Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Effect of compressed air on mortality of fish passing through a model turbine. Prempridi, Thamrong 1964

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
UBC_1964_A7 P68.pdf [ 17.88MB ]
[if-you-see-this-DO-NOT-CLICK]
Metadata
JSON: 1.0050628.json
JSON-LD: 1.0050628+ld.json
RDF/XML (Pretty): 1.0050628.xml
RDF/JSON: 1.0050628+rdf.json
Turtle: 1.0050628+rdf-turtle.txt
N-Triples: 1.0050628+rdf-ntriples.txt
Original Record: 1.0050628 +original-record.json
Full Text
1.0050628.txt
Citation
1.0050628.ris

Full Text

EFFECT OF CO LIP EE SS ED AIR ON MORTALITY OF FISH PASSING THROUGH A MODEL TURBINE by THAMRONG PREMPRIDI B.Sc.(Eng.), A .C.G.I-., Imperial College of Science and Technology, U n i v e r s i t y of London, England, 1958  A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE  i n the Department of C i v i l Engineering  We accept t h i s t h e s i s as conforming t o the required standard  THE UNIVERSITY OF BRITISH COLUMBIA September,  1964  ' In presenting the  requirements  British  Columbia,  available mission  for  for  for  I  agree that  reference  extensive  of t h i s  Department  of  It  thesis  w i t h o u t my w r i t t e n  and.study*  by the  September,  U n i v e r s i t y of  further thesis  agree for  freely  that  per-  scholarly  that.copying  f i n a n c i a l g a i n s h a l l not  Engineering,  1964*  the  Head o f my Department  The U n i v e r s i t y o f B r i t i s h C o l u m b i a , V a n c o u v e r 8, C a n a d a Date  I  this  permission,:  Civil  at  f u l f i l m e n t of  L i b r a r y s h a l l make i t  i s understood  for  in partial  degree  the  copying of  representatives.  cation  thesis  an advanced  p u r p o s e s may be g r a n t e d his  this  or by or  publi-  be a l l o w e d  ii  ABSTRACT  Rates of m o r t a l i t y among young salmon passing through a high speed, model propeller, turbine operating under a 50 f t h y d r a u l i c head but under various, d r a f t tube suctions are g i v e n . E f f e c t s , on both f i s h m o r t a l i t y and turbine.performance, of admission of compressed  a i r i n t o the. turbine at various l o c a t i o n s  to reduce the e f f e c t of. c a v i t a t i o n (believed t o be t h e major cause of f i s h ..mortality I n the . t u r b i n e ) are discussed .  At low  turbine speed a n d . l o w . e f f i c i e n c y , admission of a i r immediately downstream from the blades reduced the m o r t a l i t y of f i s h  sub-  s t a n t i a l l y but a t high.turbine, speed, and high e f f i c i e n c y , the r e d u c t i o n was i n s i g n i f i c a n t .  At h i g h turbine speed, the e f f e c t ,  on f i s h m o r t a l i t y , of admitting compressed  a i r i n t o the penstock  and atmospheric a i r i n t o the t u r b i n e d r a f t tube through a 3 " diameter s t e e l pipe i n s t a l l e d about 1 f t downstream of the blades are shown to be b e n e f i c i a l .  Records of b i o l o g i c a l exam-  i n a t i o n from some of the t e s t s t o determine the apparent type of i n j u r i e s are i n c l u d e d .  An attempt has been made to c o r r e l a t e  the turbine speed with the. number of i n j u r i e s l i k e l y t o be caused by f i s h being h i t by the blades . vacuum on f i s h i s a l s o g i v e n .  The e f f e c t of p a r t i a l  viii  ACKNOWLEDGEMENT The author wishes to express, h i s thanks to h i s s u p e r v i s o r , Dr. E . Ruus, f o r the valuable suggestions, guidance and constant encouragement.  He. a l s o wishes to express  h i s indebtedness t o  P r o f e s s o r J . F. Muir f o r valuable advice, and suggestions. The  experimental  work d e s c r i b e d . i n t h i s t h e s i s was c a r r i e d  out i n the Hydraulic. Laboratory  of the C i v i l Engineering Department.  The.use of these f a c i l i t i e s i s g r a t e f u l l y acknowledged. due  Thanks are  to the s t a f f of.the C i v i l Engineering workshop, i n p a r t i c u l a r  Mr. E. Wegmuller and Mr. R. G. P o s t g a t e , . f o r a s s i s t i n g i n a l l phases of the programme. The p r o j e c t was made p o s s i b l e only with the of  co-operation  the Department of F i s h e r i e s of Canada which supplied numerous  e s s e n t i a l equipment, f i s h used i n the experiments and assigned many of t h e i r personnel t o a s s i s t i n the programme. g r a t e f u l l y acknowledged..  T h i s help i s  P a r t i c u l a r thanks are due to Mr. P. Ryan  who was r e s p o n s i b l e f o r s u p e r v i s i n g the work of the Department of F i s h e r i e s and f o r h i s c o n t r i b u t i o n i n designing of the f i s h injector.  September, 1964• Vancouver, B r i t i s h Columbia.  iii  TABLE OP CONTENTS  CHAPTER  PAGE INTRODUCTION  1  I  REVIEW OP PREVIOUS RESEARCH  6  II  DETAILS OP TEST ARRANGEMENTS  III  TEST PROCEDURE  IV  DISCUSSION OP EXPERIMENTAL RESULTS  60  V  CONCLUSIONS  80  BIBLIOGRAPHY  82  I  SYMBOLS, ABBREVIATIONS AND UNITS  84  II  SAMPLE OF CALCULATION  86  III  TABLES OF OBSERVED RESULTS  90  19 45  APPENDIX  i  I V  LIST OP FIGURES Number 1  Page V e l o c i t y v e c t o r diagram at edge of t u r b i n e  the  leading  blade  13  2  Propeller turbine  test  stand  28  3  Propeller  and dynamometer  29  4  G e n e r a l v i e w of the  5  Large  6a  Wicket  g a t e s at  p o s i t i o n No.6  31  6b  Wicket  g a t e s at  p o s i t i o n No .9  32  7  D r a f t tube  air  from the 8  i n the  30  tube  32 draft  tube  showing 33  below  the  gate  34 above  the  gate  34  11  Fish injector  12  Fish injector the  35 and t h e  plastic  section  penstock  P l a n of  the  36  arrangement  for  fish  recovery 14  15  37  S i d e v i e w of the fish  30  downstream  runner  F i s h i n j e c t i o n point  of  stand  draft  immediately  F i s h i n j e c t i o n point  control  13  test  obstacles  control 10  vent  Top v i e w o f the fish  9  turbine  arrangement  recovery  F i s h recovery  for 38  gear  39  List  of F i g u r e s  (Cont'd)  Number  Page  16  Top v i e w of t h e  17  Flexible and t h e  joint  trap at  40  draft  extension  transition  41  18  F i s h trap during test  19  A i r i n j e c t i o n points downstream f r o m t h e  20a  Arrangement  20b  Locations the  tube  of a i r  42 immediately  blades  43  s u p p l y system  of i n j e c t i o n o f a i r  penstock  44  into  '  45  21a  F i s h h o l d i n g tanks  52  21b  C o u n t i n g of f i s h  52  22  T r a n s f e r r i n g of f i s h t o  23  G e t t i n g r i d of  24a  The i n j e c t o r  24b  F i s h b e i n g poured i n t o  24c  C l o s i n g the  24d  F i s h being introduced into  25  F i s h i n the  26  F i s h trap  27a  Removal of f i s h the  b a s i n completed  excess water  and i t s  injector  53  extension the  54  injector  lid  54 55  the  penstock  penstock  55 56 56  collection  box f r o m  trap  57  27b  F i s h being transferred  27c  Test  27d  Separation  fish  53  ready f o r  into a basin  separation  o f l i v e f i s h f r o m dead f i s h  57 58 58  vi L i s t of F i g u r e s (Cont'd) Number  Page  28  F i s h l e n g t h measurement  59  29  F i s h m o r t a l i t y v Operating c o n d i t i o n s  73  30  Decapitation  74  31a-b  E f f e c t of a i r on t u r b i n e  32a-c  A i r v Turbine performance  v N/Q efficiency  75 77  vill i ST OP TABLES TABLE I  PAGE P I S H MORTALITY AND TURBINE OPERATING CONDITIONS  II  71  COMPARISON OP TYPES OP INJURIES AND THEIR FREQUENCY OF OCCURRENCE  III  EFFECT OF ADDITION OF COMPRESSED  72 AIR  ON TURBINE PERFORMANCE  90  IV-V  TYPES OF INJURIES OF DEAD F I S H  98  VI  CONTROL FISH  VII  FISH MORTALITY IN THE PASSAGE DOWN-  108  STREAM FROM THE RUNNER VIII  F I S H MORTALITY DUE TO  109 TURBINE  OPERATING AT LOW SPEED IX  110  F I S H MORTALITY DUE TO TURBINE OPERATING AT NORMAL SPEED  111  1 INTRODUCTION Each year a.large quantity of P a c i f i c salmon i s caught by both commercial f i s h e r i e s and sport fishermen  o f f the west  coast of the North American continent and i n numerous r i v e r s streams on the same c o a s t .  and  These v a l u a b l e f i s h spend part of  t h e i r e a r l y l i f e a s . w e l l as the f i n a l period of t h e i r mature l i f e i n f r e s h water.  They spend the remainder of t h e i r l i f e  span  i n sea water, f e e d i n g on marine plankton, and there grow to a considerable s i z e ;  but i n order to propagate t h e i r r a c e , adult  salmon must r e t u r n to t h e i r native streams to deposit t h e i r spawn. The  eggs are deposited  i n a nest which the female prepares  g r a v e l bed, i n the c o l d c l e a r water which i s normally  on a  found near  the head waters of l a r g e r t r i b u t a r y streams where the current i s strong enough to c a r r y away most of the f i n e sediments.  The?  eggs are l a i d i n the r i v e r at a depth v a r y i n g from a few  inches  to s e v e r a l f e e t and  are covered  with two  g r a v e l ' t o p r o t e c t the.eggs.during  the i n c u b a t i o n p e r i o d .  the A t l a n t i c salmon,.the completion eggs and parent  their fertilization  to eighteen inches  of  Unlike  of the d e p o s i t i o n of the  i s followed by the death of the  l e a v i n g the future of the.species e n t i r e l y dependent  the s u r v i v a l of the eggs and . the. young.  Adult f i s h  on  normally  r e t u r n to spawn during the summer and f a l l months, and  i n the  s p r i n g the eggs are hatched and become f r e e swimming f r y .  The  f r y of some species then spend a year f e e d i n g i n f r e s h water  2 whereas, others migrate d i r e c t l y to the sea i n t h e i r f i r s t  year.  The period, they spend at sea a l s o v a r i e s from species t o species but when they reach maturity, they must r e t u r n to spawn i n t h e i r n a t i v e streams, thus completing t h e i r l i f e  cycle.  Because of the p o p u l a t i o n and i n d u s t r i a l growth of the communities on the west coast of North America,  multi-use of the  r i v e r s i s e s s e n t i a l , so that maximum b e n e f i t s can be r e a l i s e d from a l l r e s o u r c e s .  The. dependence of salmon on a s u i t a b l e f r e s h  water environment during t h e i r m i g r a t i o n and e a r l y stage of development has placed them i n d i r e c t competition with the other f r e s h water u s e r s . Through water developments f o r power, water storage and i r r i g a t i o n , dams are constructed across some r i v e r s i n h a b i t e d by salmon.. T h i s r e s u l t s i n a b a r r i e r t o m i g r a t i o n of a d u l t and young fish.  Passage of large numbers of a d u l t f i s h over dams i s u s u a l l y  accomplished  by means of f i s h ladders or f i s h e l e v a t o r s . I f the  number of f i s h t o be passed  over the dam i s s m a l l , they may be  trapped downstream from the dam and transported up t o the r e s e r v o i r i n s p e c i a l l y designed t r u c k s .  The primary problem a s s o c i a t e d with  by-passing of a d u l t f i s h over the dam i s the a b i l i t y to a t t r a c t the migrants t o the entrance.of the by-pass system without  delay,  i n j u r i e s or m o r t a l i t y . There are many problems of adult f i s h migration other than the problem of passing them s u c c e s s f u l l y over the dam. The d i s c u s s i o n of these problems i s beyond the scope of t h i s t h e s i s .  3 The  i n t e r e s t e d , reader i s r e f e r r e d to the Nov.  on F i s h e r i e s - Engineering Army  1956  Progress Report  Research Program of the U.S.  Corps of  Engineers(14) . 1  At a t y p i c a l power dam,  young f i s h migrating seaward are  swept i n t o the turbines or over the s p i l l w a y .  The percentages of  f i s h u t i l i z i n g the s p i l l w a y or turbine e x i t s are not w e l l defined at present..  For example, at a t y p i c a l dam  on the Columbia r i v e r ,  i f i t i s assumed that f i s h are d i s t r i b u t e d i n p r o p o r t i o n to the r a t e s of flow, then about one-half  of the f i s h pass over the  spill-  way. Recent experiments have shown that m o r t a l i t y rates among f i s h passing over the spillway, ranged from 37% at lower Elwha r i v e r (7) to 2% at McNary(7) and B i g C l i f f ( 7 ) depending on the type and l e n g t h of the s p i l l w a y .  For high f r e e - f a l l s p i l l w a y s d i s c h a r g i n g  i n t o a plunge p o o l , no s i g n i f i c a n t m o r t a l i t y was  reported and  r e l a t i v e l y safe passage of young f i s h over the s p i l l w a y can  a  be  assured. Recent t e s t s have shown that m o r t a l i t y among young f i s h passing through turbines can occur. from an i n s i g n i f i c a n t amount at the  The  r a t e of m o r t a l i t y ranged  Lower Elwha dam(7) , 11$>  McNary(7) to 30$ at Glines Canyon dam(7).  The  at  major causes of  m o r t a l i t y among young f i s h passing through turbines are believed to be  (a) exposure to c a v i t a t i o n ( 8 ) and  blades.  Turbine  (b) c o l l i s i o n with  intake screens have been used at a few dams to  prevent young f i s h from entering the t u r b i n e s . 1.  turbine  Numbers i n the parenthesis  r e f e r to the  Because the s i z e  Bibliography.  4 of young, f i s h of c e r t a i n species i s very small at the time of migration,, the screen openings must a l s o be s m a l l . on the screen may block the f l o w .  Debris caught  The n e c e s s i t y of frequent c l e a n -  i n g makes the screen i m p r a c t i c a l as a means of preventing f i s h from passing through a, t u r b i n e . .  Numerous guiding systems have been invented t o guide  fish  away from t h e . t u r b i n e intakes and the s p i l l w a y entrance i n t o a safe by-pass.  Some have met with l i m i t e d s u c c e s s .  Because of the h i g h  i n i t i a l and maintenance c o s t , they are not l i k e l y to be used extensively. I n the f u t u r e , with optimum c o n t r o l a t storage dams, more f i s h would pass through the t u r b i n e s and fewer f i s h over the s p i l l way.  To date no attempt has been made t o make the passage  through  the t u r b i n e s s a f e r f o r f i s h m i g r a t i o n , although the t e s t s at the Lower Elwha dam have shown that safe passage of f i s h through a turbine i s p o s s i b l e . The purpose of t h i s i n v e s t i g a t i o n i s t o a s c e r t a i n the e f f e c t s of adding a i r i n t o a t u r b i n e on the m o r t a l i t y of young f i s h p a s s i n g through the t u r b i n e .  A i r has been admitted  t u r b i n e s p r e v i o u s l y to reduce the e f f e c t of c a v i t a t i o n . b e l i e v e d that the same technique  into It i s  can be used as a means of reducing  f i s h . m o r t a l i t y and. of improving the t u r b i n e performance. I t i s thought turbine w i l l accomplish  that t e s t s c a r r i e d out i n a model p r o p e l l e r the aim s e t out above.  t h a t f i s h m o r t a l i t y depends on many v a r i a b l e s .  I t i s recognised To keep the number  of these v a r i a b l e s , s m a l l , the t e s t i s l i m i t e d to one p o s i t i o n of the wicket gate. and. to one value of the t o t a l head. suction  head i s l i m i t e d to two values o n l y .  The d r a f t tube  6  CHAPTER I REVIEW OP PREVIOUS RESEARCH 1.1  Passage of Young F i s h Through Turbines Soon a f t e r f i s h enter a t u r b i n e intake they w i l l  experience  a gradual i n c r e a s e i n h y d r o s t a t i c pressure u n t i l they approach the l e a d i n g edge of a t u r b i n e b l a d e .  A f t e r a b r i e f time i n t e r v a l of the  order of a f r a c t i o n of a second, the pressure decreases  to  pressure or to a p a r t i a l vacuum.  the blade,  they may  Once f i s h have passed  be exposed to c a v i t a t i o n i f the d r a f t tube s u c t i o n reaches  the vapour pressure of the water. of  atmospheric  t h i s low p r e s s u r e .  pressure, they  When t h e y are c a r r i e d i n t o regions of higher  collapse.  tude then occur.  Vapour pockets form i n the r e g i o n  3iooal p r e s s u r e i n t e n s i t i e s  of high magni-  High pressure i n t e n s i t y waves are transmitted to  various parts of the water passages .  I f f i s h pass through  the  c a v i t a t i o n r e g i o n , they w i l l be subjected to t h i s high pressure wave which may  cause i n j u r y or m o r t a l i t y .  a l s o subjected to p a r t i a l vacuum and By chance some f i s h may  In the d r a f t tube, f i s h are turbulence.  c o l l i d e with the t u r b i n e blades  and be k i l l e d or i n j u r e d . 1.2  Turbine F i s h M o r t a l i t y Studies Several s t u d i e s have been made to date on problems of f i s h  passage through h y d r a u l i c t u r b i n e s .  The most notable t e s t s were made  by the Corps of Engineers of the United S t a t e s . In 1959,  a s e r i e s of t e s t s were conducted  i n a low head  7 model t e s t stand at the A l l i s Chalmers  H y d r a u l i c Turbine Laboratory  i n .York, P e n s y l v a n i a . P i s h were passed through a model Kaplan t u r b i n e with 12"  diameter runner and through another 12"  F r a n c i s t u r b i n e with.a 15 bladed runner.  model  The h y d r a u l i c head v a r i e d  from.5 f t to 45 f t and the speed from 95 rpm to 1400 rpm.  The  t e s t s were performed with a given net head and t u r b i n e speed with the.runner set at v a r i o u s e l e v a t i o n s above t a i l water  and  elevation.  Cramer(3) reported that the Kaplan and F r a n c i s model runner gave s i m i l a r r e s u l t s .  Wide v a r i a t i o n of f i s h s u r v i v a l r a t e  (from 96% to 1%) could be a c h i e v e d , dependent water e l e v a t i o n .  