Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Effect of compressed air on mortality of fish passing through a model turbine. Prempridi, Thamrong 1964-10-04

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
831-UBC_1964_A7 P68.pdf [ 17.88MB ]
Metadata
JSON: 831-1.0050628.json
JSON-LD: 831-1.0050628-ld.json
RDF/XML (Pretty): 831-1.0050628-rdf.xml
RDF/JSON: 831-1.0050628-rdf.json
Turtle: 831-1.0050628-turtle.txt
N-Triples: 831-1.0050628-rdf-ntriples.txt
Original Record: 831-1.0050628-source.json
Full Text
831-1.0050628-fulltext.txt
Citation
831-1.0050628.ris

Full Text

EFFECT OF CO LIP EE SS ED AIR ON MORTALITY OF FISH PASSING THROUGH A MODEL TURBINE by THAMRONG PREMPRIDI B.Sc.(Eng.), A .C.G.I-., Imperial College of Science and Technology, University of London, England, 1958 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE i n the Department of C i v i l Engineering We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA September, 1964 ' I n p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t of the r e q u i r e m e n t s f o r an advanced degree at the U n i v e r s i t y of B r i t i s h C o l u m b i a , I agree that the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e a n d . s t u d y * I f u r t h e r agree that p e r  m i s s i o n f o r e x t e n s i v e c o p y i n g of t h i s t h e s i s f o r s c h o l a r l y purposes may be granted by the Head of my Department or by h i s r e p r e s e n t a t i v e s . I t i s unders tood t h a t . c o p y i n g or p u b l i  c a t i o n of t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be a l l o w e d without my w r i t t e n p e r m i s s i o n , : Department of C i v i l E n g i n e e r i n g , The U n i v e r s i t y of B r i t i s h C o l u m b i a , Vancouver 8, Canada Date September, 1964* i i ABSTRACT Rates of mortality among young salmon passing through a high speed, model propeller, turbine operating under a 50 f t hydraulic head but under various, draft tube suctions are given. E f f e c t s , on both f i s h mortality and turbine.performance, of admission of compressed a i r into the. turbine at various locations to reduce the effe c t of. cavitation (believed to be the major cause of f i s h ..mortality In the . turbine) are discussed . At low turbine speed and.low.efficiency, admission of a i r immediately downstream from the blades reduced the mortality of f i s h sub s t a n t i a l l y but at high.turbine, speed, and high e f f i c i e n c y , the reduction was i n s i g n i f i c a n t . At high turbine speed, the e f f e c t , on f i s h mortality, of admitting compressed a i r into the penstock and atmospheric a i r into the turbine draft tube through a 3 " diameter steel pipe i n s t a l l e d about 1 f t downstream of the blades are shown to be b e n e f i c i a l . Records of b i o l o g i c a l exam ination from some of the tests to determine the apparent type of i n j u r i e s are included. An attempt has been made to correlate the turbine speed with the. number of inj u r i e s l i k e l y to be caused by f i s h being h i t by the blades . The effect of p a r t i a l vacuum on f i s h i s also given. v i i i ACKNOWLEDGEMENT The author wishes to express, his thanks to his supervisor, Dr. E. Ruus, for the valuable suggestions, guidance and constant encouragement. He. also wishes to express his indebtedness to Professor J . F. Muir for valuable advice, and suggestions. The experimental work described.in this thesis was carried out i n the Hydraulic. Laboratory of the C i v i l Engineering Department. The.use of these f a c i l i t i e s i s gratefully acknowledged. Thanks are due to the staff of.the C i v i l Engineering workshop, i n particular Mr. E. Wegmuller and Mr. R. G. Postgate,.for as s i s t i n g i n a l l phases of the programme. The project was made possible only with the co-operation of the Department of Fisheries of Canada which supplied numerous essential equipment, f i s h used i n the experiments and assigned many of their personnel to assist i n the programme. This help i s gratefully acknowledged.. Particular thanks are due to Mr. P. Ryan who was responsible for supervising the work of the Department of Fisheries and for his contribution i n designing of the f i s h i n j e c t o r . September, 1964• Vancouver, B r i t i s h Columbia. i i i TABLE OP CONTENTS CHAPTER PAGE INTRODUCTION 1 I REVIEW OP PREVIOUS RESEARCH 6 I I DETAILS OP TEST ARRANGEMENTS 19 I I I TEST PROCEDURE 4 5 IV DISCUSSION OP EXPERIMENTAL RESULTS 60 V CONCLUSIONS 80 BIBLIOGRAPHY 82 APPENDIX I SYMBOLS, ABBREVIATIONS AND UNITS 84 I I SAMPLE OF CALCULATION 86 I I I TABLES OF OBSERVED RESULTS 90 i I V LIST OP FIGURES Number Page 1 V e l o c i t y v e c t o r diagram at the l e a d i n g edge of t u r b i n e blade 13 2 P r o p e l l e r t u r b i n e t e s t s tand 28 3 P r o p e l l e r t u r b i n e and dynamometer 29 4 G e n e r a l view of the t e s t s tand 30 5 Large a i r vent i n the d r a f t tube 30 6a Wicket gates at p o s i t i o n No.6 31 6b Wicket gates at p o s i t i o n No .9 32 7 D r a f t tube immediately downstream from the runner 32 8 Top view of the d r a f t tube showing f i s h o b s t a c l e s 33 9 F i s h i n j e c t i o n p o i n t below the c o n t r o l gate 34 10 F i s h i n j e c t i o n p o i n t above the c o n t r o l gate 34 11 F i s h i n j e c t o r 35 12 F i s h i n j e c t o r and the p l a s t i c s e c t i o n of the penstock 36 13 P l a n of the arrangement f o r f i s h r e c o v e r y 37 14 S ide view of the arrangement f o r f i s h r e c o v e r y 38 15 F i s h r e c o v e r y gear 39 L i s t of F i g u r e s ( C o n t ' d ) Number Page 16 Top view of the t r a p 40 17 F l e x i b l e j o i n t at d r a f t tube e x t e n s i o n and the t r a n s i t i o n 41 18 F i s h t r a p d u r i n g t e s t 42 19 A i r i n j e c t i o n p o i n t s immediate ly downstream from the b l a d e s 43 20a Arrangement of a i r s u p p l y system 44 20b L o c a t i o n s of i n j e c t i o n of a i r i n t o the penstock ' 45 21a F i s h h o l d i n g tanks 52 21b C o u n t i n g of f i s h 52 22 T r a n s f e r r i n g of f i s h t o b a s i n completed 53 23 G e t t i n g r i d of excess water 53 24a The i n j e c t o r and i t s e x t e n s i o n 54 24b F i s h b e i n g poured i n t o the i n j e c t o r 54 24c C l o s i n g the i n j e c t o r l i d 55 24d F i s h b e i n g i n t r o d u c e d i n t o the penstock 55 25 F i s h i n the penstock 56 26 F i s h t r a p 56 27a Removal of f i s h c o l l e c t i o n box f rom the t r a p 57 27b F i s h b e i n g t r a n s f e r r e d i n t o a b a s i n 57 27c T e s t f i s h ready f o r s e p a r a t i o n 58 27d S e p a r a t i o n of l i v e f i s h f rom dead f i s h 58 v i L i s t of Figures (Cont'd) Number Page 28 F i s h length measurement 59 29 Fish mortality v Operating conditions 73 30 Decapitation v N/Q 74 31a-b Effect of a i r on turbine efficiency 75 32a-c A i r v Turbine performance 77 v i l  l i ST OP TABLES TABLE PAGE I PISH MORTALITY AND TURBINE OPERATING CONDITIONS 71 I I COMPARISON OP TYPES OP INJURIES AND THEIR FREQUENCY OF OCCURRENCE 72 I I I EFFECT OF ADDITION OF COMPRESSED AIR ON TURBINE PERFORMANCE 90 I V - V TYPES OF INJURIES OF DEAD FISH 98 VI CONTROL FISH 108 VII FISH MORTALITY IN THE PASSAGE DOWN STREAM FROM THE RUNNER 109 V I I I FISH MORTALITY DUE TO TURBINE OPERATING AT LOW SPEED 110 IX FISH MORTALITY DUE TO TURBINE OPERATING AT NORMAL SPEED 111 1 INTRODUCTION Each year a.large quantity of P a c i f i c salmon i s caught by both commercial f i s h e r i e s and sport fishermen off the west coast of the North American continent and i n numerous rivers and streams on the same coast. These valuable f i s h spend part of t h e i r early l i f e as.well as the f i n a l period of t h e i r mature l i f e i n fresh water. They spend the remainder of their l i f e span i n sea water, feeding on marine plankton, and there grow to a considerable size; but i n order to propagate their race, adult salmon must return to their native streams to deposit t h e i r spawn. The eggs are deposited i n a nest which the female prepares on a gravel bed, i n the cold clear water which i s normally found near the head waters of larger tributary streams where the current i s strong enough to carry away most of the fine sediments. The? eggs are l a i d i n the r i v e r at a depth varying from a few inches to several feet and are covered with two to eighteen inches of gravel'to protect the.eggs.during the incubation period. Unlike the A t l a n t i c salmon,.the completion of the deposition of the eggs and t h e i r f e r t i l i z a t i o n i s followed by the death of the parent leaving the future of the.species entirely dependent on the survival of the eggs and . the. young. Adult f i s h normally return to spawn during the summer and f a l l months, and i n the spring the eggs are hatched and become free swimming f r y . The f r y of some species then spend a year feeding i n fresh water 2 whereas, others migrate d i r e c t l y to the sea i n the i r f i r s t year. The period, they spend at sea also varies from species to species but when they reach maturity, they must return to spawn i n th e i r native streams, thus completing t h e i r l i f e cycle. Because of the population and i n d u s t r i a l growth of the communities on the west coast of North America, multi-use of the rivers i s ess e n t i a l , so that maximum benefits can be realised from a l l resources. The. dependence of salmon on a suitable fresh water environment during their migration and early stage of develop ment has placed them i n direct competition with the other fresh water users. Through water developments for power, water storage and i r r i g a t i o n , dams are constructed across some rivers inhabited by salmon.. This results i n a barrier to migration of adult and young f i s h . Passage of large numbers of adult f i s h over dams i s usually accomplished by means of f i s h ladders or f i s h elevators. I f the number of f i s h to be passed over the dam i s small, they may be trapped downstream from the dam and transported up to the reservoir i n specially designed trucks. The primary problem associated with by-passing of adult f i s h over the dam i s the a b i l i t y to attract the migrants to the entrance.of the by-pass system without delay, i n j u r i e s or mortality. There are many problems of adult f i s h migration other than the problem of passing them successfully over the dam. The discussion of these problems i s beyond the scope of th i s thesis . 3 The interested, reader i s referred to the Nov. 1956 Progress Report on Fisheries - Engineering Research Program of the U.S. Corps of Army Engineers(14) 1. At a t y p i c a l power dam, young f i s h migrating seaward are swept into the turbines or over the spillway. The percentages of f i s h u t i l i z i n g the spillway or turbine exits are not well defined at present.. For example, at a t y p i c a l dam on the Columbia r i v e r , i f i t i s assumed that f i s h are distributed i n proportion to the rates of flow, then about one-half of the f i s h pass over the s p i l l  way. Recent experiments have shown that mortality rates among f i s h passing over the spillway, ranged from 37% at lower Elwha r i v e r (7) to 2% at McNary(7) and Big C l i f f ( 7 ) depending on the type and length of the spillway. For high f r e e - f a l l spillways discharging into a plunge pool, no significant mortality was reported and a r e l a t i v e l y safe passage of young f i s h over the spillway can be assured. Recent tests have shown that mortality among young f i s h passing through turbines can occur. The ra te of mortality ranged from an i n s i g n i f i c a n t amount at the Lower Elwha dam(7) , 11$> at McNary(7) to 30$ at Glines Canyon dam(7). The major causes of mortality among young f i s h passing through turbines are believed to be (a) exposure to cavitation(8) and (b) c o l l i s i o n with turbine blades. Turbine intake screens have been used at a few dams to prevent young f i s h from entering the turbines. Because the size 1. Numbers i n the parenthesis refer to the Bibliography. 4 of young, f i s h of certain species i s very small at the time of migration,, the screen openings must also be small. Debris caught on the screen may block the flow. The necessity of frequent clean ing makes the screen impractical as a means of preventing f i s h from passing through a, turbine. . Numerous guiding systems have been invented to guide f i s h away from the.turbine intakes and the spillway entrance into a safe by-pass. Some have met with limited success. Because of the high i n i t i a l and maintenance cost, they are not l i k e l y to be used extensively. In the future, with optimum control at storage dams, more f i s h would pass through the turbines and fewer f i s h over the s p i l l  way. To date no attempt has been made to make the passage through the turbines safer for f i s h migration, although the tests at the Lower Elwha dam have shown that safe passage of f i s h through a turbine i s possible. The purpose of this investigation i s to ascertain the effects of adding a i r into a turbine on the mortality of young f i s h passing through the turbine. A i r has been admitted into turbines previously to reduce the effect of cavitation. It i s believed that the same technique can be used as a means of reducing fish.mortality and. of improving the turbine performance. It i s thought that tests carried out i n a model propeller turbine w i l l accomplish the aim set out above. It i s recognised that f i s h mortality depends on many variables. To keep the number of these variables, small, the test i s limited to one position of the wicket gate. and. to one value of the t o t a l head. The draft tube suction head i s limited to two values only. 6 CHAPTER I REVIEW OP PREVIOUS RESEARCH 1.1 Passage of Young Fish Through Turbines Soon aft e r f i s h enter a turbine intake they w i l l experience a gradual increase i n hydrostatic pressure u n t i l they approach the leading edge of a turbine blade. After a b r i e f time i n t e r v a l of the order of a f r a c t i o n of a second, the pressure decreases to atmospheric pressure or to a p a r t i a l vacuum. Once f i s h have passed the blade, they may be exposed to cavitation i f the draft tube suction reaches the vapour pressure of the water. Vapour pockets form i n the region of this low p ressure . When they are carried into regions of higher pressure, they collapse. 3iooal p r e s s u r e i n t e n s i t i e s of high magni tude then occur. High pressure intensity waves are transmitted to various parts of the water passages . If f i s h pass through the cavitation region, they w i l l be subjected to this high pressure wave which may cause injury or mortality. In the draft tube, f i s h are also subjected to p a r t i a l vacuum and turbulence. By chance some f i s h may c o l l i d e with the turbine blades and be k i l l e d or injured . 1.2 Turbine Fish Mortality Studies Several studies have been made to date on problems of f i s h passage through hydraulic turbines. The most notable tests were made by the Corps of Engineers of the United States. In 1959, a series of tests were conducted i n a low head 7 model test stand at the A l l i s Chalmers Hydraulic Turbine Laboratory i n .York, Pensylvania. Pish were passed through a model Kaplan turbine with 12" diameter runner and through another 12" model Francis turbine with.a 15 bladed runner. The hydraulic head varied from.5 f t to 45 f t and the speed from 95 rpm to 1400 rpm. The tests were performed with a given net head and turbine speed and with the.runner set at various elevations above t a i l water elevation. Cramer(3) reported that the Kaplan and Francis model runner gave similar r e s u l t s . Wide var i a t i o n of f i s h survival rate (from 96% to 1%) could be achieved, dependent on speed and t a i l - water elevation. He also reported increased mortality where adverse hydraulic conditions resulted i n cavitation and lower e f f i c i e n c y . Further tests were conducted on the same model Francis Turbine but with a s l i g h t l y modified runner. Cramer and 01igher(4) reported that the most desirable characteristics of a Francis runner to.provide maximum survival f o r f i s h are (a) r e l a t i v e l y low runner.speed, high e f f i c i e n c y , (b) r e l a t i v e l y deep setting of the turbine so that the runner i s submerged below the t a i l water l e v e l , (c) maximum clearance between blades and between the wicket.gates and the intake edges of the blades. These model tests were followed by f u l l scale tests i n which f i s h were passed through a Francis turbine operating under a 470 f t head at the Cushman II dam i n Washington and through another Francis turbine operating under a 420 f t head at Shasta dam i n C a l i f o r n i a , i n 1961 and 1962 respectively. Results (4,5) 8 from both test series confirmed the results of the model t e s t s . In the prototype, operating conditions such as the gate opening, plant sigma and t a i l water l e v e l had the greatest influence on f i s h mortality. The mortality rate of young f i s h passing through the turbine at Cushman II ranged from 23% to 55$ depending on gate opening and t a i l water elevation. There was a wide variation of the t a i l water (0.5 f t . t o 12.5 f t ) at Cushman because i t was influenced by the t i d a l action i n the t a i l race. The mortality rate of young f i s h passing through.the turbine at Shasta ranged from 10.7$ at 0.65 gate opening to 24.6$ at 0.50 gate opening. The improved f i s h survival rate at Shasta as compared to Cushman i s attributed to a greater blade clear ance at Shasta. The peripheral velocity of the runner was almost the same for both runners. In a l l tests conducted by the Corps of Engineers, where dead f i s h were captured, the type of apparent injuries l i k e l y to cause mortality was usually recorded. There were four major factors considered responsible for death and these were c l a s s i f i e d as follows. 