s do not show sudden changes in these r a t i o s . This continuity of values indicates that barite p r e c i p i t a t i o n was independent of the amount of sulphide that was being deposited. The proportion of barite also increases away from the northern end of the deposit (Pigage, in press) where the proposed exhalite vents are located (Fig. 9). Thus Ba probably Page 93 had a longer residence time i n the seawater column after exhalation than did the other "ore" components. These observations are consistent with a genetic model whereby sulphides were preci p i t a t e d below a chemocline boundary i n the seawater column, and barite was precipitated at or above the boundary (section 5.2.3). Page 94 5. DEPOSITIONAL ENVIRONMENTS OF THE CIRQUE STRATA Earn Group sedimentation i n the study section comprised background pelagic shale sedimentation overprinted by influxes of tu r b i d i t e s , hydrothermal a c t i v i t y and biol o g i c a c t i v i t y . In order to delineate the physical and chemical influences any one of these processes had on the Cirque str a t a , an understanding of how a l l these processes co-evolved i s important. Geological and lithogeochemical evidence described above, i s drawn on in this section to outline conditions which accompanied the co-development of the exhalites and their host rocks. 5.1 SEDIMENTATION IN THE CIRQUE AREA 5.1.1 Conditions Accompanying Background Akie Shale Sedimentation The very fine grained nature and planar p a r a l l e l laminations of Akie shales (units UPH and LPH) indicate they were slowly deposited as pelagic sediments in quiescent, probably anoxic, water (section 5.1.3). These units contain 19.9% and 18.6% Al 0 2 3 respectively (Table 1), in comparison with the 13.2% Al 0 median 2 3 of medians for black shales generally (Vine and Tourtelot, 1970) and the average of 15.1% Al O for a l l shales (Turekian and 2 3 Page 9 5 Wedepohl, 1961). This indicates that non-pelagic contaminants are minimal in the Akie member. 5.1.2 Sedimentation Rates The "ore" facies were deposited rapidly (much greater than 40 mm per 1000 years) and in pulses during Gunsteel time as indicated by the general lack of d e t r i t a l contaminants. Gunsteel strata were, in turn, deposited rapidly (greater than 13 mm per 1000 years) r e l a t i v e to the background Akie pelagic sedimentation (estimated at 4 mm per 1000 years) as indicated by the lower (diluted) amounts of alumina and zirconium they bear (section 4.2; Table 8). (Sedimentation rates are given i n a post compaction-sense.) 5.1.3 Evidence for Anoxic Bottom Waters Anoxic water, by d e f i n i t i o n , contains less than 0.5 ml/1 dissolved oxygen, the approximate threshold below which the a c t i v i t y of most benthic organisms becomes s i g n i f i c a n t l y depressed (Demaison and Moore, 1980). Anoxic conditions in basinal sedimentary rocks are indicated by organic carbon contents Page 9 6 generally greater than 3% but occasionally as low as 1 % ( i b i d ) . Lack of shelly fauna, lack of bioturbation and the presence of laminated sediments (Byers, 1977) are in d i c a t i v e of bottom waters which are anoxic. A l l these c r i t e r i a apply, for the most part, to Gunsteel l i t h o l o g i e s . Akie strata (units UPH and LPH) also probably accumulated under anoxic conditions; they contain 1.1% and 1.4% organic carbon respectively (Table 1), lack shelly fauna, lack signs of bioturbation, and are t y p i c a l l y well laminated. 5.1.4 S t r a t i f i c a t i o n of the Water Column r Lack of bioturbation indicates benthic organisms were generally absent i n Gunsteel and Akie st r a t a . Benthic organisms are t y p i c a l l y able to tolerate oxygen-deficient waters better than most other organisms (Thiede and van Andel, 1977). I t i s improbable that an anoxic water column in the Cirque area would have supported the r e l a t i v e l y abundant r a d i o l a r i a and carbon-rich organisms that populated much of the Kechika Trough during deposition of the Gunsteel member. Therefore, the seawater column must have been s t r a t i f i e d - - a n o x i c water below a chemocline boundary and a r e l a t i v e l y oxygenated layer of water above. In this scenario, organisms not only thrived in the oxygenated water but oxic degradation and recycling of dead organic matter by Page 9 7 l i v i n g organisms was s i g n i f i c a n t l y depressed or prevented once i t se t t l e d below the chemocline (Degens and Mopper, 1976). If s i l i c a was introduced by an exhalative vent below the chemocline boundary, i t i s expected radiolarians were most active above the boundary and u t i l i z e d s i l i c a d i f f u s i n g from below (cf. G o l l , 1969). The height of the chemocline above the sediment-seawater interface i s uncertain. Deposition of widespread euxinic shales over a stratigraphic thickness of 300 m with no apparent oxidized horizons, however, suggests that the chemocline boundary must have continually been located at a s i g n i f i c a n t height above the seafloor. 5.1.5 Water Depth The undisturbed planar bedding of most Earn Group shales indicates that they were deposited below wave base which i s normally ten metres (Bates and Jackson, 1980). Other c r i t e r i a i n d i c a t i v e of water depth (Benedict and Walker, 1978) are lacking. Page 9 8 5.1.6 Origin of Gunsteel Strata Gunsteel member shales are hybrid l i t h o l o g i e s . Different units incorporate, to varying degrees, the products of background pelagic sedimentation, t u r b i d i t e sedimentation, hydrothermal exhalative a c t i v i t y and bio l o g i c a c t i v i t y (Tables 5 and 7). The r e l a t i v e influences of pelagic and t u r b i d i t i c sedimentation were chemically gauged by reference to the inherently d e t r i t a l components, Al 0 and Zr (section 4.1; Table 5). The influences 2 3 of hydrothermal and bio l o g i c a c t i v i t y are very strong i n Gunsteel str a t a . However, recognition of the chemical imprints these processes l e f t in the rocks i s often d i f f i c u l t . 5.1.6.1 Excess "Ore" Components Excess abundances of "ore" components (Ba, Fe, Pb, Zn, Ag, Cr, Cu and S) have been introduced to the Gunsteel strata through hydrothermal a c t i v i t y (section 4.1.5.2). Deposition of these components as sulphides and barite in the "ore" zone and units UBA and LBA (Fig. 6) was through inorganic p r e c i p i t a t i o n from exhalative brines, i . e . as chemical sediments (section 5.2.3). Excess "ore" component abundances of Ba, Fe, Pb, Zn and S in shales (Table 7) were also probably, in large part, the product of Page 99 continued inorganic p r e c i p i t a t i o n beyond the l i m i t s of the main exhalite lenses. Organics may have played a lesser role in deposition of "ore" components i n shales. Scavenging and concentration of chemical components by carbon-rich organics (Saxby, 1969; Ferguson and Bubela, 1974; Beveridge and Fyfe, 1985) and biogenic s i l i c a (Hurd, 1973; Goldberg, 1965) before and after deposition of host sediments, i s well documented. Carbon-rich (section 5.1.7) and s i l i c a - r i c h (section 5.1.6.2) organic matter occurred in moderate concentrations in the Gunsteel seawater column and i n high concentrations in bottom sediments (Table 1). These organics probably scavenged and deposited a portion of the "ore" components found in Gunsteel s t r a t a . 5.1.6.2 Excess Non-"ore" Components Many other excess components in the shales which do not constitute a s i g n i f i c a n t portion of the "ore" zone were also probably derived from exhaled hydrothermal brines. Most notable among these are phosphate and s i l i c a . Phosphate i s normally associated with the organic f r a c t i o n of black shales (Burnett and Sheldon, 1979; Heckel, 1977). However, Page 100 l o c a l high concentrations of phosphorus in the Selwyn Basin and Kechika Trough (Fig. 1) may have been exhaled from hydrothermal vents (Goodfellow et al.,1980; Goodfellow, 1985) and then deposited through b i o l o g i c a c t i v i t y (Lydon and Sangster, 1984). S i l i c a enrichment i n Gunsteel strata may be the product of similar processes. Although hydrothermal cherts have not been observed i n the "ore" zone, excess s i l i c a found in Gunsteel strata was probably derived from exhaled hydrothermal brines. The s i l i c a content of these low temperature hydrothermal solutions (Barnes, 1979, F i g . 9.6) was probably far greater than the 1-2 p.p.m. s i l i c a found i n normal seawater (Krauskopf, 1967, p.169). The widespread occurrence of s i l i c e o u s Gunsteel strata (Maclntyre, 1980a) may alternately be explained by b i o l o g i c a l deposition from ocean upwelling currents (Berger, 1970). However, paleogeographic reconstructions described by Maclntyre (1983) indicate a s i g n i f i c a n t barrier which shed t u r b i d i t e s into the Cirque area (section 2.2.2.3), separated the Kechika Trough (Fig. 1) from the ocean. Presumably this b a r r i e r prevented incursions by ocean upwelling currents. Deposition of excess s i l i c a may have been p a r t i a l l y inorganic. S i l i c a d i f f u s i n g away from s i t e s of exhalative a c t i v i t y may have precipitated slowly and inorganically over a large area. However, Page 101 s e v e r a l o b s e r v a t i o n s s u g g e s t b i o l o g i c a c t i v i t y p l a y e d a d o m i n a n t r o l e i n t h e d e p o s i t i o n o f e x c e s s s i l i c a : 1 . T h e p r e s e n c e o f r a d i o l a r i a n s . R a d i o l a r i a n s t y p i c a l l y f o r m l e s s t h a n o n e p e r c e n t o f t h e G u n s t e e l p o r c e l l a n i t e s . T h i s i s c o m p a r a b l e w i t h b i o g e n i c c h e r t s d e s c r i b e d e l s e w h e r e w h i c h c o m m o n l y c o n t a i n o n l y s p a r s e r e m a i n s o f s i l i c e o u s f o s s i l s ; u s u a l l y a l l b u t t h e m o s t c o r r o s i o n - r e s i s t a n t s i l i c a t e s t s a r e d i s s o l v e d d u r i n g d i a g e n e s i s ( W i s e a n d W e a v e r , 1 9 7 4 ) . F u r t h e r m o r e , t h e r a t e o f s i l i c a d i s s o l u t i o n d u r i n g d i a g e n e s i s i s h i g h e s t i n a r e a s w i t h s l o w s e d i m e n t a t i o n r a t e s ( V o n R a d a n d R o s c h , 1 9 7 4 ) s u c h a s t h o s e d e t e r m i n e d f o r G u n s t e e l s t r a t a ( T a b l e 8 ) w h i c h a r e t y p i c a l o f s t a r v e d b a s i n s e d i m e n t a t i o n ( S a n d b e r g a n d G u t s c h i c k , 1 9 7 9 ) . 2 . G u n s t e e l p o r c e l l a n i t e s ( u n i t s UP1 a n d L P 1 ) h a v e a s t r o n g p h y s i c a l r e s e m b l a n c e t o M e s o z o i c b i o g e n i c c h e r t s d e s c r i b e d i n C a l i f o r n i a ( W i n t e r e r , 1 9 7 9 ; P a s s a g n o , 1 9 7 3 ) . 3 . R a d i o l a r i a n s t h r i v e w h e r e p r o v i d e d w i t h b o t h a b u n d a n t s i l i c a f o r f r a m e b u i l d i n g a n d a b u n d a n t n u t r i e n t s s u c h a s p h o s p h o r u s f o r n o u r i s h m e n t ( A n d e r s o n , 1 9 8 3 ) . S i l i c a a n d p h o s p h o r u s w e r e p r o b a b l y s u p p l i e d t o t h e s e a w a t e r c o l u m n b y e x h a l a t i v e a c t i v i t y d u r i n g G u n s t e e l t i m e . H i g h e x c e s s ( o r g a n i c ) c a r b o n i n m o s t G u n s t e e l u n i t s ( T a b l e 7 ) i n d i c a t e s o t h e r n u t r i e n t s w e r e a l s o a v a i l a b l e . T h u s c o n d i t i o n s c r e a t e d b y t h e e x h a l a t i v e a c t i v i t y f a v o u r e d i n c r e a s e d r a d i o l a r i a n p r o d u c t i v i t y . P a g e 1 0 2 4. Radiolarian-rich sediments are known to be closely associated with some submarine exhalite deposits (Goll, 1969; Crerar et al.,1 982 ) and may be present but not recognized near many more (Wise and Weaver, 1974). 5. Some s i l i c a may also have been precipitated as a byproduct of b a c t e r i a l sulphate reduction (Birbaum and Wireman, 1985) both above and below the sediment-seawater interface. 5.1.7 Organic A c t i v i t y High excess s i l i c a i n the Gunsteel strata (Table 7) i s of hydrothermal o r i g i n but deposition of t h i s s i l i c a was probably, in large part, a product of bi o l o g i c (radiolarian) a c t i v i t y (section 5.1.6.2). Large enrichments of carbon (Table 7) (which i s mainly organic carbon in a l l shales of the study section; Table 1) may be due to: (a) an increase in organic productivity (Potter et a l . , 1980, p.55-57; Demaison and Moore, 1980) associated with hydrothermal a c i v i t y (Lydon and Sangster,1984; Spiess et a l . , 1980), or, (b) enhanced preservation of organic matter by increasingly anoxic bottom waters (Potter et a l . , 1980, p.55-57) and/or by increased rates of sedimentation (Table 8; Johnson Ibach, 1982). Page 1 0 3 5.1.8 Large-scale Hydrothermal Effects The o v e r a l l e f f e c t of "ore"-related processes on sedimentation in the Cirque area was dramatic. The mineral deposits consistently occur i n the Gunsteel member indicating there was a genetic connection between the two. However, the relationship between mineralization and Gunsteel sedmentation in the Cirque area, i s most evident in the symmetrical d i s t r i b u t i o n of l i t h o l o g i e s centered about the "ore" zone (Figs. 5 and 6): UPH ( p h y l l i t i c shale) UP1 + UBA (porcellanite + b a r i t i c exhalite) PC (Poker Chip shale) "Ore" + UPR (pregnant shale) PC (Poker Chip shale) LP1 + LBA (porcellanite + b a r i t i c exhalite) LPH ( p h y l l i t i c shale) Non-sulphidic b a r i t i c exhalites (units UBA and LBA) occur both above and below the "ore" zone. Shale sedimentation rates (Table 8) and organic a c t i v i t y (indicated by high excess s i l i c a (section 5.1.6.2) and perhaps (organic) carbon (section 5.1.7)) peaked at the f i r s t and l a s t signs of exhalative a c t i v i t y in this cycle ( i . e . at units UBA and LBA). Turbidite sedimentation began Page 104 p r i o r to "ore" deposition and continued long afterwards; i t i s esp e c i a l l y evident i n the Poker Chip shales (unit PC) which also occur on both sides of the "ore" zone. Thus stratigraphy in the Cirque area i s predominantly a r e f l e c t i o n of "ore"-related processes. These processes include influxes of t u r b i d i t e s and biologic a c t i v i t y as well as hydrothermal a c t i v i t y . The symmetrical d i s t r i b u t i o n of strata about the "ore" zone may indicate a waxing and waning of these processes. 5.2 "ORE" DEPOSITION 5.2.1 Duration of Exhalative A c t i v i t y Three d i s t i n c t exhalite horizons occur in the Gunsteel member (Fig. 5: LBA, "Ore" and UBA). They c o l l e c t i v e l y indicate that hydrothermal a c t i v i t y began soon after deposition of Gunsteel strata began and ended with deposition of the l a s t Gunsteel l i t h o l o g i e s in the study area. Enrichment of "ore" components in a l l Gunsteel l i t h o l o g i e s (Table 7) indicates "ore" solutions may have been exhaling throughout Gunsteel time although possibly at some distance from the study area. Unit LPH (Fig. 5) presumably represents a pause during which l i t t l e or no exhalative a c t i v i t y occurred. Page 105 5.2.2 Character of "Ore" Solutions The general s c a r c i t y of sulphide veins and breccias i n the footwall of the deposit may indicate that the "ore" solutions did not b o i l prior to exhalation (Finlow-Bates and Large, 1978). The lack of s i g n i f i c a n t copper i n the "ore" zone (Table 2) indicates o solution temperatures were probably less than 200 C (Lydon, 1983, p.222 ) . 5.2.3 Character of "Ore" Deposition Lithogeochemical and f i e l d data are consistent with the exhalation of ore solutions into an anoxic seawater basin. The Ba, Zn and Pb were exhaled as chloride complexes (Large, 1983). Sulphide may have been carried i n part by the "ore" solutions (Lydon, 1983) and in part derived from the seawater column as a product of b a c t e r i a l sulphate reduction (Trudinger et a l . , 1985). P r e c i p i t a t i o n of sulphide minerals proceeded mainly as a function of decreasing temperature as r e l a t i v e l y hot "ore" solutions interacted with cold seawater (Franklin et a l . , 1981). Barium, among a l l the major cations found in the "ore" zone, had the longest residence time in the seawater column after exhalation Page 106 (section 4.3). P r e c i p i t a t i o n of barite proceeded mainly as a function of sulphate a v a i l a b i l i t y . If any sulphate was available in the seawater column below the chemocline ( c f . Richards, 1965, Table 3), i t most l i k e l y p r e c i p i t a t e d as barite after mixing with the exhaled hydrothermal brines. Most barium, however, either diffused to, or was carried in an exhalative plume above (Sato, 1972), the chemocline boundary. There, upon encountering sulphate in the oxic seawater above the boundary, the barium and sulphate precipitated as barite (Lydon et. a l . , 1985; Goodfellow, 1 985; C.I. Godwin, pers. comm., 1980; Gates and Caraway, 1967). The reactions described above resulted in lithogeochemical zoning patterns in the "ore" zone. Ba:Sr r a t i o s , Pb:Zn r a t i o s , s i l v e r values and sulphide abundance, a l l decrease and the proportion of barite increases with distance from vent s i t e s along the northeastern side of the deposit (section 4.3; F i g . 9). Deposition of the "ore" zone and Gunsteel strata was accompanied by tectonic a c t i v i t y as indicated by the d i s t r i b u t i o n of t u r b i d i t e s . Six of the eighteen t u r b i d i t e samples (unit MS) taken in the study area are d i r e c t l y associated with the "ore" zone. A l l but one of the remaining t u r b i d i t e samples came from the Gunsteel member which also hosts the multitude of small tubidite beds included in the Poker Chip shale (unit PC). Thus exhalation of "ore" solutions probably occurred along active Page 107 synsedimentary f a u l t s (Large, 1983) and proceeded in seismically-induced pulses (Sibson et a l . , 1975) of various scales (cf. Sato, 1972). These pulses produced the seven lodes of the "ore" zone (Figs. 10 and 11). Fine sulphide bands of variable composition are interlaminated with shale over thicknesses of up to 20 cm at the base of the deposit; these bands may have also been deposited from i n i t i a l pulses of exhalative a c t i v i t y or they may have precipitated along bedding planes during diagenesis (Gustafson and Williams, 1981, p.159-160). 5.2.4 Non-sulphidic B a r i t i c Horizons Barite-carbonate horizons UBA and LBA (Figs. 5 and 6) occur above and below the "ore" zone respectively. The stratiform nature of the massive zones and the lack of v i s i b l e contamination by d e t r i t a l sediments over thicknesses up to three metres indicate they are exhalites. The euxinic porcellanites which enclose the barite-carbonate zones indicate these zones were deposited under an anoxic water column. Thus the lack of sulphides may r e f l e c t a lack of metals i n the exhaled solutions (Lydon et a l . , 1985). Similar barren barite horizons are commonly associated with barite-sulphide deposits elsewhere (Dawson and Orchard, 1982; Large, 1983). Page 108 Nodular barite-white carbonate zones extend l a t e r a l l y beyond the "ore" zone and stratiform b a r i t i c exhalite horizons UBA and LBA (Plate 9). These nodular zones may also be thin b a r i t i c exhalites which sunk into soft underlying muds and formed horizons of nodule-like ball-and-pillow structures (W.C. Barnes, University of B r i t i s h Columbia, o r a l comm., 1986; PettiJohn et a l . , 1973). Alternately, these nodules may be concretions formed during diagenesis of these barium-rich sediments (Potter et a l . , 1980, p.36-37). Page 109 6. CONCLUSIONS E a r n G r o u p s e d i m e n t a t i o n i n t h e v i c i n i t y o f t h e C i r q u e d e p o s i t w a s i n f l u e n c e d b y s e v e r a l f a c t o r s , o n e o f w h i c h w a s t h e h y d r o t h e r m a l a c t i v i t y t h a t p r o d u c e d t h e e x h a l i t e h o r i z o n s . R a w b u l k l i t h o g e o c h e m i c a l d a t a f r o m a s e c t i o n o f d r i l l h o l e s a c r o s s t h e C i r q u e d e p o s i t f a i l e d t o d e l i n e a t e t h e e x t e n t o f h y d r o t h e r m a l o v e r p r i n t i n g o n t h e h o s t r o c k s . H o w e v e r , w h e n t h e d a t a w e r e s t a n d a r d i z e d b y r a t i o i n g t h e m t o t h e i m m o b i l e d e t r i t a l c o m p o n e n t s , a l u m i n a a n d z i r c o n i u m , m u c h o f t h e s t r a t a w a s f o u n d t o b e a n o m a l o u s i n m a n y c o m p o n e n t s , s o m e o f w h i c h a r e e m p i r i c a l l y r e l a t e d t o " o r e " ( B a , Z n , P b , A g , F e , C u , C r , S + M n O ) . T h e l a t e r a l e x t e n t o f t h e s e h y d r o t h e r m a l a n o m a l i e s h a s n o t b e e n d e t e r m i n e d b u t t h e y m a y d e f i n e l a r g e m u l t i - e l e m e n t e x p l o r a t i o n t a r g e t s s p a n n i n g s e v e r a l s t r a t i g r a p h i c h o r i z o n s . T h e s t a n d a r d i z a t i o n p r o c e d u r e u s e d i n t h i s s t u d y e f f e c t i v e l y l o w e r e d t h e " d e t e c t i o n l i m i t " f o r a n o m a l o u s c o m p o n e n t s i n t h e h o s t r o c k s . I n t h e p r o c e s s , p r o v e n a n c e o f h y b r i d l i t h o l o g i e s w a s e s t i m a t e d . R e l a t i v e s e d i m e n t a t i o n r a t e s w e r e a l s o d e t e r m i n e d . T h e p r o c e d u r e i s b a s e d m a i n l y o n g e o c h e m i c a l r e a s o n i n g a n d m a y b e u s e d a s l o n g a s b a c k g r o u n d p o p u l a t i o n s c a n b e m o d e l l e d . T h e e r r o r s a s s o c i a t e d w i t h i n t e r p r e t a t i o n s i n t h i s s t u d y c o u l d b e m i n i m i z e d i f l a r g e r d a t a s e t s w e r e a v a i l a b l e . P a g e 1 1 0 G e o c h e m i c a l t r e n d s a r e e v i d e n t w i t h i n t h e " o r e " z o n e . B a : S r r a t i o t r e n d s m i m i c P b : Z n r a t i o t r e n d s a n d m a y b e u s e f u l i n t h e s t u d y a n d e x p l o r a t i o n o f o t h e r s t r a t i f o r m b a r i t e d e p o s i t s . T h e y d e l i n e a t e z o n i n g p a t t e r n s w h i c h m a y a c t a s a g u i d e t o e x h a l a t i v e v e n t a r e a s w h i c h m a y b e o f e c o n o m i c i n t e r e s t . T h e d e v e l o p m e n t o f t h e C i r q u e s t r a t a a n d i t s " o r e " d e p o s i t s i s t h e r e s u l t o f a c o m p l e x i n t e r p l a y o f v a r i a b l e s . I n t e g r a t i n g f i e l d o b s e r v a t i o n s w i t h r e s u l t s f r o m t h e l i t h o g e o c h e m i c a l s t u d y p r o d u c e d a b e t t e r u n d e r s t a n d i n g o f t h e p h y s i c a l a n d c h e m i c a l d e v e l o p m e n t o f t h e C i r q u e s e d i m e n t s a n d t h e i r e n v i r o n m e n t s o f d e p o s i t i o n . T h e r e s u l t s d e m o n s t r a t e d t h a t C i r q u e s t r a t a w e r e d r a m a t i c a l l y a f f e c t e d b y p r o c e s s e s d i r e c t l y o r i n d i r e c t l y r e l a t e d t o h y d r o t h e r m a l a c t i v i t y . T h e s e " o r e " - r e l a t e d p r o c e s s e s i n c l u d e d e x h a l a t i v e a c t i v i t y , i n f l u x e s o f t u r b i d i t e s a n d b i o l o g i c a c t i v i t y . T h e e f f e c t s w e r e e s p e c i a l l y p r o n o u n c e d b e c a u s e t h e y w e r e i m p o s e d o n t h e q u i e s c e n t e n v i r o n m e n t o f a s t a r v e d b a s i n . T h e s e p h e n o m e n a d o m i n a t e d t h e p h y s i c a l a n d c h e m i c a l a s p e c t s o f E a r n G r o u p s e d i m e n t a t i o n i n t h e s t u d y s e c t i o n a n d a r e a s b e y o n d i t . A d e t a i l e d u n d e r s t a n d i n g o f s p a t i a l l y w i d e - r a n g i n g e f f e c t s t h a t w e r e a s s o c i a t e d w i t h t h e h y d r o t h e r m a l a c t i v i t y i s i m p o r t a n t t o t h e s e a r c h f o r n e w d e p o s i t s a n d u n d e r l i n e s t h e v a l u e o f s t u d y i n g g e o l o g i c a l s y s t e m s b e y o n d t h e l i m i t s o f a n " p r e " z o n e . P a g e H I REFERENCES Abbey, S., 1980, Studies i n "standard samples" for use in the general analysis of s i l i c a t e rocks and minerals - part 6 : 1979 edi t i o n of "usable" values: Geol. Surv. Canada, Paper 80-14. Anderson, O.R., 1983, Radiolaria: Springer-Verlag, 355p. Barnes, L.B., editor, 1979, Geochemistry of hydrothermal ore deposits: Second Ed., J . Wiley and Sons, 798p. Bates, R.L. and Jackson, J.A., 1980, Glossary of Geology: Amer. Geol. Inst, second ed., 751p. Benedict I I I , G.L., and Walker, K.R., 1978, Paleobathymetric analysis i n Paleozoic sequences and geodynamic signi f i c a n c e : Am. J. S c i . , v.278, p.579-607. Berger, W.H., 1970, Biogenous deep-sea sediments: fra c t i o n a t i o n by deep sea c i r c u l a t i o n : Geol. Soc. America B u l l . , v.81, p. 1 385-1 402. Beveridge, T.J., and Fyfe, W.S., 1985, Metal f i x a t i o n by b a c t e r i a l c e l l walls: Can. J . Earth S c i . , V.22. p.1893-1898. Page 112 Birnbaum, S.J., and Wireman, J.W., 1985, Sulfate-reducing bacteria and s i l i c a s o l u b i l i t y : a possible mechanism for evaporite diagenesis and s i l i c a p r e c i p i t a t i o n i n banded iron formations: Can. J . Earth S c i . , v.22, p.1904-1909. Bischoff, J.L., Heath, G.R., and Leinen, M., 1979, Geochemistry of deep-sea sediments from the P a c i f i c manganese nodule province : DOMES s i t e s A, B, and C , i n Bischoff, J.L., and Piper, D.Z.,eds., Marine Geology and Oceanography of the P a c i f i c Manganese Province, Plenum Press, p.397-436. Black, C.A., 1965, Methods of s o i l analysis - part 2: Amer. Soc. Agronomy, 1 5 7 2 p. Bla t t , H., and Sutherland, B., 1969, I n t r a s t i t i a l solution of nonopaque heavy minerals in shales: Jour. Sed. Pe t r o l . , v.39, p. 591 -600 . Brown, G.C., Hughes, D.J., and Esson, J., 1973, New X.R.F. data r e t r i e v a l techniques and their application to U.S.G.S. standard rocks: Chem. Geology, v.11, p.223-229. Page 1 1 3 Burnett, W.C., and Sheldon, R.P., 1979, Report on the marine phosphatic sediments workshop: Center for Cultural and Technical Interchange between East and West, pub., Univ. Hawaii. Butler, J.C., 1978, Visual bias in R-mode dendograms due to the eff e c t of closure: Math. Geology, v.10, p.243-252. Butler, J.C., 1981, Effe c t of various transformations on the analysis of percentage data: Math. Geology, v.13, p.53-68. Byers, C.W., 1977, Biofacies patterns in euxinic basins : a general model: Soc. Econ. Paleon. Mineral., Spec. Pub. No. 25, p.5-17. Cecile, M.P., and Norford, B.S., 1979, Basin to platform t r a n s i t i o n , Lower Paleozoic strata of Ware and Trutch map areas, northeastern B r i t i s h Columbia, i n Current Research, Part A, Geol. Surv. Canada, Paper 79-1A, p.219-226. Chasen, S., 1979, BMDP6D - Bivariate (scatter) plots: a computer program developed at the Health Sciences Computing Faculty, UCLA, (NIH Sp. Research Res. Grant RR-3), in. Dixon, W.J. and Brown, M.B., eds., Biomedical Computer Programs - P-series, Univ. of C a l i f o r n i a Press, chap. 10.2, p.230-243. Page 114 Chayes, F., 1971, Ratio c o r r e l a t i o n - a manual for students of petrology and geochemistry: Univ. of Chicago Press, 99p. Corbett, J.A., and Mizon, K.J., 1976, The determination of carbon in materials containing high concentrations of sulphur: Chem. Geology, v.17, p.155-159. Crerar, D.A., Namson, J., So Chyi, M., Williams, L., and Feigenson, M.D., 198-2, Manganiferous cherts of the Franciscan Assemblage : I. General geology, ancient and modern analogues, and implications for hydrothermal convection at oceanic spreading centers: Econ. Geol., v. 77, p.519-540. Dawson, K.M., and Orchard, M.J., 1982, Regional metallogeny of the northern C o r d i l l e r a : biostratigraphy, c o r r e l a t i o n and metallogenic significance of bedded barite occurrences in eastern Yukon and western D i s t r i c t of Mackenzie: i n Current Research, Part C, Geol. Surv. Canada, Paper 82-1C, p.31-38. Deer, W.A., Howie, R.A., and Zussman, J . , 1962, Rock-forming minerals - volume 1 : ortho and ring s i l i c a t e s : William Clowes and Sons Ltd.,London, 333p. Page 115 Degens, E.T., and Mopper, K., 1976, Factors c o n t r o l l i n g the d i s t r i b u t i o n and early diagenesis of organic material in marine sediments: i n Riley, J.P., and Chester, R.,eds., Chemical Oceanography, Academic Press, second ed., v.6, chap.31, p.59-113 Demaison, G.J., and Moore, G.T., 1980, Anoxic environments and o source bed genesis: Amer. Assoc. Petr o l . Geol. B u l l . , v.64, p.1179-1209. Drever, J.I., 1971, Early diagenesis of clay minerals, Rio Ameca Basin, Mexico: J . Sediment. Pet r o l . , v.41, p.982-994. Feather, C.E., and W i l l i s , J.P., 1976, A simple method for background and matrix correction of spectral peaks in trace element determinations by X-ray flourescence spectometry: X-ray Spectrom., v.5, p.41-48. Ferguson, J., and Bubela, B., 1974, The concentration of Cu(II), Pb(II) and Zn(II) from aqueous solutions by particulate a l g a l matter: Chem. Geology, v.13, p.163-186. Finlow-Bates, T., 1979, Chemical mo b i l i t i e s in a submarine exhalative hydrothermal system: Chem. Geology, v.27, p.65-83. Page 1 1 6 Finlow-Bates, T., and Large, D.E., 1978, Water depth as a major control on the formation of submarine exhalative ore deposits: Geologisches Jahrbuch, v.30, pt.D, p.27-39. Franklin, J.M., Lydon, J.W., and Sangster, D.F., 1.981, Volcanic-associated massive s u l f i d e deposits: in Skinner, B.J., ed., Economic Geology, 75th Aniversary Volume, p.485-627. F r i t z , W.H., 1980, Two Cambrian stratigraphic sections near Gataga River, northern Rocky Mountains, B r i t i s h Columbia, in Current Research, Part C, Geol. Surv. Canada, Paper 80-1C, p.113-119. Gabrielse, H., 1977, Geological map of Ware west half and Toodoggone River map areas: Geol. Surv. Canada, Open F i l e Report 483. Gabrielse, H., 1981, Stratigraphy and structure of Road River and associated strata in Ware (west half) map area, northern Rocky Mountains, B r i t i s h Columbia, i n Current Research, Part A, Geol. Surv. Canada, Paper 81-1 A, p.201 -207 . Gabrielse, H., Dodds, C.J., and Mansy, J.L., 1977, Operation Finlay, B r i t i s h Columbia, iri Report of A c t i v i t i e s , Part A, Geol. Surv. Canada, Paper 77-1A, p.243-246. Page 117 Garrels, R.M., and Mackenzie, F.T., 1971, Evolution of Sedimenta Rocks: W.W. North and Co. Inc., 397p. Gates, G.L., and Caraway, W.H., 1967, Deposition of of barium sulphate from seawater in o i l - w e l l rotary pumps: U.S. Dept. Inte r i o r , Rpt. of Investigations 6960, 16p. Godwin, C.I., Champigny, N., Heberlein, D., Gorzynski, G., and Blanchet, T., 1984, The role of the sampler : Enhancements to sampling using the GEOLOG system: Assoc. Explor. Geochemists, Short Course, March, Reno Nevada. Godwin, C.I., Blanchet, P.T.H., Tai Chen, Mah, H.J., and Champigny, N., 1982, Application of the computer-based GEOLOG system to exploration and development data: Western Miner, Feb., p.77-82. Goldberg, E.D., 1 965, Minor elements in seawater: iri Riley, J.P. and Skirrow, G.,eds., Chemical Oceanography, Academic Press, f i r s t ed., v.1, chap.5, p.163-196. Page 118 G o l l , R.M., 1969, Radiolaria : The history of a b r i e f invasion: in Degens, E.T., and Ross, D.A., eds., Hot brines and recent heavy metal deposition i n the Red Sea, Springer-Verlag, p.306-31 2. Goodfellow, W.D., 1985, Geochemistry unveils 'blind' deposits: GEOS, Energy, Mines and Resources Canada, v.14, p.17-20. Goodfellow, W.D., Jonasson, I.R., and Cecil e , M.P., 1980, Nahanni integrated m u l t i d i s c i p l i n a r y p i l o t project geochemical studies part 2: some thoughts on the source, transportation and concentration of elements in shales of the Misty Creek Embayment, Northwest T e r r i t o r i e s : in_ Current Research, Part B, Geol. Surv. Canada, Paper 80-1B, p.163-171. Gordey, S.P., 1982, Devono-Mississippian ('Black C l a s t i c 1 ) sedimentation and tectonism in the northern C o r d i l l e r a , in. Program and Abstracts, Co r d i l l e r a n Section, Geol. Assoc. Canada Meeting, Vancouver B.C., p.13. Gordey, S.P., Abbott, J.G., and Orchard, M.J., 1982, Devono-Mississippian (Earn Group) and younger strata in east-central Yukon, in. Current Research, Part B, Geol. Surv. Canada, Paper 82-1B, p.93-100. Page 1 1 9 Gustafson, L.B., and Williams, N., 1981, Sediment-hosted stratiform deposits of copper, lead, and zinc, i n Skinner, B.J., ed., Economic Geology, 75th Aniversary Volume, p. 1 39-178. Heath, G.R. and Dymond, J., 1977, Genesis and transformation of metalliferous sediments from the East P a c i f i c Rise, Bauer Deep, and Central Basin, northwest Nazca Plate: Geol. Soc. America B u l l . , v. 88, p.723-733. Heckel, P.H., 1977, Origin of phosphatic black shale facies i n Pennsylvanian cyclothems of mid-continent North America: Am. Assoc. P e t r o l . Geol. B u l l . , v.61, p.1045-1068. Horsky, S.J., and Fletcher, W.K., 1981, Evaluation of a combined ion exchange-graphite furnace atomic absorption procedure for determination of rare-earth elements in geological samples: Chem. Geology, v.32, p.335-340. Hurd, D.C., 1973, Interactions of biogenic opal, sediment and seawater i n the Central Equatorial P a c i f i c : Geochem. Cosmochim Acta, v.37, p.2257-2282. Hyndman, D.W., 1972, Petrology of igneous and metamorphic rocks : McGraw-Hill, 533p. Page 120 Jefferson, C.W., Kilby, D.B., Pigage, L.C., and Roberts, W.J., 1983, Cirque barite-zinc-lead deposits, northeastern B r i t i s h Columbia, in Sangster, D.F., ed., Sediment-hosted stratiform lead-zinc deposits, Mineral. Assoc. Canada, Short Course Handbook, v.8, p.121-140. Johnson Ibach, L.E., 1982, Relationship between sedimentation rate and t o t a l organic carbon content i n ancient marine sediments: Am. Assoc. P e t r o l . Geol. B u l l . , v.66, p.170-188. Kozak, A., 1966, Multiple c o r r e l a t i o n c o e f f i c i e n t tables for up to 100 independent variables: Research Notes No. 57, Faculty of Forestry, University of B r i t i s h Columbia, 3p. Krauskopf, K.B., 1967, Introduction to geochemistry: McGraw-Hill Book Co., 721 p. Krebs, W., 1981, The geology of the Meggen ore deposit: in. Wolf, K.H., ed., Handbook of Strata-Bound and Stratiform Ore Deposits, E l s e v i r , v.9, chap.9, p.509-549. Page 1 2 1 Large, D.E., 1983, Sediment-hosted massive sulphide lead-zinc deposits : an empirical model: i n Sangster, D.F., ed., Sediment-hosted stratiform lead-zinc deposits, Mineral. Assoc. Canada, Short Course Handbook, v.8, p. 1-29. LECO, 1959, Instruction manual for operation of LECO carbon analysers nos. 572-100, 572-200 and 577-100: Laboratory Equipment Corp., Saint Joeseph, Michigan. Lowey, J.F., 1984, A lithogeochemical study of the Akie Ba-Pb-Zn mineral d i s t r i c t , northeastern B r i t i s h Columbia: unpub. M.Sc. thesis, Univ. of Calgary, 175p. Lydon, J.W., 1983, Chemical parameters c o n t r o l l i n g the o r i g i n and deposition of sediment-hosted stratiform lead-zinc deposits: i n Sangster, D.F., ed., Sediment-hosted stratiform lead-zinc deposits, Mineral. Assoc. Canada, Short Course Handbook, v.8, p.175-250. Lydon, J.W., and Sangster, D.F., 1984, Sediment-hosted sulphide, in Eckstrand, O.R., ed., Canadian Mineral Deposit Types: A Synopsis, Geol. Surv. Canada, Econ. Geol. Rpt. 36, p.35. Page 1 2 2 Lydon, J.W., Goodfellow, W.D., and Jonasson, I.R., 1985, A general genetic model for stratiform b a r i t i c deposits of the Selwyn Basin, Yukon T e r r i t o r y and D i s t r i c t of Mackenzie: i n Current Research, Part A, Geol. Surv. Canada, Paper 85-1 A, p.651-660. Maclntyre, D.G., 1980a, Geological compilation and mineral occurrence map : D r i f t p i l e Creek-Akie River Ba-Pb-Zn mineral d i s t r i c t s : B r i t i s h Columbia Ministry of Energy, Mines and P e t r o l . Resources, Preliminary Map 38. Maclntyre, D.G., 1980b, D r i f t p i l e Creek-Akie River Project, northeast B r i t i s h Columbia, in. Geological Fieldwork 1979 , B r i t i s h Columbia Ministry of Energy, Mines and Petro l . Resources, Paper 1980-1, p.55-74. Maclntyre, D.G., 1983, Geology and stratiform barite-sulphide deposits of the Gataga d i s t r i c t , northeastern B r i t i s h Columbia, in. Sangster, D.F., ed., Sediment-hosted stratiform lead-zinc deposits, Mineral. Assoc. Canada, Short Course Handbook, v.8, p.85-119. Page 1 2 3 McClay, K.R., 1983, Deformation of stratiform lead-zinc deposits, in Sangster, D.F., ed., Sediment-hosted stratiform lead-zinc deposits, Mineral. Assoc. Canada, Short Course Handbook, v.8, p.283-309 . McClay, K.R., 1984, Structure of clastic-hosted lead-zinc deposits - case h i s t o r i e s : Geol. Assoc. Canada, Short Course Notes, v.2, pt.2, 150p. McLaren, D.J., 1982, Frasnian-Famennian extinctions, i n S i l v e r , L.T., and Schultz, P.H., eds., Geological Implications of Impacts of Large Asteroids and Comets on the Earth, Geol. Soc. Am. Special Paper 190, p.477-484. Passagno, J r . , E.A., 1973, Age and geologic significance of r a d i o l a r i a n cherts in the C a l i f o r n i a Coast Ranges: Geology, v.1, p.1 53-1 56. Pettijohn, F.J., Potter, P.E., and Siever, R., 1973, Sand and sandstone: Springer-Verlag, 61 8p. Page 124 Pigage, L.C., in press, Geology of the Cirque barite-zinc-lead-s i l v e r deposits, northeastern B r i t i s h Columbia, Canada, in_ Mineral Deposits of the Northern C o r d i l l e r a , Canadian Inst, of Mining and Metall., special volume. Poldervaart, A., 1955, Zircons i n rocks - part 1 : sedimentary rocks: American Jour. S c i . , v.253, p.433-461. Potter, P.E., Maynard, J.B., and Pryor, VS.A., 1980, Sedimentology of shale - study guide and reference source: Springer-Verlag, 31 Op. Richards, F.A., 1965, Anoxic basins and fjord s : i n Riley, J.P., and Skirrow, G.,eds., Chemical Oceanography, Academic Press, v.1, p.61 1 -6 J45. Sandberg, C.A., and Gutschick, R.C., 1979, Guide to conodont biostratigraphy of Upper Devonian and Mississippian rocks along the Wasatch Front and C o r d i l l e r a n Hingeline, Utah, iri Sandberg, CA. and Clark, D.L., eds., Conodont biostratigraphy of the Great Basin and Rocky Mountains, Brigham Young University Geology Studies, v.26, Part 3, p.107-134. Page 125 Sato, T., 1972, Behaviours of ore-forming solutions in seawater: Mining Geology Jour. (Japan), v.22, p.31-42. Saxby, J.D., 1969, Metal-organic chemistry of the geochemical cycle: Rev. Pure and Appl. Chem., v.19, p.131-150. Sibson, R.H., Moore,J.,McM., and Rankin, A.H., 1975, Seismic pumping - a hydrothermal f l u i d transport mechanism: J . Geol. Soc. London, v.131, p.653-659. Simoneit, B.R.T., 1985, Hydrothermal petroleum: genesis, migration, and deposition i n Guaymas Basin, Gulf of C a l i f o r n i a : Can. J . Earth S c i . , v.22, p.1919-1929. Spiess, F.N., Macdonald, K.C., Atwater, T., Ballard, R., Carranza, A., Cordoba, D., Cox, C , Diaz Garcia, V.M., Francheteau, J., Guerrero, J., Hawkins, J., Haymon, R., Hessler, R., Juteau, T., Kastner, M., Larson, R., Luyendyk, B., Macdougall, J.D., M i l l e r , S., Normark, W., Orcutt, J., and Rangin, C , 1980, East P a c i f i c Rise: hot springs and geophysical experiments: Science, v.207, p.1421-1433. Page 126 Taylor, G.C., Ce c i l e , M.P., Jefferson, C.W., and Norford, B.S., 1979, Stratigraphy of Ware (east half) map area, northeastern B r i t i s h Columbia, i n Current Research, Part A, Geol. Surv. Canada, Paper 79-1A, p.227-231. Taylor, G.C., and Stott, D.F., 1973, Tuchodi Lakes Map Area, B r i t i s h Columbia : Geol. Surv. Canada, Memoir 373, 37p. Thiede, J ., and van Andel, T.H., 1977, The paleoenvironment of anaerobic sediments in the late Mesozoic South A t l a n t i c Ocean: Earth and Planet. S c i . Letters, v.33, p.301-309. Thompson, M., and Howarth, R.J., 1976, Duplicate analysis in geochemical practise - part 1: Analyst., v.101, p.690-698. Thompson, M., and Howath, R.J., 1978, A new approach to the estimation of a n a l y t i c a l p r ecision: Jour. Geochem. Exploration, v.9, p.23-30. Trudinger, P.A., Chambers, L.A., and Smith, J.W., 1985, Low temperature sulphate reduction: b i o l o g i c a l versus a b i o l o g i c a l : Can. J . Earth S c i . , v.22, p.1910-1918. Page 127 Turekian, K.K., and Wedepohl, K.H., 1961, D i s t r i b u t i o n of the elements i n some major units of the earth's crust: Geol. Soc. America B u l l . , v.72, p.175-192. van der Heyden, P., 1982, Tectonic and stratigraphic relations between the Coast Mountain Plutonic Complex and Intermontane Belt west central B r i t i s h Columbia: unpublished M.Sc. thesis, University of B r i t i s h Columbia, 172 p. Vine, J.D., and Tourtelot, E.B., 1970, Geochemistry of black shal deposits - a summary report: Econ. Geol., v.65, p.253-272. Von Rad, U., and Rosch, H., 1974, Petrography and diagenesis of deep-sea cherts from the central A t l a n t i c , in. Hsu, K.J., and Jenkyns, H.C., eds., Pelagic Sediments: on Land and Under the Sea Int. Assoc. Sediment., Sp. Pub. No. 1, p.327-347. Winterer, E.L., 1979, Radiolarians, diatoms and the o r i g i n of Mesozoic chert: Abstract i n Abstracts with Programs, Geol. Soc. Am., v.11, p.542-543. Page 128 Wise, S.W., and Weaver, F.M., 1974, C h e r t i f i c a t i o n of oceanic sediments, i n Hsu, K.J., and Jenkyns, H.C., eds., Pelagic Sediments: on Land and Under the Sea, Int. Assoc. Sediment., Sp. Pub. No. 1, p.301-326. Page 129 APPENDIX 1. CHEMICAL ANALYSES A l l the o r i g i n a l chemical data i s l i s t e d here by d r i l l h o l e in stratigraphic order. Notes pertaining to each set of analyses are found at the end of each section. An explanation of the l i t h o l o g i c abbreviations used throughout th i s study i s in Table A.1-1. Other abbreviations for l i t h o l o g i e s not discussed in the text, are in Table A.1-2. Instrument settings used for X-ray flourescence analyses are in Table A.1-3. The basis for di v i d i n g the "ore" zone into seven lodes (section 4.3) i s noted in Figure A.1-1. Page 130 1 TABLE A.1-1. Ab b r e v i a t i o n s used f o r major l i t h o l o g i e s . I A b b r e v i a t i o n s used I D e s c r i p t i o n of l i t h o l o g y I _ __ I | GEOLOG 2 2 Cyprus A n v i l Thesis t e x t I | S c a t t e r p l o t I I I ( c i r c a 1980) | symbol I U SHPH (U) UDPH,8U UPH B P h y l l i t i c s h a l e - upper u n i t . BART UDBA UBA Massive to laminated b a r i t i c h o r i z o n . U PRC1 (U) UDRC,8A UP1 c P o r c e l l a n i t e - type 1 - upper u n i t . SHPC UDGR,8T & UDTC,8E PC F Poker c h i p shale - t o t a l p o p u l a t i o n . U SHPR (U) UDPR,8S UPR G Pregnant Shale - upper u n i t . U PYRT (U) UDPY.8P UPY J Massive p y r i t e f a c i e s o u t s i d e main "ore" zone. UDSB UDSB,81 & 8J SB K S u l p h i d e - b a r i t e "ore" f a c i e s . UDBS UDBS,8G BS L B a r i t e - s u l p h i d e "ore" f a c i e s . W PYRT <W) UDPY,8P WPY M Massive p y r i t e f a c i e s w i t h i n main "ore" zone. L PRC2 (L) UDPR,8S LP 2 R P o r c e l l a n i t e - type 2 - lower u n i t . L PRC 1 (L) UDRC,8A LP1 P P o r c e l l a n i t e - type 1 - lower u n i t . BART UDBA LBA Massive to laminated b a r i t i c h o r i z o n . L SHPH (L) UDPH,8U LPH T P h y l l i t i c shale - lower u n i t . L SHPR (L) UDPR,8S LPR U Pregnant shale -lower u n i t . SSS SSS SS V S i l u r i a n s i l t s t o n e . V a r i o u s UDST,8B & UDDC,8X MS W Non-shale t u r b i d i t e s . 