on speed and  tail-  He a l s o reported increased m o r t a l i t y where adverse  h y d r a u l i c c o n d i t i o n s r e s u l t e d i n c a v i t a t i o n and lower e f f i c i e n c y . F u r t h e r t e s t s were conducted on the same model F r a n c i s Turbine but w i t h a s l i g h t l y modified runner.  Cramer and 01igher(4)  reported that the most d e s i r a b l e c h a r a c t e r i s t i c s of a F r a n c i s runner t o . p r o v i d e maximum s u r v i v a l f o r f i s h are (a) r e l a t i v e l y low runner.speed, high e f f i c i e n c y , (b) r e l a t i v e l y deep s e t t i n g of the  turbine so that the runner i s submerged below the t a i l  water  l e v e l , (c) maximum clearance between blades and between the wicket.gates and the intake edges of the b l a d e s . These model t e s t s were followed by f u l l s c a l e t e s t s i n which f i s h were passed through a F r a n c i s turbine o p e r a t i n g under a 470 f t head at the Cushman I I dam  i n Washington and through  another F r a n c i s t u r b i n e operating under a 420 f t head at Shasta dam i n C a l i f o r n i a , i n 1961 and 1962  respectively.  R e s u l t s (4,5)  8 from both t e s t s e r i e s confirmed the r e s u l t s of the model t e s t s . the  In  prototype, operating c o n d i t i o n s such as the gate opening, plant  sigma and t a i l water l e v e l had the greatest i n f l u e n c e on  fish  mortality. The m o r t a l i t y rate of young f i s h p a s s i n g through the turbine at Cushman I I ranged from 23% to 55$ depending on gate opening and t a i l water e l e v a t i o n . (0.5 f t . t o 12.5  There was a wide v a r i a t i o n of the t a i l  f t ) at Cushman because i t was i n f l u e n c e d by the t i d a l  a c t i o n i n the t a i l r a c e .  The m o r t a l i t y r a t e of young f i s h p a s s i n g  through.the t u r b i n e at Shasta ranged from 10.7$ to 24.6$ at 0.50  water  gate opening.  at 0.65  gate opening  The improved f i s h s u r v i v a l r a t e at  Shasta as compared t o Cushman i s a t t r i b u t e d to a g r e a t e r blade c l e a r ance at S h a s t a . the  The p e r i p h e r a l v e l o c i t y of the runner was  almost  same f o r both r u n n e r s . In a l l t e s t s conducted by the Corps of Engineers, where  dead f i s h were captured, the type of apparent i n j u r i e s l i k e l y to cause m o r t a l i t y was u s u a l l y r e c o r d e d .  There were four major f a c t o r s  considered r e s p o n s i b l e f o r death and these were c l a s s i f i e d as f o l l o w s . 1. Mechanical - i . e . f i s h k i l l e d by c o l l i s i o n w i t h a solid  object such as a t u r b i n e blade  (a)  Abrasion - rubbing or s c r a p i n g o f f s k i n  (b)  Contusion - b r u i s i n g of the body  (c)  D e c a p i t a t i o n - s e v e r i n g of the body  (d)  L a c e r a t i o n - r i p p i n g , t e a r i n g or c u t t i n g of  tissue.  2 . Pressure Change (a) Eye damages - hemorrhaging, missing or otherwise damaged eyes (b) C o l l a p s e d or damaged a i r bladder. 3. Shearing A c t i o n Caused by two f o r c e s of water going i n opposite directions.  The damage s u f f e r e d by f i s h i s normally  a t o r n operculum. 4.  Cavitation C h a r a c t e r i z e d by hemorrhage of i n t e r n a l organs and/or body rupture  Some f i s h had no v i s i b l e i n j u r i e s ; hence they were assumed to be s u f f e r i n g from s t r e s s and h a n d l i n g . More t e s t s have been performed U.S.A. and i n Canada to determine  by other agencies i n the  the o v e r a l l m o r t a l i t y rates of  f i s h passing through t u r b i n e s . Lucas(?) has conveniently summarized and tabulated a l l these 1.3  results.  E f f e c t s of C a v i t a t i o n , Pressure Change and Vacuum on Young F i s h Rowley(l3)  showed that f i s h can withstand pressure changes  of s u b s t a n t i a l amounts, p r o v i d i n g the pressure does not below  decrease  atmospheric. Muir(8) developed a hypothesis that m o r t a l i t y among young  f i s h passing through t u r b i n e s i s caused mainly by exposure to cavitation.  He performed  experiments  on coho f i n g e r l i n g u s i n g a  •  10  l o n g pipe rack normally used f o r water hammer experiments H y d r a u l i c l a b o r a t o r y at U.B.C.  i n the  Coho f i n g e r l i n g when exposed t o  c a v i t a t i o n showed a m o r t a l i t y r a t e of 60$.  The experiment  demon-  s t r a t e d the p o s s i b i l i t y of f i s h b e i n g k i l l e d by c a v i t a t i o n i n a turbine. P a r t i a l vacuum a f f e c t s f i s h by changing the c o n c e n t r a t i o n and  state of d i s s o l v e d gases i n the f i s h v a s c u l a r system.  Bishai  ( l 2 ) showed that formation of gas bubbles i n the heart and blood v e s s e l s and the b u l g i n g o f the eyes may r e s u l t i f f i s h are decompressed from a h i g h p o s i t i v e pressure to p a r t i a l vacuum. are s a i d t o s u f f e r from "gas d i s e a s e " or "bends".  Pish  Muir(8) showed  t h a t t h e b e n d s i n f i s h depend mainly on the degree of vacuum and the l e n g t h of time that the f i s h are exposed to i t . F u r t h e r e f f e c t of p a r t i a l vacuum i s f e l t through the changing  of volume of the f i s h ' s swim b l a d d e r .  A salmon has an  open swim b l a d d e r , i . e . i t has a duct l e a d i n g from the esophagus t o the swim b l a d d e r .  An i n c r e a s e i n pressure i n the water w i l l  cause a r e d u c t i o n i n the bladder volume. suddenly reduced  t o atmospheric,  I f the pressure i s  the bladder returns to i t s  o r i g i n a l s i z e but i f the pressure i s reduced atmospheric,  s u b s t a n t i a l l y below  the f i s h must r e l e a s e gas from the bladder  the esophagus;  through  otherwise the bladder w a l l may be r u p t u r e d .  A salmon, g i v e n s u f f i c i e n t time to become conscious of the pressure r e d u c t i o n , can r e l e a s e the excess a i r . In t h i s  case  i f the pressure l a t e r r e t u r n s t o atmospheric, the bladder remains  c o l l a p s e d . . The  f i s h can r e i n f l a t e i t s bladder by r i s i n g to the  water surface and g u l p i n g a i r from the atmosphere. weakened, i t may but may  not r i s e to the s u r f a c e .  If a fish i s  M o r t a l i t y can  result  not n e c e s s a r i l y be due to a d e f l a t e d swim bladder.  Muir(8)  showed that few f i s h died as a r e s u l t of a d e f l a t e d swim b l a d d e r . He claimed  that s t r e s s e s r e s u l t i n g from c o l l a p s e of the  fish's  swim bladder are not l i k e l y to be a s i g n i f i c a n t cause of m o r t a l i t y among young f i s h passing through t u r b i n e s ( 8 , 9 ) .  Tests at Cultus  Lake(7)> B.C.lhave shown that sockeye salmon when exposed to pressure  r e d u c t i o n from high p o s i t i v e pressure  sometimes suffered.rupture 1.4  to high vacuum  of the swim bladder.  Mechanical Type of I n j u r i e s Suffered F i s h Passing Through Turbines  by  When f i s h enter the turbine i n t a k e , they may  come i n  contact with the edges of the wicket gates or other s o l i d They may  objects.  s u f f e r b r u i s e s and p o s s i b l y l a c e r a t i o n but severance of  t h e i r bodies i s not believed to be  likely.  Some evidence has been found that m o r t a l i t y as a r e s u l t of impact between f i s h and a s o l i d object i s p o s s i b l e . v i l l e Laboratory  i n 1955,  At Bonne-  salmon f i n g e r l i n g s were placed i n an  i n j e c t o r connected to a 20" pipe from which water issued through a nozzle at a v e l o c i t y of 45.6  f.p.s.(l4).  A steel plate  was  placed so that.the 8" j e t impinged d i r e c t l y on i t at 45° and a. 90° angle.  The m o r t a l i t y rate f o r the 45° impact t e s t was  while the corresponding  m o r t a l i t y rate f o r the 90° t e s t was  at 1.7$ 3$.  12 When f i s h reach the t u r b i n e runner, they may the b l a d e s .  be struck by  The u s u a l i n j u r i e s s u f f e r e d by f i s h are l a c e r a t i o n ,  severance of the body or crushed head. For f i s h , the time a v a i l a b l e f o r avoidance of  collision  with the blades i s the time r e q u i r e d f o r a l e a d i n g edge of the next blade to h i t any part of that f i s h ; the higher the p o s s i b i l i t y  t h e r e f o r e the longer the f i s h ,  of contact between the blade and the f i s h .  Von Raben(io) derived a formula f o r the p r e d i c t i o n of f i s h m u t i l a t i o n i n a p r o p e l l e r t u r b i n e as f o l l o w s : The time taken by the blade to take up the p o s i t i o n of the preceding blade T  _  r  £0  nN  i n which n = number of blades on the  runner  N = t u r b i n e speed i n rpm The a x i a l component  of the absolute v e l o c i t y V of the water  is V  4 Q  _  M  TT  1  (JI (D -  „2 d ) N  i n which Q = t u r b i n e discharge D = Diameter at the t i p of the blade d = hub  diameter  The l e n g t h of water s e c t i o n (w) f l o w i n g through the space between the runner blades during the time T W The p o s s i b i l i t y  =  T  r  V  is r  n  of contact (c) between f i s h and blade i s given by:  _  L_  _  Im  (D  13  - d ) . (n) . (N)  2  2  240 Q  W  in.which L = the length of the f i s h . Water f l o w i n g towards the l e a d i n g edge of the blades possesses a w h i r l component V^;  hence the flow i s at an  angle o<to the assumed d i r e c t i o n of C  = Im ( P - d ) n.N.COSc* 2  240  2  Q  i n which oc = the angle between the absolute v e l o c i t y and  (v)  the v e l o c i t y VJJ  The Impact V e l o c i t y Von Raben claims that the v e l o c i t y a t which f i s h s t r i k e the l e a d i n g edge of the blade must exceed a c r i t i c a l value before  d e c a p i t a t i o n of the body i s p o s s i b l e .  I f the  f i s h . i s . assumed to.move with the current i n the t u r b i n e , then it  w i l l move at the same v e l o c i t y as that of the water  r e l a t i v e t o the l e a d i n g edge of the blade, i . e . at a r e l a t i v e  14 Consider a v e l o c i t y v e c t o r diagram at a point A along the edge of the b l a d e .  The  V N  The  "  TT  a x i a l component of v e l o c i t y V  4 Q (D 2  n  leading  is  -d ) 2  C i r c u m f e r e n t i a l v e l o c i t y (u) of the point A on the  leading  edge of the, blade i s  60 i n which H = distance from the centre l i n e of the shaft to  A.  I f V j i s the w h i r l component of the v e l o c i t y of water approachi n g the l e a d i n g edge of the blade,  v  then  + u, N  i n which II  =  U - V  =  v e l o c i t y of water r e l a t i v e to the  leading  edge of the blade But  V  =  T  V  n  tan OC 2  v  .- V U  2  - 2U.V  . tan  +  ;  V  n  cos  The  oC  c i r c u m f e r e n t i a l v e l o c i t y U f o r p o i n t s on the l e a d i n g edge  of the blade v a r i e s from the minimum value of  to 60  at the periphery  of the b l a d e .  The  - ~ 60  impact v e l o c i t y a l s o v a r i e s  depending on the distance from the c e n t r e - l i n e of the runner to to  fish. Von  Baben claims t h a t f i s h d e c a p i t a t i o n r e s u l t i n g from  15  c o l l i s i o n with the blade of a p r o p e l l e r t u r b i n e occurs only i f the impact  v e l o c i t y between the f i s h and the blade exceeds a  c r i t i c a l value: the diameter the  that the p o s s i b i l i t y of contact depends upon  of the turbine runner and the hub, the number of  blades on the  r u n n e r , the  t u r b i n e , the l e n g t h of the  speed and the discharge of the  f i s h , and the d i r e c t i o n the  fish  i s moving r e l a t i v e to the l e a d i n g edge of the b l a d e . 1,5  C a v i t a t i o n i n a P r o p e l l e r Turbine When the  pressure  i t s vapour p r e s s u r e , the  in  the  moving water i s  reduced  water r u p t u r e s and vapour p o c k e t s  When the vapour pockets move i n t o a higher p r e s s u r e z o n e , collapse.  form. they  Because of the low c o m p r e s s i b i l i t y of water, the  c o l l a p s e of vapour pockets intensity.  to  sets up a very h i g h l o c a l i z e d  T h i s dynamic phenomenon i s c a l l e d  pressure  cavitation.  I n a p r o p e l l e r t u r b i n e , c a v i t a t i o n can occur at no l e s s than three l o c a t i o n s depending on the l o c a t i o n of the pressure r e d u c t i o n zone: (a)  Blade p r o f i l e  cavitation.  Because  of the  nature of  the  f l o w around the t u r b i n e blades, a low pressure zone e x i s t s one  side of the blade;  i f the maximum s u c t i o n reaches  vapour pressure of water, c a v i t a t i o n can (b)  Blade  the  occur.  clearance and blade t i p c a v i t a t i o n .  r e g i o n of the b l a d e s , leakage  on  In the t i p  of flow from the pressure side  i s always p o s s i b l e because the blade span i s f i n i t e . t h i s leakage, the w a l l of the runner  To reduce  c a s i n g i s b u i l t as c l o s e  to the t i p of the blades as p o s s i b l e . e x i s t s at the clearance zone .  A flow of high v e l o c i t y  Cavitation  may  occur at the  r e g i o n of the t i p of the b l a d e s . (c)  Hub or blade shoulder c a v i t a t i o n .  or an u n s a t i s f a c t o r i l y - d e s i g n e d  Houghness on the hub  j u n c t i o n between the blade and  the hub can cause vortex motion around the hub.  The low pressure  zone o c c u r r i n g at the centre of the vortex can r e s u l t i n a s t a t i o n ary, vapour pocket..  The collapse  of the c a v i t y at the  end of the vapour pocket r e s u l t s i n hub Cavitation  downstream  cavitation.  i n a t u r b i n e i s not a uniform process nor  does i t o c c u r a t any d e f i n i t e p r e s s u r e .  Water can r e s i s t a  c e r t a i n amount of t e n s i l e s t r e s s before i t s t a r t s to r u p t u r e . I f i t contains some d i s s o l v e d readily..  gases, the water w i l l rupture more  I t i s therefore possible  f o r water to rupture at  d i f f e r e n t p r e s s u r e s , depending on the s i z e and number of gas nuclei present.  Cavitation  inception  a i r or gas content of the water.  then depends on the t o t a l  At low a i r content, a pressure  below the vapour pressure of the water i s r e q u i r e d to t r i g g e r off  cavitation. The Thoma c r i t e r i o n r a t i o of c a v i t a t i o n , sigma ( a ) ,  has been used as an i n d i c a t i o n of c a v i t a t i o n .  Sigma i s expressed  by means of the formula:  i n which H^ i s the height of the barometric water column i n f t ;  17 H  s  i s the  elevation  i n f t at which the t u r b i n e i s placed above  the t a i l water l e v e l ; and the  H i s the  net  head i n f t under which  turbine, operates. For a t u r b i n e set at a moderate e l e v a t i o n above  l e v e l and  sea  f o r the usual temperature range, 80°F ±  a  =  34 -  =  32.8  =  1.2 f t of water  32.8  - H  and  s  H E f f e c t s of :  Cavitation Soon a f t e r c a v i t a t i o n takes place i n a t u r b i n e ,  e f f i c i e n c y decreases.  Noise and  v i b r a t i o n of the  the  turbine  increase. O b j e c t i o n a b l e noise due  to c a v i t a t i o n i s r e l a t e d  a f a i r l y w e l l developed stage of c a v i t a t i o n .  to  Advantage may  be  taken of the noise as a means of measurement of c a v i t a t i o n . Noise a n a l y s i s  has  c a v i t a t i o n and  to i n d i c a t e i t s development.  been used to obtain i n f o r m a t i o n on i n c i p i e n t  i n c r e a s e s sharply at the e f f o r t s to use  the  .  cavitation inception  The  noise  point.  level However,  o v e r a l l noise l e v e l as an i n d i c a t i o n of  the  degree of c a v i t a t i o n have f a i l e d because at c e r t a i n stages of c a v i t a t i o n , the noise l e v e l may Vibration c a v i t a t i o n and  may  even be  of the turbine may  reduced. r e s u l t from runner  cause load i n s t a b i l i t y i n the t u r b i n e .  tube surge i s considered to be the  r e s u l t of hub  hub Draft  cavitation.  1 8  C a v i t a t i o n damage i s due l a r g e l y to mechanical a c t i o n . The c o l l a p s e of vapour pockets sets up a h i g h pressure i n t e n s i t y s u f f i c i e n t t o cause l o c a l i z e d f a t i g u e f a i l u r e of the metal.  The  damage u s u a l l y takes the form of p i t t i n g on the runner blades and on the d r a f t tube w a l l . The E f f e c t of Compressed A i r on C a v i t a t i o n When compressed  a i r i s admitted i n t o a turbine  operating under c a v i t a t i n g c o n d i t i o n s , i t has been observed that the noise and v i b r a t i o n l e v e l s are reduced as w e l l as the extent of p i t t i n g of the runner blades and d r a f t tube w a l l . Compressed a i r , , when allowed t o mix with the water, the  compressibility  of the mixture enormously;  i n t e n s i t y set up by c a v i t a t i o n i s reduced.  increases  thus the pressure  1 9  CHAPTER  II  DETAILS OP TEST ARRANGEMENTS Turbine Test  2.1  The  hydraulic turbine  undergraduate i n . this, test overhead  programme.  sump l o c a t e d  turbine,  is  figs.  admitted  amount  control  to.the  equal;  gate i s  are  turbine is  then  the  draft The  the  also  i n the  draft  t a n k and  penstock  to  is  the  tube and back t o  suction is  pressure  scrollcase  i n the of  the  the  draft  tube  heads  The t o t a l  t u r b i n e and  suction i n  A downstream  draft  tube  p e n s t o c k and  dynamic head o f  sum o f t h e  penstock.  suction.  and t h e  i n the  turbine  operated  p e n s t o c k and t h e  penstock  velocity  equal.  turbine  steel  on B o u r d o n g a u g e s .  