UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

An experimental study of plastic behavior of short lengths of wide flange steel columns Jewsbury, Frank Edward 1968

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1969_A7 J48.pdf [ 16.63MB ]
Metadata
JSON: 831-1.0050590.json
JSON-LD: 831-1.0050590-ld.json
RDF/XML (Pretty): 831-1.0050590-rdf.xml
RDF/JSON: 831-1.0050590-rdf.json
Turtle: 831-1.0050590-turtle.txt
N-Triples: 831-1.0050590-rdf-ntriples.txt
Original Record: 831-1.0050590-source.json
Full Text
831-1.0050590-fulltext.txt
Citation
831-1.0050590.ris

Full Text

AN EXPERIMENTAL STUDY OF PLASTIC BEHAVIOR OF SHORT LENGTHS OF WIDE FLANGE STEEL COLUMNS  by  FRANK EDWARD JEWSBURY B. ENG. Royal M i l i t a r y C o l l e g e , 1963  AN ABSTRACT OF A THESIS SUBMITTED IN PARTIAL FULFILLMENT THE  REQUIREMENTS FOR THE DEGREE OF Master o f A p p l i e d  Science  i n the Department of Civil  We accept  .  Engineering  t h i s a b s t r a c t o f a t h e s i s as  to the r e q u i r e d  THE  conforming  standard  UNIVERSITY OF BRITISH COLUMBIA A p r i l , 1968  In presenting this thesis in partial  fulfilment of the requirements for an  advanced degree at the University of B r i t i s h Columbia, I agree that the Library shall make i t freely available for reference and study.  I further  agree that permission for extensive copying of this thesis for scholarly purposes may  be granted by the Head of my Department or by his represen-  tatives.  It is understood  financial  gain shall not be allowed without my written permission.  Department of  Civil  that copying or publication of this thesis for  Engineering  The University of B r i t i s h Columbia Vancouver 8, Canada  Date  April  3,  1968  ABSTRACT  T h i s i s an experimental  study o f the p l a s t i c y i e l d i n g bf s t e e l  I t c o n s i s t s o f t e s t s of f o u r specimens; two column and  a 21-inch stub  column.  The  t e n s i o n coupons, a 12-inch  the stub  columns demonstrated  the e f f e c t s of r e s i d u a l s t r e s s upon the i n i t i a t i o n o f y i e l d i n g and  The  of the  the same.  The  below the y i e l d p o i n t . constant  specimen was  loaded  to n e u t r a l i z e the e f f e c t s o f  T h i s t e s t procedure r e q u i r e d t h a t a l l the d a t a  of time.  T h i s was  of r e a d i n g s greatest  to g i v e the s t r a i n at any  and  done by  was  the s e t .  r e s t r a i n e d by  T h i s was  creep. f o r each s e t o f  readings  columns d u r i n g  the  the  done by means of a computor program.  frames.  The  flanges  and  system used  c o l l e c t e d from s t r a i n gauges i n the t e n s i o n t e s t s and  confirmation  sets  column proved to be p a r t i c u l a r l y s u c c e s s f u l .  The  d i a l gauges i n the  strain  compression  t h a t the s t r a i n gauges a c c u r a t e l y represented  s t a t e of s t r a i n i n the specimens and stub  s t r a i n e d at a  columns l o c a l b u c k l i n g of the  d i a l gauges i n the compression t e s t .  test provided  just,  the specimen at the same i n s t a n t  a system of bars and b r a c i n g  i n the t e s t of the 21-inch stub  and  to a l o a d  a d j u s t i n g a l l s t r a i n s to the s t r a i n at the gauge showing  change d u r i n g  D a t a was  gauge on  compression  c o n s i d e r i n g the d i f f e r e n c e s between c o n s e c u t i v e  D u r i n g the t e s t s of the stub web  the  i n increments up  Beyond t h a t p o i n t the specimen was  rate i n order  be a d j u s t e d  the  yielding.  t e s t procedure used i n both the t e n s i o n t e s t s and  t e s t s was  stub  t e n s i o n t e s t s were used to determine  the p h y s i c a l p r o p e r t i e s of the m a t e r i a l w h i l e  propagation  columns.  a l s o r o t a t i o n of the upper end  of  the the  tests.  There are s e v e r a l g e n e r a l  c o n c l u s i o n s which, i t must be  emphasized>  are  iv based was  upon a s m a l l number o f t e s t s .  The y i e l d  g r e a t e r than o f the compression  specimens.  independent  s t r e s s of the t e n s i o n specimens Yielding  f o c i r a t h e r than p r o p a g a t i n g from one  i n i t i a t e s at s e v e r a l  single point.  Yielding,  once commenced, g e n e r a l l y c o n t i n u e d w i t h o u t s t o p p i n g w e l l i n t o the  strain  hardened  region.  strain  hardened  m a t e r i a l i n the specimen  T h e r e f o r e , t h e r e are both u n y i e l d e d m a t e r i a l and  p r o g r e s s of p l a s t i c d e f o r m a t i o n s even s m a l l l o c a l  irregularities.  at the same time. i n the specimen The  i n i t i a t i o n of y i e l d i n g i s not u n i f o r m .  The  initiation  and  are g r e a t l y a f f e c t e d  by  e f f e c t of r e s i d u a l s t r e s s e s upon the The  s t r a i n hardening modulus of the  specimens used has been found to be o n l y about o n e - h a l f of t h a t Wide v a r i a t i o n o f t h i s p r o p e r t y i s common.  expected.  V  TABLE OF CONTENTS  CHAPTER I.  PAGE  INTRODUCTION  . . . . .  1  The Problem  . . . . . . . .  .  Review o f the L i t e r a t u r e II.  TENSION TESTS.  1  . . . . . . . . . . . . . . . . . . . . . .  3  T e s t i n g Apparatus  . . . . . . . . . . . . . . . . . . .  3  Method  . . . . . . . . . . . . . . . . . . .  4  of T e s t i n g  P r e p a r a t i o n o f the Data  . . . . . . . . .  . . . . . . .  I n t e r p r e t a t i o n o f the Data . . . . . . . . . . . . . . . . Conclusions". III.  . . . . . . . . . . . . . . . . . . . . . .  10  COMPRESSION TEST OF A 12-INCH 5WF16 STUB COLUMN. . . . . .  . T e s t i n g Apparatus Method  of Testing  .  .  .. i  .  .  .  .  .  .  .  . »  . . . . . . .  .  .  .  .  5 6  . Purpose. . . . . ... .... ....... . . . . . . . . . . . . ... . i .  12  •  12  .  12  . . ..... . . . . ' . . , . . » . . . . .  14  P r e p a r a t i o n o f the Data. . . . . . . . . . . . . . . . .  15  I n t e r p r e t a t i o n o f the R e s u l t s .  17  Conclusions..„.„ IV,  1  . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  .  20  COMPRESSION TEST OF A .21-INCH 5WF16 STUB COLUMN. . . . . .  21  PUTTpOS£» • o • • •  oo  o o • o o o • • o • • o •  • Testing' Apparatus. . . . . . . . . . . . . .. . . . . . . Method  of Testing.  P r e p a r a t i o n o f the D a t a . I n t e r p r e t a t i o n o f the R e s u l t s .  21 • 21 23  . . . . . . . . . . .  23  . . . . . . . . . . . . .  25  vi CHAPTER  P  Conclusions V.  SUMMARY . . . .  BIBLIOGRAPHY. . .  • »  A  G  E  27 28 30  APPENDIX A.  Tables  3  2  APPENDIX B.  Figures  5  1  APPENDIX C.  Illustrations  80  vii LIST OF TABLES  TABLE I.  PAGE T e n s i o n T e s t o f Web Coupon Speciman Number 3  II,  ° . .  T e n s i o n T e s t o f F l a n g e Coupon .  Speciman Number 1 III.  O l s e n M e c h a n i c a l Machine  35  ( S t r a i n Gauge Data)  .  38  ( D i a l Cuage Data)  41  Compression T e s t o f the 12-Inch 5WF16 Column by Baldwin M e c h a n i c a l Machine  ( D i a l Gauge Data)  . . .  42  . . . . „  43  Compression T e s t o f the 21-Inch 5WF16 Column by the Baldwin H y d r a u l i c Machine  VIII.  . .  Compression T e s t o f the 12-Inch 5WF16 Column by  the VII.  34  Compression T e s t o f the 12-Inch 5WF16 Column  the VI.  o . .  ( S t r a i n Gauge Data)  by the Baldwin H y d r a u l i c Machine V.  .  Compression T e s t o f the 12-Inch 5 WF16 Column by the O l s e n M e c h a n i c a l Machine  IV.  33  ( S t r a i n Gauge Data)  Compression T e s t o f the 21-Inch 5WF16 Column by the Baldwin H y d r a u l i c Machine  ( D i a l Gauge Data)  „ « , . . . .  50  LIST OF FIGURES  FIGURE 1<,  S t r e s s - S t r a i n Curve f o r the T e n s i o n T e s t o f Web Coupon Speciman Number 3  2.  .  S t r e s s - S t r a i n Curve f o r the T e n s i o n T e s t o f F l a n g e Coupon Speciman Number 3  3.  . . . . . .  D i s t r i b u t i o n of S t r a i n s During Tension Test of . Web Coupon Speciman Number 3  4.  . . .  D i s t r i b u t i o n of S t r a i n s During Tension Test of F l a n g e Coupon Speciman Number 3  5.  «  . .  D i s t r i b u t i o n o f S t r a i n s Across S e c t i o n 1 o f the 12-Inch Column D u r i n g the Compression T e s t by the O l s e n Machine  „  . .  6. . ' D i s t r i b u t i o n o f S t r a i n s  Across S e c t i o n 2 o f the 12-  Inch Column D u r i n g the Compression T e s t by the O l s e n V; Machine 7.  . '."  D i s t r i b u t i o n o f S t r a i n s Across S e c t i o n 3 o f the 12-. Inch Column D u r i n g  the Compression T e s t by the  O l s e n Machine 8.  .'  .. * . . . < > .  .  .»  D i s t r i b u t i o n o f S t r a i n s Across S e c t i o n 1 o f the 12. Inch Column D u r i n g the Compression T e s t by the . Baldwin Machine  9.  » .  D i s t r i b u t i o n of Strains  Across S e c t i o n 2 o f the 12-  Inch Column D u r i n g the Compression T e s t by the Baldwin Machine  • >.  . . . . . .  FIGURE . 10.  D i s t r i b u t i o n o f S t r a i n s Across S e c t i o n 3 o f the 12-Inch Column D u r i n g the Compression by the B a l d w i n Machine  11.  Test  . . . . . . . . . .  .  . . . . . . .  .  S t r e s s - S t r a i n Curves f o r the Compression T e s t o f the 12-Inch Column by the O l s e n Machine  12.  .  S t r e s s - S t r a i n Curves f o r the Compression T e s t o f the 12-Inch Column by the Baldwin Machine  13.  R o t a t i o n o f the S p h e r i c a l Head D u r i n g the Compression T e s t of the 12-Inch Column by the O l s e n Machine  14.  R o t a t i o n o f the S p h e r i c a l Head D u r i n g the Compression T e s t of the 12-Inch Column by the Baldwin Machine  15.  „  S t r e s s - S t r a i n Curves f o r the Compression T e s t o f the 21-Inch Column  16.  R o t a t i o n o f the S p h e r i c a l Head D u r i n g the Compression T e s t o f the 21-Inch Column  17.  D i s t r i b u t i o n o f S t r a i n s Along the Center o f the Flange ( p o s i t i o n 1) D u r i n g the Compression T e s t o f the 21-Inch Column  18.  . . . .  D i s t r i b u t i o n o f S t r a i n s Along the Edge of the F l a n g e ( p o s i t i o n 2) D u r i n g the Compression T e s t of the 21-Inch Column  19.  . . . . . .  D i s t r i b u t i o n o f S t r a i n s Along the Center o f the Web  ( p o s i t i o n 3) D u r i n g the Compression T e s t o f  the 21-Inch Column . . .  I . .  . . . . . . .  . ~ . . .  .  X  FIGURE 20.  PAGE  D i s t r i b u t i o n of Strains  Along the Edge o f  the F l a n g e ( p o s i t i o n 4) D u r i n g the Compression T e s t o f the 21-Inch Column . 21.  D i s t r i b u t i o n of Strains Flange of  22.  71  Along the Center o f the  ( p o s i t i o n 5) D u r i n g the Compression T e s t  the 21-Inch Column  D i s t r i b u t i o n of Strains Flange  (position  ...... Along the Edge of the  6) D u r i n g the Compression T e s t  of the 21-Inch Column 23.  D i s t r i b u t i o n of S t r a i n s . Web  . . .  Flange  25.  73  ( p o s i t i o n 7) D u r i n g the .Compression T e s t  D i s t r i b u t i o n of Strains  of  .  Along the Center o f the  of the 21-Inch Column 24.  72  . . . . . Along the Edge of the  ( p o s i t i o n 8) D u r i n g the Compression  Test  the 21-Inch Column  D i s t r i b u t i o n of Strains  74  75 i n the Web  at the Load  of 193.96 K i p s D u r i n g the Compression T e s t o f the.21-Inch Column 26.  D i s t r i b u t i o n of Strains  76 i n the Web  at the Load o f  195.73 K i p s D u r i n g the Compression T e s t o f the 21-Inch Column 27.  D i s t r i b u t i o n of Strains  77 i n the Web  at the Load  of 195.70 K i p s D u r i n g the Compression T e s t of the 21-Inch Column  . 78  xi FIGURE 28.  '  D i s t r i b u t i o n of Strains  i n the Web  Load o f 197.29 K i p s D u r i n g T e s t o f the 21-Inch Column  PAGE  a t the  the Compression .  79  LIST OF ILLUSTRATIONS  •  ILLUSTRATION 1.  PAGE  L o c a t i o n o f the T e n s i o n  Specimans  on the Cross  S e c t i o n o f the 5WF16 Member  81  2.  L o c a t i o n of the S t r a i n Gauges on the T e n s i o n  3.  B r a c i n g System and S t r a i n Gauge L o c a t i o n on the 12-  Specimans  . . .  Inch Column 4.  S t r a i n Gauge and D i a l Gauge L o c a t i o n on the Cross  P l a t e During  Photographs Taken B e f o r e During  7.  84  C e n t e r i n g Apparatus, and D i a l Gauge Mounts Used on the Bottom B e a r i n g  6.  the Compression T e s t s  T e s t s of the Equipment  . . . . .  the Compression T e s t s .  . . . .  87  .Strain Gauge and D i a l Gauge L o c a t i o n on the Cross 88  Photographs F o l l o w i n g T e s t i n g o f the S t r a i n Gauges and D i a l Gauges on the 21-Inch. Column  10.  86  B r a c i n g System and S t r a i n Gauge L o c a t i o n on the 21-  S e c t i o n of the 21-Inch Column 9.  85  Used"''  Inch Column 8.  82  83  S e c t i o n o f the 12-Inch Column . 5.  '"  89  Photographs F o l l o w i n g T e s t i n g of the B r a c i n g System on the 21-Inch Column  90  ACKNOWLEDGMENT  The  author  i s exceedingly g r a t e f u l  f o r the sound a d v i c e and p a t i e n c e  o f D o c t o r A. H. H r e n n i k o f f which made t h i s t h e s i s what i t i s . The  author  a l s o wishes to thank the members o f the t e c h n i c a l s t a f f o f  the Department o f C i v i l E n g i n e e r i n g f o r t h e i r i n v a l u a b l e a i d . L a s t l y , the author expresses  h i s a p p r e c i a t i o n to Mrs.  w i t h o u t whom t h i s t h e s i s would not have been  complete.  Janet F r o s t  CHAPTER I  INTRODUCTION  I.  D u r i n g the l a s t based felt  THE PROBLEM  t e n years a method o f s t r u c t u r a l d e s i g n o f s t e e l  upon the p l a s t i c theory has been used w i t h i n c r e a s i n g that  applies  the knowledge l a c k i n g  to s t r u c t u r e s ,  Consequently  structures  frequency.  It is  i n some important areas o f t h i s t h e o r y , as i t  i s s u f f i c i e n t t o make the d e s i g n method q u e s t i o n a b l e .  t h i s e x p e r i m e n t a l study o f the p l a s t i c y i e l d i n g o f a s t e e l  column was conducted.  I t i s a limited  investigation involving  t e s t s on f o u r  coupons and two column specimens c u t from the same 5WF16 grade ASTM-A7 beam. The  t e s t s conducted  compression  were; t e n s i o n  t e s t s on f l a n g e  t e s t s on a 12-inch stub column and a 21-inch stub column.  tension  t e s t s were designed  steel.  The compression  to determine  the p h y s i c a l  t e s t s were designed  II.  average  physical  range,  range,  o f the ASTM-A7  the column.  REVIEW OF THE LITERATURE  properties  t e s t s a r e g i v e n by Thurlimann elastic  properties  o f ASTM"A7 s t e e l o b t a i n e d from coupon •  as f o l l o w s :  y i e l d s t r e s s , 36 k s i ; modulus i n the  30,000 k s i ; modulus a t the b e g i n n i n g o f the s t r a i n h a r d e n i n g  900 k s i ; and the s t r a i n a t the b e g i n n i n g o f s t r a i n h a r d e n i n g ,  or about  The  to show the e f f e c t s o f r e s i d u a l  s t r e s s and the p r o p a g a t i o n o f y i e l d i n g through  The  and web coupons and  14x10  in/in  1.4 p e r c e n t . ^  B. Thurlimann, "New Aspects Concerning I n e l a s t i c I n s t a b i l i t y o f S t e e l S t r u c t u r e s " , J o u r n a l o f the S t r u c t u r a l D i v i s i o n ASCE, LXXXVI (January, 1960), pg. 101.  2 A c c o r d i n g to Thurlimann, y i e l d i n g o c c u r s d i s c o n t i n u o u s l y i n a s e r i e s of narrow bands.  The m a t e r i a l i n each band as i t y i e l d s passes almost  instan-  t a n e o u s l y through the e n t i r e y i e l d i n g range to the b e g i n n i n g o f the s t r a i n , h a r d e n i n g range.  Subsequently, the a d j a c e n t bands o f m a t e r i a l then y i e l d i n  a s i m i l a r manner. following:  As a consequence  of t h i s t h e o r y Thurlimann concludes the  F i r s t l y , once y i e l d i n g has commenced a l l the m a t e r i a l i n the  specimen must be e i t h e r  i n the s t r a i n hardened  Secondly, once y i e l d i n g has i n i t i a t e d  s t a t e o r i n the e l a s t i c  at a p o i n t i t i s propagated  state.  