A COMPARISON OF VARIOUS ORE RESERVE AT THE BUCKHORN MINE, ESTIMATES EUREKA COUNTY, NEVADA By MIT D . TILKOV B.Sc, The U n i v e r s i t y A THESIS SUBMITTED of Waterloo, 1975 IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES DEPARTMENT OF GEOLOGICAL We a c c e p t t h i s to the thesis required THE UNIVERSITY as SCIENCES conforming standard OF B R I T I S H COLUMBIA March 1989 © M i t D. T i l k o v , 1989 In presenting this degree at the thesis in University of partial fulfilment of of department this or thesis for by his or scholarly purposes may be her representatives. permission. of Geological Sciences The University of British Columbia Vancouver, Canada Date DE-6 (2/88) April 3, 1989 for an advanced Library shall make it agree that permission for extensive It publication of this thesis for financial gain shall not Department requirements British Columbia, I agree that the freely available for reference and study. I further copying the is granted by the understood that head of copying my or be allowed without my written Abstract An abundance of production blasthole i n Nevada provides computerized data the various body i s a bulk mineable, that Forty data, blasthole data. over drillhole and The to known of for t h e methods each common analysis the best predictors of reflect o v e r a l l t r u e grade the smaller mining size Some b l o c k based, models and model distance compared During the while block inverse by course and and to each of this geostatistical and i n some cases, questioned. because the grade small, grade these block actual from major statistical estimating of derived i m p o s e d on them four calculated gold-silver m i g h t be d i c t a t e d o f d a t a were e m p l o y e d that regardless of that production data. the showed of ore- from e x p l o r a t i o n i n some c a s e s . polygonal t h e m s e l v e s were Results important various a constraints to. system. estimated size geological For epithermal springs choosing block e s t i m a t e s were many techniques of study The Buckhorn w i t h 12 b l o c k m o d e l s examined not. geostatistical study, larger had did and hosted, models, effect s p a c i n g was configurations other block were compared the datasets others volcanic and B u c k h o r n Mine a comprehensive techniques. formed i n a M i o c e n e h o t drillhole block grade'estimation separate drillhole Cominco R e s o u r c e s ' opportunity for evaluate deposit from exploration any size interpolation models, at mining blocks method although less given distribution location, of the is used accurate tended ore to blocks which were calculated block eventually from n e a r e s t size correct models unknown s h a p e was sulfide of to And accurate, that, existence estimates of the proposed further stable, in estimates some o f realization) a d d i t i o n to the the are small geometrically of the separating imposition of zone o u t l i n e o f which there of true, tonnage and G.F. refined from a second type was little basis reserves, and Mine. iii for measurably calculating conditional Raymond (Raymond 1 9 7 9 , here, was grade. of generally models oxide w i t h i n which ore recoverable method by and generate block Buckhorn ore orebody. finally, and as all f a i r l y accurate, possible b o u n d a r y , an o r e the probability to (one o c c u r and o u t s i d e improved the used be s e e n as e x p l o r a t i o n composites, predicting 1984), the found geological likely the of Because exploration composites, can approximations It mined. was useful found of estimates to 1982, be the various of ore the and most methods reserves at T a b l e o f Contents page Abstract Table of ii Contents List of Tables List of Figures iv vii viii Acknowledgements x Chapter 1. INTRODUCTION 1 2. GEOLOGY OF THE BUCKHORN DEPOSIT 8 3. A V A I L A B L E DATA AND BLOCK MODELS 13 3.1 EXPLORATION DATA 13 3.2 BLASTHOLE DATA 14 3.3 BLOCK MODELS 15 3.4 3.3.1 Introduction > 3.3.2 Four Foot B l o c k Models 15 3.3.3 Twenty F o o t B l o c k M o d e l s 18 3.3.4 Sixty 19 Foot B l o c k Models SUMMARY OF BLOCK MODELS AND DATASETS 15 19 4. STATISTICS 21 5. ORE RESERVE CALCULATIONS 31 5.1 INTRODUCTION 31 5.2 POLYGONAL ESTIMATES 32 5.3 INVERSE 32 DISTANCE iv 5.4 KRIGING 5.4.1 Variogram Analysis 5.4.2 Some O b s e r v a t i o n s 5.4.3 6. 35 35 on V a r i o g r a m Modelling 38 Kriging 49 and Back A n a l y s i s CONDITIONAL PROBABILITY 52 6.1 52 THEORY 6.1.1 Introduction 52 6.1.2 The C o n d i t i o n a l D i s t r i b u t i o n 52 6.1.3 Distribution of Sample G r a d e s and Block Grades Kriging Variance Constant 6.1.5 Combining 3-Parameter Lognormal Data with R e l a t i v e Variograms Determining the Constant R e l a t i v e 60 Blasthole 61 Kriging Variance CALCULATION OF CONDITIONAL PROBABILITY 6.2.1 7. 8. 59 62 Example C a l c u l a t i o n Of C o n d i t i o n a l Probability 6.3 56 6.1.4 6.1.6 6.2 . 66 DISCUSSION 70 COMPARISON OF RESULTS 79 7.1 INTRODUCTION 79 7.2 METAL GRAPHS 79 7.3 ORE RESERVE CHARTS 88 7.4 SUMMARY CHART AND RANKING OF THE RESULTS 94 7.5 EXAMINATION OF SCATTERGRAMS AND BENCH PLANS 97 7.6 SIXTY FOOT V S . TWENTY FOOT ESTIMATES 101 7.7 CONSTRAINED V S . UNCONSTRAINED ESTIMATES 102 7.8 USING CONDITIONAL PROBABILITY ESTIMATES CONCLUSIONS 103 107 v References 109 Appendix A - B e n c h Maps o f Raw D a t a and O u t l i n e s 110 Appendix B - B e n c h Maps o f Results 120 Appendix C - Ore R e s e r v e R e p o r t s Appendix D - L i s t i n g of Values Calculated L i s t i n g of Difference Variograms Generated Method Appendix E Appendix F - 233 Variogram 254 Scattergrams by Maximum 261 267 vi List of Tables page Table I. Table II. Table Table III. IV. Summary o f b l o c k models Simple s t a t i s t i c s of and b l a s t h o l e d a t a and d a t a s e t s the exploration " Parameters used to generate d i s t a n c e weighted estimates e x p l o r a t i o n composites for kriging Table VI. Parameters used probability to Table Table Table IX. X. XI. 34 50 Parameters used Table VIII. inverse from 41 V. VII. 27 O r e r e s e r v e s p r e d i c t e d by u s i n g t h e " r o t a t e d " v a r i o g r a m compared t o k r i g e d e x p l o r a t i o n e s t i m a t e and " a c t u a l " f o r t h e BUCKG m o d e l Table Table 20 calculate conditional 65 Comparison o f b l a s t h o l e i n d i c a t e d reserves w i t h r e s e r v e s c a l c u l a t e d by e a c h e x p l o r a t i o n method f o r t h e BUCK b l o c k m o d e l 89 Comparison o f b l a s t h o l e i n d i c a t e d reserves w i t h r e s e r v e s c a l c u l a t e d by e a c h e x p l o r a t i o n method f o r t h e BUCKG b l o c k m o d e l 90 Comparison o f b l a s t h o l e i n d i c a t e d reserves w i t h r e s e r v e s c a l c u l a t e d by e a c h e x p l o r a t i o n method f o r t h e BUCK60 b l o c k m o d e l 91 Comparison of b l a s t h o l e i n d i c a t e d r e s e r v e s w i t h r e s e r v e s c a l c u l a t e d by e a c h e x p l o r a t i o n method f o r t h e BUCK60G b l o c k m o d e l 92 Summary c o m p a r i s o n o f 95 vii ore reserve methods . . . . List of Figures page Figure l. L o c a t i o n map Figure 2. Regional 2 g e o l o g y map encompassing the of an area B u c k h o r n mine Figure 3. G e o l o g i c a l map o f Figure 4. Figure 5. Two methods o f a c c e p t i n g o r r e j e c t i n g b l o c k s w i t h i n an o u t l i n e Partitioned log probability plot of 20' e x p l o r a t i o n c o m p o s i t e s 23 Log p r o b a b i l i t y p l o t o f compared t o p a r t i t i o n e d 25 Figure Figure Figure Figure Figure Figure Figure 6. 7. 8. 9. 10. 11. 12. the 9 B u c k h o r n mine 11 17 b l a s t h o l e data exploration data Log p r o b a b i l i t y p l o t s showing t h e e f f e c t o f adding a c o n s t a n t o f 0.005 o p t . t o the o r i g i n a l data to c r e a t e a 3-parameter lognormal d i s t r i b u t i o n 28 G r a p h i c a l e x p l a n a t i o n o f the polygon w e i g h t e d method o f c a l c u l a t i n g b l o c k grades 33 Modelled r e l a t i v e BEX d a t a variogram of 38 Modelled r e l a t i v e BEXG d a t a variogram of the the 39 Experimental r e l a t i v e BBH d a t a v a r i o g r a m from Experimental r e l a t i v e BBHG d a t a v a r i o g r a m from the 47 the Figure 13. The c o n d i t i o n a l Figure 14. E x p e c t a t i o n s o f o r e and w a s t e d e r i v e d from n o r m a l l y d i s t r i b u t e d b l o c k grades 55 Probability p l o t s o f p e r f e c t and imperfect lognormal d i s t r i b u t i o n s 57 Figure 15. distribution 48 viii 54 Figure Figure Figure 16. 17. 18. The e f f e c t o f e s t i m a t i n g o r e and w a s t e p e r c e n t a g e s from i m p e r f e c t n o r m a l distributions Cumulative p r o b a b i l i t y of actual blocks given Computer p r i n t o u t actual of p l o t of the grades k r i g e d block grades the g r a d e s and k r i g e d comparison 58 . . . . 74 between estimates 76 Figure 19. Metal graph f o r the BUCK b l o c k m o d e l 80 Figure 20. Metal graph f o r the BUCKG b l o c k m o d e l 81 Figure 21. Metal graph f o r the BUCK60 82 Figure 22. Metal graph f o r the BUCK60G b l o c k m o d e l ix b l o c k model 83 Acknowledgements The funding and t h e allowing during author time without opportunity off work support. Russ's and h i s boss, now down t o work and problems t h a t Christopher, has (I also arise And s p e c i a l publish attend likes sentient predictors of Susan's i n the easily have employ. retired, thanks e a r t h approach to simple decided to This "go it" I n p a r t i c u l a r , Russ f o r encouragement ore reserve and problems, and u n d e r s t a n d a b l e influenced me the in for mineral industry greatly t o my w i f e , patience with the end. and c l a s s e s when n e c e s s a r y . in its' hope) research if my a p p r o a c h t o solution of day t o day i n my j o b . thanks whose this turmoil as guides converse times Cominco L t d . f o r p r o v i d i n g the philosophy of keeping things a l l possible, the to to just a part-time student my to to company m i g h t Sproule, this indebted a p e r i o d o f unprecedented when t h e at is of with IBM, reality, is late VAX, and my k i d s , nights Calcomp, although stretched encouragement I d i d n ' t want t o , Susan, to finish this J a i m e and and a b s e n c e s and other sub- at times, held thing, now p a r t i c u l a r l y a p p r e c i a t e d . x to when at 1 1. The deposit in Buckhorn hosted Eureka Resources and 1). retains extending oxide is ore et are oz/ton al., 1988) . Although there was since started heap the at been early by an outside this model. using and inverse ordinary inverse I n 1985, distance cubed the Gold 0.04 cutoff mining and was pit was gold (Munroe on the operation reserves company u s i n g interpolation, minable activity ore the silver oz./ton c u r r e n t open p i t Initially, oxide Only grade and faults surface Published and an open p i t open Gold depth. r e s e r v e s were r e c a l c u l a t e d k r i g i n g and distance ore at gold consulting model w i t h k r i g e d b l o c k grades i n a near the (24%). a l o n g NNW t r e n d i n g oz./ton 1984. located o f Cominco interest. technology. gold southwest o f operation. the is venture ore c o n t a i n i n g 1900's, It Equinox Resources sporadic up i n F e b r u a r y o f calculated and sulfide leach a 0.02 has joint encountered m i l l i o n tons of silver a disseminated open p i t rocks. 60 m i l e s proceeds downward i n t o using 3.1 0.6 property is mined i n the extracted is net w i t h ore grades z o n e and and low g r a d e e p i t h e r m a l volcanic L t d . (76%) a 20% mineralization reserves small, T h e mine International fractures are a by a l t e r e d T e r t i a r y (Fig. Resources silver is C o u n t y , Nevada a p p r o x i m a t e l y town o f E l k o Bar Mine INTRODUCTION were a 20' block designed using by C o m i n c o L t d . lognormal k r i g i n g , redesigned model because e s t i m a t e s u s i n g this using method the most 2 c l o s e l y resembled the first mined tonnage year's production. a v a i l a b l e a f t e r the f i r s t made t o results. can be figures available for Although The b l a s t h o l e r e p o r t e d from into is the blasthole data few months o f o p e r a t i o n , no attempt compare estimates from e x p l o r a t i o n o f head grade material and grade d r i l l i n g to was was blasthole data i s the o n l y data on which p r o d u c t i o n the mine because no other r e l i a b l e measure available. crusher Ore and is dumped from samples are taken stockpiled sporadically 3 every 2 or 3 hours from the d o c u m e n t i n g where in some c a s e s , grade have i n the main p i t whether stockpile, the current questions, better not is was least of is is being no good way sampled from and, coming from the main p i t , o r from o t h e r of small pits a low which property. study the estimates c u b e d method ore There ore an o r e s t o c k p i l e b e e n m i n e d on t h e The conveyors. o f which tonnage t h a n by designed and to was why t h e r e grade kriging. answer by the Other t o p i c s a number o f appeared to inverse to be be distance investigated include: 1) by Effect of Estimation Block Size: geostatisticians kriging will average one generate and that is close that the to and f u r t h e r m o r e , estimate grades is true if individual average that If reserve that for very interested block, but intuitively, and the in (the whole s h o u l d g i v e an a v e r a g e of all of the result correct on for estimation purposes is deposit one b l o c k mining c u t o f f , is if used below be s u r m i s e d of to global calculate 9 equal (i.e. size is grade. This an that for reserves, if only the blocks, slightly this a one (including equal to 0 tons If to grade of any e s t i m a t e cutoff cutoff made. F o r example, i n t h e m i d d l e whose g r a d e at is p r e d i c t i n g the can spacing, any a t t e m p t block grade which i s d i v i d e d up i n t o and 8 drillhole ourselves deposit), samples used, are estimation g r a d e w i l l p r o b a b l y be below the it accepted block size small s i z e mining blocks is estimated commonly which original exploration we a r e f o o l i n g purposes is the figures best block s i z e the of p h i l o s o p h y must be a d o p t e d . b l o c k was kriging) regardless one mine p l a n n i n g different that It grade, of the and ore). t h e r e may above analogy the is 4 continued down estimate to to a t h e mine d e s i g n Buckhorn) than drillholes are spaced because i n m i n i n g no to estimate unless chosen mining at below least 20 a scale, block 50' x it size 50' x is (20' 20' one is impressed estimate cutoff grade. there is is correct reasonable to above of s m a l l e r m i n i n g b l o c k s may n o t each o f the predicted, a better the block grades has been might be, that the what d i f f e r e n c e 2 b l o c k models reserves block 2) been amply over only exploration because i t evidence samples. average is above have that true the been a estimated Although expected global 60' on t h e Ore Zone x 20' 60' at have grade accurately d i s t r i b u t i o n of at tonnage one w i t h blocks. the mining scale and grade there x 20' x 20' It was b l o c k w o u l d be l o w e r sulfide Outlines: interpolation demonstrated the years drillholes was o b v i o u s of in x based of the geostatistics and t h a t average" 20' expected than for importance of size. Effect constraining has grid), l a r g e r b l o c k would the were g e n e r a t e d , and one w i t h 60' ore 20' reserves (Buckhorn obtained. To s e e blocks, ore 20* exploration cutoff. o v e r a l l picture of and x probability been e s t i m a t e d a grade at 20' block that w i t h i n the have x on block contained 1 to by a " c o r r e c t on F o r any 50' some more i m p o r t a n t block size on a f a i r l y r e g u l a r 50' that cutoff one mining that to within geological by numerous (e.g. David, within the mineralization belonging to the sulfide was a different S i m i l a r l y , only oxide The zone practitioners 1988). oxide In t h i s zone ore would not more boundaries erratic statistical blastholes of study, were used be m i n e d , and showed population were used of for 5 comparison. geological datasets "ore". H o w e v e r , as w i l l boundary that It the is by areas, author this "smoothing" of them. b l o c k models composites within account, result ore reserve estimates 3) on t h e s e figures. "ore These Estimates: estimates of are dangerous were and that, most in inverse is high between enough distance especially the and and inverse anisotropies if anisotropies resemble in the d i s t a n c e methods will a variogram an e s t i m a t e w h i c h most distance Somewhere in t h e r e may be a power o f the kriged variogram are a regular grid. it outline. polygonal i n t e r p o l a t i o n method so same cases, distance modelled), generate Distance is were to Inverse sample s p a c i n g cubed on 1 to production H u i j b r e g t s , 1978). t h a t would 20 exploration when t h e power o f (we d o n ' t know where b e f o r e h a n d ) , inverse account (Journel geological b o u n d a r y on kriging with through to a polygonal estimate encircles original only compared and that or idea rigorously, models, Polygonal effect, resembles this information w i t h i n the told rocktype intuitively new g e o l o g i c a l later showing closely the which took the which resembles nugget an many o t h e r an i m p o r t a n t To t e s t r a n g e f r o m an e s t i m a t e pure if is of unwarranted e x t r a p o l a t i o n 2 block Various We a r e o f t e n This in zone" o u t l i n e were u s e d b a s e d on b l a s t h o l e Accuracy and type m i n i m i z e s numerous e r r o r s in ore grades. this data is and i m p o s e d t h i s For estimates a second c a n be d e f i n e d w h i c h 2 f u r t h e r b l o c k m o d e l s were g e n e r a t e d and 60" is that in itself taken i n t o p o p u l a t i o n mixing which and/or there has e n c o u n t e r e d . boundary that if Buckhorn the derived boundary w h i c h , of the author felt quantitatively mineralized in be s e e n , was d e c i d e d t o estimate— taken into A t Buckhorn, was c h o s e n (no t r y polygonal 6 estimates and (straight average) other v a r i o u s powers estimates of the In cubed on a l l kriged Cominco were of accurate various prospects for block estimator question reserve they a without the at 20 see if 3 block models, these distance the inverse b l o c k model 1 it w o u l d work and t o Probability most compare Estimates: geostatistical Raymond. is the kriged of relative over Early the attempts estimates as an Consequently, Raymond's a p p r o a c h o f at his method developed 1984). using to using w h i c h he h a s 1982, studies Pivotal B u c k h o r n were g r i m . attempt With to Blasthole be p a r a l l e l block of model u s i n g block estimates b e n c h and w i t h i n t h e was n o t reserves For each p r e v i o u s l y mentioned which contained outlines. The it "conditional ore each other, but o r 60' blocks was on b l a s t h o l e Great care from a c t u a l 4 exploration zone o u t l i n e based and most the calculated the 20' last o n l y how w e l l performed a g a i n s t with the data. Data: addressed estimates compared production blasthole models, for the zero . Comparison how w e l l was u s e d any o f of probabilities that ore behaviour geostatistics ordinary kriging to than the G.F. 1979, important inverse conditional seemed r e a s o n a b l e 5) by (Raymond 1 1 the 1985, years probability better other practical of v a r i o g r a m s and indicated if Conditional to performed calculation 12 of p e r i o d 1979 philosophy see was m o n i t o r e d t o the f r o m power estimates. Effectiveness During the past of distance i n order to interpolator that method t o 4) inverse particular, o r i g i n a l mine d e s i g n equally well this power t e n would p e r f o r m cubed method. distance to of was block w i t h and constructed d a t a on taken to each ensure 7 that the partial block percentages outlines, and t h a t reporting tonnages blasthole estimates either set of completely these derived so within "block either that samples were c a l c u l a t e d the the various partials" were from e x p l o r a t i o n total would be on t h e tonnages exactly the outlines edges used when drilling estimated same, imposed or from and would on of lie the block parameters were models. For each model, simple calculated, distributions histograms and calculated, back e s t i m a t i o n 10 separate available blasthole It block is the is an problem o f blocks estimates calculation best possible individual p r e d i c t i n g the of and be to of were and e a c h derived ore the Buckhorn numbers Mine, is the this — tons of grade that is devoted reserve the of the best from the best cutoffs. goal of calculation ore, used grade o f i n the this would ore, mining deposit study. prior In the result in tons of waste, calculation. all possible by t h e the the separate grade o f best be u s e d of but to The estimate of The potential mainly estimate. related, which w i l l economic the ore and grade reserves, determine t h i s work i s d i s t r i b u t i o n and a v e r a g e above of cutoff compared p r o v i d i n g the block a production decision, the were by u s e variograms were e m p l o y e d , could note that to crucial that made between within company t o separate techniques calculations important to distinction of graphs, and e x a m i n e d data. determining grade were m o d e l l e d probability reserve statistical case four and 8 GEOLOGY OP THE BUCKHORN DEPOSIT 2. The gold Tertiary angle and volcanic normal silver flows fault volcanic formed i n near surface hosted the Regionally, unconformably which are the the western thrust of the lower assemblage fault western surface facies Buckhorn mine Paleozoic of plate (Fig. and i s w h i c h were d e r i v e d f r o m eastern carbonate and the to is east suite, represented post-thrusting and t h e w e s t e r n to the Roberts the west the siliceous of assemblage west whereas east and west referred to l o c a l l y by t h e of coarse as the of and v o l c a n i c u n i t s north, made up l a r g e l y and eastern shows up t o units assemblage. along the rocks referred to a few m i l e s A third been B a s i n and volcanic volcanic Generally, 2). the the assemblage and s i l i c e o u s to high t h e many sedimentary juxtaposed the upper p l a t e trace in and and are exposed along States. carbonate areas. altered w h i c h have by two a s s e m b l a g e s are o v e r l a p assemblage, Canyon f o r m a t i o n by s i m i l a r to sedimentary which surfaces outcrop area United siliceous fault, is volcanic eastern B u c k h o r n and C o r t e z rocks the Tertiary assemblages Mountains t h r u s t hosted environments southwestern western two is metal deposits spring broadly represented allochthonous the hot Paleozoic autochthonous Locally, The d e p o s i t precious the overly Buckhorn with mineralization l o c a l i z e d systems. other Range p r o v i n c e o f at clastic erosion of rocks. To t h e the the of of the as the Brock rocks both the north |Qa I 1 A L L U V I U M I Ti j J r i | JURASSIC INTRUSIVE |TERTIARY INTRUSIVE 1 P o 1 PALEOZOIC OVERLAP 1 T v |TERTIARY VOLCANICS 1 Ws | WESTERN SILICEOUS | T g |TERTIARY GRAVELS f E c " ] EASTERN CARBONATE Fig. 2. R e g i o n a l G e o l o g y Map o f an a r e a encompassing the Buckhorn mine (after Munroe, Godlewski, and P l a h u t a , 1988). 10 of the the Buckhorn d e p o s i t , Paleozoic rock types fan deposits, include which andesite that In basalts include relatively Tertiary sinter the fan On t h e basaltic Pit andesite, to the In areas about fault the close is limits a of 3), are a l s o area of the 350 basal feet of Buckhorn m i n e r a l i z a t i o n . sediments s i m i l a r to the and s i l i c e o u s the which earlier hot spring around the dominant some o f the open p i t , fault one the altered. main rocktype younger is Miocene and a b r e c c i a feet to unit gives clay 1,000 way to o r e body on e i t h e r feet 200 zone. and zone i n width. feet. extends other side of the angle The whereas the oxide Laterally, montmorillinite the been clay The u p p e r Both the silver. to have a major N10°W h i g h been o x i d i z e d sulfide gold of about volume has volcanics The a l t e r a t i o n strike a depth of reduced from the to contain the transition by u p t o of reeds. (Fig. along the altered zones to area f r o m 100 thirds sulfide pelites, mineralization, feet extends third thickness and more s p e c i f i c a l l y , argillically alteration one the material fossil but t h e r e i n the ranges of some study of 3,000 and intrude northeast. extensively for hosts clastic mine p r o p e r t y , sediments exposed just coarse containing North Buckhorn foot a r e o v e r l a i n by y o u n g e r deposits, deposits a 750 are o v e r l a i n Miocene b a s a l t i c places stocks units. Tertiary alluvial J u r a s s i c quartz monzonite appears to structure two lower and the kaolinite and define the the (Plahuta, 1986). As evidenced presence of by explosion sinters, breccias argillic i n the alteration, vicinity of and the mine, the the •m400 Tbrl Feet BRECCIA T_sJ M I O C E N E SEDIMENTS MIOCENE 1 7000 BASALTIC ANDESITE EARLY TERTIARY FANGLOMERATE STUDY PIT AREA OUTLINE 6000 LU 1 5000 Tb Fig. 3. Munroe, G e o l o g i c a l map of the Buckhorn Mine G o d l e w s k i and P l a h u t a , 1 9 8 8 ) . O O O (after mineralization environment. provided has The h i g h conduits basaltic The o c c u r r e n c e hydraulic t u r n cause to deposit of for alteration into and s i l v e r the porous, to indicates pressure from the fractured host area that sporadic initiated w h i c h would cooled rocks. the mineralization. buildup, b o i l i n g horizons deposit spring and p r e p a r e d and s t o c k w o r k system r e l i e v e d hot and f r a c t u r i n g i n t h e breccias f r a c t u r i n g and l o w e r e d gold surface hydrothermal f l u i d s explosion a sealed i n a near angle f a u l t s f o r hot andesite breaching of been d e p o s i t e d fluids in and 13 3. 3.1 A V A I L A B L E DATA AND BLOCK MODELS EXPLORATION DATA Exploration regular 50' rotary drill x 50' and f i r e silver grades was collar The a few the other horizontal drilling areas of the indeed the labs. are 10' from silver. and t h e r e f o r e to a d a t a comes from every and blasthole geological the Although there estimates of d a t a and were information available boundary i n f e e t lag vertical, that spaced from the of There property, holes less no a d e q u a t e there are provided t h a n 50' were v a r i o u s for campaigns of which defined drilled in different years method o f and t h e constitute series of different supports. the reliability rotary drillholes of various different the series rotary by the different only assayed comparing e i t h e r and diamond d r i l l h o l e a s s a y s a g a i n s t various few calculating in clusters, therefore a the all The i n c l i n e d h o l e s , might but were i n c l u d e d b e c a u s e t h e s e and rotary distances open p i t , holes, T h e r e was gold oxide/sulfide drillholes variograms. i n the the from e x p l o r a t i o n d r i l l h o l e s , The o n l y the close on on different rotary of of on hole. diamond information both approximately sampled be compared rotary d r i l l h o l e s inclined were from b l a s t h o l e s , study. location of for could not in this drilled The m a j o r i t y which assayed assays grades the were were a v a i l a b l e a r e no s i l v e r ignored grid. cuttings collar silver drillholes rotary d r i l l h o l e s , or against each o t h e r . oxide All zone and f e l l shown on F i g u r e Raw 10' such that starting samples middle of elevation Bench p l a n s of if the they were w i t h i n rectangular study the area 3. drillhole the accepted w i t h i n 100' each weighted at were samples composite 6900' bench. were c o m p o s i t e d fell with i t ' s Composites showing the within a of 20' center less to 20' lengths m i n i n g bench vertically t h a n 5' in the were d i s c a r d e d . e x p l o r a t i o n composites c a n be f o u n d in Appendix A . Altogether generated, of there 3.2 spaced upper from w i t h i n the the main composites rectangular North study Buckhorn area pit was i n A p p e n d i x A) are comparison. blastholes (shown approximately 20' Therefore values cutoffs for gold constant silver 12 - a r e sampled assayed fairly of for data exploration BLASTHOLE DATA The fire 3,670 which 2,432 f e l l where p r o d u c t i o n available were any are not used apart. only. Although to heap gold recovered for the represent a total of production data to of ratio leaching is open p i t or d a i l y production ore There are Blasthole ring the silver 14' bench p l a n s from t h e silver from on t h e cuttings there at the 15:1), process is considered design, for the collar and appears (about to the low a bonus be a recovery (< and 40%). silver or to determine mine assays available that limits. 8,752 b l a s t h o l e the cuttings end o f J u l y , 1986. The outline of the perimeter the mined out All blastholes was n o t 3.3 of the i n d i v i d u a l b l a s t s was u s e d area w i t h i n which ore are i n the encountered until oxide later sulfide calculated. mineralization 1986,. Introduction To s a v e on c o m p u t e r t i m e 6840) were m o d e l l e d . both for benches within mining a material. This estimates 3.3.2 mined above outlines represent estimate of and b l a s t h o l e the immediately total c o u l d be area the on 6840 1.155 only a well i n that (6860 and sampled there T h e volume and is area adequate which contained 6860 b e n c h e s , tons sufficient against 2 benches b o t h b e n c h e s and on t h e million considered production data and b e l o w . on of was and c o s t s , The 2 benches r e p r e s e n t exploration sampling to of ore within together and w a s t e generate a exploration 2 ore reliable reserve compared. Four Foot B l o c k Models One o f actual the aims of p r o d u c t i o n tons estimates fixed the determine BLOCK MODELS 3.3.1 the r e s e r v e s w o u l d be zone; in to generated boundaries. polygonal estimates and from this study grade both To do t h i s c o u l d be in is with 20' a to compare e s t i m a t e s exploration and 60' b l o c k models consistent compared t o ore manner estimates of reserve within so on b o t h that 20' and 6 0 block sizes 1 such that same o v e r a l l t o n n a g e , on t h e 2 benches. a 4' This all x 4' three x block 20' calculations block s i z e was reported m o d e l was chosen the generated f o r two principal reasons: 1) very Representative small closely there the are, 2) block the 60' fit block at 20' origins of 4' into blasthole least blocks the blocks a 60' polygonal spacing boundaries. at least 9 c l o s e s t neighbour 4' blocks. evenly into 3 b l o c k models block, would is d i v i d e evenly exactly that to into 20' the e a c h 20' blocks and 60' are exactly represent and 9 20' the 12', 60' blocks. the block, same, 225 are contained 4' in a block. Because boundaries) was used different outlines a r e i m p o s e d on t h e to determine blocks block inside the which percentages In t h i s way, larger blocks very exactly the 1/225 of is its 224/225 o f the N o r m a l methods a block if it's later block of when is accepting center is zone 4' model the were w i t h i n a number o f calculate represented f o r example, might the of a large be w e i g h t e d total area to or r e j e c t i n g outside to was calculating outside the ore valid 4' fractional within p a r t i c u l a r boundaries. same t o n n a g e estimated, volume small blocks were u s e d and, limits, block models, Then, (block p a r t i a l s ) l a r g e r b l o c k s i z e models whose g r a d e (mined various b o u n d a r y and w h i c h were o u t s i d e . the drawn size divides and t h e 25 o r i g i n a l hand sample on a v e r a g e , sizes blocks traditional average The 4' Because c o u l d be c a l c u l a t e d b l o c k s w h i c h c o u l d be r e c o m b i n e d i n g r o u p s resemble Because polygonal estimates be by as by e a c h 60' block little reserves of as because estimated. blocks a boundary. tend to throw Figure out 4 shows r METHOD 1 + + + 408 TONS USUALLY, CENTRE BOUNDARY. 1, ?| + IF A BLOCK'S I S I N S I D E THE IT I S ACCEPTED. + 1) RESULT' THE 6 0 ' BLOCK I S REJECTED 2) ~7T KEPT - 3) + - 0 TONS. 2 2 0 ' BLOCKS ARE 816 TONS. 54 4 ' KEPT - BLOCKS ARE 881 TONS. + • A ORE ZONE OUTLINE 6ir METHOD 2 THE METHOD LARGER WEIGHTED OF 4' USED BY THE NUMBER BLOCKS QUALIFIED. 1) WEIGHTED 2) + + + 408 TONS RESULT« TONNAGE I S | : A + + + + + + < + + + + + + + + + + + + + + + + + 54/225 881 T O N S . 3 2 0 ' BLOCKS ARE RETAINED. 12/25. 17/25 3) THAT THE 6 0 ' BLOCK I S RETAINED. - HERE. BLOCKS ARE WEIGHTED 2 5 / 2 5 , AND - ,i A AS 881 TONS. 4 + > / + • + 881 TONS. 4 ' BLOCKS, ABOVE, + i ORE ZONE OUTLINE + + + + + + + + + + + + + + + + + + + + + + / Fig. 4. Two methods o f a c c e p t i n g o r w i t h i n an o u t l i n e . Method 2. i s u s e d r e j e c t i n g blocks i n t h i s work. 18 the difference employed 3.3.3 in for this results method and the one study. Two 20' b l o c k models were g e n e r a t e d . The actual block and i n i n i t i a l production size planning. Each block the falls block mined l i m i t s contained within along with calculate the actual blocks conservative ore which g e n e r a l l y than subset blasthole composites 20' the data later to of files (even i f study on t h e which was could the which outside (see small be u s e d this the to model, first. model t o that estimate second completely A A p p e n d i x A) calculated the mined l i m i t s ) . and were generated Chapter which contained were statistics of composites were Simultaneously, were c r e a t e d these the a r e a maximum o f on b e n c h p l a n s , 4' along block. digitized from 100% o f blocks later For a subset partials if f r a c t i o n was 4% b e c a u s e t h e r e (shown 4' number o f outline. i n a 20' represents A l l blocks selected only exploration block boundary. any model i s opt. blocks if a percentage zone o u t l i n e contained limits. w i t h i n the block used first tons of m a t e r i a l based contained or blastholes zone o u t l i n e see location multiples Again, of straddling tonnage 0.01 rationale). to and, block 20' 408 t h e mined outline, exactly The s e c o n d better it, the p e r c e n t a g e s were 4' inside within outline represents were c h e c k e d blocks used this Twenty F o o t B l o c k M o d e l s the 25 between graded 4. for for this tonnages exploration only drillhole inside These and the ore files are generate variograms, and to generate estimates 3.3.4 polygonal, for this block model. the 60' 20' w h i c h were 6840 and The inverse distance, b l o c k models block were g e n e r a t e d models. completely second contained was a those inside The f i r s t or in exactly 60' model partly inside subset large the Although the the the same way contained mine which blocks selected 60' contained blocks or ore partial are slightly larger it approximates the drillholes 4' and 20' block models. therefore the smaller of A l l t h r e e models blocks the stored. which w h i c h were zone b o u n d a r y . b l o c k s i z e was spacing on blocks blocks this the blocks limits 60' exploration d r i l l h o l e spacing, 3.4 kriged 6860 b e n c h e s and b l o c k p a r t i a l p e r c e n t a g e s were represented and and S i x t y Foot B l o c k Models The as various fit inside the chosen and share the than also the 60' 50' because fits the same o r i g i n blocks. SUMMARY OF BLOCK MODELS AND DATASETS The These various net are result is summarized datasets w h i c h may be u s e d 6 block in models Table and b l o c k m o d e l s , elsewhere i n the I. and 4 separate In order to s h o r t names text and have figures. datasets. refer been to the assigned 20 Table Summary o f Block I M o d e l s and Datasets Short Name #Blocks or Composites W i t h i n Mine W i t h i n Ore Limits ? Zone O u t l i n e ? 4 FOOT 70,775 yes no 6840-6860 4FOOTG 46,331 yes yes 6840-6860 BUCK 2,999 yes no 6840-6860 BUCKG 2,089 yes yes 6840-6860 BUCK60 386 yes no 6840-6860 BUCK60G 305 yes yes 6840-6860 Bench Block Models 4x4 1 20x20 1 60x60• Exploration Composites BEX 2,432 no no 6600-6900 BEXG 1,036 no yes 6780-6880 BBH 8,752 yes no 6780-6880 BBHG 6,315 yes yes Blasthole Samples 6780-6880 21 4. I n any data is that ore reserve considered can be obtained their results probability graph i s is used out it. the "it's is One o f the any close indicator data over of understand the the nature of the a normal a g r a p h was the histogram chosen) last we to of "sell" of methods hear about results kriging of having multigaussian, their complexity, study w i l l c a n be u s e d determined line point t o management this or to effect are or rigorously curve or s t r a i g h t Because estimation if fit (examples difficult time) the few p e o p l e deleterious One f u r t h e r o b j e c t i v e much s i m p l e r of the results and much more c o m p l e x the distributions show t h a t important usually that's newer offset are often company. 90% of and p r o b a b i l i t y k r i g i n g ) . t h e s e methods mining — which type enough" and most Very d r a w n , and a b e s t a r e employed t o non-perfect the evaluation of confirmation way A l t e r n a t i v e l y , various methods a statistical sample d a t a . in ( d e p e n d i n g on that study, important. lognormal nature of test STATISTICS effort from a c l a s s i c a l is in a be to (probably made to statistical study. T h e a u t h o r has drillhole, and has and r e m o t e found, from parameters separate numerous sensing almost appearing datasets data studied c a n be datasets without over the exception, explained populations. geochemical, by Where past geophysical, 5 or 6 years that non-lognormal inappropriate mixing of classical statistical s u c h as mean and v a r i a n c e a r e r e p o r t e d f o r t h e s e mixed datasets, of they splitting (David, are nearly meaningless. up t h e s e 1988), partitioned One and separate, a way What i s (usually) of such method has been whether in 1976), and w i l l study, of c o n d i t i o n a l p r o b a b i l i t y estimate described the later) data i s The indicate points first every and t h a t curve. on were u s e d t o the and t h e single they a best curve of last the to of the is, 20' fit exploration modelled which original this (which w i l l assumption be that However, the 2 or not if placed point, it c a n be above t h e curving below define straight line shows t h a t a "bell" up t o be of the shaped defined create one shown f o r a l l a of composites? show t h a t a r e added t o g e t h e r data points is gently the adequately a ruler more p o p u l a t i o n s which resembles the c a n be drawn seem t o is histogram does can a line last plot from a p r o b a b i l i t y graph when added i n t h e p r o p e r p r o p o r t i o n s , add 5) case of composites straight o r second the U s i n g S i n c l a i r ' s method, Fig. on construct define samples The q u e s t i o n 20' demonstrated In the which would p o i n t on seem cumulative p r o b a b i l i t y the dependent exploration glance, Examination distribution which, non-zero At f i r s t the points. here. a lognormal d i s t r i b u t i o n . seen t h a t resulting lognormally d i s t r i b u t e d . through the line, critically (BEX) d a t a s e t 5). between is 2,388 original (Fig. the the and (Sinclair, use a way fact. documented be u s e d is lognormal populations testing p o p u l a t i o n s h a v e any b a s i s needed if two s t r a i g h t 2 line populations lognormal populations (A and B , i n t h e p r o p o r t i o n A=60% and B=40%, c a n be a p p r o x i m a t e d ( c h e c k p o i n t s , were Fig. the 5). 23 N= 2 3 8 8 - PROBABILITY LOWER LIMIT 0.000 0.001 0 .001 0.002 0.003 0.004 0.005 0.008 0 .011 0.015 0.020 0.028 0.039 0 .054 0 .075 0.104 0.143 0.198 % 6 . 2 ****** 0.0 3 . 0 *** 4 . 5 ***** 3 . 7 **** 4 . 5 **** 9 . 0 ********* 8 . 3 ******** 7 . 5 ******* 8 . 9 ********* 1 0 . 7 *********** 1 0 . 5 ********** 8 . 1 ******** 6 . 0 ****** 4 . 3 **** 1.8 ** 1.4 * 0.8 * BEX DATA ( CUM % ) LOWER LIMIT 0.000 0.001 0 .002 0 .003 0.004 0 .005 0.007 0 .010 0 .014 0.019 0.026 0.036 0.049 0.066 0 .091 0.124 0.169 0.230 % 0.0 2.9 3.1 2.6 2.4 3.8 6.4 8.4 9.5 12.1 12.4 10.7 8.1 5.4 3. 3 1.9 1.2 0.6 *** *** *** ** **** ****** ******** ********* ************ ************ *********** ******** ***** *** ** * * BBH DATA F i g . 5. Partitioned log probability plot o f 20' exploration composites. The h i s t o g r a m b e l o w shows a large number o f low grade samples which cause the original curve to d e p a r t from a perfect lognormal distribution. By lines s t u d y i n g the resulting on a p r o b a b i l i t y g r a p h , from a p p r o x i m a t e l y Also, a whereas o n l y it 265) was to selected construct this the define second set f o r which there drawn f r o m samples) one or It the of was ore this the 90% o f the should be above 0.01 outlines 3 "ore zone" grades is other members of 0.010 0.010 opt. grade c u t o f f that that were u s e d to examined in b l o c k models study. A conservative there was a mining boundary i s b o u n d a r y was outline considered "greater than nearest composite essentially 0.01 opt. outlined Figure 5, grades zones which then it should also t h a n 0.01 separate were data blasthole graph population below 0.01 "A". (8% resulting (Fig. ore zone closer to the than to the opt. by 0 . 0 1 The opt. line gold p r o b a b i l i t y graph, population a number o f 6) one if "A" i n values which (BEXG d a t a s e t ) , within data W i t h i n each o f f o r the the created, represents probability to include outline The t h a n 0.01 which (10%) opt. datasets dataset). lies the modelled e x p l o r a t i o n data w i t h i n the the The composites" a r e bounded According bench f o r data). because i t less zone t r u l y r e p r e s e n t s which are l e s s Two (blasthole exploration which encloses drawn on e v e r y conservative exploration composites. the 0 . 