of t h e  e q u a l to. t h e  tube  overhead  runner through manually  u s e d t o v a r y the  therefore  pumped f r o m t h e  i n s t a l l e d upstream from the  e n t e r s the  indicated  diameter  the  diameter  used  system c o n s i s t i n g of an  Water i s  o f . f l o w and t h e  The p r e s s u r e  draft.tube  and  up i n t o  gate i s  turbine  tube a r e  The  a closed  is  the  10) .  penstock  gates..  the.draft  1 to  normally used f o r  Hydraulic Laboratory  t u r b i n e and t h e  control  from the  wicket  basement  t h r o u g h the  c o n t r o l the  Water  is  stand  a t u r b i n e and a sump.  i n the  The to  It  f l o w t h r o u g h a 14"  sump.. . (See  test  instruction in U.B.C.  tank,  allowed, to  Stand  penstock  are the  the  pressure  head  head.  a propeller type.  The 10"  diameter  20 runner,  mounted on a h o r i z o n t a l s h a f t ,  minimum b l a d e c l e a r a n c e  o f 1-1/4"•  t o a h y d r a u l i c dynamometer. lbs.  f t i s measured  meter.  The t u r b i n e i s  The t u r b i n e  out-put  torque i n  speed i n rpm i s o b t a i n e d f r o m t h e  meter r e a d i n g on t h e c o n t r o l by means  tacho-  p a n e l o f t h e dynamometer and c a n  o f two s m a l l v a l v e s  c o n t r o l l i n g the  amount o f w a t e r s u p p l i e d t o and d r a i n e d f r o m t h e The t u r b i n e  connected  on a w e i g h i n g beam s c a l e o f t h e dynamo-  The t u r b i n e  be a d j u s t e d  has 4 b l a d e s w i t h a  dynamometer.  speed c a n be s e t a t any d e s i r e d f i g u r e up t o  2800 r p m . The w a t e r l e a v i n g the r u n n e r f l o w s a l o n g a 15 f t straight  vertical  horizontal air 2.2  draft  section  t u b e and t h e n a l o n g a n o t h e r  of the d r a f t  tube  before  8 f t of  discharging i n  i n t o t h e sump. The F i s h  Injector  An a c r y l i c  p i p e , 2 2 " diameter,  fitted  with a  C f o l l o w e r g a t e i s u s e d as a f i s h i n t r o d u c t i o n d e v i c e . is  It  i n s t a l l e d i n a h o r i z o n t a l p o s i t i o n making a n a n g l e 45°  with the c e n t r e l i n e t o a 3" d i a m e t e r  of the p e n s t o c k .  steel  welded t o the p e n s t o c k injector  The i n j e c t o r  pipe w i t h a square wall.  flange,  F o r the d e t a i l s  is  bolted  which i s  of the  fish  see f i g . 1 1 . F i s h a r e p l a c e d i n the f i s h  2g"  ring-  rectangular  when i n p l a c e  opening f i t t e d  f o r m s a complete  chamber t h r o u g h a 5"  w i t h a removable pipe s e c t i o n .  cover  x  which  The p l u n g e r i s  21 fitted  w i t h an O - r i n g  fishr-tight. to  the  fig.  cover  ll)  chamber drains  A plastic  the  fitted  the  as  of the  that  of the  releasing  fish  point.  fish  in  chamber  the  chamber  n e c t i n g the  At the  through a valve valve in  on the  contact  period. penstock, injector  at  When t h e the  w i t h the  which presses  the  city  drain  l e a d i n g to to  injector  the city  point  and the  is  cover  at  as  penstock  This  to  chamber  is  top placed  is  carefully  during the  chamber  quickly opened.  the  equals  eliminated  opened t o a d m i t  p l u n g e r s l o w l y forward to  another fish  fish that  The v a l v e  the  chamber.  chamber and t h r o u g h  surface  con-  allow  the  done t o p r e v e n t  i n the  water i s  flow into  to  follows.  on the  opened t o  same  gate  The two-way v a l v e is  (see  the  the  f r o m the  coming  injection of  the  connecting city  force  is  the  One end of  releasing  the  injector  air-water  gate i s  attached  A known number o f f i s h i s  i n the  pressure  as  Copper d r a i n s  attached  the  of  top o f the  screw c a p .  tube  extending  closed  and the  the  with free  plunger.  l i d replaced.  a l l air  rod i s  used t o  end i s  chamber,  w a t e r i n the  well  through a l e a d i n g p i p e of the  first  and t h e  same t i m e  are  l e d to  removed.  penstock  high pressure  other  The a c t i o n  The g a t e i s of the  fish injector.  F i s h are penstock  brass  as  with a small a i r valve  a small p l a s t i c  w h i l e the  water supply p i p e .  size  s c r e w cap  end o f the  attached to  centre  water-tight a 24"  s p a c i n g behind the  t u r b i n e penstock  the  is  w i t h two-way v a l v e s  and t h e is  it  F o r manual o p e r a t i o n ,  plunger.  used to  so t h a t  water  fish  into  the  the  penstock.  of the  When t h e  p i p e , and f i s h  the  city  the  water i n the  forces  to  Visual moving s t r e a m at  the  point  point, the  chamber t o  is  complete  blades to  cavitation  pressure  The g a t e  1 ft  have  is  fast  window p r o v i d e d  fish  releasing  p r o v i d e d . , one of  cavitation  downstream f r o m  passed  at  through  the  the  zone.  Tube E x t e n s i o n tube  designed extension, walls  of w h i c h a r e  walls  lined  see the  existing  out  the  extended  square  made o f 3/4"  f i g . 13  wooden f l a n g e  is  a 14"  w i t h N o . 30  the  gauge to  18.  through a  section, thick  metal  strip.  extension  p r o t r u s i o n from i t s  x 3"  draft  extension.  o f the  the  specially t o p and  bottom  plywood and t h e  F o u r 3"  end of the  of the  construction  any s h a r p  of a p l a s t i c  windows a r e  they  allow  Gear  The d r a f t  welded.to  opened t o  introduced into a  one a b o u t  fish after  F i s h Recovery  extension,  of f i s h  penstock,  operation.  permit v i s u a l o b s e r v a t i o n  and a n o t h e r  observe  Draft  injector  Small p l a s t i c  r u n n e r space and t h e 2.3  the  length  penstock  i m m e d i a t e l y downstream f r o m t h e  turbine  full  original position.  p o s s i b l e by means  runner c a s i n g to  the  The d r a i n i s  e s c a p e w h i l e the  observation  (Fig.12).  of the  off.  p l u n g e r back t o i t s  closed  travelled  have been i n t r o d u c e d i n t o t h e  w a t e r s u p p l y . i s shut  the  finally  p l u n g e r has  two  For details  of  x  are  angles  tube and a r e  inside walls,  draft to  the  bolted  C a r e was e x e r c i s e d of the  side-  tube  prevent  to  throughto  avoid  fish  b e i n g damaged by t h e m .  The e x t e n s i o n  o f wooden beams and columns o f w a t e r a r o u n d the in  the  to  is  resist  s u p p o r t e d by a  series  f o r c e s i n d u c e d by t h e  9 0 ° bend and any v i b r a t i o n s e t  flow  up by the  flow  extension.  T h e Wooden T r a n s i t i o n B e c a u s e o f the  fluctuation  the  sump w a t e r l e v e l ,  direct  the  f l o w f r o m the  wooden t r a n s i t i o n  is  tube  the.water surface  extension  to  transition  is  draft  extension.  tube  a 14"  provided to  of  c r e a t e d by t h e joint  so  that  sheets are 3/4"  to  24" x 6".  section  A piece  j o i n i n g o f the the  transition  used t o  of  square  bridge  p l y w o o d and i t s It  is  of  of the  sump.  hinged to  gap  a c t s as a  about  gap.  the  flexible  hinge.  Rubber  The t r a n s i t i o n  gradually  suspended f r o m t h e  top  the  c a n v a s wrapped around the  inside  section  One end o f  the  can p i v o t  the  draft  end o f  two s e c t i o n s  the  a  is  changes f r o m 14"  c e i l i n g o f the  made square  sump.  The T r a p After the to  extension, skim the trap i s  the  water f l o w s  passed  f r o m the  an a d j u s t a b l e  pass the  on t o  wire,  the  tube  trap,  has  passed  a device  through  developed  The p r i n c i p a l f e a t u r e  i n c l i n e d s c r e e n t h r o u g h w h i c h most f i s h and a c o m p a r a t i v e l y  o v e r and i n t o end of t h e  a Monel s t a i n l e s s  diameter  draft  discharge.  l e a v i n g the  p o o l at  trap is  0.009"  f l o w f r o m the  is  of water to  collection this  it  fish  the  amount  the  a specially  trap.  steel  provided  The s c r e e n u s e d  no.  o c c u p y i n g 24$ of  small  14 c o n s t r u c t e d  the  area.  The  in of  screen  of of  24 is  p l a c e d on t o p  of a P e d l a r  s u p p o r t e d by a wooden.frame The frame  is  hung a t  s u s p e n d e d f r o m the  the  divided into  f i s h at  the  collection parts the  section  screen  sections.  fitted  are  slopes  . f i s h caught  of f o u r 5/8" diameter  compartment  journey  o f the  at  ('See  i n t o the  end of t h e i r  of f i s h  f r o m 2" x 4 "  is  timber. steel  rods  sump c e i l i n g .  three  c o l l e c t i o n box i s  N o . 10-12-60 which  constructed  ends  The c o l l e c t i o n is  grating  the  end o f t h e  f i g . 16).  central  trap i s  screened  a l l collected.  On the  s l i g h t l y toward  the  on t h e s e two s c r e e n s a r e  A special  p o r t i o n to  t h r o u g h the  trap  collect  turbine.  so t h a t  two  The  fish  or  side-sections,  central  portion.  p l a c e d i n the  Any  collection  box. A t r a i n i n g w a l l of the  screen  and the  escape of f i s h  into  collection the  plywood i s compartment  the  of a 3 / 4 "  screen.  It  is  thick regulating hung a t  the  the  adjusted  f l o w c a n be a d j u s t e d .  by c h a n g i n g the  by a d j u s t i n g the is the  suspended. top  side  slope  The c u r r e n t  screen  is  any  regulated  board i n s t a l l e d  By r a i s i n g o r  beneath  rods  fitted  lowering  The f l o w can be f u r t h e r  of t h e  p o s i t i o n o f the  o f the  prevent  end o f f o u r b r a s s  w i t h screw t h r e a d s and wing n u t s . board,  to  sump.  The f l o w o f w a t e r t h r o u g h the by means  p r o v i d e d around  rods  screen.  This  f r o m w h i c h the  c r e a t e d by t h e  is  the '  done screen  f l o w of w a t e r f r o m  r e g u l a t i n g b o a r d f l o w s upward t h r o u g h  the  side off  screen  o f the  the. s c r e e n .  c o l l e c t i o n compartment  The t r a n s i t i o n  and the  d e s i r e d p o s i t i o n by a d j u s t i n g the from which the  system i s  and keeps t h e  fish  t r a p can be s e t  l e n g t h o f the  i n any  various  rods  suspended.  The F i s h C o l l e c t i o n Box The f i s h  collection  w i t h an open t o p . a l l o w the plate  The top  to  fit  the  outside  transfer  f i s h f r o m the  fits  central  a manner t h a t screens  its  top  compressor  box t o  o f the  f o r the  injected  t h r o u g h an a i r  equal to  i n s t a l l e d as  ity  of the  the  w a t e r manometer,  the  nozzle pressure the  nozzle  from p u b l i s h e d  is  data.  the  screened  to  f i g . 27a) .  A brass  box i s  used  container.  The  compartment  elevation  to box in  o f the  such  side  portion.  turbine  precedes  the  diameter  nozzle to  the  nozzle.  a c r o s s the  d r o p , f r o m w h i c h the u s i n g the  air  A nozzle,  dimensions,  A straight  the  flow at  calculated  drawn f r o m a n  standard  one-half  connected  is  one i n c h i n d i a m e t e r .  an a i r m e t e r .  approaching a i r  of t h e  collection  the A . ' S . M . E .  diameter  (see  other  central  duct  an i n s i d e diameter  l o n g and 1.06"  the  i n t o the  to  across  walls i s  box  S u p p l y o f Compressed A i r  machined a c c o r d i n g  is  corner  comes up t o  on b o t h s i d e s  Air  pipe,  of i t s  p o r t i o n of the  Arrangements  2.4  half  a 12" x 9" x 6" b r a s s  e x c e s s w a t e r to f l o w t h r o u g h  bent  the  box i s  with  of the  air  brass pipe  ensure u n i f o r m The r e a d i n g  nozzle, is  taken  mass f l o w of  air  flow  4'  coefficient  of as  26 The flow of a i r depends on the a b s o l u t e temperature, the d e n s i t y of the a i r and the pressure drop across the n o z z l e . The a i r temperature used i n the c a l c u l a t i o n s i s based on  50°F,  the mean temperature of the a i r outside the laboratory where the a i r supply of. the compressor was  drawn.  The range of the  a i r temperature.during the experimental p e r i o d was 40°F to 65°F.  V a r i a t i o n s of the a i r temperature up to 25°F w i l l change  the mass d e n s i t y o f . a i r by l e s s than 5$. A pressure gauge i s i n s t a l l e d about 1 f t downstream from the nozzle to i n d i c a t e the a i r p r e s s u r e . The r e a d i n g can be taken as s u f f i c i e n t l y accurate t o represent the pressure of the a i r upstream from the nozzle because the pressure drop across the. nozzle i s very s m a l l . Because the nozzle was  designed f o r a higher a n t i c i -  pated a i r flow, the manometer readings were u s u a l l y s m a l l .  The  quantity of a i r as c a l c u l a t e d , . w h i l e not p r e c i s e , i s s u f f i c i e n t l y accurate f o r purposes of comparison. Prom the n o z z l e , f o u r p l a s t i c tubes convey the a i r to two i n j e c t i o n p o i n t s - i n the penstock upstream from the turbine and i n the d r a f t tube immediately downstream from the b l a d e s . Pour holes d r i l l e d at equal d i s t a n c e s from each other i n the penstock and i n the d r a f t tube ensures that a i r i s u n i f o r m l y mixed with the water.  A i r valves are i n s t a l l e d at each i n j e c t i o n  point to c o n t r o l the quantity of a i r going i n t o the t u r b i n e at each e n t r y .  A i r pressure i n the a i r compressor tank i s kept above 96 p s i . By using a pressure r e g u l a t o r i n the a i r supply system, the a i r . p r e s s u r e i s regulated down to any d e s i r a b l e v a l u e . f l u c t u a t i o n of a i r pressure during the e n t i r e period was  Wo  experimental  observed. For one s e r i e s of t e s t s , a 3" diameter s t e e l pipe with  v a l v e i s i n s t a l l e d as a vent i n the d r a f t tube of the t u r b i n e 1 ft. downstream from the blades (see f i g . 4 ) . i s sucked i n t o the d r a f t tube. was  not measured.  Atmospheric a i r  Flow of a i r used i n these  tests  2°  FIG.  Not  3  to  PROPELLER  scale  TURBINE  AND  DYNAMOMETER  FIG.  5 LARGE AIR VENT IN THE DRAFT  TUBE  31  32  FIG.  7  DRAFT TUBE IMMEDIATELY DOWNSTREAM OF THE RUNNER  F I G . 9 FISH INJECTION POINT BELOW THE CONTROL GATE  FIG.10 FISH INJECTION POINT ABOVE THE DOWNSTREAM CONTROL GATE  35  FIG.11  THE FISH INJECTOR  a.  Bing-C F o l l o w e r Gate  b.  Pressure e q u a l i s i n g connection  c.  F i s h chamber l i d w i t h pressure gauge and a i r escaping v a l v e  d.  Plunger and rod  e.  Screw cap and a i r escaping valve  f.  C i t y water entrance  g.  P i s h chamber drainage system.  i  SUMP WALL  14"  DRAFT  TUBE  EXTENSION  4-6  1  ro. i  ro FLEXIBLE FISH  FIG  Scale  13  PLAN  TRANSITION  TRAP  OF  T H E ARRANGEMENT  2 •  JOINT.  ft.  FOR  FISH  RECOVERY  SUMP  X  CEILING  Dia. S T E E L  J-  RODS  FLOW  FIG.  I 4  SIDE  VIEW  OF  THE  ARRANGEMENT  Dio.  STEEL  CONTROL  FOR  RODS  BOARD  FISH  RECOVERY  FIG.15 Draft  tube  Transition  F I S H RECOVERY GEARS extension  c.  Trap  d.  Flow c o n t r o l  board  40  FIG .16  TOP VIEW OF THE TRAP  43  Holes to fit bolts  AIR FROM  INJECTION THE  POINTS  BLADES  of  the  wicket  IMMEDIATELY  gates  DOWNSTREAM  FIG.20a  ARRANGEMENT OF AIR SUPPLY SYSTEM  FIG .20b  LOCATIONS OF INJECTION INTO THE PENSTOCK  OF AIR  45 CHAPTER TEST 3.1  Test  Survival  Pink  the  were  used  fish  in a  of  the  one  survival test  kept  providing  temperature  about  throughout  c o u l d , be  mortality,  Test  salmon f r y  laboratory  these  PROCEDURE  Specimens  Laboratory  B.C.,  III  the  water  to  period  alive  that  month o l d from H a r r i s o n L a k e , determine of  i n the  they  were  in their  the  testing.  It  laboratory  fed  tank  kept  was  in  found  that  with negligible  regularly was  mortality  and  at  that  the  approximately  47°F. Fish  Used f o r For  specimens U.B.C. seven ly  They weeks  specimens Fish  the  at  start  were  not  at  of fed  Chum f r y  a  the test  time  were  of the for  of  fish 13  lg" the  at  of  600  University  and  tests.  Test  speed  the  long  Speed F i s h test  were  rpm,  from f o u r  Fish  were  Mortality  Test  the  Hatchery,  fed  to  regular-  of  the  testing the  lg"  a  turbine  long  test.  period  same  days.)  at  speed  of  1800  rpm,  from Robertson Creek, Vancouver  approximatley  the  turbine  hatched  Coho f r y  time  a  Mortality  period.  mortality  the  at  approximately  High Turbine  were  old  size  were  used  months  and  test  mortality  o l d at  For  the  a  were  Used f o r  B.C.  Speed P i s h  used  throughout  Fish  Low T u r b i n e  and  were  f r o m one  The f e e d i n g of i n an  throughout  effort the  to  fish keep  testing  to was the  period.  the  Island, two stopped length (Fish  3.2  Test Procedure The procedure generally followed i n making a t e s t i s  described i n the f o l l o w i n g paragraphs.  The r e s u l t s are tabulated  i n the Appendix I I I and the general d i s c u s s i o n of the r e s u l t s i s made i n Chapter I V . Turbine F i s h M o r t a l i t y Test The overhead tank was f i r s t started.  f i l l e d up and the t u r b i n e  The t u r b i n e operating c o n d i t i o n s were set at a p r e -  determined v a l u e .  The penstock and d r a f t tube pressure was  justed so that the t o t a l e f f e c t i v e head of the t u r b i n e was of water.  ad50 f t  The d r a f t tube s u c t i o n was set at a s p e c i f i e d v a l u e .  Pressure c o n t r o l was achieved by manipulating the upstream and downstream c o n t r o l g a t e s .  The rpm of the turbine was kept con-  stant at a d e s i r a b l e value by manipulating two c o n t r o l v a l v e s of the dynamometer.  The f i s h trap was then arranged so that the  optimum amount of water flowed i n t o the c o l l e c t i o n compartment at the  the end of the t r a p .  The f i s h c o l l e c t i o n box was placed i n  c e n t r a l p o r t i o n of the c o l l e c t i o n compartment.  