outward  2 from band to band u n t i l  the e n t i r e specimen has  D u r i n g the manufacture  o f hot r o l l e d  yielded.  s t r u c t u r a l shapes  the uneven c o o l i n g  f o l l o w i n g the r o l l i n g p r o c e s s induces c e r t a i n r e s i d u a l s t r e s s e s i n the shapes. F o r s t r u c t u r a l shapes h a v i n g a depth to w i d t h r a t i o l e s s than or equal to  1.5  3 these r e s i d u a l s t r e s s e s have been measured at the f o l l o w i n g average v a l u e s : flange t i p s  - 13 k s i compression  flange centers - 5 k s i tension web T h e r e f o r e , one would first  centers - 8 k s i tension  expect t h a t d u r i n g compression t e s t s y i e l d i n g woul'd occur  at the f l a n g e t i p s and l a s t at the c e n t e r o f the  web.  2 I b i d . , p.  110.  L.S. B e e d l e , L. T a l l , " B a s i c Column S t r e n g t h " , J o u r n a l o f the S t r u c t u r a l D i v i s i o n ASCE, LXXXVI ( J u l y , 1960), p. 143.  CHAPTER I I  TENSION TESTS  I.  The  coupons f o r the t e n s i o n  stub column specimens. on  the beam c r o s s  thickness  TESTING APPARATUS  I l l u s t r a t i o n 1 shows the l o c a t i o n of these coupons  section.  N o m i n a l l y 0.5  as the web o r f l a n g e  specimens are g i v e n the s u r f a c e m i l l  t e s t s were c u t from the same 5WF16 beam as the  inches  i n width and o f the same  r e s p e c t i v e l y , the a c t u a l dimensions o f the 2.  in Illustration  These dimensions were measured a f t e r  s c a l e had been removed by sanding j u s t p r i o r to gauge  place-  ment . Ten  electric  r e s i s t a n c e s t r a i n gauges were p l a c e d  specimens, s i x on the c e n t e r  l i n e s o f both 1/2  gauges used were P h i l l i p s PR 9814, of 120.5  ohms _ 0.57o.  balancing  micro inches  per  4,  and f o u r on the  1/4  The gauges were connected to an automatic  The d i g i t a l  per i n c h to three  10 and 100  The s t r a i n  i n c h gauge l e n g t h , having a r e s i s t a n c e  u n i t which was i n t u r n connected to a Budd d i g i t a l  instrument Model A - l l l .  2,  inch faces  l i n e s o f the s i d e edges, as i n d i c a t e d i n I l l u s t r a t i o n 2.  center  and  l e n g t h w i s e on the  switching readout  readout instrument reads d i r e c t l y i n  significant  figures.  thus have a r e a d a b i l i t y of 1,  2,  4,  The s c a l e f a c t o r s of 1, 10 and 100  micro  inches  inch r e s p e c t i v e l y . The  tension  Baldwin U n i v e r s a l  t e s t s were conducted u s i n g t e s t i n g machine.  a 60 k i p , h y d r a u l i c a l l y o p e r a t e d ,  The specimens were h e l d  machine by Tempiin g r i p s f i t t e d w i t h b a l l  sockets.  i n the t e s t i n g  E c c e n t r i c l o a d i n g o f the  specimens was prevented by c a r e f u l c e n t e r i n g o f the specimens i n the Templin grips.  T e s t s on specimens No. were u n s u c c e s s f u l due  4, a web  to be s u i t a b l e .  2, a f l a n g e specimen,  to the f a i l u r e of the TATNAL GA-1  mounting the s t r a i n gauges. specimen, Budd GA-5  specimen, and No.  c o n t a c t cement used  A f t e r a p r e l i m i n a r y t e s t on the r u i n e d No.  cement, a heat and p r e s s u r e cured epoxy r e s i n , was  A l l subsequent t e s t s were performed  in  4 found  u s i n g t h i s adhesive  to  mount the s t r a i n gauges.  II.  During  METHOD OF TESTING  the t e s t two d i s t i n c t  t e s t procedures  p r i o r to y i e l d i n g i n the specimen the l o a d was were o b t a i n e d f o r the t e n s t r a i n gauges.  were taken a t a p p r o x i m a t e l y noted  was  utilized  yielding.  The  noted  f o r t h a t p o r t i o n of the  t e s t i n g machine was  inches per hour.  s t r a i n r e a d i n g s f o r each s t r a i n gauge and  These r e a d i n g s can be reduced same i n s t a n t of  The  load  was  s t r a i n at The  load  Thus, each s e t two  to a s t r a i n f o r each gauge and  s t r e s s of 36,000 p s i the y i e l d  i n c r e a s e d by 1,000  load.  approximately  The  load readings. a l o a d at the  time.  Assuming a y i e l d  the y i e l d  run at  Sets of r e a d i n g s  f i v e - m i n u t e i n t e r v a l s as f o l l o w s .  a t 'the end of the s e t of s t r a i n gauge r e a d i n g s .  l o a d was  minimize.the  read i n sequence w i t h the sequence b e i n g r e p e a t e d .  c o n s i s t s o f two  The  In o r d e r to  at the b e g i n n i n g of the s e t of s t r a i n gauge r e a d i n g s .  each gauge was  readings  Once y i e l d i n g has o c c u r r e d i n the  e f f e c t of creep the f o l l o w i n g procedure was  a c o n s t a n t r a t e of s t r a i n i n g o f about 0.3  In the p e r i o d  held constant while  specimen creep s t r a i n i n g i s no l o n g e r n e g l i g i b l e .  t e s t d u r i n g which the specimen was  are u t i l i z e d .  Subsequently,  pound increments the second  4 p e r c e n t s t r a i n was  l o a d was  to the n e a r e s t l o a d below  procedure was  attained.  calculated.  employed  until  5 III.  In o r d e r gauge readings  PREPARATION OF THE DATA  to make v a l i d  comparisons i t i s necessary  to reduce a l l s t r a i n  to r e a d i n g s  at the same i n s t a n t o f time.  The procedure used  i s based on three assumptions; namely, t h a t the load v a r i e s l i n e a r l y beginning  to end o f each s e t o f r e a d i n g s ,  gauge r e a d i n g was c o n s t a n t ,  that the time r e q u i r e d f o r each  and t h a t the r a t e o f s t r a i n was c o n s t a n t .  r e f e r e n c e p o i n t i n time to which a l l o t h e r r e a d i n g s reading  from  f o r the s t r a i n gauge having  d i f f e r e n c e betwee n the readings J  are reduced  The  i s the second  the g r e a t e s t change, that i s , the g r e a t e s t  d u r i n g the s e t .  The procedure i s b e s t e x p l a i n e d by the use o f an example.  Consider  that  there are t e n s t r a i n gauges and that gauge No. 7 e x h i b i t s the g r e a t e s t change during  the s e t . The a c t u a l observed  second r e a d i n g f o r gauge No. 7 i s used. 16 ,  The a d j u s t e d load.  l o a d becomes f i r s t  F o r gauge No. 6 a d j u s t e d  between l a s t and f i r s t  load + —  readings)  reading + ^  F o r gauge No. 9 a d j u s t e d last  and f i r s t  point  s i n c e the r e f e r e n c e p o i n t o c c u r r e d  proper  ( d i f f e r e n c e between l a s t and f i r s t (7-9)  before  — —  reading).  ( d i f f e r e n c e between  the l a s t r e a d i n g f o r gauge No. 9 and hence the and the l a s t r e a d i n g .  These a d j u s t e d  i n TABLE I and TABLE I I . Mean s t r a i n s i n these  were computed by a v e r a g i n g  after  T h i s adjustment i s n e g a t i v e because the r e f e r e n c e  s t r a i n i s between the f i r s t  d a t a are presented  first  S i m i l a r l y , f o r gauge No. 1, a d j u s t e d  s t r a i n = l a s t reading +  readings).  i n time o c c u r r e d  ^  and  s t r a i n = l a s t r e a d i n g + ^-JQ—^ ( d i f f e r e n c e  the l a s t r e a d i n g f o r gauge No. 6. strain = last  ( d i f f e r e n c e between l a s t  a l l a v a i l a b l e gauge r e a d i n g s  each p a r t i c u l a r v a l u e of the l o a d . F i g u r e s 1 and 2 were prepared  tables  corresponding  Mean s t r e s s versus mean s t r a i n  to  curves,  from the d a t a i n TABLES I and I I r e s p e c t i v e l y .  6  These curves demonstrate the p h y s i c a l p r o p e r t i e s of the In o r d e r the  to show g r a p h i c a l l y the  same i n s t a n t o f time, F i g u r e s  represents  strain.  represents  a c e r t a i n load  IV.  Specimen No. summarized by  s t a t e of s t r a i n at d i f f e r e n t p o i n t s  3 and  4 were p r e p a r e d .  Each l i n e c o n n e c t i n g and  point  Figure  THE  specimen, was  1.  values  were c a l c u l a t e d from the  The  average y i e l d  in  the  of  load  the  The  a curve r i s i n g  tested  first.  slightly  test i s  i n the e l a s t i c  straight l i n e portions  Continuation at f i r s t  and  and  modulus and defined.  the. s t r a i n  The  latter  s t r a i n hardening  at  The  first  the  i n t e r s e c t i o n of  more s t e e p l y  s t r e s s i s the  lowest p o i n t on  value  f o r s t r a i n at  the b e g i n n i n g of y i e l d i n g i s the  straight  line elastic  p o r t i o n and  the  maximum r a t e of s t r a i n at t h i s time was  are  as  reading  was  the  hardening too  well  the assumed s t r a i g h t The  value  i n t e r s e c t i o n of  i s a consequence of a d j u s t i n g  the  psi  the level.  data.  4 and  used r e s u l t i n g i n a l a r g e i n c r e a s e  x 10^  The  stress  observed at gauge No.  29.6  for  plateau.  follows:  e l a s t i c modulus  drop  later.  s t r a i g h t l i n e at the y i e l d  The  last  strain  curve i n the p l a s t i c  l a r g e load gap  values  i n this region  the  The  a l o a d near the  the  s t r e s s l e v e l of 43,282 p s i .  yield  graph.  of the y i e l d i n g  the b e g i n n i n g of s t r a i n h a r d e n i n g are not  i s taken at the  l i n e with  magnitudes of  strain  o f the  i r r e g u l a r shape of the y i e l d i n g s t r a i n h a r d e n i n g curve r e f l e c t s  composite n a t u r e of i t s s t r a i n s .  The  The  s t r e s s i s 4 3 , 2 3 2 p s i taken at the  f o l l o w i n g a temporary peak.  proceeds along  scale  DATA  f o r the m o d u l i i  hardened r e g i o n s value  vertical  the d i f f e r e n t s t r a i n gauge v e r t i c a l s  the web The  The  at  i n time.  INTERPRETATION OF  3,  specimens.  hence  i n load.  yield  stress  43.282 x I O  3  psi  -6 yield  strain  s t r a i n h a r d e n i n g modulus  /  1450  x 10  in/in  .593  x 10^ p s i  13.3  x 10  s t r a i n at the b e g i n n i n g o f s t r a i n hardening The  last  two parameters  are somex^hat u n c e r t a i n .  that these p l a s t i c p r o p e r t i e s o f the t e s t specimen mean v a l u e s g i v e n by T h u r l i m a n n . of  p l a s t i c parameters The  yield 34.1  It.may be  the  However, such or even a g r e a t e r v a r i a t i o n  commentary on P l a s t i c D e s i g n , however, notes k s i to 43.0  i s common.  that w h i l e the b a s i c  k s i w i t h a most p r o b a b l e v a l u e o f  k s i , the most p r o b a b l e v a l u e f o r the usual acceptance-type  ksi.^  observed  d i f f e r e d w i d e l y from  o f the same grade of s t r u c t u r e s t e e l  s t r e s s v a r i e s from 24.6  in/in  t e s t i s 42.6  A l s o i n the Commentary i s a graph g i v i n g v a l u e s f o r the modulus o f  3 e l a s t i c i t y o f 29.6  x 10  k s i and  f o r the modulus o f s t r a i n hardening o f  2 700 k s i . Specimen No.  3 assumed a bent  T h i s c u r v a t u r e i s p r o b a b l y due  to the r e l e a s e o f r e s i d u a l s t r e s s e s caused  the manufacturing p r o c e s s .  The  i n TABLE I.  range  In the e l a s t i c  shape upon b e i n g cut from the 5WF16 beam.  fact  than s t r a i n s at gauges 1, 3 and 5.  that the specimen  was  s t r a i n s at gauges 2, 4 and  bent can be 6 are  by  seen  larger  The d i f f e r e n c e s a t the load o f 3,500  pounds f o r gauges 1 and 2, 3 and 4, and 4 and 5 are 250,  444  and 252  micro  . ''"American S o c i e t y of C i v i l E n g i n e e r s , Commentary on P l a s t i c D e s i g n (ASCE Manuals o f E n g i n e e r i n g P r a c t i c e No. 41, New York: American S o c i e t y o f C i v i l E n g i n e e r s , 1961) p. 15. 2  I b i d . , p .. 22.  i n c h e s per  inch  respectively  w i t h r e s p e c t to the  c e n t e r of  expected, i n c r e a s e w i t h an range. result  Eccentricity  inch  yielding  i n c r e a s e i n load  in/ in.  the  yielding  gauge 6 and  at gauges 7,  first  at gauges 1,  3 and  5.  s t r a i n by  the  be  9 and  time the  19 x 10 The  in can  d a t a from the  exactly be  i n / i n and  the  o n l y 36  stressed  8 and  and  42  9 and  micro  10  and  43.2  x  10  3  29.6  x  10  6  first  The  at these p o i n t s was  at a s t i l l  l a t e r time by  taken p l a c e the  specimen reaches the  a minimum v a l u e of  b e g i n n i n g of  followed  yielding  e f f e c t s of less  initial the  same  s t r a i n hardening.  l i n e r e p r e s e n t s a maximum v a l u e -3 16.5  x 10  in/in.  f l a n g e specimen was  same manner as d a t a from the  first  test.  mechanical p r o p e r t i e s  x  o c c u r r e d at gauge  1 the  the  10.  inches  = 1460  specimen No„  seen that  would  centered.  a l l s t r a i n gauges e x h i b i t more or  t e s t of  be  points.  yielding  Yielding  T h i s i s c l e a r l y seen i n F i g u r e 3 where one -3 of  at gauges 7 and  almost p e r f e c t l y  seen that  Once y i e l d i n g has  e c c e n t r i c i t i e s d i s a p p e a r and  as might  throughout the whole e l a s t i c  occurs at a s t r a i n of  then gauge 2. 8,  symmetrical  these e c c e n t r i c i t i e s have p r o b a b l y caused  the most h e a v i l y  yielding  is  specimen i n the Templin g r i p s  specimen was  In TABLE I i t can  4 f o l l o w e d by  the  eccentricity  These d i f f e r e n c e s ,  o f 3,500 pounds are  produced by  to i n i t i a t e at  the  between s t r a i n s  load  that  stresses  Theoretically  by  the  that  specimen.  o f placement of  at  indicating  additional  10  the  in similar differences  These d i f f e r e n c e s per  indicating  prepared  From F i g u r e 2 i t  found i n t h i s t e s t  elastic'modulus  29.6  s t r a i n hardening modulus  .5 52  yield  stress  41.3  x 10  yield  strain  1400  x 10  are:  x 10^  psi  x 10^ 3  psi  psi ^ in/in  s t r a i n at the b e g i n n i n g o f s t r a i n hardening S i n c e no drop yield  s t r e s s had  i n load was  13.5  observed  in/ in  J  i n the e a r l y stage o f y i e l d i n g ,  to be found i n a manner d i f f e r e n t  p r e v i o u s specimen,  x 10  from the one used on the  namely by extending the s l i g h t l y  sloping y i e l d  l i n e back  to the i n t e r s e c t i o n w i t h the c o n t i n u a t i o n o f the steep e l a s t i c l i n e . s t r a i n hardening curve proved its  the  to be r e a s o n a b l y s t r a i g h t .  The  The  a b s c i s s a of  i n t e r s e c t i o n w i t h the h o r i z o n t a l l i n e at the l e v e l o f y i e l d  stress  was  taken as the s t r a i n at the b e g i n n i n g of s t r a i n h a r d e n i n g . Although fact one  t e s t s of s i n g l e specimens are by. no means c o n c l u s i v e ,  that the sample cut out from the web  proved  taken from the f l a n g e c o r r o b o r a t e s what may  view o f the g r e a t e r degree o f r o l l i n g  slightly  the  s t r o n g e r than -the  reasonably be expected i n  i n the web.  D u r i n g the t e s t  the  h y d r a u l i c a l l y operated Baldwin U n i v e r s a l Machine l o s t p r e s s u r e and hence load.  T h i s decrease i n load and subsequent  F i g u r e 4.  T h i s had  r e l o a d i n g i s very evident i n  the e f f e c t o f d i s p l a c i n g the curve approximately 4,500  micro i n / i n to the r i g h t making the d e t e r m i n a t i o n of the b e g i n n i n g of hardening most d o u b t f u l .  T h i s was  strain  taken as the p o i n t at which the y i e l d  s t r e s s l i n e and  the s t r a i g h t  l i n e f o r the s t r a i n hardening modulus would have  i n t e r s e c t e d had  the curve not been d i s p l a c e d .  TABLE I I i n d i c a t e s that specimen No.  1 was  q u i t e . s t r a i g h t since i n  the e l a s t i c range  the d i f f e r e n c e s between gauges 1 and 2, 3 and 4, and 5 and  6 are v e r y s m a l l .  