APPLICATION OF LIMIT DESIGN TO HIGH - STRENGTH ALUMINUM ALLOY BEAMS by TONY KATRAMADAKIS B.Sc. Robert's College I s t a n b u l , 1957 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Applied Science i n the Department of CIVIL ENGINEERING We accept t h i s t h e s i s as conforming t o the required standard THE UNIVERSITY OF BRITISH COLUMBIA May, 1962 ^ In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make i t freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of C7'"77~na /y7&y7 ff & The University of British Columbia, Vancouver 3, Canada. Date /&/ / 9 61- ii ABSTRACT The t h e o r y o f l i m i t d e s i g n o r i g i n a l l y was for structural steel construction. Tests carried developed o u t on m i l d s t e e l beams and f r a m e s a r e i n agreement w i t h t h e t h e o r y . Un- f o r t u n a t e l y a l i m i t e d number o f t e s t s have been c a r r i e d out on other d u c t i l e m a t e r i a l s such as l i g h t alloys. Therefore more t e s t s a r e r e q u i r e d i n o r d e r t o i n v e s t i g a t e w h e t h e r t h e theory of l i m i t design i s also applicable, with m o d i f i c a t i o n t o aluminum a l l o y s . predicted i n limit The f a i l u r e or without mechanism d e s i g n m a t e r i a l i z e s i n s t e e l frames n o t o n l y because s t e e l i s very ductile b u t a l s o because s t e e l has s t r a i n hardening. Aluminum a l l o y s exhibit very l i t t l e hardening. objects. of l i m i t I n the r e s e a r c h d e s c r i b e d here The f i r s t t h e r e were two o b j e c t was t o i n v e s t i g a t e t h e a p p l i c a b i l i t y d e s i g n t o aluminum a l l o y s . The s e c o n d o b j e c t was t o check e x p e r i m e n t a l l y t h e t h e o r y o f i n e l a s t i c bending. load strain t e s t s were c a r r i e d on c o n t i n u o u s Three beams made o f aluminum a l l o y t o s e e i f t h e mechanism c o n d i t i o n was a t t a i n e d b e f o r e failure o f t h e beam. Moments and d e f l e c t i o n s p r e d i c t e d b y the theory o f i n e l a s t i c bending were compared a g a i n s t measure- ment o f beam moments and d e f l e c t i o n s . bending considers the effect Tables of unit of s t r a i n The t h e o r y of inelastic hardening. f u n c t i o n d e r i v e d from t h e s t r e s s - s t r a i n d i a g r a m o f aluminum a l l o y (65S-T6) a r e p r e s e n t e d so iii that they may he used when the theory is of i n e l a s t i c bending applied. The f i r s t t e s t f a i l e d prematurely due t o c r i p p l i n g of the compression f l a n g e s . In the second and the t h i r d t e s t the mechanism c o n d i t i o n o f l i m i t design was reached s h o r t l y before f a i l u r e o f the t e n s i o n s i d e o f the beam under the load p o i n t by f r a c t u r e . Thus the type o f f a i l u r e i n d i c a t e s that not a l l s t r u c t u r e s w i l l achieve the mechanism c o n d i t i o n . The f a i l u r e l o a d and the r a t i o ofmomentsat f a i l u r e , as p r e d i c t e d by the theory 15.53 o f i n e l a s t i c bending was equal t o Kips and 1.13 r e s p e c t i v e l y . Test r e s u l t s i n d i c a t e d a f a i l u r e l o a d o f 16 Kips and a r a t i o ofmomeriUat f a i l u r e equal t o 1.1. The l o a d - d e f l e c t i o n curves were the same as the curves from the theory. was 5.57 inches of 5.46 i n c h e s . At f a i l u r e the d e f l e c t i o n under the load compared t o computed t h e o r e t i c a l d e f l e c t i o n iv ACKNOWLEDGEMENT The w r i t e r t a k e s his is indebtedness dedicated., criticism. British this opportunity to to Dr. A . Hrennikoff to for his untiring interest, He a l s o Columbia f o r made h i s studies Research Counsil for wishes the to whom t h i s guidance thank the U n i v e r s i t y original assistantship i n Canada p o s s i b l e , the grant express of and the a special work and of which National scholarship. TABLE OP CONTENTS Page 1 INTRODUCTION PART I General T h e o r e t i c a l Considerations . . . . 101 An i n t r o d u c t i o n to l i m i t design 102 An i n t r o d u c t i o n to the theory of i n e l a s t i c tending PART I I Unit Functions and Test Arrangements . . . 10 23 201 Tension and compression t e s t s to determine the s t r e s s - s t r a i n curve of high strength aluminum a l l o y 202 Evaluation of i n e l a s t i c theory u n i t f u n c t i o n f o r I beams made of aluminum a l l o y 203 Test arrangement PART I I I Beam Test Results 301 Results of beam t e s t No.l 302 Results of beam t e s t No.2 303 Results of beam t e s t No.3 PART IV 401 P r e d i c t i o n of the Theory of I n e l a s t i c Bending 117 T h e o r e t i c a l p r e d i c t i o n s on the behavior of the t e s t beams CONCLUSIONS AND RECOMMENDATIONS References 43 Figures 14 Tables 58 142 INTRODUCTION F o r many y e a r s and d e s i g n of structures on u n i t stress. develop his load limit of are "Limit yield the is claimed analysis specifically T . A . Van den Broek Design", stress their l a w o r more remained f o r i n which the regarded i n favour as of to ultimate the the design theory following: Rationality. - 1. have based on Hooke's The a d v a n t a g e s design structure has than the criterion. of It theory rather engineers can be d e t e r m i n e d T h e maximum s t r e n g t h f a r more a c c u r a t e l y of by the limit design. 2. beyond because the elastic its necessary Economy. of The r e s e r v e limit 3. Simplicity. - for the (b) supports, disregarded. elastic Also, points and (d) of strength of a structure c a n be u t i l i z e d w i t h a s s u r e d maximum s t r e n g t h beams and f r a m e s . stresses, - c a n be a c c u r a t e l y Most of the solution is stress settlement analysis eliminated for concentration of determined. complicated such imperfections supports, as safety (a) (c) redundant residual spreading usually can be 2 T e s t s c a r r i e d out by J.F. Baker on m i l d s t e e l beams and f u l l - s c a l e p o r t a l frames support the c l a i m f o r l i m i t design. U n f o r t u n a t e l y v e r y few t e s t s have been c a r r i e d out on other d u c t i l e m a t e r i a l s such as l i g h t a l l o y s . There- f o r e , i t i s the purpose of t h i s t h e s i s t o i n v e s t i g a t e whether the theory o f l i m i t design, o r i g i n a l l y developed for structural s t e e l , i s a l s o a p p l i c a b l e , with or without m o d i f i c a t i o n , t o h i g h s t r e n g t h aluminum a l l o y s . According to e l a s t i c methods, a s t r u c t u r e i s designed so that the s t r e s s e s due t o the working loads w i l l never exceed a c e r t a i n p e r m i s s i b l e working s t r e s s . represent the maximum loads expected of the s t r u c t u r e . The working loads d u r i n g the l i f e time The working s t r e s s , which i s d i r e c t l y r e l a t e d t o the y i e l d s t r e s s , ensures a margin of s a f e t y to account f o r u n p r e d i c t a b l e overloads, d e f e c t i v e workman- s h i p , d e f e c t i v e m a t e r i a l and so on. Since e l a s t i c design f a i l s t o a l l o w f o r the great reserve o f s t r e n g t h and d u c t i l i t y of s t e e l beyond the e l a s t i c l i m i t , the l o a d and deformations of the s t r u c t u r e a s s o c i a t e d with f a i l u r e cannot be To take i n t o account determined. as f u l l y as p o s s i b l e the d u c t i l i t y o f m a t e r i a l s such as s t e e l , the theory of l i m i t d e s i g n assumes that beyond the e l a s t i c range, the m a t e r i a l can undergo an i n f i n i t e s t r a i n under constant s t r e s s without f a i l u r e . F o r example i n a beam or r i g i d frame loaded 3 beyond i t s elastic capacity the section of maximum bending moment w i l l induce resistance from more and more inner fibers, each in turn-reaching the yield stress, until yield stress ultimately spreads to the neutral axis. Then the beam sec- tion attains a condition of deformability without limit. According to the theory of limit design, such a section of a redundant beam w i l l act as a hinge except instead of transmitting a zero bending moment, i t w i l l transmit a constant bending moment. The hinge is termed a plastic hinge and the bending moment (developed at the plastic hinge) is called plastic moment. The formation of a plastic hinge reduces the redundancy of the structure by one degree. If the structure is determinate,it w i l l deform without limit. Such a condition i s palled a mechanism. If the structure is indeterminate, the load w i l l increase u n t i l a sufficient number of plastic hinges are formed to transform the structure (or part of i t ) into a mechanism. This limiting condition for the entire structure (assuming uniform cross sections) is reached when as many sections as can "equalize" their bending moments are developing simultaneously the same resisting moment. Thus before the formation of a mechanism, redistribution or equalisation of moments must take place. This usually necessitates large angle change which in turn requires large curvature and therefore large strains in the 4 cross section. I t i s t a c i t l y ; assumed i n l i m i t design t h a t the s t r u c t u r e cannot f a i l by a c t u a l p h y s i c a l breaking a t some o f the e a r l i e r formed hinges before i t begins t o a c t as a mechanism. Apparently the b a s i s o f t h i s assumtion shape o f the standard l i e s i n the (^-$) curve f o r s t r u c t u r a l s t e e l assumed i n l i m i t design, f i g u r e 1, where the angle-change i n c r e a s e s i n d e f i n i t e l y under the constant p l a s t i c moment. However, the a b s o l u t e v a l u e o f angle-change t h a t a beam can maintain without breaking depends on the d i s t a n c e over which the p l a s t i c moment i s a c t i n g . F o r example a 12" I beam can e a s i l y s u s t a i n an angle-change o f 5° over 12" o f l e n g t h but i t i s very questionable i f the same angle-change can m a t e r i a l i z e over 1 of l o n g i t u d i n a l l e n g t h o f the same beam without breaking i t . Figure 1 To i n v e s t i g a t e the' x- p o s s i b i l i t y ) of such a f a i l u r e at the p l a s t i c hinge and the c o n d i t i o n s t h a t would prevent i t , a r e f e r e n c e to the (M-<J>) curve beyond the e l a s t i c range i s necessary. l/> /}_ H Ptastic l/i p l/> p 3 1< . 1 / /x R E>// o / / D B xc F (Zcc/p Figure 2 <z.nc/. ..Figure 3 F i r s t assume an i d e a l i z e d case o f (M-4?) diagram , f i g u r e 2 , c o n s i s t i n g o f two s t r a i g h t l i n e s , the e l a s t i c part OA and the p l a s t i c p a r t AB, and c o n s i d e r an example of bending of a f i x e d ended beam loaded with two g r a d u a l l y i n c r e a s i n g 1 7 concentrated loads each o f magnitude P a t a d i s t a n c e of ^ 6 from each end. See f i g u r e 3 . During the e l a s t i c deformation the r a t i o of maximum negative to maximum p o s i t i v e moment i s 2. As the i n t e n s i t y of the loads i n c r e a s e s t o some s p e c i f i c value of P (say^? ) 6 such as t o cause.- p l a s t i c moments a t the f i x e d ends, the moment diagram takes the shape CDKLEF and the f i x e d end 2 p l a s t i c moments become equal t o •g'?/ . Up t o t h i s p o i n t a l l the angle changes a r e e l a s t i c . I f P exceeds P« then p l a s t i c hinges form a t the ends w i t h t h e value o f the end moment unchanged, whereas the p o s i t i v e moment a t K and L s t a r t s i n c r e a s i n g beyond and up t o the new moment diagram approaches the l i m i t moment diagram CD'K'L'E'F. . Having i n mind t h a t the angle and change between A 0 i s zero a l l the time, we observe that when P approaches the l i m i t l o a d the moment between the loads increases twice i n magnitude which o b v i o u s l y y i e l d s p o s i t i v e angle change twice as great as the one c r e a t e d by/? , and the l e n g t h o f p o s i t i v e moment r e g i o n DO i n c r e a s e s t o D'O. Yet the r e g i o n of negative moment s h r i n k s t o the l e n g t h D'A and the negative bending moment gets s m a l l e r everywhere except at one p o i n t A where the moment remains the same. This means t h a t a l l the i n c r e a s e i n the p o s i t i v e angle change p l u s the l o s s o f some n e g a t i v e angle change must be balanced i n one s e c t i o n A over an i n f i n i t e s i m a l l e n g t h which w i l l c r e a t e i n f i n i t e s t r a i n s and break the beam a t the ends bef o r e the l i m i t c o n d i t i o n v i s u a l i z e d i n l i m i t d e s i g n i s materialized. Now assume a more g e n e r a l case o f diagram f i g u r e 4 and l e t <fr represent an angle change o c c u r i n g on a u n i t l e n g t h o f the beam corresponding t o the bending moment M. I f dtf r e p r e s e n t s an increment o f moment o c c u r i n g on the l e n g t h of the beam determined di by the shear- i n g f o r c e , V , then from equations of e q u i l i b r i u m we get: dev - ^ (i) and the angle change on l e n g t h d£ i s equal t o dM d4<f> Figure 4 V cj> (2) G r a p h i c a l l y , the expression <f>d'M represents the shaded area o f the h o r i z o n t a l s t r i p ABDC f i g u r e 4, and the t o t a l a v a i l a b l e angle change between any two p o i n t s on the curve such as K and N (assuming a constant s h e a r i n g f o r c e ) i s equal t o the summation o f a l l these s t r i p s between the two mentioned p o i n t s . N P r e s e n t i n g i t i n mathematical form, we have that the t o t a l angle change i s equal to = Ud£ Consequently - v v the t o t a l angle change that a c e r t a i n beam can undergo depends on the magnitude o f the area bound between the {M-<j> ) curve and the (3) 8 M axis. Figure 4. This area -is limited^ i f the material lacks strain hardening even though the curve may extend horizontally without limit, whereas with strain hardening as indicated by the dotted line i n figure 4, the area increases appreciably thus providing the necessary angle change required at the hinge section. So without strain hardening failure loads predicted by limit design w i l l not materialize. Most ductile materials such as mild steel have the necessary characteristics but some light alloys have very l i t t l e strain hardening and are probably unfit for limit design. To date, l i t t l e c r i t i c a l attention has been given to these questions. One of the purposes of this present investigation i s to attempt to obtain an indication of the likelihood of a premature failure of a structure, made of light alloys with l i t t l e strain hardening, with the test of several statically indetermined beams. Also the extend of equalization of moments predicted by limit design before the mechanism condition i s reached, w i l l be investigated. For the accurate interpretation of the test results i t was necessary to introduce the theory of inelastic bending presented by Dr. A. Hrennikoff in 1948. The inelastic bend- ing theory has certain simplifying assumtions. Therefore, 9 •the second purpose of the research i s to test the inelastic bending theory experimentally, by comparing actual loads, moments and deformations with the ones predicted by the theory. 10 PART I GENERAL THEORETICAL CONSIDERATIONS 101 An introduction to limit design. Definition of Factor of Safety and Explanation of the Term "Failure"* For many decades engineers have based their analysis and design of structures on Hooke's Law or more specifically on unit stress. Thus the stress in a structure under the most severe combination of loads should not exceed the working stress at the most highly stressed point. During the last 40 years and especially the past 15 years, proposals have been made to switch from the unit stress criterion to failure condition as the basis of design, in order to provide an adequate and uniform factor of safety on the basis of load rather than unit stress. This factor of safety may be defined as the ratio of failure load to working load i.e. Wf By working load is meant the heaviest or'the most severe load to be supported by the structure, while the failure load is of the same kind as the working load but of greater intensity so that i t can produce failure. 