Packing  compound was used to s e a l o f f a l l cracks and openings around the rim of  of the box so that f i s h did not escape from the box.  Reading  the turbine d i s c h a r g e , penstock p r e s s u r e , out-put t o r q u e , rpm  and d r a f t tube s u c t i o n were r e c o r d e d . F i s h , 80 i n number, which had been p r e v i o u s l y counted and kept i n a holding tank, were t r a n s f e r r e d to the f i s h  injector  F i s h were placed i n the i n j e c t o r chamber and the l i d r e p l a c e d .  47 By using the e q u a l i z i n g v a l v e , the pressure i n the f i s h chamber increased to the same value as that i n the penstock.  The  e q u a l i z i n g process took 10 t o 30 seconds to complete; a l l a i r i n s i d e the f i s h chamber was  was  pressure  simultaneously  c a r e f u l l y removed to ensure that  no f i s h came i n contact with f r e e a i r during the process of p r e s s u r ization.  The i n j e c t o r gate was  q u i c k l y opened so that the  city  water pressure slowly pushed the plunger forward, f o r c i n g the i n t o the penstock. of  When the plunger had t r a v e l l e d the whole l e n g t h  the l e a d i n g pipe and a l l f i s h were i n the penstock, the c i t y water  v a l v e was to  shut o f f .  The penstock pressure then returned the plunger  i t s original position.  the i n j e c t o r  The i n j e c t o r gate was  c l o s e d to complete  cycle.  A time of 60 seconds was  allowed to elapse from the  moment the plunger had f o r c e d a l l f i s h i n t o the penstock time they were removed from the t r a p . at  fish  the t r a p to place any f i s h caught  to the  An a s s i s t a n t was s t a t i o n e d  on the side screens i n the  f i s h c o l l e c t i o n box and then to remove the c o l l e c t i o n box from the trap.  The  contents of the box were poured  i n t o a b a s i n where the  l i v e f i s h were separated from the dead and placed i n a nylon n e t . A f t e r counting the number of immediate s u r v i v o r s , the a s s i s t a n t t r a n s f e r r e d f i s h back to the h o l d i n g tank f o r a delayed m o r t a l i t y observation.  At no time during/the t e s t were l i v e f i s h  to be out of water.  Dead f i s h from the t e s t were counted and  d e c a p i t a t e d parts matched as f a r as p o s s i b l e t o form bodies.  allowed  I n the case of m i s s i n g f i s h , the turbine was  complete stopped  the  48  and the whole system drained to see i f they could be recovered. A l l dead f i s h were examined by a biologist to determine and record the types of apparent injuries and to measure the length of those that were measurable.. The delayed mortality was recorded and f i s h bodies examined each day.  At the end of a three day holding period,  a l l surviving f i s h were anaesthetized and t h e i r length measured. To eliminate the p o s s i b i l i t y of f i s h getting a temperature shock when introduced into a warmer water, the water i n the sump was drained each evening prior to the testing day and fresh cold city water taken i n so that the temperature of water i n the system was close to that i n the f i s h holding tank.  The temperature of  the water i n the holding tank was kept at about 47°F• In tests i n which compressed a i r was injected into the turbine, the a i r was admitted before the f i s h were introduced into the penstock and before the readings of a i r meter and a i r pressure were recorded.  The only deviation from this procedure occurred  when atmospheric a i r was introduced through a vent i n the turbine draft, tube.  Although no a i r meter was i n s t a l l e d to measure the  a i r flow through the vent, i t was observed that the draft tube suction gauge reading decreased d i r e c t l y with the valve opening; wherefore the reading on the draft tube suction gauge was used as an indication of the amount of a i r being admitted into the turbine draft tube. Test series to investigate the f i s h mortality with and without the admission of a i r were carried out at turbine speeds  49 of  600 rpm and 1800 rpm.  the. a d m i s s i o n 3 .3  T e s t s on t u r b i n e f i s h m o r t a l i t y  o f a i r were c a r r i e d  o u t a t 300, 900 and 1200 rpm.  P i s h M o r t a l i t y T e s t w i t h t h e T u r b i n e Runner Removed The t u r b i n e r u n n e r  gate  was f i r s t  removed and t h e d r a f t  s e t a t a wide open p o s i t i o n so a s not t o i n t e r f e r e  passage o f f i s h i n the d r a f t partially  opened so t h a t  the d i s c h a r g e n o r m a l l y  tube.  was t h e same as t h a t  The u p s t r e a m c o n t r o l  the degree  3.4  The p r o c e d u r e  followed  with the t u r b i n e  Test f o r P i s h M o r t a l i t y o r d e r t o check  at approximately  the m o r t a l i t y  Tube of f i s h i n the d r a f t  o f t h e downstream c o n t r o l g a t e  w i t h t h e passage of f i s h  i n the d r a f t  and  one downstream f r o m  the c o n t r o l  t u b e , two f i s h  gate  the procedure  introduction  of f i s h  g a t e was t h r o u g h was f o l l o w e d .  (fig.9). into  (fig.io)  At the opening  the d r a f t  f o l l o w e d was t h e same a s i n 3.2.  i n t o the opening  interfering  injection  t u b e , one u p s t r e a m  above t h e c o n t r o l g a t e , f i s h were p o u r e d otherwise  t h e same  runner.  i n the D r a f t  are provided f o r i n the d r a f t  The t e s t  was t o keep  t u b e and t h e p o s s i b i l i t y  points  thereafter  equal t o that i n  The r e a s o n f o r d o i n g t h i s  o f t u r b u l e n c e i n the system  In  was  equal to  described i n the preceding s e c t i o n .  series.  l e v e l as i n the t e s t  gate  o b t a i n e d i n t h e t e s t s a t t u r b i n e speed o f  was t h e n r e p e a t e d f o r a d i s c h a r g e a p p r o x i m a t e l y 1800 rpm t e s t  tube  with the  t h e d i s c h a r g e was a p p r o x i m a t e l y  600 rpm a s p r e v i o u s l y d e s c r i b e d .  the  without  downstream f r o m  t h e i n j e c t o r and t h e same p r o c e d u r e  tube, The  the c o n t r o l a s i n 3.2  50 3.5  P r e l i m i n a r y T e s t t o Observe Extent Five  carried  preliminary turbine f i s h mortality  t e s t s were  The r e s u l t s a r e t a b u l a t e d i n T a b l e V I I I and i n  Table X (P-series) . the f u n c t i o n i n g  The p r i m a r y  object of the t e s t  of the equipment.  delayed m o r t a l i t y  I t was o b s e r v e d  was t o c h e c k t h a t the  o c c u r r e d w i t h i n two days a f t e r t h e t e s t .  of o b s e r v a t i o n f o r the delayed m o r t a l i t y f o r the  t e s t s was l i m i t e d 3.6  Mortality  out u s i n g t h e same p i n k f r y m e n t i o n e d i n 3*1 a s t e s t  speciments.  period  of Delayed  to three  F i s h M o r t a l i t y Rate a t the Trap the water i n t h e t r a p  o p e r a t i n g u n d e r t h e same c o n d i t i o n a s i n t h e t u r b i n e f i s h ity  test  and h e l d f o r one m i n u t e , no immediate m o r t a l i t y  observed. mortality  The d e l a y e d m o r t a l i t y was l e s s rate  Biological  fish  of f i s h a t the t r a p alone  Examination  The  results  are presented  injury  was b a s e d  each  o f Dead  i n Table IV.  on t h o s e u s e d  set of tests  cause  The injury  total  negligible.  examinations  by t h e U.S.Army C o r p s  under i d e n t i c a l  examined.  was  was  hence t h e  The c l a s s i f i c a t i o n  o f a l l dead of types of of Engineers.  turbine operating conditions,  of the apparent  d e a t h a r e summed and e x p r e s s e d  dead f i s h  t h a n 2$;  mortal-  Fish  of the b i o l o g i c a l  t h e number o f o c c u r r e n c e s  of  subsequent  days.  When f i s h were dumped i n t o  In  The  type  of i n j u r y  as a percentage  l i k e l y to  o f t h e number  The r e s u l t s a p p e a r i n T a b l e I I .  percentage  of occurrence  of every type o f  i n T a b l e I I e x c e e d s 100$ b e c a u s e more t h a n one i n j u r y i s  51 o f t e n found  i n one  dead.fish.  headed " D e c a p i t a t i o n and represent  the  "decapitated types  of i n j u r y .  3.7  rpm  admitted  t u r b i n e was  into  reset  the d r a f t  The  wicket  entire  gate  programme  setting  case  number o f  of the fish  this  gate  tube  Performance  f t h y d r a u l i c head and  set at p o s i t i o n  immediately  No.  maintained draft  6.  The  draft  The  tube  suction.  was  repeated.  then a l t e r e d  t o No.  blades. was  suction  the  tests  The  f o r t h e machine speeds o f 1200  was  the  test  tube  a t 50 f t ;  operated  Air  downstream f r o m  a i r m e t e r r e a d i n g were r e c o r d e d .  repeated  injury"  i n j u r y " , dead  o f A i r on t h e T u r b i n e  f o r s i x v a l u e s of the was  I n the  apparent  hence the  s e t a t 50  t h e t o t a l head was  procedure  apparent  columns  i s made t o i d e n t i f y  u s i n g v a r i o u s amounts o f a i r .  but  repeated  o f "non  i n the  column o n l y .  w i t h the wicket  A i r p r e s s u r e and repeated  case  o f the A d m i s s i o n  The at. 600  f u r t h e r attempt  i n one  "non  of o c c u r r e n c e s .  s i g n of i n j u r y ;  appears  Effect  no  I n the  showed no v i s i b l e occurrence  L a c e r a t i o n " and  true percentage fish",  Figures appearing  was  were  whole  and  1800  9 p o s i t i o n and  rpm. the  FIG.21a  FIG.21b  F I S H HOLDING TANKS  COUNTING OF F I S H  PIS.22  FIG.23  TRANSFERRING OP P I S E TO BASIN COMPLETED  GETTING RID OF EXCESS WATER  F I G 24a  FIG.24b  THE INJECTOR AND EXTENSION  FISH BEING POURED INTO THE INJECTOR  55  g i g 24d  FISH BEING INTRODUCED INTO THE PENSTOCK  FIG.  25  FIG.  FISH  26  IK THE PENSTOCK  FISH  TRAP  FIG. 27a  REMOVAL OF F I S H COLLECTION FROM THE TRAP  BOX  FIG.27c  FIG.  27d  TEST FISH READY FOR SEPARATION  SEPARATION OF L I V E FISH FROM DEAD F I S H  59  PIG.  28  PISH LENGTH MEASUREMENT  60 CHAPTER IV DISCUSSION OP EXPERIMENTAL RESULTS 4.1  E f f e c t of Turbine Operating Conditions E f f e c t of Turbine Speed on M o r t a l i t y  on P i s h M o r t a l i t y Rate  As i n d i c a t e d i n f i g . 29 and Table I , the m o r t a l i t y rate of f i s h passing through the turbine operating under approximately the  same head and  sigma and v a r i a b l e speed are as f o l l o w s :  Speed rpm  Efficiency %  Sigma  Head ft  M o r t a l i t y Rate %_  600  52  0.41  45.4  40  1200  81  0.39  50.5  42  1800  86  0.39  50  34  Although i t appears that an increase i n m o r t a l i t y r a t e accompanies the r e d u c t i o n i n t u r b i n e speed, the r e s u l t s are inconclusive. these tests'.  The  turbine speed i s not the only v a r i a b l e i n  At 1800  rpm,  the e f f i c i e n c y of the turbine i s almost  at the maximum p o s s i b l e f o r the 50 f t head ( f i g . 2 9 ) . At speed, the e f f i c i e n c y i s l e s s than 86$.  Previous  lower  research  i n d i c a t e s that higher m o r t a l i t y rate i s a s s o c i a t e d with efficiency.  low  I t i s then p o s s i b l e f o r the m o r t a l i t y rate of  passing through the turbine operating at lower speed and e f f i c i e n c y to be higher than that at higher  speed and  (3,9)  fish  lower  higher  sigma. Two  s i g n i f i c a n t r e s u l t s of the t e s t s are that  d e c a p i t a t i o n of f i s h occurs at a turbine  speed of 600  (2) d e c a p i t a t i o n increases p r o g r e s s i v e l y as the speed  ( l ) no  rpm  or l e s s ,  increases.  I f i t i s assumed that f i s h t r a v e l at the same v e l o c i t y  as that of the water, then the impact v e l o c i t y of f i s h a t the l e a d i n g edge of the blades i s the. same as the v e l o c i t y , of water r e l a t i v e to the l e a d i n g edge of the b l a d e s .  The r e l a t i v e  v e l o c i t i e s corresponding t o various t u r b i n e speeds are as f o l l o w s :  V e l o c i t y of Water R e l a t i v e to the Leading Edge of Blades ft/sec  Speed rpm  The  Decapitation  %  At the Hub  At the periphery  600  19  29  0  900  26.5  41.5  3.6  1200  36  54.5  9.1  1800  51  80  14.3  t e s t s show that i f by chance f i s h c o l l i d e with a blade, de-  c a p i t a t i o n does not occur i f the v e l o c i t y r e l a t i v e to the blade i s l e s s than 29 f t / s e c . and  The c r i t i c a l impact v e l o c i t y between f i s h  the l e a d i n g edge of the blades r e s u l t i n g i n d e c a p i t a t i o n of  the f i s h appears t o be between 29 f t / s e c and 41.5 f t / s e c . f i s h obviously  t r a v e l through the runner spaces without  with the turbine  colliding  blades.  As i n d i c a t e d i n f i g . 30, the percent creases  Some  decapitation i n -  p r o p o r t i o n a l l y with the t u r b i n e speed-discharge r a t i o . I n  Von Raben's formula(10) , f o r f i s h of the same l e n g t h , the p o s s i bility  of contact  between f i s h and the blades i s a l s o p r o p o r t i o n a l  t o the turbine speed-discharge r a t i o .  Von Raben admits that the  calculated fish  p o s s i b i l i t y of contact  d e c a p i t a t i o n and s u g g e s t s t h a t  the  calculated  For  the  Effect  value  results  to  bring i t  i n these t e s t s ,  shows t h a t  at  a turbine  the. m o r t a l i t y  4 0 $ when sigma i s  rate  a factor  closer K is  In tests of 86$,  the  results  is  at  mortality  sigma i s  the  control  low s i g m a ,  at  the  this  observed  to  results.  0.15.  to  to  be due t o  gate i s  higher sigma,  it  w i t h the  left  is  0.39.  partially  E f f e c t of the T u r b i n e B l a d e s of F i s h were i n j e c t e d  findings  f r o m 38$  efficiency  to  34$  An i n c o n s i s t e n c y  of f i s h  opened  i n the  shown on the  into  the  of  of the  draft  draft  tube.  opened.  Fish  the  whereas could  gate.  penstock  occurred.  i n Table II  following  the  when  on t h e M e c h a n i c a l I n j u r i e s  e x a m i n a t i o n o f a l l dead f i s h a p p e a r s  injuries  rpm and  interference  some m o r t a l i t y  I t . c a n be s e e n t h a t  From t h e  to  expected.  only p a r t i a l l y  4 .2  of which are  f r o m 34$  i n a wide open p o s i t i o n ,  i n contact  t u r b i n e runner removed,  is  reduces  the  come  When f i s h  0.41.  s p e e d o f 1800  gate w i t h the passage the  to  of f i s h  rpm, Table VIII  increases  result  a turbine rate  of 600  of f i s h  r e d u c e d f r o m 0.59  thought  At  parts  to  observed  K be a p p l i e d  approximately  speed  reduced from 0.65  of previous r e s e a r c h ( 3 , 9 )  tube  h i g h e r than the  o f O p e r a t i n g Sigma on F i s h M o r t a l i t y In tests  the  is  majority  with  the  The b i o l o g i c a l and T a b l e I V ,  page. of the  s u f f e r e d by f i s h p a s s i n g t h r o u g h the  mechanical  turbine  occurs  as  a r e s u l t of c o l l i s i o n with turbine b l a d e s .  P i s h c o l l i d i n g with  other s o l i d objects such as the wicket gates r e c e i v e n e g l i g i b l e mechanical  injuries.  Cases of Mechanical I n j u r i e s . Number of fish Injected'  Number of dead Pish Examined  Test  4.4  160  11  1  1  0  2  6.0  160  43  3  2  0  3  5.95  479  170  35  24  71  16  Q  cfs  Conditions  1.  Abrasion e  Contusion  V e n t r a l Decapi- Damage tation to c Rupture Liver Lacerac tion Viscera  Runner removed  2 . Runner removed 3 . Runner i n place  . 4.3  . .  .  '.  ..'  '  E f f e c t o f A d d i n g A i r i n t o t h e T u r b i n e on t h e P i s h M o r t a l i t y A i r Added i n t h e D r a f t , T u b e I m m e d i a t e l y Downstream f r o m the B l a d e s The m o r t a l i t y  w i t h and w i t h o u t iately IX.  the  rate  to  of f i s h  p a s s i n g through the  a d m i s s i o n of a i r  downstream f r o m the  In order  parts  i n t o the  blades appears  illustrate  the  effect  N  •  H  Sigma  draft  turbine  tube immed-  i n T a b l e V I I I and T a b l e  of a i r  o f t h e T a b l e V I I I and T a b l e I X a r e  Test  on f i s h  mortality,  reproduced below. Mortality  Rate  Without air  With air  . lb/min  Series No.  rpm  ft  1  600  45.4  0.64  0.22  34  27  2  600  45.4  0.41  0.22  40  28  3  1800  50  0.59  0.16  38  36  4  1800  50  0.39  0.16  34  30  5  1800  50  0.39  0.32  ' 34  40  Prom t h e all  ,64,  results  speeds  it  i.e.,  air  to  the  the  series  when the  turbine are No.5 are of a i r  from t h i s  because  they  delayed  mortality.  concluded t h a t ,  is  beneficial.  cavitation  increases,  progressively  an e x c e p t i o n .  increases  results  the  particular  added t o  the  i n general,  It  benefits  appears  Test that  fish.mortality rate.  series  are  however  results a  of  of a d d i n g in  large Test  inconclusive  number o f  i n discussion i n 4.5, a large  t u r b i n e at  at  At lower v a l u e s  greater.  c o n t a i n a wide v a r i a t i o n i n t h e  As p o i n t e d out of a i r  is  a d m i s s i o n of a i r  sigma,  quantity  above,  low sigma can s e r i o u s l y  the  quantity effect  the  turbine performance.  future the  to  ascertain  f i s h mortality  A i r Added i n the  the  effect  3"  Penstock  added i n t h e  diameter, s t e e l  appear  s h o u l d be c o n d u c t e d  of a l a r g e  quantity  in  of a i r  the  on  rate.  The m o r t a l i t y with a i r  More t e s t s  and T h r o u g h t h e  rate  of f i s h p a s s i n g t h r o u g h the  penstock  vent,  are  D r a f t Tube V e n t  and i n t h e  draft  given i n Table IX,  turbine  tube t h r o u g h a parts  of which  below.  Test Series  A i r Data  1  No a i r  2  Air  in  3  Air  t h r o u g h vent  penstock  H ft  Sigma  E f f i c i e n c y M o r t a l i t y Rate % %  50  0.39  86  34  50  0.39  85  39  44  0.6 5  75  34  The o p e r a t i n g  conditions during a l l three  test  I n the  N o . l , no a i r  In  series  No . 