1. Mechanical - i . e . f i s h k i l l e d by c o l l i s i o n with a s o l i d object such as a turbine blade (a) Abrasion - rubbing or scraping off skin (b) Contusion - bruising of the body (c) Decapitation - severing of the body (d) Laceration - ripping, tearing or cutting of t i s s u e . 2 . Pressure Change (a) Eye damages - hemorrhaging, missing or otherwise damaged eyes (b) Collapsed or damaged a i r bladder. 3. Shearing Action Caused by two forces of water going i n opposite d i r e c t i o n s . The damage suffered by f i s h i s normally a torn operculum. 4. Cavitation Characterized by hemorrhage of internal organs and/or body rupture Some f i s h had no v i s i b l e i n j u r i e s ; hence they were assumed to be suffering from stress and handling. More tests have been performed by other agencies i n the U.S.A. and i n Canada to determine the overall mortality rates of f i s h passing through turbines. Lucas(?) has conveniently summarized and tabulated a l l these r e s u l t s . 1.3 Effects of Cavitation, Pressure Change and  Vacuum on Young Fi s h Rowley(l3) showed that f i s h can withstand pressure changes of substantial amounts, providing the pressure does not decrease below atmospheric. Muir(8) developed a hypothesis that mortality among young f i s h passing through turbines i s caused mainly by exposure to c a v i t a t i o n . He performed experiments on coho f i n g e r l i n g using a • 10 long pipe rack normally used for water hammer experiments i n the Hydraulic laboratory at U.B.C. Coho f i n g e r l i n g when exposed to cavitation showed a mortality rate of 60$. The experiment demon strated the p o s s i b i l i t y of f i s h being k i l l e d by cavitation i n a turbine. P a r t i a l vacuum affects f i s h by changing the concentration and state of dissolved gases i n the f i s h vascular system. Bishai (l2) showed that formation of gas bubbles i n the heart and blood vessels and the bulging of the eyes may result i f f i s h are de compressed from a high positive pressure to p a r t i a l vacuum. Pish are said to suffer from "gas disease" or "bends". Muir(8) showed that thebends i n f i s h depend mainly on the degree of vacuum and the length of time that the f i s h are exposed to i t . Further effect of p a r t i a l vacuum i s f e l t through the changing of volume of the f i s h ' s swim bladder. A salmon has an open swim bladder, i . e . i t has a duct leading from the esophagus to the swim bladder. An increase i n pressure i n the water w i l l cause a reduction i n the bladder volume. I f the pressure i s suddenly reduced to atmospheric, the bladder returns to i t s o r i g i n a l size but i f the pressure i s reduced substantially below atmospheric, the f i s h must release gas from the bladder through the esophagus; otherwise the bladder wall may be ruptured. A salmon, given s u f f i c i e n t time to become conscious of the pressure reduction, can release the excess a i r . In this case i f the pressure l a t e r returns to atmospheric, the bladder remains collapsed.. The f i s h can r e i n f l a t e i t s bladder by r i s i n g to the water surface and gulping a i r from the atmosphere. I f a f i s h i s weakened, i t may not r i s e to the surface. Mortality can result but may not necessarily be due to a deflated swim bladder. Muir(8) showed that few f i s h died as a result of a deflated swim bladder. He claimed that stresses resulting from collapse of the f i s h ' s swim bladder are not l i k e l y to be a si g n i f i c a n t cause of mortality among young f i s h passing through turbines(8,9). Tests at Cultus Lake(7)> B.C.lhave shown that sockeye salmon when exposed to pressure reduction from high positive pressure to high vacuum sometimes suffered.rupture of the swim bladder. 1.4 Mechanical Type of Injuries Suffered by  Fish Passing Through Turbines When f i s h enter the turbine intake, they may come i n contact with the edges of the wicket gates or other s o l i d objects. They may suffer bruises and possibly laceration but severance of th e i r bodies i s not believed to be l i k e l y . Some evidence has been found that mortality as a result of impact between f i s h and a s o l i d object i s possible. At Bonne v i l l e Laboratory i n 1955, salmon fingerlings were placed i n an injector connected to a 20" pipe from which water issued through a nozzle at a velocity of 45.6 f . p . s . ( l 4 ) . A steel plate was placed so that.the 8" jet impinged d i r e c t l y on i t at 45° and at a. 90° angle. The mortality rate f o r the 45° impact test was 1 .7$ while the corresponding mortality rate for the 90° test was 3$. 12 When f i s h reach the turbine runner, they may be struck by the blades. The usual i n j u r i e s suffered by f i s h are laceration, severance of the body or crushed head. For f i s h , the time available f o r avoidance of c o l l i s i o n with the blades i s the time required f o r a leading edge of the next blade to h i t any part of that f i s h ; therefore the longer the f i s h , the higher the p o s s i b i l i t y of contact between the blade and the f i s h . Von Raben(io) derived a formula f o r the prediction of f i s h mutilation i n a propeller turbine as follows: The time taken by the blade to take up the position of the preceding blade T _ £ 0 r nN i n which n = number of blades on the runner N = turbine speed i n rpm The a x i a l component of the absolute velocity V of the water i s V _ 4 Q M (JI „2 N 1 TT (D - d ) i n which Q = turbine discharge D = Diameter at the t i p of the blade d = hub diameter The length of water section (w) flowing through the space between the runner blades during the time T i s r W = T V r n The p o s s i b i l i t y of contact (c) between f i s h and blade i s given by: 13 _ L_ _ Im (D 2 - d 2) . (n) . (N) W 240 Q in.which L = the length of the f i s h . Water flowing towards the leading edge of the blades possesses a whirl component V^; hence the flow i s at an angle o<to the assumed d i r e c t i o n of C = Im (P 2 - d 2) n.N.COSc* 240 Q i n which oc = the angle between the absolute velocity (v) and the velocity VJJ The Impact Velocity Von Raben claims that the velocity at which f i s h s trike the leading edge of the blade must exceed a c r i t i c a l value before decapitation of the body i s possible. I f the f i s h . i s . assumed to.move with the current i n the turbine, then i t w i l l move at the same velocity as that of the water re l a t i v e to the leading edge of the blade, i . e . at a re l a t i v e 14 Consider a velocity vector diagram at a point A along the leading edge of the blade. The a x i a l component of velocity V n i s V 4 Q N " TT (D2 - d 2 ) The Circumferential velocity (u) of the point A on the leading edge of the, blade i s 60 i n which H = distance from the centre l i n e of the shaft to A. I f V j i s the whirl component of the velocity of water approach ing the leading edge of the blade, then v + u, N i n which II = U - V = velocity of water r e l a t i v e to the leading edge of the blade But V T = V n tan OC 2 v .- V U 2 - 2U.V . tan + ; V n cos oC The circumferential velocity U for points on the leading edge of the blade varies from the minimum value of to - ~ 60 60 at the periphery of the blade. The impact velocity also varies depending on the distance from the centre-line of the runner to to f i s h . Von Baben claims that f i s h decapitation resulting from 15 c o l l i s i o n with the blade of a propeller turbine occurs only i f the impact velocity between the f i s h and the blade exceeds a c r i t i c a l value: that the p o s s i b i l i t y of contact depends upon the diameter of the turbine runner and the hub, the number of the blades on the r u n n e r , the speed and the discharge of the turbine, the length of the f i s h , and the direction the f i s h i s moving relative to the leading edge of the blade. 1,5 Cavitation i n a Propeller Turbine When the p r e s s u r e i n the moving water i s reduced to i t s vapour pressure, the water r u p t u r e s and vapour pockets f o r m . When the vapour pockets move into a higher p r e s s u r e z o n e , they collapse. Because of the low compressibility of water, the collapse of vapour pockets sets up a very high localized pressure i n t e n s i t y . This dynamic phenomenon i s called cavitation. In a propeller turbine, cavitation can occur at no less than three locations depending on the location of the pressure reduction zone: (a) B l a d e p r o f i l e c a v i t a t i o n . Because of the nature of the flow around the turbine blades, a low pressure zone exists on one side of the blade; i f the maximum suction reaches the vapour pressure of water, cavitation can occur. (b) Blade clearance and blade t i p cavitation. In the t i p region of the blades, leakage of flow from the pressure side i s always possible because the blade span i s f i n i t e . To reduce th i s leakage, the wall of the runner casing i s b u i l t as close to the t i p of the blades as possible. A flow of high velocity exists at the clearance zone . Cavitation may occur at the region of the t i p of the blades. (c) Hub or blade shoulder c a v i t a t i o n . Houghness on the hub or an unsatisfactorily-designed junction between the blade and the hub can cause vortex motion around the hub. The low pressure zone occurring at the centre of the vortex can result i n a station ary, vapour pocket.. The collapse of the cavity at the downstream end of the vapour pocket results i n hub cavitation. Cavitation i n a turbine i s not a uniform process nor does i t o c c u r a t any definite pressure. Water can r e s i s t a certain amount of tensile stress before i t starts to rupture. I f i t contains some dissolved gases, the water w i l l rupture more readily.. I t i s therefore possible for water to rupture at different pressures, depending on the size and number of gas nuclei present. Cavitation inception then depends on the t o t a l a i r or gas content of the water. At low a i r content, a pressure below the vapour pressure of the water is required to trigger of f cavitation. The Thoma c r i t e r i o n r a t i o of cavitation, sigma (a), has been used as an indication of cav i t a t i o n . Sigma i s expressed by means of the formula: i n which H^  i s the height of the barometric water column i n f t ; 17 H i s the elevation i n f t at which the turbine i s placed above s the t a i l water l e v e l ; and H i s the net head i n f t under which the turbine, operates. For a turbine set at a moderate elevation above sea l e v e l and f o r the usual temperature range, 80°F ± = 34 - 1.2 = 32.8 f t of water and 32.8 - H a = s H Effects of Cavitation : Soon aft e r cavitation takes place i n a turbine, the e f f i c i e n c y decreases. Noise and v i b r a t i o n of the turbine increase. Objectionable noise due to cavitation i s related to a f a i r l y well developed stage of c a v i t a t i o n . Advantage may be taken of the noise as a means of measurement of c a v i t a t i o n . . Noise analysis has been used to obtain information on incipient cavitation and to indicate i t s development. The noise l e v e l increases sharply at the cavitation inception point. However, ef f o r t s to use the overall noise l e v e l as an indication of the degree of cavitation have f a i l e d because at certain stages of cavitation, the noise l e v e l may even be reduced. Vibration of the turbine may result from runner hub cavitation and may cause load i n s t a b i l i t y i n the turbine. Draft tube surge i s considered to be the result of hub c a v i t a t i o n . 1 8 Cavitation damage i s due largely to mechanical action. The collapse of vapour pockets sets up a high pressure intensity s u f f i c i e n t to cause localized fatigue f a i l u r e of the metal. The damage usually takes the form of p i t t i n g on the runner blades and on the draft tube wall. The Effect of Compressed A i r on Cavitation When compressed a i r i s admitted into a turbine operating under cavitating conditions, i t has been observed that the noise and vibration levels are reduced as well as the extent of p i t t i n g of the runner blades and draft tube w a l l . Compressed air,, when allowed to mix with the water, increases the compressibility of the mixture enormously; thus the pressure intensity set up by cavitation i s reduced. 1 9 CHAPTER I I DETAILS OP TEST ARRANGEMENTS 2.1 T u r b i n e T e s t Stand The h y d r a u l i c t u r b i n e t e s t s tand n o r m a l l y used f o r the undergraduate i n s t r u c t i o n i n U . B . C . H y d r a u l i c L a b o r a t o r y i s used i n . t h i s , t e s t programme. I t i s a c l o s e d system c o n s i s t i n g of an overhead t a n k , a t u r b i n e and a sump. Water i s pumped from the sump l o c a t e d i n the basement up i n t o the overhead tank and i s a l l o w e d , to f l o w t h r o u g h a 14" d iameter s t e e l penstock t o the t u r b i n e , through the t u r b i n e and the d r a f t tube and back to the sump.. . (See f i g s . 1 t o 10) . The c o n t r o l gate i s i n s t a l l e d upstream from the t u r b i n e t o c o n t r o l the amount o f . f l o w and the p r e s s u r e i n the p e n s t o c k . Water from the penstock enters the s c r o l l c a s e of the t u r b i n e and i s a d m i t t e d t o . t h e t u r b i n e runner t h r o u g h manually o p e r a t e d wicket g a t e s . . The p r e s s u r e i n the penstock and the s u c t i o n i n t h e . d r a f t tube are i n d i c a t e d on Bourdon gauges . A downstream c o n t r o l gate i s used to vary the d r a f t tube s u c t i o n . The diameter of the penstock and the d r a f t tube a r e e q u a l ; t h e r e f o r e the v e l o c i t y heads i n the penstock and the d r a f t . t u b e are a l s o e q u a l . The t o t a l dynamic head of the t u r b i n e i s then e q u a l to. the sum of the penstock p r e s s u r e head and the d r a f t tube s u c t i o n h e a d . The t u r b i n e i s a p r o p e l l e r t y p e . The 10" d i a m e t e r 20 r u n n e r , mounted on a h o r i z o n t a l s h a f t , has 4 b l a d e s w i t h a minimum b l a d e c l e a r a n c e of 1-1/4"• The t u r b i n e i s connected to a h y d r a u l i c dynamometer. The t u r b i n e o u t - p u t torque i n l b s . f t i s measured on a weighing beam s c a l e of the dynamo m e t e r . The t u r b i n e speed i n rpm i s o b t a i n e d from the t a c h o  meter r e a d i n g on the c o n t r o l p a n e l of the dynamometer and can be a d j u s t e d by means of two s m a l l v a l v e s c o n t r o l l i n g the amount of water s u p p l i e d to and d r a i n e d from the dynamometer. The t u r b i n e speed can be set at any d e s i r e d f i g u r e up t o 2800 rpm. The water l e a v i n g the runner f l o w s a l o n g a 15 f t s t r a i g h t v e r t i c a l d r a f t tube and t h e n a l o n g another 8 f t of h o r i z o n t a l s e c t i o n of the d r a f t tube b e f o r e d i s c h a r g i n g i n a i r i n t o the sump. 2.2 The F i s h I n j e c t o r An a c r y l i c p i p e , 2 2 " d i a m e t e r , f i t t e d w i t h a r i n g - C f o l l o w e r gate i s used as a f i s h i n t r o d u c t i o n device . I t i s i n s t a l l e d i n a h o r i z o n t a l p o s i t i o n making an angle 45° w i t h the c e n t r e l i n e of the p e n s t o c k . The i n j e c t o r i s b o l t e d to a 3" d iameter s t e e l p i p e w i t h a square f l a n g e , which i s welded to the penstock w a l l . F o r the d e t a i l s of the f i s h i n j e c t o r see f i g . 