However, r e l a t i v e l y l a r g e r d i f f e r e n c e s between gauges 7  and 8 and 9 and  10 i n d i c a t e that the specimen was  as i n the f i r s t  test.  not q u i t e so w e l l centered  T h e o r e t i c a l l y y i e l d i n g occurs in/in.  at a s t r a i n of  From TABLE I I i t can be seen t h a t y i e l d i n g  3 f o l l o w e d by gauges 9, 1, 10 and 4 i n succession,,  41  3 :  29.6  10"^ r = 1395 x 10"^ x 10 6  took p l a c e f i r s t  at gauge  However, u n l i k e the f i r s t  t e s t , t h i s t e s t showed some p o r t i o n s of the specimen w e l l i n t o the s t r a i n hardened range w i t h evident  o t h e r p o r t i o n s j u s t commencing to y i e l d .  This i s very  i n F i g u r e 4 where a t one time a d i f f e r e n c e o f 24,000 micro  e x i s t e d between the s t r a i n s a t gauge 6 and gauge 10.  Thus, c o n t r a r y to the  o p i n i o n o f Thurlimann, s t r a i n i n g does not cease at the b e g i n n i n g hardening  until  of s t r a i n  the remainder o f the m a t e r i a l has y i e l d e d . V.  The  in/in  CONCLUSIONS  average mechanical p r o p e r t i e s i n t e n s i o n o f two specimens o f 5WF16,  ASTM-A7 beam taken a r e from the web and the other  from the f l a n g e are as  follows: modulus o f e l a s t i c i t y modulus o f s t r a i n hardening yield  29.6 x 10^ p s i 573 x 1  (P  psi  3  stress  42.3 x 10 p s i  -6 yield  strain  1425 x 10  in/in  s t r a i n at the b e g i n n i n g o f  -3 s t r a i n hardening The  yield  s t r e s s o f the f l a n g e sample.  those p o i n t s where s t r e s s i s c o n c e n t r a t e d  specimen o r e c c e n t r i c l o a d i n g .  Y i e l d i n g normally  higher  commences f i r s t  e i t h e r by i m p e r f e c t i o n s  i n the  Y i e l d i n g does not propagate from the f i r s t  p o i n t o f i n i t i a t i o n but i n i t i a t e s taneously.  in/in  s t r e s s o f the web sample has been found to be about 2 p e r c e n t  than the y i e l d at  13.40 x 10  a t v a r i o u s random p o i n t s almost  S t r a i n i n g may c o n t i n u e w e l l i n t o the s t r a i n hardening  simulrange i n  11 p o r t i o n s o f the m a t e r i a l w h i l e r e m a i n i n g  i n the e l a s t i c range o r the b e g i n -  n i n g of the y i e l d i n g range i n o t h e r p o r t i o n s .  CHAPTER I I I  COMPRESSION TEST OF A 12-INCH 5WF16 STUB COLUMN  I.  T h i s t e s t had  PURPOSE  two purposes;  to study the i n i t i a t i o n  y i e l d i n g w h i l e the specimen passed s t a t e and  to determine  from an e l a s t i c  state  and p r o p a g a t i o n o f to a s t r a i n hardened  the e f f e c t o f r e s i d u a l s t r e s s e s upon the p a t t e r n o f  yielding.  II.  The prepared  t e s t specimen was  a 12-inch stub column of 5WF16.  i n the f o l l o w i n g manner.  remove m i l l and  TESTING APPARATUS  s c a l e and  First,  The  specimen  the e n t i r e s u r f a c e was  sanded to  i r r e g u l a r i t i e s which might have acted as s t r e s s  t h e r e f o r e might have i n i t i a t e d y i e l d i n g .  was  raisers  Then both ends were machined  p e r p e n d i c u l a r to the a x i s o f the column to make the specimen 12 inches i n length.  Subsequently,  the c r o s s s e c t i o n a l area was  a t r a c e o f the end w i t h a p l a n i m e t e r . inches agrees  The  determined  area determined  c l o s e l y w i t h the handbook v a l u e o f 4.70  Budd C6-141-B s t r a i n gauges o f 1/4 u s i n g the Budd GA-5  by  at 4.66  square  measuring square  inches.  i n c h gauge l e n g t h were then mounted  cement found s u c c e s s f u l i n the t e n s i o n t e s t s .  The  arrange-  ment o f the 36 gauges on t h r e e c r o s s s e c t i o n s o f the column i s d e p i c t e d i n i l l u s t r a t i o n 3 and Two  4.  12-inch diameter b e a r i n g p l a t e s were p l a c e d between the ends o f the  specimen and  the heads o f the t e s t i n g machine.  s t e e l were tapped The  Illustration  to permit d i a l gauges and  These p l a t e s o f hardened  centering plates  to b e ' a t t a c h e d .  aluminum c e n t e r i n g p l a t e s were machined to f i t between the f l a n g e s of the  13 specimen and then attached i n I l l u s t r a t i o n 5.  to the b e a r i n g p l a t e .  I t served  T h i s arrangement  to keep the specimen centered  p l a t e so t h a t when the b e a r i n g p l a t e s were centered under the s p h e r i c a l upper head the specimen was  on the b e a r i n g  i n the t e s t i n g  subjected  i s depicted  machine  o n l y to a x i a l  load.  The f o u r d i a l gauges were mounted to the aluminum mounts on the lower b e a r i n g p l a t e by means o f f o u r v e r t i c a l aluminum aluminum is  p l a t e s attached  shown by I l l u s t r a t i o n  gauges w i t h  respect  rods.  They  contacted  to the upper b e a r i n g p l a t e f o r t h i s purpose. 5 and I l l u s t r a t i o n  6.  The l o c a t i o n o f the d i a l  to the specimen i s g i v e n by I l l u s t r a t i o n 4.  ment o f the f o u r d i a l gauges  and the two axes of the WF  s h o r t e n i n g o f the column equal  shape allowed  arrangethe t o t a l  measured.  The Commentary g i v e s the f o l l o w i n g c r i t e r i a as s u f f i c i e n t  beginning  This  to the mean o f the four gauges, and the r o t a t i o n  o f the upper end o f the specimen about b o t h axes to be  l o c a l b u c k l i n g o f the web  This  to prevent  or f l a n g e s o f a s t r u c t u r a l shape s t r a i n e d to the  o f the s t r a i n hardening  region — 17 and _ < 43 where b and t t w are the w i d t h and t h i c k n e s s of the f l a n g e r e s p e c t i v e l y , d i s the s e c t i o n  depth and w i s the web a — r a t i o o f 20.8. w  thickness.^  However, as the t e s t was  hardened r e g i o n a d d i t i o n a l support support  The specimen has a ^. r a t i o o f 13.8  consisted of four s t e e l  to c o n t i n u e w e l l i n t o the  f o r the web  and f l a n g e s was  frames c o n s t r u c t e d  strain  provided.  This  as shown i n I l l u s t r a t i o n  The f o u r frames were p o s i t i o n e d an the specimen as d e p i c t e d being  and  3.  in Illustration 3  h e l d i n p o s i t i o n by the f r i c t i o n of the p o i n t s o f the b o l t s a g a i n s t the  f l a n g e and web.  Inward b u c k l i n g o f the f l a n g e s was  prevented  by b o l t s  between  ''American S o c i e t y o f C i v i l E n g i n e e r s , Commentary on P l a s t i c Design (ASCE Manuals of E n g i n e e r i n g P r a c t i c e No. 41, New York: American S o c i e t y of C i v i l E n g i n e e r s , 1961) p. 50.  the  flanges.  A l l the b o l t s were hand t i g h t e n e d  amount of s t r e s s exerted b o l t s were f r e q u e n t l y The  100  retightened  a f f e c t the  test.  The  micro inches  per  gauge p a i r s , A and 0.002 mm  digital  read  digital  but has  i n c h depending on  C and B and  the  t e s t progressed  the  to keep them i n p l a c e .  u n i t to the Budd model A - l l l  tests.  so t h a t the n e g l i g i b l e As  s t r a i n gauges were connected through the 40  balancing tension  would not  only  channel s w i t c h i n g  strain  i n d i c a t o r used i n the  a r e a d a b i l i t y varying  the  and  from 1 to  s c a l e f a c t o r i n use.  The  D have r e a d a b i l i t i e s of 0.0001 inches  dial and  respectively.  Initially  the  t e s t i n g machine.  specimen was  a 200  T h i s machine i s m e c h a n i c a l l y  to achieve a constant proved to be  tested using  r a t e of head movement.  insufficient  d r i v e n and The  to induce the r e q u i r e d  Universal  thus can be c o n t r o l l e d  c a p a c i t y of 'the machine s t r a i n i n g i n the  specimen  •which was  subsequently t e s t e d  machine.  T h i s machine i s h y d r a u l i c a l l y operated making i t i m p o s s i b l e  t a i n a constant  i n a 400  kip capacity Olsen  k i p c a p a c i t y Baldwin U n i v e r s a l t e s t i n g  r a t e of head movement at the low  to main-  r a t e s p o s s i b l e w i t h the  Olsen  machine.  III.  Since  METHOD OF  TESTING  the e f f e c t of the r e s i d u a l s t r e s s e s upon y i e l d i n g was  specimen was  loaded  Subsequently the  only  to a s t r e s s of 25,000 p s i i n increments of 40  specimen was  loaded  continually.  The  O l s e n machine  operated at a r a t e o f head movement of a p p r o x i m a t e l y 0.075 inches representing  a s t r a i n i n g r a t e of 104  a p p r o x i m a t e l y three hours and the O l s e n machine was  unknown the  reached.  micro inches  a s t r a i n of 1.35  per  kips. was  per  i n c h per minute.  percent,  hour After  the load c a p a c i t y  of  15 The  f o l l o w i n g day  the specimen was  machine i n the same manner.  The  approximately  attained.  deformation and web.  52,500 p s i was of 0.239 inches  The  t e s t e d i n the 400  t e s t i n g continued  was  u n t i l an average s t r e s s of  T h i s r e s u l t e d i n an a d d i t i o n a l  accompanied by  t o t a l deformation  k i p c a p a c i t y Baldwin  0.441  severe  l o c a l b u c k l i n g of the  flanges  inches or an average s t r a i n of  3.68  percent. In both t e s t s d u r i n g x^ere read Since  continuously.  the continuous  Each s e t of readings  the gauges were read  to the  two  readings  l o a d i n g p o r t i o n the s t r a i n gauges  continuously,  two  made i n each s e t d u r i n g  used i n the t e n s i o n t e s t was  not p r a c t i c a l  r e q u i r e d about f i v e minutes. consecutive  s e t s are  the t e n s i o n t e s t s .  to the r e l a t i v e l y  of time r e q u i r e d to read a l l the gauges i n the compression  The  adjustment was  f i g u r e s but the data The  at d e f i n i t e  to the two done w i t h  data  only  IV should  strain  long p e r i o d  test.  had  to be  T h i s was  reduced  done i n a s i m i l a r  However, i n t h i s case  consecutive  The  computed r e s u l t s  three s i g n i f i c a n t  o n l y be  considered  are to  f i g u r e s and accurate  each c r o s s s e c t i o n .  test.  five therefore  to four f i g u r e s .  from TABLE I I I and TABLE IV were p l o t t e d i n F i g u r e s 5, 6  7 and F i g u r e s 8, 9 and  to  used i n each s e t i n the t e n s i o n  a computer.  the o r i g i n a l d a t a had  i n TABLES I I I and  s i d e s of any  readings  system  DATA  i n s t a n t s of time.  to t h a t used i n the t e n s i o n t e s t .  s e t s are e q u i v a l e n t The  THE  d a t a from each s e t of s t r a i n gauge readings  simultaneous readings process  PREPARATION OF  The  f o r the l a r g e number of  gauges i n v o l v e d i n the compression t e s t s due  IV.  equivalent  and  10 r e s p e c t i v e l y to show the development of s t r a i n i n  These f i g u r e s are arranged  p o r t i o n of the WF  so t h a t gauges on  shape are a d j a c e n t .  opposite  Each l i n e connects  strains  16 at the d i f f e r e n t gauges at the same i n s t a n t o f time. gauges a d j a c e n t  i t was  By p l a c i n g o p p o s i t e  planned to emphasize the d i f f e r e n c e s of s t r a i n  opposite s i d e s o f the f l a n g e or web.  A l s o i t was  planned  on  t h a t t h i s would  i n d i c a t e l o c a l b u c k l i n g s i n c e i n t h a t case the gauge towards which the element buckled  must show a s i g n i f i c a n t l y  s i d e o f the Using  two  the measured d i s t a n c e between the d i a l gauges the r o t a t i o n of c a l c u l a t e d by d i v i d i n g  d i a l gauges by  calculated using F i g u r e 12  the d i s t a n c e .  The  mean d e f o r m a t i o n  the average of a l l f o u r d i a l gauges.  and mean s t r a i n were  In F i g u r e 11  and  the mean s t r e s s versus mean s t r a i n curves x^ere p l o t t e d f o r the the mean s t r a i n determined both by  gauges and  The  the d i a l gauges.  to show more c l e a r l y  F i g u r e 11 the v a l u e s  o r d i n a t e s c a l e was  the  strain  changed at 35,000 p s i i n  the p o i n t at which s t r a i n hardening  are g i v e n based upon the curve  commences.  f o r the s t r a i n  m o d u l i ! are c a l c u l a t e d from the s t r a i g h t  The  s t r a i n at which y i e l d i n g commences i s the i n t e r s e c t i o n of the two  l i n e p o r t i o n s of the curve.  The  l i n e segments of the  s t r a i n at the onset  the y i e l d  o f s t r a i n hardening  stress.  In F i g u r e 12  i n the s t r a i n hardening  of a p r e v i o u s l y unstressed s t r a i n are a f f e c t e d by  changed to show more c l e a r l y  straight is  hardening  the o n l y v a l u e g i v e n i s the modulus range.  specimen the v a l u e s  the p r e v i o u s  curve.  o f s t r a i n hardening  the p o i n t at which the l i n e corresponding- to the modulus of s t r a i n  In  gauges.  The  intersects  the  the d i f f e r e n c e i n r e a d i n g between  t e s t s i n both machines u s i n g  order  opposite  element.  s p h e r i c a l head was the  s m a l l e r s t r a i n than the gauge on the  stressing.  Since  of y i e l d As  t h i s i s not  s t r e s s and  a test  yield  i n F i g u r e 11 the s c a l e  the development of y i e l d i n g i n the  was  strain  hardened range. In F i g u r e s  13 and  14 the head r o t a t i o n i s p l o t t e d versus  the mean deform-  a t i o n o f the column.  Positive  r o t a t i o n denotes  a larger  r e a d i n g a t gauge A  t h a n g a u g e C a n d a l a r g e r r e a d i n g a t g a u g e D t h a n g a u g e B.  V.  The curves  results  INTERPRETATION Of THE RESULTS  of the test  r e p r e s e n t i n g mean s t r a i n  as g i v e n by t h e s t r a i n strain by  a r e s u m m a r i z e d i n F i g u r e s 11 a n d 12.  a t each  load.  irregularities  as g i v e n by t h e d i a l  gauges a r e s i m i l a r The d i f f e r e n c e  resulting  course  curved p o r t i o n o f the graph  these i r r e g u l a r i t i e s  still  strain  g a u g e s show a g r e a t e r  i n the e l a s t i c  The i n i t i a l  removes most o f t h e s e r e l a t i v e l y  the i n i t i a l  g a u g e s a n d mean  range  i s probably  caused  i n i m p e r f e c t c o n t a c t b e t w e e n t h e ends o f t h e  s p e c i m e n and t h e b e a r i n g p l a t e . psi  the d i a l  While the  persists  l o a d i n g up t o a s t r e s s o f 10,000 irregularities  for the d i a l  as e v i d e n c e d by  gauges.  The e f f e c t o f  t o a s m a l l e r d e g r e e up t o 40,000 p s i  ( F i g u r e 11) a n d 46,000 p s i ( F i g u r e 12) a s i s e v i d e n c e d  by g r a d u a l  divergence  of  and s t r a i n  hardening  t h e s t e e p p o r t i o n s o f t h e two g r a p h s .  parts o f both by and  these curves a r e , however, n o t l i k e l y  t h e end i r r e g u l a r i t i e s  i n view  of the r e l a t i v e  t h e y may be c o n s i d e r e d a s i n d i c a t o r s  material proper. signifies  The y i e l d i n g  The f a c t  t o be s e r i o u s l y  constancy  of the p l a s t i c  o f the load,  p r o p e r t i e s o fthe  t h a t they r u n s u b s t a n t i a l l y p a r a l l e l  that the corresponding increments  affected  o f mean s t r a i n s  t o each  i n this  range  r e c o r d e d by t h e d i a l  g a u g e s and t h e s t r a i n  in  t h a t t h e l a t t e r o c c u p y o n l y 3 x 1/4 - 3/4 i n c h o f t h e  spite of the fact  total  12-inch  irregularities and  14.  fairly  l e n g t h o f t h e member.  gauges a r c s u b s t a n t i a l l y  other  The f a c t  t h e same  that there are i n i t i a l  i s f u r t h e r shown b y t h e h e a d r o t a t i o n c u r v e s F i g u r e s 13  The i r r e g u l a r i t i e s  cause  large  constant d u r i n g t h e remainder  initial  r o t a t i o n s which  of the test.  then  remain  I n F i g u r e 14 t h e s u d d e n  18 changes i n r o t a t i o n a t the end flange  of the  t i p between d i a l gauges C and  The  column as a whole y i e l d e d  t e s t are caused by  l o c a l buckling  in  the  D.  at a lower s t r e s s  than e i t h e r of the  two  o  coupons h a v i n g a y i e l d s t r e s s of 39.6 p o r t i o n of the 41.3 the  x 10"  1  x 10'  p s i as determined by  curve i n the p l a s t i c p l a t e a u compared to 43.2  p s i f o r the web  and  flange  coupon r e s p e c t i v e l y .  