2 ,  air  was added  change  i n the  operating  condition  the  tube  series  i n t o the  penstock;  occurred.  In series  t h r o u g h the o f Hg t o to  the  hence  vent,  4 inches  recorded Test  and  3 were  this  time,  a slight  N o . 3 , when a i r  the  draft  of Hg;  values. results  tube  hence  was added t o  the  sigma and t h e  were i n c o n c l u s i v e because  10  fish  not  to  13  were  draft  identical.  s u c t i o n was r e d u c e d f r o m 11.5  The speed i n a l l t h r e e  conducted were  was a d d e d .  series  days a f t e r  f e d and m i g h t  test  efficiency  inches changes  s e t s was 1800 the  series  have been i n a  test 1.  rpm.  series During  weakened  2  66 condition  •  at. the time of t e s t i n g . B i o l o g i c a l records show that a d d i t i o n of a i r i n t o the  .  1  penstock had some b e n e f i t s . ' The percentage of dead f i s h that had d e c a p i t a t e d bodies decreased from 42$ i n t e s t s i n which no a i r was added to 23$ i n t e s t s i n which a i r was added i n t o the penstock.  (Table I I ) . B i o l o g i c a l records a l s o  show that a d d i t i o n  the d r a f t tube through the vent was b e n e f i c i a l . collapsed  of a i r i n t o  The cases of  a i r bladders i n dead f i s h were reduced from 38$ i n  t e s t s i n which a i r was not added to 17$ i n t e s t s i n which a i r was added.  The r e d u c t i o n i n the cases of c o l l a p s e d  was a t t r i b u t e d 4.4  to the r e d u c t i o n of the d r a f t tube  a i r bladders suction.  E f f e c t of P a r t i a l Vacuum on P i s h When f i s h were i n j e c t e d i n t o the penstock with the  turbine runner removed, some m o r t a l i t y examination record of dead f i s h appears part  Q cfs  occurred.  The b i o l o g i c a l  i n Table I I and Table IV,  of which i s as f o l l o w s :  Hs in.Hg  Number of  Number  fish  of dead  injected  fish  I n j u r i e s due to Exposure to p a r t i a l Vacuum Eye Damage  Collapsed a i r Bladder  4.4  5  160  11  1  7  6  8  160  4'3  3  40  67 The m a j o r i t y is  of  considered  dead f i s h  to  be caused  number of c a s e s  of  increase  degree  i n the  s u f f e r e d from c o l l a p s e d a i r by e x p o s u r e  collapsed a i r  o f dead f i s h f r o m t h e With the  bladders  of p a r t i a l same t e s t s  turbine  are  downstream g a t e was l e f t  did  not  interfere  w i t h the  was m a i n t a i n e d a t losses  due t o  sufficient draft  to  the  of  injury  i n 4.2. o f the  energy  gate alone  f r i c t i o n and t u r b u l e n c e induce a p a r t i a l  i n the  vacuum i n the  the  because  The p e n s t o c k  atmospheric  of  it  pressure  pressure.  Hydraulic  scrollcase  were  top  part  of  the  draft  tube  at  the  tube.  The m o r t a l i t y  rate  examination  biological p r e t e the  were i n j e c t e d  Effect  is  of the  not  operating  relationship  mortality  i n Table V .  between  occurred.  record  of  Unfortunately  therefore  an attempt  biolog-  the to  inter-  possible.  A d d i t i o n of A i r on t h e T u r b i n e  downstream f r o m t h e is  the  downstream g a t e ,  was i n c o m p l e t e ;  be r e d u c e d when a i r  turbine  into  g i v e n i n T a b l e V I I and t h e  o f dead f i s h  record result  is  The l e v e l o f the to  control  passage of f i s h .  o p e n i n g s above and below the  4 «5  discussed  The  i n a wide open p o s i t i o n so t h a t  s l i g h t l y above  When f i s h  ical  Other types  r e m o v e d , most  w a t e r was e x t r a c t e d by t h e u p s t r e a m  vacuum.  increases with  vacuum.  runner  the  to p a r t i a l  bladder which  is  turbine admitted  blades.  This  under severe the  turbine  noise into is  Performance  and v i b r a t i o n i s the  draft  especially  cavitating  tube  immediately  noticeable  conditions.  power o u t p u t ,  observed  efficiency,  when The dis-  the  68 c h a r g e and t h e figures  air  show t h a t  admitted i n t o the few i n s t a n c e s  the  draft  the  draft.tube.  power o u t p u t  tube a t  high draft  does  not  draft in  tube a t  draft  air  than  2%.  of a i r admitted  suction,  i.e.,  at  low s i g m a , As t h e  amount  decreased  and the' d i s c h a r g e  is  also  3% o f the  period  i n c r e a s e d but t h e  normally encountered condition.  certain  decrease i n t u r b i n e  l e v e l i n the t u r b i n e d u r i n g the  that  up t o  1,  The i n t e r p r e t a t i o n  are  b a s e d . o n the  7% can be o f the  i n the  Figs.  31a  discharge  carried  o f the  turbine  and 31b  show  i s added t o  the  6% and  expected,  results  out i s  preceding discussions  mortality  thought  to  the  is  rate  of f i s h .  be t o o few f o r a  of s t a t i s t i c s ;  results  S t a t e d v a l u e o f a i r volume i s atmospheric p r e s s u r e .  i n the  of the  a p p l i c a t i o n o f the t h e o r y o f the  noise  Tests  average value  analysis  into  turbine out-put  Some S h o r t c o m i n g s  x  less  effi-  beyond a  4.6  statistical  i n a very  low s i g m a , a r e d u c t i o n i n e f f i c i e n c y up t o  number of t e s t s  is  increases  e q u i v a l e n t to  power o u t - p u t  factory  added, i s  turbine performance.  phenomenon t a k e s p l a c e  when a i r  The  tube  The n o i s e  resemble  r e d u c e d when a i r  quantity  tube  on the  o p e r a t i n g under c a v i t a t i n g that  is  a b r u p t l y , r e s u l t i n g i n a large  efficiency. that this  the  32c.  of the t u r b i n e , i n which an  shows t h a t t h e  value,  to  The r e d u c t i o n o f b o t h t h e  Fig.32b  effects  is  31a  The e f f i c i e n c y , except  discharge  o f ' a i r a d m i t t e d i n t o the  increases  shown i n F i g s .  reduced.  1% o f the  has i m p o r t a n t  critical  is  turbine out-put  is also  c i e n c y and t h e volume up t o  discharge  therefore  given.  e q u i v a l e n t volume  at  The  satisno  2.  The time t h a t  draft  tube  i n the  installation. 6  cfs.  about tube the  f i s h are present  exposed t o set  up i s  The a v e r a g e d i s c h a r g e  The a v e r a g e c r o s s - s e c t i o n a l 1 sq. ft;  i s about  therefore  6 ft/sec*  extension i s  about  the  longer than i n a tests  was  a r e a o f the  draft  tube  the v e l o c i t y  result  to  The l e n g t h o f t h e 35 f t .  severe  in mortality.  partial 3.  of f i s h  vacuum i s  D u r i n g the  P i s h are  estimated  first.three  r i m of the f i s h  seal  at  cracks  c o l l e c t i o n box. box.  on t h e s e  D u r i n g the  fish.  s t a y e d w i t h i n , the not  often experienced  procedure draining  one t e s t It  Extra  the  Thereafter very  was o b s e r v e d t h a t  a t i o n p e r i o d , Coho f r y members o f t h e i r  tube  exposed to Muir(8)  2  i n the  including  varying  group.  degree  showed t h a t can  exposed  to  seconds. Co-series,  no p a c k i n g  and s m a l l o p e n i n g s a r o u n d Some l i v e stress  is  draft  and dead f i s h  the  were  might have been imposed  same t h r e e  tests,  a few  occurrence  o f s t o p p i n g the each t e s t  -  fish  w h i c h was  i n the p r e c e d i n g low speed t e s t s .  whole s y s t e m a f t e r  was e i t h e r  draft  time f i s h are  an u n e x p e c t e d  subsequently adopted -  improvement.  4.  system,  the  about  tests  found u n d e r n e a t h the live  i n the  about  p a r t i a l vacuum o v e r one s e c o n d  A t McNary,  compound was u s e d t o  of water  the  prototype  d u r i n g the  o f p a r t i a l vacuum f o r about 6 s e c o n d s . exposure  p a r t i a l vacuum i n  The  t u r b i n e and  resulted i n great  t h e number o f f i s h m i s s i n g a f t e r  any  small or n i l . d u r i n g the  delayed mortality  d i d not h e s i t a t e  t o a t t a c k the  observweaker  Some d e l a y e d m o r t a l i t y may have  resulted  70 from the combination  of s t r e s s e s imposed on the f i s h i n the passage  through the t u r b i n e and the a t t a c k by s t r o n g e r members of the group. 5.  P i s h when.placed c l o s e t o the source  of a i r supply d u r i n g the  h o l d i n g p e r i o d f o r delayed m o r t a l i t y o b s e r v a t i o n .often showed a h i g h e r r a t e of delayed m o r t a l i t y than those p l a c e d f u r t h e r away from the a i r s o u r c e .  A p o s s i b l e e x p l a n a t i o n i s t h a t the o u t l e t  of the a i r supply was  p l a c e d at the bottom of the t a n k .  Air  bubbles rose t o the water s u r f a c e and c r e a t e d a water c u r r e n t away from t h a t p o i n t .  I n order t o m a i n t a i n t h e i r p o s i t i o n s , f i s h would  have t o swim and e x e r t themselves. e f f e c t of pressure  Harvey(7) i n h i s study of the  on Sockeye salmon at G u l t u s L a k e , B.C.,  expressed  an o p i n i o n t h a t a f t e r decompression, some f i s h could r e s t q u i e t l y but gas emboli and death could be p r e c i p i t a t e d i n the same f i s h i f they were s t r e s s e d or e x e r c i s e d .  71 Table I  F I S H MORTALITY AND TURBINE OPERATING CONDITIONS  Wicket  Gate P o s i t i o n No.6  o •rl -P C8  •  K V  «  <D  •' A-  $D U (J)  •P  <:Cd  s  o  U  •p <M -O  CD <D P. CO  ed  ID  .flO  >o>  CO •rl  <cu  •H O •rl «H <H  w  Pi  ts1  P  qO  <v <v  .  ->p> •H  >>  •p  •H H  cd -p  rl  o  3 H  cd  •P  CO  CO  o EH  •rl  •rl H  ao  .O •rl  03 03  •rl -P  O P4  •rl  -P O  cd -p  P, OJ o  a) •p  o  o  0>  fl o  8.3  70  3.1  14.3  19  0  42  600  45.4  52  0.41  13.6  40  0  41  900  52 .5  71  0.37  18.7  46  3.6  56  1200  50.5  80.5  0.39  23.2  42  9.1  68  1800  50.0  86  0.39  31.1  34  14.3  86  300 V  .  TABLE I I  72 COMPARISON OP TYPE OP INJURIES AND THEIR PREQUENCY OP OCCURRENCE  .  a  o •rl -P  •H tl  C O o  •p  m CD  EH  High  CO «H  o  u  u m CO  CO CD fn  O  CD  CL.  r<  CD  U A  o o •p  R  03  fl  CD - H  fl  S  fl til) B ca  3W 3 * E l <D HJ  CO  -P  PI  PH  p»  o  fl a a CD  acd  <D <Tj  CD  CD  o CO  •H  cd CD  CD  u P.  *  •x)  CU  CO  I n j u r i e s i n percent of cases examined  HCdfl CD -P -ri  O «H EH  S3  acd  u  CD  a  tlD  cd  acd  rH  3 o rl  (D  CD t»  P.  O  W  7.6  CD  rl •rl  t> •ri  cd CD U CO CD P . na cd T > r H cd r-i r H O  fl  fl  CD  rl  r-i -O  cd rl  CD CD W>  O  cd co  acd -H>  Pi  CI cd  ci  fl  -rl  .o  o  cd  fl O fl  -r> p.  •rl  -P -ri  rl  co r H cd  3  •ri CO -P cd fl  -p  <i  >  O  u  u o fl fl o CD  cd - P • p cd •ri (H P . CD cd o cd CD H i  o  PI  +»  fl CD U  cd  P. p.  CO  cd  CD  S3  fl o  suction  1. No a i r  16  11.5  170  3.5  2 . Small a i r behind- blades 6 .14 16  11.5  141  6 .8  5.93  3. Large a i r behind blades 6 .21 15.8 1 1 . 4  17  38  9 20.5  47  14 2 3 . 4  14.3 42  6.5  10.5  5.1  33  P. rl  220  3.2  12.?  54  17  20.0  8.6 3 5 . 4  5.5  4.  Air in d r a f t tube through vent 5 . Air i n  penstock  a O O  CO rH  5.51  17.2  4  5.97 16 .2 11  139  0.6  125  0  11.5  17  8  40  6.5 26 .6 .21  36  11.5  18 .4 17.5  23  10 A  36 13.7 19 .6 10.8  38  9.3  4  II Si  1. No a i r  5.83  2. With a i r behind blades 5.84  20.2  20.<  3  3  ?04 167  6 .9 18  3  .  19.7  32.3 21  19.7  16 .1 4 3 . 7  8.4  rpm  Low s u c t i o n o o  CO rH  II 123  No Blades 1 . Low d i s charge  4.4  1.2!  5  11  0  2 . High d i s charge  5.8  1.2!  8  43  2  .  9  64  7  98  18  7  9  9  0  0  7  5  0.  4  73  FIQ.29  P I S H MORTALITY  v  OPERATING CONDITION  74  75 H  =  Wicket  50 f t Gate P o s i t i o n N o . 6  76  H  =  50 f t  Wicket Gate P o s i t i o n No .9  lOOr  401  I 0.4  PIG.31b  t 0.5  :  ± SIGMA  EFFECT OF AIR ON TURBINE EFFICIENCY  0.6  H = 50,  0 '  -•• .\ ' "  FIG.32b  Gate N o . 9 ,  1.0  N = 1200 RPM  2.0  3.0  AIR v TURBINE PERFORMANCE  4.0  5.0  Oat Q •  H =  50 f t ,  PIG.52 C  Gate P o s i t i o n 6 ,  AIR v TURBINE  N =  1800  PERFORMANCE  79  80 CHAPTER V CONCLUSIONS As i n d i c a t e d i n the a v a i l a b l e but l i m i t e d number of t e s t . r e s u l t s , i t i s concluded that the a d d i t i o n of compressed a i r i n t o the model p r o p e l l e r t u r b i n e reduces the m o r t a l i t y rate of f i s h passing through the turbine s u b s t a n t i a l l y i f the turbine i s operating at low e f f i c i e n c y and low sigma.  The admission of  a i r i n t o the turbine does not s i g n i f i c a n t l y reduce the m o r t a l i t y r a t e when the. turbine i s operating at high  efficiency.  I n general, the a d d i t i o n of a i r i n t o the t u r b i n e reduces the turbine output and e f f i c i e n c y as w e l l as reducing the noise and v i b r a t i o n l e v e l . order of 1% of the discharge)  Small q u a n t i t i e s of a i r (of an do not reduce the e f f i c i e n c y nor  the output by a s i g n i f i c a n t amount. A l a r g e r quantity of a i r beyond a c r i t i c a l value  (of the order of 3% of the discharge)  when admitted i n t o the t u r b i n e operating at low sigma r e s u l t s i n an abrupt i n c r e a s e i n discharge and  and a r e d u c t i o n i n output  efficiency. The t u r b i n e blades are the l a r g e s t s i n g l e source of  mechanical i n j u r y s u f f e r e d by f i s h passing through the t u r b i n e . The  f i s h d e c a p i t a t i o n appears only a f t e r a c e r t a i n impact  v e l o c i t y between f i s h and the blade has been exceeded and t h e r e a f t e r increases with the t u r b i n e speed-discharge r a t i o . M o r t a l i t y of f i s h exposed to p a r t i a l vacuum i n the d r a f t tube of the t u r b i n e i s p o s s i b l e .  81  The above conclusions are based on average values of a few t e s t r e s u l t s .  A s t a t i s t i c a l approach t o the i n t e r p r e t a t i o n  of the r e s u l t s i s a superior  way t o deal with t e s t r e s u l t s of t h i s  nature. U n f o r t u n a t e l y , the number of t e s t s c a r r i e d out i s thought to be too few f o r s a t i s f a c t o r y a p p l i c a t i o n of s t a t i s t i c a l More t e s t s should be conducted, p r e f e r a b l y i n a f u r t h e r study of the b e n e f i t s to reduce the m o r t a l i t y  i n a turbine prototype,  of adding a i r to the t u r b i n e  rate of f i s h passing through the t u r b i n e .  Should more t e s t s be conducted i n the same model the  theory.  turbine,  shortcomings l i s t e d in. Chapter I ? should be avoided as f a r as  possible.  82  BIBLIOGRAPHY 1.  2.  Brett, J.R. " S a l m o n R e s e a r c h and Hydro Power Development." F i s h e r i e s Research Board of C a n a d a , B u l l e t i n No.114, 1 9 5 7 . " I m p l i c a t i o n and A s s e s s m e n t of E n v i r o n m e n t a l Stress ." I n the I n v e s t i g a t i o n of F i s h - P o w e r Problems, E d . P . A . L a r k i n , H . R . MacMillan Lectures i n F i s h e r i e s , U n i v e r s i t y of B r i t i s h C o l u m b i a , 1 9 5 8 , pp 6 9 - 8 3 .  3.  Cramer, F r e d e r i c k K . " F i s h Passage through T u r b i n e s M o d e l T u r b i n e E x p e r i m e n t s . " U . S . Army C o r p s o f E n g i n e e r s , P r o g r e s s R e p o r t N o . 2 , September 1 9 6 0 .  4.  C r a m e r , F r e d e r i c k K . and O l i g h e r , Raymond C . " F i s h P a s s a g e t h r o u g h T u r b i n e s - T e s t s a t Cushman N o . 2 H y d r o e l e c t r i c P l a n t . " U . S . Army C o r p s o f E n g i n e e r s , P r o g r e s s R e p o r t No . 2 , September 1 9 6 0 .  5.  " F i s h Passage through T u r b i n e s - F u r t h e r T e s t s at Cushman No .2 H y d r o e l e c t r i c P l a n t . " U . ' S . Army Corps of E n g i n e e r s , P r o g r e s s Report N o . 4 , J u l y 1961.  6.  Anonymous. " F i s h Passage t h r o u g h T u r b i n e s - T e s t s at S h a s t a H y d r o e l e c t r i c P l a n t . " U . S . Army C o r p s o f E n g i n e e r s , P r o g r e s s R e p o r t N o . 5 , May 196 3 .  7.  L u c a s , K . C . "The M o r t a l i t y of F i s h Passing through H y d r a u l i c T u r b i n e s as R e l a t e d t o C a v i t a t i o n and Performance C h a r a c t e r i s t i c s , P r e s s u r e Change, N e g a t i v e P r e s s u r e and O t h e r F a c t o r s . " P r o c e e d i n g s of the I n t e r n a t i o n a l A s s o c i a t i o n of H y d r a u l i c s R e s e a r c h Symposium on C a v i t a t i o n and H y d r a u l i c M a c h i n e r y , Paper B - 8 , S a n d a i , J a p a n , 1962.  8.  M u i r , • J . F . " P a s s a g e o f Young F i s h T h r o u g h T u r b i n e s " J o u r n a l Power D i v i s i o n , P r o c e e d i n g s o f A m e r i c a n S o c i e t y of C i v i l E n g i n e e r s , V o l . 8 5 ( P O l ) . 1939. pp 23-46 .  9.  Von G u n t e n , Glenn H . " F i s h Passage t h r o u g h H y d r a u l i c Turbines." Journal Hydraulic D i v i s i o n , Proceedi n g s of American S o c i e t y of C i v i l E n g i n e e r s , V o l . 8 7 ( H Y 3 ) , May 1 9 6 1 , pp 5 9 - 6 2 .  BIBLIOGRAPHY  (Cont'd)  10.  Von Raben, K u r t . " Z u r Frage der Beschadigung von F i s h c h e n d i r c h T u r b i n e n (Regarding the problem o f m u t i l a t i o n o f f i s h by t u r b i n e s ) , D i e W a s s e r w i r t s h a f t , M a r c h 1 9 5 7 , PP 9 7 - 1 0 0 , I n German. ( E n g l i s h t r a n s l a t i o n by Canada Department o f F i s h e r i e s 1962) .  11.  W i n t e r n i t z , F . A . L . " C a v i t a t i o n i n Turbomachines" Water P o w e r , S e p t e m b e r , O c t o b e r , November, 1957*  12.  B i s h a i , H . M . " T h e E f f e c t o f Gas C o n t e n t o f Water on L a r v a l and Young F i s h " Z e i t s c h r i f t f u r W i s s e n s c h a f t l i c h e Z o o l o g i e , . V o l .16 5, 1 9 6 0 , pp 3 7 - 6 4 .  13.  