0 35 opt. of p o p u l a t i o n B s h o u l d be above samples. straight a range seen t h a t 1,300 as can d e f i n e is c a n be 28% o f (approximately to sample population A (approximately opt., one 0.005 o p t . some p r o b a b i l i t y t h a t population. lognormal populations, were along the exploration the then with represents and one same zone (BBHG on a log plotted the new d a t a s e t s composites higher there and which modelled are values 9% f o r the 25 1 .000 i i II i i i i i i i i i i i _ \ A \ ° a BEXG DATA (N = 1032) BBHG DATA (N = 6308) _ D. 100 z o h— — — — \ NJ o * o^. UJ Q < cr o Q O 0.010 O — •\ — * ^ \ A c .001 0. i i i 2 II i 10 i 30 i i 50 PROBABILITY LOWER LIMIT 0.003 0 .004 0 .005 0.007 0 .008 0.011 0 .014 0 .017 0 .022 0.028 0.035 0 .045 0 .056 0.071 0.090 0.113 0.143 0.180 0.228 % i 70 i T TMTT j j i n i j. * ** * ***** ******* ******* ************* 0.003 0.004 0.006 0.007 0.009 0.012 0.015 0.019 *********** ******** ****** ****** ** ** * * * BEXG DATA o!o3o o!038 o!048 0*.061 0.077 0.097 0.122 0.154 0.195 0.245 ************ ********** i 90 i 1 98 I 99.9 ( C U M %) LOWER c .5 * 1 .4 1 .8 0.5 c. 3 7 .3 1 .2 12.5 11 .8 10 . 3 10.9 7 .9 6 .1 c .9 2 .4 1 .7 1 .5 0 .9 0 .5 i " o!o24 % 0.8 * 2.1 ** 1.1 * 3.0 *** 5 . 7 ****** 6 . 3 ****** 7.8 * * * * * * * * 10.2 * * * * * * * * * * 10 . 2 * * * * * * * * * * 11.2 * * * * * * * * * * * 11.0 * * * * * * * * * * * 9.0 * * * * * * * * * 6.0 * * * * * * 4.6 * * * * * 3.2 *** 2.1 ** 1.6 ** 0.9 * 0.6 * BBHG DATA Fig. 6 Log probability plot of blasthole data compared t o p a r t i t i o n e d e x p l o r a t i o n d a t a . T h e s t r a i g h t l i n e i s t h e m o d e l l e d p o p u l a t i o n A f r o m F i g u r e 5. B o t h sets o f data r e p r e s e n t e d above a r e drawn from w i t h i n t h e o r e o u t l i n e i n t e r p r e t e d from t h e graph i n F i g . 5 • blastholes) w h i c h compare f a v o u r a b l y w i t h the t h e model p o p u l a t i o n " A " . The b l a s t h o l e is by accurately represented the expected 10% from d a t a w i t h 6,308 straight line samples model. The e x p l o r a t i o n d a t a shows s m o o t h i n g t h a t was a p p a r e n t o n l y s u b t l y the raw d a t a — n a m e l y a s l i g h t u n d e r e s t i m a t i o n o f t h e of composites expected at higher overestimation of the percentage This is weighted consistent with averaging process composites, fewer and samples i n the Both the slight tendency indicates that f o r the is the to "rise" i n the there to graph. grid on t h e Generally predicted the exploration t h e BEXG data the and BBHG was s o that there in the are composites). between the this show a 2nd and probably certainly due to than a 50 1 exclusively This gives a slightly the high grade categories. have accurately seems zones o f higher grades. or not, the grade d i s t r i b u t i o n s i n t h i s outline are datasets to to higher be b e l i e v e d o f samples. the 1,032 blastholes almost modelling which i n d i c a t e s 2 types that the of unexpectedly high grades, t h a t whether t h e model i s identical created plotted points grades existence of these d i s c r e e t and b l a s t h o l e grades. and w h i c h were a l m o s t samples the lower d r i l l h o l e s w h i c h were c l o s e r pattern) number o f however, also between is slight when u s i n g fact (only For the i n h i g h e r grade ore areas. than expected nearly higher exploration data i t at a originally by t h e percentage and result blasthole a r e a few a r e a s apart Notice which exploration dataset irregular collared expected accentuated s m a l l e r number o f (not o f composites e x p l o r a t i o n and t h e 5th p e r c e n t i l e s but it grades in that The there is little reason f o r on b e n c h e s e x i s t e n c e o f any only o r no generating where t h e r e was sampling bias bias blasthole c o u l d be 27 Table Simple S t a t i s t i c s Data n the E x p l o r a t i o n and B l a s t h o l e Arith. Mean Arith. Variance Relative Variance Log Mean Data Log Variance 1 0 1 0 BEX 2432 0.031 0.00224 2.3 -1.82 0.311 BEXG 1036 0.043 0.00276 1.5 -1.55 0.162 BBH 8752 0.037 0.00310 2.2 -1.71 0.288 BBHG 6315 0.047 0.00380 1.7 -1.51 0.162 checked the in this way. four datasets because, method, in for There i s (e.g. be actual further probability constant model. another value 2 of which approach a "non-ore ore is the simple to create a constant of gold to compute b l o c k models sill relative value should statistics (Section to the is, 0.005 o p t . an will be 5.4.1). to add a lognormal added t o produces conditional be conditional this lognormal in a populations a 3-parameter grades line calculated lognormal integral of probability variance reserve estimation; straight later outline" the of modelling which were The p o p u l a t i o n choosing These statistics conditional s e c t i o n on v a r i o g r a p h y arithmetic be u s e d in simple variances used. same way t h a t i n d i v i d u a l grades set should are method 1982) the Raymond's variograms. approach to to Relative guide F i g u r e 7 shows t h a t original points a i n the Raymond, summarizes use variogram i n the indicator analyzed to variograms should relative A chart (Table I I ) . order relative variance the of II the a series model. probability (BUCK and BUCK60) of This for because, 28 I.000. F r i i—r i—i—i—i—r zn o i— \ 0.100 M o ID O O O < o Q 0.010 _j o o 0.001 0. 1 j 10 i i_ 30 50 i PROBABILITY i 70 i j90 ( CUM % i_ 98 F i g . 7. L o g p r o b a b i l i t y p l o t shows t h e e f f e c t ing a constant of 0.005 o p t . t o the original c r e a t e a 3-parameter lognormal d i s t r i b u t i o n . according that to kriging Raymond variances (1982, are 1984), related it to is 99.9 ) the a log of adddata to o n l y way t o ensure transformed kriged grade. However it should amplified on f u r t h e r in lognormal concept one is Conceptually, a frequency every of to what c o n s t a n t be mentioned later single one adds sections, which the distribution can value to here, that a u t h o r has be modelled i n that each and dataset discreet it the will 3-parameter difficulty by and, value, be with. assigning a regardless it doesn't change it the frequency appears to with which t h a t generate a s t r a i g h t e r probability graph altered d i s t r i b u t i o n of the Modelling positive that doesn't the constant the change the does have and The l o g n o r m a l steeper this p r o c e d u r e c r u d e l y models line, the probability plot The c l o s e r the chance that the the truth. The attempt however m o d e l l i n g the h i g h e r mean grade p o r t i o n of grade values into population the is of the still The e f f e c t predicted the is steep line the on the high for better come c l o s e the succeed upper, effect to in high of the by b r i n g i n g the high grades), calculation of w i l l be t h a t variance the totally (mainly as fit Effectively, lognormal, although the i n the best the upper p o p u l a t i o n . variance of minimized represented and t h e are this lognormal p r e d i c t e d mean the upper is population grades. The partition advantage the are modelled the is up never same o r d e r o f m a g n i t u d e mean and v a r i a n c e . low and data because, population the and l o w e r is variances approximation w i l l can with a What happens portion of to log hasn't and becomes l e s s which represents 3-parameter really variance). linear original distribution is the lower the a data. however. out that on distribution shifted greater the one population distribution flattens the The f a c t plotted that lognormal mean i s (the when fact lognormal through the log the an e f f e c t line the line occurs. raw a r i t h m e t i c 3-parameter relative decreased. value data the is correctly, partitioned represent of log using that Sinclair's method to b o t h t h e u p p e r and l o w e r and more i m p o r t a n t l y , probability plot a c t u a l numbers o f samples accurately populations further studies provide percentages which can be of which expected from either shown modelled earlier. different discreet However, use better than modelled later These populations z o n e s as not population if they of values it doing be used Buckhorn 3-parameter anything d i s t r i b u t i o n on k r i g i n g chapters. can a grade c a n be shown t h a t are for the the within at to they variances as was separate the are located in distribution is study. lognormal all. range, The e f f e c t will of be d i s c u s s e d this in 31 5. 5.1 ORE RESERVE CALCULATIONS INTRODUCTION For each o f the 20' and 60' block models, calculated using 10 d i f f e r e n t methods distance calculations, based probability. reserve This calculations blasthole results Undiluted 2 benches benches tonnages. any volume and a t o t a l methods 20', of or 60' whether shared each of the calculations yield and the therefore directly w i t h each estimates blasthole at constraints, that the identical different other. 20' block was used) cutoff any 4', (regardless and w h i c h same total block reserve tonnages w i t h i n the outline size models 60' on different Also, a l l produced the vs. were total a 0.0 were c a l c u l a t e d block total and comparison of 2 partial calculations tonnages data the f o r the block reserve the model f o r which r e s e r v e s T h i s meant kriged on e a c h o f c a l c u l a t i o n w i t h i n each model. same o u t l i n e the reserve The grade facilitated e x p l o r a t i o n or the tonnage. greatly reserve e x p l o r a t i o n ore f o r each b l o c k f o r e v e r y model b l o c k model produced i d e n t i c a l t o t a l This inverse 4 block models. weighted that were and c o n d i t i o n a l separate calculated. stored 6 t h e n be compared t o and 6860) also T h i s meant grade. of was w h i c h were kriging were c a l c u l a t e d s e p a r a t e l y (6840 produce 40 which could reserves combined to in reserves 2 polygonal, ordinary f o r each o f the studied percentages used resulted — gold can be compared 32 5.2 POLYGONAL ESTIMATES In place of traditional computer generated assigned to blasthole on t h e block. (one any Four the blasthole direct reports the tonnage employed. grade to the one w h i c h of the center a The grade composite of the for exploration represented or small data a subset and two c o m p a r a b l e e s t i m a t e s generated blasthole to weighted of with other the 20' produce grade the the for each polygonal and g r a d e t h a t models, volume weighted using the of estimates would h a v e been Because various the the models in fact reported exploration o t h e r methods down p o l y g o n a l e s t i m a t e was n o t u s e d methods. and 60' what estimate polygon weighted Instead, b l o c k models will (see be the Fig. 4' 8 for to to for blocks and g r a d e s referred at as were the a graphical method). INVERSE DISTANCE Six all the and interpolated using were r e c o m b i n e d i n t o 5.3 was production s t a t i s t i c s . comparisons explanation were The block polygon is zone o u t l i n e ) , mine i n t h e i r 4' block same b e n c h n e a r e s t C). d a t a was n o t the model outlines, data. (Appendix the 4' mined l i m i t s ore Reserve represent block 1 s u c h e s t i m a t e s were made — two w i t h i n the inside 4 hand drawn p o l y g o n a l 20' inverse and 60' distance reserve block models. e s t i m a t e s were T h e s e were i n v e r s e calculated distance to for the 33 i i • i i i i i i • • • F i g . 8. G r a p h i c a l e x p l a n a t i o n o f the polygon weighted method o f c a l c u l a t i n g block grades. The s m a l l s o l i d b o x e s show t h e l o c a t i o n o f d r i l l h o l e s , whereas shaded areas r e p r e s e n t the sub-volumes within a large block w h i c h w i l l assume t h e g r a d e o f t h e n e a r e s t d r i l l h o l e . zero (IDO), (ID2), fifth All inverse inverse distance power (ID5), (ID3), inverse distance inverse distance to o f t h e s e e m p i r i c a l models have been used distance drillhole the composites d i s t a n c e weighted to in a practical straight whereas some p o w e r . h i g h e n o u g h power t o difference distance the tenth in practice It of to the (ID10). inverse study. average o f each squared and a r e o f the u n c e r t a i n t y o f knowing which approach to use IDO r e p r e s e n t s the cubed (ID1), and i n v e r s e i n c l u d e d here because be a distance a l l of the the other estimates was e x p e c t e d be c o m p a r a b l e t o b e i n g t h a t d r i l l h o l e s on t h e qualifying that a polygonal is ID10 would estimate, b e n c h a b o v e and below 34 Table III P a r a m e t e r s Used t o G e n e r a t e I n v e r s e D i s t a n c e Weighted B l o c k Model E s t i m a t e s from E x p l o r a t i o n C o m p o s i t e s . Composite length 20' Anisotropy none Minimum number o f s a m p l e s accepted 5 Maximum number o f accepted 12 samples Maximum s e a r c h r a d i u s Rectangular 150' search radius 150' Power o f d i s t a n c e 0, w o u l d h a v e some s m a l l w e i g h t vertically center above would and probably assigned below be to the nearest ranked second x 150' 1, 2, them 3, x 5 & 10 (the composite and 30' composites to the third block in the weighting). The search parameters were c h o s e n b e c a u s e initially used to they Buckhorn. f o r open Therefore, the b l o c k model which wasn't (BUCK b l o c k model), is a r e shown i n T a b l e are exactly generate m o d e l t h a t was u s e d used the pit 20' the by distance direction. estimates that c a l c u l a t e d f o r the the ore zone at to 20' outline t h e mine and a l l other estimates relative were p l a n n i n g at No a t t e m p t was made t o w e i g h t differently These cubed b l o c k mine t h e one u s e d c a n be s c r u t i n i z e d c a r e f u l l y r e l a t i v e t o c o u l d have been g e n e r a t e d . and ID3 e s t i m a t e i d e n t i c a l to values inverse distance design constrained same III. any that inverse preferred The thought ID3 of as m i n e went this estimate the into was used geologist's "gut feel" production. i n every before this cutoff s t u d y was geologists category. initiated feelings best estimate before be s e e n , look reasonable used to attempting pointed to out prediction easier fact, to of distance kriged an ore analyze that of tonnage get a the inverse to the tonnage at the the reserve seemed t o serves — at this each grade c u t o f f us that point, to the of should it without should produce the grade estimate tonnage. it that out predicting f o r the the be best estimate of turns a w h i c h may be However, doesn't methods, comes c l o s e r apparent remind a d v a n c e d methods than the distance block any c a l c u l a t i o n performance o f for to be the because accuracy or usefulness estimate — the may be estimating estimate. results ID3 feeling fifth of the the and i t this when fact be i g n o r e d regardless generate This about grade estimate should not 5.4 As w i l l f o r m i n e p l a n n i n g c a n be p a r t i c u l a r c a l c u l a t i o n performed w e l l grades the that is In inverse blasthole BUCK b l o c k m o d e l . KRIGING 5.4.1 Variogram A n a l y s i s The a p p r o a c h data as was to if it make was taken i n the the this study only data a v a i l a b l e best reserve to and t h e n compare t h e blasthole Therefore, study because the calculation production started, results. was exploration general possible estimates with the aim before known a l l v a r i o g r a m s were c a l c u l a t e d and modelled from were u s e d made t o to exploration krige the determine a composites exploration and t h e data parameters before better variogram derived derived any a t t e m p t from the was blasthole data. Three basic the two e x p l o r a t i o n compass 45°. directions the b e n c h above vertical Actual, a 0° lags increments in weighted distance plotting and m o d e l l i n g All greater types (Appendix D c o n t a i n s values), on t h e the variograms horizontal the 20' to of the the composites with a 5° For window drillholes. calculated directions the by direction calculation. were of principal incrementing vertical determine each which with included average lag for results. of variogram a listing relative was v a r i o g r a m on t h e of but because c o n d i t i o n a l rely i n the for four than 20', lag distance calculations three and each s i d e and below were u s e d down h o l e i n the (north) 3 0 ° on l o g n o r m a l and r e l a t i v e lag later at variogram, the essentially 40' and f o r calculated (BEX and BEXG) window was calculated, on t h e datasets starting The s e a r c h being -- t y p e s o f v a r i o g r a m were all show of the consistent calculated p r o b a b i l i t y estimates variogram, the relative results variogram as defined v a r i o g r a m was modelled. The similar three types of anisotropy variogram value y(r) i n the exception dataset), at the variogram for patterns. at the first NW-SE d i r e c t i o n (the The lag is lognormal the NW-SE d i r e c t i o n first significant both datasets N-S direction t h a n does the lower than variogram on showed t h e lag. The all has a BEX With and one exploration lowest variogram major lower E-W d i r e c t i o n f o r NE-SW. the indicated structural value trend determined be N 1 0 ° W from g e o l o g i c a l (Plahuta 1986); m a p p i n g on t h e therefore consistent with expectations. define the the nugget e f f e c t . exploration datasets that, although 150', all constant the after stationarity 1024 that gamma v a l u e s to cut (Figs. 11 confirmed It and should the lags less thought to sample pairs grade o f lags only the the first beyond t h i s angled they than 50', was at relative held in core lag distance longer lag 150' because, demonstrated were variogram clouds arrays on (38 lags X C o m i n c o ' s IBM distances need n o t the opt. be calculated. spaced samples retained structure variogram values average greater grade than the As m i g h t variograms c o n s i s t e n t l y than at and more d a t a i n showing resulting showed the to variograms i n i t i a l l y were distances. l a g w h i c h were l o w e r Blasthole although close be u s e f u l 0.015 of reached variograms as large computing. In general of Notice relative) values directions that, the about lag distances only to sill diamond d r i l l h o l e s would to subsequent smaller a l s o be n o t e d and 1 0 . v a r i o g r a m s were o n l y c a l c u l a t e d of with f o r each to directions. in five, A l l final be u n r e l i a b l e . pairs in a l l on c o s t s hope t h a t of all resulted 12) which included in constant to are 9 and calculated x 5 directions) down that lognormal 1977), This mainframe computer. 150' the anisotropies were u s e d a r e shown i n F i g u r e s calculated lags. that in a l l horizontal (David, simultaneously w i t h 4' The models v a r i o g r a m s were assuming thought The v e r t i c a l v a r i o g r a m was u s e d (actual, values The f i n a l the modelled v a r i o g r a m s a r e shown o n l y variograms sill property is be of were these average expected, gamma v a l u e s second lag. at at These 38 RELATIVE VARIANCE = 2.329 _© ' 1 o o N S E W X X •e—w • NW-SE —i— 50 Fig. values were variograms, considered 9. LAG (FEET) Modelled r e l a t i v e t h e BEX d a t a . i n i t i a l l y noted but were variogram of and p l o t t e d not t o o u n r e l i a b l e and used on e a r l y versions i n m o d e l l i n g because inconsistent between of they the the were various types of variograms. 5.4.2 Some O b s e r v a t i o n s on V a r i o g r a m Having defined this study, a slight the variograms digression Modelling which w i l l be u s e d later in i n t o the nature of variograms is 39 S 5 • 2.0- a •J <« > 2 RELATIVE VARIOGRA i.s- VARIANCE ' = 1.497" „ _-- „ 'JT - „ „i - " - " ^ - - •* LEGEND b RELATIVE 0 0 VERTICAL * + NS - 0N-E --SoW 0.5- X K E-W O D NW-SE 0.0 - 1 IO 1 30 1 SO 1 70 LAG Fig . 10. undertaken. have one discussion, the time part of variogram of the monitor, based on 1 ISO 110 1 190 (FEET) particular shortest section were of the thesis i t not f o r the spent the on t h e e n t i r e p r o j e c t because author modelling that clouds would a) kriged were and a t t e m p t s repeated, drawn were median squared provide made pair better estimates. on a to of the b e l i e f sophisticated high differences 50% o f on t h e attempts at variograms which Complex c o l o u r coded resolution develop might following t h e s t u d y o f v a r i o g r a m s a c t u a l l y consumed o v e r w o u l d b) p r o v i d e b e t t e r variogram I Modelled r e l a t i v e variogram of t h e BEXG d a t a . Although t h i s been I 90 better and o t h e r graphics variograms percentiles, 40 or a "different" half the relative v a r i o g r a m w h i c h was mean s q u a r e d p a i r value, etc. useful i n f o r m a t i o n t h a n was lognormal These differences and r e l a t i v e modelling the to krige best the prerequisite conditional data final relative of of 0.020 proceeding fashion (including the was 20' and on results, to in a performed. The the major a x i s b l o c k models of (BUCKG) similar identical category. the kriged estimates ore reserve The e x p e r i m e n t variogram misinterpreting C and is a, and k r i g i n g estimates tends to robust and are not very in support that "the important" 1977). there are s l i g h t variograms variogram predict cutoff variogram at a less estimate. difference (arbitrarily a vs. above total 0.042 the differences (Table I V ) . slightly (0.041 o p t . 4,600 tons other basics and such t h a t the actual, two k r i g e d e s t i m a t e s were c o m p a r e d . calculate statement that two d i f f e r e n t rotated rotated the continuing experiment and one o f Then t h e range However, the a simple pair o r more returning to then one new, from reasonable and and p r o d u c e n e a r l y grade (David, analyses), 9 0 ° away, Both models effects After most v a r i o g r a m was re-kriged. David's apparent variograms a v a i l a b l e , the desperation a n i s o t r o p y was every in p r o v i d e any p r o b a b i l i t y and f i n a l c o m p a r i s o n o f act variances relative back final was variograms. as d i v i d e d by t h e i r mean variograms d i d n ' t already calculated of lower between chosen the to 2 6 , 5 0 0 more grade 0.050 c u t o f f estimates the differentiate from at t o n s above than and was is results The e s t i m a t e s u s i n g opt.), E v e n more i n t e r e s t i n g in the the the it about same g r a d e as greater that when t h a n 0.010 between the original predicts fact the similar the the opt. and 41 T a b l e IV Ore Reserves P r e d i c t e d by U s i n g t h e "Rotated" Variogram Compared t o K r i g e d E x p l o r a t i o n E s t i m a t e and " A c t u a l " f o r t h e BUCKG Model. BLOCK MODEL: BUCKG 20' BLOCKS - WITHIN ORE ZONE OUTLINE METHOD: BHKRIGE BLASTHOLE KRIGED - RESERVES BENCH CUTOFF ABOVE CUTOFF GRADE TONS GRADE OUNCES "ACTUAL n INSIDE GRADE BOUNDARIES TONS GRADE OUNCES TOTAL 0.000 756122.25 0.040 30336.14 28070.44 0.007 184.60 TOTAL 0.010 728051.81 0.041 30151.54 124929.62 0.016 2012.15 TOTAL 0.020 603122.19 0.047 28139.39 276722.06 0.027 7487.60 TOTAL 0.035 326400.12 0.063 20651.79 143338.62 0.042 5952.25 TOTAL 0.050 183061.50 0.080 14699.55 183061.50 0.080 14699.55 BLOCK MODEL: BUCKG 20* METHOE "GOOD" EXPLORATION RESERVES BENCH CUTOFF BLOCKS - WITHIN ORE ZONE OUTLINE ABOVE CUTOFF GRADE TONS GRADE OUNCES •GOOD" KRIGED ESTIMATE INSIDE GRADE BOUNDARIES TONS GRADE OUNCES TOTAL 0.000 756122.25 0.039 29523.88 408.00 0.009 3.73 TOTAL 0.010 755714.25 0.039 29520.15 86186.00 0.017 1500.25 TOTAL 0.020 669528.25 0.042 28019.90 350814.87 0.028 9654.29 TOTAL 0.035 318713.37 0.058 18365.61 182996.25 0.041 7531.16 TOTAL 0.050 135717.12 0.080 10834.45 135717.12 0.080 10834.45 BLOCK MODEL: BUCKG METHOD: "ROTATED • RESERVES BENCH CUTOFF 20' BLOCKS - WITHIN ORE ZONE OUTLINE EXPLORATION "ROTATED" KRIGED ESTIMATE ABOVE CUTOFF GRADE TONS GRADE OUNCES INSIDE GRADE BOUNDARIES TONS GRADE OUNCES TOTAL 0.000 756122.25 0.039 29212.79 0.00 0.000 0.00 TOTAL 0.010 756122.25 0.039 29212.79 80163.87 0.017 1390.62 TOTAL 0.020 675958.37 0.041 27822.17 358860.69 0.027 9746.67 TOTAL 0.035 317097.69 0.057 18075.50 185966.44 0.041 7628.64 TOTAL 0.050 131131.25 0.080 10446.85 131131.25 0.080 10446.85 dissimilar tends to estimates), be c l o s e r blasthole 137), the the kriging and t h e the rotated is originally modelled predicting higher highest But total anisotropy i n any o t h e r ranges even is actually up on t h e variograms. conclusion to structures than The been This constant differential rapidly true lower as at occur a the the course reached: the of that that above, of most the geology. the 4 5 ° showed many v a r i o g r a m s the data is from a l l results, the lognormally sample of magnitude the job and by to almost s h o u l d have continuity the by slight, studying calculated of is when close t o model indicated anisotropy was m e n t i o n e d reason for grades better highest was no good anisotropy be remains slightly in of to vs. than Block 0.050 o p t . fact As measure grades pairs is between and d i r e c t i o n of structures. used which calculated fairly a the did the was within differentials. 7% from estimates study. above variogram determined (204 is d i r e c t i o n than that variogram variograms anisotropies category and t h e r e be a measure discontinuities often in this reserves the and i n more l i k e l y rotated grade estimate still, though direction the more the variogram grade distributed block a c t u a l l y used profitable following of from t h e v a r i o g r a m a r e a l s o more l i k e l y i n the were e x a m i n e d , actual error one m a r g i n . Perhaps, estimate significantly that t r u e grade a two t o the average variogram using to the here relate to includes y{h) / Buckhorn. at are areas the m(h) 2 values. highest 1977) areas where showing grade variogram which (David, These toward of relative boundaries f r o m low b a c k g r o u n d biased gold Within of where m(h) highest grades the has is grade increase smaller high grade s t r u c t u r e s , although there h i g h grade differences distance, there directional trends where s a m p l e d numerous amongst are some p o t e n t i a l samples fewer are which pairs. be detecting achieving by Therefore, similar, will are for separated t h a t m i g h t show up w i t h i n t h e values pairs is a given the subtle h i g h grade "drowned o u t " high areas by grade/low the grade boundaries. In other words, u s i n g v a r i o g r a m does not evaluated grade, in that shows i s relative a high the that low v a l u e s , to error 135° and not the show different by and is the samples better and to only To p r o p o s e instead to same assume is are s i m i l a r in what the h i g h grade kriging, of this might best but h a v i n g an separate of actual of very kriging are edges it estimate a high assumptions or the variograms a different or 4 a c t u a l or r e l a t i v e block weight v a r i a n c e amongst account of not numerous a Instead lower of take different creating indicators the grade ranges i n h e r e n t drawback where modelled applied c a l c u l a t i o n o f every k r i g e d grade forms kriging, the a t r a n s i t i o n from v e r y h i g h t o anisotropy the complex probability modelled it low g r a d e a r e a s More that to that T h e v a r i o g r a m t e n d s t o p i c k up t h e does either is Unfortunately, indiscriminately way e s t i m a t e s h o u l d be l o w e r . where t h e r e a i n any an e x a m p l e , g r a d e a r e a where a l l on a v e r a g e , variance. deposit. indicate B u c k h o r n as in the structures samples within areas. like indicator observation be k e p t these associated estimates for by and assuming separate and be methods have kriging variance a block the using grades. solution to this problem, v a r i o g r a m s were m o d e l l e d ? what if 3 By e x a m i n i n g a variogram between for cloud, samples Thus in the the the the lag the 50th or advantage 4 of to of to the This same values result is wrong, may there represent those that be be t h e way variograms. between the the some but When any two o f error samples either estimate used were the in Also that as d i s c u s s e d the kriging from relating separate of the generated above and t h e in various between b e e n computed variogram occur often that i n the 0° from the at Buckhorn elsewhere, and both variograms are idea that variograms, lognormally to the data. possibility merit which Appendix E anisotropy vary rotated not were of the relatively case at Buckhorn. values composited derived structures squared differences, v a r i e d tremendously. might always the p a i r w o u l d be u s e d highest one v a r i o g r a m w h i c h has i n the if 100%. T h i s method m i g h t h a v e t h e major axes o f for the although there especially grade) to Although k r i g i n g using a then that that of variogram show t h a t and 4 5 ° e x c e p t showed squared three range, and f i n a l l y m i g h t a c t u a l l y show u p f o r e a c h seems the assumed calculated, use. fact (anisotropics) the t h e n 90%, difference or c o n v e r s e l y , approximately the differences a b l o c k w o u l d d e t e r m i n e w h i c h one their actual a listing variograms estimate account variograms. contains squared threshold, variograms same g r a d e s , structures represent c a l c u l a t i n g an a c c u r a t e k r i g e d into (regardless differences percentile maximum s q u a r e d the 3 absolute being c a l c u l a t i o n o f each o f the selected of of exceeds the samples all (say) of squared d i f f e r e n c e s , 70th p e r c e n t i l e kriging, takes 3 intervals a l l p a i r s i n l a g windows p a s t regardless difference not t h a t would a b o u t 50% o f t h e n 70% o f determine distributed a r e a s where t h e data, highest grade d i f f e r e n t i a l s exist. d a t a on t h e grade ranges, make t h e sure of divisions d a t a used values basis to used that varied over actual or calculate to the on t h e Essentially, basis the k r i g e the the of a wide relative range estimate. If all values. variograms are above would the than i f It used the of 10 o r the 12 s i m i l a r , one c a n be be b e t t e r of grouping v a r i a b i l i t y ranges b l o c k g r a d e were grade estimate w i l l of idea presented the kriged instead the grades s h o u l d n ' t matter to represent if these structures. In a d d i t i o n to those p r o d u c e d some f u r t h e r 1) for modelling, of at d i f f e r e n t only 3 particular, 110' i n the the 30° samples the windows the clustering every of the separated be t o o the i n the horizontal density final at this i n one lag of selection direction. In approximately showed up n i c e l y . p a i r s at useful i n determining the numerous p a i r s by 50' to showed and r e s u l t e d in window, were variogram study Because distance of represented d i r e c t i o n and 100' in other. that shown c l e a r l y on t h e c o u l d be made by c h o o s i n g the sake some c a s e s , window, in distances, graphs 4 5 ° and 1 3 5 ° d i r e c t i o n s that Also for most u s e f u l These lag search the although proving not were windows w h i c h were u s e d . pairs above, observations: Variogram clouds, actual discussed other the v a r i o g r a m c l o u d s were i n c o r r e c t or o f c r e a t i n g more p o i n t s because there were fewer v a r i o g r a m w o u l d become cases, where a significant on t h e mistakes smaller lag windows variogram curve. samples almost the in a small In lag r h y t h m i c a l l y s p i k y and distance was dissected by short l a g windows, an a p p a r e n t l y n e s t e d v a r i o g r a m s t r u c t u r e might show u p . 2) The p r e m i s e variance (or examined (i.e. (inside the population was a that relative David, mix of significantly 1988). lower 9). and r e l a t i v e that samples though pairs the is theoretical as if expectation Although all ground because they these and ideas the a is that was be but g e n e r a l l y ) which in actual, sense average sample set's and variance population and the by the same therefore, increase amongst overall to sample from the will was relative may make to there the variogram s i l l tend the sill c a s e m i g h t be e x p l a i n e d mixing the by noted it and Where the was assays inappropriate mixing of each other the 10). predicted between t h e single the sample variance. On c a n be d e f i n e d , the variogram s i l l should equal the fulfilled. of are the above based although there out for some h i g h as population variance deposit, is (Fig. the data variogram s i l l In f a c t always, calculated, hand, be latter to (not there not other a test closest variogram values the phenomenon The d i s c r e p a n c y population generally even might i n the composited original dataset, variograms. as population variance fact the This observation should equal where o n l y one p o p u l a t i o n o f in than lognormal populations. the was m o d e l l e d , samples (Fig. this of variance coincided variance use variogram s i l l variance) ore outline) relative the exhaustively is observations only not i n the on the may be on shaky results enough t i m e present to study, f r o m one test the all of results 47 RELATIVE VARIANCE = 2.2 u < > < K * j " 0 O OS > " <*// LEGEND 4" o w os © O N S -fW NW S-E • -1— —I— 1 10 30 Fig. 11. seemed to it felt was It and variogram direction i n the context these points also worth 50'. that T h e r e may could at the be n e s t e d have been that a very with longer lowest of the Q from Buckhorn s t u d y , and s h o u l d be m e n t i o n e d . noting directions values showed 130 (FEET) Experimental r e l a t i v e variogram t h e BBH d a t a . that N-S —I— 70 90 LAG be c o n s i s t e n t is 1 e v e n t u a l l y m o d e l l e d and showed 135° o VER C TIAL > blasthole slight data anisotropy values distances, of structures, from t h e y ( h ) at but not while the distances at any was in the N-S d i r e c t i o n showing lag inferred the the lower 135° up to distance exploration variograms. 48 w RELATIVE VARIANCE = 1.7 — a — B > S < K O O 5 © ? ' H ^ > 0- -o VERTICAL w > s td o — -o NE-SW X X Q • E-W NW—SE 70 90 Fig. LAO 12. Generally however, essentially isotropic Finally, effect should of the before the leaving 3-parameter which conditional would the grade 2 value + constant) . by d i f f e r e n t (Figs. the 11 and subject to calculated constants of variograms, a relative the that is calculated the kriging calculation k r i g e d grades applied to the calculation from a 3-parameter each l a g T o make s u r e with indicate 12). distribution create consistent at calculations lognormal order be probabilities distribution, affected In v a r i o g r a m from blasthole variograms be m e n t i o n e d . variance (FEET) Experimental r e l a t i v e t h e BBHG d a t a . as lognormal y / (mean would n o t relative of be variogram models, four separate using the three with constants kriged BEX d a t a s e t estimates identical. all kriged estimates were g e n e r a t e d , of 0.002, were is order to make t h e recalculated constants. for The f a c t unexpected relative BEX data the result. When a r i t h m e t i c to new mean value, original Only the mean and the the relative reflected arithmetic variance in the kriging kriging with a relative into denominator. the 5.4.3 Kriging There krige the is where grades little to composites were is variances which variogram that the different same was n o t or from a constant will will this be the the added equal the identical. change is are c a l c u l a t e d has an relative derived constant and In also during constant added and B a c k A n a l y s i s data. d a t a was u s e d changes each and C were 0 actual variance is identically. d a t a has minus t h e that variances. w o u l d be t h e value which resulting is using an and variograms only C were m o d e l l e d raw a r i t h m e t i c d a t a . every same, either an a v e r a g e d model were v i r t u a l l y kriging variogram Kriging with variogram produces four difference the k r i g e d grades 20' The different relative and a n i s o t r o p i c s that all the shapes BUCK and 0 . 0 5 0 . only different the Ranges the the one w i t h no c o n s t a n t , and shapes o f important — e s t i m a t e now p r o d u c e s 0.005 compared The r e l a t i v e that for to say Once t h e calculate were compared about t h e method parameters kriged removed were d e f i n e d point and t h e both i n grade that samples was used (Table V ) , to the at locations actual versus predicted ranges and across various 50 Table V P a r a m e t e r s Used f o r K r i g i n g E x p l o r a t i o n D a t a Composite length 20 ' Minimum number o f samples accepted 5 Maximum number o f samples accepted 12 Maximum s e a r c h Rectangular Relative ( y / radius search 150 ' radius v a r i o g r a m BEX ( m + 0.005 ) 150' C„,C x 150' 0.26 v a r i o g r a m BEXG ( y / m a (135°) a (vert) 1 C„,C 0.45 relative geometry of conditional to be i n t h e estimates kriging Also for to ranges. kriging in the a (135°) a (vert) 120 ' 70 ' 70 ' n/a samples used probability), the variances ensure by u s i n g Because variances middle the are (discussed the various d i d not were h i g h e r n e a r the later variogram, in suffer was the section on samples tended outlines, kriged significantly edges relative produce o n l y by the grade imposed proportional effect relative variograms influenced and b e c a u s e h i g h e r of the relative which back a n a l y s i s that 1.05 ) 2 Maximum k r i g i n g v a r i a n c e variance 1.15 120 ' 90' 72 a (45°) kriging 30' ) 2 a (45°) Relative x of when the outlines. indeed accounted kriging variances were p l o t t e d kriging against kriged variances across The v a r i o g r a m m o d e l s composites grades a l l grade were were t h e n u s e d t o and showed c o m p a r a b l e r e l a t i v e ranges. deemed acceptable calculate kriged block and the grades. 20' 52 6. 6.1 CONDITIONAL THEORY 6.1.1 Introduction The G.F. following Raymond disagreement description (Raymond as to is 1979, whether other of literature continued the by conditional 6.1.2 Raymond here method is term but used to here. to by Raymond p r o b a b i l i t y are used called usage That is, it refers and in this is by all the with in its by some avoid c o n f l i c t traditional w i t h the understanding that referred There s h o u l d be changed and u s e d the use is strictly to references to context. The C o n d i t i o n a l D i s t r i b u t i o n Kriged that block there is grades Although further theoretical property known smooth t h e mine t o as an a d v a n t a g e property of exploration grades, the being unbias), established predicted If other measure estimated (David, 1977). boundaries over calculated grades conditional true picture cutoff have a simultaneously (kriging variance). the the 1984). t h e method p r o b a b i l i t y or meanings t h e method p r o p o s e d 1982, name c o n d i t i o n a l in PROBABILITY of the on average estimates an o p e r a t i o n and tonnage (a tend to were to from k r i g e d e s t i m a t e s grade error by k r i g i n g have correct the estimates from should be recovered, available data, but (geological etc.) general, in practice, upon this is information, which better there usually visual production selectivity can better information estimates, blasthole decisions c a n be made. lead mining to a In higher grade o f o r e t h a n p r e d i c t e d by o r d i n a r y k r i g i n g f r o m e x p l o r a t i o n samples. The attempts to will have ore blocks method of p r e d i c t the on t h e final within calculating effect that conditional t h e more a b u n d a n t grade e s t i m a t e , the probabilities orebody. and on t h e The information distribution method depends of on an assumption o f normal data d i s t r i b u t i o n . When one expected talks average about grade kriged (x) Kriging variance (o ) is deviation the predicted from prediction of the words, although exactly as knowledge the data 2 error it is the and c a n be t h o u g h t fact, for the properties of the of the be ore ore 13, both a fraction knowledge of all root of blocks w i t h k r i g e d grades 13). the the an for If the kriged above blocks properties the squared In (based above cutoff below d i s t r i b u t i o n of is cutoff and t h e can of be on the that if will be normal as some will, actual average normal that cutoff be c a l c u l a t e d , the other kriging variance T h i s means grade (a grade won't t r u e grades the to. block estimate). the or referred expected with p r e d i c t e d grades tonnage of being normal d i s t r i b u t i o n ) 67% o f square predicted, expectation a standard e r r o r ) . (Fig. is grade as a p a r t i c u l a r expected Figure the an of the certain that is the of with the there be w a s t e and o t h e r s actually mean nearly (where o i s block magnitude normally d i s t r i b u t e d , between x ± o percentage a associated is predicted, of the of grade, in will grades shown in grade of based on curve. This 54 Kriged Cutoff Grade Grade i i i x-2o x-o x i x+o x+2o Grade F i g . 13. The c o n d i t i o n a l distribution. Given a k r i g e d b l o c k g r a d e (x) and kriging variance (a ), the a c t u a l b l o c k g r a d e s w i l l be n o r m a l l y d i s t r i b u t e d a b o u t t h e mean. A c e r t a i n p e r c e n t a g e o f b l o c k s whose k r i g e d grade i s above c u t o f f w i l l e v e n t u a l l y t u r n o u t t o be waste (shaded a r e a under t h e c u r v e ) . 