11 . F i s h are p l a c e d i n the f i s h chamber t h r o u g h a 5" x 2g" r e c t a n g u l a r opening f i t t e d w i t h a removable cover w h i c h when i n p l a c e forms a complete p i p e s e c t i o n . The p l u n g e r i s 21 f i t t e d w i t h an O - r i n g so that i t i s w a t e r - t i g h t as w e l l as f i s h r - t i g h t . F o r manual o p e r a t i o n , a 24" b rass rod i s a t t a c h e d t o the p l u n g e r . A p l a s t i c screw cap w i t h a s m a l l a i r v a l v e i s used to cover the end of the f i s h i n j e c t o r . Copper d r a i n s (see f i g . l l ) f i t t e d w i t h two-way v a l v e s are used t o d r a i n the chamber and the s p a c i n g behind the p l u n g e r . One end of the d r a i n s i s a t t a c h e d t o a s m a l l p l a s t i c tube l e a d i n g to the t u r b i n e penstock w h i l e the o t h e r end i s a t t a c h e d to the c i t y water supply p i p e . F i s h are l e d t o the r e l e a s i n g p o i n t at the centre of the penstock through a l e a d i n g p i p e of the same s i z e as that of the f i s h chamber, e x t e n d i n g from the gate t o the r e l e a s i n g p o i n t . The a c t i o n of the i n j e c t o r i s as f o l l o w s . The gate i s f i r s t c l o s e d and the cover on the top of the f i s h chamber removed. A known number of f i s h i s p l a c e d i n the chamber and the l i d r e p l a c e d . The two-way v a l v e c o n  n e c t i n g the penstock and the i n j e c t o r i s opened to a l l o w the h i g h p r e s s u r e water i n the penstock to f l o w i n t o the chamber. At the same time a l l a i r i n the chamber i s c a r e f u l l y e l i m i n a t e d t h r o u g h a v a l v e at the top of the chamber and t h r o u g h a n o t h e r v a l v e on the screw c a p . T h i s i s done t o prevent the f i s h coming i n contac t w i t h f r e e a i r - w a t e r s u r f a c e d u r i n g the f i s h i n j e c t i o n p e r i o d . When the p r e s s u r e i n the chamber e q u a l s t h a t of the p e n s t o c k , the gate i s q u i c k l y o p e n e d . The v a l v e c o n n e c t i n g the i n j e c t o r w i t h the c i t y water i s opened to admit c i t y water which presses the p l u n g e r s l o w l y f o r w a r d to f o r c e f i s h i n t o the p e n s t o c k . When the p l u n g e r has t r a v e l l e d the f u l l l e n g t h of the p i p e , and f i s h have been i n t r o d u c e d i n t o the p e n s t o c k , the c i t y water s u p p l y . i s shut o f f . The d r a i n i s opened to a l l o w the water i n the chamber to escape w h i l e the penstock p r e s s u r e f o r c e s the p l u n g e r back to i t s o r i g i n a l p o s i t i o n . The gate i s f i n a l l y c l o s e d to complete the i n j e c t o r o p e r a t i o n . V i s u a l o b s e r v a t i o n of f i s h i n t r o d u c e d i n t o a f a s t moving stream i s p o s s i b l e by means of a p l a s t i c window p r o v i d e d at the p o i n t immediate ly downstream from the f i s h r e l e a s i n g p o i n t , ( F i g . 1 2 ) . S m a l l p l a s t i c windows are p r o v i d e d . , one at the runner c a s i n g t o permit v i s u a l o b s e r v a t i o n of c a v i t a t i o n of the t u r b i n e and another one about 1 f t downstream from the b l a d e s t o observe f i s h a f t e r they have passed t h r o u g h the r u n n e r space and the c a v i t a t i o n z o n e . 2 .3 F i s h Recovery Gear D r a f t Tube E x t e n s i o n The d r a f t tube i s extended through a s p e c i a l l y d e s i g n e d e x t e n s i o n , a 14" square s e c t i o n , the top and bottom w a l l s of which are made of 3/4" t h i c k plywood and the two s i d e - w a l l s l i n e d w i t h N o . 30 gauge metal s t r i p . F o r d e t a i l s of the e x t e n s i o n , see f i g . 13 to 18 . F o u r 3" x 3" x angles are w e l d e d . t o the e x i s t i n g end of the d r a f t tube and are b o l t e d to the wooden f l a n g e of the e x t e n s i o n . Care was e x e r c i s e d t h r o u g h  out the c o n s t r u c t i o n of the e x t e n s i o n of the d r a f t tube t o a v o i d any sharp p r o t r u s i o n f rom i t s i n s i d e w a l l s , to prevent f i s h b e i n g damaged by them. The e x t e n s i o n i s suppor ted by a s e r i e s of wooden beams and columns to r e s i s t f o r c e s induced by the f l o w of water around the 9 0 ° bend and any v i b r a t i o n set up by the f l o w i n the e x t e n s i o n . The Wooden T r a n s i t i o n Because of the f l u c t u a t i o n of the sump water l e v e l , a wooden t r a n s i t i o n i s p r o v i d e d to d i r e c t the f l o w from the d r a f t tube e x t e n s i o n to t h e . w a t e r s u r f a c e of the sump. One end of the t r a n s i t i o n i s a 14" square s e c t i o n hinged to the top end of the d r a f t tube e x t e n s i o n . A p i e c e of canvas wrapped around the gap c r e a t e d by the j o i n i n g of the two s e c t i o n s a c t s as a f l e x i b l e j o i n t so that the t r a n s i t i o n can p i v o t about the h i n g e . Rubber sheets are used to b r i d g e the i n s i d e g a p . The t r a n s i t i o n i s made o f 3/4" plywood and i t s s e c t i o n g r a d u a l l y changes from 14" square to 24" x 6". I t i s suspended from the c e i l i n g of the sump. The Trap A f t e r the f l o w from the d r a f t tube has passed t h r o u g h the e x t e n s i o n , i t i s passed on to the t r a p , a device d e v e l o p e d to skim the f i s h from the d i s c h a r g e . The p r i n c i p a l f e a t u r e of the t r a p i s an a d j u s t a b l e i n c l i n e d s c r e e n t h r o u g h which most of the water f l o w s l e a v i n g the f i s h and a c o m p a r a t i v e l y s m a l l amount of water to pass over and i n t o a s p e c i a l l y p r o v i d e d c o l l e c t i o n p o o l at the end of the t r a p . The s c r e e n used i n t h i s t r a p i s a Monel s t a i n l e s s s t e e l n o . 14 c o n s t r u c t e d of 0 .009" diameter w i r e , o c c u p y i n g 24$ of the a r e a . The s c r e e n 24 i s p l a c e d on top of a P e d l a r g r a t i n g N o . 10-12-60 which i s supported by a wooden.frame c o n s t r u c t e d from 2" x 4" t i m b e r . The frame i s hung at the ends of f o u r 5/8" d iameter s t e e l rods suspended from the sump c e i l i n g . The c o l l e c t i o n compartment at the end of the t r a p i s d i v i d e d i n t o t h r e e s e c t i o n s . ('See f i g . 1 6 ) . A s p e c i a l c o l l e c t i o n box i s f i t t e d i n t o the c e n t r a l p o r t i o n to c o l l e c t f i s h a t the end of t h e i r journey t h r o u g h the t u r b i n e . The c o l l e c t i o n s e c t i o n of the t r a p i s screened so t h a t f i s h or p a r t s of f i s h are a l l c o l l e c t e d . On the two s i d e - s e c t i o n s , the s c r e e n s l o p e s s l i g h t l y toward the c e n t r a l p o r t i o n . Any . f i s h caught on these two screens a r e p l a c e d i n the c o l l e c t i o n b o x . A t r a i n i n g w a l l of plywood i s p r o v i d e d around the s c r e e n and the c o l l e c t i o n compartment t o prevent any escape of f i s h i n t o the sump. The f l o w of water t h r o u g h the s c r e e n i s r e g u l a t e d by means of a 3/4" t h i c k r e g u l a t i n g board i n s t a l l e d beneath the s c r e e n . I t i s hung at the end of f o u r b r a s s rods f i t t e d w i t h screw t h r e a d s and wing n u t s . By r a i s i n g or l o w e r i n g the b o a r d , the f l o w can be a d j u s t e d . The f l o w can be f u r t h e r ' a d j u s t e d by changing the s l o p e of the s c r e e n . T h i s i s done by a d j u s t i n g the p o s i t i o n of the rods f rom which the s c r e e n i s s u s p e n d e d . The c u r r e n t c r e a t e d by the f l o w of water f rom the top s i d e of the r e g u l a t i n g board f l o w s upward t h r o u g h the s i d e s c r e e n of the c o l l e c t i o n compartment and keeps the f i s h o f f the. s c r e e n . The t r a n s i t i o n and the t r a p can be se t i n any d e s i r e d p o s i t i o n by a d j u s t i n g the l e n g t h of the v a r i o u s rods f rom which the system i s suspended . The F i s h C o l l e c t i o n Box The f i s h c o l l e c t i o n box i s a 12" x 9" x 6" b r a s s box w i t h an open t o p . The top h a l f of i t s w a l l s i s screened to a l l o w the excess water to f l o w t h r o u g h (see f i g . 27a) . A brass p l a t e bent to f i t the o u t s i d e c o r n e r of the box i s used t o t r a n s f e r f i s h f rom the box to the o t h e r c o n t a i n e r . The box f i t s the c e n t r a l p o r t i o n of the c o l l e c t i o n compartment i n such a manner that i t s top comes up t o the e l e v a t i o n of the s i d e s c r e e n s on both s i d e s of the c e n t r a l p o r t i o n . 2.4 Arrangements f o r the Supply of Compressed A i r A i r i n j e c t e d i n t o the t u r b i n e i s drawn from an a i r compressor t h r o u g h an a i r duct one i n c h i n d i a m e t e r . A n o z z l e , machined a c c o r d i n g t o the A . ' S . M . E . s t a n d a r d d i m e n s i o n s , w i t h a n i n s i d e diameter e q u a l to o n e - h a l f the diameter of the a i r p i p e , i s i n s t a l l e d as an a i r m e t e r . A s t r a i g h t brass p i p e 4' l o n g and 1 .06" d iameter precedes the n o z z l e to ensure u n i f o r m  i t y of the a p p r o a c h i n g a i r f l o w at the n o z z l e . The r e a d i n g of the water manometer, connected a c r o s s the n o z z l e , i s t a k e n as the n o z z l e p r e s s u r e d r o p , f rom which the mass f l o w of a i r a c r o s s the n o z z l e i s c a l c u l a t e d u s i n g the f l o w c o e f f i c i e n t f rom p u b l i s h e d d a t a . 26 The flow of a i r depends on the absolute temperature, the density of the a i r and the pressure drop across the nozzle. The a i r temperature used i n the calculations i s based on 50°F, the mean temperature of the a i r outside the laboratory where the a i r supply of. the compressor was drawn. The range of the a i r temperature.during the experimental period was 40°F to 65°F. Variations of the a i r temperature up to 25°F w i l l change the mass density o f . a i r by less than 5$. A pressure gauge i s i n s t a l l e d about 1 f t downstream from the nozzle to indicate the a i r pressure. The reading can be taken as s u f f i c i e n t l y accurate to represent the pressure of the a i r upstream from the nozzle because the pressure drop across the. nozzle i s very small. Because the nozzle was designed for a higher a n t i c i  pated a i r flow, the manometer readings were usually small. The quantity of a i r as calculated,.while not precise, i s s u f f i c i e n t  l y accurate for purposes of comparison. Prom the nozzle, four p l a s t i c tubes convey the a i r to two i n j e c t i o n points - i n the penstock upstream from the turbine and i n the draft tube immediately downstream from the blades. Pour holes d r i l l e d at equal distances from each other i n the penstock and i n the draft tube ensures that a i r i s uniformly mixed with the water. A i r valves are i n s t a l l e d at each i n j e c t i o n point to control the quantity of a i r going into the turbine at each entry. A i r pressure i n the a i r compressor tank i s kept above 96 p s i . By using a pressure regulator i n the a i r supply system, the air.pressure i s regulated down to any desirable value. Wo fluctuation of a i r pressure during the entire experimental period was observed. For one series of tests, a 3" diameter steel pipe with valve i s i n s t a l l e d as a vent i n the draft tube of the turbine 1 ft. downstream from the blades (see f i g . 4 ) . Atmospheric a i r i s sucked into the draft tube. Flow of a i r used i n these tests was not measured. 2 ° F I G . 3 P R O P E L L E R T U R B I N E A N D D Y N A M O M E T E R Not to s c a l e F I G . 5 LARGE AIR VENT IN THE DRAFT TUBE 3 1 32 FIG. 7 DRAFT TUBE IMMEDIATELY DOWNSTREAM OF THE RUNNER F I G . 9 FISH INJECTION POINT BELOW THE CONTROL GATE FIG.10 FISH INJECTION POINT  ABOVE THE DOWNSTREAM CONTROL GATE 35 FIG.11 THE FISH INJECTOR a. Bing-C Follower Gate b. Pressure equalising connection c. F i s h chamber l i d with pressure gauge and a i r escaping valve d. Plunger and rod e. Screw cap and a i r escaping valve f . City water entrance g. Pish chamber drainage system. ro i SUMP WALL 14" DRAFT TUBE EXTENSION 4 - 6 FISH TRAP TRANSITION 1 ro. i FLEXIBLE JOINT. FIG 13 PLAN OF THE ARRANGEMENT FOR FISH RECOVERY Scale 2 • ft. SUMP CEILING X Dia. STEEL RODS J- Dio. S T E E L RODS FLOW CONTROL BOARD FIG. I 4 SIDE VIEW OF T H E A R R A N G E M E N T FOR FISH R E C O V E R Y FIG.15 FISH RECOVERY GEARS D r a f t tube e x t e n s i o n c. Trap T r a n s i t i o n d. F low c o n t r o l board 40 FIG .16 TOP VIEW OF THE TRAP 43 Holes to fit bolts of the wicket gates AIR INJECTION POINTS IMMEDIATELY DOWNSTREAM FROM THE BLADES F I G . 2 0 a ARRANGEMENT OF AIR SUPPLY SYSTEM FIG .20b LOCATIONS OF INJECTION OF AIR INTO THE PENSTOCK 45 CHAPTER I I I T E S T PROCEDURE 3 . 1 T e s t S p e c i m e n s L a b o r a t o r y S u r v i v a l T e s t P i n k s a l m o n f r y a b o u t one m o n t h o l d f r o m H a r r i s o n L a k e , B . C . , were u s e d i n a s u r v i v a l t e s t t o d e t e r m i n e t h e m o r t a l i t y i n t h e l a b o r a t o r y t h r o u g h o u t t h e p e r i o d o f t e s t i n g . I t was f o u n d t h a t t h e s e f i s h c o u l d , be k e p t a l i v e i n t h e l a b o r a t o r y w i t h n e g l i g i b l e m o r t a l i t y , p r o v i d i n g t h a t t h e y were f e d r e g u l a r l y a n d t h a t t h e t e m p e r a t u r e o f t h e w a t e r i n t h e i r t a n k was k e p t a t a p p r o x i m a t e l y 47 ° F . F i s h U s e d f o r Low T u r b i n e S p e e d P i s h M o r t a l i t y T e s t F o r a m o r t a l i t y t e s t a t a t u r b i n e s p e e d o f 6 0 0 r p m , t h e s p e c i m e n s u s e d were Chum f r y h a t c h e d a t t h e U n i v e r s i t y H a t c h e r y , U . B . C . T h e y were a p p r o x i m a t e l y l g " l o n g a n d were f r o m f o u r t o s e v e n weeks o l d a t t h e t i m e o f t h e t e s t s . F i s h were f e d r e g u l a r  l y t h r o u g h o u t t h e t e s t p e r i o d . F i s h U s e d f o r H i g h T u r b i n e S p e e d F i s h M o r t a l i t y T e s t F o r a m o r t a l i t y t e s t a t a t u r b i n e s p e e d o f 1800 r p m , t h e s p e c i m e n s u s e d were C o h o f r y f r o m R o b e r t s o n C r e e k , V a n c o u v e r I s l a n d , B . C . F i s h w e r e a p p r o x i m a t l e y l g " l o n g a n d were f r o m one t o two m o n t h s o l d a t t h e t i m e o f t h e t e s t . T h e f e e d i n g o f f i s h was s t o p p e d a t t h e s t a r t o f t h e t e s t i n g p e r i o d i n a n e f f o r t t o k e e p t h e l e n g t h a n d s i z e o f t h e f i s h t h e same t h r o u g h o u t t h e t e s t i n g p e r i o d . ( F i s h w e r e n o t f e d f o r 13 d a y s . ) 3.2 Test Procedure The procedure generally followed i n making a test i s described i n the following paragraphs. The results are tabulated i n the Appendix III and the general discussion of the results i s made i n Chapter IV. Turbine F i s h Mortality Test The overhead tank was f i r s t f i l l e d up and the turbine started. The turbine operating conditions were set at a pre determined value. The penstock and draft tube pressure was ad justed so that the t o t a l effective head of the turbine was 50 f t of water. The draft tube suction was set at a specified value. Pressure control was achieved by manipulating the upstream and downstream control gates. The rpm of the turbine was kept con stant at a desirable value by manipulating two control valves of the dynamometer. The f i s h trap was then arranged so that the optimum amount of water flowed into the c o l l e c t i o n compartment at the end of the trap. The f i s h c o l l e c t i o n box was placed i n the central portion of the c o l l e c t i o n compartment. Packing compound was used to seal off a l l cracks and openings around the rim of the box so that f i s h did not escape from the box. Reading of the turbine discharge, penstock pressure, out-put torque, rpm and draft tube suction were recorded. F i s h , 80 i n number, which had been previously counted and kept i n a holding tank, were transferred to the f i s h injector Fish were placed i n the injector chamber and the l i d replaced. 