the b e g i n n i n g of y i e l d i n g i t can be y i e l d i n g commenced f i r s t Following  tests.  and  101  and  112.  The  and  micro inches  per  Using t h i s f i g u r e for  soon t h e r e a f t e r  these y i e l d i n g commenced at gauges 102,  at almost the same time.  psi  J  seen i n s e c t i o n 1 of TABLE I I I t h a t  at gauge 104  111  t i p s and  tension  x 10  lowest  As a r e s u l t  t h e o r e t i c a l s t r a i n at the b e g i n n i n g of y i e l d i n g of 1340  i n c h i s lower than t h a t a c h i e v e d i n the  the  105,  at gauge  106,  107,  109.  10"  and  l a s t gauges to show y i e l d i n g were gauges  Thus, f o r s e c t i o n 1 the f i r s t p o i n t s  to y i e l d were at the  the l a s t p l a c e s to y i e l d were a l s o at the f l a n g e  tips.  The  flange  gauges  at which y i e l d i n g i n i t i a t e d c o n t i n u e d w e l l i n t o the s t r a i n hardened range w h i l e o t h e r gauges o b v i o u s l y strated  in Figure 5.  not  yet y i e l d e d .  and  then at gauge 204.  208  by gauges 201,  212,  Y i e l d i n g then commenced at gauges 207  2.05,  209,  F i n a l l y at a much l a t e r stage gauge 203 s e c t i o n y i e l d i n g was  210,  211  and  206  showed y i e l d i n g .  i r r e g u l a r i t i e s were not  t i p w h i l e the o p p o s i t e s i d e was  exhibit yielding.  and  In g e n e r a l i n t h i s 3,  p r e s e n t to the same  Y i e l d i n g i n s e c t i o n 2 commenced near the b e g i n n i n g on one  the f l a n g e  first  i n sequence.  much more even than i n e i t h e r s e c t i o n 1 or s e c t i o n  p o s s i b l y because e f f e c t s from end degree.  T h i s i s c l e a r l y demon-  In s e c t i o n 2 i t can be seen t h a t y i e l d i n g commenced  at gauge 202 followed  had  side  of  the l a s t gauge i n t h i s s e c t i o n  In s e c t i o n 3 y i e l d i n g commenced at gauge 311  closely  to  followed  by  gauges 307  gauges 306,  309,  seen i n F i g u r e  310,  and  308.  304,  302,  Then y i e l d i n g commenced c o n s e c u t i v e l y 305,  301,  303  and  7 y i e l d i n g i s uneven w i t h some gauges w e l l  hardened r e g i o n and  others  T h i s may  188.28 k i p s .  be  At  at a load of 185.27 k i p s  the  20,417 micro inches micro inches  per  be  strain  gauge 101  increase  and most c e r t a i n l y by  i n c h w h i l e gauge 203  i n c h and  can  i n t o the  a noticeable  load of 188.28 k i p s gauge 207 per  As  i n the y i e l d i n g r e g i o n .  Evidence of s t r a i n h a r d e n i n g i s g i v e n by load.  f i n a l l y 312.  at  i n the  a load  exhibits a strain  of  e x h i b i t s a s t r a i n of only  a s t r a i n of 1189  micro inches  of  per  1781 inch.  Thus, some s e c t i o n s of the column are w e l l i n t o the s t r a i n hardened range while others  have not y e t y i e l d e d .  i n d e p e n d e n t l y at s e v e r a l f o c i and the  I t appears that y i e l d i n g i n i t i a t e s does not  spread from one  point  to encompass  e n t i r e specimen p r i o r to s t r a i n h a r d e n i n g . D u r i n g the e a r l y p o r t i o n of the t e s t i n the Baldwin U n i v e r s a l  machine i t i s obvious i n F i g u r e s the  specimen had  8,  9 and  10  that  the p r e v i o u s  the e f f e c t of removing i r r e g u l a r i t i e s  to s t r a i n i n a much more u n i f o r m manner than d u r i n g machine.  the  However, at the l a t e r stages l o c a l b u c k l i n g  i n evidence.  The  buckling  and  sive s t r a i n . one  flange  This  s i d e o f the element w i l l  i s shown i n F i g u r e s  buckled In f a c t  causing  the  8,  towards gauge 105  9 and and  and  e f f e c t s are v e r y much  show an  the c l e a r l y v i s i b l e b u c k l i n g  strain  At the same time increased  compres-  10 where i t i s obvious that  away from gauges 201 305  specimen  Olsen  of an element towards a gauge causes i t to  t i p buckled towards gauge 101  w h i l e the web s e c t i o n 2.  the o p p o s i t e  s t r a i n i n g of  t e s t on the  i n a p o s i t i v e d i r e c t i o n or reduces the compression s t r a i n . the gauge on  testing  but  and  301  remained ' s t r a i g h t at  of the web  was  such that  the  20 s t r a i n i n g v i r t u a l l y ceased a t s e c t i o n 2 on the web.  VI.  CONCLUSIONS  From the r e s u l t s o f t h i s t e s t the f o l l o w i n g c o n c l u s i o n s 1. tension  single  Thi-Scolumn as a whole y i e l d s at a lower s t r e s s than i n d i v i d u a l  coupons 2.  cut from the same member.  Yielding initiates  at s e v e r a l independent f o c i r a t h e r  than one  point. 3.  The y i e l d i n g , once commenced, c o n t i n u e s w i t h o u t s t o p p i n g  i n t o the s t r a i n hardened 4.  5.  Residual  well  region.  I t i s p o s s i b l e to have both u n y i e l d e d  s t r a i n hardened m a t e r i a l  the  may be formed:  material  and h i g h l y  i n the specimen a t the same time.  s t r e s s e s do not appear to have a u n i f o r m e f f e c t upon  i n i t i a t i o n of y i e l d i n g .  CHAPTER IV  COMPRESSION TEST OF  A 21-INCH 5WF16 STUB COLUMN  I.  T h i s t e s t was  PURPOSE  a c o n t i n u a t i o n of  the  same purpose; i n v e s t i g a t i o n  the  d e t e r m i n a t i o n of  the  of  e f f e c t of  the  the  t e s t upon the  initiation  residual  and  12-inch specimen having p r o p a g a t i o n of  s t r e s s e s upon the  yielding  pattern  of  yielding.  II.  The as  the  test  specimen was  12-inch specimen.  specimen by  sanding and  TESTING APPARATUS  a 21-inch stub column cut I t was  prepared  machining.  same manner as b e f o r e , by  The  i n the  from the  same manner as  cross s e c t i o n a l  planimeter, resulted  same 5WF16 beam  i n the  the  former  a r e a measured i n  same area, 4.66  the  square  inches. Two  different  PR-9S14 gauges and in this  t e s t was  specimen, as may placed  fairly  i n view o f  types of  16 3udd C6-141-B gauges.  substantially be  The  The  location  from that i n the 7,  8, and  c l o s e together v e r t i c a l l y , namely 2,  the  the  different  seen from I l l u s t r a t i o n s  l a r g e number of  of gauges i n each s e c t i o n edges of  s t r a i n gauges were used i n t h i s t e s t , 40  t i p s of  the  s e c t i o n s i t was  from 12  to 8 by  3 and  necessary  the  s t r a i n gauges  t e s t of The  the  12-inch  gauges were  3-1/2  inches,  to reduce the  using only s i n g l e  gauges on  but number the  flanges.  same arrangement of b e a r i n g p l a t e s ,  d i a l gauges used i n the  9.  of  Phillips  former t e s t was  also  aluminum c e n t e r i n g p l a t e s employed i n t h i s t e s t  as  and shown  22 i n I l l u s t r a t i o n 5 and  I l l u s t r a t i o n 9.  s h o r t e n i n g of the specimen and  T h i s arrangement enabled  the  overall  the r o t a t i o n of s p h e r i c a l head of the  testing  machine to be measured. The still  method of b r a c i n g employed i n the f i r s t  greater r e s t r a i n t  specimen. In o r d e r  to p r o v i d e 3" — x 4  i n p l a c e by  continuous  3 " — 4  the f i v e b r a c i n g  shoxm i n I l l u s t r a t i o n s  restraint  were p l a c e d  against  along  I t was  to the bars by friction at the  conceivable  o f the bar on s t e e l  i n contact with  i s 0.036, a very  i n t e r f a c e i s also very thus cannot e x e r t any  The  flanges  The  the hand  tightened  t r a n s f e r r e d from the  f o r c e s between the bars  and  the f l a n g e s .  t h i n g s , the c o e f f i c i e n t of f o r c e across  flanges  The  friction  the i n t e r f a c e .  The  reduced by g l u i n g a s t r i p of T e f l o n to the fac-e the f l a n g e .  low  the  s m a l l because a l l the b o l t s are hand t i g h t e n e d  and  force.  The  c o e f f i c i e n t of f r i c t i o n of T e f l o n f o r c e across  great  figure.  The  perpendicular  These two  from the f l a n g e s to the b r a c i n g bars by straining  10.  frames l o c a t e d as shown i n I l l u s t r a t i o n 7.  the p e r p e n d i c u l a r  c o e f f i c i e n t of f r i c t i o n was  the  held  f o r c e s are dependent upon two  i n t e r f a c e and  provide  the o u t s i d e of the f l a n g e s and  t h a t some load c o u l d be  the f r i c t i o n  to  7 and  the l e n g t h o f the  a g a i n s t the i n s i d e of the f l a n g e s were h e l d i n p l a c e by  bolts.  f a c t o r s ensure t h a t load t r a n s f e r  f r i c t i o n while  the specimen i s  is negligible. s t r a i n gauges were connected to the Budd model A - l l l  i n d i c a t o r by means of a 40 unit.  modified  l o c a l b u c k l i n g of the f l a n g e s of  T h i s arrangement i s c l e a r l y  s t e e l bars  bars  to prevent  t e s t was  T h i s system has  i n c h depending on  channel and  digital  a 20 channel s w i t c h i n g and  strain  balancing  a r e a d a b i l i t y v a r y i n g from 1 to 100 micro inches  the s c a l e f a c t o r used.  r e a d a b i l i t i e s of 0.0001 inches and  The  0.002 mm  two  p a i r s of d i a l gauges  respectively.  In o r d e r  to  per had progress  23 well  i n t o the s t r a i n hardened r e g i o n the t e s t was conducted  c a p a c i t y Baldwin until  U n i v e r s a l t e s t i n g machine.  a s t r a i n o f approximately  III.  The The  to continue  4 p e r c e n t i n the specimen was o b t a i n e d .  METHOD OF TESTING  i n increments  a f t e r loaded c o n t i n u o u s l y . operated  The t e s t was planned  t e s t method used was s i m i l a r to t h a t used  specimen was loaded  on the 400 k i p  f o r the 12-inch  specimen.  to a s t r e s s o f about 25 k s i and t h e r e -  During the continuous  l o a d i n g the machine was  a t a c o n s t a n t r a t e o f head movement o f about 0.12 inches per hour  corresponding  to a mean s t r a i n  T h i s continued u n t i l  r a t e o f 95 micro  inches per i n c h p e r minute.  at a s t r a i n o f 3.5 p e r c e n t one o f the b r a c i n g bars came  i n c o n t a c t w i t h b e a r i n g p l a t e s and began to take some l o a d a t which p o i n t the t e s t was t e r m i n a t e d .  The t o t a l  IV.  The  time i n v o l v e d f o r the t e s t was s i x hours.  PREPARATION OF THE DATA  d a t a were a d j u s t e d with  to produce s t r a i n readings a d j u s t e d d a t a a r e presented  the computer program used  f o r a l l gauges a t the same i n s t a n t o f time. i n TABLE V I I .  The  These  figures.  The d i a l  i n TABLE V I I I .  g e n e r a l performance o f the column i s shown i n F i g u r e 15 by the mean  s t r e s s versus mean s t r a i n curve p l o t t e d for  test  These d a t a are a c c u r a t e to f o u r  f i g u r e s s i n c e the o r i g i n a l d a t a o n l y had three s i g n i f i c a n t gauge d a t a are p r e s e n t e d  i n the former  the moduli.;  of the graph.  and the y i e l d  from TABLE V I I and V I I I .  s t r e s s are determined  The i n t e r s e c t i o n s o f these l i n e s  s t r a i n at the b e g i n n i n g o f s t r a i n h a r d e n i n g .  The v a l u e  from s t r a i g h t l i n e s p o r t i o n s  are used  f o r the v a l u e s o f  As i n F i g u r e s 11 and 12 a  24 change o f ^ s c a l e was  used to show more c l e a r l y  the development o f  strain  hardening.. The  d a t a f o r head r o t a t i o n i n TABLE V I I I were o b t a i n e d by d i v i d i n g  d i f f e r e n c e i n r e a d i n g s between two them.  the  gauges by the measured d i s t a n c e between  In F i g u r e 16 these angles of r o t a t i o n were then p l o t t e d a g a i n s t the  mean d e f o r m a t i o n  o f the column to show the r o t a t i o n o f the s p h e r i c a l head  d u r i n g the p r o g r e s s o f the t e s t .  In F i g u r e 16 p o s i t i v e r o t a t i o n i s s i g n i f i e d  by a g r e a t e r r e a d i n g at gauge A than at gauge C and  a g r e a t e r reading at  gauge B than at gauge D. The  d a t a from TABLE V I I ' were p l o t t e d  i n F i g u r e s 17 to 24i  These e i g h t  i  f i g u r e s show the development of s t r a i n along the specimen i n each element of the 5WF16 shape. .two  F i g u r e s 25 to 28 r e p r e s e n t contour maps of s t r a i n , on  f a c e s o f the web  f o r f o u r c o n s e c u t i v e l o a d s ; 193.96, 195.73, 195.70, and  197.29 k i p s r e s p e c t i v e l y . range and by  These f i g u r e s r e p r e s e n t loads i n the  cover a time span o f approximately  15 minutes.  The  stage i n some l o c a t i o n s .  these graphs the m i d - f l a n g e  hardening  gauges are assumed to a l s o  along i t s j u n c t i o n w i t h the flange.;  view of the r i g i d i t y o f . t h i s a r e a ^ w i t h  The  covered  *•  r e p r e s e n t the s t r a i n s i n the web  appears  yielding  range  the loads extends from the e a r l y y i e l d i n g to the e a r l y s t r a i n  In p l o t t i n g  the  r e g a r d to l o c a l bending,  this  In assumption  reasonable. rounded o f f s t r a i n s at the f l a n g e t i p s have been i n c l u d e d as an  reference. key diagram.  The  easy  numbers; a t the top o f the f i g u r e r e p r e s e n t the numbers on  Thus, the l e f t  the r i g h t h a l f i s f o r the  h a l f o f the. f i g u r e i s f o r one  other.  f a c e o f -.the web  the and  25 V.  As  expected  15 i s very  INTERPRETATION OF THE RESULTS  the g e n e r a l  performance o f the specimen as shown i n F i g u r e  s i m i l a r t o t h a t o f the former t e s t as shown i n F i g u r e  i r r e g u l a r i t i e s between the ends o f the specimen and the b e a r i n g to be s m a l l e r  and  The the  16 where i n i t i a l  remained  11.  This  i s f u r t h e r shox^n stabilized  constant.  15.  s t r e s s o f the t e n s i o n coupons but h i g h e r  specimen.  I t i s p r o b a b l e that  irregularities  caused  the t e n s i o n coupons.  the g r e a t e r this rise  This  l e n g t h o f t h i s specimen and s m a l l e r  in yield  s t r e s s toward that  obtained  Furthermore, i t i s p o s s i b l e that replacement o f  i n i t i a t i o n o f y i e l d i n g a t these p l a c e s or e c c e n t r i c i t y .  i s lower than  than t h a t o f the 12-inch  p a i r s o f gauges by s i n g l e gauges at the t i p s o f the f l a n g e s  but  appear  column as a whole y i e l d e d a t a s t r e s s o f 41,950 p s i determined by  the y i e l d  for  plates  r o t a t i o n o f the s p h e r i c a l head q u i c k l y  lowest l e v e l o f the y i e l d i n g p o r t i o n o f F i g u r e  initial  Initial  i n t h i s t e s t as the d i f f e r e n c e between the curves f o r the d i a l  gauges and the s t r a i n gauges i s l e s s than i n F i g u r e in Figure  11„  caused by l o c a l i z e d  concealed the initial  curvature  The r a t e o f head movement was f a s t e r than i n the former t e s t  the average s t r a i n r a t e was almost i d e n t i c a l ;  have a f f e c t e d the y i e l d  stress.  therefore,  S t r a i n hardening i n Figure  t h i s should not 15 has d e f i n i t e l y  commenced by the time the column e x h i b i t s a mean sti"ain o f 12,500 micro inches  per inch c o r r e s p o n d i n g to a s t r e s s of 43,200 p s i .  From TABLE V I I i t can be seen t h a t at a load of 179.08 k i p s the mean s t r a i n is  1329 micro inches  in  excess b f 1400 micro inches  represented  i n Figure  per inch.  Only two gauges, 403 and 505, e x h i b i t s t r a i n s per i n c h .  25 i t i s e v i d e n t  Under the next load o f 193.96 k i p s  that several  f o c i o f y i e l d i n g have  26 formed n o t a b l y  at gauges 403,  next load of 195.73 k i p s  505.  