2 average grade will t o n s h a v e now been possible waste, to it predicted predict is not be h i g h e r eliminated. how of block grades, is value of distribution the conditional measure of As an called to the sample suppose t h e r e are although are expected or block grades conditional (the to the use 3 stockpiles of the of the given grades be o r e or The estimated T h e mean variance about conditional representing is kriged estimate) conditional actual it be o r e . distribution. exploration and expected d i s p e r s i o n of that because waste p r e d i c t which ones w i l l expectation, example k r i g e d grade Notice many b l o c k s possible distribution the than the waste, this is is a mean. distribution, low g r a d e , and 55 Low G r a d e Stockpile 67% T 0.015 0.020 0.025 0.030 0.035 Grade F i g . 14. Expectations o f o r e and w a s t e d e r i v e d from normally d i s t r i b u t e d block grades. I f the kriged b l o c k g r a d e i s 0 . 0 2 5 and k r i g i n g v a r i a n c e i s 0 . 0 0 0 0 2 5 , (o = 0 . 0 0 5 ) , 16.5% o f t h e true block g r a d e s w i l l be w a s t e and 16.5% w i l l a c t u a l l y be o r e g r a d e . mill grade, blocks with with cutoffs a t 0.020 normal d i s t r i b u t i o n , there (o = 0 . 0 0 5 o p t . ) , 2 is and 16.5% kriging t h e n based on t h e an e x p e c t a t i o n a l t h o u g h even w i t h low g r a d e s t o c k p i l e Conditional estimates based which e v e n t u a l l y s h o u l d go If a l l a constant that 16.5% o f a l l w i t h k r i g e d grade o f 0.025 o p t . s h o u l d a c t u a l l y waste s t o c k p i l e 14), opt. gold. a k r i g e d grade o f 0.025 o p t . have v a r i a n c e o f 0.000025 o z / t o n blocks and 0 . 0 3 0 go to the ore s t o c k p i l e these e r r o r s , the average to the (Fig. grade o f the would remain 0.025 o p t . probability on t h a t will data be uses to mined. exploration estimate data tonnages The c a l c u l a t i o n is and b l o c k and g r a d e s r e f i n e d by subtracting from the kriging exploration "smoothing variance block which c a n ' t resulting probable block conditional the assumed statistically with are calculated a results grades the estimation are is mine. there were are rarely plotted — of error mined). The to predict new at least two distribution is this verified c a n be is and b l a s t h o l e kriging variance production data known that kriged could be available). complex. problems, and, for the sample practical lognormal d i s t r i b u t i o n (Journel distribution, lognormal d i s t r i b u t i o n distribution more estimated grades normal distributions the the Sample G r a d e s and B l o c k G r a d e s i n a corresponding the be u s e d exploration having the distribution about (an amount in The s e c o n d a s s u m p t i o n blasthole of data conditional the problem i s grade lognormal Like both Distribution of I n many for data. (i.e. i n advance the the uncertainty is the remaining the can discussion real of known In p r a c t i c e , figures to The deposit normally d i s t r i b u t e d kriging variances 6.1.3 e v e n when t h e First, be exploration estimates according 1977). distribution preceding to variances approximate estimates using a s s u m p t i o n s made. grades will be e l i m i n a t e d of production block (David, t o n n a g e and g r a d e In and kriging relationship" conditional kriged variance the also well perfectly on l o g grades purposes, of this actual and H u i j b r e g t s , characteristics known. follow block 1978). of Unfortunately lognormal. p r o b a b i l i t y paper, If the grade a lognormal a straight line 57 A. 2% B. 50% 98% 2% 50% Probability 98% Probability F i g . 15. Probability plots of perfect (A) and imperfect lognormal distributions (B). The c u r v e d portion of c u r v e B i s due to a l a r g e r than expected number o f low g r a d e s a m p l e s . can be expected transformed straight material linear as For the grades o f line, but around the in Figure the composites which of the estimate the correct 15a). real However exploration due in orebody, part the in data to reality, rarely an a b u n d a n c e plotted the plot of as low distribution log a grade is non- 15b. simplicity, problem for study (Fig. the example case of a normal h a v e numerous histograms. blocks, distribution If conditional of shown actual i n F i g u r e 16 distribution low g r a d e these samples grades. mineralized included composites probability will block of illustrates are not If in used predict the the to the erroneous 58 Low G r a d e Stockpile ? % 0.015 0.020 0.025 . 0.030 0.035 Grade F i g . 16. The e f f e c t o f e s t i m a t i n g o r e and w a s t e p e r centages from i m p e r f e c t normal distributions. The number of miscalculated blocks will no l o n g e r be predictable. assumption normal, is made that there will be percentage of material the a d i s t r i b u t i o n of serious above cutoff determination of average grade same f i g u r e s in previous opt. and o 2 as of 16.5% 2 to t h a n 0.02 opt. be w a s t e when i n f a c t The l o g show a s i m i l a r and s i m i l a r l y , l e s s transformed grades imperfect pattern this in as of blocks predicting well material. example, = 0.000025 o z / t o n ) , predicted grade. the error actual as 5). the B a s e d on the ( k r i g e d g r a d e = 0.025 the blocks t h a n 16.5% w i l l (Fig. the in are maybe 20% o r more w i l l i n the is really BEX d a t a s e t at still be be less ore Buckhorn 59 In order to be found to calculate work with populations predictable attributes present problem a subset of the (i.e. with probability interpolated from the correct Raymond made nearly data, for their lognormal constant to original distribution However, the but block with by the of in order log of neither In(grade an to can be experimentally transforming. normal nor c a n be used The lognormal. approximates + constant) that have distributions raw g r a d e s b e f o r e is will were distribution. of samples calculate grades something many g r a d e the doesn't a lognormal to whose addition distribution This for an modelling reserves. As discussed straighten for the out the was added t o variance data, is block one known as of the a function to of the be the a constant of probability plots In c a l c u l a t i n g the grades before no c o n s t a n t was Constant K r i g i n g Because the log dataset. BEXG d a t a s e t , 6.1.4 earlier, BEX 0.005 o p t . the a known d i s t r i b u t i o n models imperfect acceptable lognormal d i s t r i b u t i o n ore must BEXG d a t a s e t w h i c h i s shows t h a t derived of a way BEX o r BBH d a t a s e t s , for (1982) probabilities, normal or l o g n o r m a l ) . the complete conditional be done t o conditional of 0.005 gold to distributions conditional log appears probability, transforming. For necessary. Variance nature of the both the estimated, major problems proportional of k r i g i n g equations, geometry o f and t h e i r t h a t has effect — as the grades. to grade be kriging samples With faced around lognormal is increases, what's kriging 60 variance attempt (or the could geometries be f o u n d changes obtain i n the estimated. a has all of relative was, for the c a n be samples variogram around kriging used will o n l y due block a square relative k r i g i n g variances will spacing of around samples to be drilling could be k r i g i n g v a r i a n c e tends to the variogram square the of the value. mean When only the if block In the to are around f a i r l y constant. to values estimate blocks which change to variograms. calculate be sample way c o u l d on a s q u a r e o r r e c t a n g u l a r g r i d variances the to a variance relative that if the d i v i d e d by t h e used is for various instance, of A l t h o u g h an changed kriging been o b s e r v e d from d r i l l h o l e s block, that samples constant lag distance grade o f kriged increase w o u l d be s i m p l e r c a n be done by u s e it increases. p r o p o r t i o n a l l y w i t h grade squared, every the it the there reasonably Because increase t o model t h i s pattern of This estimate) kriging variances Thus i f expected. at be made the and g r a d e r a n g e s , to pattern, error of the effect geometry or be e s t i m a t e d is changed. 6.1.5 Combining 3-Parameter R e l a t i v e Variograms If the grades can Lognormal D i s t r i b u t i o n s be assumed t h e n k r i g i n g v a r i a n c e w i l l have t o to predict the variance distribution. To do as + is y{h) / (m(h) added to distribution, this, whereas 3-parameter be c a l c u l a t e d of the be the relative 2 to m is produce the the average lognormal, i n s u c h a way as 3-parameter lognormal variogram i s calculated The c o n s t a n t constant) . grades to with is the same 3-parameter of all one that lognormal samples used to 61 calculate y(A>) correspond to at the same a l t e r e d At Buckhorn, it kriging variances arranged relative variograms can l o g n o r m a l model o f 6.1.6 the the constant samples, spacing. If grades kriged. there in sample be to variance same and t h e used the Alternatively, benches if relative (as actual at is regularly a relative 3-parameter regard to of the the provide grade o f the size to be pattern or block blasthole data at Kriging theoretically and t h e blasthole available, reasonable anticipated blasthole theoretical pattern could be k r i g i n g v a r i a n c e c o u l d be u s e d in calculation. exploration identical relative and t h e s e combination kriging, same c o n s t a n t t o model drilling will without and a s m a l l s u b s e t o f the grades. constant with now data. substituted be made t h a t grid conjunction variogram no The r e s u l t i n g assume Constant R e l a t i v e B l a s t h o l e o n l y on is the being estimated, conditional probability have the used blasthole could locations, is be relative dependent from the blocks the to exploration to kriging variance w i l l d i s t r i b u t i o n as possible where kriging estimated the is Determining the Variance Use o f The r e l a t i v e h. The and b l a s t h o l e (and t h e r e f o r e 3-parameter blasthole Buckhorn), assumption data the the lognormal is will variograms are same v a r i o g r a m ) distributions. available real blasthole for a few of d a t a c a n be kriged. Because results all only, estimates kriged in this estimates v a r i o g r a m s were c a l c u l a t e d from study are based from the the available on exploration exploration blasthole derived data at Buckhorn. These b l o c k variances were c o n t o u r e d . sampled areas, variances, only necessary, one the 60' with and two grades By visual comparisons constant f o r each o f block models. other were p l o t t e d These parameters examination with 20' kriging b l o c k models a r e shown used later in of histograms relative the and r e l a t i v e kriging the of kriging variances and t h e in best were other for T a b l e VI a l o n g calculating conditional probability. Once t h e exploration constant block maximum r e l a t i v e higher in relative subsequent too unnecessary at did 6.2 all suffer now examined is calculated, to see if there Usually any block k r i g i n g v a r i a n c e t h a n t h e maximum w i l l because unreliable. Buckhorn because and the kriged parameter sample back e s t i m a t i o n significantly each block the This was density showed that ignored would 2) The a s s o c i a t e d 3) A maximum a l l o w a b l e be considered was adequate kriged grades range. the following information available: The e x p l o r a t i o n k r i g e d a PROBABILITY i n t h e mine m o d e l , 1) is with a be grade i n any k r i g i n g v a r i a n c e CALCULATION OF CONDITIONAL For is are kriging variance kriging variance. locations not models calculations considered in blasthole estimate. exploration kriging variance. exploration kriging variance. 4) The c o n s t a n t blastholes. 5) the for A knowledge the Other include to of and, if 3-parameter parameters the (probabilities) lognormal that for ore shape the required gravity so (to and f i n a l l y to of the constant for that tonnage, prevent the from p r o - error required distribution. are c a n be c o n v e r t e d consider variance expected necessary, specific areas of waste), be kriging duction k r i g i n g of distribution value relative the calculation ore fractions an a r b i t r a r y minimum meaningless c a l c u l a t i o n s significant cutoff grades in must specified. Therefore, contains assuming k r i g e d grade following a block and relative input parameters which w i l l calculate 1) Cutoff 2) Constant to normal the been p r e p a r e d kriging a r e needed conditional to variance, run the add t o grades the 3-parameter log- distribution. Minimum exploration the calculation. 4) Maximum a c c e p t a b l e 5) Constant relative kriged exploration kriging estimates. Specific Then f o r each gravity block: of value ore. for inclusion kriging variance. variance the computer program probabilities: for which only grade. 3) 6) m o d e l has of in production 1) Check kriged grade, maximum either 2) or if allowable variance ignore the Assume conditional is variance variance. to 2 Transform that is and then above the calculation k r i g e d grade likely the 5) Transform the value f r a c t i o n of if plus obtain last the the ore the calculating step obtain is to final summarized in Table V I . 0 . 0 35 and 0 . 0 5 (kriged percentage log opt. gold), + a log- material cutoff grade of block. grade back t o for the the an arithmetic b l o c k tonnage up t h e models for each t o n n a g e s and d e t e r m i n e estimates at a total for was 4 cutoff of 16 to block. probability The c a l c u l a t i o n block of transformed Buckhorn c o n d i t i o n a l 60' grade expected l o g a r i t h m i c cutoff global the blasthole constant. tally used and for the conditional parameters constant d i s t r i b u t i o n to f r a c t i o n times t o n n a g e above exploration variance. the predicted and s u b t r a c t Multiply After be above the by conditional calculate ore the arithmetic and c a l c u l a t e to is Multiply obtain the 20' block expectation kriging to is true. k r i g i n g v a r i a n c e minus 6) minimum e x p l o r a t i o n constant. normal model the below kriging — is is relative 4) grade block condition constant) the the Assume c o n d i t i o n a l the 3) if the block, the new deposit. The p r o b a b i l i t y runs p e r f o r m e d on e a c h grades runs. (0.01, are of 0.02, Ore r e s e r v e s to 65 Table VI P a r a m e t e r s Used t o C a l c u l a t e C o n d i t i o n a l P r o b a b i l i t y Block size 20' 60' or Blasthole Constant kriging variance added t o Blasthole Constant Cutoff kriging variance added t o Specific that total total above reserve was 0.080 0.040 n/a n/a ore ounces on a b e n c h were t h e For each were of the cutoff For metal a grades. cutoff grades tons and (ounces of grade range, is within — tons calculated same as other ranges by total reserve and then conditional probability, grade the result cutoff above gold). total above 0.035 This i n the 0.0 ounces of ranges, and g r a d e grade c a l c u l a t i o n of metal For this 0.050 0 .005 within cutoff from u n t i l the reached. BUCK60G were c a l c u l a t e d above subtracted repeated BUCKG estimates work b a c k w a r d s to 0.005 of necessary converting 0.005 types To c a l c u l a t e were 0.040 1.634 calculation. to for by k r i g i n g . reserves cumulatively consider other ounces p r e d i c t e d reports, 0.080 0.010 0 . 0 2 0 0 . 0 3 5 to 20' 20' BUCK60 Gravity compare w i t h t h e x x BUCK grades grades Minimum v a l u e assuming grades x 20' x 60' the it 0.05 was opt. opt. by procedure was to 0.01 range (and t o n s ) above 0.01 by o p t . were s u b t r a c t e d the corresponding possible to the to generate other from t o t a l kriged reserve reports ounces above block reports model. that 0.0 In t h i s predicted way i t was were i d e n t i c a l and w h i c h c o u l d t h e r e f o r e i n form be compared with them. 6.2.1 Example C a l c u l a t i o n o f C o n d i t i o n a l P r o b a b i l i t y To i l l u s t r a t e the following 0.030 opt. Assume example with the calculated parameter the a is as 0 . 0 8 0 , lognormal 0.035 c u t o f f conditional using block kriging o f 0.005 d i s t r i b u t i o n and is variance variance added t o specific probability calculation probability, a k r i g e d block grade o f kriging blasthole a constant will 0.28. has been create gravity be of is a 3- 1.6 34. calculated for a grade. The c o n d i t i o n a l 0.005 expectation constant. distribution, grade of calculated relative constant The c o n d i t i o n a l the calculation (x) Before t h e 0.005 c o n s t a n t will working must be t h e k r i g e d g r a d e + with the lognormal a l s o be added t o t h e cutoff (x ): c x = 0.030 + 0.005 = 0.035 x c = 0.035 + 0.005 = 0.040 The c o n d i t i o n a l block kriging variance variance (o ) minus 2 the is the exploration blasthole constant relative relative 67 block kriging variance. kriging variance a is calculated = ( 0.28 2 Arithmetic - as 0.08 (as o p p o s e d to relative) follows: ) x ( 0.030 + 0.005 ) 2 = 0.000245 T h e l o g a r i t h m i c mean c a n now be c a l c u l a t e d (x using / n ) and standard logarithmic variance equations: [1] In 0.000245 - /n ( 1 + ) (0.035) = In (1.2) = 0.18232 = In In (x) - In [2] 0.18232 = In ( 0 . 0 3 5 ) = -3.44357 - (oj ) n 68 Above a probability given (T) cutoff grade and t h e g r a d e (x ), the c above cutoff ore fraction, or (G) a r e c a l c u l a t e d as follows: x T = 1 - F [ In c — °ln + j [3] In G = — [ 1 F T where F(z) cumulative can formula. into l be normal program used read Using [3] actual values and [4] In (T) equal to ) ] [4] 2 standard (i.e. calculated tables David, showing the 1977, page 9 ) . The uses previously, an a p p r o x i m a t i o n and substituting above: 0.040 • In /0.18232 Interpolating — calculations = 1 - F [ = 1 - F - x 1 T — n from distribution f o r the equations [ — o /0.18232 + ) 0.035 2 (0.526) F(0.526) from t h e table, gives ore fraction 0.299. 0.035 G = 1 [ 1 - F 0.299 = 0.1169 0.040 [ /0.18232 In /0.18232 [ 1 - F (0.099) ] )] 0.035 2 69 Again using The r e s u l t i n g which was this gravity g r a d e above originally subtracted for a standard to yield example is cutoff added to a grade o f is 20' 1.6 34, x the F ( 0.099) table c a n be (G) is the kriged 0.0538. 0.049 o p t . 20' x 20', tonnage of interpolated. The constant g r a d e must now be Assuming block and k n o w i n g t h a t the whole size specific block can be calculated: 62.42796 Total B l o c k T o n s = 20 x 20 x 20 x 1.634 x 2000 = 408.03 Tons Ore Tons = T o t a l B l o c k Tons x T = 408.03 x .299 = 122.16 Tons Therefore, cutoff, the 0.049 o p t . 20' tallying block w i l l 122 is tons o f ore, the with constant be s a i d approximately that grade of 0.035 c u t o f f opt. gold. reserves contribute u n l i k e l y that are d e a l i n g kriged up 122 above Tons a 0 . 0 35 at a opt. grade of gold. Although i t exactly when 0.030 o p t . , and t h e this result can relative 30% o f will grade o f all specific be r e - s t a t e d . variances, blocks in fact block w i l l yield Since i n general it we can w h i c h had an i n i t i a l be f o u n d t o these ore blocks will be above average the 0.049 70 6.3 DISCUSSION I n Raymond's method o f he u s e s p o i n t exploration kriging grades variances of will affect not and t h e kriged on the centers any assumption He s a y s that is that point criticism estimates don't In the mining estimates grades from represent where the In computed to for data, 60'. the 60' calculated for theoretical blasthole d e c i d i n g which k r i g e d mean. methods the is described is constant 1986). theoretically the around This is but it years, that need same as method relative the point size kriging is and block from are kriged assumed to be kriging variance is probability using to apply the David, kriged blocks a alleviates (i.e. kriged, estimated conditional This to are blasthole best block d i s p e r s i o n The grid precision, comm.). the when 60' and block by some a u t h o r s and S i n c l a i r , chosen contours grades the mining blocks, no to argue to words, spacing. the There block exactly large the kriging grades. is The of over would made the be tested are other for kriging relative (Raymond, p e r s . here, block s i z e exploration selective grid improve l o c a l will who block comparisons exploration data. from those approach used furthermore, a size estimate except to a p r a c t i c a l a p p r o a c h w h i c h he has draws of and f o r d e t e r m i n i n g c o n s t a n t blastholes. blasthole dealing with conditional p r o b a b i l i t y , 12' superimpose 1977, r e q u i r e d d i s p e r s i o n minus t h e 14' any p r o b l e m o f affine variance to is of correction 1988; the on a Giroux block is k r i g i n g variance of a similar size according to the Another (pers. assumed to neither It conditional variance). distribution grade). parameter his latter about is subselected to the would that BEXG and BBHG calculating The kriged the to kriged variances expected range (i.e. is that that at case of Buckhorn, the results 3- out by the BEXG d a t a s e t theoretically, which render any What a b o u t assumption? the of this represent a laid the case of as which used datasets block lognormal regardless and t h e r e f o r e , lead of grade Raymond m a k e s , exactly In the only distribution distribution irrelevant. in assumption exploration BEX d a t a s e t modelled (BUCK and BUCK60) obvious the the lognormal d i s t r i b u t i o n grade add a c o n s t a n t 3-parameter that 3-parameter papers. calculation two m o d e l s It was when (i.e. 3-parameter case of various was no n e e d doubts the In the the reflects every is distribution Raymond i n there in this the is conditional exploration kriging assumption the of earlier. that unbiased errors weakest o f method lognormal, that (conditional s u p p o r t e d by of the i n any way are and t h a t of and is described variances replicated this used kriging conditional kriged is only questionable be it this data 1988). conviction that regard expectation), n o r m a l i z e d shape will the grades with as conditionally minus b l a s t h o l e the nor i s blasthole distribution that author's made i n t h i s is dispersion the (David, Raymond, the and probability blasthole The is by that lognormal, necessary, assumptions estimate stated is be k r i g e d u s i n g relationship" made when d e a l i n g conditional kriged comm.) be probability. is "smoothing assumption Sinclair assumptions block which w i l l study, the upper the portions 72 of the BEX and perfect lognormal distribution all (> BBH d a t a s e t s of distributions. actual 4 block models, 0.020 the opt. predicted like the is grades will as the 3-parameter 20' given that could lognormal. raw in reality, exploration the problem i s c o r r e s p o n d i n g k r i g e d block grades are both actually variances. the By u s i n g available populations, is should that problem. without Since, lower is regard to BEX were a b o u t the case of the interest (0.02 h i g h grade areas, perfect, v a r i a n c e than i f probability conditional distributions than they opt. the is a much the constant is will should be. still the gold), all the being are ranges than areas applied calculated lowest there of different low g r a d e 3-parameter better nearly grade is no of real approximation, predictor of relative been u s e d . B u t when hadn't modelled from Buckhorn d e p o s i t , below they w i l l be h i g h e r areas the be k r i g i n g of is was or areas same and model these grade p o p u l a t i o n i s of In the i n the in look models. data, grade mixing of distribution calculated i n c o r r e c t variogram conditional precise) the problem w i l l a variogram which i s k r i g i n g variances although never kriging the ore (that not higher in be w i l l not 4 block The c o n d i t i o n a l d i s t r i b u t i o n o f b u t an incorrectly. ore in instead anisotropies be. and t h e r e f o r e the — the a histogram the the but p r e d i c t e d k r i g i n g v a r i a n c e s lognormal 100% o f data the were s i m i l a r , they lognormal, of composites i n any o f in that potentially l o g n o r m a l and composites near predicted grades, BEX d a t a s e t lognormal) means The s h a p e a l s o be the They i n d i c a t e This grades i n any a r e a gold), Therefore, of block histogram of modelled respectively. from be w i d e r this variogram, (and t h e r e f o r e When g r a d e e s t i m a t i o n is the less performed 73 for a block there's where going to distribution A k r i g i n g used be t r o u b l e , greater of amount interest be shown i n t h e better in to alternative" proportional variogram to the to use variogram should constant the that relative will be methodology conditional with estimation is the ... is page and recent will a of the tool the on conditional to use the when in page which page "favoured with is the best 127). The page squared 99). will The is 47). yield relative equal to the The t h e o r e t i c a l variogram c a n be c h e c k e d 2 dealing It (ibid., relative as y(h)/m{h) is 42). value kriging variances text-book still grade (ibid., or 112). page sill the quotes the variogram (ibid., assumptions 1988): variogram kriged variance the use As repaid with a to define ordinary kriging variance reach a obvious probability, (David, used relative (ibid., times the corresponding D a v i d ' s most logarithmic with choosing in v a r i o g r a m c a n be c a l c u l a t e d The relative into variance effort to ( D a v i d , 1988, effect go of higher grade o r e . basic offered kriging 43). arithmetic expectation the "Ordinary k r i g i n g variance population the approach The r e l a t i v e page frequency estimate. reserve circumstances" relative kriging chapter is ore distribution. (ibid., populations, of the modelled should i n areas support Ordinary 2) effort m a i n l y from M i c h e l geostatistical 1) i.e. reserve summary references, most — Raymond's following of minimize next g l o b a l ore In order used regardless from b o t h or variogram used. variogram which w i l l areas samples will yield experimentally 74 Ii i i i i i 1 .000 i i i i i i i i i i i i i i i _ i o o < inI i i i i )E ( O Z . / T O N ) a i < - N o Q O 0.010 o 0.001 0.1 i i 2 I I i 10 i 30 i i 50 PROBABILITY i i 70 i 90 I I i i 98 99.9 ( CUM % ) Fig. 17. Cumulative p r o b a b i l i t y p l o t o f the grades of actual (blasthole kriged) blocks given exploration k r i g e d block grades w i t h i n 2 g r a d e r a n g e s where t h e r e were a s i g n i f i c a n t number o f b l o c k s . T h e p l o t shows that actual block grades are l o g n o r m a l l y distributed a b o u t t h e mean ( k r i g e d g r a d e ) . using at back e s t i m a t i o n Buckhorn exploration to be using techniques. both and b l a s t h o l e back This expectation estimation relative and was checked c o n t o u r maps kriging variances and of proves true. 3) The l o g n o r m a l c a s e (David, 1988, page 1 2 3 ) . blocks will follow a is most "On t h e lognormal common i n m i n i n g basis of applications experience", distribution with estimated a smaller variance grade (ibid., ranges 0.035 o p t . kriged page 7 4 ) . where and 0 . 0 3 5 blasthole Buckhorn (as and p a g e the one 309). estimate, 18 1) (variable 2). important grade estimated perfect ore a is greatest this assumption 5) within ranges The r e s u l t s ranges of are that - contained, assumption 1977, page on t h e conditional ordinary kriged the block where and within 90% there the of is actual the not a average kriged same one grades estimates comparisons the unbiased. kriged but o v e r a l l , that is best assumption, the opt.) at the be c o n d i t i o n a l l y expected c o n d i t i o n a l l y unbiased is kriged blasthole 0.065 actual weak exploration between the effect show a c c e p t a b l e (0.020 estimate that is made who work w i t h o r d i n a r y k r i g i n g and variograms. The l a s t assumption geostatisticians. described will (0.020- lognormal (David, the two 1978). kriging opinion, the many g e o s t a t i s t i c i a n s relative by D a v i d relationship has is That (1988, VAR(Z*) "This author's the d i s t r i b u t i o n of approximately case, comparison o f blocks the expectation logarithmic data, However, actually by is correspondence grades. the have shows (variable also conditional estimate using is non-normal In the w h i c h may probability by the opt.), within estimated by J o u r n e l and H u i j b r e g t s , the approximation to shows t h a t most s a m p l e s 0.050 block grades In 255 are the - predicted 4) Figure there F i g u r e 17 page = VAR(Z) been also t r a d i t i o n a l l y is the "smoothing well accepted relationship" 74): - checked o£ experimentally very well". 7 COMPARE ACTUAL VS. EXPLORATION KRIGED BLOCK GRADES MIN. MAX. NORTH EAST ELEV I REG. VARIANCE 0.0 0.0 0.0 I CONST 0.000 99999.0 99999.0 99999.0 I POWER 2.000 VARIABLE ELEMENT 1 DEPENDENT AU 2 INDEPENDENT AU LOCATION VAR 1 MIDPT 0.92 1.74 0.62 0 21 0 1.60 76 2.70 0 122 0 4.16 21 5.71 0 4 0 1 7.16 B.69 0 2 1 10.10 0 11.62 0 1 13.02 0 0 H.66 0 0 0 16.65 0 17.84 0 0 0 19.18 0 0.00 0 0 0 0.00 0 0 24.19 0 0.00 0 0 0 0.00 0 0 0 27.88 1 248 TOTAL VARIABLE 2 MEAN 0.92 I RANGES MIN. 1ST INC NO.INC1 2ND INC I VARIABLE 1 0.000 1.000 2 1.500 I VARIABLE 2 0.000 1.000 2 1.500 MULTIPLIER DESCRIPTOR 100.0000 BBHG KRIGED BLOCK GRACES - •ACTUAL" 100.0000 BEXG EXPLORATION KRIGED BLOCK GRADES 20' BLOCK MODEL WITIN OUTLINE FILENAME FILETYPE ACTUAL2G KRIGE BEXGKRIG KRIGE BUCKG GRID < < VAR 2 MIDPOINTS > > 2.75 4.11 5.59 7.06 8.71 10.34 11.61 13.27 14.83 16.47 17.81 18.92 0.00 16 60 3 0 1 0 2 1 0 0 0 0 0 4 217 60 11 3 3 2 0 3 1 0 0 0 409 148 14 32 12 7 6 0 3 1 0 0 0 174 129 28 12 12 2 0 0 0 0 0 0 0 5 68 81 35 6 0 1 0 0 0 0 0 0 25 34 16 12 8 0 1 1 0 0 0 0 0 7 6 18 11 3 6 2 2 0 0 0 1 0 1 11 12 18 2 5 1 1 0 1 1 0 0 1 3 8 4 2 1 1 4 0 1 0 2 2 1 1 3 3 0 0 0 0 0 2 1 1 0 2 2 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 989 500 164 58 50 16 17 26 6 5 4 0 3 1.74 |2.75 4.11 5.59 ROW TOTAL 104 380 754 378 200 98 58 54 30 13 7 4 3 4 0 0 1 0 0 1 2089 7.06 8.71 10.34 11.61 13.27 14.83 16.47 1 7.8118.92 18.92 0.00 3.826 VARIABLE 1 MEAN 10.06 2.41 13.12 4.32 5.84 5.66 5.37 7.30 4.50 7.53 9.01 12.32 0.00 SO. 0.00 1.36 1.89 2.64 3.51 3.12 2.99 5.58 3.55 5.31 5.51 2.60 3.51 0.59 0.00 VARIA 0.00 1.84 3.57 6.97 12.29 9.71 8.91 31.11 12.59 28.23 30.40 6.75 12.29 0.34 0.00 0.002 0.000 3.848 2.290 5.865 0.363 ABSOLUTE DIFFERENCE VARIABLES(1-2) MEAN 9.14 RT MS 9.14 MN SQ 83.63 REGMS99.891 0.99 1.29 1.90 1.52 1.B9 2.62 2.30 3.56 6.86 0.819 0.473 0.404 2.65 3.52 12.42 0.403 2.91 3.94 3.51 4.48 12.29 20.10 0.247 0.263 4.88 6.33 40.04 0.376 7.11 7.98 63.61 0.469 6.67 7.87 61.91 0.350 7.00 8.19 67.08 0.298 3.05 3.80 14.43 0.052 5.00 5.61 31.44 0.098 6.60 6.62 43.80 0.122 0.00 0.00 0.00 0.000 1.791 2.451 7.352 0.523 CUMULAT1VES ABOVE LOWER LIMIT VARIABLE 1 LOLIM 0.00 1.00 2.00 3.50 5.00 6.50 8.00 9.50 11.00 12.50 14.00 15.50 17.00 18.50 20.00 NO. 2089 1985 1605 851 473 273 1 75 117 63 33 20 13 9 6 2 MEAN 3.848 4.017 4.589 6.268 7.955 9.59910.96412.09113.79715.78017.57419.14620.25621.46326.033 VARIABLE 2 LOLIM 0.00 1.00 2.00 3.50 5.00 6.50 8.00 9.50 11.00 12.50 14.00 15.50 17.00 18.50 20.00 NO. 2089 2088 1840 851 351 187 129 79 53 37 20 14 9 5 2 MEAN 3.826 3.827 4.108 5.691 7.94810.01411.34213.00714.31315.48117.36218.44719.54620.93623.963 1GIV2 3.848 3.845 4.038 5.109 6.241 6.592 7.012 8.054 8.42110.11712.32013.73713.63013.77515.958 TOTAL VARIABLE 1 I MEAN TOTAL VARIABLE 2 I MEAN 3.848 I SD 3.826 t SO 2.810 I VAR IA 2.428 I VARIA 7.898 ! V/(M»C**P) 5.893 I V/(M*C**P) 0.533 0.403 F i g . 18. Computer p r i n t o u t o f t h e c o m p a r i s o n between a c t u a l g r a d e s ( v a r i a b l e 1) and k r i g e d e s t i m a t e s ( v a r i a b l e 2) w i t h i n e s t i m a t e d g r a d e r a n g e s . 90% o f a l l o r e g r a d e k r i g e d e s t i m a t e s f a l l i n c o l u m n s 3,4 and 5 . The c o m p a r i s o n shows t h a t k r i g e d estimates are conditiona l l y u n b i a s e d i n t h e s e 3 r a n g e s (maximum d i f f e r e n c e is a p p r o x i m a t e l y 0.004 o p t . ) . However, i n o t h e r columns, t h e c o r r e s p o n d e n c e i s n o t as g o o d . A l l d a t a has b e e n m u l t i p l i e d by 100. The same p r o g r a m was u s e d i n back estimation and t o a n a l y z e some of the other "actual vs. predicted" comparisons. 77 In a d d i t i o n the to assumption t h a t c a n be u s e f u l that samples across boundaries earlier in continuity defined inside the boundary the variogram of cut-off. compute section along ".... Actually, variogram of change most probably affect that the geometry of w i t h i n the in this to sill uses geostatisticians computed about page 37). the of derived units points, samples we above from the above the can the simply cut-off. structural characteristics cut-off. ranges, of anisotropy) The main changes will the variogram". anisotropies thesis that might a l s o change, deposit, and t h e differs from this depending d i s t r i b u t i o n of ore orebody. illustrate study, are grade o f in this the barren discussed (ibid., be o f nugget e f f e c t , p o i n t made The i t e m i z a t i o n mainly the zone" in selection units d r a m a t i c a l l y with the The o n l y grades (magnitude (as 200), " g i v e s no i n d i c a t i o n should samples the page obviously variations grade 105): expect that will the of 1988, for computing a variogram w i t h i n a p r e - variance selection variogram on grade page grade we do n o t is of (David, variograms which are mineralized lines the analysis, the support on a c u t o f f include on v a r i o g r a m s ) extension When t h e ore not and t h a t high (ibid., the the should with also provides contour based potential page 3 7 ) , the David a pre-defined i n a dataset (ibid., Finally, above, for defining samples the the of all that of points has been p e r f o r m e d c o n d i t i o n a l p r o b a b i l i t y , as assumptions when these they which employ a r e commonly a relative implemented made by most variogram and 78 ordinary k r i g i n g to by Raymond common, use of is everyday point acceptable if — there assumptions. the is The method developed elegant d e r i v a t i o n of minable reserves kriging contoured point grid an estimate ore reserves. from assumption Although not exploration is estimates derived no c h a n g e of made that used estimates mining from b l a s t h o l e support. here, using even the should be will d a t a on t h e be to same 79 7. 7.1 COMPARISON OF CALCULATED ORE RESERVES INTRODUCTION V a r i o u s methods ore reserves. grades were (Appendix C) B) bench to Scattergrams of produced were tonnages w i t h i n and were u s e d (Appendix examined ranges maps o f the idea o f what t h e F). to data into a smaller compare tonnage resulting predicted explain the actual and g r a d e block grades amount o f b u t methods s p a c e were of block reports grades above and and cutoffs, (Appendix d a t a gave a distilling required in order the to patterns. T h e s e methods and t h e f r o m them a r e d e t a i l e d questions models predicted The v a s t were, amount o f block Individual reserve and t o t a l results the predicted versus were c o m p a r e d w i t h e a c h o t h e r . good 7.2 compare raised broad c o n c l u s i o n s below. Later, each i n Chapter 1 are re-examined that of c a n be drawn the individual separately. METAL GRAPHS Four graphs were c o n s t r u c t e d for each block model, of gold), significant for both to show t h e benches, mine c u t o f f s . (Figs. total that The g r e a t e r 19, 20, amount o f was above 21 and 2 2 ) , one metal (ounces each of than 0.050 o p t . cutoff the is BUCK *oooo Fig. 19. Metal graph for the BUCK b l o c k model. BUCKG 3SOOO Fig. 20. Metal graph for the BUCKG b l o c k model. BUCK60 40O0O 35000 Fig. 21. Metal graph for the BUCK60 b l o c k model. BUCK60G LEGEND TOTAL > CUTOFF 0.010 > CUTOFF 0.020 o > Q > 1 IDO INTERPOLATION Fig. 22. Metal graph for METHOD the r 1 KRIGE CPROB USED BUCK60G b l o c k model. OUNCES © CUTOFF 0.03S • CUTOFF 0.050 84 not a c t u a l l y m o n i t o r e d a t t h e mine significant. (0.010 t o They 0.020 o p t . ) , (> 0 . 0 3 5 o p t . estimates, the low g r a d e (< (0.020 exploration estimates where BH4 i s the 4' the polygon weighted on t h e m o d e l ' s are waste referred block size, to The graphs as 20' "actual". meanings shows, estimate as for obviously both be rest models. to also is also, lowest tends to that be lowest On t h e directly both kriged cannot be calculated i n the other hand, from kriging from e x p l o r a t i o n a b b r e v i a t i o n s on between the 20' 4' the and 60' polygonal blasthole to the data is are c h o s e n method grade c u t o f f s , compared t o models, total the and 20' less block amount o f m e t a l a l l a v e r a g i n g methods and o r d i n a r y (polygon kriging). kriging accurate) block models. uses across ordinary (and l e a s t depending blasthole that above l o w e r i n b o t h 60' inverse distance BH20 o r EX4 and EX20 o r E X 6 0 , of the are very s e n s i t i v e similar either size. F o r example, the and o r e Straight polygonal estimates block ore reserves above 0.050 o p t . from estimates expected, models. of ore shown w i t h 3 b l a s t h o l e Comparing t o method a t h i g h e r c u t o f f s Notice are lean opt.) block estimate results sensitive weighted, opt.), 0.035 the e x p l o r a t i o n or the b l o c k models predicting is Similarly, the would insensitive The 60' of of b a s e d on e i t h e r identical to o r 60' while s h o u l d be s e l f - e v i d e n t . models 0.010 polygonal estimate, a r e t h e p o l y g o n a l and p o l y g o n w e i g h t e d data. other categories gold). Each o f BH60 i s represent but the invariably estimates above 0.05 o v e r 0 . 0 35 o p t . conditional produces opt., category for probability, one and 20' which g r a d e and k r i g i n g v a r i a n c e , and w h i c h any of the other methods, is 85 consistently either the best closest approximations of cutoffs shown. This is estimate the actual especially close to More v a r i e s w i t h the the BUCKG excellent are above also estimates e v e n comes cutoff, while these f o r the any of the the ore zone other estimates instance, on kriging, is referring every shows curve. I D 0 , I D 1 , ID2 and Above 0 . 0 3 5 , the the graphs, correct o t h e r two the followed three closest by c o n d i t i o n a l the only estimate any estimate that ounces come No (Figs. ore 20 for and 2 2 ) , reserves from ore above any c u t o f f reported areas reserve of the has a above a g i v e n unconstrained models, reserves the e x t r a models no method range. This from b l a s t h o l e s low method, results no in from m a t t e r how c a n p r e d i c t m e t a l where t h e r e was a b s o l u t e l y no i n d i c a t i o n o r e from e x p l o r a t i o n d r i l l i n g . "new" o r e t h a t was Conditional the to c o r r e c t ore a l l of 2 or 3 ID10. exploration d r i l l i n g . of and 0 . 0 2 , predicting block smart, 0.01 c o n s t r a i n e d b l o c k models of to estimates opt., is the conditional probability and I D 1 , and o v e r 0 . 