11 The term " f a i l u r e " i n g e n e r a l i s v e r y wide, and i s used t o s i g n i f y d i f f e r e n t c o n d i t i o n s such as rupture due to t e n s i o n o r reverse s t r e s s e s , c o l l a p s e due t o l o c a l or g e n e r a l i n s t a b i l i t y or l a r g e deformation. In l i m i t design f a i l u r e i s i n v a r i a b l y used i n the l a s t sense. T h i s type o f f a i l u r e i s always a s s o c i a t e d with y i e l d s t r e s s . deformations, In view of extensive l i m i t d e s i g n doesm'ot r e q u i r e any s e t o f l i m i t s f o r deformations o r s t r e s s e s , c l a i m i n g that once y i e l d i n g has occurred a t s p e c i a l s e c t i o n s , the deformation w i l l be so great that the s t r u c t u r e may be considered as f a i l e d . S t r e s s D i s t r i b u t i o n Under F l e x u r e The a b i l i t y o f s t e e l t o deform p l a s t i c a l l y i s i l l u s t r a t e d g r a p h i c a l l y i n f i g u r e 5a which i n l i m i t i s approximated as shown i n f i g u r e 5b, design i . e . by i g n o r i n g the peak corresponding t o the upper y i e l d p o i n t . When the beam i s s t r e s s e d w i t h i n the e l a s t i c l i m i t , s t r a i n s and s t r e s s e s are l i n e a r ( f i g u r e 5d and 5 e ) . E l a s t i c behavior of the beam i s p o s s i b l e only w i t h i n the e l a s t i c range, the upper l i m i t of which i s d e f i n e d by the coordinates o f p o i n t A. I f the curvature o f the beam i n c r e a s e s f u r t h e r so that the s t r a i n i n . the extreme f i b e r becomes three times as great as the y i e l d s t r a i n , then assuming l i n e a r s t r a i n d i s t r i b u t i o n the corresponding s t r e s s d i s t r i b u t i o n over.the s e c t i o n w i l l be as i s shown i n f i g u r e 5 g , where there i s a constant i n the outer stress o f the depth o f the beam and a l i n e a r l y v a r y i n g 12 s t r e s s d i s t r i b u t i o n i n the middle, curvature w i l l that extend t h e y i e l d s t r e s s figure 5k. distribution will Beyond t h a t , the actual of o v e r t h e s e c t i o n so when t h e o u t s i d e f i b e r s a r e s t r e s s e d 5b t h e s t r e s s and Jj*urther i n c r e a s e to point 1 figure t a k e t h e shape shown i n s t r a i n hardening stresses will appear s t r e s s d i s t r i b u t i o n w i l l be a s i n f i g u r e 5j, which i s s i m p l i f i e d i n l i m i t d e s i g n by assuming c o n s t a n t y i e l d stress figure a l l over the section, The r e s i s t i n g p l a s t i c moment M p c o r r e s p o n d i n g t o s t r e s s distribution in limit 5^. of figure 5 t i s t h e one a s s o c i a t e d with f a i l u r e design, where ^ r ana =A y () 6 where y i s t h e d i s t a n c e the o f t h e center, o f g r a v i t y area from t h e c e n t r o i d a l Moment C u r v a t u r e The axis. Relation. r e l a t i o n between c u r v a t u r e and s t r e s s o u t e r f i b e r i s g i v e n by t h e simple -i- IZ - i n the expression — (7) h derived from simple geometrical, .considerations. elastic r a n g e t h e above e x p r e s s i o n s so o f one h a l f In the c a n he r e l a t e d t o moment that / Plotting M equation (7) beyond t h e e l a s t i c l i m i t , a s s u m i n g no s t r a i n h a r d e n i n g and a p p l y i n g e a c h t i m e moments 13 of opposite sense, we get the graph shown i n figure 6 , consisting of a straight line GA and a sharplybent part AB, which approaches ordinate M p asymptotically. For standard Vf jr£ Z being small, Mp-My is also small. A7omenT v. s. Figure 6 beams, This proposition justifies the replacement of GAB by OFD so that the moment at a section i s either elastic or plastic. The very fact that Mp is associated with indefinite increase i n curvature explains the consideration of Mp as criterion for failure i n the sense of large deflections. Application of Limit Design to Statically Indeterminate Frames Under Simple Proportional Loading. During the elastic loading condition where a l l stresses developed i n the frame are elastic, there are special locations where the bending moments are maximum. As the loads are increased in magnitude, with a constant ratio remaining between their valued the greatest elastic moment becomes plastic and the beam section forms a plastic hinge, transmitting constant moment of resistance for farther deformation. 14 At a still higher load, y i e l d o t h e r key p o i n t and a s e c o n d h i n g e w i l l d e v e l o p . further increase one g r e a t e r rigid s t r e s s w i l l be r e a c h e d a t some o f t h e l o a d t h e number o f h i n g e s becomes t h a n t h e number o f r e d u n d a n t s , structure w i l l as, a w h o l e . the initially t r a n s f o r m i n t o a mechanism u n a b l e t o o f f e r any r e s i s t a n c e t o c o m p l e t e This I f by statement collapse. holds true i f the s t r u c t u r e I t i s a l s o p o s s i b l e , however, t o h a v e a mechanism f o r a p a r t fails partial o f t h e s t r u c t u r e w i t h l e s s number o f hinges. I f the approximate known, t h e f a i l u r e l o a d the l o c a t i o n s of the hinges are c a n be d e t e r m i n e d by s t a t i c s o r by p r i n c i p l e o f v i r t u a l work s i n c e t h e s t r u c t u r e has come s t a t i c a l l y be- determined. T h i s p r o p o s i t i o n l e a d s t o two basic theorems o f analysis. 1. S t a t i c P r i n c i p l e ( l o w e r bound) w h i c h t h a t any a s s u m p t i o n s o f b e n d i n g moments a t t h e locations of p l a s t i c hinges consistant states possible w i t h s t a t i c s and not e x c e e d i n g t h e p l a s t i c v a l u e s o f moments w i l l r e s u l t i n c o r r e s p o n d i n g v a l u e s o f l o a d s w h i c h w i l l be l e s s o r e q u a l to the f a i l u r e 2. load. K i n e m a t i c P r i n c i p l e ( u p p e r bound) w h i c h t h a t any a s s u m p t i o n o f mechanism due to p l a s t i c hinges states will 15 result in a value of the load, found hy statics or principle of virtual work, which w i l l be greater or equal to the failure load. The exact solution of course satisfies both theorems. As explained in the introduction, the theory of limit design i s based on the assumption that the structural material can undergo extensive local strains, without causing an immature failure due to physical breaking of an early hinge. This assumption i s not favored by material lacking strain hardening. To investigate the realistic behavior of aluminum alloys with very l i t t l e strain hardening, a more exact theory of bending i s necessary. Dr. A.P. Hrennikoff in 1948 has developed such a theory which is introduced briefly in the next section. 102. An Introduction to the Theory of Inelastic Bending Assumptions of the Exact Theory. The assumption of limit design, that the moments developed at the locations of the plastic hinges equalize during the process of formation of a mechanism, w i l l be examined with reference to exact theory of inelastic bending. The theory i s more exact than limit design but is also 16 based on certain assumptions introduced for the sake of simplicity. 1. They are as follows: Distribution of strains over the cross-section is linear. 2. The stress-strain relation in bending is the same as i n simple tension or compression and the stress-strain curves in tension and compression are identical. 3. The flexural members are symmetrical about their neutral axes. 4. The bending moment diagram of the loaded structure i s bound by straight lines. A curved diagram is approximated by a polygonal shape. 5. Normal forces are ignored. 6. Deformations due to shearing forces are neglected. 7. Instability is not considered to be a factor. 8. Deformations of the structure are assumed small. Unit Strain - Bending Moment Relation in a Rectangular Beam. -.. " The functional relationship between G (unit stress) and e (unit strain) may be expressed as an equation G = f ( O , a graph, or a table. 17 Then using the simplifying assumptions of the theory, i t is possible to derive expressions for the moment, curvature, angle change, deflection and shear stresses i n terms of the stress-strain curve. These relations have been derived by Dr. Hrennikoff and w i l l only be briefly introduced here. To find a relation between bending moment and corresponding unit strains, e , in the outer fiber of the beam we must introduce a variable, m,, which is defined as the statical moment about G axis of an area under the.stressstrain curve taken to a variable point A on the curve provided that the variable base e i s reduced to unity. (Figure 7e, ) e, Unit Strain 6? . -b C d _ Q Figure 7 Presenting i t mathematically, we get the following expression: 18 The value of m,, can be easily computed i f 6 and G are related mathematically. Otherwise i t must be determined by summation, Now i f we equate the external"'moment to resisting moment and notice that the internal moment i s proportional to the breadth and the square of the depth h we have: M- 2m Hit - ^ JJ2 d°> Unit Stain-Bending Moment Relation in an I-Beam. In the case of I-beams or channels i t i s also possible by introducing a new variable m to relate the bending moment to the unit strain in the outer fiber. To simplify the analysis, the web depth i s assumed to be equal to the distance between the center of flanges and the flange area i s assumed to be concentrated at the extremities of the web. Figure 8a. Thus for the particular section shown in figure 8b the moment about the neutral axis i s equal to sr? = fe-ede +• JTG. (12) where e and e are the strain and stress of the flange respectively, and K i s the ratio of the flange area to £ of the web area. 19 >/ K 2 C b d Figure 8 Now equating external moment to resisting moment and observing that in an I beam the internal moment i s proportional to the product A„h , we have the following expression: ( 1 3 ) Unit Strain - Shear Stress Relation in an I Beam. The analysis of shear stress requires the introduction of a new variable Cj defined as the sum of the normal stresses developed by the section shown in figure 8. When K = 0 then CJ is referred as cj, . Thus: (14) o (15) 20 Unit Strains - Angle Change Relation i n an I Beam. The relationship between the angle ehange and the flange strain i s given mathematically in the following manner: ' 6 dm ^ V = (16). J*/k * where cj> i s the angle change between a point of contraflexure and a point of 6o flange strain, V the shear force, and n 0 the unit function for the angle change. See figure 9. rr> moment € flange stra'm ni ;., rio u/7/t funcHon ^for <j> Uo unit function for o 0 a For a member under constant moment <4> = J . n xo-6o- (17) where 5T„ is the length of the beam. Figure 9 Unit Strain-Deflection Relation in an I Beam., The mathematical expression relating the unit strains and the deflection is as follows: 21 where i s the d e f l e c t i o n a t a point a t a n g e n t drown t o a p o i n t £o f l a n g e s t r a i n , of the u n i t f u n c t i o n f o r d e f l e c t i o n . member u n d e r c o n s t a n t of contraflexure S e e f i g u r e 9. from and Uo i g For a moment (19) Formulas f o r d e f l e c t i o n s o f n o n t r i a n g u l a r ( t r a p e z o i d a l ) moment d i a g r a m s c a n be d e r i v e d geometrical relations. Maximum S h e a r i n g The They a r e g i v e n Stress greatest i n refer. simple (I). i n a n I Beam. shearing a x i s and c a n be d e r i v e d w i t h from stress reference T© i s a t the n e u t r a l t o f i g u r e 10. oLx. Figure From s t a t i c s J^f*. then t° -To =0 t>c/z = - A ^ 10 i A«/j ^ ~? J ~ t _f£_ dxr = _v Aw ^ - L A„c/j ( 2 0 ( 2 1 ) dm ) The function fix. can he computed point hy point hy taking increments of both OJ and m corresponding to the same increments in e . 23 PART I I UNIT FUNCTIONS AND TEST ARRANGEMENTS 201. T e n s i o n and C o m p r e s s i o n S t r e s s - S t r a i n Curve o f H i g h S t r e n g t h Aluminum A l l o y . As was m e n t i o n e d of unit T e s t s t o Determine t h e i n s e c t i o n I . f o r the computation f u n c t i o n s o f h i g h s t r e n g t h aluminum a l l o y (65S-T6), t h e f u n c t i o n a l r e l a t i o n s h i p between s t r e s s and s t r a i n must be known. S i n c e no s u c h r e l a t i o n was a v a i l a b l e , three t e n s i o n t e s t s and one c o m p r e s s i o n t e s t were c o n d u c t e d on round samples c u t f r o m b o t h a 6 i n c h I beam ( d e s i g n a t e d 28008 A l c a n ) and a 4 i n c h H beam ( d e s i g n a t e d 29001 A l c a n ) . T e n s i o n c y l i n d i c a l specimens web and f l a n g e web i n t e r s e c t i o n , 0.24 was were c u t f r o m w i t h d i a m e t e r s o f 0.3 i n s . , i n s . , and 0.5 i n s . r e s p e c t i v e l y . The l o a d i n g machine a 60,000 l b s B a l d w i n Soutwark h y d r a u l i c t e s t i n g S t r a i n measurements f o r t h e flange, machine. s p e c i m e n were r e c o r d e d b o t h by Cambridge e x t e n s o m e t e r (gauge l e n g t h 4") and (SR-4 t y p e A7) s t r a i n gauges e l e c t r i c a l resistance F o r specimens (gauge l e n g t h ^-"). h a v i n g a d i a m e t e r l e s s t h a n 0.5 i n s . o n l y t h e Cambridge e x t e n s o m e t e r was u s e d . E x t e n s i v e deforma- 1" t i o n n e a r f a i l u r e were measured t o -J-QQ a c c u r a c y w i t h on a 4" gauge l e n g t h . Compression cylindrical calipers specimens c u t 24 f r o m t h e web f l a n g e intersection, 1.5 i n s . l o n g , were a l s o t e s t i n g machine. by two to avoid possible tions 0.5 i n s . i n d i a m t e r and compressed i n t h e 60,000 hydraulic S m a l l s t r a i n measurements were c o n d u c t e d SR-4 s t r a i n gauges p l a c e d d i a m e t r i c a l l y moment e f f e c t . a d i a l gauge l o c a t e d opposite To measure l a r g e deforma- u n d e r t h e head o f t h e t e s t i n g machine was u s e d . For s m a l l d e f o r m a t i o n t h e F e d e r a l d i a l gauges showed e r r o n e o u s r e a d i n g s due t o t h e c r u s h i n g e f f e c t specimen's on t h e surfaces. S i n c e creep i s a s s o c i a t e d w i t h p l a s t i c deforma- tion, the test hours. d u r a t i o n was v a r i e d The s t r e s s - s t r a i n curves a r e presented f o r t h e t e n s i o n t e s t and f i g u r e A each t e s t f r o m 30 m i n u t e s t o 2\ i n figure 12 f o r t h e c o m p r e s s i o n 11 test. summary o f t h e main m e c h a n i c a l p r o p e r t i e s o f i s given i n table 1. O b s e r v i n g t h e s t r e s s - s t r a i n diagram o f each men, we s e e t h a t h i g h s t r e n g t h aluminum a l l o y s have speci- certain mechanical p r o p e r t i e s which a r e s i m i l a r t o those o f s t e e l . L i k e s t e e l , t h e y were c a p a b l e o f a l m o s t p e r f e c t l y havior. of 3 3 stressed and The t e n s i o n s p e c i m e n s e x t e n d e d elastic e l a s t i c a l l y to a and a s t r a i n o f a p p r o x i m a t e l y .35 p e r c e n t . p a s t t h e e l a s t i c l i m i t , t h e r e l a t i o n between s t r a i n was e n t i r e l y d i f f e r e n t from that bestress When stress i n structural steel. 25 Specifically, the excessive deformation did not begin at any sharply distinguishable point on the stress strain diagram. After a rapid increase of inelastic deformation at approximately 40 '? /i £ stress, large inelastic deformaK s n tion took place (without almost any strain hardening) until the ultimate stress of 43 ^'fVins 2 was reached. At that stress, "necking" took place and the specimen fractured at a lower stress after considerable "necking". In the compression tests, the elastic part and some of the early plastic parts of the curve were similar to the tension tests. After some yielding, a,higher compres- sion stress was observed apparently due to the increase in the cross section area . After further deformation the test was stopped due to buckling of the specimen which, in turn, caused some decrease in the slope of the stress-strain curve. Comparing the stress-strain diagram of high strength aluminum alloys to steel, two basic differences in their mechanical properties are readily recognized. First, the light alloys have very l i t t l e stain hardening and second, they lack a well defined yield point. The lack of strain hardening, observed in the stress-strain diagram of the specimens as was mentioned in the introduction, i s believed to be of primary importance in 26 limit design since the threat of premature failure i s associated with i t . The absence of a well defined yielding, however, is of secondary importance in limit design because while the presence of a well defined yield condition may be desir.eable for the sake of having a clear cut limiting state on which to base working values, (loads and so on)',, i t s absence constitutes an advantage i n that relatively:" higher loads can be carried by the redundant structure due to the continuing a b i l i t y of the structural member to develop increasing resistances. Deformations in members made of such metal become excessive only when they exceed a value that will have to be agreed upon in advance. Therefore, the limit loads or limit moments likewise have to be arbitrarily defined. Thus for limit design calculations, the stress at 0.2 percent offset from the i n i t i a l elastic line arbitrarily will be defined as the yield stress. This w i l l hereafter be referred to as yield stress Gy which corresponds to the point where the metal starts deforming inelastically with very l i t t l e increase in stress. Referring to the test results presented i n table I we observe a considerable variation i n the physical properties of the material such as modulus of elasticity, strain at ultimate stress, strain at failure and stress at failure. 27 The reason f o r t h i s unexpected v a r i a t i o n of the t e s t r e s u l t s i s the s i z e o f the specimen ( r a t i o o f c r o s s - s e c t i o n a l area t o gauge l e n g t h ) and d i f f e r e n c e o f m a t e r i a l . V a r i a t i o n s due to time e f f e c t a r e not a p p r e c i a b l e w i t h i n the l i m i t s of 20 minutes t o 2|- hours. Modulus o f E l a s t i c i t y The between Wo.l. 9300 modulus o f e l a s t i c i t y v a r i e d approximately ^p/inS " to 1 . 