1. These l i t h o l o g i e s are d e s c r i b e d i n d e t a i l i n s e c t i o n 2.2 and F i g u r e 6 of the t e x t . 2. GEOLOG a b b r e v i a t i o n s were used f o r f i e l d work. Shorter a b b r e v i a t i o n s were adapted i n the t e x t f o r b r e v i t y . _ Page 1 3 1 TABLE A .1 -2 . Abbreviations used for minor l i t ho log ies not included in tex t . Abbreviat ions used Descr ipt ion of l i tho logy I | GEOLOG I 1 Cyprus (c i r ca Anvi l 1980) 1 1 This study | I Scat terp lot symbol I I r SHRS UDGF, 8F URS A Soft carbonaceous shale. U PRC 3 (U) UDRC, 8A UP 3 D Porce l lan i te with many var iab ly or iented carbonaceous par t ings . SHNB UDNB, 8AB UP4&UBA E Porce l lan i te with blebby bar i te and/or white carbonate. SHDL UDDL,8Q & UDLB,8R UDL H Various pyr i te- laminated s i l i c e o u s shales. W SHPR (W) UDPR, 8S WPR N Pregnant shale interbedded with main ore zone. SHNB UDNB, 8AB LP 4 &LBA 0 Porce l lan i te with blebby ba r i te and/or white carbonate. L PRC 3 (L) UDRC, 8A LP 3 Porce l lan i te with many var iab ly or iented carbonaceous par t ings . 1. GEOLOG abbreviat ions were used for f i e l d work. Shorter abbreviat ions were adapted in the text for b rev i t y . Page 132 TABLE A.1-3. X-ray f l u o r e s c e n c e (XRF) spectrometer instrument s e t t i n g s . The u n i t used was a P h i l l i p s Model PW1410 X-ray Spectromete at the Department of G e o l o g i c a l Sciences, U n i v e r s i t y of B r i t i s h Columbia. TWO THETA/ COUNTER COUNT LOWER COMPONENT LINE BACKGROUND TARGET CRYSTAL kV/MA COLLIMATOR COUNTER kV TIME LEVEL, GAIN WINDOW VACUUM SiO 2 K-alpha-1 109 .19/113.45 Cr PET 50/40 f i n e flow 8, .01x2/1090 1 Osec 1 50 1 28 700 on AL O 2 3 K-alpha-1 145 .19/139.00 Cr PET 50/40 coarse flow 8. .01x2/1090 1 Osec 150 1 28 700 on Fe 0 2 3 K-alpha-1 ,2 57 .54/56.00 Cr LiF200 50/35 f i n e flow 8. .01x2/1090 1 Osec 1 50 128 700 on MgO K-alpha-1 ,2 45 .20/44.00 Cr TLAP 50/40 coarse flow 8. .01x2/1090 1 Osec 1 50 1 28 470 on CaO K-alpha-2 113 .18/110.40 Cr LiF200 50/1 6 f i n e flow 8. .01x2/1090 1 Osec 1 50 128 700 on Na O 2 K-alpha-1,2 55 .15/53.30 Cr TLAP 50/40 coarse flow 8. .01x2/1090 1 Osec 1 50 1 28 700 on K 0 2 K-alpha-2 136 .80/132.15 Cr LiF200 50/35 f i n e flow 8. .01x2/1090 1 Osec 1 50 1 28 700 on TiO 2 K-alpha-2 86 .22/91.00 Cr LiF200 50/35 f i n e flow 8. .01x2/1090 1 Osec 150 1 28 700 on MnO K-alpha-1,2 63 .00/65.00 Mo LiF200 50/40 f i n e flow 8. .01x2/1090 20sec 1 50 1 28 700 on P 0 2 5 K-alpha-1 ,2 89 .58/92.60 Cr PET 50/40 coarse flow 8. ,01x2/1090 1 OOsec 1 40 64 220 on Ba K-alpha-1 10.97 Mo LiF200 60/40 f i n e s c i n t 8. ,01x2/1090 1 Osec 280 128 420 on Sr K-alpha-1 25 .11 Mo LiF2Q0 60/40 f i n e s c i n t 8. ,01x2/1090 1 Osec 280 128 420 on Rb K-alpha-1 37 .95 Mo LiF220 60/40 f i n e s c i n t 8. ,01x2/1090 1 Osec 280 128 420 on U L-alpha-1 37 .28 Mo LiF220 60/40 f i n e s c i n t 8. ,01x2/1090 1 Osec 280 128 420 on Th L-alpha-1 27 .45 Mo LiF200 60/40 f i n e s c i n t 8. 01x2/1090 1 Osec 280 128 420 on Ga K-alpha-1 ,2 38.90 Mo LiF200 50/40 f i n e flow+scint 8. 01x2/1090 1 Osec 280 1 28 420 on Cr K-alpha-1 ,2 69.35 W LiF200 50/40 f i n e flow 814.X2/1090 1 Osec 280 1 28 440 on Zr K-beta-1 28.56 W LiF220 50/40 f i n e s c i n t 8. 01x2/1090 1 Osec 280 64 440 on Compton Peak K-alpha 30.1 3 Mo LiF220 60/40 f i n e s c i n t 8. 01x2/1090 1 Osec 280 128 420 on Page 133 "Ore" Lode Diamond D r i l l h o l e Numbers /_ Det r i ta 1 Sedimentary Markers j_ Sample Numbers/ Meterages DDH-79-C-23 DDH-79-C-14 DDH-78-C-04 4495 304 .9m VII 4841 31 1 .5-315.0m 4846 257.5m VI 4263 321 .5-321 .7m? 4845 258.5m V 4265/4840 325 .0-327 .4m 4845 260.0m IV 4267 329.3-329.5m? 41 20 262 . 7-262 . 9m— I1IB 4272 339 .0-339. 2m 4843 284 . 8-288 . 3m--IIIA 4839/4280/4281 353.2-359.4m 41 34 29 7 . 8-298 . 3m? 4894 42.5m II 4287 369 .5-369 .6m 41 36 30 2 . 5-30 2 . 8m? -r 204R 45.6m? I 4496 378.8m 41 37 305.3m 4895 49.2m =========================================================================================Page 134 , FIGURE A . 1 - 1 . Subdiv is ion of "ore" fac ies into seven lodes (I to V I I ) . The subd iv is ion i s based on shale and tu rb id i te interbeds in the "ore" fac ies and used in sect ion 4.3 of the text to iden t i f y l i thogeochemical zoning patterns out l ined in f igures 10 and 11. Sample numbers are those found i n the tables of analyses; meterages indicate the top and/or bottom of d e t r i t a l sedimetary i n t e r v a l s . A question mark ind icates that the exact meterage of a marker bed was not recorded in d r i l l logs . CIRQUE SHALE-HOSTED B A - Z N - P B - A G DEPOSIT - ANALYTICAL RESULTS George G o r z y n s k i , M A . S c . T h e s i s U n i v e r s i t y o f B r i t i s h C o l u m b i a V a n c o u v e r , Canada May 1986 TABLE A-1-4- MAJOR ELEMENT ANALYSES ////////////////////////////////// See n o t e s a t end f o r e x p l a n a t i o n of t a b l e s e t u p . SAMPLE METERAGE LITHOLOGY SI02 AL203 F E 2 0 3 / MGO CAO NA20 K20 TI02 MNO P205 BA PB ZN S 2 - C -TOTAL NO. FROM TO FE -TOT • (%) +S04 DIAMOND DRILLHOLE 7 8 - C - 0 4 0 . 0 9.1 CASING 4931 A 9 1 13 .0 SHPR 81 48 7 .30 5 . 44 1 11 0 .91 0 . 18 1 .89 0 .39 0 .02 0 . 15 9 8 . 8 7 XRF TOTAL 76 . 28 6 .83 3 . 56 1 .04 0 .85 0 . 17 1 . 77 0 37 0 .02 0 14 0 .69 0 .05 0 .52 3 .33 4 .38 NORMAL 12 494 1 D A 9 . 1 13 .0 SHPR 81 . 60 7 . 29 5 . 40 0 95 1 . 20 - 0 .08 1 92 0 44 0 .03 0 13 9 8 . 8 8 XRF TOTAL 76 . 73 6 .86 3 . 55 0 .89 1 . 13 0 .0 1 .81 0 . 4 1 0 .03 0. 12 0 . 7 1 0 .03 0 .26 3 .68 3 . 7 8 NORMAL IZ 4932 A 13 .0 17 .0 SHPR 79 . 12 7 . 20 7 .49 0 86 1 . 52 0 .23 1 .86 0 . 39 0 04 0. 13 98 .,84 XRF TOTAL 72 .69 6 .61 4 81 0 .79 1 .40 0 .21 1 . . 7 1 0 . 36 0 04 0. 12 0 82 0 .06 0 . 4 1 5 .30 4 . 6 7 NORMAL IZ 4933 A 17 .0 21 6 SHPR 79 .98 8 . 79 4 .07 1 . 10 1 96 0 .08 2 .22 0 . 47 0 .04 0. 14 9 8 . 8 5 XRF TOTAL 75 .56 8 .30 2 .69 1 .04 1 .85 0 .08 2 . 10 0 . 44 0 .04 0 . 13 0 56 0 .02 0 .41 1 .47 5 .31 NORMALIZ 4934 21 . 6 22 .4 PYRT 47 . 7 2 .9 49 . 5 0 7 0. 9 3. .0 0 4 0 . 1 0 .4 0 . 1 105.7 XRF TOTAL 47 1 2 . 9 34 . 2 0. 7 0 . 9 2 .9 0. 4 0 . 1 0 . 4 0 . 1 0. 08 0 . 10 5. .70 (2 3) ( 2 . 14 )N0RMALIZ 4935 A 22 . 4 23 0 SHPR 81 24 7 . 79 6 07 0 . 82 1 60 0 10 0. 63 0 . 45 0 04 0 (14 98 .88 XRF TOTAL 76 90 7 . 37 4 .02 0. 78 1 51 0. 09 0. 60 0 . 43 0 04 0. 13 0 . 39 0 . 04 0 . 50 2 . .32 4 . 8 8 NORMALIZ 4936 23 .0 25 . 5 PYRT 50 3 5. . 4 44 . 7 1. 1, 0 . .7 0. 7 0 . 8 0 . 2 0 5 0 . 1 104 .5 XRF TOTAL 39. 0 4 . 2 24 2 0 . 8 0 . 5 0 . 6 0 . 7 0 . 1 0 . 4 0 . 1 0 . 15 0 . 13 1 . 95 24 . 7 (2 .58(NORMAL 12 4937 A 25 . 5 27 1 SHPR 81 01 7 27 4 85 0 . 78 2 20 0 . 21 1 . 93 0 . 40 0 . 05 0 . 13 9 8 . 8 3 XRF TOTAL 76. 69 6. 88 3. 21 0 . 74 2 . 08 0 . 20 1 . 83 0 . 38 0 . 05 0 . 12 0 . 40 0 . 06 0 . 59 2 . 38 4 . 3 9 NORMAL I 2 4942 27 . 1 29 3 PYRT 48. 5 3 4 42. 9 1. 1 7 . 4 - 0 . 1 0 . 6 0 . 1 0. 1 0 2 104.2 XRF TOTAL 35 7 2 5 22 . 1 0 . 8 5 . 4 0 . 0 0 . 4 0 . 1 0 . 0 0 1 0 . 10 0 . 10 3 . 54 27 . 0 ( 2 1 3 ( N O R M A L 12 Page 135 TABLE A'l~4 '• D D H - C - 0 4 SAMPLE METERAGE LITHOLOGY SI02 AL203 F E 2 0 3 / MGO CAO NA20 K20 TI02 MNO P205 BA PB ZN S 2 - C - T O T A L NO. FROM TO F E - T O T ( ) +S04 4943 A 2 9 . 3 33 .5 SHPR 7 7 . 0 3 8 .78 5 .44 1.07 3 .37 0 .17 2 . 2 0 0 .51 0 . 0 5 O 16 9 8 . 7 8 XRF TOTAL 7 1 . 5 6 8 .16 3 .53 0 .99 3 .13 0 . 1 6 2 .04 0 . 4 7 0 . 0 5 0 15 0 . 5 6 0 . 0 5 0 .71 2 . 9 5 5 .48 NORMAL IZ 4949 O A 2 9 . 3 3 3 . 5 SHPR 3 3 . 5 34 .2 4944 A 3 4 . 2 36 .8 203R 204 R 205R 42 . 5 44 .6 4 6 . 6 4 9 . 2 4S95 A 4 9 . 4 4850 A 5 7 . 6 4946 A 6 7 . 4 4947 A 72 .1 7 5 . 4 4948 A 7 7 . 9 44 .6 4 6 . 6 49 .2 49 .4 5 7 . 6 7 7 . 9 7 9 . 3 SHPR 4945 A 3 6 . 8 3 9 . 3 SHPR 4893 A 3 9 . 3 4 0 . 7 SHDL 4 0 . 7 4 1 . 6 FAULT 4894 A 4 1.6 4 2 . 5 SHPR UDBS UDBS UDBS SHPC 67 .4 PRC 1 72 . 1 PRC 1 75 .4 SHPC FAULT SHPC 8 2 . 2 9 7 .68 77 .22 7.21 3 .78 1.05 2 .48 0 .99 1 . 39 1 .30 POOR RECOVERY - NOT SAMPLED 7 9 . 6 0 6.51 71 .61 5 .86 72 .71 5 .73 6 8 . 0 0 5 .36 4 .56 0.91 4 .54 2 .87 0 .82 4 . 0 8 14.43 0 98 2 . 8 9 9 .44 O 92 2 . 7 0 5 0 . 8 4 1 . 7 7 .6 6 .2 24 . 8 14 . 3 0 7 13.2 0 .6 10.9 NOT SAMPLED 8 2 . 8 5 6 .83 7 6 . 9 7 6 .35 8 . 0 11.3 9 . 6 14 . 3 3 .4 3 . 0 0 . 1 0 . 1 0 . 1 0 .2 0 . 0 0 . 0 4 .04 0.61 2 . 6 3 0 .57 0 0 0 . 0 13 1 0. 1 0 .2 0 . 0 0 0 POOR RECOVERY 4 9 NOT SAMPLED 86 . 34 75 .52 3 .75 3 .28 8 8 . 1 9 5 .17 8 4 . 7 2 4 .97 85 .61 5.62 8 1 . 9 7 5 .38 8 2 . 5 7 7 . 2 0 7 8 . 2 9 6 .83 NOT SAMPLED 8 2 . 5 2 7.61 77 .22 7 .12 5 .29 0 .59 3 24 0 .52 2 .14 0 .74 1 44 0.71 2 . 3 3 0.91 1.56 0 .87 2. 14 1 .99 3 . 1 4 . 4 3 . 5 5 .2 0 . 0 0 . 0 0 . 8 3 0 . 7 3 0 . 6 6 0 . 6 3 2 .74 1 .82 1 .08 1 .02 35 25 72 58 0 . 0 0 . 0 O. 19 O. 17 0 . 38 0 . 3 6 1 .2 1 .0 0 .21 0 . 2 0 3. 1 4 . 4 0 . 0 0 . 0 0 . 0 0 . 0 0 .58 0.51 2 .56 1.16 2 .38 1.68 1.09 2 . 2 3 2 . 1 0 0 .44 0 .02 0 .14 9 8 . 8 9 XRF TOTAL 1.97 0 .41 0 . 0 2 0 . 1 3 0 . 5 2 0 . 0 3 0 . 3 7 2 . 4 3 4.91 NORMAL IZ 1.86 0 .4 1 0 . 0 6 O.15 1.67 0 . 3 7 0 . 0 5 0 13 0 . 9 3 0 . 0 6 O 66 1 .38 0 . 3 6 O 08 0 .14 1 . 29 O. 34 O 07 0 13 1 84 0 .36 3 .05 9 8 . 7 9 XRF TOTAL 5 . 1 7 5 . 5 3 NORMAL IZ 99 08 XRF TOTAL 2 OO 4 15 NORMAL IZ 1.1 0 . 5 0 . 9 0 . 4 0 . 3 0 2 0 2 0 .2 1.55 0 .42 0 .04 0 .17 1 .44 O. 39 0 .04 0 . 1 6 100.4 XRF TOTAL 2 .32 0 . 6 0 3 . 4 5 1 3 . 0 (4 39(NORMAL IZ 9 8 . 8 6 XRF TOTAL 1.03 0 . 0 3 0 . 6 9 2 . 4 0 5 .14 NORMALIZ 1 .3 1 .8 2 .8 4 . 2 3. 1 2 .8 0 . 0 0 . 3 0 . 0 0 . 4 3 1 . 6 0 . 3 0 .4 0 . 5 0 . 6 17 . 2 7 . 5 0 . 0 6 . 7 0 . 0 3 8 . 9 15 .9 XRF TOTAL 2 . 1 9 5 . 7 0 32 .1 NORMAL IZ 16.8 XRF TOTAL 2 .87 8 .02 3 3 . 7 NORMALIZ 1 4 . 0 XRF TOTAL 1.99 5 . 8 6 3 5 . 9 NORMALIZ 1.22 0 . 2 3 0 . 0 7 O . 1 0 1.07 0 . 2 0 O 06 0 . 0 9 0.61 O . 3 0 2 . 3 8 9 9 . 0 0 XRF TOTAL 7 .92 3 . 5 8 NORMALIZ O. 17 1.61 0 . 2 8 0 .O3 O. 10 0 . 1 6 1.55 0 . 2 7 0 . 0 3 0 . 1 0 0 . 4 0 0 .02 0 . 0 3 1.71 0 .32 0 .02 0.11 0 . 0 3 1.64 0 .31 0 .02 0.11 0 . 2 9 0.01 0 . 0 2 .04 0 .41 0 . 0 2 0 . 1 5 0 . 0 1.93 0 . 3 9 0 .02 0 .14 0 . 4 0 0.01 -0 .04 2 .16 0 . 4 3 0 .01 O.15 0 . 0 2 .02 0 . 4 0 0.01 0 .14 0 . 4 7 0 . 0 9 9 . 0 9 XRF TOTAL 0 . 2 8 1 .10 3 .62 NORMAL IZ 99 .01 XRF TOTAL 0 . 0 9 1.51 3 . 9 8 NORMALIZ 9 8 . 9 3 XRF TOTAL 0 .11 1 .43 5 . 0 3 NORMALIZ 9 8 . 9 4 XRF TOTAL 0 . 0 3 2 . 1 4 5 . 4 6 NORMALIZ Page 136 TABLE A . I - { : DDH-C-04 SAMPLE METERAGE LITHOLOGY SI02 AL203 FE203/ MGO CAO NA20 K20 T102 MNO P205 BA PB ZN S2- C-TOTAL NO. FROM TO FE-TOT (%) +S04 4950 A 4851 A 79 .3 81.2 •81.2 PRC2 84.2 PRC 1 80.31 6.21 4.41 1.04 4.92 0.04 1.35 0 .38 0 . 0 3 0 .15 73.78 5 .70 2.83 0 .96 4 .52 0.04 1.24 0 .35 0 .03 0 .14 83.02 4.41 1.97 1.75 6 .35 0 .09 1.04 0 .27 0 .03 0.11 79.85 4.24 1.33 1.68 6.11 0 .09 1.00 0.26 0 .03 0 11 1.28 0.02 0 .18 0.51 0 .0 0 .04 98.84 XRF TOTAL 3.56 5 .38 NORMALIZ 99.04 XRF TOTAL 1 2 4 3 .53 NORMALIZ 4900 D A 4852 A 4853 A 4854 A 81.2 84.2 91.4 4855 A 95.4 4856 A 99.4 4857 A 103.4 84.2 PRC 1 87.2 PRC 1 91.4 SHPH 95.4 SHPR 99.4 SHPC 103.4 SHPC 107.4 SHPC 89.89 86 .36 88 .69 85 .46 67 .04 64 .68 77 .35 73 .31 73 . 74 69 .37 81 .05 75 . 26 79 .90 73.83 3.56 3.42 3 . 73 3 .59 18 .06 17.42 10.01 9.49 8 .60 8.09 7.48 6 . 95 8 67 8.01 1.66 0 .54 2 .38 0.04 1.12 0.52 2 . 29 0.04 2 .10 0 .76 1.42 0 .73 4.91 2.67 3.31 2.58 4 .53 3 .00 4 .63 3.05 2 99 1 .93 2 11 2 .03 1 . 13 1 .07 1 18 1.11 2 . 40 2 . 27 2 .93 1.36 3.44 1.90 1.26 3.19 1 .37 1 . 27 2.87 2.65 O. 12 0. 12 1.46 0.11 1.41 0.11 0. 10 0 09 6.98 0 .18 6.57 0 .17 0. 15 0 . 14 0. 13 0. 12 0.81 0.21 0.01 0 .09 0.78 0 .20 0.01 0 .09 1.28 0 .23 0.01 O.10 1.23 0.22 0.01 0 .10 4.11 0 .78 0.02 O.15 3 97 0 .75 0.02 O 14 2.54 0 .58 0.02 0 16 2.41 0 .55 0 .02 O.15 2.54 0 .64 0.02 O. 22 2.39 0 .60 0.02 0.21 1.84 0 .46 0.02 0 .16 1.71 0 .43 0 .02 O.15 2.21 0 .53 0.02 0 .18 2.04 0 .49 0.02 0 .17 0 .7 1 0 .23 0 .0 0 .0 0 .58 0 .0 0 .03 O. 74 1 .62 0 .0 0 0 99 .19 XRF TOTAL 0.01 1.22 3.24 NORMALIZ 99 .13 XRF TOTAL 0 03 1. 16 3.68 NORMAL IZ 99.31 XRF TOTAL 2.82 2 .19 NORMAL IZ 0 .65 0 .0 0 .03 98.82 XRF TOTAL 3 .06 3 .89 NORMAL IZ 1.25 0 .0 98 .73 XRF TOTAL 0 .05 2.52 5.12 NORMALIZ 98,89 XRF TOTAL 0 .03 2 .65 4 .69 NORMALIZ 98.87 XRF TOTAL 0 .06 2 .43 5 .73 NORMAL IZ 4858 A 107 . 4 111.4 SHPC 66 . 52 6 1.63 7.82 7 . 24 3.33 1.21 17.01 0 .10 2. 16 1.12 15.76 0 .09 2 .10 0 .49 0 .27 0 .20 1.95 0 .45 0 .25 O 19 0 . 50 0 .0 99 .05 XRF TOTAL 0 .03 1.85 6 .78 NORMAL IZ 4859 A 1 1 1 4 4860 A 4861 A 113.7 116.9 113.7 SHPC 67 28 62 .69 116.9 SILTSTONE CONGLOMERAT 119.6 SHPR 78 49 76 02 76 35 72 . 34 7 . 58 7.06 7 .47 7 . 23 10.96 10.38 3 . 22 2 . 10 3.65 2 . 47 1 . 16 16.82 1.08 15.67 2.02 4 .13 1.96 4 .00 4.72 1.52 3.13 1.44 1 38 1.31 -0.01 2.05 0 .49 0 .27 O 19 0 .0 1.91 0 .46 0 .25 0 .18 0.02 2.31 0.42 0.04 0 .29 0 .02 2.24 0.41 0 .04 0 .28 13 3 .10 0 .53 0.02 0 .15 12 2.94 0 .50 0.02 0. 14 0 .54 0 .0 99 .05 XRF TOTAL 0 .03 1.80 6 .23 NORMALIZ 0 . 3 0 0.01 0 . 1 3 0 .33 0 .03 98.84 XRF TOTAL 1.76 3 .13 NORMALIZ 98 .86 XRF TOTAL 0 . 3 0 2 .73 4 .28 NORMALIZ 4B62 A 119.6 4863 A 121.9 121.9 SSS + CONGLOMERAT 50. 36 47.. 28 125.9 SSS 4899 D A 121.9 125.9 SSS END OF HOLE • 125.9 M 64 . 37 62.44 64 . 74 62 . 97 8.88 8.34 10.37 10.06 10.44 10. 15 3 .13 11.09 22.98 2.06 10.41 21.57 2.45 1 . 66 5.84 12.20 5.66 11.83 2.06 6.03 11.83 1 .40 5.86 11.51 0.08 2.36 0.41 0 .13 0.14 0.08 2.22 0 .38 0. 12 0. 13 0.01 3.07 0.48 0 .07 0. 16 0.01 2.98 0.47 0 .07 O.16 0.11 3. 10 0 .49 0.07 O. 13 0.11 3.02 0 .48 0 .07 0 .13 0 .22 0 .0 99.56 XRF TOTAL 0 . 0 0 .74 6 .46 NORMALIZ 0 .23 0 .0 0 .02 0 .24 0 0 99.02 XRF TOTAL 0 .66 3.76 NORMALIZ 99 .00 XRF TOTAL 0 . 0 0 .43 3.65 NORMALIZ Page 137 TABLE A.I-4 DDH-C-04 SAMPLE NO. METERAGE LITHOLOGY FROM TO SI02 AL203 F E 2 D 3 / MGO CAO NA20 K20 TI02 MNO P205 BA F E - T O T (°/.) PB ZN S 2 - C - T O T A L + S04 DIAMOND DRILLHOLE 7 9 - C - 0 3 0 . 0 9 .1 4868 A 4 6 . 7 4 7 . 3 4046 170. 1 4849 A 171 .9 4848 A 172.3 4869 A 175.1 4870 A 180.8 4871 A 184.1 4898 D A 184.1 4872 A 187.1 4873 A 189.1 4874 A 190.6 4875 A 192 .0 4876 A 196 .0 9 . 1 46 .7 4 7 . 3 170. 1 171.9 CASING GUNSTEEL UNITS - NOT SAMPLED DOLOMITIC SILTSTONE 2 3 . 0 0 20 . 70 6 .27 5 .64 13 . 37 8 .42 15 55 40 .58 13.99 36 .52 -0 .14 2 .23 0 .41 0 . 5 7 0 .14 0 . 0 2.01 0 . 3 7 0 .51 0 . 1 3 0 . 5 6 0 . 0 GUNSTEEL UNITS - NOT SAMPLED UDSB 1 . 7 4 . 2 172.3 SILTSTONE 7 6 . 5 5 CONGLOMERAT 7 0 . 2 2 175.1 SHRS 180.8 PRC2 184 . 1 187 . 1 PRC2 SHPR 187.1 SHPR 189.1 SHPR 190.6 PRC 1 192 .0 BRECCIA 196 .0 SHPH 199.4 SHPH 8 2 . 9 7 76. 14 7 4 . 5 0 6 8 . 8 9 75 .04 69 . 76 82 .06 77 .60 84 .09 7 9 . 4 3 8 5 . 3 5 80 . 73 8 5 . 5 4 8 0 . 76 37 . 37 3 3 . 3 9 64 .90 6 3 . 8 9 61 .76 61 . 37 0 . 0 0 . 0 16.4 0 . 5 1 .2 0 . 0 0 . 0 8 .26 7 .58 7 . 76 7 . 12 5 .76 5 .33 6 . 2 5 5.81 6 .77 6 . 4 0 7 .93 7 . 49 6 . 24 5 . 90 3. 22 3 .04 9 .54 8 . 5 3 18.94 18.65 18.85 18.73 3. 35 2. 15 3 .05 1 .96 2 . 3 0 1 . 49 2 .26 1 . 47 2 47 1 .63 2 . 3 0 1 52 2 .27 1 .50 4 .28 2 .83 2 75 5 .13 2 .52 4 . 7 1 1 .09 1 .00 1 .29 1 . 18 0 .92 14.29 0 . 8 5 13.21 1.36 11.66 1.26 10.84 0 . 9 9 0 .94 4.01 3. 79 1.13 0 .84 1.07 0 . 7 9 0.91 2 .10 0 .86 1.99 0 .92 3 .85 0 .87 3 .64 10. 16 6 . 3 5 10.93 29 .44 9 .77 26.31 6 .34 4 37 8 . 24 5 .73 2 . 32 2 .28 1.41 1 .39 0 . 0 0 . 0 0 . 10 0 . 0 9 0 . 2 3 0 .21 - 0 . 8 6 O.O 0 .08 0 .07 0 .04 0 .04 0 . 0 9 0 . 0 9 0 . 0 5 0 . 0 5 - 0 . 02 0 . 0 17 17 0 .01 101 .98 XRF TOTAL 1.79 9 . 3 6 NORMALIZ 0 . 5 1 .2 2 .78 2 .18 2 .76 2 .17 0 . 0 6 0 .06 0 . 0 0 . 3 3 . 0 XRF TOTAL 0 . 0 0 . 7 16.2 2 . 4 5 16 .20 41 .4 NORMAL IZ 9 8 . 8 7 XRF TOTAL 3 .42 0.01 0 . 0 3 3 . 6 0 3 . 1 7 NORMALIZ 9 8 . 9 0 XRF TOTAL 1.76 0 .11 0 .41 2 . 9 2 4 . 8 8 NORMALIZ 9 9 . 1 2 XRF TOTAL 0 . 5 6 0 . 0 0 . 0 2 1.47 6 . 1 4 NORMALIZ 9 8 . 9 5 XRF TOTAL 0 . 7 0 0 . 0 0 .01 1.53 6 . 4 0 NORMAL IZ 9 8 . 8 9 XRF TOTAL 0 . 3 6 0 . 0 0 . 0 4 1.58 5 .21 NORMAL IZ 9 8 . 9 8 XRF TOTAL 0 . 3 9 0 . 0 0 . 0 2 1.57 5 . 1 8 NORMALIZ 9 8 . 9 9 XRF TOTAL 0 . 5 8 0 . 0 0 . 0 2 1.91 4 . 5 0 NORMALIZ 9 9 . 0 3 XRF TOTAL 0 . 6 3 0 . 0 0 . 4 0 3 . 2 5 3 . 4 3 NORMAL IZ 100.36 XRF TOTAL 1.32 0 . 0 0 .01 4 . 0 4 7 . 6 6 NORMALIZ 9 9 . 3 8 XRF TOTAL 0 . 6 0 O . O 0 . 0 5 2 . 1 5 1.24 NORMALIZ 9 9 . 4 0 XRF TOTAL 0 .41 0 . 0 0 . 0 3 2 . 2 6 0 . 9 9 NORMALIZ 1.84 0 .64 0 .04 0 .21 1.69 0 . 5 9 0 .04 O .19 1.89 0 . 4 4 0 .02 O.16 1.73 0 . 4 0 0 . 0 2 0 . 1 5 1.65 0 . 3 5 0 . 0 5 0 . 1 6 1.53 0 . 3 2 0 . 0 5 0 . 1 5 1.75 0 . 3 7 0 . 0 5 0 . 1 3 1.63 0 . 3 4 0 . 0 5 0 .12 1.98 0 42 0 .01 0 . 1 4 1.87 0 . 4 0 0 .01 0 . 1 3 2 .06 0 .41 0 .01 0 .12 1.95 0 . 3 9 0 .01 0 11 1.57 0 . 3 7 0 .01 0 . 1 2 1.48 0 . 3 5 0 .01 0 .11 0 .64 0 . 16 0 . 0 3 0 . 2 0 0 . 6 0 O . 1 5 0 . 0 3 O . 1 9 1.99 0 . 4 8 0 . 3 5 0 .12 1.78 0 . 4 3 0 .31 0.11 4.21 0 . 9 2 0 .04 0 . 1 3 4 .14 0 .91 0 .04 0 . 1 3 4 .38 1.00 0 . 0 3 0 . 1 2 4 . 3 5 0 . 9 9 0 . 0 3 0 .12 Page 138 TABLE A\~4 D D H - C - 0 3 SAMPLE NO. METERAGE LITHOLOGY FROM TO SI02 AL203 F E 2 0 3 / MGO F E - T O T CAO NA20 K20 TI02 MNO P205 PB ZN 52- C - T O T A L + S04 4877 A 199.4 , 202 .7 SHPH 4878 A 2 0 2 . 7 205 .7 SHPR 4879 A 2 0 5 . 7 208 .8 SHPR 4880 A 2 0 8 . 8 2 12.6 SHPC 4881 A 2 1 2 . 6 217 0 SHPR 4897 D A 2 1 2 . 6 2 1 7 . 0 SHPR 4882 A 2 1 7 . 0 2 2 1 . 0 SHPR 6 5 . 0 5 16.34 6 4 . 5 8 16.22 6 9 . 1 6 14.91 6 7 . 5 9 14.57 7 .39 5. 13 2 .54 2 .52 2 .52 0.41 2 . 5 0 0 .4 1 79 . 19 75.91 83 .93 77 .92 82 . 24 76 . 53 82 . 24 7 6 . 4 5 7 8 . 7 5 72 .82 9 . 6 3 9 . 2 3 7 .75 7. 19 8 .06 7 . 50 8 . 4 0 7.81 8 .86 8. 19 5 .86 2 .33 4 .01 2 .28 3 . 9 0 1.48 2.61 1.42 2 .27 1 . 47 2 .65 1 . 72 1.13 1 .05 1 .07 1 .00 2 .98 1.30 1.94 1.21 3 .45 2 . 23 1 .06 0 . 9 8 1 . 53 1 .50 1 .27 1 . 22 1 4 1 1.31 2 .23 2 .08 1 .42 1 . 32 3 . 72 3 .44 0 .62 0.61 0 . 0 0 . 0 0.11 0 . 10 0 . 0 9 0 .08 O. 14 0 . 13 0 . 0 8 0 . 0 7 3.91 3 88 3 . 72 3.64 1 .84 1.71 1 .93 1 . 80 1 .83 1 . 70 2.11 1 .95 0 . 8 3 0 . 0 3 O . 1 0 0 . 8 2 0 . 0 3 O . 1 0 0 . 3 7 0 . 0 0 .71 0 .02 0 . 1 3 0 . 6 9 0 .02 0 . 1 3 0 . 3 7 0 . 0 0 . 5 2 0.01 0 . 1 6 0 . 5 0 0 .01 O .15 0 . 2 9 0 . 0 O . 4 0 0.01 0 .12 0 . 3 7 0.01 O.11 0 . 9 7 0 . 0 0 . 4 6 0 .02 O .15 0 . 4 3 0 .02 0 .14 0 .44 0 .02 0 . 1 5 0 . 4 1 0 .02 0 .14 0 . 5 9 0 .02 0 . 2 0 0 . 5 5 0 .02 0 . 1 8 1 . 45 0 . 0 1.54 0 . 0 2 . 0 7 0 . 0 9 9 . 1 2 XRF TOTAL 0 . 0 7 1.99 1.37 NORMALIZ 9 8 . 9 9 XRF TOTAL 0 .02 2 . 5 9 1 . 9 9 N 0 R M A L I Z 9 8 . 8 8 XRF TOTAL 0 . 0 5 2 .32 3 . 6 8 NORMAL IZ 9 8 . 9 7 XRF TOTAL 0 .04 2 . 0 0 5 .74 NORMAL IZ 9 8 . 9 0 XRF TOTAL 0 . 0 9 2 . 2 0 4 . 9 7 NORMA L IZ 9 8 . 9 2 XRF TOTAL 0 . 0 3 2 .64 4 . 6 7 NORMAL IZ 9 8 . 8 4 XRF TOTAL 0 . 0 3 2 . 9 5 4 . 5 2 NORMAL IZ END OF HOLE ® 2 2 1 . 0 M P a g e 139 TABLE A.l~4: O D H - C - 0 3 SAMPLE NO. METERAGE LITHOLOGY FROM TO SI02 AL203 F E 2 0 3 / MGO CAO NA20 K20 TI02 MNO P205 BA PB ZN S 2 - C - T O T A L F E - T O T (%) + S04 DIAMOND DRILLHOLE 7 9 - C - 1 4 L 0 . 0 6 .4 6 . 4 118.5 118 .5 120.9 FAULT 4960 A 120 .9 123.8 SHPH 4961 A 123.8 127.8 SHPH 4962 A 127.8 132.3 SHPH 132.3 133.5 FAULT 4963 A 133 .5 136.5 SHPH 4964 A 136 .5 139.6 SHPH 139 .6 141.7 FAULT 4965 A 141.7 144.7 SHPH 4986 D A 14 1.7 144.7 SHPH CASING OVERTHRUST UNITS -MAIN THRUST FAULT 4966 A 144.7 148.7 4967 A 149 .6 4968 A 153.6 4969 A 157 .6 148.7 SHPH 149.6 153.6 157 .6 161 .6 FAULT SHPH SHPH SHPH 61 80 19.37 6 0 . 8 8 19.08 6 3 . 8 8 16.99 6 3 . 2 5 16.82 6 2 . 1 4 20 .69 61 .89 20.61 NOT SAMPLED 62 .81 19.57 6 3 . 0 0 19.63 6 3 . 1 4 20 .14 63 .02 2 0 . 1 0 NOT SAMPLED 62 23 2 2 . 2 5 6 1 . 5 0 21 .99 6 3 . 9 7 19.70 6 3 . 1 3 19.44 6 0 . 7 2 2 3 . 3 0 5 9 . 8 7 22 .98 NOT SAMPLED 6 2 . 4 4 19.68 6 2 . 6 8 19.75 6 2 . 1 6 2 1 . 5 5 6 1 . 7 9 21 .42 6 7 . 1 6 15.57 6 6 . 5 2 15.42 NOT SAMPLED - NOT SAMPLED 48 2 .03 3 .05 15 2 . 00 3 . 00 98 2 .06 4 56 14 2 04 4.51 91 2 .47 2 .12 81 2 .46 2.11 07 96 2 1 03 13 55 27 33 07 50 74 73 2 .52 2 .53 2 .55 2 . 55 2. 16 2 .13 2 . 37 2 . 34 1 .92 1 .89 57 57 04 49 15 16 14 13 1 98 1 .96 2 . 35 2 . 36 O. 80 0 . 8 0 1.61 1 . 59 1 .83 1.81 2 .40 2 .37 1 .69 1 .70 0 . 8 6 0 . 8 5 3. 15 3. 12 0.31 0 . 3 1 0 . 2 3 0 . 23 0 . 17 0 . 17 - 0 . 0 0 . 0 1 .00. 1 .00 1 .05 1 .04 0 4 1 0 . 4 0 0 .64 0 . 6 3 1 . 56 1 .57 1.11 1 . 10 1 .31 1 . 30 4 .22 1.00 0 .02 O .10 4 .16 0 . 9 9 0 .02 0 . 1 0 0 .41 0 0 4 .07 1.00 0 .02 0 . 3 3 4 . 0 3 0 . 9 9 0 .02 0 . 3 3 0 .34 0 . 0 3 .94 0 . 9 9 0 . 0 3 0 . 1 3 3 .92 0 . 9 9 0 . 0 3 0 . 13 0 .34 0 . 0 3 .98 0 . 9 6 0 . 0 3 O. 19 3 .99 0 . 9 6 0 . 0 3 0 . 1 9 0 .32 0 . 0 3 .69 0 . 8 6 0 . 0 3 0.11 3 .68 0 . 8 6 0 . 0 3 0 .11 0 . 3 2 0 . 0 4 . 3 0 0 90 0 .02 0 . 10 4 .25 0 . 8 9 0 .02 0 . 1 0 0 . 5 3 0 . 0 3 .87 0 . 9 3 0 . 0 2 0 . 1 0 3 .82 0 92 0 .02 0 . 1 0 0 . 4 5 0 . 0 4 . 7 0 0 . 9 8 0 .01 0 .12 4 .63 0 . 9 7 0 .01 0 .12 0 . 5 4 0 . 0 4 .02 0 . 9 5 0 . 0 2 0 . 1 3 4 .04 0 . 9 5 0 .02 0 . 1 3 0 .41 0 . 0 4 . 1 5 0 . 9 6 0 . 0 2 O .13 4 . 1 3 0 . 9 5 0 . 0 2 0 . 1 3 0 . 4 3 0 . 0 3 .67 0 . 8 8 0 . 0 3 O.18 3 .63 0 . 8 7 0 . 0 3 0 .18 0 .42 0 . 0 99 38 XRF 1OT AL 0 .01 2 . 1 3 1.76 NORMAL IZ 9 9 . 1 2 XRF TOTAL 0 .01 1 .09 2.21 NORMA L IZ 9 9 . 5 9 XRF TOTAL 0 . 0 3 1.53 0 . 9 9 NORMAL IZ 9 9 . 4 8 XRF TOTAL 0 . 0 5 1.15 0 . 8 3 NORMAL IZ 9 9 . 5 3 XRF TOTAL 0 . 0 2 1.68 0 . 8 0 NORMAL IZ 9 9 . 7 5 XRF TOTAL 0 .01 1.23 1.18 NORMAL IZ 9 9 . 4 7 XRF TOTAL 0 .01 1.81 1.43 NORMALIZ 9 9 . 8 6 XRF TOTAL 0 .01 1.44 1.05 NORMALIZ 9 9 . 3 8 XRF TOTAL 0 . 0 2 1.17 0 . 6 8 NORMAL IZ 9 9 . 6 5 XRF TOTAL 0 . 0 2 1.45 1.00 NORMAL IZ 9 8 . 9 7 XRF TOTAL 0 . 0 5 1.13 1.88 NORMALIZ Page 140 TABLE DDH-C- 14 SAMPLE NO. METERAGE LITHOLOGY FROM TO SI02 AL203 F E 2 0 3 / MGO FE-TOT CAO NA20 K20 TI02 MNO P205 (%) BA PB ZN S 2 -+ 504 C - T O T A L 4970 A 161 .6 4971 A 165 .6 4972 A 169 .6 173.8 4973 A 177.8 4974 A 182 .5 4976 A 186 .3 4997 D A 186 .3 190 .3 4867 A 190.4 4977 A 195 .3 4978 A 196.4 4979 A 197.1 4980 A 201 .1 4981 A 205 .1 4982 A 209 .1 2 1 2 . 0 4983 A 2 1 3 . 4 165.6 SHPH 169.6 SHPH 173.8 SHPH 177 .8 182.5 FAULT SHPH 186.3 SHPH 190.3 SHPH 190.3 SHPH 190.4 195.3 FAULT PRC 1 196.4 PRC4 197.1 PRC 1 201 . 1 PRC 1 205.1 PRC 1 209.1 PRC 1 2 1 2 . 0 SHPC 213 .4 2 1 5 . 3 FAULT SHPC 64 .61 19.22 6 3 . 8 6 19 .00 6 5 . 5 5 19.44 6 4 . 3 3 19.08 6 4 . 6 3 20 .68 6 4 . 0 0 20 .48 NOT SAMPLED 6 4 . 3 0 18.25 6 4 . 4 3 18.29 6 3 . 2 0 19.49 6 3 . 1 3 19.47 6 3 . 8 6 20 .87 6 3 . 3 3 2 0 . 7 0 6 5 . 1 4 20.01 6 4 . 5 0 19.81 NOT SAMPLED 8 4 . 2 9 5 .43 7 9 . 3 0 5.11 6 4 . 8 4 3 .23 5 5 . 4 7 2 .76 7 7 . 2 9 6 .14 69 .32 5.51 8 7 . 7 9 4 .24 7 9 . 8 7 3 .86 8 8 . 2 8 3 .96 8 2 . 4 5 3 . 7 0 9 0 . 2 3 2 .94 8 5 . 0 7 2 .77 83 .64 6 . 2 3 78.81 5 .87 NOT SAMPLED 7 3 . 7 3 9.41 6 9 . 7 9 8.91 5 .47 2 .42 2 .18 0 .65 3 .77 0 .92 0 . 0 2 0.11 3 .78 2 . 3 9 2 .15 0 .64 3 .73 0 .91 0 . 0 2 0.11 0 . 4 2 0 . 0 5.31 2 .24 1.31 0.81 3 .79 0 . 8 5 0 . 0 2 0 .12 3 .64 2 . 2 0 1.29 0 . 7 9 3 .72 0 . 8 3 0 . 0 2 0 .12 0 .42 0 . 0 4 .58 2 .38 1.48 0.71 3 .99 0 . 9 9 0 . 0 2 0 .11 3 .17 2 .36 1.47 0 . 7 0 3 .95 0 .98 0 . 0 2 O i l 0 . 4 5 0 . 0 7 .16 2 .69 1.89 0 20 3 . 7 0 1.01 0 . 0 3 0 .11 5 .02 2 . 7 0 1.89 0 . 2 0 3.71 1.01 0 . 0 3 0.11 0 . 3 7 0 . 0 6 .47 3 .12 1.87 0 . 5 0 3.71 0 . 9 6 0 . 0 3 0.11 4 .52 3 .12 1.87 0 . 5 0 3.71 0 . 9 6 0 . 0 3 0.11 0 . 3 6 0 . 0 6 .17 2 .27 1.29 - 0 . 0 3 4 . 0 3 1.04 0 . 0 2 0 .12 4 .28 2 . 2 5 1.28 0 . 0 4 . 0 0 1.03 0 .02 0 .12 0 . 4 5 0 . 0 6 .05 2 . 3 0 1.00 0 . 0 4 .19 2 .28 0 .99 0 . 0 2 .44 1 .61 87 12 1 . 16 0 . 7 3 2 . 19 1 . 39 2 .03 1 . 33 1 . 82 1 .20 2 . 42 1 .59 3 .92 0 . 9 9 0 .02 0.11 3 .88 0 .98 0 .02 0.11 0 . 4 3 0 . 0 1 .42 1 . 34 3 .66 3.44 0 . 6 8 27 .74 0 .58 23 .73 0 .62 11.91 0 . 5 6 10.68 -0 .02 0 0 O. 38 0 . 3 3 25 22 0 .82 0 . 7 5 0 . 6 9 O. 64 0 .62 0 . 5 8 1 .58 1 . 49 2 .88 2 .62 2 .54 2 .37 2 32 2 . 19 1 .75 1 .65 0 .02 0 .02 0 .04 0 .04 -0.01 0 . 0 0 .02 0 .02 1 . 32 1 . 24 0 . 4 9 0 .42 0 .94 0 .84 0 . 7 5 0 .68 1 .24 1 . 16 1 .02 0 . 9 6 2 .38 2. 24 0 . 3 0 0 . 0 2 O.14 0 . 2 8 0 . 0 2 0 . 1 3 0 . 5 0 0 . 0 5 0 . 2 6 0 . 4 3 0 .04 0 .22 0 .84 0 . 0 3 .15 0 . 0 0 . 4 9 0 . 0 2 0 . 1 7 0 . 4 4 0 . 0 2 0 . 1 5 2 . 1 9 0 . 0 0 . 3 0 0 .02 0 . 1 0 0 . 2 7 0 . 0 2 0 . 0 9 2 .42 0 . 0 0 . 2 4 0 .01 0 . 0 8 0 . 2 2 0 .01 0 . 0 7 0 . 6 6 0 . 0 O. 19 0 .01 0 . 0 9 0 . 1 8 0 .01 0 .08 0 .41 0 . 0 O.32 0 . 4 4 0 . 1 9 0 . 3 0 0.41 0 . 1 8 0 . 2 2 0 . 0 2.91 2 .73 6 . 7 3 - 0 . 0 1 2 . 7 0 0 . 4 5 0 . 0 7 0 . 1 3 1.93 2 .58 6 .37 0 . 0 2 .56 0 . 4 3 0 . 0 7 0 . 12 0 .31 0 . 0 9 9 . 3 7 XRF TOTAL 0 . 0 3 1.86 1.10 NORMALIZ 9 9 . 4 4 XRF TOTAL 0 . 0 5 2 . 0 5 1.46 NORMALIZ 9 9 . 5 7 XRF TOTAL 0 . 0 2 1.24 1.05 NORMAL IZ 99 34 XRF TOTAL 0 . 0 2 1.36 0 . 8 6 NORMAL 12 9 9 . 4 6 XRF TOTAL 0 . 0 2 1.36 0 8 5 NORMALIZ 9 9 . 6 4 XRF TOTAL 0 . 0 2 1.62 0 . 9 0 NORMALIZ 9 9 . 5 4 XRF TOTAL 0 . 0 2 1.73 1 05 NORMALIZ 9 9 . 0 0 XRF TOTAL 0 .01 1.67 5 .01 NORMAL IZ 100.04 XRF TOTAL 0 .01 4 . 9 8 6 . 7 6 NORMALIZ 9 8 . 9 9 XRF TOTAL 0 . 0 2 3 . 6 6 5 . 6 6 NORMALIZ 99 .11 XRF TOTAL 0 .01 2 . 7 9 5.21 NORMALIZ 99 .11 XRF TOTAL 0 . 0 2 1.56 5 . 7 7 NORMALIZ 9 9 . 2 3 XRF TOTAL 0 . 0 2 1 28 5 .24 NORMALIZ 9 8 . 9 7 XRF TOTAL 0 .01 1.19 6 .01 NORMALIZ 9 8 . 8 5 XRF TOTAL 0 . 0 8 1.54 5 .32 NORMALIZ Page 141 TABLE Al.1-4: D D H - C - 1 4 SAMPLE NO. METERAGE LITHOLOGY FROM . TO SI02 AL203 F E 2 0 3 / MGO F E - T O T CAO NA20 K20 TI02 MNO P205 BA PB ZN 5 2 -• S04 C - T O T A L 2 1 5 . 3 216.1 FAULT 216 .1 216 .9 SHPC 2 1 6 . 9 219.1 FAULT 4984 A 219 .1 224 .5 SHPC NOT SAMPLED POOR RECOVERY NOT SAMPLED 8 3 . 0 3 6 .13 77 .74 5.74 - NOT SAMPLED 2 .82 0 . 9 0 3 .76 1.85 0 .84 3 .52 0.01 0.01 1.77 0 .34 0 . 0 3 0 . 1 2 1.66 O.32 0 . 0 3 0 .11 9 8 . 9 1 XRF TOTAL 0 .34 0.01 0 .08 2 .14 5 .62 NORMAL IZ 2 2 4 . 5 226.7 FAULT 4985 A 2 2 6 . 7 229 .8 SHPC 4987 ' A 2 2 9 . 8 231 .7 SHPR 50O0 D A 2 2 9 . 8 4988 A 2 3 1 . 7 4989 2 3 5 . 0 4990 A 2 3 6 . 2 4991 2 3 9 . 3 231 .7 SHPR 2 3 5 . 0 SHPR 236.2 PYRT 239 .3 SHPR 240.1 SHDL 4939 A 2 3 9 . 8 0 239 89 PYRITE NOT SAMPLED 8 1 . 4 5 7 17 76 .47 6 . 7 3 77 .98 7 .47 72 .37 6 . 9 3 7 7 . 4 9 8 . 4 0 7 2 . 1 0 7 .82 76 31 8 90 70 .58 8 .23 3 0 . 6 22. 1 66 8 55 . 4 52 .0 LAMINATIONS 39.1 4992 A 240 1 4993' A 241.1 24 1.1 SHPR 245.1 SHPR 4904 A 2 4 3 . 4 0 243 .45 4994 A 245 .1 4995 A 2 4 9 . 7 249.7 SHPC 2 5 1 . 9 SHPR 3 .49 0 .88 3 .07 2 . 2 9 0 . 8 3 2 .88 7 . 75 5 .03 7 .66 4 .96 2 . 2 1 .6 52 3 26 . 4 8 0 . 9 6 8 . 4 0 7 4 . 9 0 7 .77 5 .8 4 8 3 .2 2 . 4 19.2 11.1 45 .9 24 . 1 8 2 . 3 5 7.82 76 .57 7 .27 82 .42 7 .83 77 :36 7 .35 C A L C I S I L T 6 0 . 0 9 4 .86 LAMINATION 57 .14 4 .62 82 .18 8 .18 7 7 . 0 6 7 .67 82 .12 7 .59 7 6 . 4 0 7 .06 1 . 12 1 .04 1 .75 1 .62 6.11 1.03 2 .78 3 .97 0 . 9 6 2 . 5 9 1 .38 1 . 28 1 .47 1 . 36 2 . 9 2 . 1 17.9 12.9 4 . 3 5 0 .91 2.81 0 .84 0 7 0 . 6 0 4 0 . 3 3 .38 0 . 8 6 2 . 2 0 0 . 8 0 3 .83 0 . 9 0 2.51 0 .84 1 . 30 1 .20 5 . 3 4 . 4 1 5 1 . 1 1 .69 1 .57 1 . 10 1 .03 6 .21 0 . 8 0 25 .4 4 . 1 3 0 . 7 6 24.1 3 .32 1.01 2 .18 0 . 9 5 4 .28 0 .78 2 . 7 9 0 . 7 3 1 . 44 1 . 35 1 .54 1 .43 0 .03 2 .18 0 . 4 5 0 . 0 3 O .12 0 . 0 3 2 .05 O. 42 O . 03 0 .11 0 . 0 5 2 .07 0 . 4 3 0 . 0 7 0 13 0 . 0 5 1.92 0 . 4 0 0 . 0 6 0 .12 0 .02 2 .32 0 . 4 5 0 . 0 5 0 13 0 .02 2. 16 0 .42 0 . 0 5 O. 12 - 0 . 0 2 .44 0 .51 0 . 0 5 O.11 0 . 0 2 .26 0 . 4 7 0 . 0 5 0 . 1 0 0.1 0 .4 0.1 0 . 7 0 1 0 . 0 0 . 3 0.1 0 . 5 0 1 0 .06 2 .27 0 . 4 5 0 . 0 3 0 .14 0 .06 2 . 1 0 0 .42 0 . 0 3 0 . 1 3 0 . 0 0 . 0 0 . 5 0 .4 0 . 0 0 . 0 0 .02 0 .02 0 . 0 3 0 .03 - 0 . 0 0 . 0 1 .2 1 .0 0 . 8 0 . 6 0 . 3 0 . 2 0 . 2 O. 1 0 . 2 0 . 2 0 . 3 0 . 2 0 . 1 O. 1 O. 1 0 . 0 2. 18 0 . 4 5 0 . 0 3 O. 14 2 .03 0 .42 0 . 0 3 0 . 1 3 2 .22 0 .44 0 .02 0 .12 2 .08 0 .4 1 0 . 0 2 0 .11 1.32 O. 28 0 . 4 7 0 26 1.26 0 . 2 7 0 . 4 5 0 . 2 5 2 .16 0 . 4 3 0 .02 0 15 2 .03 0 . 4 0 0 .02 O.14 1.97 0 . 4 3 0 . 0 2 0 .14 1.83 0 . 4 0 0 .02 0 . 1 3 9 8 . 8 7 XRF TOTAL 0 . 4 9 0 .02 0 .18 1.83 5 .64 NORMALIZ 9 8 . 8 2 XRF TOTAL 0 .52 0 . 0 5 0 . 2 9 4 .94 4 . 6 5 NORMALIZ 9 8 . 7 8 XRF TOTAL 0 . 5 3 0 . 0 3 0 . 2 3 4 .31 4 . 7 0 NORMAL IZ 9 8 . 8 3 XRF TOTAL 0 . 5 8 0 .04 0 .02 4 .51 5 . 5 8 NORMAL IZ 107.3 XRF TOTAL 0 . 1 0 0 . 0 2 .28 28 .1 (3 48)NORMAL 1Z 9 8 . 8 7 XRF TOTAL 0 .51 0 .02 0 . 3 9 3 .57 5 . 2 6 NORMALIZ 9 9 . 6 XRF TOTAL 0 . 3 7 0 .14 0 . 5 8 17 .9 ( 3 . 3 ) NORMALIZ 104 .9 XRF TOTAL 0 . 1 8 0 . 0 7 2 . 0 7 2 7 . 0 (2 .31 (NORMALIZ 9 8 . 9 0 XRF TOTAL 0 . 4 6 0 .02 0 . 1 3 3 . 0 5 5 . 3 3 NORMALIZ 9 8 . 9 0 XRF TOTAL 0 . 4 6 0 . 0 3 0 . 1 7 2 .36 5 . 2 3 NORMALIZ 9 9 . 6 9 XRF TOTAL 0 .32 0.01 0 .01 2 . 4 3 4 .24 NORMALIZ 9 8 . 9 2 XRF TOTAL 0 .48 0 .02 0 . 2 2 2 .32 5 . 1 3 NORMALIZ 9 8 . 8 7 XRF TOTAL 0 . 5 5 0 . 0 2 0 .12 3 . 0 9 5 . 4 3 NORMALIZ Page 142 TABLE 4.1-4 : D O H - C - 14 < SAMPLE METERAGE LITHOLOGY SI02 AL203 FE203/ MGO CAO NA20 K20 TI02 MNO P205 BA PB ZN S2- C-TOTAL NO. FROM TO FE-TOT (°/,) + S04 4996 4B47 4B46 4 1 18 4845 4844 251 .9 252.7 255. 1 257.5 258.5 A 259.05 252.7 255. 1 257.5 258.5 SHPR SHPR SHPR (JOBS 260.0 SHPR 259.30 SILTSTONE BED 78.74 73.47 81 .67 76.25 80. 75 74.44 9 . 1 15.7 68 .96 61.41 64 . 12 58.23 7 . 72 7.20 7. 13 6.66 7.24 6.67 0. 1 0.2 5.46 3.56 5.33 3.48 6.71 4 . 33 7.84 12.42 6.98 7.74 5 .00 4.54 7 . 19 4.57 0 .92 0.86 0 .90 0.84 1 . 19 1 . 10 0 5 0 .9 1 .34 1 . 19 3 .39 3 . 16 1 .08 1 .01 0 .0 0 .0 6 .70 13.55 6.08 12.31 0.02 0.02 0. 26 0.24 0 .65 0 .16 0 .60 0 .15 2.5 4 . 3 4.46 0.62 3.97 0 .55 0. 23 0.21 2 .00 0 .38 0 .05 0 .12 1 .87 0. 35 0 .05 0.11 1.89 0 .38 0 .06 0 .14 1 .76 0 .35 0 .06 0 .13 1.61 0 .38 0 0 4 0 .13 1.48 0 .35 0.04 0 .12 0 .63 0 .03 0 .14 0 .72 0 .03 0 .55 0 .98 0.04 0 .45 1 .8 3. 1 0 .0 0 .3 0 . 0 0 .5 34 . 3 2.41 0 .53 O.10 0 .17 2 .15 0.47 0 .09 O.15 1.53 0.31 0 .20 0 . 1 9 1 .39 0 .28 0. 18 O. 17 98 .80 XRF TOTAL 3.53 5.01 NORMALIZ 98 .84 XRF TOTAL 2 .57 5 .34 NORMALIZ 98 .86 XRF TOTAL 4 .37 4 .88 NORMALIZ 14 . 3 1 92 3.52 31 .0 XRF TOTAL NORMAL IZ 2.11 0.22 1.39 2 .59 0 .05 0 .35 98 .85 XRF TOTAL 8 .50 (3.08(NORMALIZ 99 .02 XRF TOTAL 4 .95 4 . 1 0 NORMALIZ 4119 260 .0 261.8 UDBS 13. 1 20. 3 0 .0 0 .0 10.8 1 .0 1 .6 2 6 4 .0 0 .3 0 .5 2.5 3.9 0 .7 1 . 1 0.4 0.6 20.6 18 . 5 1.86 5 .70 31.2 XRF TOTAL NORMALIZ 4120 261.8 263.6 PYRT 11.9 16 . 4 0.2 0 .3 21.8 1 3 1 . 8 1 .0 1 .4 3.4 4 . 7 1 .8 2 .5 0 .3 0.4 0 .3 0.4 20. 2 4 .3 1.22 8 . 9 0 35.9 XRF TOTAL NORMAL IZ 4121 263.6 266.3 UDSB 0 .6 0 .5 0 .0 0 .0 13.7 0 .0 0 .0 0 .9 0.8 3. 1 2.8 0 .5 0 .5 0 0 0 .2 0 . 0 0.2 5 .3 27 . 4 1 16 10.10 42 .9 XRF TOTAL NORMAL IZ 4122 266 .3 268.5 UDSB 4123 268.5 270.9 UDSB 4124 270.9 273.4 UDSB 4125 273.4 275.1 UDSB 0 .0 0 .0 0 .0 0 . 0 0 .0 0 .0 0 .5 0.2 0 .3 0 .3 0 .0 0 .0 9 .5 9. 1 17.7 21.2 0 .0 0 0 0 .0 0 .0 0 .0 0 0 0 .0 0 . 0 0 .0 0 .0 0 .0 0 .0 0 . 0 0 .0 6 .5 2.8 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 1 .3 0 .6 0 . 0 0 . 0 0 .3 XRF TOTAL 0 .0 0 .0 37.2 2.94 8 .45 42.6 0 .0 0 . 0 XRF TOTAL 0 .0 40.8 2 .90 9 .05 44 .3 0 0 0 . 0 XRF TOTAL 0 0 23.7 3.85 12.40 43.4 0 .0 0 .0 0 .0 0 .0 11.5 2.86 16.90 44 .0 8 .3 XRF TOTAL NORMALIZ 4126 275 . 1 277. .6 UDSB 0 .8 -- - - 0 0 0 .0 O .0 0 .0 6. .0 0 .8 XRF TOTAL 0 .8 21 .5 0 .0 0 .0 0 .0 0 .0 0 .0 9 . 7 3 40 15 .90 43 . 1 NORMALIZ 4127 277 .6 .280 0 UDSB 0 .5 0 0 . - 0 2 1 .6 0 .0 0 .5 0 .0 0 4 3 . 2 XRF TOTAL 0 .6 0 .0 18 .0 0 . 2 1 .8 0 .0 0 .6 0 .0 0. .4 10 0 3. 25 22 .90 42 .3 NORMALIZ 4128 280 .0 282 .4 UDSB 0. .0 4 . 1 - - - - 0. 0 0 .0 0. 0 0. .0 2 , 5 0. 0 6. 6 XRF TOTAL 0 .0 4 . 1 10. 3 0 0 0 .0 0 .0 0 .0 2 . 5 0. 0 36 1 4 . 70 12 . 80 44 . 0 4129 282 .4 284 8 UDSB 0. 0 0. 0 0 0 0 0 0. 0 0. .0 0 0 0. 0 0. 0 XRF TOTAL 0. 0 0. 0 8. 3 0. 0 0 0 0. 0 0. 0 0 0 0. 0 34 . 6 3. 16 10. 70 40. 9 Page 143 TABLE A.I-4 DDH-C-14 SAMPLE NO. METERAGE LITHOLOGY FROM TO SI02 AL203 F E 2 0 3 / MGO F E - T O T CAO NA20 K20 T I02 MNO P205 (%) BA PB ZN S 2 -+ S04 C - T O T A L 4843 4130 4131 4132 4133 4134 4135 A 2 8 4 . 8 288 .3 2 8 8 . 3 2 9 0 . 8 292 . 5 294 . 4 2 9 6 . 9 2 9 9 . 3 290 8 2 9 2 . 5 294 . 4 296 .9 SILTSTONE CONGLOMERAT UDSB UDSB UDSB UDBS 2 9 9 . 3 UDBS 302 .5 UDBS 6 9 . 6 7 6 4 . 8 6 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 4 . 2 7 . 5 4 . 2 4 . 9 8.81 8 . 20 0 . 5 0 . 2 3 . 3 3 . 3 0 . 0 0 . 0 0 . 2 1 . 3 0 . 0 0 . 0 0 . 0 0 . 0 3. 17 2 .06 14 .0 15. 2 16 . 1 9 . 9 3 .8 2 .44 10.01 2 .27 9 .32 0 . 6 0 . 3 0 . 0 0 . 0 0 . 0 0 . 0 0 0 0 . 0 0 . 0 0 0 0 . 0 0 . 0 0 . 0 0 . 0 2 . 2 3 .8 0 . 0 0 . 0 2 .8 5 . 0 6 .8 7 .9 0 . 2 3 0.21 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 3 .52 0 . 6 6 0 . 0 9 0 .21 3 .28 0 .61 0 0 8 0 . 2 0 3 .53 0 .08 0 . 0 6 98 .81 XRF TOTAL 3. 15 2 . 0 8 NORMALIZ 0 . 0 0 . 0 0 . 0 0 . 0 0 . 6 1 .0 0 . 0 0 . 0 0 . 8 1 . 4 0 . 9 1.0' 4 . 3 4 . 3 0 . 0 0 0 0 . 0 0 . 0 0 0 0 . 0 0 . 0 0 0 0 . 0 0 . 0 0 . 0 0 . 0 O. 1 0 . 2 0 0 0 . 0 0 . 3 0 . 5 0 . 4 0 . 5 2 5 . 6 18 .0 35 . 8 39 . 6 3 7 . 7 1 .2 XRF TOTAL 3 .26 12 .60 4 4 . 0 NORMALIZ 9 . 4 XRF TOTAL 2 . 25 11 .30 4 6 . 0 5 . 5 XRF TOTAL 3 .42 12 .70 4 0 . 2 NORMALIZ 2 .43 8 . 9 5 4 1 . 7 0 . 2 XRF TOTAL NORMALIZ 8.1 XRF TOTAL 0 . 2 7 6 . 1 0 3 5 . 5 NORMALIZ 12.3 XRF TOTAL 0 . 9 0 5 .75 3 5 . 6 NORMALIZ 4 136 4137 4842 4998 4905 4999 4901 4902 4903 4906 3 0 2 . 5 3 0 5 . 3 A 3 0 6 . 6 A 3 0 9 . 8 A 3 1 0 . 0 5 A 3 1 0 . 5 A 3 1 4 . 5 A 3 1 6 . 8 A 3 1 8 . 8 A 3 2 2 . 6 305 . 3 3 0 6 . 6 309 .8 UDSB PYRT SHPC 3 10.5 SHPC 3 1 0 . 1 5 SILTSTONE BED 3 1 4 . 5 SHPC 3 1 6 . 8 SHPC 3 1 8 . 8 SHPC 322 .6 324 .7 SHPC SHPC 3 .2 6 1 2 1 . 3 3 5 . 5 7 9 . 6 5 74 .04 75 .07 70 .32 75 . 13 7 1 .88 81 .22 76 .28 84 .63 79 . 10 84 .84 79 .44 85 .01 7 9 . 9 6 8 6 . 8 2 82 .51 0 . 0 0 . 0 0 . 0 0 . 0 23 72 7 . 14 6 .69 7.11 6 . 8 0 7.41 6 . 9 6 7 .37 6 . 8 9 7 . 5 0 7 .02 6 . 8 9 6 .48 5 .42 5. 15 12.3 17.8 3 .73 2 . 43 3 .63 2 . 38. 2 .05 1 .37 2 .72 1 .79 2 . 32 1 .52 2 .50 1 .64 2 .56 1 .68 2 .27 1.51 0 . 0 0 . 0 1.51 1 . 40 2 .08 1 .95 4 . 34 4 . 15 1 .56 1 . 47 1 .30 1 . 22 1 .07 1 .00 1 . 12 1 .05 0 . 9 0 O. 86 68 42 7.81 7.32 7 .03 6 . 7 3 3. 10 2.91 0 . 74 0 . 6 9 16 15 0 . 0 0 . 0 O. 14 O. 13 0 . 0 0 . 0 -0 .04 0 . 0 0 . 4 7 - 0 . 0 4 0 .44 0 . 0 0 .74 0.11 0 . 7 0 0 . 1 0 0 . 3 0 . 6 0 . 2 0 . 3 0 . 0 0 . 2 0 . 0 0 .4 0 . 0 0 . 0 0 . 1 0 . 2 2 .24 0 .41 0 . 0 5 0 . 1 5 2 .08 0 . 3 8 0 . 0 5 0 . 1 4 2 .35 0 .41 0 .07 0 . 2 5 2 .20 0 . 3 8 0 . 0 7 0 . 2 3 2 2 . 3 2 .52 14 .30 3 .32 0 .34 5 . 5 0 1.08 0 .02 0 .14 0 . 0 4 37 . 4 5 . 9 XRF TOTAL NORMALIZ 1 .55 1 . 47 0 .01 0.01 2 .55 0 . 3 5 0 . 0 9 0 . 1 3 2.44 0 . 3 3 0 09 0 .12 2 .37 0 . 38 0 . 0 4 0 . 10 2 .23 0 . 3 6 0 .04 0 . 0 9 2 .19 O .37 0 .02 0 .12 2 .05 0 . 3 5 0 .02 0 .11 2 .16 O . 3 7 0 .01 0 . 1 3 2 .02 0 . 3 5 0 0 1 0 . 1 2 2 . 06 0 . 36 0.01 0 . 1 3 1 .94 0 . 34 0 .01 0 .12 1.63 0 . 2 8 0 . 0 3 0 .14 1.55 0 . 2 7 0 . 0 3 O .13 0 . 6 6 0 . 7 7 0 .51 0 . 4 7 0 . 4 2 0 .01 0 . 0 0 .01 0 .02 0 .01 0 . 4 6 0.01 0 . 4 0 0 .01 0 . 0 0 . 0 9 O. 18 0 .01 0 . 0 6 0 . 0 3 27.1 XRF TOTAL 2 7 . 8 NORMAL IZ 98 .81 XRF TOTAL 2 .71 5 .24 NORMAL IZ 9 8 . 8 1 XRF TOTAL 2 . 3 2 5 .44 NORMALIZ 98 .92 XRF TOTAL 1.36 3 . B 3 NORMALIZ 9 8 . 9 0 XRF TOTAL 1.77 5 .51 NORMALIZ 9 9 . 0 2 XRF TOTAL 1.59 5.81 NORMAL IZ 99 .01 XRF TOTAL 1 .63 5 . 8 9 NORMALIZ 9 8 . 9 9 XRF TOTAL 1.83 5 . 2 5 NORMALIZ 9 9 . 0 5 XRF TOTAL 1.49 4 : 5 9 NORMALIZ Page 144 TABLE D D H - C - 1 4 SAMPLE NO. METERAGE LITHOLOGY FROM TO SI02 AL203 F E 2 0 3 / MGO CAO NA20 K20 TI02 MNO P20S BA F E - T O T " (%) PB ZN S 2 - C - T O T A L + S04 4907 A 3 2 4 . 7 327 .8 PRC2 4908 A 3 2 7 . 8 3 2 9 . 0 PRC 1 85 .97 6 .18 78 .92 5 .67 86 .02 5 . 3 0 77 .64 4 . 78 4909 A 3 2 9 . 0 331 .2 PRC4 4910 A 3 3 1 . 2 331 .4 BARITE + LIMESTONE 62 .2 4 9 . 5 57 .4 48 . 7 4911 A 3 3 1 . 4 332 .5 4912 A 3 3 2 . 5 334 .8 PRC2 LIMESTONE 11.1 8 . 0 9 . 3 7 .4 5 . 3 4 . 5 2 . 3 1 . 6 4915 0 A 3 3 2 . 5 3 3 4 . 8 4913 A 3 3 8 . 0 4914 A 3 4 2 . 3 4916 A 3 4 4 . 9 3 4 8 . 2 4917 A 349 .2 4918 A 3 5 0 . 0 4919 A 3 5 3 . 0 3 5 6 . 2 4920 A 3 5 7 . 8 4921 A 3 6 0 . 3 334 .8 PRC2 338 .0 3 4 2 . 3 344 . 9 348 .2 349 .2 3 5 0 . 0 3 5 3 . 0 356 .2 357 .8 3 6 0 . 3 FAULT 86.21 5 .24 79 .24 4 .82 8 6 . 7 1 5 . 7 0 78 .89 5 .19 NOT SAMPLED SHRS+SHPH 79 .56 8 .86 75:69 8 .43 SHPR SHPR FAULT PRC2 PRC 1 SHPR FAULT SHPR 83 .26 7 .24 7 8 . 8 0 6 .85 82 .58 7 .67 77.21 7 .17 3 6 4 . 0 SHPR NOT SAMPLED 84 .88 6.61 76 .99 6 . 0 0 8 5 . 9 9 5 . 8 0 80 .24 5.41 87 .66 6 .67 82 .05 6 .24 NOT SAMPLED 92 .07 3 .87 88 .96 3 .74 83 .26 6 .25 79 .52 5 .97 2 . 0 9 1 . 34 3 .66 2.31 2 . 2 1 . 2 2 . 2 1 .3 1 .0 0 . 5 2 .98 1 .92 2 72 1 . 73 3 . 20 2 .13 2 . 94 1 . 95 3 .03 1 .98 2 . 5 3 1.61 1 . 39 0.91 0.11 0 . 0 7 0 . 0 7 0 . 0 5 3 . 19 2 . 13 1 . 36 1.59 1.25 1.46 0 .02 0 .02 1.20 1.50 0 .08 1.08 1.35 0 .07 1.27 0 . 4 3 0 .02 0 . 1 4 1.17 0 . 3 9 0 .02 0 . 1 3 2 .08 0 . 0 0 .62 0 . 4 9 0 .02 0 13 0 . 5 6 0 . 4 4 0 .02 O 12 2 95 0 . 0 - 0 . 3 ( 2 1 . 5 ) 0 . 0 ( 1 7 . 1 ) 1.2 ( 3 3 . 2 ) 1.0 ( 2 8 . 1 ) 0 . 0 ( 9 9 . 2 ) 0 . 0 ( 7 2 . 2 ) 1 . 10 1 .01 0 8 1 O. 74 2 .66 2 . 4 5 2 . 19 1 .99 0 . 5 0 .4 - 0 . 1 0 . 0 0 .6 0 . 5 0 .04 0 .04 0 .02 0 .02 0 .8 0 .6 0 .34 0 . 3 0. 1 0 . 1 0.1 1 2 0.1 0 9 0.1 0 . 3 0.1 0 . 3 0 .4 0 . 2 0 . 3 0.1 9 . 0 4 . 8 4 .0 0 . 0 0.0 0.0 2 . 0 9 2 .13 0 . 0 1 99 2 .03 0 . 0 0 . 2 0 0 . 4 3 0 .02 O 15 0 .18 0 . 4 0 0 .02 0 .14 2 .96 0 . 0 0.31 O 39 0 02 O 16 0 .28 0 . 3 5 0 .02 0 . 1 5 2.51 0 . 0 2 .32 O 37 0 .02 O 36 2.21 0 . 3 5 0 .02 O 34 0 . 6 5 0 . 0 0 .97 2 .03 0.01 1.92 0 . 3 9 0 .02 0 . 1 5 0 .92 1.92 0.01 1.82 0 . 3 7 0 .02 0 .14 O 94 0 . 0 1.07 1 . 9 9 - 0 . 0 1 1.99 0 .44 0 .02 O 14 1.00 1.86 0 . 0 1.86 0 . 4 1 0 .02 0 . 1 3 1 0 7 0 . 0 1.15 2 .46 0 .08 0.61 0 . 4 9 0 . 0 3 0 . 1 5 1.04 2 .23 0 .07 0 .55 0 . 4 4 0 . 0 3 0 .14 3 .18 0 . 0 0 .68 3.31 0.01 1.40 0 . 3 0 0 .02 0 .12 0 . 6 3 3 .09 0.01 1.31 0 . 2 8 0 .02 0 .11 0 . 6 4 0 . 0 0 .87 1.61 0 . 0 0.81 1.51 0 . 0 1.75 0 . 3 5 0 .01 0 . 1 2 1.64 0 . 3 3 0.01 0 .11 0 . 4 5 0 . 0 0 . 6 5 1.15 0.01 1.18 0 . 2 2 0.01 0 . 1 0 0 .63 1.11 0.01 1.14 0 .21 0.01 0 . 1 0 0 . 1 3 0 . 0 0 .94 2 .84 0.01 1.88 0 . 3 6 0 .02 0 . 1 7 0 . 9 0 2.71 0.01 1.80 0 . 3 4 0 .02 0 . 1 6 0 .14 0 . 0 Page 145 9 9 . 0 7 XRF TOTAL 0 . 0 3 2 .22 5 . 3 0 NORMALIZ 9 9 . 0 2 XRF TOTAL 0 . 0 4 3 . 8 3 4 . 8 0 NORMAL IZ 9 6 . 5 XRF TOTAL 0 .01 12.2 (1 .71(NORMAL I 2 9 9 . 7 XRF TOTAL 0 0 1 5 8 1 5 1 9 NORMAL IZ 114.9 XRF TOTAL 0 . 0 2.21 10 45 NORMALIZ 9 9 . 0 3 XRF TOTAL 0 .01 2 .16 4 . 6 7 NORMALIZ 9 9 . 0 3 XRF TOTAL 0 .01 2 . 9 5 5 18 NORMALIZ 98 91 XRF TOTAL 0 . 0 4 2 .06 4 . 0 6 NORMAL IZ 9 8 . 9 3 XRF TOTAL 0 . 0 4 2 .24 3 . 9 9 NORMAL IZ 9 8 . 9 2 XRF TOTAL 0 . 0 8 2 .32 4 . 8 9 NORMALIZ 9 8 . 9 9 XRF TOTAL 0 . 0 5 3 .42 4 . 2 5 NORMALIZ 9 9 . 0 2 XRF TOTAL 0 . 0 2 1.71 5 . 6 3 NORMAL IZ 9 9 . 1 5 XRF TOTAL 0 . 0 3 1.24 5.51 NORMALIZ 9 9 . 3 3 XRF TOTAL 0 . 0 3 0 . 6 3 3 25 NORMAL IZ 9 8 . 9 2 XRF TOTAL 0 .04 1.63 4 . 6 3 NORMAL I Z TABLE >\.J-<f : D D H - C - 1 4 SAMPLE NO. METERAGE LITHOLOGY FROM TO SI02 AL203 F E 2 0 3 / MGO FE-TOT CAO NA20 K20 TI02 MNO P205 (%) BA PB S 2 -+ S04 C - T O T A L 4940 D A 4922 A 360 . 3 364 .0 3 6 4 . 0 SHPR 3 6 7 . 0 SHPR 7 4 . 7 6 6 .88 71 .92 6 .62 8 9 . 9 6 2 .97 8 6 . 3 8 2 .85 7 . 56 5 . 0 9 1 . 10 1 .06 1.59 0 . 5 5 1.07 0 .53 5 .66 5 .45 2 .87 2 .76 0 .02 0 .02 -0.01 0 . 0 1.99 0 . 4 3 0 . 0 3 O.32 9 8 . 7 5 XRF TOTAL 1.91 0 .41 0 . 0 3 0 .31 0 . 2 6 0 .01 0 .21 2 .42 4 . 2 9 NORMAL IZ 0 .96 O.17 0 .02 O .13 0 .92 0 . 1 6 0 .02 0 .12 0 .07 0 . 0 0 .01 99 .21 XRF TOTAL 0 . 8 5 4 . 2 5 NORMAL IZ 4923 4924 A 367 .0 367 .9 4925 A 37 1.9 4926 A 3 7 5 . 9 4927 A 3 7 9 . 8 4928 A 3 8 1 . 3 4929 A 3 8 2 . 2 4930 A 3 8 5 . 5 367 . 9 371 .9 SHPC PRCS SAMPLE LOST IN TRANSIT 3 7 5 . 9 PRC3 379 .8 PRC3 38 1.3 SHPR 9 1 . 6 8 2 .64 8 8 . 3 0 2.54 8 8 . 7 7 3 .19 8 4 . 9 9 3 .05 8 7 . 7 2 2 .99 8 3 . 8 2 2 .86 7 1.09 11.64 6 9 . 15 1 1 . 32 1 . 50 1.01 382 .2 SILTSTONE 7 2 . 0 3 9 .23 CONGLOMERAT 6 7 . 5 8 8 .66 3 8 5 . 5 SSS 388 .9 SSS 5 7 . 0 5 10.02 5 4 . 6 1 9 . 5 9 5 6 . 5 9 9.71 54. 17 9 29 0 . 43 0 .4 1 2 . 5 3 0 .53 1.69 0.51 2 .63 0 . 5 9 1.76 0 . 5 6 4 . 7 6 O 54 3 .24 0 .53 ,10.35 2.01 6 . 7 9 1.89 3 .59 7 .66 2 . 4 0 7 .33 2 .92 7.81 1.95 7 . 48 1 .96 1 .89 2 . 77 2 .65 3.61 3 . 45 6 .40 6 . 23 1 .47 1 . 38 16.83 16.11 18 . 62 17 .82 -0 .01 0 . 0 0 . 0 O.O 0 .02 0 .02 0 . 0 5 0 . 0 0 . 29 0 . 27 -0 .01 0 . 0 0 . 0 0 . 0 0 . 8 6 0 . 15 0 .02 0 .07 0 . 8 3 0 .14 0 .02 0 . 0 7 0 06 1 .07 O. 19 0 .02 0 . 0 7 1 .02 O. 18 0 .02 0 .07 0 . 0 8 1.19 0 .21 0 .02 O.14 1.14 0 . 2 0 0 . 0 2 0 . 1 3 0 .12 3 .59 0 .61 0 . 0 7 0 .11 3 .49 0 . 5 9 0 . 0 7 0.11 0 .24 2.91 0 . 4 3 0 . 0 3 0 .12 2 .73 0 . 4 0 0 . 0 3 0.11 0 .27 3.32 0 . 4 9 O . 1 0 0.11 3. 18 0 . 4 7 0 . 10 O. 1 1 0 . 1 5 2 .97 0 .48 0 . 0 9 O. 10 2 .84 0 . 4 6 O 09 O . 1 0 O.12 9 9 . 3 0 XRF TOTAL 0 . 0 0 .01 0 . 9 9 3 . 7 3 NORMAL IZ 9 9 . 1 4 XRF TOTAL 0 . 0 0 .01 1.43 4 .30 NORMAL 1Z 9 9 . 1 2 XRF TOTAL 0 . 0 0 . 1 7 1.52 4 . 2 3 NORMALIZ 9 8 . 7 6 XRF TOTAL 0 . 0 3 0 . 3 0 1.64 3 .07 NORMALIZ 9 8 . 8 7 XRF TOTAL 0 . 0 7 0 . 8 8 5 .24 ( 3 . 70 JNORMAL I Z 9 9 . 1 6 XRF TOTAL 0 . 0 0 . 0 2 0 . 7 3 5.21 NORMALIZ 9 9 . 2 9 XRF TOTAL 0 . 0 0 .01 0 . 4 5 5 .22 NORMALIZ END OF HOLE » 388 .9 M Page 146 TABLE A.)-4 DDH-C- 14 SAMPLE NO. METERAGE LITHOLOGY FROM TO SI02 AL203 F E 2 0 3 / MGO CAO NA20 K20 TI02 MNO P205 BA FE-TOT (%) PB ZN S 2 - C - T O T A L + S04 DIAMOND ORILLHOLE 7 9 - C - 2 3 0 . 0 G . I 142 .3 4864 A 143 .5 4865 A 147.3 6 . 1 142 . 3 143.5 147 . 3 FAULT SHRS CASING OVERTHRUST UNITS -MAIN THRUST FAULT 149.7 DOLOMITIC SILTSTONE 73 .14 9 .77 6 9 . 6 0 9 . 3 0 4 3 . 8 6 8 .49 39 .84 7.71 NOT SAMPLED - NOT SAMPLED 89 2 .99 4 .62 0 . 1 0 25 2 . 85 4 . 40 0 . 1 0 04 14.27 2 4 . 9 6 - 0 . 0 2 20 12.96 22 .67 0 . 0 2 . 6 0 O 49 0 . 0 7 0 .14 2 .47 0 . 4 7 0 . 0 7 0 . 1 3 2 .10 0 . 4 0 0.11 0 .42 1.91 0 . 3 6 O . 1 0 0 .38 0 . 2 6 0 . 0 O .16 0 . 0 98 .81 XRF TOTAL 0 . 0 2 2 .04 5 . 0 5 NORMAL IZ 9 9 . 6 3 XRF TOTAL 0 .02 2 . 1 9 8 .48 NORMAL IZ 4866 A 149.7 152.0 SHRS 7 9 . 6 1 8 .38 75 .94 7 .99 85 1 58 2 . 4 9 0 . 0 57 1.51 2 38 0 . 0 2 .36 0 .42 0 .02 O.16 2 .25 0 . 4 0 0 .02 O.15 O.18 0 01 9 8 . 8 7 XRF TOTAL 0 .02 2 . 0 3 4 . 5 5 NORMAL 1Z 152 .0 4451 A 152.2 4452 A 1 5 7 . 0 4453 A 161 .0 152.2 157 .0 FAULT SHRS 161.0 SHPH 165.0 SHPH NOT SAMPLED 7 1 7 2 14.01 7 0 . 8 0 13.83 6 2 . 8 5 18.26 6 2 . 5 6 18.18 6 0 . 6 9 20 82 6 0 . 7 0 20.82 07 8 1 04 93 2 .07 2 04 2 . 4 5 0 . 4 9 2 .42 0 .48 47 3 .10 2 .28 0 . 4 3 20 3 .09 2 .27 0 43 3.41 3.41 1 9 1 O. 15 1.91 0 . 1 5 3 .27 0 .72 0 .02 0 .14 3 .23 0 71 0 .02 O 14 3 .78 0 . 9 8 0 . 0 5 0 . 1 3 3 .76 O 98 0 . 0 5 0 . 1 3 4 43 1.04 0 .02 O.12 4 .43 1.04 0 .02 0 .12 0 . 2 6 0 . 0 0 .31 0 . 0 0 . 3 6 0 . 0 9 8 . 9 6 XRF TOTAL O 07 1.05 2 . 1 3 NORMAL I 2 9 9 . 3 3 XRF TOTAL 0 .01 1.64 1.40 NORMALIZ 9 9 . 6 3 XRF TOTAL 0 .01 1.26 0 . 8 4 NORMAL IZ 4454 A 165 .0 4455 A 168.6 4456 A 17 1.5 4457 A 174.2 4458 A 178.2 4459 A 182.4 4460 A 186.4 168.6 SHPH 17 1.5 SHPH 174.2 SHPH 178.2 SHPH 182.4 SHPH 186.4 SHPH 189.0 FAULT 6 1 . 7 8 20.81 6 1 . 7 8 20.81 6 0 . 7 0 22 .79 6 0 . 2 6 22 .62 65 41 19.61 64 86 19.45 60 .42 21 .17 59 .68 20.91 02 91 6 4 . 4 4 20 46 6. 64 .41 20 .45 4. 6 4 . 6 9 20.02 64 .74 20 .04 38 43 7 2 . 9 9 13 67 4. 7 1 . 8 3 13.45 2. 2 .96 2 .96 1.32 0 . 2 5 1.32 0 . 2 5 11 2.61 O.47 0 . 2 3 27 2.61 0 . 4 7 0 . 2 3 .28 2.71 0 .41 0 .32 .40 2 .7 1 0 . 4 1 0 .32 2 .73 2.71 1.22 0 .22 1.21 0 .22 28 2 .79 0 . 8 6 0 . 4 0 66 2 .77 0 . 8 5 0 . 4 0 02 2 . 