At the  per  the  last  initial  27  and  28,  inch.  f o l l o w i n g the  load 197.29 c o r r e s p o n d i n g  contour graph, s t r a i n hardening i s d e f i n i t e l y  Under t h i s  micro inches i n t o the  reached as h i g h  inch.  as 20,815 micro inches  Thus i t appears that p o r t i o n s  s t r a i n hardened range w h i l e o t h e r  i n evidence per  first  hardened range u n t i l  the remainder of the  25  to 28  e n t i r e specimen and  does not  show that  do not  flange  tip.  25 o n l y one  At the end  inches  specimen has  of the t e s t one  of  the  strain  t i p s as would  residual stresses.  s t r a i n , gauge 708,  i t i s noted that gauge 302  on  the  the be In  i s at a flange  specimen.  of the bars used to support the  p l a t e s and  l a r g e r o t a t i o n s of the  specimen  yielded.  at the f l a n g e  l a r g e l y i n f l u e n c e d by  24  low  f o c i of y i e l d i n g are d i s t r i b u t e d over  l a r g e s t s t r a i n i n the  c o n t a c t w i t h the b e a r i n g  causing  inch.  are j u s t  at the b e g i n n i n g of the  of f o u r p o i n t s of h i g h  However, i n F i g u r e  e x h i b i t s the  the  stop  occur p r i n c i p a l l y  expected i f t h e i r l o c a t i o n was fact i n Figure  portions  of the  Thus i t i s c l e a r that s t r a i n i n g of the p o r t i o n s  specimen which y i e l d  Figures  205,  to  same load some gauges a l s o r e g i s t e r e d s t r a i n s as per  commencing to y i e l d .  foci  these f o c i of y i e l d i n g  load corresponds to a mean s t r a i n at a l l gauges of 12,605 micro  are w e l l  in  shows that w h i l e the  the  f i n a l l y merge.  load 204.98 k i p s  28,  as 1521  tip  26  s t a t e o f s t r a i n under  f o c i of y i e l d i n g have appeared at gauges 107,  as s t r a i n s at some p o i n t s This  601... The  Subsequently, as shoxm i n F i g u r e s  c o n t i n u e to expand and  Figure  and  shown i n F i g u r e  have expanded s e v e r a l new and  405,  flanges  commenced to c a r r y some of the  s p h e r i c a l head.  This occurred  246.8 k i p s as shown i n TABLE V I I I , consequently, a l l the  came  load  at a load  f i g u r e s beyond  of that  27 p o i n t are i n v a l i d .  Similarly  the l a s t v a l i d  s t r a i n s i n TABLE V I I I  correspond  to the l o a d o f 246.76 k i p s .  VI.  CONCLUSIONS  The same c o n c l u s i o n s are v a l i d here as the ones a r r i v e d with  regard  a t i n CHAPTER I I I  to the compression t e s t o f a 5WF16 stub column 12 inches  long.  CHAPTER V  SUMMARY  This steel  i n v e s t i g a t i o n was conducted  the b e h a v i o u r o f s t r u c t u r a l  i n the p l a s t i c range both i n t e n s i o n and compression,  compression  particularly in  o f s h o r t p i e c e s o f wide f l a n g e s e c t i o n s i n c l u d i n g the study o f  the e f f e c t o f r e s i d u a l c o n c l u s i o n s reached s ub  to determine  s t r e s s e s upon the i n i t i a t i o n of y i e l d i n g .  The  i n some cases do not agree w i t h the l i t e r a t u r e on the  j e c t. The d e v i a t i o n o f t e n s i o n specimens from t h e i r expected b e h a v i o u r was  less  than o f compression  specimens and y i e l d i n g  s l i g h t l y h i g h e r s t r e s s than i n compression. s t r a i n o f about The  i n tension occurred at a  S t r a i n hardening appeared  1.3 p e r c e n t .  compression  specimens behaved as expected w i t h r e s p e c t to the mean  s t r e s s versus mean s t r a i n c u r v e s . with the expected r e s u l t s .  However s e v e r a l t h i n g s were a t a v a r i a n c e  Yielding originated  a t s e v e r a l random p o i n t s r a t h e  than at one p o i n t as p r e d i c t e d by the l i t e r a t u r e . yielding yielded.  at a  then propagated The f i r s t  i n random d i r e c t i o n s u n t i l  These s e v e r a l f o c i o f the e n t i r e specimen had  f o c i o f y i e l d i n g d i d not c o n s i s t e n t l y  appear  at the f l a n g e  t i p s as a c o n s i d e r a t i o n o f r e s i d u a l s t r e s s would lead one to expect. Once s t a r t e d , s t r a i n i n g continued i n t o the s t r a i n hardened s t o p p i n g even though  r e g i o n without  some p o r t i o n s o f the specimens had not y e t y i e l d e d .  This  2,3 i s d i r e c t l y opposed to the view expressed by the l i t e r a t u r e on the s u b j e c t which s t a t e s that s t r a i n i n g w i l l until  the remainder  cease a t the b e g i n n i n g o f s t r a i n  o f the specimen  has y i e l d e d .  hardening  / I*  v  29  The conclusions reached during this study are as follows: 1. i n .the web  In these tension tests the material y i e l d s at a higher stress than i n the flange.  This appears natural i n view of the  degree of r o l l i n g i n the thinner part, the web,  greater  of the section.. However,  numerous tests would be necessary f o r experimental proof of the generality of this condition. 2. was  The average y i e l d stress of the stub columns i n compression  lower than the average of the y i e l d stresses of the coupons i n tension..  This r e s u l t was  influenced by the differences i n testing arrangement.  The  two y i e l d stresses are usually assumed equal but this can hardly be proven experimentally. 3.  Yielding i n i t i a t e s at several independent f o c i rather than  propagating from one single point. 4.  Y i e l d i n g , once commenced, sometimes stops but more often con-  tinues well into the s t r a i n hardened region without 5.  stopping.  I t i s possible to have both unyielded material and highly  s t r a i n hardened material i n the specimen at the same time. 6.  Residual stresses do not appear to have a uniform e f f e c t upon  the i n i t i a t i o n of y i e l d i n g . 7.  The s t r a i n hardening modulus of the specimens used has been  found to be only about one-half  of the average value mentioned by Thurlimann  Wide v a r i a t i o n of this property i s , however, common. 8.  The  i n i t i a t i o n and progress of p l a s t i c deformations are greatly  affected by l o c a l i r r e g u l a r i t i e s , even quite minor.  Once y i e l d i n g commences!;  in a compression region, i t produces curvature or accentuates the already e x i s t i n g one.  This magnifies further the o r i g i n a l i r r e g u l a r i t y and speeds,  up the p l a s t i c deformation.  BIBLIOCilAPI-rY  31 BIBLIOGRAPHY  American S o c i e t y of C i v i l E n g i n e e r s . Manuals of E n g i n e e r i n g of C i v i l  Beedle L.S.  Commentary on P l a s t i c Design i n S t e e l .  P r a c t i c e Number 41.  York:  American  Society  E n g i n e e r s , .1961.  and  L. T a l l , " B a s i c Column S t r e n g t h "  D i v i s i o n , American S o c i e t y of C i v i l  Thurlimann B.  New  "New  J o u r n a l of the S t r u c t u r a l  Engineers,  LXXXVI, January,  1961.  Aspects Concerning I n e l a s t i c I n s t a b i l i t y of S t e e l S t r u c t u r e s "  J o u r n a l o f the S true t u r a l D i v i s i o n , American S o c i e t y of C i v i l LXXXVI, January,  1961.  Engineers,  APPENDIX A TABLES  33 3 ,  TABLE I : TENSION TEST OF WEB COUPON SPECIMAN NUMBER 3  9  _ / — = ~  Load Lbs.  Stress psi  1,000 8,503 2,000 • 17,007 3,000 25,510 • 29,762 3 /500 4,000 34,014 V 4,740 40,306 4,995 . 42,474 • 5,115 43,495 5,090 43,282 .. 5,120 43,537 5,140 • 43,707 ' 5,145 43,750 5,200 • 44,218 5,260 44,728 . 5,320 • 45,238 5,390 45,833 5,510 46,854 5,630 47,874 ' 5,770 49,065 . 5,885 50,043 5,975 50,808 6,060 51,531 . 6,160 - 52,381 6,280 53,401 6,356 54,048 ; 6,430 54,677 6,490 55,187 6,540 55,612 6,585 55,995 6,640 56,463 6,680 , i 56,803 6,735 ' 57,270  1 235 481 742 868 1,002 1,212 • 1,384 1,752 . / \ 1,972 2,120 2,760 •:' 5,360 7,310 9,970 11,300 18,100 27,400  2 338 652 974 1,118 1,278 1,520 1,634 1,700 1,645 1,670 2,180 4,220 6,100 9,360 11,240 16,460 19,050 20,940 23,000 24,600 26,360 28,200 30,700 32,970 '  3 204 437 . 676 792 916 1,108 1,224 1,584 '•: 4,720 8,500 13,600 13,720 14,'640 16,270 17,120 17,960 ,19,240 20,900 . 23,040 24,740 26,750 28,640 30,660 33,100 35,500 40,300  A d j u s t e d S t r a i n Gauge Data i n 4 5 6 374 222 351 724 . 468 683 1,074 710 1,014 1,236 1,180 828 1,408 .956 1,354 1,712 1,692 .1,134 2,288 1,282 2,228 2,800 1,540 2,720 5,230 1,640 2,840 9,840 1,780 3,050 14,340 2,200 3,840 15,000 7,700 8,700 15,540 12,160 12,480 16,400 13,400 14,820 17,480 14,750 28,400 18,610 16,460 19,910 18,480 21,580 19,980 23,680 21,180 25,600 22,560 29,300 23,980 25,280 27,080 29,080 30,900 33,080 37,000 44,000  Micro In./ln, 7 8 302 261 596 564 880 844 1 028 992 1 180 1,136 1, 394 1,368 1 488 1,488 1 584 1,636 650 1,860 3 7 030 3,380 12 330 15,200 400 .18,400 13 18,680 13 700 19,000 14 ,300 18,800 15 290 16 840 18,930 19,590 18 800 20 580 21,190 23,240 23 000 24 280 24,940 26 080 26,840 28,560 27 ,800 30 ,100 30,520 32 ,160 32,650 34,800 34 ,200 36 540 37,200 39,840 38 540 39 .940 43,860 41 500 43 j,560 46 ,260 48 600  ~=—\_ —  9. 313 694 ' 876 1,026 1,168 1,370 1,472 1,488 1,560 1,6.10 2,000 3,580 9,760 13,240 15,390 16,560 17,880 20,800 21,780 23,700 25,400 27,120 29,180 31,300 33,400 35,420 37,280 38,620 40,000 41,430 .43,460 45,400  10. Mean S t r a i n 256 286 557 586 832 862 984 1,005 1,128 1,153 1,352 1,386 1,536 1,602 1,680 1,848 1,700 2,682. 1,730 4,071 2,000 7,045 2,200 9,228 2,240 11,261 • 13,756 10,800 16,960 16,673 18,010 17,548 19,120 19,941 20,530 20,813 22,300 22,653'^ 24,020 24,305 25,680 26,299 27,260 27,551 29,240 29,640 31,220 31,783 33,250 33,675 35,280 36,303 37,040 37,940 38,360 40,956 39,700 , 40,400 41,400 42,130 43,900 44,540 .47,000  h  34  i. •  TABLE I I St  TENSION TEST OF FLANGE COUPON SPECIMAN NUMBER I  4  •a Load Lbs.  Stress psi  A d j u s t e d S t r a i n Gauge D a t a i n M i c r o  \r. ;:.-V  1,000 !'* . : '. • • 2,000 i •. 3,000 4,000 , V 5,000 ' 6„000 r i-i' . ^ ; 1 0 8 •:' ^.7,359 .  5,609 11,217 16,826 22,434 28,043 33,651, 39,865 41,273 7,410 = 41,559 . 42,198 t-^-4"v. 7,524 . 7,705 I 43,213 '< 40,774 .7,270 i ' •. 'V-^'' • :w 7,210 ' * 40,437 41,110 ' ' ", 7,330 7,532 i : 42,243 , , ft 672 - 43,028, '7,690, 43,129 7,770 , 43,578 43,808 7,8lL ;/ 43,943' 7,835 1 7,84043,971 ,8,045 V 45,120, 1 , 8,128.; • 45,586 ii • 45,765 8,1*0; 8,250; 46,270 8,280! > 46,438. 1' '.' 46,270 8,250j "T ! 46,635 . 8,315/ 8,350.. 46,831 47,891 - ' 8,539, 47,878. 8,537V 8,650 I 48,514. "v • 8,680 • . 48,682 8,680 V 48,682\ 8,7,98 j 49,344. 50,140 8,940 / 9,010 50,533 50,701 9,040 \ T  :  1  ;  :  • ••  :  -  1  ;  1 214 .. '396 578 772 960 1,146 ' • 1,604 1,954 6,600 18,010 24,000 .''• 23,800 23,800 23,800 23,800 24,470 . 25,000 24,200 25,530 26,100 ; 26,300 ' 27,200 28,320 28,650 29,300 30,000 30,200 30,200 30,600 31,950 33,500 34,600 38,500 .41,140  2 147 343 531 716 902 1,092 1,330 1,411  3 4 146 232 412 352 546 599 788 738 973 926 1,210 1,310 2,248 1,468 11,000 5,910 16,500 13,000 17,840 16,890 19,330 19,820 19,500 19,800 19,500 .19,800 19,500. 19,800 19,610 19,900 20,210 20,310 20,500 : 20,590 20,690 20,730 21,000 21,100 21,390 . 21,400 21,500 21,500 22,870 23,200 23,620 24,330 24,4.00 25,300 24,980 25,670 25,500 26,900 25,800 27,200 25,700 27,200 26,200 27,790 28,300 30,170 29,600 30,39.0 .... 33,270 39,200  5 6 230 140 402 '• 340 579 531 762 718 940 903 1 096 1,116 1,299 ^ 1 ,338 1,210 •• ; . 1 4001/600 1 700 1,600 1 700 6,000 1 800 14,100 3, 600 3 600 3 ,800 9 800 18, 700 21, 300 22 980 23 ,770 24, 550 25 ,000 26 ,390 28 ,000 28 ,710 29 ,300 30 000 ,200 ' 30, 30, 300 30, 780 32 ,230 33,,580 34 ,180 35 ,200 35 ,710 36 720 39 210 41 920 • 43,500 1  6 9  ' . 7  IO  In,/In.  7  172 412 . 614 816 998 1 ,180 1 346 1 ,300 3 210 21 ,600 23 380 23, 600 . • 23 600. 23 600 23 ,700 24 ,100 24 ,400 24 ,400 24 770 25 ,200 25 ,300 26 ,400 28 ,000 . 28 ,470 29 ,270 30 ,000 30 ,200 30 ,290 30 ,770 32 ,640 33 ,770 34 ,480 35 ,500 36 ,000 37 ,020 38 ,900 41.,060 42 ,480  8 211. 348 523 714 903 1,092 1,362 1,550 1,865 16,550 23,340 23,300 23,300 23,300 . 23,400 23,690 24,000 24,500 25,160 25,930 26,500 28,440 29,790 30,400 31,270 32,000 32,200 32,210 32,670 34,620 36,000 36,730 37,900 38,580 39,800  9 196 412 c-;< 616 . 812. 1,002 1,250 i  Mean S t r a i n 10 204 189 344 376 ' 516 . 563 708 754 '"• I • 939 885 1,078 1,157 -t? 1,523 r 1,738 1,498 3,300 f 2,120 3,116 13,100 .";; 9,000 7,397 ,18,480 14,394 16,880 4: 18,208 18,900 -'I 27,300 19,400 ,. 27,800 . 19,433 19,400 20,100 27,800 19,500 I 27,800 20,138 19,770 27,880 . 20,983 20,670 28,000 22,519 21,150 >Y:28,050 23,124 21,200 : 28,200 23,488 21,500 28,300 23,891 22,320 28,400 24,411 22,700 ?' 28,500 24,663 24,100 i 28*870 25,934 25,290 . I 29,450 27,100 "V 26,080 30,100 27,764 26,920 30,510 28,403 27,580 \ 31,070 • - 29,131 27,700 - 31,200 29,338 28,000 31,400 29,413 28,580 - 31,710 29,888 30,280 , 33,260 31,681 31,300 % 34,260 33,144 ' .34,910 31,960 33,893 35,586 32,960 • 35,770 33,340 .36,070 37,149 ; - ; ; ' . 34,290 37,040 36,974' " .': • :' 36,330 ,; 39,000 38,360 38,640 . 41,200 40,705 40,170 : 42,050  %  .  v  ;  (  . " ',  ,  -'-  -I- ',  '• .-•''•  .  IOI I  1  lit  COMPRESSION TEST OF THE 12-INCH 5WF16 COLUMN BY THE OLSEN MECHANICAL MACHINE  Mean Stress psi  40.00  8,580 80.00 17,160 ,120.00 25,740 135.49 29,063 31,641 147.51 157.52 i 33,788 164.80 35,350 173.17 37,145 }181.57 38,947 186.86 40,081 185.64 39,820 185.36 39,760 185,14 39,713 184.89 39,659 185.06 39,695 185.2.7 39,740 185.. 64 39,820 186.04 39,906 :  190.02  39,970 40,099 40,386 40,495 40,643 40,759  "191.17 192.21 :192.88 194.13 196.49 198.05 198.58 200.06 199.73  41,006 41,229 41,373 41,641 42,147 42,482 41^595 42,913 42,842  186,34 186.94 188.28  ; 188.79 ,189.48  101 238 503 . 770 . 890 955 1,043 1,108 1,188 1,275 1,242 1,278 1,292 1,300 1,290 1,297 1,267 1,277 . 1,263 1,237 1,128 1,189 1,200 1,200 1,200 1,340 1,364 1,376 1,411 1,607 2,057 2,729 3,547 3,981  102 282 560 840 970 1,061 1,149  1,224 1,309 1,353 1,374 1,389 1,351 1,320 1,334 1,358 . 1,489 1,826 2,867 3,822 5,178 7,133 8,025 8,650 9,117 10,125 10,625 11,150 11,450 12,400 13,450 14,144 14,522 14,711  103 466 768 1,064 1,179 1,220 1,260 1,294 1,314 1,316 1,366 1,415 1,446 1,472 1,480 1,480 1,496 1,554 1,547 1,519 1,536 2,133 2,556 3,400 3,833 4,433 4,889 5,433 6,178 7,122 8,122 8,744 9,422 9,800  A d j u s t e d S t r a i n Gauge D a t a 104 105 106 461 200 243 516 773 531 1,040 826 828 1,170 960 968 1,356 1,054 1,067 l 567 1,158 '1*,144 1,848 1,231 1,242 2,193 1,326 1,379 2,782 1,484 1,558 1,660 1,619 3,831 5^.519 1,625 1,744 1,610 2,041 6,927 8,580 1,610 2,682 10,550 1,600 4,170 1,589 5,661 12,533 13,900'' 1,580 6,750 14,750 1,624 7,788 15,408 1,671 8,651 1,564 9,139 16,633 1,286 16,817 9,511 9,856 16,939 1,200 17,000 1,200 10,383 17,347 1,200 10,728 11,0.92 17,594 1,289 2,450 12,019 17,964 18,411 4,950 12,694 18,706 8,500 12,735 11,600 13,172 19,117 19,664 13,900 14,597 15,450 19,953 16,119 20,400 16,275 16,883 20,600 16,656 17,369 20,600 17,700 16,703 s  1  'ii  TABLE I I I  Load  I/O  i n Micro 107 196 509 810 959 1,061 1,147 1,233 1,358 1,511 1,797 2,482 3,113 4,048 5,760 7,247 8,280 9,387 10,433 10,500 10,500 10,544 10,689 10,889 11,067 11,439 11,911 12,311 12,683 13,233 14,267 14,992 15,433 15,487  t1  /©«  In./in. for Section I 108 109 110 396 262 450 553 •664 724 836 996 948 971 1,051 1,112 1,202 1,098 1,133 1,193 1,385 1,166 1,208 1,502 1,192 1,286 1,200 1,559 1,570 1,604 1,198 2,001 1,656 1,187 1,172 • 2,208 2„023 2,530 1,129 2,299 2,654 3,259 1,164 1,266 3,535 4,488 4,724 5,347 1,474 5,916 5,562 . 1,646 1,832 6,199 6,428 6,996 2,002 6,925 7,586 2,384 7,394 8,132 2,661 7,227 9,208 8,033 3,619 10,042 8,478 3,758 10,550 8,678 4,078 8,900 10,356 4,391 11,200 9,667 5,053 10,778 6,936 11,975 12,600 11,556 8,231 13,075 12,211 9,319 13,875 12,867 .10,036 14,825 13,867 11,311 15,356 11,817 '14,244 15,661 14,500 12,425 14,500 15,769 12,578  i  109  I  ioa  35  /o6\  111 240 525 804 936 1,040 1,134 1,220 1,336 1,498 1,707 1,695 1,659 1,650 • 1,643 1,6;61 1,680 1,679 1,664 1*725 1,454 1,600 1/633 1,933 2,563 4,500 9,800 12,800" 15,000 16,600 19,000 19,711 20,411 20,511  112 220 486 756 • 853 951 1,025 1,093  1,171 1,255 1,355 1,328 1,330 1,316 1,305 1,301 1,320 1,321 1,342 1,387  1,151 1,400 1,400 1,400 1,400  1,400 1,497 1,500 1,306 1,300 1,592 1,800 2,606 2,703  Mean S t r a i n 305 593 877 1,002 ' • 1,100 'i 1,198 1,283 1,385 1,534 1,733  lj'990 2,227 - 2,588  v  3,202 3,806 " 4,241 4,639 5,064 5,408 5,548 , 6,071 6,365 6,671  6,900 7,633 8,819 '•'9,743 10,544 11,433 12,501 . 