0 5 chance because For (ID0), geologically is 20), actual referring the cutoff. estimators. of above confined with straight metal average close Still predicts good are the probability (Fig. 0.0, one whichever o f the specified graph agreement Generally ID3 important, is t r u e f o r t h e BUCKG and BUCK60G b l o c k m o d e l s where i n t e r p o l a t i o n was outline. or best estimate f o u n d when t h e d e p o s i t probability be t h e comes estimates close safest, and between ounces represent was m i n e d . to o f the grade d i s t r i b u t i o n o f produces very s i m i l a r appears to These e x t r a p r o v i d i n g not the ore, it only also the d i f f e r e n t models. most s t a b l e all-round estimate It of 86 ore reserves model it similar is regardless calculated. (or correct) Assuming t h a t from the average" estimate of show a t h e most unbiased inverse 20' IDO the trend of trend of always and u s u a l l y manner. The BUCKG ore reserve production does allow be p r o v i d e d agreement data), "a c o r r e c t fairly accurate it does not o u n c e s above any provide and is a good, good e s t i m a t e s for excellent is is examined, line tends to the results 60' opt. tenth of from is itself. above lines some and ounces for The in 0.05 the opt., in exactly become of the flat at might be cutoffs. there are other important observation b l o c k model trend flatten, behaves the the there total ounces (ID10) models, if reverses most l o w e s t number o f For the one four graphs, curve then predicts the although the the the to 0.035 o r 0.05 there the distance Finally, found, a However, grades calculations inverse either block distance which the opposite will contained it i n each o f calculation while models. generate provides What which i n t u r n providing kriged blasthole deposit. also that models deposit the estimate of of to probability. Notice the four block k r i g i n g does i n the grade. distribution at or f o r which block ( w h i c h show e x c e l l e n t Kriging on a v e r a g e variance, used, v a l i d comparisons show t h a t ounces cutoff conditional grade also total significant the all p r o b a b i l i t y and estimate. correct kriging for BUCKG and BUCK60G m o d e l s t h e s e two m o d e l s is No o t h e r method comes c l o s e answers between c o n d i t i o n a l on o f what d a t a is picture within figures (tons patterns that a p p a r e n t l y a good the and imposed grade) can be made here. approximation of outline. at that the The a c t u a l t h e mine a r e based on 87 straight polygonal estimates data. The mine reconciliation polygonal the of the an i n v e r s e BUCKG m e t a l polygonal similar, graph the pit Fig. the polygonal reserves data not This every grade production blasthole have if they and which should at the had grade on average, BH60 on accident, combine the raw basis, production in (subtracting a l s o work. Kriged "best e s t i m a t e " , A l l indications are that recovered if done to or straight On a m o n t h l y the mine. if ore reconciliation was These predicted predicted the higher reserves using t r i e d to reflect the BH4 and the are conditional kriging). mine of the estimates by l u c k , to drilling An e x a m i n a t i o n predicted method w i l l mining 20' (compare reflect either with o r i g i n a l w i t h the comparing. for the (BH20) either grade of that the reconcile before from r e s e r v e s ) at been as comparison exploration well to blasthole and m o n t h l y blasthole show t h a t daily method p r e d i c t s blocks adequately range, grades, by 60' will blocks method w i l l agree statistics as w e l l either not used using seems t o i n t o ' 20' shows weighted shown boundaries, a from t h e h a v e been c l o s e production about is (no e x p l o r a t i o n designed 22). design, polygon low g r a d e t o n s blocks blastholes 20), these estimates estimate was from the cubed c a l c u l a t i o n ) . (Fig. and e s t i m a t e s would actual) estimate distance and t h a t amount o f vs. from on 20' grade p r e d i c t e d (BH4) probability designed (predicted production bench p l o t s (using was derived more g o l d kriged were would blasthole outlines. I n summary, t h e the v a r i o u s methods seems t o be t h e graphs quite show t h e well. best estimator strengths Overall, regardless and weaknesses of conditional probability of b l o c k model or what 88 raw data methods was used shown. at on " m e t a l recover o p e r a t i o n can the CHARTS Many o f same the charts all Instead of however, grade, a rank but these tables from b e s t estimates side whether the tonnage, grade, conditional given in from reports actual the from charts above a kriging p r o v i d e the to and in been order reserve case best based however, essentially four pages. grade cutoff ore (tons, actual), assigned. of figure rank be. and b e c a u s e estimate an Because error blasthole of The d e p e n d i n g on to p r e d i c t the on and assigned, or overestimated may ore In a d d i t i o n , (compared t o has the These, grade ranges. method a t t e m p t s exploration kriging, general should The underestimated as have to the planned t h e p r e d i c t e d amount o f printed, probability drawn and X ) . reserves are then or ounces, of ( A p p e n d i x C) i n t o w i t h i n the method sufficient I f more t o n s be IX estimate from p r o d u c t i o n b l a s t h o l e derived can worst the other A comparison o f tons has b e e n c a l c u l a t e d of not economics addition. show of gold) to is each o f the necessary. VIII, cumulative error on e i t h e r also in reserve showing and o u n c e s various is (Tables V I I , o f the a percentage the conclusions show a number o f t h i n g s distill it be d r a s t i c a l l y a f f e c t e d . ORE RESERVE reserve compared t o above c u t o f f " . gold, grade w i t h i n grade ranges 7.3 least H o w e v e r , i n most c a s e s , make c o m p a r i s o n s be m i n e d t o — the the reserves estimate kriging mined t o n s and TABLE V I I COMPARISON OF BLASTHOLE INDICATED RESERVES WITHIN GRADE CATEGORIES VS. RESERVES CALCULATED BY EACH EXPLORATION METHOD FOR BUCK BLOCK MODEL (20 FOOT BLOCKS. NO ORE OUTLINE). CUT-OFF 0.000 T 0 N N A G E a oio 0.020 0.035 0.050 - CUT-OFF 0.000 _ G R A D E a oio _ 0.020 0. 035 0.050 - CUT-OFF 0.000 - 0 U N C E S IDO ID1 102 KRIGE 161.9 179.6 228.2 228.7 0.359 0.289 0.096 0.094 5 3 7 2 EX4 EX20 1010 21&6 23S 1 243.3 a 141 0.048 0.007 4 2 1 EX4 EX20 CPROB IDIO 105 232. i 254.4 267.8 270.6 302.5 0.278 0.209 0. 1670. 158a 059 8 6 2 10 5 EX4 EX20 CPROB 1010 IDS 103 KRIGE ID2 IDO 110.6 119.6 126.5 126.8 129.4 13Z4 13a 2 147.9 14a 4 0.264 a 203 a 158 0. 1560. 139a 119 tt 073 0.016 0.012 9 8 7 6 5 3 2 4 10 KRIBE IDO ID1 ID2 103 ID5 1010 EX20 EX4 CPROB 12a 7 122.7 124.2 124.4 130.3 131.5 133.2 134.5 146.5 148.0 0.329 a 317 0.309 0.308 0. 2750.268 0.259 0.252 0. 1850. 176 10 9 6 3 8 7 5 • 4 2 1 BHK ID3 105 CPROB IDIO EX20 EX4 25Z5 262.7 31&8 325.7 375. 3407.3 450.3 0.000 0.041 0.251 0. 290 0.487 0.613 0. 784 0 1 4 6 8 9 10 BHK 105 CPROB ID3 ID2 KRIGE ID1 IDO 251. 1 275.9 287.0 294.6 304.7 316 0 322. 9 326.9 0.000 0.099 0. 143 0. 173 0.214 0.258 0.286 0.302 5 6 9 0 3 7 8 10 BHK ID3 102 KRIGE ID1 IDO 321.5 33a 1 34a 8 350.5 376. 6 395. 2 0.000 0.042 0.088 0.090 0. 172 0.229 0 1 3 4 7 9 BHK 101 150.3 151.7 0.000 0.010 0 1 BHK 17a7 0.000 0 LMTEPrriMATFTL . . o n EX4 BHK 0.004 0.005 0.000 0.200 1 0 EX4 IDIO BHK 0.014 0.014 0.015 0.067 0.067 0.000 0 1 1 EX4 BHK 0.026 0.027 0.037 0.000 1 0 105 103 ID2 101 KRIGE BHK a 041 0.041 0.041 0.04) 0.041 0.042 0.024 0.024 0.024 0.024 0.024 0.000 1 1 1 1 1 0 BHK IDO 101 0.076 078 0.080 0.050 0.025 0.000 2 1 0 UNTFRFSTIMATFTL . . IDO ID1 1066 1154 0. 1430.073 3 1 EX4 EX20 IDIO a oio 3088 3468 3583 0. 1930.094 0.062 7 3 2 EX4 EX20 CPROB IDIO ID5 a 020 E132 6785 7141 7193 8067 0.294 a 219 0. 1780. 172 0.071 5 9 7 6 2 0.035 _ EX4 EX20 CPROB 1010 ID5 ID3 KRIGE ID2 IDO ID1 4595 4997 5266 5284 5332 5 4 7 7 5704 6097 6165 6274 0.771 0.208 0. 165 0. 1620. 154 0. 132 0.096 0.033 0.0220.005 9 8 7 6 5 4 3 2 1 10 0. 050 _ IDO ID1 KRIGE ID2 ID3 IDS IDIO CPROB EX20 EX4 9334 3658 3830 10207 11004 11738 12710 12751 12886 14236 0.354 0.331 0. 316 0.293 0.238 0. 183 0. 120 0. 117 0. 108 0.015 3 to 9 8 7 6 5 4 2 1 METHOD TONS ( X 10001 — _ X ERROR _ RANK Amiflt BHK 1245 0.000 0 BHK 3826 0.000 0 BHK 8685 0.000 0 BHK . . . nvmSFSTlMATFIl EX20 IDIO CPROB IDS 103 ID2 101 KRIGE IDO 0.005 0.005 0.005 0.006 0.006 0.006 0.006 0.006 0.007 0.000 0.000 0.000 0. 200 0. 200 0.200 0.200 0.200 0.400 0 2 0 0 1 1 1 1 1 EX20 105 103 ID2 101 IDO KRIGE CPROB 0.015 0.015 a 015 0.015 a 0 1 5 0.015 0.015 0.015 0.000 0.000 0.000 0.000 0.000 0.000 0. 0000.000 0 0 0 0 0 0 0 0 EX20 IDIO IDS 103 102 101 IDO KRIGE CPROB 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.000 0.000 0. 000 0.000 0.000 a ooo 0.000 0.000 0. OOO 0 0 0 0 0 0 0 0 0 EX4 EX20 IDIO 100 CPROB 0.042 0.042 0.042 0.042 0.042 0.000 0.000 0.000 0.000 0.000 0 0 0 0 0 102 KRIGE 103 CPROB IDS IDIO EX20 EX4 0.082 0.082 0.084 0.086 0.090 0. 0950.036 0.037 0.025 0.025 0. 050 0.075 0. 125 0. 188 0. 200 0.213 3 6 7 1 2 4 5 1 _ METHOD GRADE (OPT. ) _ % ERROR _ RANK . . . rWFRFSTTMATFTl KRIGE 102 103 CPROB 105 EX20 EX4 IDIO 1396 1445 1576 1654 1803 1934 2023 2032 0. 121 0. 161 0.266 0. 329 0. 4490.554 0.626 0.633 3 10 8 2 4 5 6 7 105 CPROB 103 ID2 KRIGE 101 100 4002 4234 4302 4494 4713 4757 4312 0.046 0. 107 0. 124 0. 175 0.232 0. 243 0. 284 1 4 5 6 8 9 10 103 102 KRIGE ID1 IDO 8973 9 3 5 3 9354 10046 10620 0. 033 0.077 0. 077 0. 157 0.223 3 3 1 4 8 _ METHOD OUNCES _ % ERROR _ RANK 6306 0.000 0 BHK 14446 0. ooo 0 CO TABLE VIII COMPARISON OF BLASTHOLE INDICATED RESERVES WITHIN GRADE CATEGORIES VS. RESERVES CALCULATED BY EACH EXPLORATION METHOD FOR BUCKG BLOCK MODEL (20 FOOT BLOCKS. WITHIN ORE OUTLINE). CUT-OFF 100 KRIGE ID2 103 CPROB IDS ID1 BHK IDIO EX20 EX4 0.0 0.0 0.4 2.9 7.B 14.8 i a g 314 73.6 101.9 2a i 1.000 1.000 0.9B5 a 898 0.720 0.474 0.290 0.000 0.403 1.623 ^631 I 7 7 S 5 4 3 0 2 8 9 IDO ID1 KRIGE ID2 ID3 BHK ID5 CPROB IDIO EX4 EX20 0. 010 _ 60.4 692 86.2 95.9 118 7 124.9 150.4 152 8163.8 186.4 193. 1 0.516 0.446 0.310 0.233 0.050 0.000 0.204 0.223 0.359 0.492 0.546 9 7 5 4 1 0 2 3 6 8 10 EX4 EX20 BHK CPROB IDIO IDS 103 ID2 IDO 0.020 IDI KRIGE 221.8 243.9 276.7 279.2 280.6 301.7 324.7 32a 9 335.7 338. 2 35tt 8 0. 1990. 118 0.000 0.009 0.014 0.090 0. 1730. 1890.213 0.222 0.269 7 4 0 1 2 3 5 6 8 9 10 EX4 EX20 1010 BHK 105 CPROB ID3 KRIGE ID2 IDI IDO 0.035 _ 105.5 114. 1129 7 143.3 143.9 147.9 159 9 183.0 188. G210. 1224. 1 0.264 0.204 0.095 0.000 0.004 0.032 0. 1160. 2770.302 0.465 0.553 6 5 3 0 1 2 4 7 8 9 10 EX20 KRIGE IDO 1010 ID1 105 EX4 102 103 CPROB BHX a 050 _ 131.3 135.7 135.9 136.6 138.7 14a 2 140.5 141.9 145.0 161.5 183. 1 0.283 0.259 0.258 0.254 0.243 0.234 0.232 0.225 0. 2080. 118 0.000 9 8 7 6 5 4 3 2 1 0 10 IMmjFSTIMATFn. . . urrnin .. n w - M - M TMOTFn. CUT-OFF 0.000 _ T 0 N N A G E 0.000 _ G R A 0 E a oio _ 0.020 0.035 _ 0.050 _ CUT-OFF 0.000 _ 0 U N C E S BHK EX20 IDIO ID5 ID3 ID2 CPROB KRIGE 101 100 EX4 0.000 0.000 0. 006 0.007 0.007 0.007 0.007 0.007 0. 0080.008 0.009 1.000 1.000 0. 143 0.000 0.000 0. 0000.000 0.000 a 143 0. 1430.286 3 3 0 0 0 0 0 1 1 2 1 EX4 EX20 ID10 BHK ID5 103 CPROB 102 KRIGE 101 IDO 0.014 0.015 0.015 0.016 0.016 0.016 0.016 0.017 0.017 a 018 0.018 0. 1250.082 0.062 0.000 0.000 0.000 0.000 0.063 0.063 0. 1250. 125 2 1 1 0 0 0 0 1 1 2 2 EX4 BHK EX20 IDIO ID5 ID3 CPROB ID2 IDI IDO KRIGE 0.026 0.027 0.027 0.027 0.027 0.027 0.027 0.028 0.028 0.028 0. 028 0.037 0.000 0.000 0.000 0.000 0.000 0.000 0.037 0.037 0.037 0.037 1 0 0 0 0 0 0 1 1 1 1 ID5 ID3 ID2 IDI KRIGE BHK EX4 EX20 IDIO IDO CPROB 0.041 a 04i 0.041 a 041 0.041 0.042 0.042 0.042 a 042 0.042 0.042 0.024 0.024 0.024 0.024 0.024 0.000 0.000 0.000 0.000 0.000 0.000 1 1 1 1 1 0 0 0 0 0 0 IDO IDI BHX KRIGE ID2 CPROB ID3 105 EX20 IDIO EX4 0.077 0.078 0.080 0.080 0.081 0.082 0.083 0.089 0.096 a 096 0.098 0.037 0.025 0. 000 0.000 0.012 0.025 0.038 a 113 0.200 0. 2000.225 3 2 0 0 1 2 3 4 5 5 6 IMFRFCTIMATFn . . ID1 IDO KRIGE ID2 ID3 CPROB ID5 0 4 23 59 125 146 0 1.000 1.000 0.980 0.875 0. 6820.323 0.207 7 7 6 5 4 2 1 IDI KRIGE 102 ID3 0. 010 _ 100 1072 1219 1500 1632 1949 0.467 0.394 0.254 a 189 0.032 10 8 5 3 1 EX4 EX20 ID10 0.020 5B48 6500 7472 0.219 0. 1320.002 7 4 1 0.035 _ EX4 EX20 ID10 105 4394 4771 5414 5931 0.262 0. 1980.090 0. 004 6 5 3 1 0.050 _ IDO KRIGE ID1 ID2 1D3 ID5 EX20 1D10 CPROB EX4 10486 10834 10853 11473 12069 12494 12615 13063 13312 13732 0.287 0. 2G30.282 0. 2190. 1790. 1500. 1420. Ill 0.094 0. 066 3 10 9 8 7 S 5 4 2 1 emn BHK IBS 0.000 0 BHX 2012 0.000 0 BHK 7488 0.000 0 BHX 5952 0.000 0 BHX 14700 0.000 0 METHOD TONS <X 1000) X ERROR RANK METHOD GRADE (OPT. ) X ERROR RANK ... rM-M-mIM0TFT1. IDIO EX20 EX4 262 480 561 0.420 1.602 2.041 3 8 9 105 CPROB 1010 EX4 EX20 2386 2406 2580 2672 2837 0. 1860. 1960.282 0.328 0. 410 2 4 6 7 9 CPROB ID5 103 102 IDO IDI KRIGE 7535 8174 8882 9050 9371 9386 9654 0.006 0.092 a 186 0.209 0.251 0.254 0.289 3 2 5 6 8 9 10 CPROB ID3 KRIGE ID2 IDI IDO 6146 6572 7531 7634 8630 9309 0. 0330. 1040. 2650.283 0.450 0.564 2 4 7 8 9 10 METHOD OUNCES X ERROR RANK VD o TABLE IX COMPARISON OF BLASTHOLE INDICATED RESERVES WITHIN GRADE CATEGORIES VS. RESERVES CALCULATED BY EACH EXPLORATION METHOD FOR BUCK60 BLOCK MODEL (GO FOOT BLOCKS. NO ORE OUTLINE). CUT-OFF UNDERESTIMATED... ACTUAL ... OVERESTIMATED. IDO IDI KRIGE BHX ID2 CPROB ID3 EXGO 105 IDIO EX4 156. 1169 7 202. 0 222. 7 243.3 275. 1294.5 309.5 343. 1395.8 450. 3 0.299 0.238 0.093 0.000 0.092 0.235 0.322 0.390 0.540 0.777 1.022 5 4 2 0 1 3 6 7 8 9 10 EX4 BHK IDIO 105 103 ID2 EXGO CPROB KRIGE IDO IDI a oio 215 6 232.5 234.3 245.7 272. 4294.4 302.3 307.2 321.5 332.2 338.6 a 072 0.000 0.008 0.057 0. 172 0.267 0. 3000.322 0.383 a 429 a 456 3 0 1 2 4 5 6 7 8 9 10 EX4 EXGO IDIO CPROB ID5 ID3 BHK KRIGE 102 IDI 100 0.020 232. 1285.2 292.6 295.8 315.7 345.9 355.4 357.5 368. 1372. 8399.3 0. 1770. 168a 112 0.027 0.000 0.006 0.036 0.049 0. 123 a 347 0. 198 9 8 7 5 2 0 1 3 4 6 10 EX4 102 ID3 IDIO EXGO CPROB 105 100 IDI KRIGE BHX a 035 - 110.6 114.9 136.0 138.6 140.9 142.9 151.8 173.8 178.9 113.5 122.7 a 357 a 314 0.240 0.225 0.212 0.201 0. 152a 028 0.000 a 382 a 365 9 8 7 6 5 4 3 2 1 0 10 a 050 _ KRIGE IDIO IDS EX60 IDI 100 ID3 ID2 CPROB EX4 BHK 100.3 109.7 109. 7122. 1122.2 124.6 127.4 135.7 138 3 146.5 165.6 0.384 0.337 0.337 0. 2630.262 0.248 0.231 0. 1810. 1650. 115 0.000 9 8 8 7 6 5 4 3 2 1 0 0.000 - T 0 N N A G E CUT-OFF 0.000 - G R A D E a oio 0.020 _ 0.035 - 0. 050 _ CUT-OFF 0. 000 _ 0 U N C E S ItOUFSTIMATFTL . . EX4 0.004 0.200 1 EX4 105 ID3 102 IDI 0.014 a 014 a 014 0.014 0.014 0.067 0.067 0.067 0.067 0.067 1 1 1 1 1 EX4 IDIO 105 KRIGE a 026 0.026 0.026 0.026 0.037 0.037 0.037 0.037 1 1 1 1 IDS 102 0.041 0.041 0. 0240.024 1 1 ID2 0.076 0.013 1 IM5HESTIMATFJ1.. 100 IDI 1066 1076 0.078 0.069 2 1 EX4 IDIO 105 a oio _ 3088 3403 3487 0. 1180. 0280.004 3 2 1 EX4 EX60 IDIO CPROB IDS 103 KRIGE 0.020 _ 6132 7642 7677 7883 8182 9169 9273 0.362 0.204 0.201 0. 1790.148 0.046 0.035 10 9 8 7 6 4 2 0.035 _ EX4 102 103 IDIO EX60 CPROB IDS IDO 101 KRIGE 4595 4626 4776 5172 5728 5768 5793 6053 6355 7286 0.388 0.384 0.364 0.312 0.238 0.232 0.229 0. 1940: 1540.030 10 9 8 7 6 5 4 3 2 1 0.050 KRIGE IDI IDO IDS IDIO 103 ID2 EX60 CPROB 8327 9372 9664 9680 10106 10243 10363 10717 11188 0. 343 0.261 0. 2380.237 0.203 0. 192 0. 183 0. 155 0. 118 5 10 9 8 7 6 4 3 1 flrnm BHK 0.005 0.000 0 BHK 0.015 0.000 0 BHK 0.027 0.000 0 BHX 0.042 0.000 0 BHK 0.077 0.000 0 ACTUAL METHOD _ TONS (X 1000) X ERROR RANK . . . (^RFCTIMATFTI. EXGO IDIO IDS ID3 102 101 KRIGE CPROB IDO 0.005 0.005 0.006 0. 0060.006 0.006 0.006 0.006 a 007 0.000 0.000 0.200 0.200 0. 2000.200 0.200 0.200 o. 400 0 0 1 1 1 1 1 1 2 EX60 IDIO IDO KRIGE CPROB 0.015 0.015 a 015 a 015 0.015 0.000 0.000 0.000 0.000 0.000 0 0 0 0 0 EX60 ID3 102 101 100 CPROB 0.027 0.027 0.027 0.027 0.027 0.027 0.000 0.000 0.000 0.000 0.000 0.000 0 0 0 0 0 0 EX4 EX60 IDIO ID3 IDI IDO KRIGE CPROB 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0 0 0 0 0 0 0 IDI IDO 103 CPROB KRIGE EXGO IDS IDIO EX4 0.077 a 078 0.080 0.081 0.083 0.088 0.088 0.092 0.097 0.000 0.013 0.039 0.052 0.078 0. 1430. 1430. 1950. 260 0 1 2 3 4 5 5 6 7 ... nVFKESTIMATFTl BHK KRIGE CPROB EX60 ID2 ID3 105 EX4 IDIO 1156 1269 1518 1545 1571 1795 1923 2023 2091 0.000 0.098 0. 3130.336 0. 3590.553 0.664 0.750 0.809 0 3 4 5 6 7 8 9 10 BH( ID3 ID2 EX60 CPROB KRIGE IDI IDO 3501 3937 4191 4442 4546 4749 4906 4944 0.000 0. 125 0. 1970.269 0. 2990.356 0.401 0.412 0 4 5 6 7 8 9 10 BHK ID2 IDI IDO 9607 9902 9973 10789 0.000 0.031 0. 0380. 123 3 0 1 BHK 7513 _ METHOD GRADE (OPT. ) X ERROR RANK METHOD OUNCES X ERROR RANK 0.000 0 BHK EX4 12683 14236 0. ono 0. 122 0 2 VO TABLE X COMPARISON OF BLASTHOLE INDICATED RESERVES WITHIN GRADE CATEGORIES VS. RESERVES CALCULATED BY EACH EXPLORATION METHOD FOR BUCKGOG BLOCK MODEL (60 FOOT BLOCKS. WITHIN ORE OUTLINE). CUT-OFF 0.000 T 0 N N A G E 0.010 0.020 a 035 0.050 - CUT-OFF 0.000 - 6 R A D E a oio - a 020 - 0.035 a 050 - CUT-OFF 0.000 - 0 U N C E S a oio 0.020 0.035 0.050 - ACTUAL UNDERESTIMATED... ... OVERESTIMATED. IDO KRIGE 102 CPROB BHK 103 EX60 IDS IDIO EX4 0.0 0.0 0.0 a s 10. 1 21.2 21.8 25.0 31.2 38.3 101.9 1. 000 1.000 1.000 0.601 0.522 0.000 0.028 0. 178 0.467 ft 8053.600 7 7 7 5 4 0 1 2 3 8 6 IDO IDI KRIGE BHK 102 103 IDS CPROB IDIO EX4 EXEO 54.9 58.5 87.2 sa 6 92 1 101.8 12a 9 145. 3 167.3 isa 4 191.4 0.381 0.340 0.016 0.000 0.040 0. 1490.466 0.640 0.889 1. 1041. 160 7 4 1 5 0 2 3 8 6 9 10 EX4 EXEO CPROB BHK 1010 ID5 IDO 102 KRIGE 103 IDI 221.8 276 5 293.6 soas 311.8 323.6 34a 2 350.0 357.0 357. 1 365. 1 0.282 0. 104 0.049 0.000 0.010 0.048 0. 121 0. 133 0. 156 0. 156 0. 182 7 6 10 4 1 3 0 2 5 8 9 EX4 ID2 CPROB BHK IDIO ID3 EXEO 105 101 KRIGE IDO 105.5 na9 138.9 142 4 150.2 15a 0 isa 8 162 2 192 5 193.0 2225 0.350 0.261 0. 143a 122 a 074 0.026 0.015 0.000 0. 187 0. 1890.372 1 7 4 0 9 8 5 3 2 6 10 IDIO KRIGE EXEC 105 IDO ID3 101 EX4 CPROB 102 BHK 119.0 120.7 121.3 132 5 136.4 140. 1 140.5 147.2 147.6 175.3 11&7 a 323 a 321 0.312 0.308 0.244 0.222 a 201 0. 1980. 160 a 158 0.000 7 1 4 0 10 6 5 3 2 9 8 101 i o n 1MTPFSTIMBTFI1 . . METHOD TONS (X 10001 X ERROR RANK . . . rrm!F<rriMOTFn 101 IDO KRIGE EX4 IDIO 0.000 0.000 0.000 0.006 0.006 1.000 1.000 1.000 0. 143 0. 143 1 3 3 3 1 EX4 EX60 a 014 0.015 0. 1250.062 1 2 EX4 IDIO ID5 0.026 0.026 0.026 0.037 a 037 0.037 1 1 1 102 ID5 103 ID1 KRIGE CPROB 0.040 a 041 a 041 0.041 0.041 0.041 0.048 0.024 0.024 0.024 0.024 0.024 2 1 1 1 1 ItmSFTTTMATFTL.. BHK ID5 EXEO ID3 ID2 CPROB ft 007 0.007 0.008 0.008 0.009 0. 009 0.000 0.000 0. 143 0. 143 0.286 0.286 1 1 0 0 2 2 BHK IDIO ID5 CPROB ID3 102 IDI IDO KRIGE 0.016 0.016 ft 0160.016 ft 017a 017 ft 0170 017 0 017 0.000 0.000 0.000 0.000 0.063 0.063 0.063 0.063 0.063 1 0 1 0 0 0 I 1 1 BHK EXEO 103 CPROB ID2 IDI IDO KRIGE 0.027 0.027 0.027 0.027 ft 0280. 0280.028 0.028 0.000 0.000 0.000 0.000 0.037 0.037 0.037 0.037 1 1 1 0 0 0 1 0 BHK EX4 EXEO IDIO IDO 0.042 0.042 0.042 0.042 0.042 0.000 0.000 0.000 0. 000 0.000 1 0 0 0 0 0 BHK 102 IDI IDO KRIGE 103 CPROB IDS EX60 IDIO EX4 ft 076 0.077 0.077 0.079 0.080 ft 0810.081 a 086 0.089 0. 090 0.09B 0.000 0.013 0.013 0. 039 0.053 0.066 0.066 0. 1320. 171 0. 184 0. 289 0 1 1 4 4 2 3 5 6 7 8 n r n m METHOD GRADE (OPT. ) X ERROR RANK . . . nvFRprriMOTFn ID1 100 KRIGE 102 CPROB BHK ID3 EX60 IDS IDIO EX4 0 0 0 78 89 142 166 197 219 232 561 1.000 1.000 1.000 0.451 0.373 0.000 0. 175 0.389 0.547 0.642 2964 7 5 6 7 4 2 0 1 7 3 8 BHK IDO 101 KRIGE ID2 103 IDS CPROB 1010 EX4 EXEO 959 988 1434 1483 1532 1683 2124 2307 2601 2672 2918 0. 331 0.311 0.000 0.034 0.068 0. 174 0.481 0.609 0.814 0. 863 1.035 7 6 5 4 0 1 10 2 3 9 8 EX4 EX60 CPROB IDIO BHK 105 102 IDO ID3 KRIGE IDI 5848 7434 7959 8256 839G 8574 9680 9758 9772 9858 10190 0.304 0. 115 0.052 0.017 0.000 0.021 0. 1530. 162 0. 164 0. 174 0.214 7 9 1 2 5 10 4 0 E 3 8 EX4 IDIO ID3 EXEO IDS ID2 CPROB BHK IDI KRIGE IDO 4394 5028 5761 5955 6163 6354 6624 6859 7929 7955 9353 0.359 0.267 0. 160 0. 132 0. 101 0.074 0. 034 0.000 0. 156 0. 160 0. 364 7 5 6 4 I 0 9 3 2 10 8 KRIGE 105 IDO IDIO EX60 101 102 CPROB BHK EX4 103 9541 10434 10466 10636 10702 10752 11000 11375 11857 13352 13732 0.285 0.219 0.216 0. 203 0. 198 0. 195 0. 176 0. 148 0. 112 0.000 0.028 7 6 5 3 4 0 10 9 2 8 1 _ METHOD OUNCES X ERROR RANK LO to grade, blasthole "actual" i n the kriged one that evaluating does a good grade range, and t h e n t o other grade ranges. ounces p o r t i o n o f the well t h e method b e h a v e s and grade portions polygonal Conditional the refer of (EX4) is probability appeal average is ounces the other is as to start w i t h the t h e most item c h e c k i n g how look to if the total important after ranges, see through the answer is of actual tonnage pattern is hand, method error in goes obvious. EX4 as 6th, ounces the 7th, and i t come o u t the ranked second choice. i n the loses and 9th, 32.8% in predicting grades worst estimate a bad of reasonably 0.050 o p t . and of estimate tonnage close in cutoff. exploration polygonal estimate of Looking 21.9%, to a l s o makes combination ounces estimate. 7th, to back EX4 makes t h e above total an e s t i m a t e f r o m 26.2%, Looking this exploration w i t h a 9.4% e r r o r . chart, opt.? by 22.5% the the Why d o e s EX4 do so w e l l g r a d e manage t o suggests that the error 0.05 a 6.6% rank drops t o 204%. over the where best estimate of second Together, overestimated become to overestimating prediction Its percent finally tonnage. chart one method VIII the 0.050 w i t h o n l y abruptly. on to Table its grade, method works and t h e n grade table to ounces p o r t i o n o f tonnages, a best to (since that's b a c k up t h e total r e f e r r e d to predicting in a particular that is i n other of estimate cutoff and t h e n is there. As an e x a m p l e , and t h e just be p r e d i c t e d c o r r e c t l y ) , consistent what well job of follow chart should a how Usually i t that over are charts. The b e s t way o f select estimates and the The should not C o n d i t i o n a l p r o b a b i l i t y on the i n i t i a l comparison, then 2nd in most other then 32.3% fact ranges (the that predicting gives a with errors h i g h e r r o r s i n the there even are 50 o u n c e s 27% e r r o r ) . any there any of is the Overall, reserves 7.4 i n the 19.6% and a r e due t o ounces of lowest grade the the gold — range c h a r t shows that outperforms c o n d i t i o n a l p r o b a b i l i t y (tons, grade, or ounces), will do and" t h a t better in these charts for this detail as show the full study and they detail can f u r t h e r comparisons of all ore be r e f e r r e d to a r e made. SUMMARY CHART AND RANKING OF RESULTS last how they across chart ( T a b l e XI) conclusions rank models. tabulations for tons, the that ranks were the percentage were due o n l y t o waste average category. ranks. average and and o u n c e s , assigned from used for e r r o r made ore because, T h i s may n o t score in a l l as was is be a p e r f e c t are best as well of the the grade average charts. seen of The earlier, t h e models actually such model, the reserve i n some o f s m a l l amount o f m e t a l The f i n a l every and t h e n the e r r o r s occurred here the information in each other w i t h i n a model, method, grade lowest grade range wasn't large to For each contain summarizes t h e c a n be drawn a b o u t w h i c h methods relative categories the 0.6%, range. for that a way t h a t as few examination of comparisons calculated The and very more o r l e s s Careful 10.4%, no way o f p r e d i c t i n g w h i c h m e t h o d ( s ) given grade quickly 9.4%, lowest category actually no o t h e r method c o n s i s t e n t l y in of which contained d e r i v e d by a d d i n g t h e way t o rank the in 3 methods 95 TABLE XI SUMMARY COMPARISON OF ORE RESERVE METHODS BUCK BLOCK MODEL AVERAGE % ERROR TONS GRADE OUNCES AVERAGE RANK TONS GRADE OUNCES - TOTAL RANK EX4 21.7 7.9 19.3 EX20 17.8 5.0 15.7 IDIO 14.5 6.4 12.9 ID5 14.1 3.7 11.4 ID3 15.2 1.8 13.2 ID2 15.6 1.2 14.5 IDI 19.4 1.2 18.4 IDO 21.5 1.3 22.1 KRIG 18.8 1.2 18.0 CPROB 16.1 1.9 14.2 EX4 6.50 2.25 6.75 EX20 5.50 1.50 5.25 IDIO 4.25 1.50 4.50 ID5 4.00 1.25 3.50 ID3 4.50 0.75 4.25 ID2 5.00 0.50 4.75 IDI 6.25 0.50 5.75 IDO 7.50 0.50 7.50 KRIG 6.50 0.50 5.75 CPROB 5.00 0.75 5.25 8.75 9.50 10.25 12.50 15.50 12.75 11.00 15.50 12.25 10.25 FINAL RANK 9 6 3 BUCKG BLOCK MODEL AVERAGE % ERROR EX4 EX20 IDIO TONS - 29.7 28.8 18.1 GRADE 9.7 6.6 6.6 OUNCES - 21.9 22.1 12.2 AVERAGE RANK TONS GRADE OUNCES - TOTAL RANK FINAL RANK AVERAGE % ERROR TONS GRADE OUNCES AVERAGE RANK TONS GRADE OUNCES TOTAL RANK FINAL RANK AVERAGE % ERROR TONS GRADE OUNCES AVERAGE RANK TONS GRADE OUNCES TOTAL RANK FINAL RANK EX4 6.25 2.25 5.25 1 2 3 7 9 8 5 ID5 13.3 3.4 10.8 ID3 13.7 1.5 12.5 ID2 23.7 3.4 22.5 IDI 34.4 5.3 34.0 IDO 38.8 5.0 39.2 KRIG 27.8 3.1 26.8 CPROB 9.5 0.6 8.2 ID2 5.25 1.00 6.00 IDI 7.75 1.50 8.50 IDO 8.75 1.50 9.50 KRIG 7.75 0.75 7.75 CPROB 1.75 0.50 2.50 EX20 7.25 1.50 5.50 IDIO 4.50 1.50 3.25 ID5 2.75 1.25 2.75 ID3 3.00 1.00 4.00 13.75 14.25 9.25 6.75 8.00 12.25 17.75 19.75 16.25 4 2 3 5 9 10 8 6 7 4.75 1 BUCK60 BLOCK MODEL EX4 22.9 9.1 24.8 EX60 25.0 3.6 21.6 IDIO 10.9 5.8 18.6 ID5 18.0 6.8 15.4 ID3 19.7 2.6 18.2 ID2 21.2 2.6 19.9 IDI 23.0 1.7 21.4 IDO 25.0 0.3 24.2 KRIG 20.3 2.9 19.1 CPROB 22.0 1.3 20.7 EX4 6.00 2.25 6.25 EX60 7.00 1.25 6.00 IDIO 6.00 1.75 5.75 ID5 4.75 2.00 4.50 ID3 4.50 0.75 5.25 ID2 5.00 0.75 4.75 IDI 5.50 0.25 5.75 IDO KRIG 5. 75 4.75 0.25 1.25 6.50 5.25 CPROB 5.25 0.75 5.00 14.50 14.25 13.50 11.25 10.50 10.50 11.50 12.50 11.25 11.00 10 9 8 4 1 1 6 7 4 3 BUCK60G BLOCK MODEL EX4 48.3 11.3 38.9 EX60 42.5 5.8 37.0 IDIO 37.0 5.5 32.5 ID5 22.4 4.8 20.6 ID3 16.8 3.8 16.8 ID2 8.9 4.0 11.1 IDI 22.7 3.4 21.9 IDO 28.0 3.5 26.8 KRIG 17.1 4.4 16.3 CPROB 21.6 2.2 20.2 EX4 7.75 2.75 7.25 EX60 6.50 1.75 6.00 IDIO 6.75 2.00 6.00 ID5 4.50 1.75 5.00 ID3 5.25 1.50 5.25 ID2 2.75 1.25 3.00 IDI 5.75 1.00 5.75 IDO 6.50 1.00 7.25 KRIG 6.00 1.50 6.25 CPROB 3.25 1.25 3.25 17.75 14.25 14.75 11.25 12.00 10 7 8 3 7.00 12.50 14.75 13.75 4 1 5 8 6 7.75 2 because much simplifies methods, and of the and metal ore is or shows t h a t using similar results in perform w e l l i n the are s i m i l a r and l e s s than 11.0. tons, grade these case that latter model; probability ranks c o n s i s t e n t l y block models, methods seems t o perform well Notice overall — also that percent ID3 on t h e ID2 well and that ID2 ranks showing Closer in a l l final 0.6%, the ranks rank is (BUCKG), and 8.2% 60' on model four block models, there be b e s t . come c l o s e , for the at or even t h a t the seem inverse 60" m o d e l s , and ID5 block models, is Looking the 20' grade estimate and c a n be no way any o f for the This total Furthermore, conditional models. model. of calculating model for 20' BUCK b l o c k be the inside model. final 9.5%, shows t h a t does w e l l in for are calculation f o r the errors fall block o u t p e r f o r m c o n d i t i o n a l p r o b a b i l i t y c a n be distance was of 20.2%. competitors t h e methods that with only 20' p r e d i c t i n g b e f o r e h a n d w h i c h one w i l l four to for nearest can to use no o t h e r m e t h o d ' s for the and r a n k i n g shown. their respectively, 2.2%, the BUCK60G while makes e r r o r s ounces i x ID2 and c o n d i t i o n a l p r o b a b i l i t y than 8.0, probability or 3 and 22) This the 2 21 b e s t method models, of On a v e r a g e , and the adequately best b l o c k models composites both 21.69%, of 20' two (BUCK60G), a search best it (Tables V I I , v i i i , 20, probability. the reveals 19, but the r e l i a b i l i t y of and t h a t in examination conditional only are charts (Figs. the conditional second obliterated, detail graphs zone o u t l i n e , reserves less full t o when a s s e s s i n g t h e BUCKG and BUCK60G, first is o f d e c i d i n g which then the T a b l e XI the detail process X) and t h e referred the one attained the of the lowest by any method original inverse distance used at cubed, the mine. provided was 20' the Lastly, provided Kriging feel" strength) whose is by itself, in that another performance c a n n o t be e v a l u a t e d method nearly ore reserve estimates error just this is time. worst measure o f that ( g i v e n t h e BUCK b l o c k model) again that k r i g i n g , the that without taking k r i g i n g variance into ignoring that technique "gut estimate guess at the of alone, original reserve notice one greatest The best an e x c e l l e n t b l o c k m o d e l w i t h no o r e z o n e o u t l i n e is distance of Buckhorn. account supposed t o relative advance at always (i.e. be k r i g i n g ' s weighted averaging to any other estimator having the production data available. 7.5 EXAMINATION OF SCATTERGRAMS AND BENCH PLANS Although results both which u s e f u l a the and scattergrams really reserve offer c a n be d r a w n . estimates, When one scatter plots they false which shows basis, use another. the this This that security. least plot Many p e o p l e p o i n t t o amount to j u s t i f y of scatter t h e i r choice r e a s o n i n g however, is flawed a r e v i s u a l l y d i s c e r n a b l e on and F , is interested in particular, often the i n f o r m a t i o n from (actual vs. c a n be c o m p l e t e l y d e c e i v i n g , sense o f showing (Appendix B very l i t t l e b e s t method o f c o m p a r i n g t h e d a t a fact things they conclusions comparing ore In maps have been d u t i f u l l y r e p r o d u c e d h e r e i n respectively), not bench one in that into scattergram and, s o l e l y o f one are predicted). lulling the in on t h a t method o v e r there a scattergram are two which are 98 independent o f each o t h e r . One crude v i s u a l appraisal errors associated and t h e is other evaluation of line grade least to scatter graph. each (hard the (0,0) are to measure), drawn f r o m t h e c a n be compared t o error associated with of be constant) one the taken to since would appear t o What the show z e r o conditional scatter a c t u a l grades of indicates that blocks that point on percentage the scatter, of blocks that of identical graph that is best, shows or else show i d e n t i c a l estimation block grades, o f the least extreme, of scatter if the scatter, grade actual is the in one to o n l y measurement the was versus amount o f best estimate constant predicted (any grades do show is the differences at that in around is it it. waste, representative expected grade, If F o r any g r a d e there is of for be p o s s i b l e are underestimated at estimate the that is every of individual to determine that a that some p e r c e n t a g e one c o u l d s e e would the Any h o r i z o n t a l l i n e — f o r any g i v e n p r e d i c t e d g r a d e t h e r e block an least predicted are a c t u a l l y ore. the is "scattering". distribution estimator show 45° slope shown i n A p p e n d i x F i s particular which c a n be compared which d i s t r i b u t i o n s f o r every method. scattergrams estimate), which provides the the then a p l o t scattergrams conditional on t h e where that same b l o c k m o d e l t h a t see (a intersections i n which case the i m p o r t a n c e was t h e v i s u a l amount o f would fit" through those w h i c h c a s e t h e method p r o v i d i n g t h e In f a c t , scattering w i t h an of The o n l y p l o t s other slopes amount o f c a n be m o d e l l e d by t h e 4 5 ° amount o f d e v i a t i o n f r o m t h e two s c a t t e r s choose. the "goodness from t h e o r i g i n on t h e meaningfully scattering average how c l o s e which passes equal the the of is grade. the Were 99 any o f do as these d i s t r i b u t i o n s good a j o b as probabilities square any at drilling way of presence of course, Buckhorn. pattern. vast can on an irregular grid, numerous other l i n e a r unbiased" The than smoothed 60' blocks. can't more s c a t t e r tend to show appears of the to IDI from the use. a Appendix foot blocks 1 methods data. when is a provide the Kriging, of expectations drilling is are c l u s t e r e d , the make i t best fit crude v i s u a l the show predicted therefore polygonal either kriging "the lines other the and On t h e best kriged higher better, estimates at hand, to 20' show Buckhorn the than also slopes estimates k r i g e d and IDI e s t i m a t e s seriously ranges. but grades for T h e IDO e s t i m a t e e s t i m a t e o f w h i c h method highest more grades and t h e r e f o r e other grade are IDIO e s t i m a t e s scatter and show scatter grades IDIO and p o l y g o n a l show more are a l i t t l e A l l methods show t h e i r less estimated methods. vary. i n the don't The k r i g e d e s t i m a t e s scatter. the 45° line models ID2 o r IDI e s t i m a t e s 4 5 ° s l o p e s but while therefore same e x t r e m e s as than least F, block and same r e a s o n , The b e n c h p l a n s only other do i n f a c t because reach the show t h e estimates, depart 20 scattering to conditional because there conditional especially t h a n IDI and I D O . various come c l o s e r in Sixty be s i m i l a r t o less of might d i s t r i b u t i o n without o r when d r i l l h o l e s models than for For the the they estimate. block blocks only production advantages t h a t surprising. 20' of estimate of and, scattergrams anything of this production starts none is a conditional amount provide calculation But t h i s Also, calculating a be n u m e r i c a l l y m o d e l l e d , k r i g i n g d i d i n the before has to again they is the i n the provide b e s t one to same p l a c e s 100 since every estimate was exploration composites. g r a d e and the a l l methods same r e a s o n s highs in the areas g e n e r a l shape a r e a s where b l a s t h o l e not to visual choice of alone. the types Figure 18 comparison t h a t evaluating reserve the 6) c a n be u s e d different should outcomes for ore amount o f be p r o d u c e d justify scatter to give mind t h r o u g h o u t and a s s e s s the results for overall distribution provides a and i n the back versus (Tables V I I , of of different perspective c o m p a r i s o n a f f o r d e d by a more c o m p r e h e n s i v e t y p e either estimates show t h e or over estimating a lesser keep i n shows comparison visually, of he c a n c h a r t s shown e a r l i e r show are w h i c h a r e made s h o u l d n o t be u s e d t o plots a also therefore o f d e t a i l e d comparisons of basis provide visual and useless, error. (chapter better precise in particular, p i c t u r e s which of gross scattergrams are exploration d r i l l i n g on t h e imprecise ore. maps and b a s e d on spacing. of help v i s u a l i z e possible indications large d r i l l h o l e or data confirmed the presence B o t h maps and s c a t t e r study to show lows those f o r making t h e a method analyst f a i l e d to for of not Scattergrams, higher l e n g t h and o r i e n t a t i o n ) are reserve estimates here. of the (width, say t h a t methods inappropriate of o n l y t h i n g t h a t c a n be compared i n a v e r y larger but composites because the is some a r e a s nearest f a i l e d t o p r e d i c t some l o w g r a d e a r e a s way i s This same 10 o r 12 A l l methods m i s s e d — the nearest those Therefore d e r i v e d from t h e the analysis, "actual". VIII, IX reserve estimates block grades, or of for The o r e and X) also because they which in turn than the simple block-by-block scatter plots. These c h a r t s q u a n t i t a t i v e l y , w h i c h methods important ore grade ranges. are under For global ore reserve right the estimates, d i s t r i b u t i o n of designed economic This open idea pit. is large which waste is are really As were l o w e r if selectivity, individual reserves the grade evaluate one are really within of deposit. says: ore and irrelevant for q u a r t e r l y or the basis the ( 1 9 7 7 ) when he percentages of for yearly occurrence can 20' the is not the models. only capable case at correct for and to of a 60' be block A l t h o u g h any correct, method t h a t results block would be e x a c t l y a mining this 60' This Buckhorn. be e x p e c t e d block grades is block from the in has higher a ore predicted. is blocks is is 20' tabulated method was block cannot being ESTIMATES reserves mining but t h i s Not o n l y the predict provide the totally say t h a n from t h e selectivity blocks their the d i s t r i b u t i o n of block as to FOOT V S . TWENTY FOOT suspected, acceptable of long less to predicted." SIXTY models as to s u p p o r t e d by D a v i d i n the be 20' used is any c u t o f f numbers "which s m a l l b l o c k s planning the above These which are monthly p l a n n i n g , 7.6 important thing block grades calculations general t h e most the is correct calculated is on a v e r a g e . as w a s t e , predicted small block grade d i s t r i b u t i o n c o r r e c t , as ore, actually b u t one In other of generally, ore may be the the but the words, nine if location one 60' contained 20' exact p r e d i c t i o n incorrect, but that there is 102 probably a valid predicted to expectation realization of orebody t h a t will the ore blocks ore intercepts. be the in generally This w i l l t h a n one representative of the An e x a m i n a t i o n a block the designed the b l o c k models 7.7 7.3, it s h o u l d be comparisons and 7.4 constrained 60' around of the having exploration design that is b l o c k model which is (Appendix F) e s t i m a t e s have predicted grades, d o e s show less but t h i s be t a k e n t o mean t h a t scatter also the is 60' used. demonstrated by t h e reserves and r a n k i n g ore than did ounces o f above gold predict in that the grade ore in sections estimates predicted better a couple in a l l the very of produced every method o f ore reserve calculation ounces o f gold than the corresponding constrained were higher) thousand low 0 . 0 1 7.2, A l t h o u g h the cases they categories, that (and two e s t i m a t e s . predicted a zero c u t o f f , higher those other any more o u n c e s above the shown e a r l i e r zone o u t l i n e estimates and benefit of spacing. plots should not unconstrained to a 60' b l o c k model geometry open p i t was CONSTRAINED V S . UNCONSTRAINED ESTIMATES The ore on 20' actual further i n an scatter by b l o c k b a s i s , However, the the right location result when c o m p a r i n g a c t u a l v e r s u s expected. possible exploration d r i l l of c l o s e by b l o c k t h a t In e f f e c t , mined, with more a c c u r a t e on another be w a s t e may be o r e . becomes one that that more were u n a b l e opt. cutoff unconstrained significantly estimate. less This 103 is s i m p l y one m a n i f e s t a t i o n noted by a l m o s t There ore can is be in is defined range they assumptions the and a l l belong zero to to ore a of gaussian zone o u t l i n e grades but w i t h i n the a definite high, but the distribution d i s t r i b u t i o n of provided a set probability estimate of how t o the use global estimates that rocks in that is defined outline a of grades the data, of are occurs related grades a which single, values relies and Not by an ore form on expected t h e o r y w h i c h goes USING CONDITIONAL PROBABILITY ESTIMATES the as which 7.8 to based This population of A l l of that is a l l potential requirement. come it host ore this Having contact zone and w a s t e r o c k . zone i s grade, very conditional ore the introduction, volcanics. between o r e cutoff constrain i n the the been alteration t h a n n o r m a l l y w o u l d be altered the in geological make-up o f lognormal d i s t r i b u t i o n . producing of outline from near viable inside change stated has reserves. b l o c k model t o was gold that ore changes i n rock t y p e , the contact derived or and i d e n t i f i a b l e of grades calculated change as amount o f the m a t e r i a l that but chemical composition within this in the a greater economically type As w i t h a l l in numerically of estimate, drawn. the all rock a measurable differences there no ever c o u l d be i m p o s e d on t h e reserve there "smearing" o f anyone who has was pattern that of into upon imposition which fulfilled conclusion that the conditional reserves best, the question is are produced? Of the four is block 104 models, model the b e s t one which following perfect was at Buckhorn constrained are the steps that hindsight, reserves, to use and t h e n by the is the the ore BUCKG 20' zone a u t h o r would use to redesign the open p i t , to do d a i l y and m o n t h l y block outline. now, with calculate global reconciliation at mine: 1) Krige the exploration s u b s e t BEXG d a t a idea of using maximum p a i r 2) al 3) and t h e 3 20' composites BUCKG b l o c k m o d e l using (try the out or 4 variograms which r e f l e c t the various differences). Calculate global geologic reserves using condition- probability. Produce increasing closest design inverse powers in In t h i s and Both grade the 0.020 o p t . , pit design valued to and the case, it 0.035 one metal above conditional close comes the mine probability the or same conditional p r o b a b i l i t y at both 0.035 cutoffs. opt. the to ID5 the as very with which w o u l d be e i t h e r predict as the estimates mine d e s i g n The open cutoff, but block over 0.020 into the calculations which decide whether or not a block would be m i n e d . Just simulation, these inverse one any choose and t h e used weighted tonnage grades ID3 e s t i m a t e . tonnage and grade, cutoff estimate. distance distance possible possible like conditional b l o c k models geometrically shape of the will correct orebody come c l o s e economic to realization given the being of the exploration The near ore the data. that or J o u r n e l and one of ID2) the will "Depending spatial Huijbregts (1978) support the t r a d i t i o n a l estimators be similar on t h e a nugget e f f e c t correlation), standard estimators optimum, but one o r is only geostatistical to a the close (polygonal, "best" estimate. the degree other of the enough to the analysis, can IDI (i.e., structural approach, idea tell of three kriging i.e., which a is the open pit (perhaps the closest". 4) Assuming t h a t using both the this ID5 is true, and ID3 design b l o c k models ID4 m o d e l s h o u l d a l s o be c a l c u l a t e d a p p r o p r i a t e economic mine o r e , 5) cost respective 6) input data t o mine w a s t e , Calculate reserves open p i t Calculate in this (price using each method within each p r o b a b i l i t y block values and above cutoff, by calculated reserves predicted made, all discarded will give grades at adjust for the and inverse most pit of reserves. the choose it perfect any After is matches mining this to the using the dilution in pit design method whose the Report reserves these models u n l i k e l y that location. fractions c o m p a r i s o n has distance predictions exact the distance closely inverse because cost within for ore by c o n d i t i o n a l p r o b a b i l i t y . minable ore gold, with outlines. reserves generated of case) etc.). conditional grade the of been should be any b l o c k m o d e l individual There i s the as block no n e e d reserve to estimate because, not be there any r e l i a b l e and t h e to although true effect "lower" the from the leach 7) a On will measure of this parameter percentage of gold recovery basis, reconcile total individual conditional blocks) The "new" added t o Any o r e ore and reserves to Produce (instead reserves monthly 1) and date between p r e d i c t e d excellent, feasibility grade; steps for the tons of the treated from cumulatively the mine, instead and then These would of and g r a d e ; error and a c t u a l ) ; just 2) two. actual (the difference and 4) new o r e , to not drilling. followed believes that study been excellent reserves). cumulative from e x p l o r a t i o n author and 3) s h o u l d be headings predicted should subtracted production reports. tons the it This s h o u l d be be (not generally found o u t s i d e not report remaining They w o u l d b e : Had t h e s e is daily probability provide zone o u t l i n e show f o u r m a j o r g r o u p s o f predicted reported outline Buckhorn to that should i n i t i a l ore subtracted blast at volumes exploration ore exploration 8) the outlines enough reconciliation. as later, the 10-15,000 tons o f m a t e r i a l . large original to blast about provide will pads. p r o d u c t i o n estimate w i t h i n the contain there o f m i n i n g d i l u t i o n w i l l p r o b a b l y be day-to-day estimate. 