4 3 77 2 .39 1.61 0 27 1.58 0 . 2 7 .79 2 .87 .69 2 . 8 3 2 .48 2 .45 0 . 19 0 . 19 Page 147 4 . 3 5 1.00 0 .02 0 . 1 3 4 . 3 5 1.00 0 .02 0 . 1 3 4 .17 0 . 9 8 0 .02 0.11 4 .17 0 .98 0 . 0 2 0 11 3 .99 1.00 0 .02 0 .12 3 . 99 .1 . 00 0 . 02 0 .12 4 .57 1 . 12 0 .02 0 . 1 3 4 .54 1.11 0 .02 0 . 1 3 4 .03 0 . 9 5 0 .02 0 . 1 3 4 . 0 0 0 . 9 4 0 .02 O. 13 3 .14 0 . 7 4 0 .02 O .12 3 .09 0 . 7 3 0 .02 0 .12 4 .52 1.05 0 .02 0 . 1 3 4 . 46 1 .04 0 .02 0 . 1 3 9 9 . 6 4 XRF TOTAL 0 .34 0 . 0 0 .01 1.28 0 . 8 4 NORMALIZ 9 9 . 6 0 XRF TOTAL 0 . 3 3 0 . 0 0 .01 1.27 0 . 6 7 NORMALIZ 9 9 . 5 6 XRF TOTAL 0 .32 0 . 0 0 . 0 1.24 0 . 6 9 NORMALIZ 9 9 . 8 8 XRF TOTAL 0 . 3 8 0 . 0 0 .01 1.27 1.09 NORMALIZ 99 .48 XRF TOTAL 0 .34 0 . 0 0 . 0 1.12 1.47 NORMAL IZ 99 .01 XRF TOTAL 0 . 2 6 0 . 0 0 . 0 0 . 8 5 2 .64 NORMALIZ 99 .64 XRF TOTAL 0 . 4 2 0 . 0 0 .01 1.75 1.42 NORMALIZ T A B L E A - M : D D H - C - 2 3 SAMPLE NO. METERAGE LITHOLOGY FROM TO SI02 AL203 F E 2 0 3 / MGO CAO NA20 K20 TI02 MNO P205 BA PB FE-TOT (%) ZN S 2 - C - T O T A L + S04 4461 D A 186.4 189.0 FAULT 61 .77 21 .56 60 .64 2 1 . 1 6 5 .68 3 . 9 0 2 .50 2 .45 2 .22 0 .17 2 .18 0 .17 4 .62 1 .02 0 .02 0 .12 4 .54 1.00 0 .02 0 .12 0 .42 0 . 0 9 9 . 6 8 XRF TOTAL 0 . 0 1.57 1.84 NORMALIZ 4462 A 189 .0 193.0 SHPH 4463 A 1 9 3 . 0 197.0 SHPH 6 1 . 8 8 20 .35 61 .71 2 0 . 2 9 6 3 . 6 5 19.70 6 3 . 6 3 19.69 7 .58 5 . 2 9 6 .45 4.51 2 .58 1.29 0 .38 4 .28 1.05 0 02 0 .14 2 .57 1.29 0 .38 4 27 1 05 0 .02 0 .14 12 1.60 0 .53 4 . 1 9 1.04 0 .02 0 .12 12 1.60 0 .53 4 . 1 9 1.04 0 .02 0 .12 0 .38 0 . 0 0 . 3 5 0 . 0 9 9 . 5 5 XRF TOTAL 0 . 0 1.73 0 . 8 9 NORMALIZ 9 9 . 4 2 XRF TOTAL 0 .01 1.39 0 . 7 9 NORMALIZ 4464 A 197 .0 201 .0 SHPH 4465 A 2 0 1 . 0 2 0 5 . 0 SHPH 4466 A 2 0 5 . 0 209 .0 SHPH 4467 A 2 0 9 . 0 213 .0 SHPH 6 6 . 0 5 18.18 6 5 . 8 6 18.13 6 8 . 3 8 15.31 68 .11 15.25 6 9 . 0 7 15.46 6 8 . 4 9 15.33 71 .61 14.29 7 0 . 5 3 14.07 5 .66 3 .95 5 .69 3 .96 5. 15 3 .57 4 . 70 3 .24 1.91 1 .90 2 . 35 2 . 34 1.80 0.61 1 .79 0.61 2 . 29 2 . 28 2. 12 2 .22 2 .10 2 . 2 0 1.91 1.64 1.88 1.62 0 . 7 0 0 . 7 0 0 . 7 0 0 . 6 9 0 .66 0 .65 3 .98 0 .94 0 .02 0 .11 3 .97 0 .94 0 .02 0.11 3 . 4 0 0 . 7 5 0 . 0 3 0 . 1 3 3 . 39 0 . 75 0 . 0 3 O. 13 3 .45 0 . 7 3 0 .02 0.11 3 .42 0 .72 0 .02 0 .11 3 .34 0 . 6 9 0 .02 0 .12 3 .29 0 . 6 8 0 .02 0 .12 O 33 0 . 0 0 . 2 7 0 . 0 0 . 2 9 0 . 0 0 . 2 8 0 . 0 9 9 . 2 6 XRF TOTAL 0 . 0 2 1.13 1.24 NORMALIZ 9 9 . 0 3 XRF TOTAL 0 .02 0 . 8 6 1.91 NORMALIZ 9 9 . 0 3 XRF TOTAL 0 .01 1.07 1.97 NORMALIZ 9 8 . 9 8 XRF TOTAL 0 . 0 3 1.02 2 . 5 7 NORMALIZ 4468 A 2 1 3 . 0 217 .0 SHPH 6 4 . 6 5 2 0 . 6 5 6 3 . 5 6 2 0 . 3 0 5 .43 3 . 73 2 . 12 2 .08 1 .20 1.18 0 .42 0.41 4 . 0 8 0 . 9 0 0 .02 0 . 0 9 4 .01 0 . 8 8 0 .02 0 . 0 9 0 . 3 9 0 . 0 9 9 . 5 6 XRF TOTAL 0 .01 1.16 2 . 1 6 NORMALIZ 4469 A 2 1 7 . 0 221 .0 SHPH 4470 A 2 2 1 . 0 2 2 5 . 0 SHPH 447 1 A 2 2 5 . 0 229 .0 SHPH 6 0 . 9 4 22 .04 6 0 . 5 2 21 .89 6 2 . 0 9 20 .52 6 1 . 9 4 20 .47 6 2 . 5 3 2 1 . 0 0 6 2 . 2 8 20 .92 6 .97 4 .84 6 . 8 9 4.81 6 .55 4 . 5 6 2 .56 1.51 2.54 1.50 2 .82 2.81 2.61 2 60 1 .82 1 . 82 1 .08 1 .08 0 .47 4 . 1 3 1.01 0 .02 O.11 0 .47 4 . 1 0 1.00 0 .02 0.11 0 . 5 0 3 .82 0 . 9 8 0 .02 O.11 0 . 5 0 3.81 0 . 9 8 0 . 0 2 O.11 0 . 5 6 4 .17 0 . 9 9 O .02 O. 10 0 .56 4 . 1 5 0 . 9 9 0 . 0 2 0 . 1 0 0 40 O. 37 0 . 0 0 . 0 0 . 3 8 0 . 0 9 9 . 7 6 XRF TOTAL 0 .01 1.38 1.21 NORMAL IZ 9 9 . 5 7 XRF TOTAL 0 .01 1.04 1.32 NORMALIZ 99 .61 XRF TOTAL 0 .01 1.27 1.09 NORMALIZ 4472 D A 2 2 5 . 0 229 .0 SHPH 4473 A 2 2 9 . 0 233 .0 SHPH 4474 A 2 3 3 . 0 235 .5 SHPH 4475 A 2 3 5 . 5 239 .6 SHPH 4476 A 2 3 9 . 6 243 .6 SHPH 4477 A 2 4 3 . 6 246 .9 SHPH 6 5 . 0 0 20 .32 6 4 . 7 8 2 0 . 2 5 6 4 . 3 7 2 0 . 2 6 6 4 . 1 8 2 0 . 2 0 6 5 . 9 4 19.22 6 5 . 6 6 19.14 6 8 . 1 7 15.02 67 .61 14 .90 63 .11 20 .82 6 3 . 0 0 20 .78 6 2 . 8 2 2 2 . 6 6 62 .31 22 .48 5 .62 3 .92 6 . 24 4 . 35 5 . 80 4 .04 5 .97 4 . 14 7 . 18 5.01 5 .62 3 . 9 0 2 .50 0 . 7 0 0 .54 2 .49 0 . 7 0 0 .54 2 . 45 2 . 44 2 . 27 2 . 26 3 . 2 0 3 . 17 2 65 2 .65 2 .34 2 .32 0 . 8 3 0 . 8 3 0 .54 0 .54 0.71 0 .71 0 .68 0 .67 0 . 5 5 0 . 5 5 0 . 6 9 0 . 6 9 2 .26 0 . 5 5 2 .24 0 .55 0 . 5 0 0 . 5 0 0 .44 0 .44 3 .87 0 . 8 9 0 .02 O . 1 0 3 .86 0 . 8 9 0 .02 O . 1 0 3 .83 0 .91 0 .02 0 . 0 9 3 .82 0 .91 O 02 0 . 0 9 3 .96 0 . 8 9 0 . 0 2 0 . 0 9 3 .94 0 . 8 9 0 . 0 2 0 . 0 9 2 .96 0 . 7 6 0 . 0 4 0 .11 2 .94 O .75 0 .04 0.11 3.61 0 .92 0 .02 0 .12 3 .60 0 .92 0 .02 0 .12 4 . 1 5 1.02 0 .02 0.11 4 .12 1.01 0 .02 0 .11 Page 148 9 9 . 5 6 XRF TOTAL 0 . 3 6 0 . 0 0 .02 0 . 9 5 1.14 NORMALIZ 9 9 . 5 5 XRF TOTAL 0 . 3 6 0 . 0 0 .01 1.06 1.19 NORMALIZ 9 9 . 4 2 XRF TOTAL 0 . 3 5 0 . 0 0 .01 1.12 1.26 NORMAL IZ 9 9 . 0 4 XRF TOTAL 0 . 2 6 0 . 0 0 .02 0 . 9 2 2 . 3 5 NORMALIZ 99 .64 XRF TOTAL 0 . 3 4 0 . 0 0 .02 1.23 1.10 NORMALIZ 9 9 . 8 6 XRF TOTAL 0 . 3 9 0 . 0 0 .02 1.09 1.12 NORMALIZ TABLE A J - f D D H - C - 2 3 SAMPLE METERAGE LITHOLOGY SI02 AL203 F E 2 0 3 / MGO CAO NA2C K20 TI02 MNO P205 BA PB ZN S 2 - C - T O T A L NO. FROM TO FE-TOT (X) +S04 2 4 6 . 9 2 4 9 . 0 FAULT 4478 A 2 4 9 . 0 252 .2 PRC 1 NOT SAMPLED 8 5 . 3 3 5 .75 82 . 17 5 . 54 2 .24 0 . 8 9 1.51 0 86 2 .58 2 . 48 0 . 2 0 O. 19 1.62 0 . 2 5 0 .02 0 . 1 0 1.56 0 . 2 4 0 .02 0 . 1 0 0 . 2 0 0 . 0 98 .98 XRF TOTAL 0 .01 0 . 9 3 4 . 1 9 NORMALIZ 4479 A 2 5 2 . 2 2 5 6 . 2 2 5 8 . 0 4480 A 260 6 4481 A 2 6 5 . 7 256 .2 PRC 1 2 5 8 . 0 2 6 0 . 6 265 . 7 PRC 1 FAULT PRC3 2 6 7 . 0 PRC 1 9 0 . 9 0 3 . 2 0 8 7 . 8 2 3 .09 POOR RECOVERY -NOT SAMPLED 9 0 . 8 7 3 26 8 7 . 5 3 3 .14 8 3 . 2 9 7 .02 7 8 . 8 9 6 .65 1.48 0 . 5 3 1.00 0.51 1 .85 1 .79 NOT SAMPLED 1.82 0 . 8 0 1.23 0 .77 3.91 0 . 9 9 2 .59 0 .94 1.01 0 . 9 7 1 .05 0 . 9 9 0 . 10 0 . 10 O. 12 O. 12 O. 16 O. 15 0 .91 0 . 1 7 0 .02 0 .08 0 .88 O 16 0 . 0 2 0 .08 0 . 1 0 0 . 0 1.08 O . 1 9 O 01 0 .08 1.04 0 . 1 8 0.01 0 .08 0 . 1 5 0 . 0 2 . 0 0 0 . 3 7 0 .01 0 .11 1.89 0 . 3 5 0.01 0 . 1 0 0 .31 0 . 0 99 .24 XRF TOTAL 0 .02 0 . 7 7 3 . 6 6 NORMALIZ 99 .24 XRF TOTAL 0 .01 1.05 3 .72 NORMALIZ 98.91 XRF TOTAL 0 .02 2 . 3 7 4 .72 NORMAL IZ 4482 A 267 O 27 1 .0 PRC 1+SHPC 8 1 . 9 8 6 .54 76 .84 6 .13 2 .26 1.54 1 . 48 1.44 3 . 9 3 3 .68 0 . 10 0 .09 2 .03 O. 36 0 . 0 6 0 . 1 3 1.90 0 .34 0 . 0 6 O.12 0 . 2 0 0 . 0 9 8 . 9 3 XRF TOTAL 0 . 0 3 1.41 6 .27 NORMALIZ 4483 D A 2 6 7 . 0 2 7 1 . 0 4484 A 2 7 4 . 5 4485. A 2 7 5 . 6 4486 279 .4 4487 A 2 8 1 . 9 4488 A 2 8 2 . 8 271 .0 274 5 275 6 PRC 1 *SHPC 79 .34 7 .89 7 4 . 9 6 7 .45 2 .47 2 .00 1 .63 1 .89 4 .21 3 .98 SHPC POOR RECOVERY NOT SAMPLED DOLOMITIC SILTSTONE 279 .4 SHPC 28 1.9 SHOL 282 .8 PYRT 2 8 6 . 0 SHPC 71 57 9 . 4 9 6 8 . 8 3 9 . 1 3 7 7 . 7 9 8 . 8 0 7 3 . 3 0 8 .29 75 22 6.31 6 3 . 2 7 5.31 47 .6 37 . 3 2 .52 4 .04 1.70 3 .89 3 .03 2.24 2 . 0 0 2.11 10.64 1.31 6 .26 1.10 3. 1 2 .4 48 . 5 2 6 . 5 7 2 . 9 3 5 .98 6 6 . 6 2 5 .46 0 . 8 0 . 6 1 1 .08 2 . 00 7 .08 1.83 8 03 7 . 72 3.91 3 . 68 2 . 10 1 . 77 3 .8 3 . 0 4 . 44 4 .06 0 .07 0 .07 O. 1 1 0 . 1 1 0.11 0 10 0 .97 0 .82 0 .4 0 . 3 O. 10 0 . 0 9 2 .35 0 . 4 0 0 . 0 3 0 . 1 3 2 .22 0 . 3 8 0 . 0 3 0 .12 0 .21 0 . 0 2 . 49 2 . 3 9 2 .42 2 . 28 1 .69 1 . 42 0 . 9 0 . 7 1 . 86 1 . 70 0 . 4 3 0 . 0 7 O .15 0 .41 0 . 0 7 O.14 0 . 2 6 0 . 0 0 . 4 1 0 .04 0 .14 0 . 3 9 0 .04 O .13 0 . 3 3 0 .01 0 . 2 8 0 . 0 9 O.12 0 .24 0 .08 O . 1 0 0 . 2 8 0 . 7 3 0 . 2 0.1 0.1 0.1 O. 1 0 . 1 0 . 4 2 0 . 0 5 0 . 3 2 0 .07 0 .12 0 . 2 9 0 .06 O.11 0 . 5 9 0 . 0 5 9 8 . 8 9 XRF TOTAL 0 .01 1.51 5 .55 NORMALIZ 9 8 . 9 0 XRF TOTAL 0 .01 1 .47 3 .87 NORMALIZ 9 8 . 8 9 XRF TOTAL 0 . 0 8 1.81 5 .45 NORMALIZ 9 8 . 7 3 XRF TOTAL 4 . 6 8 9 . 2 5 4.71 NORMALIZ 105.5 XRF TOTAL ( .33 2 4 . 6 (2 .51(NORMALIZ 9 8 . 9 0 XRF TOTAL 0 . 3 6 7 .34 4 . 3 6 NORMALIZ 4489 A 2 8 6 . 0 4490 A 289 .2 4491 A 2 9 3 . 2 289 .2 SHPC 293 .2 SHPC 297 3 SHPC 79 .41 8 .16 74 94 7 . 7 0 78 .28 8 .12 7 3 . 7 9 7 .65 7 9 . 9 5 8 .62 7 6 . 0 0 8 .19 3 .03 1.87 2 .00 1.76 3 .25 1.58 2 .14 1.49 2.41 1.30 1.60 1.24 3 .48 0.11 2 .28 0 . 3 9 0 .04 0.11 3 .28 0 . 1 0 2 .15 0 . 3 7 0 .04 0 . 1 0 0 . 5 3 0 .02 4.51 0 . 1 3 2 .36 0 . 4 2 0 .04 0 .12 ' 4 . 2 5 0 .12 2 .22 0 . 4 0 0 .04 0.11 0 . 6 0 0 . 0 2 3.61 0 .06 2 .33 0 . 4 5 0 . 0 3 0 .12 3 .43 0 . 0 6 2.21 0 . 4 3 0 .03 0.11 0 . 4 9 0 .01 98 .88 XRF TOTAL O . 1 0 2 . 1 4 4 . 7 5 NORMALIZ 98.81 XRF TOTAL 0 . 2 7 2 . 2 4 4 . 6 5 NORMAL IZ 98 .88 XRF TOTAL 0 .08 1.69 4 . 4 3 NORMALIZ Page 149 TABLE A)~4: D D H - C - 2 3 SAMPLE METERAGE LITHOLOGY SI02 AL203 F E 2 0 3 / MGO CAO NA20 K20 T I02 MNO P205 BA PB ZN S 2 - C - T O T A L NO. FROM TO FE-TOT (%) + S04 4492 A 2 9 7 . 3 4493 A 2 9 8 . 3 4499 D A 2 9 8 . 3 2 9 8 . 3 SILTSTONE CONGLOMERAT 7 3 . 5 0 68 . 89 300 .8 SHPR 300 .8 SHPR 8 1 . 1 5 76 . 74 81.21 76 .88 7.51 4.61 7 .04 3 .02 8 . 0 0 2 .69 7 57 1.78 7 .74 2 .94 7 .33 1.95 2 .07 8 .14 0 . 1 0 2 .19 0 . 4 4 0.11 0 .14 1.94 7 63 0 . 0 9 2 .05 0 . 4 1 O . 1 0 O.13 1.22 2.91 0 .11 2.21 0 . 4 4 0 .02 0 .14 1.15 2 .75 0 . 1 0 2 09 0 . 4 2 0 .02 0 . 1 3 1.09 2 69 0 .14 2 .24 0 . 4 5 0 . 0 3 0 .12 1.03 2 .55 0 . 1 3 2 .12 0 . 4 3 0 . 0 3 0.11 0 . 5 0 0 .07 0 .51 0.01 0 . 5 3 0.01 98 .81 XRF TOTAL 0 . 2 5 2 . 6 9 5 .17 NORMAL IZ 9 8 . 8 9 XRF TOTAL O . 2 3 1.81 4 . 6 9 NORMALIZ 9 8 . 6 5 XRF TOTAL 0 . 0 5 2 . 2 9 4 .57 NORMALIZ 4494 A 3 0 0 . 8 4495 A 3 0 3 . 5 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 304 .9 3 0 7 . 3 3 0 8 . 4 484 1 A 3 1 1 . 5 3 1 5 . 0 317 . 1 319 . 1 3 2 0 . 6 303 .5 304 .9 307 .3 308 . 4 3 10.0 SHPR DOLOMITIC SILTSTONE UDSB UDSB UDBS 3 1 0 . 0 3 1 1 . 5 UDBS 3 1 5 . 0 SHPR 317.1 319. 1 3 2 0 . 6 322 .6 UDBS UDBS UDBS UDSB 3 2 2 . 6 3 2 5 . 0 UDSB 3 2 5 . 0 3 2 6 . 0 SHDL 4840 A 3 2 6 . 0 327 .4 8 0 . 5 0 74 .95 56 .64 51 .42 3 .8 2 . 8 0 . 0 0 0 0 . 3 5 .4 1 .4 8 .8 81 .36 75 .08 2 . 1 1 .6 1 . 1 0 . 8 2 . 6 2 . 1 6 . 9 9 . 9 2 . 0 2 .4 17.9 36 .2 SILTSTONE CONGLOMERAT 71 .52 6 5 . 7 2 7 .82 3 60 7 .28 2 .34 6 .38 5 .59 5 .79 3 .55 0 . 0 0 . 0 22 .4 8 . 9 4 . 3 3 4 6 .78 3 89 6 .26 2.51 5 . 0 7 . 7 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 0 ' 18 .0 0 . 0 0 . 0 14.9 0.1 0 .2 17.4 8 .57 5 .06 7 .87 3 .25 1 .08 1 .01 2 .95 2 .75 0 .78 26 .86 0 .7 1 24 .38 0 . 7 0 . 5 0 . 0 0 . 0 0 0 0 . 0 0.0 0.0 1.61 1 . 49 0 . 0 0 . 0 0 . 1 0 . 1 0 . 1 0 . 1 71 49 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 0 1 . 98 1 . 83 7 . 3 5 . 5 3 .8 2 . 7 6 .6 5 . 3 1 .9 2 . 7 0 . 7 1 . 4 6 17 5 .67 0 . 22 0 . 2 0 0.01 0.01 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 O. 27 0 25 3 .6 2 .6 2 . 0 1 .6 3 .6 5 . 1 0 . 0 0 . 0 O. 52 0 .48 2 01 O . 4 6 0 .04 0 . 1 6 1.87 0 . 4 3 0 .04 0 . 1 5 2 .06 O. 58 O. 29 O. 53 1.87 0 . 5 3 0 . 2 6 O 48 1.23 0 . 0 3 2 . 1 5 0 .02 98 84 XRF TOTAL 0 . 2 3 2 83 4 66 NORMALIZ 9 9 . 7 2 XRF TOTAL 0 . 0 7 2 .76 5 .99 NORMA L IZ 2 .6 1 .9 0 . 0 0 . 0 0 0 0 . 0 0 . 0 0 . 0 8 .4 6 . 3 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 3 .77 4 .38 1 5 . 1 0 4 2 . 8 15.5 XRF TOTAL NORMALIZ 0 . 0 XRF TOTAL 3 9 . 9 43 . 9 43 . 3 2 . 8 0 7 . 8 5 4 1 . 9 2 72 0 . 3 XRF TOTAL 5 . 0 8 3 8 . 6 NORMAL IZ 2 .06 5 . 2 0 3 7 . 3 1.4 XRF TOTAL NORMALIZ 2 .32 0 . 4 7 0 . 0 3 O.16 2 .14 0 . 4 3 0 . 0 3 0 . 1 5 2 .46 0 . 0 3 9 8 . 8 7 XRF TOTAL 0 . 0 2 3 .45 3 . 8 9 NORMALIZ 0 . 6 0 .4 1 .3 1.0 0 9 1 3 0 . 3 0 .4 0 . 8 1 .6 0 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 2 0 .2 0 . 3 0 .2 0 . 3 0 . 2 0 . 1 O. 1 0 . 0 0 . 0 0 . 1 0 . 2 4 0 . 4 37 .4 36 . 7 14.6 15.4 6 2 2 .88 5 . 7 5 3 6 . 6 12 .5 XRF TOTAL NORMALIZ 3 . 1 0 6 . 6 8 3 8 . 4 9 . 5 XRF TOTAL NORMALIZ 12 .9 XRF TOTAL 3 .32 5 . 9 5 3 7 . 3 NORMALIZ 13 .5 XRF TOTAL 2 . 4 0 8 . 1 0 3 7 . 6 NORMALIZ 6 . 6 XRF TOTAL 3 .18 16 .20 4 2 . 6 NORMALIZ 1 .24 6 . 3 5 29 .2 19 .6 XRF TOTAL NORMALIZ 3.24 0 . 6 6 0 . 0 5 0 . 2 1 2 .98 0 .61 0 . 0 5 0 . 1 9 2 .76 0 . 3 5 98 .71 XRF TOTAL 0 . 8 4 4 . 3 9 2 . 3 5 NORMALIZ Page 150 TABLEA . / -4 : D D H - C - 2 3 SAMPLE METERAGE LITHOLOGY SI02 AL203 FE203/ MGO CAO NA20 K20 TI02 MNO P205 BA PB ZN S2- C-TOTAL NO. FROM TO FE-TOT (%) +S04 4266 327.4 328.3 UDSB 15.2 26.5 0.5 0.9 9.8 0.0 0.0 2.6 4.5 0.0 0.0 1 .9 3.3 0.0 0.0 0.2 0.4 20.4 16 . 1 3.40 8.02 27.2 XRF TOTAL NORMALIZ 4267 328 . 3 330.4 UDBS 0.0 0.0 0. 1 1 .5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. 1 38 .6 3.32 7.95 40.9 XRF TOTAL NORMALIZ 4268 330.4 332.4 UDSB 1 . 1 1 .0 0.0 0.0 7.5 O. 1 O. 1 2.2 2.0 3 . 4 3.0 0.5 0.4 0.0 0.0 0.2 ,0.2 37.5 2.38 6.96 39.0 7.5 XRF TOTAL NORMALIZ 4269 332.4 334.3 UDBS 3.8 6.5 0.0 0.0 3.8 0.0 0.0 2.3 3.9 0.0 0.0 1 .5 2.6 0.0 . 0.0 0.2 0.3 39.4 2 16 5.92 35.4 7.8 XRF TOTAL NORMAL IZ 4270 334.3 336.6 UDBS 3.3 4.6 0.0 0.0 0.7 1 .0 2.6 3 . 6 0.0 0.0 1 .8 2.5 0.0 0.0 0.4 0 6 36.9 1 . 36 5.62 36 7 8.8 XRF TOTAL NORMAL IZ 4271 4272 336.6 338.7 UDBS 338.7 340.3 UDBS 0.8 1 . 1 0.0 0.0 0.0 0.0 8 5 7.0 0. 1 O. 1 1 .3 1 .9 0.4 0.5 2 . 3 3.4 2.6 3.5 0.3 0.4 0 3 0.4 1 .8 2.7 0.0 0.0 0.0 0.0 O. 1 0.1 37.0 0.3 0.4 32.9 2.42 7.60 38.7 1.94 6.35 35. 1 4.3 XRF TOTAL NORMALIZ 11.3 XRF TOTAL NORMALIZ 4273 4274 340.3 342.4 UDBS 342.4 344.3 UDBS 0.0 0.0 0.0 0.0 6 . 7 5 . 2 0.0 0.0 0.0 0.0 3.0 3 . 3 0.0 0.0 0.0 0.0 0.0 •0.0 1 .8 2.0 0.0 0.0 0.4 0.4 38.7 0.0 : 0.0 43.7 0.62 7.52 39.5 0.60 6.05 40.6 6.4 XRF TOTAL NORMALIZ 0.0 XRF TOTAL 4275 4276 344.3 346.3 UDBS 346.3 348.1 UDBS 0.0 0.0 3 . 1 5.6 0.0 0.0 6.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 41.0 O. 1 0.2 33.5 0.86 7.02 41.0 0.91 9.05 37.8 0.0 XRF TOTAL 6.3 XRF TOTAL NORMALIZ 4277 348.1 350.4 UDBS 0.0 0.0 1 . 3 1 .3 7.0 0.0 0.0 0.0 0.0 0.2 0 2 0.0 0.0 38. 1 3.84 11.60 40.7 3.0 XRF TOTAL 4278 350.4 352.6 UDBS 1 .3 1 . 1 0.0 0.0 0.0 0.0 0.5 0.4 0.0 0.0 0.2 0.2 38.2 1.72 9.85 38.3 8.5 XRF TOTAL NORMALIZ 4279 352.6 353.2 UDBS 8.8 14.9 0.0 0.0 13.5 0.3 0.5 3.6 6. 1 0.2 0.3 0.0 0.0 0 0 0.0 12.4 2 . 48 14.10 34.5 13.6 XRF TOTAL NORMALIZ 4839 A 353 . 2 355 .3 SHPR 72 .00 7 .69 7 .52 4 . 29 3 .97 0 . 15 2 .48 0. 48 0 05 0 .20 98.83 XRF TOTAL 65 .57 7. .00 4 .79 3 91 3 .62 0 . 14 2 26 0. 44 0, .05 0 18 2 .30 0. .03 0. .01 5 .72 3.99 i NORMALIZ 4280 355. 3 357 .3 PYRT 27 9 0. 0 -- 0. 4 4 .3 0 .0 0 2 0 0 0. 0 32.8 XRF TOTAL 47 . 3 0 0 16 8 0 7 7 .3 0 .0 0 3 0 0 0 0 4 8 0. 20 0. 28 22 , 4 NORMAL IZ 4281 357 . 3 359 4 PYRT 34. .0 0 5 -- 0. 3 4 . 1 0 .0 0. 9 0. 0 0. 1 39.9 XRF TOTAL 54 9 0. 8 10 9 0. 5 6 .6 0. 0 1 . 5 0. 0 0. 2 5. 5 0. 24 1 . 64 17 . 3 NORMALIZ Page 151 TABLEA.»-4: DDH-C-23 SAMPLE NO. METERAGE LITHOLOGY FROM TO SI02 AL203 F E 2 0 3 / MGO F E - T O T NA20 K20 TI02 MNO (%) P205 BA PB ZN S 2 -+ S04 C - T O T A L 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4496 4938 4497 4498 4500 4951 4952 3 5 9 . 4 361 .3 UDBS 3 6 1 . 3 3 6 3 . 3 UDBS 3 6 3 . 3 3 6 5 . 3 UDBS 3 6 5 . 3 367 .3 UDBS 3 6 7 . 3 369 .3 UDBS 3 6 9 . 3 3 7 3 . 3 3 7 5 . 3 377 . 3 378 .8 A 3 7 8 . 9 0 A 3 7 9 . 4 A 383 . 1 A 3 8 3 . 9 A 3 8 6 . 5 A 3 8 7 . 8 37 1.3 UDBS 3 7 1 . 3 3 7 3 . 3 UDBS 375 .3 UDBS 3 7 7 . 3 UDBS 378 .8 UDBS 379 .4 PYRT 378 .95 D0L0M1TIC SILTSTONE 383.1 SHPC 4 . 8 5. 1 5 .2 6 . 1 4 . 6 5 .2 5 . 3 6 . 6 6 . 0 12.6 8 . 0 17 . 2 5 . 5 7 .3 5 .2 10. 1 6 .6 13.7 3 8 7 . 2 72 .60 6 6 . 7 7 7 5 . 8 6 65 . 74 74 . 15 67 .60 3 8 3 . 9 SILTSTONE CONGLOMERAT 64.. 99 54 .56 3 8 6 . 5 SHPC 3 8 7 . 8 PRC 1 3 9 1 . 8 PRC 1 81 . 15 7 4 . 2 3 8 9 . 2 7 8 5 . 0 3 87 .53 83 .67 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 8 .66 7 .96 5 . 54 4 . 8 0 8 .38 7 .64 4 .33 3 .64 8 .66 7.92 3 .58 3.41 5.02 4 .80 2 • 1 2 .4 2 . 5 2 . 6 3 .2 0 . 7 4 . 0 4 . 1 2 . 14 1 .38 13.03 7 . 90 3 .22 2 .05 2 5 . 2 14 . 8 3 .87 2 .48 1.91 1 .27 2 . 5 3 1 .69 1 .6 1 . 7 0 . 0 0 . 0 1 . 3 1 .5 1 . 1 1 .4 O. 1 0 . 2 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 0 0 . 0 0 . 0 0 . 0 3.61 3 .32 1 .73 1 .50 4.41 4 .02 1 .83 1 .54 1 .61 1 .47 0 .92 0 .88 0.81 0 . 77 6 . 6 7 . 1 7 . 1 8 . 3 5 .8 6 .6 4 . 8 ' 5 . 9 1 .6 3 . 4 1 5 3 .2 6 . 2 8 . 3 2 .4 4 . 7 2 . 3 4 8 2 .9 5 . 5 8 .34 7 .67 1 .52 1 . 32 2 . 32 1 .95 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 16 0 . 15 0 . 0 6 0 . 0 5 5 .95 0.11 5 .42 0 . 1 0 0 . 6 9 0 .58 1.26 0 . 1 5 1.15 0 .14 2 .27 - 0 . 0 3 2 .16 0 . 0 1 . 4 1.5 1.9 2 . 2 1 . 5 1 . 7 2 . 0 2 . 5 0 . 8 1 . 7 0 . 7 1.5 1 . 4 1 .9 0 . 9 1 .8 0 .6 1 .3 0 . 3 0 .6 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .4 0 . 4 0 .2 0 .2 0 .2 0 . 2 0 . 3 0 .4 0 .2 0 .4 0 . 3 0 . 7 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 1 0 . 2 3 9 . 8 2 . 1 0 5 . 9 5 3 4 . 2 4 0 . 0 0 . 0 6 6 . 3 8 3 4 . 4 38 .4 0 . 1 0 8 . 4 0 3 5 . 3 38 .2 2 .40 0 . 5 6 0 . 0 6 0 . 3 0 2 .2 1 0 . 5 2 0 . 0 6 0 .28 38 .8 3 7 . 8 3 9 . 0 2 .01 1 . 29 1 . 23 0 .01 0.01 0.81 O . 3 6 0 . 0 6 0 .15 0 . 7 0 0 . 3 1 0 . 0 5 0 . 1 3 1.91 0 . 5 0 0 . 0 5 0 . 2 0 1.74 0 . 4 6 0 . 0 5 O.18 0 .58 0 . 3 1 0 .04 0 .14 0 . 4 9 0 . 2 6 0 . 0 3 0 .12 1.61 0 . 4 6 0 .02 0 .12 1.47 0 . 4 2 0 .02 0.11 0 . 9 6 0 .21 0 .01 0 . 0 9 0.91 0 . 2 0 0 .01 0 . 0 9 1.48 0 . 2 9 0 .01 0.11 1.41 0 . 2 8 0.01 0.11 14.8 XRF TOTAL NORMALIZ 14.4 XRF TOTAL NORMALIZ 13.4 XRF TOTAL NORMALIZ 0 .08 7 .75 34 .6 13.5 XRF TOTAL NORMALIZ 37 .0 0 .08 7 . 10 34 O 3 6 . 2 0 .07 5 . 3 5 3 2 . 6 4 3 . 9 0 12 3 .72 34 .1 0 .07 5 . 1 0 3 5 . 5 0 .06 6 . 7 5 3 3 . 7 0 . 57 0 . 0 5 .88 3 7 . 0 8 . 7 XRF TOTAL NORMAL IZ 10.5 XRF TOTAL NORMALIZ 13.1 XRF TOTAL NORMALIZ 8 . 5 XRF TOTAL NORMAL IZ 9 . 5 XRF TOTAL NORMALIZ 7.1 XRF TOTAL NORMAL IZ 0 .01 2 .84 0.01 0 . 0 2 . 1 8 0.01 1.82 0.01 0 .01 2 . 2 7 1.63 0.01 0 . 1 5 0 .61 0 . 0 0 . 0 2 0 . 3 5 0 . 0 0 .01 9 8 . 8 3 XRF TOTAL 2 . 2 4 5 .44 NORMALIZ 9 9 . 0 9 XRF TOTAL 11 .0 (3 .63 INORMALIZ 9 8 . 8 8 XRF TOTAL 2 . 8 4 5 . 7 0 NORMALIZ 100 .43 XRF TOTAL 14.7 (3 .31(NORMAL IZ 98 .91 XRF TOTAL 3 .31 5 . 4 9 NORMALIZ 9 9 . 1 9 XRF TOTAL 1.17 4 . 2 3 NORMALIZ 9 9 . 0 8 XRF TOTAL 1 .46 4. 19 NORMALIZ Page 152 TABLE A.Hf:. D D H - C - 2 3 SAMPLE NO . METERAGE LITHOLOGY FROM TO SI02 AL203 F E 2 0 3 / MGO FE-TOT CAO NA20 K20 (%) TI02 MNO P205 BA PB ZN S 2 -^ 0 4 C - T O T A L 4953 A 3 9 1 . 8 392 .9 PRC 1 4954 A 3 9 2 . 9 395 .7 PRC2 4975 D A 3 9 2 . 9 395 .7 PRC2 4955 A 3 9 5 . 7 3 9 7 . 0 PRC4 495G A 3 9 7 . 0 398 .5 PRC2 + BARITE J 4957 A 3 9 8 . 5 400.1 PRC2 4958 A 400 .1 403 .2 PRC2 4959 A 4 0 3 . 2 406 .4 PRC 1 406 .4 4 0 7 . 5 PRC 1 END OF HOLE a 4 0 7 . 5 M 8 8 . 8 9 4 .12 84 .84 3 .93 85 .56 5 .98 78 .89 5.51 85.21 6 .06 79 .07 5 .62 88 .48 3 .63 8 0 . 7 0 3.31 5 5 . 0 3 45 .84 4 . 79 3 .99 8 4 . 7 7 6 .2 1 76 .4 1 5 . 6 0 8 5 . 7 6 3 .73 8 1 . 4 5 3 .54 87 .27 3 . 9 9 84 .03 . 3 .84 2 . 1 0 0 . 6 9 1.72 -0 .01 1.26 1.40 0 . 6 6 1.64 0 . 0 1.20 2 .19 1.47 2 .03 0 .04 1.20 1.41 1.36 1.87 0 .04 1.11 2 .38 1.44 1.82 0 . 2 0 1.33 1.54 1.34 1.69 0 . 1 9 1.23 2 .12 1.71 2 .33 0 .02 0 .32 1.35 1.56 2 .13 0 .02 0 . 2 9 2 .98 1 .70 33 . 16 1 .03 0 .38 1 .74 1.42 27 .62 0 . 8 6 0 .32 3 .02 1.29 2 .22 0 .04 0 . 8 0 1.90 1.16 2 . 0 0 0 .04 0 .72 2 .20 2 .27 3 .67 - 0 . 0 2 1 1.46 2 .16 3 .49 0 . 0 1 16 10 2 .05 0 .67 3 .63 - 0 . 0 2 1.16 1.38 0 . 6 5 3 . 5 0 0 . 0 1.12 0 .24 0.01 0 .11 0 . 2 3 0 .01 O 10 0 . 2 9 0 . 0 0 .42 0 .02 O. 13 0 . 3 9 0 .02 O. 12 1 .96 0 . 0 0 . 4 3 0 .02 0 .12 0 . 4 0 0 .02 O.11 1.67 0 . 0 0 . 4 0 0 .02 0 15 0 . 3 6 0 .02 O. 14 3 .12 0 . 0 0 .92 0 .12 0 . 4 1 0 . 7 7 0 . 1 0 0 .34 5 .4 0 . 0 0 . 4 4 0 . 0 2 0 .17 0 . 4 0 0 .02 O .15 2 .88 0 . 0 0 . 2 2 0 .04 0 . 0 9 0 .2 1 0 .04 0 . 0 9 0 . 2 7 0 . 0 O .23 0 .02 0 10 O. 22 0 .02 O. 10 0 . 79 0 . 0 9 9 . 1 3 XRF TOTAL 0 .01 1.13 4 . 5 5 NORMALIZ 9 9 . 0 4 XRF TOTAL 0 .07 2 . 1 9 5 . 0 7 NORMALIZ 99 .01 XRF TOTAL 0 .04 2 .28 4 . 8 0 NORMALIZ 9 9 . 1 8 XRF TOTAL 0 . 0 5 2 . 7 3 4 . 2 2 NORMALIZ 100.52 XRF TOTAL 0 .01 6 . 0 8 5 .58 NORMALIZ 9 8 . 9 8 XRF TOTAL 0 .07 3 . 0 0 5 .64 NORMALIZ 9 9 . 1 2 XRF TOTAL 0.01 1 .22 4 . 9 8 NORMALIZ 9 9 . 1 0 XRF TOTAL 0/11 1.40 2 . 8 5 NORMALIZ POOR RECOVERY - NOT SAMPLED Page 153 TABLE O D H - C - 2 3 SAMPLE METERAGE LITHOLOGY SI02 AL203 F E 2 0 3 / MGO CAO NA20 K20 TI02 MNO P205 BA PB ZN S 2 - C - T O T A L NO. FROM TO FE-TOT {%) +S04 DIAMOND DRILLHOLE 8 0 - C - 0 6 0 . 0 3 .7 3 .7 171.5 171 .5 171.9 171 .9 387 .3 4883 A 3 8 7 . 3 390 .9 4884 A 3 9 0 . 9 391 .2 SHPC D0L0M1TIC SILTSTONE CASING OVERTHRUST UNITS - NOT SAMPLED MAIN THRUST FAULT - NOT SAMPLED GUNSTEEL UNITS & MINERAL I ZED ZONE 79 .01 6 .59 2.31 2 .96 5 .63 7 2 . 8 7 6 .08 1.49 2 .73 5 .19 6 2 . 9 4 8 . 0 0 2 .02 6 .53 16.52 5 9 . 4 5 7 .56 1.33 6 .17 15.60 NOT SAMPLED 0 . 0 9 1 . 78 O. 39 0 . 0 5 0 . 13 0 .08 1.64 O.36 0 . 0 5 0 .12 0.01 2 .54 0 . 3 7 0 .08 0 . 1 7 0.01 2 .40 0 . 3 5 0 . 0 8 O.16 1.71 0 . 0 0 . 5 6 0 . 0 9 8 . 9 4 XRF TOTAL 0 . 0 2 . 1 9 5 . 4 9 NORMALIZ 9 9 . 18 XRF TOTAL 0 . 0 1.15 5 .18 NORMALIZ 4885 A 391 2 4886 A 394 5 4887 A 3 9 7 . 8 394 .5 SHPC 397 8 SHPC 4 0 2 . 0 PRC 1 8 0 . 4 7 8 . 4 0 2 .46 1.89 2 . 7 5 0 .07 75 .32 7 .86 1.61 1.77 2 .57 0 . 0 7 8 0 . 2 5 9 .24 2 .47 1.89 1.91 0 . 0 5 74 .4 1 8 .57 1.60 1.75 1.77 0 . 0 5 8 8 . 1 7 4 .19 1.96 1.31 1.81 0 -16 84 48 4.01 1.31 1.26 1.73 0 . 1 5 2 .33 0 .42 0 . 0 3 0 . 1 1 2 .18 O .39 0 . 0 3 0 . 1 0 2.52 0 . 4 5 0 .02 0 .14 2 .34 0 .42 0 .02 0 . 1 3 20 0 .22 0 .02 O 09 15 0 .21 0 . 0 2 0 . 0 9 9 8 . 9 3 XRF TOTAL 0 . 5 8 0 . 0 0 .01 1.89 5 6 1 NORMALIZ 9 8 . 9 4 XRF TOTAL 0 . 5 8 0 . 0 0 . 0 2 1.87 6 . 4 7 NORMALIZ 9 9 . 1 3 XRF TOTAL 0 . 2 8 0 . 0 0 .02 1.25 4 . 0 3 NORMALIZ 4888 A 402 O 4889 A 4 0 6 . 2 4890 A 4 0 8 . 8 4891 A 4 1 1 . 2 4896 D A 4 11.2 4892 A 4 1 2 . 9 406 2 PRC 1 408 .8 SHPH 4 11.2 SHPH 4 12.9 SHPH 4 12.9 SHPH 4 17.6 SHPH 8 7 . 1 6 5 .15 2 .14 1.01 1.71 0 .08 82 .61 4 .88 1.42 0 . 9 6 1.62 0 .08 66 28 18.43 5 .99 2 .04 1.00 0.11 64 .31 17.88 4 . 0 7 1.98 0 .97 0.11 66 .31 20 .39 5 . 0 0 1.88 0 . 4 5 0 . 1 5 6 4 . 1 5 19.73 3 .38 1.82 0 .44 0 . 1 5 6 3 . 8 0 19.06 5 . 4 5 5.21 0 .46 0 .17 62 .44 18 65 3 .73 5 . 1 0 0 . 4 5 0 . 1 7 6 6 . 0 7 19.17 5 .87 2 .74 0 . 4 5 0 . 1 5 65 .01 18.86 4 .04 2 . 7 0 0 .44 0 . 1 5 6 3 . 7 0 19.84 6 .22 3 .89 0 .52 0 1 5 6 3 . 0 6 19.64 4.31 3 .85 0 .51 0 . 1 5 1.4 1 O.27 0 .02 0 .11 1 .34 0 . 2 6 0 .02 O. 10 4 . 4 5 0.91 0 .02 O.12 4 .32 0 .88 0 . 0 2 0 .12 4 .39 O.88 0 .02 0 .11 4 .25 0 . 8 5 0 .02 0 . 1-1 4 .27 0 .94 0 . 0 3 0 .12 4 .18 0 .92 0 03 O.12 3 .98 0 . 9 0 0 .02 0 .12 3 .92 0 . 8 9 0 .02 O. 12 O 59 0 . 0 0 .01 0 . 5 9 0 . 0 0 . 0 2 9 9 . 0 6 XRF TOTAL 1.58 4 . 5 4 NORMALIZ 9 9 . 3 5 XRF TOTAL 3 . 7 5 0 9 9 NORMALIZ 4 .17 0 . 9 3 0 . 0 3 O. 4 .13 0 . 9 2 0 . 0 3 0 . 9 9 . 5 8 XRF TOTAL 0 . 8 0 0 . 0 0 .01 3 .37 0 94 NORMAL IZ 99 .51 XRF TOTAL 0 . 5 5 0 0 0 . 0 6 2 .62 0 . 9 8 NORMALIZ 9 9 . 4 7 XRF TOTAL 0 . 5 6 0 . 0 0 .01 2 . 4 9 0 .81 NORMALIZ 9 9 . 5 6 XRF TOTAL 0 .51 0 . 0 0 . 0 2 2 . 0 0 0 . 7 6 NORMALIZ END OF HOLE 0 4 17.6 M Page 154 TABLE A.M: D D H - C - 0 6 NOTES (1) The f i r s t l i n e of r e s u l t s f o r each sample i s the u n a l t e r e d X-ray f l u o r e s c e n c e (XRF) a n a l y s e s w i t h i r o n as Fe203 f o r th e n o n-ore samples* o n l y . F e - t o t a l was done o n l y by ICP f o r the ore samples* and i n c l u d e d i n the second l i n e . The s e c o n d l i n e i n c o r p o r a t e s a n a l y s e s c a r r i e d out by d i f f e r e n t t e c h n i q u e s and a d j u s t s the XRF r e s u l t s t o prod u c e a n o r m a l i z e d t o t a l of 100.0%. (S2-) + (S04) a r e c a l c u l a t e d from TOTAL SULPHUR as per TABLE At.f-£ • NOTE ( 1 ) . Note a l l low s u l p h i d e / s u l p h a t e samples were ashed p r i o r t o XRF a n a l y s i s . (2) S u f f i x e s t o sample numbers : 'D' = d u p l i c a t e sample 'A' = sample ashed p r i o r t o X-ray f l o u r e s c e n c e a n a l y s i s (3) Q u a n t i t a t i v e a n a l y s e s a r e r e c o r d e d w i t h 2 d i g i t s a f t e r the d e c i m a l . Semi-quant 1 t a t i v e a n a l y s e s a r e r e c o r d e d w i t h 1 d i g i t a f t e r t he d e c i m a l . A n a l y s e s s u s p e c t e d of h a v i n g s u b s t a n t i a l e r r o r s a r e r e c o r d e d i n (ro u n d e d b r a c k e t s ) The number of d i g i t s a f t e r the decimal a l l o w e d by the c a l c u l a t e d p r e c i s i o n ( s e e appendix .ej ) i s v a r i a b l e and i n most c a s e s 2 d i g i t s Is s t a t i s t i c a l l y u n r e a s o n a b l e . However the d i g i t s a r e r e t a i n e d f o r use i n d i s t i n g u i s h i n g a n a l y t i c a l q u a l i t y and to a v o i d c u m u l a t i v e r o u n d i n g error's when the d a t a i s used i n c a l c u l a t i o n s . (4) B l a n k s i n d i c a t e no v a l u e s due to a n a l y t i c a l problems. (5) Method of a n a l y s e s and l a b o r a t o r y used i n t h i s t a b l e a r e as f o l l o w s . (See 'text f o r d e t a i l s ) S i 0 2 A1203 Fe203/ MgO CaO Na20 K20 Ti02 MnO P205 BaO Pb Zn S - t o t C - t o t F e - t o t Non-ore* Samples Ore * Samples XRF UBC XRF UBC XRF UBC XRF UBC XRF UBC ICP ACME XRF UBC XRF UBC XRF UBC XRF UBC XRF UBC XRF UBC XRF UBC XRF UBC XRF UBC XRF UBC XRF UBC XRF UBC XRF UBC XRF UBC XRF UBC XRF UBC ICP ACME AA ACME ICP ACME AA ACME LECO PSA LECO PSA LECO PSA A b b r e v i a t i o n s used : Methods of a n a l y s e s XRF = X-ray f l u o r e s e n c e s p e c t r o m e t r y ICP = Induced c a t i o n argon plasma a n a l y s i s AA = Atomic a b s o r p t i o n s p e c t o m e t r y LECO = Leco f u r n a c e a n a l y s i s L a b o r a t o r i e s : UBC = U n i v e r s i t y of B r i t i s h Columbia / G e o l o g i c a l S c i e n c e s ACME * Acme A n a l y t i c a l L a b o r a t o r i e s L t d . , Vancouver,B.C. PSA = P a c i f i c S o i l A n a l y s i s Inc.. Vancouver,B.C. * Ore samples = (200R.4000,4100,4200)-series sample numbers Non-ore samples = (4400,4800,4900,5000)-series sample numbers. Page 155 TABLE A-M : N 0 T E S TABLE A.I-5- SOME PARTITIONED MAJOR ELEMENT ANALYSES 1/11111111111//11111/1/111//1111111111111/11111/111 See notes at end for explanation of table set-up. SAMPLE NO. METERAGE FROM TO LITHOLOGY PYRITIC TOTAL FE FE SULPHIDE S04 TOTAL SULPHUR (%) ORGANIC TOTAL CARBON CARBON LOI DIAMOND DRILLHOLE 78-C-04 4931 A 494 1 D A 4932 A 4933 A 4934 4935 A 493G 4937 A 4942 4943 A 4949 D A 4944 A 4945 A 4893 A 4894 A 203R 0.0 9 . 1 9 . 1 13.0 17.0 21.6 22 .4 23.0 25.5 27 . 1 29.3 29.3 33.5 34 .2 36.8 39.3 40.7 41.6 42.5 9. 1 13.0 13.0 17.0 21.6 22 4 23.0 25 . 5 27 1 29 . 3 33.5 33 . 5 34 . 2 36 . 8 39 3 40.7 41.6 42 .5 44 . 6 SHPR SHPR SHPR SHPR PYRT SHPR PYRT SHPR PYRT SHPR SHPR SHPR SHPR SHDL FAULT SHPR UDBS CASING 2 . 25 2 . 66 3 . 93 0.76 1-0.5) 1 .57 20. 5 1 . 57 21.9 1 92 1 . 64 POOR RECOVERY -(3.65) (-0.73) 8 . 3 NOT SAMPLED 1 . 16 6 0 3 .56 3 .55 4.81 2 .69 34 .2 4 .02 24 . 2 3.21 22 . 1 3.53 2 . 48 NOT SAMPLED 2.87 4.52 0.65 9.44 0.7 1 1.29 14.3 11.4 1.6 2.63 1.68 0.72 6.1 10.0 22.1 2.85 0.48 3.18 0.50 4.73 0.57 1.08 0.39 (2.28) (0.06) 2.05 O 27 24.6 0.1 2 10 0.28 26.9 0.1 2.56 0.39 2.07 0.36 3 .01 3 . 35 4 . 92 1.21 (2.30) 2.14 24 . 6 2.19 26 . 9 2.69 2 . 19 4 . 74 1 . 14 11.9 1 .92 17.4 4 . 38 3 . 78 (4.77) (4.67) 5.31 4 . 59 4 . 96 (2.14) 4 . 88 (2.58) 4 . 39 (2.13) 5 . 48 4.91 5.53 4. 15 (4.39) 5. 14 8 .67 8 .06 9 . 99 8.93 9.07 8 . 53 9.92 8.52 8.52 11.27 9.89 9.41 P a g e 156 TABLE A.IS DDH-C-04 SAMPLE NO. METERAGE LITHOLOGY FROM TO PYRITIC TOTAL FE FE SULPHIDE S04 TOTAL SULPHUR (54) ORGANIC TOTAL CARBON CARBON LOI 204R 205R 4895 A 4850 A 4946 A 4947 A 4948 A 4950 A 4851 A 4900 D A 4852 A 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4899 D A 4 4 . 6 4 6 . 6 49 . 2 49 . 4 5 7 . 6 67 .4 72 . 1 75 .4 77 .9 79 . 3 81 .2 8 1.2 84 .2 87 .2 91 .4 95 .4 99 .4 103 . 4 107 . 4 111.4 113.7 116 .9 1 19.6 121 .9 121.9 END OF 4 6 . 6 4 9 . 2 49 .4 5 7 . 6 67 . 4 72 . 1 75 . 4 7 7 . 9 79 . 3 8 1.2 84 .2 84 . 2 87 2 91 .4 95 .4 99 . 4 103 . 4 107 . 4 111.4 113.7 116 .9 1 19 .6 121.9 125.9 125.9 HOLE » UDBS UDBS SHPC PRC 1 PRC 1 SHPC FAULT SHPC PRC2 PRC 1 PRC 1 PRC 1 SHPH SHPR SHPC SHPC SHPC SHPC SHPC ( 15. 1) 4 . 8 POOR RECOVERY -( 5 . 4 7 ) 0 . 5 9 1 .09 0 . 9 6 NOT SAMPLED "1 . 56 13.1 2 1 . 7 4 . 9 8 .7 NOT SAMPLED 2 . 24 0 . 7 5 0 . 6 3 0 . 8 6 2 .09 2 . 26 1 . 72 1 . 30 1 . 33 1 . 30 1 .23 1 .29 2 .05 SSS + CONGLOMERAT 0 .51 SSS 0 .42 SSS 0 . 2 3 125.9 M SILTSTONE CONGLOMERAT SHPR 3 . 24 1 . 44 1 .56 1 .82 1 .68 2 .83 1 .33 1 . 12 1 .42 3.31 3 . 0 0 3 .05 1 . 90 1 . 93 2 . 16 2 . 10 2 .47 3 . 13 2 .06 1 .66 1 . 40 Page 157 7 . 50 0 .82 1 . 30 1 . 16 1.81 2 .66 0 .88 0 . 7 2 1 .00 2 .42 2.61 2 .00 1.51 1 .56 1 . 50 1 .42 1 .55 2 . 5 0 0 . 5 9 0 . 5 0 0 . 2 7 12. 1 2 7 . 2 0 . 4 3 O. 28 O. 20 O. 28 0 . 33 0 . 9 0 0 . 3 5 0 . 5 0 0 . 16 0 . 40 0 . 4 6 0 . 52 1.14 0 . 8 7 O. 35 0 . 38 0 .21 0 . 23 0 . 15 0 . 16 0 . 16 25. 7 17 . 8 7 . 64 0.91 1 . 37 1 . 25 1 . 92 2 . 96 1 .00 O. 89 1 .05 2 . 5 5 2 . 76 2 . 17 1 . 89 1 .85 1 .62 1 .55 1 .62 2 .58 0 . 6 4 0 . 5 5 O. 32 2. 75 2 .09 4 . 22 3 .58 3 .62 3 . 98 5 .03 5 . 46 5 .38 3 .53 3 24 3 . 6 8 2 . 19 3 . 8 9 5. 12 4 .69 5 . 73 6 . 78 6 . 2 3 3. 13 4 . 2 8 6 . 4 6 3 . 7 6 3 . 6 5 7 . 54 5 . 94 6 . 46 8 .06 8 .80 8 .07 6 .42 4 . 84 5 . 7 5 7 . 83 8 . 73 9 .41 8 .62 9 . 7 8 12 . 27 1 1 . 39 5 . 5 2 8 . 5 4 21 .90 12 .75 12 . 77 TABLE KhS DDH-C-04 SAMPLE NO . METERAGE FROM TO LITHOLOGY PYRITIC TOTAL FE FE SULPHIDE S04 TOTAL SULPHUR (54) ORGANIC TOTAL CARBON CARBON LOI DIAMOND DRILLHOLE 7 9 - C - 0 3 4868 4046 4849 4848 4869 4870 487 1 4898 0 A 4872 A 4873 4874 4875 4876 4877 4878 4879 4880 4881 4897 D A 4882 A 0 . 0 9 . 1 46 .7 47 . 3 170. 1 171.9 172.3 175 . 1 180. 8 184.1 184 . 1 187 . 1 189 1 190.6 192.0 196 .0 199.4 202 .7 205 .7 208 .8 2 1 2 . 6 2 1 2 . 6 2 1 7 . 0 END OF 9 . 1 4 6 . 7 4 7 . 3 170. 1 171 .9 172 .3 175 . 1 180. 8 184 . 1 187 . 1 187 . 1 189. 1 190.6 192 O 196 .0 199.4 202 . 7 205 . 7 208 .8 212 .6 2 1 7 . 0 2 1 7 . 0 221 .0 HOLE » CASING GUNSTEEL DOLOMITIC SILTSTONE UDSB GUNSTEEL ( SILTSTONE CONGLOMERAT SHRS PRC2 PRC2 SHPR SHPR SHPR PRC 1 BRECCIA SHPH SHPH SHPH SHPR SHPR SHPC SHPR SHPR SHPR 2 2 1 . 0 M UNITS 1.21 UNITS 19.0) 1 .04 1 . 28 0 . 9 3 0.91 1 . 14 1 . 12 1 .30 2 .28 2.71 1 . 49 1.71 1 . 48 2 .02 1 . 83 1 . 14 1 .00 1 . 35 1 . 29 NOT SAMPLED 8.4 2 1.40 NOT SAMPLED 16.4 2. 15 1 .96 1 . 49 1 .47 1 .63 1 .52 1 .50 2 .83 6 . 35 4 .37 5 . 7 3 5 . 13 4.01 2.61 1 .47 1 . 72 1 . 94 2 . 2 3 Page 158 30. 1 1.21 1 .69 1 .08 1 .05 1 . 33 1 .30 1 . 50 2.81 3.11 1 .73 1 .97 1 .73 2 .33 2 . 12 1 .32 1 . 19 1 .56 1.50 O. 39 1 1 3 2 . 39 1 . 23 0 . 39 0 49 O. 25 O. 27 0 . 4 1 0 . 4 4 0 .92 0 .42 0 . 2 9 0 . 2 6 0 . 2 6 O. 20 O. 68 1 .01 1 .08 1 .45 1 .53 3 3 . 9 2 .01 2 . 10 1.21 1.21 1.41 1 . 39 1 .64 2 .96 3 . 42 1 .87 2 .07 1 .82 2 .42 2 . 19 1 . 55 1 . 53 1 .92 1 . 98 9 . 3 6 3. 17 4 .88 6 .14 4 4 1 6 . 4 0 ( 5 . 3 5 ) ( 5 . 2 1 ) 5. 18 4 . 5 0 3 . 4 3 7 .66 1 .24 ( 1 . 1 8 ) ( 0 . 9 9 ) 1 .37 1 .99 3 .68 5. 74 4 .97 4 .67 4 . 52 3 .52 32 .61 5 16 8 . 9 9 1 1 . 32 11.31 8 . 2 6 7 .94 7 .26 5 .98 21 .74 6.21 6.21 6 . 18 6 .71 7 .60 8 76 8.11 7 .53 4 23 7 .62 TABLE A.IrS n n H - C - 0 3 SAMPLE METERAGE LITHOLOGY PYRITIC TOTAL SULPHIDE SD4 TOTAL ORGANIC TOTAL LOI NO. FROM TO FE FE SULPHUR CARBON CARBON <%) 4960 A 4961 A 4962 A 4963 A 4964 A 4965 A 4986 0 A 4966 A 4967 4968 4969 4970 497 1 4972 4973 A 4974 A 0 . 0 6 .4 1 18.5 120.9 123.8 127 .8 132.3 133.5 136.5 139.6 14 1.7 14 1.7 144 . 7 148.7 149.6 153.6 157.6 161.6 165.6 169.6 173.8 177.8 182.5 6 . 4 1 18.5 120.9 123 . 8 127 .8 132 3 133.5 136 .5 139 . 6 14 1.7 144.7 144.7 148 7 149 6 153 6 157 .6 161 .6 165 . 6 169.6 173.8 177 . 8 182.5 186 . 3 FAULT SHPH SHPH SHPH FAULT SHPH SHPH FAULT SHPH SHPH SHPH FAULT SHPH SHPH SHPH SHPH SHPH SHPH FAULT SHPH SHPH DIAMOND DRILLHOLE 7 9 - C - 1 4 CASING OVERTHRUST UNITS - NOT SAMPLED MAIN THRUST FAULT - NOT SAMPLED 1 .60 0 .74 1.11 NOT SAMPLED O. 78 1 .26 NOT SAMPLED O. 74 1 . 30 0 .92 NOT SAMPLED O. 76 0 . 9 9 O. 70 1 .35 1 .50 0 . 8 0 NOT SAMPLED 0 . 9 5 0 . 9 5 5 . 15 4 . 14 4.81 4 .96 5 03 3 .55 4 . 33 3 .50 4 73 4 . 57 3 49 3 .78 3 .64 3. 17 5.02 4 . 52 Page 159 1 . 84 0 . 8 5 1 . 29 0 .92 1 . 46 0 . 8 6 1 . 49 I 07 O. 88 1.15 0 .83 1 .56 1 .75 0 .92 1 . 10 1.11 0 . 2 9 O. 24 0 . 24 0 . 23 0 . 22 0 . 37 O. 32 O. 37 O. 28 O. 30 0 . 3 0 0 . 3 0 O. 29 0 . 32 0 . 2 6 0 . 2 5 1 .94 0 . 9 3 1 . 37 1 .00 1 . 53 0 .98 1 .60 1 . 19 0 .98 1 . 25 0 . 9 3 1 . 66 1 .85 1 .03 1 . 19 1 . 19 2 .13 1 . 72 1 . 16 1 . 76 2 2 1 0 . 9 9 0 . 8 3 0 . 8 0 1 . 18 1 . 43 1 .05 0 .68 1 .00 1 .88 1 . 10 1 .46 1 .05 0 . 8 6 0 . 8 5 6 . 84 6 . 39 5 .88 5 . 3 8 5 .88 5 . 99 5 . 94 6 . 10 5 . 34 5 . 67 6 . 0 0 5 . 8 8 6 . 33 5 . 55 5 .32 5 . 3 3 TABLE A . / - 5 : D D H - C - 1 4 SAMPLE NO . METERAGE FROM TO LITHOLOGY PYRITIC FE TOTAL FE SULPHIDE S04 TOTAL SULPHUR (%) ORGANIC TOTAL CARBON CARBON LOI 4976 4997 D 4867 4977 4978 4979 4980 498 t 4982 4983 4984 4985 4987 5000 D 4988 4989 4990 499 1 4939 186.3 186.3 190.3 190.4 195.3 196.4 197 . 1 201 . 1 205. 1 209. 1 212 0 213 .4 2 1 5 . 3 216 . 1 2 1 6 . 9 219 . 1 224 .5 226 .7 229 .8 229 .8 231 .7 2 3 5 . 0 A 236 .2 239 . 3 A 2 3 9 . 8 0 190. 3 190. 3 190. 4 195.3 196.4 197 . 1 201 1 205 . 1 209 . 1 2 12 .0 2 13 4 2 1 5 . 3 2 16.1 2 1 6 . 9 219.1 224 .5 226 .7 229 8 23 1 . 7 231 .7 235 0 236 . 2 239 . 3 240. 1 2 3 9 . 8 9 SHPH SHPH FAULT PRC 1 PRC4 PRC 1 PRC 1 PRC 1 PRC 1 SHPC FAULT SHPC FAULT SHPC FAULT SHPC FAULT SHPC SHPR SHPR SHPR PYRT SHPR SHOL PYRITE LAMINATIONS 1 . 13 1 . 24 NOT SAMPLED 0 .94 ( 2 . 4 1 ) ( 1 .84) 0 . 9 5 O. 95 0 .86 0 . 9 0 NOT SAMPLEO 1.11 NOT SAMPLED POOR RECOVERY -NOT SAMPLED 1 .62 NOT SAMPLED 1.21 3 .86 2 .89 3 . 56 23 . 4 2 .63 ( 1 5 . 1 ) 2 2 . 5 4 . 28 4 . 19 1.61 1.12 O. 73 1 . 39 1 . 33 1 . 20 1 . 59 1 .93 1 . 30 1 .43 1 .08 2 . 77 2 .13 1 .09 1 . 10 0 . 9 9 1 .04 NOT SAMPLED 1 . 85 2 . 2 9 5 .03 3 .97 4 .96 26 .4 2.81 11.1 24 . 1 Page 160 1 .49 4 .58 3 .44 4.11 2 8 . 0 3.21 17.6 2 6 . 9 0 . 3 2 0 . 3 0 0 . 59 2 . 20 1 . 53 1 . 70 O. 46 0 . 29 0 15 1.32 0 . 2 2 1.90 0 .24 0 . 34 0 . 3 6 0 . 3 7 0 . 4 0 O. 1 O. 35 0 . 3 O. 1 1.41 1 . 53 1 . 28 3 51 2 . 64 1 . 66 1 . 25 1 . 09 1 .09 1 . 39 O . 76 1 .98 1 .60 4 .70 3 56 4 . 24 28 .0 3 .33 17.7 29 . 9 4 08 5 .19 5 .05 4 . 82 0 . 9 0 1 .05 5 .01 6 76 5 66 5.21 5 . 7 7 5 . 24 6 .01 5 . 32 5 .62 5 .61 5 . 6 7 7 . 27 14.14 10. 35 7 .44 7.61 7 . 38 11 .83 10. 50 7 . 8 9 5 .64 8 .82 4 . 6 5 10.11 4 . 7 0 9 . 4 5 5 . 5 8 11 .26 ( 3 . 4 8 ) 5 . 2 6 9 . 3 9 ( 3 . 3 0 ) ( 2 . 3 1 ) 2 3 . 1 6 TABLE A.)-.5 D D H - C - 1 4 SAMPLE NO . METERAGE ,FROM TO LITHOLOGY PYRITIC TOTAL FE FE SULPHIDE S04 TOTAL SULPHUR ORGANIC TOTAL CARBON CARBON LOI 4992 4993 4904 4994 4995 4996 4847 4846 41 18 4845 4844 4 1 19 4 120 4 121 4122 4 123 4124 4125 4 126 4 127 4 128 4129 4843 4130 4131 A 240.1 A 241 1 A 2 4 3 . 4 0 A 245.1 249 .7 251 .9 252 .7 255 . 1 2 5 7 . 5 A 2 5 8 . 5 A 2 5 9 . 0 5 2 6 0 . 0 261 .8 2 6 3 . 6 266 . 3 2 6 8 . 5 2 7 0 . 9 273 . 4 275 . 1 277 .6 2 8 0 . 0 282 .4 A 2 8 4 . 8 2 8 8 . 3 290 .8 241 . 1 245. 1 243 .45 249 . 7 251 .9 252 .7 255. 1 257 . 5 258 . 5 2 6 0 . 0 2 5 9 . 3 0 26 1 . 8 263 . 6 266 . 3-268 . 5 270 .9 273 . 4 275. 1 277 .6 280. 0 282 .4 284 . 8 288 . 3 290 8 292 . 5 SHPR SHPR C A L C I S I L T LAMINATION SHPC SHPR SHPR SHPR SHPR UDBS SHPR SILTSTONE BED UDBS PYRT UDSB UDSB UOSB UDSB UDSB UDSB UDSB UDSB UDSB SILTSTONE CONGLOMERAT UOSB UDSB 2.31 1 .69 1.91 1 . 63 2 . 30 2 .63 1 .56 3.02 4 . 3 5 . 5 0 2 . 57 ( 1 3 . 2 ) ( 2 4 . 7 ) ( 1 6 . 2 ) ( 1 0 . 5 ) ( 9 . 5 ) 17 .5 ( 2 3 . 7 ) ( 2 4 . 4 ) ( 2 0 . 5 ) 10. 3 ( 9 . 6 ) 0 . 5 5 ( 1 6 . 9 ) ( 1 7 . 7 ) 2 . 2 0 2.51 4 . 1 3 2 . 18 2 . 79 3 .56 3 .48 4 . 33 4 . 5 7 .74 4 . 57 10.8 21 .8 13.7 9 . 5 9 . 1 17.7 21 .2 2 1 . 5 18.0 10.3 8 . 3 2 .06 14 .0 15.2 Page 161 2.72 2 .03 2 . 20 1 . 99 2 . 70 3 .09 2 .06 3 .69 7 .0 7 .03 3.14 18 . 3 3 2 . 9 23 . 7 16.6 15.8 26 .8 35 . 9 36 .4 3 5 . 3 18.8 16.7 0 . 6 7 26 . 1 26 .2 0 .32 O. 32 O. 22 O. 34 0 . 39 0 . 44 0 .51 0 . 6 8 24 .0 1 . 47 1.81 12 .9 3 . 0 19 . 2 26 .0 28 . 5 16 . 6 8 . 0 6 . 8 7 . 0 2 5 . 2 2 4 . 2 2 .47 17 .9 19.8 2 83 2 .14 2 28 2 . 10 2 . 8 3 3 .24 2 .23 3 . 92 15 0 7 . 52 3 . 74 22 . 6 33 . 9 30 . 1 2 5 . 3 25 . 3 32 . 3 38 . 6 3 8 . 6 37 . 6 27 . 2 24 . 8 1 . 50 32 . 1 32 . 8 4 . 32 4 . 28 O. 22 5 . 3 3 5 .23 4 . 24 5 .13 5 .43 5.01 5 . 34 4 .88 1.77 ( 3 . 0 8 ) 4 . 10 8 . 9 5 9 .11 10.66 8 . 94 9 . 40 8 .72 9 .96 10.54 8 . 44 7 .68 2 .08 4 .94 0 20 TABLE A./-5: D D H - C - 1 4 SAMPLE METERAGE LITHOLOGY PYRITIC TOTAL SULPHIDE S04 TOTAL ORGANIC TOTAL LOI NO. FROM TO FE FE SULPHUR CARBON CARBON (%) 4132 4133 4 134 4135 4136 4137 4842 4998 4905 4999 4901 4902 4903 4906 4907 4908 4909 4910 491 1 4912 4915 D 4913 4914 4916 292 .5 294 .4 296 9 299 .3 302 .5 305 .3 A 306 .6 A 309 .8 A 310 .05 A 310 .5 314 .5 316 .8 318 .8 322 .6 324 . 7 327 .8 329 O 33 1 . 2 331 .4 332 .5 332 .5 334 .8 3 3 8 . 0 342 . 3 344 .9 294 .4 296 .9 299 . 3 302 .5 305 .3 3 0 6 . 6 309 .8 310 .5 310 .15 314 .5 316 .8 318 .8 322 .6 324 . 7 327 .8 3 2 9 . 0 33 1 . 2 33 1 . 4 332 .5 334 . 8 334 . 8 338 .0 342 . 3 344 . 9 348 . 2 UDSB UDBS "UDBS UDBS UDSB PYRT SHPC SHPC SILTSTONE BED SHPC SHPC SHPC SHPC SHPC PRC2 PRC 1 PRC4 ( 18. 1) ( 1 0 . 3 ) ( 4 . 2 ) ( 4 . 2 ) ( 12 .5 ) ( 1 9 . 8 ) 1 64 1 .60 0 .72 1 . 19 1 .02 1 . 16 1 . 29 1 .04 0 . 6 5 1 .53 ( 5 . 1 ) BARITE+LIMESTONE ( 2 . 2 ) LIMESTONE ( - 0 . 5 ) PRC2 0 .07 PRC2 1.04 FAULT NOT SAMPLED SHRS + SHPH 1 . 38 SHPR 1.36 SHPR 1.33 16 . 1 9 . 9 4 . 1 3 .8 12.3 17.8 2 . 43 2 . 38 1 . 37 1 .79 1 .52 1 .64 1 .68 1.51 1 . 34 2.31 1 . 2 1 . 3 0 . 5 1 .92 1 .73 2 . 1 3 1 .95 1 .98 27 .6 16.6 7 . 9 7 .8 21 .8 2 5 . 5 1 .96 1 . 86 0 .82 1.41 1 . 26 1 . 34 1.51 1.21 0 . 76 1 . 77 5 .88 2 . 49 ( - 0 . 5 7 ) 0 . 0 9 1 . 19 12.6 25 .0 27 . 7 27 .8 15.6 2 . 3 0 . 7 5 O. 46 0 . 54 0 . 35 O. 33 0 . 2 9 0 . 32 0 . 28 1 . 46 2 . 0 6 6 . 28 3 . 3 2 . 8 2 .07 1 . 76 1.61 0 . 4 6 1.58 0 . 6 5 1.57 0 . 7 5 3 1 . 8 25 .0 17.1 17.1 27 .0 26 . 3 2 .21 2.01 1 .00 1 . 53 1 . 37 1 . 44 1 .62 1 30 1 . 25 2 .46 7 . 98 3 . 60 O. 36 0 .78 1 . 78 1 . 76 1 .80 1 . 82 0 . 23 5 .50 4 .22 5 . 24 5 .44 3 . 8 3 5.51 5.81 5 . 8 9 5 . 2 5 4 . 59 5 . 30 4 .80 1.71 5 . 19 10 .45 4 .67 5 . 18 4 .06 3 . 9 9 4 .89 8.01 9 .17 8 .84 8 . 10 8 . 46 9 . 14 8 . 1 5 6 . 49 7.51 7 .78 2 . 58 6 . 46 2 8 . 3 2 7 . 5 6 8 . 20 7 .68 7 . 39 8 . 2 6 Page 162 TABLE Kt-S D D H - C - 1 4 SAMPLE NO . METERAGE FROM TO LITHOLOGY PYRITIC TOTAL FE FE SULPHIDE S04 TOTAL SULPHUR (%> ORGANIC TOTAL CARBON CARBON LOI 4917 A 4918 A 4919 A 4920 A 4921 A 4940 D A 4922 A 4923 4924 4925 4926 4927 4928 4929 4930 348 .2 349 .2 3 5 0 . 0 3 5 3 . 0 356 .2 357 .8 360. 3 360. 3 364 .0 3 6 7 . 0 367 .9 3 7 1 . 9 3 7 5 . 9 379 .8 381 .3 382 .2 385 .5 349 .2 3 5 0 . 0 3 5 3 . 0 356 .2 357 .8 360. 3 364 .0 364 .0 367 .0 367 . 9 37 1 . 9 375 . 9 379 . 8 38 1 . 3 382 .2 3 8 5 . 5 388 . 9 FAULT NOT SAMPLED PRC2 PRC 1 SHPR FAULT SHPR SHPR SHPR SHPR SHPC PRC3 PRCS PRCS SHPR SILTSTONE CONGLOMERAT SSS 1 .02 ( 1 09) ( 0 . 7 9 ) NOT SAMPLED ( 0 . 4 6 ) 1 . 32 1 . 86 0 . 6 9 SAMPLE LOST IN 0 .82 SSS 1 . 19 1 . 17 1 . 15 4.01 O. 54 0.31 1 .61 0.91 0 . 0 7 0 . 0 5 2 . 13 5 .09 1 .07 TRANSIT 1.01 1 . 69 1 . 76 3 .24 6 . 7 9 2 .40 1 .95 1.20 2 .22 1.26 0 . 4 5 0 . 9 3 0 .31 0 .54 0 . 0 9 1 .54 0 . 10 2 .24 0 . 1 8 0 . 8 0 0 . 0 5 0 . 9 5 0 .O4 1.37 0 . 0 5 1.43 0 . 0 9 1 . 47 0 . 1 7 5 .05 0 . 1 9 0 .62 0 .11 0 . 3 6 0 . 0 9 1 .94 1.41 1 .03 0 .57 1 . 57 2 . 30 0 .82 0 . 9 6 1 . 39 1 . 46 1 .53 5.11 0 . 6 6 O. 39 5 .38 3 . 73 4 .25 5 .63 5.51 3 . 2 5 4 . 63 4 . 2 9 4 . 2 5 3. 73 4 . 30 4 . 23 1 . 39 3 .07 ( 3 . 7 0 ) 5 .21 5 . 2 2 7 . 17 8 . 3 3 8 . 3 2 5 .00 7 . 47 8 . 73 6 . 53 5 . 0 0 5 . 8 0 6 .00 7 . 33 10. 19 15 .76 17 .87 END OF HOLE » 3 8 8 . 9 M Page 163 TABLE A./xS: D D H - C - 1 4 SAMPLE METERAGE LITHOLOGY PYRITIC TOTAL SULPHIDE S04 TOTAL ORGANIC TOTAL LOI NO. FROM TO FE FE SULPHUR CARBON CARBON (%) DIAMOND DRILLHOLE 7 9 - C - 2 3 4864 4865 4866 4451 4452 4453 4454 4455 J A 4456 A 4457 4458 4459 4460 4461 0 A 4462 A 4463 A 4464 A 4465 A 4466 A 0 . 0 6 . 1 142.3 143.5 147 . 3 149 . 7 152 .0 152 . 2 157 .0 161 .0 165.0 168.6 17 1.5 174 . 2 178 2 182 . 4 186.4 186 .4 189 .0 193 .0 197 .0 201 .0 2 0 5 . 0 6 . 1 142 . 3 143.5 147 .3 149.7 152 .0 152 . 2 157 .0 16 1 0 165.0 168.6 17 1.5 174 . 2 178 . 2 182 4 186 . 4 189 .0 189 .0 193 .0 197 .0 201 O 205 .0 209 .0 CASING OVERTHRUST UNITS - NOT SAMPLED FAULT MAIN THRUST FAULT - NOT SAMPLED SHRS 1.61 1.81 1 .64 FAULT NOT SAMPLED O. 73 DOLOMITIC SILTSTONE SHRS SHRS SHPH SHPH SHPH SHPH SHPH SHPH SHPH SHPH FAULT FAULT SHPH SHPH SHPH SHPH SHPH 1 . 24 0 . 87 0 . 9 0 0 . 9 0 0 .88 0 .87 0 . 77 O. 58 1 . 26 1.11 1 .27 1 .00 0 . 78 0 .57 O. 75 3 25 3 . 20 2 .57 2.81 5 . 2 0 4 . 93 4.91 4 . 27 4 . 40 4 . 43 3 .66 2 . 77 4 .69 3 .90 5 .29 4.51 3 .95 3 .96 3 .57 Page 164 1 .86 2 .08 1 .90 0 .87 1 . 43 1 .01 1 .04 1 .04 1 .01 1 .00 0 .88 0 . 67 1 .45 1 .27 1 .46 1 . 15 0 . 9 0 0 . 6 7 0 . 8 6 O . 18 0 .11 O. 13 0 . 18 0 . 22 0 . 2 5 O. 24 O. 23 O. 23 0 . 27 0 . 24 O. 18 0 . 29 0 . 2 9 O. 26 0 . 24 0 . 2 3 0 . 19 0 . 2 0 1 .92 2 .12 1 . 94 0 . 9 3 1 . 50 1 .09 1 . 12 1 . 12 1 .09 1 .09 0 . 9 6 O. 73 1 . 55 1 .37 1 . 55 1 . 23 0 . 9 8 0 . 73 0 . 9 3 0.81 1 .03 5 . 0 5 8 . 48 4 . 55 2 . 13 1 . 40 0 .84 0 . 8 4 0 . 6 7 0 . 6 9 1 .09 1 . 47 2 .64 1 .42 1 .84 0 . 8 9 0 . 79 1 .24 1.91 1 .97 7 . 48 25 . 64 7 .84 5 .72 6 .11 5 .67 5 . 5 5 5.41 5 .28 6 .11 5 . 8 5 6 .11 6 . 54 6 . 6 0 5 .88 5 . 34 5 .27 5 .82 5 . 7 3 TABLE A./t5 D D H - C - 2 3 SAMPLE NO. METERAGE FROM TO LITHOLOGY PYRITIC TOTAL FE FE SULPHIDE S04 TOTAL SULPHUR (%-) ORGANIC TOTAL CARBON CARBON LOI 4467 A 4468 A 4469 A 4470 A 4471 A 4472 D A 4473 A 4474 A 4475 A 4476 A 4477 A 4478 A 4479 A 4480 A 4481 A 4482 A 4483 D A 4484 A 4485 A 4486 4487 A 2 0 9 . 0 2 1 3 . 0 2 1 7 . 0 221 .0 2 2 5 . 0 2 2 5 . 0 2 2 9 . 0 233 .0 2 3 5 . 5 2 3 9 . 6 2 4 3 . 6 2 4 6 . 9 2 4 9 . 0 252 . 2 256 . 2 2 5 8 . 0 2 6 0 . 6 2 6 5 . 7 267 .0 267 .0 271 .0 274 .5 2 7 5 . 6 279 .4 281 .9 2 1 3 . 0 2 1 7 . 0 221 .0 2 2 5 . 0 2 2 9 . 0 229 .0 2 3 3 . 0 235 . 5 2 3 9 . 6 243 .6 246 .9 249 .0 252 .2 256 . 2 258 .0 260 .6 265 7 267 .0 27 1 .0 271 .0 274 . 5 2 7 5 . 6 279 .4 281 .9 282 .8 SHPH 0.71 SHPH 0 . 7 7 SHPH 0 . 9 5 SHPH 0 .68 SHPH O 87 SHPH 0 . 6 0 SHPH 0 . 7 0 SHPH 0 .76 SHPH 0 . 6 3 SHPH 0 . 8 5 SHPH 0 . 7 0 FAULT NOT SAMPLED PRC 1 0 . 6 9 PRC 1 0 . 6 1 PRC 1 POOR RECOVERY FAULT NOT SAMPLEO PRC3 0 .82 PRC 1 1.87 PRC 1 + SHPC 1 . 10 PRC 1 + SHPC 1. 18 SHPC POOR RECOVERY 1 . 12 1 . 34 SHDL 5 . 7 9 PYRT 2 0 . 6 3.24 3 .73 4 . 84 4.81 4 . 56 3 .92 4 . 35 4 .04 4 .14 5.01 3 . 9 0 1.51 1 .00 NOT SAMPLED 0 .82 0 . 8 9 1 . 10 0 . 78 1 .00 0 . 7 0 0 .8 1 0 .88 0 .74 0 . 9 9 0 .82 0. 79 0.71 D0L0M1TIC SILTSTONE SHPC 1.23 0 .94 2 .59 2 .16 1.48 1.27 1.63 1.36 NOT SAMPLED 1.70 1.29 2 . 0 0 1.58 6 .26 9 .05 2 6 . 5 2 4 . 3 Page 165 O. 20 0 . 27 0 . 2 8 O. 26 0 . 26 0 . 25 O 25 O. 24 O. 18 0 .24 O. 28 0 . 14 0 . 0 7 0 .11 O. 22 O. 14 0 . 15 0 . 18 O 23 0 . 20 0 . 3 0 . 8 9 0 .98 1 . 19 0 .87 1 .09 0 .78 0 89 0 . 96 0 . 8 0 1 .07 0 .91 0 .84 0 . 73 0 98 2 . 23 1 . 32 1.41 1 . 35 1 66 9 . 12 24 .4 3 . 73 4 .44 2 .57 2 . 16 1.21 1 .32 1 .09 1.14 1 . 19 1 . 26 2 . 35 1 . 10 1 . 12 4 . 19 3 .66 3 .72 4 .72 6 .27 5 .55 6 .27 6 . 5 0 6 . 0 0 5 .78 5 . 84 5 . 44 5 83 5 . 77 6 . 33 5 . 83 6 . 0 0 6 . 39 4 . 9 5 5.61 8 .69 9 .32 9 . 2 0 3 .87 10.13 5 . 4 5 9 . 5 3 4 .71 ( 2 . 5 1 ) 22 .94 TABLE A.I-*5: D D H - C - 2 3 SAMPLE METERAGE LITHOLOGY PYRITIC TOTAL SULPHIDE S04 TOTAL ORGANIC , TOTAL LOI NO. FROM TO FE FE SULPHUR CARBON CARBON (%) 4488 4489 4490 4491 4492 4493 4499 0 A 4494 A 4495 A 4256 4257 4258 4259 4841 A 4260 4261 4262 4263 4264 4265 4840 A 4266 4267 4268 4269 282 .8 286 0 289 2 293 .2 297 . 3 298 .3 298 3 3 0 0 . 8 3 0 3 . 5 3 0 4 . 9 307 . 3 308 .4 3 1 0 . 0 3 1 1 . 5 3 1 5 . 0 317.1 3 1 9 . 1 3 2 0 . 6 322 . 6 3 2 5 . 0 3 2 6 . 0 3 2 7 . 4 328 . 3 3 3 0 . 4 332 .4 2 8 6 . 0 289 . 2 293 . 2 297 . 3 298 . 3 300 .8 300 .8 3 0 3 . 