R o w l e y , W . E . " H y d r o s t a t i c P r e s s u r e T e s t s on Rainbow T r o u t " C a l i f o r n i a F i s h and Games, V o l . 1 , J u l y 1955 .  14.  U . S . Army C o r p s o f E n g i n e e r s . P a c i f i c D i v i s i o n . P r o g r e s s r e p o r t on F i s h e r i e s E n g i n e e r i n g Research Program., J u l y 1960.  84 APPENDIX  I  SYMBOLS, ABBREVIATIONS AND UNITS The f o l l o w i n g i s throughout  the  the  of d a t a  tables A^  text.  a list  The u n i t s  and r e s u l t s  of  symbols and a b b r e v i a t i o n s  refer  to.the  values  as  specified i n  i n Appendix III .  Area of the  air  p i p e p r e c e d i n g the  nozzle  A^  -  A r e a o f the  BHP  -  Horsepower o u t p u t  HP. in  -  Horsepower i n p u t of the * *  C  -  The p o s s i b i l i t y of  of  the  nozzle  turbine turbine  contact  between f i s h and  the  blades C,. d  -  Plow c o e f f i c i e n t  D  -  Blade t i p  d  -  Hub d i a m e t e r  H  . -  diameter  in ft  the  air  of the  o f the  Total effective turbine  of  of  nozzle  turbine  turbine  head a c r o s s  the  A i r meter r e a d i n g i n i n c h of  H^  -  Barometric  H  -  D r a f t tube s u c t i o n head i n f t  K  -  Constant  L  -  L e n g t h of  N  -  T u r b i n e speed i n rpm  n  -  Number of b l a d e s  P  -  A i r gauge  P _ ai  -  P  -  s  water  head o f w a t e r i n f t  of of  water water  of p r o p o r t i o n a l i t y fish  on t h e  pressure  ..Air pressure Penstock  runner of  water  -  runner  in psi  i n front  pressure  turbine  o f the  in psi  used  nozzle i n p s i  the  85 (Cont'd) A i r pressure behind the nozzle Draft tube s u c t i o n gauge reading i n i n c h of Hg Turbine discharge i n c f s The discharge of a i r through the nozzle The discharge of a i r at atmospheric pressure Turbine output torque i n l b s . f t . Time taken by the blade to take up the p o s i t i o n of the preceding blade Absolute temperature A i r temperature  of the a i r  i n °P  C i r c u m f e r e n c i a l v e l o c i t y of a point on the l e a d i n g edge of the blade Whirl component of the water approaching the l e a d i n g edge of the blade Absolute v e l o c i t y of water approaching the blade A x i a l component of the v e l o c i t y of water approachi n g the l e a d i n g edge of the blade V e l o c i t y of water r e l a t i v e to the l e a d i n g edge of the blade Water s e c t i o n through the runner during the time T S p e c i f i c weight  of the a i r l b / f t  Turbine sigma Turbine e f f i c i e n c y Angle between V. and V T  %  86  APPENDIX  II  SAMPLE-OF CALCULATION 1.  Plow o f a i r t h r o u g h a n o z z l e  Q  A  =  C„ d  0  2  2  ( i -W  D  2  aI *  ( P  P  a2>  w  'V  TT  4  S-  ( P  al  "  P  a2>  a  1  - ( - I - ) D  For D Air  2  =  =  m e t e r r e a d i n g £±h  =  =  0.53  inch  h^  -  h^  P  -  Pa2 . 1 4 . 7  al  ft  o f water  34  Q  w a  = specific-weight  C^  = Coefficient  0.1085  C.  of a i r i n l b / f t  of discharge  Ah w  of t h e n o z z l e  APPENDIX I I  87  (Cont'd)  Specific  weight  Prom  pv  of a i r  =  a  w  ET  Si  a  p  =  a i r absolute pressure  v  =  s p e c i f i c volume o f a i r f t  R  =  gas  = T  53.3  ft/  =  460 +  t  =  A i r temperature  P w a  = =  A i r gauge p r e s s u r e l/v a  compressor I n the  of a i r  the  air  a  temperature  tube  Turbine  3  (460 + t )  temperature  l  is  d i s c h a r g e Q 4.22  Air  meter  reading  Coefficient  i n o f Hg  12.5  g  14  i n psi  6  /  equal to  f  t  50°P,  o u t s i d e t h e L a b o r a t o r y , where the  s u c t i o n (P )  pressure  P  + 14.7)  N o . C 10  Air  air  i n degrees  Data Draft  of  cfs  psi £ h  i n . of  0.4  of discharge  C^  water  0.63  Calculation  a  _  1 4 4 ( U + 14.7  =  0.15  "  temperature  t°P  i s drawn.  test  /lb  of a b s o l u t e  absolute  assumed t h a t  temperature  degree  =  53.3 is  2  constant  144(P  It  lb/ft 3  5 3 . 3 ( 4 6 0 + 50 lb/ft  3  t h e mean  supply  of  the  APPENDIX I I Discharge  (Cont'd)  of.air  t h r o u g h a i r meter  Q  =  0.1085x0.6.5../ 0.4" V'12 I x 0.151  =  0.0322  a  ft  5  /sec.  Weight o f a i r b e i n g a d m i t t e d i n t o t h e d r a f t =  0.0322x0.15x60  =  0.29  a  Q /Q  0.0322 x 2 8 . 7 14.7 - 0.49x12.5  =  0.108  i n the d r a f t  tube  cfs  ^ 1 2 8  = To change  to the pressure  "  .  a  lb/min  lb/min  Discharge of a i r corrected  Q  tube  x  l  0  0  2.54 %  the discharge  Q  t o the discharge  at  atmospheric  pressure Q  -  a t  -2-. Data  Contact  "  Q  x  - P  2  x  0.49)  147?  a  p o s s i b i l i t y of f i s h w i t h t u r b i n e  Tests  of f i s h m o r t a l i t y i n the t u r b i n e  blades. operated  at  h i g h s p e e d but w i t h no a d m i s s i o n o f a i r . Average t u r b i n e d i s c h a r g e A v e r a g e t u r b i n e speed Average Tip  l e n g t h of f i s h  diameter  of the b l a d e s  5.93 c f s 1800  rpm  37 mm 10 i n c h e s  Runner hub d i a m e t e r  6 inches  Number o f b l a d e s  4  on t h e r u n n e r  APPENDIX I I  (Cont'd)  Prom Von Raben f o r m u l a Contact  possibility  =  37xnx(100-36)x4x!800 25.4x12x240x5 .95x144  =  0.86  APPENDIX  90  III  TABLE OP OBSERVED RESULTS TABLE I I I  EFFECT OF ADDITION OF COMPRESSED AIR ON TURBINE PERFORMANCE WICKET GATE POSITION N O . 6  Q  P  l  P  2  H  N  rpm l b . f t  cfs  psi  in.Hg  4.77 4.77 4.70  20.0 20 .0  50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0  581 582 585  ft  580 580 577 575  4.66 4.66 4.67 4.69 4.74 4.75  20.0 20.0 20.0 20.0 20.0 20.0  3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5  4.69 4.66 4.63 4.63 4.63 4.65 4.68 4.71  4.72  19.0 19 .0 19.0 19.0 19.0 19.0 19.0 19.0 19.0  5.5 5.5 5.5 5.5 5 .5 5.5 5.5 5.5 5.5  50.0 50.0 50.0 50.0 50.0 50.0 50 ,0 50.0 50.0  500 580 580 580 580 575 580 580 585  4.67 4.66 4 .62 4.60 4.58 4.58 4.62 4.64 4.65  18.0 18.1 18.1 18.2 18.2 18.2 18.1 18.1 18.0  7.6  50.1 50.2 50.1 50.3 50.1 50.3 50.0 50.2  575 575 575 575 575 575 575 575 575  4.62 4.60 4.57 4.55 4.55 4.55 4.58 4.59 4.60  17.0 17.0 17.1 17,1 17.2 17.2  20.0  17.1  17.1 17.0  7.5 7.4 7.3  7.2 7.3 7.3 7.5 7.5 9.5 9.4 9.3 9.3 9.1 9.2 9.3 9.4 9.5  50.0 50.0 49-.9 50.0 50.0 50.0 50.1 50.0 50.1 50.0  T  570 577  575 573 575  570  565  570 575 575 575  120.4 120.0 119.2 118 .0 118.5 118.0 119.5 120.4 120.4 119.7 119.0 118.5  117.7  117 .2  118.0 118.7 119 .7 119.9  118 .5 118.0  H  a  %  0.1 0.4 1.0 1.2 0.9 0.4 0.1  9 8  1.0 1.9 3.2  0.1 0.4 0.8 1.3 0.8 0.4 0.1  -  117.2  0.9 0.4 0.1  117.2  116 .8 .115-7  114.6  114.2 115 .0 116 .0 116 .5  117.5  Qat  —  psi  117.0  118.2 118.5  a  in.  0.1 0.4 0.9  116 .6 115.7 116 .5  P  1.4  -  0.1  0 .4 0,9 1.5 0.9 0.4 0.1  -  7.5 7.5 7.5 8 10  9 8  7.5 7.5 7.5 8 9  -  9 8 7.5 7 7.5 8 9  •-  HP. in  3.0 1.9 1.0 -  1.0 2.0 2 .8 3.5 2.8 2.0 1.0 -  13.2 13.2 13.1 13.0 13.0 12.9 13.1 13.2 13.4  26 .9 26 .7 26 .5 26.4 26 .4  13.0  .6 .5 .2 .2  3.4  o  T| %  13.3 13.2 13.1 13.0 12,9 13.0 13.2 13.3 13.4  27.2 27.2  26 .8 26 .5 26 .5 26.6 26 ,6  27.0 27.4  26.4  26 ,5 26 .6 26 .8  26 26 2.0 12 .8 26 3.0 12.8 26 3.6 12 .7 26 3.0 12 .8 26 2 .0 1 3 . 1 26 1.0 13.0 26 13.0 26  - 12.9 1.0  - — -  9 8 7.5 7 7.5 8 9  BHP  12.8  .0 .1 .5 .4 .4  0.6 0.6 0.6 0.6 0,6 0.6 0.6 0.6 0.6 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53  0.48 0.48 0.49 0.49 0.49 0.49 0.49 0.49  26 .2 0.44  48.9  48.7  48.9 48.9 48.5 48.8 49.5 49.5 49.5 49.3 49.3 49.5  49.3 49.3 49.1 49.5 49.6 49.8  49.0 48.7 48.8 48.7 48.7 48.8 48.9 49.1 49.1  49.0  1.0 1 2 . 7 26 .0 0.44 49.0 1.9 12 .6 25 .9 0..44- 4 8 . 9 3.1 12 .4 25 .8 0.44 48.2 3.8  12 .3 25.8 25.9 12 .7 25.9 12 .8 26 ,0 12.9 26 .1  3.0 12.5  1.9  1.0  -  0.45 0.45 0.44  47.7 48.2  0.44  49.4  49.0  0.44 49.2  TABLE I I I  (Cont'd)  9 1  WICKET GATE POSITION NO .6  Q  P  l  P  2  N  T  ft  rpm  l b .ft  50.1 50.3 50.1 50.1 50.0 50.1 50.2 50.2 50.1  570  115.7  cfs.  psi  in.Hg  4.56 4.52 4.50 4.50  16 .0 16.1 16.1 16.2 16 .2 16 .2 16 .1 16 .1 16 .0  11.5 11.5 11.3 11.2 11.1 11.2  15.4 15.3 15.4 15.5 15.5 15.5 15.5 15.4 15.3  12.7 12.6 12.5 12.5 12.4 12.5 12 .5 12.6 12.6  49.7 49.8 50.0 49.9 50.0 50.0 49.9  5.37 5.35 5.36 5.37 5.39 5.39  19.9 19.9 19.9 19.9 20.0 20.0 20.0 20.0 19.9  5 .40 5 .39 5.37 5.33 5.31 5.33 5.35 5.37  19.0 19.0 19.0 19.1 19.1 19.1 19.1 19.0  4.47 4.50 4.52 4.55  4.57 4.53 4.52 4.47  4.47 4.44  4.46 4.49 4.51 4.53  5.42 5.42 5.40  11.4 11.4 11.5  H  H  570 570 565 565 565  570 570  in.  114.2 114.0 112  a  .6  111.7 112 .5 113.9  -  0.1 0.4 1.0 1.6 1.0  0.4  114.7  0.1  112.7 113.0 111.4 110.7 108 .8 110.7 111.2 112.7 113.0  0.1 0.4 0.9 1.7 0.9 0.4 0.1  49.7  565 565 565 560 560 560 565 565 565  3.5 3.3 3.1 3.2 3.3 3.2 3.3 3.4 3.5  50.0 49.8 49.5 49.7 49.9 49.8 49.9 50.0 50.0  1220 1210 1200 1190 1190 1185 1185 1185 1190  110.2 110.0 108 .7  6 .0 6 .0 6.0 5 .8 5.8 5.9 5.9 6 .0  50.7 50.7 50.7 50.6 50.6 50.8 50.8 50.7  1180  111.2 111.5 109.5  50.0  565  1175  1160 1155 1145 1150 1160 116 5  115.7  107.0 106  .8  107.5 109.2 110.5 111.2  0.1 o.4 0.9 1.3 0.9 0.4 0.1  Qat a  psi  0.1  0.4  .6  110.0  0.9 1.4 0.9 0.4 0.1  Q  BHP  -  12 .6 12 .4 12.3 12.1 12 .0 12 .1 12.4 12.5 12 .5  10 8 7.5 7 7.5 8 9  1.1 2.1 3.0 4.1 3.0 2.0 1.1  12.1 12 .2 12 .0 11.8 11.6 11.8 12 .0 12 .1 12 .2  9 8  0.8 1.6 2.3 2.9 2.3 1.6 0.8  24.9 24.3 24.2 24.3  -  25.3  - — -  -  7.5  7.5 7.5 8 9  -  9 8 7.5 7 7.5 8 9  in  0"  %  1.1 2.0 3.2 4.0 3.1 2.0 1.1  _  HP.  %  9 8 7.5 7 .7.5 9 9  -  107.7 111.7  -  -  107.7  106  -  p  -  -  0.9 1.7 2.6 3.1 2 .6 1.7 0.9  25.7 25.4  24.6  24.9 24.9  26 .0 0.39 48.4 25.8 Z^8.1 0.39 25.6 0.40 4 8 . 3 25.6 0.40 4 7 . 3 0.40 47.3 25.4 0.40 4 7 . 3 25.6 48 .1 0.39 25.7 48.1 25 .9 0.39 26 .0 0.39 48.1 25.7  25.5 25.2  25.4 25.1 25.3 25.5 25.5 25.5 30.7 30.7 30.4 30.3 30.3 30.3 30 .4 30.6 30 .6  31.0 31.0 30.8 30.6 23.7 23.2 30.5 23.6 30.7 24.3 30.8 24 .8 30.8  24.9 24.2  0.37 0.37 0.37 0.37  47.2 47.6 47.5 46 .5 46.3 46.5 46 .9 47.7 47.7  0.58 0.58 0.59 0.59 0.58 0.58 0.58 0.58 0.58  83.3 82 .7 81.8 80.4 79 .8 80.2 81.0 81.5 82.8  0.37 0.37 0.37 0.37 0.38  0.51 0.51 0.51 0.51  0.52 0.51 0.51 0.51  80.2 80.4 79.8 77 .4 76 .6 76 .9 78.9 80.5  TABLE I I I  92  (Cont'd) WICKET GATE POSITION N O .  Q cfs 5.35 5.35 5.31  5.32 5.34  5.30 5.30 5.33 5 .35 5.34 5 .33 5.31  5.42 5.42  5.41 5.32 5.31 5.33 5.30  5.30 5.44  5.43  5.40 5.42 5.42  5.29 5.30 6 .00 6 .02 5.98 5 .95  5.95  5 .96 5.96 6 .02  P  1 psi  17.5 17.5 17.6  17.6 17.6 17.6 17.5 17.5 17.5  P  2  in.Hg  H  N  T  ft  rpm  lb.ft  8.3 49.8 8 . 3 49.8 8.2 5 0 . 0 8.0 49.8 7.8 4 9 . 6 8.1 49.9 8.2 49.7 8.3 49.8 8 . 3 49 .8  1190 1200 1185  1170  116 5  1170 1175  1185 1185  16 .5 16.5 16 .5 16 .3 16 .2 16 .2 16 .5 16.5 16 .4  10.4 10.4 10.2 9.9 9.5  49.9 49.9 49.6 48.9 48.2 4 8.5 9.8 10.2 49.6 10.3 49.7 10.4 49.9  1215 1220 1195 1180  15.6 15.6 15.3 15.2 15.3 15.3 15.3 15 .6 15.6  12.4 50.0 50.0 12.0 49.0 1 1 . 9 48 .6 1 1 . 8 48 .8 12.0 49.0 12.0 49.0 12.4 50.0 1 2 . 5 50.2  1205 1195 1165 1160 1145 1155 1165 1180 1195  50.0 49.9 49.5 49.6 49.6 49.6  1790 1800 1785 1760  49.7  1800  20.0 20.0 19.9 19.9 20.0 20.0 20.0 20.0  12.4  3.4 3.3 3.1 3.2 3.0 3.0 3.1  1175 1175 1195 1205 1210  1735 1745  3.2 4 9 . 8 1865  107.5 107.0  104.2  101.6 100.5 102.5 104.5 107 .2 108.0 105.5 105.5 101.1 99.2 98.2 99.2 102.5 105 .0 105.7  H  a  in.  0.1 0.4 0.9 1.6 0.9  0.4 0.1  0.1 0.4 0.9 1.8 0.9 0.4 0.1  P  a  psi  - 2 4 . 3 30.2 0.47 0 . 9 2 4 . 5 30.2 0 . 4 7 1.7 2 3 . 5 30.1 0 . 4 7 7 . 5 2.6 2 2 . 7 30.0 0 . 4 8 7 3.4 2 2 . 3 3 0 . 0 0 . 4 8 7-5 2.6 2 2 . 8 3 0 . 0 0 . 4 7 8 1.7 23.4 2 9 . 9 0 . 4 7 9 0 . 9 24.2 3 0 . 1 0 . 4 7 - 24.4 30.2 0 . 4 7 9.5 8 7.5 7 7.5 8 9  80.5  81.1 78.0  75.9  74.4 76.0 78.9 80.3  80.2  - 24.4 30.1 0 . 4 2 8 1 . 0 0 . 9 2 4 . 3 30.1 0.42 8 0 . 7 1.7 2 3 . 0 2 9 . 9 0 . 4 3 7 7 . 0 2.5 22.3 3.5 2 2 . 0 2.5 22.2 1 . 7 23.2 0.9 24.1  -  0.1 0.4 0.9 1.6 0.9 0.4 0.1  T)' %  9 8  105.2 0.1 99.8 0.4 98.0 0.9 97.2 1.6 0.9 98.5 100.00 0.4 103.2 0.1 106 .0  a  %  -  104.0  90.0 89.5 88.5 89.7 91.8 90.00 87.2 85 .1  - ^ B H P HP. Q in  30.0 29.6 29.8 29.9 30.0 24.6 3 0 . 1  0.44 74.4 0.46 7 4 . 2 0 . 4 5 74.6 0.43 75.2 0.43 80.7 0.42 81.7  24.2 30.0 0 . 3 7  80.5 78.8 73.2 0 . 4 0 72 .2  9 0.9 8 1.7 7.5 2.5 7 3.3 7.5.2.5 8 1.7 9 0.9  23.6 22.1 21.7 21.2 21.7 22.2 23.3  30.0 30.2 30.0 30.1 30.0 30.1  24.0  0.39 0.39 30.1 0 . 3 8 30.1 0.37  72.3 73.8 77.4 80.3  0.8 1.6 2.5 3.2 2.5 1.6 0.8  30.7 30.6 30.1 30.1 30.3 30.0 29.9 30.2  34.1 34.1 33.6 33.5 33.5 33.5 33.6 34.0  89.9 89.7 89.7 89.9 90.2 89.5 89.0 88.9  -  11 10 9 9 10 10 11  0.37 0.39  0 . 4 0 71.0  0.58 0.58 0.59 0.59 0.59 0.59 0.59 0.58  "TABLE I I I  93  (Cont'd) WICKET GATE POSITION  .10 .15 .10  .07 .07  6 .06  6 .04 6.05 6.10 6.17 6.35 6.30 6.22 6.08 6.05 6 6 6 6 6 6 6 6 6  .03  .07 .27  .36 .32 .37 .31 .15 .09  6 .07 6 .20 6 .29 6 .25 6 .28 6 .37 6.23 6 .10  ft  rpm  Oat Q  lb .ft  in.  psi  %  1800 1800 50.7 50.5 1800 1800 50.3 49.8 1800 1800 50.3 1800 50.3 50.8 1800 50.8 1800  91.7 91.5 89.5  _  17.1 17.2 17.5  8.5 8.5 8.1 7.8 7.6 7.8 8.0 8.1 8.5  50.0 49.8 49.2 48.2 47.9 48.4 48.6 48.9 49.6  1800 1800 1800 1800 1800 1800 1800 1800 1800  87.2 87.1 86 .0 82.7 82.0 83.8 85.7 87,0 87.7  16 .7 16.6 16.1 16 .0 16 .0 16.0 16 .1 16 .5 16 .5  10.4 10.4 10.1 9.5 9.6 9.6 9.9 10.2 10.3  50.2 50.0 49.0 47.8  1800 1800 1800 1800 47.9 1800 47.9 1800 48.4 1800 49.6 1800 49.7 1800  86.5 86.3 84.2 82.2 81.6 83.5 84.2 86 .7 87.0  15.5 15.2 15.1 15.1 15.1  12.0 11.8 11.5 11.5 11.6 11.6 11.6 12.0  49.4 48.5 47.9  psi  .07  in.Hg  T  a  cfs  .04  N  p  P, 1  .05  H  H a  Q  6 6 6 6 6 6 6 6  P .. 2  .6  19.1 19.1 19.1 19.1 19.1  19.1  19.1 19.1 19.1  17.5  17.4  17.3 17.0 17.0  17.1  14.9  15 .1 15.5  0  5.9 5.8  5.6 5.5 5.0 5.5 5.5 5.9 5.9  50.8  1800 1800 1800 47.9 1800 48.0 1800 47.8 1800 48.0 1800 49.4 1800  89.7  87.7 90.0 89.7 91.1 91.3  84-7 83.7 81.2 78.7 79.0 81.2 83.5 85.5  0.1 0.4 0.9  _  HP. in  a %  34.8  0.51  30.8 30.1 31.2 30.8 31.2 31.3  90.4 90.5 88.3 88.4 34.8 0.53 34.7 0.54 86 .8 34.8 0.5 3 88 .8 88 .6 34.8 0.53 0.52 34.9 89.3 34.9 0.51 89.7  0.8 1.5 2.4 3.0 2 .2 1.5 0.8 -  29.9 29.9 29.5 28.3 28.1 28.7 29.4 29.8 30.1  34.3 34.2 34.0 33.7 34.7 34.5 34-.3 33.7 34.1  0.46 0.46 0.48 0.50 0.50 0.50 0.49 0.48  0.8 1.5 2.3 3.0 2.1  29.7 29.6 28.9 28.2 28.0 28.6 28,9 29.7 29.8  34.4 34.4 34.4 34.4 34.3 34.6 34.6 34.6 34.4  0.42 86 .2 0.42 86 .0  29.0 28.7  34.0 34.1 34.2 33.9 34.2 34.5 34.0 34.2  0.9 0.4 0.1  11 10 9 8 10 10 11  2.4 1.6 0.8  -  -  -  0.1 0.4 1.0 1.8 0.9 0.4 0.1  11 10 10 8 9 10 11  0.1 0.4 1.0 1.8 0.8 0.5 0.1  11 10 9 8 10 10 11  0.1 0.5 2.0 1.0 0,4 0.1  11 10 8 10 10 11  1.7  BHP  0.8 1.6 2.3  3.0  1.7  0.8 -  0,8 1.7 3.2 2 .4 1.5 0.8 -  31.4 31.4  34.7 0.52 30.7 34.7 0.52  27.8 27.0 27.1 27.8 28.6 29.3  0.47  0.44 0.46 0.46 0.46 0.45 0.43  0.42  87.4 87.3 86 .7 84.0 83.6 83.3 85.7 88.4 88.4  84.0 82.0  81.7 82.4 83.3 85.8 86 .7  0.39  85.2  0.41  80.8 84.2 85.5  0.40 84.2 0.41 8 1 . 3 0.41 79.4 0.41 79.4 0.41 0.39  94 TABLE I I I  (Cont'd) WICKET GATE POSITION NO.  9  H  N  T  H  in.Hg  ft  rpm  l b .ft  in  19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0  5.4 5.5 5.5 5.5 5.4 5.4 5.5 5.5 5.5 5.5  50.0 50.1 50.1 50.1 50.0 50.0 50.1 50.1 50 .1 50.1  590 593 590 585 585 585 590 590 590 590  125.0 125.0 124.8 124.0 123.0 122.2 123.2 124.3 125.5 125.2  0.1 1.2 0.4 0.9 1.4 1.0 0.4 0.1  5 .29 5 .29 5 .25 5 .23 5.21 5 .20 5 .20 5.21 5.25 5.27 5.28  18 .0 18.0 18.0 18.0 18 .0 18.0 18.0 18.0 18.0 18 .0 18.0  7.5  7.4 7.4 7.4 7.4 7.5  50.1 50.1 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.1  590 590 585 585 585 585 585 585 590 585 590  _ 124.5 1 2 4 . 4 • 0 .1 0.2 123.5 122.0 0.8 121.7 1.0 1.6 121.0 121.2 1.2 122 .1 0.7 0.3 123.5 124.2 0.1 124.5  5.27 5 .25 5 .22 5 .18 5 .14 5 .18 5 .20 5.24 5 .23  17.0 17.0  17.1 17.0 17.0  9.5 9.5 9.5 9 .4 9.2 9.2 9.4 9.5 9.5  50.1 50.1 50.3 50.1 50.2 50.2 50.1 50.1 50.1  590 585 580 580 575 580 585 590 590  123.7 123.2 121.5 119.9 119 .0 120.1 121.7 122.7 123.7  0.1 0.3 0.9 1.6 0.9 0.3 0.1  5.23 5 .20 5 .17 5.14 5.13 5.14 5.17 5.19 5.20  16 .1 16 .1 16.2 16 .2 16.4 16.4 16 .2 16 .1 16 .1  50.3 50.3 50.2 50.0 50.5 50.6 50.2 50.1 50.3  585 580 570 575 575 575 580 585 585  122.5 121.0 119.5 . 118.5 117.7 118.7 121.0 121.7 122.5  0.1 0.4 1.0 1.6 1.0 0.2 0.1  Q  P  1  2  cfs  psi  5.27 5 .26 5.25 5.24 5.23 5 .22 5.23 5.25 5.27 5.29  17.1 17.1 17.2 17.2  7.5 7.4 7.4 7.4  7.4  11.5 11.5 11.3 11.1 11.0 11.1 11.3 11.4 11.5  a  _  -  -  -  -  -  P  a  psi _  Qat Q  -  HP. in  cr  i  —  10 10 10 9 8 9 10 10  BHP  0.9 1.3 1.8 2.7 3.3 2.9 1.8 0.9  -  Tl  % 14.1 14.1 14.0 13.9 13.8 13.7 13.8 13.9 14.1 14.0  29.9 29.9 29.9 29.9 29.8 29.8 29.8 29.8 30.0 30.0  0.53 0.53 0.53 0.5 3 0.53 0.53 0.53 0.53 0.53 0.53  47.0 47.0 46 .9 46 .6 46.3 46.1 46.5 46 . 7 46 .9 46 .9 46 .6 46.3 46 .1 45.8 45.8 45.8 45.8 46 .0 46.5 46 .2 46 .7 46.3 46.1 45.2 44.9 44.5 45.0 45.7 45.8 46.6  0.9 1.3 2.5 2 .8 3.5 3.2 2.1 1.6 0.9  14.0 13.9 13.8 13.6 13.5 13.5 13.5 13.6 13.9 13 .8 14.0  30.0 30.0 29.8 29.7 29.6 29.5 29.5 29.6 29.8 29.9 30.0  0.48 0.48 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 048  10 10 9 8 9 10 10  1.0 1.8 2.6 3.6 2.7 1.8 1.0  13.9 13.7 13.4 13.2 13.0 13.3 13.5 13-7 13.8  29.9 29.8 29.7 29.5 29.3 29.5 29.6 29.8 29.8  0.44 0.44 0.44 0.44 0.45 0.45 0.44 0.44 0.44  10 10 9 8 9 10 11  0.9 1-.8 2.7 3.5 2.7 1.3 0.9  13.7 13.4 13.0 13.0 12.9 13.1 13.4 13.5 13.7  29.5 29.7 29.5 29.2 29.4 29.4 29.4 29.5 29.7  0 . 3 9 4 5 .8 0.39 45.2 Q.40 44.1 0.40 44.6 O.40 43.9 0.40 44.1 0.40 45.5 0 . 3 9 45 .9 0.39 45.9  —  11 10 9 9 8 9 9 10 10  - -  -  —  -  95 TABLE I I I  (Cont'd) WICKET GATE POSITION N O . 