1984, be d i l u t i o n , that economic would a l s o have before the production started results calculations been more would have performed f o r accurate. in been the 107 8. All have of the drill relates spacing. imposed and i n i t i a l questions been a d e q u a t e l y s i z e which on this like approximation or b e s t one true the kriging. accurate more complex Some o f the calculating no way of nearest to knowing beforehand should all 3-parameter lognormal polygonal or f a i r l y accurate of the of the inverse the unknown orebody. these like -- However, probability estimate, which other methods of be possible, modelling estimation be started exploration here, "realization" distribution a conditional to at for various will a workable grade need if study choose a block and n o t constructed the less this important to b l o c k models block calculations s h a p e and there is estimates w i l l be "actual". inverse distance cubed model than the k r i g e d g r a d e e s t i m a t e when compared definitely better what actually was is as alleviate using without distance to original block gave b e t t e r , was and on t h e may p r o v i d e The It before mining s e l e c t i v i t y will distributions ore to data alone distance answered. asked Ore zone o u t l i n e s , the multigaussian CONCLUSIONS the fifth model, the while same s i z e application by G . F . Raymond and but power o r much b e t t e r , applied to Careful mined, of modified (ID3) other (ID5) outperformed estimates t h e mine ID3 ore for zone to inverse p r o b a b i l i t y and ID5 when an was the both outline model. conditional in at methods i n c l u d i n g conditional block used this p r o b a b i l i t y as practiced study, extremely is an 108 robust, accurate, indeed these calculating calculations global reporting daily applying and u s e f u l all of ore the And f i n a l l y , techniques, estimate with the reserves, attained be used in mine discussed, ore at reserves, all design, at provides and an e q u a l l y estimate, full stages of and for probability. power of the provides the of the error best combination and t o n n a g e s , as w e l l best geostatistical both a very necessary unbiased i m p o r t a n t measure By agreement a l t h o u g h k r i g e d b l o c k v a l u e s were n o t the and Buckhorn. excellent with conditional application of which calculating production figures refinements estimate mining block grades reserves. should and m o n t h l y w i t h b l a s t h o l e s was in themselves, way o f as linear associated of tools global to ore 109 References David, M. (1977): E l s e v i e r , 364 p . Geostatistical Ore Reserve David, M. (1988): Handbook o f A p p l i e d Advanced Ore R e s e r v e E s t i m a t i o n . E l s e v i e r , 216 p . Estimation. Geostatistical G i r o u x G . H . and S i n c l a i r , A . J . (1986): G e o s t a t i s t i c s at Equity S i l v e r Mines L t d . : G l o b a l Reserves o f the South T a i l Zone by Volume V a r i a n c e Relations. i n Ore Reserve E s t i m a t i o n , Methods, M o d e l s and R e a l i t y ; Symposium P r o c e e d i n g s . David et a l . , eds., C a n a d i a n I n s t i t u t e o f M i n i n g and M e t a l l u r g y , p p . 2 1 8 - 2 3 7 . Journel, A.G., and Huijbregts, Ch.J Geostatistics. A c a d e m i c P r e s s , 600 p . (1978): Mining M u n r o e , S . C . , G o d l e w s k i , D . W . , and P l a h u t a , J . T . ( 1 9 8 8 ) : Geology and M i n e r a l i z a t i o n at the Buckhorn M i n e , Eureka County, Nevada, i n Bulk Minable Precious Metal Deposits of the Western United S t a t e s ; Symposium Proceedings. Schafer et a l . , e d s . , Geological S o c i e t y o f Nevada, p p . 273-291. P l a h u t a , J . T . (1986): Geology of the Buckhorn Mine, Eureka County, Nevada. in P r e c i o u s M e t a l M i n e r a l i z a t i o n i n Hot S p r i n g Systems, N e v a d a - C a l i f o r n i a . Tingley, J . V . , and Bonham, H . F . , e d s . , Nevada B u r e a u o f M i n e s and G e o l o g y R e p o r t 4 1 , p p . 1 0 3 - 1 0 7 . Raymond, G. (1979): M i n e r a l i z e d Orebody. O r e R e s e r v e P r o b l e m s i n an E r r a t i c a l l y CIM B u l l e t i n , V o l . 7 2 , N o . 8 0 6 , p p . 9 0 - 9 8 . Raymond, G . ( 1 9 8 2 ) : Geostatistical Production Using K r i g i n g i n Mount I s a ' s C o p p e r O r e b o d i e s . No. 28, p p . 1 7 - 3 9 . Grade E s t i m a t i o n P r o c . A u s t . IMM, Raymond, G . ( 1 9 8 4 ) : Geostatistical Application i n Tabular Style L e a d - Z i n c Ore at Pine P o i n t Canada, i n Geostatistics for Natural R e s o u r c e C h a r a c t e r i z a t i o n ; NATO A S I s e r i e s , P a r t I . G . , V e r l y et a l e d s . , D. R e i d e l P u b l i s h i n g C o . pp. 468-483. Sinclair, A . J . , (1976): A p p l i c a t i o n o f P r o b a b i l i t y Graphs i n Mineral Exploration. Association of E x p l o r a t i o n Geochemists, S p e c i a l Volume N o . 4 , 95 p . APPENDIX A BENCH MAPS OF RAW DATA AND OUTLINES LEGEND: Grade (opt.) + 0.000 - 0.010 • 0.010 - 0.020 EB 0.020 - 0.035 m 0.035 - 0.050 • > 0,050 Outlines Mined Limits "Ore Zone" O u t l i n e ( d e r i v e d from s t a t i s t i c a l study) BENCH BEX 20' 6880 DATA COMPOSITES + ———. • • ffl • + + + + + + / • ^ + • ~ \ \ + + Q - + BENCH BBH 6880 DATA BLASTHOLES BLASTHOLES 118 120 APPENDIX B BENCH MAPS OF RESULTS (6840* and 6860' ) The f o l l o w i n g bench p l a n s a r e s o r t e d f i r s t by b l o c k m o d e l , t h e n by b e n c h and f i n a l l y by m e t h o d . F o r any b l o c k m o d e l , 2 . s e t s of 13 plates, starting with the blasthole polygon weighted e s t i m a t e and e n d i n g a t exploration conditional probability, all show results on the same b e n c h so t h a t t h e d i f f e r e n t methods e a s i l y be compared w i t h each other and to "actual" blasthole results. 4' p o l y g o n a l e s t i m a t e s a r e n o t shown. In the case o f the c o n d i t i o n a l p r o b a b i l i t y p l o t s , the c u t o f f g r a d e i s i n d i c a t e d and c o n t o u r s r e f e r to the p r o b a b i l i t y of ore b l o c k s above the c u t o f f w i t h i n the contour. C o n t o u r s a r e a t 40, 6 0 , and 80% p r o b a b i l i t i e s and are plotted on top of "actual" b l a s t h o l e k r i g e d r e s u l t s for a given block model. LEGEND; Grade (opt.) + 0.000 - 0.010 • 0.010 - 0.020 E 0.020 - 0.035 0.035 0.050 Method • - BHK Blasthole or BH20 BH60 B l a s t h o l e Polygon W e i g h t e d (20' & 6 0 ' ) or EX20 EX60 E x p l o r a t i o n Polygon W e i g h t e d (20' & 6 0 ' ) ID10 ID5 ID3 ID2 IDI IDO Inverse Distance to t h e i n d i c a t e d power, KRIG Exploration Kriging. CPROB Conditional Probability. > 0,050 Block Models BUCK 20' B l o c k s , outline. no BUCKG 20' B l o c k s , w i t h ' "ore zone" o u t l i n e . BUCK60 60' B l o c k s , outline. BUCK60G 60' B l o c k s , w i t h " o r e zone" o u t l i n e . no Kriging. 121 JEDDOE IDEBEB^I ]DE + DEBBB^EBEB + nEB^ OEBEB^B^EBn + DEBEB^EBEBEBEB^^ JDDEBEBE ][X]ni]piiP3rororXicpi 11 iixirnrxiiriiTirTifTirnrnrn • ••EBEBEBEBE jtdtddjmtd II Immmmmmmmmm ^••••••ffln+ + JEBnnDEBEBEBEBEBDEBEBEfflEBEBEB^EBEB ]••••••+ + + IDnnnnESEBEBEHEHEBfflfflEBEBEBfflfflfflDD ]•••••+ + + innnnnnnnEBEBEHEEBEaEBEHnn + n n • E B E B E B D D a D n n n + + + +' ^•••••••••EBEBEBDnEBn + ++ + • •• • • • • • • + ++ ++++ + ^ • • • • • • • • E B n E B E B n n + + + + + ++ + • • • • • + + • • • • + + ^ • • • • • • • • E B E B E B n n + + + + + + ++ + +nnEBfflDDEBnEBnnp + ^ • • • • • • • E B E B L B E H E H D + + + + + ++ ++ ++ ++ + + + + ••EBEBEBEBEBEBDDE IDEBEBDD + + + + + + + + + + + + + +••EBEBEB EBEBB3DDE \+ + D D D n n ^ E B + + + + + + + + + + • • • •••EBEBEBEBEBEBQ + + + + + + + + + + + + + + + + + +DEBEB• • + • + •EBEBEBS3B+ + + + + + + + + + • + + + + + DEB ••••••EBEBE + + + + + + -1- + + + + + + D D E EBOnnEBEBEBE + + + + + + + + + + + + DEB EBB ••fflfflEBanf .+ + + + n n n r j E B^E ^ E S E B ^ B B B B B B B ^EBEBEBEBEBnC V + +•• EBDEB^^fflDE JDDDEB EBDDEBEBEBEBI ]••• • • • • E E ]••• • •fflEBEBEBS ^ • • • • E B E B E B EBEBEB ]DDfflfflfflE8DDDDfflnn + DfflE8Ea JDEBEBEBEBDnnEBEannnfflfflfflffl IB EB ES • • • EB EB EB EB EB EB EB EB EB EB EB EB ^••••EBEB^ + •••EBEBEB + ••EBEB^^ • + •EBEBH!Bi3 •pDEBEBBB^ iDEBEBEB^BBBB^EBDEfflEB BBBI! J H H H H H H B B H H H T+ •EBEBEB iannfflEBEB | R BBBBB1I IBBBB^fflEBEB EBD+ + + • EBDD+ + + • •+ + + + + ,+ + + + + + + + +++ + + + + +\+ + + + + + + HEBDEBEB EBDEBDnffl fflnnnnnnEBDDfflEBEB + ++++++++++++++ +++++++ ++++++++++ ++++++++ ++++++++++ + + + + +/+ o _ + + + H: + + + - P\+ + ++ + + + + + + + + "+•] + + + ++ + + y "t + 1 + CD 00 CD \ X CD LJJ CD o ID CD \£ X CD 1 _l < ZD 1— CD < 12 mm^mi ranfflE + OB^I mo•••EHE ]DfflfflnfflfflfflDD + l SDfflS ••EBDE JEBDDDEBE maX + ••EBDDEBEB + + JDnnnfflDEEBEfflfflfflffl^ +• ++ •••+ + + ••••••••BBBBDBBBB ++ + ^ • • • • • • • • B B B n n B n n + + + + ••EBEBEBEBnnn + ^ • • • • • • • • • • • • B D + + +++++nnnnnEBD+ +++++ + ^ • • • • • • • B E B B B D [ : + + + + + + + + D + EBD + + +•••+ + + ^•••••BnnBBBffl+ + + + + + + + ++ + + ••EHEBnDEBDEHDDf • ••EBDDDEBEBDD++ + + + + + + ++++ + + + •BBBBBDDDr + D i I D D E B i D + + + + + + + + + + ++ + + • • B B B B B B + + LJ+ 1+ +nnnnn^+ + + + + '+ + + + + +nn + EBDnEBfflEBEBEH+ + ++++++++++ + + + + + + ••EBEB + + • + ••EBEB/TJ i i ++++++++++ + + + + + + B B B E + + ••EE ++++++++++ + + • • • ^ B B B B B D D n B D B E ++++•+++++ + +E5EBBBBHBBnnEEBfflDDi + + + +EBnnDEB^fflDffliiiiiii^DfflEESDD + ++DDB^^BBBBBBBBBBBBBDnB^^Dn ^•••EB^BBBBBBBBBBBBBBnnnn^Bn iDDEBil^iEBEQQ^IIIIIIII + + + + +• IDOnil^iEBfflEBEBIIiii^iiDnfflEOEB +nBEBBEBBB^BBBB^BB ]nDDBBDffl + EBBBD+ +DDB 3 D B B B D D + +••+ + D B ^ ^ B ^ ^ iPDBBnBBB^^BB^BBBEB^BB ••••EB^M^^EBEHDEBEBEBiill + DnDMD^iMiEBEBEBEa^iI + DDDiffl^iii^iifflEBE9EElEHil + + n^B^B^^ffl^EHEBEM^B +\+n^fflBBE^BBBffiDBBfflffl^BB DiEBEBIIIillEBDDDESEBilll 1+ + • • • E B B ^ B B B B ^ B B B B B B iD + D D E B E B H I I E B S Q E B i l i l l i l 3 ^ i i i i l ^ i i f f l E B f f l i i ^ + DD 3B^^^BB^^BBBDBBnnDB ^illlllESEBiEQSiii^lll IBBBBBB^DD^B^BBBBl IHBBBBffiDDffin + EH^BD + IBUBBBD + + BD + DEBD + + •+ + ; ]•• + + + • • + + + + + + + + + + + + + + + + + + + +\+ +V BD + + + + + + + + + + + + + + + + + + + + + + + + +\+ + + + + + + + + + + + + ++++++++++ + • + + + + + + + + + ++ + + + + + + + + + + + + v 1 ++++++++++ +\+ + + + + + + + + + + ++++++ + + + + o CD tT CD CO CD X O O I I 1 1 1 1 CD o ID CD O C\J JZ CD 123 ^BDDBB + + + + + + BBBDDBBBBBDLj;C]BBHB + + + + + +EBEBEBDDDEBDDEBEBDDDDfflDEBBBBBBBBBD+ + + + + + + BBBnnnBBDBBDnBEBBBB BBBBBC3IZlBn+ + ++ • BBDDD+ + + ++ ++ + + + + + + BBBn + nBBDBBnnnnnan + +•••••+ + + ++ ++ + + + + LZOEB + +•BBnDDDD + + ++ +•••••+ + + + + + ++ +++ + + + • • • • • • + + •fflEDDDDD + + + + + ++ +++ ••••••+ + + + ++ + + + ••••Bffl+ + •+••••+ + + ++++++ + ••••+ ++ + + ++ +++ • •••BBB + + +•••• +++++++++++++++++ ++++++ ++++++ • + + + B B + + + + ++++++++++++++++++ + + + + + + + B D + + + + +++++++++++++•++++ + + + + + • • • + + + + + + + + + + + + + + +•• + ••••••+ ++ + + + •+++++++++++++ + + + +•••••••••+ + +++ + + ++++++++++•+++ + + + +EHD+ + + + + EBD + + + + + + + + + • • • + + + + +•••••+ + + + +MBD +BBBBBD + +DEHDDI + + + + + + +DBZOD • •EEDD + ++++ ++ D S B M I I I H I I M I I I I + + IBD + ++++EEBBHHHHHHHHHHHHMD+ • ••B^B^HHBffl^H^HHHB^BB^^B+ • •BED + + HHHDCIEBBB + + (ZlBBfflBBEBHH + + + + + +HHHDDfflBffl+ + • B B B B E B B H + +++ + +HHHDnBBBBBBDnBBBBffln + + + +••• + + Dfflffl§^fflnnDfflDDD + + ++•••+ +E^^BBEnBBBBnn + + +++++ + + ^ H ^ B B ^ f f l B B B B D +++++++ mm ++ ++ ++ B •••EEBffii •••BBB^ + + +••Efflffl^ EnnnnnroBBBBBn ^••+ + + BDI + +DEEO + + +nnB|§^ ^••BBBBBBI ^+ +BBB^BDfZiCOD + + +DB ••+•^^••EDBEfflD +• • • • • • • I I H E I I I I D D + + nni3Z] •+DHBn+nnB«Bnn + + +BBBB+ + +++++•+++ + + + + + + + + + + + + + + + + ++++++++++++ + + + + + + + + + + + + + + + + ++++++++++++ + + + + + + + + + + + + + +• + + + + + + + rt^f + + + + + + ++ + + + + + + + + + o CO + + + + + + + + + + +_ co CO + + + + + + + + • • + + D D E 1+ + +! ++++++++++++••- r CO X o O UJ CD. \^ CD ZD CD O CM X LU o ia i + + +• •+++++ ••+ + + + + • • 4-4-44-4-4+ + + + + + + +4-4-4- + + + • • + + + + + + + +DEB • + + + + + + + + + DEB EB+ + + + +•+ B3EBD+ + EBEEO + + + +• 44-4-4- B E B D B B B n + ++ + + • • • SEBnnnEBEan+ + + + + B B E + >iona + + ++ + B E D + + t)9'89 ++ + + S E B E B n n n n a a + + • + + mmmuum + + B ++ ++ B3fflB3EBEBnnnn+ + +unummmuum • • • • • + +0ESDnnEBEBEEDD + + ^^EBEBEBEBnn + n + + + • • + + EBDEB^^ B B B D E B B ^ ^ B B B E n ++++ + + ^^^EBfflEBEBD + n n + + + • • + +EBDffl^^ B B B D B B B ^ B ^ B B B n Q 1 ++ + + + + ^ B B B B D + B + + + + + • • + + + DEES ^ ^ B B E f f l f f l B E B ^ B B B n +++ ++ B E E S E D ++•++++••+++++ ++ +++ + + aLX]++l + ++++++ • • • + + ++ + • • • • + + ++ E B Q + + + + + + + + + nwffl •••EBD ++ + + EBEBnnn^ EBEBEBDD E B B E D B B B B E D ++++++ +DD^ • •+ + + + + + + 0 9 + B ^ B B D + + + + + + +DDEBBB BBBDnfflfflEBEB B^+ 4-4-4- + + + + 4-4-4BBBnBD+ ++++++++ +•• + + m\ 4 - 4 - 4 - + + + + +~~ BBBDBLJ + +++++++ + • • • ++m • + + + ++ ++ EBDD+ + B B E • ••••••+ + + + + + + + +• fflnnnnn+ + •BDDD+ + + + + + • ••••••+ + + + + + + + + + B B B mma+++ + + + + + • • E B ^ E B D D + + + + + + + + + +" • + • + + + ++ + B3Esn^Esnnnnn + + + + + + + •••+ + + WMWffiMM mn+ + + + + 4- + EBfflEBnnnDnnn+ + + + + + + + mo+ + + + +4- 4fflfflfflnfflnfflfflDnn ++++ +•• • • • • • • • • • • E B E E B ^ w + + ++ + + 4- + B B B B B E B B [ Z O C ] + + ++ + • • • • • + C1BEBB B + + + + + + 4- + EBEBB3nnnnn+ + • • • + + + • • • • • • • B B E E B + + + + + + 4- + • • • • • + + + + + D B B + + + + EBEBEBEBEBn + + + • • • • • • • • • [ & ! E D + + + 4- + • • • • • • + + + + • + • + + + 4-DBBBBD + + + + • • • • • • • • • + + + 4++ B B B B B E D [ Z O [ Z O + + + + + + +DEBEB^EB + 4 - 4 - 4 - ++••••+ + 4 4+ ^^fflEBEBfflnnnffln ++ + + + + + + EE + + + + ^fflEEfflfflDnnnn + + + + + + + + + 4-4- +DnDfflEBEBEBIZI+ + + + +DIZOEEI+ + + + +•••• + + + +• • • • E B E H E B O + + w + + + + + +nnnEBEBnn + ESQ + + + + + n n m f f l ++++++++++ ++++++ +m + + + + + + + H0N39 0 CD m 01 ION BU u o 0 7\ 00 CD i cr> o +++ + + + + + +Q> + + + + + + + + + + +• + + + + +'+ + + + + + + + + + + + + + + ++++++++++++++++++++++ ++••••+++++++++++++ + + •EBEBEB + + +•••++ + + •••+ + + +DEBI + DEBEBEB + +fflEBDn+ +••• + •••+ +OI ••••^••+•1 + ^ • + •••831 • ^BnnnB^BBDBBBB^BS EBEBEBBEBEB^^fflfflD + D B B B B B B ^ ^ B ^ E B E B • BannEBDEB^^fflfflEBnn^BBBBBB^fflDDffl !EBEBEBEBEEBDn^BBBBEEB+ + +EB !•••+ +nfflffl^^^^EBDD+ + + + inffln + DDEB^^EBEBEBnn+ + + EB^^^fflEBEBEBEBnnnn^^^fflEfflnnn • liEaEBEOEBEEBfflnDEBEBiiEBffiEaDDD EB^^EHEBEBEBEBEBfflfflfflfflEfflEBDDDDDD iEBEaEBEBEBi^i^iI^EaDnDDDDD + ^ B B B B B ^ B B ^ B B + +••••• + • B B B B E n n B B B B B D + +••••+ + + BDD+ + n n B ^ ^ B B D + n n n a B + + + EQESEBEBDDnnDEBE0fflEBEBnDlllD + + + + + B ^ B ^ B B B E B n + DBBBnBBBB+ + ++ + + • •iEBIfflESfflEBEB + DEBEBEBEBiiiiD + DESfflEBD •EB^^i^^^^MIIIIIHIIIiDEBQSDD ^ + ffl||j|3|aE^BBBB|lB^ CZl L_l EB EB EB EB EZ1 EH H HoSHHHHHHHHHHLxIfflfflLxl ••^BBBS++™5BB"B555553EBB^ + +++ + • B ^ + + + + +^B^DD + + + + +•••+ + + + + + + + • •EBEB + +••••EBEBnn + + + + +++ +++ + + ++ + + • • • + + + + • • • • • • + • • + + + + + + + + + + + + + + + + +• • • + + + + • • • • • • • + • + + + + +. + + + + + + + + + + + • • • • • + ++++ • • + ++++++++++++++++ • • • + + D B B B • • + ++++ • • + +++++++++ +++++++DBD+ +DEBBBB • ++ • • • + + + • • + + + + + + + + + + + + + + • • • • • • • • • • • • • + + + + +•••••• + ••+ + + + + + + + + + ••••+ + +DEBDEBnnn + + + + + •EBEHEBDD ++•••+ + + + + + + +••••+"+ +••••••• + + + + + + D B B n n n a n n n + + + + + •••••EBEHD + +•••••• + • + + + + + + E B n n n n n n + + + + + + + •••••EHEan + + • • E a n n + + + + • + + + + ••••EBEBEB •••••••BBnnnnnnBBB +++++ + • • + + •EBnnEBBEBBB B B B B B Q D ^ ^ Q D B n n O B B B + ++ + + + • • B B B B B B B B B B B B a n n n B n n n n n D D B B B n + +++ + ma B^EBnnnnEBEBEgfflfflnnfflEBBn + n n a + SHEBDDnfflEafflE0EBDDE^fflii^E8D + 1+ + 1+ !+ S3T • EBBB • • B B M B ^ E n B E B B B B D n a B B ^ B •••••BfflBBnnEEBEBnnnaEBffl +nDn+DBEEnnDnDBBBDnDBEB + +++ + • B B B E D B B D n B E D D D B B B B +• ++ +•EBBDDnnDDBBDDnDnnn • ++ DDEBffiffln + D E 8 E D D D D n + + BBBBEBBBBDDn BEBBBBEDDDaDD B E E n n n D D + +++ + • • • • • • • • • + • • • • • • • + + ++ • • •+ •• •• •• •• •••^• •0 ++ ++ ++ ++ ++ + •••••••+ +• + ••••+ + + ++ + • ••EDBD+ + +••••+ + + + ++++ D+ n+ D• •D •n n• n• n• B• D• D• +• ++ ++ ++ ++ •••••••••••••+ + + + + + + + + + + + + • • + + • • • • + + • BDBffln+ +DBD+ ++++++++ + + + + + + + • • + + + + + • • + ++ • BBD+ + •••+ + + + •••+++++++++++ + + ++ ++ ++++ ++ +• +• +• +++•••••++++++• •• •• •• ++++++++++++++ + + + + + • + • • • • • • • • + + • • • ++++++++++++++ + +DBEBnnnD+ +BBBD ++++++++•••+++ + • • • ^ • ^ 4 - + •+ + B^BD + + ++++ + n B B n E E n n n ^ » B H H ^ + n n n B B B D n ++++++ a E e E H I | | | | | | | | | | E B D D D D D Q D + + +••EBBHHHHHHHHHHHHHEDBBBEBD + DDBBBBB •••BUBBB •BBBBBH ••BBBBB ^•EBEBfflD + DfflfflEBBffliEII •••••+ EBDDfflEBEBfflDnDDDfflfflii + ++ ++++DB BBDED +• B B B B E D D D + E B B D + +• • • • + + [ + • • • • • + •£38 + • • • • • • • 3 1 •••••EBBBBBBBBBEBBB& •••BBB^^BBnEBBBBBBBi •••BBB^^BBnnnBBEBE + + +DDEBfflEBiliEBEBnD + DEBEBi • + + + D B f f i i i i I E B E B D D + DEBDE • • + •31 • ••EflBfflfflBHiBIM BDBfflEBHraDfflDBB EDDBEi EDI ^BBBBDnBDMB^D fflfflBBD + D D E i l ^ B B + • • E D + • • • + + • •EE ++BBEQD i^^Bnnn+ +• • • + + + B B B B n n n + + + + + + + + ++ + +•+ + • • • • • + + ++ + +++++•• + + + + ++ + + + + + + + + ++ CD 00 CD o L±J OD o ID OD Q i—i 12 •EB^HB^BBEBBEEB BEE • •BB^B^BDBEBBBBIZOnBBB^ B B B ^ B B •••EDBBBBBDnBEBEDnDDBBB BBB^BBBBB ••••••BBfflnnnnnnBDnnnBBB BBBBBBBBEnnn + + • + +nBEfflnnDDDnEfflnnnBBBB E E E E B E B B D C O C O • • + + + nfflEBESDDDDDDEBnnDDDnnD BEEnnDnn+ ++• + • + Dnnsfflffln + DEBnDDnnn + + • + • • • • • • • • • • • + +++ + • • • • • • • • • • • • • • • • • + ++++ • • • • • • • • • • • + ++++ + • • • • • • • + + • • • • • + +++++++• • • • • • • • • • • + +++ + • • • B C O D + + +• • • • + + ++ ++ ++ + + •+ • • • • • • • • + ++ + •••••••••••••+ ++ ++ + ++ ++ + + ++••••••••• + • • • B E n + D E B B + + ++++++++++++++ + • • + + • • • • • • B E D + + • • • + + + + ++ + + ++ ++ ++ + + • • • • + • • • • • • ••+ + + + + + + + + + + + + + + + + +••••••••+ +••• • + +++++++++++ ++++++• +• • •+ • • • • + + • • • + + + + + + + + + + + + + + + + DDfflEEDDDD + nEBESDD + + + + + + + +•••+ + + + n E B B B B n + D + D B i O D + + + + + + + QEBfflfflEBEBDDEBIlllliTDDDDDfflDn ++++ +DDEeEE^Hilllll||||ESDDDDQDG + + +• •B E E • • • • • • • • • • • • • S I D E B E E• • +DDBBBBB^HBHBHHHHHHHH^BBBB^HB • ••EBEEfflEBffliiii^liiiilii^i^i^^D •EBEEBHHHHH^HHBHHH^^^^^^^^^ ••••EBiiliiiEBEBESiiEBEBEBEBEBil^^ii ••••BBHHBBDEEBBDBBBBBB^^B + ++ + B ^ B B B ^ n D E E B B n n E B B B ^ ^ ^ + ++ ^ ^ D B D +•BBBBBDBDnBBBB + +DBDIZI+ + • B B B B B B B B B B B B E +•••••+nn^BBBBBBBBBB^^ + DDDDDDnEBffifflEBffiffimffiEBEBfflIS • •••BBBBBBBBBBBBBBBHI1B • • • B B B B B B B B B B B B B B E ^ ^ B •••BBB^^BBBDnBBBB^HBB^ •+DDDBB^^^BBEnnEBBi • ++ +BB^^^^^BBnnDBBBi • •••ffliilili^DDDEBfflEBEBEBiS "~ ^ • • • • S M D E B E B E S i E B D S •ES^ifflDDEBEBil^EB BBBBBBDnB^H^fflB ^ B n D E E D + n n B + +BDBBEnBBEBDD fflfflDDD +•••+ + + + • +•••••EH EBDDD B B B B n n n + +++++++++ + + • + • • • • • • • + ••••+++++++++++++++++•++••+++++ ++++++++++++++++++++++++•+++++ + + + + + + + + + + + + + + + + + + + + + + £EKP + + + + + + ++++++++++++ Q CD + + + + + + + + + + +, CD 00 CD x CD o 1I 1 11 1 CD O ZD c\J Q CD 1 — 1 128 • BBB^^BBBS ••BB^BBBBBEBBBBBBDnEBB^ •••BBBBEBBDnEBBBnanaBBB • •••••EBSEafflnnDDfflfflDDnnfflEBBB B B B ^ B B BBBBEBEBB B B E B B B B B D n n n ••••••fflfflfflDDDDDDEfflnnnnnffln E B B B B B B E n n n n n • • • + +DBBBDnnnnDnnnnnnnnn BBBDDBDnnnnnD •+nnnBBBnnnBDnnnDnnDD+•••••••••••+•••• • • • • • • • • • • • • • • • • + + ++ +• • • • • • • • • • • • • • • + + • • • • • • • + + • • • • • • + ++ + + + • • • • • • • • • • • • • • + + • • • • • • • + ++ • • • • + ++ + + ++ + ++ • + • • • • • • • • • + + • • • • • • • • • • • • • + + ++ ++ +++ + + ++ • • • • • • • • • • • • • • • • • • • • • • + + + ++ + + + + ++ ++ ++ • • • • + • • • • • • • • • • • • • • + +++++++++++++ + + • • • • • • • • • • • • • • + ++++++++++++++++ + • + • • • • • + + • • • • • + + + + + + + + + + + + + + + + • • +• • +• • • • • + + • • • + +++++++++++++++ E E B E B n n n + • • • • • + + + + + + + + • • • + + + + D E a i E B i f f l D D D + DEQE9DD ++++++ +nBBBBBBBBBB«B«Hnnnnnnnna + ++ +DnnEBEBii^^iliiiiiii^DDDDEESD + +DDDDEE^IIIIIIIIIIII^EEEEEED +D D D B B ^ ^ H H H H H H H H H H H i • • • E O E E E E I I I I I I I I I I I I I E • ••EBEEIIIIIE • •••fflllllllE •••H^iiiilDEfflBfflfflDBEfflBE^E + +++ ilill^DDffiBEfflDDDBBEIii + ++ iKliDDnfflfflBBBDfflBDEB^ + +nBDn +EDBBE +nnnDDDDnBBBBBBBBEBE +nnnnnnnBBBBBBBBBEBE • • • • B B B B B B E B B B E B B B B B • • • E B B E E B B B B B B B B B B ^ • • • B B B B B B B B B D B B B B i • • •••BBE^^^^BBBDnBBBS •••BEiiMEIfflfflDDDfflBEBE • • B B ^ ^ S ^ D E J D B B B B S lillKi^fflDfflEBBBfflBDE ^ i M B B E B B D D E ifflBifflEBEBDDDDI • • • E B D D D D + + D D B B B B B B D D D • • • • • +• + + + + + + • • • • • • • • • • BBBBBODD ++++++++++ + • • • • • • • • • • • • • • + + + + + + + + + + + + + + + + +• • • • • • +• + + • •+ ++++++++++++++++++ • • • • • • • + + + + + + + + + + + + + + + + + + + + + +• • p a n n e : ++ + ++++++++++++ o + + + + + + + + + + +, CD CD 00 CD X CD o LD tn \^ o ZD CD • • • • CO o BU o o o 7^ ION m _L cn 00 CO CO. '+ + + + + + + + + + + o +++++++++++++ + +• • • £ © • • + + + ++++++++ ++++++++ + +• • • • • • • • + +++++++++++++++++ +CJEE +•••••••••++ + + + + + + + + + + + + + + + - EHEBEBEH • • • • • • • • • • + + + + + + + + + + ••••SESSEBEB • •••••EEBEBD+ + + + + + • + +nnnnfflEBEBEHEHEBEH • •••EBEBE8EBEBD + + + • • • B B B D B n B B S l ^ ^ B f f i IBB + +DDnnEBEBEfflE5E5^^^^^^ESffl ^BBBBBLCILTJ^^^BBBBBB Si^EaEBEBDDfflEB^M^ifflEBfflEBfflEB a^BBBBBBBB^^^BBDfflE ]BBfflBnfflBBBBBBBfflBDn IBBBBBBBBBBBBBBBDn 3BB^BBBBBBBBfflBBBBfflnDD+ 3^B^BBBBBBBBfflnnnnnnna+ ]^BBBBBBBBBBDDDnnnDBD+ iESfflfflEBBfflBBBBBnnnnnn^n+ + ^^BBBBBBBBBBDnniHHl+ + + "IR~lFfrJRfrlFEI[71]EBFf~lFRFFIFF-II 1MIHHIMMlM^I II Ii I IfflfflDDDD iBBBnnnnn 3BBflflBflBBBBBB^^DDDC][Z] + • • • • 63T • B B D n D D ^ B B B B B B B B B ^ ^ ^ B B B n n n + ++ + • •••••••BBBBBBBBBB^^BBB+ ++ ++ + + + • • • • • +••BBBBB^D+ + + +DBB+ + + + + + + + • • • • • + •••••EHEan + + + + + +++ ++ ++ + + + + • • • • • • • • • • + • + + • • • ++++++++++++++ + • • + • • • • • • • + • + + +++++++++++++++++ •+ • • • • • • • • • • • • • + +++++++++++++ + • • • • • • • • • • • • • • • • • • • • + ++++++++++++• + • • • • • • • • • • • • • • • • • • • • • • +++++++++++++ • • • • • • • • • • • • • • • • • • • • • • • • + •+ ++++++++++ • • • • • • • • • • • • • • • • • • • • • • • • • • • • • + +++ + • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • + + ++ + • • • • • • • • • • • • • • • • ••••••••••••••••••••••••fflnnnnnfflfflfflnnnnn ••••••BBBBBBD •••••••••••••••BBBDnnDDB • ••••EBBBBBBBB • • • • • • • • • • • • • • B B B D n n D D D D • •••BBBBBEBBB fflBBDnDDBBBDnDBBBEDBDnDD • •BEBBBBBB EBffinnfflBfflfflfflnnnBfflBfflfflfflBDDn BBUBBBB BBBBBBBBBBBB^BBBBBBBBBD 130 • EBEBEB •BBBEBB •BBH^HBH B^BB EBBB EBEB^BBE +DBE^B^BBBBEBB^ + nEBEB^^^EBEnDEBfflEBEBEBfflnDfflEflEBffl + nDEBEBEBfflffiEBnnnEBEBEBEBnnDDfflEBEB + + nnnnEBfflfflnnnDDDEBnnnnfflEBEB BBBBBBBBLTJDDLTJ + + + + +nEBfflEBnnnnnDEBEBnnnEBfflEBn EBEBEfflEBEBEsnnnnnn + + + + +DEBfflfflnnnnnnDEBnnnnnnn EBEBEBfflB3nnnn+ + + + •••••fflfflDnnnnnDnnn+ + + n n D D D s a n n n n n n + + + + + • • • • • • • • • + ••••••+ + + + + •••••••••••••+ + + + + •••••••++••••••+ + + + + +••••••••••••• + + + + • • • • • • • + + + • • • • • + + + + + + + + + • • • • • • • • • • + + +• • • • • • • • • + •••••+ + + + + + + + + + + + • • • • • • • • • • + • • •EG E B D + • • • • + + +++ +++++++ ++++ • • • + + • • • • • •fflnn+ + • • • + + + + + + + + + + + + + + + + •••+ + + • • • • ••••+ + + + + + + + + + + + + + + + + + • • + •••+ + + • • • • + +++++++++++ ++++ + • • + • • •+ • • • • + +• • • + +++++++++++ + • + • • • B E D D E D + D E E D + + + + + + + + +••+ + + + + DBBi!il!EDDD + DBBBD + + + + +•••^^••••••••••••^••••EIDD + + + DDDBBHIBBBBBBBBBBBBilBBBBBBn + ++ ++ + +DDBBBBBBBBBBBBBnnDDDBBBD • • • B E E E B ^ B B B B B B B B B B B B ^ E B ^ ^ D • • • B B B B E B B B ^ B B B B B B B B ^ ^ ^ ^ B EBEBEBEBOEBBBB^I • ••• + ^BBBBBBB£ • • • • + EBBBBBDEBEBEBDnnnnnEBEBEBi + + + + •BBBBDDBBBDDDDDDBB& + + + +DBBD+DBBBBBDDDDBE + + • • + • + + DE + + D D D D + +DE + • • • • • • • • [ + • • • EB EB EB EB EB EB EB EB EB EB EB EB EB EB EB I DDDBBBBBBBBBBBBBBB^ • •fflEB E B E B E B EBEBDLTJEBEB EES + ++ nBE^^BBBDnBBEi • + +nnffl^^^fflEnn[~!EBEBEB£ •••HEfli^lii^^DDDDEBEBfflEaii EBBB^BBBBB^B + DBBBBBES IBBB^BnnfflBffiBB^B^D + lii^ilIEBESEBiEaEBffiDEBiiffl + liEB^iiiiEBiiEBDn + EBiiDD SEBEBEBEB^^ESEBEBEBDDDDDiEBDEB + ••EBffiDDEEBEBDD E3fflE^ifflfflnDDDDDDD + +BBEDn + BB^^^^BBDDBBBBBD+ + + +nnDD BEBBEBD+ + + + + + + + + + +••• + • • • • • • + ••••+++++++++++++++++++••••++++ ••++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + *-f + + + + + CD + ++ ++ ++ + + ++ + + Q CO + + + + + + + + + + +_, CD CD [ O IE CD 1 1 1 UJ CD CD ZD CD LxJ CD i—< 131 • •EHEB • •EBEBEBEB • ••EHB3E5EB • ••EBEHEHEHfflEB iDDfflfflffl®ffltJ + + • ••••(••EBCJ+ y • ••£]••£ V+ _••±f + EHEBDDDDDf + + + oZD co o o o CO oCC CL o CM cn + ++ + + + + + + • + ++++ + • • • + +++++ • • • • + + + + ++ ++DEBDD+ + + + + +n + n n f f l n c o fflnn+ + D + DEBEB3EBEB fflLBBjnnn+ + nEBEBEBEEBEBn LT3unnn+ +DLT3EBEBB •^••••fflEBEBEB •••••EBEB + [ £ • • • • • • • • • 8 3 E5DD+ + • • + • • • + • LBffiD+ + + +nnBffl • • • + + + +DEBffl • • • + + + + +DEB • • + + + + + DEB •+++++++• ++++++++ EBEHD+ + + + + + + + + mmn+++++++ EBEBB3ESEBDD+ + + + + + + EBEHDD + + + + + + B3DEHnn+ + + + + + EBEBDEBESEBD + + + • + EBEBEBEBfflDEBEBD+ + + + + EHEBEBEBEBEBEBB3D+ + + + + E3EEEBEBEBDDffli3HEB+ + + '•••EBEaannfflBB^ + + + ! • • • • • • • + ++ + • ] • • • • • • + ++ + • ]DnnEBEBD+ + + + ^••••••«ffln+ + + + ^ • • • • • • • • • + + + + + + +• ^••••••Lzroa + + + + + + +•• amn + nEBEBnnn • + DLT3LT3D >iona 133 • • • • tSEHU • mn • _ • •gEBBJ, + +nEBmBWEBES + n f f l ^ i l l •QOEH • m[Xlro^•c•lX][X]pI]l •EBffliMlEBD +IIDicpcnnpcocnrn EBEB + •LSfflEBEBEHEHn + + + II 1 u_t UJ nj rn rtl rtl rn m rnffl^ ffl tntljfflcu EBEBEBD • • • • • • • E B O + + + + EH • •••EBfflEB EH EBDEB EH EBEBEB EBEBEB • • • • • • • + ++++ + • • • • • • • B 3 E B E B E B E B E E B EBEBEB EBEBEB• • • • • ••••••••EBEBEBEBEBEBEBEBDD + • • • • E B E B E H a n n n n + + + + + + + + •••EBEBEHnnnnnnn + + + + + • ••••••••••••••ESQ • • + +++• • • • • • • + +++++++ + + +++++•••••++••••++ + + + + + + + +nnEBfflnnEBnfflnnn + •••••••••EBDfflfflDn •••••••••EBfflEBDD • •••••••fflEBfflEBEBD + + •••EBEBnnnB^nnn+ + • •EBEBDD^BB+ + + + + + + + • ••••!! EB + + + + + + +++++++++++++++ +++++++++++•+++ ++++++++++++++• + + + + + + +••••••••••• + + + + + +nnHEBB3EBEBEBnnnn + + • • • • • • E B E B E B EBEB EBD+ + +++++++++ + nEBB3B3n + n + nEBfflB3B3D + + • •••••EBEBEB • •••EBEB EBEB • •••EBEB EBEBEBB3B3DD •••••••• + +++ + • • • • + + + DDES • • • • a s •••• • • ••••EB • ••EBEfl • ••EBEB • EBEBEB • EJ3DEBI • •••••••' ] + + + + +++++++++++ • fflEBSEBOn+ + + + + + + + ++++++ + • • • + + + + + + + + + + + +++++++ +++++++ ++++++++ + + + + + ++ + + + +++++++ + + ++ + +++++++ + ++ + + + ++ + O + ++ + + + CD + + + ++ + + ++ + + + + + ++ + + + + + ++ + + + + + + + + ++ + + + + + + + +++ + + + + CD 00 CD ZC CD ~ZL O LU CO CD ID CD LO ro o o ° CD CD en o 134 ffluuu EffiuuuEB® DOESE • • E S S E + •••EHEBESEH • •BE^B^ED + DEB^BBBB^^BB •••EHEEEBEBEBEH BBBBBEBBBDCJEBBBBBBBBB^ + EJDBEBBBE + + BBDDDBBBfflBrjfflBBBBBB^BBBBn • • • • • • • B D + + • ••••••BBBBBBBBBBBBEBLllZiD •••••••+ + + + + BDEB^BBB • • S E B ^ B B M L J +^ ^ E B BBBB ++[JBBB^BB E B ^ B B B B B B ^ B B • • • • • • • • • B B B B B B E B D n +• • • • B B B E E D I Z O + ++++ + • • • • • • • • • • B B B D D B E + + ++E n n B B B n n n n n n n + +++ + • • • • • • • • D D ECJBBIZO + + ++++• • • • • • • + +++++++ + • • • • • • • • • • E B B D D + + + + + + + + + LJLJLJEBLJ + + • • • • + + + • • • • • • • • B B B B B D + + ++ + + + + + + + n n B B D D B D B n n n + • • • B B E n n B ^ n n n + + + ++ + + + + + + + E D E B B B B B n n n • • B B D [ J ^ B B + + + + + + ++ + + + + + + n n B B B B B B n n n n + + u n n n n ^ E e + + + + + + + + + +nnDDnnBEBfflBEfflL~j+ + + + + + + + + + + + + + + + + + + +nBEBD +E+n B B B a n + + + + + + + + + + + + + • + + + + + DEBiiEBDDDDDfflEBEB + + + + + + + + + + + + + + • • ++++++++++++++• + +++ + • • • • + ++ DUES • • • • B E • • • • E B ^ • • • • a • • • • • • B D L 7 J + DEE • • • B E • • • E B B • B B B D • • • • • B E + +DDDEBEBEB + + D D B B + +D E E + UUEBEB • • B E E • • + LZBEB B E D D D B B B EDLJEBBBB EBOEBBDIZO BBBBBDE • B^EEZD ••BBBBD EBDDDDEBEB BEBBBE BBfZODBBBBS ffluEBuuEBJ fflUUUUUUffluuE 3BLTJ+ + + + + + + + + + + +4- +4• fflEBDEDD+ + + + + + + + + + + + 4- 4-4+ • • • + + + + + + + + + + + + + + 4- +4+ + + + + + + + + + + + + + + + + + +4+ + + + + + + + + + + + + + + + 4- +4+ 4- + + + + + + + + + + ++•++ 4- +4+ + + + + + + + + + + + 4++++++++++ CD T o ++ ++ ++ 4-+ ++ ++ + 4-4+ + + + ++ + + + ++ + + + + ++ + +4-4-4+ ++ + + + + + + +CD+ H + + + + O LO CD O CO ° CD \£ o X ZD 00. CD 00. ~ZL cr UJ o_ m H o o o o 135 ~+ + + + + + + +[ - • • • • + ++++++++++' ODEB^^^^EBDn+ + + + + + BBBBBB^BL~]DDBE + + IBB^BBBE 3 D + D- SEBBBi ]fflEBEB^^EBfflEfiEBESDn+ + + K+ IBBB^BBBBBDnDDB + l slBBB B E BfflffifflB • • • • • • • [ ! 3fflnnEBnnnnEHEBEHnnnn+ + 3ffiEBEHfflEHaEHnnEBnnnnnn+ +/+ • •fflfflSEBEBEBEESDDffll 3 EH E B E B B L X J C O I _ I + + • • • • [ DDEHEHEBEHfflnnn+ + + EnnEBEBEEBfflnnnnnn + n n n n D [ iB3fflfflEBnnn+ + + + + + + + + nEBEHEHfflnnnnnnnnn+ + ]••+ + + + + + + + + + + BBiiEiBBBBBBD + + + + + E B B D + + + + + + + + + + • ••BB^^BBBBBBIZl + + + + +/+ • ••+ + + + + + + + + + • • • B B B B B B ^ i l B B B + + + + + n n n o n + + + + + + + + + + n ^ ^ e 3 E H E n n n n n ^ ^ f f l E B E H n n + + +/ [•••••+ + + + + + + +DDffi^HH^^EBnn+ + •BBBBEBBBBE }••• + + + +•+ + BBBBB^BBBBBB^BBBDDDDBBEBEBLj: E +!•••• +••••fJJ^B^BBBBBBBBBfflnnnnnnnDEBfflEBEHE JDDDDBB^^lBfflBBBBBBBBBBBB^fflEBnnnDnEHffl^ ;JBBBBBB^^BBBBBBBBBBB^BBBDDDBBBBB& / igBBBBBBBBBBBBBL]BBD + + • • • [ lEBBBB^BBB^BBBBB^BB+ ••••£ IB^B^B^B^BBB^^^EDDBO ]aB3fflEBEBEBEBDDfflfflfflEffl^ES^^^BB^^^EBEHnnni BfflEEEBHEBEBDGEBEBEBEBEiEiii^^iiiiKIEBffll HDDnDEBDfflEBfflHiiiii IBBBBBSBS B B B B B B B E ••••••^•n+ BBBBBEBESnDD ESIID • BBBBBDDinB B B B B B B B B B B L I B B B B B B B ^ B B BBBBDD^BBBBBBB^BB EB B + + Dffl^EB^ifflEBEiEBn + +nnnnBBBnnnn+ + + + +•••••••• + +++++•+++++++ +++++++++++++ ++ T T o \^ X CD 00 CD X CD LJJ DD 1 CD X OD 1 <X 1— CD < 136 + +\ + +++ I - r • • + + + • + + ++ + + + + fr + + + + + + • •••I BDB + B B D + + + + + +\+ DDBB+ + EBEM^ + + + + N ^•^BDEBBBDBBi •^•^•^•••BDBBBBC • • • ^ B B S I ^ B B B B D E E + " ^••^ffl +^ ^ B B D B B B + + + BBBDfflBBBB^ • • • ^ + ^Ei^BBBBBDDBDD + B B B B B B B B B B I • HHffil! + • B B B B B B D B B B D B + BDBBBBBDBBi • • B ^ +B D D B D B D B D D B 4 X ] + HDBBDDBBE B B B D D D D B D B B B D B D + D + + ++' B B ^ B B ^ B B B B B D B B E D D + LJ: + +/+ • • D B B B B B D B D • • • B B B E B B B + ++ I P B B B E B D + + + ++ EHiiBBBBIlBDDDB + + + + • • • • +DDBBBBUBBBDBB+ + • • • • • + + + + • • B D D B • • • • • • • • + +1 5EHEBEB+ + + + + + + + +•+ +DB^HUDBBBBB + + + + + EEIBEB + + + + + + ++ + + + B + D D ^ B B B B B B B + + + + + +/ • • • + + + + + + + ++ + • • B B B B B B B H ^ B B B + + + + + _ n n n ¥ + + + + + + + + + + + B13DBDB + + + B ^ B B B B B + + + +/ ] • • + • • + + + + + + + + • • •• • • B E 0 1 D + • + + B B B B ^ B D B + • + ++++++ + D B E D D E ^ ! • + • • + • • +•B3E5^H^HH • • • ^ • • + + + + n n n B B B B B D i • • D D B ^ B B ^ B H B H H B• • • • • B B B B B D D D B B B B B B E • • • • M ^ B B B + DBBBBi llIili^fflEBEBDDDEEHEBi ••••BBB^BBBDBDDDBBi H B B B B B B B + ++++ + • • • H B B B D B B ^ + ++ + • + / 1DBBBI I B D B B D B B D B D B B D ••EBfflDEBEB^^iiEBDDDDf B ^ B D + B B B ^ + BB^H^HH^BBBDBD| BB+BBBBBBB DEDDDnnDEBEaEBaillE UDEBillllEiiESEDDEIIIIIIliE l D E I I I I I E I H E i E i l l l l l E D +7 ••••ElilllEDIESSEillllllllia ++ EpfJDDDDiiiliEEMEilEiiliinfflDED PEBEaEMiiiHEfflfflBDEBIIlfflnB BDilBBHHHBBBBBBDD + EBD + DD^ • • • • • • ^ B + BBBDBBD^HHMDBB •BBBBB+BiiiiiKi^n+ [^•BD+ ! ! • • • • • • • • • + + D B D i E i l § f f l + + + + + D B B ^ i D D + D+ + + + BBB + BHB + + + + EBBBED13BDBBB + +++++++•++ + + + + + + + D B n n B B n n + B++D+++++ ++++++++B+++++++ +•+++++ +++++++++++++++ r r f T + ++++++ + + + + • + ++^=H—H H- +O +++++ ++++ o CD co CD x CD O LU CQ NC o XCD O DJ X OD + + + ++ + ++++++++ + + + + + +•••+ + + + + + ++ + + +•••+ + + + + + ++ + + fflEBunufflnnnnuu + ++ + i n §• | | | j ninQ^n ••••EDDDD ••HBBEEED+ + • • B B B B B D l Z l B ^ iBEBBB ++++ • • B B B B B E I Z l B ^ ISBBEBSi •••••• •••+nDDBnEnn BBBB••••••+ • ••+ +•BBDEBB BEBDnnnDDD+ + • •••••BBEEBBB^ + + +•••+ + + •••BEnnnnnDDBBB +++++++++ • • B B B E E D + +EEEBB +++++++++ • ••BBBBD+ + + + BEE • • • B B B B E + + + + B B B E D B B B B B B B B•+++++••• • +ffluuuuu + +•••• + + +•••• + ••••••+ •••• +++ ++ ++ + +•••+ + + + ++•BBBBBBB + + + DBBBBEBE B+ + • • • + +++ + + ••••+ + + + + + + + + + + + nnnEDDDEB + + + + + + + + + + + + + + +BBD + DBD+ + + + + + + + + + + + + + + + + BBL7J + DBL~J+ + +DBB+ + + + + + + + +••+ + + + + + + EDEBB^^ + nHB+ +BBD+ + BEB+ + + + + + + + + + + + + + + + +EHJBHHHDE1HH11+ + ^ B + + +BBD+ + + m++++••••••••• + + + + + + EELJ + + + + DBBHHHH^gBB+ ffluuuuuuuuu^ffl +B^L~J+ + + • • • • • + ++ +rjBBBEBBBBHI ^ ^ ^ • + + + +^BB + + +BBBBBBBBB^W B B B E D + + + + + +£i •EBEEBEBEBEBEBEEBiffiEBiilliii^ •••EED+ + + + + + EBEflfflfflfflfflEBEBfflnDEBiiiiiii^ H i l £ l ] B B B + + + + + H^BBEi + + + + + + + +il|fflfflQDD+ + + + + H ^+^ 1 ^ B + +•• + +1+ + + B M E f f l U U U + + + + + • ++ ++^HBEEDnnnnnnnn + +•••• +•BBDDBBBB + •••+ + +DOB^ + +++++++ D E E + + + + + + + + EBB EfflBDDD I^DD Illl^QDD •••BfflfflDQ IBDED ++ • BBB + + +DBB + DDDEiDEfflfflDD^iEBB+ + + + +BI ++ +••••••++nnnfflfflDDD + DE^^En IIIIIH^ +•••••+3 •B +++•••• • ••E^BBBB^BD[JEEED+ + B + ++ ++ ++ •• •• •• • • • • • • • • B E E + +••+ + + + ! B ^ ^ + + • • • •••••••••++ + ++ + + + + + +• + + + + ffl^DDDEEB FFLB • •••••••+ + + + + + • •+ +••+ + + + + ++ + + ++ + + + + ++ + + + + ++ + + + ++ +++ + + + + + + + + +++ + +++ + ++ + ++ ++ + + + O CD ++ + + + +DBBDDED ++++ ++ + + + + +••••••+ + I O O oo CD CD UJ CO o ZD m o CM X UJ CD —* o BU o o o. m o X cn CO CD. o 4-4-4- + • • • • • + o ++++++++++ ++++++++++++++++ + + + + + + + + + + + + + + + ++ + + + +nnnnfflEHD + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + DLBEB • • + +B«BEfflfflfflD+ + + + • + + + nnnnnfflnnffin • • • + + ^ • • E B H H ^ D D + + ^E+ +n^fflfflnnEHnnnn • • • + + + +LT3EBH + n n n a n n E ^ ^ ^ f f l f f l a f f l H B 3 n E B E B ••E8D + + + E f f l H + nnnfflan + ffl^^fflffl^HH«^EB 4-4-4- 4 - B D D B B B B 4 - 4- • + + +BHHfflEBB3EBD+ + + + + + + + + + ••••EHEHffln • • • E B +D D D H +nfflEBnn+ ++ ^ B B B B B B B ^ B • • • E B E a n n n + + + E B n n n D + + ^ B B B B H B B E I + EB + nEBEBEB^EBn^fflEDEBDnann^liBBBBfflD+ + + • +4 - ^ B ^ B B ^ B B B B E B B B B B B B B ^ B B [ H 4 - + + EB + + H ^ H HI H HI H ^ H EB EB EB &B EB H H Mllll^EBEBEB' ' B D n f f l B B B B B ^ E H B E B B B B B B B B ^ ^ E B • • B B B B B ^ ^ E H E B B B B B ^ B B ^ E I B C ] - - • •fflfflEHBB^^^EBEl^^EHEBnS^EBnnnn ••ffl^BBB^^BB^fflffln + nnn + + + • • •Ei^EiBBB^EiBBEiEIffln + [_l4- + + + + • • ••^SBBEifflfflfflffl^Ei^EBEB + + + • • • • + • • B E B B B B E E B E B E B B B n +• • • • • + + + nnnEBHfflBBB^fflafflfflLT3EBLT3B3fflnnBB^+ + + + + ++ + +nnEHESEHBBB+ + + + + +EDEBfflEBili+ + +^EB 4-4-4lii^ffllfflDDa+ + + ++ + B B B ^ ^ ^ B E D D D + • + + + + + +nnDBBBBBBBBBB^^fflEHEEBfflfflnn^^fflE • + + + + n y yB BJ | ^ EB HI inl E_l O E_l C D + n EBffl^ B H H B B B B E HI Hi H H H ^ HB! H HI E ESDDfflnDDnn++D + ffliEiilllii^iiiiE0iiiD + + + +EBBED 4- 4- 4 - D ^ 4 - D D D D ^ B B B B B B B 4 - + + +D^ffl+ + + + + + _ I + D E E 4- + +D^^4- + DIHIIIIEBDD + 4 - 4 - 4 - 4 - D 4 - 4 - 4 - 4 - 4 - 4 - + • + + + EBEBE+ + D ^ ^ + + f f l B + 4-^^BDDDD 4- 4- + + + + • • • + + + • + + + +EBB3EB+ 4- 4 - D B D 4 - D B B D 4 - D 4 - 4 - 4 - 4 - D 4 - 4 - 4 - 4 - 4 - 4 - 4 - B E D 4-4-4- 4-Dffl^ffl4- 4- 4-nEHD4-Dfflffl4- 4-D4-4-4- + 4-4- + 4-4-4-4-4- -t-nnnn-f 4 - n n n n E B ^ ^ ^ f f l f f l n f f l f f l f f l f f l n 4 - 4-4-4-4-4-4-4-4-4-4D D D D D B ^ ^ E E B D B E B D 4 - 4- 4-4-4-4-4-4-4-4- 4- + • • • • + • •••-t- 4 - B ^ B B D D B B B B 4 4- 4- 4- 4- 4 - B f f l f f l B D D D O D D D 4 - 4- 4 - D B B B B B B B B E D B B B B 4 - 4- 4- 4 - D B B B B D D D • • • 4 - 4 - 4- 4- 4 - D B E B B B B B B B E B E B 4 - 4- 4- + • EH EH EH EB • " • • 4-4-4-4-4-4-4- 4- 4 - B B E B B B B E ^ B B B D D D D D D D B E B D O 4-4-4-4-4-4-4- 4- T - D B B B B B B B ^ B B B D O D D D D D B B B D D 4- 4- 4 - • • 4- 4- 4- 4 - D B B B ^ E ^ ^ ^ E B D D B B D D D D D B 4- 4-nnann4-nfflEHEH^^^^EBa^^^fflEBDnB3fflnn4-nEHffl 4- 4 - D D D D B B E B E E I ^ ^ B D D ^ E B D D B D D D D B B B 4- 4-aDDDBBBfflBB^EBBDBBE^DDDBBEBBBB • DDDBBBEBfflBBEEEBBB^BDDEBBBBDB • •EEBfflEBEBffliiiEBEBEi^SfflS^DEBEBEBfflliffiffi BDDDBBBBBBEBB^^BEBBBB^BB DDDBBBBB^+ 4+ilifflEBEBIEBEBMII Bfl 1 1 1 + + 4 + + + D + DfflfflODDDD |4-4-4-4-4-4-4-4-4-4-4-DDD4-4- I++++++D+D++DD4++ EB4-4-4-4-4-4-4-4-4-4-4-44-4-4-44-4-44- 44- 44-4-4- 8ei 139 ++ + ++ + + ++ + + ++ + ++++++++ + + + +1 + + + + + +••••+ ++ + + +1 ++••••••+•++ + + +DI • • • • • E f i E f l E B n E B D n n + +DI • • ^ E 8 E B ^ E M ^ E B + +•!3 B B B B H B L J B B B ^ B B B ^ B ^ ^ B E B l B B ^ B B B B B E ^ ^ ^ B B B B B ^ B B B B B L J E BBBBBBBLjnB^BBBBB^BBBBBBBBIZlLJLJn BBBEBBE[JLJEE^BLJBBffl^BBEBBB(ZlLJLJ[Zi ++ EEHEnnnnfflDffiBEBEBfflnDEH^^^EBfflfflfflfflEBDnnn + + EEBfflnnnEfflnnEBEB^^^fflffl^^^fflEBfflfflnnnnDn+ + + B • • • • EBLJLJLJBBnBEBB^BBBB^BEBBLJ ++ ++• • + + + •EBELJ[ZOLJ[JEnBBB^lilBBBBBBB[J + ++ + + ++ + + ••BBBLJBnn[jnBBEBBBBBBBBBB+ + +++++++ • { J B B B i S B + + ••EBEHEESEBEBEBEBEBEBEBEBESD+ + + + + • • • • • B E B ^ B E B + + ++ B B B D D B B B B B B E B B E B n + ++ • • • • • • • • E E B D + + + +•••+ +BBBBEnnE^^BD + n n n D +• • • • + + + + + + + + + + + + BBfflEBnBB^^Ennnnn +• • • • + + + ++ ++ ++ + ++ D B E B B E D E ^ ^ ^ B n n n n + + + + + + + + + + + + + DD + EafflDDDfflEBD + +fflfflfflDD + DD • B D + + + + + ++ • + + + 4XOLJBBLJLJLJBLJLJ + + LJBBLJ + + • • + + +•••+ + + +DnnDQDEQEBii++iE + DfflfflE+ + BEEBD+ +• + + + + + +• • • +• + +LJLJffl^BBB^BBB + + + + +[ + ++++ + EDDDDfflB^iiiiiDfflDnnBfflD+ + +i + + +OB B B B B B B B ^ B D D + +•••BOBBBB ++ B B ^ BBDn+DDDBDiiffl • EBEi " B ^ B +++BBiiffi ^ + +• ^ E B D + +illiBBBBD + B D D i l i i i l i i + + + + + + •+ + +lilEflE0EBDfflO + D D D E 9 ^ I H H I + + + + + + + ++ +BBBD[JBfflBBBBBBB^BBB^BBLJLJLJ + + +EaBDDD + DBfflBBBffiBBBiiiEBEDDD • •••+ + + fflB^i^BBBffliiiE^^DDD H H B H H H B H H B f f l n n + + H H H H H H B H H H B D S + ++++ D ••+nnnBDB^^^BB^^^BBB^BDD ••••BMBEE^i^iiil^iiBBfflfflB •BBB^I^BBBBBBEiiiilBBEDn •B^iii^BBBBBBBiilllBBBDnffl + B B B ^ B B ^ B B B B B ^ B B B B B ^ B + +• + + + D D E ^ i i i ^ f f i f f l E E E B I S I I i i I ^ i f f i + +• + + + B§liiiiIDDDDBfflBBBiDBifflBBffln BD^iiilliliDDDDDEED+DEDBBBDDE • + + LJBBBLJBBB^BLJBBEB B + DBiBDBBiiiE++ S E E D BBBB^EDB +B ^ L J + + • • • • •BDnSfflBEfflEDDDi^n+DDiiiBii^D+DDD • BDBBDDDnD + + + • • + + + D B B B B B B B + + • • •EEELJLJLJLJ • EBDD + + ++ + + + ++ + + ++ + + + + + + ++ ++ + ++ +rjBBEBBBBn + nn + + + ++ + + + + + + L J B B L J B B B E + + + + + + ++ + + + + + + • • • • • • • + + + + + ++ + + + + + + + + + + • • • • • + + + + + ++ + + + + + + + + ++ ++ I o CD o 00 CD X CD UJ OD CD ZD m LO Q ++ ++ • ++ • ++++++++ + + DI + + + + + •••••+ + + +DI + +•••••• + •+ + + + • ! ESEBESnDEHEBEBEBEHESnn + + • • • • ^^•••BflBBBE EBBBBBBEBnffl^^BBBB^BBfflfflEBfflEBEBDDnn fflfflfflfflffiEBEennEflE^^EBnfflE^^^EEBEfiESfflEBnnnn+ + fflEBfflnnnEBfflaEBEfflfflEBEEBE^^^^EBfflffifflnnnnn+ + EfflfflDnEBEBEBfflEBEEBEEEBEBfflEBEBESfflfflEBfflnn+ + + + + + + + • •EEBffl • • • • • • DEE LB EBEB EH EBEBEBfflEBEBfflD + + + + + + + + + • ••EHEBH3EBEBnnnnfflEBEEBEBfflEBEBEBEHSfflEBn+ + + + + + + + • ••BBBE1B + • • • E B B B E B B B B B B B B D C + + + +••• • • • B B B E E + + ••EBEBEBDEBEBEEBEBEBEBEBEBESEBD + +•••• • •••EEBEBD+ + + n n n n + nfflfflEBEHEBnnEBEBEBEBDDnDnn + •••••+ + + + + + + + + + + fflfflfflEBfflnfflffl^^^Eannnnn • • • • + + + +.+ + + + + + + +nnHEHEQnnffl^^EBEBnnnnn • + + + + + + + + + + +nnnnHDnDEEBn + DfflaEBEBnnaD • EBD+ + + + + + + •+ + D + EnnEBfflnnnEEBD + + +•• + + +••••+ + DDDnDDEBEBEBilinDEBEBDDEBEBEBn + D E B D n + + • + + •+ + +•••••• + B D f f l ^ B B B ^ B B B + n E ^ n + + + EHBBBBB + + + + + n E ^ B B B D B E B B B B B ^ B B n n D B B D + + +ffl ++DDB^^BHHHHHHHHHHHB^^BDDDD+DaBB ++ Dffl^^BfflBBBBBBBBBBBBElEBEEinEBnnnnEBn • •BIl^iiBBBBliliBBBBBBBBBBBBBISlO ++ fflfflE§lilfflBffl§8E2EMElBBBBBB^BBBB^nn + + + + DE EBEBEBEBSIIHIEOEBfflHIIIIIIIIIIEBQDT ++•• BBnnEBBBBBBBBBDBBB^BBBBBB^D[ll+ ++ • • + + +HBH^EBBEBffla + n n D B + + + DBBBBBinBBBEBBfflBB i ^ E n n + + + B B D B n + DBBEBBBBBEB • • • • + +DEB EB • •••••••EE ^ B B ^ ^ C O • • + nnnEEOB •••EBBEEffl • BBS iBBBnn • B^H + L7JBBB^ i^EBnnn + + + D B B ^ B ^ iBBLDBB • + E3BI1BBBBB ^ • • • • E B E B 1EBEBEBEBD • fflffll •••BBEB+fflDBBBBBBB B+DBBBBBBBBB^DBBBB E D E E B i f f l f f l i i l i i f f l + DEBEDD fflfflE^EIllE+DEDDD BDDDBBB^^nnnnn BBBBI • B B E B f f l n n n n a n +n n n ++ +n B B B B B B ^ n + n n •fflEBEfflDDD+ + + + + + + ++ + • B B B B ^ B ^ i n n n n • • • • • + + + + + ++ + + ++ + + n B B n E B B n n + + • + + + + + + + ++ + + ++ + + + • • • • • • • + + + + + + + + + + + + + + ++ + + + + • • • • • • + + + ++ + + + + ++ + + ++ + + o ++ + + + ++ + o CD O 00 CD JZ CD ZZL 11 1 1 11 DD CD ID CD ro Q + + + 4- + 44 +•• 4 4- + • + ++++++ ++++•£ + + + + • • • • • • + + + + + Ol • • • • • • • • + • + + • + +1 E E E f f l L J B B E B E B B n + LJBI ^ ^ ^ ^ 11II1E0E0E9E9 ^••EEBEBEBEBfflunuu ^fflB3DnDESEBnfflEBEHfflEBEBEBffl^^^^fflEBEflEBnnDDD+ + ^fflEBDDDEBEflnEB EBEBEB^ EH EBEBEfl^ 03 EBEBEBnDnnnnn+ + + EEBfflnDEHEBfflfflEEEBEBEflEBfflEHfflEBEBEHEBfflEHnnn+ +++++ + fflnfflfflfflDDEannnnEfflfflfflEBfflfflEBfflfflfflffln+ ++ ++ + ++ + + + + + ++ + • ••E8EH^EHEBnnnEBEBfflEBEBEHfflEHEafflfflfflfflDD+ • •••EB^H^EBnnDEBEBEHEHfflfflfflfflLHEBEBEBfflfflnn+ + + + • • • • ••EB EBB^fflDDDDfflfflffllJEBEBEe EBEBEB EH EBEBEBEBD + • • • • • • •••EBHEBEB+ + + • • • • +•EBEBEBEBEBDB3EBfflB3fflDnnnnn • • • • • • • + 4- 4- + 4- + 4- 4 + + B B B B B Z J B B ^ B B C J L J [ J [ Z O • • • • + + + 4 4 + + 4 + 4 + 4 •fflfflBBEB EBDDH3 EBEBEB E B D Q n n n • • 4 4 4 4 4 4 4 4 4 • • • • • EH • • EH EB S O + • EB EB EB EH • • • • • • • • 4 4 + + + + n + nnnEnnEBEBnnnEBEBEB + + • • • • • • • • + +•••••+ + nnnnnEBEBEBEB^EBnEBEBnnEBEBEBnnDEflnnnnn + + n n + D n n n n n n + B 3 n f f l ^ H ^ H ^ ^ ^ B 3 + n E B ^ n + + + •EBEBEBEBEB + ++++D B ^ f f l ^ B B E B B B B B ^ D B n n n f f i B [ Z l + + D E B B B B B 4 + • • EB^^ • • • • • • • • i i EBEBDQ • • • +DDES E + + • BffliSllBilBBBBBBBBBBBBilfflBEBnnnLJBBB • • B E ^ B B B B B ^ B ^ B B B B B B B B B B B B | ^ D + +1 i^H j | ^ IBV IH IB^ \"\ \ |"j |~~| | | j j j j | !II1ISE9E0E9QE91E0ES^II1I111DL1 + + + •••••BBBBEfflBBBDEDEfflE 3UUU+ + + + 4B^BBBffl[JBBBBBBfflBffl£ l^EBfflD + 3IIIE + + ^ u E B L J + uEB EBEBEB EBEBEB EBJ 3EBUUU SESfflDD • • • • • +DEBEBi • •••••EBDEBi • •••••fflEEHE • •EBEHEBEBEBEBEB1 • BEBB^I • B^B^BI 3EBUUEB + LJBBB^^! 