13,091 13,596 13,754  t I  TABLE I I I (Continued)  Load Kips '  40.00 80.00 120^00 135.49 147.51 15^.52 164.80 173.17 181.57 186.86 185.64 185.36 185.14 184.89 • 185.06 185.27 185.64 186.04 186.34 .186.94 188.28 188.79 189.48 190.02 191.17 192.21 192.88 .194.13 196.49 198,05 198.58 200.06 199.73  Mean Stress psi 8,580 17,160 25,740 29,063 31,641 33,788 35,350 37,145 38,947 40,081 39,820 39,760 39,713 39,659 39,695 39,740 39,820 39,906 39,970 40,099 40,386 40,495 40,643 40,759 41,006 41,229 41,373 41,641 42,147 42,482 42,595 42,913 42,842  > ^  1  20.1 208 470 : 739 864 & -957 , 1,040  "l,124 1,215 V  • ' •'"' ; ' A d j u s t e d S t r a i n Gauge Data i n M i c r o In./ln. f o r S e c t i o n 2 210 205 206 • 207 208 209 204 280 389 287 187 379 178 408 586 578 650 668 494 504 712 864 888 806 832 . 898 . 964 1,012 1,020 1,011 1,028 953 955 980 1,151 1,126 1,057 1,231 1,115 1,090 i,063 981 1,202 982 1,097 1,164 1,206 1,221 1,298: 1,315 979 1,122 1,295 1,288 1,267 1,371 1,405 1,412 1,141 1,495 1,367 ' 1,411 .. 981 1,511 1,151 1,612 1,535 1,488 1,964 982 1,845 1,195 3,099 1,773 1,881 •\ 998 1,663 3,878 1,862 1,720 3,101 2,587 1,052 1,214 4,030 2,051 1,726 2,950 1,060 4,340 1,204 2,521 5,440 3,161 1,096 4,058 1,747 1,194 4,136 1,771 3,445 1,737 . 6,998 • 1,505 4,112 5,648 1,816 3,980 4,095 3,376 . 8,375 3,280 4,120. 1,967 9,410 6,973 4,549 4,973 , 6,140 4,140 8,389 •2,242 10,900 5,317 6,919 9,420 4,170 9,420 13,250 3,104 6,518 8/926 12,500 4,210 9,933 4,298 15,800 10,318 13,775 7,667 4,342 10,422 5,764 8,419 10,460 18,633 14 431 8,556 11,033 5,167 20,417 9,667 10,800 15y000 11,375 6,378 9,444 10,267 10,861 21,017 15/033 7,733 11,908 10,189 21,472 11,133 11,000 15,311 8,744 11,900 12,344 10,800 21,656 11,042 15,390 10,667 12,975 11,672 12,950 22,078 11,611 15,558 12,400 14,250 13,750 12,294 22,419 12,342 16,544 13,522 14,350 12,639 14,550 12,642 22,519 16,975 14,789 14,867 12,817 22,600 14,933 12,983 . 17,660 15,800 15,900 13,350 15,808 22,775 13,736 18,359 16,700 17,092 17,450 23,519 19,720 14,133 15,269 17,375 17,667 17,914 14,658 23,667 15,922 20,575 17,700 17,894 14,933 23,800 18,444 16,539 21,400 17,894 15,086 23,800 18,552 17,994 21,353 16,646  1,250 1,442 1,978 2,660 3,523 5,782 . 8,195 9,220 9,710 10,250 10,400 10,500 11,044 11,358 11,572 12,047 13,203 13,739 14,217 14,469 15,403 16,425 17,117 17,500 17,689  202 309 596 889 1,026 1,117 1,208 1,306 1,487 2,213 4,975 8,317 9,598 10,511 11,356 12,250 12,717 13,1.61 13,661 14,178 14,844 15,650 16,200 16,633 17,189 18,033 18,500 18,800 19,300 19,833 20,267 20,561 20.744 . 20,83.9  203 405 710 1,012 1,143 1,226 1,293 1,354 1,411 1,472 1,458 1,587 1,638 1,660 1,660 1,660 1,716 1,712 1,749 1,606 1,483 1,781 2,444 3,325 4,025 5,742 7,650 9,386 10,894 12,997 14,347 15,222 15,817 16,100  0  •  ' .'  •  > '212 Mean S t r a i n 213 294 586 487 772' 881 1V002 868 1,000 1,128 977 1,089 1,228 1,074 1,168 1,322 1,153 1,241" 1*335 1,446 1,245 1,609 1,331 1;510 1,886 1,362 1,965 1,961 2,586 1,773 2,004 2,160 2,952 2,057 2 528 3,291 2,199 3,397 4,008 2,725 4,684 5,007 -V 3,226 5,134 5,845 4,290 5,480 6,807 5,389' . 5,933 7,906 6 ,.03 2 6,091 8,692 6,148 9,312 6j,292 7,050 * 6,328 10,205 7,617 6,833 10,736 7,850 7,444 11,298 8,324 8,074 11,795 8 944 8,364 12,652 9,^12 • 9,463 13,605 10/451 9,851 14,159 10,954 10,606 14,739 ' 11,401 15,568 lli'455 12,688 12,822 16,703 13,811 13,528 17,335 11,987 14,178 17,745 13,859 14,271 17,840 211 284 577 "892  ;  e  r  37 TABLE I I I (Continued)  Load Kips  Mean Strain psi  40.00 8,580 80.00 17,160 120.00 25,740 135.49 29,063 147. 51 $1,641 157.52 . 33,788 1.64.80 35,350 173.17 • 37,145 181.57 38,947 186.86 40,081 185.64 39,820 185.36 39,760 ,185.14 39,713 '184.89 : 39,659 185.06 39,695 185.27 < 39,740 •18 5-; 64 39,820 18 6,; 04 39,906 186.34 39,970 186.94 40,099 188.,28 40,386 188.79 40,495 189.48 40,643 190„02 40,759 191.17 41,006 192.21 41,229 192.88 41,373 194.13 41,641 196.49 42,147 198.05 42,482 ,198.58 42,595 200.06 42,913 "199.73 42,842  301 302 283 292 548 565 818 849 ... 942 968 1,026 . 1,050 1,106 1,126 1,183 1,199 1,265 1,264 1,289 ' 1,322 1,282 : 1,324 1,233 1,268 1,220 1,246 1,220 1,241 1,213 1,260 1,187 1,260 1,227 1,254 1,283 1,250 1,307 1,282 1,181 1,611 1,300 2,656 3,133 5,950 3,789 ,. 6,850 .3,900 8,050 .4,067 i, , 8,558 4,567 9,400 4,922 10,308 5,428 11,183 6,372 12,183 8,328 13,183 9,544 13,950 10,225 14,778 10,867 15,447 11,197 15,778 :  Mean Overall 308 309 310 311 312 S t r a i n Mean S t r a 266 353 405 282 224 300 300 550 621 684 568 483 586 588 820 902 972 872 778 882 880 955 996 1,048 972 850 995 999 1,053 1,037 1,113 1,124 961 1,085 1,091 1,143 1,056 " . 1,156 l-,288 1,053 1,108 1,158 1,233 1,079 1,171 1,408 1,130 1,229 1,251 1,324 1,141 1,193 1,542 1,219 1,302 1,3,411,585 1,184 1,232 ' 1,844 1,294 1,411 1,485 2 340 1,198 1,247 2,432 i;331 1,663 1,787 3,041 1,194 y- r,201 5,080 1,38 3 2,186 2,254 3,405 1,199 : 1,227 5,521 1,381 2,366 2,515 3,813 1,189 1,231 5,692 1/386 2,473 2,784 5,156 1,166 1,271 5,963 1,399 2,854 • 3,355 6.931 1,171 1,316 6,298 1,400 3,282 4,032 7,988 ' 1,281' • 1,347 6,415 . 1 , 3 6 6 3,581 . 4,556 8,781 1,493 1,441 6,597 . ^ i ; 3 5 2 • 3,869 5,105 9,221 1,887 '1,642 6,226 1-479 4,112 5,694 9,558 2,208 1,974 7,136 1,413 4,433 6.178 9,733 2,480 " 2,187 8,300 ,1,229 5,092 6,651 10,450 3,878 , 3,408 12,600 -1,395 6,815 7,697 10,650 4,633 3,725 14,600 •1,78> 7,514 8,205 10,900 5,833 ' 4,625 17,000 ,2,57.7 • 8 , 4 1 5 8,795 11,211 8,400 5,330 18,167 2,894 9,146 9,280 11,675 7,278 6,079 19,361 3,141 9,725 10,003 12,525 8,639 . 7,647 20,560 . 3,511 10,712 11,045 12,833 9,322 . 8,468 21,177 • ' 3,744 11,280 11,727 13,250 9,739 .'• 9,184 21,529 3,950 11,869 12,384 13,892 10,522 9,542 22,255 4,313 12,795 13,265 5,027 14,942 12,617 11,228 23,792 13,973 14,392 15,467 13,056 12,500 24,480 5,474 14,609 15,012 15,714 13,733 13,142 24,676 5,755 15,028 15,447 15,767 13,889 13,242 24,684 5,836 15,166 15,587  A d j u s t e d S t r a i n Gauge D a t a i n M i c r o I n . / I n . f o r S e c t i o n 3  303 401 701 996 1,127 1,203 1,246 1,282 1,314 1,335 1,328 1,292 1,280 1,281 1,317 1,329 1,377 1,420 1,420 1,232 1,017 1,572 1,744 2,089 2,350 2,667 3,078 3,411 3,722 4,344 5,089 5,678 6,167 6,450  304 420 729 1,048 1,162 1,240 1,285 1,315 1,334 1,363 1,510 1,548 1,380 1,380 1,422 1,462 1,497 1,528 1,557 2,433 6,700 10,528 11,633 12,517 13,075 14,097 15,053 15,572 :• 16,133 17,514 18,744 19,300 19,683 19,787 r  305 278 566 852 993 1,079 1,156 1,248 1,356 1,564 1,836 1,940 1,926 1,953 1,937 ' 1,880 1,896 1,904 1,927 •1,972 . .1,805 3,900 . 5,400 7,500 8,933 10,400 11,867 12,467 12,867 13,733 14,467 14,694 14,956 15,166  306 307 199 193 522 498 852 822 989 938 1,096 1,042 1,178 1,136 1,261 1,237 1,331 1,346 1,395 1,527 1,423 2,705 1,527 5,525 1,716 6,538 2,061 7,227 3,517 8,621 5,297 9,850 6,595 10,733 7,815 v 11,567 8,929 12,467 9,700. 12,772 10,456, ; 13,243 11,442 13,528 11,694 13,656 12,083 13,911 12,550 14,211 13,519 14,511 15,006 15,433 16,006 15,756 17,250 16,244 19,264 16,644 21,214 . 17,067 22,011 17,650 22,400 17,800 22,400 17,800  S  :  :  1 ot 1 1  /0£  TABLE IV  Load Kips  /03  11  i/o\ 1 to? ///  10Z 1  COMPRESSION TEST OF THE 12-INCH 5WF16 COLUMN BY THE BALDWIN HYDRAULIC MACHINE  3 02.  //a  to*  38.  I /OB /06\ y/o7  Mean Stress psi  40.00 8,580 80.00 17,160 120.00 25,740 34,320 160.00 36,465 170.00 175.00 37,538 38,610 180.00 190.00 40,755 205.97 44,181 214.40 45,989 214.25. 45,957 215.90 46,311 219.02 46,980 224.65; . 48,187 228.30 48,970 231.43 . 49,642 232.92 49,961 2 3 5-. 05 50,418 235.68 50,553 236.67 50,766 239.52 51,377 51,540 240.28 241.56 51,815 242.98 52,119 244.53 • 52,452 246.64 52,904 247.38 53,063  101 too 200 400 600 y 800 900 900  102 100 500 700 1,100 1,100 1,100 1,200 1,000 1,300 2,150 1,597 4,053 3,428 5,039 3,708 .. 6,225 3,978 9,658 5,917 14,922 8,867 16,328 10,189 17,733 -11,783 18,122 12,678 18 >956 • 14,000 19,387 14,833 15,450 . 19,778 20,178 „ 16,233 20,767 17,217 21,272 18,492 21,667 19,008 22,278 20,767 -;23,056 23,558 23,856 25,725  ,  103 100 500 700 900  1,000 1,000 1,000  1,200 1,711 3,700 4,200 5,003 7,356 10,478 11,850 13,356 14,100 15,100 15,644 16,322 16,933 17,800 18,967 19,489 20,867 22,867 24,967  Adjusted  : 104 200 500 700 900  1,000 1,000 1,000  1,200 1,292 1,617 1,700 2,033 2,872 4,272 5,144 5,989 6,422 7,086 7,396 7,747 8,178, = 8,578 9,047 9,308 9,917 10,794 18,793  S t r a i n Gauge D a t a i n M i c r o I n . / i n . f o r S e c t i o n  105 600 900 900 1,100 1,100 1,100 1,300 1,600 1,422 1,917 2,144 2,519 3,283 4,633 5,417 5,767 5,853 5,833 5,800 5,800 5,533 5,400 5,267 5,133 4,867 4,200 3,300  106  107 200 400 900 900  0  600 600 1,100 1,100 1,300  1,000 1,000 1,000  1,000  1,300 1,200 1,386 1,467 2,500 2,200 2,658 2,289 2,906 '2,600 3,656 ,'• 2,997 5,122 ' .4,189 6,350 5,106 7,575 6,111 8,100 6,653 8,747 ... 7,267 9,319 ' 7,822 9,692 '8,278 10,183 8; 633 10,719 • 9,111 11,539 ' .9/811 12,083 10,267 11,200 13,075 14,167 12,500 15,367 14,300 :  ;  108 300 300 700  1,000  1,100 1,100 1,100 1,300 1,428 2,489 3,217 2,933 5,133 7,633 9,217 10,717 11,633 12,917 13,708 14,292 15,033 15,917 16,708 17,117 19,067 21,292 33,100  109 300 500 . 800 1,100  1,000 1,300  1,100 1,300 1,300 1,867 2,133  110 200 400 900  1,000  1,200 1,200 1,3'00:  1,400:  1,483 2,311 2,689 2,444 • 3,233 3,219 4,756 4,944 7,989 5,800 9,694 6,306 11,417 7,225 11,939 7,872 12,736 8,378 13,456 8,578 14,139 8,856 14,397 9,294 14,994 9,794 15,878 10,122 16,155 10,733 17,375 11,411 18,372 15,994 19,772  1  111  112 Mean S t r a i n -~. 400 200 225 900 500 517 1,100 700 758 1,300 992 900 1,400 1,100 1,075 1,400 1,100 1,125 1,600 1,142 1,200 1,900 • 1,300 1,333 1,900 1,444 ., 1,548 • . :-k. 2,117 2,767 2,580 2,990 2,573 3,531 2,769 4,067 3,393 5,656 3,517 4,835 7,533 10,472 7,588 10,253 13,400 9,062 15,494 : 10,378 12,283 16,700 . 11,055 13,231 14,533 17 ,839 11,907 * . 15,817 , 18,783 12,529 16,500 19,356 12,995 17,233 19*881 14,158 21,056 ' 14,917 . 18,633 20,017 21,567 15,736 \; 20,919 22,399 , 16,230 ' V, 22,233 23,253 17,342 24,450 24,353 ' 18,80*2 27,750 25,453. 22,280  39 TABLE IV (Continued)  Load Kips  40.00 80.00 120.00 160.00 170*00 175.00 180.00 190.00 '205.97 :'214;. 4 0 214.25 215,.: 90 219 .02 224165 ;228.30 :231'43 ' ;  ;  hi 3^.9 2  £23'&».67 K239v52 ••"•CvS.'»  98 J244/53 24'6 64 "2.47^38 K  if  " Mean Stress psi  8,580 17,160 25,740 34,320 36,465 37,538 38,610 40,755 44,181 45,989 45,957 46,311 46,980 48,187 48,970 49,642 49,961 50,418 50,553 50,766 51,377 51,540 51,815 52,119 52,452 52,904 53,063  201 100 600 800 1,400 1,600 1,600' 1,600 1,800 2,000 2,356 2,656 3,383' 4,978 7,811 9,500 11,206 12,339: 13^475 14;, 28 9 :  202 300 500 800 1,000 1,100 1,100 1,100 1,400 1,422 1,714 1,761 2,042 4,275 7,167 ...'8,781 10,050 10,825 11,767 12,067 12,933 13,683 14,300 15,233 15,650 16,817 18,583 20,483  Mm*  a 6^,0 6 i  AT, 061 *18,492 19,175 ,20,542 '22,681 124,981  A d j u s t e d S t r a i n Gauge Data i n M i c r o I n . /In. f o r S e c t i o n 2  203 200 700 800 1,400 1,200 1,400 1,400 1,600 1,706 2,483 3,125 4,511 6,533 9,456 11,000 12,386 13,267 14,083 14,683 15,364 15,903 16,564 17,586 18,178 19,325 21,272 23,472  204 500 500 700 1,200 1,200 1,500 1,300 1,300; 1,467* 1,728 1,994 2,883 3,986 5,272 6,125 6,722 6,989' 7,567 7,861 8,0831 8,383 '8,928 9,322 9,483 10,189' Jl 1,172 12,Z72  205 400 500 800 1,500 1,300 1,300 1,700 1,800 1,719 2,144 2,444 3,811 6,200 8,283 9,100 9,658 9,744 10,033 10,200 10,200 10,375 10,500 10,442 10,425 10,442 10,225 9,925  206 200 500 500 1,000 1,200. 1,000 1,100 1,100 1,256 1,775 2,000 2,517 3,933 6,200 7,542 8,856 9,508 10,078 10,578 11,123 11,844 12,644 13,556 14,111 15,167 16,867 18,96/  207 300 400 900 1,000 1,200 1,200  ftipo 1,200  1,317 1,600 1,600 1,533 1,539 2,297 3,222 4,253 4,856 5,653 6,244 6,608 6,944 7,417 7,908 8,106 8,553 9,397 10,497  208 209 210 200 200 200 700 800 500 1,000 1,000 800 1,300 1,100 1,100 1,300 1,200 1,100 1,200 1,200 1,300 1,400 1,200; 1,300 1,700 1,400 1,500 1,700 1,664 1,500 2,00'8 1,933 1,828 2,222 s 2,000 1,981 2,858 2,333 2,308 4,500 4,133 3,603 7,033 8,13-3 7,378 8-, 733 .8,760 10,033 10,100 11,506 9,922 11,075 12,367 10,095 12,000 13,475 10,944 12,600 14,192 11,333 14,614 13,100 •lil, 644 13,533 15,314 12,078 16,014 14,267 12,767 16,653 16,133 ,13,400 18,800 16,990 • 14,022 17,936 16,533 14,633 19,097 17,833 15,878 20,397 19,733 17,478  211 400 . 500 900  212 100 600 •••• 8 0 0 1,100 i;ioo; 1,400' 1,200 1,300 1,200 1,200 a , 200 1,400 1,500 1,431 1,528 1,656 2,142 • 2,038 2,524 2,872 3,264 5,800 5,438 7,956 7,983 8,849 . .8,821 9,417 . 9 , 6 1 1 9,590 9,784 9,800 ,9,906 9,800 10,006 9,800 10,094 9,808 JL0,0U 9,900 10,206 9,900 10,283 9,900 16,079. 9,808 1(3,300 9,900 10,300 9,900 10,300  Mean S t r a i n  •"  258 567 817 1,183 1,250 1,275 1,300 1,475 1,559 1,947 2,191 2,860 4,577 7,081 8,372 9,474 10,037 10,732 . 11,15.4 . 11,554 11,995 12,547. 13,242 13,743 14,186 15,267 16,534 •  40 TABLE IV (Continued)  Load Kips  Mean Stress psi  : 40.00 8,580 80.00 17,160 120.00 25,740 160.00 34,320 170.00 36,465 175.00 37,538 38,610 180.00 190.00 40,755 44,181 205.97 214.40 45,989 214.25 45,957 215.90 46,311 219.02 46,980 48,187 224.65 ,228.. 30 48,970 231.43 49,642 232,92 49,961 235.05 50,418 235.68 50,553 236.67 50,766 239.52 51,377 240.28 51,540 .241.56 51,815 242.98 52,119 244.53 52,,452 246.64 "52,904 247,38 53,063 NOTE:  Adjusted  301 100 400 600 900 1,100 1,000 1,000 1,600 2,800 5,967 6,533 7,775 10,114 .13,489 15,286 16,756 17,511 .18,656 19,211 19,689 20,267 20,944 21,800 22,178 23,178 24,567 26,067  302 0 400 500 800 1,000 1,000 1,000 . 1,500 1,403 2,856 3,311 4,294 5,400 7,900 9,394 10,725 11,367 12,425 13,150 13,600 14,225 15,000 15,650 16,092 17,175 18,750 20,550  303 +200 400 500 700 700 800 800 1,000 1,094 3,775 4,950 7,683 10,453  14,028 15,992 17,494 18,208 19,150 19,833 20,289 20,833 21,650 22,406 22,911 23,978 25,211 26,611  S t r a i n Gauge Data i n M i c r o I n . / I n . f< >r S e c t i o n 3  304 400 700 1,000 1,400 1,400 1,400 1,500 1,700 1,775  2,078 2,361 2,950 3,933 5,286 6,172 6,917 7,317 7,817 8,153 8,464 8,753  9,169 9,764 10,078 10,664 11,481 12,581.  305 . 400 400 600 1,200 1,200 1,000 1,100 1,200 1,417 1,553 1,628 1,794  2,067 3,100 4,225 4,950 5,172 5,400 5,550 5,600 5,600 5,600 5,600 5,600 5,650 5,500 5,100  306 307 300 0 800 200 800 1,100 1,200 800 800 1,300 900 1,300 1,400 900 1,500 1,100 1,250 1,569 1,950 1,296 2,100 1,206 2,233 1,325 2,517 1,594 2,706 3,219 3,597 4,133 5,083 4,367 5,600 4,883 5,483 6,331 6,889 . 5,756 7,194 6,039 6/456 7,583 8,136 6,767 7,367 8,683 9,042 7,776 9,536 8,139 8,806 10,414 11,714 9,906  + Indicates Tension S t r a i n  • '. .  r  r  !  ;  . ' "  3C>8 I .00 c 00 c 00 1 ]00 1 ,100 1 100 1 loo 1 -100 1 2 ,c I 1 1 2 111 2 ,6178 3 ,^133 6,625 8 167 9 50 10 ,3189 11 ,;(00 12 ,000 12 ,450 13 , TiOO 13 ,850 14 , ji00 15 ,()50 14 17 'J)25 18 ,?25  .'  •  I'  (  309 310 300 300 600 700 800 1,100 1,000 1,300 1,400 1,300 1,400 . 1,400 1,400 1,400 1,600 1,800 1,644 1,800 3,400 3,850 4,300 4,535 4,894 5,300 5,964 6,717 8,(322 9,053 9,583 • 10,695 10,589 11,925 10,967 12,703 11,811 13,417 12,311 14,014 14,506 12,789 13,144 14,728 13,478 15,717 14,189 16,319 14,465 16,792 14,878 17,228 15,700 18,231 16,600 19,325  Mean  Overall  Sf-ra-fn Mean i i t r a i n 311 312 400 100 192 225 1,000 583 556 600 900 1,200 833 803 1,100 1,400 1,075 1,083 1,700 1,200 1,175 1,400 1,400 : i,50o 1,200 1,200 . 1,400 : ' 1,400 1,200 1,214 1,800 : .2,200 1,533 1,447 1,844 2,356 1,696 1,601 2,492 2,103 5,000 2,949 2,178 ' 5,525 3,412 2,864 2,102 6,068 3,454 4,108 2,192 7,074 5,163 4,858 8,200 10,113 7,645 7,438 9,750 12,519 9,143 8,859 12,200 10,312 12,889 10,055 13,233 13,232 10,882 ' 10,658 15,400 ' 13,784 11,748 11,462 16,800 14,091 12,313 11,999 17,500 14,197 12,69,3 12,414 18,600 14,492 13,148 13,100 20,300 14,989 13,800 13,755 22,200 15,097 14,465 14,481 23,400 14,951 15,163 14,879 25,400 15,296 . 15,575 15,701 28,400 15,786 16,656 16,908 33,100 15,994 18,024 18,946 :  :  41 TABLE V COMPRESSION TEST OF THE 12-INCH 5WF16 COLUMN BY THE OLSEN MECHANICAL MACHINE  Load -'Kips  Mean Stress psi 40.0 8,580 80.0 17,160 120.0 25,740 128.4 27,542 ^ 137.2 29,409147.8 31,703 \>» 157.8 33,848' •. 