5 304 .9 307 . 3 308 .4 3 1 0 . 0 3 1 1 . 5 3 1 5 . 0 3 17. 1 319.1 3 2 0 . 6 322 .6 325 . 0 3 2 6 . 0 327 . 4 328 . 3 330. 4 332 .4 334 . 3 SHPC SHPC SHPC SHPC SILTSTONE CONGLOMERAT SHPR SHPR SHPR DOLOMITIC SILTSTONE UOSB UOSB UDBS UDBS SHPR UDBS UDBS UDBS UDSB UDSB SHDL SILTSTONE CONGLOMERAT UDSB BRECCIA UDBS UDSB UDBS 5 .88 1 . 49 1 .47 1 . 14 1 .92 1 . 16 1 . 66 1 62 1 .06 ( 2 7 . 9 ) 8 . 5 4 . 3 ( 3 . 6 ) 1 . 49 4 . 5 7 3 ( 7 . 2 ) ( 2 0 . 1 ) ( 2 0 . 4 ) ( 1 8 . 8 ) 1 . 73 (10 .01 ( 8 . 2 ) ( 7 . 8 ) ( 4 . 1 ) 7 .08 2 .00 2 . 14 1 .60 3.02 1 . 78 1 . 95 2 34 3 .55 22 .4 8 . 9 4 . 3 3 . 4 2.51 5 . 0 7 7 6 . 5 18.0 14 .9 17.4 3 .25 9 .8 7 .7 7 .5 3 .8 Page 166 6 .93 1 .77 1 . 82 1 . 35 2 . 34 1 . 45 1 . 93 1 .97 1 .26 40 . 1 i 14 .0 7 .8 • 7 . 0 1 . 73 8 .4 12.2 11.6 27 .4 31 .8 24 .9 2 . 45 16 .0 13.9 12.7 7 .9 0 .4 1 O. 37 0 .42 0 . 34 0 . 35 O. 36 O. 37 0 . 8 6 I. 51 2 .6 27 .9 30 . 7 30 . 3 1 . 72 28 . 2 26 . 2 2 5 . 6 10.2 10.8 4 . 3 1 .93 II . 2 27 .0 2 6 . 2 27 .5 7 .07 1 . 89 1 . 96 1 . 46 2 .46 1 .57 2 .05 2 .26 1 . 76 41 .0 2 3 . 3 18.1 17.1 2 . 30 17.8 2 0 . 9 20 . 2 3 0 . 8 35 . 4 26 . 3 3 . 10 19.7 2 2 . 9 2 1 . 5 17 . 1 4 .03 4 . 24 4 . 36 4 . 75 4 .65 4 . 43 5 . 17 4 . 69 4 . 57 4 .66 5 . 9 9 2 . 3 5 10 .03 8 . 0 0 7 .92 7 . 8 3 9 . 2 2 7 .64 7 82 8 08 6 .89 6 .71 3 .28 TABLE A . h S : O O H - C - 2 3 SAMPLE NO. METERAGE FROM TO LITHOLOGY PYRITIC TOTAL FE FE SULPHIDE S04 TOTAL SULPHUR (54) ORGANIC TOTAL CARBON CARBON LOI 4270 334 .3 336 .6 UOBS 6 .9 7 . 3 10 .9 25 8 19 . 5 4271 336 .6 338 . 7 UDBS 7 .6 8 .5 12 .9 25 9 2 1 5 4272 338 . 7 340 . 3 UDBS 7 . 6 7 .0 12 . 1 2 3 . 0 19 . 8 4273 340 .3 342 . 4 UDBS (7 .6) 6 . 7 12 5 27 . 1 2 1 . 5 4274 342 .4 344 .3 UDBS (6 .0) 5 . 2 10 .0 30 . 6 20 . 2 4275 344 . 3 346 . 3 UDBS (7 .6) 6 .6 12 . 3 28 . 7 2 1.9 4276 346 . 3 348 . 1 UDBS (8 .5) 7 . 3 14 . 4 23 . 4 22 . 2 4277 348 . 1 350 , 4 UDBS 6 . 7 7 .0 14 0 26 . 7 22 9 4278 350 . 4 352 .6 UDBS (5 6) 4 .8 1 1 .6 26 .8 2 0 . 5 4279 352 .6 353 . 2 UOBS ( 16 . 1 ) 13 .5 2S 8 8 . 7 28 . 7 4839 A 353 2 355 . 3 SHPR 3 .57 4 79 4 . 1 1 1 .61 4 . 6 5 3 . 37 4280 355 3 357 . 3 PYRT 16 5 16 .8 19 1 3 3 20 . 2 4281 357 , 3 359 . 4 PYRT (11 0) 10 .9 13 4 3 9 14 . 7 1 54 4282 359 . 4 361 . 3 UDBS (2 .8) 2 1 6 . 4 27 8 15.7 4283 36 1 , 3 363 3 UDBS (2 . 8) 2 . 4 6. 4 28 . 0 15.7 4284 363 3 365 . 3 UDBS (3 7) 2 . 5 8. 4 26. 9 17.4 4285 365 3 367 3 UDBS (3 . 5) 2 6 7 . 9 26 . 8 16 . 8 4286 367 . 3 369 3 UDBS (4 . 1) 3. 6 8. 2 25 . 9 16.8 4287 369. 3 371 . 3 UDBS (4. 0) 3. 2 7. 3 25. 3 15.7 4288 371 . 3 373 3 UDBS ( 1 . 4) 0 . 7 3. 5 30 . 7 13.7 4289 373 . 3 375 3 UDBS (5 . 1 ) 4 . 0 8. 3 27 . 2 17.4 4290 375 . 3 377 . 3 UDBS ( 3 . 4) 1 . 9 7 . 3 26 . 5 16. 1 0 . 20 4291 377 . 3 378 . 8 UDBS ( 5 . 9) 4 1 9 . 7 27 . 3 18.8 4496 378 . 8 379 . 4 PYRT 0 . 72 1 . 38 0 . 83 1 . 41 1 . 30 4938 A 3 7 8 . 9 0 378 95 DOLOMITIC 7 . 87 7 . 90 9 0 2. 0 9 .7 SILTSTONE 3 . 9 9 7 .84 Page 167 5 . 44 ( 3 . 6 3 ) 8 . 5 3 TABLE A- \S' D D H - C - 2 3 SAMPLE NO. METERAGE FROM TO LITHOLOGY PYRITIC TOTAL FE FE SULPHIDE S04 TOTAL SULPHUR (%) ORGANIC TOTAL CARBON CARBON LOI 4497 4498 4500 4951 4952 4953 4954 4975 D A 4955 A 4956 A 4957 A 4958 A 4959 A 379 .4 383.1 SHPC 1.14 383.1 3 8 3 . 9 SILTSTONE 10.7 CONGLOMERAT 3 8 3 . 9 3 8 6 . 5 SHPC 1.82 386 .5 387 .8 PRC 1 0 .64 387 .8 391 .8 PRC 1 1.06 391 .8 392 .9 PRC 1 0.81 3 9 2 . 9 395 .7 PRC2 0 .69 3 9 2 . 9 395 .7 PRC2 0 . 9 5 395 .7 3 9 7 . 0 PRC4 0 .46 3 9 7 . 0 3 9 8 . 5 PRC2 • BARITE 2 .03 3 9 8 . 5 400. 1 PRC2 0 . 8 3 400 .1 403 .2 PRC2 0 . 8 9 403 .2 406 .4 PRC 1 0 .69 406 .4 4 0 7 . 5 PRC 1 POOR RECOVERY -2 .05 14.8 2 . 48 1 . 27 1 .69 1 . 40 1.41 1 . 54 1 . 35 1 . 74 1 . 90 1 .46 1 . 38 NOT SAMPLED 1.31 13.4 2 .17 0 . 75 1 . 22 0 . 9 3 0 .82 1.11 0 . 5 5 2 .34 0 . 9 9 1 .03 0 .85 1 .53 1 . 3 1.14 0 . 4 3 0 . 25 O. 20 1 .37 1 . 17 2 . 1 8 3 . 7 2 .02 O. 19 0 . 5 5 1 .82 13.8 2 . 55 0 . 8 9 1 . 30 1 .00 1 . 28 1 . 50 1 28 3 . 59 1 . 66 1 .09 1 03 5 . 7 0 11.45 ( 3 . 3 1 ) 15 .10 5 .49 9 . 7 2 4 . 2 3 6 . 0 6 4 . 1 9 6 .87 ( 4 . 6 8 ) ( 4 . 5 5 ) 6 . 8 0 5 .07 7 . 4 6 4 .80 7.61 4 . 2 2 5 . 6 0 5 .58 12.85 5 .64 8 .12 4 . 9 8 7 .47 ( 3 . 7 1 ) ( 2 . 8 5 ) 5 . 7 3 END OF HOLE a 4 0 7 . 5 M Page 168 TABLE A\-S D D H - C - 2 3 ) SAMPLE METERAGE LITHOLOGY PYRITIC TOTAL SULPHIDE S04 TOTAL ORGANIC TOTAL LOI NO. FROM TO FE FE SULPHUR CARBON CARBON (54) DIAMOND DRILLHOLE 80-C-06 4883 4884 4885 4886 4887 4888 4889 4890 4891 4896 D A 4892 A 0.0 3.7 3.7 171.5 171.5 171.9 171.9 387.3 387.3 390.9 SHPC 390.9 391.2 DOLOMITIC SILTSTONE 391.2 394 5 SHPC 394.5 397.8 SHPC 397.8 402.0 PRC 1 •102.0 406.2 PRC 1 406.2 408.8 SHPH 408.8 4 11.2 SHPH 4 11.2 412 9 SHPH 4 11.2 412.9 SHPH 4 12.9 417.6 SHPH CASING OVERTHRUST UNITS - NOT SAMPLED MAIN THRUST FAULT - NOT SAMPLED GUNSTEEL UNITS + MINERALIZED ZONE 0.86 0.66 1 . 29 1 . 27 0.91 1 .01 2 . 89 2.44 1 .93 1 .82 1 .42 1 .49 1 . 33 1.61 1 .60 1.31 1 . 42 4 .07 3.38 3.73 4 .04 4.31 0.99 0.76 1 .48 1 . 46 1 .05 1 . 16 3 . 33 2.80 2.24 2 . 10 1 .64 NOT SAMPLED 1.20 1.39 0.39 0.41 0.41 O. 20 0.42 0.4 1 O. 56 O. 38 0.39 0.36 0.89 1 .62 1 .60 1 . 12 1 . 30 3 .47 2 . 99 2 . 37 2 . 23 1 . 76. 5.49 5 . 18 5.61 6 . 47 4 .03 4.22 4.54 ( 1 .58) (0.99) 0.73 0.94 0.98 0.81 0.76 9.60 14 . 14 8.40 8 .99 5.87 6 . 43 6 . 66 6. 18 5.73 2.56 5.33 END OF HOLE e> 4 17.6 M Page 169 TABLE A-J"5: DDH-C-06 N O T E S (1) RE: DERIVATION OF 'SULPHIDE' AND 'S04' - A p o r t i o n of the t o t a l s u l p h u r i s a l l o t t e d t o b a r i t e (BaS04) and r e c o r d e d as 'S04'. The r e m a i n i n g s u l p h u r i s r e c o r d e d as 'SULPHIDE'. ( 2 ) RE: DERIVATION OF 'PYRITIC FE' - 'SULPHIDE' from (1) i s f i r s t a l l o t t e d t o g a l e n a (PbS) and s p h a l e r i t e ( Z n S ) . The r e m a i n i n g 'SULPHIDE' i s a l l o t t e d t o p y r i t e and the c o r r e s p o n d i n g s t o i c h i o m e t r i c i r o n i s r e c o r d e d as 'PYRITIC FE'. The d i f f e r e n c e s between 'TOTAL FE' and 'PYRITIC FE' i s p a r t i a l l y due to i r o n i n o t h e r m i n e r a l s such as s p h a l e r i t e and may p a r t i a l l y r e f l e c t i n a c c u r a c i e s i n 'TOTAL FE' and/or 'TOTAL SULPHUR' a n a l y s e s . (3) Q u a n t i t a t i v e a n a l y s e s a r e r e c o r d e d w i t h 2 d i g i t s a f t e r the d e c i m a l . S e m i - q u a n t i t a t i v e a n a l y s e s a r e r e c o r d e d w i t h 1 d i g i t a f t e r t he d e c i m a l . Data w i t h s u s p e c t e d o r known e r r o r s a r e r e c o r d e d i n (rounded b r a c k e t s ) . ( 4 ) B l a n k s I n d i c a t e no v a l u e s d e t e r m i n e d . (5) A n a l y t i c a l l a b o r a t o r i e s and t e c h n i q u e s a r e as per T a b l e A.\~A • Note ( 5 ) . LOI was d e t e r m i n e d by m u f f l e f u r n a c e a t t h e U n i v e r s i t y of B r i t i s h Columbia / M i n e r a l E n g i n e e r i n g . Page 170 TABLE A-/-J: NOTES T A B L E A.l-*- T R A C E E L E M E N T X - R A Y F L U O R E S C E N C E A N A L Y S E S /iii/ii m iiiiiiiiiiIiiiiiiiiiiiiiiiiiii n ii n //ii//i S A M P L E M E T E R A G E L I T H O L O G Y S R R B U T H G A C R Z R N O . F R O M T O ( P P M ) D I A M O N D D R I L L H O L E 7 8 - C - 0 4 -- 0 . 0 9 . 1 C A S I N G 4 9 3 1 A 9 . 1 13 . 0 S H P R 3 6 . 8 2 . 3 . 16 . 16 . 13 . 4 0 4 9 4 1 D A 9 . 1 1 3 . 0 S H P R 3 4 . 8 6 . 4 . 14 . 14 . 14 . 4 1 4 9 3 2 A 13 . 0 17 . 0 S H P R 2 9 . 8 2 . 4 . 13 . 15 . 14 . 17 4 9 3 3 A 17 . 0 21 . 6 S H P R 4 3 . 9 9 5 . 15 . 1 5 . 12 . 8 0 4 9 3 4 2 1 6 2 2 . 4 P Y R T 9 . 16 . 0 . 0 . 0 . 3 9 . N D 4 9 3 5 A 2 2 . 4 2 3 . 0 S H P R 2 5 . 9 9 . 4 . 1 5 . 17 13 . 4 1 4 9 3 6 2 3 . 0 2 5 . 5 P Y R T 1 6 . 2 5 . 0 . 14 2 8 . 3 0 . N O 4 9 3 7 A 2 5 . 5 2 7 . 1 S H P R 2 5 . 8 9 . 5 . 16 . 19 12 . 4 4 4 9 4 2 2 7 1 2 9 3 P Y R T 3 1 6 . 2 3 . 0 . 31 . N D 4 9 4 3 A 2 9 3 3 3 . 5 S H P R 6 8 . 104 . 5 . 14 . 21 . 1 3 . 5 3 4 9 4 9 D A 2 9 . 3 3 3 . 5 S H P R 2 7 . 9 9 . 5 . 13 . 1 5 . 14 . 4 4 -- 3 3 5 3 4 . 2 P O O R R E C O V E R Y - N O T S A M P L E D 4 9 4 4 A 3 4 2 3 6 . 8 S H P R 1 0 7 . 7 9 . 5 . 1 6 . 16 . 12 . 1 9 4 9 4 5 A 3 6 a 3 9 . 3 S H P R 1 4 7 . 4 9 . 1 . 2 2 . 3 5 4 8 9 3 A 3 9 . 3 4 0 . 7 S H D L 5 2 6 . 3 9 . 0 . 2 5 . -- 4 0 . 7 4 1 . 6 F A U L T N O T S A M P L E D 4 8 9 4 A 4 1 6 4 2 . 5 S H P R 8 0 . 6 9 . 5 . 13 . 18 . 1 3 . 6 8 2 0 3 R 4 2 5 44 . 6 U D B S 7 9 5 . 31 . 1 . 4 0 . 2 0 4 R 4 4 6 4 6 . 6 U D B S 7 7 7 . 3 9 . 0 . 4 2 . 2 0 5 R 4 6 . 6 4 9 . 2 U D B S 1 7 4 4 . 2 8 . 8 . 4 4 . -- 4 9 2 4 9 . 4 P O O R R E C O V E R Y • - N O T S A M P L E D 4 8 9 5 A 4 9 . 4 5 7 . 6 S H P C 4 8 . 4 9 . 1 . 1 5 . 2 4 4 8 5 0 A 5 7 6 6 7 4 P R C 1 21 . 5 5 . 4 . 12 . 1 0 . 1 0 . 4 4 4 9 4 6 A 6 7 4 7 2 1 P R C 1 2 1 . 5 6 . 4 . 12 . 8 9 6 4 9 4 7 A 7 2 . 1 7 5 . 4 S H P C 2 2 . 7 3 . 4 . 12 . 1 0 . 11 . . 3 0 -- 7 5 4 7 7 . 9 F A U L T N O T S A M P L E D 4 9 4 8 A 7 7 9 7 9 3 S H P C 3 9 . 7 8 . 5 . 12 . 9 . 1 1 . 6 3 4 9 5 0 A 7 9 . 3 8 1 2 P R C 2 1 8 0 . 5 0 . 4 . 1 3 . 9 . 1 1 . 3 8 4 8 5 1 A 8 1 . 2 8 4 2 P R C 1 1 1 3 . 2 8 . 4 . 1 0 . 5 . 8 . 2 2 4 9 0 0 D A 8 1 2 8 4 2 P R C 1 8 2 . 3 0 . 5 . 9 . 4 . 1 1 . 4 5 4 8 5 2 A 8 4 . 2 8 7 2 P R C 1 2 8 . 3 8 . 4 . 1 0 . 6 . 8 . 4 4 4 8 5 3 A 8 7 . 2 9 1 4 S H P H 5 3 . 1 5 8 . 4 . 1 5 . 17 . 1 3 . 1 3 0 4 8 5 4 A 9 1 . 4 9 5 . 4 S H P R 2 7 . 1 0 6 . 5 . 1 1 . 1 2 . 1 2 . 1 0 1 4 8 5 5 A 9 5 . 4 9 9 4 S H P C 4 9 . 9 9 . 6 . 12 . 1 2 . 1 2 . 9 4 4 8 5 6 A 9 9 . 4 1 0 3 . 4 S H P C 1 7 4 . 6 8 . 6 . 12 . 9 . 1 2 . 8 0 4 8 5 7 A 1 0 3 . 4 1 0 7 . 4 S H P C 7 1 . 8 1 . 7 . 1 0 . 1 2 . 1 2 . 9 0 4 8 5 8 A 1 0 7 4 1 1 1 . 4 S H P C J 2 4 8 . 7 4 . 4 . 1 1 . 7 . 1 1 . 8 7 4 8 5 9 A 1 1 1 . 4 1 1 3 . 7 S H P C 2 3 4 . 7 6 . 4 . 12 . 6 . 1 1 . 7 1 . 4 8 6 0 A 1 13 . 7 1 1 6 . 9 S I L T S T O N E C O N G L O M E R A T 8 8 . 8 6 . 3 . 1 1 . 9 . 1 2 . 1 1 6 4 8 6 1 A 1 1 6 . 9 1 1 9 . 6 S H P R 3 0 . 101 . 5 . 1 3 . 14 . 1 3 . 9 9 4 8 6 2 A 1 1 9 . 6 121 . 9 S S S + C O N G L O M E R A T 2 2 8 . 5 8 . 2 . 9 . 3 . 9 . 2 0 4 . P a g e 171 T A B L E A . J ~ £ : D O H - C - 0 4 SAMPLE NO. METERAGE LITHOLOGY FROM TO SR TH ( PPM) GA CR ZR 4863 A 4899 D A 121.9 12 1.9 125.9 SSS 125.9 SSS 155 . 156. 80 . 79 . 10. 1 1 . 7 . 8 . 10. 10. 260 . 268 . END OF HOLE 0 125 .9 M Page 172 TABLE A j - t : D D H - C - 0 4 SAMPLE METERAGE LITHOLOGY SR RB U TH GA CR ZR NO. FROM TO (PPM) DIAMOND DRILLHOLE 7 9 - C - 0 3 0. 0 9. . 1 CASING -- 9. 1 46. 7 GUNSTEEL UNITS -- NOT SAMPLED 21 4868 A 46 7 47 . 3 DOLOMITIC SILTSTONE 490. 56 . 0 . 3 . 0 . 9 . 47 3 170 . 1 GUNSTEEL UNITS - NOT SAMPLED 4046 170 1 171 9 UDSB 1823 . 19 . 0 . 4 5 . 0 4849 A 17 1 .9 172 . 3 SILTSTONE CONGLOMERAT 263 . 42 . 6 . 14 . 6 . 17 . 301 4848 A 172 3 175 . 1 SHRS 181 . 7 3 . 7 '. 22 . 19. 13. 99 4869 A 175 1 180 8 PRC2 444 . 53 . 5 . 9 . 5. 10. 44 4870 A 180 .8 184. . 1 PRC2 385 . 63 . 4 8 . 4 . 1 1 . 0 4871 A 184 , 1 187 . 1 SHPR 39 . 75 . 6 . 10. 8 . 10. 69 4898 D A 184 1 187 1 SHPR 39 . 79 . 6 1 1 . 10. 1 1 . 74 4872 A 187 . 1 189 1 SHPR 59. 58 . 5 . 9 . 7 . 10. 46 4873 A 189 1 190 6 PRC 1 73 . 21 . 5 . 8 . 8 . 10. 27 4874 A 190 .6 192 0 BRECCIA 806. 57 . 1 . 3 . 2 . 12. 38 4875 A 192 .0 196. 0 SHPH 40 . 179. 3 . 1 1 . 22 . 15. 4876 A 196 .0 199 . 4 SHPH 34 . 179. 3 . 12 . 20 . 15. 174 4877 A 199 . 4 202 . 7 SHPH 30. 161 . 3 . 10. 20 . 14. 130 4878 A 202 . 7 205 , 7 SHPR 37 . 153. 3 . 12 . 16. 13. 112 4879 A 205 .7 208 8 SHPR 25. 1 15 . 6 . 10. 12 . 13. 101 4880 A 208 .8 212 .6 SHPC .37 . 73. 6 10. 1 1 . 1 1 . 76 4881 A 212 .6 217 .0 SHPR 101 . 80 . 6 . 12 . 12 . 13. 97 4897 D A 212 .6 217 .0 SHPR 92. 75 . 6 . 1 1 . 1 1 . 12. 99 4882 A 217 .0 22 1 .0 SHPR 75 . 83 . 7 . 1 1 . 12. 13. 143 END OF HOLE ® 2 2 1 . 0 M Page 173 TABLE '• D D H - C - 0 3 SAMPLE METERAGE LITHOLOGY SR RB U TH GA CR ZR NO. FROM TO (PPM) DIAMOND DRILLHOLE 7 9 - C - 1 4 -- 0 0 6 . 4 -- CASING -- 6 .4 1 18 .5 -- OVERTHRUST UNITS - NOT SAMPLED -- 1 18 .5 120 .9 FAULT MAIN THRUST FAULT - NOT SAMPLED 4960 cA 120 .9 123 8 SHPH 23 173. 3. 16 . 21 . 14 . 156 4961 A 123 .8 127 .8 SHPH 36 169 . 5 15 . 20. 13. 155 4962 A 127 8 132 .3 SHPH 34 182 . 2 . 14 . 2 1 . 14 . 168 -- 132 .3 133 .5 FAULT NOT SAMPLED 4963 A 133 .5 136 .5 SHPH 30 17 1. 1 . 15 . 23 . 14 . 176 4964 A 136 .5 139 .6 SHPH 25 168 . 1 . 13 21 . 15. 192 139 6 14 1 . 7 FAULT NOT SAMPLED 4965 A 14 1 . 7 144 . 7 SHPH 31 201 . 2 . 16 . 23 . 13. 164 4986 D A 14 1 . 7 144 . 7 SHPH 28 166 . 3. 14 . 20. 6 . 147 4966 A 144 . 7 148 . 7 SHPH 31 208 . 3 . 15. 23 . 14 . 175 -- 148 . 7 149 .6 FAULT NOT SAMPLED 4967 A 149 6 153 .6 SHPH 30 178 . 2 . 16 . 22 . 15. 174 4968 A 153 >.6 157 . 6 SHPH 28 184 . 2 . 14 . 2 1 . 14 178 4969 A 157 .6 161 .6 SHPH 37 158 3. 15 . 19. 14 . 144 4970 A 161 .6 165 . 6 SHPH 34 175 . 3 . 15 . 19 . 13 . 158 4971 A 165 . 6 169 6 SHPH 37 176. 3 . 14 . 20. 13. 131 4972 A 169 . 6 173 . 8 SHPH 40 186 2 . 16 . 23 . 13. 207 -- 173 .8 177 8 FAULT NOT SAMPLED 4973 A 177 8 182 .5 SHPH 35 169. 2 . 17 . 22 . 15. 185 4974 A 182 5 186 3 SHPH 31 171. 2 . 13. 22 . 13. 152 4976 A 186 3 190 . 3 SHPH 36 182 . 1 . 18 . 2 1 . 13 97 4997 D A 186 3 190 3 SHPH 32 179. 2 . 15 . 22 . 14 . 157 -- 190 3 190 . 4 FAULT NOT SAMPLED 4867 A 190 . 4 195. 3 PRC 1 75 37 . 3. 9 . 5 . 9 . 58 4977 A 195 3 196 . 4 PRC4 504 1 1 . 3 . 10. 3 . 15. 4978 A 196 4 197. . 1 PRC 1 632 24 . 4 . 12 . 6 . 14 . 4979 A 197 1 201 . 1 PRC 1 122 26. 6. 13. 7 . 13. 117 4980 A 201 1 205 . 1 PRC 1 126 36 . S . '10. 6 . 9 . 35 4981 A 205. 1 209. 1 PRC 1 53 36 . 4 . 9 . 6 . 1 1 . 60 4982 A 209 1 2 12 0 SHPC 174 56 . 4 10. 5 10 66 -- 212 0 213 4 FAULT NOT SAMPLED 4983 A 2 13 4 215. 3 SHPC 161 88 4 . 12 . 10. 1 1 . 143 -- 215 3 2 16 1 FAULT NOT SAMPLED -- 216 1 216. 9 SHPC POOR RECOVERY - NOT SAMPLED -- 216 9 219 1 FAULT NOT SAMPLED 4984 A 219 1 224 . 5 SHPC 165 7 1 . 6 . 1 1 . 8 . 10. 75. -- 224 . 5 226. 7 FAULT NOT SAMPLED 4985 A 226. 7 229. 8 SHPC 67 90 . 5. 13. 13. 13 . 88 . 4987 A 229. 8 231 . 7 SHPR 31 91 . 4. 15. 13. 14 . 111. 5000 D A 229. 8 231 . 7 SHPR 57 100. 5. 12 . 15. 13 . 129. 4988 A 231 . 7 235. 0 SHPR 27 108. 6 . 17. 12. 14 . 8 2 . 4989 235. 0 236. 2 PYRT 571 8. 0 . 31 . Page 174 TABLE A.l-fc : DDH-C-14 SAMPLE , METERAGE LITHOLOGY NO. FROM TO SR RB U TH GA CR ZR (PPM) 4990 A 236 . 2 239 .3 SHPR 34 . 101 . 5. 14 . 17 . 13. 81 4991 239 £< 240 . 1 SHDL 309. 57 . 0. 17 . 20. 23. 4939 A 239. 239 . 89 PYRITE LAMINATIONS 38 . 22 . 0 . 27 . 42 . 29 . ND 4992 A 240 . i 241 . 1 SHPR 58. 94 . 5. 13. 12. 13. 81 4993 A 241 . 1 245 . 1 SHPR 32 . 101 . 5 . 14 . 15. 13 . 96 4904 A 243. 40 243. 45 CALCIS1LT LAMINATION 1 158. 4 1 . 4 . 7 . 1 . 12 . 4994 A 245 . 1 249 .7 SHPC 44 . 87 . 5 . 14 . 13. 12. 81 4995 A 249 . 7 251 .9 SHPR 49 . 84 . 5 . 12 12 . 12 . 86 4996 A 251 .9 252 . 7 SHPR 176. 79 . 5. 13 . 1 1,. 12 . 73 4847 A 252 . 7 255 . 1 SHPR 926 80 6 12 . 16 . 13 . 4846 A 255 1 257 .5 SHPR 82 . 75 . 5. 1 1 . 16 . 14 . 79 4 1 18 257 .5 258 .5 UOBS 1171. 40. 8 37 . 4845 A 258 .5 260 .0 SHPR 659 . 74 . 4 . 33 22 . 4844 A 259. i 05 259 . 30 SILTSTONE BED 587 . 40. 2 . 12 . 4 . 12 . 4 1 19 260 .0 26 1 .8 UDBS 2054 . 36. . 0. 36 . 4 120 261 . 8 263 .6 PYRT 298. 2 1 . 0. 39. 4121 263 .6 266 . 3 UDSB 3075. 15. 0. 42 . 4122 266 .3 268 .5 UDSB 3808. 40. 0 . 44 . 4 123 268 .5 270 .9 UDSB 4705. 35. 0. 45. 4124 270 . 9 273 .4 UDSB 2891 . 38 . 0. 49. 4 125 273 . 4 275 . 1 UDSB 1585 . 17 . 0. 50. 4 126 275 . 1 277 .6 UDSB 1 130. 27 . 0. 50. 4127 277 :6 280 .0 UDSB 1263. 16 0. 51 . 4128 280 .0 282 . 4 UDSB 2604. 52 . 0. 47. 4129 282 . 4 284 8 UDSB 26 17 . 34 . 0. 43 . 4843 A 284 .8 288 . 3 SILTSTONE CONGLOMERAT 489 . 89. 4 . 24 . 7 . 14 . 4 130 288 . 3 290 .8 UDSB 1716. 37 . 0. 47 . 4131 290 .8 292 .5 UDSB 1929. 22 . 0. 45. 4 132 292 . 5 294 . 4 UDSB 1264 . 33. 0. 44 . 4 133 294 . 4 296 .9 UDBS i 2329. 3 1 . 2 . 41 . 4134 296 .9 299 . 3 UDBS 3045. 15. 7 . 37 . 4 135 299 . 3 302 .5 UOBS 2467 . 21 . 4 . 37. 4 136 302 . 5 305 . 3 UDSB 1229 26 . 0. 4 1 . 4 137 305 . 3 306 .6 PYRT 242 . 0. 0. 28. 1 1 4842 A 306 .6 309 .8 SHPC 73. 75 . 5 . 12 . 12 . 12 . 87 4998 A 309 .8 310 .5 SHPC 210. 75 . 5 . 12 . 10. 12. 117 4905 A 310.05 3 10. 15 SILTSTONE BED 139 . 72. 4 . 12 . 7. 9. 190 4999 A 310 .5 314 .5 SHPC 85 . 77 . 5 . 13 . 9. 10. 105 4901 A 314 . 5 316 .8 SHPC 36. 84 . 6. 12 . 10. 1 1 . 80 4902 A 316 .8 318 8 SHPC 24 . 82 . 5 . 13. 9 . 1 1 . 49 4903 A 318 .8 322 . 6 SHPC 4 1 . 80. 6 . 12 . 10. 1 1 . 64 4906 A 322 .6 324 .7 SHPC 78. 64 . 4 . 1 1 . 7 . 10. 54 4907 A 324 .7 327 .8 PRC2 1 16. 42. 5. 1 1 . 9. 12 . 96 4908 A 327 .8 329 .0 PRC 1 94 . 19. 4 . 13. 10. 17. 141 4909 A 329 .0 331 . 2 PRC4 688. 20. 8. 31 . 4910 A 331 . 2 331 .4 BARITE + LIMESTONE 407 . 14 . 10. 1 1 . 7 . 21 . 4911 A 331 . 4 332 .5 LIMESTONE 2448. 8 . 4 . 9. 0. 16. 4912 A 332 .5 334 .8 PRC2 136 . 6 . 7 . 11 . 7 . 14 . 109 4915 D A 332 .5 334 8 PRC2 124 . 12 . 6 . 12 . 9. 12. -- 334 .8 338 .0 FAULT NOT SAMPLED Page 175 TABLE A/-*: DOH-C-14 SAMPLE METERAGE LITHOLOGY SR RB U TH GA CR ZR NO. FROM TO (PPM) 4913 A 338 0 342 .3 SHRS + SHPH 130. 87 . 5 . 15 . 10. 1 1 . 79 4914 A 342 . 3 344 .9 SHPR 1 18 . 77 . 5 . 12 . 10. 12 . 93 4916 A 344 .9 348 . 2 SHPR 132 . 85 . 6 . 12 . 10. 13 . 82 -- 348 . 2 349 . 2 FAULT NOT SAMPLED 4917 A 349 . 2 350 .0 PRC2 259. 16. 5 . 13 . 10. 16 . 142 49 18 A 350 . 0 353 .0 PRC 1 203 . 56 . 5 . 10. 7 . 1 1 . 56 4919 A 353 .0 356 . 2 SHPR 38. 71 . 6 . 12 . 6 . 10. 67 -- 356 .2 357 .8 FAULT NOT SAMPLED 4920 A 357 8 360 .3 SHPR 21 . 49 . 4 . 1 1 . 8 . 10. 30 4921 A 360 . 3 364 0 SHPR 60 . 79 . 6 . 12 . 6 1 1 62 4940 D A 360 . 3 364 .0 SHPR 57 . 85 . 5 1 1 . 8 1 1 . 42 4922 A 364 0 367 0 SHPR 69 . 38 . 4 . 10. 5 . 10. 40 4923 367 0 367 9 SHPC SAMPLE LOST IN TRANSIT 4924 A 367 . 9 371 .9 PRC3 43 . 33 . 4 . 10. 3 . 9 . ND 4925 A 37 1 9 375 . 9 PRCS 50 . 34 . 5 9 . 4 . 8 . 4 4926 A 375. 9 379. 8 PRCS 47 . 40 . 4 . 10. 6 . 10. ND 4927 A 379 8 3B1 3 SHPR B3. 96 . 2 . 17 . 15. 1 1 . 232 4928 A 381 . 3 382. 2 SILTSTONE CONGLOMERAT 31 . 97 . 2 . 15 . 21 . 15 . 61 4929 A 382 2 385. 5 SSS 125. 74 . 1 . 10. 7 . 9 . 140 4930 A 385 . 5 388 . 9 SSS 133 . 69 0 . 9 . 6 . 9 . 146 END OF HOLE » 3 8 8 . 9 M Page 176 TABLE D D H - C - 1 4 SAMPLE NO. METERAGE LITHOLOGY FROM TO SR RB U TH GA CR ZR (PPM) DIAMOND DRILLHOLE 79-C-23 -- 0 .0 6 . 1 CASING -- 6 . 1 142 . 3 OVERTHRUST UNITS - NOT SAMPLED -- 142 .3 143 .5 FAULT MAIN THRUST FAULT - NOT SAMPLED 4864 A 143 .5 147 . 3 SHRS 62 . 96. 4 . 1 1 . 8 . 12 . 90 4865 A 147 .3 149 . 7 DOLOMITIC SILTSTONE 275. 79. 2 . 9 . 3. 13. 135 4866 A 149 .7 152 .0 SHRS 32 . 82 6 . 12 . 8 . 10. 59 -- 152 .0 152 .2 FAULT NOT SAMPLED 4451 A 152 . 2 157 .0 SHRS 27 . 12 1. 3 . . 13 . 15 . 12 . 1 18 4452 A 157 .0 161 .0 SHPH 29. 142 . 2 . 13 . 19. 14. 149 4453 A 16 1 .0 165 .0 SHPH 19. 178 . 2 . 13 . 2 1 . 14. 147 4454 A 165 .0 168 .6 SHPH 22 . 171 . 1 . 14 . 22 . 14. 159 4455 A 168 .6 171 .5 SHPH 21 . 167 . 2 . 13. 20. 14 . 158 4456 A 17 1 . 5 174 . 2 SHPH 22 . 157 . 2 . 14 . 2 1 . 14 . 167 4457 A 174 2 178 . 2 SHPH 23 . 184 . 3 . 15 . 23 . 14 . 188 4458 A 178 . 2 182 . 4 SHPH 23. 175. 4 . 14 . 22 . 14 . 139 4459 A 182 . 4 186 . 4 SHPH 21 . 128 4. 12 16 . 13. 84 4460 A 186 . 4 189 .0 FAULT 28 . 165 . 2 14 . 23 . 15 . 169 4461 D A 186 . 4 189 .0 FAULT 39. 173 . 2. 15 . 21 . 15. 154 4462 A 189 .0 193 .0 SHPH 27 . 162 . 3 13 . 20 15 . 152 4463 A 193 .0 197 .0 SHPH 27 . 169. 2. 15. 20. 14 . 164' 4464 A 197 .0 201 .0 SHPH 30. 166 . 3. 13. 2 1 . 13. 134 4465 A 201 0 205 .0 SHPH 29. 140. 3. 14 . 18. 13. 97 4466 A 205 .0 209 .0 SHPH 28. 152 . 3. 14 . 20. 14 . 102 4467 A 209 0 213 0 SHPH 27 . 146 . 4 . 15. 18 . 13. 99 4468 A 213 .0 2 17 0 SHPH 33. 149 . 3. 13. 21 . 13. 132 4469 A 217 0 22 1 0 SHPH 30. 186 . 3 . 13. 24 . 15. 142 4470 A 22 1 0 225 0 SHPH 30. 170. 2 . 14 . 20. 14 . 126 447 1 A 225 0 229 0 SHPH 29 . 184 . 2 . 14 . 22 . 14 . 1 16 44 7 2 D A 225. 0 229 0 SHPH 29. 174 . 1 . 14 . 21 . 13. 160 4473 A . 229 0 233. 0 SHPH 24 . 133. 1 . 1 1 . 16 . 1 1 . 145 4474 A 233 0 235 . 5 SHPH 31 . 177 . 2 . 12 . 23 . 14. 125 4475 A 235. 5 239 . 6 SHPH 40. 129 . 1 . 10. 16 . 13. 109 4476 A 239. 6 243. 6 SHPH 29. 166 . 2 . 13 . 20. 15. 137 . 4477 A 243. 6 246 . 9 SHPH 3 1 . 190. 3 . 15 . 25 . 14 . 158. -- 246 . 9 249 . 0 FAULT NOT SAMPLED 4478 A 249 . 0 252 . 2 PRC 1 37 . 66 . 6 . 1 1 . 6 . 10. 44 . 4479 A 252 2 256. 2 PRC 1 42 . 38. 4 . 10. 5 . 9 . 24 . 256. 2 258 . 0 PRC 1 POOR RECOVERY - NOT SAMPLED -- 258 . 0 260. 6 FAULT NOT SAMPLED 4480 A 260. 6 265. 7 PRC3 2 1 . 39. 5 . 9. 5 . 10. 17 . 4481 A 265 . 7 267 . 0 PRC 1 28. 75. 6 . 9 . 10. 13. 73. 4482 A 267 . 0 271 . 0 PRC 1 + SHPC 1 14 . 74. 7 . 1 1 . 7 . 1 1 . 67 . 4483 D A 267 . 0 271 . 0 PRC 1 + SHPC 109 . 80. 6 . 1 1 . 7 . 10. 83. -- 271 . 0 274. 5 SHPC POOR RECOVERY -- NOT SAMPLED 4484 A 274 . 5 275. 6 DOLOMITIC SILTSTONE 220. 83. 4 . 12 . 7 . 10. 205. Page 177 TABLEA.l-t. DDH-C-23 SAMPLE NO. METERAGE LITHOLOGY FROM TO SR RB U TH GA CR ZR (PPM) 4485 A 275 .6 279 .4 SHPC 108. 88 . 6 . 1 1 . 10. 10. 134 4486 279 .4 281 .9 SHDL 71 . 65 . 1 . 20 . 43 4487 A 281 .9 282 8 PYRT 1 16. 27 . 0 IO. 22 . 3 6 . 6 4488 A 282 .8 286 .0 SHPC 136. 70 . 3 12 . 10 15. 1 11 4489 A 286 .0 289 .2 SHPC 108. 87 . 6 . 12 . 9 . 10. 107 4490 A 289 .2 293 .2 SHPC 112. 94 . 5 . 13 . 12. 1 1 . 1 1 1 4491 A 293 . 2 297 . 3 SHPC 97 . 91 . 7 . 13. 1 1 . 1 1 . . 76 4492 A 297 . 3 298 .3 SILTSTONE CONGLOMERAT 221 . 84 . 5. 17 . 10. 13. 91 4493 A 298 . 3 300 .8 SHPR 49 . 96 . 6 . 12 . 10. 10. 76 4499 0 A 298 .3 300 8 SHPR 84 . 101 . 5 . 13 . 10. 1 1 . 80 4494 A 300 .8 303 .5 SHPR 107 . 75 . 6 12 . 13 . 12 . 85 4495 A 303 .5 304 .9 DOLOMITIC SILTSTONE 747 . 47 . 5 12 . 5 . 13 . 4256 304 .9 307 .3 UDSB 446. 31 . 0 . 4 8 . 4257 307 . 3 308 .4 UDSB 3216. 43 . 3 . 44 . 4258 308 . 4 310 .0 UDBS 3508 . 38 . 10. 42 . 4259 310 .0 311 .5 UDBS 3233. 33 . 7 . 3 9 . 484 1 A 311 .5 315 .0 SHPR 282 . 78 . 6 . 16. 133 4260 315 0 3 17 . 1 UDBS 2643. 40 . 6 . 3 9 . 4261 317 . 1 319 1 UDBS 2984 . 37 . 1 1 . 41 . 4262 319 . 1 320 .6 UDBS 2388. 49 . 4 . 40 . 4263 320 .6 322 .6 UDSB 1474 . 36 . 0 . 38 . 4264 322 . 6 325 .0 UDSB 1773 . 34 . 0 . 46 . 4265 325 .0 326 .0 SHDL 293. 30 . 0 . 37 . 4840 A 326 0 327 . 4 SILTSTONE CONGLOMERAT 12 12. 87 . 5 . 17 . 4266 327 4 328 . 3 UDSB BRECCIA 3191 . 6 2 . 1 . 35 . 4267 328 . 3 330 . 4 UDBS 2669 . 47 . 5 . 42 . 4268 330. 4 332 4 UDSB 3245. 37 . 1 . 4 0 . 4269 332 4 334 3 UDBS 3644 . 35 . 7 . 38 . 4270 334 . 3 336 6 UDBS 3805 . 33. 6 . 3 9 . 4271 336. 6 338 . 7 UDBS 3670. 43 . 1 . 41 . 4272 338 7 340 3 UDBS 3504 . 4 1 . 7 . 37 . 4273 340. 3 342 . 4 UDBS 4082 . 25 . 3 . 4 0 . 4274 342 . 4 344 . 3 UDBS 4924 . 22 . 6 . 4 0 . 4275 344 . 3 346 . 3 UDBS 4552 . 26 . 8 . 4 0 . 4276 346 . .3 348 . • 1 UDBS 3222 . 23. 0 . 4 0 . 4277 348 . 1 350. 4 UDBS 3530. 50 . 2 . 45 . 4278 350. 4 352 . 6 UDBS 3388. 27 . 4 . 41 . 4279 352 . 6 353 . 2 UDBS 910. 17 . 0 . 38 . 4839 A 353. 2 355. 3 SHPR 225. 68 . 5 . 9 . 5 . 12 . 144 4280 355. 3 357 . 3 PYRT 520. 8 . 0 . 24 . 4281 357 . 3 359. 4 PYRT 658 . 49 . 1 . 2 3 . 4282 359. 4 361 . 3 UDBS 3903. 33. 12 . 38 . 4283 36 1 . 3 363. 3 UDBS 4435. 19. 9 . 38 . 4284 363. 3 365. 3 UDBS 3082. 22 . 6 . 3 9 . 4285 365 . 3 367 . 3 UDBS 2957 . 15 . 5 . 3 9 . 4286 367 . 3 369 . 3 UDBS 1922 . 17 . 6. 37 . 4287 369 . 3 371 . 3 UDBS 2039 . 18. 6 . 38 . 4288 37 1 . 3 373. 3 UDBS 3795. 23 . 14 . 38 . 4289 373. 3 375. 3 UDBS 2915. 19. 4 . 38 . 4290 375. 3 377 . 3 UDBS 3652 . 15. 6 . 36 . Page 178 TABLE A.l-C D D H - C - 2 3 SAMPLE METERAGE LITHOLOGY SR RB U TH GA CR ZR NO. FROM TO (PPM) 4291 377 . 3 378 .8 UDBS 3562 . 18 . 4 . 39. 449G 378 .8 379 .4 PYRT 299. 62. 6 . 13. 9 . 12 . 493B A 378 .! 90 378 .! 95 DOLOMITIC SILTSTONE . 51 . 22 . 2 . 12 . 7 . 19 . 68 4497 A 379 . 4 383 . 1 SHPC 186 . 55 . 6 . 14 . 9. 14 . 184 4498 A 383 . 1 383 .9 SILTSTONE CONGLOMERAT 290. 10. 0. 10. 26. 97 4500 A 383 .9 386 .5 SHPC 87 . 54 . 5. 12 . 12. 13. 1 14 4951 A 386 . 5 387 . 8 PRC 1 83 . 33 . 4 . 10. 5 . 8 . 1 1 4952 A 387 .8 391 .8 PRC 1 21 . 52 . 6. 9. 7 . 9. ND 4953 A 391 .8 392 .9 PRC 1 23. 40. 6 . 10 6 . 9. ND 4954 A 392 . 9 395 .7 PRC2 1 19 . 38 . 5. 12 . 9 . 12 . 70 4975 D A 392 . 9 395 . 7 PRC2 107 . 47 . 3 . 1 1 . 9 . 14 . 95 4955 A 395 . 7 397 .0 PRC4 14 1 . 8. 4 . 12 . 8 . 14 . 95 4956 A 397 .0 398 .5 PRC2 + BARITE 1040. 13 . 6 . 20. 6. 21 . 220 4957 A 398 . 5 400 . .1 PRC2 1 10. 24. 8 . 10. 10. 12 . 144 4958 A 400 . 1 403 . 2 PRC2 101 . 44 . 5 . 1 1 . 6. 13. 43 4959 A 403 . 2 406 . 4 PRC 1 102 . 43. 5 . 12 . 7 . 9 . 40 -- 406 . 4 407 .5 PRC 1 POOR RECOVERY • - NOT SAMPLED END OF HOLE » 407.5 M Page 179 TABLE A.J-fc DDH-C-23 SAMPLE METERAGE LITHOLOGY SR RB U TH GA CR ZR NO. FROM TO (PPM) DIAMOND DRILLHOLE 80-C-06 -- 0 .0 3 . 7 CASING -- 3 7 17 1 .5 OVERTHRUST UNITS - NOT SAMPLED -- 17 1 .5 171 .9 MAIN THRUST FAULT - NOT SAMPLED -- 171 . 9 387 .3 GUNSTEEL UNITS - NOT SAMPLED 4883 A 387 . 3 390 .9 SHPC 170 52 . 5 . 1 1 . 7 . 12 . 147 4884 A 390 9 391 2 DOLOMITIC SILTSTONE 275 66 2 . 9 . 5 . 9 . 233 4885 A 391 2 394 .5 SHPC 78 77 . 5 10. 9 . 1 1 . 102 4886 A 394 5 397 8 SHPC 80 87 . 5 . 1 1 . 10 . 1 1 . 99 4887 A 397 8 402 .0 PRC 1 67 44 . 5 . 10. 5 . 9 . 16 4888 A 402 0 406. 2 PRC 1 93 49. 6 . 9 6 . 9 53 4889 A 406. 2 408. 8 SHPH 28 186 . 3 . 13 . 18 . 14 . 159 4890 A 408 . 8 4 11. 2 SHPH 31 199 . 2 . 14 . 21 . 13. 143 4891 A 4 11 2 4 12 9 SHPH 4 1 18 1 . 2 . 12 . 2 1 . 13 . 4896 D A 4 11. 2 4 12. 9 SHPH 36 190. 2 . 15 . 2 1 . 15 . 4892 A 4 12 9 4 17 . 6 SHPH 44 187 . 3. 13. 20. 14 . 167 END OF HOLE (§> 417 .6 M N O T E S (1) L a b o r a t o r y : U n i v e r s i t y of B r i t i s h Columbia / G e o l o g i c a l S c i e n c e s - X-ray f l u o r e s c e n c e (2) S u f f i x e s t o sample numbers : 'D' = dup l .cate sample 'A' •= sample ashed p r i o r to XRF a n a l y s i s (3) Data f o r h i g h s u l p h i d e / s u l p h a t e samples r e p r e s e n t e l e m e n t a l abundances i n unusual m a t r i c e s and p r o b a b l y have had i n a d e q u a t e a d j u s t m e n t s made f o r m a t r i x e f f e c t s v i a the compton peak c o r r e c t i o n due t o a la c k of s t a n d a r d s w i t h s i m i l a r m a t r i c e s . T h e r e f o r e a l l XRF t r a c e element a n a l y s e s m h i g h s u l p h i d e / s u l p h a t e samples a r e thought t o be h i g h . The b u l k of t h e s e samples b e l o n g t o the (200R,4000,4100.4200)-series. (4) B l a n k s I n d i c a t e no v a l u e due to a n a l y t i c a l problems. ND = not d e t e c t e d . Page 180 TABLE DDH-C-06 T A B L E A-/-7- I N D U C E D C A T I O N A R G O N P L A S M A ( I C P ) A N A L Y S E S ////////////////////////////////////////////////////// S A M P L E M E T E R A G E L I T H O L O G Y MO C U A G NI C O S B N O . F R O M TO ( P P M ) D I A M O N D D R I L L H O L E 7 8 - C - 0 4 -- 0 . 0 9 . 1 C A S I N G 4 9 0 1 9 1 1 3 . 0 S H P R 33 3 8 1. 3 7 8 . 6 1 1 . 7 2 4 9 4 1 0 9 1 13 . 0 S H P R 2 9 3 2 . 1 0 6 9 . 6 . 1 1 . 5 2 4 9 3 2 13 0 17 . 0 SHPR 4 1 4 4 . i 5 9 0 . 6 . 14 . 6 6 4 9 3 3 17 . 0 21 . 6 S H P R 38 3 0 . 0 . 7 7 5 . 7 . 8 . 74 4 9 3 4 21 6 22 .4 P Y R T 36 3 6 . 10 5 4 9 . 4 . 4 6 . 5 1 4 9 3 5 2 2 . 4 23 . 0 SHPR 4 4 2 2 . 0 8 7 8 . 6 . 9 . 103 4 9 3 6 2 3 0 25 5 P Y R T 4 2 5 2 . 4 3 4 7 . 3 . 4 8 . 6 4 4 9 3 7 2 5 . 5 27 . 1 S H P R 37 17 . 0 . 7 7 3 . 6 . 6 . 5 8 4 9 4 2 2 7 . 1 2 9 3 P Y R T 3 8 4 0 . 10 0 3 4 . 2 . 3 9 . 3 5 4 9 4 3 2 9 3 33 . 5 S H P R 4 7 3 6 . 1. 0 104 . 7 . 15 . 6 9 4 9 4 9 D 2 9 3 33 . 5 S H P R 41 31 . 0 9 106 . 7 . 12 . 5 9 -- 3 3 . 5 34 2 POOR R E C O V E R Y - NOT S A M P L E D 4 9 4 4 3 4 . 2 36 8 S H P R 4 5 27 . 0 7 104 . 7 . 6 . 6 8 4 9 4 5 3 6 8 3 9 3 S H P R 4 3 3 3 . 5 . 0 81 . 5 . 15 . 7 1 4 8 9 3 3 9 3 4 0 . 7 S H D L 27 3 6 . 16 . 2 5 2 . 3 . 1 . 4 7 -- 4 0 . 7 41 . 6 F A U L T NOT S A M P L E D 4 8 9 4 4 1 6 42 . 5 S H P R 37 2 3 . 1 . 7 9 5 . 8 . 1 . . 41 2 0 3 R 4 2 5 44 6 U D B S 10 2 3 . 24 5 4 5 . 3 . 2 . 5 8 2 0 4 R 4 4 6 4 6 6 U D B S 14 13 . 2 3 . 4 6 0 . 5 . 1 . 8 5 2 0 5 R 4 6 . 6 4 9 2 U D B S POOR R E C O V E R Y ^ -3 3 5 . 3 5 1 7 2 . 6 . 1 . 2 3 -- 4 9 ,2 4 9 . 4 NOT S A M P L E D 4 8 9 5 4 9 . 4 57 6 S H P C 21 4 8 . 4 . 8 7 3 4 . 3 . 3 6 4 8 5 0 5 7 6 67 . 4 P R C 1 22 2 8 . 0 . 9 6 9 . 5 . 1 . 5 0 4 9 4 6 6 7 , 4 72 . 1 P R C 1 32 2 0 . 0 . 6 7 5 . 4 . 4 . 6 0 4 9 4 7 7 2 , 1 7 5 4 S H P C 3 5 2 9 0 6 9 8 . 6 . 5 . 7 0 7 5 4 77 9 F A U L T NOT S A M P L E D 4 9 4 8 7 7 9 79 3 S H P C 33 3 0 . 0 . 4 1 1 1 . 6 . 6 . 8 5 4 9 5 0 7 9 . 3 81 .2 P R C 2 28 3 0 . 0 7 5 7 . 6 . 6 . 34 4 8 5 1 81 , 2 84 . 2 P R C 1 23 21 . 0 . 3 4 3 . 4 . 3 . 18 4 9 0 0 0 81 2 84 2 P R C 1 • 3 0 2 0 . 0 4 4 4 . 4 . 3 . 13 4 8 5 2 8 4 2 87 2 P R C 1 2 5 2 0 . 0 . . 4 5 3 . 4 . 3 . 16 4 8 5 3 8 7 . 2 91 4 S H P H 21 4 6 . 0 . 7 7 5 . 12 . 6 . 2 6 4 8 5 4 91 4 9 5 . 4 S H P R 2 6 3 3 . 0 5 7 4 . 8 . 5 . 5 3 4 8 5 5 9 5 4 9 9 . 4 S H P C 3 3 3 0 . 0 4 7 5 . 7 . 4 . 5 0 4 8 5 6 9 9 . 4 103 . 4 S H P C 27 2 3 . 0 5 6 4 . 5 . 6 . 51 4 8 5 7 1 0 3 .4 107 . 4 S H P C 4 3 3 5 . 0 7 8 7 . 7 . 1 0 . 6 0 4 8 5 8 1 0 7 .4 111 . 4 S H P C 31 2 9 . 0 . . 6 6 2 . 5 . 8 . 6 6 4 8 5 9 111 4 1 13 . 7 S H P C 2 9 2 9 . 0 . 6 6 3 . 5 . ( 9 0 . ) 6 0 4 8 6 0 1 1 3 7 1 16 . 9 S I L T S T O N E C O N G L O M E R A T 14 2 6 . 0 7 4 3 . 6 . 7 . 4 4 4 8 6 1 1 16 . 9 1 19 . 6 S H P R 34 3 4 . 1 . 0 7 4 . 7 . 1 3 . 5 7 4 8 6 2 1 19 . 6 121 . 9 S S S + C O N G L O M E R A T 9 8 . 0 4 18 . 2 . 9 . 7 4 8 6 3 121 . 9 125 9 S S S 7 1 3 . 0 . 4 18 . 3 . 7 . 13 4 8 9 9 D 12 1 . 9 125 . 9 S S S 4 9 . 0 . 4 12 . 3 . 6 . 6 E N D O F H O L E IS) 125 . 9 M Page 181 T A B L E A.I-7: D D H - C - 0 4 S A M P L E M E T E R A G E L I T H O L O G Y MO C O A G N I C O S B NO. F R O M T O ( P P M ) D I A M O N D D R I L L H O L E 7 9 - C - 0 3 -- 0 . O 9 . 1 C A S I N G -- 9 1 4 6 . 7 G U N S T E E L U N I T S 4 8 6 8 4 6 . 7 4 7 . 3 D O L O M I T I C S I L T S T O N E 4 7 . 3 1 7 0 1 G U N S T E E L U N I T S 4 0 4 6 1 7 0 . 1 171 . 9 U O S B 4 8 4 9 171 . . 9 1 7 2 . 3 S I L T S T O N E C O N G L O M E R A T 4 8 4 8 1 7 2 . 3 1 7 5 1 S H R S 4 8 6 9 1 7 5 . 1 1 8 0 8 P R C 2 4 8 7 0 1 8 0 . 8 1 8 4 1 P R C 2 4 8 7 1 1 8 4 . 1 1 8 7 . 1 S H P R 4 8 9 8 0 1 8 4 . 1 187 1 S H P R 4 8 7 2 1 8 7 . 1 1 8 9 . 1 S H P R 4 8 7 3 1 8 9 . 1 1 9 0 . 6 P R C 1 4 8 7 4 1 9 0 . 6 1 9 2 . 0 B R E C C I A 4 8 7 5 1 9 2 . 0 1 9 6 0 S H P H 4 8 7 6 1 9 6 . 0 1 9 9 . , 4 S H P H 4 8 7 7 1 9 9 . 4 2 0 2 . 7 S H P H 4 8 7 8 2 0 2 . 7 2 0 5 7 S H P R 4 8 7 9 2 0 5 . 7 2 0 8 . 8 S H P R 4 8 8 0 2 0 8 8 2 1 2 . 6 S H P C 4 8 8 1 2 1 2 . 6 2 1 7 . 0 S H P R 4 8 9 7 D 2 1 2 . 6 2 17 . 0 S H P R 4 8 8 2 2 1 7 . 0 2 2 1 . 0 S H P R E N D O F H O L E '» 221.0 M N O T S A M P L E D 4 . 13 . 0 . 3 1 6 . 4 . 9 . 2 3 v IOT S A M P L E D 5 . 21 . 1 9 0 2 2 . 2 . 1 . 3 5 1 5 . 14 . 2 8 4 5 . 4 . 1 . 2 5 3 5 . 2 7 . 3 5 7 7 . 6 . 1 . 5 3 2 6 2 0 . 0 . 5 6 5 4 . 3 . 5 7 2 7 . 2 5 . 0 5 7 2 . 4 . 5 . 4 9 31 31 . 0 5 9 8 . 6 . 5 . 8 5 31 . 2 8 . 0 . 5 9 6 . 6 . 5 . 5 7 2 5 . 2 4 . 0 5 8 4 . 5 . 5 . 9 1 6 5 . 3 8 . 0 . 3 ( 1 6 1 5 . ) ( 19 . ) ( 1 1 . ) 3 1 5 . 1 9 . 0 3 2 8 . 4 . 9 . 1 8 1 0 . 4 7 . 0 3 1 0 2 . 15 . 6 . 3 8 8 . 7 2 . 0 4 6 8 . 16 . 8 . 4 5 13 . 5 3 . 0 6 7 7 . 17 . 9 . 4 9 17 . 6 2 . 0 9 8 0 . 14 . 6 . 4 1 31 5 2 . 1 . . 1 8 7 . 9 . 8 . 4 8 3 3 3 3 . . 0 . 5 8 0 . 5 . 7 . 5 7 3 5 . 3 4 . 0 6 7 9 . 6 . 7 . 5 8 3 2 . 4 0 . 0 . 7 7 4 . 6 1 0 . 5 5 2 8 . 3 2 . 0 . . 7 7 6 . 6 . 6 . 6 0 ) Page 182 T A B L E A J ' 7 U O H - C - O S SAMPLE METERAGE LITHOLOGY NO. FROM TO MO CU AG NI CO (PPM) SB V DIAMOND DRILLHOLE 7 9 - C - 1 4 -- 0 0 6 4 -- CASING -- 6 4 1 18 5 -- OVERTHRUST UNITS - NOT SAMPLED -- 1 18 5 120 9 FAULT MAIN THRUST FAULT - NOT SAMPLED 4960 120 9 123 8 SHPH 18 . 55 . 0 1 8 3 . 20. 2 42 4961 123 8 127 8 SHPH 15 . 43 . 0 1 7 3 . 16 . 1 . 54 4962 127 8 132 3 SHPH 8 48 . 0 1 64 . 17 . 1 . 69 -- 132 3 133 5 FAULT NOT SAMPLED 4963 133 5 136 5 SHPH 9 . 6 9 . 0 1 6 0 . 16 . 1 . 63 4964 136 5 139 6 SHPH 10. 45 . 0 1 7 3 . 17 . 1 . 62 -- 139 6 14 1 7 FAULT NOT SAMPLED 4965 141 7 144 7 SHPH 10. 4 3 . 0 1 67 . 18 . 1 . 42 4986 0 141 7 144 7 SHPH 7 . 52 . 0 5 61 . 16. 1 . 40 4966 144 7 148 7 SHPH 10. 40 . 0 1 6 8 . 19. 1 . 37 -- 148 7 149 6 FAULT NOT SAMPLEO 4967 149 6 153 6 SHPH 10. 42 . 0 1 6 3 . 18. 1 . 49 4968 153 6 157 6 SHPH 1 1 . 4 2 . 0 1 19 . 19. 1 . 49 4969 157 6 161 6 SHPH 1 1 . 40 . 0 1 5 9 . 14 . 57 4970 161 6 165 6 SHPH 10. 4 0 . 0 1 66 . 17 . 1 . 54 4971 165 6 169 6 SHPH 9 . 47 . 0 1 62 . 14 . 1 . 46 4972 169 6 173 8 SHPH 9 . 34 . 0 1 6 3 . 16 . 1 47 -- 173 8 177 8 FAULT NOT SAMPLED 4973 177 8 182 5 SHPH 9 . 3 3 . 0 1 61 . 17 . 1 . 54 4974 182 5 186 3 SHPH 9. 36 . 0 1 6 0 . 16 . 1 . 50 4976 186 3 190 3 SHPH 10. 32 . 0 1 64 . 17 . 1 . 50 4997 D 186 3 190 3 SHPH 6 . 31 . 0 4 58 . 16 . 1 . 4 1 • -- 190 3 190 4 FAULT NOT SAMPLED 4867 190 4 195 3 PRC 1 27 . 24 . 0 4 73 . 5 . 4 . 29 4977 195 3 196 4 PRC4 12 . 25 . 0 4 58 . 4 . 4 . 214 4978 196 4 197 1 PRC 1 14 . 30 . 0 7 68 . 4 . 3 . 250 4979 197 1 201 1 PRC 1 29 . 2 3 . 0 2 84 . 5. 2 . 39 4980 201 1 205 1 PRC 1 23 . 24 . 0 2 8 0 . 5. 3 . 26 4981 205 1 209 1 PRC 1 23. 24 . 0 2 74 . 5. 3 . 28 4982 209 1 212 0 SHPC 24 . 28 . 0 4 4 9 . 4 . 5 . 55 -- 212 0 213 4 FAULT NOT SAMPLED 4983 213 4 215 3 SHPC 22. 30 . 0 4 50 . 4 . 6 . 45 -- 215 3 216 1 FAULT NOT SAMPLED -- 216 1 216 9 SHPC POOR RECOVERY - NOT SAMPLED -- 216 9 219 1 FAULT NOT SAMPLED 4984 219 1 224 5 SHPC 33. 4 1 . 0 7 67 . 5. 5 . 74 -- 224 5 226 7 FAULT NOT SAMPLED 4985 226 7 229 8 SHPC 38 . 30 . 0 6 84 . 6 . 6 . 76 4987 229 8 231 7 SHPR 38. 35 . 1 2 8 3 . 7 . 1 . 73 5000 D 229 8 231 7 SHPR 33 25 . 0 8 65 . 5 . 1 . 78 4988 231 7 235 0 SHPR 45 . 38 . 1 4 8 9 . 7 . 1 . 89 4989 235 0 236 2 PYRT 18. 29 . 2 4 17. 1 . 1 . 51 Page 183 TABLE A-l-7: O D H - C - 14 S A M P L E N O . METERAGE LITHOLOGY FROM TO MO CU AG NI CO SB V ( PPM) 4990 236 .2 239 . 3 SHPR 4991 239 .3 240 . 1 SHDL 4939 2 3 9 . BO 239. 39 PYRITE LAMINATIONS 4992 240 . 1 24 1 . 1 SHPR 4993 241 . 1 245 . 1 SHPR 4904 2 4 3 . 40 243. 45 C A L C I S I L T LAMINATION 4994 245 . 1 249 . 7 SHPC 4995 249 . 7 251 .9 SHPR 4996 251 .9 252 . 7 SHPR 4847 252 .7 255 . 1 SHPR 4846 255 . 1 257 .5 SHPR 4118 257 .5 258 5 UDBS 4845 258 .5 260 0 SHPR 4844 2 5 9 . 0 5 259. 30 SILTSTONE BED 41 19 260 0 26 1 8 UDBS 4 120 261 8 263 6 PYRT 4121 263 6 266 3 UDSB 4122 266 3 268 5 UDSB 4123 268 5 270 9 UDSB 4124 270 9 273 4 UDSB 4125 273 4 275 1 UDSB 4126 275 1 277 6 UDSB 4127 277 6 280 0 UDSB 4 128 280 0 282 4 UDSB 4129 282 4 284 8 UDSB 4843 284 8 288 3 SILTSTONE CONGLOMERAT 4130 288 3 290 8 UDSB 4131 290 8 292 5 UDSB 4132 292 5 294 4 UDSB 4133 294 4 296 9 UDBS 4134 296 9 299 3 UDBS 4135 299 3 302 5 UDBS 4136 302 5 305 3 UDSB 4137 305 3 306 6 PYRT 4842 306 6 309 8 SHPC 4998 309 8 310 5 SHPC 4905 3 1 0 . 0 5 310. 5 SILTSTONE BED 4999 310 5 314 5 SHPC 4901 314 5 316 8 SHPC 4902 316 8 318 8 SHPC 4903 318 8 322 6 SHPC 4906 322 6 324 7 SHPC 4907 324 7 327 8 PRC2 4908 327 8 329 0 PRC 1 4909 329 0 331 2 PRC4 49 IO 331 2 331 4 BARITE + LIMESTONE 4911 331 4 332 5 LIMESTONE 4912 332 5 334 8 PRC2 4915 D 332 5 334 8 PRC2 -- 334 8 338 0 FAULT NOT SAMPLED 45 . 25 . 0 8 86 . 6 . 3 . 85 . 30. 63 . 2 5 47 . 4 . 1 . 50 . 56 . 102 . 0 1 3 9 . 3 . 1 . 58 . 39. 26 . 0 6 8 1 . 6 . 3 . 74 . 38 . 44 . 0 9 90 . 7 . 7 . 69 . 6 . 16 . 0 2 14 . 2 . 1 . 47 . 3 1 . 34 . 0 9 8 3 . 6 . 4 . 65 . 38 . 35 . 1 8 9 3 . 6 . 2 . 54 . 34 . 40 . 2 6 88 . 6 . 2 . 51 . 33 . 28 . 2 3 94 . 6 . 1 47 . 32 . 38 . 5 6 78 . 5. 1 44 . 7 . 29 . 18 0 42 . 4 . 76. 22 . 33 . 9 9 70 . 5 . 1 . 44 . 6 14 2 0 2 1 . 2. 1 . 26 . 9 . 60 . 28 1 52 . 6 . 1 . ' 42 . 18 . 35 . 13 4 36 . 3 . 1 . 55 . 6 . 72 . 27 2 8 3 . 9 . 1 . 34 . 4 . 30 . 28 8 28 . 3 . 1 . 27 . 3 . 35 . 35 2 26 . 3 . 1 . 17 . 8 . 35 . 18 8 27 . 4 . 1 . 30. 8 . 51 . 21 4 32 . 5. 1 . 34 . 8 . 63 . 17 9 35 . 4 . 1 . 33 . 7 . 62 . 23 6 34 . 3 . 1 . 31 . 3 . 55 . 32 1 34 . 5. 1 . 18 . 3 . 6 3 . 32 2 45 . 7 . 1 . 17 . 4 . 10. 2 9 21 . 4 . 1 . 1 1 . 5. 32 . 24 4 24. 3. 1 . 23 . 5. 6 3 . 21 3 45 . 6 . 1 . 25 . 7 . 77 . 24 6 36 . 6 . 1 . 26. 4 . 73 . 35 4 4 1 . 6 . 1 . 16. 2 . 67 . 25 1 50 . 9 . 1 . 9 . 2 . 55 . 26 6 42 . 8 . 9 . 5. 97 . 29 0 42 . 8 . 1 . 32 . 19 . 2 9 . 15 4 33 . 3 . 1 . 52 . 28 . 28 . 0 8 80 . 5. 1 . 33. 24 . 39 . 0 6 66 . 5 . 4 64 . 9 . 12 . 0 2 27 . 3. 7 . 22 . 31 . 31 . 0 7 80 . 5. 3 . 65 . 37 . 57 . 0 6 90 . 6 . 1 . 1 15. 43 . 34 . 0 6 103. 6 . 3 . 1 18. 39 . 34 . 0 7 9 8 . 6 . 1 . 120. 30 . 27 . 0 4 82 . 4 . 2 . 113. 26 . 29 . 0 4 92 . 5. 5. 125. 22 . 36 . 0 7 87 . 5 . 4 . ( 3 6 0 . ) 3 . 5. 0 1 21 . 45 . 4 . 105. 15. 14. 0 . 4 37 . 36 . 5 . 281 . 1 . 2. 0 . 1 1 1 . 54 . 9 . 46 . 50 . 44 . 0 1 48 . 7 . 1 . 37 . 48 . 44 . 0 . 1 4 4 . 7 . 2 . 40 . Page 184 TABLE A.\-7 D D H - C - 1 4 SAMPLE NO. METERAGE LITHOLOGY FROM TO MO CU AG NI CO SB V (PPM) 4913 338 0 342 .3 SHRS + SHPH 25. 59 . 0 .9 6 0 . 8 . 1. 81 4914 342 3 344 .9 SHPR 24 . 32 . 0. . 4 70 . 5 . 1. 87 4916 344 .9 348 .2 SHPR 37 . 41 . 0 . 5 8 3 . 7 . 4 . 1 12 -- 348 .2 349 .2 FAULT NOT SAMPLED 4917 349 2 350 .0 PRC2 18 . 38 . 1 4 82 . 7 . 8 . (691 4918 350 0 353 .0 PRC 1 34 . 44 . 0 . 3 75 . 5. 5 . 1 19 4919 353 0 356 . 2 SHPR 39 . 33 0 . 4 87 . 6 . 3 . 147 -- 356 . 2 357 8 FAULT NOT SAMPLED 4920 357 . 8 360 , 3 SHPR 21 . 19 . 0 2 49 . 4 . 2 . 96 4921 360 3 364 .0 SHPR .23. 40 . 0 1 50 . 6 . 1 . 58 4940 D 360 3 364 .0 SHPR 26 . 74 . 0 1 54 6 2 . 64 4922 364 0 367 .0 SHPR 32 . 23 . 0. 1 32 . 4 . 1 . 25 4923 367 .0 367 .9 SHPC SAMPLE LOST IN TRANSIT 4924 367 9 37 1 . 9 PRCS 2 1 . 2 1 . 0. 1 43 . 4 . 2 . 24 4925 37 1 9 375 .9 PRCS 28 . 31 . 0. 1 55.. 5. 1 . 54 4926 375. 9 379 .8 PRCS 28 25. 0 3 73 . 5. 2 . 55 4927 379 8 381 . 3 SHPR 9 . 19. 0. 1 3 1 . 5. 2 . 23 4928 381 . 3 382 . 2 SILTSTONE CONGLOMERAT 37 . 54 . 0 . 1 84 . 8 . 1 . 84 4929 382 .2 385 5 SSS 5. 12. 0 . 1 17 . 5 . 1 . 19 4930 385. 5 388 .9 SSS 3. 11. 0 . 1 9 . 4 . 7 . 10 ENO OF HOLE 9 388 .9 M Page 185 TABLE A-l-7 DDH-C-14 SAMPLE METERAGE LITHOLOGY MO CU AG NI CO SB NO. FROM TO (PPM) DIAMOND DRILLHOLE 7 9 - C - 2 3 -- 0 0 6 1 CASING -- 6 1 142 3 OVERTHRUST UNITS - NOT SAMPLED -- 142 3 143 5 FAULT MAIN THRUST FAULT - NOT SAMPLED 4864 143 5 147 3 SHRS 23 , 67 . 0 8 58 . 7 . 8 . 27 4865 147 3 149 7 DOLOMITIC SILTSTONE 7 . 25 . 0 6 33 . 4 . 9 . 23 4866 149 7 152 0 SHRS 38. • 30 . 0 7 66 . 7 . 9 . 23 -- 152 0 152 2 FAULT NOT SAMPLED 4451 152 2 157 0 SHRS 12 . 37 . 0 6 64 . 12 . 3 . 61 4452 157 0 161 0 SHPH 7 . 34 . 0 1 58 . 17 . 1 . 56 4453 161 0 165 0 SHPH 4 . 37 . 0 1 61 . 17 . 1 . 56 4454 165 0 168 6 SHPH 3. 34 . 0 1 59 . 16 . 1 . 56 4455 168 6 171 5 SHPH 3. 29. 0 1 58 . 16 . 1 . 55 4456 171 5 174 2 SHPH 4 . 27 . 0 1 56 . 17 . 1 . , 54 4457 174 2 178 2 SHPH 5. 35. 0 1 60 . 17 . 1 . 62 4458 178 2 182 4 SHPH 7 . 22. 0 3 59 . 15 . 77 4459 182 4 186 4 SHPH 12 . 14 . 0 3 53 . 10. 96 4460 186 4 189 0 FAULT ' 10. 45. 0 1 76 . 20 . 1 . 45 4461 D 186 4 189 0 FAULT 12 . 44 . 0 1 75 . 19 . 1 . 41 4462 189 0 193 0 SHPH 6. 45 . 0 t 80 . 2 1 . 1 . 63 4463 193 0 197 0 SHPH 4 . 33 . 0 1 59 . 17 1 . 53 4464 197 0 201 0 SHPH 7 . 38 . 0 1 61 . 15 1 . 53 4465 201 0 205 0 SHPH 1 1 . 41 . 0 2 6 0 . 12. 1 . 52 4466 205 0 209 0 SHPH 1 1 . 36 . 0 4 63 . 13. 1 . 45 4467 209 0 2 13 0 SHPH 16. 5 3 . 0 4 7 1 . 12. 1 . 68 4468 213 0 2 17 0 SHPH 14 . 46 . 0 1 7 1 . 15. 1 . 52 4469 217 0 221 0 SHPH 7 . 49 . 0 1 70 . 20 . 1 . 46 4470 221 0 225 0 SHPH 7 . 43 . 0 1 65 . 17 . 1 . 45 4471 225 0 229 0 SHPH 6 . 46 . 0 1 60 . 19. 1 . 36 4472 D 225 0 229 0 SHPH 4 . 38 . 0 1 47 . 13. 1 . 30 4473 229 0 233 0 SHPH 7 . 42 . 0 1 70 . 2 1 . 1 . 37 4474 233 0 235 5 SHPH 7 . 39 . 0 1 62 . 17 . 1 . 31 4475 235 5 239 6 SHPH 6 . 34 . 0 1 54 . 12 . 1 . 40 4476 239 6 243 6 SHPH 3 . 37 . 0 1 54 . 15 . 1 . 54 4477 243 6 246 9 SHPH 6 . 35 . 0 1 61 . 15 . 1 . 65 -- 246 9 249 0 FAULT NOT SAMPLED 4478 249 0 252 2 PRC 1 26. 29. 0 1 69 . 6 . 2 . 26 4479 252 2 256 2 PRC 1 17 . 18 0 1 45 . 4 . 2 . 26 -- 256 2 258 0 PRC 1 POOR RECOVERY - NOT SAMPLED -- 258 0 260 6 FAULT NOT SAMPLED 4480 260 6 265 7 PRC3 , 26 26 . 0 1 76 . 6 . 1 . 34 4481 265 7 267 0 PRC 1 3 9 . 34. 0 1 122 . 10. 1 . 36 4482 267 0 27 1 0 PRC 1 + SHPC 33 . 29. 0 1 76 . 5. 2 . 87 4483 0 267 0 271 0 PRC 1 + SHPC 35 . 31 . 0 2 75 . 6 . - 3. 73 -- 271 0 274 5 SHPC POOR RECOVERY - NOT SAMPLED 4484 274 5 275 6 DOLOMITIC SILTSTONE 1 1 . 19. 0 1 34 . 4 . 5 . 27 Page 186 T A B L E kl'T ° n H - c - 2 3 S A M P L E M E T E R A G E L I T H O L O G Y MO C U A G N I C O S B N O . F R O M T O ( P P M ) 4485 275 .6 279 . 4 S H P C 30. 26. 0 . 2 73 . 5. 2 . 76 4486 279 .4 281 .9 S H O L 29. 37 . 4 . 5 72 . 4 . 1 76 4487 28 1 .9 282 8 P Y R T 77 . 38. 0 . 1 57 . 3 . 1 . 86 4488 282 .8 286 .0 S H P C 44 . 47 . 0 . 1 77 . 5 . 1 . 77 4489 286 .0 289 . 2 S H P C 35. 30. 0 . 2 65. 5 . 5. 63 4490 289 .2 293 .2 S H P C 35. 4 1 . 0 . 4 80. 6 . 5 . 89 4491 293 .2 297 .3 S H P C 36. 38 . 0 . 4 85. 6 . 5 . 106 4492 297 . 3 298 . 3 S I L T S T O N E C O N G L O M E R A T 29. 38 . 0 .9 84 . 6 . 6 . 84 4493 298 .3 300 .8 S H P R 37 . 4 1 . 0 .6 88 . 7 . 6 . 83 4499 D 298 . 3 300 8 S H P R 36 . •35. 0 .6 88 . 7 . 4 . 72 4494 300 8 303 . 5 S H P R 40. 39. 1 .9 95 . 7 . 1 77 4495 303 .5 304 .9 D O L O M I T I C S I L T S T O N E 7 . 1 1 . 1 . 1 52 . 3. 6 . 33 4256 304 .9 307 . 3 U D S B 10. 53 . 105 .0 58 . 5 . 1 . 39 4257 307 . 3 308 4 U D S B 5 . 26. 74 .0 49 . 5 . 1 . 22 4258 308 .4 310 0 U D B S 2 . 1 1 . 42 .0 26 . 2 . 1 1 . 12 4259 310 .0 311 .5 U D B S 1 . 15 . 35 .0 34 . 4 . 1 1 . 9 4841 311 .5 315. .0 S H P R 30. 28. 5 .6 84 . ' 5. 1 . 63 4260 315 .0 317. 1 U D B S 3 36 . 35 5 26 3 12 . 19 4261 317 . 1 319 . 1 U D B S 5. 61 . 59 . 5 49 . 7 1 . 24 4262 319 . 1 320. 6 U D B S 7 . 59. 50 0 4 1 . 6 . 3. 23 4263 320 .6 322 .6 U D S B 17 . 82 . 86 .0 5 1 . 7 . 1 . 56 4264 322 .6 325 0 U D S B 8. 58 . 108 .0 49. 7 . 1 . 36 4265 325 .0 326 .0 S H D L 20. 45. 1 15 .0 46 . 4 . 1 . 66 4840 326 .0 327 . 4 S I L T S T O N E C O N G L O M E R A T 5 . 14 . 7 . 7 24 . 3 . 1 . 24 4266 327 . 4 328 3 U D S B B R E C C I A 5 . 16 . 67 .5 15 . 1 . 1 . 19 4267 328 . 3 330 . 4 U D B S 4 . 9. 66. 0 15. 1 . 1 . 1 1 4268 330 . 4 332 .4 U D S B 4 . 21 . 66 5 26. 4 . 5 . 13 4269 332 4 334 3 U D B S 2 . 29. 32 . 0 25 . 5. 16 . 6 4270 334 . 3 336 6 U D B S 5. 50. 34. 0 30. 5 . 3. 13 427 1 336 .6 338 7 U D B S 4 . 81 . 43. 0 30. 5 . 6 . 10 4272 338 7 340 3 U D B S 7 . 75 . 44 . 0 36. 6 . 14 . 18 4273 340 3 342 4 U D B S 5 . 82 . 36. 5 42 . 8. 1 . 8 4274 342 , 4 344 , 3 U D B S 2 . 84 . 32 . 0 42 . 9 . 6. 6 4275 344 . 3 346 . 3 U D E S 3 . 77 . 32 . 0 27 . 5 . 5. 7 4276 346 . 3 348 . 1 U D B S 4 . 78 . 42 . 5 40. 9 . 1 . 7 4277 348 . 1 350. 4 U D B S 3 . 52 . 58. 0 16 . 2 . 10. 5 4278 350 4 352 . 6 U D B S 2 . 54 . 33 . 0 23. 3 . 5. 4 4279 352 . 6 353 . 2 U D B S 1 1 . 77 . 60. 5 45 . 7 . 1 . 12 4839 353 . 2 355. 3 S H P R 29. 33. 6 . 3 74 . 4 . 1 . 61 4280 355. 3 357 . 3 P Y R T 14 . 22 . 38. 5 16 . 1 . 1 . 18 4281 357 . 3 359. 4 P Y R T 28 . 39. 31 . 0 51 . 3 . 1 . 36 4282 359. 4 361 . 3 U D B S 1 . 37 . 30. 0 17 . 3 . 27 . 5 4283 361 . 3 363. 3 U D B S 1 . 56. 22. 5 32. 7 . 2 . 6 4284 363. 3 365. 3 U D B S 1 . 70. 38. 0 39. 8. 1 . 6 4285 365. 3 367. 3 U D B S 1 . 67 . 38. 0 44 . 9. 1 . 6 42B6 367 . 3 369. 3 U D B S 2 . 62. 33. 5 66. 12 . 3. 7 4287 369. 3 371 . 3 U D B S 2. 49. 33. 5 53. 1 1 . 5. 8 4288 37 1 . 3 373. 3 U D B S 1 . 24. 19. 5 13. 3 . 1 . 1 4289 373. 3 375. 3 U D B S 2 . 4 1 . 26. 0 4 1 . 7 . 1 . 7 4290 375. 3 377 . 3 U D B S 1 . 39. 30. 0 30. 8 . 1 . 3 Page 187 T A B L E A. 1-7: D D H - C - 2 3 SAMPLE METERAGE LITHOLOGY MO CU AG NI CO SB V NO. FROM TO (PPM) 4291 377 3 378 8 UDBS 2 15. 20 5 10. 1 . 1 . 12. 4496 378 8 379 4 PYRT 17 18 . 0 9 55. 4 . 6. 50. 4938 378.90 378:95 DOLOMITIC SILTSTONE 56 61 . 0 1 85. 6 . 1 . 133. 4497 379 4 383 1 SHPC 30 25. 