47 By using the equalizing valve, the pressure i n the f i s h chamber was increased to the same value as that i n the penstock. The pressure equalizing process took 10 to 30 seconds to complete; simultaneously a l l a i r inside the f i s h chamber was carefully removed to ensure that no f i s h came i n contact with free a i r during the process of pressur- i z a t i o n . The injector gate was quickly opened so that the c i t y water pressure slowly pushed the plunger forward, forcing the f i s h into the penstock. When the plunger had travelled the whole length of the leading pipe and a l l f i s h were i n the penstock, the c i t y water valve was shut o f f . The penstock pressure then returned the plunger to i t s o r i g i n a l p o s i t i o n . The injector gate was closed to complete the injector cycle. A time of 60 seconds was allowed to elapse from the moment the plunger had forced a l l f i s h into the penstock to the time they were removed from the trap. An assistant was stationed at the trap to place any f i s h caught on the side screens i n the f i s h c o l l e c t i o n box and then to remove the co l l e c t i o n box from the trap. The contents of the box were poured into a basin where the l i v e f i s h were separated from the dead and placed i n a nylon net. After counting the number of immediate survivors, the assistant transferred f i s h back to the holding tank for a delayed mortality observation. At no time during/the test were l i v e f i s h allowed to be out of water. Dead f i s h from the test were counted and the decapitated parts matched as far as possible to form complete bodies. In the case of missing f i s h , the turbine was stopped 48 and the whole system drained to see i f they could be recovered. A l l dead fish were examined by a biologist to determine and record the types of apparent injuries and to measure the length of those that were measurable.. The delayed mortality was recorded and fish bodies examined each day. At the end of a three day holding period, a l l surviving fish were anaesthetized and their length measured. To eliminate the possibility of f i s h getting a temperature shock when introduced into a warmer water, the water in the sump was drained each evening prior to the testing day and fresh cold city water taken in so that the temperature of water in the system was close to that in the fish holding tank. The temperature of the water in the holding tank was kept at about 47°F• In tests in which compressed air was injected into the turbine, the air was admitted before the fish were introduced into the penstock and before the readings of air meter and air pressure were recorded. The only deviation from this procedure occurred when atmospheric air was introduced through a vent in the turbine draft, tube. Although no air meter was installed to measure the air flow through the vent, i t was observed that the draft tube suction gauge reading decreased directly with the valve opening; wherefore the reading on the draft tube suction gauge was used as an indication of the amount of air being admitted into the turbine draft tube. Test series to investigate the f i s h mortality with and without the admission of air were carried out at turbine speeds 49 of 600 rpm and 1800 rpm. Tests on t u r b i n e f i s h m o r t a l i t y without the. admission of a i r were c a r r i e d out at 300, 900 and 1200 rpm. 3 .3 P i s h M o r t a l i t y Test with the Turbine Runner Removed The t u r b i n e runner was f i r s t removed and the d r a f t tube gate set at a wide open p o s i t i o n so as not to i n t e r f e r e with the passage of f i s h i n the d r a f t tube. The upstream c o n t r o l gate was p a r t i a l l y opened so that the discharge was approximately equal to the discharge normally obtained i n the t e s t s at t u r b i n e speed of 600 rpm as p r e v i o u s l y d e s c r i b e d . The procedure f o l l o w e d t h e r e a f t e r was the same as that d e s c r i b e d i n the preceding s e c t i o n . The t e s t was then repeated f o r a discharge approximately equal to that i n the 1800 rpm t e s t s e r i e s . The reason f o r doing t h i s was to keep the degree of turbulence i n the system at approximately the same l e v e l as i n the t e s t with the t u r b i n e runner. 3.4 Test f o r P i s h M o r t a l i t y i n the D r a f t Tube In order to check the m o r t a l i t y of f i s h i n the d r a f t tube and the p o s s i b i l i t y of the downstream c o n t r o l gate i n t e r f e r i n g w i t h the passage of f i s h i n the d r a f t tube, two f i s h i n j e c t i o n p o i n t s are provided f o r i n the d r a f t tube, one upstream ( f i g . i o ) and one downstream from the c o n t r o l gate ( f i g . 9 ) . At the opening above the c o n t r o l gate, f i s h were poured i n t o the d r a f t tube, otherwise the procedure followed was the same as i n 3.2. The i n t r o d u c t i o n of f i s h i n t o the opening downstream from the c o n t r o l gate was through the i n j e c t o r and the same procedure as i n 3.2 was f o l l o w e d . 50 3.5 P r e l i m i n a r y Test to Observe Extent of Delayed M o r t a l i t y F i v e p r e l i m i n a r y t u r b i n e f i s h m o r t a l i t y t e s t s were c a r r i e d out u s i n g the same pink f r y mentioned i n 3*1 as t e s t speciments. The r e s u l t s are t a b u l a t e d i n Table VIII and i n Table X ( P - s e r i e s ) . The primary object of the t e s t was to check the f u n c t i o n i n g of the equipment. I t was observed that the delayed m o r t a l i t y occurred w i t h i n two days a f t e r the t e s t . The pe r i o d of o b s e r v a t i o n f o r the delayed m o r t a l i t y f o r the subsequent t e s t s was l i m i t e d to three days. 3.6 F i s h M o r t a l i t y Rate at the Trap When f i s h were dumped i n t o the water i n the t r a p o p e r a t i n g under the same c o n d i t i o n as i n the tur b i n e f i s h m o r t a l  i t y t e s t and held f o r one minute, no immediate m o r t a l i t y was observed. The delayed m o r t a l i t y was l e s s than 2$; hence the m o r t a l i t y r a t e of f i s h a t the t r a p alone was n e g l i g i b l e . B i o l o g i c a l Examination of Dead F i s h The r e s u l t s of the b i o l o g i c a l examinations of a l l dead f i s h are presented i n Table IV. The c l a s s i f i c a t i o n of types of i n j u r y was based on those used by the U.S.Army Corps of En g i n e e r s . I n each set of t e s t s under i d e n t i c a l t u r b i n e o p e r a t i n g c o n d i t i o n s , the number of occurrences of the apparent type of i n j u r y l i k e l y to cause death are summed and expressed as a percentage of the number of dead f i s h examined. The r e s u l t s appear i n Table I I . The t o t a l percentage of occurrence of every type of i n j u r y i n Table I I exceeds 100$ because more than one i n j u r y i s 51 o f t e n found i n one d e a d . f i s h . F i g u r e s appearing i n the columns headed " D e c a p i t a t i o n and L a c e r a t i o n " and "non apparent i n j u r y " represent the true percentage of o c c u r r e n c e s . I n the case of " d e c a p i t a t e d f i s h " , no f u r t h e r attempt i s made to i d e n t i f y the types of i n j u r y . I n the case of "non apparent i n j u r y " , dead f i s h showed no v i s i b l e s i g n of i n j u r y ; hence the number of t h i s occurrence appears i n one column o n l y . 3.7 E f f e c t of the Admission of A i r on the Turbine Performance The t u r b i n e was set at 50 f t h y d r a u l i c head and operated at. 600 rpm with the wicket gate set at p o s i t i o n No. 6. A i r was admitted i n t o the d r a f t tube immediately downstream from the b l a d e s . A i r pressure and a i r meter r e a d i n g were r e c o r d e d . The t e s t was repeated u s i n g v a r i o u s amounts of a i r . The d r a f t tube s u c t i o n was r e s e t but the t o t a l head was maintained at 50 f t ; the t e s t s were repeated f o r s i x values of the d r a f t tube s u c t i o n . The whole procedure was repeated f o r the machine speeds of 1200 and 1800 rpm. The wicket gate s e t t i n g was then a l t e r e d to No. 9 p o s i t i o n and the e n t i r e programme repea t e d . F I G . 2 1 a FISH HOLDING TANKS FIG.21b COUNTING OF FISH P I S . 2 2 TRANSFERRING OP PISE TO BASIN  COMPLETED F I G . 2 3 GETTING RID OF EXCESS WATER FIG 24a THE INJECTOR AND EXTENSION FIG.24b FISH BEING POURED INTO THE INJECTOR 55 g i g 24d FISH BEING INTRODUCED INTO THE PENSTOCK F I G . 25 FISH IK THE PENSTOCK F I G . 26 FISH TRAP FIG. 27a REMOVAL OF F I S H COLLECTION BOX FROM THE TRAP FIG.27c TEST FISH READY FOR SEPARATION F I G . 27d SEPARATION OF LIVE FISH FROM DEAD FISH 59 P I G . 28 PISH LENGTH MEASUREMENT 60 CHAPTER IV DISCUSSION OP EXPERIMENTAL RESULTS 4.1 Effect of Turbine Operating Conditions on Pish Mortality Rate  Effect of Turbine Speed on Mortality As indicated i n f i g . 29 and Table I, the mortality rate of f i s h passing through the turbine operating under approximately the same head and sigma and variable speed are as follows: Speed E f f i c i e n c y Sigma Head Mortality Rate rpm % f t %_ 600 52 0.41 45.4 40 1200 81 0.39 50.5 42 1800 86 0.39 50 34 Although i t appears that an increase i n mortality rate accompanies the reduction i n turbine speed, the results are inconclusive. The turbine speed i s not the only variable i n these tests'. At 1800 rpm, the efficiency of the turbine i s almost at the maximum possible for the 50 f t head (fig.29). At lower speed, the efficiency i s less than 86$. Previous research (3,9) indicates that higher mortality rate i s associated with low e f f i c i e n c y . It i s then possible for the mortality rate of f i s h passing through the turbine operating at lower speed and lower ef f i c i e n c y to be higher than that at higher speed and higher sigma. Two si g n i f i c a n t results of the tests are that ( l ) no decapitation of f i s h occurs at a turbine speed of 600 rpm or less, (2) decapitation increases progressively as the speed increases. If i t i s assumed that f i s h t r a v e l at the same velocity as that of the water, then the impact velocity of f i s h at the leading edge of the blades i s the. same as the velocity, of water re l a t i v e to the leading edge of the blades. The rel a t i v e v e l o c i t i e s corresponding to various turbine speeds are as follows: Speed rpm Velocity of Water Relative to the Leading Edge of Blades ft/sec Decapitation % At the Hub At the periphery 600 19 29 0 900 26.5 41.5 3.6 1200 36 54.5 9.1 1800 51 80 14.3 The tests show that i f by chance f i s h c o l l i d e with a blade, de capitation does not occur i f the v e l o c i t y relative to the blade i s less than 29 f t / s e c . The c r i t i c a l impact velocity between f i s h and the leading edge of the blades resulting i n decapitation of the f i s h appears to be between 29 ft/sec and 41.5 f t / s e c . Some f i s h obviously t r a v e l through the runner spaces without c o l l i d i n g with the turbine blades. As indicated i n f i g . 30, the percent decapitation i n  creases proportionally with the turbine speed-discharge r a t i o . In Von Raben's formula(10) , for f i s h of the same length, the possi b i l i t y of contact between f i s h and the blades i s also proportional to the turbine speed-discharge r a t i o . Von Raben admits that the c a l c u l a t e d p o s s i b i l i t y of contac t i s h i g h e r t h a n the observed f i s h d e c a p i t a t i o n and suggests t h a t a f a c t o r K be a p p l i e d to the c a l c u l a t e d v a l u e to b r i n g i t c l o s e r to the observed r e s u l t s . F o r the r e s u l t s i n these t e s t s , K i s a p p r o x i m a t e l y 0 . 1 5 . E f f e c t of O p e r a t i n g Sigma on F i s h M o r t a l i t y I n t e s t s at a t u r b i n e speed of 600 rpm, T a b l e V I I I shows t h a t the. m o r t a l i t y r a t e of f i s h i n c r e a s e s f rom 34$ t o 4 0 $ when sigma i s reduced from 0.65 t o 0 . 4 1 . From the f i n d i n g s of p r e v i o u s r e s e a r c h ( 3 , 9 ) t h i s r e s u l t i s e x p e c t e d . I n t e s t s at a t u r b i n e speed of 1800 rpm and e f f i c i e n c y of 86$, the m o r t a l i t y r a t e of f i s h reduces from 38$ t o 34$ when the sigma i s reduced from 0.59 t o 0 . 3 9 . An i n c o n s i s t e n c y of the r e s u l t s i s thought to be due t o the i n t e r f e r e n c e of the d r a f t tube c o n t r o l gate w i t h the passage of f i s h i n the d r a f t t u b e . At low s i g m a , the gate i s l e f t i n a wide open p o s i t i o n , whereas at the h i g h e r s i g m a , i t i s o n l y p a r t i a l l y opened. F i s h c o u l d come i n contac t w i t h the p a r t i a l l y opened g a t e . 4 .2 E f f e c t of the T u r b i n e B l a d e s on the M e c h a n i c a l I n j u r i e s  of F i s h When f i s h were i n j e c t e d i n t o the penstock w i t h the t u r b i n e runner removed, some m o r t a l i t y o c c u r r e d . The b i o l o g i c a l e x a m i n a t i o n of a l l dead f i s h appears i n T a b l e II and T a b l e I V , p a r t s of which are shown on the f o l l o w i n g p a g e . I t . can be seen that the m a j o r i t y of the m e c h a n i c a l i n j u r i e s s u f f e r e d by f i s h p a s s i n g t h r o u g h the t u r b i n e occurs as a result of c o l l i s i o n with turbine blades. Pish c o l l i d i n g with other s o l i d objects such as the wicket gates receive negligible mechanical i n j u r i e s . Test Conditions Q cf s . N um be r of  f is h In je ct ed ' Nu mb er  o f de ad  Pi sh  E xa mi ne d Cases of Mechanical Injuries Q cf s . N um be r of  f is h In je ct ed ' Nu mb er  o f de ad  Pi sh  E xa mi ne d Abrasion e Contusion Ventral Rupture Decapi tatio n c Lacera t i o n Damage to Liver c Viscera 1. Runner removed 4.4 160 11 1 1 0 2 2 . Runner removed 6.0 160 43 3 2 0 3 3 . Runner i n place 5.95 479 170 35 24 71 16 . . . . '. ..' ' ,64 , 4 . 3 E f f e c t of A d d i n g A i r i n t o the T u r b i n e on the P i s h M o r t a l i t y  A i r Added i n the D r a f t , T u b e Immediately Downstream from  the B l a d e s The m o r t a l i t y ra te of f i s h p a s s i n g t h r o u g h the t u r b i n e w i t h and wi thout the a d m i s s i o n of a i r i n t o the d r a f t tube immed i a t e l y downstream from the b l a d e s appears i n T a b l e V I I I and T a b l e I X . I n o r d e r t o i l l u s t r a t e the e f f e c t of a i r on f i s h m o r t a l i t y , p a r t s of the T a b l e V I I I and T a b l e IX are reproduced b e l o w . T e s t N • H Sigma M o r t a l i t y Rate S e r i e s rpm f t . l b / m i n Without W i t h N o . a i r a i r 1 600 45 .4 0.64 0.22 34 27 2 600 45 .4 0.41 0 .22 40 28 3 1800 50 0 .59 0 .16 38 36 4 1800 50 0 .39 0.16 34 30 5 1800 50 0 .39 0.32 ' 34 40 Prom the r e s u l t s a b o v e , i t i s c o n c l u d e d t h a t , i n g e n e r a l , at a l l speeds a d m i s s i o n of a i r i s b e n e f i c i a l . At lower v a l u e s of s i g m a , i . e . , when the c a v i t a t i o n i n c r e a s e s , b e n e f i t s of a d d i n g a i r to the t u r b i n e a r e p r o g r e s s i v e l y g r e a t e r . T e s t r e s u l t s i n the s e r i e s No.5 are an e x c e p t i o n . I t appears t h a t a l a r g e q u a n t i t y of a i r i n c r e a s e s the f i s h . m o r t a l i t y r a t e . T e s t r e s u l t s from t h i s p a r t i c u l a r s e r i e s a r e however i n c o n c l u s i v e because they c o n t a i n a wide v a r i a t i o n i n the number of the d e l a y e d m o r t a l i t y . As p o i n t e d out i n d i s c u s s i o n i n 4 .5 , a l a r g e q u a n t i t y of a i r added to the t u r b i n e at low sigma can s e r i o u s l y e f f e c t the t u r b i n e p e r f o r m a n c e . More t e s t s s h o u l d be conducted i n the f u t u r e t o a s c e r t a i n the e f f e c t of a l a r g e q u a n t i t y of a i r on the f i s h m o r t a l i t y r a t e . A i r Added i n the Penstock and Through the D r a f t Tube Vent The m o r t a l i t y r a t e of f i s h p a s s i n g t h r o u g h the t u r b i n e w i t h a i r added i n the penstock and i n the d r a f t tube t h r o u g h a 3" diameter , s t e e l v e n t , are g i v e n i n T a b l e I X , p a r t s of which appear b e l o w . T e s t A i r Data H Sigma E f f i c i e n c y M o r t a l i t y Rate S e r i e s f t % % 1 No a i r 50 0.39 86 34 2 A i r i n penstock 50 0.39 85 39 3 A i r t h r o u g h vent 44 0.6 5 75 34 The o p e r a t i n g c o n d i t i o n s d u r i n g a l l t h r e e t e s t s e r i e s were i d e n t i c a l . I n the s e r i e s N o . l , no a i r was a d d e d . I n s e r i e s No . 2 , a i r was added i n t o the p e n s t o c k ; hence a s l i g h t change i n the o p e r a t i n g c o n d i t i o n o c c u r r e d . I n s e r i e s N o . 3 , when a i r was added to the d r a f t tube t h r o u g h the v e n t , the d r a f t tube s u c t i o n was reduced from 11.5 i n c h e s of Hg t o 4 i n c h e s of Hg; hence the sigma and the e f f i c i e n c y changes t o the r e c o r d e d v a l u e s . The speed i n a l l t h r e e sets was 1800 rpm. T e s t r e s u l t s were i n c o n c l u s i v e because the t e s t s e r i e s 2 and 3 were conducted 10 to 13 days a f t e r t e s t s e r i e s 1 . D u r i n g t h i s t i m e , f i s h were not f e d and might have been i n a weakened 66 condition at. the time of test i n g . B i o l o g i c a l records show that addition of a i r into the • . 