165.0 , 35,393 ' •• ' 173.4 37,194 . - . ' 181.8 38,996' 187.0 40,112 185.6 39,811 185.2 39,725 185.0 39,683, . , 184.8 •. 39,640 [ 185.1 39,704 ; •185.3 . 39,747 185.7 39,833 186.1 39,918 186.5 40,004 187.5 40,219 188.3 40,390 188.8 40,498 189.5 40,648 . 190.2 . 40,798 . ,191.4 41,055 192.4 41,270 193.0 ,4l\399 194.4 41:, 699 197.0 42,257 198.3 42,535 198.6 4 2 , 6 0 0 -•: 200.3 ,42,964  Gauge A INxlO" 9.2 12.0 16.0 : 17.9 18.0 19.0 20.0 21.9 22.2 24.5 30.2 38.2 44.0 50.0 57.0 65.0 70.9 76.8 86.8 95.5 107.5 112.9 124.0 132.2 ' 139.0 148.9 156.5 162.5 170.8 184.8 192.0 197.2 204.2 3  Gauge C INxlO" : 5.0 9.5 13.8 14.1 15.1 17.2 18.8 20.0 21.0 23.5 28.8 36.2 42.0 48.0 55.0 ;.63.0 68.8 75.0 85.2 94.2 106.2 116.5 122.8 130.8 137.5 148.2 155.2 161.7 170.0 183.5 191.5 196.8 203.5 3  Gauge B MMxlO" 17.5 31.5 44.9 *':'••. 4 8 . 2 51.2 54.9 59.2 62.5 67.0 74.0 • 88.2 107.9 122.0 137.0  l  154.4 175.1 189.0 205.5 231.0 254.6 284.8, 310,8 327.2 347.5 364.0 389.9 408.2 423.8 445.8 479.5 500.0 513.0 530.8  Mean Deform^ i t i o n MMxlO -2 . INxlO' 22.2 7.3 31.2 11.5 40.5 15.9 44.9 17.2 45.3 17.8 48; 2 19.2 51.0 20.6 53.8 21.9 56.0 22.9 61.9 25.4 76.0 '•' 3 1 . 0 95.9 38.7 109.0 44.3 123.5 50.1 141.6 '•• 57.2 162.2 65.2 175.5 70.8 192.5 77.1 212.5 86.7 231.8 95.2 271.5 108.1 297.0 117.2 313.0 124.7 333.5 132.8 350.0 139.3 377.7 149.9 395.8 157.1 410.3 163.1 430.8 171.5 467.0 185.2 487.2 193.1 500.0 198.2 512.5 ' 204.7 Gauge D  2  z  : (  Mean Strain M i c r o IN/IN 608 958 1,325 1,433 1,483 1,600 1,717 1,825 1,908 2,117 2,583 3,225 3,692 4,175 4,766 ".;':'":' 5,433 5,900 6,425 7,225 7,933 9,008 9,766 10,391 11,066 11,608 12,491 13,091 13,591 14,291 15,433 16,091 16,516 17,058  3  D  ® Diff. A  "  C  -3  INxlO < 4.2. 2.5 2.2 3.8 2.9 1.8 1.2 1.9 1.2 1.0 1.4 2.0 2.0 2.0 .2.0 •2-.0  •2'. 1 1.8 1.6 •1.3 1.3 -3.6 1.2 1.4 1.5 0.7 1.3 0.8 0.8 1.3 0.5 0.4 0.7  .  Rotation Diff About B-D B-D AxfsRadxlD^ M M x l O " 3.0 -4.7 i„8 0.3 1.6 4.4 2.7 , 3.3 2,1 5.9 1.3 ,6.7 0.9 .8.2 1.4 8.7 0.9 11.0 . .0.7 12.1 1.0 12.2 1.4 12.0 1.4 13.0 1.4 13.5 1.4 12.8 1.4. 12.9 1.5 13.5 1.3 13.0 1.1 18.5 0,9 12.8 0,9 13.3 -2.6 . 13.8 0.9 14.2 1.0 14.0 1.1 14.0 0.5 12.2 0.9 • 12.4 0 . 6 '•' 13,5 0.6 15.0 0.9 12,5 0.4 12.8 0.3 13."0 0.5 18.3  Rotation About A-C . Axis RadxlO" -li3 0.1 1.2 . 0.9 1.6 1.8 2.2  2  1  2.3  '  3.0 3.3 3.3 3.3 3.5 3.7 3.5 3.53.7 3.5 5.0 3.5 3.6 3.8 3.9 3.8 3.8 3.3 3.4 3.7 4;1 3.4 3,5 3,5 5.0  • .v v :  i  l,-  ;K-  ,  42 TABLE V I COMPRESSION TEST OF THE 12-INCH 5WF16 COLUMN BY THE BALDWIN HYDRAULIC MACHINE  Load Kips 40.0 80.0 120.0  160.0  , -  170.0 175.0 180.0 ' 190.0 204.4 212.5 2.14.4 214.2 216.0 219.4 224.8 229.0 ...... ' 231.5 . - 233.2 235.1 235.7 V236.7 , . 239.6 240.3 •: s 241.6 .' 242.2 •V 244.5 •• ' .' • 246.7 247.4 !  :  •'5' .  v  1'.  ;  1  . Mean Stress nsi 8,580 17,160 25,740 34,320 36,465 37,538 38,610 40,755 43,844 45,581 45,989 45,946 46,332 47,061 . 48,220 49,121 49,657 50,021 50,429; 50,558 50,772 51,394 51,544 51,823 51,952 52,445 52,917 53,067  Gauge A INxlO" 9.0 13.0 18.0 22.0 22.8 23.2 24.0 25.5 28.5 32.5 42.0 46.0 50.0 70.0 103.0 122.0 136.0 145.5 154.5 161.2 166.2 173.5 182.5 192.0 200.0 208.8 230.0 243.0  Gauge 3  -3 INxlO 8.0 12.0 15.0 18.5 19.5 20.0 20.6 22.0 23.2 26.8 34.6 39.1 44.5 66.0 98.0 117.0 129.8 138.9 147.9 154.9 159.6 167.0 176.2 186.0 193.2 202.8 223.8 235.0 C  Gauge ' -2 MMxlO 45.0 55.0 65.0 73.0 76.2 77.0 78.2 81.3 85.0 92.5 112.2 124.5 136.5 189.0 272.0 322.0 354.8 377.0 400.0 417.5 430.5 448.9 . 471,0 494.5 512.1 536.8 589.0 621.0 B  Gauge D „ MMxlO 2.0 13.0 23.0 35.0 38.5 40.0 41.8 47.0 54.6 67.2 88.0 100.0 115.0 172.0 250.0 300.0 332.0 355.2 379.0 . 394.8 408c5 429.0 451.2 479.0 497.0 521.0 574.8 598.0  Mean Defamation INxlO-3 8.9 13.0 16.9 20.8 . 21.9 22.3 23.0 24.6 26.7 30.5 38.9 43.4 48.3 69.5 101.1 120.9 134.0 143.1 153.2 158.8 164.0 171.5 180.0 190.2 197.6 206.9 227.9 239.2  Mean Strain Micro In/In 755 1,102 1,433 1,763 1,857 1,891 1,950 2,086 2,264 2,586 3,298 3,679 4,095 5,892 8,571 10,250 11,361 12,132 12,988 13,463 13,904 14,540 15,260 16,125 16,753 17,541 19,321 20,279  ® Diff. A-C InxlO" 1.0 1.0 3.0 3.5 3.3 3.2 " 3.4 3.5 5.3 ' 5.7 7.4 6.9 5.5 4.0 5.0 5.0 6.2 6.6 6.6 6.3 6.6 6.5 6.3 6.0 6.8 6.0 6.2 8.0  a  01 J  Diff. . Rotation About B-D B-D AxisRadxlO" MMxtfT^ 0.7 43.0 0.7 42.0 2.1 42.0 2.5 v 38.0 2.4 fV'."- 3*7.7 2.3 37.0 2.5 . 36.4 2.5 34.3 3.8 30.4 4.1 25.3 • 5.3 24.2 4.9 24.5 3.9 " . 21.5 2.9 ..-„,,.. . 17.0 22.0 3.6 3.6 22.0 4.4 22.8 4.7 24.8 4.7 21.0 4.5 22,7 4.7 22.0 4.6 „ 19.9 4.5 19.8 4 . 3 .'. .. 15.5 4.9 : 15.1 4.3 15.8 4.4 14.2 5.7 23.0 4  ;  :  VC-  Rotation About A-C A-sds R^rl-^10-4 11.7 lr.4 11.4 10.3 10.2 10.0  9.9 9.3  8.2 6.9 6.6 6.7  5.8  4. 6  6.o 6.0  6.2 5.9 5.7 6.2 6.0 5.4 ' ,5:-4 4.2 4.1 4.3 3.9 -6.2  -.'  /OS  /Ob  43 TABLE  VII  COMPRESSION TEST OF THE 21-INCH 5WF16 COLUMN BY THE BALDWIN HYDRAULIC MACHINE  /£>/  /o'7  I  |  /Of  <0*>  /Of  Kips  Mean Stress psi  40.00 80.00 120.00 143.97 148.00 158.50 165.60 175.31 179.08 193.96 195.73 195.70 197.29 204.98 213.67 212.09 214.82 217.83 223.63 207.14 206.61 222.50 224.86 225.31 227.46 229.96 231.59 233.73 237.39 239.54 241.37 243.77 246.76 255,36 262.65 266.75 269.10 269.40  8,580 17,160 25,740 30,882 31,746 33,998 35,521 37,604 38,413 41,604 41,984 41,978 42,319 43,968 45,832 45,493 46,079 46,725 47,967 44,432 44,318 47,726 48,232 48,329 48,790 49,326 49,676 50,135 50,920 51,381 51,774 52,289 52,930 65,775 56,338 57,218 57,722 57,786  Load  .  101 280 528 784 902 928 995 1,039 1,140 1,220 2,044 2,717 2,727 2,467 2,744 • ."3,624 5,060 6,616 7,580 8,408 8,423 8,475 8,973 9,266 9,930 10,482 11,336 12,091 12,530 13,421 14,125 15,007 15,500 16,757 17,491 18,030 17,429 23,214 30,238  Ad l u s t e d S t r a i n Gauee D a t a i n M i c r o I n . / i n . f o r S e c t i o n 1 102 103 104 105 106 226 328 276 305 245 508 575 528 586 550 790 815 792 867 850 973 959 967 1,078 1,034 1,006 985 991 1,098. 1,067 1,081 1,053 1,079 1,185 1,156 1,151 1,102 1,132 1,213 1,209 1,246 1,160 1,219 1,246 1,307 1,287 1,171 1,250 1,255 1,363 1,531 1,252 1,414 : 1,320 3,035 1,639 4,080 1,412 1,329 4,414 2,129 6,303 2,219 1,545 4,698 4,268 7,090 9,203 10,438 13,896 8,872 7,673 12,745 15,000 19,305 11,300 8,823 14,650 15,600 21,157 13,029 10,198 16,225 15,700 22,211 13,904 11,125 17,593 16,086 23,186 14,407 11,712 18,300 16,587 23,889 15,075 12,236 18,800 17,123 24,661 15,064 12,400 18,939 17,300 25,000 15,214 12,400 19,079 17,273 25,036 15,400 12,532 19,457 17,393 25,318 15,470 12,600 19,511 17,593 25,477 15,904 12,718 19,850 18,023 26,261 16,350 13,271 20,418 18,443 27,014 16,904 13,850 21,129 19,057 27,979' 17,407 14,354 21,600 19,564 28,921 17,736 14,836 22,100 20,046 29,857 18,312 15,707 22,898 20,818 30,888 18,566 16,271 23,541 21,418 32,004 18,879 17,007 24,318 21,943 33,277 19,264 17,857 25,089 22,596 34,704 19,575 18,986 26,305 23,325 36,177 19,736 19,671 27,250 24,011 37,479 19,914 20,193 28,507 25,632 39,321 20,000 20,129 30,661 29,650 42,586 19,079 25,700 33,639 31,850 45,479 ' 17,857 34,250 37,507 32,970 49,143  107 .354 637 916 1,086 1,109 1,178 1,192 1,206 1,210 2,002 6,924 9,338 14,852 18,229 18,580 18,500 18,539 18,623 18,816 19,030 18,727 . 19,061 19,170 19,323 19,486 19,796 20,216 • 20,646 21,057 2i/807 22,300 22,729 23,371 23,832 24,575 28,371 30,161 30,670  108 260 536 856 998 1,022 1,100 1,156 1,244 1,296 1,525 1,907 2,663 5,086 8,910 11,350 12,879 13,982 . 14,471 14,943 15,500 , 16,400 16 650 17,033 17,771 18,336 18,843 19,457 19,843 20,277 21,063 21,629 22,338 23,007 23,943 24,843 26,371 29,086 35,600 ?  Mpan  S t r a i n  284 556 834 1,000 1,026 1,104 " 1,149 1,221 1,257 1,765 3,053. 3,953 8,413 11,685 13,136 14,225 15,129 15,696 " 16,258 16,457 16,576 16,850 17,015 17,473 17,975 18,612 19,201 19,699 20,922 21,099 21,795 22,510 23,438 24,177 25,127 26,900 . 29,783 33,529  44 TABLE V I I  Load Kips 40.00 80.00 120.00 143.97 148.00 158.50 165.60 175.31 179.08 193.96 195.73 195.70 197.29 204.98 213.67 212.09 214.82 217.83 223.63 207.14 206.61 222.50 224.86 225.31 227.46 229.96 231.59 233.73 237.39 239.54 241.37 243V77 246.76 255.36 262.65 266.75 269.10 269.40  Mean Stress. nsi  ;  8,580 17,160 25,740 30,882 31,746 33,998 35,521 37,604 38,413 41,604 41,984 41,978 42,319 43,968 45,832 : 45,493 46,079 46,725 47,967 44,432 44,318 47,726 48,232 48,329 48,790 49,326 49,676. 50,135 50,920 51,381 -" 51,774 52,289 52,930 54,775 56,338 57,218 57,722 : 57,786  201 245 498 745 876 904 976 1,031 1,131 1,181 1,286 1,424 3,544 8,076 10,448 11,900 13,727 15,093 16,025 16,675 16,457 16,461 16,829 17,082 17,725 18^,368 19,037 19,400 19,875 20,562 21,066 21,814 22,293 23,441 24,250 24,436 23,729 23,936 24,343  (Continued)  Ad-justed S t r a i n Gauee D a t a i n M i c r o I n , / i n . f o r S e c t i o n 2 202 203 204 205 206 251 307 278 285 255 547 555 544 560 547 829 796 . 810 846 826 1,008 939 981 1,012 994 1,036 963 1,007 1,034 1,024 1,125 1,029 1,095 1,113 1,111 1,181 1,076 1,143 1,151 1,152 1,262 1,151 1,222 1,211 1,238 1,299 1,172 1,250 1,230 1,284 1,684 1,188 ' 1,443 1,585 1,478 2,334 1,488 4,010 6.160 1,900 4,990 2,002 7,524 12,600 3,084 12,405 4,543 14,364 15,300 12,285 16,500 13,068 15,725 16,711 15,800 18,225 15,564 16,646 18,321 17,348 19,500 17,589 17,771 19,430 18,654 20,539 18,932 18,714 20,277 19,-664 21,295 19,657 19,337 20,775 20/352 22,129 20,286 19,845 21,318 20,852 22,246 20,296 20,000 21,500 21,118 22,304 20,286 20,000 21,500 21,032 22,620 20,529 20,277 21„546 21,275 22,850 20,650 20,511 21,597 21,382 23,664 21,286 20,993 22,096 21,952 24,314 21,730 21,471 22,518 22,400 25,057 22,386 22,243 22,932 22,732 25,795 23,057 22,889 23,554 23,182 26,562 23,686 23,586 24,296 23,721 27,800 24,400 24,429 24,957 24,250 28,521 25,032 25,171 25,550 24,814 ' 29,379 25,712 26,000 26,293 25,261 30,086 26,277 26,679 . 27,225 25,600 31,329 27,345 27,950 28,248 25,800 32,095 28,229 28,882 29,093 26,121 33,175 28,746 30,150 30,757 26,479 34,550 28,668 32,200 35,039 26,800 36,225 32,036 36,114 38,632 26 564 38,159 37,329 42,018 42,500 25,954 s  207 312 599 893 1,053 1,076 1,155 1,183 1,209 '1,223 l 264 2,820 7,765 10,935 15,555 18,461 19,382 20,063 20,564 20,950 21,339 21,014 21 ,.314 21,534 21,764 22,246 22,938 23,607 24,107 24,741 25,518 26,279 27,279 28,052 28,936 30,111 * 33,550 36,714 40,786 y  <  ?0R 260 542 839 991 1,019 1,106 1,155 1,216 1,255 2,290 8,707 10,093 11,839 14,309 15,054 15,814 16,771 17,300 18,075 18,577 18,501 18,679 18,897 .19,450 19,929 ; 20,543 21,475 22,063 22,714 23,786 24,614 25,396 26,521 27,375 28,625 30,321 32,721 38,523  Mpfln  Sfrafn  274 549 823 982 1,008 . 1,089 1,134 1,205 1,237 1,527 3,600 6,450 9,968 14,772 16,440 17,733 18,757 19,413 • 20,016 ., 20,192 20,137 20,384 20,563 21,116 21 622' 22,234 22,870 23,487 24,232 24,932 25,669 26,354 27,336 28,123 29,060 30,607 32,868 36,202 s  45 TABLE V I I (Continued)  Load Kips  Mean Stress psi  40.00 8,580 s 80.00 • 17,160 120.00 25,740 . 143.97 30,882 148.00 31,746 158.50 33,998 165.60 35,521 37,604 175.31 179.08 38,413 193.96 41,604 41,984 195.73 195.70 41,978 42,319 .197.29 204.98 43,968- . 45,832 213.67 212.09 45,493 214.82 46,079 217.83 46,725 223.63 •. 47,967 207.14 44,432 206.61 44,318 222.50 47,726 224.86 48,232 225.31 48,329 227.46 48,790 229.96 49,326 231.59 49,676 233.73 50,135 237.39 50,920 239.54 51,381 :241.37 . • 51,774 .243.77 ' 52,289 246.76 . ' 52,930 255.36 . . 54,775 56,338*. 262.65 1 : 266.75 !, 57,218 269.10 ' 57,722 269.40' 57,786  301 240 514 786 957 984 1,065 1,134 1,207 1,246 1,574 5,744 9,745 14,280 18,670 20,009 20,614 21,450 22,037 22,743 23,436 23,130 23,138 23,297 23,827 24,500 25,250 25,854 26,843 27,729 28,829 29,657 30,414 31,150 ' 32,254 33,149 32,743 32,829 35,882  Ad l u s t e d S t r a i n Gauge D a t a i n M i c r o I n . / i n . f o r S e c t i o n 3  302 288 588 888 1,063 1,094 1,179 1,215 1,298 1,345 2,022 16,200 18,700 19,702 20,815 22,175 22,971 24,614 25,618 26,612 27,238 26,855 27,254 27,566 28,512 29,329 30,050 31,221 32,421 33,729 35,400 36,668 38,500 39,950 41,650 44,154 47,289 50,611 59,263  303 298 581 852 1,005 1,040 1,123 1,174 1,259 1,316 1,571 6,469 8,550 10,903 13,611 14,168 14,686 16,000 17,179 18,378 18,800 18,800 18,759 19,317 20,381 21,307 22,000 23,179 24,280 25,054 26,448 27,700 28,954 29,886 31,177 32,247 32,071 32,036 36,820  304 300 590 885 1,059 1,093 1,172 1,226 1,298 1,351 1,390 5,671 7,602 8,948 11,600 14,338 15,864 17,729 18,743 19,649 20,189 20,037 20,207 20,404 21,157 21,686 22,307 23,152 24,333 25,800 25,986 27,157 28,125 28,971 29,945 31,334 33,671 35 850 42,975 s  305 296 600 913 1,105 1,130 1,200 1,245 1,303 1,303 1,274 1,172 3,289 5,358 9,589 13,449 16,000 18,179 19,109 19,920 20,396 20,246 20,397 20,584 21,327 21,854 22,364 23,125 23,922 24,576 25,847 26,639 27,676 28,339 29,396 30,685 35 200 38,800 47,554 ;  306 285 576 860 1,029 1,055 1,136 1,189 1,252 1,290 2,278 9,411 11,238 12,203 13,629 14,948 15,673 16,814 17,152 17,806 18,193 18,125 18,291 ' 18,423 18,753 19,229 19,625 20,216 20,63921,160 21,537 21,950 22,336 22,629 22,954 23,373 23,688 23,989 22,625  308 307 289 317 ' 642 578 952 878 1,126 1,044 1,Q71 1,158 1,226 1,165 1,202 1,256 1,300 1,277 1,305 1,292' < 1,439 1,353 • ' 2,213 1,927 2,335 3,867 ,5,942 4,021 9,836 7,508 10,475 13,0.33 15,236 12,820 15,100 17,033 18,132 16,191 18,990 17,374 19,546 18,345 18,105 . '19,648 18,009 19,693 18,320 19,803 19,226 20,443 21 400 19,829 21,882 . 20,600 22,780 21,439 23,680 22,330 23,375 24,383 25,418 24,463 26,389 25,438 26,310 27,655 28,700 27,150 29,584 28,283 29,540 • 30,849 33,124 32,234 33,900 36,259 43,964 39,091 ?  Mean S t r a i n  252 ' 583 8771,049 1,078 1,158 1,205 1,274 1,306 1,613 6,101 .8,166 10,170 13,157 15,324 16,733 18,365 19,270 20,184 20 768 20,618 20,718 20,964 21,703 22,392 23,010 23,871 24,806 ' 25,726 26,741 27,708 28,746 29,59? 30,655 31,91* 33,753 35,534 41>022 fi  46 TABLE V I I  Load Kips 40.00 80.00 120.00 143.97 148.00 158.50 165,60 175.31 179.08 .193.96 195.73 195.70 .197.29 204.98 213.67 212.09 214.82 217.83 223.63 207.14 ; 206.61 222.50 224.86 225.31 227.46 . 229.96 231.59 233.73 237.39 239.54 241.37 243.77 246.76 255.36 262.65 266.75 .. 269.10 269.40  Mean,... Stress p s i ;. 8,580 17,160 25,740 30,882 31,746 33,998 35,521 37,604 38,413 41,604 41,984 41,978 42,319 43,968 45,832 45,493 46,079 46,725 47,967 44,432 44,318 47,726 48,232 48,329 48,790 49,326 49,676 50,135 50,920 51,381 51,774 52,289 52,930 54,775 ,. 56,338 57,218 57,722 „ 57,786  401 236 487 744 913 942 1,017 1,066 1,146 1,167 . 1,877 4,121 6,787 12,473 17,743 18,300 18,382 18,400 18,546 19,259 19,332 . 19,359 19,480 19,557 19,773 20,357 21,114 21,566 22,212 23,029 23,629 24 400 24,886 25,929 26,586 26,863 26,571 27,486 28,707 o  (Continued)  A d j u s t e d S t r a i n Gauge D a t a i n M i c r o I n . / i n . f o r S e c t i o n 402 403 404 405 270 286 278 300 548 536 542 587 815 784 815 873 978 926 979 1,039 1,006 954 1,006 1,065 1,089 1,037 1,087 1,129 1,136 1,089 1,132 1,157 1,207 1,493 1,212 1,178 1,238 1,712 1,241 1,167 1,798 5,787 1,410 4,393 2,712 8,496 1,845 11,443 3,792 10,381 2,648 12,579 6,775 13,125 7,646 13,167 11,439 13,921 11,259 15,929 14,111 13,800 13,686 19,075 15,652 13,800 15,375 20,557 16,723 13,943 16,625 21,521 17,479 14,332 17,464 22,100 18,186 14.,877 22,600 18 232 18,250 14,836 18,443 22,552 18,300 14,864 18,400 22,523 18,543 15,288 18,614 22,689 18,679 15,443 18,807 22,792 19,257 15,911 19,386 23,125 19,820 16,450 19,996 23,557 20,704 17,029 20,575 23,921 21,350 17,587 21,171 24,388 22,114 18,177 21,879 24,813 22,957 18,825 22,614 25,300 23,638 19,368 23,357 25,950 24,825 20,000 24,137 26,557 25,550 20,461 24,723 27,014 26,623 21,200 25,661 28,029 27,893 21,621 26,650 28,913 29,089 21,845 27,829 30,082 29,960 21,836 29,098 32,329 34,566 21,800 31^880 37,114 40,775 21,800 36 257 45,257 S  s  4  406 258 540 808 • 973 998 1,087 , 1,122 1,202 1,239 '•, 1,901 2,007 2,151 5,073 8,430 10,950 12,300 13,336 14,143 14,586 14,800 14^800 14,943 15,159 15,529 15,889 16,423 16,900 17,514 18,004 18,480 18,912 19,454 19,793 20,143 20,554 20,875 21,188 21,696  407 295 * 597. 