11,300 In t e n s i o n t e s t s t r a i n s measured by the Cambridge extensometer gave a modulus o f e l a s t i c i t y equal t o 9300 *' /jm'' p , whereas s t r a i n measured by SR-4 gauges gave a modulus o f e l a s t i c i t y of 9550 ip//ns' . lc x I n view o f these d i s c r e p a n c i e s another compres- s i o n t e s t was conducted. The specimen was a 6-1 beam with 2 A=3»311 i n s and L=12 i n c h e s . the e l a s t i c l i m i t . The deformation d i d not exceed E l e c t r i c a l s t r a i n gauges with a gauge l e n g t h were placed symmetrically of the f l a n g e s and the web. opposite a t the center M i r r o r extensometers with 6" gauge l e n g t h were a l s o placed symmetrically c e n t e r of the f l a n g e s . averaged. inch Symmetrically opposite at the opposite s t r a i n s were The r e s u l t s i n f i g u r e 13 show a c l o s e agreement between the m i r r o r extensometer and f l a n g e s t r a i n gauges g i v i n g a modulus of e l a s t i c i t y of 10,400 ^'pjmf'. The web s t r a i n s gave a modulus o f e l a s t i c i t y o f 10,620 ^'p/ms ' . t 1 In the beam t e s t s , d e f l e c t i o n s were measured at different locations. D e f l e c t i o n s measuredjduring the e l a s t i c 28 behavior of the beam, were also used i n determining the modulus of e l a s t i c i t y . t i o n Ity. These computations are given i n sec- The modulus of e l a s t i c i t y computed from beam test No.l. and No.3. was 9,660 Kfp/ s and from beam test No.2. 2 n was 10,400 Kif>J,fts . z In order to compute moments during the test, using the flange s t r a i n measurements, a modulus of e l a s t i c i t y of 10,400 K r p / s / n z was used. For the computation of unit functions a modulus of e l a s t i c i t y of 9,550 Ki'p/ms ' was used. 2 The variations observed i n the modulus of e l a s t i c i t y w i l l not affect appreciately the unit functions. Stress-Strain Diagram f o r the Theory of Inelastic Bending As stated i n the assumptions of the theory the s t r e s s - s t r a i n curve i s the same i n tension and compression. Between the two curves, preference should be given to a tension s t r e s s - s t r a i n curve since the beam w i l l f a i l at the tension side. From the s i x tension tests, the s t r e s s - s t r a i n diagram of test number No.l. with the largest area (0.5 inches diameter) was chosen f o r the computation of unit functions. The cross-section area of the test beam, r e s i s t i n g the f l e x u r a l stresses, being large i n size, would more l i k e l y develop a stress s t r a i n relationship similar to the large size specimen, rather than the small size. j The unit functions m, n, u, q, and ZJ. depend only dm 29 on the s t r e s s - s t r a i n curve of the material, and the geometry of the. cross section of the beam which i s reflected i n the value of K. Thus i n order to find the moments, the shears, and deformations i n a beam of a p a r t i c u l a r cross section i t i s necessary to have tabulated a l l the unit functions versus each value of the flange s t r a i n . The theory of i n e l a s t i c bending w i l l be compared with the beam tests i n order to get an indication of i t s accuracy i n predicting moments, deflections and f a i l u r e conditions beyond the e l a s t i c l i m i t of the materials. 202. Evaluation of Inelastic Theory Unit Functionsfor I Beams- Made of Aluminum A l l o y (65 S - T 6) Up to the e l a s t i c l i m i t the evaluation of unit functions m, n, q, ^-L , already presented, i s a very simple dm proposition since the functional relationship between stress and s t r a i n i s l i n e a r . Beyond the e l a s t i c l i m i t since no simple mathematical r e l a t i o n between the two variables i s available, a step by step summation of small increments must be made. For each shape of I beam as given by the parameter, K, (ratio of the flange area to one h a l f the web area) a set of unit function was computed. The values of K ranging from 0 to 3 included the rectangular section (K = 0) and the common shapes of H or I beams l i s t e d i n the manufacturer's catalogues. Table £ and figure 14 present the unit functions m,n,q and above the e l a s t i c l i m i t f o r TABLE Test Ho. Specimen Location Specimen Diameter in. / M E C H A N I C A L P R O P E R T I E S P R O M T E N S I O N AND C O M P R E S S I O N T E S T S Duration of test Modulus of Elasticity Kip/in . Proportional Limit Kip/in . Yield Stress a t 2fo o f f s e t Kip/in . Ultimate Stress Kip/in . Ultimate Strain Per Cent Failure Stress Kip/in . Elongation Per Cent Tension 1. F i l l e t of 0.4996 I beam 1/2 hr. 9540 9300 (SR-4) (Cambridge) 36.3 39.9 43.4 9.0 30.4 14.8 2. F i l l e t of 0.4997 H beam 2/3 hr. 9550 (Cambridge) 34.5 39.9 42.7 6.8 31.0 11.3 3. Flange of 0.3002 I beam 2 1/4 h r . 9600 (Cambridge) 31.0 39.5 43.0 7.3 27.0 10.5 4. F l a n g e of 0.2998 H beam 1/2 hr. 9300 (Cambridge) 30.0 38.9 42.0 6.0 25.8 9.5 5. Web o f I beam 0.2394 1/3 hr. 9300 (Cambridge) 33.5 39.5 42.7 6.8 28.7 9.0 6. Web o f H beam 0.2386 2 2/3 h r . 9300 (Cambridge) 31.5 40.0 42.4 .5.0 26.0 7.5 1. Fillet^6f H beam 0.500 (SR-4) 32.0 " 39.2 - - - 2. F i l l e t of 0.500 I beam 33.0 40.5 - - - Compression 9960 1/2 hr. 11000 (SR-4) AO J/ MILLIMETERS- '/J C E N T I M E T E R 36 o 2 3 4- S 4> STrcr/s? 7, % 8 9 10 39 800 750 45 m 700 6O0 ' m SOO\ HI iili i • 3 SOl 250 IOC 5 e, 7 8 /o 42 TABLE 2 UNIT FUNCTIONS FOR A l 65S-T6 BEAMS (a) K - 0 ,-3 x/o 3.8 3.9 4.0 4.2 4.4 4.6 4.8 5.0 5,3 5.6 6.0 7.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0 32.0 36.0 40.0 44.0 48.0 52.0 56.0 60.0 64.0 68.0 72.0 76.0 80.0 84.0 88.0 90.0 92.0 94.0 96.0 100.0 104.0 m /in 12.10 12.42 12.73 13.31 13.84 14.32 14.75 15.13 15.64 16.08 16.57 17.47 18.06 18.78 19.19 19.46 19.64 19.77 19.87 19.95 20.02 20.08 20.15 20.20 20.26 20.37 20.46 20.55 20.63 20.71 20.79 20.86 20.94 21.00 21.06 21.11 21.16 21.20 21.24 21.26 21.28 21.30 21.31 21.33 21.35 3 22.99 24.21 25.43 27.83 30.11 32.26 34.27 36.15 38.77 41.16 44.02 49.84 54.30 60.79 65.30 68.78 71.56 73.72 75.54 77.20 78.81 80.41 82.16 83.85 85.61 89.22 92.79 96.36 100.22 104.27 108.49 112.84 117.30 121.52 125.44 129.20 133.19 136.88 140.49 142.19^ 143.82 145.31 146.64 148.80 150.02 (b) K = 0.5 ^fox/O 185. 200. 216. 247. 278. 308 337. 366. 406. 444. 490. 590. 669. 788. 874. 941. 995. 1038. 1074. 1107. 1139. 1171. 1207. 1241. 1276. 1350. 1423. 1496. 1575. 1659. 1746. 1837. 1930. 2019. 2101. 2182. 2265. 2343. 2420. 2456. 2490. 2522. 2550. 2596. 2623. m 5 dm 1.50 1.51 1.53 1.57 1.62 1.67 1.73 1.80 1.87 1.98 2.17 2.37 2.80 3.20 3.72 4.13 4.62 5.11 5.34 5.30 5.10 4.69 4.41 4.25 3.93 3.77 3.61 3.37 3.H 2.94 2.81 2.71 2.68 2.75 2.80 2.76 2.75 2.79 2.82 2.89 2.97 3.20 3.61 4.47 14.89 3.8 3.9 4.0 4.2 4.4 4.6 4.8 5.0 5.3 5.6 6.0 7.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0 32.0 36.0 40.0 44.0 48.0 52.0 56.0 60.0 64.0 68.0 72.0 76.0 80.0 84.0 88.0 90.0 92.0 94.0 30.25 30.97 31.53 32.48 33.22 33.84 34.35 34.83 35.44 35.95 36.50 37.44 38.09 38.88 39.34 39.68 39.89 40.02 40.17 40.30 40.44 40.58 40.72 40.85 40.96 41.19 41.36 41.55 41.76 41.94 42.11 42.28 42.42 42.50 42.60 42.70 42.79 42.86 42.92 42.94 42.95 42.95 J 57.48 60.23 62.45 66.38 69.52 72.34 74.70 77.08 80.21 83.01 86.16 92.31 97.14 104.31 109.36 113.82 116.97 119.13 121.91 124.62 127.95 131.43 135.21 139.06 142.38 150.23 156.66 164.43 174.04 183.09 192.70 202.56 211.06 216.27 223.34 230.52 237.54 243.69 249.02 250.27 250.99 251.55 1.20 1159 1243. 1.25 1313. 1.31 1438. 1.37 1542. 1.46 1636. 1.54 1717. 1.60 1799. 1.66 1909. 1.74 2009. 1.86 2123. 2.09 2350. 2.29 2533. 2.64 2809. 2.98 3006. 3.30 3183. 3.57 3308. 4.35 3394. 4.36 3505. 3.76 3614. 3.34 3749. 2.93 3890. 2.71 4044. 2.54 4201. 2.56 4337. 2.41 4659. 2.38 4924. 2.32 5246. 2.02 5647. 1.89 6025. 1.86 6429. 1.80 6845. 1.82 7205. 2.06 7427. 2.17 7727. 1.98 8034. 1.96 8334. 2.01 8597. 2.14 8826. 2.46 8879. 4.17 8910. 5.79 8934. 14.20 43 TABLE 2 UNIT FUNCTIONS FOR A l 65S-T6 BEAMS (e) K = a m x/o 1.0 (d) -3 x/O /n 3*8 4 8 . 4 0 3 . 9 49.52 4 . 0 50.33 4 . 2 51.66 4.4 52.59 4.6 53.37 4 . 8 53.95 5;o 54.53 5 . 3 55.24 55.83 5.6 6 . 0 56.42 7 . 0 57.42 8 ; 0 58.11 1 0 . 0 58.98 1 2 . 0 59.49 14.0 59.91 1 6 . 0 60.14 1 8 . 0 60.27 2 0 . 0 60.47 2 2 . 0 60.65 2 4 . 0 60.87 2 6 . 0 61.08 2 8 . 0 61.39 3 0 . 0 61.50 3 2 . 0 61.66 3 6 . 0 62.02 4 0 . 0 62.26 4 4 . 0 62.55 4 8 . 0 62.88 5 2 . 0 63.16 5 6 . 0 63.44 6 0 . 0 63.70 64.0 63.91 6 8 . 0 64.00 7 2 . 0 64.15 7 6 . 0 64.29 8 0 . 0 64.42 8 4 . 0 64.52 8 8 . 0 64.60 90.0 64.61 91.96 96.26 99.46 104.93 108.93 112.43 115.14 118.01 121.65 124.86 128.30 134.78 139.98 147.82 153.43 158.87 162.39 164.55 168.27 172.03 177.09 182.44 188.25 194.28 199;15 211;25 220.52 232.49 247.86 261.91 276.92 292.29 304.81 311.02 321.24 331.74 341.88 350.50 357.54 358.35 2967 1.13 3178. 1.17 3338. 1.22 3616. 1.28 3825. 1.36 4010. 1.45 4156. 1 . 5 1 1.55 4311. 4 5 1 1 . 1.64 4690. 1.77 4883. 2.02 5251. 2 . 2 1 .51 5552. 22.80 6011. 6343. 2;99 6668. 3.17 6879. 4 i l 2 7009. 3.84 7234. 3.02 7462. 2 . 6 1 7769. 2.26 8095. 2 . 1 1 8450. 1:99 8 8 2 1 . 2.02 9121. i ; 9 3 9869. i ; 9 2 10445. 1.88 11192. 1.65 12156. 1.57 13041. 1.55 13991. 1 . 5 1 14969. 1.54 15768. 1.77 16164. 1.88 16819. i ; 6 7 17494. i : 6 6 18146. 1 . 7 1 18702. 1.83 19157. 2.22 19209. 1 0 ; 97 -3 3.8 3.9 4.0 4.2 4.4 4.6 4.8 5.0 5.3 5.6 6.0 7.0 8.0 10.0 12.0 14.0 16.0 18;0 20.0 22.0 24.0 26;o 28.0 30.0 32.0 36;o 40;o 44:0 48.0 52.0 56.0 60.0 64.0 68.0 72.0 76.0 80.0 84.0 88.0 K = 1.5 m n , 2 in 66*55 68.07 69.13 70.83 71.97 72.89 73.55 74.23 75.04 75.70 76.35 77.39 78.14 79.08 79.64 80.14 80.39 80.52 80.77 81.00 81.29 81.58 81.87 82.15 82.36 82.84 83.16 83.55 84.01 84.39 84.76 85.12 85.39 85.50 85.69 85.88 86.05 86.18 86.28 -3 ty/tfX/O 126.45 132.28 136.47 143.48 148.34 152.51 155.58 158.94 163.10 166.72 170.44 177.24 182.82 191.34 197.50 203.91 207.81 209.97 214.64 219.45 226. 3 233.46 241.29 249.50 255.91 272.27 284.39 300.56 321.67 340.72 361.13 382.01 398.57 405.76 419.13 432.97 446.23 457.30 466.07 5610 6003. 6290. 6780. 7128. 7430. 7654. 7902. 8213. 8486. 8769. 9292. 9726. 10395. 10884. 11396. 11709. 11883. 12260. 12649. 13199. 13788. 14427. 15101. 15628. 16979. 17985. 19333. 21102. 22706. 24432. 26206. 27617. 28232. 29376. 30563. 31703. 32657. 33413. 1.09 1.12 1.17 1.22 1.30 1.39 1.44 1.48 1.56 1.70 1.96 2.14 2.40 2.65 2.75 2.89 3.91 3.46 2.60 2.22 1.94 1.82 1.73 1.76 1.69 1.69 1.66 1.48 1.42 1.41 1.38 1.40 1.61 1.70 1.51 1.50 1.54 1.66 2.05 44 TABLE £ UNIT FUNCTIONS FOE. A l 65S-T6 BEAMS (e) K = X/O' K//» 3.8 3.9 4.0 4.2 4.4 4.6 4.8 5.0 5.3 5.6 6.0 7.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0 32.0 36.0 40.0 44.0 48.0 52.0 56.0 60.0 64.0 68.0 72.0 76.0 80.0 84.0 88.0 84.70 86.62 87.93 90.01 91.34 92.42 93.15 93.93 94.84 95.58 96.27 97.37 98.16 99.18 99.79 100.36 100.64 100.77 101.07 101.35 101.72 102.08 102.45 102.80 103.06 103.67 104.06 104.55 105.13 105.61 106.09 106.54 106.88 107.00 107.24 107.47 107.68 107.84 107.96 z 2.0 U n K/,n x./o~ z 160.93 168.31 173.48 182.03 187.75 192.60 196.02 199.86 204.54 208.57 212.59 219.71 225.66 234.85 241.56 248.95 253.22 255.38 261.01 266.86 275.38 284.47 293.33 304.71 312.68 333.28 348.25 368.62 395.49 419.54 445.35 471.74 492.33 500.51 517.03 534.20 550.58 564.11 574.60 9087 9719 10171 10931 11450 11895 12212 12572 13014 13397 13783 14472 15055 15961 16629 17368 17797 18015 18582 19175 20039 20967 21974 23040 23860 25990 27545 29669 32486 35020 37752 40558 42754 43630 45399 47242 49004 50462 51594 ( f ) K = 2.5 U -3 c/tr> x/o 1.07 1.10 1.14 1.18 1.26 1.34 1.39 1.42 1.50 1.64 1.91 2.80 2.30 2.52 2.56 2.66 3.74 3.17 2.32 1.99 1.75 1.65 1.58 1.61 1.55 1.55 1.53 1.38 1.33 1.-32 1.30 1.32 1.50 1.58 1.41 1.40 1.44 1.54 1.-92 3.8 3.9 K/in< 102.85 105.17 106.73 4vO 109.18 4.2 110.72 4.4 4.6 111.94 112.75 4.8 113.63 5.0 114.64 5.3 5 . 6 115.45 116i?20 6.0 117:34 7.0 118.19 8.0 119.28 10.0 12.0 119.94 14.0 120.59 16*0 120.89 18.0 121.02 20.0 121.37 22.0 121.70 24.0 122.14 26.0 122.58 28 sO 123.02 30.0 123.45 32.0 123.76 36.0 124.49 40.0 124.96 44.0 125.44 48.0 126.26 52.0 126.84 56*0 127.41 60.0 127.96 64.0 128.36 68.0 128.50 72.0 128.78 76.0 129.06 80.0 129.31 84.0 88.0 129.50 129.64 K/rfx/c* 195.42 204.33 210.50 220.58 227.16 232.68 236.45 240.79 245.98 250.42 254.73 262.18 268.51 278.37 285.63 293.99 298.64 300.80 307.37 314.28 324.52 335.49 347.37 .359.93 369.44 394.30 412.12 436.69 469.31 498.36 529.57 561.47 586.08 595.26 614.92 635.42 654.92 670.92 683.12 13398 14326. 14980 16068 16792 17407 17830 18321 18913 19424 19923 20793 21538 22709 23578 23583 25114 25406 26202 27042 28290 29633 31091 32639 33815 36900 39123 42201 46307 49983 53951 58024 61179 62357 64887 67530 70049 72119 73700 1.06 1.08 1.12 1.-16 1.23 1.30 l.\35 1.38 1.45 1.-59 1.86 2.03 2.22 2.41 2.42 2.49 3.58 2.94 2.12 1.83 1.62 1.54 1.48 1.-51 1*46 1.46 1.46 1.31 1.27 1.27 1.25 1.27 1.41 1.50 1.37 1.37 1.37 1.40 1.84 45 TABLE 2 UNIT FUNCTIONS FOR A l . 65S-T6 BEAMS (g) K = 3.0 (h) K = 2.752 x/o- 3 3.8 3.9 4.0 4.2 4.4 4.6 4.8 5.0 5.3 5.6 6.0 7.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0 32.0 36.0 40.0 44.0 48.0 52.0 56.0 60.0 64.0 68.0 72.0 76.0 80.0 84.0 88.0 121.00 123.72 125.53 128.36 130.09 131.47 132.35 133.33 134.44 135.33 136.12 137.32 138.21 139.38 140.09 140.81 141.14 141.27 141.67 142.05 142.57 143.08 143.69 144.10 144.46 145.32 145.86 146.55 147.38 148.06 148.74 149.38 149.85 150.00 150.33 150.65 150.94 150.94 151.32 229.90 240.36 247.51 259.13 266.57 272.77 276.89 281.72 287.42 292.27 296.87 304.64 311.35 321.89 329.70 339.03 344.05 346.21 353.74 361.70 373.66 386.51 400.41 415.14 426.21 455.31 475.99 504.76 543.12 577.17 613.78 651.19 679.84 690.00 712.82 736.65 759.27 777.72 791.65 18545 19825 20716 22191 23153 23963 24507 25148 25912 26566 27190 28253 29177 30639 31731 33042 33750 34055 30519 36248 37950 39786 41779 43898 45495 49712 52721 56928 62566 67596 73029 78605 82891 84415 87841 91427 94838 97625 99731 1.05 1.07 1.10 1.14 1.20 1.27 1.32 1.34 1.41 1.54 1.82 1.98 2.14 2.32 2.29 2.35 3.44 2.75 1.98 1.71 1.53 1.46 1.41 1.43 1.39 1.40 1.38 1.26 1.23 1.23 1.21 1.23 1.37 1.44 1.30 1.29 1.32 1.40 1.73 t'PW 3.90 114.47 4.00 116.43 4.20 118.95 4.40 120.58 4.60 121.61 4.80 122.59 5.00 123.53 5 . 3 0 124.59 5.60 125.58 6.00 126.36 7.00 127.55 8.00 128.14 10.00 129.27 12.00 130.23 14.00 130.78 16.00 131.10 18.00 131.22 20.00 131.59 22.00 132.09 24.00 132.43 26.00 132.91 28.00 133.38 30.00 133.86 32.00 134.34 36.00 135.00 40.00 135.50 44.00 136.14 48.00 136.91 52.00 137.54 56.00 138.17 60.00 138.65 64.00 139.14 68.00 139.34 72.00 139.67 76.00 140.00 80.00 140.18 84.00 140.37 88.00 140.54 90.00_140.56 92.00 140.58 94.00 140.46 96.00 140.34 100.00 139.95 104.00 139.13 108.00 138.03 112.00 136.36 118.00 132.99 *>M 222.43 230.19 240.50 247.53 252.17 256.79 261.38 266.84 272.25 276.73 284.47 288.92 299.11 309.69 316.79 321.57 323.68 330.73 341.12 349.04 360.86 373.73 387.50 402.28 424.84 443.92 470.57 505.94 537.41 571.23 599.39 629.31 642.47 665.59 689.80 704.41 719.24 734.47 736.16 737.71 726.39 714.75 676.31 . - 16975 1.05 17871 1.11 19084 1.15 19926 1 . 2 3 20488 I . 3 6 21051 1.31 21616 I . 3 6 22294 1.41 22971 1.52 23535 1.83 24517 2.15 25086. 2.38 26399 2.19 27771 2.23 28698 2.65 29323 3.57 29600 2.86 30527 1.88 31896 1.76 32944 1.67 34512 1.50 36226 1.44 38066 1.39 40048 1.41 43085 1.42 45666 1.47 49285 1.26 54115 1.28 58434 1.25 63097 1.22. 66993 1.26 71149 1.39 72982 1.53 76207 1.29 79592 1.49 81640 1.26 83720 1.43 85858 2.87 86096 2.97 86314 .35 84724 .73 83089 .74 77703 .89 46 K = 0, 0 . 5 , 1 , 1 . 5 , 2, 2 . 5 , 2 . 7 5 2 , corresponds t o the t e s t The v a l u e o f K=2.752 a detailed a n a l y s i s o f t h e beam beam. Before going into tests, 3- i t i s necessary to establish the flange s t r a i n In beforehand e a t w h i c h a beam w i l l a simply supported fail a t f a i l u r e corresponds This value of flange s t r a i n Thus t h e f l a n g e t o t h e maximum v a l u e o f m. isa little corresponding to the ultimate stress, of i n bending. beam t h e f a i l u r e l o a d i s g o v e r n e d by t h e v a l u e o f t h e maximum moment. strain the value of g r e a t e r than the s t r a i n d e p e n d i n g on t h e v a l u e K. In beam w i l l establishing fail i n bending the f l a n g e s t r a i n 6 a t which the t e s t a s t u d y o f t h e moment d i a g r a m o f t h e beam i s n e c e s s a r y . I < J B A (CL) m ^ U Figure 15 42." „ ( * _ A7§" M cMc r- P *(b) l 47 C o n s i d e r a moment d i a g r a m as corresponding to point that the value l o a d and of flange extended over the v a l u e This under the unit 6c u n d e r t h e load point and w i l l decrease the i n order the C. Also increase d e f l e c t i o n under the increase continuously contribute point. c or to t h i s load s t r a i n s and Thus t h e point. the i n t e r n a l support break the load. will o f d e f l e c t i o n no failure strain c o r r e s p o n d t o t h e maximum .value In the case of the condition w i l l beam by € c has point. increase This m. moment d e c r e a s e r u n n i n g "-resting machine load of strains moment H to the has i n p o s i t i v e a n g l e change i s a v a i l a b l e e x c e p t a t s e c t i o n under the infinite point to m a i n t a i n e q u i l i b r i u m w i t h the the To due moment o v e r t h e Furthermore the load assume condition w i l l resultinhigher flange load point increase s u p p o r t , and c o r r e s p o n d i n g t o maximum v a l u e f u n c t i o n KM « a t p o i n t under the to strain point 15<JL • shown i n F i g u r e the create f r a c t u r e under the under the load load point o f m. will r t e s t beam t h e l o a d was -not a 3 point load b u t • i t was a c t i n g over a width of ^ c o r r e s p o n d i n g moment d i a g r a m i s assumed t o be shown i n F i g u r e 15b. A c t u a l l y the inner inches. as the s u p p o r t was The one also 3» wide but s i n c e the s t r a i n s were r a t h e r low w i t h o u t a p p r i c i a b l e e r r o r t o be a point a c t u a l d i s t r i b u t i o n of the over the known. Thus t h e load i t can support. be Also assumed the i n c h width i s not shown moment d i a g r a m i s a c l o s e approximation. 