1 penstock had some benefits.' The percentage of dead f i s h that had decapitated bodies decreased from 42$ i n tests i n which no a i r was added to 23$ i n tests in which a i r was added into the pen stock. (Table II) . Bi o l o g i c a l records also show that addition of a i r into the draft tube through the vent was b e n e f i c i a l . The cases of collapsed a i r bladders i n dead f i s h were reduced from 38$ i n tests i n which a i r was not added to 17$ i n tests i n which a i r was added. The reduction i n the cases of collapsed a i r bladders was attributed to the reduction of the draft tube suction. 4.4 Effect of P a r t i a l Vacuum on Pish When f i s h were injected into the penstock with the turbine runner removed, some mortality occurred. The b i o l o g i c a l examination record of dead f i s h appears i n Table II and Table IV, part of which i s as follows: Q cfs Hs in.Hg Number of f i s h Number of dead Injuries Exposure Vacuum due to to p a r t i a l injected f i s h Eye Damage Collapsed a i r Bladder 4.4 5 160 11 1 7 6 8 160 4'3 3 40 67 The m a j o r i t y of dead f i s h s u f f e r e d f rom c o l l a p s e d a i r b l a d d e r which i s c o n s i d e r e d t o be caused by exposure to p a r t i a l vacuum. The number of cases of c o l l a p s e d a i r b l a d d e r s i n c r e a s e s w i t h the i n c r e a s e i n the degree of p a r t i a l vacuum. Other types of i n j u r y of dead f i s h from the same t e s t s are d i s c u s s e d i n 4 . 2 . With the t u r b i n e runner removed, most of the energy of the water was e x t r a c t e d by the upstream c o n t r o l gate a lone because the downstream gate was l e f t i n a wide open p o s i t i o n so that i t d i d not i n t e r f e r e w i t h the passage of f i s h . The penstock p r e s s u r e was mainta ined at s l i g h t l y above a tmospher ic p r e s s u r e . H y d r a u l i c l o s s e s due t o f r i c t i o n and t u r b u l e n c e i n the s c r o l l c a s e were s u f f i c i e n t to i n d u c e a p a r t i a l vacuum i n the top par t of the d r a f t t u b e . When f i s h were i n j e c t e d i n t o the d r a f t tube at the openings above and below the downstream g a t e , m o r t a l i t y o c c u r r e d . The m o r t a l i t y r a t e i s g i v e n i n T a b l e V I I and the r e c o r d of b i o l o g  i c a l examinat ion of dead f i s h i n T a b l e V . U n f o r t u n a t e l y the b i o l o g i c a l r e c o r d was i n c o m p l e t e ; t h e r e f o r e an attempt to i n t e r - p r e t e the r e s u l t i s not p o s s i b l e . 4 «5 E f f e c t of the A d d i t i o n of A i r on the T u r b i n e Performance The l e v e l of the t u r b i n e n o i s e and v i b r a t i o n i s observed t o be reduced when a i r i s a d m i t t e d i n t o the d r a f t tube immedia te ly downstream from the b l a d e s . T h i s i s e s p e c i a l l y n o t i c e a b l e when the t u r b i n e i s o p e r a t i n g under severe c a v i t a t i n g c o n d i t i o n s . The r e l a t i o n s h i p between the t u r b i n e power o u t p u t , e f f i c i e n c y , d i s -68 charge and the a i r d i s c h a r g e i s shown i n F i g s . 31a to 32c . The f i g u r e s show that the t u r b i n e o u t - p u t i s reduced when a i r i s a d m i t t e d i n t o the d r a f t . t u b e . The e f f i c i e n c y , except i n a v e r y few i n s t a n c e s i s a l s o r e d u c e d . The r e d u c t i o n of b o t h the e f f i  c i e n c y and the power output of the t u r b i n e , i n which an a i r volume up to 1% of the d i s c h a r g e i s a d d e d , i s l e s s than 2%. F i g . 3 2 b shows t h a t the q u a n t i t y of a i r a d m i t t e d i n t o the d r a f t tube at h i g h d r a f t tube s u c t i o n , i . e . , at low s i g m a , has impor tant e f f e c t s on the t u r b i n e p e r f o r m a n c e . As the amount of ' a i r a d m i t t e d i n t o the d r a f t tube i n c r e a s e s beyond a c e r t a i n c r i t i c a l v a l u e , the t u r b i n e o u t - p u t decreased and the' d i s c h a r g e i n c r e a s e s a b r u p t l y , r e s u l t i n g i n a l a r g e decrease i n t u r b i n e e f f i c i e n c y . The n o i s e l e v e l i n the t u r b i n e d u r i n g the p e r i o d t h a t t h i s phenomenon takes p l a c e i s a l s o i n c r e a s e d but the n o i s e does not resemble t h a t normal ly encountered i n the t u r b i n e o p e r a t i n g under c a v i t a t i n g c o n d i t i o n . F i g s . 31a and 31b show t h a t when a i r e q u i v a l e n t to 3% of the d i s c h a r g e i s added to the d r a f t tube at low s i g m a , a r e d u c t i o n i n e f f i c i e n c y up to 6% and i n power o u t - p u t up to 7% can be e x p e c t e d , 4 . 6 Some Shortcomings of the T e s t s 1 , The i n t e r p r e t a t i o n of the r e s u l t s i n the p r e c e d i n g d i s c u s s i o n s a r e b a s e d . o n the average value of the m o r t a l i t y ra te of f i s h . The number of t e s t s c a r r i e d out i s thought to be too few f o r a s a t i s  f a c t o r y a p p l i c a t i o n of the t h e o r y of s t a t i s t i c s ; t h e r e f o r e no s t a t i s t i c a l a n a l y s i s of the r e s u l t s i s g i v e n . x S t a t e d v a l u e of a i r volume i s the e q u i v a l e n t volume at a tmospher ic p r e s s u r e . 2 . The time t h a t f i s h are exposed t o the p a r t i a l vacuum i n the d r a f t tube i n the present set up i s l o n g e r than i n a p r o t o t y p e i n s t a l l a t i o n . The average d i s c h a r g e d u r i n g the t e s t s was about 6 c f s . The average c r o s s - s e c t i o n a l a r e a of the d r a f t tube i s about 1 s q . f t ; t h e r e f o r e the v e l o c i t y of water i n the d r a f t tube i s about 6 f t / s e c * The l e n g t h of the d r a f t tube i n c l u d i n g the e x t e n s i o n i s about 35 f t . P i s h are exposed to v a r y i n g degree of p a r t i a l vacuum f o r about 6 s e c o n d s . M u i r ( 8 ) showed that exposure of f i s h t o severe p a r t i a l vacuum over one second can r e s u l t i n m o r t a l i t y . A t McNary, the t ime f i s h are exposed to p a r t i a l vacuum i s e s t i m a t e d at about 2 s e c o n d s . 3 . D u r i n g the f i r s t . t h r e e t e s t s i n the C o - s e r i e s , no p a c k i n g compound was used to s e a l c racks and s m a l l openings around the r i m of the f i s h c o l l e c t i o n b o x . Some l i v e and dead f i s h were found underneath the b o x . E x t r a s t r e s s might have been imposed on these l i v e f i s h . D u r i n g the same t h r e e t e s t s , a few f i s h s tayed w i t h i n , the s y s t e m , an unexpected o c c u r r e n c e which was not o f t e n e x p e r i e n c e d i n the p r e c e d i n g low speed t e s t s . The procedure s u b s e q u e n t l y adopted - of s t o p p i n g the t u r b i n e and d r a i n i n g the whole system a f t e r each t e s t - r e s u l t e d i n g r e a t improvement . T h e r e a f t e r the number of f i s h m i s s i n g a f t e r any one t e s t was e i t h e r v e r y s m a l l or n i l . 4 . I t was observed t h a t d u r i n g the d e l a y e d m o r t a l i t y o b s e r v  a t i o n p e r i o d , Coho f r y d i d not h e s i t a t e t o a t t a c k the weaker members of t h e i r g r o u p . Some d e l a y e d m o r t a l i t y may have r e s u l t e d 70 from the combination of stresses imposed on the f i s h i n the passage through the turbine and the attack by stronger members of the group. 5 . P i s h when.placed close to the source of a i r supply during the holding period f o r delayed m o r t a l i t y observation .often showed a higher rate of delayed m o r t a l i t y than those placed f u r t h e r away from the a i r source. A possible explanation i s that the o u t l e t of the a i r supply was placed at the bottom of the tank. A i r bubbles rose to the water surface and created a water current away from that p o i n t . I n order to maintain t h e i r p o s i t i o n s , f i s h would have to swim and exert themselves. Harvey(7) i n h i s study of the e f f e c t of pressure on Sockeye salmon at Gultus Lake, B.C., expressed an opinion that a f t e r decompression, some f i s h could rest q u i e t l y but gas emboli and death could be p r e c i p i t a t e d i n the same f i s h i f they were stressed or exercised. 71 T a b l e I FISH MORTALITY AND TURBINE OPERATING CONDITIONS Wicket Gate P o s i t i o n No.6 o • r l . • - P >> . C8 - p « • r l K H < D >> • H V •' A- • P $D • p . O < : C d U • H • r l (J) H a 03 s .fl c d o 03 >> O - p • r l O U o o CO r l - P P 4 c • r l o c d • p < u P i 3 - p - P <M • H 1 • r l O - O O ts H P, a ) C D • r l P <v c d O J • p < D e d «H q O <v • P o fl P. ID <H • r l o 0> o C O w C O C O E H o o 300 V 8 .3 70 3.1 14.3 19 0 42 600 45 .4 52 0.41 13.6 40 0 41 900 52 .5 71 0 .37 18.7 46 3.6 56 1200 50.5 80 .5 0.39 23.2 42 9.1 68 1800 50.0 86 0.39 31.1 34 14.3 86 TABLE II 72 COMPARISON OP TYPE OP INJURIES AND THEIR PREQUENCY OP OCCURRENCE . Injuries i n percent of cases examined * •x) CU cd u CD CD R u 03 <D a CO CO cd CD fl a m CD O <Tj S3 u cd o CO CO fn CD a r l +» • r l « H CD CL. r< fl cd r l CD -r> fl fl -P o u CD -H • r l t> CI p . O fl CD •H P . CD fl S a CD cd •ri cd ci • r l O U tl CD fl til) B ca tlD r-i o r l -P -ri cd C 3 W 3 * cd CD U cd fl - r l cd -P P . O U o HJ El <D r H a CO CD - O r l . o co r H • p cd p . CO o o 3 cd P . na CD CD •ri 3 cd •ri (H cd A • p -P o H fl o cd T> W> O CO -P u P . CD S3 • p o CO Cd CD r l r H cd cd co cd fl - p cd o CD m CO fl a a -P -ri (D CD r-i r H a -H u o fl o cd fl CD • H CD O «H P . t» O fl cd > fl o CD CD Hi o EH PI PH p» EH O W P i <i > PI High suction 1. No a i r 5.93 16 11.5 170 3.5 7.6 38 9 20.5 14.3 42 6.5 2 . Small a i r behind- blades 6 .14 16 11.5 141 6 .8 17 47 14 23.4 10.5 33 5.1 a 3. Large air- P . r l behind blades 6 .21 15.8 11.4 220 3.2 12.? 54 17 20.0 8.6 35.4 5.5 O O 4 . A i r i n C O r H draft tube II through vent 5.51 17.2 4 139 0.6 11.5 17 6.5 26 .6 .21 36 11.5 Si 5 . A i r i n penstock 5.97 16 .2 11 125 0 8 40 4 18 .4 17.5 23 10 A Low suction 1. No a i r 5.83 20.2 3 ?04 6 .9 18 36 13.7 19 .6 10.8 38 9.3 rp m 2. With a i r o o behind blades 5.84 20.< 3 167 3 . 19 .7 32.3 21 19.7 16 .1 43.7 8.4 CO r H II 123 No Blades 1 . Low d i s  charge 4 .4 1.2! 5 11 0 . 9 64 18 9 9 0 0 2 . High d i s  charge 5.8 1.2! 8 43 2 7 98 7 7 5 0. 4 73 F I Q . 2 9 PISH MORTALITY v OPERATING CONDITION 74 75 H = 50 f t Wicket Gate P o s i t i o n N o . 6 H = 50 f t Wicket Gate Position No .9 76 lOOr 401 I t : ± 0.4 0.5 SIGMA 0.6 PIG.31b EFFECT OF AIR ON TURBINE EFFICIENCY H = 50, Gate No. 9 , N = 1200 RPM 0 -•• .\ 1 .0 2 .0 3.0 4 . 0 5 .0 Oat ' ' " Q • F I G . 3 2 b AIR v TURBINE PERFORMANCE H = 50 f t , Gate P o s i t i o n 6 , N = 1800 79 PIG.52 C AIR v TURBINE PERFORMANCE 80 CHAPTER V CONCLUSIONS As indicated i n the available but limited number of t e s t . r e s u l t s , i t i s concluded that the addition of compressed a i r into the model propeller turbine reduces the mortality rate of f i s h passing through the turbine substantially i f the turbine i s operating at low efficiency and low sigma. The admission of a i r into the turbine does not s i g n i f i c a n t l y reduce the mortality rate when the. turbine i s operating at high e f f i c i e n c y . In general, the addition of a i r into the turbine reduces the turbine output and efficiency as well as reducing the noise and vibration l e v e l . Small quantities of a i r (of an order of 1% of the discharge) do not reduce the effi c i e n c y nor the output by a sig n i f i c a n t amount. A larger quantity of a i r beyond a c r i t i c a l value (of the order of 3% of the discharge) when admitted into the turbine operating at low sigma results i n an abrupt increase i n discharge and a reduction i n output and e f f i c i e n c y . The turbine blades are the largest single source of mechanical injury suffered by f i s h passing through the turbine. The f i s h decapitation appears only a f t e r a certain impact velocity between f i s h and the blade has been exceeded and thereafter increases with the turbine speed-discharge r a t i o . Mortality of f i s h exposed to p a r t i a l vacuum i n the draft tube of the turbine i s possible. 81 The above conclusions are based on average values of a few test r e s u l t s . A s t a t i s t i c a l approach to the interpretation of the results i s a superior way to deal with test results of t h i s nature. Unfortunately, the number of tests carried out i s thought to be too few f o r satisfactory application of s t a t i s t i c a l theory. More tests should be conducted, preferably i n a turbine prototype, i n a further study of the benefits of adding a i r to the turbine to reduce the mortality rate of f i s h passing through the turbine. Should more tests be conducted i n the same model turbine, the shortcomings l i s t e d in. Chapter I? should be avoided as f a r as possible. 82 BIBLIOGRAPHY 1 . B r e t t , J . R . "Salmon R e s e a r c h and Hydro Power D e v e l o p m e n t . " F i s h e r i e s Research Board of  C a n a d a , B u l l e t i n No.114 , 1957. 2 . " I m p l i c a t i o n and Assessment of E n v i r o n m e n t a l S t r e s s . " I n the I n v e s t i g a t i o n of F i s h - P o w e r  P r o b l e m s , E d . P . A . L a r k i n , H . R . M a c M i l l a n L e c t u r e s i n F i s h e r i e s , U n i v e r s i t y of B r i t i s h C o l u m b i a , 1958, pp 6 9 - 8 3 . 3 . Cramer , F r e d e r i c k K . " F i s h Passage t h r o u g h T u r b i n e s - Model T u r b i n e E x p e r i m e n t s . " U . S . Army Corps of  E n g i n e e r s , P r o g r e s s Report N o . 2 , September 1960. 4 . Cramer , F r e d e r i c k K . and O l i g h e r , Raymond C . " F i s h Passage t h r o u g h T u r b i n e s - T e s t s at Cushman No.2 H y d r o e l e c t r i c P l a n t . " U . S . Army Corps of E n g i  neers , P r o g r e s s Report No . 2 , September 1960. 5 . " F i s h Passage t h r o u g h T u r b i n e s - F u r t h e r T e s t s at Cushman No .2 H y d r o e l e c t r i c P l a n t . " U . 'S . Army  Corps of E n g i n e e r s , P r o g r e s s Report No .4 , J u l y 1961. 6 . Anonymous. " F i s h Passage t h r o u g h T u r b i n e s - T e s t s at Shasta H y d r o e l e c t r i c P l a n t . " U . S . Army Corps of  E n g i n e e r s , P r o g r e s s Report N o . 5 , May 196 3 . 7 . L u c a s , K . C . "The M o r t a l i t y of F i s h P a s s i n g t h r o u g h H y d r a u l i c T u r b i n e s as R e l a t e d to C a v i t a t i o n and Performance C h a r a c t e r i s t i c s , P r e s s u r e Change, Negat ive P r e s s u r e and O t h e r F a c t o r s . " P r o c e e d i n g s  of the I n t e r n a t i o n a l A s s o c i a t i o n of H y d r a u l i c s  R e s e a r c h Symposium on C a v i t a t i o n and H y d r a u l i c  M a c h i n e r y , Paper B - 8 , S a n d a i , J a p a n , 1962. 8 . M u i r , • J . F . "Passage of Young F i s h Through T u r b i n e s " J o u r n a l Power D i v i s i o n , P r o c e e d i n g s of American  S o c i e t y of C i v i l E n g i n e e r s , V o l . 8 5 ( P O l ) . 1939. pp 23-46 . 9 . Von G u n t e n , Glenn H . " F i s h Passage t h r o u g h H y d r a u l i c T u r b i n e s . " J o u r n a l H y d r a u l i c D i v i s i o n , P r o c e e d  i n g s of American S o c i e t y of C i v i l E n g i n e e r s , V o l . 8 7 ( H Y 3 ) , May 1961, pp 59-62 . BIBLIOGRAPHY ( C o n t ' d ) 1 0 . Von Raben, K u r t . " Z u r Frage der Beschadigung von F i s h c h e n d i r c h T u r b i n e n (Regarding the problem of m u t i l a t i o n of f i s h by t u r b i n e s ) , Die Wasser - w i r t s h a f t , March 1957, PP 97-100, I n German. ( E n g l i s h t r a n s l a t i o n by Canada Department of F i s h e r i e s 1962) . 1 1 . W i n t e r n i t z , F . A . L . " C a v i t a t i o n i n Turbomachines" Water Power, September, O c t o b e r , November, 1957* 1 2 . B i s h a i , H . M . "The E f f e c t of Gas Content of Water on L a r v a l and Young F i s h " Z e i t s c h r i f t f u r W i s s e n - s c h a f t l i c h e Z o o l o g i e , . V o l .16 5, 1960, pp 37-64 . 1 3 . Rowley , W . E . " H y d r o s t a t i c P r e s s u r e T e s t s on Rainbow T r o u t " C a l i f o r n i a F i s h and Games, V o l . 1 , J u l y 1955 . 14. U . S . Army Corps of E n g i n e e r s . P a c i f i c D i v i s i o n . P r o g r e s s r e p o r t on F i s h e r i e s E n g i n e e r i n g R e s e a r c h P r o g r a m . , J u l y 1960. 