3EBUUU + ++ LJB^^B^BBLJLJfflB^^I 3EBEBEJ • ••E^BBBBB^DDDLJBfflEBE • B B B B B ^ B E L j a E B B B+ fflLJEBBBBBB BDBBBBBLJBBBB^BBBEB iSEBIIIIi^DDfflEBDD BEBLJBBBBBEBEJEBBEBLJLI BEDB^fflBfflBEEBEfflBDDBBBB^^fflfflnntZO EBfflfflfflEHfflnnnnn + n n n + + + D E B ^ f f l E B ^ B ^ n n n n • •E B•B•B•E •L •J L+J E + J + ++ ++ ++ ++ + ++ L •J E BE EB DB E^B^BBBELDJILZJI EE JJ + + ++ + • •+ + + + + + + + + 4 4 4 4 + + • • • • • • • • + + 4- + + + + + + + + + + + + ++ + + • • • • • • • + + 4- + + + + + + + + + 4 + + + O + 4 4 4 4 4 4 4 4 CO oo CD m o [ CD CD CO CD ZD CD CM Q + + + ++ ++ + •53 + + BB + +•• + •+ + + + BBB + + + + • • • • • • • +•••EM • • • • • • • • + nnnnnnEBSH BBEBDBBBBBBBLIDBB^BB •• ^••••BE ^^EB^BBB^^BEBDD ^^BBB^BB^^BBBBDEJn iEBBBB^^^EBBDnnnnnn ^ B E E E E B B E B E B E B E B E M M B E E D n n n n ^ B B D B D E B B B E B B B E B B B B B E B B n B n n L j : +n n ++ + • • BBBBDBBBBBBBBBBBBBBBBBBnnnnD+ + + + + BnBBnBBBnBBBBBBBBBBBBBBnnnn[_l + + + + + • • ••B^^BnDBBEBBBBBBEBBBBBDBD+ + + + + • ••offl^^^fflEBnnfflfflfflfflfflEfflfflfflffifflfflEBEnnn+ ++ • • • • •••^^•••••BEnEBEBBBEBEBEnDDnDnQ • • • • B B B B + + +nDnnDDfflfflfflfflESEBEBEBEBaEBnnnnnn •••••EBCI+ + + + + + + + + nDEBfflEeEgnESEBEBfflEHfflnnnnn • •••+ + + + + + + + + + + + BBBBBBEBBBBBBBB[_inn • • • + + + + + + + +nnnnnnEBEffiEBEHEBDDE5EBEBfflEBnnn • • • • + D + +DDDDDDDEBET]nE9fflDnnfflEBE9DDnDDfflE8DnD + +•••••+ + •••••££) EH EB^^^ESEBEHfflD DEB EBEHnnnDDEBEBEBD + + • • • • • • E B f f l n n n E H f f l f f l B B ^ B ^ E B L H n n D B f f l D + + ••E5EHEBEBEB + + + D n n E B ^ ^ ^ ^ ^ E a f f l E B B B B B ^ E B f f l n n n n D n n + DEBEBEBEHEB + + D B B B B B B B B ^ B B B B B B B B B B B B B n B n + nnBBB^B +DDEEBBBBBBBBBBBBBBBB^EEEEDnDDEEE^^ ••BBBBBBBB^BBBBBBBBBBBBBBBBDnDDBBBB i B E S E B I I I K i S i l l i l l l l l l l l l l E S E O D D D E E O E B • E0DIIIIIIE9E3SiiE0liiIiilllllEiE0SD->- +• • • • ^ B B B B D B B B B B B B B B ^ B B B B B ^ B B L 7 ] ++ + ++^ B B B B D B B B B B B B B B ^ B B B ^ B B [ J + + + iiEIDDQEBffifflE8E8fflEBEBiiliiiEBiEaD • EBDDDDDESEBi^ii^ll^ilKI^EgfflEaD • •••••fflffl^EMIEililliiiliiEafflEB • • • • • • • B B ^ ^ ^ ^ ^ B ^ B B B B • B B B B B ^ £ 1 ^ ^ ^ ^ £ I ^ B B B B • •BBB^BBBBEBB^^B^BBBBB • BBB^^BBBBBEB^EIBB^BBBBB •OEBfilliiifflEfflEEBfflEil • ••BEBElEiiiEiBBnEfflEBil • •BB^BBBB^DCOBBBBBi BBBffliiiiiliBfflBDEEBfflBBBBBEBfflEBB B B B B B B B B B ^ B B B B B B B D B B B B B B B B B B ]EBEB^BBBBBBBBBBBDD JBBBBB^BBBBBD IBB^^^^BBBBBBBBBBBBBB^^BBBBBB- BBBBBBBBBBn+••••+•BB^BB^BBBDBB BBBBBDDnn+ + + + + + + +••BBBBB^BBBDD ••••••+ + + + + + + + + + + + n B n n B B B B n n n • • + • • + + ++ + ++ +++ + + +DnDBBBDD + + + +++++++++++++++++ • • • • • • • + + + + + + + + + + + + + + + + + -1- +++ + ++ ++ + + o ^ Q ^|- 00 CD X O CD ^ CD CD X CD — Q i—' 143 ++ + + + + + + + + ••••••++! + ++ + u n u n u u u u u u E E B E EfflnnnnfflEBnnfflfflnnnffli EBBBLJBEBEBEBBLJBEi ^ ^ B B L J L J L J D mmnnaana+aa ]••••+++•• BBBBnBBEBBEBEBBBEBBBEBEDnnnrj + + +•• EfflfflnnfflB3fflnnEfflEBfflEfflfflfflfflffiEBfflfflnDnnnn+ ••offl^^EfflEnnffifflEBEfflfflfflfflfflEafflnnEBEafflEBDn ++ +• + nnn ••••^BEBBnnnnfflnnBEBBBBBBEEBfflnnnn+a • • • • B B E B + + + E L J + •••••BBBBBEBBnnnn + + • • • • • • B B + + + + • + + nnnnnBEBBBBBnBBBnnnn • • • • + +++++ ++ + • • • • • • B B B B B B B B D E B D n n Q • • • + + + + + •+ + + B n D B B n B B B B B B B B B B B B B n B n • • • • • • + + DDnDDDEgE0EBDfflDDnDfflEBEBDDDDDfflffiDDD + + • • • • • • + DnnEBBBE^^^^BBnEBBBBEn++nBBBB + + nnnBBnB^DDBBfflBHH^ffiBBnnnnnBnnnnDfflBBBB + + +DDDDililiEB^E8liIiiiEBfflDDnDDDDDDfflE8EBEaffl + D D S E B I I I I I I ^ I I I I I I I I I S E 8 D D D E S D + DDE +DDEBHHHIHHHHHHHHHHHH^BEBBEDDDDEEEB ••EBBBHHH^HHHHHHHHHHHHHHHEDDDDEBB • •• •S•E•O• E E I I I I ^BE B B iEMEl iB^B^ lEl IBI iI I I I ^ ^ E S D D D E B E Q •+ D• +• H • •H••H•••H•••H•^^BB D BEB^ B^ B f^f l^BH B BH B« i H 1 B B B B + +• ••BBBHHHHH^HHHHHHHHHHHMHHBBDDDDBBBB ++ + + +HHHHDDBBBE^BBBBi BD + • • ED • •••••EBEM^M^S • •EEEBBEBEfflB^^ •BBBBBBEBEBEBB^ • EBE9ii§ • • B B B ^ ^ BBDnBEEB^I • • ^ ^ ^ 1553 nri rn rn Dzi CD en m fflBBBD m m m m E ^BBEBBBBLJHHHHHBBLJLJB • •••••^BBBLJB • ••••iiQE8EBDD EBBBBEBEBD[JHHH^BBBBB + + BfflBEBBBfflBnnnnnnnnBBBE^BBBBBBD BLlfflEBELJ[jn + + + + ++ + + L J L J B B E ^ B B E B B B n • • • • • • • + + + + + ++ + + + +LJfflELJBBEBfflBB • • + • • + + + + + + ++ + + + + + D D D B B f f l B E + + + + • + + + + + + + + + + + + + + +LJL1EBEBB+ + +++++++++++ + + + + + ++++++++++ 0 CO 00 CD ZC CD O LU CD O ZD 00 O Q 144 + + EB + EB + EB + DEB + + DEB + + + •+ + + + + +m^i + + + + + + • • • • + + + +D^| + +nnnnnEBfflnn+ + + + r _ B3EBDnnDEBEBEBfflEBnn+ +EBHHH B B SBEEDDBBBBBBBi ^^ElBDD^BBBBS IBBBElSEBSfflrTdDD IBB^EBEBEBEBE5DDD + B B B E E B E E n B E ^ B n n E ^ ^ E B E B B D D E D H - 4- + ^fflEBfflnnfflEBnnEBEBEBEBnnEBEB^^fflEBEfiEBDDnnn + + + ^EBfflnnnEBEBnfflEBfflEBfflEBEBEBfflEEBEBfflEBnnnnnn+ + + + EBEBfflDDDfflfflEBEBEBfflEB^B3EBEBfflEBEBEBEBEBDnn+ + + + + + + fflDLBEfifflnDEBEfflfflEBEBEBESffiEBEBEBEBEBEBEBEBDn + + + + + + + + • ••BB^BDnC]EEBEBBBBEBEBEDn + + ++ ++ + + • •'•ffl^BB^nnnEBEfflEEBfflfflfflEBBEBEBfflEBDDD+ + + • • • •••EBfiiBB^nnnDfflfflsnDfflEBfflfflEBnEBEBfflEBnnn + n n n • • • • E B ^ f f l + +DnDnnnDfflfflfflfflfflDEBEBEBfflfflnnnnnn • • • • • • • + +++++++ +DfflEfflfflfflnnffl^fflfflnnnnn • • • • + + + + + + + + • + + nnnfflfflEEBnnfflffl^ffl BDnnn + • • • + + + + + + + + nnnnnEDnfflEEBfflnnEBEBfflfflnnnn • • • • + + ++++ n n n D n E E B n n E n n n E f f l E a n n n f f l f f l n n D a n ••••••••••••••EfflfflEB^^fflnan + nfflEBEBnnnnnnnnn •E BHHHBBBBBBBB+ B nfflfflffin ^ E D 4 - L _+1 BDnfflfflfflfflffl EBEB + •+ nnnnnnEBDnnDfflfflEBfi^BB^fflEBn + + + + n n E S E ^ ^ ^ f f l f f l ^ ^m BBBB B B f f i E n n E f l f f l f f l n n + nfflfflfflfflffl im BV KH m j j | ^ ~ ^ j | ^ ~11~ "j p*~| + + D E S E B E e i l l l l i l i l l l l l l H i E B Q D D D D D + DE 4- D B B ^ ^ B B B B B B B B B B B B B B B ^ ^ i l B B D n 4- D E B S mn+ + • • • + EB ++ + • maa + lEBEBcnn + + nDfflEDDnfflffl L •BBEBBEBEBB •BEBBBEBBB • • • • • + DEE •••••••ES ••••••EBB ^EBfflD ••BEBBBBB •BEEEBiEiEMEa •fflfflEHIEMEIffl JBEDBB JfflfflDDD + DEE + + DEaffiiElilEliffiEBDnnEBEBi • ••EBiiiiiiEHDDDDDEBfflEB IEBDD • + DSEBEHfflDEBfflDESEBfflfflEBEBO 3BBBBBBI B C B B B B B B B B B B B n B B B Q IfflDIiKIEBnnnEBDD EaEBDillEMEBDDnDn EBEBEHEBEBEBDDDDDDDEBEBD + nDEBEHEBIiMn+ +• • ••EBDD+ ••••+ + + +++ + + ++ + + + + + + + nnnrjB^^DLl+ + + + + + + + + DnnnEBBn+ + + • •+ + + + + + + + +++++++++ +++++++++ 4- 4o + + + + + + + + 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4o + + + + + + + + + + ••BDD + + + + + + + -4- + + CD 4- 4- [ oo o LD CD X CD m ^1 CD X OD LU CD —< OD ffluufflut fflnn-- CPROB • EBuOOfr + + + • • • • + + • + • • H - + + 4- + y H + + 4-nn+\ 4[ + + +••••+ • •EB EBD • •+ + • + +++ + •••••+• •••••••• • •r_\fflEB £•••••+ + + ••[•suSEBEsnnnn + ++ + 'EfflfflEEn3tennnann + + + fflfflfflfflDLTT ]•+ + + + • ••+ + + ++ • •••+ + ++ +++ +•••••++ • • • • + + +A+ + • • • • • • • • + , +•••••• •••••• "•• + + + ++++ +++++ +++ ++++ •••I • + +••+ + + • + ++••+ +++ + +• • + + +••+ ++++ • • + + • + + • • • • + + + +DLJLJB + + • • • • • • • • + + + +LJLJEB + + • • • • • • • • + ++ ••BBj§fflnnn • • + •••••+ +DDD + ufflfflffllfflEBuuuu E s n n n n n D n + DETjSnnEBEBEEBEESEBnnnna ^BBnnnBEnnnaeafflBEBBnBBnDnnnfflEB 3 E E E f f l B E B B n n n B B B B n n n n n n + DEDEHBB 3BBBBBBBnnnnnBB^^Bnnnnn+ + DBE 3EBEEBnnnnnnfflB^^Bnnnann ]BBBnnBnDBBBBnnDnDDE 3BLJLJBBBB^S1BLJ + B a D B B B B ^ B D + LJLJB iBBDBBBEBBBDnnn 3nnBBBBnnBBnnBB 3 BBDEBEBB+ + LJBEB 3 B B B B B B B D + + LJLJB •3LJ + + DLJE 1+ + + • |+ + + + + IBL7J+ + + + + IBBLJ + + + + + + +++ + , |+ + + + + • I+ +++ + I+ + ++ + !•+ + + + • 3LTJ+ + + + • 1 + ++ + IEBBBBBBESBBBn+ + + 5BBBBBBDDBBBn+ + + ^BEflBfflEBnDEBBnn + + • ••+ + • • +• • • • • • • B • • • • • +• + IELJ + + + + + 3U+ + + + + IBLJ + + + + + !•+ + + + 1DO++++ I +DBBE + 3D + D ^ ! l t l + 3LJ + B E B D ]•••& 3C1ELJB BBBBEBBBBB + +••+ + + • + + +••+ + + + + + ••+ + +••+ + + + + • • + + • + + ••••+ + + + •••EH ++ • • • • • • • • + ++ oso°o +nnmmma + + • • • • • • • • + + +BBBBHEEEE • • + •••••+ + • • • + •EHEBEB^EBEHnnnn • • • • • • • • + ••EBDDffl EES EBEEEE3 ! £ • • • • • ^BBEEBEBEEDDBBBBEBBBBEBnEBEBB B^BBEBBBBEEDDBEEE••••••+•••BEE! + ++++++++ + +EEEE+ + + + + + + + BE + EBBEE+ + + + + + + E B B B B B B B n n D E E B B ^ ^ B n n n n n + +DBBI • • • • • E E B E B E E D E + + + 01z89 • EBEBEBEBEBEBDDDDDDEBEBililEBaDDnDDt BDE§|!P§|BBE^] + + + BBBBBEEEnDBBBBBBBEBBBEB + ++ EBEBDDEBEBfflEBWEan + DDDEa + ++ EBDDEBEBEBEBMEaD + D D E a BE + + + BBEBBBBBBBBEEEB ++ EEBBBBEBEBBBBBB I f f ! EBE+ BDE+ + E B B D D B B B E + +DBBB __••+ + + • + +EDB BEBI mn++++ ffluul • + +UUEB BE+ BEEEEE E+ + ::io9i ++• BBBEBEBBEEEE+ + + + + + + • • • • • B B ++ +++ BBBBE+ + + + + + + B E + + + + +E BBBBB+ + + + + + + + BE + + + + + + BBBEBBBE+ + + + + + + • +++ •++++++ BBBBBBBEBLJ+ + + BE + + + + + .•+ + ++ •+++++ EBD+ + + + + • + •++++++ E+ • •+ + + + BE + + + + BEEEBB +EBBE+ BBBBBBBBBBBE+ + + BEEEED B E + E^i^[l + B E E B B B E + + +E BBEEEBEE BE+BBBE B E B E B B E • E B B E D + + EBB •EB • • • • 0 • •+ + E B B B ^ B B B E •BBBB •E+EEBBBBBED BBEBBBEBEn ••••EBBBBBEE BDEBBBQBB •••EEBBB •••••E +E+ aoddo >jona H0N33 0 14 -o CD CO CD zn CD 1I1 L_U CQ ZC OD CD ^ CD ZD CD 1 _l < ZD 1— CD < nwmmmwmm •B^B^BBB+ + B B B B E B B L 7 J + E!] B B B B B E B D E ^ D +mmmmmmaamm mwmamm •EB + amm + DDEB 0 60 ••El^BBEBDB + + HBBBBBEE!] BBBBDB^I + DEBI + +H5 BENCH 686Q BUCKG BH20 am •+ •• + +BBBBD ++ + E B U U S U H ++ ++ + + + • • • ^ • • • • • • • + BED + E B E D -+ + • • • • • • +•••••••• •••••••••fflffl •EBDE Bfflnnnnnnfflffl^^ • • • • • • • E B B B • ++ • ++ •BL7JB^BBC] + + • ••EBEBEBEBEBBEB+ + + •EBEB+ + B B B B B ^ + + + B+DBEBBBB+ + ^^••fflEBEB^BBD + •E8^QffliiHIEB + H i + S I I I I I l i H B + D B B B B B B B D EBL7J + EB^EB + B B B B B B B ^ Q + IDffll • E l [ ! • • • • • BEBDn • B B B B B B B B B D + B B B B B B B B B D EBD + n n ^ B B E B E H n • • +• • • • 0 3 + + + + nfflEBnn+ + • EBnnfflEBfflDEBffl aaaaama + amm man EBDnnnnfflD + n •••EBEBD+ + • • B + ++ ••EBE8E8EBEBEBi EBEBDEBEfiEBHEBEOi EBEBnOEBEBSfflii EBDIIOBBI •BDBBEBB BEDBBBBB BEEEM •EBB • ffl • • • B E E + aamma + aaai • + DE0EBEQDE3DDE BEDDB+DDBBf • • • • + EE + B E D + DE • +D+ DEE • • • B E E •J 15 HBEBBBBB I BBEBBBEBBBBEEBHH + +BBBEEBBEBBEBDEBHB +EEBEEEBEEBBEEEEBE +BBBEEEBBEBBEEEBBBB BBBBBEEBEE +BBBE+EEBEEBEEEEBBB EBBEEE+ + + +••••• + + • • • E B B + DEBfflDDDDD + •fflffluuuuu + +•••••• + + • • • • • • +•••••• + n n n n B B + •+••••+ + •••••• • ••••• ••••BBB •• + • • •• BEBEBEB BBBEE+ + + + +• EE +• • • • • • • BB +E E E • • • • • • + • +B B E + + + + + B B B E • • +••••+ + E E• • •+ + + + + ^ B B ++ +BBBBBE + EEBDED + + + BEE • • + +nnBnn + + +EBBHHHHI + +QE0EBEBIIIIII1 •+BBBEE+ • ••EfliEBEBQIIIilll • ••Efl^iffliiliEBill + EEB^BEEHHHBBfl^ BE + +E B B + + •••••EQ + +E B B +•••EEB EE B B B B B E • ••••EB BEE E B E E E + E E E + +E EE B B a n n + E E + +E ++ +^ BBBBBE + +1 EBBBBBBBE + + +ffl^ • EHEHEBitlB E E E E E E E B B B B B O ••EBEHEBili ^ E E E + E E E B B ^ ^ ^ Q ••EBEBEflHi ^••+ + +BBBBBBBB + D D E a i i l i if l E + + + B B B i S B H B B B + + • B H H H H l i^••EBEEBEBEBESiBEBEBEB + + +B ^ H H H H H ^+ +E8EBEBIiEBDDDDD ••BEBBBE E+E + E ^^ ^ ^ • • • • • • IEE EE + + Bfl^E EE + + dfl^B + BHBB + EBBBfHEB +B B+ + E+ + O CD O CD 00 CD X CD o CQ CD \^ CD ZD CQ O C\J X LU • ••^BBBBBBBBEBBBB BSBBBnDBBBBBEEBBBHB EfflEEannnfflnnnEHnnnDESEB •BEBEEEBBE^^EEBBBBE +EBBBEEEBBEBBEEEBBBB EEEEEEEEBBBEEEEEE •EEEEEEE BBBEEEEE • EEEEBBE EEEBBBB •••••• • ••• BEEEEEBE HIIBEEEBB ^EEEEEEE EEEEEEE • ••••EB • •• • •••• ••••••••• BEEDDDBEEED EE •EllQD +D+ +^mD ffluuuuu ••••••+ + + + + t l ^ B E BEBEEE^HBB^EEHBfil + +EBB^tlBQ ^••••••••••••++•••••+ •+BBBED+ BEEB^BBB • ••EBSl^Eai l^flBBfl^^E + • EBBBBfl ++ B E B B B + +DEBSE3ffliEBEBii + EEBBB+ +nBEBBBBBH EEBBB^HBEn+ +BBBE • B B + + n B B ^ B B E + +EEE + • •+ + + B B B B B B E B B B B B + B+ EBB • BBBBtBBBBBEi BBBBBS • ••BBfli ID •EEBEBBBBE ID • ••+ ID EE+ + +EE BE+ +EEE • •EBEBEB^EB^B E+EBB^^EEE B + O B B ^ B E f l• • • ^••••••+ +EB • • • !&••• + • IBEEE O CD [ O ++ ++ + • ++ O CD 00 CD X O LU CQ O o X CQ BBB^EBEBDEBEHEBEBEB EBEB^EB BBBEB^EBDDEBEBfflfflEBniZOESEBBB E EBfflfflfflEBDDEBEBEBEBEBDnnEBEBflEB EHEBEBEBnnnnnnDEHDDDnEBEB •fflEHEHDnnEBnn^^DnEBfflfflfflEe + DEBEBEBEBnnnnnEeESDDEBEBEBfflEB EBEBEHDDEBfflffl •••EBDnnnESfflfflDnnnnn ^EHEBEBCDEHEB • EEEBEBUUUUU SfflUUUUEEEB • • • • • • • • • • • • • • • EBDDDDfflEB • ••EBDESEB •••••• EBDnDDEB ••••••• •••• • • • EBEBEBEBEHD • •••• • EBEB • • • • • • • • • • EBnnnnnnnnDn • • ffl^nnDD + DEB^EBD fflffltJLJDEB E B D D B B B + + • + + fl^EBEJ E B E B f f l E B D E B B B ^ B ^ E S B B ^ + + DEBEBEB^EB[J EBEBEBEBEBBBBBBBBBBBBBBDnDnEBEJEO EESEaEBEBEBBBBBBBBBBBBBBnDEBEBtBEBDn EBESDESEBESESESBBBBBBBBBBBBBEBEBESEB^BB^ E3DLJEB^iEBE3llBBB^EBB^BBBB^EB^^EB + EBDEBEHEHflBBBB^ilBBBBBB^fl^fl^EBEJ • ^BBB^EBfflEBfflD + EBEBEBEBEBtlEB^BB • B B B f f l D f f l E f f l n + rjEBEBEBEBf^EB^B • ••••EBEafflEBEaDDnnnEBEBEBEB • • • • + D E B E ^ f l E S n n + + EJDEB + • • + + •EHEBEBEHEBnDEBEHfflEBEBD • + + EBBEH! ESEJEBEB^fll 3EBfflG[ZlEBEBEBEBESEBEBJl^n ••fflE33ffl^^^nnnnEE • • E B E B E B ^ ^ f f l n D + DEBLJl • ••EB^^EBEBLJ+ + • • • & ^BBBBfl^DDEBEBEBEHEBEBilBEBtEi^ IDDfflfflEBfl^EBDfflLJEJES I D + LJEHEB^EBEBBEBEBEB IfflDBBf^fflDLJEJEBfl^EJ I B B ^ B B ^ B B ^ B B E I L J E J E J + BEI^EJ I^^EBLJLJEB^BB^EB EHEBEHEBLZ! + EBEQBBB ESEBEBEJLJEJ EB^ • • • I O & — ^ O CD 00 (D CD CO CD \^ o ZD CD 154 ^•^B^BOBBBBBBDaBB^ B B E ^ E B B E B B B D D E B B B B D D B B B B B E E D D D D D D B E D D B B B E B D D D B D D B B D D B •BfflfflfflEBnnnnnfflEHnnffl •••BBBnDDBEDDDDDD • • • • • • • • • • • • • • • • B B B D D D D D • • • • • • • • •DEEDED DDDDDD BDDDDDD DDDD BBEBBD DBB D BBBDBE BDDBElEBi BBBBDDBB BDDDBBB EDDDDB DDD • DDDD •••••••• DDDDDDDDD ^BDDDDDBBBB + D + Dfl^BD 3D IlD + DDEBBEBD IBDDDBEDD IBDEBBBDD IBBBEEDEBEB^^HI ^•••^•BEBD + DBEEBE^H • ••EBDDfflfflEaEBDDDDDEBfflii BDBD+DBBBBBDDD+BBBD DD+ + DBEBBBBBBBBBBB • ••B^B^BBMBBBBB^ EDDESI BBDBBBBBBBBi DBBBB1 BBDDDBBBB1 DDBBBi EBEBDD + D E B E H I i i l i l fflfflDD + D E B G i i l l i i ^•••EaEBEafflEBiiEBK • •••••••^BDBBBg • ••BEE ^•••EE ^••EDDBDI 111 • ••• • • • • • EBDD CD CD o CD CO CD DZ CD CD LD CD CD ^1 CD ZD CQ ro CD 1—1 155 ^^B^BEBBBBBBBDBB^H BBB^BB BEBBBEnDBBEBBEBEB^B B B ^ B E E B E BBBBDnnnDDBBnBBBBB B B B B B B E B B B fflEBfflEBnnnnnDfflfflnnfflfflfflfflE B E B B B B B B E B B E B B B B B E •fflfflfflEBsnnnnofflfflnnfflfflfflfflE •••BBBEnEBEnnnnnD B B E B C O B • • • • • E C O •EBEBDDDDD B B B E E B E •••••••• ••••••• EBDDBEB •••BDBD •••••• EDDEEB ••••••• •••• ••• BBBBEE BBBB ••••• • B E ' BBBBnnnnn • •BDBDDDDEBB B B B B B D B ^ B B • ^ ^ B B B D D B B B B B ••BHB^nnn+nB^En EBEE^HHHHHHHHHHHHHBDBDBE ]E0EBEBSIIIIIIIIIIIIIiDESE8E0E8E0EB ^ ^ • • • • • • • • • • • • • ^ B B E B B H B EBEBDEBEE!EBmill[iilEilllllEi^m[i[l!iD (••••BEBEDnBEBEB^^B (••iDDEBEBEEBDnnnEBEBMi ^EBD+DBBBBBDnnDBBBB BB++DBBBBBBBBBBBBB • •••^BEBEBEBBBB^ • ••BEBBBB^EEBE^ BEEEE^BEnnDBBEBS • BBB^fl^BBBEBBBB^I 3BB^^^^^BBDDBBBE^I ^•••HBEBEEBiElfflii l^fflDfflfflEBWEBDElfflfflE ^•••••••^BDBBEEEE^H^^^ • ^B BBBBEE EBBBDD BDE CD CD O CD 00 CD [ X O O LD OD CD ^ O OD C\J Q 15 Hfl^ilBBBfflBBBBBBBBBil^ BBBBBBLJBBBBBBBBBfflB fflfflEBEB EBDnDDEB B3 EBEBEB EBEBEB EBfflEBfflsnnannEBEBnB3 EBBBBBBBLJBBEBLJBEE •••fflfflfflfflnnnnffinDDDEB •••••BED • • • B B B L J B • • • • • • • • •••••fflUU • • • • • • • • • • • • • • • • • • • • • • • • ••BBBB • BED • •• • BBBBBE • BED EDDBB • E B B B B D B BEBffiBLJfflBE ^BBBBBBBBBB flBBBBBBBBB •BBBBEBBBB •^•••BBBB Mf, EBBS • ••BBBBE ^••BBEBBBE B^BLJBBBBBBBBBBfflBi BBBBBBBBEBBBE ••••BEBBBBBEE ••EBBBBEBBBE 3BEBBB 3BBBDB mmm liEBDEBffl BBBS1B IfflfflDDD r NEBBED BBBBLJB EBB o o CO 00 CO o LlJ CQ o ZD CQ • •••• • • • • • • • • • • • • • • • • • a mmi EB^E • ••••••EEEEEEI^ ••••••EEEBE^BI ••••EEHBBBEBI ••BBEEBBBEBE ••EBBBBE^ mm • • • • • B IE H B H H B I IE H E mm ••••••••EB •••••••••BE BEBEn^BBBBBBB^B^E 1 3 ••••••BEEBB ••BBBaDBBBB EBEBEBEBDnDDDI •BBBBnnEBB •••BDDBBB EBEBEBnnnnnffli ••••BBBB BBnBBBBBBnnBnB^BBBBBB ••BEEBB IBBBBBBB BEBBBBBBBBBBBBBnni IBBBBBB! 60' 0 BENCH 6860 :UCKG IDO iiEBEEBDnEGEanffl BBBBBElBBBBnnnnnDD IBBBnBBBBBB BEBBBBBBEB ItlBBBBnnBEB lEBEBEBEBnaffl ^BEBBD BEE •• •EEEBBBBBBBI EEEEEEEEEE^ B B B B B B E B B B B B D E E • • B B B E E D D E E E E E E E D E •BBBB I I BEDDnnnBEBB^^El ••••• BBBBBBB DEI mmmmmmnum\ ^ ^ E E E B E E B E B B B E B B ^ ^ E I E E E E E B E B B E B B E E B B 60 BENCH 6860 BUCKG KRIGE ^ E B E E E D B B E B E B B E E B B B B B B B B ^BBBBDnDBBBBBBEEDBBBBBBBB B B B B B B B B B B E B B B B D B ^ B B B B B B B IBED BElElBBBnn BBBBBBBEBBB^BBnEBtl ^BDBBEEEE BBBBBEBBBBB^BBDEBB 3BBBBBHOBB BBEBfflnnnnn E E B E E D E E wmmmmmi EBEBEBEBEBEBEBDD H ^ E E B B B B I I I B^BEQEBEIBEM ElBBBBBBnn ED BED BEE • • •••••EEBBBBBB ••••BEBBBBBB • ••BEBIZOB BDDEEBE •••BEnDDDBB ••BBDEDDBBE ••BnnnnnBBB • • • • • • B B B B • • • • B E E B B • • • • • • • E B • • • • • • E B • • • B B B H ^••EiEHfflEBfflEBfflBannnnnfflffl 0 BEl^ mwnm BBBnEnnnEBB^^Ei^ BBQEBB • •• • B B B B B B B • • B B E E B B ••• •••• ••••+ •••rjp + +••••••• +•••••••• E+ + ••••••BBBBBE • ••••EBEBEBOEBE • ••EBEBD+ +• ESEBnnnn + •BBBEEEBBil 3+ + 3+ 2D BBDBBBBBtlElEl B B B D B B E S E B B BEBDBBBBEB BEBJZI EBEBEB EBEBEB mmu + + HEBD+ + • ••EBEBEB • ••EBEBEB ••EBEBEB mummm 0 • •BElBBBEnEti • •BEIBBEEDBE 60' mmm ummmmi BENCH 6860 BUCKG CPROB C 0 1 0 B+ + + £••••••••• BDDMMBBBD ESQ + • • • • • • • E l BBEDBBBBBMBDD •••••••BDD ED 3BDDDDEBEDDDE IBBDDBEBDDD +D B IDE ^EIBDBEIBBDDDDB !BDI + E]BBBfflDBBBBBBBBB!: I ^ B D B E I B B D D + Effl 3HBBBBBEEDDBB + ++mmmmnmmmmmmmmm • E1BBDDDBBB + + DDDDBS1 ++ DEB + +> + + mmuu •EBDnnnnnEBEB^^ EBEBUU • DEB EBEBEB son DBBI am DBE DD DDD • + • • • • DDDEEDDDDDEE DDDBBDDDDBEB ESDDDnOOEBEBEBEEl • • • • • • E B EBEBEB • • • • • • B E E • • • • • B B •••EBEBEB • • !•• •• ••• BUCKG CPROB 0=020 ••••• ++••••••• +•••••••• w&nu wmmmua 16 • • Q Dffl • C_ • •• •[ IfflEB + DEB i H D + Dffl 3EHEBESDDEB • OSfflEHEHEHEHn • • ••••••EBEEO • ••EEEBEBEBEBEBEH EBEHEBEHEHEHEBann • • • • • • • E E • ••••••EH fflEBBEonnno • • • • • • • • • • • • EBEHEBnnann • • • • • • • •EHEHEHO EBnnnnnn • • • • • • ••••• • • • • • • • •EH ••EHfflD EHfflfflfflEBDffl • • • • • • •!!• ••EHfflnnnfflEH • + QE •••EBB • •EH EB EH EH EBEHsnnn • + • ••• • ••• • •• • EBfflEBnn • • ESErJfBffiSn EBO, •EH I o CO o CO CO co DZ CO o LJJ CQ LO o o ZD CQ ro o o CQ o or CL_ CO 16 • • • ••EB • EBI ••fflffl ••BdmBaffl IBB + DEB HI • • t l B L J + CJfflB ^BBBDLJfflfflBBB EBBBBDBBfflfflBBB •••BBBB •••BBBBBffl • •• BBBBD • ••••••EBEBEHEBEHEBEBEBEBESmnna • • • • • • • • •••••••• ••••••• ••••••• • ••BBLJ EBEBBannnnn + ++ ++++++ • +++ + EBDDD • •EBEH ••••BB • •••B •••a •••••••fflfflD • • • • • • • a a a a n n n n n EOEBEBDDDDD auuuuuu ffluuuuu BBLJBBBD • BBBBB • •[!• + nnfflEB3fflB3ffln • • a • • a a n n n a a ••fflfflan+D+na • • • • • • B S a n n n a a a a EBDESEBEBDDD BfflaBBDD •afifiann • • a a a a n • •••BEB • BEB ++ [ CD o O o LO CD CO CD CD zc o CD LU CO o - ^1 o ZD CQ CQ CD en CC/ rP o •BDBBBuL EBDEBEBSfflES • • • BBBBaaBBBBBB •BBBnnBBBBBB^BB • E ^ T O B D • + •BBBBi^BnnEHEET • + +IHHI1DDEBEB + +BBBBBBE1QESBDD + • fflEBDDEBEBBI BDEDDEIBBBBBBB EBDEQEQESBBBBBBBESD + BBBBBBBBBBB fflDfflfflfflUBBBBBBEBD BBBBnBBBElBElB EEDEBSEH El • • • • • • S-13] •BBBEBBBBB mmmmmmmmmmmm fIIIII •EBB 3BEBE1BI IBBBBBBBBB +nnnDBBBBBB OJ LD QJ vZ& QJ QJ 62J QJ • • • • • E B + •83 + BBBDEB^B^ BENCH UCKG XAJ + EBB ummm XL :!••••••• +EBBBBBB +BBBBEEE BE •BBBBEEB BEHBEBBll BDBBB s¥l BBBBEEBE! ^^EBLIIEHEB + DLIB BBBEEEBB [IJIlllBBE • • + E E EBDDEBDDEBEa HE1BBE • • + DB ••••••EBB + + ••EBB mmmurm B E E E uumm •••••EBBffl + •••• • B B E E E + +•• • • E B B •••EBEBEHEBEB BJ1BBB n + nm BEB + 4- + + •EBEBEBEBEBEBEBEBEB• • • • B B B B B B B E E B BD , •EBES^EBESEBD + D B ^QnEB^EBEBEBn + • ••^BBBEBBBtl • BEBBBBEBBBBllHll •••E^BBBEBBBBBBtl + + E B ^ B B B B E B B B B B BR B + + •EBEBBBBHE8BBBBBB + + • • B B B B B B B B B B B B + + EEE^B 3EE1BBBB B O B B E D + + + |+ + + + V t i d ifflDDfflfflfflnnffli IB^BBBEBLTJEBEBEBE I^EBEB^EEHEBfflan !BB3EBEHEHEBEBEBEB& lEB + ^HMEBEBETJEBEB fHEBEBEJEBEBEBDEBE 1^ + M^EBEBEBEBED fBfflEBEHEBfflEBDEBffli ]H + DEBB3fflEBEBDnn EBDEDEBEBEBEJEBEBl i + fflnnnnnnE EBnEBEBnDB3EBEBEBEBEBfflEBfflffinnnDEBnnnffl • fflfflfflfflfflfflfflfflEBEfflffl^fflffl^fflfflnfflDDEB • [•••fflEBEBEBEBEBEHnnfflB^fflffifflEB^EBDnDEB • [••EHEHEHE33EBEB • + • ••EBEBEBSEBEBDDD [DfflfflEBEBOffl + + + + + n n E B n n n n n DDI IEBEBEBSD ++Dffl^B^n EBD + + • EBLTJEBBI EBD + + + + DEB • EB + mmmi • + +• EBDD • + +• • ••EBB EBD •EBE 3BBBBBBBE 5 EBE33I EBEBE EHDE B B - - H H B i B H j B | B E ••••••• EB EH EH • EH EH E fflfflDEBEB^BBEBD EBnffiEHDDDEnn mi • +l ]• + • • • • •••••• • •^••H^mHEHH^HBBHBBBB + BBB^B^EB^DEBEBSi^BBBBBB Snffl^BBBB^fflEBDDEBBBBBBBB^ffl 3DEHBBBBB^n^EB^EB^BBBBBEHD+ + ]DnEB^BBBEBDBEBE^BBBBBBB^n + + innnn^B^BfflEHH^E^B^BBB^nEBnEBn ]EBnDEB^HBBBEinEHEBEBnEBfflB^EBnE3 BEBDEBnn + n n n + n n ^ IBBBBBB^EB + nnnDEHEHD^BBBBnDEH 3BBBBB^DEBEBESEEEB + E B B B B B B B ^ D + ID^BBBB^DEBD + ^ B B B B B B B B D + 1 + DEBnBEBBB^EB+ + + + + • E B E B ^ D D + • + + • • • • ^ • • • E B D + DfflnnEBnnn + EBD + + + + + +• ++++++ o 00 CD X CD OD CD CD X CQ O CM X CQ • ••• + I EBDDDEfiEB EBEBEB ++ + • •BBBBEDEJBM • •BBBBEnDBflflHBLJBBBfi • • •+ •fflnnnn BEBBBD+ DDDfflnnnn^EBEBDEBi • ••+ +nEB3nnfflfflH^EBEM SflilBBBElEJ IfUBBBB + ••••••fflfflnnEBaffifitit^fii IBBBBBB •••EBEBnnnnannfflEBE • •BBBLJD[J+ +DDEBE • ••BBBBLJ + ++ + •••EBBBE + E D D B B +•••••• • + +UEB +••••+ + + D B B B B B B B + •••• ++ • • ••1 + UUEBI + ++ EJBBI B EEJEJBEJLJEJB + D B B + + + • E D D +• + + + +••••• iDEBffl + + •••••• • •fl^B IBDDB • +i BBBBBBBBBBDBI BBBBD + BBBDEBI Egn+ + l i i E B E B D D D + + + + + • + BBHBBEBEJLJ+ + + + + + [!••••••••••••• ••••+DBBnnBBBB • ••+ ++ DDB^ + + ++ + + DEB + + + + + DEBEB + + g3iDDDE0E9 + DBBI + + + E U H H H H H E + BB + + ++ BBEJ + BBEDDn BELIED MEBDD BBBBB E1E1EBBB I+ + + !+ + + +nnnBf^nBEBnn^^BB+ + + +nnnnBB + + nnnBBnnn i+ + • ++ •••• iB + n n n n n + B + + + +••• • ••BflBBBBS ^ • • • • • • + + ++ + + • • • • • • • • • • • B B B + +••+ +++i ^E!+ + • • •••••••••+ ++ ^•f^+ + + • • • • • • • • • + ••++•• ++ +++ + fflfflUUUU ++ BEDCOD I O CD o 00 CD IE CD O LU m o o o C\J m LU ID X • •••• • ••EBEBEBEBS fflffl^HEBEHESEHDHfl^ EBDEBEBEBEBEBnQEflEl^ 3BHHHHEBDDD ^••••EBDDDEB EBDEBEBEBS fflEBffinnnnfflDDEBffl f^DDEBdi EBEBD + DDEBEBDDEBEB EBDEBDDDEBEBDDfflEB^^ • DEBEBEBDDDDDDDEBEBEB DDBBB3EBDDDDDDDEBEBEB • DDEBEBEBEBf^DEB • DDEB EBEBEB!^ • DDEBEBJ^ + • • • • • + • • • • • • •EB 18 • DEB DUf^EBfflEBI EBEBEBDDEBEBEBEBEBEBEBEBS DDEBEBEBEBEBEBEBEBG • EBEBDfflEfflfl^flEB EBEHLTJEH E B B B D D i • •••HHHi EBEHEHEBrj DEIS fli •EB ^EB • EHEBEHEHnn DfM ID + EBDB • •• • •• •DBDDB • •••EB • BtlElB • • ID+ + • • • B B B D B + + D D D B +HHHBEBDD+ + + • • • • • • • • E B E B E B EBEBEB EBEBEB • ••EBEBEQDD • • • • + • B B B D D D • ••+ + + EEI^DDD ^EB+ + • + DBiUfUHH H^SIDD flBDD + DBBE^HB IEDD B B E D D B B E D D B B B D D B DBBB^SII Jj|BBBBB DDDDDBDEBB^DBI^BBBDB + +DDDDEB + + + D D D B B D D D + + + ••EBEBD +• • • • + B D D B + D D B D D D + H B B + + + • • • • BBDBBBBBB^flBDDBDDD + + ••• + • • ••DfflBBBB^BDffl^PlilBDB D E D D B D D D D B • B B B D D D D D B B B D D D B B D D BBBBDfflFl BBDDDD an o CD + +•• + +•• ++ + •+ B B D D D D O co CD CD X CD CD ZD CQ LU CQ O Q • •••• IBOBBBBfi •••••^BOB ^•••B^BnBE EBBfflEBBnDBIl^BHBBE^ EEBEBEBfflEBESnDfflEB^FEfflDEEBEa EEBSnnnnESDEHEBEHEHEHnnES^ fflEBfflnnnafflnfflfflffl ••fflfflEDDnnnnn ••BBBfflnfflnnnn • •BBBHEl^BBflfl •••BBdfflH • •••BBHB + • • • • E B + • • • • IBBQQBBBBBBBB • •BBBf^BI • • • EBB • HB • EBEBEB'fflEBEBH^ffl BBDB BBBBBO B BBBBBO nfl^B • BB M BflBD ^^Bfflna BQBEBBB BOflHffl BO • EBHHH • ••• EEBn + E S D M • EBD + • • • E B ••••+nBBBBBBBBB SDD+ + +B ^B^BD EBfflEDDEE BBn+Q+BB^^HM BBBEBnB^dHH^n^HHH^BDn IBBBBBBBflfl^HBBBBnn iEBBfflnDB 1+ EEaDDEBEBEBfflEBi • EBDfflfflDDDDEB •EfflfflfflDDDD +• • •••fflBBBB^DBI •••••fflEn+ODDfflBBDDffl • + + DBfflffiDBIiifflDfflBBE B+DB^ffiQEEii^D++BBBD B D B +• s u s n + +•••• BBflHHH^ElB^n + nn ^BtlEBBBHBH+ + • • BBBBBBHBQ+n BBBBnn BBBD BfflfflBBiiBD E8EEDDD BEDDDD O ^ 00 CD CD LO O o UJ m ZD CQ Q • • ••ES BilBBBBBBf^fl ••• •• BBEl^B^B^dtl^fl^BBBBBBE BBEBBBBBDB^El^BBEEE: EBBBBBBDDBE^BDBBFl^BBBBfflEB EBBDDDBBDBBBBBBEB^ilElBBBBB BBBDDDBBDBBBBJIBBBBEI^BBBBBB BBBDDBBBEBBBB^^EIBBBBBBBB BDBBBDDDDBDDBBf^ElBBfflBfflBfflB BDBBBBBEBBBBflfl^HllBffifflE • DEEBEBr" • •EES ESI DDDBBI + ••••1 • •••• • • 5 B BBfflffl B B B B B D DBdtlflElBB fflffiiffl EBBE ^ B D f ^ B B B B ^ B B B BS1J1B BBE I^Bfl^BBBBBBDBB Bil BEBBBB S i i l H I I l l l l l l l l i l ^ G BEE it^BBEB f!Q[; I^UEB BB IBB^BEEtl^BBBBHBBBBBBBEE IHBBBBBEBBBBEEB^BBBBBHHE fflBBBD + D D D B ^ B ^ B B B B BDBD + DBBBBBBBBiUBBBBBffiDDB BDDD + D B B ^ f l ^ B B B ^ B B ^ I l f f l f f l f f l B BBDDDDB^dfl^fl^BB^^DD BBBBDB^El^BB^ElflBB^BEjn BBB^il^BBBBBDD IBBElBBBBBfl^BBBBBfl^BDDB SB^ElBDDfflB^tlBB^BB^BDDB IDDDDBBBB^flB^ElfflBBBB IfflDDDHEOffiffl + fflDfflEfflEBfflDffl 3B+DBffiBBDBBBB^DEBfflffl IBDBB^BBBBBBBB+DBBBffl siBEiiifflniBiiiffl+nfflDDn BBDB^BB^SlBB^^ffl^BBBB^flEl^DDDD BBBBBEDDBB ^BBBBBBB^D+DD BBBBSBDEB BflBBEBiliDDD EBBBBD BBBBfUiiflSBD BEBEBB BBBDDB BBBDDB b ° S X 0 O z ^ CD o ^ <^> ZD CD ro o —• mmmmjMmMmmm muummm \mmwsm ••••••fflEBEl^fflEBEBI ••••••••EEHEBEBEB^I • ••EBEBESEEBEBEBEBEBiM • •fflffifflEBEHEBDnEBEBLB^^EBDn fflEsni [••^•fflDDEHEaEB^BEBES I^BEBDEBEEfflEBffl^EB mmmmssa+ mmmmmmmmmmmmm^umammmi + LTJEHEHEBEBI fflfflfflDnnnfflfflfflEafflfflfflfflLHLHEa IELJEB IDS mmmmanmmmmmmmmmmnm 0 60' IDEHI BENCH 6840 BUCKG I EBD \^mmmmmuummmmmmmmmmm^M\ EBEBnEBfflEBfflEBEBnDEBEBEBDEBEBEBEBl EBnnnEBEBEfflEBnnEBEBfflfflfflEBEBEB ••••B3H3B3EBEBE0EB •••EB fflffl^ffl^fflfflEBfflEBfflEEBEBEBEBffl ID2 CM • •••••EBEBE1E1I • ••••SfflEBaESEBEBEBUE mmmmmmmsisiaaiiimmmmmm mmmuuummmmm l^fflffluuuuuEB I^EBfflfflDDEBEBffl m EB EB EB • EB EE EB EB El EB EB EB EB EB EB EB ••••B3fflfflfflB3B3EBEBEM •••EBfflEBEBEBDEBEBEBEBE \mnmmmzmmmmi 3EBL7JEBB3EBEBEBEBEBE1EB 3EBEBB3fflnDEBEBEBE 0 ••••••I 60' •EBffl! •I I l l BENCH 6840 l I l I I I I i E I l i l l l l l l l l l E • Ilff B3EBEBEBEBHdEBEBB3EBEBEBEBEBE BUCKG IDI o • BBBUBBB ••••••••• ipiiifini fflfflfflfflfflDDHfflEfil 0 ••••fflfflBaEBESESEB^^^^^ • •••EflSEBfflfflEBfflElEill^El^ •••^fflEDfflfflfflffl^ mmmmwmnummmmmwmmm 3BBBBBBE ^ IEflfRE RE RE RE E ^ BB BB !BB BE BB BE E a VmB B E BE t/v^ k 60 •IIIII • • • 3BBE 31IIHIIIE IE1BBBBBBEB SBBBBBBBES ELBHESfflfflffiEBtlllElBBBB EBfflfflEBEBEH^Ell R « 4 n fflfflfflfflfflfflfflfflfflfflfflffl^ LJ I— IN v/ i I BUCKG IDO • mmmmuuummmmmmmmm wwmmmmmmuuuwmmmmwm L?[a R F M P U uuuuuummmmwmmmmmm, IBB mmmmmmmmmmmmmmmmme^i^m 3EBEH EBEHEHE9I •EBEBEB • EB B D E IBBBBi mmmuummmmw, isifflEBnnDnfflfflffl^^HBi IBBBDnnBBBEIlBBBI IBBDBBBBBBil i^EBBBEBBEfl 60' 0 6840 BUCKG KRIGE 3BBBB 1BBBB BBBBBEI EBE2I UBI BBBBB 3BBBB8 EH EH BENCH • • • • • B B E B B B B E E • • • • • B B B B B B B B E •••BBBBBBBBBIlllilfflB •••BBBEBBBBBIlilBBDLJ ••E^iiEBDDDEBEBEEIifflEBO ^BBBHEDEJfflBBBUBBB \ BBBBBBBBEBBUBB IBB BUBEBEBBBE \m B BB B B B B B B B 8 f f l E m mW E B + 8 Wm • • EH EB EB • EB B B B B B B B B B B B B B B BBDDDEBBBNLTJBBBB • • • B B B B B B B B • BBUBBBBUE BHUBBBBB BBBE ^mmmmmwwmm B B B B B E B 173 • + +• • • IBD + LJ + B B B D B f f l I^EIBDBBEM El BEJlTJBB B B B B B E i^fflUUEuuuuEB iSEBEfflnnnnnnffl iflBBBBfflBBLJlJBn •EHES EBEBfflEafflEBDDESElifflEBEBfflEBEBDDnnD • EBEB + DEDDEEBEB••••• • BE • 3D • + •+ + + • B B E B D E J D I U E B ++DB EfflDDQ BBD+ + • BBBL7JD + • L7JB11BBBB • + + • •BBBBE BBE1 + • • • BBEf] • • ]BBBBBBBBBBBBE|iB^^ • EBfflDB BBBEDDBEBBffli ^BEDDBBBB^i ]DDL7JBDEBBE: • 3BBBBE; BBBBBBBB BBBBBE^BBLJ + • ••B • •+ + fflUUUE • ••• • BBBEUBBEU • BEBB^El BED •BEE^BBBBBB^UEBunnnnuE • • • IBBBBDL7JDBB • + + IBBBBEZOE1BB + + EEOHEllllllllBQESQDill • • • E B B B B B B B E 1 B L 7 J + + DBE1B BBDnDBBLJflE! B D D B E E •••[_>*; +-+ BDB+++++B •BnnnnnDD+ + DBL7J++ ••+ + + + + + + ElfMBD •+ + + + + Bt^ +++++ + O o CO 00 <— CD JZ CD -z. O LU CQ O -— CD CD O ZD CD CD CD O or Q_ CD 0 60 BENCH 6840 BUCKG CPROB 0.020 + + v ESEBDEBEB + LJESD +• ma + n • ++ ++ + • 0 60 BENCH 6840 BUCKG CPROB 0=035 • l l l l i l lllll 3EBDEB 3B3DDBBDDDDB3B3 3B3B3B3DDDDDDEB IfflEBEBEBEBEBEBDDEBD IfflEBfflEBEBEBDDDDD •DEBDDB3B3EBEBEBDDDDDD + • + + +DfflEEBEBnnnn ••EB EBES EBEBD EBD •••si • ++ • + • • • • • • ••EBEB EBEBDDDHHD EBDD + + + + + + DBBD+ + EBEBEJnn EBEBD + + DEBEBDDD • EBEB EBEBD DDEBE DEBDDDt DD+ + + + + + + D+ + + + + + + ++ + + 00 CD CD X CD CD X CQ LU CQ O LO O • o CQ CD en o1 O o CP O CD 0 BENCH 6860 + BUCK60 ACTUAL BHK BENCH 6860 + BUCK60 BH60 ffl EH EH EB • EB • E ffl • BB EB • • • ffl • • • EB EB + • + • • + ••+ + + •• • • • + + + ++ + • + + + + + • • •• + ffl • EB + • + + ^ • ffl ffl • + + ffl ^ ffl ffl • + • ffl ^ • • ffl • • • ffl • M • • • EB + • + + + + + + + + + I CD O + + + + + + + • • + + , o CD+ co • ^ + CD ° CD X CD ^ ^ LD m CD 180 + + • EB • EB LB EB LB • • • + + • • ffl • • + • • + + • + • LB + EB • • + + + + + + • + • + + + + + • • • • + + + • • • LB + + EB • • • E • EB + M EB + + • + • + + LB + • ffl ^ • LB EB EB a • +• • + • + • + + + + + + 4- + + + + + + + o + CO + +CO 00 CO CO o LU m + + o CO o ZD CD 182 EE + • • ffl • ffl EH • ffl • • ffl • • • • +•• • + + • • • + + + + + + + •+ + + + • + • • • ffl ^ ffl ffl • ffl • • + + • • • + + + • + • • • • + • + + ffl • • + + + ffl ffl ^ m • ffl + + • + EH • EH + • • • EH EH EH + • ffl ^ • EH • ii • H ^ ffl m + EH • + • • + -f+ + -t- + + ffl ffl + • + EB • + + + + + + + b + + +° + + [ CD O 'CD 00 ' CD X UJ OD _ ° CD ^ CD ro 183 E • • E B + E f f l EBBBBBB • • • + + • + + + + + • B • + • B EE H • + + • + + • E E + E EB • • • • + • • ffl • + + E + E E B E + E E B ^ M M ^ • E B E BB+ + + + + B B E fl E E B E ffl + + + + + +b+ CO E E B E + + + + + + gE Si + CO o o CO X O ^ <J LU m m CM Q n f 184 EB • • ffl ffl ffl ffl EB • fflfflffl• • +ffl• • • • • •ffl• • • • • • • + • • + + • • • • • • • • • • + + + + + • • • • • + + + + + + + • EB • • • • + • • • • • + + + ^ • ffl • • • + • ffl ffl ffl ffl • ffl [1 ^ • EB 1 j • ffl • [1 n • EB • + • ffl • • + + + + + + • • + + + + + + b + + +SEB + CD CO CD JZ CD O LU CQ O CD ^ CD ZD CQ 185 rn m rn rn m m m m mc±jc±j 1^ 1^ •fflfflfflnfflfflfflfflfflfflnn • • ^ • • • • • • • E n n n • •••••• + + • • • • • • • • • • + + +.+ + • • • • •+++++•+•••• + + + • • • E ffl • • • • • • + ffl ffl • + • ffl • + • + + + + + • • • + + + + 0 + + +5 [ CD O 00 CD o CD CD LU m• CD ZD CD O Q CD CD cz o o m z: O. o zc CT> 00 cn + 0 + + + + + • + + + + • EH • • ffl • EH + + • • EH ffl • • • + fflfflffl•• • + • EH ffl • ffl • • • • • + + + • + • + ••+ + + + + • • ••+ + + + +••• • + • • • • + + • • + • • +fflfflfflnnfflfflnn EH + • • fflffl^fflffl EH EH + ^ ffl • • • EH 381 BENCH 4- ( K + 6861^.^ BUCK60 CPROB 0=010 BENCH + + 6860 + + BUCK60 CPROB 0.020 00 03 • • • + 0 + + + + + + + + + + 60' + + + BENCH + 46860 BUCK60 CPROB + + + 0=035 • • + + • • • ffl a • • • • + + ffl • ffl ^fil • + +ffl• ffl • + BB EB EB a' + + • • • • • • • ffl ffl • ffl • ffl w • 4- + m 4- + ffl + + • + 4- 4+ 4- • EH • 4- 0 60' 4- 4- 4- + + • 4- 4- 4- + 4- 4- 4- 4- 360 BUCK60 CPROB 0.050 O 0 BENCH 6840 BUCK60 ACTUAL - BENCH 6840 BUCK60 BH60 + + + + + + + • • • + ffl • + • ffl ffl • • • • • • ffl • + + + ' • ffl • + • ffl ffl ffl + + • • • + + + + • ffl ffl ffl • • + + + + + • • ffl • • + • + + • ffl + • • + + • • + ffl ffl + ffl ffl + + ffl 4- ffl 4- + ffl ffl + • • • • • + 4 4 + + + • • ffl ffl • • • + • 4- ffl ffl +• • + + + + b + I CO o 03 CO x o 2^ O • LU CO O CO ^1 o X CO o CO X LU 194 + + + • 4- + + + 4 - 4 - 4 - 4 - • • ffl • + ' EB • EB • ^ ffl- ffl + ffl + 4- + ffl • + 4- ffl + 4- 4- EB • ffl ^ • • 4- EB • + + • 4- • • + 4- • ffl + ffl EB ffl 4- 4- • + • + • • ^ • ffl • • ffl + 53 ffl+ • • • • ++ 4- 4- ffl ffl ffl + + • + • + + + + • + + + • • 4- 4- + 4- 4- + 4-4- + 4-o4CD O ^tCO CD X o O LD DD O CD ^: o X DD O Q + • + + + + + + •• • + • ffl • ffl • + ffl ffl ffl ffl • ffl • ffl ^ + + + ffl+ ffl+ + + + • + + +fflfflffl 1 • fflfflffl^Bfflfflffl + + + ffl + • + • ffl • + • ffl •fflffl • ffl • • + + • + + + + + + + + + + +b + UT 1 / I CD 1 •' + =R + + + + +fflfflfflffl + + •+ + o 00 CD X CD O CD CD ZD CD CQ LO O 196 + • • 4- • + 4- 4- 4- • • • H III • ffl ffl ffl • + •fflffl ffl • + + + •ffl^ • ffl fflffl+ + • + ffl+ + + + f f l f f l • • • • + + + +fflffl•ffl+ + • + + fflfflfflBHfflfflffl + ffl + + • + EB • + • ffl ffl • + •fflnnn+nfflH+n • + + + + + + • • + + + 4-4 4- 4-o4CD [ CD o 00 CD X CD OD CD CD CD X DD ro CD 197 + • + + + + • • • • • • ffl ^ ffl ffl ffl • • + ffl • + + + + + • ffl ffl B3 ffl -- ffl • • • • • + +- + • • • + + • a3 ffl ffl + ffl • • ffl ffl ffl • • ffl + ffl + • ffl ffl • ffl ^ • B3 - + ffl • + + + ffl + ffl • • • ffl • ffl • ffl • ffl • ffl ffl • • • + • ffl • • • • • + + + + + • • • + + + + CO + b [ O + o 00 CO ZZ CD LU CO o CD \£ CD ZD CO C\J o CO o m CO cz o o zc cn o fe cn 00 -r^ o cn + 0 + • + • • ffl 4 - 4 - 4 - 4 - • + + + + • • • ffl • • ffl 4- ffl • • • • • • • ffl 4- ffl ffl ffl • ffl • ffl ffl + • • • • • • ffl • ffl ffl • • • ffl ffl ffl ffl + 4- 4ffl • • + • ffl ffl • 4~ ffl ffl ffl ffl • 4- • • • 4 • • • ffl ffl • • ffl ffl ffl ffl ffl • • ffl ^ ffl • • • • ffl + 4- + 4- 4- 861 + + + • + ffl EB • • EB • EB • • EB ffl • ffl.ffl • • • • • ffl ffl ffl ffl ffl EB ffl • ffl ffl ffl EB ffl ffl + + • + • • • ffl • ffl • • + • ffl • • • • • • • • • • ffl D ffl + • • ffl EB • ffl • • • • ffl ffl ffl • • ffl + + • ffl EB ffl EB • + • ^ • • ffl ffl ffl ffl ^ ffl • • • ffl ffl ffl + + • • • + + + + • ffl o + + + + +0 + CD 00 CD X CD O LU CD O CD CD ZD CD CD Q 200 + + + + • • • • + ^ ffl ffl ffl • + + + ffl ffl • + • ffl ffl ffl • ••EB • EB ffl • • ffl • • • + • + • ffl ^ + + +• • EB • ffl • • •• • ffl ffl • ffl ffl • + • ffl ffl • ffl ^ ^ ffl ffl • • • ffl • • • ffl • ffl • + • + ffl ffl • ffl ffl ffl + ffl ffl • • • • + + + + • • • + + + + + b CD [ L - -0 1 + + o 00 CD O CO X CD o LD OD X on LD CD OD 0.8 BENCH 6840 BUCK60 CPROB 0=010 • ffl D ' E E BENCH 6840 BUCK60 CPROB 0.020 o to BENCH 6840 BUCK60 CPROB + + • + + + ffl • 0.035 to o 204 ffl ffl • ffl • + i • I • + • ffl • • • + + + + + • + + + • + + + +o + oo ffl O CD CD CD O CD ZZ CD CD ZD OD OD O LO CD O CQ CD OD Q_ CD 0 • ffl + 60 ffl ffl ffl • ffl • • • BENCH 686 BUCK60G ACTUAL - H + • • • • HK to o (SI BENCH 6860 BUCK60G BH60 CO m x CO o m CO CL" o 2: o zc o CO o o fe CO 00 CO + CO o o • ffl ffl • ffl • ffl • • ^ ^ ffl • • + Hfflfflfflr^fflffl •fflfflffl^ffl+ +ffl•fflffl• • ffl • ffl• • • • ffl • • • ffl ffl ffl • • • • • • ffl • • • + • ffl ffl • ffl • ffl ffl • ffl • • • • • • + + • • • + • • ffl ffl ffl ffl ffl LOZ ffl ffl ffl ffl r\Vja sggB 208 • ffl EB • + 1 fflfflfflfflffl • • • • • • • ffl • ffl ffl fflffl + fflffl • ffl ffl • ffl • ••••ffl + ffl ^ • ffl F + • • ffl • • + ffl ffl + • • ffl • • ffl • ffl + + + • • 1 o CO o o CO 00 CO ZZ o CO o o CO o ZD CO o B B • B • B • B B • + B E • B • B B + • B • • • • • • B • B • + • B E B B B + • • B • B B • ^ • r o CD + B + • O CD 00 CD ZC O LU CQ CD O CO CD ZD CQ 210 ^ P • • ffl ffl • •• ffl ffl • • ffl ffl ffl ffl ffl ffl • • • ^ P • • • • ffl ffl ffl ffl ffl • • • • ffl + ffl ffl • ffl ffl ^ • + ffl ffl • • ffl • • • 1 • ffl + ffl ffl + i j o [ CD O p O CD 00 CD JZ CD co • • CD o CD o ID CD • ffl • • • • • ffl fflffl• m • • o 60' BENCH 6860 BUCK60G ID2 • + • • m • • ffl EB • • • • • EB • • • EB + W EB • • EB • • • EB ffl ffl • • • • m m • • • ffl m • • ffl ffl {f m ffl • ffl fflffl• EH • EE • • • • ffl LB • EH 60' 0 • BENCH 6860 BUCK60G IDI EB ffl • • • ffl a ffl • • ffl ffl ffl m • • • ES EB m • • • EB ffl m • • ffl ffl w ffl • • • • EB • ffl • • ffl 60' 0 ffl ffl • EB BENCH 6860 BUCK60G IDO ffl ffl ffl w m • • 'A 0 1 6 0' BENCH 6860 BUCK60G KRIGE YZA ffl • • EH EH H LJJ I 11 m L±j t t l m m uj H • EB • ffl • EH • ffl• ffl •• • • ^ ffl • • • • • • ffl • • • ffl E?3 ffl EB w2 ffl ffl • ffl EB ffl • • ffl ffl ffl • ffl ffl ffl/ffl + ffl • ffl • • • • ffl • ffl ffl + • ffl • • ffl • + • LrjO • ffl 0 60' BENCH 6860 BUCK60G CPROB 0.010 + • ffl + • • ffl • • • • ffl ffl • • • • BUCK60G CPROB 0.020 V7A 0 60' BENCH 6860 BUCK60G CPROB 0.035 V?. ffl • + • • • • • • •ffl• ffl • • A \ZZA EB EB 0-4 0 60' • ffl + ffl • + • • • m ••••fflfflffl^ + • • ffl • ffl a EB u r n + • • • BENCH 6860 BUCK60G CPROB 0=050 m m -f + + • •, • • a • • ffl BENCH 6840 BUCK60G ACTUAL - BHK 220 • •ffl• nam -m0 60' + ffl • EB + • + • •ffl• + •fflfflw • • ffl + • • • • •ffl• ffl • • • • • ffl ffl' + • ffl + • ffl BENCH 6840 BUCK60G EX60 + • • • • • + • + • • • • W •fflw ffl • + ffl ffl ffl •ffl• + • • ffl • ffl ffl ' ffl •• + - - • ffl • .ffl ffl ffl ffl ffl ffl • ffl ffl ffl • • • ffl • ffl ^ • H • • + • • ffl • • • . • ffl • ffl • + ffl • ffl + ffl • • • • ffl • • ffl • • • ffl • o [ CD O o 00 CD X CD LD DD CD O CD \C CD X DD • ffl ffl ffl ffl • • • ffl • m m • + • a • • ffl + ffl • + • 0 60' ffl ffl BENCH 6840 BUCK60G ID5 fflfflm • • • • • +fflffl rj rj • • • • ffl • ffl m u m • ffl EB EB • ffl ffl ffl • • 0 ffl • • 60' BENCH 6840 BUCK60G ID3 • + •fflffl • ffl • ffl • • ffl ffl ffl ffl + ffl • ffl • • ffl ffl ffl ffl • ffl m A ffl ffl VZA EB BE EE • m u BE • + -RO- u • u BE • BB • ffl o 60 BENCH 6840 BUCK60G ID2 • ffl ffl • • ffl ffl • ffl EE ffl ffl BB ffl ffl ro to to to IDO • ffl ffl EH • ffl • ffl w m •fflfflfflffl 0 60' BENCH 6840 BUCK60G KRIGE ffl • EH + EB • EB EB • • ffl •ffl• ffl • • A \AAA + 0 60' BENCH 6840 CPROB 0.010 + • + EB + • + BUCK60G EB • 44- EB + • + 4- • ffl • ffl • • ffl ffl • • ffl • • to to to o o 60' BENCH 6840 BUCK60G CPROB 0.035 • ffl 6cr 0 BENCH 6840 + BUCK60G CPROB 0.050 + + • ffl + • ffl ffl ffl • ffl ffl• ffl ffl ffl •ffl• ffl • APPENDIX C ORE RESERVE REPORTS 234 BLOCK MODEL: METHOD: RESERVES - BENCH CUTOFF BUCK BH4 2 0 ' BLOCKS - NO ORE OUTLINE BLASTHOLE POLYGONS ABOVE CUTOFF GRADE TONS GRADE I N S I D E GRADE OUNCES TONS BOUNDARIES GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0. 0. 0. 0. 0. 000 010 020 035 050 610972. 447315. 316069. 171588. 100759. 06 06 56 50 69 0.032 0.042 0.053 0.075 0.098 19300. 18612. 16677. 12829. 9877. 41 36 51 23 07 163657.00 131245.50 144481.06 70828.81 100759.69 0. 0. 0. 0. 0. 004 015 027 042 098 688 1934 3848 2952 9877 .05 .85 .28 . 16 .07 6860. 6860. 6860. 6860. 6860. 0. 0. 0. 0. 0. 000 010 020 035 050 544076. 357065. 237374. 127867. 71024. 37 44 50 25 62 0.026 14184. 0.038 13504. 0.049 11715. 0.069 8809. 0.091 6457. 09 82 43 50 70 187010.94 119690.94 109507.25 56842.62 71024.62 0 . 004 0 . 015 0 . 027 0 . 041 0 . .091 679 1789 2905 2351 6457 .27 .39 .93 .80 .70 TOTAL TOTAL TOTAL TOTAL TOTAL 0. 0. 0. 0. 0. 000 010 020 035 050 1155048. 804380. 553444. 299455. 171784. 00 50 06 81 37 0.029 0.040 0.051 0.072 0.095 47 18 94 73 79 350667.50 250936.44 253988.25 127671.44 171784.37 0. 0. 0. 0. 0. 1367 3724 6754 5303 16334 .30 .24 .20 .95 .79 BLOCK MODEL: METHOD: RESERVES - BENCH CUTOFF BUCK BH20 33484. 32117. 28392. 21638. 16334. 004 015 027 042 095 2 0 ' BLOCKS -• NO ORE OUTLINE BLASTHOLE POLYGON WEIGHTED ABOVE CUTOFF GRADE TONS GRADE I N S I D E GRADE OUNCES TONS BOUNDARIES GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0. 0. 0. 0. 0. 000 010 020 035 050 610972. 471044. 341039. 181396. 103811. 06 31 19 87 56 0.032 0.040 0.049 0.069 0.088 19297. 18626. 16692. 12461. 9170. 97 38 19 75 27 139927.75 130005.12 159642.31 77585.31 103811.56 0. 0. 0. 0. 0. 005 015 026 042 088 671 1934 4230 3291 9170 .59 . 19 .44 .48 .27 6860. 6860. 6860. 6860. 6860. 0. 0. 0. 0. 0. 000 010 020 035 050 544076. 372993. 255228. 129629. 71318. 37 75 56 81 37 0.026 14182. 0.036 13468. 0.046 11676. 0.064 8304. 0.082 5879. 02 36 21 92 01 171082.62 117765.19 125598.75 58311.44 71318.37 0. 0. 0. 0. 0. 004 015 027 042 082 713 1792 3371 2425 5879 .67 . 14 .29 .91 .01 TOTAL TOTAL TOTAL TOTAL TOTAL 0. 0. 0. 0. 0. 000 010 020 035 050 1155048. 844038. 596267. 311026. 175129. 00 12 75 69 94 0.029 0.038 0.048 0.067 0.086 98 74 40 68 28 311009.87 247770.37 285241.06 135896.75 175129.94 0. 0. 0. 0. 0. 004 015 027 042 086 1385 3726 7601 5717 15049 .24 .34 .72 .40 .28 BLOCK MODEL: METHOE i : RESERVES - BENCH CUTOFF BUCK BHKRIGE 33479. 32094. 28368. 20766. 15049. 2 0 ' BLOCKS - NO ORE OUTLINE BLASTHOLE K R I G I N G - " A C T U A L " ABOVE CUTOFF GRADE TONS GRADE I N S I D E GRADE OUNCES TONS BOUNDARIES GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0. 0. 0. 0. 0. 000 010 020 035 050 610972. 502982. 374054. 196574. 111465. 06 62 56 44 62 0.033 0.039 0.047 0.064 0.082 19939. 19365. 17419. 12654. 9101. 61 01 31 91 51 107989.44 128928.06 177480.12 85108.81 111465.62 0. 0. 0. 0. 0. 005 015 027 042 082 574 1945 4764 3553 9101 .60 .70 .41 .40 .51 6860. 6860. 6860. 6860. 6860. 0. 0. 0. 0. 0. 000 010 020 035 050 544076. 399611. 277440. 133432. 68266. 37 69 06 37 56 0.027 14567. 0.035 13897. 0.043 12017. 8097. 0.061 0.078 5344. 63 69 64 21 31 144464.69 122171.62 144007.69 65165.81 68266.56 0. 0. 0. 0. 0. 005 015 027 042 078 669 1880 3920 2752 5344 .94 .05 .42 .90 .31 TOTAL TOTAL TOTAL TOTAL TOTAL 0. 0. 0. 0. 0. 000 010 020 035 050 1155048. 902594. 651494. 330006. 179732. 00 31 69 81 19 0.030 0.037 0.045 0.063 0.080 23 70 96 12 82 252453.69 251099.62 321487.87 150274.62 179732.19 0. 0. 0. 0. 0. 1244 005 015 3825 027 8684 042 6306 080 14445 .52 .75 .84 .29 .82 34507. 33262. 29436. 20752. 14445. BLOCK MODEL: METHOD: RESERVES - BENCH CUTOFF BUCK EX4 2 0 ' BLOCKS -• NO ORE OUTLINE EXPLORATION POLYGONS ABOVE CUTOFF GRADE TONS GRADE I N S I D E GRADE: OUNCES TONS BOUNDARIES GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0. 0. 0. 0. 0. 000 010 020 035 050 610972. 397620. 278762. 142897. 78939. 06 62 00 94 87 0.027 16613. 0.039 15594. 0.050 13894. 0.072 10350. 0.097 7620. 69 17 85 73 71 213351.44 118858.62 135864.06 63958.06 78939.87 0. 0. 0. 0. 0. 005 014 026 043 097 1019. 1699. 3544. 2730. 7620. 52 32 12 02 71 6860. 6860. 6860. 6860. 6860. 0. 0. 0. 0. 0. 000 010 020 035 050 544076. 307175. 210397. 114125. 67515. 37 12 50 75 81 0.025 13460. 0.041 12456. 0.053 11067. 0.074 8479. 0.098 6614. 14 24 75 98 96 236901.25 96777.62 96271.75 46609.94 67515.81 0. 