48 Considering t h e moment d i a g r a m o f F i g u r e 15b a n d a s s u m i n g t h a t the f l a n g e s t r a i n 6c under t h e l o a d p o i n t has extended over i t s value corresponding t o maximum v a l u e o f m, we g e t h i g h e r s t r a i n s a n d a d e c r e a s e d moment a t p o i n t C. d i t i o n s i n order t o maintain crease running take place. t e s t i n g machine w i l l Furthermore, the increase the deflec- t i o n under t h e l o a d , which i n t u r n w i l l n e c e s s i t a t e a n g l e changes f o r c o n s i s t a n c y con- e q u i l i b r i u m w i t h t h e l o a d an i n - i n moment a t p o i n t B w i l l continuously Under these flange of deformations. positive F r o m t h e moment d i a g r a m shown i n F i g u r e 15b i t i s a p p a r e n t t h a t a l l t h e a n g l e •5 change w i l l value take place a t point C over the ^ inch length. o f t h e a n g l e change a v a i l a b l e u n d e r c o n s t a n t The moment i s g i v e n by t h e e x p r e s s i o n which i s a f i n i t e quantity. Thus when t h e f l a n g e s t r a i n €c u n d e r t h e l o a d extends over i t s value corresponding point t o t h e maximum v a l u e o f m t h e beam w i l l n o t b r e a k , u n t i l t h e f l a n g e s t r a i n €c r e a c h e s its f a i l u r e s t r a i n corresponding For to failure stress. c o m p a r i s o n i n s e c t i o n - I V two a n a l y s i s o f beam t e s t s were made. The f i r s t a n a l y s i s assumed a moment d i a g r a m a s shown i n F i g u r e 15a and t h e s e c o n d a n a l y s i s assumed a moment diagram s i m i l a r t o F i g u r e 15b. 203. T e s t Arrangement The l i g h t metal a l l o y s a r e capable o f almost p e r f e c t l y e l a s t i c behavior b u t when s t r e s s e d p a s t the e l a s t i c 49 limit they mentioned exhibit very i n the b e a m made o f by the equalization of at. of limit tests introduction, a statically limit design, order to to test not ical properties not were made. are load since load given at many s e c t i o n s and a t to the case center plastic given the (,.;:.shape .: ..." as fixed test o f beam of of will inelastic limit the a fixed develop arrangement same r e d i s t r i b u t i o n o f moments in the reached moments plastic concentrated is required simultaneously under can take special care a considerable place. order limit- t h e i r bending end beam w i t h a that mechan- bending. design resisting Therefore, so little deflections i n d e t e r m i n a t e beam i s can "equalize" ends. Its were used n o r e d i s t r i b u t i o n o f moments hinges the of very i n t a b l e .3. measurements theory three on f o u r by f o u r H beams, aluminum a l l o y theory simultaneously In the the out measurements the the theory, a structural material. for a statically developing moments. as These experimentally conditions when as the materialize. carried test, According to ing visualized p r e d i c t e d by experimentally the i n tension are During the check behave as failure, was indeterminate This d u c t i l e material which e x h i b i t s hardening i s used and s t r a i n s As More s p e c i f i c a l l y 4--\tL/fc.made o f h i g h s t r e n g t h strain of will f a i l u r e were 29001 Alcan). to design. o f moments b e f o r e In load s t r a i n hardening. such a m a t e r i a l w i l l theory theory little Also it the must be amount is 50 d e s i r a b l e that the shear no need f o r s t i f f e n e r s , inelastic analysis. f o r c e i s s m a l l , and t h a t t h e r e i s which otherwise To f u l f i l l t i n u o u s beam i t was n e c e s s a r y The these will complicate the c o n d i t i o n s i n a con- t o ilow'erv one o f t h e s u p p o r t s . dimensiongof the t e s t arrangements a r e g i v e n i n f i g u r e 16 and t h e ' P . 3 4-2" geometric & 46'- . | -I" . of the s e c t i o n are 42* g i v e n i n T a b l e 3- 1 732' 7es/ the negative reached properties The beam was originally 0r-/y./?ga/not{ s e t on s u p p o r t s B and F i g u r e 16 D, and a t t h a t s u p p o r t A was n o t i n a c t i o n . a c e r t a i n value of approximately time When t h e l o a d P 8 K i p s , t h e end A d e f l e c t e d upward and came i n c o n t a c t w i t h t h e s u p p o r t A. t h a t time At t h e p o i n t B on t h e beam was \ \ i n c h b e l o w t h e straight l i n e AD. The beam span., o f 132 i n c h e s between supports was c h o s e n t o f i t t h e t e s t i n g m a c h i n e . d i m e n s i o n ) b e t w e e n l o a d and s u p p o r t s were p u r p o s l y such i n order t o decrease thus a v o i d t h e u s e o f s t i f f e n e r s w h i c h would have outer The g i v e n chosen as t h e r e a c t i o n s a t t h e s u p p o r t s and t h e a n a l y s i s and i n t e r p r e t a t i o n o f t h e beam t e s t . s u p p o r t B 14/' below t h e s t r a i g h t complicated Having l i n e AD i n c r e a s e d t h e r a t i o Mc of -— i n the e l a s t i c r a n g e , and c r e a t e d a c o n s i d e r a b l e amount o f moment r e d i s t r i b u t i o n b e f o r e was reached. the f a i l u r e c o n d i t i o n The beam section was so chosen, that i t s strength would not exceed the capacity of the testing machine. Limit Design Failure Load. Under the assumption that the beam is unaltered by the settlement and spread of supports, the value of the limit design failure load can be found quite easily. Since failure condition is reached only after equalization of moment then plastic moment M p under the load and over the support should give the limiting condition. Consequently the value of the failure load can be found from equilibrium. From virtual work equation: Mi Figure 18 With a plastic section modulus 2Tp of 5 . 6 ins^ and a yield stress Cy of 3 9 . 9 Kif>s/ £ m beam , the plastic moment of the test which amounts to 224 Kip-ins • With L = 90 ins the failure load P is from equation (22), 14.65 K i p s . The Mp outer beam reaction$at A and D are or 5.33 K|p5 . The 52 t o t a l r e a c t i o n a t the i n t e r n a l support D e s c r i p t i o n o f Support The At and L o a d i n g beams were s u p p o r t e d 01sen mechanical i s 14.65 K i p s . and l o a d e d b l o c k 3/4" wide on t h e t o p f l a n g e o f t h e beam was u s e d . and i n a Tinius t e s t i n g machine a s shown i n F i g u r e 17. the load p o i n t a simple calculations, Point the f a i l u r e l o a d expected l o a d p o i n t i s 14.65 K i p s . From l i m i t at the inner stress i n compression In this (39.9 formula ^ ?/ms i -{; i s t h e t h i c k n e s s o f t h e web bearing design support I n o r d e r t o c h e c k t h e web c a p a c i t y a g a i n s t c r i p p l i n g t h e f o r m u l a £p t (ex.. + 2k) t h e A . I . S . C . was u s e d . resting L g i v e n -in i s the f a i l u r e f o r aluminum alloy,), (.255 i n s ) , a., t h e l e n g t h o f (3/4") and k t h e d i s t a n c e i r o m t h e o u t e r f a c e o f t h e f l a n g e t o t h e web o f t h e t o e o f t h e f i l l e t (.625 i n . ) . S u b s t i t u t i n g these values we g e t t h a t :(a, + 2k) = 20 .' K against P i n t o the formula Thus a 3/4" crippling. wide b l o c k p r o v i d e s The i n n e r s u p p o r t enough s a f e t y was p r o v i d e d w i t h p i n , supported b y r o c k e r a r r a n g e m e n t s on t h e b a s e o f t h e t e s t i n g machine. On t o p o f t h e p l a t e , r e s t i n g on t h e p i n , a 3/4" wide b l o c k was u s e d . T h i s arrangement p r o v i d e d v e r t i c a l p i n support h o r i z o n t a l forces being transmitted i n and p r e v e n t e d t o t h e beam. xhe r e a c t i o n due t o o u t e r s u p p o r t a t D was spread o v e r a 4 x 3{ p l a t e r e s t i n g on a p i n and i s u p p o r t e d b y r o c k e r 53 a r r a n g e m e n t w h i c h i n t u r n was r e s t i n g t e s t i n g machine. ( F i g u r e 1 7 ) . The o u t e r s u p p o r t t o t h e b a s e o f t h e t e s t i n g machine made f o r t h e t e s t , at A attached ( F i g u r e 1 7 ) , was providing vertical h o r i z o n t a l f o r c e s from b e i n g c a r r i e d Beam on t h e b a s e o f t h e support specially and p r e v e n t i n g i n t o t h e beam. Collars. •io p r e v e n t l a t e r a l buckling of the f l a n g e s , between, {the o u t e r s u p p o r t compression and t h e l o a d p o i n t , two c o l l a r s were a t t a c h e d t o t h e b a s e o f t h e t e s t i n g which prevented movement. lateral machine i n s t a b i l i t y and a l l o w e d v e r t i c a l beam The c o l l a r s were made o f a b o l t e d frame work o f a n g l e s and p i p e s a s shown i n f i g u r e 1 7 . Measurement o f S t r a i n s of Deflection. E l e c t r i c a l r e s i s t a n c e type s t r a i n gauges, gauges and s u r v e y o r ' s l e v e l were u s e d deflections of the test symmetrically beam. t o measure s t r a i n s and S t r a i n gauges were l o c a t e d on t o p and b o t t o m o f t h e c e n t e r l i n e f l a n g e i n o r d e r t o measure t h e b e n d i n g strain. shows t h e l o c a t i o n o f a l l s t r a i n g a u g e s . that the t e s t beam was s t a t i c a l l y i n t h e beam c o u l d n o t be f o u n d a d d i t i o n a l measurements. at the directly of the F i g u r e 18 Due t o t h e f a c t indeterminate from t h e moments statics without T h e r e f o r e , s t r a i n gauges were p l a c e d s e c t i o n s where o n l y e l a s t i c b e n d i n g elastic dial theory o f bending, would o c c u r . t h e moments a t e a c h Using section 54 could be determined since the flange strains were known. Thus, the extend of equalization of moments could be determined. To measure strain due to shear, strain gauges were placed at 45 degrees to the beam axis on opposite side of the web and right on the neutral axis. As was mentioned i n the introduction one of the purposes of the beam test was to test experimentally the accuracy of the deformations predicted by the inelastic bending theory. Federal dial gauges were used to measure beam deflections under the load. Extensive deformations were measured by using the surveyors level and sighting on a steel rod. to The steel rod, reading of an inch accuracy, was placed on the top of the head of the testing machine. 55 Table 3a. Mechanical Properties of Aluminum 65S-T6 i n Tension (from test shown i n F i g . ) Modulus of Elasticity- 9,540 kips i n f Proportional Limit 36.3 " Yield Stress (0.2 per cent o f f set) 39.9 " Ultimate Stress 43.4 " Strain at Proportional Limit 0.0038 Strain at Ultimate Stress 0.09"; Table 3 b Section Properties of 4 'in. H beam (29001 Alcan) From measurements of the beam section d = 4.00 i n . Y b = 4.00 i n . t w = 0.255 i n . t f = 0.313 i n . f i l l e t radius T = 7/16 i n . A = 3.51 i n f X -x The following properties are needed for calculation: h = d-tf = A = t h w l w 3.688 i n . = w 0.94 i n f Af = 1/2 (A-A ) = 1.294 i n f w = 2.752 x-x = 9.74 i n f Z = | I d x-x = 4.87 in? = 5.602 in? K = Af/k J w r K =2/ y - A d Sk—s V 56 58 • ^ i •^i fPl j!|N I, i it© VO 0. :.'*0- CO 5 Til 3. >: I N V 3 N 1 0 <0 59 PART I I I BEAM TEST. RESULTS In order t o have an i n d i c a t i o n of the extent o f r e d i s t r i b u t i o n o f moments, v i s u a l i z e d by the theory o f l i m i t design, three h i g h s t r e n g t h aluminum a l l o y beams (designated 29001 Alcan) were loaded t o f a i l u r e . The observed failure c o n d i t i o n s , d e f l e c t i o n s and moments o f the t e s t beams were compared a g a i n s t the p r e d i c t i o n s o f Dr. H r e n n i k o f f ' s theory of i n e l a s t i c 501. bending. R e s u l t s of Beam Test N o . l . S t r a i n and d e f l e c t i o n readings observed t e s t N o . l . a r e given i n t a b l e s (4) and ( 5 ) . during S t r a i n gauge readings, l o c a t e d symmetrically, on top and bottom o f f l a n g e s , were w i t h i n &fo agreement. I n computing the t e s t r e s u l t s the average top and bottom value of the s t r a i n s was used. The dimensions o f beam t e s t N o . l . a r e g i v e n i n f i g u r e 19. The L o c a t i o n s o f s t r a i n gauges a r e g i v e n i n f i g u r e 18. overhanging portion m a t e r i a l the p o r t i o n was . In order to economize was reused i n t e s t No.2. The beam was o r i g i n a l l y s e t on supports B and D, and a t that time the negative support A was not i n a c t i o n . At the 60' load of approximately F c D 3-6" 4-'-o" -f- 8 Ki'ps the beam came in contact with support A, becoming statically indeterminate with elastic deformaFigure 19 imately 9 K i p s tion up to approx- * After an increase i n the load above 9 K i p s , inelastic strains were observed i n the flanges under the load and the beam began to deflect more rapidly with an increase of load. As the load increased beyond 9 K'ips the flange strains over the load increased rapidly while the remainder of the beam stayed elastic. At a load of 13.5 K7ps, the strains of the flange above the inner support were close to yielding but s t i l l elastic. At a Moad, of 13.7 K)ps the compression flange of the beam under the load crippled. Figure 17. Apparently this failure condition was caused by excessive compression stresses present in the flange and the unfavorable orientation of the flanges under the load. Figure 21. The large angle change under the load point created enough eccentricity to cause buckling of the flanges which were completely unsupported. The vertical component of Figure 21 I 60> the stresses deflected the flanges i n a manner shown i n figure 2 1 / b . cross-section. The premature failure of the test beam caused by crippling of the compression flange was not the type of failure expected and the bending failure condition was not reached during the test. The strain gauges for measuring shear strain were located at the neutral axis, under the load and over the inner support, making an angle of 4 5 degrees with the center line of the web. These strains throughout the test remained velastic. \ ^ This decreased the section modulus of the ' Moments of Beam Test No.l. As already pointed out, the theory of limit design predicts that before the mechanism condition is reached the moments under the load and over the inner support equalize. In order to see whether the predicted redistributing of moments did take place, the beam moments at the approach of failure had to be found. The measured strains for determining the beam moments at each stage of the loading are shown i n table Afor the 1 2 gauges. Gauges ( 9 ) and ( 4 ) , located under the load and over the inner support, were not reliable for computing the beam moments due to the effect of the concentrated point load and support. Comparing the strain readings of symmetrically located strain gauges such as ( 2 ) and (8) we: observe that there i s as much as 8 percent variation. There- fore for determining the moment at each location of the gauges, the top and bottom flange strain readings were averaged. Using the conventional elastic theory, the moments at the locations of the gauges can be calculated as follows: (23) € EZL where & is the measured average flange strain, £ i s the modulus of elasticity and Z i s the section modulus. Neglecting the spread of load and supports and assuming a moment diagram of straight lines, the moments at any point on the beam can be evaluated from the moments at the locations of the gauges. Before going into any'further analysis i t i s advisable to investigate the accuracy of the moment$,at the location of the strain gauges calculated by equation ( 2 3 ) . The section modulus i s a geometric property of the cross section area of the test beam. Its value was found to be 4.Ql>ni . The possible error is negligible. The modulus of elasticity E, i s a mechanical property of the material. As was observed in section II., i t varies with location. The modulus of 10,400 K ips/ $ In z i s a value determined from 63 t h e beam d e f l e c t i o n s . Not a g r e a t d i s c r e p a n c y from modulus w o u l d be e x p e c t e d this a t a n y beam c r o s s s e c t i o n . The a v e r a g e f l a n g e s t r a i n , 6 , was measured by e l e c t r i c a l r e s i s t a n c e s t r a i n gauges. One s o u r c e i s t h e d i s c r e p a n c y between t h e l i s t e d gauge f a c t o r m a n u f a c t u r e r ) and t h e a c t u a l one. a + 1.5 percent to (by t h e The m a n u f a c t u r e r e r r o r i n t h e gauge f a c t o r . p o s s i b l e e r r o r may a r i s e of error listed The o t h e r f r o m i m p e r f e c t g l u i n g ; , o f t h e gauge t h e beam. Consequently able', the only source o f error of consider- m a g n i t u d e i s t h e e r r o r due t o f l a n g e gauge In order t o eliminate t h i s readings. e r r o r , t h e beam moments s h o u l d be c a l c u l a t e d b y t h e f o l l o w i n g manner. 