1 2 89 . 6 . 3. 49. 4498 383 1 383 9 SILTSTONE CONGLOMERAT 45 4 1 . 3 4 63. 4 . 1 . 225. 4500 383 9 386 5 SHPC 38 28 . 1 3 99. 6 . 1 . 86 . 4951 386 5 387 8 PRC 1 27 23. 0 1 59. 5 . 2 . 33. 4952 387 8 391 8 PRC 1 44 32 . 0 1 88. 8 . 1 . 30. 4953 391 8 392 9 PRC 1 39 25. 0 1 79 . 6 . 1 . 5 . 4954 392 9 395 7 PRC2 28 38. 0 1 96. 6 . 9 . 164. 4975 D 392 9 395 7 PRC2 24 31 . 0 3 90. 6 . 2 . 137 . 4955 395 7 397 0 PRC4 18 31 . 1 2 73. 8 . 7 . (572. ) 4956 397 0 398 5 PRC2 + BARITE 7 16. 0 1 19. (39. ) 3. 37 . 4957 398 5 400 1 PRC2 65 47 . 0 2 48 . 7 . 2 . 17 . 4958 400 1 403 2 PRC2 34 27 . 0 1 69. 6. 1 . 21 . 4959 403 2 406 4 PRC 1 3 1 30. 0 1 68 . 5 . 2. 23 . -- 406 4 407 5 PRC 1 POOR RECOVERY - NOT SAMPLED END OF HOLE 9 407.5 M Page 188 TABLE A.I-7 : DDH-C-23 SAMPLE METERAGE LITHOLOGY MO CU AG NI CO SB V NO. FROM TO (PPM) DIAMOND DRILLHOLE 80-C-06 0 .0 3 . 7 CASING -- 3 .7 171 .5 OVERTHRUST UNITS - NOT SAMPLED -- 171 . 5 171 .9 MAIN THRUST FAULT - NOT SAMPLED -- 171 9 387 . 3 GUNSTEEL UNITS - NOT SAMPLED 4883 387 .3 390 .9 . SHPC 24 . 20. 0 4 66 . 4 . 6 . 46 4884 390. 9 391 2 DOLOMITIC SILTSTONE 5 . 9 . 0. 9 20. 2 . 6 13 4885 391 .2 394 .5 SHPC 35 . 28. 0 .5 84 . 5 . 6 . 53 4886 394 . 5 397 8 SHPC 42 . 26 . 1 . 0 93 . 6 . 4 . 70 4887 397 .8 402 .0 PRC 1 26. 24 . 0 .6 64 . 5 . 4 . 18 4888 402 .0 406 . 2 PRC 1 26 . 25 . 0 6 67 . 5 . 3 . 26 4889 406. 2 408. 8 SHPH 8 . 42 . 0 3 68. 16 . 5. 17 4890 408 . 8 4 11 2 SHPH 6 . 43 . 0 . 4 51 . 13 . 5 . 20 4891 4 11 2 412 .9 SHPH 7 . 4 1 . 0 4 63. 16. 7 . 28 4896 D 411 .2 412 .9 SHPH 7 . 34 . 0. .4 65. 15 . 4. 28 4892 4 12. .9 4 17 6 SHPH 7 . 36. 0 3 65 . 17 . 5 . 4 1 END OF HOLE @> 4 17.6 M. N O T E S (1) L a b o r a t o r y : Acme A n a l y t i c a l L a b o r a t o r i e s L t d . , Vancouver. Page 189 T A B L E A . I - 7 : O D H - C - 0 6 TABLE A-l-5 " R f l R E EARTH ELEMENT ANALYSES niiiiinmiiiniii/iiiiiiiii/niiiiii EU SM YB (PPM) DIAMOND DRILLHOLE 78-C-04 4932 A 13 .0 17 .0 SHPR 0 6 15 . 7 1 6 4942 27 . .1 29 . 3 PYRT 2 . 8 17 6 1 5 4942 D A 27 . 1 29 . 3 PYRT 2 8 1 7 . 6 1 . 5 203R 42 . 5 44 . 6 UDBS • 2 5 2 . 2 28 , 4 204R 44 .6 46 . 6 UDBS 3 7 2 . 5 13 2 205R 46 .6 49 . 2 UDBS 2 . 5 10 . 2 4 .0 4851 A 81 . 2 84 . 2 PRC 1 0. 1 7 .9 1 1 4900 0 A 81 .2 84 2 PRC 1 0. 3 7 . 2 1 2 4853 A 87 2 91 .4 SHPH 1 . 4 2. 0 5 0 4857 A 103 .4 107 . 4 SHPC 1 . 2 6 9 6 2 486 1 A 1 16 9 1 19. 6 SHPR 1 . 2 3 4 2 3 4863 A 12 1 . 9 125 9 SSS 0. 7 3 1 1 1 4899 D A 12 1 9 125 . 9 SSS 0. 9 3 . 0 1 . 1 END OF HOLE (St 125.9 M SAMPLE METERAGE LITHOLOGY NO. FROM TO Page 190 TABLE A. ODH-C-04 SAMPLE METERAGE LITHOLOGY EU SM NO. FROM TO (PPM) DIAMOND DRILLHOLE 79-C-03 48G8 A 46.7 47.3 DOLOMITIC SILTSTONE 1.8 9 2 2 5 4868 D A 46.7 47.3 DOLOMITIC SILTSTONE 1.8 9 2 2.5 4046 170.1 17 1.9 UDSB 3.9 18.7 7.1 4876 A 196.0 199 4 SHPH 1.8 5.4 2 5 4881 A 212.6 217 0 SHPR 0.8 5.2 4 0 END OF HOLE » 221.0 M P a g e 191 TABLE A MJ: ODH-C-03 S A M P L E M E T E R A G E L I T H O L O G Y E U SM Y B N O . F R O M T O ( P P M ) D I A M O N D D R I L L H O L E 7 8 - C - 1 4 4 9 6 5 A 141 . 7 144 . 7 S H P H 3 . 2 6 . 9 5 . 5 4 9 8 6 D A 14 1 . 7 1 4 4 . 7 S H P H 2 . 5 8 . 9 3 . 5 4 9 7 4 A 182 . 5 1 8 6 . 3 S H P H 2 . 9 5 . 3 3 . 6 4 8 6 7 A 1 9 0 . 4 1 9 5 . 3 P R C 1 0 . 4 5 . 5 1 . 7 4 9 7 7 A 1 9 5 . 3 1 9 6 . 4 P R C 4 0 . 7 2 . 5 1 6 4 9 7 7 D A 1 9 5 . 3 1 9 6 . 4 P R C 4 0 . 7 2 . 5 1 6 4 9 7 9 A 1 9 7 . 1 2 0 1 . 1 P R C 1 0 . 2 5 . 5 2 . 6 4 9 8 2 A 2 0 9 . 1 2 1 2 . 0 S H P C 0 . 9 7 . 4 1 . 4 4 9 8 5 A 2 2 6 . 7 2 2 9 . 8 S H P C 1 . 2 5 . 4 2 . 3 4 9 8 7 A 2 2 9 . 8 2 3 1 . 7 S H P R 0 . 7 3 . 0 1 . 8 5 0 0 0 D A 2 2 9 . 8 2 3 1 . 7 S H P R 0 . 9 4 . 8 2 . 5 4 9 8 9 2 3 5 . 0 2 3 6 . 2 P Y R T 1 9 1 1 . 0 3 2 4 9 8 9 D A 2 3 5 . 0 2 3 6 . 2 P Y R T 1 . 9 1 1 . 0 3 2 4 9 3 9 A 2 3 9 . 8 0 2 3 9 . 8 9 P Y R I T E L A M I N A T I O N S 0 . 8 2 0 0 . 8 4 1 18 2 5 7 . 5 2 5 8 . 5 U D B S 3 0 3 2 2 14 8 -1844 A 2 5 9 . 0 5 2 5 9 . 3 0 S I L T S T O N E B E D 0 . 9 6 . 9 2 . 4 4 1 1 9 2 6 0 . 0 2 6 1 . 8 U D B S 4 . 4 8 2 . 1 15 3 4 1 2 0 2 6 1 . 8 2 6 3 . 6 P Y R T 4 . 6 4 2 . 8 14 . 6 4 12 1 2 6 3 . 6 2 6 6 . 3 U D S B 4 . 5 2 3 . 0 8 8 4 1 2 2 2 6 6 . 3 2 6 8 . 5 U O S B 2 . 8 2 . 8 5 8 4 1 2 3 2 6 8 . 5 2 7 0 . 9 U D S B 2 . 5 0 . 8 5 . 1 4 1 2 4 2 7 0 . 9 2 7 3 . 4 U D S B 2 5 1 . 2 2 5 . 6 4 1 2 5 2 7 3 . 4 2 7 5 . 1 U D S B 2 . 9 0 . 6 3 7 8 4 1 2 6 2 7 5 . 1 2 7 7 . 6 U D S B 2 . 8 2 . 7 3 0 9 4 1 2 7 2 7 7 . 6 2 8 0 . 0 U D S B 2 . 6 0 . 6 4 0 0 4 1 2 8 2 8 0 . 0 2 8 2 . 4 U D S B 2 . 6 0 . 6 6 9 4 1 2 9 2 8 2 . 4 2 8 4 . 8 U D S B 3 . 6 1 . 6 7 . 6 4 1 3 0 2 8 8 . 3 2 9 0 . 8 U D S B 2 . 8 3 . 5 1 0 4 4 131 2 9 0 . 8 2 9 2 . 5 U D S B 3 . 9 2 . 5 12 . 0 4 1 3 2 2 9 2 . 5 2 9 4 . 4 U D S B 3 . 1 0 . 3 1 1 . 5 4 1 3 3 2 9 4 . 4 2 9 6 . 9 U D B S 3 . 8 1 . 1 7 . 8 4 1 3 4 2 9 6 . 9 2 9 9 . 3 U D B S 2 . 4 2 . 2 8 . 7 4 1 3 5 2 9 9 . 3 3 0 2 . 5 U D B S 3 . 2 15 . 7 3 . 1 Page 192 T A B L E A J-3 : D D H - C - 1 4 SAMPLE METERAGE LITHOLOGY EU SM YB NO. FROM TO (PPM) 4 136 302 .5 305 . 3 UDSB 3 . 9 12 .0 5 . 9 4137 305 . 3 306 .6 PYRT 4 .2 26 .9 9 . 4 4903 A 318 .8 322 6 SHPC 2 .6 6 . 3 0 .6 4903 D A 318 8 322 .6 SHPC 2 .6 6 . 3 0 .6 4908 A 327 8 329 .0 PRC 1 1 . . 2 3 7 2 1 4909 A 329 .0 331 . 2 PRC4 0. . 3 1 7 0. .5 4910 A 331 .2 331 . 4 BARITE + LIMESTONE 1 0 3 3 1 . .64910 D A 331 .2 331 . 4 BARITE + LIMESTONE 1 0 3 . 3 1 6 491 1 A 331 . 4 332 .5 LIMESTONE 2 . 5 6 1 3 6 4912 A 332 .5 334 8 PRC2 0 . 3 7 .0 1 . 6 4915 0 A 332 .5 334 . 8 PRC2 0 . 4 3 0 2 . 5 4913 A 338 0 342 3 SHRS + SHPH 1 2 2 . 1 2 9 492 1 A 360 .3 364 0 SHPR 2. 1 4 . 4 3 . 0 4940 D A 360 . 3 364 0 SHPR 1 . 8 4 . ; i 2 . 2 4929 A 382 2 385. 5 SSS 1 . 0 2 . 7 0. 9 END OF HOLE » 388 9 M Page 193 TABLE A. I"§ • DDH-C-14 SAMPLE METERAGE LITHOLOGY EU SM YB NO. FROM TO (PPM) DIAMOND DRILLHOLE 7 8 - C - 2 3 4865 A 147 . 3 149 . 7 DOLOMITIC SILTSTONE 1 . 3 8 . 2 2 . 7 "4454 A 165 .0 168 .6 SHPH 3 . 2 9 .6 2 . 4 447 1 A 225 .0 229 .0 SHPH 2 . 3 7 . 4 5 . 1 4479 A 252 . 2 256 . 2 PRC 1 0 . 3 17 . 7 i . 1 448 1 A 265 . 7 267 .0 PRC 1 0 .4 15 . 5 3 . 8 4482 A 267 .0 27 1 .0 PRC 1 + SHPC 1 . 1 1 .6 2 . 1 4483 D-A 267 .0 27 1 .0 PRC 1 + SHPC 1 .0 4 . 4 1 . 1 4485 A 275 .6 279 .4 SHPC 0 .9 10 0 1 .5 4487 A 28 1 . 9 282 .8 PYRT 1 . 1 4 8 0 .9 4490 A 289 .2 293 .2 SHPC 0 .8 9 3 3 . 2 4493 A 298 . 3 300 .8 SHPR 1 2 7 .0 3 . 2 4256 304 9 307 . 3 UDSB 4 . 0 15 .0 8 . 4 4257 307 . 3 308 . 4 UDSB 3 .2 14 .2 3 . 9 4258 308 . 4 310 .0 UDBS 2 .5 23 .6 2 .6 4259 310. 0 311 .5 UDBS 2 2 10 .5 2 6 4841 A 311 5 315 0 SHPR 1 . 4 8 4 2 .8 4260 315 .0 317 . 1 UDBS 3 . 0 20 0 3 . 3 4261 317 . 1 319 1 UDBS 2 . 1 2 1 . 7 3 8 4262 319. 1 320 .6 UDBS 2 . 5 16 5 3 1 4263 320. 6 322 6 UDSB 3 0 33 . 7 7 . 1 4264 322. 6 325 . 0 UDSB 2 . 7 22 8 6 0 4265 325 . 0 326 . 0 SHDL 2 . 3 28 0 9 6 4266 327 . 4 328 . 3 UDSB BRECCIA 2 . 4 36 0 10. 0 4267 328. 3 330. 4 UDBS 1 . 6 18 .7 4 . 7 4268 330. 4 332 . 4 UDSB 1 . 6 4 1 2 5 .0 4269 332 . 4 334 . 3 UDBS 1 . 2 0. 7 3 "3 4270 334. 3 336. 6 UDBS 1 . 5 0. 8 5 5 427 1 336 . 6 338. 7 UDBS 1 . 5 1 7 7 7 4272 338. 7 340. 3 UDBS 1 . 4 5 . 9 8. 3 4273 340. 3 342. 4 UOBS 1 . 4 4 . 6 6 . 1 4274 342 . 4 344 . 3 UDBS 1 . 4 0. 8 1 . 7 4275' 344 . 3 346 . 3 UDBS 1 . 1 0 . 5 6 . 0 4276 346. 3 348 . 1 UDBS 1 . 4 6. 9 7 . 2 4277 348 . 1 350. 4 UDBS 1 . 2 2 . 6 9 . 3 Page 194 TABLE A.I-8 D D H - C - 2 3 SAMPLE METERAGE LITHOLOGY EU SM YB NO. FROM TO (PPM) 4278 350 .4 352 .6 UDBS 2 . 5 0 . 1 6 . 1 4279 352 6 353 .2 UDBS 3 . 2 14 . 3 10 . 2 4280 355 .3 357 . 3 PYRT 4 . 2 18 . 7 9 . 5 4281 357 .3 359 . 4 PYRT 4 . 7 13 3 15 .9 4282 359 , 4 361 .3 UDBS 1 . 8 0 . 1 2 . 8 4283 361 .3 363 .3 UDBS 1 .5 4 .9 2 .5 4284 363. .3 365 . 3 UDBS 1 . 9 1 8 1 . 9 4285 365 . 3 367 . 3 UDBS 1 .5 16 9 2 1 4286 367 . 3 369 .3 UDBS 2 . 1 9 5 4 .0 4287 369 . 3 37 1 .3 UDBS 1 . 9 9 0 1 .6 4288 37 1 .3 373 .3 UDBS 1 . 1 6 2 1 2 4289 373 3 375 . 3 UDBS 1 , 8 6 7 0 8 4290 375 3 377 . 3 UOBS 1 . 5 6 . 7 2 . 4 4291 377 . 3 378 8 UDBS 1 6 4 , 4 4 . 1 4496 378 8 379 . 4 PYRT • 1 , 7 3 . 4 1 3 4497 A 379 4 383 . 1 SHPC 0 . 6 5 . 3 1 3 4952 A 387 . 8 39 1 8 PRC 1 0 3 4 . 8 2 . 1 4955 A 395. 7 397 0 PRC4 0. 7 3 . 2 1 7 END OF HOLE <a 407.5 M Page 195 TABLE A'\~3 DDH-C-23 SAMPLE NO . METERAGE LITHOLOGY FROM TO E U SM YB (PPM) DIAMOND DRILLHOLE 8 0 - C - 0 6 4888 A 402 .0 406 2 PRC 1 0 . 6 0 8 1 5 4890 A 408 .8 4 11 2 SHPH 2. 6 4 . 8 3 3 4B96 A 4 1 1 .2 412 .9 SHPH 2 . 3 7 . 1 3 . 2 END OF HOLE <9> 4 1 7 . 6 M N O T E S (1 ) L a b o r a t o r y : U n i v e r s i t y of B r i t i s h C o l u m b i a / G e o l o g i c a l S c i e n c e s - C a t i o n e x c h a n g e r e s i n / a t o m i c a b s o r p t i o n . Page 196 T A B L E A .I-#: D D H - C - 0 6 TABLES A.I-%&~ MISCELLANEOUS TABLES ////////////////////////////////// TABLE A-l-9 " MAJOR ELEMENT CHECK ANALYSES ////////////////////////////////////////// SAMPLE DDH METERAGE LITHOLOGY SI02 AL203 FE203 MGO CAO NA20 K20 TI02 MNO P205 BA PB ZN S C NO. FROM TO (%) TOTAL TOTAL 4 8 4 6 C 1 4 2 5 5 . 1 2 5 7 . 5 S H P R A = 8 0 . 7 5 7 . 2 4 6 . 7 1 1 . 1 9 0 . 6 5 0 . 16 1 . 6 1 0 . 3 8 0 . 0 4 0 . 13 9 8 . 8 6 X R F T O T A L B = 7 0 . 5 0 6 . 3 0 6 . 6 0 0 . 7 0 0 . 4 0 0 . 2 0 1 . 2 0 0 . 3 0 0 . 0 4 0 . 15 8 6 . 3 9 X R F T O T A L C = 6 7 . 1 0 6 . 9 0 8 . 14 0 . 5 7 0 . 4 9 0 . 0 1 1 . 19 0 . 2 7 0 . 0 3 0 . 0 7 ( L O I ' = 1 1 . 3 ) 8 4 . 7 7 A A T O T A L 0 = 6 6 . 7 0 6 . 8 3 7 . 19 0 6 2 0 5 5 0 . 0 4 1 . 12 0 . 3 0 0 . 0 3 0 . 0 7 ( L O I • = 12 0 ) 8 3 4 5 A A T O T A L A = 7 3 . 2 9 6 . 5 7 6 . 0 9 1 . 0 8 0 . 5 9 0 . 15 1 . 4 6 0 . 3 4 0 . 0 4 0 . 12 0 . 9 8 0 . 0 4 0 . 4 5 3 . 9 2 4 . 8 8 N O R M A L I Z B = 7 2 . 9 7 6 . 5 2 6 . 8 3 0 7 2 0 . 4 1 0 . 2 1 1 . 2 4 0 . 3 1 0 . 0 4 0 161 0 9 8 0 . 0 4 0 . 4 5 ) 4 . 2 8 4 . 8 3 N O R M A L I Z C = 7 1 . 0 3 7 . 3 0 8 . 6 2 0 . 6 0 0 5 2 0 0 1 1 . 2 6 0 . 2 9 0 . 0 3 0 0 7 [ 0 . 9 8 0 . 0 4 0 . 4 5 3 . 9 2 4 . 8 8 J N O R M A L I Z D = 71 . 7 2 7 . 3 4 7 . 7 3 0 . 6 7 0 5 9 0 . 0 4 1 . 2 0 0 . 3 2 0 . 0 3 0 0 8 [ 0 . 9 8 0 . 0 4 0 . 4 5 3 . 9 2 4 . 8 8 J N O R M A L I Z 4 8 7 1 C 0 3 1 8 4 . 1 1 8 7 . 1 S H P R A = 8 2 . 0 6 6 . 7 7 2 . 4 7 0 . 9 9 4 . 0 1 0 0 4 1 . 9 8 0 . 4 2 0 . 0 1 0 . 14 9 8 . 8 9 X R F T O T A L B = 7 9 . 5 0 5 . 7 0 2 . 10 0 . 6 0 0 . 5 5 0 1 0 1 . 4 0 0 3 0 0 . 0 1 0 . 2 1 9 0 . 4 7 X R F T O T A L C = 7 3 . 8 0 5 . 9 3 2 . 7 3 0 . 4 8 0 . 5 3 0 . 0 1 1 . 5 8 0 3 1 0 0 1 0 0 6 ( L O I ' = 9 4 ) 8 5 . 4 4 A A T O T A L D = 7 2 . 6 0 5 . 8 8 2 . 7 6 0 4 8 0 . 5 3 0 . 0 1 1 . 3 5 0 . 2 8 0 . 0 1 0 0 6 ( L O I = ' 1 1 3 ) 8 3 . 9 6 A A T O T A L A = 7 7 . 16 6 3 7 2 3 2 0 9 3 3 . 7 7 0 . 0 4 1 . 8 6 0 . 3 9 0 0 1 0 13 0 3 6 0 . 0 0 . 0 4 1 . 4 1 5 . 2 1 N O R M A L I Z B = 8 1 . 4 2 5 . 8 4 2 . 15 0 . 6 1 0 . 5 6 0 . 1 0 1 . 4 3 0 . 3 1 0 . . 0 1 0 . 2 2 [ 0 . . 3 6 0 . 0 0 . 0 4 ] 1 . 4 4 5 . 5 1 N O R M A L I Z C = 8 0 3 1 6 4 5 2 . 9 7 0 . 5 2 0 . 5 8 0 . 0 1 1 7 2 0 . 3 4 0 0 1 0 . 0 7 [ 0 . 3 6 0 . 0 0 . 0 4 1 . 4 1 5 2 1 J N O R M A L I Z D = 8 0 . 4 0 6 5 1 3 . 0 6 0 5 3 0 . 5 9 0 0 1 1 . 5 0 0 . 3 1 0 0 1 0 0 7 [ 0 3 6 0 . 0 0 . 0 4 1 4 1 5 . 2 1 J N O R M A L I Z 4 8 9 1 C 0 6 4 1 1 . 2 4 1 2 . 9 S H P H A = 6 3 8 0 1 9 . 0 6 5 . 4 5 5 . 2 1 0 4 6 0 . 17 4 . 2 7 0 . 9 4 0 0 3 0 12 9 9 . 5 1 X R F T O T A L 8 = 6 3 0 0 16 0 0 5 . 7 0 1. 8 0 8 . 4 0 0 . 3 0 3 . 9 0 0 . 6 0 0 0 1 0 2 4 9 9 . 9 5 X R F T O T A L C = 6 3 . 6 0 1 5 . 4 0 5 . 8 8 1. 4 8 0 . 3 2 0 . 0 7 3 . 8 4 0 . 7 8 0 . 0 1 0 . 0 5 ( L O I = = 6 5 ) 9 1 . 4 3 A A T O T A L 0 = 5 9 8 0 18 . 2 0 5 . 7 8 1. 6 5 0 . 3 6 0 . 0 2 3 . 5 7 0 . 8 6 0 . 0 1 0 . 0 5 ( L O I = 5 . 2 ) 9 0 . 3 0 A A T O T A L A = 6 1 5 8 1 8 . 4 0 5 . 2 6 5 . 0 3 0 . 4 4 0 . 16 4 . 12 0 . 9 1 0 . 0 3 0 . 12 0 . 5 5 0 . 0 0 . 0 6 2 . 3 7 0 . 9 8 N O R M A L I Z B = 6 0 . 4 3 15 . 3 5 5 . 4 7 1 . 7 3 8 . 0 6 0 . 2 9 3 . 7 4 0 . 5 8 0 . 0 1 0 . 2 3 [ 0 . 5 5 0 . 0 0 . 0 6 ] 2 . 5 2 0 . 9 9 N O R M A L I Z C = 6 6 . 8 1 1 6 . 1 8 6 . 18 1 . 5 5 0 . 3 4 0 . 0 7 4 0 3 0 . 8 2 0 . 0 1 0 . 0 5 [ 0 . 5 5 0 . 0 0 . 0 6 2 . 3 7 0 . 9 8 ] N 0 R M A L I Z D = 6 3 . 6 0 19 . 3 6 6 . 15 1 . 7 5 0 . 3 8 0 . 0 2 3 . . 8 0 0 . 9 1 0 . 0 1 0 . 0 5 [ 0 . 5 5 0 . 0 0 . 0 6 2 . 3 7 0 . 9 8 J N O R M A L I Z NOTES ( 1 ) Analysed material - A= Rock pulps ashed in a muffle furnace. B.C.D= Unaltered rock pulps. (2) Laborator ies - A = Univers i ty of B r i t i s h Columbia/Geological Sciences - X-Ray Fluorescence (Major elements & Ba). P a c i f i c Soi l Analysis Inc.,Vancouver - Leco Furnace (Total sulphur/carbon) ft Acme Ana lyt ica l Laboratories Ltd.,Vancouver - Atomic Absorption (Pb & Zn) B = Bondar-Clegg 6 Co. Ltd.,Vancouver - X-Ray Fluorescence (Major elements) and Leco Furnace (Total sulphur/carbon) C/D = Acme Analyt ica l Laboratories Ltd.,Vancouver - Atomic Absorption (Duplicate analyses) (3) Values in [square brackets] taken from Table 11 -1 to allow comparison of values normalized to 100.00%. Page 197 T A B L E Ah? TABLE A.I-10- TOTAL SULPHUR AND TOTAL CARBON CHECK ANALYSES 111 /1111111111111111111111111II I'll 111111111111111 /11II11111 SAMPLE DOH METERAGE LITHOLOGY TOTAL SULPHUR TOTAL CARBON NO. FROM TO (A) (54) (B) (A) (%) (B) 4464 C - 2 3 197 .0 201 .0 SHPH 0 .76 0 .98 1 .05 1 .24 4478 C - 2 3 249 .0 252 .2 PRC 1 1 24 0 84 3 99 4 19 4489 C - 2 3 286 .0 289 2 SHPC 2 .00 1 89 5 05 4 75 4845 C - 14 258 .5 260 .0 SHPR 7 52 7 .52 3 21 3 08 4846 C- 14 255 . 1 257 .5 SHPR 4 28 3 .92 4 .83 4 88 487 1 C-03 184 . 1 187 . 1 SHPR 1 . 44 1 4 1 5 51 5 21 4882 C-03 217 0 22 1 0 SHPR 2 48 1 98 4 67 4 52 489 t C-06 4 1 1 . 2 4 12 9 SHPH 2 52 2 37 0 99 0 98 4902 C- 14 316 8 318 8 SHPC 1 80 1 44 6 32 5 89 4922 C - 14 364 0 367 0 SHPR 0 80 0 82 4 86 4 25 4976 C- 14 186 3 190 3 SHPH 1 . 28 1 4 1 0 87 0 90 4984 C- 14 2 19 1 224 5 SHPC 2 08 1 . 98 5 28 5 62 4996 C- 14 25 1 9 252 7 SHPR 3 52 3. 24 4 . 96 5 . 01 NOTES ( I ) L a b o r a t o r i e s - A = B o n d e r - C l e g g 6 C o . L t d . , V a n c o u v e r - L e c o F u r n a c e B » P a c i f i c S o i l A n a l y s i s I n c . . V a n c o u v e r - L e c o F u r n a c e Page 198 TABLE A-l-10 APPENDIX 2. SUMMARY OF ANALYTICAL DATA The following tables l i s t s t a t i s t i c s for the a n a l y t i c a l data. Reference standards are l i s t e d for most variables and their sources are noted in Table A.2-1. Page 199 TABLE A.2-1. Reference standards used i n Appendix 2. 1. T a y l o r (1964) : Average c r u s t a l abundance. 2. Turekian and Wedepohl (1961) : Average shale composition. 3. Vine and T o u r t e l o t (1970) : Median of medians of 20 s e t s of black s h a l e s . 4. Cressman (1962) : Median of 5 r a d i o l a r i a n c h e r t s . 5. Cressman (1962) : Median of up to 13 bedded c h e r t s bearing few or no f o s s i l s . 6. Cronan (1976) : East P a c i f i c Rise non-carbonate bearing m e t a l l i f e r o u s sediment. 7. Chester and Aston (1975) : Average P a c i f i c deep sea c l a y . 8. Chester and Aston (1975) : Average A t l a n t i c deep sea c l a y . 9. E l Wakeel and R i l e y (1961) : Average ocean sediment weighted a r e a l mean for 35 samples (carbonate-, water-, and org a n i c carbon-free b a s i s ) . Page 200 APPENDIX 2: REFERENCES Chester, R., and Aston, S.R., 1975, The geochemistry of deep-sea sediments, i n Riley, J.P. and Chester, R., eds., Chemical Oceanography, Second Ed., Chap. 6, p.281-390. Cressman, E.R., 1962, Non-detrital s i l i c e o u s sediments, i n Fleischer, M.,ed., Data of Geochemistry, sixth ed., U.S.G.S. Prof. Paper 440-T, 23p. Cronan, D.S., 1976, Basal metalliferous sediments from the eastern P a c i f i c : Geol. Soc. America B u l l . , v.87, p.928-934. E l Wakeel, S.K., and Riley, J.P., 1961, Chemical and mineralogical studies of deep-sea sediments: Geochim. Cosmochim. Acta, v.25, p. 110-146 . Taylor, S.R., 1964, Abundance of chemical elements in the crust : a new table: Geochim. Cosmochim. Acta, v.28, p.1273-1285. Turekian, K.K., and Wedepohl, K.H., 1961, Di s t r i b u t i o n of the elements in some major units of the earth's crust: Geol. Soc. America B u l l . , v.72, p.175-192. Vine, J.D., and Tourtelot, E.B., 1970, Geochemistry of black shale deposits - a summary report: Econ. Geol., v.65, p.253-272. Page 201 VARIABLE - S i 0 2 ( p e r c e n t ) NO OF DATA ARITHMETIC STANDARD STD DEV STD DEV LITHOLOGY POINTS MEAN DEVIATION (-) ( + ) MEDIAN U SHPH 42 63 . 82 2 . 60 61 .22 66. 42 63.29 U PRC 1 8 80 6 1 5 . 48 75. 13 86 . 09 8 1 .02 SHPC 31 74 . 27 4 . 85 69.42 79. 12 75. 26 U SHPR 24 74.72 2 . 57 72 . 15 77 . 28 75. 90 UDSB 20 1 .95 3 . 58 0 .0 5. 53 0 5 5 UDBS 35 4 .05 3 . 24 0.81 7 . 29 3.80 L PRC2 1 1 76.57 4 . 08 72 . 49 80. 66 78 . 89 L PRC 1 14 82 . 98 2 . 54 80. 43 85. 52 83.85 L SHPH 9 63 . 72 1 . 20 62 . 52 64 . 92 64 . 15 L SHPR 18 77 .04 5 . 51 7 1 . 53 82 . 55 76 .87 MISCELLANEOUS 18 58 . 6 13.7 44 . 9 72 ! . 3 62 . 2 SILTSTONES (MS) STANDARDS 6 60.2 (1 ) 15.6(2) 91 .1 (4 ) 96 .4 (5 ) 23 .2 (6 ) 61 .5 (9 ) INDIVIDUAL RESULTS F O R UNITS WITH 5 OR FEWER DATA POINTS u SHRS 3 69 .6 75 .9 70 8 u PRC3 1 87 .5 u PRC4 1 55 . 5 u SHDL 3 4 1 7 55 . 4 63 3 u PYRT 5 47 . 1 39 .0 35 .7 22 . 1 w PYRT 5 1 1 .9 21 . 3 27 9 34 0 w SHPR 3 6 1 4 75 . 1 65 . 6 L PRC4 2 49 .5 80 . 7 L PRC3 3 88 . 3 85 .0 83 . 8 L SSS 4 62 .4 63 .0 54 . 6 54 . 2 P a g e 202 - SEE TABLES 1-1,2 FOR ABBREVIATIONS USED - SEE TABLE 2-1 FOR REFERENCE STANDARDS V A R I A B L E - A 1 2 0 3 ( p e r c e n t ) NO OF DATA AR ITHMET IC STANDARD STD DEV L ITHOLOGY POINTS MEAN DEV IAT ION U SHPH 42 19 . 38 2 . 28 1 7 . 1 0 U PRC 1 8 4 . 53 1 . 37 3 . 16 SHPC 31 7 .03 1 . 14 5 .89 U SHPR 24 7 . 122 0 . 6 9 9 6 . 4 2 3 UDSB 16 0 . 5 4 1 . 25 0 . 0 UDBS 31 0 . 0 6 2 0 . 235 0 . 0 L PRC2 1 1 5 . 3 4 5 0 . 6 7 8 4 . 6 6 6 L PRC 1 14 4 . 264 0 . 772 3 . 4 9 3 L SHPH 9 18 .42 1 . 10 17 . 32 L SHPR 18 7 .65 2.71 4 . 94 M I SCELLANEOUS 18 6 . 62 1 . 72 4 . 9 0 S I L T S T O N E S (MSI STANDARDS 7 1 5 . 5 5 0 ( 1 ) 15. 1 2 0 ( 2 ) 13. 2 0 0 ( 3 ) I ND IV IDUAL RESULTS FOR UNITS WITH 5 OR FEWER DATA POINTS -u SHRS 3 9 30 7 .99 13 . 83 u PRC3 1 3 . 14 U PRC4 1 2 . 76 U SHDL 3 6 . 20 4. .80 5 .31 u PYRT 5 2 . 90 4 . 20 2 . 50 w PYRT 5 0 . 2 0 0 0 0 0 0 . 0 0 . 0 w SHPR 3 6 . 98 6. 26 7 . 00 L PRC4 2 7 . 40 3. 31 L PRC3 3 2 . 54 3. .05 2 86 L SSS 4 10 . 06 10. 15 9. 59 Page 203 STD DEV ( + ) MEDIAN 2 1 . 66 19 . 92 5 . 9 0 4 . 48 8 . 1 7 7 .06 7 . 821 7 . 205 1 . 8 0 0 . 0 0 . 297 0 . 0 6 .023 5 . 6 0 0 5 . 0 3 6 4 . 125 19 . 52 1 8 . 6 5 10. 36 7 . 33 8 . 34 7 . 1 3 3 . 7 9 0 ( 4 ) 0 . 7 8 0 ( 5 ) 5 . 1 6 0 ( 6 ) 1 8 . 1 2 0 ( 9 ) 1.60 2 . 4 0 . 5 0 0 0 0 0 8 . 6 6 0 0 0 0 9 . 29 SEE TABLES 1 - \, 2. FOR A B B R E V I A T I O N S USED SEE TABLE 2-1 FOR REFERENCE STANDARDS V A R I A B L E - T O T A L F e ( p e r c e n t ) NO OF DATA A R I T H M E T I C STANDARD STD DEV STD D E V L I T H O L O G Y P O I N T S MEAN D E V I A T I O N ( - ) ( + ) M E D I A N U SHPH 42 4 . 268 0 . 6 2 0 3 . 648 4 . 887 4 . 305 U PRC 1 8 1 . 4 2 0 0 . 551 0 . 8 6 9 1 .971 1 . 3 6 0 SHPC 3 1 2 . 1 4 1.01 1 . 1 2 3 . 15 1 . 93 U SHPR 24 3 . 52 1 . 56 1 . 9 6 5 . 0 8 3 . 3 4 UDSB 2 0 14 . 24 4 . 6 7 9 . 57 1 8 . 9 1 14 . 45 UDBS 35 5 . 62 3 . 0 0 2 . 62 8 . 62 4 . 9 0 L PRC2 1 1 1 7 0 0 0 . 4 2 0 1 . 279 2 . 120 1 . 5 4 0 L PRC 1 14 1 . 528 0 . 4 8 9 1 . 0 3 9 2 . 0 1 7 1 . 4 1 0 L SHPH 9 4 . 2 3 0 0 . 7 8 8 3 . 442 5 . 0 1 8 4 . 0 7 0 L SHPR 18 2 . 16 1 . 25 0 . 9 1 3 . 4 1 1 . 9 6 M I S C E L L A N E O U S 18 4 . 1 4 3 . 42 0 . 72 7 . 5 6 3 . 1 1 S I L T S T O N E S (MS) S T A N D A R D S . 7 5 . 6 3 0 ( 1 ) 4 . 7 2 0 ( 2 ) 2 . 0 0 0 ( 3 ) 1 . 1 2 0 ( 4 ) 0 . 2 5 0 ( 5 ) 2 0 . 0 7 0 ( 6 ) 6 . 3 6 0 ( 9 ) I N D I V I D U A L R E S U L T S FOR U N I T S WITH 5 OR FEWER DATA P O I N T S -u SHRS 3 3 . 25 2 . 57 2 . 8 1 u P R C S 1 1 . 23 u PRC4 1 1 . 1 2 u SHDL 3 14 . 3 0 1 1 . 1 0 6 . 2 6 u P Y R T 5 34 . 2 24 . 2 22 . 1 26 . 4 w P Y R T 5 2 1 . 8 0 17 . 8 0 16 . 8 0 1 0 . 9 0 w SHPR 3 7 . 74 2 . 5 1 4 . 79 L PRC4 2 1 . 2 0 1 . 35 L P R C 3 3 1.01 1 . 6 9 1 . 76 L S S S 4 1 . 6 6 1 . 4 0 2 . 4 0 1 . 9 5 Page 204 - SEE TABLES 1-1,2 FOR ABBREVIATIONS USED - SEE TABLE 2 -1 FOR REFERENCE STANDARDS V A R I A B L E - M g O ( p e r c e n t ) NO OF DATA AR ITHMET IC STANDARD STD DEV STD DEV L ITHOLOGY POINTS MEAN DEV IAT ION I (-) ( + ) MEDIAN U SHPH 42 2 . 438 0 . 368 2 . 071 2 . 806 2 . 3 9 0 U PRC 1 8 0 . 772 0 . 274 0 . 4 9 8 1 .047 0 . 6 9 5 SHPC 3 1 1 . 462 0 . 6 8 9 0 . 774 2 . 151 1 . 2 6 0 U SHPR 24 0 . 9 1 9 0 . 157 0 . 762 1 .076 0 . 9 0 5 UDSB 20 0 . 226 0 . 4 3 7 0 . 0 0 . 6 6 3 0 . 0 UDBS 35 0 . 346. 0 . 5 2 4 0 . 0 0 . 8 7 0 0 . 0 L PRC2 1 1 1 . 194 0 . 3 7 8 0 . 8 1 6 1 . 57 1 1 . 160 L PRC 1 14 0 876 0 . 302 0 . 574 1 . 179 0 . 8 2 0 L SHPH 9 2 .84 1 .03 1 .82 3 . 87 2 . 58 L SHPR 18 1 .036 0 . 398 0 . 6 3 B 1 . 434 0 . 9 9 0 M ISCELLANEOUS 18 4 . 26 4 . 1 3 0 . 13 8 . 39 2 . 38 S I LTSTONES (MS) STANDARDS 7 3 . 8 6 0 0 ( 1 ) 2. 4 9 0 0 ( 2 ) 1. 2 0 0 0 ( 3 ) 0 . 4 0 0 0 ( 4 ) 0 . 0 5 0 0 I ND IV IDUAL RESULTS FOR UN ITS WITH 5 OR FEWER DATA POINTS -U SHRS 3 2 . 85 1.51 2 .04 U PRC3 1 0 . 7 70 U PRC4 1 0 . 5 8 0 U SHDL 3 0 . 6 0 0 0 . 6 0 0 1 . 100 U PYRT 5 0 . 7 00 0 . 8 0 0 0 . 8 0 0 2 . 100 w PYRT 5 1 . 3 00 0 . 2 00 0 . 4 0 0 0 . 3 00 w SHPR 3 1 . 19 1 . 49 3.91 L PRC4 2 0 . 0 1 . 5 6 0 0 0 0 L PRC3 3 0 . 4 1 0 0 5 1 0 0 . 5 6 0 L SSS 4 5 .66 5 .86 7 .33 7 .48 0 . 6 0 0 3 . 6 1 0 P a g e 205 - SEE TABLES 1-1/Z. FOR ABBREV IAT IONS USED - SEE TABLE 2-1 FOR REFERENCE STANDARDS V A R I A B L E - C a O ( p e r c e n t ) NO OF DATA A R I T H M E T I C STANDARD STD DEV STD DEV L I T H O L O G Y P O I N T S MEAN D E V I A T I O N (-) ( + ) M E D I A N U S H P H 42 1 . 601 0 . 8 0 5 0 . 796 2 . 4 0 6 1 . 5 8 5 U PRC 1 8 3 . 32 3 . 0 5 0 . 27 6 . 37 2 . 4 2 S H P C 31 3 . 8 1 3 . 6 4 0 . 1 7 7 . 46 2 . 9 1 U SHPR 24 1 . 9 0 2 0 . 8 7 9 1 . 0 2 3 2 . 781 1 . 5 9 5 UDSB 2 0 1 . 0 9 1.61 0 . 0 2 . 7 0 0 . 0 UDBS 35 2 . 72 2 . 47 0 . 25 5 . 2 0 2 . 4 0 L P R C 2 1 1 4 . 16 4 . 02 0 . 14 8 . 1 8 2 . 23 L PRC 1 14 2 . 38 1 . 37 1 .01 3 . 75 2 . 0 9 L S H P H 9 1 . 1 4 2 0 . 785 0 . 357 1 . 9 2 7 0 . 9 7 0 L SHPR 18 2 . 4 0 1 . 4 9 0 . 9 2 3 . 8 9 1 . 9 5 M I S C E L L A N E O U S 18 1 3 . 1 1 0 . 6 2 . 5 2 3 . 6 8 . 5 S I L T S T O N E S (MS) S T A N D A R D S 7 5 . 8 1 0 ( 1 ) 3 . 0 9 0 ( 2 ) 2 . 1 0 0 ( 3 ) 0 . 1 0 0 ( 4 ) 0 . 2 3 0 ( 5 ) 2 . 0 6 0 ( 6 ) 1 . 0 0 0 ( 9 ) I N D I V I D U A L R E S U L T S FOR U N I T S WITH 5 OR FEWER DATA P O I N T S -U SHRS 3 4 . 4 0 2 . 38 2 . 42 u P R C 3 1 0 . 9 7 0 u PRC4 1 23 . 7 u SHDL 3 1 0 . 9 0 4 . 4 0 1 . 7 7 u PYRT 5 0 . 9 0 0 0 . 5 0 0 5 . 4 0 0 1 2 . 9 0 0 w P Y R T 5 1 . 0 0 3 . 3 0 4 . 3 0 4 . 10 w SHPR 3 3 . 97 1 . 8 3 3 . 6 2 L PRC4 2 17 . 10 2 . 1 3 L P R C 3 3 1 . 89 2 . 6 5 3 . 4 5 L S S S 4 1 1 . 8 1 1 . 5 16 . 1 17 . 8 P a g e 206 - S E E T A B L E S 1 - 1 , £ FOR A B B R E V I A T I O N S U S E D - S E E T A B L E 2 -1 FOR R E F E R E N C E S T A N D A R D S V A R I A B L E - N a 2 0 ( p e r c e n t ) L ITHOLOGY NO OF DATA POINTS AR ITHMET IC STANDARD STO OEV STD DEV MEAN DEV IAT ION ( - ) < + ) MEDIAN U SHPH U PRC 1 SHPC LI SHPR UDSB UDBS L PRC 2 L PRC 1 L SHPH L SHPR M ISCELLANEOUS S I LTSTONES (MSI 42 8 3 1 24 20 35 1 1 14 9 18 18 0 . 5 15 0 . 0 9 0 2 0 . 0 7 7 4 0 . 1 0 9 8 0 . 6 2 O. 57 0 . 0 4 8 4 0 . 0 6 7 4 O . 1644 0 . 0 7 4 0 . 178 0 . 332 0 . 0 8 7 7 . 0966 . 0 970 1 . 29 1.15 . 0523 .064 1 0 . 0 9 8 6 0 . 1 4 1 O. 237 0 . O. O. 0 . 0 . 183 0 . 0 0 2 5 0 0 1 2 7 0 . 0 0 . 0 i.O 1. 0 0 3 2 i . 0 6 5 8 0 . 0 0 . 0 O. O. 0 . 8 47 O. 1780 1740 . 2 0 6 8 1 . 9 0 1 . 73 1007 1315 . 263 1 0 . 2 15 0 4 15 0 . 0 . O. 0 . O. 0 . 5 0 0 0 . 0 7 0 0 0 . 0 7 0 0 0 . 0 9 5 0 0 . 0 0 . 0 0 . 0 4 0 0 0 . 0 5 5 0 O . 1 5 0 0 0 . 0 3 0 0 . 0 9 0 STANDARDS 3 . 1 8 0 0 ( 1 ) 1 . 2 9 0 0 ( 2 ) 0 . 9 0 0 0 ( 3 ) O . 2 8 0 0 ( 4 ) 0 . 0 2 0 0 ( 5 ) 3 . 4 5 0 0 ( 6 ) 1 . 9 8 0 0 ( 9 ) IND IV IDUAL RESULTS FOR UNITS WITH 5 OR FEWER DATA POINTS -u SHRS 3 0 . 100000 0 .0 0 . 4 8 0 0 0 0 U PRC3 1 0 . 120 u PRC4 1 0 . 3 30 u SHDL 3 1 . 0 0 0 0 0 0 0 .0 0 . 8 2 0 0 0 0 u PYRT 5 2 . 9 0 0 0 0 0 0 . 6 0 0 0 0 0 0 .0 0 .0 0 . 3 0 0 0 0 0 w PYRT . 5 3 4 0 0 0 0 0 2 0 0 0 0 0 0 0 .0 0 .0 0 . 160000 w SHPR 3 0 . 5 5 0 0 . 2 50 0 . 140 L PRC4 2 0 . 4 0 0 0 0 . 0 2 0 0 L PRCS 3 0 .0 0 .0 0 . 0 2 0 0 0 0 L SSS 4 0 . 0 1 0 0 0 0 0 . 1 1 0 0 0 0 0 . .0 0 . .0 P a g e 207 - SEE TABLES 1 -1,2. FOR ABBREV IAT IONS USED - SEE TABLE 2-1 FOR REFERENCE STANDARDS VAR IABLE - K 2 0 ( p e r c e n t ) NO OF DATA AR ITHMET IC STANDARD STD DEV STD DEV L ITHOLOGY POINTS MEAN DEV IAT ION ( - ) ( + ) MEDIAN U SHPH 42 3 .909 0 . 3 50 3 . 559 4 . 2 6 0 3 . 9 6 0 U PRC 1 8 1 .15 1 0 405 O . 746 1 . 5 57 1 . 0 6 0 SHPC 31 1 .976 0 .311 1 .666 2 .287 2 . 0 3 0 U SHPR 24 1 . 825 0 . 355 1 . 4 70 2 . 180 1 . 8 7 0 UDSB 20 0 .495 0 . .707 0 .0 1 . 2 0 3 0 . 3 0 0 UDBS 35 1 .043 0 . 8 5 0 0 . 193 1 . 894 0 . 9 0 0 L PRC2 1 1 0 .976 0 . 4 8 0 0 .496 1 . 4 56 1 . 110 L PRC 1 14 1 . 129 0 . 328 0 . 8 0 0 1 . 457 1 . 175 L SHPH 9 4 127 0 . 17 1 3 .956 4 . 2 9 8 4 . 140 L SHPR 18 2 .052 0 . 72 1 1 . 3 30 2 . 773 1 . 865 M ISCELLANEOUS 18 1 9 09 0 . 8 2 0 1 .089 2 . 7 2 9 2 . 0 3 0 S I LTSTONES (MS) STANDARDS 7 2 . 5 2 0 0 ( 1 ) 3 . 2 0 0 0 ( 2 ) 2 . 4 0 0 0 ( 3 ) 0 . 8 0 0 0 ( 4 ) O . 0 3 O 0 ( 5 ) 1 . 3 9 0 0 ( 6 ) 3 . 2 3 0 0 ( 9 ) I ND IV IDUAL RESULTS FOR UN ITS WITH 5 OR FEWER DATA POINTS -U SHRS 3 2 . 4 7 2 . 25 3 . 23 u PRCS 1 1 .04 u PRC4 1 0 . 4 2 0 u SHDL 3 0 . 9 0 0 1 . 000 1 . 4 20 u PYRT 5 0 . 4 0 0 0 . 7 00 0 . 4 0 0 0 . 3 0 0 w PYRT 5 1 . 8 0 0 0 . 200 0 . 2 00 0 . 9 0 0 w SHPR 3 2 . 15 2 . 1 4 2 . 26 L PRC4 2 0 . 6 0 0 0 . 2 90 L PRC3 3 0 . 8 3 0 1 . 020 1 . 140 L SSS 4 2 . 98 3 .02 3 . 18 2 . 8 4 P a g e 208 - SEE TABLES 1 - \ , % FOR A B B R E V I A T I O N S USED - SEE TABLE 2-1 FOR REFERENCE STANDARDS VARIABLE - T i 02(percent) NO OF DATA ARITHMETIC STANDARD STD DEV STD DEV LITHOLOGY POINTS MEAN DEVIATION (-) ( + ) MEDIAN U SHPH 42 0.9338 0.0959 0.8379 1 . 0297 0.9600 U PRC 1 8 0.2675 0.0918 0.1757 0. 3593 0.2550 SHPC 31 0.3877 0.0724 0.3154 O. 4601 0.3900 U SHPR 24 0.4017 O.0367 0.3650 0. 4383 0.4 100 L PRC2 1 1 0.3627 0.06 13 0.3014 0. 424 1 0.3900 L PRC 1 14 0.252 1 0.0684 0.1837 0. 3206 0.2450 L SHPH 9 0.881 1 0.0686 0.8125 0. 9497 0.8900 L SHPR 18 0.422 0. 129 0. 292 C • .551 0.410 MISCELLANEOUS 18 0. 425 0.14 1 0. 284 C 1.566 0. 390 SILTSTONES (MS) STANDARDS 6 0 . 9 5 0 0 ( 1 ) 0 . 7 7 0 0 ( 2 ) 0 . 3 0 0 0 ( 3 ) O.04O0(4) 0 . 0 3 0 0 ( 5 ) 0 . 9 0 0 0 ( 9 ) IN D I V I D U A L RESULTS FOR UNITS WITH 5 OR FEWER DATA POINTS -U SHRS 3 0. 470 0. 400 0 7 10 u PRC3 1 0. 180 U PRC4 1 0 430 U SHDL 3 0 400 0 200 0 240 U PYRT 5 0 100 0 100 0. . 100 UDSB 0 UDBS 0 w PYRT 1 0. 560 W SHPR 3 0. 470 0. 430 0. 4 4 0 L PRC4 1 0. 360 L PRC3 3 0. 140 0. 180 0. 200 L SSS 4 0. 470 0. 480 0. 4 7 0 P a g e 209 - SEE TABLES 1-1,2. FOR ABBREVIATIONS USED - SEE TABLE 2-1 FOR REFERENCE STANDARDS V A R I A B L E - M n O ( p e r c e n t ) L ITHOLOGY NO OF DATA POINTS AR ITHMET IC STANDARD STD DEV MEAN DEV IAT ION ( - ) STD DEV ( + ) MEDIAN U SHPH 42 0 . 0 2 2 6 2 0 . 0 0 6 6 5 0 . 0 1 5 9 7 0 . 0 2 9 2 7 0 . 0 2 0 0 0 U PRC 1 8 0 . 0 1 6 2 5 0 . 0 0 5 18 ' 0 . 0 1 107 0 . 0 2 1 4 3 0 . 0 2 0 0 0 SHPC 31 0 . 0 5 9 0 0 . 0 8 6 4 0 . 0 0 . 1 4 5 5 O . 0 3 0 0 U SHPR 24 0 . 0 3 9 6 0 . 0 1 4 3 0 . 0 2 5 3 0 . 0 5 3 9 0 . 0 4 0 0 UDSB 16 0 . 9 6 2 . 32 0 . 0 3 . 28 0 . 0 UDBS 31 0 . 2 8 1 . 35 0 . 0 1 .63 0 . 0 L PRC2 1 1 0 . 0 2 9 1 0 . 0 1 2 2 0 . 0 1 6 9 0 . 0 4 13 0 . 0 2 0 0 L PRC 1 14 0 . 0 1 8 5 7 0 . 0 0 7 7 0 0 . 0 1 0 8 7 0 . 0 2 6 2 7 0 . 0 2 0 0 0 L SHPH 9 0 . 0 2 6 6 7 0 . 0 0 7 0 7 0 . 0 1 9 6 0 0 . 0 3 3 7 4 0 . 0 3 0 0 0 L SHPR 18 O . 0 2 0 0 0 . 0 1 3 7 0 . 0 0 6 3 0 . 0 3 3 7 0 . 0 2 0 0 M ISCELLANEOUS 18 0 . 132 0 . 139 0 . 0 0 . 27 1 0 . 0 8 5 S I LTSTONES (MS) STANDARDS 7 0 . 1 2 0 0 ( 1 ) 0 . 1 1 0 0 ( 2 ) 0 . 0 1 9 0 ( 3 ) 0 . 0 3 0 0 ( 4 ) 0 . 010C V IDUAL RESULTS FOR UN ITS WITH 5 OR FEWER DATA POINTS -U SHRS 3 0 . 0 7 0 0 0 . 0 2 0 0 0 . 0 2 0 0 U PRCS 1 0 . 0 1 0 0 U PRC4 1 0 . 0 4 0 0 U SHDL 3 0 . 2 0 0 0 0 . 2 0 0 0 0 . 0 8 0 0 U PYRT 5 0 . 4 0 0 0 0 0 0 . 4 0 0 0 0 0 0 . 0 0 . 5 0 0 0 0 0 0 . 1 0 0 0 0 0 w PYRT 5 O . 3 0 0 0 0 0 0 . 0 0 . 0 0 . 0 0 . O 6 0 O 0 0 w SHPR 3 0 . 0 9 0 0 0 . 0 3 0 0 0 . 0 5 0 0 L PRC4 2 0 . 1 0 0 0 0 . 0 2 0 0 L PRC3 3 0 . 0 2 0 0 0 . 0 2 0 0 0 . 0 2 O 0 L SSS 4 0 . 0 7 0 0 0 . 0 7 0 0 0 . 1 0 0 0 0 . 0 9 0 0 P a g e 210 - SEE TABLES 1 -1 JE. FOR ABBREV IAT IONS USED - SEE TABLE 2-1 FOR REFERENCE STANDARDS V A R I A B L E - P 2 0 5 ( p e r c e n t ) L ITHOLOGY NO OF DATA POINTS AR ITHMET IC STANDARD STD DEV MEAN DEV IAT ION ( - ) STD DEV ( + ) MEDIAN U SHPH 42 0 . 1 2 2 9 0 . 0 3 8 1 0 . 0 8 4 8 0 . 1 6 0 9 O . 1 1 5 0 U PRC 1 a 0 . 1 0 0 0 0 . 0 2 7 3 0 . 0 7 2 7 0 . 1 2 7 3 0 . 0 9 5 0 SHPC 31 0 . 1 3 4 8 0 . 0 3 5 5 0 . 0 9 9 4 0 . 1 7 0 3 O . 1 2 0 0 U SHPR 24 0 . 1 2 7 1 0 . 0 1 3 7 0 . 1 1 3 4 O . 1 4 0 7 0 . 1 3 0 0 UDSB 20 0 . 0 8 6 0 . 122 0 . 0 O. 208 0 . 0 UDBS 35 0 . 180 0 . 155 0 . 0 2 6 O. 335 0 . 2 00 L PRC2 1 1 0 . 1 3 0 9 0 . 0 1 9 2 0 . 1 1 1 7 0 . 1 5 0 1 0 . 1 4 0 0 L PRC 1 14 0 . 1 0 8 6 0 . 0 2 5 1 0 . 0 8 3 5 0 . 1 3 3 6 0 . 1 0 0 0 L SHPH 9 0 . 1 1 8 9 0 . 0 1 1 7 0 . 1 0 7 2 0 . 1 3 0 6 0 . 1 2 0 0 L SHPR 18 0 . 1 4 2 2 0 . 0 4 6 6 0 . 0 9 5 6 O. 1888 0 . 1 3 5 0 M ISCELLANEOUS 18 0 . 203 0 . 105 0 . 0 9 8 0 . 3 0 7 0 . 165 S I LTSTONES (MS) STANDARDS 5 O . 2 4 0 0 ( 1 ) 0 . 1 6 0 0 ( 2 ) 0 . 0 4 0 0 ( 4 ) 0 . 0 6 0 0 ( 5 ) 0 . 330C IND IV IDUAL RESULTS FOR UNITS WITH 5 OR FEWER DATA POINTS u SHRS 3 0 . 130 0 . 150 0 . 140 u PRC3 1 0 . 0 8 0 0 u PRC4 1 0 . 2 2 0 u SHDL 3 0 . 2 00 0 . 100 0 . 100 u PYRT 5 0 . 100 0 . 100 0 . 100 0 . 100 w PYRT 5 0 .30OO0O 0 . 1 0 0 0 0 0 0 . 0 0 . lOOOOO w SHPR 3 0 . 150 0 . 150 0 . 180 L PRC4 2 0 . 9 0 0 0 . 140 L PRC3 3 0 . 0 7 0 0 0 . 0 7 0 0 0 . 1300 L SSS 4 0 . 160 0 . 130 0 . 1 10 0 . 100 O. 100 O . 3 0 0 0 0 0 P a g e 211 - SEE TABLES 1-1 ,2 FOR A B B R E V I A T I O N S USED - SEE TABLE 2-1 FOR REFERENCE STANDARDS VARIABLE - B a ( p e r c e n t ) LITHOLOGY NO OF DATA POINTS ARITHMETIC STANDARD STD DEV MEAN D E V I A T I O N (-) STD DEV ( + ) MEDIAN U SHPH 42 0.3702 0.0629 0.3073 0.4332 0.3600 U PRC 1 8 0. 891 0.907 0.0 1 . 798 0. 535 SHPC 3 1 0. 7 15 0. 477 0. 238 1 . 192 0.530 U SHPR 24 0. 694 0. 324 0. 370 1 .018 0. 560 UDSB 20 23 . 4 11.4 12.0 34 . 8 23.0 UDBS 35 36 .42 6.98 29.44 4 3 . 4 0 38 . 20 L PRC2 1 1 1 . 82 1 .02 0.80 2 . 84 1 .96 L PRC 1 14 0. 662 0.683 0.0 1 . 345 0. 550 L SHPH 9 0 552 0. 123 0. 429 0.675 0. 560 L SHPR 18 0. 629 0. 563 0.066 1 . 193 0. 380 MISCELLANEOUS 18 1 . 58 1 . 55 0.03 3.13 0.66 S I L T S T O N E S (MSI STANDARDS 4 0 0 4 2 5 ( 1 ) 0. 0 5 8 0 ( 2 ) 0. 0 3 0 0 ( 3 ) 0 . 6 2 3 0 ( 6 ) IVIDUAL RESULTS FUR UNITS WITH 5 OR FEWER DATA POINTS -U SHRS 3 0. 260 0. 180 0. 260 U PRC3 1 0. 150 U PRC4 1 3 . 15 U SHDL 3 2 . 320 0.370 0. 280 U PYRT 5 0.0800 0.15* 0 . 1000 0.lOOO O.420O W PYRT 5 4 . 30 3 . 32 4 .80 5.50 2.01 W SHPR 3 2 . 1 1 2 . 46 2 . 30 L PRC4 2 9 .00 3.12 L PRC 3 3 0.0600 0.0800 0.1200 L SSS 4 0 230 0. 240 0. 150 0. 120 P a g e • 212 - SEE T A B L E S 1-1,2. FOR A B B R E V I A T I O N S USED - SEE TABLE 2-1 FOR REFERENCE STANDARDS V A R I A B L E - P b ( p e r c e n t ) NO OF DATA AR ITHMET IC STANDARD STD DEV STD DEV L ITHOLOGY POINTS MEAN DEV IAT ION ( - ) ( + ) MEDIAN U SHPH 42 0 . 0 0 . 0 0 0 0 0 0 0 . 0 ' 0 . 0 0 . 0 U PRC 1 8 0 . 0 0 . 0 0 0 0 0 0 0 . 0 0 . 0 0 . 0 SHPC 3 1 0 . 0 1 9 1 0 . 0 5 3 1 0 . 0 0 . 0 7 2 2 0 . 0 1 0 0 U SHPR 24 0 . 0 4 7 9 0 . 0 6 8 1 0 . 0 0 . 1 160 0 . 0 3 0 0 UDSB 20 3 . 033 0 . 777 2 256 3 . 8 1 0 3 . 0 5 0 UDBS 35 1 . 54 1 . 16 0 . 38 2 .71 1 .86 L PRC2 1 1 0 . 0 0 2 7 3 0 . 0 0 5 7 3 0 . 0 0 . 0 0 8 4 6 0 . 0 L PRC 1 14 0 . 0 0 3 0 0 0 . 0 0 5 4 5 0 . 0 0 . 0 0 8 4 5 0 . 0 L SHPH 9 0 . 0 0 . 0 0 0 0 0 0 0 . 0 0 . 0 O.O L .SHPR 18 0 . 0 0 4 7 2 0 . 0 0 9 4 4 0 . 0 0 . 0 1 4 1 6 0 . 0 M I SCELLANEOUS 18 0 . 0 3 8 7 0 . 0 8 2 3 . 0 . 0 0 12 10 0 . 0 1 0 0 S I L T S T O N E S (MS) STANDARDS 6 0 . 0 0 1 2 5 ( 1 ) 0 . 0 0 2 0 0 ( 2 ) O . 0 0 2 0 0 ( 3 ) 0 . 0 1 0 0 0 ( 6 ) 0 . 0 1 6 2 0 ( 7 ) 0 . 0 0 4 5 0 ( 8 ) I ND IV IDUAL RESULTS FOR UN ITS WITH 5 OR FEWER DATA POINTS -u SHRS 3 0 .0 0 . 0 1 0 0 0 0 0 .0 u PRCS 1 0 .0 u PRC4 1 0 .0 u SHDL 3 0 . 6 0 0 0 . 140 0 . 7 3 0 u PYRT 5 0 100000 0 . 1 3 0 0 0 0 0 . 1 0 0 0 0 0 0 .0 w PYRT 5 1 2 2 0 0 0 0 0 . . 3 4 0 0 0 0 0 . 2 0 0 0 0 0 0 . 2 4 0 0 0 0 w SHPR 3 0 . 2 2 0 0 0 . 0 3 0 0 0 . 0 3 0 0 L PRC4 2 0 . 0 0 0 L PRC3 3 0 .0 0 0 0 0 L SSS 4 0 0 0 . 0 0 . 0 0 .0 0 . 0 5 0 0 0 0 0 . 0 P a g e 213 - SEE TABLES 1-1,1 FOR ABBREV IAT IONS USED - SEE TABLE 2-1 FOR REFERENCE STANDARDS V A R I A B L E - Z n ( p e r c e n t ) L ITHOLOGY NO OF DATA POINTS AR ITHMETIC STANDARD STD DEV STD DEV MEAN DEV IAT ION ( - ) (+) MEDIAN U SHPH U PRC 1 SHPC U SHPR UDSB UDBS L PRC2 L PRC 1 L SHPH L SHPR M ISCELLANEOUS S I LT STONES (MS) 42 8 31 24 20 35 1 1 14 9 18 18 0 . 0 1 6 8 0 . 0 1 1 9 0 . 0 1 6 2 5 0 . 0 0 5 1 8 0 . 160 O. 465 1 2 . 43 6 . 8 4 0 . 0 4 5 5 0 . 0 7 8 0 . 0 3 3 3 0 . 0 7 6 1 O. 275 0 . 4 20 0 . 5 8 6 4 .02 2 .07 0 . 0 5 0 3 0 . 1 1 7 0 . 0 2 1 8 0 . 0 9 3 1 0 568 0 . 0 0 4 9 O . O I 1 0 7 0 . 0 0 . 0 8 .41 4 : 77 0 . 0 0 . 0 0 . 0 1 1 5 0 . 0 0 . 0 0 . 0 2 8 7 0 . 0 1 0 0 0 . 0 2 1 4 3 0 . 0 2 0 0 0 0 . 5 8 0 1 .052 1 6 . 4 5 8 . 9 0 0 . 0 9 5 7 O. 195 0 . 0 5 5 1 O. 1692 0 . 8 4 3 0 . 0 6 0 0 . 3 8 0 12 . 5 0 6 . 10 0 . 0 3 0 0 0 . 0 2 5 O . 0 3 0 0 O 0 3 5 0 0 . 0 2 5 STANDARDS 0 . 0 0 7 0 0 ( 1 ) 0 . 0 0 9 5 0 ( 2 ) 0 . 0 4 7 0 0 ( 6 ) 0 . 0 1 3 0 0 ( 8 ) I ND I V IDUAL RESULTS FOR UN ITS WITH 5 OR FEWER DATA POINTS u SHRS 3 0 0 2 0 0 0 . 0 2 0 0 0 . 0 7 0 0 u PRCS 1 0 . 0 1 0 0 u PRC4 1 0 . 0 1 0 0 u SHDL 3 3 . 4 50 0 . 5 8 0 4 . 6 8 0 u PYRT 5 5 . 70 1 . 95 3 . 54 2 . 28 w PYRT 5 8 . 9 0 0 0 5 . 5 0 0 0 0 . 2 8 0 0 1 . 6400 w SHPR 3 1 .3900 0 . 0 2 0 0 O.OIOO L PRC4 2 0 . 0 1 0 0 0 . 0 5 0 0 L PRC3 3 O.O100 0 . 0 1 0 0 0 . 1 7 0 0 L SSS 4 0 . 0 2 0 0 0 0 0 . 0 0 . 0 2 0 0 0 0 0 . 0 1 0 0 0 0 1 . 33 0 . 0 1 0 0 P a g e 214 - SEE TABLES 1 - 1, Z FOR A B B R E V I A T I O N S USED - SEE TABLE 2-1 FOR REFERENCE STANDARDS V A R I A B L E - P Y R I T I C F e ( p e r c e n t ) NO OF DATA A R I T H M E T I C STANDARD S T D DEV STD D E V L I T H O L O G Y P O I N T S MEAN D E V I A T I O N ( - ) ( + ) M E D I A N U S H P H 42 O . 9 15 0 . 252 0 . 6 6 3 1 . 166 0 . 8 7 0 U PRC 1 8 1 . 0 8 9 0 . 4 8 9 0 . 5 9 9 1 . 5 7 8 0 . 9 4 5 SHPC 31 1 . 5 8 1 . 1 2 0 . 46 2 . 7 0 1 . 29 U SHPR 23 2 . 261 0 . 9 0 7 1 . 354 3 168 2 . 2 5 0 UDSB 2 0 16 . 0 5 5 . 92 10 . 14 21 . 9 7 17 . 2 0 UDBS 35 6 . 23 3 . 3 1 2 . 92 9 . 5 5 5 . 6 0 L P R C 2 1 1 0 . 9 2 9 0 . 5 1 2 0 . 4 17 1 .441 0 . 9 1 0 L PRC 1 14 0 . 996 0 . 4 4 7 0 . 5 4 9 1 . 4 4 3 0 . 8 8 5 L S H P H 9 1 . 9 1 9 0 . 4 9 0 1 . 4 2 9 2 . 4 0 9 1 . 8 2 0 L SHPR 18 1 .351 0 . 4 8 9 O . S 6 2 1 . 8 4 0 1 . 3 1 0 M I S C E L L A N E O U S 18 2 . 37 2 . 7 0 0 . 0 5 . 0 7 1.51 S I L T S T O N E S (MS) NO A P P R O P R I A T E STANDARDS FOUND FOR COMPARISON I N D I V I D U A L R E S U L T S FOR U N I T S WITH 5 OR FEWER DATA P O I N T S -u SHRS 3 1 . 6 1 0 1 . 6 4 0 0 . 7 3 0 u P R C 3 1 0 . 8 2 0 u PRC4 1 2 . 4 1 u SHDL 3 8 . 30 15 . 10 5 . 79 u PYRT 4 2 0 . 5 2 1 . 9 2 3 . 4 2 0 . 6 w ' P Y R T 5 2 4 . 7 0 0 1 9 . 8 0 0 1 6 . 5 0 0 1 1 . 0 0 0 w SHPR 3 5 . 5 0 1 . 4 9 3 . 5 7 L PRC4 2 5 . 120 0 4 6 0 L P R C 3 3 0 . 8 2 0 1 . 190 1 . 170 L S S S 4 0 . 4 2 0 0 . 2 3 0 , 0 . 5 4 0 0 . 3 1 0 P a g e 215 - S E E T A B L E S 1 - 1 , 2 FOR A B B R E V I A T I O N S U S E D - S E E T A B L E 2 -1 FOR R E F E R E N C E S T A N D A R D S VARIABLE - S U L P H I D E l p e r c e n t ) NO OF DATA ARITHMETIC STANDARD STD DEV STD DEV LITHOLOGY POINTS MEAN DE V I A T I O N (-) ( + ) MEDIAN U SHPH 42 1 .059 0. 289 0. 770 1 .348 1 .000 U PRC 1 8 1 . 256 0.567 0 689 1 .823 1 .085 SHPC 31 1 .90 1 .45 0. 45 3 . 35 1 .50 U SHPR 24 2 .69 1 .09 1 . 59 3 . 78 2 . 63 UDSB 20 24 . 99 8.28 16.71 33 . 27 26 . 15 UDBS 35 10.76 4 .54 6.22 15.30 9.70 L PRC2 1 1 1 .089 0.607 0. 482 1 . 696 1 .050 L PRC 1 14 1 . 180 0.545 0.635 1 . 725 1 .025 L SHPH 9 2.218 0. 559 1 .658 2 . 777 2 . 100 L SHPR 18 1 .589 0.575 1.014 2 . 165 1 .520 MISCELLANEOUS 18 2 . 86 3.30 0.0 6.17 1.81 S I L T S T O N E S (MS) NO APPROPRIATE STANDARDS FOUND FOR COMPARISON INDIVIDUAL RESULTS FOR UNITS WITH 5 OR FEWER DATA POINTS -U SHRS 3 1 .860 1 .900 0.870 U PRC3 1 0 940 u PRC4 1 2.77 u SHDL 3 1 1 . 40 17 .60 9.05 u PYRT 5 2 . 28 24 .60 2 6 . 9 0 28 .00 w PYRT 5 32.9 0 0 25.500 19.10O 13.400 w SHPR 3 7 .03 1 . 73 4.11 L PRC4 2 5 . 880 0.550 L PRC3 3 0.950 1 . 370 1 . 430 L SSS 4 0.500 0.270 0 6 2 0 0. 3 6 0 P a g e 216 - SEE T A B L E S 1-1,2. FOR A B B R E V I A T I O N S USED - SEE TABLE 2-1 FOR REFERENCE STANDARDS V A R I A B L E - TOTAL S ( p e r c e n t ) NO OF DATA ARITHMETIC STANDARD STD DEV STD DEV LITHOLOGY POINTS MEAN DEVIA T I O N (-) ( + ) MEDIAN U SHPH 42 1 . 145 0. 295 0.851 1 . 440 1 .090 U PRC 1 8 1 . 465 0.67 1 0. 794 2 . 136 1 . 265 SHPC 31 2 .07 1 .45 0.62 3.52 1 .62 U SHPR 24 2 .85 1 .08 1 . 77 3 . 93 2 . 76 UDSB 20 30. 45 6 .07 24 . 39 36.52 31 . 30 UDBS 35 19.27 3.33 15.94 22.61 18 . 10 L PRC 2 1 1 1.515 0. 582 0.932 2 .097 1 . 280 L PRC 1 14 1 . 335 0.616 0.7 19 1 .951 1 .085 L SHPH 9 2 . 348 0. 576 1 . 772 2 . 924 2 230 L SHPR 18 1 . 737 0. 589 1 . 147 2 . 326 1 .720 MISCELLANEOUS 18 3 23 3 . 37 0.0 6 . 6 0 2.06 S I L T S T O N E S (MS) STANDARDS 2 0. 0 2 6 0 * 1 ) 0. 2 4 0 0 ( 2 ) ;VI0UAL RESULTS FOR UNITS WITH 5 OR FEWER DATA POINTS -U SHRS 3 1 . 920 1 . 940 0. 930 U PRCS 1 0. 980 U PRC4 1 3.51 U SHDL 3 1 1 . 90 17 . 70 9.12 U PYRT 5 2 30 24 .60 2 6 . 9 0 28 .00 24 . 40 W PYRT 5 33 . 90 26 . 30 20. 20 14 . 70 1 . 30 W SHPR 3 7 . 52 2 . 30 4 .65 L PRC4 2 7 98 1 . 28 L PRC3 3 0.960 1 . 390 1 . 460 L SSS 4 0. 550 0. 320 0.660 0.390 P a g e 217 - SEE T A B L E S 1 - 1, Z FOR A B B R E V I A T I O N S USED - SEE TABLE 2-1 FOR REFERENCE STANDARDS V A R I A B L E - O R G A N I C C ( p e r c e n t ) L I T H O L O G Y NO OF D A T A P O I N T S A R I T H M E T I C S T A N D A R D S T D D E V S T D D E V M E A N D E V I A T I O N ( - ) ( + ) M E D I A N U S H P H U S H P R L S H P R 1 . 2 5 0 4 . 5 2 7 3 . 9 7 O . 5 0 0 O . 2 9 6 1 . 3 5 0 . 7 5 0 4 . 2 3 1 2 . 6 2 1 . 7 5 0 4 . 8 2 2 5 . 3 2 1 . 1 4 0 4 . 4 5 5 4 . 2 2 S T A N D A R D S 3 . 2 0 ( 3 ) I N D I V I D U A L R E S U L T S FOR U N I T S W I T H 5 OR FEWER D A T A P O I N T S U S H R S 0 U P R C 1 5 4 . 0 8 5 . 19 5 . 0 5 u P R C 3 0 U P R C 4 0 S H P C 3 4 . 8 2 5 . 5 0 4 . 0 3 u S H D L 0 u P Y R T 0 U D S B 3 0 . 2 2 0 O . 2 0 0 0 . 2 3 0 U D B S 1 0 . 2 0 0 w P Y R T 1 1 . 5 4 w S H P R 2 1 . 7 7 3 . 3 7 L P R C 4 0 L P R C 3 0 . L P R C 2 1 4 . 4 1 L P R C 1 5 2 . 7 5 4 . 2 2 4 . 6 8 L S H P H 4 2 . 0 9 0 1 . 1 8 0 1 . 5 8 0 L S S S 0 [ S C E L L A N E O U S 0 3 . 7 3 4 . 4 4 3 . 7 1 0 . 7 3 0 4 . 2 2 S I L T S T O N E S ( M S ) P a g e " 2 1 8 - S E E T A B L E S 1"1,X F O R A B B R E V I A T I O N S U S E D - S E E T A B L E 2 - 1 F O R R E F E R E N C E S T A N D A R D S V A R I A B L E - TOTAL C ( p e r c e n t ) NO OF DATA ARITHMETIC STANDARD STD DEV STD DEV LITHOLOGY POINTS MEAN DE V I A T I O N (-) ( + ) MEDIAN U SHPH 42 1 . 286 0. 522 0. 764 1 .809 1.110 U PRC 1 8 4 . 932 0.720 4.213 5 . 652 5. 1 10 SHPC 31 5 . 362 0.653 4 . 709 6.015 5.460 U SHPR 24 4.915 0 468 4 . 446 5.383 4 . 895 L PRC2 1 1 5 . 255 0.627 4.628 5.883 5. 180 L PRC 1 14 4 .02 1 0.716 3 . 305 4 . 738 4 .005 L SHPH 9 1.14 1 0. 437 0. 704 1 .578 0.990 L SHPR 18 4 . 265 0.867 3.398 5. 132 4 . 395 MISCELLANEOUS 18 4 . 65 1 .96 2.69 6 . 6 0 3 . 98 S I L T S T O N E S (MS) STANDARDS 2 0 . 0 2 0 0 1 1 ) 3. 5 0 0 0 ( 3 ) [VIDUAL RESULTS FOR UNITS WITH 5 OR FEWER DATA POINTS -U SHRS 3 5.05 4 . 55 2.13 U PRC3 1 3 . 72 U PRC4 1 6 . 76 U SHDL 3 4 . 39 3.30 4.71 U PYRT 5 2 . 14 2 .58 2 . 13 3 . 48 2.51 UDSB 0 UDBS 0 W PYRT 1 5 . 44 W SHPR 3 3.08 3.89 3.99 L PRC4 2 1.71 4 . 22 L PRC3 3 3 . 73 4 . 30 4 . 23 L SSS 4 3 . 76 3.65 5.21 5.22 P a g e 219 - SEE T A B L E S 1-1,4 FOR ABBREVIATIONS USED - SEE TABLE 2-1 FOR REFERENCE STANDARDS V A R I A B L E - LOI(percent) NO OF DATA A R I T H M E T I C STANDARD STD D E V STD DEV L I T H O L O G Y P O I N T S MEAN D E V I A T I O N (-) ( + ) M E O I A N U SHPH 42 5 . 8 2 9 0 . 361 5 . 4 6 8 6 . 190 5 . 8 3 5 U PRC 1 8 7 . 5 1 1 . 57 5 . 94 9 . 0 8 7 4 1 S H P C 31 9 . 0 8 1 . 33 7 . 75 1 0 . 4 1 8 82 U SHPR 24 9 . 222 0 . 9 7 8 8 . 244 1 0 . 1 9 9 9 . 0 9 0 L P R C 2 1 1 8 . 35 1 . 5 0 6 . 84 9 . 85 7 . 6 1 L PRC 1 14 6 . 3 7 6 0 . 8 8 1 5 . 494 7 . 257 6 . 2 4 0 L SHPH 9 5 . 8 8 1 . 4 2 4 . 4 6 7 . 3 0 6 . 18 L SHPR 18 7 . 6 2 9 0 . 9 1 2 6 . 7 1 7 8 . 5 4 1 7 . 6 1 0 M I S C E L L A N E O U S 18 1 1 . 85 7 . 7 5 , 4 . 10 19 . 6 0 9 . 6 7 S I L T S T O N E S (MS) NO A P P R O P R I A T E STANDARDS FOUND FOR COMPARISON I N D I V I D U A L R E S U L T S FOR U N I T S WITH 5 OR FEWER DATA P O I N T S -u SHRS 3 7 . 48 7 . 8 4 5 . 7 2 u P R C 3 1 5 . 6 1 u PRC4 1 14 .1 u SHDL 1 9 . 8 9 u PYRT 1 22 . 9 UDSB 0 UDBS 0 w P Y R T 0 w SHPR 3 8 . 44 6 . 7 1 7 . 84 L P R C 4 2 2 . 58 5 . 6 0 L P R C S 3 5 . 0 0 5 . 8 0 6 . 0 0 L S S S 4 1 2 . 8 1 2 . 8 1 5 . 8 P a g e 220 - S E E T A B L E S 1-1,2 FOR A B B R E V I A T I O N S U S E D - S E E . T A B L E 2 -1 FOR R E F E R E N C E S T A N D A R D S V A R I A B L E - S r ( p p m ) NO OF DATA A R I T H M E T I C STANDARD STD DEV STD D E V L I T H O L O G Y P O I N T S MEAN D E V I A T I O N ( - ) ( + ) M E D I A N U SHPH 42 29 . 33 5 . 15 24 . 18 34 . 4 9 29 . 5 0 U PRC 1 8 139 . 203 . 0 . 342 . 64 : S H P C 31 1 0 4 . 6 64 . 3 4 0 . 3 1 6 8 . 9 85 . 0 U SHPR 24 97 . 181 . 0 . 278 . 4 9 . UDSB 20 2 2 4 9 . 1 0 7 5 . 1 174 . 3324 . 1876 . UDBS 35 2951 . 1 0 4 9 . 1902 . 4001 . 3082 . L P R C 2 1 1 189 . 12 1. 68 . 3 1 0 . 124 . L PRC 1 14 73 . 1 5 0 . 4 22 . 7 123 . 6 7 7 . 5 L SHPH 9 37 . 44 7 . 94 2 9 . 5 1 45 . 38 36 . 0 0 L SHPR 18 6 1.2 33 . 2 28 . 1 94 . 4 5 8 . 0 M I S C E L L A N E O U S 18 434 . 374 . 6 0 . 8 0 7 . 2 7 5 . S I L T S T O N E S (MS) S T A N D A R D S 4 3 7 5 . ( 1 ) 3 0 0 . ( 2 ) 2 0 0 . ( 3 ) 3 5 1 . ( 6 ) [ V I D U A L R E S U L T S FOR U N I T S WITH 5 OR FEWER DATA P O I N T S -U SHRS 3 62 . 0 32 . 0 27 . 0 U P R C 3 1 2 1 .0 U P R C 4 1 504 . U SHDL 3 5 2 6 . 0 3 0 9 . 0 7 1 . 0 u P Y R T 5 9 . 0 0 16 . 0 0 3 1 6 . 0 0 5 7 1 . 0 0 1 1 6 . 0 0 w P Y R T 5 298 . 242 . 5 2 0 . 658 . 299 . w SHPR 3 6 5 9 . 282 . 2 2 5 . L P R C 4 2 688 . 141 . L P R C 3 3 43 . 0 5 0 . 0 47 . 0 L S S S 4 155 . 156 . 125 . 133 . P a g e 221 - S E E T A B L E S 1-1,2. FOR A B B R E V I A T I O N S U S E D - S E E T A B L E 2-1 FOR R E F E R E N C E S T A N D A R D S V A R I A B L E - Rb(ppm) LITHOLOGY NO OF DATA POINTS ARITHMETIC STANDARD STD DEV STD DEV MEAN D E V I A T I O N (-) ( + ) MEDIAN U SHPH U PRC 1 SHPC U SHPR UDSB UDBS L PRC2 L PRC 1 L SHPH L SHPR MISCELLANEOUS S I L T S T O N E S (MS) 42 8 31 24 20 35 1 1 14 9 18 18 168 42 76 88 32 29 35 40. 180 83 59 17 18 12 13 1 1 10 18 12 . 13 25. 27 151.2 23.9 63 . 1 74 . 7 20. 8 18 . 9 17.3 27 .6 166 . 8 58 . 32 . 186 60 88 102 44 39.8 54 . 5 52.9 193.2 109. 2 86 . 9 171.0 36 . 5 77 .0 9 0 . 0 34 .0 28 .0 42 4 1 18 1 79 62 .0 . 5 .0 .5 .0 STANDARDS 9 0 . 0 ( 1 ) 1 4 0 . 0 ( 2 ) 1 6 . 0 ( 6 ) INDIVIDUAL RESULTS FOR UNITS WITH 5 OR FEWER DATA POINTS U SHRS 3 96 .0 82 .0 121.0 u PRC3 1 39.0 u PRC4 1 11.0 u SHDL 3 39 .0 57 .0 65. 0 u PYRT 5 16 .00 25.00 2 3 . 0 0 W PYRT 5 2 1 . 0 0 0 0 0 0 0.0 8 . 0 0 0 0 0 0 w SHPR 3 74 .0 78 .0 68 .0 L PRC4 2 20.00 8.00 L PRC3 3 33 .0 34 .0 40.0 L SSS 4 80.0 79.0 74 .0 49 8.00 0 0 0 0 0 0 69 . 