9  Q  P  l  P  2  H  N  T  cfs  psi  in.Hg  ft  rpm  lb. f t  5.18 5.15 5.11 5.11 5.09 5.11 5.10 5.12 5.15  15.5 15.5 15.6  12.7 12.7  15.7 15.7 15.6 15.6 15.6 15.4  12.5 12 .2 12.2 12.5 12.5 12 .6 12.7  50.2 50.2 50.2 50.1 50.1 50.2 50.2 50.3 50.0  580 575 575 570 570 570 570 575 585  119 .8 118 .6 117.0 116 .0 115.5 116 .8 117.1 118.0 120.1  6 .20 6 .20 6 .19 6 .20 6 .19 6 .19 6 .17 6 .16 6 .18  19 .0 19.0 19.0 19.0 19.1 19.1 19.1 19.1 19.0  5.5 5.5 5.5 5.3 5.3 5.2 5.3 5.5 5.5  50.1 50.1 50.1 49.9 49.9 49 .8 49.9 50.1 50.1  1185 1160 1155 1150 1145 1140 1135 1135 1160  114.5 116 .5 116 .0 116 .2 116 .6 117.0 117.5 118.2 116 .0  6 6 6 6 6 6 6 6 6  .16 .17 .15 .14 .15 .15 .15 .16 .16  18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18 .0  7.5 7.5 7.5 7.3 7.3 7.3 7.4 7.5 7.5  50.1 50.1 50.1 49.9 49 .9 49.9 50.0 50.1 50.1  1160 1160 1155 1155 1160 1165 1170 1170 1170  115.0 115.5 115.2 114.2 114.0 114.2 114.7 115.2 114.5  6 6 6 6 6 6 6 6 6  .12 .10 .10 .10 .07 .12 .11 .10 .10  17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0  9.6 9.6 9.5 9.3 9.3 9.3 9.4 9.5 9.6  50.2 50.2 50.1 49.8 49.8 49.8 50.0 50.1 50.2  1165 1165 1165 1160 1155 1160 1170 1165 1165  113.4 113.1 112.0 111.5 110.8 111.7 112 .5 113.0 113.1  H  P o  o  in  psi  -  —  0.1 0.4 1.0 1.8 0.8 0.5 0.2  11 10 9 8 9 10 10  0.2 0.6 1.2 1.6 1.2  10 10 9 8 9 10 11  -  0.5 0.1  -  0.1 0.4 0.9 1.3 1.0 0.4 0.1  0.2 0.8 1.2 1.6 0.8 0.4 0.1  -  ^r  :2  i  —  0.9 1.8 2.9 3.8 2.5 2.1 1.3  _  1.1 1.9 2.6 3.0 2.6 1.7 0.8  - —  HP. -1 >n  a  T) •  %  - -  —  BHP  l  —  11 10 9 8 10 10 11  0.8 1.6 2.3 2.8 2.4 1.6 0.8  10 9 9 8 9 10 10  1.1 2.2 2.9 3.3 2.2 1.6 0.8  - -  - -  13.2 13.0 12 . 8 12 .6 12.5 12.7 12 . 7 12.9 13.4  2 9 . 5 0.36 4 4 . 9 29.3 0.36 4 4 . 4 29.1 0 . 3 7 4 4 . 0 2 9 . 0 0.38 4 3 . 5 28.9 0 . 3 8 4 3 . 5 29.1 0 . 3 7 43.6 29.1 0.37 43.7 29.2 0.37 44.2 29.3 0.37 45.8  25 . 8 25.8 25.5 25.5 25.4 25.5 25.4 25.6  35.3 35.3 35.2 35.1 35.1 35 . 0 35 . 1 35.1 35.2  0.53 0.53 0.53 0.54 0.54 0.54 0.54 0.53 0.53  73.1 73.1 72 . 4 72 .6 72.4 72.8 72.6 73.0 73.1  25.4 25.5 25.4 25 . 2 25.2 25.3 25.5 25.6 25.5  0.49 0.49 0.49 34.7 0.49 34 . 8 0 . 4 9 34 . 8 0 . 4 9 34.9 0.49 35.0 0.49 35.0 0.49  72.7 72.7 72.6 72.6 72.4 72.8 73.1 73.1 73.0  25.2 25.1 24.9 24.7 24.4 24.7 25.0 25.0 25.1  34.8 34.7 34.6 34.5 34.3 34.5 34.7 34.6  72.4 72.3 72.0 71.8 71.2 71.5 72.2  25.7  35.0 35.1 35.0  34.7  0.44 0.44 0.44 0.45 0.45 0.45 0.44 0.44 0.44  72.3 72.4  96 TABLE I I I  (Cont'd) WICKET GATE POSITION N O . 9  Q  P  l  P  2  H  N  cfs  psi  in.Hg  ft  rpm  6 .10 6 .07  16 . 0 16 . 0 16 . 0 15.7 15.5 15.6  11.5 11.4 11.4 11.0 10.8 10.8 11.0 11.3 11.3 11.4  50.1 50.0 50.0 48 .8 48.2  1170 1170  6 .06 6 .25  6 .25 6.24 6 .25 6 .06 6 .06 6 .10 6 .10  6 6 6 6 6 6 6 6  .10 .27 .27 .31  .30 .30  .10 .11  15.7 16 . 0 16 . 0 16 . 0  15.6 15 .6 15.2  15.2 15.2 15.2 15.3 15.7 15.7  7.30  15.8  7.50 7.42 7.30 7>25 7.23  15.5 15.5 15.7  7.28  7.35 6 .90  15.8 15.8 15.8 15.8 16 .3  7.00 7.14 7.40 7.35  16 .5 16 .1 16 .1 16 . 0 16.0  7.31 7.30 7.05 7.00  16.0  7.30  16 .1 16.1 16 .5  12 «4 12 .4 12 .1 12 .1 11.9 12 . 0 12 .1 12 .2 12 .4  48.3  1160  1140 1135  1145 48 .8 1145 4 9 . 8 1165 4 9 . 8 1170 5 0 . 0 1170 50.2  T lb . f t  111.7 111.0 109 .4 104 .7 104.3 104.6 105.2 109.9  110.5 111.5  P  in  psi % _  0.1  11 10 9 8 8 9 10 10  0.6 1.2 1.8 1.4 1.0 0.5 0.2  -  -  50.4  1180  49.7 49.0 48.9 49.2 49.5  1810  96 . 0  1785 1750 1720  95.5  0.1 0.6  92.7  1690 1680  92.7  1.4 1.9 1.6 0.6 0.1  48.9  48.9 48 . 8 48.9 49.1 50.2  1175  1180 1155  1150 1150 1150  1155 1175  11.6 11.5 11.4 11.4 11.4 11.4 11.4 11.7 12 . 0  4 9 . 5 1675 4 9 . 8 1675 5 1 . 3 1670  10.5  50.0  49.5  10.5 4 9 . 0 10.4 48.9 10.0 48.3 10.0 48.3 10.1 48.4 10.5 49 .0 10.5 49.0 10.5 50.0  1760 1760 1740 1730 1720 1710 1705 1705 16 95  93.2  93.7 96 .5 99.2 100.2 95.0 95.0 93.5 92.5 91.5 93 .2  94.6 96.5  97.2  a  —  112.0 111.4 106 .0 105.5 105.7 105.7 106 .2 110.7 112.0  50.2  Qat  H a  —  0.8 1.9 2.5 3.1  2.7  2.3 1.7 1.1  - -  - -  0.1  11  0.4 1.2 1.8 1.6  10  0.5 0.2  Q  0.8 1.5 2.5 3.2 269  8 8 8 10 1 . 6 10 1.1  BHP  7.5 8 10 11  2.8 2.5 1.5 0.6  -.  _  -  0.1 0.6 1.2 1.8  11 10 9 8 8 10 10 11  -  1.4 0.7  0.4 0.1  -  -  0.6 1.6 2 .2 2.7 2.3 1.7 1.3 0.7  a %  24.8  34.7 34.7 34.3  0.39  71.5  0.43 0.43  66.2  24.8  34.2 34.2 34.6 34.2 34.2 34 .6  25.1 25.1 23.3 23.1 23.1 23.1 23.4 24 .8  34.8 34.8 34.8 34.8 34.9 34.9 35.1 34.8  0.37 0.37 0.39 0.39 0.39 0.39 0.38 0.38  24.7 24.2 22 .8 22.6 22.7 22.9 24.4  24.6  25.2  11 0 . 7 10 1.5 8 2.4  HP. in  0.40 71.7 0.40 70 .6 3 4 . 6 0 . 4 2 66 .0  34.9 0.37  32 .9 32.4  41.1 41.6 31.0 41.1 30.4 4 0 . 7 29.8 4 0 . 7 30.0 4 0 . 5 30 .8 4 0 . 9 31.6 41.1 31.7 4 0 . 2 31.8 31.8 31.0 30.4 30.0 30.4 30.8 31.3 31.4  0.42 0.40 0.40 0.40  39.7 39.7 41.0  0.39  0.40 0.41 0.40 0.40 0.40 0.40 0.39 0.37  0.41  0.43 0.43 .41.0 0.43 4 0 . 0 0.44 4 0 . 1 0.44 4 0 . 2 0.44 39.1 0.43 0.42 39.7  66 .4 66.3 71.4 71.9 71.8  72.1 72.1  67.1 66.5 66 .4 66.4  66.7 71.4  72.2  80.0 78.0 75.6 74.6 73.2 74.1 75.4 76 .5 79.1 80.0 80.4 75.6 75.6 75.0 76 .0 76 .8 80.1 79.1  97 TABLE I I I  (Cont'd) WICKET GATE  Q  P  l  cfs  psi  7.18  16 .8 16 .6  7.24  7-50 7-51 7.45 7.55 7.48 7.28  16 .0 16 .1 16 .1 16 .1 16 .1 16 .5  7.00 7.07  18.0  7.15  7.18 7.16 7.30 7.51 7.28 7.28  7-14 7.00 6 .97 6 .97  7.08 7.15 7.08 7.04 7.08 7.06  6 .94  16.9  P  2  in.Hg  9.7 9.4 9.0 9.1  7.6  17.5 17.5  6.7  6.7  6 .8  7.2  18.0  7.6  19.0  5.5 5.5 5.1  18.8  18.9 18.9 19.0 19.0  47.2 47-5  49.8  6.5  19.0 18.9 18.9  49.0  9.5  9.1  5.1 4.9 5.0  5 .0  5.1 5.5  N rpm  49.9 1780  47.3 47.5 47.5  7.4 7.1 7.0  17.7 17.7  ft  9.1 9.1 9.1  17.9 17.9 17.9 17.8  H  NO .9  48.1 50.2 49.8 49.5  1805 1805 1800 1805 1820 1835 1835 1830  1795  1790 1770 1760  49.4 48.7 1795 47.9 1780 46 .1 1800 48 .6 1805 49.0 1800 50.2 1800  50.1 1800  50.1 1790  49 .6 1785 49 .6 1775 49.0 1760 49.4 1760 49 .4 1770 49.7 1780 50.1 1780  T lb .ft 95.1 95.1 92.5 92.0 90.2 92.0 93.5 93.5 93.5 95.1 94.6 95.5  95.5 94.5 92.2 94.2 94.5 94.5 94.7  95.4 94.5 95.2 95.2 95.5 95.5 95.2 95.7 96.7  H  a  in  P  Oat  a  —  —  0.2 0.6 0.9 1.2 0.8 0.4 0.1  11 10 9 9 10 10 11  1.0 1.5 1.9 2.2 1.8 1.3 0.7  _  _  _  0.1 0.5 0.9 1.3 1.6 1.0 0.5 0.7  11 10 9 8 8 9 10 11  0.7 1.5 2.1 2.3 2.4 2.0 1.5 0.1  -  - -  - -  _ 0 .1 0 .6 1.1 1.6 1.2 0.8 0.2  -  HP.  m  cr  psi %  _  -  BHP  —  11 10 9 9 9 10 10  0.7 1.6 2.2 2.6 2 .2 1.9 1.0  - -  T\  % 32.3  40.6  0.44 79.6 0.45 81.2 31.8 40.2 0.48 79.1 31.6 40.4 0.47 78.1 31.0 40.1 0.47 76 .4 31.9 40.6 0.47 78.7 32.7 4 0 . 3 0.47 8 1 . 3 32.7 39.7 0.47 82 .7 32 .6 40.4 0.44 80.7 32.5  39.9  32.7 40.7  0.53 0.52 0.51 0.50 0.48  81.4 81.0 79.8 80.0 79.8 78.0 81.4 80.8 81.4 31.2  0.53 0.53 0.55 40.2 0.55 39.4 0.56 39.5 0.55 39.7 0.55 32.4 39.8 0.54 32.8 39.4 0.53  82.6 81.6 81.4 80.2 81.2 81.0 80.9 81.4 83.2  32.3 39.9 32.2 40.3 32.0 40.0 32.1 40.3 31.4 40.8 32.3 39.7 32.4 40.1 32.4  39.7  32.7 32.3 32.4 32.2 32.0 32 .0 32.1  39.639.6 39.8  32.4 39 .9  0.48  0.49 0.49 0.50  0.52  TYPES OP INJURIES OP DEAD P I S H .  6  1  0  2nd day  3  1  3rd day  2  2  0  0  6  . 3 .  5  3  2  1  0  0  0  1  1  2  0  n  o  0  1  0  0  1  0;  0.  0  13  0  1  3  0  1 s t day  8  . 0  3  5  2  2nd day  1  1  0  Qj  3rd day  1  1  1  Immediate  26  0  1 s t day  10  2nd day 3rd day  Immediate CO 5 .5  C06 .3  Immediate C08.1  2  0  Oi  0  0  0  0  1  1  1  0  0  0:  5  4  0  3  3  14  3  1  6  7  8  4  5  0  2  6  0  4  3  3  3  1  0  1  5  0  2  4  2  1  0 ,  0  1  23  0  0  6  1  3  2  13  3 0  0  1  2  2  0  2  1  2nd day  2  -  -  -  -•  -  -  -  -  3rd day  1  0  0  1  0  0  0  0  0  21  2  2  8  0  2  2  10  2  1 s t day  5  2nd day  1  -  3rd day  1  2  3  -  -  -  0  1  1  0  17  1  2  4  1st day  1  0  0  1  2nd day  l  -  3rd day  0  -  Immediate C08.4  5  „. 1  4  Immediate C08.3  „.-,&.-  1 s t day  Immediate C08.2  0  1  0  0  0  1  0  0  0  1  2  1  13  0  0  1  0  0  0  -  -  -  -  0  0  0  0  0  3  4  o  1 s t day  2  1  1 .  1  2nd day  5  -  2  3rd dav  0  0  0  0  —  1  0  2  0  0  -  -  -  1  -  19  -  3  -  . 0 . 2 0  1 0  n .,_ Q _  _  0  0  Remarks  1 s t dajf  None apparent  in  Laceration  0  Decapitation  2  Injuries  Abrasion e Contusion Ventral rupture  Deflated Bladder  20  i  Immediate C04.1  T y p e s of  Eye Damage  Mortality  Test number  t.  98  Damaged liver  Number of dead fish examined  |  Operculum Damage  TABLE I V  o II  H cd  cy  o  O II  VJ  B  O. SH  O o CO H II  L_S  99  CO 4.2  COS  .4  None apparent  e  Laceration  Decapitation  Ventral Rupture  Damaged Liver  Abrasion e Contusion  Deflated Bladder  Eye Damage  l  bamage  Operculum  i  u a  s  a) tt  5  1  2  3  10  0  0  0  0  0  0  0  0  0  0  2nd day  0  0  0  0  0  0  0  0  0  3rd day  3  0  1  1  1  1  2  0  0  11  0  1  1  0  0  1  8  1  1 s t day  5  1  1  2  2  1  1  0  2  2nd day  3  0  1  2  2  1  1  0  0 ..  3rd day  0  0  0  0  0  0  0  0  0  Immediate  26  0  3  4  0  5  1  15  3  1 s t day  12  0  5  7  8  5  7  0  1  2nd day  5  0  2  3  l  0  1  6  0  4  4  3rd day  3  4 4  3  l  0  1  19  1  2  5.  0  2  l  13  0  1 s t day  4  0  2  4  2  l  1  0  2nd day  3  0  1  2  2  2  0  0  0  CM CM «  3rd day  2  0  1  1  0  0  0  0  1  19  0  5  3  1  0  1  12  2  o ll  1 s t day  2  0  1  2  2  1  2  1  0  2nd day  1  0  0  1  0  0  0  0  0  3rd day  0  0  0  0  0  0  0  0  0  18  0  1  5  1  1  2  12  1  1 s t day  5  . 1  1  4  3  2  2  1  0  2nd day  1  0  0  1  0  1  0  0  0  3 r d day  1  0  0  0  0  0  0  0  1  Immediate C011.3  CQ  2  Immediate COll.2  o f I nj u r i e s  2  Immediate C011.1  Types  21  Immediate 1 s t day  Immediate CO 5 .6  Number of dead fish examined  1  Mortality  Test number  TABLE I V ( C o n t ' d )  1  V.  VD  O II  o •H  s  ct!  B P, U  o o  CO  II 12!  100  CO 20 2  Number of dead fish examined  6  2  18  1  1 s t day  1  0  0  1  1  0  0  0  0  2nd day  1  l  0  1  1  0  0  0  0  3 r d day  1  0  0  0  0  1  0  0  0  Immediate  1  2  5  0  3  2  16  0  1 s t day  24 1  0  0  1  1  1  1  0  0  2nd day  0  0  0  0  0  0  0  0  0 '  3rd day  1  0  1  1  1  1  0  0  0  Immediate  14  0  0  3  1  1  2  9  1  1st day  8  0  0  .6  0  3  4  0  1  2nd day  3  0  0  1  0  2  0  0  " 0  0  0  1  Ctj p  None Apparent  1  >J «  Abrasion e Contusion  6  bO  ct)  co a  Damaged Liver  2  01  Deflated Bladder  4  Operculum Damage  30  0  0  0  .0  1  0  20  0  2  7  0  1  1  11  1  1st day  6  0  2  5,.  •4  0  1  0  0  2nd day  1  0  0  0•  0  1  1  0  0  3 r d day  2  0  1  1  0  2  0  0  0  0  0  5  1  1  2  5  2  1  4.  0  2  0  0  1  .0  1  1  0  1  0  0  3rd day Immediate CO 6 . 5  | Decapitation e Laceration  CO 5 . 1  -  1  of I n j u r i e s  Ventral Eupture  CO 4 . 3  Types  Immediate  Mortality  Test  number  TABLE I V ( C o n t ' d )  Immediate  . 12  CO 19.3 1st d a y  6  0  2nd day  2  0. .  3rd day  1  0'  0  1  0  1  0  0  0  •Immediate  20  0  2  7  2  3  2  12  2  1st day  11  0  0  6  2  4  4  0  2  2nd day  2  0  0  2  0  0  1  0  0  3rd d a y  2  0  0  1  0  1  0  0  0  CO 19 .6  11  b  ll  101  1  • 4  0  1 s t day  4  0  1  2  0  2  2nd day  1  0  0  1  1  3rd day  0  0  0  0  17  1  2  Immediate CO 4.5  Ventral Rupture  e,, a>.  7*  1  0  0  0  0  0  0  0  0  0  0  0  0  7  0  1  0  8  1  0  0  0  0  f%  0  0  •2  2nd day  1  0  1  1  1  0  1  0  0  3rd day  0  0  0  0  0  0  0  0  0  21  • 3  2  16  0  6  2  5  "1  1 s t day  1  0  1  1  1  0  1  0  0  2nd day  1  0  0  1  0  0  0  0  0  3 r d day  2  0  0  2  1  1  0  0  0  17  1  2  6  1  4  2  8  0  1  0  0  1  0  0  0  0  0  2nd day  0  0  0  0  0  0  0  0  0  3 r d day  0  0  / 0  0  0  0  0  0  0  1  3  5  0  4  2  10  2  1st.  day  19  ,  1 s t day  7  •0  2  4  5  l  4  0  0  2nd day  2  0  2  2  1  2  .1  0  0  3 r d day  2  0  0  2  0  1  0  0  0  16  1  2  5  1  2  0  8  2  1 s t day  3  1  2  3  2  1  2  0  0  2nd day  2  0  1  2  1  2  0  0  0  3rd day  ?  0  1  1  2  2  0  0  0  Immediate CO 6 . 6  •H U) U  2  Immediate CO 5 , 1  cd  2  Immediate CO 5 . 3  cd -p  Ci O  -H -P  1 s t day  Immediate CO 5 . 2  O  .  L__—____  8  cl •H -P  ^one Apparent  2  Abrasion e Contusion  1  cd  Damaged Liver  19  a) a  Deflated Bladder  Immediate  Operculum Damage  Number of dead fish examined  CO 4.4  Typ es o f I n j u r i e s  Mortality  Uest number  TABLE I V ( C o n t ' d )  CO  U cd  a  4)  a a  •H  i—i H  O II cd  cy  cn to o II  b o o  CO II  102  TABLE I V ( C o n t ' d )  Immediate CO 4.6  CO 5.4  .7  None Apparent  Laceration  Decapitation  Ventral Rupture  Abrasion e Contusion  Deflated Bladder  Eye Damage  Operculum Damage  Damaged Liver 1  2  1  6  2 <  1  1  0  0  3  0  "•' 0  0  0  2nd day  6  0  2  5  4 4  3rd day  1  0  0  0  1  0  0  0  0  Immediate  18  0  1  2  0  0  0  15  1  1 s t day  15  0  4'  . 13  7  9  2  0  1  2 nd day  4  0  0  3  4  4  0  0  0  3rd day  5 17  0  2  3  3  3  1  0  1  1  1  4  0  0  1  9  2  1 s t day  3  0  1  2  2  1  0  0  1  2nd day  0  0  0  0  0  0  0  0  0  3rd day  3  0  2  3  3  3  1  0  0  22  0  1  8  0  3  1  13  1  1st day  2  0  0  . 2  2  2  2  1  0  2nd d a y  0  0  0  0  0  0  0  0  0  CM fO  3rd day  0  0  0  0  0  0  0  0  0  O  38  1  2  19  0  2  0  16  1  II  1 s t day  2  0  0  2  1  1  1  0  0  cy  2nd day  2  0  0  2  1  1  0  0  0  3rd day  0  0  0  0  0  0  0  0  0  23  2  6  11  0  3  2  8  1  1 s t day  2  0  1  2  1  1  0  0  0  2nd day  1  0  0  1  0  0  0  0  0  3rd day  1  0  0  1  1  1  1  0  0  22  0  3  10 '.  1  1  3  10  1  1 s t day  5  0  1  4  0  2  1  0  0  2nd day  1  0  0  l  0  0  0  0  0  3rd day  1  1  0  l  1  1  1  0  0  Immediate C012 .8  6  0  Immediate C012  1  10  Immediate C012.6  2  U a  1 s t day  Immediate C012 .5  16  CO  10  Immediate CO 6 . 2  Uumber of dead fish examined  Mortality  Eest number  Types of I n j u r i e s  fl •rl  a  ON  to  o II  b  o o CO H  CO  103  jaceration  )ecapitation  3  0  0  2  0  0  1  0  1  . 2 n d day  3  0  0  2  0  1  1  0  0  3 r d day  2  0  0  2  0  1  1  0  0  Immediate  19  0  1  7  1  4  3  7  1  1 s t day  17  0  1  9  1  l  2  0  5  2nd day  3  0  0  1  0  0  0  0  0  3 r d day  1  0  0  1  0  0  0  0  0  11  0  1  4  1  1  2  2  2  1 s t day  2  0  0  l  0  1  0  0  0  2nd day  2  0  0  1  0  1  0  0  1  5  0  0  2  0  4  2  0  0  27  0  4  9  1  5  3  14  1  6  0  2  2  0  2  1  0  1  2nd day  1  0  0  0  0  1  1  0  0  3 r d day  2  0  o"  0  0  1  1  0  0  ImmediateJ  2  0  0  2  0  0  0  0  0  1 s t . day  2  0  0  2  1  0  0  0  0  2nd day  1  0  0  0  0  0  0  0  1  3rd day  1  0  0  0  0  0  0  0  1  0)  Immediate  1  0  0  1  0  cd H  1 s t day  4  0  1  2  JL-.  ;  U fl  fl o  0  0  0  0  1.,.  1 .  0  0  2nd day  0  0  0  0  0  0  0  0  3rd day  0  0  0  0  0  o  0  n — o _  0...,  in Penstock  1  :  3  temarks  1  1 s t day  03  a -p .  tfone Apparent  6  O -r) •rl 03  Jentral lupture  4  Damaged Miver  2  jSye  1  pamage  Deflated 31adder  pperculum  8  Immediate 1 s t day C020«5  C012.2  A fl o  1  3 r d day  C012.1  CO  0  Immediate C020.3  of Injuries  pamage  C019.5  Types  21  Immediate C019.1  Slumber of dead rish examined  Mortality  Test number  TABLE I V ( C o n t ' d )  u < •H  -4II  cy  fl O  )2!  104  None Apparent  9  2  1 s t day  5  0  1  2  1  1  1  0  0  2nd day  1  0  0  1  0  0  1  0  0 j  3rd day  1  0  0  0  0  0  1  0  0  Immediate  16  0  2  4  2  4  3  10  3  1 s t day  20  0  3  3  1  2nd day  3  0  0  1  0  1  3 r d day  4  0  0  2  0  17  0  1  0  1 s t day  6  0  1  2nd day  2  0  3rd day  4 12  1  0  0  2  1  0  l  0  1  2  12  l  1  1  2  2  0  1  0  0  1  0  0  0  0  0  0  0  3  0  0  1  0  2  0  0  0  1  9  0  o  1  3  1  1  3  0  0  0  0  1  0  2  2  0  0  0  0  1  0  2  2  0  0  18  0  1  4  2  5  2  10  0  1 s t day  0  0  0  0  0  0  0  o  0  2nd day  2  0  0  0  0  2  1  0  0  3 r d day  3  0  0  0  0  3  1  0  0  16  0  0  16  0  0  0  0  0  1st day  3  0  1  2  1  1  1  0  1  2nd day  3  1  1  2  1  j  1  1  0  1  3rd day  1  0  o.  0  1  1  0  0  0  18  0  0  0__  0  1 s t day  1  0  0  0  0  2nd day  1 :  0 0  0  0  3rd day  0  0  0  o  1 s t day  4 |  2nd day  3  3rd day  3  Immediate C012.3  Immediate C012  .4  Damaged piver  7„  Immediate C020.6  Eye Damage  0  Immediate CO 20.4  tecapitation  1  1 entral lupture  1  Immediate C020.S  ^brasion e Contusion  1  [Deflated gladder 1  JDamage  3  Pperculum  jaceration  C019.4  Number of dead fish examined  1  Immediate C016  Types of I n j u r i e s  15  Mortality  Test number  J  TABLE I V ( C o n t ' d )  |  I  18  0  0 | 0  1  0  0  i  i  1  0  0  0 ]  0 \  i  ]  1  | }  I  1 1  1  0  0  105  i —  Remarks  None Apparent  Laceration  Ventral Rupture  Ds capitation  Damaged Liver  Abrasion e Contusion  Deflated Bladder 12  2  6  4  11  2  ' 1 s t day  4  0  0  1  1  3  1  0  0  2nd day  0  0  0  0  0  0  0  0  0  3rd day  2  0  0  0  0  0  0  0  2  30  0  6  20  3  18  9  3  0  1 s t day  5  1  1  0  0  0  0  1  2  2nd day  0  0  0  0  0  0  0  0  0  3rd day  2  •0  0  0  0  0  0  0  2  0 8  0  5 0  2.5. 8  JL 0  7  1 s t day  7  2  0  0  2nd day  1  0  0  0  .0  0  •0  0  1  3rd day  2  0  •o  1  0  0  0  0  1  O O  26  0  3  20  3  11  7  2  0  cn  1 s t day  3  0  2  1  0  0  0  0  0  fe  2nd day  0'  0  0  0  0  0  0  0  0  3rd day  3  0  0  2!  0  0  0  0  1  Immediate G023.1  Eye Damage  Operculum Damage  2  Immediate 0022.2  of I n j u r i e s  0  Immediate C023.2  Types  25  Immediate C022.1  Number of dead fish examined  Mortality-  Test number  TABLE I V ( C o n t ' d )  0 0 C\i H  II  fe  4  ll  106  0  0  0  0  1 s t day  1  0  0  0  0  0  0  0  1  2nd d a y  3  0  0  1  0  0  0  0  2  3rd day  7  -  -  -  -  -  -  -  -  Immediate  0  0  0  0  0  0  0  0  0  1 s t day  2  0  0  .2  0  0  0  0  0  2nd day  3  0  0  0  0  1  0  0  ?  3rd day  3  _  _  _  _  Immediate  0  0  0  0  0  0  0  0  n  1 s t day  3  0  1  1  2  1  0  0  0  2nd day  3  0  0  0  0  0  0  n  3rd d a y  2  0  1  1  0  0.  1'  0  Immediate  0  0  0  0  0  0  0  0  0  1 s t day  7  _  _  2nd day  2  —  tfone Apparent  0  s Immediate  ,  _  3  -  -  —  Immediate  0  0  0  0  0  0  0  0  0  1st day  6  2nd day  4  3rd day  l  -.  -  -  -  -  —  .  1  mo  —  -  Remarks  Laceration  Decapitation  0  u  0  Ventral Rupture  0  Ct)  3rd day  C026 .2  Abrasion e Contusion  0  •rl r-l  Damaged Liver  0  +»  Pish were introduced below control gate  CO 26 . 