1. Assume t h e a v e r a g e f l a n g e s t r a i n £ i s i n c o r r e c t by a f a c t o r o f which i s constant throughout the t e s t . T h e n t h e t r u e moment w i l l be g i v e n b y t h e e q u a t i o n : M=^ez (24) where pie a r e t h e a c t u a l s t r a i n s . 2. the product constant,!^, S i m p l i f y t h e above e x p r e s s i o n b y s u b s t i t u t i n g o f the t h r e e constant single so t h a t t h e new e x p r e s s i o n f o r moment w i l l b e as f o l l o w s »A is A7where q u a n t i t i e s by a i s i n KIP-ins f £ Ke i s i n percent (25) c..{ /SJ?A?J^- and(fis i n 64 Kip-ins. The d u r i n g the of K, the constant stage which i s moment a t of s i m p l e beam a c t i o n . assumed any K c a n he d e t e r m i n e d to be further constant from the After the throughout l o a d i n g s t a g e up t o moments evaluation the failure test, can be determined. Calculation The equation were at in the evaluation 3 tively, z 0.163 and £ Using the for to equation ^ 2 M locations of versus at the K"„ Kz and K 3 , of (1) (2) (3J w h i c h D were determined of a n d b o t t o m s t r a i n s 6,, (2), and (1), load. 7 Kips from the Figure the graph, same locations (lj (2) a n d \C - 07^— ,183 ~ 0.2215 - 78.4 0303 : 22. load respectively. M • respec- . strains w e r e 0.183, 0.2215 a n d the Kip-ins, (3) corresponding At = *3 - top locations a load a n d 78.4 Yi constants from support respectively. moments that to average , measured 3 percent 97, 112, we g e t the were p l o t t e d determined to the No.l. manner. corresponding Thus , £ of 30 a n d 66 i n c h e s 26, following £* of Test (25) c o r r e s p o n d i n g First and o f Moments 6 - 530 Kip-ins 507 Kip-ins 481 Kip-ins the statically (3) w e r e equal 65 After determining K'I , \< , and « , between supports B and D, .. z 3 the evaluation of the remaining constant coefficients K^and K5 (corresponding to locations (6) and (5) at 26 and 30 inches from support A, respectively) was determined using the following relations: If Ji'Mt. and g Jii = M - H Mc+-- • • (26) 5 = cds -H d - h - • • 6 ( 2 7 ) where Ms-, M.& andMn are the moments of sections located between E> and £ and at a distance of » cU ando/ respectively from, n outer support D.. - then ^Mi ^/7^ j£AJ =- R.D£JLI c = £ 5 ^ 5 + £*/(6 +-• • (28) fen^n (29) where r?D i s the reaction at the outer supportD. Equating (28) and ( 2 9 ) we get that Rp£dl Since Ks » = £sK5 +- e&K<,+ 6nKVi and Kn are approximately equal to each other, then they can be replaced by an average value of K such as K whereK can be the average value of the coefficients of such locations as (l) and (2) between the load and outer support D. then t h u s (3D K =* KoJtdi- 6 R+ S e*K+-...- eo*< ( 3 2 ) 66 or £<J-l &D where <^€i •Then f?o K but o = " - € * (JJ) K-^£L + £ & 4 (34) € n K (35) ~HrV (36) Thus equating 35 to 36 and s u b s t i t u t i n g Mn by fCne^we get the equation ^ . d.»i -^e^L Solving f o r K v ) w e get t h a t : Kn = K k (37) 4lL & (38) ' Thus formula (38) can be used to determine any constant c o e f f i c i e n t between A and B such as K G and Ks , provided the value of K has been predetermined by averaging the c o e f f i c i e n t s of such l o c a t i o n s as (1) and (2), between C and D. For t e s t N o . l . , » and was found t o be equal to 530 K i p - i n s 507 K i p - i n s and 481 K i p - i n s T h e n j ^ = J<i±i^ 3 = 530 + 507 + 481 m 3 Q 6 K i p respectively. _. n s 3. To e v a l u a t e , the average s t r a i n s , € a n d 5 correspond- ing to l o c a t i o n s (5) and ( 6 ) r e s p e c t i v e l y , were p l o t t e d against the load. Figure 23. Thus f o r a load of 10 Kips the corresponding average s t r a i n s , £ 5 and £ 4 measured from the graph were equal to 0.023and 0.033" percent r e s p e c t i v e l y . Then = Ut-^s = Jfdi = d td(, and Thus u s i n g K= equation After x 0 , °| g : , Hi presented i n the (2), (3), spread of straight following = 5fO Kip-ins constant I'd , Ka , f £ throughout |<T^ a n d 3 the test, » l^r a n d M g d u r i n g a l l l o a d i n g were computed. These the i n the next computed moments corresponding to ' stages computations a table (5) a n d were f i r s t possible for page are (see the dn distance support, location). effect a b e n d i n g moment e a c h l o a d i n g s t a g e was straight sketched as the locations of diagram plotted in manner* through the coordinates (6) a n d n e g l e c t i n g l o a d and s u p p o r t s , which determined,the outer 56 i n c h e s . form of lines The was = percent Kip-ins.. 502 3 .0621* 6). Using the be , failure, of get = coefficients, to and up t o (1), we |° Q the assumed m o m e n t s , M; table 26 (38) x l evaluating which are 30 + x -§|j= (5Q6) Ks = 506 the = s .033- .0E9 + l i n e s A E , ED, and E P , f i g u r e shape so of that the they plotted the as the diagram, close determined by such for the dn from e i t h e r - c o r r e s p o n d i n g moment a t an a d d i t i o n a l a i d as previously defined s t r a i n gauge measured a n d Mn w a s Then as c o u l d pass as points, , a n d Mn ( w h e r e to b e n d i n g moment 24, that constraction 68 o f t h e moment d i a g r a m Considering load t h e f o l l o w i n g r e l a t i o n was t h e f r e e body d i a g r a m o f beam segment u n d e r t h e s u c h a s t h e one shown i n f i g u r e Figure 24b 24 and w r i t i n g t h e e q u a t i o n s o f e q u i l i b r i u m , following used; we o b t a i n t h e expression: VL + V * where VL the (39) and V ^ a r e t h e s h e a r f o r c e s r i g h t o f the l o a d t o the l e f t and t o P. R e p l a c i n g the shear f o r c e s i n terms of the moments we g e t : (40) w h i c h can:' be r e a d i l y e x p r e s s e d i n more c o n v e n i e n t as or D m m tv\ -4-2. -4g form (41) = 2 2 A P where m i s the distance diagram o f f i g u r e 24. (42) FG shown i n t h e b e n d i n g moment T h i s a d d i t i o n a l c o n d i t i o n was quite "Vv v> -V •S s N. vj i ^ Nl N: 0 Nt Vl V; > <X vl • N *Q » x> \ o 0 NN X V* Ift; 1 Ci 1 X •ti E 0 § o 0 X\ X ro o VO X Ni •« Ni 8 0 N: § N X X "i Ci 1 N» «i <i «i NV V \ VO "X « x* vv V: x X l«i S VP 0 0 M N. I N XI 3 N rs Oi N Ml «i 4i N In •3 •? X X N \ I N ^N ? Ci VO N •A X V N. N •«n N Ni Ni O O x \ <a Q Ni 0 ft X \ I 1 N\ N VI «i NV V A N \ U Ci 0 \ O N! o Ni Ni X> X, 8i 2. ^. X? Vi Q 0 N.N N <*> § 0, 55' vo Q) • *s >•«. Q <0 O >» % N N. «Q "i <N to < 4 \ N. § 1 — M «VJ <M N s i I N 0 0 vi vv, *> «i <© X~ x X •V V vi v» ; NV % §• •N Q tN <Ji "i «i rN vo "i •Vi VO V K m O Q x' X N • VTi \ *i S N Vo N Ov * 1 o o X X N * 1 0 ft XV .\ 1 0 ! 1 N 1 io Oi <s «i <vr ? X\ 0 X O) VO s <h VO X *• a) Ni Ni «vi s vi a I $ Vfl X V N *\ N vo Cv N Vo & 1 2 Q (i 0\ Oi s \ N X X R 15 X X X X Ni O Q o> § s vi <0 3 ^ I <^ *»N 8 !? o N.\ \ Oi vo vi K X NV «> N? • 5 % o\ x m X Ni § N X vt» X fN. N X vo to «i O ' «\ VTi . $ vo s VO 1 x^ «v X v\> ft N X N X <vj X viv X ! Oi l\ X <i rx N ^X X ro Oi *i l»v. a X x *vj *vj N "\ Ci vO X 0 «i 5? Ci N. Ci N N "I N X vfl M X ! <^> Ni 5? Ni ff) vo vp X X X (Yi s vCi >> \ Ci «\ •5 Ci «\ I vt X N N H IN ? Oi <i 2 isX <5 •»i 1 IN X* s X •Vl N flv, «>. X X vs ^ , N X X Ci 'X xV ? vo > «0 Ci •vj ! $ x X X Ci X N <N VO Ni vo ?! X X <n X x VX) cs 5! Ci I °v| «i 0 X <i VO ov. NCi X N X Q N "i N Ci 3 10 Qo V x^ X . X v» X VI X X Vi fli N X Ci X" X >Vi I "0 N N VO Pi N ( * > *) t X v5 s ix«i Ni \ N fx X) 11 v« In 1X ! vo ! X fi 1 *) Ci i»i l*i ? ? s 1) X N Oi S ?X ? N «0 X VJ °\ vo (»» N si Ci to fv] I X 5 S N V N $ x- v& K Vo vi *1 ft 1X X vo jo vo Nv Ci Ci Ci it Ni N K «i IS N <& 0 li N N V <V1 X X «i 0 VO Ci 0 X N Ci k & N Ci V* 0\ X "S <s\ \ N W <VJ «i Di a) x x VO X Ot N X ft v> 0 o IX N ft Oi vo D 8 " •*> JN X* N «i K X «\. Ci X N % o» OQ Ol v» X X X cb g X UV x (VJ 5)' «i •3! ?i ov v» X X to X Ni ro «i "i V <o 0) x- ? 0 o N Oi «i ? o vfi «> x M Ix 1 N5 N5 S N 2? «v. w X N 3 X 81 > 0 Ci ti ?' i*J N. n b Hi Q VO Ci 3 X Ci Ci o> X X ! X 1 k 1 Oi K X x^ rx X XN Ci | ! X 1^ 88. x X ix X Ci ! X X Ni (0 VO N rN «i o vO \0 ! 1 !X 1X r* o\ ?N « 3 Ni X X tvl X *i ! 8 v) vo v» X X 0\ vt VO \ N rs ?v vo 6 •ti N. <*. X vo V) "V N $ X 0 N in <vi N Oi Si VO VO vs X X *»»N vi 0i Nv vi <\ Oi > *> \ 3 *i «i N <i Ni X X N <»i Q \ «\ <i Oi Ni "I X* NN X s 3 N SI <n v> X v* '§ VB N a O % Q CO • Ni X \ I VO $ N «5 wv N. N 3 «v N «i SI vo X I •v "v, N 10 V* X vi X N N Cl i x X 1 Ni Ni •V < V 4 X X m CV VI X •»o ") 3 X X & <•> VO av. \ VO Oi 0 N vi •0 «i «vj O Ci rx X X o s x' X T2 / o cuoL C/bs) a 6> ^ 2 2>SOO 9 3OOO .' 6 3~O->0 JS isn a/er X o Sec? 4- Tfemari: s oaC 50 BOO 0 /£> OO .3SO &76> .3 2 4-. .736 3 OO . VOO .7^5& 7/.S O • 700 7000 s s> vsoo 2 73 30 -407.3- 2. 6 83SO 3JS-3- 723*2. 7 2D 2 33 3350 2 03. s~ /.-^-<z 3 7.3 3 / -3~6 AS £>/ 2J50 S>ao 7S-9/ / c? 0 2JZO 2.Z £ / .370 6 36. /0300 47 ^6 OiDO ,*4 £03.ST Majk/rra 7/4 5 7.4-SO J>7ar/s 0 7-4-30 77-eset 7 94D 7 S> &sr -50 S2 4 76 24 O 7 4 76 -36 37 GO /reset 7 2 ^ 2 7 72 22/s O ^3S- TA B LE 5 79 £> / 0/ /. & 74 ^ 2>2 JST 3-5- a. J, 1 MOHElslT CQEPUTATIOITS OP TEST U O . l Load K, M, M 2 pa rcar> t 5 K-;r>s. K. ,v*r. percent. 0.2265 530 120.5 0.2745 507 140 0.1842 481 88.5 10.450 0.2403, 530 127.0 0.2920 507 148 0.1850 481 12.050 0.2542 530 135 0.3097 507 157 0.1480 12.5 0.2525 530 133.8 0.3084 507. 156 13.0 0.2490 530 132 0.3048 507 X3 • 5 0.2414 530 128 0.2980 507 K. 9.550 € 3 , € 5 , *r- int. K-;»i M-Jnt. percent • 0.0245 50.6 12.4 0.0215 89 0.0427 506 2;i; .6 0.0374. . 5Q2 18.8 481 71.2 0.1149 506 58.4 0.1005 502 50.. 3 0.1229 481 59 0.1504 506 76.5 0.1314 50.S 66.0 154.5 0.0895 481 43 0.1934 50.6 2 98.0 0.1693 mz 8a 3 152 0.0457 481 22 0.2477 506 126.0 50Z 109.. f<l-/nS, T/?3LE tot. 6. t-tns. 0.2166 .50.2 1©.8 78 89 81 valuable i n improving the accuracy of moment diagrams, which i n turn provided an i n d i c a t i o n of the magnitude of the moments under the load and over the inner support during each loading stage up t o f a i l u r e . Moment diagrams of Test No.l. f o r each loading procedure are shown i n f i g u r e 25. Also the extent of e q u a l i z a t i o n of moments under the load and over the inner support, (derived from the p l o t t e d bending diagrams) i s presented i n the form of a graph, f i g u r e 26. 302. Results of Beam Test No.2. Up t o a load of 13 Kips, the beam of t e s t No.2. behaved s i m i l a r l y to the beam t e s t No.l. 9 Kips the beam deformed e l a s t i c a l l y . Up to approximately As the load increased beyond 9 K i p s , the flange s t r a i n s under the load increased rapidly. At a load of 13.5 Kips the s t r a i n s of the flange above the inner support were close to y i e l d i n g but s t i l l e l a s tic. At t h i s stage, signs of c r i p p l i n g of the compression flange were 'apparent. s i m i l a r to t e s t Thus to prevent an e a r l y f a i l u r e No.l. two 4"" b o l t s were inserted between the top and bottom flange on each side of the web where the signs of e a r l y c r i p p l i n g were observed. At a load of 15,450 l b s . the beam f a i l e d by f r a c t u r e due to bending under the load. f o r t u n a t e l y the l a s t >readings were taken Un- 82 when t h e l o a d v a l u e was e q u a l t o 14, 500 l b s . a complete set o f measurements testing a third and c r e a t e d This prevented the n e c e s s i t y of beam. S t r a i n and d e f l e c t i o n r e a d i n g s observed t e s t N o . 2 : a r e g i v e n i n t a b l e 7 , and 8 during The l o c a t i o n of s t r a i n g a u g e s a r e g i v e n i n f i g u r e /;&<. C a l c u l a t i o n of-Moments of Test Beam N o . 2 . The method u s e d - i n d e t e r m i n i n g t h e moments T e s t Beam N o . 2 . was e x a c t l y the of same a s i n T e s t N o . l . The e v a l u a t i o n o f t h e c o n s t a n t s K\ , K z , and K 3 of equation (25) c o r r e s p o n d i n g t o l o c a t i o n s ( 1 ) , (2) and (3) w h i c h w e r e a t 26, 30, and 66 i n c h e s f r o m s u p p o r t D were d e t e r m i n e d i n the f o l l o w i n g manner. F i r s t t h e a v e r a g e s t r a i n s , e, €zt and 6-i t ing to locations against ( 1 ) , (2) and (3) r e s p e c t i v e l y , the l o a d , see f i g u r e correspond- were p l o t t e d 27. Thus f o r a l o a d o f 7 K i p s t h e corresponding s t r a i n s 6, , 62. and £ 3 m e a s u r e d f r o m t h e g r a p h w e r e 0.208, 0,242 and 0.167 p e r c e n t respectively. U n d e r t h e same l o a d t h e s t a t i c a l l y d e t e r m i n e d moments a t l o c a t i o n s and (3) w e r e e q u a l t o 97, 112, and 78.4 K i p - i n s Thus u s i n g t h e equation ( 1 ) , (2) respectively. 83 f< = 07208" " = '4 0.163 4 6 6 K T inS 4 8 I K'p-' 78 = After determining Kt ,ns , >\2 , and K3 between support? B and D, the evaluation .of the remaining constant coefficients K g , , K& and Kg" corresponding to locations ( 8 ) , (7), (6) and ( 5 ) which were at 10.8, 14.8, 26, and 30 inches respectively from support A, was determined exactly the same way as in test No.l. Using equation i\n =• any constant coefficient between A and B such as Kg , KV » f< fc and ks can be found,provided the value of K has been predetermined by averaging the coefficients of such locations as (l) (2) between G and D. For test No.2. K, » \<z and were found to be equal to 466, 463.5 and 470 KYp-ins respectively then = K,-rKz *fc-s_ 466 + 463.5 + 470 , _ . 3 To evaluate and & 6 5 k - ^ the average, strains £ , € , 6& 7 1=5- corresponding to locations ( 8 ) , (7), (6) and ( 5 ) respectively were plotted versus the load, figure 28. Thus for a load of 9 K/P s ^ e corresponding m average s t r a i n s , graph , ( , £ 7 were e q u a l t o 0 . 0 0 8 6 , and 6 65 0.0116, measured f r o m t h e 0.021, 0.024 percent respectively. £ + £ +€c+&s = 0 . 0 0 8 6 + 0 . 0 1 1 6 + 0 . 0 2 1 + 0 . 0 2 4 = 0 . 0 6 5 2 percent Then - also^L,. = dfl+d +d*+cls- = 1 0 . 8 + 1 4 . 8 + 2 6 + 3 0 = 8 1 . 6 i n c h e s . 8 7 7 Thus u s i n g e q u a t i o n \s \\5 - Afifi * 0 * 0 6 5 2 = 466.5 Q^g v — A&fi, ^ 0 « l 0 6 5 2 U" KV — A66 R 0 . 0 6 5 2 = 466.5 81.6 K _ Afifi s Q.i0652 = 466.5 gjffl e (38) we g e t t h a t = x Q - 1?_ 024 Y 26 v x _ _ x 458 14.8 0.0115 10.8 0 t 0 o 466 Kip - i n s a 6 _ = 466 484 A f t e r e v a l u a t i n g t h e c o e f f i c i e n t s , K, ^ 2 » fC » for , K& , 3 ,' and kg w h i c h a r e assumed t o he c o n s t a n t the t e s t , all ,K t h e moments, M , M* » Nl, ,Ms t M ^ M r a r i d M f t d u r i n g l o a d i n g s t a g e s and up t o f a i l u r e , computations table 9 are presented throughout were computed. i n the form o f a t a b l e (see ). U s i n g t h e v a l u e s o f t h e computed moments ing to locations, ( 1 ) , bending ing These (2), (3), (5), moment d i a g r a m w i t h s t r a i g h t (6), lines (7) and correspond(8) a f o r each l o a d - s t a g e was p l o t t e d u s i n g e x a c t l y t h e same method a s i n test No.l. 86 ft 00 *J Ml xj rt, Ci Ci 1 xi X I oi «0 «0 X o «» Ci vo «v» Vfl I X ? 1 N X s> Ci N XV t> CJ x o XV t- cv Ci 0 tx <o v* «i > v» Vo i «i cr. Oi «i N O a X VO Ni N Cv Ci Ci Q IX r> VU X X X Ci Ci r0. x • VJ <a Ci X I 3 C O vo X IVi N N vo va X X so X $ VO Ni VO «i «\ ti X N N «vl X. X XO V X Xi v« TV Vo "0 X X CT\ «i Ci Ci 3V ti X vi O N x! «i N VO VO vS ON X I 1 X I Ci I 3 ^ IM S Vt N O) . «i v, X -o X VO v* "o Ci ti X I «i >0 X R X X \ * . K io X Ci «o 0 3 X Ci N Ci 8 1 ,5 !*• vo VO X $ X X X v3 VO X ! 1 5i ti $ Cv CN X X X "X. > 1 Ni cv 0 o \ I •v vo vo vo 0 ap X "0 00 8 VO VO o> 1Xx 0. vo voyv I Ix $ VRO Ci l^i N «N Vs 5 VKo vo v» % VvOo v v« Xv c X i X v2 XB N X X 00 lx Ci "0 Ci Ii Ci <VJ N v < 0 vo 1 <vVaJ vo Ni ti $ ! O Ci «0 Q vo vx |x sx} «v °l 01 X ON 0 Ni vO °Ci K X Ol X) X vo X ON Ci Oi OV X VO 1« '•0 Vi X «i Vl) <r\ X vi 0 vo X X Oi io ^ v* 2? "0 io vs 5 Oi N 0 & ^ H$ R 5 i $ X rx X X v« v3 X Ci IN. X v« vo X i. i S Q "i <«o0 N » R 5 .$N i ! X i I x 3 vD N V N O ti vo «0 vo "i 3 t v ^ Ci O Ci is I <s QV 1 $ ! ix 1 ti tx vo xi vo 8vCi» X. CVl vo O N cv vo V1 N ivCi o» vt M N Vo N CJ ? I ti ti V-i Oi s * vti 1 v* X 3 $ ti VN tiCi fx I isvo C N 1 rx ii x»V» CO 1 fn N X fx X X IX X -X X CO VO I X [X X X <M § NVN ti x> v» <*> Hi <Si VO 0\ <JV rx vo N VO *x X N ft' X X lx X . X K * Vb <0 x 0 Q CJ c<? x r> Vjj s<xl> 1 5! Ci MI lx IK ci Cx vD «i X « ft {X xV > Oa 01 NX X* *x rx X "* <ft ! 5 "> « "1 5} Xx, •o <h < N X ? X x «i rx N COUi Ci « oo a> 0 cv 0 i ft ft tv vO C Ci ti N N x N -\ N Ci I VO ti X 00, vu IN ti «o 1> v<oo 1 3 5 00 <vxt vo I«v Ci N"0 <Vl 0i Ci Ci CO o v «v •o X, a > Ci 0 01 i Ci ti Ci tv N «v Ci \ «i N. v* <»i «i ti <VI X »i X Q <) Ct N «t . ^« C^ fl N tx 1 § X IX «» X ti X ti -0 x? ! ^8 vo x vX X X N X fx Y ti X X X X X Is — X s X VO N X X VO 3i xi OJ 2) X !3 vs vp .N "> X I JN X X vi $ 1 ti i X N X l 1 Ci $ Oi io * ft •0 1 Oi fx «\ «M . X -N X X N O Oi Ml N OV '8 N N tx O-U Ci Oi ti - NO X X xV OV N *, *o X i % v» <V| VX) k VO v» x. «V1 X X X ") •0 X v> o -i rx ti . VO vo o» Vo X X <VJ vJx Ci $ X txv Vvi X X iJ 5! v* 0) <JV X «V| ty, < 1 X X X M X X v^ r^ X *> X X <V4 X oo X X Wi X X fx Co ?! Q XV 00 NV xi Ci X X Ni I - C» Vi v\» e Nl «v vO Ci Ci Ci a ti vu V0 5-) <sOi \ cx N CXO. V0 Cv 8 5 5 1 ! I <o Ix Ns R o •f X v 5 <*) 1 1 CN *O 1 1 00 % 3 ! vo vo ^0 •0 VXJ O Ci i vt est •0 1 8| av v o ) % cx C i f•00 v*> ! > 1 IN1 a i *i C l <V| o« •o o » CHi < 0 vu 10 8 i 8 S i *V| ti Ci C i <vj ft Ci, 1 !