0. 0. 0. 0. 004 014 027 040 098 1003. 1388. 2587. 1865. 6614. 89 49 77 02 96 TOTAL TOTAL TOTAL TOTAL TOTAL 0. 0. 0. 0. 0. 000 010 020 035 050 1155048. 704795. 489159. 257023. 146455. 00 81 56 75 69 0.026 0.040 0.051 0.073 0.097 80 41 60 71 67 450252.19 215636.25 232135.81 110568.06 146455.69 0. 0. 0. 0. 0. 004 014 026 042 097 2023. 3087. 6131. 4595. 14235. 39 81 89 04 67 BLOCK MODEL: METHOD: RESERVES - BENCH CUTOFF BUCK EX20 30073. 28050. 24962. 18830. 14235. 2 0 ' BLOCKS -• NO ORE OUTLINE EXPLORATION POLYGON WEIGHTED ABOVE CUTOFF GRADE TONS GRADE I N S I D E GRADE OUNCES TONS BOUNDARIES GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0. 0. 0. 0. 0. 000 010 020 035 050 610972. 422900. 287738. 144676. 71612. 06 31 00 81 19 0.027 16611. 0.037 15669. 0.048 13712. 0.068 9893. 0.095 6821. 42 67 55 31 41 188071.75 135162.31 143061.19 73064.62 71612.19 0. 0. 0. 0. 0. 005 014 027 042 095 941. 1957. 3819. 3071. 6821. 6860. 6860. 6860. 6860. 6860. 0. 0. 0. 0. 0. 000 010 020 035 050 544076. 324866. 220923. 109588. 62848. 37 06 94 81 35 0.025 13458. 0.038 12465. 0.050 10955. 0.073 7989. 0.096 6064. 30 87 18 58 67 219210.31 103942.12 111335.12 46740.46 62848.35 0. 0. 0. 0. 0. 005 015 027 041 096 9 9 2 . .43 1 5 1 0 . ,69 2 9 6 5 . 61 1 9 2 4 . 91 6 0 6 4 . 67 TOTAL TOTAL TOTAL TOTAL TOTAL 0. 0. 0. 0. 0. 000 010 020 035 050 1155048. 747766. 508661. 254265. 134460. 00 37 94 69 50 0.026 0.038 0.048 0.070 0.096 71 55 74 89 08 407281.62 239104.44 254396.25 119805.19 134460.50 0. 0. 0. 0. 0. 005 015 027 042 096 BLOCK MODEL: METHOD: RESERVES - BENCH CUTOFF BUCK IDIO 30069. 28135. 24667. 17882. 12886. 1934. 3467. 6784. 4996. 12886. 75 12 24 90 41 16 81 85 81 08 2 0 ' BLOCKS -• NO ORE OUTLINE INVERSE DISTANCE ABOVE CUTOFF GRADE TONS I N S I D E GRADE GRADE OUNCES 1 7 1 3 2 . 94 1 6 1 6 1 . 00 1 4 2 4 9 . 68 1 0 0 6 8 . 12 6 9 6 9 . 46 TONS BOUNDARIES GRADE OUNCES 170119.75 131963.56 159626.00 74256.00 75006.75 0. 0. 0. 0. 0. 006 014 026 042 093 971. 1911. 4181. 3098. 6969. 94 33 55 67 46 6840. 6840. 6840. 6840. 6840. 0. 0. 0. 0. 0. 000 010 020 035 050 610972. 440852. 308888. 149262. 75006. 06 31 75 75 75 0.028 0.037 0.046 0.067 0.093 6860. 6860. 6860. 6860. 6860. 0. 0. 0. 0. 0. 000 010 020 035 050 544076. 338917. 221576. 110649. 58148. 37 56 69 62 18 0.025 13675. 0.037 12616. 0.049 10938. 0.072 7926. 0.099 5740. 96 04 24 38 73 205158.81 117340.87 110927.06 52501.44 58148.18 0. 0. 0. 0. 0. 005 014 027 042 099 1059. 1677. 3011. 2185. 5740. 93 80 86 65 73 TOTAL TOTAL TOTAL TOTAL TOTAL 0. 0. 0. 0. 0. 000 1 1 5 5 0 4 8 . 010 779769. 020 530465. 035 259912. 050 133154. 00 94 50 37 94 0.027 0.037 0.047 0.069 0.095 89 05 91 50 19 375278.06 249304.44 270553.12 126757.44 133154.94 0. 0. 0. 0. 0. 005 014 027 042 095 2031. 3589. 7193. 5284. 12710. 85 13 42 30 19 30808. 28777. 25187. 17994. 12710. BLOCK MODEL: METHOD: RESERVES - BENCH CUTOFF BUCK ID5 2 0 ' BLOCKS -• NO ORE OUTLINE INVERSE DISTANCE ABOVE CUTOFF GRADE TONS GRADE I N S I D E GRADE OUNCES TONS BOUNDARIES GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0. 0. 0. 0. 0. 000 010 020 035 050 610972. 472088. 335637. 154583. 75822. 06 81 25 06 75 0.029 17503. 0.035 16679. 0.044 14683. 0.064 9919. 0.088 6666. 23 17 68 09 90 138883.25 136451.56 181054.19 78760.31 75822.75 0 .006 0 .015 0 .026 0 .041 0 .088 824 1995 4764 3252 6666 .06 .50 .59 .19 .90 6860. 6860. 6860. 6860. 6860. 0. 0. 0. 0. 0. 000 010 020 035 050 544076. 367151. 227745. 106292. 55700. 37 19 69 19 18 0.025 13500. 0.034 12521. 0.046 10514. 0.068 7211. 0.092 5131. 41 04 20 31 45 176925.19 139405.50 121453.50 50592.00 55700.18 0 .006 0 .014 0 .027 0 .041 0 .092 979 2006 3302 2079 5131 .37 .84 .89 .86 .45 TOTAL TOTAL TOTAL TOTAL TOTAL 0. 0. 0. 0. 0. 000 010 020 035 050 1155048. 839240. 563382. 260875. 131522. 00 00 94 31 94 0.027 0.035 0.045 0.066 0.090 63 21 87 41 36 315808.00 275857.06 302507.62 129352.37 131522.94 0 .006 0 .015 0 .027 0 .041 0 .090 1803 4002 8067 5332 11798 .41 .34 .46 .05 .36 BLOCK MODEL: METHOD: RESERVES - BENCH CUTOFF BUCK ID3 31003. 29200. 25197. 17130. 11798. 2 0 ' BLOCKS -• NO ORE OUTLINE INVERSE DISTANCE ABOVE CUTOFF GRADE TONS GRADE I N S I D E GRADE OUNCES TONS BOUNDARIES GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0. 0. 0. 0. 0. 000 010 020 035 050 610972. 500648. 358044. 158157. 77454. 06 81 62 19 75 0.029 17892. 0.034 17208. 0.042 15097. 0.062 9788. 0.083 6447. 36 15 90 36 84 110323.25 142604.19 199887.44 80702.44 77454.75 0 .006 0 .015 0 .027 0 .041 0 .083 684 2110 5309 3340 6447 .20 .25 .55 .52 .84 6860. 6860. 6860. 6860. 6860. 0. 0. 0. 0. 0. 000 010 020 035 050 544076. 391663. 239675. 104497. 52844. 37 81 62 00 18 0.025 13439. 0.032 12547. 0.043 10356. 0.064 6692. 0.086 4556. 79 84 09 59 36 152412.56 151988.19 135178.62 51652.82 52844.18 0 .006 0 .014 0 .027 0 .041 0 .086 891 2191 3663 2136 4556 .95 .75 .50 .23 .36 TOTAL TOTAL TOTAL TOTAL TOTAL 0. 0. 0. 0. 0. 000 010 020 035 050 1155048. 892312. 597720. 262654. 130298. 00 69 25 19 94 0.027 0.033 0.043 0.063 0.084 14 00 99 95 20 262735.31 294592.44 335066.06 132355.25 130298.94 0 .006 0 .015 0 .027 0 .041 0 .084 1576 4302 8973 5476 11004 . 14 .01 .04 .75 .20 BLOCK MODEL: METHOE »: RESERVES - BENCH CUTOFF BUCK ID2 31332. 29756. 25453. 16480. 11004. 2 0 ' BLOCKS -• NO ORE OUTLINE INVERSE DISTANCE ABOVE CUTOFF GRADE TONS GRADE I N S I D E GRADE OUNCES TONS BOUNDARIES GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0. 0. 0. 0. 0. 000 010 020 035 050 610972. 518339. 376861. 163901. 75806. 06 75 56 81 37 0.030 18178. 0.034 17566. 0.041 15439. 0.060 9786. 0.081 6156. 04 91 52 78 12 92632.31 141478.19 212959.75 88095.44 75806.37 0 .007 0 .015 0 .027 0 .041 0 .081 611 2127 5652 3630 6156 . 13 .39 .74 .66 .12 6860. 6860. 6860. 6860. 6860. 0. 0. 0. 0. 0. 000 010 020 035 050 544076. 408473. 245224. 108430. 48617. 37 44 37 12 30 0.025 13418. 0.031 12585. 0.042 10217. 0.060 6517. 0.083 4051. 90 02 93 25 18 135602.94 163249.06 136794.25 59812.82 48617.30 0 .006 0 .014 0 .027 0 .041 0 .083 833 2367 3700 2466 4051 .87 .10 .68 .07 .18 TOTAL TOTAL TOTAL TOTAL TOTAL 0. 0. 0. 0. 0. 000 010 020 035 050 1155048. 926813. 622086. 272331. 124423. 00 19 00 94 69 0.027 0.033 0.041 0.060 0.082 93 94 45 04 30 228234.81 304727.19 349754.06 147908.25 124423.69 0 .006 0 .015 0 .027 0 .041 0 .082 31596. 30151. 25657. 16304. 10207. 1445 . 0 0 4 4 9 4 .49 9 3 5 3 , .41 6 0 9 6 , .73 10207, .30 BLOCK MODEL: METHOD: RESERVES - BENCH CUTOFF BUCK IDI 2 0 ' BLOCKS - NO ORE OUTLINE INVERSE DISTANCE ABOVE CUTOFF GRADE TONS GRADE I N S I D E GRADE OUNCES TONS BOUNDARIES GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0. 0. 0. 0. 0. 000 010 020 035 050 610972. 542868. 402696. 166578. 78042. 06 69 12 31 25 0.030 18474. 0.033 18026. 0.039 15905. 0.058 9667. 0.077 6021. 07 80 61 50 80 68103.37 140172.56 236117.81 88536.06 78042.25 0. 0. 0. 0. 0. 007 015 026 041 077 447. 2121. 6238. 3645. 6021. 27 19 11 70 80 6860. 6860. 6860. 6860. 6860. 0. 0. 0. 0. 0. 000 010 020 035 050 544076. 432561. 249875. 109344. 46136. 37 75 62 00 66 0 . 0 2 5 13414. 0.029 12707. 0.040 10071. 0.057 6264. 0.079 3635. 34 53 93 37 89 111514.62 182686.12 140531.62 63207.34 46136.66 0. 0. 0. 0. 0. 006 014 027 042 079 706. 2635. 3807. 2628. 3635. 81 60 56 49 89 TOTAL TOTAL TOTAL TOTAL TOTAL 0. 0. 0. 0. 0. 000 1 1 5 5 0 4 8 . 010 975430. 020 652571. 035 275922. 050 124178. 00 50 81 31 87 0.028 0.032 0.040 0.058 0.078 40 33 55 87 69 179617.50 322858.69 376649.50 151743.44 124178.87 0. 0. 0. 0. 0. 006 015 027 041 078 1154. 4756. 10045. 6274. 9657. 07 78 68 18 69 BLOCK MODEL: METHOD: RESERVES - BENCH CUTOFF BUCK IDO 31888. 30734. 25977. 15931. 9657. 2 0 ' BLOCKS - NO ORE OUTLINE INVERSE DISTANCE ABOVE CUTOFF GRADE TONS GRADE I N S I D E GRADE1 BOUNDARIES OUNCES TONS GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0. 0. 0. 0. 0. 000 010 020 035 050 610972. 552024. 413173. 168128. 73994. 06 19 62 69 87 0.031 18658. 0.033 18266. 0.039 16104. 0.057 9595. 0.077 5670. 23 96 95 54 32 58947.87 138850.56 245044.94 94133.81 73994.87 0. 0. 0. 0. 0. 007 016 027 042 077 391. 2162. 6509. 3925. 5670. 27 00 42 21 32 6860. 6860. 6860. 6860. 6860. 0. 0. 0. 0. 0. 000 010 020 035 050 544076. 441162. 253123. 102979. 48698. 37 44 31 19 90 0.025 13439. 0.029 12764. 0.040 10014. 0.057 5903. 0.075 3663. 38 64 76 73 70 102913.94 188039.12 150144.12 54280.29 48698.90 0. 0. 0. 0. 0. 007 015 027 041 075 674. 2749. 4111. 2240. 3663. 73 88 04 03 70 TOTAL TOTAL TOTAL TOTAL TOTAL 0. 0. 0. 0. 0. 000 010 020 035 050 1155048. 993186. 666296. 271107. 122693. 00 62 94 94 81 0.028 0.031 0.039 0.057 0.076 59 61 71 27 02 161861.37 326889.69 395189.00 148414.12 122693.81 0. 0. 0. 0. 0. 007 015 027 042 076 1065. 4911. 10620. 6165. 9334. 99 89 45 25 02 BLOCK MODEL: METHOD: RESERVES - BENCH CUTOFF BUCK KRIGE 32097. 31031. 26119. 15499. 9334. 2 0 ' BLOCKS -• NO ORE OUTLINE EXPLORATION KRIGED :ESTIMATE ABOVE CUTOFF GRADE TONS GRADE I N S I D E GRADE OUNCES TONS BOUNDARIES GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0. 0. 0. 0. 0. 000 010 020 035 050 610972. 520102. 370317. 160458. 73309. 06 31 25 25 44 0.030 18052. 0.034 17494. 0.041 15218. 0.060 9635. 0.083 6069. 25 66 14 23 66 90869.75 149785.06 209859.00 87148.81 73309.44 0. 0. 0. 0. 0. 006 015 027 041 083 557. 2276. 5582. 3565. 6069. 58 53 90 57 66 6860. 6860. 6860. 6860. 6860. 0. 0. 0. 0. 0. 000 010 020 035 050 544076. 406286. 240067. 99437. 47344. 37 56 25 75 34 0.024 12994. 0.030 12155. 0.040 9719. 0.060 5948. 0.080 3810. 03 95 38 64 72 137789.81 166219.31 140629.50 52093.41 47344.34 0. 0. 0. 0. 0. 006 015 027 041 080 838. 2436. 3770. 2137. 3810. 07 57 74 92 72 TOTAL TOTAL TOTAL TOTAL TOTAL 0. 0. 0. 0. 0. 000 1 1 5 5 0 4 8 . 010 926388. 020 610384. 035 259896. 050 120653. 00 87 56 06 81 0.027 0.032 0.041 0.060 0.082 27 62 52 88 37 228659.12 316004.31 350488.50 139242.25 120653.81 0. 0. 0. 0. 0. 006 015 027 041 082 1395. 4713. 9353. 5703. 9880. 65 09 64 50 37 31046. 29650. 24937. 15583. 9880. BLOCK MODEL: METHOD: RESERVES - BENCH CUTOFF BUCK CPROB 20» BLOCKS - NO ORE OUTLINE CONDITIONAL P R O B A B I L I T Y ABOVE CUTOFF GRADE TONS GRADE I N S I D E GRADE OUNCES TONS BOUNDARIES GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0. 0. 0. 0. 0. 000 010 020 035 050 610972. 469696. 321283. 166759. 90210. 06 62 75 50 75 0. 0. 0. 0. 0. 030 037 047 066 086 .25 . 10 .56 .57 .57 141275 148412 154524 76548 90210 .44 .87 .25 .75 .75 0 .005 0 .015 0 .027 0 .042 0 .086 7 3 4 . , 14 2 2 0 6 . ,54 4 1 3 1 . ,00 3 1 8 6 . ,00 7 7 9 4 . ,57 6860. 6860. 6860. 6860. 6860. 0. 0. 0. 0. 0. 000 010 020 035 050 544076. 359678. 221051. 107729. 57801. 37 37 19 44 45 0. 0. 0. 0. 0. 024 12994 . 0 3 034 12074 . 5 6 045 10046 . 8 1 065 7037 . 2 5 086 4956 .84 184398 138627 113321 49927 57801 .00 .19 .75 .98 .45 0 .005 0 .015 0 .027 0 .042 0 .086 9 1 9 . .47 2 0 2 7 , .75 3009,.57 2 0 8 0 . .40 4 9 5 6 . .84 TOTAL TOTAL TOTAL TOTAL TOTAL 0. 0. 0. 0. 0. 000 1 1 5 5 0 4 8 . 010 829375. 020 542335. 035 274489. 050 148012. 00 00 00 00 19 0. 0. 0. 0. 0. 027 035 046 066 086 325673 287040 267846 126476 148012 .00 .00 .00 .81 .19 0 .005 0 .015 0 .027 0 .042 0 .086 1 6 5 3 . ,60 4 2 3 4 . .29 7 1 4 0 . ,55 5 2 6 6 . ,41 1 2 7 5 1 . ,41 18052 17318 15111 10980 7794 31046 29392 25158 18017 12751 .27 .66 .38 .82 .41 BLOCK MODEL: METHOE>: RESERVES BENCH CUTOFF BUCKG BH4 2 0 ' BLOCKS - WITHIN ORE ZONE OUTLINE BLASTHOLE POLYGONS ABOVE CUTOFF GRADE TONS GRADE I N S I D E GRADE BOUNDARIES OUNCES TONS GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0. 0. 0. 0. 0. 000 010 020 035 050 422900. 374397. 287999. 163934. 97691. 31 25 12 44 56 0.041 0.045 0.054 0.075 0.098 17212. 16965. 15665. 12337. 9568. 70 49 06 18 37 48503.06 86398.12 124064.69 66242.87 97691.56 0.005 0.015 0.027 0.042 0.098 247 1300 3327 2768 9568 .21 .43 .88 .82 .37 6860. 6860. 6860. 6860. 6860. 0. 0. 0. 0. 0. 000 010 020 035 050 333221. 290479. 212845. 120768. 68886. 87 75 50 00 75 0.037 0.041 0.051 0.070 0.091 12279. 12054. 10886. 8414. 6263. 08 28 00 78 66 42742.12 77634.25 92077.50 51881.25 68886.75 0.005 0.015 0.027 0.041 0.091 224 1168 2471 2151 6263 .80 .28 .22 .11 .66 TOTAL TOTAL TOTAL TOTAL TOTAL 0. 0. 0. 0. 0. 000 010 020 035 050 756122. 664877. 500844. 284702. 166578. 25 06 69 50 31 0.039 0.044 0.053 0.073 0.095 29491. 29019. 26551. 20751. 15832. 80 77 06 98 03 91245.19 164032.37 216142.19 118124.19 166578.31 0.005 472 0.015 2468 0.027 5799 0.042 4919 0 . 0 9 5 15832 .04 .70 .09 .95 .03 BLOCK MODEL: METHOD: RESERVES BENCH CUTOFF BUCKG BH20 2 0 ' BLOCKS -• WITHIN ORE ZONE OUTLINE BLASTHOLE POLYGON WEIGHTED ABOVE CUTOFF GRADE TONS GRADE I N S I D E GRADE BOUNDARIES OUNCES TONS GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0. 0. 0. 0. 0. 000 010 020 035 050 422900. 390619. 314666. 175766. 101575. 31 37 00 44 69 0.041 17210. 0.044 17014. 0.050 15854. 0.069 12140. 0.089 9000. 97 23 34 29 51 32280.94 75953.37 138899.56 74190.75 101575.69 0.006 0.015 0.027 0.042 0.089 196 1159 3714 3139 9000 .75 .88 .05 .78 .51 6860. 6860. 6860. 6860. 6860. 0. 0. 0. 0. 0. 000 010 020 035 050 333221. 304759. 231042. 125060. 69784. 87 81 31 19 31 0.037 12277. 0.040 12099. 0.047 10949. 0.065 8084. 0.083 5768. 66 39 97 48 87 28462.06 73717.50 105982.12 55275.87 69784.31 0.006 0.016 0.027 0.042 0.083 178 1149 2865 2315 5768 .27 .42 .48 .61 .87 TOTAL TOTAL TOTAL TOTAL TOTAL 0. 0. 0. 0. 0. 000 010 020 035 050 756122. 695379. 545708. 300826. 171360. 25 19 37 69 06 0.039 0.042 0.049 0.067 0.086 64 62 32 79 39 60743.06 149670.81 244881.69 129466.62 171360.06 0.006 0.015 0.027 0.042 0.086 375 2309 6579 5455 14769 .02 .30 .53 .40 .39 BLOCK MODEL: METHOD: RESERVES BENCH CUTOFF BUCKG BHKRIGE 29488. 29113. 26804. 20224. 14769. 2 0 ' BLOCKS - WITHIN ORE ZONE OUTLINE BLASTHOLE K R I G I N G - " A C T U A L " ABOVE CUTOFF GRADE TONS GRADE I N S I D E GRADE BOUNDARIES OUNCES TONS GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0. 0. 0. 0. 0. 000 010 020 035 050 422900. 406417. 350488. 190797. 113048. 31 12 44 19 69 0.042 0.043 0.048 0.065 0.081 17737. 17623. 16723. 12421. 9211. 18 80 65 31 31 16483.19 55928.69 159691.25 77748.50 113048.69 0.007 0.016 0.027 0.041 0.081 113 900 4302 3210 9211 .38 . 15 .34 .00 .31 6860. 6860. 6860. 6860. 6860. 0. 0. 0. 0. 0. 000 010 020 035 050 333221. 321634. 252633. 135602. 70012. 87 69 69 94 81 0.038 12598. 0.039 12527. 0.045 11415. 0.061 8230. 0.078 5488. 95 74 73 49 24 11587.19 69001.00 117030.75 65590.12 70012.81 0.006 0.016 0.027 0.042 0.078 71 1112 3185 2742 5488 .21 .00 .25 .25 .24 TOTAL TOTAL TOTAL TOTAL TOTAL 0. 0. 0. 0. 0. 000 010 020 035 050 756122. 728051. 603122. 326400. 183061. 25 81 19 12 50 0.040 0.041 0.047 0.063 0.080 14 54 39 79 55 28070.44 124929.62 276722.06 143338.62 183061.50 0.007 0.016 0.027 0.042 0.080 184 2012 7487 5952 14699 .60 .15 .60 .25 .55 30336. 30151. 28139. 20651. 14699. 240 BLOCK MODEL: METHOD: RESERVES - BENCH CUTOFF BUCKG EX4 2 0 ' BLOCKS -• WITHIN ORE ZONE EXPLORATION POLYGONS ABOVE CUTOFF GRADE TONS GRADE OUTLINE I N S I D E GRADE OUNCES TONS BOUNDARIES GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0. 0. 0. 0. 0. 000 010 020 035 050 422900. 366269. 267811. 138834. 77438. 31 87 31 25 37 0.036 0.040 0.050 0.072 0.096 15151. 14827. 13411. 10056. 7437. 52 16 53 34 31 56630.44 98458.56 128977.06 61395.87 77438.37 0.006 0.014 0.026 0.043 0.096 324. 1415. 3355. 2619. 7437. 36 63 19 04 31 6860. 6860. 6860. 6860. 6860. 0. 0. 0. 0. 0. 000 010 020 035 050 333221. 287933. 200018. 107206. 63109. 87 87 00 12 46 0.036 12055. 0.041 11818. 0.053 10562. 0.075 8069. 0.100 6294. 03 11 17 48 95 45288.00 87915.87 92811.87 44096.66 63109.46 0.005 0.014 0.027 0.040 0.100 236. 1255. 2492. 1774. 6294. 92 94 69 54 95 TOTAL TOTAL TOTAL TOTAL TOTAL 0. 0. 0. 0. 0. 000 010 020 035 050 756122. 654203. 467829. 246040. 140547. 25 81 31 37 87 0.036 0.041 0.051 0.074 0.098 55 28 71 83 26 101918.44 186374.50 221788.94 105492.50 140547.87 0.006 0.014 0.026 0.042 0.098 561. 2671. 5847. 4393. 13732. 28 57 88 57 26 BLOCK MODEL: METHOD: RESERVES - BENCH CUTOFF 27206. 26645. 23973. 18125. 13732. 2 0 ' BLOCKS -• WITHIN ORE ZONE lDUTLINE EXPLORATION POLYGON WEIGHTED BUCKG EX20 ABOVE CUTOFF GRADE TONS GRADE I N S I D E GRADE OUNCES TONS BOUNDARIES GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0. 0. 0. 0. 0. 000 010 020 035 050 422900. 380908. 278615. 142310. 70943. 31 94 12 44 06 0.036 15149. 0.039 14873. 0.048 13358. 0.068 9726. 0.095 6718. 92 54 27 30 87 41991.37 102293.81 136304.69 71367.37 70943.06 0.007 0.015 0.027 0.042 0.095 276. 1515. 3631. 3007. 6718. 38 27 97 43 87 6860. 6860. 6860. 6860. 6860. 0. 0. 0. 0. 0. 000 010 020 035 050 333221. 301577. 210772. 103142. 60384. 87 37 87 44 02 0.036 12053. 0.039 11849. 0.050 10527. 0.074 7660. 0.098 5896. 87 98 96 25 37 31644.50 90804.50 107630.44 42758.41 60384.02 0.006 0.015 0.027 0.041 0.098 203. 1322. 2867. 1763. 5896. 90 01 71 88 37 TOTAL TOTAL TOTAL TOTAL TOTAL 0. 0. 0. 0. 0. 000 010 020 035 050 756122. 682486. 489388. 245452. 131327. 25 37 00 87 06 0.036 0.039 0.049 0.071 0.096 80 52 23 56 24 73635.87 193098.37 243935.12 114125.81 131327.06 0.007 0.015 0.027 0.042 0.096 480. 2837. 6499. 4771. 12615. 28 28 67 32 24 BLOCK MODEL: METHOD: RESERVES - BENCH CUTOFF BUCKG IDIO 27203. 26723. 23886. 17386. 12615. 2 0 ' BLOCKS - WITHIN ORE ZONE INVERSE DISTANCE ABOVE CUTOFF GRADE TONS GRADE OUTLINE I N S I D E GRADE OUNCES TONS BOUNDARIES GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0. 0. 0. 0. 0. 000 010 020 035 050 422900. 403675. 320475. 154240. 77193. 31 37 94 37 62 0.038 0.040 0.046 0.067 0.093 16178. 16046. 14786. 10407. 7170. 18 45 32 25 52 19224.94 83199.44 166235.56 77046.75 77193.62 0.007 0.015 0.026 0.042 0.093 131. 1260. 4379. 3236. 7170. 73 13 07 73 52 6860. 6860. 6860. 6860. 6860. 0. 0. 0. 0. 0. 000 010 020 035 050 333221. 313050. 226423. 112085. 59404. 87 37 75 75 82 0.038 12612. 0.040 12482. 0.049 11162. 0.072 8069. 0.099 5892. 59 22 05 55 71 20171.50 86626.62 114338.00 52680.93 59404.82 0.006 0.015 0.027 0.041 0.099 130. 1320. 3092. 2176. 5892. 37 17 50 84 71 TOTAL TOTAL TOTAL TOTAL TOTAL 0. 0. 0. 0. 0. 000 010 020 035 050 756122. 716725. 546899. 266326. 136598. 25 75 75 19 44 0.038 0.040 0.047 0.069 0.096 77 67 37 80 22 39396.50 169826.00 280573.56 129727.75 136598.44 0.007 0.015 0.027 0.042 0.096 262. 2580. 7471. 5413. 13063. 10 30 57 58 22 28790. 28528. 25948. 18476. 13063. BLOCK MODEL: METHOE 1: RESERVES BENCH CUTOFF BUCKG ID5 2 0 ' BLOCKS - WITHIN ORE ZONE INVERSE DISTANCE ABOVE CUTOFF GRADE TONS GRADE OUNCES OUTLINE I N S I D E GRADE TONS BOUNDARIES GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0. 0. 0. 0. 0. 000 010 020 035 050 4 2 2 9 0 0 . 31 4 1 2 2 9 2 . 31 351353.44 1 7 2 0 2 9 . 19 8 1 1 5 9 . 37 0.039 0.040 0.044 0.063 0.087 16644.41 16562.41 15613.44 10807.02 7066.89 10608.00 60938.87 179324.25 90869.81 81159.37 0.008 0.016 0.027 0.041 0.087 82. 948. 4806. 3740. 7066. 00 97 42 13 89 6860. 6860. 6860. 6860. 6860. 0. 0. 0. 0. 0. 000 010 020 035 050 333221. 323886. 234436. 112102. 59078. 87 81 87 12 43 0.037 12487.85 0.038 12423.37 0.047 10986.46 0.068 7618.41 0.092 5427.57 9335.06 89449.94 122334.75 53023.70 59078.43 0.007 0.016 0.028 0.041 0.092 64. 1436. 3368. 2190. 5427. 48 91 05 83 57 TOTAL TOTAL TOTAL TOTAL TOTAL 0. 0. 0. 0. 0. 000 010 020 035 050 756122. 736179. 585790. 284131. 140237. 25 19 31 31 81 0.039 0.039 0.045 0.065 0.089 19943.06 150388.87 301659.00 143893.50 140237.81 0.007 0.016 0.027 0.041 0.089 146. 2385. 8174. 5930. 12494. 48 88 46 96 47 BLOCK MODEL: METHOD: RESERVES - BENCH CUTOFF 29132.26 28985.78 26599.90 18425.43 12494.47 2 0 ' BLOCKS - WITHIN ORE ZONE IOUTLINE INVERSE DISTANCE BUCKG ID3 ABOVE CUTOFF GRADE TONS GRADE OUNCES I N S I D E GRADE TONS BOUNDARIES GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0. 0. 0. 0. 0. 000 010 020 035 050 422900. 419391. 374772. 187027. 85892. 31 50 62 25 19 0.040 17060.00 0.041 17034.17 0.044 16323.52 0.060 11178.21 0.082 7026.43 3508.81 44618.87 187745.37 101135.06 85892.19 0.007 0.016 0.027 0.041 0.082 25. 710. 5145. 4151. 7026. 83 65 30 78 43 6860. 6860. 6860. 6860. 6860. 0. 0. 0. 0. 0. 000 010 020 035 050 333221. 328880. 254804. 117830. 59062. 87 75 25 44 11 0.037 12469.78 0.038 12436.99 0.044 11199.06 0.063 7462.46 0.085 5042.16 4341.12 74076.50 136973.81 58768.33 59062.11 0.008 0.017 0.027 0.041 0.085 32. 1237. 3736. 2420. 5042. 79 93 60 30 16 TOTAL TOTAL TOTAL TOTAL TOTAL 0. 0. 0. 0. 0. 000 010 020 035 050 756122. 748272. 629576. 304857. 144954. 25 31 87 69 25 0.039 0.039 0.044 0.061 0.083 7849.94 118695.44 324719.19 159903.44 144954.25 0.007 58. 0.016 1948. 0.027 8881. 0.041 6572. 0.083 12068. 63 58 89 09 59 BLOCK MODEL: METHOD: RESERVES - BENCH CUTOFF BUCKG ID2 29529.79 29471.16 27522.58 18640.68 12068.59 2 0 ' BLOCKS - WITHIN ORE ZONE INVERSE DISTANCE ABOVE CUTOFF GRADE TONS GRADE OUNCES OUTLINE I N S I D E GRADE TONS BOUNDARIES GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0. 0. 0. 0. 0. 000 010 020 035 050 422900. 421676. 390064. 203167. 84635. 31 31 44 75 50 0.041 0.041 0.043 0.057 0.080 17339.06 17329.31 16804.04 11615.26 6 7 7 6 . 16 1224.00 31611.87 186896.69 118532.25 84635.50 0.008 0.017 0.028 0.041 0.080 9. 525. 5188. 4839. 6776. 75 27 77 10 16 6860. 6860. 6860. 6860. 6860. 0. 0. 0. 0. 0. 000 010 020 035 050 333221. 331589. 267338. 125305. 57234. 87 87 00 00 27 0.037 12473.97 0.038 12460.59 0.042 11353.40 0.060 7491.79 0.082 4697.12 1632.00 64251.87 142033.00 68070.69 57234.27 0.008 0.017 0.027 0.041 0.082 13. 1107. 3861. 2794. 4697. 38 20 61 67 12 TOTAL TOTAL TOTAL TOTAL TOTAL 0. 0. 0. 0. 0. 000 010 020 035 050 756122. 753266. 657402. 328472. 141869. 25 25 50 75 81 0.039 0.040 0.043 0.058 0.081 2856.00 95863.75 328929.75 186602.94 141869.81 0.008 23. 0.017 1632. 0.028 9050. 0.041 7633. 0.081 11473. 13 46 39 77 29 29813.04 29789.91 28157.44 19107.05 11473.29 BLOCK MODEL: METHOE I: RESERVES - BENCH CUTOFF BUCKG IDI 2 0 ' BLOCKS -• WITHIN ORE ZONE INVERSE DISTANCE ABOVE CUTOFF GRADE TONS GRADE OUTLINE I N S I D E GRADE OUNCES TONS BOUNDARIES GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0 .000 0 .010 0 .020 0 .035 0 .050 422900. 422900. 405405. 218443. 86414. 31 31 25 25 44 0.042 0.042 0.043 0.055 0.077 17612. 17612. 17311. 12027. 6658. 74 74 07 75 24 0.00 17495.06 186962.00 132028.81 86414.44 0.000 0.017 0.028 0.041 0.077 0 301 5283 5369 6658 .00 .67 .32 .51 .24 6860. 6860. 6860. 6860. 6860. 0 .000 0 .010 0 .020 0 .035 0 .050 333221. 333221. 281520. 130266. 52240. 87 87 12 25 34 0.037 12475. 0.037 12475. 0.041 11558. 0.057 7455. 0.080 4194. 58 58 16 49 58 0.00 51701.75 151253.87 78025.87 52240.34 0.000 0.018 0.027 0.042 0.080 0 917 4102 3260 4194 .00 .42 .67 .91 .58 TOTAL TOTAL TOTAL TOTAL TOTAL 0 .000 0 .010 0 .020 0 .035 0 .050 756122. 756122. 686925. 348709. 138654. 25 25 37 56 75 0.040 0.040 0.042 0.056 0.078 32 32 23 24 82 0.00 69196.87 338215.81 210054.81 138654.75 0.000 0 0.018 1219 0.028 9385 0.041 8630 0 . 0 7 8 10852 .00 .09 .99 .42 .82 BLOCK MODEL: METHOD: RESERVES - BENCH CUTOFF BUCKG IDO 30088. 30088. 28869. 19483. 10852. 2 0 ' BLOCKS -• WITHIN ORE ZONE lDUTLINE INVERSE DISTANCE ABOVE CUTOFF GRADE TONS GRADE I N S I D E GRADE OUNCES TONS BOUNDARIES GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0 .000 0 .010 0 .020 0 .035 0 .050 422900. 422900. 409436. 225428. 81600. 31 31 31 25 00 0.042 0.042 0.043 0.055 0.077 17770. 17770. 17530. 12298. 6306. 50 50 93 87 77 0.00 13464.00 184008.06 143828.25 81600.00 0.000 0.018 0.028 0.042 0.077 0 239 5232 5992 6306 .00 .57 .05 . 10 . 77 6860. 6860. 6860. 6860. 6860. 0 .000 0 .010 0 .020 0 .035 0 .050 333221. 333221. 286252. 134542. 54296. 87 87 87 12 66 0.037 12467. 0.037 12467. 0.041 11634. 0.056 7496. 0.077 4179. 73 73 94 50 58 0.00 46969.00 151710.75 80245.44 54296.66 0.000 0.018 0.027 0.041 0.077 0 832 4138 3316 4179 .00 .79 .44 .92 .58 TOTAL TOTAL TOTAL TOTAL TOTAL 0 .000 0 .010 0 .020 0 .035 0 .050 756122. 756122. 695689. 359970. 135896. 25 25 25 37 69 0.040 0.040 0.042 0.055 0.077 24 24 87 37 36 0.00 60433.00 335718.87 224073.69 135896.69 0.000 0.018 0.028 0.042 0.077 BLOCK MODEL: METHOD: RESERVES BENCH CUTOFF BUCKG KRIGE 30238. 30238. 29165. 19795. 10486. 0 .00 1072 . 3 7 9370 . 5 0 9309 . 0 2 10486 . 3 6 2 0 ' BLOCKS -• WITHIN ORE ZONE lDUTLINE EXPLORATION KRIGED ESTIMATE ABOVE CUTOFF GRADE TONS GRADE I N S I D E GRADE OUNCES TONS BOUNDARIES GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0 .000 0 .010 0 .020 0 .035 0 .050 422900. 422492. 397326. 195383. 84031. 31 31 87 12 69 0.041 0.041 0.043 0.058 0.080 17383. 17379. 16949. 11294. 6744. 05 32 30 77 56 408.00 25165.44 201943.75 111351.44 84031.69 0.009 0.017 0.028 0.041 0.080 3 .73 430 . 0 2 5654 . 5 3 4550 .21 6744 . 5 6 6860. 6860. 6860. 6860. 6860. 0 .000 0 .010 0 .020 0 .035 0 .050 333221. 333221. 272201. 123330. 51685. 87 87 37 25 46 0.036 12140. 0.036 12140. 0.041 11070. 0.057 7070. 0.079 4089. 83 83 59 83 89 0.00 61020.50 148871.12 71644.75 51685.46 0.000 0.018 0.027 0.042 0.079 0 .00 1070 .23 3999 . 77 2 9 8 0 , .93 4 0 8 9 .89 TOTAL TOTAL TOTAL TOTAL TOTAL 0 .000 0 .010 0 .020 0 .035 0 .050 756122. 755714. 669528. 318713. 135717. 25 25 25 37 12 0.039 0.039 0.042 0.058 0.080 88 15 90 61 45 408.00 86186.00 350814.87 182996.25 135717.12 0.009 0.017 0.028 0.041 0.080 3,.73 1500. .25 9 6 5 4 , .29 7531, .16 10834, .45 29523. 29520. 28019. 18365. 10834. BLOCK MODEL: METHOD: RESERVES - BENCH CUTOFF BUCKG CPROB 2 0 ' BLOCKS - WITHIN ORE ZONE CONDITIONAL P R O B A B I L I T Y ABOVE CUTOFF TONS GRADE GRADE OUTLINE I N S I D E GRADE OUNCES TONS BOUNDARIES GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0. 0. 0. 0. 0. 000 010 020 035 050 422900. 416639. 346435. 189514. 99484. 31 12 31 06 50 0. 0. 0. 0. 0. 041 042 047 063 082 17383. 17330. 16212. 11947. 8206. 05 11 77 67 05 6261 70203 156921 90029 99484 .19 .81 .25 .56 .50 0 .008 0 .016 0 .027 0 .042 0 .082 52. ,94 1117, .34 4 2 6 5 , .10 3 7 4 1 , .62 8 2 0 6 , .05 6860. 6860. 6860. 6860. 6860. 0. 0. 0. 0. 0. 000 010 020 035 050 333221. 324719. 242154. 119879. 62046. 87 50 87 06 67 0. 0. 0. 0. 0. 036 1 2 1 4 0 . 037 1 2 0 6 8 . 045 1 0 7 8 0 . 063 7510. 082 5106. 83 81 61 72 02 8502 82564 122275 57832 62046 .37 .62 .81 .39 .67 0 .008 0 .016 0 .027 0 .042 0 .082 72. ,02 1 2 8 8 . ,20 3 2 6 9 . ,89 2 4 0 4 . ,70 5 1 0 6 . ,02 TOTAL TOTAL TOTAL TOTAL TOTAL 0. 0. 0. 0. 0. 000 010 020 035 050 756122. 741358. 588590. 309393. 161531. 25 62 19 19 12 0. 0. 0. 0. 0. 039 040 046 063 082 88 93 38 38 07 14763 152768 279197 147862 161531 .62 .44 .00 .06 . 12 0 .008 0 .016 0 .027 0 .042 0 .082 124, .95 2 4 0 5 , .55 7 5 3 5 . ,00 6 1 4 6 . .30 1 3 3 1 2 . ,07 29523. 29398. 26993. 19458. 13312. BLOCK MODEL: METHOD: RESERVES - BENCH CUTOFF BUCK60 BH4 60* BLOCKS - NO ORE OUTLINE BLASTHOLE POLYGONS ABOVE CUTOFF GRADE TONS GRADE I N S I D E GRADE OUNCES TONS BOUNDARIES GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0. 0. 0. 0. 0. 000 010 020 035 050 610972.06 447315.06 316069.56 171588.50 100759.69 0.032 0.042 0.053 0.075 0.098 .41 .36 .51 .23 .07 163657.00 131245.50 144481.06 70828.81 100759.69 0. 0. 0. 0. 0. 004 015 027 042 098 688 1934 3848 2952 9877 .05 .85 .28 .16 .07 6860. 6860. 6860. 6860. 6860. 0. 0. 0. 0. 0. 000 010 020 035 050 544076.37 357065.44 237374.50 127867.25 71024.62 0 . 0 2 6 14184 . 0 9 0 . 0 3 8 13504 . 8 2 0 . 0 4 9 11715 . 4 3 0.069 8809 .50 0.091 6457 . 7 0 187010.94 119690.94 109507.25 56842.62 71024.62 0. 0. 0. 0. 0. 004 015 027 041 091 679 1789 2905 2351 6457 .27 .39 .93* .80 .70 TOTAL TOTAL TOTAL TOTAL TOTAL 0. 0. 0. 0. 0. 000 1 1 5 5 0 4 8 . 0 0 010 804380.50 020 553444.06 035 299455.81 050 171784.37 0.029 0.040 0.051 0.072 0.095 350667.50 250936.44 253988.25 127671.44 171784.37 0. 0. 0. 0. 0. 004 1367 . 3 0 015 3724 . 2 4 027 6754 . 2 0 042 5303 . 9 5 095 16334 . 7 9 BLOCK MODEL: METHOD: RESERVES - BENCH CUTOFF BUCK60 BH60 19300 18612 16677 12829 9877 33484 32117 28392 21638 16334 .47 .18 .94 .73 .79 6 0 ' BLOCKS •- NO ORE OUTLINE BLASTHOLE POLYGON WEIGHTED ABOVE CUTOFF GRADE TONS GRADE I N S I D E GRADE: OUNCES TONS BOUNDARIES GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0. 0. 0. 0. 0. 000 010 020 035 050 610972.06 502901.00 385250.06 201062.44 99715.19 0 . 0 3 2 19300 . 1 7 0 . 0 3 7 18727 . 7 1 0 . 0 4 4 16893 . 5 4 0 . 0 5 9 11915 . 2 1 0.077 7687 . 0 4 108071.06 117650.94 184187.62 101347.25 99715.19 0. 0. 0. 0. 0. 005 016 027 042 077 572 1834 4978 4228 7687 .45 . 18 .32 . 17 .04 6860. 6860. 6860. 6860. 6860. 0. 0. 0. 0. 0. 000 010 020 035 050 544076.37 401308.94 287901.19 143534.44 61200.03 0 . 0 2 6 14183 . 9 2 0 . 0 3 4 13493 . 18 0 . 0 4 1 11805 . 4 5 0.056 7975 . 0 7 0.075 4 6 1 4 . 79 142767.44 113407.75 144366.75 82334.37 61200.03 0. 0. 0. 0. 0. 005 015 027 041 075 690 1687 3830 3360 4614 .74 . 73 .37 .28 .79 TOTAL TOTAL TOTAL TOTAL TOTAL 0. 0. 0. 0. 0. 000 1 1 5 5 0 4 8 . 0 0 010 904210.00 020 673151.31 035 344596.94 050 160915.25 0.029 0.036 0.043 0.058 0.076 250838.00 231058.69 328554.37 183681.69 160915.25 0. 0. 0. 0. 0. 005 1263 015 3521 027 8808 041 7588 076 12301 . 18 .91 .70 .45 .84 BLOCK MODEL: METHOD: RESERVES - BENCH CUTOFF BUCK60 BHKRIGE 33484 32220 28698 19890 12301 .07 .90 .99 .29 .84 6 0 ' BLOCKS - NO ORE OUTLINE BLASTHOLE K R I G I N G - " A C T U A L " ABOVE CUTOFF GRADE TONS GRADE I N S I D E GRADE OUNCES TONS BOUNDARIES GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0. 0. 0. 0. 0. 000 010 020 035 050 610972.06 521440.50 401896.50 209646.81 99715.19 0.033 0.037 0.044 0.060 0.079 .43 .30 .63 .84 .54 89531.56 119544.00 192249.69 109931.62 99715.19 0. 0. 0. 0. 0. 006 015 027 042 079 494 1808 5194 4652 7883 . 13 .67 .79 .30 .54 6860. 6860. 6860. 6860. 6860. 0. 0. 0. 0. 0. 000 010 020 035 050 544076.37 410888.81 297954.31 134786.94 65851.19 0 . 0 2 7 14425 . 9 0 0 . 0 3 3 13763 . 9 5 0 . 0 4 1 12071 . 7 9 0.057 7659 . 8 7 0.073 4 7 9 9 .26 133187.56 112934.50 163167.37 68935.75 65851.19 0. 0. 0. 0. 0. 005 015 027 041 073 661 1692 4411 2860 4799 .96 . 16 .92 .61 .26 TOTAL TOTAL TOTAL TOTAL TOTAL 0. 0. 0. 0. 0. 000 1 1 5 5 0 4 8 . 0 0 010 932329.37 020 699850.81 035 344433.75 050 165566.44 0.030 0.036 0.043 0.059 0.077 222718.62 232478.56 355417.06 178867.31 165566.44 0. 0. 0. 0. 0. 005 1156 .07 015 3500, .83 027 9606 .71 042 7512, . 90 077 1 2 6 8 2 , . 8 0 20033 19539 17730 12535 7883 34459 33303 29802 20195 12682 .32 .25 .42 .71 .80 BLOCK MODEL: METHOD: RESERVES - BENCH CUTOFF BUCK60 EX4 6 0 ' BLOCKS -• NO ORE OUTLINE EXPLORATION POLYGONS ABOVE CUTOFF GRADE TONS GRADE I N S I D E GRADE OUNCES TONS BOUNDARIES GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0. 0. 0. 0. 0. 000 010 020 035 050 610972.06 397620.62 278762.00 142897.94 78939.87 0.027 16613. 0.039 15594. 0.050 13894. 0.072 10350. 0.097 7620. 69 17 85 73 71 213351.44 118858.62 135864.06 63958.06 78939.87 0 .005 0 .014 0 .026 0 .043 0 .097 1019. 1699. 3544. 2730. 7620. 52 32 12 02 71 6860. 6860. 6860. 6860. 6860. 0. 0. 0. 0. 0. 000 010 020 035 050 544076.37 307175.12 210397.50 114125.75 67515.81 0.025 13460. 0.041 12456. 0.053 11067. 0.074 8479. 0.098 6614. 14 24 75 98 96 236901.25 96777.62 96271.75 46609.94 67515.81 0 .004 0 .014 0 .027 0.040 0 .098 1003. 1388. 2587. 1865. 6614. 89 49 77 02 96 TOTAL TOTAL TOTAL TOTAL TOTAL 0. 0. 0. 0. 0. 000 010 020 035 050 1155048.00 704795.81 489159.56 257023.75 146455.69 0.026 0.040 0.051 0.073 0.097 80 41 60 71 67 450252.19 215636.25 232135.81 110568.06 146455.69 0 .004 0 .014 0 .026 0 .042 0 .097 2023. 3087. 6131. 4595. 14235. 39 81 89 04 67 BLOCK MODEL: METHOD: RESERVES - BENCH CUTOFF BUCK60 EX60 30073. 28050. 24962. 18830. 14235. 6 0 ' BLOCKS - NO ORE OUTLINE EXPLORATION POLYGON WEIGHTED ABOVE CUTOFF GRADE TONS GRADE I N S I D E GRADE OUNCES TONS BOUNDARIES GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0. 0. 0. 0. 0. 000 010 020 035 050 610972.06 460779.06 311108.25 145068.50 64545.63 0.027 16613. 0.034 15756. 0.044 13556. 0.063 9139. 0.090 5805. 35 59 84 47 59 150193.00 149670.81 166039.75 80522.81 64545.63 0 0 0 0 0 .006 .015 .027 .041 .090 856. 2199. 4417. 3333. 5805. 76 74 37 88 59 6860. 6860. 6860. 6860. 6860. 0. 0. 0. 0. 0. 000 010 020 035 050 544076.37 384776.81 232152.06 113032.31 57544.34 0.025 13459. 0.033 12771. 0.045 10530. 0.065 7304. 0.085 4911. 68 87 01 92 15 159299.56 152624.75 119119.75 55487.97 57544.34 0 .004 0 .015 0 .027 0 .043 0 .085 687. 2241. 3225. 2393. 4911. 82 86 09 77 15 TOTAL TOTAL TOTAL TOTAL TOTAL 0. 0. 0. 0. 0. 000 1 1 5 5 0 4 8 . 0 0 010 845555.87 020 543260.37 035 258100.87 050 122089.94 0.026 0.034 0.044 0.064 0.088 02 46 86 40 75 309492.12 302295.50 285159.50 136010.94 122089.94 0 .005 0 .015 0 .027 0 .042 0 .088 1544. 4441. 7642. 5727. 10716. 57 60 46 65 75 BLOCK MODEL: METHOD: RESERVES - BENCH CUTOFF BUCK60 IDIO 30073. 28528. 24086. 16444. 10716. 6 0 ' BLOCKS -• NO ORE OUTLINE INVERSE DISTANCE ABOVE CUTOFF GRADE TONS GRADE I N S I D E GRADE OUNCES TONS BOUNDARIES GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0. 0. 0. 0. 0. 000 010 020 035 050 610972.06 428334.87 310781.87 137838.75 64545.63 0.026 15911. 0.035 14907. 0.042 13167. 0.063 8704. 0.087 5623. 70 05 20 79 46 182637.19 117553.00 172943.12 73293.06 64545.63 0 0 0 0 0 .006 .015 .026 .042 .087 1004. 1739. 4462. 3081. 5623. 65 86 40 34 46 6860. 6860. 6860. 6860. 6860. 0. 0. 0. 0. 0. 000 010 020 035 050 544076.37 330904.44 214134.81 94525.44 45157.46 0.023 12536. 0.035 11450. 0.046 9787. 0.070 6572. 0.099 4482. 46 12 45 90 46 213171.94 116769.62 119609.37 49367.98 45157.46 0 .005 0 .014 0 .027 0 .042 0 .099 1086. 1662. 3214. 2090. 4482. 34 68 55 43 46 TOTAL TOTAL TOTAL TOTAL TOTAL 0. 0. 0. 0. 0. 000 010 020 035 050 1155048.00 759239.37 524916.69 232364.25 109703.06 0.025 0.035 0.044 0.066 0.092 16 18 64 70 91 395808.62 234322.69 292552.44 122661.19 109703.06 0 .005 0 .015 0 .026 0 .042 0 .092 2090. 3402. 7676. 5171. 10105. 97 54 94 79 91 28448. 26357. 22954. 15277. 10105. BLOCK MODEL: METHOD: RESERVES - BENCH CUTOFF BUCK60 ID5 6 0 ' BLOCKS - NO ORE OUTLINE INVERSE DISTANCE I N S I D E 1 GRADE: ABOVE CUTOFF GRADE TONS GRADE OUNCES TONS BOUNDARIES GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0 .000 0 .010 0 .020 0 .035 0 .050 610972. 450774. 344139. 156100. 68217. 06 87 94 81 62 0.027 16617. 0.035 15656. 0.041 14132. 0.060 9315. 0.084 5718. 16 65 25 15 74 160197. 106634. 188039. 87883. 68217. 19 94 12 19 62 0. 0. 0. 0. 0. 006 014 026 041 084 960 1524 4817 3596 5718 .51 .40 .10 .41 .74 6860. 6860. 6860. 6860. 6860. 0 .000 0 .010 0 .020 0 .035 0 .050 544076. 361210. 222147. 94525. 41485. 37 69 94 44 46 0.023 12448. 0.032 11485. 0.043 9522. 0.065 6157. 0.095 3961. 25 59 51 70 06 182865. 139062. 127622. 53039. 41485. 69 75 50 98 46 0. 0. 0. 0. 0. 005 014 026 041 095 962 1963 3364 2196 3961 .66 .08 .81 .64 .06 TOTAL TOTAL TOTAL TOTAL TOTAL 0 .000 0 .010 0 .020 0 .035 0 .050 1155048. 811985. 566287. 250626. 109703. 00 62 87 31 06 0.025 0.033 0.042 0.062 0.088 41 25 76 85 79 343062. 245697. 315661. 140923. 109703. 37 75 56 25 06 0. 0. 0. 0. 0. 006 014 026 041 088 1923 3487 8181 5793 9679 .16 .49 .91 .06 .79 BLOCK MODEL: METHOD: BUCK60 ID3 RESERVES - BENCH CUTOFF 29065. 27142. 23654. 15472. 9679. 6 0 ' BLOCKS -• NO ORE OUTLINE INVERSE DISTANCE ABOVE CUTOFF GRADE TONS GRADE I N S I D E I GRADE! BOUNDARIES OUNCES TONS GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0 .000 0 .010 0 .020 0 .035 0 .050 610972. 477033. 361292. 156247. 79233. 06 81 31 75 62 0.028 17326. 0.034 16447. 0.041 14754. 0.060 9445. 0.078 6219. 97 20 73 33 13 133938. 115741. 205044. 77014. 79233. 25 50 56 12 62 0. 0. 0. 0. 0. 007 015 026 042 078 879 1692 5309 3226 6219 .78 .46 .41 .20 .13 6860. 6860. 6860. 6860. 6860. 0 .000 0 .010 0 .020 0 .035 0 .050 544076. 383552. 226897. 86055. 48144. 37 75 00 37 02 0.023 12592. 0.030 11677. 0.042 9432. 0.065 5572. 0.084 4023. 44 05 75 69 38 160523. 156655. 140841. 37911. 48144. 62 75 62 36 02 0. 0. 0. 0. 0. 006 014 027 041 084 915 2244 3860 1549 4023 .39 .30 .05 .31 .38 TOTAL TOTAL TOTAL TOTAL TOTAL 0 .000 0 .010 0 .020 0 .035 0 .050 1155048. 860586. 588189. 242303. 127377. 00 62 37 12 62 0.026 0.033 0.041 0.062 0.080 41 25 49 02 51 294461. 272397. 345886. 114925. 127377. 37 25 25 50 62 0. 0. 0. 0. 0. 006 014 027 042 080 1795 3936 9169 4775 10242 . 16 .76 .46 .52 .51 BLOCK MODEL: METHOD: BUCK60 ID2 RESERVES - BENCH CUTOFF 29919. 28124. 24187. 15018. 10242. 6 0 ' BLOCKS - NO ORE OUTLINE INVERSE DISTANCE ABOVE CUTOFF GRADE TONS GRADE I N S I D E I GRADE1 BOUNDARIES OUNCES TONS GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0 .000 0 .010 0 .020 0 .035 0 .050 610972. 514863. 379423. 156247. 86577. 06 56 81 75 62 0.029 17832. 0.033 17185. 0.040 15270. 0.060 9372. 0.075 6513. 84 22 69 76 18 96108. 135439. 223176. 69670. 86577. 50 75 06 12 62 0. 0. 0. 0. 0. 007 014 026 041 075 647 1914 5897 2859 6513 .62 .53 .93 .58 .18 6860. 6860. 6860. 6860. 6860. 0 0 0 0 0 .000 .010 .020 .035 .050 544076. 396918. 237913. 92942. 49090. 37 87 06 44 58 0.024 12820. 0.030 11897. 0.040 9620. 0.060 5616. 0.078 3849. 79 27 65 09 69 147157. 159005. 144970. 43851. 49090. 50 81 62 86 58 0. 0. 0. 0. 0. 006 014 028 040 078 923 2276 4004 1766 3849 .52 .62 .55 .41 .69 TOTAL TOTAL TOTAL TOTAL TOTAL 0 .000 0 .010 0 .020 0 .035 0 .050 1155048. 911782. 617336. 249190. 135668. 00 44 87 19 19 0.027 0.032 0.040 0.060 0.076 62 50 34 86 86 243265. 294445. 368146. 113522. 135668. 56 56 69 00 19 0. 0. 0. 0. 0. 006 1571 014 4191 027 9902 041 4625 076 10362 .12 .16 .48 .99 .86 30653. 29082. 24891. 14988. 10362. BLOCK MODEL: METHOD: RESERVES - BENCH CUTOFF BUCK60 IDI 6 0 ' BLOCKS - NO ORE OUTLINE INVERSE DISTANCE ABOVE CUTOFF GRADE TONS GRADE I N S I D E GRADE OUNCES TONS BOUNDARIES GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0. 0. 0. 0. 0. 000 010 020 035 050 610972.06 552677.00 400754.06 163591.75 84521.31 0.030 18457. 0.033 18093. 0.040 15853. 0.058 9569. 0.074 6278. 41 99 91 28 91 58295.06 151922.94 237162.31 79070.44 84521.31 0. 0. 0. 0. 0. 006 015 026 042 074 363 2240 6284 3290 6278 .42 .08 .63 .36 .91 6860. 6860. 6860. 6860. 6860. 0. 0. 0. 0. 0. 000 010 020 035 050 544076.37 432659.69 245991.44 110355.87 37666.57 0.024 13224. 0.029 12511. 0.040 9846. 0.056 6157. 0.082 3093. 52 52 07 63 16 111416.69 186668.25 135635.56 72689.25 37666.57 0. 0. 0. 0. 0. 006 014 027 042 082 713 2665 3688 3064 3093 .00 .45 .43 .47 .16 TOTAL TOTAL TOTAL TOTAL TOTAL 0. 0. 0. 0. 0. 000 1 1 5 5 0 4 8 . 0 0 010 985336.75 020 646745.56 035 273947.62 050 122187.87 0.027 31681. 0.031 30605. 0.040 25699. 0.057 15726. 0.077 9372. 93 51 98 91 07 169711.25 338591.19 372797.94 151759.75 122187.87 0. 0. 0. 0. 0. 006 014 027 042 077 1076 4905 9973 6354 9372 .41 .53 .07 .85 .07 BLOCK MODEL: METHOD: RESERVES - BENCH CUTOFF BUCK60 IDO 6 0 ' BLOCKS -• NO ORE OUTLINE INVERSE DISTANCE ABOVE CUTOFF GRADE TONS GRADE I N S I D E GRADE OUNCES TONS BOUNDARIES GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0. 0. 0. 0. 0. 000 010 020 035 050 610972.06 561245.00 416143.81 163575.37 73146.25 0.031 18924. 0.033 18604. 0.039 16338. 0.059 9622. 0.079 5774. 66 24 87 45 70 49727.06 145101.19 252568.44 90429.12 73146.25 0. 0. 0. 0. 0. 006 016 027 043 079 320 2265 6716 3847 5774 .41 .37 .43 . 75 .70 6860. 6860. 6860. 6860. 6860. 0. 0. 0. 0. 0. 000 010 020 035 050 544076.37 437718.87 250642.62 103925.75 51408.02 0.025 13591. 0.029 12845. 0.041 10166. 0.059 6094. 0.076 3889. 05 43 66 39 53 106357.50 187076.25 146716.87 52517.73 51408.02 0. 0. 0. 0. 0. 007 014 028 042 076 745 2678 4072 2204 3889 .62 .77 .28 .86 .53 TOTAL TOTAL TOTAL TOTAL TOTAL 0. 0. 0. 0. 0. 000 1 1 5 5 0 4 8 . 0 0 010 998963.94 020 666786.50 035 267501.19 050 124554.25 0.028 0.031 0.040 0.059 0.078 70 68 54 84 23 156084.06 332177.44 399285.31 142946.94 124554.25 0. 0. 0. 0. 0. 007 1066 . 0 2 015 4 9 4 4 . 14 027 10788 . 70 042 6052 . 6 1 078 9664 . 2 3 BLOCK MODEL: METHOD: RESERVES - BENCH CUTOFF BUCK60 KRIGE 32515. 31449. 26505. 15716. 9664. 6 0 ' BLOCKS - NO ORE OUTLINE EXPLORATION K R I G I N G ABOVE CUTOFF GRADE TONS GRADE I N S I D E GRADE OUNCES TONS BOUNDARIES GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0. 0. 0. 0. 0. 000 010 020 035 050 610972.06 533598.94 379864.44 172388.19 62587.23 0.030 18042. 0.033 17562. 0.040 15232. 0.057 9868. 0.084 5251. 68 14 35 54 24 77373.12 153734.50 207476.25 109800.94 62587.23 0. 0. 0. 0. 0. 006 015 026 042 084 480 2329 5363 4617 5251 6860. 6860. 6860. 6860. 6860. 0. 0. 0. 0. 0. 000 010 020 035 050 544076.37 419407.81 251687.12 101706.25 37682.89 0.024 12860. 0.029 12072. 0.038 9653. 0.056 5744. 0.082 3075. 89 50 65 20 67 124668.56 167720.69 149980.87 64023.36 37682.89 0. 0. 0. 0. 0. 006 014 026 042 082 788 . 3 8 2418 . 8 6 3909 . 4 5 2668, .53 3075 .67 TOTAL TOTAL TOTAL TOTAL TOTAL 0. 0. 0. 0. 0. 000 1 1 5 5 0 4 8 . 0 0 010 953006.81 020 631551.62 035 274094.50 050 100270.12 0.027 0.031 0.039 0.057 0.083 56 65 00 74 91 202041.19 321455.19 357457.12 173824.37 100270.12 0. 0. 0. 0. 0. 006 015 026 042 083 1268 .91 4 7 4 8 , .65 9 2 7 3 , .26 7285 .83 8 3 2 6 , .91 30903. 29634. 24886. 15612. 8326. .54 . 79 .81 .30 .24 248 BLOCK MODEL: METHOD: RESERVES - BENCH CUTOFF BUCK60 CPROB 6 0 ' BLOCKS - NO ORE OUTLINE CONDITIONAL P R O B A B I L I T Y ABOVE CUTOFF GRADE TONS GRADE I N S I D E GRADE OUNCES TONS BOUNDARIES GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0. 0. 0. 0. 0. 000 010 020 035 050 610972. 497144. 340912. 170150. 86274. 06 81 94 50 50 0. 0. 0. 0. 0. 030 18042 . 6 8 035 17409 . 6 2 044 15076 . 7 1 062 10512 . 0 4 081 7022 . 4 3 113827. 156231. 170762. 83876. 86274. 25 87 44 00 50 0. 0. 0. 0. 0. 006 015 027 042 081 633 2332 4564 3489 7022 .06 .91 .67 .61 .43 6860. 6860. 6860. 6860. 6860. 0. 0. 0. 0. 0. 000 010 020 035 050 544076. 382812. 231804. 106763. 52001. 37 81 56 75 42 0. 0. 0. 0. 0. 024 12860 . 8 9 031 11976 . 1 2 042 9762 . 7 7 060 6443 . 9 5 080 4166 . 0 2 161263. 151008. 125040. 54762. 52001. 56 25 81 33 42 0. 0. 0. 0. 0. 005 015 027 042 080 884 2213 3318 2277 4166 .77 .35 .82 .93 .02 TOTAL TOTAL TOTAL TOTAL TOTAL 0. 0. 0. 0. 0. 000 010 020 035 050 1155048. 879957. 572717. 276914. 138275. 00 69 56 31 87 0. 0. 0. 0. 0. 027 033 043 061 081 275090. 307240. 295803. 138638. 138275. 31 12 25 44 87 0. 0. 0. 0. 0. 006 015 027 042 081 1517 4546 7883 5767 11188 .82 .25 .49 .54 .45 30903 29385 24839 16956 11188 .56 .74 .49 .00 .45 249 BLOCK MODEL: METHOE I: RESERVES - BENCH CUTOFF BUCK60G BH4 6 0 ' BLOCKS -• WITHIN ORE ZONE 1DUTLINE BLASTHOLE POLYGONS ABOVE CUTOFF GRADE TONS GRADE I N S I D E GRADE OUNCES TONS BOUNDARIES GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0. 0. 0. 0. 0. 000 010 020 035 050 422900.31 374397.25 287999.12 163934.44 97691.56 0.041 0.045 0.054 0.075 0.098 17212. 16965. 15665. 12337. 9568. 70 49 06 18 37 48503.06 86398.12 124064.69 66242.87 97691.56 0.005 0.015 0.027 0.042 0.098 247. 