0 62 27 .00 OOOOOO P a g e 222 - SEE T A B L E S 1-1/2" FOR ABBREVIATIONS USED - SEE TABLE 2-1 FOR REFERENCE STANDARDS VARIABLE - U(ppm) NO OF DATA ARITHMETIC STANDARD STD DEV STD DEV LITHOLOGY POINTS MEAN D E V I A T I O N (-) < + ) MEDIAN U SHPH 42 2.381 0.936 1 . 445 3.317 2.000 U PRC 1 8 4 . 75 1 . 16 3 . 59 5.91 4 . 50 SHPC 31 5.03 1 . 20 3.84 6.23 5.00 U SHPR 24 4 . 75 1 .07 3 . 68 5 . 82 5 OO UDS8 20 0.251 0.716 O.O 0. 967 0.0 UDBS 35 5 . 40 3 . 47 1 . 93 8 . 87 6 .OO L PRC2 1 1 5 . 18 1 . 40 3 . 78 6 . 58 5.00 L PRC 1 14 4 . 786 0.802 3 . 984 5 . 587 5.000 L SHPH 9 2 . 778 0.667 2.111 3.444 3 .000 L SHPR 18 5.17 1 . 25 3.92 6 .42 5.50 MISCELLANEOUS 18 3 . 22 1.83 1 . 39 5.06 3 . 50 S I L T S T O N E S (MS) STANDARDS 3 2 . 7 0 ( 1 ) 3. 7 0 ( 2 ) 4 . 2 0 ( 6 ) / INDIVIDUAL RESULTS FOR UNITS WITH 5 OR FEWER DATA POINTS -u SHRS 3 4 .00 6.00 3 .00 u PRC3 1 5 .00 u PRC4 1 3 .00 u SHDL 3 0 0 0 0 1 .OOOOOO u PYRT 5 0. 0 0 0 0 0 0 .0 w PYRT 5 0. 0 0 0 0 O 1 .OOOOOO w SHPR 3 4 .00 6 .00 5 .00 L PRC4 2 8 .00 4 .00 L PRCS 3 4 .00 5.00 4 .00 L SSS 4 2 . 0 0 0 0 0 0 1 . OOOOOO 1 . OOOOOO 0. .0 o.o 6.OOOOOO P a g e 223 SEE TABLES 1-1-2. FOR ABBREVIATIONS USED SEE TABLE 2-1 FOR REFERENCE STANDARDS VARIABLE - T h ( p p m ) LITHOLOGY NO OF DATA POINTS ARITHMETIC STANDARD STD DEV MEAN D E V I A T I O N (-) U SHPH U PRC 1 SHPC U SHPR L PRC2 L PRC 1 L SHPH L SHPR MISCELLANEOUS S I L T S T O N E S (MS) 42 8 30 23 1 1 14 9 18 17 14.10 10. 38 11.83 13 . 70 1 1 .00 10. 29 12 . 78 1 1 50 12 . 24 1.51 1.51 1 .09 1.61 1 .55 1 . 44 1 . 72 1 .69 4 .89 12 . 58 8.87 10.75 12 .09 9 . 45 8.85 1 1 .06 9.81 7 34 STANDARDS 9.60( 1 ) 1 2 . 0 0 ( 2 ) 2 . 4 0 ( 6 ) INDIVIDUAL RESULTS FOR UNITS WITH 5 OR FEWER DATA POINTS -u SHRS 3 11.0 12.0 13.0 u PRC3 1 9.00 u PRC4 1 10.0 u SHDL 1 17.0 u PYRT 3 0.0 14.OOOOOO 10.OOOOOO UDSB 0 UDBS 0 w PYRT 1 13.0 w SHPR 1 9 .00 L PRC4 1 12.0 L PRC3 3 10.00 9 .00 10.00 L SSS 4 10.00 1 1 .00 10.00 P a g e 224 STD DEV (+) MEDIAN 15 .61 14 .00 1 1 88 10 .00 12 . 92 12 .00 15 . 30 13 .00 12 . 55 1 1 .00 1 1 . . 72 10 .00 14 . 49 13 .00 13 . 19 1 1 .00 17 . 13 12 .00 9.00 SEE T A B L E S 1-1/Z. F 0 R A B B R E V I A T I O N S USED SEE TABLE 2-1 FOR REFERENCE STANDARDS V A R I A B L E - Ga(ppm) LITHOLOGY NO OF DATA POINTS ARITHMETIC MEAN STANDARD D E V I A T I O N STD ( DEV -) STD DEV ( + ) MEDIAN U SHPH 42 20.76 2 .02 18 . 74 22 . 78 2 1 .00 U PRC 1 8 6.38 1 .60 4 . 78 7 .97 6 .00 SHPC 30 9.70 2 .00 7 . 70 1 1 . 70 10.00 L) SHPR 23 14 . 70 2 .80 1 1 .89 17 . 50 15 .00 L PRC2 1 1 7.91 2 .07 5 . 84 9 . 98 9 .00 L PRC 1 14 6.71 1 .82 4 .90 8. 53 6.50 L SHPH 9 20.00 1 .58 18 . 42 21 . 58 20.00 L SHPR 18 10. 1 1 3.18 6 .93 13 . 29 10.00 MISCELLANEOUS 1G 6 31 4 . 74 1 .57 1 1 .06 6 .00 S I L T S T O N E S (MS) STANDARDS 6 1 5 . 0 0 ( 1 ) 1 9 . 0 0 ( 2 ) 2 0 . 0 0 ( 3 ) 6 . 8 0 ( 6 ) 1 9 . 0 0 ( 7 ) 2 1 . 0 0 ( 8 ) INDIVIDUAL RESULTS FOR UNITS WITH 5 OR FEWER DATA POINTS -u SHRS 3 8 .00 8 .00 15.00 u PRC3 1 5.00 u PRC4 1 3 .00 u SHDL 1 20.0 u PYRT 3 0.0 28 OOOOOO 22 .OOOOOO UDSB 0 UDBS 0 w PYRT 1 9 .00 w SHPR 2 33 .00 5.00 L PRC4 1 8 .00 L PRC3 3 3 .00 4 .00 6 .00 L SSS 4 7 .00 8 .00 7 .00 P a g e 225 - SEE TABLES 1-1/2. FOR ABBREVIATIONS USED - SEE TABLE 2-1 FOR REFERENCE STANDARDS VARIABLE - C r ( p p m ) NO OF DATA ARITHMETIC STANDARD STD DEV STD DEV LITHOLOGY POINTS MEAN D E V I A T I O N (-) ( + ) MEDIAN U SHPH 42 13.55 1 . 43 12.11 14 .98 14 .00 U PRC 1 8 1 1 .00 2. 07 8 .93 13.07 10.50 SHPC - 31 1 1 .52 1 . 34 10. 18 12 . 85 1 1 .00 U SHPR 24 13.17 ' 2. 14 1 1 .03 15.31 13 .00 UDSB 20 44 . 70 4 . 13 40.57 48 . 83 45. OO UDBS 35 39 . 3 1 2 1 1 37 . 20 4 1.43 3 9 . 0 0 L PRC2 1 1 12.45 1 . 69 10. 76 14.15 12 .00 L PRC 1 14 9. 79 2 . 29 7 . 49 12 .08 9 .00 L SHPH 9 14.000 0.866 13.134 14.866 14.000 L SHPR 18 1 1 . 56 1 . 25 10. 31 12 .80 1 1 .50 MISCELLANEOUS 18 13 . 89 4 . 65 9 . 24 18.54 13 .00 S I L T S T O N E S (MS 1 STANDARDS 5 1 0 0 . 0 ( 1 ) 90 .0 ( 2 ) 1 0 0 . 0 ( 3 ) 7 7 . 0 ( 7 ) 86 ( [VIDUAL RESULTS FOR UNITS WITH 5 OR FEWER DATA POINTS -U SHRS 3 12.0 10 .0 12.0 U PRC3 1 10.0 U PRC4 1 15.0 U SHDL 3 25 .0 23 .0 2 0 . 0 U PYRT 5 39 .0 30 .0 31.0 31.0 36 .0 W PYRT 5 39 .0 28 .0 24 .0 23 .0 12.0 W SHPR 3 22 .0 16 .0 12.0 L PRC4 2 31.0 14 .0 L PRC3 3 9 .00 8 . 0 0 10. OO L SSS 4 10. OO 10. OO 9 OO 9 OO P a g e 226 - SEE T A B L E S 1-1,2. FOR ABBREVIATIONS USED - SEE TABLE 2-1 FOR REFERENCE STANDARDS V A R I A B L E - Zr(ppm) LITHOLOGY NO OF DATA POINTS ARITHMETIC STANDARD STD DEV STD DEV MEAN DEVIATION (-) ( + ) MEDIAN U SHPH U PRC 1 SHPC U SHPR L PRC2 L PRC 1 L SHPH L SHPR MISCELLANEOUS SILTSTONES (MS) 42 7 31 23 10 14 7 18 13 147 58 90 67 78 . 36 134 88 . 149 27 30 33 28 47 . 35 45 . 46 . 82 . 119.8 28 . 2 57 . 0 38.6 30.8 0.2 88 . 5 42 . 1 67 . 2 175 89. 124 . 95 . 125 . 71 . 180. 134 . 23 1 . 152 58 87 76 82 33 143 87 135 STANDARDS 165.0( 1 ) 1 6 0 . 0 ( 2 ) 7 0 . 0 ( 3 ) 2 2 5 . 0 ( 6 ) INDIVIDUAL RESULTS FOR UNITS WITH 5 OR FEWER DATA POINTS -u SHRS 3 90.0 59.0 118.0 u PRC3 1 17.0 u PRC4 0 u SHDL 1 43 .0 u PYRT 4 0 . 0 0 .0 0 .0 UDSB 1 0 .0 UDBS 0 w PYRT 1 11.0 w SHPR 2 133 . 144 . L PRC4 1 95 .0 L PRC3 3 0. .0 4 .OOOOOO 0 0 L SSS 4 260. 268 . 140 . 6.OOOOOO 146 . P a g e 227 - SEE TABLES 1 - 1 . 1 FOR ABBREVIATIONS USED - SEE TABLE 2-1 FOR REFERENCE STANDARDS VARIABLE - Mo(ppm) NO OF DATA ARITHMETIC STANDARD STD DEV STD DEV LITHOLOGY POINTS MEAN DE V I A T I O N (-) ( + ) MEDIAN U SHPH 42 8.29 3.50 ' 4 . 78 1 1 . 79 7 . 5 0 U PRC 1 8 24 . 75 7 .65 17 . 10 3 2 . 4 0 24.50 SHPC 31 32 . 71 6 . 19 26.52 38 . 9 0 33.00 U SHPR 24 38 . 46 4 . 76 3 3 . 6 9 43 . 22 38 .00 UDSB 20 6 . 30 3 . 20 3. 10 9.50 5 .00 UDBS 35 3.86 3 . 19 0.67 7 .05 3 .00 L PRC2 1 1 34 .0 14 . 2 19 . 8 48 . 2 28 .0 L PRC 1 14 3 1.9 11.5 20.4 43.4 28 .5 L SHPH 9 9 . 67 4 74 4 . 92 14.41 8 OO L SHPR 18 27 . 83 7.41 20. 42 35 . 25 29 . 50 MISCELLANEOUS 18 15.3 15.6 0.0 30.9 8.0 S I L T S T O N E S (MS) STANDARDS 3 1.50(1) 2 . 6 0 ( 2 ) 10 0 0 ( 3 ) [VIDUAL RESULTS FOR UNITS WITH 5 OR FEWER DATA POINTS -U SHRS 3 23 .0 38.0 12.0 U PRC3 1 26.0 U PRC4 1 12.0 U SHDL 3 27 .0 30.0 29 .0 U PYRT 5 36 .0 42 .0 38 .0 18.0 77.0 W PYRT 5 18 . 0 19.0 14.0 28 .0 17.0 W SHPR 3 22 .0 30.0 29 .0 L PRC4 2 3 .00 18 .00 L PRC3 3 21.0 28 .0 28 .0 L SSS 4 7 . 00 4 .00 5.00 3 .00 P a g e 228 - SEE T A B L E S 1-1,2 FOR ABBREVIATIONS USED - SEE TABLE 2-1 FOR REFERENCE STANDARDS VARIABLE - Cu(ppm) LITHOLOGY NO OF DATA POINTS ARITHMETIC MEAN STANDARD DEVIATION STD DEV (-) STD DEV ( + ) MEDIAN U SHPH 42 39.50 9. 25 30.25 48.75 39.50 U PRC 1 8 25 . 75 4 . 98 20. 77 30. 73 24 .00 SHPC 31 32 . 52 7 . 85 24.66 40. 37 30.00 U SHPR 24 32 . 58 7 . 26 25.32 39 . 84 34 .00 UDSB 20 50.6 22 .7 27.9 73 . 3 54 .0 UDBS 35 49 . 9 23 . 1 26 .8 73 .0 54 .0 L PRC2 1 1 33.91 8 . 81 25 .09 42 . 72 31 .00 L PRC 1 14 27 . 57 7 . 53 20.04 35. 10 25 .00 L SHPH 9 46 .0 1 1 .3 34 . 7 57 . 3 43 .0 L SHPR 18 36 . 2 14 . 3 21.9 50.5 33 .0 MISCELLANEOUS 18 22 . 3 15 .8 6 . 4 38 1 15.0 SILTSTONES (MS) STANDARDS 6 55.0(1) 45 .0(2) 70.0(3) 790.0(6) 570.C [VIDUAL RESULTS FOR UNITS WITH 5 OR FEWER DATA POINTS -U SHRS 3 67 .0 30 .0 37 .0 U PRC3 1 26.0 U PRC4 1 25.0 U SHDL 3 36.0 63 .0 37 .0 U PYRT 5 36 .0 52 .0 40.0 29.0 38 .0 W PYRT 5 35 .0 29 .0 22 .0 39 .0 18.0 w SHPR 3 33 . 0 28 .0 33 .0 L PRC4 2 5 .00 31.i 00 L PRC3 3 2 1.0 31 .0 25.0 L SSS 4 13 .00 9.< 00 12 .00 1 1 .OO 1 3 0 . 0 ( 8 ) P a g e 229 - SEE TABLES 1-1,X- FOR ABBREVIATIONS USED - SEE TABLE 2-1 FOR REFERENCE STANDARDS VARIABLE - Ag(ppm) NO OF DATA ARITHMETIC STANDARD STD DEV STD DEV LITHOLOGY POINTS MEAN D E V I A T I O N ( - ) ( + ) MEDIAN U SHPH 42 0. 143 0. 104 0.039 0. 247 0. 100 U PRC 1 8 0. 250 0. 207 0.04 3 0. 457 0. 200 SHPC 3 1 0. 716 0.803 0.0 1.519 0.600 U SHPR 24 1 .52 1 .29 O. 22 2.81 1 .00 UDSB 20 43 . 1 29.7 13.4 72 . 8 28.9 UDBS 35 35.5 11.8 23 . 7 47 . 3 33 . 5 L PRC2 1 1 0.400 0.390 0.010 0. 790 0. 300 L PRC 1 14 0. 393 0. 256 0. 137 0.648 0. 350 L SHPH 9 0.422 0. 139 0. 283 0. 562 0. 400 L SHPR 18 0. 494 0. 308 0. 187 0.802 0.500 MISCELLANEOUS 18 1 . 36 1.91 0.0 3.27 0.65 S I L T S T O N E S (MS) STANDARDS 3 0 . 0 7 0 0 ( 1 ) 0. 0 7 0 0 ( 2 ) 0. 1 8 0 0 ( 6 ) [VIDUAL RESULTS FOR UNITS WITH 5 OR FEWER DATA POINTS -U SHRS 3 0.800 0. 700 0.600 U PRC3 1 0. 100 U PRC4 1 0. 400 U SHDL 3 16 . 20 2.50 4 . 50 U PYRT 5 10.500 4 . 300 10.000 2 . 400 0. 100 W PYRT 5 13 400 15.400 3 8 . 5 0 0 3 1 .000 0. 9 0 0 W SHPR 3 9 . 90 5.60 6 . 30 L PRC4 2 0. 100 1 .200 L PRC3 3 0. 100 0. 100 0. 300 L SSS 4 0.400 0.400 0. 100 0. 100 P a g e 230 - SEE TABLES 1-1,Z- FOR A B B R E V I A T I O N S USED - SEE TABLE 2-1 FOR REFERENCE STANDARDS VARIABLE - N i ( p p m ) LITHOLOGY NO OF DATA POINTS ARITHMETIC MEAN STANDARD D E V I A T I O N STD DEV (-) STD DEV ( + ) MEDIAN U SHPH 42 6 1 8 1 9.i 65 52 . 16 7 1 . 46 61 .OO U PRC 1 8 76 . 9 21 .6 55 . 2 98. 5 73 . 5 SHPC 31 79 . 2 14 .8 64 . 4 94 . 1 80. 0 U SHPR 24 86 . 3 10 . 7 75 . 6 97 .0 88 .O UDSB 20 38 .0 15 . 4 22.6 53 . 5 34.5 UDBS 35 37 .0 14 .6 22 . 5 51.6 40.0 L PRC2 1 1 69 . 4 18 . 8 50. 5 88 . 2 69. 0 L PRC 1 14 178 . 4 14. 0. 592 . 69. L SHPH 9 70. 4 14 .0 56 . 5 84 . 4 68. 0 L SHPR 18 7 1.0 19 . 9 51.1 90.9 75.0 MISCELLANEOUS 18 39 1 24 . 7 14.3 63 . 8 30.0 S I L T S T O N E S (MS) STANDARDS 6 7 5 . 0 ( 1 ) 68 0 ( 2 ) 5 0 . 0 ( 3 ) 4 6 0 . 0 ( 6 ) 293 .C [VIDUAL RESULTS FOR UNITS WITH 5 OR FEWER DATA POINTS -U SHRS 3 58 .0 66 .0 64 .0 U PRC3 1 76 .0 U PRC4 1 58 0 U SHDL 3 52 .O 47 .0 72 .0 U PYRT 5 49.0 47 .0 34 .0 17.0 57 .0 W PYRT 5 36 .0 33 .0 16.0 51.0 55.0 W SHPR 3 70.0 84 .0 74 .0 L PRC4 2 21.0 73 .0 L PRC3 3 43 .0 55 .0 73 .0 L SSS 4 18 .00 12 .00 17 .00 9.00 P a g e 231 - SEE TABLES 1-1/Z FOR A B B R E V I A T I O N S USED - SEE TABLE 2-1 FOR REFERENCE STANDARDS VARIABLE - C o ( p p m ) NO OF DATA ARITHMETIC STANDARD STD DEV STD DEV LITHOLOGY POINTS MEAN D E V I A T I O N (-) ( + ) MEDIAN U SHPH 42 16 24 2 . 43 13.81 18 .67 16 . 50 U PRC 1 8 5.50 1 .93 3.57 7 .43 5.00 SHPC 3 1 5 . 355 0.839 4 .516 6 . 193 5.000 U SHPR 24 6 . 375 0.770 5.605 7 . 145 6 .000 UDSB 20 4 .85 2 .08 2 . 77 6 .93 5 OO UDBS 35 5.80 2 . 74 3.06 a . 54 6 .00 L PRC2 1 1 5.91 1 . 14 4 . 77 7 .05 6.00 L PRC 1 14 6 .00 3.88 2.12 9 . 88 5 .00 L SHPH 9 15 . 22 1 . 72 13.51 16 .94 16 .00 L SHPR 18 6 . 44 2 . 25. 4 . 19 8 . 70 6.00 MISCELLANEOUS 18 5 . 89 8.43 0.0 14 . 32 4 .00 S I L T S T O N E S (MS) STANDARDS 6 2 5 . 0 ( 1 ) 19 . 0 ( 2 ) 1 0 . 0 ( 3 ) 82 . 0 ( 6 ) 1 16.C :VIDUAL RESULTS FOR UNITS WITH 5 OR FEWER DATA POINTS -U SHRS 3 7 .00 7 .00 12 .00 U PRC3 1 6 .00 U PRC4 1 4 .00 u SHDL 3 3.00 4 .00 4 .00 u PYRT 5 4 .00 3.00 2 .00 1 .OO 3.00 w PYRT . 5 3 .00 3 .00 1 .00 3 .00 4 .OO w SHPR 3 5 .00 5.00 4 .00 L PRC4 2 45.00 8 .00 L PRC3 3 4 .00 5.00 5.00 L SSS 4 3.00 3.00 5.00 4 .00 SEE TABLES P a g e 2 3 2 SEE TABLE 2-1 FOR 3 8 . 0 ( 8 ) VARIABLE - Sb(ppm) NO OF DATA ARITHMETIC STANDARD STD DEV STD DEV LITHOLOGY POINTS MEAN DEVIATION ( -) ( + ) MEDIAN U SHPH 42 1 .095 0. 297 O. 798 1 . 392 1 .000 U PRC 1 8 2.500 0. 926 1 . 574 3.426 2.500 SHPC 31 7.0 15.6 0.0 22 .6 5.0 U SHPR 24 5.88 4.91 0 .96 10. 79 5.00 UDSB 20 1 200 0.894 0. 306 2 .094 1 .000 UDBS 35 4 . 77 5.78 0 .0 10 55 2 .00 L PRC2 1 1 4 .00 2.79 1 . 2 1 6 .79 3.00 L PRC 1 14 3.36 2.53 0 .83 5.89 3 .00 L SHPH 9 6.11 1 .62 4 .50 7 . 73 6.00 L SHPR 18 4 . 78 3 . 28 1 . 50 8 .06 5.00 MISCELLANEOUS 18 4.17 3.24 0 .93 7.41 4 .00 SILTSTONES (MS) STANDARDS 2 0.200(1) 1. 500(2) IVIDUAL RESULTS FOR UNITS WITH 5 OR FEWER DATA POINTS -U SHRS 3 8 .OO 9 .00 3 .00 U PRC3 1 1 .00 U PRC4 1 4 .00 U SHDL 3 1 .00 1 .00 1 .OO U PYRT 5 46.00 48.00 39 .00 1 .00 1 .00 w PYRT 5 1 .00 1 .00 1 OO 1 .00 6 .00 w SHPR 3 1 .00 1 .00 1 .00 L PRC4 2 4 OO 7 .00 L PRC3 3 2 .00 1 .00 2 .00 L SSS 4 7 .00 6.00 1 .00 7 .00 P a g e .233 - SEE TABLES 1 - \j2. FOR ABBREVIATIONS USED - SEE TABLE 2-1 FOR REFERENCE STANDARDS V A R I A B L E - V(ppm) NO OF DATA ARITHMETIC STANDARD STD DEV STD DEV LITHOLOGY POINTS MEAN DE V I A T I O N ( - ) ( + ). MEDIAN U SHPH 42 52 . 1 12.4 39. 7 64.5 52 .5 U PRC 1 8 57 .5 77 .9 0.0 135.4 28.5 SHPC 31 70. 7 23.7 47 .0 94 .5 6 5 . 0 U SHPR 24 67 . 9 15.0 52 .9 82 .9 70. 0 UDSB 20 28 . 35 9.91 18 . 44 38 . 26 28.50 UDBS 35 16 . 4 19.5 0.0 35.9 9.0 L PRC2 1 1 125. 194 . 0. 3 19. 49 . L PRC 1 14 57 . 3 91.6 0.0 148.9 28.0 L SHPH 9 32 . 4 11.2 2 1.2 43 . 7 28 .0 L SHPR 18 67 . 6 30.7 36 . 9 98 . 3 58 .0 MISCELLANEOUS 18 49 . 3 54 . 1 O.O 103 . 4 26.5 S I L T S T O N E S (MS) STANDARDS 5 1 3 5 . ( 1 ) 130 ( 2 ) 1 5 0 . ( 3 ) 1 3 0 . ( 7 ) 140 . ( 8 ) I N D I V I D U A L RESULTS FOR UNITS WITH 5 OR FEWER DATA POINTS -u SHRS 3 27 .0 23.0 6 1 . 0 u PRC3 1 34 .0 u PRC4 1 214 . u SHDL 3 47 . 0 50.0 76 .0 u PYRT 5 51.0 64 .0 35 .0 51. 0 w PYRT 5 55 .0 52 .0 18.0 36.0 W SHPR 3 44 .0 63. 0 6 1 . 0 L PRC4 2 105. 572. L PRC3 3 24 .0 54 .0 55. 0 L SSS 4 13 .00 6.00 19.00 10.00 P a g e 234 - SEE T A B L E S 1-1 ; Z FOR A B B R E V I A T I O N S USED - SEE TABLE 2-1 FOR REFERENCE STANDARDS VARIABLE - E u ( p p m ) LITHOLOGY NO OF OATA POINTS ARITHMETIC STANDARD STD DEV STD DEV MEAN D E V I A T I O N (-) (+) MEDIAN SHPC UDSB UDBS 7 20 35 1.17 1 3 .065 2.111 0.665 0.702 0.837 0. 506 2 . 36-3 1 . 274 1 .837 3.767 2 .948 0 9 0 0 2 .850 1 .900 STANDARDS 1.20(1) 1 . 0 0 ( 2 ) INDIVIDUAL RESULTS FOR UNITS WITH 5 OR FEWER DATA POINTS -u SHRS 0 u SHPH 5 3 . 20 2.50 2.90 3 . 20 u PRC 1 4 0.400 0. 200 0. 300 0.400 u PRCS 0 u PRC4 1 0. 700 u SHPR 4 0.600 0. 700 0.900 1 .200 u SHDL 0 u PYRT 3 2 .80 1 .90 1 . 10 w PYRT 5 4 .60 4 . 20 4 . 20 4 . 70 w SHPR 1 1 . 40 L PRC4 2 0. 300 0. 700 L PRCS 0 L PRC2 2 0. 300 0.400 L PRC 1 5 0. 100 0. 300 1 . 200 0. 300 L .SHPH 4 1 . 40 1 .80 2 .60 2 . 30 L SHPR 4 1 . 200 0.800 2 . 100 1 .800 L SSS 3 0. 700 0.900 1 .000 :SCELLANEOUS 3 1 . 8 0 0 0.900 1 . 300 2 . 30 1 . 70 0.600 S I L T S T O N E S (MS) P a g e 235 - SEE T A B L E S 1-1,2. FOR ABBREVIATIONS USED - SEE T A B L E 2-1 FOR REFERENCE STANDARDS V A R I A B L E - S m ( p p m ) N O O F D A T A A R I T H M E T I C S T A N D A R D S T D D E V S T D D E V L I T H O L O G Y P O I N T S M E A N D E V I A T I O N ( - ) ( + ) M E D I A N S H P C 7 7 . 2 3 1 . 8 3 5 . 4 0 9 . 0 6 6 . 9 0 U D S B 2 0 1 1 . 7 1 3 . 4 O . O 2 5 . 1 3 . 1 U D B S 3 5 1 0 . 4 1 4 . 8 0 0 2 5 . 2 6 . 2 S T A N D A R D S 3 G 0 0 ( 1 ) G . 4 0 ( 2 ) 6 . 1 0 ( 6 ) I V I D U A L R E S U L T S F O R U N I T S W I T H 5 O R F E W E R 1 D A T A P O I N T S -U S H R S 0 U S H P H 5 6 . 9 0 8 . 9 0 5 . 3 0 9 . 6 0 7 . 4 0 U P R C 1 4 5 . 5 0 5 . 5 0 1 7 . 7 0 1 5 . 5 0 U P R C 3 0 U P R C 4 1 2 . 5 0 U S H P R 4 1 5 . 7 0 3 . 0 0 4 . 8 0 7 . O O U S H D L 0 U P Y R T 3 1 7 G O 1 1 . 0 0 4 . 8 0 W P Y R T 5 4 2 . 8 0 2 6 . 9 0 1 8 7 0 1 3 . 3 0 3 . 4 0 W S H P R 1 6 4 0 L P R C 4 2 1 . 7 0 3 . 2 0 L P R C 3 0 L P R C 2 2 7 . 0 0 3 . 0 0 L P R C 1 5 7 . 9 0 0 7 . 2 0 0 3 . 7 0 0 4 . 8 0 0 0 . 8 0 0 L S H P H 4 2 . 0 0 5 . 4 0 4 . 8 0 7 . 1 0 L S H P R 4 3 . 4 0 5 . 2 0 4 . 4 0 4 . 1 0 L S S S 3 3 . 1 0 3 . 0 0 2 . 7 0 M I S C E L L A N E O U S 3 9 . 2 0 6 . 9 0 8 . 2 0 S I L T S T O N E S ( M S I - SEE TABLES 1 -1 ,2 . FOR ABBREVIATIONS USED P a g e 236 " S E E T A B L E 2 - 1 F 0 R R E F E R E N C E S T A N D A R D S VARIABLE - Yb(ppm) LITHOLOGY NO OF DATA POINTS ARITHMETIC STANDARD STD DEV STD DEV MEAN DEVIATION ( - ) (+) MEDIAN SHPC UDSB UDBS 7 20 35 2 . 36 12.8 6.01 1 .89 11.2 5:41 0.47 1 .6 0.60 4 . 24 24 .0 11.41 1 .50 8.0 4 .00 STANDARDS 3.0011) 2 . 6 0 ( 2 ) 4 . 2 0 ( 6 ) INDIVIDUAL RESULTS FOR UNITS WITH 5 OR FEWER DATA POINTS -u SHRS 0 u SHPH 5 5 . 50 3 . 50 3 . 60 2 .40 u PRC 1 4 1 . 70 2 .60 •1.10 3 .80 u PRC3 O u PRC4 1 1 . 60 u SHPR 4 1 . 60 1 .80 2 . 50 3 .20 u SHDL 0 u PYRT 3 1 . 500 3 . 200 0. 900 W PYRT 5 14 .60 9 . 40 9.50 15 .90 w SHPR 1 2 .80 L PRC4 2 0.500 1 . 700 L PRC3 0 L PRC 2 2 1 .60 2 . 50 L PRC 1 5 1 . 10 1 . 20 2 . 10 2 . 10 L SHPH 4 5 .00 2.50 3. 30 3. 20 L SHPR 4 2 . 30 4 .00 3.00 2 . 20 L SSS 3 1 . 100 1 . 100 0. 9 0 0 [SCELLANEOUS 3 2.50 2.40. 2 . 70 SILTSTONES (MS) P a g e 237 - SEE TABLES 1 - 1,'Z FOR ABBREVIATIONS USED - SEE TABLE 2-1 FOR REFERENCE STANDARDS APPENDIX 3 . X-RAY FLORESCENCE DATA REDUCTION PROGRAMS The FORTRAN computer programs which follow were used to reduce a l l the X-ray florescence raw data counts. Page 238 MICHIGAN TERMINAL SYSTEM FORTRAN GI21.8) MAIN I 1-26-8 I 2 1:13:54 P A G E 239 oooi 0002 0003 00O4 0OO9 0006 0007 OOOB 00O9 OOIO OO11 0012 0013 0O14 0015 0O16 0017 0018 0019 0020 O02 I 0022 0O23 0O24 0025 C MAJOR ELEMENT XRF IPHESSEO POWER METHOD) UBC SEPT 1980 C ARRAYS ARE SET UP FOR UP TO 50 STANDARDS ANO 200 SAMPLES DIMENSION TITLE(20).TP(10),TB(10),CONC<12),101250),C(50.I7> CPI4 >. 1CBM |. RAT 10(250. 10).P(4).NT< 11). IU( 4 ) . AT ( 50. 10). API 750. 12). AMI 10)' 3.BM(10).CM(1O).0(10I.AKI10.12).G(250. 12).El 10).SUM!250).DIFI 50, 12) 3.SSUMI50).V0LI790) REAL'S IS.10.IU COMMON AT.NS.C.AM.BM.CM C ELEMENT ORDER:SI.AL.FE,MG.CA.NA.K.TI.MN.P C AK CONTAINS MAJOR ELEMENT OXIDE MA C.S (HANDBOOK OF SPECTROSCOPY C 1974) DATA AK/ 1727.8.1126 6.70 4,1840.1.337.2.2881.I.460.3.700.3.88 7.1755 3. 22314 3.983 0.63 6.1608 3.304.0,7530.1.4 14.0.180.6.79 6.1563 3. 32056 6.288 I 7,59 8.4515 4.26S O.7000 9.358 1. 160.7.73 9. 1305 4. 47183.6.3794 3.56 9.1365.I.276.6.7160 7.379 1.163.5.71 5.1468 3. 51193.0.1708.6.743.4,7777.2.148.9.4 370.1.700.9.644 9.300 9.752 S . 61997:3,3039.8.49.9.4881 2.245 7,1515 9.337.7.1447.628.1328.4. 7963.6,1497.2.737.2.7417.7,1041 5.3788 2.177 1.639 4.294 7.659 5. 81338 O.1930.0.741.0.3077.0.166 6.4830.0.726 7.100.0,296 9.850 O. 91924.6,7690.4.55.7.47 IS.0.746 4,6569 4.332 9. 149.7.69 3. 12 16 5. »7B7 1,12149.773.198II.365.2.3110.5.495 9,217.8.97.0.520 5. H932.6. 1447 7.70 9.737 I 4. 107.5.3703 7. 149.2.62 2.26 4.613 7. C887.8.1382.1,19.6.7771.4.101.I.357 7 1.140 6.58 4.24.7.582 3/ C »•»•••••» c «....... C READ IN TITLE; COUNT TIMES ON PEAK ANO BACKGROUND C c • RCADI5.100)TITLE READ!5,101)(TP(I), 1-1. 10) REA0(5.101)(TBI I ). I • 1. 10) N-0 NE-0 C c ••• C REAO IN DATA FOR STANDARDS . IDENT ITY.CONCENTRAT I ON AND C COUNTS;CALCULATE C RATIOS C c ........ I REAO(S.200)IS.(CONC(I).I-I.t2> IFICONCI1).EQ.O.O)GO TO 3 N-N* I IOINWS DO 2 I" 1, 17 C(N, I)-C0NC(I) 7 CONTINUE GO TO 1 C TOTAL STANDARD CONC. 3 00 4 1-1.N SSUMII (-0 0 00 4 J>I,17 4 SSUMII)•SSUMII)»C(I.J) NS'N 5 NE-NE*1 IF1NE EQ 11)G0 TO 9 IFIN.NE NS)GO TO 39 1 OOO 2 000 3 000 4 OOO 5 000 6 000 7 000 8 000 9 000 10 000 10 000 1 1 000 12 000 13 OOO 14 000 15 OOO 16 000 17 000 18 000 19 oco 20 OOO 2 1 OOO 22 000 23 OOO 24 OOO 24 000 25 000 26 000 26 000 27 000 28 000 29 OOO 30 000 3 1 000 32 000 32 OOO 33 OOO 33 000 34 OOO 35 000 35 OOO 36 OOO 37 OOO 38 000 39 000 40 000 4 1 OOO 42 000 43 000 44 OOO 45 000 46 000 47 000 48 000 49 OOO 50 000 51 000 52 000 MAJOR ELEMENT DATA REDUCTION PROGRAM FOR NON-'ORE" SAMPLES MICHIGAN TERMINAL SYSTEM FORTRAN GI21 .B) 2 1: 13:54 240 0026 C N-0 READ IN COUNTS(CP>CB) 53 54 .000 OOO 0027 6 R E A 0 ( 5 . 2 0 1 ) ( C P ( I ) . I « 1 . 4 ) . ( C B ( I ) . I - 1.4) 55 OOO 0028 C I F ( C P ( 1 ) . E Q 0 O ) G 0 TO 5 CALCULATE RATIOS 56 57 OOO OOO 0029 P 1 " C P < 1 ) / T P ( N E ) - C B ( 1 ) / T B ( N E ) 58 OOO 0030 DO 8 I -2 ,4 59 000 0031 I F ( C P ( I ) ) 5 . 5 . 7 60 000 0O32 7 P < I ) - C P < I ) / T P ( N E ) C B ( I ) / T B ( N E ) 6 1 OOO O033 N-N+ 1 62 OOO C034 RATIO(N .NE)=P( I ) /P1 63 000 0035 8 CONTINUE 64 000 0036 C GO TO 6 PUT % H20 ft C02 INTO ARRAY AP 65 66 OOO OOO 0037 9 00 10 1-1 .NS 67 000 0038 DO 10 0 -11 ,12 68 .000 0039 10 .API I , J ) -C ( I . J ) 69 70 .000 OOO c C ' 70 OOO c READ IN DATA FOR SAMPLES:I DENT ITY .COUNTS;CALC RAT I OS;READ IN H20 7 1 c o o c ft C02 7 1 72 ooo COO c C ' 72 000 O040 NE=0 73 000 0041 11 NE-NE*1 74 000 0042 NT(NE ) -N 75 OOO 0043 IF ( N E . L E . 2 ) G 0 TO 12 76 .000 0044 I F ( N E . E O . 1 1 ( G O TO 16 77 OOO 0045 I F ( NT ( NE ) . NE . NT (NE -• 1 ) )G0 TO 40 78 OOO 0O46 12 C N-NS READ IN IDENTITY AND COUNTS(CP*CB) 79 80 000 000 004 7 13 R E A D ) 5 . 2 0 2M I U ( J ) . J = 1 , 4 ) , ( C P ( I ).I - ' 1.4) , ( C B ( I ) . 1 1-1.4) 8 1 000 0048 C I F ( C P ( 1 ) . E O . O 0)G0 TO 11 CALCULATE RATIOS 82 83 OOO 000 0O49 P 1 - C P ( 1 ) / T P ( N E ) - C B ( 1 ) / T B ( N E ) 84 OOO 0050 DO 15 1-2,4 85 .000 0051 I F ( C P ( I ) ) 1 1 . 1 1 . 14 86 OOO 0052 14 N-N+ 1 87 000 0053 ID(N)- IU( I) 88 000 0O54 P ( I ) - C P ( I ) / T P ( N E ) - C B ( I ) / T B ( N E ( 89 OOO 0055 R A T I O ( N . N E ) - P ( I ) / P 1 90 OOO 0056 15 CONTINUE 9 1 000 0057 C GO TO 13 READ % H20 ft C02 INTO ARRAY AP 92 93 000 .000 0058 16 NU-NS*1 94 000 0059 DO 17 I -NU.N 95 000 0060 R E A D ( 5 . 2 0 3 ) ( A P ( I , J ) . J = 1 1 , 1 2 ) 96 000 0061 17 C C < CONTINUE 97 98 98 000 OOO 000 C CALIBRATE RATIOS FOR STANDARDS AGAINST CONCENTRATION USING OUADLS 99 OOO C ft USE COEFF TO CALC. APPROXIMATE RESULTS FOR STANDARDS AND 10O 000 C SAMPLES 100 OOO C 101 000 C ' 101 000 0O62 DO 19 1-1 ,NS 102 000 0063 DO 18 0- 1. 10 103 . 000 0064 A T ( I , J ) - R A T ! 0 ( I , d ) 104 000 MICHIGAN TERMINAL SYSTEM FORTRAN G( 2 1 . 8 ) MAIN 1 1-26-81 2 1:13:54 PAGE 241 0065 18 CONTINUE 105 000 0O66 19 CONTINUE 106 OOO 0O67 CALL QUAD 107 .000 0O68 00 20 I -1 ,N 108 .000 0069 00 20 J " 1 . 1 0 109 000 0O70 API I , J ) « A M I J I ' R A T I O I I . J ) * * 2 * B M ( J ) * R A T I 0 ( I . J ) *CM( J ) 1 10 000 007 1 20 CONTINUE 1 1 1 .000 C ***•*•***#••»**•••****•*••••••••*•**••**•••*••#•*****•**«*••**••••»•• 1 12 .000 C * **•*•*• 1 12 000 C CALCULATE MASS ABSORPTION (Q) FOR STANDARDS. APPLY TO RATIOS AND 1 13 000 C RERUN QUA 1 13 OOO OOO 1 1 4 c • 1 14 .000 0072 DO 22 1-1.NS 1 15 000 0073 DO 22 J - 1 . 1 0 1 16 000 0074 0 1 J ) - 0 . 0 1 17 000 0075 DO 2 1 K- 1, 12 1 18 000 0076 2 1 Q ( J ) = Q ( J ) * C ( I , K ) * A K ( J , K ) 1 t9 000 0077 ATI I . J ) « R A T I O ( I . J ) * Q ( J ) 120 000 0078 22 CONTINUE 12 1 OOO 0O79 CALL OUAD• 122 123 000 000 c c • ••*•*•• 123 000 c TAKE APPROXIMATE VALUES FROM AP.CORRECT FOR Q.DERIVE NEW RESULTS. 124 000 c REFINE 0 AND REFINE ANALYSIS BY ITERATION UP TO 50X 125 126 000 OOO c 126 000 0080 DO 30 1-1 .N 127 000 0O81 0 - 0 . 0 128 OOO OOB2 DO 23 J - 1 . 12 129 .000 0O83 D - D * A P < I , J ) 130 .000 0084 23 G( 1 ,J ) -API I . J ) 13 1 .000 0085 L - 0 132 OOO 0086 24 L = L» 1 133 OOO 0O87 IFIL EQ 1)G0 TO 42 134 .000 OOB8 G I L . 11 ) - A P ( 1 . 1 1 ) 135 000 0089 G I L , 1 2 ) - A P ( I , 1 2 ) 136 OOO 0090 D - 0 * G ( L , 1 I ) * G ( L , 1 2 ) 137 OOO 0091 42 0 - 1 0 0 . 0 / D 138 000 0O92 DO 26 J - 1 . 1 0 139 000 0093 O l J ) - 0 . 0 140 000 0094 DO 25 K » 1 , 1 2 141 000 0095 25 Q l J ) - Q ( J ) + G ( L . K ) » A K ( J , K ) « D 142 000 0O96 26 E l J ) - R A T I O ( I . J ) * Q ( J ) 143 OOO 0O97 R - 0 . 0 144 OOO 0098 D - 0 . 0 145 000 0O99 DO 27 K - 1 , 1 0 146 000 0100 G I L + 1 , K ) B A M I K ) * E ( K ) * * 2 + BMIK)*E(K)+CM(K) 147 000 0101 D-D+GIL*1 .K) 148 000 0102 27 R -R+GIL+1 .K ) -G (L ,K ) 149 000 0103 IF(L GE 5O)G0 TO 28 150 000 0104 I F | A B S ( R ) GT 0 001)G0 TO 24 15 1 000 0105 GO TO 29 152 000 0106 28 WRITE(6 .300 ) ID ( I ) 153 . OOO 0107 29 D - | 1 0 O . 0 - G I L . 1 1 ) - G ( L . 1 2 ( ) / D 154 . OOO 0108 DO 30 J « 1 . 1 0 155. OOO 0109 30 API 1 , J ) - G ( L * 1 , J ) * 0 156 . OOO C 157 . 000 MICHIGAN TERMINAL SYSTEM FORTRAN G(21 8) MAIN 1 I-26-8 t PAGE 242 01 10 0111 0112 0113 01 14 01 15 01 16 01 17 01 18 Ol 19 0120 0121 0122 0123 0124 0125 0126 0127 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143 0144 c ........ C RECALIBRATE USING REFINED VALUES OF STANDARDS AGAINST ACCEPTED C VALUES Q ********************************************************************* c ******** 00 31 I •1 ,NS DO 31 d » 1 . 1 0 31 AT( I . d ) - A P < I , d ) CALL QUAD c  Q ******** C USE NEW CALIBRATION TO DETERMINE BEST VALUE FOR SAMPLES • C STANDARDS c ..................................................................... c DO 32 I=1.N DO 32 d a 1 . 1 0 32 AP( I , J )«AM( d ) *AP( I , d ) * *2 *BM(d ) *AP< I . JMCMI J ) C TOTAL CONCENTRATION DO 33 I « 1 , N SUM(I)=0.0 DO 33 J - 1 . 1 2 33 SUM( I ) -SUM( I )+AP( I . J ) C ********************************************************************* c « . . . * . * * C OUTPUT STANDARDS c  C ........ WRITE(6 .306)T ITLE WRITE(6.305) WRITE(6.301) DO 36 I=I,NS WRITE(6.302)101 I ) . IAP(I . d ) . d * 1 . 12).SUM( I ) VOL( I ) -AP(1 .11 ) - A P ( 1 . 1 2 ) 00 34 J » l . 1 0 34 API I .J)=AP( I . J ) ' ( 100.0-VOL( I ) ) / (SUM! I )-VOL( I ) ) W R I T E ( 6 . 3 0 3 ) ( A P I I , d ) . d*t , 1 2 j DO 35 d - 1 . 12 35 D I F ( I . J ) " A P ( I . J ) - C ( I ,d) W R I T E ( 6 . 3 0 7 ) ( C ( I . d ) , d s 1 . 1 2 ) . S S U M I I ) W R I T E I 6 . 3 0 9 ) ( D I F ( I , d ) . d = 1 . 1 2 ) 36 CONTINUE c , C * * * * * * * * C OUTPUT SAMPLES c  C WRITE(6.304) WRITE(6.301) DO 38 I 'NU.N WRITE(6.302)IDC I ) . ( A P ( I ,d) ,d=1 . 12) .SUM! I ) VOL(I ) * A P ( I , 1 1 ) - A P ( 1 . 1 2 ) DO 37 d - 1 . 1 0 37 A P ( I , d ) - A P ( I . d ) ' ( 1 0 0 . 0 - V O L ( I ) ) / ( S U M ( I ) - V O L ( I ) ) W R I T E ( 6 . 3 0 3 ) ( A P ( I , d ) . J - 1 . 1 2 ) 38 CONTINUE STOP c  157 000 158 .000 158 .000 159 .000 159 .000 160 OOO 16 1 000 162 .000 163 .000 164 000 164 000 165 000 165 000 166 000 166 000 167 OOO 168 OOO 169 OOO 170 000 17 1 OOO 172 OOO 173 OOO 174 000 175 OOO 175 000 176 OOO 177 OOO 177 000 178 OOO 179 000 180 000 18 1 000 182 000 183 000 184 000 185 OOO 186 000 187 000 188 000 189 OOO 190 OOO 191 OOO 192 OOO 192 ooo 193 000 194 OOO 194 OOO 195 OOO 196 000 197 000 198 000 199 OOO 20O OOO 201 OOO 202 OOO 203 000 204 OOO 205 000 MICHIGAN TERMINAL SYSTEM FORTRAN G<21 8) MA IN 1 1-26-81 21:13:54 PAGE 243 205 000 0145 39 WR]TE(6.400)NE 206 OOO 0146 GO TO 4 1 207 OOO 0147 40 WRITEI6.401)NE 208 OOO 0148 41 STOP 209 000 0149 100 FORMAT(20A4) 2 10 OOO 0150 101 F0RMAT(10F3 0 ) 21 1 OOO 0151 200 FORMAT(A6.12F6.2 ) 2 12 000 0152 • 201 FORMAT(12X.4F7 0 . 1 2 X . 4 F 7 0) 2 13 OOO 0153 202 F0RMAT(4A6 .8F7 .0 ) 214 OOO 0154 203 F0RMAT(6X .2F6 .2 ) 215 000 0155 300 FORMAT!1H1.'MORE THAN 50 ITERATIONS A T . 1 X . A 6 ) 2 16 000 0156 301 FORMAT( 1H . "I DENT' . 3X . ' S I ' .4X. ' A L ' .4X . - F E ' . 4X , 'MG' .4X , ' C A ' , 4 X . NA' 2 17 OOO 1 . 5 X , ' K ' , 4 X , ' T l ' , 4 X , ' M N ' , 5 X , ' P ' , 4 X , H 2 0 ' . 3 X , C 0 2 ' . 7X . ' TOTAL' ) 2 18 000 0157 302 F O R M A T ( 1 H 0 . A 6 . 1 2 F 6 . 2 . 6 X . F 6 2 . 6 X . F INAL V A L U E ' ) 2 19 000 0158 303 FORMAT(1H ,6X , 12F6 .2 . 18X, 'NORM V A L U E ' ) 220 OOO 0159 307 FORMAT(1H , 6 X . 1 2 F 6 . 2 . 6 X . F 6 . 2 . 6 X . RECCOM V A L U E ' ) 22 1 OOO 0160 309 FORMAT!IH , 6 X . 1 2 F 6 . 2 . 1 8 X . ' N O R M - R E C C . ' ) 222 000 0161 304 FORMAT(1H1 .50X . 'SAMPLES' ) 223 OOO 0162 305 FORMA T( 1H0.50X. 'STANDARDS' I 224 OOO 0163 306 FORMA T( 1H1.20A4) 225 000 0164 400 FORMAT( IH . ' C A R D MISSING IN STANOARO DATA FOR Z = ' . 2 X . 13) 226 OOO 0165 401 FORMAT(IH , 'CARO MISSING IN SAMPLES FOR Z = ' . 2 X . I 3 » 227 OOO 0166 END 228 000 •OPTIONS IN EFFECT* ID.EBCOIC.SOURCE.NOLI ST.NODECK.LOAD.NOMAP •OPTIONS IN E F F E C T • NAME « MAIN . LINECNT = 60 • S T A T I S T I C S ' SOURCE STATEMENTS » 166.PROGRAM SIZE * 47552 • S T A T I S T I C S ' NO DIAGNOSTICS GENERATED No e r r o r s In MAIN MICHIGAN TERMINAL SYSTEM FORTRAN G( 2 1 8 I MAIN 11-26-81 21 :13 :55 PAGE 244 229 000 229 OOO OOOI SUBROUTINE QUAD 230 OOO C F ITS .BY LEAST SQUARES. TO QUADRATIC FUNCTION Y»AX*X»BX*C 23 1 000 0002 DIMENSION SA( 10) .SB( 10) .SCI 10).SOI 10) .SEI 10) .SFI 10).SGI 10).AMI 10) 232 000 0003 DIMENSION BM( 10) .CM! 1 0 ) . A T ( 5 0 . 10).CI 50. 12) 233 OOO 0004 COMMON A T . N S . C . A M . B M . C M 234 .000 0005 DO 47 JA =1.10 235 .000 0006 SAIJA ) =0 . 0 236 000 0007 SB I JA ) =0 . 0 237 OOO 0008 SC(JA)=0 0 238 000 0O09 SO(JA)=0 .0 239 000 0010 SE(JA)=0 0 240 OOO 001 1 SFI JA )=0 0 24 1 000 0O12 SGIJA)=0 .0 242 .000 0013 47 CONTINUE 243 OOO 0014 DO 48 J A " 1 , 1 0 244 OOO 0015 DO 49 1=1.NS 245 OOO 0016 S A l J A ) » S A ( J A ) * A T ( I . JA ) 246 OOO 0017 S B ( J A ) - S B ( J A ) + A T ( I . J A ) * * 2 247 OOO 0O18 S C ( J A ) = S C ( J A ) » A T ( I . J A ) * A T < I . J A ) • * 2 248 OOO 0019 S D I J A ) - S D ( J A ) » A T ( I . J A ) « * 2 * A T < I .JA I •*2 249 OOO 0020 S E ( J A ) * S E | J A ) * C ( 1 . JA 1 250 OOO 0O2 1 S F ( J A ) « S F ( J A ) » A T ( I . J A ) * C ( I , J A ) 25 1 .000 0022 S G I J A ) * S G ( J A ) + A T ( I , J A ) * * 2 * C ( I . J A ) 252 000 0023 49 CONTINUE 253 OOO 0024 U = S F ( J A ) ' S A ( J A ) - S B ( J A ) « S E ( J A ) 254 000 0O25 V=FLOAT(N)*SF(JA )- S A ( J A ) » S E ( J A ) 255 000 0026 H=FLOAT(N) 'SB(JA )- S A ( J A ) « » 2 256 OOO 0027 X A = S C ( J A ) * 5 A < J A I S B I J A ) * * 2 257 OOO O028 Y * F L O A T ( N ) * S C < J A ) - S A ( J A ) * S B ( J A ) 258 000 0029 Z = S C ( J A ) * S E ( J A ) S B ( J A ) * S F ( J A ) 259 OOO 0O30 T = W * 5 D ( J A ) - Y * S C ( J A ) * X A * S B ( J A ) 260 000 003 1 T=1 O / T 26 1 .000 0032 A M I J A ) « T * ( W » S G ( JA) - V * S C ( J A ) + U * SB( J A ) ) 262 OOO 0033 B M I J A ) * T * ( V * S D ( J A ) -Y * S G ( J A ) + Z * S B ( J A ) ) 263 000 0034 C M ( J A I * T * ( - U * SOIJA | -Z * SC(JA) + X A • S G I J A ) ) 264 OOO 0035 48 CONTINUE 265 000 0036 RETURN 266 000 0037 END 267 OOO •OPTIONS IN E F F E C T ' ID.EBCDIC,SOURCE,NOLI ST.NODECK.LOAD.NOMAP •OPTIONS IN EFFECT* NAME " QUAD . LINECNT •= 60 • S T A T I S T I C S * SOURCE STATEMENTS - 37,PROGRAM SIZE = 1320 • S T A T I S T I C S * NO DIAGNOSTICS GENERATED No e r r o r s In QUAD NO STATEMENTS FLAGGED IN THE ABOVE COMPILATIONS. NAME NUMBER OF ERRORS/WARNINGS SEVERITY MAIN O O QUAD O O E x e c u t i o n T e r m i n a t e d 2 1 : 1 3 5 5 T *0 889 RC=0 $.98 $RUN -LOAD MICHIGAN TERMINAL SYSTEM FORTRAN G( 2 I Bt MA J N 1 2 1 6 - 8 1 19 MAJOR ELEMENT XRF (PRESSED POWOER METHOD) UBC SEPT I9BO ARRAYS ARE SET UP FOR UP 10 50 STANOARDS AND 200 SAMPLES DIMENSION TITLE ( 2 0 ) . T P ( 9 ) . I B ( 9 ) . C 0 N C ( 14). I0 (250) .C<50. I 4 I .CP(4 I . I C B ( 4 ) . R A T I 0 ( 2 5 0 . 9 ) . P ( 4 ) . N T ( 1 5 ) . I U ( 4 ) . A T ( 5 0 . 9 ) . A P ( 2 5 0 . I 4 1 .AM(9) . 2BM|9(.CM<9>.QI9I.AK<9. 14 I .G l250 . I 4 ) . E ( 9 ) . S U M ( 2 5 0 ) . O I F ( 5 0 . 14) . 3SSUM(50).VOL|250> OIMENSION A P X | 2 S 0 . 1 4 ) , SMX(250) . V0LXI25O) R E A L ' S I S . I D . I U COMMON AT .NS .C .AM.BM.CM ELEMENT ORDER:SI02 .AL203 .MGO.CAO.NA20.K20 . (T102) .MNO.P205 - FE . PB . Z N . B A - 0 4 . S AK CONTAINS MAJOR ELEMENT OXIDE M A C S (HANDBOOK OF SPECTROSCOPY 1974 ) DATA AK/ 1 7 2 7 8 . II26 6, 1840 I .337 2 . 2 8 8 I I . 4 6 0 3 .200 3.88 2. 1755.3 . 22314 3 . 9 8 3 . 0 . 1608 3.304 O.2530 1.414 0 . 180 6 . 7 9 . 6 . 1563 3. 32 183.6.3294 3. 1365 1 . 2 7 6 . 6 . 2 1 6 0 . 2 . 3 7 9 . 1 . 1 6 3 . 5 . 7 1 5 . 1468 3. 41193.0 .1708 6 , 2 7 2 7 . 2 . 1 4 8 . 9 . 4 3 2 0 . I . 2 0 0 . 9 . 6 4 4 . 9 . 3 0 0 . 9 . 7 5 2 5. 5 1 9 9 2 . 3 . 3 0 3 9 . 8 . 4 8 8 I .2 .245 7. 1 5 1 5 9 . 3 3 7 . 2 , 1 4 4 2 . 6 2 8. 1328 4. 6 9 8 3 . 6 . 1497. 2. 24 12 . 7 . 104 I 5 .3788 2 . 1 7 7 . 1 . 6 3 9 4.294 7 .659 5 . 71338 O. 1930 0.3072 O. 166 6 . 4830 . O . 226 . 2 . 100 0 .296 9 .850 O. B1924 6 .2690 4.42 IB O . 2 4 6 . 4 . 6 5 6 9 4.332 9 . 1 4 9 . 7 . 6 9 . 3 . 12 16 5. 9 7 8 7 . t . 1 2 1 4 . 9 , 1 9 8 1 . 1 , 3 6 5 . 2 . 3 1 1 0 . 5 . 4 9 5 . 9 , 2 1 7 8.97 0 . 5 2 0 5. F 2 4 9 0 . . 3 4 2 0 . 5 3 1 0 . . 3 2 7 . , 8 2 2 0 . . 4 4 0 . , 1 9 9 . . 9 2 . 9 , 1 5 7 0 . . P I 9 7 0 . . 2 6 1 0 . . 4 0 4 0 . . 1 5 6 0 . 5 3 4 0 . . 1 8 9 0 . . 1 0 8 0 .520 .1350 . Z3640 . . 4960 . 7 5 1 0 . . 4 8 9 . 5 2 6 0 . . 6 5 3 . . 2 9 9 . . 1 4 1 .2330 . B 2 9 2 S . 9 . 4 0 7 2 . 1 . 5 1 8 7 . I . 4 1 3 6 . 6 4 4 8 . 3 . 5 3 9 I . 2 5 6 . 9 . 4 6 1 . 7 . 1 8 0 2 2. S570. .864 . . 1390. .828 . .2210 . . I 120 .499 ,226 . ,383 / C READ IN H U E : COUNT TIMES ON PEAK AND BACKGROUND C • • 0006 REA0I5 . 1O0MITLE 0007 READI5. 101)(TP(1 ).I = 1.9 I OOOS READI5. 1 0 1 X I B ( I ) . I=I.9 I 0009 N"0 0010 NE 'O C • • • • • • C READ IN DATA FOR STANDARDS : I DENT ITY.CONCENTRATI ON ANO COUNTS; C CALCULATE RATIOS C • • • • • • 0011 I R E A D ! 5 , 2 0 0 ) I S . ( C O N C ( I ) , I = 1 . 1 4 ) 0012 IF(CONC(I ) EQ 0 OIGO TO 3 0013 N 'N» I 0014 IO IN IMS 0015 DO 2 l« 1. 14 0016 C ( N . I I ' C O N C I I I 0017 2 CONTINUE 0018 GO TO I C TOTAL STANDARD CONC 0019 3 00 4 I 3 1 .N 0020 SSUMI I I-0 0 0021 00 4 J - I . 1 4 0022 4 S S U M I 1 ) • S S U M I | ) » c < I . J ) 0023 NS-N 0024 5 NE 'NE • I 0025 IFINE EO I0IG0 TO 9 0026 | F ( N NE NSIGO TO 39 0027 N-0 OOOI OOO 2 0OO3 0004 20 25 1 OOO 2 000 3 OOO 4 000 5 OOO 6 000 7 OOO B 000 9 000 10 OOO 1 I 000 12 OOO 12 OOO 13 OOO 14 OOO 15 000 16 OOO 17 OOO 18 OOO 19 OOO 20 OOO 2 I OOO 22 OOO 23 OOO 24 000 25 OOO 26 OOO 27 OOO 28 OOO 29 000 30 OOO 31 000 32 OOO 33 OOO 34 000 35 OOO 36 OOO 37 000 38 OOO 39 OOO 40 OOO 4 I OOO 42 OOO 4 3 000 44 000 45 000 46 000 47 OOO 48 OOO 49 000 50 OOO 51 OOO 52 000 53 OOO 54 000 55. OOO 56 OOO 57 OOO Page 245 MAJOR ELEMENT DATA REDUCTION PROGRAM FOR "ORE* SAMPLES MICHIGAN TERMINAL SVSTEM FORTRAN G( 2 I 8 I MAIN. 12- 16 81 19:20:25 PAGE 246 C READ IN COUNTS!CP*CB) 58 .000 0028 6 R E A 0 1 5 . 2 0 1 ) ( C P ( I > . 1 = I . 4 ) . ( C B I I > . I * I . 4 ) 59 000 0029 IF ICPl 1 ) EQ.O.OIGO TO 5 . 6 0 . 0 0 0 C CALCULATE RATIOS 61 000 0030 P1-CPI 1 ) / T P ( N E ) - C B ( I ) / T B ( N E ) 62 000 0031 DO 8 l » 2 . 4 63 000 0032 I F I C P U 1)5.5.7 64 OOO 0033 7 P( I )=CP( 1 l /TPINE I CBI I I/1BINE ) 65 000 0034 N = N* I 66 000 0035 RAT10IN.NE ) = P( I ) / P I 6 7 0 0 0 0036 8 CONTINUE 68 000 0037 GO 10 6 69 000 C PUT % F E . PB. ZN. BA 04 . S S INTO ARRAY AP 70 000 0038 9 DO 10 1=1.NS 7 1 000 0039 00 10 J M 0 . 1 4 72 OOO 0040 A P X ( I . J ) = C ( l . J ) 73 OOO 004 1 10 API I .J ) *C( I . J l 74 OOO C • •••* • 75 000 C 76 OOO C READ IN OA T A FOR SAMPLES: I DENT I 1Y.COUNTS;CALC RA TI OS;READ IN H20 77 .000 C & C02 77 OOO C 78 OOO C • 79 000 0042 NE=0 80 000 004 3 I I Nf =NE < I 8 1 OOO 0044 NI(NEl=N 82 000 0045 IMNE IE J lGO TO 12 83 OOO 0046 IMNE EO 10IGO 10 16 84 000 004 7 i r l N K N E ) NE NT I NE - 1 ) )G0 10 40 85 000 0048 12 N=NS 86 OOO C RE AO IN IDENII1Y AND COUNT SI CP•CB) 87 000 0049 13 READIS. 202M IU( J) . J * I .4 ) . (CP| I ) . I * I . 4 > . (CB( I I . I ' I . 4 ) 88 .000 0050 IF ICP| I I .EO.O.OIGO 10 I I 89.OOO C CALCULATE RATIOS 90 OOO 005 1 P l-CPI 1 I / 1P INEl -CBI I l /TB INE) 91 000 0052 00 15 1=2.4 92 .000 0053 IF ICPl I ) ) I I . 1 1 . 14 93 000 0054 14 N = N»1 94 OOO 0055 ID(NI=IU( I I 95 OOO 0056 PI I l=CPI I l / IP INE I CBI I I / T 8 I N E ) 96 OOO 0057 RA1 IOIN.NE ) = PI I >/PI 97 000 0058 15 CONI INUE 98 000 0059 GO 10 13 99.OOO C READ % F E . PB. ZN. B A - 0 4 . & S INTO ARRAY AP 100 OOO 0060 16 NU'NS*1 101 000 006 1 DO 17 l=NU.N 102 OOO 0062 READ!5.203)1 API 1 . J ) .J=10. 14) 103.000 0063 A P I I . I 3 ) = AP (1 .131 • 1 466 104 OOO 0064 DO 17 J M 0 . 1 4 105 OOO 0065 A P X ( I . J ) ' AP(I.u) 106 000 0066 17 CONTINUE 107 000 C • • • • • • « • • • • • • • • , |08 OOO C 109 OOO C CALIBRATE RAIIOS FOR STANDARDS AGAINST CONCENTRATION USING OUADLS I 10 OOO C 6 USE COEFF TO CALC APPROXIMATE RESULTS FOR STANDARDS AND 1 I I OOO C SAMPLES I ' • OOO C I 12 OOO C . • • 113 OOO MICHIGAN TERMINAL SYSTEM FORTRAN Gl 2 t 8) MAIN 12- 16-81 19 20:25 PAGE 247 0O67 DO 19 1 = 1.NS 114 OOO 0O6B DO 18 J=l,9 115 .000 0069 ATI I , J > =RA T101 I .JI 1 16 000 0070 IB CONTINUE 1 17 OOO O07 I 19 CONTINUE ''8 OOO 0O72 CALL QUAD I 19 OOO 0O7 3 DO 20 I=I.N «20 000 0074 00 20 d= I .9 12 1 000 0075 API I , d)=AM< d )'RAT 101 I . d ) •'2»BM( d f R A I 101 I . d )»CM< d) 122 000 0076 20 CONTINUE '23 000 C • ' 124 OOO C '25 OOO C CALCULATE MASS ABSORPTION 101 FOft STANDARDS. APPLV TO RATIOS AND 126 OOO C RERUN QUAD 127 000 C 128 000 C |29 000 0077 DO 22 1=1.NS 130 000 0078 DO 22 d=l.9 131 OOO 0079 Qld)=0 O 132 000 OOBO DO 2 1 K=1,14 133 OOO OOBI 2 1 01 d I =01 .J 1 'CI I .K 1 *AK< d.K ) 134 000 0082 ATI I.d>=RAI 101 I .d)-Old> 135 OOO 0OB3 2 2 CONIINUE 136 OOO 0O8J CALL UUAD 137 OOO f • • • • 138 OOO C 139 OOO C IAKE ACPR0XIMA1E VAIUES FROM AP.CORRECT FOR 0.DERIVE NEW RESU11S. HO OOO C REFINE (J AND REFINE ANALYSIS BV I1ERAII0N UP 10 50X 111 000 C 112 OOO C M3 000 OOB r> l>0 HO I =I.N 144 000 O086 DM ) O 145 000 OOB7 DO 23 d=1.IJ 146 OOO OOBB IJ=D«APII.JI 147 OOO 0089 ? l Gl I .JI-API I . J l 148 OOO 0090 1=0 149 000 009 I 2-1 1=1*1 150 OOO 0O92 11(1 EO 1)00 TO 42 151000 O09J CM. 10) = API I. 10) 152 OOO 0094 CM. . I I )*AP( I . I I I 153 000 0095 (i(L , 12 l=AP( I . 12 I 154 000 0096 GIL. 13) = API I. 13 I 155 OOO 0097 Gil. .14 1 = API I. II I 156 OOO 0098 O-IJ'GI L . I I I'C.M . 12 I >G< I . IO) >G( I . I3MGI L . 14 I 157 OOO 0099 42 OMOOO/D 158 OOO 0100 DO 26 J=1, IO 159 OOO 0101 Old)=0 O 160 000 0102 DO 25 K=I.I4 1610O0 0103 25 Ql d ) =Q( d )»GM K )-AKI d.K )-0 162 000 0104 26 E ( J ) - R A T I O ) I . J I ' Q I J ) 163000 0105 R = 0 0 164 000 0106 0=0 O 165 OOO 0107 00 27 K=l,9 166 000 0108 GlL•1,K)=AM(KI•£(K)•*2«BMIK ) •£IK)«CM(K) 167 000 0109 D-D»G(LM.K) 168 000 0110 27 R =R*G(L'1,K)-G(L.K) I690O0 0111 l f ( L GE 50)G0 10 28 ITO OOO 0112 IF(ABSIR) GT O.0O1IG0 TO 24 ' 7 I OOO MICHIGAN TERMINAL SV S UM FOR I RAN Gl 2 I B ) MAIN 12-1681 19:20:25 PAGE 248 0113 GO TO 29 172 OOO 0114 28 WRIIEI6.300)10(1) 173.000 0115 29 D=I 1O0 O-GIL. 11> GlL. 12>-GIL. 10)-GIL. 13> G l L . 14 I >/D 174.OOO 0116 DO 30 J=1.9 175 000 0117 30 API I . J )=G(L•1 .J><D 176 OOO C 177 000 C 178 OOO C RECALIBRATE USING REFINED VALUES OF STANDARDS AGAINSI ACCEPTED 179 OOO C VALUES 179 OOO C 180 OOO C • • 18 1 OOO 0118 DO 3 1 1=1.NS 182 000 01 19 DO 3 1 J = I .9 183.OOO 0120 3 1 ATI I . J)=AP( I ..)) 184 000 0121 CALL QUAD 185 000 C i . . . . |86 OOO C 1B7 OOO C USE NEW CALIBRATION TO DETERMINE BEST VALUE FOR SAMPLES » IBB OOO C SIANOAROS IBB OOO C 189 000 C • • 190 OOO 0122 DO 32 I=I.N 19 1 OOO 0123 00 32 J=l.9 192 000 0124 API I ,J) = AMIJ)*API I . i l l ' *2*BMIJ)*AP( I .J) + CM(.J) 193 OOO 0125 APX(l.d) = A P I I . J I 194 OOO 012G IF ( A P X I l . J ) LI O 01 A P X I l . J ) = 0.0 195 000 0127 32 CONIINUE 196 000 C 10IAL C0NCEN1RA1ION 197 OOO 0128 DO 33 1 = 1.N 198 OOO 0129 SMXI I 1 = 0.0 199 OOO 0130 SUM(l)=O 0 200 OOO 0131 00 33 J=I.I4 201 OOO 0132 SMX(I) = SMXI I )IAPXI I ..1) 202 OOO 0133 33 SUMI I )=SUMI I ) * API I.J) 203 OOO C 204 000 C 205 OOO C OIIIPUT STANDARDS 206 OOO C 207 000 C • • • • • 208 000 G i l l WRIIE I 6.306)I 1 I I F 209 OOO 0135 WRI IE (6. 305 I 2 10 OOO 0136 WRI1E16.301) 2 I 1 OOO 0137 00 36 1 = 1.NS 2 12 OOO 0138 WRI IE (6. 302 ) 101 I ) . I API I , L)) . J= I . 14 ) .SUMI 1 ) 213 OOO 0139 VOL I I ) =AP( I . I I ) >API I . 12 ) >AP| I . IO)*AP( I . 13 )•API 1 . 14 ) 2 14.OOO 0110 00 34 J=1.9 215 OOO 0141 34 API I .J)=AP( I . J ) • ( 100 OVOLl 1 ) )/(SUMI I )-VOL( 1 ) ) 216.OOO 0142 WRI 1EI6.303H API I . J l . J * I . 14) 217 OOO 0143 DO 35 J=I.I4 2 18 OOO 0144 35 0 1 F ( I , J | ' A P ( I . J I - C I I . J l 219 OOO 0145 WRITEI6.307)(CI I .JI.J= I. 14 ) .SSUMI I ) 220 000 0146 WRI TEI 6. 309 HOIF ( I . J I . d = 1 . 14 I 221 OOO 0147 36 CONIINUE 222 000 C • 223 000 C 224 OOO C OUIPUT SAMPLES 225 OOO C 226 000 C ••• • • • • 227 000 MICHIGAN TERMINAL SYSTEM FORTRAN G l 2 I Bl MAIN 1216-81 19:20:26 PAGE, 0148 WR1TEI6.304) 228 OOO 0149 WRIIE(6,301> 229 OOO 0150 00 38 l-NU.N 230 OOO 0151 WRIIE(6.302 M Dl1 >.1API 1 ,J),J= 1 , 14 ) .SUM! 1 ) 23 1 OOO 0152 WRITE (6.9001 I D I I ) . (APX<1.J).J=1.14). SMX(I) 232 OOO 0153 VOL I 1 |«AP( 1 . 1 1)•API I . 12 ) t A P ( I . 10)«API I . 13 ) •API 1 . 14 ) 233 OOO 0154 VOLXIII * APXl I . 101'APXI I , 1 1 )»APX( 1 , 12)»APX( 1 . I3)»APX( I . 14 ) 234 OOO 0155 DO 37 J= 1 .9 235 OOO 0156 A P x l l . J I = APXl 1 . J !•I IOO O-VOLXl 1 Il/lSMX( 1 ) VOL X I 1 > ) 236 OOO 0157 37 API 1 .J)=AP( 1 .J)•I 100.0 VOL I 1 )1/1 SUM! 1 ) - VOL 1 1 ) 1 237 000 0158 WRI IEI 6.303) I API 1 .J >.J- 1 . 14 > 238 000 0159 WRITE (6.9011 I APXl 1 .J I .J= 1 . 14 1 239 000 0160 38 C0NI1NUE 240 OOO 016 1 STOP 241 OOO c 242 243 OOO ooo c 244 000 0162 39 WRIIE16.40OINE 245 ooo 0163 GO TO 4 1 246 000 0164 40 WRIIE I 6.401 INE 247 ooo 0165 4 1 STOP 248 000 0166 100 FORMAT(20A41 249 ooo 0167 lOI FORMA1I3F3 0.3X.6F3 0» 250 ooo 016B 2 0 0 FORMA 1(A 6. 14F5 21 25 1 000 0169 201 FORMAI I24X. 8F7 Ol 252 ooo 0170 202 FORMAI(4A6.8T7 01 253 OOO 017 1 203 FORMAI(GX,5F6 2) 254 000 017 2 300 FORMAI! 1111 . 'MORE II1AN 50 ITERA1I0NS A[ .1X461 255 000 0173 HOI FORMAT 1 111 . • IDEN1 ' . 3X . ' SI 02 . 2X . Al 203 ' , 2X . MGO • . 3X . CAO ' . .IX . 256 ooo 1 NA20' . 3X . K20 ' . 2X .'1102' , 2X .'MNO'.3X.'P205 .2X. FE 4X . P B ' , 4 x . 257 ooo 2 Z N . 4 X . ' B A 04'. 2 X , S'. BX. TOT A L ) 258 ooo 0174 3 0 2 FORMAI ( ItlO. A6 .91 8 . 2 .5F6 2.2X.FB 2 . IX. FINAL ) 259 ooo 0175 3 0 3 FORMAT!IM .6X.9F8 2.5F6 2. tlx.'NORM ) 260 ooo 0176 307 FORMAK III 6X.14F6 2.6X.F6 2 . 3 X.RECCOM VALUE ' 1 26 1 ooo 0177 309 TORMAI | 111 . 6x . I4F6 2 . I5x . NORM RECC '1 262 000 0178 304 FORMAI(IHI.50X. S A M P l E S I 263 ooo 0179 305 TORMATI III0.50X. STANDARDS 1 264 ooo 0180 306 FORMA II IHI.20A4 1 265 ooo 01B1 400 FORMAK III .'CARD MISSING IN STANDARD DATA FOR 2 = ' , 2X 13) 266 ooo 0182 4 0 1 FORMAT!IH .CARD MISSING IN SAMPLES FOR 2= .2X.I 3> 267 ooo 0183 9 0 0 FORMAT (III . A 6.9I8 2.5F6 2.2X.F8.2. IX. ' NO -VE > 26B ooo 0IB4 90 1 FORMAI (III . 6X , 91 8 2 . 5f 6 2 . 1 IX . ' NORM NN ' ( 269 000 01B5 END 270 ooo •OPIIONS IN EFFECT' ID . EBCO 1 C , SOURCE . NOI. IST. NODECK , LOAD . NOMAP •0PI10NS IN EFFECT• NAME = MAIN . IINECNI = 60 •S1AIISTICS' SOURCE STAIEMENIS 185,PROGRAM SI2E « 67BI6 •S1AIISTICS' NO DIAGNOSIICS GENERATED No e r r o r s In MAIN MICHIGAN TERMINAL SYSTEM FORTRAN Gl 2 I 81 MAIN 12-16-81 19:20:26 PAGE 250 000 C 272 000 0001 SUBROUTINE QUAD 273 OOO C F I T S , B Y LEAST SQUARES.TO QUADRA TIC FUNCTION Y = AX *X»BX *C 274 OOO 0002 DIMENSION SAIS-) . SBI 9 ) . SCI 9 ) . SDI 9 ) . SE I 9 ) . SEI 91 , SGI 9).. A M O ) 275 000 O003 DIMENSION BMl9 >.CM!9 >.AT I 5 0 . 9 1 . C I 5 0 , 14 ) 276 OOO 0004 COMMON A T . N S . C . A M . B M . C M 277 000 00O5 00 47 JA=1.9 278 000 0OO6 SAI JA>=0 0 279 ooo 0007 SBIJA)=0 0 280 000 0008 SCIJA)=0 0 28 1 ooo 0009 S D I J A | = 0 . 0 282 ooo 0010 S E I J A ) = 0 . 0 283 ooo 001 1 SFIJA)=0 0 284 000 0012 SGIJA)=0 0 285 ooo 0013 4 7 CONTINUE 286 000 0014 DO 48 JA =1.9 287 ooo OOI5 DO 49 h l . N S 288 ooo 0016 SA(JA ) =SA<JA 1 * A 1( 1 .JA i 289 ooo 0017 SBIJAI= SBIJA) •AT I 1 . J A ) • •2 290 ooo 0018 SCIJA > = SC< JA >*ATI 1 .JA ) - AT 1 1 .JA I • *2 291 ooo 0019 SDIJA) = SD(JA) •AT( 1 .JA >••2•AT I 1 ,JA >•*2 292 ooo 002O S E I J A ) = S E I J A ) * C ( 1 . J A I 293 ooo O02 1 SFIJA l = SFIJA ) » A I ( 1 .JA ) - CI 1 ,JA ) 294 ooo 002 2 SGI JA ) = SG( JA )« Al I 1 . JA » • • 2*C( 1 . JA ) 295 ooo O02 3 49 CONTINUE 296 ooo 0024 U = S F ( J A ) • S A ( J A ) - SB I J A ) • S E I J A 1 297 ooo O025 V-FLOAT I N ) ' S F I J A 1 S A I J A ) ' S E I J A I 298 ooo 0026 W=F L O A I ( N ) ' S B I J A ) SAIJA ) • •2 299 ooo 002 7 XA = S C ( J A ) * S A ( J A I SBIJA ) • *2 300 ooo 0028 Y ' FLOAT I N I - S C I J A ) - S A ( J A 1 • S B I JA1 301 ooo 0029 Z - S C I J A ) * S E 1 J A ) - S B I J A ) * S F ( J A ) 302 ooo 0030 1 = WSD1 JA ) - Y 'SCI JA ) • XA • SBI JA ) 303 ooo 003 1 1=1.0/T 304 ooo 0032 AMI JA ) = T • I WSGI JA 1 - V S C I JA 1'U'SBI JA | ) 305 000 O033 BM(JA)=I • ( V SDIJA | Y -SGIJA 1 • 2 ' S B IJA I ) 306 000 00'.14 CM!JAI = 1 •( U*SOIJA1 1•SCIJA I < X A ' S G I J A ) 1 307 ooo 00:15 48 CONT INIIE 308 ooo 0036 RE TURN 309 . ooo 003 7 E NO 3 10 ooo •0P1IONS IN EFFECT* 10.EBCOIC.S0URCE .NOI IST.NODECK.LOAD.N0MAP •OPTIONS IN EFFECT* NAME = QUAO . I INECNI = 60 • S T A I I S I I C S * SOURCE STATEMENIS = 37.PROGRAM SIZE = 1296 • S T A I I S T I C S * NO DIAGNOSTICS GENE RAIEO No e r r o r s In QUAO JRUN -LOAD 5 =RAWDATA 6=MJ0R E x e c u t i o n B e g i n s 19:20:26 MICHIGAN TERMINAL SVSTEM FORTRAN C.