«0 1 > «l ? m 0 cn « Vo 'o Vo <x «VI «0 > 0 oi CO "v> «0 »0 vO *vj X 8? < v < 1 Ci K a I ov »> m <vj OV 8 ^? Ci oo Oi •N N 1 X (N s X X X sXT x N«v Ci ft m 0\ wXt xjf 1 v» x» VO' Ci 1 «s IX. t> S «V| V K "0» tx X X K ^ Ci X "> <X I «0 VO X Ci X X X X X i*) «> VO t- X ^* tv N X X X • CQ 88 O load ujia/er 2S- SCO 2 2 ^ 4 2 407.S" 74 2S> + /s SO 3 S4- / 7 £>. 0 o 20 3. 3S~ i Ws 2.085- 722 / / 3S~ 7 2S3T 2^. 49 7 2.S/ 7-323- 77&/77£?/'/rS . 40. 360 jp a ao, e 2 ^ms e t • 6 £2. 243 22 /• ,33 72 OS 2. / Sf /ooo /S>£ •4-/ /.3 3 3 7. 4&8 7 2. 043 3-3S* >t " /SoO 3.4-OS */ ff // ff /s // gouge 4-43 /~eset 2**reset /. 3 7.6 00 S^O ^2.&S6 B2o ^2.9 <57o 3.02^ 2. /^J>2/65 7 7 3.S 743 S 3 <SS.S 7.042 jge>"//g <r / or>o/ 2 /ooo 3S> 2.449 3 2-277 s 4. 2 2. 32 2>. 2 73~ 2. 72 22 J. 62 ^ 3-7>T 4. S/ rs 3~ 2. 0 3S- /' SS 5. 34 3£ -4. o43 //3~ 1, „ ~7~^A 23 2 £ 2.6 77 / ooO S S c><y srso 3./2 e 7' oo'^ it y 373£ 4s<s:sS> ~3~. 3 3 S70 2&/S 3. /*£- -^23 39 7 5 6 6 3> 8 .£43- SS S.' 62 A P gexo_ge7 4JS2 /3.S ^6, /'from & .3S>S /. 6-40 S //• /3. O ! .392 / o 7.245 0 c Sao J7 \44 * by /. eve/ goo /O i I £>/a7 /OOO 70S & 32 Aj, S 3~0 25 P 3./9o e»«>_g e 2 O CP J.20Z <4U5 3 a/ 7es/ /Vo- £. reset 89 MOMENT COMPUTATIONS OP TEST HO. 2 . Load £/'p pf ami K percent kT/p - 'Oi. * , kr.'/* - "is. parctnt 6 M *3 kT-ins. AT- ir>i. Perczo t 3 8 0.2340 466 109.0 0.2715 463.5 125.7 0.1810 470 , 85 9 0.2543 466 118.5 0.2947 463.5 136.5 0.1863 470 10 0.2754 466 128.2 0.3193 463.5 148 0.1881.: 470 , 88.3 11.5 0.2964 466 138. 0.3445 463.5 159.5 0.1649.. . 470 13 0.3058 466 142.5 0.3560,: 463.5 165. 13.5 0.3087 466 143.8 0.3602 463.5 14.5 0.3065 466 142.8 0.3580 463.5 Ar- ;*s. M AT- 'r>S. e Ar-;»s. M e. A~ir>S. J-~k.rco.ni 0.0068 4 5 8 . 3.115 0.0037 466 1.75 0.00265 484 1.285 466 5.54 0.0083 484 4.03 5 /~krce.n £ kr- '"t. 7 y 0.0078 466. 0.0240 466. 11.4 0.0213 4 5 8 . 9.75 0.04395 466. 20.5 0.0387.: 4 5 8 . 17.74 0.0213.; : 466 77.5 0.1014 466. 47.2 0.0896. : 4 5 8 . 4 1 . 1 0.0498 0.1118. 470 , 52.5 0.1885 466. 87.8 0.1672.* 4 5 8 . 76.7 166.8 0.0978 470, , 46 0.2127.. 466. 99.0 0.1885 165.8 0.0451.. 470, , 21.2 0.2823.; 466. 3131.5 0.2483. 87.6 TABLE 9 3.63 0.0119 Af-'tos. 0.0153.' 484 7.45 466 23.2 0.0361 484 17.5 0.0980 466 45.6 0.0710 484 34.4 4 5 8 . 86.4 0.1083 466 50,5 0.0775 484 37.6 4 5 8 . IL3.8 0.1420 466 66.2 0.1025 484 49.75 9.9 SU' St// ft// 95 96 T h e s e moment diagrams p r o v i d e d an i n d i c a t i o n of t h e m a g n i t u d e o f t h e moments u n d e r t h e l o a d and o v e r t h e i n n e r support d u r i n g each l o a d i n g Moment d i a g r a m s s t a g e up t o f a i l u r e . o f t e s t No.2. f o r e a c h loading a r e shown i n f i g u r e 30. The e x t e n t o f e q u a l i z a t i o n o f moments u n d e r the l o a d and over the i n n e r support i s presented as a graph (see f i g u r e 3 1 ) . 303. R e s u l t s o f Beam T e s t No.3. Up t o a l o a d o f a p p r o x i m a t e l y 13 KTips t h e beam o f t e s t No.3. behaved s i m i l a r l y t o t h e beam o f t e s t and No.2. At a load No.l. o f a p p r o x i m a t e l y 13.5 K<ps s i g n s o f c r i p p l i n g o f the compression order t o prevent an e a r l y f l a n g e were o b s e r v e d . failure similar to test In No.l., two s p r e a d e r s were i n s e r t e d between t h e t o p and b o t t o m f l a n g e on e a c h s i d e o f t h e web where c r i p p l i n g was first observed. i n bend- At a load o f 16,060 l b s t h e beam f a i l e d i n g under the l o a d . The last r e a d i n g s were t a k e n when t h e l o a d was e q u a l t o 16,000 l b s . S t r a i n and d e f l e c t i o n r e a d i n g s observed d u r i n g t e s t No.3. a r e g i v e n i n t a b l e 10 and // . 91 97 Observing the flange strains €, , d , £ , G , 3 A corresponding to location (1), ( 2 ) , ( 3 ) and ( 4 ) which were at 16, 18, 2 4 , and 30 inches respectively from support D, we see that up to a load of 15 Kips, they increase continuously with the.load. Beyond 15 Kips and up to failure there is some noticeable fluctuation in their values, although at 15.5 Kips some increase i s observed. On the other hand strain readings between support A and B show a continuous increase in their values up to failure load. Figure 32 When the value of the flange strain C under the c load corresponds to the maximum value of m then the moment. at section-C and C| attains i t s maximum value, which corresponds to point A on the (m-e) diagram. Adjacent sections correspond to any point between K and M on the (m-£) diagram. The theory 98 of i n e l a s t i c bending p r e d i c t s moments, d e f o r m a t i o n s , and f a i l u r e loads corresponding t o t h i s condition. As was m e n t i o n e d i n p a r t I I , due t o t h e f a c t t h a t the l o a d i s a p p l i e d over a ^ i n c h w i d t h f u r t h e r i n c r e a s e o f t h e l o a d w i l l n o t n e c e s s a r i l y b r e a k : t h e beam. w i l l be c a p a b l e for o f p r o v i d i n g a c e r t a i n amount o f a n g l e change c o n s i s t a n c y o f d e f o r m a t i o n a l o n g t h e beam l e n g t h C. without breaking. The beam w i l l f a i l by f r a c t u r e on t h e t e n s i o n s i d e when t h e f l a n g e s t r a i n its The beam 6 C under the l o a d f a i l u r e value corresponding to f a i l u r e reaches stress. C a l c u l a t i o n o f Moments o f Beam T e s t No.3. The method o f e v a l u a t i n g t h e moment o f t e s t beam No.3. was e x a c t l y s i m i l a r t o t h e p r e v i o u s two t e s t s . The e v a l u a t i o n o f t h e c o n s t a n t s K« » K2., lc% , K V , KQ and k> o f e q u a t i o n (25) c o r r e s p o n d i n g t o l o c a t i o n ( 1 ) , (2), ( 3 ) , ( 4 ) , (6) and (7) w h i c h were a t 16, 18, 24, 30, 63 and 69 i n c h e s r e s p e c t i v e l y f r o m s u p p o r t D i s a s f o l l o w s : F i r s t t h e a v e r a g e s t r a i n s £, , £ Q 7 corresponding to locations t t 6 3 t C* 4 £ 6 and (1), ( 2 ) , (3)>..(4), (6) and (7) r e s p e c t i v e l y were p l o t t e d v e r s u s t h e l o a d f i g u r e 33. The s t r a i n r e a d i n g € s b e i n g t o o c l o s e t o t h e l o a d was n o t jr;eliable, Thus f o r a n a r b i t r a r y l o a d o f 10 K i p s t h e c o r r e sponding strains €. , € , £, , € . z a n d £7 m e a s u r e d f r o m 99 t h e g r a p h h y e x t e n d i n g t h e s t r a i g h t l i n e b e y o n d 8 K i p s were 0.1735, 0.1983, 0.265, 0.326, 0.258 and 0.2015 respectively. U n d e r t h e same l o a d t h e c o r r e s p o n d i n g s t a t i c a l l y determined (4), percent moments a t l o c a t i o n s (1), (2), (3), ( 6 ) and ( 7 ) were e q u a l t o 8 5 . 3 5 , 96.0, 1 2 8 . 0 , 160.0 126.0 and 98.0 K i p - i n c h e s r e s p e c t i v e l y . Using 1 quation Ki = 85.35 0.1735 = 492 Kip-ins K = 96 0.1983 = 480 Kip-ins 126 0.265 = 483 Kip-ins 160 0.326 = 491 Kip-ins 126 0.258 = 488 Kip-ins 98 0.2015 = 483 Kip-ins K 3 Ky = = A f t e r determining Ki , , K , Y4.» 3 b e t w e e n s u p p o r t s D and B t h e e v a l u a t i o n constant c o e f f i c i e n t s , locations K & and Ky of the remaining , ^s> and K i , c o r r e s p o n d i n g t o 0 ( 8 ) , ( 9 ) and ( 1 0 ) w h i c h w e r e 24, 1 8 , a n d 16 i n c h e s r e s p e c t i v e l y f r o m s u p p o r t A was d e t e r m i n e d by u s i n g t h e same method, a s i n t h e p r e v i o u s two t e s t s . Using the equation : -2dU e « exactly I 100 any c o e f f i c i e n t between A and B s u c h a s constant Kio c a n be e v a l u a t e d p r o v i d e d t h e v a l u e o f K h a s b e e n and predetermined as , by a v e r a g i n g t h e c o e f f i c i e n t s o f such locations ( 1 ) , ( 2 ) , ( 3 ) , ( 4 ) , (6) and (7) between C and D. For test No.3»» » K » 3 and ^ 7 , K4., was found t o be e q u a l t o 491.5, 483.5, 482.5, 490, 488 and 483 K i p - i n c h e s K = 492 + Then To e v a l u a t e J?e 6 corresponding 480 + 48? + 491 + 488 + the average strains to locations were p l o t t e d v e r s u s ( 8 ) , (9) and the load, (figure = 4 Q 6 < 5 £g , £<> and Figure (10) r e s p e c t i v e l y , o f 10 K i p s t h e c o r r e s p o n d , £9 and £;o measured f r o m strains 34) were r e s p e c t i v e l y £10 34. Thus f o r a n a r b i t r a r y l o a d i n g average 483 respectively. the e q u a l t o 0.022, 0.0166, graph 0.0152 percent. Then ^ and = jfcLi = Using €g + ^ 9 + e 0.022+0.0166+0.0152 = 0.0538 p e r c e n t = cLe + d$ <-d equation = 24+18+16 =. 58 l0 inches (38) we g e t ^ = 486.5 x ° - j ? - p ^9 = 486.5 x ° ' ° | ? K = 486.5 x - ° - ^ 8 n ( 0 8 8 x ^ l l g x 0 t Q i 6 6 ^_16^ = 490 = = 491.5 4 7 ? Kip-ins Kip-ins g . ^ ^ 101 After the K7 » evaluation of > ks> a n the coefficient ^10 w h i c h a r e d t o he the test, and kf d u r i n g a l l l o a d i n g s t a g e s and up t o computed. table These Mi , M computations are to (10) locations (1), the previous over failure. presented the (3), two t e s t s . the 6 > M 7 , k^, - through- , Hg , failure as £ My were a table (see the (4), (6), straight and over 36. These magnitude Moment d i a g r a m s The Figure c o m p u t e d moments of (7), (8), lines for the same and (9) each method moment d i a g r a m s the correspond- as provided moment u n d e r t h e load i n n e r support d u r i n g each l o a d i n g stage up shown i n F i g u r e load , H4 » M s t a g e was p l o t t e d u s i n g e x a c t l y an i n d i c a t i o n of and (2), of a b e n d i n g moment d i a g r a m o f loading in ? 3 12). Using the values ing , M z fC , constant out ) p t h e moments assumed & , KV, test No.3« f o r each l o a d i n g are 35. extant the of to of e q u a l i z a t i o n o f moment u n d e r inner support is presented as the a graph in 105 , . . , i o 8 » ' SS « ^ fi ?- » i 5' t <fc 0) vo H S 3 § 51 S •» ' * • > n 0 s A r-i * I ?- y $. » » 5 . 1 ?• i s i i n - i ! A N § O O * * » * * §, -S. §, ^ t S H I ! ! H I H I —tn: "« 1 o i ^ S S^ S- S> J 5!^ ^ ^ ^ 3 5 ?^ $ • $ qa S ^) N 1 § 1 a * ^ £ ^ V - $ t i l l 5 \ 1 $ 4 0> Oi O 0> . ft V Mi Qo 1 K • J 5 AO 1 ^ J i ?- j- *« o V sr J S ^ ^ & $ &S «b «0 v I § 5? is 5 § $ § § ^ ^ ^ ^ ^ ^ ^ ^ * 5 1 * 1 «o % \i -fi •^ N <t §8 $ m 1 s S & S ^ s 5 5- 5 S- 3 »• y Y 5 §• 5- ^ ^ S l ! s l $ ^ 5 ^ « ! t 111! ^ § ? ?r s * * * 3 • ^ ^ ^3* i *• y E5*S«SiSi^f?^* $ 55 v «• 3- °> V l> £2; -^ ^ •» ^- <~ >«• y $ y $ ?• ^^Si^ti^SsSt^S.ft 1 $1 1 1 1 I I I I I I 1 1 1 ** *11* v^ * ? ^ " , \.? * ^ 11 * * ^ « n ' w v *• U 1. ^ 8 i ' H S S K I l H i * : i 1 J 1II H _ L X X J A J i - 4 - J - i — | A d i 1n 1 1 IIIIIIPHI M U f 1 <1 M i m l I s a" •a \ v\l \ S H s H i E S U H i i i i i - r u n u i i n u i n u u ^1 N Sv 5N S> ? S l M 11 - i i i / i N \ i j L - i i i i ?-1 ? ^ && . 5 y 5- S- § s 1 4 s « * 8 s 11 I " Ml I ' 11 5 6 n i i v$ S * U i D 5- & i' $ 1 1 1 1 1 3S T S T n s i X 5 1 D ^ 5- V sr. * $ ? H 5> f § v^ ?v 1 H § ! 3j 5;. — | 3 S ? ^ — 4 I i I 5 ! ^ 1? i ! ! - H v :^ >? Qo Q. •• •• ^ T i ^ i i l J - L i - J 1 11 1 1 i i i i i i B i i i 1 1 1 ! I I 8 * S S 8 3 3 ? 3 J 1 2 ^ v N w ^ \J S Jfc l i m i i m i u s 1 l i m a l l * 1 1 §. ^ ^ ^ $> -3 « ^^ % 1 > 8 * | S | i h K a 1 ^ ^ ^ ^ ^ > vO —5—SI 1 1.8 | §g$ N 8 5 - 9 ^ u t M U S H T j O * <v\ $ ^ 8 ov ^ r ^ d ^ . ^ S ^ S ^ 5 \ * i 1 i ! s i is n U i"» a v> ^ cQ vu N «i Q h v\ i m u s 3 9 5 i s I N »>, ^ 1 5 I S & 8 J! S 5 H | ; R 1 S 1 j? N N N ' N «« «1 N N ^ N N N \ i ' 1 1 I I 1 1 1 | I | i 1S x N ^ . N <^ N § 1 ^ N v H 1 ^<V <^rtxj^vdNv>i«i'Jo<ri ft«Sg^!Vj'V;!5 5 ^ ' ^ ^ ^ ^ ' v j ! o 5 ' ! ! 5 5 ^ ! d ? ^ $ ts^ l ^ ^ « ^ < ^ ^ ^ ^ ! f l N v 1 v i m ^ l n ^ l o ^ S ^ ^ v i \ ^ ^ * ^ ^ ^ 5 ^ U ^ . , ! n 6 , v «S SJS Q 105 A >r?S 0/a>/ / £> a. e£ 0 8.000 O 7 3?3 0 •24 7 9 /•o S.o O O / 0.0OO O 6./ 73 4. S90 • /&2? 7 &3/£> . 6&3S- 3+/ . /630 3300 2 S>30 30 4.0 / 3 SO . 6 65 3S20 . SJT 3~.0 -37 . S 37 2 3/0 • 76$ . 5 0 3" .^•70 2.4 gS/ J3I scs S.02S- S./g><T 6/3 . 725S3 £. 3SO 3-. 3 4-3 /OOO 7 0 0 . 09 4. 70 3/ <zs~ 3.0 tt 5\S fi>43 /2 ft TT*/?? erf As OSS 43 6 3-30 /ooo 643 • 32 G 3~. 3/3 /OSS •4 3 7 3 70 7/60 693 /•036 3. 6 73- /•2/£- 3 2 02 /• 32 g 3-37 /•2^4^ 3. /• •4 62. 7 3/7 ^.3 30 /. 470 4-4/ /. s-.s^s- /. 433- 4 03 73 37 8-6 //3 6 t S8 3/ £>. / 3-£ £>-3 33 £S 7/ £>.3 76 03 4-Z7 />.4J3S> y^7-437 So 0 * ** /o 00 - £>jr #3/ /.S 3 6> s>ee £03 y. 3 2 1 6 3S /7 89 /. 7J>7 /3-3~ 73-^ 7^2/ <?.3?S 329 2>.S>-4 5 <$.0/£• /• S~<3~3~ 6.0 /. 3~6 0 20 6050 /•3Sc> &./ /37 / .<£^3~ 2^ ~4SO 72 JS~8£ • 74-S 74* 2. -4 6 O 6. 320 •' J>/er/s 7?eset 7A21T <5S>/0 / 0 00 22 6 /.^33- 7. £ 0 £ 7S3 800 /OO /3<9S reset /•3ff3- S +3~ 70 3 SO /O.O 77 O 338 0/c»/s • VS 7>/cv/s /7e±et 73/s 3.0 53 #/po 3.^4 S/3S 3-6 73 0 • • • S4 40 3-3SO S2J>3~ _3. 9 0640 /S- 3 /s.7 5>S 4./S3- 7/0 S.2 3-3 <3S2>£~ J.<4 70 & 1 37 S>0 &2^0 /3. og 1 37 63 82 Z X /3;o4 4. 7SO 73:88 /S.O 92 ?0 /<r.o6 S>^30 7 ' A T^ff/ecf/or? BJ-£ / 7 or//&/'£' 7 OOO/. r / /fe&c//h?s J fO 0/ 7^^ //Vo. 3. 106 MOMENT COMPUTATIONS OP TEST NO. 3 Load K M, K- /ns. «z it-'OS. M z fcZ-'OS. 12.5 .1875 4-92.0 92 13.5 .1908 492., 0 93.6 .2175 480.0 105 14.5 14.8 .2135 480.6 103 M4 ^ 3 kT-ios. P<Zrc<Zn r * f f€-ios. k?-/r>S- .2842 483.0 137 .3556 49© 174 ^5 pesc<i/ti kr~ins.< .2092 488 102 6 «7 7 e, My A^-,'oS. 1 pzscxnt: .1275 483 61.6 .0926 490 jpa.r<g»r M K, 9 k?-;»s. K-/nS. D percent f- 'OS. 45.5 .0696 491.5 34.2 .0615 477 29.3 .2892 483.0 139.5 .3624 49<D 177 .1793 488 87.5 .0862 483 41.6 .1387 490 68 .1052 491.5 51.6 .0922 477 44 .1939 4 9 a . 0 95 .2208 480.0 106.5 .2940 483.6 144.0 .3690 49d) 181 .1482 488 72.2 .0436 483 21.1 .1862 490 91 .1411 491.5 69.2 .1234 477 58.6 .1960 492.. 0 96 .2232 480.0 107.5 .2977 483.0 144 .3740 490) 183 .1446 488 70.3 .0374 483 18.1 .1955 490 95.7 .1481 491.5 73 .2989 483.0 145 .3757 49(D 184 .1319 488 64.5 .0243 483 11.7 .2090 490 103 .1589 491.5 78 15 .1955 492..0 95.6 .2228 480.0 107.4 .2968 483.0 143 .3734 49(D 182 .1321 488 64.5 .0214 483 10.3 .2109 490 103 .1602 491.5 78.6 .1397 477 66.8 15.3 .1962 492.0 96 .2233 480.6 107.5 .2974 483.0 143.5 .3741 49(1) 183 .1219 488 59.5 .0085 483 4.1 .2246 490 110 .1707 491.5 83.6 .1486 477 70.61 15.5 .1979 49a. 0 97 .2252 480.0 108.5 .2998 483.© 145 .3769 49 (J> .1182 488 57.5 .0026 483 1.2 .2326 490 114 .1767 491.5 86.5 .1539 477 73.5 15.7 .1978 4Q&.0 97 .2253 480.0 108.5 .3001 483.6 145 .3771 49 (!)185 .1161 488 56.6 ;0066 483 -3.2 .2421 490 118.5 .1841 491.5 90.5 .1603 477 76.5 15.04 .1971 492 .6 96.5 .2243 480.6 108 185 .1295 477 62 .1385 477 66 15.88 .1971 492. .0 96.5 .2243 480.6 108 .2984 483.0 144 .3745 49 (J) 183 .0974 488 47.5 :0231 483 -11.2 .2580 490 126 .1961 491.5 96.2 .1708 477 81.5 16 .2979 483.6 144 .3749 49(D 183.5 .0928 488 45.3 :0296 483 -14.3 .2639 490 129 .2004 491.5 98.3 .1746 477 83 .1968 492. .0 96.6 .2238 480.6 108 TABLE /Ei 107 ft 0 0 0 g * s t o 10© Sis/ - c//jf ^t/sctsa^ 110. Ill ]j-,)-r^l4- 112 115 116' PART IV PREDICTIONS OF THE THEORY OF INELASTIC BENDING 401. Theoretical Predictions on the Behavior of the Test Beams. As was mentioned i n the introduction, one of the purposes of the beam tests was to check the accuracy of the theory of inelastic bending, by comparing predicted moments and deformations against those attained during the test. The theory and the unit functions are presented in section I. During elastic deformations the elastic theory is the same as the theory of inelastic bending. The limit of elastic deformation is reached when the extreme fiber stress under the load point reaches 3 6 . 3 K'ip-s/ns 2 • Observing the recorded strain of Test No.l. and No.3. we see that the stress of 3 6 . 3 ^'py^s*- i s reached just before the negative support A comes into action. point is M= 36.3Z The corresponding moment under the load (177 Kip-ins ) The moment over inner support B is zero since the beam i s s t i l l behaving as a simple beam. The corresponding load at the elastic limit from statics, i s 7.9 Kips which checks very closely with the 117= actual load. After support A comes into action at approximately 8 Kips the extreme fiber stress under the load point exceeds the proportional limit of 3 6 . 3 K\ps/ readings between supportsA and B,up show perfect linearity. » although the strain 2 ins to a load of .'9 k'ips , F-i8Ures23 »28 ,3 4-,. The explanation of this phenomenon lies in the very nature of the stress-strain diagram of the material. First, as seen i n table / , the proportional limit seem to increase with the size of the cross-section area of the sample. The exact variation is not known, but since the tension area of the beam is about seven times that of the speciman ' an increase i n the proportional limit of the beam above 3 6 . 3 Ki? /ins ' s 2 i s n o * improbable. Second, referring to the stress-strain diagram of the material we see that the ° Strou'n (percent) Figure 3 7 transition abrupt. from the proportional limit to, yielding is not Point B which corresponds to a stress of 3 9 . 5 almost lies on the straight line OAE. Figure 37. 