1  Deflated Bladder  C013.1  of I n j u r i e s  Kye Damage  C07.2  Types  Operculum Damage  C07.1  TYPES OP INJURIES OP DEAD P I S H  Number of dead fish examined  Test number  TABLE V  107  C026 .3  207.3  207.4  Damaged Liver  Abrasion e Contusion  0  0  0  0  1  0  0  0  1 s t day  2  0  2  1  1  1  0  0  0  2  0  1  0  0  1  •rl -P Cfl,  a Cfl 0 CO  R  O -rl -P  cfl  None Apparent  0  Ventral Rupture  Deflated Bladder  Eye Damage  lumber of dead 'ish examined  fl  1  2nd day  C013.3  of I n j u r i e s  )perculum Damage  0013 .2  Types  Immediate  Mortality  Test  number  TABLE V ( C o n t ' d )  u 4)  0 Hi  4  1'  2  3rd day  5  1  0  2  0  1  0  0  2  Immediate  0  0  0  0  0  0  0  0  0  1 s t day  3  1  1  2  1  0  0  0  1  2nd day  5  0  1  3  0  1  1  0  1  3rd day  2  1  2  2  1  2  1  0  0  Immediate  0  0  0  0  0  0  0  0  0  0  0  0  0  0  _  _  _  1 s t day  3  2nd day  0  0  0  0  3rd day  1  -  -  -  [mmediate  1  0  0  1 s t day  3  0  2nd day  5  3rd day  _  ~  -  1  0  0  0  0  0  2  0  0  2  0  0  1  0  1  2  1  0  -  -  -  -  -  1  10  -  0  -  3  [mmediate  0  0  0  0  0  0  0  0  0  1 s t day  1  0  0  1  0  0  0  0  0  2nd day  7  1  1  0  0  3rd day  12  2  ~  -  108 TABLE V I  CONTROL PISH Total mortality d u r i n g 3 days . observat  No of f i s h s e t up  Date  set  up  May  7,  1964  80  1  May  8,  1964  80  1  May  11,  1964  80  2  May  12,  1964  80  1  May  13,  1964  80  2  May  19,  1964  80  1  May  20,  1964  80  2  May  22,  1964  80  2  May  23,  1964  80  4  May  26,  1964  80  3  No c o n t r o l f i s h P i s h to  were  be t e s t e d  P i s h - t o be t e s t e d testing  Pish to.be  tested  in  the  testing  on May 5,  b e f o r e "the  day.  up f o r t h e  on May 4 were  n e t s 4 days b e f o r e  testing  set  days.  one t a n k had not  observed i n . that  separated day.  were  were  set  set  and s e t  up i n 6  T o t a l m o r t a l i t y was up i n 6 b a s k e t s was  4  Negligible  6. nylon 1.  days  1.  up 2 days b e f o r e  was o b s e r v e d .  been u s e d .  tank.  on May 4 » 5 and  Total mortality  on May 6 ,  No m o r t a l i t y  test  the  In addition, mortality  fish  was  ON  O  i  o  ON •PH H  JSr...  .  ro ro  VJl  ON ON M -PH  .  Cfl .  CO  .  ro  «  H  «  f  • •  -  ro  1  H  5N tt >» ^  15 £ r-> tO  O  O  «  & £ 1  r-  g  r->  1  W •  O  O  «  0  •P-  •  .  vji  vn  h £ H" F"  H H  •F-  w  e  VJI  o  VJl  VJl  VJl  VJl  VJI  00  CO  VJI  VJI  CO CO COCO CO VJl -p— w -P- -P-  v j i  VJI  O'  O  1 1  CO O  —0  CO CO O  VO  vo  -o -0  o  o  o  O  O  o  o  o  O  O  H -  c+  W  W  W  -0  -0  CO  3  ct  IT c+  W  W  CO CO CO  VO  CO CO  o  vo  o  W  CQ •3  DATE  o  §  o  HI 1-3 M O  o DISCHARGE c f s SUCTION AT ENTRY i n . H g AVERAGE LENGTH DP PISH mm  w w COCO CO  COCO CO O O  o  —0 CO  — 0 CO CO COCO —J vo O O O O vo  H  o  o  o  o  IO  H  O  O  O  NUMBER 0 i ' PISH INJECTED ALIVE  o  O  M  O  O  O  HI  DEAD  CO  « c3  MISSING  w rS >  o  o  w  w  H>  O  H  O  vji  ro  ON  -<j w  ro  4>  •P-  ro  w  M  H  W  w  -0  vji  1st  H 1-3  DAY O  w  t-3 tri  O  W  O  H  •p-  O  H  p  ro  -p-  o  VJI  ro ^ 3  v n  -P-  >->  w  M M ro ro  !  on trap.  Pish clumped  c+  4 <  .  fl)  to  co 3*  CO  fl 4  hrj  c * F c + CO S ffl  P-  0  P3  c + CD >T c _ i . M CD fD CO O O c + H> ctF - & CO Cjj}, F ctCB  Q  g  601  ro  o  (-• H  ro  H*  1  1  O -P-  •_,  '  H  fa-  CU  3  ct  4  «<  «  Q  CO tf H ' •'I C i> (J S H ' CJ c + H c + CO c t C» O O 3" F O C- ft F 3 F - C3 4 0 c t O iB U -  3  fo c+  tr a  K  fjq  «•  o  3rd  vo  ro  vn  H o re  c+  c+ O  O c t CB H" fl ft CD  DAY  TOTAL MORTALITY PERCENTAGE  ro -p-  ro  AVERAGE .  VJl  W  C 4 fl  «  -0  r- r-  1  O  VJl  •  H H  3  r-  h-  VJl  W  Co Co  1  ro  CU  ro  CO C T F c t O CO CD |T . tt> CO O fl o  < 3  c+  4 O  o  W  C»  ft  3  t)  ww  2 n d DAY  >  o  CO  *d  o  ro  a  V J lV J l V J l  VJl VJI rl-  rB  TIME  «  VJI  ro w  NUMBER  1  VJl  -o  CO  •  VJl  co O  CO  6°. tt ^  o -o TEST •i w i  VJl  o  o  o o o -o ^ •  vjl  o  CO  c o  -p- ro O O  w w w CO CO  o  &  c o  •p-  1  -^3  VJI  o o  O -PO vji  I  o  vji  o o  H"  O  v j i  00  • •  1  -p-  i  w  VJl  ON ON  VJI  o  v>)  •  a  w w w CO —0 CO  &\  w  * vji  -p-  a  o o  « « t)s  16 .00  vji  •  ,16 .10  10.05 VJl  * vn  C15  «  C16  CO 26 . vji  o o  W  CO  tr<  >  13  Tj  o  01  (71  o  o  ro  p  o  CM  V  o  cn ^  9  9  (J  I  10 °  i  oi  o>  *  •>>  Ul  O  ro _g_ ^  ro ro  ro ro  J> ro ro  ro ro  Ol  Ol  Ol  oi  en (J) in «  4> 4»  ro ui  j> ro oi  cn  b  cn  o  01 O l  2 °o o I  I  I  I  In  ro  ro ui  in  ro  ro  ro  ro  ro  ro  Ul  * Ul  * Ul  ft Ul  *  j>  * Ul  o o  o o  o  o  o  « <J>4>> ro ro  4>  O  o  en  cn  IP  p  o  cn  o  o  o  en  o O  o> O o  •jt  *  °  cn  at  ro ui  I I  6 o  b  m  S -M  co  *  < o° •  in  -si cn  o o  00  ro CM N oi  o o  en o  I I  cn  ro —  ro ro  o «  cn ^i ro  CM  Ol  ui  cn  cn  Ul  Ul  number  Ol  Discharge cfs Penstock pressure psi Draft tube pressure in. of Hg  Total head ft. of water T o r q u e Ib-ft  cn  R.P.M.  I I  ro  ftir quantity lb/min  I I  Air in percent of discharge  ui  ro ro cn  ro io  — ^  Horse power output Horse power input  ui  ro ro ro cn  A  Ol  ro ro in  ui ui cu Ol CD CO p en  ° cn  oi  oi  pressure psi  I I  ro  o cn  Efficiency Sigma  CD  ro  cn fo  cn en ro ©  - a  Alive  r° ro  —  u>  ro co  Dead  cn  ro oi Ul  03  CD  ro  —  ui  O  O  O  ^  to  CD  O  O  ro .»  J  ro  -  o  CM  ro  o  01  —  Oi  O  Oi  o  - Z, •*  o  o  o  o  o  -  -  CM  cn  *>  ro  —  -  o  o  o  2nd  o  o  o  o  o  o  o  O  -  O  O  o  O  O  o  o  3 r d .day  CM  CM  fO  *  O  CM  cn m * o  * ro  ro. —  ro ro  ro ro  O  CM  ro  O  ro  ro  cn  H  -M  CM  CM  io — t»  o  to  -  w  ro  ro  O  o  <o  CM  w  -  1st  I I I  o  cn  CM  o  CD  §  F  O O  O  z  y.  cf  day  -day  Total •mortality P e r c e ntage Average  ~CL~%—r4  > c  ZD co x  Missing  ro  01  ro  Q  en  JO  Number of fish injected  o  O  a  Average length m.m  CO CD  o  —  X -<  O  Air meter reading in.of water  CD  o  m  Time  S u c t i o n head ft. o f water  o o o  > CD  Date  o  01  a  6 •  on  i-i  -10-.  b p  CM  oi  cn  Test  Air  I  ui * ro —  Ul  I  I I  I  CM  o o o  e * * *  CM  —  en  in  Ol ro  in Cn en  0 1  III  b o  CM CM  01  o o  cn  —  ro~  -  o  ui ui ro ro  4>  cn cn  Ol ro  io <o —  b  S cn  5  ro  cn  O O P *  o  !» < &  ro in  0  n  4>  I  ui ro  -J CD  *  I  cn ro  ro CM O O  »  p fo  cn ro  to  2 9 2 2 2  <o  •o  Ol  4>  io  JI  cn  Ui  *  o  I  co  Ol  en  ro rb J> * ui ui  P ro roco ro ui  --i o  Ji  cn  ro CD  o ro ro  8 fi O l  * * * *  I I I  ID  W  ro ro ui ui  ro * ui  Ol  5?.  ro ui  ro  o i  1  X>  s s  ^  ro ui  U  I  ro  1  o>  *  ro  ro qg  en  ro  co  "ro  U  I  ro  0  oi  I  o ro  ° i Cn cn  *  o  .co  CM  j> ^ Ul  o o  O o Ojp  ro  Ol  j> fo ui  cn  co  o  o  cn  ro  ca  -  cn o o  co  OJ  j> ro  S  cn  ro  o  1  cn  6 b H  ro in  °  cn  * * * ro  o V  00  -  =  01  in <n  CO CD ca o i  o •  A  O ro  o  5-  S  co  REMARKS  o  30  o o  o n  o  o  =  = .  =T  £ P  P  2  $ < to  ?  s  «  5  Ol  01  b  b  Ol 4k  Ol '4k  Ol 4.  Ol *  oi *  oi  yi  oi  oi  o  o  o  oi O  p  o  o  o  o  ro ro  oi  o  b  03 01  ro  ro  ro  ro  p  ro  oi  ro  ro  ro  ro  w  u  01  'enstodc pressure psi Draft tube pressun  y  p  Ol  P  0  b o b Ol OJ Ol * * *  Discharge cfs  m 9  Ul  ui  Ul  Ul  Ul  Ul  o  b  b  0  0  0  b  0  OS 4k  00 4k  00 4k  00 .fk  00 Ul  00 Ul  Torque lb.fl  01 ro 00 00 O O O O  — 09 O O  ui — 09 09 O O O O  ro 00 O O  R.P.M.  P  *  i>  0 0  bo  ro ro  oo oo oi  ro ro  P  *  in. of Hg Suction heod ft. of water Totol head ft.of water  Q  00  ro ro  0>  Ol  P  to ro  Time  Ul OD Ol  Ol  P  o  20  ol  ro  ro ro  ot  2 jS 2 -5  * 8 6 m ui ui co do bo  8  Ol  ro  o  M  9 ro  01  oi *  ro  ro ro  W • 01  $ b  8 Test number o> •*» o> P 2- 5 Date  0  09 O O  P  01  2 P ft  —  I  6 8  9>  b  OD Q  ro  ro  8  ao  b  0B O  o  0  01  00 O  o o  8  ao  b  03 4k  . 0> °"  2; 5 A  yi OD 4»  82.7  84.5 QD O O  ro ro  01  *5  842  84-5 P  o  8  a>  •S -s i  84.2  84.5  gg Q  ro  W O !  b o o  00 O O ro  5.82 20.2  5:83 20.2  5.81 20.2  5.89 20.2  o<  P  8  a> i  5 «* s a a Ul  o  o  i»  p  *  p  1  1  I I I  1  1  1  1  .1.1.1-1  I I I  1  oi  p  Ol ro 09 S •">  Ol fo 09  01 ro 00 Ct 09  I I I  ro 00  ro 09  ro to  ro 00  01 Ol ro 00 0> 09  01 01 Ol CM ro ro 09 .09 -4 N O *  oi 01 ~ 09 . 01 ^  P  P  Ol  (0  O 01 to  Oi eo  01  01 -~i  01 <J>  01 -4  OJ : Ol s e  00  00  00  00  0D  CO  0  0  0  0  0  0  00 O  o> ro  o>  oi  -  u<  ^ 0  ui -  CD —  CD ol  Ul 10  Ul 0»  Ul Ct  0> Ol  oi 4k  Alive  — 09  <0  — VD  ro ' T O -  ro -  — <o  — -4  ro -  ro^ 01  a> —  ro w  0Dead  O  O  O  O  OD  0  0  0  p  ro  ro  ci  ro  -  0"  4>  p  *  0 1  m  —  —  ro  o> —  01  ro  —  —  88  -  2  rjj  * Ol  p.  —  f3  01  o  Ul  <J>  0  _  0  ro ui  ro ro  N  as  J> ID 00  w  ro ->)  01 t"  01 "  ro M  •  Ol 01  O Ul tO  O  O Ul  Ol s  ^  o> b  P  Ul <0  Ul *  OJ i) Ul  OJ -i  Oi -4  Oi 01  (0  09 O  00 O  03 O  ro  t  01  Z  co  Horse power input Efficiency  y  ro ct  m  Sigma Average lengfh mm Number of tish injected  ~n CO X  Missing 1st day  a>  -S  2nd day  J>  w ro  -  —  oi  —  ro  »  ro 00  p  01  4>> 01  ro Ul  OJ  ^1  Total mortality  ro 4>  01 o,  o>  ui 0)  01 -  « oi  Percentage  —  a,  OJ 09  3rd. day  *<  Average  Low suction  with air  in draft  tube  •8  i s  0 0 z 0 O  output  Q  01 ro  : '  IO  00 09 O O  O  0  •*  O Ul to  0  r o Q i O o i  1  0  >  H  Air in percent of discharge Horse power  2 8-3 33.0 858 0 59  u  1 1  287 33.0 87.0 059  <o  1  1  334 86 8 0.59  v  1 1  -< 0  r 0  Mr meter reading in. of water Air quantity lb/min M r pressure psi  334 86- 9 0.59  m  1 1  290  ro 09  p  29.0 33.4 86 9 0:59  ro 00  ui  290 33.3 87.1 0.59  ro to  0  o<  —  III  $  jjl  P  1  g +  5.87 202  s  n—n -  b o o  5.86 20.2  is  2  o  REMARKS  O J3  H > H  CD  5  to Ul  Ol  6  g  o  cn  cn 5  5 5  £  5  jo  cn CO  cn b  CO  CD  CD O O  CD O O  ro  o ro  O  ro  CO  ro  '•si CO  o o o ro  Ul  CO  P>  to  to  CD O O  CD  p  ro  8 P  ro  O  CD  M>  oi S  O  o  cn Ul  cn j>  cn  J>  Tost number  *'  Dote  $ V  to cn  Penstock pressure psi Draft tube pressure in.of Hg Suction head X f l of water -< Totol head ft. of woter 33  in  in  cn  CM  CM  cn  p  M>  CM  CO  10  Ul O  Ul O  CD  CO  CO  01 CO  o o  0) CO  o o  m O  Ul  o  09  CD  cn  Ul -J  9>  •8  CD  CO  o  8  1  1  1  i  1  1  1  1  1  !  1  O  fo ro  o fo ro  P  P  P ro to  1  1  1  1  i  1  io  to  ro  ro  9  <o  fo  1  1  1  1  1  ro  ro  ro  to  IO  ro so o  ro to  ro  CO CD Ol  co  1 ro  CM CM  CD  6 01  Ol IM  ro  to CD  6  CO  <0  cu  CM  CM M>  CM  S  ?  *  cn CD  ro cn  o Ol  to ot -4  OB  O  cn Ol  CD  P  o  bt  CD  p  Ol  -4 CO  ro  Ol  to  ro  OJ  CM  Ol  cn  O) Ul  CD  OB  ro  Ul  o  <0  et ro  O  cn  ro i  r°  - - ro o - -  Ol  ro  8  cn  cn  <o  01  CM  Ol  cn  i  o  £  01 cn  o  io  cb  u>  o  o  CD O  4>  *  <o  en  4>  Ul  OB Ul  o  5  p CM  (0 Ol  c  IB  P Ol  to  in  <p  CM  CM  V  Ol Ul  CD  CD  Ul  r>i  p  O  bt o  M>  CM  OJ  to  to  CM  CM  09  CM  03  CO O  eo O  Ul  01  at ro  CO  01  Ot o  cn -J  <o  j>  ro O  ro  ro  ro  O  M>  i  1  t to  O  o  O  •0  CO  -  01  ot  -  CM  to  ro  -  (0  ro ro  to ro  ro  ro  a  ro  to  ro  ro  IO  CM  3  ot  09 o  to  2  o  CM  o  -  ?  p  CO  ro  cn  CM  ro  01  10 CM  Ot  t  *.  S "§•  1 sa  !  5' 3  o o z g —i  o z  CO  Efficiency y.  CM  cn -M  to Ul  <J> CM  o t Ot  Slqmo cf* Average length mm Number of f i s h Inlected  2}  Alive  CO X  Dead Missing  - o - -  2nd day  ro  to  Total mortality  CM  OJ  Ul  o  CO  M>  o  1st day  3rd day  3 a .  =  —1 >  r-  —1 -<  Percentage Average  CM M>  a  a _. *<  8  CO O  -  *  01  CM  o  »  CO  CM  o  JB C  CO  cn  Horse power input  to  ro  O  CM  CM  o  •6.  JS  •a  U<  Air meterreoding In. of water Air pressure psi Air quantity Ib/rnln. Air in percent of discharge  O  to cn  l~  R.P. M.  Horsepower output  CO  o o>  CD  c  eo 10  09  O cr  CD  ro  Ul  cn  Ol ~  S" Ol  cn  >  Torque Ib.ft.  Q  I  ro ro  O  o  -M  o  3 O  a 3/  z  I  -  m  Discharge cfs  in  T-  I  Time  to Ot  b  C D  cn  b  cn  Ul  >  OJ  2 Ol  J>  ffi  to ro  Ul Ol  o  o>  M>  CD  in  O  ro  CO  cn  s  CM  to t>  '"'Vi" o  b  CM  cn  Ul  »  ro  o  <P  Ul  CM  8  OJ  cn  ui  -  Ul  tO  cn  in  Ol  S  oi  b  oi  o  cn  o  cn  Ol  CJ  8  b  oi  <0  at  Ul J*  cn  in  Ol  2  <o  cn  Ul  M>  8 8  96100  m  in  CD Ul Ul  o ro  In cn  tn  CD *  8  V  ui  to  CD  io pi  S 2  t 9  P ot  to  cn  o  o  C05.I  at  Ul  o  C04.4  o  cn  o  CO 4-5  ui u  G05.3  0> 01  C06.I  o o Ot  REMARKS  o N  o o K P  g Q  o Q  so ui  to _  8 8 8 8 8 8 8 | |  ro  ro 5  *  o  a  Oi  o  A  H  M  K  4o » < IO < 2  ills I  I  5  ro ui  co ro  fo  cn  cn  o oi cn in cn cn  -M ro ^ ro^  -x  Q P  8 8 8 0> O l •*»  N  cn  -M  ro  i  cn  cn  ui  *  P" $— CsM *  N o»  IJI  s % £  "*  oi  -  ro yj  oi  H  cn  CJ  ro  ro yi  oi  cn ro  °>  (5  oi  cn O l cn M> — <o  cn  pi  N  t  o p  Ol  0 (0 io CO io -M <^  oi  G Q  8 * £  o cn  Ol  o p B  5 J> ift "* 5c n  cn ov ro r°  m *  Ol  S 8 cn  cn  ro 01  oi  5  !"  oi  cn  number CD  r~ m  Dote Time  psi Draft tube pressure in. of  ro  4> IO  ro ro ro A -t> !r»  •ft  *  Ol  oi a, cn  Ol  —  § 8 8  -I  O  o cn  O  o  P  -I  -M  ->l  ro co  ro ro ro co co P>  -j  a  ic w  " w  ^  CM  io <0 CD CP 00 CO cn £ cn J>  ro  O  o>  ~J oi co ^  •>! CM  © o  cn ~ 0  1  o o  o o  3  g o  3  o o  P  o o  3  co  -M  Ol  to  °* *  p  cn  w  w  W  CO CO CO CO CO  3  p  CO  cn  j>O CO CO CO C  o o  ro  U>  A  CD CD CO CD Ol  ro  cn cn cn  J> * 4> J>  5 8 5 co  J» 4> 4> 4> oi  ro ro o o  P  ro ro P P cn t> ro ro  s  or  H  —  o,  03  cn  ro ro  4>  -M -4 -4 -O. y 3 A M> oi cn cn 9 P P P P  —  *  -  p  O  p  co  cn  CO  ,o  Q  O  P co  cn  P  P P Ol Ol ro —  co  co  S  Oi  92  p  cn  00 COQ Q O  o  cn  A  2  co co  P  o  ro  oi P  ro ro  CM CM 4> O l CM — CO CO CD  P  P  P  P  P  o  co co oo o P P  00 CD CD CO  O CD CO CO 00 CO CO C P P  cn oi  cn cn ao oi  P  P  H *. 9  cn  ro P  cn a>  I  -  ro  cn ro  P  P  o-  J>  at  g «  CM  ro  CM —  ro  oi  w  ro  ro  cn  -  ro  CM CM  CM CM  ro  co  —  —  CM 10  4* ro ui cn  4>  p  p  ui  ui  J>  ro ro  ro  ^ ro co fo  CM  ro  _  ui  —  P  P  o  cn  ui  cn  -i  co cn  ro o"  cn  o  s =• -*  O  3  cn  1st  day  2nd day  o a «<  3 o  3rd  ro ^  oi ro  A CM  Total mortality  w ui  oi ro ro a)  w at  m 33  >  J> Q  O  CD  33  >  —I -<  o  day  Percentage  —i  33  Average  p  o  Dead  CH —  o  •  CO  W  oi ui ro cn 4^ oo  *  "D  Alive  P  ro ui  5  injected  P  ** cn  o  DUD  —  OI  «z m  Number of fish  —  ro * co o  -  3) CD  Average length  *  ro to  3 S. " i  o  Sigma tf  P  ro * to u> w —  S  m  '/.  o  -y— ID 13 J>  Efficiency  ro  ui o  (Z  CO  -  ro  -< o o o o  Horse power input  -  ro o  33  Missing  P  ro —  CM  Horsepower output  Ul  Ul  ro  +  —  cn  P  cn co o> oi M> ©  co fo  -M  CM  P  cn  Ui  o o  cn  a> O  Ul  Air meterreoding in. of water  cn  CM CM CO -4 CO 0 CO  cn CM CM cn CM 4^  R.P. M.  Air in percent of discharge  ro P  -<  3) > (Z  Air quantity lb / rnin.  CM CM CM CM CO CO CO U> cn  £11  P  cn  CM O l Ol 4> *• CM CM CM CM CM CM CM 03 •>! Ul Ul eo  ? 2 8ffi°>  Torque Ib.ft.  P  P oi  ro ro co r4  MX. * P  O  b  Total head ft. of water  Air pressure psi  P 9 CM CM ro ro co  O  ro  cn  ro  C O C O C O CQO O O O  O  ?  CO  Hg  Suction head ft. of water  fo  CD CO CO CO CO 4> ••>  CO CO 03 CO CM CM Ol O l  cn  o,  Ol Ol M> 4> J> ID IO * O O 10 U> t o  ro ro co cp  ro ro 9 P  £  x  Discharge cfs Penstock pressure  01  co  Test  CO  3, •  REMARKS  m m O  8 8 2  2  1 i  ?  P  P 5  is at  H cn  b  b  2 25» * *  1.25  1.25  ro  co  »  01  b  o <0  Ol  ro 01 Ul  b  Ul  1  1  1  1  1 1 1 1 1 1 1 1  * *  b  Ul  11 11 1 1 1 ' 1  1  '  '  1 1 1 1 1 1  11 1 11 1  1  1  1  1  37.5  w  w  1  1  37. 5 ce o  co o  0>  01  ro  4>  1  1  *  Ul CO  N  O  o, OD O  >l 10  P  i ro  1  ro  5! — S P g 2 v 5 « £  c*  «  *  a  2 • S Ot  b  w  —  -«J  5!  I  O  1 1 1 1 11 1 1 1 1 11 11 1  1  ?a  ro  & c P> OD Ul  ro o — ro co  ro  oi  w  *  ro  water  Torque  Ib.ft.  ° 1  ro ro  1  Air  Air 1  1  b  quantity  lb /  1  £  Oi  b Ol 4>  Horse power Input Efficiency Siqma Average  Ol  IU  ro  Alive Dead  p  ro -  —  Missing  CO  — o  -  1st  day  -  o  P  b  2nd  day  o  3rd  day  oi  ro  o  ro o  N  cn  at  Ol w  Ol  4k ro  a> at Tat otal  IM  ro to  at  co  A  *  01 ro  4> 01 Ol o o o  No  runner.  I ? 9  •  H -<  O  O  o o H O CO  o  ro  31  4k  ro to  o  O  CO X  Ol Ol  ~  —  4k Ol  r  c m  c  70  m  4k  o  O  o.  TO  length  W 4k  —  ro  H >  Inlected  o  Ol  > a  CD  Number of f i s h  -  4k  o  70  cf  ro o  o  at  yi  O  o  IM  w  discharge  Horsepower output  —  b  min.  in percent of  -< o  r-  pressure psi  Air  1  X  mm  ro ro <o u>  —  ft. o f  In. of w a t e r  11  4k (0  o  head  R . P . M.  S i i  io  head  f t of water Total  co  Ho  Air meterreoding  1  I  Ul 4k  o  P I  Ol 10  01 01 ro 4k  o  in.of  io Ul » CO CD 00 g o o o o o  is sj  -M 0)  o  S B  °  oi CD  psi  O  °  p  OD O  ro  -  00 C <o  O  —  -  GO CO r- •»> P b  CO  o>  ro  3 =• *. *  OD CD O o  •  a  ro  o  p  Suction  Ol o "J Ol Ul 4k  4k ro 10 o  CD 03 ro o b in 01 °u. (0 u>  Draft tube pressure  Ol Ol o p * Ol Ol S 0> oi ro  P  Ul ro ro (0 10 -«l 4k  Ul Ul  00  <o  o  =  GO 00  oi  8  SO o  ui ro  CU  Penstock pressure  H o  b b  x  cfs  H o  01  Ol ro ro  r~ m  Time  w  —  ro ui o  Ul ro  b  w  Ol  at  >  CD  at at at Discharge  Ol  oi oi  S Ol 10 - J ro.ro o o o o  pi pi £ M O W  O O O  w  p) Ol o o  number  Dote  U  ro  -5 bo  Test  ro jo  ro  b  rCD  o  1  -  Ol  Ul Ol  Ul -  1  I  * *  at a>  1  » N  o  O  Ol o  Percentage  JO  >  -j  z a • o «< 3  o  CD  —1  >  70  5 > a s <<  mortality  ro  o ~u m  —1  O  70  •<  Average  REMARKS  CO  m m a  

Cite

Citation Scheme:

    

Usage Statistics

Country Views Downloads
China 23 36
United States 4 0
Japan 3 0
Russia 1 0
Canada 1 0
City Views Downloads
Beijing 18 0
Shenzhen 5 36
Ashburn 3 0
Tokyo 3 0
Unknown 2 0
Wilmington 1 0

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}
Download Stats

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0050628/manifest

Comment

Related Items