< 2 1 ft ) 10 -01-81 1 8 : 2 7 : 0 7 PAGE 251 C XRF DETERMINATION Or TRACE ELEMENTS WITH CORRECTIONS RY METHOD OF 1 OOO C FEATHER • WILLIS 2 OOO C CARD 1 TITLE 3 OOO C CARD 2 NX NUMBER OF ELEMENTS 1 TO 9 IN COL 1 4 OOO C CARD 3 ANAME NAMES OT ELEMENTS 9A4 5 OOO C CARD 4 TB TP BACKGROUND COUNTING TIME AND PEAK COUNTING TIMES 6 000 C IOF6 0 6 OOO C CARD 5 R RESIDUAL BACKGROUND 9 F 6 . 0 7 OOO C CARD 6 SM BACKGROUND SLOPE 8 000 C CARD 7 IS ID FOR STANDARD A4 LAST STANDARD 9998 9 OOO C CB COUNTS A l COMPTON OR BACKGROUND F 6 0 CO! . 19 24 10 ooo C CP COUNTS AT PEAKS 9 T 6 . 0 COL 25-78 1 1 OOO C REPEAT CARD 7 FOR EACH STANDARD UP TO A TOTAL OF 10 12 OOO C CARO 8 PPM CONCENT RA I 1ONS IN 5 T ANOARDS ( 7 4 X . 9 F 6 . 0 I 13 OOO C 9998 CDL 1 4 END OF STANDARDS 14 OOO C DATA INPUT FOR UNKNOWNS 15 OOO C ID SAMPLE ID 16 16 .000 C IE EASTINGS 16 17 OOO c IN NORTHINGS 16 18 OOO c CB BACKGROUND COUNTS FG 0 19 OOO c CP PEAK C0UN1S 9 F 6 . 0 20 OOO c 21 OOO o o o i DIMENSION 1 1 1LE( 19) .ANAME(9) . T P ( 9 ) . R ( 9 ) . S M I 9 ) . C P ( 9 ) . P P M ( 9 ) . P B ( 9 ) 22 OOO 0002 DIMENSION PNEI ( 9 ) .PR 1 0 ( 9 ) . X X | 1 0 . 9 ) . X Y ( 9 ) . X 2 I 9 ) , S X < 9 ) . S Y ( 9 ) . S X 2 ( ! ) | 23 OOO OOO 3 DIMENSION S X Y ( 9 ) . R V ( I 0 . 9 ) . S ( 9 ) . C I 9 ) . P Y ( I 0 . 9 I . S I D I 1 0 ) . C0NCI9) 24 OOO c 25 OOO OO04 NS«0 26 ooo 00O5 RE AD ( 5 . IOO)TITLE 27 OOO 0006 READ!5,101)NX 28 .000 0OO7 R E A D ! 5 . 1 0 2 ) | A N A M E ( 1 ) , 1 " 1 . N X ) 29 ooo OOOB READ!5 . 103 ) I B , ( 1 P ( 1 ) , 1 = 1.NX) 30 OOO 0O09 READC5. 104)(R(1 ).1 - 1 .NX ) 3 1 OOO OOIO READ!5 , I 05 ) (SM( I ) . 1 - 1 .NX) 32 OOO c 3 3 ooo OOI 1 WR1TE(6 ,201)T ITLE 34 ooo 0012 WRITE(6 .202) (ANAME(1) .1=1.NX) 35 ooo 0013 W R I T E ( 6 . 2 0 3 ) ( T P ( 1 1 . 1 = 1 . N X ) . 3G ooo OOI 4 WRI1E(6 .204 ) (R I1 ) ,1 = 1 ,NX) 37 ooo OO 15 WRITE(6.205)(SMI 1 ),1 - 1,NX) 38 ooo c 39 ooo c INPUT STANDARDS AND CALIBRATE 40 ooo c 4 1 000 0016 1 R E A D ! 5 . 3 0 1 ) i x . s s , c n . ( C P ( 1 ) .1 - 1.NX 1 42 ooo OOI7 I F 1 I X . E 0 9 )G0 TO 4 4 3 ooo 0OI8 CB=CB/TB 4 4 ooo OOI9 R E A D ( 5 . 3 0 2 ) ( P P M ( I I . | - | , N X ) 45 ooo 0020 N S - N S *1 46 ooo 0021 XNS-NS 47 ooo 0O22 DO 3 l - t . N X IB ooo 0023 CP(I ) 'CP(1 ) / T P | 1 ) 49 000 0O24 P B ( I ) ' C B ' S M | I ) « R(1) 50 ooo 0025 P N E T ( 1 ) = C P ( I ) - P B ( I ) 5 1 000 0026 PRTOl I ) -PN£1!1 ) / (PB(1 ) -R( 1 )) 52 ooo 0O27 X X I N S . I l - P R T O l 1 ) 53 ooo 0028 X Y ( I ) - P R T O ( 1 ) « P P M (1 ) 54 ooo 0029 X 2 ( I ) - P R T O l I ) * P R I O l 1 ) 55 ooo 0030 SX(1 ) = S X ( I ) « P R I O ( 1 ) 56 ooo 003 1 SY(I)=SY<1)+PPM(1> 57 ooo TRACE ELEMENT MICHIGAN TERMINAL SYSTEM FOR I RAN 0(21.81 MAIN 10 Ol-8 I 18: 27 :07 P»«E 252 0032 0033 0034 0035 0036 0037 0038 0039 0040 0O4 I 0042 004 3 0044 0045 0046 0047 0048 0049 0O50 005 1 0052 0053 0O54 0055 0056 0057 0O58 0O59 0060 006 I 0O62 0063 0064 0065 0066 0067 0068 0069 0070 007 1 0072 0073 0074 0075 0076 0077 0078 0079 0080 0081 0082 0OB3 0084 C IO C 1O0 101 102 103 104 105 201 202 203 204 205 206 207 208 209 2 10 2 1 1 2 12 301 SX7!I )=SX2<I ><X2(I ( SXY(I )=SXY<I )»XY<I ) RY(NS.I)=PPM(I( SIDINS)=SS CONTINUE GO TO I 00 5 1=1. NX S( I (XNS'SXY! I ) ) - ( S X ( I )»SY( I )))/((XNS'SX?( I ) > C<l)'((SYlI>«SX2(l)><SX<I)'SXY(l)))/<<XNS*SX2(I CONTINUE WR I T E ( 6 . 206 ) ( S( I ) . I 1 NX ) WRI1E!6.207MC< I ). I - I. NX) 00 6 I=1.NS DO 6 J=I.NX P Y ( I . J ) = X X ( I . J ) ' S ( d ) ' C ( d ) CONTINUE WRITEI6.212) DO 7 1=1.NS WRI IE I 6. 208 1S1DI I ) . (RYl I ,J) ,PY( I , ») ) .«I - 1 .NX ) CONTINUE WRITEI6.309) WRIIE I 6.2IO)lANAMfII ), 1 = 1.NX) ISXI I )'SX( I ))) ) I ISXI I I'SXl I ) I ) READ IN DATA READ! 5. 303. END - 10)11). IE. IN, CD.(CPII 1.1 CB=CB/TB DO 8 1=1.NX CP(I )=CP< I )/TP(I ) FBI I)=CB'SM(1 >»R(I ) PNE T( I )-CP( I >-PB( I ) PRIOI I HPNETI I )/(PB( I ) R( I ) ) CONC( I )-PR10( I ) *S( I l<C( I ) CONIINUE WRITE(6.211)ID.IE.IN.(CONC(I ).I * 1.NX) GO TO 9 STOP FORMAT(19A4) FORMA T ( I I) FORMA M 7A4) FORMAT(I0F6.I) F0RMATI7F8 2) FORMA I(7F6 5) FORMAT ( li l t . 19A4 ) FORMAT! 11(0. 101 IOX FORMAT! Ill .2X. 'TP FORMAT! IH ,3X. 'R' . FORMAT I IH .3X, 'M' FORMAT! Ill .3X. S' FORMAT! IH . 3X. 'C FORMAT!IH .A4. : 1,NX > A4 ) ) .5X.FB.4,6<6X.FB.4)> 5X.F8 l.6(6X.F8 1)1 5X.FB 4.6I6X.F8 4)) 5X.F8. 1 .6(6X.F8. 1)) IX.F 12 4.6I6X.FB 4)) 7(2X.F10.2.1X.F10 2)) FORMAT | III0.50X . 'PESUl IS' ) FORMAT ( II10. 2X . ' S NOS ' . 3X . ' E ' . 4X FORMAT! III . A6. IX . 14 . IX . 14 .5X . F9 FORMAT! 1II0.50X. 'STANDARDS'/) FORMAT!I I .A4. I3X, lOTfi O) N'.9I5X.A4)/) O. 9IT5 0.4XI) 58 OOO 59 OOO 60 OOO 6 I OOO 62 OOO 63 OOO 64 OOO 65 OOO 66 OOO 67 OOO 68 OOO 69 000 70 OOO 71 OOO 72 OOO 7 3 OOO 74 OOO 75 OOO 7f> OOO 7 7 OOO 7B OOO 79 OOO 80 OOO fl 1 OOO 82 OOO 83 OOO 84 OOO 85 OOO 86 OOO 87 .000 88 OOO 89 000 90.000 91 000 92 000 93 OOO 94 OOO 95 000 96 OOO 97 OOO 9fi OOO 99 OOO 100 OOO 101 000 102 OOO 103 OOO 104 .000 105 OOO 106.000 107 OOO 108 000 109 OOO 110 ooo I 1 I ooo 112 OOO 1 13 OOO I 14 OOO 115 000 MICHIGAN TERMINAL SYSTEM FORTRAN G(2I,8) MAIN ,0085 302 F0RMAT(24X.9F6.0) *0O86 303 FORMAT ( AG , 2 16 . 10F6.0) 0087 END •OPTIONS IN EFFECT* IO,EBCD1C.SOURCE . NOT I ST.NODECK.LOAD.NOMAP •OPTIONS IN EFFECT^ NAME « MAIN . LINECNT = 60 •STATISTICS* SOURCE STATEMENTS • 87.PROGRAM SI2E ' •STATISTICS* NO DIAGNOSTICS GENERA I ED No e r r o r s In MAIN NO STATEMFNTS FLAGGED IN THE ABOVE COMPIIATIONS E x e c u t i o n l e r m l n n t e d 18:27:08 T=0 304 RC=0 % 43 fRUN -LOAO E x e c u t i o n Begins 18:27 08 10-01-81 18:27:07 PAGE 253 I 16 OOO 117 OOO 118 OOO 46 IO APPENDIX 4. STATISTICAL ANALYSIS OF DUPLICATE SAMPLES T h i s a p p e n d i x c o n t a i n s t h e T h o m p s o n - H o w a t h p r e c i s i o n p l o t s u s e d t o c a l c u l a t e t h e a n a l y t i c a l p r e c i s i o n p r e s e n t e d i n T a b l e 4 o f t h e t e x t . F u r t h e r d i s c u s s i o n o f t h e s e p l o t s i s i n A p p e n d i x 1 0 . A B B R E V I A T I O N S U S E D ON T H O M P S O N - H O W A T H P R E C I S I O N P L O T S S H P H - p h y l l i t i c s h a l e ( u n i t s U P H a n d L P H ) P O R C - p o r c e l l a n i t e s ( u n i t s UP1 a n d L P 1 ) S H P R - " p r e g n a n t " s h a l e s ( u n i t s L P R , U P R a n d P C ) S S S - S i l u r i a n s i l t s t o n e ( u n i t S S ) F A U L T - f a u l t g o u g e P a g e 254 C O M P O N E N T 10. S K ) 2 % m X 3 9 1 .fi 0.1 0 . 0 N 0.0-4 P O U C • — i — U o I U U I M I I M M A of Dupieato FIGURE A.4-1 PRECISION CHART AFTER P a g e .255 AMO HOWTH U9T%Wm A^-1 for C O M P O N E N T : Alj-Og % SHPH • PORC «• SHPR • S H P R / « 9 tr 3 Q o c 7 / / / / • SHPH • SHPR • SHPH 0.4 'PORC • SHPR • SHPR • FAULT • SHPH V 0.1 PORC • SS8 0.04 O.OSl • SHPR 0.021 so Mean of Dupfteate Rosufts t FIGURE A - 4 - 2 PRECI8ION CHART AFTER THOMPSON AND HOWTH (1076,1978) P a g e 256 &•« page A.4-1 for abbreviations Mod. C O M P O N E N T : T O T A L Ft) % 10 . s I , S - i I i o * i Data point rejected • 8HPR V » H P R • • FAULT HPH _*HPH / 'PORC • • ••8 8 H P R * / y • P O R C ' » 0 M P R / « P O R C • 8MPR • PORC y 8MPR • • 8 H P H / io.. IQ.4 ' ' i i ' Ii. 1 L I U. L I M I U Moon of DuoAeato flaouoja A.4-3 PRECISION CHART ATTW THOMPSON AND MONTH (1t7t,1S7S> P a g e 257 So* OOfO A.4-1 for at>Lio>48lOJIOj 10. FIGURE COMPONENT : 10. MgO % • S H P R • S H P H y , • SHPH SHPR PO#»C SHPH 1 1 1 1 1 Ii. 1 1,, I I.. L. I I I I I 10. FIOURE M««fl •* Dufttfcat • R< PR1CWOW CHART APrm TtfOMPtOR AMD HOWTH (T7%tmm P a g e 258 • * » A.4-1 for **brs% COMPONENT : C a Q % 0.2 o.il <0.1 SHPR • SHPH / * F A U L T V SHPR. PORC PORC + SHPR SHPH VM ' O V ' ' ' I, 1 1. I I, l 4 I I 1 I I 1 10 1 FIGURE Moon of DuoftcaU Reoufto PRECISION CHART AFTER THOMPSON AND HOWTH(1S7S,Ws» P a g e 259 Soo page A^-1 for atobrovaitteRO o M C O M P O N E N T Nft20 % o.ojj • SHPR • PORC 0 - ° J | « S H P f l • P O R C • • H P " • SHPR SHPH. SHPH A / / / / •FAULT PORC • SHPR / / / / / • SHPH UI U U ' I I I I k i 1 ki | ks |M I | £ of Ouploato Rotvlts FWURE A-4-t PftEcWION CHART AFT0I THOMRtOM ARB MOWTM '(tt)9*t,tf)7#» P a g e 260 I N pmm KA-y tor C O M P O N E N T : K^Q % C O M P O N E T : TK>2 % / / 0.1 • S H P H /•SHPR .PORC 10 « tr e 0.041 to Q | 0 .02[ O c «»• Q o.oi| SHPR* / PORC* /m • • h i / PORC • • SHPR   SHPR .,SHPR / S H P R «fccR R SHPR SSS V 0.0C 0.003 • SHPH • P A U L T • SHPH SHPH COOS W « 104 I lo^ lo.4 I I ' " ' Ii 1 Ii I L Mosn of DupftcaU Results FIGURE A.4-8 PRECISION CHART AFTER THOMPSON AND HOWTH ^1t76.H7«i Page 262 ••• B«go A.4-1 for ac-brovtetlom C O M P O N E i T : M _ „ MnO % 3 • 0.04 <0.01 -t" * 8 H P R " • PORC • SHPR • H P R SHPR SHPR SHPH • SHPR / SHPR SS8 • SHPH SMPH / SSS I I0.02 I |o!os ko4 I I I I I I0.1 Mean of DuaScato Reeufta A.4-0 PRECISION CHART AFTER THOMPSON AND HOWTH (1S7S,1S7S> 0.01 FIGURE P a g e 263 Soo e«#o A^-1 for sMrovojiiom C O M P O N E N T : 0.3 p 2o 6 % Data point rejected POKCS JHPR SHPR 8HPR 0.01| <0.01-S H P H . FAULT P O R C * • * P O R C SHPH SHPH R SHPR 10.01 I / / \OJO*\ V&t \OJO4 | | | | | EM Moan of Dupfcata Reatrfta FIGURE A.4-10 pf,EC|8ION CHART AFTER THOMPSON AND NOWTH (1f7«,tt7a^ P a g e 264 Saw paps A^-1 for C O M P O N E N T : Ba % Moon of Dupfecoto Roow*o FIOURE PRECISION CHART AFTER THOMPSON AMD IfJQWTN'(1070), 1f)7D> P a g e 265 t T T f T P f n 1 1 fm ofilii•IQUBJIW O H X C O M P O N E N T : Zn % 3 l> CD rr CO .2 o, ~ c « e o io.2 £ » Mean of Dupflcato Reeufte F I G U R E A.4-12 P R E C » I O N C H A R T AFTER THOMR80R AND HOWTH (197t,1«7«> P a g e 266 Sea paaa A.4—1 tot abate via Mono <0.01 C O M P O N L N T : T O T A L S % i i i i I Mean of Duplicate Reeufte FIGURE A.4-13 PflEC»ION CHART AFTER THOMPSON AND P a g e .267 . . 9m papa A.4-1 far HOWTH <1S7t,1S7e» COMPONENT Total Carbon % 'o.2 1 '0.3 8.0 Mean of Duaeteale Reeufts FIGURE A.4-14 P R E C I S I O N CHART AFTER THOMP80W AND HOWTH (1978,1978) P a g e 268 See page A.4-1 for abbreviation* C O M P O N E N T : |_OI % 10 • 1 cc -a o c 0, • Xt — 0 0.2 o c 0 0 £ ° 0.1 0.04 0.0! 0.0) 0.011 Data point rajcctad • SHPH / » 0 R C , '8HPR 8HPR PORC • SHPR > S H P R SHPR S H P H * • SHPR • S H P R • PORC • PORC • SHPR S H P H * • F A U L T • S H P H / / i f - i — i — r r 0.1 0.2 0.3 0 V ' ' " I, I I, I I, I, I II I I L, | ^ Moati of Dupteats FIGURE A.4-15 PRECISION CHART AFTER P a g e 269 . AND PJQWTM (1S7t,tS7S> A.4-1 far C O M P O N E N T : - , , Sr (ppm) c . — i — u ' u i J i 1 1 i U—I L I L I Mean of Dupfeate RQURE A*- I f PRECWOfl CHART AfHTBR THOt>?f)OW AWO HQtJTTH (Itft, 1t7«> P a g e 270 J ••• p«fe A-4-1 for attrevajflone C O M P O N E N T : R b ( p p f n ) 100 40 30 0 £ 3 OC 20 • 1 o c • Q * 8HPH • S H P R « S H P H Data point rojocte / * F A U L T PORC PORC • 8 H P R * « S H P R * / f»SMPR SHPR # SHPR SHPR •SHPH PORC* <1-/ / / / / / • SSS 1 — I — I I I 1— 6 '10 'to ' L I. U I — & " M««fi sf Dupfeats FIGURE A-4-17 PRECISION CHART AFTER P a g e 271 AMD HOWTH OS7*,1S7S> A-4-1 far C O M P O N E N T : U (ppm) 3 I' 11.5 • PORC •8MPM SHPH FAULT i 1 FIGURE A.4-18 I I S |4 Mean of Duofoate Reevfte PRECISION CHART AFTER THOMPSON AMD HOWTH <1§7*,1t7«> P a g e 272 Da* P«*s A.4-1 tar abbiavaUhwa aasjsl C O M P O N E N T : Th (ppm) 1 i. ! i <i-/ / / / / x m* • • • • • •one • SHPH SHPH 10 R C Moon of FIGURE A^-1« PRECISION CHART AFTBR P a g e 273 TII0MTSOII AMO MOWTN (1S7S,tS7«* C O M P O N E N T : . , % Qa (ppm) •one • — i — ! » ' i» k. 1 — L I L J M M * •* Dof*te«t« * * * * * FIGURE A.4-20 PRtOtlO* ONART ACTS* Tll0iL»lt3rt AMD MOWTH O C T * , * * ? * P a g e -274 . 008* *SMP* * AOLT I10 I It© I (M I Co Moon of Duoftcct* RoouDa FIGURE A.4-21 PRECISION CHART ATTtJR THOMPSON AMD HQlYTM (1S7S,1S7S> C O M P O N E N T : Zr (ppm) FMURE AA-22 PRECRMON CHART AfHTBR TllOWPlOfJ AND HOWTH (1t7t>t«?DV C O M P O N E N T Mo (ppm) C O M P O N E N T : ^ , . Cu (ppm) 100 ^ 20 3 m DC <1-• S H P R V • SHPH • S H P H / PORC • « 8 H P H , ^ A / .<T ' 1 SHPR • • t S H P R SHPR. S H P R * ' ' • S H P R PORC + S H P R * / • PORC « S H P H • FAULT • . PORC TTT 1. I5 I. I I I | 1 0 1 |,0 I U Uo I Mean of Dupicato Reeutta F I G U R E A.4-24 PRECI8ION CHART AFTER THOMPSON AND HOWTH (1S7S,1S7S> P a g e 278 _ page A.4-1 for afebrevlottono 00 C O M P O N E N T : . , . Ag (ppm) SHPH< / * 8HPH • PORC • PORC «• SHPR PORC « SHPR •ess-FAULT S H P * • • SHPR / • • H P R SSS SHPR SHPR [o!i Zl IsT" Mean el Duofleete FIGURE A.4-26 PRECISION CHART AFT BR P a g e 279 \ M I L <1»7«.1»7» A J 4 - I far C O M P O N E N T : N j FAULT # P O * C • I H W « I '20 I l»0 Uo I I I I I U 1 ItOO I U J Mean of DttOfteat* R««iftt FIGURE A.4-26 PRECISION CHART AFTER THOMPSON AMD HOWTH <1S7*,1S7S> P a g e 280 •*•» A.4-1 for C O M P O N E N T : C q ( p p | n ) ac c • _ <1-• M P H • / •HPW i 3 i 4 r i ITTU n— i t o i L I 40 Moan of DiqRXate ReaaRa FIGURE A - 4 - 2 7 PRECISION CHART ATTGR THOMRGOM AM* WJWllH <1tT«,1P70> Page 281 ••• A-4-1 far C O M P O N E N r : g b ( p p m ) Moon of DuoOcato Reetato FIGURE A.4-28 p R E C I 8 f 0 N CHART AFTER THOMPSON AN© HOWTH <1t7*, 1S7.fi P a g e 282 . Soo P—O A^-1 for atOIOllattowa —OV C O M P O N E N T V (ppm) / • 3HPH 3HPH '10 i r. "20 ' 'SO Uo ' i • • i |7QO Moan of Dupftcato ReauRe A.4-29 PRECI8ION CHART AFTER THOMPSON AND HOWTH (It74,1078) P a g e 283 paaa A.4-1 for atobroviaftona FIGURE C O M P O N E N T : E ( J ( p p m ) CC c £ 0.-4 o 0.3 0.2J 0.1 Insufficient data for proper analysis ' 8HPH • / / / / * V P O R C / e 8MPR / / / / ./ / / / ^ P O R C / • PO*C • 8HPR / / / c— i — > « i i » i*» i i i 111,—i—m Mean of Dupfcate Rai FIGURE A.4-30 PRECMJION CHART AFTER THOMPSON AND NOWTH (197«,1«7t> P a g e 284 * * * tor C O M P O N E N T : S m ( p p m ) 10 huHiff lctont d a t a f o r p r o p e r a n a l y a t a / / / ^•poac l » 0 « C • 8HPR • / / y SHPH a] ' • S H P R / / / / •HPR • / / / / / / / « • i * . IM I,—I It I U—I, I I I Mean of Puaaeate Reeufte FWURE Aw4-31 DECISION CHART AFTBR THOMRtOH AMD HOWTH (1t7a\H»7a» P a g e 285 page A.4-1 for C O M P O N E N T : y b 10 0 £ 0 S 3 o, 2 ! -J w 0 E 0.4] 0.31 0,21 Insufficient data for proper analysis / / / / / • SHPH PORC + SHPR/ / PORC / / / • SHPR « HPR / / / / / ° d « P O R C <0.1 'a 1 'a U I I I I I I,, , Moan of Duplicate Reeufte FIGURE A.4-32 PRECISION CHART AFTER THCOJRSOH AND HOWTH (197«,1»7e> P a g e 286 * * • papa A.4-1 for aoorevojtlona 40 APPENDIX 5 - DERIVATION OF EQUATIONS USED IN THE TEXT T h e f o l l o w i n g i s t h e d e r i v a t i o n o f e q u a t i o n s (1), (2) a n d (5) u s e d i n t h e b o d y o f t h e m a i n t e x t . U n i t P C i s u s e d f o r d e m o n s t r a t i o n p u r p o s e s , b u t a n y o f t h e o t h e r h y b r i d l i t h o l o g i e s c o u l d h a v e b e e n u s e d . W = W + W (5-1 ) Z R / P C Z R / P H Z R / M S w h e r e W = t h e w e i g h t o f Z r i n u n i t P C . Z R / P C W = t h e w e i g h t o f Z r c o n t r i b u t e d t o u n i t P C b y Z R / P H a p e l i t i c s o u r c e m o d e l l e d a f t e r u n i t U P H . W = t h e w e i g h t o f Z r c o n t r i b u t e d t o u n i t P C b y Z R / M S a t u r b i d i t e s o u r c e m o d e l l e d a f t e r u n i t M S . S i m i l a r l y : W = W + W (5-2) A L / P C A L / P H A L / M S w h e r e W W a n d W a r e A l 0 a n a l o g u e s t o A L / P C , A L / P H A L / M S 2 3 t h e Z r v a r i a b l e s a b o v e . T h e e v i d e n t l a c k o f o t h e r s e d i m e n t a r y d e t r i t a l s o u r c e s o f Z r a n d A l o i s d i s c u s s e d i n s e c t i o n s 2.2.2.3 o f t h e t e x t a n d 2 3 A p p e n d i x 7, s e c t i o n A . 7 . 2 , p a r t s 1 a n d 2. P a g e 287 Next multiply equation (5-1) by: W + w W + W ZR/PH AL/PH ZR/MS AL/MS and , both of which are W + W W + W equal to one ZR/PH AL/PH ZR/MS AL/MS and by: W + w ZR/PC AL/PC to produce: W W W + W ZR/PC ZR/PH ZR/PH AL/PH = x w +w w +w w +w ZR/PC AL/PC ZR/PH AL/PH ZR/PC AL/PC W W + W ZR/MS ZR/MS AL/MS x (5-3) W + W W + W ZR/MS AL/MS ZR/PC AL/PC Page .288 Let: w + w w + w ZR/PH AL/PH ZR/MS AL/MS p = and t = (5-4,5) W + w W + W ZR/PC AL/PC ZR/PC AL/PC Note that p and t are therefore the p e l i t i c and t u r b i d i t i c fractions by weight of Al 0 and Zr contributed by p e l i t i c 2 3 (unit UPH) and t u r b i d i t i c (unit MS) sources respectively. Since Al 0 and Zr are r e l a t i v e l y immobile, inherently d e t r i t a l 2 3 elements, p and t are, in a more broad sense, the weight fractions of p e l i t i c (unit UPH) and t u r b i d i t i c (unit MS) sediment respectively, in unit PC and the other hybrid l i t h o l o g i e s . Next multiply equation (5-3) by: W W AL/PH AL/MS and , both of which are W W equal to one AL/PH AL/MS Page 289 t o p r o d u c e : W W Z R / P H Z R / M S W W W Z R / P C A L / P H A L / M S = x p + x t ( 5 - 6 ) W + w W W Z R / P C A L / P C Z R / P H Z R / M S + 1 + 1 w w A L / P H A L / M S L e t : W W Z R / P H Z R / M S A = , B = W W A L / P H A L / M S W Z R / P C a n d C = ( 5 - 7 ) W + w Z R / P C A L / P C T h u s f r o m e q u a t i o n ( 5 - 6 ) : A B C = x p + x t ( 5 - 8 ) A + 1 B + 1 P a g e 290 The entire procedure i s s i m i l a r l y repeated for Al o beginning 2 3 with equation (5-2) to produce D: P t D = + (5_9) A + 1 B + 1 W A L / P C where D = (5-10) W + w Z R / P C A L / P C Next combine equations (5-7) and (5-10) to form R: W Z R / P C C W + W W Z R / P C A L / P C Z R / P C D W W A L / P C A L / P C w + w Z R / P C A L / P C Thus R i s the Zr(percent)/Al O (percent) r a t i o of unit PC. 2 3 Page 291 Next combining equations (5-8) and (5-9) f o r R: A B x p + x t A + 1 B + 1 R = (5-11) P t + A + 1 B + 1 This equation is 1 used to c a l c u l a t e "Expected Median of R a t i o s " i n Appendix 6 and Table 6 of the t e x t . The l e t t e r s E, F and G are used i n equation (5) of the t e x t i n s t e a d of R, A and B r e s p e c t i v e l y , to represent the r a t i o s of any component to A l 0 i n 2 3 the l i t h o l o g y under c o n s i d e r a t i o n . Next, equations to c a l c u l a t e p and t are deduced by combining equations (5-1), (5-2), (5-4) and (5-5): p + t = W + ZR/PH W AL/PH W ZR/MS + W AL/MS 1 (5-12) W + W ZR/PC AL/PC W + W ZR/PC AL/PC Page 292 Next combine equations (5-11) and (5-12): (R - B) x (A + 1) (5-13) (A - R) x (B + 1) + (A + 1) x (R - B) and : t = 1 - p (5-14) As an example, the arithmetic mean of the Zr(percent)/Al 0 (percent) r a t i o s for unit PC from Table 5 of the 2 3 text are used in equation (5-13): (0.00128-0.0023) x (0.000762+1.) p =  (0.000762-0.00128)x(0.0023+1.) + (0.000762+1.)x(0.00128-0.0023) 0.66 Page 293 and from equation (5-14): t = 1. - 0.66 = 0.34 Values of p and t for a l l l i t h o l o g i e s employing both arithmetic means and medians of Zr/Al o r a t i o s are l i s t e d in 2 3 Appendix 7 (Table A.7-1) and Table 5 of the text. Page 294 APPENDIX 6. EXCESS COMPONENT ABUNDANCE TABLES This appendix contains the f u l l excess component abundance data sets which are summarized i n Appendix 7 (Table A.7-2) and Table 7 of the text. Page 295 VARIABLE S102(percent> / AI203(percent) NUMBER MEDIAN EXPECTED OF DATA VALUE OF MEDIAN OF LITHOLOGY POINTS RATIOS RATIOS EXPECTEO RATIO LIMITS MEDIAN ELEMENT ABUNDANCE (A) MEDIAN OF EXCESS ELEMENT ABUNDANCES (A) MEDIAN (B) MEDIAN OF % EXCESS OF EXCESS ELEMENT ABUNDANCES ELEMENT ABUNDANCES (B) MEDIAN OF % EXCESS ELEMENT ABUNDANCES UPH UP I PC UPR LP2 LP 1 LPH LPR MS 42 a 31 24 1 t 14 9 18 I B 3.190CO IS.10999 10.B30O0 tO 530O0 13.920O0 19 950OO 3 43000 10.690O0 9.07000 3.19000 3 92lOO 4 22447 3 46923 5 21499 3 57320 3 29046 3 89682 9.07OOO 3 61 140 3 78834 3 33347 4 31423 3 39909 3 21808 3.59722 5 06989 6 03238 3 90251 10 91616 4.14801 3.50911 5.00035 63.28999 81 01999 75 25999 75.90500 78 890CO 83 84999 64 14999 76.87000 62.15500 0 09869 62 59128 44 65833 5 1 29028 49 35101 68 42935 2 52293 48 28680 0.18706 O. 353 . 138 237 167 510 4 . 169 0. 0.09869 63 7542 1 46 53806 50.11195 47. 1 1467 68.50723 2.27818 49 09192 0.18706 0. 384 . 152 . 188 . 148 . 514 4 177 . O. * - pe r c e n t TABLE - See text f o r d e t a i l s . Excess Element Abundances (A) and (B) are c a l c u l a t e d from the p e l t t e and t u r b l d l t e f r a c t i o n s based on the Zr:AI203 r a t i o means and medians r e s p e c t i v e l y (see s e c t i o n 3.1); the numbers quoted i n the text a r e p r i m a r i l y from columns (A). Decimal p l a c e s are r e t a i n e d so the e n t i r e data set can be accommodated. P a g e 296. V A R I A B L E : TOTAL F e ( p e r c e n t ) / A 1 2 0 3 ( p e r c e n t ) NUMBER MEDIAN EXPECTED OF DATA VALUE OF MEDIAN OF LITHOLOGY POINTS RATIOS RATIOS EXPECTED RATIO L I M I T S MEDIAN ELEMENT ABUNDANCE ( A ) MEDIAN ( A ) MEDIAN ( B ) MEDIAN OF EXCESS OF % E X C E S S OF E X C E S S ELEMENT ABUNDANCES ELEMENT ABUNDANCES ELEMENT ABUNDANCES ( B ) MEDIAN OF % E X C E S S ELEMENT ABUNDANCES UPH 42 0. 2 2 2 0 0 0 .22200 4 . 3 0 5 0 0 -o 0 0 2 6 3 -0 . -0 .00263 -o UP 1 8 O. 34200 0 2 6 7 3 5 0. 2 4 9 5 0 0. 32051 1 3 6 0 0 0 0. 29234 26. 0, 35451 33 PC 3 1 0. 26800 0 2 8 3 2 0 0. 25992 0. 3 5 3 8 0 1 .93000 - o . 1 1365 -5 . -o ,01674 - 1 UPR 24 0 . 4 7800 0. 24067 0. 23 182 0 26633 3 .34500 1 . 5 6 0 1 5 87 . 1 . ,48210 79 LP2 1 1 0. 28000 0 32607 0 28761 0. 448 17 1 .54000 -0. 2 4 7 9 6 - 14 . -0 . 32308 - 18 LP 1 14 0 34000 0. . 247 17 0. 2 3 6 1 5 0. 27935 1 .4 1000 O. 3 7 2 9 9 41 . 0. 37744 42 LPH 9 0. 2 1900 0. 22893 0. 22396 0. 2 4 3 1 9 4 .07000 -0 . 18620 -4 . -0 . 20363 -5 LPR 18 0. 27600 0. 26602 0. 24864 0. 3 1776 1 .96500 0. 10022 5 . 0. 14346 8 MS 18 0. 4 2200 0. 4 2200 3 1 1000 -0. 0 0 2 2 5 0. -0 . 00225 0 p e r c e n t T A B L E - S e e t e x t f o r d e t a i l s . E x c e s s E l e m e n t A b u n d a n c e s ( A ) a n d ( B ) a r e c a l c u l a t e d f r o m t h e p e l l t e a n d t u r b i d i t e f r a c t i o n s b a s e d o n t h e Z r : A l 2 0 3 r a t i o means a n d m e d i a n s r e s p e c t i v e l y ( s e e s e c t i o n 3 . 1 ) ; t h e n u m b e r s q u o t e d i n t h e t e x t a r e p r i m a r i l y f r o m c o l u m n s ( A ) . D e c i m a l p l a c e s a r e r e t a i n e d s o t h e e n t i r e d a t a s e t c a n b e a c c o m m o d a t e d . P a g e 297 V A R I A B L E : M g O ( p e r c e n t ) / A 1 2 0 3 ( p e r c e n t ) NUMBER MEDIAN OF DATA VALUE OF LITHOLOGY P O I N T S RATIOS EXPECTED MEDIAN OF RATIOS EXPECTED RATIO L I M I T S MEDIAN ELEMENT ABUNDANCE ( A ) MEDIAN ( A ) MEDIAN ( B ) MEDIAN ( B ) MEDIAN OF EX C E S S OF % E X C E S S OF E X C E S S OF % E X C E S S ELEMENT ABUNDANCES ELEMENT ABUNDANCES ELEMENT ABUNDANCES ELEMENT ABUNDANCES UPH UP 1 PC UPR LP2 LP 1 LPH LPR MS 42 8 3 1 24 1 1 14 9 18 18 0 . 1 2 4 0 0 0 . 1 6 9 0 0 0 . 1 7 7 0 0 0.12600 0 . 2 1 0 0 0 0 . 1 8 3 0 0 O.14700 0.14400 O.34400 0 . 1 2 4 0 0 0. 17284 0.19006 O.14404 0.23699 O.15104 O. 13143 0 . 1 7 1 4 0 O.34400 O.15355 O. 16480 O.13453 0.19486 0. 139 18 0 . 1 2 6 1 0 0 15262 0.23087 0.26763 0. 17174 O.37368 O.18586 0.14675 0.22785 2 . 3 9 0 0 0 0 . 6 9 5 0 0 1.26000 O.90500 1.16000 0 . 8 2 0 0 0 2 . 5 8 0 0 0 0 9 9 0 0 0 2 . 3 8 0 0 0 - 0 . 0 0 7 5 4 - 0 . 0 1 1 7 9 - 0 . 0 8 9 4 9 - 0 . 1 3 7 4 0 - 0 . 1 3 2 2 7 O. 12890 0 . 2 9 0 5 5 -0.21554 -0.02004 -0. -2 . -7 . -13. -12. 23 . 13 . 13 . 0. - 0 . 0 0 7 5 4 0 . 0 4 0 0 3 0 . 0 0 5 4 6 - 0 . 2 1 4 8 8 - 0 . 2 0 7 2 1 O . 1 3 3 6 9 0 . 2 7 3 9 7 -O.14190 - 0 . 0 2 0 0 4 -0. 7 . O. -21 . -14. 24 . 12 . -9 . 0. * - p e r c e n t T A B L E - S e e t e x t f o r d e t a i l s . E x c e s s E l e m e n t A b u n d a n c e s ( A ) a n d ( B ) a r e c a l c u l a t e d f r o m t h e p e l i t e a n d t u r b i d i t e f r a c t i o n s b a s e d o n t h e 2 r : A I 2 0 3 r a t i o means a n d m e d i a n s r e s p e c t i v e l y ( s e e s e c t i o n 3 . 1 ) ; t h e n u m b e r s q u o t e d i n t h e t e x t a r e p r i m a r i l y f r o m c o l u m n s ( A ) D e c i m a l p l a c e s a r e r e t a i n e d s o t h e e n t i r e d a t a s e t c a n b e a c c o m m o d a t e d . Page 298 V A R I A B L E C a O ( p e r c e n t ) / A 1 2 0 3 ( p e r c e n t ) NUMBER MEDIAN OF DATA VALUE OF LITHOLOGY POINTS RATIOS EXPECTED MEDIAN OF RATIOS EXPECTED RATIO L I M I T S MEDIAN ELEMENT ABUNDANCE ( A ) MEDIAN ( A ) MEDIAN ( B ) MEDIAN OF E X C E S S OF % EXCESS OF E X C E S S ELEMENT ABUNDANCES ELEMENT ABUNDANCES ELEMENT ABUNDANCES ( B ) MEDIAN OF % E X C E S S ELEMENT ABUNDANCES UPH UP t PC UPR LP2 LP 1 LPH L PR MS 42 8 3 1 24 1 1 14 9 18 1 3 0 . 0 7 6 8 0 O.65700 0 . 4 1 9 0 0 0.2 1900 0 . 3 8 3 0 0 0 . 4 9 8 0 0 O.05430 0.27900 1.11000 0 . 0 7 6 8 0 0.2 3003 0 . 2 9 1 2 0 0.13634 0.48163 O.15818 O . 0 9 8 3 7 0.22509 1.11000 0.16617 0.20284 0.10755 0.30903 O.12150 0.08284 0.16321 0.45458 0 62892 0 22625 1.35999 0.27592 0.14474 0.44152 1.58500 2 . 4 2 5 0 0 2 . 9 1 0 0 0 1.59500 2 . 2 3 0 0 0 2 . 0 9 5 0 0 0 . 9 7 0 0 0 1.95500 8.52000 -0.00551 1.53586 0 . 9 2 0 2 3 0 . 6 2 7 0 0 - 0 . 5 0 9 6 8 1.43055 -O.78880 O.32314 0 . 0 1 6 8 0 -0. 2 11. 47 . 65. -20. 2 11. -45 . 28 . 0. - 0 . 0 0 5 5 1 1 .70058 1 .25198 0 . 3 7 4 8 0 - 0 . 8 8 4 0 3 1.44882 - 0 . 8 3 8 9 6 0 . 4 6 9 9 0 0 . 0 1 6 8 0 -0. 3 0 0 . 77 . 2 8 . -31 . 2 1 9 . -46 . 33. O. * - p e r c e n t T A B L E - S e e t e x t f o r d e t a i l s . E x c e s s E l e m e n t A b u n d a n c e s ( A ) a n d ( B ) a r e c a l c u l a t e d f r o m t h e p e l i t e a n d t u r b i d i t e f r a c t i o n s b a s e d o n t h e Z r : A 1 2 0 3 r a t i o means a n d m e d i a n s r e s p e c t i v e l y ( s e e s e c t i o n 3 . 1 ) ; t h e n u m b e r s q u o t e d 1n t h e t e x t a r e p r i m a r i l y f r o m c o l u m n s ( A ) D e c i m a l p l a c e s a r e r e t a i n e d s o t h e e n t i r e d a t a s e t c a n b e a c c o m m o d a t e d . P a g e 299 V A R I A B L E : N a 2 0 ( p e r c e n t ) / A l 2 0 3 ( p e r c e n t ) NUMBER MEDIAN OF DATA VALUE OF LITHOLOGY POINTS RATIOS EXPECTED MEDIAN OF RATIOS EXPECTED RATIO L I M I T S MEDIAN ELEMENT ABUNDANCE ( A ) MEDIAN OF EX C E S S ELEMENT ABUNDANCES ( A ) MEDIAN ( B ) MEDIAN OF % E X C E S S OF E X C E S S ELEMENT ABUNDANCES ELEMENT ABUNDANCES ( B ) MEDIAN OF % E X C E S S ELEMENT ABUNDANCES UPH UP 1 PC UPR LP2 LP 1 LPH LPR MS 39 6 23 19 9 1 1 9 13 15 0 . 0 2 5 7 0 0 . 0 2 7 5 0 0 . 0 1 3 1 0 O.01960 0.007 30 0 . 0 1 6 4 0 0.00764 0 . 0 0 8 5 0 0 . 0 1 2 8 0 0 . 0 2 5 7 0 0 . 0 2 2 3 9 0 . 0 2 1 2 9 0 . 0 2 4 3 0 0.01846 0 . 0 2 3 8 3 0.02518 0.02248 0 . 0 1 2 8 0 0.02366 0.02291 0.02496 0.02099 0.02464 O.02555 0.02372 0.01882 0.01674 0 . 0 2 2 4 6 0 . 0 1 1 4 0 0 . 0 2 1 5 5 0.02412 0 . 0 1 8 9 9 0 . 5 0 0 0 0 0 . 1 2 5 0 0 0.1OO00 0 . 1 5 0 0 0 0 . 0 4 0 0 0 0 . 0 8 0 0 0 0 . 1 5 0 0 0 0 . 0 7 0 0 0 0 . 1 1 0 0 0 -O.00038 0 . 0 1 5 9 7 - 0 . 0 6 2 6 5 -0.03832 - 0 . 0 6 1 7 2 - 0 . 0 3 6 2 8 -O.32857 -O 10388 -0.00011 -O. 23 . -39. -19. -61 . -31 . -75 . -72 . -O. - 0 . 0 0 0 3 8 0 . 0 1 1 0 9 - 0 . 0 6 9 3 4 - 0 . 0 3 2 1 5 - 0 . 0 5 6 8 4 - 0 . 0 3 6 7 1 -0.32741 -O.10667 - 0 . 0 0 0 1 1 - O . 17 . -41 . - 17 . - 5 9 . -31 . -75 . -73 . - 0 . - p e r c e n t T A B L E - S e e t e x t f o r d e t a i l s . E x c e s s E l e m e n t A b u n d a n c e s ( A ) a n d ( B ) a r e c a l c u l a t e d f r o m t h e p e l i t e a n d t u r b i d i t e f r a c t i o n s b a s e d o n t h e Z r : A I 2 0 3 r a t i o means a n d m e d i a n s r e s p e c t i v e l y ( s e e s e c t i o n 3 . 1 ) ; t h e n u m b e r s q u o t e d i n t h e t e x t a r e p r i m a r i l y f r o m c o l u m n s ( A ) . D e c i m a l p l a c e s a r e r e t a i n e d s o t h e e n t i r e d a t a s e t c a n b e a c c o m m o d a t e d . P a g e . 3 0 0 V A R I A B L E K 2 0 ( p e r c e n t ) / A 1 2 0 3 ( p e r c e n t ) NUMBER MEDIAN OF DATA VALUE OF LITHOLOGY POINTS RATIOS EXPECTED MEDIAN OF RATIOS EXPECTED RATIO L I M I T S MEDIAN ELEMENT ABUNDANCE ( A ) MEDIAN ( A ) MEDIAN ( B ) MEDIAN ( B ) MEDIAN OF EXC E S S OF % E X C E S S OF E X C E S S OF % E X C E S S ELEMENT ABUNDANCES ELEMENT ABUNDANCES ELEMENT ABUNDANCES ELEMENT ABUNDANCES UPH 42 0 . 2 0 0 0 0 0 2 0 0 0 0 3 . 9 6 0 0 0 - o .00100 - o . -0 .00100 -0 UP 1 8 0 2 8 3 0 0 0. 2 2 3 7 3 0 2 1449 0 25055 1 .06000 0 . 25462 27 . 0 2 8 5 2 3 38 PC 3 1 0 2 8 4 0 0 0 . 23183 0. 2 1990 0. 26683 2 .03000 0. 35778 20. 0. 40871 23 UPR 24 0 . 2 6 4 0 0 0 . 20987 0. 2052 1 0. 2 2 3 2 0 1 .87000 0. 36631 26. 0 3 2 9 6 3 23 LP2 1 1 0 . 2 0 6 0 0 0 . 2 5 3 3 0 0. 23407 0 . 31094 1 .11000 -0. 2 6 6 2 0 -19. -0. 3 0 5 3 9 -21 LP 1 14 0 . 28 100 0 . 2 1327 0 . 20749 0. 22987 1 .17500 0. 29702 32 . 0. 2 9 9 8 0 32 LPH 9 0 . 22400 0 . 20368 0. 20104 0. 2 1119 4 14000 0. 3 8 1 4 0 10. 0. 3 7 2 6 4 10 LPR 18 0 . 2 6 4 0 0 0 . 22304 0. 2 1404 0 . 24919 1 . .86500 0. 2 9 2 7 5 16 . 0. 3 1 5 8 5 3 0 MS 18 0 . 2 9 9 0 0 0. 2 9 9 0 0 2 . 0 3 0 0 0 -0. 01121 -0. - 0 . 0 1 1 2 1 -0 p e r c e n t T A B L E - S e e t e x t f o r d e t a i l s . E x c e s s E l e m e n t A b u n d a n c e s ( A ) a n d ( B ) a r e c a l c u l a t e d f r o m t h e p e l i t e a n d t u r b i d i t e f r a c t i o n s b a s e d o n t h e Z r : A 1 2 0 3 r a t i o means a n d m e d i a n s r e s p e c t i v e l y ( s e e s e c t i o n 3 . 1 ) ; t h e n u m b e r s q u o t e d i n t h e t e x t a r e p r i m a r i l y f r o m c o l u m n s ( A ) . D e c i m a l p l a c e s a r e r e t a i n e d s o t h e e n t i r e d a t a s e t c a n b e a c c o m m o d a t e d . P a g e .301 V A R I A B L E T i 0 2 ( p e r c e n t ) / A 1 2 0 3 ( p e r c e n t ) NUMBER MEDIAN OF DATA VALUE OF LITHOLOGY POINTS RATIOS EXPECTED MEDIAN OF RATIOS EXPECTED RATIO L I M I T S MEDIAN ELEMENT ABUNDANCE ( A ) MEDIAN ( A ) MEDIAN ( B ) MEDIAN OF E X C E S S OF % E X C E S S O F E X C E S S ELEMENT ABUNDANCES ELEMENT ABUNDANCES ELEMENT ABUNDANCES ( B ) MEDIAN OF % E X C E S S ELEMENT ABUNDANCES UPH UP 1 PC UPR LP2 LP 1 LPH LPR MS 42 8 31 24 1 1 14 9 18 18 0 . 0 4 8 1 0 O.057 10 0 . 0 5 3 0 0 O.05680 0 . 0 6 8 8 0 0 . 0 5 8 0 0 O.04880 0.056 10 0 . 0 6 0 1 0 0 . 0 4 8 1 0 0.05 113 0.05214 0.04937 0.05476 0.04981 0.04858 0.05104 0 . 0 6 0 1 0 0.04996 0.05065 0.04877 Q.05242 0.04907 0.04824 0.04990 0 . 0 5 4 4 3 0.05638 0 . 0 5 1 0 6 0.06144 0 . 0 5 1 8 9 0.04954 0.05427 O.96000 0 . 2 5 5 0 0 0 . 3 9 0 0 0 0.4 1000 0 . 3 9 0 0 0 0 . 2 4 5 0 0 0 . 8 9 0 0 0 0 . 4 1 0 0 0 0 . 3 9 0 0 0 -0.0004 7 0 . 0 2 4 7 9 0 . 0 0 5 3 2 0.05274 0 . 0 7 9 5 0 0.02991 0 . 0 0 4 0 6 0 . 0 2 4 6 3 - 0 . 0 0 0 2 6 -0. 12 . 2 . 15 . 26 . 18 . 0. 6 . -0. - 0 . 0 0 0 4 7 0 . 0 2 8 8 4 0 . 0 0 9 7 3 0 . 0 4 7 8 0 0 . 0 7 4 8 0 0 . 0 3 0 1 9 0 . 0 0 2 9 3 0 . 0 2 7 8 5 -0.OO026 -0. 14 . 3 . 13 . 24 . 18 . 0. 7 . -O. * - p e r c e n t T A B L E - S e e t e x t f o r d e t a i l s . E x c e s s E l e m e n t A b u n d a n c e s ( A ) a n d ( B ) a r e c a l c u l a t e d f r o m t h e p e t i t e a n d t u r b i d i t e f r a c t i o n s b a s e d o n t h e 2 r : A l 2 0 3 r a t i o means a n d m e d i a n s r e s p e c t i v e l y ( s e e s e c t i o n 3 . 1 ) ; t h e n u m b e r s q u o t e d i n t h e t e x t a r e p r i m a r i l y f r o m c o l u m n s ( A ) . D e c i m a l p l a c e s a r e r e t a i n e d s o t h e e n t i r e d a t a s e t c a n b e a c c o m m o d a t e d . P a g e 302 V A R I A B L E : M n O ( p e r c e n t ) / A 1 2 0 3 ( p e r c e n t ) NUMBER MEDIAN OF DATA VALUE OF LITHOLOGY POINTS RATIOS EXPECTED MEDIAN OF RATIOS EXPECTED RATIO L I M I T S MEDIAN ELEMENT ABUNDANCE (A ) MEDIAN ( A ) MEDIAN ( B ) MEDIAN ( B ) MEDIAN OF EXC E S S OF % E X C E S S OF E X C E S S OF % E X C E S S ELEMENT ABUNDANCES ELEMENT ABUNDANCES ELEMENT ABUNDANCES ELEMENT ABUNDANCES UPH UP 1 PC UPR LP2 LP 1 LPH LPR MS 42 8 3 1 24 1 1 14 9 18 18 0.00101 0.003G2 O.00483 0 . 0 0 5 7 5 0.004 15 0.00391 0.00153 0 . 0 0 2 5 0 0.01 180 0.00101 0 . 0 0 3 7 3 0.00464 0.002 15 0 . 0 0 7 0 0 0.00254 0.00144 0.00366 0.01 180 0.00268 0 . 0 0 3 3 0 0.00162 0 . 0 0 4 8 9 0.00188 0.00113 0.00263 0 . 0 0 6 7 0 0 . 0 0 8 4 5 0.00367 0.01301 0.00442 0.00231 0 . 0 0 6 5 6 0.02OOO O.02000 0 . 0 3 0 0 0 0 . 0 4 0 0 0 0 . 0 2 0 0 0 0 . 0 2 0 0 0 0 . 0 3 0 0 0 0 . 0 2 0 0 0 0 . 0 8 5 0 0 0 . 0 0 0 0 8 - 0 . 0 0 0 4 5 O.00151 0.02498 - 0 . 0 1 3 7 5 0 . 0 0 6 9 5 0 . 0 0 1 7 5 - 0 . 0 0 9 2 5 0 . 0 0 1 1 9 0. -3. 4 . 167 . -41 . 54 . 6 . -32 . - 1 . 0 . 0 0 0 0 8 0 . 0 0 3 9 5 O.00752 0 . 0 2 0 6 4 - 0 . 0 1 7 3 4 0 . 0 0 7 3 2 0 . 0 0 0 6 8 - 0 . 0 0 6 3 6 0 . 0 0 1 1 9 0. 25. 33. 107 . -46 . 58. 2 . -24 . - 1 . p e r c e n t T A B L E - S e e t e x t f o r d e t a i l s . E x c e s s E l e m e n t A b u n d a n c e s ( A ) a n d ( B ) a r e c a l c u l a t e d f r o m t h e p e l i t e a n d t u r b i d i t e f r a c t i o n s b a s e d o n t h e Z r : A ) 2 0 3 r a t i o means a n d m e d i a n s r e s p e c t i v e l y ( s e e s e c t i o n 3 . 1 ) ; t h e n u m b e r s q u o t e d i n t h e t e x t a r e p r i m a r i l y f r o m c o l u m n s ( A ) . D e c i m a l p l a c e s a r e r e t a i n e d s o t h e e n t i r e d a t a s e t c a n b e a c c o m m o d a t e d . P a g e 303 -V A R I A B L E P 2 0 5 ( p e r c e n t ) / A 1 2 0 3 ( p e r c e n t ) NUMBER MEDIAN OF DATA VALUE OF LITHOLOGY POINTS RATIOS EXPECTED MEDIAN OF RATIOS EXPECTED RATIO L I M I T S MEDIAN ELEMENT ABUNDANCE ( A ) MEDIAN OF E X C E S S ELEMENT ABUNDANCES ( A ) MEDIAN ( B ) MEDIAN OF % E X C E S S OF E X C E S S ELEMENT ABUNDANCES ELEMENT ABUNDANCES ( B ) MEDIAN OF % E X C E S S ELEMENT ABUNDANCES UPH UP 1 PC UPR LP2 LP 1 LPH LPR MS 42 8 3 1 24 1 1 1 4 9 18 18 0 . 0 0 5 7 9 0 . 0 2 4 4 0 0 . 0 1 9 2 0 0 . 0 1 7 8 0 0 . 0 2 4 6 0 0 . 0 2 5 3 0 0.00641 0 . 0 1 8 4 0 0 . 0 2 4 7 0 0.00579 0.01053 0.01212 0.007 78 0.01625 0.00846 O 0 0 6 5 3 0 . 0 1 0 4 0 0 . 0 2 4 7 0 0 . 0 0 8 7 0 0.00978 0.00684 0.01256 0 . 0 0 7 3 0 0 . 0 0 6 0 0 0.00861 0 . 0 1 5 7 3 0 . 0 1 8 8 0 0 . 0 1 0 4 3 0 . 0 2 6 8 3 0.01174 0.00804 0.01547 0 . 1 1 5 0 0 0 . 0 9 5 0 0 0 . 1 2 0 0 0 0 . 1 3 0 0 0 0 . 1 4 0 0 0 0 . 1 0 0 0 0 0 . 1 2 0 0 0 0 . 1 3 5 0 0 0 . 1 6 5 0 0 0 . 0 0 0 0 7 0 . 0 4 8 3 9 0 . 0 4 3 8 0 0 . 0 7 0 3 3 0 . 0 4 2 4 7 0 . 0 6 5 6 2 - 0 . 0 0 2 4 0 0.057 1 1 0.00012 0. 134 . 66 . 1 18 . 44 . 171 . -2 . 73 . 0. 0 . 0 0 0 0 7 0 . 0 5 3 3 7 0 . 0 5 0 7 3 0 . 0 6 2 1 6 0 . 0 3 4 6 3 0 . 0 6 6 2 0 - 0 . 0 0 4 1 7 0 . 0 6 1 7 0 0 . 0 0 0 1 2 0. 201 . 86 . 9 9 . 33 . 175 . -3 . 130. 0. * - p e r c e n t T A B L E " - S e e t e x t f o r d e t a i l s . E x c e s s E l e m e n t A b u n d a n c e s ( A ) a n d ( B ) a r e c a l c u l a t e d f r o m t h e p e l i t e a n d t u r b i d i t e f r a c t i o n s b a s e d o n t h e Z r : A ) 2 0 3 r a t i o means a n d m e d i a n s r e s p e c t i v e l y ( s e e s e c t i o n 3 . 1 ) ; t h e n u m b e r s q u o t e d I n t h e t e x t a r e p r i m a r i l y f r o m c o l u m n s ( A ) . D e c i m a l p l a c e s a r e r e t a i n e d s o t h e e n t i r e d a t a s e t c a n b e a c c o m m o d a t e d . P a g e 304 V A R I A B L E : B a ( p e r c e n t ) / A 1 2 0 3 ( p e r c e n t ) NUMBER MEDIAN OF DATA VALUE OF LITHOLOGY POINTS RATIOS EXPECTED MEDIAN OF RATIOS EXPECTED RATIO L I M I T S MEDIAN ELEMENT ABUNDANCE ( A ) MEDIAN ( A ) MEDIAN ( B ) MEDIAN ( B ) MEDIAN OF EX C E S S OF % E X C E S S OF E X C E S S OF % E X C E S S ELEMENT ABUNDANCES ELEMENT ABUNDANCES ELEMENT ABUNDANCES ELEMENT ABUNDANCES UPH UP 1 PC UPR LP2 LP 1 LPH LPR MS 42 8 31 24 1 1 14 9 18 18 0 . 0 1 8 3 0 O. 15600 0.07 300 0 . 0 7 4 0 0 O.35600 0.11900 0.02970 0 . 0 5 4 2 0 0.10600 0 . 0 1 8 3 0 0 . 0 3 9 2 6 0.04644 0.02701 0.06544 0.03002 0.02155 0 . 0 3 8 6 6 0 . 1 0 6 0 0 0 . 0 3 1 1 0 0.03588 O.02290 0.04842 0.02492 0.01922 0 . 0 3 0 7 0 0.06301 0.O7744 0 . 0 3 8 8 0 0. 1 1662 0 . 0 4 4 7 0 0.02818 0 . 0 6 1 8 0 0 . 3 6 0 0 0 O . 5 3 5 0 0 O . 5 3 0 0 0 0.-56000 1 .96000 0 . 5 5 0 0 0 O . 5 6 0 0 0 0 . 3 8 0 0 0 0 . 6 6 5 0 0 -0.00042 0.40798 O.18203 O. 34862 1 .5994 1 0.4 1311 O . 1 5 3 6 0 0.10651 0 . 0 0 5 6 8 -0. 316 . 46 . 157 . 444 . 302 . 38 . 4 0 . 0. - 0 . 0 0 0 4 2 0 . 4 2 8 8 5 0 . 2 2 6 6 9 O . 3 0 9 3 3 1.56566 0 . 4 1 5 6 3 0 . 1 4 5 7 8 0 . 1 2 6 0 6 0 . 0 0 5 6 8 -O. 397 . 8 0 . 1 19. 397 . 3 0 9 . 35 . 51 . 0. * - p e r c e n t T A B L E - S e e t e x t f o r d e t a i l s . E x c e s s E l e m e n t A b u n d a n c e s ( A ) a n d ( B ) a r e c a l c u l a t e d f r o m t h e p e l i t e a n d t u r b i d i t e f r a c t i o n s b a s e d o n t h e Z r : A ) 2 0 3 r a t i o means a n d m e d i a n s r e s p e c t i v e l y ( s e e s e c t i o n 3 . 1 ) ; t h e n u m b e r s q u o t e d I n t h e t e x t a r e p r i m a r i l y f r o m c o l u m n s ( A ) . D e c i m a l p l a c e s a r e r e t a i n e d s o t h e e n t i r e d a t a s e t c a n b e a c c o m m o d a t e d . P a g e 305 ... i V A R I A B L E : P b ( p e r c e n t ) / A 1 2 0 3 ( p e r c e n t ) LITHOLOGY NUMBER OF DATA POINTS MEDIAN VALUE OF RATIOS EXPECTED MEDIAN OF RATIOS EXPECTED RATIO L I M I T S MEDIAN ELEMENT ABUNDANCE ( A ) MEDIAN ( A ) MEDIAN ( B ) MEDIAN ( B ) MEDIAN OF EXC E S S OF % EXCESS OF E X C E S S OF % E X C E S S ELEMENT ABUNDANCES ELEMENT ABUNDANCES ELEMENT ABUNDANCES ELEMENT ABUNDANCES UPH UP 1 PC UPR LP2 LP 1 LPH LPR MS 42 7 3 1 24 1 2 7 3 18 0.0 0.0 0.0017 400 0 . 0 0 4 4 4 0 0 0 . 0 0 3 5 1 0 0 0 . 0 0 2 9 4 0 0 0 0 0 . 0 0 2 8 9 0 0 0 . 0 0 3 4 5 0 0 O.00000 O.00088 0.001 1672 0 . 0 0 0 3 6 8 0 0 . 0 0 1 9 2 2 2 0 . 0 0 0 4 9 3 6 0.00014 0 . 0 0 0 8 5 0 6 0 . 0 0 3 4 5 0 0 0.00054 0.0007 363 0 . 0 0 0 1 9 5 0 0.0012472 0 . 0 0 0 2 7 9 9 0.00004 0.00052 18 0.00183 0 . 0 0 2 3 8 5 6 0 . 0 0 0 8 5 6 5 0 . 0 0 3 8 3 2 3 0 . 0 0 1 0 9 6 9 0.00042 0 . 0 0 1 7 7 9 6 0.0 0.0 0 . 0 1 0 0 0 0 0 O . 0 3 0 0 0 0 0 0 . 0 2 0 0 0 0 0 0 . 0 1 5 0 0 0 0 0.0 0 . 0 3 0 0 0 0 0 0 . 0 2 0 0 0 0 0 O.O 0.0 0 . 0 0 2 8 6 8 2 0 . 0 2 7 5 1 2 2 0 . 0 0 9 0 4 3 6 0 . 0 1 2 4 4 5 5 O.O 0 . 0 2 0 3 7 0 9 0 . 0 0 0 0 2 4 5 O. O. 41 . 1 106 . 83 . 4 9 6 . O. 2 12. 0. 0.0 0.0 0.0O42913 0.0261606 0.0076879 0.0125649 0.0 0.0216806 0.000O245 0. 0. 76 . 682 . 62 . 525. O. 261 . O. * - p e r c e n t T A B L E - S e e t e x t f o r d e t a i l s . E x c e s s E l e m e n t A b u n d a n c e s ( A ) a n d ( B ) a r e c a l c u l a t e d f r o m t h e p e l i t e a n d t u r b l d i t e f r a c t i o n s b a s e d o n t h e Z r : A 1 2 0 3 r a t i o means a n d m e d i a n s r e s p e c t i v e l y ( s e e s e c t i o n 3 . 1 ) ; t h e n u m b e r s q u o t e d 1n t h e t e x t a r e p r i m a r i l y f r o m c o l u m n s ( A ) . D e c i m a l p l a c e s a r e r e t a i n e d s o t h e e n t i r e d a t a s e t c a n b e a c c o m m o d a t e d . P a g e 30.6 V A R I A B L E : Z n ( p e r c e n t ) / A 1 2 0 3 ( p e r c e n t ) NUMBER MEDIAN OF DATA VALUE OF LITHOLOGY POINTS RATIOS EXPECTED MEDIAN OF RATIOS EXPECTED RATIO L I M I T S MEDIAN ELEMENT ABUNDANCE ( A ) MEDIAN ( A ) MEDIAN ( B ) MEDIAN ( B ) MEDIAN OF E X C E S S OF % E X C E S S OF E X C E S S OF % E X C E S S ELEMENT ABUNDANCES ELEMENT ABUNDANCES ELEMENT ABUNDANCES ELEMENT ABUNDANCES UPH UP 1 PC UPR LP2 LP 1 LPH LPR MS 38 8 30 24 1 1 14 9 18 14 O.00091 0.00332 0 . 0 0 9 1 0 0 . 0 4 9 8 0 0 . 0 0 5 2 9 0.007 10 O.00 160 0 . 0 0 5 6 3 0 . 0 0 9 7 0 0.00091 0 . 0 0 3 1 3 0 . 0 0 3 8 7 0 . 0 0 1 8 5 0 . 0 0 5 8 0 0.002 16 0 . 0 0 1 2 6 0.00307 0 . 0 0 9 7 0 0.00228 0.00278 0.00141 0.00408 0.00162 0.00101 0.00224 0 . 0 0 5 5 5 0 . 0 0 6 9 8 O.O0309 0.01068 0 . 0 0 3 7 0 0 . 0 0 1 9 7 0.0054 3 O.02000 0 . 0 2 0 0 0 0 . 0 7 0 0 0 0 . 3 8 0 0 0 O.03000 0 . 0 2 5 0 0 O.03000 0 . 0 3 5 0 0 O.06500 -O.00002 0 . 0 0 0 9 5 0 . 0 4 0 1 8 0 . 3 6 6 1 8 - 0 . 0 0 2 8 7 0 . 0 1 7 4 3 0 . 0 0 6 3 7 0.01874 -O.O0285 -0. 6 . 135. 2651 . -9. 229 . 27 . 126 . 0. -O .O00O2 0 . 0 0 5 0 5 0 . 0 4 4 7 4 0 . 3 6 2 3 8 - 0 . 0 0 6 3 1 0 . 0 1 7 6 3 0 . 0 0 5 5 4 0 . 0 2 0 3 0 - 0 . 0 0 2 8 5 - O . 35 . 1 7 8 . 2 0 5 8 . - 17 . 2 3 8 . 23 . 1 5 0 . 0. * - p e r c e n t T A B L E - S e e t e x t f o r d e t a i l s . E x c e s s E l e m e n t A b u n d a n c e s ( A ) a n d ( B ) a r e c a l c u l a t e d f r o m t h e p e l i t e a n d t u r b i d i t e f r a c t i o n s b a s e d o n t h e Z r : A 1 2 0 3 r a t i o means a n d m e d i a n s r e s p e c t i v e l y ( s e e s e c t i o n 3 . 1 ) ; t h e n u m b e r s q u o t e d i n t h e t e x t a r e p r i m a r i l y f r o m c o l u m n s ( A ) . D e c i m a l p l a c e s a r e r e t a i n e d s o t h e e n t i r e d a t a s e t c a n b e a c c o m m o d a t e d . P a g e :307 V A R I A B L E P Y R I T I C F e ( p e r c e n t ) / A 1 2 0 3 ( p e r c e n t ) NUMBER MEDIAN EXPECTED OF DATA VALUE OF MEDIAN OF L I T HOLOGY P O I N T S RATIOS RATIOS EXPECTED RATIO L I M I T S MEDIAN ELEMENT ABUNDANCE ( A ) MEDIAN ( A ) MEDIAN ( B ) MEDIAN OF EXC E S S OF % E X C E S S OF E X C E S S ELEMENT ABUNDANCES ELEMENT ABUNDANCES ELEMENT ABUNDANCES ( B ) MEDIAN OF % E X C E S S ELEMENT ABUNDANCES UPH 42 0 0 4 3 3 0 0 .04330 0 .87000 0 .00055 O. 0 .00055 0 UP 1 8 0. . 25100 0. .08261 0 .06714 0 . 12875 0 .94500 0 .631 15 237 . 0. .67172 295 PC 3 1 0. 18000 0. 0 9 6 3 6 0 .076 17 0 .15767 1 .29000 0 . 558 13 72 . 0. 6 3 5 5 4 1 1 1 UPR 23 O. 3 1800 0. 0 5 9 4 8 0 .05181 0 0 8 1 7 3 2 .25000 1 .84375 454 . 1 7 8 2 3 0 38 1 LP2 1 1 0 1G900 0 13358 0 .10019 0 2 3 9 7 9 0 9 1 0 0 0 0 19928 27 . 0 .13047 16 LP 1 14 0. 2 0 4 0 0 0. 0 6 5 1 2 0 0 5 5 5 6 0 0 9 3 0 2 0 .88500 0 6 3 7 5 6 258 . O 64151 264 LPH 9 0. 0 9 7 0 0 0. 04931 0. 0 4 5 0 0 0. .06167 1 8 2 0 0 0 o. 8 9 0 1 0 96 . 0 . 8 7 5 6 0 93 LPR 18 0. 18200 0. 0 8 1 4 6 0. 0 6 6 3 9 0. 12637 1 . .31000 0. 7 2 9 8 9 120. 0 7 6 9 9 6 135 MS 18 0. 2 1700 0. 2 1 7 0 0 1 . 5 1 0 0 0 0. 004 1 7 O. 0. 004 1 7 0 - p e r c e n t T A B L E - S e e t e x t f o r d e t a i l s . E x c e s s E l e m e n t A b u n d a n c e s ( A ) a n d ( B ) a r e c a l c u l a t e d f r o m t h e p e l l t e a n d t u r b i d i t e f r a c t i o n s b a s e d o n t h e Z r : A 1 2 0 3 r a t i o means a n d m e d i a n s r e s p e c t i v e l y ( s e e s e c t i o n 3 . 1 ) ; t h e n u m b e r s q u o t e d i n t h e t e x t a r e p r i m a r i l y f r o m c o l u m n s ( A ) . D e c i m a l p l a c e s a r e r e t a i n e d s o t h e e n t i r e d a t a s e t c a n b e a c c o m m o d a t e d . P a g e 308 V A R I A B L E S U L P H I D E ( p e r c e n t ) / A 1 2 0 3 ( p e r c e n t ) NUMBER MEDIAN OF DATA VALUE OF L I THOLOGY P O I N T S RATIOS EXPECTED MEDIAN OF RATIOS EXPECTED RATIO L I M I T S ( A ) MEDIAN ( A ) MEDIAN ( B ) MEDIAN ( B ) MEDIAN MEDIAN OF E X C E S S OF % EXCESS OF E X C E S S OF % E X C E S S ELEMENT ELEMENT ELEMENT ELEMENT ELEMENT ABUNDANCE ABUNDANCES ABUNDANCES ABUNDANCES ABUNDANCES UPH UP 1 PC UPR LP2 LP 1 LP H LPR MS 42 8 3 I 24 1 1 14 9 18 18 0 . 0 5 0 1 0 0 . 2 9 0 0 0 O.20700 0 . 3 4 4 0 0 0 . 1 9 8 0 0 0 . 2 3 7 0 0 0 . 1 1 1 0 0 0 . 2 1 3 0 0 0 . 2 5 9 0 0 0 . 0 5 0 1 0 0.09638 0. 1127 1 0 .06908 0.15724 0.07571 0.057 13 0.09501 0 . 2 5 9 0 0 0 . 0 7 8 1 0 0 . 0 8 8 7 6 0.06007 0 . 1 1 7 2 6 0.06448 0 . 0 5 2 0 9 0.07721 0. 15143 0.18636 0.09534 0.28727 0.10873 0.07165 0.14857 1.00000 1.08500 1.50000 2 . 6 3 0 0 0 1.05000 1 .02500 2 . 1 0 0 0 0 1.52000 1.81500 0 . 0 0 0 3 7 0 . 7 2 0 5 0 0.65722 2 . 1 0 4 3 0 0 . 2 2 6 2 8 O.73729 1.02246 0 . 8 5 3 3 5 0 . 0 1 1 1 8 0. 232 . 73 . 404 . 26 . 257 . 95 . 120. 0. 0 . 0 0 0 3 7 0 . 7 6 8 4 7 0.76191 2 . 0 2 3 6 6 O . 1 4 3 3 0 0 . 7 4 1 9 4 1.00546 0 . 9 0 0 7 5 0 . 0 1 1 1 8 O. 291 . 95 . 337 . 15. 263 . 92 . 