890 1,062 1,097 1,146 1,161 1,167 .1,163 1,194 1,587 2,780 2,580 4,119 8,116 9,750 11,036 12,157 12,957 13,600 13,595 13,634 13,908 • 14,598 15,157 15,793 16,598 17,118 17,850 18,707 19,371 20,089 . 20,932 21,836 22,916 . 24,529 28,200 34,427  :  ;  408 ' 258 542 805 950 966 1,033 1,071 1,137 • 1,170 1,283 1,686 2,082 7,319 12,506 14,864 15,916 17,014 17,696 18,532 18,757 18,606 18,871 19,089 ' 19,621 19,891 20,341 ' 21,086 21,864 22,545 23,362 24,125 25,036 . 23,943 21,350 27,600 28,498 28,998 29,507  Mean S t r a i n 273 547 817 978 1,004 1,078 V 1,117 1,218 •''•i'-' 1,762 2,455 4,237 5,400 8,520 11,918 14,113 ' " 15,217 16,075 16,740 17,404 17,571 '.. 17,556, ; 17,758 17,929 18,400 18,890 19,488 20,081 20,711 21,391 22,061 22,791 23,402 24,014 24,374 .25,847 25,463 28,904 32,303  TABLE V I I (Continued)  Load Kids  Mean Stress psi  Adiusted 501  40.00  ;  8,580 •  502 290  235  i  S t r a i n Gauee Data i n M i c r o I n . / i n . f o r S e c t i o n 5 503  504  284  284  505  506  317  '  • . •  507  280  MPSTI  334  80.00  17,160  497  577  533  530  630  585  653  120.00  25,740  774  868  806  786  939  866  967  942  1,172  1,038  1,131  9 7 1 •'•  1,202  1,067  1,163  •'  • :  Rt-rain  276  • 288  574  .  572 .860  870  143.97  30,882  945  1,038  975  148.00  31,746  966  1,073  1,002  •  158.50  33,998  1,052  1,156  1,087  1,033  1,287  1,154  1,238  165.60  35,521  1,109  1,196  1,133  1,083  1,338  1,197  1,272  1,195  1,190  175.31  37,604  1,188  1,283  1,218  1,350  1,390  1,265  1,308  1,271  1,284  179.08  38,413  1,221  1,323  1,240  1,306  1,422  1,299  1,314  1,300  1,303  193.96  41,604  1,370  1,625  1,219  1,304  2,652  1,669  1,634  2,777  1,781  195.73  41,984  1,433  1,663  1,322  1,457  15,032  1,880  5,817  7,494  4,512  195.70  41,978  1,468  1,911  1,266  1,975  16,216  3,217  7,867  9,343  5,408  197.29  42,319  1,979  3,773  1,220  3,898  16,580  6,124  10,826  11,149  204,98  43,968  9,172  8,026  2,875  8,123  16,741  9,938  14,046  14,181  10,388 :  213.67  45,832  15,200  11,087  5,981  10,513  16,963  12,782  16,131  16,145  13,',000  212.09  45,493  17,000  13,614  8,488  12,325  17,39,2  14,503  18,197  .  17,593  14,889  214,82  46,079  18,557  16,121  10,575  13,816  18,432  15,618  19,968  \  18,830  16,490  217.83  46,725  19,239  17,800  11,756  14,915  19,109  17,152  20,980  19,592  17,568  223.63  47,967  20,318  19,600  13,148  1 5 , 5 5 1 •;  19,49,3  17,523  22,146  20,384  18,520  207.14  44,432  20,800  20,379  13,779  15,800  19,700  18,369  22,568  i  20,666  19,008  206.61  44,318  20,800  20,226  13,550  15,800  19,775  18,248  22,522  ' ?.  20,688.;  18,951  222.50  47,726  20,754  20,471  13,829  16,200  19,992  18,389  22,592  224.86  48,232  21,017  20,985  14,228  16,489  20,174  18,558  225.31  48,329  21,621  22,200  15,165  17,149  20,554  19,280  .  :  .  1,018  :  .  :  1,050  1,062  • 1,148  1,144  19,126 19  23,625  20,993 21,548 22,188  20,823  22,767 23,500  21,415  24,286  23,312  227.46  48,790  22,362  23,137  16,064  17,763  21,236  19,621  24,211  229.96  49,326  23,175  24,005  16,625  18,289  21,659  20,012  24,789  231.59  49,67.6  24,325  25,600  18,144  19,135  22,588  20,602  25,620  233.73  50,135  25,029  27,000  19,162  19,660  23,402  21,286  26,671  237.39  50,920  25,916  28,375  20,021  20,387  23,968  21,936  27,484  i-  V  .  . 25^,305  F I  408  22,439  51,381  27,120  29,676  21,137  21,310  25,046  22,493  28,541  51,774  28,254  30,829  22,083  21,963  26,097  22,937  29,430  27,184  26,097  243.77  52,289  29,209  32,372  23,424  22,907  27,237  23,577  30,209  28,118  27,132  24,037  .31,025  28,788  27,898  24,605  32,154  29,740  28,996  26,299  25,215  246.76  52,930  30,002  33,512  24,225  23,450  28,143'  255.36  54,775  31,039  35,200  25,358  24,425  29,444  262'. 6 5  56,338  32,024  37,254  26,594  25,554  30,902  24,751  33,758  31,002  30,230  266.75  57,218  32,225  38,680  28,570  26,816  32,079  25,176  34,889  31,875  31,289  269.10  57,722  32,975  40,545  30,009  27,816  32,492  25,388  35,992  32,334  32,194  269.40  57,786  37,657  52 454  33,979  34,432  44,000  25,689  44,728  39,536  39,059  ;  •  •  \  . •  24,174  241.37  •  V  20,143  239.54  ;  .  6,944  20,784  22,820  •  /  48 TABLE V I I  Mean Stress psi  Load Kips 40.00 80.00 120.00 143.97 148.00 158.50 165.60 175.31 • 179.08 193.96 195.73 195.70 197.29 204.98 213,67 212.,09 214^82 217.83 223.63 207.14 S O 6.61 222.50 224.86 ^-225.31 .227.46 229.-96 231,59 233.73 237.39 239.54 '241.37 243.77 246.76 255.36 262.65 266.75 269.10 269.40 NOTE:  .  8,580 17,160 25,740 30,882 31,746 33,998 35,521 37,604 38,413 41,604 41,984 41,978 42,319 43,968 45,832 45,493 46,079 46,725 47,967 44,432 44,318 47,726 48,232. 48,329 48,790 49,326 49,676 50,135 50,920 51,381 51,774 52,289 52,930 54,775 56,338 57,218 57,722 57,78 6  + I n d i c a t e s Tension  601 217 472 726 871 894 972 1,028 1,100 1,173 5,547 7,452 7,216 7,166 9,096 11,825 14,027 15,100 16,057 17,043 17,300 17,129 17,236 17,487 18,429 19,329 20,450 21,029 21,629 22,952 23,648 24,532 25,218 26,493 27,386 28,246 29,484 34,521 40,629 Strain  (Continued)  AcHusted S t r a i n Gauee Data i n M i c r o I n . / I n . f o r S e c t i o n 603 604 602 60 <S 277 239 288 +65 506 . 517 557 230 756 794 830 522 961 891 1,000 801 990 921 1,021 970 1,079 1,011 1,108 1,026 1,134 1,061 1,154 1,041 1,226 1,134 1,229 1,051 1,266 1,156 1,253 1,077 2,442 1,183 1,574 1,285 1,200 5,189 2,617 3,526 7,037 1,231 3,585 7,262 1,629 9,357 5,642 10,733 12,200 6,381 9,650 13,279 14,761 13,100 11,857 13,664 16,050 17,071 13,657 14,023 18,721 17,636 15,068 14,455 19,875 18,429 15,902 14,886 21,025 19,229 16,623 15,507 19,536 21,254 16,900 15,654 19,539 21,248 16,870 15,621 19,721 21,509 22,393 15,914 • 21,761 19,836 27,600 16,174 22,813 20,361 18,068 16,643 20,866 23,657 18,721 17,177 21,557 25,057 19,446 17,918 26,150 22,175 20,157 18,579 27 163 22,661 18,186 20,868 28,654 23,448 21,800 20,070 24,055 29,625 22,657 20,804 30,929 24,643 23,464 21,313 32,046 25,311 24,300 21,737 34,043 26,259 25,279 22,643 25,150 27,143 26,404 23,857 36,429 28,429 25,475 27,807 37,700 30,150 25,655 29,029 42,614 34,350 ' 32,668 28,234 49,332 40,457 34,239 38,877 :  6 606 236 516 794 ' ' 964 993 1,090 1,147 1,245 1,294 2,740 9,520 13,615 15,449 17,661 19,232 20,429 21,500 22,087 22,600 22,600 22,613 22,802 22,965 23,454 23,600 23,857 24,307 24,716 25,329 25,650 25,857 26,150 26,786 27,107 27,416 27,536 27,350 26,638  607 302 613 915 1,074 1,104 1,173 1,193 1,233 1,245 1,871 5,881 8,960 14,090 20,025 21,443 21,914 22,602 22,907 23,436 23,571 23,507 23,775 23,940 24,436 24,713 25,137 25,743 26,489 27,109 2.7,896 28,596 29,464 30,175 31,014 32,036 32,473 33,552 27,929  608 245 530 806 966 997 1,078 1,130 1,208 1,253 3,518 10,157 11,580 13,311 15,901 17,043 17,996 19,075 19,671 20,418 20^580 20,504 ... 20,748 '20,910 21,536 21,986 22,475 23,327 23,671 - 24,543 25,457 . 26,264 .26,857 27,857 28,607 29,680 '30,125 31,611 36,802  Mean S t r a i n 217 493 768 941 986 1,067 1,111 1,178 1,215 2,520 5,693 7,561 9,672 13,024 15,366 16,896 18,020 18,727 19,485 19,674 19,629 20,512 21,334 20,718 21,256 21,987 22,683 23,298 24,238 24,974 25,700 26,385 27,317 28,334 29,440 30,269 33,113 38,113  TABLE V I I (Continued)  Mean Stress psi  Load Kips  Ad i u s t e d S t r a i n Gauee D a t a i n M i c r o  In./in. for  Section 7 Mean .,  40.00 80.00 120.00 143.97 148.00 158.50 165.60 175.31 179.08 193.96 195.73 195.70 197.29 204.98 213.67 212.09 ,214.82 217.83 223.63 207.14 206.61 222.50 224.86 225.31 227.46 229.96 231.59 233.73 237.39 239.54 ,241.37 243.77 246.76 255.36 262.65 266.75 269.10 269.40  .  8,580 17,160 25,740 30,882 31,746 33,998 35,521 37,604 38,413 41,604 41,984 41,978 42,319 43,968 45,832 45,493 ' 46,079 46,725 47,967 44,432 44,318 47,726 48,232 48,329 48,790 49,326 49,676 50,135 50,920 51,381 51,774 52,289 52,930 54,775 56,338 57,218 57,722 57,786  701 270 532 783 , 924 950 1,002 1,037 1,111 1,149 1,440 1,532 1,494 1,398 1,521 2,324 3,791 5,231 6,353 7,610 7,819 7,824 8,367 8,775 9,721 10,514 11,457 12,296 13,227 14,325 15,143 15,900 16,575 18,229 18,818 20,237 22,593 28,264 35,084  702 178 439 698 872 908 1,012 1,087 • 1,204 1,250 3,202 5,723 7,768 13,064 15,602 16,557 17,805 18,814 19,486 20,043 20,057 20,093 20,336 20,432 20,843 21,321 22,168 22,764 23,243 24,193 25,071 25,838 26,454 27,905 28,929 29,900 31,236 34,246 38,114  703 298 531 776 916 941 1,011 1,048 1,099 1,112 1,280 1,804 2,374 ,2,889  704 705 300 364 558 658 826 964 978 1,107 1,005 : 1,135 1,100 : 1,205 1,150 . 1,254 1,240 1,331 1,275 1,354 1,427 1,423 2,136 1,558 3,476 1,681 15,800 6,753 17,841 , 9,737 18,696 10,121 19 ,,362 10,657 19,995 11,400 20,457 12,071 21,057 12,770 21,293 12,966 21,229 12,879 21,450 13,446 21,597 13,762 14,204 22,057 22,650 14,707 23,271 15,300 23,814 16,071 24,271 16,702 24,934 17,254 25,523 17,993 26,102 18,721 26,887 . 19,396 27,738 20,136 28,343 20,905 29,089 21,523 30,062 21,514 32,886 22,343 37,771 24,582  706 . 185 419* 678 • 835 864' 960 1,015 1,119 1,171 1,904 5,196 6,545 . 11,847 . 14,545 15,086 •. 15,604 16,370 16,975 • 17,300. 17,636 17,711 17,800 17,800 18,050 18,379 15,929 19,500 19,90020,443 21,093 21,614 22,246 22,891 23,725 24,514 25,404 26,954 30,414  707 368 . 687 983 1 126 1 144 i ,187 1 ,206 1. 227 1 232 1 258 1 ,417 2 ,233 8 ,798 17 ,200 18 ,400 18 ,400 18',464 18 ,616 18 700 18 727 18 ,800 18 ,846 18 956 19 ,432 19 ,671 20 ,025 20 548 20 ,896 21, 486 • 21,886 22 507 23 ,071 23,,821 24, 496 25 ,021 25 ,500 25 ,900 26 307 ]  70S  StrA-fn  221 273 487 539 756 808 959 915 * 950 ; i ; ; ; > 987 1, 038 ¥ " 1,064 1 093 1,111 1 180 • 1,189 1, 1,221 223 2,329 6, 7 0 0 13 043 4,048 4,891 13, 557 14 613 • 9,395 . 13,293 16, 605 12,886 18, 021 I;.. 18 ,729 V 14,907 19 , 4 9 3 15,681 16,259 19, 857- r'20 600 16,869 20 618 •' 17,017 20 , 694 . 17,033 20 ,971 17,317 21 ,239 •'• 17,509 21 829 18,019 22 254 18,499 22 632 19,112 23 ,443 • 19,777 24 029 ' 20,324 24 ,525 21,023 25 ,432 21,734 26 054 . 22,391 26 654 i . 23,040 27 814 24,076 28 464 24,811 29 ,270 25,651 30 ,361 26,667 31 762 28,908 35 325 32,514  5-.-.  Overall Mean S t r a i n 266 548 827 . 992 1,022 1,101  1,145 1,224 ..' 1,329 -  1,999  '  4,463 5,976 9,012 12,605 15,038 15,800 16,931 17,668 18,391 18,670 18,643 "18,952 19,246 19,653 20,208 20,837 21,560 22,234 23,101 23,822 24,594 25,367 26,239 27,067 28,182 29,278 31,615 36,106  , ; •:: •  .;  TABLE V I I I COMPRESSION TEST OF THE 21-INCH 5WF16 COLUMN BY THE BALDWIN HYDRAULIC MACHINE  Load Kips 40.0 80.0 120.0 135.4 145.0 152,0 158,5 168.2 176.5 187.6 196.5 195.5 196.0 199.6 208.2 215.5 211.6 .215,0 218. 6 225.0 205.0 207, 5 22.5.0 224.6 225.5 • ,227.5 230.1 232.0 234,2 238.0 .240.0 •241.7 244.4 .246.8 2.57.7. 265.0 267.0 269.4  Mean Stress psi 8,580 17,160 25,740 29,043 31,103 32,604 33,998 36,079 37,859 40,240 42,149 41,935 . 42,042 42,814 44,659 46,225 45,388 46,118 46,890 48,263 ' 43,973 44,509 48,263 48,178 48,370 48,799 49,356 49,764 50,236 51,051 51,480 51,845 52,424 52,939 55,277 56,843 57,272 57,786  Gauge A IN.xlO-3 10.0 15.6 21.0 23.0 24.6 25.4 26.2 2.7.4 28.4 30.5 77.5 123.6 188.0 266.0 313.5 348.2 376.0 398.0 417.0 438.0 441.0 442.0 446, 5 457.5 466.0 480.0 498.0 510.0 526.6 556.5 568.2 583.5 604.4 621.5 652.8 655.2 632.0 611.4  Gauge C TN„x10" 12.0 20.2 28.0 31.8 33.5 35.2 36.9 39.5 42.0 . 46.0 97.0 145.0 209.0 284.0 333.0 367.0 395.0 417.0 436.0 455.0 458.0 459.0 465.5 477.0 485.4 499.0 518.0 530.0 547.0 577.1 589.4 605.4 626.0 644.0 682.4 736.0 797.0 864.0  3  Gauge B MMxlO 24.5 39.6 55.1 61.5 65.0 68.0 71.2 75.2 79.6 87.2 212.5 333.0 405.0 690.0 815.0 901.0 971.0 1,029.0 1,076.0 1,126,0 1,136.0 1,138.0 1,151.5 1,178.5 1,200.0 1,236.0 1,288.0 1,314.2 1,356.5 1,432.5 1,463.0 1,502.5 1,554.2 1,600.0 1,690.5 1,767.0 1,842.0 1,916.0 -2  Gauge D MMxlO 26.6 43.7 61.0 68.2 72.0 74.5 77.5 81-. 8 86.2 93.5 219.0 337.0 500.0 695.0 818.0 903.0 975.0 1,031.0 1,079.5 1,131.0 1,141.0 1,142.0 1,155.4 1,183.5 1,204.5 1,240.0 1,287.0 1,318.0 1,360.2 1,436.5 1,467.0 1,506.9 1,558.2 1,603.5 1,690.0 1,733.0 1,761.0 1,799.0 9  _/  Mean Deformation TN.vin-3 10.6 17.2 23.7 26.5 28.0 29.2 30,4 "32.2 33,9 37.0 86.1 133.1 197.2 274.0 ..' 322.6. 356.3 384.2 406.8 425.3 .445.3 448.-8 449.8 455.5 466.1 474.6 488.5 507.5 519.0 535.9 565.9 577.9 . 594.2 614.1 631.9 666.8 692.3 712.2 734.8  Mean Strain > H rm  TN/TN  505 819 1,129 • 1,262 1,333 1,390 1,448 1,533 1,614 1,762 4,100 6,338 9,390 13,048 15,362 16,967 18,295 19,371 20,252 21,205 21,371 21,419 21,690 22,195 22,600 23,262 24,167 24,714 25,519 26,948 27,519 28,295 29,243 . 30,090 31,752 32,967 33,914 34,990  Diff A-C  TNvlfl-3  -  2.0 . 4.6 7.0 8.8 -8.9 9.8 10.7 12.1 13.6 14.5 19.5 21.4  - 21.6' - 18.0 - 19.5 - 18.8 - 19.0 - 19.0 - 19.0 • - 17.0 - 16.0 - 17.0 - 19.0 - 19.5 - 19.4 - 19.0 - 20.0 - 20.0 - 20.4 - 20.6 - 21.2 - 21.9 -'. 21.6 - 22.5 29.6 - 80.8 - 165.0 - 252.6  Rotation About B-D A x i s  Diff B-D  RADvin-4  .  MMvin-2  1.3 3.1 -••  * -  4.7  5.9 6.0 6.6 7.2 8,1 9.1 9.7 13.1 14.4 14.1 12.1 13.1 12.6 12.7 12.7 12.7 11.4 10.7 11.4 12.7 13.1 13.0 12.7 13.4 13.4 13,7 13.8 14.2 14.7 14.5 15.1 19.8 51.2 110.8 169.4  -  -  ,' +  2.1 4.1 5.9 6.7 7.0 6.5 6.3 6.6 6.6 6.3 6.5 4.0 5.0 5.0 ' 3.0 2.0 4.0 2.0 3.5 5.0 5.0 4.0 3.9 5.0 4.5 4.0 l'-.O 3.8 3.7 4.0 4.0 4 3 4.0 3.5 .0.5 34.0 81.0 115.0 C  Rotation About A-C A x i s RArw]n-4  -  0.6  -  1.7 1.9' 2.0 1.8 1.8 1.9 1.9 1.8 1.8 1.1 1.4 1.4 0.8/. 0.6,  - 1.2  -  -  -  +  1.1  0,6 1.0 1.4 1.4 1.1 1.1 1.4 1.3 1.1 0.3 1.1 1.0 1.1 1.1 1.2 1.1 1.0 0.1 9.6 22.8 32.3  APPENDIX B FIGURES  •  •  • . '  KEUFFEL & ESSER CO. MADE IN U.S.A.  U l LO  * _  .  .  "  *  .  • . "-•  "  STANDARD © . C K fSPe='JOXIO TO THE tKH  ON  cnoN  KEUFFEL & ESSER CQ MADE  IN  U.S.A.  ON  KEUFFEL & ESSER CQ MADE  IN  U.S.A.  CI sO  •vi-  vo  IT! SO  ON  STANDARD © K>XK> TO THE -INCH  CROSS SECTION  KEUFFEL & ESSER CO. MADE IN U.S.A.  KEUFFEL & ESSER CO. MADE IN U.S.A.  C v ^ STANDARD JL  ^ ii= r  © CROSS SECTION  IOXIO TO THE INCH  KEUFFEL & ESSER CO. MADE IN u . s . a .  81  h  # 2 /  II'  "• T *  /  .  1  f  -c3  ?"  v. #  /  .  '  •  •  1»_ — —  I l l u s t r a t i o n 1. L o c a t i o n o f the t e n s i o n specimans' on the c r o s s s e c t i o n of th'e 5WF16 member. . • ' - . . . .  3-4 5-<o y  /-z  7-3  S  PECIMEN /  z 3  Illustration  2.  •5-  7#32  -5  Q-/Q  j  c/0.4-98 fn /nche.3 "  0.4-3 6  o.496  L o c a t i o n of the s t r a i n gauges  /". /n fnches 0.3S8  O. 35/  0.237 0.232  on the t e n s i o n  specimans.  U:-----7\  cz  ^-  h  BRACING  Strain  tames  >  (ra.u$5<ss  L/l"' J  I l l u s t r a t i o n 3. column.  B r a c i n g system and s t r a i n gauge l o c a t i o n on the 12-inch  I/O  /OS  (Of  HI  4-/OB 105  •TLJJD.  all corners  X  / 103  I 107 ior  a  ® Distance. A~C .Distance  =14.0 in.  B~D = I4-.5 in = 3G8.30mm  I l l u s t r a t i o n 4. S t r a i n gauge and d i a l gauge of the 12-inch column.  l o c a t i o n on the c r o s s  section  I l l u s t r a t i o n 5. C e n t e r i n g a p p a r a t u s and d i a l gauge mounts used on the bottom b e a r i n g p l a t e d u r i n g the compression t e s t s .  Se.c.~hcr> 1  2 ? ;  S e c t i o n 2.  3i"  Phillips Phillips  •Sec//on 3  Frames ^  3"  Phi I hps  4-"  i"  L  SecT*ion 3  • Bu-cJJ  sSecT/on ~J  „ 'Philh'ps  Ph) lli'ps  if  I l l u s t r a t i o n 7. column.  B r a c i n g system and  strain  gauge l o c a t i o n on the 21-inch  ©  /OS  JO do  /<57 /OS /OI  /OZ  ^ce Df'S-fcxna*  /? - C  ®  in.  3-D  I l l u s t r a t i o n 8. S t r a i n gauge and d i a l gauge l o c a t i o n on t h e c r o s s o f the 2 1 - i n c h column.  section  APPENDIX C ILLUSTRATIONS  S t r a i n gauge readout equipment f o r the c o m p r e s s i o n t e s t o f the 21-inch column.  I l l u s t r a t i o n 6. tests.  Photographs  b.  1 2 - i n c h column ready f o r the compression t e s t . Note the manner i n w h i c h the d i a l gauges a r e mounted.  t a k e n b e f o r e t e s t s o f the equipment used d u r i n g the compression  oo  b.  I l l u s t r a t i o n 9. Photographs i n c h column.  following  testing  S t r a i n g a u g e s on speciman.  o f t h e s t r a i n g a u g e s and d i a l  the 21-inch  g a u g e s on t h e  21-  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0050590/manifest

Comment

Related Items