84 APPENDIX I SYMBOLS, ABBREVIATIONS AND UNITS The f o l l o w i n g i s a l i s t o f symbols and a b b r e v i a t i o n s used throughout the t e x t . The u n i t s r e f e r t o . t h e v a l u e s as s p e c i f i e d i n the t a b l e s of data and r e s u l t s i n Appendix I I I . A^ Area of the a i r p i p e p r e c e d i n g the n o z z l e A^ - A r e a of the n o z z l e BHP - Horsepower output of the t u r b i n e HP. - Horsepower i n p u t of the t u r b i n e i n * * C - The p o s s i b i l i t y of c o n t a c t between f i s h and the b l a d e s C , . - Plow c o e f f i c i e n t of the a i r n o z z l e d D - B l a d e t i p diameter of the t u r b i n e d - Hub diameter of the t u r b i n e H . - T o t a l e f f e c t i v e head a c r o s s the runner of the t u r b i n e i n f t of water - A i r meter r e a d i n g i n i n c h of water H^ - B a r o m e t r i c head of water i n f t of water H - D r a f t tube s u c t i o n head i n f t of water s K - Constant of p r o p o r t i o n a l i t y L - L e n g t h of f i s h N - T u r b i n e speed i n rpm n - Number of b lades on the t u r b i n e runner P - A i r gauge p r e s s u r e i n p s i P _ - . .Ai r p r e s s u r e i n f r o n t of the n o z z l e i n p s i a i P - Penstock p r e s s u r e i n p s i 85 (Cont'd) A i r pressure behind the nozzle Draft tube suction gauge reading i n inch of Hg Turbine discharge i n cfs The discharge of a i r through the nozzle The discharge of a i r at atmospheric pressure Turbine output torque i n l b s . f t . Time taken by the blade to take up the position of the preceding blade Absolute temperature of the a i r A i r temperature i n °P Circumferencial velocity of a point on the leading edge of the blade Whirl component of the water approaching the leading edge of the blade Absolute velocity of water approaching the blade Axial component of the velocity of water approach ing the leading edge of the blade Velocity of water re l a t i v e to the leading edge of the blade Water section through the runner during the time T Specific weight of the a i r l b / f t Turbine sigma Turbine efficiency % Angle between V.T and V 86 APPENDIX I I SAMPLE-OF CALCULATION 1 . Plow of a i r t h r o u g h a n o z z l e Q = A 0 C„ 2 d ( i - W 2 S - ( P a I * Pa2> w TT 4 D 2 ' V 1 - ( - I - ) D ( P a l " Pa2> a F o r D 2 = = 0.53 i n c h A i r meter r e a d i n g £±h = h^ - h^ f t of water P - P -= a l a2 .14.7 34 w = s p e c i f i c - w e i g h t of a i r i n l b / f t a C^ = C o e f f i c i e n t of d i s c h a r g e of the n o z z l e Q 0.1085 C. Ah w APPENDIX I I ( C o n t ' d ) 87 S p e c i f i c weight of a i r w Si Prom pv = ET a a 2 p = a i r a b s o l u t e p r e s s u r e l b / f t 3 v = s p e c i f i c volume of a i r f t / l b R = gas constant = 53.3 f t / degree of a b s o l u t e temperature T = a b s o l u t e temperature of a i r = 460 + t ° P t = A i r temperature i n degrees P P = A i r gauge p r e s s u r e i n p s i w = l / v a a 144 (P a + 14.7) 3 53.3 (460 + t ) l 6 / f t I t i s assumed that the a i r temperature i s e q u a l to 5 0 ° P , the mean temperature of a i r o u t s i d e the L a b o r a t o r y , where the s u p p l y of the compressor i s drawn. I n the t e s t N o . C 10 Data D r a f t tube s u c t i o n (P g ) 12.5 i n of Hg T u r b i n e d i s c h a r g e Q 4.22 c f s A i r p r e s s u r e 14 p s i A i r meter r e a d i n g £ h 0.4 i n . of water C o e f f i c i e n t of d i s c h a r g e C^ 0 .63 C a l c u l a t i o n _ 144(U + 14.7 a " 53.3(460 + 50 = 0 .15 l b / f t 3 APPENDIX I I ( C o n t ' d ) D i s c h a r g e o f . a i r t h r o u g h a i r meter Q = 0.1085x0.6.5../ 0.4"  a VI '12 x 0.151 = 0.0322 f t 5 / s e c . Weight o f a i r b e i n g admit ted i n t o the d r a f t tube = 0.0322x0.15x60 l b / m i n = 0.29 l b / m i n D i s c h a r g e of a i r c o r r e c t e d t o the p r e s s u r e i n the d r a f t tube 0.0322 x 28.7 " 14 .7 - 0 .49x12.5 Q a = 0.108 c f s Q a / Q . ^ 1 2 8 x l 0 0 = 2.54 % To change the d i s c h a r g e Q t o the d i s c h a r g e at a tmospheric p r e s s u r e Q - Q x - P 2 x 0.49) a t " a 147? -2-. Contact p o s s i b i l i t y of f i s h w i t h t u r b i n e b l a d e s . D a t a T e s t s of f i s h m o r t a l i t y i n the t u r b i n e operated a t h i g h speed but w i t h no a d m i s s i o n of a i r . Average t u r b i n e d i s c h a r g e 5.93 c f s Average t u r b i n e speed 1800 rpm Average l e n g t h of f i s h 37 mm T i p d iameter of the b l a d e s 10 i n c h e s Runner hub diameter 6 i n c h e s Number of b l a d e s on the runner 4 APPENDIX I I ( C o n t ' d ) Prom Von Raben f o r m u l a C o n t a c t p o s s i b i l i t y = 3 7 x n x ( 1 0 0 -36 ) x 4 x ! 800 2 5 . 4 x 1 2 x 2 4 0 x 5 .95x144 = 0 . 8 6 APPENDIX I I I 90 TABLE OP OBSERVED RESULTS TABLE I I I EFFECT OF ADDITION OF COMPRESSED AIR ON TURBINE PERFORMANCE WICKET GATE POSITION NO. 6 H P Qat BHP HP. o T| a a — i n i n . p s i % % - 13.3 27.2 0.6 48.9 0 .1 9 1.0 13.2 27.2 0.6 48.7 0.4 8 1.9 13 .1 26 .8 0.6 48.9 1.0 7.5 3.2 13.0 26 .5 0.6 48.9 1.2 7.5 3.4 12,9 26 .5 0,6 48.5 0 .9 7.5 3.0 13.0 26.6 0.6 48 .8 0 .4 8 1.9 13.2 26 ,6 0.6 49.5 0 .1 10 1.0 13.3 27.0 0.6 49.5 - 13.4 27.4 0.6 49.5 - 13.2 26 .9 0.53 49 .3 0 .1 9 1.0 13.2 26 .7 0.53 49 .3 0.4 8 2.0 13.1 26 .5 0.53 49.5 0.8 7.5 2 .8 13.0 26.4 0.53 49.3 1.3 7.5 3.5 13.0 26 .4 0.53 49 .3 0.8 7.5 2.8 12.9 26.4 0.53 49 .1 0.4 8 2.0 13.1 26 ,5 0.53 49 .5 0 .1 9 1.0 13.2 26 .6 0.53 49.6 - 13.4 26 .8 0.53 49.8 Q P l P 2 H N T c f s p s i i n . H g f t rpm l b . f t 4.77 20.0 3.5 50.0 580 120.4 4.77 20 .0 3.5 50.0 580 120.0 4.70 20.0 3.5 50.0 577 119.2 4.66 20.0 3.5 50.0 575 118 .0 4.66 20.0 3.5 50.0 570 118.5 4 .67 20.0 3.5 50.0 577 118.0 4.69 20.0 3.5 50.0 581 119.5 4 .74 20.0 3.5 50.0 582 120.4 4.75 20.0 3.5 50.0 585 120.4 4.72 19.0 5.5 50 .0 500 119.7 4 .69 19 .0 5.5 50.0 580 119.0 4.66 19.0 5.5 50.0 580 118.5 4.63 19.0 5.5 50.0 580 117.7 4.63 19.0 5 .5 50.0 580 117 .2 4 .63 19.0 5.5 50.0 575 118.0 4 .65 19.0 5.5 50 ,0 580 118.7 4 .68 19.0 5.5 50.0 580 119 .7 4 .71 19.0 5.5 50.0 585 119.9 4 .67 18.0 7.6 50.1 575 118 .5 4.66 18.1 7.5 50.2 575 118.0 4 .62 18.1 7.4 50.1 575 117.0 4 .60 18.2 7.3 50.3 575 116 .6 4 .58 18.2 7.2 50.1 575 115.7 4 .58 18.2 7.3 50.3 575 116 .5 4 .62 18.1 7.3 50.0 575 117.2 4 .64 18.1 7.5 50.2 575 118.2 4 .65 18.0 7.5 50.0 575 118.5 4.62 17.0 9.5 50.0 575 117.2 4.60 17.0 9.4 49-.9 573 116 .8 4 .57 17.1 9.3 50.0 575 .115-7 4.55 17,1 9.3 50.0 570 114.6 4.55 17.2 9.1 50.0 565 114.2 4.55 17.2 9.2 50.1 570 115 .0 4 .58 17.1 9.3 50.0 575 116 .0 4 .59 17.1 9.4 50.1 575 116 .5 4 .60 17.0 9.5 50.0 575 117.5 - - - 13.0 26 .6 0.48 49.0 0.1 9 1.0 12.9 26 .5 0.48 48 .7 0.4 8 2.0 12 .8 26 .2 0.49 48.8 0.9 7.5 3.0 12.8 26 .2 0.49 48 .7 1.4 7 3.6 12 .7 26 .0 0.49 48 .7 0.9 7.5 3.0 12 .8 26 .1 0.49 48.8 0.4 8 2 .0 13.1 26 .5 0.49 48.9 0.1 9 1.0 13.0 26 .4 0.49 49.1 - - - 13.0 26 .4 49 .1 - — - 12.8 26 .2 0.44 49.0 0.1 9 1.0 12.7 26 .0 0.44 49.0 0 .4 8 1.9 12 .6 25 .9 0..44- 48.9 0,9 7.5 3.1 12 .4 25 .8 0.44 48.2 1.5 7 3.8 12 .3 25.8 0.45 47 .7 0.9 7.5 3.0 12.5 25.9 0.45 48.2 0.4 8 1.9 12 .7 25.9 0.44 49.0 0.1 9 1.0 12 .8 26 ,0 0.44 49.2 - • - - 12.9 26 .1 0.44 49.4 TABLE I I I ( C o n t ' d ) 9 1 WICKET GATE POSITION NO Q P l P 2 H N T c f s . p s i i n . H g f t rpm l b .ft 4.56 16 .0 11.5 50 .1 570 115.7 4 .52 16 .1 11.5 50.3 570 114.2 4 .50 16 .1 11.3 50.1 570 114.0 4 .50 16.2 11.2 50 .1 565 112 .6 4.47 16 .2 11 .1 50.0 565 111.7 4 .50 16 .2 11.2 50 .1 565 112 .5 4 .52 16 .1 11.4 50.2 570 113.9 4.55 16 .1 11.4 50.2 570 114.7 4.57 16 .0 11.5 50.1 565 115.7 4 .53 15.4 12 .7 50.0 565 112.7 4.52 15.3 12.6 49 .7 565 113.0 4 .47 15.4 12.5 49.8 565 111.4 4.47 15.5 12.5 50.0 560 110.7 4.44 15.5 12.4 49 .9 560 108 .8 4.46 15.5 12.5 50.0 560 110.7 4 .49 15.5 12 .5 50.0 565 111.2 4 .51 15.4 12.6 49 .9 565 112.7 4 . 5 3 15.3 12.6 49 .7 565 113.0 5.42 19.9 3.5 50.0 1220 110.2 5.42 19.9 3.3 49 .8 1210 110.0 5.40 19.9 3.1 49 .5 1200 108 .7 5.37 19.9 3.2 49 .7 1190 107.0 5.35 20.0 3.3 49 .9 1190 106 .8 5.36 20.0 3.2 49 .8 1185 107.5 5.37 20.0 3.3 49 .9 1185 109.2 5.39 20.0 3.4 50.0 1185 110.5 5.39 19.9 3.5 50.0 1190 111.2 5 .40 19.0 6 .0 50.7 1180 111.2 5 .39 19.0 6 .0 50.7 1175 111.5 5.37 19.0 6 .0 50.7 1160 109.5 5.33 19.1 5 .8 50.6 1155 107.7 5.31 19.1 5.8 50.6 1145 106 .6 5.33 19.1 5.9 50.8 1150 107.7 5.35 19.1 5.9 50.8 1160 110.0 5.37 19.0 6 .0 50.7 116 5 111.7 .6 H p Qat BHP HP. 0" a a Q i n i n . p s i % % - _ - 12 .6 26 .0 0.39 48.4 0 .1 9 1 .1 12 .4 25.8 0.39 Z^8.1 0.4 8 2.0 12.3 25.6 0.40 48.3 1 .0 7.5 3.2 12.1 25.6 0.40 47.3 1.6 7 4 .0 12 .0 25.4 0.40 47 .3 1 .0 .7 .5 3.1 12 .1 25.6 0.40 47 .3 0.4 9 2.0 12.4 25.7 0.39 48 .1 0.1 9 1.1 12.5 25 .9 0.39 48 .1 - - - 12 .5 26 .0 0.39 48 .1 - — - 12.1 25.7 0 .37 47.2 0 .1 10 1 .1 12 .2 25.5 0.37 47.6 0.4 8 2.1 12 .0 25.2 0 .37 47.5 0.9 7.5 3.0 11.8 25.4 0.37 46 .5 1.7 7 4 . 1 11.6 25.1 0.38 46.3 0.9 7.5 3.0 11.8 25.3 0.37 46.5 0 .4 8 2.0 12 .0 25.5 0.37 46 .9 0 .1 9 1 .1 12 .1 25.5 0.37 47 .7 - - - 12 .2 25.5 0.37 47 .7 - - 25.7 30.7 0.58 83 .3 0 .1 9 0.8 25.4 30.7 0.58 82 .7 o .4 8 1.6 24.9 30.4 0.59 81.8 0 .9 7.5 2.3 24.3 30.3 0.59 80 .4 1.3 7.5 2.9 24.2 30.3 0.58 79 .8 0.9 7.5 2.3 24.3 30.3 0.58 80.2 0.4 8 1.6 24.6 30 .4 0.58 81 .0 0 .1 9 0.8 24.9 30.6 0.58 81.5 - - - 25.3 30 .6 0.58 82.8 - - 24.9 31.0 0.51 80.2 0 .1 9 0.9 24.9 31.0 0.51 80 .4 0.4 8 1.7 24.2 30.8 0.51 79.8 0 .9 7.5 2.6 23.7 30.6 0.51 77 .4 1.4 7 3.1 23.2 30.5 0.52 76 .6 0 .9 7.5 2 .6 23.6 30.7 0.51 76 .9 0.4 8 1.7 24.3 30.8 0 .51 78.9 0.1 9 0.9 24 .8 30.8 0 .51 80.5 TABLE I I I ( C o n t ' d ) 92 WICKET GATE POSITION NO. Q P 1 P 2 H N T c f s p s i i n . H g f t rpm lb.f t 5.35 17.5 8.3 49 .8 1190 107.5 5.35 17.5 8.3 49 .8 1200 107.0 5.31 17.6 8 .2 50.0 1185 104.2 5.32 17.6 8.0 49.8 1170 101.6 5.34 17.6 7.8 49.6 116 5 100.5 5.30 17.6 8 .1 49 .9 1170 102.5 5.30 17.5 8.2 49 .7 1175 104.5 5.33 17.5 8.3 49.8 1185 107 .2 5 .35 17.5 8.3 49 .8 1185 108.0 5.34 16 .5 10.4 49 .9 1215 105.5 5 .33 16.5 10.4 49 .9 1220 105.5 5.31 16 .5 10.2 49.6 1195 101.1 5 .42 16 .3 9.9 48 .9 1180 99.2 5 .42 16 .2 9.5 48.2 1175 98.2 5.41 16 .2 9 .8 48.5 1175 99.2 5.32 16 .5 10.2 49.6 1195 102.5 5.31 16.5 10.3 49 .7 1205 105 .0 5.33 16 .4 10.4 49.9 1210 105.7 5.30 15.6 12.4 50.0 1205 105.2 5 .30 15.6 12 .4 50.0 1195 104 .0 5.44 15.3 12.0 49 .0 1165 99.8 5.43 15.2 11.9 48 .6 1160 98.0 5 .40 15.3 11.8 48 .8 1145 97.2 5.42 15.3 12.0 49 .0 1155 98.5 5 .42 15.3 12.0 49 .0 1165 100.00 5.29 15 .6 12.4 50.0 1180 103.2 5.30 15.6 12.5 50.2 1195 106 .0 6 .00 20.0 3.4 50.0 1790 90.0 6 .02 20.0 3.3 49 .9 1800 89.5 5.98 19.9 3.1 49.5 1785 88.5 5 .95 19.9 3.2 49.6 1760 89 .7 5.95 20.0 3.0 49.6 1735 91.8 5 .96 20.0 3.0 49.6 1745 90.00 5.96 20.0 3.1 49 .7 1800 87.2 6 .02 20.0 3.2 49.8 1865 85 .1 H P - ^ B H P HP. a T)' a a Q i n i n . p s i % % - 24 .3 30.2 0.47 80 .5 0.1 9 0 . 9 24 .5 30.2 0 .47 81 . 1 0.4 8 1.7 23.5 30.1 0 .47 78 .0 0 . 9 7 .5 2.6 22.7 30.0 0 .48 75.9 1.6 7 3.4 22.3 30 .0 0 .48 74 .4 0 .9 7-5 2 .6 22 .8 30 .0 0 .47 76 .0 0.4 8 1.7 23.4 29.9 0 .47 78.9 0.1 9 0 .9 24.2 30 .1 0 .47 80 .3 - 24.4 30.2 0 .47 80 .2 - 24.4 30.1 0 .42 81 .0 0.1 9.5 0 . 9 24 .3 30.1 0.42 80 .7 0.4 8 1.7 23 .0 29.9 0 .43 77.0 0.9 7.5 2.5 22 .3 30.0 0.44 74.4 1.8 7 3.5 22.0 29.6 0.46 74.2 0.9 7.5 2.5 22.2 29.8 0.45 74.6 0.4 8 1 .7 23.2 29.9 0.43 75.2 0 .1 9 0.9 24 .1 30.0 0.43 80 .7 - 24.6 30.1 0 .42 81 .7 - 24 .2 30.0 0.37 80.5 0.1 9 0 .9 23.6 30.0 0 .37 78.8 0.4 8 1 .7 22.1 30.2 0.39 73.2 0 .9 7.5 2.5 21.7 30.0 0 .40 72 .2 1.6 7 3.3 21.2 30.1 0 .40 71.0 0.9 7 . 5 . 2 . 5 21.7 30.0 0.39 72 .3 0 .4 8 1.7 22.2 30.1 0.39 73.8 0 .1 9 0.9 23.3 30.1 0.38 77.4 - 24.0 30.1 0.37 80 .3 - 30.7 34.1 0.58 89 .9 0 .1 11 0.8 30.6 34.1 0.58 89 .7 0 .4 10 1.6 30.1 33.6 0.59 89 .7 0.9 9 2.5 30.1 33.5 0.59 89.9 1.6 9 3.2 30.3 33.5 0.59 90.2 0.9 10 2.5 30.0 33.5 0.59 89.5 0.4 10 1.6 29.9 33.6 0.59 89 .0 0 .1 11 0.8 30.2 34.0 0.58 88 .9 "TABLE I I I ( C o n t ' d ) 93 WICKET GATE POSITION Q P, P 0 H N T 1 .. 2 c f s p s i i n . H g f t rpm l b . f t 6 .05 19.1 5.9 50.8 1800 91.7 6 .04 19.1 5 .8 50.7 1800 91.5 6 .07 19.1 5.6 50.5 1800 89.5 6 .10 19.1 5.5 50.3 1800 89 .7 6 .15 19.1 5.0 49.8 1800 87.7 6 .10 19 .1 5.5 50.3 1800 90.0 6 .07 19.1 5.5 50.3 1800 89.7 6 .07 19.1 5.9 50.8 1800 91.1 6 .06 19.1 5.9 50.8 1800 91.3 .6 H p Oat BHP HP. a a a Q i n i n . p s i % % _ _ 31.4 34.8 0 .51 90.4 0 .1 11 0.8 31.4 34.7 0.52 90.5 0.4 10 1.6 30.7 34.7 0.52 88 .3 0.9 9 2.3 30.8 34.8 0.53 88.4 1.7 8 3 .0 30.1 34.7 0.54 86 .8 0.9 10 2.4 31.2 34.8 0.5 3 88 .8 0.4 10 1.6 30.8 34.8 0.53 88 .6 0 .1 11 0.8 31.2 34.9 0.52 89 .3 - - - 31.3 34.9 0.51 89.7 6 .04 17.5 8 .5 50.0 1800 87.2 6.05 17.4 6.10 17.3 6.17 17 .0 6.35 17.0 6.30 17.1 6.22 17 .1 6.08 17.2 6.05 17 .5 8.5 49.8 1800 87 .1 8 .1 49 .2 1800 86 .0 7.8 48.2 1800 82 .7 7.6 47.9 1800 82 .0 7.8 48.4 1800 83 .8 8 .0 48.6 1800 85 .7 8 .1 48.9 1800 87,0 8.5 49.6 1800 87 .7 6 .03 16 .7 10.4 50.2 1800 86.5 6 .07 16.6 10.4 50.0 1800 86 .3 6 .27 16.1 10 .1 49 .0 1800 84.2 6 .36 16 .0 9.5 47.8 1800 82.2 6 .32 16 .0 9.6 47 .9 1800 81.6 6 .37 16.0 9.6 47.9 1800 83 .5 6 .31 16 .1 9.9 48.4 1800 84.2 6 .15 16 .5 10.2 49.6 1800 86 .7 6 .09 16 .5 10.3 49 .7 1800 87 .0 6 .07 15.5 12.0 49.4 1800 84-7 6 .20 15.2 11.8 48.5 1800 83 .7 6 .29 15.1 11.5 47.9 1800 81.2 6 .25 15.1 11.5 47 .9 1800 78.7 6 .28 15.1 11.6 48 .0 1800 79.0 6 .37 14.9 11.6 47 .8 1800 81.2 6.23 15 .1 11.6 48 .0 1800 83.5 6 .10 15.5 12.0 49 .4 1800 85.5 - 29.9 34.3 0.46 87 .4 0 .1 11 0.8 29.9 34.2 0.46 87 .3 0.4 10 1.5 29.5 34.0 0.48 86 .7 1.0 10 2.4 28.3 33.7 0 .50 84 .0 1.8 8 3.0 28.1 34.7 0 .50 83.6 0.9 9 2 .2 28.7 34.5 0 .50 83 .3 0.4 10 1.5 29.4 34-.3 0.49 85 .7 0.1 11 0.8 29.8 33.7 0.48 88 .4 - 30.1 34.1 0.47 88 .4 - - - 29.7 34.4 0.42 86 .2 0.1 11 0.8 29.6 34.4 0.42 86 .0 0.4 10 1.5 28.9 34.4 0.44 84.0 1.0 9 2 .3 28.2 34.4 0.46 82.0 1.8 8 3.0 28.0 34.3 0.46 81 .7 0.8 10 2 .1 28.6 34.6 0.46 82.4 0.5 10 1.7 28,9 34.6 0.45 83 .3 0 .1 11 0.8 29 .7 34.6 0.43 85.8 - 29.8 34.4 0.42 86 .7 - 29.0 34.0 0.39 85.2 0 .1 11 0,8 28.7 34.1 0.40 84.2 0.5 10 1 .7 27 .8 34.2 0.41 81 .3 2.0 8 3.2 27 .0 33.9 0.41 79.4 1.0 10 2 .4 27 .1 34.2 0.41 79.4 0,4 10 1.5 27 .8 34.5 0 .41 80.8 0 .1 11 0.8 28.6 34.0 0.41 84 .2 - 29.3 34.2 0.39 85.5 9 4 TABLE I I I ( C o n t ' d ) WICKET GATE POSITION NO. 9 Q P H N T H P Qat BHP HP. cr Tl 1 2 a a Q i n c f s p s i i n . H g f t rpm l b .ft i n p s i i % 5 . 2 7 19.0 5 . 4 50.0 590 1 2 5 . 0 _ _ — 14.1 29.9 0.53 47 .0 5 .26 19.0 5.5 50.1 593 125.0 0.1 10 0.9 1 4 . 1 29.9 0 . 5 3 47.0 5 . 2 5 19.0 5.5 50.1 5 9 0 1 2 4 . 8 1.2 10 1.3 14.0 2 9 . 9 0 . 5 3 46 .9 5 . 2 4 19.0 5.5 50.1 585 1 2 4 . 0 0.4 10 1.8 13.9 29.9 0.5 3 46 .6 5 . 2 3 19.0 5 . 4 50.0 585 123.0 0.9 9 2 .7 13.8 29.8 0 . 5 3 46.3 5 .22 19.0 5.4 50.0 585 122.2 1.4 8 3.3 13.7 29.8 0.53 46 .1 5 . 2 3 19.0 5.5 50.1 590 123.2 1.0 9 2.9 13.8 29.8 0 . 5 3 46.5 5 . 2 5 19.0 5.5 50.1 590 1 2 4 . 3 0.4 10 1.8 13.9 29.8 0 . 5 3 46 . 7 5 . 2 7 19.0 5.5 50 .1 590 125.5 0 .1 10 0.9 14 .1 30.0 0.53 46 .9 5.29 19.0 5.5 50.1 590 125.2 - - - 1 4 . 0 30.0 0.53 46 .9 5 .29 18 .0 7.5 50.1 590 1 2 4 . 5 _ — 14.0 30.0 0.48 46 .6 5 .29 18.0 7.5 50.1 590 1 2 4 . 4 • 0 .1 11 0.9 13.9 30.0 0.48 46 .3 5 . 2 5 18.0 7.4 50.0 585 123.5 0.2 10 1.3 13.8 29.8 0.49 46 .1 5 . 2 3 18.0 7.4 50.0 585 122.0 0.8 9 2.5 13.6 29.7 0.49 45.8 5.21 18 .0 7.4 50.0 585 1 2 1 . 7 1.0 9 2 .8 13.5 29.6 0.49 45.8 5 .20 18.0 7 .4 50.0 585 121.0 1.6 8 3.5 13 . 5 29 .5 0.49 45 .8 5 .20 18.0 7.4 50.0 585 121.2 1.2 9 3.2 13.5 29.5 0.49 45.8 5.21 18.0 7.4 50.0 585 122 .1 0 .7 9 2.1 1 3 . 6 29.6 0.49 46 .0 5.25 18.0 7.4 50.0 590 1 2 3 . 5 0 .3 10 1.6 13.9 29.8 0.49 46.5 5 . 2 7 18 .0 7.4 50.0 585 1 2 4 . 2 0 .1 10 0.9 13 .8 29.9 0.49 46 .2 5.28 18.0 7.5 50.1 590 124.5 - - - 1 4 . 0 30.0 048 46 .7 5 . 2 7 1 7 . 0 9.5 50.1 5 . 2 5 1 7 . 0 9.5 50.1 5 .22 1 7 . 1 9.5 50.3 5 .18 1 7 . 1 9 .4 50.1 5 .14 1 7 . 2 9.2 50.2 5 .18 1 7 . 2 9.2 50.2 5 .20 1 7 . 1 9.4 50.1 5 . 2 4 1 7 . 0 9.5 50.1 5 .23 17.0 9.5 50.1 5.23 16 .1 1 1 . 5 50.3 5 .20 16 .1 11.5 50.3 5 . 17 16.2 11.3 50.2 5 . 1 4 16 .2 11.1 50.0 5.13 16 .4 11.0 50.5 5.14 1 6 . 4 11.1 50.6 5 . 1 7 16 .2 11.3 50.2 5.19 16 .1 11 . 4 50.1 5.20 16 .1 11.5 50.3 590 1 2 3 . 7 - -585 123.2 0.1 10 580 121.5 0.3 10 580 119.9 0.9 9 575 119 .0 1.6 8 580 120.1 0.9 9 585 121.7 0.3 10 590 122.7 0.1 10 590 123.7 - - 585 122.5 — 580 121.0 0 .1 10 570 119.5 0.4 10 575 . 118.5 1.0 9 575 1 1 7 . 7 1.6 8 575 118.7 1.0 9 580 121.0 0.2 10 585 1 2 1 . 7 0 .1 11 585 122.5 - - 13.9 29.9 0 . 4 4 4 6 . 3 1 . 0 13 . 7 29.8 0 . 4 4 4 6 . 1 1.8 13 . 4 29 . 7 0 . 4 4 4 5 . 2 2 . 6 13.2 29 .5 0 . 4 4 4 4 . 9 3 . 6 1 3 . 0 29.3 0 . 4 5 4 4 . 5 2 . 7 13.3 29 .5 0 . 4 5 4 5 . 0 1.8 13 .5 29 .6 0 . 4 4 4 5 . 7 1 . 0 13-7 29.8 0 . 4 4 4 5 . 8 13.8 29.8 0 . 4 4 4 6 . 6 13 .7 29 .5 0 . 3 9 4 5 .8 0 . 9 13 .4 29 . 7 0 . 3 9 4 5 . 2 1-.8 1 3 . 0 29 .5 Q . 4 0 4 4 . 1 2.7 1 3 . 0 29.2 0 . 4 0 4 4 . 6 3 .5 12.9 29.4 O . 4 0 43 .9 2 . 7 13.1 2 9 . 4 0 . 4 0 4 4 . 1 1.3 13 .4 2 9 . 4 0 . 4 0 4 5 . 5 0 . 9 13 .5 29 .5 0 . 3 9 45 .9 13 . 7 29 . 7 0 . 3 9 4 5 . 9 9 5 TABLE I I I ( C o n t ' d ) WICKET GATE POSITION NO. 9 Q P l P 2 H N T c f s p s i i n . H g f t rpm lb. f t 5.18 15.5 12.7 50.2 580 119 .8 5.15 15.5 1 2 . 7 50.2 575 118 .6 5.11 15.6 12.5 50.2 575 1 1 7 . 0 5 .11 15.7 12 .2 50.1 570 116 .0 5.09 15.7 12.2 50.1 570 115.5 5.11 15.6 12.5 50.2 570 116 .8 5.10 15.6 12.5 50.2 5 7 0 1 1 7 . 1 5.12 15.6 12 .6 50.3 575 118.0 5.15 15.4 1 2 . 