136 . O. p e r c e n t T A B L E - S e e t e x t f o r d e t a i l s . E x c e s s E l e m e n t A b u n d a n c e s ( A ) a n d ( B ) a r e c a l c u l a t e d f r o m t h e p e l l t e a n d t u r b i d i t e f r a c t i o n s b a s e d o n t h e Z r : A 1 2 0 3 r a t i o means a n d m e d i a n s r e s p e c t i v e l y ( s e e s e c t i o n 3 . 1 ) ; t h e n u m b e r s q u o t e d i n t h e t e x t a r e p r i m a r i l y f r o m c o l u m n s ( A ) . D e c i m a l p l a c e s a r e r e t a i n e d s o t h e e n t i r e d a t a s e t c a n b e a c c o m m o d a t e d . P a g e 309 V A R I A B L E : TOTAL S ( p e r c e n t ) / A I 2 0 3 ( p e r c e n t ) NUMBER MEDIAN EXPECTED OF DATA VALUE OF MEDIAN OF L I T HOLOGY P O I N T S RATIOS RATIOS EXPECTED RATIO L I M I T S MEDIAN ELEMENT ABUNDANCE ( A ) MEDIAN ( A ) MEDIAN ( B ) MEDIAN ( B ) MEDIAN OF EXC E S S OF % E X C E S S OF E X C E S S OF % E X C E S S ELEMENT ABUNDANCES ELEMENT ABUNDANCES ELEMENT ABUNDANCES ELEMENT ABUNDANCES UPH 42 0 .05430 0 .05430 1 .09000 0 .00052 0. 0 .00052 0 UP 1 8 0. .33700 0 . 10551 0 .08522 0 . 16700 1 .26500 0 82868 247 . 0 .88063 309 PC 31 0. 2 3800 0 . 12368 0 .09705 0 .20634 1 .62000 0 76764 92 0 .86556 1 18 UPR 24 0. 3 6 2 0 0 0 .07525 0 .06530 0 10435 2 .76000 2 . 17946 378 . 2 0 8 8 9 8 313 LP2 1 1 O. 2 6 7 0 0 0. 17353 0. 12876 0. 32148 1 .28000 0 4 7 5 7 0 77 . 0. 4 1 6 8 7 62 L P t 14 0. 2 6 4 0 0 0 0 8 2 5 9 0. 0 7 0 1 6 0. 1 1925 1 .08500 0. 771 17 246 . 0. 77632 252 LPH 9 0. 1 1800 0. 0 6 2 0 5 0. 0 5 6 4 9 0. 0 7 8 0 9 2 .23000 1 . 0 5 9 6 5 91 . 1 .04090 88 LPR 18 0. 2 4 4 0 0 0. 10399 0. 0 8 4 2 5 0. 16379 1 .72000 0. 98782 160. 1 . 0 3 7 5 8 129 MS 18 0. 2 8 9 0 0 0. 2 8 9 0 0 2 .06500 - o . 0 0 6 6 3 -0. - 0 . 0 0 6 6 3 -0 * - p e r c e n t T A B L E - S e e t e x t f o r d e t a i l s . E x c e s s E l e m e n t A b u n d a n c e s ( A ) a n d ( B ) a r e c a l c u l a t e d f r o m t h e p e l l t e a n d t u r b i d i t e f r a c t i o n s b a s e d o n t h e £ r : A 1 2 0 3 r a t i o means a n d m e d i a n s r e s p e c t i v e l y ( s e e s e c t i o n 3 . 1 ) ; t h e n u m b e r s q u o t e d i n t h e t e x t a r e p r i m a r i l y f r o m c o l u m n s ( A ) . D e c i m a l p l a c e s a r e r e t a i n e d s o t h e e n t i r e d a t a s e t c a n b e a c c o m m o d a t e d . Page ." 310 V A R I A B L E : TOTAL C ( p e r c e n t ) / A 1 2 0 3 ( p e r c e n t ) NUMBER MEDIAN OF DATA VALUE OF L I THOLOGY P O I N T S UPH UP 1 PC UPR LP2 LP 1 LP H LPR MS 42 8 3 1 24 1 1 14 9 18 18 RATIOS 0 . 0 5 3 3 0 1.11000 0 . 7 8 0 0 0 0 . 6 7 7 0 0 O . 9 6 9 0 0 O . 9 7 6 0 0 0 . 0 5 2 9 0 0 . 6 5 5 0 0 0 . 7 4 5 0 0 EXPECTED MEDIAN OF RATIOS 0 . 0 5 3 3 0 0.17 143 0.21687 0 . 0 9 9 9 5 0.35244 O.11683 0.0703 1 0.16772 0 . 7 4 5 0 0 EXPECTED RATIO L I M I T S 0 . 1 2 2 9 6 0 . 1 5 0 9 3 0.07752 0.22993 0.08842 0.05808 0 . 1 2 0 6 9 0 . 3 3 3 7 0 0 . 4 5 1 5 9 0 . 1 6 8 6 0 0 . 8 8 1 4 0 0 . 2 0 5 6 0 0.10646 0 . 3 2 4 6 0 MEDIAN ELEMENT ABUNDANCE 1.11000 5 . 1 1 0 0 0 5 . 4 6 0 0 0 4 . 8 9 5 0 0 5 . 1 8 0 0 0 4 . 0 0 5 0 0 0 . 9 9 0 0 0 4.3950O 3 . 9 8 5 0 0 ( A ) MEDIAN ( A ) MEDIAN ( B ) MEDIAN OF EX C E S S OF % E X C E S S OF E X C E S S ELEMENT ABUNDANCES 0 . 0 0 1 0 3 4.34 1 14 3 . 9 0 5 4 3 4 . 2 0 1 3 3 3.35084 3 . 4 5 6 5 0 - 0 . 3 2 6 9 6 3 . 2 6 9 8 9 - 0 . 0 1 0 4 0 ELEMENT ABUNDANCES 0. 58 0 . 229 . 607 . 183 . 647 . -25 . 27 1 . 0. ELEMENT ABUNDANCES 0 . 0 0 1 0 3 4 . 5 1 4 0 6 4 . 1 7 6 0 8 4.01321 3 . 0 9 0 9 3 3 . 4 7 1 2 2 - 0 . 3 6 8 2 2 3 . 3 9 2 4 8 - 0 . 0 1 0 4 0 (B) MEDIAN OF % E X C E S S ELEMENT ABUNDANCES O. 777 . 325 . 456 . 135. 6 67 . -27 . 313. 0. * - p e r c e n t T A B L E - S e e t e x t f o r d e t a i l s . E x c e s s E l e m e n t A b u n d a n c e s ( A ) a n d ( B ) a r e c a l c u l a t e d f r o m t h e p e l i t e a n d t u r b i d i t e f r a c t i o n s b a s e d o n t h e Z r : A 1 2 0 3 r a t i o means a n d m e d i a n s r e s p e c t i v e l y ( s e e s e c t i o n 3 . 1 ) ; t h e n u m b e r s q u o t e d i n t h e t e x t a r e p r i m a r i l y f r o m c o l u m n s ( A ) . D e c i m a l p l a c e s a r e r e t a i n e d s o t h e e n t i r e d a t a s e t c a n b e a c c o m m o d a t e d . P a g e 311-V A R I A B L E L O I ( p e r c e n t ) / A 1 2 0 3 ( p e r c e n t ) NUMBER MEDIAN EXPECTED OF DATA VALUE OF MEDIAN OF LITHOLOGY P O I N T S RATIOS RATIOS EXPECTED RATIO L I M I T S MEDIAN ELEMENT ABUNDANCE ( A ) MEDIAN OF E X C E S S ELEMENT ABUNDANCES ( A ) MEDIAN ( B ) MEDIAN ( B ) MEDIAN OF % EXCESS OF E X C E S S OF % EXCESS ELEMENT ABUNDANCES ELEMENT ABUNDANCES ELEMENT ABUNDANCES UPH 42 0 .28600 0 .28600 5 .83500 -0 .00506 -0. -0 .00506 -0 UP 1 8 1 .74000 0. .46726 0 .39177 0 . 73213 7 .41000 5 .60955 246 . 5 .92581 297 PC 31 1 .23000 0. .53951 0 43514 0. 937 13 8 .82000 4 95872 129. 5 .37319 157 UPR 24 1 . .24000 0. 35648 0. 3224 1 0. 4 6 2 8 0 9 .09000 6 . 4 6 6 3 0 246 . 6 . 18563 238 LP2 1 1 1 . .45000 0. 76398 0. 5 6 0 5 5 1 . 79086 7 .61000 3 84 174 90. 3 3 6 6 5 9 71 LP 1 14 1 . 5 0 0 0 0 0. 38233 0. 33892 0. 52146 6 2 4 0 0 0 4 . 6 6 0 2 6 305 . 4 . 68023 3 10 LPH 9 0. 33200 0. 31 154 0. 2 9 3 1 6 0. 36642 6 18000 0. 3 7 4 8 8 6 . 0. 3 1 2 6 8 5 LPR 18 1 . 0 8 0 0 0 0. 46 143 0. 38827 0. 7 1675 7 . 6 1000 4 . 4 1746 1 15. 4 . 64333 128 MS 18 1 . 5 0 0 0 0 1 . 5 0 0 0 0 9 . 6 7 5 0 0 -0. 2 3 5 0 0 O. -0. 2 3 5 0 0 0 p e r c e n t T A B L E - S e e t e x t f o r d e t a i l s . E x c e s s E l e m e n t A b u n d a n c e s ( A ) a n d ( B ) a r e c a l c u l a t e d f r o m t h e p e l i t e a n d t u r b i d i t e f r a c t i o n s b a s e d o n t h e Z r : A 1 2 0 3 r a t i o means a n d m e d i a n s r e s p e c t i v e l y ( s e e s e c t i o n 3 . 1 ) ; t h e n u m b e r s q u o t e d i n t h e t e x t a r e p r i m a r i l y f r o m c o l u m n s ( A ) . D e c i m a l p l a c e s a r e r e t a i n e d s o t h e e n t i r e d a t a s e t c a n b e a c c o m m o d a t e d . P a g e 312 V A R I A B L E : S r ( p e r c e n t ) / A 1 2 0 3 ( p e r c e n t ) NUMBER MEDIAN EXPECTED MEDIAN ( A ) MEDIAN ( A ) MEDIAN ( B ) MEDIAN ( B ) MEDIAN OF E X C E S S OF % EXCESS OF E X C E S S OF % E X C E S S L I THOLOGY OF DATA POINTS VALUE OF RATIOS MEDIAN OF RATIOS EXPECTED RATIO L I M I T S ELEMENT ABUNDANCE ELEMENT ABUNDANCES ELEMENT ELEMENT ABUNDANCES ABUNDANCES ELEMENT ABUNDANCI UPH 42 0 .0001490 0 .0001490 29 . 4 9 9 9 8 4 7 0 .036 1062 0. 0 * .0361062 0 UP 1 8 0 .0016910 0 .0010252 0. 0 0 0 6 8 7 8 0 .0019775 63 .9999542 23 .6075439 65 . 34 .0899048 123 PC 31 0 .0012210 0 .0013172 0. 0 0 0 8 8 5 9 0 .0025366 84 .9999847 -6 .6803389 -7 . 9 .5440445 13 UPR 24 0 .0006710 0 .0005173 0. 00034 41 0 .0010062 48 .9999695 1 1 .1569042 30. -3 .4815817 -7 LP2 1 1 0 .0028220 0 .0020728 0. 0 0 1 3 9 7 3 0 .0039847 123 .9999695 27 . 6 2 1 5 3 6 3 38 . 19 .1941376 23 LP 1 14 0 .0019360 0 .0006430 0. 0 0 0 4 2 9 2 0 .0012469 77 .4999695 56 .7296143 273 . 57 .4750366 287 LPH 9 0 .OOO1910 0. 0 0 0 2 8 7 0 0. 0 0 0 1 8 8 2 0. 0OO5662 35 .9999847 - 16 . 5 5 2 5 9 7 0 -36 . - 19 .4001007 -39 LPR 18 0. OO0797O 0. 0010OO4 0. 0 0 0 6 7 1 3 0. 0 0 1 9 3 0 2 57 .9999695 - 12 . 8 1 9 0 8 2 3 -29 . -6 .8203888 -20 MS 18 0 0 0 3 6 0 2 0 0. 0 0 3 6 0 2 0 274 .9997559 -0 .0126101 0. -0 .0126101 0 * - p a r t s p e r m i 1 1 1 o n T A B L E - S e e t e x t f o r d e t a i 1 s . E x c e s s ; E l e m e n t A b u n d a n c e s ( A ) a n d ( B ) a r e c a 1 c u 1 a t e d f r o m t h e p e l i t e a n d t u r b i d i t e f r a c t i o n s b a s e d o n t h e Z r : A 1 2 0 3 r a t i o means a n d m e d i a n s r e s p e c t i v e l y ( s e e s e c t i o n 3 . 1 ) ; t h e n u m b e r s q u o t e d i n t h e t e x t a r e p r i m a r i l y f r o m c o l u m n s ( A ) . D e c i m a l p l a c e s a r e r e t a i n e d s o t h e e n t i r e d a t a s e t c a n b e a c c o m m o d a t e d . P a g e 313 V A R I A B L E : R b ( p e r c e n t ) / A 1 2 0 3 ( p e r c e n t ) L I T H O L O G Y NUMBER OF DATA POINTS MEDIAN VALUE OF RATIOS EXPECTED MEDIAN OF RATIOS EXPECTED RATIO L I M I T S ( A ) MEDIAN ( A ) MEDIAN ( B ) MEDIAN ( B ) MEDIAN MEDIAN OF E X C E S S OF % E X C E S S OF E X C E S S OF % E X C E S S ELEMENT ELEMENT ELEMENT ELEMENT ELEMENT ABUNDANCE ABUNDANCES ABUNDANCES ABUNDANCES ABUNDANCES UPH 42 0 . 0 0 0 8 7 9 0 0 . 0 0 0 8 7 9 0 170.9999847 - 0 . 0 4 7 0 8 7 7 UP 1 8 0 . 0 0 1 0 5 0 0 0 . 0 0 0 8 8 3 8 0 . 0 0 0 8 8 2 0 0.0008891 3 6 . 4 9 9 9 6 9 5 6 . 9 9 3 8 6 6 9 PC 31 0 . 0 0 1 1 0 6 0 0 . 0 0 0 8 8 5 4 0.0008831 0.O0O8922 7 6 . 9 9 9 9 8 4 7 1 5 . 3 7 3 2 3 0 0 UPR 24 0 . 0 0 1 2 7 1 0 0 . 0 0 0 8 8 1 0 0.0008801 0 . 0 0 0 8 8 3 7 8 9 . 9 9 9 9 5 4 2 2 7 . 8 7 8 2 1 9 6 L P 2 11 0 . 0 0 0 7 4 1 0 0 . 0 0 0 8 8 9 6 0 . 0 0 0 8 8 5 9 0.0009001 4 1 . 9 9 9 9 5 4 2 - 8 . 4 4 0 3 8 9 6 LP 1 14 0 . 0 0 1 0 2 6 0 0 . 0 0 0 8 8 1 7 0 . 0 0 0 8 8 0 5 0.0008851 4 1.4999542 6 . 1 5 8 8 8 8 8 L P H 9 0 . 0 0 0 9 7 1 0 0 . 0 0 0 8 7 9 8 0 . 0 0 0 8 7 9 2 0 . 0 0 0 8 8 1 3 1 8 0 . 9 9 9 9 6 9 5 1 6 . 9 2 4 5 1 4 8 LPR 18 0 . 0 0 1 1 2 1 0 0 . 0 0 0 8 8 3 7 0 . 0 0 0 8 8 1 9 O.0008888 7 9 . 4 9 9 9 5 4 2 15.9035521 MS 18 0 . 0 0 0 8 9 8 0 0 . 0 0 0 8 9 8 0 6 1.9999542 0 . 2 6 2 5 3 9 8 -O. 25 . 25 . 50. - 17 . 17 . 10. 39. 0. - 0 . 0 4 7 0 8 7 7 7 . 0 4 3 6 6 6 8 1 5 . 4 6 2 6 3 6 9 2 7 . 8 0 7 9 0 7 1 -8 .5146351 6 . 1642952 1 6 . 9 0 6 4 7 8 9 1 5 . 9 3 5 4 0 3 8 0 . 2 6 2 5 3 9 8 -0. 25 . 25 . 50. -17 . 17 . 10. 39. 0. p a r t s p e r ml 11 i o n T A B L E - S e e t e x t f o r d e t a i l s . E x c e s s E l e m e n t A b u n d a n c e s ( A ) a n d ( B ) a r e c a l c u l a t e d f r o m t h e p e l i t e a n d t u r b i d i t e f r a c t i o n s b a s e d o n t h e Z r : A 1 2 0 3 r a t i o means a n d m e d i a n s r e s p e c t i v e l y ( s e e s e c t i o n 3 . 1 ) ; t h e n u m b e r s q u o t e d i n t h e t e x t a r e p r i m a r i l y f r o m c o l u m n s ( A ) . D e c i m a l p l a c e s a r e r e t a i n e d s o t h e e n t i r e d a t a s e t c a n b e a c c o m m o d a t e d . P a g e 314 V A R I A B L E U ( p e r c e n t ) / A I 2 0 3 ( p e r c e n t ) L I T H O L O G Y NUMBER OF DATA P O I N T S MEDIAN VALUE OF RATIOS EXPECTED MEDIAN OF RATIOS EXPECTED RATIO LIMITS MEDIAN ELEMENT ABUNDANCE ( A ) MEDIAN ( A ) MEDIAN ( B ) MEDIAN ( B ) MEDIAN OF EX C E S S OF % EXCESS OF E X C E S S OF % EXCESS ELEMENT ABUNDANCES ELEMENT ABUNDANCES ELEMENT ABUNDANCES ELEMENT ABUNDANCES UPH 42 0 . 0 0 0 0 1 0 4 0 . 0 0 0 0 1 0 4 1.9999981 -O.0077191 UP 1 8 0 . 0 0 0 1 1 9 0 0.000019G 0 . 0 0 0 0 1 6 0 0 . 0 0 0 0 2 9 5 4.4999962 3 . 8 6 7 2 9 0 5 PC 31 0.00 0 0 7 2 4 0 . 0 0 0 0 2 2 6 0.0000181 0 . 0 0 0 0 3 5 3 4.9999981 3 . 4 2 6 5 3 0 8 UPR 24 0 . 0 0 0 0 6 8 5 0 . 0 0 0 0 1 4 3 0 . 0 0 0 0 1 2 4 0 . 0 0 0 0 1 9 4 4.999998 1 3.9596 109 LP2 11 0 . 0 0 0 0 9 0 7 0 . 0 0 0 0 3 0 5 0 . 0 0 0 0 2 3 4 0 . 0 0 0 0 5 0 4 4.9999981 3 . 3 2 0 1 2 7 5 LP 1 14 0 . 0 0 0 1 2 0 0 0 . 0 0 0 0 1 5 6 0 . 0 0 0 0 1 3 3 0 . 0 0 0 0 2 1 9 4.999998 1 4 . 2 6 6 8 4 6 7 LPH 9 0 . 0 0 0 0 1 6 0 0 . 0 0 0 0 1 1 8 0 . 0 0 0 0 1 0 8 0 . 0 0 0 0 1 4 8 2 . 9 9 9 9 9 9 0 0 . 7 8 1 7 0 4 4 LPR 18 0.0000801 0 0 0 0 0 1 9 3 0 . 0 0 0 0 1 5 9 0 . 0 0 0 0 2 9 0 5.499997 1 4 . 0 4 0 0 3 2 4 MS 16 0.00 0 0 4 6 4 0 . 0 0 0 0 4 6 4 3.9999971 0 . 0 4 4 3 2 0 8 -0. 6 1 5 . 2 18. 38 1 . 198 . 597 . 35 . 288 . 0. - 0 . 0 0 7 7 1 9 1 3 . 9 5 7 1 9 6 2 3 . 5 9 5 9 0 6 3 3 . 8 0 6 9 2 7 7 3 . 1 8 3 4 5 5 5 4 . 2 7 8 2 0 6 8 0 . 7 4 7 3 1 6 7 4 . 1315374 0 . 0 4 4 3 2 0 8 -0. 733 . 256. 3 1 9 . 175 . 6 0 8 . 33. 3 14 . 0. * - p a r t s p e r m i l l i o n T A B L E - S e e t e x t f o r d e t a i l s . E x c e s s E l e m e n t A b u n d a n c e s ( A ) a n d ( B ) a r e c a l c u l a t e d f r o m t h e p e l i t e a n d t u r b i d i t e f r a c t i o n s b a s e d o n t h e Z r : A 1 2 0 3 r a t i o means a n d m e d i a n s r e s p e c t i v e l y ( s e e s e c t i o n 3 . 1 ) ; t h e n u m b e r s q u o t e d i n t h e t e x t a r e p r i m a r i l y f r o m c o l u m n s ( A ) . D e c i m a l p l a c e s a r e r e t a i n e d s o t h e e n t i r e d a t a s e t c a n b e a c c o m m o d a t e d . Page 315 V A R I A B L E : T h ( p e r c e n t ) / A 1 2 0 3 ( p e r c e n t ) NUMBER MEDIAN EXPECTED MEDIAN ( A ) MEDIAN ( A ) MEDIAN ( B ) MEDIAN ( B ) MEDIAN OF E X C E S S OF % EXCE S S OF E X C E S S OF % E X C E S S LITHOLOGY OF DATA P O I N T S VALUE OF RATIOS MEDIAN OF RATIOS EXPECTED RATIO L I M I T S ELEMENT ABUNDANCE ELEMENT ABUNDANCES ELEMENT ABUNDANCES ELEMENT ABUNDANCES ELEMENT ABUNDANCES UPH 42 0 .0000707 0 .0000707 13 .9999990 -0 .0107591 -0 . -o * .0107591 -0 . UP 1 8 0 .0002440 0 .0000975 0 .000087 2 0 .0001265 9 .9999990 6 . 3 4 6 3 2 0 2 205 . 6 .6092834 233 . PC 3 0 0 .0001720 0 .0001064 0 .0000932 0 .00014 36 1 1 .9999981 4 .5677338 66 . 5 .0449648 73 . UPR 23 0 .0001810 0 .0000820 0 .0000767 0 .0000969 12 .9999981 7 .5820484 140. 7 .1559143 105 . LP2 1 1 0 .0002 170 0. 0 0 0 1 2 9 5 0 0 0 0 1 0 8 8 0 0 0 0 1 8 7 6 10 .9999990 4 .7602873 76 . 4 .4105825 67 . LP 1 14 0. .0002520 0. 0 0 0 0 8 5 8 0 0 0 0 0 7 9 3 0 .0001043 9 .9999990 6 .593377 1 194 . 6 .6213818 196 . L P H 9 0 .0000662 0 0 0 0 0 7 4 9 0 .0000719 0 0 0 0 0 8 3 5 12 .9999981 - 1 . 7 14692 1 - 12 . - 1 .8201551 - 12 . LPR 18 0. .0001540 0. 0 0 0 0 9 6 7 0. 0 0 0 0 8 6 7 0. .0001251 10 .9999990 4 .2030048 67 . 4 . 4 3 3 3 2 1 0 73 . MS 17 0. 0 0 0 1 7 6 0 0. 0 0 0 1 7 6 0 1 1 9 9 9 9 9 8 1 0 .0320049 0. 0 .0320049 0. p a r t s p e r mi 11 i o n T A B L E - S e e t e x t f o r d e t a i l s . E x c e s s E l e m e n t A b u n d a n c e s ( A ) a n d ( B ) a r e c a l c u l a t e d f r o m t h e p e l i t e a n d t u r b i d i t e f r a c t i o n s b a s e d o n t h e Z r : A 1 2 0 3 r a t i o means a n d m e d i a n s r e s p e c t i v e l y ( s e e s e c t i o n 3 . 1 ) ; t h e n u m b e r s q u o t e d i n t h e t e x t a r e p r i m a r i l y f r o m c o l u m n s ( A ) . D e c i m a l p l a c e s a r e r e t a i n e d s o t h e e n t i r e d a t a s e t c a n b e a c c o m m o d a t e d . P a g e 316 V A R I A B L E : G a ( p e r c e n t ) / A 1 2 0 3 ( p e r c e n t ) L ITHOLOGY NUMBER MEDIAN OF DATA VALUE OF POINTS RATIOS EXPECTED MEDIAN OF RATIOS EXPECTED RATIO L I M I T S MEDIAN ELEMENT ABUNDANCE ( A ) MEDIAN ( A ) MEDIAN ( B ) MEDIAN ( B ) MEDIAN OF E X C E S S OF % E X C E S S OF E X C E S S OF % E X C E S S ELEMENT ABUNDANCES ELEMENT ABUNDANCES ELEMENT ABUNDANCES ELEMENT ABUNDANCES UPH 42 0 . 0 0 0 1 0 5 0 0 . 0 0 0 1 0 5 0 2 0 . 9 9 9 9 6 9 5 0 . 0 0 0 0 2 1 0 UP 1 8 0 . 0 0 0 1 5 6 0 0 . 0 0 0 1 0 0 3 0.0001021 0.0000951 5 . 9 9 9 9 9 9 0 2 . 0 9 5 9 0 1 5 PC 30 O . 0 0 0 1 3 5 0 0 . 0 0 0 0 9 8 7 0 . 0 0 0 1 0 1 0 0.0000921 9 . 9 9 9 9 9 9 0 2 . 2 3 7 9 5 6 0 UPR 23 0 . 0 0 0 2 0 4 0 0 . 0 0 0 1 0 3 0 0 . 0 0 0 1 0 3 9 0 . 0 0 0 1 0 0 4 14.9999971 7 . 4 2 8 7 8 7 2 LP2 11 0.OO016O0 0 . 0 0 0 0 9 4 6 0 . 0 0 0 0 9 8 3 0 . 0 0 0 0 8 4 3 8.9999981 3 . 6 3 4 9 8 6 9 LP 1 14 0 . 0 0 0 1 4 8 0 0 . 0 0 0 1 0 2 3 0 . 0 0 0 1 0 3 5 0 . 0 0 0 0 9 9 1 6.4999981 2 . 0 3 3 2 6 3 2 LPH 9 0 . 0 0 0 1 0 7 0 0 . 0 0 0 1 0 4 3 0 . 0 0 0 1 0 4 8 0 . 0 0 0 1 0 2 7 19.9999847 0 . 4 7 3 2 2 6 0 LPR 18 O . 0 0 0 1 3 3 0 0 . 0 0 0 1 0 0 4 0.0001022 0 . 0 0 0 0 9 5 4 9 . 9 9 9 9 9 9 0 2 . 6 0 6 3 9 8 6 MS 15 0 . 0 0 0 0 8 6 4 0 . 0 0 0 0 8 6 4 5 . 9 9 9 9 9 9 0 - 0 . 0 0 2 5 5 8 8 . -0. 62 . 36 . 98 . 68 . 46 . 2 . 3 1 . -O. 0 . 0 0 0 0 2 1 0 2 . 0 4 7 1 5 1 6 2 . 1581745 7 . 5 0 8 2 1 5 0 3 . 7 0 7 6 4 8 3 2 . 0 2 7 8 2 1 5 O . 4 9 0 9 9 0 9 2 .5541515 - 0 . 0 0 2 5 5 8 8 -O. 59 . 35 . 100. 7 0 . 46 . 3. 30. -0. * - p a r t s p e r m i l l i o n T A B L E - S e e t e x t f o r d e t a i l s . E x c e s s E l e m e n t A b u n d a n c e s ( A ) a n d ( B ) a r e c a l c u l a t e d f r o m t h e p e l i t e a n d t u r b i d i t e f r a c t i o n s b a s e d o n t h e Z r : A 1 2 0 3 r a t i o means a n d m e d i a n s r e s p e c t i v e l y ( s e e s e c t i o n 3 . 1 ) ; t h e n u m b e r s q u o t e d i n t h e t e x t a r e p r i m a r i l y f r o m c o l u m n s ( A ) . D e c i m a l p l a c e s a r e r e t a i n e d s o t h e e n t i r e d a t a s e t c a n b e a c c o m m o d a t e d . P a g e 317 V A R I A B L E : C r ( p e r c e n t ) / A 1 2 0 3 ( p e r c e n t ) L I T H O LOGY NUMBER MEDIAN OF DATA VALUE OF P O I N T S RATIOS EXPECTED MEDIAN OF RATIOS EXPECTED RATIO L I M I T S ( A ) MEDIAN ( A ) MEDIAN ( B ) MEDIAN ( B ) MEDIAN MEDIAN OF E X C E S S OF % E X C E S S OF E X C E S S OF % E X C E S S ELEMENT ELEMENT ELEMENT ELEMENT ELEMENT ABUNDANCE ABUNDANCES ABUNDANCES ABUNDANCES ABUNDANCES UPH 42 0 . 0 0 0 0 6 9 2 0 . 0 0 0 0 6 9 2 1 3 . 9 9 9 9 9 9 0 - 0 . 0 0 7 7 7 1 9 UP 1 8 0 . 0 0 0 2 4 9 0 O 0 0 0 0 9 7 1 0 . 0 0 0 0 8 6 4 0 . 0 0 0 1 2 7 4 10.4999981 6.2697287 PC 31 0 . 0 0 0 1 5 7 0 0 . 0 0 0 1 0 6 4 0 . 0 0 0 0 9 2 7 0 . 0 0 0 1 4 5 2 1 0 . 9 9 9 9 9 9 0 3 . 6 6 6 9 4 2 6 UPR 24 0 . 0 0 0 1 7 7 0 0 . 0 0 0 0 8 0 9 0.0000754 0 O 0 0 O 9 6 5 12.9999981 7 . 0 8 2 7 4 2 7 LP2 11 0 . 0 0 0 2 1 8 0 0 . 0 0 0 1 3 0 5 0 . 0 0 0 1 0 9 0 0.0001911 11.9999981 4 . 8 1 1 3 5 3 7 LP 1 14 0 . 0 0 0 2 2 4 0 0 . 0 0 0 0 8 5 0 0.0000781 0 . 0 0 0 1 0 4 2 8.9999981 5 . 6 2 7 2 9 2 6 L P H 9 0 . 0 0 0 0 7 8 3 0 . 0 0 0 0 7 3 6 0 . 0 0 0 0 7 0 5 0 . 0 0 0 0 8 2 5 1 3 . 9 9 9 9 9 9 0 0 . 8 3 9 8 7 3 7 LPR 18 0 . 0 0 0 1 5 9 0 0 . 0 0 0 0 9 6 3 0 . 0 0 0 0 8 5 9 0 . 0 0 0 1 2 5 9 1 1 . 4 9 9 9 9 9 0 4.395872 1 MS 18 0 . 0 0 0 1 7 9 0 0 . 0 0 0 1 7 9 0 12.9999981 - 0 . 0 5 1 4 9 8 6 -0. 151 . 50. 120. 67 . 167 . 6 . 68 . - 0 . - 0 . 0 0 7 7 7 1 9 6 . 6 8 2 5 1 1 3 4. 1783295 6.6 164484 4 . 3 9 4 5 0 3 6 5 . 6 5 6 4 9 7 0 0 . 7 3 9 7 5 8 8 4 . 6 4 8 7 5 7 0 - 0 . 0 5 1 4 9 8 6 -0. 175 . 61 . 104 . 58 . 169 . 6 . 74 . - 0 . p a r t s p e r mi 11 I o n T A B L E - S e e t e x t f o r d e t a i l s . E x c e s s E l e m e n t A b u n d a n c e s ( A ) a n d ( B ) a r e c a l c u l a t e d f r o m t h e p e l i t e a n d t u r b i d i t e f r a c t i o n s b a s e d o n t h e Z r : A 1 2 0 3 r a t i o means a n d m e d i a n s r e s p e c t i v e l y ( s e e s e c t i o n 3 . 1 ) ; t h e n u m b e r s q u o t e d i n t h e t e x t a r e p r i m a r i l y f r o m c o l u m n s ( A ) . D e c i m a l p l a c e s a r e r e t a i n e d s o t h e e n t i r e d a t a s e t c a n b e a c c o m m o d a t e d . P a g e 318- . :. V A R I A B L E : Z r ( p e r c e n t ) / A 1 2 0 3 ( p e r c e n t ) L ITHOLOGY NUMBER MEDIAN OF DATA VALUE OF P O I N T S RATIOS EXPECTED MEDIAN OF RATIOS EXPECTED RATIO L I M I T S ( A ) MEDIAN ( A ) MEDIAN ( B ) MEDIAN ( B ) MEDIAN MEDIAN OF EX C E S S OF % E X C E S S OF E X C E S S OF % E X C E S S ELEMENT ELEMENT ELEMENT ELEMENT ELEMENT ABUNDANCE ABUNDANCES ABUNDANCES ABUNDANCES ABUNDANCES UPH 42 0 . 0 0 0 7 5 9 0 UP 1 6 0 . 0 0 1 0 2 2 0 PC 31 0 . 0 0 1 1 6 2 0 UPR 2 3 0 . 0 0 1 0 0 4 0 LP2 9 0 . 0 0 1 6 9 0 0 LP 1 12 0 . 0 0 0 9 6 2 0 LPH 6 0.O00826O LPR 18 0 . 0 0 1 0 7 6 0 MS 13 0 . 0 0 2 2 4 5 0 0 . 0 0 0 7 5 9 0 151.9999542 0 . 0 1 6 2 2 3 6 0 . 0 0 1 1 3 6 6 0 . 0 0 0 9 9 1 3 0 . 0 0 1 5 4 6 6 5 0 . 9 9 9 9 5 4 2 - 4 . 8 2 0 0 5 6 9 0 . 0 0 1 2 6 2 4 0 . 0 0 1 0 7 6 6 0.0017871 8 6 . 9 9 9 9 6 9 5 - 6 . 9 7 9 8 8 9 9 0 . 0 0 0 9 1 7 8 0.0008431 0 . 0 0 1 1 2 8 5 7 5 . 9 9 9 9 6 9 5 6 . 5 2 3 2 4 3 9 0 . 0 0 1 5 8 7 6 0 . 0 0 1 2 9 6 9 0 . 0 0 2 4 0 9 3 9 4 . 9 9 9 9 5 4 2 5 . 7 7 4 4 2 2 6 0.0OO9720 0 . 0 0 0 8 7 9 8 0.0012321 4 1 . 9 9 9 9 5 4 2 0 . 0 6 4 2 3 5 6 0 0 0 0 8 1 8 5 0 . 0 0 0 7 7 5 9 0 . 0 0 0 9 3 8 9 150.9999847 1.7424297 0 . 0 0 1 1 2 5 9 0.0009841 0 . 0 0 1 5 2 6 3 8 7 . 4 9 9 9 3 9 0 - 3 . 1 5 8 6 5 4 2 0 . 0 0 2 2 4 5 0 1 3 4 . 9 9 9 9 6 9 5 0 . 0 3 1 5 5 3 2 -0. -10. -8 . 9. 6 . - 1 . 1 . -4 . 0. 0 . 0 1 6 2 2 3 6 1.1116495 - 0 . 0 0 6 7 8 0 0 - 0 . 0 0 5 3 6 4 4 0 . 0 1 8 7 7 5 5 0 . 4 0 6 3 7 0 9 0 . 3 8 5 4 1 8 5 - 0 . 0 0 5 6 2 5 2 0 . 0 3 1 5 5 3 2 -0. -0. -0. -0. 0. 0. -0. -O. 0. * - p a r t s p e r mi 11 i o n T A B L E - S e e t e x t f o r d e t a i l s . E x c e s s E l e m e n t A b u n d a n c e s ( A ) a n d ( B ) a r e c a l c u l a t e d f r o m t h e p e l i t e a n d t u r b i d i t e f r a c t i o n s b a s e d o n t h e Z r : A 1 2 0 3 r a t i o means a n d m e d i a n s r e s p e c t i v e l y ( s e e s e c t i o n 3 . 1 ) ; t h e n u m b e r s q u o t e d i n t h e t e x t a r e p r i m a r i l y f r o m c o l u m n s ( A ) . D e c i m a l p l a c e s a r e r e t a i n e d s o t h e e n t i r e d a t a s e t c a n b e a c c o m m o d a t e d . P a g e 319 V A R I A B L E : M o ( p e r c e n t ) / A 1 2 0 3 ( p e r c e n t ) L I T H O LOGY NUMBER OF DA TA P O I N T S MEDIAN VALUE OF RATIOS EXPECTED MEDIAN OF RATIOS EXPECTED RATIO L I M I T S ( A ) MEDIAN ( A ) MEDIAN ( B ) MEDIAN ( B ) MEDIAN MEDIAN OF EX C E S S OF % EXCESS OF E X C E S S OF % E X C E S S ELEMENT ELEMENT ELEMENT ELEMENT ELEMENT ABUNDANCE ABUNDANCES ABUNDANCES ABUNDANCES ABUNDANCES UPH 4 2 0 . 0 0 0 0 3 9 5 0 . 0 0 0 0 3 9 5 UP 1 8 0 . 0 0 0 5 6 8 0 0 . 0 0 0 0 6 2 8 0 . 0 0 0 0 5 3 8 PC 31 0 . 0 0 0 4 5 5 0 0 . 0 0 0 0 7 0 5 0.0000591 UPR 24 0 . 0 0 0 5 3 8 0 0 . 0 0 0 0 4 9 3 0 . 0 0 0 0 4 4 7 LP2 11 0 . 0 0 0 4 9 10 0 . 0 0 0 0 9 0 6 0 . 0 0 0 0 7 2 6 LP 1 14 0 . 0 0 0 6 7 2 0 0 . 0 0 0 0 5 2 6 0 . 0 0 0 0 4 6 9 L P H 9 0.0000427 0 . 0 0 0 0 4 3 2 0 . 0 0 0 0 4 0 5 LPR 18 0 . 0 0 0 4 0 1 0 O.000062 1 0 . 0 0 0 0 5 3 4 MS 18 0 . 0 0 0 1 3 10 0 . 0 0 0 1 3 10 7.4999981 0 . 0 0 0 0 8 8 0 2 4 . 4 9 9 9 8 4 7 0 . 0 0 0 1 0 2 8 3 2 . 9 9 9 9 8 4 7 0 . 0 0 0 0 6 2 3 3 7 . 9 9 9 9 8 4 7 0.0001411 2 7 . 9 9 9 9 8 4 7 0 . 0 0 0 0 6 8 7 2 8 . 4 9 9 9 8 4 7 0 . 0 0 0 0 5 0 6 7.999997 1 0 . 0 0 0 0 8 6 8 2 9 . 4 9 9 9 8 4 7 7.9999971 - 0 . 0 1 3 2 2 1 3 2 1 . 8 9 1 6 4 7 3 2 7 . 9 2 9 1 9 9 2 3 4 . 4 4 8 6 6 9 4 2 2 . 8 3 8 3 6 3 6 2 6 . 7 0 2 6 8 2 5 - 0 . 0 8 5 5 1 1 7 2 4 . 0 8 9 5 8 4 4 O 0 0 0 2 0 3 7 0. - 0 . 0 1 3 2 2 1 3 935. 22. 1851 196 55 1 . 2 8 . 3 7 3 9 0 1 4 9 7 0 . 3 4 . 0 6 5 6 7 3 8 442. 2 2 . 4 7 9 0 0 3 9 1486. 2 6 . 7 2 3 6 1 7 6 - 1 . -0. 1 7 2 9 0 7 0 44 6 . 2 4 . 3 5 7 3 3 0 3 0. 0 . 0 0 0 2 0 3 7 O. 1066 . 6 1 3 . 8 6 6 . 407 . 1504 . -2 . 474 . 0. * - p a r t s p e r m i l l i o n T A B L E - S e e t e x t f o r d e t a i l s . E x c e s s E l e m e n t A b u n d a n c e s ( A ) a n d ( B ) a r e c a l c u l a t e d f r o m t h e p e l i t e a n d t u r b i d i t e f r a c t i o n s b a s e d o n t h e Z r : A 1 2 0 3 r a t i o means a n d m e d i a n s r e s p e c t i v e l y ( s e e s e c t i o n 3 . 1 ) : t h e n u m b e r s q u o t e d i n t h e t e x t a r e p r i m a r i l y f r o m c o l u m n s ( A ) . D e c i m a l p l a c e s a r e r e t a i n e d s o t h e e n t i r e d a t a s e t c a n b e a c c o m m o d a t e d . Page 320 V A R I A B L E : C u ( p e r c e n t ) / A 1 2 0 3 ( p e r c e n t ) L ITHOLOGY NUMBER OF DATA P O I N T S MEDIAN VALUE OF RATIOS EXPECTED MEDIAN OF RATIOS EXPECTED RATIO L I M I T S ( A ) MEDIAN ( A ) MEDIAN ( B ) MEDIAN ( B ) MEDIAN MEDIAN OF E X C E S S OF % E X C E S S OF E X C E S S OF % E X C E S S ELEMENT ELEMENT ELEMENT ELEMENT ELEMENT ABUNDANCE ABUNDANCES ABUNDANCES ABUNDANCES ABUNDANCES UPH 42 0 . 0 0 0 2 0 6 0 0 . 0 0 0 2 0 6 0 UP 1 8 0 . 0 0 0 5 6 3 0 0 . 0 0 0 2 2 2 0 0.0002 159 PC 31 O . 0 0 0 4 3 7 0 0 . 0 0 0 2 2 7 4 0.0002 195 UPR 24 0 . 0 0 0 4 6 4 0 0.0002 127 0 . 0 0 0 2 0 9 6 L P 2 11 0 . 0 0 0 6 3 3 0 0.00024 12 0 0 0 0 2 2 8 8 LP 1 14 0 . 0 0 0 6 1 7 0 0.0002 150 0.0002111 L P H 9 0 . 0 0 0 2 3 5 0 0 . 0 0 0 2 0 8 5 0.0002067 LPR 18 0 . 0 0 0 4 7 6 0 0.00022 16 0.0002 156 MS 18 0 . 0 0 0 2 6 9 0 0 . 0 0 0 2 6 9 0 3 9 . 4 9 9 9 5 4 2 0 . 0 0 0 2 3 9 4 2 3 . 9 9 9 9 8 4 7 0 . 0 0 0 2 4 9 6 2 9 . 9 9 9 9 8 4 7 0 00022 17 3 3 . 9 9 9 9 8 4 7 0 . 0 0 0 2 7 6 0 3 0 . 9 9 9 9 8 4 7 0.0002261 2 4 . 9 9 9 9 8 4 7 0 . 0 0 0 2 1 3 6 4 2 . 9 9 9 9 6 9 5 0 . 0 0 0 2 3 8 6 3 2 . 9 9 9 9 8 4 7 14 . 9 9 9 9 9 7 1 - 0 . 0 2 0 1 8 6 4 1 6 . 2 4 2 3 7 0 6 14 . 6 5 3 8 3 1 5 19.0232391 1 8 . 4 6 3 1 8 0 5 1 6 . 1 0 8 0 1 7 0 4 . 7 1 5 4 9 3 2 1 6 . 8 2 0 8 0 0 8 - 0 . 1 9 2 0 8 6 4 -O. - 0 . 0 2 0 1 8 6 4 164. 1 6 . 4 6 7 0 7 1 5 110. 1 4 . 9 0 3 8 1 7 2 116. 1 8 .7397614 2 16. 1 8 . 3 0 9 5 2 4 5 2 0 5 . 1 6 . 1 2 3 5 1 9 9 13. 4 . 6 5 8 0 4 8 6 115. 16.9610291 0. - 0 . 1 9 2 0 8 6 4 -0. 170. 1 14 . 112. 2 1 1 . 205 . 12 . 117. O. * - p a r t s p e r m i l l i o n T A B L E - S e e t e x t f o r d e t a i l s . E x c e s s E l e m e n t A b u n d a n c e s ( A ) a n d ( B ) a r e c a l c u l a t e d f r o m t h e p e l l t e a n d t u r b i d i t e f r a c t i o n s b a s e d o n t h e Z r : A 1 2 0 3 r a t i o means a n d m e d i a n s r e s p e c t i v e l y ( s e e s e c t i o n 3 . 1 ) ; t h e n u m b e r s q u o t e d i n t h e t e x t a r e p r i m a r i l y f r o m c o l u m n s ( A ) . D e c i m a l p l a c e s a r e r e t a i n e d s o t h e e n t i r e d a t a s e t c a n b e a c c o m m o d a t e d . P a g e 321 V A R I A B L E : A g ( p e r c e n t ) / A 1 2 0 3 ( p e r c e n t ) L I T H O LOGY NUMBER MEDIAN OF DATA VALUE OF P O I N T S RATIOS EXPECTED MEDIAN OF •RATIOS EXPECTED RATIO L I M I T S ( A ) MEDIAN ( A ) MEDIAN ( B ) MEDIAN ( B ) MEDIAN MEDIAN OF E X C E S S OF % E X C E S S OF E X C E S S OF % E X C E S S ELEMENT ELEMENT ELEMENT ELEMENT ELEMENT ABUNDANCE ABUNDANCES ABUNDANCES ABUNDANCES ABUNDANCES UPH UP 1 PC UPR LP2 LP 1 LPH LPR MS 42 8 3 1 24 1 1 14 9 18 18 0 . 0 0 0 0 0 0 5 0 . 0 0 0 0 0 5 3 0 . 0 0 0 0 0 8 5 0 . 0 0 0 0 1 3 5 0 . 0 0 0 0 0 5 3 0 . 0 0 0 0 1 0 5 0.000002 1 0 . 0 0 0 0 0 6 5 0 . 0 0 0 0 0 8 7 0 . 0 0 0 0 0 0 5 0 . 0 0 0 0 0 2 6 0 . 0 0 0 0 0 3 3 O.OOOOO14 0.0 0 0 0 0 5 1 O.OOOOO17 0 . 0 0 0 0 0 0 8 0 . 0 0 0 0 0 2 5 0 . 0 0 0 0 0 8 7 O.OOOOO18 0. 0 0 0 0 0 2 3 0 . 0 0 0 0 0 1 0 O.0000035 0.OOOOO12 0. 0 0 0 0 0 0 6 O.OOOOO17 O.00OO049 0 . 0 0 0 0 0 6 2 0 . 0 0 0 0 0 2 5 O . 0 0 0 0 0 9 6 0 . 0 0 0 0 0 3 1 0.OOOOO15 0 . 0 0 0 0 0 4 7 0 . 0 9 9 9 9 9 9 0 . 1 9 9 9 9 9 9 O . 5 9 9 9 9 9 9 0 . 9 9 9 9 9 9 9 0 . 3 0 0 0 0 0 0 O . 3 4 9 9 9 9 8 0 . 3 9 9 9 9 9 8 O . 4 9 9 9 9 9 8 0 . 6 4 9 9 9 9 8 - 0 . 0 0 0 0 7 1 8 0 . 1 0 2 1 6 2 1 O . 3 6 8 2 4 9 6 O . 8 9 6 3 5 6 5 0 . 0 1 4 6 7 8 1 0 . 2 9 4 3 3 2 3 0 . 2 4 3 1 4 1 9 O . 3 1 4 6 0 3 5 0 . 0 0 0 1 1 0 5 -O. 105 . 159 . 872 . 5 . 526 . 155 . 170. 0. - 0 . 0 0 0 0 7 18 O.126082 1 0 . 4 0 7 3 7 0 1 0 . 8 6 0 5 9 0 8 - 0 . 0 1 7 0 6 2 3 0 . 2 9 6 1 5 3 0 O . 2 3 5 2 5 7 6 0 . 3 3 4 7 9 1 7 0 . 0 0 0 1 1 0 5 -0. 171 . 21 1 . 6 2 3 . -5 . 547 . 143 . 203 . 0. * - p a r t s p e r m i l l i o n T A B L E - S e e t e x t f o r d e t a i l s . E x c e s s E l e m e n t A b u n d a n c e s ( A ) a n d ( B ) a r e c a l c u l a t e d f r o m t h e p e l i t e a n d t u r b i d i t e f r a c t i o n s b a s e d o n t h e Z r : A 1 2 0 3 r a t i o means a n d m e d i a n s r e s p e c t i v e l y ( s e e s e c t i o n 3 . 1 ) ; t h e n u m b e r s q u o t e d i n t h e t e x t a r e p r i m a r i l y f r o m c o l u m n s ( A ) . D e c i m a l p l a c e s a r e r e t a i n e d s o t h e e n t i r e d a t a s e t c a n b e a c c o m m o d a t e d . P a g e 322 V A R I A B L E : N i ( p e r c e n t ) / A 1 2 0 3 ( p e r c e n t ) L I T H O L O G Y NUMBER OF DATA P O I N T S MEDIAN VALUE OF RATIOS EXPECTED MEDIAN OF RATIOS EXPECTED RATIO L I M I T S ( A ) MEDIAN ( A ) MEDIAN ( B ) MEDIAN ( B ) MEDIAN MEDIAN OF EX C E S S OF % EXCESS OF E X C E S S OF % E X C E S S ELEMENT ELEMENT ELEMENT ELEMENT ELEMENT ABUNDANCE ABUNDANCES ABUNDANCES ABUNDANCES ABUNDANCES UPH 42 0 . 0 0 0 3 1 6 0 0 . 0 0 0 3 1 6 0 6 0 . 9 9 9 9 8 4 7 - 0 . 0 5 7 7 2 3 4 UP 1 8 0 . 0 0 1 6 4 5 0 0 . 0 0 0 3 4 8 8 0 . 0 0 0 3 3 6 2 0 . 0 0 0 3 8 4 4 7 3 . 4 9 9 9 6 9 5 5 9 . 7 5 6 6 6 8 1 PC 31 0 . 0 0 1 0 8 6 0 0 0 0 0 3 5 9 7 0.OOO3436 0 . 0 0 0 4 0 5 3 7 9 . 9 9 9 9 6 9 5 5 5 . 5 3 7 2 9 2 5 UPR 24 0 . 0 0 1 1 9 9 0 0 . 0 0 0 3 2 9 8 0 . 0 0 0 3 2 3 3 0 0 0 0 3 4 8 1 8 7 . 9 9 9 9 8 4 7 6 3 . 1 7 8 3 4 4 7 L P 2 11 0 . 0 0 1 2 3 9 0 0 . 0 0 0 3 8 8 0 0 . 0 0 0 3 6 2 7 0 . 0 0 0 4 5 9 2 6 8 . 9 9 9 9 6 9 5 4 9 . 4 5 8 5 1 1 4 LP 1 14 0 . 0 0 1 5 3 6 0 0 . 0 0 0 3 3 4 5 0 . 0 0 0 3 2 6 5 0.0003571 6 8 . 4 9 9 9 5 4 2 5 3 . 7 6 4 8 3 1 5 L P H 9 0 . 0 0 0 3 6 3 0 0 . 0 0 0 3 2 1 2 0 . 0 0 0 3 1 7 5 0 . 0 0 0 3 3 1 6 6 7 . 9 9 9 9 8 4 7 7 . 8 4 4 5 6 7 3 LPR 18 0 . 0 0 0 9 8 5 0 0 . 0 0 0 3 4 7 9 0 . 0 0 0 3 3 5 6 0 . 0 0 0 3 8 2 6 7 4 . 9 9 9 9 5 4 2 4 6 . 4 9 9 9 5 4 2 MS 18 0 . 0 0 0 4 4 5 0 0 . 0 0 0 4 4 5 0 2 9 . 9 9 9 9 8 4 7 - 0 . 2 5 6 2 2 7 8 - 0 . 0 5 7 7 2 3 4 6 0 . 1 4 9 0 4 7 9 189. 5 6 . 2 5 1 4 6 4 8 305. 6 2 . 6 9 3 8 3 2 4 4 8 . 9 4 2 0 7 7 6 5 3 . 8 0 2 9 0 2 2 7 . 7 2 1 3 7 1 7 4 6 . 8 1 7 6 8 8 0 - 0 . 2 5 6 2 2 7 8 -0. 488 . 2 19. 372 . 13. 183 . O. -0. 505 . 196 . 296 . 2 12. 373 . 13 . 187 . 0. p a r t s p e r tn 11 1 1 o n T A B L E - S e e t e x t f o r d e t a i l s . E x c e s s E l e m e n t A b u n d a n c e s ( A ) a n d ( B ) a r e c a l c u l a t e d f r o m t h e p e l i t e a n d t u r b i d i t e f r a c t i o n s b a s e d o n t h e Z r : A 1 2 0 3 r a t i o means a n d m e d i a n s r e s p e c t i v e l y ( s e e s e c t i o n 3 . 1 ) ; t h e n u m b e r s q u o t e d i n t h e t e x t a r e p r i m a r i l y f r o m c o l u m n s ( A ) . D e c i m a l p l a c e s a r e r e t a i n e d s o t h e e n t i r e d a t a s e t c a n b e a c c o m m o d a t e d . P a g e 323 V A R I A B L E : C o ( p e r c e n t ) / A 1 2 0 3 ( p e r c e n t ) L ITHOLOGY NUMBER OF DATA P O I N T S MEDIAN VALUE OF RATIOS EXPECTED MEDIAN OF RATIOS EXPECTED RATIO L I M I T S ( A ) MEDIAN ( A ) MEDIAN ( B ) MEDIAN ( B ) MEDIAN MEDIAN OF E X C E S S OF % E X C E S S OF E X C E S S OF '/. E X C E S S ELEMENT ELEMENT ELEMENT ELEMENT ELEMENT ABUNDANCE ABUNDANCES ABUNDANCES ABUNDANCES ABUNDANCES UPH 42 0. .0000826 0 .0000826 16 . 4 9 9 9 8 4 7 -0 .0026659 -0. -0 .0026659 -0 UP 1 8 0. ,0001290 0 000O748 0 .0000778 0 .0000664 4 .9999981 1 .9836874 59 . 1 .8726578 54 PC 31 0 0 0 0 0 7 5 8 0 .0000722 0 .0000761 0 .0000614 4 .9999981 0 2 7 9 9 1 5 9 5 . 0 .1160824 2 UPR 24 0. 0 0 0 0 8 7 7 0 .0000793 0 .OO00809 0 .0000750 5 . 9 9 9 9 9 9 0 0 5 7 0 1 5 6 8 11. 0 6 9 1 8 5 3 9 13 LP2 1 1 0. 0 0 0 1 0 9 0 0 0 0 0 0 6 5 5 0 O00O715 0 0 0 0 0 4 8 6 5 9 9 9 9 9 9 0 2 3 8 9 5 7 5 0 66 . 2 5 0 5 7 4 4 0 72 LP 1 14 0 0 0 0 1 1 4 0 0. 0 0 0 0 7 8 2 0. 0 0 0 0 8 0 1 0. 0 0 0 0 7 2 8 4 . 9 9 9 9 9 8 1 1 . 2 9 3 4 3 9 9 42 . 1 2 8 5 0 3 4 2 4 1 L P H 9 0. 0 0 0 0 8 5 4 0 0 0 0 0 8 1 4 0. 0 0 0 0 8 2 3 0. .0000789 15. 9 9 9 9 9 8 1 0. 7 5 8 8 6 2 6 5. 0. 7 8 8 0 8 9 8 5 LPR 18 0. 0 0 0 0 8 7 7 0 0 0 0 0 7 5 0 0. 0 0 0 0 7 8 0 0. 0 0 0 0 6 6 8 5 . 9999990 0. 9 5 5 8 9 0 8 17 . 0. 8 7 3 0 7 3 0 15 MS 18 0. 0 0 0 0 5 2 0 0. 0 0 0 0 5 2 0 3. 9 9 9 9 9 7 1 - o . 0 0 9 9 9 8 9 -0. -0. 0 0 9 9 9 8 9 -0 * - p a r t s p e r m i l l i o n T A B L E - S e e t e x t f o r d e t a i l s . E x c e s s E l e m e n t A b u n d a n c e s ( A ) a n d ( B ) a r e c a l c u l a t e d f r o m t h e p e l I t e a n d t u r b i d i t e f r a c t i o n s b a s e d o n t h e Z r : A 1 2 0 3 r a t i o means a n d m e d i a n s r e s p e c t i v e l y ( s e e s e c t i o n 3 . 1 ) ; t h e n u m b e r s q u o t e d i n t h e t e x t a r e p r i m a r i l y f r o m c o l u m n s ( A ) . D e c i m a l p l a c e s a r e r e t a i n e d s o t h e e n t i r e d a t a s e t c a n b e a c c o m m o d a t e d . P a g e 324 V A R I A B L E : S b ( p e r c e n t ) / A 1 2 0 3 ( p e r c e n t ) L I T H O LOGY NUMBER MEDIAN OF DATA VALUE OF P O I N T S RATIOS EXPECTED MEDIAN OF RATIOS EXPECTED RATIO L I M I T S ( A ) MEDIAN ( A ) MEDIAN ( B ) MEDIAN MEDIAN ' OF E X C E S S OF % E X C E S S OF E X C E S S ELEMENT ELEMENT ELEMENT ELEMENT ABUNDANCE ABUNDANCES ABUNDANCES ABUNDANCES ( B ) MEDIAN OF % E X C E S S ELEMENT ABUNDANCES UPH UP 1 PC UPR LP2 LP 1 L P H LPR MS 4 2 0 . 0 0 0 0 0 5 0 8 0 . 0 0 0 0 5 9 6 3 1 0 . 0 0 0 0 6 5 0 24 0 . 0 0 0 0 6 6 9 11 0 . 0 0 0 0 5 6 3 0 . 0 0 0 0 7 2 6 0.000032 2 0.000054 6 O.0000650 14 9 18 18 0 . 0 0 0 0 0 5 0 O.0000203 0 . 0 0 0 0 2 5 4 0 . 0 0 0 0 1 1 4 0 . 0 0 0 0 3 8 5 0 . 0 0 0 0 1 3 6 0 . 0 0 0 0 0 7 4 0 . 0 0 0 0 1 9 8 0 . 0 0 0 0 6 5 0 0 . 0 0 0 0 1 4 4 0 . 0 0 0 0 1 7 9 0 . 0 0 0 0 0 8 4 0.0000267 0 . 0 0 0 0 0 9 9 0.0000057 0.0000141 0 . 0 0 0 0 3 6 8 0 . 0 0 0 0 4 6 5 0 . 0 0 0 0 1 9 9 0.00007 16 0.000024 1 0 . 0 0 0 0 1 2 3 0 . 0 0 0 0 3 6 0 0 . 9 9 9 9 9 9 9 2.499997 1 4.999998 1 4.999998 1 2 . 9 9 9 9 9 9 0 2 . 9 9 9 9 9 9 0 5 . 9 9 9 9 9 9 0 4.999998 1 3.999997 1 - 0 . 0 0 0 2 3 4 6 1.6280365 2 . 9 2 3 1 4 6 2 4 . 1 4 7 9 0 3 4 0 . 9 4 8 5 9 3 3 2 . 4 6 6 5 1 4 6 4 . 6 1 5 2 2 4 8 3 . 1 1 2 4 8 2 1 - 0 - 2 6 3 9 9 8 5 -0 . 194 . 14 1. 4 8 5 . 46 . 466 . 333 . 136 . -O. - 0 . 0 0 0 2 3 4 6 1 .8271389 3 . 2552 137 3 .8882923 0 . 7 2 8 3 2 1 9 2 . 4 8 2 2 4 6 4 4 . 5 5 8 1 7 8 9 3 . 3 5 4 9 1 6 6 - 0 . 2 6 3 9 9 8 5 -0. 281 . 187 . 348. 32 . 483. 316. 163 . -O. * - p a r t s p e r m i l l i o n T A B L E - S e e t e x t f o r d e t a i l s . E x c e s s E l e m e n t A b u n d a n c e s ( A ) a n d ( B ) a r e c a l c u l a t e d f r o m t h e p e l i t e a n d t u r b i d i t e f r a c t i o n s b a s e d o n t h e Z r:A1203 r a t i o means a n d m e d i a n s r e s p e c t i v e l y ( s e e s e c t i o n 3 . 1 ) ; t h e n u m b e r s q u o t e d i n t h e t e x t a r e p r i m a r i l y f r o m c o l u m n s ( A ) . D e c i m a l p l a c e s a r e r e t a i n e d s o t h e e n t i r e d a t a s e t c a n b e a c c o m m o d a t e d . Page 325 V A R I A B L E : V ( p e r c e n t ) / A 1 2 0 3 ( p e r c e n t ) L I T H O L O G Y NUMBER MEDIAN OF DATA VALUE OF P O I N T S RATIOS EXPECTED MEDIAN OF RATIOS EXPECTED RATIO L I M I T S ( A ) MEDIAN ( A ) MEDIAN ( B ) MEDIAN ( B ) MEDIAN MEDIAN OF EX C E S S OF % E X C E S S OF E X C E S S OF % E X C E S S ELEMENT ELEMENT ELEMENT ELEMENT ELEMENT ABUNDANCE ABUNDANCES ABUNDANCES ABUNDANCES ABUNDANCES UPH 42 0 . 0 0 0 2 6 9 0 0 . 0 0 0 2 6 9 0 5 2 . 4 9 9 9 5 4 2 -0.008 1025 UP 1 8 0 . 0 0 0 7 7 2 0 0 . 0 0 0 3 2 5 0 0.0003034 0 . 0 0 0 3 8 5 7 2 8 . 4 9 9 9 8 4 7 15.1745224 PC 31 0 . 0 0 0 9 3 4 0 0 . 0 0 0 3 4 3 6 0.0003161 0 . 0 0 0 4 2 1 3 6 4 . 9 9 9 9 6 9 5 41 0 1 3 7 1 7 7 UPR 24 0 . 0 0 0 9 9 0 0 0 . 0 0 0 2 9 2 5 0 . 0 0 0 2 8 1 5 0 . 0 0 0 3 2 3 7 6 9 . 9 9 9 9 5 4 2 5 0 . 1 3 8 3 3 6 2 LP2 11 0 . 0 0 0 8 4 3 0 0 . 0 0 0 3 9 1 7 0.0003487 0 . 0 0 0 5 1 3 3 4 8 . 9 9 9 9 6 9 5 2 6 . 2 3 9 4 2 5 7 LP 1 14 0.OO06120 0 . 0 0 0 3 0 0 6 0 . 0 0 0 2 8 6 9 0.0003391 2 7 . 9 9 9 9 8 4 7 1 3 . 5 1 5 6 4 8 8 L P H 9 0 . 0 0 0 1 5 0 0 0 . 0 0 0 2 7 7 8 0 . 0 0 0 2 7 1 5 0 . 0 0 0 2 9 5 7 2 7 . 9 9 9 9 8 4 7 - 2 2 . 3 9 6 1 7 9 2 LPR 18 0 . 0 0 0 8 2 5 0 0 . 0 0 0 3 2 3 4 0.0003024 0 . 0 0 0 3 8 2 7 5 7 . 9 9 9 9 6 9 5 3 3 . 6 3 1 2 2 5 6 MS 18 0 . 0 0 0 4 8 9 0 0 . 0 0 0 4 8 9 0 2 6 . 4 9 9 9 6 9 5 - 0 . 3 9 0 0 7 7 5 - 0 . 113. 178 . 2 2 0 . 115. 104 . -46 . 133 . O. - 0 . 0 0 8 1 0 2 5 1 6 . 0 0 1 5 2 5 9 4 2 . 0 0 8 5 6 0 2 49. 1395874 2 5 . 3 5 8 7 1 8 9 13.5793161 - 2 2 . 5 9 1 5 9 8 5 3 4 . 2 1 1 0 4 4 3 - O . 3 9 0 0 7 7 5 -0. 124 . 191 . 2 0 7 . 107 . 105 . -46. 138 . 0. * - p a r t s p e r m i l l i o n T A B L E - S e e t e x t f o r d e t a i l s . E x c e s s E l e m e n t A b u n d a n c e s ( A ) a n d ( B ) a r e c a l c u l a t e d f r o m t h e p e l l t e a n d t u r b i d i t e f r a c t i o n s b a s e d a n t h e Z r : A 1 2 0 3 r a t i o means a n d m e d i a n s r e s p e c t i v e l y ( s e e s e c t i o n 3 . 1 ) ; t h e n u m b e r s q u o t e d i n t h e t e x t a r e p r i m a r i l y f r o m c o l u m n s ( A ) . D e c i m a l p l a c e s a r e r e t a i n e d s o t h e e n t i r e d a t a s e t c a n b e a c c o m m o d a t e d . P a g e 326 V A R I A B L E : S i 0 2 ( p e r c e n t ) / Z r ( p e r c e n t ) NUMBER MEDIAN EXPECTED OF DATA VALUE OF MEDIAN OF LITHOLOGY P O I N T S RATIOS RATIOS EXPECTED RATIO L I M I T S MEDIAN ELEMENT ABUNDANCE ( A ) MEDIAN ( A ) MEDIAN ( B ) MEDIAN ( B ) MEDIAN OF E X C E S S OF % EXCESS OF E X C E S S OF % E X C E S S ELEMENT ABUNDANCES ELEMENT ABUNDANCES ELEMENT ABUNDANCES ELEMENT ABUNDANCES UPH UP 1 PC UPR LP2 LP 1 LPH LPR MS 42 7 31 23 9 12 7 18 13 4 1 2 0 . 0 0 14199.99 85 10.00 10099.99 8 3 0 0 . 0 0 2 0 1 9 9 . 9 9 4 4 9 0 . 0 0 8 9 0 0 . 0 0 3 7 8 0 . 0 0 4 1 1 9 . 9 9 4 0 2 7 . 8 3 3 9 9 8 . 0 6 4 0 8 0 . 7 3 3923 . 10 4 0 6 7 . 5 0 410 5 . 19 4 0 3 0 . 3 9 3 7 8 0 . 0 0 4062.81 4 0 4 2 . 1 9 4 0 9 9 . 0 9 3 9 8 9 . 9 8 4 0 9 0 . 0 5 4 115.77 4064.54 3 9 3 2 . 4 0 3878.52 4 0 2 9 . 7 8 3 7 4 5 . 8 8 4 0 0 5 . 1 9 4 0 7 5 . 5 7 3 9 3 7 . 0 3 6 3 . 2 9 0 0 7 9 . 5 8 5 0 7 5 . 2 6 0 0 7 5 . 5 6 0 0 7 6 . 9 9 0 0 8 3 . 1 4 0 0 6 3 . 4 7 5 0 7 6 . 8 7 0 0 5 7 . 1 4 0 0 - O 0 2 3 9 6 2 . 6 7 5 3 37 . 8 4 7 5 4 4 . 2 3 4 2 4 1 . 8 0 0 6 6 7 . 9 0 8 1 2.2417 4 2 . 7 3 9 1 O.0600 -O. 308 . 105 . 135 . 112. 394 . 4 . 122 . O. - 0 . 0 2 3 9 6 2 . 5 3 2 1 3 7 . 6 3 3 9 4 4 . 4 0 2 3 4 2 . 0 1 9 2 6 7 . 8 9 7 9 2 . 2 7 0 0 42 . 6346 O.060O -O. 305 . 104 . 137 . 113. 394 . 4 . 12 1. O. * - p e r c e n t T A B L E - S e e t e x t f o r d e t a i l s . E x c e s s E l e m e n t A b u n d a n c e s ( A ) a n d ( B ) a r e c a l c u l a t e d f r o m t h e p e l i t e a n d t u r b i d i t e f r a c t i o n s b a s e d o n t h e Z r : A 1 2 0 3 r a t i o means a n d m e d i a n s r e s p e c t i v e l y ( s e e s e c t i o n 3 . 1 ) ; t h e n u m b e r s q u o t e d i n t h e t e x t a r e p r i m a r i l y f r o m c o l u m n s ( A ) . D e c i m a l p l a c e s a r e r e t a i n e d s o t h e e n t i r e d a t a s e t c a n b e a c c o m m o d a t e d . Page 327 V A R I A B L E : A 1 2 0 3 ( p e r c e n t ) / Z r ( p e r c e n t ) NUMBER MEDIAN OF DATA VALUE OF LITHOLOGY P O I N T S RATIOS EXPECTED MEDIAN OF RATIOS EXPECTED RATIO L I M I T S MEDIAN ELEMENT ABUNDANCE ( A ) MEDIAN ( A ) MEDIAN ( B ) MEDIAN ( B ) MEDIAN OF EXC E S S OF % E X C E S S OF E X C E S S OF % E X C E S S ELEMENT ABUNDANCES ELEMENT ABUNDANCES ELEMENT ABUNDANCES ELEMENT ABUNDANCES UPH 42 1320 .00 1320 .00 19 .9250 -0 .0420 -0 . -0 .0420 -0 UP 1 6 978 . 50 8 8 0 . 19 1009 . 68 646 . 36 3 . 7 8 0 0 0 .4220 12 . -o . 1 128 0 PC 31 861 .00 792 . 26 929 . 38 559 . 22 7 .0600 0 .5519 9 . -0 .0025 -0 UPR 23 996 .00 1090 .81 1 187 . 76 886 .58 7 . 2 0 0 0 -0 7201 -9 . -0 .0057 -0 LP2 9 592 .00 629 63 77 1 16 4 14 .61 5 .5100 -0. 36 15 -6 . 0. 0 0 1 7 0 LP 1 12 1040 .00 1029. 8 0 1138 .09 811 .80 . 3 • .9700 -o . 0 0 9 8 1 . -0. 0 4 5 6 0 LPH 6 12 10 .00 1223 . 65 1291 . 10 1066 . 23 18 . 2 6 5 0 -0. 24 13 - 1 . -0. 0 741 -0 LPR 18 929 .00 888 . 58 1017 02 655 0 0 7 3 3 0 0 0. 2777 5 . -0. .0033 -0 MS 13 445 0 0 445 . 0 0 5 7 9 0 0 0. 0 0 7 5 0. 0. 0 0 7 5 0 p e r c e n t T A B L E - S e e t e x t f o r d e t a i l s . E x c e s s E l e m e n t A b u n d a n c e s ( A ) a n d ( B ) a r e c a l c u l a t e d f r o m t h e p e l i t e a n d t u r b i d i t e f r a c t i o n s b a s e d o n t h e Z r : A 1 2 0 3 r a t i o means a n d m e d i a n s r e s p e c t i v e l y ( s e e s e c t i o n 3 . 1 ) : t h e n u m b e r s q u o t e d i n t h e t e x t a r e p r i m a r i l y f r o m c o l u m n s ( A ) . D e c i m a l p l a c e s a r e r e t a i n e d s o t h e e n t i r e d a t a s e t c a n b e a c c o m m o d a t e d . P a g e 328 V A R I A B L E : TOTAL F e ( p e r c e n t ) / Z r ( p e r c e n t ) NUMBER MEDIAN OF DATA VALUE OF LITHOLOGY P O I N T S RATIOS EXPECTED MEDIAN OF RATIOS EXPECTED RATIO L I M I T S MEDIAN ELEMENT ABUNDANCE ( A ) MEDIAN ( A ) MEDIAN ( B ) MEDIAN ( B ) MEDIAN OF EXCESS OF % E X C E S S OF E X C E S S OF % E X C E S S ELEMENT ABUNDANCES ELEMENT ABUNDANCES ELEMENT ABUNDANCES ELEMENT ABUNDANCES UPH UP 1 PC UPR LP2 LP 1 L P H LPR MS 42 7 3 1 23 9 12 7 18 13 2 8 4 . 0 0 34 3.00 2 3 7 . 0 0 4 8 8 . 0 0 176.00 3 3 6 . 0 0 2 5 8 . 0 0 2 3 9 . 0 0 2 1 3 . 0 0 2 8 4 . 0 0 2 6 1 . 8 2 255. 18 2 7 4 . 2 3 2 3 9 . 4 8 2 7 1 . 0 5 2 8 0 . 2 6 2 6 2 . 4 0 2 1 3 . 0 0 269.93 265. 1 1 278.74 253.42 276.51 282.93 270.34 2 4 1 . 3 5 230.77 2 6 2 . 2 6 207.27 2 5 6 . 7 5 272.98 2 4 2 . 2 9 4.3050 1.2650 1.9300 3 . 2 1 0 0 1.4900 1.3900 3 . 8 8 5 0 1.9650 2 . 1 5 0 0 0 . 0 1 0 0 0.3648 -O.14 14 1.5581 -0.6903 O.27 16 -O.3518 -O.1761 -O.0008 0. 45 . -7 . 78 . -26 . 24 . -9 . -9 . -O. 0 . 0 1 0 0 O. 3432 - 0 . 1 8 3 6 1.5948 - 0 . 6 4 0 7 0.2692 -O.3449 -0-1968 -0.0008 0. 42 . -9 . 81 . -25 . 24 . -8 . - 10. -0. * - p e r c e n t T A B L E - S e e t e x t f o r d e t a i l s . E x c e s s E l e m e n t A b u n d a n c e s ( A ) a n d ( B ) a r e c a l c u l a t e d f r o m t h e p e l i t e a n d t u r b i d i t e f r a c t i o n s b a s e d o n t h e Z r : A 1 2 0 3 r a t i o means a n d m e d i a n s r e s p e c t i v e l y ( s e e s e c t i o n 3 . 1 ) ; t h e n u m b e r s q u o t e d i n t h e t e x t a r e p r i m a r i l y f r o m c o l u m n s ( A ) D e c i m a l p l a c e s a r e r e t a i n e d s o t h e e n t i r e d a t a s e t c a n b e a c c o m m o d a t e d . Page 329 V A R I A B L E : M g O ( p e r c e n t ) / Z r ( p e r c e n t ) NUMBER MEDIAN OF DATA VALUE OF L I T H O L O G Y P O I N T S RATIOS EXPECTED MEDIAN OF RATIOS EXPECTED RATIO L I M I T S MEDIAN ELEMENT ABUNDANCE ( A ) MEDIAN ( A ) MEDIAN ( B ) MEDIAN ( B ) MEDIAN OF EXC E S S OF % E X C E S S OF E X C E S S OF % E X C E S S ELEMENT ABUNDANCES ELEMENT ABUNDANCES ELEMENT ABUNDANCES ELEMENT ABUNDANCES UPH 42 161 .00 16 1 .00 2 . 3 9 0 0 -0 .0027 -0. -0 .0027 -0 UP 1 7 183 .00 172 . 49 167 .88 186 . 95 0. 6 100 0 .0662 15 . 0 .0769 17 PC 31 161 .00 176 .68 170 . 56 196 .60 1 . 2 6 0 0 - o . .1312 -7 . -0 .0945 -5 UPR 23 139 .00 165 . 64 163 . 43 172 22 0. 8 9 0 0 -0. 2086 - 16 . -0. . 2294 - 17 LP2 9 14 1 .00 188 53 177 . 87 226 . 85 1 . 0 4 0 0 -0 4 5 1 0 -25 . -0 . 4 896 -27 LP 1 12 174 .00 167 . 29 164 51 175 65 0. 7 5 0 0 0. 0337 4 . 0. .0351 4 LPH 7 194 .00 162 . 7 1 16 1. 48 166 . 28 2 . 4 0 0 0 0. 1668 8 . 0. 1635 8 LPR 18 1 34 .00 172 . 14 167 . 66 186 17 0. 9 9 0 0 -0. 29 14 - 17 . - o . 2754 - 16 MS 1 3 2 18 .00 2 18. 0 0 1 . 9 4 0 0 0. 0 0 8 0 0. 0. 0 0 8 0 0 * - p e r c e n t T A B L E - S e e t e x t F o r d e t a i I s . E x c e s s E1ement A b u n d a n c e s ( A ) an d I ( B ) a r e c a 1 c u 1 a t e d f r o m t h e p e 1 1 t e a n d t u r b i d i t e f r a c t i o n s b a s e d o n t h e Z r : A 1 2 0 3 r a t i o means a n d m e d i a n s r e s p e c t i v e l y ( s e e s e c t i o n 3 . 1 ) ; t h e n u m b e r s q u o t e d i n t h e t e x t a r e p r i m a r i l y f r o m c o l u m n s ( A ) D e c i m a l p l a c e s a r e r e t a i n e d s o t h e e n t i r e d a t a s e t c a n b e a c c o m m o d a t e d . P a g e 330 V A R I A B L E : C a O ( p e r c e n t ) / Z r ( p e r c e n t ) NUMBER MEDIAN OF DATA VALUE OF LITHOLOGY P O I N T S RATIOS EXPECTED MEDIAN OF RATIOS EXPECTEO RATIO L I M I T S ( A ) MEDIAN ( A ) MEDIAN ( B ) MEDIAN ( B ) MEDIAN MEDIAN OF E X C E S S OF % E X C E S S OF E X C E S S OF % E X C E S S ELEMENT ELEMENT ELEMENT ELEMENT ELEMENT ABUNDANCE ABUNDANCES ABUNDANCES ABUNDANCES ABUNDANCES UPH UP 1 PC UPR L P 2 LP 1 LPH LPR MS 42 7 3 1 23 9 12 7 18 13 100.00 5 6 4 . 0 0 3 0 7 . 0 0 293.OO 2 2 5 . 0 0 7 1 0 . 0 0 108.00 2 2 6 . 0 0 3 8 0 . 0 0 100.00 123.23 133.52 108.62 170.21 111.91 103.07 122.42 3 8 0 . 0 0 113. 13 118.85 104.39 136.65 106.4 3 100.85 112.67 164.52 204 58 122.61 548.04 130.89 109.88 161 .83 1.5850 2 . 2 8 0 0 2 . 9 1 0 0 1.5700 2 . 0 0 0 0 1.8800 0 . 4 8 0 0 1.9550 6.7300 0 . 0 1 0 0 1.7160 1 .8513 1.0647 O.5947 1.9117 - 0 . 2 9 9 3 0 . 8 7 4 3 - 0 . 0 7 0 0 O. 43 1 . 130. 239 . 32 . 1005 . -18. 8 0 . - 1 . 0 . 0 1 0 0 1.7404 1.9406 1.0428 O . 4 1 9