118 Thus w i t h a p r o p o r t i o n a l l i m i t of 39.5 Ki'ps/jns 2 and u s i n g e l a s t i c methods, p r e d i c t e d deformations q u i t e a c c u r a t e , up t o should he 3 Kips. E l a s t i c S o l u t i o n o f the Test Beam. (I) Simple beam a c t i o n . The e l a s t i c s o l u t i o n o f the t e s t beam d u r i n g the stage o f simple beam a c t i o n can be used t o determine the modulus o f e l a s t i c i t y o f the beam. deformations A term t a k i n g account o f due t o shear f o r c e w i l l be i n c l u d e d . -a tc J£ L 3 8 Figure f o r o/ x.<Ca. the d e f l e c t i o n u ! b due t o bending i s equal t o 1 - for <«> o<fc<£x. the d e f l e c t i o n J s due t o shear only i s equal (44) Aw GL where G is the shear modulus and A w i s the area of the web. 119 foro<=c <<x the t o t a l d e f l e c t i o n due t o shear and t e n d i n g i s equal t o 0 QB11L { In equation ratio. AwG) U (^-5) = £ (\4-w-,) where y- i s Poissons The value o f y- g i v e n i n the A l c o a s t r u c t u r a l hand- book i s 0.33* The value o f I , which i s the moment o f i n e r t i a about the s t r o n g a x i s , i s 9.74 ms " 4 /\ w At , i s equal t o .94 m s x 2 . The area o f the web . = 48" by equation (-4-5) , =1610_P b where y pis At z E L i s t h e d e f l e c t i o n under t h e l o a d g i v e n - i n inches and the l o a d g i v e n i n Kips. E w i l l have the u n i t s o f \C\ysJ £- . Jn = 36" by equation = where y N 1495 (47) P i s the d e f l e c t i o n a t 36" from support B g i v e n i n inches and P i s the l o a d g i v e n inK'ips . ET s w i l l have the u n i t s o f 2. F o r Test N o . l . , No.2., and No.3. the d e f l e c t i o n s versus the l o a d were p l o t t e d . when P = 6 KT/ps y^ F o r beam Test N o . l . and No.3. i s 1.0 inches and y^ i s 0.926 inches g i v i n g E v a l u e s o f 9,660 ^ T ^ n s 2 .(Fi<j-4oJ F o r beam Test No.2., when P = 6 K«'ps , y inches and y. N L i s 0.925 i s 0.86 inches g i v i n g E v a l u e s o f 10.400 ^'f^f- 12Q (£) Indeterminate Beam A c t i o n . The e l a s t i c s o l u t i o n o f the indeterminate beam was accomplished by s a t i s f y i n g a c o n d i t i o n of c o m p a t a b i l i t y . In order t o s i m p l i f y the c a l c u l a t i o n s the d e f l e c t i o n due to shear was n e g l e c t e d . Figure 3 9 Thus r e f e r r i n g t o f i g u r e 39 found by equating & c t o c^> . P a r t 1. Where n, _ +-— - tc/a = A A = 0 (48) G = ' d c 42 , the s o l u t i o n i s 121 _ (48)Q 42x48* Q ~ " 4fl ~ 2EI / B • f • • c _ " 42(3 x 48 3EI + frgfa HaE! ^ . 5 48 . 5 (48)Q 4 42 4 6EI Y + A X + + A + Q42 x (48) - (48) R 2£I 6EI 3 Part 2. <?„ = tc/ + (0 c // = / c 9c - 9 ) 42 9Q (42Jd? (42)Q 2EI GET 08c = - 42 x 48Q - 48 Q 2 El2 EI f* _ 90Q42 2 ° " 2E1 (42)Q " 6EI 48* x42 Q 2EI (42)R ( 4 2 ) V G£I ' &EI 48R(42)* 2£I + ? 48R " 2 Fl2 48x42* R 2'EI 42*R P42* 42 x48 Q 6EI " 6FI " f x 2 '48 x42R Q42* 5 2EI " 3 E I " 4" 2 Part 3 . Equating § c to <$ and simplifying we get 544.8x10 Q E/I 0 121.7xl0 R EI 3 Substituting R by /13_2 <0 + >. 90 12.35x10* P _ EI " 2 110 8 42 p ) and 90 y simplifying we get -Q + 0.266 P = 2.35 x 10* EI In the, .'las.ttest,.-(No.3.) when P = 8.6 at A was barely touching. (48) , the negative support This makes (?= 0. 122 Then s o l v i n g equation r- 0.266 x 8.6 E The (48) f o r Ez = 10,000 Kips/. 2.35x9.74x10 = / n ^ s d e f l e c t i o n under the l o a d i s given by & =%|20P + 1.1 = ^|^ N According S= P . (50) S u p p o r t B isc^iven + 1.27 to equation 1.27". N inner 4 9 ) equation: t The- def lecTibn at 36 i n c h e s f r o m by the equation! £ i 2 (51) (50) and (51) a t P=0 c5c = 1.1" and T h i s i s due t o the assumption that although P=0 the end A i s brought i n contact with the support A. I n e l a s t i c S o l u t i o n o f the Test Beam. Analysis No.l. The The load and supports a r e assumed to a c t on a p o i n t . i n e l a s t i c s o l u t i o n o f the t e s t beam involved the same C pros§es&as the e l a s t i c s o l u t i o n except that i n s t e a d o f .a s i n g l e equation a t r i a l and e r r o r procedure was r e q u i r e d . For d i f f - erent bending s t r a i n s ( 6 c ) under the l o a d p o i n t , i n c l u d i n g the s t r a i n corresponding presented. t o maximum value of m, a s o l u t i o n w i l l be T h e s o l u t i o n s was f o u n d by a s s u m i n g a f l a n g e strain 6 o v e r the i n n e r support and then s a t i s f y i n g a c o n d i t i o n of B compatability. F i g u r e 41 123 R e f e r r i n g t o f i g u r e 41 , the i n e l a s t i c s o l u t i o n i s found by equating fr referenced). t o So c For g . F o r the u n i t f u n c t i o n s see v a l u e o f 1.844ins was used. a used i n the equations are shown i n figure-4-1. d e r i v a t i o n the dimensions A l l symbols Throughout the o f inches were used. Part 1. c - where / a I 2 + * _ (42)_Ue_ 1_ . _5 tA/& 4£ ~ < 1 ' 44 42 8 f22.8)M? 168 " + m' 5 + e 168 2 •Phor.il" 5 -u 22.8x48 u & , 5x48 1250 / r H ' Part 2. (To = Xc D i% - (e-rGsc)*. where 4^= ^1 l u T7 U c = -*2?_ ^ J.844 u c _= &5 5 >8 u^ 5 ce t 6 then o" = 0 simplifying ct= i | & = 22.8 u e 958 958-% + 958 26(ns-nJ B ife + 1093-^f- + ^252 5 _ j Q3 j 4 4-Z. (52) r\e>-tlc rn (3 (53) 124 The the s o l u t i o n f o rd i f f e r e n t bending s t r a i n s under load c o n s i s t s o f assuming a c e r t a i n flange over t h e i n n e r support so t h a t The arithmetic table strain £s §c w i l l be e q u a l t o S • D o f t h e c o m p u t a t i o n s i s shown i n f o r m o f a (Bee t a b l e 13.) T h e o r e t i c a l d e f l e c t i o n s a n d moments b a s e d on t h i s a n a l y s i s t o g e t h e r w i t h t h e t e s t d e f l e c t i o n s and moments a r e g i v e n i n t a b l e 14 and f i g u r e 42 and 43 respectively. I t s h o u l d be m e n t i o n e d t h a t t h e beam d e f l e c t i o n s during t h e t e s t s were m e a s u r e d r e l a t i v e t o t h e o r i g i n a l t i o n o f t h e beam when P was e q u a l t o z e r o . posi- I n f i g u r e 42 b o t h a c t u a l and t h e o r e t i c a l d e f l e c t i o n s a r e p l o t t e d w i t h reference t o h o r i z o n t a l l i n e AD. A n a l y s i s No.2. I n t h e c a s e o f t h e t e s t beam t h e l o a d was n o t a p o i n t l o a d b u t i t was a c t i n g o v e r a w i d t h o f j i n c h e s . The . c o r r e - s p o n d i n g moment d i a g r a m i s assumed t o be a s t h e one shown i n f i g u r e 4 1 . a . A c t u a l l y t h e i n n e r s u p p o r t was a l s o ^ but wide s i n c e t h e s t r a i n s w e r e r a t h e r l o w i t c a n b e assumed out a p p r e c i a b l e e r r o r t o be a p o i n t support. Also with- the actual 3" d i s t r i b u t i o n of the load the o v e r t h e j w i d t h i s n o t known t h u s shown moment d i a g r a m i s a c l o s e a p p r o x i m a t i o n . The i n - e l a s t i c s o l u t i o n o f t h e t e s t beam was a c c o m p l i s h e d b y s a t i s f y ing a condition of compatability, as i n a n a l y s i s No.l. The o n l y d i f f e r e n c e b e t w e e n t h e two a n a l y s i s i s i n t h e moment diagrams. /?jTS///77ecC\ Afo^e/?/- Z?/&yrosr7 ^ A / y 7 < f / ^ r ^ W ^ ^ 4 ^ ^ - Pigure For different 41.a. bending strains (£ ) c under the i n c l u d i n g the s t r a i n c o r r e s p o n d i n g t o maximum v a l u e solution will be p r e s e n t e d . ing a flange satisfying figure strain the 41.a • ^ value of 1.844 over o r inelastic of the inches were inner support solution is see i n s was u s e d . 41.a. s o l u t i o n was compatability. uni^ functions shown i n f i g u r e dimensions B a condition of t o SD are £ The reference (l). A l l symbols used Throughout used. the o f m, found by and a assum- then Referring found by load to equating Sc F o r -g- a i n the derivation equations the 126 Part (1) Sc = | + 0(*Bc,) + ^V + fi {&+0 c, ) B (f) - where O 5 U 1 . _55 _ _ ™ _ ^ .U& _ £a/* <^/& ++ £| _ (A2) (42) _1 " — ^ " 1.844 42 168 ~ ' ^ B + 1 = + 2 2 2 2 8 8 ^ . . , _5_ ^168 n + ^ ^gg, n e g l e c t i n g t h e terms - ( ^ 3/4 - - ! + Part 2 2 ' 8 x ^.625 ^ + ^ 7 ^ 5 + ( ^ ^ ^ ( ^ (2) where Jo = 940-i^- + 1 6 . 9 ^ - 950-2 3 - - 1.238 - 1073 ^^-^) J ) 127 The s o l u t i o n f o r d i f f e r e n t bending s t r a i n s under the l o a d c o n s i s t s o f assuming a c e r t a i n f l a n g e s t r a i n the i n n e r s u p p o r t s so t h a t ^ a r i t h m e t i c o f computations (see t a b l e 1 3 a ) . w i l l be e q u a l t o do . - £ over 8 The i s shown i n f o r m o f a t a b l e , Up t o a f l a n g e s t r a i n (£ ) under t h e l o a d , c c o r r e s p o n d i n g t o maximum v a l u e o f m, t h e t h e o r y o f i n e l a s t i c b e n d i n g was s u c c e s s f u l l y a p p l i e d . When t h e f l a n g e s t r a i n e c u n d e r t h e l o a d ^ e x c e e d e d i t s v a l u e c o r r e s p o n d i n g t o maximum v a l u e o f m t h e n i n o r d e r t o compute moment.and d e f o r m a t i o n s c e r t a i n reasonable assumption and m o d i f i c a t i o n h a d t o be made. A n a l y s i s o f t h e T e s t Beam when t h e F l a n g e Strain Under t h e l o a d Exceeds i t s Value Corresponding t o Maximum V a l u e o f m. , , 4-2" 1 I -u r * * s/ . 1 F i g u r e 4-1 b I n o r d e r t o c a l c u l a t e t h e moments a n d d e f o r m a t i o n s o f t h e t e s t beam f o r f l a n g e s t r a i n s g r e a t e r t h a n t h o s e c o r r e sponding t o maximum v a l u e o f m, t h e beam was a n a l y s e d i n t h e f o l l o w i n g manner. R e f e r r i n g t o f i g u r e 4-1 b we o b s e r v e t h a t when t h e f l a n g e s t r a i n &c u n d e r t h e l o a d e x c e e d s i t s v a l u e corresponding 128 to maximum value of m then the moment and strain attained under the load are given by L on the m-e diagram. Point 1 gives a slightly less moment than point A. Assuming that the testing machine is running providing a constant or increased load at point C then the moment over the inner support w i l l increase i n order to maintain equilibrium. Knowing the moments at point B and C, the adjacent moments to point C can be easily calculated since they w i l l be located along the line B' 0* C , and C D of the moment diagram. The strains and moments of the adjCjgbent sections to point C are given by such points as M' or R on 1 the m-e diagram. M* and R' are located on the lines MN and KR respectively which are parallel to line OP. Unfortunately the corresponding strains of points M' and R' are not known. This indicates that the corresponding unit functions V) a n d V of the adjucent sections to C are unknown. Also, although the unit function nn at section C can be found from the m-e c diagram, the rest unit functions LU and He are not known. Thus an exact analysis of the test beam is not possible. The author tried a reasonable solution making the following assumptions. , For the test beam under consideration the maximum value of m is equal to 140.58 Kip/ins corresponding to a strain of 9.2$.. For a strain of 11.8$ the corresponding unit function m is 133 Kip/ins . 2 Comparing the two values of m we. see a difference of only 5$, which is quite small. This 129 i n d i c a t e s t h a t t h e e l a s t i c r e b o u n d due t o d e c r e a s e at of strains t h e a d j a c e n t s e c t i o n s t o p o i n t 0 i s s m a l l a n d c a n be neglected. A l s o i t i s a reasonable assumption r) the u n i t f u n c t i o n s c a n d >J t o consider a t p o i n t C, a n d C e q u a l t o t t h o s e c o r r e s p o n d i n g t o maximum v a l u e o f m,- \{(\€.c)> 9-2/0 In ing Q= c t a b l e 13a t h r e e s o l u t i o n s a r e p r e s e n t e d first to a ^ = 11.8$ and £ B = 1.2$, s e c o n d 10.4$ a n d £& = .7$ a n d f i n a l l y a £ c . correspond- to a = 10$ a n d £ B = .6$. Computed moments and d e f o r m a t i o n s a r e i h r e a s o n a b l e agreement with the test. Deflections during Inealstic The Deformation. d e f l e c t i o n under the l o a d i s g i v e n by t h e equation (52), where & = 2 . 6 * The + 1085*: + 1 2 g g ^/^^^-n,)) d e f l e c t i o n lVj a t 36 i n c h e s f r o m s u p p o r t B i s g i v e n b y t h e equation. A . = '2.6.7 + 1065±!± + ^ : , (uB + »~+^fie-n»T ^ 5 These d e f l e c t i o n s a r e c a l c u l a t e d i n t a b l e 13a f o r different strains (6 G under the l o a d i n c l u d i n g t h e s t r a i n c =9.2$) which corresponds w e l l as a s t r a i n o f 11.8$. t o t h e maximum v a l u e o f m,as Deflections are l i s t e d i n t a b l e 15fl4 and p l o t t e d w i t h t h e t e s t d e f l e c t i o n s i n f i g u r e 4 2 . deflection;, curves from t h e i n e l a s t i c bending The l o a d t h e o r y shown i n f i g u r e 4£ f o l l o w t h e same s h a p e a s t h e d e f l e c t i o n curves 130 from the t e s t measurements. The d e f l e c t i o n s from the theory up t o f a i l u r e are i n close agreement w i t h the t e s t d e f l e c tions. At f a i l u r e the d e f l e c t i o n under the load was 5 . 5 7 inches compared t o computed t h e o r e t i c a l d e f l e c t i o n of 5.46 inches. Moments during I n e l a s t i c Deformation. Values of the t h e o r e t i c a l loads and moments when f a i l u r e occurs are presented i n t a b l e 14 and 15 with the t e s t values. The maximum r e s i s t i n g moment predicted by the theory corresponding t o the maximum m ( 1 4 0 . 5 8 K i p / i n s ) i s equal to M = * A^(m) = i x ( . 9 4 ) x 3 . 6 8 7 .(140.58) = 244 K i p - i n s . This value checks very c l o s e l y w i t h the maximum t e s t moment. Up t o the t h e o r e t i c a l f a i l u r e load of 1 5 . 5 3 Kips the t h e o r e t i c a l and t e s t moments agree q u i t e c l o s e l y . (Figure 43) The theory of i n e l a s t i c bending can predict f a i l u r e moments which correspond to the maximum value of m. I f m extends beyond that value then the theory of i n e l a s t i c bending i s not a p p l i c a b l e , without c e r t a i n modifications, which e f f e c t the accuracy of the theory. Loads during I n e l a s t i c Deformation. The^lo.ad P can be 'expressed i n terms of the moments fJ[ and He, as shown c ~ 41.625'* 47.625 131 or P = >> Aw I mc mc + Ma 4i-7. 6J2 5 The f a i l u r e l o a d p r e d i c t e d b y t h e t h e o r y t o 15.53 K i p s was e q u a l compared t o t h e t e s t l o a d o f 16.06 K i p s . The. r e a s o n o f t h i s s m a l l d e s c r e p a n c y p r o b a b l y i s due t o t h e f a c t t h a t t h e s t r e s s s t r a i n d i a g r a m o f t h e t e s t beam may be somewhat d i f f e r e n t t h a n t h e s t r e s s s t r a i n d i a g r a m o f s p e c i m e n N o . l w h i c h was u s e d i n o r d e r t o compute t h e u n i t functions. I n beam t e s t No.2 t h e f a i l u r e l o a d was 1 5 4 5 K i p s compared t o 16.06 K i p s o f t e s t beam No.3. The r e a s o n o f t h i s difference i s t h e r e d u c e d s e c t i o n m o d u l u s o f t e s t beam No. 2 u n d e r t h e l o a d due t o t h e c o n c e n t r a t e d I n t e s t No.3 b e f o r e angle change. See f i g u r e 2 ) . s t a r t i n g t h e t e s t two s p r e a d e r s on e a c h s i d e o f t h e web were u s e d . This prevented a decrease of the s e c t i o n m o d u l u s o f t h e beam. Moments a n d D e f l e c t i o n P r e d i c t e d b y t h e T h e o r y o f Limit Design. The p l a s t i c c o l l a p s e l o a d i s g i v e n by p l a s t i c o c c u r i n g a t t h e l o a d p o i n t and o v e r t h e i n n e r s u p p o r t . hinges The p l a s t i c moment o f t h e beam s e c t i o n i s 224 K i p - i n s . D ^ Figure Prom v i r t u a l w o r k e q u a t i o n 3 43 P&tfd - M 9P £• 0 M P = O 132 P = Mp(0.655) = 14.65 K i p s The moment under the load and over the inner support i s i^p (224 KVp-ins ). Therefore the limit design theory predicts perfect equalization of moments when failure takes place. The deflection before failure occurs when under the load there i s a plastic hinge and above the inner support a plastic moment has just developed. Referring to figure43, the deflection under the &c is equal +o load \ where B 5 42 Z / e ° Fl 3 ET 3 , 4x42 t</ - ' _L H P i 4 § l - & = 2.68 = 5.06 inches Vs £ EI + 2 2 (48) _ _Mp U s } 3 EI % The significant difference between the test moment and the limit design moment is that the theory of limit design 133 assumes no s t r a i n h a r d e n i n g , t h u s u n d e r e s t i m a t e s carrying capacity Configuration The of f r a c t u r e is o f T e s t Beam a f t e r F a i l u r e . i n the tension shown i n f i g u r e 17. crippling in of the section. beam f a i l e d u n d e r t h e l o a d t h e web p r e v e n t e d flange. The h o l t s point i n t h e form The s e c t i o n a f t e r inserted failure on e a c h s i d e o f e a r l y f a i l u r e o f t h e beam, due t o t h e o f the compression f i g u r e 17. t h e moment flanges, Y i e l d i n g over the inner which i s c l e a r l y s u p p o r t was b u t n o t a s much a s t h e y i e l d i n g u n d e r t h e l o a d . seen apparent 134 7 Mnjt Function 2JL 26 . @ C U 6 = 9 . Z7» e = . 3 2 % m=140.58 m-103 n=.7377 n=.165 u=86.31 u=11.3 2.68 M r /O 1 -5 - ins. 0 1.163 6 =9.2 % m=140.58 na.7377 u=86.31 £=.35% m-112 n*.196 us14.7 2.68 € =9.2 % m=140.58 n-.7377 u=86.31 6=.34% m=106 n=.18 u=12.7 12 7 2.68 7 ^ 6 ^ 1 . 1 3 1.24 6=7.4^ m=139.8 n«.6776 u=77.88 6- = • 28 /o m=90 n« . 