7 50.0 585 120.1 6 .20 19 .0 5.5 50.1 1185 1 1 4 . 5 6 .20 19.0 5.5 50.1 1160 116 .5 6 .19 19.0 5.5 50.1 1155 116 .0 6 . 2 0 19.0 5.3 49.9 1150 116 .2 6 .19 19.1 5.3 49.9 1145 116 .6 6 .19 19.1 5.2 49 .8 1 1 4 0 1 1 7 . 0 6 . 1 7 19.1 5.3 49.9 1135 1 1 7 . 5 6 .16 19.1 5.5 50.1 1135 118.2 6 .18 1 9 . 0 5.5 50.1 1160 116 .0 6 .16 18.0 7.5 50.1 1160 115.0 6 .17 18.0 7.5 50.1 1160 115.5 6 .15 18.0 7.5 50.1 1155 115.2 6 .14 18.0 7.3 49.9 1155 1 1 4 . 2 6 .15 18.0 7.3 49 .9 1160 1 1 4 . 0 6 .15 18.0 7.3 49 .9 1165 1 1 4 . 2 6 .15 18.0 7.4 50.0 1170 114.7 6 .16 18.0 7.5 50.1 1170 115.2 6 .16 18 .0 7.5 50.1 1170 1 1 4 . 5 6 .12 17.0 9.6 5 0 . 2 1165 113.4 6 . 1 0 1 7 . 0 9.6 5 0 . 2 1165 113.1 6 .10 1 7 . 0 9.5 50.1 1165 112.0 6 .10 1 7 . 0 9.3 49 .8 1160 111.5 6 . 0 7 1 7 . 0 9 .3 49 .8 1155 110.8 6 .12 1 7 . 0 9.3 49 .8 1160 111.7 6 .11 1 7 . 0 9 .4 50.0 1170 112 .5 6 .10 17.0 9.5 50.1 1165 113.0 6 .10 1 7 . 0 9.6 50.2 1165 113.1 H P :2^r BHP HP. a T) o o i l -1 >n • i n p s i % - — — 13 .2 2 9 . 5 0 . 36 4 4 . 9 0 . 1 11 0 . 9 1 3 . 0 2 9 . 3 0 . 36 4 4 . 4 0 . 4 10 1 . 8 12 . 8 29 . 1 0 . 3 7 4 4 . 0 1 . 0 9 2 . 9 12 .6 2 9 . 0 0 . 3 8 4 3 . 5 1 . 8 8 3 . 8 1 2 . 5 28 . 9 0 . 3 8 4 3 . 5 0 . 8 9 2 . 5 1 2 . 7 29 . 1 0 . 3 7 4 3 . 6 0 . 5 10 2 . 1 12 . 7 2 9 . 1 0 . 3 7 4 3 . 7 0 . 2 10 1 . 3 1 2 . 9 29.2 0 . 3 7 4 4 . 2 - - - 1 3 . 4 2 9 . 3 0 . 3 7 4 5 . 8 - — _ 25 . 8 3 5 . 3 0 . 5 3 7 3 . 1 0 . 2 10 1 . 1 2 5 . 8 3 5 . 3 0 . 5 3 7 3 . 1 0 . 6 10 1 . 9 2 5 . 5 3 5 . 2 0 . 5 3 72 . 4 1 . 2 9 2 . 6 2 5 . 5 3 5 . 1 0 . 5 4 72 .6 1 .6 8 3 . 0 2 5 . 4 3 5 . 1 0 . 5 4 7 2 . 4 1 . 2 9 2 . 6 2 5 . 5 35 . 0 0 . 5 4 7 2 . 8 0 . 5 10 1 . 7 2 5 . 4 35 .1 0 . 5 4 7 2 . 6 0 . 1 11 0 . 8 2 5 . 6 35 . 1 0 . 5 3 7 3 . 0 - - - 2 5 . 7 3 5 . 2 0 . 5 3 7 3 . 1 - — — 25 .4 3 5 . 0 0 . 4 9 7 2 . 7 0 . 1 11 0 . 8 2 5 . 5 3 5 . 1 0 . 4 9 7 2 . 7 0 . 4 10 1 .6 2 5 . 4 3 5 . 0 0 . 4 9 7 2 . 6 0 . 9 9 2 . 3 25 .2 3 4 . 7 0 . 4 9 7 2 . 6 1 . 3 8 2 . 8 2 5 . 2 34 . 8 0 . 4 9 7 2 . 4 1 . 0 10 2 . 4 2 5 . 3 34 . 8 0 . 4 9 7 2 . 8 0 . 4 10 1 .6 2 5 . 5 3 4 . 9 0 . 4 9 7 3 . 1 0 . 1 11 0 . 8 2 5 . 6 3 5 . 0 0 . 4 9 7 3 . 1 - - - 25.5 3 5 . 0 0 . 4 9 7 3 . 0 - - 2 5 . 2 3 4 . 8 0 . 4 4 7 2 . 4 0 . 2 10 1 . 1 2 5 . 1 3 4 . 7 0 . 4 4 7 2 . 3 0 . 8 9 2 . 2 2 4 . 9 3 4 . 6 0 . 4 4 7 2 . 0 1 . 2 9 2 . 9 2 4 . 7 3 4 . 5 0 . 4 5 7 1 . 8 1 .6 8 3 . 3 2 4 . 4 3 4 . 3 0 . 4 5 7 1 . 2 0 . 8 9 2 . 2 2 4 . 7 3 4 . 5 0 . 4 5 7 1 . 5 0 . 4 10 1 . 6 2 5 . 0 3 4 . 7 0 . 4 4 7 2 . 2 0 . 1 10 0 . 8 2 5 . 0 3 4 . 6 0 . 4 4 7 2 . 3 - - - 25 . 1 3 4 . 7 0 . 4 4 7 2 . 4 96 TABLE I I I ( C o n t ' d ) WICKET GATE POSITION NO. 9 Q P l P 2 H N T c f s p s i i n . H g f t rpm l b . f t 6 .10 16 . 0 11 .5 5 0 . 1 1170 111.7 6 .07 16 .0 11 .4 5 0 . 0 1170 111 .0 6 .06 16 .0 11 .4 5 0 . 0 1160 109 .4 6 .25 15 .7 11 .0 48 .8 1140 104 .7 6 .25 15.5 1 0 . 8 4 8 . 2 1135 1 0 4 . 3 6 . 2 4 15.6 1 0 . 8 4 8 . 3 1145 104.6 6 .25 15 .7 11 .0 48 .8 1145 1 0 5 . 2 6 .06 16 .0 11 .3 4 9 . 8 1165 109 .9 6 .06 16 . 0 11 .3 4 9 . 8 1170 110.5 6 .10 16 . 0 11 .4 50 .0 1170 111.5 6 .10 15 .6 12 «4 50 .2 1175 112.0 6 .10 15 .6 12 .4 5 0 . 2 1180 111.4 6 .27 15 .2 12 .1 48 .9 1155 106 .0 6 .27 15 .2 12 .1 4 8 . 9 1150 105.5 6 .31 15 .2 11.9 48 .8 1150 105 .7 6 .30 15 .2 12 .0 4 8 . 9 1150 105.7 6 .30 15 .3 12 .1 4 9 . 1 1155 106 .2 6 .10 15 .7 12 .2 5 0 . 2 1175 110.7 6 .11 15 .7 12 .4 50 .4 1180 112.0 7 . 30 1 5 . 8 11.6 4 9 . 7 1810 96 . 0 7 . 5 0 15 .5 11 .5 4 9 . 0 1785 9 5 . 5 7 .42 15 .5 11.4 4 8 . 9 1750 93 .2 7 . 3 0 15 .7 11 .4 4 9 . 2 1720 9 2 . 7 7>25 15 .8 11 .4 4 9 . 5 1690 92 .7 7 . 2 3 15 .8 11.4 4 9 . 5 1680 9 3 . 7 7 .28 15.8 11.4 4 9 . 5 1675 96 .5 7 .35 15 .8 11.7 4 9 . 8 1675 9 9 . 2 6 .90 16 .3 12 .0 51 .3 1670 1 0 0 . 2 7 . 0 0 16 .5 10 .5 50 .0 1760 9 5 . 0 7 .14 16 .1 10 . 5 4 9 . 0 1760 9 5 . 0 7 . 4 0 16 .1 1 0 . 4 4 8 . 9 1740 9 3 . 5 7 .35 16 .0 1 0 . 0 4 8 . 3 1730 92 .5 7 .30 16 .0 1 0 . 0 4 8 . 3 1720 91.5 7 . 3 1 1 6 . 0 1 0 . 1 48 .4 1710 93 .2 7 . 3 0 16 .1 10 .5 49 .0 1705 94.6 7 . 0 5 16 . 1 1 0 . 5 4 9 . 0 1705 96 .5 7 . 0 0 16 .5 10.5 5 0 . 0 16 95 9 7 . 2 H P Qat BHP HP. a a a Q i n i n p s i % % — _ — 24 . 8 34 .7 0.39 71.5 0 .1 11 0 .8 24.7 34.7 0 . 4 0 7 1 . 7 0 .6 10 1.9 24 .2 34.3 0.40 70 .6 1.2 9 2.5 22 .8 3 4 . 6 0 .42 66 .0 1.8 8 3.1 22.6 34.2 0.43 66.2 1.4 8 2 .7 22.7 34.2 0.43 66 .4 1.0 9 2 .3 22.9 34.6 0 .42 6 6 . 3 0.5 10 1 .7 2 4 . 4 34.2 0 . 4 0 71.4 0.2 10 1.1 24.6 34.2 0 . 4 0 71 .9 - - - 2 4 . 8 34 .6 0 . 4 0 71 .8 - - - 25.1 34.8 0.37 7 2 . 1 0.1 11 0.8 25.1 34.8 0.37 7 2 . 1 0 . 4 10 1.5 23.3 34.8 0.39 6 7 . 1 1.2 8 2.5 2 3 . 1 34.8 0.39 6 6 . 5 1.8 8 3.2 2 3 . 1 34.9 0.39 66 .4 1 .6 8 269 23.1 34.9 0.39 6 6 . 4 0.5 10 1 .6 23.4 35.1 0.38 6 6 . 7 0.2 10 1 .1 24 .8 34.8 0.38 71 .4 25.2 34 .9 0 . 3 7 7 2 . 2 32 .9 41 .1 0.39 80 .0 0.1 11 0 .7 32.4 41 .6 0 . 4 0 78.0 0.6 10 1.5 31.0 41 .1 0 . 4 1 75.6 1.4 8 2 . 4 30.4 40 .7 0 . 4 0 74.6 1.9 7.5 2.8 29.8 4 0 . 7 0 . 4 0 73.2 1.6 8 2 .5 30.0 4 0 . 5 0 . 4 0 74.1 0.6 10 1.5 30 .8 4 0 . 9 0 . 4 0 75.4 0 .1 11 0.6 31.6 41 .1 0.39 76 .5 - - - 31.7 4 0 . 2 0.37 79 . 1 -. _ - 31.8 39.7 0 . 4 1 80 .0 0 .1 11 0.6 31.8 39.7 0.43 80 . 4 0.6 10 1 .6 31.0 4 1 . 0 0.43 75.6 1.2 9 2 .2 30.4 .41.0 0.43 75.6 1.8 8 2 .7 30.0 4 0 . 0 0.44 75.0 1.4 8 2 .3 30.4 4 0 . 1 0.44 76 .0 0 .7 10 1.7 30.8 4 0 . 2 0.44 76 .8 0 . 4 10 1.3 31 .3 39.1 0.43 80 . 1 0 . 1 11 0.7 31.4 39 .7 0 .42 79 . 1 97 TABLE I I I ( C o n t ' d ) WICKET GATE Q P l P 2 H c f s p s i i n . H g f t 7 .18 16 .8 9.7 49.9 7.24 16 .6 9.4 49.0 7-50 16 .0 9.0 47.2 7-51 16 .1 9.1 47-5 7 .45 16 .1 9.1 47 .3 7 .55 16 .1 9.1 47.5 7 .48 16 .1 9.1 47.5 7.28 16 .5 9.1 48.1 7.15 16.9 9.5 49.8 7.00 18.0 7.6 50.2 7.07 17.9 7.4 49.8 7 .18 17.9 7.1 49.5 7.16 17.9 7.0 49.4 7 .30 17.8 6.7 48.7 7 .51 17.5 6.5 47.9 7 .28 17.5 6.7 46 .1 7.28 17.7 6 .8 48 .6 7-14 17.7 7.2 49.0 7.00 18.0 7.6 50.2 6 .97 19.0 5.5 50.1 6 .97 19.0 5.5 50.1 7 .08 18.9 5.1 49 .6 7.15 18.9 5.1 49 .6 7 .08 18.8 4.9 49.0 7 .04 18.9 5.0 49.4 7 .08 18.9 5 .0 49 .4 7.06 19.0 5.1 49.7 6 .94 19.0 5.5 50.1 NO .9 N T H P O a t a a rpm l b . f t i n p s i % 1780 95.1 _ — — 1805 95.1 0.2 11 1.0 1805 92.5 0.6 10 1.5 1800 92.0 0 .9 9 1.9 1805 90.2 1.2 9 2.2 1820 9 2 . 0 0.8 10 1.8 1835 93.5 0.4 10 1.3 1835 93.5 0 .1 11 0 .7 1830 93.5 - - - 1795 95.1 _ _ _ 1790 94.6 0 .1 11 0 .7 1770 95.5 0.5 10 1.5 1760 95.5 0.9 9 2.1 1795 94.5 1.3 8 2.3 1780 92.2 1.6 8 2.4 1800 94.2 1.0 9 2.0 1805 94.5 0.5 10 1.5 1800 94.5 0 .7 11 0 .1 1800 94.7 - - - 1800 95.4 _ — 1790 94.5 0 .1 11 0 .7 1785 95.2 0 .6 10 1.6 1775 95.2 1.1 9 2.2 1760 95.5 1.6 9 2.6 1760 95.5 1.2 9 2 .2 1770 95.2 0.8 10 1.9 1780 95.7 0.2 10 1.0 1780 96.7 - - - BHP HP. cr T\ m % 32.3 40.6 0.44 79.6 32.7 40 .7 0.45 81.2 31.8 40 .2 0.48 79 .1 31.6 40.4 0 .47 78 .1 31.0 40 .1 0.47 76 .4 31.9 40 .6 0 .47 78.7 32.7 40 .3 0.47 81 .3 32.7 39.7 0.47 82 .7 32 .6 40 .4 0.44 80 .7 32.5 39.9 0.48 81 .4 32.3 39.9 0.49 81 .0 32.2 40 .3 0 .49 79.8 32.0 40 .0 0 .50 80 .0 32.1 40 .3 0.52 79.8 31.4 40 .8 0.53 78 .0 32.3 39.7 0.52 81 .4 32.4 40 .1 0 .51 80.8 32.4 39.7 0.50 81.4 32.4 39 .9 0.48 31.2 32.7 39.6- 0.53 82.6 32.3 39.6 0.53 81.6 32.4 39.8 0.55 81.4 32.2 40 .2 0.55 80.2 32.0 39.4 0.56 81.2 32 .0 39.5 0.55 81 .0 32.1 39.7 0.55 80.9 32.4 39.8 0.54 81.4 32.8 39.4 0.53 83.2 TABLE IV TYPES OP INJURIES OP DEAD P I S H . 98 t. | N um be r of  d ea d fi sh  e xa m in ed  Types of I n j u r i e s T es t nu m be r M or ta li ty  N um be r of  d ea d fi sh  e xa m in ed  O pe rc ul um  D am ag e Ey e D am ag e D ef la te d B la dd er  D am ag ed  li v er  A br as io n e C on tu si on  V en tr al  ru pt ur e D ec ap ita tio n La ce ra ti on  No ne  ap pa re nt  Re m ar ks  i Immediate 20 2 0 i n 2 0 0 6 . 3 . C04 . 1 1 st dajf 6 1 0 5 3 2 1 0 0 2nd day 3 1 0 1 1 2 0 n o 3rd day 2 0 1 0 0 1 0; 0. 0 Immediate 13 0 1 3 0 0 „.-,&.- „. 1 — CO 5 .5 1st day 8 . 0 3 5 2 5 2 0 2nd day 1 1 0 Qj Oi 0 0 0 0 3rd day 1 1 1 1 1 1 0 0 0: Immediate 26 0 5 4 0 3 3 14 3 C06 .3 1st day 10 1 6 7 8 4 5 0 2 2nd day 6 0 4 3 3 3 1 0 1 3rd day 5 0 2 4 2 1 0 , 0 1 Immediate 23 0 0 6 1 3 2 13 3 C08.1 1st day 4 0 1 2 2 0 2 1 0 2nd day 2 - - - - • - - - - 3rd day 1 0 0 1 0 0 0 0 0 o Immediate 21 2 2 8 0 2 2 10 2 II C08.2 1st day 5 1 2 3 1 3 1 0 1 H 2nd day 1 - - - - - - - - cd cy 3rd day 1 0 1 1 0 0 0 0 0 Immediate 17 1 2 4 1 2 1 13 0 o O C08.3 1st day 1 0 0 1 0 1 0 0 0 II 2nd day l - - - - - - - VJ 3rd day 0 0 0 0 0 0 0 0 0 B O . SH Immediate 19 2 3 4 o . 0 . O o C08.4 1st day 2 1 2 1 . 1 2 1 n ., _Q CO H 2nd day 5 - - _ _ II L_S 3rd dav 0 0 0 0 0 0 0 0 0 TABLE IV ( C o n t ' d ) 99 T es t nu m be r M or ta li ty  1 N um be r of  d ea d fi sh  ex am in ed  i Types of I n j u r i e s T es t nu m be r M or ta li ty  1 N um be r of  d ea d fi sh  ex am in ed  i Op er cu lu m ba m ag e l E ye  D am ag e D ef la te d B la dd er  D am ag ed  L iv er  A br as io n e  C on tu si on  V en tr al  R up tu re  D ec ap ita tio n e L ac er at io n N on e ap pa re nt  CO 4.2 Immediate 21 2 2 5 1 2 3 10 0 1st day 0 0 0 0 0 0 0 0 0 2nd day 0 0 0 0 0 0 0 0 0 3rd day 3 0 1 1 1 1 2 0 0 CO 5 .6 Immediate 11 0 1 1 0 0 1 8 1 1st day 5 1 1 2 2 1 1 0 2 2nd day 3 0 1 2 2 1 1 0 0 . . 3rd day 0 0 0 0 0 0 0 0 0 COS .4 Immediate 26 0 3 4 0 5 1 15 3 1st day 12 0 5 7 8 5 7 0 1 2nd day 5 0 2 3 4 4 l 0 1 3rd day 6 0 4 3 4 3 l 0 1 C011.1 Immediate 19 1 2 5. 0 2 l 13 0 1st day 4 0 1 2 4 2 l 1 0 2nd day 3 0 1 2 2 2 0 0 0 3rd day 2 0 1 1 0 0 0 0 1 C O l l . 2 Immediate 19 0 5 3 1 0 1 12 2 1st day 2 0 1 2 2 1 2 1 0 2nd day 1 0 0 1 0 0 0 0 0 3rd day 0 0 0 0 0 0 0 0 0 C011.3 Immediate 18 0 1 5 1 1 2 12 1 1st day 5 . 1 1 4 3 2 2 1 0 2nd day 1 0 0 1 0 1 0 0 0 3rd day 1 0 0 0 0 0 0 0 1 CQ u a s a) tt VD O II o • H s CM CM « o ll ct! B P, U o o CO II 12! V. TABLE IV ( C o n t ' d ) 100 T es t nu m be r M or ta li ty  N um be r of  d ea d fi sh  e xa m in ed  1 Types of I n j u r i e s | T es t nu m be r M or ta li ty  N um be r of  d ea d fi sh  e xa m in ed  O pe rc ul um  D am ag e - 01 bO ct) co a >J Ctj « p D ef la te d B la dd er  D am ag ed  L iv er  A br as io n e C on tu si on  V en tr al  Eu pt ur e D ec ap ita tio n e L ac er at io n N on e A pp ar en t CO 4 . 3 Immediate 30 4 2 6 1 6 2 18 1 1st day 1 0 0 1 1 0 0 0 0 2nd day 1 l 0 1 1 0 0 0 0 3rd day 1 0 0 0 0 1 0 0 0 CO 5 .1 Immediate 24 1 2 5 0 3 2 16 0 1st day 1 0 0 1 1 1 1 0 0 2nd day 0 0 0 0 0 0 0 0 0 ' 3rd day 1 0 1 1 1 1 0 0 0 CO 20 2 Immediate 14 0 0 3 1 1 2 9 1 1st day 2nd day 8 0 0 . 6 0 3 4 0 1 3 0 0 1 0 2 0 0 " 0 3rd day 1 0 0 0 .0 1 0 0 0 CO 6 .5 Immediate 20 0 2 7 0 1 1 11 1 1st day 6 0 2 5 , . •4 0 1 0 0 2nd day 1 0 0 0 • 0 1 1 0 0 0 3rd day 2 0 1 1 0 2 0 0 CO 19.3 Immediate . 12 0 0 5 1 1 2 5 2 1st day 6 0 1 4 . 0 2 0 0 1 2nd day 2 0. . .0 1 1 0 1 0 0 3rd day 1 0' 0 2 1 0 1 0 0 0 CO 19 .6 •Immediate 20 0 7 2 3 2 12 2 1st day 11 0 0 6 2 4 4 0 2 2nd day 2 0 0 2 0 0 1 0 0 3rd d a y 2 0 0 1 0 1 0 0 0 11 b ll 101 TABLE IV ( C o n t ' d ) U es t nu m be r M or ta li ty  N um be r of  d ea d fi sh  e xa m in ed  Typ es of I n j u r i e s U es t nu m be r M or ta li ty  N um be r of  d ea d fi sh  e xa m in ed  O pe rc ul um  D am ag e a) a cd D ef la te d B la dd er  D am ag ed  Li ve r A br as io n e C on tu si on  V en tr al  R up tu re  cl O Ci •H O -P -H cd -P - p cd •H U) U e,, a>. f% * ^o ne  A pp ar en t L _ _ — _ _ _ _  CO 4.4 Immediate 19 1 2 8 1 • 4 0 7 1 1st day 4 0 1 2 0 2 0 0 0 2nd day 1 0 0 1 1 0 0 0 0 3rd day 0 0 0 0 0 0 0 0 0 CO 4.5 Immediate 17 1 2 7 0 1 0 8 1 1st day 2 0 0 • 2 2 0 0 0 0 2nd day 1 0 1 1 1 0 1 0 0 3rd day 0 0 0 0 0 0 0 0 0 CO 5.2 Immediate 21 • 3 2 16 0 6 2 5 "1 1st day 1 0 1 1 1 0 1 0 0 2nd day 1 0 0 1 0 0 0 0 0 3rd day 2 0 0 2 1 1 0 0 0 CO 5.3 Immediate 17 1 2 6 1 4 2 8 0 1st. day 1 0 0 1 0 0 0 0 0 2nd day 0 0 0 0 0 0 0 0 0 3rd day 0 0 / 0 0 0 0 0 0 0 Immediate 19 , 1 3 5 0 4 2 10 2 1st day 7 •0 2 4 5 l 4 0 0 CO 5 ,1 2nd day 2 0 2 2 1 2 .1 0 0 3rd day 2 0 0 2 0 1 0 0 0 CO 6.6 Immediate 16 1 . 2 5 1 2 0 8 2 1st day 3 1 2 3 2 1 2 0 0 2nd day 2 0 1 2 1 2 0 0 0 3rd day ? 0 1 1 2 2 0 0 0 CO U cd a 4) a •H a i—i H O II cd cy cn to o II b o o CO II TABLE IV ( C o n t ' d ) 102 Ee st  n um be r M or ta li ty  Uu m be r of  d ea d fi sh  e xa m in ed  Types of I n j u r i e s Ee st  n um be r M or ta li ty  Uu m be r of  d ea d fi sh  e xa m in ed  O pe rc ul um  D am ag e Ey e D am ag e D ef la te d B la dd er  D am ag ed  L iv er  A br as io n e C on tu si on  V en tr al  R up tu re  D ec ap it at io n L ac er at io n N on e A pp ar en t CO 4.6 Immediate 16 2 1 6 1 2 1 6 2 < 1st day 10 0 0 10 4 1 1 0 0 2nd day 6 0 2 5 4 3 0 "•' 0 0 3rd day 1 0 0 0 1 0 0 0 0 CO 5.4 Immediate 18 0 1 2 0 0 0 15 1 1st day 15 0 4' . 13 7 9 2 0 1 2 nd day 4 0 0 3 4 4 0 0 0 3rd day 5 0 2 3 3 3 1 0 1 CO 6.2 Immediate 17 1 1 4 0 0 1 9 2 1st day 3 0 1 2 2 1 0 0 1 2nd day 0 0 0 0 0 0 0 0 0 3rd day 3 0 2 3 3 3 1 0 0 C012 .5 Immediate 22 0 1 8 0 3 1 13 1 1st day 2 0 0 . 2 2 2 2 1 0 2nd day 0 0 0 0 0 0 0 0 0 3rd day 0 0 0 0 0 0 0 0 0 C012.6 Immediate 38 1 2 19 0 2 0 16 1 1st day 2 0 0 2 1 1 1 0 0 2nd day 2 0 0 2 1 1 0 0 0 3rd day 0 0 0 0 0 0 0 0 0 C012 .7 Immediate 23 2 6 11 0 3 2 8 1 1st day 2 0 1 2 1 1 0 0 0 2nd day 1 0 0 1 0 0 0 0 0 3rd day 1 0 0 1 1 1 1 0 0 C012 .8 Immediate 22 0 3 10 '. 1 1 3 10 1 1st day 5 0 1 4 0 2 1 0 0 2nd day 1 0 0 l 0 0 0 0 0 3rd day 1 1 0 l 1 1 1 0 0 CO U a fl • r l a CM f O O II cy O N to o II b o o CO H CO 103 TABLE IV ( C o n t ' d ) Te st  n um be r M or ta li ty  Sl um be r of  d ea d ri sh  e xa m in ed  Types of I n j u r i e s te m ar ks  Te st  n um be r M or ta li ty  Sl um be r of  d ea d ri sh  e xa m in ed  pp er cu lu m  pa m ag e jS ye  pa m ag e D ef la te d 31 ad de r 1 D am ag ed  M iv er  CO A fl o O -r) •rl 03 03 3 a -p . U fl fl o Jentral  lu pt ur e )e ca pi ta ti on  ja ce ra ti on  tfone  A pp ar en t te m ar ks  C019.1 Immediate 21 0 1 8 1 2 4 6 1 1st day 3 0 0 2 0 0 1 0 1 .2nd day 3 0 0 2 0 1 1 0 0 3rd day 2 0 0 2 0 1 1 0 0 in  P en st oc k C019.5 Immediate 19 0 1 7 1 4 3 7 1 in  P en st oc k 1 s t day 17 0 1 9 1 l 2 0 5 in  P en st oc k 2nd day 3 0 0 1 0 0 0 0 0 in  P en st oc k 3 rd day 1 0 0 1 0 0 0 0 0 in  P en st oc k C020.3 Immediate 11 0 1 4 1 1 2 2 2 in  P en st oc k 1 s t day 2 0 0 l 0 1 0 0 0 in  P en st oc k 2nd day 2 0 0 1 0 1 0 0 1 in  P en st oc k 3rd day 5 0 0 2 0 4 2 0 0 in  P en st oc k C 0 2 0 « 5 Immediate 27 0 4 9 1 5 3 14 1 u • H 1st day 6 0 2 2 0 2 1 0 1 < 2nd day 1 0 0 0 0 1 1 0 0 3rd day 2 0 o" 0 0 1 1 0 0 C012.1 ImmediateJ 2 0 0 2 0 0 0 0 0 -4- II cy 0) cd H fl O )2! 1st. day 2 0 0 2 1 : 0 0 0 0 2nd day 1 0 0 0 0 0 0 0 1 3rd day 1 ; 0 0 0 0 0 0 0 1 C012.2 Immediate 1 0 0 1 0 0 0 0 0 1st day 4 0 1 2 JL-. 1.,. 1 . 0 0 2nd day 0 0 0 0 0 0 0 0 0..., 3rd day 0 0 0 0 0 o 0 n — o _ 104 TABLE IV ( C o n t ' d ) T es t nu m be r J M or ta li ty  N um be r of  d ea d fi sh  ex am in ed  Types of I n j u r i e s T es t nu m be r J M or ta li ty  N um be r of  d ea d fi sh  ex am in ed  Pp er cu lu m  JD am ag e Ey e D am ag e [D ef la te d gl ad de r D am ag ed  pi ve r ^b ra si on  e  C on tu si on  1 e n tr al  lu pt ur e tecapitation  ja ce ra ti on  N on e A pp ar en t C016 Immediate 15 1 3 1 1 1 1 9 2 1st day 5 0 1 2 1 1 1 0 0 2nd day 1 0 0 1 0 0 1 0 0 j 3rd day 1 0 0 0 0 0 1 0 0 C019.4 Immediate 16 0 2 4 2 4 3 10 3 1st day 20 0 3 3 1 1 1 0 7„ 2nd day 3 0 0 1 0 0 0 3rd day 4 0 0 2 0 2 1 0 l C020.S Immediate 17 0 1 0 0 1 2 12 l 1st day 6 0 1 1 1 2 2 0 1 2nd day 2 0 1 0 0 1 0 0 0 3rd day 4 0 0 0 0 3 0 0 1 CO 20.4 Immediate 12 0 2 0 0 0 1 9 0 1st day 4 | o 1 3 1 1 3 | 0 0 2nd day 3 0 0 1 0 2 2 0 0 3rd day 3 | 0 0 1 0 2 2 } 0 0 C020.6 Immediate 18 0 1 4 2 5 2 10 0 1st day 0 0 0 0 0 0 0 I o 0 2nd day 2 0 0 0 0 2 1 1 0 0 3rd day 3 0 0 0 0 3 1 1 0 0 C012.3 Immediate 16 0 0 16 0 0 0 0 0 1st day 3 0 1 2 1 1 1 0 1 2nd day 3 1 1 2 1 j 1 1 0 1 3rd day 1 0 o. 0 1 1 0 0 0 C012 .4 Immediate 18 0 I 0 18 0 0 0__ 0 0 0 1st day 1 0 0 | 1 0 ] 0 0 2nd day 1 : 0 i i i 1 1 0 0 0 0 3rd day 0 0 0 0 ] 0 \ 0 0 0 o 105 TABLE IV ( C o n t ' d ) T es t nu m be r M or ta li ty - N um be r of  d ea d fi sh  e xa m in ed  Types of I n j u r i e s Re m ar ks  T es t nu m be r M or ta li ty - N um be r of  d ea d fi sh  e xa m in ed  O pe rc ul um  D am ag e Ey e D am ag e D ef la te d B la dd er  D am ag ed  L iv er  A br as io n e C on tu si on  V en tr al  R up tu re  Ds  ca pi ta ti on  L ac er at io n N on e A pp ar en t Re m ar ks  C022.1 Immediate 2 5 0 2 12 2 6 4 11 2 ' 1 s t day 4 0 0 1 1 3 1 0 0 2nd day 0 0 0 0 0 0 0 0 0 3rd day 2 0 0 0 0 0 0 0 2 C023.2 Immediate 30 0 6 20 3 18 9 3 0 0 0 C\i 1st day 5 1 1 0 0 0 0 1 2 H II fe 2nd day 3rd day 0 2 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0022.2 Immediate 1st day 0 5 2.5. J L 0 7 4 O O cn ll 8 0 0 8 7 2 0 0 2nd day 1 0 0 0 .0 0 • 0 0 1 3rd day 2 0 •o 1 0 0 0 0 1 G023.1 i — Immediate 26 0 3 20 3 11 7 2 0 1st day 2nd day 3 0 2 1 0 0 0 0 0 fe 0' 0 0 0 0 0 0 0 0 3rd day 3 0 0 2! 0 0 0 0 1 106 TABLE V TYPES OP INJURIES OP DEAD PISH T es t nu m be r +» •rl r - l Ct) u 0 s N um be r of  d ea d fi sh  e xa m in ed  Types of I n j u r i e s Re m ar ks  T es t nu m be r Nu m be r of  d ea d fi sh  e xa m in ed  O pe rc ul um  D am ag e Ky e Da m ag e D ef la te d Bl ad de r Da m ag ed  Li ve r A br as io n e C on tu si on  V en tr al  Ru pt ur e D ec ap ita tio n La ce ra ti on  tfone  A pp ar en t Re m ar ks  C 0 7 . 