1300. 3327. 2768. 9568. 21 43 88 82 37 6860. 6860. 6860. 6860. 6860. 0. 0. 0. 0. 0. 000 010 020 035 050 333221.87 290479.75 212845.50 120768.00 68886.75 0.037 0.041 0.051 0.070 0.091 12279. 12054. 10886. 8414. 6263. 08 28 00 78 66 42742.12 77634.25 92077.50 51881.25 68886.75 0.005 0.015 0.027 0.041 0.091 224. 1168. 2471. 2151. 6263. 80 28 22 11 66 TOTAL TOTAL TOTAL TOTAL TOTAL 0. 0. 0. 0. 0. 000 010 020 035 050 756122.25 664877.06 500844.69 284702.50 166578.31 0.039 0.044 0.053 0.073 0.095 29491. 29019. 26551. 20751. 15832. 80 77 06 98 03 91245.19 164032.37 216142.19 118124.19 166578.31 0.005 472. 0.015 2468. 0.027 5799. 0.042 4919. 0.095 15832. 04 70 09 95 03 BLOCK MODEL: METHOD: RESERVES - BENCH CUTOFF BUCK60G BH60 6 0 ' BLOCKS -• WITHIN ORE ZONE 1DUTLINE BLASTHOLE POLYGON WEIGHTED ABOVE CUTOFF GRADE TONS GRADE I N S I D E GRADE OUNCES TONS BOUNDARIES GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0. 0. 0. 0. 0. 000 010 020 035 050 422900.31 409550.56 357718.19 191906.94 108674.87 0.041 0.042 0.045 0.061 0.076 17212. 17141. 16250. 11708. 8233. 47 68 20 68 92 13349.75 51832.37 165811.25 83232.06 108674.87 0.005 0.017 0.027 0.042 0.076 70. 891. 4541. 3474. 8233. 79 49 51 77 92 6860. 6860. 6860. 6860. 6860. 0. 0. 0. 0. 0. 000 010 020 035 050 333221.87 324164.25 255701.81 143860.81 69637.44 0.037 12278. 0.038 12221. 0.044 11126. 0.056 8117. 0.073 5085. 81 14 71 33 44 9057.62 68462.44 111841.00 74223.37 69637.44 0.006 0.016 0.027 0.041 0.073 57. 1094. 3009. 3031. 5085. 66 43 38 89 44 TOTAL TOTAL TOTAL TOTAL TOTAL 0. 0. 0. 0. 0. 000 010 020 035 050 756122.25 733714.87 613420.06 335767.81 178312.37 0.039 0.040 0.045 0.059 0.075 28 83 91 02 37 22407.37 120294.81 277652.25 157455.44 178312.37 0.006 128. 0.017 1985. 0.027 7550. 0.041 6506. 0.075 13319. 45 92 89 65 37 BLOCK MODEL: METHOD: RESERVES - BENCH CUTOFF BUCK60G BHKRIGE 29491. 29362. 27376. 19826. 13319. 6 0 ' BLOCKS -• WITHIN ORE ZONE 1DUTLINE BLASTHOLE K R I G I N G - " A C T U A L " ABOVE CUTOFF GRADE TONS GRADE I N S I D E GRADE OUNCES TONS BOUNDARIES GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0. 0. 0. 0. 0. 000 010 020 035 050 422900.31 410121.75 375670.19 200850.31 104986.56 0.042 0.043 0.046 0.062 0.079 17779. 17696. 17125. 12362. 8275. 30 84 20 94 78 12778.56 34451.56 174819.87 95863.75 104986.56 0.006 0.017 0.027 0.043 0.079 82. 571. 4762. 4087. 8275. 46 64 26 16 78 6860. 6860. 6860. 6860. 6860. 0. 0. 0. 0. 0. 000 010 020 035 050 333221.87 324768.12 270618.31 136663.69 70306.56 0.037 12403. 0.038 12344. 0.042 11481. 0.057 7848. 0.072 5076. 29 15 96 04 20 8453.75 54149.81 133954.62 66357.12 70306.56 0.007 0.016 0.027 0.042 0.072 59. 862. 3633. 2771. 5076. 14 18 92 85 20 TOTAL TOTAL TOTAL TOTAL TOTAL 0. 0. 0. 0. 0. 000 010 020 035 050 756122.25 734889.87 646288.56 337514.06 175293.19 0.040 0.041 0.044 0.060 0.076 59 00 17 98 98 21232.37 88601.31 308774.50 162220.87 175293.19 0.007 0.016 0.027 0.042 0.076 141. 1433. 8396. 6859. 13351. 59 82 19 00 98 30182. 30041. 28607. 20210. 13351. BLOCK MODEL: METHOD: RESERVES - BENCH CUTOFF BUCK60G EX4 6 0 ' BLOCKS - WITHIN ORE ZONE EXPLORATION POLYGONS ABOVE CUTOFF GRADE TONS GRADE OUTLINE I N S I D E GRADE OUNCES TONS BOUNDARIES GRADE OUNCES 0.006 0 . 014 0 . 026 0 . 043 0 . 096 324. 1415. 3355. 2619. 7437. 36 63 19 04 31 6840. 6840. 6840. 6840. 6840. 0. 0. 0. 0. 0. 000 010 020 035 050 422900. 366269. 267811. 138834. 77438. 31 87 31 25 37 0.036 0.040 0.050 0.072 0.096 15151. 14827. 13411. 10056. 7437. 52 16 53 34 31 56630.44 98458.56 128977.06 61395.87 77438.37 6860. 6860. 6860. 6860. 6860. 0. 0. 0. 0. 0. 000 010 020 035 050 333221. 287933. 200018. 107206. 63109. 87 87 00 12 46 0.036 12055. 0.041 11818. 0.053 10562. 0.075 8069. 0.100 6294. 03 11 17 48 95 45288.00 87915.87 92811.87 44096.66 63109.46 0. 0. 0. 0. 0. 005 014 027 040 100 236. 1255. 2492. 1774. 6294. 92 94. 69 54 95 TOTAL TOTAL TOTAL TOTAL TOTAL 0. 0. 0. 0. 0. 000 010 020 035 050 756122. 654203. 467829. 246040. 140547. 25 81 31 37 87 0.036 0.041 0.051 0.074 0.098 55 28 71 83 26 101918.44 186374.50 221788.94 105492.50 140547.87 0. 0. 0. 0. 0. 006 014 026 042 098 561. 2671. 5847. 4393. 13732. 28 57 88 57 26 BLOCK MODEL: METHOD: RESERVES - BENCH CUTOFF BUCK60G EX60 27206. 26645. 23973. 18125. 13732. 6 0 ' BLOCKS -• WITHIN ORE ZONE EXPLORATION POLYGON WEIGHTED ABOVE CUTOFF GRADE TONS GRADE OUTLINE I N S I D E GRADE OUNCES TONS BOUNDARIES GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0. 0. 0. 0. 0. 000 010 020 035 050 422900. 402532. 308741. 153538. 64839. 31 94 87 62 39 0.036 15151. 0.037 14986. 0.044 13577. 0.062 9475. 0.090 5835. 29 57 85 70 53 20367.37 93791.06 155203.25 88699.19 64839.39 0. 0. 0. 0. 0. 008 015 026 041 090 164. 1408. 4102. 3640. 5835. 72 72 15 17 53 6860. 6860. 6860. 6860. 6860. 0. 0. 0. 0. 0. 000 010 020 035 050 333221. 328587. 230977. 109539. 55830. 87 00 06 87 74 0.036 0.037 0.046 0.066 0.087 12054. 12022. 10513. 7180. 4866. 71 81 14 96 56 4634.87 97609.94 121437.19 53709.13 55830.74 0. 0. 0. 0. 0. 007 015 027 043 087 31. 1509. 3332. 2314. 4866. 89 67 18 40 56 TOTAL TOTAL TOTAL TOTAL TOTAL 0. 0. 0. 0. 0. 000 010 020 035 050 756122. 731120. 539718. 263078. 120670. 25 00 94 50 12 0.036 0.037 0.045 0.063 0.089 27206. 27009. 24091. 16656. 10702. 00 39 00 65 09 25002.25 191401.06 276640.44 142408.37 120670.12 0. 0. 0. 0. 0. 008 196. 015 2918. 027 7434. 042 5954. 089 1 0 7 0 2 . 61 39 35 55 09 BLOCK MODEL: METHOD: RESERVES - BENCH CUTOFF BUCK60G IDIO 6 0 ' BLOCKS -• WITHIN ORE ZONE INVERSE DISTANCE ABOVE CUTOFF GRADE TONS GRADE OUTLINE I N S I D E GRADE OUNCES TONS BOUNDARIES GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0. 0. 0. 0. 0. 000 010 020 035 050 422900. 404719. 319007. 140564. 67352. 31 81 12 19 62 0.035 14955. 0.037 14843. 0.042 13524. 0.063 8857. 0.086 5784. 87 20 34 14 12 18180.50 85712.69 178442.94 73211.56 67352.62 0. 0. 0. 0. 0. 006 015 026 042 086. 112. 1318. 4667. 3073. 5784. 66 86 20 03 12 6860. 6860. 6860. 6860. 6860. 0. 0. 0. 0. 0. 000 010 020 035 050 333221. 313083. 231466. 98083. 51359. 87 00 62 19 06 0.035 11797. 0.037 11677. 0 . 0 4 5 10394. 0.069 6806. 0.094 4851. 02 21 92 46 53 20138.87 81616.37 133383.44 46724.12 51359.06 0. 0. 0. 0. 0. 006 016 027 042 094 119. 1282. 3588. 1954. 4851. 81 29 45 94 53 TOTAL TOTAL TOTAL TOTAL TOTAL 0. 0. 0. 0. 0. 000 010 020 035 050 756122. 717802. 550473. 238647. 118711. 25 87 81 44 69 0.035 0.037 0.043 0.066 0.090 89 41 27 61 65 38319.37 167329.06 311826.37 119935.75 118711.69 0. 0. 0. 0. 0. 006 232. 016 2601. 026 8255. 042 5027. 090 1 0 6 3 5 . 48 14 66 96 65 26752. 26520. 23919. 15663. 10635. BLOCK MODEL: METHOD: RESERVES - BENCH CUTOFF BUCK60G ID5 6 0 ' BLOCKS - WITHIN ORE ZONE INVERSE DISTANCE ABOVE CUTOFF GRADE TONS GRADE OUTLINE I N S I D E GRADE OUNCES TONS BOUNDARIES GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0. 0. 0. 0. 0. 000 010 020 035 050 422900.31 406710.87 354764.31 172894.12 74223.37 0.037 0.038 0.042 0.058 0.082 15764. 15642. 14815. 10059. 6068. 52 05 45 79 00 16189.44 51946.56 181870.19 98670.75 74223.37 0.008 0.016 0.026 0.040 0.082 122. 826. 4755. 3991. 6068. 47 61 66 79 00 6860. 6860. 6860. 6860. 6860. 0. 0. 0. 0. 0. 000 010 020 035 050 333221.87 318256.44 240328.37 98638.06 47115.86 0.035 11749. 0.037 11653. 0.043 10355. 0.066 6537. 0.093 4366. 78 23 75 68 13 14965.44 77928.06 141690.31 51522.20 47115.86 0.006 0.017 0.027 0.042 0.093 96. 1297. 3818. 2171. 4366. 54 48 07 55 13 TOTAL TOTAL TOTAL TOTAL TOTAL 0. 0. 0. 0. 0. 000 010 020 035 050 756122.25 724967.31 595092.69 271532.25 121339.25 0.036 0.038 0.042 0.061 0.086 30 29 20 48 14 31154.94 129874.62 323560.44 150193.00 121339.25 0.007 0.016 0.026 0.041 0.086 219. 2124. 8573. 6163. 10434. 01 09 71 35 14 BLOCK MODEL: METHOD: RESERVES - BENCH CUTOFF BUCK60G ID3 27514. 27295. 25171. 16597. 10434. 6 0 ' BLOCKS - WITHIN ORE ZONE INVERSE DISTANCE ABOVE CUTOFF GRADE TONS GRADE OUTLINE I N S I D E GRADE OUNCES TONS BOUNDARIES GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0. 0. 0. 0. 0. 000 010 020 035 050 422900.31 410382.87 373891.31 179112.06 84766.06 0.039 0.040 0.042 0.059 0.078 16487. 16381. 15794. 10499. 6594. 60 54 69 04 30 12517.44 36491.56 194779.25 94346.00 84766.06 0.008 0.016 0.027 0.041 0.078 106. 586. 5295. 3904. 6594. 06 85 65 74 30 6860. 6860. 6860. 6860. 6860. 0. 0. 0. 0. 0. 000 010 020 035 050 333221.87 323903.12 258574.19 96271.69 51669.14 0.036 11894. 0.037 11834. 0.042 10738. 0.065 6261. 0.085 4405. 65 41 26 96 49 9318.75 65328.94 162302.50 44602.55 51669.14 0.006 0.017 0.028 0.042 0.085 60. 1096. 4476. 1856. 4405. 24 15 30 47 49 TOTAL TOTAL TOTAL TOTAL TOTAL 0. 0. 0. 0. 0. 000 010 020 035 050 756122.25 734286.06 632465.56 275383.75 136435.25 0.038 0.038 0.042 0.061 0.081 26 96 96 01 80 21836.19 101820.50 357081.81 138948.50 136435.25 0.008 0.017 0.027 0.041 0.081 BLOCK MODEL: METHOD: RESERVES - BENCH CUTOFF BUCK60G ID2 28382. 28215. 26532. 16761. 10999. 6 0 ' BLOCKS -• WITHIN ORE ZONE INVERSE DISTANCE ABOVE CUTOFF GRADE TONS GRADE OUTLINE I N S I D E GRADE OUNCES TONS 1 6 6 . 30 1 6 8 3 . 00 9771 . 95 5 7 6 1 . 21 1 0 9 9 9 . 80 BOUNDARIES GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0. 0. 0. 0. 0. 000 010 020 035 050 422900.31 419228.31 388889.44 187826.94 93464.62 0.040 0.040 0.042 0.058 0.075 16946. 16911. 16434. 10830. 7003. 35 39 25 75 05 3672.00 30338.87 201062.50 94362.31 93464.62 0.010 0.016 0.028 0.041 0.075 34. 477. 5603. 3827. 7003. 96 14 50 71 05 6860. 6860. 6860. 6860. 6860. 0. 0. 0. 0. 0. 000 010 020 035 050 333221.87 328423.81 266619.94 117716.19 54117.14 0.036 12071. 0.037 12029. 0.041 10974. 0.059 6897. 0.081 4371. 93 16 40 91 73 4798.06 61803.87 148903.75 63599.05 54117.14 0.009 0.017 0.027 0.040 0.081 42. 1054. 4076. 2526. 4371. 77 77 49 18 73 TOTAL TOTAL TOTAL TOTAL TOTAL 0. 0. 0. 0. 0. 000 010 020 035 050 756122.25 747652.12 655509.37 305543.12 147581.81 0.038 0.039 0.042 0.058 0.077 29 56 65 67 79 8470.12 92142.75 349966.25 157961.31 147581.81 0.009 77. 0.017 1531. 0.028 9679. 0.040 6353. 0.077 11374. 72 91 98 88 79 29018. 28940. 27408. 17728. 11374. BLOCK MODEL: METHOD: RESERVES - BENCH CUTOFF BUCK60G IDI 6 0 ' BLOCKS - WITHIN ORE ZONE INVERSE DISTANCE ABOVE CUTOFF GRADE TONS GRADE OUTLINE I N S I D E GRADE OUNCES TONS BOUNDARIES GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0 .000 0 .010 0 .020 0 .035 0 .050 422900.31 422900.31 402581.94 206856.06 95635.19 0.041 0.041 0.043 0.056 0.073 17483. 17483. 17144. 11518. 7026. 48 48 42 27 53 0.00 20318.37 195725.87 111220.87 95635.19 0.000 0.017 0.029 0.040 0.073 0. 339. 5626. 4491. 7026. 00 06 14 75 53 6860. 6860. 6860. 6860. 6860. 0 .000 0 .010 0 .020 0 .035 0 .050 333221.87 333221.87 295049.37 125713.00 44455.70 0.037 12375. 0.037 12375. 0.040 11726. 0.057 7162. 0.084 3725. 63 63 40 48 58 0.00 38172.50 169336.37 81257.25 44455.70 0.000 0.017 0.027 0.042 0.084 0. 649. 4563. 3436. 3725. 00 23 92 90 58 TOTAL TOTAL TOTAL TOTAL TOTAL 0 .000 0 .010 0 .020 0 .035 0 .050 756122.25 756122.25 697631.31 332569.06 140090.94 0.039 0.039 0.041 0.056 0.077 12 12 82 76 11 0.00 58490.94 365062.25 192478.12 140090.94 0.000 0. 0.017 988. 0.028 10190. 0.041 7928. 0.077 10752. 00 30 06 65 11 BLOCK MODEL: METHOE ): RESERVES - BENCH CUTOFF BUCK60G IDO 29859. 29859. 28870. 18680. 10752. 6 0 ' BLOCKS -• WITHIN ORE ZONE INVERSE DISTANCE ABOVE CUTOFF GRADE TONS GRADE OUTLINE I N S I D E GRADE OUNCES TONS BOUNDARIES GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0 .000 0 .010 0 .020 0 .035 0 .050 422900.31 422900.31 406923.06 217643.56 73032.00 0.042 0.042 0.043 0.056 0.082 17864. 17864. 17577. 12104. 5965. 58 58 02 72 32 0.00 15977.25 189279.50 144611.56 73032.00 0.000 0.018 0.029 0.042 0.082 0. 287. 5472. 6139. 5965. 00 56 30 39 32 6860. 6860. 6860. 6860. 6860. 0 .000 0 .010 0 .020 0 .035 0 .050 333221.87 333221.87 294331.31 137365.50 59437.46 0.038 12671. 0.038 12671. 0.041 12000. 0.056 7714. 0.076 4501. 93 93 61 92 09 0.00 38890.56 156965.81 77928.00 59437.46 0.000 0.017 0.027 0.041 0.076 0. 671. 4285. 3213. 4501. 00 32 69 84 09 TOTAL TOTAL TOTAL TOTAL TOTAL 0 .000 0 .010 0 .020 0 .035 0 .050 756122.25 756122.25 701254.37 355009.06 132469.44 0.040 30536. 0.040 30536. 0.042 29577. 0.056 19819. 0.079 10466. 51 51 62 64 41 0.00 54867.87 346245.31 222539.62 132469.44 0.000 0.017 0.028 0.042 0.079 0. 958. 9757. 9353. 10466. 00 89 98 23 41 BLOCK MODEL: METHOE RESERVES - BENCH CUTOFF BUCK60G KRIGE 6 0 ' BLOCKS - WITHIN ORE ZONE EXPLORATION K R I G I N G ABOVE CUTOFF GRADE TONS GRADE OUTLINE I N S I D E GRADE OUNCES TONS BOUNDARIES GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0 .000 0 .010 0 .020 0 .035 0 .050 422900.31 422900.31 400117.56 198810.31 80392.31 0.040 17120. 0.040 17120. 0.042 16766. 0.056 11184. 0.079 6358. 96 96 92 35 04 0.00 22782.75 201307.25 118418.00 80392.31 0.000 0.016 0.028 0.041 0.079 0. 354. 5582. 4826. 6358. 00 04 57 31 04 6860. 6860. 6860. 6860. 6860. 0 .000 0 .010 0 .020 0 .035 0 .050 333221.87 333221.87 268839.44 113146.56 38613.14 0 . 0 3 5 1 1 7 1 6 . 03 0 . 0 3 5 1 1 7 1 6 . 03 0 . 0 3 9 1 0 5 8 6 . 83 0.056 6 3 1 1 . 84 0.082 3 1 8 3 . 29 0.00 64382.44 155692.87 74533.37 38613.14 0.000 0.018 0.027 0.042 0.082 0. 1129. 4274. 3128. 3183. 00 20 99 55 29 TOTAL TOTAL TOTAL TOTAL TOTAL 0 .000 0 .010 0 .020 0 .035 0 .050 756122.25 756122.25 668957.06 311956.94 119005.44 0.038 0.038 0.041 0.056 0.080 0.00 87165.19 357000.12 192951.50 119005.44 0.000 0.017 0.028 0.041 0.080 0. 1483. 9857. 7954. 9541. 00 24 56 87 32 28837. 28837. 27353. 17496. 9541. 00 00 75 20 32 253 BLOCK MODEL: METHOD: RESERVES BENCH CUTOFF BUCK60G CPROB 6 0 ' BLOCKS -• WITHIN ORE ZONE CONDITIONAL P R O B A B I L I T Y ABOVE CUTOFF GRADE TONS GRADE OUTLINE I N S I D E 1 GRADE OUNCES TONS BOUNDARIES GRADE OUNCES 6840. 6840. 6840. 6840. 6840. 0. 0. 0. 0. 0. 000 010 020 035 050 422900. 418366. 353919. 191536. 93856. 31 31 12 87 37 0.040 0.041 0.045 0.061 0.081 17120. 17081. 16050. 11612. 7561. 96 02 83 12 16 4534. 64447. 162382. 97680. 93856. 00 19 25 50 37 0.009 0.016 0.027 0.041 0.081 39 1030 4438 4050 7561 .94 .20 .71 .96 . 16 6860. 6860. 6860. 6860. 6860. 0. 0. 0. 0. 0. 000 010 020 035 050 333221. 327608. 246707. 115476. 53390. 87 12 37 94 14 0.035 11716. 0.036 11667. 0.042 10390. 0.059 6869. 0.080 4295. 03 26 03 27 92 5613. 80900. 131230. 62086. 53390. 75 75 44 79 14 0.009 0.016 0.027 0.041 0.080 48 1277 3520 2573 4295 .77 .23 . 76 .35 .92 TOTAL TOTAL TOTAL TOTAL TOTAL 0. 0. 0. 0. 0. 000 010 020 035 050 756122. 745974. 600626. 307013. 147246. 25 44 56 87 56 0.038 0.039 0.044 0.060 0.081 00 28 87 39 09 10147. 145347. 293612. 159767. 147246. 81 87 69 31 56 0.009 88 0.016 2307 0.027 7959 0.041 6624 0 . 0 8 1 11857 .71 .41 .47 .31 .09 28837. 28748. 26440. 18481. 11857. 254 APPENDIX D L I S T I N G OF CALCULATED SEMI-VARIOGRAM note: raw g r a d e s were m u l t i p l i e d VALUES by 100 LEGEND: LAG Lag d i s t a n c e . N Number o f p a i r s f o r a r i t h m e t i c r e l a t i v e variograms. LN Number o f AR MEAN A r i t h m e t i c mean g r a d e LG MEAN L o g n o r m a l mean g r a d e VG Calculated variogram LOG VG Lognormal variogram. REL VG Relative samples for variogram. and lognormal of of variogram, samples. samples. value. 255 FILE= ANGLE VERT ANG= LAG 30 57 105 137 N 831 5553 11622 6235 FILE= ANGLE VERT ANG= LAG 29 66 105 137 N 578 5289 9457 6758 FILE= ANGLE VERT ANG= LAG 31 57 105 139 N 527 5707 11524 4969 FILE= ANGLE l _ VERT ANG= LAG 32 66 106 137 N 554 5538 9010 6885 FILE= ANGLE VERT ANG= LAG 21 41 61 81 101 N 2020 1591 1185 825 530 BEX 90 0 LN 819 5410 11326 6104 AR MEAN LG MEAN 48.7 39.5 36.8 37.3 1.4211 1.3067 1.2981 1.2750 VG LOG VG REL VG 2476 . 1 2775. 8 2634. 6 2818. 6 0.1675 0.2186 0.2402 0.3011 1.0458 1.7757 1.9432 2.0308 VG LOG VG REL VG 2785. 0 2576 . 6 2791. 5 2595. 1 0.2100 0.2109 0.2416 0.2661 1.1516 1.6900 2.0173 1.9209 VG LOG VG REL VG 2578 . 0 2378. 7 2459. 2 2516 . 1 0 .1858 0.1881 0.2134 0.2395 1.2172 1 .5684 1.8283 1.8044 VG LOG VG REL VG 2556 . 0 2219. 3 2685. 9 2549 . 8 0.2498 0.2039 0.2285 0.2539 1.2367 1.5268 1.9704 1.8832 VG LOG VG REL VG 1134 . 7 1799. 8 1812. 1 2095. 1 2242. 3 0.0883 0.1421 0.1744 0.2117 0.2300 1.0778 1.6602 1.7701 2.0325 2.3290 BEX 45 0 LN 567 5166 9224 6625 AR MEAN LG MEAN 49.2 39.0 37.2 36.8 1.3704 1.3163 1.2911 1.2872 BEX 0 0 LN 524 5561 11230 4879 AR MEAN LG MEAN 46.0 38.9 36.7 37.3 1.3760 1.3176 1.2958 1.2816 BEX 135 0 LN 547 5417 8791 6746 AR MEAN LG MEAN 45.5 38.1 36.9 36.8 1.3027 1.3039 1.2848 1.2913 BEX 0 90 LN 1970 1547 1144 788 501 AR MEAN LG MEAN 32.4 32.9 32.0 32.1 31.0 1.2164 1.2200 1.2133 1.2107 1.1830 256 FILE= ANGLE= VERT ANG= LAG 29 56 105 137 N 329 2278 4759 2215 FILE= ANGLE VERT ANG= LAG 26 67 106 137 N 191 2172 3781 2586 FILE= ANGLE VERT ANG= LAG 27 55 106 140 N 167 2575 5067 1923 FILE= ANGLE VERT ANG= LAG 29 66 108 138 N 165 2408 3704 2681 FILE= ANGLE VERT ANG= LAG N 21 41 61 81 101 759 530 337 179 55 BEXG 90 0 LN 327 2269 4730 2210 AR MEAN LG MEAN 49.8 46.8 44.8 46.2 1.5063 1.4751 1.4678 1.4765 VG LOG VG REL VG 2510 . 9 3665. 6 2984 . 2 3105. 2 0.1451 0.1523 0.1606 0.1819 1.0130 1.6755 1.4886 1.4520 • BEXG 45 0 LN 190 2159 3769 2576 AR MEAN LG MEAN 47 . 3 45.4 45.3 45.5 1.4501 1.4727 1.4629 1.4742 VG LOG VG REL VG 2827 . 0 3070 . 3 3344. 6 2985. 6 0.1911 0.1475 0.1646 0.1631 1.2648 1.4878 1.6322 1.4431 VG LOG VG REL VG 2795. 7 2991. 9 3198. 2 3686 . 8 0.1403 0.1445 0.1608 0.1752 1 .0171 1 . 3695 1.5196 1.5318 VG LOG VG REL VG 2549. 7 2401. 2 3449 . 1 2899 . 3 0.1790 0.1425 0.1627 0.1732 0.7364 1.2486 1.6171 1.3868 VG LOG VG REL VG 0 .0741 0.1068 0.1203 0.1115 0.1200 0.8717 1. 3308 1.2622 1.0237 0 .6012 BEXG 0 0 LN 166 2559 5038 1914 AR MEAN LG MEAN 52.4 46 .7 45.9 49.1 1.5412 1.4829 1.4704 1.4947 BEXG 135 0 LN 164 2395 3676 2671 AR MEAN LG MEAN 58.8 43.9 46.2 45.7 1.5707 1.4626 1.4725 1.4799 BEXG 0 90 LN 755 526 332 174 53 AR MEAN LG MEAN 45.9 45.7 44.3 43.3 42.5 1.4864 1.4856 1.4741 1.4663 1.4773 1835. 2779. 2481. 1915. 1086. 2 5 4 6 8 257 FILE= ANGLE= VERT ANG= N LAG 14 32 51 70 90 110 130 145 6891 43651 78256 105621 130096 155677 177403 96894 F I L Ei ANGLE= VERT ANG= 1 LAG N 5854 41865 76334 104405 128193 152144 171886 92933 15 32 51 70 90 110 130 145 FILE — ANGLE= VERT ANG= l 1 LAG 14 32 51 70 90 110 130 145 N 6822 43712 77950 105823 129943 154452 172351 92854 BBH 90 0 LN 6874 43538 77990 105302 129677 155142 176798 96539 AR MEAN LG MEAN 36 39 39 39 40 40 39 39 .7 .5 .7 .9 .2 .1 .7 .7 1. 1. 1. 1. 1. 1. 1. 1. 3012 3139 3211 3288 3359 3363 3360 3375 LOG VG REL VG 0 .0739 0 .1381 0 .1759 0 .2087 0 .2387 0 .2640 0 .2789 0 .2863 1 .1590 1 .6904 1 .8234 1 .9378 2 .0223 2 .0535 1 .9952 1 .9837 VG LOG VG REL VG 1610 . 8 2589 . 2 2800 . 5 2867 . 4 3121. 0 3131. 9 3054. 7 3086. 7 0 .0777 0 .1343 0 .1649 0 .1920 0 .2205 0 .2414 0 .2578 0 .2678 1 .2309 1 .6790 1 .7799 1 .8309 1 . 9812 2 .0054 1 .9953 2 .0241 VG LOG VG REL VG 1440 . 2 2475. 1 2546 . 9 2796. 7 2966 . 2 3052. 7 2995. 9 3070 . 2 0 .0638 0 . 1119 0 .1320 0 .1507 0 .1675 0 .1823 0 .1934 0 .2001 1 . 1043 1 .6283 1 .6533 1 .8070 1 .9287 1 .9721 1 .9977 2 .0443 VG 1560. 2636. 2872. 3084. 3261. 3302. 3140. 3126. 6 9 5 2 3 3 7 9 BBH 45 0 LN 5838 41743 76108 104079 127825 151671 171339 92630 AR MEAN LG 1 MEAN 36 .2 39 .3 39 . 7 39 .6 39 .7 39 .5 39 .1 39 .1 1. 1. 1. 1. 1. 1. 1. 1. 2780 3077 3177 3242 3261 3282 3271 3276 BBH 0 0 LN 6793 43571 77710 105514 129529 153922 171765 92510 AR MEAN LGI MEAN 36 .1 39 .0 39 .2 39 .3 39 .2 39 .3 38 .7 38 .8 1. 2619 1. 2983 1. 3086 1 . 3110 1. 3106 1. 3143 1. 3102 1. 3110 FILE= ANGLE= VERT ANG= N LAG 15 32 51 70 90 110 130 145 5888 42168 76343 106062 130890 155512 177977 96231 F I L EI ANGLE= VERT ANG= 1 LAG 21 41 61 81 101 N 3257 2022 958 295 10 BBH 135 0 LN 5872 42053 76119 105723 130458 154958 177307 95874 AR MEAN LG - MEAN 36 .4 38 .9 39 .5 39 .6 39 .8 39 .7 39 .7 39 .6 1. 1. 1. 1. 1. 1. 1. 1. 2870 3021 3151 3191 3238 3265 3285 3300 VG LOG VG REL VG 0 .0660 0 .1202 0 .1470 0 .1713 0 .1927 0 .2124 0 .2282 0 .2381 1 .1097 1 .5528 1 .6824 1 .8756 1 .9705 1 .9832 2 .0628 2 .0345 VG LOG VG REL VG 2433. 6 3236. 9 3956. 4 2887 . 7 294. 9 0 .1048 0 .1615 0 .1824 0 .1425 0 .0377 1 .4742 1 .6928 1 .7098 1 .1376 0 .1580 1468. 2348. 2623. 2943. 3116. 3124. 3250. 3186. 5 8 4 9 9 7 2 5 BBH 0 90 LN 3248 2013 956 295 10 AR MEAN LG1 MEAN 40 43 48 50 43 .6 .7 .1 .4 .2 1. 1. 1. 1. 1. 3264 3672 4342 5066 6039 259 FILE= ANGLE= VERT ANG= LAG N BBHG 90 0 LN 14 4882 4889 32 29179 29148 51 50550 50478 66620 66515 70 90 79856 79708 92777 92611 110 130 102971 102784 55137 145 55029 FILE = ANGLE= VERT ANG= LAG N LAG N 46 .3 51 .1 51 .2 50 .4 49 .8 49 .3 48 .6 48 .7 1 .4958 1 .5216 1 .5234 1 .5180 1 .5128 1 .5071 1 .5030 1 .5062 VG LOG VG REL VG 0 .0675 0 .1182 0 .1367 0 .1442 0 .1528 0 .1599 0 .1567 0 .1530 0 .9335 1 . 3529 1 .4523 1 .5272 1 .5707 1 .6081 1 .5734 1 .5644 LOG VG REL VG 0 .0683 0 .1155 0 .1342 0 .1440 0 .1540 0 .1577 0 .1570 0 .1562 1 .0038 1 .3586 1 .4263 1 .4354 1 .5523 1 .5553 1 .5469 1 .5702 VG LOG VG REL VG 1989. 6 3430. 3 3536. 2 3868. 0 4102. 0 4106 . 9 3967 . 8 4012. 8 0 .0571 0 .1016 0 . 1170 0 .1314 0 .1441 0 .1517 0 .1546 0 .1561 0 .8858 1 .3028 1 . 3372 1 .4593 1 .5535 1 .5684 1 .5756 1 .5995 2003. 3533. 3800. 3879. 3891. 3916. 3714. 3716. 6 6 3 9 3 0 5 9 BBHG 45 0 LN 4030 15 4023 32 28023 27982 51 50309 50233 70 67296 67186 80422 80297 90 110 93246 93108 130 102624 102475 145 54439 54356 FILE ANGLE= VERT ANG= AR MEAN LG MEAN AR MEAN LG MEAN 46 51 51 50 50 49 48 48 .7 .1 .2 .5 .2 .4 .6 .6 1 .4896 1 .5209 1 .5240 1 .5215 1 .5176 1 .5119 1 .5056 1 .5051 VG 2193. 3552. 3739. 3663. 3915. 3802. 3658. 3703. 6 1 1 4 5 8 2 1 BBHG 0 0 LN 14 4664 4649 32 29092 29029 51 51551 51443 68941 70 68825 82601 82461 90 110 96665 96525 130 105743 105572 56167 145 56078 AR MEAN LG MEAN 47 51 51 51 51 51 50 50 .4 .3 .4 .5 .4 .2 .2 .1 1 .4878 1 .5204 1 .5272 1 .5274 1 .5273 1 .5265 1 .5199 1 .5182 260 FILE ANGLE= VERT ANG= LAG N BBHG 135 0 LN 15 4086 4079 32 27954 27921 51 49847 49780 70 67564 67466 90 81719 81592 110 94394 94257 130 106126 105939 145 56604 56511 FILE ANGLE= VERT ANG= LAG 21 41 61 81 101 N 2204 1397 743 241 10 AR MEAN LG1 MEAN 46.4 50.9 51.4 51.1 50.7 50.1 49 .6 49 .0 1. 1. 1. 1. 1. 1. 1. 1. 4894 5216 5247 5217 5194 5166 5137 5110 VG LOG VG REL VG 0.0589 0.1070 0.1266 0.1387 0.1473 0.1525 0.1546 0.1557 0 .8632 1 .2112 1 .3759 1 .5165 1 .5831 1 .5400 1 .5961 1 .5509 VG LOG VG REL VG 3445. 6 4013 . 2 4621. 7 3371. 3 294. 9 0.0951 0.1404 0.1399 0.1391 0.0377 1 .2278 1 . 3262 1 .5354 1 .1319 0 .1580 1858. 3142. 3635. 3959. 4073. 3860. 3930. 3730. 4 4 6 6 6 2 2 9 BBHG 0 90 LN 2200 1391 741 241 10 AR MEAN LG1 MEAN 53.0 55.0 54.9 54.6 43.2 1. 1. 1. 1. 1. 5384 5620 5644 5696 6039 261 APPENDIX E L I S T I N G OF VARIOGRAMS GENERATED BY MAXIMUM DIFFERENCE METHOD These variograms were c r e a t e d from the BEXG d a t a s e t . Any sample p a i r d i f f e r e n c e ( r e g a r d l e s s of grades), at a given l a g , was e x a m i n e d and i f t h e a b s o l u t e d i f f e r e n c e e x c e e d e d t h e maximum value shown for each variogram, it was not used in the computation of y(h). R e s u l t s show t h a t t h e o n l y v a r i o g r a m s w h i c h showed t h e 1 3 5 ° a n i s o t r o p y were t h e ones t h a t u s e d a l l sample pairs. T h i s was d e t e r m i n e d by examining the lowest f i r s t l a g value. I n most o f the other c a s e s , the lowest value of y at the first l a g was e i t h e r i n t h e 0 ° (N-S) o r t h e 4 5 ° d i r e c t i o n . N o t e t h a t a p p r o x i m a t e l y 50% o f a l l s a m p l e p a i r s had a b s o l u t e d i f f e r e n c e s o f l e s s t h a n 0.020 o p t . (raw g r a d e s were m u l t i p l i e d by 100. to produce these r e p o r t s ) . A l m o s t 90% o f a l l p a i r s had absolute differences of less than 0.080 opt. For horizontal d i r e c t i o n s , t h e l o w e s t v a l u e s o f y(l) f o r the v a r i o g r a m t h a t used a l l s a m p l e p a i r s was i n t h e 1 3 5 ° d i r e c t i o n for a c t u a l , lognormal and relative variograms. In the other cases, the lognormal variogram c o n s i s t e n t l y indicated that a n i s o t r o p y was i n the 4 5 ° direction. T h e a c t u a l and r e l a t i v e v a r i o g r a m s showed l o w e s t yd) i n the N-S d i r e c t i o n f o r the l o w e s t grade d i f f e r e n c e s and v a r i e d for the next 2 variograms. Only the a c t u a l variogram with maximum p a i r d i f f e r e n c e s o f 0 . 0 8 0 o p t . showed t h e 135° direction as l o w e s t . Lowest semi-variogram values at the f i r s t lag for each h o r i z o n t a l variogram are u n d e r l i n e d i n the listings. N o t i c e a l s o how much l o w e r the indicated variance o f the d a t a i s when t h e maximum p a i r d i f f e r e n c e s d e c r e a s e . The r e l a t i v e v a r i o g r a m s i l l s d e c r e a s e from about 1.5 to less than 0.4 f o r s a m p l e p a i r s w h i c h v a r y by l e s s t h a n 0 . 0 8 o p t . — t h i s represents n e a r l y 90% o f a l l p a i r s . 262 FILE= ANGLE VERT ANG= LAG 54 105 146 N 1122 2289 2123 FILE= ANGLE VERT ANG= LAG 67 106 145 N 1103 1827 2098 FILE= ANGLE VERT ANG= LAG 54 106 148 N 1283 2471 1992 FILE= ANGLE VERT ANG= LAG 66 108 145 N 1216 1768 2104 FILE= ANGLE VERT ANG= LAG 20 40 60 BEXG 90 0 LN 1117 2279 2114 BEXG 45 0 LN 1099 1820 2088 BEXG 0 0 LN 1276 2461 1984 BEXG 135 0 LN 1209 1762 2099 BEXG 0 90 N LN 457 285 148 456 284 147 MAXIMUM SAMPLE PAIR DIFFERENCE - AR MEAN L G MEAN 27.3 27.4 27.5 MAXIMUM 1.3564 1.3605 1.3623 27.7 26.3 27.5 MAXIMUM 1.3612 1.3410 1.3603 MAXIMUM 1.3725 1.3507 1.3724 MAXIMUM 1.3581 1.3584 1.3769 58. 9 59. 7 61. 6 0.0409 0.0340 0.0391 0.0787 0.0793 0.0816 1.3597 1.3606 1.3057 2.0 VG LOG VG REL VG 59. 4 59. 1 61. 1 0.0363 0.0387 0.0401 0.0771 0.0857 0.0806 2.0 VG LOG VG REL VG 57 . 6 59. 2 58. 1 0.0397 0 .0403 0.0351 0.0699 0.0806 0.0727 2.0 VG LOG VG REL VG 60 . 8 60. 3 60. 3 0.0399 0.0396 0 .0362 0 .0798 0.0785 0.0734 SAMPLE PAIR DIFFERENCE - AR MEAN L G MEAN 28.8 28.0 25.1 REL VG SAMPLE PAIR DIFFERENCE = AR MEAN L G MEAN 27.6 27.7 28.7 LOG VG SAMPLE PAIR DIFFERENCE = AR MEAN L G MEAN 28.7 27.1 28.3 VG SAMPLE PAIR DIFFERENCE = AR MEAN L G MEAN 2.0 2.0 VG LOG VG REL VG 50.7 54.5 49.6 0.0276 0.0312 0.0363 0.0612 0.0693 0.0790 263 FILE= ANGLE VERT .ANG= BEXG 90 0 LAG N LN 55 105 147 1564 3173 3013 1558 3158 2994 FILE= ANGLE VERT ANG= LAG 67 106 145 N 1495 2497 3007 FILE= ANGLE VERT ANG= LAG 54 106 148 N 1751 3353 2831 FILE= ANGLE VERT ANG= LAG 66 107 145 N 1706 2451 2997 FILE= ANGLE VERT ANG= BEXG 45 0 LN 1485 2489 2989 BEXG 0 0 LN 1743 3336 2819 BEXG 135 0 LN 1698 2437 2982 BEXG 0 90 LAG N LN 20 40 60 593 372 222 591 370 220 MAXIMUM SAMPLE PAIR DIFFERENCE = AR MEAN L G MEAN 29.4 29.9 29.7 MAXIMUM 1.3783 1.3846 1.3839 MAXIMUM 1.3872 1.3678 1.3848 MAXIMUM 1.3901 1.3786 1.3926 MAXIMUM 1.3810 1.3828 1.3971 0.1700 0.1683 0.1761 VG 143 .8 146 .0 158 .4 VG 141 .5 143 .2 154 .2 VG 155 .0 149 .8 156 .9 1.4055 1.3934 1.3736 VG 124.2 134.5 166.9 3.5 LOG VG REL VG 0.0610 0.0665 0.0705 0.1575 0.1778 0.1753 3.5 LOG VG REL VG 0.0707 0.0633 0.0670 0.1490 0.1640 0 .1652 3.5 LOG VG REL VG 0 .0743 0.0674 0.0674 0.1714 0.1674 0.1663 SAMPLE PAIR DIFFERENCE = AR MEAN L G MEAN 32.8 30.7 30.0 0.0694 0.0641 0.0706 SAMPLE PAIR DIFFERENCE = AR MEAN L G MEAN 30.1 29.9 30.7 REL VG SAMPLE PAIR DIFFERENCE = AR MEAN L G MEAN 30.8 29.5 30.6 147 .2 150 .0 155 .2 LOG VG SAMPLE PAIR DIFFERENCE = AR MEAN L G MEAN 30.2 28.6 30.1 VG 3.5 3.5 LOG VG REL VG 0.0407 0.0492 0.0552 0.1157 0.1423 0.1857 264 FILE= ANGLE VERT .ANG= LAG 55 105 146 N 1758 3717 3569 FILE= ANGLE VERT ANG= LAG 67 106 145 N 1710 2891 3530 FILE= ANGLE VERT ANG= LAG 54 106 148 N 2029 3889 3336 FILE= ANGLE VERT ANG= LAG 66 107 145 N 1944 2852 3521 FILE= ANGLE VERT ANG= LAG 20 40 60 N 652 425 260 BEXG 90 0 LN 1751 3695 3548 BEXG 45 0 LN 1697 2881 3507 BEXG 0 0 LN 2020 3866 3317 BEXG 135 0 LN 1935 2832 3500 BEXG 0 90 LN 649 422 256 MAXIMUM SAMPLE PAIR DIFFERENCE = AR MEAN LG MEAN 31.4 32.0 31.9 1.3978 1.4034 1.4037 VG 231 .0 258 . 3 269 .7 LOG VG REL VG 0.0814 0 .0854 0.0920 0.2347 0.2525 0.2647 MAXIMUM1 SAMPLE PAIR DIFFERENCE = AR MEAN LG MEAN 32.2 30.7 32.1 1.4062 1.3871 1.4026 VG 239 .4 246 .2 267 .0 33.2 31.6 32.4 MAXIMUM 1.4124 1.3976 1.4087 REL VG 0.0767 0.0866 0.0920 0.2316 0.2610 0.2598 MAXIMUM 1.4004 1.3997 1.4143 REL VG 0.0872 0.0832 0.0911 0.2206 0.2460 0.2532 VG 247 .1 253 .4 267 .3 1.4249 1.4141 1.3926 VG 195 .4 232 . 3 277 .9 5.0 LOG VG REL VG 0 .0912 0 .0878 0.0887 0.2375 0.2502 0.2499 SAMPLE PAIR DIFFERENCE = AR MEAN LG MEAN 34.7 32.7 31.5 243 .0 245 .1 266 .3 5.0 LOG VG SAMPLE PAIR DIFFERENCE = AR MEAN LG MEAN 32. 3 31.8 32.7 VG 5.0 LOG VG MAXIMUMI SAMPLE PAIR DIFFERENCE = AR MEAN LG MEAN 5.0 5.0 LOG VG REL VG 0.0493 0.0614 0.0716 0.1626 0.2174 0.2803 265 FILE= ANGLE VERT .ANG= LAG 55 105 146 N 1991 4184 4099 FILE= ANGLE VERT ANG= LAG 66 106 144 N 1924 3306 3993 FILE= ANGLE VERT ANG= LAG 55 106 148 N 2294 4429 3827 FILE= ANGLE VERT ANG= LAG 66 107 145 N 2175 3232 4014 FILE= ANGLE VERT ANG= LAG 20 40 60 N 703 475 295 BEXG 90 0 LN 1984 4157 4077 BEXG 45 0 LN 1911 3294 3969 BEXG 0 0 LN 2278 4402 3806 BEXG 135 0 LN 2165 3208 3990 BEXG 0 90 LN 700 471 290 MAXIMUM! SAMPLE PAIR DIFFERENCE = AR MEAN LG MEAN 34.2 34.5 34.8 1.4196 1.4222 1.4248 VG 441 .0 462 .8 498 .8 LOG VG REL VG 0.1057 0.1099 0.1199 0.3770 0.3895 0.4113 MAXIMUMI SAMPLE PAIR DIFFERENCE = AR MEAN LG MEAN 34.9 33.8 34.8 MAXIMUM 1.4276 1.4121 1.4229 MAXIMUM 1.4340 1.4200 1.4321 MAXIMUM 1.4207 1.4222 1.4350 0.0990 0.1117 0.1155 0.3606 0.4095 0.3836 VG 453 .0 459 . 3 488 .1 VG 435 .7 461 .4 482 .8 1.4460 1.4371 1.4239 VG 321 .2 423 .4 478 .9 8.0 LOG VG REL VG 0.1095 0.1103 0.1131 0.3488 0.3837 0.3912 8.0 LOG VG REL VG 0.1122 0.1088 0.1125 0.3584 0.3872 0.3843 SAMPLE PAIR DIFFERENCE = AR MEAN LG MEAN 37.5 35.8 35.0 REL VG SAMPLE PAIR DIFFERENCE = AR MEAN LG MEAN 34.9 34.5 35.4 438 .5 468 .9 463 .4 8.0 LOG VG SAMPLE PAIR DIFFERENCE = AR MEAN LG MEAN 36.0 34.6 35. 3 VG 8.0 8.0 LOG VG REL VG 0.0587 0.0802 0.0865 0.2283 0.3310 0. 3900 266 FILE= ANGLE VERT ANG= LAG 56 105 137 N 2278 4759 2215 FILE= ANGLE VERT ANG= LAG 67 106 137 N 2172 3781 2586 FILE= ANGLE VERT ANG= LAG 55 106 140 N 2575 5067 1923 FILE= ANGLE i VERT ANG= LAG 66 108 138 N 2408 3704 2681 FILE= ANGLE VERT ANG= LAG 41 61 81 N 530 337 179 BEXG 90 0 LN 2269 4730 2210 BEXG 45 0 LN 2159 3769 2576 BEXG 0 0 LN 2559 5038 1914 BEXG 135 0 LN 2395 3676 2671 BEXG 0 90 LN 526 332 174 A L L SAMPLE PAIRS AR MEAN L G MEAN 46.8 44.8 46.2 1.4751 1.4678 1.4765 A L L SAMPLE VG 3665. 6 2984. 2 3105. 2 1.4727 1.4629 1.4742 A L L SAMPLE VG 3070. 3 3344. 6 2985. 6 1.4829 1.4704 1.4947 A L L SAMPLE VG 2991. 9 3198. 2 3686. 8 1.4626 1.4725 1.4799 A L L SAMPLE LOG VG REL VG 0.1475 0.1646 0.1631 1.4878 1.6322 1.4431 LOG VG REL VG 0.1445 0.1608 0.1752 1.3695 1.5196 1.5318 VG LOG VG REL VG 2401. 2 3449. 1 2899. 3 0 .1425 0.1627 0.1732 1.2486 1 .6171 1.3868 LOG VG REL VG 0.1068 0.1203 0.1115 1.3308 1.2622 1.0237 PAIRS AR MEAN L G MEAN 45.7 44.3 43.3 1.6755 1.4886 1.4520 PAIRS AR MEAN LG MEAN 43.9 46.2 45.7 0.1523 0.1606 0.1819 PAIRS AR MEAN LG MEAN 46.7 45.9 49.1 REL VG PAIRS AR MEAN L G MEAN 45.4 45.3 45.5 LOG VG 1.4856 1.4741 1.4663 VG 2779. 5 2481. 4 1915. 6 267 APPENDIX F SCATTERGRAMS LEGEND; Block Models Method BUCK 20' B l o c k s , outline. BUCKG 20' B l o c k s , w i t h "ore zone" o u t l i n e , no BUCK60 60' B l o c k s , outline. no BUCK60G 60' B l o c k s , w i t h " o r e zone" o u t l i n e , or BHK Blasthole Kriging - - "Actual". EX20 EX60 E x p l o r a t i o n Polygon W e i g h t e d (20' & 6 0 ' ) ID10 ID5 ID3 ID2 IDI IDO Inverse Distance to t h e i n d i c a t e d power, KRIG note: Exploration Kriged Estimate. results from conditional probability cannot be compared on a b l o c k by b l o c k b a s i s u s i n g s c a t t e r g r a m s . 268 ACTUAL V S . ESTIMATED - BLOCK MODEL« BUCK 0.240 O X 0.200 LU O " l— 0.160 < or o ^ x 0.120 0.080 0.040 0.000 0.000 0.040 ACTUAL — i 0.080 V S . T~. 1 0-120 BHK 1 i 0-160 0.200 (ACTUAL) ESTIMATED Tr, i - BLOCK . • i 0.240 MODEL: 1 0.280 0-320 BUCK r 0.280 . 0.240 D •— 0-160 . < DC O 0.120 X LU 0-000 0.000 0.040 1 0.080 1 0.120 BHK 1 1 0.160 0.200 (ACTUAL) 1 0.240 1 0.280 0.320 269 ACTUAL V S . E S T I M A T E D - BLOCK MODEL' BUCK 0.240 O 0.200 . < CC o _l <^ 0.120 . UJ 0.080 . 0.000 — r 0.040 0.000 ACTUAL 1 0.080 V S . 1 0.120 BHK i 0.160 1 0.200 (ACTUAL) E S T I M A T E D - BLOCK 1 0.240 MODEL: 1 0.280 0.320 BUCK 0.240. r-> Q 0.200. ,_ 0.160. < or o i °j 0.120. 0.040 0.000 **1 0.040 1 0.080 1 0.120 BHK I : 1 0-160 0-200 (ACTUAL) 1 0-240 1 0-280 0.320 270 ACTUAL 0.320 i VS . - BLOCK ESTIMATED i 1 . i 1 MODEL 1 i BUCK i 0.280. 0.240 . <\l Q 0-200 . - Z o < • 0.160 . or o _i o_ 0.120. * X LU •.: 0.080 . •*&'::v S - 0.040 . 0.000 B^^* -~; 1 i 0.r 000 0.040 ACTUAL 0.320. 1— o. 080 VS. i 0.120 BHK i i 0.160 0.200 (ACTUAL) ESTIMATED - BLOCK i 0-240 MODEL' 0 BUCK -r T" T i 0.280 Q 0.200. ,_ 0.160, < or o _i 0^ 0.120 LU 0.080 0.000 —I 0.000 0.040 1 0.080 1 0.120 BHK 1 I 0.160 0.200 (ACTUAL) 1 0.240 1 0.280 0 320 271 ACTUAL V S . E S T I M A T E D - BLOCK MODEL' BUCK 0.320. 0.240. O Q 0. z o < or o 0. 160 120 . UJ 0.080 . 0.000 ! 0.040 ACTUAL 1 0.080 V S . 1 0.120 BHK 1 1 0-160 0.200 (ACTUAL) E S T I M A T E D - BLOCK 1 0.240 MODEL: 1 0.280 0.320 BUCK 0.2B0 . 0-240 UJ O — 0.200 or 2 0.160 < or o _j 0_ X UJ 0-080 0-040 o.ooo 0-000 — i 0.040 i 0.080 i 0.120 BHK i 0-160 1 0.200 (ACTUAL) i 0.240 i 0.280 0.320 272 ACTUAL V S . ESTIMATED - BLOCK MODEL 1 BUCKG 0.320. 0.280. 0.240. O X 0.200. LU < or o a ! 0.120. x LU 0.080. r. .• 0-000 0.040 ACTUAL —I 0.080 V S . I 0.120 BHK 1 I 0.160 0-200 (ACTUAL) E S T I M A T E D - BLOCK 1 0.240 MODEL = I 0-280 0.320 BUCKG 0-280 . O —' 0.160 . i— < or o r x o . 120 X 0.080 0-000 0.000 0.040 —i 0.080 1 0.120 BHK i 1 0.160 0.200 (ACTUAL) 1 0.240 1 — 0.280 0.320 ACTUAL V S . ESTIMATED - BLOCK MODEL ! BUCKG 0.280 J 0.240 J in Q 0. < or o 0.160J UJ 0.080 0.040J 0.000 0.040 I 0.080 I 0.120 BHK ACTUAL n V S . 1 0.160 1 0.200 I 0.240 1 0.280 0.320 (ACTUAL) ESTIMATED - r BLOCK i MODEL: BUCKG r 0.240 J ro Q 0-200 < or o _i Q- 0-120-1 0.080 0.040J: 0.000 0-000 1 0.040 1 0.080 1 0.120 BHK 1 0.160 1 0.200 (ACTUAL) 1 0.240 1 0.280 0.320 274 ACTUAL V S . ESTIMATED - BLOCK MODEL- BUCKG 0.240 . CM Q 0-200J ,_ < 0.160 . o _1 ^ 0.120. 0.000 0.000 1 0.040 ACTUAL , , 0.080 V S . 0.120 BHK , ! 0.160 0.200 (ACTUAL) ESTIMATED - BLOCK p 0-240 MODEL" 1 ! 0-280 0.320 BUCKG 0.280 . Q 0.200 . < OC o _l ^ 0.120 0.000 1 0.040 1 0.080 1 0.120 BHK 1 1 0.160 0.200 (ACTUAL) 1 0.240 1 0.280 . 0.320 275 ACTUAL V S . E S T I M A T E D - BLOCK MODEL' BUCKG 0.320. 0.240 . o Q 0.200 ,_ 0.160 < or o 0.120 0.080 0.040 . 0.000 0.000 I 0.040 ACTUAL 1 0.080 V S . 1 0. 120 BHK 1 1 0 . 1 6 0 0 . 200 (ACTUAL) E S T I M A T E D - BLOCK I 0.240 MODEL: 1 0.280 0.320 BUCKG 0.320 0.240 or 0.200 . 2 0.160. < or o — 0.120 . 1 Q_ X 0.080 0.040 . .000 0.040 0-080 0.120 BHK 0.160 0.200 (ACTUAL) 0.240 0.280 0.320 276 A C T U A L V S . E S T I M A T E D - B L O C K M O D E L 1 B U C K 6 0 0.280 0.240 O <o X LL) 0-200 o *-• 0.160 i— < cr CD CL 0 . 1 2 0 . X UJ 0.040. 0.000 I 0.040 1 0.080 1 0.120 BHK A C T U A L V S . E S T I M A T E D 1 0-160 1 0.200 1 0.240 1 0.280 0.320 (ACTUAL) - BLOCK MODEL» B U C K 6 0 o 5 0.200. — i— 0.160. < or o CL X 0.120 . 0.080 . ••-v.".*j?5r--?-.-.; 0.000 — i 0.000 0.040 0.080 1 0.120 BHK 1 1 0.160 0.200 (ACTUAL) 1 0.240 1 0.280 0.320 277 ACTUAL VS. ESTIMATED 1 ~i 1 - BLOCK MODEL' BUCK60 r 0.240 - to O 0.200. < or o _i ^ 0.120 LU o.ooo 0.000 0.040 0.080 0.120 BHK ACTUAL ~1 ro Q < or o _i VS. 0.160 ESTIMATED - I 1 I 0.200 0.240 0.280 0.320 (ACTUAL) BLOCK I MODEL' BUCK60 T" 0.200 0.120 LU 0-080 0.040 0.000 0.000 0.040 0.080 0.' 120 BHK 0-160 0.200 (ACTUAL) 0.240 0.280 0.320 278 ACTUAL V S . ESTIMATED "T 1 I BLOCK 1 MODEL« I BUCK60 r 0.280 CM Q 0.200 < 0T o _l x 0.120. LU 0.080 0-040 . \^.vK>'.' 0.000 1 0-040 ACTUAL 0.320. 1 0-080 V S . 1 0.120 BHK ESTIMATED T 1 1 0.160 0-200 (ACTUAL) - BLOCK 1 0.240 MODEL' 1 0-280 0-320 BUCK60 r 0-280 J Q 0.200. z o < 0.160. or o _i 0j 0.120. UJ 0.040 J 0.000 1 0.040 1 0.080 1 0.120 BHK 1 0.160 1 0-200 (ACTUAL) 1 0.240 1 0.280 0.320 ACTUAL V S . ESTIMATED - BLOCK MODEL' BUCK60 0.280 0.240 J O Q 0.200 ,_ 0.160 _| < K O _l 0.120 0.080. 0.040 J 0.000 0.040 0.080 0.120 BHK ACTUAL V S . ESTIMATED 0.160 0.200 - BLOCK 0.320 0.000 BHK 0.240 0.280 (ACTUAL) (ACTUAL) MODEL: BUCK60 0.320 280 ACTUAL V S . E S T I M A T E D - BLOCK MODEL' BUCK60G 0.280. o CD X 0.200. < or o CL X 0.I20J 0.080. 0-000 1 0-040 ACTUAL 1 0.080 V S . 1 0.120 BHK E S T I M A T E D 1 1 0.160 0.200 (ACTUAL) - BLOCK 1 0.240 MODEL« 1 0.280 0.320 BUCK60G 0-280. O 5 0.200. z o -* 0.160. •— < or o CL X LU 0.120. 0.080-1 0.000 0.000 1 0.040 1 0.080 1 0.120 BHK 1 1 0.160 0.200 (ACTUAL) 1 0.240 1 0.280 0.320 281 ACTUAL V S . 0.320 ESTIMATED - BLOCK MODEL: BUCK60G 1 1 1 1 r i 0.120 i 0.160 1 0.200 1 0.240 \ 0.280 ~i 0.280 0.240 in Q 0.200 < CC o _1 CL 0.120 LU 0.080 0.000 i 0.040 i 0.080 BHK ACTUAL V S . ESTIMATED "i 0.320 (ACTUAL) - BLOCK MODEL: 1 i r 1 0.160 I 0.200 1 0.240 BUCK60G 0.240 to Q 0.200 ,_ 0.160 < or o _i 0^ 0.120 LU 0.080 0.040 , 0.000 0.000 1 0.040 I 0.080 1 0.120 BHK (ACTUAL) 1 0.280 . 0.320 282 ACTUAL 0.320 VS. ESTIMATED i i i - BLOCK MODEL i i 1 i BUCK60G i 0.280 . 0.240 . ID CM 0.200 . z o t— 0 . 1 6 0 . < or o _ J 0- 0.120 . x UJ * 0.080 . 0.040 . - JeJr >.'*' ' .: 0.000 0 000 1 0.040 1 0.080 1 0.120 BHK ACTUAL VS. ESTIMATED "T" 1 0.160 1 0.200 1 0-240 1 0-280 0 320 (ACTUAL) - BLOCK MODEL" T BUCK60G ~T~ 0.240 J Q 0.200 , _ 0.160 < or o _ i % 0.120-1 0.080 . 0-000 0.000 1 0.040 1 0.080 1 0.120 BHK 1 1 0.160 0.200 (ACTUAL) 1 0.240 1 0.2B0 0.320 283 ACTUAL 0.320 VS. ESTIMATED i i i - BLOCK i i MODEL' i BUCK60G i 0.280 . 0.240 . O Q o • o O Q EXPLORATION 0.200 _ 0.080 . - 0.040 _ 0.000 0. 1 000 0.040 ACTUAL 0.320 i 1 1 0.080 0.120 VS. BHK ESTIMATED i i 1 0.160 1 0.200 (ACTUAL) - BLOCK i i 1 0.240 MODEL' i 0.280 0. 320 BUCK60G i 0.280 . - 0.240 . LU O — 0.200. - o i - 1 0 o o EXPLORATION or - 0.080 _ ** 0.040 . * v."••'"'j'i-- :"• • •• - 0.000 0. 000 0-'040 0.080 0.'l20 BHK 0.'l60 0.'200 (ACTUAL) 0.240 0.280 0. 320
- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- A comparison of various ore reserve estimates at the...
Open Collections
UBC Theses and Dissertations
Featured Collection
UBC Theses and Dissertations
A comparison of various ore reserve estimates at the Buckhorn Mine, Eureka County, Nevada Tilkov, Mit D. 1989
pdf
Page Metadata
Item Metadata
Title | A comparison of various ore reserve estimates at the Buckhorn Mine, Eureka County, Nevada |
Creator |
Tilkov, Mit D. |
Publisher | University of British Columbia |
Date Issued | 1989 |
Description | An abundance of computerized exploration drillhole and production blasthole data from Cominco Resources' Buckhorn Mine in Nevada provides the opportunity for a comprehensive study to. evaluate various grade'estimation techniques. The Buckhorn ore-body is a bulk mineable, volcanic hosted, epithermal gold-silver deposit that formed in a Miocene hot springs system. Forty separate block models, estimated from exploration drillhole data, were compared with 12 block models derived from blasthole data. The effect of choosing a smaller mining size block over the larger block size that might be dictated by drillhole spacing was examined in some cases. Some block models and datasets had geological constraints imposed on them while others did not. For each of four major block model configurations various polygonal based, inverse distance and geostatistical estimates were calculated and compared to each other and to known production data. During the course of this study, many of the common statistical and geostatistical techniques for analysis of data were employed and in some cases, the methods themselves were questioned. Results showed that estimating small, mining size blocks is important regardless of the grade interpolation method used because the best of these block models, although less accurate predictors of actual grade at any given location, tended to reflect the overall true grade distribution of the ore blocks which were eventually mined. Because all ore estimates are calculated from nearest exploration composites, some of the small block size models can be seen as fairly accurate, geometrically correct approximations (one possible realization) of the true, unknown shape of the orebody. It was found that, in addition to separating oxide from sulfide exploration composites, the imposition of a second type of geological boundary, an ore zone outline within which ore was likely to occur and outside of which there was little basis for predicting the existence of recoverable reserves, measurably improved the estimates of tonnage and grade. And finally, the method of calculating conditional probability proposed by G.F. Raymond (Raymond 1979, 1982, and 1984), and as further refined here, was found to be the most accurate, stable, and generally useful of the various methods used to generate block models and estimates of ore reserves at the Buckhorn Mine. |
Genre |
Thesis/Dissertation |
Type |
Text |
Language | eng |
Date Available | 2010-08-24 |
Provider | Vancouver : University of British Columbia Library |
Rights | For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use. |
DOI | 10.14288/1.0052363 |
URI | http://hdl.handle.net/2429/27676 |
Degree |
Master of Science - MSc |
Program |
Geological Sciences |
Affiliation |
Science, Faculty of Earth, Ocean and Atmospheric Sciences, Department of |
Degree Grantor | University of British Columbia |
Campus |
UBCV |
Scholarly Level | Graduate |
Aggregated Source Repository | DSpace |
Download
- Media
- 831-UBC_1989_A6_7 T54.pdf [ 20.57MB ]
- Metadata
- JSON: 831-1.0052363.json
- JSON-LD: 831-1.0052363-ld.json
- RDF/XML (Pretty): 831-1.0052363-rdf.xml
- RDF/JSON: 831-1.0052363-rdf.json
- Turtle: 831-1.0052363-turtle.txt
- N-Triples: 831-1.0052363-rdf-ntriples.txt
- Original Record: 831-1.0052363-source.json
- Full Text
- 831-1.0052363-fulltext.txt
- Citation
- 831-1.0052363.ris
Full Text
Cite
Citation Scheme:
Usage Statistics
Share
Embed
Customize your widget with the following options, then copy and paste the code below into the HTML
of your page to embed this item in your website.
<div id="ubcOpenCollectionsWidgetDisplay">
<script id="ubcOpenCollectionsWidget"
src="{[{embed.src}]}"
data-item="{[{embed.item}]}"
data-collection="{[{embed.collection}]}"
data-metadata="{[{embed.showMetadata}]}"
data-width="{[{embed.width}]}"
async >
</script>
</div>

http://iiif.library.ubc.ca/presentation/dsp.831.1-0052363/manifest