126 u-7.57 2.68 6-7.4$ m=139.8 n«.6776 u=77.88 6=.29% m=93 n=.135 u-8.36 2.68 = 7.4$ ma139.8 n=.6776 u=77.88 € =.3% m=96.4 n=.144 u=9.3 2.68 € =5$ m=137.2 n«.5214 u=56.23 €-.22$ m=70.6 n=.078 u=3.67 2.68 £*5$ m=137.2 n«.5214 u=56.23 £=.21$ m=67.5 ne.071 u=3.19 2.68 £-2.6$ m « 132.9 n=.3608 u=34.51 er.lO$ m=32.1 i 2.68 n=. 016 u=.344 .344 _ (32.ir»33 £=.5$ m=123.5 n=.2614 u-21.61 6-.03$ m=9.63 2.68 ns.00144 u=.0092 .0092 _ -i (9.63f - 6 * .39;!: m=114.4 n-.2224 u=16.97 €= . 01$ m=3.21 e n=.00016 u=.00034 n i i ) ^ 1 * 1 1.28 7 / ' / ? S -j 1 /3 358*® mi no' X / 6»- 0 /2- 4 / K r5 X / 6 2 /TO. 4 BB1,69 9 7 . 6 + 1 4 0 . 5 8 ( - . 5 7 2 7 ) » (243.58f ens. zns. F' 1 57 101. 01+140. 58(-. 5417), x. /Q' ens. inS. 1 6 5 99. 0+140.58(-. 558)- 1.89 85.45+139.8(-.552)i 86. 24+139. 8(.-.5426)i 1.05 +.5417 252 = 2.15 2.34 4.2 Co, over e sit wetted. •1.08 -1.25 + .558 246.6" »2.28 2.48 4.35 3.78 -.892 -1.25 .552 229.8 -2.39 2.61 4.25 3.94 3.78 -.925 -1.25 .542 232.8 = 2.34 2.56 4.16 3.94 3.78 -.958 -1.25 2.86 -.204 -1.25 2.99 2*86 -.67 -1.25 34 51 "[132.9)* = 1.95 1.87 -.32 -1.25 21.61 _ (123.5f = 1.42 1.36 -.1 -1.25 1.24 -.033 -1.25 .49 4.45 4.38 4.2 -1.12 .434 4.35 4.38 4.2 ,195 3.9 77.8 (139.8r = 3.94 .235 3.935 =10.2 9.3 (96.4r 1 , G 1J09 (236. 2 ) ^ 1 , 87.18+139.8 (-.534)- 8 .274 4.04 =12.18 3.67 „, (70.6)* * t (207.87? * 2 o 59.9+137.(-.4434)= 3 2 •0.058 3.42 = -2.0 3.03 „ T 6 7 7 B T - 7 .763 (204.7)^ 2 3 8 59.42+137.(-.45)= -.107 3.34 -.495 2 -.74 2.05 56.23 ( 1 3 7 . 2f = 2.99 = -3.6 2.68 34.85+132.9(-.343)- ,364 , 5 4 =-10.75 1 .00054 (3.2)* " i > Q 3 3 ! ,11 0.036 rissfisT 5 (117.6)* 7.2 64 21.62+123.5(-.26)=-10.5 16.97+114.4(-.2214 )« -.74 B ~8.25 (^a^/?^farsons '/^te/osAc 3 1.976 cnS. -1.25 -1.015 -1.25 -8.25 iC9/x® £. underesknnaked. 4.2 = 20.8 (229.8)^ -3 2.57 4.5 86.31 (140.58)? =4.38 -25 (246. 6 ) * ' 177B. m. /"7 +.5727 243.5" -2.35 .363 4.2 = 17.1 (252^6 ins. /6 /4- 16.97 (114.47 rl.3 f ge^cS/soy Theory C^/PG^s/s /'J s | .534 236.2* = 2.26 2.47 4.04 .4434. 2.34 3.3 207.8" = 2.14 .45 204.7 = 2.2 s ,343 165 :2.08 2i4 117."6 = 1.87 3.34 2.27 2.57 .26 , 2.13 133.1 = 1.96 .2214 6s upJeres^/naitPcL 2.14 - 2.04 2.0 0 €B overes'firna't'ecl- TABLE 1 4 a MOMENTS AND DEFLECTIONS CALCULATED PROM INELASTIC BENDING THEORY .(A/V/UyS/6 /) K- /ns. 198 214 8.97 9.91 11.46 13.08 230 238 243 244 14.32 14.74 K- ,ns. 5.5 17. o 56.0 117. 0 167.0 184. 0 'ns. 2.0 2.14 2.57 3.34 4.04 4.35 TABLE 1 4 b TEST MOMENT T e s t No. I II"-' s<;/=s. c 9.55 10.95 12.05 12.50 13.00 13.50 200.0 207.5 220.0 220.0 220.0 212.5 9.0 10.0 11.5 13.5 192.5 207.5 12.5 13.5 240.0 246.0 253.0 253.0 14.5 III M 14.8 15.3 15.5 15.7 15.88 16.0 225.0 232.5 230.0 256.0 " 254.0 253.0 • 253.0 K-,nS. 20.0 32.0 85.0 110.0 140.0 180.0 15.0 27.5 65.0 137.5 185.0 80.0 120.0 167.0 194.0 200.0 207.0 213.0 227.0 I' <&€ C, e>rC & a .36$ m = 115 n a .207 u a 15.8 <c = 9,2% m - 140.58 n « .737 tt a 86.31 in n a a a ii <r _ .32$ HI a 103 n a .165 u a 11.3 <r = 7.6% m * liiO n = ..690 u = 79.6 7.6% € m « lUo n = .,690 u = 79.6 m n u = 8.1$' m * 140.4 € a a a a a n » .719 in n U u a 83.7 - 6.4$ 139.1 n « .629 u = 71.15 & 6.4$ m » 139.1 n * .629 u * 71.15 U = 56.23 5$ m = 137.2 n * .521 U a 56.23 ^ » 2.6% in «• 132.9 n » .3608 U « 34.5 <f- .5$ m = 123.5 n = .2611* u = 21.61 n a , I .39$ 114.5 .222 17.0 .46$ 121.6 .252 20.5 ,29 m .135 8i36 u a e a .32 8 103 m n n = .521 a a a € 137..2. a M m n u £ - 5$ Hi » .5356 124.6 .267 22.3 88- .165 a 11.3 = .28 a 90 -» .126 7.57 6T a m sn a u = .25 80 .1 5.34 e a' .139 a ia. 6 a .027 a .75 m n u 6 _ .01$ m a 12.8 n a .00256 u a .0218 7 V8 & s e = 9.2$ in = 140.58 n = .737 u = 86.31 « 3~ <4- / 2.67 2.67 2.67 2.67 2.67 15.8 /Jtz 1.3 1.2 (I35T /hs 1.16 17 =1.29 (lira 1.4 20.5 .1.39 u > 2.67 nn — i cm) • 7.57 2.67 7 (241) =1.69 1.51 ( 5 5 1 3 ) 1.05 (9*3y * 11.3 =1.42 (2BTT3) y B 2.67 1.58 ml 11.3 =_ 1.07 7Jo3T (T2T75) a l.^k (225) 'te (12575) 1.16 .98 a.835 1 , 5 L I -1.47 (2427Q (2177?) ( 1 7 4 3 ) //? 102.1 + l4o.6(-.53) - 27.6 .521 108.6 + l40.6(-,47) = 43 .75 9 0 . 9 + li*0(-.5255 * 17.4 .36 4.19 96.6 + 11*0 (-.1*68) - 31.1 .59 4.66 i*.49 5.0 4.88 104.2- + i4o.4(-.467) 38.7 82.45 + 139.K-.464) = 18 .378 63.8 + 1 3 7 . 2 ( - . 3 9 5 ) = 9.8 .247 =2.12 61.57 * 137.2(-.1*21) * 3.87 .10 3.75 =3.3 3 5 . 2 + 132.9(-.33l*) -.379 2.758 71 .0218 _ 1 no (l2.a) " * -9.25 21.62. + 123.5(-.26) =.-10.5 w 86.31 , , (1403) ~ ^ 3.96 ft 3 8 4.38 4.05 83.7 =4.27 a .238 *l. -SSOg) 71.15 B'a (XB7T) AA -/238 4.13 1.52 -1.14 -1.238 4.13 1.52 -1.38 -1.238 1.28 -1.02 -1.238 3.82. 1.28 -1.22 -1.238 4.01 1.42 -1.32 -1.238 -.918 -1.238 1.08 3.66 3.44 1.08 2# - .47 =i _ 77 (255T2) -1.0 -1.238 U ( ( =2.14 .468 =1.84 (2553) -.687 2.127 56.23 =3 (13T2) 34.5 (B2T9) = 1 qc; 2.82 .845 -1.238 2.82 ,845 -*79 -1.238 1.84 .44 -.41 -1.238 .085 -.127 -1.238 1.36 1.9 4.93 2.3 5.34 £ Underestimated 1^97 4.61 D-K. a. 8 1.92 4.8 .494 •2.13 2.28 4.65 2.03 4.29 1.87 3.4 2.08 3.68 2.07 3.702 2.05 2.177 .464 •1.9 .395 (22772) i , y i J 21^61 . ! (1233) -.89 5.5 .467 242a 3.93 2.23 261.6 252TT 3 , 6 6 4.21 707^X® f/3/#7c //O -3 - 3.82 3.44 /7 /<4 ,-3 s 79.51 + 139.1(-.494) = 10.5 (2127T) «1.85 .1*67 2.67 2.67 " 1.01 a Q-DC; /3 / x/O 2.67 J2_ -1*74 4gr =1.93 .334 1W3 .26 al.Q?: =1.-91 13X3" ^ m n u » 10.4 = 139.13 » ^737 = 86.31 & = 11.8 m = 133 n - .737 u = 86.31 ^ = 11.8^ IB = 133 n a .737 * 86.31 11 m = 126.4 n » ,2767 U a 23.53 V - .7$ ffl. a 127.5 n = .284 U a 24.51 ^= ,$6% m = 125.6 n » .272 u « 22.97 e *\.z% m = 130.2 n » .309 u • 27.7 2.67 2.67 23.53 4 1 , 7 1.6 24.5 _-, , 1.64 K (1273) ~ 1 , 5 1 (2553) 109.84 + 140(-.46) = 45.3 .78 110.82 + 1 3 9 . K - . 4 5 3 ) = 47.8 .822 5.05 5.12 86.31 86.31 i, m 1, „), 1,^ 4.13 1.69 -1.4 -1.238 .46 25574 4.18 1.76 -1.43 -1.238 1.85 5.03 .453 . i 7 2553 1.82 5.09 .465 25X5 1.93 5.85 1.74 5.49 73 ' ° 1 2.67 2.67 6 O.K. B O-'K. £ 6 Underestimated 6 B Over estimated * if A7V 2 ^ 7^<s 6 = ioj6 m = 140 n « .737 tt = 86.31 £ Underestimated 22.97 1.64 B l - U 6 1.58 (25F3) 1.78 26372 =1.44 109.28 + l33(-.465) = 47.4 .874 114 + 133(.428) » 57 1.01 5.124 86.31 T133T 5.46 «4.85 4.55 2.0 -1.39 -1.238 4.55 2.0 -1.56 -1.238 ai • 8n J QrK. TABLE 15 MOMENTS AND DEFLECTIONS CALCULATED FROM INELASTIC BENDING THEORY (ANALYSIS 2) Load Kips M Sc K ins. r ins. & ' K-ins. 10.16 214 22.2 2.15 11.865 230 72 2.73 13.62 238 139 3.72 14.60 241 179 4.25 15.095 243 198 4.64 15.375 243 211 4.84 15.49 244 216 4.97 15.53 243 219 5.04 15.5 241.5 221 5.1 15.14 231 226 5.46 138 1 3 9 140 145' 146 147 148 1 4 9 150 151 mm 152 153 CONCLUSIONS AND RECOMMENDATIONS Theory o f L i m i t Design As was m e n t i o n e d i n t h e p r e v i o u s theory, o f l i m i t design chapter the assumes t h a t when a r e d u n d a n t structure i s l o a d e d b e y o n d t h e e l a s t i c l i m i t r e d i s t r i b u t i o n o f moments t a k e s p l a c e u n t i l a mechanism i s formed. d e f l e c t s e x c e s s i v e l y under constant load. Then t h e s t r u c t u r e When t h e t e s t beam was s t r e s s e d up t o t h e e l a s t i c l i m i t , a t a l o a d - o f 9.5 t h e r a t i o o f maximum p o s i t i v e moment t o maximum moment was e q u a l t o 1 0 . Kips, negative L a t e r on a t t h e f a i l u r e l o a d o f 16 K i p s t h e r a t i o o f 1.1 was r e a c h e d . Thus a n appreciable r e d i s t r i b u t i o n o f moments t o o k p l a c e u n t i l a mechanism was' formed - b u t t h e s t r u c t u r e f a i l e d by f r a c t u r e o f t h e t e n s i o n flange under t h e load p o i n t . theory of l i m i t design Consequently, although the predicted the f a i l u r e load of the test beam, t h e t y p e of. f a i l u r e was d i f f e r e n t f r o m t h e one v i s u a l i z e d by l i m i t design. 3" The favorable a p p l i c a t i o n o f the load over a ^ e f f e c t i n t h e f i n a l r e d i s t r i b u t i o n o f moments w h i c h i n turn increased other w i d t h had a t h e c a r r y i n g c a p a c i t y o f t h e beam. Thus, s t r u c t u r a l c o n f o r m a t i o n s made o f a l u m i n u m a l l o y s may • f a i l before conclusion t h e mechanism c o n d i t i o n i s d e v e l o p e d . f r o m t h e t e s t beams w i t h r e g a r d l i m i t design Another t o the theory of i s the danger o f premature f a i l u r e o f a s t r u c t u r e 154 due to crippling of the compression f l a n g e . I f the depth of t h e beam i s s m a l l t h e n t h e a n g l e change u n d e r t h e l o a d be large. This favorable condition as explained f o rcrippling Theory of I n e l a s t i c will i n s e c t i o n ! ! bvary o f the compression flanges. Bending I n a r e d u n d a n t s t r u c t u r e t h e f a i l u r e p r e d i c t e d by the theory o f i n e l a s t i c bending occurs a t the tension of the cross section. side The r e s i s t i n g moment a t t h e f a i l u r e s e c t i o n r e a c h e s a maximum v a l u e d e t e r m i n e d b y t h e maximum value of unit function The m. flange s t r a i n e a t f a i l u r e under t h e assumption o f a p o i n t l o a d a l s o c o r r e s p o n d s t o t h e maximum v a l u e of m s i n c e u n d e r n o r m a l c o n d i t i o n s t h e beam c a n n o t p r o v i d e t h e required out concentrated a n g l e change u n d e r t h e l o a d p o i n t breaking. The was v e r y a p p l i c a t i o n o f t h e load over a ^ i n c h w i d t h favourable without breaking i n p r o v i d i n g t h e r e q u i r e d a n g l e change t h e beam. This provided which i n t u r n increased further redistribution the value f a i l u r e l o a d and t h e r a t i o by t h e t h e o r y and with- o f 1~ o f t h e moments of the f a i l u r e load. a t f a i l u r e , as p r e d i c t e d o f i n e l a s t i c b e n d i n g was e q u a l t o 15.53 1.13 r e s p e c t i v e l y . o f 16. K i p s and a r a t i o The Kips Test r e s u l t s indicated a f a i l u r e o f Mi a t f a i l u r e e q u a l t o 1.1. load 155 One o f t h e p u r p o s e s o f t h e r e s e a r c h was t o check t h e moments and d e f l e c t i o n s p r e d i c t e d by t h e t h e o r y o f i n e l a s t i c bending experimentally. (9.5 K i p s ) up t o 15.53 Prom t h e e l a s t i c d e f l e c t i o n curves e r r o r . Pig.43 f r o m t h e t h e o r y up t o 15.53 K i p s f o l l o w e d t h e same shape as t h e t e s t d e f l e c t i o n Both curves limit K i p s t h e moments p r e d i c t e d by t h e i n - e l a s t i c b e n d i n g t h e o r y were w i t h i n a 9 p e r c e n t The load were a l m o s t i n p e r f e c t agreement. P i g u r e When t h e f l a n g e s t r a i n the' v a l u e c o r r e s p o n d i n g curves. 6 C under the l o a d 42. exceeded t o maximum v a l u e o f m t h e t h e o r y o f i n e l a s t i c b e n d i n g was n o t a p p l i c a b l e . In order t o analyse t h e beam f u r t h e r , c e r t a i n m o d i f i c a t i o n s had t o be made. P r e d i c t i o n s and t e s t were i n c l o s e agreement. Shortcomings o f the T e s t s When t h e t e s t arrangement was d e c i d e d upon, t h e danger o f premature f a i l u r e o f t h e beam due t o c r i p p l i n g o f t h e c o m p r e s s i o n f l a n g e was n o t r e a l i z e d . third test t o prevent'an early failure, t h e l o a d p o i n t were s u p p o r t e d spreaders I n t h e s e c o n d and the f l a n g e s under a g a i n s t c r i p p l i n g by two i n s e r t e d on e a c h s i d e o f t h e web. Recommendations The s i m p l e s t way o f c h e c k i n g the theory b e n d i n g e x p e r i m e n t a l l y i s by t e s t i n g a s i m p l y under a p o i n t l o a d . of inelast supported beam I f t h e t e s t moments and d e f o r m a t i o n s up 156 t o and i n c l u d i n g f a i l u r e by a r e i n agreement w i t h t h o s e the theory of i n e l a s t i c predict provided bending then the theory t h e moments and d e f o r m a t i o n s that, the flange its i s a c t i n g on a p o i n t should o f a redundant structure t r w i l l not exceed i t s v a l u e strain 0 c o r r e s p o n d i n g t o t h e maximum v a l u e o f m. load predicted the flange T h e o r e t i c a l l y i f the strain £ c a n n o t exceed v a l u e c o r r e s p o n d i n g t o t h e maximum v a l u e o f m. Applying the load o v e r a -| i n c h w i d t h , p r o v i d e d a d e f i n i t e a n g l e change u n d e r t h e l o a d which i n t u r n r e d i s t r i b u t - ed the carrying f u r t h e r t h e moments and i n c r e a s e d the beam. The No.l c r i p p l i n g o f the compression flanges i n test c a u s e d a p r e m a t u r e f a i l u r e - b e f o r e t h e mechanism tion visualized i n limit To avoid deeper s e c t i o n that capacity of condi- d e s i g n was r e a c h e d . c r i p p l i n g of the compression flanges i s recommended. t h e s h e a r and a x i a l Also f o r c e are i t i s further insignificant. a recommended 157 REFERENCES Hrennikoff, A. Inelastic Bending with Reference to Limit D esign. Transactions A.S.C.E. Vol.113. 1948. ' x Baker, Home and Heyman, Steel Skeleton, Volume I I . Cambridge University Press, 1956. Timoshenko, S. Strength, of Materials: Part I: Elementary Theory and Problems. D. Van Nostrand, 1940.
- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Application of limit design to high-strength aluminum...
Open Collections
UBC Theses and Dissertations
Featured Collection
UBC Theses and Dissertations
Application of limit design to high-strength aluminum alloy beams Katramadakis, Tony 1962
pdf
Page Metadata
Item Metadata
Title | Application of limit design to high-strength aluminum alloy beams |
Creator |
Katramadakis, Tony |
Publisher | University of British Columbia |
Date Issued | 1962 |
Description | The theory of limit design originally was developed for structural steel construction. Tests carried out on mild steel beams and frames are in agreement with the theory. Unfortunately a limited number of tests have been carried out on other ductile materials such as light alloys. Therefore more tests are required in order to investigate whether the theory of limit design is also applicable, with or without modification to aluminum alloys. The failure mechanism predicted in limit design materializes in steel frames not only because steel is very ductile but also because steel has strain hardening. Aluminum alloys exhibit very little strain hardening. In the research described here there were two objects. The first object was to investigate the applicability of limit design to aluminum alloys. The second object was to check experimentally the theory of inelastic bending. Three load tests were carried on continuous beams made of aluminum alloy to see if the mechanism condition was attained before failure of the beam. Moments and deflections predicted by the theory of inelastic bending were compared against measurement of beam moments and deflections. The theory of inelastic bending considers the effect of strain hardening. Tables of unit function derived from the stress-strain diagram of aluminum alloy (65S-T6) are presented so that they may he used when the theory of inelastic bending is applied. The first test failed prematurely due to crippling of the compression flanges. In the second and the third test the mechanism condition of limit design was reached shortly before failure of the tension side of the beam under the load point by fracture. Thus the type of failure indicates that not all structures will achieve the mechanism condition. The failure load and the ratio of moments at failure, as predicted by the theory of inelastic bending was equal to 15.53 Kips and 1.13 respectively. Test results indicated a failure load of 16 Kips and a ratio of moments at failure equal to 1.1. The load-deflection curves were the same as the curves from the theory. At failure the deflection under the load was 5.57 inches compared to computed theoretical deflection of 5.46 inches. |
Subject |
Aluminum alloys -- Testing |
Genre |
Thesis/Dissertation |
Type |
Text |
Language | eng |
Date Available | 2011-12-09 |
Provider | Vancouver : University of British Columbia Library |
Rights | For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use. |
DOI | 10.14288/1.0050636 |
URI | http://hdl.handle.net/2429/39623 |
Degree |
Master of Applied Science - MASc |
Program |
Civil Engineering |
Affiliation |
Applied Science, Faculty of Civil Engineering, Department of |
Degree Grantor | University of British Columbia |
Campus |
UBCV |
Scholarly Level | Graduate |
Aggregated Source Repository | DSpace |
Download
- Media
- 831-UBC_1962_A7 K2 A6.pdf [ 23.76MB ]
- Metadata
- JSON: 831-1.0050636.json
- JSON-LD: 831-1.0050636-ld.json
- RDF/XML (Pretty): 831-1.0050636-rdf.xml
- RDF/JSON: 831-1.0050636-rdf.json
- Turtle: 831-1.0050636-turtle.txt
- N-Triples: 831-1.0050636-rdf-ntriples.txt
- Original Record: 831-1.0050636-source.json
- Full Text
- 831-1.0050636-fulltext.txt
- Citation
- 831-1.0050636.ris
Full Text
Cite
Citation Scheme:
Usage Statistics
Share
Embed
Customize your widget with the following options, then copy and paste the code below into the HTML
of your page to embed this item in your website.
<div id="ubcOpenCollectionsWidgetDisplay">
<script id="ubcOpenCollectionsWidget"
src="{[{embed.src}]}"
data-item="{[{embed.item}]}"
data-collection="{[{embed.collection}]}"
data-metadata="{[{embed.showMetadata}]}"
data-width="{[{embed.width}]}"
async >
</script>
</div>

http://iiif.library.ubc.ca/presentation/dsp.831.1-0050636/manifest