1 Immediate 0 0 0 0 0 0 0 0 0 1st day 1 0 0 0 0 0 0 0 1 2nd day 3 0 0 1 0 0 0 0 2 Pi sh  w er e in tr od uc ed  b el ow  c on tr ol  g at e 3rd day 7 - - - - - - - - Pi sh  w er e in tr od uc ed  b el ow  c on tr ol  g at e C07.2 Immediate 0 0 0 0 0 0 0 0 0 Pi sh  w er e in tr od uc ed  b el ow  c on tr ol  g at e 1s t day 2 0 0 . 2 0 0 0 0 0 Pi sh  w er e in tr od uc ed  b el ow  c on tr ol  g at e 2nd day 3 0 0 0 0 1 0 0 ? Pi sh  w er e in tr od uc ed  b el ow  c on tr ol  g at e 3rd day 3 _ _ _ _ Pi sh  w er e in tr od uc ed  b el ow  c on tr ol  g at e C013.1 Immediate 0 0 0 0 0 0 0 0 n Pi sh  w er e in tr od uc ed  b el ow  c on tr ol  g at e 1st day 3 0 1 1 2 1 0 0 0 Pi sh  w er e in tr od uc ed  b el ow  c on tr ol  g at e 2nd day 3 0 0 0 0 0 0 n Pi sh  w er e in tr od uc ed  b el ow  c on tr ol  g at e 3rd day 2 0 1 1 0 0. 1 ' 0 Pi sh  w er e in tr od uc ed  b el ow  c on tr ol  g at e CO 26 .1 Immediate 0 0 0 0 0 0 0 0 0 Pi sh  w er e in tr od uc ed  b el ow  c on tr ol  g at e 1st day 7 _ _ — , Pi sh  w er e in tr od uc ed  b el ow  c on tr ol  g at e 2nd day 2 _ Pi sh  w er e in tr od uc ed  b el ow  c on tr ol  g at e 3rd day . 3 - - — mo Pi sh  w er e in tr od uc ed  b el ow  c on tr ol  g at e C026 .2 Immediate 0 0 0 0 0 0 0 0 0 Pi sh  w er e in tr od uc ed  b el ow  c on tr ol  g at e 1st day 6 - Pi sh  w er e in tr od uc ed  b el ow  c on tr ol  g at e 2nd day 4 - — Pis h w er e in tr od uc ed  b el ow  c on tr ol  g at e 3rd day l - - - . - - - - — Pi sh  w er e in tr od uc ed  b el ow  c on tr ol  g at e 1 107 TABLE V ( C o n t ' d ) T es t nu m be r M or ta li ty  lu m be r of  d ea d 'is h ex am in ed  Types of I n j u r i e s T es t nu m be r M or ta li ty  lu m be r of  d ea d 'is h ex am in ed  )p er cu lu m  D am ag e Ey e D am ag e D ef la te d B la dd er  D am ag ed  L iv er  A br as io n e C on tu si on  V en tr al  R up tu re  0 fl •rl O -P -rl Cfl, -P a u Cfl 4) 0 0 CO cfl R Hi N on e A pp ar en t 0013 .2 Immediate 1 0 0 0 0 1 0 0 0 1st day 2 0 2 1 1 1 0 0 0 2nd day 4 1' 2 2 0 1 0 0 1 3rd day 5 1 0 2 0 1 0 0 2 C013.3 Immediate 0 0 0 0 0 0 0 0 0 1st day 3 1 1 2 1 0 0 0 1 2nd day 5 0 1 3 0 1 1 0 1 3rd day 2 1 2 2 1 2 1 0 0 C026 .3 Immediate 0 0 0 0 0 0 0 0 0 1st day 3 _ 2nd day 0 0 0 0 0 0 0 0 0 3rd day 1 - - - ~ - _ _ _ 2 0 7 . 3 [mmediate 1 0 0 1 0 0 0 0 0 1st day 3 0 2 0 0 2 0 0 1 2nd day 5 0 1 2 1 3 0 0 1 3rd day 10 - - - - - - - - 2 0 7 . 4 [mmediate 0 0 0 0 0 0 0 0 0 1st day 1 0 0 1 0 0 0 0 0 2nd day 7 1 2 1 0 0 3rd day 12 ~ 108 TABLE VI CONTROL PISH T o t a l m o r t a l i t y No of f i s h d u r i n g 3 days . Date set up set up observat May 7, 1964 80 1 May 8 , 1964 80 1 May 11 , 1964 80 2 May 12, 1964 80 1 May 13, 1964 80 2 May 19 , 1964 80 1 May 20, 1964 80 2 May 22, 1964 80 2 May 23, 1964 80 4 May 26, 1964 80 3 No c o n t r o l f i s h were set up f o r the t e s t on May 4 » 5 and 6 . P i s h to be t e s t e d on May 4 were separa ted and set up i n 6 n y l o n nets 4 days b e f o r e the t e s t i n g d a y . T o t a l m o r t a l i t y was 1 . P i s h - t o be t e s t e d on May 5, were set up i n 6 baskets 4 days b e f o r e "the t e s t i n g d a y s . T o t a l m o r t a l i t y was 1 . P i s h t o . b e t e s t e d on May 6, were set up 2 days before the t e s t i n g d a y . No m o r t a l i t y was o b s e r v e d . I n a d d i t i o n , f i s h i n one tank had not been u s e d . N e g l i g i b l e m o r t a l i t y was observed i n . tha t t a n k . C15 C16 CO 26 o o a o o o « « s w w o o c c o o o o o o & 6°. tt ^  ^ • . « • • ro H f - 1 ro H o o -o -o TEST NUMBER • • i •P- w i rB W CQ . * * v j i v n v j i « • a ON ON ON J S r . . . & \ v>) t) • • • V J l v j i V J l ON ON ON •P- -P- « 5N tt >» ^ 15 £ & £ g • . v n v j i h £ DATE •3 o § HI 1-3 M O a CO 16 .00 ,16 .10 10.05 H 1 M H H C f l VJI . . . H" O -P- v j l O v j i r-> t-1 r-1 r-> O O W O O O « • « 0 •p- ro w -p- ro VJI VJI o O O H" H 1 F" H e « •F- w o o TIME V J l -p- -p- v j i ro ro O VJI v j i V J l V J l V J l VJI 00 CO O v j i VJI V J l V J l V J l V J l V J l VJI VJI CO CO CO O ' O V J l -p— w V J l V J l CO CO -P- -P- DISCHARGE c f s i i I 1 1 1 r l - H - c + 3 I T c t c+ V J l VJI SUCTION AT ENTRY i n . H g w w w CO —0 -^ 3 w w w CO CO CO W W W W W CO CO CO CO CO w w CO CO AVERAGE LENGTH DP PISH mm *d HI CO « c3 w r S > H 1-3 CO 00 CO o o o CO —0 CO O V O O -0 -0 CO CO CO V O v o o o o CO CO O O NUMBER 0i ' PISH INJECTED CO CO CO o o o co -o - o O v o -0 —0 —0 CO CO CO CO v o O O O CO —J O v o ALIVE o o o O O H o o o o o O M DEAD o o o O O I O H O O O O O O MISSING o o o w w ro ON -<j w ro M H W 1st DAY O t ) w w t-3 tr< > > tri H> O H O v j i 4> p ro v n •P- ro w w w >-> w ro W -0 -0 v j i ro o 2 n d DAY 3rd DAY ro o O W O H -p- o -P- M M (-• ro ro Co Co H ro H* o v o TOTAL MORTALITY •p- O H ! VJI ro ^ 3 h- 1 r-1 r-1 r-1 V J l V J l O O -P- ro ro v n -p- PERCENTAGE ro H H • •_, ' H W ro V J l AVERAGE . P ish  clum ped on trap . CU C fl) hrj 3 4 fl c * F - c+ « c + CO 4 to co 3* < CO S ffl . fl P- 0 P-4 c+ CD 3 CB >T c _ i . M CD fD CO O O c+ H> Q c t - F - & CO Cjj}, F - fa c t - g CU CO Q tf H ' •'I 3 C i> (J S H ' c t CJ c + H c + CO 4 c t C» O O 3" «< F - 3 « O C- ft F - 3 F - C3 4 0 c t O i B U - fo tr a Ho re c + c+ c + O K O c t CB fjq H" fl ft « • CD CO CT F - c t O CO CD < | T . tt> CO O fl o o 3 W c + C» 4 ft O 3 W CO 601 13 Tj o o o 9 9 o o 01 CM (71 V 01 U l O O cn ^ (J I * •>> = ro _g_ ^ ° o o ° ° i • V 1 i 10 00 Cn cn oi cn o> at "ro- A S 1 - o 0 o 1 i X> O l ro ro qg CD s s 8 fi o o I ro — ro - ro~ in Ul i-i Test number Date Time > CD m ro ro ro ro ro ro J> 4> 4» ro ro ro ro ro ui j> j> j> j> ^ ro ro fo ^ ui Ul 5?. O l O l Discharge cfs p o en (J) in « Ol O l in <n Ol oi oi oi U U O l * en o> en ro ro ro In ui in ro ro ro ro ro in ui ui ui ui to co Ol Ol ro ro Penstock pressure psi Draft tube pressure in. of Hg « <J> CO CD ca o i ro ro ro ro ro * * * * ro ro ro rb CM o i cn cn Suction head ft. o f water 4>> * Ul Ul 4> * * * ft Ul Ul Ul j> * * 4> * J> * cn Ui ui ui ui » * 4> !» < & Ul Ul Total head ft. of water ro ro cn cn b o o o o o o o o O o ° 2 9 2 2 2 cn cn cn cn 0 1 o in Cn T o r q u e Ib-ft 01 O l 2 ° o o en o> o O O o IP p en cn O o O j p o o cn cn cn en en o o o o o o o o o I I I I I en cn o o o o R.P.M. o o I I Air meter reading in.of water I I cn o ro * I I o o P o •jt ro p ro ro fo co io <o ro ro ro ui in ui I I I I I I I I I I I I I I I Air pressure psi  ro -10.-ro ui I I ftir quantity lb/min I I Air in percent of discharge * * * cn m ui * cn ro — io ^ Horse power output ro ro 6 b ro ro ro ro ro co co .co co ID ro ro ro — — ro io <o — ro ro ro ro cn in ro ro ro Horse power input  - - i H o o JI cn •o ro 0 6 cn ui ro ro b b ui ui ro ro b b ui ui cu Ol CD CO ui cn A O l E f f i c i e n c y y . OJ ca o o O O P * 4> * o p e * * * p ° en cn o cn S i g m a cf X -< a JO > c O O O O z O l CM W Ol Ji cn CM CM S -si cn cn CM in CM Ol ui cn oi oi Average length m.m  ro CM O O 5 <o • S 0 0 ° o o o « o o — cn CD O CO CD O O CD CD O O Number of fish injected -J CD n o -M cn cn co cn ^ i cn ro ro fo cn en ro © - a A l i v e ro — ro CM 01 N oi ro oi r° ro — CM Ul 03 CD ^ u> to ro ro co .» D e a d o o J ro - o CM ro — ui - M i s s i n g ro o 01 — Oi O Oi o - Z, •* 1st day o o o o o - - CM cn *> ro — - o o o 2nd -day o o o o o o o O - O O o O O o o 3 r d .day ZD co x o 30 01 O to CM CM fO - - * O CM cn m * ro. en * o ro — ro ro ro ro CM ro O cn Total •mortality io — t» o w ro ro CM ro O o <o w 01 O cn ro ro H -M CM CM P e r c e ntage ro CD o CM Average I I I 4 Q o § F 6 ~CL~%—r- • 5- S a co R E M A R K S o n o o n o n—n 1 -o o o b o o = = . =T 2 g + 8 8 8 8 6 8 8 a> a> ao ao 9> o> •*» i 01 ro — 01 o> - Test number £ 2 $ < $ s •S -s i I P 2- 5 * 2; 2 $ 2 2 2 Date P P to ? « 5 is s «* s a a 5 5 P b jS -5 0 5 A ft 8 * 8 6 Time 5.82 5.81 5:83 5.89 5.87 5.86 Ul yi W Ul m ui ui 03 OD • OD co do bo 01 4» 01 Ol 0> * Ol Discharge cfs -< 0 > r 0 0 0 z 0 H O Z co 20.2 20.2 20.2 20.2 202 20.2 ro ro M ro ro ro ro p 0 9 P p P 0 ro ro ro ro ro ro ro 'enstodc pressure psi jjl o< Ol 01 W O ! o b b b o o 01 01 ot y w u 01 b b b 0 b o b Draft tube pressun in. of Hg Ol Ol Ol Ol oi oi 4k '4k 4. * * * Ol ol Ol Ol Ol OJ Ol * i> i» * * * * Suction heod ft. of water oi yi oi oi oi m P P p O o 9 o o o o b o Ul ui Ul Ul Ul Ul ui 0 0 p p p 0 p b b 0 0 0 b 0 Totol head ft.of water 82.7 842 84.2 84.5 84-5 84.5 03 OS 00 00 00 00 00 4k 4k 4k 4k .fk Ul Ul bo 01 ro — ui — ro Torque lb.fl 00 gg QD 00 0B OD O Q O O O Q O P O o o P 09 00 00 09 09 09 00 O O O O O O O O O O O O O O R.P.M. o o o o P P ro ro ro ro ro ro 1 1 I I I 1 1 Mr meter reading in. of water o o o o P Q ro ro ro ro to ro ro ro ro ro ro ro 1 1 1 1 1 1 1 Air quantity lb/min . 0> 00 oo oo .1.1.1-1 1 1 1 M r pressure psi °" oi ro oi oi oi 1 I I I I I I Air in percent of discharge 2 8-3 287 2 88 290 29.0 290 ro ro ro ro ro ro ro to 00 09 00 09 to 00 0 <o •* ^ o> b Horse power o u t p u t 33.0 33.0 334 334 33.4 33.3 m v u 01 01 01 oi Ol Ol 01 Ol Ol CM 01 ro fo ro ro ro ro ~ Horse power input 858 87.0 86 8 86- 9 86 9 87.1 09 09 00 00 09 .09 09 . S Ct 0> -4 N 01 •"> O 09 09 O * ^ Efficiency ym 0 59 059 0.59 0.59 0:59 0.59 O O O P P P O Ul Ul Ul Ul Ul O l 01 tO to IO <0 * (0 to Sigma o< Oi 01 01 01 01 rjj eo -~i <J> -4 OJ : Ol Ol OJ OJ Oi Oi s e s i ) - i -4 01 Ul Average lengfh mm ~n CO X O J3 H > H 00 00 00 00 0D CO 0 0 0 0 0 0 00 00 09 09 00 03 O O O (0 O O O Number of tish injected o> o> oi u< ^ ui ro - - p. 0 - CD CD Ul Ul Ul 0> oi — ol 10 0» Ct Ol 4k Alive — - — ro ' T ro 09 <0 VD O - - — — ro ro^ ro — ro <o -4 - 01 a> w 0 Dead O O O O — OD t 0 0 0 p ro ro ci Missing 01 ro * f3 01 o ro - 0" 4> p * 0 1 1st day a> -S Q *< — — Ol Ul <J> 0 m — — ro o> — 01 2nd day _ 0 r o Q i O o i 0 O - — oi — ro 3rd. day ro ro N J> - 01 ui ro as ID 00 ro ro — ro 01 4>> ro OJ ct » 00 p 01 Ul 1^ Total mortality w ro 01 01 ro J> — ->) t" " M 0 w ro 01 o> ui 01 « ro 4> o, a, 0) - oi Percentage • 1 : ' Ol 01 OJ 09 Average Low suction with air in draft tube •8 i s REMARKS I I I o o Ot 0> C06.I G05.3 o o cn io CO 4-5 C04.4 o o 8 961 00 o S tO OJ '"'Vi" o cn in C05.I o J> OJ Tost number 01 cn t U l Ol S pi V 2 In cn M> m £ 8 U l 8 <P U l cn U l cn J> U l O l *' 2 Dote ui u o 9 g 6 o 5 jo 2 J * o cn ui oi j> ffi $ O l Time at CD cn 5 cn 5 cn CO cn b <o at cn » cn to U l U l to ro cn V to cn cn to Discharge cfs 5 to 5 ui cn b cn b CO P> U l cn s b o> O Ot b Penstock pressure psi U l tn in cn in in - b T- in in in Draft tube pressure in.of Hg oi O l oi O l CM ro CM ro CM cn CM CM m O Suction head fl of water X -< to CD U l P ot to O l <0 C J 8 U l o M> to t> cn p CM M> 10 CO U l O U l O U l o Totol head ft. of woter o 33 CD * CD U l U l CO ro CO ro '•si CO cn CD to CD M> oi CD 01 CO 0) CO cn 09 U l - J CD 9> -M Torque Ib.ft. > c l~ o CD 8 CD O O CD O O CO o o CD O O CD 8 S O o CO o o CO o o •8 o CD 8 CO o Q R.P. M. o ro O ro o ro o ro p P ro I 1 1 1 i 1 Air meterreoding In. of water o o z g ro O 1 1 1 1 ! 1 Air pressure psi O ro ro O fo ro o fo ro P ro P 5 P ro to 1 1 1 1 i 1 Air quantity Ib/rnln. io to ro ro 9 <o fo 1 1 1 1 1 1 Air in percent of discharge —i o ro CO CD ro I O O l ro CD 6 to CD 6 co CO to <0 ro so o ro to cn ro U l ro in to <p O ro eo 10 Horsepower output z CO O l IM * cn 01 cu CM 4> U l CM M> 01 CM S" Ol CM CM CM O l U l CM V JS CO CM cn Horse power input CD ro cn OB U l o CD P CD CD O cb £ CM S ? CD U l CD r>i 09 CD bt CO 01 8 CO Efficiency y. o b t to o O l <o p * o 4> 8 u> p CM (0 P Ol to p OJ to O M> o CM to p CM • a o CM to Slqmo cf* ot -4 O l -4 01 cn O l cn O ) U l U l O l cn CM 09 CM CD CM 03 CM cn U< CM ot CM cn Average length mm OB O CO o CD o OB o <0 CO o CO O CO o 09 o CO O eo O -M to Number of f i s h Inlected cn O l cn o cn ro et ro cn O o> O 01 U l at ro 01 CO Ot o cn - J U l <J> Alive 2} en io ro <o j> ro O ro ro O ro M> CM o Dead CO X i - i r° i 1 t to O o t t Ot Missing O l - - ro •0 CO - 01 ot - - 1st day o —1 > ro ro o - - - CM to ro - o - 2nd day 3 O l to o ro o o - ro - to - - 3rd day a . = r- ro cn OJ (0 ro ro to ro ro cn ro a ro to 10 ro U l to Total mortality —1 -< CM O l <o ro •6. ro IO CM CM ro 01 CM Ot CM OJ M> Percentage O l O CM M> Average c c r IB ~ O » * ? a _. 2 3 JB C a *< *. 1 sa S "§• ! 5' 3 3 O a 3/ z I REMARKS > C D I - m o g o o o Q Q N K s o t o P u i _ 8 8 8 8 8 8 | | A M 4» IO 8 o G o Q p Q p P B N (5 N 8 8 8 0> O l •*» r o i cn Test number CD r~ m x CO o 33 -< o ( Z m ro ro H K <o <2 i l l s I r o ro r o N y i y j u i o » t s % £ cn u i * IJI P" $ s * D o t e 5 * o a Oi o I 5 8 * £ O l o O l o oi o i 5 J> oi "* ift "* — CM O l 5 S 8 T i m e (0 o i p i cn io io <0 CO -M ^ cn ro ° > cn ro CJ r o ro ro ro A -t> !r» 4> IO 5 8 5 co cn CD CD CO CD O l O l * Ol j> — - I CO o o CO CO CO § 8 8 p o p cn cn co O O o P -M - I -M ->l ro ro ro ro co co co P> - j a i c " w w w O l ^ CM io <0 CD CP 00 CO cn £ cn J> ro ro ro O o o P cn cn M> — <o O l cn o i cn o i in cn cn co cn cn ov ro fo ro r° -x -M  cn cn cn ro oi 5 Discharge cfs H -M ^ ^ - ro ro cn cn m * 01 !" 01 co c n o i Penstock pressure psi  Draft tube pressure in. of Hg • f t J» 4> 4> 4> o i cn cn cn ro ro £ o, o, fo U> CO  Suction head ft. of water J> * 4> J> A W °* * ~ J •>! CM ID * O l O l M> 4> J> IO O O 10 U> t o 03 cn —  Total head ft. of water o i w o i © cn a , to co o ~ cn o> ^ 0 1 CD CO 4> •> CO CO CO * - ro ? r o cn b Torque Ib.ft. CO CO CO CO CO o o g o o o o o o o CO CO CO CO O O O Q O Q Q O O Q O O O P 00 CO R.P. M. p p P P p o P co cn co cn cn cn cn Air meterreoding in. of water 3 3 3 P 3 CO , o Air pressure psi P 9 CM CM ro ro P P O l O l ro — P o i Air quantity lb / rnin. co co co ro P Air in percent of discharge ro ro P P cn t> ro ro 9 P — cn ro ro co cp CO CO ro ro co r4 03 CO ro ro cn Horsepower output ro ro s H o r 4> ro ro CM CM S O i Ol Ol A r o CM CM 4> O l CM — Horse power input -M -4 A M> -4 -O. oi y 3 cn cn 92 2 MX. * co co o i CO CO CD P P P cn Efficiency ' / . 9 P ? 2 P P P 8 ffi °> cn cn 4^ P P o P CM O l P Ol P o 4> *• Sigma tf -< o 3 ) > ( Z o o o o CO 3 ) CD «z m o " D m 33 > CD > —i o 33 CM CM CM CM CO CO CO U> cn  a> co co oo O o P P cn cn cn oi ao oi ro -M P - I ro cn ro — ro oi w ro cn - ro CM ro CM CM cn — co — 4* ro ui cn CM 10 -y— CM ID CM CM CO -4 CM CM CO 0 U l CM CO CM CM eo U i CM CM 03 •>! CM cn U l CM CM U l U l U l Average length D U D 00 CD P P CD CO P P CO CO p p CO CD P P CO CO 00 P P o Number of fish injected cn H cn co o> *. 9 oi M> © u i u i J> u i cn u i cn Alive co fo cn a> ro ro ^ ro - - -ro CM co fo -i co cn Dead + P P ro ro — P Missing o- J> at g « ro o" cn o 1st day ro CM ro CM — - - ro o P * cn 2nd day CM CM 4> _ — — P P W CH — 3rd day o a « < 3 o ro ro ro * to — o u> w — ro ro * ro ro A CM to co o OI ^ oi ro Total mortality CO O 33 —I -< ** ro oi ui ro cn ui cn 4^ oo w ui oi ro w J> o ui o ro a) at Q Percentage p Average CO m m O 13 J> s =• -* 3 O 3 S. " i S - 5 * • o 3, • REMARKS £ 1 1 8 8 P i 1 1 1 1 » N - Test number 2 2 1 i 2 2 5! ro ro £ I 2 v ro ro jo Dote ? P is H P 5 5 » — S 5 « P g pi pi £ M O W O O O Time at cn b b * * * * c* « * a * * 2 • at at at w — w Discharge cfs 1.25 1.25 ro ro Ol 01 at a> w b S Ot — -«J H H SO o o o Penstock pressure ps i co » o b 01 Ul b b Ul Ol r- ro CD b = - Ul U Ol Ul Draft tube pressure in .o f Ho <0 Ul Ul p) Ol o o oi w oi at Ol Ol 01 b b ro Suction head f t of water X -< o 70 > a r- O O o o H O CO 1 1 1 1 Ul CU - o - b Ul Ol ro ro oi ro a ui ui ro ro o - - O Total head ft. of water 1 1 1 1 5 o S Ol 10 -J <o 5! b GO 00 00 S B io Ul » Torque Ib.ft. 1 1 1 1 ro.ro o o o o 8 I o O CO CD 00 g o o o o o R . P . M. 1 1 1 1 1 1 1 1 P I 1 Air meterreoding In. of water 1 1 1 ' 1 1 1 1 S i i A i r p ressure p s i 1 1 ' ' 1 1 1 1 ° 1 1 ro 1 1 ro A i r quantity lb / m i n . 1 1 1 1 1 1 1 1 io 1 1 Air in percent of discharge 1 1 1 1 ? a Ul ro ro P o 4k — Ol Ol Ol o p o b * "J Horsepower output 1 1 1 1 ro ro (0 10 -«l 4k ro ro 10 co o ro Ol Ol Ol S 0> Ul oi ro 4k Horse power Input 1 1 1 1 CD 03 ro o b in 3 =• *. * GO CO 00 r- •»> C P b <o E f f i c i e n c y yi 1 1 1 1 p ° . 01 u (0 u> o p is sj ° ° £ S i q m a cf 37.5 37. 5 w w * N Ul o, & c P> OD Ul Ol oi 10 CD I 1 1 Average length mm 31 CO X o 70 —1 > —1 •< ce co o o CO OD O O OD CD O o CO OD O O IU ro ro o O o Number of f i s h In lec ted 0> 01 ro 4> >l -M 10 0) 01 01 ro 4k Ul 4k 4k (0 W 4k 4k A l i v e • o> — ro ro ro <o u> ro oi Oi ~ Ol Ol 4k Dead o o o o b p ro - — M i s s i n g — w * ro Ol 4> Ol CO — o - 1st day a • o «< 3 5 a s << — IM o - b O o - o P b 2nd day o — o — ro to oi ro o o o 3 r d day ro N o w cn at Ol w at ro Ol 4k ro ro a> at at Tota l mortal i ty IM ro Ol to at co A 4k o. o * 01 O ro 4> 01 Ol o o o P e r c e n t a g e ro 4k Ol Ol o A v e r a g e No runner. I ? 9 • R E M A R K S > CD r~ m x co o TO H > r H -< O c m c 70 CD m o ~u m JO > - j z CD > O 70 CO m m a 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0050628/manifest

Comment

Related Items